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Summary 
 

The continuously increasing use of computers in the Internet, as well as the need from new 

applications on quality of service, require efficient ways so the congestion in cases where 

the demand in bandwidth is increased decreases in minimal. For this reason, the quality of 

service has been turned into one of the most challenging sectors in the research of 

computer networks in the last years. The result of this research was the two IP architectures 

for quality of service: the Intserv and the Diffserv. Independently from which architecture   

will be selected to be used, in order to achieve quality of service we have the need to 

control the flow in the network. 

 

The Resource Management in DiffServ (RMD) is a recently proposed QoS framework that 

extends the DiffServ architecture with new principles, necessary to provide resource 

provisioning and admission control. It was developed to satisfy requirements regarding 

support of large amount of real time traffic on costly leased transmission lines. Integrated 

Dynamic Congestion Control (IDCC) is a congestion control scheme used for controlling 

the flow in the network. It offers high utilization of the bandwidth by regulating the rate by 

which the ordinary traffic is send.  

 

This M.Sc. Thesis aim to study and evaluate the performance of IDCC in a Resource 

Management Differentiated Services (RMDS) Environment. The main objective is to 

examine the combined framework reliability and robustness and the possibility that it could 

meet the strict QoS requirements of real time traffic. Some other issues are also examined, 

such as the implementation of the best effort controller and the use of a function that 

estimates the number of flows traversing a link. The simulation scenarios were 

implemented and tested with the use of the ns-2 simulator.   
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Chapter 1  
 

Introduction 
 
 
 

1.1 The need of Quality of Service 

1.2 Congestion Control Mechanisms 

1.3 IDCC in a Resource Management Differentiated Services Environment 

 

 

 

1.1 The need of Quality of Service 
 

The rapid growth of the Internet and the increased demand to the use of the Internet for 

time-sensitive voice and video applications, necessitate the design and utilization of new 

Internet architectures in order to support Quality of Service. For this reason, the quality of 

service has been turned into one of the most challenging sectors in the research of 

computer networks in the last years. The efforts for providing quality of service in the IP 

networks have led mainly to the creation of two architectures, the Integrated Services 

(Intserv) [1] and more recently the Differentiated Services (Diffserv) [2].  

 

Because of the large diversity that the existing Internet applications present (that vary from 

very simply as the e-mail and FTP up to very demanding real-time, as video on demand, 

multimedia conferencing and IP telephony), as well as the creation of wireless networks 

have turned the above architectures insufficient in order to ensure the demanded QoS.  

Thus a new effort has begun in order to enrich those architectures with techniques that aim 

to provide additional and very strict quality of service. One of the categories that the 

researches spend a lot of effort is congestion control techniques, which try to detect the 

congestion in the network and take measures in order to reduce the rate by which the 

sources send their traffic. 
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1.2 Congestion Control Mechanisms 
 

Congestion control mechanisms aim to the management of the routers queues. Depending 

on the mechanism one of several methods for detecting congestion may be used and send 

to the source congestion feedback in order to reduce their rate of sending packets through 

the web.  

 

The exciting solutions [3, 4], which are based on an end-to-end approach, are becoming 

insufficient. In this approach sources infer congestion only from lost packets. When such 

an event occurs sources are decreasing their rate of sending packets. These solutions were 

sufficient at the time when the internet was used only for best effort traffic and the 

applications were not sensitive in delay or even losses of packets. Although some fixes [5, 

6, 7] were proposed for those techniques (like slow start and congestion avoidance), they 

do not scale up easily and cannot provide fairness among the different sources. 

 

Because of the reasons mentioned above, Active Queue Management (AQM) [8] was 

proposed. AQM routers can detect congestion before the queue overflows. The method 

used initially was Random Early Discard [9]. Based on the average queue size at the 

arriving time of a packet, a probability of dropping that packet is produced on which the 

choice of its drop depends. Although it was demonstrating better performance, many 

problems were raised because of its ad-hoc design and the difficulty in tuning its 

parameters. After that, AQM adopted a new way that allows the congestion feedback to be 

different than the drop of a packet. Therefore, routers are able to use the Congestion 

Experienced (CE) codepoint in a packet header as an indication of congestion. Explicit 

Congestion Notification (ECN) [10, 11] was proposed in order to provide TCP an 

alternative to packet drops mechanism for detecting incipient congestion in the network. 

The ECN scheme requires both end-to-end and network support. With this method a router 

can mark a packet either by dropping it or by setting a bit if the transport protocol is 

capable of reacting to ECN. The use of ECN for notification of congestion to the end-nodes 

generally prevents unnecessary packet drops that leads to a reduce impact of loss on 

latency sensitive flows. It also reduces the excessive delays caused by unnecessary drops. 

Typical representatives of AQM are RED [12] and its variants (n-RED, adaptive RED [12], 

 x



RIO [13], BLUE [14, 15] and three color marking) and Fuzzy Explicit Marking (FEM) 

[16]. 

 

Recent studies [17] have investigated the impact of the above solutions and they have 

demonstrated that they are robust in a variety of simulations. However, these schemes are 

developed using intuition and simple ad-hoc non-linear control designs (e.g. slow start, 

congestion avoidance, binary feedback, additive increase and multiplicative decrease). For 

these reasons the analysis of their closed loop behavior is difficult. Even worse, the 

interaction of additional non-linear feedback loops can produce unexpected and erratic 

behavior [18]. Very little is known why these methods work and very little explanation can 

be given why they fail. The last few years the increase on demand of QoS has clearly 

shown the poor performance of the controlled TCP/IP internet. Thus, more effective 

congestion control mechanisms are needed in order to prevent serious economic losses, 

even a possible ‘meltdown’ of the internet. 

 

1.3 IDCC in a Resource Management Differentiated Services Environment 
 

The Integrated Dynamic Congestion Control (IDCC) mechanism [19, 20, 21] can be 

classified as an AQM mechanism that uses queue length information for congestion 

feedback. A differentiated services network is assumed and the formulation of the control 

strategy is based in the same spirit as the IP-DiffServ. There are three types of services: 

Premium Service, Ordinary Service and Best Effort Service, each class operating at one 

output port of the router. Each output port has a number of physical or logical queues: one 

for each traffic class and an IDCC scheme is designed for each output port.  

 

We assume some sources that transmit packets to specific destinations. The packets 

traverse a number of routers before they reach the destination. Each one of the sources can 

be classified in one of the three services: Premium, Ordinary or Best Effort.  

 

Premium traffic requires strict guarantees on delivery and cannot tolerate losses or even 

delays. It does not allow regulation of its transmitted rate and any regulation of this type 

has to be achieved at the connection phase. Once admitted into the network, the network 

has to guarantee the QoS. This is the task of the Premium Traffic Controller. On the other 
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hand, Ordinary traffic allows the network to regulate its rate. It can tolerate delays but it 

cannot tolerate losses of packets. This work is performed by the Ordinary Traffic 

Controller. At last the Best Effort service offers no guarantees on either losses or delay and 

it uses any instantaneous left over capacity.  

 

Resource Management in DiffServ (RMD) framework [22, 23, 24, 25, 26, 27] extends the 

Diffserv architecture with dynamic admission control and resource reservation concepts. It 

is a very simple framework with very good scaling properties and thus it has very low cost 

of implementation. In a Resource Management Differential Services Environment 

(RMDSE) we reserve resources (bandwidth) only in the case of Premium traffic, based on 

the fact that Premium Service sends packets in a constant bit rate so the amount of 

resources needed can be calculated. In this way we ensure the guarantees of QoS that the 

Premium traffic demands. On the other hand we let the IDCC to formulate the rate of the 

Ordinary traffic in order to achieve high utilization of the links bandwidth without drops of 

packets. In the case of Best Effort traffic we use CBR sources that use any instantaneous 

bandwidth left over from the two other services.   

 

This M.Sc. Thesis aims to study and evaluate the performance of IDCC in a Resource 

Management Differentiated Services (RMDS) Environment. The main objective is to 

examine the combined framework reliability and robustness and the possibility that it could 

meet the strict QoS requirements of real time traffic. Some other issues are also examined, 

such as the implementation of the best effort controller and the use of a function that 

estimates the number of flows traversing a link. The simulation scenarios were 

implemented and tested with the use of the ns-2 simulator.   
 

The rest of it is organized as follows. In Chapter 2 we overview the Differentiated Services, 

as well as the RMD framework. In Chapter 3 we give the IDCC congestion control 

algorithm and how this algorithm can be used in an RMDS Environment. In Chapter 4 we 

study and analyze the performance of that scheme in various scenarios using the ns-2 

simulator. Finally in Chapter 5 we present the conclusions that evolve from the previous 

chapter and some suggestions are introduced for future work. 
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Chapter 2 
 

Diffserv, and RMD frameworks 
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2.1 Introduction 

2.2 Differentiated Services framework 

2.3 RMD framework 

2.3.1 Per Domain Reservation (PDR) protocol 

2.3.2 Per Hop Reservation (PHR) protocol 

 

 

 

2.1 Introduction 
 

The continuously increasing use of computers in the Internet, as well as the need from new 

applications on quality of service, require efficient ways so the congestion in cases where 

the demand in bandwidth is increased decreases in minimal. For this reason, the quality of 

service has been turned into one of the most challenging sectors in the research of 

computer networks in the last years. The first result of this research was the Integrated 

Services architecture (Intserv) [1]. Since IntServ failed to be adopted for widespread use 

because of its scalability problems, IETF (Internet Engineering Task Force) proposed a 

more evolutionary approach that did not require significant changes to the Internet 

infrastructure and provided differentiation of services (DiffServ) [2]. The rest of the 

chapter is organized as follows. In chapter 2.2 you can find a short description of 

Differentiated Services architecture. In chapter 2.3 we give the description of Resource 

Management in DiffServ (RMD), an admission control scheme that extends DiffServ with 

new principles necessary to provide resource provisioning and admission control. 

 

 

2.2 Differentiated Services framework 
 

The DiffServ architecture is based on reservation-less traffic engineering. It classifies 

packets into a number of service types and uses priority mechanisms in order to provide 

QoS to the traffic. No explicit resource reservation or admission control is employed, 
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although network nodes do have to use intelligent queuing mechanisms to differantiate 

traffic. 

 

The DiffServ working group [28] has defined two broad aggregate behaviour groups: the 

Expedited Forwarding (EF) Per-Hop Behaviour (PHB) [29] and the Assured Forwarding 

(AF) PHB [30].  

 

The EF-PHB can be used to build a low loss, low latency, low jitter, assured bandwidth 

end-to-end service. This type of service provides some minimum quality of service. In 

order to ensure that every packet marked with EF receives this service, EF requires from 

every router to allocate enough forwarding resources so that the rate of incoming EF 

packets is always less than or equal to the rate at which the router can forward them. This 

can be done through a Service Level Agreement (SLA) during the connection setup. In 

order to preserve this property on an end-to-end basis, EF requires traffic shaping and 

reshaping in the network. Although there is no specific method set for this, it will most 

probably be a leaky- bucket buffering algorithm.  

 

The AF-PHB group provides delivery of IP packets in four independently forwarded AF 

classes. Within each AF class two or three drop preference levels are used to differentiate 

flows. The idea behind AF is to referentially drop best-effort packets and non-contract 

conforming packets when there is congestion. By limiting the amount of AF traffic in the 

network and by managing the best-effort traffic appropriately, routers can ensure low loss 

behavior to packets marked with the EF PHB. 
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Figure 2.1 An example of the DiffServ Architecture 

 

To differentiate aggregated traffic classes, DiffServ uses the ToS (type of service) byte in 

the IP header, which is now renamed as “DS (differentiated services) field” [31]. Figure 

2.1 shows an example of the basic DiffServ architecture approach. Note that the priorities 

are set at the edges of the network, which reduces the complexity and makes the proposed 

architecture scalable. However, no measures are taken to assure that the priorities would 

actually mean something when the packet enters the Internet (leaves the edge router). 

 

2.3 RMD framework 
 

RMD [22, 23, 24, 25, 26, 27] is a QoS framework that is based on standardized Diffserv 

principles for traffic differentiation. For the above reason it is a single domain, edge-to-

edge resource management scheme. RMD extends the Diffserv principles with new ones 

necessary to provide dynamic resource management and admission control in Diffserv 

domains. It is a very simple protocol with very good scaling properties. This framework 

was proposed in order to meet the strict requirements imposed by IP-based wireless 
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networks. Even though it is optimized for networks with fast and highly dynamic resource 

 

Th

less, RMD should be able to associate each reservation to 

each flow and should be able to provide certain QoS guarantees for each 

 a measurement – based 

lgorithm that uses the requested and the available resources as input, in order to update the 

ed 

multaneously. The PHR is a newly defined protocol, while the PDR can also be one of 

the existing protocols. Figure 2.2 illustrates the RMD and the PDR and PHR protocols.  

 

reservation schemes, it can be applied in any type of DiffServ networks. 

e development of RMD was initially based on two main design goals.  

• RMD should be as stateless as possible.  

• Even though state

individual flow.  

 

In order to meet these two goals and achieve the desired scalability, the services are offered 

on an aggregated basis rather than per flow. Per flow state is forced as much as possible to 

the edges of the network. It is assumed that some nodes are stateful and will support “per-

flow states”. These nodes are called “edge nodes”. Also we assumed that the rest of the 

nodes (called interior nodes) would have a simpler execution. This is achieved by using 

only one aggregated reservation state per traffic class. The edges will generate reservation 

requests for each flow, similar to RSVP [32]. In order to achieve the desired simplicity in 

interior nodes, a measurement-based approach on the number of the requested resources 

per traffic class is applied. In practice, RMD framework introduces

a

aggregated reservation state per traffic class in the interior nodes.  

 

In a Diffserv domain with RMD in place, different PDR and PHR protocols can be us

si
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Figure 2.2 RMD Framework 

 

2.3.1 Per Domain Reservation (PDR) protocol 
 

PDR is implemented only at the edge nodes of the Differentiated Services domain and it is 

responsible for the resource management in the entire domain. It can be a newly defined 

rotocol, or an existing one such as RSVP [32], RSVP aggregation [33] and Boomerang 

pending on the external reservation request, can be of different 

rmats. For example, a flow specification ID can be a combination of source IP address, 

p

[34]. 

 

This protocol is responsible for the interoperation with external resource reservation 

protocols and PHR protocol. Thus it can be seen as a link between the external resource 

reservation scheme and the PHR. The linkage is done at the edge nodes by associating the 

external reservation request flow identifier (ID) with the internal PHR resource reservation 

request. This flow ID, de

fo

destination IP address and the DSCP field. 

 

2.3.2 Per Hop Reservation (PHR) protocol 
 

PHR is implemented at the interior nodes of the Differentiated Services domain and it is 

responsible for the regulation of the resources on a per hop basis. It extends the DiffServ 
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Per Hop Behavior (PHB) with dynamic resource management and its main role is to 

provide service differentiation. It is used to perform a per hop reservation per PHB, so it is 

availability of the 

resources is checked by means of measurements before any “QoS requests” are 

admitted. The measurements are done on the average real-time traffic (user) data 

load. The main advantage of this PHR group in comparison with the Reservation-

based PHR group is a better efficiency of resource utilization and no need for state 

maintenance. The only state information maintained for the measurement based 

easured user traffic load associated to the PHB and the 

owable traffic load per PHB. For further elaboration on the use of 

MBAC in IP-based RANs see [35]. In general a PHR protocol has a set of functions 

associated (see [36]) and same as with the PDR it depends on the type of the 

implemented or all of it. 

Currently there is only one MBAC PHR protocol called RIMA. 

used on a per hop basis.  

 

Two groups of PHR protocols are defined for the RMD framework: 

• Reservation based PHR group. This type of protocols enables dynamic resource 

reservation per PHB in each node in the communication path edge-to-edge. The 

PHR aware nodes maintain one reservation state per PHB by using a combination 

of the soft state and the explicit release principles. The reservation request is 

signaled in terms of resource units (most commonly bandwidth) and a threshold of 

maximum available resources will be set for each PHB. Currently there is only one 

reservation-based PHR protocol the Resource Management in DiffServ On Demand 

(RODA) [37]. 

• Measurement-based Admission Control (MBAC) PHR group. This type of protocols 

signals the availability of resources in the communication path edge-to-edge 

without maintaining any reservation state in the nodes. The 

PHR is related to the m

maximum all

network where RMD is applied whether only a subset is 
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Chapter 3 
 

Integrated Dynamic Congestion Control framework 

 

IDCC framework 

). The analysis of their closed loop behavior is difficult. 

trolled TCP/IP internet. 

 

3.1 Introduction 

3.2 

3.2.1 Congestion Control Strategy 

3.2.1.1 Premium Traffic Control Strategy 

3.2.1.2 Ordinary Traffic Control Strategy 

3.2.1.3 Best Effort Control Strategy 

3.3 IDCC in a Resource Management Differentiated Services Environment 

 

 

 

3.1 Introduction 
 

The currently congestion control schemes are developed using intuition and simple ad-hoc 

non-linear control designs (e.g. slow start, congestion avoidance, binary feedback, additive 

increase and multiplicative decrease

Even worse, the interaction of additional non-linear feedback loops can produce 

unexpected and erratic behavior [38]. Very little is known why these methods work and 

very little explanation can be given why they fail. The last few years the increase on 

demand of QoS has clearly shown the poor performance of the con

After the creation of the Differentiated Services new admission control mechanisms are 

being developed in order to provide the service differentiation in a router. One of them is 

Integrated Dynamic Congestion Control.  

 

Following the spirit adopted by the IETF DiffServ working group for the Internet [28] we 

have the definition of classes of aggregated behavior (see Chapter 2.2). These defined 

classes used in this framework are: 

 xx



• Premium Traffic Service: This type of service is the one used for low loss, low 

latency, low jitter thus indirectly provides some minimum quality of service. It may 

ture and it is designed for applications 

e of service has no QoS expectations and uses any 

instantaneous left over capacity from both Premium and Ordinary Traffic Services. 

 

.2 IDCC framework  

be used both in TCP/IP and ATM environments. In this thesis we assume 

n IP DiffServ Environment that uses Reservation Resource Management. It operates 

cally for the Premium Traffic and it sends feedback to the sources in order to regulate 

their rate of sending Ordinary Traffic. 

 

3.2.1 Congestion Control Strategies 
 

As a reference model a K-input K-output port, output buffer is assumed (Figure 3.1). Each 

one of the services classes (Premium Service, Ordinary Service and Best Effort Service) is 

operating at one output port of the router. Each output port has a number of physical or 

logical queues: one for each traffic class and an IDCC scheme is designed for each output 

port (Figure 3.2). 

 

 

belong to the EF-PHB in a DiffServ architec

with strict delay and loss requirements on per packet basis. 

• Ordinary Traffic Service: It may belong to the first class of the AF-PHB in a 

DiffServ architecture. It is intended for applications that can afford delays in the 

network and can allow their rate to be controlled by the network. It uses any left 

over capacity from the Premium Traffic. 

• Best Effort Traffic Service: It may belong to the last class of the AF-PHB in a 

DiffServ architecture. This typ

3
 

Integrated Dynamic Congestion Control [19, 20, 21] is a scheme used for controlling traffic 

using information of the status of each queue in the network. It has been developed using 

non-linear control theory. Its methodology is general and independent from the technology 

used. Thus, it can 

a

lo
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Figure 3.1 Generic output buffered K input-output router 

 

 

Figure 3.2 Implementation of control strategy at each router output port 

efore they reach the destination. Each one of the sources can 

be classified in one of the three services: Premium, Ordinary or Best Effort. Premium 

affic requires strict guarantees on delivery and cannot tolerate losses or even delays. It 

does not allow regulation of its transmitted rate and any regulation of this type has to be 

achieved at the connection phase. Once admitted into the network, the network has to 

 

We assume that some sources transmit packets to specific destinations. The packets 

traverse a number of routers b

tr
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guarantee the Q the other hand, 

Ordinary traffic allows the network to regulate its rate. It can tolerate delays but it cannot 

tolerate losses of packets. This responsibility is assigned to the Ordinary Traffic Controller. 

algorithms de r the ode

odel has been verified by a number of researchers and it is 

f the form shown below: 

oS. This is the task of the Premium Traffic Controller. On 

At last the Best Effort service offers no guarantees on either losses or delay and it uses any 

instantaneous left over capacity from the previous two classes.  

 

The veloped fo controllers are based on a non-linear dynamic m l of 

the behaviour of a queue. The m

o

 

( )( ) ( ) ( )
1 ( )

x tx t C t t
x t

λ= − +
+

& , (0) ox x=  

 

where x(t) is the state of the queue, given by the ensemble average of the number of cells 

N(t) in the system (i.e. queue + server) at time t;  λ(t)  is the rate packets arrive at the queue, 

and C(t) is the capacity of queue server. Note that this equation is valid for 0 ( ) buffer sizex t x≤ ≤  

and 0 ( )

Equation 3.1 Fluid Flow Equation for an M/M/1 queue 

serverC t C≤ ≤  where buffer sizex  is the maximum possible queue size and serverC the 

maximum possible server rate. 

 use  control the le

 close to a ref

 

3.1.1.1 Premium Traffic Control Strategy 

 

In order to guarantee the expected QoS the approach d is to ngth of the 

Premium Traffic queue to be always erence value ( ref
px ) chosen by the network 

administrator. The capacity of the Premium traffic is dynamically allocated up to a given 

maximum (Cmax), that can be the physical server limit or a predefined given maximum. In 

 Premium Traffic is always given resources up to the allocated maximum in 

order to ensure the provisioning of Premium Traffic Service with known bounds. If the use 

of the maximum capacity is not necessary in order to maintain the desired QoS, it offers the 

apacity to the Ordinary Traffic Service.  

 

this way the

excess c
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The control objective is to choose the capacity Cp(t) to be allocated to the Premium Traffic 

under the constraint that the incoming traffic rate ( )p tλ  is   unknown but bounded by pk
)

 so 

that the averaged buffer size ( )px t  is as e e desired value  clos to th ref
px  as possible. In 

atical terms we need to cho se Cp(t) soo  that ( )x t →0 ( ( ) ( )mathem ref
p p px t x t= − x

constraints that 

) under the 

( )p seC t C≤ ( )rver  and p p servert k C≤ <
)

. Basλ ed on the fluid w equatio 1, 

rol ideas: 
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here [ ]Pr ⋅w  is a projection operator defined as: 
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where pk
)

is a constant indicating the m co

Prem  Traffic (e.g. through a connection admission policy), and 

aximum rate that could be allocated to in ming 

p , and 0ium 0α > pδ > , are 

design constants that affect the convergence rate and performance. The analysis of the 

The Ordinary Traffic Service Controller regulates the flow of Ordinary Traffic into the 

network, by monitoring the length of the Ordinary Traffic queue and the available capacity. 

stability of the above control strategy can be found in [19, 39]. 

 

3.1.1.2 Ordinary Traffic Control Strategy 
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The length of the Ordinary Traffic queue is compared with the reference value and using a 

non-linear control strategy it informs the sources of the maximum allowed rate they can 

transmit over the next control interval. This algorithm takes into account the leftover 

capacity ( ) max 0, ( )r server pC t C C t⎡ ⎤= −⎣ ⎦ , uses the error between the queue length ( )rx t  of the 

Ordinary Traffic queue and the reference queue length ( )ref
rx t as the feedback information 

( ( ) ( ) ref
r r rx t x t x= − ), and calculates the common rate ( )rd tλ  to be allocated to the Ordinary 

Traffic users once every control interval Ts. Based on the fluid flow equation 3.1 and 

feedback linearization the controlled traffic input rate is 

 

( )r
rd

x t
λ α( ) max 0, min ( ), ( ) ( )

1 ( )r r r r
r

t C t C t x t
x t

⎡ ⎤⎧ ⎫
= −⎢ ⎥⎨ ⎬

+⎢ ⎥⎩ ⎭⎣ ⎦
 

 

where 0rα >  is a design constant. Once the common rate is calculated it is sent to all 

. The 

troduction of such a field (basically the extension of ECN from 1 bit of information to 

several bits) has already been brought to the attention of the research community. The 

 to exceed 

on rate received. Note that any excess source demand (above 

ackets from both the Premium and Ordinary Traffic Services. Details appear in [39]. 

upstream sources. The way the latter is done is critical, as feedback delays and different 

feedback implementation schemes can degrade the system performance considerably and 

may lead to poor stability margin. In an IP network it is assumed that a new field has been 

introduced in the TCP header, which enables explicit transfer of feedback information

in

source does not allow its transmission rate over the next control interval Ts ms

the allowed calculated comm

calculated common rate) is queued at the source queues, rather than be allowed to enter the 

network, and thus lead to congestion. 

 

3.1.1.3 Best Effort Traffic Control Strategy 
 
The Best Effort traffic controller operates on an instantaneous (packet or cell) time scale. It 

utilizes any instantaneous left over capacity to transmit a packet from the Best Effort 

buffer. This increases the network utilization during periods of insufficient supply of 

p
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3.3 IDCC in a Resource Management Differentiated Services Environment 
 

As seen from the previous chapter, IDCC satisfies Quality of Service (QoS) requirements 

through high utilization of the available resources and congestion control, by regulating the 

rate by which the Ordinary packets are being sent. The major problem of IDCC when it is 

sed in a Differentiated Services Environment without Resource Reservation is its 

t 

ase the PHR protocol is activated in order to request admission. In the latter, the packet is 

forwarded to IDCC Premium queue, which is responsible for forwarding it to the next node 

with bounded delay and without being dropped. In the case of an Ordinary packet, the 

packet is forwarded to IDCC Ordinary queue. Then IDCC calculates the rate by which the 

source must send ordinary data. When that happens, the PHR protocol header is updated 

with the new rate and at the proper time (according to the ordinary class rate) the packet is 

forwarded to the next node. If the packet belongs to the Best Effort class, it will be 

forwarded to best effort queue and if there is any instantaneous available bandwidth IDCC 

forwards it to the next node. The packet finally reaches the egress node. In the “QoS 

Request” case, the egress node is responsible for informing ingress node about the result of 

e reservation and the PDR protocol carry on according to that report. Otherwise, the 

u

incapability to cope when the aggregated Premium traffic rate exceeds the link capacity 

[40]. In this thesis we will analyze the performance of this congestion control scheme when 

it is used in a Resource Management Differentiated Services (RMDS) Environment. In this 

section the way that the cooperation of the RMD and IDCC can be established is presented.   

 

In RMD before a source (independently in which service class it belongs) starts sending 

traffic into the network, admission control and resource reservation is needed. In an RMDS 

Environment resources are reserved (most commonly bandwidth) only in the case of 

Premium traffic, based on the fact that Premium Service sends packets in constant bit rate 

and the amount of resources needed can be calculated. In this way we ensure the guarantees 

of QoS that the Premium traffic demands. In order packets to traverse each RMD domain 

PHR protocol header is used.  

 

On an arrival of a packet to an ingress node that is classified to the one of the three classes, 

proposed by IDCC: Premium, Ordinary or Best Effort. If the packet is classified as 

Premium, it must be checked whether it is a “QoS Request” or a data packet. In the firs

c

th
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packet is forwarded out of the DiffServ domain and follows the path towards the 

destination node. Figure 3.3 shows how the IDCC can be used in an RMDS environment. 
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Figure 3.3 IDCC in an RMDS environment 
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Performance Evaluation 
 
 

4.1 Introduction 

4.2  Simulation Scenarios 

4.2.1 Scenario 1 

4.2.3 Scenario 3 

 [41] simulator (Version 2.1b9a). Several scripts were written (see Appendix A) in order 

 under 

ach one is trying to capture the QoS guarantees offered 

4.2.2 Scenario 2 

 

 

 

4.1 Introduction 
 

In this section we study the performance of IDCC in an RMDS environment using 

simulation scenarios. These scenarios were implemented and run in a recent version of NS-

2

to transform the raw data produced by the simulator for the creation of the graphs 

presented in this chapter.  

 

4.2 Simulation Scenarios 
 

Three simulation scenarios are presented, showing the behaviour of IDCC scheme

different network conditions. E

mainly to the two most important Class Services (Premium and Ordinary), such as packet 

loss, end-to-end delay and jitter, while studying the overall performance in the network 

obtaining throughput, rate and utilization measurements. Therefore, each scenario is 

divided in sub scenarios, each one modifying different scheme parameters in order to 

observe how do they affect the performance of it.   

 

IDCC sources requesting QoS guarantees (bandwidth) are used for the Premium traffic, 

whilst Ordinary traffic is generated by saturated IDCC sources. That is, the ordinary 

sources have always the requested amount of data to send into the network, according to 
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the feedback sent by the scheme. CBR traffic is used for the needs of the Best Effort 

traffic. In all the scenarios we assume an infinite buffer for the Best Effort traffic. For the 

Premium and Ordinary traffic the buffer size varies between 200 and 1000 packets.  

are gradually starting and 

opping and the maximum number of flows is estimated. Scenario 3 is more complicated 

lass Service, such as packet losses, end-to-end delay and jitter 

This network topology is separated in three sub topologies. The first one has 10 sources, 

from which the first one is a premium source requesting QoS (1 Mbps), whilst the rest of 

them are saturated IDCC ordinary sources. All the link delays in the topology are 1ms. 

Different buffer sizes are used in order to observe the response of the scheme under 

relatively small and large buffers. The selected buffer sizes were 200 and 1000 packets for 

both premium and ordinary class services. In the case of the 200 packets buffer size the 

premium target buffer was set to 30 packets and for ordinary was set to 150, whilst in the 

 

Scenario 1 is used in order to examine the influence of the buffer size (and the target buffer 

sizes) as well as the effect of stops and restarts of some sources in the overall performance 

of the scheme. Also, under investigation is the respond of the scheme using an estimation 

of the maximum number of flows traversing the link, for different number of flows. 

Furthermore, it evaluates the QoS guarantees offered to the Premium Class Service, such 

as packet losses, end-to-end delay and jitter. Scenario 2 is used in order to see the response 

of the queue (using different buffer sizes) when the sources 

st

than the previous ones and it is mainly used in order to study the performance of the 

scheme under different end-to-end link delays as well as the performance of each 

individual source when the distance between the sources and the first common link varies 

are under investigation. 

4.2.1 Scenario 1 
 

Scenario 1 is used in order to examine the influence of the buffer size (and the target buffer 

sizes) as well as the effect of stops and restarts of some sources in the overall performance 

of the scheme. Also, under investigation is the respond of the scheme under the estimation 

of the maximum number of flows traversing the link, for different number of flows. Three 

main estimation cases were selected: the correct estimation, 50% overestimation and 50% 

underestimation. Furthermore, it evaluates the QoS guarantees offered to the Premium 

C
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case of 1000 buffer size measurements have been made for two different settings. The first 

one uses 50 and 500 packets target buffer sizes for premium and ordinary services 

respectively and the second uses the same parameters as the 200 buffer size. The second 

and third topologies have the same environment as the one described above with the only 

difference to be the number of sources that have been set to 20 and 50 nodes respectively.   

 

 

 

Figure 4.1 Network Topology Scheme for Scenario 

 

 

The first case to study is the case where the buffer sizes were set to 1000 packets and the 

preferred sizes of premium and ordinary services are 50 and 500 packets respectively. 

Independently of the number of the sources the throughput (figure 4.2) of the 

underestimation in the number of flows is higher than the correct estimation which is 

higher than the under estimation, but the utilization of the link remains in very high levels 

 xxx



in all the cases. In the case of 50 sources we examined the 100% overestimation in the 

number of ordinary sources, which has the lower utilization. The last graph of figure 4.2 

ompares the utilization of the link achieved by the different number of sources. 50 sources 

ic since the bandwidth allocated for the 

remium traffic is fixed (1Mbps). In the underestimating case the bandwidth is supposed to 

is achieved in all the cases. That is 

robably due to the fact that one of the parameters that the ordinary controller uses in order 

ons could not be established 

c

have the higher utilization, then the 10 sources and smaller the 20 sources but again the 

difference is very small. The above observation is very reasonable if we take in account the 

way that IDCC works. That is, it calculates the bandwidth remaining from the premium 

service and it divides it to the number of sources. So the less the number of sources in the 

topology the higher the rate of packets they send in order to utilize the link (figure 4.5).  

 

The losses (figure 4.3) of the underestimate case are always more than the other cases that 

are very close. These results are also expected. All the estimations have one thing in 

common: the bandwidth left for the ordinary traff

p

be shared among fewer nodes than really exists, so the feedback is always overestimated 

and the sources send more packets, whilst in the overestimation case it is supposed to be 

shared among more nodes and the sources send fewer packets through the network. Also 

we must notice the small amount of time that the drops are happening that is a few seconds 

until the rate of the ordinary sources is stabilized. 

 

In figure 4.4 we can see that even though we have wrong estimation on the maximum 

number of flows, the target ordinary buffer size 

p

to calculate the rate of the queue is the preferred target size of the buffer. So in the 

underestimation case the controller tries to slow down the rate because the maximum 

buffer size has been reached, whilst in the overestimation case it tries to send packets more 

rapidly in order to achieve the preferred buffer size. The only difference on the estimation 

is the time that the queue reaches the target length.  

 

The ordinary traffic rate measurements are shown in figure 4.5. The first observation is that 

the different estimations do not converge to the same final state (the underestimation case 

has always higher rates). That is because at the first few seconds of the simulation and in 

the case of the underestimation scenarios we can detect many drops. Among those drops 

were also some requests for connection that is some connecti
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and the final number of flows was smaller. As explained before the smaller the number of 

e by that rate. In the scenario we had only one 

remium source sending 1Mbps and that is the reason for that delay. So we increased the 

umber of premium sources and the end-to-end delay results for the cases of 10 and 30 

remium sources are presented in the second graph. The more the premium traffic is send 

 the network (as long as they required capacity does not overcome the router capacity) 

e less the packet delay. If the traffic is less, fewer packets arrive at the buffers and the 

aller the rate they depart from the it.  

flows the higher the rate they send. Also a lot of oscillations happen in the first seconds of 

the simulations. This is due to the fact that only the maximum number of flows is known to 

the scheme and so it does need some time to converge. If the number of flows could be 

estimated during the simulation then these oscillations would be smaller and the losses 

should be less (the buffer would overflow for even less time). 

 

The next measurements were done in order to analyse the QoS offered to the premium 

class service. From the theory in chapter one should expect that since we have resource 

reservation and admission control in the case of the premium traffic no premium packets 

should be dropped by the scheme. That is true and in none of the following scenarios there 

was a premium packet loss. The results of the end-to-end delay are shown in figure 4.6. In 

the first graph of that figure the end-to-end delay for 1 premium source is measured. Under 

the different estimations the end to end delay is exactly the same. That is because the 

propagation delay of the network is the same for all the estimations while the queuing 

delay is not affected by the rate that the ordinary packets are send into the network. The 

mean delay is 608.09 ms and the jitter is 3.85ms. The delay is very high (0.6 seconds) and 

premium traffic can not tolerate such delays. Of course that was again a predictable 

situation. The ordinary controller calculated the capacity needed for the premium traffic 

and sends packets towards the next nod

p

n

p
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th
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Throughput 10 sources 

 
Throughput 20 sources 

 

 
Throughput 50 sources 

 

 
Combination of correct estimations 

 

Figure 4.2 Throughput. Buffer size = 1000 
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Losses 10 sources 

 
Losses 20 sources 

 

 
Losses 50 sources 

 

 
Combination of correct estimations 

 

Figure 4.3 Losses. Buffer size = 1000 
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Ordinary Queue Size 10 sources 

 
Ordinary Queue Size 50 sources 

 

 
Combination of correct estimations 

Figure 4.4 Ordinary Queue Size. Buffer size = 1000 
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Rate 10 sources 

 

 
Rate 20 sources 

 

 
Rate 50 sources 

 

 
Combination of correct estimations 

Figure 4.5 Rate of Ordinary Traffic. Buffer size = 1000 
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End to End delay in the case of 49 ordinary sources and 1 premium source 

 

 
End to End delay for 1, 10 and 30 premium sources 

Figure 4.6 End to End Delay for the Premium Traffic. Buffer size = 1000 
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Next we will examine the case of which the buffer size is 200 packets and compare it with 

the previous one. The simulation time in this case is 150 seconds instead of 100 seconds, 

because time is given in order to attain the queue stabilization. Under a quick observation 

of the curves of the graphs produced, someone could state that the overall behaviour is the 

same as the previous. But with a closer look at the numbers that observation is not so 

accurate. The utilization differs more than the previous case and except the 

underestimation case we do not notice an immediate increase of the utilization, especially 

in the cases of overestimations (figure 4.7).  The losses (figure 4.8) are multiples compared 

with the previous case. For example in the case of the 50 sources, when we make the 

correct estimation of the sources we loose 69903 instead of 4858 packets and in the case of 

the underestimation things are worst: 245507 packet losses instead of 29439 (table 4.1). 

Furthermore, the losses do not happen in a few seconds, but they are spread all over the 

simulation time. The bad performance is witnessed also in the ordinary queue size (figure 

4.9). The expected queue size is reached after the half simulation time passes and in the 

case of the 50 sources at the end of it. The bad performance of the scheme in small buffers 

is also realized by the effort done in order to regulate the rate of the ordinary traffic (figure 

4.10). The rate achieved after the stabilization is the same with the one of the 1000 buffer, 

but when the simulation time is 100 seconds (before this was done in the first 20 seconds). 

The last measurement was the delay of the ordinary traffic service (figure 4.11). We can 

observe that delay is not influenced by the estimation of the sources. Also the behaviour of 

the delay is independent of the number of sources. The difference in the graph is because in 

the case of 10 sources each source sends more packets than in the case of 50 sources. With 

a plot of the same results according to the time the graphs could look very similar. Figure 

4.12 gives the comparison of the end-to-end delay for the premium traffic for the cases of 

200 and 1000 buffer sizes. In the case of 200 packets size, the delay is smaller and this is 

due to the decrease of the expected size of the queue (is set to 30 instead of 50 packets of 

the previous case). Thus the packets stay less time in the queue and that leads to smaller 

end-to-end delays. 

 

We must note that in the case of the premium traffic no losses were found. 
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  10 sources 20 sources 50 sources 
buffer size = 1000     

 over estimation 4093 2371 2994 
 under estimation 18719 30476 29439 
 correct estimation 4521 12166 4858 

buffer size = 200     
 over estimation 48814 47231 44578 
 under estimation 260558 286338 244604 
 correct estimation 73148 71467 69903 

Table 4.1 Losses for buffer sizes 200 and 1000 under different estimations  

 
The bad performance in the latter case was due the small buffer size of the routers. Because 

of the small buffer size, the queue very quickly was full. As we can see from figure 4.8 and 

table1, in the case of the correct estimation we have more than 70000 packet losses 

happening during the 20th and the 80th second of the simulation. For that reason no proper 

rate feedback arrives at the ordinary traffic sources (the packets showing congestion are 

lost), so the sources continue sending with very high rates. The correct rate reaches the 

sources after 90 seconds of simulation but already the network had very bad performance. 

The role of the preferred ordinary buffer size had no influence in the bad performance of 

the scheme and this is shown in the graphs comparing the previous cases with a new one, 

which uses 1000 packet buffer sizes and the preferred ordinary buffer size was set to 150.  

 

By comparing all the cases we led to very important conclusions. Firstly, by the throughput 

graph in figure 4.13 we can state that the throughput is only influenced by the preferred 

buffer sizes. The higher this target is, the higher the throughput achieved at the congested 

link. Another very important observation is that the number of losses is very small for 

bigger buffer sizes. Also having smaller preferred buffer size, leads to less drops, because 

the scheme tries to keep the queue to smaller levels. Thus the rate is increasing gradually 

instead of a very sudden change of the rate that leads to a high number of drops in very 

little time (figure 4.14). 
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Throughput 10 sources 

 

 
Throughput 20 sources 

 

 
Throughput 50 sources 

 

 
combination of correct estimation 

Figure 4.7 Throughput. Buffer size = 200 
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Losses 10 sources 

 

 
Losses 20 sources 
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Losses 50 sources 

 

 
Combination of Correct Estimations 

 

Figure 4.8 Losses. Buffer size = 200 
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Ordinary Queue Size 10 sources 
 

 

 
Ordinary Queue Size 20 sources 

 
 

 
Ordinary Queue Size 50 sources 

 

 

 
 

Combination of correct Estimations 
 
 

 

Figure 4.9 Ordinary Queue Size. Buffer size = 200 
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Rate 10 sources 

 

 
Rate 20 sources 

 

 
Rate 50 sources 

 

 
Combination of correct estimations 

Figure 4.10 Ordinary Traffic Rate. Buffer size = 200 
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Ordinary traffic delay in the cases of 10 and 50 sources 

 

 
Ordinary traffic delay 50 sources 

 

Figure 4.11 Traffic Delays. Buffer size = 200 
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Figure 4.12 Traffic Delays for Ordinary traffic. 200 and 1000 buffer sizes 

 

Figure 4.13 Throughput for different buffer parameters 
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Figure 4.14 Losses for different buffer parameters 

 

Figure 4.15 Rate for different buffer parameters 
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Figure 4.16 Buffer size for different buffer parameters 

 
 
Then using some of the previous configurations we created some scenarios for testing the 

response of the congestion control scheme after the stop and restart of some sources. The 

experiments were tested in the cases of 20 and 50 sources for 1000 packets buffer sizes, 

where the preferred ordinary buffer size was 500 packets. In the case of the 50 sources we 

make a test to observe the response of the queue in different delays (1 ms and 20 ms) under 

the same traffic conditions.  

 

In the first case a simpler scenario is used, where a stop occurs every 10 seconds, from the 

20th up to the 70th second, that is six stops in total. As can be seen from figure 4.17, if we 

exclude the case of the 100% overestimation, there is not obvious difference in the link 

utilization due to the stop of some ordinary sources. The IDCC scheme reacts very quickly 

to each stop calculating the appropriate rate in order to keep the buffer size as close to the 

preferred buffer size (figure 4.19). Furthermore there are no losses of ordinary packets 

(figure 4.18) due to the stop of the sources. All the packet drops happen at a very small 

amount of time in the beginning of the simulation and once the rate has converged to a 
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stable state, we do not have any more losses. In the case of the 100% overestimation of the 

maximum number of sources, the scheme does not react at all and this is reasonable if we 

take in account that it believes that much higher number of nodes are sending packets. The 

other estimations respond very well when a stop occurs and the increase in the rate is the 

same for all the cases.  

 

Next a more complicated scenario was used, where stops could occur simultaneously. We 

also had some premium sources starting during the simulation time in order to observe if 

the scheme would decrease the rate that ordinary packets are send to let the premium traffic 

pass. Like the previous “stops” scenario, the throughput is very high and it does not show 

to be influenced at all by the behavior of the sources (figure 4.20). The losses for one more 

time are happening in the first few seconds in the beginning of the simulation, where the 

rate was not converged to the proper one (figure 4.21). The only event that witnesses the 

simulation scenario is the accents shown in the buffer size graph (figure 4.23) and the 

difference in the rate during the simulation scenario time (figure 4.22). In the 25th second 

two premium sources request for QoS and the rate of the ordinary class is reduced, whereas 

at the 60th second the two sources are stopped and the rate goes immediately at the same 

value as it was before the 25th second. Then at the 80th, 110th and 130th second a number of 

ordinary sources stopped for sending packets in the network so the rate of the rest has 

increase (the increase was proportional of the number of sources that has been stopped), 

whereas at the 150th second three ordinary sources have been started and so on.  
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50 sources 1ms link 

 

 
50 sources 20ms link 

 
20 sources 1ms link 

Figure 4.17 Throughput with sources being stopped 
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50 sources 1ms link 

 

 
50 sources 20ms link 

 

 
20 sources 1ms link 

Figure 4.18 Losses of ordinary sources with stops 
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50 sources 1ms link 

 

 
50 sources 20ms link 

 
20 sources 1ms link 

Figure 4.19 Rate of ordinary sources with stops 
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Figure 4.20 Throughput of ordinary sources with stops 

 

 

Figure 4.21 Losses of ordinary sources with stops 
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Figure 4.22 Rate of ordinary sources with stops 

 

 
 

Figure 4.23 Ordinary Buffer Size when stops occur 
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The last measurement done in this scenario was about the fairness of the scheme. In order 

to do that we compared the performance of four, random chosen ordinary sources (the 1st, 

2nd, 42nd, and 43rd source). The first two sources had begun sending packets in the network 

the first second of the simulation, whereas the latter two at the sixth second. From figure 

4.24 we can see that the sources beginning at the same time get the same throughput. Also, 

the sources that begun later in the simulation scenario achieved less throughput than the 

ones started in the beginning. This is logical, because since they send with the same rate for 

less time they should send less packets in the network. The losses graph (figure 4.25) 

comes to contribute to the previous observation. A difference in the number of losses per 

flow exists, but it is very small that does not have any effect in the overall performance of 

each flow. 

 

 

 

 

Figure 4.24 Throughput of different ordinary sources 
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Figure 4.25 Losses of different ordinary sources 
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4.2.2 Scenario 2 
 

Scenario 2 (figure 4.26) is used in order to see the response of the queue (using different 

buffer sizes) when the sources are gradually starting and stopping and the maximum 

number of flows is estimated. In this network topology we have fifty-one sources (all have 

the same link delay of 1ms) sending traffic to fifty-one other destinations through a link 

connecting two routers. The first source traffic is tagged as premium class traffic. The next 

forty-nine sources are IDCC sources sending ordinary traffic. The bandwidth of the link 

between the two routers is set to 50 Mbps in all cases and the propagation delay is 1ms. 

This scenario is tested with 200 and 1000 buffer sizes having preferred buffer size to be set 

at 150 and 500 packets respectively. Each source starts with 2 seconds difference from its 

previous one and the first one starting at the beginning of the simulation. Thus, at time 100 

seconds all the sources are sending data. At time 150 seconds and for each interval of 1 

second a source stops sending data. The simulation time is 200 seconds.  

 

 

 

Figure 4.26 Network Topology Scheme for Scenario 4 
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Each of the following figures contains three graphs. The first and the second refer to the 

1000 and 200 buffer sizes respectively and they show the results of the different 

estimations in the number of ordinary flows. The third represents the comparison of the 

two cases, when the scheme knows the correct maximum number of the flows.  

 

The throughput (figure 4.27) is increasing, as the estimated number of the flows is smaller. 

We can see about 0,4% increase for each case, except the difference between the 

underestimation and correct estimation when the buffer is 200, which has about 8% 

increase. In the case of the 1000 buffer size IDCC performs better achieving better 

utilization of the link, because of the fact that the ordinary queue size is set to a higher 

value (scenario 1). The losses (figure 4.28) are again not accepted in the case of the 200 

buffer sizes, which are multiples of the 1000 buffer size. In the case of 1000 buffer size we 

can observe that the losses of the underestimation in the number of flows is very smaller 

than the correct and 50% overestimation. This is reasonable because the sources are 

gradually starting and the underestimation in the number of flows can adapt the rate more 

easily. Around the 40th second (the 20th source has already started sending traffic) of the 

simulation the rate of the underestimation scenario is dropped to the half. At that time the 

number of flows traversing the link is very close to the one that the estimation knows. The 

rest of the estimations achieve the correct rate (and also stop losing packets) at the time the 

number of flows estimated is close to the real number of flows traversing the link. As 

explained the underestimation case finds a lot faster the rate needed (figure 4.29) to 

regulate the buffer size in the target size of 500 packets (figure 4.30).  

 

Once again, IDCC proved incapable to perform well under small buffer sizes since it 

wasn’t possible to regulate its rate and get the target ordinary buffer size. As explained in 

the previous scenario the very large amount of packet losses do not permit the scheme to 

receive in time the correct feedback and thus the scheme can not be used with small buffer 

sizes.  

 

Better performance should be achieved when not only the maximum number of flows can 

be estimated, but also the number of flows at any time during the simulation. 
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Throughput buffer size 1000 

 

 
Throughput buffer size 200 

 

 
Combination of the correct estimations 

 

Figure 4.27 Throughput  
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Losses buffer size 1000 

 

 
Losses buffer size 200 

 

 
Combination of the correct estimations 

 

Figure 4.28 Losses  
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Rate buffer size 1000 

 

 
Rate buffer size 200 

 

 
Combination of the correct estimations 

 

Figure 4.29 Rate  
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Ordinary Queue Size buffer size 1000 

 

 
Ordinary Queue Size buffer size 200 

 

 
Combination of the correct estimations 

 

Figure 4.30 Ordinary Queue Size  
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4.2.3 Scenario 3 
 

Scenario 3 is more complicated than the previous ones and it is mainly used in order to 

study the performance of the scheme under different end-to-end link delays as well as the 

performance of each individual source when the distance between the sources and the first 

common link varies are under investigation. Also the QoS guarantees offered to the 

premium traffic and the fairness of the scheme are also examined. Finally the effect of the 

value of parameter alphar is examined. 

 

The topology used for this scenario is presented if figure 4.31. For the purposes of the 

simulation, we have one premium source and nine ordinary sources sending packets to ten 

destinations. The ordinary traffic service is represented again by saturated IDCC sources. 

Between the sources and the destinations exist four routers. The routers in the middle 

constitute the congested link. Its bandwidth is set to 10 Mbps in all cases and the 

propagation delay is varies from 5 to 50ms. Again tests were made for 200 and 1000 

packet buffer sizes. In order to examine the QoS guarantees offered to the premium traffic 

service end-to-end delay and jitter measurements have been taken for different network 

parameters. 

 

 

Figure 4.31 Network Topology Scheme for Scenario 3 
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The simulations have been run for various delay times for the congested link (between 1 

and 50ms) for both buffer sizes. At the same time, we also examine the behaviour of the 

scheme, having wrong estimations of the flows traversing the link.  

 

The total throughput for buffer sizes 200 and 1000 is shown in figures 4.32 and 4.33 

respectively. We can observe that the utilization of the link in the case of the 200 packet 

buffer is very high for all the estimations. In the case of the 1000 packet buffer the 

underestimation of the number of flows leads to an undesirable state where there is no 

stabilization. The higher the delay is, the higher the problem. This is the first time we 

witness a good performance of the scheme under small buffer sizes. Most probably this is 

due to the smaller bandwidth size of the congested link. Fewer packets are needed in order 

to achieve high utilization, so the rate that the ordinary sources are sending traffic is lower 

and that leads to smaller number of packet losses and quick stabilization of the ordinary 

rate. 

 

Although the performance of the small buffer is much better than the previous scenarios, 

the drops (figure 4.34) are more compared to the 1000 packet buffer (figure 4.35), ranging 

from 4000 to 5800 according to the delay (table 4.2). The higher the delay, the higher the 

drops, probably because of the time needed for the feedback to reach the sources. Also the 

smaller the estimation of the flows is, the higher the number of drops. In the case of the 

1000 packet queue and the correct estimation (figure 4.35), the number of drops is very 

low, ranging between 600 and 760. In this case the losses are independent from the delay 

(the test with the 10ms link had the most losses). The case of the underestimation of the 

flows is disappointing. There are losses in all the simulation time and as the figures 4.36 

and 4.37 show it cannot converge to a stable rate in order to achieve the target buffer length 

(which is set to 500 packets). The correct and the over estimation converge at the same 

rate, with the overestimation having better performance (showing less oscillations). The 

higher the delay is, more time is needed for the correct estimation to attain the correct rate 

and queue size. The results for the 200 buffer (figures 4.38 and 4.39) are as expected, with 

the rate to stabilize in all cases in less than 20 seconds of simulation time. All the 

estimations lead to the same value of rate for the same reasons explained in scenario 1. 
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As it would be expected, the next step was to test the behaviour of IDCC when some 

sources were stopped. The case of the 30ms delay link was selected, and we demonstrate 

two scenarios one for each buffer size. In each case we have two stops, happening at the 

45th and 90th second of the simulation respectively. Except the case of the underestimate of 

flows when the buffer size is 1000 packets (which was already problematic), the rest of the 

cases have a very quick respond to the stops of the two sources. There is no indication from 

the throughput graphs (figures 4.40 and 4.43) that some sources were stopped. As we can 

see IDCC take actions very quickly (in a few seconds) and regulate the rates (figures 4.42 

and 4.45) in order to attain the proper queue sizes (figures 4.41 and 4.44). The results 

comply with the ones taken from the first scenario. IDCC has very quick response to the 

individual sources stops, although it operates with the wrong instantaneous number of 

flows (as mentioned earlier only the maximum number of flows is known to the scheme). 

 

The next test was to study the QoS offered by IDCC to the premium service (figure 4.46). 

Firstly we made four measurements for the end-to-end delay. The selected cases were the 

10 and 30ms delays with combination of the 200 and 1000 packet buffer sizes. Once again 

the end-to-end delay was very high, so we decrease the target queue size to 15 in the cases 

of the 10ms delay and we observe very big difference from the previous measurements. 

The decrease was expected due to the way the premium controller works. In order to keep 

the buffer size in lower levels, the packets suffer less queuing delays. Table 4.3 shows the 

exact values of those measurements. The end-to-end delay is affected by the link delay 

(propagation delay) and the preferred buffer size. The smaller that size is, the smaller the 

end-to-end delay. Once again the end-to-end delay values are not satisfactory. In order to 

have accepted values of the end-to-end delay we need to have very small target queue sizes 

(which leads to worse performance) and a big number of sources sending traffic through 

the congested link.  
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5 ms delay 10 ms delay 

 
15 ms delay 30 ms delay 

 
50 ms delay 

Figure 4.32 Throughput for various delays and estimations. Buffer size 200 
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5ms delay 
 

30ms delay 

 

50 ms delay 

Figure 4.33 Throughput for various delays and estimations. Buffer size 1000 
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5ms delay 

 
10 ms delay 

 
15 ms delay 

 
30 ms delay 

 
50 ms delay 

combination of the delays for the correct estimations 

Figure 4.34 Losses for various delays and estimations. Buffer size 200 
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5 ms delay 

 
10 ms delay 

 
15 ms delay 

 
30 ms delay 

 
50 ms delay 

 
combination of the delays for the correct estimations 

Figure 4.35 Losses for various delays and estimations. Buffer size 1000 
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  5 ms 10 ms 15 ms 30ms 50ms 
buffer size = 

1000 
      

 over estimation 254 239 281 235 289 
 under estimation 3435 4466 5169 6217 8525 
 correct 

estimation 
589 755 656 626 721 

buffer size = 
200 

      

 over estimation 3266 2944 3166 3445 3362 
 under estimation 5766 8782 9161 6078 6498 
 correct 

estimation 
3972 4021 4096 5668 5609 

Table 4.2 Losses for buffer sizes 200 and 1000 under different estimations  
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5ms delay 

 

10ms delay 

 

15ms delay 

 

30ms delay 

 

50ms delay 

Figure 4.36 Rate. Buffer size 1000 
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5ms delay  

10ms delay 

15ms delay 
 

30ms delay 

 
50ms delay 

Figure 4.37 Ordinary Queue Size. Buffer size 1000 
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5ms delay 

 
10ms delay 

15ms delay 
 

30ms delay 

 
50ms delay 

Figure 4.38 Rate. Buffer size 200 
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5ms delay 

 
10ms delay 

 
15ms delay 

 
30ms delay 

50ms delay 

Figure 4.39 Ordinary Queue Size. Buffer size 200 
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Figure 4.40 Throughput. Buffer size 200 

 

 

Figure 4.41 Ordinary Queue Size. Buffer size 200 
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Figure 4.42 Rate. Buffer size 200 

 

 

Figure 4.43 Throughput. Buffer size 1000 
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Figure 4.44 Ordinary Queue Size. Buffer size 1000 

 

Figure 4.45 Rate. Buffer size 1000 
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Figure 4.46 End-to-End delay for the Premium Traffic Service 

 

 delay preferred 
buffer size

mean delay jitter 

buffer size = 
1000 

    

 10ms 50 packets 1033.48 ms 0.6784 ms 
 10ms 30 packets 633.509 ms 0.5607 ms 
 30ms 50 packets 1053.48 ms 0.6786 ms 

buffer size = 200     
 10ms 30 packets 633.466 ms 0.5614 ms 
 10ms 15 packets 333.424 ms 0.4197 ms 
 30ms 30 packets 653.469 ms   0.5495 ms 

 

Table 4.3 End-to-end delay and jitter for different network conditions 
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The next measurements were made in order to study the fairness of IDCC that is all the 

sources have the same treatment by the scheme (have the same link utilization, same 

number of packet losses etc). Figure 4.47 shows the throughput of five individual sources, 

which are connected with different link delays with the first router. The link delays are 

relatively small and we notice that the sources at get the same throughput. Even the small 

difference in the first 20 seconds is rather randomly than based on the delays. The losses of 

each individual source are presented in figure 4.48. Although there is a difference in the 

packet losses, there is also a random distribution of the losses. We can observe that the 2ms 

delay source has higher number of loses whereas the 4ms smaller number of losses. The 

numbers of losses are very small, so we can state that the scheme is fair. 

 

Although the scheme seems to be fair, it did not have the expected behavior. Someone 

would expect the closest source to send more packets and probably have more losses. So 

another case was tested, where the link delays had more difference. The results were the 

same as before and are presented in figures 4.49 and 4.50. It seems that the sources get the 

same feedback independently of their link delays (and the more precisely their distance 

from the first router). 
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Figure 4.47 Throughput of individual sources with small delays 

 

 

Figure 4.48 Packet losses of individual sources with small delays 
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Figure 4.49 Throughput of individual sources with large delays 

 
Figure 4.50 Packet losses of individual sources with large delays 

 lxxxi



The last measurement for this scenario was to test the effect of the value of ar in the 

performance of the ordinary service controller (and generally in the whole scheme). 

Different values for ar were selected and the throughput achieved by each one is presented 

in figure 4.51. With a close look at the figure, we can distinguish four different categories 

of performances. The categories are based on the throughput achieved by the parameter and 

each one is drawn with different type of line. Immediately the case where ar is 0.7 is 

discarded, because both of the low performance and the oscillations it presents 

 

From figure 4.52 we can observe that the lowest the throughput of the category, the more 

packet losses are detected. Now for each individual category a difference in the drops is 

presented. The next figures 4.53 – 4.60 show the buffer size and the rate the sources are 

sending traffic during the simulation time. Using these results we can say that only the 

values of category 2 could be used for the ar value in the scheme (category 2 is presented 

with solid line in figure 4.51 and achieves the highest throughput). From that category it 

seems that the most effective value is the ar = 1.5 because by using this value the 

oscillations are minimized and the queue stabilizes and responds to the stops of sources 

faster. 
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Figure 4.51 Throughput using different ar 

 

Figure 4.52 Losses using different ar 
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Figure 4.53 Buffer Size for category 1 

 

 

Figure 4.54 Buffer Size for category 2 
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Figure 4.55 Buffer Size for category 3 

 

 

Figure 4.56 Buffer Size for category 4 
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Figure 4.57 Rate for category 1 

 

Figure 4.58 Rate for category 2 
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Figure 4.59 Rate for category 3 

 

Figure 4.60 Rate for category 4 
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Chapter 5 
 

Conclusion 
 
Current TCP/IP congestion control algorithms cannot efficiently support new and emerging 

services needed by the Internet community. In this M.Sc Thesis we analyze the 

performance analysis of a new congestion control mechanism, called Integrated Dynamic 

Congestion Control, used in a Resource Management Differential Services Environment.  

 

Following the spirit adopted by the IETF DiffServ working group for the Internet, IDCC 

contains definition for different classes of aggregated behavior: Premium Traffic Service, 

Ordinary Traffic Service and Best Effort Traffic Service. The Premium class will be used 

for real time applications, thus very strict QoS guarantees are needed. For this reason RMD 

is used as an admission control mechanism, in order to secure the desired bandwidth. The 

Ordinary class will be used for elastic applications, where the regulation of the rate is 

possible. In order to avoid congestion in the network and achieve high utilization, IDCC is 

responsible for regulating its rate. The Best Effort will be used for applications that can 

afford losses and very big delays. 

 

The results of the simulations in Chapter 5 were very encouraged. The proposed scheme 

was tested under various environments and found to be able to be used for the needs of the 

new Internet. The scheme found to be very robust and reliable under all the tests done.  

 

Its performance is not affected neither from the number of flows traversing the link (as 

long as this information is identified) nor from the propagation delays of the network. The 

first remark was expected due to the way the algorithm of the scheme is designed. As soon 

as the capacity needed for the premium class is calculated, the scheme calculates the rate of 

the ordinary class based on the available capacity and the preferred buffer size. That means 

that the rate calculation is not influenced by the number of nodes traversing the link. Then 

this rate is divided by the number of flows and all the sources send equal amount of traffic. 

The latter remark was unexpected. I expect that the higher the propagation delay is, the 

longer time should be needed to converge to a steady rate.  
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In the case where the congested link had large bandwidth (>50Mbps) the scheme was 

performing very well only with the use of big buffer sizes, whilst in the case of small 

bandwidth (10Mbps) good performance could be achieved by small buffer sizes too.  That 

is because in order to utilize the links with smaller bandwidths fewer packets are needed, so 

the rate the sources send packets is less and can be controlled more easily. Furthermore, 

after the calculation of the correct rate, IDCC reacted very quickly and precisely on any 

change on the number of flows traversing the router (i.e a premium source starting sending 

traffic or some ordinary sources stop sending traffic through the network). 

 

The IDCC scheme was found to be fair to all the sources using it. At the case were the 

propagation delays were the same, the sources starting at the same time were getting the 

same throughput over the links and the losses were shared with only a small variant among 

them. The same observation happened when we change the propagation delays so each 

source has a different one. Unrepentantly the sources shared equally the bandwidth and the 

losses were not proportional to the delays.  

 

The performance was tested also by using estimation on the maximum number of flows 

traversing the congested link. In the cases where all the sources were starting almost at the 

same time, I observed that the scheme can perform very well if it has the correct or an 

overestimation in the number of flows. In the case where the flows were starting gradually 

the best performance was achieved by the underestimation on the maximum number of 

flows.  

 

As it was expected the premium traffic service had no loss in anyone of the scenarios, due 

to the use of resource management and admission control. The jitter of the network delay 

was very small in order to satisfy the QoS requirements of premium service class.  

 

The only drawback for IDCC was the end-to-end delay measurements for the premium 

traffic service. According to the algorithm of the scheme, we have a target buffer size for 

each of the premium and ordinary buffer sizes. In order to have accepted values of the end-

to-end delay we need to have very small target buffer sizes and a big amount of premium 

traffic to be send through the network. Thus IDCC scheme cannot be used in the edges of 
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the network, where the number of traffic sources is small. In contrary it can be used 

possibly with very good performance in the core network where the number of sources is 

very high. 

 

After the completion of the performance analysis, some open issues have risen. Firstly the 

scheme must be tested under real traffic conditions, which means that the ordinary sources 

should not be saturated. A real application behavior could be simulated in NS-2 so to 

achieve the goal mentioned above. By doing that, we will also be able to test the 

contribution of the best effort traffic in the overall performance of the scheme. Since the 

ordinary class sources will not be saturated, the best effort class sources would send 

packets in order to achieve higher utilization. 

 

Also, an estimation function for the number of ordinary flows traversing a link can be 

created. This function (as concluded from the performance analysis) should be 

conservative, which means that it should try to overestimate a little the number of flows 

traversing the link. If the estimation function performs well, most probably the oscillations 

presented in the beginning of each simulation will disappear. Those oscillations were due 

to the fact that the scheme had knowledge only for the maximum number of ordinary 

flows, something that was not precise for the number of flows in the first few seconds (i.e 

the scheme knew about fifty sources at the 4th simulation second, but only twelve existed). 

 

Furthermore, we can test the one (or a small number) bit feedback in order to calculate the 

rate of ordinary sources. The routers could mark the ECN bit, which is already available in 

the IP header of the packet (mark according to a congestion function). Then the source 

could use this information and regulate its rate. If the performance of using one (or a small 

number) bit feedback is very close to the one presented in this thesis, then there is no 

reason to load the network with more data (using full feedback in the packet headers). 

 

Moreover, we must investigate the way this scheme interacts with TCP. TCP applications 

use different congestion control methods and we should test how IDCC influence their 

performance. We could also change the window based TCP agents in a way that the 

window size could be regulated by IDCC.  
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Appendix A 

 
 

A.1 Sample Scenario Code written in TCL script language 

A.2 C++ code used for the end-to-end delay and jitter 

A.3 Awk code used for the class throughput differentiation and drops 

A.4 Sample Matlab Code for the creation or the graphs 

 

A.1 Sample Scenario Code written in TCL script language 

 
The following code is a TCL script that produces the topology of the scenario 5 topology 

where the buffer size is 1000 packets, the delay is 30ms and the ordinary traffic service is 

represented by TCP sources.  

 
############################# 
# Create a simulator object # 
############################# 
set ns [new Simulator] 
set FINISH_TIME 150.0 
 
######################## 
# Simulation variables # 
######################## 
$ns set numRMDFIDs_ 2  ;#How many flowIDs will be used for RMD 
signaling messages 
$ns set RMDFIDOffset_ 0  ;#Where these flowIDs (DSCPs) start 
$ns set RODARefreshPeriod_ 30 ;#in case of RODA PHR group is used 
 
RODAMonitor set RMDBWUnit_ 2000  ;#BytesPerSec - one resource 
unit corresponds to this BW value 
 
RODAMonitor set dump_enabled_ 0  ;#Enable dumping in user 
readable format 
RODAMonitor set auto_dump_enabled_ 0 ;#Non-user readable format for 
processing scripts 
RODAMonitor set debuglevel_ 0  ;#Debug info 
 
# PerEdge variables 
Agent/RMDEdge set dump_enabled_ 0 
Agent/RMDEdge set auto_dump_enabled_ 0 
Agent/RMDEdge set debuglevel_ 0 
 
# IDCC variables 
Queue set limit_ 1000 
Queue/IDCCQ set bandw_ 1250 
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Queue/IDCCQ set alphar_ 1.5 
Queue/IDCCQ set alphap_ 1000 
Queue/IDCCQ set xrref_  500 
Queue/IDCCQ set xpref_ 50 
Queue/IDCCQ set noflows_ 11 
Queue/IDCCQ set cq 0 
Queue/IDCCQ set lambda_rd 0 
Queue/IDCCQ set len 0 
Queue/IDCCQ set sampling_time 0.1 
Queue/IDCCQ set before_rate_ 0 
Queue/IDCCQ set Cpt 0 
Queue/IDCCQ set cstat 0 
Queue/IDCCQ set intcon 1 
Queue/IDCCQ set gamma 1 
Queue/IDCCQ set alpha 0.1 
 
Agent/IDCC set packetSize_ 1000 
Agent/IDCC set InitRate_ 10 
Agent/IDCC set filterpar_ 3 
Agent/IdccSink set packetSize_ 30 
 
# Create the files in order to get the traces results 
set f [open trace.tr w] 
set f5 [open Common_Rate.data w] 
set f8 [open Ordinary_Queue.data w] 
set nofn_ 24    ;# Number of nodes 
set sources [expr ($nofn_-4)/2]  ;# Number of sources 
set destinations [expr $sources + 4] 
set router1 [expr $sources]  ;# router 1 id 
set router2 [expr $sources+1]  ;# router 2 id 
set router3 [expr $sources+2]  ;# router 3 id 
set router4 [expr $sources+3]  ;# router 4 id 
set idcc_sources 1   ;# Number of idcc sources 
 
########################## 
# The 'finish' procedure # 
########################## 
proc finish {} { 
    global ns f  f5 f8 
    $ns flush-trace 
    close $f5 
    close $f8 
    close $f 
 
     exit 0 
} 
 
################ 
# Create nodes # 
################ 
puts nodes 
for {set i 0} {$i < $nofn_} {incr i} { 
 puts $i 
 set n($i) [$ns node] 
} 
 
############################ 
# Trace the congested link # 
############################ 
$ns at 0.0 "$ns trace-queue $n($router2) $n($router3) $f" 
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############################# 
# Create the RMD-IDCC links # 
############################# 
$ns duplex-rodalink $n(0) $n($router1) 500Mb 1ms IDCCQ 
#$ns duplex-rodalink $n(1) $n($router1) 500Mb 1ms IDCCQ 
$ns duplex-rodalink $n($router1) $n($router2) 100Mb 10ms IDCCQ 
$ns duplex-rodalink $n($router2) $n($router3) 10Mb 30ms IDCCQ 
$ns duplex-rodalink $n($router3) $n($router4) 100Mb 10ms IDCCQ 
$ns duplex-rodalink $n($router4) $n(14) 100Mb 1ms IDCCQ 
#$ns duplex-rodalink $n($router4) $n(29) 100Mb 1ms IDCCQ 
 
for {set i 0} {$i < $idcc_sources} {incr i} { 
 [[$ns link $n($i) $n($router1)] get-roda-mon] init-thresholds-by-
percent 10 90 
     [[$ns link $n($router1) $n($i)] get-roda-mon] init-thresholds-by-
percent 10 90 
} 
 
    [[$ns link $n($router1) $n($router2)] get-roda-mon] init-thresholds-
by-percent 10 90 
    [[$ns link $n($router2) $n($router1)] get-roda-mon] init-thresholds-
by-percent 10 90 
    [[$ns link $n($router2) $n($router3)] get-roda-mon] init-thresholds-
by-percent 10 90 
    [[$ns link $n($router3) $n($router2)] get-roda-mon] init-thresholds-
by-percent 10 90 
    [[$ns link $n($router3) $n($router4)] get-roda-mon] init-thresholds-
by-percent 10 90 
    [[$ns link $n($router4) $n($router3)] get-roda-mon] init-thresholds-
by-percent 10 90 
 
for {set i $destinations} {$i < [expr $destinations+$idcc_sources]} {incr 
i} { 
puts "$i $router4" 
    [[$ns link $n($i) $n($router4)] get-roda-mon] init-thresholds-by-
percent 10 90 
    [[$ns link $n($router4) $n($i)] get-roda-mon] init-thresholds-by-
percent 10 90 
} 
 
set qmon [$ns monitor-queue $n($router2) $n($router3) 0] 
set q [[$ns link $n($router2) $n($router3)] queue] 
 
puts " " 
puts idcc 
for {set i 0} {$i < $idcc_sources} {incr i} { 
 set s [expr $i+$destinations] 
 puts "$i $s" 
 set ingress_agent($i) [new Agent/RMDEdge/RODA] 
 set egress_agent($i) [new Agent/RMDEdge/RODA] 
 $ns attach-agent $n($i) $ingress_agent($i) 
 $ns attach-agent $n($s) $egress_agent($i) 
 $ns connect $ingress_agent($i) $egress_agent($i) 
 set idcc($i) [new Agent/IDCC] 
 set idccsink($i) [new Agent/IdccSink] 
 $ingress_agent($i) attach $idcc($i) 
 $egress_agent($i) attach $idccsink($i) 
} 
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##################################################### 
# Create TCP and CBR Agents and the remaining links # 
##################################################### 
 
puts " " 
puts links 
 
for {set i $idcc_sources} {$i < $sources} {incr i} { 
puts "$i $router1" 
 if { [expr $i % 5] == 0 } { 
    $ns duplex-link $n($i) $n($router1) 500Mb 1ms DropTail 
} 
 if ([expr $i % 5 == 1]) { 
        $ns duplex-link $n($i) $n($router1) 500Mb 2ms DropTail 
    } 
 if ([expr $i % 5 == 2]) { 
        $ns duplex-link $n($i) $n($router1) 500Mb 4ms DropTail 
    } 
 if ([expr $i % 5 == 3]) { 
        $ns duplex-link $n($i) $n($router1) 500Mb 5ms DropTail 
    } 
 if ([expr $i % 5 == 4]) { 
        $ns duplex-link $n($i) $n($router1) 500Mb 8ms DropTail 
    } 
} 
 
for {set i [expr $destinations+$idcc_sources]} {$i < $nofn_} {incr i} { 
puts "$router4 $i" 
 if ([expr $i % 5 == 0]) { 
       $ns duplex-link $n($router4) $n($i) 500Mb 1ms DropTail 
    } 
 if ([expr $i % 5 == 1]) { 
       $ns duplex-link $n($router4) $n($i) 500Mb 2ms DropTail 
    } 
 if ([expr $i % 5 == 2]) { 
       $ns duplex-link $n($router4) $n($i) 500Mb 4ms DropTail 
    } 
 if ([expr $i % 5 == 3]) { 
       $ns duplex-link $n($router4) $n($i) 500Mb 5ms DropTail 
    } 
 if ([expr $i % 5 == 4]) { 
       $ns duplex-link $n($router4) $n($i) 500Mb 8ms DropTail 
    } 
} 
 
set t 1.0 
puts " " 
puts ftp 
for {set i $idcc_sources} {$i < $sources-2} {incr i} { 
 set s [expr $i+$destinations] 
 puts "$i $s" 
 set tcp($i) [new Agent/TCP/Reno] 
 set sink($i) [new Agent/TCPSink] 
 $ns attach-agent $n($i) $tcp($i) 
 $ns attach-agent $n($s) $sink($i) 
 $ns connect $tcp($i) $sink($i) 
 set ftp($i) [new Application/FTP] 
 $ftp($i) attach-agent $tcp($i) 
 $ns at $t "$ftp($i) start" 
 $ns at $FINISH_TIME "$ftp($i) stop" 
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 $ftp($i) set fid_ 0 
 set $t [expr $t + 0.4] 
} 
 
puts " " 
puts cbr 
for {set i [expr $sources-2]} {$i < $sources} {incr i} { 
 set s [expr $i+$destinations] 
 puts "$i $s" 
 set cbr($i) [new Agent/CBR] 
 set null($i) [new Agent/Null] 
 $ns attach-agent $n($i) $cbr($i) 
 $ns attach-agent $n($s) $null($i) 
 $ns connect $cbr($i) $null($i) 
 $cbr($i) set packetSize_ 500 
 $cbr($i) set interval_ 0.0005 
 $ns at 1.1 "$cbr($i) start" 
 $ns at $FINISH_TIME "$cbr($i) stop" 
 $cbr($i) set fid_ 2 
} 
 
$ingress_agent(0) set fid_ 1 
$idcc(0) set fid_ 1 
#$ingress_agent(1) set fid_ 1 
#$idcc(1) set fid_ 1 
 
$idcc(0) set InitRate_ 250 
#$idcc(1) set InitRate_ 250 
 
    #This automatically calls "Admitted $ingress_agent" upon admission 
    #Otherwise, auto calls "Refused $ingress_agent" 
 
 $ns at 1.0 "$ingress_agent(0) QoSRequest 125" ;# in units!!! 
 
#    $ns at 2.0 "$ingress_agent(1) QoSRequest 250" 
#    $ns at 2.2 "$ingress_agent(2) QoSRequest 0" 
#    $ns at 2.3 "$ingress_agent(3) QoSRequest 0" 
#    $ns at 2.4 "$ingress_agent(4) QoSRequest 0" 
 
#I can self define what needs to be done upon admittance, maybe I don't 
want to start traffic at all because I just 
#care about signaling traffic... 
proc Admitted {ingress_agent} { 
 global ns FINISH_TIME 
 [$ingress_agent get-agent] start 
 
 $ns at $FINISH_TIME "[$ingress_agent get-agent] stop" 
 $ns at $FINISH_TIME "$ingress_agent QoSRelease" 
 #May send explicit release request message, and will definetly call 
"Released $ingress_agent" 
} 
 
#Self define what happens when the connection is refused 
#Maybe in that case I can change my DSCP to a best-effort DSCP and attach 
my regular agent directly on the node... 
proc Refused {ingress_agent} { 
 global ns n 
 set egress_agent [$n([$ingress_agent set dst_addr_]) agent 
[$ingress_agent set dst_port_]] 
 delete [$ingress_agent get-agent] 
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 $ns detach-agent [$ingress_agent set node_] $ingress_agent 
 $ns detach-agent [$egress_agent set node_] $egress_agent 
 $ns at [expr [$ns now] + 0.0000000001] "delete $ingress_agent" 
 $ns at [expr [$ns now] + 0.0000000001] "delete $egress_agent" 
} 
 
proc Released {ingress_agent} { 
 global ns n 
 set egress_agent [$n([$ingress_agent dst_addr_]) agent 
[$ingress_agent dst_port_]] 
 delete [$ingress_agent get-traffic-app] 
 delete [$ingress_agent get-agent] 
 
 #The following need to be manually done just like in case of any 
regular agents, like TCP or UDP... 
 $ns at-now  "$ns detach-agent [$ingress_agent set node_] 
$ingress_agent" 
 $ns at-now  "$ns detach-agent [$egress_agent set node_] 
$egress_agent" 
 $ns at-now  "delete $ingress_agent" 
 $ns at-now  "delete $egress_agent" 
} 
 
proc record2 {qs} { 
    global f5 f8 ns q 
    set ns [Simulator instance] 
    set rate [$q set lambda_rd] 
 
    set time 0.01 
    set now [$ns now] 
    set curqueue [$q set cq] 
 
    puts $f8 "$now $curqueue" 
    puts $f5 "$now $rate" 
 $ns at [expr $now+$time] "record2 $qs" 
} 
 
proc record1 {so} { 
    global f4 ns 
    set ns [Simulator instance] 
    set qrate [$so set rate_] 
    set time 0.01 
    set now [$ns now] 
    puts $f4 "$now $qrate" 
 
    $ns at [expr $now+$time] "record1 $so" 
} 
 
$ns at 0.5 "record2 $qmon" 
 
#Call the finish procedure after x seconds of simulation time 
$ns at $FINISH_TIME "finish" 
 
#Run the simulation 
$ns run 
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A.2 C++ code used for the end-to-end delay and jitter 

 
In order to compute the end-to-end delay and jitter C++ code was used. The program was 

split in two functions. The first function reads all the lines of the trace file, selects the 

records that  refer to flow packets that we are interested and are sent from source node to 

sink node and that either are just entering the queue at node s or are just  arriving at node t.  

The selected lines are placed in the file an output file. The second function reads that 

output file, and records the delays of all the  packets belonging to flow f that start from a 

source at node and are received at a sink at node. It also records the percentage of the lost 

packets and the jitter. It prints all the statistics to the standard output and the delay of each 

packet is written to a file specified by the user.  

 

Function 1 
 
#include <iostream.h> 
#include <string.h> 
#include <fstream.h> 
#include <stdlib.h> 
#include <iomanip.h> 
#include <math.h> 
 
int main(int argc, char * argv[]) 
{ 
  // Packet type to be excluded - e.g., ack in case of TCP, etc.: 
  char *Type; 
  Type = "rtProtoLS"; 
 
  cout << "\n" << "The packet type that will be excluded: " << Type << "\n\n"; 
 
  // The constants s, t, and f must be set via STANDARD INPUT: 
  int s = atoi(argv[1]); //12; // Source node. 
  int t = atoi(argv[2]); //63; // Sink node. 
  int f = atoi(argv[3]); //0;  // Flow id. 
 
  // Here we get the number N of rows in the input data file: 
 
  ifstream count_file(argv[4]);//"outidcc.tr"); 
  int i = 0; 
  char buff[100]; 
  while (count_file) { 
    count_file.getline(buff, 100); 
    i++; 
  } 
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  int N = i-1; 
  count_file.close(); 
 
  ifstream in_file(argv[4]); 
  ofstream out_file(argv[5]); //"selected"); 
 
  char line[100]; 
  char *vector[12]; 
  char *tokenPtr; 
  char buffer[100]; 
 
  int n = 0; 
 
//while (in_file) { 
  while (n < N) 
  { 
    n++; 
    in_file.getline(line, 100); 
 
    // Each "line" is a row of characters in the original file out.tr. 
    // These characters form 12 words separated by 11 blank delimiters. 
    // Thus, each character array "line" yields a 12-word array "vector". 
    // The following parses ("tokenizes") "line" into "vector": 
//  buffer = line; 
    strcpy (buffer, line); 
    // It is necessary to use a _copy_ of "line", "buffer", instead of "line" 
    // itself, since an application of "strtok" function modifies its first 
    // argument! 
    tokenPtr = strtok(buffer, " "); 
    for (int j=0; j < 11; j++) { 
      vector[j] = tokenPtr; 
      tokenPtr = strtok(NULL, " "); 
    } 
    vector[11] = tokenPtr; 
 
    // Now we are ready to examine each line of our out.tr file. We first need 
    // some labels: 
    char *sign; 
    sign = vector[0]; 
    float time_stamp = atof(vector[1]); 
    int from_node = atoi(vector[2]); 
    int to_node = atoi(vector[3]); 
    char *type; 
    type = vector[4]; 
    int flow  = atoi(vector[7]); 
    int source_node = atoi(vector[8]); 
    int sink_node = atoi(vector[9]); 
    int packet_num = atoi(vector[10]); 
    int packet_id = atoi(vector[11]); 
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    // Finally, here is the criterion for finding the desirable lines of the 
    // file out.tr and placing them into a new file called "selected". 
    if ((((*sign == '+') && (from_node == s) && (flow == f) && (source_node 
== s) && (sink_node == t)) || ((*sign == 'r') && (to_node == t) && (flow == 
f) && (source_node == s) && (sink_node == t))) && (strcmp(type,Type)!=0)) { 
      out_file << line << "\n"; 
    } 
  } 
  in_file.close(); 
  out_file.close(); 
 
 return 0; 
} 
 
 
Function 2 
 
#include <iostream.h> 
#include <string.h> 
#include <fstream.h> 
#include <stdlib.h> 
#include <iomanip.h> 
#include <math.h> 
 
int main(int argc, char * argv[]) 
{ 
  // The constants s, t, and f must be set at the beginning. 
  int s = atoi(argv[1]); //12; // Source node. 
  int t = atoi(argv[2]); //63; // Sink node. 
  int f = atoi(argv[3]); //0;  // Flow id. 
 
  ifstream in_file(argv[4]);//"selected"); 
  int i = 0; 
  char buffer[100]; 
  while (in_file) { 
    in_file.getline(buffer, 100); 
    i++; 
  } 
  // From here we get the number M of rows in the input data file 
  // (i.e., the size of the character array "data" defined below): 
  int M = i-1; 
  in_file.close(); 
 
  char sign[M][2]; 
  float time_stamp[M]; 
  int packet_id[M]; 
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  ifstream inn_file(argv[4]);//"selected"); 
  i = 0; 
  while (i < M){ 
    char data[100]; 
    inn_file.getline(data, 100); 
    strcpy(buffer, data); 
    char *tokenPtr; 
    tokenPtr = strtok(buffer, " "); 
    strcpy(sign[i], tokenPtr); 
    tokenPtr = strtok(NULL, " "); 
    time_stamp[i] = atof(tokenPtr); 
    for (int j=1; j < 11; j++) { 
      tokenPtr = strtok(NULL, " "); 
    } 
    packet_id[i] = atoi(tokenPtr); 
    i++; 
  } 
  inn_file.close(); 
 
  // The array "delay" shall have plenty of zeros at the tail... 
  float delay[M]; 
  int k = 0; 
  int l = 0; 
  for (int i=0; i < M; i++) { 
    if ((*sign[i] == '+')) { 
      k++; 
      for (int j=0; j < M; j++) { 
 if ((*sign[j] == 'r') && (packet_id[j] == packet_id[i])) { 
   delay[l] = time_stamp[j] - time_stamp[i]; 
   l++; 
 } 
      } 
    } 
  } 
 
  int T = k; // The number of packets transmitted. 
  int R = l; // The number of packets received. 
  int L = T - R; // The number of packets lost. 
  cout << "\n\n"; 
  cout << "The number of packets transmitted T = " << T << ".\n"; 
  cout << "The number of packets received R = " << R << ".\n"; 
  cout << "The number of packets lost L = " << L << ".\n"; 
 
  /////////////////////////////////////////////////////////////////// 
  // The following computes the percentage, truncated at two decimals, 
  // of the lost packets: 
  double loss_ratio = floor(10000*L/T)/100; 
  cout << "\n" << loss_ratio << "% of all packets of flow " << f << " sent 
from node " << s << " to node " << t << " were lost." << "\n\n"; 
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  /////////////////////////////////////////////////////////////////////// 
  // This computes delay sample mean and prints it to the standard output: 
  double sigma = 0; 
  for (l=0; l < R; l++){ 
    sigma = sigma + delay[l]; 
  } 
  double delay_mean = sigma/R; 
  cout << "Delay mean for flow " << f << " = " << 1000*delay_mean << " ms" 
<< "\n\n"; 
 
  /////////////////////////////// 
  // This computes delay variance: 
  double quad = 0; 
  for (l=0; l < R; l++){ 
    quad = quad + pow(delay[l] - delay_mean,2); 
  } 
  double delay_variance = quad/R; 
 
  ///////////////////////////////////////////////////////////// 
  // This computes delay sample standard variation and prints it 
  // to the standard output: 
  double delay_standard_deviation = sqrt(delay_variance); 
  cout << "Jitter for flow " << f << " = " << 1000*delay_standard_deviation 
<< " ms" << "\n\n"; 
 
  ofstream out_file(argv[5]); 
 
  for (l=0; l < R; l++){ 
    out_file << l << "  " << delay[l] << endl; 
  } 
 
  out_file.close(); 
  return 0; 
} 
 

A.3 Awk code used for the class throughput differentiation and drops 

 
In order to record the throughput at a selected link and the drops for each flow, some 

simple awk scripts were written that used as input file the trace file generated by ns-2 after 

the simulation end. 

 
    exec awk { 
        { 
        if($1 == "-") 
        { 
            old_data = old_data + $6 
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            print $2, old_data*8.0/$2 
        } 
        } 
    } trace.queue > throughput.cor 
 
    exec awk { 
        { 
        if($1 == "d" && $8 == "1") 
        { 
            old_data = old_data + 1 
            print $2, old_data 
        } 
        } 
    } trace.queue > lossesPremiun.cor 
 
    exec awk { 
        { 
        if($1 == "d" && $8 == "0") 
        { 
            old_data = old_data + 1 
            print $2, old_data 
        } 
        } 
    } trace.queue > lossesOrdinary.cor 
 

A.4 Sample Matlab Code for the creation or the graphs 

 
load ('E:\thesis\simulations\scenario3\idcc\1000-buffer\no-stops\10ms\correct-
estimation\delay_0_cor101000.data'); 
load ('E:\thesis\simulations\scenario3\idcc\1000-buffer\no-stops\10ms\correct-
estimation\15_premium_300_ordinary\delay_0_cor151000.data'); 
load ('E:\thesis\simulations\scenario3\idcc\1000-buffer\no-stops\30ms\correct-
estimation\delay_0_cor301000.data'); 
load ('E:\thesis\simulations\scenario3\idcc\200-buffer\no-stops\10ms\correct-
estimation\delay_0_cor10200.data'); 
load ('E:\thesis\simulations\scenario3\idcc\200-buffer\no-stops\10ms\correct-
estimation\15_premium_100_ordinary\delay_0_cor15200.data'); 
load ('E:\thesis\simulations\scenario3\idcc\200-buffer\no-stops\30ms\correct-
estimation\delay_0_cor30200.data'); 
%load ('E:\thesis\simulations\scenario2\no-stops\queue-200\100-
nodes\delay_4_55_100over.data'); 
 
time = delay_0_cor101000(:,1); 
time1 = delay_0_cor151000(:,1); 
time2 = delay_0_cor301000(:,1); 
time3 = delay_0_cor10200(:,1); 
time4 = delay_0_cor15200(:,1); 
time5 = delay_0_cor30200(:,1); 
%time6 = delay_0_51_100over(:,1); 
delay_cor = delay_0_cor101000(:,2); 
delay_over = delay_0_cor151000(:,2); 
delay_under = delay_0_cor301000(:,2); 
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delay_200 = delay_0_cor10200(:,2); 
delay_1000 = delay_0_cor15200(:,2); 
losses_100 = delay_0_cor30200(:,2); 
%delay_100over = delay_0_51_100over(:,2); 
 
figure 
plot (time, delay_cor, 'Color', 'red', 'LineWidth', 1.8, 'LineStyle', '-') 
hold 
plot (time1, delay_over, 'Color', 'blue', 'LineWidth', 1.8, 'LineStyle', '-') 
plot (time2, delay_under, 'Color', 'green', 'LineWidth', 1.8, 'LineStyle', '-') 
plot (time3, delay_200, 'Color', 'red', 'LineWidth', 1.8, 'LineStyle', ':') 
plot (time4, delay_1000, 'Color', 'blue', 'LineWidth', 1.8, 'LineStyle', ':') 
plot (time5, losses_100, 'Color', 'green', 'LineWidth', 1.8, 'LineStyle', ':') 
%plot (time6, delay_100over, 'Color', 'cyan', 'LineWidth', 1.8, 'LineStyle', '-') 
 
%axis([0 100 0 50]); 
title('End-to-End Delay'); 
xlabel('Packet Number'); 
ylabel('Time (seconds)'); 
set(gca,'YGrid','on'); 
%legend('delay-cor', 'delay-over', 'delay-under', -1); 
%legend('delay-10sources', 'delay-50sources', -1); 
%legend('delay-cor', 'delay-over', 'delay-under', 'delay-100over', -1); 
legend('buffer-1000-50-delay-10', 'buffer-1000-30-delay-10', 'buffer-1000-50-delay-30', 
'buffer-200-30-delay-10', 'buffer-200-15-delay-10', 'buffer-200-30-delay-30', -1); 
 
cd scenario3 
print -djpeg Delay_premium 
cd .. 
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