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ITEPIAHWVH

Yy moapovoa Awaxtopint| Atatpl3h TeEprypdpoupe €pEuva OYETIXY UE UOPLIXES OlER-
vooieg petagopdc evépyetog (1 e€itoviwy) tpimhfc xatdotaone (METK) xar yetapopds
popTiou (M®). Mépoc ¢ OoTe3ric e€nyel TELpUATIXG ATOTEAECUTA YPOVOECAPTNUEVOL
nhextpovixol mopauayvntixol ouvtoviopol (XHIIE) oe éva opyavixd podpto, mou mo-
eaTNEOVY TNV ‘amoyopeunévy’ UeTaPaon and TNy Buctxy] anAh NAEXTEOVIAXT XATAGC TUOT)
oe Tpimhég Dieyepueves xatactdoes. To gdoua XHIIY mou mpogpyetar 4tay T0 YHELo
pwTodleyelpeTtan o TEpoy Y| TOM) aclevolc onTxhc amoppognong elvon tng (dlug €vto-
OTC UE AUTO TOU TPOERYETAL OTAY TO HOPLO PWTODIEYElPETAL OE TERLOY Y| UEYIOTNG OTTIXAC
amoppognone. T vo e€nyfoouue 1o TEPAUITING ATOTEAECHN YeToulonotioope Jew-
enTued wovteha xou xPBavtixolg ab-initio unohoyiopols. H avdivoy| yog detyver 611 t0
PUYOPEVO OPEIAETAUL GTNY AAANAETIOPAGT] LOLOG TROPOPUNG-TEOYLOXNS O TPOPORUNC (spin-
orbit coupling). H o0leuin 0o tpogopunc-teoytaxic oT1p0@opuhic avapeca oTic amhéc
AL TEITAES NAEXTPOVIAXES XATUCTACEL, ETUTEETEL TNV UEST, UETABaoT amd TNy oot
NAEXTPOVIAXT| XUTACTACT, OE TEIMAEC XATACGTACELS, AOYW TS QwTodEyepons. O uto-
Aoytouol pag Oelyvouv 6Tt o TAnduouds oTiC TEIMAES xaTac TdoelS ebvon g Bag Tdng
peyédoug xan yia Ti¢ 800 TEQLOYES OTTIXNG ATOPEOYNONS, X AUTOE Elval 0 AGYOG TOU TO

ofwor XHITE etvan tng (Brog €vtaone.

To diho pepog tne drateiBric mpoTelvel apyEc OYEBLUOUO) UOPLIXMDY XAAWdiwY (molec-
ular wires) To omofo pmopolv va yenotuonondolv »¢ YEQPUEES GE UOPLOXE GUC TAUOTA
00TN - YéQuEog - BéxTN xou Tar omolo oo tneilouy e€apeTd Yeriyopr METK oe moAd
Heydhec anootdoels (tdEne vavopétpwy). O apyéc oyediaouol egapudlovton o€ ToAUUE-
puxd popta pe m-stacked yewueTplo AVAUESH GTIC YEITOVIXES LOVADES LOVOUER®Y. LUUGLYY
UE TIC APYEC AUTES, 1) ECWTEPIXT EVERYELL AVADIOPYAVWOTS LOVOUEROUS TRETEL VoL EAOLY -
otomoinVel, xar ot ahkniemdpdoel; m-stacked PeTAL) YEITOVIXWY HOVOUERWY TEETEL Vol
elvon U€yloTeg, yoplc duvauxy| Topaudepwon e Yewuetplag. To yopoxtnoto Tind autd
0dNYolV GE TEITAES XUTAGTAOELS ECITOVIWY TNG YEQUEUS OL OTOlEC Elval ATEVTOTIOUEVES
oe Ohn TNV YEQupa axoua xo o Yepuoxpacia dwuatiou. [lapadétouue didpopeg maveg
OOMES TOU 1XAVOTIOOVY Ta To Thve xptthpta. [t auTéC I BOUES TEOCOUOLOYOUUE TNHY
METK yernowonowvtag xBavtixois utohoytopols ab-initio nhextpovioxic dourg, meo-
COHOLOOELC LORtaxhc BUVOIXAC, ot LovTéla urTeag muxvotntac. Ou urohoyiopol mpo-
BrEmouv ToAD Ypryopoug puludug uetdBaocrnc METK xoatd ufxog Tov Uopiaxmy YEGUE®Y

NG TAENG TWY 2 TIXOBEUTEQORET TGV axOual Xl Yt YEQUEES peYEDoug 50 LoVoUERMY.

To teheutaio pépog tng dateiBnc Teptypdpel dVo emnpdoleteg uerétec. H npwtr), agopd
v povtehonoinon METK avdueca oe CdSe xfBovrtixr teheio (quantum dot) xou o€ op-
yavixo uopto. H dedrepn, agopd v xBavtiny| tpocopoiwor puiuwy M® avducca ot 600

popta yovavivng. Ot yeléteg autée oyeTilovTton Ye TEWOUATIXG OECOUE VAL
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ABSTRACT

This Ph.D. thesis describes research work on triplet energy transfer (TET) and charge
transfer (CT) processes in molecular systems. The first major part of the thesis relates
to unusual experimental observations of time-resolved electron paramagnetic resonance
(TR-EPR) spectra of an organic molecule. The TR-EPR spectra following optical
excitation within a highly absorbing region of the molecule have similar intensities
as the TR-EPR spectra following optical excitation within the non-absorbing region.
Our analysis, using theoretical models and ab-initio quantum chemical computations,
demonstrates that this phenomenon is due to an initial-state preparation effect of di-
rect photoexcitation from the singlet ground state to excited triplet states. The direct
photoexcitation leads to similar triplet-state populations for both optical excitation re-
gions. Due to the low intersystem crossing rates from the excited singlet states, these

initial triplet populations determine the intensities of the EPR spectra.

The other major part of the thesis focuses on the design of organic m-stacked molecular
bridges that enable coherent TET over long distances. We propose design principles
for optimizing the speed of bridge-mediated TET. These design rules imply low inner-
sphere exciton reorganization energies, low static and dynamic disorder and enhanced
m-stacking interactions between nearest-neighbor chromophores. These features lead
to triplet exciton eigenstates that are delocalized over several units even at room tem-
perature. We propose various molecular structures that satisfy these criteria and that
can be used as bridging wires linking triplet donors to acceptors. We perform ab-initio
electronic structure computations, molecular dynamic simulations and density matrix
simulations. The computations predict fast TET along the proposed molecular bridges,
with effective intra-bridge TET rates of the order of 2 psec for bridge lengths of up to

50 chromophore units.

In addition, the thesis describes smaller projects that involve modeling of TET between
a CdSe quantum dot and an organic molecule, and modeling of quantum-vibrational
effects of hole-transfer rates between guanine molecules. These projects are motivated

by experiments.
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Schematic view of the PES of the initial I and final F' states in the har-
monic approximation model, shown as one-dimensional (single mode «)
representation of frequency w,. The vibrational energy levels E,, =
o, (m,a + %) and E,, ., = hw, (nF,a + %) are shown together with the
squares of the vibrational wavefunctions (n;.|ns.a), (RFa|nra) super-
posed on them. Their energies differ from each other by Aw,. The
overlaps between the vibrational wavefunctions belonging to the elec-
tronic state I and those belonging to the electronic state F' ((n;q|nra))
are shown in bold. The inset is a similar figure on a different scale where
the mode reorganization energy A, is clearly shown. . . . . . . . .. ..
PES of the initial I and final F electronic states indicating the definition
of the activation energy Foep. . - . . . . . . o . Lo
PES of the donor (D) and acceptor (A) parts for the case of indepen-
dent vibrational coordinates (see figure 2.1). left. PES of the positively
charged and neutral donor. Right. PES of the neutral and positively
charged acceptor. . . . . . . .. Lo
PES in a simplified form, of the donor (D) and acceptor (A) parts for
the case of independent vibrational coordinates showing the donor and
acceptor mode reorganization energies. . . . . . . . .. ... ... ...
Electronic structure of a 4-electron exciton system consisting two donor
(D)-acceptor (A) fragments. pay and 9p«a+) are the ground- and
excited-state molecular orbitals respectively, of the D(A) fragment. left:
the ground state electronic configuration of the D — A system. mid-
dle: an electron is promoted from the D ground state to the D excited
state to generate the initial excited configuration of the system. right:
The excited electron is transferred to the acceptor to generate the final

excited configuration of the system. . . . . . .. .. .. ... ...
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(a) Electronic structure configuration of a ground-state ET reaction.
The excess electron is initially on the donor and then it transferred to
the acceptor. (b) Electronic structure configuration of a ground-state

HT process. The hole is transferred from the donor to the acceptor. . .

Schematic representation of the effect of the angular momentum opera-
tors I, and [, on the py and p, atomic orbitals respectively (see eq. 3.27).
The positive directions of the Cartesian axes show the positive ends of
the p atomic orbitals. For example, when L, operates p, , p, undergoes
90° rotation around z-axis (countercklockwise) to get p,. . . . . . . ..
(a) Schematic representation of the effects of the L, Zy and [, operators
on the p, orbital of the nitrogen atom in a monoazine. (b) Schematic
diagram of the SOC matrix element between p atomic orbitals. Above:
The SOC matrix element between the same orbitals e.g., between the
two p, orbitals is zero since the overlap between p, and p, is zero. Below:
The SOC matrix element between p, and p, orbitals when L operates,

is strong because the overlap between two p, orbitals is non-zero.

Energy level diagram for S = 1/2 system as a function of the applied mag-
netic field By. In zero magnetic field (By = 0) the electron spin energy
levels are degenerate. Application of external magnetic filed (By > 0)
lifts the degeneracy of the electron spin energy levels. The EPR sig-
nal is observed when the energy difference between the two spin states
matches the frequency of the absorptive photon, (g8.By) /h = wy.

(a) The spin vector precesses about the magnetic field By along the z-
axis of the laboratory frame (z,y, z), with frequency of precession wy.
(b) The additional field B rotates in the zy plane with frequency wyn,.
(a) Precession of the magnetization about the effective magnetic field B
with precession frequency weg, during m.w. irradiation with amplitude
wi. (b) The transformation to the rotating frame (X,Y,Z) gives the
effective magnetic field B.g tilted at a constant angle 6 to the Z-axis.
Absorption (above) and dispersion (below) signals in EPR experiment
plotted versus wpmw — Wo. - - - - v o oo e
Experimental setup of TR-EPR: an applied electric field (usually in the
visible or infrared (IR) range) optically excites the molecular sample to
a singlet excited state, and the triplet excited states are populated via
ISC. An applied static magnetic field, for example in the z-direction
(By), splits the ZFS triplet sublevels (see figure 5.7) and a second time-
dependent magnetic field (Bj) linearly polarized perpendicular to the
static magnetic field induces transitions between these triplet sublevels,

giving rise to TR-EPR triplet signals. . . . . . . ... .. ... .. ...
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6.3

In the absence of an external magnetic field the degeneracy of the triplet
sublevels is lifted due to the SS dipolar interaction. . . . . . .. . ...
Energy level diagram of the triple state and absorption (or emission)
curves when the external magnetic field is applied (a) parallel to the
principal axis Z, (b) parallel to the principal axis X, and parallel to
the principal axis Y. The arrows show the allowed transitions between
the triplet energy levels and the energies of the allowed transitions are
given by AE = W3 — W and AE = W3 — Wy (see egs. 5.54, 5.55 and
5.56). By convention, D, was taken to be the value with the smaller

magnitude and Dy those with the larger magnitude. . . . . . . . . ..

Chemical structure of the Cbz-TBT molecule. It consists of a carbazole

(Cbz) moiety, which is colored in blue, and a dithiophene-benzothiadiazole

(TBT) unit, which is colored in red. TBT moiety is comprised of the
1,2,3-benzothiadiazole (BT) unit surrounded by two thiophene rings.

Experimental (black dotted line) and calculated (red line) absorption
spectrum of the Chz-TBT molecule. Computations were performed for
the most probable geometry (anti_2) at the TDA/BHandHLYP/TZ2P
level of theory, and solvent effects were included via COSMO model using
the dielectric constant (¢ = 9.8) for dichlorobenzene. The spectrum is
based on a 100 nm FWHM Gaussian broadening of the vertical transition
energies and associated oscillator strengths. The CT band is centered
at 473 nm (2.62 eV), and it is attributed to the transition S5°¢ — S$OC
(or Sy — S1), which is predominantly (93%) assigned to HOMO-LUMO
transition. The shade areas show the experimental excitation wavelength
ranges inside and outside (below) the CT band. . . . . . ... ... ..
Left: Pure singlet (|S,)) states (black lines) and pure triplet state mani-
folds ({|Tk.m.)}) (light grey lines) coupled by the spin-orbit interactions.
Right: Spin-mixed states (|S5°¢)and {|T,§?C)}, dark grey lines) as linear

combinations of pure singlet |S,,) and triplet |7} ,,,) states (equations 6.2
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6.8

Direct mechanism for the formation of triplets. Left: Optical excitation
at t = 0 sec induces transitions from the “mixed”ground state |S5°C)

TR9C) for excitation wavelengths be-

to “mixed”triplet excited states |
low the CT band. Right: Optical excitation at t=0 sec induces transi-
tions from the “mixed” ground state |S5°€) to “mixed”singlet |S59¢) and
triplet |7, EE&) excited states for excitation wavelengths inside the CT
band. Gaussian line shapes represent the excitation wavelength region
below and inside the CT band. Both types of excited states (|S$°C) and
|T,§?C)) have triplet contributions (equations 6.2 and 6.3 and figure 6.3).
Thus, photoexcitation creates initial (at ¢ = 0 sec) triplet populations
|(Tho.m. | S5OC) |2 and |<Tk7ms\T,§’?C>\2. ...................

Indirect mechanism for the formation of triplets. Optical photoexcita-

tion inside the CT band at ¢ = 0 sec creates an initial population of the

“mixed” | 50C

) state, which is approximately pure singlet state |S,,). At
a later time after photoexcitation, the initial |S,,) population can trans-
form to triplet |Ty,,.) and |Txi1.m,) population via ISC (rates kg, 7,
and kg, 5Tiq)- - - o e
Schematic representation of the torsional angles determined along the
conjugated backbone. 6,60, and 03 are the dihedral angles of the bonds
denoted by bold lines. . . . . . .. . ...
Minimum ground-state energy conformations and shorthand notation.
anti and syn refer to the orientation of thiophene rings relative to BT
(anti if the Sulfur atom of the thiophene ring points upwards relative
to BT [¢; = 0° or #2 = 0°] and syn if the Sulfur atom of the thiophene
ring points downwards relative to BT [#; = 180° or 6, = 180°]). The
numbers 1 and 2 refer to the orientation of Nitrogen atom of Chbz moiety
with respect to the nearest thiophene unit: 1 if the Nitrogen atom points
downwards relative to the Sulfur atom of the nearest thiophene [0 =
180°] and 2 if the Nitrogen atom points upwards relative to the Sulfur
atom of the nearest thiophene [#3 = 0°]. Percentages refer to the ground
state population of relative geometries at room temperature computed
according to Boltzmann statistics and energies refer to the total ground
state energies computed at BHandHLYP /TZ2P level of theory.

Energy level diagram of Cbz-TBT molecule in its anti_2 geometry calcu-
lated at the TDA/BHandHLYP /TZ2P level of theory. Thick dark grey
lines represent the computed spin-orbit coupled excited state energies
with respect to the ground state energy. Thin black lines represent the
experimental optical excitation energy regions for the TR-EPR exper-
iment (2.14 eV - 2.88 eV for photoexcitation inside the CT band and
1.82 eV - 1.97 eV for photoexcitation below the CT band). . . . . . ..
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6.9

6.10

6.11

6.12

6.13

Schematic view of the PES of the singlet |S,,) and the triplet |7} ,,.)
excited states in the harmonic approximation model, shown for a single
vibrational mode of frequency w. The vibrational energy levels are shown
in light gray and their energies differ from each other by hw. The energy
difference between the minimum of |S,) surface and the minimum of
Tk,m,) surface is AEg, 7, . . Ais the mode reorganization energy.

Population transfer to the first and second triplet excited states as a
function of time. (a) Population of S; from 0 to 0.5 usec. (b) Population
transfer to T, from 0 to 0.5 usec. (c¢) Population transfer to 77 from 0
to 0.5 usec and (d) population transfer to 75 and 7; for larger time
scales than 0.5 psec, namely from 0 to 0.3 msec. Initial condition for
Ty:Pr(t=0)=53x10% . . . ... ... ...
Schematic energy diagram for the conformational transitions between
two different geometries (A and B) in the T} PES. For all the experimen-
tal excitation energies <E§'}§%CHTPOC) , the T7 manifold is populated with
high vibrational kinetic energy. This excess kinetic energy (KE®™*)
may be large enough compared to the energy barrier (E®) for the con-
formational transition between minimum energy geometries of A and
B, so that each excited molecule may change its conformation through
motion on the 77 PES. . . . . . . . . .. ...
PES of the T} manifold along the torsional angles 6; (above) and 6,
(below) computed at TDA /BHandHLYP /TZ2P level of theory for anti_2
geometric conformation. The two gray-dashed lines refer to the lowest
and maximum experimental wavelengths used for excitation below the
CT band (1.82 eV - 1.97 V). Above: The barrier refers to a thiophene
unit rotation that brings the Cbz-TBT molecule from anti_2 to anti-
syn_2 (see figure 6.7). At 6, = 0° the energy refers to the minimum
energy conformation of the 77 manifold of anti_ 2. Below: The barrier
refers to the energy required for a BT-thiophene unit rotation that brings
the Cbz-TBT molecule from anti 2 to syn-anti 2 (see figure 6.7). At
61 = 0° the energy refers to the minimum energy conformation of the
T} manifold of anti_ 2. In the picture of the molecule, the Chz unit is
excluded for simplicity. . . . . . . . . ... o
Singlet-singlet and singlet-triplet vertical excitation energies of Cbz-
TBT in its anti_2 conformation calculated with CAMY-B3LYP method.
The percentage value on the right-hand side of each excitation is the

contribution to the excitation. . . . . . . . . . .. ... ...
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6.14

6.15

6.16

6.17

6.18

6.19

Singlet-singlet and singlet-triplet vertical excitation energies of Cbz-
TBT in its anti_ 2 conformation calculated using different GH and RS
methods. The electronic state at zero-energy is the ground state |S5°€).
The |SFO€) state is colored in red, the {|T7¢“)} manifold is colored in
blue and the {|TQS?C)} manifold is colored in green. Left column of each
method refers to the singlet states (S) and right column to the triplet
states (T). . . o o o
Singlet-singlet and singlet-triplet vertical excitation energies of Cbz-
TBT in its anti_2 conformation calculated using SOC-CIS/def2-TZVP
and pSOC-TDA/BHandHLYP/TZ2P methods. Left column for each
method refers to the singlet states (S) and right column to the triplet
states (T). . . . . o o o
Energy level diagram of the Chz-TBT molecule computed for differ-
ent geometric conformations at pSOC-TDA/BHandHLYP/TZ2P level
of theory. The [STOC) state is colored in red, the {|77¢¢)} manifold
is colored in blue and the {|75¢“} manifold is colored in green. Left
column of each geometric conformation refers to the singlet states (S)
and right column to the triplet states (T). . . .. ... ... ... ...
Absorption spectrum of the different Chz-TBT molecular conformations
calculated at the optimized B3LYP/TZ2P ground-state geometries us-
ing pSOC-TDA /BHandHLYP /TZ2P level of theory (based on a 0.30 eV
FWHM Gaussian broadening of the vertical transition energies and asso-
ciated oscillator strength). On the inset, the frontier orbitals H (HOMO)
and L (LUMO) are shown for each conformation. (a) anti-2 (b) anti_1
(c) syn-anti_2 (d) anti-syn_1 (e) anti-syn_2 (f) syn_2.. . . . .. ... ..
Schematic energy diagram for the conformational transitions between
two different geometries (A and B) in the 77 PES along the torsional
angles 0,, (n = 1,2). 650(‘” refers to the angle 6, of the ground state min-
imum energy conformation (Sp) of the initial geometry A. 00 refers
to the angle 6, of the minimum energy conformation of 7; excited state

of the initial geometry A. 951“3

' refers to the angle 6, of the minimum
energy conformation of 7T excited state of the final geometry B. The
energy barrier was computed with respect to the ground state energy of
the initial geometric conformation (A). . . . . . . . .. ... ... ...
The principal axes X,Y, Z are derived from the molecular axes x,y,z.

For example, the Z-axis behaves like a vector in the x,y, z plane. The
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magnitude of its components is given by (r|Z) with r = x, y, z respectively.111
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6.20

6.21

6.22

7.1

7.2

7.3

First row: Energy level diagram of the first triplet excited state sublevels
as a function of the static magnetic field By aligned with the dipolar axes
X,Y, Z respectively. Transitions occur at the resonance fields (down
arrows correspond to emissive lines and up arrows to absorptive lines.
The inset shows the ZFS triplet states (|71 x),|T1y),|11,2)). Second
row: TR-EPR spectra computed in the cases where the magnetic field
éo is aligned with the molecular X,Y or Z axis. Third row: The full
powder TR-EPR spectra. Here, the transitions corresponding to the
canonical field orientations (X,Y, Z) are shown as picks in the powder

spectrum as indicated by the dark arrows. Lorentzian lineshape was set

to 2.08 mT. The transitions can be either absorptive (A) or emissive (E). 114

Population transfer to the first and second triplet excited states as a
function of time computed for anti-syn_1 (12%) geometric conformation.
(a) Population of Sy from 0 to 0.5 usec. (b) Population transfer to 75
from 0 to 0.5 usec. (c) Population transfer to 73 from 0 to 0.5 psec and

(d) population transfer to Ty and T for larger time scales than 0.5 usec,

namely from 0 to 0.1 msec. Initial condition for Ty : Pr,(t = 0) = 1.1x10%.117

Orientation of the principal axes of the ZFS tensor computed at UNO-
B3LYP /def2-TZVP level of theory for the different geometric conforma-

tions. To visualize the tensor, we used the Avogadro software package.

Flowchart showing the computational procedure we followed to compute
the ISC transition rates S,, — T}, using the ADF program package in
combination with MATLAB programming. . . . . . . .. .. .. .. ..
(a) Example of a signal in time domain (z(¢)) and its spectrum in the
frequency domain (X (f)). Two sinusoidal waves (1 and 2) of different
frequencies are superimposed and form a signal (1+2) in the time do-
main. The frequency spectrum of the signal is computed from the FT
of z(t). It is represented by delta functions entirely localized at the two
frequency components of the sinusoidal waves 1 and 2. (b) A signal is
classified as continuous-time signal (above) and discrete-time signal (be-
low). The discrete-time signal is a time sequence that has been sampled
from a continuous-time signal. It takes on only a discrete set of values
(samples). . . . ..
Schematic diagram of a DFT pair showing that the discrete signal x(n)
and the discrete frequency spectrum X (k) are sampled in equal intervals.
In the figure, Fs =1/t;and t,=7/N.. . . . . .. ... ... ... ...
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7.4

7.5

7.6

7.7

8.1

(a) Real part of the G(t) function (with cosine, see eq. 6.17). The plot
shows the 135 cosine waves in the time domain, one for each normal mode
of frequency w,. The lowest-frequency mode has the greater period of
oscillation (~ 0.07 cm) (with light blue color). The time duration of
the signal is chosen to be much greater than the period of oscillation of
the lowest-frequency mode (i.e., 7 = 2 cm). (b) The ISC rate (in sec™!)
as a function of the frequency AFEg, r,/h (in ecm™) for the transition
S1 — Ty in Cbz-TBT molecule. The rate at AEg, 7, /h = 9910.28 cm™!
equals to 17.67 sec™. . . . . . ...

(a) Two guanine molecules take part in a hole transfer transition. The

driving force is zero (AE = 0) and the electronic coupling is (GTG|V|GGT)

= 0.03 eV. (b) Hole transfer rate for the transition |G*G) — |GG™), as
a function of AE at different temperatures. . . . . . . . . .. .. .. ..
(a) Hole transfer rate computed using the scaled normal mode parame-
ters at 7' = 300 K (black line). The fitting into Gaussian distribution
(red line) reveals the rate can be described by the classical Marcus for-
mula. The plot also shows the hole transfer rate that was computed using
the unscaled frequencies and electron-phonon couplings at 7' = 300 K.
In this case, the spectrum can not be described by a Gaussian distri-
bution. (b) Hole transfer rate computed using the scaled normal mode
parameters at T' = 10 K. The spectrum is computed using eq. 2.29 and
it is shown in red. The rate is also computed using the classical Marcus
formula eq. 2.31 at T'= 10 K and it is shown in black for comparison. .
MATLAB code for the computation of the ISC rates according to equa-
tion 7.3. . . .o

(A) Fluorene monomer bridging unit (F1) used in ref. 1. (B) The struc-
ture of Bp-Fn-Nap systems used in ref. 1. The bridges contained one up

to three F units (Fn, n=1-3). (C) Chemical structure of the proposed in-

denofluorene (6,12-dihydroindeno[1,2-b]fluorene) bridging monomer (IF1).

(D) Molecular structure of the indenofluorene hexamer (IF6) bridge
(16.9 A length). The monomers are constrained to a rigid m-stacked

geometry through two methylene linkers and the interchromophore dis-
tance is 2.8-3.0 A. The IF6 bridge is linked to a Ru(bpy):" D and a

tetracene (Tet) A in approximately 4.2 A and 2.9 A distance respectively.141
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8.2

8.3

8.4

(a) TE states of the bridge type shown in figure 8.1 computed at CIS/def2-
SVP level of theory. Due to enhanced m-stacking, TE splittings are large
(e.g., AET2(2)7T1(2) = 0.3 eV for the dimer). For longer polymers the
TE band structure is stabilized. (b) Single excitation molecular orbital
contribution to the lowest two TE states of the IF10 (computed with
isosurface value 0.01). The figure shows only the largest contributions.
The notations (1),(2),(10) refer to monomer, dimer and decamer bridges
respectively. . . . . . L
(a) Schematic diagram of the tight-binding model used to estimate the
intra-bridge TET rates ky, = (7). for a bridge with N sites (monomers).
E is the monomer TE energy, V = Vs is the rms nearest-neighbour
TET coupling and o is the standard deviation of the energies F arising
from dynamic disorder. The ~; for i = 1 — (N — 1) are the monomer
TE population relaxation rates. Each ~; equals v, = kzg)h) (monomer
TE phosphorescence decay rate) and -y is the TET rate to an ac-
ceptor, v =~ kg_%};). The ~;; are pure dephasing rates given by
Yij = 0w + k- (b) (7)1 /7N versus qy (both on a log), scale)
for N =5 (red) and N = 50 (black) with v, =1 us™ (i =1— (N — 1)),
hvy; =01eVand V =0.15eV (V > op). (c) Trapping time (7)), and
intrinsic bridge TET time (), versus 7y, both in logarithmic scale, for
N = 5 and N = 50. The circles indicate the values of vy for which
(Thtrap = (T)br « « « o o e e e e e
Left: Energy level diagram of the TE eigenstates of Ru(bpy)3" - IF6 -
Tet system computed at wB97/def2-SVP level of theory. Right: Hole-
particle pairs of the natural transition orbitals (NTOs) of some TE’s.
Ty is localized on D, 77 on A, T3 on B and Tig, 112 are D-B and D-A
CT TE’s. . . . .
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8.5

8.6

8.7

8.8

8.9

8.10

8.11

(a) Structure of anthra[2,1,9-def:6,5,10-d’,¢’,f']diisochromene-1,3,8(10H)-
trione dimer with a single methyl group linkage which enforces sub-VdW
m-stacking. (b) Longer polymers with single methyl group linkages be-
tween monomers twist at room temperature, breaking the mw-stacking and
diminishing the interchromophore TET coupling. (¢) This problem can
be remedied by double methyl linkages between units of anthra[2,1,9-
def:6,5,10-d’ ¢ ,f']diisochromene-1,3,8(3H,10H)-dione monomers. In this

case 7-stacking is preserved for all pairs of nearest-neighbor monomers

>\m0n
2

herent ET as in the case of the wires shown in figure 8.1. (d) Structure

and for each pair, Vi, > . Such a wire supports long-distance co-
of two dicyclopentalghi,pqr|perylene derivatives linked with two methy-
lene linkers to build a dimer. This type of structure also has strong TET
coupling compared to the monomer reorganization energy (Viy,s = 0.2
eV).
Schematic representation of the potential energy surfaces (PES) of the
singlet ground state S((]l) and the first TE state Tl(l) of the donor and
acceptor moieties (i.e., [F monomer). The donor-to-acceptor reorgani-
zation energy A, is the sum of the reorganization energies of the donor
and acceptor,according to 8.4. . . . . . ... oL
The IF monomers are cut off from the dimer and each monomer is capped
with hydrogens at positions 5" and 11°. . . . . . .. ... .. ... ...
SE states (S ™) of the IFn bridges (n = 1,2,6,10) computed at the M06-
2X/DZP level of theory using the ADF program package. The notations
(1),(2),(6), (10) denote monomer, dimer, hexamer and decamer systems
respectively. . . . . . . L
TE states (T ™) of the IFn bridges (n = 1,2,6,10) computed at the M06-
2X/DZP level of theory using the ADF program package. The notations
(1), (2),(6), (10) denote monomer, dimer, hexamer and decamer systems
respectively. . . . . . . L
TE states (T ™) of the IFn bridges (n = 1,2,6,10) computed at the
CIS/def2-SVP level of theory using the ORCA program package. The
notations (1),(2),(6),(10) denote monomer, dimer, hexamer and de-
camer systems respectively. . . . . . . ...
Molecular structures of perylene-based dimers. (a) PDI dimer of ref. 2,
(b) PDI dimer of ref. 3, (¢) PMI dimer of ref. 4 and (d) TDI dimer of
ref. bwithR=Me.. . . . . .. . ..

152

153

154

155

XX



8.12

8.13

8.14

9.1

9.2

9.3

Al

A2

Molecular structures of perylene-based chromophore dimers that were

tested for coherent TE transport. (a) Bisbenzimidazo[2,1-a:2’,1’-a’|anthra[2,1,9-

def:6,5,10-d’e’t’]diisoquinoline-10,21-dione monomers linked with methyl
groups, (b) anthra[2,1,9-def:6,5,10-d’e’f’]diisoquinoline-1,3,8,10(2H,9H)-

tetraone (perylene diimide) monomers linked with biphenylene bridges.® 165

SET and TET couplings (in logarithmic scale) versus distance (in A).
The TET coupling drops considerably below 0.10 eV for distances greater
than VAW while the SET coupling is much greater. left. Computations
on the fluorene dimer. right. Computations on the PDI dimer. . . . . .
Distance dependence of the intra-bridge TET rate (k) (in logarithmic
scale) as a function of the length of the bridge. The simulations were
performed for V = 0.2 eV, hygepn = 0.1 €V and vy = (10 nsec) .

(a) Schematic representation of the TET pathways in the CdSe-BODIPY
system. The BODIPY molecule is attached to the spherical surface of
the CdSe NC via oxygen atoms. The QD is photo-excited at 500 nm to
trigger TET to the BODIPY acceptor. According to the experimental re-
sults, TET is favored via sequential CT. (b) Schematic diagram demon-
strating the possible triplet formation pathways in the QD-BODIPY
complex: (i) DET pathway (QD*-BODIPY—QD-*BODIPY*) [black ar-
row (1)], (ii) FRET QD*-BODIPY—QD-'BODIPY* followed by ET
QD-'BODIPY* —QD~-BODIPY* and back ET QD~-BODIPY+ —QD-
SBODIPY* [blue and yellow arrows (2)], (iii) hole transfer QD*-BODIPY
—QD™-BODIPY ™" followed by ET QD -BODIPY*T —QD-*BODIPY*
[green and yellow arrows (3)]. . . . .. ... ...
Calculated absorption spectrum of the BODIPY molecule computed at
the B3LYP/TZ2P level of theory using FWHM = 25 nm. The first ab-
sorption peak is centered at 644 nm and it is attributed to the transition
So — S7. This transition is of HOMO—LUMO character. . . . . . . . .
(a) Molecular structure of the CdSe NP of 2.5 nm diameter (see ref.
263). (b) Absorption spectrum of CdSe QD computed at sTDA/TZP
level of theory. (c) Frontier molecular orbitals of the CdSe QD. . . . . .

Example of the input script of the FCF-ADF program used to compute
the electron-phonon coupling parameters ), for each normal mode a,
for the transition S; — 77 in the Cbz-TBT molecule. . . . . . . .. ..
Example part of the output file of the FCF-ADF program used to com-
pute the electron-phonon coupling parameters A, for each normal mode
«, for the transition S; — 77 in the Cbz-TBT molecule. . . . . . . . ..

167

xx1



B.1

B.2

C.1

C.2

C.3

C4

C.5

Absorption spectra computed at 7' = 0 K and 7" = 300 K temperatures
using I' = 50 em™! and © = 100 cm™!. (a) the simulations were per-
formed for a set of low-frequency modes and (b) the simulations were
performed using a set of high-frequency modes. . . . . . . . ... ...
Part of the output file of the orca_asa program showing the intrinsic and
effective broadening parameters and the relative FWHMs. The parame-
ters I" and © are defined in the input file (see figure C.2 in appendix C)
but are shown also in the output file. This output file is related to the
calculation shown in figure C.2 in appendix C for the S; — 77 transition
in Cbz-TBT molecule. . . . .. .. ... ... ... ... ........

Shifted potential surfaces model for absorption and emission in the
single-mode representation. We show that the inhomgeneously broad-
ened absorption band of width Oy, comes from the superposition of
individual vibronic bands that are homogeneously broadened by I'y. . .
Example of the input script of the orca_asa program used to compute
the absorption cross section o(E7). The script contains the vibrational
frequencies and normal modes of the S; excited state, and the relative
displacements of the T; excited states of the Cbz-TBT molecule. The
absorption cross section was used to deduce the ISC rate constants ac-
cording to equation C.4. . . . . . . ...
Flowchart showing the computational procedure we followed to compute
the ISC rate constants S,, — T}, using the orca_asa program imple-
mented in the ORCA program package. The vibrational frequencies wj,
the displacements A; and the SOC constants (S| H5C|T},,.) can be
computed using any quantum chemical program. For our project we
used the ADF program package. . . . . . . . .. ... ... ... ... .
Example of a single-mode system with low frequency mode. Left. Ab-
sorption cross section o(Fy)/Ey as a function of the energy £, computed
with the orca_asa program. Middle. FCF integral as a function of the en-
ergy 'y computed with our MATLAB code. Right. The FCFs computed
with the MATLAB program are multiplied by the (constant) ~ 703 to
produce the absorption spectrum o(Ep)/Ep. . . . . . . ... ... ...
Absorption spectrum o(Ep)/Ey as a function of the energy E com-
puted with the orca_asa program (red lines) and by the MATLAB code
multiplied by the (constant) ~ 703 (black lines). (a) single mode system
with a high frequency mode w = 967.9 cm™!, (b) two-mode system with
mode frequencies w; = 564.6 cm™! and wy = 967.9 cm™!, (c¢) system
with 42 modes at T'= 0 K and (d) the same system with 42 modes at
T =300K. .. .
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D.1 MATLAB code for the computation of the ZFS parameters according to
equation D.1. . . . . . .. 227

E.1 MATLAB code for the computation of the mean first passage times
(MFPTSs) by solving the Liouville equation. . . . ... ... ... ... 230
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wavefunctions. . . . . . . Lo
Effects of the orbital angular momentum operators on the p-atomic or-
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Matrix elements of H5°C between singlet and triplet states. Singlet and

triplet states are defined in eq. 3.25. . . . . .. .. ... ...

Experimentally derived zero-field splitting (ZFS) parameters and the
relative populations of the zero-field triplet sublevels (pi™, p3 ", p3 ") to-
gether with the Lorentzian lineshapes obtained for the different excita-
tion wavelengths (Ayay) inside (492nm) and below (630-680 nm) the CT
band. g is the factor of the electron taken to be isotropic (gis, = 2.002).
Below the CT band the ZFS parameters are different for different ex-
citation wavelengths, thus, the TR-EPR spectra shapes are different.
Inside the CT band, the ZFS parameters are the same for different exci-
tation wavelengths, thus, the TR-EPR spectra shape are the same. For

this reason, in the table only the parameters for the excitation at the

maximum of the CT band are mentioned. Results were taken from ref. 7. 64

TD-DFT/TDA diagnostic indexes A and Ar computed using three dif-
ferent methods, for the Cbz-TBT molecule in its anti_2 conformation. .
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refers to LUMO). . . . . . . ... 96
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Oscillator strength for the transition S5°¢ — TQSEC ( fsgoc *)T28,?0> and

the energies of the second triplet excited state manifold (Esgoc ﬁTS’,?@
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Number of molecules that populate the first singlet excited state (Pgsoc)
upon photoexcitation in each geometric conformation. . . . . . . . . .. 110
Oscillator strengths for the transitions S5°¢ — T ;,i = [, ¢, u together
with the number of molecules that populate the first triplet excited
state manifold {|7},)},7 = [, ¢, uw upon photoexcitation from the singlet
ground state (given the range FWHM = 0.1 eV - 0.5 eV). The relative
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fold {|T1,r)}, R = X, Y, Z upon photoexcitation from the singlet ground
state together with the relative oscillator strengths fgsoc_p, , (given the
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Total rate constants for the transitions S; — 15, S; — 17 and Tp, —
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lineshapes obtained for the different excitation wavelengths (Ayay) below
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Rate computed with the Fermi’s Golden rule formula Vs rate computed
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CHAPTER 1

Introduction

The transport of excitation energy in molecular systems plays a crucial role in
chemical science, biology and engineering.? ! In particular, molecular exciton transfer
reactions between exciton-donor and exciton-acceptor moieties are key processes in the
photophysics and photochemistry of organic/inorganic compounds. %216 The major
part of the thesis focuses on triplet-exciton transfer (TET) reactions.

Spectroscopic techniques such as time-resolved electron paramagnetic resonance
(TR-EPR) and pump-probe transient spectroscopy are often used to explore the dy-
namics of excited triplet states involved in triplet exciton transfer reactions.'”!® In
2017, T. Biskup and his co-workers performed TR-EPR measurements in a small or-
ganic molecule (Cbz-TBT molecule, the repeat unit of the PCDTBT polymer) used
in photovoltaic applications (Meyer, D. L.; Lombech, F.; Huettner, S.; Sommer, M.;
Biskup, T. J. Phys. Chem. Lett. 2017, 8, 1677-1682). They observed TR-EPR
signals of similar intensities when the molecule is optically excited in its absorbing
and non-absorbing regions. The authors suggested two types of pathways for the for-
mation of triplet excited states in this molecule: (a) indirect triple-state formation,
via intersystem crossing (ISC) from the photoexcited singlet state (absorbing region),
(b) triplet-state formation via direct excitation from the singlet ground state (non-
absorbing region). This result is quite surprising given the weak spin-orbit coupling
(SOC) interactions between singlet and triplet states in organic molecules.'®?° Another
surprising result from this experiment is that the shapes of the TR-EPR absorption
and emission signals were different for different optical excitation wavelengths in the
non-absorbing region, while for excitation wavelengths in the absorbing region, the
TR-EPR spectral shapes remain unchanged with respect to optical wavelength.

Motivated by these unusual but interesting results, we interpret the experimen-
tal observations using theoretical models and ab-initio quantum chemical computa-
tions. Our theoretical work involve computations of the population transfer to the

triplet excited states either via direct optical excitation from the singlet ground state,



or via ISC from the photoexcited singlet state. In addition, we compute the non-
adiabatic ISC rates between the relevant singlet and triplet excited states. The rate
predictions involve computations of the normal modes and reorganization energies for
the singlet-to-triple transitions, that are subsequently used to compute the rate as a
Fourier transform (FT) of a quantum correlation function that contains the frequencies
and reorganization energies for each normal mode. Our work demonstrates that the
experimental results can be explained by an initial-state preparation effect of photoex-
citation, which leads to initial populations of triplet states that are similar for both
optical excitation regions. This work was published in the Journal of Chemical Physics
(Mavrommati, S. A.; Skourtis, S. S. J. Chem. Phys., 2020, 152, 044304).

Another part of the thesis is related to the design of organic molecular bridges
that enable coherent long-distance TET. Fast and efficient TET over long distances
is a prerequisite for triplet exciton harvesting in photovoltaics and solar energy con-
version, for triplet-triplet annihilation, singlet fission processes and photocatalysis. 2! 23
However, several experimental studies of donor-to-acceptor bridge-mediated TET show
strong decay of the TET transfer rate with respect to distance, indicating that long-
distance TET is only favored via multi-step thermally activated hopping. 2425 The
latter transport mechanism supports slow rates as compared to coherent band-like
transport. 27?8

We propose design rules for molecular bridges with the goal to enhance the
speed of bridge-mediated TET, by changing the transport mechanism from incoher-
ent to coherent. These design rules imply low inner-sphere exciton reorganization
energies, low static and dynamic disorder, and enhanced m-stacking interactions be-
tween nearest-neighbor chromophores. These features lead to triplet-exciton eigen-
states that are delocalized over several units even at room temperature. We propose
various molecular structures that satisfy these criteria and that can be used as bridg-
ing wires linking triplet donors to acceptors. For these structures, we perform ab-initio
electronic-structure computations, molecular-dynamics simulations and density matrix
model computations to simulate TET as a function of the molecular bridge length.
Our results predict fast TET along the proposed bridges, with effective intra-bridge
TET rates of the order of 2 psec for bridge lengths as long as 50 chromophore units.
This work was published in the Journal of Physical Chemistry Letters (Mavrommati,
S. A.; Skourtis, S. S. J. Phys. Chem. Lett., 2022, 13, 9679-9687).

This thesis is organized as follows. In Chapter 2 we describe the theory of
non-adiabatic quantum rates for ISC, energy transfer and electron/hole transfer re-
actions. In Chapter 3, we discuss the theory of the SOC interaction and the main
mechanisms by which the SOC coupling matrix element between singlet and triplet
states in aromatic molecules becomes strong. Chapter 4 summarizes the theory of the
density matrix operator for open quantum systems, the Liouville space formalism and
the Bloch equations. In Chapter 5 we explain the principles of EPR and TR-EPR ex-



periments using the quantum mechanical formalism of Chapter 4. Chapter 6 includes
the published paper on the TR-EPR experiment (Mavrommati, S. A.; Skourtis, S. S.
J. Chem. Phys. 2020, 152, 044304). In Chapter 7 we explore quantum-vibrational
effects on hole-transfer rates. As an example system we consider hole transfer between
guanine molecules, and study the temperature dependence of the hole-transfer rate
and its deviation from classical Marcus theory. In this chapter we also describe the
FT formalism for the computation of the ISC and electron/hole transfer rates, and
the MATLAB code that I wrote to compute the rates using ab-initio derived param-
eters. Chapter 8 includes the published paper on long-distance bridge-mediated TET
(Mavrommati, S. A.; Skourtis, S. S. J. Phys. Chem. Lett., 2022, 13, 9679-9687). In
Chapter 9 we describe work related to TET between nanocrystals and molecules. We
investigate the TET mechanisms of direct Dexter energy transfer (DET) and sequen-
tial charge-transfer (CT) between a CdSe nanoparticle (NP) triplet sensitizer, and a
modified structure of boron dipyrromethene (BODIPY) acceptor, linked to the NP.
My work as a PhD student at the University of Cyprus (UCY) was under the
supervision of Associate Prof. Spiros S. Skourtis. A large part of the research was
funded by the U.S. Department of Energy (DOE) under Award DE-SC0019400.



CHAPTER 2

Quantum non-adiabatic rates in molecules and

their classical limits

In this chapter we briefly describe the theory of non-adiabatic transition rates in the
golden-rule approximation. This approximation is used to determine the transition
rate between initial and final quantum states that are described by a zeroth order
Hamiltonian (H(©) in the presence of a weak perturbation (V). We show that this
expression can be written in a more compact form by introducing a spectral density,
which includes the contribution of all the vibrational modes with frequencies extending
over a broad range. Once the spectral density is obtained, it can be calculated for all
temperatures. We apply this theory to energy transfer (EnT), charge transfer (CT),

absorption (abs) and intersystem crossing (ISC) reactions.

2.1 Introduction

The total Hamiltonian operator that describes a molecular system, is expressed

0

as a sum of a zeroth order Hamiltonian H© and a time-independent perturbation 1%

A A

H=HY +V. (2.1)

The eigenstates |\IJ,(3)) and the eigenvalues E,, of the unperturbed Hamiltonian are

given by solving the time-independent Schrodinger equation
HOWD) = B, UD). (2.2)

In Fermi’s golden rule theorem, the transition rate between a pair of initial (|\If7(72)>)

and final (|\Il£22)) electronic-vibrational states is given, to 2nd order in V, by 2930
2T 0)
by g0y = T {EDVIED OB — Epn). (23)



We apply this golden-rule formula to molecular systems that are described by the total

non-relativistic Hamiltonian operator H mol " given by

}{mol _ ij 1 ]_{BO -
HBO — F 4 V.
In the above equation, T is the kinetic energy operator for the nuclear motion, HBO ig
the Born-Oppenheimer (BO) Hamiltonian operator, He is the electronic Hamiltonian
that describes the motion of the electrons in the field of the nuclei, and Vy_n is the
operator for Coulomb repulsion between the nuclei. The electronic Hamiltonian (H¢)
contains the kinetic energy of the electrons, the Coulomb attraction between electrons
and nuclei, and the Coulomb repulsion between the electrons.

Let us consider the situation where the molecular system is subjected to an
external field producing a perturbation V. In this case, HO = g™l and the eigenstates

|\Il£2)> are approximated by the nuclear-vibrational BO adiabatic wavefunctions i.e.,

00y = [¢@d)(R), néad)> = |¢ld(R ))]n (@d)y | ¢@d(R)) are the BO adiabatic electronic

eigenstates 103!

HP|CCY(R)) = EX (R)IC(R)), (2.5)

and |néad)) are the vibrational eigenstates of the nuclear Hamiltonian

Cvnc

= - ad ad ad
(B0 (B) + T ) 1) = ELnl®). (2.6)
R is a set of Cartesian coordinate vectors of the atoms ie., R = {fil, J%, ...7§N},
where N is the total number of the atoms in the system. EB?, is the BO adiabatic

¢lad)
surface of the electronic state |¢(*?), and it is a function of R. The second term in

parenthesis in eq. 2.6 is the nuclei kinetic energy operator (T N = val 5 ]\; ) which

—

is a sum of the kinetic energy operators of atom ¢ with mass M;, where P; is the
respective momentum operator. Ty acts only on the vibrational states. In the BO
approximation, the unperturbed Hamiltonian of the molecular system in the basis of

the adiabatic electronic eigenstates [¢@9(R)) is given by

HO =3 H{, (2.7a)
¢(ad)
H = [N (¢l (Ec(ad) (R)+ TN> . (2.7b)
(to simplify the notation for the BO wavefunction we use [¢@D(R)) — [¢(aD)). In

contrast to cases where V is an external perturbation, the initial and final electronic
states are not eigenstates of the HBC (i.e., the eigenstates are not the [¢(*?)). They

are states localized in different parts of the molecule, e.g., donor or acceptor. They are



often called diabatic BO states |¢(#4)(R)) (|¢(@i)) for simplicity). A3 is not diagonal

in the |¢(%®) basis, i.e.,

Z |C(dzab) (dzab) |HBO |C(dzab)> <C(diab) |

c(dzab)

<(dzab)( ) (28)
+ Z Z |<(diab)><C(diab)|ﬁBO’C(diab)/><C(dz‘ab)’|

C(diab) C(diab)/

where Eggab)(ﬁ) is the diabatic BO energy surface. In this case, the electronic-

vibrational basis state are written as |((diab)(ﬁ),nédmb)> = [¢ (di“b)(é)ﬂnédm)} where
In dmb)) are the eigenstates of the nuclear Hamiltonian
3 diab diab) | (diab
(B () + T ) Inf) = B2 n?). (2.9)

The unperturbed molecular Hamiltonian is taken to be

H(O Z H((dzab) (210&)
C(dlﬂ.b)
Hé?dzab Z |C(dzab dlab ’ <Ec(dzab) (é) _I_ TN) 5 (210b)
C(dzab)
|\I/ > dmb ]n dlab)>. Again, TN operates only on the |n dmb)}. The (internal)

perturbatlon V is the non-diagonal part of the BO Hamiltonian, i.e.,

V= Z Z | (diab)y (¢ (diab)| FTBO |- (diab)"y (- (diab)’| (2.11)

C(diab) C(diab)’

Within the harmonic approximation, the unperturbed Hamiltonian (eq. 2.7b
and 2.10b) can be written in terms of the harmonic oscillator Hamiltonian fzévib) where

the index ¢ holds either for (@9 or for ¢(4iab)9,10,32

2O = 10)(¢ (Em” + izg(mb)) . (2.12)

E{*™ is the minimum of the BO PES of the electronic state |[¢). The vibrational
Hamiltonian izémb) is a sum over the harmonic oscillator Hamiltonian of each normal

mode «

he™ Z Qi (2.13a)
7 (vid) 1 ~9 2 N eq \2
h(,a = 5 [pa + Wea (Qa - qua) } ) (213b)

where Bévib) is written as a function of the mass-weighted normal-mode coordinates q,.
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Figure 2.1: Schematic view of the PES of the initial I and final F' states in the harmonic
approximation model, shown as one-dimensional (single mode «) representation of frequency

wo. The vibrational energy levels En . = hwe (nI,a + %) and Enp., = hwe (nF,a + %) are

shown together with the squares of the vibrational wavefunctions (nro|nr,a), (NFa|nFa) su-
perposed on them. Their energies differ from each other by fAw,. The overlaps between
the vibrational wavefunctions belonging to the electronic state I and those belonging to the
electronic state F' ((nra|nrq)) are shown in bold. The inset is a similar figure on a different
scale where the mode reorganization energy A, is clearly shown.

we,o 1s the frequency of normal mode « that belongs to the electronic state ¢, and qzqa is
the equilibrium normal mode coordinate. p, is the mass-wighted momentum operator.
The eigenvalues of the normal mode Hamiltonian are given by solving the eq. 2.2 for

the harmonic oscillator wavefunctions |n¢ )

7 (vib 1
P ne) = g (e + 3 ) Inca) (2.14)

where n¢ , are the vibrational quantum numbers for each normal mode « corresponding
to the electronic state ¢ (n¢o = 0,1,2,3...00) (see figure 2.1). Therefore, the eigen-
energies (E¢ ) of the Hamiltonian H g(o) (eq. 2.12) are given by

a¢) ne) = 10)]ne).- (2.15)

Egn + Z m(,a <nC,a + 5)

(. J/

~—
E¢ e

The total vibrational wavefunction |n;) is a product of all the normal mode vibrational

wavefunctions corresponding to the electronic state ¢, i.e., |n¢c) =[], [n¢c.a)-



2.2 Theory of non-adiabatic quantum rate in donor-acceptor

complexes

The thermally averaged rate for a transition from an initial electronic state I to

a final electronic state F' is given by (see eq. 2.3)%1Y

brop = 2 - ZPH,Zy VOO 25 (E)n, — Epny) (2.16)

where n; and np are sets of the normal mode vibrational quantum numbers corre-
sponding to the initial and final electronic states i.e., ny = {n;i,ns2,ns3...} and
ngp = {np1,np2,nNrs...}. P, is the equilibrium (canonical) probability of occupy-
ing the initial total vibrational state |n;). The coupling between the states of the
initial vibronic manifold |I)|n;) and the states of the final vibronic manifold |F)|np) is
described by the interaction matrix element <\I/§0) |V|\I/;9)> Neglecting any dependence

on the nuclear degrees of freedom, the coupling splits into two parts so that

(Vw2 = [V FY?(nd]ne) 2
— [(IVIE) 2T [ralnra) (2.17)

where [(n;|nrq.)|* are the Franck-Condon factors (FCFs) and are the absolute squares
of overlap integrals between the nuclear wavefunctions of the initial and final electronic

states. Using the above result in eq. 2.16, it leads to

0) 7 0
STr, Y [EP V)P =
nr ng
3N—6 (2.18)

|<I|V|F>|2ZPHI,1ZPNI,2“' Z Pn[,:sN—@ZZ"' Z H |<n1,a|nF,Oz>|2>

nri nr2 NI3N—6 nE1ME2 NEF3N—6 =1

where
¢~ En /KT

Py, = — (2.19)

is the canonical distribution for the initial vibrational states n;, of normal mode
a (e, Py, = 1, Po.) En, = hwia (n;}a + %) and Z is the partition function
(Z = an . ’E"Iva/KBT) Thus, the transition rate k;_, g is given by,

kI%F__| ]’V’F‘ ZPM1ZPH12 Z Pnl,sN—GZZ“' Z X

nr1 nr2 nI3N—6 NnE1NF2  NE3N—6
3N—-6 3N—6 1
}_[1 (11 o|npa) |20 <E + ; hw o <n1,a+§>— (2.20)
3N—-6 1
Emin hw N at= .
F +; F, (nF +2>)




The rate equation (eq. 2.20) is transformed into an integral form by introducing
the lineshape function D(AE/k)%10:31:33-35

2 A
kip = %|<I|V|F)|2D(AE/71). (2.21)
where D(AE/h) reads

D(AE/R) = Pu Y Purg 3 Puranod Y oo Y X

nri nro NI 3N—6 nNE1NE2 NF3N—6
3N—6 3N—6 N AN 1 (2.22)
01_[1 ‘ nla’nFaH 4 (AE—F ; hwr o (nla+ ) Z hwp o (nFa+2>>

and AE = E" — E'" s the energy difference between the minimum energy values of
the initial and final BO PES (see Figure 2.1). Assuming state-independent frequencies,
e, Wra = Wpa = W,a, the lineshape function can be transformed into a time integral
using the Fourier representation of the delta function §(z) = (2rh)~" [ e™/hdt,

1 e )
DAE/N =55 / eI (2) (2.23a)
553 DD DI RNV 3) SN SI
nri1my2 Ny 3N—-6 nNp1nr2 NEF3N—-6
3N—-6
H |<n1,a|nF,a>|2€izawa(nl’a_nF’a)tdt. (223b)
a=1

Equation 2.23b yields
f(t) = CO-CO (2.24)

where G(t) is given by
G(t) = lar(e) = qi(@)]* {(2(na) + 1)cos(wat) — isin(wat)} . (2.25)

Therefore, the lineshape function reduces to

L[ a8 cuy-co)
D(AE/R) = o / ¢4 dt. (2.26)
The dimensionless displacement gp(a) — ¢r(«) in eq. 2.25 between the initial (1)
and final (F) PES are related to the electron-phonon couplings )\, and the mode

reorganization energies A, via

lgr(@) —ar(@)]® 5 Aa
5 o= g (2.27)
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Figure 2.2: PES of the initial I and final I electronic states indicating the definition of the
activation energy Fg.;.

(nq) is the thermal boson occupation number that equals to,

<na)::<e£§?-—1>_l (2.28)

where K is the Boltzmann constant and 7" is the temperature. Therefore, the transi-

tion rate is expressed as the Fourier transform (FT) of a correlation function computed

at AF,
AE NV|F) > :
k[HF ) |< | ‘ >| €G(O)/ eG(t)el%tdt (229)
n 2 .
totalvFCF

G(t) is simplified according to eqs. 2.25 and 2.27 as follows

Gt =3 (A—Q) {(2(na) + 1)cos(wat) — isin(wat)}. (2.30)

hwa

The FCFs are given by integrating the correlation function with respect to time (see
eq. 2.29).

How does one recover the classical Marcus formula for the FCF (see below egs.
2.31 and 2.32) form the exact quantum equation (eq. 2.29)? If all modes are classical,
namely, (n,) ~ KgT/hw, (i.e., KgT > hw,) and )_ Mn, > 1, it is possible to
apply the so-called short-time approximation (e.g., see refs. 9,33,35,36 and appendix
B). This includes the following replacements: sin(wat) = wat and cos(w,t) ~ 1 — “TQ

The non-adiabatic transition rate reduces to the classical Marcus formula 2103742

(VIR [ wh? apay
k[%F — = KBT)\e (AE-X\)?/AKpBT\ (231)

N J/

TV
classical total FCF

10



where \ is the total reorganization energy (A = ) A,) and the quantity,

(AE — \)?

Eac =
! AN

(2.32)

is the Gibbs free energy of activation, which represents the energy required to reach the
crossing point between the initial / and final F' PES (see figure 2.2). Further discussion
of the classical approximation and example applications of the Marcus formula are given

in section 7.2.

2.3 Quantum rate constants for two independent sets of vi-

brational coordinates

In section 2.2 we applied the golden-rule formula to compute the transition rate
from the initial state I to the final state F', assuming a common set of vibrational
coordinates for both states. This is generally applied to unimolecular reactions that
involve a single molecule. However, in bimolecular precesses where the molecular com-
plex consists of separate donor (D) and acceptor (A) molecules, it is more appropriate
to use a separate set of vibrational coordinates, one for the donor molecule and one for
the acceptor molecule. Having different sets of coordinates for the donor and acceptor
moieties, it is necessary to describe the initial and final states of the donor and acceptor
separately. As an example, let’s consider a donor-acceptor system that undergoes hole
transfer. The initial state of the entire system is [I) = |DTA) and the final state is
|F) = |DA"). The PES of the initial and final states of the donor (|D*),|D)) and
the acceptor (]A),|AT)) are shown in figure 2.3. The transition rate (eq. 2.16) is now
given by!°

2T A
k|D+A)%\DA+> = f|<D+A|V‘DA+>|2 X

2 Puoes 2 Papras D Proesnis 2 Puasd Puase D Puaonoo

np+ 1 np+ 2 Np+ 3N—6 TA,1L nA,2 TA3BN—-6

3N—-6 3N—6
E E E H |<nD+7a|nDa E g E H [(naplna+p) ?x 5
npinp2 MD3N-6 a=1 N+ 1Ma+2  Ma+tsn—e 0= ( 33)

3N—6 1
mm+ Z hWAb (nAb—l— 2)

ol
)

where nx , are the vibrational quantum numbers corresponding to the initial (X = D)

3N—6 1
S STV ()
3N—-6 1
mm+ Z tha (nDa+ 2)

a=1

3N—-6 1
Emm + ; th+,b (n/ﬁ,b + 5)

and final (X = D) electronic states of the donor for each normal mode «, and ny;

are the vibrational quantum numbers corresponding to the initial (Y = A) and final

11



(Y = A") electronic states of the acceptor for each normal mode b. If we assume
equal frequencies for the initial and final states of the donor molecule then wp+ , =
Wp,a = Wo. In the same manner, for the acceptor molecule we have w4, = wa+p = ws.

Similarly to egs. 2.26 and 2.29 the rate is rewritten in a more compact integrated form

AE D+ A|V|DA™)|?
kID*A)—>|DA+> <T) = |< |h2| >| e_GD+D(O)6_GAA+(O)

- (2.34)
" / (Ot p(1) oGoaas (0 42 3y

where the donor and acceptor vibrational coordinates allows the transition rate to

split up into a donor part and an acceptor part through the time-dependent functions

GD+D<t) and GAA+ (t)

Gp+p(t) = Z (21) {(2(ng) + 1)cos(wat) — isin(wat)}

(2.35)
GMAQZE:(EE)Hﬂmy+mmﬂ%w—mm@wﬂ.
b

Ay and wq ) are the reorganization energy and frequency of mode «(b) respectively,
related to the donor (acceptor) coordinates. AFE is the driving force given by the

electronic energy difference of the initial |[DTA) and final |[DA™) states,
AE = (Ep + EX™) — (ER™ + ERP) . (2.36)

The total reorganization energy of the system is the sum of the energies of the donor

and the acceptor (see figure 2.4),

A=) At D N (2.37)

In the high-temperature limit, the transition rate yields the Marcus formula of
eq. 2.31, with the energy difference AE now given by eq. 2.36 and the reorganization
energy A by eq. 2.37.

2.4 Homogeneous and inhomogeneous lineshape broadening

In section 2.2 we introduced the spectral density via eq. 2.22. This lineshape
expression displays the superposition of lines corresponding to transitions between the
vibrational states of the reactant (|n;)) and product states (|ng)). The lines appear as
d—functions with intensities determined by the FCFs (|(n;|nr)[?), and each line will
be broadened depending on static or dynamic effects.

To introduce homogeneous broadening, the delta function in eq. 2.22 is now

12
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Figure 2.3: PES of the donor (D) and acceptor (A) parts for the case of independent
vibrational coordinates (see figure 2.1). left. PES of the positively charged and neutral
donor. Right. PES of the neutral and positively charged acceptor.

expressed as a Lorentzian distribution i.e.,

_ 1 I N 1 OO itz—Tt|
£0)= s = 2m/ Tl gy (2.38)

—0o0

In this case, + = AFE + Z3N_6 Twr o (Mo —Nra) (see eq. 2.22), and the lineshape

a=1

function (eq. 2.23a) is now given by

1

Dyow(AE /) = 5— / " (), (2.39)

where f(t) is given by eqs. 2.23b and 2.24, i.e., %1034

1 o
Du(AB/R) = 5 / ¢ 31T G)-G(0) gy (2.40)

The rate equation yields

¥ 2 [e]
- (AE) _ [{IVIF) 6-@(0)/ LG i AZ LTl (2.41)

h h?

This is the limit of homogeneous broadening and I' is called homogeneous broadening
width.

Due to disorder at the ensemble level, AFE is considered to be a Gaussian random
variable with mean AE and width ©. Under the assumption of a Gaussian distribution

of the adiabatic energy differences, it is possible to modify the expression for the

13
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Figure 2.4: PES in a simplified form, of the donor (D) and acceptor (A) parts for the case
of independent vibrational coordinates showing the donor and acceptor mode reorganization
energies.

lineshape function as follows®10:33:34

Dinh7hom (E/ha @) - <Dinh,hom(AE/h>>

o _AF)2 [e’e) (242)
— / L S gap L [ 4B f(t)dt.
00 V21O 2rh ) o

The integration over AFE is performed explicitly, and the lineshape function is now

written as

- 1 © x5 2,2
Dinh,hom(AE/ha @) = %/ ez%t—F\tl—@Q eGH=GO) 1 (2‘43)

—00

The transition rate reduces to

AL ¥ 2 %) _
k[-)F (AhE) — |<‘[|‘;/|2F>| €_G(O) / eG(t)ei%t—F‘ﬂ—%@thdt' (244)

oo

This is the limit of inhomogeneous broadening and the parameter © is known as the

inhomogeneous broadening width.

2.5 Applications

The Franck-Condon principle for the non-adiabatic quantum rate that we intro-
duced in the previous sections, is valid when the time-scale of the electronic transition is
much slower than the vibrational motion time scales. Such types of molecular electronic
transitions are induced by internal couplings e.g., electron/hole and energy transfer in
donor-acceptor complexes or by external perturbations e.g., absorption or emission be-

tween ground and excited states and ISC or internal conversion (IC) between excited
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states. The corresponding transition rate can be computed by combining equations
2.29 and 2.30, with the appropriate (I|V|F). In this section, we briefly describe how
these formulae are used to compute the rate constants for different types of reactions
(different (I|V|F)).

2.5.1 Optical absorption coefficient and fluorescence efficiency

Optical absorption is the most common example of interaction between a molec-
ular system and an external electromagnetic field that causes electronic transitions from
the ground state of the molecule to its excited states. 194344 The interaction Hamilto-

nian for the external applied field in the electric dipole approximation reads

~

V(t) = —fi- E(t) (2.45)

=

where i is the electronic dipole moment vector and E (t) = Ege~iwrt 4 ESeth for a
monochromatic field of frequency wy. Within the rotating wave approximation (RWA)
the electric field is simplified to E(t) = Ege~™rt. Further, (I|V|F) = (gli - Eole),
where |g) is the electronic ground state in the BO approximation and |e) is the excited
electronic state in the BO approximation. The transition rate for absorption from the

ground state to a single excited state is given by (see eq. 2.20)

kg—>e:2%|<g|ﬁ'EO|€>|QZP"Q,12P”972"' Z Pngv?’N*ﬁZZm Z X

Ng,1 Ng,2 Mg 3N—6 Ne,1 Ne,2 Ne,3N—6

3N—6 3IN—6 (246)
[T ltngalnea)?s (th BB Y hwa(ga —”e,a)> )
a=1 a=1

where hAwry, is the energy of the incident photons.

Consider that monochromatic light of frequency wy, is incident perpendicularly
onto the surface of cross section on area A of a macroscopic sample of volume v which
contains N,,, molecules. If we take a small section of length dz and volume Adz, the

decrease of the radiation field energy dE during the time interval dt is given by

Ad
dE = —Npor—— b kg sedt, (2.47)
v

where N, Adz/v is the fraction of molecules inside the volume Adz and hwpk,..dt is
the energy absorbed per photon in the time interval dt. The energy absorbed per unit
volume is du = dFE/Adz, and using eq. 2.47 we write

du

% = _nmolmLkg_}e7 (248)
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where ny,y = & mel js the volume density of the absorbing molecules. Using the equality

Z—;L = %, where I is the field intensity and that I = cFE2 /27 we get

dl 27mmol
— = ————hwrky_.l. 2.49
dz cE2 e (249)
Comparing the Beer-Lambert law, % = —al (a is the absorption coefficient) with eq.
2.49 gives
27"-nmol
CL(WL> = C—EghWLkg—)& (250)
By combining eqs. 2.46, 2.50 and 2.26 we obtain an expression for the absorption
coefficient 42 "
T"WLNmol ~
ofor) = T glile)D (s + 57 ) (251)

with AE = EJ** — E7"". In this equation fi is the component of the electronic dipole

1
3

over all molecules that possesses random orientations in the sample. D (wL + A—hE) is

moment vector in the direction of the field vector. The factor ; comes from averaging
the lineshape function for the absorption (see eq. 2.26). In an absorption experimental
setup we usually measure the absorption cross section o(wy) which is directly related
to the absorption coefficient via o(wr) = a(wr)/Mmer-

Similarly, the fluorescence efficiency A(wg) for the transition e — g, is given by

the following formula,

Alwog) = 4w13;¢|<390!;l!e>\2D (AhE - WR) (259

with AE = EI"" — E7"" and hwg is the energy of the emitted photon. D (8 — wp)

is the respective lineshape function for the emission process (see eq. 2.26). The dif-
|? is derived from quantum electrodynamics and the
45-48

ferent prefactor multiplied |{g|/i|e)

Einstein coefficients for absorption and stimulated emission.

2.5.2 Intersystem crossing rates

The perturbation that causes transitions between two states of different spin
multiplicity is the spin-orbit coupling (SOC). For an ISC transition between the singlet
|S,,) and triplet |Ty,..) (ms = 0, 1) excited states, the interaction term V is replaced
by the SOC interaction Hamiltonian H3°C, so that (I|V|F) = (S,|HC|Tym.) (see
chapter 3).

2.5.3 Singlet and triplet energy transfer rates

Molecular exciton transfer (or EnT) processes often involve the transition of an
electron-hole pair from an initial to a final electronic state that are separated in space.

This type of transition usually occurs after photoexcitation when the molecule absorbs

16



Figure 2.5: Electronic structure of a 4-electron exciton system consisting two donor (D)-
acceptor (A) fragments. Ypay and Pp«(4+) are the ground- and excited-state molecular
orbitals respectively, of the D(A) fragment. left: the ground state electronic configuration of
the D — A system. middle: an electron is promoted from the D ground state to the D excited
state to generate the initial excited configuration of the system. right: The excited electron
is transferred to the acceptor to generate the final excited configuration of the system.

a photon and an electron moves from its occupied to its unoccupied molecular orbitals.
This transition creates a bound electron-hole pair which is called donor exciton. The
donor exciton may undergo inter- or intra- molecular exciton transfer transitions to
form the acceptor exciton localized in another region of the molecule. To describe EnT

reactions in molecules we introduce the one- and two-particle electronic Hamiltonian '

HY = 19 4 p%9), (2.53)

where 219 is the one-electron Hamiltonian consisting of the kinetic energy operator for
the electron motion and the operator for Coulomb attraction between the electrons and
the nuclei. The two-electron Hamiltonian describes the Coulomb repulsive interactions
between the electrons. In the following, we compute the interaction matrix elements
between singlet exciton states and between triplet exciton states.

In the simplest case of a donor (D) - acceptor (A) system, we describe each
fragment by its highest occupied molecular orbital (HOMO) [i.e., ¥p and 14] and its
lowest unoccupied molecular orbital (LUMO) [i.e., ¥p+ and 1 4+]. The ground state of

the D-A system is the single Slater-type determinant (see figure 2.5 (left))4%:59

[Wo) = [¥parbpBiaa)aB). (2.54)

This is an antisymmetric wavefunction of a 4-electron system written in simplified
form as a product of four spin orbitals that are formed by multiplying the spatial
wavefunction ¢ by the spin function (a for spin up and g for spin down). We simplify
the notation and denote 1;a by v; and ;3 by 5 (i = D, A) i.e.,

[Wo) = [¥p¥pthatha). (2.55)
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The singly excited determinants for the initial state (see figure 2.5 (middle)) are written

as

(W1,) = [¥p¥p-thatia)
(Wr,) = [Yppthatda).

The first state (|Wy,)) represents the case where the promoted electron in the ¢p+ state

(2.56)

has spin 8 while the in the second state (|¥y,)) it has spin a. In a similar way the final

state singly excited determinants are (see figure 2.5 (right))

(Ur) = |Yppthatiar)

o (2.57)
Ur,) = [VpYpthata-).

The determinants Wy, ), |¥,),|Vr ) and |Wg,) are not pure spin states i.e., they are
not eigenfunctions of the 52 operator. By taking appropriate linear combinations of
these determinants, we form spin-adapted configurations that are eigenfunctions of Sz,

The initial and final singlet excited states are given by

1
W) = —[|¥,) + |¥
) \@H n)+95)]
. (2.58)
W)= —[|Vp) + |Up)],
" Vr) \/5“ 7))+ [Vr)]
and the intial and final triplet excited states are given by
P05 = = [N~ [0,)]
V2
1 (2.59)
PUr) = —=[Tr) — )]

5

2
In the case of singlet exciton transport (SET), the interaction matrix element
is (I|V|F) = ("0, |H|" W) and it is given by
QU H" O p) = (0 A1) + (10201 ) (2.60a)
Q0RO ) = V. 4. Sap — VipSpeas (2.60b)

(WA ) = 2 (Y [hathar) — (bp-thas

Upia), (2.60¢)

while in the case of triplet exciton transport (TET) the (I|V|F) = (U, |H|?¥x) is
given by
CUHPOR) = CU WY PE) + GO, %P0, (2.61a)
GO RO R) = Vi 4. Sap — VI Speas (2.61D)

ORI PO ) = — (bpetpas[hpia) (2.61c)
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In the equations above, the ¢; (i = D, A) denotes the spatial part of the wavefunctions.
Vs 4« 1s the D — A electron transfer (ET) coupling matrix elements between the excited
¥p- and Y4« fragment molecular orbitals, and V%, is the D — A hole transfer (HT)
coupling matrix element between the ground v¥p and 4 fragment molecular orbitals,

ie.,

Ve ar = (Ypr

HO9 ) = / Yo (PR (71
(2.62)

Vip = (al A p) = /¢A(F1)iz(le)¢D(F1)dF1,

Spa and Sps« 4+ are the overlap matrix elements between the ground ¢ p and 14 orbitals

and the excited 1p+ and 14+ orbitals respectively, i.e.,

Spea = (thpe|thar) = / - (P () dF
(2.63)
Sap = (altn) = / a7 ) (7).
(VpYp+|1hatha) is the two-electron “Coulomb” integral defined by
(W lparoar) = / o (7 Wome ()P () ae () A,
(2.64)

:/pr(ﬂ)I“’TIJI@@A(%N2

and is the classical analogue of the Coulomb repulsion between the charge densities

[¥p (1) [* and [¢a(72) 2. (Yp=tha-
by

¥p1)a) is the two-electron “exchange” integral defined

(@ZJD*T/)A*

¢D¢A) :/¢D*(Fl)@bA*(Fl)7”1_21¢D(772)¢A(772)d771d772
(2.65)

:/ %*A*(Fl)T;21S%A<F2)dF1dF2

where S%. 4. (71) = ¥p«(71)a« (7)) and S% ,(7) = p« (7)1 a« (7)) are the overlap den-
sities.

In exciton transfer processes the one-electron contributions to the coupling in-
tegral is small. For large distances between the D — A fragments the overlap integrals
Sap and Spe - vanish and (10 [A0) 1 W) (or (B0 |h19PT L)) goes to zero. In addi-
tion, the exchange interaction depends on the overlap between the ground and excited
orbitals of the D and A complexes (see eq. 2.65). If the two fragments are far away, the
SET is determined by the Coulomb interaction (see eq. 2.60c) since the exchange in-
teraction becomes negligible. On the other hand, the TET mechanism is strong only at

short distances, given that it depends only in the exchange interaction (see eq. 2.61c).
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Figure 2.6: (a) Electronic structure configuration of a ground-state ET reaction. The excess
electron is initially on the donor and then it transferred to the acceptor. (b) Electronic
structure configuration of a ground-state HT process. The hole is transferred from the donor
to the acceptor.

2.5.4 Electron and hole transfer rates

ET is the most basic type of chemical reactions in molecules. The simplest case
of ET process is ground state ET and it is shown in figure 2.6(a). The determinant

that describes the initial state is given by

[U7") = |D™A) = [p¥patatip-) (2.66)
and the final state by

(W) = |[DA™) = [pypihathatbas), (2.67)
where we supposed that the excess electron has spin up. The ET matrix element yields

(IVIF) = (WET RO WET) = V. .. (2.68)

Figure 2.6(b) shows the case of a HT reaction. The corresponding initial and final

electronic states are written as

(Ui = DY A) = [¢ptata)

' K g (2.69)
[Ue") = [DA™) = [¢p¥piba).
The HT matrix element for the transition [¥HT) — |WHT) is given by
(IVIF) = (W ROONET) = Vi, (2.70)
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CHAPTER 3

The spin-orbit coupling interaction in molecules

Consider an electron in a hydrogenic atom with a magnetic moment associated with
its orbital angular momentum (/i;), and a magnetic moment related to its spin angular
momentum (fis). If we transform coordinates to a system where the electron is fixed and
the nucleus orbiting the electron, the electron experiences a magnetic field produced
by the nuclear charge. The interaction of the electron spin magnetic moment with
the magnetic field is called the spin-orbit interaction or coupling (SOC). The resulting
shifts and line splittings in the electronic spectrum of hydrogenic atoms caused by
the SOC, is the so-called fine structure of the atomic spectrum. The SOC allows the
transition between states of different spin multiplicity [e.g., singlet and triplet states via
intersystem crossing (ISC)], due to the mixing of the orbital angular momentum with
the spin angular momentum. In this chapter, we describe the theory and fundamental
principles of the SOC interaction in molecular systems. First, we introduce the SOC
operator by solving the relativistic one-particle Dirac Hamiltonian. Then, we calculate
the matrix element between singlet and triplet excited states that gives rise to ISC
rates. Finally, we explain the mechanism by which some organic molecules may have

strong SOC.

3.1 Introduction

According to the classical interpretation of the SOC interaction, the electron
(mass m,, charge —|e|) performs circular motion of radius r with velocity ¢ in the
electric field of the nucleus Enuc. Due to the counter circular motion of the nucleus

relative to the electron, the electron experiences a magnetic field Enuc which is equal
t019:32,51

oL

(3.1)

nuc —

where ¢ is the speed of light in vacuum. The electric field is related to the electric

potential via |6|Enuc = VV and the momentum is given by 7 = m.7. Therefore, eq.

21



3.1 transforms to )

B = V xp. (3.2)

mele|c?

The spin magnetic moment of the electron is
fis = ——35 (3.3)

where § is the spin angular momentum. The interaction energy of the spin magnetic

moment due to its motion in the magnetic field is —ji, - By.. Therefore, the quantum
mechanical Hamiltonian is expected to be equal to HS0C — —ﬁ’s . énuc. The exact

result is
FS0C _ 1 <§

= ¥ (3.4)

V X p)

1
2

motion of the electron relativistically (see section 3.2).

where the factor 3 is a correction obtained by use of the Dirac equation that treats the

In a hydrogenic atom, the potential arising from a nucleus of charge Zle| is
V= —ZTCQ and VV = ZT—?,,QF Therefore, the SOC Hamiltonian (eq. 3.4) reduces to

=P
Wy
Nl>

. Ze* 1
fysoc _ _4° (

Ze? 1
2m2c2 r3 3

2m2icr

X ) - .5 (3.5)

where | = 7 x p is the orbital angular momentum of the electron.

In a one-electron isotropic electric potential, V' = V(r) and VV = %8—‘1{77. In

this case the SOC Hamiltonian (eq. 3.4) is given by

A 1 18‘/7’ % 2, - 2,
HSOC = 523 87(’ )l -§=¢&(r)l-s (3.6)

where
1 10V(r)

2m2c?r  Or

§(r)

(3.7)

The calculation of the atomic SOC matrix elements (2| H5°C|0,) (¢m, @n are the
one-electron hydrogenic atomic orbitals) requires separation of the radial part of the

wavefunction ¢,,(r, 0, ¢), namely

heG = BAH(R(r) | ()| R(r) ) = R /OOO R*(r) & (r)ridr, (3.8)

where R,; is the radial part of ¢,,, ¢, both of which are characterized by the same
principal quantum number n and same orbital angular momentum [. The quantity (,;
is the SOC constant for the orbitals ¢,, and ¢,,. In the case of an electron in hydrogenic
atoms (V = —ZTeZ>, the SOC constant is shown to give

eh? 74

heGn =
S 2m2ctai ndl (1 +3) (14 1)

(3.9)
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where aq is the Bohr radius. In general, (,; is treated as an empirical parameter
whose magnitude is determinable from the experiment. Equation 3.9 shows the strong
dependence of the SOC parameter on the nuclear atomic number ~ Z4 (heavy atom
effect).

3.2 Derivation of the SOC Hamiltonian from the Dirac equa-

tion

The fully relativistic time-independent Dirac equation that describes the motion

of an electron in a potential V is written as a pair of coupled equations®?

(V = E)YUL + ¢(Gp - )05 =0

. (3.10)
c(Gp - P)VE 4+ (V — E — 2m,c*)¥® =0,

where F is the energy of the particle and W%, U are the large and small components of
the wavefunction respectively. The Dirac wavefunction W(7") is a 4-component vector
where the components v, and 3 correspond to spin % and the components vy and 4
correspond to spin —%. The upper two and the lower two components are classified in

a 2-component spinor i.e.,

U (7)
. o (T . WE(7
U(r,t) = ¢3EF; = U(r) = (‘PSEFD . (3.11)
a(7)

op are the Pauli matrices defined as

(o1 Y (1 0
=1, 0 op = Do op = 0 1) (3.12)

We rearrange eq. 3.10 in a form so that ¢ appears in the denominator. In that case,
we can take ¢ — oo in order to go to the non-relativistic limit. Before allowing ¢ to
go to infinity, and provided that (2m.c®> + E — V') is non-zero, we eliminate the small

component ¥* (write the second eq. of 3.10 in terms of U¥) so that
VS = (2m. + E - V) (G, - p)uh. (3.13)

Substitution of eq. 3.13 into the first eq. of 3.10 yields the effective Hamiltonian

equation that operates solely on the large component W*

VU + AGp ) (2me + E V) (3p - p)UE = EU. (3.14)
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We expand (2m.c* + E — V)f1 and we keep only terms up to first order with respect

to (mec®)7!, ie.,

_ 1 E-V
(2mec® + E V) T_ Ey (1 o + higher-order terms> : (3.15)
MeC MeC

Using eq. 3.15 and the identity [p, V] = —ihVV we find that

~ E_ E_ o ~ h ~ —
p~ﬁ(1 V) - (1 V) O D5 =G VV. (3.16)

2m.c2 2Mm.c2 mecC

l)

Q

Approximating the term £ —V by the non-relativistic kinetic energy operator ﬁ 2/2m,,
and substituting eqs. 3.15 and 3.16 into eq. 3.14 leads to

o A T
H = 1-— — op-VV)(ap-p)+ V. 3.17
2m6< 4mgc2>f” T O V)Ge ) + (3.17)

The last term of eq. 3.17 is simplified by assuming a central potential i.e., VV = %8—‘: ;,

such that

R 55 1OV o » £ 10V o 4
(6p-VV)(@Gp-p)=—-——==(F-p)+idp- | ———TXDp
r or r Or (3.18)
ih@V@ 10V » (7%>< ;)
P ‘o UhLAASE S
oror ror © P
where we used the Dirac relation
(Gp - 0)(Gp-T) = (G- D)y +icp -1 X 1. (3.19)
Lisa2x2 unity matrix. Using §= g&p, the Hamiltonian (eq. 3.17) is rewritten as
54 2 ~
. - D h oV 0 1 oV, >
H=H,— — —_——t———35- 3.20
0 8m3c?  Am2Zc? Or Or  2m2c*r Or 5th ( )
where .
~ ﬁQ
Hy = V. 3.21
0 . + ( )

Eq. 3.21 is the non-relativistic Schrodinger equation and the rest of the terms (in
eq. 3.20) are the relativistic corrections. The first three terms constitute the so-called
spin-free Hamiltonian since this part is spin-independent, while the last term of eq.
3.20 is the SOC Hamiltonian

N 1 0V, >
H50C = —5-1. 3.22
2m2c2r Or ° (322)

This equation is similar to eq. 3.6 that we computed considering the motion of electrons

and nuclei classically.
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3.3 The SOC Hamiltonian of a many-electron molecule

In the case of a molecular system consisting of n electrons and N atoms, F80¢

is approximated as!?:53:54

F80C = f50C 4 f1$0° (3.23a)

~

HPOC = Z Zg ri)lik - 5 (3.23b)

=1 K=1
HQSeOC 2m202 Z Z pl X sz §’z
= (3.23¢)
mz 2 ZZ S

i=1 g;éz

where K denotes the atomic center, ¢ and j label electrons and r;x is the distance
between electron ¢ and nucleus K. The term in eq. 3.23b is the one-electron term, and
describes interactions between the spin magnetic moment of electron ¢ with the orbital
magnetic moment arising from its orbiting in the field of nucleus K. The electron ¢
either belongs to the atom K (one-center contribution), or to different atom than K
(many-center contribution). The term in eq. 3.23c is a two-electron term and describes
(a) interactions of the type “spin-same-orbit” related to the coupling between the spin
magnetic moment and the orbital magnetic moment of electron ¢ caused by the coulomb
electrical field at i produced by all electrons j other than 7 (first term of the right-hand
site of eq. 3.23c) and (b) interactions of the type “spin-other-orbit” related to the
coupling between the spin magnetic moment of electron ¢ and the orbital magnetic
moment of electron j caused by magnetic fields due to relative orbital motion of the
two electrons (second term of the right-hand site of eq. 3.23c). The one-electron term
grows with the nuclear charge much faster (o< Z%) than the two-electron term does.

Therefore, the second term in eq. 3.23 is usually neglected.
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3.4 Matrix elements of the SOC operator

The one-electron part of the SOC Hamiltonian (eq. 3.23b) can be written in

such a way that the orbital and spin factors are symmetrically or anti-symmetrically

separated with respect to the interchange of the electrons, i.e.,’

A0° =373 ) ( 5 zmm) e

i=1 K=1 m=x,y,z

( TzK TiK S(ij)lAl“jK> (gl”z + §5’3J)

1 . - (3.24b)
+4n ( TiK xm_é(ij)leK> (S%‘ 39@7)
i=1 j=1 K=1
+0(y, 2)

where O(y, z) means analogous contributions from the terms with y and z components.
The term (8,, + 5,;) is symmetric under spin interchange, while the term (3,, + 5,,)
is antisymmetric. If (5., + 8,,) operates on antisymmetric spin wavefunction, it gives
a function that is still antisymmetric with respect to spin interchange. On the other
hand, if (8,, — 8,,) operates on the same wavefunction, it gives a symmetric function
with regard to spin interchange. This means that the first term on the right-hand site
of eq. 3.24b preserves multiplicity and leads to multiplet splittings (triplet states with
different m; values are mixed through the SOC interaction), whereas the second term
in the right-hand site of eq. 3.24b mixes states of different spin multiplicity.

Let us assume that we have a two-electron system. The corresponding wave-

functions are

W = (%Wl)wq( )+ (1) ( ) - H1)a(2)]) = 25600

(3.25)

1
- (ﬁw Ju(2)

1
s = (sl D) - wtuwr(zn) H1(2) = B10, ,

)
a1 = (5l (0(2) = (1)1 2)]) a(D)a2) = #1604
Uro )

( )+ b(l)a(Z)]> = D10y

where a and b are the spin wavefunctions for spin up and spin down respectively.
The singlet state Wg is described by the singly occupied molecular orbitals 1, and ),
(where 9,(1) is a simplified form of +,.(7})). The triplet state W, (with m, = 0,£1) is

described by the molecular orbitals v, and ;. ®g and &1 are the spatial wavefunctions
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operator g Wy 1 Wro Wy

Sy + Suy 0 Uro Upy+Up Uro
Sy, + Sy, 0 W — W +i¥Wr ;. =Wy
Sz + Sz 0 \/§‘IIT,+1 0 \/§qu,—1
83, = 8zy | =Y+ VY —Ug 0 Vg
§y1 — §y2 Z'\IJT’Jrl + i\DT7,1 — Wy 0 —Wg
82 — 8 V27, 0 V2Ug 0

Table 3.1: Effects of the spin operators on the spin part of the singlet and triplet wavefunc-
tions.

of the singlet and triplet excited states respectively, and O, are the spin wavefunctions
for the singlet (s = 0, my = 0) and triplet (s = 1, ms; = 0,41) states. We apply the
operators (8, 4 5,;) and (8, — 8,,) on the spin part of the states described in eq. 3.25.

For example, we find that

(821 + 82,) V1, 11 7[%( )i(2) = Y1) (2)] X [32,a(1)a(1) + 8x,a(1)a(2)]

S - D (2)] x| F(0a(2) + Jal1b2)]| (3260

[wr( )1(2) = (1) n(2)] X [8z,a(1)a(l) — 55,a(1)a(2)]

S0~ 51 (2)] % [50a2) - a(1p(2)| - (3260
h
== 5¥s

The effect of the various operators on the singlet and triple wavefunctions is shown in

(§I1 - §12)\DT,+1

Sl sl

table 3.1. It is clear that the spin operators of the type (8,,+35,,) lead to mixing between
different triplet-state sublevels (different mg values) and the spin operators of the type
(82, — 5¢;) lead to mixing between singlet and triplet excited states. In particular,
(52, £54;) and (5, & 5,,) mix states between which Am, = £1 while (5;, — 5.,) mixes
states for which Am, = 0.

The angular momentum operators act solely on the angular part of the spatial
wavefunction of the singlet and triplet states. The radial part is incorporated into
the SOC constant (,; (see eq. 3.8). In the following, we discuss the properties of the
operators Iy, by, and L (lix = loyd + lyg] + Lo, k) and the manner by which
they affect the spatial part of the wavefunction they operate on. In the one-electron

one-center case (electron ¢ belongs to atom K), the angular momentum operators are
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Dz by D

>

o~

. 0 thp,  —ihp,

~>

y —thp, 0 thp,

>

o~
I\

thp,  —ihp, 0

Table 3.2: Effects of the orbital angular momentum operators on the p-atomic orbitals.

defined as
l, = —ih (z% - x%) = —ih <—cos<p% — cot@singp%) (3.27Db)
I, = —ih (:ca% - y%) = —ih%. (3.27¢)

(for simplicity we write l,,,. = I, m = x,y, 2). For example, we consider the angular

part of the p-atomic orbitals

/3 /3 /3
Dy = ECOS@ Py = Esin@cosgp P, = Esin@singp. (3.28)

The effects of the operator le on the atomic orbitals p, and p, (we used egs. 3.27

and 3.28) are given by 91

p 3 0 0
l,p, = —ihy/ — (—sin — — cotfcos —) sinfsin
p V 4 Y0 “5 ) | ?) (3.292)
= —ihp,
- 3 0 0
l,py = —thy/ — | —sinp— — cotfcosp— | cosd
b V ax ( Y90 SO&p) (3.29b)
= 0.

In the same way, the results for the action of the le, iy, L, operators on the p,, p, and
p. orbitals are collected in table 3.2. With these results we conclude that in a right-
handed coordinate system, the effect of the angular momentum operator on a p orbital
is to rotate the orbital counterclockwise by 90° about the axis specified by the angular
momentum operator subscript (see figure 3.1), and to multiply it by ih. Following the

same procedure, we can evaluate the effect of the l}, l;,,l; operators on the d and f
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Figure 3.1: Schematic representation of the effect of the angular momentum operators Iy
and [, on the py and p, atomic orbitals respectively (see eq. 3.27). The positive directions
of the Cartesian axes show the positive ends of the p atomic orbitals. For example, when Ly
operates p, , py undergoes 90° rotation around z-axis (countercklockwise) to get p..

orbitals.®!
Now, we are ready to evaluate the SOC matrix elements between singlet and triplet

states. We use eqgs. 3.23b and 3.25. As an example, let us calculate the SOC matrix

element between the singlet state s and the triplet state Wy °!°

<‘I’S|fflseoc|‘1’:r,o> = (Ug] Zg(rlK)l_iK L&+ Zf(rzk)l;K : §2|‘I’T,0>
K K
= (D] Y &(ri)lak|Pr) (Oool51|O10) (3.30)
K

+ (®s] D &(rax)lorc| @) (B0 |5 O10).-
K

r1(2)k is the distance of the electron 1(2) with the nucleus K. The z-component of the

spin part of eq. 3.30 gives for the term of electron 1

(O00l321010) = 5([a(1)d(2) = b(1)a(2)][3-, [[a(1)b(2) + b(1)a(2)])

[{a(1)[521a(1))(b(2)[b(2)) — (b(1)]52, [b(1)){a(2)]a(2)]  (3.31)

|
| SFN| N -

In an analogous way, the z-component of the orbital part of eq. 3.30 gives

. 1 .
(s ; E(ri) ey |Pr) = §<7"1QQ + q172| ; E(rir) ey [rite — tira) (3.32)

where the notation r;, t;, ¢;, (1 = 1, 2) corresponds to the molecular orbitals 1,.(7), 14(7), 14(7)
respectively. Applying the orthonormality of the molecular orbitals e.g., (r;|t;) = 0 and

~

(ri|p;) = 1, and using the fact that the angular momentum operator [, ,. acts only on
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component of HSOC | (Wg|HOC| Wy ) (Ug|HPOC| W)  (Wg|HEOC| Wy, )

Higy 5{alH,,|t) 0 5{alH,,|t)
HYOY Ti{alHy,|t) 0 T5ilalHy,|t)
ﬁf’fzc 0 —(q|Hy.|t) 0

Table 3.3: Matrix elements of H5°C between singlet and triplet states. Singlet and triplet
states are defined in eq. 3.25.

electron with 71, eq. 3.32 simplifies to
~ 1 .
(@3> E(rig)ley |Pr) = —g{refra){a D E(rg)y lt). (3.33)
K K

Expanding the molecular orbitals in terms of the atomic orbitals ¢, i.e.,
7= Z CqpPp
o
t= Z CtvPv,

(3.34)

the integral in eq. 3.33 yields
. 1 .
<@S’ Z £(T1K>l2’11{ |@T> = _§<Z CQM90H| Z g(le)lle ’ Z Ctl/(pl/>
K o K v

1 | o (3.35)
) Z Z CanCtvGnt K (Pl | 0))
172 14

where ¢’ is the angular part of the atomic orbital ¢. Identical results are obtained
for the for the z-component of the angular momentum operator that contains the
coordinates of electron 2. The z- and y-components of the angular momentum operator
give zero matrix elements. The matrix element of eq. 3.35 can be evaluated, for
example, for the p orbitals according to eqs. 3.29 and the results summarized in table
3.2. Therefore, we can see that the SOC integral between two states of different spin
multiplicity is non-zero only if the angular orbitals ¢, ), are different. For the same
orbitals the SOC integral is zero. Setting ;—i Yok §(TK)ZZK = f[lz, eq. 3.33 is summarized
as

(Us|HIOC W) = —(q| H,

). (3.36)

The matrix elements between singlet and triplet states for the three components z, y, z,
and the remaining components of the triplet states with m, = 41 are shown in the
table 3.3.
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3.5 SOC in organic compounds

As we explained in sections 3.2 and 3.3, the SOC coupling strength scales ap-
proximately with the fourth power of the nuclear charge Z, due to its leading one-
electron (see eq. 3.23b) one-center (see eq. 3.9) term. As such, SOC effects are larger
for the heavy element compounds. However, sometimes, small organic molecules pro-
duce SOC matrix elements that are sufficient to induce transitions between singlet
and triplet states.’®7 For example, n — 7 to m — 7* transitions are proved to give
stronger SOC matrix elements compared to the 7 — 7* and m — 7* transitions, 19->% 6

As an example, let us consider the SOC matrix element between singlet and
triplet states of a monoazine (see figure 3.2)19%%%9  The excited states are of n — 7*
and 7 — 7* characters. It follows that the SOC interaction (S(n, 7*)|HSOC|T (7, 7%))
socC
le

has the matrix element (n|HSOC|r), where |n) and |7) are molecular orbitals for the

n and 7 hole orbitals. We focus on the spatial part that arises from the angular mo-
SOC
le

mentum operator (n|H|r) where H; is the part of H that includes the angular

momentum operator (1), i.e., H; = PNk €(rx)lx. In terms of the atomic orbitals

it = (| (2) e (3) o]

v

A

Hl CWV‘;OV> . (337)

We keep only one-center contributions from the Nitrogen to the integral, so that H =
f[l,N = gﬁ(rN)fN. This is because the SOC contribution at the Nitrogen center that
comes from Carbons is very small (multi-center integrals are approximately zero). p,y
is the 2p, atomic orbital and sy is the 2s atomic orbital of the Nitrogen. ¢, is a
2p, atomic orbital on the vth Carbon of the ring. With these assumptions, the SOC

integral is written as

(i) = <[(§)/m (5" sN]

and the atomic orbitals sy), p,n and p,y belong to the Nitrogen atom. The contri-

H N

C,.-prN> s (338)

bution of the 2s orbital of the Nitrogen to the SOC is zero since I,y |sy) = lyy|sn) =
I, |sn) = 0. Therefore, (sn|Hin|pyn) = 0. In addition, using the results from table

3.2 for the effect of the [ operator on the p atomic orbitals, we deduce that
(pon| Hio wlpyn) = (panv| Hiy v py) =0 (3.39)

<pzN|f{l,N|pzN> = <pyN|[:[l,N|pyN> = <pr|f{l7N|pa:N> =0 (3-39b)

The results from eq. 3.39 show that the SOC is non-zero only between two different

p orbitals that belong to the same center, and only via the component of H, whose
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py py

(H%9C) £ 0

(b)
0. @0 > = QJ (@0e) — o
[ )

®O

o|-$)

Figure 3.2: (a) Schematic representation of the effects of the l}, Zy and [, operators on
the p, orbital of the nitrogen atom in a monoazine. (b) Schematic diagram of the SOC
matrix element between p atomic orbitals. Above: The SOC matrix element between the
same orbitals e.g., between the two p, orbitals is zero since the overlap between p, and p.

~>
=

P,
Py Dy

is zero. Below: The SOC matrix element between p, and p. orbitals when Iy operates, is
strong because the overlap between two p, orbitals is non-zero.

axis is different from the axis that the two p orbitals lie in. Consequently, the matrix

element of eq. 3.38 is simplified as

X 9\ 1/2 )
(n|H,|m) = (g) Can (Pon|Hi, N |Pyn) (3.40)

this is the only non-zero contribution to the total SOC matrix element of monoazine.
When ZA;EN operates on p,y it yields p,ny and the overlap integral (p,n|p.n) # 0. This
result is illustrated in figure 3.2.

The n — 7* to 1 — 7" is the most common transition that produces strong SOC
interactions between singlet and triplet states in organic molecules.®® The 7 — 7* to
7 — m* transitions singlet-to-triplet transitions do not produce large SOC!?%0  As
a simple example we consider the 7 — 7* to @ — 7" transitions in the benzene
molecule. %62 The SOC matrix element between the singlet state S(w,7*) and the

triplet state T'(7, 7*) reduces to

(S(r = m)HLT(m = 7)) = = Y = Ce oy Hi. |p20) (3.41)

m v

where I:Ilz = gZKf(TK)ZzK. p-u and p,, are 2p, atomic orbitals on Carbons p and

v respectively. Obviously, the one-center terms (@ € K and v € K) vanish as we
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explained in eq. 3.39b. The two-center terms of the type <pzu|1f[lz7M|pw> (Hy v =
gf(rM)lZM) or (p.ulHi, Nlpov) (Hin = %f(rN)lzN) are zero since Hj, y|p.,) = 0 and
<pzy|ﬁlt, u = 0 (see table 3.2). Consequently, only the three-center terms survive

leading to
<S(7T — F*)’F[SOC‘T(T( — 7T*)> = — Z Z = C7r7uc7r,1/<pz,u’ Z lﬁllz,P‘pzu> (342)
m v P

where P is an atomic center for which v # P # u. However, this integral is very small
due to the 72 dependence of H,. In addition, the two-electron terms of “spin-other-
orbit” type that we introduced in eq. 3.23 and so far were neglected, do not contribute
to the integral of eq. 3.42.%2

With the example of benzene we show that singlet-to-triple transitions of 7 —
7* character do not exhibit strong SOC because one- and two-center contributions
vanish and the three-center contribution is relatively small. Sometimes, two-center
contributions are responsible for the strong SOC in organic molecules. For example,
in aromatic amines the singlet and triplet states are of intramolecular charge transfer
(CT) character and involve charge redistribution from one part of a molecule to the
other. The two-center contribution to the SOC integral is large while the one-center

terms vanish. '

3.6 Conclusions

In this chapter we use quantum mechanics and relativistic corrections to esti-
mate the SOC matrix element between states of different spin multiplicity. We show
that the SOC is strong in compounds with heavy-atom substituents because the SOC
constant (,; is analogous to Z* (see eq. 3.9). In small aromatic compounds, the SOC
matrix element between singlet and triplet excited states is weak. This is because the
singlet and triplet states in most organic molecules are of 7 — 7* character, and SOC
interactions between singlet state S(m, 7*) and triplet state T'(w, 7*) are of three-center
type so they are negligible. Therefore, singlet and triplet states of the same configu-
ration induce weak SOC. If organic molecules exhibit strong SOC, this usually comes
from large interactions between the non-bonding molecular orbital of the singlet state
S(n,7*) and the 7 orbital of the triplet state T'(w, 7*). These n — 7* to 7 — 7 tran-
sitions are one-center, thus, they are dominant. Finally, two-center contributions are
sometimes responsible for strong mixing between the singlet and triplet states when
the one-center term vanish, and this is pronounced in organic molecules with singlet

and triplet states of CT character.
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CHAPTER 4

Quantum mechanical description of the dynamics of

open quantum systems

Time-dependent phenomena in molecular systems that are isolated from the
surrounding environment, are completely described by the time-dependent Schrodinger
equation. However, the model of isolated systems is unrealistic since environmental ef-
fects influence the dynamics of the quantum system. Different types of interactions
that depend on the type of the environment and its coupling strength to the system,
result in energy exchange between system and its environment that are termed as re-
laxation and dissipation. For example, if initially the energy is deposited in the system,
as time passes it will be transferred to the reservoir, and in some situations it may be
possible to flow back into the system. This is the type of energy exchange which is
called relaxation. If energy does not move back to the system, the irreversible energy
flow into the reservoir is termed dissipation.

The interaction of a system with its thermal surrounding can be experimentally
studied under the influence of external electromagnetic fields. For instance, spectro-
scopic techniques such as absorption, pump-probe and electron paramagnetic reso-
nance experiments are used to investigate molecular systems in solution phase (reser-
voir). The derived spectra resulting from electronic and vibrational transitions in the
molecules, give detailed information about how the solvent molecules influence the
dynamics of the molecular system under study. The corresponding theoretical descrip-
tion is given by the density operator (statistical operator) formalism. In this concept,
the dynamics of the quantum system embedded in a macroscopic thermal reservoir,
is described by density matrices and specifically with its reduction scheme. In this
chapter, we briefly describe the formalism of density operator and its time evolution.

In particular, we discuss the density-matrix formalism in Liouville space.
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4.1 The Density operator

For a system characterized by the Hamiltonian H and a time-dependent wave-
function |¥(¢)), we use an orthonormal basis set {¢,} (also denoted |n)) to expand its

wavefunction

Zc )| ) (4.1)

where 37 |C,,|* = 1. The expectation value of an operator A at a time ¢ is given by
(A() = (W ()| A[¥(?) Z Cr t)(n|Aln’) Z Cr Anw,  (42)

where Cy/(t) = (n/|U(t)) and C}(t) = (V(¢)|n). This expression provides the idea of

the density operator which is defined as?10-43:63,64

pt) = [W () (¥(2), (4.3)
so that
p=">_ Calt)Cr(t)In) (0], (4.4)
where
P (t) = (Dnlplonw) = Cu(t)Cri(2) (4.5)

are the matrix elements of the density operator.

A system ensemble that is characterized by such a wavefunction |W(¢)) is said
to be in a pure state. Generally, quantum system ensembles are not in a pure state,
instead, they are described as a statistical mixture of pure states | V). In this case, the
probability of the system to be in state |Wy) is denoted by Py, and the corresponding
density operator is defined by

= 5 Pw) (1)) (4.6)

(Py > 0and ), P, =1). The corresponding matrix elements of the density operator

are given by

pant = D Peln|¥y) (Wi ') (4.7)

Equation 4.6 describes a system in a mixed state (statistical mixture). The expectation

value of an observable A for a mixed state, given by

(A() =D Py (1)| A0y (8)) = Tr{p(t) A} (4.8)
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where Tr denotes trace.

The density matrix of a pure or a mixed state is always Hermitian i.e., p'(t) =
p(t). Its diagonal elements p,, are real and positive i.e., pp, = >, Pi(n|Wr)(Vi|n) =
> Pel(n|Ug)|? > 0. py, represents the probability that the system is in the corre-
sponding single state |n) and is referred to as a population. The non-diagonal matrix
elements pn,y = Y, Pe(n|Vg) (Wi|n') (n # n') are called coherences. If n) = >, Cp, ¥y,
and [n') = >, Croe Wi we get pnn = D> PrCrCke = (Crkec,,, )+ Pnn is an average of
the cross terms (n/| W (¢)) (Wi (t)|n). As such, it describes coherent (wavefunction) evo-
lution. The density matrix operator satisfies the property Tr[p?(¢)] < 1 (Tr[p*(t)] = 1

only for a pure state.

4.2 Time evolution of the density operator

The time evolution of the density operator and its equation of motion can be found by

taking the derivative of eq. 4.6 i.e.,
dp(t) d
TR ZP’C@ ([Wk () (P (t)]) (4.9a)
k

1O o) = (G100 ) o] + 1wy (Fowol).  @on

By substituting the Schrodinger equation and its Hermitian conjugate

CN) = —HD), 0] = (A (4.10)
we get,
G L A0 (a0 + 1) L (a.11)
which finally yields,

This equation of motion (eq. 4.12) is called the Liouville-von Neumann or quantum

Liouville equation, and L is the Liouville superoperator defined via the commutation

A

Lp(t) = [ﬁ,p(t}] . (4.13)
The solution of the Liouville-von Neumann equation (eq. 4.12) is

pt) = e iL—t0)/hs¢ = ). (4.14)
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4.3 The Liouville space approach

We introduce Liouville space, via an example of a two-level system characterized

by the Hamiltonian (see eq. 2.1)
H=H91+V(@), (4.15)

where H© is the unperturbed Hamiltonian and V(t) is the time-dependent external
perturbation. We denote the eigenstates of the unperturbed Hamiltonian |a) and |b)
and the corresponding eigenvalues ¢, and ¢,. We assume that the diagonal matrix
elements of the perturbation Hamiltonian matrix V are zero, so that the total Hamil-
tonian matrix of the system in the representation of the eigenstates of the unperturbed

Hamiltonian, is simplified as
r €a ‘/ab

(4.16)

VE)a €b
The density matrix of this 2 x 2 system has four elements

p(t) = [p alf) 0 “b(t)] (4.17)

Poa(t)  pon(t)

The time evolution of the density operator given by %(tt) =1 []:I : ﬁ(t)} (see eq. 4.12)

yields the following matrix elements

l

Paa = —7 (Vabpva — Voapab) (4.18a)
Pab = —%(&z — €b)Pab — %Vab(pbb — Paa) (4.18Db)
Pba = —%(517 — €a)Pba — %‘/ba(paa — Pob) (4.18c¢)
Doy = _%(%apab — VavPba)- (4.18d)

These equations can also be written as

Paa 0 Vi Vb 0 Paa
A fpw| 1 |Va ca—sp 0 Vab pab | (4.19)
dt | poa ho | Vig 0 &b — € —Veal| | Poa

Pbb 0 Via —Vap 0 Pbb
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In eq. 4.19 the density operator is written as a 4 x 4 vector

Paa
=, Pab
s = || (4.20)

and L is the 4 x 4 Liouvillian matrix

0 _‘/ba Vab 0
~ V(l a — 0 Va
L= | @ fac ap (4.21)
%a 0 €h — &g _‘/ba

0 ‘/E)a —Vab 0

In general, for a N —state system characterized by the Hamiltonian H (= HO 4
V), the eigenvectors of the zero-th order Hamiltonian H© i.e., ), |k), |m),|n)... con-
stitute a complete basis set of functions in Hilbert space. The jk matrix element of
the quantum Liouville equation will be given by
. P AT .
pin == [(Hp)ie = (P3| Gk =1,2,3..N). (4.22)
The density operator has N? matrix elements p;; and the Liouvillian (4.21) is a matrix

with N2 x N? matrix elements Lk mn. We rewrite eq. 4.22 as

dpjk 7
. s H’mm_ mHm
dt FL — [ J p k p] k?]
. (4.23)
)
= _ﬁ ij,mnpmn
where
ij,mn = Hjmakrn - H]:n(sjm- (424)
In matrix form, eqs. 4.23 and 4.24 are given by
dp 1~
— ==Ly 4.25
= wLp (4.25)

where g'ia an N? column vector consisting of all p,,, matrix elements. L is an N2 x N2
matrix consisting of all L;j , matrix elements. The space where the density operator

is a vector rather than matrix, is called Liouville space.
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4.4 The reduced density operator

Suppose that the total Hamiltonian of a system (S) and its surrounding bath

(B) that describes the environment, is given by

~

= H9(qs) + HP (g5) + H5 P (g5, qp). (4.26)

H®) and H®) are the Hamiltonians of the system and the bath respectively, and
H (5=B)(gs,qp) is the system-bath interaction Hamiltonian. gg and ¢p represent the
system and bath degrees of freedom, respectively. The isolated system and bath eigen-

states satisfy the Schrodinger equations

HO|s) = e4]s)

HP|b) = £,|b). (427)

The product states |sb) = |s)|b) form a complete set of basis for the combined system
and bath, ie., > ,[sb)(sb] = 1. The [sb) states are not eigenstates of the total
Hamiltonian H due to the interaction term H (5=B)(gs,qp). The expectation value

of any system operator A(gg) will be given by

(A1) = Tr|p(t) Alas) | (4:28)

where,

Tr[ﬁ(tm(qs)]:Z(smp (g5)1sD) =S S (sblp(t)]s') (s'W | A(gs)sb).  (4.29)

s,b s,b s

The operator A is independent of the bath degrees of freedom so that
(5| A(gs)|sb) = (s'|Als)(t/[b) (4.30)

and since the eigenstates of the bath system are orthonormal, i.e., (V/|b) = 0y, the

expectation value yields
= 3 S (sblat)|s) (' Algs)ls) = Trs |(Trpp)A| (4.31)
s,s’ b

The quantity
6(t) = Trpp(t) (4.32)

is the reduced system density operator whose matrix elements are given by

T (t) = > (sbl(t)]s'D). (4.33)

b
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Trp and Trg denote partial trace over the bath and system degrees of freedom respec-
tively (Tr = TrpTrg). The time evolution of the reduced density operator can be found

from the time evolution of the density operator of the total system

% _ _%' [g,[;] _ _% []:Iw),[;} _ % [EﬂB),ﬁ} . % [ﬁ“—B),ﬁ} . (4.34)

Taking the trace Trp of both sides of equation 4.34 leads to

ool ().

where Trp[H®) p] = [H®), Trgp] = [H®),6]. The effects of the bath on the time

evolution of the system density matrix are given by the second term in eq. 4.35.

4.5 Quantum master equation within Markov approximation

Using the Markov approximation for the Trp <[}AI(S_B),/’5D term in eq. 4.35,
the equation can be reduced to the form (see refs. 9,10,43,63,64)

st

ih— = = L5 (t) + L™6(1), (4.36)
where
LG () = [1%5),&] (4.37)
and
L95(t) ~ Trp ([Eﬂs—B), ﬁD . (4.38)

LA g called the dissipative part of the time evolution of &(¢). It contains environ-
mental induced population-relaxation rates (between S eigenstates) and pure dephasing
rates that cause the decay of coherences between system eigenstates.

We express eq. 4.36 in Liouville space such that

dO_"(t) o i T tot =
L 0) (4.39)
where
Etot _ Ecoh + zdiss (440)

is the total Liouvillian matrix. As an example, consider a two-state system (.S) with

eigenstates |a) and |b) (as before). Then,

0 Vi Vab 0
Vab €a — € 0 Vab
Vi 0 ep—ca —Via

0 Via —Vab 0

Lot = (4.41)
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L3 i5 a sum of a population-relaxation term and a pure dephasing term
7 diss 7 diss 7 diss
L =L," + Lyg - (4.42)

The population-relaxation Liouvillian matrix is given by

_Fa—>b 0 0 Fb—m
Ediss —ih 0 _%Fa%b o %Fb—m 0 0 (443)
> 0 0 _%Faab - %Fb%a 0
Fa—>b 0 0 Pb—m

where T';,_,; is the rate for the transition from state |a) to state |b), and Ty, is the
respective backward rate. These types of transitions are accompanied by energy dissi-

pation into the environment. The pure dephasing Liouvillian matrix is given by

0 0 0 0

. 0 —7 0 0

L = in Tab (4.44)
0 0 —Yab 0
0 0 0 0

where ~,, are pure dephasing rates that represent elastic-type collisions without en-
ergy exchange between the system and its environment. The total Liouvillian matrix

composed by the coherent and incoherent parts is written as

_ihra—w _‘/ba ‘/;Lb ihrb—m
8 174 o —Ep) — ik 0 Va
poo| Yoo Eme)og y (4.45)
%a 0 (Eb - ga) - ;72 _‘/ba
ihl—\aﬁb %a —Vab Z.hrbﬁa
where we define the decay time T, as
I R (4.46)
T, = 9 a—b b—a Yab- ’
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For an N x N system, the total Liouvillian matrix elements of eq. 4.39 are summarized

as follows

(i) Coherent part:
ij,mn = jkékn - H]:nfsjmg ij = <]|IA{(S)|]€> (447&)

(ii) Dissipative part:

I et e r e
Ljeji = —ih [Ze#f i 5 Zoepplioe] iRy (4.47b)
Lijjg5 = —@'hz Ljose (4.47¢)
oy
L.jj7kk - ZhF]Hk (447d)
zero otherwise. (4.47¢)

4.6 The Bloch equations

We use the Liouville formalism as introduced in the previous sections, in order

to extract the Bloch equations of motion. 436

These equations are traditionally used to
interprete electron paramagnetic resonance (EPR), nuclear magnetic resonance (NMR)

and nonlinear optical spectroscopies. We start from eqs. 4.39 and 4.45, i.e.,

. 1

Oaga = _Fa—>b0aa + Fb—)obo-bb + ﬁ(‘/;)ao-ab - O-ba‘/ab> (448&)

o 7

p = L'as60aa — TosaObp — ﬁ(%aaab — 0paVap) (4.48Db)

. ) 1 1

Obg = — | Wha + = | Opg + _‘/ba(o-bb - Uaa)y (448C)
15 h

where wy, = €, — €,. Note that o, is the complex conjugate of gy,, thus, no separate
equation is required. In the absence of external perturbation, V,, = V}, = 0, and using

the relation o, + oy, = 1, the equation of motion for the populations o,, and oy, yields

Oo-aa = 1—‘b—m - O-aa(ra—ﬂ; + Fb—>a> (449&)
oo = Laso — oup(Lasp + Tosa) (4.49b)

Subtracting the two equations above, we get the equation of motion for the population

difference oy, — 044, i.€.,

Oo-bb - &aa = (Fa%b - Fb%a) - (Fa%b + Fb%a)(o-bb - Uaa)- (450)
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In thermal equilibrium, o4, = 6., = 0, so that eq. 4.50 yields

Fa%b - 1—‘b%a

(eq) —
Opp — Oqa - )
( ) Fa—)b + Fb—)a

(4.51)

which is the population difference in thermal equilibrium. We define the decay rate T3

as 1
TN=——— 4.52
! Fa%b + 1—‘b%a ( )

and eq. 4.50 is rewritten as
(Obb - Jaa) - (Ubb - O_aa)(eq)

Tbb — Oaq = — . 4.53
b~ - (153

Now, taking into account the external perturbation V, eq. 4.53 for the population
difference oy, — 044, is expressed as
(Ubb - Uaa) - (Ubb - O-aa)(eq) 2i

Oph — Oaqq = — T - E(‘/baaab — 0baVap) (4.54)

(see eqs. 4.48a and 4.48b). We examine the solutions to the coupled equations

X .
Oo-ba = - iwba + = | Oba + i‘/l)a(o-bb — Uaa) (455&)
T h
_ _ _ (eq) 95
Sy — G = — T = Oae) T(””” Paa) 0 _ %(Vbaaab — obaVir) (4.55b)
1

in the presence of a monochromatic, steady-state field of frequency w. For example,

the interaction Hamiltonian for a linearly polarized applied field in the x-direction, is

given by
—iwt iwt
V = —V,cos(wt) = =V, <%) , (4.56)
and the respective matrix elements are written as
‘A/Z —iwt twt
Voo = —<b|?]a>(e + ). (4.57)

We apply the rotating-wave approximation (RWA) i.e., we approximate V}, as follows

A~

/A .
Via & —<b|7|a)e_“"t = —Vpe . (4.58)
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Further, we introduce the following quantities

Oba = Tpat (4.59a)
Oaa = Gaa (4.59D)
Opp = 5bb (459C)

where 7y, slowly varies in the case w = wy,. Therefore, eqs. 4.55a and 4.55b become

1 )
%5611 = [i(w — Wha) — TTJ Tba — %Vba(abb — Oaq) (4.60a)
— _ — (eq) 94
&bb . Oo-aa _ (Ubb Uaa) Tgabb Uaa) + %(Vba&ab . 5baVa ) (460b)
1

These two coupled equations of motion are simplified by introducing the following

quantities

W = 0pp — Oqga
wied — (o — Uaa)(efI) (4.61)
Aw = w — Wy

and we drop the subscripts on 6,, and V,, i.e., 0y, = ¢ and V,, = V for simplicity.
Then, eqgs. 4.60a and 4.60b are written as

do 1 7
= I - 4.62
o (zAw TQ) o hVW (4.62a)
dw w— w9

_ 22(VEF — 5V, 4.62
7 T + h(Va av*) (4.62b)

We express the density matrix element ¢ in terms of two real quantities as follows
1 .
g = é(u —iv), (4.63)
and eq. 4.62a yields

%(u —iv) = (@'Aw _ i) (u — iv) — %VW (4.64)

du 1

dv v 2

Y _Awu— 2 4 Zyw, 4.65b
o Wi 7 + hVW (4.65Db)
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In the same way, if we substitute ¢ = %(u —iv) also in eq. 4.62, we get

dw w — wied

2
— = V. 4.66
dt T ho" (4.66)
The set of eqs. 4.65a, 4.65b and 4.66 are the so-called Bloch equations. The steady-

state solutions are given by setting ‘C%‘ =0, % =0 and %V =0, i.e.,

2w DY AWT?
$5 — (FSS)* 4 555 — 4.

U (6%)" 40 [l + Aw?T2 + (4/12)|V|2T1 1) (4.67a)
2w(cDVPT,

55 = 5[5%5 — (5%%)*] = 4.67b

v %[O’ (0' ) ] h[l+Aw2T22+(4/h2)|V|2T1T2] ( )
(eq)[1 _ 272

Wss = Uglf o 0_55 w [ + (w wba) 2] (467C)

“@ T 14 AT + (4/R2) VT Ty

where & = 7, and 6* = 7, (see eq. 4.63). Eqs 4.67a, 4.67b and 4.67c are the steady-
state solutions to the Bloch equations for the time-dependent harmonic perturbation
in the RWA, V,,. For example, in the case of absorption Vy, = up X where E is the
magnitude of the applied electric field. In the case of an EPR experiment, V,, = gﬁe%
where B is the magnitude of the detection magnetic field along in the z-direction (see

chapter 5).
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CHAPTER 5

Principles of electron paramagnetic resonance

5.1 Introduction

Electron Paramagnetic Resonance (EPR) spectroscopy is a well-established spec-
troscopic technique for studying molecular systems with unpaired electrons. Molecular
species with at least one unpaired electron (paramagnets) are of particular interest
since they are often chemically reactive. For example, proteins contain paramagnetic
molecules in the form of stable cofactors such as transition metal ions (e.g., iron, copper,
nickel) and complex organic molecules. Homogeneous catalysts, electrochemical sys-
tems and materials exposed to UV irradiation produce organic and inorganic radicals
during the reactions. EPR is the most popular method of choice used to characterize
and identify these paramagnetic systems, providing information about their electronic
structure and dynamics.

EPR is an experimental method to study magnetic-dipole transitions induced by
microwave irradiation of paramagnetic systems placed in a static magnetic field. From
the transitions between the energy levels one obtains detailed information about the
structural and electronic properties of the paramagnetic system. The EPR experiment
of a free radical with an unpaired electron is the simplest form of EPR spectroscopy.
The isolated electron possesses a spin angular momentum S which gives rise to a spin

magnetic moment fi. The two are related by the formula

ji =—gB.5 (5.1)

where [, is the Bohr magneton defined as

/88 = ﬂ (52)

Me

(m, is the mass of electron). The quantity g is the g-factor of the electron and equals

to 2.0023 for a free electron. In the absence of an external magnetic field, the magnetic
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Energy

Em5=+1/2 =+ l/zgﬁeBo T

By

EPR signal

Figure 5.1: Energy level diagram for S = 1/2 system as a function of the applied magnetic
field By. In zero magnetic field (By = 0) the electron spin energy levels are degenerate.
Application of external magnetic filed (By > 0) lifts the degeneracy of the electron spin
energy levels. The EPR signal is observed when the energy difference between the two spin
states matches the frequency of the absorptive photon, (g8.Bo) /h = wp.

dipole i is randomly oriented. However, if the electron is subjected to a static mag-
netic field B , the magnetic dipole moment /i experiences a torque tending to align the
magnetic moment with the field. In a static magnetic field parallel to the z-direction
[B = (0,0, By)], the degeneracy of the electron spin energy levels is lifted due to the
spin magnetic quantum number mg (e.g., mg = +1/2). The system in the presence of

the static magnetic field By is described by the Zeeman Hamiltonian 567!

H = gB.B,S.. (5.3)
The eigenenergies of the Zeeman Hamiltonian are
1
EmS::tl/Q = iigﬁeBO (54)

(see Figure 5.1). To detect an EPR signal, an additional magnetic field B, is applied
perpendicular to the static magnetic field Byz. In the usual EPR experimental setup,
B, is linearly polarized along the z-direction i.e., Bi(t) = (2B1cos(wmyt), 0,0). This
field can be considered as a superposition of a clockwise and a counter-clockwise rotat-
ing circularly polarized fields (é{), while the effect of the counter-rotating component
is often neglected (i.e., B = (B1cos(Wmwt), Bisin(wmwt),0)). The frequency wymy, is

usually in the microwave (mw) range. If w,,, = wo, where

Wp = (Ems=+1/2 - Emg:—1/2) /h = (gﬁeBO) /f% (5-5)
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@ , , ®)

X X

Figure 5.2: (a) The spin vector precesses about the magnetic field By along the z-axis of
the laboratory frame (z,y, z), with frequency of precession wy. (b) The additional field By
rotates in the xy plane with frequency winy.

maximum absorption from the lowest- to the highest-energy spin state is obtained.
This situation is described as the resonance condition and describes the fundamental

principle of the EPR spectroscopy.

5.2 Quantum mechanical description of spin in external mag-
netic field

A particle of spin 1/2 in a static magnetic field ByZ is described by the Hamilto-
11

272
for spin up and |b) = |1, —1) for spin down. The time-dependent wavefunction [¥(t))

nian of eq. 5.3. The eigenstates of the spin Hamiltonian are those of S, i.e., la) =

of the system is a linear combination of |a) and |b), i.e.,™
V(1)) = ca(t)|a) + (1) D). (5.6)

where the coefficients ¢, (t) and ¢, (1) equal to cq(t) = cae™9%P0t/2 and ¢, (t) = c,e'9PeBot/2,
Without loss of generality, we can write ¢, = cos(¥/2) and ¢, = sin(J/2), such that

|cal® + |cs|* = 1. We calculate the expectation value of S as a function of time, i.c.,
(S) = (W(t)|S|(t)). The result is

(Sp) = gsinﬁcos(wot) (5.7a)
(S,) = —;zsinﬁsin(wot) (5.7b)
(S.) = gcosﬁ. (5.7¢)

~
—

These equations indicate that (S') precesses at a constant angle ¥ on a cone about the
magnetic field Bz, with frequency of precession equal to wy (see figure 5.2(a)).

In the presence of the external time-dependent magnetic field B, (t), the Hamil-
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tonian of the system is written as (see figure 5.2(b))

ﬁ(t) = g0, {BOS'Z + By [cos(wmwt)gm + sin(wmwt)gy]} (58)
= w5, + wy [cos(wmwt)gx + Sin(wmwt)é’y], .

where w; = gf.B;. In a matrix form, the Hamiltonian in the basis of |a) and |b) states,

- h —tWmuwt
F=2| 0 . (5.9)
2\ wyewmut —wp

Substituting eq. 5.6 in the time-dependent Schrédinger equation ih|W(t)) = H |W(t)),
yields

1S written as

d Wy w1

iaca(t) = 7ca(t) + 7%(1&)@—%“ (5.10a)
Loty =~y (t) + L, (t)eiomt (5.10b)
Zdtcb = 5 Cp B Cq € . .

The magnetic field B, (and the Hamiltonian) becomes time-independent in a rotating
coordinate system (X,Y,Z) which rotates with the microwave frequency wy,,, about
the z-axis (z coincides with Z). We transform to the rotating frame by making the
following substitutions

c(t) = e“met2e (1)

a

. (5.11)
¢y (t) = e~ @mwt/2e (1),
Egs. 5.10a and 5.10b are now given by
. d Aw %]
ZaCé(t) = —Tc;(t) icg(t) (512&)
d Aw w1
z%c;(t) = Tc;(t) + Ecg(t), (5.12Db)

where Aw = wy — wp. The time-dependent Schrodinger equation for this system is
written as

R|U(t)) = HH U (1)) (5.13)

where the wavefunction [¥(t)) is given by

(1)) = cu(®)]a) + e (1)]b), (5.14)
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(a) (b)

>

X X

Figure 5.3: (a) Precession of the magnetization about the effective magnetic field B.g with
precession frequency weg, during m.w. irradiation with amplitude wy. (b) The transformation
to the rotating frame (X, Y, Z) gives the effective magnetic field B.g tilted at a constant angle
0 to the Z-axis.

and the effective Hamiltonian matrix is given by

fer .l (_Aw wl) . (5.15)

2\ w Aw

In terms of spin operators, the above time-independent Hamiltonian Hef in the rotating
frame (X,Y, Z) is given by

f{eff: —AwS’Z—I—wlgx. (516)

This Hamiltonian describes the interaction of the spin with the effective magnetic field
B which is static in the rotating frame (see figure 5.3(b))

Beff — (B —“’"““)ZJFBX. 5.17
T ! (5.17)

This field makes an angle 6 with the Z-axis given by

—

B
tan(g) = =% = 2L, (5.18)
BO Wo

(see figure 5.3(b)). In conclusion, the effect of the time-dependent magnetic field B,
(in the rotating wave approximation and in the rotating frame), can be considered as

an effective static magnetic field at an angle # with respect to the original static field
By.
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5.3 The Bloch equations for the EPR experiment in the ro-

tating frame

To include spin relaxation effects in EPR we need to adopt a density-matrix
formalism that contains relaxation terms (see chapter 4). Below, we describe the
simplest density-matrix approach involving the Bloch equations for the magnetization.

The EPR experiment probes the magnetization M , defined by
M; = ngB(S;) (i= XY, 2). (5.19)

n is the total number of atoms per unit volume. <5'Z> is the expectation value of the
operator S; i.e., (S;) = Tr(6S;) where & is the reduced density matrix, as discussed in
chapter 4. The Bloch equations for the magnetization in the absence of relaxation can

be obtained starting from the equation of motion for the reduced density matrix

U % coh =
— __Lcoho_

. - L (1) (5.20)

where L is the coherent part of the Liouvillian matrix as given by eq. 4.41. Following
exactly the same procedure that we described in eqs. 4.48 - 4.66 we get the Bloch
equations for the spin system (for V = (b|%|a) = @, V, = 298.B15, and Aw =

Wmw —Wwo)- To obtain the Bloch equations for the magnetization we use eq. 5.19 leading
to 7375

dMx

> (Winw — wo) My (5.21a)
dM

th = —(Wmw — wWo)Mx + w1 My (5.21b)
M

ddtz = —w My (5.21c¢)

These are the Bloch equations for the magnetization in the presence of the external
alternating magnetic field él, and they are expressed in the rotating frame (X,Y, 7).
These three equations describe the time-dependence of the magnetization vector M.
They describe the precession of the magnetization in a cone of a fixed angle about the

direction of the effective magnetic field B.g with frequency of precession equal to

Wet = 1/ Aw? + wi, (5.22)

as shown in the figure 5.3(a). For the particular case where wy,, = wy (and thus
Aw = 0), so that Byt = él, the motion of the magnetization vector is a precession
about the X-axis with frequency weg = wy. This is the on-resonant case and absorption

between the magnetic spin states occurs.
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To include relaxation effects we use the same procedure as above for the reduced

density matrix, starting from equations

dO_"(t) i T co 7 diss\ =
2 = (L 4 L)1)
v (5.23)
- —ﬁLtOtO_:(t)

where L9 is the dissipative part of the Liouville matrix (see section 4.5). The total

Liouvillian matrix is given by eq. 4.45. We obtain

dM M
_th = (Whnw — wo) My — Tj (5.24a)
dM M
th — —(me - wo)MX — TQY —+ wlMZ (524b)
dMy; My — MS?
=——2 "2 _ M. (5.24c)

dt Ty

These are the Bloch equations for the magnetization with relaxation effects (77, To see

section 4.6). The steady-state solutions are obtained by setting

AMg AMy . My
at at dt

0. (5.25)

Using eq. 5.19 and that (S;) = Tr(55;) given by the steady-state values of & discussed

in chapter 4 (section 4.6), we get43:6%70,73°76

R A I L (5.26a)
Mt = PRy ooy = 9T (5.26b)

ngﬁeh EE] EE] ngﬁeh ss
( o) = we.

By combining eqs. 4.67a-c and 5.26a-c, the steady-state solutions are written as

M zw1 (Wi — wo) T2

= 5.27
X 1+ (wmw - W0)2T22 + W%TlTQ ( a)
Mz T
M = 2812 (5.27b)

_1 + (wmw — WO)2T22 + W%T1T2

Mz[1 + (W — wo)?TE]
M2 = . 5.27
Z 1+ (Winw — wo) T3 + 2T Ty ( )
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[

(Wmw — @o)
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B
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Figure 5.4: Absorption (above) and dispersion (below) signals in EPR experiment plotted
VErsus Wiy — Wo-

where M is the value of My at thermal equilibrium (dM3*/dt) when the applied field
B, is zero (see eq. 4.51). When wiTi Ty < Aw, egs. 5.27a-c reduce to

(Wmw — Wo) .

MY = M 5.28
x o (1/T2)? + (Wmw — wo)? 7 ( ®)

1T, )
(/T30 + (e — o) 2 (5.28b)

SS
MY = —Ww1

My = My. (5.28¢)

The absorption signal in the EPR experiment is proportional to My?, while the disper-
sion signal is proportional to M35®. A plot of these signals is shown in the figure 5.4.
Most EPR experiments, use the absorption signal instead of the dispersion. Eq. 5.28b
for the absorption signal, corresponds to the classical Lorentzian line shape function
with FWHM equals to 1/T5 (see figure 5.4).

5.4 Sensitivity of the ground-state EPR experiment

Ground-state EPR probes the spin dynamics of the ground electronic states of
a molecule. The sensitivity of a ground-state EPR experiment is defined as the ratio

of the power absorbed by magnetic resonance in the sample, to the power dissipated

in the EPR resonance cavity 77"

dW/dt
sens = W/ : (5.29)
FPc
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dW/dt is the energy absorbed per unit time by the sample, and Pc is the power
dissipated in the resonant cavity. The cavity is a metal box in which the sample is
placed. It increases the sensitivity of the spectrometer and concentrates the microwave

power to the sample. ™™ The rate of absorption of energy is given by

dw
— = Na(hw) Y (PR = PPkST,) (5.30)
i#]
Ei<Ej

where ¢ and j denote the lower and upper sample energy levels E; and E; respectively,
and w = Wmny- Pss is the steady-state probability for the state i(j) and Ny is the total
number of sample EPR-active spins. k2% and k$™,; are the transition rates between

levels ¢ and j for absorption (abs) and emission (em) respectively. The rate of emission

equals the rate of absorption, i.e., k&% = k™, = k;,;. It is given by

i—J j—1
27T aN 31\ 12
kisg = =[Gl - Bilj)["L(w) (5.31)

where £(w) is the Lorentzian lineshape function

£#) = o (wr_ — (5.32)
with I' = 1/T5 and wy =
= Nl (P = Pk (5.3
and at thermal equilibrium,
IJZ_ = ¢/ KsT, (5.34)
For example, for ground-state EPR and doublet states i.e., |1) = ‘2, — > 17)

|2, 3 if El = éx then /:j — fiy (1, is the component of the dipole moment vector in

the direction of the magnetic field vector). The rate reduces to

1 1 1 1\ ]2
2" 2 2’9

The sensitivity formula for the ground-state EPR experiment is discussed further in
section 6.4.4.

B2
ki = 2—};

~

flo 2(w). (5.35)

5.5 The TR-EPR experiment

In the TR-EPR experiment, the sample is first optically excited by an external
electric field to an excited singlet electronic state (see figure 5.5).'® The transition to

an excited triplet state due to intersystem crossing (ISC) is monitored as a function
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g P

Figure 5.5: Experimental setup of TR-EPR: an applied electric field (usually in the visible
or infrared (IR) range) optically excites the molecular sample to a singlet excited state, and
the triplet excited states are populated via ISC. An applied static magnetic field, for example
in the z-direction (Bp), splits the ZFS triplet sublevels (see figure 5.7) and a second time-
dependent magnetic field (By) linearly polarized perpendicular to the static magnetic field
induces transitions between these triplet sublevels, giving rise to TR-EPR triplet signals.

of time by an EPR experiment. In this case, absorption of the magnetic field leads to
transitions between the triplet levels m, = 0,£1 or the ZFS eigenstates as described

in the section below.

5.6 The spin-spin coupling and the zero-field splitting

In the previous sections we discussed the effect of an external magnetic field
on the electronic spin states. This perturbation removes the degeneracy of the spin
components and it is known as the Zeeman effect. However, the spin degeneracy
is often lifted even in the absence of the external magnetic field. Interactions such
as spin-orbit coupling (SOC) and spin-spin (SS) dipolar coupling between unpaired
electrons, constitute the main perturbations that cause this lifting of degeneracy. In
transition-metal complexes, SOC plays central role, but in organic molecules dipole-
dipole interactions are dominant. This latter effect is known as the zero-field splitting
(ZFS). In this section we discuss the ZFS due to SS dipolar interaction that causes a
three-fold degeneracy of the triplet state.
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5.6.1 Derivation of the spin-Hamiltonian

Given an arbitrary set of molecular z,y, z coordinates, the interaction Hamilto-

nian between two magnetic dipoles ji; and fiy is written as

R GT 3<ﬁ1T'F12> <ﬁ5'7712>
Hyy=o? |12 4 (5.36)
712 712

where 775 is the vector joining the centers of the two dipoles and « is the fine structure
constant (~ 1/137). The magnetic moment is related to the spin angular momentum
§via fi = —gp.5. The dipole-dipole interaction Hamiltonian as a function of the spin

operators is given by

Hu =22 . , (5.37)

3
4 T12 T12

where the Bohr magneton (. = efi/m.) is replaced by 1/2 (its value in atomic units),
and g = 2.0023 (taken to be isotropic). Since x%,+y%, + 23, = 1%, eq. 5.37 is expanded

as
2.2

ﬁdd :g4

[(le 3$12)31r52r+<7"12 3912)51y32y+(7"12 3312)31z52z

—3719Y12(81282y +81y822) — 3712212 (81282, + 81252, (5.38)

—3y12212(S1y52: + 51252y -

Using that the total spin operator equals to S =5+ 52, and that 52 = 52 + 52 + 52

where Sx, Sy, S, are the components of S , we write the following relations

1,2 1
A:cAa::_Sac - 5.39
51282 5 1 (5.39a)
S1252y + S22S1y = §(Sm5y + Sny) (539b)

Similar expressions are also applied for the S'y, S, (eq. 5.39a) and S.S., S’ygz (eq
5.39b) components respectively. Now the Hamiltonian (eq. 5.38) reduces to

- gl [, 2\ &2 2 4 2
Hyy = ~ [(r12 — 3x1y)S5 + (7”12 3y12)5 (7“12 3212)8

—3$12y12<;§ S S ;SA’ ) — 3%12212(53352 -+ Szgx)
—Synglg(S S S S’y)] T1_25 <540)

= Z Z qugpgq (p,q=1,9,2)
P oq
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Figure 5.6: In the absence of an external magnetic field the degeneracy of the triplet
sublevels is lifted due to the SS dipolar interaction.

where ) s
g« )
Qpp = 3 (7’%2 - 3p%2)7’125
(5.41)
3g%a? B
Qpg = — g (Pr2q12)ryy (p # q).

Consider the triplet state Wr,,, = @7(1,2)01,,,(1,2), where &r(1,2) is the
spatial antisymmetric wavefunciton of the triplet state ¥p,, for electrons 1 and 2,
and O ,,, are the respective spin wavefunctions for the triplet states (s = 1 and

ms = 0,4£1). The matrix elements of the Hamiltonian in the basis of the ¥r,, are

given by
Hms,m’s :<\IIT,mS f{dd|\1jT,mS>
=(®r(1,2)01,m,(1,2)| Z Z qugpgq@T(l? 2)@1%/3(17 2))
p q

=3 S @0(1,2)|9Pr (1, 2) (01, (1,2)18, 5,101, (1,2))  O42)
p q

= Z Z qu<@17ms(17 2)|Sp5q’@l,mg(1> 2)).
p q

The integral D,, = (Pr(1,2)|Q|P7(1,2)) does not depend on the spin, thus, eq. 5.42

1s rewritten as

[:[ms,m’s = (O1,m.(1,2)] Z Z qugpgq|@1,ms(1a 2))
P4 (5.43)

= <@17m5(1> 2)|g5’@1,ms(17 2))
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ro. . . . . . . - ?
where H, is the spin Hamiltonian. In matrix form it is written as!%?51,66769,71,801

~
~ = ~

A,=S57.D.8 (5.44)

The D tensor is symmetric and is called the ZFS tensor. Its (x,y,z) components are
given by
g%a?
Dy, = <§Z5(1, 2)
8
and the trace of the ZFS matrix is zero, i.e., tr([)) =D,y +Dy,+D,,=0.
In the principal-axes frame denoted as (X,Y, Z), D is diagonal (D — D?), and

2 _
M o(1,2) (5.45)
T2

the spin Hamiltonian (eq. 5.44) becomes
H, = Dx5% 4+ Dy 52 + D,52, (5.46)

where Dy, Dy, Dy are the diagonal matrix elements of the 3 x 3 D9 matrix. Using the
relations, S% = 5% + S% + 5% and Dy + Dy + D, = 0, the Hamiltonian can be written
as

H,=D {S% - %52} +E (S§( + 53,) (5.47)

where the quantities D and E are the ZFS parameters and are defined by

1
D=2D; E = (Dx — D) (5.48)

These parameters describe the separation of the three ZFS triplet sublevels in the ab-
sence of an external magnetic field (see figure 5.6). We use as a basis set the eigenfunc-

tions of Sz in the principal axis, Og.ms (With Mg = 0,+£1) (these are not eigenstates

of 5'2) to write the Hamiltonian of eq. 5.47 in a matrix form, i.e.,

D E

1
3

H, = —2p (5.49)

O wivn O

0 0
E %D
The eigenvalues of H, above, are given by solving det(f[ —WI ) = 0, where I is the

unit matrix, i.e.,

1
Wi=3D—F=-Dx (5.50a)
1
2
Ws=—3D=-Dy (5.50¢)

and the corresponding eigenstates are linear combinations of the eigenfunctions ©g /.,
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ie.,
1
TX == —2(@17_1 — @17_,_1) (551&)

TY - (@17,1 + @17+1) (551b)

Sl

TZ = @1’0. (5510)

5.6.2 The EPR absorption pattern of a triplet state

In an EPR experiment, a spin system is subjected to an external static magnetic
field éo, and the zeroth-order Hamiltonian of the triplet state in the principal axes
systemn is given by 19:51,66-69,71,807
_H _ _HZeeman + _HZFS

s 5 o 1., > . (5.52)
:5630.9.5+D[SZ—551+E(SX+SY)

where HZeeman js the Zeeman Hamiltonian that describes the interaction of the spin
system with the external magnetic field, and H?FS s the spin Hamiltonian that de-
scribes the magnetic dipole-dipole interactions, i.e., H4"S = H,. Depending on the
orientation of the external magnetic field with respect to the X —,Y — and Z—axes,
the spin Hamiltonian is modified accordingly. When the external magnetic field is
B% = BXX + ByY + BZZ, the Hamiltonian matrix is given by

9B.Bz + 3D \/LigﬁJBX —iBy) E
H = | 559B.(Bx +iBy) —3D 59B:(Bx —iBy) | . (5.53)
E 7598(Bx +iBy)  —gB.Bz + 3D

The corresponding eigenstates are linear combinations of the spin wavefunctions Og /.,
such as in egs. 5.5la-c but with different coefficients. If the applied magnetic field is
on the Z—direction (By = BzZ) (i.e., By = By = 0), the solutions of the secular
determinant det(H — W 1) = 0, gives the following eigenvalues

1
Wi =2D - [g*82B% + E*)\/? (5.54a)
1
Wy=3D+ [¢°B2B% + E?)Y/? (5.54b)
2
Wy =—3D. (5.54c)
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Figure 5.7: Energy level diagram of the triple state and absorption (or emission) curves
when the external magnetic field is applied (a) parallel to the principal axis Z, (b) parallel
to the principal axis X, and parallel to the principal axis Y. The arrows show the allowed
transitions between the triplet energy levels and the energies of the allowed transitions are
given by AE = W3 — W; and AE = W35 — Wy (see egs. 5.54, 5.55 and 5.56). By convention,
Dy was taken to be the value with the smaller magnitude and Dy those with the larger
magnitude.

If the magnetic field is on the X —direction we obtain

D —3E D+ E)? 1/2
Wi=—p—- {( 1 ) + (gﬁeBX)ﬂ (5.552)
D—-3E [(D+E)? 17
Wy = ————+ { Tt (98.Bx) } (5.55b)
1
Wy=D—E (5.55¢)
and with the field in the Y —direction we have
D+ 3E D — E)? 1/2
wy = -2 NP2 gy (5.560)
D+3E [(D-E)? 12
W2 = — 6 + |: 1 + (gﬁeBy) :| (556b)
1
Wy= D +E. (5.56¢)

Figure 5.7 shows the energy level diagram for the triplet states when the external
magnetic field is applied parallel to the principal axes. At zero magnetic field (By = 0)
the three triplet sublevels are separated due to the dipole-dipole interactions (ZFS).
When the external magnetic field is switched on, the separation of the triplet energy
levels increases according to the set of eqs. 5.54, 5.55 and 5.56. The energies of the
allowed transitions are given by the difference AE = W5 — W, and AE = W5 — W,
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for each orientation of the magnetic field, e.g., in the case of By the transition energy
equals AE = [¢?82B% + E?]'/? + D. The allowed transitions are determined by the
matrix element between the eigenstates of the Hamiltonian of eq. 5.53, when the

time-dependent field B is applied i.e., (i Bi|j).

5.7 Sensitivity of the TR-EPR experiment

For the TR-EPR experiment, the sensitivity is different as compared to the
ground-state EPR sensitivity. Starting from eq. 5.30, the spin levels ¢ and j are now
the triplet eigenstates of the Hamiltonian H%eema 4 H%FS (see the previous section).
Also, P7* and P;* are the non equilibrium population probabilities that arise from ISC
from the excited singlet state to the excited triplet. The sensitivity formula for the

TR-EPR experiment is discussed in detail in section 6.4.4.
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CHAPTER 6

Initial-state preparation effects in time-resolved

electron paramagnetic resonance experiments

In this chapter we explain in detail a recent experimental observation that the time-
resolved electron paramagnetic resonance spectra of an organic molecule for optical
excitation within a highly absorbing region of the molecule have similar intensities as
the spectra for optical excitation in a non-absorbing region [D. L. Meyer et al. J. Phys.
Chem. Lett. 8, 1677 (2017)]. We demonstrate that this phenomenon is due to an
initial-state preparation effect of photoexcitation that leads to similar initial popula-
tions of triplet states for both optical excitation regions. Due to the low intersystem
crossing (ISC) rates, the initial triplet populations are not perturbed on the time scale
of the experiment, so they determine the relative intensities of the paramagnetic reso-
nance spectra. The effect is surprising given the weak spin-orbit interactions of organic
molecules. Such initial-state preparation effects are likely to occur in systems where

the ISC time scales are long compared to the time scale of the experiment.

6.1 Introduction

Time-resolved electron paramagnetic resonance (TR-EPR) spectroscopy is an
important experimental probe of spin dynamics in molecular photo-induced processes. 1881784
In the fields of molecular and biomolecular photoexcited charge and exciton trans-
port,'® TR-EPR spectroscopy is a sensitive probe of the dynamics of excited triplet
states that are often involved in photophysical and photochemical pathways such as
catalysis, singlet fission coupled to Dexter (triplet) exciton transport and sensing. 8558
Using TR-EPR spectroscopy to study excited state dynamics of molecular systems
containing metals with large spin-orbit coupling (SOC) interactions, is particularly in-
teresting. The excited electronic states of these systems are mixtures of singlets and
triplets,® and the formation of triplet states can take place both initially at the op-

tical photoexcitation step and at later time through ISC events. In such a situation,
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Figure 6.1: Chemical structure of the Cbz-TBT molecule. It consists of a carbazole (Cbz)
moiety, which is colored in blue, and a dithiophene-benzothiadiazole (TBT) unit, which is
colored in red. TBT moiety is comprised of the 1,2,3-benzothiadiazole (BT) unit surrounded
by two thiophene rings.

the interpretation of TR-EPR spectra in terms of models for excited-state dynamics,
requires the inclusion of initial-state preparation (non-ISC) effects on the spin dynam-
ics. In this chapter, we demonstrate the potential importance of such effects, even in
systems with low SOC such as an organic molecule.

Recently, Meyer et al.” performed TR-EPR measurements on the Chz-TBT
molecule (figure 6.1), the repeat unit of the PCDTBT polymer (poly[N-9-heptadecanyl-
2,7-carbazole-alt-5,5,(4’,7’-di-2-thienyl-2’,1’,3’ -benzothiadiazole)] ). °>%! The prominent
optical absorption band of Cbz-TBT, the charge transfer (CT) band, is centered at 492
nm with a width (FWHM) of about 100 nm. Beyond 600 nm there is no observable
absorption (see figure 6.2). The TR-EPR experiment in ref. 7 probes two types of
pathways to the formation of excited triplet states, each type characterized by differ-
ent optical excitation energies: inside and below the CT band (see figure 2 in ref. 7).
For the two excitation regions, the experiment observes TR-EPR spectra having inten-
sities of similar magnitudes. The similarity in the intensities of the TR-EPR spectra
for the two types of optical excitations is surprising, given the negligible absorbance
of Cbz-TBT beyond 600 nm (below the CT band) as compared to its significant ab-
sorbance around 492 nm (inside the CT band), and the weak SOC interactions that
are typical of organic molecules.? Why is there a triplet population (required for a
TR-EPR signal) for optical excitation energies in the non-absorbing region, far below
the CT band? How can the TR-EPR signal in this region be of similar magnitude to
the signal observed when exciting in the highly absorbing region? The main goal is to
answer these questions using theoretical models and quantum chemical computations.
The experiment in ref. 7, also shows that excitation inside the CT band leads to ab-
sorption and emission TR-EPR spectra whose shapes (height and width) do not change
for different excitation wavelengths within the band. In contrast, excitation below the
CT band, leads to TR-EPR spectra whose shapes differ for each excitation wavelength.
A summary of the experimentally derived TR-EPR parameters as a function of optical
excitation wavelength is shown in table 6.1. We also propose possible explanations for

these observations.
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Awav (nm)  D®P (MHz) E®P (MHz) pi™"  p;™”  pg? I (mT)  giso
492 1361.6£3.0 759+14 0 0138 0.862 342  2.002
630 13447415  77.7£07 0 0.098 0902 208  2.002
650 1317.24+1.4  75.0£07 0 0.068 0932 1.8  2.002
680 1288.5+1.3  73.7+£0.6 0 0043 0957 154  2.002

Table 6.1: Experimentally derived zero-field splitting (ZFS) parameters and the relative
populations of the zero-field triplet sublevels (pi™",p5™, p5™") together with the Lorentzian
lineshapes obtained for the different excitation wavelengths (Ayay) inside (492nm) and below
(630-680 nm) the CT band. g is the factor of the electron taken to be isotropic (giso = 2.002).
Below the CT band the ZFS parameters are different for different excitation wavelengths,
thus, the TR-EPR spectra shapes are different. Inside the CT band, the ZFS parameters are
the same for different excitation wavelengths, thus, the TR-EPR spectra shape are the same.
For this reason, in the table only the parameters for the excitation at the maximum of the

CT band are mentioned. Results were taken from ref. 7.

6.2 Theoretical methods

The total molecular Hamiltonian relevant to a TR-EPR experiment can be writ-

ten in the molecular frame as
f{ _ f(‘i‘ f{BO —|—1T:[SOC +HZFS _|_]f[Zeeman . ﬁ E(t) +Beéf(t)gg (61)

where K is the nuclear kinetic energy operator of the molecule describing the molecular

vibrations, HBO is the Born-Oppenheimer Hamiltonian, 4’ HS9C ig the SOC Hamilto-
53

—

(see appendix 6.7.1), ji is the electric dipole moment operator, E(t) is the
electric field that optically excites the molecule,* and HZma» — 5 BTGS describes

the interaction of the molecule with the static magnetic field EO , where [, is the Bohr

nian

magneton, ¢ is the anisotropic g-factor (3 x 3) matrix of the electron and S is the total
spin operator.% T indicates the transposition of the respective column vector. STDS
is the Zero Field Splitting (ZFS) Hamiltonian (describing the magnetic dipole-dipole
interactions) and D is the ZFS tensor matrix.?"68% The term S.BT(t)§S describes
the interaction of the molecule with the time dependent magnetic field B; (). To
describe the optical photoexcitation from the ground state to the singlet and triplet
excited states taking into account spin-orbit mixing, we consider the part of the Hamil-
tonian K + HBC + HSOC ﬁ E(t) . For ISC following photoexcitation, the relevant
interactions are K + HBO + HSOC. For the magnetic resonance spectra, we need to
consider HS0C 4 FZeeman 4 FZFS 4 g BT (1)55.

For the eigenstates of HBO, the n-th singlet electronic state of the molecule is
denoted as |5,), and the k-th manifold of the triplet sublevels (in the representation
of eigenstates of S,) is denoted as {|Tkm.)} (ms = 0,41). In the presence of the

SOC interactions (H SOC) " the concept of a pure singlet (triplet) state is not exact
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Figure 6.2: Experimental (black dotted line) and calculated (red line) absorption spectrum
of the Cbz-TBT molecule. Computations were performed for the most probable geometry
(anti-2) at the TDA/BHandHLYP/TZ2P level of theory, and solvent effects were included
via COSMO model using the dielectric constant (¢ = 9.8) for dichlorobenzene. The spectrum
is based on a 100 nm FWHM Gaussian broadening of the vertical transition energies and
associated oscillator strengths. The CT band is centered at 473 nm (2.62 eV), and it is
attributed to the transition S§O¢ — S$OC (or Sy — S1), which is predominantly (93%)
assigned to HOMO-LUMO transition. The shade areas show the experimental excitation
wavelength ranges inside and outside (below) the CT band.

and states are “mixed”, i.e., the mixed states are eigenstates of HBO + HSOC that
are linear combinations of triplets and singlets.® However, for organic molecules, the
SOC-induced singlet-triplet mixing is very small compared to pure singlet-triplet energy
gaps. Thus, the mixed states are either predominantly singlet or triplet. To describe
these weakly-mixed states we may apply perturbation theory with respect to F80¢
(taking the zeroth-order unperturbed Hamiltonian to be HBO and the zeroth-order
states to be |S,), [Thm.))->>%19? We compute the mixed states from exact diagonaliza-
tion of HBO + HSOC hut we use perturbation theory arguments to provide intuitive
interpretations of our computational results.

We denote the eigenstates of HBO 4 [50C ghtained from exact diagonalization,
550F) and |T9C) where k denotes a k-th manifold of three closely spaced sublevels
¢& = A,B,T". The notation implies that these eigenstates are either predominantly
singlet or predominantly triplet. In particular, we find that each of the of the k-th
manifold, is a linear combination of the |Tk,,,), ms = 0,£1, (of the zeroth-order k-
th manifold), where all C\F® = (T} .

Tksfgc> amplitudes have similar magnitudes, of
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Figure 6.3: Left: Pure singlet (]S,,)) states (black lines) and pure triplet state manifolds
({|Tkm,)}) (light grey lines) coupled by the spin-orbit interactions. Right: Spin-mixed states
(|S5°%)and {|T; kSé)C>}’ dark grey lines) as linear combinations of pure singlet |S,,) and triplet
| Tk, m,) states (equations 6.2 and 6.3).
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There is also weak mixing with zeroth-order singlets |S,,) and other zeroth-order triplet

!/
s

manifolds &', m/, (second line in eq. 6.2). Similarly, |S$°C) is of predominantly singlet

character and can be approximated as

T - [fISOC Sn)
S5 ~ 1S + > > <gs _ET| T, )- (6.3)

Equations 6.2 and 6.3 are good approximate descriptions of the mixed states that are
obtained by exact diagonalization of the molecular Hamiltonian including Fsoc (figure
6.3).

Equations 6.2 and 6.3 imply that in a mixed predominantly singlet state |SS9C),
e (T |20V = 300 Y,

that is much smaller than unity. Similarly, in a mixed predominantly

there is a small pure triplet-state population i.e., Y, >

A 2
(Tho,m s | HZOC|Sn)
Es, _ETk,mS

SOC> | SOC>‘

there is a small pure singlet-state population i.e., ) |
2

triplet state |7}

NZ ng

Cv( f S |HSOC|Tk ms)

ETk _—Es,

6.2.1 Direct triplet formation mechanism for excitation energies below the
CT band

The experiments measure TR-EPR spectra for excitation energies below the CT

band, where there is no significant optical absorption. For these lowest energies, we
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Figure 6.4: Direct mechanism for the formation of triplets. Left: Optical excitation at
t = 0 sec induces transitions from the “mixed” ground state |S§°€) to “mixed” triplet excited
states |1, ksfgc> for excitation wavelengths below the CT band. Right: Optical excitation at
t=0 sec induces transitions from the “mixed” ground state |S59C) to “mixed” singlet |S5°C)
and triplet |T,§$S£> excited states for excitation wavelengths inside the CT band. Gaussian
line shapes represent the excitation wavelength region below and inside the CT band. Both
types of excited states (]S5°€) and |T]€S’(§)C>) have triplet contributions (equations 6.2 and
6.3 and figure 6.3). Thus, photoexcitation creates initial (at ¢ = 0 sec) triplet populations
(T, | SSOOV? and. (T s TEOC) 2

expect that mixed predominantly triplet states of the molecule are accessible. The

dipole moment operator i can directly couple the ground state [SSOC) to TR2C) via

the matrix element (i.e., first order in the H50C)55.61,93

AN AN Sn ];ISOC T m
(TE9C11550%) ~ 3 SO} (S, 7i1S0) (< A 1T s>>

Er, ... — Es,
. F[SOC|50>
+ 30> {CEN Tiom,
k' ms

jan <Tk’m
T /mg yIts
M| o > ( Eg, — ETk’,ms

(6.4)

Equation 6.4 implies that the magnitude of [(T;¢°| [i]559C) |2 is nonzero, although small
due to the very weak SOC matrix elements (figure 6.4). Therefore, at low excitation
energies, a small number of molecules can be excited to each of the kth manifold
sublevels |T,§?C>. This number of molecules may not be observable as absorption,
but it could give a measurable TR-EPR signal since it is a triplet population, i.e.,
> [T TREC) P =~ 1. We will test the hypothesis that optical excitation from the

ground state gives directly an initial triplet population that could be observable as a

TR-EPR signal. Our computations will show that the hypothesis is consistent with

the experiment in ref. 7.
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Figure 6.5: Indirect mechanism for the formation of triplets. Optical photoexcitation inside
the CT band at ¢ = 0 sec creates an initial population of the “mixed” \S,SZOC) state, which is
approximately pure singlet state |S,,). At a later time after photoexcitation, the initial |S,,)
population can transform to triplet |7} ,,,,) and |Tj41.m,) population via ISC (rates kg, 7,

and kSn—>Tk+1)-

6.2.2 Direct triplet formation mechanism for excitation energies within
the CT band

The experiments also measure TR-EPR spectra for excitation energies within
the CT band. The CT absorbance is dominated by [S59C) excited states coupled to
the ground state via the transition dipole moment (SSOC|i|SSOC) ~ (S, |/i|S,). For

each populated |SS9C) there is a probability of measuring a TR-EPR signal since

T HSOC|g,
(T, | SRO°) [ = %

toexcitation in the CT band may lead to an initial small population of triplet states

is nonzero (eq. 6.3), albeit small. Therefore, pho-

which are not formed by ISC from an excited singlet. It is also possible that, due

to disorder, there exist high energy |T79¢)

states within the energy range of the CT
band. These states could be directly populated by photoexcitation in the CT band by
the mechanism discussed in section 6.2.1 (equation 6.4, figure 6.4). We will approxi-
mate the magnitude of both populations using quantum chemical computations. The
three types of mechanisms for the creation of initial (¢ = 0) triplet populations upon

photoexcitation are summarized in figure 6.4.

6.2.3 Indirect triplet formation mechanism for excitation within the CT
band

Photoexcitation within the CT band gives rise to a large initial population of
| SSOC) states, which are the main absorbing states in the band and are predominantly
of singlet |S,,) character, i.e., |(S,|S59¢)|2 ~ 1 (eq. 6.3). These singlets will produce at
a later time after excitation, an additional population of triplets via ISC (figure 6.5).
The central question is whether an EPR-observable total triplet population is formed

via ISC within the timescale of the TR-EPR experiment. To address this question, we

68



CgHy7 CgH1z

Figure 6.6: Schematic representation of the torsional angles determined along the conju-
gated backbone. 61,05 and 03 are the dihedral angles of the bonds denoted by bold lines.

will compute the ISC rate and the total population of triplets it gives rise to.

6.3 Computational methodology

For the quantum-chemical computations we replaced the long alkyl chains at-
tached to the Nitrogen atom of the Cbz moiety by a Hydrogen atom in order to reduce
computational cost. We performed test calculations on the full molecule to show that
this replacement does not affect the electronic structure of the relevant singlet and
triplet excited states of the Chbz moiety. We used the Amsterdam density functional
(ADF) program package® for the computations of ground state? and excited state®
geometries and energies, of absorption spectra® ® and SOC integrals!®’ and of reor-
ganization energies!! for ISC transition rates. All electronic structure computations
did not employ frozen cores nor symmetry constraints.

We computed the optimized geometries of the singlet ground state (Sp) in the
gas phase using density functional theory (DFT) at the B3LYP %2 level of theory with
the TZ2P basis set.!%® Subsequently, these optimized geometries were used in single-
point energy calculations using BHandHLYP!%* method in conjugation with TZ2P
basis set. Our computations showed that Cbz-TBT in its ground state has several
minimum energy conformations that are nearly isoenergetic. These conformations are
characterized by different values of the twist angles 61, 6 and 5 as shown in figure 6.6.
Figure 6.7 shows the ground state energies of each conformation in eV, together with
their optimized structures. The different conformations in figure 6.7 can be viewed as
static disorder of the ground state ensemble.

For these ground-state geometries we obtained vertical singlet-singlet and singlet-
triplet transition energies, oscillator strengths and molar absorption coefficients for
the optical absorption spectra. The latter computations employed DFT in its time-
dependent approach (TD-DFT) with the BHandHLYP functional and the TZ2P basis
set and applied the Tamm-Dancoff approximation (TDA)!® with no symmetry con-
straints and without frozen cores. SOC was included in the TD-DFT/TDA calculation
of the excitation energies. In the first step, the spin-pure singlet and triplet (|S,,) and
{|Tk.m.)}) excited states were determined by means of the zeroth-order regular approx-

imated (ZORA) Hamiltonian in its scalar approximation. %1% In the second step, the
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Figure 6.7: Minimum ground-state energy conformations and shorthand notation. anti and
syn refer to the orientation of thiophene rings relative to BT (anti if the Sulfur atom of the
thiophene ring points upwards relative to BT [#; = 0° or 63 = 0°] and syn if the Sulfur atom of
the thiophene ring points downwards relative to BT [#; = 180° or 63 = 180°]). The numbers
1 and 2 refer to the orientation of Nitrogen atom of Cbz moiety with respect to the nearest
thiophene unit: 1 if the Nitrogen atom points downwards relative to the Sulfur atom of the
nearest thiophene [#3 = 180°] and 2 if the Nitrogen atom points upwards relative to the Sulfur
atom of the nearest thiophene [#3 = 0°]. Percentages refer to the ground state population
of relative geometries at room temperature computed according to Boltzmann statistics and
energies refer to the total ground state energies computed at BHandHLYP/TZ2P level of
theory.

SOC Hamiltonian was applied as a perturbation (pSOC) and the SOC matrix elements
between the excited states |S,) and {|T,m,)} were computed. On the diagonal, the
singlet and triplet energies are added. The mixed spin-orbit coupled excited states
550€) and |T2€) are calculated as linear combinations of the pure states by exact
diagonalization of the SOC matrix. 10

The quality of the above-mentioned computations of the excited states can
always be tested against the experimental absorption spectrum for the case of singlet
excitations (e.g., see figure 6.2). However, the experimental spectrum cannot be used
to gauge the quality of the computed triplet excitation energies since these excitations
have negligible absorption compared to the singlets. Therefore, we need further tests
of our computational results and to this end we also performed additional relativistic
pSOC-TD-DFT/TDA computations using another hybrid functional (M062X!10:11)
and five long-range corrected (LRC) hybrid functionals''? (LCY-BLYP, 13114 wB97, 115
wBI7X, 15 wB97X-D, 1618 CAMY-B3LYP 12119) with TZ2P basis set. The choice of
these functionals required examining the CT character of the lowest-lying exited states
of Cbz-TBT molecule, by computing a metric of the electronic excited states. This
includes the calculation of the following: (i) the A-index developed by Tozer!?°, which
is based on the degree of spatial overlap between the occupied and virtual orbitals
involved in an excitation, (ii) the Ar-index developed by Adamo!?! which is based on

the measure of the average hole-electron distance upon excitation. The combination
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of these two diagnostic quantities determines the type of the transition (e.g., local or
CT) and their values are associated with the choice of an appropriate functional (see
section 6.6.2, figure 6.14 and table 6.4 for all the details). In addition to the use of
pSOC-TD-DFT/TDA we also performed configuration interaction singles (CIS) com-
putations using the ORCA-4.0.1 program package!*? (with def2-TZVP!?3 basis set).
The absolute excitation energies of the triplets, and the energy gaps between them are
very similar to those computed with pSOC-TD-DFT/TDA methods. Although CIS
methods tend to overestimate the absolute singlet excitation energies, they are known
to perform well for triplet excitations.!?*

We used the most probable ground-state geometries in figure 6.7 as starting
points for geometry optimizations in the lowest singlet and the triplet excited state
manifolds (S, T, T») using TD-DFT/TDA with the BHandHLYP functional and the
TZ2P basis set (see section 6.9.1). We also computed parts of the potential energy
surfaces (PES) of T; for different values of inter-ring torsional coordinates (via geom-
etry optimizations at constrained values of 6; and 65 in the range 0° < 6, < 180° with
n=1,2).

For the computations of the reorganization energies for ISC transitions, we first
diagonalized the mass-weighted Hessian matrix H by LT HL = w? on the optimized ex-
cited electronic structures to obtain the frequencies (where L denotes the eigenvectors
and w the eigenvalues). #5126 Then, we used the FCF (Frank-Condon factors) auxiliary
program as implemented in ADF to compute normal modes and reorganization energies
for each normal mode. 2”128 All computations employed the BHandHLYP functional
and TZ2P basis set with the TDA.

The EPR computations for the g-tensor in A% = 3 BTG5 in eq. 6.1 were
performed at the optimized geometry of the first triplet excited state (7)) using the
“eprnmr”module of ORCA-4.0.1 in combination with the B3LYP functional'?® and the
def2-TZVP basis set. Finally, the D-tensor in H%FS = STDS of eq. 6.1 and the corre-
sponding ZF'S parameters (D and F values) of the T} manifold were computed using the
spin-unrestricted natural orbital (UNO) approach? of the ORCA 4.0.1 program pack-
age (with the B3LYP functional and def2-TZVP basis set). We calculated TR-EPR
ZFS parameters where only the spin-spin contribution to the ZFS parameter D was
considered. 13 The parameters were also computed using improved densities according
to the Distributed Point-Dipole (DPD) model as described in ref. 131. The molecular
orbital contributions to the triplet excited states (7)) were written in the basis of the
atomic orbitals and the coefficients of the linear combinations were used to predict the
spin-density matrix and the “gross” spin populations. The orbitals were extracted by
ab-initio using ADF with the BHandHLYP /TZ2P method at the optimized geometries
of the triplet excited states.
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6.4 Results and discussion

Our computations showed that Cbz-TBT in its ground state has several min-
imum energy conformations that are nearly isoenergetic (figure 6.7). These confor-
mations are characterized by different values of the twist angles 61,6, and 65. We
estimated the fraction of molecules in the ground state ensemble for each conformation
i, given by £ = esi/K5T / Zj\il e~ ci/KBT where P is the total number of molecules, M
is the total number of minimum energy conformations, Kpg is the Boltzmann constant,
T' is the temperature and ¢; is the energy gap between the lowest energy ground state
conformation and conformation i. Figure 6.7 shows the ground state energies of each
conformation together with their optimized structures and their Boltzmann population
fractions. According to our computations, the anti_2 conformation is the energetically
most favorable structure which is found in 58% of molecules in the sample. This result
is in accordance with the literature. 32133 The vertical excitation energy computations
described below are for the most stable ground-state geometry (anti_2). Computations
for the other geometries in figure 6.7 are described in the appendix 6.5.

The experimental optical spectrum of the molecule in the o-dichlorobenzene sol-
vent consists of two main peaks centered at 492 nm (CT band) and 350 nm respectively
(i.e., see Meyer et al. ref. 7 and figure S5 in their supporting info). We simulated the
UV/VIS absorption spectrum of the molecule in the o-dichlorobenzene solvent using
the COSMO (Conductor Screening Model)3* at the TDA /BHandHLYP/TZ2P level
of theory with a dielectric constant ¢ = 9.8 (for dichlorobenzene). Our simulations
agree very well with the experimental observations of the lowest energy excitations
which are relevant to this experiment. We also find two main peaks for the absorp-
tion spectrum, the lowest energy peak centered at 473 nm (CT band attributed to the
transition Sy — S;).13% The maximum absorption coefficient of the CT band given by
the TD-DFT computations is similar to the experimental value which is of the order
of 10° L-mol ™" - ecm™ but slightly blue-shifted (~19 nm difference, 0.1 eV)7 [see figure
6.2].

The lowest absorption (CT) band peak is attributed to the transition S5°¢ —
SPOC (approximately Sp—S;). This transition is predominantly (93%) HOMO —
LUMO. The electron density of the LUMO orbital is largely localized on the central
BT unit and the electron density of the HOMO orbital is mostly localized on the back-
bone (excluding thiadiazole ring). Thus, the Sy—S transition involves a CT excitation
with a redistribution of electron density from the conjugated backbone of the molecule
toward the central BT unit (CT band).

The energy level diagram with the singlet and triplet states of the molecule
is shown in figure 6.8 together with the experimental excitation wavelengths for op-
tical excitations outside and inside the CT band. The results indicate that the first
({I779°)}) and second ({|T5¢)}) manifolds (excitation energies of 1.65 eV and 2.65

72



4.0
—— |SZSOC)
S\ 3.5 4
o
SoC
@30_ — {|T3,f )}
53
h 2.76eV 157°¢)
s 25 excitation range 2.65¢V {ITZS?C)}
=77 inside CT band '
:.(:)'
w 2.0+ T excitation range
below CT band soc
5 1.65¢V == {|T72C)}

Figure 6.8: Energy level diagram of Cbz-TBT molecule in its anti_2 geometry calculated at
the TDA/BHandHLYP /TZ2P level of theory. Thick dark grey lines represent the computed
spin-orbit coupled excited state energies with respect to the ground state energy. Thin
black lines represent the experimental optical excitation energy regions for the TR-EPR
experiment (2.14 eV - 2.88 eV for photoexcitation inside the CT band and 1.82 eV - 1.97 eV
for photoexcitation below the CT band).

eV respectively) lie below the first [SFOC) excited state (2.76 eV). {|T18?C>} has very
low energy compared to the other excited states and it is the only manifold whose
vibrational energy spectrum lies in the energy region of the experimental excitation
wavelengths outside the CT band (e.g. 1.82 eV - 1.97 eV). In addition, for the lowest
excitation energies within the CT band, only {|T: f?c>} is accessible, while |STO€) and

{|T59°)} lie in the energy region of higher-energy experimental excitation wavelengths
within the CT band.

6.4.1 Direct excitation to triplet excited states from the ground state

Direct excitation below the CT band

The absorption coefficient (absorbance) a(F) at a given photon excitation energy

E is given by13¢

a(E) = e(E)dl, (6.5)

where ¢ the concentration of molecules, [ is the optical path length and ¢ is the molar

extinction coefficient 137

E—AEJ>2

o(B) = Y en(B) = 3 O fre 2T (6.6)
J J
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In equation 6.6, the sum is over transitions to final states J : S59¢ — J. Inside the
sum, the band shape for each transition is approximated by a Gaussian function whose
full width at half maximum (FWHM) accounts for vibrational and/or solvent induced
2m7(r10) ZXL 2;2? 1”752) where N4 is Avogadro’s constant, e the electron

charge, m, the electron mass, and g the vacuum permittivity (see section 6.8.2). AE;

broadening. C' =

is the excitation energy (in eV) for the transition to the Jth excited state from the
ground state S59C€. f; is the corresponding oscillator strength 6137

81 (mec

5 - D AR |, 9 P, (6.7)

3(hc)?e
where, U; and U, are the initial (S5°¢) and final states J of the Jth transition,
respectively.

To compute the approximate number of molecules that populate the first triplet
excited state |T7¢“) upon photoexcitation at energy Egsoc 500 = AEgsoc rpoC We

will use the following formula*”

—agsoc_,rsoc | Egsoc_, rsoc 1
PTE?C (EsgocaTﬁgC> = Iy X {1 —10 %0 T ( % T )} X m7 (6.8)

where [ is the incident energy and A,, the excitation wavelength. The quantity
(5§00 500 <Esgoc _>Tls(§)c) is the absorption coefficient for direct excitation to the

triplet excited state [TP¢°), i.e.,
aS§OC%Tls€C (ES§OC%TE(§C> = 5S§OCaT15€C (EsgocHTlsygc> Cl, (6.9)

2 _ 1 : : : SOC
€550C 890 (EsgocHTlsgc> = C—FWHMfSEOC%Tf?C is the contribution of the Sj —

TE?C transition to the total molar extinction coefficient & (E gs0C HTE?C) at the excita-
tion energy Egsoc_rsoc = AEgsoc ST50c of the first triplet excited state |TP¢). The

total number of molecules that populate the first triplet excited state manifold is
3

Using the program ADF, the extinction coefficient at the maximum of the CT band,
€ (Esgoc_hgfoc), was computed to be in the range 5.90 x 10* — 2.94 x 10°—L— [us-

mol-cm

ing broadening parameters FWHM = 0.1 eV - 0.5 eV for the most probable geometry
(anti-2)]. This result is in accordance with the experimental one, where the extinction

coefficient was measured to be of the order of 10° mohm with a fitted band broaden-

ing of 0.4 eV - 0.5 eV.” The approximate agreement between experiment and the-

ory indicates that we can use the ADF to approximate egsoc ST§Q0 <ES§OC _>T1s<gc> in

eq. 6.9. We computed gsoc ST§OC (Esgoc —>TE§C> for each populated geometry (figure
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6.7) and used the computed value in eqs 6.9, 6.8, 6.10 to calculate Prsoc. For each
conformation, we used the experimental values for ¢,l and I,” (see section 6.10.2).
Adding the Ppsoc <E50soc HTE?C) of all populated geometries (each multiplied by the
geometry probability), we found that the ensemble-average total number of molecules
placed in the first triplet excited state via direct excitation at Egsoc TS890 equals to
Pysoc <ES§OC%T15’(£)C> — (1.3 - 6.5) x 10'°,

In contrast to conventional cw-EPR spectroscopy with Boltzmann-populated
triplet sublevels, in TR-EPR, spectroscopy the signal depends on nonequilibrium (po-
larized) sublevel populations that enhance the signal-to-noise characteristics as com-
pared to conventional EPR. The predicted total initial triplet population, which only
involves the 1st triplet manifold, is in the range 10'° — 10! that is detectable by cw-
EPR and is likely detectable by TR-EPR!3¥ (see section 6.4.4).

Direct excitation inside the CT band

Our computations show that the second triplet excited state lies inside the CT
band and it is energetically close to the first singlet excited state (see figure 6.8). Hence,
upon photoexcitation at the maximum of the CT band, there will be an initial popula-
tion in the second triplet excited state |TQS’?C>. A lower bound for this population can
be estimated using eq. 6.8 and the relative absorbance to the second triplet excited

state, given by
aS§OC_>TZS,(§)C <ES§OC_>S§OC> = €S§OC—>T2S,?C (ES§OC_>S§OC> Cl, (6.11)

ES(?OC%TQS(;C (ES§OC_>S§OC> =

ES§OC%S§OC*AES§OCHTQSOC

2
OFWIHM_f S5O0 TS CXP [—2.77 ( WM - ) ] is the contribution of the

S5OC TQSSC transition to the total molar extinction coefficient ¢ (Esosoc %Slsoc) at
the excitation energy of the maximum of the CT band, Egsoc_, gsoc.

To compute the total number of molecules that populate the second triplet ex-
cited state manifold at the excitation wavelength of the first singlet excited state, we
used eq. 6.8 (but now for |[T5¢¢) state) where we also added the contributions from the
most probable conformations (e.g., see eq. 6.10) [see section 6.10.3]. Using broadening
parameters FWHM = 0.1 eV - 0.5 eV, the estimated ensemble-average number equals
Prsoc (Esgocﬁsf,oc) = (2.1 — 3.2) x 10'"". Hence, excitation at the center of the CT
band will create an initial population of molecules in the 2nd triplet states that can
give a measurable TR-EPR signal '®'38 (see section 6.4.4).

In the experiment, the TR-EPR signals are detected at different optical exci-
tation wavelengths throughout the CT band, (i.e., 430 nm - 580 nm), that include

wavelengths below the CT maximum. The computed energy of S;°¢ — T S?C lies
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within this optical excitation range, so we also estimated the initial triplet population

for this energy. The absorption coefficient is
CLSSOC_>T2S,(€)C (Esgoc%%s,(gc> = ES§OC%T2S’?C (ES§OC_>T2S§)C> Cl, (6.12)

where €500 1500 <ESSOC_>T2S’(£)C> = Cmfsgocﬁjﬁgc is the contribution of the SSOC —
TS?C transition to the total molar extinction coefficient ¢ (Esgoc HTZS,?C) at the exci-
tation energy of the second triplet excited state, Egsoc STSOC By using exactly the
same procedure as before (egs. 6.12, 6.8, 6.10 for ]TS?%), we estimated that the
ensemble-average total number of molecules that directly populate the second triplet
excited state at the excitation wavelength of Egsoc 790 to be PTQ'soc (Esgoc %T;c&)c) =
2.4 x 10" — 1.2 x 10" (see section 6.10.3). In summary, photoexcitation within the CT
band creates an initial (¢ = 0 sec) population of molecules in the 2nd triplet excited
state. This population is 10*! —10'? and it is sufficient for a detectable TR-EPR signal
(see section 6.4.4).

Within the CT band, the most absorbing state is |SP9¢) which is predominantly
singlet with a small triplet component (eq. 6.3). The small triplet component could
give a TR-EPR signal and for completeness we will also estimate the corresponding

triplet population. The maximum number of molecules that populate |STO¢) is*7

—a E 1
Pygoc (Eggocgpoc) = I x {1 g esieesteo( ﬂ)} e 619

For each molecule in state |ST9C), the probability of a measurement that collapses

SOC\ |12 _ (Th,mg [H59C|S1)
STOUNP = e ——
1 ESI_ETk,mS

the system to a triplet state is |[(Tj ., . Thus, the number of

molecules in |STO¢) that would give a TR-EPR signal right after photoexcitation is,

PEE = Pygoe (Eggoc_ysgoc ) x D2 3 (T, ST (6.14)
k  ms

This number was estimated to be 2.4 x 108 using exact diagonalization of H3° + H5OC
to obtain the (T},

by the other direct mechanism described above.

SPOC) |2 values. The number is lower than the population arising

We conclude that upon photoexcitation inside the CT band, the second triplet
manifold is directly populated, and its initial population is in the range 10 — 10'2. In
contrast, for photoexcitation below the CT band the first triplet manifold is directly
populated, because the T, manifold is energetically inaccessible. Its initial population
is in the range 10'° — 10'*. We will show that populations are measurable by TR-EPR

in section 6.4.4. 18138
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Figure 6.9: Schematic view of the PES of the singlet |S,) and the triplet |1} ,,,) excited
states in the harmonic approximation model, shown for a single vibrational mode of frequency
w. The vibrational energy levels are shown in light gray and their energies differ from each
other by Aw. The energy difference between the minimum of |S,) surface and the minimum
of [Ty m,) surface is AEs, 1, . . A is the mode reorganization energy.

6.4.2 Indirect (ISC) triplet formation mechanism for excitation within the
CT band

Excitation within the CT band leads to a high initial population of |SF°¢) which
is predominantly singlet (|S7)). As time proceeds after photoexcitation, the initial
singlet state population may transform to a triplet population via ISC. To gauge this
mechanism, we need to compute the ISC rates. For this computation, the relevant
component of the Hamiltonian in eq. 6.1 is K + HBO 4 H50C We may use Fermi’s
golden rule because the singlet-triplet SOCs are very weak. The ISC rate from |S,,)
to |Tk.m,) for a model with one vibrational mode of frequency w (see chapter 2.2 and
figure 6.9) is'®

EnS/KBT

2NN e (nslnr)

ng nr (6.15)
x <E$n+EnS—(Eﬁfzs+EnT)>

kSnHTk,mS = ‘VST’HTIC ,Ms

In eq. 6.15, Vs, 1, ,.. = (Sn | H59C| T}, 1) is the SOC matrix element between the |S,,)
and [T} ,) states and Z is the partition function. E§"™ and E?:Z are the energies
of the |5,,) and |T} ,,) states at their minimum-energy molecular geometries (minima
of the |S,) and |T},,,) diabatic Born-Oppenheimer surfaces). FE,, and FE,,. are the
energies of the vibrational levels of the |S,) and |T},,,) diabatic Born-Oppenheimer
surfaces, i.e., B, g(n,) = hw (nS(T) + %)

Eq. 6.15 for the ISC rate can be generalized to a multi-mode form, which may
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be written as a Fourier transform of a correlation function computed at the frequency

of the energy gap AEg = B¢ — Ep'™  (see chapter 2.2)%34139

n’Tk,ms

AE V 2 o) AEg, T s
k (—S’%Tk’ms> _ Vouti. I Sn’;;m ¢—C0) / dtei—— e =Tl G() (6.16)

[e.e]

In eq. 6.16 I' is a homogeneous broadening width and

G(t) = Z (772:;) {(2(nq) + 1)cos(wyt) — isin(wat)}, (6.17)

where the summation is over the normal modes a of the system of frequencies w,
Ao is the reorganization energy of mode o and (n,) = (ehw@/ KpT 1)_1, the thermal
average of the phonon occupation number n,, at temperature 7'

To implement eqs. 6.15 and 6.17 we computed the normal mode parameters
at the TD-DFT level using geometry optimization for |S;) and |T},,,) for the most
probable conformation anti_2 (as described in section 6.11). Subsequently, using the
FCF module of ADF we extracted the electron-phonon coupling parameters \, =
(“;—g)l/ 2 Ea, where Ea is the vector of equilibrium-position displacements of all atoms
for the transition S; — Ty, and for the normal mode 27128 ) is directly related
to the mode reorganization energy via A\, = fiw,A2. 190 We wrote a MATLAB program
that uses these computed parameters to calculate the ISC rates via eqs. 6.15 and
6.17. In our calculations I' = 10'2 sec™!, which corresponds to a typical vibrational
relaxation rate of a picosecond.

To understand how the ISC mechanism affects the TR-EPR signal we need to
compute the population transfer via ISC (as a function of time) from the first singlet
state to the two lowest-energy triplet excited states. To this end we solve the following

approximate kinetic equations for total populations®?

dP.

d:l = —(ks, s, + ks, s, + ks, 1y ) Psy, + kry 5, Pry + k55, Pry
dP.

dtT2 = kg1, Ps, — (kry—s, + koo + kryoss,) Pry + by, Py (6.18)
dP.

dtT1 = ks, 1, Ps, + k1, Pry, — (kry s, + ks, + by ssy) Pry.-

Apart from the ISC rates, these equations include fluorescence and phosphorescence
rates as well as transition rates between the triplet manifolds, e.g. kg7, and kp 7.
These triplet-to-triplet rates are induced by the SOC interaction and are computed
using the methodology of equations 6.16 and 6.17 and pSOC-TD-DFT/TDA compu-
tations. In the rate eqs. 6.16 and 6.17, Pp, = > Pr,, and Pr, = > Pr, .
The total rates are defined as follows, kg,_,7, = st ks, 1., for k = 1,2 and
kr,—sr, = stl Do, kTQ,mS_)TLmS,. The total S; — T} and S; — T, ISC rates are
ks,om = 1.77 x 10" sec™ with AEg, 7y, = 1.23 eV and kg,_,7, = 4.00 x 10° sec™!
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with AEg p,,,. = 0.16 eV (for the SOC value at the minimum-energy geometry of
S1). The total Tp — Ty rate is kp,—p, = 7.63 x 10 sec™ with AEp, 5, =1.07 eV
(SOC value at the minimum-energy geometry of 7). The backward rates are given by,
kijoi = ki e ABi/KsT

The fluorescence rate kg,_,s, as well as the total phosphorescence rates kr,_,g,
and kr,_,g5,, were estimated from the fluorescence and phosphorescence lifetimes (7;)
as computed by ADF, using the respective oscillator strengths f; of the vertical tran-
sitions S5°¢ — J at the minimum energy conformation of .J, where J is SY9°, T Eg)c
and T;?C. For each excitation, the radiative lifetimes are related to the respective

oscillator strengths via the following equation '4°

1 2AF%f,
T, c3

, (6.19)

where ¢ is the speed of light and AFE; is the excitation energy for the transition to
the Jth excited state from the ground state S5°¢. All the quantities in eq. 6.19 are
in atomic units (a.u.). The estimated fluorescence rate is kg, 5, = 2.78 x 10% sec™!,
in accordance with previous experimental measurements (e.g., see refs. 141-143), and
the estimated phosphorescence rates are kp,_,5, = Zm Kty sy = 2.47 sec™! and
KTi50 = Do, Fr1 50 = 6.41 X 1072 sec™!, which are typical for organic molecules
(e.g., see ref. 19).

In solving eq. 6.18, we set Pp, (t =0) =0, Pp, (t =0) = (6.3 x 10 — 5.3 x 10'Y),
the total population that comes from the direct photoexcitation inside the CT band
(computed as described in sections 6.4.1 and 6.10.3) and Ps, (t = 0) = 1.3 x 10, the
population transfer to the first singlet excited state upon photoexcitation to the CT
band (see section 6.10.4), both of the them only for the most probable geometry, anti_2.

Figure 6.10 shows a representative plot of the populations as a function of time
for the total 17,75 populations using the initial conditions for ¢ = 0 sec mentioned
above. The experimental time that passes between photoexcitation and triplet signal
observation is approximately 0.5 usec.” We checked the population transfer within the
experimental time scale as well as for larger time scales. The initial total 75 populations
(~ 10" molecules which is measurable by EPR) slightly increases within a usec and
retains measurable values for approximately 0.2 - 0.3 msec. The total T} population
increases to measurable values (~ 10 molecules) after approximately 10 - 30 usec.
The ranges in time scales are due to the range of initial 7, populations (see section
6.4.1).

The above results show that, although ISC from the lowest singlet excited state
generates triplet state population after photoexcitation within the C'T band, this pop-
ulation is not much greater than the initial triplet state population that is formed
directly by absorption from the ground state (as described in the previous sections).

This trend is also observed from our computations using other starting geometries other
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Figure 6.10: Population transfer to the first and second triplet excited states as a function
of time. (a) Population of S; from 0 to 0.5 usec. (b) Population transfer to 75 from 0 to
0.5 psec. (c) Population transfer to 737 from 0 to 0.5 usec and (d) population transfer to T5
and T for larger time scales than 0.5 psec, namely from 0 to 0.3 msec. Initial condition for
Ty : Pr,(t =0) = 5.3 x 1010,

than anti_2 (see section 6.9.2).

The results of sections 6.4.1 and 6.4.2 suggest a plausible explanation of the
observation in ref. 7 that photoexcitation in the highly-absorbing CT band region
gives a TR-EPR signal of approximately the same intensity as the TR-EPR signal for
photoexcitation in the non-absorbing region, below the CT band. Both types of pho-
toexcitations lead to similar initial populations of triplet states. Due to the very low
ISC rates, on the time scale of the TR-EPR experiment, there is no substantial increase
in the total triplet state population arising from the lowest singlet state following the
excitation in the CT band.!'** Therefore, the initial triplet populations largely deter-
mine the TR-EPR signal strength for both excitation regions. In section 6.4.4 below,
we demonstrated that these initial populations are sufficient for the observation of a
TR-EPR signal.

6.4.3 Triplet state formation mechanism in the ground state

The above SOC induced mechanism suggests that triplet EPR signal could

also be observed in the ground state, which is predominantly singlet with a small
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triplet contribution (e.g., eq. 6.3). For each molecule in the ground state |S5°¢),
the probability of a measurement that collapses the system to a triplet state |1k .,)
FrSOC 2
is [(Ty.m,|S59C) > = W . Thus, the number of molecules in |S5°¢) that
0 k,mg

would give a conventional cw-EPR signal is given by

pEPR __
S§OC = Psgoc X E E ’<Tk,ms
k. ms

S N, (6.20)

where Pgsoc is the total number of molecules in the ground state for each minimum-
energy conformation (see section 6.10.1). We used full diagonalization of HBC + HSOC

to estimate the coefficients (T}, .. [S5°¢). The ensemble-average total triplet population

from the mixed |S5°C) ground state is computed to be 8.7 x 10°. This number is in the

138 (

limits of the sensitivity of EPR spectroscopy without field modulation see section

6.4.4).

6.4.4 Sensitivity analysis

The basic formula for sensitivity analysis of ground-state CW-EPR, without
field modulation, (since the TR-EPR experiment does not involve field modulation), is
based on the ratio of the power absorbed by magnetic resonance in the sample (denoted

dW?9s /dt, where “gs” denotes ground state), to the power dissipated in the resonant

cavity (denoted as Py ),""
s (=95 ~ gs
awes g ks ()N (T = T1)
ratio (N2,) = / = - 7 (6.21)
\ PC 1 iv
QoY 'O
In the numerator above, 402 =k, ,;(hw) N5, (ﬁfs - 1:[?8>, where
ki, = % |uij|* f(w) is the rate of transition between levels |i) and |j) induced

by the oscillatory magnetic field of amplitude B; and frequency w. N7 is the to-
tal number of paramagnetic centers in the sample and Hf(sj) = Njjj)/Ni are the
ground-state fractional populations of the levels (giving rise to spin polarization).

flw) = Aw/m ((w — wo)? + Aw?) is a Lorentzian lineshape function (with resonance

frequency wy and width Aw), and p;; = (j|ili) = gBe/S(S +1) (S for spin) is the
1
Qo
power dissipated by the cavity, where () is the quality factor of the unloaded cavity and

magnetic dipole matrix element. In the denominator of the ratio, Po = w%VC is the
Ve is its volume. pg is the magnetic permeability constant. In the analysis that leads
to the equation for sensitivity, an equivalent circuit represents the generic spectrometer
response. "° The change in power level of the cavity due to absorption is related to the
corresponding voltage response Vgt in the detector circuit of resistance Rqe; and to the
incident power on the resonator Py, via the equation —a¥de — rqtio (NZ). Using

VPincRaet
the equation of the transition rate k;_,; in eq. 6.21 for the ratio relates dVge to the ab-
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sorption rate and thus to the total number of spins N{ and the spin polarization. The

minimum detectable signal 6V %" is defined as being equal to the detector rms noise
voltage, i.e., §Vmin = Vuose — \ /F R« KgTdf, where df is the bandwidth of the detect-

ing amplifying system and F' its noise factor. The minimum detectable signal, thus,

determines the minimum detectable number of paramagnetic centers N™it ) via the

tot(gs
1 4Viose ; min : : _ _ -1
equation —— = ratio ( Ny ). Assuming resonance, i.c., flw=wy) = (mAw)

in eq. 6.21, one gets for the minimum detectable number of paramagnetic centers

Npin I'Ve |FKpTdf (6.22)
tot(gs) ™ ~ s -y . , )
g QoﬂogﬁeS(S + 1) (Hf — Hg ) Plnc

J

¢

where gf.I' = h(Aw). For the case of thermal equilibrium (ground state CW-EPR)
ﬁfs - 1:[?5 ~ hwo/(2KpT), and writing huwy = g3, By, gives 79145146

min KBTFVC FKBTdf (6 23)
totl9) ™ 1092825 (S + 1) ByQo Bune |

This is the approximate equation often quoted as a starting point for CW-EPR sen-

sitivity without field modulation. In the experiment of Meyer et. al.” at each value
of the scanning magnetic field, the signal is recorded 1000 times and averaged, and all
background signal is subtracted. Therefore, the noise level is effectively reduced, with
respect to eq. 6.23 by a factor of 1/ v/1000, and N™in ) above should be replaced by

tot(gs

Nt‘gé?gs) = \/ﬁ]\ft‘;‘é?gs) (this issue is further qualified below). The approximate EPR

parameters of the experiment of ref. 7 are Vo = 2 x 1077 m? (cylindrical cavity of 5
mm diameter and 10 mm height), 7' = 80 K, Py = 2 mW, @y ~ 4000, df = % =24

s =
MHz (v,.s = 9.7 GHz is the resonance frequency), F' = 10 — 100, I' ~ 2 mT, and
By = 370 mT (the latter two are taken from the experimental spectra at the excitation
wavelength of Ay, = 630 nm?7). If the experiment in ref. 7 were ground state CW-EPR

without field modulation, Nggé‘(lgs) ~ 10'9 — 10" (given the range F' = 10 — 100).

To adopt this approximate formula to TR-EPR we need to go back to eq.

6.22, replace Ntrgé‘(lgs) by Ntrgé?ex), the number of molecules that are directly excited

to the triplet states upon photoexcitation (if there were ISC we would need to include
that population too) and replace ]:[fs — ]:[js by typical nonequilibrium initial values
J

[[; (¢t =0) =TI, (t = 0) (created by photoexcitation), which we can compute from
our ab-initio results. Following the same line of argument as above, we arrive at the
TR-EPR adapted formula

. TV FRpTdf
tot(ex) ~ e ) (624)

QotogBeS(S +1) (ﬂ =01, (t= 0)) Pine

where now N™in ) refers to the total population of excited triplets, obtained by pho-

tot(ex

toexcitation and observed on the time scale of the TR-EPR experiment, and f[:x(t =
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0) —]:[jx (t = 0) are typical non-equilibrium (initial) fractional populations of the triplet
sublevels prior to equilibration in the triplet manifold. For the experiment of ref. 7,
Nt‘g‘énex should be replaced by Ntrgé?ex) = @Ngﬁé?w), as mentioned before. Below,
we compute the fractional populations using the oscillator strengths for the singlet-to-
triplet transitions computed in section 6.4.1.

The component of the total molecular Hamiltonian (eq. 6.1) that describes
the spin components of the electronic states and the interactions with the magnetic
fields is given by HSOC 4 HZFS 4 fyZeeman 4 g B (t)ng, where [Zeeman — ﬁeéggﬁ
and H%S = STDS. Our computations of the g tensor show it to be highly isotropic
with a value of g = 2.003, in agreement with the experiment (e.g., see table I and ref.
7). Therefore we can write HZeman — 3 BTg8 — ¢8.BTS and $.BT§S = gB8.BTS,
where g =~ 2. Furthermore, the computed energy differences between the predomi-
nantly three sublevels within each {|77¢°)} manifold (the [T79C) are the eigenstates
of HBO + H SOC) are three orders of magnitude smaller than the energy differenced
predicted by diagonalizing H50C = §TDS using the experimentally derived D and E
values shown in table 6.1 (107 eV for SOC versus 107 eV for ZFS). Thus, within each
triplet manifold the spin states at zero magnetic field are determined by the Hamilto-
nian %" = STDS which is dominant compared to H5°C. We denote the eigenstates
of HZFS 4 fiZeeman g0 the kth triplet manifold {|Tk4)}, i =1, ¢, u (lower, center, upper)
[see section 5.6]. These are the absorptive and emissive states of the EPR component
of the TR-EPR experiment for the particular manifold. To estimate the population
transfer upon photoexcitation to these triplet sublevels ({|7}.)},7 = [, ¢, u), we should
first calculate the oscillator strengths for the transitions S5°¢ — Tj.; following the

procedure described in section 6.4.1. To this end, we write the eigenstates |Tj ;) in the
basis of the {|T¢¢)} states,

|Thi) = Z! TEOONTREC| Th ). (6.25)

Since the oscillator strength for the transition S5°¢ — Tj,; is related to the squared
transition dipole moment [(S3O°|ji|Tyq)[2 & ¢ (TEEC | Tr) P (S5O AITE2C) ? via eq.
6.7, its value can be given using the calculated oscillator strengths of the transitions

SgOC — Tli(gc (fsgoc%ngc> as follows:
SSOC—>Tk ~ Z’ SOC|T]“ | szoc_>Tsc§>c (6.26)

The initial population transfer to the {|7};)} manifold following photoexcitation is
calculated according to eq. 6.8.

We used the EasySpin software package!*” available for MATLAB to compute
the TR-EPR resonance field positions for absorption and emission with the field vec-

tor aligned with the D-tensor axes (the principal axis system X,Y, 7). We used the
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routine “eigfields”. Parameters included were the isotropic g value and the experi-
mental ZFS parameters for the excitation wavelength Ay., = 630 nm (below the CT
band) (D = 1345 MHz, E = 78 MHz). For each value of the computed resonance
fields (Bo||X, Bo||Y, By||Z), we calculated the matrix elements of the Hamiltonian
[Zeeman y [ZFS using the routine “sham”. The diagonalization of this Hamiltonian
matrix gives the eigenstates |Tj;), |Tk.) and |T,). From these computations, we
obtain the relative fractional populations that should be inserted in eq. 6.24, i.e.,
FL' (t=0)= = igioﬁszsz ;Tk The computed values of ll[fx(t =0)— ]:[jx(t =0) are

typically 0.3-0.7 (see section 6.10.5 for the reproduction of the experimental TR-EPR

spectra). Using these polarizations together with the above-mentioned experimental

parameters of ref. 7 in eq. 6.24, we obtain Ntrgt”(‘m) 10 — 10'° (the range arising
from F' = 10 — 100). This minimum number of spins is below our estimated number
of excited triplet states (10'% — 1012).

The second approach to computing the sensitivity, better approximates the ex-
perimental procedure. In the experiment, for a given static magnetic field and in the
presence of a weak perpendicular time-dependent magnetic field (magnitude denoted
as Bp), the ensemble is photoexcited (t = 0) and the time evolution of the EPR ab-
sorption or emission is recorded. This procedure is repeated 1000 times and an average
time-dependent signal is derived (and background signal is subtracted). The result-
ing time-dependent signal rises and decays within 1-2 us after the laser flash reaching
maximum in approximately half a microsecond. It is then time averaged over 200 ns
centered around 500 ns (which corresponds to the maximum-signal time). The proce-
dure is then repeated for another value of the time-independent magnetic field value.”

Since the reported intensities at a given static magnetic field are time aver-
ages of the time-dependent absorption (emission) intensity, it follows that H (t =
0) — H (t = 0) in eq. 6.24 should be replaced by a time average (]:[ex(t) - Hjx(t»
To approximate this time average for the case of a resonant field (e.g., maximum ab-
sorption or emission) we use the Bloch equation in the rotating wave approximation
(RWA).*3 As we have shown from the rate computations, after initial excitation, there
is no exchange in populations between the different excited triplet manifolds and no
ISC or phosphorescence on the time scale of the experiment. Therefore, the Bloch
equation should describe only spin relaxation within a triplet manifold that leads to
intramanifold thermal equilibration following the non-equilibrium initial polarization
(a discussion of this regime is given in ref. 144). Thus, we solve for the time evolution
of a three-sublevel density matrix o; j(¢) in the basis of the HZFS 4 fZeeman gigongtates
computed using EasySpin (i.e.,{|Tk;)}.¢ = l,c,u). We solve the Liouville equation
L5(t) = LEWAG(t), where #(t) is the density matrix vector (9 x 1) and L4 is the

Bloch equation Liouvillian (9 x 9)°
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%Uz‘,z‘(t) =—i Y {(Hin/m)owi(t)— (Hrj/R)oi(t)}
ki
+Z Likoki(t) — Liioii(t)
P

Tii =Y Tix,

ki

(6.27)

(1) == 101 (O) =iy ) {30) — 034(0)

—iY (Hig/M)ow;(t) + 1Y (Hij/h)oix(t)
k#j ki
- {% (i + Ty + TP } 0:5(1)
A= (E;—E;)/h—w.
In the equations above, w corresponds to the resonance frequency (9.7 GHz), E(;) are

the eigenenergies of A% 1 [[7FS _and H, ; = (i| %= BT S|j) are half of the off-diagonal

matrix elements of the perturbing Hamiltonian gﬁeéng . These matrix elements are

computed using the EasySpin derived eigenstates in conjunction with experimental

parameters. For example, for the case of By||Z, where B;||X, the matrix elements

g8
2

putes the line intensities A,_,; associated with the resonance line positions according

to Ai; = B2|(ilgB.Sx|j)|> (ﬂ:x - f[jm> Using By = 2‘%—”3\/;7‘“3 = 10 mT and the

are equal to H;; = 2B, (i|Sx|j). We used the routine “resfreqs_matrix” that com-

polarizations ]:[:L), we deduced the elements H, ;.

The incoherent part of the Liouvillian in eq. 6.27 involves the relaxation rates
of populations [[;; for & — i and of coherences T{9" = § <Fi7]’ +1,+ Fi;ph>]. These
values are chosen such that the time-dependent polarization signals o;,(t) — o ,(¢)
which gives rise to the time-dependent absorption and emission signals that are of
approximately 1-2 us, as observed to be the gross signal lifetimes in the experiment’
(e.g., the values of I';; ~ 0.1 MHz, Fﬁf’jh ~ 0.4 MHz give the gross signal lifetimes of
discussed in the SI of ref. 7). The population-relaxation rates also satisfy detailed
balance at temperature 80 K, ie., I';;/T';; = exp[—(E; — E;)/KgT]. The initial
density matrix (¢t = 0) is derived from the computed initial populations of [T79°),
D¢ |(T,§?C|T k.i)|? (we try different initial coherent density matrices consistent with the
computed initial polarizations of 0.3-0.7 since we do not know the exact initial state,
i.e., the linear superposition of u,c and [). To solve for &(t) we compute the eigen-
states V; and eigenvalues \j, of L4, which, in Dirac notation give the following time
evolutions: o;;(t) = >_,.(4, | Vi) (Vk|o(t = 0))exp(Axt). As expected, one of the eigen-
values is zero (denoted A\z—o) and the rest have negative real components such that
exp(Agzot) decays to zero for sufficiently long times. The eigenvector with the zero

eigenvalue gives the steady-state (thermal-equilibrium) density matrix, o, ;(t = 00) =
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Figure 6.11: Schematic energy diagram for the conformational transitions between two
different geometries (A and B) in the 77 PES. For all the experimental excitation energies

(Eg)é%cﬁﬂsoc), the 77 manifold is populated with high vibrational kinetic energy. This

excess kinetic energy (KE®*°**) may be large enough compared to the energy barrier (E°)
for the conformational transition between minimum energy geometries of A and B, so that
each excited molecule may change its conformation through motion on the 77 PES.

(i, 71Vi=o0) Vk=o|o(t = 0)). We find that o0, ;(t = 00) — 0,,(t = 00) =~ 0 as expected
since hw/KpT < 1. The signal thus, arises from the nonequilibrium populations
Ao, i(t) = 0,:(t) —0;,:(t = 0). To relate to the experiment we compute the time average
of the populations and divide by a microsecond, i.e., (f[:z(t)) = (us)™' [T dtAoyi(t),
where [[* dtAo;;(t) = — 2 k0(8: 1| Vi) (Vielo(t = 0))/A. This method allows us to
approximate (fo(t) — ll[jx(t» in terms of the ab-initio derived initial polarizations
and the eigenvector/eigenvalues of the Bloch Liouvillian, which contain the effect of
the spin relaxation time scales, the latter being consistent with the lifetimes of the
observed signals. Using these types of computations in conjunction with EasySpin (for
the computations of the triplet Hamiltonians for different applied resonant magnetic
fields directions, with respect to the D-tensor axis), we find that Ntrf)lé?ex) ~ 10° — 10°
as before. We emphasize that the above sensitivity analysis is intended to give order

of magnitude estimates rather than “exact” numbers.

6.4.5 Excitation-wavelength dependence of the TR-EPR spectrum

Our calculations show that optical excitation within and outside (below) the
CT band give measurable TR-EPR signals of similar magnitudes, as observed in the

experiment of ref. 7. We now discuss the experimental observation that excitation
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in the CT band leads to TR-EPR spectra whose shapes do not change for different
excitation wavelengths, while excitation below the CT band, leads to TR-EPR spectra
whose shapes differ for each excitation wavelength.

Our computations for optical excitation (section 6.4.1) reveal that photoexcita-
tion below the CT band populates the 77 manifold because the other triplet manifolds
have vertical energies higher than the experimental excitation range (wavelengths 630
nm to 680 nm or energies 1.82 eV to 1.97 eV in figure 6.2). Even inside the CT band, op-
tical excitation for excitation wavelengths below the CT band maximum (wavelengths
530 nm to 580 nm or energies 2.14 eV - 2.34 eV in figure 6.2), populates again the
T, manifold since the S5°¢ — T. ggc vertical excitation energy lies at higher energy
values (minimum vertical excitation energy of T manifold at 2.65 eV). For excitation
wavelengths above the CT band maximum (wavelengths 430 nm - 480 nm or energies
2.58 €V - 2.89 €V in figure 6.2) the 75 manifold is energetically accessible and can be
populated. These observations suggest that for the optical excitation energy range of
1.82 eV - 2.34 eV the T is excited with successively higher kinetic energies. We propose
that the successively higher kinetic energies imparted on the molecule within the T}
PES increase the conformational disorder on the time scale of the EPR experiment be-
cause the imparted kinetic energy is large enough to overcome potential energy barriers
of the Ty PES (as shown schematically in figure 6.11). The increase in disorder causes
a wavelength dependence of the TR-EPR spectra that is reflected in the widening of
the experimentally fitted Lorentzian widths with decreasing wavelength#® (as shown
in table 6.1).

To check the kinetic energy hypothesis we computed cross sections of the PES of
the 77 manifold along the torsional angles ¢; and 65 (see figure 6.6) in order to examine
the energy barrier for the conformational transitions between minimum energy PES
geometries (see figure 6.12). Our computations show that the energy barrier in the T}
manifold for the conformational transition from the anti_ 2 geometry to the anti-syn_2
geometry is 1.71 eV above the ground-state energy of the anti_2 conformation. Simi-
larly, the energy barrier in the 77 manifold for the conformational transition from the
anti_2 to the syn-anti_ 2 conformation is about 1.83 eV above the ground-state energy
of the anti_2 conformation. Both values are smaller than the experimental optical ex-
citation energy (1.82 eV - 2.34 eV). These results suggest that optical excitation below
the CT band, which populates the T} manifold PES with very high vibrational kinetic
energy, may enable transitions between different minimum-energy conformations of the
PES. Similar computations were performed for the other geometric conformations and
the conclusions are similar (for further information see section 6.9.2).

We computed the ZFS parameters for the 7T} manifold for each of the above-
mentioned minimum energy conformations (table 6.15 in section 6.12). The purpose
was to test the quality of the computed T7 wavefunction for the different minimum en-

ergy conformations and to gauge whether the proposed kinetic-energy-induced disorder
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gives the same scatter in ZFS parameters as a function of wavelength as observed in
experiment. We used the UNO-B3LYP %, as well as the distributed point dipole (DPD)

model as proposed by Guigliarelli et. al.'*. In the DPD model, the matrix elements

(K,L = z,y,2) of the D matrix are given by!3!

2 2 2
g g amb pab [ Ok RAp — 3Rap kRaB,L
Dypyr =2 1 pip 6.28
rr 85(28—1);; A4 B ( RS, (6.28)

where ay is the fine structure constant (~1/137 in atomic units) and S is the spin.
Rap is the distance between the Ath and Bth atoms and Rap k() is the K(L)-th
coordinate distance between A and B atoms. ngzg) = D peam P — Pfju is the
“gross” spin population on atom A(B). The D values computed with UNO-B3LYP
are underestimated compared to the experimental ones (~40% deviation). However,
this is expected since DFT-computed EPR parameters (and especially the ratio £/D)
are known to deviate from the experiment in extended - conjugated systems. 3159151
On the other hand, the D values computed using the semiempirical DPD model, are
surprisingly much closer to the respective experimental values (~ 2% — 8% deviation).
This is may be due to the fact that we used spin densities with Slater-type basis sets
for the atomic orbitals (rather than Gaussian-type of UNO-B3LYP). For example, the
ratio between the experimental D values derived for the different excitation wavelengths
below the CT band (630 nm - 680 nm) is about 0.96-0.98. The ratio between the
calculated D values for the different geometric conformations are of the same order
as the experimental ones. Both computational methods give approximately the same
scatter in D values as a function of conformation as that observed in experiment (AD
= 25-50 MHz) but overestimate the E scatter.

In ref. 7 the TR-EPR spectra were fitted without D and E strains. The fitted
Lorentzian lineshape (of absorption and emission) was shown to grow with increasing
wavelength (see table 6.1). We claim that this increase of width could be re-interpreted
as an increase in conformational disorder. We can refit the experimental spectra given
all of the parameters derived in table 6.1, but with a fixed Lorentzian width, (value
1.54 mT at the lowest excitation energy of table 6.1, Ay, = 680 nm), and wavelength
dependent D and F strains (dD and dE) which reflect static disorder. Our results
show that the D and E strains increase with decreasing wavelength (e.g., setting at
Away = 680 nm, dD = 0, dE =0; Ayay = 650 nm, dD = 40 MHz , dE =15 MHz; Ay =
630 nm, dD = 50 MHz , dE = 20 MHz; see section 6.12). This result is consistent with
a rise in static disorder with increasing kinetic energy imparted on the 7} manifold.
We cannot interpret, however, the independence of the TR-EPR spectra on wavelength
for excitation at the highest energies within the CT band. The 75 excited state PES is
very difficult to predict because as a function of conformation, the excited state cannot

be always described by a single determinant wavefunction.
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Figure 6.12: PES of the 77 manifold along the torsional angles 6; (above) and 62 (below)
computed at TDA/BHandHLYP/TZ2P level of theory for anti_2 geometric conformation.
The two gray-dashed lines refer to the lowest and maximum experimental wavelengths used
for excitation below the CT band (1.82 eV - 1.97 V). Above: The barrier refers to a thiophene
unit rotation that brings the Cbz-TBT molecule from anti_-2 to anti-syn_2 (see figure 6.7).
At 61 = 0° the energy refers to the minimum energy conformation of the 77 manifold of
anti_2. Below: The barrier refers to the energy required for a BT-thiophene unit rotation
that brings the Cbz-TBT molecule from anti-2 to syn-anti-2 (see figure 6.7). At 6; = 0°
the energy refers to the minimum energy conformation of the 77 manifold of anti_2. In the
picture of the molecule, the Cbz unit is excluded for simplicity.
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6.5 Conclusions

The TR-EPR experiment in ref. 7 showed that the TR-EPR spectra of Chz-
TBT obtained from optical excitation within the CT band of the molecule are of
similar intensity as the TR-EPR spectra obtained from optical excitation below the
CT band. This result is quite surprising and counter-intuitive given that: 1) the opti-
cal absorbance of the molecule below the CT band is practically zero as compared to
the absorbance within the CT band, 2) the molecule is organic with very weak SOC
interactions. Using detailed computations and modelling we have explained that the
observation is due to an initial-state preparation effect and to very low ISC rates. Be-
cause of the weak spin-orbit mixing of singlet and triplet states, upon photoexcitation
within and below the CT band a small number of molecules in the ensemble is excited
directly from the ground state to states that are predominantly of triplet character. It
turns out that these initial triplet populations created for the two optical-excitation
regions are similar and detectable by EPR. Further, as a function of time after optical
excitation, these initial triplet populations are not substantially perturbed on the time
scale of the TR-EPR experiment because the singlet to triplet ISC rates are very slow.
Thus, the TR-EPR spectra from the different optical excitation regions are of similar
magnitudes as observed in the experiment. This mechanism can be tested by measur-
ing cw-EPR spectra of the ground state ensemble.

Another observation in ref. 7 is that the shapes of the TR-EPR spectra obtained
for excitation within the CT band are independent of the optical excitation wavelength,
whereas the shapes of the TR-EPR spectra obtained for excitation below the C'T band
are wavelength-dependent. Excitation below the CT band accesses only the lowest
triplet state but at a very high vibrational energy. Thus, increasing the excitation en-
ergy below the CT region, increases the vibrational kinetic energy of the lowest triplet
and may lead to conformational disorder and additional inhomogeneous broadening of
the spectra. This is a plausibility argument and we cannot offer an explanation for the
wavelength-independence of the shapes for excitation within the CT band. At these
energies the second triplet state becomes accessible.

Initial-state preparation effects analogous to the ones described in this work
may also occur in molecular electron transfer, where the observed long-time transfer
dynamics is determined by a fast channel with a small initial population that out-
competes a slower transfer channel with large initial population.!%>1%3 For the case of
TR-EPR spectroscopy, such effects are likely to occur in systems where the spin-orbit
interactions are sufficiently large to initiate a TR-EPR-measurable triplet population
upon photoexcitation, but not large enough to induce fast ISC rates that would perturb

the initial triplet populations on the time scale of the experiment.
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Supplementary material

6.6 Computation of the lowest singlet and triplet excited states
of Cbz-TBT molecule

The aim is to compute the lowest singlet-singlet (.S1) and singlet-triplet excita-
tions (77, To manifolds) of Cbz-TBT molecule using TD-DFT theory. Our main purpose
is to select a reliable TD-DFT method to accurately describe the excited state ener-
gies and wavefunction properties. Therefore, we performed numerical computations to
examine the nature of the computed transitions e.g., valence or change transfer (CT),

in order to select the appropriate method to properly describe the excitations. 154155

6.6.1 Calculation of the metric of CT molecular excitations and overcom-

ing triplet instability problems in TD-DFT

To examine the CT character of the lowest-lying exited states of Chz-TBT
molecule, we computed the metric of the electronic excited states. This includes the
calculation of: (i) the A-index developed by D. Tozer, which is based on the degree of
spatial overlap between the occupied and virtual orbitals involved in an excitation, 2"
(ii) the Ar-index developed by C. Adamo which is based on the measure of the aver-

age hole-electron distance upon excitation.?! The combination of these two diagnostic

PBE PBEO CAMY-B3LYP

o o o

A MAr(A) A Ar(A) A Ar(A)
S 0.66 276 066 285 065  2.99
T, 0.67 288 067 298 064  3.08
T, 018 1027 061 170 062  0.75

Table 6.2: TD-DFT/TDA diagnostic indexes A and Ar computed using three different
methods, for the Cbz-TBT molecule in its anti_2 conformation.
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PBE PBEO CAMY-B3LYP

energy (eV)  contribution energy (eV)  contribution energy (eV)  contribution
S1 1.82 H— L 83% 2.45 H—L 96% 2.76 H—L 92%
T 1.33 H— L 99% 1.67 H—L 89% 1.84 H—L 80%
H-2—L 11%
b 1.89 H-1-L+1 100% 2.64 H-2—1 46% 2.84 H—L+1 40%
H—-L+1 33% H-2—L 25%

Table 6.3: TD-DFT/TDA vertical excitation energies in eV and the relative molecular
orbital contributions computed using three different methods, for the Chbz-TBT molecule in
its anti_2 conformation (H refers to HOMO and L refers to LUMO).

quantities determines the type of the transition (e.g., local or CT) and their values are
associated with the choice of an appropriate functional.

The diagnostic test suggests that for 0.1 < A < 0.8 given by Generalized Gradi-
ent approximation (GGA) or Global Hybrids (GH) or Range-separated (RS) methods,
and Ar > 2.0A given by GH or RS calculation (or Ar > 1.5A given by GGA) the use
of RS or GH with high (>33%) Hartree Fock (HF) exchange percentage is mandatory.
Local excitations with 0.3 < A < 0.8 given by GH or RS (or 0.4 < A < 0.8 given by
GGA) and Ar < 2.0A given by GH/RS calculation (or Ar< 1.5A given by GGA) can
be successfully described by GGA and GH (with low HF percentage ) methods. 121156

The diagnostic tool A and Ar, is also readily generalized to triplet states.!®”
However, in the case of triplet excitations, sometimes the TD-DFT inaccuracies are
also related to triplet instability problems.!®®1% It has been shown that application of
the Tamm-Dancoff approximation (TDA)% dramatically reduces these errors, espe-
cially in the case of high-overlap excitations, and further improves the average accuracy
of low-overlap excitations!®°. Therefore, depending on the type of the excitation, only
a combination between appropriate exact-exchange (low for local and high for CT ex-
citations) and Tamm-Dancoff approach guarantees the success of TD-DFT method for
calculating triplet excitations.

We used the Amsterdam Density Functional (ADF) program package (version
2018) where the diagnostic indices A and Ar are implemented in®!. All DFT and TD-
DFT calculations have been carried out with the anti_2 molecular conformation, as the
most probable geometry (see figure 6.7). Three particular functionals have been se-
lected for the calculation of the excited-state properties and the indices,**® which span
over different exchange-correlation (xc) potentials and include a GGA (PBE),!61:162
a GH (PBE0)'%® and a RS (CAMY-B3LYP).!'2!19 PBE contains no exact exchange,
PBEO contains 25% exact exchange and CAMY-B3LP contains 19% at small inter-
electronic distances increasing up to 65% at large distance. The functionals were used
with the TZ2P basic set % in combination with the TDA approximation. The ground-

state geometry was optimized using the same functionals as the calculation of the
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electronic transitions. SOC interactions are not included in the computations of the
excited states because in organic molecules such contributions are relatively small, and
the results are not significantly affected. The long alkyl chains attached to the nitro-
gen atom of carbazole (Cbz) moiety have been replaced by a hydrogen atom to reduce
computational cost.

Table 6.2 shows the diagnostic indices A and Ar for the excitations. Results
indicate that for the first singlet excitation and the first triplet excited state manifold,
the A-index is greater than 0.6 and the Ar-index is greater than 2A. According to the
diagnostic tool, these types of excitations are CT and a RS functional or a GH with
high HF percentage should be used for their description. The relative excited-state
energies and the main molecular orbital contributions for each excitation are shown in
table 6.3. The first singlet excited state is mainly attributed to the transition H—L (H
for HOMO and L for LUMO). For the first triplet excitation manifold, the contribution
to molecular orbital transitions calculated with PBE and PBEQ is very similar. For
both functionals the excitation is characterized by the same main occupied-to-virtual
(H—L) transition with comparable percentages. On the other hand, in the case of
CAMY-B3LYP method, the first triplet excitation is attributed to two different main
contributions of molecular orbital transitions, H—L and H-2—L.

In the case of the second triplet excited state manifold, the values of the diag-
nostic indices and the orbital contributions given by PBE, are different to those given
by PBEO and CAMY-B3LYP. This is because PBE predicts different absolute positions
and ordering of the triplet excited states compared to the other two functionals which
correct and improve them. The large A value in combination with the small Ar value
predicted by PBEO and CAMY-B3LYP methods, show that the second triplet excita-
tion is local. Therefore, it is not necessary to use RS functionals for its description.

Figure 6.13 shows the dominant orbital transitions for each excitation calculated
with CAMY-B3LYP method. The orbitals computed with the other two methods give
exactly the same results as CAMY-B3LYP. The first singlet excitation Sy — S; is 92%
attributed to the transition H—L, where both H and L orbitals are of m-character.
The electron density of the H orbital is delocalized over the backbone (excluding the
“external” thiadiazole ring - mainly no charge density on the sulfur atom), while the
electron density of L orbital is localized on the “inner part” of the molecule, namely
the thiadiazole ring. Much less charge density is located on the thiophenes. Therefore,
the Sp — 57 transition implies some redistribution of electron density from the con-
jugated backbone of the molecule toward the central benzothiadiazole (BT) unit (CT
character).

The above observations are the same for the first triplet excited state manifold.
On the other hand, for the second triplet excited state manifold the major contribution
stems from the transition H—L+1 where the electron density is delocalized approx-

imately over the whole backbone with a very small redistribution of charge density
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Figure 6.13: Singlet-singlet and singlet-triplet vertical excitation energies of Cbz-TBT in
its anti_2 conformation calculated with CAMY-B3LYP method. The percentage value on the
right-hand side of each excitation is the contribution to the excitation.

towards the thiophene ring on BT moiety. This is the reason why the A-parameter
takes values greater than the CT threshold of 0.3/0.4 and the Ar-index does not exceed
the value of 1.5/ 2.0A that describes local excitations. Hence, the second triplet excited
state manifold will be properly described by conventional DFT functionals with low

HF percentage.

6.6.2 The choice of the appropriate functional

The results in subsection 6.6.1 indicate that for the description of the lowest-
lying singlet and triplet excitations (S; and 77 manifold) the usage of RS functionals or
GH with high HF exchange is required. In this section, we tried to examine the perfor-
mance of different GH and RS methods for the computation of the excitation energies of
Cbz-TBT molecule. We chose two GH with high HF exchange: M062X 1011 (54%) and
BHandHLYP'%(50%), and five long-range corrected (LRC) hybrid functionals: LCY-
BLYP, 1314 wB97 15 wB97X, 115 wB97X-D 16118 and CAMY-B3LYP in combination
with the TZ2P basis set and TDA approximation. SOC was included perturbatively in
TD-DFT/TDA calculations of the excitation energies (pSOC-TDA).!% The relativistic
exited-state computations were performed on the optimized B3LYP 92 /TZ2P ground
state geometry of anti_2 molecular conformation.

The singlet and triplet electronic states calculated with the different methods
are shown in figure 6.14. The results suggest that the first triplet excited state manifold
{|TP2°)} has very low energy compared to the first singlet |S7°¢) excited state and the
second triplet excited state manifold {|T5¢¢)}, regardless of the method. In addition,
most of the functionals show that the {|75¢“)} manifold lies below the [ST). The
opposite is shown by the CAMY-B3LYP method.
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In general, the agreement between the different methods is obvious if one consid-
ers the energy differences between the singlet and triplet energies. All methods result in
approximately the same energy gap values between [SFOC) and |TPgC) (AEslshols’?c)
and between |[SPOC) and |T5¢C) (AES§oc7T§gc). The molecular orbital contributions
to the excited states, given by each method are similar, as shown in table 6.4. What
changes is the absolute vertical excitation energies for singlet-singlet and singlet-triplet
transitions. For example, LRC methods are known to overestimate the excitation en-
ergies of CT states especially when the default value of the range-separation parameter
is used.!%* Namely, compared to the experimental absorption spectrum, LCY-BLYP,
wB97, wB97X and wB97X-D methods overestimate the energy of the lowest absorption
band (experimentally centered at 2.52 eV7) in contrast to M062X, BHandHLYP and
CAMY-B3LYP.

CAMY-B3LYP reproduces well the experimental results for the first absorption
band, however, it is the only method which predicts that the second triplet excited state
manifold lies above the first singlet one (AEsfoc’TQS‘(g)C: - 0.07 eV). This indicates that
CAMY-B3LYP may not be a suitable functional to accurately describe our system.
In addition, LCY-BLYP, wB97, wB97X and wB97X-D functionals give blue-shifted
absorption energies but this is overcomed if the range-separation parameter is opti-
mized. However, the experimental absorption spectrum is well reproduced by M06-2X
and BHandHLYP methods, hence, it is not necessary to use LRC functionals and fur-
ther optimize their parameters. Since BHandHLYP method is faster than M06-2X, we

chose BHandHLYP to perform our computations, to further reduce computational cost.

Summary: Our results in subsection 6.6.1 prove that RS functionals or GH with
high HF exchange are required for the description of the excited state energies and
wavefunction properties of the lowest-lying singlet-singlet and singlet-triplet transi-
tions of the Cbz-TBT molecule. In subsection 6.6.2 we proved the consistency between
the transition energies computed using different RS and GH (large HF%) functionals.
The BHandHLYP method accurately reproduces the experimental spectrum compared
to the other methods.
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MO06-2X BHandHLYP LCY-BLYP wB97 wB97X wB97X-D CAMY-B3LYP

SINGLETS

Sh 2.76 2.76 3.14 3.19 3.10 291 2.67

(H— L 91%) (H— L 93%) (H— L 82%) (H— L 82%) (H— L 84%) (H— L 87%) (H— L 82%)

S 3.82 3.83 4.26 4.30 4.20 4.00 3.69

Ss 3.98 3.97 4.56 4.53 4.44 4.24 3.83

Sy 3.99 4.01 4.68 4.68 4.59 4.30 3.84
TRIPLETS

T 1.56 1.65 1.85 1.94 1.89 1.83 1.74

(H— L 73% (H— L 75% (H— L 66% (H— L 67% (H— L 69% (H— L 74% (H— L 81%
H-2— L 11%) H-2— L 11%) H-2— L 15%) H-2— L 15%) H-2— L 14%) H-2— L 13%) H-2— L 10%)

T, 2.50 2.65 2.82 2.91 2.87 2.82 2.73
(H— L+138% (H— L+140% (H— L+137% (H— L+137% (H— L+139% (H— L+141% (H— L+142%
H-2— L 20%) H-2— L22%) H-2— L 15%) H-2— L 16%) H-2— L17%) H-2— L 19%) H-2— L 26%)
T; 2.96 3.12 3.25 3.30 3.29 3.29 3.20
Ty 3.10 3.23 3.33 3.42 3.37 3.32 3.27

Table 6.4: pSOC-TDA vertical excitation energies in eV computed using different methods
for the Cbz-TBT molecule in its anti_2 conformation. The molecular orbital contributions
to the excitations, are shown for the singlet and triplet excited states of interest (H refers to
HOMO and L refers to LUMO).

w
o w
1 1

Transition Energy (eV)
o
|

ST ST ST ST ST ST ST

Figure 6.14: Singlet-singlet and singlet-triplet vertical excitation energies of Cbz-TBT in
its anti_2 conformation calculated using different GH and RS methods. The electronic state

at zero-energy is the ground state |S59C). The |STOC) state is colored in red, the {|TIS?C)}

manifold is colored in blue and the {|7. ;?Cﬂ manifold is colored in green. Left column of

each method refers to the singlet states (S) and right column to the triplet states (T).
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6.6.3 Excited-state computations performed with CIS

d124

The configuration interaction with single-excitations (CIS) metho was used

to compute the lowest singlet-singlet (]S5°¢)) and singlet-triplet ({|779°)}) excita-
tions of the Chz-TBT molecule in its anti_2 conformation. We used the ORCA program
package'?? and the def2-TZVP basis set,'?* and the SOC effects were included in the
computations. The figure below (figure 6.15), show the excited-state energies computed
with SOC-CIS/def2-TZVP and pSOC-TDA/BHandHLYP /TZ2P methods. The abso-
lute triplet energies given by these different methods are close, but the singlet states
computed with CIS are blue shifted compared to those computed with TDA. The en-
ergy difference between the two lowest triplet excited states (77 and T5) computed with
the TDA and CIS is approximately the same (~ 1 eV).

5.50 CIS ; BH&HLYP
5.25 !

5.00 4.99___
475 ] 492
4.50 4
4.25 | >
4.00 | o7 =
] : 3.97

S 3.75 g 383

L 3.50 ;

2 3.25 _ ; _ 323
5 3.00- T s e

1 —289 |
0 2.75 ! 276—

2.50 ——246
2.25 ]
2.00
1.75
1.50 4 — 150
1.25
1.00

4.38—

—2.65

—1.65

Figure 6.15: Singlet-singlet and singlet-triplet vertical excitation energies of Cbz-
TBT in its anti2 conformation calculated using SOC-CIS/def2-TZVP and pSOC-
TDA/BHandHLYP/TZ2P methods. Left column for each method refers to the singlet states
(S) and right column to the triplet states (T).
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6.7 Spin-Orbit Coupling effects

6.7.1 The SOC Hamiltonian in the framework of the zeroth-order approx-

imation

Within the zeroth-order regular approximation (ZORA), the relativistic Hamil-

tonian is written as!06

2

2c2 — VJ

(6.29)

Be

H O =V 4 G

where V' is the static Coulomb potential provided by the nuclei (Kohn-Sham potential),
& is the Pauli spin matrix vector, c is the speed of light and ﬁ is the linear momentum

operator. This equation may be further developed to yield >

2 2 P~ )
52 P + (2 _ V)20 (VV xp). (6.30)

HZORA 7 4

The first two terms in the right-hand side of eq. 6.30 define the zeroth-order regular
approximate scalar relativistic (SR) equation (ZORA SR)!%7

2

2 s C 2,
HIORASR =Vt po—0, (6.31)

while the last term in eq. 6.30 is the spin-orbit term (ZORA SOC) 0

2
HZORASOC — &z (VV x p). 6.32

(202 o V)2 ( p) ( )

In the present calculations, the “spin-pure” singlet and triplet states (|.S,,) and {|7x m.)})
are calculated by means of the ZORA Hamiltonian in its scalar approach (eq. 6.31)
and SOC is treated as a perturbation based on the SR states (pSOC) (eq. 6.32) to
compute the “spin-mixed” excited states (]S;°¢) and |T;2¢)) as linear combinations

of the pure states. %9

6.7.2 SOC integrals between singlet-triplet and triplet-triplet states for

the different geometric conformations of the Cbz-TBT molecule

To calculate the SOC matrix elements between pure singlet |S,) and triplet
| Ty, ) states ((S,| H3OC| Ty m.)), we performed relativistic TD-DFT calculations (pSOC)
with the ADF program, employing the BHandHLYP functional with the TZ2P basis
set, and using the TDA approximation with no frozen cores and without symmetry
constraints. Table 6.5 shows the SOC constants between |S1), |T1m,), |Tom,) with
mg =0, 1.
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anti_2 anti_1

(58%) (15%)
1/J (I|H5°°)]) 1/J (I|H5°°)])
Sy /Ta (6.477) x 1077 Sy /Ta (5.56i) x 1077
Sy /T2 1 (-1.93F2.21i) x 1076 Sy /Th 44 (—1.77 F2.08i) x 1076
Sy/Tho (3.62i) x 1077 Sy/Tho (—2.92i) x 1077
S1/Th 11 (—0.25F1.097) x 1076 Sy /T 41 (0.34 +1.02) x 1076
Too/T10 0.00 To0/T10 0.00
T2,O/T1,:I:1 (:Fl.22 + 1.39i) X 10_5 TQ,O/Tl,:I:l (:|:0.07 — 2.91i) X 10_6
T27i1/T170 (:|:122 + 1392) x 107° TQ,:EI/TLO (:F007 — 2912) x 1076
Toa1/Ti 41 (£7.214) x 1076 Toa1/Ti 41 (¥1.034) x 1076
Tot1/T1+1 0.00 Tot1/T1+1 0.00

syn-anti_2 anti-syn_1

(13%) (12%)
I1/J (I|H5°°]7) 1/J (I|H5°°)7)
Sy /Ta (4.667) x 1076 Sy /Ta (—1.954) x 1079
Sy /T2 41 (—3.65F3.26i) x 1076 S /15 44 (5.43 +2.717) x 1076
Sy/Th (5.83i) x 1077 Sy /T (7.16i) x 1077
Sy /Ty +1 (—1.51F0.85i) x 1076 Sy /T 41 (—1.73+£0.19i) x 1076
To0/T10 0.00 To0/T10 0.00
Too/T1 41 (£2.41 — 1.70i) x 107* Ty 0/T1 41 (£6.76 — 3.317) x 107°
Ty+1/T1p (F2.41 — 1.70i) x 107 Th 41/ (¥6.76 — 3.317) x 107°
Ty 41/T1 41 (¥1.20i) x 1074 Ty 41/T1 41 (F2.74i) x 107°
Toa1/T1+1 0.00 Tox1/T1+1 0.00

anti-syn_2 syn_2

(13%) (12%)
1/J (11H5°C1T) 1/J (11H5°CT)
S/ Ty 0 (—7.813) x 1077 S1/Ts 0 (1.144) x 1076
Sy /T2 1 (3.63 F3.41i) x 1077 Sy /Thr 41 (3.49 £ 3.27i) x 1076
S/ (—3.53i) x 1077 Sy /T (2.17i) x 1077
S1/T1 41 (—0.24F3.151) x 1077 Sy /T1 41 (—4.89 F8.117) x 1077
To0/T10 0.00 T20/T10 0.00
To0/Ti 41 (F9.35—2.317) x 1077 Tho/Th 41 (¥2.37+1.637) x 1074
Tox1/Th 0 (£9.35 - 2.318) x 1077 Ty 41/Tip (£2.37 4 1.63i) x 10~*
Ty 41/T1 +1 (£9.77i) x 1077 Ty 41/T1 +1 (£1.10i) x 1074
Tot1/T1+1 0.00 Tot1/T1+1 0.00

Table 6.5: SOC constants between singlet and triplet excited states in eV, computed at
pSOC-TDA /BHandHLYP /TZ2P level of theory for the most probable geometric conforma-
tions. The coupling between |S;) and |17 ,,,) and between [S;) and |75 ,,,) was computed
at the minimum-energy conformation of S; and the coupling between |11 ,,,) and [T )
computed at the minimum-energy conformation of 75.
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6.8 Optical properties of the Cbz-TBT molecule for the dif-

ferent geometric conformations

6.8.1 Energy level diagram with the lowest singlet and triplet excitations
of the Cbz-TBT molecule computed for the different geometric con-

formations

Figure 6.16 shows the energy level diagram with the singlet excited states |S5°¢)
and the triplet excited state manifolds {|7;¢)} (k = 1,2) of the molecule for the
different geometric conformations, computed at the pPSOC-TDA /BHandHLYP/TZ2P
level of theory. The similarities between the energy level diagrams computed for each

geometric conformation are obvious.

Transition Energy (eV)
= N N N N N w
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Figure 6.16: Energy level diagram of the Cbz-TBT molecule computed for different geo-
metric conformations at pSOC-TDA /BHandHLYP/TZ2P level of theory. The |S7OC) state is
colored in red, the {\Tlsgc>} manifold is colored in blue and the {|T257?C} manifold is colored
in green. Left column of each geometric conformation refers to the singlet states (S) and
right column to the triplet states (T).
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6.8.2 Derivation of the molar extinction coefficient equation

The molar extinction coefficient is related to the oscillator strength of a transi-
tion via eq. 6.33, where N, is the Avogadro constant, e is the electron charge, m, is
the electron mass, ¢ is the speed of light, ¢y is the vacuum permittivity and 7 is the
Planck constant. o is the standard deviation of the Gaussian distribution. AFE; is the
excitation energy (of the transition S§°¢ — J) with f; the corresponding oscillator
strength. To simulate the entire spectra, the contributions from all the transitions are

added according to3137

E AEJ)

N e 1
c(B) = -~ _Dach ZfﬁQ v

2In(10) meceog ov/27 (6.33)

In most computational program packages, the full width at half maximum (FWHM)
broadening is set, instead of the standard deviation o (FWHM = 2,/2in(2) o). There-

fore, 6.33 reduces to

T Nae*h_ [In(2) 1 ,2.77(E*7AEJ>2
E) = 2 Fw 34
= (E) 2In(10) meceg m FWHM Z Joe (6:34)
In SI units 6.34 yields
4.32 x 107 Lmol tem ™! Ji 277 E— AEJ)
— FWHM
with FWHM and FE (and AEj) in Joule (j). Equivalently,
2.18 x 108 Lmol 'em 2 —277( Ak )
= 'WHM
with FWHM and E (and AE;) in wavenumbers (cm™!). Equivalently,
2.70 x 10*Lmol tem~teV —2 77<E*AEJ)2
= : FWHM
£ (E) I > fre (6.37)

with FWHM and E (and AE)) in eV.
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6.8.3 Absorption spectrum of the Cbz-TBT molecule computed for the

different geometries

Figure 6.17 shows the optical spectrum calculated with
pSOC-TDA/BHandHLYP/TZ2P method for each geometric conformation. For all the
geometric conformations, the first absorption band (centered at ~ 2.8 eV) is attributed
to the transition S5°¢ — SPOC (or similarly Sy — S;) which is predominantly assigned
to H—L transition (H for HOMO and L for LUMO).
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Figure 6.17: Absorption spectrum of the different Cbz-TBT molecular conforma-
tions calculated at the optimized B3LYP/TZ2P ground-state geometries using pSOC-
TDA/BHandHLYP/TZ2P level of theory (based on a 0.30 eV FWHM Gaussian broaden-
ing of the vertical transition energies and associated oscillator strength). On the inset, the
frontier orbitals H (HOMO) and L (LUMO) are shown for each conformation. (a) anti_2 (b)
anti_1 (c) syn-anti-2 (d) anti-syn_1 (e) anti-syn-2 (f) syn_2.
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6.9 Geometric structures of the Cbz-TBT molecule

6.9.1 Geometric structures of ground and excited states of Cbz-TBT

Table 6.6 shows the torsional angles (01,65, 05) of the optimized ground state,
first singlet excited state (S7) and first and second triplet excited state manifolds (7}
and T3) for all the geometric conformations (see figure 6.6). The ground state molecular
structures were optimized using the ADF program at the B3LYP!%2/TZ2P level of
theory. The results show that the structures are not strictly planar, the torsional angles
between the thiophenes and BT moiety in TBT unit (6, 6) was found in the range of
0° —20° while the torsional angles between the TB'T moiety and the adjacent Cbz unit
(A3) is about 24° — 27° (positive or negative). This is consistent with previous results
that report dihedral angles between TBT and carbazole moiety up to 26°. 8135165

The excited state molecular structures (Si,77,7,) were optimized using the
TDA/BHandHLYP/TZ2P method. Results show that in the first singlet excited state
and the first triplet excited state manifolds, the dihedral angles in TBT unit (6, 62)
as well as the dihedral angle between TBT and the adjacent Cbz moiety (65) are close
to zero, in agreement with the literature. %133 The second triplet excited state is not

strictly planar and different angles between 0° and 25° are found.

anti_2 anti_l syn-anti.2 syn-anti_l anti-syn_.2 syn_2

(58%) (15%)  (13%) (12%) 1%)  (1%)

So 61(°) 356 353 353 188 195 170
0,(°) 10 356 180 358 4 190
65(°) 336 205 26 204 27 27

Sy 6:() 0 359 1 180 179 180
62(°) 0 0 180 1 360 180
05(°) 1 180 1 185 0 1

. 6,) 0 360 360 181 180 180
6:(°) 0 360 179 0 0 180
05(°) 17 186 12 196 17 15

T, 6,°) 0 359 359 182 179 181
62(°) 2 1 152 11 0 153
65(°) 0 180 0 181 0 0

Table 6.6: Torsional angles 01, 05 and 03 for the optimized ground state, first singlet excited
state and first triplet and second triplet excited state manifolds of all Cbz-TBT molecular
conformations. The ground state was optimized at the B3LYP/TZ2P level of theory and the
excited states were optimized at the TDA/BHandHLYP/TZ2P level.
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6.9.2 Energy barrier for the conformational transitions between minimum

energy PES of the 7} manifold along the torsional angles ¢, and 6.

We computed the energy barrier for the conformational transitions between
minimum energy 77 geometries, to check the hypothesis that upon photoexcitation
below the CT band, the kinetic energy is relatively large, so the excited state molecule
changes its conformation through motion on the 7} PES. The energy barrier was com-
puted along the torsional angles 6; and 0y (as defined in figure 6.6) with respect to
the ground state minimum energy of the initial geometric conformation as shown in
figure 6.18. We used the ADF program and the TDA/BHandHLYP/TZ2P level of
theory via geometry optimizations on the constrained values of 6; and 6, in the range
0" <6, < 180° (or equivalently 360° > 6, > 180° for some conformations) with
n = 1,2. All the different molecular conformations show that the one-dimensional T3
PES has a maximum at 6, = 80° —90° (and 6, = 260° — 270°) and two minima at
0, = 0° (360°),180° (n =1,2).

Table 6.7 shows the energy barrier for the conformational transition between
minimum energy 7 geometries. We conclude that the energy barriers are smaller than
the experimental optical excitation energy (1.82 eV — 2.34 eV), suggesting that upon
photoexcitation the first triplet manifold is populated with high vibrational kinetic
energy which enables conformational transitions between different geometric confor-

mations (see section 6.4.5).

Conformation Energy Barrier
From (A) To (B) (eV)
anti_2 (6,) anti-syn_2 1.71
anti_2 (6,) syn-anti_2 1.83
anti_1 (6,) anti-syn_1 1.70
syn-anti 2 (6,) syn_2 1.68

Table 6.7: Energy barrier in eV, in the first triplet excited state 77 along the torsional
angles ¢ and 62 (as shown in the brackets) computed at TDA-BHandHLYP-TZ2P level of
theory for the different geometric conformations.
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Figure 6.18: Schematic energy diagram for the conformational transitions between two
different geometries (A and B) in the 77 PES along the torsional angles 6, (n = 1,2).
05‘““ refers to the angle 6,, of the ground state minimum energy conformation (Sp) of the
initial geometry A. 07::1(’4) refers to the angle ,, of the minimum energy conformation of T}
excited state of the initial geometry A. 03:1(3) refers to the angle 6,, of the minimum energy
conformation of 77 excited state of the final geometry B. The energy barrier was computed
with respect to the ground state energy of the initial geometric conformation (A).
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6.10 Populations of the Cbz-TBT molecules in the sample

To estimate the number of molecules in the ground state and in the photoexcited
singlet and triplet excited state manifolds for each low-energy molecular conformation,
we used the relevant experimental parameters,” and computed parameters derived from

ab-initio computations.

6.10.1 Number of Cbz-TBT molecules in the ground state

In the experiment, the concentration of Cbz-TBT molecules used, was 10 mg/ml
and from those, about 150 ul were placed in the sample tube to perform the measure-
ments.” This indicates that for the Cbz-TBT molecule (465 g molecular mass), the
150 pl corresponds to 3.23x107% mol which means that in the ground state there are
approximately 1.94x10'® molecules in total.

For each conformation s, we estimated the fraction of molecules in E ground

Ps e&BT

state ensemble using Boltzmann equilibrium statistics given by, 7% = <5— where

P= Zj\le e i/K8T with N the total number of minimum energy conformations, KT

the thermal energy at room temperature (7' = 300 K), and £, the energy gap between
the lowest energy ground state conformation and conformation s. In table 6.8 the ab-
solute ground state total energies were computed by ab-initio using the ADF program,
where the ground state molecular structures were optimized at the B3LYP /TZ2P level
of theory, and the minimum geometries were subsequently used in single-point energy
calculations using BHandHLYP /TZ2P method.

Using the fraction of molecules in each conformation we estimated the number
of molecules in the ground state for each conformation (Ps) and the relative concen-
tration ¢ in molL~!. Table 6.8 shows the most probable geometries that are found in

the ensemble.

Conformation (s) Total Energy (eV) £ (%) P, Concentration (M)

anti_2 -64173.400 58 1.1x10'® 1.3x1072
anti_1 -64173.365 15 2.9x 107 3.2x1073
syn-anti-2 -64173.362 13 2.5x 1017 2.8%x1073
anti-syn_1 -64173.359 12 2.3x1017 2.6x1073
anti-syn_2 -64173.305 1 1.9x101¢ 2.2x1074
syn_2 -64173.282 1 1.9x101¢ 2.2x1074

Table 6.8: Total energy of the ground state geometries computed at the BHandHLYP-TZ2P
level of theory on the optimized B3LYP/TZVP minimum energy conformations, the fraction
of molecules in each conformation given by Boltzmann statistical mechanics at 7' = 300 K
(%), the number of molecules in each conformation in the ground state (P;) and the relative
concentration in M = molL~!.
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6.10.2 Calculation of the population transfer to the 77 manifold upon di-
rect photoexcitation below the CT band

To compute the absorption coefficient for the transition to the first triplet man-
ifold (asgoc_,Tigc(Esgoc_, Ti%c))’ we used the eq. 6.9 with the experimental value of
the optical path length [ = 3 mm7 and the relative concentration of molecules ¢ that we
have in each conformation (table 6.8). The molar extinction coefficient e S5O0 TS0C Was
evaluated using the relative oscillator strengths for the transitions S5°¢ — T E?C, com-
puted at pSOC-TDA/BHandHLYP /TZ2P level of the theory using the ADF program.
We used the equation

2.70 x 10*Lmol *em eV
E5300_, 75QC (EsgocH Ti(gc) = WM fsgocHTE(gc (6.38)

(e.g., see eq. 6.37) with broadening parameters FWHM = (0.1 — 0.5) eV. To compute
the number of molecules that populate the first triplet excited state manifold (PTlsoc)

we used the formula

Iy —agsoc_,psoc | Egsoc_, psoc
Prsoc = . X Z {1 —10 % v ( E e >} (6.39)

(e.g., eqs. 6.8 and 6.10) with Iy the experimental incident energy (Iy = 6.24x 10%) eV7,
¢ the speed of light and A, the excitation wavelength of the transition Sgoc — T ffgc
(we assumed that the £ energy levels of the first triplet excited state (TE?C) have the

same energy).

6.10.3 Calculation of the population transfer to the 75, manifold upon di-
rect photoexcitation inside the CT band

For the computation of the absorbance to the second triplet excited state man-
ifold at the excitation energy of the maximum of the CT band (Esgoc _}S§oc) as well as
at the excitation energy of the triplet manifold (Esgoc _>T2s’<£>c), we used the equations
6.11 and 6.12 with [ = 3 mm” (the experimental value of the optical path length) and
¢ the relative concentration of molecules that we have in each conformation (see table
6.8). The molar extinction coefficient at the energy E, egsoc —>T§20(E) (where F de-
notes Egsoc_,gsoc and Egsoc _>Tzs,(€)c) was evaluated using the relative oscillator strengths
for the transitions S3°¢ — T5¢“computed at pSOC-TDA/BHandHLYP /TZ2P level
of the theory using the ADF program. We used the equation

2.70 x 10*Lmol 'em—teV

E5800 7590 (Esgoc_>3§oc> = FWIM fS§OC—>T25(€)C X
ESSOC*)SSOC - AESSOCHTSOC 2 (640)
exp | —2.77 2 : 2 28
FWHM
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SOC_,7SOC FEsoc_,psoc (eV Prsoc
Sp —>T15 S —>T1§ T3

anti_2 3.65x10~10

(58%) 4.70x10710 1.65 (1.0 — 4.8)x 1010
4.59%1079

anti_1 5.40x107?

(15%) 2.33x10710 1.66 (0.3 — 1.3)x 1010
3.67x107 1!

syn-anti_2 6.77x107°

(13%) 2.41x10712 1.62 (0.3 — 1.4)x 1010
1.84x107 1

anti-syn_1 7.67x10710

(12%) 1.58x10710 1.63 (0.3 — 1.2)x 1010
5.83x107?

anti-syn_2 6.49x10~10

(1%) 3.11x107° 1.67 (1.8 — 8.9)x 108
2.14x107°

syn_2 8.96x10~10

(1%) 4.62x107Y 1.63 (1.9 - 9.3)x10®
5.65x10710

Table 6.9: Oscillator strength for the transition S50¢ — TE?C (fsgocﬁTlsgc) and the
relative excitation energies of the direct photo-excitation from Sgoc to Tlsgc (E sgoc HTls?c)

for the different conformations, both computed at pSOC-TDA/BHandHLYP /TZ2P level of
theory. The last column refers to the population of the first triplet excited state manifold
(the range arising from FWHM = 0.1 eV - 0.5 V).

for the extinction coefficient computed at the energy of the S5°¢ — Sfoc excitation,

and equation

2.70 x 10*Lmol 'em~'eV
€5500 7590 <E5§oc_>Tgs7(€)c> = WM fsgoc_)Ticé_)c (6.41)

for the extinction coefficient computed at the energy of the S5°¢ — T S?C excitation.
We used broadening parameters FWHM = (0.1 — 0.5) eV. To compute the number of
molecules that populate the second triplet excited state manifold (PTzsoc) we used the

formula,

I —a E
Pysoc(E) = # <y {1 EETRS R )} (6.42)
wav é.
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fsgooosrgoe  Eggocygsoc (eV)  Eggoo_gsoc (eV)  Prsoc(Egsoc_,gsoc) Prsoc(Eggoc_psoc)

anti 2 3.66 x1078

(58%) 7.45 x10~1 2.65 2.76 (0.6 - 5.3) x101° (0.5 - 2.5) x10!!
8.73 x107°

anti_1 1.61 x1077

(15%) 1.96 x1078 2.64 2.76 (0.4 - 5.2) x101° (0.5 - 2.6) x10!!
5.49 x10710

syn-anti_2 9.87 x10~8
(13%) 5.22 x1078 2.68 2.74 (3.5 - 8.4) x101° (0.4 - 1.9) x10!
1.59 x107?

anti-syn_1 4.05 x1078
(12%) 3.44 x107° 2.63 2.75 (0.1 - 1.1) x101° (1.1 - 5.7) x10'°
5.74 x1079

anti-syn_2 2.73 x1077

(1%) 6.35 x10~8 2.66 2.77 (1.8 - 7.5) x10? (0.6 — 3.2) x1010
2.32 x10~ 1

syn_2 4.32 x1076

(1%) 1.09 x10~8 2.69 2.76 (0.8 — 1.4) x10™ (0.8 — 4.0) x10"
9.18 x10~ 1

Table 6.10: Oscillator strength for the transition S5°¢ — TQSQC (fSSOC%TzsgC) and
the energies of the second triplet excited state manifold (ESSOC —>T23?C) and the first sin-

glet excited state (Esgoc . Slsoc) for the different conformations, both computed at pSOC-

TDA/BHandHLYP /TZ2P level of theory. The last two columns refer to the population of
the second triplet excited state manifold at the energies Egsoc_,gsoc and Egsoc_,rsoc re-
0 i 0 2.6

spectively (given the range FWHM = 0.1 eV - 0.5 eV).

with Iy the experimental incident energy (I, = 6.24 x 10'® eV)”, ¢ the speed of light

and M., the excitation wavelength of the transition S5°¢ — T. QS’?C.
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6.10.4 Number of photoexcited Cbz-TBT molecules in the ST9C state

To compute the number of molecules that populate the first singlet excited
state upon photoexcitation, we used the formula in eq. 6.13, with Iy the experimental
incident energy (Ip = 6.24 x 10 eV),” and A\ya, the excitation wavelength of the
transition S59¢ — SPOC. The absorption coefficient for the excitation at the maximum

of the CT band is given by the formula

aSgOC_hSlSOC (ESgOC_%S;:OC> - €S§OC_>S§’OC (ESgOC_%SlSOC) Cl (643)

with [ = 3 mm7 (the experimental value of the optical path length) and ¢ the relative

concentration of molecules that we have in each conformation (see table 6.8). The

—a E
term 1 — 10 Sgoc_)s§.oc( Sgoc_ﬁ?oc)

sition Sgoc — S?OC (ag(s)ocﬁsioc) is sufficiently large. However, the molar extinction

equals to unity, since the absorbance of the tran-

coefficient as well as the excitation energy at the maximum of the CT band calculated
for the different geometric conformations, are very similar (see figure 6.17 and table
6.10), e.g., egsoc_gsoc A~ 1 x 10°M~'em™" (computed with FWHM= 0.3 eV) and

Egsoc_gsoc =~ 2.8 eV. Hence, to compute the photo-excited molecules to the first

singlet excited state in each conformation, we used )\wa = 2.8 eV multiplied by I,

and the relative percentage of molecules in the ground state (table 6.8). Results are
shown in table 6.11.

Conformation (s) £ (%) Pgsoc
anti_2 58 1.3x10%°
anti_1 15 3.3x10M
syn-anti_2 13 2.9x10™
anti-syn_1 12 2.7x10%
anti-syn_2 1 2.2x1013

syn_2 1 2.2x 1013

Table 6.11: Number of molecules that populate the first singlet excited state (Ps§oc) upon
photoexcitation in each geometric conformation.

110



6.10.5 Calculation of the initial spin polarizations of the 7} manifold in the

presence of the external magnetic field B,

The eigenstates of the spin Hamiltonian HZFS 4 FZeeman — §THG 4 5 BT 58
are not the eigenfunctions of the ZFS Hamiltonian (]:I ZES) Instead, the Hamiltonian
matrix H2FS 4+ HZeman should be diagonalized in order to find the correct eigenstates.
In the principal axis system X, Y, Z (where the D-tensor matrix is diagonal), the spin

Hamiltonian is simplified as follows
[A{ZFS + F]Zeeman — gﬁe <BXS’X + BYSY + BZS’Z> + DXS% —+ DYS’)Z/ + DZS% (644)

where it is assumed that the g-value is fully isotropic. The Sx, Sy, Sy operators
are quantized along the principal axes X,Y, Z respectively. It is always convenient
to write the Hamiltonian matrix H?FS 4+ H%eman in the basis of the eigenstates of
Szt {|Thas )Y, My = 0,£1. To find the eigenstates of S, we should first diagonalize
the D-tensor matrix to determine the orientation of the principal axes X,Y, 7 with
respect to the molecular axis system (z,y,2), [R = >, |r)(r|R) where r = z,y,2
and R = X,Y,Z], namely, the orientation of Sp with respect to the operators S,
which are quantized along the molecular axes z,y, z (see figure 6.19). Thus, the Sy-
operator matrix is written as a linear combination of the S, S‘y? S, operators. In the
matrix form, the spin matrix Sy is then written in the basis of the eigenstates of
S, - {|Tkm.)},ms = 0,£1. Diagonalization of the S, matrix gives its eigenvalues
{|Tk.p1.) } written as linear combinations of the triplet sublevels {|Tj m.)}-

It is much convenient to choose the external magnetic field to be aligned in a
X
A
X Z

(x|2)

>z

ylz)

(z1Z)\

Y

Figure 6.19: The principal axes X,Y, Z are derived from the molecular axes x,y,z. For ex-
ample, the Z-axis behaves like a vector in the z,y, z plane. The magnitude of its components
is given by (r|Z) with r = z,y, z respectively.

direction parallel to one of the three D-tensor axes (X,Y and Z) e.g., only consider

the molecules with their XY, Z axes aligned parallel to the external magnetic field

111



(Bo|| X, Bo||Y,Bo||Z). We used the EasySpin software package'” available for MAT-
LAB (MathWorks) to compute the TR-EPR resonance field positions for absorption
and emission with the field vector aligned with the tensor axes X, Y, Z respectively. We
used the routine ‘eigfields’. Parameters included were the isotropic g-value (¢ = 2) and
the D-tensor. We used the experimental ZFS parameters for the excitation wavelength
Away = 630 nm (below the CT band) (D = 1345 MHz, £ = 78 MHz). For each value of
the computed resonance fields (By|| X, B,||Y ,By||Z), we calculated the matrix elements
of the Hamiltonian HZFS 4 fZeeman yging the routine ‘sham’. Parameters included
were the g-value, the experimental D-tensor values and the magnetic field value at res-
onance in the XY and Z direction respectively. Diagonalization of the Hamiltonian
H?FS 4 FZeeman matrix gives the eigenstates of the kth triplet manifold |Ty,), [Tr.),
and |Ty.), where [ refers to the lowest-in-energy eigenstate, ¢ to the center-in-energy
eigenstate and u to the upper-in-energy eigenstate.

To estimate the population transfer to the first triplet excited state sublevels
{|T1:)}, i = l,c,u we should first calculate the oscillator strengths for the tran-
sitions S5 — Ty, following the procedure described in section 6.4.1. To this
end, we write the eigenstates |Ti,) in the basis of {|T7¢¢)} manifold, as |T};) =
Do ITPRONTPEC| ). Since the oscillator strength for the transition S§9¢ — T1; is
related to the squared transition dipole moment
[(SSOCIITL) 2 = 3o (TROC|T1,0) [21(SSOCIEITEOC) 2, its value can be approximated
using the calculated oscillator strengths of the transitions S§O¢ — TP¢ ( [ssoc —>TE§’C>
via fgsoc gy, = 3¢ (T Tu) [ fsgoc soc.

The population transfer to the {|71;)} manifold was calculated according to
eq. 6.39, since the extinction coefficient was computed by substituting the oscilla-
tor strength fsgoc 1, In 6.38. Table 6.12 shows the absolute populations computed
for the most probable geometry (anti_2) in the cases where the external magnetic
field is ali%Dned parallel to the axes X,Y and Z respectively. The relative populations
e = Sicteu Ps§0C oy,

The polarization p is defined as the population difference between the two states

SS0C L1, . .
’ , 1 =1, c,u are also shown in the table.

that the TR-EPR absorption and emission occur, p;_,; = 1T — ﬁjx|, i=c, j=1/u.
We used the routine ‘levelsplot’ of the EasySpin software to compute the energy level
diagram with the relative transitions at resonances for our spin system (see the first
row of figure 6.20). Parameters included were the isotropic g-value and the experimen-
tal D-tensor (D = 1345 MHz, E = 78 MHz). Our results show that the transitions
occur between |74 ,) and |1 .) states, and between |17 ,) and |T7.) states. The po-
larizations for the relative transitions are shown in figure 6.20. The EPR spectra for
each case of magnetic field position (Bo||X,Bo||Y,Bo||Z) were computed using the rou-
tine ‘pepper’(see the second row of figure 6.20). In addition to the parameters g and
D, we also include the computed triplet sublevel populations (pi, p2, ps) in zero-field

(IT1 x),|T1y) and |17 z)) (see section 6.10.6 below) as well as Lorentzian lineshapes of
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[
P
fsgocmy
PSSOCHTU
PS§OC_>TLC
PS§OC_>TLU
I
Iee
e

Bol|X BollY Bol|Z

2.26 x 107? 5.29 x 10710 2.49 x 1077
6.31 x 10710 4.36 x 1079 4.39 x 10710
2.53 x 107? 5.41 x 10710 2.50 x 1079

(0.4 —2.0) x 10%°
(1.1 = 5.5) x 10°
(0.4 —2.2) x 100
0.42

0.12

0.47

(0.9 — 4.6) x 10°
(0.8 — 3.8) x 1010
(0.9 —4.7) x 10°
0.10

0.80

0.10

(0.4 —2.2) x 10%°
(0.8 — 3.8) x 10°
(0.4 —2.2) x 10%0
0.46

0.08

0.46

Table 6.12: Oscillator strengths for the transitions Sgoc — Th4,% = [, ¢, u together with the
number of molecules that populate the first triplet excited state manifold {|T7;)},i =1, ¢, u
upon photoexcitation from the singlet ground state (given the range FWHM = 0.1 eV - 0.5
eV). The relative populations l:Ifx are also shown.

2.08 mT width (see ref. 7). Finally, the powder spectrum was also computed (third row

of figure 6.20). We conclude that our theoretical parameters (e.g., p;—,;) well reproduce

the experimental spectra.
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Figure 6.20: First row: Energy level diagram of the first triplet excited state sublevels as
a function of the static magnetic field B% aligned with the dipolar axes X, Y, Z respectively.
Transitions occur at the resonance fields (down arrows correspond to emissive lines and up
arrows to absorptive lines. The inset shows the ZFS triplet states (|11 x),|T1y),|11,2))-
Second row: TR-EPR spectra computed in the cases where the magnetic field By is aligned
with the molecular X,Y or Z axis. Third row: The full powder TR-EPR spectra. Here, the
transitions corresponding to the canonical field orientations (X,Y, Z) are shown as picks in
the powder spectrum as indicated by the dark arrows. Lorentzian lineshape was set to 2.08
mT. The transitions can be either absorptive (A) or emissive (E).
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6.10.6 Calculation of the ZFS polarizations of the 77 manifold

The matrix elements of the ZFS Hamiltonian H%FS = ST DS were computed us-
ing the routine ‘zfield’ of the EasySpin software. Parameters included were the isotropic
g-value and the D-tensor. We used the experimental ZFS parameters for the excita-
tion wavelength Ayay = 630 nm (below the CT band) (D = 1345 MHz, E = 78 MHz).
Diagonalization of the ZFS Hamiltonian matrix gives the eigenstates of the kth triplet
manifold |7} x), |Tky), and |Ty z), where X,Y and Z is the principal axis system of
the D-tensor.

To estimate the population transfer to first triplet excited state sublevels {|T} ) },
R = X,Y, Z we should first calculate the oscillator strengths for the transitions S5°¢ —
T g, following the procedure described in previous sections. To this end, we write the
eigenstates |1} g) in the basis of {|T7¢“)} manifold, as |T1 ) = D¢ TN (TP | T k).
Since the oscillator strength for the transition S5°¢ — Ty p is related to the squared
transition dipole moment [(SSOC|4|TyR)[> = Yo, (TPOC|T1,) [2I(SSOC|EITEOC) 2, its
value can be given using the calculated oscillator strengths of the transitions S5°¢ —
Tlsgc (fSSOCﬁTEgC> via fsgocHleR ~ Zg |<TE?C|T1’R>|2fS§OCHT1S’C§)C.

Having calculated the oscillator strengths fsgoc 1, 5 We used eq. 6.38 to es-
timate the extinction coefficient €ssoc ., , and then the population transfer to the
{|T.r)} manifold according to eq. 6.39 . The table below, show the absolute popu-

lations computed for the most probable geometry (anti_2). The relative populations

. P
T14FS = , R= XY, Z are also shown in the table 6.13.

SgOCATl’R
- _ P,
ZR—X,Y,Z Sg’ocaleR

R=X R=Y R=17

fsgoo sy, 631 x 10710 4.36 x 107° 4.39 x 10710
Pgsoc_yq, , (1.1 —5.5) x 10° (0.8 —-3.8) x 101 (0.8 —3.8) x 10?
IT4FS 0.12 0.80 0.08

Table 6.13: Number of molecules that populate the first triplet excited state manifold
{IT1,r)}, R = X,Y, Z upon photoexcitation from the singlet ground state together with the
relative oscillator strengths fsgoc 1, 5 (given the range FWHM = 0.1 eV - 0.5 eV). The

relative populations ﬁ%FS are also shown.
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6.11 Computation of singlet-to-triplet and triplet-to-triplet

transition rates

The rate constant for the ISC transition between singlet and triplet states is
given by eq. 6.16. The simulations were performed using the fft integration method
available in MATLAB. fft computes the Discrete Fourier Transform (DFT) of a func-
tion using a Fast Fourier Transform (FFT) algorithm. The integration region was set
equals to —10 - 10 psec with 262144 integration points. Line broadening was included
using Lorentzian lines for homogeneous broadening equals to I' = 102 sec™!. The tem-
perature was set to T = 80 K (TR-EPR experimental temperature”) (see details in
chapter 7 and appendices A and C).

Table 6.14 shows the total rate constants for the transitions S; — Ts (kg, 7, =
Yom ks o1y, )y S1 = T (ks,on = 2, ks, ) and
Ty = Ty (krys = D 2om, KTom,—Ty 1), s well as the fluorescence and phospho-
rescence rates (ks, s, ki 50 = D m, b1y m 50 and ks, = > Ky, s,) together
with the corresponding energy differences (AE}; as shown in figure 6.9).

Figure 6.21 shows the population transfer to the first and second triplet excited
states as a function of time computed for anti-syn_1 (12%) geometric conformation
by solving the approximate kinetic equations for the populations (e.g., see eq. 6.18).
Results are similar to those computed for the most probable geometry (anti_2) (see
section 6.4.2), namely on the time scale of the TR-EPR experiment (0.5 usec), there is
no substantial increase in the total second triplet excited state population that arises
from the lowest singlet state following the excitation in the CT band. Even though the
population transfer to the second triplet excited state and the first triplet excited state
is faster in the case of anti-syn_1 compared to anti_2, (T, retains measurable values for
6 psec and 17 gets measurable values after 4 psec) the time scale is still longer than
the experimental time between optical excitation and TR-EPR signal detection (which

is approximately 0.5 usec”).
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Figure 6.21: Population transfer to the first and second triplet excited states as a function
of time computed for anti-syn_1 (12%) geometric conformation. (a) Population of S} from 0
to 0.5 usec. (b) Population transfer to Ty from 0 to 0.5 usec. (c) Population transfer to T}
from 0 to 0.5 psec and (d) population transfer to T and Tj for larger time scales than 0.5
psec, namely from 0 to 0.1 msec. Initial condition for Ty : Pr,(t = 0) = 1.1 x 10'°.
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I1/J  AE;; (V) ki(1/sec) ks s, (1/sec)  kp_s,(1/sec)  krs,(1/sec)

anti 2 S/Th 0.16 4.00x10°
(58%)  Si/Th 1.23 L.77x 10! 2.78 x 108 6.41 x1072 2.47 x10°
/Ty 1.07 7.63x10°
antil S/ Ts 0.15 3.97x10°
(15%)  Si/Th 1.20 2.00x 10 2.74 x108 0.00 1.09 x107!
/T, 1.05 2.60x10?
syn-anti 2 Sy/T5 0.08 1.24x10"
(13%)  Sy/Th 1.26 4.60x10" 2.75 x 108 0.00 2.19 x102
Ty/T, 1.17 3.46x10°
anti-syn_1 Sy /T, 0.17 1.34x10*
(12%)  Si/Th 1.19 5.42x10* 2.73 x10® 0.00 3.44 x10*
/T, 1.02 1.50x10°
anti-syn_ 2 S /T, 0.16 2.46x102
(1%) Sy /T 1.26 1.93x10° 2.78 x108 6.04 x1072 0.00
Ty/Ty 1.10 2.56x 10
syn2 S/ Th 0.08 1.61x10?
1% S /Ty 1.27 1.28x 10! 2.75 x10® 0.00 2.14 x10?
(
T/ T, 1.19 3.12x10°

Table 6.14: Total rate constants for the transitions S7 — T, S1 — 11 and Ty — T3
and the corresponding energy differences AFEg, 7, (or equivalently AEg, 1y, ), AEs, 1, (or
equivalently AEg, 1,,. ), AEn, 1, (or equivalently AEg,, 1, .. ) computed for the most
probable geometric conformations of the Cbz-TBT molecule.

6.12 Theoretical calculations of the EPR parameters

6.12.1 Zero-field splitting parameters

The EPR-ZFS parameters of the first triplet excited state (77) of the molecule in
its different molecular conformations were calculated using the ORCA program package
at the DFT level of theory, where only the spin-spin contribution to the ZF'S parameter
D was considered. '*® We used the spin-unrestricted natural orbital (UNO) approach®
in combination with the B3LYP functional!® and the def2-TZVP basis set without
symmetry constraints.

Additional computations were performed using the distributed point-dipole (DPD)
approximation. 9 (
rameters for each conformation computed with UNO-B3LYP and DPD methods are

summarized in table 6.15. Figure 6.22 shows the canonical orientations of the ZFS ten-

see eq. D.1 and appendix D for further information). The ZF'S pa-

sors (principal axis system X,Y and Z) for each conformation computed with UNO-
B3LYP/def2-TZVP method. Below, we also show the optimized atomic coordinates
of T} excited state of the six different conformations computed at BHandHLYP /TZ2P
level of theory.
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DPD Model UNO-B3LYP
Geometry D(MHz) FE(MHz) D(MHz) FE(MHz)

anti_2 1319 180 825 192
anti_1 1229 210 809 194
syn-anti_2 1349 210 798 186
anti-syn_1 1289 180 810 190
anti-syn_2 1319 119 816 189
syn_2 1379 180 792 181

Table 6.15: ZFS parameters in MHz calculated at the minimum energy conformation of the
T} manifold excited state for each geometric conformation at UNO-B3LYP /def2-TZVP level
of theory and using the distributed Point-Dipole (DPD) approximation.

/< ’ P
S AN\,
1
anti_1
,f\ Dy
| /< D
\ \ B N \ /T {
N " NN
\ r\ /
syn-anti_2 anti-syn_1
N
\ 5Dy N
—\ { b,
anti-syn_2 syn_2

Figure 6.22: Orientation of the principal axes of the ZFS tensor computed at UNO-
B3LYP/def2-TZVP level of theory for the different geometric conformations. To visualize
the tensor, we used the Avogadro software package.
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1) anti_2 T1

—1.3896 0.5553  —1.5268
1.1773 0.7247  —0.5285
—-0.8326  —0.5732  —0.9686
—0.6867 1.7557  —1.5914
0.5932 1.8469  —1.0957
0.4541 —0.4756  —0.4721
—2.3880 0.5083  —1.9206
—1.1518 2.6165  —2.0337
1.1310 27757  —1.1483
3.4892  —2.5029 1.3911
5.5500 1.2333 1.1015
—1.3816  —1.4957  —0.9223
2.4570 0.4600 0.0715
4.6627  —0.7066 1.3176
2.4500  —0.8880 0.4611
3.5881 1.2212 0.3175
4.6701 0.6429 0.9304
3.5300  —1.4766 1.0797
0.9633  —2.3755 0.2918
3.6262 2.2553 0.0286
1.2353  —1.4332 0.1274
9.1887 0.5596 3.8416
10.9025  —4.8725 4.7439
11.2308 0.8761 4.9847
7.9844  —1.7334 3.1565
7.3054  —2.8879 2.7711
6.1132  —2.6358 2.1134
0.8198  —1.3001 1.9586
7.0639  —0.3363 2.6604
9.2028  —1.6018 3.8332
7.6949  —3.8631 2.9696
5.4840  —3.4158 1.7323
14.8889 0.1201 7.0355
149619  —1.2358 7.0564
13.8686  —1.8531 6.4354
12,9443  —0.9570 5.9311
13.4796 0.6706 6.2550
15.5896 0.8217 7.4380
15.7747  —1.7740 7.5033
13.7385  —2.9100 6.3470
11.7309  —1.2056 5.2476
9.9945  —2.7216 4.2636
11.2443  —2.5236 4.9612
9.7411 —0.3097 4.1433
10.9069  —0.1296 4.7960
9.7080  —3.9862 4.0906
11.8308  —3.6523 5.2745

ZZzo00000F @m0 n0frnEZzET OO0 EDTED IO 00
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2) anti_1 T1

—0.6688 2.0601 —1.4026
0.9995 0.0869  —0.4338
0.5254 24397  —0.8326

—1.0361 0.7197  —1.4938

—-0.2093  —-0.2686  —1.0130
1.3527 1.4419  —0.3512

—1.3312 28143  —1.7853

—1.9751 0.4594  —1.9448

—-0.4979  —1.3011 —1.0860
4.9329 0.6520 1.4718
3.6754  —3.4264 1.1495
0.8015 3.4759  —0.7663
2.0806  —0.6542 0.1558
4.4593  —1.4417 1.3877
3.0373 0.2845 0.5675
23302  —2.0012 0.3727
3.4980  —2.3832 0.9783
4.2149  —0.0900 1.1756
3.0653 2.3899 0.4373
1.6155  —2.7453 0.0729
2.5818 1.5403 0.2539
8.8529 0.3982 3.7838

11.1927  —4.7723 4.8039

10.8708 0.9800 4.8631
79076  —2.0352 3.1881
7.3567  —3.2697 2.8446
6.1343  —3.1735 2.2039
5.6841 —1.8841 2.0212
6.8247  —0.7660 2.6742
9.1135  —1.7465 3.8344
7.8552  —4.1890 3.0647
5.5893  —4.0330 1.8688

14.6483 0.7091 6.8200

14.8593  —0.6292 6.9076

13.8249  —1.3856 6.3408

12.8060  —0.6155 0.8132

13.1780 1.0725 6.0423

15.2798 1.4980 7.1718

15.7294  —1.0585 7.3643

13.8024  —2.4535 6.3081

11.6111 —1.0213 5.1718

10.0365  —2.7554 4.2792

11.2695  —2.3944 4.9403
9.5077  —0.3932 4.0946

10.6607  —0.0615 4.7108
9.8928  —4.0493 4.1517

11.9865  —3.4389 0.2741

avHeoNoNooNoR-"R:=R:=R/NoNONONON"R=-NOR/, NONORONOR="N /R R R NORONONONON@N:=R==Rarfa R HONONONONONS!
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3) syn-anti 2 T4

avHeoNoNoNoNoR-"R:=R:=R/ NoNONONON"R="NOR/, NONORONOR="N /R i R NORONONONON@N:=R==Rarfas R HONONONONONS!

—1.4222
1.1256
—0.8207
—0.7725
0.4977
0.4557
—2.4142
—1.2716
0.9944
3.5547
5.4468
—1.3292
2.4089
4.6482
2.4578
3.5021
4.5999
3.5545
1.0393
3.4971
1.2727
9.4774
10.4175
11.5189
7.9837
7.3140
6.1210
5.8177
7.0551
9.2003
7.6954
5.4999
14.9913
14.8775
13.7270
12.9491
13.6919
15.7697
15.5961
13.4562
11.7298
9.8318
11.0802
9.8991
11.0663
9.3720
11.4972

0.4457
0.6890
—0.6780
1.6774
1.8055
—0.5432
0.3702
2.5337
2.7583
—2.4996
1.3363
—1.6245
0.4593
—0.6501
—0.9005
1.2609
0.7109
—1.4612
—2.4447
2.3053
—1.4869
—3.5688
2.1115
—3.4613
—1.5478
—2.7312
—2.5319
—1.2039
—0.1894
—1.4384
—3.7037
—3.3385
—1.9705
—0.6256
—0.2451
—1.3141
—2.8005
—2.5149
0.0702
0.7655
—1.3172
—0.1875
—0.1210
—2.6030
—2.5392
0.9892
1.1097

—1.5634
—0.5328
—1.0427
—1.5751
—1.0632
—0.5288
—1.9689
—1.9884
—1.0740
1.3007
1.1769
—1.0370
0.0726
1.3135
0.4151
0.3592
0.9683
1.0295
0.1751
0.1073
0.0445
4.1249
4.3499
5.3035
3.1725
2.8411
2.1767
1.9654
2.6111
3.8547
3.0749
1.8413
7.2840
7.1399
6.4356
6.0353
6.5612
7.7768
7.5268
6.2173
9.3150
4.1477
4.8663
4.3177
4.9920
3.8127
5.0345
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4) anti-syn_1 T,

e S NONONON@R==Ra=fasRarasasiasasasBasacfa B R NOoNONONONONONONONO RO AV A/ o NoNOoNO RO NO RO NO RO NONONS!

—1.4152
0.7338
—1.5561
—0.1966
0.8948
—0.4886
2.2763
4.9843
2.8870
3.0449
4.3751
4.2227
14.9718
13.3644
1.9432
11.3788
15.6208
14.7178
13.4751
13.4243
9.9242
9.9591
11.0560
12.3049
12.3269
11.1590
9.0626
12.9268
—0.6054
—2.5180
4.6606
2.6084
16.6391
14.9375
—2.2692
—0.0941
4.9673
2.1090
12.6407
10.9823
8.7495
8.5181
7.2155
6.3922
7.2745
6.8712
9.2884

—0.0834
1.6235
1.2363

—0.5575
0.2977
2.1055
0.1525
0.5603
1.3947

—0.8911

—0.6870
1.6100
4.5906
2.3464
2.2673
0.9208
6.0115
6.6885
6.0534
4.8775
2.3466
3.5637
4.3390
4.0256
2.8174
1.9806
3.8769
0.9580
3.1224
1.5840
2.5775

—1.8574
6.2798
7.6058

—0.7343

—1.5767

—1.5047
3.2175
6.4394
5.2322
1.5912
0.3975

—0.0625
0.7409
2.0972

—0.9557

—0.0925

0.1363

0.1333

0.5583
—0.2906
—0.2956

0.5633
—0.6664
—1.2004
—0.4432
—1.1596
—1.4195
—0.7027
—1.9210
—2.7356

0.0368
—2.9553
—1.2445
—0.4861
—0.4473
—1.1821
—1.5833
—0.8264
—0.7075
—1.3299
—2.0920
—2.2208
—0.3263
—3.4533

0.8902

0.8869
—0.5413
—1.3332
—1.4372

0.0240

0.1454
—0.6154
—1.7808

0.2792

0.1013
—0.1205
—1.6836
—2.3628
—2.2498
—1.4953
—0.9003
—2.7320
—2.9188
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5) anti-syn_2 Ty

avHeoNoNoNoNoR-"R:=R:=R/ NoNONONON"R="NOR/, NONORONOR="N /R i R NORONONONON@N:=R==Rarfas R HONONONONONS!

—1.3781
1.1906
—0.8285
—0.6669
0.6139
0.4592
—2.3771
—1.1263
1.1581
3.4817
5.5680
—1.3839
2.4690
4.6670
2.4529
3.6053
4.6837
3.5293
0.9559
3.6504
1.2343
9.1894
10.9068
11.2275
7.9812
7.3023
6.1112
5.8210
7.0647
9.1994
7.6897
5.4819
15.0906
14.6872
13.4723
12.9383
13.9976
15.9800
15.2410
12.9986
11.7259
9.9875
11.2332
9.7410
10.9056
9.7078
11.8274

0.5897
0.7392
—0.5438
1.7853
1.8666
—0.4561
0.5504
2.6502
2.7918
—2.5074
1.2144
—1.4624
0.4645
—0.7192
—0.8841
1.2175
0.6305
—1.4810
—2.3610
2.2517
—1.4202
0.5192
—4.9138
0.8299
—1.7651
—2.9153
—2.6572
—1.3209
—0.3639
—1.6405
—3.8924
—3.4337
—1.1293
0.1528
0.2232
—1.0167
—2.2693
—1.4588
1.0112
1.1496
—1.2577
—2.7646
—2.5652
—0.3522
—0.1733
—4.0300
—3.6884

—1.5182
—0.5215
—0.9627
—1.5809
—1.0860
—0.4669
—1.9114
—2.0212
—1.1371
1.3919
1.1059
—0.9179
0.0770
1.3201
0.4643
0.3234
0.9347
1.0817
0.2927
0.0360
0.1303
3.8643
4.7418
5.0112
3.1610
2.7675
2.1074
1.9604
2.6719
3.8416
2.9611
1.7194
7.1621
6.9556
6.2714
5.9498
6.5268
7.6585
7.2820
6.0196
5.2629
4.2655
4.9650
4.1618
4.8173
4.0881
2.2776
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6) syn2 T,

avHeoNoNoNoNoR-"R:=R:=R/ NoNONONON"R="NOR/, NONORONOR="N /R i R NORONONONON@N:=R==Rarfas R HONONONONONS!

—1.4321
1.1278
—0.8353
—0.7718
0.5044
0.4473
—2.4286
—1.2673
1.0093
3.5481
5.4726
—1.3518
2.4151
4.6569
2.4557
3.5174
4.6170
3.5539
1.0213
3.5189
1.2618
9.5229
10.3896
11.5662
7.9965
7.3432
6.1481
5.8302
7.0513
9.2131
7.7367
9.5385
15.0538
14.8560
13.6798
12.9699
13.8124
15.8717
15.5280
13.3589
11.7468
9.8250
11.0728
9.9324
11.1017
9.3528
11.4812

0.4175
0.6708
—0.6943
1.6421
1.7752
—0.5546
0.3379
2.4890
2.7226
—2.4789
1.3323
—1.6355
0.4491
—0.6405
—0.8996
1.2499
0.7094
—1.4504
—2.4377
2.2858
—1.4868
—3.5269
2.1586
—3.4122
—1.5177
—2.7042
—2.5123
—1.1868
—0.1649
—1.3987
—3.6746
—3.3219
—0.6956
—2.0378
—2.3577
—1.2511
0.1978
—0.1880
—2.7666
—3.3654
—1.2616
—0.1430
—0.0770
—2.5585
—2.4924
1.0360
1.1511

—1.5440
—0.5461
—0.9930
—1.6018
—1.1062
—0.4963
—1.9372
—2.0380
—1.1526
1.3668
1.0997
—0.9518
0.0542
1.3063
0.4387
0.3055
0.9207
1.0599
0.2628
0.0207
0.0990
4.0893
4.4133
5.2597
3.1682
2.8229
2.1575
1.9599
2.6220
3.8516
3.0458
1.8082
7.2264
7.1387
6.4567
6.0168
6.4791
7.6948
7.5478
6.2899
5.3042
4.1627
4.8776
4.2958
4.9659
3.8541
5.0728
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6.12.2 EPR g-tensor

The g-tensor was computed at the optimized first triplet excited state (7)) of
the molecule using spin-unrestricted DFT and the ‘eprnmr’ module of ORCA program
package. We used the B3LYP functional in combination with the def2-TZVP basis set
without symmetry constraints. The computations show that the g-value is approxi-
mately isotropic for each geometric conformation (principal values are approximately

the same) with a value of g ~ 2.%®

geometry  gx gy 9z
anti_2 2.002 2.003 2.004
anti_1 2.002 2.004 2.004
syn-anti_2 2.002 2.003 2.005
anti-syn_1 2.002 2.003 2.005
anti-syn 2 2.002 2.003 2.005
syn_2 2.002 2.003 2.004

Table 6.16: Principal values of the g-tensor computed at the minimum energy conformation
of the T} manifold excited state for each geometric conformation using B3LYP /def2-TZVP
method.

6.12.3 Anisotropic spectra broadenings - D-strains

The simulations of the TR-EPR spectra were performed using the EasySpin software
and the routine ‘pepper’. Parameters included were the g-tensor (g & 2), the experi-
mental ZFS parameters (D and E) and the experimental triplet sublevel populations
(p1, 2, p3) [see table 6.2 in the main text]. Line broadening was included using a fixed
Lorentzian line width (1.54 mT) and D and F strains (dD¥™! and d E5™") that change

as a function of the wavelength.

Strains
Away(nm)  D™P(MHz) E®P(MHz) TI'“P(mT) I*™(mT) dDs"™(MHz) dE*™(MHz)
630 1344.7 1.5 77.70.7 2.08 1.54 50 20
650 1317214 75.0 0.7 1.83 1.54 40 15
680 1288.5 1.3 73.7 0.6 1.54 1.54 0 0

Table 6.17: Experimentally derived ZFS parameters together with the Lorentzian lineshapes
obtained for the different excitation wavelengths (Ayay) below (630-680 nm) the CT band.®
The last two columns show the D and E strains computed by fitting on the experimental
spectrum.

126



CHAPTER 7

Computation of the non-adiabatic transition rates

In this chapter, we explain in detail how we incorporated the multi-mode rate equations
that we discussed in section 2.2, in a MATLAB code to compute the intersystem
crossing (ISC) rates and the electron/hole transfer rates in molecular systems. The
chapter is divided into two main parts. In the first one, we describe the procedure that
we followed to write the code in MATLAB that computes the Fourier Transform (FT)
of the correlation function, based on egs. 2.41 and 2.30. We show how we can extract
all the required parameters of eq. 2.41, using the Amsterdam density functional (ADF)
program package. Such parameters are the energy gap, the normal mode frequencies
and reorganization energies, the spin-orbit coupling (SOC) interaction matrix elements
and the charge transfer interaction matrix elements. In the second part, we show results
related to the computation of the hole transfer rate between two guanine molecules and,
and we discuss its dependence on temperature and its relation to the classical Marcus

limit.

7.1 MATLAB coding for the ISC rates using the ADF pro-

gram for normal mode computations

To compute the ISC rate parameters, the singlet excited state (|S,)) and the
triplet excited state (|T},m,)) involved in the transition should be optimized to extract
the optimal geometries and their minimum energies (i.e., £¢" and Eﬁlfn) These
minimum energy molecular geometries are also used to compute the normal modes «
and their frequencies (w,). The normal mode frequency calculation in ADF generates
two binary TAPE21 output files (one for the singlet computation and one for the triplet)
with extension .t21, which contain important information and are used to calculate
the required parameters that characterize a vibronic transition (i.e., electron-phonon
couplings and reorganization energies, see below and appendix A).01:125:126,128 Thege

two vibrational mode output files are used as input files in the FCF (Franck Condon
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Geometry optimization for the Geometry optimization for the

singlet S,, excited state (ADF) triplet T;, excited state (ADF)
minimum energy minimum energy
conformation of S, L conformation of Ty,
Relativistic SOC calculation to Vibrational mode (frequency)
compute the ISC couplings (ADF) calculation (ADF)
Wy ‘ lTAPEZl files

FCF-ADF code to compute
(S| ATy ) the el_ectron-phonon
coupling parameters

Wq ‘ TAPESL file

i Ag) Wy
vy
MATLAB code to A Calculation of the
compute the ISC rates | «——%—| reorganization energies
: . 5
via the FFT algorithm Ay = hog A

Figure 7.1: Flowchart showing the computational procedure we followed to compute the ISC
transition rates S,, — T} . using the ADF program package in combination with MATLAB
programming.

factor) auxiliary program, implemented in the ADF package which calculates the FCF's
between the two states.'?”12® The specific module computes the displacement of the
atoms from their equilibrium positions during the transition from the initial electronic
state to the final electronic state. The displacement vector Ea is related to the electron-

phonon coupling parameters \, via!%

) 5o\ /2
R — (%) P (7.1)
where W, is a vector containing the reduced frequencies. The electron-phonon couplings

Ao are used to calculate the reorganization energy per mode A, via
Ao = Hwa X2, (7.2)

The SOC matrix elements for the ISC transition S,, — T}, are computed

at the minimum energy molecular geometry of the singlet excited state of interest
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(S,). We compute the singlet and triplet excited states by solving the linear response
equations that are based on the relativistic ZORA (zeroth-order regular approximation)
Hamiltonian in its scalar approximation (see eq. 6.31). Then, the SOC interaction is
applied as a perturbation (see eq. 6.32) to compute the SOC matrix in the basis of the
spin-pure singlet and triplet excited states.

To compute the ISC rates I wrote a code in MATLAB applying eq. 6.16 with
the inputs from the previous computations i.e., the mode reorganization energies \,,
the corresponding frequencies w, and the SOC parameters (S, | H3°C|T},,..). As a first

step, the code computes the time correlation function e®-6©)

according to equation
6.17 using the computed mode frequencies w, and mode reorganization energies A,
(lines 33-52 in the code). Then, it computes the FT of the correlation function (lines
74-85 in the code), which is used to estimate the ISC rate at frequency AFEg, 1, . /h
(AES = Egn — Eﬁ”;) according to the equation (see eq. 6.16)

ank,ms

2

AEs, 1. (S| H3OC| Ty 1, )
kSn—>Tk,ms 5 = 72

The methodology used to compute the FT of the correlation function is called
Discrete Fourier Transform (DFT). The DFT is commonly used in the field of digital

signal processing because it converts a signal (= a quantity that varies over time) of

FT (eC0-CO-TIH) | (7.3)

finite length, into a complex-valued function over some finite frequency range (spectrum
of the signal). Therefore, a signal can be viewed from two different standpoints, the
time domain and the frequency domain (see figure 7.2(a)). In general, the DET involves
two steps: (1) the sampling of the time signal, (2) the transformation of the sample to
the frequency domain (spectrum) by using FT.

As an example, lets consider the following equations, where x(t) is a general

analog time signal and X (f) is its FT spectrum

x(t) = /_OO X (f)eItaf (7.4a)
X(f) = / h z(t)e 2 g, (7.4b)

The continuous-time signal z(t) is sampled at discrete number of points (the samples)
(see figure 7.2(b)). Suppose that this discrete-time signal z(n) is created by taking N
samples of the original signal z(t) over some finite duration of time 7, and that the

sampling interval equals t; = 7/N (see figure 7.3). Then, x(n) is related to its discrete
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(a) (b) continuous-time signal

amplitude x(t)

A
Vv VY

discrete-time signal

x(n)

samples

7

time domain

(amplitude Vs time) —> frequency domain 4 n

x(t) (amplitude Vs frequency)
X(f)

Figure 7.2: (a) Example of a signal in time domain (z(¢)) and its spectrum in the frequency
domain (X (f)). Two sinusoidal waves (1 and 2) of different frequencies are superimposed and
form a signal (142) in the time domain. The frequency spectrum of the signal is computed
from the F'T of z(¢). It is represented by delta functions entirely localized at the two frequency
components of the sinusoidal waves 1 and 2. (b) A signal is classified as continuous-time signal
(above) and discrete-time signal (below). The discrete-time signal is a time sequence that
has been sampled from a continuous-time signal. It takes on only a discrete set of values
(samples).

2

Fourier spectrum via DFT as follows
> X )eiQWnk/N

1
N (7.5)
_ Z I(n)e—z‘%mk;/z\r7

n=0

i

where X (k) is the spectrum of z(n). X (k) has (at least) N values spaced apart in
the frequency domain by 1/7. The reciprocal of ¢4 is the sampling rate or frequency
(Fs = 1/ts) (see figure 7.3). The spectrum is periodic with period being equal to 1/,
and the signal is periodic with period that equals to F}. Since one period extends from
0 to Fy, the DFT is only defined in the region between 0 and Fj (see figure 7.3). For any
sampling interval ¢; there is a critical sampling frequency w,. which is one-half of the

highest sampling frequency component (bandwidth) and it is called Nyquist frequency

1
. = — = 0.5F"", 7.6
e = 5 = 05F, (76)
The sampling frequency Fj should be at least the critical sampling frequency to avoid
aliasing (difference between the reconstructed signal from the samples and the original
signal, when the resolution is too low). Typically, Fs is always chosen to be much
greater than the critical sampling frequency, so that the signal is sufficiently sampled.

In addition, the signal is always sampled for a long enough duration of time, so that
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ts

NS
x(n) H—+—+— —+—+—1 time domain

0 \‘ N samples / ‘

IDFT

oG
——
X(k) | | ] ] ]

—

—+— —t—+—

0 e K
N samples

frequency domain

Figure 7.3: Schematic diagram of a DFT pair showing that the discrete signal z(n) and the
discrete frequency spectrum X (k) are sampled in equal intervals. In the figure, Fy = 1/t
and ts = 7/N.

the resolution of the DFT will not be poor with respect to the original spectrum.
The DFT is efficiently computed using the Fast Fourier Transform (FFT) algo-
rithm. It is implemented in many programing softwares such as MATLAB, Python,
Mathematica, Fortran etc. Regardless of the preferred software, FFT is an algorithm
that determines the DFT of a sequence significantly faster compared to the direct im-
plementation. The time taken to evaluate the standard DFT of a N —sized signal scales
as N2. In contrast, FFT scales as Nlogs(N). The advantage of this approach is that
the DF'T of a sequence of N points can be written in terms of two separated DFT's of

length N/2 that involve even and odd indexed subsequences, i.e.,

N 4 N1
2 2
X(k')FFT h_ Z x(2r)efi2ﬂ-k(2r)/N + Z x(27, + 1)67i27rk(2r+1)/N (77)
r=0 r=0
even odd
which results in
81 J-1
2wkr 2wk _ i2wkr
X(k)ppr = x(2r)e” N2 e e z(2r 4+ 1)e” /2. (7.8)
r=0 r=0

Equation 7.8 implies that the N-point DFT can be obtained from two N/2-point
transforms, one on even input data and one on odd input data that are computed
simultaneously. This decomposition makes the FF'T algorithm much faster than direct

computation.

Figure 7.7 shows our MATLAB code for the computation of the DFT of the

G()-G(0)

correlation function e ~Iltl that involves frequencies and reorganization energies

for the transition S; — 77 in Cbz-TBT molecule (see chapter 6). First, we set the

1

sampling frequency Fs; = 100000 cm™". This value is much greater than the highest
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Sinuscid Signal: Real Part
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Figure 7.4: (a) Real part of the G(t) function (with cosine, see eq. 6.17). The plot shows the
135 cosine waves in the time domain, one for each normal mode of frequency w,. The lowest-
frequency mode has the greater period of oscillation (~ 0.07 cm) (with light blue color). The
time duration of the signal is chosen to be much greater than the period of oscillation of the
lowest-frequency mode (i.e., 7 = 2 cm). (b) The ISC rate (in sec™!) as a function of the
frequency AFEs, 1, /h (in cm™!) for the transition S; — 73 in Cbz-TBT molecule. The rate
at AEg, 1, /h = 9910.28 cm~! equals to 17.67 sec™ .

frequency component of our system, which equals to w™® = 3791.33 cm™! (line 23
in the code). Then, we define the time duration of the signal 7 = 2 c¢cm to be greater
than the period of the lowest-frequency mode (~ 0.07 cm), so that the sinusoidal signal
that comes from this particular frequency is well resolved (see figure 7.4(a)). The time
domain is a column vector of 1 x N dimensions where N = 7Fy (line 27 in the code).
Therefore, the correlation function is a column vector of 1 x N dimensions in the time
domain (lines 32-52 in the code). The DFT is equally sampled with nfft = N number
of points in the frequency domain (line 74 in the code). To increase the frequency
resolution (and the accuracy of the DFT amplitudes) the DFT is further sampled at
nfft2 > nfft(=N) intervals (line 76 in the code). The extra spaces from N to nfft2 are
filled with zeros (zero-padding) [line 78 in the code]. The function fft returns the DET
of the correlation function as a column vector of 1xnfft2 dimensions (lines 83-85 in
the code), and the frequency domain has the same dimensions 1xnfft2 (line 88 in the
code). The computed DFT vector is multiplied by the relative SOC matrix elements
according to equation 7.3 to produce the ISC rate constants (line 94 in the code). The
rates are now plotted in the frequency space, and from this plot we extract the rate
constant at AEs, 7, . /B (lines 109-112 in the code) (see figure 7.4(b)).
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7.2 Effects of temperature on hole transfer rates between two
guanine molecules and the transition from the quantum

to the classical rate limit

It has been suggested that for some organic molecules the fully quantum model
for non-adiabatic rates (eq. 2.41) yields charge transfer rates that are lower than the
classical Marcus formula for the rate and more robust to temperature changes (even up
to 300 K).1667169 This phenomenon can be explained by the nuclear tunneling effect as-
sociated with the high-frequency modes that exhibit strong electron-phonon couplings.
In this section, we examine the hole transfer rate between two unsolvated guanine
molecules in order to explore further, deviations of the hole transfer rate from the clas-
sical Marcus theory.

We compute the transition rate for hole transfer between two guanine (G)
molecules (Kig+ay—jaa+y) as shown in figure 7.5(a). The MATLAB code that we in-
troduced in the previous section (see figure 7.7) is now modified according to eq. 2.34
for the case of inter-molecular charge transport characterized by different sets of vibra-
tional coordinates for the donor and the acceptor. The rate is computed at different
temperatures and the results are summarized in figure 7.5(b). These results show that
the transition rate does not change much with the temperature for temperatures lower
than the room (300 K). The temperature-induced broadening at 7' = 300 K is negli-
gible and the maximum rate (at the peak) slightly decreases from 7.81 psec (7' = 10
K) to 7.65 psec (T = 300 K) when increasing the temperature. Further, the rate as
a function of AFE' is not given by the classical Marcus form (see eq. 2.31). In table
7.1, the hole-transfer rate computed using the classical Marcus formula (eq. 2.31) at
different temperatures, is compared to the rate computed using the quantum formula
(eq. 2.41). The results indicate strong dependence of the classical Marcus rate on
temperature. In addition, the classical Marcus rate is much greater than the quantum
rate, even at 7' = 300 K (the classical Marcus rate is approximately 2 to 3 orders of

magnitude greater than the quantum rate).

T (K) Quantum Rate (eq. 2.34) Marcus rate (eq. 2.31)

10 8.94x 10! 0

100 8.85x 10! 5.74x10!
200 8.15x10'! 2.79%107
300 7.40x 101 2.01x10°

Table 7.1: Rate computed with the Fermi’s Golden rule formula Vs rate computed with the
Marcus formula for the hole transfer process |GTG) — |GG™T). The rate is given at AE = 0.

Further analysis of the results using the normal mode computations, reveals
that for the states |GT) and |G), only the first 3 normal modes (those with the lowest
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Figure 7.5: (a) Two guanine molecules take part in a hole transfer transition. The driving
force is zero (AE = 0) and the electronic coupling is (GTG|V|GGT) = 0.03 eV. (b) Hole
transfer rate for the transition |GtG) — |GG™), as a function of AE at different tempera-
tures.

frequencies) can be considered as “classical” modes (i.e., hw, < KgT') at 300 K. The
other 39 higher frequency modes are all “quantum” (i.e., fuww, > KgT') [Note that gua-
nine has 42 normal modes at total]. Therefore, it is not surprising that the temperature
and AE dependence of the rate does not follow the classical Marcus expression (see
appendix B for detailed explanation). In order to get a hole transfer rate that follows
the classical Marcus formula, we convert the high-frequency quantum modes to low
frequency classical ones (Aw, < KpT). We rescale hw, by 10 (i.e., hwi™™ = hw,/10)
and X, by V10 (i.e., AP = X\/10). In this way, the total reorganization energy of
the system is unchanged, and 90% of the modes become classical at T'= 300 K. With
the new parameters we compute the hole transfer rate using our MATLAB code at
T = 300 K. The rate as a function of AFE is shown in figure 7.6(a), together with the
rate computed using the unscaled parameters at T = 300 K (i.e., the same as figure
7.5(b)). We see that the new rate follows the classical Marcus distribution e.g., the
simulated spectrum fits to Gaussian and we get o = 2.3 x 107! £ 8.2 x 107% eV. The
total reorganization energy is related to o by o = /2KgT\ and gives 1.01 eV while
the computed inner-sphere reorganization energy (see eq. 7.2) is Ag + Ag+ = 0.93 eV.

Using the scaled normal mode parameters we decrease the temperature (7" = 10
K) such that all modes can be considered “quantum” at this temperature. In this case,
as expected, the exact quantum rate is not described by the classical Marcus theory.
The exact rate is shown in figure 7.6(b) (in red). It is not described by a Gaussian
distribution (not symmetric around the mean AF value). The rate at 7' = 10 K and

for A = 0.93 eV computed using the Marcus formula, is also shown in the same plot
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Figure 7.6: (a) Hole transfer rate computed using the scaled normal mode parameters at
T =300 K (black line). The fitting into Gaussian distribution (red line) reveals the rate can
be described by the classical Marcus formula. The plot also shows the hole transfer rate that
was computed using the unscaled frequencies and electron-phonon couplings at T' = 300 K.
In this case, the spectrum can not be described by a Gaussian distribution. (b) Hole transfer
rate computed using the scaled normal mode parameters at T' = 10 K. The spectrum is
computed using eq. 2.29 and it is shown in red. The rate is also computed using the classical
Marcus formula eq. 2.31 at T'= 10 K and it is shown in black for comparison.

(in black). It shows large deviations from the exact rate. Therefore, as expected, at
T = 10 K the rate cannot be described by the classical Marcus formula.

The above results show that the classical Marcus formula does not accurately
describe the transition rate in electron/hole or exciton transfer transitions in small
organic molecules that have a majority of high frequency modes that remain quantum
for a large range of temperatures. This point must be taken in to account in transport

computations in dry environments that favor high frequency modes.
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clear

clc

format long

%

syms t

%

%% % % % % % % %% % % % % %o %o %o %o % % % % % % % % %o %o %o %o %o % % % % % % % %o %o %o %o %o %o % % % % % % %o %o %o %o %o %o % % % % % % % % %o %o % % %o
% CONSTANT VALUES

c_vel =2.997925*10/10; % light velocity in vacuum (cm/sec)

h_bar = 5.308837*10/(-12); % Planck constant (cm**-1.sec)

kbT = 55.564312; % thermal energy (cm**-1) [for T = 80K]

%

% INPUT PARAMETERS

V =0.013083; % electronic coupling between S1 and T1 states (cm**-1)

nm=135; % number of modes

gamma = 33.3565*2*pi; % homogeneous broadening (cm**-1) [gamma = 1 psec]

data = readmatrix('S1T1parametres’); % nm X 2 matrix: 1st column --> frequencies per mode (cm**-1)

% 2nd column --> reorganization energy per mode (cm**-1)
Er =1590.436074; % total reorganization energy (cm**-1)

DE =9910.284966; % energy difference at the minimum-energy conformations (cm**-1)

%
% PARAMETERS FOR THE FFT INTEGRATION

Fs = 100000; % sampling frequency (cm**-1)
T=1/Fs; % sampling period/time increment (cm)
%

% TIME DOMAIN

t=-1T:1; % time vector (cm)
%
%% % % % % % % % %% % % % %o %o %o %o %o % % % % % % % %o %o %o %o %o % % % % % % % %o %o %o %o %o %o % % % % % % % %o %o %o %o %o %o % % % % % % % % % % % %o
% CONSTRUCTION OF THE CORRELATION FUNCTION
%% % % % % % % % %% % % % %o %o %o %o %o % % % % % % %o %o Yo %o %o Yo %o % % % % %o %o %o %o %o Yo Yo Yo % % % % % % %o %o %o %o %o %o Yo % % % % % % % %o %o %o %o Yo
sum = zeros(1,length(t));
for j=1:nm
occup_num = (exp(data(j,1)/kbT) - 1)7(-1); % thermal boson occupation number
real_part = ((2*occup_num)+1)*(cos(data(j,1)*2*pi*t)-1);
imaginary_part = sin(data(j,1)*2*pi*t);
G = (data(j,2)/data(j,1))*(real_part-li*imaginary_part); % G(t)-G(0)
sum =sum + G;
% plots: real and imaginary part of G(t)
figure(1);
plot(t,real_part);
title('Sinusoid Signal: Real Part’);
xlabel('time’);
ylabel('Amplitude’);
hold on;
figure(2);
plot(t,imaginary_part);
title('Sinusoid Signal: Imaginary part’);
xlabel('time’);
ylabel('Amplitude’);
hold on;
end
% plot of G(t)
figure(3);
plot(t,sum);
title('Sinusoid Signal: G(t) with real parts’);
xlabel('time”);
ylabel('Amplitude’);
hold on;
%
corr=exp(sum).*exp(-gamma*abs(t)); % exponential G(t) (correlation function)
% plot of the correlation function
figure(4);
plot(t,corr);
title('"Exp(G(t))’);
xlabel('time’);
ylabel('Amplitude’);
%
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69 %%%%%%%%% %% %% %% %% %% %% % %% % % %% %% %% %% %% %% %% % % %% % % %% % % %% % % % % % % % %% % % %% %% %%
70 % FOURIER TRANSFORM OF THE CORRELATION FUNCTION
71 %%%%%%%%%%%%% %% %% %% %% % %% %% %% %% %% %% %% %% %% %% %% %% %% %% %% %% %% % % % %% %% %% %% %%

72 %

73 % DFT sampling

74 nfft = length(corr); % number of points in the frequency domain

75 % (equals the number of points in time domain)

76 nfft2 = 2Anextpow2(nfft); % signal length becomes exact power of 2

77 %

78 corr(nfft2) = 0; % padding with zeros the correlation function

79 % so that length(corr) equals to nfft2.

80 corr = circshift(corr,[0,-(nfft-1)/2]); % circular shift of correlation function for symmetry
81 %

82 % DFT (FFT)
83 X=fft(corr);

84 X=fftshift(X); % shift the center of FFT at zero-frequency
85 mx=abs(X)/Fs; % FFT amplitude

86 %

87 % FREQUENCY DOMAIN

88 f=-(-nfft2/2:nfft2/2-1)*(Fs/nfft2); % frequency (cm**-1)

89 %

90 %%%%% % % % % %% %% % % % % % % % % % % % %o %o %o % % % % % % % %o %o %o %o % % % % % % %o %o %o %o %o % % % % % % %o %o %o % % % % % % % % % % %o
91 % CALCULATION OF THE TRANSITION RATE

92 %%%%% % %% % % %% % % % %o % % % % %% % % %o %o % % % % % % % % %o %o %o %o % % % % % % %o %o %o %o %o % % % % % % %o %o %o %o % % %% % % % %6 % Yo
93 %

94 rate=(VA2)/(h_bar”2).*mx/c_vel; % rate (Hz)

95 writematrix([f.', rate."],'RATE_Vs_Freq.xIsx);

9% %

97 % CLASSICAL MARCUS RATE

98 rate_Marcus = ((VA2)/h_bar)*sqrt(pi/(kbT*Er))*exp(-(f-Er).A2/(4*kbT*Er));

9 %

100 %%%%%% % % % % % % %% % % % % % % % % % % % % % %o %o % % % % % % % %o %o %o %o % % % % % % % %o %o %o % % % % % % % %o %o %o % % % %% % % % %o
101 % PLOTS

102 figure(5);

103 plot(f,mx);

104 title('FFT’);

105 xlabel('DE’);

106 ylabel('Power’);

107 figure(6);

108 %

109 plot(f,rate,f, rate_Marcus);

110 title('Rate Spectrum of the Sinusoid Signal’);

111 xlabel('DE’);

112 ylabel('Power’);

113 %

Figure 7.7: MATLAB code for the computation of the ISC rates according to equation 7.3.
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CHAPTER &

Mbolecular wires for efficient long-distance triplet

exciton transfer

In this chapter, we propose design rules for building organic molecular bridges that
enable coherent long-distance triplet-exciton transfer (TET). Using these rules we de-
scribe example polychromophoric structures with low inner-sphere exciton reorgani-
zation energies, low static and dynamic disorder and enhanced 7-stacking interac-
tions between nearest-neighbor chromophores. These features lead to triplet-exciton
eigenstates that are delocalized over several units at room temperature. The use of
such bridges in donor-bridge-acceptor assemblies enables fast triplet-exciton transport
over very long distances that is rate-limited by the donor-bridge injection and bridge-

acceptor trapping rates.

8.1 Introduction

Triplet exciton transfer (TET) is an important process in photosynthetic pho-
toprotection and is central to the harvesting of triplet excitons (TE’s) in a variety of
contexts such as catalysis, photovoltaics, and energy conversion (e.g., singlet fission
(SF) and triplet-triplet annihilation).2687170-176 For many applications it is desirable
to achieve fast, directed, and long-distance TET. For example, in SF reactions that
produce a correlated TE pair, it is important to separate the two TE products via fast
TET to distinct locations, in order to avoid the backreaction.?3177-180

Implementing directed long-distance TET on the single-molecule scale requires
building molecular linkers (bridges) that connect TE donors (D) to acceptors (A). 2582871817187
It is known that the speed of bridge-mediated D-to-A singlet-exciton transfer (SET)
may be improved by enhanced m-stacking interactions between nearest-neighbor molec-
ular bridge (B) units linking D and A.18189 The rm-stacking amplifies the nearest-
neighbor SET couplings (VSET), leading to delocalized bridge singlet excitons (SE’s)

that channel D-to-A SET. 1014281907193 There are many examples of molecular assem-
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blies with enhanced m-stacking interactions. 319419

However, a bridge with large VST that supports fast SET, will not support
equally fast TET because the TET coupling between adjacent bridging units (VTET) is
generally much weaker than VSFT for inter-unit distances (AR) that are greater than
Van der Waals (VAW) (VTET decays approximately as e #4F whereas V55T decays
as 1/AR?). 910131421 Ty fllustrate this point, we computed both VSET and VTET for
25 (see section 8.9). Even for geome-
tries with 7-stacking distances slightly greater than VAW and with VSFT =~ 0.1 eV,
VTET 2 0.01 eV (see figure 8.13).

This known behaviour explains why long-distance TET is an incoherent hopping

some of the m-stacked systems mentioned above

process, characterized by slow and short hopping steps, in contrast to SET that may
involve quasi-coherent or fully coherent transfer mechanisms with faster and longer
steps (especially for m-stacked assemblies). Although TE’s have much longer lifetimes
compared to SE’s, the slow speed of TET constrains the transport distance that can be
achieved within these lifetimes. Thus, an improvement of the speed of TET in organic
bridges, in conjunction with the long TE lifetimes, could greatly enhance the maximum
distance of TET. Our goal is to show how to modify existing organic 7-stacked bridges
in order to transform them to molecular wires that enable fast and coherent TET over
long distances. Given the importance of purely organic electronic devices, we focus
on organic (rather than metal-organic) molecules. Further, we consider bridge archi-
tectures with a m-stacking core that support excitonic states that are largely localized
within the core. This characteristic makes it easier to protect the excitons from solvent
and environmental effects.

We suggest that a molecular bridge that could support delocalized TE’s and
enable coherent TET, should be designed to: (i) be homopolymeric, (ii) have very
tight m-stacking between units (maximum inter-unit distance should be VAW), (iii)
maintain the tight w-stacking in the presence of room-temperature disorder, (iii) have
low inner-sphere reorganization energy for TE formation within each monomer unit
(the outer sphere reorganization energy depends on the solvent and should also be
minimized by use of non-polar solvents). Similar design principles have been discussed
in the context of SET in molecular nanocrystals e.g., see refs. 28,190 using results
of theoretical studies of transport efficiency (for electrons, holes, or excitons) based
on tight-binding (multi-site) models. %19:13:14,16,190,193,199 The important parameters for
transport in a model with identical sites and independently-fluctuating site energies are
the root-mean-squared coupling (Vin,s) between nearest-neighbor sites (localized elec-
tronic states), the site reorganization energy A, and the standard deviation of the site
energy op induced by dynamic disorder. Several studies show that delocalized eigen-
states and coherent or quasi-coherent transport are possible when V., > o0g, % (e.g., see
refs. 28,190,192,193,199). This condition is relevant to identical nearest-neighbor sites

1,741 and is derived from the assumption that each site has independent energy fluctu-
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ations. The eigenstates of the multi-site system will not localize on each of the sites if
the nearest-neighbor coupling satisfies V ;11 > U, where U = (\; + \iy1)/4 = \/2,
(since A\; = A\jy1 = A). Therefore, Viys > ’5\ is an approximate condition that needs
to be satisfied to allow for the possibility of delocalized TE eigenstates. It does not
always guarantee the existence of delocalized eigenstates, i.e., it is a necessary but
not a sufficient condition for localization, because the total reorganization energy in
U may be greater than the sum of the inner-sphere monomer contributions due to
collective molecular and solvent motions. V,,s > o is also an approximate condition
that characterizes coherent transport (og ~ v/2KgT)), in addition to oy < V. We
use the criterion Vi > O’E,% to screen for molecular architectures that may support
coherent long-distance TET. The criterion is combined with electronic structure and
molecular dynamics computations and with a model for coherent transport. For each
structure we verify that oy < Viye.

Consider a polymeric wire with identical monomer chromophores and identify
the lowest exciton level of each monomer with a site level in a multi-site system (the
latter representing a homopolymer). Given that VTET is generally weak, it follows that
the primary goals in the design of a polychromophoric molecular wire for coherent TET
are the minimization of the site (monomer) reorganization energy A (A = A™°") and of
op (0 = op°"), and the maximization of V5. Typical minimal values for inner-sphere
A in molecules are of the order of 0.1 eV 189! Jeading to a room-temperature oy ~ 0.1
eV. Given the condition V,,s > o, %, the Vins magnitudes should be at least 0.1 eV.
Such magnitudes require at most VAW m-stacking distances that are not destroyed by
conformational disorder. Below we explore some potential structures that could fulfill
these parameter-value requirements.

Vura-Weis and co-workers probed the dependence of D-to-A TET mechanism on
bridge length using benzophenone (Bp) as D, naphthalene (Nap) as A and polyfluorene
as B.! The fluorene (F) monomers were connected via methylene linkers in face-to-face
(approximately m-stacked) geometries and the bridge length was varied from one up
to three F units (Fn, n=1-3) (see figure 8.1A,B). The experiment involved transient
triplet absorption measurements and showed that through-bridge tunneling mediates
transport for the shortest bridge length (one F unit), while for larger bridge lengths
the transport mechanism is multi-step thermally activated hopping. The TET times
for the dimer and trimer bridges were 100 — 200 psec (minimum bridge lengths of 7 to
10.5 A, respectively). In these systems the deduced D-to-B injection times and B-to-A
trapping times are similar.

Electronic structure and molecular dynamic (MD) simulations of the TET mecha-
nism on the Fn systems showed that the bridge TE’s are mostly localized in individual
F units due to thermal disorder that involves twisting about the methylene linkers,
destroying the F-to-F m-stacking interactions. %’ Further, the F-to-F V,..s was found to

be small compared to the F-monomer TE reorganization energy. This result is consis-
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Figure 8.1: (A) Fluorene monomer bridging unit (F1) used in ref. 1. (B) The structure
of Bp-Fn-Nap systems used in ref. 1. The bridges contained one up to three F units (Fn,
n=1-3). (C) Chemical structure of the proposed indenofluorene (6,12-dihydroindenoll,2-
b]fluorene) bridging monomer (IF1). (D) Molecular structure of the indenofluorene hexamer
(IF6) bridge (16.9 A length). The monomers are constrained to a rigid 7-stacked geometry
through two methylene linkers and the interchromophore distance is 2.8-3.0 A. The IF6
bridge is linked to a Ru(bpy)§+ D and a tetracene (Tet) A in approximately 4.2 A and 2.9 A
distance respectively.
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tent with the incoherent multistep hopping between F units for longer bridge lengths.

We can improve the F-based TE wires of ref. 1 by transforming them to wires
that fulfil the abovementioned conditions for coherent TET. Namely, minimize chro-
mophore TE reorganization energy, enable tight 7-stacking interactions between chro-
mophores, and remedy the problem of conformational disorder. To this end we propose
polymers of indenofluorene (IF)-based monomer units brought to optimal m-stacked
geometries by linking them with two methyl groups (see figure 8.1C,D). This linking
brings the nearest-neighbor chromophores at an average distance less than 3.4 A and

prevents torsional and slipping motions between the chromophores.

8.2 Results and Discussion

We tested the structural stability of the cofacial geometries and the w-stacking
interactions in the dimer and the longer polymers (figure 8.1D) via room-temperature
MD simulations. We also performed electronic structure computations to character-
ize the SE and TE spectra. The electronic structure methods included configuration
interaction singles (CIS) and time-dependent density functional theory (TD-DFT) for
the monomer and the larger systems, as well as higher-level ab-initio approaches for
the dimer (see section 8.6). The MD simulation results show that the tight m-stacking
is maintained even at room temperature. Figure 8.2(a) shows examples of the TE
eigenstates of the monomer (IF1), dimer (IF2) and decamer (IF10) computed with
CIS for the minimum-energy conformations. The energy difference between adjacent
(in energy) TE eigenstates is high (e.g., 0.2 eV for IF10 to 0.3 eV for IF2), implying
that the VTET between neighboring units is large. The TE eigenstates are delocalized
over several bridge units (see figure 8.2(b) and section 8.5).

To explore the effects of thermal motion on the nearest-neighbor V7TET

we
first performed room-temperature MD simulations on the dimer. Using the MD-
trajectory structures we computed (with CIS) the fluctuations in the energy split-
ting of the lowest two TE eigenstates, to estimate the nearest-neighbor coupling VTET
[AE = ET2<2) — ET1(2> ~ 2VTET] The MD-derived rms VTET is large (Vs = 0.13 eV)
with V,we = 0.12 eV, and oy = 0.04 eV. These values indicate that the thermal struc-
tural distortions do not significantly reduce the monomer-to-monomer TET coupling.

To investigate the effects of thermal motion on the TE energies of the monomers,
we computed, from the MD simulations on the dimer, the standard deviation (oE°")
of the lowest TE energy F (E = ET1(1>) of each monomer fragment using CIS. For each
MD dimer structure, we removed the methylene bridges that link the two IF units
and capped the carbon atoms at the positions 5’ and 11’ with hydrogens (see figure
8.7). We found that o°" = 0.12 eV, i.e., 0p°" & Vips. To test whether localized TE-
polaron formation is likely in these polymeric systems, we compared V., to the acti-

vation energy for monomer-to-monomer TET. The activation energy is approximated
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Figure 8.2: (a) TE states of the bridge type shown in figure 8.1 computed at CIS/def2-SVP
level of theory. Due to enhanced m-stacking, TE splittings are large (e.g., AET(Z) 7 =03
2 T 1

eV for the dimer). For longer polymers the TE band structure is stabilized. (b) Single
excitation molecular orbital contribution to the lowest two TE states of the IF10 (computed
with isosurface value 0.01). The figure shows only the largest contributions. The notations
(1),(2),(10) refer to monomer, dimer and decamer bridges respectively.

by U* = (Ap + Aa)/4, where Ap and A4 are the monomer reorganization energies
(A™°™) as shown schematically in figure 8.6. This notation implies that one monomer
is the TE “donor” (D) and the other monomer the TE “acceptor” (A). We computed
Ap(a) = 0.27 eV, (using TD-DFT and BP86'* functional) such that U** = (.14 eV,

mon

2
do not expect that TE-polaronic states are localized on a single monomer. Further, as

expected O.Eon ~ \/QKBTQ%K/\D(A).

To probe the delocalization of TE’s in the presence of disorder for longer poly-

a value that is of the same order of magnitude as V. Since V., ~ U**' = we

mers we performed room-temperature MD simulations on the decamer followed by
CIS computations on 3000 MD snapshots. From the snapshots we computed averaged
values of the HOMO and LUMO inverse participation ratios (IPR’s) (e.g., see refs.
27,28,201). The HOMO and LUMO have high contributions to the lowest TE’s, e.g.,
T1(10) : 40% HOMO—LUMO (for the other orbital contributions see section 8.8). As
reference IPR values we used those computed for the optimized geometry shown in
figure 8.2(b). The computations show that the MD IPR values vary approximately by
27% with respect to the reference IPR. The results imply that thermal fluctuations
largely preserve the delocalization of the TE’s shown in figure 8.2(b).

mon AMOR

In summary, for these types of bridges Vins ~ 03", =5

regime we estimate the intra-bridge TET rate &y, (to be defined below) using a N-site

. For this parameter
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tight-binding bridge Hamiltonian

Z i(vy ) (i + 1| + he) (8.1)

(see figure 2(a)). The index i is the monomer number, and |i) denotes the lowest TE
eigenstate of the monomer (F is the TE energy and V' = V,,5). We solve the Liouville

equation for the density matrix
Vi, Y
/)Jl Z zpzl pj,i<t)Hi,l ih ( 5 + o + %,g) Pj,l(t) (8:2)

where the v; terms are monomer TE population-relaxation rates and the «;; terms
are pure dephasing rates for all i, j TE pairs.?%22% Each ~; (i = 1 — (N — 1)) de-
scribes a phosphorescence decay rate with v; = kg’h) = (us)™! and yy = k;g’ kg_%z :
where k:j(BT_E)};) is the TET rate from the Nth monomer to an acceptor. The pure de-
phasing rates are set equal to vi; = Yaepn = i 'y/07 + 07, where 05y = 0. This
phenomenological model has been used in different contexts to study the transition
from incoherent to coherent transport.203205207 It incorporates both diagonal dynamic
disorder and population relaxation (we include approximately off-diagonal dynamic
disorder by setting V' = Vi,s). The model allows for analytical solutions of mean
first passage times (MFPTs) as a function of its few parameters. These analytical
solutions can be used to predict the approximate dependence of the intra-bridge TET
rate on bridge length. For our purposes we combine this approximate model with MD
and electronic-structure computations of its parameters in order to screen candidate
structures according to the estimated k;,,. The model is not a substitute to high-level
non-adiabatic simulations that also include effects such as spontaneous TE localization
and back reactions from electronic to nuclear dynamics. These effects may reduce the
value of ky, as compared to our estimate, but such simulations are very expensive for
the purposes of initial screening.

The model allows for a precise definition of k.. If the TE is initially located
at the 1st monomer, (probability Pi(t = 0) = 1), the overall decay time of the TE is
given by (1) = > .., fo t)dt. Using the above model, we compute (7) numerically
as a functlon of N and vy for the parameter regime V' > Aygepn =~ 0.1 eV and for yn
ranging from (1 fsec)™! to (10 nsec)™'. We find that (7) is not affected by the slow
phosphorescence rates, i.e., we get identical results if we set v,n = 0 and vy = kg_]??
Further, (7) is given by the MFPT to N, ie., (t) = [ tPy(t)dt/ [;° Pn(t)dt. The
numerically calculated (7) values are very close to the approximate formula
N n N(N —-1) N -1

(1)~ g b (Vo)™ + = V)T (83)

Ki—siz1(V, Yaeph) = 2(V/R)?/Yaepn is an effective transfer rate between nearest-neighbor
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Figure 8.3: (a) Schematic diagram of the tight-binding model used to estimate the intra-
bridge TET rates ki, = (7);, for a bridge with N sites (monomers). E is the monomer
TE energy, V = Vins is the rms nearest-neighbour TET coupling and og is the standard
deviation of the energies E arising from dynamic disorder. The ; for i = 1 — (N — 1)

are the monomer TE population relaxation rates. Each ~; equals v; = k:g)h) (monomer TE

phosphorescence decay rate) and 7y is the TET rate to an acceptor, vy ~ kgg?. The ~; ;

are pure dephasing rates given by v; ; = h™ !, /O'%(i) + 0']25(].). (b) (7)~1/yn versus yn (both
on a logy, scale) for N =5 (red) and N = 50 (black) with 4y = 1 pus™! (i = 1 — (N — 1)),
hyij =0.1eVand V = 0.15 eV (V > og). (c) Trapping time (7)ap and intrinsic bridge
TET time (7)p, versus vy, both in logarithmic scale, for N = 5 and N = 50. The circles
indicate the values of vy for which (7)trap = (7).
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TE populations and &(V, ) = 2(V/h)%/vxn.2°* We re-write the analytical formula for
(1) as (T) & (T)trap + (T)pr Where we have separated the trapping time (7)¢ap = N/vn
since it trivially depends on the bridge length and on the final-site population-relaxation
rate vy. The remaining terms depend on the bridge Hamiltonian and the dephas-
ing parameters and are written as (7)by = (T)brdeph + (7)brrelax With (T)brdeph =

N (B it (V; Yaepn)) ™t and (7Y brretax = Y52 (R(V, v)) ™", We see that when (1), <
-1

(T)trap the overall decay rate (7)~' is independent of V' and vgepn because it is rate-
limited by vy = k%78 ie., ()"! &~ yy/N. In the opposite limit, (T)pr 3> (7)trap,
the overall rate is given by <7‘> '~ (r);} . The intra-bridge TET rate is given by
For = <T>brl'

Figure 8.3(b) shows the numerically computed (7)™ /vy versus vy in logarith-
mic scale for N =5 and N = 50 using V' = 0.15 eV and hv, ; = 0.1 eV. Figure 8.3(c)
shows (7)ap and (7)p, in logarithmic scale for the systems in figure 8.3(b). From the
plots we deduce that (7)1, = 20 fsec and 2 psec for N = 5 and N = 50 respectively. The
circles in both figures show the vy values for which (7)tzap = (7). For lower vy values
the overall rate (7)~! becomes rate-limited by the trapping time. The computed val-
ues of (7)y, in figure 8.3(b) suggest very fast TET for bridge lengths of approximately
~ 1nm (N =5) and ~ 15 nm (N = 50), respectively. The ultrafast transfer times
for N = 5 (20 fsec) should be compared to the much slower TET times of 100-200
psec for the dimer and trimer bridges in ref. 1. The dependence of k. as a function
of bridge length N is given by ((7)brdeph + (T)brrelax) - Further, for Avgepnh < Vims
and Aygepn ~ 0.1 €V, it holds that (T)urdeph = (T)brrelax for yn < 10 fsec™. In this

broad regime, the distance dependence of the intra-bridge TET rate is approximately
koo L (V/0)?
br N(Nfl) Ydeph
Due to the ultrafast ky, predicted for such types of bridges, a common situation

for different choices of D and A w1ll be that the TET D-to-B injection rate kDTEE and
the B-to-A trapping rate kB H A are slower than ky,,. Therefore, the effective (bridge-
(eff, TET)

(see section 8.11).

mediated) D-to-A TET rate k| DA ) will be rate-limited by the slowest of kgf? and
kj(BT_E)};). If the initial D TE states are created by intersystem crossing (ISC) from D

SE states produced by D photoexcitation, it is possible that fast D-to-A SET will take
place. This is because any bridge architecture with a wide TE band will necessarily
have at least an equally wide SE band. Thus, the SET transport channel may out-
compete the TET channel. In this case, to enable D-to-A TET as opposed to SET, it

is necessary to use donors with fast ISC rates as compared to the D-to-B SE injection

(1SC) (SET)
>kp_p-

As a case study of the above constraints we used a Ru(bpy)3" complex for D,

due to its fast ISC rate (20-40 fsec)?*®2%% and long triplet lifetime (~10 usec).?0212,
213,214

rates, k

We connected it to a hexamer (IF6) bridge and a tetracene acceptor (figure
8.1(D)). The D and A moieties are linked to the bridge via methylene groups. Figure

8.4 (left-hand side) shows the TE eigenenergy manifold of the D-B-A system for one of
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Figure 8.4: Left: Energy level diagram of the TE eigenstates of Ru(bpy)s" - TF6 - Tet
system computed at wB97/def2-SVP level of theory. Right: Hole-particle pairs of the natural
transition orbitals (NTOs) of some TE’s. Tig is localized on D, 77 on A, T, on B and Tig,
Ty are D-B and D-A CT TE’s.

the geometries we considered, computed at the gas-phase using TD-DFT (wB97/def2-
SVP 15215 and see section 8.7 for higher basis set computations). The right-hand side
shows representative TE eigenstate of the entire D-B-A systems. The D-localized TE
energies are above the lowest B-localized TE energies, the latter being above the low-
est A-localized TE. Further, there are no charge transfer (CT) D-B or A-B TE’s with
energies below the other TE’s so that there is no CT state trapping. This is an optimal
placement of the TE bands for coherent resonant D-to-A TET. Further, the bridge-
localized TE eigenstates have delocalization lengths that cover the entire bridge. For
this system, the simulations described in figure 8.3(b) for N = 6 predict an ultrafast
intra-bridge TET rate over a bridge length of ~1.5 nm (ky,, ~ (10fsec)™1).

The design requirements for proposing the polymeric structure in figure 8.1
could be satisfied for a variety of monomer units. For example, for a perylene diimide
(PDI) monomer the inner-sphere reorganization energy of the lowest TE is small, ap-
proximately 0.1 eV (see section 8.9). We performed computations on perylene-based
polymers in order to explore different candidate structures (see section 8.9). Among
our trial systems the best, from the point of view of optimizing coherent TET, are
built from polymers with doubly-linked monomers using methyl linkers that bring the
monomers to sub-VdW intermonomer distances (see figure 8.5). The necessity of dou-

ble linkage is illustrated in figures 8.5(a-c). Figure 8.5(a) shows a dimer system with a
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(molecular wire enables coherent transport)  that enables coherent transport

Figure 8.5: (a) Structure of anthra[2,1,9-def:6,5,10-d’,¢’,f'|diisochromene-1,3,8(10H)-trione
dimer with a single methyl group linkage which enforces sub-VdW m-stacking. (b) Longer
polymers with single methyl group linkages between monomers twist at room temperature,
breaking the m-stacking and diminishing the interchromophore TET coupling. (c¢) This prob-
lem can be remedied by double methyl linkages between units of anthra[2,1,9-def:6,5,10-
d’,¢’,f'|diisochromene-1,3,8(3H,10H)-dione monomers. In this case m-stacking is preserved for
all pairs of nearest-neighbor monomers and for each pair, Vipg > /\n;n. Such a wire supports
long-distance coherent ET as in the case of the wires shown in figure 8.1. (d) Structure
of two dicyclopenta[ghi,pqr|perylene derivatives linked with two methylene linkers to build
a dimer. This type of structure also has strong TET coupling compared to the monomer
reorganization energy (Vims = 0.2 eV).

single linker at C=0 positions. This C=0 to C—C substitution is challenging from a
synthetic point of view, but it may be possible.?!6 If a single methyl bridge is used per
monomer pair to build a polymer, molecular dynamics simulations show that the -
stacking breaks for a long-enough polymer, diminishing the TET coupling and the TET
efficiency (figure 8.5(b)). Such a system can be transformed to a molecular wire that
supports coherent TET over long distances if nearest-neighbor monomers are linked by
two methyl groups as in figure 8.5(c). In this case we find that Vs ~ 0.15 eV such
that Vs > ’\H;J, as in the previous IF example (see section 8.9). Another good system
for coherent TET, that might be easier to synthesize compared to the previous one is
shown in figure 8.5(d).?'” For this dimer structure we find that Vs = 0.2 eV such that
Vims >

mon

5 -
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8.3 Conclusions

In conclusion, we have proposed design principles for building long and rigid molecular
bridges with delocalized TE states at room temperature. Such bridges, when placed
in non-polarizable solvents, can mediate ultrafast and coherent TE transport from
donor to acceptor moieties for distances that are much longer than what is currently
possible. We have shown some example theoretical bridge structures that satisfy the
design principles and are predicted to support single-molecule ultrafast and coherent
TET. These structures are not meant to represent the only solutions to the constraints
imposed by the design principles. They are shown because they minimize, at room
temperature, intermonomer torsion and slide while simultaneously preserving sub-VdW

VTET are at most 30% of the average).

intermonomer distances (the fluctuations in
Although these three features present a great challenge for synthetic chemistry, they are
absolutely necessary for long-distance and ultrafast coherent TET along the molecular

wire.
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Supplementary material

8.4 Summary of the computational methodologies for the IFn

bridges

Ab-initio electronic structure calculations on the proposed bridges. We per-
formed geometry optimizations on the singlet ground state of the indenofluorene (IF)
monomer and the polymers (m-stacked dimer to hexamer). We used density functional
theory (DFT) and the ORCA program package!?2!8 at the B3LYP 14129219 Jevel of
theory in combination with the def2-TZVP!23 basis set. We applied the resolution
of identity approximation (RI) for the Coulomb integrals and the chain of spheres
approximation (COSX) to the exact exchange,?%??! in combination with the def2/J

222 without symmetry constraints. Dispersion corrections were in-

223,224

auxiliary basis sets
cluded via Grimme’s D3 correction using Becke-Johnson (BJ) damping.??> The
B3LYP functional paired with dispersion corrections was selected because it accu-
rately predicts the equilibrium geometries and the interaction energies of van der Waals
(VAW) complexes. 26228 The ground-state geometry of the decamer was relaxed using
steepest-descent molecular mechanics with the UFF (Universal Force Field) force field
as implemented in the Avogadro software.??” For these optimized structures we com-
puted the lowest excited states (singlet-to-singlet and singlet-to-triplet transitions) us-
ing the Amsterdam Density Functional (ADF) program package,®* and time-dependent
DFT (TD-DFT) with the Tamm-Dancoff approximation (TDA).'% We used the M06-
2X functional, 1'% combined with DZP basis set!%3 without symmetry constraints.
Meta-hybrids reliably predict the excitation energies and spectroscopic properties of
non-covalent complexes.?? The singlet-to-triplet transitions were also computed with
the Configuration Interaction Singles (CIS) method, as implemented in the ORCA pro-
gram package, in combination with the def2-SVP basis set. 123215

In section 8.5 we show the energies of the singlet exciton (SE) and triplet ex-
citon (TE) eigenstates of the monomer, dimer, hexamer and decamer bridges. Figure

8.8 shows the SE energies computed at the M06-2X/DZP level of theory while figures
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8.9 and 8.10 show the TE energies computed at the M06-2X/DZP and CIS/def2-SVP
levels, for comparison. In addition, tables 8.1, 8.2, 8.3 and 8.4 show the delocaliza-
tion of the molecular orbitals that contribute to the lowest two TE eigenstates, of the
monomer, dimer, hexamer and decamer, computed with CIS/def2-SVP (M06-2X/DZP
method gives similar delocalization of the orbitals).

Reorganization energy calculations for the monomer. For the computations of
the reorganization energies of the monomer, we used ADF to diagonalize the mass-
weighted Hessian matrix H by LT HL = w? on the optimized structures of the monomer
for the ground state (Sp) and first TE state (77), in order to obtain the normal modes
and their frequencies (where L denotes the eigenvectors and w the eigenvalues).!25126
Then we used the FCF (Franck-Condon factors) auxiliary program as implemented
in ADF to compute the reorganization energy for each normal mode.'?"12% The to-
tal reorganization energy for the transition Sy — T1(77 — Sp) equals to the sum of
the normal mode reorganization energies. The geometry optimization and frequency
computations employed the BP86 functional!'* and the TZ2P basis set'®® with the
TDA. Figure 8.6 shows schematically the monomer reorganization energies (Ap and
A4) used to compute the activation energy U in the main text. In the classical high-
temperature limit, the total reorganization energy (\) for donor (D) to acceptor (A)

TET is approximated by (see pages 289-291 in ref. 10)
A=Ap + Aa. (8.4)

Ab-initio electronic structure calculations on the donor-bridge-acceptor com-
plezes. We performed excited-state computations (with TD-DFT) on the combined
donor-bridge-acceptor system using the ORCA program package and with the wB97
range-separated functional,!'® in combination with the TDA and without symme-
try constraints. Range-separated functionals reproduce well the optical absorption
spectrum and the lowest-lying triplet excited states of heavy-metal systems (such
as Ru(bpy)§+).231’233 In addition, range-separated functionals combined with TDA
perform well in the calculation of TE energies in long m-conjugated molecules and
accurately predict the charge-transfer (CT) donor-bridge and bridge-acceptor excita-
tions, 199:160,198.234 The def2-SVP basis set was used for all the atoms. In the case of
Ru(II), the def2-SVP basis set was used for the outer-core [(45)%(4p)°®] and the valence
(4d)® electrons while the inner-core electrons were treated as effective core potential
(ECP).?% We also performed computations with the CIS method and the def2-SVP
basis set for comparison. The results were found to be similar to those computed with
TDA, i.e., the ordering of the TE exciton eigenergies and the localization of the TE
eigenstates were similar for both methods.

Effects of thermal fluctuations on the polymer structural stability. To test the
structural stability of the polymers (dimer up to decamer), we performed classical

molecular dynamic (MD) simulations using the AMBER program package.?*% The op-
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Figure 8.6: Schematic representation of the potential energy surfaces (PES) of the singlet

ground state S(()l) and the first TE state T, 1(1) of the donor and acceptor moieties (i.e., IF
monomer). The donor-to-acceptor reorganization energy A, is the sum of the reorganization
energies of the donor and acceptor,according to 8.4.

timized structures of the IF bridges were used as the initial structures for the simu-
lations. The atomic charges were calculated with the AM1-BCC model?*"?3® and the
simulations were carried out under conditions of constant temperature (298 K) and
the GAFF force field,?® for 10 nsec using 1 fsec integration step and the Langevin
2402242 oqual to 5 (ps) .

Effects of thermal fluctuations on the nearest-neighbor TE transfer (TET) cou-

pling. The effects of conformational fluctuations on the TET coupling were tested by

thermostat with frequency of collision

performing ab-initio MD simulations on the dimer structure, using the Q-CHEM pro-
gram package.?*® For the computations we used the B3LYP functional with the 6-31G*
basis set?** in combination with Grimme’s D3BJ dispersion correction. The simulation
was carried out with the NVT (constant volume and temperature) ensemble using the

white noise Langevin thermostat24°

at room temperature (298 K) for a total of 23 psec
with 1 fsec time step. The system was equilibrated during the first 3 psec. The 20 psec
MD simulation time for the dimer is sufficient for sampling its vibrational motions (we
performed normal mode computations on the dimer using ADF and BP86/TZ2P and
found that the lowest-frequency normal mode has a period of approximately 1 psec). To
compute the fluctuations of the TET coupling we picked 190 MD snapshots separated
by 100 fsec and for each snapshot we computed the TE splitting between the lowest
two TE states of the dimer (AE = ET2<2) — ETl(z) = QVTET> using the ORCA program

at CIS/def2-SVP level of theory. From the collection of the MD-derived splittings we
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Figure 8.7: The IF monomers are cut off from the dimer and each monomer is capped with
hydrogens at positions 5’ and 11°.

deduced the root mean square (rms) of the TET coupling (Vi in the main text).

Effects of thermal fluctuations on the monomer TE energies. To compute the
fluctations of the monomer TE energies we used the abovementioned MD-derived dimer
structures to create 380 (190 x 2) monomer structures by cutting the two methylene
bridges, and capping the carbons at the positions 5 ’and 11” with hydrogen atoms (see
figure 8.7). We computed the energy of the lowest TE state of each monomer structure
at the CIS level (in combination with def2-SVP basis set) using the ORCA program.
From the collection of TE energies we estimated the standard deviation o of the
main text.

Effects of structural fluctuations on the TE delocalization. We studied the ef-
fects of thermal fluctuations of the molecular orbitals of the IF decamer (IF10) by
performing classical MD simulations and using the MD-derived snapshots for subse-
quent computations of the frontier molecular orbitals. We used the AMBER and the
ORCA program packages to perform the MD simulations and the quantum chemi-
cal calculations respectively. First, the system was equilibrated for 1 nsec using the
Langevin thermostat (frequency of collision equals to 5 (ps)~') at a temperature of 298
K with a time step of 1 fsec. After equilibration, we ran MD simulations up to 9 nsec
using 1 fsec time step, with the GAFF force field. The atomic charges were calculated
using the AM1-BCC charge model. We performed computations of the molecular or-
bitals on 3000 MD trajectories separated by 3 psec. These calculations were carried
out at HEF /def2-SVP level of theory and the orbital eigenstates were used to evaluate
the inverse participation ratio (IPR) of the orbitals involved in the lowest TE’s of the
decamer (see section 8.8 for the IPR).
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8.5 SE and TE states of the IFn bridges with n = 1,2,6,10

In this section we show the computed SE and TE eigenenergies of the proposed
bridges (monomer, dimer, hexamer, decamer). In figures 8.9 and 8.10 we compare the
performance of the M06-2X functional to the CIS method for the computation of TE
energies. The results show that the TE energies (especially the lowest-lying TE’s) and
splittings are similar. Tables 8.1, 8.2, 8.3 and 8.4 show the natural transition orbitals
(NTOs) %4 of the lowest TE’s of the monomer, dimer, hexamer and decamer, computed
at the CIS/def2-SVP level of theory. The last column of each table shows the transition

amplitudes of particle-hole excitations (in percentages).
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Figure 8.8: SE states (S ) of the IFn bridges (n = 1,2,6,10) computed at the M06-
2X/DZP level of theory using the ADF program package. The notations (1), (2),(6), (10)
denote monomer, dimer, hexamer and decamer systems respectively.
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Figure 8.9: TE states (T ™) of the IFn bridges (n = 1,2,6,10) computed at the M06-
2X/DZP level of theory using the ADF program package. The notations (1), (2),(6), (10)
denote monomer, dimer, hexamer and decamer systems respectively.
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Figure 8.10: TE states (T'(™) of the IFn bridges (n = 1,2,6,10) computed at the CIS/def2-
SVP level of theory using the ORCA program package. The notations (1), (2), (6), (10) denote
monomer, dimer, hexamer and decamer systems respectively.
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Triplet State hole particle contribution

1 62%
27%
2
27%

Table 8.1: Hole-particle pairs of NTOs of the lowest two (Tl(l), T2(1)) TE states of the
monomer, computed at the CIS/def2-SVP level of theory (based on a 0.02 isosurface value).
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Triplet State hole particle contribution

52%
1

15%

32%
2

31%

Table 8.2: Hole-particle pairs of NTOs of the lowest two (TI(Q), 2(2)) TE states of the dimer,
computed at the CIS/def2-SVP level of theory (based on a 0.02 isosurface value).
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Triplet State hole particle contribution

43%
1

15%

30%
2

26%

Table 8.3: Hole-particle pairs of NTOs of the lowest two (T 1(6) , T2(6)) TE states of the
hexamer, computed at the CIS/def2-SVP level of theory (based on a 0.01 isosurface value).
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‘ contribution

particle

hole

Triplet State ‘

52%

15%

33%

29%

Table 8.4: Hole-particle pairs of NTOs of the lowest two (T1(10)7 T2(10)) triplet states of the
decamer, computed at the CIS/def2-SVP level of theory (based on a 0.005 isosurface value).
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8.6 Comparison between CIS (TD-DFT) and higher-level meth-
ods for the TE energies of the IF dimer

The lowest TE states of the IF dimer were computed using high-level ab-
initio methods including similarity-transformed equation of motion coupled cluster
method (STEOM-CC),?17252 perturbative doubles correction for the single excitation

,253 and algebraic diagrammatic construc-

configuration interaction method (CIS(D))
tion method to second-order (ADC(2)).?°*?5 We computed the lowest two TE states
(T 1(2), T2(2)> of the dimer using these methods and we compared the results with those
given by TD-DFT and CIS methods.

The STEOM-DLPNO-CCSD (similarity transformed equation of motion — domain-
based local pair natural orbital — coupled cluster with singles and doubles excitations)
were carried out using the ORCA program package in combination with def2-SVP basis
set. The TcupNosingles kKeyword was set to le — 11 and the active selection keywords
“Othresh”and “Vthresh”were set to 0.005. The CIS(D) and ADC(2) methods were
both carried out using the Q-CHEM program package. The CIS(D) method was com-
bined with def2-SVP basis set and the ADC(2) with 6-31G. All the computations were

performed at the optimized geometry of the dimer (see section 8.4).

STEOM-DLPNO-CCSD CIS(D) ADC(2) CIS MO06-2X wB97

(eV) (eV) (eV) (eV) (eV) (eV)
T 2.20 3.12 289 232 234 282
T 2.55 3.52 332 261 270 3.8
AFE 0.35 0.40 0.43 0.29 0.36 0.36

Table 8.5: TE energies of the IF dimer computed with different ab-initio methods. Values
are in eV.

Our results show that, although the absolute TE energies vary from 2.2 eV to 3.1 eV

across methods, the energy splitting AE (AE = E o) — ET(2>) that is used to estimate
2 1

the TET coupling varies much less 0.3 eV to 0.4 eV.
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8.7 Testing the accuracy of the TE energies of the donor-

bridge-acceptor systems using higher-level basis sets

In this section we test the accuracy of the TD-DFT computations on the donor-
bridge-acceptor system, with respect to the chosen basis set. To reduce computational
cost we performed our computations on the donor-bridge system where the bridge is
the IF2. We used the wB97 functional in combination with the def2-SVP basis set of
double-zeta quality. These results were compared to those performed with the def2-

TZVP basis set which is of triple-zeta quality. The results are summarized in table 8.6.

Triplet state ‘ def2-SVP def2-TZVP % deviation

1 2.46 2.43 1.15
2 2.51 2.48 1.29
3 2.52 2.49 1.24
4 2.60 2.57 1.25
5 2.64 2.60 1.58
6 2.66 2.61 1.80
7 2.69 2.66 1.13
8 2.99 2.95 1.29
9 3.07 3.04 0.82
10 3.10 3.07 0.85
11 3.16 3.12 1.19
12 3.21 3.19 0.56
13 3.23 3.20 0.97
14 3.31 3.30 0.52
15 3.40 3.35 1.46
16 3.41 3.36 1.31
17 3.43 3.39 1.36
18 3.46 3.40 1.59
19 3.48 3.45 0.78
20 3.51 3.48 0.72

Table 8.6: Comparison of TE energies computed using the wB97 functional with the def2-
SVP and def2-TZVP basis set for the Ru(bpy§+)-IF2 system. Energy values are in eV.

The results on the lowest 20 triplet excited states show that the TE energies
computed with def2-SVP are systematically larger by approximately 2% as compared
to those computed with def2-TZVP. Also the ordering of the TE states does not change.
Therefore, for our calculations on the donor-bridge-acceptor systems we used the def2-

SVP basis set since it provides accurate results with lower computational time.
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8.8 Computation of the IPR parameters

The delocalization of molecular wavefunctions is described by the inverse par-

ticipation ratio (IPR).2728:201.256-258 Consider the kth molecular orbital wavefunction

N N
k) =D ch ln) dold=1 (8.5)
n=1

n=1

expressed in the basis of N atomic (site) orbitals (¢1, 2, ...on). The IPR for this

molecular orbital is defined as

Ly = <Z | cn ‘4> (8.6)

where ¥ is the amplitude of the kth eigenfunction corresponding to the nth site. The
IPR can range from a value of 1 for a fully localized molecular orbital (localized at a
single ¢,,), to a value of N for a fully delocalized molecular orbital.

The TE states (|1r)) are linear combinations of singly excited slater-type deter-
minants that describe the promotion of an electron from an occupied molecular orbital

X to a virtual molecular orbital y;
Tr) = baillh)- (8.7)

The TE delocalization can be estimated from the delocalization length of the occupied
and virtual molecular orbitals involved in the excitation (L, L;).

We computed the IPR’s for the HOMO, HOMO-1 and LUMO, LUMO+1 molec-
ular orbitals of the decamer since they contribute to the lowest TE state (Tl(w) : 40%
HOMO—LUMO and 10% HOMO-1—LUMO+1 in figure 1(b) of the main text).
The reference values for the IPRs are those computed for the optimized geometric
conformation of the decamer (shown in figure 1(b) of the main text). We found that
the IPRs for the HOMO and HOMO-1 orbitals (figure 1(b), main text) are equal to
336 and 401 respectively, and those for the LUMO and LUMO+1 orbitals (figure 1(b),
main text) are equal to 489 and 462 respectively. These results reveal that, for the
decamer bridge, an IPR value of the order of ~ 400 (average value of the four molec-
ular orbitals that contribute to the lowest TE state) describes a fully delocalized TE
state. We also computed MD-averaged IPR values L; and standard deviations or, for
the relevant molecular orbitals yj contributing the TE state (using 3000 MD snap-
shots). The values L+ or, for the HOMO, HOMO-1, LUMO and LUMO+1 orbitals
are 207 £ 56, 258 £+ 65, 335 + 63 and 365 £ 54, respectively (mean value: 292 + 60).
Thus, the MD-averaged IPR is approximately 73% of the reference IPR value for the
optimized geometry of figure 1(b). These results imply that thermal fluctuations do
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not affect the delocalization of the TE’s on longer polymers.

8.9 SE and TE computations on the perylene-based dyads

Figure 8.11 shows the m-stacked perylene-based dimer structures we used to
compute SET and TET couplings. These are: perylene-3,4:9,10-bis(dicarboxyimide)
(PDI) ((a) and (b)), perylene-3,4-dicarboximide (PMI) (c) and terrylene-3,4:11,12-
bis(dicarboximide) (TDI) (d).

a

ooyl
sz

Figure 8.11: Molecular structures of perylene-based dimers. (a) PDI dimer of ref. 2, (b)
PDI dimer of ref. 3, (¢) PMI dimer of ref. 4 and (d) TDI dimer of ref. 5 with R = Me.

Table 8.7 summarizes the lowest two SE and TE energies of the dimers and the energy
splittings: AEgg = ESf) — Esf) = 2VSFT and AErp = ET2<2> — ET1<2) = 2VTET where
the notation (2) denotes dimer. The excited-state computations were performed using
the ORCA program package at the CIS/def2-SVP level and also at the wB97/def2-SVP
level applying the TDA. The geometric structures (a), (c) and (d) (see figure 8.11),
were taken from refs. 2, 4 and 5 respectively. The ground-state structure of (b) was
built using the Avogadro software, and optimized at the B3LYP/def2-SVP level of
theory (including dispersion corrections D3BJ) using the ORCA program.

The experimentally-derived SET couplings (from absorption band widths)!%
are approximately 0.1 eV. Further, SET couplings for several organic 7-stacked dimeric

systems computed using high-level methods are 0.1 - 0.4 eV. 3194198 Our CIS and DFT

163



computations on the m-stacked dimeric systems of figure 8.11 give SET coupling values
consistent with the abovementioned SET coupling magnitudes (table 8.7). The TET
couplings computed by both DFT and CIS methods are similar to each other and
are much weaker than the SET couplings (see table 8.7). On the other hand, for the
proposed IF dimer the TET coupling is an order of magnitude greater than those
predicted for the perylene-based dimers.

(a) (b) (c) (d) IF
CIS wB97 CIS wBY7 CIS wB97 CIS fwB97 CIS wBI7

AEgg 039 040 020 017 025 026 039 035 074 0.53
AErgy 0.02 0.03 0.02 0.03 0.01 0.02 005 005 029 0.35

Table 8.7: SE and TE energy splittings (AFEsg, AE7E) of the perylene-based dimers (shown
in figure 8.11) and the IF dimer. Values are in eV.

The inter-chromophore distance between the monomers in the above-mentioned
dimers (figure 8.11) is on average greater than VAW (~ 4A). To reduce this distance
we tried to link several perylene-based monomers via shorter bridges as shown in fig-
ures 8.12 and figure 4 in the main text. Similar monomer structures to the ones shown
in the figures have already been synthesized, e.g., see refs. 6,216. We performed MD
computations to estimate the V,,,s in these systems. The results show that the struc-
ture in figure 8.12(a) is very rigid (very low torsional and slippage motions), but the
intermonomer distance is always greater than ~ 4A. This causes weak TET coupling of
the order of ~ 0.01 eV. The structure shown in figure 8.12(b) shows large dynamic dis-
order that diminishes the TET coupling (~ 0.03 eV). On the other hand, the structure
shown in figure 4(c) in the main text exhibits large interchromophore TET coupling
because it maintains tight m—stacking. The average value of the TET coupling equals
to Vive = 0.14 with oy = 0.05 €V and the rms coupling equals to Vs = 0.15 eV.
If the monomers are linked with a single methyl group (see figure 4(a) in the main
text), MD simulations on the dimer and longer polymers (i.e., hexamer) show that the
m—stacking breaks (figure 4(b)). Therefore, to prevent this breaking it is necessary
to link the nearest-neighbor chromophores with methylene bridges in two positions
(as shown in figure 4(c) in the main text). We also computed the TE reorganization
energy of the perylene-based monomer whose dimer structure is shown in figure 4(a)
(A computed as described in section 8.4). We found that Ap(4y = 0.14 eV such that
Ut = 0.07 eV. Therefore for these types of doubly-linked bridges, Vims > A/2. An-
other candidate that also looks promising for building molecular wires that support
coherent TET is shown in figure 4(d) in the main text. For this system, the MD sim-
ulations followed by CIS computations give Vs = 0.2 €V, ie., Vips > A/2.

The MD simulations on the dimers and the longer polymers were performed
using the AMBER program package for a total of 10 nsec with 1 fsec time step and
the NVT ensemble at a temperature of 298 K (Langevin thermostat with frequency of
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collision equal to 5 (ps)~!). To estimate the MD-averaged TET coupling, we performed
quantum chemical calculations on 2000 MD-snapshot structures at the CIS/def2-SVP
level of theory (using ORCA).

Figure 8.12: Molecular structures of perylene-based chromophore dimers that were
tested for coherent TE transport. (a) Bisbenzimidazo|2,1-a:2’,1’-a’|anthra[2,1,9-def:6,5,10-
d’e’f’]diisoquinoline-10,21-dione monomers linked with methyl groups, (b) anthra[2,1,9-
def:6,5,10-d’e’f’]diisoquinoline-1,3,8,10(2H,9H)-tetraone (perylene diimide) monomers linked
with biphenylene bridges.%
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8.10 TET and SET couplings as a function of the inter-chromophore

distance

We tested the TET and SET couplings as a function of the inter-chromophore distance
between two fluorene monomers and two PDI monomers (3,4,9,10-Perylenetetracarboxylic
dianhydride), as shown in figure 8.13. The couplings were computed using the ORCA
program package at CIS/def2-SVP level. Our results reveal that the TET coupling
becomes two to three orders of magnitude smaller than the SET couplings when the

distance between the monomers becomes greater than VdW.

Fluorene dimer PDI dimer

-0.5 * ® SET coupling| | 00 - * # SETcoupiing] |
- » #® TET coupling . # TET coupling

10 . i 05 - J
. . .
. 1.0 4 . .
S -1.5 ® . =)
c B =
o a -154 -
3 20 3
o Q
= d ~©-20
g o5 — . g d
- = 25 -~ .
30 » i N o
. | -
-35 e [® 35+
T T T T T T T T T T T T T T T T T T
3.0 35 40 45 5.0 55 3.0 a5 40 45 50 55
I d(A) I d(A)
=VdW  =VdW <VdW  =VdW

Figure 8.13: SET and TET couplings (in logarithmic scale) versus distance (in A). The
TET coupling drops considerably below 0.10 eV for distances greater than VAW while the
SET coupling is much greater. left. Computations on the fluorene dimer. right. Computa-
tions on the PDI dimer.
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8.11 Distance dependence of the intra-bridge TET rate

From the analytical solutions to the Mean First Passage Time (MFPT) in the

model described in ref. 204, we define the intra-bridge rate as ki, = 1/(7)y- where,

<T>b1“ ~ <T>br7d€ph + <7—>br,relax

N(N B 1) “Ydeph

{T)br,deph = 9 2(V/h)? (8.8)
. N -1 YN
<T>br,relax — 9 2(V/h)2 .

Figure 8.14 shows the intra-bridge TET rate k;,. (in logarithmic scale) as a function of
the bridge length N, computed for V = 0.2 eV, Aiygepn = 0.1 €V and vy = (10 nsec) ™.
In the range of vy < (10 fsec)™! the behavior of kj, is near identical and is dominated

by <T> br,deph-

14!0 T T T T
L ]
13,5 4 |
13,0 4 hd
=
X .
o
B 125- .
L ]
[ ]
12,0 4 .
[ ] -
L
»
11,54
T T T T T T T T T T
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Figure 8.14: Distance dependence of the intra-bridge TET rate (k) (in logarithmic scale)
as a function of the length of the bridge. The simulations were performed for V = 0.2 eV,
FYaeph = 0.1 eV and yx = (10 nsec) .
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8.12

Ground state structures of the proposed IF bridges

Below are the atomic coordinates of the optimized ground-state structures computed

according to section 8.4.
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IF hexamer:
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CHAPTER 9

Triplet excitation energy transfer between quantum

dots and organic molecules

9.1 Introduction

In this chapter we describe our work related to triplet exciton transfer (TET)
between nanocrystals (NCs) and molecules. We investigate the TET mechanisms of di-
rect Dexter energy transfer (DET) and sequential charge-transfer (CT) between a CdSe
nanoparticle (NP) triplet sensitizer, and a modified structure of boron dipyrromethene
(BODIPY) acceptor, linked to the NP. The TET kinetics in CdSe-BODIPY systems
was recently reported by T. Lian and his co-workers ((a) Jin, T.; Uhlikova, N.; Xu,
Z.; Zhu, Y.; Huang, Y.; Egap, E.; Lian. T. J. Chem. Phys. 2019, 151,241101. (b)
Jin, T.; Uhlikova, N.; Xu, Z.; Zhu, Y.; Huang, Y.; Egap, E.; Lian. T. J. Chem. Phys.
2020, 152, 214702.) The authors performed transient absorption spectroscopic (TAS)
measurements and explored the different transport pathways to the formation of triplet
excitons (TE’s) in BODIPY following photoexcitation of the CdSe NP. These path-
ways (transport mechanisms) are described as direct, and CT in order to characterize
the intermediate states that are mediating TET. In the direct mechanism the *D TE
transfers to the A without visiting an intermediate excited state (D holds for donor
and A for the acceptor), i.e.,

*D*A — D3A*. (9.1)

The interaction matrix element for this transition is

(*D* A[hP9|D?A*) = —(¥ptpa- [Ypiba), (9.2)

see eq. 2.61c in section 2.5.3 for details. In a C'T mechanism, the D TE transfers to
the A via a CT exciton state such that

DA LL DA~ 2L D3a*, (9.3)



i.e., electron transfer (ET) followed by hole transfer (HT), or
DA L5 DAY E5 D3 (9.4)
i.e., HT followed by ET. The ET interaction matrix element is given by
(D*|R19|A*) = VE. -, (9.5)
whereas the HT interaction matrix element is given by
(D[R] A) = =V, (9.6)

see egs. 2.68 and 2.70 in section 2.5.4 for details. However, the physical origins of
these TET mechanisms are still unclear for this particular system. In order to better
understand these mechanisms, we examine the electronic-structure properties of the
triplet excited states, and the opto-electronic properties of the CdSe-BODIPY assembly
using theoretical methods and ab-initio quantum chemical computations, in order to
better understand these mechanisms. This work is in collaboration with the group of

Prof. D. N. Beratan at Duke University USA and it is still in progress.

9.2 A brief description of the experimental observation

In the experiment, the authors photoexcited the CdSe quantum dot (QD), and
using transient absorption (pump-probe) spectroscopy, they found that the direct DET
pathway from the QD to the BODIPY does not contribute to TET (see figure 9.1(a)).
They claim that the sequential CT pathways from the excited QD state to the triplet
BODIPY state dominates the kinetics. 2

The schematic diagram of figure 9.1(b) shows the three proposed pathways to the
formation of triplet excited states on the acceptor molecule following photoexcitation
of the donor QD. The triplet excitons in the acceptor moiety can be created through
DET from the QD triplet state which is generated via intersystem crossing (ISC) from
the singlet QD states i.e.,

*QD* — BODIPY — QD — *BODIPY*. (9.7)

The CT pathways as proposed in the paper are as follows (see figure 9.1(b)):

1QD* — BODIPY =25, QD — 'BODIPY* £= QD™ — BODIPY™"

(9.8a)
L. QD — *BODIPY*
1QD* — BODIPY 2% QD™ — BODIPY ' £% QD — *BODIPY* (9.8)
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Figure 9.1: (a) Schematic representation of the TET pathways in the CdSe-BODIPY sys-
tem. The BODIPY molecule is attached to the spherical surface of the CdSe NC via oxy-
gen atoms. The QD is photo-excited at 500 nm to trigger TET to the BODIPY acceptor.
According to the experimental results, TET is favored via sequential CT. (b) Schematic
diagram demonstrating the possible triplet formation pathways in the QD-BODIPY com-
plex: (i) DET pathway (QD*-BODIPY —QD-BODIPY*) [black arrow (1)], (ii) FRET QD*-
BODIPY—QD-'BODIPY* followed by ET QD-'BODIPY* —-QD~-BODIPY™ and back ET
QD-BODIPY" —QD-BODIPY* [blue and yellow arrows (2)], (iii) hole transfer QD*-
BODIPY —QD~-BODIPY™ followed by ET QD~-BODIPY* —QD-3BODIPY* [green and
yellow arrows (3)].

where FRET holds for Forster resonance energy transfer (see eq. 2.60 in section 2.5.3).
There is evidence that the QD™ — BODIPY ™" intermediate state involves an ISC tran-
sition from the singlet *(QD~ — BODIPY™) state to the triplet *(QD~ — BODIPY™")
state, i.e.,

1(QD~ — BODIPY') £% 3(QD~ — BODIPY™"). (9.9)

The mechanism of this transition is not yet resolved. 2%

The authors measured the optical spectrum of the free QD, the free BODIPY
and the QD-BODIPY system. They found that the absorption peak of BODIPY is
centered at 656 nm and they attributed it to the transition from the ground to the
first singlet excited state of the molecule (S — S7). The QD absorbes at 584 nm
and this absorption is attributed to the lowest valence-to-conduction band transition
(1S3/2 —1S.). 259261 At 500 nm there is negligible absorption of BODIPY. Therefore,
the QD is selectively photoexcited using 500 nm laser pulse to sensitize the TET to
the acceptor (see figure 1 in ref. 259).

The authors performed TAS measurements and the transient absorption spectral
evolution were fitted to obtain the kinetics of each species. From the fitting they derived
the rate constants for all the transitions, as shown in figure 9.1(b). Their results showed
that within 1 nsec 80% of the excitons undergo fast FRET (pathway (2) in figure 9.1(b))
and HT (pathway (3) in figure 9.1(b)). Only 20% of the excitons remain in the QD.
The triplet excited-state population in BODIPY begins after ~1 nsec. This means
that the FRET and HT processes out-compete the direct DET pathway (pathway (1)
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PBE PBEO CAMY-B3LYP

o

A Ar(A) A Ar(A) A Ar(A)
S1 0.75 1.17 0.73 1.07 0.71 1.12

Table 9.1: TD-DFT diagnostic indices A and Ar computed using three different methods:
PBE, PBEO and CAMY-B3LYP for the BODIPY molecule. The diagnostic tool indicates
that the Sy — S; transition is local (for details see section 6.6).

in figure 9.1(b)). Therefore, the main pathway to the formation of TE in BODIPY,
as claimed by the authors, involves the charge-separated (CS) intermediate state (see

figure 9.1(b) and ref. 259 with the related supplementary material).

9.3 Theoretical computations on the molecule and the QD

Our first goal is to simulate the absorption spectrum of the BODIPY molecule
and the QD, and compare with the experiment. The choice of an appropriate DFT
functional to describe the optical excitations of the BODIPY molecule, requires exam-
ining the CT characteristics of the lowest-lying BODIPY excited states by computing
the so-called metric of the electronic excited states (see details in section 6.6). This
includes the calculation of the A- and Ar-indices.!?%!2! The combination of these two
quantities characterizes the type of the excitation transition (local or CT) and their
values are associated with the choice of an appropriate functional. To compute the
metric of the excited states for the BODIPY molecule, we use the Amsterdam Density
Functional (ADF) program package® and we compute the A- and Ar-indices for each
of the lowest-lying excited states. This is done at three different DFT levels of the-
ory: the generalized gradient approximation (GGA) method with the PBE functional,
the global hybrid (GH) method with the PBEO functional, and the range-separated
(RS) method with the CAMY-B3LYP functional). We use the TZ2P basis set, and
the ground-state geometries are initially optimized at the same level of theory as the
computations of the excited-state indices. The diagnostics A and Ar show that the
first singlet excited state (which leads to the absorption peak of interest) describes a
local HOMO-LUMO transition. Conventional DFT methods such as GGA and pure
GH (~20-25% Hartree-Fock (HF) exchange) are adequate for its description (see table
0.1).121,156

For the computation of the absorption spectrum of the BODIPY molecule we
choose the B3LYP functional combined with TZ2P basis set, and Grimme’s D3 disper-
sion corrections using Becke-Johnson damping are included. Solvents effects are also
included via the COSMO (“COnductor-like Screening MOdel”) using the dielectric
constant (e = 2.38) for toluene. The computed absorption band is centered at 644nm
(1.93 eV). This is in good agreement with the experimental absorption band which is

centered at 656nm (1.89 eV) with ~10 nm deviation from the experimental absorptive
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Figure 9.2: Calculated absorption spectrum of the BODIPY molecule computed at the
B3LYP/TZ2P level of theory using FWHM = 25 nm. The first absorption peak is centered
at 644 nm and it is attributed to the transition Sy — S7. This transition is of HOMO—LUMO
character.

peak [see figure 9.2]. The computed absorption peak is broadened at FWHM = 25 nm
(same as the experimental). Using the calculated oscillator strength, in combination
with the FWHM and the excitation energy, we estimated the extinction coefficient
via eq. 6.37. The computed extinction coefficient (3.14 x 10° M~5cm™!) is in good
agreement with the experimental one (9.18 x 10* M~%cm™).

The experimental absorption spectrum of CdSe QD shows that the first ab-
sorption band is centered at 584nm (2.12eV). From this excitonic absorption peak
wavelength Ay.., we can estimate the size of the QD of the experiment, using the
equation 262

d(nm) = (1.6122 x 10°")A%_  — (2.6575 x 107%)A3_ + (1.6242 x 107*)\?2

wav wav wav

(9.10)
— (4.2770 x 107" ) A\yay + 41.57.

d is the diameter of the spherical QD and A, is the wavelength. For Ay., = 584 nm,
we deduce that the diameter of the QD used in the experiment of ref. 259 is ~4 nm.
As a reference QD structure for our computations, we use those studied by M.
V. Kovalenko and his co-workers in their recent paper.263 This CdSe NP is spherical
with diameter 2.5 nm. The surface ligands are replaced by Chlorine atoms which are
electronically similar to oleate capping groups (see figure 9.3(a)). We do not use a
larger QD (e.g., ~4 nm diameter as in the experiment of ref. 259) in order to reduce
computational cost. First, we perform a ground-state computation at the PBE/TZP
level of theory with ADF, to estimate the HOMO and LUMO orbital densities. These
results show that the LUMO orbital is delocalized over the entire spherical QD (see
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Figure 9.3: (a) Molecular structure of the CdSe NP of 2.5 nm diameter (see ref. 263).
(b) Absorption spectrum of CdSe QD computed at sTDA/TZP level of theory. (c) Frontier
molecular orbitals of the CdSe QD.

figure 9.3). The absorption peak of CdSe QD corresponds to the 1S3/2 =S, excitation.
The 1S, energy level implies that the electron density has a spherical symmetry, in
accordance with our computations (see figure 9.3(c)).

The ionization potential (IP) of CdSe QDs passivated with oleic acid ligands
(2.0 - 4.5 nm diameter size), is 6.2 - 6.6 eV.?54267 Qur computed IP energy is ~6 eV
which is slightly lower than the experimental observations of refs. 264-267. We also
perform excited state calculations using the simplified Tamm-Dancoff approximation
(sTDA) as implemented in the ADF program package. The computation uses the
PBE functional in combination with the TZP basis set. The computed absorption
band is centered at 783 nm (1.58 eV) which is ~200 nm red-shifted compared to the
experimental absorption peak which is centered at 584 nm (2.12 eV) [see figure 9.3(b)].
According to eq. 9.10, for a spherical QD of 2.5 nm diameter, the expected center of
the absorption peak is at 515 nm. The computed absorption peak using sTDA largely

deviates from the expected value.

9.4 Conclusions and future work

Our future plans for this project are: (a) to improve our computations of the optical
properties and excited states of the NP, e.g., by using TD-DF'T instead of approximate
methods, (b) to explore the triplet exciton structure of QD-BODIPY complex, (c) to
explore using kinetic models the dynamics of ET/HT and TET processes as shown
in figure 9.1 and (d) to explain whether the favored mechanism for TET in the QD-

molecule interface is sequential TET via a CT intermediate state, or the direct DET.
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CHAPTER 10

Conclusions

In the present thesis we explored the mechanisms of triplet energy transfer
(TET) and charge transfer (CT) in molecules. We explained an experimental observa-
tion about direct optical excitation of an organic molecule from its singlet ground state
to its triplet excited states. The time-resolved electron paramagnetic resonance (TR-
EPR) experiments that were performed on this molecule, showed that the TR-EPR
signals had intensities of similar magnitude when the molecule was optically excited
in its highly absorbing region and in its non-absorbing region. To explain these obser-
vations we proposed two different pathways to the formation of triplet excited states
in this molecule. The first one via direct optical excitation from the singlet ground
state (Sop — T,n), and the second one via indirect optical excitation, namely through
intersystem crossing (ISC) from the photoexcited singlet state (So — Sy, =9, Tn). We
first performed relativistic ab-initio quantum chemical computations to calculate the
absorption coefficient (absorbance) for direct optical excitation Sy — T),,. Using the
computed absorption coefficient we estimated the population transfer from the ground
state to the triplet excited states. To model the indirect optical excitation pathway
(So — Sy 156, T.,) we wrote a code in MATLAB to compute the ISC rates using as
input the normal mode frequencies and the reorganization energies for the relevant sin-
glet and triplet excited states, computed at the ab-initio level. The computed ISC rates
were used to estimate the population transfer to the triplet excited states via indirect
optical excitation. We found that upon photoexcitation within and below the optical
absorption band, a measurable number of molecules (given the TR-EPR sensitivity) is
created directly from the singlet ground state to the triplet excited states, even though
the spin-orbit coupling interaction is weak. After optical excitation, these initial triplet
populations do not substantially change, since the computed ISC rates are very slow.
Thus, the initial triplet populations created for the two optical excitation regions are
similar. This conclusion explains why the TR-EPR signal intensities obtained for the

two excitation regions were of similar magnitude. This work was published in the Jour-
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nal of Chemical Physics [Mavrommati, S. A.; Skourtis, S. S. J. chem. Phys. 2020,
152, 044304.]

In another project described in this thesis, we proposed design rules for building
molecular wires that can be used as bridges linking triplet-exciton donors and accep-
tors, and that support fast and efficient coherent TET over long distances even at room
temperature. Based on the design principles, the bridges should be homopolymeric,
in 7-stacked geometry, rigid without structural disorder and with low inner-sphere re-
organization energy for triplet-exciton formation within each monomer. We suggested
several polymer structures as TET wires, and for these structures we modeled TET.
We computed the monomer-to-monomer TET coupling by ab-initio and molecular-
dynamic simulations, and modeled the TET times using a tight-binding model and the
Liouville equation for the density matrix, in order to include relaxation effects. We
found that the monomer-to-monomer TET coupling for the proposed structures is large
(i.e., ~ 0.1 eV) and that the triplet excitons are fully delocalized on the whole bridge,
even at room temperature. The predicted time for TET from the first monomer to the
last monomer can be as fast as 2 psec for bridge lengths as long as 50 chromophore
units. This work was published in the Journal of Physical Chemisty letters (Mavrom-
mati, S. A.; Skourtis, S. S. J. Phys. Chem. Lett., 2022, 13, 9679-9687.)

In the thesis, we also described computations of C'T transition rates in organic
molecules using quantum mechanical approaches for describing the vibrational modes
of the molecules, and comparing them to classical approximations. As an example, we
computed the hole-transfer rate between two guanine molecules using ab-initio com-
putations and our MATLAB code. The rate computed quantum mechanically at room
temperature, was found to be approximately two orders of magnitude greater than
the rate computed using the classical Marcus formula. Moreover, the rate computed
quantum mechanically was largely temperature independent, but the rate computed
using the classical approximation showed strong temperature dependence. Our results
suggest that the classical Marcus formula might be highly inaccurate in describing CT
rates in small organic molecules in dry environments (e.g., molecular junctions). This
is because the majority of normal modes are high frequency and they remain quan-
tum at room temperature. In many interpretations of molecular junction experiments,
Marcus theory is assumed, and this may be incorrect.

Finally, the thesis also includes modeling of TET between nanoparticles (NPs)
and an organic molecules. This work was motivated by experiments on CdSe NP linked
to the BODIPY organic molecule.
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APPENDIX A

Computation of the reorganization energies using
ADF

Figure A.1 shows an example of a script input file of FCF-ADF, for the compu-
tation of the reorganization energies )\, for each normal mode of frequency w,, for the
transition S; — 77 in Cbz-TBT molecule. Next to the keyword “STATES” we specify
the two TAPE21 filenames of the initial and final states of the transition, resulting
from the two relative frequency calculations (S1_Freq.t21 and T1_Freq.t21). The key-
word “QUANTA” reveals the maximum number of the vibrational quantum levels that
are considered for both states for the computation of the FCFs (see figure 2.1). The
FCF-ADF program is able to compute the FCFs only for a small number of vibra-
tional levels (i.e., 2-3 depending on the size of molecule), due to large computational
cost. If we include zero vibrational levels for both states (QUANTA 0 0) then the
FCF-ADF program produces only the electron-phonon couplings using much smaller
computational time. The FCFs can be computed using eq. 2.29 as we explained in the
previous chapters. Using the keywords “TRANSLATE” and “ROTATE” we remove
the six vibrational and rotational degrees of freedom. FCF-ADF produces a binary
TAPEG61 file (with extension .t61) that includes detailed information about the calcu-
lation. The vibrational mode frequencies with the relative electron-phonon couplings
for both states are also shown in the standard FCF-ADF output file.

Figure A.2 shows the main part of the FCF-ADF output file for the ISC transi-
tion S; — T3 in Cbz-TBT molecule (see chapter 7). The output file of such a calculation
is separated in two sections, the first one for the first state (S;) and the second one for
the second state (77). Each state calculation is characterized by three columns. The
first column shows the mode frequencies w,, the second column shows the vibrational
displacements, and the third column shows the electron-phonon coupling parameters
A\, that are computed from the displacements via equation 7.1. From the output file

we extract the mode frequencies w, and the electron-phonon couplings per mode A,
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SADFBIN/fcf << eor

STATES S1_Freq.t21 T1_Freq.t21
QUANTA 0 O

TRANSLATE

ROTATE

eor

mv TAPE61 S1_T1_FCFt61
mv logfile S1 T1 FCF.log

Figure A.1: Example of the input script of the FCF-ADF program used to compute the
electron-phonon coupling parameters A, for each normal mode «, for the transition S; — T3
in the Cbz-TBT molecule.

and we use the equation 7.2 to compute the reorganization energies per mode \,. The
reorganization energy for the electronic transition, e.g, S; — T} equals to the sum over
all the mode reorganization energies, i.e., A = > A,. Starting from the first state
(i.e., S7) the total reorganization energy A is computed for the S; — T} transition.
Starting from the second state (i.e., T}) the total reorganization energy is computed

for the T3 — ) transition (see figure 2.1).
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FIRST STATE

Frequency Displacement

cmA-1 a0 amu”1/2
14.928444 -0.470345
21.353705 -0.569143
34.548057 0.270974
3349.698379 -0.001082
3791.325035 0.000847

SECOND STATE

Frequency Displacement

cmA-1 a0 amu”1/2
13.607488 -0.852327
18.244945 0.028333
33.806185 0.266311
3350.095652 -0.000090
3794.659815 -0.000706

Electron-Phonon coupling
(dimensionless)

0.117111
0.169485
0.102639

0.004035
0.003363

Electron-Phonon coupling
(dimensionless)

0.202613
0.007799
0.099784

0.000337
0.002801

Figure A.2: Example part of the output file of the FCF-ADF program used to compute the
electron-phonon coupling parameters A, for each normal mode «, for the transition S; — T

in the Cbz-TBT molecule.
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APPENDIX B

Short-time approximation of the quantum
Franck-Condon factor to examine temperature

effects

In this appendix, we investigate temperature effects on the non-adiabatic tran-
sition rate. We split the summation over the modes in equation 2.44 into its contri-
butions from the high-frequency modes (hw, > KpT') and the low-frequency modes
(hw, > KgT'). Therefore, the finite-temperature formula for the spectral density (eq.
2.43) yields!

AE 1 > AE 10242
Din om = it T3 0% t t dt B1

o (5) = 527 | T om0 (B.1)

The time-dependent functions 7; and 7, contain the contribution from the low (/) and

high (h) frequency modes respectively and are defined by

m(t) =exp {— > (72 ) 2tm) + (1 = cos(emt) + z‘smwmm}

¥ (B.2)
nu(t) =exp {— Z <L> [(2(n;) + 1)(1 — cos(w;t)) + isin(wjt)}} :

. hw]‘
J=M;+1

see refs.: (a) Nitzan, A. Chemical Dynamics in Condensed Phases: Relazation, Transfer and

Reactions in Condensed Molecular Systems; Oxford University Press, 2006. (b) Petrenko, T.; Neese,
F. Analysis and prediction of absorption band shapes, resonance Raman intensities, and excitation
profiles using the time-dependent theory of electronic spectroscopy. The Journal of Chemical Physics
2007, 127, 164319. (c) Petrenko, T.; Krylova, O.; Neese, F.; Sokolowski, M. Optical absorption and
emission properties of rubrene: insight from a combined experimental and theoretical study. New
Journal of Physics 2009, 11, 015001. (d) Petrenko, T.; Neese, F. Efficient and automatic calculation
of optical band shapes and resonance Raman spectra for large molecules within the independent mode
displaced harmonic oscillator model. The Journal of Chemical Physics 2012, 137, 234107. (e) Chan,
C. -K.; Page, J. Temperature effects in the time-correlator theory of resonance Raman scattering. The
Journal of Chemical Physics 1983, 79, 5234-5250.
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The summation in 7; goes over the low frequency modes (with M; the total number of
low frequency modes), while the summation in 7, goes over the high frequency modes
(with M — M, the total number of high frequency modes and M the total number of
vibrational modes of the system).

High-frequency modes with sufficiently strong electron-phonon couplings 5\]', give
vibrational lines in the spectrum that are well resolved. These modes determine the
vibronic peak positions and intensities of the spectral profile. On the other hand, low-
frequency modes are responsible for the vibronic peak shapes induced by thermal and
homogeneous broadening.

The contribution of the low-frequency modes in the integral of eq. B.1 appears
within the short-time approximation for which A2, > 1 and > A% (n,,) > 1. In that
case, the integral is approximated by expanding the argument of the exponential in

m(t) to order t* as follows

m(t —exp{ vam - ZA 2n) + 1)t } (B.3)

1 (521?2

This approximation leads to the damping factor e 2°* where,

Z 22 W2 (2(ny) +1) (B.4)

which causes an additional broadening of the spectral density of Gaussian form that
depends on the temperature T (temperature effects are included in the occupation
number (n,,)).

The lineshape function (eq. B.1) is now rewritten as,

AE 1 * am
Din om | L = T L it Ft_ie@ﬂt dt B.5
b ( R ) Gl T (B:5)
where we integrate the correlation function n;, that includes only the high-frequency
modes, and
eH_ZA 2(ny) +1) + 0% = 5 4 62 (B.6)

is the effective standard deviation. This temperature-induced broadening on the ab-
sorption lineshape arises exclusively from the low-frequency modes and leads to unre-
solved vibrational progressions in the spectrum. Each vibronic line is broadened into

a Gaussian of full width at half maximum (FWHM) corresponding to the parameters
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Figure B.1: Absorption spectra computed at 7= 0 K and T" = 300 K temperatures using
' =50cm~!and © = 100 cm ™. (a) the simulations were performed for a set of low-frequency
modes and (b) the simulations were performed using a set of high-frequency modes.

I' and O.¢, that is approximated by?

Wet(T', Ocgr) = 1.0692I" + \/ 0.8664I% + 8In(2)O2. (B.7)

Temperature effects are elucidated if the Weg is compared to the temperature-independent

broadening parameter (W) corresponding to the intrinsic parameters I' and ©,

W(T,0) = 1.0692T + /0.8664T2 + 8ln(2)0?2. (B.8)

For small vibrational frequencies {w,,}, m = 1...M; for which w,, < 0.5W the short-
time approximation is applicable and the modes are treated as low-frequency modes. If
the spectral density contains no vibrational frequencies that follow the above condition,
then all modes are treated as high-frequency modes. In that case, d = 0 and the effective
standard deviation O.g equals to the intrinsic standard deviation ©. The temperature
effects are negligible i.e., Wog = W, and the spectrum consists of well resolved vibronic
peaks that come from the high-frequency modes. On the other hand, the more normal
modes of low-frequency and large contribution to the spectrum (e.g., large electron-
phonon couplings (),,) we have, the greater the W.g and thus the temperature-induced
spectral broadening.

Figure B.1 show examples of spectra simulated using I' = 50 cm ™! and © = 100
cm~!. These intrinsic broadening parameters yield a FWHM that equals to W = 239.5
ecm~!. For a set of {w,,} with strong {S\m}, corresponding to low-frequency modes

(W < 146.8cm™!), we computed the effective FWHM parameters at zero (T = 0 K)

2see ref.: Petrenko, T.; Krylova, O.; Neese, F.; Sokolowski, M. Optical absorption and emission
properties of rubrene: insight from a combined experimental and theoretical study. New Journal of
Physics 2009, 11, 015001.
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BROADENING PARAMETETRS (cm**-1)

Intrinsic Effective
State

Sigma FWHM
Gamma Sigma FWHM

K 80.00K  298.15K

0 oK
1: [66.71] [38.70 9422  195.44] [131.94 259.71  496.93 |
r 0 {

Oef

80.00K  298.15K

W(T,0) = 1.0692I' + ,/0.8664T'2 + 8In(2)0?

Weit(T, Ocgp) = 1.0692T + |0.8664T°2 + 8In(2)0%

Figure B.2: Part of the output file of the orca_asa program showing the intrinsic and
effective broadening parameters and the relative FWHMs. The parameters I' and © are
defined in the input file (see figure C.2 in appendix C) but are shown also in the output
file. This output file is related to the calculation shown in figure C.2 in appendix C for the
S1 — T4 transition in Cbz-TBT molecule.

and room (7" = 300 K) temperatures. At 7' = 0 K the effective broadening parameter
equals to Weg = 850 cm ™! while at 7' = 300 K it increases to Weg = 1753 cm~!. The
spectrum is completely unresolved and the temperature-induced broadening defined as
AW = Wg(T = 0K) — Weg(T = 300K) equals to 903 cm ™! (see figure B.1 left-hand
site plot). In the opposite case, with a set of {w;} corresponding to high-frequency
modes (w; > 146.8 cm™'), the FWHM parameters at 7 = 0 K and 7' = 300 K are
the same (W = 294 cm™'). The temperature-induced broadening is zero and the
vibrational peaks are well resolved (see figure B.1 right-hand site plot). The broadening
parameters of eqs. B.7 and B.8 are derived from orca_asa program available for ORCA

(see appendix C and figure B.2).

213



APPENDIX C

Intersystem crossing rates computed using the

orca_asa program

The time-dependent approach for the transition rate between two electronic
states (eqs. 2.44 and 2.30) can also be applied to simulate optical band shapes (ab-
sorption, fluorescence), resonance-Raman intensities, and excitation profiles. F. Neese
and T. Petrenko developed a stand-alone computer program (orca_asa) linked to the
ORCA electronic structure program package, that analyzes the absorption and fluo-
rescence spectra of molecules, in the framework of the Independent Mode Displaced
Harmonic Oscillator (IMHDO) model.! The model assumes: (1) harmonic ground-
and excited-state PES, (2) excited state PES shifted relative to the ground-state PES
(see figure C.1), (3) vibrational frequencies that do not change and normal modes that
do not rotate in the excited state, and (4) an electronic transition dipole moment that
has no coordinate dependence.

Within the IMHDO approach, the absorption cross section o(E7) and the fluo-

see refs.: (a) Petrenko, T.; Neese, F. Analysis and prediction of absorption band shapes, resonance

Raman intensities, and excitation profiles using the time-dependent theory of electronic spectroscopy.
The Journal of Chemical Physics 2007, 127, 164319. (b) Petrenko, T.; Krylova, O.; Neese, F.;
Sokolowski, M. Optical absorption and emission properties of rubrene: insight from a combined ex-
perimental and theoretical study. New Journal of Physics 2009, 11, 015001. (c) Petrenko, T.; Neese,
F. Efficient and automatic calculation of optical band shapes and resonance Raman spectra for large
molecules within the independent mode displaced harmonic oscillator model. The Journal of Chemical
Physics 2012, 137, 234107.
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rescence efficiency Ayo(ER) of a system have the following forms in the time domain

47 s ‘ s 1
U(EL):S_thL Z(DOk)2Re/ exp{z (EL_EOk_Ek> t—Fkt—§@zt2}
k 0

A2 (C.1a)
X exp{ — Z % [(2(n;) + 1) (1 — cos(w;t)) + isin(w;t)] }dt
AkO(ER) :%(DORVRG/OOGXP{i <E0k—%—ER) t—F;J—%@zﬂ}
) (C.1b)

X exp{ — Z (Ai)” [(2(n;) + 1) (1 — cos(w;t)) + isin(w;t)] }dt

. 2
J

E;, and Eg denote the energies of the incident and emitted photon respectively. Fy
is the adiabatic minimum separation energy between states 0 and k (index 0 labels the
electronic ground-state and & labels the electronic excited states). Its value corresponds
to the position of the 0 — 0 vibrational peak (see figure C.1). s is the corresponding
Stokes shift related to the energy difference between positions of the maximum of the
first absorption band and the maximum of the emission spectra at the same electronic
transition. w; is the ground-state vibrational frequency of jth normal mode and Ay;
is the dimensionless origin shift of the kth exited state PES along the jth normal
mode coordinate. w; and Ay; entirely specify the positions and the relative intensities
of the different vibronic bands. I'y and ©j are the homogeneous and inhomogeneous
linewidth parameters respectively. I'y determines the linewidth and ©; the shape of
each vibronic band (i.e., Oy is the standard deviation of Ey) (see figure C.1). Doy is
the electric transition dipole moment evaluated at the minimum energy conformation
of the ground state. It determines the overall intensity of the optical spectrum. (n;) is
the thermal average occupation number of mode j at temperature T and its is given
by eq. 2.28.

The equation for the absorption cross section and the fluorescence efficiency

(eq. C.1la-b) reduces to the ISC rate constant of eq. 6.15, if we choose: Eg, = 0, sp =0
and ©, = 0. In addition, (Agy)” corresponds to the Huang-Rhys factors 2=

2 hwa

2.25 and 2.27). The summation over the electronic excited states k is removed and the

see e(gs.
(see eq

kth excited state now corresponds to the final triplet state Ty ,,. The energy Ey, (ER)
corresponds to the energy difference between the minima of the PES of the singlet S,
and triplet T} ,,,, states (AEs, 7, /h). Within these replacements, the ISC rate differs

from the absorption cross section o(Fy) (eq. C.1a) by a constant value that equals to

O'(EL)/EL -~ 47

AT 2
Int 3hc(D0k) (C2)

constant =
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Figure C.1: Shifted potential surfaces model for absorption and emission in the single-mode
representation. We show that the inhomgeneously broadened absorption band of width Oy,
comes from the superposition of individual vibronic bands that are homogeneously broadened
by T'y.

where Int is the time integral

Int = Re/ooexp{iELt—Ft—Z%[(2<nj>+1) (1—cos(wjt))—i—isin(wjt)]}dt. (C.3)

This is exactly the FCF integral of equation 2.29. The constant value can be eval-
uated empirically by computing the FCFs using our MATLAB code (i.e., to get the
Int_MATLAB which is equal to Int) and the o(Fy)/E, using the orca_asa program (see
equation C.2). These computations are repeated for a variety of vibrational systems
in order to derive an averaged value for the constant denoted (constant). The deduced
average value (constant) can be used in combination with the o(EL)/EL to find the
ISC rate as follows

_ o(B)/Er | (Sl BT, )

RS Tim, (AES”’T’“’ms/h) ~ {constant) h2 (C4)

The formula of equation C.4 is an alternative way to the MATLAB code for computing
the ISC rate constants using the results from the orca_asa program for the absorption
cross section, and the computationally derived average (constant).

The ISC rate constants can also be computed using the orca_asa program for

the fluorescence efficiency Ayo(ER) (see eq. C.1b). We should follow the similar above-
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mentioned procedure to derive the new constant value

Ako(ER) 4F3
constant’ = e 37rhf;3 (Doy)? (C.5)

and its average value (constant)’. In that case, the ISC rate will be given by equation,

2

Aw(Br)  [{Sal H| Ty m,)
(constant)’ h? ’

ks, Ty m. (—AESn,Tk’mS /h) = (C.6)

where the minus sign in equation C.6 results from the fact that in the process of emis-

sion, the minima of the PES of the initial and final states are reversed (see also eq. 2.52).

Using orca_asa for the ISC rate simulation

The orca_asa (“Advances Spectral Analysis”) is an autonomous program in-
terfaced to ORCA but can be used in combination with other quantum chemistry
computational packages, to simulate and fit the absorption, fluorescence (eq. C.la-b)
and resonance Raman spectral profiles. We use this program to derive the ISC rates by
computing the absorption cross section ¢(FEy) within the IMHDO model (eq. C.la),
and following the procedure that was described above (see eq. C.4).

The orca_asa input file for the absorption cross section includes information spec-
ified in blocks with the following order: (1) parameters that characterize the electronic
transition (e.g., temperature), (2) spectral ranges and resolution of the simulation, (3)
parameters that characterize each kth electronic state i.e., Eox, Dog,, Dok,, Dok., (4)
lineshape factors I'y, and Oy, (5) Stokes shift parameter s; for each kth electronic state,
(6) ground-state vibrational frequencies, and (7) dimensionless origin shifts Ay; of the
kth excited state PES along the jth normal mode in terms of the ground state.

Figure C.2 shows parts of the input file used to simulate the absorption spec-
trum of a molecular system. In block %sim we specify the model for the simulation i.e.,
IMHDOT which invokes that the spectrum is simulated within the IMHDO model at
a finite temperature (7'), specified by the parameter “TK” (lines 6-7 in the code). Be-
low, we specify the spectral range for the absorption simulation (“AbsRange”) in cm™!
(initial and final values), as well as the resolution of the spectrum by the parameter
“NAbsPoints” (lines 9-10 in the code). The next block ($el_states) contains the total
number of the electronic states involved in the transitions (line 20), and the adiabatic
minima separation energy (Ey), the homogeneous and inhomogeneous broadening pa-
rameters (I'y and ©y) and the x,% and z components of the transition dipole moment
5% (line 21 in the code). All these parameters are in units of cm™' except the dipole
moment which is expressed in atomic units. The block $ss specifies the Stokes shift
sk in units of em™! (line 31 in the code). In the previous line we specify again the
total number of the excited states (line 30 in the code). The last two blocks specify
the vibrational frequencies (w;) of the ground state (block $vib_freq_gs) and the origin
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# CALCULATION OF THE ABSORPTION CROSS SECTION USING THE VIBRATIONAL PARAMETERS
# OF THE ISC TRANSITION S1-->T1 IN Cbz-TBT MOLECULE

%sim

Model IMDHOT
TK 80

OCOoONOOUE WNRE

AbsRange -50000, 50000
NAbsPoints 262144

o
= O

=
N

end

o
> w

A/A  Transition Gamma Sigma Transition Dipole Moment (atomic unit)
Energy (cm**-1) (cm**-1) (cm**-1) Mx My Mz

[
o wn
B

[y
~

o
o

Sel_states
1

NN
[ =]

1 0.00 33.3565 0.00 1.00 0.00 0.00

N NN
b wN
=+

NN
o n
* ®
Z
>
%)
[=g
o
=~
o
wv
wv
>
=

(cm**-1)

W NNN
O W o0 N
= I+
)
7

# number of the excited states

w w w
w N -
I+
-
o
o

w
>

# A/A Frequencies
(cm**-1)

w w ww
0N O U»
I+

Svib_freq_gs

135 # number of normal modes
1 14.928444
2 21.353705
3 34.548057

A D ADDADW
b WN R OV

134 3349.698379
135  3791.325035

b DS D
O W o ~NO

A/A displacement
(dimensionless)

wv
N

w
=
* H B

v n
v b Ww
el
[N
p=3
o

v
o)}
-

# number of normal modes and number of the excited states
1 # define the displacements of the 1st state
2.208227
1.847430
0.419573

[ Be) B Ie) BNV, RV RNE,)
W NP O WO
W N =

134 0.049333
135 0.144076

a D
(VL RN

Figure C.2: Example of the input script of the orca_asa program used to compute the
absorption cross section o(Er). The script contains the vibrational frequencies and normal
modes of the 57 excited state, and the relative displacements of the 77 excited states of the
Cbz-TBT molecule. The absorption cross section was used to deduce the ISC rate constants
according to equation C.4.
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Relativistic SOC calculation Calculation of the reorganization energies Vibrational mode
to compute the ISC couplings A; using the FCF-ADF code (frequency) calculation
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Figure C.3: Flowchart showing the computational procedure we followed to compute the
ISC rate constants S, — T} ,,, using the orca_asa program implemented in the ORCA pro-
gram package. The vibrational frequencies w;, the displacements Aj; and the SOC constants
<Sn|ff SOC|T k,m,) can be computed using any quantum chemical program. For our project we
used the ADF program package.

shifts Ay; (block $sdnc) respectively. In the first line of the $vib_freq_gs block we define
the total number of the normal modes (line 39 in the code). Similarly, the first line
of the $sdnc block shows the number of normal modes and the number of the excited
states (line 56 in the code). The simulated absorption spectrum (o(Ey)) is computed
in units of extinction coefficient and the results are stored in a data file of .abs.dat
extension.

The ISC rates can be computed using the results for the absorption cross section
via the eq. C.4. In that case the orca_asa input file is modified such that the vibrational
frequencies of the ground state are replaced by those of the excited singlet state S,,,
and the dimensionless displacements of the excited-state origin now refer to those of
the triplet excited state T} ,,,. As we described at the beginning of this section, the
energy Foi, the Stokes shift parameter si, and the Gaussian lineshape factor ©, are
all set to zero. The transition dipole moment Doy is set to unity for convenience. In
figure C.2 we show the main parts of the orca_asa input file that consists of the vibra-
tional frequencies of the first singlet excited state (S7) and the displacements of the
first triplet excited state (77) along 135 normal coordinates. These input parameters
are those that characterize the ISC transition S; — T} in the Cbz-TBT molecule (see
chapter 6).

The normal modes and the frequencies (w;) of each normal mode j of the S
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state are taken from the vibrational frequency calculation performed using the ADF
program (see description in appendix A). The origin shifts A, are related to the mode
reorganization energies \; via Ay; = ﬂ\/w, and the \; parameters are com-
puted using the FCF-ADF program according to the procedure discussed in appendix
A. These are the input parameters on the orca_asa program and the computed absorp-
tion spectrum is printed in a two-column format where the first column corresponds to
the transition energies £, and the second column to the absorption cross section o(Ey).
The quantity o(EL)/Ey is divided by the constant value (constant) to get the FCF
integrals. The ISC couplings (51|I:[ SOCITy . ) are computed by performing relativistic
computations with the ADF program package. Then, the ISC rate is determined using
the equation C.4.

Our results suggest that the ISC rates can be derived from the orca_asa program
if one uses the vibrational frequencies and origin shifts of the singlet and triplet excited
states involved in the S,, — T}, transition (see figure C.3). The normal mode fre-
quencies, the Huang-Rhys factors and the electronic couplings can be deduced from any
quantum chemistry computational package, regardless of whether the orca_asa module
is implemented in ORCA. The ISC rate differs from the computed “optical spectrum”
by a constant value (see equation C.4). In the following section, we propose that this

constant value equals to 703.

Example calculations to estimate the constant value

In this section we describe how we computed the constant value of equation C.2
using the absorption cross section (0(FEy)) and the FCF integral (Int-MATLAB). The
constant value is an empirical parameter and can be extracted from different example
calculations.

Let’s consider that we have a simple system which consists of a single (low)
frequency mode (w = 564.6 cm™!) with mode reorganization energy A = 5645.9 cm™!.
We compute the o(Ey) using the orca_asa program (as described above), and the FCFs
with our MATLAB program (as described in section 7.1). The simulations are per-
formed at zero temperature (7" = 0 K) with homogeneous fitting parameter equal to
I' = 333.6 cm (10 psec). Figure C.4 shows the simulated optical spectrum o(E7)/EL
(left) and the computed FCF integrals (middle). The unresolved highest peaks are
first selected (numbered as 1-3 and 1’-3’ in the figure C.4), and for each peak we com-
pute the constant value according to eq. C.2. Table C.1 summarizes the computed
o(Ep)/Ep and Int_ MATLAB together with the deduced constant value for each peak.

Note that the constant value is such that the quantity %

has units cm. These
results give an average value for the constant that equals to 703.1 ~ 703. Therefore, if
the Int_MATLAB is multiplied by this value, we get back the absorption cross section

o(EL)/EL (see figure C.4).
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Figure C.4: Example of a single-mode system with low frequency mode. Left. Absorption
cross section o(FEr)/Er as a function of the energy Ey, computed with the orca_asa program.
Middle. FCF integral as a function of the energy Ej computed with our MATLAB code.
Right. The FCFs computed with the MATLAB program are multiplied by the (constant) ~
703 to produce the absorption spectrum o(Er)/Ef.

MATLAB orca_asa
peak No. Er (em™1')  Int_MATLAB (cm) Er (em™)  o(EL)/EL constant (eq. C.2)
1 5090.33 2.0327E-4 5090.33 0.1429 703.1673
2 4541.02 1.8521E-4 4541.02 0.1302 703.1866
3 4003.91 1.5333E-4 4003.91 0.1078 703.1423
1 5639.65 2.0401E-4 5639.65 0.1435 703.1621
2/ 6188.96 1.8860E-4 6188.96 0.1326 703.1283
3/ 6738.28 1.6179E-4 6738.28 0.1138 703.0806

Table C.1: Absorption cross section o(Fr)/Er and FCF integrals (Int_MATLAB) computed
at the energy FEj of each peak shown in figure C.4. The constant value was derived from
equation C.2 for each peak.

We repeat the simulations for a singe-mode system but now with high-frequency
mode (w = 967.9 cm™!) and reorganization energy A = 22583.5 cm~!. The simulated
spectrum at zero temperature (T = 0 K) with T' = 333.5 cm!(10 psec) is shown
in figure C.5(a). From the spectrum we deduce the o(FEL)/EL (=0.0724) and the
Int_ MATLAB (=1.0300E-4) at the energy of the maximum peak (Ej, = 22259.52 cm™!).
These parameters yield a constant value that equals to 703.0971.

Similar calculations are also performed using more complicated systems, in order
to estimate the constant value. For example, for a two-mode system consisting of a low
frequency mode (w; = 564.6 cm™!) and a high frequency mode (wy = 967.9 cm™!) with
mode reorganization energies A\; = 56545.9 cm™! and Ay = 22583.5 cm ™! respectively,
the constant value computed at the peak energy (Ep = 27343.8 cm™!) is 703.2497 (with
o(EL)/ErL =0.0855 and Int_ MATLAB = 1.2155E-4) [see figure C.4(b)]. The absorption
spectrum of a system consisting of 42 vibrational modes is shown in figures C.5(c) (at
T =0K) and C.5(d) (at T = 300 K). In the first case (7' = 0 K) the o(EL)/EL equals
0.1196 and the Int_MATLAB equals 1.7007E-4 cm which at £, = 1965.3 cm™! yield a
constant value that equals to 703.1098. In the second case (T' = 300 K) the o(Ep)/FEy,
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Figure C.5: Absorption spectrum o(FEr)/Ey, as a function of the energy E;, computed with
the orca_asa program (red lines) and by the MATLAB code multiplied by the (constant) ~ 703
(black lines). (a) single mode system with a high frequency mode w = 967.9 cm~!, (b) two-
mode system with mode frequencies w; = 564.6 cm™! and wo = 967.9 cm™!, (c¢) system with
42 modes at T'= 0 K and (d) the same system with 42 modes at 7' = 300 K.

equals 0.1164 and the Int_MATLAB equals 1.6560E-4 cm. These parameters give at
E; =1971.4 cm™! a constant value that equals to 703.0797.

To summarize, we perform computations using the orca_asa program and our
MATLAB code on several example systems in order to find the constant value given
by eq. C.2. These systems give an average constant value that equals to 703.14 i.e.,
(constant) ~ 703. We propose that the ISC rate parameters between singlet and triplet
excited states of a quantum molecular system can be computed by computing the
absorption cross section o(F}) that comes from the vibrational mode frequencies and
displacements of the excited states, and dividing the o(Fy)/E with the (constant) ~
703. The ISC rate is now given by eq. C.4. Note that the constant value was extracted
with the assumption that the dipole moment is always set to unity (D, = 1,D, =
0,D, = 0). The constant value is always the same and can be applied to all different
systems provided that o(Ey) is computed by setting (D, = 1,D, = 0,D, = 0 in the

input file of the orca_asa calculation.
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APPENDIX D

MATLAB code for computing the ZFS parameters

Within the distributed point dipole (DPD) model, the tensor components of the

D matrix are given by’

2

2 Sk R% 5 — 3R R
DKL _ % (6] ZPj_bpg_b ( KLItgB AB,K AB,L) (Dl)
AB

S25—1) Roup

(see section 6.4.5) where K(L) refers to the Cartesian coordinates x,y,z. « is the
fine structure constant (~ 1/137) and S is the spin. Rap is the distance between
the Ath and Bth nuclei and Rap k() is the K(L)th coordinate distance between
A and B atoms. PZ(_g) is the “gross” spin population on atom A(B). It equals to
Pj(_]g) =2 peam P — P?, where P}, = Coy(Coy)* and P}, = C (Chp)* are the
diagonal matrix elements of the density matrix P*®) for electron with spin a(b). o
and C7; are the expansion coefficients of the HOMO (H) and LUMO (L) molecular
orbitals respectively, in the basis of the atomic orbitals.

We compute the ZFS parameters of the lowest triplet excited state (77) of the
Cbz-TBT molecule (see chapter 6). First of all, the molecule is optimized in its triplet
excited state of interest (e.g., T1). A single-point calculation at the optimized 77 ge-
ometry shows that the 77 state involves the promotion of an electron from the HOMO
occupied molecular orbital to the LUMO virtual molecular orbital. Therefore, the
“gross” spin populations (P%7%) are computed for the HOMO and LUMO orbitals.
We use the ADF program package to calculate the molecular orbitals and we write a
MATLAB code based on eq. D.1 to compute the ZFS parameters of the molecule.

In ADF, the molecular system is build up from fragments. Linear combinations

see refs.: (a) Riplinger, C.; Kao, J. P.; Rosen, G. M.; Kathirvelu, V.; Eaton, G. R.; Eaton, S.
S.; Kutateladze, A.; Neese, F. Interaction of radical pairs through-bond and through-space: scope
and limitations of the point-dipole approximation in electron paramagnetic resonance spectroscopy.
Journal of the American Chemical Society 2009, 131, 10092-10106. (b) Bertrand, P.; Camensulli,
P.; More, C.; Guigliarelli, B. A local spin model to describe the magnetic interactions in biological

molecules containing [4Fe-4S]™ clusters. Application to Ni-Fe hydrogenases. Journal of the American
Chemical Society 1996, 118, 1426-1434.
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of the fragment orbitals (FOs) that belong to the same or different fragment cre-
ate symmetry-adapted basis functions that are called symmetrized fragment orbitals
(SFOs) and are used as basis functions for the molecular calculation. In our case the
fragments are the atoms and the FOs are the corresponding atomic orbitals. Since the
computations are performed without symmetry constraints, the SFOs involve one FO
from the same fragment. Therefore, each SFO corresponds to an atomic orbital.

Figure E.1 shows our MATLAB code for the computation of the ZFS parame-
ters. The HOMO and LUMO molecular orbitals are written in the basis of the SFOs
(i.e., the atomic orbitals) and the coefficients of the linear combinations are written
in the matrices “coefficientsHOMO” (for the HOMO orbital) and “coefficientsLUMO”
(for the LUMO orbtial) [see lines 8-9 in the code]. The SFOs corresponding to each
atom are written in a 2 x 2 matrix (“SFOs” see line 10 in the code). The SFOs are
numbered from 1 up to n_SFO (see line 19 in the code) and these numbers are written
in the first column of the “SFOs” matrix while the second column shows the number
of the atom that each SFO corresponds to. The atomic coordinates are written (in
Angstroms) in the “coordinates” matrix (see line 13 in the code).

The SFOs that belong to each atom (i.e., the atomic orbitals for each atom)
are summarized in matrix “SFOsInAtoms”. The first element of each row shows the
number of the atom, and the number of the SFOs that belong to each atom are written
in the adjacent columns (see line 25 and lines 47-74 in the code). This matrix helps
to separate which atomic orbital coefficients from matrices “coefficientsHOMO” and
“coefficientsLUMO” correspond to each atom. This procedure is described in function
“AtomicOrbitalCoeff” which returns two matrices (“coeffHOMO” for HOMO and “co-
eff LUMO” for LUMO orbitals) that contain the atomic orbital coefficients correspond-
ing to each atom, in rows (see line 27 and lines 75-105 in the code). The “coeffHOMO”
and “coeffLUMQO” matrices are used to compute the “gross” spin populations per atom.
The results are stored in matrix “P_atom” (see line 30 and lines 108-127 in the code).
The distance Rap (see eq. D.1) is computed using the atomic coordinates from matrix
“coordinates” , as described in function “distance” (see “R.mn”matrix in line 32 and
lines 128-141 in the code). Finally, the matrix elements Dy (K, L = x,y,2) (before
being multiplied by the constants, see eq. D.1) are computed by use of the “P_atom”
and “R_mn”matrices as input in the “D_matrix”function (see line 34 and lines 142-
175 in the code). The D-tensor matrix is not diagonal in the (z,y, z)-axis system.
Upon diagonalization of the matrix we get the three principal values of the ZFS tensor
(D11, Daa, D33) (see lines 41-42 in the code). We used the “zfsframes” function of the
EasySpin program available for MATLAB to find which of the three values correspond
to the alignments at the X, Y and Z directions (line 46 in the code). Easyspin chooses
the same notation as ORCA.?

2see ref. Stoll, S.; Schweiger, A. EasySpin, a comprehensive software package for spectral simulation

and analysis in EPR, Journal of Magnetic Resonance 2006, 178, 42-55.
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% PROGRAM FOR THE COMPUTATION OF THE ZFS PARAMETERS USING THE DPD MODEL FOR THE FIRST TRIPLET EXCITED STATE

% T1[>75% HOMO --> LUMO]

%

clear

cle

%% %% % % %% % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % %
% READING THE ADF OUTPUT

coefficientsHOMO = readmatrix('HOMO_syn2’); % read the atomic orbital coefficients of HOMO orbital
coefficientsLUMO = readmatrix('LUMO_syn2'); % read the atomic orbital coefficients of LUMO orbital
SFOs = readmatrix('SFOs_anti2’); % symmetrized fragment orbitals

% 1st column: number of SFO

% 2nd column: number of atom
coordinates = readmatrix('coord_T1_syn2’); % xyz coordinates of the T1 state in Angstroms

% 1st column: x coordinates

% 2nd column: y coordinates

% 3rd column: z coordinates

99696 %6 06%6%6%6 606965696 1067676 10696576 16 %6% %6 66 %% %6 1665656 %6 665656 6 06065676 6 6065676 6 06065626 6 0 %6 %6 %6 6 %6 %6 %676 %6 %6 %% %6 %6 %%
% CONSTANT VALUES IN S

n_SFO =1021; % total number of SFOs in the computation
N_atoms = 47; % total number of atoms in the molecule

g=2; % g factor of the electron (taken to be isotropic)
fine = 1/137; % fine structure constant in J.TA-1

%% % % % % % % % % % % % %6 %6 %o %o %o %o %o % %o % % % % % % % % % % % % % % % % % %6 %o %o %o %o %o %o %o %o %o % % % % % % % % % % % % % % % % % % % % % % % % % %o
%
SFOsInAtoms = SFO(N_atoms,n_SFO,SFOs); % matrix showing which SFOs corresponds to each atom
%
[coeffHOMO, coeffLUMO,num_columns] = AtomicOrbitalCoeff(N_atoms,n_SFO,SFOsInAtoms,coefficientsHOMO,coefficientsLUMO);
% coeffHOMO: matrix with the atomic orbital coefficients of HOMO for each atom in rows
% coeffLUMO: matrix with the atomic orbital coefficients of LUMO for each atom in rows
P_atom = GrossSpinPopulations(coeffHOMO,coeffLUMO,N_atoms,num_columns);
% matrix with the gross spin populations on each atom
R_mn = distance(N_atoms,coordinates); % squared distance between m-th and n-th nuclei
%
D_matrix = ZFS(N_atoms,coordinates,P_atom,R_mn); % ZFS matrix that is not multiplied by the constant values
%

D_matrix = D_matrix*0.52913; % 1 a.u. of length = 0.529 Angstroms
D_final = D_matrix*(g"2/8)*fine”2; % ZFS matrix in Hartree
D_final = D_final*2.194746*1075 % ZFS matrix in cm**-1 (1 Hartree = 2.1947*1075 cmA-1)

%

% Diagonalization of D matrix

[V_D, E_D] = eig(D_final);

E = diag(E_D) % the three principal values at ZFS tensor

%

% Take the 3 principal values as inputs, examine all possible eigenframe alignments, compute the scalar parameters D and E
for each of the them and determine the conventional one

zfsframes(E(1),E(2),E(3))

%% % % %% % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % %
% FUNCTION THAT DETERMINES WHICH SFOs CORRESPOND TO EACH ATOM
%% %% % % %% %% %% % % % % %% % % % % % % % % % % % % % % % % % % % % % % % % % %
%
function [SFOsInAtoms] = SFO(N_atoms,n_SFO,SFOs)

%

SFOsInAtoms = zeros(N_atoms,n_SFO); % matrix Atoms: 1st column: the number of atoms
% other columns: the SFOs corresponding to each atom
% (each row contains the SFOs of each atom)
%
n=1; % counter of the rows of matrix Atoms (counts the number of atoms)
s=2; % counter for the columns of matrix Atoms (which SFOs corresponds to each atom)
fori=1:n_SFO

SFOsInAtoms(n,1) = n;
if SFOs(i,2) ==n
SFOsInAtoms(n,s) = SFOs(i,1);
s=5+1;
else
n=n+l;
s=2;
if SFOs(i,2) == n
SFOsInAtoms(n,s) = SFOs(i,1);
s=5+1;
end
end
end
end
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%% %% % % % % % % % % %o % % %% %o %o % % % %o %o %o % % % Yo %o % % % %o Yo %o % % % %o %o % % % %o %o % % % %o Yo %o % % % %o %o % % % % %o %o Yo

% FUNCTION FOR WRITING THE ATOMIC ORBITAL COEFFICIENTS CORRESPONDING TO EACH ATOM IN A MATRIX

%% %% % % % % % %% % %o % % %% %o %o % % % %o %o %o % % % Yo %o % % % %o Yo %o % % % %o %o % % % %o %o % % % % Yo %o % % % %o %o % %% % %o %o Yo

%

function [coeffHOMO, coeffLUMO,num_columns] = AtomicOrbitalCoeff(N_atoms,n_SFO,SFOsInAtoms,coefficientsHOMO, coefficientsLUMO)
%

coeffHOMO = zeros(N_atoms,n_SFO); % matrices initially filled with zeros
coeffLUMO = zeros(N_atoms,n_SFO);
dim_coeffHOMO = zeros(n_SFO,1); % matrix that help us to find the dimensions of coeffHOMO matrix
%
k=1; % counter for SFOs
p=1; % counter for columns that we put the coefficient matrix columns
fori=1:N_atoms
m=i+l;

if m<= N_atoms
for j = k:(SFOsInAtoms(m,2) - 1)
coeffHOMO(i,p) = coefficientsHOMO(j); % HOMO coefficients
coeffLUMO(i,p) = coefficientsLUMO(j); % LUMO coefficients

p=p+1;
end
k=j+1;
p=1;
else
for j=k:n_SFO
coeffHOMO(i,p) = coefficientsHOMO(j); % HOMO coefficients
coeffLUMO(i,p) = coefficientsLUMO(j); % LUMO coefficients
p=p+1;
end
end
dim_coeffHOMO(i) = p;
end
num_columns = max(dim_coeffHOMO); % maximum number of columns in coeffHOMO matrix
end

%% %% % % % % % %% %o % % %% % %o % % % % %o %o % % % %o %o % % % % % % % %%
% FUNCTION FOR COMPUTING THE GROSS SPIN POPULATIONS
%% %% % % % % % %% % % % %% % %o % %% % %o % % % % % %o % % % % % % % %%
%
function P_atom = GrossSpinPopulations(coeffHOMO,coeffLUMO,N_atoms,num_columns)
%
P_atom = zeros(47); % matrix initially filled with zeros
%
P=0; % the gross spin population of each atom

fori=1:N_atoms
for j = L:num_columns
p_mm_H = coeffHOMO(i,j)*coeffHOMO(i,j); % HOMO - HOMO
p_mm_L = coeffLUMO(i,j)*coeffLUMO(i,j); % LUMO - LUMO
L_H=(p_mm_H-p_mm_L);
P=P+L_H;
end
P_atom(i) = P;
P=0;
end
end

%%%% %% % % % % %% % %% % % % %% % % % %% % % % % % % %% % % % % % % %% % % % %% % %%
% FUNCTION FOR COMPUTING THE SQUARED DISTANCE BETWEEN m AND n ATOMS
%% % % % % %% % % % %% % % % % % % % % % % %% % % % %% % % % % % % % % % % % % % % % %% % %
%
function R_mn = distance(N_atoms,coordinates)
%
R_mn = zeros(47,47); % matrix initially filled with zeros
%
for m=1:N_atoms
for n = 1:N_atoms
R_mn (m,n) = (coordinates(m,1)-coordinates(n,1))*2 + (coordinates(m,2)-coordinates(n,2))"2 + (coordinates(m,3)-coordinates(n,3))"2;
end
end
end
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142 %%%%% %% % % % %% % % % %% % % % % %% % % % %% % % % %%

143 % FUNCTION FOR CALCULATING THE D-TENSOR MATRIX

144 %%%%% %% % % % % % % % % % % % % % % % % % % % % % % % % % %

145 %

146 %

147 function D_matrix = ZFS(N_atoms,coordinates,P_atom,R_mn)
148 %

149 D_matrix = zeros(3,3); % matrices initially filled with zeros
150 %

151 D=0; % initial condition for D sum

152 fori=1:3

153 forj=1:3

154 for m = 1:N_atoms

155 for n=1:N_atoms

156 ifm==n

157 d=0;

158 else

159 non_diagonal = (coordinates(m,i)-coordinates(n,i))*(coordinates(m,j)-coordinates(n,j));
160 first_part = P_atom(m)*P_atom(n);

161 ifi==]

162 second_part = (R_mn(m,n)-(3*non_diagonal))/(sqrt(R_mn(m,n)))A5;
163 else

164 second_part = (-3*non_diagonal)/(sqrt(R_mn(m,n)))A5;
165 end

166 d = first_part*second_part;

167 end

168 D=D+d;

169 end

170 end

171 D_matrix(i,j) = D;

172 D=0;

173 end

174 end

175 end

Figure D.1: MATLAB code for the computation of the ZFS parameters according to equa-
tion D.1.

227



APPENDIX K

MATLAB code for computing the MFPTs

O oONOOUA WN R

NNNNRRRRR 2 B B B2
WNRPOLO®NOOUDWNRO

24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45

clear

cle

%

Format long

%

%% % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % Y% % % % % % % % % % % % % % % % % % % % % % % % % %
% CONSTANT VALUES

%

V =0.15; % coupling between sites (eV)

N =50; % dimensions of the Hamiltonian matrix
h_bar =0.6582; % Planck constant in eV*fsec

g_initial = 0.0000001; % initial value of g_| 0.0000001 0.001 (* fsec)
g_final = 0.001; % final value of g_| 0.001 1 (* fsec)
g_step = 0.0000002; % step 0.0000002 0.0005

rate_Vs_Gamma = zeros(round(g_final/g_step),2);

%

%% %% % % %% %% % % % %% %% % % % % %% % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % %% % % % % % %% % % % % % % % % %
% FIRST STEP: Building Liouvillian Matrix - PART 1

H = Hamiltonian(N,V); % Hamiltonian matrix
[Liouv_coh,stoixeia] = LiouvillianCoherent(N,H); % coherent part of Liouvillian matrix
%

s=1; % counter of gamma

for g_| = g_initial:g_step:g_final
% FIRST STEP: Building Liouvillian Matrix - PART 2

gamma = MatrixGamma(N,g_l); % Matrix with gamma rates

Liouv_incoh = Liouvillianincoherent(N,gamma); % incoherent part of Liouvillian matrix
LiouvilleMatrix = Liouv_coh + Liouv_incoh; % Liouvillian matrix with coh and incoh parts
%

%% % %% % %% % % % % % %% % % % % % %% % % % % % %% % % % % % % % % % % % % % % % % % % % % % % % % % % % % % %
% SECOND STEP: eigenstates - eigenvalues of Liouvillian Matrix

[right,energ,left] = eig(LiouvilleMatrix); % diagonalization of the Liouvillian matrix

% right: right eigenvectors (in COLUMNS)
% left: left eigenvectors  (in COLUMNS)
% energ: eigenvalues

[right_norm, left_norm] = Eigenvectors(N,right,left); % normalized right and left eigenvectors

%

%% % %% % % % % % % % % % % % % % % % % % % % % % %o %o % % %o %o Yo Yo Yo Yo Yo Yo %o %o %o %o %o %o %o %o %o %o %o %o %o %o %o %o %o %o % %o %o
% THIRD STEP: Calculation of the transition rates 1 --> N
time = CalculationOfRate(N,right_norm,left_norm,energ); % in fsec
rate = 1/time; % in fsech-1
rate_Vs_Gammal(s,2) = rate/g_|;
rate_Vs_Gamma(s,1) =g_I;
s=s+1;
end
writematrix(rate_Vs_Gamma,'RateVsGammaVsGamma_N50.xIsx’);
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%% % % %6 % % % % % % % % % %o Yo %o %o %o % % % % % % % %o %o %o % % % %
% FUNCTION TO CONSTRUCT THE HAMILTONIAN MATRIX
%% % % %0 % % % % %% %% % %o %o %o %o Yo % % % % % % %o %o %o %o %o % % %
%
function H = Hamiltonian(N,V)
H = zeros(N,N);
for f=1:N
H(f,f) = 0;
if f<N
H(ff+1) = V;
H(f+1,f)=V;
end
end
end

Ko%6%6 %% %% %% % %% %% %% % %% %% %% %% %6 %% %% %% %% %6 %% %% %% % %%
% FUNCTION TO CONSTRUCT THE COHERENT PART OF LIOUVILLIAN MATRIX
%6%6% %% %% %%6% %% %% %% % %% %% %% %% % %% %% %% %% % %% %% %% % %%
%
function [Liouv_coh,stoixeia] = LiouvillianCoherent(N,H)

%

H_complex = ctranspose(H); % complex conjugate of Hamiltonian matrix
%

L=0; % counter for the rows of Liouville matrix
r=0; % counter for the columns of Liouville matrix

%
Liouv_coh = zeros(N"2,N”2);
%
forj=1:N
fork=1:N
L=L+1;
form=1:N
forn=1:N
r=r+1;
ifk==n
first = H(j,m);
else
first=0;
end
if j ==
second = H_complex(k,n);
else
second = 0;
end
Liouv_coh(L,r) = first-second;
end

%%% %% % %% %% % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % %
% FUNCTION TO CONSTRUCT THE MATRIX WITH THE RELAXATION-DEPHASING GAMMA
%% % %6 % % % % %% % % % %o %o %o %o % % % % % % %o %o Yo %o %o % % % % % % %o Yo Yo %o %o % % % % % % % % % % %o
%
function gamma = MatrixGamma(N,g_1)

%

gamma = zeros(N,N); % in units of fsec**-1 (not eV)
%
g=0; % gamma
g last=g_|; % gamma of the last site
g_deph=0.2; % dephasing gamma
%
forj=1:N
fork=1:N
ifj==
gamma(j,j) = g; % diagonal elements
else
gamma(j,k) = g_deph; % non-diagonal elements
end
end
end
gamma(N,N) = g_last;
end
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%% % %% % % % %% % %% % % %% % % %% % % % % % % % % % % % % % % % % % % % % % % % %
% FUNCTION TO CONSTRUCT THE INCOHERENT PART OF LIOUVILLIAN MATRIX
%% % %% % % %% % % %% % % %% % % %% % % %% % % % % % % % % % % % % % %% % % %% %
%
function Liouv_incoh = Liouvillianincoherent(N,gamma)

%

h_bar =0.6582; % Planck constant (eV*fsec)

Liouv_incoh = zeros(N~2,N"2);

%

L=0; % counter for the rows of Liouville matrix
r=0; % counter for the columns of Liouville matrix
%
forj=1:N
fork=1:N
L=L+1;
form=1:N
forn=1:N
r=r+1;

ifj==m&& k==n
Liouv_incoh(L,r) = -1i*h_bar*((gamma(j,j) + gamma(k,k))/2)-1i*h_bar*gamma(j,k);
end
ifj==k&& m==n&& j==
Liouv_incoh(L,r) = -1i*h_bar*gamma(j,j);
end
end
end
r=0;
end
end
end

%% % % %0 % % % % %% % % % %o %o Yo Yo Yo %o % % % % % % %o %o Yo Yo Yo %o % % % % % % %o %o %o %o %o % % %o
% FUNCTION TO CALCULATE THE NORMALIZED RIGHT AND LEFT EIGENVECTORS
%% % % % % % % % % % %% % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % %
%
function [right_norm, left_norm] = Eigenvectors(N,right, left)

%

right_norm = zeros(length(right),1);

left_norm = zeros(1,length(left));

%

left = ctranspose(left); % left eigenvectors IN ROWS

normalization = sqrt(left*right);

%

for k=1:NA2
for m = 1:NA2
right_norm(k,m) = right(k,m)/normalization(m,m); % IN COLUMNS
left_norm(k,m) = left(k,m)/normalization(k,k); % IN ROWS
end
end
end

%% % %0 %0 % % % % %% % % % %o %o Yo Yo Yo %o % % % % % % %o %o %o %o %o % % % % % % %o
% FUNCTION TO CALCULATE THE TIME AND RATES OF TRANSITION
%% % %% % % %% % % %% % % %% % % %% % % %% % % % % % % % % % % % % %
%
function time = CalculationOfRate(N,right_norm,left_norm,energ)
%
h_bar =0.6582; % Planck constant in eV*fsec
%
sum =0;
sum_t=0;
for m = 1:NA2
Res = right_norm(N~2,m)*left_norm(m,1);
sum = sum + (h_bar*Res)/(1i*energ(m,m));
sum_t = sum_t - (h_bar~2*Res)/((energ(m,m)~2));
end
time = sum_t/sum; % in fsec
end

Figure E.1: MATLAB code for the computation of the mean first passage times (MFPTs)
by solving the Liouville equation.
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