
ABSTRACT

MashQL is a query-by-diagram mashup language, which collects web data that are expressed in

a Resource Description Framework (RDF) and stores them into a backend database, allowing

people to query it very easily. MashQL assumes that web data sources are represented in RDF

and it can be inquired using a SPARQL query language. Resource Description Framework

(RDF) is a language for representing information (metadata) about resources in the World Wide

Web[10]. In this paper we present the design and implementation of two important modules of

the MashQL, the RDF Loader, which downloads and loads RDF data from the web into an

Oracle’s RDF model database and the Query Optimizer, which is designed for the purpose of

executing all MashQL’s queries successfully, efficiently and in a timely fashion. With the RDF

Loader, we achieved to design and implement a concrete system that includes a combination of

the market’s lasted technologies that exist in the Extract-Transform-Load (ETL) process for

RDF data, such as Oracle, Java and Jena. On the basis of these technologies, we created a

powerful, stable and intelligent RDF loader that loads any RDF data in any format and of any

size in a very short time. The Query Optimizer, implements our optimization solution in order to

provide MashQL's queries with the highest speed performance execution. Our optimization

solution includes the creation of data summaries on top of the RDF data have are already been

loaded onto the database and the BR-Algorithm that catches queries’ results regarding the most

important MashQL's queries. Using the database summaries we have the advantage of, instead of

scanning and sorting all the data during the query’s execution course, the data have already been

sorted and pre-computed. This focuses on MashQL's queries requirements matter. By using the

BR-algorithm the most important MashQL's queries acquired high response time, since their

results are had already been caught in the database. For the highest algorithm's performance

execution course, we achieved to reduce 3 times in average the original graph’s size by dividing it

in three parts using our graph's partitioning novel idea. This partition concept helps the BR-

algorithm to run faster ,producing less and more carefully caught data. Finally, our optimization

solution against MashQL’s queries has been compared with Oracle’s corresponding technology

and it presents very good results. More concretely, our solution is performing 10 times faster in

MashQL queries and 45 times faster concerning the MashQL's most important queries.

CHALLENGES IN BUILDING AN

EFFICIENT RELATIONAL ARCHITECTURE

FOR MASHQL

Michael A. Georgiou

A Thesis
Submitted in Partial Fulfilment of the

Requirements for the Degree of
Master of Science

at the
University of Cyprus

Recommended for Acceptance
by the Department of Computer Science

DEC 2010

APPROVAL PAGE

Master of Science Thesis

CHALLENGES IN BUILDING AN

EFFICIENT RELATIONAL ARCHITECTURE

FOR MASHQL

Presented by

Michael A. Georgiou

Research Supervisor ___

 Research Supervisor’s Name

Committee Member ___

 Committee Member’s Name

Committee Member ___

 Committee Member’s Name

University of Cyprus

DEC 2010

CREDITS

TABLE OF CONTENDS

Chapter 1 : Introduction ..1

1.1 Motivation and Challenges ..1

1.2 Contributions ...4

1.3 Paper Structure..6

Chapter 2 : Related Work and Technologies ...8

2.1 Background work..8

2.2 An Overview of Resource Description Framework (RDF)..12

2.3 An overview of SPARQL (SPARQL Protocol and RDF Query Language)......................13

2.4 Oracle Database RDF Technologies...14

 2.4.1 Introduction to Oracle RDF Technologies..14

 2.4.2 Oracle RDF Data Modeling..14

 2.4.3 RDF Data in the Database..15

 2.4.4 Query RDF Data...18

 2.4.4.1 SEM_MATCH attributes..19

 2.4.5 Loading RDF data in Database...19

2.5 An overview of MashQL Language...20

2.5.1 MashQL's performance considerations..23

 2.5.1.1 MashQL's RDF loading considerations...23

 2.5.1.2 MashQL's queries performance considerations...24

 2.5.1.3 Representation of RDF data in the oracle database (performance

considerations)..33

Chapter 3 : MashQL Server Design ..35

3.1 System Architecture ...35

3.2 Components Specification ...39

 3.2.1 RDF Loader..39

 3.2.1.1 The RDF Loader API..41

 3.2.1.2 URL Queue...42

 3.2.1.2.1 De-queuer Agent...42

 3.2.1.3 Download module...43

 3.2.1.4 The Jena Parser...43

 3.2.1.5 Oracle SQL*Loader Module..43

 3.2.1.6 The data source refresh module..44

 3.2.1.7 Administration console...44

3.3 Query Optimizer...46

3.3.1 The execute_query interface..47

3.3.2 Query Optimizer System Design...48

Chapter 4 : Optimization Solution ..52

4.1 Optimization Solution...52

4.2 General Background Queries Optimization Solutions..53

4.3 N-level objects and N-Level properties Background Queries Optimization Solution.......55

Chapter 5 : Experimental Methodology ...62

5.1 Summaries Implementation..62

5.2 BR-Algorithm Implementation...63

5.2 BR-Algorithm's problems...65

5.2.1 BR-Algorithm's optimization...66

 5.2.1.1 Explore fewer triples and fewer subjects...66

 5.2.1.2 Explore the graph until a constant depth...68

 5.2.1.3 Ignore graph's cycles..69

5.3 The Final implementation of a BR-Algorithm..69

Chapter 6 : Evaluation ..71

6.1 Benchmark Definition and Machine's specification...71

6.2 Experimental Results & Discussion..73

6.2.1 RDF Loader Evaluation...73

 6.2.1.1 Methodology..73

 6.2.1.2 RDF Loader Experimental Results..73

6.2.2 MashQL Background Queries Evaluation...76

6.2.2.1 Methodology...76

6.2.2.2 General Queries Evaluation..77

5.2.2.3 Discussion for General Queries Evaluation..78

6.2.2.4 N-Level Objects and N-Level properties Queries Evaluation......................................80

6.2.2.5 Discussion for N-Level Objects and N-Level properties Queries Evaluation..............81

Chapter 7 : Conclusions and future work ...84

7.1 Conclusions...83

7.2 Future work...85

Appendix A: Enable RDF in Oracle 11g ..87

Appendix B : Loading RDF data into an Oracle 11g Database90

Appendix C: Database summaries creation for MashQL's background queries

..94

Appendix D: Evaluation results ...98

Appendix E: All background queries for Oracle's SEM_MATCH

compared with our optimization solution (for YAGO Dataset)101

References ...120

LIST OF TABLES

Chapter 2

Table 2.1: Oracle’s SEM_MATCH Example...18

Table 2.2: Background Queries(1-3)..26

Table 2.3: Background Queries(4-7) ...28

Table 2.4: Background Queries (8-13)...29

Table 2.5: The general case of an n-level properties and n-level objects background

queries...31

Chapter 3

Table 3.1: The definition of the addURL and getURLStatus RDF loader APIs.....................40

Table 3.2: The definition of the executed_query interface..47

Table 3.3: Background query example using execute_query procedure..................................47

Table 3.4: The query that is created for the corresponding example in table 3.3....................50

Table 3.5: How to invoke the SEM_MATCH function in order to execute a background query

concerning the example in table 3.3...50

Table 3.6: A part of the executed_query API which it executes a query template..................51

Chapter 4

Table 4.1: Oracle's execution plan for the background query 16 Level 5 using Oracle’s

SEM_MATCH table function...56

Table 4.2: BR-Algorithm pseudo-code...59

Table 4.3: BR$ table results for the graph G..60

Chapter 5

Table 5.1: Datasets statistics...65

Table 5.2: Graphs’ size and graphs’ number of subject before and after graphs’ partitioning

...68

Chapter 6

Table 6.1: Datasets Description..72

Table 6.2 RDF Loader 's machine specifications...72

LIST OF FIGURES

Chapter 2

Figure 2.1: A corresponding graph for the RDF statement ...12

Figure 2.2: Oracle’s RDF capabilities..14

Figure 2.3: How Oracle Stores RDF Data in an RDBMS..15

Figure 2.4: RDF_MODEL_INTERNAL$'s columns description ..16

Figure 2.5: SEMM_<model-name 's columns description...16

Figure 2.6: RDF_VALUE$'s columns description..17

Figure 2.7: RDF_LINKS$'s columns description..17

Figure 2.8 : An example of MashQL's query..21

Figure 2.9: Books RDF graph...30

Figure 2.10: Self-Join Example..32

Figure 2.11: A simple RDF graph and its database table...34

Chapter 3

Figure 3.1: MashQL Server system architecture..36

Figure 3.2: RDF Loader components..39

Figure 3.3: RDF Loader components design..41

Figure 3.4: Query Optimizer Module Architecture..46

Figure 3.5: Query Optimizer components specification...48

Chapter 4

Figure 4.1: A simple RDF graph (G)..58

Chapter 5

Figure 5.1: Explaining BR-Algorithm using the simple RDF graph "G"64

Figure 5.2: RDF graph's partitioning..67

Chapter 6

Figure 6.1: Datasets number of triples that used for the Loader evaluation.............................71

Figure 6.2: Datasets Loading Time results...73

Figure 6.3: Datasets Loading statistics from Oracle New England Development Center........75

Figure 6.4 : SemDump response time results for queries 1-13...77

Figure 6.5: DBLP response time results for queries 1-13...77

Figure 6.6: YAGO response time results for queries 1-13...78

Figure 6.7: SemDump response time results for queries 14L2-5-17L2-5................................80

Figure 6.8: DBLP response time results for queries 14L2-5-17L2-5.......................................80

Figure 6.9: YAGO response time results for queries 14L2-5-17L2-5......................................81

 1

Chapter 1

Introduction

1.1 Motivation and Challenges

Mashups are web 2.0 new features applications. Mashups are used to collect, combine or

syndicate data or functionality from more than one web sources in order to create a new

service. Mashups are implemented based on various web 2.0 technologies such as Really

Simple Syndication feeds (RSS), Application Programs Interfaces (APIs) and Web Services

(WS). An example of Mashup can be an integration of business addresses and online maps so

that you could quickly see where all the bookstores or hospitals are located in your

neighborhood[14].

MashQL a Query-by-Diagram language uses the Mashups system to provide a general-

purpose data retrieval on top of Web 2.0. MashQL regards the internet as a database, where a

data source is seen as a table and a Mashup as a query. MashQL assumes that web data

sources are represented in RDF and it can be inquired using a SPARQL query language[1].

Resource Description Framework (RDF) is a language for representing information (metadata)

about resources in the World Wide Web[10].

MashQL consists of the RDF Loader and the Query module. The RDF Loader downloads and

loads RDF data from data source[s] into an Oracle’s RDF model. A query module consists of

a Query Language and Query Formulation Algorithm. The former is a query language which

supports all constructs of SPARQL and the latter is used by the MashQL editor for query

formulation. MashQL’s Query Formulation Algorithm formalizes a background query in each

interaction in such a way that users can navigate and query a data graph, without prior

knowledge about it. To achieve that, MashQL’s Query Formulation Algorithm defines

seventeen types of queries, those queries are called background queries[1,2,3,4,5].

Our targets are to design and implement the RDF loader module and to improve the

performance execution for all MashQL's background queries using Oracle's 11g RDF engine.

 2

MashQL uses the Oracle’s RDF model as a backend database in order to store and retrieve

RDF data. Since the backend database technology was determined to be an Oracle , we are

obliged to use loading and retrieving technologies that are supported by Oracle.

Unfortunately , this fact prevent us from joining or using other similar technologies, thus ,our

study in other technologies is poor. Also, Oracle's software is closed to any optimization, thus

we focus only on the optimization solutions and technologies that are recommend by Oracle.

MashQL's RDF loader must be capable of loading RDF data from any RDF compatible

format such as RDF/XML, N3, NT etc. apart from Oracle’s RDF model database. Since

Oracle's loader supports only NT format, we use Jena's parser to convert any RDF data to NT

format.

Additionally, MashQL's background queries need to be executed on the whole dataset. In

reality, the loading time is a key factor and should be short. Thus, the RDF loader is designed

to load RDF resources very fast, using Oracle's bulk-loading technology. In addition, the

RDF loader must be able to handle a number of RDF data sources simultaneously. As a

consequence ,the RDF loader provides a queuing mechanism for asynchronous loading and

notification services to MashQL. Also, the RDF Loader must be able to maintain a mechanism

to periodically refresh all the stated data sources transparently, due to the fact that, the loaded

RDF data sources have the particularity in that their contents may be modified at random time.

Finally, due to the importance of the role that it played in the remainder of the system, the

RDF loader must be distinguished from having fault-tolerance and High availability

capabilities. The system must be continue to operate properly in the event of failure of some

of its components and must be implemented primarily for the purpose of improving the

availability of services.

MashQL's background queries need to be executed on the whole dataset in real-time situations.

Thus, their response time should be short. Achieving such a short interaction time for these

types of queries is very challenging for the following reasons:

 3

Firstly, the Oracle's RDF technology is closed to any customary optimizations. Oracle’s RDF

model uses SQL-based scheme for querying RDF data using the SEM_MATCH table function

which has the ability to search for a random RDF graph. Oracle’s SQL-based scheme

integrates RDF queries into Oracle’s SQL queries. Oracle’s SQL-based scheme has the

advantage of querying RDF data in the same way as it queries traditional relative data. Thus,

any optimization against SQL-based scheme can happen only at a whole SQL query and not

exclusively for RDF queries , thus , the SEM_MATCH table function cannot be optimized

and it is considered as a black box[13].

Secondly, the RDF data is distributed as a directed graph. The graph's adjacency matrix is

stored in the database as a related table producing a high degree of data redundancy. Since the

database structure is not normalized into smaller objects the database's inquiries for huge RDF

graphs have a very poor response time[10].

Finally RDF queries in general , suffer from intensive self-joint that involve more such

queries than the majority of RDF queries. For example , if a SPARQL query defines three

SPARQL patterns, even though the query is executed as one unit, internally each pattern

needs to select the graph’s data separately. Internally, the RDBMS manages this situation by

joining the graph’s data as match to the number of RDBMS patterns (that are) defined by the

query. The problem is increasing exponentially for each new SPARQL pattern that is added to

the query. Also, the queries are not completed, or their response time is very slow , when the

queries need to query graphs that contain a million or billion triples and the queries contain a

big number of SPARQL patterns.

Our optimization solution tries to eliminate and solve the above performance issues by using

the Query Optimizer(QO) module. The Query Optimizer is a responsible module which

executes all MashQL’s queries in an optimum way. The Query Optimizer executes all the

formulated queries (the final queries) using oracle’s technology and the all MashQL’s

background queries using the Query Optimizer’s optimization solution. Additionally , the

Query Optimizer is responsible to map the RDF MashQL background query with the

corresponding optimized SQL-Based MashQL background query. The mapping between the

 4

RDF-Query and SQL-based query is achieved by using a rule table. The Query Optimizer

maintains a rule table of two columns, the first column stores the SQL-BASED template

identifier, and the second column contains the actual SQL-Based query template that will run

on the database.

Our optimization solution stands on two database techniques:

1. It creates smaller and focuses on data sets using data summaries providing

background queries with a faster access to the data and less scanning data.

2. We designed the BR-algorithm with graph-partitioning which fetches beforehand

queries’ results and stores these results into the database in order to bypass self-joint

operations during the queries’ execution.

Based on the above techniques, we divided MashQL’s background queries into two categories

according to their optimization solution.

In the first category belong the background queries 1 to 13 where their optimization solution

is supported using the method of summaries. The summaries are created by using the

technology of oracle’s materialized views.

In the second category belong the background queries 14 to 17 where their optimization

solution is supported using the BR-Algorithm.

1.2 Contributions

Summary of Contributions:

1. RDF Loader: The first contribution of this document is the creation of the RDF

loader for the MashQL. Our RDF Loader is implemented on top of oracle’s RDF

model. It offers MashQL the capability of caching and asynchronously loading RDF

data sources into an oracle’s RDF model. In addition, RDF loader provides messaging

and notification services to MashQL for the status of loading . The RDF loader keeps

track on all data sources' metadata in a database repository that is accessible online by

MashQL’s administrators. Additionally, the RDF Loader can load any RDF format

such as RDF/XML, NT and N3 formats. The RDF loader can load RDF files of

unlimited size , but , for the best system performance we concluded that the RDF

 5

loader will be loaded with RDF files up to 1.5G bytes. These files can be loaded in

less than 30 minutes. This value is equal to 80000 triples per second. Additionally ,

the RDF Loader provides a scheduler module, which is responsible for periodically

refreshing all the old data sources and resume any unsuccessful RDF data sources

transparently.

2. Query Optimizer for MashQL: The second contribution of this document is to

improve the MashQL's background queries execution time. Our Query Optimizer, for

MashQL implements our optimization solution in order to provide MashQL's with

queries at the highest speed performance execution. Our optimization solution

includes the creation of database summaries on top of the RDF data that are loaded

into the database and a data fetching beforehand solution, for the most important

MashQL's queries using our BR-Algorithm. By using the database summaries we

have the advantage that, instead of scanning and sorting all the data during the query’s

execution course, the data are already sorted and pre-computed, focusing on

MashQL's queries requirements. By using the BR-algorithm the most important

MashQL's queries acquired high response time, since their results are already fetched

beforehand in the database. For the highest algorithm's performance standard, we

achieved to reduce 3 times in average the RDF graph’s size by dividing it in three

parts using our graph's partitioning novel idea. This partition schema helps the BR-

algorithm to run faster ,producing less and more careful fetch beforehand data. Finally,

our optimization solution against MashQL’s queries has been compared with Oracle’s

corresponding technology and it presents very good results. More concretely, our

solution performs 10 times faster in MashQL queries and 45 times faster regarding the

MashQL's important queries.

3. Experimental results : The third contribution of this document is to provide

experimental results to the following :

a. Loading time statistics for the RDF Loader against our benchmark .

 6

b. Response time statistics for MashQL background queries using our benchmark

and using the Oracle's SEM_MATCH table function and our optimization

solution .

1.3 Paper Structure

The paper is laid down as follows :

Chapter 1: In this chapter, we mention motivation and challenges in this work. Also, we

summarize the work done by describing in brief the system components. Finally we report on

the contribution of this work.

Chapter 2: In this chapter , we present the Related Work and Technologies that exist

today .We describe the structure of RDF technology and we provide examples from World

Wide Web Consortium (W3C) for better concept comprehension. We explain the various

formats that are used to convey RDF data such as RDF/XML , N3 and NT . Additionally, we

describe the SPARQL Protocol and RDF Query Language (SPARQL) which provides a

protocol and the query language to RDF. In addition , we present the Oracle 11g Semantic

Technology which comprises the industry’s first open, scalable, secure and reliable data

management platform for RDF applications.

Chapter 3: This chapter describes the system architecture of MashQL Server which consists

of the RDF Loader and the Query Optimizer. Section 3.1 describes a deep view of how the

MashQL editor, the RDF Loader and the Query Optimizer are working together in order to

maintain a robust RDF retrieval engine. Section 3.2 shows how the RDF Loader downloads

and loads RDF data into the system. Section 3.3 expresses how the Query Optimizer executes

the MashQL's queries efficiently. Both sections are supported by design details, components

specifications and examples.

Chapter 4: In this chapter we explain in explicit detail the optimization solution that we

provide concerning background queries, dividing MashQL’s background queries into two

 7

categories according to their optimization solution (General background queries and the N-

level properties and N-level objects queries). We explain what database summaries are and

how these summaries help general background queries to have a better performance standard.

In addition, we explain what the BR-Algorithm is, and how this algorithm helps the N-level

properties and N-level objects queries to run faster.

Chapter 5: In this chapter we present the Experimental Methodology that we used in order to

implement the optimization solution that we proposed in chapter 4 . Since the Oracle 11g

semantic technology has been chosen to be the MashQL's RDF engine, [1,2,3,4,5], our

optimization solution's database objects are created and based on this technology. More

analytically , in this chapter ,we mention information about the data summaries and BR-

algorithm that we created on top of Oracle's technology. Additionally , we state the problems

that we found during the BR-algorithm implementation and we provide the solutions that we

found in order to solve these problems i.e. we present how our new partitioning schema

against any RDF graphs helps BR-algorithm to be executed faster.

Chapter 6: In this chapter , we provide evaluation results regarding the RDF loader and the

module that loads RDF data resources into the MashQL database. Also, we present

comparison results for the performance of MashQL background queries using Oracle's

SEM_MATCH and our optimization solution.

Chapter 7: In this chapter we mention our conclusions and future work challenges.

Appendix A: In this appendix , we show how to enable RDF technology in Oracle 11g.

Appendix B: In this appendix , we provide details of how to Load RDF data into an Oracle

11g Database using Oracle's SQL Loader, Oracle's native insert statement and Java.

Appendix C: In this appendix , we present a Summary of all Background Queries as well as

the creation script for all Database summaries that is proposed in our optimization solution.

Appendix D: In this appendix , we give the evaluation results i.e. the real values that we show

in the charts, chapter 6.

 8

Appendix E: The last appendix , describes all the queries (in SQL code) that we have run in

order to get our evaluation results.

 9

Chapter 2

Background Work and Related Technologies

2.1 Background work

As we already mentioned in our introduction, the use of oracle as an RDF engine for storing

and retrieving RDF data prevents us from paying attention to other technologies (that are)

recommended in the computer science community ,since, our intention is not to compare the

oracle’s RDF technology with other technologies but , our targets are to design and implement

the RDF loader module using the oracle’s tools and oracle's compatible technologies such as

java and Jena and to improve the performance execution standards concerning all MashQL's

background queries that run on top of oracle’s RDF database. Similar to Oracle Database 11g

Semantic Technologies are the IBM DB2 database and various open source products such as

the Sesame[22] and Jena[15] .

From the state-of-the-art we have investigated similar RDF loading systems, that are

implemented in different technologies. We learned their input data, their components and their

compatible technologies in order to compare them with ours . Also, we realized how the RDF

data are extracted, transformed, and loaded (ETL) into an RDF engine.

Similar RDF loading solutions (ETL point of view) that are proposed at the academy is the

RStar [8], an RDF storage and query system for enterprise resource management. RStar’s data

loader takes RDF/XML files as input and provides both the original and inferred triples to the

backend database (IBM DB2). This is respectively realized on the RDF parser, triple importer

and inference engine. RDF parser analyzes the statements of an RDF/XML file according to

the RDF syntax specification and passes the resulting triples to the triple importer. The triple

importer then inserts the triples into the backend database. In the same way, The R-DEVICE

[9] system consists of two major components, the RDF loader/translator and the rule

loader/translator. The former accepts from the user requests for loading specific RDF

documents. The RDF triple loader downloads the RDF document from the Internet and uses

the ARP parser to translate it to triples in the N-triple format. Both the RDF/XML and

 10

RDF/N-triple files are stored locally for future reference. Additionally, the RDFPeers [7] a

scalable distributed RDF repository (“RDFPeers”) that stores each triple at three places in a

multi-attribute addressable network by applying globally known hash functions to its subject,

predicates, and objects. Thus, all nodes know which node is responsible for storing the triple

values they are looking for, and both exact-match and range queries can be efficiently routed

to those nodes. The RDFPeers's reads an RDF document, parses it into the RDF triples, and

uses MAAN’s STORE message to store the triples into the RDFPeers network. When an

RDFPeer receives a STORE message, it stores the triples into its Local RDF Triple Storage

component such as a related database.

Additionally, our research found that there are many difficulties to retrieved RDF from large

RDF graphs. For example, after a SPARQL query is submitted to a relative database, the

query engine might determine a nested-loop self-joint on the selected columns accordingly.

Once the query and data are much more complex, the cost will increase dramatically[20].

Thus , from the state-of-the-art we have investigated how these problems are solved or

reduced , and what techniques are applied in order to improve the queries’ performance

execution. This research helped us to adapt these techniques to our effort.

The techniques to creating indices, dividing data into property tables (2-column schema), and

materializing joint views (e.g., subject-subject and subject-object) are common methods for

improving RDF query performance on the vertical database structure [20]. C-Store [25]

proposed to partition the RDF table vertically, a table (S,O) for each property. The RDF3X

approach [24] proposed to build many Binary Tree indexes and “carefully optimize complex

joint queries” [24]. Although these approaches have produced a good performance standard

for small to medium graphs and low performance level on very large RDF graphs (millions or

billions of triples).

Our data summaries , included in our optimization solution are based on these techniques with

the difference that , we created data summaries with 1-column schema and summaries where

their contents combine the subject-property and object-property filtering the properties of

 11

specific RDF class (rdf:type) .We consider this schema as a ideal design to handle all

MashQL's background queries in an efficient way.

In addition, there are many techniques (that are) proposed by the state-of-the-art that helps the

performance execution of RDFs’ queries in relation to very large graphs , including graph’s

partitioning, it is accompanied by a graph’s signature or a semantic index, and by the creation

of a graph’s semantic indexes and graph’s signatures . For example [22] a proposed graph

partitioning technique, which it creates from the original graph a number of overlapping sub-

graphs. The contents of the sub-graph are lexicalized, and for each sub-graph is created a

virtual document that is added to a Vector Space Models (VSM). Finally, the VSM is used to

create a semantic index, which determines the contextual similarities between graph nodes

(e.g., URIs and literals).These similarities can be used for finding a ranked list of similar

URIs/literals for a given input term which can be used.

A similar approach is proposed in GRIN [23] which creates an indexing mechanism in certain

kinds of RDF queries, namely graph-based queries where there is a need to traverse edges in

the graph determined by an RDF database. The index is created, based on the idea of drawing

circles around selected “center” vertices in the graph where the circle would encompass those

vertices in the graph that are within a given distance of the “center” vertex. The “center”

vertices are used to identify the radius of the circles and then lever this in to building an index

called GRIN.

Another partitioning approach is submitted to [20] which partitions the graph into multiple

sub-graph pieces, stores them in a triple table with one more column of group identity, and

builds up a signature tree to index them. Based on this infrastructure, a complex RDF query is

decomposed into multiple pieces of sub-queries which could be easily filtered into some RDF

groups using a signature tree index.

A graph’s signature approach is proposed in [1], where its creates two graph signatures the O-

Signature SO and the I-Signature SI according to node bisimilarity. The SO summarizes a

graph by grouping nodes reachable through all outgoing paths. The SI summarizes a graph by

grouping nodes reachable through all incoming paths. The SQL a query is evaluated on each

 12

summary separately, and the intersection of the two answers is equal or a small superset of the

target answer.

Graph signatures has the advantage of reducing the original graph size. On the other hand ,the

time that is needed to create a signature and the performance that is gained by the queries is

not enough to adapt it to our solution. We believe that the Graph partitioning that is proposed

in the arts with a combination of an index or a graph signature can provide very good results

in RDF's data retrieving especially for very large RDF graphs. Our solution that managed the

MashQL's most important queries (N-level objects and N-Level properties Background

Queries ,see chapter 4) use the technique of graph partitioning in order to reduce the size of

the original RDF graph. As a result, the fetching beforehand algorithm that is applied is

executed faster. The fetching beforehand results are partitioned in a database and will be

fetched very fast when they are asked for. This solution has very promising results for

MashQL's queries but till now , it can not be applied as a general RDF's query solution as the

proposed techniques above can.

 13

2.2 An Overview of Resource Description Framework (RDF)

The Resource Description Framework (RDF) is a language for representing information about

resources in the World Wide Web. For example, RDF is used to describe information about

web pages such as (content, author, created and modified date etc.). In general, RDF is able to

represent information about things that can be identified on the Web. RDF is based on the idea

of identifying things using Web identifiers (called Uniform Resource Identifiers, or URIs),

and describing resources in terms of triples <subject, predicate, object>. The subject is the

part that identifies the thing .The property is the part that identifies the characteristics of the

subject, and the object is the part that identifies the value of that property.

An RDF triple has the following characteristics

1. the subject, must be a URI reference or a blank node

2. the property , must be an RDF URI reference

3. the object, must be an RDF URI reference, a literal or a blank node

For example , the RDF statement “The web page http://www.example.org/index.html has

a creation date August 16, 1999” can be expressed in the following triple and the

corresponding RDF graph is demonstrated in Figure 2.1.

Subject: http://www.example.org/index.html

Property: creation date

Object: August 16, 1999

The combinations of RDF statements enable RDF to represent the web resources as directed

and labeled graph of nodes (It is also called "The RDF model"). The graph nodes are the

subjects and objects and the arcs are the predicates.

 14

Figure 2.1: A corresponding graph for the RDF statement [10]

As we mentioned above, the RDF concept is a design to be read and understood by computer

terminals in order to exchange RDF data between them. RDF itself has been serialized in a

number of formats including N3, RDFa, Turtle, and N-triples and they are the easiest way of

storing and transmitting RDF data. These formats provide an easier way to scribble (human-

readability in mind) an RDF graph rather than RDF/XML.Notation3, or N3 as it is more

commonly known, is a shorthand non-XML serialization of Resource Description Framework

models[10,11].

2.3 An overview of SPARQL (SPARQL Protocol and RDF Query Language)

SPARQL (SPARQL Protocol and RDF Query Language) provides a protocol and the query

language for RDF. SPARQL can be used to express queries across different data sources,

whether the data is stored natively as RDF or viewed as RDF via middleware. By using

SPARQL you are able to query (reading information and not writing, updating etc.) RDF

graphs. Those are saved in persistent storage such as database or file. SPARQL Protocol is a

means of transmitting SPARQL queries from query clients to query processors (query client is

the side that provides RDF queries against a dataset and the query processor side that RDF

dataset is a host). SPARQL protocol has been designed for compatibility with the SPARQL

Query Language for RDF (SPARQL). The SPARQL Protocol consists of an abstract interface

called SparqlQuery which is independent from other protocols. SparqlQuery contains an

operation called query, which is used to convey the query string and optionally an RDF

dataset description. The query string is an instance of XML schema and it must stand on

SPARQL syntax. SparqlQuery requires protocol binding to become operational. SPARQL

Protocol supports HTTP and SOAP bindings. This indicates that you can post a SPARQL

 15

queries and you can get a result from a URI dataset[s] using the HTTP protocol or you can

include your SPARQL query into a SOAP message in order to send a query and get a result

back (Web Services approach)[12].

2.4 Oracle Database RDF Technologies

2.4.1 Introduction to Oracle RDF Technologies

Oracle’s RDF web technologies constitute the industry’s first open, scalable, secure and

reliable data management platform for RDF and ontologies which enable you to store and

retrieve RDF data sources (Ontologies are out of the scope of this document).

Figure 2.2: Oracle’s RDF capabilities [13]

As shown in Figure 2.2, the database contains RDF data as well as traditional relational data.

To load RDF data, the bulk loading is the most efficient approach; although you can load data

incrementally using transactional INSERT statements. After loading ,you can query these data

simultaneously with the traditional relational data[13].

2.4.2 Oracle RDF Data Modeling

RDF data is structured as directed graphs. An RDF graph is a set of RDF triples. Like a

number or string data types, a triple is treated in oracle database as a data type , named

SDO_RDF_TRIPLE_S. In the Oracle Database RDF Technologies , each RDF graph is

 16

called a model . The set of nodes of an RDF graph is the set of subjects and objects of triples

in the graph. These nodes are used to represent two parts of the triple(the subjects and the

objects), and the third part (the properties) is represented by a directed link that describes the

relationship between the nodes.

The triples are stored in an RDF data network. The RDF Data Network is a logical universe

that stores all the RDF graphs that exist in the database (There is one universe per Oracle

database)[13].

2.4.3 RDF Data in the Database

All RDF graphs' data and metadata are parsed and stored in the system as entries in tables

under the MDSYS schema (mdsys is an oracle's system user). A user-created model is

formed by specifying a model name, the relational table name and a table's column of type

SDO_RDF_TRIPLE_S which contains the RDF data. With this structure , oracle stores all the

related relation as data in the table and all the RDF data and metadata in the tables

RDF_MODEL_INTERNAL$, RDF_VALUE$,RDF_LINK$ and

SEMM_<model-name> (Figure 2.3).

Figure 2.3: How Oracle Stores RDF Data in an RDBMS

 17

The table RDF_MODEL_INTERNAL$ (Figure 2.3) contains information about all models

defined in the database. After the creation of the model, a view SEMM_<model-name>

(Figure 2.4) is automatically formed and contains all the triples associated with the model.

The values for subject, property and object are computed from its corresponding lexical values

as high numbers.

Figure 2.4: RDF_MODEL_INTERNAL$'s columns description (The above screenshot comes from

Oracle's SQL-Developer which is a graphical tool for database development [19])

Figure 2.5: SEMM_<model-name 's columns description (The above screenshot comes from Oracle's

SQL-Developer which is a graphical tool for database development [19])

The table RDF_VALUE$ (Figure 2.5) contains information about the subjects, properties,

and objects used to represent RDF statements. It uniquely stores the text values (URIs or

literals under the value_name column) for these three pieces of information, using a separate

row for each part of each triple[13].

 18

Figure 2.6: RDF_VALUE$'s columns description(The above screenshot comes from Oracle's SQL-

Developer which is a graphical tool for database development [19])

The table RDF_LINKS$ table (Figure 2.6) stores the graph properties(p_value_id) and

describes the relationship between the subjects (start_node_id) and objects(end_node_id). In

other words , the RDF_LINKS$ expose the directed graph links.

Figure 2.7: RDF_LINKS$'s columns description(The above screenshot comes from Oracle's SQL-

Developer which is a graphical tool for database development [19])

When a triple is inserted into an RDF model, the subject, property, and object are first

checked against the RDF_VALUE$ table, to see if entries for their text values already exist in

the model. If they already exist (due to previous statements in other models) no new entries

are made; if they do not exist, three new records are inserted into the RDF_VALUE$ table. If

the subject, property, and object text values already exist in the RDF_VALUE$ table, another

 19

check is issued to determine if the actual triple exists. This second check is issued against the

RDF_LINK$ table. If the triple for the particular model already exists, no new triple is

inserted. Otherwise, a unique ID is generated for the new triple. This ID is stored as the

LINK_ID (also known as the RDF_T_ID). The VALUE_ID in the RDF_VALUE$ table

corresponding to the subject becomes the START_NODE_ID; and the VALUE_ID

corresponding to the object becomes the END_NODE_ID for this link. The VALUE_ID is the

same as the VALUE_ID in the RDF_VALUE$ table. The MODEL_ID column logically

partitions the RDF_LINK$ table. Selecting all the links for a specific MODEL_ID, returns the

RDF network for that specified model [13].

2.4.4 Query RDF Data

You can not query RDF data directly from the relation table using SQL-BASED queries. In

order to query RDF data you should use oracle's functions . For instance , the GET_TRIPLE()

function returns the SDO_RDF_TRIPLE string. The functions GET_SUBJECT(),

GET_PROPERTY() and GET_OBJECT() return the subject, predicate, and object,

respectively. In order to use the SPARQL language you need to use the SEM_MATCH table

function. An example of a SEM_MATCH table function execution is demonstrated in table

2.1 [13].

SELECT x, y
 FROM TABLE(
 SEM_MATCH
 (
 '(?x :grandParentOf ?y) (?x rdf:type :Male)',
 SEM_Models('family'),
 NULL,
 SEM_ALIASES(SEM_ALIAS('','http://www.example.org/family/')),
 NULL
)
);

Table 2.1: Oracle’s SEM_MATCH Example

The Query in table 2.1 returns all grandfathers and their grandchildren from the oracle's

family model as defined in SEM_Models('family'), [13].

 20

2.4.4.1 SEM_MATCH attributes

Based on [13] , Oracle's SEM_MATCH table function has the following attributes :

Query: The query attribute is a string literal with one or more triple patterns and correspond

to SPARQL syntax for example :

'(?x :grandParentOf ?y) (?x rdf:type :Male) (?y :height ?h)'

Models: The models attribute correspond to the list of graph[s] or models that you need to

query.

Rulebases: Rulebases is out of the scope of MashQL , thus is always NULL .

Aliases: The aliases attribute identifies one or more namespaces included in the query. It is the

@prefix synonym that is used in SPARQL. Oracle has the following aliases by default.

rdf:http://www.w3.org/1999/02/22-rdf-syntax-ns#

rdfs:http://www.w3.org/2000/01/rdf-schema#

xsd:http://www.w3.org/2001/XMLSchema#

Filter: The filter attribute identifies any additional selection criteria against the variable that is

used in the query .For example: ’(h >= 6)’ to limit the result to cases where the height of the

grandfather’s grandchild is 6 or greater (using the oracle’s family example).

Index_status: Index_status is out of the scope of MashQL , thus is always NULL.

2.4.5 Loading RDF data in Database

There are three ways that can you load RDF data into a database:

1.Bulk load using a SQL*Loader : a direct-path load which gets data from an N-Triple format

and load it into a predefined staging table. After that a PL/SQL procedure is used to load or

append the data into the database. The bulk load insert using the SQL*Loader is considered

the fastest way to load any data into a database.

2.SQL INSERT statements using the SDO_RDF_TRIPLE_S constructor.

3.Batch load using a Java client interface to load or append data from an N-Triple format file

into the database [13].

 21

2.5 An overview of MashQL Language

World Wide Web is witnessing an increase in the amount of structured data on the Web. On

the other hand, traditional search engines fail to serve such data since their core design is

based on keyword-search over unstructured data, thus, any search against these data will not

be precise or clean. This trend of structured data is shifting the focus of web technologies

towards new paradigms of structured-data retrieval. In order to help people consume more

structured data on the Web, the World Wide Web’s giants such as Google, Upcoming, Flicker,

eBay, Amazon, Yahoo and others have started to make their structured content freely

accessible through Application Program Interfaces (API) , really Simple Syndication feeds

(RSS),Web Services (WS) and RDF. Examples of World Wide Web’s programs that have

started to consume the above applications are the Mashups. Mashups are used to collect,

combine or syndicate data or functionality from more than one web sources in order to create

a new service. Unfortunately, building mashups is an art that is limited to skilled programmers

and it cannot be considered as a general solution for structured-data retrieval, regardless the

effort put in by various mashups' editors to simplify this art (They were provided by some

mashups’ editors. Those results have limited possibilities).

MashQL language is building on the success of Web 2.0 mashups and overcome their

limitations. MashQL language targets are to be a general solution for structured-data retrieval

in order to allow people to mash up and merge RDF data sources very easily. It is regarding

the web as a database, where each data source is seen as a table and a mashup is seen as a

query over one or multiple web sources expressed in any RDF format. In other words,

MashQL helps people, instead of developing a mashup as an application that gets access

structured to data through APIs, the MashQL simplified this art by regarding a mashup as a

query on the candidate data sources that people need to get information. For example, if some

user needs information from a web resource, the MashQL language will help the user to

formulate his/her query from these data sources very easily. Firstly, the MashQL language

downloads the data sources into a local database , and using the MashQL's editor , the

 22

user ,with out any IT-skills is able to formulate his/her queries , and get back very fast to

his/her results. As a result, the main novelty of MashQL is to allow non IT-skilled people to

query and explore one or more RDF sources without any prior knowledge about the schema,

structure, vocabulary, or any technical details of these sources. Since MashQL is waiting for

the data sources to be in RDF format, in the background, all MashQL queries are translated

into and executed as SPARQL queries (the corresponding language that is able to query RDF

data).

Figure 2.8 : An example of MashQL's query[4]

The MashQL example that is demonstrated in figure 2.8 shows a simple MashQL query using

a MashQL's query editor. This query retrieves the recent articles from Cyprus, i.e. the title of

every article that is written by an author, who has an address. This address has a country

called Cyprus, and the article is published after 2000. The first module specifies the query

input, while the second MashQL module specifies the query body. In the query input you can

specify a number of valid URIs in any RDF's compatible formats such as RDF/XML, Native

Triple (NT) and Notation 3 (N3). Those data represent an online RDF data sources. The query

body is designed dynamically and it allows the MashQL users to explore an RDF graph very

easily. All MashQL queries are seen as a tree. The root of this tree is called the query subject

(e.g. Article), which is the subject matter being inquired. Each branch of the tree is called a

query restriction and is used to restrict a certain property of the query subject. Branches can be

 23

expanded to allow the formation of sub trees (called query paths), which enable one to

navigate the underlying data sources. When the query is formulated, it is translated in

SPARQL and executed on the RDF engine's backend database (MashQL uses the Oracle’s

11g Semantic Technology as RDF engine backend database [1]).

The MashQL server consists of three important modules:

1. The MashQL editor which provides the graphical user interface of the MashQL .

MashQL’s users use the editor's drop-down lists in order to express their queries.

These drop-down lists are dynamically generated during the program execution

course and their results depend on the users inputs/selections [1].

2. The RDF Loader which downloads and loads RDF data from data source[s] that are

defined in MashQL's query input into an Oracle’s RDF model [1, 2, 3, 4, 5].

3. The query module which consists of a Query Language and a Query Formulation

Algorithm. The former is a query language which supports all constructs of SPARQL

and the latter is used by the MashQL editor for query formulation. MashQL’s Query

Formulation Algorithm formalizes a background query in each interaction in such a

way that users can navigate and query a data graph, without prior knowledge about it.

To achieve that, MashQL’s Query Formulation Algorithm defines seventeen types of

queries. Those queries are called background queries [1, 2, 3, 4, 5]. All the

background queries are used in order to help users to create the final query or the

formulated query that will be executed on the RDF engine database and it contains

MashQL's users final result.

 24

2.5.1 MashQL's performance considerations

In this section we describe our analysis according to the factors that may influence the

performance of MashQL server focus on MashQL's components i.e. the RDF loader and the

Queries performance.

2.5.1.1 MashQL's RDF loading considerations

When users select a remote source, this source must be transferred and stored locally in an

RDF engine backend database before executing the query [4]. The users are able to query a

data source only when at least one of the sources that are defined in the query input is loaded

in the database or at least one of the data sources that are defined in the query input is already

loaded in the system and has fresh contents, otherwise the users are not able to use the system.

This issue is very critical for MashQL operation , since it influences a lot the availability of

the system. The system must be in position to fast load the data sources in order to have the

data as fast as possible available to its users. As a result, the loading time of the data sources

must be short or humanly acceptable. If we bypass any network related issues such as a

server's connection bandwidth, data source geographical location etc., the remaining factors

that influence the loading process are the data source size and the efficiency of the RDF

engine database to load RDF data. For example , the bigger the size of the RDF file, the more

time is needed to load the file (imaging loading million or billion triples). Also , the RDF

engine database will delay to load the RDF data since it makes too many transformations

against the RDF data.

Additionally, the web resources are modified very frequently , thus the data sources that are

already loaded in the system must be refreshed when their contents are staled. As a result the

system needs to download the data source again in order to provide fresh data to its users.

In addition, in the majority of internet applications (multi-user environment) many users will

be requested to work on the same resources at the same time. For example, in the MashQL,

 25

many users need to download the same data source at the same time. As a result, the loader

must be able to manage all these requests efficiently.

Finally, the Oracle 11g database which is proposed for MashQL to be the RDF engine

backend database is able to load only Native Triple format (NT) files. Thus all the data

sources that are not in the NT format must be converted to NT. This conversion step produces

an extra latency and further administration overhead seeing as the file must be downloaded

and converted to NT format in order to be loaded in the database.

2.5.1.2 MashQL's queries performance considerations

As we mentioned above, MashQL defines two types of queries, the background queries that

are used in the formulation algorithm and the final query or the formulated query. The

Background queries are executed very frequently, since they provide their results in the

MashQL editor’s drop-down lists that are used during the formulation algorithm.As you

understand, the background queries play critical role in the system, since their performance

influence the system’s operation and availability. As a result, all background queries should

be executed very fast (few seconds each query) in order to generate as faste as possible the

MashQL's diagrams, the core MashQL's function. All MashQL's queries are translated into the

SPARQL language and this SPARQL code is executed on the RDF engine backend database.

As shown in [4], the performance of MashQL queries is limited to the performance of the

used backend database as well as the performance of the queries which is reduced when the

data source is very large[25]. Ιn order to optimize their output performance , all background

queries must be analyzed in order to find out (a)their execution characteristics, i.e. the number

of arguments in the selected list, how many predicates are used per query, (b) their execution

requirements i.e. CPU time , Memory consumption, Disk consumption , Sorting consumption,

Input/Output consumption, (c) their execution weaknesses i.e. some queries may produce a

high I/O consumption and (d) their execution trends i.e. intensive table self-joins problems.

As a results, we need to focus on solutions that are specific for the MashQL’s queries in order

to run these queries faster , regardless the RDF engine database and data source size.

 26

All the MashQL's queries are organized and prepared for execution according to the MashQL

formulation algorithm. The formulation algorithm defines four basic steps [1]:

Step 0: Specify the dataset G in the Input module
Step 1: Select the query subject S
Repeat Step 2-3 (until the user stops)
Step 2: Select a property P.
Step 3: Add an object filter onto P.

At the beginning of the query formulation process (Step 1), the MashQL’s users can select a

subject from a MashQL editor’s drop down list that contains, either:

1. A set of rdf:type objects, types (O) belong to graph G (the rdf:type property state that

a resource is an instance of a class, i.e. the class can be an Article, a Person etc)

(Table 2.2, query 1).

2. All the unique subjects (S) and objects (O) filtered by objects that are URIs

(Table 2.2, query 2).

3. All the subjects (S) that match with an input variable provided by the user

(Table 2.2, query 3).

The Background Queries [1...3] transform to the following Oracle’s SPARQL code.

S=Subject
P=Property
O=Object
V=A value comes from the MashQL's editor drop-down list
F=A variable introduced by users

BQ-1

SELECT o
FROM TABLE(SEM_MATCH(
'(?s rdf:type ?o)
',
SEM_Models('<GRAPH_NAME>'),
null,
null,
null))
group by o
order by o

BQ-2

SELECT s
FROM TABLE(SEM_MATCH(

 27

'(?s ?p ?o)
',
SEM_Models('<GRAPH_NAME>'),
null,
null,
null))
UNION
SELECT o
FROM TABLE(SEM_MATCH(
'(?s ?p ?o)
',
SEM_Models('<GRAPH_NAME>'),
null,
null,
null))
where o$rdfvtyp='URI' --filter isURI

BQ-3

SELECT s
FROM TABLE(SEM_MATCH(
'(?s ?p ?o)
',
SEM_Models('<GRAPH_NAME>'),
null,
null,
null))
where s like '%<F>%'

Table 2.2: Background Queries 1-3

The next step is to select a property (P) (Step 2) for the chosen subject above. The MashQL

editor’s drop down list will return a list of the possible properties for this subject. There are

four possibilities:

1. Users can choose a subject (S) that belongs to an rdf:type class (Table 2.3, query 4).

2. Users can choose a subject (S) that comes from the MashQL editor's drop down list

(Table 2.3, query 5).

3. Users can choose a subject (S) to be a variable, by introducing their own value

(Table 2.3, query 6).

4. Users can also choose the property to be a variable by introducing their own value

(Table 2.3, query 7).

For each case, the MashQL editor’s drop down list will display all the properties (P) that are

associated with the input subject (S).

 28

The Background Queries [4...7] transform to the following Oracle SPARQL code:

S=Subject
P=Property
O=Object
V= A value comes from the MashQL's editor drop-down list
F=A variable introduced by users

BQ-4

SELECT p
FROM TABLE(SEM_MATCH(
'(?s rdf:type < V>)
 (?s ?p ?o)
',
SEM_Models('<GRAPH_NAME>'),
null,
null,
null))
group by p
order by p

BQ-5

SELECT p
FROM TABLE(SEM_MATCH(
'(<V> ?p ?o)
',
SEM_Models('<GRAPH_NAME>'),
null,
null,
null))
group by p
order by p

BQ-6

SELECT p
FROM TABLE(SEM_MATCH(
'(?s ?p ?o)
',
SEM_Models('<GRAPH_NAME>'),
null,
null,
null))
where s like '%<F>%'
group by p
order by p

BQ-7

SELECT p
FROM TABLE(SEM_MATCH(
'(?s ?p ?o)
',
SEM_Models('<GRAPH_NAME>'),

 29

null,
null,
null))
where p like '%<F>%'
group by p
order by p

Table 2.3: Background Queries 4-7

Finally, (Step 3), MashQL's users are able to add an object filter on property (P). There are

three types of filters that users can use to restrict property (P):

1. A filtering function

a. A filtering function can be selected from a list (e.g., Equals, More Than, one

of, not) (Table 2.4, queries 8..9).

2. An object identifier

a. If users want to add an object identifier as a filter, a list of the possible objects

will be generated (Table 2.4, queries 10..13).

3. A query path for n-level properties and n-level objects (Table 2.4, queries 13..17).

The Background Queries [8...13] transform to the following Oracle SPARQL code:

S=Subject
P=Property
O=Object
V= A value comes from the MashQL's editor drop-down list
F=A variable introduced by users

BQ-8

SELECT o
FROM TABLE(SEM_MATCH(
'(<V> ?p ?o)
',
SEM_Models('<GRAPH_NAME>'),
null,
null,
null))
where o$rdfvtyp='URI'

BQ-9

SELECT o
FROM TABLE(SEM_MATCH(
'(<V> ?p ?o)
',
SEM_Models('<GRAPH_NAME>'),

 30

null,
null,
null))
where o$rdfvtyp='URI'
and p like '%<F>%'

BQ-10

SELECT o1
FROM TABLE(SEM_MATCH(
'(?s rdf:type <V>)
 (?s1 ?p1 ?o1)
',
SEM_Models('<GRAPH_NAME>'),
null,
null,
null))
group by o1
order by o1

BQ-11

SELECT o1
FROM TABLE(SEM_MATCH(
'(?s rdf:type <V1>)
 (?s1 <V2>)?o1)
',
SEM_Models('<GRAPH_NAME>'),
null,
null,
null))
group by o1
order by o1

BQ-12

SELECT o
FROM TABLE(SEM_MATCH(
'(?s ?p ?o)
',
SEM_Models('<GRAPH_NAME>'),
null,
null,
null))
group by o
order by o

BQ-13

SELECT o
FROM TABLE(SEM_MATCH(
'(?s ?p ?o)
',
SEM_Models('<GRAPH_NAME>'),
null,
null,
null))
where p like '%<F>%'
group by o
order by o

 31

Table 2.4: Background Queries 8-13

During the formulation algorithm, MashQL's users need to expand some properties (P) or

some objects (O) in order to declare its path. For example, from the Books of the RDF graph

in figure 2.9, the property "Author" has the following valid path "Author" =>"Affiliation"=>

"Country" =>"Name".

Figure 2.9: Books RDF graph [1]

These types of background queries are called N-level objects and N-Level properties

background queries since these queries navigate in the RDF graph having as a root one

concrete object or property. The variable N determines the query’s expansion level inside the

RDF graph or the depth path that the query needs to be discovered or to be expanded. For the

path that we have already declared in the graph that is presented in figure 4.2, the root

property is the “Author” and the level of the query (the value of N) is equal to 3. The

corresponding background queries of an N-level properties and N-level objects queries with N

level is 3. They are presented in queries 14 to 17 .

S=Subject
P=Property
O=Object
V= A value comes from the MashQL's editor drop-down list
F=A variable introduced by users

BQ-14

SELECT p2
FROM TABLE(SEM_MATCH(
'(?s rdf:type ?o)
 (?o ?p1 ?o1)
 (?o1 ?p2 ?o2)
',
SEM_Models('<GRAPH_NAME>'),
null,

 32

null,
null))
group by p2
order by p2

BQ-15

SELECT o2
FROM TABLE(SEM_MATCH(
'(?s rdf:type ?o)
 (?o ?p1 ?o1)
 (?o1 ?p2 ?o2)
',
SEM_Models('<GRAPH_NAME>'),
null,
null,
null))
group by o2
order by o2

BQ-16

SELECT p2
FROM TABLE(SEM_MATCH(
'(?s ?p ?o)
 (?o ?p1 ?o1)
 (?o1 ?p2 ?o2)
',
SEM_Models('<GRAPH_NAME>'),
null,
null,
null))
group by p2
order by p2

BQ-17

SELECT o2
FROM TABLE(SEM_MATCH(
'(?s ?p ?o)
 (?o ?p1 ?o1)
 (?o1 ?p2 ?o2)
',
SEM_Models('<GRAPH_NAME>'),
null,
null,
null))
group by o2
order by o2

Table 2.5: The general case of an n-level properties and n-level objects background queries

The analysis of the queries that are defined by MashQL formulation algorithm shows that the

MashQL background queries can be divided into two categories , the general background

queries (queries 1.. 13) and the n-level properties and n-level objects background queries

 33

(queries 14..17) .This separation derives from the way that these categories of queries access

the data from the database.In the first category, i.e. the general background queries (queries 1..

13) , they specifically do not present many problems in the intermediate data sets. Concerning

larger data sets, these queries behave more slowly, therefore, they need improvement in order

to respond faster. They have always one argument in their select list, either a triple subject , or

the object or a the property . Their results are restricted via a filter that exists inside the

queries' SPARQL code. These filters correspond to the values that are selected by users from

the MashQL's editor drop-down list or the values that are introduced by a users. Finally, these

queries return their results sorted and in alphabetical order based on the argument that is

selected in the select list. In addition, these types of queries do not need to be discovered or

expanded further on the corresponding RDF graph and do not have the problems that appear

in the second category. As a result, the latency that appears in this category of the queries may

appear due to the fact that the database lacks indexing and the high sorting activity should it

occur from the database side in order to return the data sorted and in alphabetical order. Also,

the majority of these queries experience follows due to the fact that their result set is

sometimes very large. As a result, the database calculates the result very fast but it needs a

long time to display it (e.g. it may return 1 million rows).

The second category of queries, i.e. the n-level properties and n-level objects background

queries, present very high interest , since for huge data sets these queries sometimes do not

respond or they may have a very poor performance standard. The main reason for the bad

performance devives from the queries’ tendency to make so much table self-join as the

number of levels that the queries need to expand. The problem becomes bigger for a very

large number of RDF graphs with a million or billion triples.

Figure 2.10: Self-Join Example

 34

For example the background query 14 (Figure 2.5) is an example demonstrating this behavior

pattern. The query defines three sparql patterns. Even though the query is executed as one unit,

internally each pattern needs to select the graph data separately. Firstly, pattern one is

executed, which produces its results in pattern two (variable ?o), secondly, pattern two is

executed, which uses the previous results as input and produces its results in pattern three

(variable ?o1) and finally, pattern three is executed using the previous results as input in order

to produce the final result that are belongs in the variable ?p2. Internally, the RDBMS

manages this situation by joining the graph data as match to the number of sparql patterns that

is defined by the query (In database view this operation is called self-join operation, since the

source table is joined by itself).The problem increases exponentially for each new sparql

pattern that is added onto the query, especially when we have very large graphs with million

and billion triples

2.5.1.3 Representation of RDF data in the oracle database (performance considerations)

The Oracle's RDF model stores the RDF graph in various tables, and it makes the data

accessible only by a SEM_MATCH table function (for more details see the previous chapter

Related technologies section Oracle Database Semantic Technologies). As you understand,

the technology is closed to any customary optimizations. Fortunately, in front of this

technology, the Oracle's RDF model provides you with a table for each RDF graph that you

loaded into the database which can use only SQL-BASED queries [6] for any customary

optimizations. This table consists of three columns, the subject, the property and the object

(the table is also called triple table). The table’s rows contain the RDF’s triples. Figure 2.11 (a)

shows a simple RDF graph with two subjects (S1, S2) and three objects (O1, O2, and O3).

The subjects and objects are connected together by three types of properties P1, P2 and P3. A

table representation of this graph is presented in figure 2.11 (b). As you can see in the table,

the subjects S1, S2 and the objects O1, O2, and O3 are repeatedly displayed in the table in

order to portray all of the graph triples. For very large graphs the above representation of data

created a very huge table that influences negatively any SQL-BASED queries performance

since ,the RDBMS must read more data in order to produce the result. Any sorting operations

 35

are very memory-intensive, they are corruptible for self-join operations and they produce big

I/O between the database memory buffers and the disk.

Figure 2.11: A simple RDF graph and its database table

 36

Chapter 3

MashQL Server Design

This chapter describes the system architecture of MashQL Server which consists of the RDF

Loader and the Query Optimizer. Section 3.1 describes a profound view of how the MashQL

editor, the RDF Loader and the Query Optimizer work together in order to maintain a robust

RDF retrieval engine. Section 3.2 shows how RDF Loader downloads and loads RDF data

into the system. Section 3.3 explains how the Query Optimizer executes the MashQL's queries

efficiently. Both sections are supported with design details, components specifications and

examples.

3.1 System Architecture

MashQL consists of the MashQL Editor and the MashQL Server. The MashQL Editor is a

module which is responsible for the formulation of a query through a formulation algorithm

and it provides the MashQL Server with the formulated query for execution (in SPARQL

format).

The MashQL Server consists of two important modules, the RDF Loader and the Query

Optimizer. The RDF Loader downloads and loads RDF data from web to the system and the

Query Optimizer executes in an optimum way all MashQL’s queries. Figure 3.1 represents the

MashQL’s system architecture and describes how the MashQL’s components interact

between them. The points 1 to 4 in figure 3.1 show the flow that the RDF Loader follows in

order to load a data source into a system. The points 5 to 8 show the MashQL's queries

execution cycle.

 37

Figure 3.1: MashQL Server system architecture

To initiate a query with MashQL, the MashQL user is capable of choosing a number of RDF

resources that are available in the web. These RDF resources can be RDF/XML, Native

Triples (NT) and Notation 3 Triples (N3) and they are accessible via a unique Uniform

Resource Locator (URL) as defined by W3C. As a result, the MashQL’s user inputs in the

MashQL editor the URLs strings of the candidate RDF resources that one needs to query (e.g.

http://www.ucy.ac.cy/Source_A.rdf, http://www.ucy.ac.cy/Source_B.rdf).The query begins if,

and only if, the RDF data is successfully loaded into the database (with the RDF technology

enabled). Thus, the MashQL Editor invokes the RDF Loader for the database loading tasks by

submitting to it all the requested URLs strings (figure 3.1, point 1). The RDF Loader prepares a

number of validation steps before it downloads or loads the RDF data (figure 3.1, point 2).

Firstly, it checks the validity of each URL and if the URL does not exist or it is unavailable,

the RDF Loader notifies the MashQL editor about the status of URLs that failed.

For each valid URL, the RDF Loader checks if the URL is already cataloged in the system. To

achieve that, the RDF Loader maintains a repository in the Oracle database which stores all

 38

URL’s metadata (URL string, file name, file type, last modified date, file size etc.). If the

candidate URL is not cataloged in the system, the RDF Loader downloads the RDF data

locally in the server, converts the RDF data from any RDF format to NT format and using the

oracle’s Bulk-Load feature it loads the RDF data on top of the Oracle’s RDF model . If the

Bulk-Load process is completed successfully the RDF Loader additionally creates all the

appropriate database objects (tables, indexes, materialized views etc.) that will be used later in

the Query Optimization module (optimization solution for MashQL’s queries) and notifies the

MashQL editor of the completion of the loading process (figure 3.1, point 3).

If the candidate URL data is already cataloged, because the same URL is used in the past from

some other user[s] or by the same user, the RDF loader compares the metadata of the RDF

data source that is already cataloged with the corresponding metadata of the RDF data source

that is available in the web, and if it is stale, the RDF loader refreshes the data by

downloading and loading the RDF data again. The old RDF data that is already cataloged in

the system is a query accessible by MashQL’s users until the end of the database loading of

new RDF data. When the new RDF data is loaded in the system, the RDF loader notifies the

MashQL editor of the completion of the loading process and it makes the new data available

for new queries (figure 3.1, point 4). This technique provides MashQL with a transparent

refreshed data loading by allowing MashQL’s users the possibility of querying a cataloged

URL’s data during the refreshing process.

If the candidate URL’s data is already cataloged but it is not staled, the RDF Loader notifies

the MashQL editor of the completion of the loading process providing MashQL with a

caching technique.

If a number of users seek the same URL, the RDF loader downloads and loads the data at

once for the first user. At the end, the RDF Loader notifies all users of the completion of the

loading process. As from the download phase till the final phase, the RDF Loader is in a

position to notify the MashQL editor of any errors and faults that will abnormally happen in

the system. The RDF loader does not resume any failed URL data loading for any reason. The

MashQL’s user has the opportunity to initiate the URL again.

 39

By default, when the URL is used by the system, its data and metadata is retained in the

system forever. However, the MashQL administrator has the advantage of marking a URL

data as obsolete. All obsolete URL data and metadata are deleted by the system automatically.

As we already mentioned, MashQL’s users are able to query RDF data sources if, and only if,

the RDF data are loaded once the in system. Consequently, if the URL RDF data is already

catalogued, regardless their state, MashQL’s users can take advantage of the RDF Loader

caching and transparently refreshing mechanisms. As a result, MashQL’s users wait for URL

data loading only for the fist time and the query process is easier.

The MashQL editor is able to query the candidate RDF data sources that are stored in oracle’s

RDF model, using two types of queries:

1. The background queries that are used during the formulation algorithm which are run

in background

2. The formulated queries or final queries, the queries whose results contain the users’

desired information.

During the query process the MashQL editor submits to the Query Optimizer a number of

URLs that one needs to take information from, and the actual query in SPARQL format (figure

3.1, point 5). The Query Optimizer validates all input parameters and executes the query using

all input URL’s data (figure 3.1, point 6). All the non-valid URLs are ignored and are not

included in the query. The Query Optimizer executes all background queries in its tables in

order to provide the highest performance and all the formulated queries on oracle’s RDF

model (figure 3.1, point 7). The query’s end result is returned to the MashQL editor

immediately after the execution process (figure 3.1, point 8).

 40

3.2 Components Specification

3.2.1 RDF Loader

The RDF Loader is MashQL’s module that bulk-loads RDF data source[s] into an Oracle 11g

database. When a user has specified an RDF data source[s] as input, the MashQL editor

invokes the RDF Loader to download and load the source’s data into the database. The

MashQL editor communicates with RDF the Loader using the addURL and getURLStatus

interfaces that are defined in Loader's API (Table 3.1). The addURL interface initiates the

loading process by adding the loading request into a queue. The queue elements contain the

data source URLs that are candidates for being loaded. After that, a number of de-queuer

processes de-queue the messages from the queue and routes the messages for downloading

locally in the system. When the RDF files are downloaded, they are converted in to a format

that is able to be loaded in the database .During the loading process, the RDF Loader informs

the MashQL editor of the status of each candidate data source via the getURLStatus interface

that is implemented by the MashQL editor. The MashQL Administrators are able to monitor

and tune the system’s parameters via the web console that is available (Figure 3.2).

Figure 3.2: RDF Loader components

 41

API Name addURL
Description It Loads an RDF data source into a database
Input Arguments String which describes a valid URL.

http://<domain name>/file.[rdf|nt|n3]
Output Use the getURLStatus PL/SQL function in order to get the URL

status from the system.
Type Oracle 11g PL/SQL stored procedure
Database
Connectivity

This procedure is created and stored in an Oracle 11g database, thus
any programme languages that are able to execute a database
PL/SQL procedures are supported. Use your programme language
documentation for the database connectivity.

API Name getURLStatus
Description Returns the database loading status for a candidate RDF data source.
Input Arguments String ,which describes a valid URL.

Argument format
http://<domain name>/file.[rdf|nt|n3]

Output String, with the following format
Module's identifier #Message description
e.g. 400#URL: <URL name>successfully loaded.

Type Oracle 11g PL/SQL function
Database
Connectivity

This procedure is created and stored in an Oracle 11g database, thus
any programme languages that are able to execute a database
PL/SQL procedures are supported. Use your programme language
documentation for the database connectivity.

Table 3.1: The definition of the addURL and getURLStatus RDF loader APIs.

The RDF Loader has the following components:

1. The RDF Loader API

2. URL Queue

3. Download module

4. The Jena Parser

5. Oracle SQL*Loader Module

6. Data source refresh module

7. Administration console

 42

URL

URL exists in the Database
with staled RDF data

URL does not exist
In the Database

WEB SEVERS
On INTERNET

Download Module

Jena Module

Oracle Loader Module

URL exists in the Database
with fresh RDF data

AQ
QUEUEaddURL(<URL>)

getURLStatus(<URL>)

RDF Loader API

Not Running URL

URL Queue De-queuers

Database

RDF Loader
Repository

MashQL editor

MashQL Server
FileSystem

Downloading

Convert file to NT Format

Read the File

Bulk-Loading

Inform user
and exit

Read data source’s
Metadata

Prepared Optimizer’s
Database objects

Figure 3.3: RDF Loader components design

3.2.1.1 The RDF Loader API

The RDF Loader API is an oracle’s PL/SQL procedure and function. The API defines and

describes all the interactions between the MashQL components and the RDF loader in order to

successfully load a data source[s] into a database.

When the MashQL user needs to query a data source[s] from the web, the MashQL editor

calls the addURL PL/SQL stored procedure. The addURL procedure is responsible for the

en-queuing the candidate URL’s string into the URL Queue. When the URL’s string is en-

queued into URL Queue, it waits its order for loading and further processing. The addURL

 43

procedure is used for only one URL at a time; consequently, the MashQL editor will call the

addURL separately for each data source until it satisfies all the candidate data sources.

During the loading process, the MashQL editor can get the status of a loading process via

getURLStatus API. The getURLStatus PL/SQL function reads a centralized table from the

RDF Loader repository and returns the appropriate message (Figure 3.3). The definitions of

these APIs are listed on table 3.1.

3.2.1.2 URL Queue

The queuing functionality of the RDF Loader enables asynchronous communication between

the RDF Loader and the MashQL editor. It offers guaranteed delivery of messages along with

exception handling in case messages can not be delivered. URL Queue is stored on top of

Oracle Advanced Queuing technology. The elements or messages of the URL Queue contain a

requested URL string (figure 3.3).

3.2.1.2.1 De-queuer Agent

The URL Queue messages will be de-queued through the De-queuer Agent (figure 3.3). The

de-queuer agent is a multithread java program which communicates with URL Queue in order

to route the URL request. The de-queuer agent spawns sixteen (threads per CPU X CPU

counts) daemons each of them running on different java thread and is connected with a

database via an oracle’s connection pooling mechanism. The system automatically pullulates

more daemons when the throughout number is high (the initial number and the maximum

number of daemons can be configured using the MashQL administration console). Each

daemon de-queues a URL string from Queue. If the same URL is already de-queued from

another session (the URL is running) the daemon stops the process for this URL and de-

queues a new one.The MashQL’s user who requests the URL will reuse the URL contents

from the active session when it is completed.(figure 3.3).

 44

3.2.1.3 Download module

The Download module simply downloads URL’s RDF data from the web, locally in the server.

The module accepts as input a URL string. When a new URL string is received, the module

fetches the URL’s metadata from the URL’s location (Web). The URL’s metadata are

compared with URL’s metadata that exists in the RDF loader repository and the comparison

can produce three possible results:

1. The URL’s data does not exist in the repository

2. The URL’s data exists in the repository and has fresh data

3. The URL’s data exists in the repository and has stale data

In case number 2, the system stops the process and notifies the system that the specific URL is

available to include in MashQL queries. Otherwise, in cases number 1 and 3 the system

downloads the file locally in the server. If the file’s download is completed successfully the

module notifies the system of the status of the download process and moves the request to

Jena module for further processing (figure 3.3).

3.2.1.4 The Jena Parser

When the URL’s data is downloaded, it is converted to N-Triple (NT) format. This can

achieve usage of the Jena’s parser (figure 3.3). The conversion is an inevitable task because

NT format is a prerequisite for the Oracle SQL*Loader Module in the next step. Jena is a Java

framework for building Semantic Web applications. It provides a programmatic environment

for RDF and SPARQL. Jena is an open source and grown out of working with the HP Labs

Semantic Web Programme. There are many tools in the market that do precisely the same

work (figure 3.3) [15].

3.2.1.5 Oracle SQL*Loader Module

This module prepares the loads of URL’s RDF data, on top of oracle’s RDF model and,

additionally, it prepares all the database objects that are needed by the Query Optimizer

module.

 45

As we already mentioned, the fastest way to load RDF data into the oracle database is the

SQL*Loader tool. The SQL*Loader uses a direct-path loading method which gets data from a

N-Triple (NT) format and it loads it into a predefined staging table called STAGING table.

Subsequently, Oracle’s SEM_APIS.BULK_LOAD_FROM_STAGING_TABLE PL/SQL

procedure is invoked in order to load or append the data from the staging table into the

oracle’s RDF technology tables. All RDF’s data, irrespective of which data source they

belong to, can be stored in one RDF graph (it is also called RDF model). In our system, each

URL’s RDF data is stored in a separate RDF model. We choose the latter technique because it

is recommended by Oracle, it is more flexible, it provides faster access to RDF data, and it

helps us in the transparent URL’s refreshing and implementation.

During the transparent URL refreshing, the system maintains two versions of URL’s RDF

data. The old RDF data, is the active version and the new RDF data, is the inactive version.

During the loading process of the new RDF data, MashQL’s users are able to query only the

active RDF data (old). The new RDF data become active when they are loaded successfully

(figure 3.3) [13]

3.2.1.6 The data source refresh module

The data source refresh module is a daemon which periodically checks the freshness of the

data sources which are already loaded into database. If the data source's data is stale, (the last

modified date stored in the database is shorter than the current modified date of the data

source). The system, automatically, updates the data source through own its source by adding

the URL again onto the URL queue (figure 3.3).

3.2.1.7 Administration console

Any administration issues against the RDF LOADER can be completed using the

administration console. The administration console is a web-based application written in Java.

Through the console, MashQL’s administrators can do the following:

1. Monitor all the system logs and actions

 46

2. Add, delete, and update RDF data sources.

3. Tune system's parameters.

4. Start/stop/status and configure the de-queuer daemons.

5. Monitor URL Queue.

(figure 3.3).

 47

3.3 Query Optimizer

The Query Optimizer is a module which predetermines the most efficient way of producing

the result of MashQL's queries. During the query process, the MashQL editor submits to the

Query Optimizer all the information that is needed to execute a MashQL's query.

The Query Optimizer validates all inputs and parameters and executes the query using the

input of the URL’s data. All non-valid URLs are ignored and are not included in the query. If

the input query is a background query, the Query optimizer executes it on its database objects

using the BQUERY table function. On the other hand, if the query is a formulated query, the

Query Optimizer executes it on Oracle's technology using the SEM_MATCH table function

(Figure 3.4).

Figure 3.4: Query Optimizer Module Architecture

3.3.1 The executed_query interface

The communication between the Query Optimizer and the MashQL editor is achieved by

using the executed_query API defined by the Query Optimizer (Table 3.2) .When a MashQL

editor needs to execute a query, the executed_query API must be invoked. The API accepts as

input a list of URLs, and the select list that contains the named columns that are included in

 48

the query, the SPARQL query, queries conditions and filters (e.g. AND spy's name like

'%007%’), RDF aliases which identifies one or more namespaces that are included in the

query, and finally, the row to row limits which eliminate the rows that returned by the query

and are used in the event that the query’s result is too large. The executed_query API returns

an Oracle's reference cursor. The reference cursor is a data type in the Oracle PL/SQL

language and it represents a cursor or a result set in an Oracle Database.

API Name executed_query
Description Execute all MashQL Queries
Input Arguments String which describes a URLs List separated by comma

String which describes a query's Select List,
String which describes the SPARQL Query ,
String which contains the query's conditions,
String which describes the RDF Aliases List separated by comma,
Integer From row,
Integer To row

Output Oracle's reference cursor
Type Oracle 11g PL/SQL stored procedure
Database
Connectivity

This procedure is created and stored in an Oracle 11g database, thus
any programme languages that are able to execute a database
PL/SQL procedure are supported. Use your language's programme
documentation for the database connectivity.

Table 3.2: The definition of the executed_query interface

Table 3.2 contains an example of a background query execution using the executed_query

procedure. The query returns all the articles ' properties from two RDF data sources .The

query returns only the results from position 20 to position 70.

execute_query
(
 'http://cs.uoc.ac.cy/sem_src1.rdf, http://cs.uoc.ac.cy/sem_src2.rdf',
 'ArticlesProperties',
 (?all ?ArticlesProperties ?ArticlesObjects)',
 null,
 null,
 20,
 70
)
return reference cursor

Table 3.3: Background query example using executed_query procedure

 49

3.3.2 Query Optimizer System Design

When the MashQL sends the query to the Query Optimizer (Figure 3.5), the Query Optimizer

uses its own simple algorithm to calculate the hash value of the query. The hash value is an

integer number which is calculated using the query's SPARQL, the selection's named columns

and the Query's condition. Each hash value is associated with a background query template

stored in the database.

Figure 3.5: Query Optimizer components specification

 50

The Query Optimizer uses the technique of the hash value in order to determine which

background query to run. The query template contains a pre-defined tuning query, that is

ready to run on a Query Optimizer's table. All formulated queries do not have any hash values

associated with it, thus their queries are created dynamically and the query runs using Oracle's

SEM_MATCH table function. If the query's selection named columns are more than one, the

hash value is not calculated, and the query is executed on the Oracle's technology (all the

MashQL background Queries have only one named column in the query's selection list). If the

hash value does not correspond to any background query, a default query template is created

in order to be executed on Oracle's technology.

As we already mentioned, in the section called “Oracle’s RDF technology”, the Oracle

technology keeps all URL's RDF data into a central storage schema and saves it as graphs (or

models). Each URL has its own graph associated with it. As a result, in order to get access to a

specific URL's data inside the oracle database, you need to specify the model name or the

graph name. Thus, the Query Optimizer checks if the selected URLs are loaded successfully

into the database. If they are, for each successful URL, it gets the correlate Oracle's RDF

model name , if not, it is ignored , and it is not included it in the query. The mapping between

the URL and RDF model name is to keep track of the database. The model name is used in the

query for both the Oracle’s SEM_MATCH query and the Query Optimizer’s BQUERY .The

SEM_MATCH uses the model name to specify the access data through from the Oracle’s

technology. On the other hand, the BQUERY uses the model in order to determine the

optimizer’s tables and views that it needs to access in order to satisfy the query. The

SEM_MATCH query uses the SEM_MODELS attribute in order to include more models in

the query (Table 3.5).

The BQUERY cannot combine more than one URL simultaneously (like SEM_MATCH).

Thus, for each model it creates identical queries and each of them get access to different

database objects that are executed all together as one query using the UNION operator (Table

3.4).

 51

 select datum from bquery
 (
 'MVN$P_UOC_EXAMPLE1',
 'p',
 '(?s ?p ?o)',
 null,
 20,
 70
)
 UNION
 select datum from bquery
 (
 'MVN$P_UOC_EXAMPLE2',
 'p',
 '(?s ?p ?o)',
 null,
 20,
 70
);

Table 3.4: The query that is created for the corresponding example in table 3.3

SELECT ArticlesProperties
 FROM TABLE(SEM_MATCH
 ('(?all ?ArticlesProperties ?AuthorsObjects)',
 SEM_Models('model1','model2'),
 null, null,null)
)
group by ArticlesProperties
order by ArticlesProperties;

Table 3.5: How to invoke the SEM_MATCH function in order to execute a background query

concerning the example in table 3.3.

Table 3.6 shows the query that is created for the corresponding background query in the

example in table 3.3. As you can see, the MashQL's background query is replaced with the

corresponding query template and has exactly the same meaning as the original MashQL's

query. The URLs are translated through materialized views MVN$P_<model_name> which

contain the URL's data, and the variables inside the SPARQL are replaced by s, p, o variables

in order to match the MVN$P_<model_name> columns. This query is passed to the

executed_query procedure as a variable of characters (query_template) and is executed inside

the query_result cursor which returns to the user.

 52

execute_query(..)
. . . .
 type r_cursor is REF CURSOR;
 query_results r_cursor;
 query_template varchar2(4000);
begin
. . . .
 query_template:=getQueryTemplate(..);
 open query_results for query_template ;
. . . .
 return query_results;
end;

Table 3.6: A part of the executed_query API which executes a query template.

 53

Chapter 4

Optimization Solution

In this chapter, we explain in particular detail the optimization solution that we provide

regarding the background queries, by dividing MashQL’s background queries into two

categories according to their optimization solution (General background queries and the N-

level properties and N-level object queries). We explain what database summaries are, and,

how these summaries help the general background queries to have a better performance

standard. In addition, we explain what the BR-Algorithm is, and how this algorithm helps the

N-level properties and N-level objects queries to run faster.

4.1 Optimization Solution

Our optimization solution gives emphasis on the performance issues that arise in section 2.5.1

MashQL's performance considerations , and it aims at bypassing these issues in order to

execute all MashQL’s queries successfully, efficiently and in a timely fashion . The module

that bears this responsibility is called Query Optimizer.

Our optimization solution stands on two database techniques:

3. It creates smaller and focuses on data sets using data summaries providing

background queries with a faster access to less data.

4. It fetches beforehand queries results and storing these results into the database in

order to bypass self-joined operations during the queries execution.

Based on the above techniques, we divided MashQL’s background queries into two categories

according to their optimization solution. In the first category belong the background queries 1

to 13 where their optimization solution is supported using the method of summaries. The

summaries are created by using the technology of materialized views. (We called these types

of queries "General Background Queries"). In the second category belong the background

queries 14 to 17 where their optimization solution is supported by using the BR-Algorithm,

our novel fetching beforehand results algorithm. We will recall details about the BR-

 54

Algorithm in a section further on in this chapter (We called these types of queries “n-level

properties and n-level objects background queries”).

4.2 General Background Queries Optimization Solutions

For the general background queries we use the summaries solution. All the data summaries

are created using the technology of materialized views since materialized views have the

following serious advantages[16]:

1. the purpose of the materialized view is to increase query execution performance.

2. the existence of a materialized view is transparent to SQL applications, so a database

administrator can create or drop materialized views at any time without affecting the

SQL applications.

3. a materialized view consumes storage space and must be updated when the underlying

detail tables are modified .

Data summaries inherit all the materialized view advantages ,plus, instead of scanning and

sorting all the data during the queries’ execution course, the data are already sorted and pre-

computed according to the general background queries requirements. With this technique (a)

we have smaller data sets , as a result, less scanning data, less join data. (b)We save

performance time, since the data are already sorted during the summaries creation course. (c)

Most of the queries’ results are already pre-computed. (d) Materialized views provide faster

access time for data in relation to a normal table , and, (e), with our new database schema we

eliminated the self-join problems that can exist in some general background queries, since the

triple table is normalized into smaller data sets and the queries are transformed based on the

new database schema, thus executed differently .

Our optimization solution proposes three categories of data summaries implemented as

materialized views in the database tables used to support the RDF technology.

The first category of summaries creates 1-column schema materialized views for each column

of the triple table. This category enumerates three summaries. The first summary in this

category contains all the unique subjects , the second summary contains all the unique

properties and the third summary contains all the unique objects.

 55

These summaries help the background queries whose query is related only to the triple's

subjects or objects or properties. For example , find a subject[s] which is/are equal to an

input variable V introduced by a user or from a label L that is selected from a drop-down list.

It is obvious that these types of queries will be answered very fast since all the graph's

subjects are sorted in one summary which is by far shorter than the triple table. Additionally,

these summaries can be combined or joined with other summaries in order to answer

background query questions. For example the query: find an object[s] whose properties are

equal to an input variable V. First, the query will get access to the summary that contains all

the unique properties in order to bind the variable V and after that it will use these properties

in order to find the correct object[s] joining the last category of summaries that will be

explained in this section.

The second category of summaries creates a 2-column schema of materialized views. This

category enumerates two summaries. The first summary in this category combines the subject-

property filtering the properties of a specific RDF class (rdf:type), and the second combines

the object-property filtering the properties of a specific RDF class (rdf:type) . These

summaries answer the background queries that search for objects or subjects whose property

belongs to the RDF class rdf:type.

The third category of summaries creates a 3-column schema of materialized views and

enumerates only one summary. This summary is a snapshot of the triple table and contains the

entire data source RDF graph. This summary answers global background queries questions

and it is always used with a combination (e.g. join) with the above summaries. In this way,

instead of the self-join triple table it-self we join the triple table(where in its place we have

this summary) with one or more summaries above which are shorter in size. As a result, the

query is executed faster since the summaries’ are by far smaller rather than the triple table.

As we mentioned above, our solution enumerated six summaries in total that are created

during the loading process and recreated every time that the data source is updated in the

system. For faster data manipulation, the values for the subject, the property and the object are

converted from their corresponding lexical values in to big numbers which are faster in logical

 56

comparisons rather than the characters, and also, all summaries are sorted and indexed very

carefully. As we already mentioned, all MashQL's queries are translated in to the SPARQL

language and this SPARQL code is executed on the RDF engine's backend database, as results.

In order to run this SQARQL code into our solution we need to transform the background

queries SPARQL to SQL-BASED query according our optimization solution. Thus, for each

background query we create a corresponding SQL query template that is ready to run in our

optimization solution and it is stored as text in a MashQL Query Optimizer's repository .

When the MashQL Query Optimizer has received a background query for execution , it binds

the query's variables in the background query's corresponding template and instead of running

the background query it executes the background query's corresponding template on our

optimization solution summaries.

4.3 N-level objects and N-Level properties Background Queries Optimization Solution

As we already mentioned, during the formulation algorithm, MashQL's users need to expand

some properties (P) or some objects (O) in order to declare its path. This action creates the n-

level properties and n-level objects background queries , where they present a very high

interest , since for huge data sets these queries sometimes are not responding or they have a

very poor performance. The main reason for the bad performance derives the queries’

tendency to make so much self-joining summaries as the number of levels that the queries

need to expand to. The problem becomes bigger regarding very large RDF graphs with

million or billion triples, since the million or billion triple table is self-joins itself to many

times and the RDBMS is not able to handle too many data very fast . The table 4.1 shows the

query's execution plan of a background query 16 at Level 5 that is executed by using Oracle’s

SEM_MATCH. The Oracle’s query optimizer’s execution plan shows that, the Oracle , self-

joins five times the internal table RDF_LINK$ that contains the graph’s data , and after that ,it

sorts the results and returns the data back to the system. The same behavior pattern appears in

all the n-level properties and n-level objects background queries. As a conclusion, when these

types of queries are executed, the RDBMS must read and scan n * number of triples table

data , a value that the RDBMS is not able to handle very fast.

 57

Background Query 16 in Level 5

SELECT o4 FROM TABLE
(SEM_MATCH(
'(?S ?P ?O)(?O ?P1 ?O1)(?O1 ?P2 ?O2)(?O2 ?P3 ?O3)(?O3 ?P4 ?O4)',
SEM_Models('YAGO'), null, null, null))
group by o4;

Oracle's Query Optimizer Execution plan

SELECT STATEMENT
 SORT AGGREGATE
 VIEW
 HASH GROUP BY
 NESTED LOOPS
 NESTED LOOPS
 VIEW

HASH JOIN
 PARTITION LIST SINGLE
 TABLE ACCESS FULL RDF_LINK$
 HASH JOIN
 PARTITION LIST SINGLE
 TABLE ACCESS FULL RDF_LINK$
 HASH JOIN
 PARTITION LIST SINGLE
 TABLE ACCESS FULL RDF_LINK$
 HASH JOIN
 PARTITION LIST SINGLE
 TABLE ACCESS FULL RDF_LINK$
 PARTITION LIST SINGLE
 TABLE ACCESS FULL RDF_LINK$
 INDEX UNIQUE SCAN C_PK_VID
 TABLE ACCESS BY INDEX ROWID RDF_VALUE$

Table 4.1: Oracle's execution plan for the background query 16 Level 5 using Oracle’s SEM_MATCH

table function

The Oracle’s SEM_MATCH query in the table 4.1 is an example of the n-level objects

background queries. These queries have the characteristic that , the query's resulting objects

(variable O) in the first SPARQL pattern become the input subjects in the second SPARQL

pattern and the resulting objects (variable O1) in the second pattern become the input

subjects in the third SPARQL pattern. This movement of resulting objects continues till the

SPARQL pattern N. The last SPARQL pattern always returns the query’s results. Those

results are contained in SPARQL’s variable O4 (for the objects) and the P4 (for the

properties). As a result, the queries tend to create a parent-child relation or a chain of blood-

related objects from the first SPARQL pattern to the N SPARQL patterns (the objects of

objects and so on) and they return the results that are found in the N SPARQL pattern. This

 58

relation illustrates that, the objects or properties that exist in the first pattern have 1- Blood-

Relation with one or more subject[s] in the first SPARQL pattern. The objects or properties

that exist in the second pattern have 2- Blood-Relation with one or more subject[s] in the first

SPARQL pattern, and the objects or properties that exist in the N pattern have an N- Blood-

Relation with one or more subject[s] in the first SPARQL pattern. Thus, based on the above

relations, if we calculate all the Blood-Relations between all the graph’s subjects with the rest

of the graph’s objects, we can easily answer very fast any n-level objects and n-level

properties background queries, since we will need to return only to the query’s N-Blood-

Relation results.

We probed the Floyd-Warshall algorithm, a classical graph’s algorithm that calculates the

graph’s transitivity closure and all graph’s pairs shortest paths , for a weighted graph. The

graph’s transitivity closure provides reachability information about a graph’s nodes i.e. a node

v can reach the node x, but it cannot tell you how the connection is made between any two

nodes. For example [28], given a directed graph G = (V, E) with vertex set V = {1, 2,...,n}, we

may wish to find out whether there is a path in G from i to j for all vertex pairs i, j ∈ V.

The transitive closure of G is defined as the graph G* = (V, E*), where E*= {(i, j) : there is a

path from vertex i to vertex j in G}. The Floyd-Warshall algorithm finds the lengths (summed

weights) of the shortest paths between all pairs of vertices while it does not return details of

the paths themselves. As a result, by running the Floyd-Warshall we will get all the N-Blood-

Relations between the graphs’ nodes. The problem that has been given birth is focusing on the

fact that RDF graphs contain different types of data rather than the data that are hosted by the

classical directed graphs i.e. RDF graphs can host biological data, social networks, web data

and lot of other categories of data [29]. To understand the problem , imaging a graph, where

its edges are expressed in numbers, characters or user-defined class-data types. Since the

graph’s edges in the RDF can belong in different classes e.g. rdf:type , parent-of, brother-of,

sister-of, friend-of, employee-of, etc the graph’s node shortest paths is not possible to be

calculated[30]. Based on the above issue, the simplest way to compute the transitive closure of

 59

an RDF graph is to assign a weight of 1 to each edge of E and run the Floyd-Warshall

algorithm. If there is a path from vertex i to vertex j, we get dij < n. Otherwise, we get dij = ∞

[28].

Figure 4.1: A simple RDF graph (G)

Consider the sample graph in figure 4.1 , the Floyd-Warshall algorithm implementation

produces the following 3 X 3 matrix , which contains the algorithm’s results

 V1 V2 V3
V1 - 1 2
V2 ∞ - 1
V3 ∞ ∞ -

The Floyd-Warshall matrix shows that the node V1 can reach V2 at cost 1, and the V1 can

reach node V3 at cost 2. By the same token, node V2 can reach V3 at cost 1. On the other

hand, node V3 is not able to reach any node. As a result , from the Floyd-Warshall matrix

we can easily answer any n-level objects and n-level properties background queries, since we

need to select all the objects that belong to the query's n-level.

Unfortunately , the Floyd-Warshall algorithm can not be applied in our problem for the

following reasons:

1. As far as very large RDF graphs are concerned, the algorithm needs as an input a very

huge matrix. Thus, speaking about real data, these large RDF graphs will produce a

million X million matrix(graph’s subjects UNION graph’s objects X graph’s

subjects UNION graph’s objects) and if we take into consideration that traditional

transitive closure algorithms are mostly designed for main memory operation, it will

be very difficult for the memory to handle this huge data.

2. The RDF's graphs are already stored in the database as 3 X N relational table making

the RDF data permanently available (subject, property, object X rows). Thus, in order

to avoid the big I/O between Main Memory and Disks, we decided to use the RDBMS

services in order to find a solution to the problem.

We proposed the Blood Relation Algorithm (BR-Algorithm) a database approach which

 60

calculates the blood relation level between all graph's subjects in relation to the graph's objects

that belong to a graph. The algorithm ignores the graphs' edges’ weight i.e. the graph's

property value ,and it measures the blood relation level from a subject to the rest of the objects

that can be found in the same path. If there is a path from subject i to object j, the BRij is the

number of neighbour objects that the subject i needs to leave behind in order to reach the

object j .All the objects that are unreachable from subject i are ignored. The results are caught

in a partition table ,in the form of {BR level, Si,<triple>} , where the table's partition key is

the BR level .

 # s = Subject
p= Property
o= object
TEMP is a temporary table
BR$ is a partition table which contains algorithm’s results
maxlevel(G) returns the graph's maximum BR's level
maxL an integer number indicating graph’s maximum reach level
FOR each si in G DO
 Level=0
 SELECT s,p,o FROM G WHERE s=si
 INSERT o IN TEMP
 INSERT Level,si,s,p,o IN BR$
 LOOP
 Level ++
 SELECT s,p,o FROM G WHERE s IN
 (SELECT o FROM TEMP where o != si)
 DELETE TEMP
 INSERT o IN TEMP
 INSERT Level,si,s,p,o IN BR$
 EXIT WHEN Level<=maxlevel(G) OR Level=maxL
END FOR

Table 4.2: BR-Algorithm pseudo-code

Table 4.2 shows the algorithm’s pseudo-code which behaves as follows:

For each unique subject that belongs to graph G , the following actions take place:

1. The algorithm selects all the objects and properties that are directly connected with

examined subject i.

2. The algorithm saved the Si's results {BR,si,<triple>} in the BR table , and the triple's

objects in the TEMP table.

3. The algorithm loops , by selecting all the objects and properties that are directly

connected with the objects that are found in TEMP , increasing each time the BR level

by 1 and storing the results {BR,si,<triple>} in the BR table. For every loop the

 61

TEMP table is resetting with object results of the previous objects. The algorithm

exits the loop when the S[i] path is discovered.

4. The algorithm continues to select all the objects and properties that are directly

connected with examined subject i+1 and finished when all subjects are discovered.

For example , consider the graph illustrated in figure 4.1. It is has the triples

<V1->P1->V2> and <V2->P2->V3>. The degree of neighborhood between a subject V1 and

the object V2 is 0 (This is denoted as BR (V1, V2) =0 or V1 level 0 V2) and the degree of

neighborhood between a subject V1 and the object V3 is 1. In the same way, the degree of

neighborhood between a subject V2 and the object V3 is 0. Node V3 can not be used because

it does not have any neighbor object[s]. If we apply the BR-algorithm in this graph , it will

create two groups or partitions , the group 0 and 1 , with the following BR entries:

BR Si S P O
0 V1 V1 P1 V2
0 V2 V2 P2 V3
1 V1 V2 P2 V3

Table 4.3: BR$ table results for the graph G

When the BR-algorithm calculates the graph's paths for each subject, the n-level properties

and n-level objects background queries become simple in their execution , since the Query

Optimizer needs to fetch only the result from the BR$ table, calculating only the query's n

value which is the number of SPARQL's patterns - 1 that exists in the original SPARQL query.

In the same way, as the general background queries , the Query optimizer maintains SQL-

BASED templates for each n-level property and n-level object background query that are

ready to run in our optimization solution and it is stored as text in a MashQL Query

Optimizer's repository . When the Query Optimizer has received a background query for

execution , it binds the query's variables in the background query's corresponding template

and instead of running the background query, it executes the background query's

corresponding template in our optimization solution summaries. The following SQL code

compares the execution of the 2 levels of objects expansion background query using Oracle's

 62

SEM_MATCH and the MashQL Query Optimizer against the graph G that we used in our

example.

Oracle
=======
SELECT o2 FROM TABLE
(SEM_MATCH
 (
 '(?S1 ?P1 ?O1)(?O1 ?P2 ?O2)',
 SEM_Models('G'), null, null, null)
)
group by o2;

Our Solution
===========
SELECT o FROM BR$G where br=1

 63

Chapter 5

Experimental Methodology

In this chapter we present the Experimental Methodology that we used in order to implement

the optimization solution that we proposed in chapter 4 . Since the Oracle 11g semantic

technology is chosen to be the MashQL's RDF engine [1,2,3,4,5] our optimization solution's

database objects are created based on this technology. More analytically , in this chapter ,we

mention information about the data summaries and BR-algorithm that we created on top of

Oracle's technology. Additionally , we state the problems that we found during the BR-

algorithm implementation and we provide the solutions that we found in order to solve these

problems i.e. we present how our new partition schema against any RDF graphs helps BR-

algorithm to be executed faster.

5.1 Summaries Implementation

Our optimization solution for general background queries creates three types of data

summaries. These summaries are created using oracle's materialized views technology (their

advantages are presented in chapter 4 section 4.2) and their names starting from prefix MVN$

and ending with suffix _<graph_name> (the graph's name is the same name that is given

when the graph is loaded into the Oracle database. The oracle technology uses the term model

to express the RDF graph's names). As you understand, each graph has its own summaries that

are created after the graph's been loaded in the oracle database (their creation script can be

found in appendix D).

The first type of summaries creates a summary of data for each column of the triple table. The

first summary contains all the unique subjects (MVN$S_<graph_name>), the second

summary contains all the unique properties (MVN$P_<graph_name>), and the third summary

contains all the unique objects (MVN$O_<graph_name>).The second type of summaries

creates a summary of data contains all the unique subjects and objects that their properties

belong to the rdf:type class(the views are the MVN$T_S_<graph_name> for the subjects set

 64

and the MVN$T_O_<graph_name> for the objects set).The third summary type is a snapshot

of the triple table (MVN$<graph_name>) that contains the entire RDF graph.

5.2 BR-Algorithm Implementation

In the section of chapter 4 , we presented the BR-Algorithm's speudo-code. In this section we

will present how the algorithm gets access to the database summaries in order to calculate the

n-level objects and n-level properties background queries results and stores them in the

database. Initially, the algorithm reads the MVN$S_<graph_name> summary which contains

all the graph’s unique subjects. For each subject Si that belong to the candidate graph, the

algorithm finds all the Si’s neighbor objects by selecting the MVN$_<graph_name> summary.

All the neighbor Si’s objects that are selected from the MVN$_<graph_name> are stored in

the database under the BR$<graph_name> table and these objects are considered to belong to

level 0 in relation to the subject Si. After that, the algorithm calculates the Si’s level 1 objects,

by finding the neighbor objects of the Si’s neighbor objects that have been discovered before.

All the results are appended in the BR$ table. This process continues until the algorithm

discovers all the relations between subject Si and the nodes that exist in the graph. The

algorithm is terminated when all the subjects are discovered. The final product of this

algorithm is a table of adjacencies between the subjects and the graph's nodes and it contains

the following information

1. All the available paths from subject to its neighbor objects.

2. The BR level between a subject and their neighbor objects.

In using Figure 5.1, we demonstrate how the algorithm works using the graph G that we

introduced in chapter 4. The algorithm first reads the subjects from the summary MVN$S_G

(V1,V2). Starting from subject V1 , the algorithm finds all the V1's neighbor objects by

selecting the MVN$_G summary. The result of this selection is node V2. The algorithm stores

into table BR$G2 the level number (level 0),the examined node (V1) , and V2's triple

information (V1->P1->V2). After that, the algorithm calculates V2's neighbor objects by

selecting the MVN$_G summary. The result of this selection is node V3. The algorithm

stores into table BR$G the level number (level 1),the examined node (V1) , and V3's triple

 65

information (V2->P2->V3). After that, the algorithm calculates V3's neighbor objects by

selecting the MVN$_G2 summary , a selection that does not return any value , indicating that

the V1 path is completed. After that the algorithm takes the next subject that is the V2. For the

subject V2 the algorithm finds all the V2's neighbor objects by selecting the MVN$_G2

summary. The result of this selection is node V3. The algorithm stores into the BR$G table

the level number (level 0),the examined node (V2) , and V3's triple information (V2->P2-

>V3). After that, the algorithm calculates V3's neighbor objects by selecting the MVN$_G2

summary , a selection that does not return any value , indicating that the V2 path is completed.

Finally the algorithm is terminated since all subjects in MVN$S_G2 are examined.

RDF graph "G"

Triple Table for graph "G"

MVN$_G

S P O

V1 P1 V2

V2 P2 V3

BR$G
BR NODE S P O
0 V1 V1 P1 V2
0 V2 V2 P2 V3
1 V1 V2 P2 V3

MVN$S_G

S
V1
V2

Figure 5.1: Explaining BR-Algorithm by using the simple RDF graph "G"

In the Oracle RDBMS the BR-Algorithm can be computed by using hierarchical queries

[17] with the START WITH and CONNECT BY clauses as shows query below . The

START WITH clause is optional and specifies the rows that are the root(s) of the hierarchical

query. If you omit this clause, then Oracle uses all rows in the table as root rows. The

CONNECT BY clause specifies the relationship between parent rows and child rows of the

hierarchy. The CONNECT BY PRIOR is a condition it refers to the parent row .The BR-

Algorithm's results are saved during the algorithm's execution , an advantage that is provided

by the oracle's CREATE TABLE command.

 66

The initial implementation of the algorithm according to the example above is demonstrated

using the following oracle's SQL code:

CREATE TABLE BR$G
as
SELECT a.s as NODE ,LEVEL as BR ,g.S,g.P,g.O
FROM MVN$_G g,(SELECT distinct s FROM MVN$S_G) a
start with g.s=a.s
CONNECT BY prior g.o=g.s
/

5.2 BR-Algorithm's problems

We run the BR-algorithm on our datasets (see chapter 6 , section for dataset description) and

we came confront with the problem that the algorithm could not completes for the majority of

our datasets, as well as , the size of the BR$ table was increasing disproportionately in relation

with graph's triple table (The algorithm completes only for the datasets FLICKR, DBLP). It is

obvious that , the algorithm produces a huge number of BR entries (<br,si,s,p,o>) due to fact

that the algorithm explores all the possible paths per level for each subject , but using the

statistics on table 5.1 we realized that the size of the triple table and the number of the subjects

that a graph has are not the main causes of our problem.

Dataset name Number
of triples

Number
of unique
Subjects

Est. Number of
graphs' levels

Est. Percentage
of Graphs'
cycles

SEMDUMP 10083 1196 More than 70 More than 90%
FLICKR 2298849 2298849 1 0
DBLP 8424187 1156727 2 More than 1%
YAGO 18343546 4339591 More than 60 More than 35%
DBPEDIA 130822521 10534382 More than 3 More than 60%

Table 5.1: Datasets statistics (Number of triples, Number of unique Subjects , Estimated Number of

graphs' levels, Estimated Percentage of Graphs' cycles)

For example the problem has also appeared in the SEMDUMP dataset which has a very small

number of triples and a very small number of subjects. On the other hand , the SEMDUMP

dataset has most profound graph (more than 70 levels) and the most number of cycles in its

graph (90% of its subjects and objects are included in a cycle). Based on this observation, we

 67

conclude that any optimization solution against the BR-algorithm must focus on the following

factors:

1. Explore fewer triples.

2. Explore fewer subjects.

3. Explore the graph until we reach a constant depth.

4. Ignore graph's cycles

5.2.1 BR-Algorithm's optimization

The BR-Algorithm's optimization tries to eliminate and get around the problems that we focus

on the previous sections.

5.2.1.1 Explore fewer triples and fewer subjects

In order to explore fewer triples and fewer subjects during the algorithm’s runtime, we break

the RDF graph into three sub-graphs. The first sub-graph contains the triples from those

subjects which have no incoming arcs. They have only outgoing arcs and we call them "thin

subjects" (figure 5.2, B). The second sub-graph contains the triples from those objects which

have no outgoing arcs, they have only incoming arcs and we call them "thin objects" (figure

5.2, D). The third sub-graph contains the triple from those subjects or objects that have

incoming and outgoing arcs and we call these nodes "fat nodes" (figure 5.2, C). Consider the

RDF graphs G(s,p,o) the thin subjects (TS), the thin objects (TO) and fat-nodes (FN) deriving

the following sets’ relations :

TS= G(s) MINUS G (o)

TO=G (o) MINUS G(s)

FN = G(s) UNION G (o) WHERE G(s) NOT IN TS AND G(o) NOT IN TO

 68

Figure 5.2: RDF graph's partitioning. (A) The original graph,(B) Thin subject sub-graph,(C) Fat nodes

sub-graph,(D) thin object sub-graph.

The idea behind this partition schema derives from the thin subjects and the thing objects

constituting the graph’s edges, the thin subjects are the initial edges and the thin objects are

the final edges. By moving outside these categories of nodes, we create a new graph that is

much smaller than the initial. Think of the cutting edge photography technique , where its cut

photograph edges are so in order to minimize its size. (up to 4 times smaller). The BR-

algorithm runs against the new graph which has fewer subjects and fewer triples. If the new

graph has zero triples, the BR-algorithm is not executed since the max graph's path level is 1

indication that the graph is discovered. When the algorithm completes it, it will create the

BR$ table that contains the paths of all the subjects that include fat nodes. Additionally, the

algorithm merges the BR$’s results with the thin objects of the sub-graph. The algorithm

checks from the BR$ table, which nodes have in their path an object node and which is the

 69

level of any subject from the thin object sub-graph . Regarding the matching nodes, the

algorithm adds in BR$ table one level after all the corresponding objects to the matching

subjects. The thin subjects will inherit their paths from the fat nodes sub-graph, since their

object nodes are included as subjects in the fat nodes sub-graph and they will be calculated

using the BR-algorithm. The results for the subjects that are included in the thin subjects sub

graph are fetched during the SQL-Based NL-O and NL-P Background Queries at queries'

runtime.

Dataset name Number
of triples

Number
of triples (new
graph)

Number
of unique
Subjects

Number
of unique
Subjects(new
graph)

SEMDUMP 10083 10079 1196 1194
FLICKR 2298849 0 2298849 0
DBLP 8424187 902464 1156727 445551
YAGO 18343546 5493650 4339591 2169718
DBPEDIA 130822521 71420074 10534382 6495600

Table 5.2: Graphs’ size and graphs’ number of subjects before and after graphs’ partitioning.

By using this partition schema we achieved to reduce the number of subjects and the total

number of triples during graph’s discovering reducing the algorithm’s completion time and

producing less BR entries in the BR table.

5.2.1.2 Explore the graph until we reach a constant depth

Even though , the reduction of number of subjects and the total number of triples during

graph’s discovering make the algorithm’s completion time faster, for the graphs expanding in

at many levels, the BR$ table continues to be growing worryingly. It is obvious, that the

subject's path exploration up to the end, is a very difficult task, especially for very complex

RDF graphs that expand at many levels. Having this in mind, first, we do not calculate level 1

paths for each subject, since the results of level 1 paths are the triple table itself, and, second,

we limit the path's depth to a constant level according to the max graph’s level, taking into

consideration that, if any NL-O and NL-P Background Queries need to expand further, they

have to be able to do it in real time. With this solution we reduce by far the number of BR$

table entries and, as a result, the algorithm is implemented on completion time.

 70

5.2.1.3 Ignore graph's cycles

RDF graphs are comprised by a large number of directed cycles (a large number of nodes are

connected in a closed chain).The presence instances of cycles between nodes produce infinite

valid paths for the subjects since max levels of the graph touch the infinite. This fact creates

enormous problems in the algorithm that we already mentioned, thus, the rejection of cycles is

considered necessary. In order to achieve that, we used the NOCYCLE option coming with

the CONNECT BY clause which can handle graphs that contain cycles by generating the row

in spite of the loop in user data.

5.3 The Final implementation of a BR-Algorithm

The following SQL code provides the final BR-Algorithm implementation. During the

algorithm runtime, all the data are stored in the BR$ table which is a partitioning table having

as a partition key the BR value. The BR$ table is created during the BR-algorithm execution

course and, it can be altered after its creation (e.g. to add a new partition)

The clause WHERE LEVEL between 2 and 10 defined the constant maximum graph’s

exploration level (For example, the value 10 is dependent on graph’s max level. Some other

graphs may have lower or higher value).

CREATE TABLE BR$_<GRAPH_NAME>
 (
 BR ,
 SI,
 S ,
 P ,
 O
)
PARTITION BY LIST (BR)
(
 PARTITION q0 VALUES (2),
 PARTITION q1 VALUES (3),
 PARTITION q2 VALUES (4),
 PARTITION q3 VALUES (5),
 PARTITION q4 VALUES (6)
 PARTITION q5 VALUES (7),
 PARTITION q6 VALUES (8),
 PARTITION q7 VALUES (9),
 PARTITION q8 VALUES (10)

 71

)
TABLESPACE <RDF_TBS>
NOLOGGING
COMPRESS
PARALLEL <CPU_COUNT>
AS
SELECT sbj.s as SI, LEVEL as BR , g.S, g.P, g.O
FROM MVN$FAT_<GRAPH_NAME> g,
 (SELECT s FROM MVN$S_<GRAPH_NAME>) sbj
WHERE LEVEL between 2 and 10
start with g.s= sbj.s
CONNECT BY NOCYCLE PRIOR g.o=g.s
/

 72

Chapter 6

Evaluation

In this chapter we provide evaluation results for the RDF loader, the module that loads RDF

data resources into the MashQL database. Also, we present comparison results in relation to

the performance of MashQL background queries, using Oracle's SEM_MATCH and our

optimization solution.

6.1 Benchmark Definition and Machine's specification

Our Benchmark includes datasets from DPBEDIA, YAGO, DBLP and from Semantic Web

Conference Corpus(SEMDUMP).The table 6.1 provides a description for these datasets. The

datasets are in Native Triple format (NT), they were downloaded and stored in a local server

(The MashQL server, see table 6.2 on machine’s specifications). Our Benchmark includes a

small, medium and huge datasets (their size are according to the number of triples per dataset ,

see figure 6.1 for more details) .The Benchmark is created in order to evaluate the RDF loader

loading time and to compare the performance of MashQL background queries using Oracle's

SEM_MATCH and our optimization solution.

Figure 6.1: Datasets number of triples used for the Loader evaluation

 73

SemDump From Semantic Web Conference Corpus that contains information on papers
that were presented, people who attended, and other things that have to do
with the main conferences and workshops in the area of Semantic Web
research.

Yago A light-weight and extensible ontology with high coverage and quality.
YAGO builds on entities and relations and currently contains more than 1
million entities and 5 million facts.

Dblp Contains a large number of bibliographic descriptions on major computer
science journals and proceedings. The server indexes contains more than half
a million articles and several thousand links to home pages of computer
scientists.

Dbpedia DBpedia knowledge base describes more than 3.4 million things, out of
which 1.47 million are classified in a consistent ontology, including 312,000
persons, 413,000 places, 94,000 music albums, 49,000 films, 15,000 video
games, 140,000 organizations, 146,000 species and 4,600 diseases.

Dbpedia-
Flickr

A part of dbpedia dataset and it is used for evaluation purposes only.

Table 6.1: Datasets Description

Table 6.2 describes the machine’s specifications that we use to evaluate the MashQL Loader.

Processor Intel (R) Core(TM) i7 CPU Q720 @ 1.60GHz

4 cores 1.6GHz , 2 threads per core
Physical
Memory

8GB DDR3

Hard disk 320G 7200 rpms
Operating
System

Windows 7 Home Premium 64 Bits , 320GB Hard disk

Database

Version

Oracle Database 11g Enterprise Edition Release 11.1.0.7.0 - 64bits

Database

Memory

Distribution

Buffer Cache Area and Others 4,5G

Users' Sort Area 1,5G

Database

Temporary

Space for
sorting

In Disk

20G Bytes

Table 6.2 RDF Loader 's machine specifications

 74

6.2 Experimental Results & Discussion

6.2.1 RDF Loader Evaluation

In this section we provide evaluation results for RDF loader, the corresponding module that

loads RDF data resources into the Oracle's RDF model database.

6.2.1.1 Methodology

In order to evaluate the RDF Loader, we used a very simple methodology. We stored our

benchmark locally in a MashQL Server and later we loaded it into the MashQL database using

our RDF Loader. Our experiment , measures the time that the RDF Loader needs to load and

register a dataset into the Oracle's RDF model database.

The experiment does not measure the time that is wasted during the dataset downloading from

the web, the time that is wasted for any RDF files transformations (i.e. convert RDF/XML to

NT), and also, it does not calculate the time that will be wasted during the creation of Query

Optimizer Objects (Summaries and BR-Algorithm's results).

6.2.1.2 RDF Loader Experimental Results

The RDF Loader's experiment aims at measuring the RDF loader's loading performance

standard for small, medium and huge datasets and at finding the proportion of the loading time

of files concerning their size in order to give priority to the files with the faster loading time.

Data Sets Loading Time

0 16 28 70

1200

0
200
400
600
800

1000
1200
1400

SEMDUMP DBPEDIA
FLICKR

DBLP YAGO DBPEDIA

Ti
m

e
In

 m
in

ut
es

Data Sets

Figure 6.2: Datasets Loading Time results

 75

Figure 6.2 shows the loading time results in minutes for each dataset. It is clear that the

loading time is proportional to the dataset's size, a fact that is to be expected. For example, for

the largest dataset, the loading time reaches up to 1200 minutes (DBPEDIA), for the midium-

sized dataset, the loading time reaches up to 28 minutes (DBLP), and for the smallest dataset

the loading time is less than 0 minutes (SEMDUMLP). Based on these results, the statistical

number of 80000 triples per second that derived from the experiment's results is considered a

very good number to satisfy MashQL's loading needs.

Since the MashQL is a web application , the loading phase must be fast .Of course, the

loading phase is dependent on the data source's size which is requested by the MashQL user,

thus, we want to give priority to the files having the less loading time in relation to their size.

According to the results in figure 6.2, we set 30 minutes as the maximum loading time. This

value derives from the loading results for the small and the midium-sized datasets (10,000

triples are loaded after 0.5 minutes time (SEMDUMP) and up to 9,000,000 triples are loaded

after 28 minutes time (DBLP)).The proportional size in bytes for these datasets are 1MBytes

to 1,5GBytes respectively, thus , these sizes are considered as our boundaries for the RDF

resources that can be accepted by the system. All the rest RDF data sources, whose file size is

larger than 1.5GBytes will be loaded on a very low priority and will be have different

management criteria (such as refresh interval time etc.).An example of these data sources is

the DBPEDIA which needs 1200 minutes time to be loaded in the system.

From statistics in figure 5.3 , which are Oracle's official results according to the Oracle 11g

bulk loader which is exactly the same component as those have been that already presented , it

is clear that there is more space to improve further our RDF loader performance, making

internal changes inside the Oracle's loader configuration files that are suggested by [13]. The

statistics results derive from Oracle New England Development Centre [26] and show the

performance loading time on various version of LUBM [27] dataset . The experiment uses a

Linux-based commodity personal computer (1 CPU 3GHz, 2GB RAM) and it shows the

efficiency of Oracle's 11g to load RDF data.

 76

Figure 6.3: Datasets Loading statistics from Oracle New England Development Center [26]

 77

6.2.2 MashQL Background Queries Evaluation

6.2.2.1 Methodology

We evaluated the MahQL background queries by splitting the Background queries into two

groups , the general queries (Queries 1-13) and the n-level objects and n-level property

queries (Queries 14-17).

General Queries (Queries 1-13) : For the general queries we created two sets of queries, the

Oracle's queries using the SEM_MATCH table function and a set of background queries

according to the structure of our optimization solution. On both solutions, we just count the

number of return rows with out displaying the results (SELECT count(*) from

(BQ_QUERY)). Both sets (oracle's and ours, are compared when returning the same number

of rows. In this way, we assess the queries' correctness. For each group of queries, we get a

response time (in seconds) of queries by running it five times for each set. We flush the

database's cache in order to have a clear response time for each query.

N-Level Objects and N-Level Properties Queries (Queries 14-17) : For these queries, we

created two sets of queries, the Oracle's queries, using the SEM_MATCH table function, and,

a set of background queries, according to the structure of our BR-Algorithm solution. For each

query we fetch data from the graph' levels 2, 3,4,5. On both solutions we just count the

number of return rows with out displaying the results (SELECT count(*) from

(BQ_QUERY)). Both sets (oracle's and ours are compared when returning the same number

of rows. In this way, we assess the queries' correctness. For each group of queries, we get a

response time (in seconds) of queries by running it five times for each set. We flush the

database's cache in order to have a clear response time for each query.

 78

6.2.2.2 General Queries Evaluation

In the general query evaluation we use three datasets the SEMDUMP, DBLP and YAGO.

Figures 6.3 , 6.4 and 6.5 present the results of the queries' response times in seconds on both

sets (oracle's and ours for each dataset (Appendix D contains the tables with the actual values

for each chart below).

SEMDUMP BQ Evaluation

0

5

10

15

20

25

30

35

40

45

Q1 Q2 Q3 Q4 Q5 Q6 Q7 Q8 Q9 Q10 Q11 Q12 Q13

Queries

Ti
m

e
In

 S
ec

on
ds

Oracle Semantic Technology
Custom Schema

Figure 6.4 : SemDump response time results for queries 1-13

DBLP BQ Evaluation

0

50

100

150

200

250

300

350

400

450

Q1 Q2 Q3 Q4 Q5 Q6 Q7 Q8 Q9

Q10 Q11 Q12 Q13
QAVG

Queries

Ti
m

e
in

 S
ec

on
ds

Oracle Semantic Technology
Custom Schema

Figure 6.5: DBLP response time results for queries 1-13

 79

YAGO BQ Evaluation

0

200

400

600

800

1000

1200

1400

1600

Q1 Q2 Q3 Q4 Q5 Q6 Q7 Q8 Q9

Q10 Q11 Q12 Q13
QAVG

Queries

Ti
m

e
in

 S
ec

on
ds

Oracle Semantic Technology
Custom Schema

Figure 6.6: YAGO response time results for queries 1-13

5.2.2.3 Discussion for General Queries Evaluation

From the experiments that are presented in the above charts, it is obvious that for all datasets

our optimization solution response is faster than oracle's SEM_MATCH, except for query 4.

The reasons for this performance improvement concentrated on the followings factors:

1. Our optimization solution is created in order to help the execution course of all the

MashQL's background queries. On the other hand, oracle’s technology is designed to

be able to query any RDF graph at random.

2. For each graph that is loaded into the database we created a set of summaries. These

summaries are created by using the oracle’s material view technology which provides

faster access to the data concerning relational tables [16].On the other hand, Oracle’s

technology uses a partition table (the triple table) to store all of he graphs data .From

our results, even if, Oracle's SEM_MATCH get access to a single partition during its

execution process (each partition contains data from one RDF source only), the

MashQL queries that run on material views are executed faster.

3. The database summaries have the advantage that, instead of scanning and sorting all

the data during the query’s execution the data are already sorted and pre-computed

according to the general background queries' requirements. The sorting of data is done

during the summaries creation course. With this technique the queries' performance

time is improved, since, (a) there is no sorting activity during the queries’ execution

 80

course (b) the created materialized views are smaller in size rather than the oracle's

triple table. As a result, the queries scan less data, (c) the queries that need to join

various summaries, manage less data, and (d) the majority of the queries’ results are

already pre-computed, thus, its results are returned very fast.

4. Some of the MashQL background queries suffer from the RDF's self-join problem

which reduces the queries’ performance standard, since the triple table self-joins itself

during the queries’ execution course. Using the summaries solution, any filtering and

joining of each MashQL’s query always happen within the smaller scope rather than

the whole RDF graph. It would dramatically reduce the self-join cost, since the triple

table is divided into smaller sets (the data summaries). During the queries’ execution

course, a set of summaries join in order to produce the queries’ result. The

performance of these types of queries is achieved since the aggregation of joining

summaries are scanning less data rather getting than access to the triple table.

Unfortunately, query 4’s performance standard is very poor and it is considered an exception

concerning the rest of the queries. The reasons for the query’s bad performance standard is

due to the fact that the query needs to join two times the summary MVN$_<graph_name>

which contains all the graph’s data. As a result, the query’s performance is proportional to the

MVN$_<graph_name>‘s size, in other words, the bigger the size of MVN$_<graph_name>,

the later will the query be executed. Since, our target is to execute all the background queries

very fast, we force the Query Optimizer to execute the query 4, using Oracle Technology as if

we ran all the MashQL’s formulated queries.

More analytically, the main results are the following:

1. For SEMDUMP dataset, our optimization solution performs 9.3 times faster in

average of the total of all queries.

2. For DBLP dataset, our solution performs 2.5 times faster in average of total of all

queries and it takes 262 seconds (~4 minutes) the slowest query to be executed.

3. For YAGO dataset our solution performs 5.4 times faster in average of the total of all

queries and 697 seconds (~11 minutes) for the slowest query.

 81

From the above experiment results, it is clear that the advantages of data summaries in a

majority of MashQL’s general background queries, plus the Oracle’s SEM_MATCH

flexibility to run any RDF query fast can offer to MashQL server reliability and speediness

against any RDF query regardless the sizing of the candidate RDF graphs.

6.2.2.4 N-Level Objects and N-Level properties Queries Evaluation

We evaluate the n-level object and n-level properties background queries in the same way as

with the general queries. For each query we fetch data from the graph' levels 2, 3, 4, 5, thus,

we have created twenty queries per dataset.

SEMDUMP BQ Evaluation

0

50

100

150

200

250

300

350

400

450

500

Q14
L2

Q14
L3

Q14
L4

Q14
L5

Q15
L2

Q15
L3

Q15
L4

Q15
L5

Q16
L2

Q16
L3

Q16
L4

Q16
L5

Q17
L2

Q17
L3

Q17
L4

Q17
L5

QAVG

Queries

Ti
m

e
in

 S
ec

on
ds

Oracle Semantic Technology
Custom Schema

Figure 6.7: SemDump response time results for queries 14L2-5-17L2-5

DBLP BQ Evaluation

0

50

100

150

200

250

300

Q14
L2

Q14
L3

Q14
L4

Q14
L5

Q15
L2

Q15
L3

Q15
L4

Q15
L5

Q16
L2

Q16
L3

Q16
L4

Q16
L5

Q17
L2

Q17
L3

Q17
L4

Q17
L5

QAVG

Queries

Ti
m

e
in

 S
ec

on
ds

Oracle Semantic Technology
Custom Schema

Figure 6.8: DBLP response time results for queries 14L2-5-17L2-5

 82

YAGO BG Evaluation

0

500

1000

1500

2000

2500

3000

Q14
L2

Q14
L3

Q14
L4

Q14
L5

Q15
L2

Q15
L3

Q15
L4

Q15
L5

Q16
L2

Q16
L3

Q16
L4

Q16
L5

Q17
L2

Q17
L3

Q17
L4

Q17
L5

QAVG

Queries

Ti
m

e
in

 S
ec

on
ds

Oracle Sementic Technology
Custom Schema

Figure 6.9: YAGO response time results for queries 14L2-5-17L2-5

6.2.2.5 Discussion for N-Level Objects and N-Level properties Queries Evaluation

From the experiments that are presented in the above charts, it is obvious that for all datasets,

our optimization solution response faster than oracle's SEM_MATCH. The reasons for this

performance improvement concentrated on two main factors:

1. Our optimization solution is created in order to help the execution of all the MashQL's

background queries. On the other hand, Oracle’s technology is designed to be able to

query any RDF graph at random.

2. The BR-algorithm is able to fetch beforehand the queries’ results and store these

results into the database in order to bypass self-join operations during the queries’

execution course. Since, the queries’ results are already pre-computed and stored

permanently in a database, they return very fast when they are asked for. In contrast,

Oracle’s SEM_MATCH will be calculated in real time. Thus, the queries’ results, as a

result, are delayed for longer a time.

More analytically, the main results are the following:

1. The SEMDUMP dataset performs 14 times faster in average of the total of all queries

in all levels.

2. The DBLP dataset, our solution, performs 45 times faster in average of the total of all

queries.

 83

3. The YAGO dataset, our solution, performs 2.5 times faster in average of total of all

queries.

It is clear, that the BR-algorithm provides high response time for all MashQL’s N-Level

Objects and N-Level Properties Queries because of the data being fetched beforehand.

Unfortunately, the algorithm can fetch data beforehand until a graphs’ constant level. All the

data that can not be fetched by the BR-algorithm will be fetched using the Oracle’s

SEM_MATCH via the Query Optimizer.

 84

Chapter 7

Conclusions and future work

7.1 Conclusions

In this work, we designed, implemented and evaluated two important components of the

MashQL server, the RDF Loader and the Query Optimizer module.

With the RDF Loader module, we achieved to design and implement a concrete system that

includes a combination of the market’s lasted technologies that exist in the Extract-Transform-

Load (ETL) process for RDF, such as Oracle, Java and Jena .Base on these technologies, we

created a powerful, stable and intelligent RDF loader that loads any RDF data in any format

and of any size in a very short time. This fact is proved from our experiment's results that

became our benchmark , they consisted of different datasets in various sizes and it shows that

our RDF loader is able to load a 1.5G bytes of RDF data in less than 30 minutes (80,000

triples per second), a value that is very promising according to the state-of-art RDF loaders.

Our Query Optimizer module, implements our optimization solution and it was designed to

execute all the MashQL background queries very fast in real time.The rest MashQL's queries ,

the formulated queries, are executed using Oracle's SEM_MATCH table function. The Query

Optimizer module includes the database summaries and our novel BR-algorithm .

Using the database summaries we have the advantage that, instead of scanning and sorting all

the data during the query’s execution the data are already sorted and pre-computed according

to the general background queries requirements. With this technique, we have smaller data

sets. As a results, less scanning data, we save performance time, since the data are already

sorted during the summaries creation process, most of the queries’ results are already pre-

computed and finally, Oracle’s materialized views provide faster access time on data in

relation with a normal tables.

The BR-algorithm is an algorithm that explores, for each subject, all the possible paths

between the examined subject in relation to the rest graph's nodes grouping their results into a

 85

graph’s levels. For each level, the algorithm stores the result (BR’s entries) into BR$ table

whose each level will represent the NL-O and NL-P Background Queries patterns. The idea

behind the BR-Algorithm is the characteristics of the NL-O and NL-P Background Queries

that, if you know the neighbour objects for each subject and for each level, you will know the

results of each pattern (defined by the query) since each pattern expands the graph one level

deeper. Knowing this information you need to return only to the results of the last level (the

last pattern) without calculating the results of the previous levels. This technique will bypass

RDBMS self-joins, the queries will be executed lightly, and, the performance will be

improved.Additionally, The BR-algorithm is supported with a novel idea of RDF graph's

partitioning by breaking any RDF graph into three parts. The idea behind this partition schema

is the separation of triples that comprise the graph’s edges without influencing the final result.

In this segregation are included the triples which are comprise the graph's initial edges and the

graph's final edges. This graph’s segregation of nodes creates a new graph that is much

smaller than the initial. We used this partition schema on our datasets, and we managed to

reduce ~3 times in average the source graphs. This achievement helps us to run BR-algorithm

faster (~38 times faster rather than the absent RDF graph partitioning) and to fetch beforehand

less data in bigger graph's depths that used for the N-Level Objects and N-Level properties

Queries.

Both data summaries and BR-algorithm have managed to overcome the problem of RDF's

self-joins during the RDF queries course. They achieved to normalize the triple table in

smaller objects, thus, the MashQL background queries get access to less data faster and finally

they extend the Oracle's RDF technology in order to put forward the best performance

execution for the MashQL background queries according to their requirements. This

achievement is proved from our experiment's results that became our benchmark, and

comprised was consisted of different datasets in various sizes and it shows that, the general

background queries of our optimization solution performs ~10 times faster rather than the

oracle’s SEM_MATCH table function and also, the N-Level Objects and N-Level properties

 86

Queries of our optimization solution performs ~45 times faster rather than the oracle’s

SEM_MATCH table function.

The experiment’s results, concerning data summaries and BR-algorithm, were both based on

our optimization solution and they are very encouraging. We believe that their good

performance standards during the background queries execution course will add value to

MashQL server providing to it stability and speed.

7.2 Future work

As we already mentioned, the BR-algorithm is able to fetch beforehand graph's data until we

reached a constant path or Level for the MashQL’s N-Level Objects and N-Level properties

queries. This limitation is not considered a disadvantage, since, in this way the MashQL’s N-

Level Objects and N-Level properties queries have a very good response time against huge

RDF graphs. On the other hand, the Oracle's SEM_MATCH even if it does not have any

limitations in the query, its queries do not complete or its queries response time is very slow,

when it comes to query huge RDF graphs.

Consequently, future work will be supposed as providing the possibility of increasing the BR-

algorithm‘s maximum discovering Level. However, such possibility will increase much more

the BR$’s table size and the algorithm’s completion time, since the algorithm will fetch

beforehand more data. Thus, in order to increase the BR-algorithm‘s maximum discovering

Level, first we need to find a solution to how we keep constant the size of BR$’s table

constant. Likely solutions are techniques to compress the table’s data or to normalize the

BR$’s table cutting it down to smaller objects.

Additionally, we are very optimistic that the BR-algorithm combined with graph’s partitioning

after a persistence scientific study can be adapted in order to query any RDF graph at random.

In addition, we believe that the RDF technology will continue growing, as a result, the RDF

graphs for various data sources will continue increasing in size, causing their management to

be very complicated. A likely confrontation of this problem can be found in our proposal. Our

new graph's partitioning schema that we proposed makes a step toward breaking an RDF

 87

graph into smaller sub-graphs. Breaking the RDF graphs into smaller and more manageable

pieces of data, offers to any queries faster access to the data, more choices in the parallel

algorithms, and better comprehension of RDF graphs' characteristics.

Our future effort will be to divide the RDF graphs in more than three parts as our partition

schema offers today certain benefits (we need this in order to gain ground from the above

advantages). If we achieved this objective, we would feel positive that our optimization

solution would run faster, but, it is an issue that needs more scientific study.

 88

Appendix A

Enable RDF in Oracle 11g

To enable RDF Support (Oracle Semantic Technology) you need to login as a privilege

database user by running the database script @?/md/admin/catsem11i.sql . To ensure that the

installation is completed successful , the database components Spatial must be valid .

SQL>select comp_name,status
from dba_registry
where comp_name='Spatial';
COMP_NAME STATUS
--------- ------------
Spatial VALID

Since RDF data store tends to be very large, oracle recommends to creating a separate

tablespace* for all RDF tables.

The following example creates a tablespace named RDFTBS.

SQL>CREATE TABLESPACE RDFTBS
DATAFILE 'C:\APP\MGEORGIOU\ORADATA\ORCL\RDFTBS.dbf' SIZE 1024M
AUTOEXTEND ON NEXT 256M MAXSIZE UNLIMITED
SEGMENT SPACE MANAGEMENT AUTO;

A tablespace is a logical storage unit within oracle database. A tablespace space consists of at

least on physical datafile e.g. C:\APP\MGEORGIOU\ORADATA\ORCL\RDFTBS.dbf . A

datafile belongs to exactly on tablespace.

Creating an RDF network enables RDF store in the Oracle database. Only users with DBA

privilege can create an RDF network. Create the network only once for an Oracle database

instance. The following example creates an RDF network using a tablespace named

RDFTBS[13]

SQL>EXECUTE SDO_RDF.CREATE_RDF_NETWORK('RDFTBS');

Create your database user (the user who is responsible to host RDF graphs) and grants all the

appropriate privilege in order to be able to creates RDF tables.

 89

SQL>create user rdf identified by rdf;
SQL>grant connect,resource,dba to rdf;
SQL>GRANT EXECUTE ON MDSYS.RDF_APIS_INTERNAL TO RDF;

The following example shows how to load in the oracle 11g database two graphs RDF graphs

using conventional sql insert statements. The first graph is created by Dr. Mustafa Jarrar as an

technology example for presenting MashQL editor and consider the main example in my

thesis and the second graph is produces by Oracle as RDF demo example in its Semantics

documentation.

Figure A.1 : Books RDF graph [1]

Figure A.2 : Family tree [13]

For each graph create a table to store references to the RDF data .This table must contain a

column of type SDO_RDF_TRIPLE_S, which will contain references to all data associated

with a single RDF model. It is recommended that this table include a column named ID of

type NUMBER and a column named TRIPLE of type SDO_RDF_TRIPLE_S .

---for Universities graph—
SQL>CREATE TABLE UOC
(id NUMBER, triple SDO_RDF_TRIPLE_S);
create sequence id_auto_number_UOC_graph;
CREATE OR REPLACE TRIGGER UOC_TRG
BEFORE INSERT on UOC FOR EACH ROW
BEGIN
 SELECT id_auto_number_UOC_graph.nextval
 INTO :NEW.ID FROM DUAL;
END ;
/
---for family graph—

 90

SQL>CREATE TABLE FAMILY
(id NUMBER, triple SDO_RDF_TRIPLE_S);
create sequence id_auto_number_FAMILY_graph;
CREATE OR REPLACE TRIGGER FAMILY_TRG
BEFORE INSERT on FAMILY FOR EACH ROW
BEGIN
 SELECT id_auto_number_FAMILY_graph.nextval
 INTO :NEW.ID FROM DUAL;
END ;
/
An RDF graph is created by specifying a model name, the table name to hold references to

RDF data for the graph, and the column of type SDO_RDF_TRIPLE_S in that table. The

following command creates a model named FAMILY_MODEL and UNIV_MODEL which

will use the tables created in the preceding step.

SQL>EXECUTE SDO_RDF.CREATE_RDF_MODEL('FAMILY_MODEL', 'FAMILY', 'TRIPLE');
SQL>EXECUTE SDO_RDF.CREATE_RDF_MODEL('UNIV_MODEL', 'UOC', 'TRIPLE');

 91

Appendix B

Loading RDF data into an Oracle 11g Database

Oracle supports three ways to RDF data sources into a database.

1. Bulk load using a SQL*Loader direct-path load to get data from an N-Triple format

into a staging table and then use a PL/SQL procedure to load or append the data into

the database. The bulk load insert using the SQL*Loader is consider the faster way.

2. Load into tables using SQL INSERT statements that call the SDO_RDF_TRIPLE_S

constructor.

3. Batch load using a Java client interface to load or append data from an N-Triple

format file into the database.

Insert statements for family graph :

SQL>INSERT INTO family(triple) VALUES (
SDO_RDF_TRIPLE_S('family_model',
'http://www.example.org/family/John',
'http://www.example.org/family/fatherOf',
'http://www.example.org/family/Suzie'));

Batch Loading Semantic Data Using the Java API

You can perform a batch load operation using the Java class

oracle.spatial.rdf.client.BatchLoader. The class is running on JDK version 1.5 and Oracle 11g

Database Enterprice edition. The class’s class path is located under

<ORACLE_HOME>/md/jlib/sdordf.jar.The class accept files only in NT format, thus you

need to convert the RDF/XML to NT or N3 to NT.

Batch Loading Semantic Data Using the Java API : Example on Windows

java
-Ddb.user=<database_user>
-Ddb.password=<database_user_password>
-Ddb.host=<database_ip_address>
-Ddb.port=<database_tcpip_port>
-Ddb.sid=<instance_name>
-classpath %ORACLE_HOME%\md\jlib\sdordf.jar;%ORACLE_HOME%\jdbc\lib\ojdbc5.jar
oracle.spatial.rdf.

 92

Batch loading is faster than loading semantic data using INSERT statements. Batch loading is

typically a good option when the following conditions are true:

1. The data to be loaded is less than a few million triples.

2. The data contains significant amount long literals (longer than 4000 bytes).

Bulk Loading Using SQL*Loader

The SQL*Loader is consider the fastest way to load RDF data into a database and it is

recommended by Oracle when the dataset is very huge. SQL*Loader is the main loading

method that we use inside the MashQL loader.SQL*Loader can loads only NT format files,

thus, we convert any RDF file (RDF/XML or N3) into NT format. The NT file is consider as

the SQL*Loader input file (data).The SQL*Loader is used to loads the input files into a

staging table and after the SEM_APIS.BULK_LOAD_FROM_STAGING_TABLE database

procedure move the loaded data into Oracle’s Semantics Technology and creates the RDF

graph.

The SQL* Loader can be invoked using the sqlldr command and can has three mandatory

options . The userid that you can specify the database credentials, the control file* option that

you specify the destination of a control file and finaly the data option that you can specify the

destination of the data file (in our case the NT file).

Control file: The SQL*Loader control file is a repository that contains the DDL instructions

that you have created to control where SQL*Loader will find the data to load, how

SQL*Loader expects that data to be formatted, how SQL*Loader will be configured (memory

management, rejecting records, interrupted load handling, etc.) as it loads the data, and how it

will manipulate the data being loaded.

SQL*Loader available options:

sqlldr
userid=username/password
control=
data=
direct=
skip=
load=

 93

discardmax=
bad=
discard=
log=
errors=

SQL*Loader control file example :

UNRECOVERABLE
LOAD DATA
TRUNCATE
into table <table_name>
when (1) <> '#'
(
RDF$STC_sub CHAR(4000) terminated by whitespace
\(
CASE
WHEN substr(:RDF$STC_sub,1,1)='<' AND substr(:RDF$STC_sub,-1,1)='>' AND
length(:RDF$STC_sub)>2
THEN :RDF$STC_sub
WHEN substr(:RDF$STC_sub,1,2)='_:' AND
REGEXP_LIKE(:RDF$STC_sub,'^(_:)[[:alpha:]][[:alnum:]]*$')
THEN :RDF$STC_sub
WHEN substr(:RDF$STC_sub,1,1) NOT IN ('\\\','<','#') AND
substr(:RDF$STC_sub,-1,1) NOT IN ('\\\','>')
THEN ('<' || SDO_RDF.replace_rdf_prefix(:RDF$STC_sub) || '>')
WHEN substr(:RDF$STC_sub,1,1)='#'
THEN SDO_RDF.raise_parse_error(
'Ignored Comment Line starting with ', :RDF$STC_sub)
ELSE SDO_RDF.raise_parse_error('Invalid Subject', :RDF$STC_sub)
END
)\,
RDF$STC_pred CHAR(4000) terminated by whitespace
\(
CASE
WHEN substr(:RDF$STC_pred,1,1)='<' AND substr(:RDF$STC_pred,-1,1)='>' AND
length(:RDF$STC_pred)>2
THEN :RDF$STC_pred
WHEN substr(:RDF$STC_pred,1,2) != '_:' AND
substr(:RDF$STC_pred,1,1) NOT IN ('\\\','<') AND
substr(:RDF$STC_pred,-1,1) NOT IN ('\\\','>')
THEN ('<' || SDO_RDF.replace_rdf_prefix(:RDF$STC_pred) || '>')
ELSE SDO_RDF.raise_parse_error('Invalid Predicate', :RDF$STC_pred)
END
)\,
--
-- right-trimming of WHITESPACEs is reqd for \RDF$STC_obj\
-- (due to absence of \TERMINATED BY WHITESPACE\)
--
-- For ease of editing below replace
-- \rtrim(:RDF$STC_obj,'. '||CHR(9)||CHR(10)||CHR(13))\ with \:xy\.
-- and then replace back
--
RDF$STC_obj CHAR(5000)
\(
CASE
WHEN substr(rtrim(:RDF$STC_obj,'. '||CHR(9)||CHR(10)||CHR(13)),1,1)='<' AND
substr(rtrim(:RDF$STC_obj,'. '||CHR(9)||CHR(10)||CHR(13)),-1,1)='>' AND
length(rtrim(:RDF$STC_obj,'. '||CHR(9)||CHR(10)||CHR(13)))>2

 94

THEN rtrim(:RDF$STC_obj,'. '||CHR(9)||CHR(10)||CHR(13))
WHEN substr(rtrim(:RDF$STC_obj,'. '||CHR(9)||CHR(10)||CHR(13)),1,1)='\\\' AND
substr(rtrim(:RDF$STC_obj,'. '||CHR(9)||CHR(10)||CHR(13)),-1,1)='\\\' AND
length(rtrim(:RDF$STC_obj,'. '||CHR(9)||CHR(10)||CHR(13)))>1
THEN rtrim(:RDF$STC_obj,'. '||CHR(9)||CHR(10)||CHR(13))
WHEN substr(rtrim(:RDF$STC_obj,'. '||CHR(9)||CHR(10)||CHR(13)),1,2)='_:' AND
REGEXP_LIKE(rtrim(:RDF$STC_obj,'. '||CHR(9)||CHR(10)||CHR(13)),
'^(_:)[[:alpha:]][[:alnum:]]*$')
THEN rtrim(:RDF$STC_obj,'. '||CHR(9)||CHR(10)||CHR(13))
WHEN substr(rtrim(:RDF$STC_obj,'. '||CHR(9)||CHR(10)||CHR(13)),1,1)
NOT IN ('\\\','<') AND
substr(rtrim(:RDF$STC_obj,'. '||CHR(9)||CHR(10)||CHR(13)),-1,1)
NOT IN ('\\\','>')
THEN ('<' ||
SDO_RDF.replace_rdf_prefix(
rtrim(:RDF$STC_obj,'. '||CHR(9)||CHR(10)||CHR(13))) ||
'>')
WHEN substr(rtrim(:RDF$STC_obj,'. '||CHR(9)||CHR(10)||CHR(13)),1,1)='\\\' AND
substr(rtrim(:RDF$STC_obj,'. '||CHR(9)||CHR(10)||CHR(13)),-1,1)
NOT IN ('\\\','>') AND
instr(rtrim(:RDF$STC_obj,'. '||CHR(9)||CHR(10)||CHR(13)),'\\\\\@',-1)>1 AND
REGEXP_LIKE(rtrim(:RDF$STC_obj,'. '||CHR(9)||CHR(10)||CHR(13)),
'^\\\[[:print:]]*\\\\\@[[:alpha:]](-[[:alnum:]])?$')
THEN rtrim(:RDF$STC_obj,'. '||CHR(9)||CHR(10)||CHR(13))
WHEN (substr(rtrim(:RDF$STC_obj,'. '||CHR(9)||CHR(10)||CHR(13)),1,1)='\\\' AND
instr(rtrim(:RDF$STC_obj,'. '||CHR(9)||CHR(10)||CHR(13)),'\\\^^',-1)>1 AND
(length(rtrim(:RDF$STC_obj,'. '||CHR(9)||CHR(10)||CHR(13)))-
(instr(rtrim(:RDF$STC_obj,'. '||CHR(9)||CHR(10)||CHR(13)),'\\\^^',-1)4)
)>0)
THEN SDO_RDF.pov_typed_literal(
rtrim(:RDF$STC_obj,'. '||CHR(9)||CHR(10)||CHR(13)))
ELSE SDO_RDF.raise_parse_error(
'Invalid Object', rtrim(:RDF$STC_obj,'. '||CHR(9)||CHR(10)||CHR(13)))
END
)\
);

 95

Appendix C

Database summaries creation for MashQL's background queries

BQ-1 O1 :{(?S1 <:Type> ?O1)}

Description: This query returns a set objects types (O) belong to graph G that are rdf:type.

BQ-2 S1 :{(?S1 ?P1 ?O1)} UNION O1:{(?S1 ?P1 ?O1). Filter isURI(?O1)}

Description: This query returns all the unique subjects (S) and objects (O) filter by objects which are

URL.

BQ-3 S Є V

Description: This query returns all the subjects (S) which are equal with the variable/label V

 BQ-4 P2 :{(?S1 <:Type> <S>)(?S2 ?P2 ?O2)}

Description: This query returns all properties (P) depending on the chosen subject in previous queries.

BQ-5 P1 :{(<S> ?P1 ?O1)}

Description: This query returns a set of properties (P) according a variable subject (<S>).

BQ-6 P1 :{(?S1 ?P1 ?O1)}

Description: This query returns a set of properties (P) in G.

BQ-7 P Є V

Description: This query returns all properties (P) which are equal with the variable/label V

BQ-8 O1:{(<S> ?P1 ?O1) Filter isURI(?O1)}

Description: This query returns all objects (O), filter by URI, according a variable (<S>).

BQ-9 O1:{(<S> <P> ?O1) Filter isURI(?O1)}

Description: This query returns all objects, filter by URI, according a variable subject (<S>) and

variable property (<P>).

BQ-10 O1:{(?S1 <:Type> <S>)(?S1 ?P2 ?O2)}

Description: This query returns all objects types (O), according the variable subject (<S>), expanded in

the next path.

BQ-11 O:{(?S <:Type> <S>)(?S <P> ?O)}

Description: This query returns all objects types (O), according the variable subject (<S>), expanded in

the next path according the variable property (<P>).

BQ-12 O1:{(?S1 ?P1 ?O1)}

Description: This query returns a set of objects (O) in G.

BQ-13 O1:{(?S1 <P> ?O1)}

Description: This query returns a set of objects (O) in G, according the variable property (<P>)

BQ-14 Pn:{(?S1 <Type> O)(?S1 P2 O2)(O2 P3 O3) … (On-1 ?Pn ?On)}

Description: This query returns properties (P) where the root predicates are rdf:type after n-level

expanding where n > 1.

 96

BQ-15 On:{(?S1 <Type> O)(?S1 P2 O2)(O2 P3 O3)…(On-1 Pn ?On)}

Description: This query returns objects (O) where the root predicates are rdf:type after n-level

expanding where n > 1 .

BQ-16 Pn:{(S1 P1 O1)(O1 P2 O2 … (On-1 ?Pn ?On)}

Description: This query returns properties (P) after n-level expanding where n > 1.

BQ-17 On:{(S1 P1 O1)(O1 P2 O2 … (On-1 ?Pn ?On)}

Description: This query returns objects (O) after n-level expanding where n > 1.

Table C.1: Summary of all Background Queries [1]

Materialized View Name Description
MVN$T_S_<graph_name> Synopsis

An oracle’s materialized views contain all unique subjects that
their properties belong to the rdf:type class.

Columns
NODE number
VALUE_NAME varchar2(4000)

Usage
It is included in background queries 4,10,11

Creation Script:
create materialized view MVN$T_S_<graph_name>
as
select l.start_node_id as node, v.value_name
from mdsys.rdf_link$ l,mdsys.rdf_value$ v
where l.model_id= (select model_id from
mdsys.RDF_MODEL_INTERNAL$ where
model_name=<graph_name>)
and l.start_node_id=v.value_id
and l.p_value_id IN
(
select l.p_value_id
from mdsys.rdf_link$ l,mdsys.rdf_value$ v
where l.model_id=(select model_id from
mdsys.RDF_MODEL_INTERNAL$ where
model_name=<graph_name>)
and l.p_value_id=v.value_id
and v.vname_suffix='type'
group by l.p_value_id
);

MVN$T_O_<graph_name> Synopsis
This mview contains all the unique objects (o) that belong to the
rdf:type class.

Columns:
NODE number
VALUE_NAME varchar2(4000)

Usage
It is included in background queries 1

 97

Creation Script:
create materialized view MVN$T_O_<graph_name>
as
select l.end_node_id as node , v.value_name
from mdsys.rdf_link$ l,mdsys.rdf_value$ v
where l.model_id=(select model_id from
mdsys.RDF_MODEL_INTERNAL$ where
model_name=<graph_name>)
and l.end_node_id=v.value_id
and l.p_value_id IN
(
select l.p_value_id
from mdsys.rdf_link$ l,mdsys.rdf_value$ v
where l.model_id=(select model_id from
mdsys.RDF_MODEL_INTERNAL$ where
model_name=<graph_name>)
and l.p_value_id=v.value_id
and v.vname_suffix='type'
group by l.p_value_id
);

MVN$O_<graph_name> Synopsis
This mview contains all unique objects (o) that belong on graph G
with out any restrictions

Columns:
END_NODE_ID number
VALUE_NAME varchar2(4000)
VALUE_TYPE varchar2(10)

Usage
It is included in background queries 4,8,9,10,11,12

Creation Script:
create materialized view MVN$O_<graph_name>
as
select l.end_node_id, v.value_name, v.value_type
from mdsys.rdf_link$ l,mdsys.rdf_value$ v
where l.model_id=(select model_id from
mdsys.RDF_MODEL_INTERNAL$ where
model_name=<graph_name>)
and l.end_node_id=v.value_id
group by l.end_node_id, v.value_name, v.value_type;

MVN$S_<graph_name> Synopsis
This mview contains all unique subject (s) that belong on graph G
with out any restrictions

Columns:
START_NODE_ID number
VALUE_NAME varchar2(4000)
VALUE_TYPE varchar2(10)

Usage
It is included in background queries 3,5,8,9

Creation Script
create materialized view MVN$S_<graph_name>

 98

as
select l.start_node_id, v.value_name, v.value_type
from mdsys.rdf_link$ l,mdsys.rdf_value$ v
where l.model_id=(select model_id from
mdsys.RDF_MODEL_INTERNAL$ where
model_name=<graph_name>)
and l.start_node_id=v.value_id
group by l.start_node_id, v.value_name, v.value_type;

MVN$P_<graph_name> Synopsis
This mview contains all unique properties (p) that belong on
graph G with out any restrictions

Columns:
P_VALUE_ID number
VALUE_NAME varchar2(4000)
VALUE_TYPE varchar2(10)
Usage
It is included in background queries 6,7,9,11,13

Creation Script
create materialized view MVN$P_<graph_name>
as
select l.p_value_id, v.value_name, v.value_type
from mdsys.rdf_link$ l,mdsys.rdf_value$ v
where l.model_id=(select model_id from
mdsys.RDF_MODEL_INTERNAL$ where
model_name=<graph_name>)
and l.p_value_id=v.value_id
group by l.p_value_id, v.value_name, v.value_type;

MVN$<graph_name> Synopsis
This Mview contains all the graphs triples s,p,o

Columns:
S number
P number
O number

Usage
It is included in background queries 4,5,8,9,10,11,13

Creation Script
create materialized view MVN$<graph_name>
as
select
start_node_id as s,
p_value_id as p,
 end_node_id as o
from mdsys.rdf_link$
where model_id=(select model_id from
mdsys.RDF_MODEL_INTERNAL$ where
model_name=<graph_name>);

Table C.2 : Summaries for the General background Queries

 99

Appendix D

Evaluation results

(Actual values that are show in the charts, chapter 6)

Query Oracle's Our
Q1 3,5 0
Q2 42,25 0
Q3 23 0
Q4 0 0
Q5 0,5 0
Q6 1,5 0
Q7 1,5 0
Q8 0,25 0
Q9 0,25 0
Q10 9 0
Q11 5 0
Q12 32 0
Q13 2,25 0
QAVG 9,30 0

Table D.1 : SemDump response time results in seconds for queries 1-13 (the 0 value on the column

"our" indicate that query is completed in a few milliseconds)

Query Oracle's Our
Q1 30,2 58,2
Q2 400,6 6,2
Q3 332 2
Q4 21,6 232,6
Q5 8,8 2,4
Q6 35 0
Q7 38,4 0
Q8 7,6 13
Q9 0,2 6,4
Q10 282,6 261,2
Q11 12,4 20,6
Q12 309,4 4,6
Q13 86 8,2
QAVG 120,36 47,33

Table D.2: DBLP response time results in seconds for queries 1-13 (the 0 value on the column "our"

indicate that query is completed in a few milliseconds)

Query Oracle's Our
Q1 788,33 697
Q2 1394,33 22
Q3 1095,33 4
Q4 17 281
Q5 16,33 4

 100

Q6 45 0
Q7 53 0
Q8 16 4
Q9 0,3 4
Q10 798,66 109
Q11 6 13,33
Q12 1222,66 10,33
Q13 834,33 14
QAVG 483,64 89,43

Table D.3: YAGO response time results in seconds for queries 1-13 (the 0 value on the column "our"

indicate that query is completed in a few milliseconds)

Query Oracle's Our
Q14L2 0,5 0
Q14L3 0,5 0
Q14L4 0,75 0
Q14L5 1 0
Q15L2 0 0
Q15L3 0 0
Q15L4 0 0
Q15L5 0 0
Q16L2 64,5 0
Q16L3 69,25 3,5
Q16L4 88,5 11
Q16L5 465,25 26
Q17L2 2 0
Q17L3 4 2,75
Q17L4 29,75 10
Q17L5 336,5 23,5
QAVG 66,40 4,79

Table D.3 : SemDump response time results in seconds for queries 14L2-5-17L2-5 (the 0 value on the

column "our" indicate that query is completed in a few milliseconds)
Query Oracle's Our
Q14L2 19,2 1
Q14L3 44 0,8
Q14L4 55,4 0
Q14L5 60,6 0
Q15L2 12 1
Q15L3 28,6 0,8
Q15L4 43,6 0
Q15L5 57,8 0
Q16L2 264,2 9,4
Q16L3 49,4 0
Q16L4 60,8 0
Q16L5 70,8 0
Q17L2 37,6 9,2
Q17L3 52,8 0
Q17L4 76,2 0
Q17L5 67 0
QAVG 62,5 1,3875

 101

Table D.4 : DBLP response time results in seconds for queries 14L2-5-17L2-5 (the 0 value on the

column "our" indicate that query is completed in a few milliseconds)

Query Oracle's Our
Q14L2 717,66 4
Q14L3 369,66 7,33
Q14L4 387,33 9
Q14L5 441,66 10
Q15L2 60 3,66
Q15L3 143,33 7
Q15L4 228 8
Q15L5 329,33 9,33
Q16L2 1473,66 92,66
Q16L3 1657 535,33
Q16L4 1637,66 771,66
Q16L5 2586,66 1271
Q17L2 176,66 33,66
Q17L3 365 452,66
Q17L4 880 702,66
Q17L5 1583 1146,33
QAVG 814,79 316,52

Table D.5: YAGO response time results in seconds for queries 14L2-5-17L2-5 (the 0 value on the

column "our" indicate that query is completed in a few milliseconds)

 102

Appendix E

All background queries for Oracle's SEM_MATCH

compared with our optimization solution

(for YAGO Dataset)

Oracle's SEM_MATCH

set timing on
set heading off
set echo off
--
--
Prompt "Oracle Q1 Started ..."
--
--

alter system flush buffer_cache;

select count(*) from (
SELECT o FROM TABLE
(SEM_MATCH('
(?s rdf:type ?o)',
SEM_Models('YAGO'), null, null, null))
group by o
);
--
--
Prompt "Oracle Q2 Started ..."
--
--

alter system flush buffer_cache;

select count(*) from (
SELECT s FROM TABLE
(SEM_MATCH('
(?s ?p ?o)',
SEM_Models('YAGO'), null, null, null))
UNION
SELECT o FROM TABLE
(SEM_MATCH('
(?s ?p ?o)',
SEM_Models('YAGO'), null, null, null))
where o$rdfvtyp='URI'
);
--
--
Prompt "Oracle Q3 Started ..."
--
--

alter system flush buffer_cache;

 103

select count(*) from (
SELECT s FROM TABLE
(SEM_MATCH('
(?s ?p ?o)',
SEM_Models('YAGO'), null, null, null))
where s like '%Michael%'
group by s
);
--
--
Prompt "Oracle Q4 Started ..."
--
--

alter system flush buffer_cache;

select count(*) from (
SELECT P FROM TABLE
(SEM_MATCH('
(?S rdf:type <wikicategory_American_film_actors>)(?S ?P ?O)',
SEM_Models('YAGO'), null, null, null))
group by P
);
--
--
Prompt "Oracle Q5 Started ..."
--
--

alter system flush buffer_cache;

select count(*) from (
SELECT P FROM TABLE
(SEM_MATCH('
(<William_Penn_Patrick> ?P ?O)',
SEM_Models('YAGO'), null, null, null))
group by P
);

--
--
Prompt "Oracle Q6 Started ..."
--
--
alter system flush buffer_cache;

select count(*) from (
SELECT P FROM TABLE
(SEM_MATCH('
(?S ?P ?O)',
SEM_Models('YAGO'), null, null, null))
group by p
);

--
--
Prompt "Oracle Q7 Started ..."
--
--

 104

alter system flush buffer_cache;

select count(*) from (
SELECT P FROM TABLE
(SEM_MATCH('
(?S ?P ?O)',
SEM_Models('YAGO'), null, null, null))
where p like '%type%'
group by p
);

--
--
Prompt "Oracle Q8 Started ..."
--
--

alter system flush buffer_cache;

select count(*) from (
SELECT o
FROM TABLE(SEM_MATCH(
'(<William_Penn_Patrick> ?p ?o)
',
SEM_Models('YAGO'),
null,
null,
null))
where o$rdfvtyp='URI'
group by o
);
--
--
Prompt "Oracle Q9 Started ..."
--
--
alter system flush buffer_cache;

select count(*) from (
SELECT o
FROM TABLE(SEM_MATCH(
'(<The_Dismemberment_Plan> <y:created> ?o)
',
SEM_Models('YAGO'),
null,
null,
null))
where o$rdfvtyp='URI'
group by o
);
--
--
Prompt "Oracle Q10 Started ..."
--
--
alter system flush buffer_cache;

select count(*) from (
SELECT O FROM TABLE

 105

(SEM_MATCH('
(?S rdf:type <wikicategory_American_film_actors>)(?S ?P ?O)',
SEM_Models('YAGO'), null, null, null))
group by O
);

--
--
Prompt "Oracle Q11 Started ..."
--
--

alter system flush buffer_cache;

select count(*) from (
SELECT O FROM TABLE
(SEM_MATCH('
(?S rdf:type <wikicategory_Spy_novels>)(?S <http://www.w3.org/1999/02/22-rdf-syntax-
ns#type> ?O)',
SEM_Models('YAGO'), null, null, null))
group by O
);
--
--
Prompt "Oracle Q12 Started ..."
--
--
alter system flush buffer_cache;

select count(*) from (
SELECT O FROM TABLE
(SEM_MATCH('
(?S ?P ?O)',
SEM_Models('YAGO'), null, null, null))
group by o
);

--
--
Prompt "Oracle Q13 Started ..."
--
--
alter system flush buffer_cache;

select count(*) from (
SELECT O FROM TABLE
(SEM_MATCH('
(?S ?P ?O)',
SEM_Models('YAGO'), null, null, null))
 where p like '%type%'
group by o
);
--
--
Prompt "Oracle Q14 Started ..."
--
--
---(14’) On:{(?S1 <Type> O)(?S1 P2 O2)(O2 P3 O3)…(On-1 Pn ?On)}
--
/*

 106

Prompt "Oracle Q14 L1 Started ..."
alter system flush buffer_cache;

select count(*) from (
SELECT o FROM TABLE
(SEM_MATCH(
'(?S rdf:type ?O)',
SEM_Models('YAGO'), null, null, null))
group by o
);

*/
--
Prompt "Oracle Q14 L2 Started ..."
alter system flush buffer_cache;

select count(*) from (
SELECT o1 FROM TABLE
(SEM_MATCH('
(?S rdf:type ?O)(?O ?P1 ?O1)',
SEM_Models('YAGO'), null, null, null))
group by o1
);
--
Prompt "Oracle Q14 L3 Started ..."
alter system flush buffer_cache;

select count(*) from (
SELECT o2 FROM TABLE
(SEM_MATCH('
(?S rdf:type ?O)(?O ?P1 ?O1)(?O1 ?P2 ?O2)',
SEM_Models('YAGO'), null, null, null))
group by o2
);
--
Prompt "Oracle Q14 L4 Started ..."
alter system flush buffer_cache;

select count(*) from (
SELECT o3 FROM TABLE
(SEM_MATCH(
'(?S rdf:type ?O)(?O ?P1 ?O1)(?O1 ?P2 ?O2)(?O2 ?P3 ?O3)',
SEM_Models('YAGO'), null, null, null))
group by o3
);
--
Prompt "Oracle Q14 L5 Started ..."
alter system flush buffer_cache;

select count(*) from (
SELECT o4 FROM TABLE
(SEM_MATCH(
'(?S rdf:type ?O)(?O ?P1 ?O1)(?O1 ?P2 ?O2)(?O2 ?P3 ?O3)(?O3 ?P4 ?O4)',
SEM_Models('YAGO'), null, null, null))
group by o4
);
--
--
Prompt "Oracle Q15 Started ..."

 107

--
--
--
------(15’) Pn:{(?S1 <Type> O)(?S1 P2 O2)(O2 P3 O3) … (On-1 ?Pn ?On)}
--
Prompt "Oracle Q15 L2 Started ..."
alter system flush buffer_cache;

select count(*) from (
SELECT p1 FROM TABLE
(SEM_MATCH('
(?S rdf:type ?O)(?O ?P1 ?O1)',
SEM_Models('YAGO'), null, null, null))
group by p1
);
--
Prompt "Oracle Q15 L3 Started ..."
alter system flush buffer_cache;

select count(*) from (
SELECT p2 FROM TABLE
(SEM_MATCH('
(?S rdf:type ?O)(?O ?P1 ?O1)(?O1 ?P2 ?O2)',
SEM_Models('YAGO'), null, null, null))
group by p2
);
--
Prompt "Oracle Q15 L4 Started ..."
alter system flush buffer_cache;

select count(*) from (
SELECT p3 FROM TABLE
(SEM_MATCH(
'(?S rdf:type ?O)(?O ?P1 ?O1)(?O1 ?P2 ?O2)(?O2 ?P3 ?O3)',
SEM_Models('YAGO'), null, null, null))
group by p3
);
--
Prompt "Oracle Q15 L5 Started ..."
alter system flush buffer_cache;

select count(*) from (
SELECT p4 FROM TABLE
(SEM_MATCH(
'(?S rdf:type ?O)(?O ?P1 ?O1)(?O1 ?P2 ?O2)(?O2 ?P3 ?O3)(?O3 ?P4 ?O4)',
SEM_Models('YAGO'), null, null, null))
group by p4
);
--
--
Prompt "Oracle Q16 Started ..."
--
--
--
--(16’) On:{(S1 P1 O1)(O1 P2 O2)(O2 P3 O3)…(On-1 Pn ?On)}
--
/*
Prompt "Oracle Q16 L1 Started ..."
alter system flush buffer_cache;

 108

select count(*) from (
SELECT o FROM TABLE
(SEM_MATCH(
'(?S ?P ?O)',
SEM_Models('YAGO'), null, null, null))
group by o
);
*/
--
Prompt "Oracle Q16 L2 Started ..."
alter system flush buffer_cache;

select count(*) from (
SELECT o1 FROM TABLE
(SEM_MATCH('
(?S ?P ?O)(?O ?P1 ?O1)',
SEM_Models('YAGO'), null, null, null))
group by o1
);
--
Prompt "Oracle Q16 L3 Started ..."
alter system flush buffer_cache;

select count(*) from (
SELECT o2 FROM TABLE
(SEM_MATCH('
(?S ?P ?O)(?O ?P1 ?O1)(?O1 ?P2 ?O2)',
SEM_Models('YAGO'), null, null, null))
group by o2
);
--
Prompt "Oracle Q16 L4 Started ..."
alter system flush buffer_cache;

select count(*) from (
SELECT o3 FROM TABLE
(SEM_MATCH(
'(?S ?P ?O)(?O ?P1 ?O1)(?O1 ?P2 ?O2)(?O2 ?P3 ?O3)',
SEM_Models('YAGO'), null, null, null))
group by o3
);
--
Prompt "Oracle Q16 L5 Started ..."
alter system flush buffer_cache;

select count(*) from (
SELECT o4 FROM TABLE
(SEM_MATCH(
'(?S ?P ?O)(?O ?P1 ?O1)(?O1 ?P2 ?O2)(?O2 ?P3 ?O3)(?O3 ?P4 ?O4)',
SEM_Models('YAGO'), null, null, null))
group by o4
);
--
--
Prompt "Oracle Q17 Started ..."
--
--
--
---(17’) Pn:{(S1 P1 O1)(O1 P2 O2 … (On-1 ?Pn ?On)}
--

 109

/*
Prompt "Oracle Q17 L1 Started ..."
alter system flush buffer_cache;

select count(*) from (
SELECT p FROM TABLE
(SEM_MATCH(
'(?S ?P ?O)',
SEM_Models('YAGO'), null, null, null))
group by p
);
*/
--
Prompt "Oracle Q17 L2 Started ..."
alter system flush buffer_cache;

select count(*) from (
SELECT p1 FROM TABLE
(SEM_MATCH('
(?S ?P ?O)(?O ?P1 ?O1)',
SEM_Models('YAGO'), null, null, null))
group by p1
);
--
Prompt "Oracle Q17 L3 Started ..."
alter system flush buffer_cache;

select count(*) from (
SELECT p2 FROM TABLE
(SEM_MATCH('
(?S ?P ?O)(?O ?P1 ?O1)(?O1 ?P2 ?O2)',
SEM_Models('YAGO'), null, null, null))
group by p2
);
--
Prompt "Oracle Q17 L4 Started ..."
alter system flush buffer_cache;

select count(*) from (
SELECT p3 FROM TABLE
(SEM_MATCH(
'(?S ?P ?O)(?O ?P1 ?O1)(?O1 ?P2 ?O2)(?O2 ?P3 ?O3)',
SEM_Models('YAGO'), null, null, null))
group by p3
);
--
Prompt "Oracle Q17 L5 Started ..."
alter system flush buffer_cache;

select count(*) from (
SELECT p4 FROM TABLE
(SEM_MATCH(
'(?S ?P ?O)(?O ?P1 ?O1)(?O1 ?P2 ?O2)(?O2 ?P3 ?O3)(?O3 ?P4 ?O4)',
SEM_Models('YAGO'), null, null, null))
group by p4
);
--
spool off

 110

Our Optimization Solution

set timing on
set heading off
set echo off
--
--
Prompt "BR Q1 Started ..."
--
--
alter system flush buffer_cache;

select count(*) from (
select getobject(node) from mvn$t_o_yago group by getobject(node)
);

--
--
Prompt "BR Q2 Started ..."
--
--
alter system flush buffer_cache;

select count(*) from (
select getobject(start_node_id) from (
select start_node_id
from mvn$S_YAGO
union
select end_node_id
from mvn$O_YAGO
where VALUE_TYPE='UR'
)
);

--
--
Prompt "BR Q3 Started ..."

 111

--
--

alter system flush buffer_cache;

select count(*) from (
select getobject(start_node_id) from (
select start_node_id from mvn$s_YAGO where value_name like '%Michael%'
));
--
--
Prompt "BR Q4 Started ..."
--
--

alter system flush buffer_cache;

select count(*) from (
select getObject(p) from (
select L1.p as p
 from (select s,p from mvn$yago) L1
 ,
 (select s from mvn$yago
 where s IN (select node from mvn$t_s_yago)
 and o in (select end_node_id from mvn$o_yago where
value_name='wikicategory_American_film_actors')
) L2
 where L1.s=L2.s
group by L1.p));
--
--
Prompt "BR Q5 Started ..."
--
--
alter system flush buffer_cache;

select count(*) from (
select getobject(p) from (
select p from mvn$yago
where s in (select start_node_id from mvn$s_yago where value_name='William_Penn_Patrick')
group by p
));

--
--
Prompt "BR Q6 Started ..."
--
--

alter system flush buffer_cache;
select count(*) from (
select value_name from mvn$P_YAGO group by value_name
);
--
--
Prompt "BR Q7 Started ..."
--
--
alter system flush buffer_cache;

 112

select count(*) from (
select value_name from mvn$P_YAGO where value_name like '%type%'
);

--
--
Prompt "BR Q8 Started ..."
--
--
alter system flush buffer_cache;

select count(*) from (
select getObject(o) from (
select o from mvn$yago
where o IN (select end_node_id from mvn$O_YAGO where VALUE_TYPE='UR')
and s in (select start_node_id from mvn$s_yago where value_name='William_Penn_Patrick')
group by o
));
--
--
Prompt "BR Q9 Started ..."
--
--
alter system flush buffer_cache;

select count(*) from (
select getObject(o) from (
select o from mvn$yago where o IN (select end_node_id from mvn$O_YAGO where
VALUE_TYPE='UR')
and s in (select start_node_id from mvn$s_yago where value_name='The_Dismemberment_Plan')
and p in (select p_value_id from mvn$p_yago where value_name='y:created')
group by o
));

--
--
Prompt "BR Q10 Started ..."
--
--
alter system flush buffer_cache;

select count(*) from (
select getObject(o) from (
select L1.o as o
 from (select s,o from mvn$yago) L1
 ,
 (select s from mvn$yago
 where s IN (select node from mvn$t_s_yago)
 and o in (select end_node_id from mvn$o_yago where
value_name='wikicategory_American_film_actors')
) L2
 where L1.s=L2.s
group by L1.o));

--
--
Prompt "BR Q11 Started ..."
--
--

 113

alter system flush buffer_cache;

select count(*) from (
select getObject(o) from (
select L1.o as o
 from (select s,o from mvn$yago where p in (select p_value_id from mvn$p_yago where
value_name='http://www.w3.org/1999/02/22-rdf-syntax-ns#type')) L1
 ,
 (select s from mvn$yago
 where s IN (select node from mvn$t_s_yago)
 and o in (select end_node_id from mvn$o_yago where
value_name='wikicategory_Spy_novels')
) L2
 where L1.s=L2.s
group by L1.o));

--
--
Prompt "BR Q12 Started ..."
--
--
alter system flush buffer_cache;

select count(*) from (
select value_name from mvn$o_YAGO group by value_name
);

--
--
Prompt "BR Q13 Started ..."
--
--
 alter system flush buffer_cache;

 select count(*) from (
 select getObject(o) from (
 select o from mvn$yago
 where p in (select p_value_id from mvn$p_yago where value_name like '%type%')
 group by o
));

--
--
Prompt "BR Q14 Started ..."
--
--

--
Prompt "BR Q14 L2 Started ..."
alter system flush buffer_cache;

select count(*) from (
select getObject(o) from (
select o from br2_so_yago
where s IN
(
 select node from mvn$t_o_yago
)

 114

group by o
));
--
Prompt "BR Q14 L3 Started ..."
alter system flush buffer_cache;

select count(*) from (
select getObject(o) from (
select o from br3_so_yago
where s IN
(
 select o from br2_so_yago
 where s IN
 (
 select node from mvn$t_o_yago
)
 group by o
)
group by o
));
--
Prompt "BR Q14 L4 Started ..."
alter system flush buffer_cache;

select count(*) from (
select getObject(o) from (
select o from br4_so_yago
where s IN
(
select o from br3_so_yago
where s IN
(
 select o from br2_so_yago
 where s IN
 (
 select node from mvn$t_o_yago
)
 group by o
)
)
group by o
));
--
Prompt "BR Q14 L5 Started ..."
alter system flush buffer_cache;

select count(*) from (
select getObject(o) from (
select o from br5_so_yago
where s IN
(
select o from br4_so_yago
where s IN
(
select o from br3_so_yago
where s IN
(
 select o from br2_so_yago
 where s IN
 (

 115

 select node from mvn$t_o_yago
)
 group by o
)
)
)
group by o
));
--
--
--
Prompt "BR Q15 Started ..."
--
--
Prompt "BR Q15 L2 Started ..."
alter system flush buffer_cache;

select count(*) from (
select getObject(p) from (
select p from br2_sp_yago
where s IN
(
 select node from mvn$t_o_yago
)
group by p
));
--
Prompt "BR Q15 L3 Started ..."
alter system flush buffer_cache;

select count(*) from (
select getObject(p) from (
select p from br3_sp_yago
where s IN
(
 select o from br2_so_yago
 where s IN
 (
 select node from mvn$t_o_yago
)
 group by o
)
group by p
));
--
Prompt "BR Q15 L4 Started ..."
alter system flush buffer_cache;

select count(*) from (
select getObject(p) from (
select p from br4_sp_yago
where s IN
(
select o from br3_so_yago
where s IN
(
 select o from br2_so_yago
 where s IN
 (
 select node from mvn$t_o_yago

 116

)
 group by o
)
)
group by p
));
--
Prompt "BR Q15 L5 Started ..."
alter system flush buffer_cache;

select count(*) from (
select getObject(p) from (
select p from br5_sp_yago
where s IN
(
select o from br4_so_yago
where s IN
(
select o from br3_so_yago
where s IN
(
 select o from br2_so_yago
 where s IN
 (
 select node from mvn$t_o_yago
)
 group by o
)
)
)
group by p
));
--
--
Prompt "BR Q16 Started ..."
--
--
--
Prompt "BR Q16 L2 Started ..."
alter system flush buffer_cache;

select count(*) from (
select getObject(o) from (
select o from br$_yago where br=2
union
select o
from mvn$yago
where s IN
(select s from fat_nodes$yago)
group by o
));
--
Prompt "BR Q16 L3 Started ..."
alter system flush buffer_cache;

select count(*) from (
select getObject(o) from (
select o from br$_yago where br=3
union
select o from br$_yago where 1=1

 117

 and node IN
 (select s from mvn$yago
 where 1=1
 and s IN
 (select s from fat_nodes$yago)
)
 and br between 2 and 3
group by o
));
--
Prompt "BR Q16 L4 Started ..."
alter system flush buffer_cache;

 select count(*) from (
 select getObject(o) from (
 select o from br$_yago where br=4
 union
 select o from br$_yago where 1=1
 and node IN
 (select s from mvn$yago
 where 1=1
 and s IN
 (select s from fat_nodes$yago)
)
 and br between 3 and 4
group by o
));

--
Prompt "BR Q16 L5 Started ..."
alter system flush buffer_cache;

 select count(*) from (
 select getObject(o) from (
 select o from br$_yago where br=5
 union
 select o from br$_yago where 1=1
 and node IN
 (select s from mvn$yago
 where 1=1
 and s IN
 (select s from fat_nodes$yago)
)
 and br between 4 and 5
group by o
));

--
--
--
Prompt "BR Q17 Started ..."
--
--
/*
Prompt "BR Q17 L1 Started ..."
alter system flush buffer_cache;

select count(*) from (
select value_name from mvn$p_yago
);

 118

*/
--
Prompt "BR Q17 L2 Started ..."
alter system flush buffer_cache;

select count(*) from (
select getObject(p) from (
select p from br$_yago where br=2
union
select p
from mvn$yago
where s IN
(select s from fat_nodes$yago)
group by p
));
--
Prompt "BR Q17 L3 Started ..."
alter system flush buffer_cache;

select count(*) from (
select getObject(p) from (
select p from br$_yago where br=3
union
select p from br$_yago where 1=1
 and node IN
 (select s from mvn$yago
 where 1=1
 and s IN
 (select s from fat_nodes$yago)
)
 and br between 2 and 3
group by p
));
--
Prompt "BR Q17 L4 Started ..."
alter system flush buffer_cache;

 select count(*) from (
 select getObject(p) from (
 select p from br$_yago where br=4
 union
 select p from br$_yago where 1=1
 and node IN
 (select s from mvn$yago
 where 1=1
 and s IN
 (select s from fat_nodes$yago)
)
 and br between 3 and 4
group by p
));

Prompt "BR Q17 L5 Started ..."
alter system flush buffer_cache;

 select count(*) from (
 select getObject(p) from (
 select p from br$_yago where br=5
 union

 119

 select p from br$_yago where 1=1
 and node IN
 (select s from mvn$yago
 where 1=1
 and s IN
 (select s from fat_nodes$yago)
)
 and br between 4 and 5
group by p
));
--
--
spool off

 120

References

[1] M. Jarrar, M. D. Dikaiakos, A Query Formulation Language for the Data Web, IEEE

2009.

[2] M. Jarrar, M. D. Dikaiakos, A Data Mashup Language for the Data Web. Proceedings of

LDOW, at WWW’09, ACM, 2009.

[3] M. Jarrar, M. D. Dikaiakos, MashQL: A Query-by-Diagram Language

Specification, Implementation, and Use Cases,2008

[4] M. Jarrar, M. D. Dikaiakos, MashQL: A Query-by-Diagram Topping SPARQL

Towards Semantic Data Mashups, LDOW2009, April 20, 2009, Madrid, Spain.

[5] M. Jarrar, M. D. Dikaiakos , MashQL: A Query-by-Diagram Language

Towards Semantic Data Mashups,2009

[6] E. I. Chong,S. Das,G. Eadon,J. Srinivasan, An Efficient SQL-based RDF Querying

Scheme, Proceedings of the 31st VLDB Conference, Trondheim, Norway, 2005

[7] M.Cai ,M.Frank ,RDFPeers: A Scalable Distributed RDF Repository based on A

Structured PeertoPeer Network,WWW2004, May 17–22, 2004, New York, New York,

USA.ACM 158113844X/04/0005

[8] L. Ma, Z. Su, Y. Pan, L. Zhang, T. Liu, RStar: An RDF Storage and Query System for

Enterprise Resource Management, CIKM’04, November 8-13, 2004, Washington D.C.,

U.S.A.Copyright 2004 ACM 1-58113-874-1/04/0011

[9] N. Bassiliades, I. Vlahavas, R-DEVICE: A Deductive RDF Rule Language,2004

[10] W3C, RDF Primer, http://www.w3.org/TR/rdf-primer/, as of 2010.

[11] W3C, Semantic Web, http://www.w3.org/2001/sw/, as of 2010.

[12] W3C, Semantic Web ,http://www.w3.org/TR/rdf-sparql-protocol/, as of 2010

[13] Oracle Corporation, Semantic Technologies Developer's Guide 11g Release 1, Edition

2009

[14] S. Peenikal, Mashups and the Enterprise Mashups,Sept 2009

[15] Jena, Jena – A Semantic Web Framework for Java, http://jena.sourceforge.net/, as of

October 2010

 121

[16] Oracle Corporation , Oracle Materialized Views & Query Rewrite ,

http://www.oracle.com/technetwork/database/features/bi-datawarehousing/twp-bi-dw-

materialized-views-10gr2--131622.pdf, May 2005
[17] Oracle Corporation , Oracle® Database SQL Reference 10g Release 2 (10.2) , Part

Number B14200-02 ,chapter 9 ,Hierarchical Queries, December 2005

[18] Oracle Corporation, Oracle® Database SQL Language Reference

11g Release 1 (11.1) , Part Number B28286-06 ,chapter 16 ,Create Table, August 2010

[19] Oracle Corporation, http://www.oracle.com/technetwork/developer-tools/sql-

developer/what-is-sqldev-093866.html , as of October 2010

[20] Y.Yan, C.Wang, A.Zhou, W.Qian, L.Ma,Y.Pan , Efficiently Querying RDF Data in

Triple Stores, April 21-25, 2008 Beijing, China

[21] Sesami , http://www.openrdf.org, as of October 2010

[22] D.Damljanovic,J.Petrak,H.Cunningham ,Random Indexing for Searching Large RDF

Graphs, EU-funded LarKC (FP7-215535) project.

[23] O. Udrea,A. Pugliese,V.S. Subrahmanian, GRIN: A Graph Based RDF Index, copyright

Association for the Advancement of Artificial Intelligence (www.aaai.org), 2007

[24] Neumann T, Weikum G: RDF3X: RISC style engine for RDF. VLDB’08

[25] Abadi D, Marcus A, Madden S, Hollenbach K , Scalable semantic web

data management using vertical partitioning. VLDB, 2007.

[26] Oracle New England Development Center , The Semantic Web for Application

Developers, 2007

[27] Lehigh University Benchmark (LUBM), http://swat.cse.lehigh.edu/projects/lubm , as of

October 2010

[28] Thomas H. Cormen, Charles E. Leiserson, Ronald L. Rivest and Clifford Stein ,

Introduction to Algorithms, Third Edition , Chapter 25: All-Pairs Shortest Paths, September

2009, ISBN-10:0-262-03384-4 ,ISBN-13:978-0-262-03384-8

[29] Renzo A, Claudio G, and Jonathan H, RDF Query Languages Need Support for Graph

Properties , 2003

 122

[30] Ruoming J, Hui H,Haixun W,Ning R, Yang X , Computing Label-Constraint

Reachability in Graph Databases, SIGMOD’10, June 6–11, 2010, Indianapolis, Indiana, USA.

Copyright 2010 ACM 978-1-4503-0032-2/10/06

	Michael_Georgiou_Master_Thesis_V5_2_part1
	Michael_Georgiou_Master_Thesis_V5_2_part2

