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Abstract: Analytical solutions are derived for the cessation Newtonian
Couette flows with wall slip obeying a dynamic slip model. The circular
Couette flow problem will be the first one that will be studied and
afterwards the problem of annular Couette flow will be solved. In circular
Couette flow, there are two rotating vertical coaxial cylinders of infinite
length and the inner cylinder is rotating. In annular Couette flow, there are
two horizontal coaxial cylinders of infinite length and the outer cylinder is
sliding. The steady-state solution with no-slip at the walls along with the
application of Navier and dynamic slip at the walls will be the way the
solution of these two problems will be derived with dynamic slip being the
most important part. This slip equation allows for a relaxation time in the
development of wall slip by means of a time-dependent term which forces
the eigenvalue parameter to appear in the boundary conditions. The
resulting spatial problem corresponds to a Sturm-Liouville problem
different from that obtained using the static Navier slip condition. The
orthogonality condition of the associated eigenfunctions is derived and the
solutions are provided for the circular and annular Couette flow.

Keywords: Newtonian fluid = Couette flow = Cessation flow = Navier slip
= Dynamic slip



Hepidnqyn: AvoAvtikég AVGEIS TPOKVTTOLV Ywo. TNV TAOCN TOV
Nevtoveuwv Couette podwv pe covOnkn oAicOnom vo epappdleton ot
TOLOUOTA TOL AKOAOVOEL TO pHovTEAD dvvaukng oAicOnong. To tpofinua
¢ KukMKNg pong Couette Ba eivarl 1o mTpdTo TOL O pedetnBel ko ot
cuvéyela Ba Avbel To mpoPANUa TG dakTLALoEWOVE pong Couette. Xy
KokAikn) pon Couette, vmdpyovv 000 mePLoTPEPOUEVOL  KAOETOL
opoa&ovikol KOAVOPOL GMEPOL HUNKOVG KOl O €0MTEPIKOC KOAMVIPOG
TeEPLOTPEPETAL. 2T dokTLAL0EWN pon Couette, vtdpyovv dvo optldvTiol
opoa&ovikol KOAWVOPOL AmEPOL UNKOVE KOl O €EMTEPIKOC KOLAIVOPOG
oMcBOaivel. H Avon péviung pong ywpic odicOnom ota toyyopota poli pe
mv epoppoyn Navier kot dvvoptkng ohicOnong ota toryydpota Oa givot o
TPOTOG e Tov omoio Ba mpoxkvyel 1 Avon TV 600 TPOPANUATOV pe ™
duvakn oAicOnom va givat 1o o onuavtikd Koppdtt. Avti 1 e&icmon
oAoOnong emtpénel Eva xpovo YaAldpmong otV avarTuén g oAicinong
TOV TOlYOoV UEC® VOGS YPOVIKA €COpPTOUEVOL OPOL TOV OVOYKALEL TNV
TOPAUETPO OOTIUNG Vo, eppavileTal oTig cuvoplakég cuvinkes. To ympikd
TPOPANUO TOV TPOKOTTEL OvTIoTOLYEL o€ éva TpOPAnuo Sturm—Liouville
SPOPETIKO amd OVTO OV TPOKVTTEL YPNGLUOTOUDVINS T OTOTIKN
ocuvOnkn oAicOnong Navier. H cuvOnkn opBoyoviotntog tov oyeTik®v
10106VVOPTHCEMV LIOAOYILETOL KOl TOPEXOVTOL OL AVGELS Y10 TNV KUKAIKTY
ka1 dokTvoAMoegdn pony Couette.

Ag€erg kheda: Nevtovewo pory = Ponp Couette = ITavon ponc = Navier
oAioOnomn = Avvouikn oAicOnon
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Chapter 1: Introduction

The goal of this dissertation is to study the circular and annular Newtonian Couette flows with
wall slip laws applied into the two cylinders of our problems. Slip at the wall can be occurred
not only with non-Newtonian but also with Newtonian fluids. Several slip laws have been used
in the literature, but we are going to see three of them here, the no-slip, the Navier slip and the
dynamic slip law.

1.1 Wall slip laws

In rheology, the term "wall slip™ refers to the phenomenon where a material flowing through
a pipe or channel does not exhibit the same flow behavior near the wall as it does in the bulk of
the material. Instead, the material near the wall may slip or slide along the surface, resulting in
a different flow profile and a reduction in the effective viscosity of the material. (Talmon and
Meshkati, 2022)

Wall slip is an important issue in many industrial processes, as it can lead to inaccurate
measurements and inconsistent product quality. To account for wall slip, researchers have
developed a number of "wall slip laws" that describe how the flow behavior of a material
changes near the wall.

Several slip laws have been used in the literature, but we are going to see three of them here,
the no-slip, the Navier slip and the dynamic slip.

No-slip boundary condition

The no-slip condition is a fundamental principle in fluid mechanics that describes the behavior
of fluid flow at solid surfaces. According to this law, the velocity of a fluid at a solid boundary
is zero, or the fluid particles "stick" to the surface of the solid. This condition applies to both
liquids and gases.

At the microscopic level, the no-slip condition arises from the interaction between fluid
particles and the molecules of the solid surface. When a fluid particle comes into contact with
a solid surface, it experiences a force that causes it to slow down and eventually come to a stop.
The force arises from a combination of molecular interactions such as van der Waals forces,
electrostatic forces, and chemical interactions between the fluid and the solid surface.

The no-slip condition has important consequences for fluid flow at solid boundaries. For
example, it means that the velocity of a fluid near a wall is zero, which in turn affects the flow
profile of the fluid. It also means that the transport of momentum and heat across a solid
boundary is limited, which can have important implications for heat transfer and fluid mixing.

In practical applications, the no-slip condition is often used to model fluid flow in pipes,
channels, and other confined geometries. By assuming that the velocity of the fluid is zero at
the walls, engineers can simplify the mathematical description of the flow and make predictions
about pressure drops, flow rates, and other fluid properties.



If the velocity of a solid boundary is Us, then the fluid particles adjacent to this boundary have
the same velocity (Yilbas, 2018):

up = Us, (1.1)

Hence, if the wall is fixed (not moving), then u; = 0.

Navier-slip boundary condition

The Navier slip law is a mathematical model used to describe the behavior of fluids at solid
surfaces. It assumes that the fluid in contact with the surface does not adhere to it completely,
but instead has a finite slip velocity along the surface. This slip velocity is characterized by a
slip length, which is the distance over which the velocity profile of the fluid changes from its
value at the surface to its value in the bulk.

The Navier slip law is named after Claude-Louis Navier, a French physicist and engineer who
developed the theory of fluid mechanics in the 19th century. The law is based on the Navier-
Stokes equations, which are a set of partial differential equations that describe the motion of
fluids.

The Navier slip law is important in the study of fluid flow in microchannels and in the design
of microfluidic devices, where the effects of surface interactions become more pronounced due
to the small size of the channels. It is also used in the analysis of flow in porous media and in
the modeling of boundary layers in fluid flow problems.

Here fluid particles are allowed to slip at the wall. Let us denote by u,, the relative velocity
of the fluid particles to that of the wall,

uy = |up — Usl. (1.2)

Navier’s slip law (Navier, 1827) states that the slip velocity is proportional to the wall shear
stress, T, , i.€.,

Tw = Puy, (1.3)

where B is the slip coefficient. The no-slip condition is recovered when g — oo; clearly, wall
slip becomes stronger as £ is reduced.

The coefficient in the Navier slip boundary condition, also known as the slip length, is a
material property that depends on the surface characteristics of the solid boundary and the
properties of the fluid flowing over it. It represents the distance from the boundary at which the
fluid velocity becomes equal to the velocity of the solid boundary, and is defined as:

ﬂ=5_50,

where § is the hydrodynamic boundary layer thickness, and &, is the slip length for a perfectly
smooth surface.

The value of 8 depends on various factors such as the surface roughness of the solid boundary,
the viscosity of the fluid, the temperature of the fluid, and the velocity of the fluid. Generally,
the slip length increases with increasing surface roughness and decreasing fluid viscosity. In



addition, the slip length may also depend on the direction of flow and the type of fluid-solid
interaction.

The value of S is typically determined experimentally or through molecular dynamics
simulations and can vary widely depending on the specific system being studied.

Dynamic wall slip boundary condition

The dynamic slip law at the walls is a concept in fluid mechanics that describes the behavior of
fluids flowing over a solid surface. It refers to the relationship between the velocity of the fluid
at the wall and the shear stress that develops there.

In general, the behavior of fluids near a solid wall is influenced by a phenomenon known as the
"no-slip"” boundary condition, which states that the fluid velocity at the wall is zero. However,
in some cases, this assumption does not hold true, and the fluid may slip over the wall to some
extent.

The dynamic slip law is important in a wide range of applications, such as microfluidics,
nanofluidics, and surface science, where the behavior of fluids near surfaces is of great interest.
Understanding the dynamic slip law can help engineers and scientists design more efficient
fluid systems and develop better models of fluid behavior.

When a fluid exhibits dynamic wall slip, the slip velocity at the wall depends on the history of
the fluid motion. This dependence on past motion is often referred to as a “memory effect” and
can be modeled using a memory parameter.

One possible approach to modeling dynamic wall slip with a memory parameter is to use a
generalized Navier slip boundary condition, which accounts for the slip velocity at the wall as
a function of both the current fluid velocity and its history. The specific form of the slip
boundary condition will depend on the underlying physical mechanisms that lead to wall slip.

For example, in the case of a viscoelastic fluid, the slip velocity at the wall may depend on the
deformation history of the fluid. In this case, a memory parameter can be introduced to describe
the time-dependent behavior of the slip velocity.

Overall, the modeling of dynamic wall slip with a memory parameter can be a complex
problem, requiring a detailed understanding of the underlying physics and appropriate
mathematical models.

When slip is dynamic, the slip velocity does not adjust instantaneously to the wall shear stress.
Eqg. (1.3) is generalized by introducing a memory parameter or relaxation time A (Hatzikiriakos
and Dealy, 1991):

duy, _ Ty

wy FAGE =2 (1.4)

In steady flow, Eq. (1.4) is equivalent to Navier’s slip law, which is given by Eq. (1.3).



1.2 Newtonian flows with dynamic wall slip

Throughout the literature, several problems have been solved and many analytical solutions
have been derived for Newtonian flows with wall slips. In this chapter we are going to review
two flows that have been solved in the past for Newtonian fluids with dynamic wall slip.

The first flow is from the paper Kaoullas et al. (2015) and gives us analytical solutions for the
problem “Start-up and cessation Newtonian Poiseuille and Couette flows with dynamic slip”.
In this paper the authors derive analytical solutions for the start-up and cessation Newtonian
Poiseuille and Couette flows with wall slip obeying a dynamic slip model. More specifically
the authors study the start-up and cessation flows of axisymmetric Poiseuille flow, plane
Poiseuille flow, plane Couette flow and circular Couette flow. (The last one is also part of this
dissertation, so it is described in detail in subchapter 2.5). The authors conclude with the
observation that “under a dynamic slip condition, the slip velocity rather than depending on the
instantaneous value of the wall shear stress, also depends on its past states. This effect delays
the evolution of the slip velocity, and also the flow development”.

The second flow is from the paper of Abou-Dina et al. (2020) and gives us analytical solutions
for the problem “Newtonian plane Couette flow with dynamic wall slip”. The authors consider
the flow of a Newtonian fluid contained between infinite, horizontal parallel plates, placed at a
distance H apart. The fluid is assumed to be at rest and suddenly the upper plate starts moving
horizontally at a speed ¥V while the lower one is kept fixed.

When dynamic wall slip is considered, the authors derive analytical solutions with two
methods, the standard separation of variables (Fourier) method and the one-sided Fourier
method. The method that will be used in our problems is the method of separation of variables.
The authors conclude their paper stating that “the fact that reaching a steady state in the
presence of dynamic wall slip may take very long times is very important and can be used in
rheometry. The analytical solution presented in this paper may be useful in calculating the slip
relaxation coefficients from transient experiments in both Newtonian and generalized-
Newtonian (e.g. power-law) fluids. More systematic experimental data on both Newtonian and
non-Newtonian fluids will be most useful in understanding better the implications of dynamic
slip in practice”.

1.3 Objective and outline of the thesis

The objective is to derive analytical solutions for the circular and annular Couette cessation
flows of a Newtonian fluid exhibiting dynamic wall slip. The latter is considered for the first
time.

In Chapter 2, we are studying the analytical solutions of a Newtonian fluid in circular Couette
flow, where the inner cylinder is rotating with an angular velocity 2. In the beginning we apply
the no-slip law and after that we repeat the process with the Navier slip law at the walls. Then
we derive analytical solutions for the cessation of circular Couette flows with no-slip and
Navier slip laws applied in our problems respectively. We continue with solving the problem,
cessation of circular Couette flow but this time with dynamic slip at the walls. In the last
subchapter we present a table with analytical solutions for the velocity of our fluid in the case
that the outer cylinder is rotating instead of the inner.

In Chapter 3, we are studying the analytical solutions of a Newtonian fluid in annular Couette
flow, where the outer cylinder is sliding with a velocity IV when the inner cylinder is fixed. We
proceed applying the same wall slips and derive analytical solution for this problem and in the



last subchapter we present another table where the inner cylinder is sliding, and the outer
cylinder is fixed.

In Chapter 4, we summarize our conclusions of this dissertation and we state any
recommendations for future work.






Chapter 2: Circular Couette flow

In fluid dynamics, the Taylor—Couette flow is a type of flow where a fluid is contained
between two concentric cylinders, with one of the cylinders rotating while the other is
stationary. Taylor demonstrated that by increasing the angular velocity of the inner cylinder
beyond a specific limit, the flow of the fluid between the cylinders becomes unsteady, resulting
in the emergence of a new state that consists of symmetrical toroidal vortices, referred to as
Taylor vortex flow. As a result, as the cylinder's angular speed is raised, the system experiences
a series of disturbances that result in states with more complex patterns in space and time. The
subsequent state is referred to as a wavy vortex flow.

When the Reynolds number is low, meaning low angular velocities, the flow is steady and only
azimuthal. This flow known as circular Couette flow was named after Maurice Marie Alfred
Couette, who employed the apparatus to determine viscosity. The research paper by Sir
Geoffrey Ingram Taylor (Taylor,1923), which examined the stability of Couette flow, was a
significant milestone in the progress of hydrodynamic stability theory. Taylor demonstrated
that the no-slip condition is the correct boundary condition for viscous flows at a solid
boundary, which was previously in dispute by the scientific community.

Circular Couette flow has wide applications in various fields, including, Magnetic fields, Heat
transfer, Rheology and Chemical Engineering.

In Magnetic fields, the stability of the circular Couette flow is being examined in a system
consisting of two cylinders that rotate around the same axis, with a ferrofluid filling the gap
between them. A uniform magnetic field is applied in the same direction as the cylinder axis.
Various models are being used to analyze the stability of this flow, with consideration given to
the polydispersity of the ferrofluid to differing extents.( A. Leschhorn et al., 2009)

In Heat transfer, the stability of heated, incompressible Taylor-Couette flow has been
investigated through numerical simulations. The study focuses on the impact of the centrifugal
and gravitational potentials. The flow occurs between two cylinders that are concentric and
differentially heated, with the inner cylinder allowed to rotate.( R. Kedia et al., 1998)

In Rheology, the impact of non-Newtonian rheology on mixing efficiency is not yet fully
understood. To shed light on this topic, researchers conducted a study using particle image
velocimetry and flow visualization to analyze the effect of shear-thinning rheology on a Taylor-
Couette reactor.( Cagney and Balabani, 2019)

In Chemical Engineering, Taylor-Couette flows, which occur between two concentric
cylinders, have many potential applications, especially in small-scale two-phase devices for
solvent extraction. To explore this further, an experimental device was created with two
cylinders, one rotating and one fixed, and the option to add pressure-driven axial flow. Taylor-
Couette flow progresses to turbulence via a series of hydrodynamic instabilities, which can
significantly impact mixing and the axial dispersion coefficient. These flow bifurcations can
also lead to flawed modeling of the interaction between flow and mass transfer, making them a
crucial factor to consider. (Nemri et al., 2013)

In this chapter we study the steady, axisymmetric, torsional flow of an incompressible
Newtonian liquid between two rotating vertical coaxial cylinders of infinite length with radii R
and xR where 0 <k < 1 and the inner cylinder has angular velocity (2, so we assume u, =
u, =0 , dug/d8 =0 , dp/dB =0and g =—ge, . In Fig.1 we can see the geometry of
circular Couette flow which will interest us in this chapter.



As a result of our assumptions, the 6-momentum equation gives:

a’LLg <6 ZUQ 1 a‘I,LQ 1 )

Ug
0r2 r or r?

ot
where, v = n/p is the kinematic viscosity.
The steady-state solution is found by setting dugy/dt = 0 and integrating twice.
The general form of the angular velocity ug is given by (Papanastasiou et al.,1999)

ug(r) = ¢qr +Cr—2,

and the wall shear stress is given by

_ . 2ncy d (ug
Tro = Tor = — 2 —TIT;(T,
Tw = B Uy -

(2.1)

(2.2)

(2.3)

(2.4)

In each of the following paragraphs we are going to find these constants and derive the

analytical solution of the velocity.

Fig. 1. Geometry of circular Couette flow



2.1 The steady-state circular Couette flow with no slip at the walls

The geometry of the steady-state circular Couette flow with no slip at the walls can be seen in
Fig. 2. For this problem the inner cylinder is rotating with angular velocity Q and there is no
slip at the walls. As a result, the boundary conditions are:

r=kR ug = 0kR, (2.5)

r=R ug = 0. (2.6)

Fig. 2. Geometry of the steady state circular Couette flow with the no-slip laws applied at the
walls

Appling the boundary conditions in equation (2.2) we get:
ug(kR) = NkR = kR + ’:—; , (2.7)
ug(R) =0=c,R + %2 . (2.8)

Solving the above system, we get:

B 0NKk?R? NK?

= = — )
1—x2 1 1—K2

C2

Substituting the above in equation (2.2) we get that the velocity is given by:

o) = NK?’R (R r) ' (2.9)

1-xk2\r R

The velocity in both walls will be zero because of the no slip condition:

Uy =u, =0. (2.10)

1 2

Substituting ¢, = 2x?R? /(1 — k?) in equation (2.3) we get that the wall shear stress is given
by:



2nNK?*R? (2.12)
tro =~ (1 —x2)rz’

The wall shear stress in each of the walls will be
2n0
1 = (1—K2) 4 TWz

We close this section by finding the dimensionless equations for velocity and wall shear stresses

(2.12)

T = K°Ty, -

which are going to help us in the sequel.

We divide both parts of our equation with QR and we set uy = ug/02R and r* =r/R to get:

LKk o1 (2.13)
o =1—K2(F_r ) '
Likewise,
. 2K? (2.14)
T T T )
where
« _ tre
e — T)_.Q
Additionally,
2 (2.15)
* * 2
Tw, m r Tw, K Ty, -
[

10



2.2 The steady-state circular Couette flow with Navier slip at the walls

The geometry of the steady-state circular Couette flow with Navier slip at the walls can be seen
in Fig. 3. For this problem the inner cylinder is rotating with angular velocity (2 and at the walls
we have Navier slip, so the velocities at the walls will not be zero. As a result, the boundary
conditions are:

r=kR uy=10kR—-uy,, (2.16)

r=R Ug = Uy, - (2.17)

Ug(kR)= N kR —u,,

Uy (R = Uy,

Fig. 3. Geometry of the steady-state circular Couette flow with the Navier slip laws applied at
the walls

Appling the boundary conditions in equation (2.2) we get:

c
ug(kR) = OkR —u,, = ¢;kR +é , (2.18)

e (2.19)

ug(R) = uy, = R+ 7

By Eg. (2.4) we have:

_ 2ncy (2.20)
Uw, = ﬁKZRZ ’
_ 21mcy (2.21)
qu = ﬂRZ .
From Egs. (2.18) and (2.20) we get
2nc;y C; (2.22)
kR —m= C1KR +E ’
and from Egs. (2.19) and (2.21) we get
2nc; (2n—BR)c; (2.23)
(L= 520 ="—"7.
BR3 R2 BR3

11



Equations (2.22) and (2.23) give:

B Nx3(2n - BR) 3 NPx3R3
“= 2n (1 4+ k3) + pkR(1 — k%) ’ 2= 2n (1 + x3) + BkR(1 — k?) ~

Therefore, the velocity is given by:

0K3R
2n (1 +k3) + BxkR(1 —

(2.24)

ug(r) =

2 R r RR
K2)<(77—/3 )E‘*‘ﬁ ?>

Substituting c, = 2Bx3R3/(2n (1 + k3) + BxR(1 — k2)) in equation (2.3) we get that the
wall shear stress is given by:
3 2n0pK3R3 1 (2.25)
tro = 2n (1 +k3) + pR(1 — k2)r?’

and the wall shear stress in each of the walls is:

. 2n2Bk R = 2 (2.26)
L 2n (A4 K3+ pRR(1—K2) T 2 T
As a result, from Eq. (2.4), the velocity in each of the walls will be:
2n02k R (2.27)

— 2
Uy, y Uy, = K Uy,

1T 2n (1 + k3) + BrR(1 — k?)

We close by finding the dimensionless equations for our velocities and wall shear stresses. For
our velocities we are dividing both parts of our equation with 2R and we set uy = ug/02R
r*=r/Rand B = n/BR so we get:

K3

N\ 28— 1y 4 2 (2.28)
AT O b ey | (=

In Fig. 4, we can see the evolution of the velocity profile in circular Couette flow with Navier
slip law applied in the walls for various values of B (Philippou et al.,2017). We observe that
when we raise the value of B, the velocity starts decreasing slower each time. Fig. 5 shows the
evolution of the velocity at the inner wall, also for various values of B. For better understanding
of our result, we use a semilog scale. (Georgiou and Xenophontos,2007)

The velocities in the wall are:

v = 2kB 0 = Ky (2.29)
Wi 2B(1+k3)+k(1—x2) = M Wi

Likewise,

. 2k° 1 where 5 =1T.9/702, (2.30)
tro = 2B(1 +x3) + k(1 — k?2) r*2

(2.31)

12



2K
Wi T BA+ ) k(A —KD) v

= K°Ty,.

Remark: When B =0 (8 — o) EQgs. (2.28), (2.30) and (2.31) are reduced to Egs. (2.13),
(2.14) and (2.15) respectively

|
Velocity with Navier Velocity with Navier
05 T T T 1 T T T
B=0
045 — B0 08f
u B=1 wlr
] | — B =10 )
0.4 1 08
0.35pF E [ %4 3
03} 9 [X:3
025 L 0sk
0.2} - 0ak
015 E oz}
0.1 = 0.2k
0.05[ E 0afF g
0 . ) . \ A : \ ) : 0 . L . . \ X , \
05 055 06 065 07 075 08 08 09 085 1 05 055 06 085 07 075 0.8 08 09 095

r

Fig. 4. Evolution of the velocity profile in circular Couette flow with Navier slip law applied in
the walls for B=0,0.1,1 and 10
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2.3 Cessation of circular Couette flow with no slip at the walls

The geometry of the cessation of circular Couette flow with no slip at the walls can be seen in
Fig. 6. For this problem the inner cylinder is rotating with angular velocity 2 and there is no
slip at the walls. When t = 0 the angular velocity ceases to exist. As a result, the boundary
and initial conditions are:

r=kR ug=0 t=0, (2.32)
r=R ug=0 t>0, (2.33)

0Nxk?R (R r (2.34)
w0 =1"s(;-%)

ug(kR) =10

t<0 t=0

Fig. 6 Geometry of cessation of circular Couette flow with the no slip laws applied at the walls

We solve this initial boundary value problem with the method of separation of variables,
Let

ug(r,t) = Y(r)T(t). (2.35)
Substituting into Eq. (2.1) we get

Y)T'(t) =v (Y”(r)T(t) + %Y’(r}T(t) - %Y(r)T(t))

Dividingby vY(r)T (t) we get

T V') 1Y) 1Y)
O Y® TrYe) 2 re

Because each side of the equation depends on different variables then each one should be equal
2

with the same constant. Let this constant be const.= — % )

15



As a result, we get two new equations:

a2
T'(t) = —ﬁvT(t) =

_a? 2.36
T(t) = Ae RZ"" . (2.36)
Additionally
., 1, 1 a?
Y'"(r) +; Y'(r) _1"_2<1 —ﬁ‘)’l)Y(T) =0=
_ ar ar (2.37)
Y(T)—Clll(R)+C2Y1(R).

Where J; and Y; are, first order Bessel functions of the first and second kind respectively. We
let:

ary _car ar (2.38)
Z1(R)—]1(R)+,BY1(R) ;
with £ being a new constant.
From boundary conditions we get: B = — {;E—Z; ,
Zi(ka) = J;(ka) + BY;(ka) =0, (2.39)
Zy(a) = J1(a) + BY1(a) = 0 . (2.40)

With superposition of the solution:

= apry %k
ug(r,t) = z CvZ1k (%)e R2VE
k=1

When t = 0 we get from equation (2.41) and the initial condition, the following:
Ox?R (R 1 - a,r (2.42)
(-5 Do ().
1-k?\r R ] R
K=

The orthogonality condition states that:

(2.41)

R 1
[ 255 rar= |t ()} + e (1 - e ()] |
KR K

anr

In order to use the orthogonality condition, we multiply (2.42) by rZ, (T) and integrate from
KR tO R:

R R

Cy f le(%)rdr= fffzfz(g—%)er(%) dr .

KR KR

Now let £=§’ soifr € [kR,R] = ¢ € [k, 1] and if £=E then %dr=d§’.
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So,
1

CeR? fl Aadeds= [

2R3 /1
T (F¢)f e a=

o _OR fo (-8 Ziawd) ds

-k [ 72(a8) E de -

We calculate:

1
2 2 1 1
hi= [ € 22t d = [%{Z{(a,cf)}z " %(1 ‘F) {zl(a,ca}ZL

2 ) 2
= l% (Zo(a,c) — aikzl(a,c)> - % <1 - a%) 7t () — %(Zo (kay) — Kix Z (K“x)>

2

1 1 1
__<1 —?>le(1ca,c)] = EZS(aK)—%Zg(KaK)

2 p
1 e d 1 1
Iz:=f Z1(,§) d§ = f Zl(u)a_u Y a_[‘Zo(u)]ﬁzK = o Lolea) = Zo(@)]
and
1 a"uz du 1
b= | e a@o = | Gt = penwl,

— ai [Z,(ay) — K*Z, (k)]

Ay | Ay K

= i iZl(Ol;c) — Zo(ay) — K? (K(ZZ Zy(kay) — ZO(K‘ZK)>]

_ aik(_zo(a,g + 122y (cat,))

Substituting in (2.43) we have:
1
akR g Zolkad = Zo(a) + Zo(ad) — k2 Zo (k)]

1 — k2 1
A

Z§ (o) — k2Z§ (ka )]

B 20k*R(1 — k*)Zy(ka,,)
B ak(l - Kz)[Z(Z)(ak) - KZZ(Z)(KaK)] .

17



As a result,
20x%Zy, (kag)R

- ar[Z¢ (ap) — k2Z% (ka)]

Ck

The velocity is (see Eq. (2.41)):

% 2027, (ka,)R agr _% (2.44)
ug(r,t) =Z o (K1) ( i )e CLAL

k=1ak[Z§k(ak)—Kngk(Kak)] k'R

Letting t* = vt/R%,r* =7/R ,up = uy/k0QR We are getting the dimensionless velocity
oo
Zox (kay)

uy(r*,t*) = 2k Z
? £ Ay [Z6i(ax) — k2 Z5y ()]

Zi(agr®) e~ ait’ (2.45)

18



2.4 Cessation of circular Couette flow with Navier slip at the walls

The geometry of the cessation of circular Couette flow with Navier slip at the walls can be seen
in Fig. 7. For this problem the inner cylinder is rotating with angular velocity 2 and there is
Navier slip at the walls. When t=0 the angular velocity ceases to exist. As aresult, the boundary
and initial conditions are:

d (ug (2.46)

r = kR u9=uW1=Ber—£(7)|r=KR t=>0,
Ug (2.47)

r=R u9=uW2=—BRrE(T)Ir=R t>0,
Nk3R (2.48)

ug(r,0) =

1-2B !
ZB(1+K3)+K(1—K2)(7_( B )E)'

/)

Ug(KR) = OkR —u,,

ug(R) =u,,

t=0 t>0

Fig. 7 Geometry of cessation of circular Couette flow with the Navier slip laws applied at the
walls

We solve this initial boundary value problem with the method of separation of variables like
in the previous paragraph and we get

bZ
T(t) = Ae”" and Y(r) =BZ, (%),

where Z; is given by Eq. (2.38). From the boundary conditions we get:

d
-—Y -y
Y(IT() = BRr- (M) e T YO

dr R r2 ’
r=KR
d (Y()T() r%Y(r) —-Y(@)
Y(HT(t) = —BRr—(——=| =BRr - ,
dr r iR r
r=R

So,

7,(kb,) = [BR %Zl (b %) - B§Zl (b 1)] ,

19



(£2.6-4(20 -2 05)
a0 0 15.0)
(o)1 (69

BRb B B
Zl(KbK) = TKZO(KbK) - ;Zl(KbK) - Ezl(KbK) =

BbZo(kb) — (1+22) Zy(kb,) = 0 . (2.49)
Likewise,

Bb, Zy(b,) + (1 —2B) Z,(b,) =0 . (2.50)

From Eq. (2.50) we get  Bb,(Jo(b,) + v, Yo(by)) + (1 — 2B)(J,(b,) + v Y1 (b)) = 0

BbK]O(bKI) + (1 - ZB)jl(bK,')
BbKIYE)(bKI) + (1 - ZB)Yl (b;c) -

Yie = —
Substituting y, into Eq. (2.49) we get:
By ((BbiYo(b) + (1 = 2B); (b))Joleb,)— (BbiJo(be) + (1 = 2B))3 (b)Y (kb))

= (1+2) ((Brea (b0 + (1 ~ 2T (5 b

— (BbyJo(b) + (1 = 2B))1 (b)Y (kb,)) -

With superposition of the solution, we get:

- b.r\ _bE (2.51)
ug(rt) = Z DyZqy (%) e RZVE
k=1

When t = 0 we get from equation (2.41) and the initial condition the following:

iD , (bxr)_ NK3R (R (1—28) r)
LR )T 2B+ ) (1 - k) \r R}’

Using the same orthogonality condition like in the previous paragraph, we multiply
by rZ, (b:fr) and integrate from xR till R:

R R

b j ZZ(bnr) p _j Nx3R (R L_ 25 r) , (bnr) p
x R)7Y"= | Bpare) v \r ¢ )g) “a\g)rar

KR KR

Nowlet = =¢ soifr € [kR,R] = § € [i,1]andif ~=¢ then %dr=d§.
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So

1
0Nk3R3
DKsz zf(bng)gdg:ZB(1+K3)+K(1_K2)f ~ (1= 2B)%) Zy(bad) € d =

2R i (5-a-28)) 20 ¢ dt
2B(1+k3) + k(1 —k?) f: Z2(by&) € dE '

D, = (2.52)

We let:
by

1
d 1 1
h=[ 200 d= | 25 = -2, = kb - 2],

by,

n
Kby

2 —ffz Z4(by8) d = fb 765"

Kby

= Sz, —in[zzwn)—szz(Kbn)]

b3

172 2 ,

by 21 00) = Zalbn) = % - Za )+ ¢ Zo(cby)|
1 2( Bb,,) 2k Bb,
-~ = Zo(bn) — Zo(bn) — 55
bn bn n(1+22)

1|-2B—1+2B 2KB — K% — 2KB
=5 Zo(bn) - Zo(icby)
.| 1-2B 1+@

5. 1-28 Zo(kby) + K*Z, (Kbn)]
n

1 (1+ @) Zo(by) — k2(1 — 2B)Zy (xch,,)

by (1-28)(1+22)

2 2 1
I = f £ 220,6) d =[S0 OF + 5 (1- ) w0

& (32— 1) '

2
F Zo(by€) — Zl<b,cf>} T {Zl(b,cf)}Z]

K

1 1 Z 1% -1 2 1 z
= {00 - 3200} +375 2001 - S zaen0 - 121000}

(k?b%2 —1)

2b2 {Zl(Kbic)}z
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2 1B2b2(b2 —1)

1 Bb, ,
= {200+ caT Zo(b)] ez B0
2
K2 1  Bb,
-3 Zo(KbK)—K—bK@Zo(KbK)
K
Kk2b2 —1) B2b?2
( < ) X 72(kchy)
2bi (1+%
K
1 2B\? y
- — (1+7) (1— 2B + B2b2)Z2(b,)
2(1 — 2B)? (1 +7)

2B
— k%2(1 — 2B)? (1 +t—+ sz,%)zg(;cb,c)] :

Substituting in equation (2.52) we have:

0K3R
= *
2B(1 +k3) + k(1 — k2)

Dy

2B
1+28) 2o (b)) — k2(1 — 2B) 2y (b
bi[Zo(Kbn)—Zo(bn)]+(1;23)[( + K) 0(bn) — 1( - )Zo(x )]
i ) (a-2m) (1+5)

: )2[(1+278)2(1—23 +B2bDZE(b) — k(1 - 2B)? (1 +

o 273 + B2b?) 22 (Kb,c)]
2(1 — 2B)? (1 +7

As a result,
2002R(1 — 2B)2(1 + 22) 2oy (reby)
Dk = .

2
bil(1+ %) (1-2B +B2b2)Z3(b,) — k(1 - 2B)2 (1 + % + B2bZ) Z2(kb,)]

The velocity (see Eq. (2.51)) is given by:

¢ bkr _b_]%
ugp(r,t) = Z DyZ1y (T) e RZVE (2.53)
k=1
Now we let ¢*=wvt/R?*, r*=r/R, uy; =uy/kR, D =D,/k0OR we get the
dimensionless form:

up(r’,t*) = z D.Zy, (br™) e bkt . (2.54)
k=1

Remark: When B =0 (f — o) Eg. (2.54) is reduced to Eq. (2.45)
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Fig. 8 Evolution of the velocity profile in cessation of circular Couette flow with k=0.5 and
t=0,0.0001, 0.001, 0.01 and 0.1: (a) B=0 (no slip), (b) B=0.1 (weak slip), (c) B=1 (moderate slip);
(d) B=10 (strong slip)

In Fig. 8, we can see the evolution of the velocity profile in cessation of circular Couette flow
for different values of B. As expected the value of the velocity is decreasing but the gradient of
the curve of the velocity is increasing. For B=10 our curve is linear and that is how we know
that the slip is strong.

In Fig. 9, we have the velocity at the walls and as expected the velocity in the inner wall is
decreasing in time and the velocity in the outer wall is increasing untill we reach the steady
state velocities in the walls.
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Fig. 9 Evolution of the velocity at the walls when: (a) B=0.1 ; (b) B=0.25 ; (c) B=1 ; (d) B=10
and again for the same values of B, all the velocities: (e)uw,,, ; (f) uy,
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2.5 Cessation of circular Couette flow with dynamic slip at the walls

The geometry of the cessation of circular Couette flow with dynamic slip at the walls can be
seen in Fig. 10. For this problem, the inner cylinder is rotating with angular velocity 2 and
there is dynamic slip at the walls. When t=0 the angular velocity ceases to exist. In cessation
flow, the velocity of the fluid at both walls will be decreasing , which implies that w,, will be
increasing and u,,, will be decreasing with time (Kaoullas and Georgiou, 2015). As a result, the
boundary conditions are:

d Ug dug 2.55
r = KR ugqu1=BRT‘E(T)—AW|r=KR t=>0, ( )
d Ug dug 2.56
r=R Ug = Uy, = BRT‘E(—)—AW“:R t>0. ( )
In addition,
du,, Ty du,, Ty
Uy, — dt1 = ,81 and uy,, + A dtz = ,82

Then the initial condition is

0Kk3R

r (2.57)
2B(1 +13) + k(1 — k2) (? - (1-2B) E)

ug(r,0) =

/)

Ug(KR) = OkR —u,,

uQ(R) = Uy

t=0 t>0

Fig. 10. Geometry of cessation of circular Couette flow with the dynamic slip laws applied at
the walls

We solve this initial boundary value problem with the method of separation of variables like
in the two previous paragraphs and we get,

)’2
T(t) = Ae™m and Y(r) = B Z, (¥) ,

where Z, is given by Eq. (2.38) and from boundary conditions we get:
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Y(r)T(t) = BRri<w> + AEUT(t)Y(T)
dr r R R? ek

/12
+ (AR—’;vT(t)Y(r)> :
r=KR

r2

d
. lr% Y(r) — Y(r)

r=KR
2
Y()T(t) = —BRri <w> + (A%vT(t)Y(r))
dr T R R -

AZ
+ (/1 R—;vT(t)Y(r)> 4
r=R

r2

d
. lr% Y(r) —Y(r)

r=R
So,

e (=

o, (17)|
r=KR
(520 - 500 -10:5)

2 R

R/ 2 R

T 1 T
= EZO (AKE) — ;Zl (AKE)> =
BRA B B A2
Zl(K/llc) = KZO(KAK) Ezl(’clx) _;Zl(KAK) + AR_szl(K/lx) =

BAZoGer) — (142 — 1) 2, ) = 0 .

-2 (3 aep) -3 )+ 320 1)
A

(2.58)
Similarly,

2
B A Zo(h) + (1-2B - Av2E) Z,(4,) =0

(2.59)

From (2.59) we get BA,(Jo(Ao) + 8% (10) + (1 - 2B — 4v2E) (J,(1,) + 8,1, (1)) = 0,

AZ
BAJo(h) + (1= 28 = Mv 35) 11 ()
5= —
AZ
BAY, (1) + (1 ~2B - v R—';) Y,(A,)
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Substituting &, into Eq. (2.58) we get:
BA, <<B/1 %)+ (1-28 - av )Ylu ))]O(K)l ) — <B)lK]0()lK) +(1-2B-
AvE) ]I(AK)> YO(KAK)) = (1+2 - ) ((BAKYO()IK) +(1-28-

AviE) Ylu,c)>11(m,c) <BAKJO(A )+(1-28 - ), (/LJ) no«m)
With superposition of the solutions, we get:

A\ M
UQ(T t) —ZEkZlk( k ) szt .

We now derive the appropriate condition for the eigenfunctions Z;(Mindlin and Goodman,
1950) :

(2.60)

rXA () + X () + (B =) X () = 0, (2.61)

From B.C.s we have:

ZAv

Xn(kR) = BRX},(kR) — = Xy, (R) + A2 22 X (kR) (2.62)
Xn(R) = —BRX},(R) + BX, (R) + A2 22 X, (R) . (2.63)
We now consider the one-dimensional problem in r dimension:
X () + K@) + (227 - D X, () =0, (2.64)
X (kR) = BRXj (kR) — = X (kR) + A3, 23 Xin (R), (2.65)
X,n(R) = —BRX),(R) + BX,,(R) + 12, ;f—’z’xm (R). (2.66)

Such that X,,, X, and A, A, are distinct (m # n)
2

<rX”(r) + XL + <%r 1>Xn(r) =0 > (rX,(M) + (Rr—za,zl —%)Xn(r)>

Multiplying Eg. (2.61) by X,, and integrating by parts gives:
R

R

' 1

f(rX,’l(r)) X (r)dr + f (%){% - ;) X, ()X, ()dr =0 (2.67)
KR KR

Similarly, we multiply (2.64) by X,,, integrate by parts and then subtract from (2.67) to get:

R[X7(R)Xm (R) — Xpn(R) X3 (R)] — kR[X7 (kR) X (kR) — Xy (kR) X7 (KR)]
R

2 _ 92
+(/1nR# f rX, ()X, (r)dr =0
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Using now the b.c.s (2.62), (2.63) , (2.65) and (2.66) we get:
A R
(B = 220) | (K (R (R + K (R X (R)) + f P X, (X (F)dr| = 0 .

KR

Since 1, and Ajare distinct there holds:

R

% (Xp(R)X,n (R) + kX, (kR) X, (KR) ) + f X0 (1) Xy (1) dr = 8Ny, (2.68)
KR
where
Ny =22 (%,2(R) + KX, (kR)) + [, TXZ(r)dr (2.69)

and &, , is the Kronecker delta.
O

In order to find the coefficients E,,(2.60) must be supplemented by an extra term, thus
multiplying it by rZ; (l:fr) when t = 0, using the initial condition and integrating from xR

to R gives:
S A
Tr T
2.5 | () (G )
k=1 kR
R
_f Nk3R (R (1—28) r) , (Anr)d
~ ) 2B +x) + k(1 —xD)\r r)T R )
KR
Consider,
Av Nx3R R T Ay Av - AT AnT
— —— A -=-2B)=|Z,|— Z—ZEZ (—)Z (—)
BZB(1+K3)+K(1—K2)<T ( )R) 1(R) B L ™\ RJTR
When r = R,
Av 2BOK3R Av o
- Z;(A Z—ZEZ AM)Zi(A,) .
B 2B(1 + x3) + k(1 — k?) 1(An) B - xZ1c (M) Z1 (An)
When r = kR,
Av NK3R

1 Av =
B 2B(1 + 3) + k(1 — k2) (E -(1- ZB)K) Zy(kdy) = ?; EZ1,c (kA )Z1 (KAy)
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So,

R R
AT AT Av
O Bl [ 12 (B0) 2 () dr 4 G (2002 () + 2 (620 )]
KR KR
R
_f NKk3R (R (1—28) r) , (Anr)d
=~ J2BO+ )+ k(-2 \r R)"\R )T
KR
Av NK3R

B AT T A =D (2BZy (M) + (1 — k2 + 2Bk Z1 (kAy)) -

We are following the same method of solution as in the previous paragraphs and the constants
E. are given by:

20K3R (2.70)
EK = AKL Zl(KAK) )
where
ZAV 2 2 2 2 2 2 2
L = 5 12 [Z3 Qo) + 123 ()] + Bicdie[Z5 (M) + 23 () — 1% (Zg (i) + 25 (1ed,0)]
_ZBK[ZO(AK)Zl(AK) =~ K(ZO (KAKI)Zl (KAK,')] . (2.71)

So, the solution of our problem is:

0= (80
ug(r,t) = wZi|—]e .
& R (2.72)

Dividing ug by 2R, and setting uy = ug/0QkR , r*=71/R, t* = vt/R* E} = E;/kQR
we get:

* * % * —A2¢*
ug(r,t*) = z EpZy(Ar™) e~ Mt (2.73)
k=1
where
E, = Ex/OkR

In Fig. 12, we can see the evolution of the velocity profile in cessation circular Couette flow
for weak slip (B=0.1) and moderate slip (B=1), and how the velocity changes for different
values of A.

The slip velocities are given by:

* * 1 —A2¢t*
uy, (t7) = Z EpZy (k) e Mt (2.74)
=
* * ’ —A2¢t*
uy,, (t") = Z EpZy (&) e et (2.75)
k=1
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Remark: When A = 0, Eq. (2.73) is reduced to Eq. (2.54), and when B =0 (8 — ) Eqg.
(2.54) is reduced to Eq. (2.45).
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Fig. 11. Evolution of the slip velocity in cessation of circular Couette flow for different values
of A and k=0.5: (a). u,, ; (b). uy,

In Fig. 11, which depicts the velocity at the walls, we see that the velocity in the inner wall
(Fig. 11a) as the value of B is increasing, our curves for different A tend to get closer but on
the other hand in the outer wall (Fig. 11b), the curves tend to get further from each other.
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Fig. 12. Evolution of the velocity profile in Fig. 13. Evolution of the velocity profile in
cessation circular Couette flow with k=0.5 cessation circular Couette flow with k=0.5
and B=0.1: (a) A=0; (b) A=0.5; (c) A=5; and B=1: (a) A=0; (b) A=0.5; (c) A=5;
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2.6 Appendix: Solutions when the outer cylinder is rotating

In the previous sections we derived analytical solutions for the steady state and cessation
problem of circular Couette flow when the inner cylinder is rotating with angular velocity 2
the outer cylinder is fixed and there are three types of slip laws applied at the walls: (a) No-slip
law; (b) Navier slip law; (c) Dynamic slip law.

In this paragraph we are going to provide analytical solutions for the same problem but now
instead of the inner cylinder, the outer cylinder is rotating with angular velocity 2 and the inner
cylinder is fixed.

For the steady state of circular Couette flow with Navier slip at the walls the velocity is given
by:
R
2B(1+k3) +Kk—k

R (2.76)
~|

r
— 3
ug(r)— 3 (ZB-I-K)E—K

Ifwelet B=0 (B — o) the result will be the solution for the steady state circular Couette
flow with no-slip at the walls:

QR (r 5 R) (2.77)

v =1—ag ~* 5

R~ "7

For the cessation of circular Couette flow with dynamic slip at the walls the velocity is:

i 22 (2.78)
ry %k
ug(r,t) = Z E.Z (Akﬁ) e R
k=1
and the coefficients in (2.78) are given by:
20R
where
Ay
L=2Mvig (22 (o) + K22 (k) ) + BA[ZE (A) (2.50)

+ 22 () — k(23 (k) + 22 () )]
—2B(Zo(A)Zy (A — kZo (k) Z4 (KA, -

If we let A = 0 then the result will be the solution for the cessation of circular Couette flow
with Navier slip at the walls and the velocity will be given by:

C by _bE (2.81)
ug(r, t) = Z Dy Z1x (%)e RZVE
k=1
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2B (2.82)

2(1-2B) (1+ 7)2 OR(=Zy(b)

. .
b [(1 + %) (1 - 2B + B2b2)Z3(b) — k2(1 - 2B)? (1 + % + B?b?) Z%(Kb,c)]

Now ifwelet B =0 (B — o) in Eqg.(2.82) the result will be the solution for the cessation
of annular Couette flow with no-slip at the walls:

C agry %, (2.83)
ug(r,t) = z CrZ1k (%) e R?V",
k=1
where
_ 20R(-Zy(ay)) (2.84)
T AlZE(A) — k2ZE (kA )]
L]
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Chapter 3: Annular Couette flow

Annular Couette flow is a flow pattern that occurs when a fluid is confined between two
coaxial cylinders usually with the inner cylinder sliding and the outer cylinder fixed. This flow
pattern has various applications in fluid dynamics, such as in Engineering, Biological Systems,
Lubrication and Fluid dynamics education.

In Engineering, numerous engineering applications involve rotating components, such as
rotating heat pipes, electrical motors, and turbogenerators. The flow of fluid between two
concentric cylinders, with one or both cylinders in rotation, is known as Taylor-Couette flow,
and has been the subject of extensive research over the years. (Nouri-Borujerdi and. Nakhchi,
2017)

In Biological Systems, flow-induced damage to blood is commonly seen in artificial organs
within the bloodstream, specifically hemolysis of red blood cells. The severity of this damage
is influenced by shear forces and exposure time. This study focuses on establishing a correlation
between these flow-dependent properties and actual hemolysis. To achieve this goal,
researchers developed a Couette device. (Paul et al., 2003)

In Lubrication, it is well known that fluid flows in seals and bearings turn from laminar regime
into turbulent one when their Reynolds number becomes higher than a critical value. In (Zhang
et al., 2003), the primary turbulence models utilized for hydrodynamic lubrication issues were
assessed, with an explanation of their development and fundamental principles. To evaluate
their efficacy, the models' predictions of flow fields in turbulent Couette flows and shear-
induced countercurrent flows were compared to existing measurements. Zhang and Zhang's
combined k-¢ model demonstrated particularly impressive outcomes, with surpassingly
satisfactory results.

In Fluid dynamics education, annular Couette flow is often used as a teaching tool in fluid
dynamics courses. The simplicity of the flow allows students to easily understand concepts
such as boundary layers, laminar and turbulent flow, and fluid viscosity. It can also be used to
demonstrate the principles of flow visualization and measurement techniques. (White, 2006)

In this chapter we are going to study the steady, axisymmetric, rectinal flow of an
incompressible Newtonian liquid between two horizontal coaxial cylinders of infinite length
with radii R and xR where 0 < k < 1 and the outer cylinder is sliding with velocity V, so we
assumethatu, =ug =0 , du,/d6 =0anddp /dz=0.

As a result of our assumptions, the z-momentum equation gives:

ou,  (0%*u, 10u, (3.1)
or2 ror )’

Jt

where v = n/p is the kinematic viscosity.
The steady-state solution is found by setting du,/dt = 0 and integrating twice.
The general form of the velocity U; is given by (Papanastasiou et al., 1999)

u,(r)=cInr+c,, (3.2)

and the wall shear stress is given by
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_ne_du, (33)

T = B Uy, . (3.4)

In each of the following paragraphs we are going to find these constants and derive the
analytical solution of the velocity.

A AN

KR

fffffffffffffffffffffffffffffff 1.

Symmetry axis z

Fig. 1. Geometry of annular Couette flow

3.1 The steady-state annular Couette flow with no slip at the walls

The geometry of the steady-state annular Couette flow with no slip at the walls can be seen in
Fig. 2. For this problem the outer cylinder is sliding with velocity ¥ and there is no slip at the
walls. As a result, the boundary conditions are:

r=kR, u,=0, (3.5)
r=R, u,=V. (3.6)
u,(R)=V | 74
R >
KR w,(kR)=10

Symmetry axis z

Fig. 2. Geometry of the steady-state annular Couette flow with no-slip laws applied at the
walls

Appling the boundary conditions in Eg. (3.2) we get:
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u,(kR) =0 =c;InkR + ¢, (3.7)

u,(R)=V=c;InR +c,. (3.8)

Solving the above system, gives:

_ VInkR _ vV
2T Th/m YT (k)

Going back now to our equation (3.2) we get that the velocity is given by:

in (37)
uz(r) = mv . (39)

The velocity along both walls is zero because of the no slip condition:

=u, =0. (3.10)

Uy 5

1

Substituting ¢; = V/ ln% in equation (3.3) we get that the wall shear stress is:

__nw 1 (3.12)
2 S hamr

And the wall shear stress in each of the walls will be

nv (3.12)
Tw, = ~pia 7~ o Tw, = KTy,

1 kRIn(1/k)

Finally, we will find the dimensionless equations for the velocity and wall shear stresses which
are going to be utilized in the sequel.

For the velocity we divide both parts of the equationby V andset u; = u,/V and r* =r/R.
This gives:

In (r_) (3.13)
. K
Z  In(1/K)"
Similarly,
N (3.14)
" rin(1/k)’
where
. Tz R
rz = nv .
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Additionally,

T, = —1 T, = KT (3.15)
"1 kln(1/k) = "2 W

3.2 The steady-state annular Couette flow with Navier slip at the walls

The geometry of the steady-state annular Couette flow with Navier slip at the walls can be seen
in Fig. 3. For this problem the outer cylinder is sliding with velocity V and at the walls we have
Navier slip, so the velocities at the walls will not be zero. As a result, the boundary conditions
are:

r=kR, u; =Uy, (3.16)
r =R, u, =V —u,,. (3.17)
u,(R)=V —u,, V
P >

KR u, (kR ) = u,,

Symmetry axis z

Fig. 3. Geometry of steady-state annular Couette flow with Navier slip laws applied at the
walls

Appling the boundary conditions in Eq (3.2) we get:

u,(kR) = u,, =c¢;InkR +¢; , (3.18)
u,(R) =V—-u,, =c;InR +c,. (3.19)
From Eq. (3.4) we get:
L (3.20)
Y1 BkR’
w. =1 (3.21)
Wy BR -

Egs. (3.18) and (3.20) give

c
149 _ ciInkR +c,, (3.22)

BxR

and from Egs. (3.19) and (3.20) we get
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ney 3.23
—ﬁ—R=cllnR+c2. ( )
Equations (3.22) and (3.23) give us further:
BKR n - BxkRIn kR
1 = 1 V , Cy = 1
nk+1) + BKRIn - nk+1) + BKRIn—
Therefore, the velocity is given by
KRV T vV
0, (r) = B L 1 (3.24)

KR nk+1) + ﬂrchn%

n(k+1) + BkR ln%
Setting ¢c; = BkRV/(n(k + 1) + BxRIn i) in Eq. (3.3), we get that the wall shear stress is:

nBKR s (3.25)

TTZ

n(k+1) + BkR ln%

The wall shear stress in each of the walls is

npv (3.26)

Ty, = » Tw, = KTy,

' n(k +1) + BxR ln%

As a result, from Eq. (3.4), the velocity in each of the walls is given by:

nv (3.27)
Uy, = , Uy, = Kly,

' n(k+1)+ ,BKRln%

Finally, we are going to find the dimensionless equations for the velocities and wall shear
Uz

stresses. For the velocity we divide both parts of the equation with with V and set u, = p
« _ T —_ 1 Thic aivec:
rt= and B = 2R .This gives:

*

K ln% +B (3-28)

*

u; = I
Bk +1)+ Kll‘lz

In Fig.4, we can see the evolution of the velocity profile in annular Couette flow with Navier
slip law applied to the walls for various values of B (Chatzimina et al.,2007; Chatzimina et
al.,2009). Fig.5 shows the evolution of the velocity at the inner wall, for various values of B,
in a semilog scale. (Georgiou and Xenophontos,2007)

The velocities in the wall will be
B (3.29)

Uy, = 1 Uy, =
Bk +1) + KII‘IE
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Similarly,

i K 1 (3.30)
TTZ = 1 T* )
B(k+1) + KIHE
where
. T,z R
Trz = %
Additionally
1 (3.31)

Tw,

B(k+1) + Kln%

Remark: When B =0 (f — o) Egs. (3.28) , (3.30) and (3.31) are reduced to Egs.(3.13),
(3.14) and (3.15) respectively

|
1 Velocity with Navier 14 Velocity with Navier
B=0
0.9 f|l——p=0.1
Yz B=1 1.2}
0.8} B=10 1
0.7F E 1F
0.6} E ujr
o8
0.5}F
04F 4 06
03 0.4
0.2 - —B=0
L ——B=0.1] |
01k ] 0.2 o
B=10
0 . o .
0.5 0.6 0.7 0.8 0.9 . 1 0.5 0.6 0.7 0.8 0.9 .

Fig. 4. Evolution of the velocity profile in annular Couette flow with Navier slip law applied in
the walls for B=0,0.1,1 and 10
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Fig. 5. Evolution of the velocity at the inner wall when: (a) B=0, 1 ; (b) B=0, 10, (c) B=0, 100
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3.3 Cessation of annular Couette flow with no slip at the walls

The geometry of the cessation of annular Couette flow with no slip at the walls can be seen in
Fig. 6. For this problem the outer cylinder is sliding with velocity V and there is no slip at the
walls. When t=0 the velocity ceases to exist. As a result, the boundary and initial conditions
are:

r=kR, u;, =0 t=0, (3.32)
r=R, u,=0 t>0, (3.33)
In-7 (3.34)
uz(r, O) = —1V .
In=
K
u,(R)=V |74
R >
KR u,(kR)=10

Symmetry axis z

t=0

u(R) =0

KR u,(kR) =0

Symmetry axis z

t>0

Fig. 6. Geometry of cessation of annular Couette flow with no slip laws applied at the walls

We solve this initial boundary value problem with the method of separation of variables

Let

u,(r,t) = Y(r)T(t). (3.35)

Substituting into Eq. (3.1) we get

Y)T'(t) =v (Y”(r)T(t) +%Y’(r)T(t)>.

Dividingby vY(r)T (t) we get
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T V') 1Y)
T - Y@ TrYa)

Because each side in the equation depends on different variables, then each one should be equal
2

to the same constant. Let this constant be const.= — =

R2

As a result, we get two new equations:

a2
T'(t) = —ﬁvT(t) =

_a? 3.36
T(t) = Ae RZ", (3-36)

Additionally

1 a?
Y'@)+-Y (@) +Y0@)=0=>
r R

Y(r) = c1 Jo (%) +c, Y (%) (3.37)

where J, and Y, are zero order Bessel functions of the first and second kind respectively. The
same identities that are applicable for Bessel functions of the first kind are applicable to the
second kind too so, we let:

2o (%) =Jo (T) + B% (%) (3.38)

with B being a new constant.

Now from boundary conditions we have S = —fg—g ,
1
Zo(ka) = Jo(ka) + BYy(ka) = 0, (3.39)
Zo(a) = Jo(a) + BYy(a) = 0. (3.40)
Superposition of the solutions gives:
_ N C.7 AT —Z—’z‘ vt
u,(r,t) = 2 kZok (T) e : (3.41)

When t = 0 we get from Eq. (3.41) and the initial condition, the following:

T o
In—5

R a,r
—Ry - Z CZon (50 (3.42)
lnE K=1

The orthogonality condition states that:

R 1
[ 7 () ar = el ()} + gslo (ac )|
KR K
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In order to use the orthogonality condition, we multiply Eg. (3.42) by rZ, ( ) and integrate
from kR to R:

R

R
Cx f A (a';r) rdr = Llln K:? rZ (a;r) dr.
KR KR lnE

Nowlet ==¢ soifr € [kR,R] = £ € [, 1]andif —=¢ then %dr=d€.

So

1
CoR? [ Z8(af)§ dt = f 1fln Zo(@,8) dé =
K M
v S ani @ d
"ol S Z@Eds

(3.43)

We calculate from (3.43):
Ii:= f ¢ Zg(alcf) dé = [%{Z(’)(ax'f)}z f_{Zo(a'rcf)}z]

2 1
- [% (2:(a0)’ +%<1 - i) %) =5 (k) =373 ("“K)]

1 K?
= Zl (a) — Zl (kay)

b—fzm Zo(aef) d = — (Wdu
© xa
[+2% Ay
1
41 W) du = —[ (u)] _ j Y K% ) du
aZ o _— Ka, U
1 1 1 1
=gz = [=ZoWlig, = ~InZi(a)

Substituting in Eq. (3.43) we have:

1 1
174 —ln—Zl(a,c)

11

Ce =

ln Zz(a;c) ZZ(KOCK)
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As a result,

= 2VZi(ay)
T e [2% () — k2Z2 (k)]

The velocity in Eg. (3.41) is given by

2VZ; (o) (akr) % vt

uy(r,6) = kZ{ a [ZE () — k2 ZE (k)] ek

R (3.44)

Now we let t* = vt/R?, r* =r/R, uj = u,/V, C; = C,/V, and get the dimensionless form:

- 221 (a’K) 2 4%
ur(rs,t*) = z Zow(a,r*) e %t (3.45)
z ] a[Z3(a,) — k272 (ka,)] 0k

3.4 Cessation of annular Couette flow with Navier slip at the walls

The geometry of the cessation of annular Couette flow with Navier slip at the walls can be seen
in Fig. 7. For this problem the outer cylinder is sliding with velocity V and there is Navier slip
at the walls. When t=0 the velocity ceases to exist. As a result, the boundary and initial
conditions are:

du 3.46

r =kR, u, Uy, :BRd—TZ|T=KR t=0, ( )
du

r=R , Uy = _qu = _BRd—TZ|T=R t > 0, (3.47)

T
KVll‘lﬁ-l-BV

u,(r,0) = (3.48)

Bk +1)+ Kll‘l%
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u,(R)=V —u,, 14

KR U (KR ) = Uy
r T_)
”””””””” Symmetryaxis = 2
t=0
uz(R) = —Uyz
R
KR u, (KR ) = 1ty
r L)
Symmetry axis z
t>0

Fig. 7. Geometry of cessation of annular Couette flow with Navier slip laws applied at the
walls

We solve this initial boundary value problem with the method of separation of variables like
in the previous paragraph and we get

bZ
T(t) = Ae”m and Y(r) = B Z, (%),

where Z, is given by Eg. (3.38). From the boundary conditions we get:

d dy (r)
Y()T() = BRE(Y(r)T(t))T=KR = BR [T(t) dr ]r=KR’
d ay(r)
Y(r)T(t) = —BRrE(Y(r)T(t))rzR = BRr [T(t) e LR.
So,
dZy (b
ZO(KbK) = |BR 0((17- R)
T=KR
p - by (1 r 1 r b, 1 T 1 T
(EZO (berg) = E(zz_l (beg) 3% (bx§)> B ;(—52_1 (be) =32 (b"ﬁ))
b, r
= —EZ]_ (bkﬁ)> =
Zo (kb)) = e Zy(xbye) =
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ZO(KbK) + BbK21 (KbK) =0. (3.49)
Similarly,

Zy(b,) — Bby, Zy(b,) = 0. (3.50)

From Eq (350) we get ]O(bkj) + VKYO(b}c) - Bb}c(]l (b}c) + ylcyl(b}c)) =0

_ ]O(b}c) - Bb}c]l(b}c)
Y =T Yolb) — Bbely(bo)

Substituting y, into Eq. (3.49) we get
(Bblcyl(blc) - YO(bK))IO(KbK) + (]0 (bK) - BbK]l (bk))yb(KbK)

= =Bby ((BbcYi (be) — Yo (b)) (kb + (Jo(bo) = BbiJy (b,))Y; (i, ).

Superposition of the solutions, gives:

- ka _b_l%
u,(r,t) = z Dy Zok (?) e RV (3.51)
k=1

When t = 0 we get from equation (3.51) and the initial condition the following:

© ber KV In-—= + BV
ZDKZW (T) = T
k=1 B(K+1)+KlnE

Using the same orthogonality condition like in the previous paragraph, we multiply
by rZ, (b:fr) and integrate from xR to R:

p b, [ KVIn-+BV b,r
ch f Zg (?) rdr = f 1 ZO (T) r dr.
R R B(K+1)+Kll’lz

Nowlet = =¢ soifr € [kR,R] = § € [i,1]andif T =¢ then %dr:df.
So

1

Dk [ 0,0 €6 =
W K+ 1)+ kin

2

1
1f(KVln§+BV) Zy(bpé) € dE =

KK
1 4
D, = 1 : J, (v 1n1K +BV) Zo(by$) § d€ . (3.52)
B(K+1)+KlnE f,c Z§(by&) & dé
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We calculate from Eq.(3.52):

1 bn
u du BV
11;=fBV€Zo(bnf) dé = BV f—Zo(u)_ = I
b, by by "
X Kbp
BV
= 5 [Z0Gcby) = k21 (cbn)],
n
1 bn
E f u u du
L:= In- Z = poin——2 b,
2 f KVE n}c O(bkf) df KV 5 bn nKbn O(u) bn
K Kbn

1 1 1 1
KV <b_n ln;Zl(bn) + b_TZLZO(bn) — b_rleO(Kbn)>

1 1 B B
kV <b_n ln;Zl(bn) + b—nZl(bn) — b—nZl (Kbn)>,

I3:= f €Z§(bnf) dé = [% {Z(’)(blc'f)}z + %{Zo(brcf)}z]
£ £ '
= [7{Zl(bkf)}2 + 7{Z0(bl€§)}2:|

= 3 (7200 ~ k22 (cb)) +5(Z3(b) ~ TR (kb

2 212

1 K B<b *B*bZ
=528 (b) = — 22 (kb)) + —— 25 (b) —

K“B*“b;;

Z3 (icbyo)
[ + B2bi)Z7 (by) — k(1 + B2b)Z7 (kb))

N+~ N -

(1 + sz;%)[zlz(bx) - KZle(Kbx)]-

From Eg. (3.52) we have:

1
D, = 1
B(k+1) +K11’1E

*

BY 17, Geby) — 12, Geb ) + 1V (20t 2,5 + B 2,6 — B 7, (b))
b, b, Vi b, b,

*

20+ B2b)[Z2(be) — K222 (kb,)]
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As a result,
2VZyy (by)

~ be(1 + B2b2)[Z2(by) — k2Z2(kby)]

Dy

The velocity in Eq. (3.51) is:

2

w,(r,t) = i 2V Zyy (by) (bk_r)e—%vt
T Lab(1+ B2bR)[Z7 (by) — k2Z3 (kb)) %k \'R '

(3.53)

Now we let t* = vt/R?, v* =1 /R, u; = u,/V,D;. = D;/V and get the dimensionless form:
oo

uy (r’, t7) = Z D Zoy (byr™) e 7Pkt (3.54)

k=1

In Fig. 8, we can see the evolution of the velocity profile in cessation of circular Couette flow
for different values of B. As expected the value of the velocity is decreasing but the gradient of
the curve of the velocity is increasing. When we increase the value of B, our curves tend to be
closer to the initial curves for t = 0.

In Fig. 9, we have the velocity at the walls and as expected the velocity in the outer wall is
decreasing by time and the velocity in the inner wall is increasing till we reach our steady state
velocities in the walls.
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Remark: When B =0 (f — o) Eq.(3.54) is reduced to Eq. (3.45)

Cessation of annular Couette flow (N) Cessation of annular Couette flow (N)

1 0.75
e {=0 — =0
0.9 20.0001 ——— t=0.0001 /
1=0.001 0.7F 1=0.001 o <
0.8 =0.01 —— =001
——1=0.1 ” ——— t=0.1
0.7F 0.65
=05f > 06
8 os} H
o ]
> > 0.55
04F
0.3 05F
0.2F
0.4sf ]
01f
0 04 ; . ; N
0.5 0.6 0.7 0.8 0.9 1 05 0.6 07 0.8 09 1
Radius Radius
(a) (c)
Cessation of annular Couette flow (N) dlere Cessation of annular Couette flow (N)
0.9 T T T T 8 T T T 7
— =0 ——1=0 . ./_/T
0.8 |——1t=0.0001 \ 0.67 || = t=0.0001 :
’ 20,001 - t=0.001
= ——t=0.01
——t=0.01 I
(%] | I . 0865|107
0.66
20655F
Q
S
2 o065
0.645
0.64f
0.635f
: N g . 0.63 : s L L
0.5 0.6 0.7 0.8 0.9 1 0.5 0.6 0.7 ) 0.8 0.9 1
Radius Radius

(b) (d)
Fig. 8. Evolution of the velocity profile in cessation of annular Couette flow with k=0.5 and

t=0, 0.0001, 0.001, 0.01 and 0.1: (a) B=0 (no slip); (b) B=0.1 (weak slip); (c) B=1 (moderate
slip); (d) B=10 (strong slip)
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Fig. 9. Evolution of the velocity at the walls when: (a) B=0.1; (b) B=0.5; (c) B=1; (d) B=10 and
again for the same values of B, all the velocities: (e)u,,, ; (f) uy,
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3.5 Cessation of annular Couette flow with dynamic slip at the walls

The geometry of the cessation of annular Couette flow with dynamic slip at the walls can be
seen in Fig. 10. For this problem, the outer cylinder is sliding with velocity VV and there is
dynamic slip at the walls. When t = 0 the velocity ceases to exist. In cessation flow, the
velocity of the fluid at both walls will be decreasing , which implies that u,, will be decreasing

and u,,, will be increasing with time. As a result, the boundary and initial conditions are:

du du
r =R, u,=u,, =BR 7 = Ad_tz|r-ch t=>0, (3.55)
du du
r=R, u,=-u,, =—BR dz+Ad—tZ|r_R t>0, (3.56)
Since,
du,, Ty du,, Ty,
u, — A L=—2 and u, + A 2 — 2
w1 dt I w2 dt B
The initial condition is
KV In— + BV
w,(r,0) = KR - (3.57)
Bk +1)+ KIIIE
w,(R)=V —u,, |4
7 >
KR uz(xR):uwl
rT_)
”””””””” Symmetryaxis = 2
t=0
u,(R) = —u,
R
KR u,(kR) =,y
"""""""" Symmetryaxis 2z
t>0

Fig. 10. Geometry of cessation of annular Couette flow with the dynamic slip laws applied at
the walls
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We solve this initial boundary value problem with the method of separation of variables like
in the two previous paragraphs and we get:

2_2
T(t) = Ae """ and Y(r) = B Z, (%),

where Z, is given by Eq. (3.38). From the boundary conditions we get

2

Y()T(t) = BR % (YMT®),_ ,+4 <_ /1_"17> Y(r)T ()

R2
2
= (BR [T(t) dl;gr)] - A <%v> Y(r)T(t)) ,

r=KR

2

Y(r)T(t) = —BRr % (YmMrm), _, +4 <— %v) Y(r)T ()

2
- (—BR [T(t) dZ—Y)] .y <% v> Y(r)T(t))
r=R

So,

dz, (2

r

X
x| =
N——

Zo(kAy) = [BR

A T
BRA 22
ZO(K;{IC) =- KZl(KA;c) _A<R_;U> ZO(KAK):>
2
BAZy (k) + (1 + Av2E) Zo(k2) = 0 (3.58)
Similarly,
2
BAc Z: () — (1+ 4v2E) Z,() =0 . (3.59)

From (3.59) we get BA,(J (1) + 81, (2)) — (1 + 4v2E) (Jo(2,0) + 8,15(10)) = 0,

2
Bis ) — (1+ 40 55) Jo ()

A2 '
BAK (1) — (14 M0 75 ) 150

S = —
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Substituting &, into Eq. (3.58) we get

2
B <<1 + v )You )= BAMW))A (1cA)
AZ
+ (Blkjl(lkj) - <1 + Av >]0()LK)> Yi(K)IK)

Ak
- 1+Avﬁ

2
+ (Blkjl(lk) - <1 + Av A >]0(AK)> YO(KAK)]

2
((1 + Aok )Yo(/l )—B2 lfl(/l,c)>lo(z</1x)

Superposition of the solutions gives:

N Akr —’1—2’5 vt
u,(r,t) = z ExZoy (7) e R*. (3.60)
k=1

We next find the appropriate condition for the eigenfunctions Z,:

rX; (r) + X;,(r) + rX (r)=0. (3.61)

FromB.C.s:
Xn(kR) = BRX;,(kR) — 23 22 X, (kR), (3.62)
X, (R) = —BRX.(R) — A2 /“’X (R). (3.63)

And now we consider the one-dimensional problem in r and introduce:

rXp () + X (1) + 221X, () = 0 (3.64)
X,,(kR) = BRX, (kR) — 12, ’“’X (kR) (3.65)
Xm(R) = —BRX},(R) = A2, %2 Xy (R) (3.66)

Since X,,, X, and A, A, aredistinct (m # n),

2

<rX”(r) + X;,(r) + A rX N =0>= (rX} (r)) + 2/'l,len(r) )

Multiplying Eqg. (3.61) by X,, and integrating by parts gives

j(rX (r)) X (M)dr + f —5 A Xy (X)X (r)dr = 0. (3.67)
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Similarly, we multiply Eq. (3.64) by X,,, integrate by parts and then subtract it from Eq.(3.67)
to get:
RIXn(R) X (R) — Xn (R) X7 (R)] — KR[X7, () R) Xy (KR) — X (kR) X3 (kR)]
R

2 _ 92
+w f rX, ()X, (r)dr =20

Using now Egs. (3.62), (3.63), (3.65) and (3.66) we get:
Av ‘
(A2 — 22) —?(Xn(R)Xm(R) + kX, (KR) X (KR)) + f X, ()X, (@)dr| = 0.

KR

Since A,, and A,are distinct
R

—% (X, (R)Xn (R) + kX, (kR) X (kR)) + f Xy ()X (1) dr = 8, 0Ny, (3.68)
KR

where

R
M= =5 (62 + 2 e) + [ Xz, (3.69)

KR
and &, , is the Kronecker delta.

O

In order to find the coefficients E,., Eq.(3.29) must be supplemented by an extra term, thus
multiplying it by rZO( )When t = 0, using the initial condition and integrating from xR

till R gives:
o) R R T
A\ (AnT KV In— + BV Ar
D Fx f o ()70 () dr = f %) ar
k=1 KR R B(K+1)+KIHE
Also,
r o)
Av kVIn—+ BV A,r\ Av AT AT
T ——a(F) = F ) B ()% ()
B(K+1)+KlnE K=1
When r = R,

Av KVln1 + BV

A [ee)
Z (An) =7 Z ;c(/lic)Z (An);
BB(K+1)+K1n— ’ BZ ’ ’
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And when r = kR,

Av BV
B B(k + 1) +KlnE

Av -
Zo(chn) = 2> EZi GA)Zs (k).
K=1

So,
% A 2 A
r r 1%
z EK f rZOK (%) ZO (%) dr — E [ZOK(AK)ZO (An) + K:ZOK(KAKZ)ZO(KATL)]
KR KR
R r
KV In—5 + BV 1
= f kR 1 rZy (Lr) dr

«r Ble+1) + KIHE

v (kv ln% + BV) Zo(Ay) + KBV Zo (12,
- _

B(k+1)+ Kln%

We are following the same method of solution as the previous paragraphs and the constants E,
are given by:

E.= PV Zo(A)
AV EY A (3.70)
where
L=B(Z2) +23(h)) — Br? (22 (k) + Z3 (k) )
200, ) (3.71)
- 2 (28 + kZ3 (e ),
So, the solution of our problem is:
- Akr _& vt
u,(r,t) = Z ExZy (T) e RZ7. (3.72)
k=1
Dividing u, by V, and setting u} = u,/V ,r* =r/R , t* = vt/R? we get:
wy(re, %) = Z EZo(yr™) e At (3.73)
k=1

56



where E; = E,/V and the slip velocities are given by

uy, (£7) = Z EvZo(rchy) e, (3.74)
k=1
uy, (") = Z ExZo(y) e %t (3.75)

k=1

For more information about the method of solution for these types of problems, see (Kaoullas
and Georgiou, 2015).

In Fig. 11, which depicts the velocity at the walls, we see that the velocity in the inner wall
(Fig. 11b) as the value of B is increasing, our curves for different A tend to get closer but on
the other hand in the outer wall (Fig. 11a), the curves tend to get further from each other.

In Fig. 12 and Fig. 13, we can see the evolution of the velocity profile in cessation of annular
Couette flow for weak slip (B=0.1) and moderate slip (B=1) and how the velocity changes for
different values of A.

Remark: When A = 0 Eq. (3.73) isreduced to Eq. (3.54)andwhenB =0 & f — o Eq.
(3.54) is reduced to Eq. (3.45)

| ]
u u
0.6 r — r 09 . — v
e B=0.1 A=0 = B=0.1 A=0
08 = B=0.1 A=0.1
B= 1A=0
— B = 1A=0.1
0.7 |-
0.6
05
0.4
03}
0z}
01}
. 0
0 0.1 0.2 0.3 0.4 0.5
0 0.1 0.2 0.3 0.4 0.5 t
t
@) (b)

Fig. 11. Evolution of the slip velocity in cessation circular Couette flow for different values of
A and k=0.5: (a) u,,,,; (b) uy,
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Fig. 12. Evolution of the velocity profile in
cessation circular Couette flow with k=0.5
and B=0.1: (a) A=0; (b) A=0.5; (c) A=5;
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Fig. 13. Evolution of the velocity profile in
cessation circular Couette flow with k=0.5
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3.6 Appendix: Solutions when the inner cylinder is moving

In the previous section we derived analytical solutions for the steady state and cessation
problem of annular Couette flow when the outer cylinder is sliding with velocity V, the inner
cylinder is fixed, and there are three types of slip laws applied at the walls: (a) No-slip law; (b)
Navier slip law; (c) Dynamic slip law.

In this paragraph we are going to provide the analytical solutions for the same problem but
now instead of the outer cylinder, now the inner cylinder is sliding with velocity V, and the
outer cylinder is fixed.

For the steady state of annular Couette flow with Navier slip at the walls the velocity is given
by:

KV ln% + BkV (3.76)
" Bk+ 1D +klnk

Uy

Ifwelet B=0 (B — o) theresult will be the solution for the steady state annular Couette
flow with no-slip at the walls:

_ V. r (3.77)

For the cessation of annular Couette flow with dynamic slip at the walls the velocity will be:

N Aer\ % (3.78)
u,(r,t) = z EvZ, (%) e RV
k=1
and the coefficients in (3.78) are given by
2V
E, = _A—ZZO(KAK); (3.79)
K

where
L= B(Z2() + 23 (a0)) - Br? (22(edse) + 23 (A
(3.80)

2Av
+ 27 (2800 + 123 (0.

If we let A = 0 then the result will be the solution for the cessation of annular Couette flow
with Navier slip at the walls and the velocity will be given by:

C by _bE (3.81)
u,(r,t) = Z DiZok (%) e REVE
k=1
where
2KV Z,(xhb,) (3.82)

D, =— :
K b, (1+ B2b2)[Z%(b,) — k?Z%(kb,)]
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Now ifwe let B =0 (B — o0) inEq. (3.82), the result will be the solution for the cessation
of annular Couette flow with no-slip at the walls:

= apr\ % (3.83)
u,(r,t) = Z CvZok (%) e RZVE
k=1
where
co— 2KV Z,(ka,) (3.84)
K a Z3 (o) — k2Z2(ka,)
||
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Chapter 4: Concluding Remarks and Recommendations

In this thesis analytical solution for the cessation of circular and annular Newtonian Couette
flow with dynamic slip along the walls were derived. Initially, the steady-state analytical
solutions were presented for no-slip and Navier slip laws at the walls. Then, solutions were
derived for the velocity, with the same slip laws applied when the cessation occurred, using the
separation of variables method and the the well-known orthogonality condition. However, for
the dynamic slip law, the orthogonality condition was found to differ due to the presence of a
time-dependent term that causes the eigenvalue parameter to appear in the boundary conditions.
The resulting Sturm-Liouville problem was different from that obtained using the static Navier
slip condition. The orthogonality condition of the associated eigenfunctions was derived and
the solutions were provided for the circular and annular Couette flow.

In the case of dynamic slip both for the circular and annular Couette flow, the slip velocity is
not solely influenced by the present value of the wall shear stress, but also by its preceding
states. For higher values of A, the time that was needed for the velocity to reach the steady-state
value, was increasing. Consequently, the development of slip velocity and flow is slowed down
due to this phenomenon.

A recommendation for a future research problem would be do derive analytical solutions for
the problems of cessation of annular and circular Couette flow but this time with logarithmic
wall slip applied to the walls, and compare the results with the problems that were studied in
this thesis, with dynamic slip.
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