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ABSTRACT 

 

Achieving fault tolerance is an inevitable problem in architectural arrays such as caches, 

which it becoming more challenging with the power constrains. This work propose to 

reduce  energy  by   avoiding  access  to  columns  of  on-chip  SRAM  arrays  whose  cell  

contents  used  to  store  the  bits  for  error  protection.  We refer  to  this  approach  as  Error  

Detection Code Sharing that relies on a lazy-based method for fault detection. We 

explain how the EDCS approach can be leveraged to reduce the energy needed for Error 

Detection Codes.  Experimental analysis reveal that the proposed scheme can leverage 

to reduce the energy. The potential energy savings of the propose approach at 32nm 

often exceeds 7% for several processor arrays. The energy savings however may come 

at the expense of lower fault–detection coverage.  

This  work  also  proposes,  EDCS-LC,  an  approach  in  lie  with  the  EDCS that  uses  one  

vector to keep track of the codes that appear in the cache to further increase the fault 

detection coverage with no impact on the energy savings that EDCS technique provides. 
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Chapter 1 

Introduction 
 

1.1  Power and reliability challenges. 
 

 For the past several decades, technological developments have facilitated the 

continuous miniaturization of devices on silicon chips. According to Moore’s Law [6], 

the number of transistors on a chip roughly doubles every two years in the same area. 

As a result the scale of transistors gets smaller and smaller. Recently allowed the 

integration of large caches and many cores into the same chip. Unfortunately, the 

scaling of the other key design parameters has not followed suit and have elevated 

power and reliability into prime design constrains across all computing market 

segments. Specifically, power envelops are becoming so stringent that it may be 

impossible in the future to operate all on chip recourses. With the increasing power 

density  of  modern  circuits  as  the  number  of  transistors  per  chip  scales  (Moore's  law),  

power efficiency has increased in importance [20].  

 

The reliability trends are also ominous. With shrinking cell geometries, soft errors and 

hard errors have become a greater concern. Power and reliability are increasingly 

becoming intertwined.   

Power dissipation has become a major concern to those designing processors for high 

performance desktops, servers, and battery-operated portable devices. Published reports 

also corroborate the fact that on–chip static RAM caches consume substantial fraction 

of overall chip power. For example on–chip L1, L2 caches dissipate from 25% to 50% 



 
 

 
 

of the total chip power, depends from the processor [15]. Higher energy dissipation 

requires more expensive packaging and cooling technology, which in turn increases cost 

and decreases system reliability [4].  

There are fundamentally two ways in which power can be dissipated: either 

dynamically (due to switching activity), or statically (which is mainly due to leakage in 

the gates). If current technology scaling trends hold [11], leakage will soon become very 

important source of power consumption, and as such new techniques are needed to 

battle this growing problem. The problem of leakage stems from the need for a tradeoff 

between dynamic power and performance [12].  

 

Figure 1.2 projected leakage power consumption as a fraction of the total power 

consumption according to International Technology Roadmap for Semiconductor [20]. 

 

Figure 1. 1 : ITRS leakage protection. 

 

Power has become a first-order design consideration motivating researchers to look at 

techniques for reducing power consumption in all components of a system design. For 
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memory ECC, power reduction is also an important consideration, since the ECC 

checker circuit is activated during each read and write access to the memory.    

Existing techniques used in current processors such as ECC codes [17], sparing [7], and 

larger more resilient cell [8] incur considerable area and energy costs. For instance 

protecting an array with 72-64 SEC-DED requires 12.5% additional cells, and can 

increase energy consumption by 20% [9, 10].  Current power saving techniques have 

been mainly focused on reducing the dynamic power that needed for protecting the 

array.  

Several techniques have been proposed to reduce the power consumption that required 

for fault detection in memory arrays. The importance of the power dissipation led us to 

address with this issue. 

 Clearly protecting an array entails both area and energy overheads. The overheads are 

due to the larger array storage needed for the error code in each entry.  

Table 1.1 lists the normalized dynamic energy per read access and the static energy 

obtained for three different caches for their respective data and tag array. Also in Table 

1.2 lists the leakage breakdown obtained for three different caches for their respective 

tag and data array. For each array is shown the normalized leakage for the data bits and 

the code bits.  The data in Table 1.1 and Table 1.2 clearly indicate that error protection 

entails a significant energy overhead of depending on the cache array. One of the main 

goals of the propose techniques is to minimize the energy overhead. For the results of 

Table 1.1 and Table 1.2 we assume that we operate an instruction per cycle. The 

methodology that we used to obtain these results is given in Chapter 8. 

 

 

 



 
 

 
 

L1 Dcache L1 Icache L2 cache 
Tag Data Tag Data Tag Data 

Dynamic Power 71 89 71 93 51 70 
Leakage power 29 11 29 7 49 30 

Table 1. 1: Normalized Read hit Energy Breakdown and leakage power for 
different types of arrays. 

 
The data in Table 1.2 clearly indicate that error protection for leakage power entails a 

significant energy overhead 11-15% depending on the cache array. 

 

One of the main goals of this thesis is to minimize this energy overhead. 

 
 
 

 

Table 1. 2: Normalized leakage power for different types of arrays. 

 

1.2  Contribution. 
 

In this thesis, we propose two approaches to reduce the leakage power that required for 

fault detection in memory arrays. 

The first approach is the Error Detection Code Sharing (EDCS) approach. The main 

idea  of  this  approach  is  that  uses  one  code  word  to  protect  multiple  data  words  for  

further reduction of energy and possible area used for memory array protection. In this 

case total power can be reduced managing the static (leakage) power consumption that 

has a significant portion of total power consumption.  This, however, may come at the 

expense of lower fault-detection coverage.    

So, we propose also the Error Detection Code Sharing using Legal Codes approach that 

increases the fault detection coverage from EDCS with small cost on energy and area 

savings. The key idea of this approach is that uses one vector that keeps track of the 

 L1 Dcache L1 Icache L2 cache 
 Tag Data Tag Data Tag Data 
Data bits 86 89 86 89 85 89 
Code bits 14 11 14 11 15 11 



 
 

 
 

legal error detecting codes that appear in the architectural arrays at any given time. The 

legal codes are the codes that appear at any given time in a memory array. The propose 

approach relies on that we don’t  obtain all  the codes in a memory array.  So using this 

approach we detect an error if one illegal code appears. 

In general, this approach is only capable of fault detection, it cannot correct faults in 

arrays. Therefore it can be useful for detecting faults in architectural arrays such as 

caches, when it is used in combination with a backward-error-recovery scheme, e.g. 

checkpoint-rollback [11, 12] , that can recover the state of a memory array upon fault 

detection.    

 

.  
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Chapter 2 

Fault Tolerance 
 

  2.1  Definition of fault tolerance. 
 

Fault tolerance has always been around, but now is becoming more important because 

we have more reliance on computers. So we study faults and their causes because if we 

don’t understand them, it is much more difficult to design systems that can tolerate 

them! 

 

2.1.1  Fault-Error-Failure. 

Fault [22] is an incorrect step, process, or data definition in software or in hardware 

which causes the computer to perform in an unintended or unanticipated manner. It is an 

inherent weakness of the design or implementation which might result in a failure. We 

have fault avoidance using techniques and procedures which aim to avoid the 

introduction of faults during any phase of the safety lifecycle of the safety-related 

system. Also we can have fault tolerance that is the ability of a functional unit to 

continue to perform a required function in the presence of faults or errors.  Fault 

tolerance is defined as how to provide, by redundancy, service complying with the 

specification in spite of faults having occurred or occurring. 

Error [22] is the manifestation of a fault. A discrepancy between a computed, 

observed, or measured value or condition and the true, specified, or theoretically correct 

value or condition. 



 
 

 
 

Failure [22] is the system level effect of an error and it is visible to the user. The 

inability of a system or component to perform its required functions within specified 

performance requirements.  For example we have the production of incorrect result of 

computation (2+2=5). 

Faults can result in errors. Errors can lead to system failures. 

Errors are the effect of faults. Failures are the effect of errors. 

 

2.1.2  Hard and Soft errors 
 

The Soft errors [2], which also called transient errors, occur once and then disappear. 

The soft errors often occur from the cosmic rays, the decay of radioactive atoms which 

exist in trace amounts in all materials and maybe from the noise phenomenon. A soft 

error will not damage a system's hardware; the only damage is to the data that is being 

processed.  

 

The Hard errors [2], which also called permanent errors, occur and don’t go away. 

They can appear like chip-level soft errors, but the difference is that the hard error is not 

rectified when the computer is rebooted. The solution to a hard error is to replace the 

memory chip or module entirely. 

Finally we have the intermittent errors which occur occasionally. 

Fault masking is a structural redundancy technique that completely masks faults within 

a set of redundant modules. A number of identical modules execute the same functions, 

and their outputs are voted to remove errors created by a faulty module.  



 
 

 
 

  2.2  Causes of faults. 
 

Hardware faults are mostly physical faults, while software faults are design faults, 

which are harder to visualize, classify, detect, and correct. Design faults are closely 

related to fuzzy human factors and the design process, which we don't have a solid 

understanding. In hardware, design faults may also exist, but physical faults usually 

dominate.  

Specifically the causes of faults are classified to the following categories:  

1. Physical problems [2]. 

a. Transient Phenomena like extraterrestrial cosmic rays which bombard 

the earth constantly from the far depths of the galaxy and the alpha 

particle radiation that comes from the decay of radioactive atoms which 

exist in trace amounts in all materials. 

b. Manufacturing Defects [2].  

As the technology scales with the integration of billion of transistors, 

transistors have smaller dimensions in order of 45nm, so it is very hard 

to manufacture something with these dimensions and not to cause faults. 

Also may have bad solder connection between chip and board. 

2. Hardware design flaws like logical and timing bugs [2]. 

3. Operator error like the bugs in software. The operator error is the leading cause 

of computer system failures [2]. 

4. Design Flaws like the bugs in software [2]. 

a. Incorrect algorithm 

b. Memory leak  

c. Reference to NULL  



 
 

 
 

5. Malicious attacks [2]. 

6. Variations [18]. 

a. Random dopant fluctuations which results from the discreetness of 

dopant atoms in the channel of a transistor. The transistor channels are 

doped with dopant atoms to control their threshold voltage. This problem 

decreases with the decrease in transistor size in each technology 

generation. So the transistor area reduces to the half and, thus the number 

of dopant atoms in the channel decreases exponentially over generations.     

b. The sub-wavelength lithography that we used for pattering transistors. 

This occurs line edge roughness and several other effects in transistors, 

resulting in variation. 

c. The heat flux and it depends on the functionality of the circuit block, for 

example the activity and compute load at any given time. Higher heat 

flux results in higher temperature, creating hot spots, which in turn create 

temperature variations across the die, affecting circuit performance.  This 

also results in higher sub-threshold leakage, variations in the leakage 

across  the  die,  and  the  variations  in  power  delivery  demand  across  the  

power distribution.  

The first two are static and they occur during the fabrication but the third is dynamic; 

that is, it is time and context variant. 

7. Extreme Variations [18].  

As technology continues to scale further both static and dynamic variations will 

continue to become worse. So we have some extreme variations that we can 

meet. 



 
 

 
 

a. In the future, for nanometre-scale technologies, fewer transistors will 

actually approach the target Vt, and this distribution will flatten out. 

These variations would be impossible to correct for them during design. 

b. Soft errors that they increase in each technology generation. These errors 

are more important when they occur in a logic flip-flop because it is 

difficult to detect and correct them. 

c.  Aging that has had significant impact on the transistor performance. 

Along the years the transistor’s saturation current degrades because of 

oxide wear out and hot-carrier degradation effects.       

 

  2.3  Fault Tolerant Design. 
 

There are two fundamentally different approaches to recover from errors. The first one 

is called Forward error recovery and the second, Backward error recovery. The 

objective of Forward error recovery is to mask effects of errors using redundancy and 

going forward in presence of errors. In the Backward error recovery approach, 

redundancy used to enable recovery to saved good states of system. This technique does 

backward to recover from errors.  

The Forward error recovery may include additional hardware (hardware redundancy), 

additional information (information redundancy), additional design (design 

redundancy), more time (temporal redundancy) or a combination of these. 

 

2.3.1   Forward error recovery 
 



 
 

 
 

Hardware redundancy is perhaps the most used architecture in many applications. 

Here, fault redundancy is achieved by duplicating the critical hardware components of a 

system with the intention to increase the reliability of a system. The most used 

architecture of hardware redundancy, Triple Module Redundancy (TMR). 

The basic concept of the TMR is that we have three modules that perform a process 

and that result is processed by a voting system to produce a single output. The voting 

element accepts the outputs from the three sources and delivers majority vote as its 

output.  

If  any  one  of  the  three  systems fails,  the  other  two systems can  correct  and  mask  the  

fault. If the voter fails then the complete system will fail. 

Some ECC memory uses triple modular redundancy hardware (rather than the more 

common Hamming code, is explained below), because triple modular redundancy 

hardware is faster than Hamming error correction hardware.  

 

Figure 2. 1 Triple modular redundancy (TMR).  

 

Triple modular redundancy (TMR) [2] is also commonly used form of fault masking in 

which the circuitry is triplicated and voted. The voting circuitry can also be triplicated 

so that individual voter failures can also be corrected by the voting process.  

Hybrid redundancy is  an  extension  of  TMR  in  which  the  triplicated  modules  are  

backed up with additional spares, which are used to replace faulty modules -- allowing 



 
 

 
 

more faults to be tolerated. Voted systems require more than three times as much 

hardware as non redundant systems, but they have the advantage that computations can 

continue without interruption when a fault occurs, allowing existing operating systems 

to be used. 

Information redundancy involves the addition of redundant information. For example 

for a given k-bit piece of information, add r check bits to it that make it possible to 

detect/correct errors in the original k-bit information. 

Design redundancy use different designs to guard against a fault in any of them. 

Temporal Redundancy involves replicates of actions on a module which are using the 

same module, but at a different time.  

 

2.3.2  Backward error recovery 
 

The basic idea of Backward error recovery is to recover from a previous state of system 

that  we  know that  is  error-free.  For  doing  this  we  use  some new terminology such  as  

checkpoints that periodically saving state of system, logging list that saving changes 

made to system state and finally  recovery point that is the point to which we recover in 

case of error.    

Checkpoint and Recovery [3, 13] 

Checkpointing and recovery belongs to the category of error recovery for fault 

tolerance. Checkpointing involves occasionally saving the state of a process in stable 

storage during normal execution. Upon failure, the process is restarted in the saved state  



 
 

 
 

 

Figure 2. 2 Backward Error Recovery. 

 

(last saved checkpoint-recovery point) that we know is error-free. The assumtion is that 

the error will be gone before resuming execution. This thus reduces the amount of lost 

work. For instance, the progressive retry technique employs checkpointing along with 

message logs that saves the changes made to system state. Our work can borrow many 

concepts from the research in the area of checkpointing. Figure 2.2 shows an abstraction 

of the operation of Backward error Recovery technique using checkpoint, recovery 

point and the active state of the System. 
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Chapter 3 

SRAM Arrays and Energy Consumption 

 

3.1  Organization of the cache. 
 
 
This Chapter is based on the paper of Bushra Ahsan et al and on the Cacti report [1, 23].  

In computer engineering, a cache is a component that transparently stores data so that 

future requests for that data can be served faster. The data that are stored within a cache 

might be values that have been computed earlier or duplicates of original values that are 

stored elsewhere.  Cache is faster and usually static memory, SRAM that retains data 

bits in its memory as long as power is being supplied.  

If requested data is contained in the cache (cache hit), this request can be served by 

simply reading the cache, which is comparatively faster. Otherwise (cache miss), the 

data has to be recomputed or fetched from its original storage location, which is 

comparatively slower.  

3.2  Dynamic power 
 

An  array  consists  of  rows  and  columns.  In  an  SRAM  based  array,  we  have  columns  

known as differential pair columns (bitlines BL0 and BL0_b) and an associated 

wordline. Figure 3.1 shows the dynamic power consumption during a write and read 

access. Dynamic power dissipation occurs during state changes (i.e., when devices are 

switching)The  figure  represents  the  control  signals  that  are  necessary  to  perform  the  

access, the sense amplifiers and the write drivers. For simplicity we show just one cell  



 
 

 
 

 

Figure 3. 1: Dynamic Power Dissipation Mechanism. 

and one column pair. The address and data are transferred to the array through the 

buses. Before a normal access starts, the columns are presumed to be in precharged state 

and ready to be accessed. The decoders decode the row address from the address bits 

and activate the associated wordline. On a read access, the COL RD selects the column 

to be read (since many columns can be sharing the sense amps and the associated 

drivers).  Depending  on  the  value  of  the  cell,  either  BL0 or  BL0_b is  discharged.  The  

SENSE EN signal allows the sense amps to sense the values and output the data. Once 

the value has been read, the PRE and SENSE PRE0 signals precharge the column and 

the sense amps back to the precharge voltage. 

 In  a  write  operation,  the  COL  WR  operation  selects  the  column  and  data  values  are  

input  through  the  DATA  IN  drivers.  Unlike  read,  in  a  write  access,  a  complete  

differential has to occur for the value to be written (full swing as compared to half 



 
 

 
 

swing). Once the write is done, the discharged column is brought back to precharge 

voltage.  

Several techniques have been proposed to reduce the dynamic power consumption that 

required for fault detection in memory arrays.  We discuses one of those techniques 

below. 

 

3.3  Static (leakage) power 
 

Static power consumption has grown to a significant portion of total power 

consumption in recent years. Its importance, however, has grown considerable over the 

past five years. In part, this importance stems directly from the fact that leakage energy 

now represents 20-40% of the power budget of microprocessors in current and near 

future fabrication technologies. 

Static power dissipation is a result of the various leakage modes of the MOS transistor. 

While there are many different leakage modes, the most important leakage mechanism 

in modern submicron channel length technologies is subthreshold leakage [10]. 

Subthreshold leakage is current that flows between the source and drain even when the 

transistor is off (i.e., the voltage at the gate is below the threshold voltage). 

 



 
 

 
 

 

Figure 3. 2: Static Power Dissipation Mechanism [10]. 

 

 

Figure 3. 3: Static Power Dissipation Mechanism with gated Vdd. 

 

Some techniques are proposed for leakage reduction. The concept of those mechanisms 

is to minimize the leakage power and apparently the total energy. The two most 

widespread mechanisms are based on the stacking effect and the drowsy effect that 

manipulate the voltage across transistor terminals.  

 The stacking technique refers to the technique of stacking off transistor source to drain. 

Gated-Vdd is a transistor stacking technique that reduces the leakage power. This 



 
 

 
 

technique  allows  to  the  transistor  that  it  doesn’t  working,  to sleep gating the ground. 

Turning this transistor off disconnects the SRAM cell from the power supply.  Figure 

3.3 shows the traditional power dissipation mechanism and its gated Vdd.  

 The drowsy effect refers to a low voltage mode for the memory cells. The leakage 

reduction of the drowsy mode is not like the gated-Vdd approach which completely cuts 

off the path to Vdd. It allows for some nonzero supply voltage preserves the state of the 

memory cell. The drowsy effect was proposed to address the disadvantage of the gated-

Vdd technique that is it destroys the state.  
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Chapter 4 

Error Checking and Correction (ECC) in Memory Systems. 
 

There are two kinds of errors that can typically occur in a memory system. The first is 

called a repeatable or hard error. In this situation, a piece of hardware is broken and will 

consistently return incorrect results, as we explained above.  

A bit may be stuck so that it always returns "0" for example, no matter what is written 

to it. Hard errors usually indicate loose memory modules, blown chips, motherboard 

defects or other physical problems. 

They are relatively easy to diagnose and correct because they are consistent and 

repeatable. 

The second kind of error is called a transient or soft error. This occurs when a bit reads 

back the wrong value once, but subsequently functions correctly. These problems are, 

understandably, much more difficult to diagnose! They are also, unfortunately, more 

common. Eventually, a soft error will usually repeat itself, but it can take anywhere 

from minutes to years for this to happen.  

The  only  true  protection  from  memory  soft  errors  is  to  use  some  sort  of  memory  

detection or correction protocol. Some protocols can only detect errors in one bit of an 

eight-bit data byte; others can detect errors in more than one bit automatically. Others 

can both detect and correct memory problems, seamlessly. 

These  protocols  called  ECC "Error  Correction  Codes"  and  is  a  method used  to  detect  

and correct errors introduced during storage or transmission of data.  

Certain kinds of RAM chips inside a computer implement this technique to correct data 

errors and are known as ECC Memory 



 
 

 
 

Error rate in memory systems is usually decreased by applying error checking and 

correction (ECC) techniques which can be based on different algorithms for correcting 

single or multi-bit errors. Error correction reduces memory failures dramatically. 

Figure 4.1 shows the block diagram of a memory system with error correction.  

In this figure we assume that we have directed map cache so we don’t have sets but only 

blocks. 

When the memory system receives k information bits the encoder calculates the check 

bits which together with the information bits are stored in the memory. 

When the memory system sends for the read access the k information bits enable the 

decoder which calculate again the check bits of the information bits and compare the 

two ECC codes. So the decoder identifies and corrects the errors which have possibly 

occurred in the information bits and thus provide the corrected data on the output. 

 

Figure 4. 1: Block diagram of a memory system with error correction. 
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Chapter 5 

Error detecting and Correcting Codes 
 

The problem of “doing things right” on a large scale of operations is not essentially 

new. Therefore we must perform a large scale of operations without a single error in the 

end result.  

A single failure usually means the complete failure in a digital computer, in the sense 

that if it is detected no more computing can be done until the failure is located and 

corrected. But when if it escapes the detection then it invalidates all subsequent 

operations of the machine.   

The need for error detection and correction having assume importance. It is clear that to 

transmit information from one place to another the machines use codes which are 

simply sets of symbols. So we shall assume that the transmitting equipment handles 

information  in  the  binary  form  of  a  sequence  of  0’s  and  1’s.  Thus  each  code  symbol  

(information and check) will be represented by a sequence of   0’s and 1’s. 

Each code symbol from these codes has exactly n binary digits, where m digits are 

associated with the information while the other k=n-m digits are used for error detection 

and correction. From these numbers we can produce the R that is the ratio of the number 

of binary digits used to the minimum number necessary to convey the same 

information.  

So we have that R =n/m. 



 
 

 
 

We now discuss some algorithms to construct a single error detecting, single error 

correcting and single error correcting plus double error detecting codes.  

Firstly,  if  we  need  only  to  detect  a  single  error  it  is  easier  to  use  even or odd parity 

check algorithm. In this algorithm we have n+1 binary digits which the n are the 

information bits and the 1 is the check bit. In the n-th position we place either 0 or 1, so 

that the entire n positions have an even or odd number of 1’s. This is clearly a single 

error detecting code since any single error in transmission would leave an odd or even 

respectively number of 1’s in a code symbol.   

Otherwise, if we need to detect and correct a single error we use more complex 

algorithms such as Hamming and Hsiao code. So we first assign n of the n+k  available 

position as information positions and next we assign the k remaining positions as check 

positions. The k is the checking number and consists of a sequence of 0’s and 1’s. We 

shall  require  that  k  will  give  us  the  position  of  any  single  error,  with  the  zero  value  

meaning no error in the symbol code.  Thus k must describe m+k+1 different things, so 

that  

2 > m + k + 1.     

We explain in more details Parity, Hamming and Hsiao codes in Section 3.2, Section 

3.3 and Section 3.4 respectively. 

 

5.1  Parity code 
 

A parity  bit  is  a  bit,  with  a  value  of  0  or  1,  that  is  added  to  a  block  of  data  for  error  

detection purposes [9]. It gives the data either an odd or even parity, which is used to 

validate the integrity of the data. 



 
 

 
 

Parity checking is a rudimentary method of detecting simple, single-bit error or multi bit 

odd errors in a memory system. This method forcing the sum of  some predetermined 

set of bits to be an even number (called even parity) or an odd number (called odd 

parity).  

To get the desired effect, the parity bit is set to one or zero according to the sum of the 

specified original bits. If the selected set of original bits sums to an even number, the 

extra parity bit is set to zero; if it sums to an odd number, it is set to one. Hence, in 

either case, the sum -- including the parity bit -- will always be an even or odd number 

for odd or even parity protection respectively. 

The computer knows exactly which parity checking it is using. If it uses an even parity 

and the number of 1-bit add up to an odd number then it knows there was an error: Else 

if it uses an odd parity and the number of 1-bit add up to an even number then it knows 

there was an error. However, if an even number of 1-bit is flipped the parity will still be 

the same.  But an error occurs. So the even/odd parity can’t detect this error.   

Therefore parity checking is a useful way validating data, but it is not a foolproof 

method. For instance, the values 1010 and 1001 have the same parity. Therefore, if we 

have the value 1010 and it changed to the value 1001, no error will be detected. This 

means parity checks are not 100% reliable when validating data. Still, it is unlikely that 

more than one bit will be incorrect in a small field of data.  

 

5.1.1  Parity example. 
 

Suppose that we have a binary bit word and we are using an odd parity:   

00011 



 
 

 
 

Now suppose that the encoded word is stored in a memory and on a read operation the 

information bit in position 3 changes from 0 to 1.   00111 

To determine if there has been a bit inversion in the data, the parity check bit is 

regenerated and compared with the parity bit generated when storing the data in 

memory. The new parity bit is 0. So the result word now is  

00110 

So there must have an error. There are 2 1-bit, which is an even number. 

 

  5.2  Hamming code. 

 
A Hamming code [17] is a first linear error-correcting code named after it’s inventor, 

Richard Hamming. Hamming codes can detect single-bit and multi-bit odd errors, and 

correct single-bit errors. Is possible to correct single-bit errors and detect double bit 

errors when the minimum Hamming distance between the transmitted and the received 

bit patterns is 3. The Hamming distance is the number of bits in which two words of 

equal length differ from each other.     

Because of the simplicity of Hamming codes, they are widely used in computer memory 

(RAM). 

So when we have an information code the first thing that we do is to calculate the 

number of the check bits (k) from the above equation in Section 3.1. In a 7-bit message, 

there are seven possible single bit errors, so three error control bits could potentially 

specify not only that an error occurred but also which bit caused the error.  

 



 
 

 
 

5.2.1 General algorithm. 

The following general algorithm generates a single-error correcting (SEC-SED) code 

for any number of bits. 

The construction of the code is best described in terms of the parity- check matrix H. 

The selection of the columns of the H-matrix for a given number of information bits and 

check bits is based on the following algorithm. So the main idea is to construct an H-

matrix in a way extract the check bit equation for every code.  

Determine  the  positions  which  each  of  the  various  parity  checks  is  to  be  applied.  The  

checking number is obtained digit by digit, from right to left, by applying the parity 

checks in order and writing down the corresponding 0 or 1 as the case may be.  Any 

position which has a 1 on the right of its binary representation must cause the first check 

to fail, the second parity check must use those positions which have 1’s for the second 

digit from the right of their binary representation, and move on until we have the k-th 

parity check which must use those positions which have 1’s for the second digit from 

the right of their binary representation.  

1. Decide for each parity check which positions are to contain information and 

which  the  check.   The  choice  of  the  positions  1,  2,  4,  8,  16,….  for  check  

positions has the advantage of making the settings of the check positions 

independent of each other. All other positions are information positions.  

 

The following general algorithm generates a single-error correcting (SEC-DED) code 

for any number of bits. 



 
 

 
 

We can extend the previous algorithm to construct a single error correcting plus double 

error detecting code. To do this, we include an extra parity bit. So when we don’t have 

errors all the parity checks including the last one that we add, are satisfied, also when 

we have single error the checking number gives the position of the error, and for two 

errors the last parity check is satisfied, and the checking number indicates some kind of 

error.  However,  including an extra parity bit  the minimum distance of Hamming code 

increase to 4. This is the reason that gives to the code the ability to detect and correct a 

single bit error and at the same time detect (but not correct) a double bit error. It could 

also be used to detect up to 3 errors with a given misscorection probability, but not 

correct any.     

The construction of a Hamming code with 8 bit information word is given below. It can 

be seen from the relationship that if m=8 then we need k=4 check bits appended to the 

information bits for a single bit correction. The bit position of the code are labelled with 

numbers 1 through 12. 

Bit positions 1 2 3 4 5 6 7 8 9 10 11 12 
Bit names C1 C2 P1 C3 P2  P3  P4 C4 P5 P6 P7 P8 
 

The bit positions corresponding to powers of 2 are used as check bits c1,c2 ,c3 and c4, 

respectively. The other bit positions correspond to the data bits P1 to P8. The parity 

check matrix for the Hamming single error correction-double error detection code with 

16 information bits and 6 check bits that becomes from the above algorithm is:  



 
 

 
 

Table 5. 1: Parity check matrix of the (16,6) Hamming SEC-DED code. 

 

From the matrix the check bit equations can be extracted as follows: 

 

C1=P1 P2 P4 P5 P7 P10 P12 P14 P16  

C2=P1 P3 P4 P6 P7 P9 P10 P13 P14 

C3= P2 P3 P4 P8 P9 P10 P15 P16 

C4=P5 P6 P7 P8 P9 P10  

C5=P9 P10 P11 P12 P13 P14 P15 P16 

C6= P1 P2 P3 P4 P5 P6 P7 P8 P9 P10 P11 P12 P13 P14 P15 P16 

 

5.2.2 Hamming example. 
 

The construction of a Hamming code with 8 information bits is given below. It can be 

seen from the hamming relationship that if info word is 8 then 4 check bits appended to 

the information bits for a single bit correction. With the red colour we see the bit 

positions of the code. 

Info word:1 1 0 0 0 1 0 0 

 

 

The bit positions corresponding to powers of 2 are used as check bits P1, P2, P3 and P4, 

respectively. The other bit positions correspond to the data bits. 

  C1 C2 P1 C3 P2 P3 P4 C4 P5 P6 P7 P8 C5 P9 P10 P11 P12 P13 P14 P15 P16 C6 
C1 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 
C2 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 
C3 0 0 0 1 1 1 1 0 0 0 0 1 1 1 1 0 0 0 0 1 1 1 
C4 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 
C5 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1 1 
C6 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 

P1 P2 1 P3 1 0 0 P4 0 1 0 0 



 
 

 
 

To calculate the check bits we use the Hamming matrix and we implement the bellow 

equations. 

P1=XOR of (3, 5, 7, 9, 11) =0 

P2=XOR of (3, 6, 7, 10, 11) =0 

P3=XOR of (5, 6, 7, 12) =1 

P4=XOR of (9, 10, 11, 12) =1 

So the result word appears bellow. 

001110010100 

Now suppose that the encoded word is stored in a memory and on a read operation the 

information bit in position 3 changes from 0 to 1.  

11100100 

To determine if there has been a bit inversion in the data, the parity check bits are 

regenerated and compared with the check bits generated when storing the data in 

memory. The new check bits are P1’P2’P3’P4’=0101. So the result word now is  

011011010100 

To find the location of the erroneous bit a syndrome vector is calculated as given below.  

S1 =XOR (P1,P1’) 

S2 =XOR (P2,P2’) 

S3 =XOR (P3,P3’) 

S4 =XOR (P4,P4’) 

Therefore the error address is 0110 (6th bit) and from the word  

011010010100 



 
 

 
 

Information bit 3 must be inverted. In the case that, the error address is all 0s, no bit 

error has occurred in the stored word. This method it’s only to investigate if an error 

occurred in the information and in the ECC bits. Hence, it can protect also if we have an 

erroneous bit at the ECC code.     

 

5.3  Hsiao code. 
 

Hsiao code [14] is another code for single-error correction and double error detection. It 

is equivalent to the Hamming code in the sense that both codes require the same number 

of  check  bits  for  a  specific  data  word  length.   Hsiao  code  is  different  from Hamming 

code  in  a  way  that  it  is  simpler  to  implement  and  indicates  that  this  code  is  better  in  

performance, cost and reliability than the conventional Hamming SEC-DED codes. This 

is also the reason that Hsiao code is suitable for applications to computer memories or 

parallel systems. 

Hsiao code is based on Hamming code with some improvements by simplifying the 

hardware implementation and providing faster and better error-detection capability  

The key step of generating the well-known Hsiao code is to construct a {0,1}-check-

matrix. In order to have a SEC-DED code, the minimum weight requirement is 4, which 

implies that three or fewer columns of the H-matrix are linearly independent.  The 

reason that the required minimum weight is 4 is related with the minimum Hamming 

distance that needs to correct single bit errors and detect double bit errors.   

The following general algorithm generates a single-error correcting (SEC-SED) code 

for any number of bits. 



 
 

 
 

Similar  with  Hamming code  the  selection  of  the  columns  of  the  H-matrix  for  a  given  

number of information bits and check bits is based on the following algorithm. So the 

main idea is to construct an H-matrix in a way extract the check bit equation for every 

code. The difference from Hamming code is that the matrix resulting from the algorithm 

is fixed and does not change from code symbol to code symbol. Unlike the matrix for 

Hsiao  code  is  not  fixed  but  it  can  be  constructed  in  a  way to  satisfy  some constrains.  

Depending on the needs, the selection of H-matrix maybe changed depending on the 

characteristics of a data stored in memory.     

5.3.1 General algorithm. 

The algorithm is based on the constrains mentioned above.  So the parity check matrix 

for the Hsiao code is constructed as follows: 

1. There are no all-0 columns.  

2. Every column is distinct. 

3. Every column contains an odd number of 1’s (hence odd weight).  

The first two constrains give a Hamming distance-3 code and the third constrain 

guarantees the code thus generated to have Hamming distance 4.  

The third constrain also is responsible for odd-weight-column codes. Therefore, 

choosing a minimum odd-weight for the number of 1’s, the total number of 1’s in 

every row are the minimum. So if all the rows have the minimum number of 1’s and 

equal to each other, then we have the fastest encoding and error detection in the 

decoding process. Also in this situation the hardware that required for 

implementation is less. Less hardware also means better reliability and lower cost. 



 
 

 
 

For example, if the implementation requires less hardware it has less chance to 

failure, since every circuit has an intrinsic failure rate.  

Specifically, the above third constrain can extended to give the actual construction 

procedures providing a minimum odd-weight-column code.  

  So the parity check matrix now for the Hsiao code is constructed as follows: 

1. There are no all-0 columns.  

2. Every column is distinct. 

3. Every column contains an odd number of 1’s (hence odd weight).  

a. Every column should have an odd number of 1’s; i.e., all column vectors 

are of odd weight. 

b. The  total  number  of  1’s  in  each  row  of  the  H-matrix  should  be  a  

minimum. 

c. The minimum number of 1’s in each row of the H-matrix should be 

equal,  or  as  close  as  possible,  to  the  average  number,  i.e.,  the  total  

number of 1’s in H divided by the number of rows.     

 The construction of a Hsiao code with 8 bit information word is given below. It can be 

seen from the relationship that if m=8 then we need k=4 check bits appended to the 

information bits for a single bit correction. The bit position of the code are labelled with 

numbers 1 through 12. 

Bit positions 1 2 3 4 5 6 7 8 9 10 11 12 
Bit names P1 P2 P3 P4 P5  P6  P7 P8 C1 C2 C3 C4 
 



 
 

 
 

The bit positions from 9 to 12 are used as check bits c1,c2 ,c3 and c4, respectively. The 

other bit positions correspond to the data bits P1 to P8. 

One parity check matrix for the Hsiao single error correction double error detection 

code with 16 information bits and 6 check bits that becomes from the above algorithm 

is:  

Table 5. 2: Parity check matrix of the (16,6) Hsiao SEC-DED code. 

 

Here, it’s good to mention that there is more than one construction for that parity check 

matrix but randomly chosen this applying the minimum odd-weight which is 3.   

From the above matrix the check bit equations can be extracted as follows: 

C1=P1 P2 P3 P4 P5 P6 P11 P15  

C2=P1 P2 P3 P7 P8 P9 P10 P13  

C3=P1 P5 P7 P8 P9 P14 P15 P16  

C4= P6 P7 P10 P11 P12 P14 P15 P16  

C5= P2 P4 P8 P10 P11 P12 P13 P14   

C6= P3 P4 P5 P6 P9 P12 P13 P16  

Some observations from the above equations are that we can observe that each data bit 

can affect three check bits. For example P1 affect C1, C2 and C3. With the same way 

P11 affect C1, C4 and C5. This observation is very important because explain the proof 

of the single error correction double error detection property.  Another observation that 

  P1 P2 P3 P4 P5 P6 P7 P8 P9 P10 P11 P12 P13 P14 P15 P16 C1 C2 C3 C4 C5 C6 
C1 1 1 1 1 1 1 0 0 0 0 1 0 0 0 1 0 1       
C2 1 1 1 0 0 0 1 1 1 1 0 0 1 0 0 0  1      
C3 1 0 0 0 1 0 1 1 1 0 0 0 0 1 1 1   1     
C4 0 0 0 0 0 1 1 0 0 1 1 1 0 1 1 1    1    
C5 0 1 0 1 0 0 0 1 0 1 1 1 1 1 0 0     1   
C6 0 0 1 1 1 1 0 0 1 0 0 1 1 0 0 1      1 



 
 

 
 

results from the equations is that the matrix is constructed in a way that taking two data 

bits affect 5or less check bits but no more.   

To  highlight  the  comparison  between  the  algorithms,  Hamming  and  Hsiao  we  

summarize the number of XOR gates that we need for each check bit.  

Check bit Hamming Hsiao 
C1 8 7 
C2 8 7 
C3 7 7 
C4 5 7 
C5 7 7 
C6 15 7 
 

Table 5. 3: Number of XOR gates for each code. 

As can been seen from the above table Hsiao algorithm use less XOR gates than 

Hamming. It is shown that Hsiao codes may be constructed that always have fewer 1s 

than Hamming codes and thus require less implementation logic. Higher processing 

speeds can be achieved, since logic depth is reduced by eliminating the need for a parity 

bit across all of the data and check bits for double error detection. 

5.3.2 Hsiao example. 
 

The construction of a Hsiao code with 16 information bits is given below. It can be seen 

from the relationship that if info word is 16 then 6 check bits appended to the 

information bits for a single bit correction.  

 

 

To calculate the check bits we use the H-matrix and we do the bellow equations. 

Bit positions 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 
Info word 1 1 0 0 0  1  0 0 1 1 0 0 0 1 0 0 



 
 

 
 

C1=XOR of (1, 2, 3, 4, 5, 6, 11, 15) =1 

C2= XOR of (1, 2, 3, 7, 8, 9, 10, 13) =0    

C3= XOR of (1, 5, 7, 8, 9, 14, 15, 16) =1  

C4= XOR of (6, 7, 10, 11, 12, 14, 15, 16) =1  

C5= XOR of (2, 4, 8, 10, 11, 12, 13, 14) =1   

C6= XOR of (3, 4, 5, 6, 9, 12, 13, 16) = 0 

 

So the result word appears bellow. 

1100010011000100101110 

Now suppose that the encoded word is stored in a memory and on a read operation the 

information bit in position 3 changes from 0 to 1.  

1110010011000100101110 

To determine if there has been a bit inversion in the data, the parity check bits are 

regenerated and compared with the check bits generated when storing the data in 

memory. The new check bits are C1’C2’C3’C4’C5’C6’=011111. So the result word 

now is  

1110010011000100011111 

To find the location of the erroneous bit a syndrome vector is calculated as given below.  

S1 =XOR (C1,C1’) 

S2 =XOR (C2,C2’) 

S3 =XOR (C3,C3’) 

S4 =XOR (C4,C4’) 

S5 =XOR (C5,C5’) 

S6 =XOR (C6,C6’) 

 



 
 

 
 

It can be seen that the syndrome bits match with the third column from the left in the 

parity matrix, identifying d3 as an erroneous bit.  

Next, we can consider a double-bit inversion. For example, information bit 3 and 4 

changed from 00 to 11. Then the recomputed check bits are: 

1111010011000100011111 

The resulting syndrome bits are:  

010010 

As we can see the syndrome provides a column that does not match with any column of 

the parity check matrix and the vector of the modulo-2 addition that results has an even 

number of 1’s. So we understand immediately that a double bit error is presented.  Note 

that the syndrome vector matches with the XOR of columns d3d4 in the parity check 

matrix (d3d4 are the bits where bit-inversions were inserted).   

 

 

5.4  Selecting Error Correction Codes to Minimize Power in Memory Checker 
Circuits. 
 

The main objective of this paper that proposed from Shalini Ghosh [20] is to reduce 

power consumption in single error correcting, double error detecting checker circuit that 

perform memory ECC. Power is minimized with a little or no impact on area and delay, 

using the degrees of freedom in selecting the parity check matrix of the error correcting 

code.  They proposed two approaches that are based to select the appropriate H-matrix 

using the degrees of freedom in selecting the H-matrix. These degrees of freedom are 

depending to the simple permutations to matrix columns.   
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Chapter 6 

Lazy Based Fault Detection for Memory Arrays (LBFD). 

 
This Chapter is based on [22]. 

The reduction of power consumption that required for fault detection in memory arrays 

has been the subject of several previous papers.  

The main objectives of these proposals were to achieve the power reduction using 

several techniques. The most relevant paper of this work is discussed below. 

Very relevant to our work is the unpublished paper that submitted at the 39th 

International Symposium on Computer Architecture (ISCA 2012)  by Yanos Sazeides et 

al. [21] that   introduces a lazy approach for fault detection in memory arrays enabling 

techniques that trade-off between a memory array’s fault-detection latency-coverage 

and energy-area. In general LBFD approach is only capable for fault detection. 

Therefore  it  cannot  correct  faults  in  the  array.  This  approach  relies  on  the  read-write  

memory array invariance. This means that every write to an array location is preceded 

by a read. The concept of this approach is that without checking for faults on reads but 

only on writes can reduce the overheads that required for fault detection in memory 

arrays.   

On  a  write  the  error  code  of  the  value  that  is  being  overwritten  is  computed  and  

compared with the exciting one. If is error free the error code of the new value is 

computed and stored in the array.  The reason that is called lazy based approach is that 

with this mechanism it can’t be evident the delay for two consecutive writes.   

minimize this delay the authors proposed an array sweep [5] to detect faults that are not 



 
 

 
 

overwritten, after a given number of instructions.  Sweep operation use an algorithm to 

scan the content of a cache of a point set. Interval sweeping, around of 1 million cycles 

and more has negligible performance impact for all core arrays [19].    

LBFD approach can be applied to arrays that contain architectural state only to detect 

faults. For error correction LBFD can naturally be combined with numerous hardware 

and software based variants of backward error recovery (BER) that have been proposed. 

The general idea of BER based schemes is to maintain a checkpoint of a validated 

previous state of the system which can even be the initial programme state that can 

revert to in the case of detecting failures. 

Nonetheless,  our  work  is  distinct  because  it  is  an  extension  of  the  LBFD approach  to  

further reduce energy.  

In Figure 6.1 we show the LBFD operation during a write access, assuming a 4-way 

associate cache. The Figure 6.2 shows the LBFD operation during a read access.    

As can be seen from Figure 6.1 a normal write has to be done. In this case no energy is 

saved since column is accessed in normal way. In Figure 6.2 energy is saved since there 

is no need to read and drive the ECC bits out for checking. 

 



 
 

 
 

 

Figure 6. 1: 4-way associative cache-write access. 

 

 
Figure 6. 2: 4-way associative cache-write access. 

 

 

 



 
 

 
 

6.1  Adaptive scheme. 

 
Since the benefit of LBFD depends on the dynamic program behaviour (reads vs writes) 

and sweep overhead, we propose to extend the dual mode protection at the granularity 

of intervals. An adaptive algorithm considers at the end of each interval, depending on 

the number of different types of accesses, if the LBFD based scheme has advantage 

over the baseline and decides what protection mode to use for the next interval. This 

algorithm shows the benefits that the LBFD scheme has over the baseline scheme. 

The psefdokodik of the algorithm is: 

If energy_prev_in_lbfd > energy_now_in_baseline 

then choose  baseline; 

else choose lbfd; 

 

 

 
 

 

 

 

 

 

 

 

 

 



 
 

40 
 

Chapter 7 

Error Detection Code Sharing (EDCS) 

 

7.1  EDCS Approach. 
 

As  we  told  before,  the  EDCS  approach  is  an  approach  that  is  in  lieu  with  the  LBFD  

approach. The main key of this approach is that EDCS protects multiple data words 

using the same code instead of having one code per data word. This can reduce leakage 

energy by power gating the EDC codes.     

 
EDCS  is  also  an  error  detection  approach  that  introduced  for  arrays  to  protect  the  

architectural arrays. Because is an extension of the LBFD approach inherits the basic 

characteristics of this approach with some exceptions.   

 So all writes accesses to an array become a read followed by a write. The first 

difference from the LBFD approach is that no error checking is performed on regular 

writes before it is overwritten.  The only checking is enabled during an array sweep.   

We refer to this read followed by a write as a read-to-remove and denote it henceforth 

as R2R. A R2R before a write is used to remove the code of the current value, about to 

be overwritten, from the shared code whereas a write adds the code of the new value in 

the shared code. To implement the additional/removal of a code from the shared code 

we xoring the two together. This implies that (i) if a value remains the same between a 

write  and  a  R2R,  its  code  will  also  be  the  same  and,  therefore,  by  xoring  it  twice  its  

effects are removed from the shared code, and (ii) at any given time the shared code is 



 
 

 
 

equal to the xor of the codes of all values sharing the code.  In principle EDCS can be 

stretched as far as to protect a whole array with a single code. e.g. a parity bit or a 

SECDED code. 

One  drawback  of  EDCS  over  LBFD  is  that  for  typical  codes,  such  as  parity  and  

SECDED, it  can not detect  errors when reading a word, all  words that sharing a code 

need to be read to check that their overall xor matches the shared code. This requires all 

shared codes to have a known value at  initialization. Therefore,  with EDCS it  is  more 

efficient to check for errors only during sweep and not before every write. This increase 

in the failure detection latency may be acceptable if EDCS provides significant savings.  

To highlight the difference between the two approaches it is good to present an example 

that is showing the basic functionality of these techniques.   

We illustrate the LBFD and EDCS operation during an interval in Figure 7.1 assuming 

a 4x8 array that contains initially all zeros and assuming even parity protection. At the 

initial state the parity for the entire array is zero. Each write access is denoted by a Wi[j] 

with i representing the write entry and j representing the write value.  Similarly Ri[j] 

denotes reading from entry i the value j. In order to keep updating correctly the parity, a 

R2R is added before every write. The figure shows how in case of a single error in the 

array it is detected when the faulty entry is read by the baseline scheme, when it is 

overwritten in the case of LBFD, and during the sweep with EDCS. 

 

 

 

 



 
 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 7. 1: (a) Baseline, (b) LBFD, and (c) EDCS techniques. 

 

7.2  EDCS for Caches. 
 

The  EDCS  approach  can  be  applied  to  arrays  that  contain  architectural  state.   To  

provide  how  EDCS  can  be  used  to  detect  faults  in  tag  and  data  arrays  for  caches  we  

made the following assumptions: a) the arrays are either protected with byte parity or a 



 
 

 
 

SEC-DED code, b) the data are stored in logic blocks in the cache where each block are 

consisted from 64bits data, and c) the cache is n-way associated cache. 

EDCS potential benefits come from that it use one code word to protect multiple data 

words. However, this means that the area that is used to store the EDC codes may be 

disabled.  Figure 7.2 presents the logical organization of a cache using the EDCS 

technique for a way that the EDC bits are not used. The gray colour is used to represent 

the disabling of EDC codes as shown in the figure.   

 

 

 

 

 

Figure 7. 2: Logical organization of a cache using the EDCS technique. 

 

Figure 7.3 illustrates the completely logical organization of a cache using the EDCS 

technique during write access, respectively. We choose to not show the logical 

organization of a read access because is the same with the LBFD approach. 
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Figure 7. 3: 4-way associative cache-write access. 

 

As we can see from the Figure 6.3 in the case of a write access, there is no need to write 

and drive the EDC bits in all ways. There is only a need to store the EDC bits in one 

way,  so  since  the  full  swing  is  avoided  to  write  the  error  detection  bits,  the  resultant  

precharge is also avoided for n-1 ways.  As we explain above every write to an array 

location is preceded by a read.  Figure 6.3 shows the operation of a write access. With 

the grey colour are the columns that are disabled. As we can see from the figure there is 

only one way to store the EDC bits during the write access. Thus no energy is spent in 

bitlines, senseamps and the associated multiplexers.  In this case energy is saved since 

there is no need to output the EDC bits for checking and input the EDC bits to all the 

ways.     

The implementation of this approach refers to the technique of staking off transistor 

source to drain. So using the Gated-Vdd transistor stacking technique we manage to 



 
 

 
 

keep the transistors that enables the EDC bits in a sleep mode. This transistor gates the 

ground. In normal operation this transistors are on. Turning the transistors off 

disconnects the SRAM cells from the power supply and we reduce the leakage 

consumption.            

 
 
Like LBFD, EDCS can allow a value with a detectable error to be read and propagated 

until the sweep phase at the end of the interval. When this value comes from an array 

containing architectural state, such as a cache, this can result in state corruption, 

program hang, program abort, and even system crash, in the last three cases without 

ever getting to the sweep!  

So to solve these problematic situations, EDCS approach for architectural arrays can 

naturally be combined with numerous hardware and software based variants of 

backward error recovery (BER) that have been proposed or adopted. The general idea of 

BER  based  schemes  is  to  maintain  a  checkpoint  of  a  validated  previous  state  of  the  

system, which can even be the initial program state, which can revert to in the case of 

detecting a failure. BER schemes are capable of recovering from corrupted state, hangs, 

program aborts etc. Such approaches are widely used and adopted for cloud based 

computing.  
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Chapter 8 

Experimental Framework and Results 
 

 

8.1  Experimental Framework 
 

The experiments in this work were performed using benchmarks from the SPEC2000 

and, suites with train or reference inputs. All benchmarks are compiled with gcc with -

O3 optimizations. The simulator sim-alpha [22] was extended to perform measurements 

using a high performance out-of –order superscalar processor. For architectural arrays 

we evaluate the EDCS scheme to measure the times that EDCS scheme is used and how 

many reduction we can achieve at the leakage power by the tag and data arrays of three 

different caches: L2 data, L1 instruction and serially accessed L2. For these experiments 

we access the importance of three instruction interval lengths-100K -instructions 

between sweeps. The energy numbers for the architectural array analysis are obtained 

using CACTI [16] modelling 32nm. For all the experiments we report the results for all 

the bencmarks.     

We analyze also the fault coverage using mathematical formulas and some form of 

coding for a specific array configuration: a 64KB data cache, with 512 bit data and 8 bit 

code for each 64 bit data. We compare the following four techniques to each other: Byte 

Parity, SEC-DED code, Global Parity and Global SEC-DED. 

 

 

 



 
 

 
 

8.2  Results 
 

8.2.1  Energy Savings from using EDCS for different Caches 
 

In this Chapter we present the results for each array and benchmark for three interval 

length.  

We propose like LBFD to extend the dual mode protection at the granularity of the 

intervals. An adaptive scheme considers at the end of each interval, depending of the 

number  of  different  types  of  accesses,  if  the  EDCS based  scheme has  advantage  over  

the baseline and decides what protection mode to use for the next interval. 

In  general  the  benefits  of  the  EDCS  technique  are  become  if  we  don’t  have  a  lot  of  

changes from a mode to the other.    

Figure 8.1 presents how many times we change the mode for each array and benchmark 

for 100K interval length. This interval length was selected, because selects more times 

the EDCS mode than the baseline and, therefore, more likely to benefit from the 

techniques proposed in this report.  
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Figure 8. 1: Times that we change the mode for each array and benchmark for 
100K interval length.  
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There results are taken using the interval algorithm that we explain in the Chapter 6. 

The results shown that the EDCS can be used in all the arrays and provide leakage 

savings  except  the  L2 data  and  tag  array  that  uses  more  time the  Baseline  mode  .  L2  

data works only in the baseline mode for all the benchmarks so it is not efficient to 

evaluate the EDCS approach for this array. For the L2 tag array we obtain that in some 

benchmarks use EDCS approach more than the baseline but it is also non efficient to 

implement the EDCS technique for this array because fort the most bencmarks it is turn 

only in the baseline mode. Therefore, we can use this approach for L1 DCache and L1 

ICache for data and tag array. 

The results in Figure 8.2 present the leakage consumption for the tag and data arrays of 

three different caches provided by LBFD and EDCS techniques. For simplicity we 

present the results for one benchmark: mesa00. The results are the same for all the 

benchmarks. 

 

Figure 8. 2 : Relative leakage savings for EDCS. 
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The results show that the EDCS can provide substantial leakage savings and 

consequently total power savings in all arrays.  
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Chapter 9 

Fault coverage 
 

9.1  Fault coverage issues. 
 

The EDCS approach can be applied to architectural arrays. The coarser granularity of 

EDCS  can  translate  to  more  savings  over  LBFD  but  at  the  expense  of  lower  fault  

coverage.  The fault-coverage of EDCS method depends on the fault-behavior  and the 

granularity of protection (how many words are protected by a shared code).  By fault 

behavior we distinguish between random pfail for each cell or cluster of faults.  

We analyze the fault coverage for a specific array configuration: a 64KB data cache 

data array, with 512 bit data a\nd 8 bit code for each 64 bit data. We consider two 

baseline protection schemes byte parity and a 72-64 SECDED with the check matrix in 

[14]. For EDCS we consider arrays where multiple bytes share a parity bit (Global-

parity)  and  multiple  words  shared  the  same  8  bit  SECDED  code  (Global  SECDED).  

Recall that EDCS encodes the shared code as the xor of the code of the individual 

words.  

The formulas that we use to obtain these data are based on binomial probability and for 

the SECDED code an enumeration is needed for a given number of faults how many 

column combinations in the check matrix provide a zero syndrome [14]. 

We turn  now to  formal  mathematical  settings  for  analyzing  the  fault  coverage  for  the  

EDCS approach. Any probabilistic statements must refer.  



 
 

 
 

The main idea is to use the different techniques and try to figure out the probability to 

detect the errors. We illustrate multiple two scenarios, one for a given number of fails 

and the other is for a random cell pfail. We present only the scenario with a random cell 

pfail because is more generic.  

A probability space has the following inputs. 

1.  f, that is a given number of fails. 

2. n, that is the number of bits that correspond to a word plus the check bits that are 

used to protect the word. 

3. w, which is the total number of words that are protected from a code. 

4. A probability function pwf, that is the EDCS word failure to detect.    

5. pfail, that is the given probability for random cell failures. 

The pfail determines the probability to have or not a failure in a cell. 

a. Byte parity 

Some characteristics: The even-parity bit can detect only the odd number that occurs in 

a word. For example can detect 1 error, 3 errors, 5 errors,…etc. 



 
 

 
 

= (1 )  

 

b. SEC-DED (Hsiao) 

Some characteristics: ECC: Detects all the odd number faults that occurs in a word and 

two bit errors. 

= (1 )  
)
 

 

c. Global Parity  

Some characteristics: ECC: Detects all the odd number faults that occurs in a number 

words.  

= ( ( )
0 ) 

 

d. Global SEC-DED (Hsiao) 

 

= (1 )  
)
 

 



 
 

 
 

where the W(f) is the number of cases that will give the zero syndrome for all the words 

that are protected from a shared code and thus be undetected for every f. 

 

 

 

Figure 9. 1: Probability for not detecting random cell failures with pfail  

 

Figure 6.6 shows the probability of not detecting an error for a random cell pfail=10  

for the four schemes as function of the code overhead of the EDCS schemes as 

compared  to  the  baseline  cost.  When  the  cost  of  EDCS  is  1  that  mean  each  word  is  

protected by a code and behaves as the LBFD scheme. When it is 1/2 it means every 

two words are protected with 1 code etc. 

The data in Figure 9.1 clearly illustrate that EDCS schemes provide lower fault 

coverage than their respective baseline with lowering number of codes. It is interesting 

also to observe that for same code size the Global-SECDED scheme is always superior 

than Global-parity and in some case even better than the byte parity scheme. The 
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Global-SECDED scheme, however, is significantly worse than the baseline SECDED 

due to its inability to capture in some cases 2 faults. 
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Chapter 10 

Improving EDCS Fault Coverage (EDCS-LC) 
 

 

10.1  EDCS-LC Approach. 

The propose scheme opens up several directions of work including it’s more detailed 

evaluation/optimization for different applications as well as it’s combination and 

interaction with other error correction and detection techniques. The fault coverage that 

provides the EDCS scheme can be optimized.  To evaluate this optimization we propose 

another scheme that is based on the EDCS technique with some extra details to increase 

the fault coverage.   

As  we  told  before,  the  EDCS  approach  is  an  approach  that  is  in  lieu  with  the  LBFD  

approach. In particular, EDCS protects multiple data words using the same code instead 

of having one code per data word. This can reduce leakage energy by power gating 

unused codes.   

The main key is to increase the reliability that EDCS scheme provides with no impact 

on the energy savings.   

Therefore we propose the Error Detection Code Sharing using Legal Codes, (EDCS-

LC) that is an error detection approach that introduced for arrays to protect the 

architectural arrays. Because is an extension of the EDCS approach inherits the basic 

characteristics of this approach with some exceptions.   

  



 
 

 
 

The main difference in this approach is to use a vector that keeps the track of the legal 

codes that appear during an interval. Using this vector we provide further protection that 

we  had  using  the  EDCS  approach.  The  state  overhead  of  this  vector  is  2  bits  for  a  

memory array, where k is the error detection bits that used to protect a word. This 

vector keeps track of the legal codes that appear in an architectural array at any given 

time.  

In general writes accesses to an array become a read followed by a write. The difference 

from the EDCS approach is that we keep the read-to-remove and denote it henceforth as 

R2R that is used to remove the code of the current value, about to be overwritten, from 

the shared code whereas a write adds the code of the new value in the shared code but 

also we implement a read-to-check that enables the vector to keep track of the legal 

codes that appear in a memory array and also provides an error checking in the vector at 

any given time.  To bound again the detection latency between of faults, an array sweep 

can be performed, possibly periodically and at the end of the program.   

In principle EDCS-LC approach proposed to detect the errors that can not cached in the 

sweep phase. 

To highlight the difference between EDCS and EDCC-LC it is good to present an 

example that is showing the basic functionality of these techniques.   

We illustrate the EDCS and EDCS-LC operation during an interval in Figure 10.1 

assuming a 4x8 array that contains initially all zeros and assuming SEC-DEDcode  

protection. At the initial state the SEC-DED code and the vector are initialized with zero 

values. Each write access is denoted by a Wi[j] with i representing the write entry and j 

representing the write value.  Similarly Ri[j] denotes reading from entry i the value j. In 

order to keep updating correctly the SEC-DED code, a R2R for EDCS and R2RC for 



 
 

 
 

EDCS-LC is added before every write. The figure shows how in case of a single error in 

the array it is not detected from the EDCS approach but is detected from the EDCS-LC 

approach when it is overwritten. 

 

 

Figure 10. 1: (a) EDCS techniques (b) EDCS-LC. 



 
 

 
 

 

The EDCS-LC like EDCS approach can be applied to arrays that contain architectural 

state.  To provide how EDCS-LC can be used to detect faults in tag and data arrays for 

caches we made the following assumptions: a) the arrays protected with SEC-DED 

code, b) the data are stored in logic blocks in the cache where each block are consisted 

from 64bits data, and c) the cache is n-way associated cache. 

 

EDCS-LC  potential  benefits  come  from  that  it  use  one  code  word  to  protect  multiple  

data words. However, this means that the area that is used to store the EDC codes may 

be disabled.  Figure 10.2 presents the logical organization of a cache using the EDCS-

LC technique for a way that the EDC bits are not used. The gray colour is used to 

represent the disabling of EDC codes as shown in the figure.  The organization of the 

vector  illustrates  in  Figure  10.2  It   has  one  column  and  one  row  for  all  the  

corresponding EDC code. 

 

Figure 10. 2: Logical organization of a cache using the EDCS-LC technique. 

Figure 10.3 illustrates the completely logical organization of a cache using the EDCS-

LC technique during write access, respectively. We choose to not show the logical 

organization of a read access because is the same with the LBFD approach. 



 
 

 
 

 

 

Figure 10. 3: 4-way associative cache-write access. 

As we can  see  from the  Figure  10.3  in  the  case  of  a  write  access,  there  is  no  need  to  

write and drive the EDC bits in all  ways like EDCS. There is  only a need to store the 

EDC bits in one way, so since the full swing is avoided to write the error detection bits, 

the resultant precharge is also avoided for n-1 ways.  The organization of the vector, is 

similar to an ECC array. For all the possible codes the vector has a corresponding row 

for that EDC code.  

The operation of the vector is as follows: 

Store hit in a memory array: Read the overwritten data and compute the EDC from the 

cache. Check if the EDC codes belong to the legal codes in the vector. If not we have an 

error. Write data in the array and update the vector with the new code.  

 

 



 
 

 
 

The EDCS-LC approach can be applied to architectural arrays. The fault-coverage of 

EDCS-LC method depends to the EDC codes that appear during an implementation at a 

given time.  To measure how we increase the fault coverage we have to keep track of 

the codes that appear in a cache at a given time, this is not in this thesis purposes but 

propose  for  future  work.  In  the  next  Chapter  we  do  some  analysis  for  the  codes  to  

minimize the appearance of the legal codes at any given time. Assume for example that 

we have a space with 2k points that represent all the EDC codes. Figure 10.4 shows 

these  points  with  black  colour.   A sphere  defines  as  that  all  the  points  that  are  on  the  

surface are the legal codes that we can see at a given time in a cache array. The other 

codes are the illegal codes that at a given time it does not obtained in the cache array. In 

fact we are trying to minimize the sphere radius and consequently the legal codes. 

Figure 10.5 shows this operation.       

 

 

 

 

Figure 10. 4: Geometrical model that represents the EDC.   

 

 

 

 

 

Figure 10. 5: Geometrical model that represents the EDC. 

This in turn means that our technique may increase scientifically the fault coverage. 
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Chapter 11 

Analyzing Error detecting and Correcting Codes  
 

11.1  Evaluation of  Hsiao code. 
 

Clearly, a clever algorithm is needed, to select the best codewords, and to verify them 

on  the  fly,  as  they  are  being  read.  In  the  write  access  should  use  the  algorithm  to  

generate the codewords when they have to be store, and in the read access should use it 

to check them when they are load. The approach described here is due to an offline 

analysis of the SEC-DED codes that are described in Section 4. This offline analysis it 

had be done to help us to minimize the appearance of the legal codes that appear in a 

cache array at any given time.  This is done in many ways, all of them involving some 

form of coding. 

Hsiao is code for single-error correction and double error detection. It is equivalent to 

the  Hamming  code  in  the  sense  that  for  specified  number  k  of  data  bits  we  used  the  

same  number  of  check  bits.   This  code  it  used  more  in  hardware  because  is  better  in  

performance, cost and reliability than Hamming code. Based on that we focused our 

analysis more on Hsiao algorithm than Hamming. 

 

11.2  Distribution of the different ECC codes. 
 

One important issue is to investigate the behaviour of 128 codes.  Therefore we 

calculate and plot the ECC code for all the 232 data. 



 
 

 
 

Figure 11.1 shows the appearance of each ECC code for different data for Hsiao. The x-

axes shows the different data and the y-axes shows the different ECC codes in integer 

form. With the red colour we see the appearance of each ECC code and with the white 

colour we see the range that respectively ECC don’t appear.    

The  data  show  that  the  appearance  of  the  128  ECC  codes  in  Hsiao  algorithm  is  

distributed.  

 

 

 

 

 

 

 

 

Figure 11. 1: Appearance of ECC codes using initial Hsiao 

 

11.3   Distance of the different ECC codes. 
 

As we can obtain from the previous graph, different data words can have the same ECC 

code. This is logic because the ECC bits that are used for protection are less than the 

corresponding data bits.  



 
 

 
 

I consider the distances which is the number between two data words that have the 

same ECC code, if were listed in ascending order.  

Figure 11.2 depicts the cumulate graph that shows many times each distance appears for 

every code in Hsiao algorithm. The x-axes shows the different distances and the y-axes 

shows how many times each distance appears. 

 

 

 

 

 

 

 

 

Figure 11. 2: Cumulate graph that shows many times each distance appears for 
every code in Hsiao algorithm 

As can be extracted from Figure 11.2 the maximum distance for Hsiao is 600.  

11.4   More analysis in Hsiao algorithm. 
 

As we mention above is more efficient to investigate and processed the Hsiao code 

because it used more often in computer memories for it’s better performance, cost and 

reliability.  



 
 

 
 

We know that the H-matrix for Hsiao algorithm is not constant but it can be built from 

some requirements, unlike with Hamming that the algorithm builds only one constant 

matrix. So how we can know that the matrix we use is the most appropriate? 

11.5  Investigating the H-Matrices for Hsiao Algorithm.  
 

Table 11.1 shows the parity-check matrix for 32 data bits and 7 check bits. Assuming 

d0,d1,d2,d3,…,d31 are the information bits, and the c0,c1,c2,…,c6 are the check bits as 

shown below. Note that there are 32 rows corresponding to 32 of the 35 possible 

combinations of 3-out-of-7.  The total number of 1’s in the H-matrix, therefore is equal 

to (3*32)=96 and the average number of 1’s in each column is equal to 96/7 14.   

 

 

 

 

 

 

 

 

 

Table 11. 1:  Parity check matrix of the (39,32) SEC-DED [14] 

 

 C0 C1 C2 C3 C4 C5 C6 
d0 1 0 0 0 0 1 1 
d1 1 0 0 0 1 0 1 
d2 1 0 0 1 1 0 0 
d3 1 0 1 0 0 0 1 
d4 1 1 0 0 0 0 1 
d5 1 0 0 0 1 1 0 
d6 1 0 0 1 0 1 0 
d7 1 1 0 0 1 0 0 
d8 0 1 0 0 0 1 1 
d9 0 1 0 0 1 0 1 

d10 0 1 0 1 0 0 1 
d11 0 1 1 0 0 0 1 
d12 0 1 0 0 1 1 0 
d13 0 1 0 1 0 1 0 
d14 1 1 0 0 0 1 0 
d15 0 1 0 1 1 0 0 
d16 0 0 1 1 0 1 0 
d17 0 0 1 0 0 1 1 
d18 0 1 1 0 0 1 0 
d19 1 0 1 0 0 1 0 
d20 0 0 1 0 1 1 0 
d21 0 1 1 0 1 0 0 
d22 1 0 1 0 1 0 0 
d23 0 0 1 0 1 0 1 
d24 1 1 0 1 0 0 0 
d25 0 0 0 1 1 0 1 
d26 0 0 1 1 1 0 0 
d27 0 0 1 1 0 0 1 
d28 0 0 0 1 1 1 0 
d29 0 1 1 1 0 0 0 
d30 1 0 1 1 0 0 0 
d31 1 0 0 1 0 0 1 



 
 

 
 

11.6  Permutation Function. 
 

The function that propose in this thesis maximizes the distances of the codes in Hsiao 

algorithm. Distances are maximizing with no impact on area and delay. 

The key issue is to select the H-matrix in a way to maximize the distances of the 

appearance of the same codes. For odd-weight columns codes there is a degree of 

freedom in  selecting  the  H-matrix  that  can  be  used.  This  degree  of  freedom is  simply  

permuting the columns.  This has no impact on area or delay as it does not change either 

the total number of 1’s in the H-matrix or the balancing of 1’s among the rows.  

The goal is to take the initial matrix that Hsiao provide us in his paper and apply an 

optimization technique that it depends from some permutations. 

First we start doing some trivial permutations to the matrix for example moving one bit 

position to another. To see all the general behaviour I made all possible combinations 

for this permutation. Notice that with this simply permutations we don’t have huge 

changes to the distance but we have some changes.  

Then, a matrix sorting is performed. The approach is to select a parity check matrix 

using some properties and implement the corresponding check matrix to maximize the 

distances. For this reason we propose some permutations. We can see the new matrix 

below.   



 
 

 
 

 

 

 

 

 

 

 

 

 

 

 

Table 11. 2: Permuted parity check matrix of the (39,32) SEC-DED. 

Figure 11.3 shows the data bits that each ECC code appears using the permuted matrix. 

We obtain that in large data set some codes don’t appear. Compared to the Hamming 

code the range again is not too large but we can see a big difference, so this method 

shows excellent results.    

 

 

 

 

 C0 C1 C2 C3 C4 C5 C6 

d0 1 1 0 1 0 0 0 
d1 0 1 1 1 0 0 0 
d2 1 0 1 1 0 0 0 

d3 1 0 0 1 1 0 0 
d4 0 1 0 1 1 0 0 
d5 0 0 1 1 1 0 0 
d6 1 1 0 0 1 0 0 
d7 0 1 1 0 1 0 0 
d8 1 0 1 0 1 0 0 
d9 1 0 0 0 1 1 0 

d10 0 1 0 0 1 1 0 

d11 0 0 1 0 1 1 0 
d12 0 0 0 1 1 1 0 
d13 1 0 0 1 0 1 0 
d14 0 1 0 1 0 1 0 
d15 0 0 1 1 0 1 0 
d16 1 1 0 0 0 1 0 
d17 0 1 1 0 0 1 0 
d18 1 0 1 0 0 1 0 

d19 1 0 0 0 0 1 1 
d20 0 1 0 0 0 1 1 
d21 0 0 1 0 0 1 1 
d22 1 0 1 0 0 0 1 
d23 1 1 0 0 0 0 1 
d24 0 1 1 0 0 0 1 
d25 0 1 0 1 0 0 1 
d26 0 0 1 1 0 0 1 

d27 1 0 0 1 0 0 1 
d28 0 0 0 1 1 0 1 
d29 1 0 0 0 1 0 1 
d30 0 1 0 0 1 0 1 
d31 0 0 1 0 1 0 1 



 
 

 
 

 

 

 

  

 

 

 

Figure 11. 3: Appearance of ECC codes using permuted Hsiao 

Figure 11.4 shows the distribution of the distances. In the x axis I plot each distance and 

in the y-axis I plot how many times each distance appears for all the 128 ECC codes. 

 

 

 

 

 

 

 

Figure 11. 4: Cumulate graph that shows many times each distance appears for 
every code in Hsiao algorithm 



 
 

 
 

Compared the two algorithms, the Hsiao with the permuted has greater maximum 

distance from Hsiao with the initial matrix. The maximum distance now from 600 it 

began about 1,000,000.   

It can be easily shown that this operation is a valid operation because we don’t ignore 

some special properties that the codes give us, for example the ability of detection and 

correction.  To see this it’s better to make an example.  So let us to develop a single 

error correcting code for k=8. The number of bits required to correct single bit and 

detect double bit inversions is r = 5. The permuted parity check matrix for the initial 

(16, 22) Hsiao code, it shown below. 

  C0 C1 C2 C3 C4 C5 C0 C1 C2 C3 C4 C5 
d0 0 0 0 1 1 1 1 1 1 0 0 0  
d1 0 0 1 1 0 1 1 1 0 0 1 0  
d2 0 0 1 1 1 0 1 1 0 0 0 1  
d3 0 1 0 0 1 1 1 0 0 0 1 1  
d4 0 1 0 1 1 0 1 0 1 0 0 1  
d5 0 1 1 0 0 1 1 0 0 1 0 1  
d6 0 1 1 0 1 0 0 1 1 1 0 0  
d7 0 1 1 1 0 0 0 1 1 0 1 0  
d8 1 0 0 0 1 1 0 1 1 0 0 1  
d9 1 0 0 1 0 1 0 1 0 1 1 0  

d10 1 0 0 1 1 0 1 0 0 1 1 0  
d11 1 0 1 0 0 1 0 0 0 1 1 1  
d12 1 0 1 1 0 0 0 1 0 0 1 1  
d13 1 1 0 0 0 1 0 0 1 1 1 0  
d14 1 1 0 0 1 0 1 0 1 1 0 0  
d15 1 1 1 0 0 0 0 0 1 1 0 1  

From the matrix the check bit equations are derived as follows: 

C0= d8 d9 d10 d11 d12 d13 d14 d15 

C1= d3 d4 d5 d6 d7 d13 d14 d15 

C2= d1 d2 d5 d6 d7 d11 d12 d15 

 C3= d0 d1 d2 d4 d7 d9 d10 d12 

C4= d0 d2 d3 d4 d6 d8 d10 d14 



 
 

 
 

C5= d0 d1 d3 d5 d8 d9 d11 d13 

For example if,  

d0d1d2d3d4d5d6d7d8d9d10d12d13d14d15=0011001100110011 

then the parity check bits are  

C0C1C2C3C4C5=011010 

Now let us assume bit d6 has changed from 1 to 0.  

d0d1d2d3d4d5d6d7d8d9d10d12d13d14d15=0011000100110011 

The check bits can be recomputed as: 

C0’C1’C2’C3’C4’C5’=000000 

Therefore the syndrome bits are:  

e0e1e2e3e4e5=011010 

It can be seen that the syndrome bits match with the seventh row in the parity matrix, 

identifying d6 as an erroneous bit. 

It can be seen that the syndrome bits match again with the seventh row in the new parity 

matrix, identifying d6 as an erroneous bit. 

Overall, our example demonstrate that optimizing the input permutations of the H-

matrix of the memory ECC give us significant increase of distance, while 

simultaneously keeps the correctness of the algorithm.  

Concluding it is evident that we minimize the legal codes for EDCC-LC approach.  
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Chapter 12 

Conclusions and Future Work  
 

This thesis introduces the notion of error detection codes and proposes EDCS and 

EDCS-LC mechanisms that are new approaches for memory array protection that does 

not check for errors on a read but lazily before a value is overwritten or during an array 

sweep.  

EDCS, is a mechanism that uses one code word to protect multiple data words for 

further reduction of energy and possible area used for memory array protection.  Overall 

our experimental results for an out-of-order processor with an n-way cache demonstrate 

that the reduction of leakage consumption is almost to a. This, however, may come at 

the expense of lower fault-detection coverage. 

Therefore we propose also the EDCS-LC approach that increases the fault detection 

coverage. The key idea of this approach is that uses one vector that keeps track of the 

legal error detecting codes that appear in the architectural arrays at any given time. 

Analysis of error detection codes shows that we can minimize the EDC codes that 

appear in an architectural array and consequently the propose technique increase the 

fault coverage.  

 

  The thesis points to several direction of future work. One is to implement the dynamic 

implementation of EDCS-LC approach to measure if the fault coverage increases or not. 

One other important direction of research is to consider other policy optimizations that 

can lead to better fault coverage and reduction of energy consumption.  Finally, 



 
 

 
 

dynamic  power  complexity  issues  of  EDCS  and  EDCS-LC  techniques  need  to  be  

investigated. 
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