Show simple item record

dc.contributor.authorBarocas, V. Ηel
dc.contributor.authorStylianopoulos, T.en
dc.contributor.authorBashur, C. A.en
dc.contributor.authorGoldstein, A. S.en
dc.contributor.authorGuelcher, S. A.en
dc.creatorBarocas, V. Ηel
dc.creatorStylianopoulos, T.en
dc.creatorBashur, C. A.en
dc.creatorGoldstein, A. S.en
dc.creatorGuelcher, S. A.en
dc.date.accessioned2019-05-06T12:24:40Z
dc.date.available2019-05-06T12:24:40Z
dc.date.issued2008
dc.identifier.urihttp://gnosis.library.ucy.ac.cy/handle/7/48855
dc.description.abstractThe mechanical properties of biomaterial scaffolds are crucial for their efficacy in tissue engineering and regenerative medicine. At the microscopic scale, the scaffold must be sufficiently rigid to support cell adhesion, spreading, and normal extracellular matrix deposition. Concurrently, at the macroscopic scale the scaffold must have mechanical properties that closely match those of the target tissue. The achievement of both goals may be possible by careful control of the scaffold architecture. Recently, electrospinning has emerged as an attractive means to form fused fibre scaffolds for tissue engineering. The diameter and relative orientation of fibres affect cell behaviour, but their impact on the tensile properties of the scaffolds has not been rigorously characterized. To examine the structure-property relationship, electrospun meshes were made from a polyurethane elastomer with different fibre diameters and orientations and mechanically tested to determine the dependence of the elastic modulus on the mesh architecture. Concurrently, a multiscale modelling strategy developed for type I collagen networks was employed to predict the mechanical behaviour of the polyurethane meshes. Experimentally, the measured elastic modulus of the meshes varied from 0.56 to 3.0 MPa depending on fibre diameter and the degree of fibre alignment. Model predictions for tensile loading parallel to fibre orientation agreed well with experimental measurements for a wide range of conditions when a fitted fibre modulus of 18 MPa was used. Although the model predictions were less accurate in transverse loading of anisotropic samples, these results indicate that computational modelling can assist in design of electrospun artificial tissue scaffolds. © 2008 Elsevier Ltd. All rights reserved.en
dc.language.isoengen
dc.sourceJournal of the Mechanical Behavior of Biomedical Materialsen
dc.subjectModelsen
dc.subjectComputer Simulationen
dc.subjectarticleen
dc.subjectForecastingen
dc.subjectpredictionen
dc.subjectpriority journalen
dc.subjectHealthen
dc.subjectExtracellular Matrixen
dc.subjectPolymersen
dc.subjectcollagen type 1en
dc.subjectMechanical propertiesen
dc.subjectError analysisen
dc.subjectNetwork architectureen
dc.subjectFibersen
dc.subjectTissueen
dc.subjectBiomechanicsen
dc.subjectblood vesselen
dc.subjectElastic modulien
dc.subjectanisotropyen
dc.subjectTissue engineeringen
dc.subjectEnzyme inhibitionen
dc.subjectRotationen
dc.subjectElectrochemistryen
dc.subjectcomputer modelen
dc.subjectMultiscale modellingen
dc.subjectAdhesionen
dc.subjectMesh generationen
dc.subjectFibrillar Collagensen
dc.subjectfiberen
dc.subjectBiological materialsen
dc.subjectMolecular Conformationen
dc.subjecttensile strengthen
dc.subjectBiodegradable polymersen
dc.subjectbiomaterialen
dc.subjectBiomaterial scaffoldsen
dc.subjectBiomimetic Materialsen
dc.subjectCell adhesionen
dc.subjectCell behavioursen
dc.subjectChemicalen
dc.subjectComputational geometryen
dc.subjectComputational modellingen
dc.subjectComputational predictionsen
dc.subjectElectrospunen
dc.subjectExperimental measurementsen
dc.subjectExtracellular matrix depositionen
dc.subjectFibrous meshen
dc.subjectMacroscopic scalesen
dc.subjectmaterial stateen
dc.subjectMechanical behavioursen
dc.subjectMesh architectureen
dc.subjectMicroscopic scalesen
dc.subjectModel predictionsen
dc.subjectpalladiumen
dc.subjectParticle Sizeen
dc.subjectpolycaprolactoneen
dc.subjectpolyurethanen
dc.subjectPolyurethane elastomer (PUE)en
dc.subjectPolyurethane meshesen
dc.subjectPolyurethanesen
dc.subjectRegenerative medicinesen
dc.subjectRelative orientationen
dc.subjectScaffoldsen
dc.subjectScaffolds for tissue engineeringen
dc.subjectscanning electron microscopeen
dc.subjectStructure property relationshipsen
dc.subjectTarget tissuesen
dc.subjectTensile loadingsen
dc.subjectTissue microstructureen
dc.subjectTissue scaffoldsen
dc.subjectTransverse loadingen
dc.subjectType I collagen (T1CG)en
dc.subjectWide-rangeen
dc.subjectyoung modulusen
dc.titleComputational predictions of the tensile properties of electrospun fibre meshes: Effect of fibre diameter and fibre orientationen
dc.typeinfo:eu-repo/semantics/article
dc.identifier.doi10.1016/j.jmbbm.2008.01.003
dc.description.volume1
dc.description.startingpage326
dc.description.endingpage335
dc.author.facultyΠολυτεχνική Σχολή / Faculty of Engineering
dc.author.departmentΤμήμα Μηχανικών Μηχανολογίας και Κατασκευαστικής / Department of Mechanical and Manufacturing Engineering
dc.type.uhtypeArticleen
dc.contributor.orcidStylianopoulos, T. [0000-0002-3093-1696]
dc.description.totalnumpages326-335
dc.gnosis.orcid0000-0002-3093-1696


Files in this item

FilesSizeFormatView

There are no files associated with this item.

This item appears in the following Collection(s)

Show simple item record