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ABSTRACT (GREEK)

Οι πρωτόγνωρες αλλαγές διαταράσσουν τα σημερινά δρώμενα στο τομέα της ηλεκτρικής

ενέργειας, δημιουργώντας νέες προκλήσεις στους διαχειριστές ηλεκτρικών συστημάτων

και σε κυβερνήσεις σε όλο τον κόσμο. Η εξισορρόπηση της διαλείπουσας παραγωγής και η

αύξηση της μέγιστης ζήτησης, καθώς και η ενσωμάτωση ανανεώσιμων πηγών ενέργειας για

την επίτευξη των κλιματικών στόχων καθιστά την εξισορρόπηση παραγωγής και ζήτησης

δυσκολότερη και ακριβότερη από ό, τι στο παρελθόν.

΄Ενας από τους πιο καλά ερευνημένους τομείς της ευελιξίας του συστήματος ηλεκτρικής

ενέργειας είναι η Διαχείριση Ενεργειακής Ζήτησης (Demand Side Management), η οποία

στοχεύει στη βελτίωση της ευελιξίας από την πλευρά των ενεργειακών καταναλωτών. Η

Διαχείριση Ενεργειακής Ζήτησης μπορεί να εφαρμοστεί με δύο τρόπους: μέσω Ενεργειακής

Απόδοσης ή Απόκρισης Ζήτησης (Demand Response), η οποία αναφέρεται σε προγράμματα

που ενθαρρύνουν τους τελικούς χρήστες να κάνουν βραχυπρόθεσμες μειώσεις στη ζήτηση

ενέργειας.

Η συμβολή αυτής της διατριβής έγκειται στην εισαγωγή μιας καθολικά εφαρμοσμένης

μεθοδολογίας για την ανάπτυξη ενός οικονομικά αποδοτικού συστήματος Διαχείρισης

Ενεργειακής Ζήτησης που εστιάζει στην εξαγωγή ευελιξίας μέσω κινήτρων στη

μορφή δυναμικής ενεργειακής τιμολόγησης. Αυτή η διατριβή εξετάζει περαιτέρω την

πιθανή μεγιστοποίηση της ευελιξίας παρουσιάζοντας ένα καινοτόμο πλαίσιο Απόκρισης

Ζήτησης που στοχεύει στην ελαχιστοποίηση του κόστους Σωρευτικής Εκπροσώπησης

(Aggregation) λαμβάνοντας υπόψη τεχνικές παραμέτρους αλλά και παραμέτρους απόδοσης.

Το προτεινόμενο πλαίσιο Απόκρισης Ζήτησης λειτουργεί ως ένα ολιστικό πλαίσιο το οποίο

είναι έτοιμο να εφαρμοστεί σε χώρες όπου οι κανόνες της αγοράς ηλεκτρικής ενέργειας και

οι τεχνολογίες αυτοματισμού είναι ώριμες και προηγμένες.

Το προτεινόμενο σύστημα Διαχείρισης Ενεργειακής Ζήτησης μαζί με το αναπτυγμένο

πλαίσιο Απόκρισης Ζήτησης αποσκοπούν στο να ξεκλειδώσουν πλήρως τη διαθέσιμη

ανεκμετάλλευτη ευελιξία φορτίου με βάση τις δομικές ιδιαιτερότητες της ηλεκτρικής

αγοράς που εφαρμόζεται.
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ABSTRACT

Profound changes are disrupting the electricity sector, bringing about new challenges

for utilities, system operators and governments around the world. Balancing intermittent

generation and increasing peak demand while integrating renewables to meet climate goals

make balancing supply and demand harder and more expensive than it used to be. One of

the most well-researched fields of electricity system flexibility is Demand Side Management

(DSM), which aims to improve flexibility on the consumer side. DSM can be implemented in

two ways: through Energy Efficiency or Demand Response (DR), which refers to programs

that encourage end users to make short-term reductions in energy demand.

The contribution of this work lies in the introduction of a universally-applicable

methodology for deploying a cost-effective DSM scheme that focuses on flexibility

extraction through price incentives. This thesis delves further into flexibility potential

maximization by presenting an innovative framework for DR that aims to minimise the

Aggregator’s cost by considering technical and performance parameters. The proposed DR

framework serves as a holistic framework that is ready to be applied in countries where the

electricity market rules and automation technologies are mature and advanced.

The proposed DSM scheme along with the developed DR framework aim to fully unlock

the available untapped flexibility potential based on the market structure specificities of each

area of deployment.
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Chapter 1

Introduction

International energy landscapes are evolving rapidly as the increasing deployment of

decentralized and intermittent resources pose several energy management challenges to

system operators. Increasing shares of intermittent distributed energy resources (DER),

such as Photovoltaic (PV) systems, along with the transition to deregulated organizational

systems and market-oriented approaches initiate the loss of centralization in the management

and control of electrical power systems as well as the need for balancing supply with

demand. Unlocking flexibility at the demand-side, instead of investing in new non-renewable

transmission-connected generation capacity introduces a more pro-active and effective

approach for embracing this energy transition. The need for exploiting the available untapped

flexibility is more important than ever, now that the large shares of DERs in the distribution

network render prosumers as the predominant class of electricity customers. Demand Side

Management (DSM), which is defined as the utility activities designed to influence customer

use of electricity in ways that will produce desired changes in the utility’s load shape, i.e.

time pattern and magnitude of a utility’s load, is a promising method for balancing supply

and demand in power systems with a high share of variable renewable energy generation.

1.1 Motivation and Research Objectives

The lack of research on a comprehensive methodology for creating cost-effective

incentives for prosumers for altering their consumption patterns has led to the development

of a consistent and universally-applicable methodology to derive effective price-based DSM

schemes for the residential sector. The proposed methodology was verified through statistical

1

VENIZELO
S VENIZELO

U



analysis and validated on a pilot-network comprising of 300 prosumers with roof-top PV

systems. The methodology addresses the technological challenges related to price-based

DSM design such as the optimum number of Time-of-Use (ToU) block periods, evaluation

of the impact of the proposed scheme, training of the consumers and prosumers, active

participation and rewarding, development of a pilot network and cost-benefit analysis of

deploying such schemes.

As electrical smart grid technologies are increasingly developed and electricity markets

are maturing, exceptional opportunities for more complex electrical supply and demand

interactions that used to be historically unilateral, are now offered. These opportunities

mainly rely on exploiting the flexibility available at the demand-side. However, strict market

and grid-related regulations exclude single small-scale electricity customers to participate

in the provision of such services, thus third parties such as Aggregators must undertake the

role of summing those multiple flexibility volumes. Aggregators are being lauded as critical

entities in providing these valuable electricity services, acting as intermediates between the

small / medium scale consumers and the electricity market stakeholders at higher levels,

such as the Distribution System Operators (DSOs) [1, 2]. The most common approach for

extracting these flexibility volumes is through Demand Response (DR), which is a program

that is established to change the demand-side electric use from normal consumption patterns

in response to changes in the price of electricity, or incentive payments [3]. To achieve

optimal Aggregation, a holistic DR framework for optimal cooperation between a DSO

and an Aggregator is developed. The proposed DR framework can be seen as a key for

enhancing the DSO-Aggregator coordination as well as a pathway for facilitating the role of

the Aggregator in a fully liberalized electricity market.

1.2 Key Contributions to Knowledge

This research provides important contributions to the research community as well as to

power system operators and policymakers by expanding the knowledge on DSM- and DR-

related aspects through the introduction of consistent and transparent methodologies that will

help promote effective flexibility extraction. This thesis initially presents a comprehensive

and universally-applicable methodology for developing and implementing a cost-effective

price-based DSM scheme which is directly deployed from the DSO to the end-users. The

proposed methodology introduces steps for replacing the costly large-scale deployment of
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PV meters as well as the development and implementation of optimum ToU tariffs on a real

pilot-network comprising of 300 prosumers with roof-top PV systems. Part of the novelty

of the algorithm for developing the optimum ToU tariffs is its capability to adjust the tariff

structure (period and rate) in order to be applicable to both consumers and prosumers by

utilizing net-load energy profiles. The methodology, proposed in this thesis, introduces a

detailed evaluation stage that includes methods for verifying and validating the effectiveness

of the developed price-based DSM scheme based on technical and economic performance

data.

More specifically, the first part of this thesis introduces a coherent methodology for

developing, implementing and evaluating optimum price-based DSM schemes, where an

optimization algorithm, based on net-load, for developing cost-effective ToU tariffs for both

consumer and prosumer classes is utilised. Moreover, within the scope of this work, a real

pilot-network consisting of 300 prosumers with various demographic characteristics, which

can act as a test-bed for newly introduced energy policies and electricity pricing schemes is

established. Additionally, the results emanating from this work provide useful knowledge

in the fields of energy behavioural patterns and flexibility potential of prosumers that can

be vital instruments for policy makers to direct and encourage the implementation of DSM

schemes at a larger scale.

The results of applying the proposed methodology on the pilot-network highlighted that

DSM schemes that offer price incentives to the electricity customers are considered as an

easy pathway for deferring investments for network reinforcement and incorporating higher

levels of DERs. Additionally, it is proven that domestic electricity customers can be a

significant source of demand-side flexibility. It is believed that more pro-active and smart

approaches for the future Smart Grid energy transactions can fully enable the demand-

side flexibility exploitation in both small and medium scale consumers. To this end, the

System Operators are shifting their attention towards DR events that can effectively unlock

the available flexibility on short notice through instantaneous signals. The establishment

of DR events is also accelerated with the advancement of technology that facilitates real-

time monitoring of both supply and demand as well as identification of any grid violations,

while enabling automated DR request and flexibility activation. Compensations offered

to the electricity customers, for participating in a DR event, can be combined with other

DSM scheme rewards in order to offer higher price incentives that can fully unlock the
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available untapped flexibility. However, flexibility maximization depends on the optimal

DR distribution on the demand-side. The role of enabling small-scale electricity customers

in participating in such DR events is undertaken by the Aggregator who is responsible for

summing the multiple flexibility volumes available at the demand-side.

By extending the first part of this thesis and to address the above-mentioned upcoming

electricity market changes, a holistic DR framework for DSO-Aggregator coordination

and optimal DR distribution is developed. The key added value is the utilisation of a

novel bi-level constrained objective optimisation function which minimises the flexibility

aggregation costs through optimal segmentation of customer groups based on performance

indices, while maintaining the distribution grid balancing. Even though the focus of this

work is the Aggregator, other market players could also employ the framework, such as

Utilities, Flexibility traders, etc. Moreover, the proposed DR framework, and subsequently

the developed optimisation function, can be applied to any type of contracts (dynamic

and/or static) between the DSO and Aggregator as well as between the Aggregator and

its customers, while the technical parameters utilised in the optimisation function enable

the exploitation of the developed framework for any network topology. The proposed DR

framework serves as a holistic framework that is ready to be applied in countries where the

electricity market rules and automation technologies are mature and advanced.

The proposed DSM scheme along with the developed DR framework aim to fully unlock

the available untapped flexibility potential based on the market structure specificities of each

area of deployment.

1.3 Thesis Structure

The thesis starts with a review of existing research on the subject matter and identified

objectives. Each research objective was addressed in its own chapter that provides objective

specific results, discussion and conclusion sections. The concluding chapter reviews the

outcomes for each objective before determining the overall implications of the research,

including further potential research areas. The rest of this thesis is structured as follows:

Chapter 2 provides the main contextual knowledge for this thesis. Theoretical background

information regarding the general principles of the power system, the increasing integration

of distributed renewable generation and the transition towards smart grids is provided. The
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context and necessity of DR, the distinction between implicit and explicit DR, as well as

the role of the Aggregator are also presented. Additionally, this chapter reviews existing

literature focusing on summarising known information about each research objective and the

knowledge gaps that are addressed by this work. Chapter 3 addresses the first objective by

proposing a three-stage methodology for developing and deploying a cost-effective price-

based DSM scheme that focuses on the deployment of Implicit DR. More specifically,

this chapter presents the activities and results obtained from the implementation of ToU

tariffs on a real pilot-network comprising of 300 prosumers, in Cyprus, with roof-top PV

systems. Outcomes and lessons learned from the work conducted in Chapter 3 revealed that

more pro-active and smart approaches are needed to fully unlock the untapped demand-

side flexibility. To this end, Chapter 4 introduces a holistic DR framework for DSO-

Aggregator coordination that exploits a bi-level constrained-objective optimisation function

which minimises the flexibility aggregation costs through optimal segmentation of customer

groups based on performance indices, while maintaining the distribution grid balancing.

The followed methodology and the verification results of the proposed DR framework are

presented in detail in this chapter. Chapter 5 covers the overall conclusions as well as future

work.

The following figure provides a schematic representation of the thesis structure to

illustrate how the chapters and content are organised.
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Figure 1.1: Schematic overview of the structure of the Thesis.
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Chapter 2

Theoretical Background and Progress in

the Research Field of Flexibility

Provision

The recent drive towards decarbonization in the electricity sector entails increased

investment in breakthrough technologies and low carbon energy sources such as Renewable

Energy Sources (RES). However, integrating RES without jeopardizing security of supply

and economic operation of the power system is quite a challenge. The load growth

accommodation and the problems of ageing infrastructure render the situation even more

challenging. The aforementioned drivers imply a growing need for distribution system

flexibility at the demand side as well as customer engagement and empowerment in order

to maintain an affordable energy system. A prominent method to provide flexibility is

through DSM, which involves schemes established to provoke changes in electricity demand

by end-use consumers and to encourage lower electricity use at periods of high market

price. DSM activities can be classified into Energy Efficiency and DR (price and incentive-

based DR). Energy Efficiency focuses on strategies aiming at reducing the power usage to

perform the same tasks. This involves a permanent reduction of demand by using more

efficient load-intensive appliances (e.g. water heaters, refrigerators, or washing machines),

while DR refers to a wide range of actions which can be taken at the end-user side of the

electricity meter in response to particular conditions within the electricity system (such as

peak period network congestion or high prices). Lately, DR strategies have been gaining

more attention in power system operations, driven by growing interest in the smart grid
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concept. Specifically, time-varying electricity pricing incentives such as ToU tariffs or peak

demand charging for residential consumers, offer a way for financial gains and improved

perception about their energy consumption profiles and costs. Changes in consumption

patterns, including time-variable electricity prices or incentive payments, can be achieved by

consumers/prosumers themselves or through aggregation. Aggregation is mainly necessary

if small scale production and DR are to participate in the market. Aggregators can be divided

into different types, according to the DERs they aggregate (be it DR or distributed generation

resources). The authors of [4] define three types of aggregators: production, demand and

commercial Aggregators. Production Aggregators group together small generators in order

to generate economies of scale in accessing the markets (e.g. Virtual Power Plants). Demand

Aggregators act as intermediaries between small consumers, while commercial Aggregators

buy and supply electricity that is locally generated and at the same time are responsible for

maintaining the balance of the grid. Essentially, Aggregators are considered DR enablers

for end-users who want to participate but cannot meet minimum programme requirements.

Additionally, Aggregators are considered as the connection point for transferring flexibility,

in the form of DR, from lower electricity market levels (demand-side, producers) to higher

electricity levels (system operators). The existing electricity market actors have been

described in the harmonized role model established by entso-e [5]. This Role Model has

been developed in order to facilitate dialogue between the market participants from different

countries through an agreed terminology and the designation of a single name for each role

and domain that are prevalent within the electricity market. The major actors participating

in DR are:

• Transmission System Operator (TSO): Is responsible for a stable power system

operation through a transmission grid in a geographical area. The System Operator

will also determine and be responsible for cross border capacity and exchanges. If

necessary, it may reduce allocated capacity to ensure operational balancing. More

specifically, TSOs must guarantee that adequate network transmission capacity is

available for energy to flow freely between its producers and its end users, while

maintaining system balancing. Moreover, the TSO safeguards the system’s long-

term ability to meet electricity transmission demands while being responsible for

maintaining the system’s balancing by deploying regulating capacity, reserve capacity,

and incidental emergency capacity.
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• Distribution System Operator (DSO): Is responsible for operating, ensuring the

maintenance of and, if necessary, developing the distribution system in a given area

and, where applicable, its interconnections with other systems and for ensuring the

long-term ability of the system to meet reasonable demands for the distribution of

electricity. The DSO provides network access to the rest of the actors, while is

contracted to supply or purchase energy for and from the demand-side.

• Balance Responsible Party (BRP): The “Winter Energy Package” defines a BRP as

a market participant or its chosen representative responsible for its imbalances in the

electricity market [6]. Given that the market participants have an implicit responsibility

to balance the electricity system, the BRPs are financially responsible for keeping their

own position balanced over a given timeframe (the Imbalance Settlement Period),

thus are considered as the link between TSOs and DSOs. The remaining short and

long energy positions in real-time are described as the BRPs’ negative and positive

imbalances, respectively. As described by entso-e in 2013 [5], in order to be balanced

or help the system to be balanced according to the provision defined by the terms

and conditions of each TSO, each BRP shall be entitled to change its Position in

the Intraday timeframe until the Intraday Cross Zonal Gate Closure Time basing on

rules and criteria defined by its Connecting TSO. The aforementioned imbalances are

usually dealt by purchasing flexibility and energy from the demand-side and producers,

respectively and offering it to the TSOs in the form of Ancillary Services.

• Aggregator: Aggregators can provide services to aggregate energy production from

different sources, including local aggregation of power demand and power supply

from consumers/prosumers. In some cases, the Aggregators have contracts with local

producers for purchasing energy at price determined in the contract.

• Prosumer: A prosumer is a new entity that consumes but also can produce or store

electricity. Prosumers are able to own and operate small or large parts of the power

grid and obtain revenues according to their energy utilization.

• Consumer: A consumer is an entity that requests electricity. Small consumers are

connected to the distribution system and they buy electricity from a retailer. Large

consumers can, on the other hand, either buy electricity directly from the electricity

market by bidding for purchase.
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• Producer: A party that produces electricity either through conventional ways or

renewable sources.

• Policy makers / Regulator: The regulator is the governmental body assigned with the

duty to ensure a fair and efficient operation of the electricity sector and participants.

It defines the prices of the services and products offered by the entities having

monopolies, while establishing rules for the energy market and examining cases in

which market power may be misused.

The following figure illustrates the position of each actor in the electricity market chain.

Figure 2.1: Overview of electricity market operations.

The purchase and sale of electricity to resellers is done in the wholesale market, while

the purchase and sale of electricity to consumers is done in the retail market. Therefore,

Aggregators typically buy and sell flexibility, in the form of DR, in the wholesale market.

The integration of DR programs in the planning and operation of electricity systems from a

time horizon point of view is demonstrated in Fig. 2.2.

In all market structures, the management of electric power systems is largely shaped by

two important physical properties of electricity production. First, mismatches in supply and

demand can threaten the integrity of the electrical grid within seconds and second, generation

and transmission system investments are large projects with expected economic lifetimes of

several decades that often take many years to develop, site and construct. These features of
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Figure 2.2: DR in electric system planning and operations [7].

electric power systems necessitate management of electricity for a range of timescales, from

years for generation and transmission planning and construction, to seconds for balancing

power delivery against fluctuations in demand. Decisions are made at several junctures along

this timeframe. Details of the timeframes, as illustrated in Fig. 2.2, are provided below.

Capacity and operations planning include long-term investment and planning

decisions. Capacity planning (years system planning) involves assessing the need for and

investing in new generation, transmission and distribution system infrastructure over a multi-

year time horizon. Operations planning (months operational planning) involves scheduling

available resources to meet expected seasonal demand and spans a period of months.

Operations scheduling refers to the process of determining which generators operate

to meet expected near-term demand. This typically involves making day-ahead economic

scheduling based on the next day’s forecasted demand, with adjustments made in a period

of hours down to 15 minutes to account for any unexpected generation plant outages or

transmission line problems in day-of economic dispatch.

System balancing refers to adjusting resources to meet last-minute (< 15 mins)

fluctuations in power requirements. In regions with organized wholesale markets, resources

offer ancillary services to support electrical grid operation. All DR strategies fall into

the category of “Capacity and operation planning” and can participate in the capacity

market, while all DR strategies that fall into the categories “Operations scheduling” and

“System balancing” can participate in the Balancing Market. At a high level, DR can
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first be clustered into two major categories, namely: Implicit (price-based) and Explicit

(incentive-based) DR. Another important demand side resource that can be considered

independently, but not necessarily disconnected from the implicit and explicit DR programs,

is the energy efficiency. However, energy efficiency focuses on the capacity planning and the

reinforcement of the grid, which require years of planning and therefore is out of the context

of this work. The two major DR categories and their respective strategies are described in

the two following sections.

2.1 Implicit (Price-based) Demand Response

Implicit DR is the application of tariffs in which the price of electricity is dependent on

the time of use. There are many approaches to these tariffs, from a set two-point peak/off-

peak tariff system to a real-time system responding to changes in the wholesale market and

informing customers with little notice. A middle ground approach is found with critical

peak pricing whereby a standard rate tariff is adjusted by pre-set amounts at peak times. For

these programmes to be offered, the electricity consumption metering device of the customer

must be capable of providing verified meter readings with at least the same frequency/time

segregation which is used for the tariff. The resolution of such meters tends to range from

hourly to quarter-hourly, depending on the market. Retailers must also be allowed to adjust

their settlement processes – so that they no longer purchase electricity according to averaged

profiles but rather according to actual consumption. There are a wide variety of varying ToU

tariffs operating on different time frames and with different relative payments for each. Daily

time varying tariffs are common to discourage use in peak events. Seasonal tariffs are utilised

to mitigate against elevated usage mostly from weather related demand variation. Some

markets operate with multiple tariffs and tariffs can be found as compounded tariffs over

various time frames, such as daily and seasonal multiples. The main Implicit DR techniques

are described below:

• Time-Of-Use Tariff (ToU): This strategy of management uses different types of

tariffs to encourage customers to eliminate consumption during peak periods. ToU is

designed to reflect the utility cost structure where rates are higher during peak periods

and lower during off peak periods. ToU tariffs based on peak load pricing have been

introduced in recent years, having proved to be one of the most efficient strategies

in load management. Both the supplier and the end-user benefits from successfully
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designed ToU rates.

• Real Time Pricing (RTP) is the programme most closely aligned with situations

where supply as well as demand are variable or ‘unbiddable’, meaning that a

significant portion of national capacity is sourced from intermittent renewable

generation. RTP is a means by which retail prices follow wholesale prices from day to

day, hour to hour or even minute by minute. Spot pricing can be linked with automation

to lower demand whenever wholesale market prices go over a certain pre-set amount.

• Critical Peak Pricing (CPP) is a programme usually developed for both residential

and commercial consumers that involves raising prices or offering financial incentives

to cut demand for a set number of hours on days when critical peaks in consumption

are expected, often triggered by changes in weather conditions. Both the numbers of

days on which a peak can be called and the number of hours are known beforehand

and usually regulated at a regional or national level. By their nature, they occur at

irregular intervals in either winter or summer and come under the heading of dynamic

peak shifting.

2.2 Explicit (Incentive-based) Demand Response

Explicit DR requires active participation of end users responding to requests from within

an existing framework agreement, therefore are technically more difficult to achieve. Explicit

DR can be divided into the following schemes:

• Direct Load Control (DLC): Typically for small commercial and residential

consumers. Direct control of specific appliances is given to utilities, predominantly

temperature regulation devices and occasionally lighting. The control mechanism is

generally given as simple on/off commands. Notice of control events is given but

the timeframe for notice is small (of the order of minutes). The most common market

approach for participation is fixed scheduled payments in the form of utility bill credits

and additional participation payments.

• Load Curtailment Requests: Typically managed by Aggregators. Load curtailment

requests are similar to direct load control mechanisms although they typically involve

greater user interaction for confirmation of participation and longer notice periods (of

the order of hours or day ahead). The curtailment options are integrated into retail
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tariffs that provide a rate discount or bill credit for agreeing to reduce load during

system contingencies. Given that the typical framework for operation is to pay for

availability as well as to provide additional payments for participation, penalties are

given to entities that do not participate when called upon as this effectively breaks

the availability agreement. Penalties vary in severity but must at least cover the

cost of the availability and participation payment to alternative curtailment providers.

The reward structures are widely varying; although, given the greater need for

human interaction and the requirement for baselining submissions, payments are

often focused on participation with some capacity payment structures available for

reliable users. Interruptible programs have traditionally been offered only to the largest

industrial (or commercial) customers.

• Demand Reduction Bidding: A mechanism by which entities can sell load reduction,

either directly as a large consumer or indirectly via an Aggregator for smaller

consumers. Typically, this occurs as a bidding process followed by the establishment

of a merit order for dispatch to equilibrium. Demand Reduction Bidding is typically

only offered to large (> 1 MW) customers. In the case of bidding to capacity

markets, customers offer load curtailments as system capacity to replace conventional

generation or delivery resources. Customers typically receive day-ahead notice of

events. Incentives usually consist of up-front reservation payments, and face penalties

for failure to curtail when called upon to do so.

• Ancillary Service Provision: For ancillary service provision, entities bid into markets

ran by system or regional transmission operators. The ancillary services market is

organised to negotiate energy loads to ensure reliability and energy quality through

four key paths: system restarts, frequency control, voltage control, and balance

control. Frequency reserve and operating reserve services are the most common form

of distributed ancillary service provision. Frequency response is a quick (order of

minutes) load adjustment (either decrease or increase) triggered by real time signals

to rebalance grid frequency to the operational set-point. Operating reserves are

dispatchable power generators able to respond rapidly to signals in order to correct

under generation conditions caused, for example, by generator failure or prediction

errors. Payment schemes tend to be by capacity commitment. Frequency control,

which is the most commonly implemented ancillary service is divided into three types:
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– Primary reserve – close to real-time actuation, it allows an automatic regulation

of load to place frequency within bounds in a matter of seconds;

– Secondary reserve – after the primary reserve is successfully implemented and

frequency is within bounds, the secondary automatic reserve is activated to place

frequency at a target/standard value, as primary reserve returns to its previous

level;

– Tertiary reserve – similar to what secondary reserve performs for primary reserve,

this reserve implicates manual changes to the load that guarantee frequency

stability and adequate value, as secondary reserve returns to its previous level

as mentioned before for primary. Further differentiation is made between

automatically activated (aFRR) and manually activated (mFRR) services. aFRR

is more deeply integrated with the TSO systems, while mFRR is activated

manually in both a discrete and “close to” continuous manner by TSOs. Payment

is given for availability to accepted bids and entities are obliged to be on standby

for operation. Further payment is given, typically at the spot market price, for

participation if called upon to act for ancillary service provision.

• Emergency Response: Emergency Response programmes are agreements to limit

consumption to a specified level when there is a grid level threat. There are typically

predefined timeframes for required availability that reflect potential critical grid

scenarios, primarily around peak load times. Participants are paid for availability and

effectively join the merit order for dispatch, penalties are given if participants fail to

produce when called upon.

It is clear that the flexibility volume as well as the extraction method is directly related to

the electricity market structure of each country. In locations where the electricity market is

not liberalised and dominated by vertically integrated utilities that own all levels of the supply

chain, DSM schemes offering price incentives to the electricity customers are considered as

an easy pathway for deferring investments for network reinforcement. However, for locations

where the electricity market is mature, all the involved actors see DSM programmes and DR

in particular as a business opportunity that can benefit all sides. Major focus is given to the

Aggregator, who is directly involved or interested in all DR strategies and therefore can be

considered as the major bonding actor that maximizes and transfers flexibility from lower

levels (demand-side, producers) to higher levels (system operators).
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2.3 Literature Review

Lately, DSM schemes and DR strategies have been gaining more attention in research and

industry, driven by growing interest of power system operators to avoid expensive network

reinforcement through cheap and effective solutions. This section focuses on the recent

research and real applications conducted in this field, broken-down into the different aspects

and highlighting the respective specific gaps.

Research on the development of price-based DSM schemes

Prosumers and especially residential prosumers are often perceived as a very difficult

target group for DSM programmes because of the large scale and diversity of energy

behaviour. In addition, a major barrier for enabling DSM rollout is the unavailability

of daily electrical consumption and production profiles, since spatiotemporal profiles

are not normally available from existing electromechanical meters and non-modernized

grid networks [8]. In this domain, testing and validating developed DSM schemes on

representative consumer samples is the most appropriate method to provide useful insights

for establishing new energy policies. Over the past years, several research programmes were

set out to acquire knowledge on how current and future changes in supply and demand energy

patterns can be addressed [9–13]. The programmes focused on the energy behaviour of

households, adaptation of consumer preferences, enforcement of new tariffs (price-based

DSM schemes) and endorsement of technologies that impact grid management. The main

outputs included the reduction in the electricity bill of the active consumers, utilisation

of DSM at a variety of scales (local, regional and national), improved use of storage by

consumers and widespread use of automated energy management systems [9, 10].

In particular, the emphasis of [14] is to analyse impacts of price-based DSM schemes in

relation not only to socio-demographics but also time of activities. These are analysed by

socio-demographic groups (household type and income) and clusters based on similarities in

time use activities during peaks. The socio-demographic characteristics in each cluster do

not point to any significant dominant parameter being able to explain the shape or intensity

of energy-related activities during peak periods. This means that income and household

structure, for instance, are not as powerful as activity-based clusters in describing changes

in demand across the day because regardless of socio-demographic parameters different

households might carry out very similar activities at peak time, experience the same peak

to off-peak ratios and consequently face equivalent financial losses or gains due to the
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introduction of the price-based DSM scheme. The activity-based clusters feature distinctive

patterns in density and timing of energy-related activities in the morning. Clustering by

activities represents a powerful way to appraise groups of people who might be either

advantaged or disadvantaged from the introduction of the price-based DSM scheme. This

has conceptual implications for framing flexibility and its effects. Approaches which do not

take as starting points either the socio-demographics of consumers or the flexible attributes

of practices are better suited for understanding the complexities of demand-side flexibility.

Instead, the results on clustering of activities at peak time suggest that the effects of DSM

schemes are better understood through analytical efforts to place time at the centre of

research on flexibility. The main advantage of inferring flexibility through the attributes of

practices consists of being able to directly assume what can be flexed. However, assumptions

around the flexibility of practices risk being void of their temporal arrangements. Findings

show that socio-demographic distribution did not demonstrate any significant dominant

parameter. Instead, clustering based on similarities in the timing of activities has provided

distinctive patterns and can shed light on groups of people who might be either advantaged

or disadvantaged from the introduction of the price-based DSM scheme.

Recent research outcomes from large-scale DSM experimental studies conducted in the

UK [15, 16], highlight issues related to participation in price-based DSM programmes and

more specifically the voluntary commitment endorsement of cost-reflective tariffs which is

likely to be fairly low across the population. Moreover, research investigations focusing on

consumer participation designated that a distinctive subset of consumers chose cost-reflective

pricing due to favourable consumption patterns [17–21]. However, contrary evidence also

exists suggesting that consumers that willingly choose time-varying pricing do not tend to

have different patterns of consumption [22–24]. Nevertheless, most studies conclude that

consumers are willing to adopt a ToU tariff and change their consumption when properly

trained on how to increase their potential savings in compensation for their discomfort [25].

Other DSM pilot programmes that provided forecasting and information services for possible

flexibility provision demonstrated that constant feedback is a valuable tool for the effective

deployment of a price-based DSM scheme [11, 26]. In this context, training the consumers

on how to grasp the benefit of a time-varying electricity pricing scheme is essential.

Another survey study based on a pilot programme enrolled by Entergy New Orleans

demonstrated the issue of energy savings variation among the treatment groups [13]. More

specifically, 78% to 90% of the participants believed that they saved money as a result

of the programme, even though the data indicated that only 58% to 67% of customers
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were active and actually saved energy. This outcome further highlights the significance of

evaluating active participation in DSM scheme deployment. Overall, most price-based DSM

pilot studies include an evaluation period to assess the most important issue of price-based

DSM which is the impact of the applied scheme on electricity usage. In order to explore

whether the initial goals set by the utility are met, a comparative analysis of the energy

behaviour (load shifting and energy conservation) must be initiated between the baseline and

the implementation year, before and after the pilot-application of DSM scheme, respectively.

A study that investigated the impact of price-based DSM scheme in peak demand, carried out

at the Canadian province of Ontario, showed a 3% reduction in peak usage which was slightly

lower than the provincial estimation [12]. A method for obtaining the anticipated DSM

targets is to provisionally evaluate and refine the DSM scheme during the implementation

period in order to correct any oversights occurring at the planning stage.

An efficient load scheduling based DSM scheme for the objective of peak load reduction

is proposed in [27]. Two heuristic algorithms, named G-MinPeak and LevelMatch, which

are based on the generalized two-dimensional strip packing problem are utilised. In this

approach each of the appliances has their specific timing requirements to be fulfilled.

The authors propose some improvement schemes that try to modify the resulted schedule

from the initial heuristic algorithms to reduce the peak. All the proposed algorithms

and improvement schemes are experimented using benchmark datasets for performance

evaluation. Simulation studies are conducted using practical data to evaluate the performance

of the algorithms in real life. The results obtained show that all the proposed methodologies

are effective in reducing peak load, resulting in smoother load profiles. Specifically, for

the benchmark datasets, the deviation from the optimal values is approximately 6% and

7% for LevelMatch and G-MinPeak algorithms respectively and by using the improvement

schemes the deviations are further reduced up to 3% in many cases. For the practical datasets,

the proposed improvement schemes reduce the peak by a percentage between 5.21 and

7.35% on top of the peaks obtained by the two proposed heuristic algorithms without much

computation overhead. The results show high levels of peak reduction, however the results

are obtained in a simulated environment that does not consider the unpredictable behaviour

of electricity customers.

The work conducted in [28] projects the long-term density of the daily peak demand with

the goal of understanding its growing pattern and ultimately reducing the resulting burden

on the power grid. The approach accounts for the changes both in temperature due to

climate change and in the socio-economic variables. Specifically, the proposed daily peak
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temperature model with a non homogeneous generalized extreme value framework allows

the authors to adjust the possible biases in the global climate model projections while keeping

their temporal variation. The expected population growth (or decay) pattern and the building

demand saving from DSM programs are formulated with the logistic growth model and Bass

diffusion model, respectively. The presented approach is validated in a case study with

actual data collected in the south-central region of Texas. The results provide useful insights

into how the daily peak demand densities would change over time, in response to climate

change, population growth and participation in DSM activities. While this study provides a

generic framework for characterizing the progression of peak loads in the long-term, it has

limitations, because the results are obtained with limited data. In particular, DSM activities

for buildings could substantially affect the peak load. Although actual building data are

used, the authors do not consider that the electricity usage patterns change as DSM programs

evolve over time.

A methodology to extract valuable information from a large volume of data is proposed

in [29]. The methodology is based on clustering methods applied on questionnaire results

conducted before and after a trial of various tariff structures including ToU. The pre- and

post-trial questionnaires offer insights into the consumers’ values, motivational factors and

needs, as well as their perspective and perceived behaviour regarding consumption. The

pre-trial questionnaire showed mixed views in terms of household flexibility in decreasing

and changing electricity usage, and a low interest in environmental issues. While smaller

households with older members proved to be the least flexible, larger, younger families

with more children are more motivated and had higher expectations of the trial. By

contrast, the post-trial questionnaire portrays a positive, homogenous attitude, as well as

an improved energy literacy and increased overall awareness thanks to the conducted trial.

Using NoSQL and machine learning, the authors analyse the impact of the non-optimised

ToU tariff structure and highlight that a 3,89% financial loss on average for the entire lot

of consumers is yielded. This led the authors to conclude that some incentive-based rates

may increase the bill, while optimum ToU tariffs and other optimally designed incentives are

good opportunities for behavioural change if they are fully understood and bring benefits to

consumers.

A robust distributed algorithm for modelling a system of interconnected smart energy hubs

has been proposed in [30]. The work describes how users can participate in integrated

demand-side management. A non-cooperative congestion game model was used in which

users independently optimize their energy consumption and storage schedule. To evaluate

19

VENIZELO
S VENIZELO

U



the performance of the proposed algorithm, a benchmark case with five hubs equipped with

storage devices was investigated. In this model, users can take part in the program both by

shifting their load demand (using storage devices) or by switching their energy sources. In

order to verify the effectiveness of the proposed algorithm, two different signaling schemes

(i.e. price-based and load-based setup) have been introduced and compared. Both of

these setups are categorized as a price-based DSM program in which the prices of energy

carriers are the driving signals. Simulation results for the load-based and price-based setup,

respectively, show a 27.1% and 24.4% reduction of the peak load only in the electricity

networks. Furthermore, the daily energy bill is reduced by 11.9% and 15.5% in the load-

based setup and price-based setup, respectively. However, the price-based setup shows more

instability because of price fluctuations. Even though the results are promising, several

assumptions have been made with regards to the users’ response to the prices.

Based on a large sample of the German population, the authors of [31] use a choice

experiment with ToU tariffs to estimate the effect of different peak time schemes on private

consumers’ “willingness to accept”. These tariffs allow for additional services during

peak times, i.e., controlling electricity consumption of specific appliances. The authors

used Mixed Logic models for unobserved heterogeneity. The results showcased that a

significant share of respondents always neglects inconveniences of peak time pricing while

a smaller share reacts only to discounts. The authors expect that utility companies will

face serious difficulties to incentivize customers to choose ToU tariffs. Still, they identify

70% of the selected sample as potential ToU tariff purchasers of which 36% never chose

a fixed rate tariff. The results suggest that most consumers demand high compensational

payments to accept ToU tariffs but might benefit from a control of appliances. Therefore,

the authors recommend electricity providers to offer ToU tariffs including those benefits,

and suggest decision-makers to force smart meter roll out and to encourage purchases of

smart appliances. An increasing share of consumers purchasing ToU tariffs could lead to a

significant shift in electricity consumption from peak times to off-peak times, and therefore

a cost reduction in redispatch. A limitation of this analysis might be the consideration

of the same appliances for households. The authors mention that future studies should

use questionnaires that would allow to incorporate the specific devices that the responding

household is using. Furthermore, the authors state that future studies should also investigate

sources of heterogeneity in more detail by applying qualitative methods to a larger series of

focus groups.

The study conducted by the authors of [32] aims to identify the dominant household factors
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from houses in relation to daily electricity consumption patterns so that potential DSM

strategies can be indicated. Time-segmented regression analysis is employed to identify

the factors that dominate at different timeslots across the day. The method that was applied

to a limited dataset reveals that the dominant factors responsible for residential electricity

demand variation are the number of major electrical appliances and the number of occupants

in the household. Furthermore, the number of occupants is found to be the dominant

factor during electricity grid peak hours only. Additionally, the results reveal that there is a

potential interplay between one or more dominating factors during peak hours, for instance,

the interplay between number of occupants and major electrical appliances. The authors

highlight the fact that a real monitoring campaign could provide more insight on the energy

patterns and how the DSM-related policy-making should be adjusted.

Furthermore, to determine the success of the potential large-scale rollout of any developed

price-based DSM scheme, a detailed Cost-Benefit Analysis (CBA) for planning and

implementing the price-based DSM scheme nationally should be carried out. CBAs for

planning and implementing price-based DSM schemes in Germany [33] and France [34],

showed that for end-users with low levels of annual consumption the costs of a smart

metering system would far outweigh the average potential annual energy savings. The CBA

outcomes indicated the importance of conducting a CBA in cases where the impact of the

proposed price-based DSM scheme must be verified.

Despite the aforementioned successful implementation of price-based DSM schemes at pilot

areas, there are still many challenges to be overcome and numerous issues that must be taken

into consideration when designing an effective price-based DSM scheme. A concrete and

universally-applicable methodology for developing, implementing and evaluating a DSM

scheme is missing in recent literature. Additionally, it’s clear that the applied ToU tariff

structure has a major impact on the effectiveness of a price-based DSM schemes.

Research on the development of optimum ToU tariff structure

Even though the flexibility-enabling technologies are progressing, the development and

implementation of optimum ToU tariffs remains a research question for more recent studies.

A two-stage optimisation model applied to complete households is described in [35]. The

model incorporates multiple potential flexibility provision functions that have been widely

reported within the literature; including electric vehicles, rooftop PV and time of use tariffs.

This work demonstrates the potential beneficial impacts that the combination of ToU tariffs
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and PVs can have both for the customer in terms of financial savings and for the community

at large through the reduction in greenhouse gas emissions. Minimal uptake enabled savings

is exhibited by all engaged customers, showing that there is scalability in the integration of

these methodologies and is not dependent on a significant initial uptake. Financial savings

within this study are dependent on the use of EVs, with lower flexibility event participation

(20%) and electric vehicle ownership at 10% receiving the greatest financial savings of 37%,

compared to 28% and 27% respectively for the 40% and 60% participation rates. However,

this study does not take into consideration the embedded cost of the flexibility-enabling

technologies, which are at present exogenous to the model inputs.

One of the most important challenges when defining the periods of tariff structures is

to address the problematic herding phenomenon which arises when consumers shift large

amounts of their consumption to low-price periods and create new load peaks [36].

Another main challenge involves the modification of the applied time-varying tariff based on

the energy behaviour of the end-users. A typical example of a region that overhauls the way

it generates, transmits and uses electricity is California whereby eleven million residential

utility customers were fully converted to ToU tariffs [37]. In this case, ToU tariffs were

applied to motivate load shifting and to reduce regressive consumer cross-subsidies that arise

with the growth of the residential sector self-generation due to PV systems, highlighting the

importance of adjusting tariff structures based on the specific energy profiles of the area of

application [37].

An additional challenge addressed in previous studies considers the fact that a ToU tariff

structure that is revenue-neutral at the class level may not be neutral at the individual

prosumer level. Prosumers with peak consumption shares that are lower than the typical

peaks will achieve bill reductions without changing their load profiles. In general, a major

aspect of a price-based DSM scheme is to prevent the creation of “free riders” that will create

revenue loss not offset by cost savings [38, 39].

The authors of [40] introduce a Bi-level model of the interaction between a retailer and

consumers in the electricity retail market, including shiftable, interruptible and thermostatic

loads, which can be controlled by an energy management system. The aim is to determine

the optimal dynamic ToU electricity prices to be established by a retailer to maximize profits

in face of consumers’ demand response to minimize costs considering comfort requirements

of time slots for shiftable load operation. The Bi-level model is dealt with a hybrid approach

based on a particle swarm optimization algorithm that calls a mixed-integer programming

solver to deal with the consumer’s problem of appliance scheduling for a given instantiation
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of electricity prices (upper level decision variables). Since only optimal solutions to the

lower level problem are feasible to the Bi-level problem, non-optimal solutions to the lower

level problem may lead to misleading solutions to the problem. For this purpose, the authors

propose an approach to compute lower/upper estimates for the optimal solution of the Bi-

level problem when a computational budget should be considered to obtain solutions to the

lower level problem. However, the impact of the developed ToU electricity prices in energy

conservation is not tested and verified in this study.

The methodology proposed and described in [41] is applied to different PV and battery

scenarios so that economic indicators are determined and later compared to the results of

other alternatives to establish useful parameters for guiding investment decisions. At each

step of the methodology, the variables that allow the economic evaluation of investments is

determined, namely all the costs, the revenues and the variables that are important for the

projection of the cash flow for the entire project life, as well as the impact of the variation

of these parameters. For the simulated system options, a ToU tariff is used. The sensitivity

analysis carried out shows that the initial equipment cost is the main impact factor in the

profitability when including PV generation, while the lifetime and ToU tariff structure are the

main factors for profitability in terms of storage systems. The authors highlight that policies

to encourage the adoption of distributed generation and energy storage technologies should

focus on adjusting tariffs to lead to a more attractive environment, while the declining costs of

PV and storage follow their path and financing modalities of systems with attractive interest

rates become more available. The residential ToU tariff is the only factor controlled by the

distribution utility, and it is, therefore, a major factor influencing the economic attractiveness

for the adoption of storage systems. Because there is no obligation to adopt a ToU tariff,

residential consumers might see no reason to migrate to a new tariff structure that might

increase their energy bill in the event of high consumption at peak hours, in case there are

large differences between on- and off-peak-hour tariffs. The results could be more promising

in case that the ToU tariff structure was optimised.

Based on the above studies it’s very evident that static forms of price-based DSM schemes,

such as ToU tariffs, can lead to negative profiling effects when coupled with intermittent

renewable generation and not optimally developed. Hence, the development of an optimum

ToU tariff structure should consider numerous parameters and redesigned regularly based on

the outcomes of its application.
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Transitioning from DSM to DR

Exploiting the demand flexibility, instead of investing in new non-renewable

transmission-connected generation capacity introduces a more pro-active and effective

approach for the energy transactions. However, strict market and grid-related regulations

exclude single small-scale electricity customers to participate in the provision of such

services, thus third parties such as Aggregators must undertake the role of summing those

multiple flexibility volumes. Aggregators are being lauded as critical entities in providing

these valuable electricity services, acting as intermediates between the small / medium scale

consumers and the electricity market stakeholders at higher levels, such as the DSOs [1, 2].

The most common approach for extracting these flexibility volumes is through DR, which

is a program that is established to change electric use by demand-side resources from their

normal consumption patterns in response to changes in the price of electricity, or to incentive

payments designed to induce lower electricity use at times of high electricity market prices

[3].

Research on the development of DR frameworks

Many recent studies focus on facilitating the role of Aggregators into the distribution-level

electricity market to improve market efficiency, while emphasizing the role of DR [42–47].

In this context, various DR frameworks can be found in the literature such as the hierarchical

control DR framework, presented in [48]. The framework enables support of multiple

aggregation entities, with different capacities and objectives, towards delivering cooperative

flexibility services. Employing a sequential optimisation approach for the participation of

two separate Aggregators is explored, presenting interesting insight into the revenue acquired

from both sides. However, in the scenarios explored, the interaction between the Aggregators

and their customers was not considered.

Similarly, in [49] a set of Aggregators provides their flexibility to the DSO under a fair and

incentive compatible flexibility mechanism which is based on a max-min fair formulation,

so that network constraints are satisfied in a fair way. Nevertheless, the proposed framework

tackles the participation of Aggregators to flexibility markets and not DR mechanisms,

whereas the fairness aspect refers to the Aggregator and not the end customers.

The various proposed DR frameworks, utilise a diversity of optimisation approaches that

mainly focus on the Aggregator’s costs or balance of the distribution network [50–53]. A

cost focused bi-level optimisation model for determining the pricing parameters of Time-
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and-Level-of-Use tariffs, maximizing the supplier revenue while anticipating an optimal

reaction of the customer is presented in [54]. The reaction of the customer to the proposed

pricing is integrated in the supplier decision problem, thus turning the customer-supplier

interaction into a Stackelberg game. Even though promising results are demonstrated, the

actual effectiveness of the proposed methodology is unclear.

In recent times, the scope of DR has been expanded to include system expenditure reduction

as well as the balance improvement of the distribution network [55]. The balance of the

distribution networks directly falls to the DSOs, who ensure the normal operation by sending

appropriate DR signals to the flexibility providers.

In the future, it is expected that DSOs will have a broader role as neutral market facilitators

offering equal opportunities to all Aggregators to sell their services [56]. The approach

proposed in [57] uses an integrated strategy for the day ahead market, which may result in

the provision of reserve and in consumption deviations, depending on the dispatch events.

Using accurate forecasts of dispatch events, the Aggregator can optimize its participation

in the markets by allocating the flexible resources to the periods when tertiary reserve is

required by the system. The proposed methodology consists in two steps: (1) an analytical

method to calculate the market expected value of each individual availability profile; (2) a

heuristic method, based on a merit order, in order to find the high valuable and less risky

bids from the combinations of flexibility profiles in the Aggregator portfolio. The advantage

of the heuristic approach is to avoid a combinatorial problem with infeasible dimensions for

larger groups of consumers. The methodology is applied to a sample of 1500 residential

consumers, while considering the Portuguese tertiary reserve market conditions. The results

demonstrate the capability of the heuristic methodology to find a significant number of non-

dominated bidding solutions leading to higher remuneration for the Aggregator.

The authors of [58] propose an emergency DR scheme for microgrid autonomous operation

based on local frequency measurements. The active participation of microgrid loads can

contribute to ensure the balance of the microgrid in the moments subsequent to islanding,

taking into account the frequency behaviour and available energy in storage units. The

proposed control strategy is supported by an online tool integrated into the microgrid central

controller, which is responsible for periodically defining the most adequate technical solution

for managing responsive loads, following an unplanned event and taking into account the

microgrid operating conditions. Centralized strategies at the microgrid controller level are

used to define the new active and reactive power set-points for the controllable sources,

taking into consideration the overall microgrid operating state. Secondary control includes
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additional synchronization loops for a smooth re-connection to the main grid after islanding.

The test cases evaluated through the conducted dynamic simulations, demonstrate the quality

and the feasibility of the proposed tool when dealing with this problem.

The work conducted in [59] focuses on the use of a Virtual Energy Plant, which aggregates

the decentralized multi-energy resources. Aimed at the difficulty of access and regulation of

the decentralized multi-energy resources in the local area, considering the energy purchase

from external markets and the energy retail to internal users of virtual plant, a grading

dynamic aggregation model is incorporated into the optimal scheduling of the virtual plant.

A decentralized multi-energy resources aggregation model based on bi-level interactive

transactions is established. The study results highlight that the aggregation and invocation

of the proposed model mainly pertain to the load peak, and this realization can reduce the

energy purchasing cost of the virtual plant, improve the energy retail revenue and expand

the profit space. The peak energy retail price is offset from the peak real-time price to

enhance the market competitiveness, while the offset period is at least 1 h. By the proposed

method, it is beneficial for the virtual plant to integrate and utilize the decentralized multi-

energy resources to participate in the market and to maximize the economic benefits of its

operations. Compared with other methods such as the fixed polymerization, the economic

benefits are increased by 6.52%.

The authors of [60] propose a Home Energy Management System that optimizes the

load demand and distributed energy resources. The optimal demand/generation profile

is presented while considering utility price signal, customer satisfaction, and distribution

transformer condition. The electricity home demand considers electric vehicles, Battery

Energy Storage Systems, and all types of non-shiftable, shiftable, and controllable

appliances. Additionally, PV-based renewable energy sources are utilized as sources of

generated power during specific time intervals. In this model, customers can only perform

DR actions with contracts with utility operators. A multi-objective demand/generation

response is proposed to optimize the scheduling of various loads/supplies based on the

pricing schemes. The customers’ behaviour comfort level and a degradation cost that

reflects the distribution transformer Loss-of-Life are integrated into the multi-objective

optimization problem. Simulation results demonstrate the mutual benefits that the proposed

Management System provides to customers and utility operators by minimizing electricity

costs while meeting customer comfort needs and minimizing transformer Loss-of-Life to

enhance operators’ assets. The results show that the electricity operation cost and demand

peak are reduced by 31% and 18%, respectively, along with transformer Loss-of-Life which
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is reduced by 28% compared with the case when no DR was applied.

A recovery DR mechanism considering personalized electricity reliability under outage

conditions to improve network resilience is presented in [61]. Novel customer classification

and a market clearing mechanism are proposed to adapt the trend of privatization and

demand-side participation. Customers are classified by internal information such as income,

age, house type, children number etc. and external information such as electricity usage

habit. Then the proposed bidding mechanism that takes full account of dynamic elasticity

and reliability level service is applied to each group. After receiving warning level

information, customers can choose to participate in trading to satisfy private reliability level.

Corresponding market clearing mechanism is applied to facilitate customers’ transactions.

The authors propose a group double side auction method for trading and market clearing

mechanism under outage conditions with an islanding-operation for microgrids. Under this

mechanism, the price for DERs will likely be higher than the retail price providing more

incentive for customers to participate. The proposed model acts as a bidding mechanism that

allows customers with higher reliability requirements to maintain their desired consumption

with corresponding higher price. And customers who pursue higher interests can also gain

higher benefits through transactions. The model mainly solves three problems. First, the

trading mechanism is triggered by an early warning failure possibility for power outages.

Customers with different requirements for reliability levels and economic benefits can be

satisfied in the model. Second, dynamic elasticity replaces fixed elasticity by a stochastic

process to better simulate the user’s real-time preferences. Third, Group double side auction

for market clearing mechanism was applied to auction private reliability services.

The authors of [62] propose a bi-level integrated DR framework for alleviating congestion in

coupled networks. At the upper level, an independent system operator aims to alleviate

congestion by imposing the lowest possible traffic tolls and electricity tariffs. At the

lower level, electric vehicle owners schedule their routes and departure times according

to traffic tolls and traffic conditions, yielding a multi-period user equilibrium state in

which the generalized travel cost of users cannot be decreased by unilaterally changing

routes or departure times. Simultaneously, load Aggregators schedule flexible power

demands according to electricity tariffs to minimize total energy costs. The overall

bi-level programming is reformulated into a single-level mathematical program with a

complementarity constraint problem, which is efficiently solved as a sequence of relaxed

non-linear programming problems by a specially designed algorithm. Numerical results

demonstrate the effectiveness of the proposed DR framework in alleviating congestion and
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reducing total procurement costs.

The work presented in [63] uses the Weber–Fechner law and a clustering algorithm to

construct quantitative response characteristics models. The deep Q network is used to

build a dynamic subsidy price generation DR framework for load Aggregators. The study

focuses on DR aggregation for electric heating applications combined renewable energy

utilization. Through simulation analysis based on the evolutionary game model of a project

in a rural area in Tianjin, China, the authors conclude that, through the proposed model,

the regenerative electric heating users can save up to 8.7% of costs, power grid companies

can save 56.6% of their investment. The framework proposed in this study considers user

behaviour quantification of DR participants and the differences among users.

Even though the aforementioned studies present promising results, there is no clear

consideration of how the performance of end-users in DR events can potentially affect the

Aggregator’s strategies.

Research on DR framework for restoring the normal operation of the grid

Many approaches can be found in the literature focusing on the interactions between the

DSOs and Aggregators that aim in identifying and resolving grid constraints, with the most

important being the methodology specified in the USEF Flexibility Transfer Protocol (UFTP)

[64, 65]. In this methodology, USEF addresses congestion management or grid-capacity

management through Congestion Points that are published by the DSOs and exploited by the

Aggregators.

The work conducted in [66] introduces a model to optimize energy consumption in buildings,

aiming at minimizing costs while satisfying the technical constraints of the power network.

The model is capable of controlling a wide variety of loads taking into account the flexibility

that their owners are willing to provide. This flexibility can be used for technical matters,

such as for improving the network operation or economic purposes. The proposed model is

applied in a test network to quantify and compare the capability of only electrical buildings

and Multi-Energy System buildings to offer flexibility. Analyzing the grid technical

problems, in a scenario with only electrical buildings, there are a number of undervoltage

problems detected in the network that cannot be entirely solved even when flexibility is

activated through DR programs. These stressful operating conditions are not verified in the

Multi-Energy Systems scenarios, where no technical problems were detected. In the only

electrical buildings scenarios, the voltage problems detected were greatly reduced after the
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activation of the DR program. More specifically, the number of buses with voltages below

0.9 p.u. was reduced from 54 to 14, representing a 74% reduction, thus concluding that DR

programs are an important tool for system operators as they can enable important changes in

the load profiles to avoid voltage problems or overloaded branches.

Other approaches found in the literature, include the distributed dynamic tariff (DDT)

method for congestion management in distribution networks that is presented in [67]. This

method employs a decomposition based optimisation method to have Aggregators explicitly

participate in congestion management. By establishing an equivalent overall optimisation, it

is proven that the DDT method is able to minimize the overall energy consumption cost and

line loss cost.

Another energy allocation mechanism that is considered efficient while respecting grid

constraints has been proposed in [68]. At the DSO level, the auction price is heterogeneous

among Aggregators, while the lower level auction price is uniform among home agents.

The upper level agent allocates power to the Aggregators that in turn conduct their

separate Aggregator level auction to establish market equilibrium conditions locally within

their agents. Even though the proposed mechanism is able to maximize the revenues

for the stakeholders, the authors have not considered any behavioural parameters of the

Aggregatror’s customers.

Several risk measures (e.g. variance, shortfall probability, expected shortage and stochastic

dominance) investigated in [69], highlighted that there is a trade-off between anticipated

profit and its variability. When dealing with small scale customers and local communities,

their reliability to the DR request from different perspectives must be researched. A

Reliability Rate has been introduced in [70] towards identifying trustworthy customers for a

specific DR target. Even though the results indicated that rating customer participation can

lead to more successful DR programs, the grid technical parameters are not considered.

It’s clear that full or partial visibility of the distribution network, will enable Aggregators and

DSOs to improve flexibility procurement for more economically efficient grid management

and strengthen the resilience of the distribution network [71].

Research on DR framework complementary functionalities

Besides the exploitation of various optimisation functions, modern electricity frameworks

necessitate the consideration of complementary factors such as communication and security.

Semantic interoperability, i.e., the ability of systems to exchange and consume data

29

VENIZELO
S VENIZELO

U



transparently among them, resolves issues that stem from the fragmentation of standards

regarding building and/or energy management systems, energy marketplaces and the ever

increasing penetration of IoT devices in the energy domain, while security ensures that

transactions between stakeholders are executed in a trustworthy and verifiable fashion.

Recent studies have focused on cyber-security in energy and power systems, with blockchain

technologies being one of the most recent trends in research efforts. Offering data integrity,

confidence, efficiency, control and security in terms of information exchange, blockchain

technologies have gain a lot of attention and multiple applications have appeared [72].

A sustainable microgrid design problem by leveraging blockchain technology to provide

the real time-based DR programmes is presented in [73]. Three sustainable objectives

(economy, environment, and society) are formulated by a multi-objective mixed integer-

linear programming model. A robust fuzzy multi-objective optimization approach is

proposed to determine the optimal number, location, and capacity of renewable distributed

generation units as well as the equilibrium supply and dynamic pricing decisions under

uncertain demand, capacity, and economic, environmental, and social parameters. The

proposed model and solution approach are then applied to a case study in Vietnam.

The blockchain technology-based sustainable microgrid can result in a 1.68% and 2.61%

increase of profitability and consumer satisfaction, respectively, and a 0.97% reduction of

environmental impacts.

Those studies indicate that the use complementary functionalities, such as security between

the engaged stakeholders, can result to a self-enforceable and tamper-proof framework that

removes intermediaries and reduces transacting, contracting, enforcement and compliance

costs [74].

Addressing the Research gaps on DSM and DR

All the aforementioned studies have managed to significantly contribute in the research

field of demand-side flexibility, however as the DSM and DR programmes evolve over the

years there are still several research gaps that need to be addressed.

Even though the results of those studies are promising, the majority of the analyses are

conducted in simulated environments. A real monitoring campaign could provide more

insight into the impact of DSM schemes as well as how the DSM-related policy-making

should be adjusted. Through a real implementation, the various sources of heterogeneity

and the unpredictable behaviour of electricity customers would be considered. An additional
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challenge that needs to be addressed is the fact that most of those studies consider that the

electricity customers consist exclusively of consumers. However, it is expected that in the

near future distributed renewable generation will be one of the main sources of the total

electricity supply [75]. Therefore, pricing schemes that are revenue-neutral at the consumer

class level may not be neutral at the individual prosumer level. Furthermore, despite all the

identified advantages that ToU tariff schemes offer, the effectiveness of such tariff schemes

must be verified prior to implementation because of the eminent high risk of a new peak

appearing through load shifts at cheaper price periods, posing negative effects on the optimal

operation of system.

All the aforementioned studies have also exhaustively explored DR approaches, while

considering customer behaviour and have established a solid foundation for the significant

potential of participating in the flexibility market. However, as power flows are expected to

become bi-directional, real-time grid management as well as activation of procured flexibility

necessitate a more coordinated approach between the DSOs and the Aggregators. This

new paradigm creates not only challenges but also great opportunities. DSOs may use the

flexibility provided by the Aggregators to solve voltage problems or manage congestion at

the distribution network, while the Aggregators can optimally exploit the available flexibility

of their customers to participate in DR events at minimum cost. Nevertheless, the expected

costs of the Aggregator may come with a high level of variability, depending on the reliability

of his customers. The response of a customer in modifying his consumption pattern is not

certain so there is a requirement of studying DR considering the uncertainty associated with

it. Additionally, a fair distribution of flexibility requests to all the customers, will enlarge

the portfolio of the specific Aggregator due to the increased willingness of other customers

to enroll. These cost and performance aspects combined with the grid technical constraints,

while considering security and communication aspects, are yet to be thoroughly investigated.

The DR-related research field lacks a framework that considers both the performance of

electricity customers as well as the the distribution grid balancing.

To this end, as DSM schemes evolve from the research stage to deployment and

the integration of PV systems is rapidly increasing, a universally-applicable and robust

methodology for developing optimum price-based DSM schemes must be established.

Moreover, as the electricity markets are maturing, the introduction of new electricity

stakeholders as well as the facilitation of DR in electricity services are inevitable.

Subsequently, a holistic framework that addresses these upcoming changes must be

31

VENIZELO
S VENIZELO

U



established. Considering these past endeavours and aiming to bridge the identified research

gaps, this work provides a universally-applicable methodology for deploying a cost-

effective DSM scheme that focuses on flexibility extraction through price incentives. The

proposed methodology is applicable to both consumers and prosumers as the optimization

algorithm utilizes net-load energy profiles. This thesis delves further into flexibility potential

maximization by presenting an innovative framework for DR that aims to minimise the

Aggregator’s cost by considering technical and performance parameters. The proposed DR

framework serves as a holistic framework that is ready to be applied in countries where

the electricity market rules and automation technologies are mature and advanced. The

proposed DSM scheme along with the developed DR framework aim to fully unlock the

available untapped flexibility potential based on the market structure specificities of each

area of deployment.
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Chapter 3

Developing and Deploying Implicit

Demand Response in the Form of

Price-Based Demand Side Management

3.1 Introduction

The evolution of DSM schemes from the research stage to deployment, along with the

increasing integration of PV systems that will eventually render prosumers as the main class

of residential electricity customers, creates a need for a universally-applicable and robust

methodology for developing optimum price-based DSM schemes. The scope of this chapter

is to provide a consistent and universally-applicable methodology to derive effective price-

based DSM schemes for the residential sector that was verified through statistical analysis

and validated on a pilot-network comprising of three hundred prosumers with roof-top PV

systems. The proposed methodology for deriving the optimum ToU tariffs is applicable

to both consumers and prosumers as the optimization algorithm utilizes net-load energy

profiles. The methodology further addresses the technological challenges related to price-

based DSM design such as the optimum number of ToU block periods, evaluation of the

impact of the proposed scheme, training of the consumers and prosumers, active participation

and rewarding, development of pilot network and CBA. Finally, the results emanating from

this work provide useful knowledge in the fields of energy behavioural patterns and flexibility

potential of prosumers that can be vital instruments for policy makers to direct and encourage

the implementation of DSM schemes at a larger scale.
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3.2 Methodology

The cost-optimum price-based DSM methodology for residential prosumers is divided

into the planning, implementation and evaluation stages, as illustrated in Fig. 3.1. The

designed methodology was applied and validated on a pilot-network of three hundred

residential prosumers with installed roof-top PV systems, within the distribution grid of

Cyprus.

Figure 3.1: Methodology for developing effective DSM scheme.

3.2.1 Planning Stage

The first step for establishing price-based DSM schemes that are capable of persuading

participants to alter their energy patterns and achieve desired peak demand reduction,

was to develop an optimum ToU tariff structure that represents the characteristics of the

electricity consumption both in terms of electricity demand as well electricity price variation.

The development of a ToU structure is typically a two-step approach that includes the
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establishment of the ToU block periods and then the respective rates.

Establishment of the ToU block periods

In an attempt to encompass seasonal variations in the development of the ToU tariff

structure, the electricity consumption of the participants was divided between winter, middle

and summer periods and a clustering analysis was performed in order to derive the optimum

block periods of each season. The goal of the clustering analysis is to partition (or group)

a set of instances into clusters such that each cluster indicates a group of instances that are

more strongly associated with each other than with those in different clusters. Clustering is

one of the unsupervised learning methods in machine learning and at the individual domestic

customer level it has many potential uses for energy companies. The clustering method was

utilized for this study as (i) it allows the adjustment of the results to reflect biases in the

selected sample, (ii) it can identify which characteristics correlate with energy behavioural

use and (iii) it can result in more suitable tariffs by comparing different groups in intra-

day behaviour. The partitioning-based clustering approach performs partitioning on a set

of instances into non-overlapping subsets called clusters. Most classical partitioning based

algorithms include K-means and PAM (Partitioning Around Medoids). The main assumption

is that n objects described by the attribute vectors {x1,x2, . . . , xn} are partitioned into k

clusters, where k≤ n. Let mi be the mean of the vectors in the cluster i. An object oj belongs

to the cluster i if the distance between oj and mi is the minimum. The K-means algorithm is

known for its efficiency in clustering large datasets, but is limited to datasets involving only

interval-scaled attributes. To avoid this deficiency, PAM uses medoids rather than centroids

to represent clusters. The medoid of a cluster is the most centrally located object in a cluster

and it is considered to be a representative object of the data set as its average dissimilarity

to the rest of the objects in the cluster is minimal. The PAM algorithm finds k clusters in

n objects by first calculating a representative object for each cluster. Once k medoids have

been selected, each non-selected object is classified into the closest medoid according to a

distance measure. Subsequently, it repeatedly tries to make a better choice by substituting a

medoid mj with a non-selected object oh as long as such substitution improves the quality of

the clustering (i.e., reduces the average distance between an object and its closest medoid).

Assume D is the dataset to cluster (with n objects), M is the set of medoids, rep(M, oi) returns

a medoid in M that is closest to the object oi, and d(oi, ok) is the distance between objects oi
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and ok. The cost (i.e., average distance between an object and its closest medoid) of M is:

Cost(M,D) =

∑n
j=1 d(oi, rep(M, oi))

n
(3.1)

The effect of substituting a medoid is:

TC = Cost(M’,D)-Cost(M,D) (3.2)

where M’ is the new set of medoids after substituting a medoid in M with an object oh not in

M. When TC is greater than zero, this means that replacing the medoid with another would

result in a greater average distance between an object and the medoid of its cluster. Thus,

if TC is greater than zero, oh will not be selected to replace the medoid. For performing a

clustering analysis, it is essential to first decide the optimum number of clusters. For this

purpose, hierarchical clustering was employed. Hierarchical clustering represents data by

building a cluster tree (a dendrogram), where each group (or “node”) is linked to two or

more successor groups. As shown in Fig. 3.2, the results of employing the hierarchical

clustering method indicated that the optimum number of clusters is equal to three.

Figure 3.2: Cluster dendrogram showing the possible clusters for the winter season.

The derived number of clusters demonstrates the presence of three distinct segments

representing the off-peak and peak periods as well as a third period. This time period

represents the transitional (shoulder) period that can be used by prosumers to cover their

needs that can be shifted from the peak periods but cannot wait until the off-peak period.
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Establishment of the optimum ToU rates

Besides the identification of the ToU block periods the estimation of the applicable ToU

rates for the corresponding periods is essential. The optimized ToU rates were calculated

using an optimization algorithm which can derive a constrained minimum of a scalar function

of several variables starting from initial conditions and are subject to nonlinear multivariable

constraints and bounds. General nonlinear optimization problems can be written in the form

of:

minf(x)∀x ∈ Rn

subject to:

g(x) ≤ 0

h(x) = 0

lb ≤ x ≤ ub

(3.3)

where f is the objective function to be minimized and x represents the n optimization

parameters. This problem may optionally be subject to the bound constraints (also called

box constraints), lb and ub. For partially or totally unconstrained problems the bounds

can be taken to be -Inf or Inf. One may also optionally have nonlinear inequality

constraints (sometimes called a nonlinear programming problem), which can be specified

in g(x), and equality constraints that can be specified in h(x). The methodology followed

for solving the optimization function was based on an improved Conservative Convex

Separable Approximation (CCSA) algorithm [76] of the original MMA (Method of Moving

Asymptotes) algorithm, published by Svanberg in 1987 [77]. At each point x, MMA

forms a local approximation using the gradient of f and the constraint functions, plus a

quadratic “penalty” term to make the approximations “conservative” (upper bounds for the

exact functions). The main point is that the approximation is both convex and separable,

making it trivial to solve the approximate optimization by a dual method. Optimizing the

approximation leads to a new candidate point x. The objective and constraints are evaluated

at the candidate point. If the approximations were indeed conservative, then the process

would be restarted at the new x. Otherwise, the approximations are made more conservative

and re-optimized. More specifically, in our study, the ToU rates were calculated based on the
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following optimization function:

min

{
3∑
i=1

(
N∑
j=1

Rj,i · Cj,i)−
3∑
i=1

·(RFlat · (
N∑
j=1

C[j, i]))

}
(3.4)

where R and C represent the rates and consumption levels, respectively, while the current flat

electricity rate is represented by RFlat. The index j = 1,. . . ,N represents the number of time

blocks as derived from the PAM clustering method, where N is the total number of periods

and the index i = 1,2,3 specifies the three seasons. The objective of the optimization function

was to minimize the difference between the proposed ToU and the flat tariff annual electricity

cost. The function ensured that the proposed rates can fully cover the electricity costs for the

baseline profiles. The selected boundary conditions assured that the proposed ToU rates will

be higher that the marginal electricity costs (mc) which are the costs experienced by utilities

for the last kilowatthour (kWh) of electricity produced. In order to increase the total number

of investigated combinations of rates, a relatively high upper bound was selected by limiting

the lowest rate up to the standard flat rate and the highest rate up to twice the flat rate. The

upper and lower boundaries were set as:

lb : [Rj,i] ≥ [mc,mc,mc]

ub : [Rj,i(highest), Rj,i(lowest)] ≥ [2 ·RFlat, RFlat]
(3.5)

In parallel with the surveying questionnaires, focus groups were performed in order to

identify consumer preferences towards load shifting. The focus groups showed that pilot-

network prosumers were motivated to shift consumption whenever the rate between the time

blocks of applied ToU tariff was higher than 20%. To achieve this, the following constraints

were used:

Rj+1,i ≥ 1.2 ·Rj,i (3.6)

Pareto dominance of the developed tariff

When developing ToU tariff schemes it is crucial to investigate the difference between

the total amount that consumers are willing and able to pay for electricity and the total

amount that they actually do pay, as well as how a change in electricity prices affects the

welfare of the utilities and their customers. In conventional economic theory these matters

are commonly handled through the concept of consumer’s surplus and Pareto superiority.

By definition, an outcome is Pareto superior to another, or Pareto dominates it, if the second
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is a Pareto improvement over the first. A Pareto improvement is defined as any change

which leaves everyone at least as well off, or someone strictly better off without negatively

affecting the other [78]. To establish that the developed ToU tariff scheme is profitable, the

Pareto superiority of the design was investigated by following the methodology proposed by

other authors [38, 76, 79]. The profitability of the ToU design can be evaluated by applying

the flat and the time-varying rates on the demand curves. The demand curves provide all

the information that is used to determine a customer’s ToU consumption and his choice

between ToU and standard rates. The demand curves of each consumer are assumed to be

linear [80], with a y-intercept and a slope for describing the customer’s demand curve. The

y-intercept denotes the level of demand, while the slope denotes the price responsiveness of

the customer. A consumer’s demand curve measures how much the consumer would pay

for the first kWh consumed, and the second, and so on. Generally the more consumed,

the less would be paid for the next kWh. The difference between the maximum a consumer

would pay as revealed by the consumer’s demand curve and what the consumer actually does

pay is the consumer’s surplus. For the case of Cyprus, the flat rate is a quantity-weighted

average of the marginal costs of generation in each time period by including all the fixed

and fuel adjustment costs. Assume that mO and mP are the marginal costs in off-peak and

peak periods, respectively. Also, CO and CP are the off-peak and peak percentage of the total

consumption (initial scenario), then the flat rate is equal to:

F = mo · Co +mP · CP (3.7)

During the shoulder period, consumers will see no change in their electricity bill since the

shoulder rate is equal to the flat rate thus the shoulder percentage is neglected in the analysis.

Consider the demand-supply curve shown in Fig. 3.3, which shows the demand for off-peak

electricity. Prior to the implementation of ToU tariffs, the consumer paid a flat tariff F per

kWh and consumed xF,O kWhrs per month. At the new off-peak rate O, where O<F, the

electricity customer now consumes quantity xO.

After the ToU tariff implementation he pays a price O for every unit consumed. But

according to the original demand, he would be willing to pay a slightly higher price for

slightly less consumption. But he receives these marginal units of consumption at rate

O instead of F. Thus, the consumer benefits by a surplus value which is represented by

the amount A + C. Otherwise the shaded area (price units), represents a real gain in the
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Figure 3.3: Comparison between flat and off-peak rate on a typical electricity Demand-Supply curve.

consumer’s welfare. Similarly, Fig. 3.4 illustrates the case where the peak period price is

increased from the flat rate F to the peak rate P. Since this is a higher price, the consumer

will reduce his consumption down to xP kWhrs compared to xF,P. Using the same heuristic

approach as before, the change in the consumer’s surplus is represented by the area L (F-P-

d-h).

Therefore the consumer’s surplus, due to the implementation of ToU tariffs, can be given

by:

∆CS = −[∆O · (xO + xF,O
2

) + ∆P · (xP + xF,P
2

)] (3.8)

where ∆P = P – F and ∆O = O – F.

From the power utility’s viewpoint, assuming that the demand is inelastic, it will lose revenue

by reducing the price from F to O during the off-peak period. This is equal to the amount

OxO – FxF,O for a change in production costs of O(xO – xF,O). This will result in a net loss

(negative quantity) equal to:

− F · xF,O +O · xF,O = ∆O · xF,O (3.9)

Following the same approach, by assuming that demand is inelastic, during the peak period
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Figure 3.4: Comparison between flat and peak rate on a typical electricity Demand-Supply curve.

the utility’s revenues are increased by raising the price from F to P. For the utility, this will

result in a net gain equal to ∆PxF,P. In sum the net revenue for the producer is:

∆NR = ∆O · xF,O + ∆P · xF,P (3.10)

Therefore, the change in welfare that occurs due to the adoption of a ToU tariff scheme is

equal to:

ΔW =ΔCS+ΔNR

= −[ΔO · (xO+xF,O
2

)+ΔP · (xP+xF,P
2

)]+ΔO · xF,O+ΔP · xF,P

= −1

2
[ΔO · (xo − xF,O)+ΔP · (xP − xF,P )]

= −1

2
[ΔO·ΔLSo+ΔP ·ΔLSP ]

(3.11)

where, ∆LSO and ∆LSP is the kWh load shifted in off-peak and peak period respectively.

This sum is equivalent to the sum of the areas C and U shown in Fig. 3.3 and 3.4, respectively.

At the initial consumption levels, if the consumer participates in the ToU tariff scheme, the

electricity bill will change by:

∆Bill0 = ∆O · xF,O + ∆P · xF,P (3.12)
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Whether this number is positive or negative will depend on how

xF,O
xF,O + xF,P

and
xF,P

xF,O + xF,P
(3.13)

are compared to the off-peak and peak percentage of the total initial consumption (CO and

CP). Considering that consumers who participate in the ToU tariff scheme will shift loads,

the final bill change is equal to:

∆Bill = ∆Bill0 +O ·∆LSO + P ·∆LSP (3.14)

For a representative consumer, one whose consumption levels during peak and off-peak

period are proportional to CO and CP, the bill changes ∆Bill0 are equal to zero. In this

case, the representative consumer’s bill increases by an amount equal to the area xF,O-xO-b-

a, while the surplus has increased by the area A + C. The area C represents the net increase

in welfare. Similarly, for the peak period the consumer’s bill is reduced by the amount xP-

xF,P-d-e, whereas the surplus is reduced by the area G. The net effect is a gain equal to the

area U. On the contrary, for a non-representative consumer, one who consumes electricity

proportionally different to CO and CP, the bill changes are not equal to zero. Therefore, if a

non-representative consumer keeps his consumption levels the same as the baseline, before

the implementation of ToU tariffs, there will be a shift in revenue either to the consumer or

the power utility. In other words, the developed optional ToU tariff scheme Pareto dominates

the prevailing flat rates and will result in sufficiently more welfare in the case where the

electricity customers are persuaded that their DSM adoption will offer them economic gains.

Sensitivity analysis on the potential impact of the developed ToU tariffs

To verify the effect of the developed time-varying tariffs, before their real application,

a sensitivity analysis based on the Load Factor (LF) was performed. More specifically,

statistical analysis of the appliances listed in the completed questionnaire, was undertaken in

order to identify the flexibility potential of each load. Increasing the LF can be recognized as

an outcome of the load shifting technique that could diminish the average unit cost (demand

and energy) of the kWh and therefore lead to substantial savings for the power utility and

subsequently for the consumers. The LF is defined as the average load divided by the peak
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load in a specified time period:

LF =
Energy Generated in a given period

Maximum Load x Period
(3.15)

This was achieved by exploiting the following optimization function:

maxf(x) =

∑48
i=1 xi

max(x) · 48
(3.16)

subject to:
48∑
i=1

xi,before DSM =
48∑
i=1

xi,after DSM (3.17)

max(x)before DSM > max(x)after DSM (3.18)

where, x is the power at time interval i, xi,before DSM and xi,after DSM the power before and after

applying the DSM technique respectively. The main objective was to maximize the LF of the

total residential load profile by shifting the usage time of the selected deferrable appliances,

from peak to off-peak hours, by a predefined percentage (5-20%).

Pilot-implementation of the developed ToU tariffs

After the verification of the developed tariff structure through the sensitivity analysis,

the proposed DSM scheme was implemented for the participants of the pilot-network for a

period of one year in order to measure the real electricity demand flexibility of prosumers

as a result of the price-based DSM scheme. It is worth noting that this was the first time

that residential prosumers in Cyprus were exposed to a real time-varying electricity price.

The approach followed was to transfer all prosumers to the time-varying tariff (“smart bill”)

but to simultaneously provide them bill protection during the first year of implementation

as a transitional period. In this respect, at the end of each billing period a “shadow bill”

was issued based on the prevailing flat-rate tariff. In case the flat bill was higher than the

ToU bill, participants were compensated the difference. In order to control “free riders”,

the active participation of the prosumers was determined by correlating the baseline and

implementation energy profiles at the end of each billing period. More specifically, a

participant was assumed to be “active” if at least one of the following criteria were met:

• Peak consumption percentage was decreased compared to the baseline profile of the

respective period;
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• Off-peak Consumption percentage was increased, and peak consumption percentage

remained unaffected, compared to the baseline profile for the respective period.

The aforementioned rules effectively removed any inadvertent losses created by any

possible “free riders”. Training the participants was also considered a key aspect of the

implementation stage. In this respect, personal meetings with the participants were held at

their households in order to train, guide and engage them with the programme, as well as

to answer all their possible questions and address their concerns. Besides training, a key

factor that drastically improves the response from end-users is the In House Display (IHD)

which offers feedback in various forms [81–83]. For the purposes of our pilot, a less costly

option in the form of a custom web and an android application was developed and offered

exclusively to the participants.

3.2.2 Evaluation Stage

The evaluation stage began at the same time as the pilot implementation. The changes

in their energy behaviour were investigated by comparing the consumption levels recorded

before (baseline year) and after the application (implementation year) of the developed tariff

scheme. The consumption levels of both periods (baseline and implementation year) were

normalized to the exhibited daily peak demand in order to facilitate easier comparison.

After the first six months of the programme and an extensive analysis of the results of

each individual participant, several prosumers gained a significant financial benefit, not by

improving their energy performance or applying any DSM technique but due to the nature

of those consumers who are also energy producers through their installed PV systems. This

necessitated the re-evaluation and re-design of the applied tariff structure to depend on the

net-load profile which is the total energy imported to the grid minus the total excess energy

produced that was exported to the grid and not on the total consumption. Furthermore, the

impact on the power network was assessed by estimating the percentage reduction of the

peak demand as well as the LF of the aggregated load profile.

Estimation of the peak kWh reduction due to possible various ToU price ratios

In order to estimate the peak kWh reduction due to possible various ToU price ratios the

constant elasticity of substitution (CES) was utilized as an expenditure function. In economic

terms, the elasticity of substitution measures the shape of the indifference curves that underlie
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the consumer’s utility function. It is related to the own price and cross price elasticities of

demand through the Slutsky equation in microeconomics [84]:

Own price elasticity of demand = compensated own price elasticity of demand + (income

elasticity of demand × budget share of commodity in question)

In the case of electricity demand, this measures the percentage shift in consumption across

time periods (such as peak to off-peak) in response to price changes that alter the price

relationship between the two time periods (e.g. changing the price ratio). For example, in

the case of a ToU rate, the peak to off-peak elasticity of substitution represents the percentage

change in the ratio of peak to off-peak usage that occurs in response to a given change in the

ratio of peak to off-peak prices while all other factors are held constant.

The most commonly used [85–88] CES electricity expenditure function is the following:

C(P1, P2, E) = [aP ρ
1 + (1− α)P ρ

2 ]
1
2 · F (E) (3.19)

where,

P1 = peak price,

P2 = off-peak price,

F(E) = a scalar function of electricity services E (e.g. heating, cooling, lighting etc), the

parameter ρ determines the elasticity of substitution and a is a weight.

Using the Shephard’s Lemma yields [89], the least-cost peak and off-peak electricity

demands are equal to:
∂C

∂P1

= X1 = αP ρ−1
1 G

1
ρ
−1F (E) (3.20)

∂C

∂P2

= X2 = (1− αP ρ−1
2 G

1
ρ
−1)F (E) (3.21)

where,

G = [αP ρ
1 + (1− α)P ρ

2 ] (3.22)

Although F(E) is unobservable, we can use the ToU price ratios and consumption data to
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estimate the following equation:

ln (
X1

X2

) = β0 + β ln (
P1

P2

) (3.23)

where,

β0 = ln [α(1− α)] (3.24)

In econometric analysis, the elasticity at a certain range can be estimated from a typical linear

regression model using the slope coefficients, the price and quantity estimates. However, in

practice it is more convenient to estimate these elasticities by applying a log-linear form, as

the elasticities (which will be constant) can be estimated directly from the slope coefficients.

Additionally, it is known that:

σ ≡
∂ ln(X1

X2
)

∂ ln(P1

P2
)

(3.25)

therefore σ ≡ -β.

Since ln(X1/X2) varies between participants and seasons, we assume that the intercept β0 is a

linear function that represents the pre-pilot consumption. For the regression model, we used

a modified version of the regression model proposed by C.K. Woo et al. [59]:

ln(
X1kt

X2kt

) = γ + θ ln(Qkt) + β ln(
P1kt

P2kt

) + φ1 ln(Hkt) + φ2 ln(Ckt)

+
∑
m

µmMmt + ω1Wdt + ω2Wet + εkt
(3.26)

The model describes the variation in participant k’s peak to off-peak ratio on day t where, γ

is an intercept, εkt is a random-error, ln(Qkt) is the pre-pilot consumption and ln(P1kt/P2kt) is

the peak to off-peak price ratio whose coefficient is β = -σ.

Additionally, the weather is accounted for by ln(Hkt) and ln(Ckt) which is the natural

logarithm of daily heating and cooling degree hours respectively. Daily heating degree

hours (HDH) is the daily sum of max(20°C – hourly temperature, 0) for the winter and

autumn season, while the daily cooling degree hours (CDH) were estimated by the daily

sum of max(hourly temperature – 20°C, 0) for the summer and spring season. The ambient

temperature datasets were acquired from the installed weather stations. Based on the results

of the questionnaire, the primary space-heater of the participants is electric and therefore the

variable that distinguishes electric to oil heater owners was not considered.
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Furthermore, to capture the effect of each month on the consumption ratio, twelve month-

of-the-year binary indicators were used. The variable Mmt is equal to unity if day t is in

month m and zero otherwise, where m = 1,. . . ,12 for each month of the year. Similarly, two

binary indicators, Wdt and Wet, were utilized in order to capture the effect of the weekdays

and weekends on the consumption ratio.

To estimate the regression coefficients three methods were employed. The first one is the

ordinary least squares (OLS), which is one of the most commonly used methods to produce

initial results [90, 91]. For the second method, the clustered robust standard errors (CRSE)

were used for gauging the coefficient estimates’ precision and p-values [92]. Finally, due

to the huge sample size, panel-data analysis was also performed. To implement this a) a

fixed-effects and b) a random effects model was employed. CRSE were used for both the

aforementioned models.

The hourly peak kW reduction was estimated using the methodology that was proposed

by [93] and was based on [94]. By considering ln(X1/X2) = Z as the non-random portion of

the regression line and by using simple algebraic manipulation we can write the peak kWh

usage (S) as:

S =
X1

X
=

eZ

(1 + eZ)
(3.27)

where X is equal to X1+X2 and represents the daily total consumption. This implies that the

peak consumption is given as:

X1 = SX =⇒ ln(X1) = ln(S) + ln(X) (3.28)

Furthermore, the changes in peak consumption can be derived in percentage by using:

∆X1/X1 = ∆S/S + ∆X/X = load shifting effect + Total consumption effect (3.29)

However, as indicated by the author of [95], for a “revenue-neutral” time-varying tariff, such

as the one developed in our study, the total consumption effect is close to zero. For this reason

the total consumption effect was neglected and the peak consumption reduction was based

solely on the load shifting effect. Since load shifting depends on the pre-pilot profile and the

price-ratio, the ∆S/S value was estimated by utilizing the regression equation using different

price ratios that range from 2:1 to 12:1 for all three seasons (winter, middle, summer).
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Cost-Benefit Analysis for Smart Metering and time-varying pricing deployment

The final aspect of the evaluation stage involved the CBA. The CBA was performed to

investigate whether benefits resulting from the programme outweighed the capital investment

costs. The CBA should encompass both the direct monetary and wider societal costs

and benefits of a large-scale rollout of the programme. In this scope, the guidelines for

conducting a CBA for smart grid projects that are proposed by JRC [96], were followed.

In order to estimate the benefits, the assets (i.e. SMs) involved in the pilot-implementation

along with their functionalities (i.e. regular remote meter reading) must be first identified.

Subsequently, those functionalities must be mapped to their respective benefits (e.g. reduced

consumption and related costs, etc). It should be noted that the focus of the conducted CBA

was on quantifiable costs and benefits only, in the direction of protecting the robustness

of the CBA. These benefits and costs are broken down into various elements to describe

the consumption and peak demand decrease; the meter reading; the meter tampering; bad

depts; the reduction in call volume; and the capital and operational costs associated with the

programme rollout from the perspective of networks. The main benefits for the consumers

largely come from the possible electricity bill reductions, if peak demand is moved to

adjacent hours or if the overall consumption is reduced through informed decisions and

effective application of time-varying electricity pricing. Benefits linked with reduction

in meter reads include the reduction in manual meter reading labour costs, associated

Information Technology (IT) costs and transportation costs. Additionally, smart metering

will significantly aid in the early detection of meter tampering and energy theft. By exploiting

the high frequency SM readings, the detection of abnormal patterns of energy resulting from

theft and tampering can be exposed. Furthermore, smart metering infrastructure can be used

to perform a remote disconnect and re-connect based on the regulatory timeframe allowed

thus reducing costs associated with uncollectible expense/bad debt. The implementation

of smart metering can also provide utilities the ability to quickly identify dead or stopped

meters that can no longer measure electricity due to meter failure. This early identification

helps utilities rapidly take steps towards repairing or replacing the dead meter, thereby

reducing potential revenue losses occurring due to this kind of interruptions. Another benefit

is the cost savings achieved through efficiency improvements in customer call services.

Elimination of meter reading errors along with consumer education will increase customer

adoption of self-service leading to an overall reduction in call volume. Capital expenditure

includes the SM cost as well as the data transmission and management costs. The net
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cost of SMs was estimated by subtracting the cost of a conventional meter from the cost

of a SM, as conventional meters would have been installed in any case due to regulatory

requirements. As a result, the incremental cost was considered. Power-line communication

(PLC) was assumed as the preferred method for transmitting data and electric power in urban

areas, while General Packet Radio Service (GPRS) technology for use in rural areas. In

addition, the long-term data storage and management for data delivered by SMs is expected

to be performed by a Meter Data Management System (MDMS). Apart from the capital

expenditure, two main operational expenses were exploited, which are directly linked with

their corresponding Capex items. First one being the GPRS Opex subscription, which is

the product of the estimated subscription cost and the proportion of rural residential users

expected to install a GPRS modem. While the second one is the MDMS operational cost and

was calculated based on the annual cost and the total population of residential consumers.

The allocation of costs and benefits to the stakeholders differs per cost-benefit item. For

electricity savings, the benefits were allocated to the consumer while deferred (missed)

income was attributed to the supplier/DSO. The cost for procurement and installation of the

SMs was allocated to the DSO. However, the reduction of bad debts, theft and interruptions

benefit the supplier/DSO [97].
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3.3 Results

The proposed three stages of planning, implementation and evaluation for deploying an

effective price-based DSM scheme were applied for the period of one year on the pilot-

network of three hundred residential prosumers with installed PV systems on their rooftops.

The results obtained during the three stages as well as a comparative assessment of the

suggested guidelines are presented in this section.

3.3.1 Planning Stage

The pilot-network

The type, power, usage season and duration of the typical residential household appliances

as derived from the questionnaire are presented in Table 3.1.

After acquiring energy data for the period of one year, the identified baseline profile

was compared to the aggregated residential consumption of Cyprus. As shown in Fig.

3.5, the comparison indicated that the selected sample was representative since the Pearson

correlation coefficient (PCC) was equal to 96.73%, 97.81% and 96.13% for the summer,

middle and winter season, respectively. This demonstrated that the selected prosumer

sample (residential sector pilot-network) is representative of the whole island. In addition,

PV production datasets that were calculated by applying machine learning techniques

for prosumers without SM, were compared with actual production profiles measured by

reference PV system SMs. The annual average PCC between the calculated and measured

PV production was found to be 98.5%, demonstrating that weather stations, which are

geographically spread throughout the implementation area, can be a sufficient replacement

for the costly large-scale deployment of PV meters and can be utilized to accurately calculate

PV production profiles.
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(a)

(b)

(c)

Figure 3.5: Comparison between the normalized initial and the baseline scenario for: (a) summer, (b) middle
and (c) winter season.
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3.3.2 Implementation Stage

The developed ToU tariff structure

The developed ToU tariff structure including the duration of each block and the respective

rates are summarized in Table 3.2 [98,99]. The calendar year was divided into three seasons

representative of different load profiles (winter, summer and middle season). The daily

profile was divided into the peak, shoulder and off-peak periods with 18.85, 14.85 and 10.85

Ccents/kWh, as the proposed respective rates. The average value of the prevailing electricity

rate (flat tariff) was equal to 14.75 Ccents/kWh. The peak, shoulder and off-peak time

periods were seasonally dependent. A major factor that proved to be vital is the inclusion of

a shoulder period. Prosumers could take advantage of this period by meeting their energy

demands that can be shifted away from peak hours but cannot be postponed until the off-peak

hours. Moreover, this transitional period could prevent the potential relocation of the peak

demand that could occur in the case that only two periods were available as a result of the

herding phenomenon.

Table 3.2: Developed ToU tariff structure per season (based on the consumption profile).

Block Rate
(Ccents/kWh)

Winter Season
(Dec – Mar)

Summer Season
(Jun – Sep)

Middle Season
(Apr, May, Oct, Nov)

Peak 18.85 16:00 – 21:59 09:00 – 18:59 08:00 – 20:59

Shoulder 14.85
06:00 – 15:59
22:00 – 23:59

07:00 – 08:59
19:00 – 00:59

06:00 – 07:59
21:00 – 23:59

Off-peak 10.85 00:00 – 05:59 01:00 – 06:59 00:00 – 05:59

The summer, middle and winter season ToU tariffs obtained from the optimization method

applied to the seasonal load curves and the average load profile of the participating prosumers

are presented in Fig. 3.6 (a), (b) and (c), respectively. All plots clearly show three distinct

segments for the off-peak, shoulder and peak period.
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(a)

(b)

(c)

Figure 3.6: Derived ToU tariffs and average load profiles of participating prosumers for: (a) summer, (b)
middle and (c) winter season.
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Sensitivity analysis based on the Load Factor

To evaluate the impact of the developed ToU tariffs, a sensitivity analysis based on the

LF was carried out. More specifically, the seasonal average load profile of the participants

was divided into a number of main load type categories. The percentage of each category

was estimated by conducting a statistical analysis on the listed appliances included in the

questionnaire completed by the participants. A load shifting (LS) technique was applied

for percentiles between 5 - 20% (in steps of 5%) exclusively on the category of the listed

deferrable loads. The participants should be able to shift the electricity consumption of these

appliances from peak periods to lower rate periods, usually through timers, and therefore

minimize their electricity cost. The sensitivity analysis included two scenarios: i) shifting

deferrable loads mainly to off-peak periods ii) shifting deferrable loads mainly to shoulder

periods. The sensitivity analysis performed to emulate the response of the pilot network of

prosumers to the imposed ToU tariffs, yielded important results on the potential improvement

of the average residential load profile. The resulting average load profiles of the residential

prosumers, after deferring load segments from the peak to the off-peak periods, for the all

three seasons, are demonstrated in Fig. 3.7.

The results highlight that overall the derived load profiles were improved due to the load

increase occurring mainly during the off-peak hours, however, this does not apply for the

summer season. As shown in Fig. 3.7, during the summer season and for the case of shifting

20% of deferrable load, the demand was significantly reduced during the peak hours (15:00

pm) and increased during the off-peak hours (00:00 am), which resulted in a transfer of the

peak demand from peak period to off-peak period. Additionally, a slight increase in demand

during the transition of off-peak to shoulder period (06:00-07:00 am) was observed for all

the investigated cases of the summer season. This is more evident during the summer season

due to the difference between the peak and the lowest demand being the minimum of all three

seasons and thus implying that the summer load profile is flatter compared to the winter and

middle seasons. Therefore, shifting a relatively high percentage of consumption load can

lead to the displacement of the peak demand. In addition to the summer profile being flatter,

the low duration of the shoulder period following-up the off-peak period caused the small

increase of the demand during that transition period. This occurred due to the lack of time to

potentially shift the usage time of the appliances. In order to evaluate the impact of shifting

segments of deferrable loads to the off-peak period, the average residential LF for each one

of the cases was calculated.

55

VENIZELO
S VENIZELO

U



(a)

(b)

(c)

Figure 3.7: Load Shifting (LS) of deferrable loads from peak to off-peak periods for: (a) summer, (b) middle
and (c) winter season.
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As shown in Table 3.3, the results verified that the implementation of the proposed scheme

can contribute to the electricity cost reduction by improving the LF for all the examined

cases [100].

Table 3.3: Residential Load Factor (LF) for the Load Shifting (LS) technique (off-peak period scenario) per
season.

Summer Season Middle Season Winter Season
LF (%) Improvement LF (%) Improvement LF (%) Improvement

Baseline profile 40.65 - 32.94 - 32.48 -
LS 5% 41.29 0.64 33.34 0.40 32.69 0.21
LS 10% 41.79 1.14 33.48 0.54 32.9 0.42
LS 15% 42.30 1.65 33.36 0.42 33.12 0.64
LS 20% 42.83 2.18 33.21 0.27 33.33 0.85

The same approach was conducted to analyse the impact of shifting deferrable loads

mainly to the shoulder periods. The resulting average load profiles of the residential

prosumers, for the load shifting technique, are demonstrated in Fig. 3.8.

The sensitivity analysis results showed that shifting loads to the shoulder periods for the

summer and middle season can potentially lead to the creation of a second peak demand

during a specific period as shown in Fig. 3.8a and b. This can be considered as an outcome

of the low duration of the shoulder period that follows immediately after the off-peak period.

However, this is not the case for the winter season as shown in Fig. 3.8c, where the respective

shoulder period is longer compared to the one of summer and middle season and therefore

participants are able to disperse the usage time of their appliances in a more convenient way.

Finally, the changes that occurred on the LF by shifting loads due to the ToU tariffs to the

shoulder segments, are summarized in Table 3.4. The obtained results indicated that the

average residential load profile can benefit from the specific DSM technique as the LF is

increased in all cases.

Table 3.4: Residential Load Factor (LF) for the Load Shifting (LS) technique (shoulder period scenario) per
season.

Summer Season Middle Season Winter Season
LF (%) Improvement LF (%) Improvement LF (%) Improvement

Baseline profile 40.65 - 32.94 - 32.48 -
LS 5% 41.15 0.5 33.25 0.31 32.64 0.16
LS 10% 41.51 0.86 33.56 0.62 32.8 0.32
LS 15% 41.88 1.23 33.88 0.94 32.97 0.49
LS 20% 41.92 1.27 34.21 1.27 33.13 0.65
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(a)

(b)

(c)

Figure 3.8: Load Shifting (LS) of deferrable loads from peak to shoulder periods for: (a) summer, (b) middle
and (c) winter season.

58

VENIZELO
S VENIZELO

U



The comparative assessment of the LF results, when shifting load segments to the shoulder

or off-peak periods, further showed that there is a slight improvement in the LF when shifting

loads mainly to off-peak periods compared to shoulder periods. Additionally, the sensitivity

analysis proved that the application of the developed ToU tariffs can benefit the electricity

utility by improving the LF for all the investigated cases.

3.3.3 Evaluation Stage

Re-design of the developed ToU tariff structure

Creating a time-varying electricity tariff structure for prosumers is more complicated than

typical consumers due to the dual energy usage nature (producing and consuming energy)

which can provide significant revenues to prosumers as they are credited for any excess

produced energy at a peak rate. This creates a substantial positive monetary gain if the tariff

structure is not optimal. The positive monetary gain, which is the difference between the

calculated “shadow” and “smart” bill, can be considered as an outcome of either successful

load shifting or the sale of excess PV production at a profitable price. Nevertheless, the

main objective of an effective DSM is to provide price incentives for changes in energy

consumption patterns and not to reward excess production that can lead to cross-subsidies

between prosumers and consumers. During the first six months of the evaluation period,

the prosumers managed to grasp this positive monetary gain and therefore reduced their

electricity bills. However, more than 50% of those revenues were obtained mainly from

selling their excess production at peak price while the rest was due to successful load shifting.

The re-designed ToU tariff structure, shown in Table 3.5, was based on the net-load profile

and accomplished to reduce the percentage of revenues gained due to selling the exported

energy below 35% of the positive monetary gain.

Table 3.5: Re-designed ToU tariffs per season (based on the net-load profile).

Block Rate
(Ccents/kWh)

Winter
(Dec – Mar)

Summer
(Jun – Sep)

Middle
(Apr, May, Oct, Nov)

Peak 17.42 16:00 – 21:59 11:00 – 20:59 16:00 – 20:59

Shoulder 14.07
06:00 – 15:59
22:00 – 23:59

07:00 – 10:59
21:00 – 00:59

06:00 – 15:59
21:00 – 23:59

Off-peak 10.85 00:00 – 05:59 01:00 – 06:59 00:00 – 05:59
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Load shifting and energy conservation results

The percentage of the total consumption corresponding to each ToU block per season is

depicted in Table 3.6.

Table 3.6: Consumption percentage comparison between the baseline and implementation year.

Season Time Block Baseline
Year

Implementation
year Difference

Summer (%)
Peak 42.70 39.51 - 3.19

Shoulder 24.01 25.66 1.65
Off-peak 33.29 34.82 1.53

Middle (%)
Peak 36.11 35.08 - 1.03

Shoulder 15.12 16.87 1.75
Off-peak 48.77 48.05 - 0.72

Winter (%)
Peak 61.02 59.62 - 1.40

Shoulder 22.89 23.33 0.44
Off-peak 16.08 17.05 0.97

The consumption percentage comparison between the baseline and implementation year

clearly demonstrated that the applied price-based DSM scheme has led to peak demand

reduction equal to 3.19%, 1.03% and 1.40% for the summer, middle and winter season,

respectively. Moreover, it is important to note that the peak demand was not shifted to

different hours compared to the baseline year. This led to the conclusion that the proposed

methodology has successfully motivated the prosumers to alter their usual energy patterns in

an effort to reduce their electricity bills [101].

An additional energy metric that can be used for evaluating the performance of the sample

is the LF. Increasing the energy to maximum power ratio reduces electricity marginal costs

for dispatch and leads to savings for the supplier that can be passed to its consumers. The

comparison between the baseline and the implementation year showed that the annual LF had

risen from 40.65% to 41.43%. Moreover, the effectiveness of the developed methodology

was examined by correlating the annual consumption of the participants with the entire

residential sector population of Cyprus. In this scope, a second sample (typical sample)

of residential prosumers with comparable consumption levels to the pilot-network (smart

sample) was populated using information acquired by the DSO. In order to remove any

consumption deviations occurring due to climate or national economy changes, a range of

±10% of the average consumption of the smart sample was considered for the creation of

the typical sample. A margin of error equal to 0.98% was also considered for populating the

typical sample. The annual average consumption for the baseline and the implementation
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year for both samples as well as the respective consumption ratios are presented in Table

3.7. The outcome of this comparison has demonstrated a considerable decrease of 2.17%

in the annual energy consumption of the participants as compared to the typical sample.

This overall behavioural change signifies that the developed price-based DSM schemes not

only incentivised profile shifting, but also the reduction of consumption levels compared

to the typical use case. Energy conservation has a major role in alleviating potential grid

reinforcements. As concluded by the Electric Power Research Institute, a 2.5% reduction in

electricity demand state-wide could reduce wholesale spot prices in California by as much

as 24% while a 10% reduction in demand might reduce wholesale price spikes by half [102].

Table 3.7: Annual consumption comparison between the Baseline and Implementation year for the two samples.

Average
Consumption
Baseline Year

Average
Consumption

Implementation Year

Energy
Difference

between years (%)
Smart Sample 6864.11 kWh 7138.98 kWh 4.00 %
Typical Sample 6785 kWh 7204 kWh 6.17 %
Deviation between
samples (%) 1.012 % 0.99 % -2.17 %

Estimation of the peak kWh reduction due to possible various ToU price ratios

For the regression model, the two ToU tariff schedules (original and re-evaluated) were

utilized for estimating the regression coefficients while the sample size was equal to 109,500

(300 prosumers × 365 days). The OLS method has the drawback of being very sensitive to

the presence of outliers or high-leverage points [103] and therefore outliers were removed

when using this method. Although this led to a reduction of the sample size by approximately

0.07%, it is in line with the approach followed in similar studies [91, 93]. The p-value for

each term tests the null hypothesis that the coefficient is equal to zero (no effect). A low p-

value (< 0.05) indicates that the null hypothesis can be rejected. In other words, a coefficient

that has a low p-value is likely to be a meaningful addition to a model because changes in

the coefficient’s value are related to changes in the response variable. The regression results,

based on the model (3.26) that is described in the methodology section, for the winter, middle

and summer season are presented in Table 3.8, 3.9 and 3.10, respectively.

The low R2 value indicates that the estimated regression explains 6.89, 4.17 and 6.91%

of the variance in the natural logarithm of the consumption ratio for the winter, middle

and summer period respectively for the OLS method. Similar observations are obtained
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when CRSE were included in the regression. Additionally, the obtained results highlight

that all coefficients are statistically significant (p-value < 0.05) with one exception: the

coefficient estimates yielded from the panel-data analysis with fixed effects were statistically

insignificant (p-value > 0.05), even with the use of the CRSE.
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As depicted, the coefficient for ln(P1kt/P2kt) is negative and relatively high for all seasons

and methods, implying that participant responsiveness to the time-varying prices is adequate

and that the developed ToU tariff structure is a major driver in the reduction of the

consumption ratio. Similarly, the coefficient estimates of θ that correspond to ln(Qkt) are

negative, supporting that total consumption has a compelling role in the peak kWh reduction.

The coefficient estimates for the daily HDH ln(Hkt) are negative, thus indicating that falling

temperatures tend to reduce the participants’ consumption ratio. However, the coefficient

estimates for the daily CDH ln(Ckt) are positive, supporting that rising temperatures tend

to increase the participants’ consumption ratio. This is understandable as the results from

the questionnaire showed that space-cooling units and swimming pool pumps are two of

the most commonly used major electric loads during the summer period. This can also be

verified by the month-of-the-year binary indicators. The coefficient estimates revealed that

during the warmest month of each investigated season, the participants’ consumption ratio is

the highest. Furthermore, the day-of-the-week indicators (Wdt, Wet) demonstrate that during

the weekdays the ratio of peak to off-peak consumption is higher. This was expected as the

participants spent more time at their residence during the weekends and therefore it is easier

to shift the usage-time of their appliances from peak to either shoulder or off-peak periods.

Using the regression coefficient estimates shown in Table 3.9 through 3.10, the percentage

kWh reductions by price ratio were computed. The mean percentage kWh reduction by price

ratio and the lower and upper bounds (=mean ± 2.5 standard deviations) for the three seasons

are illustrated in Fig. 3.9. The results confirm the percentage peak reductions estimated by

the average seasonal profiles (Table 3.6).

Both of the applied ToU tariff ratios lie within the range of 1.5 and 2 (in particular 1.73 for

the first and 1.6 for the re-evaluated design) and it is obvious that higher ratios can potentially

lead to higher peak reductions. However, applying a higher ratio to the selected sample is

not an easy task due to the fact that the off-peak price is close, and in some periods equal,

to the lowest price that the power utility can provide electricity. Consider the two following

cases that result in higher price ratios:

• The off-peak rate remains constant while the peak rate increases: This will have two

potential outcomes. Firstly, consumers will not be willing to participate in the optional

ToU tariffs due to the high peak rate and therefore they will tend to stay on the flat

tariff. Secondly, consumers will voluntarily participate on the optional ToU tariffs
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and in their attempt to reduce their electricity bills they will shift a relatively high

percentage of peak kWh either to the shoulder or the off-peak period thus moving the

peak consumption to these periods.

• The off-peak rate increases and the peak rate increases: In this case, the off-peak rate

will be close to the prevailing flat rate while the peak rate will be too high compared to

the flat rate. Therefore, since at this early stage of introducing ToU tariffs it is optional

for the consumers to participate, they will prefer to stay on the current flat tariffs.

For the aforementioned reasons, at this moment it is difficult to investigate a ratio that is

higher than 2.

Furthermore, when evaluating ToU tariff schemes it is crucial to investigate how a change

in the electricity prices affects the household welfare. By utilizing the CES unit expenditure

function (3.26), the welfare improvement indicator I is equal to:

I =
CES expenditure functionToUrates
CES expenditure functionFlatrate

(3.30)

where for the flat rate, P1kt = P2kt. When applying (3.30) the results highlight that the cost

index I is less than one, for the whole sample, thus proving that the developed ToU tariff is

welfare improving [104].
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(a)

(b)

(c)

Figure 3.9: Estimation of peak kWh reduction due to various ToU price ratios for the: (a) winter, (b) middle
and (c) summer season.
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Cost-Benefit Analysis for Smart Metering and time-varying pricing deployment

Reducing the peak demand either through load shifting or energy conservation can also

have a positive impact on the CBA. Effective deployment of a price-based DSM scheme

can potentially lead to avoidance or deferment of new investments and network capacity

expansion as energy savings translate to less fuel required for generation. Results highlight

that the percentage of consumption during the peak hours of the implementation year is

reduced by 3.19%, 1.03% and 1.40%, compared to the baseline year, for the summer, middle

and winter season, respectively. Peak load transfer benefits both the prosumers and the

power utility. Prosumers gain financial benefit by consuming more energy during periods

with lower electricity rates thus reducing their electricity bills, while the utility benefits by

the fact that a more streamlined demand curve will lead to a more streamlined production

curve and therefore reduced operating costs. Additionally, the energy behaviour change was

investigated by comparing the average annual consumption of the smart prosumers with a

second set of domestic consumers with similar consumption levels populated from the rest

of Cyprus. The results of this comparison have indicated a sizable reduction of 2.17% in the

energy consumption of the “smart” prosumers as compared to the rest of Cyprus domestic

consumers. Assuming this decrease will also be reached on a national scale rollout for

all domestic consumers, the overall reduction in consumption (extrapolated) is estimated

at approximately 32 GWh per year (based on historical data provided by the Electricity

Authority of Cyprus-EAC). The overall benefit to the society at large, from the decreased

consumption, is the avoided cost associated with the estimated reduced consumption. In

order to be able to monetize this benefit, the EAC’s average cost of production during

the pilot implementation period was initially determined. The average cost of production

for the implementation period was 6.7 Ccents, hence the producer’s saving is estimated at

C2.152.895. In Cyprus, the fuel costs per kWh are very high compared to other European

countries. Therefore the effect of energy savings is also very high on the positive side

of the CBA, since every kilowatt-hour of saved energy means less fuel is necessary for

the generation. In order to monetize the benefits, in terms of consumption reduction, the

seasonal consumption as well as the seasonal ToU price weights were utilized. The seasonal

consumption weights were estimated by dividing the total seasonal energy consumption

(kWh) to the total annual energy consumption (kWh) i.e. weight for baseline year: 22.21

/ (22.21 + 14.64 + 17.82) = 0.41. The results for the summer, middle and winter period are

summarised in Tables 3.11, 3.12 and 3.13, respectively.
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Table 3.11: Average Daily consumption (kWh) and weights for the Summer season.

Summer
Baseline year Implementation year

Peak 9.48 8.77
Shoulder 5.33 5.69
Off-Peak 7.39 7.73
Total 22.21 22.19
Season Weight 0.41 0.39

Table 3.12: Average Daily consumption (kWh) and weights for the Middle season.

Middle
Baseline year Implementation year

Peak 5.29 5.10
Shoulder 2.21 2.45
Off-Peak 7.14 6.99
Total 14.64 14.55
Season Weight 0.27 0.26

Table 3.13: Average Daily consumption (kWh) and weights for the Winter season.

Winter
Baseline year Implementation year

Peak 10.87 11.87
Shoulder 4.08 4.65
Off-Peak 2.86 3.40
Total 17.82 19.92
Season Weight 0.33 0.35

The steps followed to derive the weighted ToU average price for each year are depicted in

Table 3.14. The rates for each of the three tariffs were multiplied by their corresponding

seasonal consumption percentage and the tariff weights for each season and year. For

instance, the weighted average price of the implementation year was derived by:

• Multiplying each tariff’s weight with the corresponding tariff rate i.e. (42.70% x

17.42) + (24.01% x 14.07) + (33.29% x 10.85) = 14.43;

• Then multiplying the average price per season by the corresponding season i.e. 14.43

* 0.41 = 5.86.

Then, the weighted average for each year can be calculated by repeating this calculation

for each season in each year. In conclusion, the weighted average prices are 14.51 and 14.39

Ccents/kWh for baseline and implementation year, respectively.
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Table 3.14: Weighted Average ToU price for the baseline and implementation year.

Description Baseline Year Implementation Year
Summer Middle Winter Summer Middle Winter

Peak 42.70% 36.11% 61.03% 39.52% 35.08% 59.62%
Shoulder 24.01% 15,12% 22.89% 25.66% 16.87% 23.33%
Off-Peak 33.29% 48.77% 16.08% 34.82% 48.05% 17.05%
Average Price
per Season 14.43 13.71 15.60 14.43 13.71 15.60

Weighted Price
per Season 5.86 4.47 4.18 5.59 4.82 3.98

Annual Weighted
Average 14.51 14.39

The total savings that occurred due to consumption reduction were derived by comparing

2015’s total consumption in C per kWh with the corresponding 2016 consumption, i.e.

(1,475,972,000 kWh x C0.1451) – (1,475.972 x (1-2.17%) x C0.1439) = C6,382,066, as

depicted in Table 3.15.

Table 3.15: Energy savings due to energy conservation.

Description Baseline Year Implementation Year
Smart Sample Savings 2,17%
Total Domestic Consumption 1,475,972,000 1,443,929,611
Average ToU price (C) 0.1451 0.1439
Total 214,163,537 207,781,471
Monetized reduction C6.382.066

Even though the saving in energy by the consumer is lost by the producer, the producer

is saving the cost of producing the reduced energy and therefore the consumption related

element creates an overall societal benefit. On the other hand, the price related element

has effectively no net impact on society at large. This is because the money that is saved

by consumers is effectively lost by the producer. An additional saving is related to losses

savings. Based on information obtained from the EAC, the average system losses amount to

approximately 6% of the total energy consumed, leading to an equivalent amount of energy

savings. The reason this saving is not attributed to the producer, is because these losses

are charged to the consumers and therefore not to the EAC. As a result, this is effectively

a saving to consumers and to society at large. The efficiency losses savings are depicted in

Table 3.16.

Further savings are associated with load shifting. To calculate the financial benefits (FBLS)

yielded from shifting demand from peak to shoulder and off-peak rates, were estimated
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Table 3.16: Efficiency losses savings.

Description Amount
Energy Saved 32,132,835
Efficiency Losses 6%
Additional energy saved 1,927,970
Avoidance rate (C) 0.067
Savings to the society due to efficiency losses avoided C129,174

using:

FBLS = (∆(Margin Peak)− Non Peak Rates) · PLT · TC (3.31)

where,

∆Margin Peak - Non Peak rate = wholesale margin difference between peak and non-peak

generation

PLT = Peak load transfer percentage

TC = Total Energy Consumption

The annual average peak load transfer was derived based on the load demand data-sets

that were collected during the baseline and the implementation year, while the ∆Margin

Peak is the difference between the peak price and the marginal electricity cost which was

provided by EAC. The total savings that resulted due to load shifting action are shown in

Table 3.17.

Table 3.17: Energy savings due to load shifting.

Description ΔMargin Peak Load Transfer Total
Peak – Shoulder 0.0165 3.84% 915,970
Peak – Off Peak 0.0183 1.78% 471,343

Total C1,387,313

Additionally, the introduction of smart metering in Cyprus, through the potential

enrollment of a DSM-scheme, will most likely eliminate the cost currently incurred by the

EAC for read-outs (Table 3.18) as well as a decrease in electricity theft equal to 50% (Table

3.19), up to 0.4% decrease in bad debts (Table 3.20), approximately 30% reduction of power

interruptions (Table 3.21) and a reduction in telephone calls by 0.5% (Table 3.22). Those are

indirect benefits that are associated with the large-scale deployment of a DSM-scheme.

A breakdown of the capital and operational expenditure used in the investigated CBA

analysis is shown in Table 3.23 and 3.24, respectively.
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The parameters and the respective values used for the capital and operational expenditure

as well as the indirect benefits were selected based on an economic analysis conducted by

the Energy advisory company DNV KEMA, which is subcontracted by the national DSO,

the EAC [105].

Table 3.18: CBA: Read-outs.

Parameter Unit Value Commentary
Number of yearly Read-Outs # 30% This benefit is derived by

multiplying the annual cost
of Read-outs per customer
and the baseline year total
residential consumers.

Cost per Read Out C 2
Yearly Read-Outs cost C 25,746
Number of residential

consumers # 442,293

Expected Saving C 2,653,758

Table 3.19: CBA: Electricity theft.

Parameter Unit Value Commentary
Electricity theft % 1.50% Electricity theft reduction

benefit is estimated
by multiplying the product

of current electricity
theft percentage (1.5%)

and baseline residential sales
by the estimated reduction.

Residential revenue C 225,536,197
Total C 3,383,043

Estimated reduction % 50%

Expected Saving C 2,653,758
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Table 3.20: CBA: Bad debts reduction.

Parameter Unit Value Commentary
Residential bad debts % 0.40% The reduction in residential

bad debts (0.2%)
was multiplied

by the product of
debt collection

per bad debt (C30)

Bad debt reduction % 50%
Expected bad debts reduction % 0.2%

Bad debt collection cost C 30
Number of residential

consumers # 442,239

Total cost C 13,268,790
Expected Saving C 26,538

Table 3.21: CBA: Reduction in interruptions.

Parameter Unit Value Commentary
Reduction interruptions % 30%

This benefit is estimated by
multiplying the product of
revenue per hour and the
forecasted reduction in

interruptions, by the cost per
unserved kWh

Average interruption hours 2
Expected reduction hours 0,6
Residential revenue C 225,536,197

Hours in the year hours 8,760
Revenue per hour C 25,746

Cost per unserved kWh C 1.6
Expected Saving C 24,716

Table 3.22: CBA: Reduction in telephone calls.

Parameter Unit Value Commentary
Number of annual calls # 20,014

This benefit is derived
by multiplying product

of total hourly cost
and the total call hours

per year by the estimated
percentage reduction of 0.5%.

Time per call mins 4
Total call time hours 1,334

Societal cost per hour C 4.7
Call center cost per hour C 18.8

Administration cost per hour C 25
Total hourly cost C 48.5

Estimated telephone calls cost C 64,712
Expected Reduction in telephone calls % 0.50%

Expected Saving C 324
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As shown in Table 3.25, the CBA results demonstrated that the overall net-benefit to

society from a potential nationwide rollout of smart metering is approximately C4mln over

a 15-year period. The results also indicated that the parameters used for the CBA are variable

and highly dependent on the exact deployment area and the principal difficulty in performing

the CBA is the internalization of these cost and benefits. However, increasing the lifetime

and the scale of the pilot programme can minimize the uncertainties of the parameters and

therefore improve the CBA outcome. Hence, a one-size-fits-all CBA model is not sufficient.

Table 3.25: CBA: Overall benefit arising from a potential large-scale rollout.

Description Cost Benefit
Consumption reduction
Energy consumption reduction / avoided production cost
– Benefit to the power utility C2.152.895

Power losses savings C129.174
Load shifting
Shifting loads away from peak hours
– Benefit to the power utility C1.387.313

Indirect Benefits
Read-outs costs C2.653.758
Electricity theft reduction C1.691.521
Bad debts reduction C26.538
Quickly identify dead / stopped meters C24.716
Customer call services C324
Capital expenditure (Capex)
Capex smart meter C1.326.879
Power-line communication C626.582
General Packet Radio Services (GPRS) C176.917
Meter Data Management System (MDMS)
Capital Cost C338.000

Operational expenditure (Opex)
General Packet Radio Service (GPRS)
– subscription C663.440

Meter Data Management System (MDMS)
Annual Cost C312.000

Total Annual Cost C3.443.817 C8.066.239
Net Annual Cost C4.622.421
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3.4 Concluding Remarks

The aim of this chapter is to present a universally-applicable methodology for effective

deployment of implicit DR in the form of a price-based DSM scheme. The proposed

methodology was applied and verified on a real smart pilot-network in Cyprus comprising

of three hundred prosumers with PV systems installed on their rooftops. The resulted peak

reduction in the range of 1% and 3.2% as well as the reduction of the overall consumption

by approximately 2% proved that the application of the proposed scheme incentivised the

participants to change their energy behaviour and minimize the need for electricity network

reinforcement. The effectiveness of the proposed price-based DSM scheme was also verified

by the regression analysis results as all coefficients appeared to be significant (below 5%

level) and with the expected signs. Furthermore, the proposed methodology can be applied

to both prosumers and consumers since the utilization of the net-load profile was found to

reduce the percentage of unintended revenues below 35%. The overall net benefit to the

society is further proved as the results of the performed cost benefit analysis showed a gain

of C4.62mln in the case of large-scale deployment of the proposed scheme. An assessment

of the impact of the individual measures for the effective deployment of DSM, including

their level of impact and cost as well as their various strengths and weaknesses, is presented

in Table 3.26 [106].

Based on the gained experience and knowledge, populating a pilot-network consisted

of a large sample of residential prosumers whose consumption patterns are representative

of the aggregate residential consumption and are equipped with the required technology

for enabling time-varying electricity pricing is of utmost importance. Therefore, the

establishment of an appropriate pilot-network of prosumers has the highest impact on the

development of an effective price-based DSM scheme and should be employed regardless

of the high implementation cost. Measures such as data acquisition, information feedback

and re-evaluation of the developed scheme have high importance and medium to low

implementation cost, hence should be employed. Conducting a questionnaire survey, training

the participants and performing a CBA have medium impact on the development of a price-

based DSM scheme and can be applied in all cases where the cost is relatively low. Finally,

a sensitivity analysis that can verify the effectiveness of the proposed DSM scheme, should

also be undertaken.
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Regression analysis results highlighted that there is still a lot of potential for flexibility

provision in the residential sector. This is mainly due to the low reward provided to

residential customers for altering their energy behaviours in exchange of their comfort levels.

The appeal of DSM schemes could be increased with the inclusion of explicit DR offerings,

such as availability payments that support equipment installation and reward customers for

the full benefit they provide. Moreover, advancements in the energy market structure so

that the residential sector can contribute in more services (e.g. ancillary services) could

potentially provide incentives for DR participation. Furthermore, a general lesson learnt

from the experimental work is that many residential customers could have easily contributed

to flexibility provision, however they were not overly fond of the idea of waiting until

midnight hours to do the house chores just to take advantage of the cheaper electricity

price. This means that appliances using automation technologies are very important in

maximising the flexibility potential. This leads to the conclusion that countries where

the electricity market is mature, additional relevant stakeholders are established, and the

available technology is well advanced can greatly benefit from a DR framework that enables

optimal flexibility dispatch.
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Chapter 4

Optimal Demand Response Distribution

Coordination Framework Towards

Reliable, Fair, and Secure Flexibility

Dispatch

4.1 Introduction

As electricity markets and technological advancements are progressing, more DSM

program offerings are available. Many enabling technology end-uses have technical

capabilities that allow the end-users to achieve multiple DSM objectives including automated

DR. Deployment of “smart” technologies (real-time, automated, interactive technologies

that optimize the physical operation of appliances and consumer devices) for metering,

communications concerning grid operations and status, and distribution automation as well

as increased use of digital information and controls technology to improve reliability,

security, and efficiency of the electricity grid have all led to “smarter” electricity networks

also known as “Smart Grids”. The Smart Grid encompasses the integration of power,

communications, and information technologies for an improved electric power infrastructure

that serves loads while providing for an ongoing evolution of end-use applications.

Automated DR has a major role in the smart grid concept as the primary enabler for

optimum energy management. However, in order to maximise flexibility extraction in

a fully automated fashion, third parties such as Aggregators must undertake the role of
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summing those multiple flexibility volumes by considering various parameters in relation

to the performance of their customers as well as the impacts on the grid balancing. All

previous studies presented in Section 2.3 have exhaustively explored DR approaches, while

considering customer behaviour and have established a solid foundation for the significant

potential of participating in the flexibility market. However, as power flows are expected to

become bi-directional, real-time grid management as well as activation of procured flexibility

necessitate a more coordinated approach between the DSOs and the Aggregators. This

new paradigm creates not only challenges but also great opportunities. DSOs may use the

flexibility provided by the Aggregators to solve voltage problems or manage congestion at

the distribution network, while the Aggregators can optimally exploit the available flexibility

of their customers to participate in DR events at minimum cost. Nevertheless, the expected

costs of the Aggregator may come with a high level of variability, depending on the reliability

of his customers. The response of a customer in modifying his consumption pattern is not

certain so there is a requirement of studying DR considering the uncertainty associated

with it. Additionally, a fair distribution of flexibility requests to all the customers, will

enlarge the portfolio of the specific Aggregator due to the increased willingness of other

customers to enroll. These cost and performance aspects combined with the grid technical

constraints, while considering security and communication aspects, are yet to be thoroughly

investigated. The scope of this chapter is to present a holistic DR framework for DSO-

Aggregator coordination that exploits a bi-level constrained-objective optimisation function,

which minimises the flexibility aggregation costs through optimal segmentation of customer

groups based on performance indices, while maintaining the distribution grid balancing.

The holistic approach is concluded with the inclusion of complementary functionalities such

as open protocols and blockchain methods that establish the interoperability and increased

security capabilities of the proposed DR framework [107].

The rest of this chapter is structured as follows: Section 2 presents an overview of the

proposed DR framework including a detailed description of the two levels of the optimisation

function as well as the horizontal complementary functionalities. The results of testing the

proposed DR framework on a modified IEEE 33-bus radial distribution system are presented

in Section 3. Important concluding remarks appear in Section 4 of this chapter.
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4.2 Methodology

In the problem of enabling optimal flexibility provision, a holistic DR framework

that enables interoperable and secure DR activation for DSO-Aggregator coordination is

developed. The backbone of the proposed framework is a bi-level optimisation function

that aims to minimize the Aggregator’s costs while ensuring the normal operation of the

distribution network through technical constraint evaluation. As illustrated in Fig. 4.1,

the proposed DR framework for DSO-Aggregator coordination operates between the two

stakeholders, utilizing information data from both sides. More specifically, the proposed DR

framework exploits information regarding the distribution network topology, offered by the

DSO, as well as the portfolio data of the Aggregator. Both sets of data are used as inputs

to derive a decision about the optimal combination of customers and their flexibility volume

based on each DR signal and the activities of the Aggregator in the electricity market. After

a DR signal is initiated by the DSO, a preliminary check that the total flexibility volume

of the Aggregator can meet the total requested flexibility is performed. In that case, the

optimisation function procedure runs. Otherwise the DR signal is rejected. The two levels of

the optimisation function, utilised by the proposed DR framework, simultaneously address

both cost and customer performance parameters as well as the distribution network technical

criteria. Doing so, not only does the risk associated with the DR customer selection lowers,

but also risk-averse bidding strategies, occurring due to various grid violations, are foreseen

and avoided. The decision about the optimal combination of customers that can participate in

the current DR signal is then fed as an output to the Aggregator. A DR signal activation ends

with the flexibility extraction from the customers, followed by the flexibility provision to the

DSO. As added-value, the proposed DR framework ensures communication interoperability

as well as secure interaction between all the involved energy stakeholders through the

exploitation of its horizontal complementary functionalities, the OpenADR standard [108]

and blockchain technology. Even though the focus of this work is the Aggregator, other

market players could also employ the framework, such as Utilities, Flexibility traders,

etc. Moreover, the proposed DR framework, and subsequently the developed optimisation

function, can be applied to any type of contracts (dynamic and/or static) between the DSO

and Aggregator as well as between the Aggregator and his customers, while the technical

parameters utilised in the optimisation function enable the exploitation of the developed

framework for any network topology.
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An overview of the assumptions made for the proposed DR framework as well as

a detailed description of the two optimisation levels and the horizontal complementary

functionalities are presented in the following sections.

4.2.1 DR Framework Assumptions

The proposed DR framework aims to optimise flexibility provision in an electricity

landscape where a DSO-Aggregator coordination mechanism is already established. Even

though sharing a network topology in real-world applications is not easy, following the EC

Third Package [6] suggestions for the creation of equal opportunities for all stakeholders to

enter the electricity markets, it is believed that in the near future the network visibility will

be increased. As of today, many countries are using the USEF Flexibility Trading Protocol

specifications [65]. In this protocol, USEF recommends declaring congestion points at the

lowest possible level in the grid as this allows for detailed insight about local congestion

while simultaneously, through aggregation, safeguarding the reliability of the grid safety

analysis. To this end, it is assumed that a similar approach will eventually be adopted in other

European countries as well as the rest of the world, where a DR framework that will operate

between the DSO and Aggregator layer will render the network topology observable. The

visibility level will surely depend on the regulations of each country. The System Operators

and the Aggregators will not necessarily have access to all the data flows and information

exploited by the proposed framework but only to the inputs and outputs related to their role in

the electricity market. In this context, both the DSO and Aggregator must coordinate within

the DR framework for safeguarding the balance of the distribution network in a manner

where the DSO sends a direct signal to an Aggregator to address a local congestion problem

related to gird balancing. The Aggregator, who alleviates the problem through flexibility

provision, is compensated based on a direct bilateral contract price agreed with the DSO.

Moreover, the proposed DR framework enables the Aggregator to concurrently participate

in other flexibility markets, besides congestion management, while considering the balance

of the distribution network coverage.
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4.2.2 DR Framework: First Level of the Optimisation Function - Cost

and Performance Aspects

To address the cost and customer performance variability in flexibility aggregation, the

first level of the optimisation function utilised by the developed DR framework introduces

two new indices: the Fairness Index (FI) and Reliability Index (RI). The FI and RI represent

the equal distribution of DR signals to all customers as well as their reliability to flexibility

commitment, respectively. The two proposed indices act as risk management mechanisms

by prioritizing the group of customers that can reliably participate in a DR event by

meeting the requested flexibility volume, while ensuring that the Aggregator utilises all

the customers within his portfolio. The two proposed indices are integrated in the first

level of the optimisation function along with the typical cost and availability indices. The

first one facilitates the minimization of the total cost of the Aggregator, while the latter

ensures that the selected customers are not scheduled to participate in the electricity market

throughout the day, thus their available flexibility volume can be exploited. At this level

the optimisation function derives all the available possible combinations with which their

aggregated flexibility volume can meet the total requested flexibility, while resulting in a fair

and reliable solution.

4.2.3 DR Framework: Second Level of the Optimisation Function -

Technical Aspects

To maintain the balance of the distribution network, the proposed optimisation function

considers flexibility aggregation, scheduling and disaggregation capabilities under the

constraints of maintaining the balance of the distribution network at all times. The aim of this

component is to allow Aggregators to optimally access the energy flexibility market services

and exploit DR without affecting the balance and adaptation capacity of the distribution

network and at the same time to avoid congestion and operate within prescribed voltage,

frequency and power margins. This entails the identification of any voltage or line loading

issues, including time and specific location, occurring within the investigated network

topology along with the required flexibility for restoring the voltage and line loading levels

back to nominal.
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4.2.4 DR Framework: Optimisation Function Model Formulation

The proposed objective function considers the minimization of the total cost of the

Aggregator, constrained by the technical parameters of the distribution network that are

obtained through Optimal Power Flow (OPF) analysis.

Suppose that customer k can change his demand from dk,0(t) [kWh] (initial value) to dk(t)

[kWh] during the tth hour where a DR event occurs, based on the value which is considered

for the incentive and the penalty included in the contract. Then the change in the demand, or

equally the estimated flexibility provided by each customer is calculated using:

∆dk(t) = |dk(t)− dk,0(t)| (4.1)

If I(t) [e/kWh] is paid as incentive to the customer in tth hour for each kWh flexibility, as

part of the contract with the Aggregator, then the total compensation of the customer for

participating in DR signals will be as follows:

P (∆dk(t)) = Ik(t) ·∆dk(t) (4.2)

If the customer who has been enrolled in the mentioned DR programs does not commit to

his obligations according to the contract, he will be faced with a penalty. If the penalty price

for inadequate flexibility provision is denoted by penk(t) [e/kWh], then the potential total

penalty cost is equal to the difference between the requested flexibility for the current DR

event, ∆dk(t), and the average flexibility volume (AvgFlexk(t-1)) that the customer k offered

in all previous events (t-1).

PEN(∆dk(t)) =

penk(t) ·
[
∆dk(t)− AvgF lexk(t− 1)

] (4.3)

In this case, the total revenue for the customers who participate in the DR is calculated as

follows:

P (∆dk(t)) = Ik(t) · [dk,0(t)− dk(t)]− PEN(∆dk(t)) (4.4)

In order to prioritise those who are reliable and offer the exact amount of requested flexibility

on a regular basis, a reliability index (RI) depends on the data recorded until the previous DR
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event (t-1) and is estimated based on the following equation:

RIk(t) =RIk(t− 1)− ReqF lexk(t− 1)−∆dk(t− 1)

TotalF lex(t− 1)

+ PIk(t− 1) · ∆dk(t− 1)

TotalF lex(t− 1)

(4.5)

where ReqFlexk(t-1) [kWh] is the last requested flexibility volume, PI is a binary indicator

used for identifying if the customer participated in the last DR event, while TotalFlex(t-1)

[kWh] is the total flexibility volume provided by all N customers for all past DR requests,

and can be estimated by:

TotalF lex(t− 1) =
N∑
k

ReqF lexk(t− 1) (4.6)

The higher the RI index, the better reliability performance of the executed DR. In order

to evenly distribute DR requests among customers, an Absolute Fairness Index (AFI) per

customer is introduced, which is defined as the ratio of the total number of requests sent to

customer k to the total number of requests for all customers.

AFIk(t) =
TotalReqk(t− 1)∑N
k TotalReqk(t− 1)

(4.7)

In addition to the AFI, a Capacity Fairness Index (CFI) is considered, in order to fairly assign

the requested flexibility volume based on the maximum (MaxFlex) and minimum (MinFlex)

flexibility capacity that each customer k can realistically provide and the average flexibility

volume (AvgFlex) he has offered in all previous requests. This index aims to exploit the

flexibility volume of each asset at its maximum offered capacity.

CFIk(t) = 1− MaxFlexk − AvgF lexk(t− 1)

MaxFlexk −MinFlexk
(4.8)

All variables related to the DR participation of each customer k (i.e. ReqFlex, TotalReq,

AvgFlex) are stored and updated for each time interval that the proposed DR framework is

executed. The values of the maximum and minimum available flexibility are defined in the

contract based on the deferrable loads of each customer.
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First level optimisation

Considering the above, the proposed optimisation function that aims to minimize the total

cost of the Aggregator by allocating all available assets based on total cost and reliability of

his customers as well as a fair approach that will help the participants become more actively

engaged can be defined as:

Optimisation weight = min{
N∑
k

(
P (∆dk(t)) ·

1

RIk(t)
· 1

AFIk(t)
· 1

CFIk(t)

)}
(4.9)

The result of the optimisation function (Optimisation weight) is a value that represents

the effect of each combination of customers on the Aggregator’s costs. The lower the

weight is, the lower the expected cost will be. In order to achieve optimal DSO-Aggregator

coordination, several technical constraints must be considered. To this end, the developed

optimisation function (4.9) is subject to constraints that ensure voltage as well as active

and reactive power at both bus- and line- levels at all times. The variable that relates the

optimisation function with the technical constraints is the available flexibility of customer k,

∆dk(t).

Second level optimisation

The bus-level active and reactive power balance are maintained through:

PDi(t)− PCi(t) +
∑
i′

Pi,i′(t) = 0 ∀i, i′ ∈ I,∀t ∈ T (4.10)

QDi(t)−QCi(t) +
∑
i′

Qi,i′(t) = 0 ∀i, i′ ∈ I,∀t ∈ T (4.11)

The above constraints retain a balance between the active and reactive loads at bus i and time

t [PDi(t), QDi(t)] with the respective changes resulted due to flexibility provision [PCi(t),

QCi(t)]. The total active load, PDi(t), at bus i is equal to the total consumption of all

customers connected to that bus:

PDi(t) =
N∑
k

dk,i(t) (4.12)
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while the total active power provision, PCi(t), at bus i is equal to the total flexibility (upwards

or downwards) provided by all customers connected to that bus:

PCi(t) =
N∑
k

∆dk,i(t) (4.13)

Active and reactive line flows are calculated as:

Pi,i′(t) = Gi,i′V
2
i (t) + Vi(t)Vi′(t)Gi,i′cos[δi(t)− δi′(t)]

+Vi(t)Vi′(t)Bi,i′sin[δi(t)− δi′(t)]

∀i, i′ ∈ I,∀t ∈ T

(4.14)

Qi,i′(t) = −Bi,i′V
2
i (t) + Vi(t)Vi′(t)Gi,i′sin[δi(t)− δi′(t)]

−Vi(t)Vi′(t)Bi,i′cos[δi(t)− δi′(t)]

∀i, i′ ∈ I,∀t ∈ T

(4.15)

where Gi,i’ and Bi,i’ represent the real and imaginary parts, between the bus i and i’, of the

respective element in the bus admittance matrix. The voltage magnitude and phase angle at

bus i and time t are described by Vi(t) and δi(t), respectively. The real and imaginary parts

Gi,i’ and Bi,i’ as well as the voltage magnitude and phase angle at bus i are estimated based

on the inputs provided through the Network Topology. In addition, the power factor at load

points should remain constant when the load is curtailed or shifted:

PDi(t)QCi(t) = QDi(t)PCi(t) ∀i ∈ I,∀t ∈ T (4.16)

The bus voltage is one of the most essential and significant safety and service quality indices.

In this case, the bus voltage limits are maintained through:

V ≤ Vi(t) ≤ V ∀i ∈ I,∀t ∈ T (4.17)

where Vi(t) is the voltage magnitude of the ith bus, while V and V are the allowed lower and

upper voltage magnitudes, respectively. All utilised voltage values are in p.u.

Line flow capacity limits are ensured as:

−Si,i′ ≤ Si,i′(t) ≤ Si,i′ ∀i, i′ ∈ I,∀t ∈ T (4.18)
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where

Si,i′(t) =
√
P 2
i,i′(t) +Q2

i,i′(t) ∀i, i′ ∈ I,∀t ∈ T (4.19)

while load change at each time is limited by the consumption load:

0 ≤ PCi(t) ≤ PDi(t) ∀i ∈ I,∀t ∈ T (4.20)

The required flexibility for restoring the bus voltage to normal operating conditions is

based on a voltage sensitivity analysis performed on the flexibility provision, PCi(t). More

specifically the flexibility value provided by each customer is marginally deviated within the

range of the minimum and maximum flexibility volume so that voltage limits are maintained.

In this sense, this sensitivity analysis gives an indication of the extent of the influence the

variation of active power on a node has on voltage.

In case where a line overloading occurs, then the total required flexibility for restoring the

network’s normal operation is estimated by:

TotalF lexi,i′(t) =
V iolationi,i′(t)− 100

100
Pi,i′(t) (4.21)

where Violationi,i’(t) is the load percentage of the line between the bus i and i’ and is

calculated based on the Network Topology inputs. Subsequently, to avoid a line violation

event, the aggregated flexibility of bus i, PCi(t), should be equal to the TotalFlexi,i’(t).

The outcome of the objective function is the optimal combination of customers along with

their respective flexibility volume that can meet the total flexibility request with the minimum

cost and without affecting the balance of the distribution network.

4.2.5 DR Framework: Horizontal Complementary Functionalities

To further support the viability of the proposed methodology, two added-value

functionalities also have been implemented, towards presenting an interoperable and secure

framework. A twofold approach is employed in order to provide semantic interoperability.

First, an ontology based on the OpenADR standard has been used [109] for formal data

validation and integration with other standards. Second, a communication component [110]

that interconnects systems with heterogeneous communication protocols, formats and data

models is utilised. By employing semantic web technologies, the ontology allows transparent

exchange and consumption of data. Collectively, these two pillars are referred to as the
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Common Information Model (CIM) and provide for a semantically interoperable ecosystem

within the proposed DR framework.

Facilitating the growth of (future) marketplaces and incentivizing the participation of all

energy stakeholders necessitates a decentralized and trustworthy infrastructure that must

provide, at minimum, financial settlement of DR-related transactions. A permissioned

blockchain-based platform is employed, based on Hyperledger Fabric [111], which is

maintained and operated by multiple, distinct administrative domains. These entities

participate in an authenticated, byzantine fault-tolerant consensus algorithm, which is

decentralized by design and provides for tamper-resilience and liveness in the presence of

(arbitrary) failures. Moreover, to promote fully automated contractual agreements among

participants of DR schemes in the context of different marketplaces in a trustworthy and

verifiable fashion, we leverage the power and expressiveness of smart contracts. These are

automated agents that “live” in the blockchain and play an integral part of the proposed DR

framework [112] as they mediate and monitor transactions, provide transparency, as well as,

enforcement of contractual clauses by regulating energy supply, payments and potentially

incurred penalties. As the algorithms and rules upon which these contractual agreements

are formed reside on the blockchain, end-to-end verifiability, transparency and financial

settlements are achieved.

4.3 Results

4.3.1 Test Case Description

In this section, the performance of the proposed DR framework is evaluated based on

a hybrid test network comprised of a physical microgrid and nanogrid network connected

to a simulated distribution network. The reason for creating this hybrid test network is to

investigate the applicability and effectiveness of the proposed DR framework under real-

conditions where a microgrid is interacting with a nanogrid and their joint operation directly

affects a nearby distribution network connected to the same Primary Substation. Both the

microgrid and nanogrid are physical parts of the University of Cyprus (UCY) campus where

full monitoring and control capabilities are enabled. The inability to control the nearby

connected physical distribution network is addressed through the utilisation of a simulated

IEEE 33-bus test system that is modified to represent the unavailable physical distribution

network.
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The physical microgrid is comprised of 14 tertiary buildings that span a broad variety of

typologies and uses (educational facilities, office building, restaurants, sports and health

centres, etc.) along with large shares of DERs, such as PVs. Similarly, the physical

nanogrid (PVTL nanorgid) includes PVs, Battery Energy Storage System (BESS) and

Electric Vehicles (EVs). The modified IEEE 33-bus test system includes both domestic

and commercial electricity customers. To consider the effect of RES integration in

the distribution network, the domestic customers are equally divided to consumers and

prosumers.

In order to be able to evaluate the impacts of both the physical and simulated parts of the

hybrid test network in a unified environment at the same time, the topology of the microgrid,

nanogrid and modified IEEE 33-bus test system were modelled in a power system analysis

software application, DIgSILENT. The modelled test network provided the additional ability

of testing various distribution network imbalance issues that otherwise would be impossible

to physically create. The characteristics for the microgrid and nanogrid models are based

on their physical counterparts, while the consumption and production datasets as well as

BESS and EV profiles for the modelled microgrid and nanogrid are fed in real-time to the

models through the installed SMs across the UCY campus. Deferrable loads such as the

chillers, dimming lights, smart AC split-units that can be exploited as sources of flexibility

for participating in the DR events are also considered and controlled in real-time. The

load profiles for the IEEE-bus test system were based on previous studies [100, 113]. The

modelled hybrid test network, used for the evaluation of the proposed DR framework is

illustrated in Fig. 4.2. As can be seen in the figure, the test network consists of the Primary

substation, where two feeders (Feeder 1 and 2) are delivering electricity to the physical

microgird and nanogrid as well as a third feeder (Feeder 3) that connects the modified IEEE

33-bus test system.

The line loading as well as the Low Voltage levels, under normal operating conditions are

illustrated in Fig. 4.3 and 4.4, respectively. It can be seen that the line loading remains below

100% of the line capacity, while the voltage levels at the buses are maintained between 0.9

and 1.1 p.u. of the nominal voltage.
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Figure 4.3: Line loading levels under normal operating conditions.

Figure 4.4: Low-voltage busbar levels under normal operating conditions.
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The integration of a Python programmed integrating script (PPIS) is developed in order

to integrate the proposed DR framework, the test case as well as the interactions between the

DSO and Aggegator in one unified environment. In this way, any control strategy applied to

the modelled microgrid and nanogrid components is carried out to their respective physical

ones through the PPIS. This resembles a Hardware-in-the-loop approach which enables

the testing of the functionalities the proposed DR framework in a semi-real environment

where the embedded physical parts are capable of interacting with the simulated ones, thus

rendering the evaluation results more accurate. In addition, the developed PPIS allows the

demonstration of the interoperable and secure functionalities of the proposed DR framework.

4.3.2 Test Case Modelling Parameters and Assumptions

In this Test Case, it is assumed that the DSO takes the role of the price-maker who

compensates the Aggregator at a contracted price for alleviating distribution grid violations

at his area of responsibility. The contracted price between the DSO and the Aggregator is

based on a CBA conducted by the national DSO, the EAC [114]. The CBA indicates that

the congestion in an MV Feeder is expected due to either increased load demand (during the

winter period) or increased generation of RES (during the summer period). Based on this

CBA, the price that the DSO is willing to pay for each unit of Flexibility Energy [MWh] is

related to the total flexibility energy units required for congestion avoidance. Following the

CBA results, in this Test Case it is assumed that the flexibility events can be divided into the

categories depicted in Table 4.1.

Table 4.1: Flexibility event categories.

Flexibility
Level

Feeder Congestion
(of nominal capacity)

Occurrence
Frequency

Price
(/CMWh)

Critical Flexibility 120% 10% 157.99
Normal Flexibility 105 -119% 40% 110.67

Non-critical Flexibility 95-104% 50% 94.54

In this Test Case it is also assumed that the Aggregator is a price-taker with respect to

the DSO, but by contrast a price-maker with respect to the flexibility price he offers to his

customers. The Aggregator’s business model, of course, is based on sharing a percentage of

the achieved savings from the optimized portfolio with the participating customers. However,

to persuade a customer to participate in flexibility programmes that will affect his thermal or

visual comfort levels, an attractive incentive must be offered. Hence, it is expected that the

96

VENIZELO
S VENIZELO

U



earnings for the provider of the flexibility (customer) will be higher than the Aggregator’s.

In this respect, it is assumed that the Aggregator will compensate his customers with a

percentage between 60 and 90% of the flexibility price, offered by the DSO, for each

successful DR activation. The sharing percentage level that the Aggregator offers to his

customers is assumed to vary based on their:

• Maximum Flexibility Capacity: Max. amount of flexible power [MW]

• Maximum Duration: Max. time the load capacity can be shed/shifted [h]

• Frequency: Max. number of events over a period [N/year]

• Notice time: Time before the event is actually triggered [h]

• Recovery time: Max. time energy has to be recovered [h]

Therefore, it is assumed that customers who can provide flexibility for long periods of time

will be compensated less (lower sharing portion) than the ones who can provide flexibility

for short periods. This assumption is backed up by the fact that the customers who can

participate for longer periods have a higher chance to be selected for a DR event. The

flexibility price is considered to consist of two parts: the contract reservation and the

activation price. The first price stipulates the cost paid by the Aggregator for periods during

which the Aggregator can manage flexibility devices, while the latter price stipulates the

fee when the Aggregator activates DR. Non or insufficient delivery may result in a penalty.

Penalty calculations need to be differentiated depending on the market and the risk posed. In

this study, a penalty equal to 1/6 of the contractual fee is assumed.

Considering the aforementioned assumptions, a flexibility price and the respective penalty is

assigned to each customer/asset (building or facility) of the physical microgrid and nanogrid

based on their availability periods (max duration and frequency) as well as the maximum

Flexibility Capacity. The contract details per portfolio asset for the critical, normal and non-

critical flexibility provision, as defined for the purposes of this Test Case, are summarized in

Table 4.2, 4.3 and 4.4, respectively.
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Table 4.2: Contract details per portfolio asset for Critical Flexibility, as defined for the Test Case.

Critical Flexibility

Asset ID - Building Feeder
Flexibility Price

[/CkWh]
Penalty

[/CkWh]

111CA - Polytechnic School Feeder 1 0,1102 0,0184
112CA - Faculty of Science - Incomer 1 Feeder 1 0,1160 0,0193
112CB - Faculty of Science - Incomer 2 Feeder 1 0,1285 0,0214
113CA - Sport Fields Feeder 1 0,1264 0,0211
114CA - Faculty of Economics
and Business Feeder 1 0,1195 0,0199

115CA - Sports Centre Power Feeder 1 0,1080 0,0180
116CA - Energy Center 1a Feeder 1 0,1065 0,0178
116CB - Energy Center 1b Feeder 1 0,1101 0,0184
121CA - Residential Accommodation Feeder 2 0,1202 0,0200
121PA - Residential Accommodation
- PV System Feeder 2 0,1154 0,0192

122CA - Social Facilities Feeder 2 0,1085 0,0181
122PA - Social Facilities
- PV System Feeder 2 0,1213 0,0202

123CA - Administration Feeder 2 0,1073 0,0179
123PA - Administration - PV System Feeder 2 0,1207 0,0201
124CA - Library - Incomer 1 Feeder 2 0,0925 0,0154
124CB - Library - Incomer 2 Feeder 2 0,1192 0,0199
125CA - JP AVAX Feeder 2 0,1176 0,0196
126CA - Energy Center 2 Feeder 2 0,0936 0,0156
127CA - Energy Center 3 Feeder 2 0,1272 0,0212
EV1 - nanogrid Feeder 2 0,0989 0,0165
EV2 - nanogrid Feeder 2 0,1110 0,0185
PVTL Climatic Chamber Feeder 2 0,1077 0,0180
PVTL Indoor Testing 1 Feeder 2 0,1179 0,0197
PVTL Conference FLEX Feeder 2 0,1128 0,0188
PVTL Conference BASE Feeder 2 0,1026 0,0171
PVTL Offices 1 FLEX Feeder 2 0,0959 0,0160
PVTL Offices 1 BASE Feeder 2 0,1161 0,0194
PVTL Indoor Testing 2 FLEX Feeder 2 0,0960 0,0160
PVTL Indoor Testing 2 BASE Feeder 2 0,1050 0,0175
PVTL Offices 2 FLEX Feeder 2 0,1198 0,0200
PVTL Offices 2 BASE Feeder 2 0,0985 0,0164
PVTL Storage CAB Feeder 2 0,1042 0,0173
PVTL CAB 3 Feeder 2 0,1173 0,0196
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Table 4.3: Contract details per portfolio asset for Normal Flexibility, as defined for the Test Case.

Normal Flexibility

Asset ID - Building Feeder
Flexibility Price

[/CkWh]
Penalty

[/CkWh]

111CA - Polytechnic School Feeder 1 0,0893 0,0149
112CA - Faculty of Science - Incomer 1 Feeder 1 0,0905 0,0151
112CB - Faculty of Science - Incomer 2 Feeder 1 0,0900 0,0150
113CA - Sport Fields Feeder 1 0,0948 0,0158
114CA - Faculty of Economics
and Business Feeder 1 0,1016 0,0169

115CA - Sports Centre Power Feeder 1 0,0842 0,0140
116CA - Energy Center 1a Feeder 1 0,0767 0,0128
116CB - Energy Center 1b Feeder 1 0,0892 0,0149
121CA - Residential Accommodation Feeder 2 0,0926 0,0154
121PA - Residential Accommodation
- PV System Feeder 2 0,0900 0,0150

122CA - Social Facilities Feeder 2 0,0760 0,0127
122PA - Social Facilities
- PV System Feeder 2 0,0873 0,0146

123CA - Administration Feeder 2 0,0841 0,0147
123PA - Administration - PV System Feeder 2 0,0845 0,0141
124CA - Library - Incomer 1 Feeder 2 0,0777 0,0130
124CB - Library - Incomer 2 Feeder 2 0,1013 0,0169
125CA - JP AVAX Feeder 2 0,0976 0,0163
126CA - Energy Center 2 Feeder 2 0,0768 0,0128
127CA - Energy Center 3 Feeder 2 0,0890 0,0148
EV1 - nanogrid Feeder 2 0,0781 0,0130
EV2 - nanogrid Feeder 2 0,0777 0,0130
PVTL Climatic Chamber Feeder 2 0,0862 0,0144
PVTL Indoor Testing 1 Feeder 2 0,0955 0,0159
PVTL Conference FLEX Feeder 2 0,0880 0,0147
PVTL Conference BASE Feeder 2 0,0739 0,0123
PVTL Offices 1 FLEX Feeder 2 0,0710 0,0118
PVTL Offices 1 BASE Feeder 2 0,0824 0,0137
PVTL Indoor Testing 2 FLEX Feeder 2 0,0682 0,0114
PVTL Indoor Testing 2 BASE Feeder 2 0,0882 0,0147
PVTL Offices 2 FLEX Feeder 2 0,0899 0,0150
PVTL Offices 2 BASE Feeder 2 0,0808 0,0135
PVTL Storage CAB Feeder 2 0,0854 0,0139
PVTL CAB 3 Feeder 2 0,0891 0,0149
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Table 4.4: Contract details per portfolio asset for Non-critical Flexibility, as defined for the Test Case.

Non-critical Flexibility

Asset ID - Building Feeder
Flexibility Price

[/CkWh]
Penalty

[/CkWh]

111CA - Polytechnic School Feeder 1 0,0518 0,0086
112CA - Faculty of Science - Incomer 1 Feeder 1 0,0498 0,0083
112CB - Faculty of Science - Incomer 2 Feeder 1 0,0549 0,0091
113CA - Sport Fields Feeder 1 0,0550 0,0092
114CA - Faculty of Economics
and Business Feeder 1 0,0569 0,0095

115CA - Sports Centre Power Feeder 1 0,0505 0,0084
116CA - Energy Center 1a Feeder 1 0,0460 0,0077
116CB - Energy Center 1b Feeder 1 0,0526 0,0088
121CA - Residential Accommodation Feeder 2 0,0602 0,0100
121PA - Residential Accommodation
- PV System Feeder 2 0,0531 0,0089

122CA - Social Facilities Feeder 2 0,0494 0,0082
122PA - Social Facilities
- PV System Feeder 2 0,0507 0,0084

123CA - Administration Feeder 2 0,0502 0,0084
123PA - Administration - PV System Feeder 2 0,0473 0,0079
124CA - Library - Incomer 1 Feeder 2 0,0490 0,0082
124CB - Library - Incomer 2 Feeder 2 0,0638 0,0106
125CA - JP AVAX Feeder 2 0,0547 0,0091
126CA - Energy Center 2 Feeder 2 0,0476 0,0079
127CA - Energy Center 3 Feeder 2 0,0561 0,0093
EV1 - nanogrid Feeder 2 0,0508 0,0085
EV2 - nanogrid Feeder 2 0,0466 0,0078
PVTL Climatic Chamber Feeder 2 0,0526 0,0088
PVTL Indoor Testing 1 Feeder 2 0,0563 0,0094
PVTL Conference FLEX Feeder 2 0,0493 0,0082
PVTL Conference BASE Feeder 2 0,0414 0,0069
PVTL Offices 1 FLEX Feeder 2 0,0426 0,0071
PVTL Offices 1 BASE Feeder 2 0,0470 0,0078
PVTL Indoor Testing 2 FLEX Feeder 2 0,0429 0,0072
PVTL Indoor Testing 2 BASE Feeder 2 0,0556 0,0093
PVTL Offices 2 FLEX Feeder 2 0,0557 0,0093
PVTL Offices 2 BASE Feeder 2 0,0525 0,0088
PVTL Storage CAB Feeder 2 0,0517 0,0082
PVTL CAB 3 Feeder 2 0,0508 0,0085
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In most distribution systems, the DSO enters into contracts with DERs that are mandated

to provide reactive power requirement approved by the grid code, and hence, the Distributed

Generation (DG) units must operate between a mandatory leading and lagging power factor

at every operating point. Although the grid codes for reactive power are considered as part of

the constraints in the proposed optimisation function, incentive payments for reactive power

provision are not investigated in this study. In this respect, the variables QDi(t) and QCi(t)

utilized in (4.11) were predefined based on the real network information.

4.3.3 Test Case Scenario and Results

In order to verify the integrated functionalities of the proposed DR framework, a real

possible scenario for flexibility provision is investigated. More specifically in this scenario,

a real flexibility request is initiated from the national DSO, the EAC, due to congestion

problem occurring within the area of the UCY campus. The role of the Aggregator in the

investigated scenario is undertaken by the UCY, where the various facilities and buildings

located within the physical microgrid as well as the nanogrid are considered to be the DR

customers. Each customer is represented by the available flexibility (either static or range

based on the flexibility source) that can serve specific energy markets and the compensation

price of those services with the respective penalty prices, as derived from the contracts.

In this investigated scenario, a virtual congestion problem is created by increasing the

electricity demand of two simulated buildings implemented in the modelled test network.

The two simulated buildings represent the physical Library and Residential Building Blocks

located in the microgrid network. This scenario is practically possible as a congestion

problem could arise due to potential electricity demand increase of the Library and

Residential Building Blocks that typically appears during the mid-day hours, where students

return to their dorms or visit the library facilities during lecture breaks. The increased

demand of those two buildings will overload the line of Feeder 2 to which those buildings

are connected. As shown in Fig. 4.5, a line loading violation occurs at the second Feeder of

the microgrid between 14:15 and 14:30. The line loading rises to 106.09% and 105.69%,

at 14:15 and 14:30, respectively. These line violation incidents fall under the category

of congestion problems in the distribution network and must be addressed locally through

flexibility provision.
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Figure 4.5: DR event due to line loading violation at Feeder 2.

Following the proposed DR framework, a DR request is initiated by the DSO (EAC)

to the local Aggregator (UCY). Both violation levels correspond to a Normal Flexibility

event. The proposed DR framework identifies the available and applicable customers who

can participate during the specific time of the DR event. Only the assets connected to the

second feeder can effectively contribute in this particular DR event, as it is a local congestion

problem. It is important to note that DERs generators are not eligible to participate in this

scenario as reducing the active power set-point can only contribute in restoring overvoltage

events. An overview of the associated assets, including the available flexibility volume, the

contracted prices as well as the performance indices, is presented in Table 4.5. As already

indicated the minimum and maximum flexibility volume is defined in each contract, while

the average flexibility volume and the performance indices are estimated based on historical

DR events participation.
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The first level of the optimisation function will identify all the possible combinations

of customers who can participate in this DR event, while the optimisation weight of each

combination is estimated based on the flexibility volume, price and the performance indices.

The second level of the optimisation function identifies all combinations that will ensure the

stable operation of the whole distribution test network. The minimum required flexibility for

restoring the line loading below the nominal level, while maintaining the distribution network

balancing is estimated to be 138 kWh for the whole period of the violation. The outcome

of the bi-level optimisation function is the optimal combination (minimum optimisation

weight) of assets (customers) accompanied by the individual flexibility volume that each

asset must provide. The aggregated value of all individual flexibility volumes is equal to the

total required flexibility.

For comparison reasons, Table 4.6 summarizes the thirty different combinations of assets that

can meet the requested flexibility volume, while satisfying the grid constraints. As depicted

in the table, even though the third combination is the most profitable for the Aggregator,

as it would cost the least (e10.91) for triggering, the results of the optimisation function

demonstrate that the first combination of assets (122CA, 124CA, 126CA,127CA) is the

optimum selection as it would result in a more reliable and fair option, while the cost for

triggering is marginally (e10.95) higher than the most profitable option.

As can been seen in Fig. 4.1, every transaction between the proposed framework and

the external stakeholders (i.e. DSO and Aggregator) is based on the OpenADR standard

and is issued to the blockchain, establishing interoperability, security and integrity. More

specifically, after the identification of the optimal solution, the Aggregator proceeds to

the extraction of the flexibility from the selected customers. Based on the proposed DR

framework, this transaction is issued to the blockchain. The visualization of the transactions

is presented via the Hyperledger Blockchain Explorer [115] tool. As shown in Fig. 4.6, a

transaction is defined by a coded ID, a validation code and its its payload hash. Those are

followed by the creator and endorser of the flexibility request, in this case the UCY which

takes the role of the Aggregator. The chaincode name, the type as well as the time of the

issuance is also included in the transaction. The read set portion of the read-write set is used

for checking the validity of a transaction, while the write set portion of the read-write set is

used for updating the versions and the values of the affected keys. As depicted in Fig. 4.6, the

DR request from the Aggregator (vtnID) is directed towards the “Energy Center 3” customer

(targetID). This information is included as part of Write Key #5 along with the flexibility
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Table 4.6: Combination of the Aggregator’s Assets.

No Combination of Assets
Flexibility volume

per asset [kWh]
Total Cost

[C]
Optimisation

Weight
1 122CA, 124CA, 126CA, 127CA 29, 44, 37, 28 10.95 27.3924
2 121CA, 124CA, 126CA, 127CA 29, 44, 37, 28 11.43 27.5839
3 122CA, 123CA, 124CA, 126CA 25, 41, 38, 34 10.91 27.9267
4 121CA, 122CA, 124CA, 126CA 28, 29, 44, 37 11.05 28.4938
5 122CA, 123CA, 126CA, 127CA 28, 45, 37, 28 11.24 28.8458
6 122CA, 123CA, 124CA, 127CA 25, 41, 44, 28 11.25 28.8563
7 121CA, 123CA, 126CA, 127CA 28, 45, 37, 28 11.71 29.0307
8 121CA, 123CA, 124CA, 127CA 28, 41, 41, 28 11.71 29.2083
9 121CA, 122CA, 123CA, 126CA 28, 28, 45, 37 11.34 29.9472
10 121CA, 122CA, 123CA, 124CA 28, 25, 41, 44 11.35 29.9578
11 123CA, 124CA, 125CA, 126CA 41, 38, 25, 34 11.45 33.2902
12 122CA, 124CA, 125CA, 126CA 30, 44, 27, 37 11.17 34.1016
13 121CA, 124CA, 125CA, 126CA 30, 44, 27, 37 11.67 34.2996
14 123CA, 124CA, 125CA, 127CA 41, 42, 27, 28 11.83 34.7603
15 122CA, 123CA, 124CA, 125CA 25, 42, 44, 27 11.48 35.5433
16 122CA, 123CA, 125CA, 126CA 29, 45, 27, 37 11.46 35.5550
17 121CA, 123CA, 125CA, 126CA 29, 45, 27, 37 11.94 35.7464
18 121CA, 123CA, 124CA, 125CA 28, 41, 42, 27 11.93 35.8618
19 124CA, 124CB, 126CA 42, 59, 37 12.08 36.2374
20 122CA, 124CB, 126CA, 127CA 25, 52, 33, 28 12.19 36.9895
21 123CA, 124CB, 126CA 42, 59, 37 12.35 37.6459
22 123CA, 124CA, 124CB 41, 38, 59 12.37 37.9241
23 121CA, 122CA, 124CB, 126CA 28, 25, 52, 33 12.29 38.0909
24 121CA, 122CA, 124CB, 127CA 28, 25, 57, 28 12.75 39.9532
25 124CB, 125CA, 126CA, 127CA 52, 25, 33, 28 12.73 42.3530
26 122CA, 124CB, 125CA, 126CA 25, 52, 25, 36 12.37 43.0772
27 121CA, 124CB, 125CA, 126CA 28, 52, 25, 33 12.83 43.4545
28 121CA, 124CB, 125CA, 127CA 28, 55, 27, 28 13.29 45.4808
29 122CA, 124CB, 125CA, 127CA 25, 58, 27, 28 12.90 45.6934
30 121CA, 122CA, 124CB, 125CA 28, 25, 58, 27 13.00 46.7948

extraction signal of -28,000W (value) which is requested by the Aggregator for the specified

30 minute period (startTime, endTime). Finally, the payload encodes a reward (reward),

which is equal to compensation, assuming that the “Energy Center 3” customer successfully

dispatches the requested amount of flexibility over the DR signal’s active period.

Following the issuance of a DR request, and upon its successful delivery, the status

of the previously issued DR request transitions to an active status. The proposed DR

framework concludes when the Aggregator, after the end of the request’s active period, issues

a completion transaction, which is also stored on the blockchain. Besides the status of the

DR request that transitions to a completed status, the “Energy Center 3” is compensated
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Figure 4.6: Issuance transaction of DR event containing a 30 minute load dispatch signal originating from the
Aggregator and in which Energy Center 3 is specified as the target that should service it.

as indicated in the initial payload of the request. The transactions between the rest of the

selected customers as well as the flexibility provision to the DSO, is executed in a similar

manner.

The requested flexibility is physically extracted by the available deferrable loads of

all the selected customers through hardware commands originated by the PPIS. The real

consumption alteration, due to the flexibility provision, is measured by the SMs installed at

each building and is fed back to test environment in order to verify that the operation of the

proposed DR framework restored the grid back to normal operating conditions. As shown

in Fig. 4.7, the line loading of all three feeders is below the nominal limit, highlighting

the successful completion of the DR event, where the overloading violation at Feeder 2 is

recovered and the balance of the distribution test network including the physical microgrid

and nanogrid as well as the simulated distribution network is maintained.
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Figure 4.7: The combination of customers selected by the proposed DR framework restored the line loading
level of Feeder 2 back to normal operating limits.

4.3.4 Computational Performance Evaluation of the Developed DR

Framework

In order to gain helpful insights in the performance of the proposed DR framework,

when applied in a real-life electricity market, a computational performance evaluation is

undertaken. This evaluation focuses on the runtime of the proposed DR framework in an

attempt to identify any potential bottlenecks related to the hardware used.

The computational performance evaluation is based on a 64-bit Windows 10 Professional

operating system with an Intel Xeon E5-2650 v.4 CPU and 16 GB RAM. The CPU is

clocked at 2.20 GHz. The modified IEEE 33-bus test system shown in Fig. 4.2 is

used for the performance evaluation. The total number of busbars (low and medium

voltage) and assets (consumption, production, storage) used in the investigated network are

summarized in Table 4.7 and 4.8, respectively. The size of the dataset comprising the energy

profiles of the investigated distribution network is relatively small (0.063 MB), while the

internet connection bandwidth is very high at 1 Gbps meaning that there is no lag in the

communication between the server and the equipment.
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Table 4.7: Number of buses used in the investigated model.

Low Voltage Medium Voltage
IEEE 33 33 -

UCY micorgrid 13 13
UCY nanogrid 10 -

Total 56 13 69

Table 4.8: Total number of assets used in the investigated model.

Consumption Production Storage
IEEE 33 17 16

UCY micorgrid 16 16
UCY nanogrid 12 2 1

Total 45 34 1 80

The evaluation is separated into seven scenarios, where the number of available assets that

can participate in flexibility provision changes. The maximum number of available assets is

limited to 8, as this is the maximum number of assets connected to a single feeder or busbar in

the investigated distribution network. Each scenario is then divided into three sub-scenarios

where the flexibility volume range offered by each asset changes between 2, 5 and 10 kWh.

The evaluation considers all functions executed between the origination of a DR signal until

its distribution to the final end-users/assets. The performance evaluation results are shown in

the two following figures. The runtime tendency of the algorithm as the number of available

assets and their flexibility volume range increases is exhibited in Fig. 4.8. For each one

the three sub-scenarios, the linear as well as exponential trendline projection are added as

a reference point for comparison. The runtime as a function of the flexibility volume for

the scenarios where 2, 5 and 8 assets are available for flexibility provision is shown in Fig.

4.9. As expected, the runtime drastically increases with the increase of the investigated

possible combinations that lead to the optimal solution. More specifically, for the first two

sub-scenarios where the flexibility volume is tested at 2 and 5 kWh, it can be seen that the

increase of the runtime is almost similar to the linear trendline projection. On the contrary,

the runtime for the third sub-scenario, where the flexibility volume range per asset is 10

kWh, increases and gradually approaches the exponential trendline projection. The same

conclusions can be derived by estimating the slopes of each curve. As shown in Fig. 4.8, the

slope is 29.653, 63.476 and 121.19 for the 2, 5 and 10 kWh flexibility volume, respectively.

The higher positive slope for the third sub-scenario verifies the steeper upward tilt to the

curve, meaning that as the number of assets and the flexibility volume increases the higher

the computational requirements.
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Figure 4.8: Runtime of the proposed DR framework as a function of the available assets.

Figure 4.9: Runtime of the proposed DR framework as a function of the flexibility volume.
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It is important to note that the results are indicative and concern the virtual machine and

distribution network used for this performance evaluation. The specifications of the hardware

used in this evaluation are low, leading to the very high runtime of approximately 15 minutes

for the worst-case scenario (8 assets are available and each asset can offer up to 10 kWh

of flexibility). It’s obvious that in a real-life electricity market environment where assets are

requested to participate in balancing market this level of runtime is prohibitive. However, this

can be alleviated by utilising hardware with much higher specifications. This performance

evaluation was undertaken to assess the runtime as a function of the different factors such as

the power network characteristics, the available assets that can participate in an upcoming

DR event as well as the flexibility volume that each asset can offer. For more credible

results, benchmarking should be performed on various operating systems and hardware to

properly identify the impact of higher-spec systems on the performance of the proposed DR

framework.

4.4 Concluding Remarks

The immense introduction of Aggregators in the electricity markets will ultimately

change how the DSOs manage their grids. In this chapter a novel DR framework for

DSO-Aggregator coordination that utilises a constrained-objective optimisation function

considering technical and energy market constraints to identify which assets should

participate in each DR event, is presented. Aspects of the modern power systems, such

as interoperability and security are also implemented. The performance of the proposed DR

framework is evaluated based on a hybrid test network comprised of a physical microgrid and

nanogrid network connected to a simulated distribution network. A real possible scenario

where a line overloading problem is addressed through flexibility provision is investigated.

The results highlighted that the proposed DR framework selects the optimal combinations

of assets in terms of profitability, reliability and fairness while restoring the balance of

the distribution network. The holistic approach followed by the proposed DR framework

is showcased through the deployment of its OpenADR-inspired blockchain functionalities

for all transactions held in the investigated scenario. The proposed DR framework can be

seen as a key for enhancing the DSO-Aggregator coordination as well as a pathway for

facilitating the role of the Aggregator, Utilities, Flexibility traders, etc. in a fully liberalized

electricity market where security and interoperable communication is established at all scales

of operation.
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Chapter 5

Conclusions and Future Work

5.1 Conclusions and Achievements

In the future power grid, the penetration of DERs, such as energy storage, electric

vehicles, roof-top photovoltaics, is expected to increase exponentially. Such modern power

grids are facing many unprecedented challenges such as increased intermittency, operation

uncertainties, and load consumption pattern shifts. From a market perspective, one could

argue that, when the shares of renewables in the grid increase to high levels, their inherent

fluctuations would cause more volatile spot market prices and higher imbalance prices, thus

providing higher incentives, and possibly business models, for smart solutions. As the trend

of investing on the supply-side alone to achieve reliable and secured grid operation will

no longer be technically feasible or economically achievable, researchers in the power and

energy community have shifted their efforts on developing a wide range of mechanisms to

enable optimal energy management. With Demand-Side-Management (DSM) and Demand

Response (DR), electricity customers can react to various incentives in order to alter their

typical consumption patterns. Moreover, the objectives of DSM and DR are also broadened

to unfold the full potential of customer-owned distributed energy resources (DERs) for

providing a full range of grid services. These DER owners, also known as prosumers

constitute one of the major classes of electricity customers.

Even though the research field of both DSM and DR is very rich with various studies, there

are no concrete methodologies for optimally implementing such schemes that also consider

the impact of prosumers, neither frameworks that can fully exploit the untapped demand-
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side flexibility. The contribution of this work lies in the introduction of a universally-

applicable methodology for implementing and effectively deploying price-based DSM for

residential prosumers. In support of this work, a pilot-network in Cyprus comprising of 300

prosumers with PV systems installed on their rooftops was established. The load profiles of

the prosumers were recorded for one year (reference year). Using the collected datasets,

the initial and baseline scenarios were defined in order to verify that an improvement

on the participants’ consumption profile will benefit the total aggregate consumption. In

order to trigger a change in their typical energy habits, price incentives in the from of

Time-of-Use (ToU) were offered to the prosumers. The derivation of the offered ToU

tariff structure included the time blocks definition (peak and off-peak periods and the

corresponding hours) and the respective rates. Initially, the seasonal average prosumer

profiles were utilized in order to derive the daily ToU tariff time blocks by applying the

Partitioning Around Medoid (PAM) clustering method. The respective ToU rates were

calculated by exploiting an optimization function that maintained a neutral electricity bill

in the case where the load profile remained unchanged. The optimization algorithm utilised

in the proposed methodology is based on the net-load resulting in cost-effective ToU tariffs

for both consumer and prosumer classes. Before applying the developed ToU tariffs to the

pilot-network, a sensitivity analysis was conducted in order to estimate their potential impact.

The main objective was to maximize the Load Factor (LF) of the seasonal residential load

profile. For the summer and winter season, the maximum LF was 42.83% and 33.33%

respectively and occurred when load was shifted mainly to the off-peak period. The

developed ToU tariffs were approved by both the Electricity Authority of Cyprus and the

Cyprus Energy Regulatory Authority and were applied to the prosumers of the pilot network

for one year (implementation year). The results obtained, highlight that the ToU tariffs

applied to the pilot network are effective to persuade the participants to shift loads from

the peak to off-peak and shoulder periods. This was verified by observing the variation of

the LF as well as the percentage of total consumption during peak hours when compared

to the year before the real implementation of the derived ToU tariffs. More specifically,

with respect to the reference year, the LF was increased from 40.65% to 41.43%, while

the percentage of total consumption measured during peak hours was reduced by 3.19%,

1.03% and 1.40% for the summer, middle and winter season respectively. Additionally, the

resulted seasonally dependent peak consumption reduction, which ranges between 1.03%

and 3.19%, as well as the reduction of the overall consumption, by approximately 2%,

proved that the application of the proposed scheme incentivised the participants to change
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their energy behaviour and minimize the need for electricity network reinforcement. The

effectiveness of the proposed price-based DSM scheme was also verified by the regression

analysis results as all coefficients appeared to be significant (below 5% level) and with the

expected signs. Furthermore, the proposed methodology can be applied on both prosumers

and consumers since the utilization of the net-load profile, and subsequently the refinement

of the applied ToU structure, was found to reduce the percentage of unintended revenues

below 35%. This led to the conclusion that the proposed price-based DSM scheme can be

refined at regular intervals, by taking into consideration the new installed PV capacity and

other relevant conditions in order to ensure that the optimum policies are reached. The

overall net benefit to the society is further proved as the results of the performed cost-

benefit analysis showed a large-scale deployment gain of e4.62mln, over a 15-year period,

when considering also assumptions linked to the expected benefits as well as the values for

the Capital and Operation Expenditure. While the above results represent important steps

towards the realization of the proposed price-based DSM scheme, considerable investigation

is required to analyse the potential risks related to costs and expected behavioural impacts.

The results emanating from this work provide useful knowledge in the fields of energy

behavioural patterns and flexibility potential of prosumers that can be vital instruments for

policy makers to direct and encourage the implementation of a DSM scheme at a larger scale.

The results of applying the proposed methodology on the pilot-network also highlighted that

DSM schemes that offer price incentives to the electricity customers are considered as an

easy pathway for deferring investments for network reinforcement and incorporating higher

levels of DERs. In the end, the impact of various ToU price ratios on the peak kWh usage was

investigated. Higher price ratio, than the one used, indicated higher peak kWh reductions.

The regression results led to the conclusion that electricity customers are willing to sacrifice

their thermal and visual comfort for a short period of time and offer the required flexibility

in exchange for higher price incentives.

Subsequently and as worldwide electricity markets are maturing, the electricity prices

will become more directly linked to the supply and demand equilibrium as well as to

condition parameters related to the grid state. As both of the aforementioned factors

dynamically, unpredictably and rapidly change, the System Operators are shifting their

attention towards DR events that can effectively unlock the available demand-side flexibility

on short notice. The application of DR signals is also accelerated with the advancement

of technology that offers real-time monitoring of both supply and demand as well as

113

VENIZELO
S VENIZELO

U



identification of any grid violations, while enabling automated DR request and flexibility

activation. Compensations offered to the electricity customers, for participating in a DR

event, are generally accompanying a DSM scheme, thus offering higher price incentives

that can fully unlock the available untapped flexibility. However, flexibility maximization

depends on optimal DR distribution in the demand-side. The role of enabling small-scale

electricity customers in participating in such DR events is undertaken by the Aggregator who

is responsible for summing the multiple flexibility volumes available at the demand-side.

To address this, this thesis delves further into flexibility potential maximization by

presenting an innovative framework for DR that aims to minimise the Aggregator’s cost

by considering technical and performance parameters. By extending the first part of this

thesis, a novel DR framework for DSO-Aggregator coordination that utilises a constrained-

objective optimisation function is proposed. The exploited optimisation function considers

technical and energy market constraints to identify which assets should participate in each

DR event. Aspects of the modern power systems, such as interoperability and security are

also implemented. The performance of the proposed DR framework is evaluated based on

a hybrid test network comprised of a physical microgrid and nanogrid network connected

to a simulated distribution network. A real possible scenario where a line overloading

problem is addressed through flexibility provision is investigated. The results highlighted

that the proposed DR framework selects the optimal combinations of assets in terms of

profitability, reliability and fairness while restoring the balance of the distribution network.

The holistic approach followed by the proposed DR framework is showcased through the

deployment of its OpenADR-inspired blockchain functionalities for all transactions held in

the investigated scenario. The proposed DR framework, and subsequently the developed

optimisation function, can be applied to any type of contracts (dynamic and/or static)

between the DSO and Aggregator as well as between the Aggregator and his customers,

while the technical parameters utilised in the optimisation function enable the exploitation of

the developed framework for any network topology. To this end, the proposed DR framework

can be seen as a key for enhancing the DSO-Aggregator coordination as well as a pathway for

facilitating the role of the Aggregator, Utilities, Flexibility traders, etc. in a fully liberalized

electricity market where security and interoperable communication is established at all scales

of operation.
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5.2 Future Work

Future work concerns the deeper analysis in self-learning algorithms and forecasting

models that will capitalize on integrated multi-agent based, transactive energy matchmaking

solutions, aiming to extend the current DR framework and propose new methods for DR-

flexibility coordination that can be adopted in electricity markets in the next 5-10 years.

More specifically, the future work aims to implement forecasting models both in terms of

price and flexibility forecasting accompanied with comfort elasticity models that will lead to

improved flexibility extraction and aggregation through clustering techniques.

The wholesale electricity market is approximated as a one-shot day-ahead market

followed by a rescheduling in the balancing market. In reality, contracts for physical delivery

of electricity range from years to seconds ahead depending on the type of product being sold,

thus dynamically change throughout the days. To address this, the developed DR framework

will be enhanced with an “Energy Price Emulator” component. This component will be

responsible for the estimation of the price signal to be sent to each customer according to

market conditions (e.g. wholesale price volatility) and building conditions (e.g. available

demand flexibility and elasticity) in order to generate bespoke DR signals that will produce

the desired, globally coordinated impact on the cumulative demand of the customers. Typical

factors that influence electricity prices will be reviewed (such as season/day, weather, fuel

prices, demand elasticity etc.) and price forecasting techniques will be employed (regression

techniques, neural networks etc.). However, for use cases involving bilateral agreements

and participation in e.g. capacity markets, the market price will be perceived as a known-

constant value. The emulator will incorporate current and future price rate design approaches

to enable exploration, investigation and evaluation of dynamic pricing schemes (e.g. Critical

Peak Pricing, Real Time Pricing, ToU or novel ones potentially incentivising customers

with above average and reliable demand flexibility) to stimulate the enrolment of risk averse

customers, enhance protection of the energy poor as well as to bring the desired effect on the

retailer’s balance and finances.

Combining price along with demand elasticity forecasting will define the best aggregation

strategies that will yield the maximum profit for all enrolled actors. To this end, a “Human-

Centric Flexibility Extraction” component will be developed, whose purpose will be to

analyse how occupants use loads and to create personal/group profiles that can quantitatively

model their comfort preferences as well as their consumption and generation profiles.
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External variables, e.g. weather or seasonal patterns, as well as internal variables, e.g.

domestic habits, business processes, will be taken into account when generating comfort

models. Furthermore, the comfort models will be used to estimate flexibility potential

for the comfort-related loads – e.g. lighting, space heating, cooling – since typically

comfort is achieved within parameter boundaries, not only at exact values. Using all the

historical information collected about occupant behaviour, preferences and local demand

and generation, this component will quantitatively estimate the comfort elasticity, which

essentially represents how comfort preferences adapt to changing prices, e.g. consumers

may be willing to give up some comfort when prices rise in order to avoid excessive energy

bills. Comfort elasticity which involves comfort-related loads will be combined with demand

elasticity to generate an aggregate elasticity model for the building that can be used to

reproduce human behaviour to the extent possible. Furthermore, this component will be able

to leverage local generation or storage capabilities in order to improve flexibility volume

forecasts.

Both the demand elasticity and flexibility volume forecasts will be utilized for the creation

of “Virtual Node Platform”. A “Virtual Node” is considered to be a neighborhood-based

concept in which various customers are clustered based on various strategic possibilities.

The clustering parameters will include not only their geographical locations but also their

demand elasticity, flexibility forecasts as well as reliability and fairness indices that are

already established in the proposed DR framework. When a customer alters one of these

parameters (e.g. due to a renovation), he/she will be automatically reassigned to another

cluster/Node. Each customer will be profiled and clustered within a node, and each node will

be profiled and handled by the Aggregator with a node-specific DR strategy. The Aggregator

will perceive each “Virtual Node” as a large prosumer with specific characteristics defined

through an overall Node Profile. This segmentation will allow the Aggregator to further

improve the flexibility aggregation by optimizing the use of his energy portfolio in terms of

performance, grid balancing and capacity. Upon completion of the cluster, a “Virtual Node

Platform” will undertake the role of creating profiles for every customer assigned to the

Node, based on which, incoming DR signals will be distributed accordingly, following a top-

down approach. On the other hand, when a Node produces or consumes more energy that it

would normally do (and/or based on the Aggregator’s forecasting), a matchmaking algorithm

will be activated towards identifying the best solution for the issue at hand. Initially, the

“Virtual Node Platform” will try to optimally handle the assets belonging to the Node to
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absorb the problem internally, but in cases that this is found to be inadequate the matching

process will be expanded to other Nodes. If then again the issue remains, the Node will

dispatch a DR signal towards the Aggregator following a bottom-up approach and exploiting

a bi-directional DR communication. Accordingly, if an imbalance issue is detected, the

Node will follow the same approach by initially trying to balance the loads internally, then

in coordination with other nodes (that have loads on the affected bus) and finally through the

Aggregator.

Finally, the upgraded framework will be benchmarked on the already established pilot-

network of 300 prosumers which will be upgraded with the required equipment as well as up-

scaled to include feeders that represent real congestion points, so that all the functionalities

can be tested and verified in real scenarios. The pilot-network will be upgraded in order

to provide a heterogeneity of electricity customers as well as a number and capacity of

intermittent generation. This will enable the testing of several different use cases and the

concept of “Virtual Nodes”. Similarly to the DSM-scheme, a holistic Cost-Benefit-Analysis

(CBA) in full collaboration with the local Distribution System Operator will be conducted.

The parameters for the CBA will include the improvement of energy efficiency in buildings,

energy cost and emissions reduction, grid balancing (and investment deferral), security of

energy supply, reduction of energy poverty, protection of vulnerable customers and enhanced

market participation of energy consumers in order to evaluate the potential impact on the

entire energy system. The CBA will also include the assessment and quantification of macro

societal benefits, such as number of new jobs created, etc. Most of these social impacts will

also be considered in the economic impact, monetizing the benefits provided.

The future DR framework will be simultaneously applied with the developed price-based

DSM scheme in the upgraded pilot-network. This parallel operation will render the pilot-

network as the ultimate test-bed that will enable various Stakeholders to benchmark future

electricity market opportunities, thus developing future core solutions for DSM and DR

toolkits with a scalability potential.
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[96] M. S. Jiménez, C. Filiou, V. Giordano, I. Onyeji, and G. Fulli, Guidelines for

Conducting a Cost-benefit analysis of Smart Grid projects. 2012.

[97] V. Venizelou, S. Theocharides, G. Makrides, P. Georgiou, N. Ayiomamitis,

V. Efthymiou, and G. E. Georghiou, “Smart metering and time-varying pricing

deployment – cost-benefit analysis from a real pilot-implementation,” in 2018

IEEE 7th World Conference on Photovoltaic Energy Conversion (WCPEC) (A Joint

Conference of 45th IEEE PVSC, 28th PVSEC 34th EU PVSEC), pp. 2430–2434, 2018.

[98] V. Venizelou, G. Makrides, V. Efthymiou, and G. E. Georghiou, “Residential

consumption responsiveness under time-varying pricing,” in 2018 IEEE International

Energy Conference (ENERGYCON), pp. 1–6, 2018.

[99] V. Venizelou, G. Makrides, V. Efthymiou, and G. E. Georghiou, “Designing a

pareto-superior time-varying pricing for residential prosumers,” in 2018 IEEE 12th

International Conference on Compatibility, Power Electronics and Power Engineering

(CPE-POWERENG 2018), pp. 1–6, 2018.

[100] V. Venizelou, N. Philippou, M. Hadjipanayi, G. Makrides, V. Efthymiou, and G. E.

Georghiou, “Development of a novel time-of-use tariff algorithm for residential

prosumer price-based demand side management,” Energy, vol. 142, pp. 633 – 646,

2018.

[101] V. Venizelou, G. Makrides, V. Efthymiou, and G. E. Georghiou, “Evaluation of load

shifting potential due to the application of time of use tariffs,” in 2018 Energy Systems

Conference, 2018.

127

VENIZELO
S VENIZELO

U



[102] T. Moore, “Energizing Customer Demand Response in California,” EPRI Journal,

vol. 26, no. 1, p. 7, 2001.

[103] S. V. C. D. Souza and R. G. Junqueira, “A procedure to assess linearity by ordinary

least squares method,” Analytica Chimica Acta, vol. 552, pp. 25–35, 2005.

[104] C. K. Woo, “A note on measuring household welfare effects of time-of-use (TOU)

pricing,” The Energy Journal, vol. 5, no. 3, pp. 171–181, 1984.

[105] ”DNV KEMA”, “Economic analysis of the introduction of smart meters in cyprus

(unpublished confidential document prepared by dnv kema for the eac),” 2014.

[106] V. Venizelou, G. Makrides, V. Efthymiou, and G. E. Georghiou, “Pilot implementation

of time-of-use tariffs: Results and lessons learned,” in 6th International Conference

on Renewable Energy Sources and Energy Efficiency (RESEE2018), 2018.

[107] V. Venizelou, I. Cole, V. Efthymiou, and G. E. Georghiou, “Architectural design of

decentralized demand response with integrated peer-to-peer technology,” in 2019 1st

International Conference on Energy Transition in the Mediterranean Area (SyNERGY

MED), pp. 1–5, 2019.

[108] O. Alliance, “Openadr 2.0 specifications.”

https://www.openadr.org/specification, 2013.

[109] A. Fernández-Izquierdo, A. Cimmino, C. Patsonakis, A. C. Tsolakis, R. Garcı́a-

Castro, D. Ioannidis, and D. Tzovaras, “Openadr ontology: Semantic enrichment

of demand response strategies in smart grids,” in 2020 International Conference on

Smart Energy Systems and Technologies (SEST), pp. 1–6, IEEE, 2020.

[110] A. Cimmino, N. Andreadou, A. Fernández-Izquierdo, C. Patsonakis, A. C. Tsolakis,

A. Lucas, D. Ioannidis, E. Kotsakis, D. Tzovaras, and R. Garcı́a-Castro, “Semantic

interoperability for dr schemes employing the sgam framework,” in 2020 International

Conference on Smart Energy Systems and Technologies (SEST), pp. 1–6, IEEE, 2020.

[111] H. Fabric, “Key concepts - blockchain network.” https://hyperledger-fabric.

readthedocs.io/en/release-1.4/network/network.html.

[112] C. Patsonakis, S. Terzi, I. Moschos, D. Ioannidis, K. Votis, and D. Tzovaras,

“Permissioned blockchains and virtual nodes for reinforcing trust between aggregators

128

VENIZELO
S VENIZELO

U

https://www.openadr.org/specification
https://hyperledger-fabric.readthedocs.io/en/release-1.4/network/network.html
https://hyperledger-fabric.readthedocs.io/en/release-1.4/network/network.html


and prosumers in energy demand response scenarios,” in 2019 IEEE International

Conference on Environment and Electrical Engineering and 2019 IEEE Industrial and

Commercial Power Systems Europe (EEEIC/I&CPS Europe), pp. 1–6, IEEE, 2019.

[113] V. Venizelou, G. Makrides, V. Efthymiou, and G. E. Georghiou, “Methodology

for deploying cost-optimum price-based demand side management for residential

prosumers,” Renewable Energy, vol. 153, pp. 228 – 240, 2020.

[114] I. Papageorgiou, P. Therapontos, D. Charalambides, and V. Efthymiou, “Generalized

operational flexibility for integrating renewables in the distribution grid: D7.4 report

on demonstration results evaluation – use case 1.” https://www.goflex-project.

eu/Deliverables.htmlf, 2020.

[115] Hyperledger, “Hyperledger explorer.”

https://github.com/hyperledger/blockchain-explorer, 2020.

129

VENIZELO
S VENIZELO

U

https://www.goflex-project.eu/Deliverables.htmlf
https://www.goflex-project.eu/Deliverables.htmlf
https://github.com/hyperledger/blockchain-explorer


VENIZELOS VENIZELOU

DOCTOR OF PHILOSOPHY DISSERTATION

2021

VENIZELO
S VENIZELO

U




