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ABSTRACT 

Virtualization was born more than 30 years ago by IBM in an attempt to logically partition 

mainframe computers into separate virtual machines. As expected, despite the benefits 

virtualization was offering, a performance penalty needed to be paid because of the additional 

intermediate layers between the hardware and the application. With the passing of the years 

and the personal computer (PC) systems entering the scenery, along with the recent 

technology advances, we reach a point where virtualization for PC becomes a real scenario. 

Many researchers say that the performance penalty of virtualization is not that relevant 

compared to the benefits obtained.   

 

One of the major benefits virtualization has to offer is division of the physical machine into 

different domains, in a way that isolation is achieved between the different domains. 

Moreover, while the processor architecture moves from single core to multi-core design and 

the number of available cores inside the processor keep increasing, it raises the opportunity of 

executing parallel applications with larger degree of parallelism (High Performance 

Computing - HPC) as well as executing more applications on the same machine at the same 

time. A combination of the above, offers the chance of executing an HPC application inside 

one of the many different domains that virtualization has created on a multi core machine. 

 

The objective of this work is to evaluate the use of virtualization for the execution of HPC 

applications. Our work uses virtualization to achieve higher utilization and performance 

isolation for multi core processors. Based on existing virtualization tools, as a first step, we 

are proposing the use of Virtual Machines (VM) to measure the performance penalty suffered 

by different types of applications when executing on top of a VM on both single and multi 

core systems. As a second step, VMs are used to study the scalability of HPC applications on 

a virtual environment. The experiments include execution of applications from the PARSEC 



 

and DaCapo benchmark on top of VirtualBox, on two different systems: a 32-bit system with 

one single core processor and a 64-bit system with two quad-core processors.  

 

The results observed show that the different characteristics of each application have a 

considerable impact on the penalty suffered by the execution on Virtual Box. The penalty 

ranges from 10% up to 40%. Scalability for HPC applications seems to be very promising 

inside the VM and at the same time the different domains appear to offer performance 

isolation which means higher system utilization. All the results lead us to conclude that it is 

possible to combine HPC and virtualization having a variety of overheads depending from the 

type of the application.  
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Chapter 1 

 

Introduction 

 

1.1 Facts 

 
IBM was the first one to implement Virtualization more than 30 years ago, in an attempt to 

logically partition mainframe computers into separate virtual machines (VM) [70, 71, 72]. By 

doing so, they wanted to achieve better hardware utilization and make the mainframes more 

efficient by creating multiple logical partitions. The logical partition gave the ability to install 

different Operating Systems on one machine after separating it into different domains. Also, a 

user logging-in into one domain was isolated from the user logging-in into another domain. 

Unfortunately, despite the benefits virtualization was offering, a performance penalty needed 

to be paid because of the additional intermediate layers between the hardware and the 

application [20, 21, 22, 23, 24, 26]. With the passing of the years and the personal computer 

(PC) systems entering the scenery, along with the recent technology advances, we have 

reached a point where virtualization for PCs becomes a reality. Many researchers say that 

virtualization’s performance penalty, is not that relevant compared to the benefits obtained 

[20]. Trying to generalize and specify how much is the virtualization overhead, is not an easy 

task to do because of the variety of applications and diversity of existing virtualization 

methods and tools. Despite that, recent works try to estimate that overhead using different 

applications and virtualization tools [20, 21, 22, 23, 24].  

 

Having in mind that big servers are dedicated to specific applications, that leads to hardware 

underutilization most of the times since it is not possible to keep it working using all its power  
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all the time [86]. Since the entire machine’s resources are not used, hardware utilization is not 

the maximum. By separating the physical machine into different domains we can have 

isolation, which brings along better hardware utilization as well. If the domains can be 

isolated from each other, that means that the hardware can be used by more users at the same 

time, each one doing different tasks. Like that, security and safety is offered to the data that 

must stay unreachable by ‘strangers’. At the same time the machine’s power is used much 

better. Amazon with their EC2 system [43], share their hardware with external users by 

allowing them to work through a virtual machine, which is created on top of their physical 

hardware, and at the same time the company’s private data are protected since the external 

users cannot access it. The fact that isolation and better system utilization is achieved, makes 

the virtualization overhead seems insignificant. 

 

While processor architecture moves from single-core to multi-core design, and the number of 

available cores inside the processor keep increasing, it raises the opportunity of executing 

parallel applications with larger degree of parallelism (HPC). In addition, it is also possible to 

execute more applications on the same machine at the same time. In combination with the 

isolation that virtualization offers, virtualization offers the chance of executing an HPC 

application inside one of the many different domains that virtualization has created on a multi-

core machine. Many researches have studied the interaction of HPC and virtualization [32-

42]. So, even though when IBM first started using virtualization performance was not their 

concern, when it comes to executing an HPC application on top of virtualization, performance 

and scalability become critical factors. It is not enough for the HPC application to be executed 

on top of the VM. A reasonable scalability is needed as well. That means that if scalability 

inside the VM is poor and far different than the scalability while executing on the host system, 

then the execution of HPC applications inside the virtualization environment will not have any 

sense. 
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1.2 Objectives – Methodology – Results 

 
The objective of this work is to evaluate the use of virtualization for the execution of HPC 

applications. Our work uses virtualization to achieve higher utilization and performance 

isolation for multi-core processors. In the first step we measure the performance penalty 

suffered by different types of applications when executing on top of a VM on both single and 

multi-core systems. As a second step, VMs are used to study the scalability of HPC 

applications on a virtual environment. Through the experiments we want to find a possible 

way to achieve higher utilization of the multi-core systems that will exist in the future 

containing hundreds of cores. We also want to discover how is it possible to hide the 

complexity of the future hardware from users with different needs, in order to be easier for 

them to use the systems without needing to know the underlying hardware complex details. 

The experiments include execution of applications from the PARSEC[11] and DaCapo[12] 

benchmark on top of VirtualBox[9], on two different systems: a 32-bit system with one 

single-core processor and a 64-bit system with two quad-core processors. 

 

Our methodology, for all applications, includes comparison of the execution time on the 

native environment, with the execution time inside the virtualized environment. Scalability on 

multi-core systems is measured by the execution of the PARSEC parallel applications inside 

VM and allocating different number of cores on the VM each time. To avoid variability on the 

results we use exactly the same version of OS in the native and VM systems. 

 

The results observed show that the different characteristics of each application have a 

considerable impact on the penalty suffered by the execution on the VM. The penalty ranges 

from 10% up to 40%. Scalability for HPC applications seems to be very promising inside the 

VM and at the same time the different domains appear to offer performance isolation, which 

means higher system utilization. All the results lead us to conclude that it is possible to 

combine HPC and virtualization and that the overheads depend on the type of the application. 
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1.3 Thesis Organization 

 

The rest of this document, is organized in chapters. In Chapter 2 we present the related work 

of other researchers. Chapter 3 is a summary of the basics on virtualization. The history and 

the types of virtualization are presented, along with a brief explanation on what can we do 

with virtualization. Chapter 4 talks about the experimental setup of the work. Experiments are 

described in Chapter 5 and Chapter 6. Conclusions and future work are included in Chapter 7. 
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Chapter 2 

 
Related Work 

 

2.1 Measuring Virtual Machines Overhead 

 
Macdonell and Lu [20] presented a quantitative study of basic overheads while using VM for 

HPC, and they remarked that VMs are a convenient way to package and deploy scientific 

applications across heterogeneous system. Through a simple study configuring their virtual 

machines to use two processors, they compare applications running under VMware Server, 

versus running on bare hardware. They show that the overheads for a compute-intensive 

application, such as GROMACS, can be under 6%. For more I/O-intensive applications 

(e.g.,BLAST [87], HMMer with NR database [88]), the overheads can be as high as 9.7%. 

They conclude by saying that while not perfect, VMs are emerging as a useful tool for HPC. 

 

In a work by Huangy et al. [21], it is mentioned that very few HPC applications are currently 

running on virtualized environments due to the performance overhead of virtualization. As 

they say, using VMs for HPC introduces additional challenges such as management and 

distribution of OS images. So, in their paper, they present a case for HPC with virtual 

machines by introducing a framework, which addresses the performance and management 

overhead associated with VMbased computing. They build an eight-node InfiniBand cluster 

with the Xen virtual machine environment. They explain how to reduce the I/O virtualization 

overhead through the idea of VMM-bypass I/O and address the efficiency for management 

operations in such VM-based environments. Their results showed that HPC applications (NAS 

parallel benchmarks and High Performance Linpack - HPL) can achieve almost the same 

performance as those running in a native, non-virtualized environment. They also demonstrate 
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that other costs of virtualization, such as extra memory consumption and VM image 

management, can be reduced significantly by optimization. 

 

On a paper by Tikotekar et al. [22], the authors mentioned that due to the versatility in 

applications, there are different overheads in virtual environments that don’t allow us to 

generalize conclusions beyond the performance analysis of the specific application that is 

executed. In an attempt to study such potential causes they have studied the impact of Xen on 

the behavior of two HPC applications in detail and compare their penalty profiles. Using the 

XenOprofile on a sixteen node cluster, they analyzed HPL and SP, two applications from 

HPCC [89] and NPB [90], respectively. In their attempt to find the reason for the overall 

performance penalty they found that, while the overall performance penalty does not differ 

much between HPL and SP, their overhead profiles are not similar. Furthermore, they found 

that Xen  has an  impact on various parts of these applications in different ways. It is therefore 

possible that different applications in the same class may be affected in a different way from 

HPL or SP. They also found that the similar final performance impact of HPL and SP is not 

entirely due to the fact that these are compute-bound benchmark applications, but because the 

parts that are affected differently by Xen are too small to influence the final performance 

number. Their findings emphasize the difficulty of performance prediction and generalization.  

 

In a non-HPC related work by Ferrer [23], the author presents a study on VMWare Virtual 

Machine Monitor Network Subsystem to provide a measure of its introduced overhead. They 

show that VMWare Hosted Network Interface Card implementation can introduce an 

overhead in time due to inclusion of an extra layer in the transmition path. This time overhead 

increases when transmitted data is small and decreases when the amount of data to transmit 

becomes high. The cause from this effect can be explained due to the disk buffer contained in 

VMWare virtual machine. 
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In another non-HPC related work by Cherkasova and Gardner [24], the authors emphasize the 

need for an accurate monitoring infrastructure reporting resource usage of different VMs. As 

they say the traditional monitoring system typically reports the amount of CPU allocated by 

the scheduler for execution of a particular VM over time. However, this method might not 

reveal the “true” usage of the CPU by different VMs. The reason is that virtualization of I/O 

devices results in an I/O model where the data transfer process involves additional system 

components, e.g. hypervisor and/or device driver domains. Hence, the CPU usage when the 

hypervisor or device driver domain handles the I/O data on behalf of the particular VM needs 

to be charged to the corresponding VM. In their work the authors present a lightweight, non-

intrusive monitoring framework for measuring the CPU overhead in VMM related layers 

during I/O processing and a method for charging this overhead to VMs causing the I/O traffic. 

Their performance study presents measurements of the CPU overhead in the device driver 

domain during I/O processing and attempts to quantify and analyze the nature of this 

overhead. 

 

Tikotekar et al. [26] investigated the behavior and identified patterns of various overheads for 

HPC benchmark applications. Current work presenting a specific class of applications as 

better suited to a particular type of virtualization scheme or implementation does not allow to 

produce general conclusions. Such conclusions are limited to the performance analysis of the 

application that is explicitly executed. 

 

2.2 Using Virtual Machines for HPC applications  

 
In [32], Hazelhurst presents one platform which is a suitable candidate for scientific 

computing applications. Amazon’s Elastic Computing Cloud (EC2), a Xen based 

Virtualization technology, is physically a large number of computers on which Amazon 

provides time to paying customers and is physically based in different locations in the United 



 

 

8

States. EC2 gives the opportunity to external users to use the Amazon‘s system storage and 

CPU power whenever they want and pay the time that they use the resources instead of paying 

for buying the actual hardware. A user can pay for as many computing  nodes as needed and 

she can configure the nodes as she wishes having complete control of the system. The author 

uses a bioinformatics application while being executed on three different clusters to evaluate 

(a) the computational performance of the clusters, (b) the network costs and (c) the usability 

of each system. Two out of three clusters are physical while the third one is a virtual cluster 

(EC2). The results showed that EC2 supports a good scalability for HPC applications and that 

it makes it to be a feasible, cost-effective model for many applications. 

 

Liu et al. [33], presented a VMM-bypass approach for I/O access in VM environments. Since 

VMMs are the ones to make sure that I/O accesses are safe and the integrity of the system is 

not in danger, I/O access in virtual environments requires context switching between VMM 

and the guest VMs. Based on that, the authors remark that I/O access inside virtual 

environments adds longer latency and higher CPU overhead compared to native I/O access in 

non-virtualized environments. Their proposal is an extension of OS-bypass design of modern 

high speed network interfaces, that allows user processes to access I/O devices directly in a 

safe way without going through the OS. Their implementation of the Xen-IB prototype that 

provides virtualization support for InfiniBand in Xen, presents to the guest VM a para-

virtualized InfiniBand device. Their results show that the performance on a native non-

virtualized environment is very close to the performance of their implementation. 

 

In [34], Vogels examines the possibility of the CLI-based Virtual Machines to be suitable for 

HPC. The author wanted to test the performance of three CLI-based VM (Microsoft .NET 

CLR 1.1, Mono 0.23 and SSCLI 1.0) and their viability as a platform for HPC in a similar 

way that Java was investigated in the past by the Java Grande Forum. Assuming that the 

computing community accepts that Java can be used for HPC, the author uses several 

applications, similar to the ones used for evaluating Java by Java Grande Forum, to compare 
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several results (regarding integer and floating point arithmetic, loop performance and 

exception handling as well as Math library routines) among the three CLI-based VM and the 

JVM (IBM JVM 1.3.1) on the same platform. The results showed that the .NET CLR 1.1, 

performs as good as the latest Java Virtual Machine, the IBM 1.3.1 JVM, and significantly 

better than the BEA and Sun implementations of the JVM. 

In [36] Mergen et al. from IBM T. J. Watson Research Center, are focusing on hardware 

virtualization with special focus on trends, motivations and issues related with using 

virtualization for HPC environments. The authors talk about how virtualization can increase 

the production, developing and testing of HPC applications and systems. They discuss how 

HPC applications can be assisted by virtualization. They also explain that virtualization offers 

reliability and availability which is very important when running HPC applications. The 

authors refer to the security aspect that is necessary for HPC applications and can be gained 

using VMs. Regarding the software complexity, they describe several simplifications that 

exist. The authors conclude by posing specific research questions that can be answered by 

software and hardware innovations. 

 

In [35] and [37], Lange et al., shows how virtualization can scale. Originally they created 

Kitten, a high performance supercomputing OS and then embedded inside it a new high 

performance virtual machine monitor (VMM) architecture called Palacio. The usage of both 

provides to the HPC community users the chance to try a flexible, high performance 

virtualized system software platform. The authors test the system using several parallel 

applications and compare the execution time as well as other characteristics with the native 

execution. The results show that Palacios gives a constant overhead smaller than 5%, which is 

very near the native scalable performance. 

 

In [38] Huang et al., underline the VM migration from one to another physical node, as one of 

the most important benefit that virtualization has to offer. Based on that, they recognise the 

necessity for an efficient VM migration. They propose a high performance VM migration 
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design that uses RDMA feature. Their design minimizes the total migration time as well as the 

software overhead. 

 

Gavrilovska et al. in [39], talk about the challenges and the opportunities that virtualization 

offers for HPC systems and applications. They focused on the I/O challenges and the multi-

core nature of future HPC applications and validated them using Xen on multi-core machines. 

Their results showed that the hypervisors can be more efficient for usage on multi-core 

systems if they are restructured. 

 

In [41], Youseff et al., emphasize that paravirtulization makes the virtualization process much 

simpler and this is an advantage offering better scalability and performance, in comparison to 

previous VMM implementations. From the moment that performance-critical applications 

cannot afford overheads, virtualization is currently not used in HPC environments. The 

authors wanted to evaluate how big is that overhead for Linux and Xen. Comparing three 

different Linux configurations with a Xen-based kernel, with the usage of micro and macro-

benchmarks from the HPC Challenge, LLNL ASCI Purple, NAS parallel benchmark suites 

and an HPC application, the authors showed that Xen is very efficient for HPC systems.  

 

In the article by Goscinski and Abramson [25] Motor is presented. Motor is a virtual machine 

developed by integrating a high performance message passing library directly within a virtual 

infrastructure. In comparison to the current virtual environments such as Java and .NET that 

don’t provide the necessary HPC abstraction required, Motor provides high performance 

application developers with a common runtime, garbage collection and system libraries. 

 

Macdonell and Lu [27] state that VMs is a good solution to abstract out the heterogeneity in 

order to fully utilize metacomputers and grids. Although the use of VMs has overheads, recent 

improvements in software and hardware support reduce the overheads for HPC applications. 
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On their work the authors show a simple quantitative study of the overheads of running the 

benchmarks BLAST, HMMer and GROMACS under VMWare. Concluding in the paper they 

support that while not perfect, VMs are emerging as a pragmatic tool in HPC. 

 

Huang et al. [29] present a case for HPC with virtual machines by introducing a framework 

that addresses the performance and management overhead associated with VMbased 

computing. Two key ideas in their design are: Virtual Machine Monitor (VMM) to bypass I/O 

and scalable VM image management. 

 

In a work by Tikotekar et al. [30] the authors compare two Xen virtual machine scenarios 

using an HPC application, in an attempt to study if novel virtual machine configurations can 

give a better ratio between flexibility and performance-loss on HPC field. The one 

configuration was using two virtual machines per node with 1 application process per virtual 

machine. The other configuration consisted of 1 virtual machine per node with 2 processes per 

virtual machine. Using LAMMPS, a specific scientific application they evaluate the difference 

between two VM configurations that perform the same work with different flexibility. Their 

experiments focused on CPU utilization, memory and swap allocation, I/O movement, and 

system metrics. Results showed that each virtual configuration has a different impact on the 

overall performance as well as the individual performance metrics. 

2.3 Comparison with our work  

 
As can be seen by the works mentioned in this chapter, several researchers in the past have 

been trying to evaluate virtualization overheads in the context of different applications. Most 

of the interest is on the overhead caused on the performance while executing HPC 

applications. Most of the researchers are using Xen for their evaluation. Our work is 

complementary to the previously published experiments since we are using a simpler 

virtualization solution based on a virtual machine, the Virtual Box, to contact our research.  

While the evaluation of the use of virtualization for the execution of HPC applications from 
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our site is complementary on the previous work, the difference with our approach is that we 

use virtualization to achieve higher utilization and performance isolation for multi-core 

processors.  

Moreover, to the best of our knowledge, PARSEC and DaCapo benchmark suite applications 

have not been used by other researchers. Our work focuses on those suites, to measure and 

compare the scalability of sequential and parallel applications on top of single-core and multi-

core systems using virtualization. The usage of those suites can be an important addition on 

top of the other applications used by others to study the scalability on multi-core systems. 

Combination of all results from all the researches, can lead to future library designs that places 

the VM environments as efficient environments for HPC. 
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Chapter 3 

 
Virtualization 

 

3.1 Definitions for Virtualization 

 
Virtualization is a simplified solution that acts like an abstract layer over the physical 

hardware that makes it easier to manage and interact with the resources of the computing 

machine [53]. Virtualization can also be defined as a way to create a virtual copy of a device 

or a resource, and from that virtual copy to create several execution environments [54]. After 

that, each execution environment can be treated like a usual single resource. As an example, 

the partition of a disk is also a form of virtualization, since we are creating multiple resources 

out of a single resource.  

 

In [6], virtualization is one of the many as well as the most recent technological advances that 

adds a higher level of abstraction to systems and gives the chance to all IT people to achieve 

even higher computing productivity in their work. 

 

As mentioned in [55], virtualization is the perfect solution in order to replace the large number 

of servers that data centers uses for their demands, since each server is necessary for each 

different application. Taking advantage of the ability that virtualization offers to run multiple 

OSs on a single machine, the data centers can have smaller number of servers, and at the same 

time do the same amount of work as before. This is possible due to the fact that with 

virtualization it is possible to have multiple OSs and different applications on the same server, 

inside each virtual environment that is totally isolated from the other environments. 
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3.2 History of Virtualization  

 
The first implementation of Virtualization took place on the late 1960s by IBM [70, 71, 72]. 

IBM wanted to logically partition mainframe computers into separate virtual machines. By 

partitioning the computer, they wanted to achieve better hardware utilization and make the 

mainframes more efficient by creating multiple logical partitions. An OS could exist on each 

partition and all the partitions concurrently could work, while being on the same physical 

mainframe. If we consider the huge cost that the mainframes had back then, it is easy to 

realize that using as much as possible the computing resources, was a very good money-

saving solution.  

 

Around 1980s and 1990s, virtualization on mainframes started loosing ground, because 

distributed computing was appearing. For that new kind of computing systems, inexpensive 

servers and desktop computers were used, instead of mainframes. While the servers and the 

desktop technology were growing, there were many problems that needed to be solved, since 

those new machines were not designed to fully support virtualization, as the mainframes did. 

Problems related to low infrastructure utilization, increasing physical infrastructure costs, 

increasing IT management costs, insufficient support for failover and disaster protection, and 

high maintenance end-user desktops among many more needed to be overcome [73]. 

 

3.2.1 Software Virtualization  

 
In 1999 VMware presented the idea of the full virtualization for x86 hardware [1], in order to 

deal with the above mentioned problems. With this introduction it was possible to transform 

x86 systems into a general purpose, shared hardware infrastructure that offers full isolation, 

mobility and operating system choice for application environments. VMware provided a 

platform where it is possible to have high-performance virtual machines compatible with the 

host hardware and without any software compatibility problem. 
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Other examples [3] of x86 virtualization software include: 

• Microsoft's Windows-based products Microsoft Virtual PC [44], Hyper-V [45], and 

Microsoft Virtual Server [46], based on technology acquired from Connectix [47] 

• Open-source solutions such as QEMU [48], Kernel-based Virtual Machine (KVM) 

[49] and Virtual Box [9] 

Another example of software virtualization comes from the research systems Denali [50], L4 

[51], and Xen [52], which provide high-performance virtualization for the x86 systems by 

implementing a virtual machine that differs from the raw hardware. This kind of virtualization 

is called paravirtualization. The virtual machines that are created, don’t include the 

implementation of the actual x86 instruction set that are difficult to virtualize. This method 

assumes that the host system supports hardware-assisted virtualization, such as Intel VT [74] 

or AMD-V [75]. 

3.2.2 Hardware Virtualization  

 

In 1974 Gerald J.Popek and Robert P.Goldberg created a specification for virtualization called 

‘Formal Requirements for Virtualizable Third Generation Architectures’ [4]. According to 

that manual, the x86 processor architecture did not meet all those requirements. That is why 

the developers were having difficulties implementing a virtual machine platform on the x86 

architecture and avoiding the significant overhead compared to the native execution on the 

host machine. 

It was in 2005 and 2006 that Intel [77, 78], as well as AMD [76] gave the answer to this with 

the creation of new ‘Processor Extensions’ to the x86 architecture. Although the actual 

implementation of processor extensions differ between AMD and Intel, both achieve the same 

goal. They both allow a virtual machine hypervisor to run an unmodified operating system 

without adding significant emulation performance penalties: 
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(A) AMD Virtualization (AMD-V) 

AMD markets its virtualization extensions to the 64-bit x86 architecture as AMD 

Virtualization, abbreviated AMD-V [76]. In 2006, AMD released the Athlon 64 ("Orleans"), 

the Athlon 64 X2 ("Windsor") and the Athlon 64 FX ("Windsor") as the first AMD processors 

to support this technology. AMD Opteron CPUs beginning with the Barcelona line, and 

Phenom II CPUs, support a hardware virtualization technology called Rapid Virtualization 

Indexing, later adopted by Intel as Extended Page Tables (EPT). 

(B) Intel Virtualization Technology for x86 (Intel VT-x) 

Previously codenamed "Vanderpool", VT-x represents Intel's technology for virtualization on 

the x86 platform [77, 78]. Intel includes Extended Page Tables (EPT), a technology for page-

table virtualization, in the Nehalem architecture. As of 2009 not all recent Intel processors 

support VT-x. Some Intel processors supporting VT-x are: Pentium 4, Xeon 3300 and +, 

5000, 7000 series, Pentium Dual-Core E6300, E6500, E6600, Celeron SU2300, E3200, 

E3300, E3400. 

Some software that makes use of the support offered by AMD-V and/or Intel VT-x are the 

following: VirtualBox [9], Xen [52], VMware ESX Server [79], Hyper-V [80], Microsoft 

Virtual Server [81], Oracle VM [82], Sun xVM [83], Windows Virtual PC 7 [84]. 

3.2.3 Software Vs Hardware Virtualization  

 
On [5], Adams and Agesen from VMware team, present a comparison of software and 

hardware techniques related to x86 virtualization. After AMD and Intel added extensions on 

their architecture in order to directly support virtualization in hardware, the authors wanted to 

see whether a software or a hardware VMM gives better performance. Their study included 

architectural-level events like page table updates, context switches and I/O. The results 

surprised the authors as they found that in the case of workloads performing I/O, creation of 
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processes or rapid switch context, the software VMM performs better than the hardware 

VMM. If a workload has a lot of system calls then hardware VMM perform better. In cases of 

compute-bound workloads, both of VMMs perform very well. As the authors say, the reason 

why the hardware VMM does not perform better than the software in all cases, is because it 

does not support MMU virtualization on its own and because it cannot co-exist either with 

software techniques that support MMU virtualization.   

3.3 Types of Virtualization  

 

After a quick look in the web, we can see that there are so many kinds of virtualization that is 

enough to cause us a confusion on which one is the most suitable for us. The most common 

types of virtualization applied to the data centres are Server and Storage Virtualization. 

3.3.1 Server Virtualization 

 

This type of virtualization aims to hide the server resources from the server users in a way that 

they don’t need to understand and manage the complicated details of server resources. This 

way is possible to increase the resource sharing and utilization. Under the server virtualization 

we distinguish four types of virtualization: 

a. Operating System Virtualization 

Operating system (OS) virtualization runs on top of an existing host operating system and 

provides a set of libraries that applications interact with, giving an application the illusion that 

it is (or they are, if there are multiple applications) running on a machine dedicated to its use. 

From the application’s execution perspective, it sees and interacts only with those applications 

running within its virtual OS, and interacts with its virtual OS as though it has sole control of 

the resources of the virtual OS. It can’t see the applications or the OS resources located in 

another virtual OS. 
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Companies offering operating system virtualization include Sun and SWSoft [58] which 

offers the commercial product Virtuozzo [56] as well as the open source operating system 

virtualization project called OpenVZ [57]. 

b. Hardware Emulation (Hypervisors) 

In this technique, an emulated hardware environment is presented by the virtualization 

software (hypervisor) and the guest OS is operating on top of that emulated environment. The 

emulated environment is called virtual machine monitor (VMM). The guest OS is placed 

above the VMM and interacts with it. Both of them together, as a consistent unit, can be 

moved from one physical machine to another one. The hypervisor is between the VMM and 

the physical hardware and helps in the communication of the two. When the VMM sends a 

call, then the hypervisor translates that call to the specific resources of the physical machine. 

 

This type of virtualization offers isolation to each guest OS even in the case where we have 

many guest OSs running, one per VMM. With this method we can have multiple OSs running 

that can even be totally different between them. 

 

VMware (VMware Server and ESX Server) and Microsoft (Virtual Server) are companies that 

offer hardware emulation virtualization software. Xen is also a hypervisor-based open source 

alternative. 

c. Paravirtualization 

This type of virtualization instead of having an emulation of the entire hardware environment, 

it offers a thin layer that multiplexes access by guest Operating Systems to the underlying 

physical machine resources. In comparison to the Hardware emulation that inserts an entire 

hardware emulation layer between that allows one guest OS access to the physical resources 
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of the hardware while stopping all other guest OSs from accessing the same resources at the 

same time. 

 

One example of paravirtualization is a relatively new open source product called Xen, which 

is sponsored by a commercial company called XenSource. Another example is Virtual Iron 

[84], a Xen-based solution. 

d.  Virtual Machines 

The use of Virtual Machines is what comes instantly to our minds as soon as we hear the term 

‘virtualization’. Inside each Virtual Machine resides a completely different Operating System, 

each with its own application or applications.  

 

Two examples are VMware ESX and Sun xVM Server that run as the primary application on 

a dedicated system, with guest operating systems running on top of them. Sun xVM 

VirtualBox provides developers a way to create multiple guest OSs on top of their existing 

laptop or workstation.  

 

The first definition for a virtual machine was given by Popek and Goldberg [4] as "an 

efficient, isolated duplicate of a real machine". As mentioned in [1], a virtual machine is a 

software package that is well isolated and can run an OS in the same way as a physical 

computer can. The virtual machine has its own virtual resources like CPU, RAM, hard disk 

and network interface card, and it behaves exactly like a usual physical computer. Based on 

the fact that an OS can’t tell the difference whether it runs on a virtual machine or on a 

physical machine, and in along with the fact that virtual machine is entirely made of software 

with no hardware, we can conclude that virtual machines have many advantages over the 

physical machines. 
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Fig.1. A VMware Virtual Machine [1] 
 

In general, a virtual machine (VM) is an environment, usually a program or operating system, 

which does not physically exist but is created within another environment. In this context, a 

VM is called a "guest" while the environment it runs within is called a "host." Virtual 

machines are often created to execute an instruction set different than that of the host 

environment. One host environment can often run multiple VMs at once. Because VMs are 

separated from the physical resources they use, the host environment is often able to 

dynamically assign those resources among them. 

There are two types of virtual machines according to their use and degree of correspondence 

to any real machine: 

i) System Virtual Machine: 

The system VM, provides a complete system platform which supports the execution of a 

complete operating system (OS). It allows the sharing of the underlying physical machine 

recourses between different virtual machines, each running its own operating system. The 

software layer providing the virtualization is called a virtual machine monitor or 

hypervisor. Examples of system virtual machines software are: KVM [49], Sun xVM [64], 

VirtualBox [9], VMware [1], Xen [52], IBM POWER SYSTEMS [65]. 

 

 



 

 

21

ii) Process Virtual Machine: 

The process VM, is designed to run a single program, which means that it supports a 

single process. It runs as a normal application inside an Operating System.  It is created 

when the process is started and destroyed when it exits. It provides a platform-

independent programming environment that abstracts away details of the 

underlying hardware or operating system, and allows a program to execute in the 

same way on any platform. This type of VM has become popular with the Java 

programming language, which is implemented using the Java Virtual Machine (JVM). 

Examples of process virtual machines software are: Java Virtual Machine [66], 

Macromedia Flash Player - SWF [67], VX32 virtual machine [68], Common Language 

Infrastructure - C#, Visual Basic .NET, J#, C++/CLI [69]. 

 

3.3.2 Storage Virtualization  

 

This type of virtualization takes all the physical storage belonging to multiple network storage 

devices and gives us the illusion that they are a single storage device. That single storage 

device is controlled by a central console. Storage virtualization is commonly used in storage 

area networks (SANs) and Network Attach Storage (NAS). Storage virtualization vendors 

among others [59] include: 3PAR [60], Arrow ECS HP Group and Intel [61], Dell and 

VMware [62], IBM [63]. 

3.4 Concluding: What can you do with virtualization?  

 
Virtualization allows you to have two or more images of a complete system running two or 

more completely different environments, on the same hardware system. For example, with 
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virtualization, you can have both a Linux machine and a Windows machine on one hardware 

system.   

 

We can say that virtualization abstracts users and applications from the specific hardware 

characteristics of the systems that they use to perform computational tasks. It is a very 

promising technology and it is very helpful when it comes to system upgrading, since we can 

capture the state of a VM and transfer from an old to a new host system. 

 

Virtualization is also designed to enable a generation of more energy-efficient computing. If 

we consider the fact that virtualization helps needing less physical servers in each data centre, 

then the overall cost of energy for each company would be much less.   

 

Summarizing, according to [7] virtualization helps you to create a dynamic data center, helps 

reducing power consumption, provides better security, helps to develop and test new stuff 

easily, to run multiple operating systems on the same hardware, to improve scalability, to 

enhance your hardware utilization, and many more.  
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Chapter 4 

 
Experimental Setup 

 

4.1 Experimental Objectives 

 
For the purposes of this work we performed several types of experiments. The objectives of 

all the experiments can be grouped into three (3) categories: 

- CatA1: study the execution time overhead for serial applications when executing 

on top of virtual machines, on single-core and multi-core systems 

- CatA2: study the execution time overhead for parallel (1 thread) applications 

when executing on top of virtual machines, on single-core and multi-core systems 

- CatB: study the execution time overhead and the scalability for parallel 

applications when executing on top of virtual machines, on multi-core systems 

 

In order for the work to be more compete, profiling the VM code is necessary. Having the 

profiling results, we can explain easier why an overhead occurs and excuse its behaviour e.g. 

to say why is higher or why is lower in specific cases. For the profiling purposes, we tried to 

put PAPI on our systems, to measure specific characteristics of the software. The whole 

process was not easy, since patching of the OS kernel was needed. Many problems were 

appearing, and we decided to move on with the experiments without the profiling part. Time 

limitations, after finishing with the experiments, did not allow us to redo the experiments with 

profiling option. Therefore our attempt to justify the results, is based only to the description 

that the developers describe for each application for DaCapo [13]  and PARSEC [16]. 
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4.2 Systems Used  

 
For the experiments we used two computer systems, with the following configuration: 

 

System1: a single-core laptop system equipped with an Athlon AMD 64 bit CPU processor 

running at 1.5GHz. The processor is configured with 1024KB of private L2 cache. This 

system was running the 32-bit version of Ubuntu 9.04 (ubuntu-9.04-desktop-i386.iso). This 

system, according to the terminology of virtualization, will be called as the ‘host’ system for 

our experiments. 

 

NOTE: in System1 we tried to install the 64-bit Ubuntu, but as idea it was rejected, 
because it was giving problems while installing the 64-bit Ubuntu inside the VM later. 
The problem was because the laptop was not supporting hardware virtualization (lack 
of AMD-V hardware extension)  

 

System2: a 8-core computer system equipped with two 4-core Intel(R) Xeon (R) CPU E5320 

processors running at 1.86GHz. These processors are configured with 128KB of private L1 

cache and 8MB of shared L2 cache. This system was configured with the 64-bit version of 

Ubuntu 9.04. Just like for System1, this system will be called as one more ‘host’ system for 

our experiments. 

 

For experiments in CatA1 and CatA2, both System1 and System2 were used as the ‘host’ 

system. For experiments in CatB, System2 was used as the ‘host’ system. 
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4.3 Tools Used (Virtual Machines)  

 
The virtualization abstraction for this work, was implemented using the Virtual Box package 

from Sun Microsystems [8]. For System 1 we used version 3.1. for Ubuntu 9.04 32bit while 

for System 2 we used also version 3.1. but for Ubuntu 9.04 64-bit. 

 

Virtual Box is a collection of powerful virtual machine tools. It is free and can be used for 

home on desktop computers or can be used by enterprises on servers and embedded systems. 

Currently it offers a big collection of host and guest support and they provide new releases 

frequently. It is a professional-quality virtualization solution that comes in many versions 

according to the users needs. Using Virtual Box, someone can virtualize 32-bit and 64-bit 

operating systems on machines with Intel and AMD processors, either by using hardware 

virtualization features provided by these processors or by software [9]. The basic reason why 

we choose Virtual Box and not another virtualization tool, is because on the long run we want 

to be able to profile the VM code. To do that, you need to have access to the actual code from 

which the VM is consisted of. Having a free tool, can help us achieve that. We also try to 

work with VMware, but the free version of it only offers the possibility to assign 2 cores on 

the created VM, something that was a limitation to our targets, as more than 2 cores were 

needed for our experiments. 

 

The first step of the virtualization was to produce the images of the Virtual Machine using the 

Virtual Box and then to allocate to each VM the resources that could be used. For the 

experiments in CatA1 and CatA2, the memory allocated to the VM was 700MB of RAM. The 

number of processors allocated for the VM was one (1) core. For the experiments in CatB, the 

memory allocated to the VM was 4GB of RAM. The number of processors allocated was 

either 2, 4 or 8 cores for the virtual machine resulting in three different virtual machines: 

VM2, VM4, and VM8, respectively. 
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The second step of the virtualization was to install an Operating System inside each image-

machine. In order to have fair comparisons, we installed on each VM the same OS that we had 

on the ‘host’ system machine. So inside the VM on top of System1 we installed the 32-bit 

version of Ubuntu 9.04 and inside the VM on top of System2 we installed the Ubuntu 9.04. 

The operating system inside the VM, in the virtualization terminology is known as the ‘guest’ 

system.   

The third step was to install the Virtual Box Guest Additions for Linux inside each ‘guest’ 

system. As mentioned in [10] Virtual Box Guest Additions make your life much easier by 

providing closer integration between host and guest and improving the interactive  

performance of guest systems. The Additions take the form of a set of device drivers and 

system applications which may be installed in the guest operating system. Among other 

benefits, the Additions give support on: 

(a) Shared Folders: this provide an easy way to exchange files between the host and the 

guest 

(b) Mouse Pointer Integration: with this driver we only have one mouse pointer and 

pressing the Host key (right Ctrl key) is no longer required  to ‘free’ the mouse from 

being captured by the guest OS 

(c) Full Screen Setting: it enables the full screen 

(d) Time Synchronization: this ensures that the guest’s  system time is better 

synchronized with the host’s system time 

 

Now that the virtualized environments were ready, we needed to install the necessary 

programs/libraries for the applications to run on the guests and on the hosts, compile and 

execute the applications inside each VM and on the host. 
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4.4 Applications Used  

 
The workload used for our experiments consists of five applications from the PARSEC 

benchmark suite [11] and of ten applications from the DaCapo benchmark suite [12]. 

 

The Princeton Application Repository for Shared-Memory Computers (PARSEC) is an open 

source free of charge benchmark suite composed of multithreaded programs that focuses on 

emerging workloads and was designed to be representative of next-generation shared-memory 

programs for chip-multiprocessors [16]. More information about PARSEC can be found at 

[17] and [18]. What makes PARSEC different from other benchmark suites is that is parallel, 

it includes emerging workloads, which are likely to become important applications in the near 

future, and offers a wide selection of programs. It focuses on programs from different 

domains, such as desktop and server applications. More specific the applications come from 

many different areas such as computer vision, video encoding, financial analytics, animation 

physics and image processing. Each of the applications, come with preinstalled build 

configurations which define a specific way that the program is going to be compiled. Not all 

the applications in the suite support all the preinstalled build configurations. For the objectives 

of our work we needed applications that support the ‘gcc-serial’ and the ‘gcc-pthreads’ build 

configurations. Having this as the only prerequisite, we choose the first five applications that 

we were able to build successfully. The chosen applications were Blackscholes, Bodytrack, 

Facesim, Fluidanimate, and Raytrace. Their brief description is presented in Table1. 

 

The PARSEC applications used (version 2.1) have been parallelized with POSIX threads 

(pthreads). For our experiments we compiled the applications using parsecmgmt which is the 

main tool that comes with PARSEC to build and run packages. We used the configuration 

gcc-pthreads as to build the parallel executables of the applications. The compiler used was 

gcc-3.4 and g++ compiler. When running the PARSEC applications we used the native input 
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data set which is the input intended for large-scale experiments of performance measurements 

and research. 

Table 1. PARSEC Application Description 

Application Brief Description Data Set Type Data Set Name 
Blackscholes  Performs option pricing using the Black-

Scholes partial differential equation 
(PDE) method 

‘native’ in_10M.txt 

Bodytrack  Performs the tracking of people in 
security camera images   

‘native’ sequenceB_261 

Facesim Simulates the motions of a human face ‘native’ Face_Data 
Fluidanimate Models the fluid dynamics for animation 

purposes using the Smoothed Partical 
Hydrodynamics (SPH) method 

‘native’ in_500K.fluid 

Raytrace Renders a 2D image out of a 3D model 
using the ray-tracing method 

‘native’ thai_statue.obj 

 

 

The DaCapo benchmark suite is used as a tool for Java benchmarking by communities like the 

programming language, memory management and computer architecture. It consists of a set 

of open source, real world applications with non-trivial memory access patterns. The 

description of the suite can be found in [13]. In the article by Blackburna et al. [14], which is 

an extended version of paper [13], the authors focuses on specific methodologies to 

demonstrate that the DaCapo benchmarks are larger, more complex and richer than the 

commonly used SPEC Java benchmarks. More information about the suite can be found also 

in [15]. The DaCapo suite includes the precompiled programs as well as the source 

distribution for the ones who wish to build the programs from scratch. Three out of the eleven 

applications are multithreaded but for the purpose of this work we will use only the serial 

version of all DaCapo applications. The ten applications we used in our work are: antlr, chart, 

eclipse, fop, jython, luindex, lusearch, pmd, xalan and bloat. Their brief description is 

presented in Table 2. The main reason we chose DaCapo to work with, is because we wanted 

to see if is efficient enough to execute applications running on top of a Java Virtual Machine, 

on the top of another virtual machine. We wanted to determine whether the virtualization 

overhead added to the execution time for applications been executed on top of two virtual 

machines, is acceptable. 
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The DaCapo applications used (version dacapo-2006-10-MR2.jar) were the precompiled java 

files so no compiling was needed from our site. We used sun-java6-jdk to run the applications. 

When running the DaCapo applications we used the large input data set which is the input 

intended for large-scale experiments of performance measurements and research. 

 

Table 2. DaCapo Application Description 

Application Brief Description 
antlr  parses one or more grammar files and generates a parser and lexical analyzer 

for each 
chart uses JFreeChart to plot a number of complex line graphs and renders them as 

PDF 
eclipse executes some of the (non-gui) jdt performance tests for the Eclipse IDE 
fop takes an XSL-FO file, parses it and formats it, generating a PDF file 
jython inteprets a the pybench Python benchmark 
luindex Uses lucene to indexes a set of documents; the works of Shakespeare and the 

King James Bible 
lusearch Uses lucene to do a text search of keywords over a corpus of data comprising 

the works of Shakespeare and the King James Bible 
pmd analyzes a set of Java classes for a range of source code problems 
xalan transforms XML documents into HTML 
bloat performs a number of optimizations and analysis on Java bytecode files 
 

4.5 Measuring the execution time  

 
In the case of PARSEC benchmark applications the measurement of the execution time on the 

native (host) systems was performed using the time shell command of Linux. The time 

command returns the real, user and system times. The real time corresponds to the total 

execution time while the user corresponds to the time spent by the user processes and the 

system corresponds to the time spent by the system as to complete the user requests. If 

otherwise mentioned, the execution time and other metrics refer to the real or total time 

reported by the time command.  

 

As for measuring the execution time inside the VMs, it is not so straightforward. Because of 

the many layers added between the guest and the host, it is widely accepted that timekeeping 
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inside virtual machines can be inaccurate and misleading if certain measures are not taken into 

consideration. Because virtual machines work by time-sharing host physical hardware, a 

virtual machine cannot exactly duplicate the timing behavior of a physical machine. 

VirtualBox currently always takes the local time of the host system as its hardware clock. On 

a paper from VMWare team [19] a very good description of the timekeeping inside virtual 

machines, with more weight given in VMware machines, is given. In their information guide 

they describe how timekeeping hardware works in physical machines, how typical guest 

operating systems use this hardware to keep time, and how VMware products virtualize the 

hardware. As they mention in their paper, time measurements taken within a virtual machine 

can be somewhat inaccurate because of the difficulty of making the guest operating system 

clock keep exact time. But there are several steps you can take to reduce this problem: 

• Where possible, choose a guest operating system that has good timekeeping behavior 

when run in a virtual machine, such as one that uses tickless or VMI timekeeping 

• Configure the guest operating system to work around any known timekeeping issues 

specific to that guest version  

• Use clock synchronization software in the guest   

As mentioned in the section 4.3, Virtual Box Guest Additions ensures that the guest’s  system 

time is better synchronized with the host’s system time. Therefore our experiments are based 

on the fact that with the Guest Additions installed inside the virtual machine, most of the 

inaccuracies in time measuring are reduced. So having in mind all the above, we did a small 

test using two different ways of measuring the execution time for our applications inside our 

VMs: 

(a) time measurement was performed using the time shell command of Linux on the guest 

systems 

(b) time measurement was validated using a different process where on the VM (guest 

system) a simple client program requests the time to be measured by a simple server 

on the native or host system.  
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The differences between the two methods were negligible. Therefore for our experiments 

inside the guest system time measurements were performed using the time shell command of 

Linux on the guest system. 

 

In the case of DaCapo benchmark applications, both outside and inside the VM, time was 

measured using the currentTimeMillis function from within the main class of the application. 

This function is a system call that returns the current time in milliseconds and the dacapo 

developers has embedded inside each application at the beginning of the application‘s 

execution and at the end of the execution. Substracting the two time points you get the 

execution time of the application. 

4.6 Lessons Learned  

 
Before starting the experiments, after choosing the benchmark suites application, we had to 

choose the proper virtual machine tools and the associated operating system for them and 

trying to be in accordance to the state-of-the-art tools. It was not easy to reach to a conclusion 

as several problems have been faced on every step on the way. We passed through several 

attempts, and we want to point out the problems on each one of them, for the benefit of the 

ones interested to do something similar. The problems we faced, appeared to be already 

existing problems for few more researchers in the past, and by a search on the internet, 

solutions and ideas can be provided.  

 

We choose Virtual Box to work with, since many were saying that is one of the most user 

friendly virtualization tool which is free and offers many possibilities. Through our several 

attempts, we started executing the applications using a specific version of the Operating 

System Ubuntu as well of the Virtual Box, and gradually in every new attempt, we were 

upgrading the versions of the OS and Virtual Box used. The reason we were testing several 

versions for the OS and the virtual tool, is because there are some combinations that create 

compatibility problems. More specifically during the preparation of the systems for measuring 
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the execution times for both benchmark suites applications, on both systems, using Ubuntu 

9.04 32-bit, and the Virtual Box v2.1.4, during the installation of the programs needed inside 

the VM, the mouse started behaving very strange and generally seemed not to able to gain 

control of the mouse inside the vm. Most of the times, that problem was leading to a point 

where we could not have a control of the vm as it seemed freezed. Moreover, in the case 

where we could reach up to the point of executing the applications, while trying to execute the 

parallel version of the applications on the multicore system inside the virtual machine, we 

faced another serious problem. Even though the compilation inside the VM was not facing 

any problems, while executing the applications, after very few amount of time, the VM was 

just freezing, hanging without being able to interact with it in any way. The only way to reset 

the system, was to forcedly kill it. This was caused in more than one application, and this is 

evidence that it was not application-wise the problem. 

 

While trying to overcome the freezing, we moved to a 64-bit OS version of Ubuntu 9.10. and 

the Virtual Box version was upgraded as well to v3.1. Giving more memory to the created 

virtual machine, we tried the execution of the parallel PARSEC applications on more than one 

core. Everything was working correct using one core, and as soon as we assigned more than 

one core to the VM, the same freezing problem appeared.  

 

In order to test if the freezing problem was because of the specific virtual machine tool we 

were using, we shift our focus on another virtual machine tool. VMware Server 2, was widely 

used by the community and seemed very promising. After installing it and creating a virtual 

machine, we installed Ubuntu 9.04 64-bit as the guest OS. Everything was working perfectly, 

but there was one huge limitation that was not letting us continue with our research. VMware 

Server does not give you the opportunity to assign more than two cores on the virtual 

machine. As one of our objectives, was to test the scalability of the applications, two cores 

were too few for taking out conclusions, therefore we left out the idea of using VMware. 
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When using the combination of Ubuntu 9.04 64-bit version, and the Virtual Box v3.1, for both 

systems, for DaCapo and PARSEC applications, everything was executed smoothly, with no 

further problems. Those tools were used to perform the experiments for this work. 

 

Moreover, we needed to make sure that the timings were accurate, since measuring the time 

inside virtual environments can include a lot of misleadings. To verify the results we needed 

to measure the time with more than one ways. The first way, included measuring of the 

execution time for Dacapo applications using the function currentTimeMillis that is a system 

call returning the current time in milliseconds. The other way measuring the time included 

using a client-server timing function, were we started the clock outside the VM using the 

server function, and whenever we wanted from inside the VM to measure the time, the client 

function was asking from the server function to give him the measure. After collecting the 

results, we compared them with the previous execution times, and the difference among them 

was negligible. In the case of PARSEC applications, as a first way of measuring the time, we 

used the time shell command of Linux. And as an alternative, we measured the time using the 

same client-server timing function as in the case of DaCapo. The timing differences among 

the two approaches were negligible. 
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Chapter 5 

 
Virtualization for Serial and Parallel-1thread Applications 

 

In our attempt to estimate how big the performance overhead is while executing sequential 

applications using virtualization techniques, we focused on both DaCapo and PARSEC 

applications.  

 

The applications used are: 

(a) the serial version of DaCapo benchmarks 

(b) the parallel version of PARSEC while executing using 1 thread 

 

Even though PARSEC offers a serial version for all applications, instead of working with 

those serial versions, we focused on the parallel versions while executing on one core. The 

reason is simply because we wanted to examine the case of executing applications using 1 

thread. 

 

Execution time is measured inside the Virtual Machine (guest) and compared with the 

execution time on the host system.  

 

5.1 DaCapo 

 
As mentioned before, on this group of experiments we wanted to compare the execution 

overhead of serial applications on single-core and multi-core systems inside and outside the 

virtual machine. After creating the virtual machine on System1 and System2 we allocate one 

processor to the VM. After five warmup iterations for each Dacapo application we collect the 
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sixth iteration’s execution time as the actual execution time for the application. For each 

application an average out of ten executions has been collected inside and outside the VM. 

The normalized ratio between the execution time inside the VM and the execution time 

outside the VM gives the overhead that is presented on the following charts. Fig2(b) and 

Fig3(b) show the average execution time among the ten executions of each application. 

 

DaCapo - VM Overhead - UniCore System 32 bit
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Execution Time (sec) Benchmark 
Guest OS Host OS 

Normalized 
Overhead 

(%) 
antlr 9.607375 8.1765 17.5% 
chart 32.1325 24.58 30.7% 
eclipse 167.2235 140.76 18.8% 
fop 2.843875 3.78725 -24.9% 
jython 79.358375 61.47225 29.1% 
luindex 15.445875 13.564 13.9% 
lusearch 42.87025 34.22675 25.3% 
pmd 50.87875 37.532875 35.6% 
xalan 189.6468 142.3915 33.2% 
bloat 145.77625 124.56975 17.0% 

 

Fig.2. (a) Overhead execution of DaCapo (serial) applications on a single-core system (top)  
(b) Absolute Execution Time (below) 
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DaCapo - VM Overhead - Multicore System 64 bit
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Execution Time (sec) Benchmark 
Guest OS Host OS 

Normalized 
Overhead (%) 

antlr 3.593 33.270125 -89.2% 
chart 12.358125 11.468 7.8% 
eclipse 65.518 60.4455 8.4% 
fop 1.909125 1.7695 7.9% 
jython 34.097625 26.751125 27.5% 
luindex 13.564125 5.948 128.0% 
lusearch 6.507125 4.712875 38.1% 
pmd 16.1295 16.81475 -4.1% 
xalan 24.45963 15.35788 59.3% 
bloat 44.78275 40.746375 9.9% 

 

Fig.3. (a) Overhead execution of DaCapo (serial) applications on a multi-core system (top) 
(b) Absolute Execution Time (below) 

 

When focused on the fop application, as mentioned in [13], among all the other applications, 

this is the one that gives the best performance natively on no matter which JVM is used. In 

our experiments fop application is indeed the fastest application. The fact that on the 32-bit 

system the fop seems to be faster when executing on the VM, is misleading. If we observe the 

absolute value of the executions, we see that native time is 3.78sec and inside the VM is 

2.84sec. By [13], we can see that among the three JVMs they use, through different number of 

iterations, the performance for fop varies without following a pattern e.g after several 

iterations to become faster. Especially on the JVM labelled as A, the performance going from 

the first to the second iteration is better, and from the second to the third iteration, the 

application is slower. This is due to how compilation affects the application on each specific 

iteration. Therefore we will not consider the fact that the application is faster inside the VM. 
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The same approach applies on the antlr when executing on the 64-bit system. In [13], is 

showed that antlr iteration after iteration improves the performance significantly. In our case, 

we believe the execution is so slow on the native environment because of ‘an aggressive 

hotspot on compilation’ as is mentioned on [13] for the case of jython. Maybe during the 

native execution we needed to perform more warmup iterations in order for our measurement 

to have reduced compilation time and increased application time.  

 

Trying to understand how much the execution time is affected from each iteration, we present 

the following chart. The Fig.4. below shows the overhead for each one of the ten execution 

times for all applications. All five warmups on every execution are presented. As the chart 

proves, among each iteration the overhead differs significantly, something that explains partly 

why the antlr behaves differently than the other applications.  

 

 

 

 

 

 

 

 

 

 

Fig.4. Overhead of ten executions during warmup iterations of DaCapo on single-core system 
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Fig.5. Overhead of ten executions during warmup iterations of DaCapo on multi-core system 
 

 

Observing the overheads on the 32-bit system, we see applications like chart, jython, 

luserach, pmd and xalan, having the biggest overhead while executing inside the VM. In [13] 

in a section referring to the code complexity of the DaCapo applications, appears a table with 

the number of methods used by each application and the percentage of those methods that the 

adaptive compiler regards as hot. Based on that table, chart, jython, luserach, pmd and xalan 

have among the largest percentage of hot methods used, in comparison to the rest applications. 

Even though the L1 cash misses for chart, jython, luserach, pmd and xalan are not as much as 

the misses that other applications have, the number of cash misses in combination to the % hot 

methods that are used, put the execution inside the VM to be more expensive than the native 

execution. 

 

When executing on the 64-bit system, we can see the luindex giving the highest overhead in 

comparison to the other applications. This can be given to the fact that luindex uses 940 

methods from which 17.9% are hot, which is the biggest percentage among all  other 

applications.  
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5.2 Parsec (1 thread) 

For no special reason, for the groups of experiments for this section, we chose to work with 

the parallel version of the applications using 1 thread for execution. We wanted to compare 

the execution overhead of parallel applications running with 1 thread execution on top of 

single-core and multi-core systems inside and outside the virtual machine. The one thread was 

going to run using only one core on either systems. For that we compiled the PARSEC 

applications and produced the parallel executable version. After creating the virtual machine 

on System1 and System2 we allocate one processor to the VM. For each PARSEC application 

an average out of ten executions has been collected inside and outside the VM. The 

normalized ratio between the execution time inside the VM and the execution time outside the 

VM gives the percentage of overhead that is presented on the following charts: 

PARSEC (1 thread) - VM Overhead - Unicore System 32 bit
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Execution Time (sec) Benchmark 
Guest OS Host OS 

Normalized 
Overhead (%) 

blackscholes 647.01225 504.3455 28.3 
bodytrack 830.912875 682.01675 21.8 
facesim 1778.487 1442.69675 23.3 
fluidanimate 1435.5258 1178.2559 21.8 
raytrace 1502.9285 1108.8378 35.5 

 

Fig.6. (a) Overhead execution of PARSEC applications (1 thread) on single-core system (top) 
(b) Absolute Execution Time (below) 

 



 

 

40

PARSEC (1 thread) - VM Overhead - Multicore System 64 bit
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Execution Time (sec) Benchmark 
Guest OS Host OS 

Normalized 
Overhead (%) 

blackscholes 1263.54975 1195.43838 5.7 
bodytrack 418.184125 366.99975 13.9 
facesim 1001.7565 926.821625 8.1 
fluidanimate 858.44088 807.74225 6.3 
raytrace 584.21225 531.16575 10.0 

 

Fig.7. (a) Overhead execution of PARSEC applications (1 thread) on multi-core system (top) 
(b) Absolute Execution Time (below) 

 
 

As we can see from Figure 6 and Figure 7 above, in both cases of 32-bit and 64-bit platform, 

the applications have a performance overhead when executing inside the VM. On the 32-bit 

platform the overhead is between 22-36% and on the 64-bit platform the overhead is between 

6-14%. 

 

In [16], there is not enough information about the characteristics of raytrace, therefore 

without profiling, we cannot justify the behaviour of raytrace. As mentioned in [16], there are 

some applications that must be considered unsuitable for evaluating CMP performance. 

Raytrace is one of them. Maybe this is the reason of the 35.5% overhead that the application 

gives on the 32-bit system. 
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5.3 Conclusions  

 
From the experiments we can see that according to the characteristics of each application 

different overhead can be observed. Generally we can say the specific DaCapo application we 

used, were not large in size in order to give stable and clear results on the virtualization 

overhead. What we can see from the charts, is that even in the case of the java programs 

running on a JVM that runs on top of another virtual machine, the overhead given by the 

virtualization layer is acceptable. That makes java programs suitable for execution on a virtual 

machine. 

Concerning PARSEC applications we can see that in both cases of 32-bit and 64-bit platform, 

the applications have a performance overhead when executing inside the VM. On the 32-bit 

platform the overhead is between 22-36% and on the 64-bit platform the overhead is between 

6-14%. The reason why on the 64-bit platform the overheads are smaller, is because on the 

specific system, there was hardware support as well as software support for the virtualization. 

Bodytrack suffers the most when on top of 64-bit platform, in comparison to the other 

applications. Bodytrack show a performance penalty of up to 13%. The high overhead 

observed for bodytrack application is mainly due to the high number of barriers, i.e. lock- and 

barrier-based synchronizations, and the high number of waits of condition variables, in 

contrast to the other applications. 

It is important also to compare the behaviour of DaCapo as representative of an application 

executing on a JVM with the behaviour of PARSEC as a representative of a scientific, 

computationally more intensive application, for VM execution. On the case of DaCapo, the 

layers between the application code and the hardware are much more since the execution 

passes through the JVM and then from another virtual machine, to reach the hardware. 

Therefore the overheads while using two virtual machines are increased. As can be seen from 

the experiments on the 64-bit system, overheads for DaCapo are between 7.8% until 128%, 

whereas overheads on PARSEC are between 5.7% and 13.9%. 
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Chapter 6 

 
Virtualization for Parallel Applications 

 

On this set of experiments we wanted to estimate how large the performance overhead is, 

while executing parallel applications using virtualization techniques on multi-core systems. 

We also wanted a simple solution to test the scalability of the parallel applications on multi-

core systems while executing on a virtual machine. While focusing on the goals above, by 

watching the system monitor and the CPU utilization through different scenarios, we expected 

to identify whether performance isolation is being achieved among the different logical 

domains that are being created using the virtualization tools. Identifying that isolation could 

be achieved, is a proof that is possible to achieve higher resource utilization.  

 

We focused on PARSEC applications and their execution on a 64-bit multi-core platform. 

 

Due to the virtualization features, it is possible to create many different machines with 

different hardware configurations. We took advantage of that feature and we created three 

different machines with different hardware configurations. The first virtual machine had 2 

cores, the second one had 4 cores and the third one had 8 cores assigned to it. After creating a 

VM image, according to the needs that we wanted the VM to have, we assigned to the VM a 

different number of cores for every category of experiment. 

 

Execution time is measured inside the Virtual Machine (guest) and compared with the 

execution time on bare hardware of the systems (host).  
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6.1 PARSEC (1,2,4,8,16 threads) 

 
On this group of experiments we wanted to compare the execution overhead of parallel 

applications with 1, 2, 4, 8 and 16 thread execution on top of multi-core systems inside and 

outside the virtual machine. For that purpose we compiled the PARSEC applications and 

produced the parallel executable version. After creating the virtual machine on System2 we 

allocate either 2, 4 or 8 processors to the VM, leading to the creation of 3 virtual machine 

setups: VM2, VM4 and VM8. For each PARSEC application an average out of ten executions 

has been collected inside and outside the VM. For each virtual machine setup we measure the 

time for different number of threads per time.  

 

For each one of the applications we present three charts: 

(1) one chart with the execution time in sec inside and outside the VM 

(2) one chart with the speedup inside and outside the VM 

(3) one chart with the execution overhead inside the VM 

 

The first result we will be analyzing is the execution time and the speedup trends observed for 

the applications when executed on top of the virtual machine. The execution time appeared on 

the chart, is the average out of ten executions for each application. When referring to speedup, 

we mean the ratio between the execution time of the application when using 1 thread to 

execute and the execution time of the application when using more than one threads to 

execute. For example when talking about speedup that the VM2 setup achieves we can say the 

following:  

- 1 thread speedup: execution time in the VM/execution time in the VM 

- 2 threads speedup: execution time in the VM with 1 thread/execution time in the VM with 

2 threads 
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- 4 threads speedup: execution time in the VM with 1 thread/execution time in the VM with 

4 threads 

- 8 threads speedup: execution time in the VM with 1 thread/execution time in the VM with 

8 threads 

 Results depicted in Figure 8. 
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PARSEC - Facesim

0

200

400

600

800

1000

1200

1thr 2thr 4thr 8thr 16thr

Ex
ec

ut
io

n 
Ti

m
e 

[s
ec

]
Native8

VM2

VM4

VM8

 

PARSEC - Facesim

2.4

1.4

1.7
1.9

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

1thr 2thr 4thr 8thr 16thr

Sp
ee

du
p

Native8

VM2

VM4

VM8

 

PARSEC - Fluidanimate

0

100

200

300

400

500

600

700

800

900

1000

1thr 2thr 4thr 8thr 16thr

Ex
ec

ut
io

n 
Ti

m
e 

[s
ec

]

Native8

VM2

VM4

VM8

 



 

 

46

PARSEC - Fluidanimate
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PARSEC - Raytrace
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Fig.8. PARSEC Execution time and speedup 
 

The results from Figure 8 show the execution time and speedup achieved for native execution 

on the host using 8 cores, for inside the guest execution using 2 cores (VM2), for inside the 

guest execution using 4 cores (VM4), and for inside the guest execution using 8 cores (VM8). 

We can  observe that for the Virtual Machine with 8 cores (VM8), the speedup achieved by 

the applications follows the same trend as the speedup obtained for native execution. While 

for some applications the speedup is lower than the one achieved for native execution, more 

relevant is the fact that the scalability follows exactly the same trend. One exception is for the 

Bodytrack application which speedup is much lower than the one achieved by the native 

execution (see Figure 9-(c)). This is a consequence of the large overhead observed in Figure 

9-(a). Another relevant fact that is observed is that the speedup is limited by the number of 

available cores in the VM. Therefore, the speedup increases until the number of threads is the 

same as the number of cores in the VM. Larger number of threads results in the speedup 

maintaining at that level or decreasing. This is an indication that the VM really offers 

performance isolation. To really verify the performance isolation achieved, multiple 

applications are needed to be executed on the same machine, and see that while the number of 

threads for each application increases, the speedup increases as well, without the one speedup 

for an application affecting the other speedup for another application. 



 

 

48

 

 

PARSEC - Bodytrack

14.3%

29.3%

50.7%

100.9%

120.4%

0.0%

20.0%

40.0%

60.0%

80.0%

100.0%

120.0%

140.0%

1thr 2thr 4thr 8thr 16thr

VM
 E

xe
cu

tio
n 

O
ve

rh
ea

d

VM2 VM4 VM8
 

PARSEC - Bodytrack

0

50

100

150

200

250

300

350

400

450

1thr 2thr 4thr 8thr 16thr

Ex
ec

ut
io

n 
Ti

m
e 

[s
ec

]

Native8

VM2

VM4

VM8

 



 

 

49

PARSEC - Bodytrack

4.6

1.8

2.42.4

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

4.5

5.0

1thr 2thr 4thr 8thr 16thr

Sp
ee

du
p

Native8

VM2

VM4

VM8

 

Fig.9. Bodytrack application: (a) VM execution Overhead  
(b) Execution time and (c) Speedup 

 

The next relevant result regards the virtualization overhead. This overhead is determined as 

the ratio between the execution time of the application when on top of the virtual machine and 

the execution time of the application on the native system (i.e. no virtualization). These results 

are presented in the charts in Figure 10. 

 

PARSEC - Blackscholes

6.5%

8.3%

11.1%

12.6%

14.8%

0.0%

2.0%

4.0%

6.0%

8.0%

10.0%

12.0%

14.0%

16.0%

1thr 2thr 4thr 8thr 16thr

VM
 E

xe
cu

tio
n 

O
ve

rh
ea

d

VM2 VM4 VM8
 



 

 

50

PARSEC - Facesim
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PARSEC - Raytrace
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Fig.10. PARSEC VM Execution Overhead 
 

 

It is possible to observe from Figure 10 and after reading [16], that there are four different 

classes of applications. In the first class we can find applications that are heavy computational 

and that use little data. As the execution of the virtualized code is performed natively on the 

system and that the virtual I/O, which is not used frequently by these applications, these 

applications are expected to result in a small virtualization overhead. One such application is 

BlackScholes which shows only a maximum 15% overhead. The size of the data set is 2MB. 

The second class includes applications that handle large input data sets and as such their 

overhead is slightly larger until 25%. In this class we can fit both Fluidanimate and Raytrace. 

The size of the data set is 128MB. The third class include applications with even larger input 

data sets which result in an even larger overhead of up to 42%. In this class we can place the 

Facesim. This is justified by the fact that Facesim has 33% of the total executed instructions 

for reads and 14% for writes, in contrast to the other applications where the corresponding 

instructions executed for reads and writes is 25% and 7% respectively [16]. The size of the 

data set is 256MB. Finally, in the last class we put applications that suffer a very large 

overhead. In the case of our workload, Bodytrack show a performance penalty of up to 120% 
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(see Figure 9-(a)). The size of the data set is 8MB. Such overhead leads us to believe that 

applications from this class will not be able to execute on top of the virtualization layer. The 

high overhead observed for Bodytrack application is mainly due to the high number of 

barriers, i.e. lock- and barrier-based synchronizations, and the high number of waits of 

condition variables, in contrast to the other applications [16]. 

 

While executing the PARSEC applications on top of the 64-bit platform outside, as well as 

inside, the VM we took some screenshots from the System Monitor, in order to examine how 

the workload changes on the cores of the system. For a random chosen application we took 

two screenshots with a time interval of some minutes from the one to the other. Our aim was 

to examine whether the workload was distributed among all the available cores. As the 

screenshots show, not the same cores are allocated through all the execution time of the 

application. More over is obvious that the VM uses only the number of cores that were 

assigned to it. To our example, the VM was assigned with two cores and the application was 

running using two threads. As can be seen by the system monitor, only two cores are used for 

the execution. The rest of the cores remain unused and free to be used by other ways. That 

exactly is where isolation is being achieved. With the same pattern, if we create many VM on 

the same hardware, and assigning to them a number of cores, then each VM image will only 

be restricted using the num of cores that was assigned to them. With this was better hardware 

utilization is achieved. 
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Fig.11.  PARSEC applications on top of the 64-bit platform inside the VM 
While allocating 2 cores to the VM and application running with 2 threads 

 

6.2 Conclusions  

 
Experiments in this chapter, showed that depending from the I/O intensity the application has, 

this will cause different variations of overhead. Applications having a lot of I/O will suffer 

more from higher overhead while executed inside a VM. Moreover results show that for 

specific situations the speedup achieved by the applications follows the same trend as the 

speedup obtained for native execution. While for some applications the speedup is lower than 

the one achieved for native execution, more relevant is the fact that the scalability follows 

exactly the same trend. We also observed that the speedup is limited by the number of 

available cores in the VM. Therefore, the speedup increases until the number of threads is the 

same as the number of cores in the VM. Larger number of threads results in the speedup 

maintaining at that level or decreasing. Based on that notice, and by looking the system 

monitor and CPU utilization while executions, we can say that the VM really offers 

performance isolation, which gradually leads to better resource utilization.  
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Chapter 7 

 
Conclusions & Future Work 

 

7.1 Conclusions 

 
Virtualization was born more than 30 years ago by IBM in an attempt to logically partition 

mainframe computers into separate virtual machines. A performance penalty needed to be 

paid because of the additional intermediate layers between the hardware and the application. 

When virtualization for PC becomes a real scenario, researchers studied and found that the 

performance penalty of virtualization is not that relevant compared to the benefits obtained. 

With the evolution of multi-core systems, it raises the opportunity of executing parallel 

applications with larger degree of parallelism (HPC) as well as executing more applications 

on the same machine at the same time.  

 

Our work was based on the evaluation of the usage of virtualization for HPC application’s 

execution having as main target the use of virtualization to achieve higher utilization and 

performance isolation for multi-core processors. Using existing virtualization tools, first we 

used Virtual Machines (VM) to measure the performance penalty suffered by different types 

of applications when executing on top of a VM on both single and multi-core systems. After 

that we used VMs to study the scalability of HPC applications on a virtual environment. The 

experiments include execution of applications from the PARSEC and DaCapo benchmark on 

top of VirtualBox, on two different systems: a 32-bit system with one single-core processor 

and a 64-bit system with two quad-core processors.  
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Our experiments showed that by using a simple Virtual Machine, we can study the scalability 

of HPC applications when executing in virtualized environments. The results were very 

promising since the scalability inside the VM seemed not to be influenced by the fact that the 

execution was passing on top of an extra layer, the virtualization layer. Our measurements 

showed that the trend of the speedup of an application while increasing the number of threads 

that the application uses to run, is the same when the application is executed inside a virtual 

machine and when is executed outside of a virtual machine. Furthermore, from the 

experiments we can conclude that as long as we have enough cores on the hardware system, 

even in the case that many virtual machines are created on the same hardware, if we have a 

HPC application running inside each virtual machine, the scalability of the applications will 

not get influenced by the workload of the other virtual machines. The scalability for each 

application is only going to be limited by the number of cores that the machine has been 

assigned to. That means that the HPC community can take advantage of the virtualization 

technology, without having the need to buy big and expensive computing systems, since is 

enough to have only one computing system and many virtual machines created on top of that 

system.  

 

Also using a simple virtual machine we managed to estimate the overhead that the 

virtualization layer adds when executing different types of applications. The results observed 

show that the different characteristics of each application have a considerable impact on the 

penalty suffered by the execution on Virtual Box. In the case of HPC applications, the penalty 

ranges from 10% up to 40%. That is an acceptable penalty to pay, considering all the 

advantages that the virtualization offers on the HPC community. Is very interesting the fact 

that even for complex java applications, that first run on top of a Java Virtual Machine and 

then on top of the Virtual Machine, the penalty overhead is again acceptable despite the fact 

that the execution ‘passes’ from two virtualized layers. That makes the virtualization even 

more acceptable from more application communities.  
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Furthermore, our experiments revealed that a virtual machine instance uses only the resources 

that the user assigns to it. That means that the rest of the resources are free to be used by other 

ways. That leads us to conclude that in the scenario where many virtual machine instances 

exist on the same physical hardware and a number of cores is assigned to each virtual 

machine, each instance is going to be restricted only to the resources that was assigned to. 

That is a great solution on the original question we were trying to answer: how can we take 

advantage of the future multi-core systems in a way that achieves higher hardware utilization? 

Well the experiments showed that usage of virtualization can achieve higher hardware 

utilization on multi-core systems. This is cost and energy efficient for all. 

 

Another question we were trying to answer was how can the users in the future to use the 

computing systems from the moment they are becoming more and more complex? Our study 

showed that using a simple virtual machine, hardware complexity can be hidden by the user, 

since the only thing the user needs to focus on, is on the necessary resources that the 

application will need to be executed. The rest, is being taken care by the virtualization 

technology. So in the future the users do not need to worry about the increased complexity of 

the hardware, since using it is going to be hidden when using virtualized environments. 

 

Trying to get an idea of the overheads observed on virtualized environments for different 

applications, we gathered the overheads from our experiments and put them on a chart: 

 
 
 
 
 
 
 
 
 
 
 
 

Fig.12. Average Overheads for PARSEC and DaCapo applications 
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What we can see from the chart is that the overhead does not go over 30.4%, which can be 

acceptable depending on the demands that the application has. We observe that when the 

virtual machine uses a lot of threads, the overhead from the virtualization layer is bigger. The 

more threads the application uses, the higher the overhead. 

 

7.2 Future Work 

 
For the future a more in depth study could take place in order to profile the code of the VM 

while applications are being executed on it. After finding the pieces of code that the 

virtualization spends more time when executing different kind of applications, we will be able 

to analyze the code and make optimizations up to the possible point that one day the 

virtualization will be if possible, equal effective as the native execution. The optimizations 

can be application-specific or even general. Moreover, profiling of the VM itself could show 

to possible ways on making it more efficient by minimizing as possible the overheads.  A 

more in depth analysis, could give guidelines for the design of a library that could make the 

interaction between guest and host more efficient. Moreover, gained knowledge on how the 

software works, could lead to partial implementation of the VM code on the hardware. 

 

More over, we could examine the interaction among the VMs when having more than one VM 

created on the system and how the performance of the one VM affects another. Preliminary 

work using more that one virtual machine on the same physical hardware, while parallel 

applications are being executed at the same time inside each virtual machine, gives very 

promising results, showing isolation among the different VMs. 

 

As we noticed from the experiments, using a high number of threads for the execution of an 

application, gives more overhead on top of virtualized environments. That can be a big 

disadvantage in the case where an application is highly parallel and needs hundreds of threads 
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to be executed. Based on that remark, another important work could be the comparison 

between a VM and a Hypervisor for virtualization of parallel high-performance computing 

applications. Finding out the advantages of each approach, a combination of the two could be 

implemented in order to achieve even better performance when executing HPC applications 

on virtualized environments. 
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