Show simple item record

dc.contributor.authorTamamis, Phanouriosen
dc.contributor.authorKasotakis, E.en
dc.contributor.authorArchontis, Georgios Z.en
dc.contributor.authorMitraki, A.en
dc.creatorTamamis, Phanouriosen
dc.creatorKasotakis, E.en
dc.creatorArchontis, Georgios Z.en
dc.creatorMitraki, A.en
dc.date.accessioned2019-12-02T15:33:32Z
dc.date.available2019-12-02T15:33:32Z
dc.date.issued2014
dc.identifier.issn1064-3745
dc.identifier.urihttp://gnosis.library.ucy.ac.cy/handle/7/59108
dc.description.abstractSelf-assembling peptides that can form supramolecular structures such as fibrils, ribbons, and nanotubes are of particular interest to modern bionanotechnology and materials science. Their ability to form biocompatible nanostructures under mild conditions through non-covalent interactions offers a big biofabrication advantage. Structural motifs extracted from natural proteins are an important source of inspiration for the rational design of such peptides. Examples include designer self-assembling peptides that correspond to natural coiled-coil motifs, amyloid-forming proteins, and natural fibrous proteins. In this chapter, we focus on the exploitation of structural information from beta-structured natural fibers. We review a case study of short peptides that correspond to sequences from the adenovirus fiber shaft. We describe both theoretical methods for the study of their self-assembly potential and basic experimental protocols for the assessment of fibril-forming assembly. © Springer Science+Business Media New York 2014.en
dc.sourceMethods in Molecular Biologyen
dc.source.urihttps://www.scopus.com/inward/record.uri?eid=2-s2.0-84921842579&doi=10.1007%2f978-1-4939-1486-9_3&partnerID=40&md5=8613441bd53b42b46ee685f571839595
dc.subjectalgorithmen
dc.subjectpriority journalen
dc.subjectamino acid sequenceen
dc.subjectunclassified drugen
dc.subjectArticleen
dc.subjectphysiologyen
dc.subjectchemistryen
dc.subjectPeptidesen
dc.subjectprotein tertiary structureen
dc.subjectMolecular dynamicsen
dc.subjectNanostructuresen
dc.subjectlow temperatureen
dc.subjectX ray diffractionen
dc.subjectnanomaterialen
dc.subjectnanofiberen
dc.subjectbeta sheeten
dc.subjectprotein secondary structureen
dc.subjectamino terminal sequenceen
dc.subjectpeptideen
dc.subjectProtein Structure, Tertiaryen
dc.subjectProtein Structure, Secondaryen
dc.subjectconformational transitionen
dc.subjecttransmission electron microscopyen
dc.subjecthigh temperatureen
dc.subjectSelf-assemblyen
dc.subjectnanotubeen
dc.subjectpeptide synthesisen
dc.subjectImplicit solventen
dc.subjectAdenovirusen
dc.subjectReplica-exchangeen
dc.subjectAdenoviridaeen
dc.subjectadenovirus fiberen
dc.subjectamyloiden
dc.subjectAmyloid fibrilsen
dc.subjectBeta-structureen
dc.subjectdodecapeptideen
dc.subjectfibril forming peptideen
dc.subjectnanofibrilen
dc.subjectnanoribbonen
dc.subjectoctapeptideen
dc.subjectPeptide Biosynthesisen
dc.subjecttransition temperatureen
dc.subjecturanyl acetateen
dc.titleCombination of theoretical and experimental approaches for the design and study of fibril-forming peptidesen
dc.typeinfo:eu-repo/semantics/article
dc.identifier.doi10.1007/978-1-4939-1486-9_3
dc.description.volume1216
dc.description.startingpage53
dc.description.endingpage70
dc.author.facultyΣχολή Θετικών και Εφαρμοσμένων Επιστημών / Faculty of Pure and Applied Sciences
dc.author.departmentΤμήμα Φυσικής / Department of Physics
dc.type.uhtypeArticleen
dc.description.notes<p>Cited By :4</p>en
dc.source.abbreviationMethods Mol. Biol.en
dc.contributor.orcidArchontis, Georgios Z. [0000-0002-7750-8641]
dc.contributor.orcidTamamis, Phanourios [0000-0002-3342-2651]
dc.gnosis.orcid0000-0002-7750-8641
dc.gnosis.orcid0000-0002-3342-2651


Files in this item

FilesSizeFormatView

There are no files associated with this item.

This item appears in the following Collection(s)

Show simple item record