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Abstract: Analytical solutions are derived for the cessation Newtonian 

Couette flows with wall slip obeying a dynamic slip model. The circular 

Couette flow problem will be the first one that will be studied and 

afterwards the problem of annular Couette flow will be solved. In circular 

Couette flow, there are two rotating vertical coaxial cylinders of infinite 

length and the inner cylinder is rotating. In annular Couette flow, there are 

two horizontal coaxial cylinders of infinite length and the outer cylinder is 

sliding. The steady-state solution with no-slip at the walls along with the 

application of Navier and dynamic slip at the walls will be the way the 

solution of these two problems will be derived with dynamic slip being the 

most important part.   This slip equation allows for a relaxation time in the 

development of wall slip by means of a time-dependent term which forces 

the eigenvalue parameter to appear in the boundary conditions. The 

resulting spatial problem corresponds to a Sturm–Liouville problem 

different from that obtained using the static Navier slip condition. The 

orthogonality condition of the associated eigenfunctions is derived and the 

solutions are provided for the circular and annular Couette flow.  

 

Keywords: Newtonian fluid ▪ Couette flow ▪ Cessation flow ▪ Navier slip 

▪ Dynamic slip  
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Περίληψη: Αναλυτικές λύσεις προκύπτουν για την παύση των 

Νευτώνειων Couette ροών με συνθήκη ολίσθηση να εφαρμόζεται στα 

τοιχώματα που ακολουθεί το μοντέλο δυναμικής ολίσθησης. Το πρόβλημα 

της κυκλικής ροής Couette θα είναι το πρώτο που θα μελετηθεί και στη 

συνέχεια θα λυθεί το πρόβλημα της δακτυλιοειδούς ροής Couette. Στην 

κυκλική ροή Couette, υπάρχουν δύο περιστρεφόμενοι κάθετοι 

ομοαξονικοί κύλινδροι άπειρου μήκους και ο εσωτερικός κύλινδρος 

περιστρέφεται. Στη δακτυλιοειδή ροή Couette, υπάρχουν δύο οριζόντιοι 

ομοαξονικοί κύλινδροι άπειρου μήκους και ο εξωτερικός κύλινδρος 

ολισθαίνει. Η λύση μόνιμης ροής χωρίς ολίσθηση στα τοιχώματα μαζί με 

την εφαρμογή Navier και δυναμικής ολίσθησης στα τοιχώματα θα είναι ο 

τρόπος με τον οποίο θα προκύψει η λύση των δύο προβλημάτων με τη 

δυναμική ολίσθηση να είναι το πιο σημαντικό κομμάτι. Αυτή η εξίσωση 

ολίσθησης επιτρέπει ένα χρόνο χαλάρωσης στην ανάπτυξη της ολίσθησης 

του τοίχου μέσω ενός χρονικά εξαρτώμενου όρου που αναγκάζει την 

παράμετρο ιδιοτιμής να εμφανίζεται στις συνοριακές συνθήκες. Το χωρικό 

πρόβλημα που προκύπτει αντιστοιχεί σε ένα πρόβλημα Sturm–Liouville 

διαφορετικό από αυτό που προκύπτει χρησιμοποιώντας τη στατική 

συνθήκη ολίσθησης Navier. Η συνθήκη ορθογωνιότητας των σχετικών 

ιδιοσυναρτήσεων υπολογίζεται και παρέχονται οι λύσεις για την κυκλική 

και δακτυλιοειδή ροή Couette. 

 

Λέξεις κλειδιά: Νευτώνεια ροή ▪ Ροή Couette ▪ Παύση ροής ▪ Navier 

ολίσθηση ▪ Δυναμική ολίσθηση  
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Chapter 1: Introduction 

The goal of this dissertation is to study the circular and annular Newtonian Couette flows with 

wall slip laws applied into the two cylinders of our problems. Slip at the wall can be occurred 

not only with non-Newtonian but also with Newtonian fluids. Several slip laws have been used 

in the literature, but we are going to see three of them here, the no-slip, the Navier slip and the 

dynamic slip law. 

 

1.1 Wall slip laws 

  In rheology, the term "wall slip" refers to the phenomenon where a material flowing through 
a pipe or channel does not exhibit the same flow behavior near the wall as it does in the bulk of 

the material. Instead, the material near the wall may slip or slide along the surface, resulting in 

a different flow profile and a reduction in the effective viscosity of the material. (Talmon and 

Meshkati, 2022) 

  Wall slip is an important issue in many industrial processes, as it can lead to inaccurate 
measurements and inconsistent product quality. To account for wall slip, researchers have 

developed a number of "wall slip laws" that describe how the flow behavior of a material 

changes near the wall. 

  Several slip laws have been used in the literature, but we are going to see three of them here, 

the no-slip, the Navier slip and the dynamic slip. 

 

No-slip boundary condition 

  The no-slip condition is a fundamental principle in fluid mechanics that describes the behavior 

of fluid flow at solid surfaces. According to this law, the velocity of a fluid at a solid boundary 
is zero, or the fluid particles "stick" to the surface of the solid. This condition applies to both 

liquids and gases. 

  At the microscopic level, the no-slip condition arises from the interaction between fluid 

particles and the molecules of the solid surface. When a fluid particle comes into contact with 
a solid surface, it experiences a force that causes it to slow down and eventually come to a stop. 

The force arises from a combination of molecular interactions such as van der Waals forces, 

electrostatic forces, and chemical interactions between the fluid and the solid surface. 

  The no-slip condition has important consequences for fluid flow at solid boundaries. For 

example, it means that the velocity of a fluid near a wall is zero, which in turn affects the flow 
profile of the fluid. It also means that the transport of momentum and heat across a solid 

boundary is limited, which can have important implications for heat transfer and fluid mixing. 

  In practical applications, the no-slip condition is often used to model fluid flow in pipes, 

channels, and other confined geometries. By assuming that the velocity of the fluid is zero at 
the walls, engineers can simplify the mathematical description of the flow and make predictions 

about pressure drops, flow rates, and other fluid properties. 
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If the velocity of a solid boundary is Us , then the fluid particles adjacent to this boundary have 

the same velocity (Yilbas, 2018): 

𝑢𝐹 = 𝑈𝑆.                                                                          (1.1) 

Hence, if the wall is fixed (not moving), then    𝑢𝐹 = 0. 

 

Navier-slip boundary condition 

  The Navier slip law is a mathematical model used to describe the behavior of fluids at solid 

surfaces. It assumes that the fluid in contact with the surface does not adhere to it completely, 

but instead has a finite slip velocity along the surface. This slip velocity is characterized by a 
slip length, which is the distance over which the velocity profile of the fluid changes from its 

value at the surface to its value in the bulk. 

  The Navier slip law is named after Claude-Louis Navier, a French physicist and engineer who 

developed the theory of fluid mechanics in the 19th century. The law is based on the Navier-

Stokes equations, which are a set of partial differential equations that describe the motion of 

fluids. 

  The Navier slip law is important in the study of fluid flow in microchannels and in the design 

of microfluidic devices, where the effects of surface interactions become more pronounced due 

to the small size of the channels. It is also used in the analysis of flow in porous media and in 

the modeling of boundary layers in fluid flow problems. 

  Here fluid particles are allowed to slip at the wall. Let us denote by 𝑢𝑤 the relative velocity 

of the fluid particles to that of the wall, 

𝑢𝑤 = |𝑢𝐹 − 𝑈𝑠|.                                                            (1.2) 

Navier’s slip law (Navier, 1827) states that the slip velocity is proportional to the wall shear 

stress, 𝜏𝑤 , i.e., 

𝜏𝑤 = 𝛽𝑢𝑤,                                                                   (1.3) 

where 𝛽 is the slip coefficient. The no-slip condition is recovered when 𝛽
 

→ ∞; clearly, wall 

slip becomes stronger as 𝛽  is reduced. 

The coefficient in the Navier slip boundary condition, also known as the slip length, is a 
material property that depends on the surface characteristics of the solid boundary and the 

properties of the fluid flowing over it. It represents the distance from the boundary at which the 

fluid velocity becomes equal to the velocity of the solid boundary, and is defined as: 

𝛽 =  𝛿 −  𝛿₀, 

where 𝛿 is the hydrodynamic boundary layer thickness, and 𝛿₀ is the slip length for a perfectly 

smooth surface. 

The value of 𝛽 depends on various factors such as the surface roughness of the solid boundary, 
the viscosity of the fluid, the temperature of the fluid, and the velocity of the fluid. Generally, 

the slip length increases with increasing surface roughness and decreasing fluid viscosity. In 
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addition, the slip length may also depend on the direction of flow and the type of fluid-solid 

interaction. 

The value of 𝛽 is typically determined experimentally or through molecular dynamics 

simulations and can vary widely depending on the specific system being studied. 

 

Dynamic wall slip boundary condition 

The dynamic slip law at the walls is a concept in fluid mechanics that describes the behavior of 

fluids flowing over a solid surface. It refers to the relationship between the velocity of the fluid 

at the wall and the shear stress that develops there. 

In general, the behavior of fluids near a solid wall is influenced by a phenomenon known as the 

"no-slip" boundary condition, which states that the fluid velocity at the wall is zero. However, 

in some cases, this assumption does not hold true, and the fluid may slip over the wall to some 

extent. 

The dynamic slip law is important in a wide range of applications, such as microfluidics, 

nanofluidics, and surface science, where the behavior of fluids near surfaces is of great interest. 

Understanding the dynamic slip law can help engineers and scientists design more efficient 

fluid systems and develop better models of fluid behavior. 

When a fluid exhibits dynamic wall slip, the slip velocity at the wall depends on the history of 
the fluid motion. This dependence on past motion is often referred to as a “memory effect” and 

can be modeled using a memory parameter. 

One possible approach to modeling dynamic wall slip with a memory parameter is to use a 

generalized Navier slip boundary condition, which accounts for the slip velocity at the wall as 
a function of both the current fluid velocity and its history. The specific form of the slip 

boundary condition will depend on the underlying physical mechanisms that lead to wall slip. 

For example, in the case of a viscoelastic fluid, the slip velocity at the wall may depend on the 

deformation history of the fluid. In this case, a memory parameter can be introduced to describe 

the time-dependent behavior of the slip velocity. 

Overall, the modeling of dynamic wall slip with a memory parameter can be a complex 
problem, requiring a detailed understanding of the underlying physics and appropriate 

mathematical models. 

When slip is dynamic, the slip velocity does not adjust instantaneously to the wall shear stress. 

Eq. (1.3) is generalized by introducing a memory parameter or relaxation time λ (Hatzikiriakos 

and Dealy, 1991): 

𝑢𝑤 + 𝜆
𝑑𝑢𝑤

𝑑𝑡
=

𝜏𝑤

𝛽
  .                                                                (1.4) 

In steady flow, Eq. (1.4) is equivalent to Navier’s slip law, which is given by Eq. (1.3). 
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1.2 Newtonian flows with dynamic wall slip 

  Throughout the literature, several problems have been solved and many analytical solutions 
have been derived for  Newtonian flows with wall slips. In this chapter we are going to review 

two flows that have been solved in the past for Newtonian fluids with dynamic wall slip. 

  The first flow is from the paper Kaoullas et al. (2015) and gives us analytical solutions for the 

problem “Start-up and cessation Newtonian Poiseuille and Couette flows with dynamic slip”. 

In this paper the authors derive analytical solutions for the start-up and cessation Newtonian 
Poiseuille and Couette flows with wall slip obeying a dynamic slip model. More specifically 

the authors study the start-up and cessation flows of axisymmetric Poiseuille flow, plane 

Poiseuille flow, plane Couette flow and circular Couette flow. (The last one is also part of this 
dissertation, so it is described in detail in subchapter 2.5). The authors conclude with the 

observation that “under a dynamic slip condition, the slip velocity rather than depending on the 

instantaneous value of the wall shear stress, also depends on its past states. This effect delays 

the evolution of the slip velocity, and also the flow development”. 

  The second flow is from the paper of Abou-Dina et al. (2020) and gives us analytical solutions 

for the problem “Newtonian plane Couette flow with dynamic wall slip”. The authors consider 

the flow of a Newtonian fluid contained between infinite, horizontal parallel plates, placed at a 

distance 𝐻 apart. The fluid is assumed to be at rest and suddenly the upper plate starts moving 

horizontally at a speed 𝑉 while the lower one is kept fixed.  

 When dynamic wall slip is considered, the authors derive analytical solutions with two 

methods, the standard separation of variables (Fourier) method and the one-sided Fourier 

method. The method that will be used in our problems is the method of separation of variables. 

The authors conclude their paper stating that “the fact that reaching a steady state in the 

presence of dynamic wall slip may take very long times is very important and can be used in 

rheometry. The analytical solution presented in this paper may be useful in calculating the slip 

relaxation coefficients from transient experiments in both Newtonian and generalized-

Newtonian (e.g. power-law) fluids. More systematic experimental data on both Newtonian and 

non-Newtonian fluids will be most useful in understanding better the implications of dynamic 

slip in practice”. 

  

1.3 Objective and outline of the thesis 

The objective is to derive analytical solutions for the circular and annular Couette cessation 

flows of a Newtonian fluid exhibiting dynamic wall slip. The latter is considered for the first 

time. 

  In Chapter 2, we are studying the analytical solutions of a Newtonian fluid in circular Couette 

flow, where the inner cylinder is rotating with an angular velocity 𝛺.  In the beginning we apply 

the no-slip law and after that we repeat the process with the Navier slip law at the walls. Then 

we derive analytical solutions for the cessation of circular Couette flows with no-slip and 

Navier slip laws applied in our problems respectively. We continue with solving the problem, 

cessation of circular Couette flow but this time with dynamic slip at the walls. In the last 

subchapter we present a table with analytical solutions for the velocity of our fluid in the case 

that the outer cylinder is rotating instead of the inner. 

  In Chapter 3, we are studying the analytical solutions of a Newtonian fluid in annular Couette 

flow, where the outer cylinder is sliding with a velocity 𝑉 when the inner cylinder is fixed. We 

proceed applying the same wall slips and derive analytical solution for this problem and in the 
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last subchapter we present another table where  the inner cylinder is sliding, and the outer 

cylinder is fixed. 

  In Chapter 4, we summarize our conclusions of this dissertation and we state any 

recommendations for future work. 
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Chapter 2: Circular Couette flow 
 

  In fluid dynamics, the Taylor–Couette flow is a type of flow where a fluid is contained 

between two concentric cylinders, with one of the cylinders rotating while the other is 

stationary. Taylor demonstrated that by increasing the angular velocity of the inner cylinder 

beyond a specific limit, the flow of the fluid between the cylinders becomes unsteady, resulting 

in the emergence of a new state that consists of symmetrical toroidal vortices, referred to as 

Taylor vortex flow. As a result, as the cylinder's angular speed is raised, the system experiences 

a series of disturbances that result in states with more complex patterns in space and time. The 

subsequent state is referred to as a wavy vortex flow. 

When the Reynolds number is low, meaning low angular velocities, the flow is steady and only 

azimuthal. This flow known as circular Couette flow was named after Maurice Marie Alfred 

Couette, who employed the apparatus to determine viscosity. The research paper by Sir 

Geoffrey Ingram Taylor (Taylor,1923), which examined the stability of Couette flow, was a 

significant milestone in the progress of hydrodynamic stability theory. Taylor demonstrated 

that the no-slip condition is the correct boundary condition for viscous flows at a solid 

boundary, which was previously in dispute by the scientific community.   

   Circular Couette flow has wide applications in various fields, including, Magnetic fields, Heat 

transfer, Rheology and Chemical Engineering.  

  In Magnetic fields, the stability of the circular Couette flow is being examined in a system 

consisting of two cylinders that rotate around the same axis, with a ferrofluid filling the gap 

between them. A uniform magnetic field is applied in the same direction as the cylinder axis. 

Various models are being used to analyze the stability of this flow, with consideration given to 

the polydispersity of the ferrofluid to differing extents.( A. Leschhorn et al., 2009) 

  In Heat transfer, the stability of heated, incompressible Taylor-Couette flow has been 

investigated through numerical simulations. The study focuses on the impact of the centrifugal 

and gravitational potentials. The flow occurs between two cylinders that are concentric and 

differentially heated, with the inner cylinder allowed to rotate.( R. Kedia et al., 1998) 

  In Rheology, the impact of non-Newtonian rheology on mixing efficiency is not yet fully 

understood. To shed light on this topic, researchers conducted a study using particle image 

velocimetry and flow visualization to analyze the effect of shear-thinning rheology on a Taylor-

Couette reactor.( Cagney and Balabani, 2019) 

  In Chemical Engineering, Taylor-Couette flows, which occur between two concentric 

cylinders, have many potential applications, especially in small-scale two-phase devices for 

solvent extraction. To explore this further, an experimental device was created with two 

cylinders, one rotating and one fixed, and the option to add pressure-driven axial flow. Taylor-

Couette flow progresses to turbulence via a series of hydrodynamic instabilities, which can 

significantly impact mixing and the axial dispersion coefficient. These flow bifurcations can 

also lead to flawed modeling of the interaction between flow and mass transfer, making them a 

crucial factor to consider. (Nemri et al., 2013) 

  In this chapter we study the steady, axisymmetric, torsional  flow of an incompressible 

Newtonian liquid between two rotating vertical coaxial cylinders of infinite length with radii 𝑅 

and 𝜅𝑅 where 0 < 𝜅 < 1 and the inner cylinder has angular velocity 𝛺, so we assume 𝑢𝑟 =

𝑢𝑧 = 0    , 𝑑𝑢𝜃/𝑑𝜃 = 0   ,   𝑑𝑝/𝑑𝜃 = 0 and 𝑔 = −𝑔𝑒𝑧 . In Fig.1 we can see the geometry of 

circular Couette flow which will interest us in this chapter. 
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As a result of our assumptions, the θ-momentum equation gives: 

𝜕𝑢𝜃

𝜕𝑡
= 𝑣 (

𝜕2𝑢𝜃

𝜕𝑟2
+

1

𝑟

𝜕𝑢𝜃

𝜕𝑟
−

1

𝑟2
𝑢𝜃)                           

(2.1) 

 

where, 𝑣 = 𝜂/𝜌 is the kinematic viscosity. 

The steady-state solution is found by setting  𝜕𝑢𝜃/𝜕𝑡 = 0  and integrating twice. 

The general form of the angular velocity  𝑢𝜃    is given by (Papanastasiou et al.,1999) 

𝑢𝜃(𝑟) = 𝑐1𝑟 +
𝑐2

𝑟
 ,                                                             (2.2) 

 

and the wall shear stress is given by 

  𝜏𝑟𝜃 = 𝜏𝜃𝑟 = −
2𝜂𝑐2

𝑟2 = 𝜂𝑟
𝑑

𝑑𝑟
(

𝑢𝜃

𝑟
),                                                       (2.3) 

𝜏𝑤 = 𝛽 𝑢𝑤 .                                                                              (2.4) 

 In each of the following paragraphs we are going to find these constants and derive the 

analytical solution of the velocity. 

 

 

 

Fig. 1. Geometry of circular Couette flow 
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2.1 The steady-state circular Couette flow with no slip at the walls 

 

The geometry of the steady-state circular Couette flow with no slip at the walls can be seen in 

Fig. 2. For this problem the inner cylinder is rotating with angular velocity Ω and there is no 

slip at the walls. As a result, the boundary conditions are: 

  𝑟 = 𝜅𝑅     𝑢𝜃 = 𝛺𝜅𝑅,                                                    (2.5) 

𝑟 = 𝑅        𝑢𝜃 = 0.                                                              (2.6) 

 

 

Fig. 2. Geometry of the steady state circular Couette flow with the no-slip laws applied at the 

walls 

 

Appling the boundary conditions in equation  (2.2) we get: 

𝑢𝜃(𝜅𝑅) = 𝛺𝜅𝑅 = 𝑐1𝜅𝑅 +
𝑐2

𝜅𝑅
   ,                                                (2.7) 

𝑢𝜃(𝑅) = 0 = 𝑐1𝑅 +
𝑐2

𝑅
   .                                                          (2.8) 

Solving the above system, we get: 

 𝑐2 =
𝛺𝜅2𝑅2

1 − 𝜅2
   ,    𝑐1 =  −

𝛺𝜅2

1 − 𝜅2
  . 

 

Substituting the above in equation (2.2) we get that the velocity is given by: 

  𝑢𝜃(𝑟) =
𝛺𝜅2𝑅

1 − 𝜅2
 (

𝑅

𝑟
−

𝑟

𝑅
)  . 

(2.9) 

 

The velocity in both walls will be zero because of the no slip condition:   

𝑢𝑤1
= 𝑢𝑤2

= 0  . (2.10) 
 

Substituting  𝑐2 = 𝛺𝜅2𝑅2/(1 − 𝜅2)  in equation (2.3) we get that the wall shear stress is given 

by: 
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𝜏𝑟𝜃 =  −
2𝜂𝛺𝜅2𝑅2

(1 − 𝜅2)𝑟2
  . 

(2.11) 

The wall shear stress in each of the walls will be 

𝜏𝑤1
=  

2𝜂𝛺

(1 − 𝜅2)
    ,   𝜏𝑤2

=  𝜅2𝜏𝑤1
  . 

(2.12) 

We close this section by finding the dimensionless equations for velocity and wall shear stresses 

which are going to help us in the sequel.  

We divide both parts of our equation with 𝛺𝑅 and we set 𝑢𝜃
∗ = 𝑢𝜃/𝛺𝑅  and  𝑟∗ = 𝑟/𝑅  to get: 

𝑢𝜃
∗ =

𝜅2

1 − 𝜅2
(

1

𝑟∗
− 𝑟∗)  . 

(2.13) 

 

Likewise,   

𝜏𝑟𝜃
∗ = −

2𝜅2

𝑟∗2(1 − 𝜅2)
  , 

(2.14) 

where  

  𝜏𝑟𝜃
∗ =

𝜏𝑟𝜃

𝜂𝛺
  . 

Additionally, 

𝜏𝑤1
∗ =  

2

(1 − 𝜅2)
    ,   𝜏𝑤2

∗ =  𝜅2𝜏𝑤1
  . 

(2.15) 

 

 

■ 
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2.2 The steady-state circular Couette flow with Navier slip at the walls 

 

The geometry of the steady-state circular Couette flow with Navier slip at the walls can be seen 

in Fig. 3. For this problem the inner cylinder is rotating with angular velocity 𝛺 and at the walls 

we have Navier slip, so the velocities at the walls will not be zero. As a result, the boundary 

conditions are: 

𝑟 = 𝜅𝑅     𝑢𝜃 = 𝛺𝜅𝑅 − uw1
 ,                                         (2.16) 

𝑟 = 𝑅        𝑢𝜃 = 𝑢𝑤2
 .                                                      (2.17) 

 

 

Fig. 3. Geometry of the steady-state circular Couette flow with the Navier slip  laws applied at 

the walls 

 

Appling the boundary conditions in equation  (2.2) we get: 

𝑢𝜃(𝜅𝑅) = 𝛺𝜅𝑅 − 𝑢𝑤1
= 𝑐1𝜅𝑅 +

𝑐2

𝜅𝑅
  ,  (2.18) 

𝑢𝜃(𝑅) = 𝑢𝑤2
= 𝑐1𝑅 +

𝑐2

𝑅
  .   (2.19) 

By Eq. (2.4) we have: 

𝑢𝑤1
=

2𝜂𝑐2

𝛽𝜅2𝑅2
  , 

(2.20) 

𝑢𝑤2
=

2𝜂𝑐2

𝛽𝑅2
  . 

(2.21) 

From  Eqs. (2.18) and (2.20) we get  

𝛺𝜅𝑅 −
2𝜂𝑐2

𝛽𝜅2𝑅2
= 𝑐1𝜅𝑅 +

𝑐2

𝜅𝑅
  , 

(2.22) 

and from Eqs. (2.19) and (2.21) we get 

𝑐1 =
2𝜂𝑐2

𝛽𝑅3
−

𝑐2

𝑅2

 
⇒ 𝑐1 =

(2𝜂−𝛽𝑅)𝑐2

𝛽𝑅3
  . 

(2.23) 
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Equations (2.22) and (2.23) give:  

𝑐1 =
𝛺𝜅3(2𝜂 –  𝛽𝑅)

2𝜂 (1 + 𝜅3) + 𝛽𝜅𝑅(1 − 𝜅2)
 , 𝑐2 =

𝛺𝛽𝜅3𝑅3

2𝜂 (1 + 𝜅3) + 𝛽𝜅𝑅(1 − 𝜅2)
  . 

Therefore, the velocity is given by: 

  𝑢𝜃(𝑟) =
𝛺𝜅3𝑅

2𝜂 (1 + 𝜅3) + 𝛽𝜅𝑅(1 − 𝜅2)
((2𝜂 –  𝛽𝑅)

𝑟

𝑅
+ 𝛽𝑅

𝑅

𝑟
)  . 

(2.24) 

Substituting 𝑐2 = 𝛺𝛽𝜅3𝑅3/(2𝜂 (1 + 𝜅3) + 𝛽𝜅𝑅(1 − 𝜅2))  in equation (2.3) we get that the 

wall shear stress is given by: 

𝜏𝑟𝜃 = −
2𝜂𝛺𝛽𝜅3𝑅3

2𝜂 (1 + 𝜅3) + 𝛽𝜅𝑅(1 − 𝜅2)

1

𝑟2
  , 

(2.25) 

and the wall shear stress in each of the walls is: 

𝜏𝑤1
 =

2𝜂𝛺𝛽𝜅 𝑅 

2𝜂 (1 + 𝜅3) + 𝛽𝜅𝑅(1 − 𝜅2)
    ,   𝜏𝑤2

=  𝜅2𝜏𝑤1
. 

(2.26) 

As a result, from Eq. (2.4), the velocity in each of the walls will be: 

𝑢𝑤1
=

2𝜂𝛺𝜅 𝑅 

2𝜂 (1 + 𝜅3) + 𝛽𝜅𝑅(1 − 𝜅2)
    ,   𝑢𝑤2

= 𝜅2𝑢𝑤1
. 

(2.27) 

We close by finding the dimensionless equations for our velocities and wall shear stresses. For 

our velocities we are dividing both parts of our equation with 𝛺𝑅 and we set 𝑢𝜃
∗ = 𝑢𝜃/𝛺𝑅  ,  

𝑟∗ = 𝑟/𝑅 and 𝛣 = 𝜂/𝛽𝑅 so we get: 

𝑢𝜃
∗ =

𝜅3

2𝐵(1 + 𝜅3) + 𝜅(1 − 𝜅2)
((2𝛣 − 1)𝑟∗ +

1

𝑟∗
)  . 

(2.28) 

  In Fig. 4, we can see the evolution of the velocity profile in circular Couette flow with Navier 

slip law applied in the walls for various values of B (Philippou et al.,2017). We observe that 

when we raise the value of B, the velocity starts decreasing slower each time.  Fig. 5 shows the 

evolution of the velocity at the inner wall, also for various values of B. For better understanding 

of our result, we use a semilog scale. (Georgiou and Xenophontos,2007) 

The velocities in the wall are: 

𝑢𝑤1
∗ =

2𝜅𝛣

2𝛣(1 + 𝜅3) + 𝜅(1 − 𝜅2)
    ,   𝑢𝑤2

= 𝜅2𝑢𝑤1
 .  

(2.29) 

Likewise,   

𝜏𝑟𝜃
∗ = −

2𝜅3

2𝛣(1 + 𝜅3) + 𝜅(1 − 𝜅2)

1

𝑟∗2
 

where      𝜏𝑟𝜃
∗ = 𝜏𝑟𝜃/𝜂𝛺  , 

 

(2.30) 

  
(2.31) 
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𝜏𝑤1
∗  =

2𝜅 

2𝛣(1 + 𝜅3) + 𝜅(1 − 𝜅2)
    ,   𝜏𝑤2

=  𝜅2𝜏𝑤1
. 

      

Remark:  When  𝛣 = 0   (𝛽 → ∞)   Eqs. (2.28), (2.30) and (2.31) are reduced to Eqs. (2.13), 
(2.14) and (2.15) respectively 

■ 

 

  

Fig. 4. Evolution of the velocity profile in circular Couette flow with Navier slip law applied in 

the walls for B= 0 , 0.1 , 1  and 10 
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(a) 

 

 

(b) 

 

 

(c) 

Fig. 5  Evolution of the velocity at the inner wall when: (a) B= 0, 1 ; (b) B= 0, 10 ; (c) B= 0, 100  
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2.3 Cessation of circular Couette flow with no slip at the walls 

 

The geometry of the cessation of circular Couette flow with no slip at the walls can be seen in 

Fig. 6. For this problem the inner cylinder is rotating with angular velocity 𝛺 and there is no 

slip at the walls. When  𝑡 = 0 the angular velocity ceases to exist.  As a result, the boundary 

and initial conditions are: 

𝑟 = 𝜅𝑅     𝑢𝜃 = 0    𝑡 ≥ 0  ,                                                        (2.32) 

𝑟 = 𝑅        𝑢𝜃 = 0    𝑡 > 0  ,                                                        (2.33) 

𝑢𝜃(𝑟, 0) =
𝛺𝜅2𝑅

1 − 𝜅2
(

𝑅

𝑟
−

𝑟

𝑅
)  . 

(2.34) 

 

       

t<0                                                                              t=0 

Fig. 6  Geometry of cessation of circular Couette flow with the no slip  laws applied at the walls 

 

We  solve this initial boundary value  problem with the method of separation of variables, 

Let 

𝑢𝜃(𝑟, 𝑡) = 𝑌(𝑟)𝑇(𝑡). (2.35) 

Substituting into Eq. (2.1) we get 

𝑌(𝑟)𝑇′(𝑡) = 𝑣 (𝑌′′(𝑟)𝑇(𝑡) +
1

𝑟
𝑌′(𝑟)𝑇(𝑡) −

1

𝑟2
𝑌(𝑟)𝑇(𝑡)) 

Dividing by     𝑣𝑌(𝑟)𝑇  (𝑡)     we get  

𝑇′(𝑡)

𝑣𝑇(𝑡)
=

𝑌′′(𝑟)

𝑌(𝑟)
+

1

𝑟

𝑌′(𝑟)

𝑌(𝑟)
−

1

𝑟2

𝑌(𝑟)

𝑌(𝑟)
 

Because each side of the  equation depends on different variables then each one should be equal 

with the same constant. Let this constant be  𝑐𝑜𝑛𝑠𝑡. = −
𝑎2

𝑅2 . 
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As a result, we get two new equations: 

𝑇′(𝑡) = −
𝑎2

𝑅2
𝑣𝑇(𝑡)

 
⇒   

𝑇(𝑡) = 𝐴𝑒
−

𝑎2

𝑅2𝑣𝑡
  . 

(2.36) 

Additionally  

𝑌′′(𝑟) +
1

𝑟
 𝑌′(𝑟) −

1

𝑟2
(1 −

𝑎2

𝑅2
𝑟2) 𝑌(𝑟) = 0

 
⇒    

𝑌(𝑟) = 𝑐1 𝐽1 (
𝑎𝑟

𝑅
) + 𝑐2 𝑌1 (

𝑎𝑟

𝑅
)  . (2.37) 

Where  𝐽1 and 𝑌1 are, first order  Bessel functions of the first and second kind respectively. We 

let: 

𝑍1 (
𝑎𝑟

𝑅
) = 𝐽1 (

𝑎𝑟

𝑅
) + 𝛽𝑌1 (

𝑎𝑟

𝑅
)  , (2.38) 

with 𝛽 being a new constant. 

From boundary conditions we get:   𝛽 = −
𝐽1(𝑎)

𝑌1(𝑎)
 , 

   𝑍1(𝜅𝛼) = 𝐽1(𝜅𝛼) + 𝛽𝑌1(𝜅𝛼) = 0  ,                                       (2.39) 

   𝑍1(𝛼) = 𝐽1(𝛼) + 𝛽𝑌1(𝛼) = 0  .                                            (2.40) 

With superposition of the solution: 

𝑢𝜃(𝑟, 𝑡) = ∑ 𝐶𝑘𝑍1𝑘 (
𝑎𝑘𝑟

𝑅
)

∞

𝑘=1

𝑒
−

𝑎𝑘
2

𝑅2 𝑣𝑡
  . 

 

(2.41) 

When  𝑡 = 0 we get from equation (2.41) and the initial condition, the following: 

𝛺𝜅2𝑅

1 − 𝜅2
(

𝑅

𝑟
−

𝑟

𝑅
) = ∑ 𝐶𝜅𝑍1𝜅 (

𝛼𝜅𝑟

𝑅
)

∞

𝜅=1

  . 

 

(2.42) 

The orthogonality condition states that: 

∫  𝑍1
2 (

𝛼𝑛𝑟

𝑅
)

𝑅

𝜅𝑅

𝑟 𝑑𝑟 = [
𝑟2

2𝑅2
{𝛧1

′ (𝛼𝜅

𝑟

𝑅
)}

2

+
𝑟2

2𝑅2
(1 −

𝑅2

𝛼𝜅
2𝑟2

) {𝛧1 (𝛼𝜅

𝑟

𝑅
)}

2

]
𝜅

1

  . 

In order to use the orthogonality condition, we multiply (2.42) by  𝑟𝑍1 (
𝛼𝑛𝑟

𝑅
) and integrate from 

𝜅𝑅 to 𝑅: 

𝐶𝜅 ∫  𝑍1
2 (

𝛼𝑛𝑟

𝑅
)

𝑅

𝜅𝑅

𝑟 𝑑𝑟 = ∫
𝛺𝜅2𝑅

1 − 𝜅2

𝑅

𝜅𝑅

(
𝑅

𝑟
−

𝑟

𝑅
) 𝑟 𝑍1 (

𝛼𝑛𝑟

𝑅
)  𝑑𝑟  . 

Now let   
𝑟

𝑅
= 𝜉  so if 𝑟 ∈ [𝜅𝑅, 𝑅]  

 
⇒ 𝜉 ∈ [𝜅, 1] and if     

𝑟

𝑅
= 𝜉    then   

1

𝑅
𝑑𝑟 = 𝑑𝜉. 
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So,   

𝐶𝜅𝑅2 ∫  𝑍1
2(𝛼𝜅𝜉)

1

𝜅

𝜉 𝑑𝜉 = ∫
𝛺𝜅2𝑅3

1 − 𝜅2

1

𝜅

(
1

𝜉
− 𝜉) 𝜉 𝑍1(𝛼𝜅𝜉) 𝑑𝜉

 
⇒ 

𝐶𝜅 =
𝛺𝜅2𝑅

1 − 𝜅2

∫  
1

𝜅
(1 − 𝜉2) 𝑍1(𝛼𝜅𝜉) 𝑑𝜉 

∫  𝑍1
2(𝛼𝜅𝜉)

1

𝜅
𝜉 𝑑𝜉

  . 

 

 
(2.43) 

 

We calculate: 

𝐼1: = ∫  

1

𝜅

𝜉   𝑍1
2(𝛼𝜅𝜉) 𝑑𝜉 = [

𝜉2

2
{𝛧1

′ (𝛼𝜅𝜉)}2 +
𝜉2

2
(1 −

1

𝛼𝜅
2𝜉2

) {𝛧1(𝛼𝜅𝜉)}2]
𝜅

1

 

= [
1

2
(𝛧0(𝛼𝜅) −

1

𝛼𝜅
𝛧1(𝛼𝜅))

2

+
1

2
(1 −

1

𝛼𝜅
2) 𝛧1

2(𝛼𝜅) −
𝜅2

2
(𝛧0(𝜅𝛼𝜅) −

1

𝜅𝛼𝜅
𝛧1(𝜅𝛼𝜅))

2

−
1

2
(1 −

1

𝛼𝜅
2) 𝛧1

2(𝜅𝛼𝜅)]   =   
1

2
𝛧0

2(𝛼𝜅) −
𝜅2

2
𝛧0

2(𝜅𝛼𝜅) 

𝐼2: = ∫  

1

𝜅

 𝑍1(𝛼𝜅𝜉) 𝑑𝜉 = ∫ 𝛧1(𝑢)
𝑑𝑢

𝛼𝜅

𝛼𝜅

𝜅𝛼𝜅

 =
1

𝛼𝜅

[−𝛧0(𝑢)]𝜅𝛼𝜅

𝛼𝜅 =
1

𝛼𝜅

[𝛧0(𝜅𝛼𝜅) − 𝛧0(𝛼𝜅)] 

and  

𝐼3: = ∫  

1

𝜅

𝜉2 𝑍1(𝛼𝜅𝜉) 𝑑𝜉 = ∫
𝑢2

𝛼𝜅
2 𝛧1(𝑢)

𝑑𝑢

𝛼𝜅

𝛼𝜅

𝜅𝛼𝜅

=
1

𝛼𝜅
3

[𝑢2𝑍2(𝑢)]𝜅𝛼𝜅

𝛼𝜅

=
1

𝛼𝜅

[𝛧2(𝛼𝜅) − 𝜅2𝛧2(𝜅𝛼𝜅)] 

=
1

𝛼𝜅
[

2

𝛼𝜅
𝛧1(𝛼𝜅) − 𝛧0(𝛼𝜅) − 𝜅2 (

2

𝜅𝛼𝜅
𝛧1(𝜅𝛼𝜅) − 𝛧0(𝜅𝛼𝜅))]  

=
1

𝛼𝜅
(−𝛧0(𝛼𝜅) + 𝜅2𝛧0(𝜅𝛼𝜅))                                                         

 

Substituting in (2.43) we have: 

𝐶𝜅 =
𝛺𝜅2𝑅

1 − 𝜅2
  

1
𝛼𝜅

[𝛧0(𝜅𝛼𝜅) − 𝛧0(𝛼𝜅) + 𝛧0(𝛼𝜅) − 𝜅2𝛧0(𝜅𝛼𝜅)]

1
2  [𝛧0

2(𝛼𝜅) − 𝜅2𝛧0
2(𝜅𝛼𝜅)]   

 

      

=
2𝛺𝜅2𝑅(1 − 𝜅2)𝛧0(𝜅𝛼𝜅)

𝛼𝜅(1 − 𝜅2)[𝛧0
2(𝛼𝜅) − 𝜅2𝛧0

2(𝜅𝛼𝜅)]
  .                                                                             
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As a result,  

𝐶𝑘 =
2𝛺𝜅2𝑍0𝑘(𝜅𝑎𝑘)𝑅

𝑎𝑘[𝑍0𝑘
2 (𝑎𝑘) − 𝜅2𝑍0𝑘

2 (𝜅𝑎𝑘)]
  . 

 

The velocity is (see Eq. (2.41)): 

𝑢𝜃(𝑟, 𝑡) = ∑
2𝛺𝜅2𝑍0𝑘(𝜅𝑎𝑘)𝑅

𝑎𝑘[𝑍0𝑘
2 (𝑎𝑘) − 𝜅2𝑍0𝑘

2 (𝜅𝑎𝑘)]
𝑍1𝑘 (

𝑎𝑘𝑟

𝑅
)

∞

𝑘=1

𝑒
−

𝑎𝑘
2

𝑅2 𝑣𝑡
  . 

(2.44) 

 

Letting  𝑡∗ = 𝑣𝑡/𝑅2, 𝑟∗ = 𝑟/𝑅  , 𝑢𝜃
∗ = 𝑢𝜃

 /𝜅𝛺𝑅  we are getting the dimensionless velocity 

𝑢𝜃
∗ (𝑟∗, 𝑡∗) = 2𝜅 ∑

𝑍0𝑘(𝜅𝑎𝑘)

𝑎𝑘[𝑍0𝑘
2 (𝑎𝑘) − 𝜅2𝑍0𝑘

2 (𝜅𝑎𝑘)]
𝑍1𝑘(𝑎𝑘𝑟∗)

∞

𝑘=1

𝑒−𝑎𝑘
2𝑡∗

 

 
(2.45) 

 

 

■ 
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2.4 Cessation of circular Couette flow with Navier slip at the walls 

 

The geometry of the cessation of circular Couette flow with Navier slip at the walls can be seen 

in Fig. 7.  For this problem the inner cylinder is rotating with angular velocity 𝛺 and there is 

Navier slip at the walls. When t=0 the angular velocity ceases to exist.  As a result, the boundary 

and initial conditions are: 

𝑟 = 𝜅𝑅       𝑢𝜃 = 𝑢𝑤1
= 𝐵𝑅𝑟

𝑑

𝑑𝑟
(

𝑢𝜃

𝑟
) |𝑟=𝜅𝑅        𝑡 ≥ 0  , 

(2.46) 

𝑟 = 𝑅       𝑢𝜃 = 𝑢𝑤2
= −𝐵𝑅𝑟

𝑑

𝑑𝑟
(

𝑢𝜃

𝑟
) |𝑟=𝑅         𝑡 > 0  , 

(2.47) 

𝑢𝜃(𝑟, 0) =
𝛺𝜅3𝑅

2𝛣(1 + 𝜅3) + 𝜅(1 − 𝜅2)
(

𝑅

𝑟
− (1 − 2𝐵)

𝑟

𝑅
)  . 

(2.48) 

 

       

t=0                                                                              t>0 

Fig. 7  Geometry of cessation of circular Couette flow with the Navier slip  laws applied at the 

walls 

 

We  solve this initial boundary value problem with the method of separation of variables like 

in the previous paragraph and we get 

𝑇(𝑡) = 𝐴𝑒−
𝑏2

𝑅2𝑣𝑡
 and   𝑌(𝑟) = 𝐵 𝑍1 (

𝑏𝑟

𝑅
)  , 

where   𝑍1 is given by Eq. (2.38). From the boundary conditions we get: 

𝑌(𝑟)𝑇(𝑡) = 𝐵𝑅𝑟
𝑑

𝑑𝑟
(

𝑌(𝑟)𝑇(𝑡)

𝑟
)

𝑟=𝜅𝑅

= 𝛣𝑅𝑟 [
𝑟

𝑑
𝑑𝑟 𝑌(𝑟) − 𝑌(𝑟)

𝑟2
]

𝑟=𝜅𝑅

, 

𝑌(𝑟)𝑇(𝑡) = −𝐵𝑅𝑟
𝑑

𝑑𝑟
(

𝑌(𝑟)𝑇(𝑡)

𝑟
)

𝑟=𝑅

= 𝛣𝑅𝑟 [
𝑟

𝑑
𝑑𝑟 𝑌(𝑟) − 𝑌(𝑟)

𝑟2
]

𝑟=𝑅

, 

So, 

𝑍1(𝜅𝑏𝜅) = [𝐵𝑅
𝑑

𝑑𝑟
𝑍1 (𝑏𝜅

𝑟

𝑅
) − 𝐵

𝑅

𝑟
𝑍1 (𝑏𝜅

𝑟

𝑅
)]

𝑟=𝜅𝑅
, 

Alex
an

dro
s S

av
vid

is



20 
 

(
𝑑

𝑑𝑟
𝑍1 (𝑏𝜅

𝑟

𝑅
) =

𝑏𝜅

𝑅
(

1

2
𝑍0 (𝑏𝜅

𝑟

𝑅
) −

1

2
𝑍2 (𝑏𝜅

𝑟

𝑅
))

=
𝑏𝜅

𝑅
(

1

2
𝑍0 (𝑏𝜅

𝑟

𝑅
) −

1

2

2𝑅

𝑟𝑏𝜅
𝛧1 (𝑏𝜅

𝑟

𝑅
) +

1

2
𝛧0 (𝑏𝜅

𝑟

𝑅
))

=
𝑏𝜅

𝑅
𝑍0 (𝑏𝜅

𝑟

𝑅
) −

1

𝑟
𝛧1 (𝑏𝜅

𝑟

𝑅
))

 
⇒ 

𝑍1(𝜅𝑏𝜅) =
𝐵𝑅𝑏𝜅

𝑅
𝑍0(𝜅𝑏𝜅) −

𝐵

𝜅
𝛧1(𝜅𝑏𝜅) −

𝐵

𝜅
𝛧1(𝜅𝑏𝜅)

 
⇒ 

𝛣𝑏𝜅𝛧0(𝜅𝑏𝜅) − (1 +
2𝛣

𝜅
) 𝛧1(𝜅𝑏𝜅) = 0  .                                      (2.49) 

Likewise, 

𝛣 𝑏𝜅  𝛧0(𝑏𝜅) + (1 − 2𝐵) 𝛧1(𝑏𝜅)  = 0  .                                    (2.50) 

 

From Eq. (2.50)  we get       𝛣𝑏𝜅(𝐽0(𝑏𝜅) + 𝛾𝜅𝛶0(𝑏𝜅)) + (1 − 2𝛣)(𝐽1(𝑏𝜅) + 𝛾𝜅𝛶1(𝑏𝜅)) = 0 

𝛾𝜅 = −   
 𝛣𝑏𝜅𝐽0(𝑏𝜅) + (1 − 2𝛣)𝐽1(𝑏𝜅)

𝛣𝑏𝜅𝛶0(𝑏𝜅) + (1 − 2𝛣)𝛶1(𝑏𝜅)
  . 

Substituting 𝛾𝜅  into Eq. (2.49) we get: 

𝛣𝑏𝜅 ((𝛣𝑏𝜅𝛶0(𝑏𝜅) + (1 − 2𝛣)𝛶1(𝑏𝜅))𝐽0(𝜅𝑏𝜅)− (𝛣𝑏𝜅𝐽0(𝑏𝜅) + (1 − 2𝛣)𝐽1(𝑏𝜅))𝛶0(𝜅𝑏𝜅))

= (1 +
2𝛣

𝜅
) ((𝛣𝑏𝜅𝛶0(𝑏𝜅) + (1 − 2𝛣)𝛶1(𝑏𝜅))𝐽1(𝜅𝑏𝜅)

− (𝛣𝑏𝜅𝐽0(𝑏𝜅) + (1 − 2𝛣)𝐽1(𝑏𝜅))𝛶1(𝜅𝑏𝜅))  . 

With superposition of the solution, we get: 

𝑢 
𝜃(𝑟, 𝑡) = ∑ 𝐷𝑘𝑍1𝑘 (

𝑏𝑘𝑟

𝑅
)

∞

𝑘=1

𝑒
−

𝑏𝑘
2

𝑅2 𝑣𝑡
  . 

(2.51) 

 

When  𝑡 = 0 we get from equation (2.41) and the initial condition the following: 

∑ 𝐷𝜅𝛧1𝜅 (
𝑏𝜅𝑟

𝑅
) =

𝛺𝜅3𝑅

2𝛣(1 + 𝜅3) + 𝜅(1 − 𝜅2)
(

𝑅

𝑟
− (1 − 2𝐵)

𝑟

𝑅
)

∞

𝑘=1

  . 

 

Using the same orthogonality condition like in the previous paragraph, we multiply 

by  𝑟𝑍1 (
𝑏𝑛𝑟

𝑅
) and integrate from 𝜅𝑅 till 𝑅: 

𝐷𝜅 ∫    𝛧1
2 (

𝑏𝑛𝑟

𝑅
)  𝑟

𝑅

𝜅𝑅

𝑑𝑟 = ∫  
𝛺𝜅3𝑅

2𝛣(1 + 𝜅3) + 𝜅(1 − 𝜅2)
(

𝑅

𝑟
− (1 − 2𝐵)

𝑟

𝑅
)   𝛧1

 (
𝑏𝑛𝑟

𝑅
)  𝑟

𝑅

𝜅𝑅

 𝑑𝑟  . 

Now let   
𝑟

𝑅
= 𝜉  so if 𝑟 ∈ [𝜅𝑅, 𝑅]  

 
⇒ 𝜉 ∈ [𝜅, 1] and if     

𝑟

𝑅
= 𝜉    𝑡ℎ𝑒𝑛  

1

𝑅
𝑑𝑟 = 𝑑𝜉. 
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So  

𝐷𝜅𝑅2 ∫    𝛧1
2(𝑏𝑛𝜉) 𝜉

1

𝜅

𝑑𝜉 =
𝛺𝜅3𝑅3

2𝛣(1 + 𝜅3) + 𝜅(1 − 𝜅2)
∫  (

1

𝜉
− (1 − 2𝐵)𝜉)   𝛧1

 (𝑏𝑛𝜉) 𝜉

1

𝜅

 𝑑𝜉
 

⇒  

𝐷𝜅 =
𝛺𝜅3𝑅 

2𝛣(1 + 𝜅3) + 𝜅(1 − 𝜅2)

∫  (
1
𝜉 − (1 − 2𝐵)𝜉)   𝛧1

 (𝑏𝑛𝜉) 𝜉
1

𝜅
 𝑑𝜉

∫    𝛧1
2(𝑏𝑛𝜉) 𝜉

1

𝜅
𝑑𝜉

    . 

 
(2.52) 

 

We let: 

𝐼1 = ∫  𝛧1
 (𝑏𝑛𝜉)

1

𝜅

 𝑑𝜉 =   ∫  𝛧1
 (𝑢)

𝑏𝑛

𝜅𝑏𝑛

𝑑𝑢

𝑏𝑛
  =   

1

𝑏𝑛

[−𝑍0(𝑢)]𝜅𝑏𝑛  
𝑏𝑛 =   

1

𝑏𝑛

[𝛧0(𝜅𝑏𝑛) − 𝛧0(𝑏𝑛)]  , 

   𝐼2 = ∫ 𝜉2 𝛧1
 (𝑏𝑛𝜉)

1

𝜅

 𝑑𝜉 =   ∫
𝑢2

𝑏𝑛
𝛧1

 (𝑢)

𝑏𝑛

𝜅𝑏𝑛

𝑑𝑢

𝑏𝑛
  

=   
1

𝑏𝑛
3

[𝑢2𝑍2(𝑢)]𝜅𝑏𝑛

𝑏𝑛 =
1

𝑏𝑛
3 𝑏𝑛

2[𝛧2(𝑏𝑛) − 𝜅2𝛧2(𝜅𝑏𝑛)] 

=
1

𝑏𝑛
[

2

𝑏𝑛
𝛧1(𝑏𝑛) − 𝛧0(𝑏𝑛) − 𝜅2

2

𝜅𝑏𝑛
𝛧1(𝜅𝑏𝑛) + 𝜅2𝛧0(𝜅𝑏𝑛)] 

=
1

𝑏𝑛
[

2

𝑏𝑛

(−𝛣𝑏𝑛)

1 − 2𝛣
𝛧0(𝑏𝑛) − 𝛧0(𝑏𝑛) −

2𝜅

𝑏𝑛

𝛣𝑏𝑛

(1 +
2𝛣
𝜅

)
𝛧0(𝜅𝑏𝑛) + 𝜅2𝛧0(𝜅𝑏𝑛)] 

=
1

𝑏𝑛
[
−2𝛣 − 1 + 2𝛣

1 − 2𝛣
𝛧0(𝑏𝑛) −

2𝜅𝛣 − 𝜅2 − 2𝜅𝛣

1 +
2𝛣
𝜅

𝛧0(𝜅𝑏𝑛)] 

= −
1

𝑏𝑛

(1 +
2𝛣
𝜅

) 𝛧0(𝑏𝑛) − 𝜅2(1 − 2𝛣)𝛧0(𝜅𝑏𝑛)

(1 − 2𝛣) (1 +
2𝛣
𝜅

)
  , 

𝐼3 = ∫   𝜉 𝛧1
2(𝑏𝑛𝜉) 

1

𝜅

𝑑𝜉 = [
𝜉2

2
{𝛧1

′ (𝑏𝜅𝜉)}2 +
𝜉2

2
(1 −

1

𝑏𝜅
2𝜉2

) {𝛧1(𝑏𝜅𝜉)}2]
𝜅

1

= [
𝜉2

2
{𝛧0(𝑏𝜅𝜉) −

1

𝑏𝜅𝜉
𝛧1(𝑏𝜅𝜉)}

2

+
𝜉2

2

(𝑏𝜅
2𝜉2 − 1)

𝑏𝜅
2𝜉2

{𝛧1(𝑏𝜅𝜉)}2]
𝜅

1

 

=
1

2
{𝛧0(𝑏𝜅) −

1

𝑏𝜅
𝛧1(𝑏𝜅)}

2

+
1

2

(𝑏𝜅
2 − 1)

𝑏𝜅 

{𝛧1(𝑏𝜅)}2 −
𝜅2

2
{𝛧0(𝜅𝑏𝜅) −

1

𝑏𝜅
𝛧1(𝜅𝑏𝜅)}

2

−
(𝜅2𝑏𝜅

2 − 1)

2𝑏𝜅
2

{𝛧1(𝜅𝑏𝜅)}2 
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=
1

2
{𝛧0(𝑏𝜅) +

𝛣𝑏𝜅

𝑏𝜅(1 − 2𝛣)
𝛧0(𝑏𝜅)}

2

+
1

2

𝛣2𝑏𝜅
2(𝑏𝜅

2 − 1)

(1 − 2𝛣)2𝑏𝜅
2 𝛧0

2(𝑏𝜅)

−
𝜅2

2
 {𝛧0(𝜅𝑏𝜅) −

1

𝜅𝑏𝜅

𝛣𝑏𝜅

(1 +
2𝛣
𝜅

)
𝛧0(𝜅𝑏𝜅)}

2

−
(𝜅2𝑏𝜅

2 − 1)

2𝑏𝜅
2

𝛣2𝑏𝜅
2

(1 +
2𝛣
𝜅

)
2 𝛧0

2(𝜅𝑏𝜅) 

=
1

2(1 − 2𝛣)2 (1 +
2𝛣
𝜅

)
2 [(1 +

2𝛣

𝜅
)

2

(1 − 2𝛣 + 𝛣2𝑏𝜅
2)𝛧0

2(𝑏𝜅)

− 𝜅2(1 − 2𝛣)2 (1 +
2𝛣

𝜅
+ 𝛣2𝑏𝜅

2) 𝛧0
2(𝜅𝑏𝜅)]  . 

Substituting in equation (2.52) we have: 

𝐷𝜅 =
𝛺𝜅3𝑅 

2𝛣(1 + 𝜅3) + 𝜅(1 − 𝜅2)
∗ 

∗

1
𝑏𝑛

[𝛧0(𝜅𝑏𝑛) − 𝛧0(𝑏𝑛)] +
(1 − 2𝛣)

𝑏𝑛

[(1 +
2𝛣
𝜅

) 𝛧0(𝑏𝑛) − 𝜅2(1 − 2𝛣)𝛧0(𝜅𝑏𝑛)]

(1 − 2𝛣) (1 +
2𝛣
𝜅

)

1

2(1 − 2𝛣)2 (1 +
2𝛣
𝜅

)
2 [(1 +

2𝛣
𝜅

)
2

(1 − 2𝛣 + 𝛣2𝑏𝜅
2)𝛧0

2(𝑏𝜅) − 𝜅2(1 − 2𝛣)2 (1 +
2𝛣
𝜅 + 𝛣2𝑏𝜅

2) 𝛧0
2(𝜅𝑏𝜅)]

  .  

 

As a result,  

𝐷𝑘 =
2𝛺𝜅2𝑅(1 − 2𝐵)2(1 +

2𝐵
𝜅

)𝑍0𝑘(𝜅𝑏𝑘)

𝑏𝑘[(1 +
2𝛣
𝜅

)
2

(1 − 2𝛣 + 𝛣2𝑏𝜅
2)𝛧0

2(𝑏𝜅) − 𝜅2(1 − 2𝛣)2 (1 +
2𝛣
𝜅 + 𝛣2𝑏𝜅

2) 𝛧0
2(𝜅𝑏𝜅)]

  . 

 

The velocity (see Eq. (2.51)) is given by: 

𝑢𝜃(𝑟, 𝑡) = ∑ 𝐷𝑘𝑍1𝑘 (
𝑏𝑘𝑟

𝑅
)

∞

𝑘=1

𝑒
−

𝑏𝑘
2

𝑅2 𝑣𝑡
  . 

 
(2.53) 

Now  we let  𝑡∗ = 𝑣𝑡/𝑅2  ,   𝑟∗ = 𝑟/𝑅  , 𝑢𝜃
∗ = 𝑢𝜃

 /𝜅𝛺𝑅  , 𝐷𝜅
′ = 𝐷𝜅/𝜅𝛺𝑅  we get the 

dimensionless form: 

𝑢𝜃
∗ (𝑟∗, 𝑡∗) = ∑ 𝐷𝜅

′ 𝑍1𝑘(𝑏𝑘𝑟∗)

∞

𝑘=1

𝑒−𝑏𝑘
2𝑡∗

  . 
 

(2.54) 

 

Remark: When 𝛣 = 0   (𝛽 → ∞)  Eq. (2.54)  is reduced  to Eq. (2.45)   
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(a) 

 

(b) 

 

(c) 

 

(d) 

Fig. 8 Evolution of the velocity profile in cessation of circular Couette flow with κ=0.5 and           

t=0, 0.0001, 0.001, 0.01 and 0.1: (a) B=0 (no slip); (b) B=0.1 (weak slip); (c) B=1 (moderate slip); 

(d) B=10 (strong slip) 

 

In Fig. 8, we can see the evolution of the velocity profile in cessation of circular Couette flow 

for different values of B. As expected the value of the velocity is decreasing but the gradient of 

the curve of the velocity is increasing. For B=10 our curve is linear and that is how we know 

that the slip is strong. 

In Fig. 9, we have the velocity at the walls and as expected the velocity in the inner wall is 

decreasing in time and the velocity in the outer wall is increasing untill we reach the steady 

state velocities in the walls. 
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(a) 

 

 

(b) 

 

 

(e) 

 

 

(c) 

 

 

(d) 

 

 

(f) 

Fig. 9  Evolution of the velocity at the walls when: (a) B=0.1 ; (b) B=0.25 ; (c) B=1 ; (d) B=10  

and again for the same values of B, all the velocities:  (e)𝑢𝑤1
 ;  (f) 𝑢𝑤2
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2.5 Cessation of circular Couette flow with dynamic slip at the walls 

 

The geometry of the cessation of circular Couette flow with dynamic slip at the walls can be 

seen in Fig. 10. For this problem, the inner cylinder is rotating with angular velocity 𝛺 and 

there is dynamic slip at the walls. When t=0 the angular velocity ceases to exist. In cessation 

flow, the velocity of the fluid at both walls will be decreasing , which implies that 𝑢𝑤1
will be 

increasing and 𝑢𝑤2
will be decreasing with time (Kaoullas and Georgiou, 2015). As a result, the 

boundary conditions are: 

𝑟 = 𝜅𝑅     𝑢𝜃 = 𝑢𝑤1
= 𝐵𝑅𝑟

𝑑

𝑑𝑟
(

𝑢𝜃

𝑟
) − 𝛬

𝑑𝑢𝜃

𝑑𝑡
|𝑟=𝜅𝑅        𝑡 ≥ 0,    

(2.55) 

𝑟 = 𝑅       𝑢𝜃 = 𝑢𝑤2
= −𝐵𝑅𝑟

𝑑

𝑑𝑟
(

𝑢𝜃

𝑟
) − 𝛬

𝑑𝑢𝜃

𝑑𝑡
|𝑟=𝑅          𝑡 > 0.    

(2.56) 

In addition, 

𝑢𝑤1
−  𝛬

𝑑𝑢𝑤1

𝑑𝑡
=

𝜏𝑤1

𝛽
     𝑎𝑛𝑑    𝑢𝑤2

+  𝛬
𝑑𝑢𝑤2

𝑑𝑡
=

𝜏𝑤2

𝛽
 

Then the initial condition is 

𝑢𝜃(𝑟, 0) =
𝛺𝜅3𝑅

2𝛣(1 + 𝜅3) + 𝜅(1 − 𝜅2)
(

𝑅

𝑟
− (1 − 2𝐵)

𝑟

𝑅
) 

(2.57) 

 

       

t=0                                                                              t>0 

Fig. 10.  Geometry of cessation of circular Couette flow with the dynamic slip  laws applied at 

the walls 

 

We  solve this initial boundary value problem with the method of separation of variables like 

in the two previous paragraphs and we get, 

𝑇(𝑡) = 𝐴𝑒−
𝜆2

𝑅2𝑣𝑡
 and  𝑌(𝑟) = 𝐵 𝑍1 (

𝜆𝑟

𝑅
)  , 

where   𝑍1 is given by Eq. (2.38)  and from boundary conditions we get: 
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𝑌(𝑟)𝑇(𝑡) = 𝐵𝑅𝑟
𝑑

𝑑𝑟
(

𝑌(𝑟)𝑇(𝑡)

𝑟
)

𝑟=𝜅𝑅

+ (𝛬
𝜆𝜅

2

𝑅2
𝑣𝑇(𝑡)𝑌(𝑟))

𝑟=𝜅𝑅

= 𝛣𝑅𝑟 [
𝑟

𝑑
𝑑𝑟

𝑌(𝑟) − 𝑌(𝑟)

𝑟2
]

𝑟=𝜅𝑅

+ (𝛬
𝜆𝜅

2

𝑅2
𝑣𝑇(𝑡)𝑌(𝑟))

𝑟=𝜅𝑅

, 

𝑌(𝑟)𝑇(𝑡) = −𝐵𝑅𝑟
𝑑

𝑑𝑟
(

𝑌(𝑟)𝑇(𝑡)

𝑟
)

𝑟=𝑅

+ (𝛬
𝜆𝜅

2

𝑅2
𝑣𝑇(𝑡)𝑌(𝑟))

𝑟=𝑅 

= 𝛣𝑅𝑟 [
𝑟

𝑑
𝑑𝑟

𝑌(𝑟) − 𝑌(𝑟)

𝑟2
]

𝑟=𝑅

+ (𝛬
𝜆𝜅

2

𝑅2
𝑣𝑇(𝑡)𝑌(𝑟))

𝑟=𝑅

. 

So, 

𝑍1(𝜅𝑏𝜅) = [𝐵𝑅
𝑑

𝑑𝑟
𝑍1 (𝜆𝜅

𝑟

𝑅
) − 𝐵

𝑅

𝑟
𝑍1 (𝜆𝜅

𝑟

𝑅
)]

𝑟=𝜅𝑅
+ (𝛬

𝜆𝜅
2

𝑅2
𝑣𝑍1 (𝜆𝜅

𝑟

𝑅
))

𝑟=𝜅𝑅

 

(
𝑑

𝑑𝑟
𝑍1 (𝜆𝜅

𝑟

𝑅
) =

𝜆𝜅

𝑅
(

1

2
𝑍0 (𝜆𝜅

𝑟

𝑅
) −

1

2
𝑍2 (𝜆𝜅

𝑟

𝑅
))

=
𝜆𝜅

𝑅
(

1

2
𝑍0 (𝜆𝜅

𝑟

𝑅
) −

1

2

2𝑅

𝑟𝜆𝜅
𝛧1 (𝜆𝜅

𝑟

𝑅
) +

1

2
𝛧0 (𝜆𝜅

𝑟

𝑅
))

=
𝜆𝜅

𝑅
𝑍0 (𝜆𝜅

𝑟

𝑅
) −

1

𝑟
𝛧1 (𝜆𝜅

𝑟

𝑅
))

 
⇒ 

𝑍1(𝜅𝜆𝜅) =
𝐵𝑅𝜆𝜅

𝑅
𝑍0(𝜅𝜆𝜅) −

𝐵

𝜅
𝛧1(𝜅𝜆𝜅) −

𝐵

𝜅
𝛧1(𝜅𝜆𝜅) + 𝛬

𝜆𝜅
2

𝑅2
𝑣𝑍1(𝜅𝜆𝜅)

 
⇒

 
 

𝛣𝜆𝜅𝛧0(𝜅𝜆𝜅) − (1 +
2𝛣

𝜅
− 𝛬𝑣

𝜆𝜅
2

𝑅2
) 𝛧1(𝜅𝜆𝜅) = 0  .                                       (2.58) 

Similarly,             

 𝛣 𝜆𝜅  𝛧0(𝜆𝜅) + (1 − 2𝐵 − 𝛬𝑣
𝜆𝜅

2

𝑅2
) 𝛧1(𝜆𝜅)  = 0  .                                   (2.59) 

 

From  (2.59) we get 𝛣𝜆𝜅(𝐽0(𝜆𝜅) + 𝛿𝜅𝛶0(𝜆𝜅)) + (1 − 2𝛣 − 𝛬𝑣
𝜆𝜅

2

𝑅2
) (𝐽1(𝜆𝜅) + 𝛿𝜅𝛶1(𝜆𝜅)) = 0, 

𝛿𝜅 = −   
 𝛣𝜆𝜅𝐽0(𝜆𝜅) + (1 − 2𝛣 − 𝛬𝑣

𝜆𝜅
2

𝑅2) 𝐽1(𝜆𝜅)

𝛣𝜆𝜅𝛶0(𝜆𝜅) + (1 − 2𝛣 − 𝛬𝑣
𝜆𝜅

2

𝑅2) 𝛶1(𝜆𝜅)
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Substituting 𝛿𝜅  into Eq. (2.58) we get: 

 𝛣𝜆𝜅 ((𝛣𝜆𝜅𝛶0(𝜆𝜅) + (1 − 2𝛣 − 𝛬𝑣
𝜆𝜅

2

𝑅2
) 𝛶1(𝜆𝜅)) 𝐽0(𝜅𝜆𝜅) − (𝛣𝜆𝜅𝐽0(𝜆𝜅) + (1 − 2𝛣 −

𝛬𝑣
𝜆𝜅

2

𝑅2
) 𝐽1(𝜆𝜅)) 𝛶0(𝜅𝜆𝜅)) = (1 +

2𝛣

𝜅
− 𝛬𝑣

𝜆𝜅
2

𝑅2
) ((𝛣𝜆𝜅𝛶0(𝜆𝜅) + (1 − 2𝛣 −

𝛬𝑣
𝜆𝜅

2

𝑅2
) 𝛶1(𝜆𝜅)) 𝐽1(𝜅𝜆𝜅) − (𝛣𝜆𝜅𝐽0(𝜆𝜅) + (1 − 2𝛣 − 𝛬𝑣

𝜆𝜅
2

𝑅2
) 𝐽1(𝜆𝜅)) 𝛶1(𝜅𝜆𝜅)) . 

With superposition of the solutions, we get: 

𝑢 
𝜃(𝑟, 𝑡) = ∑ 𝐸𝑘𝑍1𝑘 (

𝜆𝑘𝑟

𝑅
)

∞

𝑘=1

𝑒
−

𝜆𝑘
2

𝑅2 𝑣𝑡
  . 

 

(2.60) 

We now derive the appropriate condition for the eigenfunctions 𝑍1(Mindlin and Goodman, 

1950) : 

𝑟𝑋𝑛
′′(𝑟) + 𝑋𝑛

′ (𝑟) + (
𝜆𝑛

2

𝑅2 𝑟 −
1

𝑟
) 𝑋𝑛(𝑟) = 0 .                                   (2.61) 

From B.C.s we have: 

𝑋𝑛(𝜅𝑅) = 𝐵𝑅𝑋𝑛
′ (𝜅𝑅) −

𝐵

𝜅
𝑋𝑛(𝜅𝑅) + 𝜆𝑛

2 𝛬𝑣

𝑅2 𝑋𝑛(𝜅𝑅) ,                           (2.62) 

     𝑋𝑛(𝑅) = −𝐵𝑅𝑋𝑛
′ (𝑅) + 𝐵𝑋𝑛(𝑅) + 𝜆𝑛

2 𝛬𝑣

𝑅2 𝑋𝑛(𝑅)  .                               (2.63) 

We now consider the one-dimensional problem in r dimension: 

𝑟𝑋𝑚
′′ (𝑟) + 𝑋𝑚

′ (𝑟) + (
𝜆𝑚

2

𝑅2 𝑟 −
1

𝑟
) 𝑋𝑚(𝑟) = 0 ,                                   (2.64) 

𝑋𝑚(𝜅𝑅) = 𝐵𝑅𝑋𝑚
′ (𝜅𝑅) −

𝐵

𝜅
𝑋𝑚(𝜅𝑅) + 𝜆𝑚

2 𝛬𝑣

𝑅2 𝑋𝑚(𝜅𝑅),                           (2.65) 

     𝑋𝑚(𝑅) = −𝐵𝑅𝑋𝑚
′ (𝑅) + 𝐵𝑋𝑚(𝑅) + 𝜆𝑚

2 𝛬𝑣

𝑅2 𝑋𝑚(𝑅).                              (2.66) 

Such that   𝑋𝑚 , 𝑋𝑛  𝑎𝑛𝑑 𝜆𝑚 , 𝜆𝑛  are distinct (𝑚 ≠ 𝑛) 

(𝑟𝑋𝑛
′′(𝑟) + 𝑋𝑛

′ (𝑟) + (
𝜆𝑛

2

𝑅2
𝑟 −

1

𝑟
) 𝑋𝑛(𝑟) = 0 

 
⇒  (𝑟𝑋𝑛

′ (𝑟))
′

+ (
𝑟

𝑅2
𝜆𝑛

2 −
1

𝑟
) 𝑋𝑛(𝑟) ) 

 

Multiplying Eq. (2.61)  by   𝑋𝑚 and integrating by parts gives: 

∫(𝑟𝑋𝑛
′ (𝑟))

′
𝑋𝑚(𝑟)𝑑𝑟 + ∫  (

𝑟

𝑅2
𝜆𝑛

2 −
1

𝑟
) 𝑋𝑛(𝑟)𝑋𝑚(𝑟)𝑑𝑟 = 0

𝑅

𝜅𝑅

𝑅

𝜅𝑅

 

 
(2.67) 

Similarly, we multiply (2.64) by 𝑋𝑛, integrate by parts and then subtract from (2.67) to get: 

𝑅[𝑋𝑛
′ (𝑅)𝑋𝑚(𝑅) − 𝑋𝑛(𝑅)𝑋𝑚

′ (𝑅)] − 𝜅𝑅[𝑋𝑛
′ (𝜅𝑅)𝑋𝑚(𝜅𝑅) − 𝑋𝑛(𝜅𝑅)𝑋𝑚

′ (𝜅𝑅)]

+
(𝜆𝑛

2 − 𝜆𝑚
2 )

𝑅2
∫  𝑟𝑋𝑛(𝑟)𝑋𝑚(𝑟)𝑑𝑟 = 0

𝑅

𝜅𝑅
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Using now the b.c.s (2.62) , (2.63) , (2.65)  and  (2.66) we get: 

(𝜆𝑛
2 − 𝜆𝑚

2 ) [
𝛬𝑣

𝐵
(𝑋𝑛

 (𝑅)𝑋𝑚(𝑅) + 𝜅𝑋𝑛
 (𝜅𝑅)𝑋𝑚(𝜅𝑅)) + ∫  𝑟𝑋𝑛(𝑟)𝑋𝑚(𝑟)𝑑𝑟

𝑅

𝜅𝑅

] = 0  . 

 

Since 𝜆𝑚  𝑎𝑛𝑑 𝜆𝑛are distinct there holds: 

𝛬𝑣

𝐵
(𝑋𝑛

 (𝑅)𝑋𝑚(𝑅) + 𝜅𝑋𝑛
 (𝜅𝑅)𝑋𝑚(𝜅𝑅)) + ∫  𝑟𝑋𝑛(𝑟)𝑋𝑚(𝑟)𝑑𝑟

𝑅

𝜅𝑅

= 𝛿𝑚,𝑛𝑁𝑛 , 
 

(2.68) 

             

where 

𝑁𝑛 =
𝛬𝑣

𝐵
(𝑋𝑛

 2(𝑅) + 𝜅𝑋𝑛
 2(𝜅𝑅)) + ∫  𝑟𝑋𝑛

2(𝑟)𝑑𝑟
𝑅

𝜅𝑅
  ,                          (2.69) 

and 𝛿𝑚,𝑛 is the Kronecker delta. 

□ 

In order to find the coefficients 𝛦𝜅,(2.60) must be supplemented by an extra term, thus 

multiplying it by   𝑟𝑍1 (
𝜆𝑛𝑟

𝑅
) when  𝑡 = 0 , using the initial condition and integrating from 𝜅𝑅 

to 𝑅 gives: 

∑ 𝛦𝜅 ∫ 𝑟𝛧1𝜅 (
𝜆𝜅𝑟

𝑅
) 𝑍1 (

𝜆𝑛𝑟

𝑅
)

𝑅

𝜅𝑅

𝑑𝑟

∞

𝑘=1

= ∫
𝛺𝜅3𝑅

2𝛣(1 + 𝜅3) + 𝜅(1 − 𝜅2)
(

𝑅

𝑟
− (1 − 2𝐵)

𝑟

𝑅
)

𝑅

𝜅𝑅

𝑟𝑍1 (
𝜆𝑛𝑟

𝑅
) 𝑑𝑟 . 

Consider, 

𝛬𝑣

𝐵

𝛺𝜅3𝑅

2𝛣(1 + 𝜅3) + 𝜅(1 − 𝜅2)
(

𝑅

𝑟
− (1 − 2𝐵)

𝑟

𝑅
) 𝑍1 (

𝜆𝑛𝑟

𝑅
) =

𝛬𝑣

𝐵
∑ 𝛦𝜅𝛧1𝜅 (

𝜆𝜅𝑟

𝑅
) 𝑍1 (

𝜆𝑛𝑟

𝑅
) .

∞

𝜅=1

 

 

When 𝑟 = 𝑅, 

𝛬𝑣

𝐵

2𝐵𝛺𝜅3𝑅

2𝛣(1 + 𝜅3) + 𝜅(1 − 𝜅2)
𝑍1(𝜆𝑛) =

𝛬𝑣

𝐵
∑ 𝛦𝜅𝛧1𝜅(𝜆𝜅)𝑍1(𝜆𝑛)

∞

𝜅=1

 . 

 

When 𝑟 = 𝜅𝑅, 

𝛬𝑣

𝐵

𝛺𝜅3𝑅

2𝛣(1 + 𝜅3) + 𝜅(1 − 𝜅2)
(

1

𝜅
− (1 − 2𝐵)𝜅) 𝑍1(𝜅𝜆𝑛) =

𝛬𝑣

𝐵
∑ 𝛦𝜅𝛧1𝜅(𝜅𝜆𝜅)𝑍1(𝜅𝜆𝑛) .

∞

𝜅=1
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So, 

∑  

𝑅

𝜅𝑅

𝛦𝜅 ( ∫ 𝑟𝛧1𝜅 (
𝜆𝜅𝑟

𝑅
) 𝑍1 (

𝜆𝑛𝑟

𝑅
)

𝑅

𝜅𝑅

𝑑𝑟 +
𝛬𝑣

𝐵
[𝛧1𝜅(𝜆𝜅)𝑍1(𝜆𝑛) + 𝜅𝛧1𝜅(𝜅𝜆𝜅)𝑍1(𝜅𝜆𝑛)])

= ∫
𝛺𝜅3𝑅

2𝛣(1 + 𝜅3) + 𝜅(1 − 𝜅2)
(

𝑅

𝑟
− (1 − 2𝐵)

𝑟

𝑅
)

𝑅

𝜅𝑅

𝑟𝑍1 (
𝜆𝑛𝑟

𝑅
) 𝑑𝑟

+
𝛬𝑣

𝐵

𝛺𝜅3𝑅

2𝛣(1 + 𝜅3) + 𝜅(1 − 𝜅2)
(2𝛣𝛧1(𝜆𝑛) + (1 − 𝜅2 + 2𝛣𝜅2)𝛧1(𝜅𝜆𝑛)) . 

 

We are following the same method of solution as in the previous paragraphs and the constants 

Eκ are given by: 

𝐸𝜅 =
2𝛺𝜅3𝑅

𝜆𝜅𝐿
𝛧1(𝜅𝜆𝜅)  , 

(2.70) 

where  

𝐿 =
2𝛬𝜈

𝑅2
𝜅𝜆𝜅[𝛧1

2(𝜆𝜅) + 𝜅𝛧1
2(𝜅𝜆𝜅)] + 𝐵𝜅𝜆𝜅[𝛧0

2(𝜆𝜅) + 𝛧1
2(𝜆𝜅) − 𝜅2(𝛧0

2(𝜅𝜆𝜅) + 𝛧1
2(𝜅𝜆𝜅)] 

 
−2𝛣𝜅[𝛧0(𝜆𝜅)𝛧1(𝜆𝜅) − 𝜅(𝛧0(𝜅𝜆𝜅)𝛧1(𝜅𝜆𝜅)]  . 

 
(2.71) 

 

So, the solution of our problem is: 

𝑢𝜃(𝑟, 𝑡) = ∑ 𝐸𝑘𝑍1 (
𝜆𝑘𝑟

𝑅
)

∞

𝑘=1

𝑒
−

𝜆𝑘
2

𝑅2 𝑣𝑡
  . 

 

(2.72) 

Dividing 𝑢𝜃  by 𝛺𝑅, and  setting  𝑢𝜃
∗ = 𝑢𝜃/𝛺𝜅𝑅  ,  𝑟∗ = 𝑟/𝑅  , 𝑡∗ = 𝑣𝑡/𝑅2  , 𝐸𝑘

′ = 𝐸𝑘/𝜅𝛺𝑅  

we get: 

𝑢𝜃
∗ (𝑟∗, 𝑡∗) = ∑ 𝐸𝑘

′ 𝑍1(𝜆𝑘𝑟∗)

∞

𝑘=1

𝑒−𝜆𝑘
2𝑡∗

 
 

(2.73) 

where  

𝐸𝑘
′ = 𝛦𝑘/𝛺𝜅𝑅 

In Fig. 12, we can see the evolution of the velocity profile in cessation circular Couette flow 

for weak slip (B=0.1) and moderate slip (B=1), and how the velocity changes for different 

values of 𝛬.  

The slip velocities are given by: 

𝑢𝑤1
∗ (𝑡∗) = ∑ 𝐸𝑘

′ 𝑍1(𝜅𝜆𝑘)

∞

𝑘=1

𝑒−𝜆𝑘
2𝑡∗

 , 
 

(2.74) 

𝑢𝑤2
∗ (𝑡∗) = ∑ 𝐸𝑘

′ 𝑍1(𝜆𝑘)

∞

𝑘=1

𝑒−𝜆𝑘
2𝑡∗

. 
 

(2.75) 
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Remark: When 𝛬 = 0, Eq. (2.73)  is reduced  to Eq. (2.54), and when 𝛣 = 0  (𝛽 → ∞)  Eq. 

(2.54)  is reduced  to Eq. (2.45). 

■ 

 

(a) 

 

 

(b) 

Fig. 11. Evolution of the slip velocity in cessation of circular Couette flow for different values 

of 𝛬 and κ=0.5: (a). 𝑢𝑤1
;  (b). 𝑢𝑤2

  

 

In Fig. 11, which depicts the velocity at the walls, we see that the velocity in the inner wall 

(Fig. 11a) as the value of 𝐵 is increasing, our curves for different 𝛬 tend to get closer   but on 

the other hand in the outer wall (Fig. 11b), the curves  tend to get further from each other. 
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(a) 

 

(b) 

 

(c) 

 

(d) 

 

(e) 

 

(f) 

Fig. 12. Evolution of the velocity profile in 

cessation circular Couette flow with κ=0.5 

and B=0.1: (a) Λ=0; (b) Λ=0.5; (c) Λ=5;  

 

Fig. 13. Evolution of the velocity profile in 

cessation circular Couette flow with κ=0.5 

and B=1: (a) Λ=0; (b) Λ=0.5; (c) Λ=5;
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2.6 Appendix: Solutions when the outer cylinder is rotating 

 

  In the previous sections we derived analytical solutions for the steady state and cessation 

problem of circular Couette flow when the inner cylinder is rotating with angular velocity 𝛺 

the outer cylinder is fixed and there are three types of slip laws applied at the walls: (a) No-slip 

law; (b) Navier slip law; (c) Dynamic slip law.  

  In this paragraph we are going to provide analytical solutions for the same problem but now 

instead of the inner cylinder,  the outer cylinder is rotating with angular velocity 𝛺 and the inner 

cylinder is fixed. 

  For the steady state of circular Couette flow with Navier slip at the walls the velocity is given 

by: 

𝑢𝜃
 (𝑟 ) =

𝛺𝑅

2𝐵(1 + 𝜅3) + 𝜅 − 𝜅3
[(2𝐵 + 𝜅)

𝑟

𝑅

 

− 𝜅3
𝑅

𝑟 
 ] . 

 

(2.76) 

 

  If we let  𝛣 = 0   (𝛽 → ∞)  the result will be the solution for the steady state circular Couette 

flow with no-slip at the walls: 

𝑢𝜃
 (𝑟 ) =

𝛺𝑅

1 − 𝜅2
(

𝑟

𝑅

 

− 𝜅2
𝑅

𝑟 
) .   

 

(2.77) 

 

  For the cessation of circular Couette flow with dynamic slip at the walls the velocity is: 

𝑢𝜃(𝑟  , 𝑡  ) = ∑ 𝛦𝜅𝑍1𝑘 (𝜆𝑘

𝑟

𝑅

 

)

∞

𝑘=1

𝑒
−

𝜆𝑘
2

𝑅2𝑣𝑡  

, 

 

and the coefficients in (2.78) are given by: 
 

𝛦𝜅 =
2𝛺𝑅  
𝜆𝜅𝐿

𝑍1(𝜆𝜅)  , 

where 
 

2𝛬𝜈
𝜆𝜅

𝑅2
(𝑍1

2(𝜆𝜅) + 𝜅𝛧1
2(𝜅𝜆𝜅)) + 𝛣𝜆𝜅[𝛧0

2(𝜆𝜅) 

 + 𝛧1
2(𝜆𝜅) − 𝜅2 (𝛧0

2(𝜅𝜆𝜅) + 𝛧1
2(𝜅𝜆𝜅))] 

 −2𝛣(𝛧0(𝜆𝜅)𝛧1(𝜆𝜅) − 𝜅𝛧0(𝜅𝜆𝜅)𝛧1(𝜅𝜆𝜅)) . 

 

 

(2.78) 
 
 
 
 
 

(2.79) 
 
 

 

(2.80) 

If we let  𝛬 = 0 then the result will be the solution for the cessation of circular Couette flow 

with Navier slip at the walls and the velocity will be given by: 

𝑢𝜃(𝑟, 𝑡) = ∑ 𝐷𝑘𝑍1𝑘 (
𝑏𝑘𝑟

𝑅
)

∞

𝑘=1

𝑒
−

𝑏𝑘
2

𝑅2 𝑣𝑡
  . 

 

(2.81) 
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where 

𝐷𝜅

=
2(1 − 2𝛣) (1 +

2𝛣
𝜅 )

2

𝛺𝑅(−𝑍0(𝑏𝜅))

𝑏𝑘 [(1 +
2𝛣
𝜅

)
2

(1 − 2𝛣 + 𝛣2𝑏𝜅
2)𝛧0

2(𝑏𝜅) − 𝜅2(1 − 2𝛣)2 (1 +
2𝛣
𝜅

+ 𝛣2𝑏𝜅
2) 𝛧0

2(𝜅𝑏𝜅)]

 . 

 

 
(2.82) 

 

Now if we let  𝛣 = 0   ( 𝛽 → ∞)   in Eq. (2.82) the result will be the solution for the cessation 

of annular Couette flow with no-slip at the walls: 

𝑢𝜃(𝑟, 𝑡) = ∑ 𝐶𝑘𝑍1𝑘 (
𝑎𝑘𝑟

𝑅
)

∞

𝑘=1

𝑒
−

𝑎𝑘
2

𝑅2 𝑣𝑡
 , 

 

(2.83) 

where 

𝐶𝜅 =
2𝛺𝑅(−𝛧0(𝛼𝜅))

𝜆𝜅[𝛧0
2(𝜆𝜅) − 𝜅2𝛧0

2(𝜅𝜆𝜅)]
 . 

 

(2.84) 

 

 

■ 

 

 

 

  

Alex
an

dro
s S

av
vid

is



34 
 

  

Alex
an

dro
s S

av
vid

is



35 
 

Chapter 3: Annular Couette flow 
 

  Annular Couette flow is a flow pattern that occurs when a fluid is confined between two 

coaxial cylinders usually with the inner cylinder sliding  and the outer cylinder fixed. This flow 

pattern has various applications in fluid dynamics, such as in Engineering, Biological Systems, 

Lubrication and Fluid dynamics education.  

  In Engineering, numerous engineering applications involve rotating components, such as 

rotating heat pipes, electrical motors, and turbogenerators. The flow of fluid between two 

concentric cylinders, with one or both cylinders in rotation, is known as Taylor-Couette flow, 

and has been the subject of extensive research over the years. (Nouri-Borujerdi and. Nakhchi, 

2017) 

  In Biological Systems, flow-induced damage to blood is commonly seen in artificial organs 

within the bloodstream, specifically hemolysis of red blood cells. The severity of this damage 

is influenced by shear forces and exposure time. This study focuses on establishing a correlation 

between these flow-dependent properties and actual hemolysis. To achieve this goal, 

researchers developed a Couette device. (Paul et al., 2003) 

  In Lubrication, it is well known that fluid flows in seals and bearings turn from laminar regime 

into turbulent one when their Reynolds number becomes higher than a critical value. In (Zhang 

et al., 2003), the primary turbulence models utilized for hydrodynamic lubrication issues were 

assessed, with an explanation of their development and fundamental principles. To evaluate 

their efficacy, the models' predictions of flow fields in turbulent Couette flows and shear-

induced countercurrent flows were compared to existing measurements. Zhang and Zhang's 

combined k-ε model demonstrated particularly impressive outcomes, with surpassingly 

satisfactory results.  

  In Fluid dynamics education, annular Couette flow is often used as a teaching tool in fluid 

dynamics courses. The simplicity of the flow allows students to easily understand concepts 

such as boundary layers, laminar and turbulent flow, and fluid viscosity. It can also be used to 

demonstrate the principles of flow visualization and measurement techniques.(White, 2006) 

  In this chapter we are going to study the steady, axisymmetric, rectinal  flow of an 

incompressible Newtonian liquid  between two horizontal coaxial cylinders of infinite length 

with radii 𝑅 and 𝜅𝑅 where 0 < 𝜅 < 1 and the outer cylinder is sliding with velocity 𝑉, so we 

assume that 𝑢𝑟 = 𝑢𝜃 = 0    , 𝑑𝑢𝑧/𝑑𝜃 = 0 and 𝑑𝑝 /𝑑𝑧 = 0 . 

As a result of our assumptions, the z-momentum equation gives: 

𝜕𝑢𝑧

𝜕𝑡
= 𝑣 (

𝜕2𝑢𝑧

𝜕𝑟2
+

1

𝑟

𝜕𝑢𝑧

𝜕𝑟
) , 

(3.1) 

 

where 𝑣 = 𝜂/𝜌 is the kinematic viscosity. 

The steady-state solution is found by setting 𝜕𝑢𝑧/𝜕𝑡 = 0  and integrating twice. 

The general form of the  velocity  uz   is given by (Papanastasiou et al., 1999) 

𝑢𝑧(𝑟) = 𝑐1 ln 𝑟 + 𝑐2 , (3.2) 
 

and the wall shear stress is given by 
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𝜏𝑟𝑧 = 𝜏𝑧𝑟 =
𝜂𝑐1

𝑟  
= 𝜂

𝑑𝑢𝑧

𝑑𝑟
 , 

(3.3) 

 

𝜏𝑤 = 𝛽 𝑢𝑤 .                                                                                 (3.4) 

 In each of the following paragraphs we are going to find these constants and derive the 

analytical solution of the velocity. 

 

 

Fig. 1. Geometry of annular Couette flow 

 

 

3.1 The steady-state annular Couette flow with no slip at the walls 

 

The geometry of the steady-state annular Couette flow with no slip at the walls can be seen in 

Fig. 2. For this problem the outer cylinder is sliding with velocity 𝑉 and there is no slip at the 

walls. As a result, the boundary conditions are: 

𝑟 = 𝜅𝑅,     𝑢𝑧 = 0, (3.5) 
     𝑟 = 𝑅 ,      𝑢𝑧 = 𝑉.     (3.6) 

 

 

Fig. 2. Geometry of the steady-state annular Couette flow with no-slip laws applied at the 

walls 

 

Appling the boundary conditions  in  Eq. (3.2) we  get: 
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𝑢𝑧(𝜅𝑅) = 0 = 𝑐1 ln 𝜅𝑅 + 𝑐2,                                                (3.7) 

𝑢𝑧(𝑅) = 𝑉 = 𝑐1 ln 𝑅 + 𝑐2.                                                  (3.8) 

 

Solving the above system, gives: 

 𝑐2 = −
𝑉 ln 𝜅𝑅

ln (1/𝜅)
   ,   𝑐1 =  

𝑉

ln (1/𝜅)
   .  

Going back now to our equation (3.2) we get that the velocity is given by: 

𝑢𝑧(𝑟) =
ln (

𝑟
𝜅𝑅

)

ln (1/𝜅)
𝑉 . 

 
(3.9) 

 

The velocity along both walls is zero because of the no slip condition: 

𝑢𝑤1
= 𝑢𝑤2

= 0 . (3.10) 

 

Substituting 𝑐1 = 𝑉/ ln
1

𝜅
  in equation (3.3) we get that the wall shear stress is: 

𝜏𝑟𝑧 =
𝜂𝑉

ln (1/𝜅)

1

𝑟
 . 

(3.11) 

 

And the wall shear stress in each of the walls will be 

𝜏𝑤1
=  

𝜂𝑉

𝜅𝑅 ln (1/𝜅)
    ,   𝜏𝑤2

=  𝜅 𝜏𝑤1
. 

(3.12) 

 

Finally, we will find the dimensionless equations for the velocity and wall shear stresses which 

are going to be utilized in the sequel.  

For the velocity we divide both parts of the equation by   𝑉 and set  𝑢𝑧
∗ = 𝑢𝑧/𝑉  and   𝑟∗ = 𝑟/𝑅.  

This gives: 

𝑢𝑧
∗ =

ln (
𝑟∗

𝜅 )

ln (1/𝜅)
 . 

(3.13) 

 

Similarly, 

𝜏𝑟𝑧
∗ =

1

𝑟∗ln (1/𝜅)
 , 

(3.14) 

 

where    

𝜏𝑟𝑧
∗ =

𝜏𝑟𝑧𝑅

𝜂𝑉
 . 
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Additionally, 

𝜏𝑤1
∗ =  

1

𝜅ln (1/𝜅)
    ,   𝜏𝑤2

∗ =  𝜅 𝜏𝑤1
. 

(3.15) 

■ 

 

3.2 The steady-state annular Couette flow with Navier slip at the walls 

 

The geometry of the steady-state annular Couette flow with Navier slip at the walls can be seen 

in Fig. 3. For this problem the outer cylinder is sliding with velocity 𝑉 and at the walls we have 

Navier slip, so the velocities at the walls will not be zero. As a result, the boundary conditions 

are: 

𝑟 = 𝜅𝑅,     𝑢𝑧 = uw1
,          (3.16) 

𝑟 = 𝑅,        𝑢𝑧 = 𝑉 − 𝑢𝑤2
. (3.17) 

 

 

Fig. 3. Geometry of steady-state annular Couette flow with Navier slip laws applied at the 

walls 

 

Appling the boundary conditions  in Eq (3.2) we get: 

𝑢𝑧(𝜅𝑅) = 𝑢𝑤1
= 𝑐1 ln 𝜅𝑅 + 𝑐2  ,  (3.18) 

𝑢𝑧(𝑅) = 𝑉 − 𝑢𝑤2
= 𝑐1 ln 𝑅 + 𝑐2 .  (3.19) 

 

From Eq. (3.4) we get: 

𝑢𝑤1
=

𝜂𝑐1

𝛽𝜅𝑅
 , (3.20) 

𝑢𝑤2
=

𝜂𝑐1

𝛽𝑅 
 . (3.21) 

Eqs. (3.18) and (3.20) give 

𝜂𝑐1

𝛽𝜅𝑅
= 𝑐1 ln 𝜅𝑅 + 𝑐2 , (3.22) 

 

and from Eqs. (3.19) and (3.20) we get 
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𝑉 −
𝜂𝑐1

𝛽𝑅 = 𝑐1 ln 𝑅 + 𝑐2  . (3.23) 

Equations (3.22) and (3.23) give us further:  

𝑐1 =
𝛽𝜅𝑅

𝜂(𝜅 + 1)  +  𝛽𝜅𝑅 ln
1
𝜅

 
𝑉        ,      𝑐2 =

𝜂 –  𝛽𝜅𝑅 ln 𝜅𝑅

𝜂(𝜅 + 1)  +  𝛽𝜅𝑅 ln
1
𝜅

 
𝑉 . 

Therefore, the velocity is given by 

𝑢𝑧(𝑟) =
𝛽𝜅𝑅𝑉

𝜂(𝜅 + 1)  +  𝛽𝜅𝑅 ln
1
𝜅 

ln
𝑟

𝜅𝑅
+

𝜂𝑉

𝜂(𝜅 + 1) +  𝛽𝜅𝑅 ln
1
𝜅

  . 
(3.24) 

Setting 𝑐1 = 𝛽𝜅𝑅𝑉/(𝜂(𝜅 + 1) +  𝛽𝜅𝑅 ln
1

𝜅
)  in Eq. (3.3), we get that the wall shear stress is: 

𝜏𝑟𝑧 =
𝜂𝛽𝜅𝑅

𝜂(𝜅 + 1)  +  𝛽𝜅𝑅 ln
1
𝜅

 
𝑉

1

𝑟  
  . 

(3.25) 

The wall shear stress in each of the walls is 

𝜏𝑤1
=

𝜂𝛽𝑉

𝜂(𝜅 + 1) +  𝛽𝜅𝑅 ln
1
𝜅

    ,   𝜏𝑤2
=  𝜅𝜏𝑤1

 . 
(3.26) 

As a result, from Eq. (3.4), the velocity in each of the walls is given by: 

𝑢𝑤1
=

𝜂𝑉

𝜂(𝜅 + 1) +  𝛽𝜅𝑅 ln
1
𝜅

    ,   𝑢𝑤2
= 𝜅𝑢𝑤1

 . 
(3.27) 

Finally, we are going to find the dimensionless equations for the velocities and wall shear 

stresses. For the velocity we divide both parts of the equation with with 𝑉 and set  𝑢𝑧
∗ =

𝑢𝑧

𝑉
  ,  

𝑟∗ =
𝑟

𝑅
  and 𝛣 =

𝜂

𝛽𝑅
 .This gives: 

𝑢𝑧
∗ =

𝜅 ln
𝑟∗

𝜅 + 𝛣

𝛣(𝜅 + 1) + 𝜅 ln
1
𝜅 

 

(3.28) 

In Fig.4, we can see the evolution of the velocity profile in annular Couette flow with Navier 

slip law applied to the walls for various values of 𝐵 (Chatzimina et al.,2007; Chatzimina et 

al.,2009).  Fig.5 shows the evolution of the velocity at the inner wall, for various values of 𝐵, 

in a semilog scale. (Georgiou and Xenophontos,2007) 

The velocities in the wall will be 

𝑢𝑤1
=

𝛣

𝛣(𝜅 + 1) +  𝜅 ln
1
𝜅

    ,   𝑢𝑤2
= 𝜅𝑢𝑤1

. 
(3.29) 
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Similarly, 

𝜏𝑟𝑧
∗ =

𝜅

𝛣(𝜅 + 1) +  𝜅 ln
1
𝜅

 

1

𝑟∗   , 
(3.30) 

where 

𝜏𝑟𝑧
∗ =

𝜏𝑟𝑧𝑅

𝜂𝑉
  . 

Additionally  

𝜏𝑤1
=

1

𝛣(𝜅 + 1)  +  𝜅 ln
1
𝜅

  . 
(3.31) 

 

Remark: When 𝛣 = 0   ( 𝛽 → ∞)  Eqs. (3.28) , (3.30) and (3.31) are reduced to Eqs.(3.13), 

(3.14) and (3.15) respectively 

 ■ 

  

Fig. 4. Evolution of the velocity profile in annular Couette flow with Navier slip law applied in 

the walls for B= 0 , 0.1 , 1  and 10 
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(a) 

 

 

(b) 

 

 

(c) 

Fig. 5.  Evolution of the velocity at the inner wall when: (a) B= 0, 1 ; (b) B= 0, 10 ; (c) B= 0, 100
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3.3 Cessation of annular Couette flow with no slip at the walls 

 

The geometry of the cessation of annular Couette flow with no slip at the walls can be seen in 

Fig. 6.  For this problem the outer cylinder is sliding with velocity 𝑉 and there is no slip at the 

walls. When t=0 the  velocity ceases to exist.  As a result, the boundary and initial conditions 

are: 

𝑟 = 𝜅𝑅 ,    𝑢𝑍 = 0    𝑡 ≥ 0, (3.32) 
𝑟 = 𝑅   ,     𝑢𝑍 = 0    𝑡 > 0, (3.33) 

 

𝑢𝑧(𝑟, 0) =
ln

𝑟
𝜅𝑅

ln
1
𝜅

𝑉 . 
(3.34) 

 

      

t=0 

 

  t>0 

Fig. 6.  Geometry of cessation of annular Couette flow with no slip laws applied at the walls  

 

We  solve this initial boundary value problem with the method of separation of variables  

Let   

𝑢𝑧(𝑟, 𝑡) = 𝑌(𝑟)𝑇(𝑡). (3.35) 
 

Substituting into Eq. (3.1) we get 

𝑌(𝑟)𝑇′(𝑡) = 𝑣 (𝑌′′(𝑟)𝑇(𝑡) +
1

𝑟
𝑌′(𝑟)𝑇(𝑡)). 

Dividing by     𝑣𝑌(𝑟)𝑇  (𝑡)     we get 
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𝑇′(𝑡)

𝑣𝑇(𝑡)
=

𝑌′′(𝑟)

𝑌(𝑟)
+

1

𝑟

𝑌′(𝑟)

𝑌(𝑟)
. 

Because each side in the equation depends on different variables, then each one should be equal 

to the same constant. Let this constant be  𝑐𝑜𝑛𝑠𝑡. = −
𝑎2

𝑅2 

As a result, we get two new equations: 

𝑇′(𝑡) = −
𝑎2

𝑅2
𝑣𝑇(𝑡)

 
⇒   

𝑇(𝑡) = 𝐴𝑒
−

𝑎2

𝑅2𝑣𝑡
. 

(3.36) 

 

Additionally  

𝑌′′(𝑟) +
1

𝑟
 𝑌′(𝑟) +

𝑎2

𝑅2
𝑌(𝑟) = 0

 
⇒  

  𝑌(𝑟) = 𝑐1 𝐽0 (
𝑎𝑟

𝑅
) + 𝑐2 𝑌0 (

𝑎𝑟

𝑅
), (3.37) 

 

where  𝐽0 and 𝑌0 are  zero order  Bessel functions of the first and second kind respectively. The 

same identities that are applicable for Bessel functions of the first kind are applicable to the 

second kind too so, we let: 

𝑍0 (
𝑎𝑟

𝑅
) = 𝐽0 (

𝑎𝑟

𝑅
) + 𝛽𝑌0 (

𝑎𝑟

𝑅
), (3.38) 

   

with 𝛽 being a new constant. 

Now from boundary conditions we have   𝛽 = −
𝐽1(𝑎)

𝑌1(𝑎)
 , 

   𝑍0(𝜅𝛼) = 𝐽0(𝜅𝛼) + 𝛽𝑌0(𝜅𝛼) = 0,                                       (3.39) 

   𝑍0(𝛼) = 𝐽0(𝛼) + 𝛽𝑌0(𝛼) = 0.                                            (3.40) 

Superposition of the solutions gives: 

𝑢𝑧(𝑟, 𝑡) = ∑ 𝐶𝑘𝑍0𝑘 (
𝑎𝑘𝑟

𝑅
)

∞

𝑘=1

𝑒
−

𝑎𝑘
2

𝑅2 𝑣𝑡
 . 

 

 
(3.41) 

When  𝑡 = 0 we get from Eq. (3.41) and the initial condition, the following: 

ln
𝑟

𝜅𝑅

ln
1
𝜅

𝑉 = ∑ 𝐶𝜅𝑍0𝜅(
𝛼𝜅𝑟

𝑅
)

∞

𝜅=1

. 
 

(3.42) 

 

The orthogonality condition states that: 

∫  𝑍0
2 (

𝛼𝑛𝑟

𝑅
)

𝑅

𝜅𝑅

𝑟 𝑑𝑟 = [
𝑟2

2𝑅2
{𝛧0

′ (𝛼𝜅

𝑟

𝑅
)}

2

+
𝑟2

2𝑅2
{𝛧0 (𝛼𝜅

𝑟

𝑅
)}

2

]
𝜅

1

. 
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In order to use the orthogonality condition, we multiply Eq. (3.42) by  𝑟𝑍0 (
𝛼𝑛𝑟

𝑅
) and integrate 

from 𝜅𝑅 to 𝑅: 

𝐶𝜅 ∫  𝑍0
2 (

𝛼𝑛𝑟

𝑅
)

𝑅

𝜅𝑅

𝑟 𝑑𝑟 = ∫
𝑉

ln
1
𝜅

ln
𝑟

𝜅𝑅
𝑟 𝑍0 (

𝛼𝑛𝑟

𝑅
)  𝑑𝑟

𝑅

𝜅𝑅

. 

Now let   
𝑟

𝑅
= 𝜉  so if 𝑟 ∈ [𝜅𝑅, 𝑅]  

 
⇒ 𝜉 ∈ [𝜅, 1] and if     

𝑟

𝑅
= 𝜉    𝑡ℎ𝑒𝑛  

1

𝑅
𝑑𝑟 = 𝑑𝜉. 

So   

𝐶𝜅𝑅2 ∫  𝑍0
2(𝛼𝜅𝜉)

1

𝜅

𝜉 𝑑𝜉 = ∫
𝑉

ln
1
𝜅

𝜉 ln
𝜉

𝜅

1

𝜅

 𝑍0(𝛼𝜅𝜉) 𝑑𝜉
 

⇒ 

𝐶𝜅 =
𝑉

ln
1
𝜅

∫  
1

𝜅
ξ ln

𝜉
𝜅

 𝑍0(𝛼𝜅𝜉) 𝑑𝜉 

∫  𝑍0
2(𝛼𝜅𝜉)

1

𝜅
𝜉 𝑑𝜉

 . 

 
(3.43) 

 

We calculate from (3.43): 

𝐼1: = ∫  

1

𝜅

𝜉   𝑍0
2(𝛼𝜅𝜉) 𝑑𝜉 = [

𝜉2

2
{𝛧0

′ (𝛼𝜅𝜉)}2 +
𝜉2

2
{𝛧0(𝛼𝜅𝜉)}2]

𝜅

1

 

     = [
1

2
(𝛧1(𝛼𝜅))

2
+

1

2
(1 −

1

𝛼𝜅
2) 𝛧0

2(𝛼𝜅) −
𝜅2

2
(𝛧1(𝜅𝛼𝜅))

2
−

1

2
𝛧0

2(𝜅𝛼𝜅)] 

     =   
1

2
𝛧1

2(𝛼𝜅) −
𝜅2

2
𝛧1

2(𝜅𝛼𝜅) 

𝐼2: = ∫  

1

𝜅

ξ ln
𝜉

𝜅
 𝑍0(𝛼𝜅𝜉) 𝑑𝜉 =

1

𝛼𝜅
2 ∫ ln

𝑢

𝜅𝛼𝜅
𝑢𝛧0(𝑢)𝑑𝑢

𝛼𝜅

𝜅𝛼𝜅

 

   =
1

𝛼𝜅
2 ∫ ln

𝑢

𝜅𝛼𝜅

𝛼𝜅

𝜅𝛼𝜅

(𝑢𝑍1(𝑢))
′
𝑑𝑢 =

1

𝛼𝜅
2 [𝑢 ln

𝑢

𝜅𝛼𝜅
𝑍1(𝑢)]

𝜅𝛼𝜅

𝛼𝜅

− ∫
𝑢

𝜅𝛼𝜅

𝜅𝛼𝜅

𝑢
𝑍1(𝑢)

𝛼𝜅

𝜅𝛼𝜅

𝑑𝑢 

  =
1

𝛼𝜅
ln

1

𝜅
𝛧1(𝛼𝜅) − [−𝛧0(𝑢)]𝜅𝛼𝜅

𝛼𝜅 =
1

𝛼𝜅
ln

1

𝜅
𝛧1(𝛼𝜅)                                                         

Substituting in Eq. (3.43) we have: 

𝐶𝜅 =
𝑉

ln
1
𝜅

1
𝛼𝜅

ln
1
𝜅 𝛧1(𝛼𝜅) 

1
2 𝛧1

2(𝛼𝜅) −
𝜅2

2 𝛧1
2(𝜅𝛼𝜅)

 . 
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As a result,  

𝐶𝑘 =
2𝑉𝛧1(𝛼𝜅) 

𝛼𝜅[𝛧1
2(𝛼𝜅) − 𝜅2𝛧1

2(𝜅𝛼𝜅)]
 . 

 

The velocity in Eq. (3.41) is given by 

𝑢𝑧(𝑟, 𝑡) = ∑
2𝑉𝛧1(𝛼𝜅) 

𝛼𝜅[𝛧1
2(𝛼𝜅) − 𝜅2𝛧1

2(𝜅𝛼𝜅)]
𝑍0𝑘 (

𝑎𝑘𝑟

𝑅
)

∞

𝑘=1

𝑒
−

𝑎𝑘
2

𝑅2 𝑣𝑡
. 

 
(3.44) 

 

Now  we let 𝑡∗ = 𝑣𝑡/𝑅2,  𝑟∗ = 𝑟/𝑅 ,  𝑢𝑧
∗ = 𝑢𝑧

 /𝑉, 𝐶𝑘
∗ = 𝐶𝑘/𝑉, and get the dimensionless form:  

𝑢𝑧
∗(𝑟∗, 𝑡∗) = ∑

2𝛧1(𝛼𝜅) 

𝛼𝜅[𝛧1
2(𝛼𝜅) − 𝜅2𝛧1

2(𝜅𝛼𝜅)]
𝑍0𝑘(𝑎𝑘𝑟∗)

∞

𝑘=1

𝑒−𝑎𝑘
2𝑡∗

 

 
(3.45) 

 

 

■ 

 

3.4 Cessation of annular Couette flow with Navier slip at the walls 
 

The geometry of the cessation of annular Couette flow with Navier slip at the walls can be seen 

in Fig. 7.  For this problem the outer cylinder is sliding with velocity 𝑉 and there is Navier slip 

at the walls. When t=0 the velocity ceases to exist.  As a result, the boundary and initial 

conditions are: 

𝑟 = 𝜅𝑅,     𝑢𝑧 = 𝑢𝑤1
= 𝐵𝑅

𝑑𝑢𝑧

𝑑𝑟
|𝑟=𝜅𝑅        𝑡 ≥ 0  ,  

(3.46) 

𝑟 = 𝑅 ,    𝑢𝑧 = −𝑢𝑤2
= −𝐵𝑅

𝑑𝑢𝑧

𝑑𝑟
|𝑟=𝑅      𝑡 > 0, 

(3.47) 

 

𝑢𝑧(𝑟, 0) =
𝜅𝑉 ln

𝑟
𝜅𝑅 + 𝛣𝑉

𝛣(𝜅 + 1) + 𝜅 ln
1
𝜅 

  . 
 

(3.48) 
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t=0 

 

  t>0 

Fig. 7.  Geometry of cessation of annular Couette flow with Navier slip laws applied at the 
walls  

 

We  solve this initial boundary value problem with the method of separation of variables like 

in the previous paragraph and we get 

𝑇(𝑡) = 𝐴𝑒−
𝑏2

𝑅2𝑣𝑡
 and   𝑌(𝑟) = 𝐵 𝑍0 (

𝑏𝑟

𝑅
), 

 

where   𝑍0  is given by Eq. (3.38). From the boundary conditions we get: 

𝑌(𝑟)𝑇(𝑡) = 𝐵𝑅
𝑑

𝑑𝑟
(𝑌(𝑟)𝑇(𝑡))

𝑟=𝜅𝑅
= 𝛣𝑅 [𝑇(𝑡)

𝑑𝑌(𝑟)

𝑑𝑟
]

𝑟=𝜅𝑅

, 

𝑌(𝑟)𝑇(𝑡) = −𝐵𝑅𝑟
𝑑

𝑑𝑟
(𝑌(𝑟)𝑇(𝑡))

𝑟=𝑅
= 𝛣𝑅𝑟 [𝑇(𝑡)

𝑑𝑌(𝑟)

𝑑𝑟
]

𝑟=𝑅

. 

So,  

   𝑍0(𝜅𝑏𝜅) = [𝐵𝑅
𝑑𝑍0 (𝑏𝜅

𝑟
𝑅

)

𝑑𝑟
]

𝑟=𝜅𝑅

 

(
𝑑

𝑑𝑟
𝑍0 (𝑏𝜅

𝑟

𝑅
) =

𝑏𝜅

𝑅
(

1

2
𝑍−1 (𝑏𝜅

𝑟

𝑅
) −

1

2
𝑍1 (𝑏𝜅

𝑟

𝑅
)) =

𝑏𝜅

𝑅
(−

1

2
𝑍−1 (𝑏𝜅

𝑟

𝑅
) −

1

2
𝑍1 (𝑏𝜅

𝑟

𝑅
))

= −
𝑏𝜅

𝑅
𝑍1 (𝑏𝜅

𝑟

𝑅
))

 
⇒ 

𝑍0(𝜅𝑏𝜅) = −
𝐵𝑅𝑏𝜅

𝑅
𝑍1(𝜅𝑏𝜅)

 
⇒ 
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     𝛧0(𝜅𝑏𝜅) + 𝛣𝑏𝜅𝛧1(𝜅𝑏𝜅) = 0 .                                       (3.49) 

Similarly,  

 𝛧0(𝑏𝜅) −  𝛣𝑏𝜅  𝛧1(𝑏𝜅)  = 0.                                    (3.50) 

 

From Eq. (3.50)  we get       𝐽0(𝑏𝜅) + 𝛾𝜅𝛶0(𝑏𝜅) − 𝛣𝑏𝜅(𝐽1(𝑏𝜅) + 𝛾𝜅𝛶1(𝑏𝜅)) = 0 

𝛾𝜅 = −   
 𝐽0(𝑏𝜅) − 𝛣𝑏𝜅𝐽1(𝑏𝜅)

𝛶0(𝑏𝜅) − 𝛣𝑏𝜅𝛶1(𝑏𝜅)
 . 

Substituting 𝛾𝜅 into Eq. (3.49) we get 

(𝛣𝑏𝜅𝛶1(𝑏𝜅) − 𝛶0(𝑏𝜅))𝐽0(𝜅𝑏𝜅) + (𝐽0(𝑏𝜅) − 𝛣𝑏𝜅𝐽1(𝑏𝜅))𝛶0(𝜅𝑏𝜅) 

= −𝛣𝑏𝜅 ((𝛣𝑏𝜅𝛶1(𝑏𝜅) − 𝛶0(𝑏𝜅))𝐽1(𝜅𝑏𝜅) + (𝐽0(𝑏𝜅) − 𝛣𝑏𝜅𝐽1(𝑏𝜅))𝛶1(𝜅𝑏𝜅)). 

 

Superposition of the solutions, gives: 

𝑢𝑧(𝑟, 𝑡) = ∑ 𝐷𝑘𝑍0𝑘 (
𝑏𝑘𝑟

𝑅
)

∞

𝑘=1

𝑒
−

𝑏𝑘
2

𝑅2 𝑣𝑡
 

 
(3.51) 

 

When  𝑡 = 0 we get from equation (3.51) and the initial condition the following: 

∑ 𝐷𝜅𝛧0𝜅 (
𝑏𝜅𝑟

𝑅
) =

𝜅𝑉 ln
𝑟

𝜅𝑅 + 𝛣𝑉

𝛣(𝜅 + 1) + 𝜅 ln
1
𝜅

 

∞

𝑘=1

  . 

Using the same orthogonality condition like in the previous paragraph, we multiply 

by  𝑟𝑍0 (
𝑏𝑛𝑟

𝑅
) and integrate from 𝜅𝑅 to 𝑅: 

𝐷𝜅 ∫    𝛧0
2 (

𝑏𝑛𝑟

𝑅
)  𝑟

𝑅

𝜅𝑅

𝑑𝑟 = ∫  
𝜅𝑉 ln

𝑟
𝜅𝑅 + 𝛣𝑉

 𝛣(𝜅 + 1) + 𝜅 ln
1
𝜅

  𝛧0
 (

𝑏𝑛𝑟

𝑅
)  𝑟

𝑅

𝜅𝑅

 𝑑𝑟. 

Now let   
𝑟

𝑅
= 𝜉  so if 𝑟 ∈ [𝜅𝑅, 𝑅]  

 
⇒ 𝜉 ∈ [𝜅, 1] and if     

𝑟

𝑅
= 𝜉    𝑡ℎ𝑒𝑛  

1

𝑅
𝑑𝑟 = 𝑑𝜉. 

So  

𝐷𝜅𝑅2 ∫    𝛧0
2(𝑏𝑛𝜉) 𝜉

1

𝜅

𝑑𝜉 =
𝑅2

𝛣(𝜅 + 1) + 𝜅 ln
1
𝜅

∫(𝜅𝑉 ln
𝜉

𝜅
+ 𝛣𝑉)  𝛧0

 (𝑏𝑛𝜉) 𝜉

1

𝜅

 𝑑𝜉
 

⇒  

𝐷𝜅 =
1

𝛣(𝜅 + 1) + 𝜅 ln
1
𝜅

 ∫ (𝜅𝑉 ln
𝜉
𝜅 + 𝛣𝑉)  𝛧0

 (𝑏𝑛𝜉) 𝜉
1

𝜅
 𝑑𝜉

∫    𝛧0
2(𝑏𝑛𝜉) 𝜉

1

𝜅
𝑑𝜉

  . 

 
(3.52) 
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We calculate from Eq.(3.52): 

𝐼1: = ∫ 𝐵𝑉𝜉 𝛧0
 (𝑏𝑛𝜉)

1

𝜅

 𝑑𝜉 =  𝐵𝑉 ∫
𝑢

𝑏𝑛
 𝛧0

 (𝑢)

𝑏𝑛

𝜅𝑏𝑛

𝑑𝑢

𝑏𝑛
  =   

𝐵𝑉

𝑏𝑛
2

[𝑢𝑍1(𝑢)]𝜅𝑏𝑛  
𝑏𝑛  

     =   
𝐵𝑉

𝑏𝑛

[𝛧1(𝜅𝑏𝑛) − 𝜅𝛧1(𝜅𝑏𝑛)], 

𝐼2: = ∫  

1

𝜅

𝜅𝑉𝜉 ln
𝜉

𝜅

 

 𝑍0(𝑏𝜅𝜉) 𝑑𝜉 =   𝜅𝑉 ∫
𝑢 

𝑏𝑛
ln

𝑢

𝜅𝑏𝑛
𝛧0

 (𝑢)

𝑏𝑛

𝜅𝑏𝑛

𝑑𝑢

𝑏𝑛
  

   =   𝜅𝑉 (
1

𝑏𝑛
ln

1

𝜅
𝛧1

 (𝑏𝑛) +
1

𝑏𝑛
2 𝑍0(𝑏𝑛) −

1

𝑏𝑛
2 𝑍0(𝜅𝑏𝑛)) 

   =   𝜅𝑉 (
1

𝑏𝑛
ln

1

𝜅
𝛧1

 (𝑏𝑛) +
𝐵

𝑏𝑛
 𝑍1(𝑏𝑛) −

𝐵

𝑏𝑛
 𝑍1(𝜅𝑏𝑛)), 

 

𝐼3: = ∫   𝜉 𝛧0
2(𝑏𝑛𝜉) 

1

𝜅

𝑑𝜉 = [
𝜉2

2
{𝛧0

′ (𝑏𝜅𝜉)}2 +
𝜉2

2
{𝛧0(𝑏𝜅𝜉)}2]

𝜅

1

 

   = [
𝜉2

2
{𝛧1

 (𝑏𝜅𝜉)}2 +
𝜉2

2
{𝛧0(𝑏𝜅𝜉)}2]

𝜅

1

 

   =
1

2
{𝛧1

2(𝑏𝜅) − 𝜅2𝛧1
2(𝜅𝑏𝜅)} +

1

2
{𝛧0

2(𝑏𝜅) − 𝜅2𝛧0
2(𝜅𝑏𝜅)}2 

   =
1

2
𝛧1

2(𝑏𝜅) −
𝜅2

2
𝛧1

2(𝜅𝑏𝜅) +
𝛣2𝑏𝜅

2

2
𝛧1

2(𝑏𝜅) −
𝜅2𝛣2𝑏𝜅

2

2
𝛧1

2(𝜅𝑏𝜅) 

   =
1

2
[(1 + 𝛣2𝑏𝜅

2)𝛧1
2(𝑏𝜅) − 𝜅2(1 + 𝛣2𝑏𝜅

2)𝛧1
2(𝜅𝑏𝜅)] 

   =
1

2
(1 + 𝛣2𝑏𝜅

2)[𝛧1
2(𝑏𝜅) − 𝜅2𝛧1

2(𝜅𝑏𝜅)]. 

 

From Eq. (3.52) we have: 

𝐷𝜅 =
1

𝛣(𝜅 + 1) + 𝜅 ln
1
𝜅

∗ 

∗

𝐵𝑉
𝑏𝑛

[𝛧1(𝜅𝑏𝑛) − 𝜅𝛧1(𝜅𝑏𝑛)] + 𝜅𝑉 (
1

𝑏𝑛
ln

1
𝜅 𝛧1

 (𝑏𝑛) +
𝐵
𝑏𝑛

 𝑍1(𝑏𝑛) −
𝐵
𝑏𝑛

 𝑍1(𝜅𝑏𝑛))

1
2

(1 + 𝛣2𝑏𝜅
2)[𝛧1

2(𝑏𝜅) − 𝜅2𝛧1
2(𝜅𝑏𝜅)]

 .  
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As a result,  

𝐷𝑘 =
2𝑉𝑍1𝑘(𝑏𝑘)

𝑏𝑘(1 + 𝛣2𝑏𝜅
2)[𝛧1

2(𝑏𝜅) − 𝜅2𝛧1
2(𝜅𝑏𝜅)]

  . 

 

The velocity in Eq. (3.51) is: 

𝑢𝑧(𝑟, 𝑡) = ∑
2𝑉𝑍1𝑘(𝑏𝑘)

𝑏𝑘(1 + 𝛣2𝑏𝜅
2)[𝛧1

2(𝑏𝜅) − 𝜅2𝛧1
2(𝜅𝑏𝜅)]

𝑍0𝑘 (
𝑏𝑘𝑟

𝑅
)

∞

𝑘=1

𝑒
−

𝑏𝑘
2

𝑅2 𝑣𝑡
. 

 
(3.53) 

 

Now  we let 𝑡∗ = 𝑣𝑡/𝑅2, 𝑟∗ = 𝑟/𝑅, 𝑢𝑧
∗ = 𝑢𝑍

 /𝑉, 𝐷𝜅
′ = 𝐷𝑘/𝑉 and get the dimensionless form: 

𝑢𝑧
∗(𝑟∗, 𝑡∗) = ∑ 𝐷𝜅

′ 𝑍0𝑘(𝑏𝑘𝑟∗)

∞

𝑘=1

𝑒−𝑏𝑘
2𝑡∗

 

 
(3.54) 

 

■ 

 

In Fig. 8, we can see the evolution of the velocity profile in cessation of circular Couette flow 

for different values of 𝐵. As expected the value of the velocity is decreasing but the gradient of 

the curve of the velocity is increasing. When we increase the value of 𝐵, our curves tend to be 

closer to the initial curves for 𝑡 = 0. 

In Fig. 9, we have the velocity at the walls and as expected the velocity in the outer wall is 

decreasing by time and the velocity in the inner wall is increasing till we reach our steady state 

velocities in the walls. 
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Remark: When 𝛣 = 0     ( 𝛽 → ∞)  Eq. (3.54) is reduced to Eq. (3.45) 

 

 

(a) 

 

(b) 

 

(c) 

 

(d) 

Fig. 8. Evolution of the velocity profile in cessation of annular Couette flow with κ=0.5 and           

t=0, 0.0001, 0.001, 0.01 and 0.1: (a) B=0 (no slip); (b) B=0.1 (weak slip); (c) B=1 (moderate 

slip); (d) B=10 (strong slip) 
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(a) 

 

 

(b) 

 

 

(e) 

 

 

(c) 

 

 

(d) 

 

 

(f)

Fig. 9.  Evolution of the velocity at the walls when: (a) B=0.1 ; (b) B=0.5 ; (c) B=1 ; (d) B=10  and 

again for the same values of B, all the velocities:  (e)𝑢𝑤1
 ;  (f) 𝑢𝑤2
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3.5 Cessation of annular Couette flow with dynamic slip at the walls 

 

The geometry of the cessation of annular Couette flow with dynamic slip at the walls can be 

seen in Fig. 10.  For this problem, the outer cylinder is sliding with  velocity 𝑉 and there is 

dynamic slip at the walls. When 𝑡 = 0 the  velocity ceases to exist. In cessation flow, the 

velocity of the fluid at both walls will be decreasing , which implies that 𝑢𝑤1
will be decreasing 

and 𝑢𝑤2
will be increasing with time. As a result, the boundary and initial conditions are: 

    𝑟 = 𝜅𝑅,       𝑢𝑧 = 𝑢𝑤1
= 𝐵𝑅

𝑑𝑢𝑧

𝑑𝑟
+ 𝛬

𝑑𝑢𝑧

𝑑𝑡
|𝑟=𝜅𝑅            𝑡 ≥ 0 ,   

(3.55) 

     𝑟 = 𝑅 ,      𝑢𝑧 = −𝑢𝑤2
= −𝐵𝑅

𝑑𝑢𝑧

𝑑𝑟
+ 𝛬

𝑑𝑢𝑧

𝑑𝑡
|𝑟=𝑅          𝑡 > 0,    

(3.56) 

Since, 

𝑢𝑤1
−  𝛬

𝑑𝑢𝑤1

𝑑𝑡
=

𝜏𝑤1

𝛽
     𝑎𝑛𝑑    𝑢𝑤2

+  𝛬
𝑑𝑢𝑤2

𝑑𝑡
=

𝜏𝑤2

𝛽
  . 

 

The initial condition is 

𝑢𝑧(𝑟, 0) =
𝜅𝑉 ln

𝑟
𝜅𝑅 + 𝛣𝑉

𝛣(𝜅 + 1) + 𝜅 ln
1
𝜅

 
 . 

 
(3.57) 

 

 

t=0 

 

  t>0 

Fig. 10.  Geometry of cessation of annular Couette flow with the dynamic slip laws applied at 

the walls 
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We  solve this initial boundary value problem with the method of separation of variables like 

in the two previous paragraphs and we get: 

𝑇(𝑡) = 𝐴𝑒
−

𝜆2

𝑅2𝑣𝑡
 and  𝑌(𝑟) = 𝐵 𝑍0 (

𝜆𝑟

𝑅
), 

where   𝑍0 is given by Eq. (3.38). From the boundary conditions we get 

𝑌(𝑟)𝑇(𝑡) = 𝐵𝑅
𝑑

𝑑𝑟
(𝑌(𝑟)𝑇(𝑡))

𝑟=𝜅𝑅
+ 𝛬 (−

𝜆𝜅
2

𝑅2
𝑣) 𝑌(𝑟)𝑇(𝑡)

= (𝛣𝑅 [𝑇(𝑡)
𝑑𝑌(𝑟)

𝑑𝑟
] − 𝛬 (

𝜆𝜅
2

𝑅2
𝑣) 𝑌(𝑟)𝑇(𝑡))

𝑟=𝜅𝑅

,  

𝑌(𝑟)𝑇(𝑡) = −𝐵𝑅𝑟
𝑑

𝑑𝑟
(𝑌(𝑟)𝑇(𝑡))

𝑟=𝑅
+ 𝛬 (−

𝜆𝜅
2

𝑅2
𝑣) 𝑌(𝑟)𝑇(𝑡)

= (−𝛣𝑅 [𝑇(𝑡)
𝑑𝑌(𝑟)

𝑑𝑟
] − 𝛬 (

𝜆𝜅
2

𝑅2
𝑣) 𝑌(𝑟)𝑇(𝑡))

𝑟=𝑅

. 

So,  

   𝑍0(𝜅𝜆𝜅) = [𝐵𝑅
𝑑𝑍0 (𝜆𝜅

𝑟
𝑅

)

𝑑𝑟
]

𝑟=𝜅𝑅

 

(
𝑑

𝑑𝑟
𝑍0 (𝜆𝜅

𝑟

𝑅
) =

𝜆𝜅

𝑅
(

1

2
𝑍−1 (𝜆𝜅

𝑟

𝑅
) −

1

2
𝑍1 (𝜆𝜅

𝑟

𝑅
)) =

𝑏𝜅

𝑅
(−

1

2
𝑍−1 (𝜆𝜅

𝑟

𝑅
) −

1

2
𝑍1 (𝜆𝜅

𝑟

𝑅
))

= −
𝜆𝜅

𝑅
𝑍1 (𝜆𝜅

𝑟

𝑅
))

 
⇒ 

𝑍0(𝜅𝜆𝜅) = −
𝐵𝑅𝜆𝜅

𝑅
𝑍1(𝜅𝜆𝜅) − 𝛬 (

𝜆𝜅
2

𝑅2
𝑣) 𝑍0(𝜅𝜆𝜅)

 
⇒ 

     𝛣𝜆𝜅𝛧1(𝜅𝜆𝜅) + (1 + 𝛬𝑣
𝜆𝜅

2

𝑅2
) 𝛧0(𝜅𝜆𝜅) = 0  .                                        (3.58) 

Similarly,                        

 𝛣𝜆𝜅  𝛧1(𝜆𝜅) − (1 + 𝛬𝑣
𝜆𝜅

2

𝑅2
) 𝛧0(𝜆𝜅)  = 0  .                                    (3.59) 

 

From  (3.59) we get 𝛣𝜆𝜅(𝐽1(𝜆𝜅) + 𝛿𝜅𝛶1(𝜆𝜅)) − (1 + 𝛬𝑣
𝜆𝜅

2

𝑅2
) (𝐽0(𝜆𝜅) + 𝛿𝜅𝛶0(𝜆𝜅)) = 0 , 

𝛿𝜅 = −   
 𝛣𝜆𝜅𝐽1(𝜆𝜅) − (1 + 𝛬𝑣

𝜆𝜅
2

𝑅2) 𝐽0(𝜆𝜅)

𝛣𝜆𝜅𝛶1(𝜆𝜅) − (1 + 𝛬𝑣
𝜆𝜅

2

𝑅2) 𝛶0(𝜆𝜅)
  . 
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Substituting 𝛿𝜅 into Eq. (3.58) we get 

𝛣𝜆𝜅 (((1 + 𝛬𝑣
𝜆𝜅

2

𝑅2
) 𝛶0(𝜆𝜅) − 𝛣𝜆𝜅𝛶1(𝜆𝜅)) 𝐽1(𝜅𝜆𝜅)

+ (𝛣𝜆𝜅𝐽1(𝜆𝜅) − (1 + 𝛬𝑣
𝜆𝜅

2

𝑅2
) 𝐽0(𝜆𝜅)) 𝛶1(𝜅𝜆𝜅)) 

= − (1 + 𝛬𝑣
𝜆𝜅

2

𝑅2
) [((1 + 𝛬𝑣

𝜆𝜅
2

𝑅2
) 𝛶0(𝜆𝜅) − 𝛣𝜆𝜅𝛶1(𝜆𝜅)) 𝐽0(𝜅𝜆𝜅)

+ (𝛣𝜆𝜅𝐽1(𝜆𝜅) − (1 + 𝛬𝑣
𝜆𝜅

2

𝑅2
) 𝐽0(𝜆𝜅)) 𝛶0(𝜅𝜆𝜅)]. 

Superposition of the solutions gives: 

𝑢𝑧(𝑟, 𝑡) = ∑ 𝐸𝑘𝑍0𝑘 (
𝜆𝑘𝑟

𝑅
)

∞

𝑘=1

𝑒
−

𝜆𝑘
2

𝑅2 𝑣𝑡
. 

 
(3.60) 

 

We next find the appropriate condition for the eigenfunctions 𝑍0: 

𝑟𝑋𝑛
′′(𝑟) + 𝑋𝑛

′ (𝑟) +
𝜆𝑛

2

𝑅2 𝑟𝑋𝑛(𝑟) = 0 .                                              (3.61) 

From B.C.s: 

𝑋𝑛(𝜅𝑅) = 𝐵𝑅𝑋𝑛
′ (𝜅𝑅) − 𝜆𝑛

2 𝛬𝑣

𝑅2 𝑋𝑛(𝜅𝑅),                                            (3.62) 

    𝑋𝑛(𝑅) = −𝐵𝑅𝑋𝑛
′ (𝑅) − 𝜆𝑛

2 𝛬𝑣

𝑅2 𝑋𝑛(𝑅).                                             (3.63) 

 

And now we consider the one-dimensional problem in r and introduce: 

𝑟𝑋𝑚
′′ (𝑟) + 𝑋𝑚

′ (𝑟) +
𝜆𝑚

2

𝑅2 𝑟𝑋𝑚(𝑟) = 0                                             (3.64) 

𝑋𝑚(𝜅𝑅) = 𝐵𝑅𝑋𝑚
′ (𝜅𝑅) − 𝜆𝑚

2 𝛬𝑣

𝑅2 𝑋𝑚(𝜅𝑅)                                       (3.65) 

     𝑋𝑚(𝑅) = −𝐵𝑅𝑋𝑚
′ (𝑅) − 𝜆𝑚

2 𝛬𝑣

𝑅2 𝑋𝑚(𝑅)                                         (3.66) 

Since  𝑋𝑚 , 𝑋𝑛  𝑎𝑛𝑑 𝜆𝑚 , 𝜆𝑛  are distinct (𝑚 ≠ 𝑛), 

(𝑟𝑋𝑛
′′(𝑟) + 𝑋𝑛

′ (𝑟) +
𝜆𝑛

2

𝑅2
𝑟𝑋𝑛(𝑟) = 0 

 
⇒  (𝑟𝑋𝑛

′ (𝑟))
′

+ 
𝑟

𝑅2
𝜆𝑛

2 𝑋𝑛(𝑟) ). 

 

Multiplying Eq. (3.61)  by   𝑋𝑚 and integrating by parts gives 

∫(𝑟𝑋𝑛
′ (𝑟))

′
𝑋𝑚(𝑟)𝑑𝑟 + ∫  

𝑟

𝑅2
𝜆𝑛

2 𝑋𝑛(𝑟)𝑋𝑚(𝑟)𝑑𝑟 = 0.

𝑅

𝜅𝑅

𝑅

𝜅𝑅

 

 
(3.67) 
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Similarly, we multiply Eq. (3.64) by   𝑋𝑛, integrate by parts and then subtract it from Eq.(3.67) 

to get: 

𝑅[𝑋𝑛
′ (𝑅)𝑋𝑚(𝑅) − 𝑋𝑛(𝑅)𝑋𝑚

′ (𝑅)] − 𝜅𝑅[𝑋𝑛
′ (𝜅𝑅)𝑋𝑚(𝜅𝑅) − 𝑋𝑛(𝜅𝑅)𝑋𝑚

′ (𝜅𝑅)]

+
(𝜆𝑛

2 − 𝜆𝑚
2 )

𝑅2
∫  𝑟𝑋𝑛(𝑟)𝑋𝑚(𝑟)𝑑𝑟 = 0

𝑅

𝜅𝑅

. 

Using now Eqs. (3.62) , (3.63) , (3.65)  and  (3.66) we get: 

(𝜆𝑛
2 − 𝜆𝑚

2 ) [−
𝛬𝑣

𝐵
(𝑋𝑛

 (𝑅)𝑋𝑚(𝑅) + 𝜅𝑋𝑛
 (𝜅𝑅)𝑋𝑚(𝜅𝑅)) + ∫  𝑟𝑋𝑛(𝑟)𝑋𝑚(𝑟)𝑑𝑟

𝑅

𝜅𝑅

] = 0. 

 

Since 𝜆𝑚  𝑎𝑛𝑑 𝜆𝑛are distinct 

−
𝛬𝑣

𝐵
(𝑋𝑛

 (𝑅)𝑋𝑚(𝑅) + 𝜅𝑋𝑛
 (𝜅𝑅)𝑋𝑚(𝜅𝑅)) + ∫  𝑟𝑋𝑛(𝑟)𝑋𝑚(𝑟)𝑑𝑟

𝑅

𝜅𝑅

= 𝛿𝑚,𝑛𝑁𝑛, 
 

(3.68) 

 

where 

𝑁𝑛 = −
𝛬𝑣

𝐵
(𝑋𝑛

 2(𝑅) + 𝜅𝑋𝑛
 2(𝜅𝑅)) + ∫  𝑟𝑋𝑛

2(𝑟)𝑑𝑟,

𝑅

𝜅𝑅

 

 
(3.69) 

 

and 𝛿𝑚,𝑛 is the Kronecker delta. 

□ 

In order to find the coefficients 𝛦𝜅, Eq.(3.29) must be supplemented by an extra term, thus 

multiplying it by   𝑟𝑍0 (
𝜆𝑛𝑟

𝑅
) when  𝑡 = 0 , using the initial condition and integrating from 𝜅𝑅 

till 𝑅 gives: 

∑ 𝛦𝜅 ∫ 𝑟𝛧0𝜅 (
𝜆𝜅𝑟

𝑅
) 𝑍0 (

𝜆𝑛𝑟

𝑅
)

𝑅

𝜅𝑅

𝑑𝑟 = ∫
𝜅𝑉 ln

𝑟
𝜅𝑅 + 𝛣𝑉

𝛣(𝜅 + 1) + 𝜅 ln
1
𝜅 

𝑅

𝜅𝑅

∞

𝑘=1

𝑟𝑍0 (
𝜆𝑛𝑟

𝑅
) 𝑑𝑟. 

Also, 

𝛬𝑣

𝐵

𝜅𝑉 ln
𝑟

𝜅𝑅 + 𝛣𝑉

𝛣(𝜅 + 1) + 𝜅 ln
1
𝜅 

𝑍0 (
𝜆𝑛𝑟

𝑅
) =

𝛬𝑣

𝐵
∑ 𝛦𝜅𝛧0𝜅 (

𝜆𝜅𝑟

𝑅
) 𝑍0 (

𝜆𝑛𝑟

𝑅
)

∞

𝜅=1

. 

When 𝑟 = 𝑅, 

𝛬𝑣

𝐵

𝜅𝑉 ln
1
𝜅 + 𝛣𝑉

𝛣(𝜅 + 1) + 𝜅 ln
1
𝜅 

𝑍0(𝜆𝑛) =
𝛬𝑣

𝐵
∑ 𝛦𝜅𝛧0𝜅(𝜆𝜅)𝑍0(𝜆𝑛)

∞

𝜅=1

, 
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And when 𝑟 = 𝜅𝑅, 

 

𝛬𝑣

𝐵

𝛣𝑉

𝛣(𝜅 + 1) + 𝜅 ln
1
𝜅

 
𝑍0(𝜅𝜆𝑛) =

𝛬𝑣

𝐵
∑ 𝛦𝜅𝛧1𝜅(𝜅𝜆𝜅)𝑍1(𝜅𝜆𝑛)

∞

𝜅=1

. 

 

So, 

∑  

𝑅

𝜅𝑅

𝛦𝜅 ( ∫ 𝑟𝛧0𝜅 (
𝜆𝜅𝑟

𝑅
) 𝑍0 (

𝜆𝑛𝑟

𝑅
)

𝑅

𝜅𝑅

𝑑𝑟 −
𝛬𝑣

𝐵
[𝛧0𝜅(𝜆𝜅)𝑍0(𝜆𝑛) + 𝜅𝛧0𝜅(𝜅𝜆𝜅)𝑍0(𝜅𝜆𝑛)])

= ∫
𝜅𝑉 ln

𝑟
𝜅𝑅

+ 𝛣𝑉

𝛣(𝜅 + 1) + 𝜅 ln
1
𝜅

 

𝑅

𝜅𝑅

𝑟𝑍0 (
𝜆𝑛𝑟

𝑅
) 𝑑𝑟

−
𝛬𝑣

𝐵

(𝜅𝑉 ln
1
𝜅

+ 𝛣𝑉) 𝛧0(𝜆𝑛) + 𝜅𝛣𝑉𝛧0(𝜅𝜆𝑛)

𝛣(𝜅 + 1) + 𝜅 ln
1
𝜅 

 . 

 

We are following the same method of solution as the previous paragraphs and the constants Eκ 

are given by: 

𝐸𝜅 =
2𝑉

𝜆𝜅
2 𝐿

𝛧0(𝜆𝜅), 
 

(3.70) 

where 

𝐿 = 𝐵 (𝑍1
2(𝜆𝜅) + 𝛧0

2(𝜆𝜅)) − 𝛣𝜅2 (𝛧1
2(𝜅𝜆𝜅) + 𝛧0

2(𝜅𝜆𝜅))

−
2𝛬𝑣

𝑅2
(𝑍0

2(𝜆𝜅) + 𝜅𝛧0
2(𝜅𝜆𝜅)). 

 
(3.71) 

 

 

So, the solution of our problem is: 

𝑢𝑧(𝑟, 𝑡) = ∑ 𝐸𝑘𝑍0 (
𝜆𝑘𝑟

𝑅
)

∞

𝑘=1

𝑒
−

𝜆𝑘
2

𝑅2 𝑣𝑡
. 

 
(3.72) 

 

Dividing 𝑢𝑧 by 𝑉, and  setting  𝑢𝑧
∗ = 𝑢𝑧/𝑉 , 𝑟∗ = 𝑟/𝑅  , 𝑡∗ = 𝑣𝑡/𝑅2  we get: 

𝑢𝑧
∗(𝑟∗ , 𝑡∗) = ∑ �̃�𝑘𝑍0(𝜆𝑘𝑟∗)

∞

𝑘=1

𝑒−𝜆𝑘
2 𝑡∗

, 
 

(3.73) 
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where  𝐸�̃� = 𝐸𝑘/𝑉    and the slip velocities are given by 

𝑢𝑤1
∗ (𝑡∗) = ∑ �̃�𝑘𝑍0(𝜅𝜆𝑘)

∞

𝑘=1

𝑒−𝜆𝑘
2𝑡∗

, 
 

(3.74) 

𝑢𝑤2
∗ (𝑡∗) = ∑ �̃�𝑘𝑍0(𝜆𝑘)

∞

𝑘=1

𝑒−𝜆𝑘
2𝑡∗

. 
 

(3.75) 

 

For more information about the method of solution for these types of problems, see (Kaoullas 

and Georgiou, 2015). 

In Fig. 11,  which depicts the velocity at the walls, we see that the velocity in the inner wall 

(Fig. 11b) as the value of 𝐵 is increasing, our curves for different 𝛬 tend to get closer   but on 

the other hand in the outer wall (Fig. 11a), the curves  tend to get further from each other. 

In Fig. 12 and Fig. 13, we can see the evolution of the velocity profile in cessation of annular 

Couette flow for weak slip (B=0.1) and moderate slip (B=1) and how the velocity changes for 

different values of 𝛬. 

 

Remark: When 𝛬 = 0 Eq. (3.73)  is reduced  to Eq. (3.54) and when 𝛣 = 0   
 

⇔    𝛽 → ∞  Eq. 

(3.54)  is reduced  to Eq. (3.45) 

■ 

 

(a) 

 

(b) 

Fig. 11. Evolution of the slip velocity in cessation circular Couette flow for different values of 

𝛬 and κ=0.5: (a) 𝑢𝑤1
; (b) 𝑢𝑤2
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(a) 

 

(b) 

 

(c) 

 

(d) 

 

(e) 

 

(f) 

Fig. 12. Evolution of the velocity profile in 

cessation circular Couette flow with κ=0.5 

and B=0.1: (a) Λ=0; (b) Λ=0.5; (c) Λ=5;  

 

Fig. 13. Evolution of the velocity profile in 

cessation circular Couette flow with κ=0.5 

and B=1: (a) Λ=0; (b) Λ=0.5; (c) Λ=5; 
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3.6 Appendix: Solutions when the inner cylinder is moving 

 

  In the previous section we derived analytical solutions for the steady state and cessation 

problem of annular Couette flow when the outer cylinder is sliding with velocity 𝑉, the inner 

cylinder is fixed, and there are three types of slip laws applied at the walls: (a) No-slip law; (b) 

Navier slip law; (c) Dynamic slip law.  

  In this paragraph we are going to provide the analytical solutions for the same problem but 

now instead of the outer cylinder, now the inner cylinder is sliding with velocity 𝑉, and the 

outer cylinder is fixed. 

  For the steady state of annular Couette flow with Navier slip at the walls the velocity is given 

by: 

𝑢𝑧 =
𝜅𝑉 ln

𝑟
𝑅

+ 𝐵𝜅𝑉

𝐵(𝜅 + 1) + 𝜅 ln 𝜅
  .  

 

(3.76) 

  If we let  𝛣 = 0   ( 𝛽 → ∞)  the result will be the solution for the steady state annular Couette 

flow with no-slip at the walls: 

𝑢𝑧 =
𝑉

𝑙𝑛𝜅
ln

𝑟

𝑅
  . 

 

(3.77) 

 

  For the cessation of annular Couette flow with dynamic slip at the walls the velocity will be: 

𝑢𝑧(𝑟, 𝑡) = ∑ 𝐸𝑘𝑍0 (
𝜆𝑘𝑟

𝑅
)

∞

𝑘=1

𝑒
−

𝜆𝑘
2

𝑅2 𝑣𝑡
, 

 

and the coefficients in (3.78) are given by 
 

𝛦𝜅 = −
2𝜅𝑉

𝜆𝜅
2 𝛧0(𝜅𝜆𝜅), 

where 
 𝐵 (𝑍1

2(𝜆𝜅) + 𝛧0
2(𝜆𝜅)) − 𝛣𝜅2 (𝛧1

2(𝜅𝜆𝜅) + 𝛧0
2(𝜅𝜆𝜅)) 

 
+

2𝛬𝑣

𝑅2
(𝑍0

2(𝜆𝜅) + 𝜅𝛧0
2(𝜅𝜆𝜅)). 

  
 

(3.78) 
 
 
 
 
 

(3.79) 
 

 
 

(3.80) 

 

If we let  𝛬 = 0 then the result will be the solution for the cessation of annular Couette flow 

with Navier slip at the walls and the velocity will be given by: 

𝑢𝑧(𝑟, 𝑡) = ∑ 𝐷𝑘𝑍0𝑘 (
𝑏𝑘𝑟

𝑅
)

∞

𝑘=1

𝑒
−

𝑏𝑘
2

𝑅2 𝑣𝑡
, 

 

(3.81) 

where 

𝐷𝜅 = −
2𝜅𝑉

𝑏𝜅

𝑍1(𝜅𝑏𝜅)

(1 + 𝛣2𝑏𝜅
2)[𝛧1

2(𝑏𝜅) − 𝜅2𝛧1
2(𝜅𝑏𝜅)]

. 
(3.82) 
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Now if we let  𝛣 = 0   (𝛽 → ∞)   in Eq. (3.82), the result will be the solution for the cessation 

of annular Couette flow with no-slip at the walls: 

𝑢𝑧(𝑟, 𝑡) = ∑ 𝐶𝑘𝑍0𝑘 (
𝑎𝑘𝑟

𝑅
)

∞

𝑘=1

𝑒
−

𝑎𝑘
2

𝑅2 𝑣𝑡
, 

 

(3.83) 

where 

𝐶𝜅 = −
2𝜅𝑉

𝛼𝜅

𝛧1(𝜅𝛼𝜅)

𝛧1
2(𝛼𝜅) − 𝜅2𝛧1

2(𝜅𝛼𝜅)
. 

 

(3.84) 

 

■ 
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Chapter 4: Concluding Remarks and Recommendations   
 

In this thesis analytical solution for the cessation of circular and annular Newtonian Couette 

flow with dynamic slip along the walls were derived. Initially, the steady-state analytical 

solutions were presented for no-slip and Navier slip laws at the walls. Then, solutions were 
derived for the velocity, with the same slip laws applied when the cessation occurred, using the 

separation of variables method and the the well-known orthogonality condition. However, for 

the dynamic slip law, the orthogonality condition was found to differ due to the presence of a 
time-dependent term that causes the eigenvalue parameter to appear in the boundary conditions. 

The resulting Sturm-Liouville problem was different from that obtained using the static Navier 

slip condition. The orthogonality condition of the associated eigenfunctions was derived and 

the solutions were provided for the circular and annular Couette flow.    

In the case of  dynamic slip both for the circular and annular Couette flow, the slip velocity is 

not solely influenced by the present value of the wall shear stress, but also by its preceding 

states. For higher values of 𝛬, the time that was needed for the velocity to reach the steady-state 

value, was increasing. Consequently, the development of slip velocity and flow is slowed down 

due to this phenomenon. 

 

A recommendation for a future research problem would be do derive analytical solutions for 

the problems of cessation of annular and circular Couette flow but this time with logarithmic 

wall slip applied to the walls, and compare the results with the problems that were studied in 

this thesis, with dynamic slip. 
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