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ABSTRACT (GREEK)

O TpwTdYVLEES aANAYES BLATURACTOVY ToL ONUEELVY DEWUEVA OTO TOUEN TNG NAEXTEIXHC
EVEQRYELNG, ONULOVEYWOVTAS VEEC TEOXANOELS OTOUG OLAYELPLOTEG NAEXTRIXWY CUCTNUATODVY
xou o€ xUBepvioelg ot 6o Tov xoopo. H ediocoppdmnon tng dlheinovoog maporywyng xat 1
avénon tne péytotng LATNONG, xS X 1 EVOWUATWCT AVAVEMGLIWY TNYWY EVEQYELS YId
TNV ETTEVEN TOV YAPATIXOY GTOY OV xohoTd TNV e€looppoTnon Topaywy NS xat (HTNong

dUOXONOTERT) XU axEBOTERT amd 6, TL 6TO TUPEADOV.

‘Evag and toug mo xohd epeuvnUEVOUC TOUELS TNE EVEALEINC TOU GUOTAUATOSC NAEXTEXNC
evépyelog eivon 1 Aworyeipion Evepyelonrc Zrtnone (Demand Side Management), 1 onola
otoyelel 61N Bedtinon Tne eueMElNC amd TNV TAELEE TKV EVERYELUXWY XATovaAwToOY. H
Awyeipion Evepyelanifc Zvtnong unopel va egopuocTel ue 600 tpoémouc: uéow Evepyetaxic
Andédoorg 1 Andxpiong Zhtnone (Demand Response), 1 onolo avagépetal o€ TpoypduuoTa
Tou evapEUVouY Toug TEAX0US YENOTES Vo Xdvouy Beoyunpdiecues uethoelg otn {Rtnon

evépyelag.

H oupBorr autic tne SlateiPrc €yxeitar oTny eloaywyr| Lo XordoMxd EQUpUOCUEVNC
uedodoroyiog yia TNV avamTLEN EVOS OOVOULXd amodoTixol cucThdatoc Alayceiolong
Evepyelaxic ZAitnone mou eondler oty elaywyr cuehiéiog Uéow xvATEWY oTN
HoP®T BUVUUIXAC EVERPYELXAS TWOROYNoNG.  Auth 1 dtatplPn e€etdlel meputépw TNV
mavr yeyioTtonolnon tne evehMlog mapouctdlovtac Eva xouvotouo mhaicto Amdxplong
ZAtnong mou oToyelel oTNY ehayloTonoinon Tou x6oToug LwpeeuTthc Exnpoomnnong
(Aggregation) houfdvovTag UTOPn TEYVIXES TURPUUETEOUS AAAS YOl TIORUUETPOUS ATOB0CTC.
To mpotewvduevo mhalolo Atdxpiong Zhtnong Aettoupyel e éva oAloTind Thaiclo To onoto
elval ETOWO VoL EQUOUOCTEL OE YWOPES OTIOU OL XAVOVES TNG AY0RAS NAEXTEIXTC EVERYELIG Kol

OL TEYVOLOYIEC AUTOPATIONOU ELVOL DPLIES X0 TTRONYHEVES.

To npotewvduevo clotnua Awxyeiptone Evepyetonnc Zhmnong pall pe to avamtuypévo
mhalolo Amodxpione ZATNoNG anooxomoly 6To Vo CEXAEDMOOLY TAHEWS TN Olordéoun
avexpeTdAAeuTn euehilion @optiou pe [Bdom T Souxég WOLUTEQOTNTEG TNG NAEXTEXNC

oy 0pdg TOL EQUEUOLETAL.
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ABSTRACT

Profound changes are disrupting the electricity sector, bringing about new challenges
for utilities, system operators and governments around the world. Balancing intermittent
generation and increasing peak demand while integrating renewables to meet climate goals
make balancing supply and demand harder and more expensive than it used to be. One of
the most well-researched fields of electricity system flexibility is Demand Side Management
(DSM), which aims to improve flexibility on the consumer side. DSM can be implemented in
two ways: through Energy Efficiency or Demand Response (DR), which refers to programs

that encourage end users to make short-term reductions in energy demand.

The contribution of this work lies in the introduction of a universally-applicable
methodology for deploying a cost-effective DSM scheme that focuses on flexibility
extraction through price incentives. This thesis delves further into flexibility potential
maximization by presenting an innovative framework for DR that aims to minimise the
Aggregator’s cost by considering technical and performance parameters. The proposed DR
framework serves as a holistic framework that is ready to be applied in countries where the

electricity market rules and automation technologies are mature and advanced.

The proposed DSM scheme along with the developed DR framework aim to fully unlock
the available untapped flexibility potential based on the market structure specificities of each

area of deployment.
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Chapter 1

Introduction

International energy landscapes are evolving rapidly as the increasing deployment of
decentralized and intermittent resources pose several energy management challenges to
system operators. Increasing shares of intermittent distributed energy resources (DER),
such as Photovoltaic (PV) systems, along with the transition to deregulated organizational
systems and market-oriented approaches initiate the loss of centralization in the management
and control of electrical power systems as well as the need for balancing supply with
demand. Unlocking flexibility at the demand-side, instead of investing in new non-renewable
transmission-connected generation capacity introduces a more pro-active and effective
approach for embracing this energy transition. The need for exploiting the available untapped
flexibility is more important than ever, now that the large shares of DERs in the distribution
network render prosumers as the predominant class of electricity customers. Demand Side
Management (DSM), which is defined as the utility activities designed to influence customer
use of electricity in ways that will produce desired changes in the utility’s load shape, i.e.
time pattern and magnitude of a utility’s load, is a promising method for balancing supply

and demand in power systems with a high share of variable renewable energy generation.

1.1 Motivation and Research Objectives

The lack of research on a comprehensive methodology for creating cost-effective
incentives for prosumers for altering their consumption patterns has led to the development
of a consistent and universally-applicable methodology to derive effective price-based DSM

schemes for the residential sector. The proposed methodology was verified through statistical



analysis and validated on a pilot-network comprising of 300 prosumers with roof-top PV
systems. The methodology addresses the technological challenges related to price-based
DSM design such as the optimum number of Time-of-Use (ToU) block periods, evaluation
of the impact of the proposed scheme, training of the consumers and prosumers, active
participation and rewarding, development of a pilot network and cost-benefit analysis of

deploying such schemes.

As electrical smart grid technologies are increasingly developed and electricity markets
are maturing, exceptional opportunities for more complex electrical supply and demand
interactions that used to be historically unilateral, are now offered. These opportunities
mainly rely on exploiting the flexibility available at the demand-side. However, strict market
and grid-related regulations exclude single small-scale electricity customers to participate
in the provision of such services, thus third parties such as Aggregators must undertake the
role of summing those multiple flexibility volumes. Aggregators are being lauded as critical
entities in providing these valuable electricity services, acting as intermediates between the
small / medium scale consumers and the electricity market stakeholders at higher levels,
such as the Distribution System Operators (DSOs) [1,2]. The most common approach for
extracting these flexibility volumes is through Demand Response (DR), which is a program
that is established to change the demand-side electric use from normal consumption patterns
in response to changes in the price of electricity, or incentive payments [3]. To achieve
optimal Aggregation, a holistic DR framework for optimal cooperation between a DSO
and an Aggregator is developed. The proposed DR framework can be seen as a key for
enhancing the DSO-Aggregator coordination as well as a pathway for facilitating the role of

the Aggregator in a fully liberalized electricity market.

1.2 Key Contributions to Knowledge

This research provides important contributions to the research community as well as to
power system operators and policymakers by expanding the knowledge on DSM- and DR-
related aspects through the introduction of consistent and transparent methodologies that will
help promote effective flexibility extraction. This thesis initially presents a comprehensive
and universally-applicable methodology for developing and implementing a cost-effective
price-based DSM scheme which is directly deployed from the DSO to the end-users. The

proposed methodology introduces steps for replacing the costly large-scale deployment of



PV meters as well as the development and implementation of optimum ToU tariffs on a real
pilot-network comprising of 300 prosumers with roof-top PV systems. Part of the novelty
of the algorithm for developing the optimum ToU tariffs is its capability to adjust the tariff
structure (period and rate) in order to be applicable to both consumers and prosumers by
utilizing net-load energy profiles. The methodology, proposed in this thesis, introduces a
detailed evaluation stage that includes methods for verifying and validating the effectiveness
of the developed price-based DSM scheme based on technical and economic performance

data.

More specifically, the first part of this thesis introduces a coherent methodology for
developing, implementing and evaluating optimum price-based DSM schemes, where an
optimization algorithm, based on net-load, for developing cost-effective ToU tariffs for both
consumer and prosumer classes is utilised. Moreover, within the scope of this work, a real
pilot-network consisting of 300 prosumers with various demographic characteristics, which
can act as a test-bed for newly introduced energy policies and electricity pricing schemes is
established. Additionally, the results emanating from this work provide useful knowledge
in the fields of energy behavioural patterns and flexibility potential of prosumers that can
be vital instruments for policy makers to direct and encourage the implementation of DSM

schemes at a larger scale.

The results of applying the proposed methodology on the pilot-network highlighted that
DSM schemes that offer price incentives to the electricity customers are considered as an
easy pathway for deferring investments for network reinforcement and incorporating higher
levels of DERs. Additionally, it is proven that domestic electricity customers can be a
significant source of demand-side flexibility. It is believed that more pro-active and smart
approaches for the future Smart Grid energy transactions can fully enable the demand-
side flexibility exploitation in both small and medium scale consumers. To this end, the
System Operators are shifting their attention towards DR events that can effectively unlock
the available flexibility on short notice through instantaneous signals. The establishment
of DR events is also accelerated with the advancement of technology that facilitates real-
time monitoring of both supply and demand as well as identification of any grid violations,
while enabling automated DR request and flexibility activation. Compensations offered
to the electricity customers, for participating in a DR event, can be combined with other

DSM scheme rewards in order to offer higher price incentives that can fully unlock the



available untapped flexibility. However, flexibility maximization depends on the optimal
DR distribution on the demand-side. The role of enabling small-scale electricity customers
in participating in such DR events is undertaken by the Aggregator who is responsible for

summing the multiple flexibility volumes available at the demand-side.

By extending the first part of this thesis and to address the above-mentioned upcoming
electricity market changes, a holistic DR framework for DSO-Aggregator coordination
and optimal DR distribution is developed. The key added value is the utilisation of a
novel bi-level constrained objective optimisation function which minimises the flexibility
aggregation costs through optimal segmentation of customer groups based on performance
indices, while maintaining the distribution grid balancing. Even though the focus of this
work is the Aggregator, other market players could also employ the framework, such as
Utilities, Flexibility traders, etc. Moreover, the proposed DR framework, and subsequently
the developed optimisation function, can be applied to any type of contracts (dynamic
and/or static) between the DSO and Aggregator as well as between the Aggregator and
its customers, while the technical parameters utilised in the optimisation function enable
the exploitation of the developed framework for any network topology. The proposed DR
framework serves as a holistic framework that is ready to be applied in countries where the

electricity market rules and automation technologies are mature and advanced.

The proposed DSM scheme along with the developed DR framework aim to fully unlock
the available untapped flexibility potential based on the market structure specificities of each

area of deployment.

1.3 Thesis Structure

The thesis starts with a review of existing research on the subject matter and identified
objectives. Each research objective was addressed in its own chapter that provides objective
specific results, discussion and conclusion sections. The concluding chapter reviews the
outcomes for each objective before determining the overall implications of the research,
including further potential research areas. The rest of this thesis is structured as follows:
Chapter 2 provides the main contextual knowledge for this thesis. Theoretical background
information regarding the general principles of the power system, the increasing integration

of distributed renewable generation and the transition towards smart grids is provided. The



context and necessity of DR, the distinction between implicit and explicit DR, as well as
the role of the Aggregator are also presented. Additionally, this chapter reviews existing
literature focusing on summarising known information about each research objective and the
knowledge gaps that are addressed by this work. Chapter 3 addresses the first objective by
proposing a three-stage methodology for developing and deploying a cost-effective price-
based DSM scheme that focuses on the deployment of Implicit DR. More specifically,
this chapter presents the activities and results obtained from the implementation of ToU
tariffs on a real pilot-network comprising of 300 prosumers, in Cyprus, with roof-top PV
systems. Outcomes and lessons learned from the work conducted in Chapter 3 revealed that
more pro-active and smart approaches are needed to fully unlock the untapped demand-
side flexibility. To this end, Chapter 4 introduces a holistic DR framework for DSO-
Aggregator coordination that exploits a bi-level constrained-objective optimisation function
which minimises the flexibility aggregation costs through optimal segmentation of customer
groups based on performance indices, while maintaining the distribution grid balancing.
The followed methodology and the verification results of the proposed DR framework are
presented in detail in this chapter. Chapter 5 covers the overall conclusions as well as future

work.

The following figure provides a schematic representation of the thesis structure to

illustrate how the chapters and content are organised.
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Chapter 2

Theoretical Background and Progress in
the Research Field of Flexibility

Provision

The recent drive towards decarbonization in the electricity sector entails increased
investment in breakthrough technologies and low carbon energy sources such as Renewable
Energy Sources (RES). However, integrating RES without jeopardizing security of supply
and economic operation of the power system is quite a challenge. The load growth
accommodation and the problems of ageing infrastructure render the situation even more
challenging. The aforementioned drivers imply a growing need for distribution system
flexibility at the demand side as well as customer engagement and empowerment in order
to maintain an affordable energy system. A prominent method to provide flexibility is
through DSM, which involves schemes established to provoke changes in electricity demand
by end-use consumers and to encourage lower electricity use at periods of high market
price. DSM activities can be classified into Energy Efficiency and DR (price and incentive-
based DR). Energy Efficiency focuses on strategies aiming at reducing the power usage to
perform the same tasks. This involves a permanent reduction of demand by using more
efficient load-intensive appliances (e.g. water heaters, refrigerators, or washing machines),
while DR refers to a wide range of actions which can be taken at the end-user side of the
electricity meter in response to particular conditions within the electricity system (such as
peak period network congestion or high prices). Lately, DR strategies have been gaining

more attention in power system operations, driven by growing interest in the smart grid



concept. Specifically, time-varying electricity pricing incentives such as ToU tariffs or peak
demand charging for residential consumers, offer a way for financial gains and improved
perception about their energy consumption profiles and costs. Changes in consumption
patterns, including time-variable electricity prices or incentive payments, can be achieved by
consumers/prosumers themselves or through aggregation. Aggregation is mainly necessary
if small scale production and DR are to participate in the market. Aggregators can be divided
into different types, according to the DERSs they aggregate (be it DR or distributed generation
resources). The authors of [4] define three types of aggregators: production, demand and
commercial Aggregators. Production Aggregators group together small generators in order
to generate economies of scale in accessing the markets (e.g. Virtual Power Plants). Demand
Aggregators act as intermediaries between small consumers, while commercial Aggregators
buy and supply electricity that is locally generated and at the same time are responsible for
maintaining the balance of the grid. Essentially, Aggregators are considered DR enablers
for end-users who want to participate but cannot meet minimum programme requirements.
Additionally, Aggregators are considered as the connection point for transferring flexibility,
in the form of DR, from lower electricity market levels (demand-side, producers) to higher
electricity levels (system operators). The existing electricity market actors have been
described in the harmonized role model established by entso-e [5]. This Role Model has
been developed in order to facilitate dialogue between the market participants from different
countries through an agreed terminology and the designation of a single name for each role
and domain that are prevalent within the electricity market. The major actors participating

in DR are:

* Transmission System Operator (TSO): Is responsible for a stable power system
operation through a transmission grid in a geographical area. The System Operator
will also determine and be responsible for cross border capacity and exchanges. If
necessary, it may reduce allocated capacity to ensure operational balancing. More
specifically, TSOs must guarantee that adequate network transmission capacity is
available for energy to flow freely between its producers and its end users, while
maintaining system balancing. Moreover, the TSO safeguards the system’s long-
term ability to meet electricity transmission demands while being responsible for
maintaining the system’s balancing by deploying regulating capacity, reserve capacity,

and incidental emergency capacity.



* Distribution System Operator (DSO): Is responsible for operating, ensuring the
maintenance of and, if necessary, developing the distribution system in a given area
and, where applicable, its interconnections with other systems and for ensuring the
long-term ability of the system to meet reasonable demands for the distribution of
electricity. The DSO provides network access to the rest of the actors, while is

contracted to supply or purchase energy for and from the demand-side.

* Balance Responsible Party (BRP): The “Winter Energy Package” defines a BRP as
a market participant or its chosen representative responsible for its imbalances in the
electricity market [6]. Given that the market participants have an implicit responsibility
to balance the electricity system, the BRPs are financially responsible for keeping their
own position balanced over a given timeframe (the Imbalance Settlement Period),
thus are considered as the link between TSOs and DSOs. The remaining short and
long energy positions in real-time are described as the BRPs’ negative and positive
imbalances, respectively. As described by entso-e in 2013 [5], in order to be balanced
or help the system to be balanced according to the provision defined by the terms
and conditions of each TSO, each BRP shall be entitled to change its Position in
the Intraday timeframe until the Intraday Cross Zonal Gate Closure Time basing on
rules and criteria defined by its Connecting TSO. The aforementioned imbalances are
usually dealt by purchasing flexibility and energy from the demand-side and producers,

respectively and offering it to the TSOs in the form of Ancillary Services.

* Aggregator: Aggregators can provide services to aggregate energy production from
different sources, including local aggregation of power demand and power supply
from consumers/prosumers. In some cases, the Aggregators have contracts with local

producers for purchasing energy at price determined in the contract.

* Prosumer: A prosumer is a new entity that consumes but also can produce or store
electricity. Prosumers are able to own and operate small or large parts of the power

grid and obtain revenues according to their energy utilization.

* Consumer: A consumer is an entity that requests electricity. Small consumers are
connected to the distribution system and they buy electricity from a retailer. Large
consumers can, on the other hand, either buy electricity directly from the electricity

market by bidding for purchase.



* Producer: A party that produces electricity either through conventional ways or

renewable sources.

* Policy makers / Regulator: The regulator is the governmental body assigned with the
duty to ensure a fair and efficient operation of the electricity sector and participants.
It defines the prices of the services and products offered by the entities having
monopolies, while establishing rules for the energy market and examining cases in

which market power may be misused.

The following figure illustrates the position of each actor in the electricity market chain.
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Figure 2.1: Overview of electricity market operations.

The purchase and sale of electricity to resellers is done in the wholesale market, while
the purchase and sale of electricity to consumers is done in the retail market. Therefore,
Aggregators typically buy and sell flexibility, in the form of DR, in the wholesale market.
The integration of DR programs in the planning and operation of electricity systems from a

time horizon point of view is demonstrated in Fig. 2.2.

In all market structures, the management of electric power systems is largely shaped by
two important physical properties of electricity production. First, mismatches in supply and
demand can threaten the integrity of the electrical grid within seconds and second, generation
and transmission system investments are large projects with expected economic lifetimes of

several decades that often take many years to develop, site and construct. These features of
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Figure 2.2: DR in electric system planning and operations [7].

electric power systems necessitate management of electricity for a range of timescales, from
years for generation and transmission planning and construction, to seconds for balancing
power delivery against fluctuations in demand. Decisions are made at several junctures along

this timeframe. Details of the timeframes, as illustrated in Fig. 2.2, are provided below.

Capacity and operations planning include long-term investment and planning
decisions. Capacity planning (years system planning) involves assessing the need for and
investing in new generation, transmission and distribution system infrastructure over a multi-
year time horizon. Operations planning (months operational planning) involves scheduling

available resources to meet expected seasonal demand and spans a period of months.

Operations scheduling refers to the process of determining which generators operate
to meet expected near-term demand. This typically involves making day-ahead economic
scheduling based on the next day’s forecasted demand, with adjustments made in a period
of hours down to 15 minutes to account for any unexpected generation plant outages or

transmission line problems in day-of economic dispatch.

System balancing refers to adjusting resources to meet last-minute (< 15 mins)
fluctuations in power requirements. In regions with organized wholesale markets, resources
offer ancillary services to support electrical grid operation. All DR strategies fall into
the category of “Capacity and operation planning” and can participate in the capacity
market, while all DR strategies that fall into the categories “Operations scheduling” and

“System balancing” can participate in the Balancing Market. At a high level, DR can
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first be clustered into two major categories, namely: Implicit (price-based) and Explicit
(incentive-based) DR. Another important demand side resource that can be considered
independently, but not necessarily disconnected from the implicit and explicit DR programs,
is the energy efficiency. However, energy efficiency focuses on the capacity planning and the
reinforcement of the grid, which require years of planning and therefore is out of the context
of this work. The two major DR categories and their respective strategies are described in

the two following sections.

2.1 Implicit (Price-based) Demand Response

Implicit DR is the application of tariffs in which the price of electricity is dependent on
the time of use. There are many approaches to these tariffs, from a set two-point peak/oft-
peak tariff system to a real-time system responding to changes in the wholesale market and
informing customers with little notice. A middle ground approach is found with critical
peak pricing whereby a standard rate tariff is adjusted by pre-set amounts at peak times. For
these programmes to be offered, the electricity consumption metering device of the customer
must be capable of providing verified meter readings with at least the same frequency/time
segregation which is used for the tariff. The resolution of such meters tends to range from
hourly to quarter-hourly, depending on the market. Retailers must also be allowed to adjust
their settlement processes — so that they no longer purchase electricity according to averaged
profiles but rather according to actual consumption. There are a wide variety of varying ToU
tariffs operating on different time frames and with different relative payments for each. Daily
time varying tariffs are common to discourage use in peak events. Seasonal tariffs are utilised
to mitigate against elevated usage mostly from weather related demand variation. Some
markets operate with multiple tariffs and tariffs can be found as compounded tariffs over
various time frames, such as daily and seasonal multiples. The main Implicit DR techniques

are described below:

* Time-Of-Use Tariff (ToU): This strategy of management uses different types of
tariffs to encourage customers to eliminate consumption during peak periods. ToU is
designed to reflect the utility cost structure where rates are higher during peak periods
and lower during off peak periods. ToU tariffs based on peak load pricing have been
introduced in recent years, having proved to be one of the most efficient strategies

in load management. Both the supplier and the end-user benefits from successfully
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designed ToU rates.

* Real Time Pricing (RTP) is the programme most closely aligned with situations
where supply as well as demand are variable or ‘unbiddable’, meaning that a
significant portion of national capacity is sourced from intermittent renewable
generation. RTP is a means by which retail prices follow wholesale prices from day to
day, hour to hour or even minute by minute. Spot pricing can be linked with automation

to lower demand whenever wholesale market prices go over a certain pre-set amount.

* Critical Peak Pricing (CPP) is a programme usually developed for both residential
and commercial consumers that involves raising prices or offering financial incentives
to cut demand for a set number of hours on days when critical peaks in consumption
are expected, often triggered by changes in weather conditions. Both the numbers of
days on which a peak can be called and the number of hours are known beforehand
and usually regulated at a regional or national level. By their nature, they occur at
irregular intervals in either winter or summer and come under the heading of dynamic

peak shifting.

2.2 Explicit (Incentive-based) Demand Response

Explicit DR requires active participation of end users responding to requests from within
an existing framework agreement, therefore are technically more difficult to achieve. Explicit

DR can be divided into the following schemes:

* Direct Load Control (DLC): Typically for small commercial and residential
consumers. Direct control of specific appliances is given to utilities, predominantly
temperature regulation devices and occasionally lighting. The control mechanism is
generally given as simple on/off commands. Notice of control events is given but
the timeframe for notice is small (of the order of minutes). The most common market
approach for participation is fixed scheduled payments in the form of utility bill credits

and additional participation payments.

* Load Curtailment Requests: Typically managed by Aggregators. Load curtailment
requests are similar to direct load control mechanisms although they typically involve
greater user interaction for confirmation of participation and longer notice periods (of

the order of hours or day ahead). The curtailment options are integrated into retail
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tariffs that provide a rate discount or bill credit for agreeing to reduce load during
system contingencies. Given that the typical framework for operation is to pay for
availability as well as to provide additional payments for participation, penalties are
given to entities that do not participate when called upon as this effectively breaks
the availability agreement. Penalties vary in severity but must at least cover the
cost of the availability and participation payment to alternative curtailment providers.
The reward structures are widely varying; although, given the greater need for
human interaction and the requirement for baselining submissions, payments are
often focused on participation with some capacity payment structures available for
reliable users. Interruptible programs have traditionally been offered only to the largest

industrial (or commercial) customers.

Demand Reduction Bidding: A mechanism by which entities can sell load reduction,
either directly as a large consumer or indirectly via an Aggregator for smaller
consumers. Typically, this occurs as a bidding process followed by the establishment
of a merit order for dispatch to equilibrium. Demand Reduction Bidding is typically
only offered to large (> 1 MW) customers. In the case of bidding to capacity
markets, customers offer load curtailments as system capacity to replace conventional
generation or delivery resources. Customers typically receive day-ahead notice of
events. Incentives usually consist of up-front reservation payments, and face penalties

for failure to curtail when called upon to do so.

Ancillary Service Provision: For ancillary service provision, entities bid into markets
ran by system or regional transmission operators. The ancillary services market is
organised to negotiate energy loads to ensure reliability and energy quality through
four key paths: system restarts, frequency control, voltage control, and balance
control. Frequency reserve and operating reserve services are the most common form
of distributed ancillary service provision. Frequency response is a quick (order of
minutes) load adjustment (either decrease or increase) triggered by real time signals
to rebalance grid frequency to the operational set-point. Operating reserves are
dispatchable power generators able to respond rapidly to signals in order to correct
under generation conditions caused, for example, by generator failure or prediction
errors. Payment schemes tend to be by capacity commitment. Frequency control,

which is the most commonly implemented ancillary service is divided into three types:
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— Primary reserve — close to real-time actuation, it allows an automatic regulation

of load to place frequency within bounds in a matter of seconds;

— Secondary reserve — after the primary reserve is successfully implemented and
frequency is within bounds, the secondary automatic reserve is activated to place
frequency at a target/standard value, as primary reserve returns to its previous

level;

— Tertiary reserve — similar to what secondary reserve performs for primary reserve,
this reserve implicates manual changes to the load that guarantee frequency
stability and adequate value, as secondary reserve returns to its previous level
as mentioned before for primary. Further differentiation is made between
automatically activated (aFRR) and manually activated (mFRR) services. aFRR
is more deeply integrated with the TSO systems, while mFRR is activated
manually in both a discrete and ‘““close to” continuous manner by TSOs. Payment
is given for availability to accepted bids and entities are obliged to be on standby
for operation. Further payment is given, typically at the spot market price, for

participation if called upon to act for ancillary service provision.

* Emergency Response: Emergency Response programmes are agreements to limit
consumption to a specified level when there is a grid level threat. There are typically
predefined timeframes for required availability that reflect potential critical grid
scenarios, primarily around peak load times. Participants are paid for availability and
effectively join the merit order for dispatch, penalties are given if participants fail to

produce when called upon.

It is clear that the flexibility volume as well as the extraction method is directly related to
the electricity market structure of each country. In locations where the electricity market is
not liberalised and dominated by vertically integrated utilities that own all levels of the supply
chain, DSM schemes offering price incentives to the electricity customers are considered as
an easy pathway for deferring investments for network reinforcement. However, for locations
where the electricity market is mature, all the involved actors see DSM programmes and DR
in particular as a business opportunity that can benefit all sides. Major focus is given to the
Aggregator, who is directly involved or interested in all DR strategies and therefore can be
considered as the major bonding actor that maximizes and transfers flexibility from lower

levels (demand-side, producers) to higher levels (system operators).
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2.3 Literature Review

Lately, DSM schemes and DR strategies have been gaining more attention in research and
industry, driven by growing interest of power system operators to avoid expensive network
reinforcement through cheap and effective solutions. This section focuses on the recent
research and real applications conducted in this field, broken-down into the different aspects

and highlighting the respective specific gaps.

Research on the development of price-based DSM schemes

Prosumers and especially residential prosumers are often perceived as a very difficult
target group for DSM programmes because of the large scale and diversity of energy
behaviour. In addition, a major barrier for enabling DSM rollout is the unavailability
of daily electrical consumption and production profiles, since spatiotemporal profiles
are not normally available from existing electromechanical meters and non-modernized
grid networks [8]. In this domain, testing and validating developed DSM schemes on
representative consumer samples is the most appropriate method to provide useful insights
for establishing new energy policies. Over the past years, several research programmes were
set out to acquire knowledge on how current and future changes in supply and demand energy
patterns can be addressed [9-13]. The programmes focused on the energy behaviour of
households, adaptation of consumer preferences, enforcement of new tariffs (price-based
DSM schemes) and endorsement of technologies that impact grid management. The main
outputs included the reduction in the electricity bill of the active consumers, utilisation
of DSM at a variety of scales (local, regional and national), improved use of storage by
consumers and widespread use of automated energy management systems [9, 10].

In particular, the emphasis of [14] is to analyse impacts of price-based DSM schemes in
relation not only to socio-demographics but also time of activities. These are analysed by
socio-demographic groups (household type and income) and clusters based on similarities in
time use activities during peaks. The socio-demographic characteristics in each cluster do
not point to any significant dominant parameter being able to explain the shape or intensity
of energy-related activities during peak periods. This means that income and household
structure, for instance, are not as powerful as activity-based clusters in describing changes
in demand across the day because regardless of socio-demographic parameters different
households might carry out very similar activities at peak time, experience the same peak

to off-peak ratios and consequently face equivalent financial losses or gains due to the
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introduction of the price-based DSM scheme. The activity-based clusters feature distinctive
patterns in density and timing of energy-related activities in the morning. Clustering by
activities represents a powerful way to appraise groups of people who might be either
advantaged or disadvantaged from the introduction of the price-based DSM scheme. This
has conceptual implications for framing flexibility and its effects. Approaches which do not
take as starting points either the socio-demographics of consumers or the flexible attributes
of practices are better suited for understanding the complexities of demand-side flexibility.
Instead, the results on clustering of activities at peak time suggest that the effects of DSM
schemes are better understood through analytical efforts to place time at the centre of
research on flexibility. The main advantage of inferring flexibility through the attributes of
practices consists of being able to directly assume what can be flexed. However, assumptions
around the flexibility of practices risk being void of their temporal arrangements. Findings
show that socio-demographic distribution did not demonstrate any significant dominant
parameter. Instead, clustering based on similarities in the timing of activities has provided
distinctive patterns and can shed light on groups of people who might be either advantaged
or disadvantaged from the introduction of the price-based DSM scheme.

Recent research outcomes from large-scale DSM experimental studies conducted in the
UK [15, 16], highlight issues related to participation in price-based DSM programmes and
more specifically the voluntary commitment endorsement of cost-reflective tariffs which is
likely to be fairly low across the population. Moreover, research investigations focusing on
consumer participation designated that a distinctive subset of consumers chose cost-reflective
pricing due to favourable consumption patterns [17-21]. However, contrary evidence also
exists suggesting that consumers that willingly choose time-varying pricing do not tend to
have different patterns of consumption [22—-24]. Nevertheless, most studies conclude that
consumers are willing to adopt a ToU tariff and change their consumption when properly
trained on how to increase their potential savings in compensation for their discomfort [25].
Other DSM pilot programmes that provided forecasting and information services for possible
flexibility provision demonstrated that constant feedback is a valuable tool for the effective
deployment of a price-based DSM scheme [11,26]. In this context, training the consumers
on how to grasp the benefit of a time-varying electricity pricing scheme is essential.
Another survey study based on a pilot programme enrolled by Entergy New Orleans
demonstrated the issue of energy savings variation among the treatment groups [13]. More
specifically, 78% to 90% of the participants believed that they saved money as a result

of the programme, even though the data indicated that only 58% to 67% of customers
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were active and actually saved energy. This outcome further highlights the significance of
evaluating active participation in DSM scheme deployment. Overall, most price-based DSM
pilot studies include an evaluation period to assess the most important issue of price-based
DSM which is the impact of the applied scheme on electricity usage. In order to explore
whether the initial goals set by the utility are met, a comparative analysis of the energy
behaviour (load shifting and energy conservation) must be initiated between the baseline and
the implementation year, before and after the pilot-application of DSM scheme, respectively.
A study that investigated the impact of price-based DSM scheme in peak demand, carried out
at the Canadian province of Ontario, showed a 3% reduction in peak usage which was slightly
lower than the provincial estimation [12]. A method for obtaining the anticipated DSM
targets is to provisionally evaluate and refine the DSM scheme during the implementation
period in order to correct any oversights occurring at the planning stage.

An efficient load scheduling based DSM scheme for the objective of peak load reduction
is proposed in [27]. Two heuristic algorithms, named G-MinPeak and LevelMatch, which
are based on the generalized two-dimensional strip packing problem are utilised. In this
approach each of the appliances has their specific timing requirements to be fulfilled.
The authors propose some improvement schemes that try to modify the resulted schedule
from the initial heuristic algorithms to reduce the peak. All the proposed algorithms
and improvement schemes are experimented using benchmark datasets for performance
evaluation. Simulation studies are conducted using practical data to evaluate the performance
of the algorithms in real life. The results obtained show that all the proposed methodologies
are effective in reducing peak load, resulting in smoother load profiles. Specifically, for
the benchmark datasets, the deviation from the optimal values is approximately 6% and
7% for LevelMatch and G-MinPeak algorithms respectively and by using the improvement
schemes the deviations are further reduced up to 3% in many cases. For the practical datasets,
the proposed improvement schemes reduce the peak by a percentage between 5.21 and
7.35% on top of the peaks obtained by the two proposed heuristic algorithms without much
computation overhead. The results show high levels of peak reduction, however the results
are obtained in a simulated environment that does not consider the unpredictable behaviour
of electricity customers.

The work conducted in [28] projects the long-term density of the daily peak demand with
the goal of understanding its growing pattern and ultimately reducing the resulting burden
on the power grid. The approach accounts for the changes both in temperature due to

climate change and in the socio-economic variables. Specifically, the proposed daily peak
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temperature model with a non homogeneous generalized extreme value framework allows
the authors to adjust the possible biases in the global climate model projections while keeping
their temporal variation. The expected population growth (or decay) pattern and the building
demand saving from DSM programs are formulated with the logistic growth model and Bass
diffusion model, respectively. The presented approach is validated in a case study with
actual data collected in the south-central region of Texas. The results provide useful insights
into how the daily peak demand densities would change over time, in response to climate
change, population growth and participation in DSM activities. While this study provides a
generic framework for characterizing the progression of peak loads in the long-term, it has
limitations, because the results are obtained with limited data. In particular, DSM activities
for buildings could substantially affect the peak load. Although actual building data are
used, the authors do not consider that the electricity usage patterns change as DSM programs
evolve over time.

A methodology to extract valuable information from a large volume of data is proposed
in [29]. The methodology is based on clustering methods applied on questionnaire results
conducted before and after a trial of various tariff structures including ToU. The pre- and
post-trial questionnaires offer insights into the consumers’ values, motivational factors and
needs, as well as their perspective and perceived behaviour regarding consumption. The
pre-trial questionnaire showed mixed views in terms of household flexibility in decreasing
and changing electricity usage, and a low interest in environmental issues. While smaller
households with older members proved to be the least flexible, larger, younger families
with more children are more motivated and had higher expectations of the trial. By
contrast, the post-trial questionnaire portrays a positive, homogenous attitude, as well as
an improved energy literacy and increased overall awareness thanks to the conducted trial.
Using NoSQL and machine learning, the authors analyse the impact of the non-optimised
ToU tariff structure and highlight that a 3,89% financial loss on average for the entire lot
of consumers is yielded. This led the authors to conclude that some incentive-based rates
may increase the bill, while optimum ToU tariffs and other optimally designed incentives are
good opportunities for behavioural change if they are fully understood and bring benefits to
consumers.

A robust distributed algorithm for modelling a system of interconnected smart energy hubs
has been proposed in [30]. The work describes how users can participate in integrated
demand-side management. A non-cooperative congestion game model was used in which

users independently optimize their energy consumption and storage schedule. To evaluate
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the performance of the proposed algorithm, a benchmark case with five hubs equipped with
storage devices was investigated. In this model, users can take part in the program both by
shifting their load demand (using storage devices) or by switching their energy sources. In
order to verify the effectiveness of the proposed algorithm, two different signaling schemes
(i.e. price-based and load-based setup) have been introduced and compared. Both of
these setups are categorized as a price-based DSM program in which the prices of energy
carriers are the driving signals. Simulation results for the load-based and price-based setup,
respectively, show a 27.1% and 24.4% reduction of the peak load only in the electricity
networks. Furthermore, the daily energy bill is reduced by 11.9% and 15.5% in the load-
based setup and price-based setup, respectively. However, the price-based setup shows more
instability because of price fluctuations. Even though the results are promising, several
assumptions have been made with regards to the users’ response to the prices.

Based on a large sample of the German population, the authors of [31] use a choice
experiment with ToU tariffs to estimate the effect of different peak time schemes on private
consumers’ “willingness to accept”. These tariffs allow for additional services during
peak times, i.e., controlling electricity consumption of specific appliances. The authors
used Mixed Logic models for unobserved heterogeneity. The results showcased that a
significant share of respondents always neglects inconveniences of peak time pricing while
a smaller share reacts only to discounts. The authors expect that utility companies will
face serious difficulties to incentivize customers to choose ToU tariffs. Still, they identify
70% of the selected sample as potential ToU tariff purchasers of which 36% never chose
a fixed rate tariff. The results suggest that most consumers demand high compensational
payments to accept ToU tariffs but might benefit from a control of appliances. Therefore,
the authors recommend electricity providers to offer ToU tariffs including those benefits,
and suggest decision-makers to force smart meter roll out and to encourage purchases of
smart appliances. An increasing share of consumers purchasing ToU tariffs could lead to a
significant shift in electricity consumption from peak times to off-peak times, and therefore
a cost reduction in redispatch. A limitation of this analysis might be the consideration
of the same appliances for households. The authors mention that future studies should
use questionnaires that would allow to incorporate the specific devices that the responding
household is using. Furthermore, the authors state that future studies should also investigate
sources of heterogeneity in more detail by applying qualitative methods to a larger series of
focus groups.

The study conducted by the authors of [32] aims to identify the dominant household factors
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from houses in relation to daily electricity consumption patterns so that potential DSM
strategies can be indicated. Time-segmented regression analysis is employed to identify
the factors that dominate at different timeslots across the day. The method that was applied
to a limited dataset reveals that the dominant factors responsible for residential electricity
demand variation are the number of major electrical appliances and the number of occupants
in the household. Furthermore, the number of occupants is found to be the dominant
factor during electricity grid peak hours only. Additionally, the results reveal that there is a
potential interplay between one or more dominating factors during peak hours, for instance,
the interplay between number of occupants and major electrical appliances. The authors
highlight the fact that a real monitoring campaign could provide more insight on the energy
patterns and how the DSM-related policy-making should be adjusted.

Furthermore, to determine the success of the potential large-scale rollout of any developed
price-based DSM scheme, a detailed Cost-Benefit Analysis (CBA) for planning and
implementing the price-based DSM scheme nationally should be carried out. CBAs for
planning and implementing price-based DSM schemes in Germany [33] and France [34],
showed that for end-users with low levels of annual consumption the costs of a smart
metering system would far outweigh the average potential annual energy savings. The CBA
outcomes indicated the importance of conducting a CBA in cases where the impact of the
proposed price-based DSM scheme must be verified.

Despite the aforementioned successful implementation of price-based DSM schemes at pilot
areas, there are still many challenges to be overcome and numerous issues that must be taken
into consideration when designing an effective price-based DSM scheme. A concrete and
universally-applicable methodology for developing, implementing and evaluating a DSM
scheme is missing in recent literature. Additionally, it’s clear that the applied ToU tariff

structure has a major impact on the effectiveness of a price-based DSM schemes.

Research on the development of optimum ToU tariff structure

Even though the flexibility-enabling technologies are progressing, the development and
implementation of optimum ToU tariffs remains a research question for more recent studies.
A two-stage optimisation model applied to complete households is described in [35]. The
model incorporates multiple potential flexibility provision functions that have been widely
reported within the literature; including electric vehicles, rooftop PV and time of use tariffs.

This work demonstrates the potential beneficial impacts that the combination of ToU tariffs
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and PVs can have both for the customer in terms of financial savings and for the community
at large through the reduction in greenhouse gas emissions. Minimal uptake enabled savings
is exhibited by all engaged customers, showing that there is scalability in the integration of
these methodologies and is not dependent on a significant initial uptake. Financial savings
within this study are dependent on the use of EVs, with lower flexibility event participation
(20%) and electric vehicle ownership at 10% receiving the greatest financial savings of 37%,
compared to 28% and 27% respectively for the 40% and 60% participation rates. However,
this study does not take into consideration the embedded cost of the flexibility-enabling
technologies, which are at present exogenous to the model inputs.

One of the most important challenges when defining the periods of tariff structures is
to address the problematic herding phenomenon which arises when consumers shift large
amounts of their consumption to low-price periods and create new load peaks [36].

Another main challenge involves the modification of the applied time-varying tariff based on
the energy behaviour of the end-users. A typical example of a region that overhauls the way
it generates, transmits and uses electricity is California whereby eleven million residential
utility customers were fully converted to ToU tariffs [37]. In this case, ToU tariffs were
applied to motivate load shifting and to reduce regressive consumer cross-subsidies that arise
with the growth of the residential sector self-generation due to PV systems, highlighting the
importance of adjusting tariff structures based on the specific energy profiles of the area of
application [37].

An additional challenge addressed in previous studies considers the fact that a ToU tariff
structure that is revenue-neutral at the class level may not be neutral at the individual
prosumer level. Prosumers with peak consumption shares that are lower than the typical
peaks will achieve bill reductions without changing their load profiles. In general, a major
aspect of a price-based DSM scheme is to prevent the creation of “free riders” that will create
revenue loss not offset by cost savings [38,39].

The authors of [40] introduce a Bi-level model of the interaction between a retailer and
consumers in the electricity retail market, including shiftable, interruptible and thermostatic
loads, which can be controlled by an energy management system. The aim is to determine
the optimal dynamic ToU electricity prices to be established by a retailer to maximize profits
in face of consumers’ demand response to minimize costs considering comfort requirements
of time slots for shiftable load operation. The Bi-level model is dealt with a hybrid approach
based on a particle swarm optimization algorithm that calls a mixed-integer programming

solver to deal with the consumer’s problem of appliance scheduling for a given instantiation
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of electricity prices (upper level decision variables). Since only optimal solutions to the
lower level problem are feasible to the Bi-level problem, non-optimal solutions to the lower
level problem may lead to misleading solutions to the problem. For this purpose, the authors
propose an approach to compute lower/upper estimates for the optimal solution of the Bi-
level problem when a computational budget should be considered to obtain solutions to the
lower level problem. However, the impact of the developed ToU electricity prices in energy
conservation is not tested and verified in this study.

The methodology proposed and described in [41] is applied to different PV and battery
scenarios so that economic indicators are determined and later compared to the results of
other alternatives to establish useful parameters for guiding investment decisions. At each
step of the methodology, the variables that allow the economic evaluation of investments is
determined, namely all the costs, the revenues and the variables that are important for the
projection of the cash flow for the entire project life, as well as the impact of the variation
of these parameters. For the simulated system options, a ToU tariff is used. The sensitivity
analysis carried out shows that the initial equipment cost is the main impact factor in the
profitability when including PV generation, while the lifetime and ToU tariff structure are the
main factors for profitability in terms of storage systems. The authors highlight that policies
to encourage the adoption of distributed generation and energy storage technologies should
focus on adjusting tariffs to lead to a more attractive environment, while the declining costs of
PV and storage follow their path and financing modalities of systems with attractive interest
rates become more available. The residential ToU tariff is the only factor controlled by the
distribution utility, and it is, therefore, a major factor influencing the economic attractiveness
for the adoption of storage systems. Because there is no obligation to adopt a ToU tariff,
residential consumers might see no reason to migrate to a new tariff structure that might
increase their energy bill in the event of high consumption at peak hours, in case there are
large differences between on- and off-peak-hour tariffs. The results could be more promising
in case that the ToU tariff structure was optimised.

Based on the above studies it’s very evident that static forms of price-based DSM schemes,
such as ToU tariffs, can lead to negative profiling effects when coupled with intermittent
renewable generation and not optimally developed. Hence, the development of an optimum
ToU tariff structure should consider numerous parameters and redesigned regularly based on

the outcomes of its application.
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Transitioning from DSM to DR

Exploiting the demand flexibility, instead of investing in new non-renewable
transmission-connected generation capacity introduces a more pro-active and effective
approach for the energy transactions. However, strict market and grid-related regulations
exclude single small-scale electricity customers to participate in the provision of such
services, thus third parties such as Aggregators must undertake the role of summing those
multiple flexibility volumes. Aggregators are being lauded as critical entities in providing
these valuable electricity services, acting as intermediates between the small / medium scale
consumers and the electricity market stakeholders at higher levels, such as the DSOs [1,2].
The most common approach for extracting these flexibility volumes is through DR, which
is a program that is established to change electric use by demand-side resources from their
normal consumption patterns in response to changes in the price of electricity, or to incentive

payments designed to induce lower electricity use at times of high electricity market prices

[3].

Research on the development of DR frameworks

Many recent studies focus on facilitating the role of Aggregators into the distribution-level
electricity market to improve market efficiency, while emphasizing the role of DR [42-47].
In this context, various DR frameworks can be found in the literature such as the hierarchical
control DR framework, presented in [48]. The framework enables support of multiple
aggregation entities, with different capacities and objectives, towards delivering cooperative
flexibility services. Employing a sequential optimisation approach for the participation of
two separate Aggregators is explored, presenting interesting insight into the revenue acquired
from both sides. However, in the scenarios explored, the interaction between the Aggregators
and their customers was not considered.

Similarly, in [49] a set of Aggregators provides their flexibility to the DSO under a fair and
incentive compatible flexibility mechanism which is based on a max-min fair formulation,
so that network constraints are satisfied in a fair way. Nevertheless, the proposed framework
tackles the participation of Aggregators to flexibility markets and not DR mechanisms,
whereas the fairness aspect refers to the Aggregator and not the end customers.

The various proposed DR frameworks, utilise a diversity of optimisation approaches that
mainly focus on the Aggregator’s costs or balance of the distribution network [50-53]. A

cost focused bi-level optimisation model for determining the pricing parameters of Time-
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and-Level-of-Use tariffs, maximizing the supplier revenue while anticipating an optimal
reaction of the customer is presented in [54]. The reaction of the customer to the proposed
pricing is integrated in the supplier decision problem, thus turning the customer-supplier
interaction into a Stackelberg game. Even though promising results are demonstrated, the
actual effectiveness of the proposed methodology is unclear.

In recent times, the scope of DR has been expanded to include system expenditure reduction
as well as the balance improvement of the distribution network [55]. The balance of the
distribution networks directly falls to the DSOs, who ensure the normal operation by sending
appropriate DR signals to the flexibility providers.

In the future, it is expected that DSOs will have a broader role as neutral market facilitators
offering equal opportunities to all Aggregators to sell their services [56]. The approach
proposed in [57] uses an integrated strategy for the day ahead market, which may result in
the provision of reserve and in consumption deviations, depending on the dispatch events.
Using accurate forecasts of dispatch events, the Aggregator can optimize its participation
in the markets by allocating the flexible resources to the periods when tertiary reserve is
required by the system. The proposed methodology consists in two steps: (1) an analytical
method to calculate the market expected value of each individual availability profile; (2) a
heuristic method, based on a merit order, in order to find the high valuable and less risky
bids from the combinations of flexibility profiles in the Aggregator portfolio. The advantage
of the heuristic approach is to avoid a combinatorial problem with infeasible dimensions for
larger groups of consumers. The methodology is applied to a sample of 1500 residential
consumers, while considering the Portuguese tertiary reserve market conditions. The results
demonstrate the capability of the heuristic methodology to find a significant number of non-
dominated bidding solutions leading to higher remuneration for the Aggregator.

The authors of [58] propose an emergency DR scheme for microgrid autonomous operation
based on local frequency measurements. The active participation of microgrid loads can
contribute to ensure the balance of the microgrid in the moments subsequent to islanding,
taking into account the frequency behaviour and available energy in storage units. The
proposed control strategy is supported by an online tool integrated into the microgrid central
controller, which is responsible for periodically defining the most adequate technical solution
for managing responsive loads, following an unplanned event and taking into account the
microgrid operating conditions. Centralized strategies at the microgrid controller level are
used to define the new active and reactive power set-points for the controllable sources,

taking into consideration the overall microgrid operating state. Secondary control includes
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additional synchronization loops for a smooth re-connection to the main grid after islanding.
The test cases evaluated through the conducted dynamic simulations, demonstrate the quality
and the feasibility of the proposed tool when dealing with this problem.

The work conducted in [59] focuses on the use of a Virtual Energy Plant, which aggregates
the decentralized multi-energy resources. Aimed at the difficulty of access and regulation of
the decentralized multi-energy resources in the local area, considering the energy purchase
from external markets and the energy retail to internal users of virtual plant, a grading
dynamic aggregation model is incorporated into the optimal scheduling of the virtual plant.
A decentralized multi-energy resources aggregation model based on bi-level interactive
transactions is established. The study results highlight that the aggregation and invocation
of the proposed model mainly pertain to the load peak, and this realization can reduce the
energy purchasing cost of the virtual plant, improve the energy retail revenue and expand
the profit space. The peak energy retail price is offset from the peak real-time price to
enhance the market competitiveness, while the offset period is at least 1 h. By the proposed
method, it is beneficial for the virtual plant to integrate and utilize the decentralized multi-
energy resources to participate in the market and to maximize the economic benefits of its
operations. Compared with other methods such as the fixed polymerization, the economic
benefits are increased by 6.52%.

The authors of [60] propose a Home Energy Management System that optimizes the
load demand and distributed energy resources. The optimal demand/generation profile
is presented while considering utility price signal, customer satisfaction, and distribution
transformer condition. The electricity home demand considers electric vehicles, Battery
Energy Storage Systems, and all types of non-shiftable, shiftable, and controllable
appliances. Additionally, PV-based renewable energy sources are utilized as sources of
generated power during specific time intervals. In this model, customers can only perform
DR actions with contracts with utility operators. A multi-objective demand/generation
response is proposed to optimize the scheduling of various loads/supplies based on the
pricing schemes. The customers’ behaviour comfort level and a degradation cost that
reflects the distribution transformer Loss-of-Life are integrated into the multi-objective
optimization problem. Simulation results demonstrate the mutual benefits that the proposed
Management System provides to customers and utility operators by minimizing electricity
costs while meeting customer comfort needs and minimizing transformer Loss-of-Life to
enhance operators’ assets. The results show that the electricity operation cost and demand

peak are reduced by 31% and 18%, respectively, along with transformer Loss-of-Life which
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is reduced by 28% compared with the case when no DR was applied.

A recovery DR mechanism considering personalized electricity reliability under outage
conditions to improve network resilience is presented in [61]. Novel customer classification
and a market clearing mechanism are proposed to adapt the trend of privatization and
demand-side participation. Customers are classified by internal information such as income,
age, house type, children number etc. and external information such as electricity usage
habit. Then the proposed bidding mechanism that takes full account of dynamic elasticity
and reliability level service is applied to each group. After receiving warning level
information, customers can choose to participate in trading to satisfy private reliability level.
Corresponding market clearing mechanism is applied to facilitate customers’ transactions.
The authors propose a group double side auction method for trading and market clearing
mechanism under outage conditions with an islanding-operation for microgrids. Under this
mechanism, the price for DERs will likely be higher than the retail price providing more
incentive for customers to participate. The proposed model acts as a bidding mechanism that
allows customers with higher reliability requirements to maintain their desired consumption
with corresponding higher price. And customers who pursue higher interests can also gain
higher benefits through transactions. The model mainly solves three problems. First, the
trading mechanism is triggered by an early warning failure possibility for power outages.
Customers with different requirements for reliability levels and economic benefits can be
satisfied in the model. Second, dynamic elasticity replaces fixed elasticity by a stochastic
process to better simulate the user’s real-time preferences. Third, Group double side auction
for market clearing mechanism was applied to auction private reliability services.

The authors of [62] propose a bi-level integrated DR framework for alleviating congestion in
coupled networks. At the upper level, an independent system operator aims to alleviate
congestion by imposing the lowest possible traffic tolls and electricity tariffs. At the
lower level, electric vehicle owners schedule their routes and departure times according
to traffic tolls and traffic conditions, yielding a multi-period user equilibrium state in
which the generalized travel cost of users cannot be decreased by unilaterally changing
routes or departure times. Simultaneously, load Aggregators schedule flexible power
demands according to electricity tariffs to minimize total energy costs. The overall
bi-level programming is reformulated into a single-level mathematical program with a
complementarity constraint problem, which is efficiently solved as a sequence of relaxed
non-linear programming problems by a specially designed algorithm. Numerical results

demonstrate the effectiveness of the proposed DR framework in alleviating congestion and
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reducing total procurement costs.

The work presented in [63] uses the Weber—Fechner law and a clustering algorithm to
construct quantitative response characteristics models. The deep Q network is used to
build a dynamic subsidy price generation DR framework for load Aggregators. The study
focuses on DR aggregation for electric heating applications combined renewable energy
utilization. Through simulation analysis based on the evolutionary game model of a project
in a rural area in Tianjin, China, the authors conclude that, through the proposed model,
the regenerative electric heating users can save up to 8.7% of costs, power grid companies
can save 56.6% of their investment. The framework proposed in this study considers user
behaviour quantification of DR participants and the differences among users.

Even though the aforementioned studies present promising results, there is no clear
consideration of how the performance of end-users in DR events can potentially affect the

Aggregator’s strategies.

Research on DR framework for restoring the normal operation of the grid

Many approaches can be found in the literature focusing on the interactions between the
DSOs and Aggregators that aim in identifying and resolving grid constraints, with the most
important being the methodology specified in the USEF Flexibility Transfer Protocol (UFTP)
[64, 65]. In this methodology, USEF addresses congestion management or grid-capacity
management through Congestion Points that are published by the DSOs and exploited by the
Aggregators.

The work conducted in [66] introduces a model to optimize energy consumption in buildings,
aiming at minimizing costs while satisfying the technical constraints of the power network.
The model is capable of controlling a wide variety of loads taking into account the flexibility
that their owners are willing to provide. This flexibility can be used for technical matters,
such as for improving the network operation or economic purposes. The proposed model is
applied in a test network to quantify and compare the capability of only electrical buildings
and Multi-Energy System buildings to offer flexibility. Analyzing the grid technical
problems, in a scenario with only electrical buildings, there are a number of undervoltage
problems detected in the network that cannot be entirely solved even when flexibility is
activated through DR programs. These stressful operating conditions are not verified in the
Multi-Energy Systems scenarios, where no technical problems were detected. In the only

electrical buildings scenarios, the voltage problems detected were greatly reduced after the
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activation of the DR program. More specifically, the number of buses with voltages below
0.9 p.u. was reduced from 54 to 14, representing a 74% reduction, thus concluding that DR
programs are an important tool for system operators as they can enable important changes in
the load profiles to avoid voltage problems or overloaded branches.

Other approaches found in the literature, include the distributed dynamic tariff (DDT)
method for congestion management in distribution networks that is presented in [67]. This
method employs a decomposition based optimisation method to have Aggregators explicitly
participate in congestion management. By establishing an equivalent overall optimisation, it
is proven that the DDT method is able to minimize the overall energy consumption cost and
line loss cost.

Another energy allocation mechanism that is considered efficient while respecting grid
constraints has been proposed in [68]. At the DSO level, the auction price is heterogeneous
among Aggregators, while the lower level auction price is uniform among home agents.
The upper level agent allocates power to the Aggregators that in turn conduct their
separate Aggregator level auction to establish market equilibrium conditions locally within
their agents. Even though the proposed mechanism is able to maximize the revenues
for the stakeholders, the authors have not considered any behavioural parameters of the
Aggregatror’s customers.

Several risk measures (e.g. variance, shortfall probability, expected shortage and stochastic
dominance) investigated in [69], highlighted that there is a trade-off between anticipated
profit and its variability. When dealing with small scale customers and local communities,
their reliability to the DR request from different perspectives must be researched. A
Reliability Rate has been introduced in [70] towards identifying trustworthy customers for a
specific DR target. Even though the results indicated that rating customer participation can
lead to more successful DR programs, the grid technical parameters are not considered.

It’s clear that full or partial visibility of the distribution network, will enable Aggregators and
DSOs to improve flexibility procurement for more economically efficient grid management

and strengthen the resilience of the distribution network [71].

Research on DR framework complementary functionalities

Besides the exploitation of various optimisation functions, modern electricity frameworks
necessitate the consideration of complementary factors such as communication and security.

Semantic interoperability, i.e., the ability of systems to exchange and consume data
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transparently among them, resolves issues that stem from the fragmentation of standards
regarding building and/or energy management systems, energy marketplaces and the ever
increasing penetration of IoT devices in the energy domain, while security ensures that
transactions between stakeholders are executed in a trustworthy and verifiable fashion.
Recent studies have focused on cyber-security in energy and power systems, with blockchain
technologies being one of the most recent trends in research efforts. Offering data integrity,
confidence, efficiency, control and security in terms of information exchange, blockchain
technologies have gain a lot of attention and multiple applications have appeared [72].

A sustainable microgrid design problem by leveraging blockchain technology to provide
the real time-based DR programmes is presented in [73]. Three sustainable objectives
(economy, environment, and society) are formulated by a multi-objective mixed integer-
linear programming model. A robust fuzzy multi-objective optimization approach is
proposed to determine the optimal number, location, and capacity of renewable distributed
generation units as well as the equilibrium supply and dynamic pricing decisions under
uncertain demand, capacity, and economic, environmental, and social parameters. The
proposed model and solution approach are then applied to a case study in Vietnam.
The blockchain technology-based sustainable microgrid can result in a 1.68% and 2.61%
increase of profitability and consumer satisfaction, respectively, and a 0.97% reduction of
environmental impacts.

Those studies indicate that the use complementary functionalities, such as security between
the engaged stakeholders, can result to a self-enforceable and tamper-proof framework that
removes intermediaries and reduces transacting, contracting, enforcement and compliance

costs [74].

Addressing the Research gaps on DSM and DR

All the aforementioned studies have managed to significantly contribute in the research
field of demand-side flexibility, however as the DSM and DR programmes evolve over the
years there are still several research gaps that need to be addressed.

Even though the results of those studies are promising, the majority of the analyses are
conducted in simulated environments. A real monitoring campaign could provide more
insight into the impact of DSM schemes as well as how the DSM-related policy-making
should be adjusted. Through a real implementation, the various sources of heterogeneity

and the unpredictable behaviour of electricity customers would be considered. An additional
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challenge that needs to be addressed is the fact that most of those studies consider that the
electricity customers consist exclusively of consumers. However, it is expected that in the
near future distributed renewable generation will be one of the main sources of the total
electricity supply [75]. Therefore, pricing schemes that are revenue-neutral at the consumer
class level may not be neutral at the individual prosumer level. Furthermore, despite all the
identified advantages that ToU tariff schemes offer, the effectiveness of such tariff schemes
must be verified prior to implementation because of the eminent high risk of a new peak
appearing through load shifts at cheaper price periods, posing negative effects on the optimal
operation of system.

All the aforementioned studies have also exhaustively explored DR approaches, while
considering customer behaviour and have established a solid foundation for the significant
potential of participating in the flexibility market. However, as power flows are expected to
become bi-directional, real-time grid management as well as activation of procured flexibility
necessitate a more coordinated approach between the DSOs and the Aggregators. This
new paradigm creates not only challenges but also great opportunities. DSOs may use the
flexibility provided by the Aggregators to solve voltage problems or manage congestion at
the distribution network, while the Aggregators can optimally exploit the available flexibility
of their customers to participate in DR events at minimum cost. Nevertheless, the expected
costs of the Aggregator may come with a high level of variability, depending on the reliability
of his customers. The response of a customer in modifying his consumption pattern is not
certain so there is a requirement of studying DR considering the uncertainty associated with
it. Additionally, a fair distribution of flexibility requests to all the customers, will enlarge
the portfolio of the specific Aggregator due to the increased willingness of other customers
to enroll. These cost and performance aspects combined with the grid technical constraints,
while considering security and communication aspects, are yet to be thoroughly investigated.
The DR-related research field lacks a framework that considers both the performance of

electricity customers as well as the the distribution grid balancing.

To this end, as DSM schemes evolve from the research stage to deployment and
the integration of PV systems is rapidly increasing, a universally-applicable and robust
methodology for developing optimum price-based DSM schemes must be established.
Moreover, as the electricity markets are maturing, the introduction of new electricity
stakeholders as well as the facilitation of DR in electricity services are inevitable.

Subsequently, a holistic framework that addresses these upcoming changes must be
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established. Considering these past endeavours and aiming to bridge the identified research
gaps, this work provides a universally-applicable methodology for deploying a cost-
effective DSM scheme that focuses on flexibility extraction through price incentives. The
proposed methodology is applicable to both consumers and prosumers as the optimization
algorithm utilizes net-load energy profiles. This thesis delves further into flexibility potential
maximization by presenting an innovative framework for DR that aims to minimise the
Aggregator’s cost by considering technical and performance parameters. The proposed DR
framework serves as a holistic framework that is ready to be applied in countries where
the electricity market rules and automation technologies are mature and advanced. The
proposed DSM scheme along with the developed DR framework aim to fully unlock the
available untapped flexibility potential based on the market structure specificities of each

area of deployment.

32



Chapter 3

Developing and Deploying Implicit
Demand Response in the Form of

Price-Based Demand Side Management

3.1 Introduction

The evolution of DSM schemes from the research stage to deployment, along with the
increasing integration of PV systems that will eventually render prosumers as the main class
of residential electricity customers, creates a need for a universally-applicable and robust
methodology for developing optimum price-based DSM schemes. The scope of this chapter
is to provide a consistent and universally-applicable methodology to derive effective price-
based DSM schemes for the residential sector that was verified through statistical analysis
and validated on a pilot-network comprising of three hundred prosumers with roof-top PV
systems. The proposed methodology for deriving the optimum ToU tariffs is applicable
to both consumers and prosumers as the optimization algorithm utilizes net-load energy
profiles. The methodology further addresses the technological challenges related to price-
based DSM design such as the optimum number of ToU block periods, evaluation of the
impact of the proposed scheme, training of the consumers and prosumers, active participation
and rewarding, development of pilot network and CBA. Finally, the results emanating from
this work provide useful knowledge in the fields of energy behavioural patterns and flexibility
potential of prosumers that can be vital instruments for policy makers to direct and encourage

the implementation of DSM schemes at a larger scale.
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3.2 Methodology

The cost-optimum price-based DSM methodology for residential prosumers is divided
into the planning, implementation and evaluation stages, as illustrated in Fig. 3.1. The
designed methodology was applied and validated on a pilot-network of three hundred

residential prosumers with installed roof-top PV systems, within the distribution grid of

Cyprus.
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Figure 3.1: Methodology for developing effective DSM scheme.

3.2.1 Planning Stage

The first step for establishing price-based DSM schemes that are capable of persuading
participants to alter their energy patterns and achieve desired peak demand reduction,
was to develop an optimum ToU tariff structure that represents the characteristics of the
electricity consumption both in terms of electricity demand as well electricity price variation.

The development of a ToU structure is typically a two-step approach that includes the

34



establishment of the ToU block periods and then the respective rates.

Establishment of the ToU block periods

In an attempt to encompass seasonal variations in the development of the ToU tariff
structure, the electricity consumption of the participants was divided between winter, middle
and summer periods and a clustering analysis was performed in order to derive the optimum
block periods of each season. The goal of the clustering analysis is to partition (or group)
a set of instances into clusters such that each cluster indicates a group of instances that are
more strongly associated with each other than with those in different clusters. Clustering is
one of the unsupervised learning methods in machine learning and at the individual domestic
customer level it has many potential uses for energy companies. The clustering method was
utilized for this study as (i) it allows the adjustment of the results to reflect biases in the
selected sample, (ii) it can identify which characteristics correlate with energy behavioural
use and (iii) it can result in more suitable tariffs by comparing different groups in intra-
day behaviour. The partitioning-based clustering approach performs partitioning on a set
of instances into non-overlapping subsets called clusters. Most classical partitioning based
algorithms include K-means and PAM (Partitioning Around Medoids). The main assumption
is that n objects described by the attribute vectors {x;x,, ... , x,} are partitioned into k
clusters, where k < n. Let m; be the mean of the vectors in the cluster i. An object o; belongs
to the cluster i if the distance between o; and m; is the minimum. The K-means algorithm is
known for its efficiency in clustering large datasets, but is limited to datasets involving only
interval-scaled attributes. To avoid this deficiency, PAM uses medoids rather than centroids
to represent clusters. The medoid of a cluster is the most centrally located object in a cluster
and it is considered to be a representative object of the data set as its average dissimilarity
to the rest of the objects in the cluster is minimal. The PAM algorithm finds k clusters in
n objects by first calculating a representative object for each cluster. Once k medoids have
been selected, each non-selected object is classified into the closest medoid according to a
distance measure. Subsequently, it repeatedly tries to make a better choice by substituting a
medoid m; with a non-selected object o, as long as such substitution improves the quality of
the clustering (i.e., reduces the average distance between an object and its closest medoid).
Assume D is the dataset to cluster (with n objects), M is the set of medoids, rep(M, o;) returns

a medoid in M that is closest to the object o;, and d(o0;, o) is the distance between objects o;

35



and o;. The cost (i.e., average distance between an object and its closest medoid) of M is:

> iy d(os,rep(M, 0;))

Cost(M,D) = (3.1)
n
The effect of substituting a medoid is:
TC = Cost(M’,D)-Cost(M,D) (3.2)

where M’ is the new set of medoids after substituting a medoid in M with an object 0, not in
M. When TC is greater than zero, this means that replacing the medoid with another would
result in a greater average distance between an object and the medoid of its cluster. Thus,
if TC is greater than zero, o, will not be selected to replace the medoid. For performing a
clustering analysis, it is essential to first decide the optimum number of clusters. For this
purpose, hierarchical clustering was employed. Hierarchical clustering represents data by
building a cluster tree (a dendrogram), where each group (or “node”) is linked to two or
more successor groups. As shown in Fig. 3.2, the results of employing the hierarchical

clustering method indicated that the optimum number of clusters is equal to three.
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Figure 3.2: Cluster dendrogram showing the possible clusters for the winter season.

The derived number of clusters demonstrates the presence of three distinct segments
representing the off-peak and peak periods as well as a third period. This time period
represents the transitional (shoulder) period that can be used by prosumers to cover their

needs that can be shifted from the peak periods but cannot wait until the off-peak period.
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Establishment of the optimum ToU rates

Besides the identification of the ToU block periods the estimation of the applicable ToU
rates for the corresponding periods is essential. The optimized ToU rates were calculated
using an optimization algorithm which can derive a constrained minimum of a scalar function
of several variables starting from initial conditions and are subject to nonlinear multivariable

constraints and bounds. General nonlinear optimization problems can be written in the form

of:

minf(z)Vx € R"
subject to:

g(x) <0 (3.3)
h(z) =0

Ib<xz<ub

where f is the objective function to be minimized and x represents the n optimization
parameters. This problem may optionally be subject to the bound constraints (also called
box constraints), [b and ub. For partially or totally unconstrained problems the bounds
can be taken to be -Inf or Inf. One may also optionally have nonlinear inequality
constraints (sometimes called a nonlinear programming problem), which can be specified
in g(x), and equality constraints that can be specified in A(x). The methodology followed
for solving the optimization function was based on an improved Conservative Convex
Separable Approximation (CCSA) algorithm [76] of the original MMA (Method of Moving
Asymptotes) algorithm, published by Svanberg in 1987 [77]. At each point x, MMA
forms a local approximation using the gradient of f and the constraint functions, plus a
quadratic “penalty” term to make the approximations “conservative” (upper bounds for the
exact functions). The main point is that the approximation is both convex and separable,
making it trivial to solve the approximate optimization by a dual method. Optimizing the
approximation leads to a new candidate point x. The objective and constraints are evaluated
at the candidate point. If the approximations were indeed conservative, then the process
would be restarted at the new x. Otherwise, the approximations are made more conservative

and re-optimized. More specifically, in our study, the ToU rates were calculated based on the
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following optimization function:

3 N 3 N
min{ (S Ryi-Co) = S (Bena - (3 € im} (3.4)
i=1 j=1 i=1 j=1
where R and C represent the rates and consumption levels, respectively, while the current flat
electricity rate is represented by R, The index j = I,...,N represents the number of time
blocks as derived from the PAM clustering method, where N is the total number of periods
and the index i = 1,2,3 specifies the three seasons. The objective of the optimization function
was to minimize the difference between the proposed ToU and the flat tariff annual electricity
cost. The function ensured that the proposed rates can fully cover the electricity costs for the
baseline profiles. The selected boundary conditions assured that the proposed ToU rates will
be higher that the marginal electricity costs (mc) which are the costs experienced by utilities
for the last kilowatthour (kWh) of electricity produced. In order to increase the total number
of investigated combinations of rates, a relatively high upper bound was selected by limiting
the lowest rate up to the standard flat rate and the highest rate up to twice the flat rate. The

upper and lower boundaries were set as:

Ib:[R;;] > [mc, me, mc]
(3.5)
ub : [Rj,i (highest), Rj’i(lOWCSt)] Z [2 . RFlah RFlat]

In parallel with the surveying questionnaires, focus groups were performed in order to
identify consumer preferences towards load shifting. The focus groups showed that pilot-
network prosumers were motivated to shift consumption whenever the rate between the time
blocks of applied ToU tariff was higher than 20%. To achieve this, the following constraints
were used:

Rji1;>12-Rj; (3.6)

Pareto dominance of the developed tariff

When developing ToU tariff schemes it is crucial to investigate the difference between
the total amount that consumers are willing and able to pay for electricity and the total
amount that they actually do pay, as well as how a change in electricity prices affects the
welfare of the utilities and their customers. In conventional economic theory these matters
are commonly handled through the concept of consumer’s surplus and Pareto superiority.

By definition, an outcome is Pareto superior to another, or Pareto dominates it, if the second
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is a Pareto improvement over the first. A Pareto improvement is defined as any change
which leaves everyone at least as well off, or someone strictly better off without negatively
affecting the other [78]. To establish that the developed ToU tariff scheme is profitable, the
Pareto superiority of the design was investigated by following the methodology proposed by
other authors [38,76,79]. The profitability of the ToU design can be evaluated by applying
the flat and the time-varying rates on the demand curves. The demand curves provide all
the information that is used to determine a customer’s ToU consumption and his choice
between ToU and standard rates. The demand curves of each consumer are assumed to be
linear [80], with a y-intercept and a slope for describing the customer’s demand curve. The
y-intercept denotes the level of demand, while the slope denotes the price responsiveness of
the customer. A consumer’s demand curve measures how much the consumer would pay
for the first kWh consumed, and the second, and so on. Generally the more consumed,
the less would be paid for the next kWh. The difference between the maximum a consumer
would pay as revealed by the consumer’s demand curve and what the consumer actually does
pay is the consumer’s surplus. For the case of Cyprus, the flat rate is a quantity-weighted
average of the marginal costs of generation in each time period by including all the fixed
and fuel adjustment costs. Assume that m, and mp are the marginal costs in off-peak and
peak periods, respectively. Also, Cp and Cp are the off-peak and peak percentage of the total

consumption (initial scenario), then the flat rate is equal to:

F:mO-C’O+mp-Cp (37)

During the shoulder period, consumers will see no change in their electricity bill since the
shoulder rate is equal to the flat rate thus the shoulder percentage is neglected in the analysis.
Consider the demand-supply curve shown in Fig. 3.3, which shows the demand for off-peak
electricity. Prior to the implementation of ToU tariffs, the consumer paid a flat tariff F per
kWh and consumed xzp kWhrs per month. At the new off-peak rate O, where O<F, the

electricity customer now consumes quantity x.

After the ToU tariff implementation he pays a price O for every unit consumed. But
according to the original demand, he would be willing to pay a slightly higher price for
slightly less consumption. But he receives these marginal units of consumption at rate
O instead of F. Thus, the consumer benefits by a surplus value which is represented by

the amount A + C. Otherwise the shaded area (price units), represents a real gain in the
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Figure 3.3: Comparison between flat and off-peak rate on a typical electricity Demand-Supply curve.

consumer’s welfare. Similarly, Fig. 3.4 illustrates the case where the peak period price is
increased from the flat rate F to the peak rate P. Since this is a higher price, the consumer
will reduce his consumption down to xp kWhrs compared to xgp. Using the same heuristic
approach as before, the change in the consumer’s surplus is represented by the area L (F-P-

d-h).

Therefore the consumer’s surplus, due to the implementation of ToU tariffs, can be given

by:

o+ Tro Tp+ Tpp

ACS = —[AO - ( 5

)+ AP - ( )] (3.8)

where AP =P - Fand AO=0-F.

From the power utility’s viewpoint, assuming that the demand is inelastic, it will lose revenue
by reducing the price from F to O during the off-peak period. This is equal to the amount
Oxp — Fxgo for a change in production costs of O(xp — xgp). This will result in a net loss

(negative quantity) equal to:
—F'$F,0+O'$F70:AO'$F’O (39)

Following the same approach, by assuming that demand is inelastic, during the peak period
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Figure 3.4: Comparison between flat and peak rate on a typical electricity Demand-Supply curve.

the utility’s revenues are increased by raising the price from F to P. For the utility, this will

result in a net gain equal to APxgp. In sum the net revenue for the producer is:

Therefore, the change in welfare that occurs due to the adoption of a ToU tariff scheme is

equal to:

AW =ACS+ANR
= —[AO - (2L AP - (BEERN A ANO - 20+ AP - pp

) (3.11)
—é[AO (xp —xpo)+AP - (xp — zpp)]

1
= —[AO-ALS,+AP-ALS))

where, ALSy and ALSp is the kWh load shifted in off-peak and peak period respectively.
This sum is equivalent to the sum of the areas C and U shown in Fig. 3.3 and 3.4, respectively.
At the initial consumption levels, if the consumer participates in the ToU tariff scheme, the

electricity bill will change by:

ABilly = AO - zpo + AP - xzpp (3.12)
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Whether this number is positive or negative will depend on how

TF0 and Tpp

Trpo +Trp Trpo +Tpp

(3.13)

are compared to the off-peak and peak percentage of the total initial consumption (Cy and
Cp). Considering that consumers who participate in the ToU tariff scheme will shift loads,

the final bill change is equal to:

ABill = ABilly + O - ALSpo + P - ALSp (3.14)

For a representative consumer, one whose consumption levels during peak and off-peak
period are proportional to Cp and Cp, the bill changes ABill, are equal to zero. In this
case, the representative consumer’s bill increases by an amount equal to the area xg, O-xp-b-
a, while the surplus has increased by the area A + C. The area C represents the net increase
in welfare. Similarly, for the peak period the consumer’s bill is reduced by the amount xp-
xgp-d-e, whereas the surplus is reduced by the area G. The net effect is a gain equal to the
area U. On the contrary, for a non-representative consumer, one who consumes electricity
proportionally different to Cy and Cp, the bill changes are not equal to zero. Therefore, if a
non-representative consumer keeps his consumption levels the same as the baseline, before
the implementation of ToU tariffs, there will be a shift in revenue either to the consumer or
the power utility. In other words, the developed optional ToU tariff scheme Pareto dominates
the prevailing flat rates and will result in sufficiently more welfare in the case where the

electricity customers are persuaded that their DSM adoption will offer them economic gains.

Sensitivity analysis on the potential impact of the developed ToU tariffs

To verify the effect of the developed time-varying tariffs, before their real application,
a sensitivity analysis based on the Load Factor (LF) was performed. More specifically,
statistical analysis of the appliances listed in the completed questionnaire, was undertaken in
order to identify the flexibility potential of each load. Increasing the LF can be recognized as
an outcome of the load shifting technique that could diminish the average unit cost (demand
and energy) of the kWh and therefore lead to substantial savings for the power utility and

subsequently for the consumers. The LF is defined as the average load divided by the peak
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load in a specified time period:

_ Energy Generated in a given period

LF 3.15
Maximum Load x Period (3.13)
This was achieved by exploiting the following optimization function:
Z4§1 xX;
= == " 3. 16
max (z) max(z) - 48 e
subject to:
48 48
Z L'; before DSM — Z Lj after DSM (3.17)
i=1 i=1
max(-r)before DSM > max(x>after DSM (3 1 8)

where, x is the power at time interval i, X; pefore psu and X; afier psu the power before and after
applying the DSM technique respectively. The main objective was to maximize the LF of the
total residential load profile by shifting the usage time of the selected deferrable appliances,

from peak to off-peak hours, by a predefined percentage (5-20%).

Pilot-implementation of the developed ToU tariffs

After the verification of the developed tariff structure through the sensitivity analysis,
the proposed DSM scheme was implemented for the participants of the pilot-network for a
period of one year in order to measure the real electricity demand flexibility of prosumers
as a result of the price-based DSM scheme. It is worth noting that this was the first time
that residential prosumers in Cyprus were exposed to a real time-varying electricity price.
The approach followed was to transfer all prosumers to the time-varying tariff (“smart bill”")
but to simultaneously provide them bill protection during the first year of implementation
as a transitional period. In this respect, at the end of each billing period a “shadow bill”
was issued based on the prevailing flat-rate tariff. In case the flat bill was higher than the
ToU bill, participants were compensated the difference. In order to control “free riders”,
the active participation of the prosumers was determined by correlating the baseline and
implementation energy profiles at the end of each billing period. More specifically, a

participant was assumed to be “active” if at least one of the following criteria were met:

* Peak consumption percentage was decreased compared to the baseline profile of the

respective period;
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» Off-peak Consumption percentage was increased, and peak consumption percentage

remained unaffected, compared to the baseline profile for the respective period.

The aforementioned rules effectively removed any inadvertent losses created by any
possible “free riders”. Training the participants was also considered a key aspect of the
implementation stage. In this respect, personal meetings with the participants were held at
their households in order to train, guide and engage them with the programme, as well as
to answer all their possible questions and address their concerns. Besides training, a key
factor that drastically improves the response from end-users is the In House Display (IHD)
which offers feedback in various forms [81-83]. For the purposes of our pilot, a less costly
option in the form of a custom web and an android application was developed and offered

exclusively to the participants.

3.2.2 [Evaluation Stage

The evaluation stage began at the same time as the pilot implementation. The changes
in their energy behaviour were investigated by comparing the consumption levels recorded
before (baseline year) and after the application (implementation year) of the developed tariff
scheme. The consumption levels of both periods (baseline and implementation year) were
normalized to the exhibited daily peak demand in order to facilitate easier comparison.
After the first six months of the programme and an extensive analysis of the results of
each individual participant, several prosumers gained a significant financial benefit, not by
improving their energy performance or applying any DSM technique but due to the nature
of those consumers who are also energy producers through their installed PV systems. This
necessitated the re-evaluation and re-design of the applied tariff structure to depend on the
net-load profile which is the total energy imported to the grid minus the total excess energy
produced that was exported to the grid and not on the total consumption. Furthermore, the
impact on the power network was assessed by estimating the percentage reduction of the

peak demand as well as the LF of the aggregated load profile.

Estimation of the peak kWh reduction due to possible various ToU price ratios

In order to estimate the peak kWh reduction due to possible various ToU price ratios the
constant elasticity of substitution (CES) was utilized as an expenditure function. In economic

terms, the elasticity of substitution measures the shape of the indifference curves that underlie
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the consumer’s utility function. It is related to the own price and cross price elasticities of

demand through the Slutsky equation in microeconomics [84]:

Own price elasticity of demand = compensated own price elasticity of demand + (income

elasticity of demand x budget share of commodity in question)

In the case of electricity demand, this measures the percentage shift in consumption across
time periods (such as peak to off-peak) in response to price changes that alter the price
relationship between the two time periods (e.g. changing the price ratio). For example, in
the case of a ToU rate, the peak to off-peak elasticity of substitution represents the percentage
change in the ratio of peak to off-peak usage that occurs in response to a given change in the

ratio of peak to off-peak prices while all other factors are held constant.

The most commonly used [85—-88] CES electricity expenditure function is the following:
C(P1, Py, E) = [aP{ + (1 - a)P{]2 - F(E) (3.19)

where,

P; = peak price,

P, = off-peak price,

F(E) = a scalar function of electricity services E (e.g. heating, cooling, lighting etc), the

parameter p determines the elasticity of substitution and a is a weight.

Using the Shephard’s Lemma yields [89], the least-cost peak and off-peak electricity

demands are equal to:

oC 1
— =X, =aP G 'F(E 2
op, 1=aP G (E) (3.20)
oC' . . o p—1 ~1-1
an, Xo=(1—aP) VF(F) (3.21)
where,
G =[aP{+ (1 —a)P)] (3.22)

Although F(E) is unobservable, we can use the ToU price ratios and consumption data to
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estimate the following equation:

X1, P,
hl(z) —50+51D(E) (3.23)
where,
Bo=Inla(l —a)] (3.24)

In econometric analysis, the elasticity at a certain range can be estimated from a typical linear
regression model using the slope coefficients, the price and quantity estimates. However, in
practice it is more convenient to estimate these elasticities by applying a log-linear form, as
the elasticities (which will be constant) can be estimated directly from the slope coefficients.

Additionally, it is known that:
O1n(31)
Oln(z)

aslhelle

(3.25)

g

e

therefore o = -£.
Since In(X,;/X;) varies between participants and seasons, we assume that the intercept 3y is a
linear function that represents the pre-pilot consumption. For the regression model, we used

a modified version of the regression model proposed by C.K. Woo et al. [59]:

X P
In(5) = 7+ 01n(Qu) + Fn(5) + é1 In(Hy) + 62 1n(Ch)
2kt 2kt (3.26)
+ Z P Mot + w1 Way + w2Wer + €kt

The model describes the variation in participant k’s peak to off-peak ratio on day ¢ where,
is an intercept, €y is a random-error, [n(Qy,) is the pre-pilot consumption and In(P;,/Po) 1S

the peak to off-peak price ratio whose coefficient is 3 = -o.

Additionally, the weather is accounted for by In(Hy,) and In(C;,) which is the natural
logarithm of daily heating and cooling degree hours respectively. Daily heating degree
hours (HDH) is the daily sum of max(20°C — hourly temperature, 0) for the winter and
autumn season, while the daily cooling degree hours (CDH) were estimated by the daily
sum of max(hourly temperature — 20°C, 0) for the summer and spring season. The ambient
temperature datasets were acquired from the installed weather stations. Based on the results
of the questionnaire, the primary space-heater of the participants is electric and therefore the

variable that distinguishes electric to oil heater owners was not considered.
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Furthermore, to capture the effect of each month on the consumption ratio, twelve month-
of-the-year binary indicators were used. The variable M,, is equal to unity if day 7 is in
month m and zero otherwise, where m = 1,...,12 for each month of the year. Similarly, two
binary indicators, W, and W,,, were utilized in order to capture the effect of the weekdays

and weekends on the consumption ratio.

To estimate the regression coefficients three methods were employed. The first one is the
ordinary least squares (OLS), which is one of the most commonly used methods to produce
initial results [90,91]. For the second method, the clustered robust standard errors (CRSE)
were used for gauging the coefficient estimates’ precision and p-values [92]. Finally, due
to the huge sample size, panel-data analysis was also performed. To implement this a) a
fixed-effects and b) a random effects model was employed. CRSE were used for both the

aforementioned models.

The hourly peak kW reduction was estimated using the methodology that was proposed
by [93] and was based on [94]. By considering In(X;/X,) = Z as the non-random portion of
the regression line and by using simple algebraic manipulation we can write the peak kWh
usage (S) as:

X, eZ

=X T 19 (3:27)

where X is equal to X;+X; and represents the daily total consumption. This implies that the

peak consumption is given as:

X;=S8X = In(X;) =In(S) + In(X) (3.28)

Furthermore, the changes in peak consumption can be derived in percentage by using:

AX,/X; = AS/S + AX/X = load shifting effect + Total consumption effect  (3.29)

However, as indicated by the author of [95], for a “revenue-neutral” time-varying tariff, such
as the one developed in our study, the total consumption effect is close to zero. For this reason
the total consumption effect was neglected and the peak consumption reduction was based
solely on the load shifting effect. Since load shifting depends on the pre-pilot profile and the
price-ratio, the AS/S value was estimated by utilizing the regression equation using different

price ratios that range from 2:1 to 12:1 for all three seasons (winter, middle, summer).
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Cost-Benefit Analysis for Smart Metering and time-varying pricing deployment

The final aspect of the evaluation stage involved the CBA. The CBA was performed to
investigate whether benefits resulting from the programme outweighed the capital investment
costs. The CBA should encompass both the direct monetary and wider societal costs
and benefits of a large-scale rollout of the programme. In this scope, the guidelines for
conducting a CBA for smart grid projects that are proposed by JRC [96], were followed.
In order to estimate the benefits, the assets (i.e. SMs) involved in the pilot-implementation
along with their functionalities (i.e. regular remote meter reading) must be first identified.
Subsequently, those functionalities must be mapped to their respective benefits (e.g. reduced
consumption and related costs, etc). It should be noted that the focus of the conducted CBA
was on quantifiable costs and benefits only, in the direction of protecting the robustness
of the CBA. These benefits and costs are broken down into various elements to describe
the consumption and peak demand decrease; the meter reading; the meter tampering; bad
depts; the reduction in call volume; and the capital and operational costs associated with the
programme rollout from the perspective of networks. The main benefits for the consumers
largely come from the possible electricity bill reductions, if peak demand is moved to
adjacent hours or if the overall consumption is reduced through informed decisions and
effective application of time-varying electricity pricing. Benefits linked with reduction
in meter reads include the reduction in manual meter reading labour costs, associated
Information Technology (IT) costs and transportation costs. Additionally, smart metering
will significantly aid in the early detection of meter tampering and energy theft. By exploiting
the high frequency SM readings, the detection of abnormal patterns of energy resulting from
theft and tampering can be exposed. Furthermore, smart metering infrastructure can be used
to perform a remote disconnect and re-connect based on the regulatory timeframe allowed
thus reducing costs associated with uncollectible expense/bad debt. The implementation
of smart metering can also provide utilities the ability to quickly identify dead or stopped
meters that can no longer measure electricity due to meter failure. This early identification
helps utilities rapidly take steps towards repairing or replacing the dead meter, thereby
reducing potential revenue losses occurring due to this kind of interruptions. Another benefit
is the cost savings achieved through efficiency improvements in customer call services.
Elimination of meter reading errors along with consumer education will increase customer
adoption of self-service leading to an overall reduction in call volume. Capital expenditure

includes the SM cost as well as the data transmission and management costs. The net
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cost of SMs was estimated by subtracting the cost of a conventional meter from the cost
of a SM, as conventional meters would have been installed in any case due to regulatory
requirements. As a result, the incremental cost was considered. Power-line communication
(PLC) was assumed as the preferred method for transmitting data and electric power in urban
areas, while General Packet Radio Service (GPRS) technology for use in rural areas. In
addition, the long-term data storage and management for data delivered by SMs is expected
to be performed by a Meter Data Management System (MDMS). Apart from the capital
expenditure, two main operational expenses were exploited, which are directly linked with
their corresponding Capex items. First one being the GPRS Opex subscription, which is
the product of the estimated subscription cost and the proportion of rural residential users
expected to install a GPRS modem. While the second one is the MDMS operational cost and
was calculated based on the annual cost and the total population of residential consumers.
The allocation of costs and benefits to the stakeholders differs per cost-benefit item. For
electricity savings, the benefits were allocated to the consumer while deferred (missed)
income was attributed to the supplier/DSO. The cost for procurement and installation of the
SMs was allocated to the DSO. However, the reduction of bad debts, theft and interruptions
benefit the supplier/DSO [97].
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3.3 Results

The proposed three stages of planning, implementation and evaluation for deploying an
effective price-based DSM scheme were applied for the period of one year on the pilot-
network of three hundred residential prosumers with installed PV systems on their rooftops.
The results obtained during the three stages as well as a comparative assessment of the

suggested guidelines are presented in this section.

3.3.1 Planning Stage

The pilot-network

The type, power, usage season and duration of the typical residential household appliances

as derived from the questionnaire are presented in Table 3.1.

After acquiring energy data for the period of one year, the identified baseline profile
was compared to the aggregated residential consumption of Cyprus. As shown in Fig.
3.5, the comparison indicated that the selected sample was representative since the Pearson
correlation coefficient (PCC) was equal to 96.73%, 97.81% and 96.13% for the summer,
middle and winter season, respectively. This demonstrated that the selected prosumer
sample (residential sector pilot-network) is representative of the whole island. In addition,
PV production datasets that were calculated by applying machine learning techniques
for prosumers without SM, were compared with actual production profiles measured by
reference PV system SMs. The annual average PCC between the calculated and measured
PV production was found to be 98.5%, demonstrating that weather stations, which are
geographically spread throughout the implementation area, can be a sufficient replacement
for the costly large-scale deployment of PV meters and can be utilized to accurately calculate

PV production profiles.
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Figure 3.5: Comparison between the normalized initial and the baseline scenario for: (a) summer, (b) middle
and (c) winter season.
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3.3.2 Implementation Stage

The developed ToU tariff structure

The developed ToU tariff structure including the duration of each block and the respective
rates are summarized in Table 3.2 [98,99]. The calendar year was divided into three seasons
representative of different load profiles (winter, summer and middle season). The daily
profile was divided into the peak, shoulder and off-peak periods with 18.85, 14.85 and 10.85
€cents/kWh, as the proposed respective rates. The average value of the prevailing electricity
rate (flat tariff) was equal to 14.75 €cents/kWh. The peak, shoulder and off-peak time
periods were seasonally dependent. A major factor that proved to be vital is the inclusion of
a shoulder period. Prosumers could take advantage of this period by meeting their energy
demands that can be shifted away from peak hours but cannot be postponed until the off-peak
hours. Moreover, this transitional period could prevent the potential relocation of the peak
demand that could occur in the case that only two periods were available as a result of the

herding phenomenon.

Table 3.2: Developed ToU tariff structure per season (based on the consumption profile).

Block Rate Winter Season Summer Season Middle Season
(€cents/kWh) (Dec — Mar) (Jun - Sep) (Apr, May, Oct, Nov)
Peak 18.85 16:00 — 21:59 09:00 — 18:59 08:00 —20:59
06:00 — 15:59 07:00 — 08:59 06:00 — 07:59
Shoulder 14.85 22:00-23:59  19:00 — 00:59 21:00 — 23:59
Off-peak 10.85 00:00 — 05:59 01:00 — 06:59 00:00 — 05:59

The summer, middle and winter season ToU tariffs obtained from the optimization method
applied to the seasonal load curves and the average load profile of the participating prosumers
are presented in Fig. 3.6 (a), (b) and (c), respectively. All plots clearly show three distinct

segments for the off-peak, shoulder and peak period.
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Figure 3.6: Derived ToU tariffs and average load profiles of participating prosumers for: (a) summer, (b)
middle and (c) winter season.



Sensitivity analysis based on the Load Factor

To evaluate the impact of the developed ToU tariffs, a sensitivity analysis based on the
LF was carried out. More specifically, the seasonal average load profile of the participants
was divided into a number of main load type categories. The percentage of each category
was estimated by conducting a statistical analysis on the listed appliances included in the
questionnaire completed by the participants. A load shifting (LS) technique was applied
for percentiles between 5 - 20% (in steps of 5%) exclusively on the category of the listed
deferrable loads. The participants should be able to shift the electricity consumption of these
appliances from peak periods to lower rate periods, usually through timers, and therefore
minimize their electricity cost. The sensitivity analysis included two scenarios: i) shifting
deferrable loads mainly to off-peak periods ii) shifting deferrable loads mainly to shoulder
periods. The sensitivity analysis performed to emulate the response of the pilot network of
prosumers to the imposed ToU tariffs, yielded important results on the potential improvement
of the average residential load profile. The resulting average load profiles of the residential
prosumers, after deferring load segments from the peak to the off-peak periods, for the all

three seasons, are demonstrated in Fig. 3.7.

The results highlight that overall the derived load profiles were improved due to the load
increase occurring mainly during the off-peak hours, however, this does not apply for the
summer season. As shown in Fig. 3.7, during the summer season and for the case of shifting
20% of deferrable load, the demand was significantly reduced during the peak hours (15:00
pm) and increased during the off-peak hours (00:00 am), which resulted in a transfer of the
peak demand from peak period to off-peak period. Additionally, a slight increase in demand
during the transition of off-peak to shoulder period (06:00-07:00 am) was observed for all
the investigated cases of the summer season. This is more evident during the summer season
due to the difference between the peak and the lowest demand being the minimum of all three
seasons and thus implying that the summer load profile is flatter compared to the winter and
middle seasons. Therefore, shifting a relatively high percentage of consumption load can
lead to the displacement of the peak demand. In addition to the summer profile being flatter,
the low duration of the shoulder period following-up the off-peak period caused the small
increase of the demand during that transition period. This occurred due to the lack of time to
potentially shift the usage time of the appliances. In order to evaluate the impact of shifting
segments of deferrable loads to the off-peak period, the average residential LF for each one

of the cases was calculated.
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Figure 3.7: Load Shifting (LS) of deferrable loads from peak to off-peak periods for: (a) summer, (b) middle
and (c) winter season.
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As shown in Table 3.3, the results verified that the implementation of the proposed scheme
can contribute to the electricity cost reduction by improving the LF for all the examined

cases [100].

Table 3.3: Residential Load Factor (LF) for the Load Shifting (LS) technique (off-peak period scenario) per
season.

Summer Season Middle Season Winter Season

LF (%) Improvement LF (%) Improvement LF (%) Improvement

Baseline profile  40.65 - 32.94 - 32.48 -

LS 5% 41.29 0.64 33.34 0.40 32.69 0.21
LS 10% 41.79 1.14 33.48 0.54 32.9 0.42
LS 15% 42.30 1.65 33.36 0.42 33.12 0.64
LS 20% 42.83 2.18 33.21 0.27 33.33 0.85

The same approach was conducted to analyse the impact of shifting deferrable loads
mainly to the shoulder periods. The resulting average load profiles of the residential

prosumers, for the load shifting technique, are demonstrated in Fig. 3.8.

The sensitivity analysis results showed that shifting loads to the shoulder periods for the
summer and middle season can potentially lead to the creation of a second peak demand
during a specific period as shown in Fig. 3.8a and b. This can be considered as an outcome
of the low duration of the shoulder period that follows immediately after the off-peak period.
However, this is not the case for the winter season as shown in Fig. 3.8c, where the respective
shoulder period is longer compared to the one of summer and middle season and therefore
participants are able to disperse the usage time of their appliances in a more convenient way.
Finally, the changes that occurred on the LF by shifting loads due to the ToU tariffs to the
shoulder segments, are summarized in Table 3.4. The obtained results indicated that the
average residential load profile can benefit from the specific DSM technique as the LF is
increased in all cases.

Table 3.4: Residential Load Factor (LF) for the Load Shifting (LS) technique (shoulder period scenario) per
season.

Summer Season Middle Season Winter Season
LF (%) Improvement LF (%) Improvement LF (%) Improvement
Baseline profile  40.65 - 32.94 - 32.48 -
LS 5% 41.15 0.5 33.25 0.31 32.64 0.16
LS 10% 41.51 0.86 33.56 0.62 32.8 0.32
LS 15% 41.88 1.23 33.88 0.94 32.97 0.49
LS 20% 41.92 1.27 34.21 1.27 33.13 0.65
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The comparative assessment of the LF results, when shifting load segments to the shoulder
or off-peak periods, further showed that there is a slight improvement in the LF when shifting
loads mainly to off-peak periods compared to shoulder periods. Additionally, the sensitivity
analysis proved that the application of the developed ToU tariffs can benefit the electricity

utility by improving the LF for all the investigated cases.

3.3.3 Evaluation Stage

Re-design of the developed ToU tariff structure

Creating a time-varying electricity tariff structure for prosumers is more complicated than
typical consumers due to the dual energy usage nature (producing and consuming energy)
which can provide significant revenues to prosumers as they are credited for any excess
produced energy at a peak rate. This creates a substantial positive monetary gain if the tariff
structure is not optimal. The positive monetary gain, which is the difference between the
calculated “shadow” and “smart” bill, can be considered as an outcome of either successful
load shifting or the sale of excess PV production at a profitable price. Nevertheless, the
main objective of an effective DSM is to provide price incentives for changes in energy
consumption patterns and not to reward excess production that can lead to cross-subsidies
between prosumers and consumers. During the first six months of the evaluation period,
the prosumers managed to grasp this positive monetary gain and therefore reduced their
electricity bills. However, more than 50% of those revenues were obtained mainly from
selling their excess production at peak price while the rest was due to successful load shifting.
The re-designed ToU tariff structure, shown in Table 3.5, was based on the net-load profile
and accomplished to reduce the percentage of revenues gained due to selling the exported

energy below 35% of the positive monetary gain.

Table 3.5: Re-designed ToU tariffs per season (based on the net-load profile).

Block Rate Winter Summer Middle
(€cents/kWh) (Dec-Mar) (Jun- Sep) (Apr, May, Oct, Nov)
Peak 17.42 16:00 —21:59 11:00 —20:59 16:00 — 20:59
06:00 - 15:59 07:00 - 10:59 06:00 — 15:59
Shoulder 14.07 22:00 —23:59  21:00 — 00:59 21:00 — 23:59
Oft-peak 10.85 00:00 — 05:59 01:00 —06:59 00:00 — 05:59
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Load shifting and energy conservation results

The percentage of the total consumption corresponding to each ToU block per season is

depicted in Table 3.6.

Table 3.6: Consumption percentage comparison between the baseline and implementation year.

Season | Time Block Baseline  Implementation Difference
Year year
Peak 42.70 39.51 -3.19
Summer (%) Shoulder 24.01 25.66 1.65
Off-peak 33.29 34.82 1.53
Peak 36.11 35.08 -1.03
Middle (%) Shoulder 15.12 16.87 1.75
Off-peak 48.77 48.05 -0.72
Peak 61.02 59.62 - 1.40
Winter (%) Shoulder 22.89 23.33 0.44
Off-peak 16.08 17.05 0.97

The consumption percentage comparison between the baseline and implementation year
clearly demonstrated that the applied price-based DSM scheme has led to peak demand
reduction equal to 3.19%, 1.03% and 1.40% for the summer, middle and winter season,
respectively. Moreover, it is important to note that the peak demand was not shifted to
different hours compared to the baseline year. This led to the conclusion that the proposed
methodology has successfully motivated the prosumers to alter their usual energy patterns in

an effort to reduce their electricity bills [101].

An additional energy metric that can be used for evaluating the performance of the sample
is the LF. Increasing the energy to maximum power ratio reduces electricity marginal costs
for dispatch and leads to savings for the supplier that can be passed to its consumers. The
comparison between the baseline and the implementation year showed that the annual LF had
risen from 40.65% to 41.43%. Moreover, the effectiveness of the developed methodology
was examined by correlating the annual consumption of the participants with the entire
residential sector population of Cyprus. In this scope, a second sample (typical sample)
of residential prosumers with comparable consumption levels to the pilot-network (smart
sample) was populated using information acquired by the DSO. In order to remove any
consumption deviations occurring due to climate or national economy changes, a range of
+10% of the average consumption of the smart sample was considered for the creation of
the typical sample. A margin of error equal to 0.98% was also considered for populating the

typical sample. The annual average consumption for the baseline and the implementation
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year for both samples as well as the respective consumption ratios are presented in Table
3.7. The outcome of this comparison has demonstrated a considerable decrease of 2.17%
in the annual energy consumption of the participants as compared to the typical sample.
This overall behavioural change signifies that the developed price-based DSM schemes not
only incentivised profile shifting, but also the reduction of consumption levels compared
to the typical use case. Energy conservation has a major role in alleviating potential grid
reinforcements. As concluded by the Electric Power Research Institute, a 2.5% reduction in
electricity demand state-wide could reduce wholesale spot prices in California by as much

as 24% while a 10% reduction in demand might reduce wholesale price spikes by half [102].

Table 3.7: Annual consumption comparison between the Baseline and Implementation year for the two samples.

Average Average Energy
Consumption Consumption Difference
Baseline Year Implementation Year between years (%)
Smart Sample 6864.11 kWh 7138.98 kWh 4.00 %
Typical Sample 6785 kWh 7204 kWh 6.17 %
Deviation between 1012 % 0.99 % 217 %

samples (%)

Estimation of the peak kWh reduction due to possible various ToU price ratios

For the regression model, the two ToU tariff schedules (original and re-evaluated) were
utilized for estimating the regression coefficients while the sample size was equal to 109,500
(300 prosumers x 365 days). The OLS method has the drawback of being very sensitive to
the presence of outliers or high-leverage points [103] and therefore outliers were removed
when using this method. Although this led to a reduction of the sample size by approximately
0.07%, it is in line with the approach followed in similar studies [91,93]. The p-value for
each term tests the null hypothesis that the coefficient is equal to zero (no effect). A low p-
value (< 0.05) indicates that the null hypothesis can be rejected. In other words, a coefficient
that has a low p-value is likely to be a meaningful addition to a model because changes in
the coefficient’s value are related to changes in the response variable. The regression results,
based on the model (3.26) that is described in the methodology section, for the winter, middle

and summer season are presented in Table 3.8, 3.9 and 3.10, respectively.

The low R? value indicates that the estimated regression explains 6.89, 4.17 and 6.91%
of the variance in the natural logarithm of the consumption ratio for the winter, middle

and summer period respectively for the OLS method. Similar observations are obtained
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when CRSE were included in the regression. Additionally, the obtained results highlight
that all coefficients are statistically significant (p-value < 0.05) with one exception: the
coefficient estimates yielded from the panel-data analysis with fixed effects were statistically

insignificant (p-value > 0.05), even with the use of the CRSE.
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As depicted, the coefficient for In(P,/P2.) is negative and relatively high for all seasons
and methods, implying that participant responsiveness to the time-varying prices is adequate
and that the developed ToU tariff structure is a major driver in the reduction of the
consumption ratio. Similarly, the coefficient estimates of ¢ that correspond to In(Qy,) are
negative, supporting that total consumption has a compelling role in the peak kWh reduction.
The coefficient estimates for the daily HDH In(H,,) are negative, thus indicating that falling
temperatures tend to reduce the participants’ consumption ratio. However, the coefficient
estimates for the daily CDH In(Cy,) are positive, supporting that rising temperatures tend
to increase the participants’ consumption ratio. This is understandable as the results from
the questionnaire showed that space-cooling units and swimming pool pumps are two of
the most commonly used major electric loads during the summer period. This can also be
verified by the month-of-the-year binary indicators. The coefficient estimates revealed that
during the warmest month of each investigated season, the participants’ consumption ratio is
the highest. Furthermore, the day-of-the-week indicators (W, W,,) demonstrate that during
the weekdays the ratio of peak to off-peak consumption is higher. This was expected as the
participants spent more time at their residence during the weekends and therefore it is easier
to shift the usage-time of their appliances from peak to either shoulder or off-peak periods.
Using the regression coefficient estimates shown in Table 3.9 through 3.10, the percentage
kWh reductions by price ratio were computed. The mean percentage kWh reduction by price
ratio and the lower and upper bounds (=mean * 2.5 standard deviations) for the three seasons
are illustrated in Fig. 3.9. The results confirm the percentage peak reductions estimated by

the average seasonal profiles (Table 3.6).

Both of the applied ToU tariff ratios lie within the range of 1.5 and 2 (in particular 1.73 for
the first and 1.6 for the re-evaluated design) and it is obvious that higher ratios can potentially
lead to higher peak reductions. However, applying a higher ratio to the selected sample is
not an easy task due to the fact that the off-peak price is close, and in some periods equal,
to the lowest price that the power utility can provide electricity. Consider the two following

cases that result in higher price ratios:

* The off-peak rate remains constant while the peak rate increases: This will have two
potential outcomes. Firstly, consumers will not be willing to participate in the optional
ToU tariffs due to the high peak rate and therefore they will tend to stay on the flat

tariff. Secondly, consumers will voluntarily participate on the optional ToU tariffs
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and in their attempt to reduce their electricity bills they will shift a relatively high
percentage of peak kWh either to the shoulder or the off-peak period thus moving the

peak consumption to these periods.

» The off-peak rate increases and the peak rate increases: In this case, the off-peak rate
will be close to the prevailing flat rate while the peak rate will be too high compared to
the flat rate. Therefore, since at this early stage of introducing ToU tariffs it is optional

for the consumers to participate, they will prefer to stay on the current flat tariffs.

For the aforementioned reasons, at this moment it is difficult to investigate a ratio that is

higher than 2.

Furthermore, when evaluating ToU tariff schemes it is crucial to investigate how a change
in the electricity prices affects the household welfare. By utilizing the CES unit expenditure

function (3.26), the welfare improvement indicator / is equal to:

_ CES expenditure functionyp,s,.,sc

_ 3.30
CES expenditure function z;,;, .. 30

where for the flat rate, P, = P2,. When applying (3.30) the results highlight that the cost
index [ is less than one, for the whole sample, thus proving that the developed ToU tariff is

welfare improving [104].
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Figure 3.9: Estimation of peak kWh reduction due to various ToU price ratios for the: (a) winter, (b) middle
and (c) summer season.
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Cost-Benefit Analysis for Smart Metering and time-varying pricing deployment

Reducing the peak demand either through load shifting or energy conservation can also
have a positive impact on the CBA. Effective deployment of a price-based DSM scheme
can potentially lead to avoidance or deferment of new investments and network capacity
expansion as energy savings translate to less fuel required for generation. Results highlight
that the percentage of consumption during the peak hours of the implementation year is
reduced by 3.19%, 1.03% and 1.40%, compared to the baseline year, for the summer, middle
and winter season, respectively. Peak load transfer benefits both the prosumers and the
power utility. Prosumers gain financial benefit by consuming more energy during periods
with lower electricity rates thus reducing their electricity bills, while the utility benefits by
the fact that a more streamlined demand curve will lead to a more streamlined production
curve and therefore reduced operating costs. Additionally, the energy behaviour change was
investigated by comparing the average annual consumption of the smart prosumers with a
second set of domestic consumers with similar consumption levels populated from the rest
of Cyprus. The results of this comparison have indicated a sizable reduction of 2.17% in the
energy consumption of the “smart” prosumers as compared to the rest of Cyprus domestic
consumers. Assuming this decrease will also be reached on a national scale rollout for
all domestic consumers, the overall reduction in consumption (extrapolated) is estimated
at approximately 32 GWh per year (based on historical data provided by the Electricity
Authority of Cyprus-EAC). The overall benefit to the society at large, from the decreased
consumption, is the avoided cost associated with the estimated reduced consumption. In
order to be able to monetize this benefit, the EAC’s average cost of production during
the pilot implementation period was initially determined. The average cost of production
for the implementation period was 6.7 €cents, hence the producer’s saving is estimated at
€2.152.895. In Cyprus, the fuel costs per kWh are very high compared to other European
countries. Therefore the effect of energy savings is also very high on the positive side
of the CBA, since every kilowatt-hour of saved energy means less fuel is necessary for
the generation. In order to monetize the benefits, in terms of consumption reduction, the
seasonal consumption as well as the seasonal ToU price weights were utilized. The seasonal
consumption weights were estimated by dividing the total seasonal energy consumption
(kWh) to the total annual energy consumption (kWh) i.e. weight for baseline year: 22.21
/(22.21 + 14.64 + 17.82) = 0.41. The results for the summer, middle and winter period are

summarised in Tables 3.11, 3.12 and 3.13, respectively.
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Table 3.11: Average Daily consumption (kWh) and weights for the Summer season.

Summer

Baseline year Implementation year

Peak 948 8.77
Shoulder 5.33 5.69

Off-Peak 7.39 7.73
Total 22.21 22.19
Season Weight 0.41 0.39

Table 3.12: Average Daily consumption (kWh) and weights for the Middle season.

Middle
Baseline year = Implementation year
Peak 5.29 5.10
Shoulder 2.21 2.45
Off-Peak 7.14 6.99
Total 14.64 14.55
Season Weight 0.27 0.26

Table 3.13: Average Daily consumption (kWh) and weights for the Winter season.

Winter
Baseline year Implementation year
Peak 10.87 11.87
Shoulder 4.08 4.65
Off-Peak 2.86 3.40
Total 17.82 19.92
Season Weight 0.33 0.35

The steps followed to derive the weighted ToU average price for each year are depicted in
Table 3.14. The rates for each of the three tariffs were multiplied by their corresponding
seasonal consumption percentage and the tariff weights for each season and year. For

instance, the weighted average price of the implementation year was derived by:

* Multiplying each tariff’s weight with the corresponding tariff rate i.e. (42.70% x
17.42) + (24.01% x 14.07) + (33.29% x 10.85) = 14.43;

* Then multiplying the average price per season by the corresponding season i.e. 14.43

*0.41 = 5.86.

Then, the weighted average for each year can be calculated by repeating this calculation
for each season in each year. In conclusion, the weighted average prices are 14.51 and 14.39

€cents/kWh for baseline and implementation year, respectively.
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Table 3.14: Weighted Average ToU price for the baseline and implementation year.

Description Baseline Year Implementation Year
escriptio Summer Middle Winter Summer Middle Winter

Peak 42.70% 36.11% 61.03%  39.52%  35.08% 59.62%

Shoulder 24.01% 15,12%  22.89%  25.66% 16.87%  23.33%

Oft-Peak 33.29%  48.77% 16.08%  34.82%  48.05% 17.05%

Average Price 14.43 1371 15.60 14.43 1371 15.60

per Season

Weighted Price 5.86 4.47 4.18 5.59 4.82 3.98

per Season

Annual Weighted 14.51 14.39

Average

The total savings that occurred due to consumption reduction were derived by comparing
2015’s total consumption in € per kWh with the corresponding 2016 consumption, i.e.
(1,475,972,000 kWh x €0.1451) — (1,475.972 x (1-2.17%) x €0.1439) = €6,382,066, as
depicted in Table 3.15.

Table 3.15: Energy savings due to energy conservation.

Description Baseline Year = Implementation Year
Smart Sample Savings 2,17%

Total Domestic Consumption  1,475,972,000 1,443,929,611
Average ToU price (€) 0.1451 0.1439

Total 214,163,537 207,781,471
Monetized reduction €6.382.066

Even though the saving in energy by the consumer is lost by the producer, the producer
is saving the cost of producing the reduced energy and therefore the consumption related
element creates an overall societal benefit. On the other hand, the price related element
has effectively no net impact on society at large. This is because the money that is saved
by consumers is effectively lost by the producer. An additional saving is related to losses
savings. Based on information obtained from the EAC, the average system losses amount to
approximately 6% of the total energy consumed, leading to an equivalent amount of energy
savings. The reason this saving is not attributed to the producer, is because these losses
are charged to the consumers and therefore not to the EAC. As a result, this is effectively

a saving to consumers and to society at large. The efficiency losses savings are depicted in

Table 3.16.

Further savings are associated with load shifting. To calculate the financial benefits (FBys)

yielded from shifting demand from peak to shoulder and off-peak rates, were estimated
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Table 3.16: Efficiency losses savings.

Description Amount
Energy Saved 32,132,835
Efficiency Losses 6%
Additional energy saved 1,927,970
Avoidance rate (€) 0.067

Savings to the society due to efficiency losses avoided €129,174

using:

FBrs = (A(Margin Peak) — Non Peak Rates) - PLT - TC (3.31)

where,

AMargin Peak - Non Peak rate = wholesale margin difference between peak and non-peak
generation

PLT = Peak load transfer percentage

TC = Total Energy Consumption

The annual average peak load transfer was derived based on the load demand data-sets
that were collected during the baseline and the implementation year, while the AMargin
Peak is the difference between the peak price and the marginal electricity cost which was
provided by EAC. The total savings that resulted due to load shifting action are shown in

Table 3.17.

Table 3.17: Energy savings due to load shifting.

Description AMargin  Peak Load Transfer Total
Peak — Shoulder 0.0165 3.84% 915,970
Peak — Off Peak 0.0183 1.78% 471,343

Total €1,387,313

Additionally, the introduction of smart metering in Cyprus, through the potential
enrollment of a DSM-scheme, will most likely eliminate the cost currently incurred by the
EAC for read-outs (Table 3.18) as well as a decrease in electricity theft equal to 50% (Table
3.19), up to 0.4% decrease in bad debts (Table 3.20), approximately 30% reduction of power
interruptions (Table 3.21) and a reduction in telephone calls by 0.5% (Table 3.22). Those are

indirect benefits that are associated with the large-scale deployment of a DSM-scheme.

A breakdown of the capital and operational expenditure used in the investigated CBA

analysis is shown in Table 3.23 and 3.24, respectively.
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The parameters and the respective values used for the capital and operational expenditure

as well as the indirect benefits were selected based on an economic analysis conducted by

the Energy advisory company DNV KEMA, which is subcontracted by the national DSO,

the EAC [105].

Table 3.18: CBA: Read-outs.

Parameter Unit Value Commentary
Number of yearly Read-Outs ~ # 30% This benefit is derived by
Cost per Read Out € 2 multiplying the annual cost
Yearly Read-Outs cost € 25,746 of Read-outs per customer
Number of residential 4 442.293 and .the bgseline year total
consumers residential consumers.
Expected Saving € 2,653,758

Table 3.19: CBA: Electricity theft.

Parameter Unit Value Commentary

Electricity theft % 1.50% Electricity theft reduction

Residential revenue € 225,536,197 benefit is estimated
Total € 3,383,043 by multiplying the product

Estimated reduction % 50% of current electricity

theft percentage (1.5%)
and baseline residential sales
by the estimated reduction.
Expected Saving € 2,653,758
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Table 3.20: CBA: Bad debts reduction.

Parameter Unit Value Commentary
Residential bad debts % 0.40% The reduction in residential
Bad debt reduction % 50% bad debts (0.2%)
Expected bad debts reduction % 0.2% was multiplied
Bad debt collection cost € 30 by the product of
Number of residential debt collection
consumers # 442,239 per bad debt (€30)
Total cost € 13,268,790
Expected Saving € 26,538

Table 3.21: CBA: Reduction in interruptions.

Parameter Unit

Value Commentary

Reduction interruptions %

30%

This benefit is estimated by

Average interruption hours 2 multiolvine the product of
Expected reduction hours 0,6 revelrl)use/: §r hofr and the
Residential revenue € 225,536,197 p ..

) forecasted reduction in
Hours in the year hours 8,760 interruptions. by the cost per
Revenue per hour € 25,746 I:mser\’fengh p
Cost per unserved kWh € 1.6
Expected Saving € 24,716

Table 3.22: CBA: Reduction in telephone calls.

Parameter Unit  Value Commentary
Number of annual calls # 20,014
Time per call mins 4 . . .
Total call time hours 1,334 t’)l“ hifllll)lf?elﬁ;ris digl(\ilsgt
Societal cost per hour € 4.7 yo ¢ totafl?ourgl p cost

Call center cost per hour € 18.8 and the total ca}lll hours

Administration cost per hour € 25 .
Total hourly cost € 48.5 per year by the.estlmated
Estimated telephone calls cost € 64,712 percentage reduction of 0.5%.

Expected Reduction in telephone calls

0.50%

Expected Saving

R

324

74



‘SIgjoui-H Jrewas Jo

sIeak [njosn oY) Aq xgdeD) [©101 9y} SUIPIAIP AQ PIALI_ 8LE8IVC s1 xgde) penuuy
699°ST70°LE xgde) [ejoL,
‘JY31om SIQWINSUOD [BNUAPISAI [ ()7 oY) AQ paImbar 1500 o i ] )
[entur ay3 SununodsIp Aq pajewnsa sem xgded) INAIN 000°0LO'S 8L 0000059 1500 Teniu] INAIN
"PA[[BISUL WIPOW SIY} dABY [[IM JBY)
pajewnsa s1asn Jo agejuadiad oy ST YIIYM 9G]
. . SIQWNSUOD JIun/3) Wopo
Aq parjdninur uay) sem 1onpoid IOy, 'SIOWNSUOD  §C/‘€S9‘T %S €6C 70 I9QUINN ov wm mm\uwvwo%w W
[eIIUIPISAI [810) JBAL duI[aseq Ay} Aq () wopow 1ad 3509
oyl SutAdnnw £q pajewnsa sem SYYJH xgded
"SI9Sn [eInl 0}
[BTIUQPISAI JO XIW Y} JOAPI 0] JOPIO UI 9G] Aq
PAIUNOISIP Uy} sem 3onpoid Sy [, ‘siownsuod . . SIQWNSUOD (Owun/3)
[eIIUQPISAI JO JoqUINU [B10) JedA Qurjaseq oyl Aq 9CL8OE 6 %s8 6ctry Jo 1oquInN s¢ uonedIuNWwo)) DId
(¢7) nun 1ad 1500 oY) SurAdnnuw
AQ parewnsa sem uonedIUNWWO)) D) Id
‘snudAD) ur s1IoWnNsuod [BIUAPISA JO . 210
Ioquinu Jeak aurjaseq ay) £q pardnnu $81¢06 61 ﬁzwsr_k [
uQ) SeM SIdqUUNU 9SAY) JO WNS Y, o i . SIQWINSUOD AM. 9\ @W> MoE d
"19JoW-H 1BWS B JO 1SOJ ) WOJJ J9ou-H (098°5¥8'8) €eccry Jo IoquinN e woﬁm.é.m‘“
[EUONIUDAUOD € JO 109 Ay} Sunodsenqgns Aq ., S, E:U ST
pajewnse sem s1ajou 1oy xgde)  GH0'61L 8T - €6TThY ¢9 Qrun/3)
: Jo JoqunN I9)IN-g Mews xade)
10108}
Arejuowrwio)) (3®) 1®10L Juounsnipy onjeA  uonduosog anfep uonduosaq
IoALI Iojowrereq

aampuadxa 1eide) 1ygD €7 °€ QI9BL

75



0bP'sL6 xgdQ 1ejo1,
‘JYSIOM  SIQWNSUOD [BIIUAPISAI JBIL duI[aseq Y} Aq pasnbax 3so0d . ) i i . (1824/3) 150D
[enmr ay3 3ununodsip £q parewnsa sem xgded IWAIN 000CTE 3L 000007 [enuuy INQIN
WOpoW SYJD Y} [[BISUT 01 PAoadxa sIoWNSuod Jo
uontodoid ay st s1y) SB 9,1 Aq pardnnu uayy sem jonpoid sy, . . Iownsuod (1ea4/3)
"TBQA QUI[ASEq AU} SULINp SIASN [BIIUIPISAI JO JoquInU [B10} oY) Aq 0¥y €99 Bl 6c vy Jo JoquunN 01 uonduosqns xadO
uonduosqgns 1ad 1505 ayy Surkdnnw £q uonduosqns xgdO Ay,
Areyjuouuuo)) (3) BoL 1018 oneA  uonduose@  on[ep uonduosaq
juowsnlpy T T
IOALIQ Ioowered

-mmyipuadxa [euonerad :vgD 7 € AlqeL

76



As shown in Table 3.25, the CBA results demonstrated that the overall net-benefit to
society from a potential nationwide rollout of smart metering is approximately €4mln over
a 15-year period. The results also indicated that the parameters used for the CBA are variable
and highly dependent on the exact deployment area and the principal difficulty in performing
the CBA is the internalization of these cost and benefits. However, increasing the lifetime
and the scale of the pilot programme can minimize the uncertainties of the parameters and

therefore improve the CBA outcome. Hence, a one-size-fits-all CBA model is not sufficient.

Table 3.25: CBA: Overall benefit arising from a potential large-scale rollout.

Description Cost Benefit

Consumption reduction

Energy consumption reduction / avoided production cost
— Benefit to the power utility

Power losses savings €129.174
Load shifting

Shifting loads away from peak hours
— Benefit to the power utility
Indirect Benefits

Read-outs costs €2.653.758
Electricity theft reduction €1.691.521
Bad debts reduction €26.538
Quickly identify dead / stopped meters €24.716
Customer call services €324
Capital expenditure (Capex)

Capex smart meter €1.326.879

Power-line communication €626.582

General Packet Radio Services (GPRS) €176.917

Met§r Data Management System (MDMS) £338.000

Capital Cost

Operational expenditure (Opex)

General Packet Radio Service (GPRS)

— subscription

Meter Data Management System (MDMS) €312.000
Annual Cost

Total Annual Cost €3.443.817 €8.066.239
Net Annual Cost €4.622.421

€2.152.895

€1.387.313

€663.440
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3.4 Concluding Remarks

The aim of this chapter is to present a universally-applicable methodology for effective
deployment of implicit DR in the form of a price-based DSM scheme. The proposed
methodology was applied and verified on a real smart pilot-network in Cyprus comprising
of three hundred prosumers with PV systems installed on their rooftops. The resulted peak
reduction in the range of 1% and 3.2% as well as the reduction of the overall consumption
by approximately 2% proved that the application of the proposed scheme incentivised the
participants to change their energy behaviour and minimize the need for electricity network
reinforcement. The effectiveness of the proposed price-based DSM scheme was also verified
by the regression analysis results as all coefficients appeared to be significant (below 5%
level) and with the expected signs. Furthermore, the proposed methodology can be applied
to both prosumers and consumers since the utilization of the net-load profile was found to
reduce the percentage of unintended revenues below 35%. The overall net benefit to the
society is further proved as the results of the performed cost benefit analysis showed a gain
of €4.62mln in the case of large-scale deployment of the proposed scheme. An assessment
of the impact of the individual measures for the effective deployment of DSM, including
their level of impact and cost as well as their various strengths and weaknesses, is presented

in Table 3.26 [106].

Based on the gained experience and knowledge, populating a pilot-network consisted
of a large sample of residential prosumers whose consumption patterns are representative
of the aggregate residential consumption and are equipped with the required technology
for enabling time-varying electricity pricing is of utmost importance. Therefore, the
establishment of an appropriate pilot-network of prosumers has the highest impact on the
development of an effective price-based DSM scheme and should be employed regardless
of the high implementation cost. Measures such as data acquisition, information feedback
and re-evaluation of the developed scheme have high importance and medium to low
implementation cost, hence should be employed. Conducting a questionnaire survey, training
the participants and performing a CBA have medium impact on the development of a price-
based DSM scheme and can be applied in all cases where the cost is relatively low. Finally,
a sensitivity analysis that can verify the effectiveness of the proposed DSM scheme, should

also be undertaken.

78



INO[[01 9[eIS-931e]

sonuIe}IadUN 0} NP SIsA[euy
L PoJBIa[edIR 0} ped[ ued jnsar aanisod vy + MOT  WNIPIN :
SQ3UBYD [[BWS 0] ANISUAS A[OWIIXQ ST JWOIINO [BUL] - Jgouag 150D
oS 3 : 1gouaq [enuajod 9y} JO J0JBdIpUl POO3 Y +
axmbar st zowmsoid 9 01J Jorqpa9y 1adoiq - syoed
PRIIBAL ST IDUIMSOICE 94} WO} AoEqP9s) 1oC01d poedut M0 Y31y uonen[eAd-Y
§59001d 9ATIBIO) - QATIUEBISQNS PUEB SAWAYDS [ewdo 0] Pea [[IM JUSWUYY + : :
$1509 AIOLNOJ[D
ue so[yoid A310u9 uo ssouareme Jownsoid asre oBqpe9
AIessaoau st A3ojouyod) erdorddy - P 1Y oY + wnIpajN Y3y 1oEqPood
. : szownsoxd pauren-Jios + : : uonewWIOJuY
suononpal uondwnsuod 01 pes[ ue)) +
uoneonpa A3I19U9 JoWNSold +
1500 ugredwres JunoyIelA - szownsoid pue
. . wnIipojN  WNIPIN Sururely,
uoneonpa JUSI[IP pue snonunuod saunbay - Anmn 1omod oY) UsaMIeq S[OUUBYD UOIBIIUNWWO)) +
SJJIIR) NOT, JO INO[[OJ [NJSSAIONS AINSUY +
paxmbar st saouerjdde s[qerreae 9y Jo IsI7 - paajoAur 9q ued syuedroned Ju9Ixa Jeym 0} UONEIIPU] + Mo 0 SISA[euy
paIInbax ST oW JUSIOYJNS B IOA0 SUIPUAIX BIR( -  SHJLIB) 0L, pedoraaap ay jo sioedwir ay) Surpueisiopup) + 1 1 KITADISUQS
Supprewyouaq I0J SI030LJ SS0ONS [EONLI
SpuQI} [eUOSEas djeiodioour PHBHIYDUSq 10§ 8103983 TEORELD +
suonenyeA? aImnj 10j (ydioy + MOT y3tH uonismboy vleq
0] ATBSSQ00U ST UOTIII[OI BIBP JO JBA UO ISBI[ IV -
o syuedronred ay) 03 Joeqpa9y [BOLI0ISTY SOPIAOI] +
spjoyasnoy sa3e)s YorqPI9] puUE UOIIDJ[0D BIEP PIB SINIJA MBWS + s
1 31 A3orouyo9
[1e dinba A7[nJ 01 1509 e1ded Y31y A[owanxy - SI[NSAI 19119q aA31Yoe 03 d[oy ser3ojouyod) Jurjqeus + 45tH 45tH 1OUORL
syuedronred oY) WolJ SUOIIEPUIWWIOINY +
Sa3ueYD [BINOIABYQQ SAIBATIOW Jeym FUIpUR)SIdpU() +
Surpearstur 9q ued Apoa110our pajerduioo Ji - : : . MOT  wWNIpd aIreuuonsan
Ipea[stur oq P | H suoneSnsaAul 1 IPIN L nsanQ
axmny 1o jueytodur st sooueridde ojqe[reae oy} Jo ISIT +
SUONIPUOD IAYJBaM O} NP PUBWAP JO
A[3s09 ST suone)s Iayjeam Jur[eisuy - Hip W }onp P P
o : suoneLeA puelsiopun d[oy ued suonels JoYleap +
931e[ A[oAne[aI1 9q ISNIA] -
INOTOI A[BIS-193IR] JOJ UOTIBULIOJUI IPIAOI] + I0MIQU-10[Id
QAQIYIE 0] J[NOYJIP ST ANSIAAIP [eo1ydei3oe3 U3y Y3ty
dredroned 3 uop Lo J1 Surystqeisyg
PUE SISSB[O JIWOUO0II-010S JUAIPI(] - o : Tt
UaAd NS UO pauLIojul 2q [[I4 S9jepIpue)) +
JUNOOOE OJUT UIYE) 9q ISNUW J9]J9 SWIOYIMBH -
SI[NSAI 2JeINOoE 10w apraoid [[Im AIISIaAI(] +
SISSIUBIM SYISUINS 150D joeduy AINSBIN

NS Jo yuawko[dap 9AT}O9Je oY) J0J SQINSEIW [ENPIAIPUL Y JO 10edWI 9y} JO JUSWSSISSY :97°¢ [qeL,

79



Regression analysis results highlighted that there is still a lot of potential for flexibility
provision in the residential sector. This is mainly due to the low reward provided to
residential customers for altering their energy behaviours in exchange of their comfort levels.
The appeal of DSM schemes could be increased with the inclusion of explicit DR offerings,
such as availability payments that support equipment installation and reward customers for
the full benefit they provide. Moreover, advancements in the energy market structure so
that the residential sector can contribute in more services (e.g. ancillary services) could
potentially provide incentives for DR participation. Furthermore, a general lesson learnt
from the experimental work is that many residential customers could have easily contributed
to flexibility provision, however they were not overly fond of the idea of waiting until
midnight hours to do the house chores just to take advantage of the cheaper electricity
price. This means that appliances using automation technologies are very important in
maximising the flexibility potential. This leads to the conclusion that countries where
the electricity market is mature, additional relevant stakeholders are established, and the
available technology is well advanced can greatly benefit from a DR framework that enables

optimal flexibility dispatch.

80



Chapter 4

Optimal Demand Response Distribution
Coordination Framework Towards
Reliable, Fair, and Secure Flexibility
Dispatch

4.1 Introduction

As electricity markets and technological advancements are progressing, more DSM
program offerings are available. Many enabling technology end-uses have technical
capabilities that allow the end-users to achieve multiple DSM objectives including automated
DR. Deployment of “smart” technologies (real-time, automated, interactive technologies
that optimize the physical operation of appliances and consumer devices) for metering,
communications concerning grid operations and status, and distribution automation as well
as increased use of digital information and controls technology to improve reliability,
security, and efficiency of the electricity grid have all led to “smarter” electricity networks
also known as “Smart Grids”. The Smart Grid encompasses the integration of power,
communications, and information technologies for an improved electric power infrastructure
that serves loads while providing for an ongoing evolution of end-use applications.
Automated DR has a major role in the smart grid concept as the primary enabler for
optimum energy management. However, in order to maximise flexibility extraction in

a fully automated fashion, third parties such as Aggregators must undertake the role of
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summing those multiple flexibility volumes by considering various parameters in relation
to the performance of their customers as well as the impacts on the grid balancing. All
previous studies presented in Section 2.3 have exhaustively explored DR approaches, while
considering customer behaviour and have established a solid foundation for the significant
potential of participating in the flexibility market. However, as power flows are expected to
become bi-directional, real-time grid management as well as activation of procured flexibility
necessitate a more coordinated approach between the DSOs and the Aggregators. This
new paradigm creates not only challenges but also great opportunities. DSOs may use the
flexibility provided by the Aggregators to solve voltage problems or manage congestion at
the distribution network, while the Aggregators can optimally exploit the available flexibility
of their customers to participate in DR events at minimum cost. Nevertheless, the expected
costs of the Aggregator may come with a high level of variability, depending on the reliability
of his customers. The response of a customer in modifying his consumption pattern is not
certain so there is a requirement of studying DR considering the uncertainty associated
with it. Additionally, a fair distribution of flexibility requests to all the customers, will
enlarge the portfolio of the specific Aggregator due to the increased willingness of other
customers to enroll. These cost and performance aspects combined with the grid technical
constraints, while considering security and communication aspects, are yet to be thoroughly
investigated. The scope of this chapter is to present a holistic DR framework for DSO-
Aggregator coordination that exploits a bi-level constrained-objective optimisation function,
which minimises the flexibility aggregation costs through optimal segmentation of customer
groups based on performance indices, while maintaining the distribution grid balancing.
The holistic approach is concluded with the inclusion of complementary functionalities such
as open protocols and blockchain methods that establish the interoperability and increased

security capabilities of the proposed DR framework [107].

The rest of this chapter is structured as follows: Section 2 presents an overview of the
proposed DR framework including a detailed description of the two levels of the optimisation
function as well as the horizontal complementary functionalities. The results of testing the
proposed DR framework on a modified IEEE 33-bus radial distribution system are presented

in Section 3. Important concluding remarks appear in Section 4 of this chapter.
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4.2 Methodology

In the problem of enabling optimal flexibility provision, a holistic DR framework
that enables interoperable and secure DR activation for DSO-Aggregator coordination is
developed. The backbone of the proposed framework is a bi-level optimisation function
that aims to minimize the Aggregator’s costs while ensuring the normal operation of the
distribution network through technical constraint evaluation. As illustrated in Fig. 4.1,
the proposed DR framework for DSO-Aggregator coordination operates between the two
stakeholders, utilizing information data from both sides. More specifically, the proposed DR
framework exploits information regarding the distribution network topology, offered by the
DSO, as well as the portfolio data of the Aggregator. Both sets of data are used as inputs
to derive a decision about the optimal combination of customers and their flexibility volume
based on each DR signal and the activities of the Aggregator in the electricity market. After
a DR signal is initiated by the DSO, a preliminary check that the total flexibility volume
of the Aggregator can meet the total requested flexibility is performed. In that case, the
optimisation function procedure runs. Otherwise the DR signal is rejected. The two levels of
the optimisation function, utilised by the proposed DR framework, simultaneously address
both cost and customer performance parameters as well as the distribution network technical
criteria. Doing so, not only does the risk associated with the DR customer selection lowers,
but also risk-averse bidding strategies, occurring due to various grid violations, are foreseen
and avoided. The decision about the optimal combination of customers that can participate in
the current DR signal is then fed as an output to the Aggregator. A DR signal activation ends
with the flexibility extraction from the customers, followed by the flexibility provision to the
DSO. As added-value, the proposed DR framework ensures communication interoperability
as well as secure interaction between all the involved energy stakeholders through the
exploitation of its horizontal complementary functionalities, the OpenADR standard [108]
and blockchain technology. Even though the focus of this work is the Aggregator, other
market players could also employ the framework, such as Ultilities, Flexibility traders,
etc. Moreover, the proposed DR framework, and subsequently the developed optimisation
function, can be applied to any type of contracts (dynamic and/or static) between the DSO
and Aggregator as well as between the Aggregator and his customers, while the technical
parameters utilised in the optimisation function enable the exploitation of the developed

framework for any network topology.
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An overview of the assumptions made for the proposed DR framework as well as
a detailed description of the two optimisation levels and the horizontal complementary

functionalities are presented in the following sections.

4.2.1 DR Framework Assumptions

The proposed DR framework aims to optimise flexibility provision in an electricity
landscape where a DSO-Aggregator coordination mechanism is already established. Even
though sharing a network topology in real-world applications is not easy, following the EC
Third Package [6] suggestions for the creation of equal opportunities for all stakeholders to
enter the electricity markets, it is believed that in the near future the network visibility will
be increased. As of today, many countries are using the USEF Flexibility Trading Protocol
specifications [65]. In this protocol, USEF recommends declaring congestion points at the
lowest possible level in the grid as this allows for detailed insight about local congestion
while simultaneously, through aggregation, safeguarding the reliability of the grid safety
analysis. To this end, it is assumed that a similar approach will eventually be adopted in other
European countries as well as the rest of the world, where a DR framework that will operate
between the DSO and Aggregator layer will render the network topology observable. The
visibility level will surely depend on the regulations of each country. The System Operators
and the Aggregators will not necessarily have access to all the data flows and information
exploited by the proposed framework but only to the inputs and outputs related to their role in
the electricity market. In this context, both the DSO and Aggregator must coordinate within
the DR framework for safeguarding the balance of the distribution network in a manner
where the DSO sends a direct signal to an Aggregator to address a local congestion problem
related to gird balancing. The Aggregator, who alleviates the problem through flexibility
provision, is compensated based on a direct bilateral contract price agreed with the DSO.
Moreover, the proposed DR framework enables the Aggregator to concurrently participate
in other flexibility markets, besides congestion management, while considering the balance

of the distribution network coverage.
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4.2.2 DR Framework: First Level of the Optimisation Function - Cost

and Performance Aspects

To address the cost and customer performance variability in flexibility aggregation, the
first level of the optimisation function utilised by the developed DR framework introduces
two new indices: the Fairness Index (FI) and Reliability Index (RI). The FI and RI represent
the equal distribution of DR signals to all customers as well as their reliability to flexibility
commitment, respectively. The two proposed indices act as risk management mechanisms
by prioritizing the group of customers that can reliably participate in a DR event by
meeting the requested flexibility volume, while ensuring that the Aggregator utilises all
the customers within his portfolio. The two proposed indices are integrated in the first
level of the optimisation function along with the typical cost and availability indices. The
first one facilitates the minimization of the total cost of the Aggregator, while the latter
ensures that the selected customers are not scheduled to participate in the electricity market
throughout the day, thus their available flexibility volume can be exploited. At this level
the optimisation function derives all the available possible combinations with which their
aggregated flexibility volume can meet the total requested flexibility, while resulting in a fair

and reliable solution.

4.2.3 DR Framework: Second Level of the Optimisation Function -

Technical Aspects

To maintain the balance of the distribution network, the proposed optimisation function
considers flexibility aggregation, scheduling and disaggregation capabilities under the
constraints of maintaining the balance of the distribution network at all times. The aim of this
component is to allow Aggregators to optimally access the energy flexibility market services
and exploit DR without affecting the balance and adaptation capacity of the distribution
network and at the same time to avoid congestion and operate within prescribed voltage,
frequency and power margins. This entails the identification of any voltage or line loading
issues, including time and specific location, occurring within the investigated network
topology along with the required flexibility for restoring the voltage and line loading levels

back to nominal.
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4.2.4 DR Framework: Optimisation Function Model Formulation

The proposed objective function considers the minimization of the total cost of the
Aggregator, constrained by the technical parameters of the distribution network that are

obtained through Optimal Power Flow (OPF) analysis.

Suppose that customer k can change his demand from d; o(¢) [kWh] (initial value) to d(t)
[kWh] during the #" hour where a DR event occurs, based on the value which is considered
for the incentive and the penalty included in the contract. Then the change in the demand, or

equally the estimated flexibility provided by each customer is calculated using:
Ady(t) = |di(t) — dyo(t)] 4.1)

If I(t) [€/kWh] is paid as incentive to the customer in " hour for each kWh flexibility, as
part of the contract with the Aggregator, then the total compensation of the customer for

participating in DR signals will be as follows:
P(Ady(t)) = I(t) - Ady(t) (4.2)

If the customer who has been enrolled in the mentioned DR programs does not commit to
his obligations according to the contract, he will be faced with a penalty. If the penalty price
for inadequate flexibility provision is denoted by pen(t) [€/kWh], then the potential total
penalty cost is equal to the difference between the requested flexibility for the current DR
event, Ad,(t), and the average flexibility volume (AvgFlex(t-1)) that the customer k offered

in all previous events (¢-1).

PEN(Adg(t)) =
4.3)
peng(t) - [Adk(t) — AvgFlexy(t — 1)

In this case, the total revenue for the customers who participate in the DR is calculated as

follows:

P(Ady(t)) = Ix(t) - [dro(t) — di(t)] = PEN(Ady(1)) 4.4)

In order to prioritise those who are reliable and offer the exact amount of requested flexibility

on a regular basis, a reliability index (R/) depends on the data recorded until the previous DR
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event (#-1) and is estimated based on the following equation:

ReqFlexy(t — 1) — Adg(t — 1)
Total Flex(t — 1)
Adg(t — 1)
" TotalFlex(t — 1)

RIL(t) =RI,(t — 1) —
4.5)
+PI(t—1)

where ReqFlex;(t-1) [kKWh] is the last requested flexibility volume, PI is a binary indicator
used for identifying if the customer participated in the last DR event, while TotalFlex(t-1)
[kWh] is the total flexibility volume provided by all N customers for all past DR requests,

and can be estimated by:
N
TotalFlex(t — 1) = Z ReqFlexy(t — 1) (4.6)
k

The higher the RI index, the better reliability performance of the executed DR. In order
to evenly distribute DR requests among customers, an Absolute Fairness Index (AFT) per
customer is introduced, which is defined as the ratio of the total number of requests sent to

customer k to the total number of requests for all customers.

Total Reqi(t — 1)

AFI(t) =
+() ZkN Total Reqi(t — 1)

4.7)

In addition to the AF1, a Capacity Fairness Index (CFI) is considered, in order to fairly assign
the requested flexibility volume based on the maximum (MaxFlex) and minimum (MinFlex)
flexibility capacity that each customer k can realistically provide and the average flexibility
volume (AvgFlex) he has offered in all previous requests. This index aims to exploit the

flexibility volume of each asset at its maximum offered capacity.

MazxFlexy — AvgFlexy(t — 1)
MazFlex;, — MinFlex;

CFIL(t)=1— (4.8)

All variables related to the DR participation of each customer k (i.e. ReqFlex, TotalReq,
AvgFlex) are stored and updated for each time interval that the proposed DR framework is
executed. The values of the maximum and minimum available flexibility are defined in the

contract based on the deferrable loads of each customer.
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First level optimisation

Considering the above, the proposed optimisation function that aims to minimize the total
cost of the Aggregator by allocating all available assets based on total cost and reliability of
his customers as well as a fair approach that will help the participants become more actively

engaged can be defined as:

Optimisation weight = min

N . . 1 4.9)
{Z <P(Adk(t)) "RIL(t) AFIL(t) CFMt))}

k

The result of the optimisation function (Optimisation weight) is a value that represents
the effect of each combination of customers on the Aggregator’s costs. The lower the
weight is, the lower the expected cost will be. In order to achieve optimal DSO-Aggregator
coordination, several technical constraints must be considered. To this end, the developed
optimisation function (4.9) is subject to constraints that ensure voltage as well as active
and reactive power at both bus- and line- levels at all times. The variable that relates the

optimisation function with the technical constraints is the available flexibility of customer %,

Adk(l').

Second level optimisation

The bus-level active and reactive power balance are maintained through:

PD;(t) - PCi(t) + Y _Pa(t)=0  Vii' e [VteT (4.10)

QDi(t) — QCi(t) + > Qis(t) =0 Vi eI VteT (4.11)

The above constraints retain a balance between the active and reactive loads at bus i and time
t [PD;(t), OD,(t)] with the respective changes resulted due to flexibility provision [PC;(?),
QCi(t)]. The total active load, PD;(t), at bus i is equal to the total consumption of all

customers connected to that bus:

N
PD;(t) = di;i(t) (4.12)
k
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while the total active power provision, PC;(t), at bus i is equal to the total flexibility (upwards

or downwards) provided by all customers connected to that bus:

N
PCi(t) = Y Ady(t) (4.13)
k

Active and reactive line flows are calculated as:

P (t) = GiaVE(t) + Vi(t)Vir (1) G rcos[05(t) — 0 (1))
+V;i(t)Vir (t) By sin[6;(t) — i (t)] (4.14)

Vi,i' e ILNteT

Qi (t) = =By V(1) + Vi(t)Vi (1) Giarsin[0i(t) — 0 (t)]
—Vi(t)Vi () B; ircos[0;(t) — 04:(t)] (4.15)

Vi,i' ¢ IVteT
where G; ;- and B; ;> represent the real and imaginary parts, between the bus i and i’, of the
respective element in the bus admittance matrix. The voltage magnitude and phase angle at
bus i and time ¢ are described by V;(#) and d,(¢), respectively. The real and imaginary parts
G, and B;;» as well as the voltage magnitude and phase angle at bus i are estimated based

on the inputs provided through the Network Topology. In addition, the power factor at load

points should remain constant when the load is curtailed or shifted:

The bus voltage is one of the most essential and significant safety and service quality indices.

In this case, the bus voltage limits are maintained through:
VIVit)SV  YielVteT (4.17)

where V(1) is the voltage magnitude of the i bus, while V and V are the allowed lower and

upper voltage magnitudes, respectively. All utilised voltage values are in p.u.

Line flow capacity limits are ensured as:

_Si,i’ < Si,i’ (t) < Si,i’ Vi, = I.vteT (4.18)
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where

\/ )+ Q1) Vi elVteT (4.19)

while load change at each time is limited by the consumption load:
0 < PC;i(t) < PD;(t) Viel,vteT (4.20)

The required flexibility for restoring the bus voltage to normal operating conditions is
based on a voltage sensitivity analysis performed on the flexibility provision, PC;(t). More
specifically the flexibility value provided by each customer is marginally deviated within the
range of the minimum and maximum flexibility volume so that voltage limits are maintained.
In this sense, this sensitivity analysis gives an indication of the extent of the influence the

variation of active power on a node has on voltage.

In case where a line overloading occurs, then the total required flexibility for restoring the

network’s normal operation is estimated by:

Violation; »(t) — 100
TotalFlex, (1) = L2 =10 (4.21)

where Violation; »(t) is the load percentage of the line between the bus i and i’ and is
calculated based on the Network Topology inputs. Subsequently, to avoid a line violation
event, the aggregated flexibility of bus i, PC;(t), should be equal to the TotalFlex; ;(t).

The outcome of the objective function is the optimal combination of customers along with
their respective flexibility volume that can meet the total flexibility request with the minimum

cost and without affecting the balance of the distribution network.

4.2.5 DR Framework: Horizontal Complementary Functionalities

To further support the viability of the proposed methodology, two added-value
functionalities also have been implemented, towards presenting an interoperable and secure
framework. A twofold approach is employed in order to provide semantic interoperability.
First, an ontology based on the OpenADR standard has been used [109] for formal data
validation and integration with other standards. Second, a communication component [110]
that interconnects systems with heterogeneous communication protocols, formats and data
models is utilised. By employing semantic web technologies, the ontology allows transparent

exchange and consumption of data. Collectively, these two pillars are referred to as the
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Common Information Model (CIM) and provide for a semantically interoperable ecosystem
within the proposed DR framework.

Facilitating the growth of (future) marketplaces and incentivizing the participation of all
energy stakeholders necessitates a decentralized and trustworthy infrastructure that must
provide, at minimum, financial settlement of DR-related transactions. A permissioned
blockchain-based platform is employed, based on Hyperledger Fabric [111], which is
maintained and operated by multiple, distinct administrative domains. These entities
participate in an authenticated, byzantine fault-tolerant consensus algorithm, which is
decentralized by design and provides for tamper-resilience and liveness in the presence of
(arbitrary) failures. Moreover, to promote fully automated contractual agreements among
participants of DR schemes in the context of different marketplaces in a trustworthy and
verifiable fashion, we leverage the power and expressiveness of smart contracts. These are
automated agents that “live” in the blockchain and play an integral part of the proposed DR
framework [112] as they mediate and monitor transactions, provide transparency, as well as,
enforcement of contractual clauses by regulating energy supply, payments and potentially
incurred penalties. As the algorithms and rules upon which these contractual agreements
are formed reside on the blockchain, end-to-end verifiability, transparency and financial

settlements are achieved.

4.3 Results

4.3.1 Test Case Description

In this section, the performance of the proposed DR framework is evaluated based on
a hybrid test network comprised of a physical microgrid and nanogrid network connected
to a simulated distribution network. The reason for creating this hybrid test network is to
investigate the applicability and effectiveness of the proposed DR framework under real-
conditions where a microgrid is interacting with a nanogrid and their joint operation directly
affects a nearby distribution network connected to the same Primary Substation. Both the
microgrid and nanogrid are physical parts of the University of Cyprus (UCY) campus where
full monitoring and control capabilities are enabled. The inability to control the nearby
connected physical distribution network is addressed through the utilisation of a simulated
IEEE 33-bus test system that is modified to represent the unavailable physical distribution

network.
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The physical microgrid is comprised of 14 tertiary buildings that span a broad variety of
typologies and uses (educational facilities, office building, restaurants, sports and health
centres, etc.) along with large shares of DERs, such as PVs. Similarly, the physical
nanogrid (PVTL nanorgid) includes PVs, Battery Energy Storage System (BESS) and
Electric Vehicles (EVs). The modified IEEE 33-bus test system includes both domestic
and commercial electricity customers. To consider the effect of RES integration in
the distribution network, the domestic customers are equally divided to consumers and
prosumers.

In order to be able to evaluate the impacts of both the physical and simulated parts of the
hybrid test network in a unified environment at the same time, the topology of the microgrid,
nanogrid and modified IEEE 33-bus test system were modelled in a power system analysis
software application, DIgSILENT. The modelled test network provided the additional ability
of testing various distribution network imbalance issues that otherwise would be impossible
to physically create. The characteristics for the microgrid and nanogrid models are based
on their physical counterparts, while the consumption and production datasets as well as
BESS and EV profiles for the modelled microgrid and nanogrid are fed in real-time to the
models through the installed SMs across the UCY campus. Deferrable loads such as the
chillers, dimming lights, smart AC split-units that can be exploited as sources of flexibility
for participating in the DR events are also considered and controlled in real-time. The
load profiles for the IEEE-bus test system were based on previous studies [100, 113]. The
modelled hybrid test network, used for the evaluation of the proposed DR framework is
illustrated in Fig. 4.2. As can be seen in the figure, the test network consists of the Primary
substation, where two feeders (Feeder 1 and 2) are delivering electricity to the physical
microgird and nanogrid as well as a third feeder (Feeder 3) that connects the modified IEEE

33-bus test system.

The line loading as well as the Low Voltage levels, under normal operating conditions are
illustrated in Fig. 4.3 and 4.4, respectively. It can be seen that the line loading remains below
100% of the line capacity, while the voltage levels at the buses are maintained between 0.9

and 1.1 p.u. of the nominal voltage.
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Figure 4.3: Line loading levels under normal operating conditions.
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Figure 4.4: Low-voltage busbar levels under normal operating conditions.

95



The integration of a Python programmed integrating script (PPIS) is developed in order
to integrate the proposed DR framework, the test case as well as the interactions between the
DSO and Aggegator in one unified environment. In this way, any control strategy applied to
the modelled microgrid and nanogrid components is carried out to their respective physical
ones through the PPIS. This resembles a Hardware-in-the-loop approach which enables
the testing of the functionalities the proposed DR framework in a semi-real environment
where the embedded physical parts are capable of interacting with the simulated ones, thus
rendering the evaluation results more accurate. In addition, the developed PPIS allows the

demonstration of the interoperable and secure functionalities of the proposed DR framework.

4.3.2 Test Case Modelling Parameters and Assumptions

In this Test Case, it is assumed that the DSO takes the role of the price-maker who
compensates the Aggregator at a contracted price for alleviating distribution grid violations
at his area of responsibility. The contracted price between the DSO and the Aggregator is
based on a CBA conducted by the national DSO, the EAC [114]. The CBA indicates that
the congestion in an MV Feeder is expected due to either increased load demand (during the
winter period) or increased generation of RES (during the summer period). Based on this
CBA, the price that the DSO is willing to pay for each unit of Flexibility Energy [MWh] is
related to the total flexibility energy units required for congestion avoidance. Following the
CBA results, in this Test Case it is assumed that the flexibility events can be divided into the

categories depicted in Table 4.1.

Table 4.1: Flexibility event categories.

Flexibility Feeder Congestion ~ Occurrence Price
Level (of nominal capacity) Frequency (/€MWh)
Critical Flexibility 120% 10% 157.99
Normal Flexibility 105 -119% 40% 110.67
Non-critical Flexibility 95-104% 50% 94.54

In this Test Case it is also assumed that the Aggregator is a price-taker with respect to
the DSO, but by contrast a price-maker with respect to the flexibility price he offers to his
customers. The Aggregator’s business model, of course, is based on sharing a percentage of
the achieved savings from the optimized portfolio with the participating customers. However,
to persuade a customer to participate in flexibility programmes that will affect his thermal or

visual comfort levels, an attractive incentive must be offered. Hence, it is expected that the
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earnings for the provider of the flexibility (customer) will be higher than the Aggregator’s.
In this respect, it is assumed that the Aggregator will compensate his customers with a
percentage between 60 and 90% of the flexibility price, offered by the DSO, for each
successful DR activation. The sharing percentage level that the Aggregator offers to his

customers is assumed to vary based on their:

* Maximum Flexibility Capacity: Max. amount of flexible power [MW]

e Maximum Duration: Max. time the load capacity can be shed/shifted [h]
* Frequency: Max. number of events over a period [N/year]

* Notice time: Time before the event is actually triggered [h]

* Recovery time: Max. time energy has to be recovered [h]

Therefore, it is assumed that customers who can provide flexibility for long periods of time
will be compensated less (lower sharing portion) than the ones who can provide flexibility
for short periods. This assumption is backed up by the fact that the customers who can
participate for longer periods have a higher chance to be selected for a DR event. The
flexibility price is considered to consist of two parts: the contract reservation and the
activation price. The first price stipulates the cost paid by the Aggregator for periods during
which the Aggregator can manage flexibility devices, while the latter price stipulates the
fee when the Aggregator activates DR. Non or insufficient delivery may result in a penalty.
Penalty calculations need to be differentiated depending on the market and the risk posed. In
this study, a penalty equal to 1/6 of the contractual fee is assumed.

Considering the aforementioned assumptions, a flexibility price and the respective penalty is
assigned to each customer/asset (building or facility) of the physical microgrid and nanogrid
based on their availability periods (max duration and frequency) as well as the maximum
Flexibility Capacity. The contract details per portfolio asset for the critical, normal and non-
critical flexibility provision, as defined for the purposes of this Test Case, are summarized in

Table 4.2, 4.3 and 4.4, respectively.
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Table 4.2: Contract details per portfolio asset for Critical Flexibility, as defined for the Test Case.

| Critical Flexibility |

Asset ID - Building Feeder Fle?;gﬁ%}ﬂrlce [})érlf\li;z]
111CA - Polytechnic School Feeder 1 0,1102 0,0184
112CA - Faculty of Science - Incomer 1 Feeder 1 0,1160 0,0193
112CB - Faculty of Science - Incomer 2 Feeder 1 0,1285 0,0214
113CA - Sport Fields Feeder 1 0,1264 0,0211
114CA - Faculty of Economics Feeder 1 0.1195 00199
and Business

115CA - Sports Centre Power Feeder 1 0,1080 0,0180
116CA - Energy Center la Feeder 1 0,1065 0,0178
116CB - Energy Center 1b Feeder 1 0,1101 0,0184
121CA - Residential Accommodation Feeder 2 0,1202 0,0200
121PA - Residential Accommodation Feeder 2 0.1154 00192
- PV System

122CA - Social Facilities Feeder 2 0,1085 0,0181
122PA - Social Facilities Feeder 2 0.1213 0.0202
- PV System

123CA - Administration Feeder 2 0,1073 0,0179
123PA - Administration - PV System Feeder 2 0,1207 0,0201
124CA - Library - Incomer 1 Feeder 2 0,0925 0,0154
124CB - Library - Incomer 2 Feeder 2 0,1192 0,0199
125CA - JP AVAX Feeder 2 0,1176 0,0196
126CA - Energy Center 2 Feeder 2 0,0936 0,0156
127CA - Energy Center 3 Feeder 2 0,1272 0,0212
EV1 - nanogrid Feeder 2 0,0989 0,0165
EV?2 - nanogrid Feeder 2 0,1110 0,0185
PVTL Climatic Chamber Feeder 2 0,1077 0,0180
PVTL Indoor Testing 1 Feeder 2 0,1179 0,0197
PVTL Conference FLEX Feeder 2 0,1128 0,0188
PVTL Conference BASE Feeder 2 0,1026 0,0171
PVTL Offices 1 FLEX Feeder 2 0,0959 0,0160
PVTL Offices 1 BASE Feeder 2 0,1161 0,0194
PVTL Indoor Testing 2 FLEX Feeder 2 0,0960 0,0160
PVTL Indoor Testing 2 BASE Feeder 2 0,1050 0,0175
PVTL Offices 2 FLEX Feeder 2 0,1198 0,0200
PVTL Offices 2 BASE Feeder 2 0,0985 0,0164
PVTL Storage CAB Feeder 2 0,1042 0,0173
PVTL CAB 3 Feeder 2 0,1173 0,0196
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Table 4.3: Contract details per portfolio asset for Normal Flexibility, as defined for the Test Case.

‘ Normal Flexibility ‘

Asset ID - Building Feeder Fle?;gﬁ%}ﬂrlce [})érlf\li;z]
111CA - Polytechnic School Feeder 1 0,0893 0,0149
112CA - Faculty of Science - Incomer 1 Feeder 1 0,0905 0,0151
112CB - Faculty of Science - Incomer 2 Feeder 1 0,0900 0,0150
113CA - Sport Fields Feeder 1 0,0948 0,0158
114CA - Faculty of Economics Feeder 1 0.1016 0.0169
and Business

115CA - Sports Centre Power Feeder 1 0,0842 0,0140
116CA - Energy Center la Feeder 1 0,0767 0,0128
116CB - Energy Center 1b Feeder 1 0,0892 0,0149
121CA - Residential Accommodation Feeder 2 0,0926 0,0154
121PA - Residential Accommodation Feeder 2 0.0900 0.0150
- PV System

122CA - Social Facilities Feeder 2 0,0760 0,0127
122PA - Social Facilities Feeder 2 0.0873 0.0146
- PV System

123CA - Administration Feeder 2 0,0841 0,0147
123PA - Administration - PV System Feeder 2 0,0845 0,0141
124CA - Library - Incomer 1 Feeder 2 0,0777 0,0130
124CB - Library - Incomer 2 Feeder 2 0,1013 0,0169
125CA - JP AVAX Feeder 2 0,0976 0,0163
126CA - Energy Center 2 Feeder 2 0,0768 0,0128
127CA - Energy Center 3 Feeder 2 0,0890 0,0148
EV1 - nanogrid Feeder 2 0,0781 0,0130
EV?2 - nanogrid Feeder 2 0,0777 0,0130
PVTL Climatic Chamber Feeder 2 0,0862 0,0144
PVTL Indoor Testing 1 Feeder 2 0,0955 0,0159
PVTL Conference FLEX Feeder 2 0,0880 0,0147
PVTL Conference BASE Feeder 2 0,0739 0,0123
PVTL Offices 1 FLEX Feeder 2 0,0710 0,0118
PVTL Offices 1 BASE Feeder 2 0,0824 0,0137
PVTL Indoor Testing 2 FLEX Feeder 2 0,0682 0,0114
PVTL Indoor Testing 2 BASE Feeder 2 0,0882 0,0147
PVTL Offices 2 FLEX Feeder 2 0,0899 0,0150
PVTL Offices 2 BASE Feeder 2 0,0808 0,0135
PVTL Storage CAB Feeder 2 0,0854 0,0139
PVTL CAB 3 Feeder 2 0,0891 0,0149
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Table 4.4: Contract details per portfolio asset for Non-critical Flexibility, as defined for the Test Case.

‘ Non-critical Flexibility
Flexibility Price | Penalty

Asset ID - Building Feeder [/€KWh] [/€KWh]
111CA - Polytechnic School Feeder 1 0,0518 0,0086
112CA - Faculty of Science - Incomer 1 Feeder 1 0,0498 0,0083
112CB - Faculty of Science - Incomer 2  Feeder 1 0,0549 0,0091
113CA - Sport Fields Feeder 1 0,0550 0,0092

114CA - Faculty of Economics

. Feeder 1 0,0569 0,0095
and Business
115CA - Sports Centre Power Feeder 1 0,0505 0,0084
116CA - Energy Center la Feeder 1 0,0460 0,0077
116CB - Energy Center 1b Feeder 1 0,0526 0,0088
121CA - Residential Accommodation Feeder 2 0,0602 0,0100
121PA - Residential Accommodation Feeder 2 0.0531 0,0089
- PV System
122CA - Social Facilities Feeder 2 0,0494 0,0082
122PA - Social Facilities Feeder 2 0.0507 0.0084
- PV System
123CA - Administration Feeder 2 0,0502 0,0084
123PA - Administration - PV System Feeder 2 0,0473 0,0079
124CA - Library - Incomer 1 Feeder 2 0,0490 0,0082
124CB - Library - Incomer 2 Feeder 2 0,0638 0,0106
125CA - JP AVAX Feeder 2 0,0547 0,0091
126CA - Energy Center 2 Feeder 2 0,0476 0,0079
127CA - Energy Center 3 Feeder 2 0,0561 0,0093
EV1 - nanogrid Feeder 2 0,0508 0,0085
EV2 - nanogrid Feeder 2 0,0466 0,0078
PVTL Climatic Chamber Feeder 2 0,0526 0,0088
PVTL Indoor Testing 1 Feeder 2 0,0563 0,0094
PVTL Conference FLEX Feeder 2 0,0493 0,0082
PVTL Conference BASE Feeder 2 0,0414 0,0069
PVTL Offices 1 FLEX Feeder 2 0,0426 0,0071
PVTL Offices 1 BASE Feeder 2 0,0470 0,0078
PVTL Indoor Testing 2 FLEX Feeder 2 0,0429 0,0072
PVTL Indoor Testing 2 BASE Feeder 2 0,0556 0,0093
PVTL Offices 2 FLEX Feeder 2 0,0557 0,0093
PVTL Offices 2 BASE Feeder 2 0,0525 0,0088
PVTL Storage CAB Feeder 2 0,0517 0,0082
PVTL CAB 3 Feeder 2 0,0508 0,0085
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In most distribution systems, the DSO enters into contracts with DERs that are mandated
to provide reactive power requirement approved by the grid code, and hence, the Distributed
Generation (DG) units must operate between a mandatory leading and lagging power factor
at every operating point. Although the grid codes for reactive power are considered as part of
the constraints in the proposed optimisation function, incentive payments for reactive power
provision are not investigated in this study. In this respect, the variables QD;(t) and QCy(t)

utilized in (4.11) were predefined based on the real network information.

4.3.3 Test Case Scenario and Results

In order to verify the integrated functionalities of the proposed DR framework, a real
possible scenario for flexibility provision is investigated. More specifically in this scenario,
a real flexibility request is initiated from the national DSO, the EAC, due to congestion
problem occurring within the area of the UCY campus. The role of the Aggregator in the
investigated scenario is undertaken by the UCY, where the various facilities and buildings
located within the physical microgrid as well as the nanogrid are considered to be the DR
customers. Each customer is represented by the available flexibility (either static or range
based on the flexibility source) that can serve specific energy markets and the compensation

price of those services with the respective penalty prices, as derived from the contracts.

In this investigated scenario, a virtual congestion problem is created by increasing the
electricity demand of two simulated buildings implemented in the modelled test network.
The two simulated buildings represent the physical Library and Residential Building Blocks
located in the microgrid network. This scenario is practically possible as a congestion
problem could arise due to potential electricity demand increase of the Library and
Residential Building Blocks that typically appears during the mid-day hours, where students
return to their dorms or visit the library facilities during lecture breaks. The increased
demand of those two buildings will overload the line of Feeder 2 to which those buildings
are connected. As shown in Fig. 4.5, a line loading violation occurs at the second Feeder of
the microgrid between 14:15 and 14:30. The line loading rises to 106.09% and 105.69%,
at 14:15 and 14:30, respectively. These line violation incidents fall under the category
of congestion problems in the distribution network and must be addressed locally through

flexibility provision.
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Figure 4.5: DR event due to line loading violation at Feeder 2.

Following the proposed DR framework, a DR request is initiated by the DSO (EAC)
to the local Aggregator (UCY). Both violation levels correspond to a Normal Flexibility
event. The proposed DR framework identifies the available and applicable customers who
can participate during the specific time of the DR event. Only the assets connected to the
second feeder can effectively contribute in this particular DR event, as it is a local congestion
problem. It is important to note that DERs generators are not eligible to participate in this
scenario as reducing the active power set-point can only contribute in restoring overvoltage
events. An overview of the associated assets, including the available flexibility volume, the
contracted prices as well as the performance indices, is presented in Table 4.5. As already
indicated the minimum and maximum flexibility volume is defined in each contract, while
the average flexibility volume and the performance indices are estimated based on historical

DR events participation.
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The first level of the optimisation function will identify all the possible combinations
of customers who can participate in this DR event, while the optimisation weight of each
combination is estimated based on the flexibility volume, price and the performance indices.
The second level of the optimisation function identifies all combinations that will ensure the
stable operation of the whole distribution test network. The minimum required flexibility for
restoring the line loading below the nominal level, while maintaining the distribution network
balancing is estimated to be 138 kWh for the whole period of the violation. The outcome
of the bi-level optimisation function is the optimal combination (minimum optimisation
weight) of assets (customers) accompanied by the individual flexibility volume that each
asset must provide. The aggregated value of all individual flexibility volumes is equal to the
total required flexibility.

For comparison reasons, Table 4.6 summarizes the thirty different combinations of assets that
can meet the requested flexibility volume, while satisfying the grid constraints. As depicted
in the table, even though the third combination is the most profitable for the Aggregator,
as it would cost the least (€10.91) for triggering, the results of the optimisation function
demonstrate that the first combination of assets (122CA, 124CA, 126CA,127CA) is the
optimum selection as it would result in a more reliable and fair option, while the cost for

triggering is marginally (€10.95) higher than the most profitable option.

As can been seen in Fig. 4.1, every transaction between the proposed framework and
the external stakeholders (i.e. DSO and Aggregator) is based on the OpenADR standard
and is issued to the blockchain, establishing interoperability, security and integrity. More
specifically, after the identification of the optimal solution, the Aggregator proceeds to
the extraction of the flexibility from the selected customers. Based on the proposed DR
framework, this transaction is issued to the blockchain. The visualization of the transactions
is presented via the Hyperledger Blockchain Explorer [115] tool. As shown in Fig. 4.6, a
transaction is defined by a coded ID, a validation code and its its payload hash. Those are
followed by the creator and endorser of the flexibility request, in this case the UCY which
takes the role of the Aggregator. The chaincode name, the type as well as the time of the
issuance is also included in the transaction. The read set portion of the read-write set is used
for checking the validity of a transaction, while the write set portion of the read-write set is
used for updating the versions and the values of the affected keys. As depicted in Fig. 4.6, the
DR request from the Aggregator (vtnID) is directed towards the “Energy Center 3” customer

(targetID). This information is included as part of Write Key #5 along with the flexibility
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Table 4.6: Combination of the Aggregator’s Assets.

. Flexibility volume Total Cost Optimisation
No Combination of Assets per asset [KWh [€] Weight
1 122CA, 124CA, 126CA, 127CA 29, 44, 37, 28 10.95 27.3924
2 121CA, 124CA, 126CA, 127CA 29,44, 37,28 11.43 27.5839
3 122CA, 123CA, 124CA, 126CA 25,41, 38, 34 10.91 27.9267
4 121CA, 122CA, 124CA, 126CA 28, 29, 44, 37 11.05 28.4938
5 122CA, 123CA, 126CA, 127CA 28, 45, 37,28 11.24 28.8458
6 122CA, 123CA, 124CA, 127CA 25,41, 44, 28 11.25 28.8563
7 121CA, 123CA, 126CA, 127CA 28,45, 37,28 11.71 29.0307
8 121CA, 123CA, 124CA, 127CA 28,41,41, 28 11.71 29.2083
9 121CA, 122CA, 123CA, 126CA 28, 28, 45, 37 11.34 29.9472
10 121CA, 122CA, 123CA, 124CA 28, 25,41, 44 11.35 29.9578
11 123CA, 124CA, 125CA, 126CA 41, 38, 25, 34 11.45 33.2902
12 122CA, 124CA, 125CA, 126CA 30, 44, 27, 37 11.17 34.1016
13 121CA, 124CA, 125CA, 126CA 30, 44, 27, 37 11.67 34.2996
14 123CA, 124CA, 125CA, 127CA 41, 42,27, 28 11.83 34.7603
15 122CA, 123CA, 124CA, 125CA 25,42, 44, 27 11.48 35.5433
16 122CA, 123CA, 125CA, 126CA 29,45, 27, 37 11.46 35.5550
17 121CA, 123CA, 125CA, 126CA 29, 45, 27, 37 11.94 35.7464
18 121CA, 123CA, 124CA, 125CA 28,41, 42, 27 11.93 35.8618
19 124CA, 124CB, 126CA 42,59, 37 12.08 36.2374
20 122CA, 124CB, 126CA, 127CA 25,52, 33, 28 12.19 36.9895
21 123CA, 124CB, 126CA 42,59, 37 12.35 37.6459
22 123CA, 124CA, 124CB 41, 38, 59 12.37 37.9241
23 121CA, 122CA, 124CB, 126CA 28,25,52,33 12.29 38.0909
24  121CA, 122CA, 124CB, 127CA 28, 25,57, 28 12.75 39.9532
25 124CB, 125CA, 126CA, 127CA 52,25, 33,28 12.73 42.3530
26 122CA, 124CB, 125CA, 126CA 25,52, 25, 36 12.37 43.0772
27 121CA, 124CB, 125CA, 126CA 28,52, 25,33 12.83 43.4545
28 121CA, 124CB, 125CA, 127CA 28, 55,27,28 13.29 45.4808
29 122CA, 124CB, 125CA, 127CA 25,58,27,28 12.90 45.6934
30 121CA, 122CA, 124CB, 125CA 28, 25, 58, 27 13.00 46.7948

extraction signal of -28,000W (value) which is requested by the Aggregator for the specified
30 minute period (startTime, endTime). Finally, the payload encodes a reward (reward),
which is equal to compensation, assuming that the “Energy Center 3” customer successfully

dispatches the requested amount of flexibility over the DR signal’s active period.

Following the issuance of a DR request, and upon its successful delivery, the status
of the previously issued DR request transitions to an active status. The proposed DR
framework concludes when the Aggregator, after the end of the request’s active period, issues
a completion transaction, which is also stored on the blockchain. Besides the status of the

DR request that transitions to a completed status, the “Energy Center 3” is compensated
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Transaction 6a66d365115d8cc740174a45f2764203add076ab62bcf07c9e0600cf4066743e 2
1D:

Validation VALID

Code:

Payload fad6cd2555807cad708e247e110de9173bc0754a12afa651678c61d5a252ab96
Proposal

Hash:

Creator
MSE: UCYAggregatorMsP

Endoser: {"UCYAggregatorMSP"}
Chaincode DR_Smart_Contract

Name:
Type: ENDORSER_TRANSACTION
Time: 2020-12-23T12:50:44.703Z
Reads: :
v root: [] 2items

» 02 § 2 keys

» 10 {} 2keys
Writes:

v root: [] 2items
v 00 {} 2keys
chaincode: "DR_Smart_Contract”
v set: [] 6items
» 00 {} 3keys
{} 3 keys
{} 3 keys
{} 3 keys
{} 3 keys
o {} 3keys
key: "0d841062-404c-11eb-6c8e-50e549544a69"
is_delete: false
value: "{"docType""OadrDistributeEvent" "requestiD™"0d841062-404c-11eb
niD™"Aggregator”,"eiEvents":[{"docType""EiEvent","eventlD":"0d84 1063
4a69","targetlD":"Energy Center 3","createdDateTime":"2020-03-17T0 0Z" "duration":"1800","s
gnals"[{"docType":"EiEventSignal","signallD":"signal_2020-03-17T709:30:00Z2"."
_DISPATCH","signalType":"delta","intervals":[{"start Time":"2020-03-17T09:30:00Z","end Time":"2020-
03-17T10:00:00Z" "value""-28000","reward" "2 84"} }1}1}"
» 10 {} 2keys

Bowoho=

4 ¥ ¥y ¥ 7

o

-8c8e-50e549544a69", "vi
04c-11eb-8c8e-50e54954

Figure 4.6: Issuance transaction of DR event containing a 30 minute load dispatch signal originating from the
Aggregator and in which Energy Center 3 is specified as the target that should service it.

as indicated in the initial payload of the request. The transactions between the rest of the
selected customers as well as the flexibility provision to the DSO, is executed in a similar

manner.

The requested flexibility is physically extracted by the available deferrable loads of
all the selected customers through hardware commands originated by the PPIS. The real
consumption alteration, due to the flexibility provision, is measured by the SMs installed at
each building and is fed back to test environment in order to verify that the operation of the
proposed DR framework restored the grid back to normal operating conditions. As shown
in Fig. 4.7, the line loading of all three feeders is below the nominal limit, highlighting
the successful completion of the DR event, where the overloading violation at Feeder 2 is
recovered and the balance of the distribution test network including the physical microgrid

and nanogrid as well as the simulated distribution network is maintained.
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Figure 4.7: The combination of customers selected by the proposed DR framework restored the line loading
level of Feeder 2 back to normal operating limits.

4.3.4 Computational Performance Evaluation of the Developed DR

Framework

In order to gain helpful insights in the performance of the proposed DR framework,
when applied in a real-life electricity market, a computational performance evaluation is
undertaken. This evaluation focuses on the runtime of the proposed DR framework in an

attempt to identify any potential bottlenecks related to the hardware used.

The computational performance evaluation is based on a 64-bit Windows 10 Professional
operating system with an Intel Xeon E5-2650 v.4 CPU and 16 GB RAM. The CPU is
clocked at 2.20 GHz. The modified IEEE 33-bus test system shown in Fig. 4.2 is
used for the performance evaluation. The total number of busbars (low and medium
voltage) and assets (consumption, production, storage) used in the investigated network are
summarized in Table 4.7 and 4.8, respectively. The size of the dataset comprising the energy
profiles of the investigated distribution network is relatively small (0.063 MB), while the
internet connection bandwidth is very high at 1 Gbps meaning that there is no lag in the

communication between the server and the equipment.
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Table 4.7: Number of buses used in the investigated model.

Low Voltage Medium Voltage

IEEE 33 33 -
UCY micorgrid 13 13
UCY nanogrid 10 -
Total 56 13 69

Table 4.8: Total number of assets used in the investigated model.

Consumption Production Storage

IEEE 33 17 16
UCY micorgrid 16 16
UCY nanogrid 12 2 1
Total 45 34 1 80

The evaluation is separated into seven scenarios, where the number of available assets that
can participate in flexibility provision changes. The maximum number of available assets is
limited to 8, as this is the maximum number of assets connected to a single feeder or busbar in
the investigated distribution network. Each scenario is then divided into three sub-scenarios
where the flexibility volume range offered by each asset changes between 2, 5 and 10 kWh.
The evaluation considers all functions executed between the origination of a DR signal until
its distribution to the final end-users/assets. The performance evaluation results are shown in
the two following figures. The runtime tendency of the algorithm as the number of available
assets and their flexibility volume range increases is exhibited in Fig. 4.8. For each one
the three sub-scenarios, the linear as well as exponential trendline projection are added as
a reference point for comparison. The runtime as a function of the flexibility volume for
the scenarios where 2, 5 and 8 assets are available for flexibility provision is shown in Fig.
4.9. As expected, the runtime drastically increases with the increase of the investigated
possible combinations that lead to the optimal solution. More specifically, for the first two
sub-scenarios where the flexibility volume is tested at 2 and 5 kWh, it can be seen that the
increase of the runtime is almost similar to the linear trendline projection. On the contrary,
the runtime for the third sub-scenario, where the flexibility volume range per asset is 10
kWHh, increases and gradually approaches the exponential trendline projection. The same
conclusions can be derived by estimating the slopes of each curve. As shown in Fig. 4.8, the
slope is 29.653, 63.476 and 121.19 for the 2, 5 and 10 kWh flexibility volume, respectively.
The higher positive slope for the third sub-scenario verifies the steeper upward tilt to the
curve, meaning that as the number of assets and the flexibility volume increases the higher

the computational requirements.
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Figure 4.8: Runtime of the proposed DR framework as a function of the available assets.
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Figure 4.9: Runtime of the proposed DR framework as a function of the flexibility volume.
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It is important to note that the results are indicative and concern the virtual machine and
distribution network used for this performance evaluation. The specifications of the hardware
used in this evaluation are low, leading to the very high runtime of approximately 15 minutes
for the worst-case scenario (8 assets are available and each asset can offer up to 10 kWh
of flexibility). It’s obvious that in a real-life electricity market environment where assets are
requested to participate in balancing market this level of runtime is prohibitive. However, this
can be alleviated by utilising hardware with much higher specifications. This performance
evaluation was undertaken to assess the runtime as a function of the different factors such as
the power network characteristics, the available assets that can participate in an upcoming
DR event as well as the flexibility volume that each asset can offer. For more credible
results, benchmarking should be performed on various operating systems and hardware to
properly identify the impact of higher-spec systems on the performance of the proposed DR

framework.

4.4 Concluding Remarks

The immense introduction of Aggregators in the electricity markets will ultimately
change how the DSOs manage their grids. In this chapter a novel DR framework for
DSO-Aggregator coordination that utilises a constrained-objective optimisation function
considering technical and energy market constraints to identify which assets should
participate in each DR event, is presented. Aspects of the modern power systems, such
as interoperability and security are also implemented. The performance of the proposed DR
framework is evaluated based on a hybrid test network comprised of a physical microgrid and
nanogrid network connected to a simulated distribution network. A real possible scenario
where a line overloading problem is addressed through flexibility provision is investigated.
The results highlighted that the proposed DR framework selects the optimal combinations
of assets in terms of profitability, reliability and fairness while restoring the balance of
the distribution network. The holistic approach followed by the proposed DR framework
is showcased through the deployment of its OpenADR-inspired blockchain functionalities
for all transactions held in the investigated scenario. The proposed DR framework can be
seen as a key for enhancing the DSO-Aggregator coordination as well as a pathway for
facilitating the role of the Aggregator, Utilities, Flexibility traders, etc. in a fully liberalized
electricity market where security and interoperable communication is established at all scales

of operation.
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Chapter 5

Conclusions and Future Work

5.1 Conclusions and Achievements

In the future power grid, the penetration of DERs, such as energy storage, electric
vehicles, roof-top photovoltaics, is expected to increase exponentially. Such modern power
grids are facing many unprecedented challenges such as increased intermittency, operation
uncertainties, and load consumption pattern shifts. From a market perspective, one could
argue that, when the shares of renewables in the grid increase to high levels, their inherent
fluctuations would cause more volatile spot market prices and higher imbalance prices, thus
providing higher incentives, and possibly business models, for smart solutions. As the trend
of investing on the supply-side alone to achieve reliable and secured grid operation will
no longer be technically feasible or economically achievable, researchers in the power and
energy community have shifted their efforts on developing a wide range of mechanisms to
enable optimal energy management. With Demand-Side-Management (DSM) and Demand
Response (DR), electricity customers can react to various incentives in order to alter their
typical consumption patterns. Moreover, the objectives of DSM and DR are also broadened
to unfold the full potential of customer-owned distributed energy resources (DERs) for
providing a full range of grid services. These DER owners, also known as prosumers

constitute one of the major classes of electricity customers.

Even though the research field of both DSM and DR is very rich with various studies, there
are no concrete methodologies for optimally implementing such schemes that also consider

the impact of prosumers, neither frameworks that can fully exploit the untapped demand-
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side flexibility. The contribution of this work lies in the introduction of a universally-
applicable methodology for implementing and effectively deploying price-based DSM for
residential prosumers. In support of this work, a pilot-network in Cyprus comprising of 300
prosumers with PV systems installed on their rooftops was established. The load profiles of
the prosumers were recorded for one year (reference year). Using the collected datasets,
the initial and baseline scenarios were defined in order to verify that an improvement
on the participants’ consumption profile will benefit the total aggregate consumption. In
order to trigger a change in their typical energy habits, price incentives in the from of
Time-of-Use (ToU) were offered to the prosumers. The derivation of the offered ToU
tariff structure included the time blocks definition (peak and off-peak periods and the
corresponding hours) and the respective rates. Initially, the seasonal average prosumer
profiles were utilized in order to derive the daily ToU tariff time blocks by applying the
Partitioning Around Medoid (PAM) clustering method. The respective ToU rates were
calculated by exploiting an optimization function that maintained a neutral electricity bill
in the case where the load profile remained unchanged. The optimization algorithm utilised
in the proposed methodology is based on the net-load resulting in cost-effective ToU tariffs
for both consumer and prosumer classes. Before applying the developed ToU tariffs to the
pilot-network, a sensitivity analysis was conducted in order to estimate their potential impact.
The main objective was to maximize the Load Factor (LF) of the seasonal residential load
profile. For the summer and winter season, the maximum LF was 42.83% and 33.33%
respectively and occurred when load was shifted mainly to the off-peak period. The
developed ToU tariffs were approved by both the Electricity Authority of Cyprus and the
Cyprus Energy Regulatory Authority and were applied to the prosumers of the pilot network
for one year (implementation year). The results obtained, highlight that the ToU tariffs
applied to the pilot network are effective to persuade the participants to shift loads from
the peak to off-peak and shoulder periods. This was verified by observing the variation of
the LF as well as the percentage of total consumption during peak hours when compared
to the year before the real implementation of the derived ToU tariffs. More specifically,
with respect to the reference year, the LF was increased from 40.65% to 41.43%, while
the percentage of total consumption measured during peak hours was reduced by 3.19%,
1.03% and 1.40% for the summer, middle and winter season respectively. Additionally, the
resulted seasonally dependent peak consumption reduction, which ranges between 1.03%
and 3.19%, as well as the reduction of the overall consumption, by approximately 2%,

proved that the application of the proposed scheme incentivised the participants to change
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their energy behaviour and minimize the need for electricity network reinforcement. The
effectiveness of the proposed price-based DSM scheme was also verified by the regression
analysis results as all coefficients appeared to be significant (below 5% level) and with the
expected signs. Furthermore, the proposed methodology can be applied on both prosumers
and consumers since the utilization of the net-load profile, and subsequently the refinement
of the applied ToU structure, was found to reduce the percentage of unintended revenues
below 35%. This led to the conclusion that the proposed price-based DSM scheme can be
refined at regular intervals, by taking into consideration the new installed PV capacity and
other relevant conditions in order to ensure that the optimum policies are reached. The
overall net benefit to the society is further proved as the results of the performed cost-
benefit analysis showed a large-scale deployment gain of €4.62mln, over a 15-year period,
when considering also assumptions linked to the expected benefits as well as the values for
the Capital and Operation Expenditure. While the above results represent important steps
towards the realization of the proposed price-based DSM scheme, considerable investigation
is required to analyse the potential risks related to costs and expected behavioural impacts.
The results emanating from this work provide useful knowledge in the fields of energy
behavioural patterns and flexibility potential of prosumers that can be vital instruments for
policy makers to direct and encourage the implementation of a DSM scheme at a larger scale.
The results of applying the proposed methodology on the pilot-network also highlighted that
DSM schemes that offer price incentives to the electricity customers are considered as an
easy pathway for deferring investments for network reinforcement and incorporating higher
levels of DERs. In the end, the impact of various ToU price ratios on the peak kWh usage was
investigated. Higher price ratio, than the one used, indicated higher peak kWh reductions.
The regression results led to the conclusion that electricity customers are willing to sacrifice
their thermal and visual comfort for a short period of time and offer the required flexibility

in exchange for higher price incentives.

Subsequently and as worldwide electricity markets are maturing, the electricity prices
will become more directly linked to the supply and demand equilibrium as well as to
condition parameters related to the grid state. As both of the aforementioned factors
dynamically, unpredictably and rapidly change, the System Operators are shifting their
attention towards DR events that can effectively unlock the available demand-side flexibility
on short notice. The application of DR signals is also accelerated with the advancement

of technology that offers real-time monitoring of both supply and demand as well as
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identification of any grid violations, while enabling automated DR request and flexibility
activation. Compensations offered to the electricity customers, for participating in a DR
event, are generally accompanying a DSM scheme, thus offering higher price incentives
that can fully unlock the available untapped flexibility. However, flexibility maximization
depends on optimal DR distribution in the demand-side. The role of enabling small-scale
electricity customers in participating in such DR events is undertaken by the Aggregator who

is responsible for summing the multiple flexibility volumes available at the demand-side.

To address this, this thesis delves further into flexibility potential maximization by
presenting an innovative framework for DR that aims to minimise the Aggregator’s cost
by considering technical and performance parameters. By extending the first part of this
thesis, a novel DR framework for DSO-Aggregator coordination that utilises a constrained-
objective optimisation function is proposed. The exploited optimisation function considers
technical and energy market constraints to identify which assets should participate in each
DR event. Aspects of the modern power systems, such as interoperability and security are
also implemented. The performance of the proposed DR framework is evaluated based on
a hybrid test network comprised of a physical microgrid and nanogrid network connected
to a simulated distribution network. A real possible scenario where a line overloading
problem is addressed through flexibility provision is investigated. The results highlighted
that the proposed DR framework selects the optimal combinations of assets in terms of
profitability, reliability and fairness while restoring the balance of the distribution network.
The holistic approach followed by the proposed DR framework is showcased through the
deployment of its OpenADR-inspired blockchain functionalities for all transactions held in
the investigated scenario. The proposed DR framework, and subsequently the developed
optimisation function, can be applied to any type of contracts (dynamic and/or static)
between the DSO and Aggregator as well as between the Aggregator and his customers,
while the technical parameters utilised in the optimisation function enable the exploitation of
the developed framework for any network topology. To this end, the proposed DR framework
can be seen as a key for enhancing the DSO-Aggregator coordination as well as a pathway for
facilitating the role of the Aggregator, Utilities, Flexibility traders, etc. in a fully liberalized
electricity market where security and interoperable communication is established at all scales

of operation.
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5.2 Future Work

Future work concerns the deeper analysis in self-learning algorithms and forecasting
models that will capitalize on integrated multi-agent based, transactive energy matchmaking
solutions, aiming to extend the current DR framework and propose new methods for DR-
flexibility coordination that can be adopted in electricity markets in the next 5-10 years.
More specifically, the future work aims to implement forecasting models both in terms of
price and flexibility forecasting accompanied with comfort elasticity models that will lead to

improved flexibility extraction and aggregation through clustering techniques.

The wholesale electricity market is approximated as a one-shot day-ahead market
followed by a rescheduling in the balancing market. In reality, contracts for physical delivery
of electricity range from years to seconds ahead depending on the type of product being sold,
thus dynamically change throughout the days. To address this, the developed DR framework
will be enhanced with an “Energy Price Emulator” component. This component will be
responsible for the estimation of the price signal to be sent to each customer according to
market conditions (e.g. wholesale price volatility) and building conditions (e.g. available
demand flexibility and elasticity) in order to generate bespoke DR signals that will produce
the desired, globally coordinated impact on the cumulative demand of the customers. Typical
factors that influence electricity prices will be reviewed (such as season/day, weather, fuel
prices, demand elasticity etc.) and price forecasting techniques will be employed (regression
techniques, neural networks etc.). However, for use cases involving bilateral agreements
and participation in e.g. capacity markets, the market price will be perceived as a known-
constant value. The emulator will incorporate current and future price rate design approaches
to enable exploration, investigation and evaluation of dynamic pricing schemes (e.g. Critical
Peak Pricing, Real Time Pricing, ToU or novel ones potentially incentivising customers
with above average and reliable demand flexibility) to stimulate the enrolment of risk averse
customers, enhance protection of the energy poor as well as to bring the desired effect on the

retailer’s balance and finances.

Combining price along with demand elasticity forecasting will define the best aggregation
strategies that will yield the maximum profit for all enrolled actors. To this end, a “Human-
Centric Flexibility Extraction” component will be developed, whose purpose will be to
analyse how occupants use loads and to create personal/group profiles that can quantitatively

model their comfort preferences as well as their consumption and generation profiles.
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External variables, e.g. weather or seasonal patterns, as well as internal variables, e.g.
domestic habits, business processes, will be taken into account when generating comfort
models. Furthermore, the comfort models will be used to estimate flexibility potential
for the comfort-related loads — e.g. lighting, space heating, cooling — since typically
comfort is achieved within parameter boundaries, not only at exact values. Using all the
historical information collected about occupant behaviour, preferences and local demand
and generation, this component will quantitatively estimate the comfort elasticity, which
essentially represents how comfort preferences adapt to changing prices, e.g. consumers
may be willing to give up some comfort when prices rise in order to avoid excessive energy
bills. Comfort elasticity which involves comfort-related loads will be combined with demand
elasticity to generate an aggregate elasticity model for the building that can be used to
reproduce human behaviour to the extent possible. Furthermore, this component will be able
to leverage local generation or storage capabilities in order to improve flexibility volume

forecasts.

Both the demand elasticity and flexibility volume forecasts will be utilized for the creation
of “Virtual Node Platform”. A “Virtual Node” is considered to be a neighborhood-based
concept in which various customers are clustered based on various strategic possibilities.
The clustering parameters will include not only their geographical locations but also their
demand elasticity, flexibility forecasts as well as reliability and fairness indices that are
already established in the proposed DR framework. When a customer alters one of these
parameters (e.g. due to a renovation), he/she will be automatically reassigned to another
cluster/Node. Each customer will be profiled and clustered within a node, and each node will
be profiled and handled by the Aggregator with a node-specific DR strategy. The Aggregator
will perceive each “Virtual Node” as a large prosumer with specific characteristics defined
through an overall Node Profile. This segmentation will allow the Aggregator to further
improve the flexibility aggregation by optimizing the use of his energy portfolio in terms of
performance, grid balancing and capacity. Upon completion of the cluster, a “Virtual Node
Platform” will undertake the role of creating profiles for every customer assigned to the
Node, based on which, incoming DR signals will be distributed accordingly, following a top-
down approach. On the other hand, when a Node produces or consumes more energy that it
would normally do (and/or based on the Aggregator’s forecasting), a matchmaking algorithm
will be activated towards identifying the best solution for the issue at hand. Initially, the

“Virtual Node Platform” will try to optimally handle the assets belonging to the Node to
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absorb the problem internally, but in cases that this is found to be inadequate the matching
process will be expanded to other Nodes. If then again the issue remains, the Node will
dispatch a DR signal towards the Aggregator following a bottom-up approach and exploiting
a bi-directional DR communication. Accordingly, if an imbalance issue is detected, the
Node will follow the same approach by initially trying to balance the loads internally, then
in coordination with other nodes (that have loads on the affected bus) and finally through the

Aggregator.

Finally, the upgraded framework will be benchmarked on the already established pilot-
network of 300 prosumers which will be upgraded with the required equipment as well as up-
scaled to include feeders that represent real congestion points, so that all the functionalities
can be tested and verified in real scenarios. The pilot-network will be upgraded in order
to provide a heterogeneity of electricity customers as well as a number and capacity of
intermittent generation. This will enable the testing of several different use cases and the
concept of “Virtual Nodes”. Similarly to the DSM-scheme, a holistic Cost-Benefit-Analysis
(CBA) in full collaboration with the local Distribution System Operator will be conducted.
The parameters for the CBA will include the improvement of energy efficiency in buildings,
energy cost and emissions reduction, grid balancing (and investment deferral), security of
energy supply, reduction of energy poverty, protection of vulnerable customers and enhanced
market participation of energy consumers in order to evaluate the potential impact on the
entire energy system. The CBA will also include the assessment and quantification of macro
societal benefits, such as number of new jobs created, etc. Most of these social impacts will

also be considered in the economic impact, monetizing the benefits provided.

The future DR framework will be simultaneously applied with the developed price-based
DSM scheme in the upgraded pilot-network. This parallel operation will render the pilot-
network as the ultimate test-bed that will enable various Stakeholders to benchmark future
electricity market opportunities, thus developing future core solutions for DSM and DR

toolkits with a scalability potential.
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