Εμφάνιση απλής εγγραφής

dc.contributor.authorPolydorides, Savvasen
dc.contributor.authorAmara, Najetteen
dc.contributor.authorAubard, C.en
dc.contributor.authorPlateau, P.en
dc.contributor.authorSimonson, T.en
dc.contributor.authorArchontis, Georgios Z.en
dc.creatorPolydorides, Savvasen
dc.creatorAmara, Najetteen
dc.creatorAubard, C.en
dc.creatorPlateau, P.en
dc.creatorSimonson, T.en
dc.creatorArchontis, Georgios Z.en
dc.date.accessioned2019-12-02T15:32:27Z
dc.date.available2019-12-02T15:32:27Z
dc.date.issued2011
dc.identifier.urihttp://gnosis.library.ucy.ac.cy/handle/7/59010
dc.description.abstractComputational Protein Design (CPD) is a promising method for high throughput protein and ligand mutagenesis. Recently, we developed a CPD method that used a polar-hydrogen energy function for protein interactions and a Coulomb/Accessible Surface Area (CASA) model for solvent effects. We applied this method to engineer aspartyl-adenylate (AspAMP) specificity into Asparaginyl-tRNA synthetase (AsnRS), whose substrate is asparaginyl-adenylate (AsnAMP). Here, we implement a more accurate function, with an all-atom energy for protein interactions and a residue-pairwise generalized Born model for solvent effects. As a first test, we compute aminoacid affinities for several point mutants of Aspartyl-tRNA synthetase (AspRS) and Tyrosyl-tRNA synthetase and stability changes for three helical peptides and compare with experiment. As a second test, we readdress the problem of AsnRS aminoacid engineering. We compare three design criteria, which optimize the folding free-energy, the absolute AspAMP affinity, and the relative (AspAMP-AsnAMP) affinity. The sequences and conformations are improved with respect to our previous, polar-hydrogen/CASA study: For several designed complexes, the AspAMP carboxylate forms three interactions with a conserved arginine and a designed lysine, as in the active site of the AspRS:AspAMP complex. The conformations and interactions are well maintained in molecular dynamics simulations and the sequences have an inverted specificity, favoring AspAMP over AsnAMP. The method is not fully successful, since experimental measurements with the seven most promising sequences show that they do not catalyze at a detectable level the adenylation of Asp (or Asn) with ATP. This may be due to weak AspAMP binding and/or disruption of transition-state stabilization. © 2011 Wiley-Liss, Inc.en
dc.sourceProteins: Structure, Function and Bioinformaticsen
dc.source.urihttps://www.scopus.com/inward/record.uri?eid=2-s2.0-81055158020&doi=10.1002%2fprot.23042&partnerID=40&md5=8a8d31c5e364e61445bc890d05ca47b6
dc.subjectarticleen
dc.subjecthumanen
dc.subjectpriority journalen
dc.subjectamino acid sequenceen
dc.subjectComputational Biologyen
dc.subjectprotein analysisen
dc.subjectbinding affinityen
dc.subjectprotein functionen
dc.subjectprotein interactionen
dc.subjectPoint Mutationen
dc.subjectenergy yielden
dc.subjectLigandsen
dc.subjectamino aciden
dc.subjectMolecular dynamics simulationsen
dc.subjectmolecular dynamicsen
dc.subjectProtein Bindingen
dc.subjectProtein Conformationen
dc.subjectprotein stabilityen
dc.subjectadenosine triphosphateen
dc.subjectProtein Structure, Tertiaryen
dc.subjectBinding Sitesen
dc.subjectAmino Acidsen
dc.subjectSubstrate Specificityen
dc.subjectModels, Molecularen
dc.subjectMolecular Dynamics Simulationen
dc.subjectAspartate-tRNA Ligaseen
dc.subjectadenylationen
dc.subjectAminoacyl-tRNA synthetasesen
dc.subjectGenetic codeen
dc.subjectProtein-ligand interactionsen
dc.subjectAsparaginyl-tRNA synthetaseen
dc.subjectComputational protein designen
dc.subjectGeneralized Born modelen
dc.subjectImplicit solvent modelsen
dc.subjectPoisson Boltzmann calculationsen
dc.subjectProtein Foldingen
dc.subjectRNA, Transfer, Amino Acylen
dc.subjectTyrosine-tRNA Ligaseen
dc.titleComputational protein design with a generalized born solvent model: Application to asparaginyl-tRNA synthetaseen
dc.typeinfo:eu-repo/semantics/article
dc.identifier.doi10.1002/prot.23042
dc.description.volume79
dc.description.issue12
dc.description.startingpage3448
dc.description.endingpage3468
dc.author.facultyΣχολή Θετικών και Εφαρμοσμένων Επιστημών / Faculty of Pure and Applied Sciences
dc.author.departmentΤμήμα Φυσικής / Department of Physics
dc.type.uhtypeArticleen
dc.description.notes<p>Cited By :12</p>en
dc.source.abbreviationProteins Struct.Funct.Bioinformaticsen
dc.contributor.orcidArchontis, Georgios Z. [0000-0002-7750-8641]
dc.gnosis.orcid0000-0002-7750-8641


Αρχεία σε αυτό το τεκμήριο

ΑρχείαΜέγεθοςΤύποςΠροβολή

Δεν υπάρχουν αρχεία που να σχετίζονται με αυτό το τεκμήριο.

Αυτό το τεκμήριο εμφανίζεται στις ακόλουθες συλλογές

Εμφάνιση απλής εγγραφής