Εμφάνιση απλής εγγραφής

dc.contributor.authorRigopoulos, I.en
dc.contributor.authorVasiliades, M. A.en
dc.contributor.authorPetallidou, Klito C.en
dc.contributor.authorIoannou, I.en
dc.contributor.authorEfstathiou, A. M.en
dc.contributor.authorKyratsi, Theodoraen
dc.creatorRigopoulos, I.en
dc.creatorVasiliades, M. A.en
dc.creatorPetallidou, Klito C.en
dc.creatorIoannou, I.en
dc.creatorEfstathiou, A. M.en
dc.creatorKyratsi, Theodoraen
dc.date.accessioned2019-05-06T12:24:27Z
dc.date.available2019-05-06T12:24:27Z
dc.date.issued2015
dc.identifier.urihttp://gnosis.library.ucy.ac.cy/handle/7/48778
dc.description.abstractInvestigation of new efficient pathways for CO2 sequestration is of great significance for the mitigation of climate change. Ultramafic rocks are considered among the most promising lithotypes for the safe storage of CO2 via mineral carbonation. This paper investigates a powerful method for the optimization of the ex situ carbonation of pyroxenitic rocks, which comprise part of ultramafic lithologies occurring in ophiolite complexes. The ball milling process was applied to a sample of pyroxenite from the Troodos ophiolite (Cyprus) for the first time, in order to create novel nanomaterials with enhanced CO2 storage capacity. The goal was to accelerate the kinetics of rock-fluid reactions during the carbonation process. The starting rock material and the ball-milled samples were characterized using a variety of methodologies. The experimental results imply that only a few hours of wet ball milling with ethanol as process control agent can substantially increase the CO2 storage capacity of pyroxenites. Through temperature-programmed desorption of CO2 (CO2-TPD) experiments, we show that the optimum milling conditions are 4 h of ball milling with 50 wt% ethanol, leading to an increase of the CO2 uptake of the studied rock material by 41 times. This notable increase designates that pyroxenites are very promising lithologies for CO2 storage via ex situ carbonation, and that ball milling can be an effective preparation technique for this process, providing an efficient and secure carbon storage solution. © 2015 Society of Chemical Industry and John Wiley & Sons, Ltd.en
dc.language.isoengen
dc.sourceGreenhouse Gases: Science and Technologyen
dc.subjectEthanolen
dc.subjectNanostructured materialsen
dc.subjectMilling (machining)en
dc.subjectBall milling processen
dc.subjectProcess control agentsen
dc.subjectball millingen
dc.subjectStorage (materials)en
dc.subjectClimate changeen
dc.subjectLithologyen
dc.subjectMineralsen
dc.subjectTemperature programmed desorptionen
dc.subjectCarbonationen
dc.subjectMilling conditionsen
dc.subjectCarbonation processen
dc.subjectCO2 storageen
dc.subjectmineral carbonationen
dc.subjectnanomaterialsen
dc.subjectOphiolite complexen
dc.subjectPreparation techniqueen
dc.subjectpyroxenitic rocksen
dc.subjectRocksen
dc.subjectTroodos ophioliteen
dc.titleA method to enhance the CO2 storage capacity of pyroxenitic rocksen
dc.typeinfo:eu-repo/semantics/article
dc.identifier.doi10.1002/ghg.1502
dc.description.volume5
dc.description.startingpage577
dc.description.endingpage591
dc.author.facultyΠολυτεχνική Σχολή / Faculty of Engineering
dc.author.departmentΤμήμα Μηχανικών Μηχανολογίας και Κατασκευαστικής / Department of Mechanical and Manufacturing Engineering
dc.type.uhtypeArticleen
dc.contributor.orcidKyratsi, Theodora [0000-0003-2916-1708]
dc.description.totalnumpages577-591
dc.gnosis.orcid0000-0003-2916-1708


Αρχεία σε αυτό το τεκμήριο

ΑρχείαΜέγεθοςΤύποςΠροβολή

Δεν υπάρχουν αρχεία που να σχετίζονται με αυτό το τεκμήριο.

Αυτό το τεκμήριο εμφανίζεται στις ακόλουθες συλλογές

Εμφάνιση απλής εγγραφής