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Abstract 

 

 This thesis introduced a different approach in modeling and producing firing 

irregularity at high rates in order to investigate in an alternative way the claim of  

Christodoulou and Cleanthous [1] and Cleanthous and Christodoulou [2] that “high 

firing irregularity enhances learning”. More specifically, this thesis introduces a neural 

network consisting of two compartment leaky integrate-and-fire model as a neuron to 

investigate  firstly whether this model at the neuron level can produce high firing 

irregularity at high rates  and secondly at the network level whether it can enhance 

learning. 

To achieve the above, the two compartment model suggested by Lansky and 

Rodriguez [3] and Bressloff [4] is implemented and tested for producing high firing 

irregularity at high rates. In addition the leaky integrate-and-fire model with partial 

somatic reset is implemented as part of this thesis for the purposes of comparison with 

the two compartment leaky integrate-and-fire model in producing high firing 

irregularity. The results showed that the two-compartment leaky integrate and fire 

model can produce firing irregularity in high rates.  

The current model (i.e., two compartment leaky integrate-and-fire) is applied 

to a neural network trained with reward-modulated spike-timing-depended plasticity 

with eligibility trace introduced by Florian [5]. For the purposes of comparison, two 

other networks were implemented by this thesis. One consisted of leaky integrate-and-

fire model  with total reset (same with the one used by Florian, [5]) and one which 

consisted of leaky integrate-and-fire model with somatic partial reset (same with the 
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one used by Christodoulou and Cleanthous [1] and Cleanthous and Christodoulou [2]).  

All three networks are forced to fire at high rates in order to test whether the high 

firing irregularity at high rates that can be produced by the two of the three networks 

(i.e., the one with the leaky integrate-and-fire nodes with somatic partial reset and the 

one with the two compartment leaky integrate-and-fire models) can achieve 

enhancement in learning as Christodoulou and Cleanthous [1] and Cleanthous and 

Christodoulou [2] claim. The results showed that the two networks that can fire 

irregularly at high rates performed better in terms of learning than the one that fires 

regularly. This is possible as high firing irregularity leads to more accurate correlation 

between pre-synaptic and post-synaptic spike timing and reinforcement signals.  

Furthermore it was observed that the network that consisted of two 

compartment LIF nodes had better result than the network that consisted of LIF model 

with somatic partial reset as nodes. This cannot be easily explained because the 

different type of modeling sets limits in terms of comparison. Therefore, further 

investigation is needed in order to explore the reasons for the better performance by 

networks which consisted of two compartment LIF neurons. 

Besides verifying the claim by Christodoulou‟s and Cleanthous [1] and 

Cleanthous and Christodoulou [2] that high firing irregularity enhances learning, this 

thesis also introduces o different way of neuron modeling that can achieve high firing 

irregularity at high rates. 
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Chapter 1 (Introduction) 

 

 

1.1 Incentive 

1.2 Related work 

1.3 Motivation 

1.4 Thesis Outline 

 

 

 

 

1.1 Incentive 

 

Learning is the process of transforming information and experience into 

knowledge and skills. The ability to learn differs between and within species. Since 

learning is a cognitive process (brain function), the existence of different brains is the 

reason for differences in learning between species. This, though, cannot explain the 

phenomenon of differences in learning within the same species. For example, human 

beings do not all learn something with the same rate or in equal amounts of time. 

These differences can also be observed even in the case of the same person since the 

learning rate depends on a variety of parameters such as time, mood, age, prior 

knowledge etc. Is there something common in those parameters? What are the changes 

in the brain function that are dependent on these parameters?  

Neuroscience and Neuroinformatics are two of the many disciplines which 

investigate the phenomenon of learning. Others are Philosophy, Education, 
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Psychology, Mathematics, Informatics etc. In their investigations about neuron 

behaviors, neuroscientists are experimenting on real neurons in order to record and to 

analyze their behavior. The rationale of this thesis is based upon one of those 

experiments and the investigations conducted by an Informatics scientist about a 

neuron behavior discovered by such experiments. 

 

1.2 Related work 

 

During the analysis of spike trains recorded from the cortical neuron, Softky and 

Koch [6,7] found that these cells in vivo fire irregularly at high rates.  After testing 

different models in order to investigate which of them can reproduce this 

phenomenon, Softky and Koch  [6,7]  found that the simple leaky integrate-and-fire 

(LIF) model [8,9] failed to reproduce the experimentally observed high firing 

irregularity because the model predicted very low firing variability (Cv << 1 where 

the CV is the Coefficient of Variation which is a measure of spike train irregularity 

defined as the standard deviation divided by the mean interspike interval ) for realistic 

depolarizations of Excitatory Postsynaptic Potential (EPSP) and membrane time 

constants.  

  Based on Softky‟s and Koch‟s [6,7] findings, Bugmann, Christodoulou & 

Taylor [10] and Christodoulou & Bugmann  [11] attempted to find a way to make the 

LIF model able to reproduce the high firing irregularity at high rates. Through testing, 

they found that LIF model with partial somatic reset can produce the high firing 

irregularity observed by Softky and Koch [6,7].   

Christodoulou and Cleanthous [1] and Cleanthous and Christodoulou [2] attempted to 

see whether the high firing irregularity at high rates of cortical cells in vivo has any 
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functional significance. Based on the assumption that this phenomenon is not 

coincidental, they assumed that the high firing irregularity, observed by Softky and 

Koch  [6,7],  can enhance learning. In order to prove this, they used a network of LIF 

neurons with partial somatic reset (with the LIF neurons being the same as the model 

presented by  Bugmann, Christodoulou & Taylor [10] and Christodoulou & Bugmann 

[11])  and trained it with reward-modulated spike-timing-dependent plasticity (STDP) 

with eligibility trace proposed by Florian [5]. During training, the network was forced 

to fire irregularly and was tested on XOR benchmark problem and the Prisoner 

Dilemma game [12]. The results showed that the problems were solved by the 

network that was forced to fire irregularly during the training with a better 

performance (enhanced learning) than by the normal network. According to 

Christodoulou and Cleanthous [1]  “this happened due to more accurate correlations 

between  presynaptic and postsynaptic spike timings and reinforcement signals”.  The 

verification of Christodoulou and Cleanthous [1] and Cleanthous and Christodoulou 

[2] hypothesis is a very important one and highlights the necessity for a more detailed 

analysis of the high firing irregularity phenomenon. 

 

1.3 Motivation 

 

Further research in this area is imperative. For example it would be interesting to 

investigate whether the same result could be produced by a network based on the 

theory of two compartment neuron models. More specifically, the basic idea is to test 

whether high firing irregularity can be produced by a network of two compartment 

LIF neurons (Lansky and Rodrigues [3] and Bressloff [4]) where the first 

compartment is the dendritic compartment and the second compartment is the somatic 
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compartment. Furthermore, in case this network passes this test, it could be tested 

whether it can produce the High Firing Irregularity Enhanced Learning as in the case 

of  the studies Christodoulou and Cleanthous [1] and Cleanthous and Christodoulou 

[2]. 

Furthermore, in Christodoulou and Cleanthous [1] and Cleanthous and 

Christodoulou [2] the network consists of single compartment LIF neurons where 

dendritic and somatic points are a single point. In this node the dendritic potential is 

assumed to return to the resting level following the membrane potential after a spike. 

With the application of the two compartment model where the dendritic potential does 

not return to the resting level and the reset is applied only to the membrane potential, 

the model becomes slightly more realistic.   

In this thesis a network based on two-compartment LIF neurons was 

introduced and tested in order to investigate first if the two-compartment model as a 

single neuron is able to produce firing irregularity at high rates and furthermore if the 

network, that consists  of neurons based on this model that fire irregularly at high rate, 

enhances learning as Christodoulou and Cleanthous [1] and Cleanthous and 

Christodoulou [2] claim for a network of the single compartment LIF neuron. In 

addition, for comparison purposes the single compartment models with total somatic 

reset and partial somatic reset and their corresponding networks, same as with the 

ones used in Florian [5] and Christodoulou and Cleanthous [1] and Cleanthous and 

Christodoulou [2] are implemented.  The comparison of the results of all networks are 

presented and discussed in order to prove that the network and the model that is tested 

by this thesis are able to a) fire irregularly in high rates and b) by firing irregularly at 

high rates the network of two-compartment neurons can enhance learning.  

By re-verifying the results of Christodoulou and Cleanthous [1] and Cleanthous 
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and Christodoulou [2] with a network of two-compartment LIF neurons, this thesis 

can not only verify the assumption that high firing irregularity enhances learning, but 

also introduces a different way of testing this phenomenon. 

 

1.4 Thesis outline 

 

Chapter 2 reviews the exist knowledge upon which this thesis is based. A review 

of the literature related to machine learning, learning algorithms and the reasons of 

selecting the current machine learning algorithm for training a spiking neural network 

are presented. Moreover a review of studies related to this thesis are presented in this 

chapter.  Finally, a review of the basics of two compartment models as is being used in 

this thesis and also presented by Lansky and Rodriguez [3] and Bressloff [4] is 

presented in this chapter. 

 

Chapter 3 describes the design of the computational system with respect to its 

architecture and the implementation. The two compartment model and the network 

that used by this thesis are presented and described.    

 

Chapter 4 presents and discusses the the results of testing the two compartment 

LIF model in producing high firing irregularity in comparison with the LIF with 

partial somatic reset model and also the results of testing the networks used in this 

thesis in the XOR problem solving. 

 

Chapter 5 includes the conclusions of this thesis and provides suggestions further 

investigation.      
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Chapter 2 (Background)  

 

2.1 Computational neuroscience 

2.2  Learning 

2.3  Learning Algorithms 

2.4  Reinforcement Learning 

2.5 Spiking Neural Network using Reinforcement Learning 

2.6 Reinforcement Learning through STDP 

2.7 Florian’s modulated STDP by a global reward signal 

2.8  High Firing Irregularity of Cortical Cells at high rates 

2.9  Leaky Integrator Neuron Model with Partial Reset 

2.10  High Firing irregularity enhances learning  

2.11  Two Compartment model    

 

 

2.1 Computational neuroscience 

The aim of Computational neuroscience is to investigate and understand the 

computational properties of the brain (from single neuron to whole neural network 

systems). This is done by using methods from computer science and mathematics 

combined with the experience gained from the area of experimental neuroscience. 

Computer science, electronic engineering, mathematics and physics form the 

computational and theoretical approaches to neuroscience and are concerned with the 

theoretical aspects of information processing by neural systems. 
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In more detail, in Computational neuroscience mathematical methods and 

computer science are used in order to investigate and understand the nervous system 

behaviors. There are two main approaches for these investigations. In the first 

approach mathematical and computational models are used in order to simulate in 

detail a neuron behavior. In the second approach the brain is analyzed as an abstract 

computing device, therefore researchers can describe neural function within the 

theoretical frameworks. This allows alternative analytical approaches. This thesis 

belongs to the first category of approaches where models are used to investigate brain 

(neuron) behavior.  

Computational neuroscience may be viewed as the discipline which relates to 

artificial intelligence and more specifically the computational intelligence since both 

disciplines are trying to understand the information processing capabilities of the 

neural system (brain). For general neuroscience and for computational neuroscience 

the understanding of the functional properties of the brain is very important and led 

the ultimate goal of this field. In computational intelligence the understanding of any 

aspect of biological information provides new approaches in building of intelligent 

systems.  

One of the main research areas in artificial intelligence and therefore in the area of 

computational neuroscience is  machine learning which is described in the next 

section. 
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2.2  Learning 

 

In order to define a learning problem, we need to be aware of a) the class of tasks, 

b) the measure of performance improvement and c) the source of experience.  “A 

computer program is said to learn from experience E with respect to some class of 

tasks T and performance measure P , if its performance at tasks in T, as measured by 

P, improves with experience E” [13].  For example a computer that learns to solve the 

XOR problem can improve its performance as measured by its ability to give the 

correct answers (task) through experience obtained from training. In general, machine 

learning aims to answer the question of how to build a computer program that 

improves its performance at some task through experience. Machine learning includes 

ideas from a great variety of disciplines such as artificial intelligence, probability and 

statistics, computational complexity, information theory, psychology and 

neurobiology, control theory, and philosophy. Well defined learning problems require 

a well-specified task, a performance metric, and a source of training experience. In 

order to design a machine learning approach to solve a problem one will face, many 

question the type of training experience that should be used, the target function to be 

learned and the representation that should be used for this target function. The basic 

question, though, is about the algorithm that should be used. In other words, which 

algorithm is more suitable in each case. 

 

2.3 Learning Algorithms 

 

Several algorithms exist for machine learning and each of them has  its advantages 

and disadvantages. The three main categories of machine learning algorithms are a) 
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supervised, b) reinforcement and c) unsupervised. In supervised learning the training 

data consists of a set of training examples that include the input object and the desired 

output value. In this case, the algorithms take the input and by applying the 

corresponding algorithms function produce an output for each valid input. The 

network calculates the error between the desired output (supervised signal) and the 

actual output and follows the algorithm rules to make changes in order to minimize 

the error.  In reinforcement learning which is discussed in detail in (2.3), a reward or 

penalty is given to the network based on its output in order to force the network to 

make changes which will increase the reward. In unsupervised learning the network 

tries to find relations and hidden structures in unlabeled data. The difference between 

unsupervised learning and the other two categories (supervised learning and 

reinforcement learning), is that there is no error or reward signal to evaluate the 

output. For the purposes of this thesis reinforcement learning has been used. The 

rationale for using reinforcement learning and a more detailed explanation of it is 

provided in the following section. 

 

2.4 Reinforcement Learning  

 

According to Florian [5]: “Reinforcement Learning addresses the question of how 

an autonomous agent that senses and acts in its environment can learn to choose 

optimal action to achieve its goals”. Some agents learn to play board games such as 

chess, learn to solve problems such as XOR or learn to optimize operation in factories. 

The basic idea in reinforcement learning is that for each time the agent performs an 

action in its environment, a trainer provides a reward or penalty to help the agent to 

know if its action has a positive or negative effect on the environment according to its 
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goal. For example for an agent that learns to recognize letters, the trainer gives a 

reward to the agent each time the agent  predicts the letter correctly, a penalty for each 

time the agent  predicts the letter wrong and zero reward on all other states. The goal 

is to train the agent to choose the sequence of actions that will give it  the greatest 

reward. Two main strategies exist for solving reinforcement learning problems. The 

first is to search a variety of behaviors in order to find one that performs well in the 

environment. This approach is used in genetic algorithms and genetic programming. 

The second strategy is to use statistical techniques and dynamic programming 

methods to estimate the usefulness of taking an action in states of the world [14].   

 

 

Figure 1 Standard reinforcement-learning model from [14] 

          In standard reinforcement-learning model as is shown in figure 1, on each 

interaction step the agent receives as input (i), some clue from the current state (s) of 

the environment. Then the agent selects an action (a) to give as output. Based on the 

selected action the state of the environment changes. This change to the environment 

based on it feedback (good or bad) is returned to the agent as a reinforcement signal 

(r). The behavior of the agent (B) should choose actions that will increase the long-

turn reword and not the penalty reinforcement signal. The agent learns to do this over 

time by trial and error [14]. 
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Reinforcement learning has several differences to the supervised learning. The 

main one is that in reinforcement learning there in no presentation of input object and 

corresponding desired output. In reinforcement learning after each action the agent is 

told the immediate reward but not the action that will give it the long-term biggest 

reward. It is the agent itself that by collecting experience about the state, actions, 

transitions and rewards will find the way to gain the maximum long term reward [14].  

Reinforcement learning is related to issues of search and planning algorithms in 

artificial intelligence.  In artificial intelligence, the search algorithms use the graph of 

states that they generate their selves and use them for a satisfactory performance. 

Planning algorithms operate  in a similar way, albeit within a more complex construct, 

in which states are represented by compositions of logical expressions. Based on the 

fact that those artificial intelligence algorithms require a predefined model of state the 

reinforcement learning algorithms are more general since reinforcement learning 

assumes that the entire state space can be enumerated and stored in memory [14].   

 

2.5 Spiking Neural Networks using Reinforcement Learning  

 

Reinforcement learning has been successfully applied to spiking neural networks 

recently. Some reinforcement learning method achieve learning by utilizing various 

biological properties of neurons such us neurotransmitter release used by Seung [15], 

spike timing used by Florian [5], Izhkevich [16], Farries and Fairhall [17] and 

Legenstein et al. [18] or firing irregularity used by Xie and Seung [19]. All of the 

above methods are biologically plausible and this is the reason for being applied 

successfully in biological realistic neural models. The fact that those methods are 
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biologically plausible makes them ideal methods to be used in investigations of 

neuron behaviors. For this reason this thesis used reinforcement learning through 

MSTDP, this is described below.  

 

2.6 Reinforcement Learning through STDP 

 

As Florian [5] said: “The persistent modification of synaptic efficacy as a function 

of the relative timing of pre-and postsynaptic spikes is a phenomenon known as spike-

timing-dependent plasticity (STDP)”.  

The discovery that synaptic changes are depended on the relative timing of pre-

and postsynaptic action potentials is owed to the work of Markram et al [20].  As 

showed by their experiments, there is a potentiation of a synapse when the post-

synaptic spike follows the pre-synaptic spike within a time window of a few tens of 

milliseconds and a depression of the synapse where the order of spikes is reversed. 

The current type STDP is also called Hebbian from Donald Olding Hebb [21] who 

discovered the change in synapse when the pre-synaptic neuron forces the 

postsynaptic neuron to fire.  

 In more detail in Hebbian STDP, the plasticity mechanism strengthens the 

synapse when a pre-synaptic neuron contributes to the firing of the post-synaptic 

neuron making the pre-synaptic neuron more effectively in causing the postsynaptic 

neuron to fire. In other experiments, done by Dan & Poo [22], Bell et al [23], Egger et 

al [24] and Roberts & Bell [25], an anti-Hebbian STDP synapse was found when the 

sign of changes was opposite to the Hebbian STDP.    

Florian [5] claims that  modulation of STDP by a global reward signal can lead to 

reinforcement learning for a spiking neural network. According to Florian [5], 
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Hebbian spike-timing-dependent plasticity can enable a network to associate a stable 

output to a particular input. Furthermore, he claims that it is possible to control 

whether to reinforce the casual relationships or not based on whether this will lead to 

something positive. More specifically, the causal relationships are reinforced only 

when this action leads to something positive and weakened otherwise. In this case the 

synapse should feature Hebbian STDP when the reward is positive and anti-Hebbian 

STDP when the reward is negative. This will lead the neural network to learn to 

associate a particular input to a desirable output, as determined by the reward and not 

to an arbitrary output, determined by the initial state of the network 

 

2.7 Florian’s modulated STDP by a global reward signal 

 

Florian [5] showed that modulation of STDP by a global reward signal leads to 

reinforcement learning. A neural spiking network that used modulated STDP as 

learning was used to prove this claim. Moreover a network with an eligibility trace 

that kept a decaying memory of the effects of recent spike pairing to allow learning in 

the case that reward is delayed was proposed.  

Generally, both networks simulated the STDP by increasing the weights between 

two neurons that fired in pre-post order between the window and decrease the weights 

between neurons that fired in post-pre order between the window. In addition, the 

network‟s used a global reward that was given to the network for each correct fire and 

penalty otherwise.  Both networks achieve their goal which was to calculate the XOR 

function (XOR Benchmark).  

  Florian claimed that the causal nature of the STDP window seems to be an 

important factor for the learning performance of the proposed learning rules. The 
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proposed reinforcement learning mechanism retains the continuity between itself and 

the experimentally observed STDP, and this makes it biologically plausible. He also 

claimed that the introduction of the eligibility trace does not contradict what is 

currently known about biological STDP, as it simply implies that synaptic changes are 

not instantaneous but are implemented through the generation of a set of biochemical 

substance that decay exponentially after generation. The new feature (i.e., modulatory 

effect of the reward signal) may be implemented in the brain by a neuromodulator.  

The fact that the proposed spiking neural network learning was biologically 

plausible makes it an ideal learning algorithm to been used in spiking neural networks 

for investigating behaviors of real neurons such as firing irregularity at high rates that 

Softky and Koch [6,7] found on cortical cells of the brain. 

 

2.8 High Firing Irregularity of Cortical Cells at high rates 

 

Based on the theory about spiking in cells according to which when a typical nerve 

cell is injected with enough current, it will fire a regular sequence of action potentials, 

Sofkty and Koch [6,7] showed that cortical cells in vivo usually fire irregularly at high 

rates, reflecting synaptic input from presynaptic cells as well as intrinsic biological 

properties. The experiments were conducted on awake macaque monkey. The trains 

were recorded from V1 (Knierim and Van Essen 1992) and MT (Newsome et al. 

1989). Traces were chosen from well-isolated, fast firing, non-bursting neurons.   

They also tried to simulate this high firing irregularity at high rates, using a simple 

integrate-and-fire model, but the model failed to reproduce this high firing 

irregularity. The next step was to use the more realistic Hodgkin-Huxley model [26] 

whose firing currents are continuous functions of voltage. This is not the case in the 
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integrate-and-fire model which has a discontinuous firing threshold and no such 

sensitive voltage regime. They mention however, that this would make a significant 

difference only in neurons that spend a lot of integration time resting just below the 

threshold and this is not the case in cortical cells which have high firing rates and 

hence no stationary resting potential during periods of peak activation. Therefore a 

simulation of Hodgkin Huxley like neuron in the presence of random synaptic input 

was needed for a persuasive test. 

Softky and Koch [6,7] simulated this biophysically very detailed 

compartmental model but the results at the end were in agreement with the simple 

integrator models and not with what was recorded in vivo monkey cells . Sofkty and 

Koch [6, 7] suggested that the problem was the present knowledge of pyramidal cell 

biophysics and dynamics.   

Softky and Koch [7] also mention that for the traditional view of cortical firing 

variability where the information of neural code is carried in the average spike rate 

(frequency code), a neuron with irregular firing is the worst case of carrying the 

information in its average rate. On the other hand an alternative view is that each spike 

arrival‟s time signifies an independent message of some sort (an asynchronous binary 

pulse code). In this case a neuron with irregular firing would be the most appropriate 

one for carrying information in its individual spike times. This makes the phenomenon 

of high firing irregularity a very important area for research. The fact that highly 

irregular firing of cortical neurons at high rates cannot be reproduced by a single 

neuron performing the temporal integration of Excitatory Post-Synaptic Potential 

generated by independent stochastic input spike trains that Softky and Koch [6,7] 

observed triggered investigations into alternative ways of producing irregular spike 

trains.  
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While many methods were proposed in order to reproduce Sofkty and Koch‟s 

findings, Bugmann , Christodoulou, & Taylor [10] have shown that a LIF neuron 

model with partial somatic reset was a very promising candidate for reproducing the 

observed highly firing irregularity at high rates. 

 

2.9 Leaky Integrator Neuron Model with Partial Reset 

 

In their work Bugmann, Christodoulou, & Taylor [10] investigated the mechanism 

by which partial reset affects the firing pattern and, by this, proved that partial reset is 

a simple and powerful tool for controlling the irregularity of spike train fired by a 

leaky integrator neuron model with random inputs. They also showed that this 

mechanism enables a single neuron with a realistic membrane time constant to 

reproduce the highly irregular firing of cortical neurons at high rates.   

Partial reset as presented by Shigematsu et al. [27] is a mechanism where an 

output spike does not completely reset the membrane potential of the neuron model.  

In Bugmann , Christodoulou, & Taylor [10] model when a LIF neuron  fires it resets 

the potential of the capacitor to V=β*Vth, where Vth is the threshold of the model and 

β is the a reset parameter between 0-1. By using partial reset, the temporal integration 

of random input spikes is exploited for maintaining the average potential of the neuron 

at a small distance from the threshold during the whole integration time, allowing 

input current fluctuations to cause firing at random times. 

   By comparing the results from Rospars and Lansky [28] and those of 

Christodoulou et al [11] who showed that CV>1 when no resetting was used and with 

the results of Sofkty and Koch [6] who showed that CV<1 for β=0, Bugmann , 
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Christodoulou, & Taylor [10] proved that partial reset may allow a fine control of the 

irregularity of the spike trains. 

    

 

 

2.10 High Firing irregularity enhances learning 

 

Christodoulou and Cleanthous [1] and Cleanthous and Christodoulou [2]  

investigated whether high firing irregularity is utilized by the brain for the proposes of 

learning optimization. In other words, they tried to answer the question whether high 

firing irregularity enhances learning According to Florian [5] a biological realistic 

implementation of reinforcement learning on a spiking neural network is achieved by 

modulating STDP with a reward signal. Christodoulou and Cleanthous [1] and 

Cleanthous and Christodoulou [2]   in their work used this implementation in 

combination with the LIF with partial somatic reset model that Bugmann , 

Christodoulou, & Taylor [10] suggested as well as different approach of getting firing 

irregularity at high rates, namely the use of the temporally correlated inputs (for more 

information see [2]) , in order to investigate whether the high firing irregularity 

enhances MSTDP.  

In order to test this assumption, the XOR benchmark problem and the Prisoner‟s 

Dilemma game [12] were used. The first step was to achieve the high firing 

irregularity of the LIF neuron at high rates, using the partial somatic reset mechanism 

[10]. The next step was the implementation of the testing networks. It has to be noted 

that in the case of the prisoner‟s dilemma, two networks are needed to represent the 

two prisoners.  In order to test whether high firing irregularity enhances the efficiency 
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of MSTDP with eligibility trace to perform the chosen learning task, three different 

simulations were carried out for each task: one where the network‟s units had the 

standard LIF model with total reset, one where the network‟s units had the standard 

LIF with the partial somatic reset mechanism and a final one where the network units 

had the standard LIF, but the inputs to the system were temporally correlated. In the 

last two networks the LIF neurons are able to produce irregularity in contrast with the 

first network. The output firing rate of all networks was targeted to be equal, so in 

case of any difference in leaning efficiency of the networks this would  be due to the 

firing irregularity and not to an increasing firing rate. The high output firing rate 

which was targeted for all systems was within the high rate bound in which cortical 

cells in vivo fire irregularly shown by Sofkty and Koch [6,7].    

As is shown by the results of [1,2], in the case of the XOR problem, even though 

all three systems learned the XOR function, the network with the partial somatic reset 

mechanism and the one which received temporally correlated inputs preformed much 

better in the task.  The measure of efficiency was the difference between the output 

firing rates for input patterns {1,1} and input patterns {0,1} and {1,0}.  Moreover the 

results of the simulations in the prisoner‟s dilemma game have shown that all three 

systems learn to cooperate, but when the system comprises of LIF neurons with partial 

somatic reset and when the system receives temporally correlated inputs, the 

accumulated payoff is much higher than when there is total reset after each firing 

spike.   

In general the findings from the simulations in [1,2] showed that high firing 

irregularity at high rates enhances reward-modulated STDP with eligibility trace. 

Christodoulou and Cleanthous [1] and Cleanthous and Christodoulou [2] claim that 

this is due to more accurate correlations between pre-synaptic and post-synaptic spike 
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timings and reinforcement signals. More spercifically in the case of regular firing, two 

matching spike pairs are possible to be associated with opposite in sign reinforcement 

signals. This will confuse the directions of the plasticity for the current synapse. In 

case of high firing irregularity this situation is prevented by weakening this possibility 

[1,2].  

What Christodoulou and Cleanthous [1] and Cleanthous and Christodoulou [2] 

found suggests that the high firing irregularity is utilized by brain for learning 

optimization. In other words high firing irregularity enhances learning. 
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Chapter 3 (Design) 

 

3.1 Overview 

3.2 Two point model 

3.3 The network  

3.4 Learning approach  

3.5 Implementations 

  

 

3.1 Overview 

 

For the purposes of this thesis we have developed  a neural network model based 

on two compartments. The main difference of this approach is that unlike single 

compartment LIF models, this model follows the assumption that the dendrite‟s 

potential is never reset.  

Before the creation of a network of two compartment neurons that would fire 

irregularly, and  since the model has never been tested in the past in reproducing high 

firing irregularity at high rates this single neuron model that consists of two 

compartments (dendrite - membrane) had to be tested in order to investigate whether 

the high firing irregularity at high rates shown by Softky and Koch [6,7], can be 

produced by such model (as it happened with the case of the partial somatic reset 

model shown by Bugmann, Christodoulou & Taylor [10] and Christodoulou & 

Bugmann  [11] ). 
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  The next step was to design a neural network where the learning approach 

proposed by Florial [5] is tested in order to investigate whether a more realistic neural 

network, such as this one, would produce the result that Christodoulou and Cleanthous 

[1] and Cleanthous and Christodoulou [2] showed (i.e, the high firing irregularity 

enhances learning). 

 

3.2 Two point model  

 

As mentioned in the previous section, for the purposes of this thesis first of all a 

single (two point) neuron model needed to be tested in order to investigate whether it 

could reproduce the results reported Bugmann, Christodoulou & Taylor [10] and 

Christodoulou & Bugmann [11]. The chosen model was the one presented by Lansky 

and Rodriguez [3] and Bressloff [4].   

There is a variety of approaches for modeling the neuronal activity with 

deterministic biophysical concepts which are very powerful in explaining the 

generation of the various types of membrane potential like the Hodgkin-Huxley model 

[26].  The needs of this thesis, however, led us to choose a lightest model. The LIF 

model is the best for this investigation since the evolution of the neuron membrane 

potential is described by the following simple stochastic differential equation. 

 

      (1) 

      

where  is he membrane resistance,  is the membrane capacitor,  is 

the input at time  and  is the membrane voltage.     
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 Of course this model is not focused on the geometrical architecture of the cell. 

There are many complex models that are focused on the geometrical architecture of 

the cell, albeit those models are not focused on the direct presentation of the input 

output transfer.  As in the case of Lansky and Rodriguez [3] and Bressloff [4] for this 

thesis we need a simplified model that will focus on the description of the input-output 

transfer. This led us to the use of LIF model that follows the same assumption as with 

Lansky and Rodriguez [3] and Bressloff [4]:  

1. The neuron is assumed to be a mode of two interconnected compartments 

(dendritic and membrane zone) 

2. The input is presented only at the dendritic compartment  

3. The reset mechanism is used only at membrane zone. 

The above assumptions led us to architecture similar to the architecture shown in 

figure 2. 

 

       

Figure 2 Two compartment model of two interconnected LIF compartments. 

CD:dendrite capacitor, RD: dendrite resistance, Rc: junctional  resistance, CM: 

membrane capacitor and RM): is membrane resistance. 
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           In the corresponding model based on the Bressloff [4] and Lansky and 

Rodriguez [3] the simplifying assumption that the dendritic compartment 

depolarization is not influenced by the voltage at the trigger zone is removed and 

therefore when the membrane potential resets, there is a feedback in the dendritic 

system due to the coupling between membrane and dendrites. It is a simple example 

of an excitable or active system (soma) coupled to a non-excitable or passive system 

(dendrite). The equations which describe the potential in both zone (dendrite and 

membrane) are the following:      

 

 

       (2) 

 

 

   (3) 

 

 

              Where   is the junctional time constant,   represents the external input, 

 is the dendrite time constant and  is the membrane time constant ,  is the 

dendritic potential at time t and  is the membrane potential at time t. As shown 

in the equations, the potential in both dendrite and membrane at time t are depended 

on each other as is shown in figure 3. 
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Figure 3 Membrane and Dendritic Potential produced by a two point model 

(equations 2,3) 

 

 

This model was tested in producing high firing irregularity. Later on this model 

was used for the creation of the neural network as a node on it. The network is 

described in the following subsection. 
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3.3 The network 

 

As we mentioned in the introduction, for the purposes of this thesis a neural 

network based on two compartment neurons that will fire irregularly had to be tested 

and in order to investigate whether it would produce the same results with the ones 

reported by Christodoulou and Cleanthous [1] Cleanthous and Cleanthous [2].  The 

proposed neural network architecture in this thesis is based on the architecture used by 

Florian [5] for solving the XOR problem. This architecture which was used by Florian 

[5] and also in Christodoulou and Cleanthous [1] Cleanthous and Cleanthous [2] 

network is presented in figure 4 and described in the following paragraph. 

 

 

  

 

 

  

 

 

 

Figure 4 The network architecture for sovling the XOR problem 

 

This is a feed forward network which consists of 60 input neurons , 60 hidden 

neurons and 1 output neuron. Each layer has full feed-forward connectivity to the next 

one. The first 30 input neurons  represent the first binary input and the next 30 

represent the second binary input. Binary input “1” was encoded by a poison spike 
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train of 40hz firing rate and the binary input “0” was encoded by the absence of 

spiking. Each input patter presentation lasted 500ms. 

 

3.4 Learning approach 

 

As mentioned in the background chapter and introduction, the current work 

uses modulated STDP [5] by a global reward signal as a learning algorithm for our 

network. According to Florial [5], in reward-modulated STDP with eligibility trace the 

efficacy of the synapse from neuron j to i is changed according to equation 3: 

 

  (3) 

 

where γ is the learning rate, dt is the duration of a time step, r is the global reward 

signal and z is the eligibility trace modified according to equation (4):  

 

 

  (4) 

 

where β is discount factor between 0 and 1, δ is a notation for the change of z resulting 

from the activity in the last time step and   in the time constant for the exponential 

decay of z. At time t, δ is computed by the following set of equations (5, 6, and 7): 

 

  (5) 
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  (6) 

 

   (7) 

 

Where the variable  tracks the influences of presynaptic spikes and the 

variable  tracks the influences of the postsynaptic spikes. The time constants  

and  determine the ranges of interspike intervals over which synaptic changes occur 

and according to the standard antisymmetric STDP model.  and  are positive and 

negative constant parameters respectively. The parameter  is 1 if neuron i has 

fired at time step t and 0 if the neuron i does not fire at time step t.  The evolution and 

dynamics of the above parameters through time are being shown in figure 4 and 

described in the following paragraph. 
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Figure 5 (taken from [5]) Illustration of the dynamics of the variables used by 

MSTDP and MSTDPED and the effects of those rules and of STDP on the synaptic 

strength for sample spike trains and reward. 
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  As shown in figure 5, when a spike arrives in presynaptic area,  gets a 

value of 1 and through the passage of time it follows a decay based on the time 

constant  (equation 5). In the same way when a spike arrives on postsynaptic area, 

 gets value the value of -1 and through the passage of time it follows a decay 

based on the time constant  (equation 6). This is shown in figure 5 

 

 

Figure 6  (taken from  [5])  Part of figure 5. 

 

Based on equation 4,  takes positive value from the addition of  and 

 based on the pre-post firing activity (if the firing activity was only in presynaptic 

area  then  takes the value of , if firing activity was only in postsynaptic area 

then  takes the value of  only, if both areas had firing activity then it takes the 

sum of  and  and if neither area has firing activity then it takes the value of 0).   

 

 

 

Figure 7 (taken from   [5])  Part of figure 5. 
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Eligibility trace ( ) keeps the trend of the learning (equation 3) to provide the 

system with the force of learning in case that the learning has delay, as shown in the 

figure, it gets the value 1 or -1 (depends on the pre-post firing activity) and through 

the pass of time it follows a decay based on the time constant  (see figure 4). 

 

 

 

 

Figure 8  (taken from  [5]) Part of figure 5. 
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The weights (equation 2) go stronger when the reward ( r ) is +1 or when there 

is presynaptic fire activity  before the postsynaptic and on the other hand weights go 

weaker when the reward is – 1 or when there is  postsynaptic fire activity before the 

presynaptic one. In case of the MSTDPET as mentioned earlier the eligibility trace 

keeps the learning (see figure 4).   

 In general the synapses go stronger every time a presynaptic spike comes 

before the postsynaptic one and weaker on the other way. Furthermore, in the case of 

the MSTDP, with the introduction of reward the network changes the synapses (makes 

them stronger or weaker) in order to maximize the global reward. Finally, in the case 

of  MSTDPET, the eligibility parameter keeps the network to have the previous trend 

until the learning comes and this provides the better performance in case of  learning 

delay.   

 

3.5 Implementations 

 

All the implementations of the above sections in chapter 3 are presented  in the 

appendix. The implementation includes the implementation of the single compartment 

LIF with total partial reset, the implementation of single compartment LIF with partial 

somatic reset and the implementation of the two compartments LIF. In addition, the 

implementation includes the implementation of the three networks used for 

comparison in this thesis (one with single compartment LIF with total somatic reset as 

node, one with single compartment LIF with partial somatic reset as node and one 

with two compartment LIF as node) and the learning approach that is used for the 

experiments. 
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Chapter 4 (Results & Discussion) 
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4.1.2.3 ISI distribution histograms and Autocorrelograms 

4.1.2.3.1 ISI distribution Histogram  

4.1.2.3.2. Autocorrelation 

4.1.2.3.3 Poisson-type firing 

4.2. Does high firing irregularity enhance learning produced by a two 

compartment model? 
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4.2.1.1 Training Parameters.  

4.2.2. Results 

4.2.3 Understanding the reasons of better performance with models that can 

produce high firing irregularity. 

4.2.4 Why the two compartment LIF performs better?   
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4.1 Two compartment model: Can it produce high firing irregularity  at high 

rates? 

 

As mentioned in the introduction, for the purposes of this thesis the first step was 

to test whether a two compartment model of an LIF neuron can fire irregularly at high 

rates as the model suggested by  Bugmann, Christodoulou & Taylor [10] and 

Christodoulou & Bugmann  [11]. 

 As mentioned in the previous chapter the two point model was based on the 

model used by Lansky and Rodrigues [3] and Bressloff [4]. Two interconnected 

compartments (dendritic and somatic) where the input is present only in the dendritic 

compartment and the reset mechanism is used only at the membrane zone.  For 

comparison purposes the model used by Bugmann, Christodoulou & Taylor [10] and 

Christodoulou & Bugmann [11] (LIF with partial somatic reset) was also implemented 

by this thesis. 
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4.1.1 Parameters of the models 

 

 The table below shows the parameters of the model that was used for the 

results presented in section 4.1.2. 

 

Parameter’s LIF with partial somatic  

reset 

Two compartment LIF 

 

Vth (Threshold) 

 

15 mV 

 

15 mV 

 

Vreset (Resting potential) 

 

0 mV 

 

0 mV 

 

Trefr (Refractory period) 

 

2 ms 

 

2 ms 

 

Tm  (Membrane time 

constant)  = Cm(Membrane 

capacitor)*Rm (Membrane 

resistance) 

 

20 ms 

 

2 ms 

 

Td  (Dendrite time constant) 

= Cm(Dendrite 

capacitor)*Rm (Dendrite 

resistance) 

 

- 

 

15 ms 

 

a (reset parameter) 

 

0.91 

 

- 

 

rC (Junctional time constant) 

 

- 

 

2.5 ms 

 

Table 1 The model parameters that were used for the produce of the results in section 

4.1.2. 
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 It must be noted that the difference in the time constant parameters of the two 

compartment model is due to the difference in the way it is modelled and the 

dependency between the two compartments. The relatively small membrane time 

constant, is due to the fact that the membrane potential is dependent on the dendritic 

potential. More specifically, when a spike arrives at the input, both the dendritic and 

the membrane potentials are increased. However, during the decay period towards rest, 

the membrane continues to be affected by the depolarisation of the dendritic 

compartment, making its leak rate much slower than expected by the small membrane 

leak time constant. This leads to a much larger effective membrane leak time constant. 

 

4.1.2 Model comparison and Discussion 

 

In this section, the comparison of the two models (i.e, the two compartment 

LIF and LIF with partial reset) will be presented in order to prove that the two 

compartment LIF model can produce the same high firing irregularity at high rates, as 

in the case of the LIF with somatic partial reset used by Bugmann, Christodoulou & 

Taylor [10] and Christodoulou & Bugmann [11]. 

 The comparison will be based on the results produced by the models as 

demonstrated in the following figures (9, 10,11,12,14): 

 

1. Two graphs where the evolution of the potential of each model (for the LIF 

with somatic reset the membrane potential and for the two compartment LIF, 

the dendritic and the membrane potential) is demonstrated (Figures 9 and 10). 

2. Two graphs which demonstrate the output spike trains for each model on 

100Hz firing rate (Figure 11). 
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3. Two interspike interval histograms (one for each model - Figure 12). 

4. Two autocorellograms (one for each model- Figure 14). 

 

4.1.2.1 Potentials of the models 

 

In this section, the two model potentials will be presented for comparison in 

order to understand the difference in the evolution of their potentials and the behavior 

of each model.   

 

 

 

Figure 9  Simulation of the model potential (membrane) for LIF model with partial 

somatic reset. See section 4.1.1 for the parameters that are being used for this 

simulation 
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As shown in figure 9 the potential of the model is increasing ,as soon as there 

is incoming input to the system,  until it reaches the threshold. At this point the model 

after firing is not reset to the reset value of the model 0mV but at 13.65mV (Vth * a, 

where a in the reset parameter) [yellow line].   

 

 

 

 

Figure 10 Simulation of the model potential (dendritic-membrane) for two 

compartment LIF model.  See section 4.1.1 for the parameters that are being used for 

this simulation 

 

As shown in figure 10 the model potentials (dendritic-membrane) are 

increasing as soon as there is incoming input to the system. There is dependence 

between them (dendritic potential and membrane potential) due to the coupling 

between them as mentioned in section 3.2. The figure shows that the dependence is 

quite noticeable when the membrane potential reaches the threshold where the reset 
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mechanism is applied only in the membrane potential (as mentioned in section 3.2) 

and the dendritic potential is not resetting. On the following millisecond the dendritic 

potential pulls the membrane potential up and the membrane potentials pulls down the 

dendritic potential at the same time.   

 

4.1.2.2 Output Spike trains 

 

In this section, the output spike trains of each model will be compared in order 

to test whether the two compartment LIF model has the similar behavior with the LIF 

with somatic partial reset. 

 

 

Figure 11 Output spike train of each model (First: LIF with partial somatic reset. 

Second: Two compartment LIF).  See section 4.1.1 for the parameters used for this 

simulation. The current spike trains were taken when both simulations fired around 

80-90Hz rate. 
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As shown in figure 11, both models have the similar behavior. More 

specifically, although both models fire at high rates they have no regular firing 

behavior and this can be observed from the figure since the spikes in both models 

have variable interspike intervals between them. 

 

4.1.2.3 ISI distribution histograms and Autocorrelograms 

 

Analysis of experimental data has been performed by Shadlen and Newsome   

[29] who plotted the experimental ISI histogram distribution (recorded from the area 

MT of an alert monkey, see Figures 1C in [29]) which can be fitted to an exponential 

probability density function, pointing to an underlying generating process of Poisson 

type. In this chapter an  ISI distribution histogram and an Autocorrelogram for each 

model will be presented in order to prove that both models have Poisson-type firing 

based on Tuckwell  [30] where poisson-type firing is verified if the interspike 

intervals are both expotentialy distributed (shown by ISI distribution histogram) and 

independent (shown by autocorrelogram).   

 In addition in both graphs (ISI  distribution histogram and Autocorrelogram), 

the coefficient of variation is mentioned. The coefficient of variation (CV) is defined 

as the ratio of the standard deviation σ to the mean μ (mean inter spike interval).  The 

standard deviation of an exponential distribution is equal to its mean, therefore its 

coefficient of variation is equal to 1. Therefore, distributions with CV << 1 are 

considered to be of low variance, while those with CV >> 1 are considered to be of 

high variance. As already mentioned the coefficient of variation of an exponential 

distribution is equal to 1, therefore the CV can be considered as a measure of spike 
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train irregularity defined as the standard deviation divided by the mean interspike 

interval. 

 

4.1.2.3.1 ISI distribution Histogram 

 

The distribution ISI histogram demonstrates the distribution of the observed 

times between the spikes collected in „bins‟ of fixed width. Immediately after a spike a 

neuron has an absolute refractory period in which it is unable to fire another spike, so 

the first few bins of the histogram (in our models the corresponding bins for 2 ms- see 

refractory period in section 4.1.1)  will be empty. The distribution of inter-event times 

for a wholly random process fits a negative exponential distribution on ISI histogram. 

 

 

 

Figure 12 ISI distribution histogram for both models (1st : LIF with somatic partial 

reset at 100Hz firing rate, mean ISI  at 9.4ms and CV=0.7. 2nd : Two compartment 

LIF at 100Hz firing rate, mean ISI at 10.2ms and CV=0.72).  For the parameters see 

4.1.1. 
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As we can observe in Figure 13, in both models the distribution of interspike 

intervals fits a negative exponential distribution same with the distribution of a wholly 

random process. At this point both models prove that at high rates (100Hz) they can 

exhibit an exponential distribution in ISI histogram same with the one shown by 

Shadlen and Newsome   [29]. 

 

4.1.2.3.2 Autocorrelation 

  

 The mathematical representation of the degree of similarity between a given 

data set and a time delayed version of itself over sequential time intervals is called 

Autocorrelation. The difference between  autocorrelation and normal correlation is 

that in the case of the first the two different time series are the same time series that 

are being used twice (once in its original form and once lagged one or more time 

period) [31]. 

 

 

 

Figure 13 Autocorrelogram example. 
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  Autocorrelogram is a commonly used tool for checking independence in a 

dataset. This independence is ascertained by computing autocorrelations for data 

values at varying time lags. If the dataset is independent, such autocorrelations should 

be near zero for any and all time-lag separations. If the dataset is dependent, then one 

or more of the autocorrelations will be significantly non-zero. The limits where an 

autocorrelation will be near to zero are specified from the limit lines in Figure 13).  

 

 

Figure 14 Autocorrelogram for both model (1st : LIF with somatic partial reset at 

100Hz firing rate, mean ISI  at 9.4ms and CV=0.7. 2nd : Two compartment LIF at 

100Hz firing rate, mean ISI at 10.2ms and CV=0.72).  For the parameters see 4.1.1. 

 

Upper and Down limits on figure 13 define the confidence limits (95%) which 

are the acceptable limits for ISI independence of the curves. From Tuckwell [30] this 

is given by the equation ±1.96/√n where n is the number of the interspike intervals 

(n=500) for each autocorrelogram. See section 4.1.1 for the parameters that are being 

used for this simulation. 
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 As shown in figure 14, both models achieve the indepentance in firing activity 

since in both graphs all autocorrelations are between the limits specified to be the 

confidence limits for ISI independence as is shown by Tuckwell [30]. 

 

4.1.2.3.3 Poisson-type firing 

 

 With the results presented in the previous two sections (4.1.2.3.1-4.1.2.3.2) 

and  based on [30] we can claim that the two compartment LIF model can have a 

poisson type firing in high rates same as the LIF model with partial somatic reset. This 

is proven by the fact that the interspike intervals are exponentialy distributed (see 

section 4.1.2.3.1) and, at the same time, independent (see section 4.1.2.3.2).  In 

addition the captures presented in the previous section show a mean ISI at around 9-10 

ms and CV around 0.7-0.75 which are values that together with the above facts 

indicate that we are closed to spike train irregularity based on what is mentioned in 

section 4.1.2.3 about the CV. 
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4.2  Does high firing irregularity enhance learning produced by a two 

compartment model?  

 

As mentioned in the introduction, for the purposes of this thesis, the second step 

was to test whether the two compartment LIF model can he produce the results   of 

Christodoulou and Cleanthous [1] and Cleanthous and Christodoulou [2] in reward 

MSTDPET learning [5].  

In more detail, the model (two compartment LIF) has been tested in producing 

firing irregularity at high rates as the LIF with somatic partial reset model [10,11]. The 

comparison of the results of two models show that the two compartment LIF model is 

able to produce high firing irregularity at high rates.  

This model (two compartment LIF) was used as node in a neural network. This 

neural network was trained with reward MSTDPED [5]  and during the training the 

network was forced to fire irregularly in order to test whether similar results would be 

produced as in the case of Christodoulou and Cleanthous [1] and Cleanthous and 

Christodoulou [2] . 

 

4.2.1 Training of the network 

 

The network achieves learning through a process of rewarding and penalising 

according to the the output that it produces responding to a specific input. As in the 

case of Florian [5], here in order to train the network for XOR solving, the four input 

patterns were all presented in a random order in each learning epoch for 500ms. 

During the presentation, when the correct output was 1,  the network received a 

reward r=1 for each output spike that occured and 0 in all other cases. If the correct 
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output was 0, the network received a negative reward r=-1 (penalty) for each output 

spike and 0 in all other cases. The reward was awarded to the network during the time 

step immediately after the output spike. 50% of the input-hidden synapse were 

randomly selected to be inhibitory while the rest of them were excitatory. The synaptic 

weights were hard bounded between 0 and 5 mV (for excitatory synapses) and 

between -5 mV and 0 (for inhibitory synapses). In the case of the network of two 

compartment LIF neurons the bounds were hard bounded between 0 and 1 mV (for 

excitatory synapses) and between -1 mV and 0 (for inhibitory synapses).  The initial 

weights for the synapse were generated randomly within the specified bounds. The 

experiment took 200 learning epochs. If the network at the end of an experiment 

presented output firing rate for pattern {1,1} smaller that the firing rate for input 

patterns {0,1} and {1,0}, the network was considered to have learned the XOR 

function.  The output firing rate of input pattern {0,0} was always 0 since as we 

mention in section 3.2 binary input “0” was encoded by the absence of spiking. 
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4.2.1.1 Training Parameters 

 

The training parameters used in producing the results, shown in the next 

section (4.2.2,) are the same with the parameters that Florian used in [5] shown in 

table 2, with the only one that was different being the learning rate which was found 

empirically. Also the bounds in weights in the two compartment model are set to 

smaller values. The reason is that through testing the network showed that works 

better with these bounds. Although we chose to use the same parameters in order to 

achieve comparability between the networks of LIF with partial/total somatic reset 

and the network with the two compartment LIF, we should note that these were not 

identical since different weights have been used in each network.  The difference in 

weights could not be avoided since weights in each network functioned differently due 

to modelling differences. 

 

Parameters (see section 3.4 for 

explanation of the parameter below) 

Single compartment LIF with 

total/partial somatic reset 

Two compartment LIF  

 20 ms 20 ms 

 20 ms 20 ms 

 1 1 

 -1 -1 

 25ms 25ms 

 0.01 0.01 

 0.5 0.5 

Weight bounds -5mV to 0mV (for inhibitory 

synapses) ,0mV to 5mV (for excitatory 

synapses) 

-1mV to 0mV (for inhibitory 

synapses) ,0mV to 1mV  (for 

excitatory synapses) 

 

Table 2 Learning parameters for the experiments presented in section 4.2.2 
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4.2.2 Results 

 

In this section the results of the training of the three networks (LIF,LIF with 

somatic partial reset and two compartment LIF) with reward MSTDPET will be 

presented and compared in order to prove that a network which has nodes that fire 

irregularly can learn better than a network which has nodes that fire regularly. 

 

 

 

 

 

A) 
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B) 

 

C) 

 

 

Figure 15  Average firing rate of the output neuron after learning, for the four 

different XOR input patterns (A: LIF with total reset model. B: LIF with somatic 

partial reset model. C: Two compartment LIF) 
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 As shown in Figure 17 all three networks achieved learning but the results in 

LIF with partial somatic reset and two compartment LIF are better than the results of 

LIF with total reset. In more detail the network that consists of single compartment 

LIF with total partial reset suppressed the output firing rate for input patterns {1,1} 

8% of the average output firing rate for input patterns {0,1} and {1,0}. In case of the 

network that consists of single compartment LIF with partial somatic reset the 

network suppressed the output firing rate for input patterns {1,1} 40% of the average 

output firing rate for input patterns {0,1} and {1,0}. At last in case of network that 

consists of two compartment LIF  the network suppressed the output firing rate for 

input patterns {1,1} 52.72% of the average output firing rate for input patterns {0,1} 

and {1,0}. This is due to the high irregular firing that the LIF with partial somatic 

reset and two compartment LIF can produce which enabled the algorithm to perform 

more accurate correlations between pre-synaptic and postsynaptic spike timings and 

reinforcement signals. 
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4.2.3 Understanding the reasons of better performance with models that can 

produce high firing irregularity 

 

 As shown in the previous section the models that can fire irregularly at high 

rates (LIF with somatic partial reset and two compartment LIF) exhibit better 

performance in terms of learning. We believe as supported by Christodoulou and 

Cleanthous [1] and Cleanthous and Christodoulou [2] that this is due to the fact that  

high firing irregularity leads to more accurate correlation between pre-synaptic  and 

postsynaptic spike timings and reinforcement signals.  

 In more detail in the case of regular firing, two matching spike pairs are 

possible to be associated with opposite in sign reinforcement signals. This will 

confuse the directions of the plasticity for the current synapse.. In case of high firing 

irregularity this situation is prevented by weakening this possibility  [1,2]  

 The illustration of the dynamics of the variables used by reward-modulated 

STDP with eligibility trace showing the effects on the synaptic strength when spike 

trains are regular that is used in Cleanthous and Christodoulou [2] is also shown here 

(Fig 18) for better understanding how the regularity may destroy learning.  

 In Figure 18 (taken by Cleanthous and Christodoulou [2]) that shows the 

synaptic strength changes with time for two regular presynaptic and postsynaptic 

spike trains is shown. The problem is noticeable in this case if we see the synaptic 

strength which wavers around a given value until the reinforcement signal changes 

sign where it keeps waving around another value. The effect of any pre-post spike pair 

is cancelled by the next one during the time period where the constant reward/penalty 

is given to the network and the value of the synaptic strength remains up normally 
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constant. This destroys the learning since it causes the destruction of learning for this 

period of time [2]. 

 

   

    

Figure 16 [taken from [2]]  Effect of regularity in the value of the synaptic strength 

This figure is a modified version of the one presented in the original paper for the 

learning algorithm Florian [5] 
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 Furthermore, if we consider the whole period of learning, we can detect 

another wavering. The average change made in the strength of the synapse by the 

reward is cancelled when the penalty signal comes causing the average synaptic value 

to become equal to its starting value. In this case there is no learning. Although on the 

above case the reward scale is equal to the penalty scale which leads the synaptic 

strength to waver around its starting value, if the reward scale is not equal to the 

penalty scale the synaptic strength will wavers around a value different from its 

starting value and by having this wavering the learning will be degraded. In general, 

regularity impairs learning because it causes the value of the synaptic strength to have 

this wavering behavior [2]. 

 

4.2.4 Why the two compartment LIF performs better?   

 

As shown from the figures (in section 4.2.2) the result produced by the 

network which consisted of two compartment LIF nodes are better than the results 

produced be the network which consisted of LIF with partial  somatic reset nodes.  

Having in mind that both models are firing irregularly in high rates, what is the 

parameter that makes the difference? 

The better performance of the network of the two compartment model could be 

due to a variety of reasons. One can claim that the difference in weight bounds does 

not allow comparison due to the difference in experiment parameters. As mentioned in 

section 4.2.1.1, though,  this was unavoidable because of the different modelling type 

that caused the weights to work in differently in each network.         

   More experiments and tests are needed in order to investigate the phenomenon 

of better performance by the two compartment LIF model.  
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 Chapter 5 (Conclusion and Future work)  

 

  

5.1 Conclusion 

5.2 Future work 

  

 

5.1 Conclusion  

 

This thesis, by introducing a neural network consisting of two compartment leaky 

integrate-and-fire model as a neuron, investigated the claim of  Christodoulou and 

Cleanthous [1] and Cleanthous and Christodoulou [2] that “high firing irregularity 

enhances learning”. This was achieved by using two compartment LIF neuron 

modeling similar to the models used by Lansky and Rodriguez [3] and Bressloff [4]. 

After it was implemented, the model (two compartment LIF) was first tested in 

terms of producing high firing irregularity in high rates. For purposes of comparison 

in terms of producing high firing irregularity, the LIF model with partial somatic reset 

is also implemented as part of this thesis . As shown in the results the two 

compartment LIF model is able to produce high firing irregularity at high rates. 

The two compartment LIF was applied to a network as a node and the network 

was forced to fire in high rates. The comparison with the other two networks (the one 

with single compartment LIF with total somatic reset as a node and the one with the 

single compartment LIF with partial somatic reset as a node) showed that the 

networks that can fire irregularly in high rates (single compartment LIF with partial 
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somatic reset and two compartment LIF) perform better in solving the XOR problem. 

This verifies the claim of Christodoulou and Cleanthous [1] and Cleanthous and 

Christodoulou [2] with a different method. According to Christodoulou and 

Cleanthous [1] and Cleanthous and Christodoulou [2] the better performance is due to 

the fact that high firing irregularity leads to more accurate correlation between pre-

synaptic and post-synaptic spike timing and reinforcement signals 

Furthermore, it was observed that the network which consisted of two 

compartment LIF nodes had better results that the network which  consisted of LIF 

model with somatic partial reset as nodes. This cannot be easily explained because the 

different type of modeling sets limits in terms of comparison. Therefore, further 

investigation is needed in order to explore the reasons for the better performance by 

networks which consisted of two compartment LIF neurons. 

 

5.2 Future work 

 

A substantial part of this this thesis was dedicated to the implementation of all 

three models (single compartment  LIF with total somatic reset,  single compartment 

LIF with partial somatic reset and two compartment LIF) and to their corresponding 

networks in order to increase comparability and better inform the discussion for the 

result presented in chapter 4. The implementation of all three models leads to a variety 

of possibilities in terms of further investigation.  

In this thesis the verification of Christodoulous and Cleanthous‟ [1] and 

Cleanthous and Christodoulou‟s [2] claim was achieved by using reward modulated 

STDP with eligibility trace (MSTDPET) (Florian [5]) as learning. A possibility for 

further investigation could be the testing of the already implemented networks in a 
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different learning methods like reinforcement learning of Stochastic Synaptic 

Transmission used by Seung [15]. A different learning approach, will allow further 

testing of the claim that high firing irregularity enhances learning.  

 Another possibility could be the testing of the MSTDPET (Florian [5]) applied 

to the already implemented networks in solving different problems like character 

recognition problem where the network is required to recognize the letters of the 

alphabet according to their declared of nature traits. This, of course, will demand 

modifications of the current networks architecture in order to fit the chosen problem. 
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APPENDIX I 

Appendix I includes the source code for the single neuron investigation. This 

contains the modeling of leaky-integrated-and-fire neuron with total and partial 

somatic reset. It,also contains  the modeling of two compartment leaky-integrated-

and- fire model .  

Classes description: 

forGraph.class contains the methods used for drawing the graphs needed for 

investigation of a single neuron (i.e. , membrane potential, dendrite potential, output 

spiketrains, interspike interval distribution, autocorrelogram e.t.c) 

generalMethods.class contains the general methods used in the simulation 

(i.e., method for generate poison spiketrains, method for calculating the C.V or the 

interspike intervals,  method calculate the autocorrelation of an insterspike interval 

e.t.c)  

readFromFile.class contains the method that read the parameters for a .txt file 

(i.e., input current, membrane time constant, modeling type e.t.c)  

leakyIntegrateAndFire.class contains the simulation processing.    

 

Parameter.txt 

 

simulationTime: The simulation duration in ms 

Vrest: Rested potential in mV 

Vth: Threshold in mV 

Vreset: Reset value in mV 

Trefr: Refractory period in ms  

Tm: Membrane time constant in ms  
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Rm: Membrane resistance in ms 

Ie: Input current to the system in mV 

dt:  time step in ms 

t_interval: time interval in ms  

a: Reset parameter for partial reset  

reset:  the reset mechanism that you want to use(total/partia) 

modelL:  the modeling type (single-point/two-point) 

dTm: dendrite time constant in ms 

dRm: dendrite resistance in ms 

rC: junctional time constanct in ms 

inputSpikeTrainSampleNum: sample number for input spike train 

inputSpikeTrainRateStart : starting rate in hz  

inputSpikeTrainRateEnd: ending rate in hz  

showGeneralGraphs: choose if you want to see the general graphs  (yes/no) 

showInputOutputGraph: choose if you want to see the input output function graph  

(yes/no) 

showCvGraph: choose if you want to see the C.V graph  (yes/no) 

showInputSpikeTrain: choose if you want to see the input spiketrain graph  (yes/no)  

showModelPotential: choose if you want to see the model potential graph  (yes/no) 

ShowSpikeTrain: choose if you want to see the output spiketrain graph  (yes/no)  

ShowIsi: choose if you want to see the isi distribution graph  (yes/no)   

ShowMembranPotential: choose if you want to see the membrane potential graph  

(yes/no)   

ShowDedriticPotential: choose if you want to see the dendrite potentila graph  

(yes/no)   
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ShowAutocorrelationGraph: choose if you want to see the autocorrelation graph  

(yes/no)   

IsiHistogramBinSize: choose the bin size for interspike interval distribution.   

 

Executing the simulation: 

 

In order to run the simulation,  java is needed. With java the only thing to be 

done is to enter the folder of the coding in command prompt and execute the 

following command : 

Javac *.java 

After this set the parameters to be used in the simulation in parameter.txt file 

and then execute the following command: 

Java leakyIntegrateAndFire  

It must be mentioned that for the creation of the general graphs needed for this 

simulation the jFreeChart library is needed. The corresponding library is included in 

the folder of the corresponding coding.  

The source code of the classes described is being shown in the rest of the 

appendix I. 
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forgraph.java 
 

 

 

import java.awt.Image; 

import org.jfree.chart.ChartFactory; 

import org.jfree.chart.ChartFrame; 

import org.jfree.chart.JFreeChart; 

import org.jfree.chart.plot.PlotOrientation; 

import org.jfree.chart.plot.XYPlot; 

import org.jfree.data.xy.XYSeries; 

import org.jfree.data.xy.XYSeriesCollection; 

 

 

public class forGraph { 

  

 // This method used to create the general charts for the 

simulation  

 public  void createGeneralChart (XYSeries data,XYSeries 

dendrite,XYSeries thresh,XYSeries spiketrain,XYSeries isi,XYSeries 

autocorrelogram,XYSeries autoUp,XYSeries autoDown){ 

   

   

  //Create instance of generalMethods class   

  generalMethods meth =new generalMethods(); 

   

  //Create instance of leakyIntegrateAndFire class  

  leakyIntegrateAndFire lif=new leakyIntegrateAndFire(); 

   

  Image image = null; 

  Image imageBack = null; 

   

  //Create dataset collection for graph 

  XYSeriesCollection dataset = new XYSeriesCollection(); 

  //Add the threshold data to the dataset collection 

  dataset.addSeries(thresh); 

  //Add the membrane potential data to the dataset 

collection 

  dataset.addSeries(data); 

  //Add the dendrite potential data to the dataset 

collection 

  dataset.addSeries(dendrite); 

   

  //Create dataset 2 collection for graph 

  XYSeriesCollection dataset2 = new XYSeriesCollection(); 

  //Add spiketrain data to dataset 2 collection 

  dataset2.addSeries(spiketrain); 

 

  //Create dataset 3 collection for graph 

  XYSeriesCollection dataset3 = new XYSeriesCollection(); 

  //Add interspike interval dataset to dataset 3 collection  

  dataset3.addSeries(isi); 

  //Set width automatically  

  dataset3.setAutoWidth(true); 

   

  //Create dataset 4 collection for graph  

  XYSeriesCollection dataset4 = new XYSeriesCollection(); 
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  //Add membrane potential to dataset 4 collection  

  dataset4.addSeries(data); 

 

  //Create dataset 5 collection for graph  

  XYSeriesCollection dataset5 = new XYSeriesCollection(); 

  //Add the dendrite potential to dataset 5 collection  

  dataset5.addSeries(dendrite); 

 

  //Create dataset 6 collection for graph  

  XYSeriesCollection dataset6 = new XYSeriesCollection(); 

  //Add autocorrelogram data to dataset 6 collection  

  dataset6.addSeries(autocorrelogram); 

  //Add the Up limit data to dataset 6 collection  

  dataset6.addSeries(autoUp); 

  //Add the Down limit data to dataset 6 collection  

  dataset6.addSeries(autoDown); 

  //Set width automatically   

  dataset6.setAutoWidth(true); 

 

  //Create frame 1-2-3-4-5-6 

  ChartFrame frame1 = null; 

  ChartFrame frame2= null; 

  ChartFrame frame3= null; 

  ChartFrame frame4= null; 

  ChartFrame frame5= null; 

  ChartFrame frame6= null; 

   

  //In case that the user choose to see the model potential 

graph in parameter.txt file 

  if(lif.showModelPotential.equalsIgnoreCase("yes")){ 

   //Create the chart  

   JFreeChart chart = 

ChartFactory.createXYLineChart("Model 

Potential","Time(ms)","Voltage(mV)", dataset, 

PlotOrientation.VERTICAL,true, true,false); 

   //Set background image 

   chart.setBackgroundImage(imageBack); 

   //set the chart to frame 1  

   frame1=new ChartFrame("Mem Potential",chart); 

 

   //Create x,y plot  

   XYPlot  plot = chart.getXYPlot(); 

   //Set the background image  

   plot.setBackgroundImage(image); 

   //Set the location of frame 1  

   frame1.setLocation(0,0); 

   //Set frame 1 visible  

   frame1.setVisible(true); 

   //Set the size of frame 1  

   frame1.setSize(400,400); 

  } 

   

  //In case that the user choose to see the output 

spiketrain graph in parameter.txt file 

  if(lif.ShowSpikeTrain.equalsIgnoreCase("yes")){  

   //Create the chart  

   JFreeChart chart2 = 

ChartFactory.createXYLineChart("Spike Train","Time(ms)","Spikes", 

dataset2, PlotOrientation.VERTICAL,true, true,false); 

   //Set background image 

   chart2.setBackgroundImage(imageBack); 
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   //set the chart to frame 2  

   frame2=new ChartFrame("Spike Train",chart2); 

    

   //Create x,y plot 

   XYPlot  plot2 = chart2.getXYPlot(); 

   //Set the background image  

   plot2.setBackgroundImage(image); 

   //Set the location of frame 2  

   frame2.setLocation(400,0); 

   //Set frame 2 visible  

   frame2.setVisible(true); 

   //Set the size of frame 2  

   frame2.setSize(400,400); 

  } 

  //In case that the user choose to see the interspike 

interval distribution graph in parameter.txt file 

  if(lif.ShowIsi.equalsIgnoreCase("yes")){  

   //Create the chart  

   JFreeChart chart3 = 

ChartFactory.createHistogram("ISI Histogram","Time(ms)","Frequency", 

dataset3, PlotOrientation.VERTICAL,true, true,false); 

   //Set background image 

   chart3.setBackgroundImage(imageBack); 

   //set the chart to frame 3  

   frame3=new ChartFrame("isi",chart3); 

 

   //Create x,y plot 

   XYPlot  plot3 = chart3.getXYPlot(); 

   //Set the background image  

   plot3.setBackgroundImage(image); 

   //Set the location of frame 3  

   frame3.setLocation(800,0); 

   //Set frame 3 visible  

   frame3.setVisible(true); 

   //Set the size of frame 3 

   frame3.setSize(400,400); 

  } 

  //In case that the user choose to see the membrane 

potential graph in parameter.txt file 

  if(lif.ShowMembranPotential.equalsIgnoreCase("yes")){ 

   //Create the chart  

   JFreeChart chart4 = 

ChartFactory.createXYLineChart("Membrane 

Potential","Time(ms)","Voltage(mV)", dataset4, 

PlotOrientation.VERTICAL,true, true,false); 

   //Set background image 

   chart4.setBackgroundImage(imageBack); 

   //set the chart to frame 4  

   frame4=new ChartFrame("Membrane Potential",chart4); 

 

   //Create x,y plot 

   XYPlot  plot4 = chart4.getXYPlot(); 

   //Set the background image  

   plot4.setBackgroundImage(image); 

   //Set the location of frame 4  

   frame4.setLocation(0,400); 

   //Set frame 4 visible  

   frame4.setVisible(true); 

   //Set the size of frame 4 

   frame4.setSize(400,400); 

  } 
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  //In case that the user choose to see the dedritic 

potential graph in parameter.txt file 

  if(lif.ShowDedriticPotential.equalsIgnoreCase("yes")){

  

   //Create the chart  

   JFreeChart chart5 = 

ChartFactory.createXYLineChart("Dendritic 

Potential","Time(ms)","Voltage(mV)", dataset5, 

PlotOrientation.VERTICAL,true, true,false); 

   //Set background image 

   chart5.setBackgroundImage(imageBack); 

   //set the chart to frame 4  

   frame5=new ChartFrame("Dendritic 

Potential",chart5); 

 

   //Create x,y plot 

   XYPlot  plot5 = chart5.getXYPlot(); 

   //Set the background image 

   plot5.setBackgroundImage(image); 

   //Set the location of frame 5  

   frame5.setLocation(400,400); 

   //Set frame 5 visible  

   frame5.setVisible(true); 

   //Set the size of frame 5 

   frame5.setSize(400,400); 

  } 

   

  //In case that the user choose to see the Autocorrelagram 

in parameter.txt file 

  if(lif.ShowAutocorrelationGraph.equalsIgnoreCase("yes")){ 

   //Create the chart  

   JFreeChart chart6 = 

ChartFactory.createHistogram("Autocorrelogram","Lag","Autocorrelation

", dataset6, PlotOrientation.VERTICAL,true, true,false); 

   //Set background image 

   chart6.setBackgroundImage(imageBack); 

   //set the chart to frame 6  

   frame6=new ChartFrame("Autocorrelogram",chart6); 

 

   //Create x,y plot 

   XYPlot  plot6 = chart6.getXYPlot(); 

   //Set the background image 

   plot6.setBackgroundImage(image); 

   //Set the location of frame 6  

   frame6.setLocation(800,400); 

   //Set frame 6 visible 

   frame6.setVisible(true); 

   //Set the size of frame 6 

   frame6.setSize(400,400); 

  } 

   

  //wait for anykey to continue 

  meth.getCh(); 

  //Dispose frames 1-2-3-4-5-6 

  if(frame1!=null) 

   frame1.dispose(); 

  if(frame2!=null) 

   frame2.dispose(); 

  if(frame3!=null) 

   frame3.dispose(); 

  if(frame4!=null) 
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   frame4.dispose(); 

  if(frame5!=null) 

   frame5.dispose(); 

  if(frame6!=null) 

   frame6.dispose(); 

   

  //Clear the dataset 1-2-3-4-5-6 

  dataset.removeAllSeries(); 

  dataset2.removeAllSeries(); 

  dataset3.removeAllSeries(); 

  dataset4.removeAllSeries(); 

  dataset5.removeAllSeries(); 

  dataset6.removeAllSeries(); 

  } 

  

 //This method is used for the combine charts like C.V chart  

 public  void createCombineChart (XYSeries data,XYSeries 

data2,String title,String xAxis,String yAxis,int positionX,int 

positionY,String Type){ 

  //Create instance of generalMethods class   

  generalMethods meth =new generalMethods(); 

   

  Image image = null; 

  Image imageBack = null; 

   

  //Create dataset collection for graph 

  XYSeriesCollection dataset = new XYSeriesCollection(); 

  //Add data to dataset collection  

  dataset.addSeries(data); 

  //Add data2 to dataset collection  

  dataset.addSeries(data2); 

  //Set width automatical 

  dataset.setAutoWidth(true); 

  //In case that the type parameter was "train" 

  if(Type.equalsIgnoreCase("train")){ 

   //Create the chart  

   JFreeChart chart = 

ChartFactory.createXYLineChart(title,xAxis,yAxis, dataset, 

PlotOrientation.VERTICAL,true, true,false); 

   //Set background image 

   chart.setBackgroundImage(image); 

   //set the chart to frame   

   ChartFrame frame=new ChartFrame(title,chart); 

    

   //Create x,y plot 

   XYPlot  plot = chart.getXYPlot(); 

   //Set the background image 

   plot.setBackgroundImage(image); 

   //Set the location of frame 

   frame.setLocation(positionX,positionY); 

   //Show frame 

   frame.show(); 

   //Set the size of frame  

   frame.setSize(400,400); 

    

   //wait for anykey to continue 

   meth.getCh(); 

   //Dispose frame 

   frame.dispose(); 

  }//In case that the type parameter was "scat" 

  else if(Type.equalsIgnoreCase("scat")){ 
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   //Create the chart  

   JFreeChart chart = 

ChartFactory.createScatterPlot(title,xAxis,yAxis, dataset, 

PlotOrientation.VERTICAL,true, true,false); 

   //Set background image 

   chart.setBackgroundImage(image); 

   //set the chart to frame 

   ChartFrame frame=new ChartFrame(title,chart); 

    

   //Create x,y plot 

   XYPlot  plot = chart.getXYPlot(); 

   //Set the background image 

   plot.setBackgroundImage(image); 

   //Set the location of frame 

   frame.setLocation(positionX,positionY); 

   //Show frame 

   frame.show(); 

   //Set the size of frame  

   frame.setSize(400,400); 

 

   //wait for anykey to continue 

   meth.getCh(); 

   //Dispose frame 

   frame.dispose(); 

  }  

 } 

  

 //This method is used for the single charts like input-output 

chart  

 public void createChart (boolean close,XYSeries data,String 

title,String xAxis,String yAxis,int positionX,int positionY,String 

Type){ 

   

  //Create instance of generalMethods class   

  generalMethods meth =new generalMethods(); 

   

  Image image = null; 

  Image imageBack = null; 

 

  //Create dataset collection for graph 

  XYSeriesCollection dataset = new XYSeriesCollection(); 

  //Add data to dataset collection 

  dataset.addSeries(data); 

  //Set width automatically 

  dataset.setAutoWidth(true); 

   

  //In case that the type parameter was "train" 

  if(Type.equalsIgnoreCase("train")){ 

   //Create the chart 

   JFreeChart chart = 

ChartFactory.createXYLineChart(title,xAxis,yAxis, dataset, 

PlotOrientation.VERTICAL,true, true,false); 

   //Set background image 

   chart.setBackgroundImage(image); 

   //set the chart to frame  

   ChartFrame frame=new ChartFrame(title,chart); 

    

   //Create x,y plot 

   XYPlot  plot = chart.getXYPlot(); 

   //Set the background image 

   plot.setBackgroundImage(image); 
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   //Set the location of frame 

   frame.setLocation(positionX,positionY); 

   //Show frame 

   frame.show(); 

   //Set the size of frame  

   frame.setSize(400,400); 

    

   //wait for anykey to continue 

   meth.getCh(); 

   //Dispose frame 

   frame.dispose(); 

    

  }//In case that the type parameter was "scat" 

  else if(Type.equalsIgnoreCase("scat")){ 

   //Create the chart 

   JFreeChart chart = 

ChartFactory.createScatterPlot(title,xAxis,yAxis, dataset, 

PlotOrientation.VERTICAL,true, true,false); 

   //Set background image 

   chart.setBackgroundImage(image); 

   //set the chart to frame  

   ChartFrame frame=new ChartFrame(title,chart); 

    

   //Create x,y plot 

   XYPlot  plot = chart.getXYPlot(); 

   //Set the background image 

   plot.setBackgroundImage(image); 

   //Set the location of frame 

   frame.setLocation(positionX,positionY); 

   //Show frame 

   frame.show(); 

   //Set the size of frame  

   frame.setSize(400,400); 

 

   //wait for anykey to continue 

   meth.getCh(); 

   //Dispose frame 

   frame.dispose(); 

  }  

 } 

   

} 
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generalMethods.java 
 

 

import java.awt.event.KeyEvent; 

import java.awt.event.KeyListener; 

import java.util.ArrayList; 

import java.util.Arrays; 

import javax.swing.JFrame; 

import javax.swing.JRootPane; 

 

 

 

public class generalMethods { 

 

 //Generate poison spike train 

 public  int generate(double rate,double timestep) { 

  double t = -Math.log(Math.random()) / rate; //new ISI in 

seconds 

  t = t * 1000; //ISI in ms 

  t = t / timestep; //ISI in simulation steps 

  return (int) Math.round(t); //round to nearest int 

 } 

 

 //For poison spike train  

 public  double[] generateSeries(int duration, double 

rate,double timestep) { 

  int timesteps = (int) (duration / timestep); 

  double[] series = new double[timesteps]; 

  Arrays.fill(series, 0); 

  int soFar = generate(rate,timestep); 

  while (soFar < timesteps) { 

   series[soFar] = 1; 

   soFar += generate(rate,timestep); 

  } 

  return series; 

   

 } 

  

 //Method for press anykey to continue  

 public  void getCh() {   

        final JFrame frame = new JFrame();   

        synchronized (frame) {   

            frame.setUndecorated(true);   

            

frame.getRootPane().setWindowDecorationStyle(JRootPane.FRAME);   

            frame.addKeyListener(new KeyListener() {   

                public void keyPressed(KeyEvent e) {   

                    synchronized (frame) {   

                        frame.setVisible(false);   

                        frame.dispose();   

                        frame.notify();   

                    }   

                }   

   

                public void keyReleased(KeyEvent e) {   

                }   

   

                public void keyTyped(KeyEvent e) {   

                }   

            });   
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            frame.setVisible(true);   

            try {   

                frame.wait();   

            } catch (InterruptedException e1) {   

            }   

        }   

    } 

  

 //Method for calculate the Coefficient of variation 

 public  double coefficientOfVariation(ArrayList<Double> isi){ 

  double cv=0; 

  double standardDeviacion=0; 

  double sum=0; 

  double sum2=0; 

  double average=0; 

   

  for(int i=0; i<isi.size(); i++){ 

   sum=sum+isi.get(i); 

  }  

   

  average=sum/isi.size(); 

   

  for(int i=0; i<isi.size(); i++){ 

   sum2=sum2+Math.pow((isi.get(i)-average),2); 

  } 

   

  standardDeviacion=Math.sqrt(sum2/(isi.size())); 

   

  cv=standardDeviacion/average; 

   

   

   

  return cv; 

 } 

  

 //Method for creation of interspike interval dataset  

 public  ArrayList<Double> interspikeInterval(int[] 

spiketrain,double timestep){ 

  ArrayList<Double> isi = new ArrayList<Double>(); 

  double countmSec=0; 

  for (int i=0; i<spiketrain.length; i++){ 

   if (spiketrain[i]==1){ 

    isi.add(countmSec); 

    countmSec=0; 

   } 

   countmSec=countmSec+timestep*1; 

  } 

  return isi; 

 } 

  

 //Method for creation of interspike interval distribution 

 public  int[] interspikeIntervalHistogram(ArrayList<Double> 

isi,double binSize){ 

  int[] count = new int[80]; 

  double range=0; 

  double lastposition=0; 

   

  for(int j=0; j<isi.size(); j++){ 

   range=0; 

   lastposition=0; 

   for(int i=0; i<80; i++){ 
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    range=lastposition; 

    if(range<=isi.get(j)&& 

isi.get(j)<=range+binSize) 

     count[i]=count[i]+1; 

    lastposition=range+binSize; 

   } 

  }   

  return count; 

 } 

  

 //Method for creation of input spiketrain  

 public double[] createInputSpikeTrain(int count,double rate, 

int duration,double timestep){ 

 double[] inputSpike = new double[(int) 

Math.rint(duration/timestep)]; 

 double[][] spike = new double[count][]; 

  

 for(int i=0; i<count; i++){ 

  spike[i]=generateSeries(duration, rate,timestep); 

 } 

  

 for (int i=0; i<(int) Math.rint(duration/timestep); i++){ 

  for(int j=0; j<count; j++){ 

   inputSpike[i]+=spike[j][i]; 

  } 

 } 

  

  

 return inputSpike; 

 } 

 

 //Method for creation autocorrelogram  

 public double[] autoCorrelation(int size,int lag,double[] isi){ 

     double[] R = new double [size+1]; 

     float sum=0; 

     double average; 

      

     for(int i=0; i<isi.length; i++){ 

   sum=(float) (sum+isi[i]); 

  }  

   

  average=sum/isi.length; 

      

   

   

     for (int i=0;i<lag;i++) { 

       

      sum=0; 

         for (int j=0;j<size-i;j++) { 

           

          sum+=(isi[j]-average)*(isi[j+i]-average); 

         } 

         R[i]=sum/(size-i); 

          

     } 

     return R; 

 } 

} 
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readFromFile.java 
 

 

import java.io.BufferedReader; 

import java.io.FileNotFoundException; 

import java.io.FileReader; 

import java.io.IOException; 

 

public class readFromFile { 

  

 //Method for read the parameters of the simulation from 

parameter.txt file  

 public void readFromFile(String filename) { 

  BufferedReader in = null; 

 

  try { 

   in = new BufferedReader(new FileReader(filename)); 

  } catch (FileNotFoundException e) { 

   e.printStackTrace(); 

  } 

  String line = ""; 

  String[] temp; 

   

   

  try { 

   line = in.readLine(); 

  } catch (IOException e) { 

   e.printStackTrace(); 

  } 

  temp = line.split(" "); 

 

 leakyIntegrateAndFire.simulationTime=Double.parseDouble(temp[1]

);//Read simulationTime 

   

  try { 

   line = in.readLine(); 

  } catch (IOException e) { 

   e.printStackTrace(); 

  } 

  temp = line.split(" "); 

 

 leakyIntegrateAndFire.Vrest=Integer.parseInt(temp[1]);//Read 

Vrest 

   

  try { 

   line = in.readLine(); 

  } catch (IOException e) { 

   e.printStackTrace(); 

  } 

  temp = line.split(" "); 

 

 leakyIntegrateAndFire.Vth=Integer.parseInt(temp[1]);//Read Vth 

   

  try { 

   line = in.readLine(); 

  } catch (IOException e) { 

   e.printStackTrace(); 

  } 
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  temp = line.split(" "); 

 

 leakyIntegrateAndFire.Vreset=Integer.parseInt(temp[1]);//Read  

Vreset 

   

  try { 

   line = in.readLine(); 

  } catch (IOException e) { 

   e.printStackTrace(); 

  } 

  temp = line.split(" "); 

 

 leakyIntegrateAndFire.Trefr=Double.parseDouble(temp[1]);//Read 

Trefr 

   

  try { 

   line = in.readLine(); 

  } catch (IOException e) { 

   e.printStackTrace(); 

  } 

  temp = line.split(" "); 

 

 leakyIntegrateAndFire.Tm=Double.parseDouble(temp[1]);//Read Tm 

   

  try { 

   line = in.readLine(); 

  } catch (IOException e) { 

   e.printStackTrace(); 

  } 

  temp = line.split(" "); 

  leakyIntegrateAndFire.Rm=Double.parseDouble(temp[1]); 

//Read Rm 

   

  try { 

   line = in.readLine(); 

  } catch (IOException e) { 

   e.printStackTrace(); 

  } 

  temp = line.split(" "); 

 

 leakyIntegrateAndFire.Ie=Double.parseDouble(temp[1]);//Read Ie 

   

  try { 

   line = in.readLine(); 

  } catch (IOException e) { 

   e.printStackTrace(); 

  } 

  temp = line.split(" "); 

 

 leakyIntegrateAndFire.dt=Double.parseDouble(temp[1]);//Read dt 

   

  try { 

   line = in.readLine(); 

  } catch (IOException e) { 

   e.printStackTrace(); 

  } 

  temp = line.split(" "); 

 

 leakyIntegrateAndFire.t_interval=Double.parseDouble(temp[1]);//

Read t_interval 
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  try { 

   line = in.readLine(); 

  } catch (IOException e) { 

   e.printStackTrace(); 

  } 

  temp = line.split(" "); 

 

 leakyIntegrateAndFire.a=Double.parseDouble(temp[1]);//Read a 

   

  try { 

   line = in.readLine(); 

  } catch (IOException e) { 

   e.printStackTrace(); 

  } 

  temp = line.split(" "); 

  leakyIntegrateAndFire.restetType=temp[1];//Read 

restetType 

   

  try { 

   line = in.readLine(); 

  } catch (IOException e) { 

   e.printStackTrace(); 

  } 

  temp = line.split(" "); 

  leakyIntegrateAndFire.modelType=temp[1];//Read modelType 

   

   

  try { 

   line = in.readLine(); 

  } catch (IOException e) { 

   e.printStackTrace(); 

  } 

  temp = line.split(" "); 

 

 leakyIntegrateAndFire.dTm=Double.parseDouble(temp[1]);//Read 

dTm 

   

  try { 

   line = in.readLine(); 

  } catch (IOException e) { 

   e.printStackTrace(); 

  } 

  temp = line.split(" "); 

 

 leakyIntegrateAndFire.dRm=Double.parseDouble(temp[1]);//Read 

dRm 

   

  try { 

   line = in.readLine(); 

  } catch (IOException e) { 

   e.printStackTrace(); 

  } 

  temp = line.split(" "); 

 

 leakyIntegrateAndFire.rC=Double.parseDouble(temp[1]);//Read rC 

   

   

  try { 

   line = in.readLine(); 

  } catch (IOException e) { 

   e.printStackTrace(); 
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  } 

  temp = line.split(" "); 

 

 leakyIntegrateAndFire.inputSpikeTrainSampleNum=Integer.parseInt

(temp[1]);//Read inputSpikeTrainSampleNum 

   

  try { 

   line = in.readLine(); 

  } catch (IOException e) { 

   e.printStackTrace(); 

  } 

  temp = line.split(" "); 

 

 leakyIntegrateAndFire.inputSpikeTrainRateStart=Double.parseDoub

le(temp[1]);//Read inputSpikeTrainRateStart 

   

  try { 

   line = in.readLine(); 

  } catch (IOException e) { 

   e.printStackTrace(); 

  } 

  temp = line.split(" "); 

 

 leakyIntegrateAndFire.inputSpikeTrainRateEnd=Double.parseDouble

(temp[1]);//Read inputSpikeTrainRateEnd 

   

  try { 

   line = in.readLine(); 

  } catch (IOException e) { 

   e.printStackTrace(); 

  } 

  temp = line.split(" "); 

  leakyIntegrateAndFire.showGeneralGraphs=temp[1];//Read 

showGeneralGraphs 

   

  try { 

   line = in.readLine(); 

  } catch (IOException e) { 

   e.printStackTrace(); 

  } 

  temp = line.split(" "); 

  leakyIntegrateAndFire.showInputOutputGraph=temp[1];//Read 

showInputOutputGraph 

   

  try { 

   line = in.readLine(); 

  } catch (IOException e) { 

   e.printStackTrace(); 

  } 

  temp = line.split(" "); 

  leakyIntegrateAndFire.showCvGraph=temp[1];//Read 

showCvGraph 

  

  try { 

   line = in.readLine(); 

  } catch (IOException e) { 

   e.printStackTrace(); 

  } 

  temp = line.split(" "); 

  leakyIntegrateAndFire.showInputSpikeTrain=temp[1];//Read 

showInputSpikeTrain 
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  try { 

   line = in.readLine(); 

  } catch (IOException e) { 

   e.printStackTrace(); 

  } 

  temp = line.split(" "); 

  leakyIntegrateAndFire.showModelPotential=temp[1];//Read 

showModelPotential 

   

  try { 

   line = in.readLine(); 

  } catch (IOException e) { 

   e.printStackTrace(); 

  } 

  temp = line.split(" "); 

  leakyIntegrateAndFire.ShowSpikeTrain=temp[1];//Read 

ShowSpikeTrain 

   

  try { 

   line = in.readLine(); 

  } catch (IOException e) { 

   e.printStackTrace(); 

  } 

  temp = line.split(" "); 

  leakyIntegrateAndFire.ShowIsi=temp[1];//Read ShowIsi 

   

  try { 

   line = in.readLine(); 

  } catch (IOException e) { 

   e.printStackTrace(); 

  } 

  temp = line.split(" "); 

  leakyIntegrateAndFire.ShowMembranPotential=temp[1];//Read 

ShowMembranPotential 

   

  try { 

   line = in.readLine(); 

  } catch (IOException e) { 

   e.printStackTrace(); 

  } 

  temp = line.split(" "); 

 

 leakyIntegrateAndFire.ShowDedriticPotential=temp[1];//Read 

ShowDedriticPotential 

   

  try { 

   line = in.readLine(); 

  } catch (IOException e) { 

   e.printStackTrace(); 

  } 

  temp = line.split(" "); 

 

 leakyIntegrateAndFire.ShowAutocorrelationGraph=temp[1];//Read 

ShowAutocorrelationGraph 

  try { 

   line = in.readLine(); 

  } catch (IOException e) { 

   e.printStackTrace(); 

  } 

  temp = line.split(" "); 
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 leakyIntegrateAndFire.binSize=Double.parseDouble(temp[1]);//Rea

d binSize 

 } 

} 
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leakyIntegrateAndFire.java 
 

 

import org.jfree.data.xy.XYSeries; 

import java.util.ArrayList; 

 

 

public class leakyIntegrateAndFire { 

 

 //Parameters for the simulation  

 static double simulationTime = 0; //Simulation time  

 static double Vrest = 0;// Resting potential 

 static double Vth = 0; // Threshold  

 static double Vreset = 0; //reset potential 

 static double Trefr = 0;// refractory periot  

 static double Tm = 0; // Membrane time constant  

 static double Rm = 0; // Mebrane resistance  

 static double dTm = 0; //Dendrite time constant 

 static double dRm = 0; //Dendrite resistance  

 static double rC=0; //Junctional time constant  

 static double Ie = 0; // Input current  

 static double dt = 0; // time step  

 static double a=0; // reset parameter  

 static double t_interval = 0; // time interval  

 static double binSize=0; //bin size for interspike interval 

distribution  

 static String restetType=""; // Reset type  

 static String modelType=""; // model type (two point or singe 

point) 

 static int inputSpikeTrainSampleNum=0; //input spiketrain 

sample number  

 static double inputSpikeTrainRateStart=0; //starting spiketrain 

rate  

 static double inputSpikeTrainRateEnd=0; //ending spiketrain 

rate  

 static String showGeneralGraphs=""; // Yes or No for showing 

general graphs  

 static String showInputOutputGraph="";// Yes or No for showing 

input output transfer  

 static String showCvGraph="";// Yes or No for showing CV graph  

 static String showInputSpikeTrain="";// Yes or No for showing 

input spiketrain  

 static String showModelPotential="";// Yes or No for showing 

model potential  

 static String ShowSpikeTrain="";// Yes or No for showing output 

spiketrain  

 static String ShowIsi="";// Yes or No for showing interspike 

interval distribution  

 static String ShowMembranPotential="";// Yes or No for showing 

mebrane potential  

 static String ShowDedriticPotential="";// Yes or No for showing 

dedrite potential  

 static String ShowAutocorrelationGraph="";// Yes or No for 

showing autocorellogram  

 

 public static void main(String[] args){ 

   

  //instance to generalMethod class  
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  generalMethods meth =new generalMethods(); 

  //instance to forGraph class  

  forGraph graph = new forGraph(); 

  //instance to readFromFile class  

  readFromFile rf = new readFromFile(); 

 

  //give the filename for parameters and read them  

  rf.readFromFile("parameters.txt"); 

 

  double t=t_interval; 

  double refractory=0; 

  double cv=0; 

  double sumForAverage=0.0;//For find the average intespike 

interval  

  double average=0.0;//For find the average intespike 

interval  

  double LIFcount = 0;//Global time for count the intervals 

of the whole simulation  

  int count=0; //For count the number of interval in order 

to puts spikes in spiketrain array. 

  double input;//For count the number of interval in order 

to check if there is a spike or not based on the input spike train 

  int Vcount=1;//For count the number of interval in order 

to record the membrane potential  

  double[] spikes = new double[(int) 

(Math.rint(simulationTime/t_interval))];//Array for input spike train  

  int[] spikeTrain= new int[(int) 

((Math.rint(simulationTime/t_interval))+1)];//Array for spike train  

  double[] V = new double[(int) 

((Math.rint(simulationTime/t_interval))+1)];//Array for membrane 

potential  

  double[] dV = new double[(int) 

((Math.rint(simulationTime/t_interval))+1)];//Array for dendrite 

potential 

  V[0]=0;//Initialize membrance potential to "0" 

  dV[0]=0;//Initialize dendrite potential to "0" 

    

  //Create the arraylist for graphs  

  ArrayList<Double> Vmem = new ArrayList<Double>(); 

  ArrayList<Double> Vdend = new ArrayList<Double>(); 

  ArrayList<Double> Time = new ArrayList<Double>(); 

  ArrayList<Double> Vthres = new ArrayList<Double>(); 

  ArrayList<Double> Spikes = new ArrayList<Double>(); 

  ArrayList<Double> interspikeInterval = new 

ArrayList<Double>(); 

  ArrayList<Integer> isiHistogramIntervals = new 

ArrayList<Integer>(); 

  ArrayList<Double> isiHistogramTime = new 

ArrayList<Double>(); 

  ArrayList<Double> coefficientOfVariation = new 

ArrayList<Double>(); 

  ArrayList<Double> meanISI = new ArrayList<Double>(); 

  ArrayList<Double> inputSpike = new ArrayList<Double>(); 

  ArrayList<Double> UpLimit = new ArrayList<Double>(); 

  ArrayList<Double> DownLimit = new ArrayList<Double>(); 

  ArrayList<Double> inputRate = new ArrayList<Double>(); 

  ArrayList<Double> outputRate = new ArrayList<Double>(); 

   

   

  //Create the series for graphs  

  XYSeries potential = new XYSeries("membrane Potential"); 
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  XYSeries dendritePotential = new XYSeries("dendritic 

Potential"); 

  XYSeries Threshold = new XYSeries("Vth"); 

  XYSeries spikeTrains = new XYSeries("Spike"); 

  XYSeries isiGraph = new XYSeries("ISI histogram"); 

  XYSeries CV = new XYSeries("CV over Mean ISI"); 

  XYSeries theoreticalCV=new XYSeries("Theoretical Line"); 

  XYSeries inputSpikeTrain = new XYSeries("Input Spike 

Train"); 

  XYSeries autocorrelogram = new 

XYSeries("Autocorrelogram"); 

  XYSeries autoUpLimit= new XYSeries("Uper Limit"); 

  XYSeries autoDownLimit= new XYSeries("Down Limit"); 

  XYSeries inputOutputFun=new XYSeries("Input - Output 

Rate"); 

 

  //Initial the output spiketrian to 0's 

  for(int i=1; i<(int) ((simulationTime/t_interval)); i++){ 

   spikeTrain[i]=0; 

  } 

 

  //End spike train  

 

  //Set starting rate  

  double rate=inputSpikeTrainRateStart; 

   

  //Start Simulation  

  while(LIFcount<(inputSpikeTrainRateEnd-

inputSpikeTrainRateStart)){ 

   //For spike count  

   int spikeCount=0; 

    

   //output rate of the simulation  

   double outputRateCal=0; 

 

   //Create the inputspiketrain 

   spikes =  

meth.createInputSpikeTrain(inputSpikeTrainSampleNum,rate,(int)simulat

ionTime,dt); 

 

   //Add input spiketrain to arraylist for input 

spiketrain graph 

   for(int i=0; i<spikes.length; i++){ 

    inputSpike.add(spikes[i]); 

 

   } 

    

   //Create the x,y series for input spiketrain graph  

   for (int x=0; x<inputSpike.size(); x++){    

    inputSpikeTrain.add(x,inputSpike.get(x)); 

 

   } 

    

   //Check if the user wants to see the input 

spiketrain graph  

   if(showInputSpikeTrain.equalsIgnoreCase("yes")) 

    //Show input spiketrain graph  

    graph.createChart(true,inputSpikeTrain, 

"Input Spike Train","Sim(Time)","Spike", 0, 0,"train"); 

 

   //initial the refractory time  



 

83 

 

   refractory=2; 

    

   //start simulation  

   while(t<(simulationTime)){ 

 

     

    //Creae the input to the system  

    if(spikes[count]>0){ 

     input=(Ie/dt)*spikes[count]; 

    }else{ 

     input=0; 

    } 

 

 

    //add time interval for refractory periot  

    refractory+=t_interval; 

 

 

    //If the model type is single point  

    if(modelType.equalsIgnoreCase("single-

point")){ 

     //Calculate the potential of membrane  

     V[Vcount]=V[Vcount-1] + ((-V[Vcount-

1]+Rm*input)/Tm)*dt;//membrane 

 

    } 

    //In the model type is two point  

    else if(modelType.equalsIgnoreCase("two-

point")){ 

     //Calculate the dedrite potential  

     dV[Vcount]=dV[Vcount-1]+((-dV[Vcount-

1]/dTm)+((V[Vcount-1]-dV[Vcount-1])/rC)+input)*dt; 

     //Calculate the membrane potential  

     V[Vcount]=V[Vcount-1]+((-V[Vcount-

1]/Tm)+((dV[Vcount]-V[Vcount-1])/rC))*dt; 

      

    } 

 

    //Check if the membrane potential pass the 

threshold  

    if(V[Vcount]>=Vth && refractory>=Trefr){ 

     spikeTrain[Vcount]=1;//Add spike to the 

spiketrain 

     V[Vcount]=0;//Simulate the spike for 

next if 

     refractory=0;//set refractory to 0 

     spikeCount++;//count spike 

    } 

 

    //in case of spike  

    if(V[Vcount]==0) 

     //if the reset used is total reset  

    

 if(restetType.equalsIgnoreCase("total")) 

      V[Vcount]=Vreset;//Reset the 

potential to "0" after the spike 

     //if the reset used is partia reset  

     else 

if(restetType.equalsIgnoreCase("partial")) 

      V[Vcount]=Vth*a;//Partial reset 
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    t+=t_interval;//count interval 

    Vmem.add(V[Vcount]);//Add the current 

potential for the graph  

    Vdend.add(dV[Vcount]);//Add the current 

potential of dendrite for graph 

    Time.add(t);//Add the current global 

simulation time for graph 

 

 

    count++;//count for input spike train 

    Vcount++;//count interval for membrane 

potential 

 

   } 

   //get the interspike intervals for the output 

spiketrain  

   interspikeInterval = 

meth.interspikeInterval(spikeTrain,t_interval);//get the interspike 

interval 

 

   //Calculate the C.V 

   if(interspikeInterval.size()==0){ 

    cv=0; 

    average=0; 

   } 

   else{ 

   

 cv=meth.coefficientOfVariation(interspikeInterval); 

 

 

    sumForAverage=0; 

 

    for(int i=0; i<interspikeInterval.size(); 

i++){ 

    

 sumForAverage=sumForAverage+interspikeInterval.get(i); 

    }  

 

   

 average=sumForAverage/interspikeInterval.size(); 

   } 

 

    

   double[] isiForACF=new 

double[interspikeInterval.size()];//array for interspike intervals 

for autocorrelation  

    

   //Create the autocorrelation graph  

   for(int i=0; i<interspikeInterval.size(); i++){ 

   

 isiForACF[i]=Float.parseFloat(interspikeInterval.get(i).toStrin

g()); 

   } 

 

   if(isiForACF.length>=20){ 

   

 isiForACF=meth.autoCorrelation(isiForACF.length,20, isiForACF); 

   } 

   else{ 



 

85 

 

   

 isiForACF=meth.autoCorrelation(isiForACF.length,isiForACF.lengt

h, isiForACF); 

   } 

 

   double max=isiForACF[0]; 

   for(int i=0; i<isiForACF.length; i++){ 

    if(max<isiForACF[i]) 

     max=isiForACF[i]; 

   } 

   for(int i=0; i<isiForACF.length; i++){ 

    isiForACF[i]=isiForACF[i]/max; 

   } 

 

   double 

Uplimit=(1.96/Math.sqrt(interspikeInterval.size())); 

   double Downlimit=(-

1.96/Math.sqrt(interspikeInterval.size())); 

    

    

   if(isiForACF.length>=20){ 

    for(int i=0; i<20; i++){ 

     UpLimit.add(Uplimit); 

     DownLimit.add(Downlimit); 

    } 

 

    for(int i=0; i<20; i++) 

    { 

     autocorrelogram.add(i,isiForACF[i]); 

     autoUpLimit.add(i,UpLimit.get(i)); 

     autoDownLimit.add(i,DownLimit.get(i)); 

    } 

   } 

   else 

   { 

    for(int i=0; i<isiForACF.length; i++){ 

     UpLimit.add(Uplimit); 

     DownLimit.add(Downlimit); 

    } 

 

    for(int i=0; i<isiForACF.length; i++) 

    { 

     autocorrelogram.add(i,isiForACF[i]); 

     autoUpLimit.add(i,UpLimit.get(i)); 

     autoDownLimit.add(i,DownLimit.get(i)); 

    }  

   } 

   //End autocorrelation graph creation  

    

   //Calculate the output firing rate  

            outputRateCal=(spikeCount/simulationTime)*1000;  

  

 

            //Print the C.V 

   System.out.print("\n " +"CV:"+ cv +" "); 

    

   if(cv!=0){ 

    //Add C.V to array for graph  

    coefficientOfVariation.add(cv); 

    //Pring the mean ISIS 



 

86 

 

    System.out.print("\n " +"ISI mean:"+ 

average+" "); 

    System.out.print("\n "); 

    //Add the mean ISI to array for graph  

    meanISI.add(average); 

   } 

   //Print the input and output firing rates  

   System.out.print(" Input rate : "+rate+ " Output 

rate: " + outputRateCal); 

   LIFcount=LIFcount+1; 

   Vcount=1; 

   t=t_interval; 

   count=0; 

   rate+=1; 

   //Add input rate to array for graph  

   inputRate.add(rate); 

   //Add output rate to array for graph  

   outputRate.add(outputRateCal); 

   //Add input and output rate to x,y plot for graph  

   inputOutputFun.add(rate, outputRateCal); 

    

   //Create isisHistogram graph 

   int[] isiHist = new int[80]; 

  

 isiHist=meth.interspikeIntervalHistogram(interspikeInterval,bin

Size); 

   double time = 0; 

   double lastOne=0.002; 

   for(int i=0; i<isiHist.length; i++){ 

 

    time=lastOne; 

    isiHistogramIntervals.add(isiHist[i]); 

    isiHistogramTime.add(time); 

    lastOne=lastOne+binSize; 

 

   } 

   //end isisHistogram graph 

 

 

   //Set threshold for graph  

   for(int x=0; x<Time.size(); x++){ 

    Vthres.add(Vth); 

   } 

 

   //create spike train for graph  

   for(int x=0; x<Time.size(); x++){ 

    if(spikeTrain[x]==1) 

     Spikes.add((double) 1); 

    else 

     Spikes.add((double) 0); 

   } 

   //End  

 

 

 

   //Set datasets  for general graph's  

   for (int x=0; x<Time.size(); x++){ 

   

 dendritePotential.add(Time.get(x),Vdend.get(x));//Dedrite 

potential  
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 potential.add(Time.get(x),Vmem.get(x));//membrane potential  

   

 Threshold.add(Time.get(x),Vthres.get(x));//threshold line  

   

 spikeTrains.add(Time.get(x),Spikes.get(x));//output spiketrains  

   } 

    

   //Set dataset for general graphs  

   for(int x=0; x<isiHistogramTime.size(); x++){ 

   

 isiGraph.add(isiHistogramTime.get(x),isiHistogramIntervals.get(

x));//interspike interval distribution  

   } 

 

     

   //show the general graphs in case that the 

corresponing parameter in parameter.txt file is yes  

   if(showGeneralGraphs.equalsIgnoreCase("yes")){ 

    meth.getCh(); 

   

 graph.createGeneralChart(potential,dendritePotential,Threshold,

spikeTrains,isiGraph,autocorrelogram,autoUpLimit,autoDownLimit); 

   } 

 

   //Clear the arrays  

   potential.clear(); 

   Threshold.clear(); 

   dendritePotential.clear(); 

   spikeTrains.clear(); 

   isiHistogramTime.clear(); 

   isiHistogramIntervals.clear(); 

   autocorrelogram.clear(); 

   autoUpLimit.clear(); 

   autoDownLimit.clear(); 

   inputSpikeTrain.clear(); 

   inputSpike.clear(); 

   interspikeInterval.clear(); 

 

   //Clear the graphs datasets 

   isiGraph.clear(); 

   Spikes.clear(); 

   Vthres.clear(); 

   Vmem.clear(); 

   Vdend.clear(); 

   Time.clear(); 

   UpLimit.clear(); 

   DownLimit.clear(); 

 

 

   //Set the input spike train to 0's again  

   for(int i=1; i<spikeTrain.length; i++){ 

    spikeTrain[i]=0; 

   } 

   //End 

  } 

   

  //create cv over meanIsi  graph  

  double theoC=0; 

  for (int x=0; x<meanISI.size(); x++){  
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 CV.add(meanISI.get(x),coefficientOfVariation.get(x));  

  } 

  for(float mISI=2; mISI<=25; mISI+=0.1){ 

   theoC=Math.sqrt((mISI-Trefr)/mISI); 

   theoreticalCV.add(mISI,theoC); 

  } 

  //show the input output function graph in case that the 

corresponing parameter in parameter.txt file is yes  

        if(showInputOutputGraph.equalsIgnoreCase("yes")) 

         graph.createChart(true,inputOutputFun, "Input-Output", 

"Input", "Output", 0, 0, "scat"); 

        //show the C.V graph in case that the corresponing parameter 

in parameter.txt file is yes  

        if(showCvGraph.equalsIgnoreCase("yes")) 

   graph.createCombineChart(CV,theoreticalCV,"CV over 

mean ISI","mean ISI (ms) ","CV(T)",0,0,"scat"); 

  System.out.print("\n Simulation End"); 

 } 

 

} 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

89 

 

APPENDIX II 

 

Appendix II includes the source code for neural network investigation.  This 

contains the neural network of single point leaky integrate and fire with total somatic 

reset model, the neural network consisted of single point leaky integrate and fire with 

partial  somatic reset model and the neural network consisted of two point leaky 

integrate and fire model. 

 

Classes description:  

 

forGraph.class contains the methods that are being used for drawing the 

graphs needed 

usefullMethods.class contains the general methods that are being used in the 

simulation 

getParameters.class contains the method that read the parameters for a .txt 

file (i.e., input current, membrane time constant, modeling type e.t.c) 

inputNeuron.class I the object class for the inputNeurons 

hiddenNeuron.class I the object class for the hiddenNeurons 

outputNeuron.class I the object class for the outputNeurons 

Simulation.class contains the simulation processing.  
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Parameter.txt 

 

durationOfSimulation: Simulation duration in ms 

timeStep : time step in ms 

inputLayerNumberOfNeurons: number of input layer neurons  

hiddenLayerNumberOfNeurons : number of hidden layer neurons 

outputLayerNumberOfNeurons : number of output layer neurons 

rate: rate in hz for input spiketrains 

dRm: dendrite resistance in ms 

dTm: dendrite time constant  in ms 

Rm: membrane resistant in ms    

Tm: membrane time constant in ms  

Vth: threshold in mV 

a: reset parameter  

Trefr : refractory period in ms 

Vreset: reset value in mV 

tPlus: P+ time constant in ms for STDP 

tMinus:  P- time constant in ms fot STDP 

aPlus: constant A+ for STDP 

aMinus: constant A- for STDP 

Tz: eligibility trace time constant for STDP 

b: discount factor of eligibility trace for STDP 

rC: junctional time constant  

gama: learning rate 

percentOfInhibitory : % for inhibitory synapse  
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model:   modeling type(single-point/two-point) 

reset : reset mechanism (partial/total) 

bounds:  weight bounds for STDP  

 

Executing the simulation: 

 

In order to run the simulation,  java is needed. With java the only thing to be 

done is to enter the folder of the coding in command prompt and execute the 

following command : 

Javac *.java 

After this set the parameters to be used in the simulation in parameter.txt file and then 

execute the following command: 

Java Simulation  

It must be mentioned that for the creation of the general graphs needed for this 

simulation the jFreeChart library is needed. The corresponding library is included in 

the folder of the corresponding coding.  

The source code of the classes described is being shown in the rest of the 

appendix II.  
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forGraph.java 
 

 

 

import org.jfree.chart.ChartFactory; 

import org.jfree.chart.ChartFrame; 

import org.jfree.chart.JFreeChart; 

import org.jfree.chart.plot.PlotOrientation; 

import org.jfree.data.category.DefaultCategoryDataset; 

 

public class forGraph { 

 

 

 //For creation of average firing rate graphs  

 public void createChart (double value00,double value01,double 

value10,double value11,String title,String xAxis,String yAxis,int 

positionX,int positionY){ 

  //Create the category dataset  

  DefaultCategoryDataset  dataset = new 

DefaultCategoryDataset (); 

 

  //Pass the values to the dataset 

  dataset.setValue(value00, "rate", "{0,0}"); 

  dataset.setValue(value01, "rate", "{0,1}"); 

  dataset.setValue(value10, "rate", "{1,0}"); 

  dataset.setValue(value11, "rate", "{1,1}"); 

 

  //Create the frame  

  ChartFrame frame1 = null; 

  //Create the chart  

  JFreeChart chart = 

ChartFactory.createBarChart(title,xAxis, yAxis,dataset, 

PlotOrientation.VERTICAL, false, true, false); 

 

  //pass the chart to frame  

  frame1=new ChartFrame("Average firing rate",chart); 

 

  //Set frame location  

  frame1.setLocation(0,0); 

  //Set visible  

  frame1.setVisible(true); 

  //Set frame size 

  frame1.setSize(400,400); 

 } 

} 
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getParameters.java 
 

 

import java.io.BufferedReader; 

import java.io.FileNotFoundException; 

import java.io.FileReader; 

import java.io.IOException; 

 

public class getParameters { 

  

 //Method to read the parameters  

 public void readFromFile(String filename) { 

   

  BufferedReader in = null; 

 

  try { 

   in = new BufferedReader(new FileReader(filename)); 

  } catch (FileNotFoundException e) { 

   e.printStackTrace(); 

  } 

  String line = ""; 

  String[] temp; 

   

   

  try { 

   line = in.readLine(); 

  } catch (IOException e) { 

   e.printStackTrace(); 

  } 

  temp = line.split(" "); 

 

 Simulation.durationOfSimulation=Integer.parseInt(temp[1]);//Rea

d simulation time  

 

  try { 

   line = in.readLine(); 

  } catch (IOException e) { 

   e.printStackTrace(); 

  } 

  temp = line.split(" "); 

  Simulation.timeStep=Double.parseDouble(temp[1]);//Read 

time step 

   

  try { 

   line = in.readLine(); 

  } catch (IOException e) { 

   e.printStackTrace(); 

  } 

  temp = line.split(" "); 

 

 Simulation.inputLayerNumberOfNeurons=Integer.parseInt(temp[1]);

//Read number of input layer neurons 

 

  try { 

   line = in.readLine(); 

  } catch (IOException e) { 

   e.printStackTrace(); 

  } 
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  temp = line.split(" "); 

 

 Simulation.hiddenLayerNumberOfNeurons=Integer.parseInt(temp[1])

;//Read number of hidden layer neurons  

 

  try { 

   line = in.readLine(); 

  } catch (IOException e) { 

   e.printStackTrace(); 

  } 

  temp = line.split(" "); 

 

 Simulation.outputLayerNumberOfNeurons=Integer.parseInt(temp[1])

;//Read number of output layer neurons  

 

  try { 

   line = in.readLine(); 

  } catch (IOException e) { 

   e.printStackTrace(); 

  } 

  temp = line.split(" "); 

  Simulation.rate=Integer.parseInt(temp[1]);//Read rate for 

the input spiketrains generation 

 

  try { 

   line = in.readLine(); 

  } catch (IOException e) { 

   e.printStackTrace(); 

  } 

  temp = line.split(" "); 

  Simulation.dRm=Double.parseDouble(temp[1]);//Read dedrite 

resistance  

   

  try { 

   line = in.readLine(); 

  } catch (IOException e) { 

   e.printStackTrace(); 

  } 

  temp = line.split(" "); 

  Simulation.dTm=Double.parseDouble(temp[1]);//Read dedrite 

time constant  

   

  try { 

   line = in.readLine(); 

  } catch (IOException e) { 

   e.printStackTrace(); 

  } 

  temp = line.split(" "); 

  Simulation.Rm=Double.parseDouble(temp[1]);//Read membrane 

resistance 

   

  try { 

   line = in.readLine(); 

  } catch (IOException e) { 

   e.printStackTrace(); 

  } 

  temp = line.split(" "); 

  Simulation.Tm=Double.parseDouble(temp[1]);//Read  

membrane time constant  
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  try { 

   line = in.readLine(); 

  } catch (IOException e) { 

   e.printStackTrace(); 

  } 

  temp = line.split(" "); 

  Simulation.Vth=Double.parseDouble(temp[1]);//Read 

threshold 

 

  try { 

   line = in.readLine(); 

  } catch (IOException e) { 

   e.printStackTrace(); 

  } 

  temp = line.split(" "); 

  Simulation.a=Double.parseDouble(temp[1]);//Read reset 

parameter 

   

   

  try { 

   line = in.readLine(); 

  } catch (IOException e) { 

   e.printStackTrace(); 

  } 

  temp = line.split(" "); 

  Simulation.Trefr=Double.parseDouble(temp[1]);//Read 

refractory   

   

  try { 

   line = in.readLine(); 

  } catch (IOException e) { 

   e.printStackTrace(); 

  } 

  temp = line.split(" "); 

  Simulation.Vreset=Double.parseDouble(temp[1]);//Read  

reset value  

   

  try { 

   line = in.readLine(); 

  } catch (IOException e) { 

   e.printStackTrace(); 

  } 

  temp = line.split(" "); 

  Simulation.tPlus=Double.parseDouble(temp[1]);//Read time 

constant for P+ (STDP) 

   

  try { 

   line = in.readLine(); 

  } catch (IOException e) { 

   e.printStackTrace(); 

  } 

  temp = line.split(" "); 

  Simulation.tMinus=Double.parseDouble(temp[1]);//Read time 

constant for P- (STDP) 

   

  try { 

   line = in.readLine(); 

  } catch (IOException e) { 

   e.printStackTrace(); 

  } 

  temp = line.split(" "); 



 

96 

 

  Simulation.aPlus=Integer.parseInt(temp[1]);//Read 

constant number (A+ STDP) 

   

  try { 

   line = in.readLine(); 

  } catch (IOException e) { 

   e.printStackTrace(); 

  } 

  temp = line.split(" "); 

  Simulation.aMinus=Integer.parseInt(temp[1]);//Read 

constant number (A- STDP) 

   

  try { 

   line = in.readLine(); 

  } catch (IOException e) { 

   e.printStackTrace(); 

  } 

  temp = line.split(" "); 

  Simulation.Tz=Integer.parseInt(temp[1]);//Read time 

constant for eligibility trace (STDP) 

   

   

  try { 

   line = in.readLine(); 

  } catch (IOException e) { 

   e.printStackTrace(); 

  } 

  temp = line.split(" "); 

  Simulation.b=Double.parseDouble(temp[1]);//Read discount 

factor (STDP) 

   

  try { 

   line = in.readLine(); 

  } catch (IOException e) { 

   e.printStackTrace(); 

  } 

  temp = line.split(" "); 

  Simulation.rC=Double.parseDouble(temp[1]);//Read 

junctional time constant  

   

  try { 

   line = in.readLine(); 

  } catch (IOException e) { 

   e.printStackTrace(); 

  } 

  temp = line.split(" "); 

  Simulation.gama=Double.parseDouble(temp[1]);//Read 

learning rate  

    

  try { 

   line = in.readLine(); 

  } catch (IOException e) { 

   e.printStackTrace(); 

  } 

  temp = line.split(" "); 

 

 Simulation.percentOfInhibitory=Integer.parseInt(temp[1]);//Read 

the % of inhibitory neurons  

   

  try { 

   line = in.readLine(); 
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  } catch (IOException e) { 

   e.printStackTrace(); 

  } 

  temp = line.split(" "); 

  Simulation.model=temp[1];//Read model type (single point 

or two point) 

   

  try { 

   line = in.readLine(); 

  } catch (IOException e) { 

   e.printStackTrace(); 

  } 

  temp = line.split(" "); 

  Simulation.reset=temp[1];//Read reset type  

   

  try { 

   line = in.readLine(); 

  } catch (IOException e) { 

   e.printStackTrace(); 

  } 

  temp = line.split(" "); 

  Simulation.bound=Double.parseDouble(temp[1]);//Read weith 

bounds (STDP)   

 

   

 } 

} 
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hiddenNeuron.java 
  

 

public class hiddenNeuron { 

 public double[] weights; // the weight of the neuron for each 

timeStep 

 public int spikeTrain; // The output Spike train of the neuron 

in each timeStep 

 public double dV; // The Dendrite potential  of the neuron in 

each timeStep  

 public double V; // The Membrane potential  of the neuron in 

each timeStep 

 public double input; // The input that the neuron takes for 

each timeStep 

 public double refractory; // For calculating the refractory 

period of the neuron  

 public double[] PijPlus;  //STDP Pij+ 

 public double[]PijMinus; //STDP Pij-  

 public double[] zita;//STDP ζij; 

 public double[] z;//STDP z 

  

 //Constractor 

 public hiddenNeuron(int fromNum,int toNum,int numberOfNeurons){ 

  this.weights=new double[toNum]; 

  this.spikeTrain=0; 

  this.dV=0; 

  this.V=0; 

  this.input=0; 

  this.refractory=0; 

  this.PijPlus=new double[numberOfNeurons]; 

  this.PijMinus=new double[numberOfNeurons]; 

  this.zita=new double[numberOfNeurons]; 

  this.z=new double[numberOfNeurons]; 

 } 

} 

inputNeuron.java 
 

 

public class inputNeuron { 

 public double[] weights; // the weight of the neuron for each 

timeStep 

 public int spikeTrain; // The output Spike train of the neuron 

in each timeStep 

 public double[] PijPlus;  //STDP Pij+ 

 public double[] PijMinus; //STDP Pij-  

 public double[]zita;//STDP ζij; 

 public double[] z;//STDP z 

  

 //Constractor 

 public inputNeuron(int fromNum,int toNum,int numberOfNeurons){ 

  this.weights=new double[toNum]; 

  this.spikeTrain=0; 

  this.PijPlus=new double[numberOfNeurons]; 

  this.PijMinus=new double[numberOfNeurons]; 

  this.zita=new double[numberOfNeurons]; 

  this.z=new double[numberOfNeurons]; 

 } 

} 
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outputNeuron.java 

 
 

public class outputNeuron { 

 public int spikeTrain; // The output Spike train of the neuron 

in each timeStep 

 public double dV; // The Dendrite potential  of the neuron in 

each timeStep  

 public double V; // The Membrane potential  of the neuron in 

each timeStep 

 public double input; // The input that the neuron takes for 

each timeStep 

 public double refractory; // For calculating the refractory 

period of the neuron  

  

 //Constractor 

 public outputNeuron(int fromNum,int toNum,int numberOfNeurons){ 

  this.spikeTrain=0; 

  this.dV=0; 

  this.V=0; 

  this.input=0; 

  this.refractory=0; 

 } 

} 
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usefullMethods.java 
 

 

import java.awt.event.KeyEvent; 

import java.awt.event.KeyListener; 

import java.util.Arrays; 

import java.util.Random; 

import javax.swing.JFrame; 

import javax.swing.JRootPane; 

 

 

public class usefullMethods { 

  

 //For poison spiketrain generations  

 public  int generate(double rate,double timestep) { 

  double t = -Math.log(Math.random()) / rate; //new ISI in 

seconds 

  t = t * 1000; //ISI in ms 

  t = t / timestep; //ISI in simulation steps 

  return (int) Math.round(t); //round to nearest int 

 } 

 

 //For poison spiketrain generation 

 public  int[] generateSeries(int duration, double rate,double 

timestep) { 

  int timesteps = (int) (duration / timestep); 

  int[] series = new int[timesteps]; 

  Arrays.fill(series, 0); 

  int soFar = generate(rate,timestep); 

  while (soFar < timesteps) { 

   series[soFar] = 1; 

   soFar += generate(rate,timestep); 

  } 

  return series; 

 

 } 

 //For generate 0's spike train (no spikes) 

 public  int[] generateZeroSeries(int duration,double timestep) 

{ 

  int timesteps = (int) (duration / timestep); 

  int[] series = new int[timesteps]; 

  Arrays.fill(series, 0); 

  return series; 

 

 } 

  

 //Create the input spiketrain  

 public int[][] createInputSpikeTrain(int count,int rate, int 

duration,double timestep,int firstBinary,int secondBinary){ 

  int[][] spike = new int[count][]; 

   

  for(int i=0; i<count; i++){ 

   spike[i]=generateZeroSeries(duration,timestep); 

  } 

   

  if(firstBinary==1 && secondBinary==1){ 

   for(int i=0; i<count; i++){ 
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    spike[i]=generateSeries(duration, 

rate,timestep); 

   } 

  } 

  else if(firstBinary==0 && secondBinary==0){ 

   for(int i=0; i<count; i++){ 

   

 spike[i]=generateZeroSeries(duration,timestep); 

   } 

    

  } 

  else if(firstBinary==1 && secondBinary==0){ 

   for(int i=0; i<count/2; i++){ 

    spike[i]=generateSeries(duration, 

rate,timestep); 

   } 

   for(int i=count/2; i<count; i++){ 

   

 spike[i]=generateZeroSeries(duration,timestep); 

   } 

  } 

  else if(firstBinary==0 && secondBinary==1){ 

   for(int i=0; i<count/2; i++){ 

   

 spike[i]=generateZeroSeries(duration,timestep); 

   } 

   for(int i=count/2; i<count; i++){ 

    spike[i]=generateSeries(duration, 

rate,timestep); 

   } 

 

  } 

  return spike; 

 } 

  

 //Wait for any key to continue  

 public  void getCh() {   

        final JFrame frame = new JFrame();   

        synchronized (frame) {   

            frame.setUndecorated(true);   

            

frame.getRootPane().setWindowDecorationStyle(JRootPane.FRAME);   

            frame.addKeyListener(new KeyListener() {   

                public void keyPressed(KeyEvent e) {   

                    synchronized (frame) {   

                        frame.setVisible(false);   

                        frame.dispose();   

                        frame.notify();   

                    }   

                }   

   

                public void keyReleased(KeyEvent e) {   

                }   

   

                public void keyTyped(KeyEvent e) {   

                }   

            });   

            frame.setVisible(true);   

            try {   

                frame.wait();   

            } catch (InterruptedException e1) {   
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            }   

        }   

    } 

  

 //For getting random numbers  

 public double nextDouble(Random r, int lower, int higher) {  

     int ran = r.nextInt(); 

     double x = (double)ran/Integer.MAX_VALUE * higher; 

     return x + lower; 

  } 

  

 //swap  

 private static void swap(int[] a, int i, int change) { 

  int helper = a[i]; 

  a[i] = a[change]; 

  a[change] = helper; 

 } 

  

 //Shuffle array method 

 public static void shuffleArray(int[] a) { 

  int n = a.length; 

  Random random = new Random(); 

  random.nextInt(); 

  for (int i = 0; i < n; i++) { 

   int change = i + random.nextInt(n - i); 

   swap(a, i, change); 

  } 

 } 

  

 //Swap neurons  

 private static void swapInputNeurons(inputNeuron[] a, int i, 

int change) { 

  inputNeuron helper = a[i]; 

  a[i] = a[change]; 

  a[change] = helper; 

 } 

  

 //Shuffle neurons  

 public static void shuffleInputNeurons(inputNeuron[] a) { 

  int n = a.length; 

  Random random = new Random(); 

  random.nextInt(); 

  for (int i = 0; i < n; i++) { 

   int change = i + random.nextInt(n - i); 

   swapInputNeurons(a, i, change); 

  } 

 } 

   

} 
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Simulation.java 
 

 

 

public class Simulation { 

 

 static int durationOfSimulation=0; //Simulation time  

 static double timeStep=0; //Time step  

 static int inputLayerNumberOfNeurons=0; // number of input 

layer neurons  

 static int hiddenLayerNumberOfNeurons=0; // number of hidden 

layer neurons  

 static int outputLayerNumberOfNeurons=0; // number of output 

layer neurons  

 static int rate=0; // rate  

 static double Ie=0; // Input to the system  

 static double dRm=0; // dedrite resistance  

 static double dTm=0; // dedrite timeconstant  

 static double Rm=0; // membrane resistance  

 static double Tm=0; // membrane timeconstant  

 static double Vth=0; // Threshold  

 static double Trefr=0; // refractory period  

 static double Vreset=0; // reset value  

 static double tPlus=0; // time constant of P+ (STDP)  

 static double tMinus=0; // time constant of P- (STDP) 

 static int aPlus=0; // constant value (A+ STDP) 

 static int aMinus=0; // constant value (A- STDP) 

 static int Tz=0;// eligibility trace time constant  

 static double b=0; // discount variable  

 static double gama=0; // learning rate  

 static int r=0; // reward signal   

 static double a=0; // reset parameters  

 static double rC=0; // junctional time constant  

 static int foundSpike=0; //Count spikes   

 static int percentOfInhibitory=0; //% of inhibitory neurons  

 static String model=""; // Model type (singe or two point)  

 static String reset=""; // reset type (partial or total)  

 static double bound=0; // weight bounds (STDP)  

 

 public static void main(String[] args){ 

 

  //Use get parameters to pass the values to simulation 

parameters  

  getParameters params = new getParameters(); 

  //instance of usefullmethod class  

  usefullMethods meth=new usefullMethods(); 

  //instance of forGraph class  

  forGraph graph=new forGraph(); 

 

  //read the parameters form parameter file name  

  params.readFromFile("parameters.txt"); 

 

 

  //spike train for each input pattern  

  int[][] inputSpikeTrain=new 

int[inputLayerNumberOfNeurons][(int) 

Math.rint(durationOfSimulation/timeStep)]; 
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  int[][] inputSpikeTrain00=new 

int[inputLayerNumberOfNeurons][(int) 

Math.rint(durationOfSimulation/timeStep)]; 

  int[][] inputSpikeTrain01=new 

int[inputLayerNumberOfNeurons][(int) 

Math.rint(durationOfSimulation/timeStep)]; 

  int[][] inputSpikeTrain10=new 

int[inputLayerNumberOfNeurons][(int) 

Math.rint(durationOfSimulation/timeStep)]; 

  int[][] inputSpikeTrain11=new 

int[inputLayerNumberOfNeurons][(int) 

Math.rint(durationOfSimulation/timeStep)]; 

 

 

  //THE NETWORK 

 

  //input Layer of the netWork 

  inputNeuron[] inputNeurons = new 

inputNeuron[inputLayerNumberOfNeurons]; 

  for(int i=0; i<inputLayerNumberOfNeurons; i++){ 

   inputNeurons[i]=new 

inputNeuron(inputLayerNumberOfNeurons,hiddenLayerNumberOfNeurons,inpu

tLayerNumberOfNeurons); 

  } 

  //hidden Layer of the netWork 

  hiddenNeuron[] hiddenNeurons = new 

hiddenNeuron[hiddenLayerNumberOfNeurons]; 

  for(int i=0; i<hiddenLayerNumberOfNeurons; i++){ 

   hiddenNeurons[i]=new 

hiddenNeuron(hiddenLayerNumberOfNeurons,outputLayerNumberOfNeurons,hi

ddenLayerNumberOfNeurons); 

  } 

  //output Layer of the netWork 

  outputNeuron[] outputNeurons = new 

outputNeuron[outputLayerNumberOfNeurons]; 

  for(int i=0; i<outputLayerNumberOfNeurons; i++){ 

   outputNeurons[i]=new 

outputNeuron(outputLayerNumberOfNeurons,2,outputLayerNumberOfNeurons)

; 

  } 

 

  //Dt 

  double dt=timeStep; 

  //Input current 

  double input=0; 

  //firing rate for patter 0,0 

  double rate00=0; 

  //firing rate for patter 0,1 

  double rate01=0; 

  //firing rate for patter 1,0 

  double rate10=0; 

  //firing rate for patter 1,1 

  double rate11=0; 

  //global reward for each epoch  

  int reward=0; 

 

 

  //create input set 

  int[][] inputData=new int[4][2];  

  inputData[0][0]=0; 

  inputData[0][1]=0; 
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  inputData[1][0]=0; 

  inputData[1][1]=1; 

  inputData[2][0]=1; 

  inputData[2][1]=0; 

  inputData[3][0]=1; 

  inputData[3][1]=1; 

  //End 

 

  double t=timeStep; 

 

  int[] list=new int[4]; 

  list[0]=0; 

  list[1]=1; 

  list[2]=2; 

  list[3]=3; 

 

 

  //Initialize the staring weight in random number between  

the bound  

  for(int i=0; i<inputLayerNumberOfNeurons-

(percentOfInhibitory*inputLayerNumberOfNeurons)/100; i++){ 

   for(int j=0; j<hiddenLayerNumberOfNeurons; j++){ 

    inputNeurons[i].weights[j]=(0 + 

(double)(Math.random()*bound)); 

   } 

  } 

  for(int i=inputLayerNumberOfNeurons-

(percentOfInhibitory*inputLayerNumberOfNeurons)/100; 

i<inputLayerNumberOfNeurons; i++){ 

   for(int j=0; j<hiddenLayerNumberOfNeurons; j++){ 

    inputNeurons[i].weights[j]=((0 + 

(double)(Math.random()*bound))*-1); 

   } 

  } 

 

  for(int i=0; i<hiddenLayerNumberOfNeurons; i++){ 

   for(int j=0; j<outputLayerNumberOfNeurons; j++){ 

    hiddenNeurons[i].weights[j]=(0 + 

(double)(Math.random()*bound)); 

   } 

  } 

  //End initialization of staring weights  

 

  //shuffle the input neurons  

  meth.shuffleInputNeurons(inputNeurons); 

 

  //create the spiketrains for each input pattern  

 

 inputSpikeTrain00=meth.createInputSpikeTrain(inputLayerNumberOf

Neurons, rate, durationOfSimulation, timeStep, 0,0); 

 

 inputSpikeTrain01=meth.createInputSpikeTrain(inputLayerNumberOf

Neurons, rate, durationOfSimulation, timeStep, 0,1); 

 

 inputSpikeTrain10=meth.createInputSpikeTrain(inputLayerNumberOf

Neurons, rate, durationOfSimulation, timeStep, 1,0); 

 

 inputSpikeTrain11=meth.createInputSpikeTrain(inputLayerNumberOf

Neurons, rate, durationOfSimulation, timeStep, 1,1); 
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  //Fix the system starting output firing rate 

  double Ie01=1; 

  //Set input spiketrain to be the pattern 0,1  

  inputSpikeTrain=inputSpikeTrain01; 

 

  //Found an input current to the system that force the 

network to start with firing rates within a values set  

  while(foundSpike>55 || foundSpike<45){ 

 

   //Check if the found spike is under 45 spikes for 

current input pattern  

   if(foundSpike<45) 

    //increase the input current  

    Ie01=Ie01+0.01; 

   //Check if the found spike is more than 55  

   else if (foundSpike>55) 

    //decrease  the input current  

    Ie01=Ie01-0.01; 

   foundSpike=0; 

 

   while(t<=durationOfSimulation){ 

 

    //Prepare the input multiply with the weights 

of the inputneurons  

    for(int i=0; i<hiddenLayerNumberOfNeurons; 

i++){ 

     hiddenNeurons[i].input=0; 

     for(int j=0; 

j<inputLayerNumberOfNeurons; j++){ 

     

 hiddenNeurons[i].input+=inputSpikeTrain[j][(int) 

Math.rint(t/timeStep)-1]*inputNeurons[j].weights[i]; 

     } 

    } 

 

    //Calculate the potentials at current 

timestep for hidden neurons 

    for(int i=0; i<hiddenLayerNumberOfNeurons; 

i++){ 

 

     //Set Starting potentials to "0" 

     if((int) Math.rint(t/timeStep)==1){ 

      hiddenNeurons[i].dV=0; 

      hiddenNeurons[i].V=0; 

     } 

     //End 

 

     hiddenNeurons[i].refractory+=timeStep; 

 

     //Check if there is a spike or not 

     if(hiddenNeurons[i].input>0 || 

hiddenNeurons[i].input<0 ){ 

     

 input=(hiddenNeurons[i].input*Ie01)/dt; 

     }else{ 

      input=0; 

     } 

     //End 

     //In case the user choose the single 

point modeling  
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     if(model.equalsIgnoreCase("single-

point")) 

     { //Calculate the membrane 

potential of the current hidden neuron  

     

 hiddenNeurons[i].V=hiddenNeurons[i].V+((-

hiddenNeurons[i].V+Rm*input)/Tm)*dt; 

 

     } 

     else if (model.equalsIgnoreCase("two-

point")){ 

      //Calculate the dedrite potential 

for the current hidden neuron  

     

 hiddenNeurons[i].dV=hiddenNeurons[i].dV+((-

hiddenNeurons[i].dV/dTm)+((hiddenNeurons[i].V-

hiddenNeurons[i].dV)/rC)+input)*dt; 

      //Calculate the membrane 

potential fo the current hidden neuron 

     

 hiddenNeurons[i].V=hiddenNeurons[i].V+((-

hiddenNeurons[i].V/Tm)+((hiddenNeurons[i].dV-

hiddenNeurons[i].V)/rC))*dt; 

 

     }//if the membrane potential pass the 

threshold  

     if(hiddenNeurons[i].V>=Vth && 

hiddenNeurons[i].refractory>Trefr){ 

      hiddenNeurons[i].spikeTrain=1; 

      //In case the user choose total 

reset  

     

 if(reset.equalsIgnoreCase("total")){ 

      

 hiddenNeurons[i].V=Vreset;//Reset the potential to "0" after 

the spike 

      }//In case the user choose 

parital reset  

      else if 

(reset.equalsIgnoreCase("partial")){ 

       hiddenNeurons[i].V=Vth*a; 

      }//Set the refractory time to 0  

      hiddenNeurons[i].refractory=0; 

 

     }else{hiddenNeurons[i].spikeTrain=0;} 

 

    } 

    //End 

 

    //Create the input to the output neuron 

include the multiplication with the weights 

    for(int i=0; i<outputLayerNumberOfNeurons; 

i++){ 

     outputNeurons[i].input=0; 

     for(int j=0; 

j<hiddenLayerNumberOfNeurons; j++){ 

     

 outputNeurons[i].input+=hiddenNeurons[j].spikeTrain*hiddenNeuro

ns[j].weights[i]; 

     } 

    } 
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    //End 

 

    //Calculate the potentials at current 

timestep for output neurons 

    for(int i=0; i<outputLayerNumberOfNeurons; 

i++){ 

     //set the starting potential to 0  

     if((int) Math.rint(t/timeStep)==1){ 

      outputNeurons[i].dV=0; 

      outputNeurons[i].V=0; 

     } 

     outputNeurons[i].refractory+=timeStep; 

 

     //Check if there is a spike or not 

     if(outputNeurons[i].input>0 || 

outputNeurons[i].input<0){ 

      //set the input to the system  

     

 input=(outputNeurons[i].input*Ie01)/dt; 

     }else{//no input to the system  

      input=0; 

     } 

     //End 

 

     //In case the user choose the single 

point modeling  

     if(model.equalsIgnoreCase("single-

point")) 

     { //Calculate the membrane 

potential of the current output neuron  

     

 outputNeurons[i].V=outputNeurons[i].V+((-

outputNeurons[i].V+Rm*input)/Tm)*dt; 

     }//In case the user choose the two 

point modeling  

     else if (model.equalsIgnoreCase("two-

point")){ 

      //Calculate the dedrite potential 

of the current output neuron  

     

 outputNeurons[i].dV=outputNeurons[i].dV+((-

outputNeurons[i].dV/dTm)+((outputNeurons[i].V-

outputNeurons[i].dV)/rC)+input)*dt; 

      //Calculate the membrane 

potential of the current output neuron  

     

 outputNeurons[i].V=outputNeurons[i].V+((-

outputNeurons[i].V/Tm)+((outputNeurons[i].dV-

outputNeurons[i].V)/rC))*dt; 

     } 

     //If the membrane potential pass the 

threshold  

     if(outputNeurons[i].V>=Vth && 

outputNeurons[i].refractory>Trefr){ 

      //Count the spike  

      foundSpike++; 

      //In case the user choose total 

reset  

     

 if(reset.equalsIgnoreCase("total")){ 
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 outputNeurons[i].V=Vreset;//Reset the potential to "0" after 

the spike 

      } 

      //In case the user choose partial 

reset  

      else if 

(reset.equalsIgnoreCase("partial")){ 

       outputNeurons[i].V=Vth*a; 

      } 

      //Set the refractory time to 0    

      outputNeurons[i].refractory=0; 

     } 

    } 

    //End 

    t+=timeStep; 

   } 

   t=timeStep; 

   //Print the output spikes number  

   System.out.println(foundSpike); 

  } 

  foundSpike=0; 

 

  double Ie10=1; 

  //Set input spiketrain to be the pattern 1,0  

  inputSpikeTrain=inputSpikeTrain10; 

  //Found an input current to the system that force the 

network to start with firing rates within a values set  

  while(foundSpike>55 || foundSpike<45){ 

   //Check if the found spike is under 45 spikes for 

current input pattern  

   if(foundSpike<45) 

    //increase the input current  

    Ie10=Ie10+0.01; 

   //Check if the found spike is more than 55  

   else if (foundSpike>55) 

    //decrease  the input current  

    Ie10=Ie10-0.01; 

   foundSpike=0; 

   while(t<=durationOfSimulation){ 

    //Prepare the input multiply with the weights 

of the inputneurons  

    for(int i=0; i<hiddenLayerNumberOfNeurons; 

i++){ 

     hiddenNeurons[i].input=0; 

     for(int j=0; 

j<inputLayerNumberOfNeurons; j++){ 

     

 hiddenNeurons[i].input+=inputSpikeTrain[j][(int) 

Math.rint(t/timeStep)-1]*inputNeurons[j].weights[i]; 

     } 

    } 

 

    //Calculate the potentials at current 

timestep for hidden neurons 

    for(int i=0; i<hiddenLayerNumberOfNeurons; 

i++){ 

 

     //Set Starting potentials to "0" 

     if((int) Math.rint(t/timeStep)==1){ 

      hiddenNeurons[i].dV=0; 
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      hiddenNeurons[i].V=0; 

     } 

     //End 

 

     hiddenNeurons[i].refractory+=timeStep; 

 

     //Check if there is a spike or not 

     if(hiddenNeurons[i].input>0 || 

hiddenNeurons[i].input<0 ){ 

     

 input=(hiddenNeurons[i].input*Ie10)/dt; 

     }else{ 

      input=0; 

     } 

     //End 

     //In case the user choose the single 

point modeling  

     if(model.equalsIgnoreCase("single-

point")) 

     { 

      //Calculate the membrane 

potential of the current hidden neuron  

     

 hiddenNeurons[i].V=hiddenNeurons[i].V+((-

hiddenNeurons[i].V+Rm*input)/Tm)*dt; 

     }//In case the user choose the two 

point modeling  

     else if (model.equalsIgnoreCase("two-

point")){ 

      //Calculate the dedrite potential 

for the current hidden neuron  

     

 hiddenNeurons[i].dV=hiddenNeurons[i].dV+((-

hiddenNeurons[i].dV/dTm)+((hiddenNeurons[i].V-

hiddenNeurons[i].dV)/rC)+input)*dt; 

      //Calculate the membrane 

potential for the current hidden neuron 

     

 hiddenNeurons[i].V=hiddenNeurons[i].V+((-

hiddenNeurons[i].V/Tm)+((hiddenNeurons[i].dV-

hiddenNeurons[i].V)/rC))*dt; 

     } 

     //if the membrane potential pass the 

threshold  

     if(hiddenNeurons[i].V>=Vth && 

hiddenNeurons[i].refractory>Trefr){ 

 

      hiddenNeurons[i].spikeTrain=1; 

      //In case the user choose total 

reset  

     

 if(reset.equalsIgnoreCase("total")){ 

      

 hiddenNeurons[i].V=Vreset;//Reset the potential to "0" after 

the spike 

      }//In case the user choose 

parital reset  

      else if 

(reset.equalsIgnoreCase("partial")){ 

       hiddenNeurons[i].V=Vth*a; 

      } 
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      //Set the refractory time to 0  

      hiddenNeurons[i].refractory=0; 

 

     }else{hiddenNeurons[i].spikeTrain=0;} 

 

    } 

    //End 

 

    //Create the input to the output neuron 

include the multiplication with the weights 

    for(int i=0; i<outputLayerNumberOfNeurons; 

i++){ 

     outputNeurons[i].input=0; 

     for(int j=0; 

j<hiddenLayerNumberOfNeurons; j++){ 

     

 outputNeurons[i].input+=hiddenNeurons[j].spikeTrain*hiddenNeuro

ns[j].weights[i]; 

     } 

    } 

    //End 

 

    //Calculate the potentials at current 

timestep for output neurons 

    for(int i=0; i<outputLayerNumberOfNeurons; 

i++){ 

 

     //set the starting potential to 0  

     if((int) Math.rint(t/timeStep)==1){ 

      outputNeurons[i].dV=0; 

      outputNeurons[i].V=0; 

     } 

     outputNeurons[i].refractory+=timeStep; 

 

     //Check if there is a spike or not 

     if(outputNeurons[i].input>0 || 

outputNeurons[i].input<0){ 

      //set the input to the system  

     

 input=(outputNeurons[i].input*Ie10)/dt; 

     }else{//no input to the system  

      input=0; 

     } 

     //End 

     //In case the user choose the single 

point modeling  

     if(model.equalsIgnoreCase("single-

point")) 

     { 

      //Calculate the membrane 

potential of the current output neuro 

     

 outputNeurons[i].V=outputNeurons[i].V+((-

outputNeurons[i].V+Rm*input)/Tm)*dt; 

     }//In case the user choose the two 

point modeling  

     else if (model.equalsIgnoreCase("two-

point")){ 

      //Calculate the dedrite potential 

of the current output neuron  
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 outputNeurons[i].dV=outputNeurons[i].dV+((-

outputNeurons[i].dV/dTm)+((outputNeurons[i].V-

outputNeurons[i].dV)/rC)+input)*dt; 

      //Calculate the membrane 

potential of the current output neuron  

     

 outputNeurons[i].V=outputNeurons[i].V+((-

outputNeurons[i].V/Tm)+((outputNeurons[i].dV-

outputNeurons[i].V)/rC))*dt; 

     } 

     //If the membrane potential pass the 

threshold  

     if(outputNeurons[i].V>=Vth && 

outputNeurons[i].refractory>Trefr){ 

      //Count the spike  

      foundSpike++; 

 

      //In case the user choose total 

reset  

     

 if(reset.equalsIgnoreCase("total")){ 

      

 outputNeurons[i].V=Vreset;//Reset the potential to "0" after 

the spike 

      }//In case the user choose 

partial reset  

      else if 

(reset.equalsIgnoreCase("partial")){ 

       outputNeurons[i].V=Vth*a; 

      } 

      //Set the refractory time to 0 

      outputNeurons[i].refractory=0; 

     } 

    } 

    //End 

    t+=timeStep; 

    //System.out.println(t); 

   } 

   t=timeStep; 

   System.out.println(foundSpike); 

  } 

  foundSpike=0; 

  double Ie11=1; 

  //Set input spiketrain to be the pattern 1,1  

  inputSpikeTrain=inputSpikeTrain11; 

  //Found an input current to the system that force the 

network to start with firing rates within a values set  

  while(foundSpike>55 || foundSpike<45){ 

   //Check if the found spike is under 45 spikes for 

current input pattern  

   if(foundSpike<45) 

    //increase the input current  

    Ie11=Ie11+0.01; 

   //Check if the found spike is more than 55  

   else if (foundSpike>55) 

    //decrease  the input current  

    Ie11=Ie11-0.01; 

   foundSpike=0; 

   while(t<=durationOfSimulation){ 
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    //Prepare the input multiply with the weights 

of the inputneurons  

    for(int i=0; i<hiddenLayerNumberOfNeurons; 

i++){ 

     hiddenNeurons[i].input=0; 

     for(int j=0; 

j<inputLayerNumberOfNeurons; j++){ 

     

 hiddenNeurons[i].input+=inputSpikeTrain[j][(int) 

Math.rint(t/timeStep)-1]*inputNeurons[j].weights[i]; 

     } 

    } 

 

    //Calculate the potentials at current 

timestep for hidden neurons 

    for(int i=0; i<hiddenLayerNumberOfNeurons; 

i++){ 

 

     //Set Starting potentials to "0" 

     if((int) Math.rint(t/timeStep)==1){ 

      hiddenNeurons[i].dV=0; 

      hiddenNeurons[i].V=0; 

     } 

     //End 

 

     hiddenNeurons[i].refractory+=timeStep; 

 

     //Check if there is a spike or not 

     if(hiddenNeurons[i].input>0 || 

hiddenNeurons[i].input<0 ){ 

     

 input=(hiddenNeurons[i].input*Ie11)/dt; 

     }else{ 

      input=0; 

     } 

     //End 

     //In case the user choose the single 

point modeling  

     if(model.equalsIgnoreCase("single-

point")) 

     {  

      //Calculate the membrane 

potential of the current hidden neuron  

     

 hiddenNeurons[i].V=hiddenNeurons[i].V+((-

hiddenNeurons[i].V+Rm*input)/Tm)*dt; 

     } 

     //In case the user choose the two point 

modeling 

     else if (model.equalsIgnoreCase("two-

point")){ 

      //Calculate the dedrite potential 

for the current hidden neuron  

     

 hiddenNeurons[i].dV=hiddenNeurons[i].dV+((-

hiddenNeurons[i].dV/dTm)+((hiddenNeurons[i].V-

hiddenNeurons[i].dV)/rC)+input)*dt; 

      //Calculate the membrane 

potential fo the current hidden neuron 

     

 hiddenNeurons[i].V=hiddenNeurons[i].V+((-
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hiddenNeurons[i].V/Tm)+((hiddenNeurons[i].dV-

hiddenNeurons[i].V)/rC))*dt; 

 

     } 

     //if the membrane potential pass the 

threshold  

     if(hiddenNeurons[i].V>=Vth && 

hiddenNeurons[i].refractory>Trefr){ 

      hiddenNeurons[i].spikeTrain=1; 

      //In case the user choose total 

reset  

     

 if(reset.equalsIgnoreCase("total")){ 

      

 hiddenNeurons[i].V=Vreset;//Reset the potential to "0" after 

the spike 

      }//In case the user choose 

partial reset  

      else if 

(reset.equalsIgnoreCase("partial")){ 

       hiddenNeurons[i].V=Vth*a; 

      } 

      hiddenNeurons[i].refractory=0; 

 

     }else{hiddenNeurons[i].spikeTrain=0;} 

    } 

    //End 

 

    //Create the input to the output neuron 

include the multiplication with the weights 

    for(int i=0; i<outputLayerNumberOfNeurons; 

i++){ 

     outputNeurons[i].input=0; 

     for(int j=0; 

j<hiddenLayerNumberOfNeurons; j++){ 

     

 outputNeurons[i].input+=hiddenNeurons[j].spikeTrain*hiddenNeuro

ns[j].weights[i]; 

     } 

    } 

    //End 

 

    //Calculate the potentials at current 

timestep for output neurons 

    for(int i=0; i<outputLayerNumberOfNeurons; 

i++){ 

 

     //set the starting potential to 0  

     if((int) Math.rint(t/timeStep)==1){ 

      outputNeurons[i].dV=0; 

      outputNeurons[i].V=0; 

     } 

     outputNeurons[i].refractory+=timeStep; 

 

     //Check if there is a spike or not 

     if(outputNeurons[i].input>0 || 

outputNeurons[i].input<0){ 

     

 input=(outputNeurons[i].input*Ie11)/dt; 

     }else{ 

      input=0; 
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     } 

     //End 

     //In case the user choose the single 

point modeling  

     if(model.equalsIgnoreCase("single-

point")) 

     { 

      //Calculate the membrane 

potential of the current output neuron  

     

 outputNeurons[i].V=outputNeurons[i].V+((-

outputNeurons[i].V+Rm*input)/Tm)*dt; 

     }//In case the user choose the two 

point modeling  

     else if (model.equalsIgnoreCase("two-

point")){ 

      // Calculate the dedrite 

potential of the current output neuron  

     

 outputNeurons[i].dV=outputNeurons[i].dV+((-

outputNeurons[i].dV/dTm)+((outputNeurons[i].V-

outputNeurons[i].dV)/rC)+input)*dt; 

      // Calculate the membrane 

potential of the current output neuron 

     

 outputNeurons[i].V=outputNeurons[i].V+((-

outputNeurons[i].V/Tm)+((outputNeurons[i].dV-

outputNeurons[i].V)/rC))*dt; 

     } 

 

     //If the membrane potential pass the 

threshold  

     if(outputNeurons[i].V>=Vth && 

outputNeurons[i].refractory>Trefr){ 

      //Count the spike  

      foundSpike++; 

      //Set the indicator to 1 to know 

that the current output neuron at current time step has spike  

      outputNeurons[i].spikeTrain=1; 

      //In case the user choose total 

     

 if(reset.equalsIgnoreCase("total")){ 

      

 outputNeurons[i].V=Vreset;//Reset the potential to "0" after 

the spike 

      } 

      //In case the user choose partial 

reset  

      else if 

(reset.equalsIgnoreCase("partial")){ 

       outputNeurons[i].V=Vth*a; 

      } 

      outputNeurons[i].refractory=0; 

     } 

    } 

    //End 

    t+=timeStep; 

    //System.out.println(t); 

   } 

   t=timeStep; 

   System.out.println(foundSpike); 
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  } 

  //End Fixing starting rate 

 

  foundSpike=0; 

  //The simulation (training) 

  for(int epoch=0; epoch<200; epoch++){ 

 

   meth.shuffleArray(list); 

 

   //pass the patterns to the system for the current 

epoch  

   for(int set=0; set<4; set++){ 

 

    if(list[set]==0) 

     inputSpikeTrain=inputSpikeTrain00; 

 

    if(list[set]==1){ 

     inputSpikeTrain=inputSpikeTrain01; 

     Ie=Ie01; 

    } 

    if(list[set]==2){ 

     inputSpikeTrain=inputSpikeTrain10; 

     Ie=Ie10; 

    } 

    if(list[set]==3){ 

     inputSpikeTrain=inputSpikeTrain11; 

     Ie=Ie11; 

    } 

 

    //initialize the refractory time to 

refractory period  

    for(int i=0; i<hiddenLayerNumberOfNeurons; 

i++){ 

     hiddenNeurons[i].refractory=Trefr; 

    } 

    for(int i=0; i<outputLayerNumberOfNeurons; 

i++){ 

     outputNeurons[i].refractory=Trefr; 

  

    } 

 

 

    double inputWeight; 

    double hiddenWeight; 

    while(t<=durationOfSimulation){ 

 

 

     //Prepare the input multiply with the 

weights of the inputneurons  

     for(int i=0; 

i<hiddenLayerNumberOfNeurons; i++){ 

      hiddenNeurons[i].input=0; 

      for(int j=0; 

j<inputLayerNumberOfNeurons; j++){ 

      

 hiddenNeurons[i].input+=inputSpikeTrain[j][(int) 

Math.rint(t/timeStep)-1]*inputNeurons[j].weights[i]; 

      } 

     } 
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     //Calculate the potentials at current 

timestep for hidden neurons 

     for(int i=0; 

i<hiddenLayerNumberOfNeurons; i++){ 

 

      //Set Starting potentials to "0" 

      if((int) 

Math.rint(t/timeStep)==1){ 

       hiddenNeurons[i].dV=0; 

       hiddenNeurons[i].V=0; 

      } 

      //End 

 

     

 hiddenNeurons[i].refractory+=timeStep; 

 

      //Check if there is a spike or 

not 

      if(hiddenNeurons[i].input>0 || 

hiddenNeurons[i].input<0 ){ 

      

 input=(hiddenNeurons[i].input*Ie)/dt; 

      }else{ 

       input=0; 

      } 

      //End 

 

      //In case the user choose the 

single point modeling  

     

 if(model.equalsIgnoreCase("single-point")) 

      { 

       //Calculate the membrane 

potential of the current hidden neuron  

      

 hiddenNeurons[i].V=hiddenNeurons[i].V+((-

hiddenNeurons[i].V+Rm*input)/Tm)*dt; 

      } 

      //In case the user choose the two 

point modeling 

      else if 

(model.equalsIgnoreCase("two-point")){ 

       //Calculate the dedrite 

potential for the current hidden neuron  

      

 hiddenNeurons[i].dV=hiddenNeurons[i].dV+((-

hiddenNeurons[i].dV/dTm)+((hiddenNeurons[i].V-

hiddenNeurons[i].dV)/rC)+input)*dt; 

       //Calculate the membrane 

potential fo the current hidden neuron 

      

 hiddenNeurons[i].V=hiddenNeurons[i].V+((-

hiddenNeurons[i].V/Tm)+((hiddenNeurons[i].dV-

hiddenNeurons[i].V)/rC))*dt; 

      } 

      //if the membrane potential pass 

the threshold  

      if(hiddenNeurons[i].V>=Vth && 

hiddenNeurons[i].refractory>Trefr){ 

       //Set the indicator to 1 to 

know that the current neuron at the current time step has spike  
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 hiddenNeurons[i].spikeTrain=1; 

       //In case the user choose 

total reset 

      

 if(reset.equalsIgnoreCase("total")){ 

       

 hiddenNeurons[i].V=Vreset;//Reset the potential to "0" after 

the spike 

       }//In case the user choose 

parital reset 

       else if 

(reset.equalsIgnoreCase("partial")){ 

       

 hiddenNeurons[i].V=Vth*a; 

       } 

       //Set the refractory time 

to 0 

      

 hiddenNeurons[i].refractory=0; 

 

      } 

      else{ 

       //Set the indicator to 0 to 

know that the current neuron at the current time set has no spike  

      

 hiddenNeurons[i].spikeTrain=0; 

      } 

     } 

     //End 

 

     //Create the input to the output neuron 

include the multiplication with the weights 

     for(int i=0; 

i<outputLayerNumberOfNeurons; i++){ 

      outputNeurons[i].input=0; 

      for(int j=0; 

j<hiddenLayerNumberOfNeurons; j++){ 

      

 outputNeurons[i].input+=hiddenNeurons[j].spikeTrain*hiddenNeuro

ns[j].weights[i]; 

      } 

     } 

     //End 

 

     //Calculate the potentials at current 

timestep for output neurons 

     for(int i=0; 

i<outputLayerNumberOfNeurons; i++){ 

      if((int) 

Math.rint(t/timeStep)==1){ 

       outputNeurons[i].dV=0; 

       outputNeurons[i].V=0; 

      } 

     

 outputNeurons[i].refractory+=timeStep; 

 

      //Check if there is a spike or 

not 

      if(outputNeurons[i].input>0 || 

outputNeurons[i].input<0){ 
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 input=(outputNeurons[i].input*Ie)/dt; 

      }else{ 

       input=0; 

      } 

      //End 

      //In case the user choose the 

single point modeling  

     

 if(model.equalsIgnoreCase("single-point")) 

      { 

       //Calculate the membrane 

potential of the current output neuron  

      

 outputNeurons[i].V=outputNeurons[i].V+((-

outputNeurons[i].V+Rm*input)/Tm)*dt; 

      }//In case the user choose the 

two point modeling  

      else if 

(model.equalsIgnoreCase("two-point")){ 

       //Calculate the dedrite 

potential of the current output neuron  

      

 outputNeurons[i].dV=outputNeurons[i].dV+((-

outputNeurons[i].dV/dTm)+((outputNeurons[i].V-

outputNeurons[i].dV)/rC)+input)*dt; 

       //Calculate the membrane 

potential of the current output neuron  

      

 outputNeurons[i].V=outputNeurons[i].V+((-

outputNeurons[i].V/Tm)+((outputNeurons[i].dV-

outputNeurons[i].V)/rC))*dt; 

      } 

      //If the membrane potential pass 

the threshold  

      if(outputNeurons[i].V>=Vth && 

outputNeurons[i].refractory>Trefr){ 

       //Count the spike  

       foundSpike++; 

       //Set the indicator to 1 to 

know that the current output neuron at current time step has spike  

      

 outputNeurons[i].spikeTrain=1; 

      

 if(reset.equalsIgnoreCase("total")){ 

       

 outputNeurons[i].V=Vreset;//Reset the potential to "0" after 

the spike 

       }//In case the user choose 

partial reset  

       else if 

(reset.equalsIgnoreCase("partial")){ 

       

 outputNeurons[i].V=Vth*a; 

       } 

       //Set the refractory time 

to 0 

      

 outputNeurons[i].refractory=0; 

 

       //Check for reward 
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 if((inputData[list[set]][0]==0 && 

inputData[list[set]][1]==1)||(inputData[list[set]][0]==1 && 

inputData[list[set]][1]==0)){ 

        r=1; 

        reward++; 

       }else{ 

        r=-1; 

        reward--; 

       } 

      } 

      else{ 

       //Set the indicator to 0 to 

know that the current neuron at the current time set has no spike  

      

 outputNeurons[i].spikeTrain=0; 

       r=0; 

      } 

      //Make the changes 

      for(int pi=0; 

pi<inputLayerNumberOfNeurons; pi++){ 

       for(int pj=0; 

pj<hiddenLayerNumberOfNeurons; pj++){ 

 

        //Set the P+ for the 

input neuron in case that the pre neuron has spike  

       

 if(inputSpikeTrain[pi][(int) Math.rint(t/timeStep)-1]>0){ 

        

 inputNeurons[pi].PijPlus[pj]=inputNeurons[pi].PijPlus[pj]*Math.

exp(-dt/tPlus)+aPlus*1; 

        } 

        //Set the P+ for the 

input neuron in case that the pre neuron has no spike  

        else{ 

        

 if(inputNeurons[pi].PijPlus[pj]==0) 

         

 inputNeurons[pi].PijPlus[pj]=0; 

         else 

         

 inputNeurons[pi].PijPlus[pj]=inputNeurons[pi].PijPlus[pj]*Math.

exp(-dt/tPlus); 

        } 

        //Set the P- for the 

input neuron in case that the post neuron has spike  

       

 if(hiddenNeurons[pj].spikeTrain>0){ 

        

 inputNeurons[pi].PijMinus[pj]=inputNeurons[pi].PijMinus[pj]*Mat

h.exp(-dt/tMinus)+aMinus*1; 

        } 

        //Set the P+ for the 

input neuron in case that the post neuron has no spike  

        else{ 

        

 if(inputNeurons[pi].PijMinus[pj]==0) 

         

 inputNeurons[pi].PijMinus[pj]=0; 

         else 
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 inputNeurons[pi].PijMinus[pj]=inputNeurons[pi].PijMinus[pj]*Mat

h.exp(-dt/tMinus); 

        } 

        //Set the zita in 

case that both pre - post neuron has spike  

       

 if(hiddenNeurons[pj].spikeTrain>0 && inputSpikeTrain[pi][(int) 

Math.rint(t/timeStep)-1]>0) 

        

 inputNeurons[pi].zita[pj]=inputNeurons[pi].PijPlus[pj]+inputNeu

rons[pi].PijMinus[pj]; 

        //Set the zita in 

case that post neuron has spike  

        else 

if(hiddenNeurons[pj].spikeTrain>0 && inputSpikeTrain[pi][(int) 

Math.rint(t/timeStep)-1]==0) 

        

 inputNeurons[pi].zita[pj]=inputNeurons[pi].PijPlus[pj]; 

        //Set the zita in 

case that pre neuron has spike  

        else 

if(hiddenNeurons[pj].spikeTrain==0 && inputSpikeTrain[pi][(int) 

Math.rint(t/timeStep)-1]>0) 

        

 inputNeurons[pi].zita[pj]=inputNeurons[pi].PijMinus[pj]; 

        //either pre - post 

has no spike  

        else 

        

 inputNeurons[pi].zita[pj]=0; 

 

 

       } 

      } 

      for(int pi=0; 

pi<hiddenLayerNumberOfNeurons; pi++){ 

       for(int pj=0; 

pj<outputLayerNumberOfNeurons; pj++){ 

 

        //Set the P+ for the 

hidden neuron in case that the pre neuron has spike  

       

 if(hiddenNeurons[pi].spikeTrain>0){ 

        

 hiddenNeurons[pi].PijPlus[pj]=hiddenNeurons[pi].PijPlus[pj]*Mat

h.exp(-dt/tPlus)+aPlus*1; 

        } 

        //Set the P+ for the 

hidden neuron in case that the pre neuron has no spike  

        else{ 

        

 if(hiddenNeurons[pi].PijPlus[pj]==0) 

         

 hiddenNeurons[pi].PijPlus[pj]=0; 

         else 

         

 hiddenNeurons[pi].PijPlus[pj]=hiddenNeurons[pi].PijPlus[pj]*Mat

h.exp(-dt/tPlus); 

        } 
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        //Set the P- for the 

hidden neuron in case that the post neuron has spike  

       

 if(outputNeurons[pj].spikeTrain>0){ 

        

 hiddenNeurons[pi].PijMinus[pj]=hiddenNeurons[pi].PijMinus[pj]*M

ath.exp(-dt/tMinus)+aMinus*1; 

        } 

        //Set the P- for the 

input neuron in case that the post neuron has no spike  

        else{ 

        

 if(hiddenNeurons[pi].PijMinus[pj]==0) 

         

 hiddenNeurons[pi].PijMinus[pj]=0; 

         else 

         

 hiddenNeurons[pi].PijMinus[pj]=hiddenNeurons[pi].PijMinus[pj]*M

ath.exp(-dt/tMinus); 

        } 

 

        //Set the zita in 

case that both pre - post neuron has spike  

       

 if(outputNeurons[pj].spikeTrain>0 && 

hiddenNeurons[pi].spikeTrain>0) 

        

 hiddenNeurons[pi].zita[pj]=hiddenNeurons[pi].PijPlus[pj]+hidden

Neurons[pi].PijMinus[pj]; 

        //Set the zita in 

case that post neuron has spike  

        else 

if(outputNeurons[pj].spikeTrain>0 && hiddenNeurons[pi].spikeTrain==0) 

        

 hiddenNeurons[pi].zita[pj]=hiddenNeurons[pi].PijPlus[pj]; 

        //Set the zita in 

case that pre neuron has spike  

        else 

if(outputNeurons[pj].spikeTrain==0 && hiddenNeurons[pi].spikeTrain>0) 

        

 hiddenNeurons[pi].zita[pj]=hiddenNeurons[pi].PijMinus[pj]; 

        //either pre - post 

has no spike  

        else  

        

 hiddenNeurons[pi].zita[pj]=0; 

 

       } 

      } 

 

      //End     

   

 

      //Calculate Z and Update weights 

for inputNeurons 

      for(int pi=0; 

pi<inputLayerNumberOfNeurons; pi++){ 

       for(int pj=0; 

pj<hiddenLayerNumberOfNeurons; pj++){ 

        //Current weight 
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 inputWeight=inputNeurons[pi].weights[pj]; 

        //Calculate z  

       

 inputNeurons[pi].z[pj]=b*inputNeurons[pi].z[pj]+inputNeurons[pi

].zita[pj]/Tz; 

        //Change weight  

       

 inputNeurons[pi].weights[pj]=inputNeurons[pi].weights[pj]+gama*

dt*r*inputNeurons[pi].z[pj]; 

        //Apply the weight 

bounds  

        //In case the synapse 

is exhibitory  and the new weight goes under the 0 

        if(inputWeight>0 && 

inputNeurons[pi].weights[pj]<0) 

        

 inputNeurons[pi].weights[pj]=0; 

        //In case the synapse 

is inhibitory and the new weight goes bigger that 0   

        else if(inputWeight<0 

&& inputNeurons[pi].weights[pj]>0) 

        

 inputNeurons[pi].weights[pj]=0; 

        //In case the new 

weight pass the upper bound  

       

 if(inputNeurons[pi].weights[pj]>bound) 

        

 inputNeurons[pi].weights[pj]=bound; 

        //In case the new 

weight pass the lower bound  

        else 

if(inputNeurons[pi].weights[pj]<-bound) 

        

 inputNeurons[pi].weights[pj]=-bound; 

       } 

      } 

 

      //Calculate Z and Update weights 

for hiddenNeurons 

      for(int pi=0; 

pi<hiddenLayerNumberOfNeurons; pi++){ 

       for(int pj=0; 

pj<outputLayerNumberOfNeurons; pj++){ 

        //Current weight 

       

 hiddenWeight=hiddenNeurons[pi].weights[pj]; 

        //Calculate z  

       

 hiddenNeurons[pi].z[pj]=b*hiddenNeurons[pi].z[pj]+hiddenNeurons

[pi].zita[pj]/Tz; 

        //Change weight  

       

 hiddenNeurons[pi].weights[pj]=hiddenNeurons[pi].weights[pj]+gam

a*dt*r*hiddenNeurons[pi].z[pj]; 

        //Apply the weight 

bounds  

        //In case the synapse 

is exhibitory  and the new weight goes under the 0 
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        if(hiddenWeight>0 && 

hiddenNeurons[pi].weights[pj]<0) 

        

 hiddenNeurons[pi].weights[pj]=0; 

        //In case the synapse 

is inhibitory and the new weight goes bigger that 0   

        else 

if(hiddenWeight<0 &&hiddenNeurons[pi].weights[pj]>0) 

        

 hiddenNeurons[pi].weights[pj]=0; 

        //In case the new 

weight pass the upper bound  

       

 if(hiddenNeurons[pi].weights[pj]>bound) 

        

 hiddenNeurons[pi].weights[pj]=bound; 

        //In case the new 

weight pass the lower bound  

        else 

if(hiddenNeurons[pi].weights[pj]<-bound) 

        

 hiddenNeurons[pi].weights[pj]=-bound; 

       } 

      } 

 

     } 

     //End 

     t+=timeStep; 

    } 

    t=timeStep; 

    //Print the input patter and the found output 

spikes number  

    System.out.println("Input: " + 

inputData[list[set]][0] + " " + inputData[list[set]][1] + " Found 

spikes " + foundSpike); 

    System.out.println(" "); 

 

    if(list[set]==0) 

     rate00=foundSpike; 

 

    if(list[set]==1) 

     rate01=foundSpike; 

 

    if(list[set]==2) 

     rate10=foundSpike; 

 

    if(list[set]==3) 

     rate11=foundSpike; 

 

    foundSpike=0; 

 

    inputWeight=0; 

    hiddenWeight=0; 

 

   } 

   System.out.println("End of epoch: " + epoch + " 

Global reward: " +reward); 

   System.out.println("--------------"); 

   System.out.println(" "); 

   reward=0;  
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  } 

  //Create the graph with the output firing rates for all 

patterns  

 

 graph.createChart(((rate00/500)*1000),((rate01/500)*1000),((rat

e10/500)*1000),((rate11/500)*1000), "Average firing rate", "Input 

Pattern", "Firing rate (hz)", 500, 500); 

 

 } 

} 


