
University of Cyprus
Computer Science

Implementation and Evaluation
of

 Differentiated Services
on

Linux

by

Yiannos Mylonas

Supervisor
Dr. Andreas Pitsillides

A thesis submitted to the Graduate Faculty of University of Cyprus in partial
fulfillment of the requirements for the Degree of Master of Science at

Computer Science department.

To My Fiancé: Dora

 2

ACKNOWLEDGEMENTS

 I would like to express my gratitude to my advisor Dr. Andreas Pitsillides for his

support and encouragement throughout the duration of the project. I would like

also to thank Dr. Costas Pattichis for his support and help for accomplishing my

goals. I would like to thank Marino Stylianou and Melino Kyriakou for helping

me setting up the Linux network and for all their patience at rough times.

Mere words are insufficient to express my gratitude to my parents, for their love

and incredible support, without which this would not have been possible.

 3

Abstract
The existing Internet architecture is based on the “best effort” model for

delivering packets across the Internet. The current architecture delivers a packet at

its best possible (best-effort) but doesn’t guarantee when it will be delivered.

Nowadays, the users work and play habits are changing, e.g. users expect to

watch movies through the network, play 3-D games, and check their stock online,

videoconference and other. The demands of the users have changed dramatically

since the creation of IP, where it was mostly used for email and ftp. Another new

application is the WWW that has been widely used worldwide. WWW has

created a new friendly interface for the user, and stimulated further demands from

the network.

The existing architecture of IP is inadequate to handle new applications. Time

critical applications such as video, audio and several others have created an even

greater demand on the Internet. Recently, several different solutions were

proposed, but most have failed to replace IP.

Lately, several new protocols and architecture were proposed to enable basic

quality of service provision in Internet. In this thesis we investigate the

Differentiated Services (DiffServ) architecture. DiffServ is a new architecture

based on the concept of aggregated differentiated treatment of services. DiffServ

was proposed in 1997. Since then it has attracted a lot of attention by many

researchers.

The aim of this thesis is to implement a differentiated services pilot network

in Linux environment and investigate the performance of various network

functions, that may provide differentiated quality of service. These functions

include various queuing disciplines such as pFifo, RED, and TBF. Through the

pilot network we aim to investigate different ways to implement differentiated

networks and present recommendations for different network traffic and

conditions.

 4

Table of Contents

1 Introduction...9
1.1 IP Quality of Service...9

1.1.1 Introduction to IP QOS ...9
1.1.2 QoS Definition ..10
1.1.3 Parameters of QoS ..11
1.1.4 Service Level Agreement..12
1.1.5 Policy Management...14
1.1.6 QoS Policies..14
1.1.7 Qos Ranking..15

1.2 New protocols for IP QoS provision...16
1.2.1 Integrated services (IntServ) ...16
1.2.2 Reservation Setup Protocol (RSVP) ...18
1.2.3 Multi-Protocol Label Switching (MPLS)..20

1.3 Introduction to DiffServ..22
2 Differentiated Services (DiffServ) ..24

2.1.1 Differentiated Services Model ..24
2.1.2 Terminology..24

2.2 DiffServ Architecture..28
2.2.1 Architecture Model ...28
2.2.2 Traffic Classification and Conditioning..30

2.3 Per-Hop Behavior Groups...31
2.3.1 Class Selector PHB ...31
2.3.2 Assured Forwarding (AF) ...32
2.3.3 Expedited Forwarding (EF)...33
2.3.4 Dynamic RT/NRT PHB Group...34

3 Traffic Management in DiffServ...36
3.1 Urgency and Importance...36
3.2 Traffic Management in Boundary nodes...37

3.2.1 Classifiers..37
3.2.1.1 Behavioral Aggregate Classifier ...38
3.2.1.2 Multi Field Classifier ..38

3.2.2 Meters ...39
3.2.3 Packet Marking ...39
3.2.4 Traffic Shaping ...39
3.2.5 Packet Dropping at Boundary Nodes ..39

3.3 Traffic-Management Functions in Interior Nodes...40
3.3.1 Queuing Disciplines..40

3.3.1.1 Pfifo_fast...40
3.3.1.2 Priority Queuing..40
3.3.1.3 Custom Queuing ...41
3.3.1.4 Stochastic Fairness Queuing (SFQ) ..42
3.3.1.5 Weight Fair Queuing...43
3.3.1.6 Random Early Detection ...45
3.3.1.7 n-RED ...46
3.3.1.8 Weighted Random Early Detection...46
3.3.1.9 Class Based Queuing ..47
3.3.1.10 CSZ Scheme..49
3.3.1.11 Deficit Round Robin ...50
3.3.1.12 Token Bucket Filter...52

4 Implementing Differentiated Services on Linux...54
4.1 Introduction to Linux Networking Services..54
4.2 Queuing Discipline ...57
4.3 Classes ..59
4.4 Filters ..60

 5

4.5 Policing ...61
4.6 Classifiers under Linux ...62

5 Evaluating Differentiated Services on Linux ..63
5.1 Topology Under Study..63
5.2 Evaluating Linux Implementation for DiffServ ..64

5.2.1 Scenario 1 (pFIFO, pFIFO)...66
5.2.2 Scenario 2 (TBF, pFIFO) ..82
5.2.3 Scenario 3 (Priority Queues)...86
5.2.4 Scenario 4 (pFifo, RED) ...90

5.3 Summary of Results ..104
5.4 Recommendations for selecting between various network functions and settings........106

6 Conclusions...110
7 Appendix I ..111
8 Acronyms..119
9 Bibliography ...122

 6

Table of Figures

Figure 1: RSVP Architecture ..18
Figure 2: MPLS Architecture..21
Figure 3: DS Byte in IPv4 and IPv6 ...23
Figure 4: DiffServ Domain ...24
Figure 5: Per-Hop Behavior..26
Figure 6: Main Blocks of DiffServ Services...27
Figure 7: Basic elements of a Differentiated Services network ..29
Figure 8: Packet classifier and traffic conditioning according to the RFC247530
Figure 9: Class Selector PHB Implementation ...32
Figure 10: AF implementation based on four queues ...33
Figure 11: Expedited forwarding Implementation ..34
Figure 12: Structure of DRT-PHB group..35
Figure 13: Implementation of the DRT-PHB..35
Figure 14: Selection of Packets...37
Figure 15: Priority Queuing ..41
Figure 16: Custom Queuing..42
Figure 17: Weighted Fair Queuing ...43
Figure 18: RED Packet Drop Probability..45
Figure 19: Weighted Random Early Detection...47
Figure 20: CBQ link share structure under no congestion ..48
Figure 21: CBQ link share structure under congestion ...49
Figure 22: CSZ scheduler ...50
Figure 23: Deficit Round Robin: Initialize the variables to zero. ...51
Figure 24: Deficit Round Robin: After sending out a packet of size 200, queue had 300 bytes of its

quantum left. ...52
Figure 25: Token Bucket Filter...53
Figure 26: Default Setup of a Linux ...55
Figure 27: Linux Setup with Traffic Control ..56
Figure 28: Processing of network data..56
Figure 29: A simple queuing discipline without classes. ..57
Figure 30:A simple queuing discipline with multiple classes. ..57
Figure 31: Combination of priority. TBF and FIFO queuing disciplines..58
Figure 32: Addressing for queuing disciplines and classes...59
Figure 33: Structure of filters..60
Figure 34: Looking for Filter Matching..61
Figure 35: Network Topology for DiffServ Architecture ...63
Figure 36: Block Diagram of pFifo queues...67
Figure 37: Block Diagram of pFifo queues...69
Figure 38: Block Diagram of pFifo queues...72
Figure 39: Block Diagram of pFifo queues...74
Figure 40: Block Diagram of pFifo queues...76
Figure 41: Block Diagram of pFifo queues...78
Figure 42: Block Diagram of pFifo queues...80
Figure 43: Block Diagram of TBF. and pFifo...82
Figure 44: Block Diagram of EF PHB..84
Figure 45: Block Diagram of Priority Queue..86
Figure 46: Block Diagram of Priority Queue..88
Figure 47: Block Diagram of EF PHB..90
Figure 48: Block Diagram of EF PHB..92
Figure 49: Block Diagram of EF PHB..94
Figure 50: Block Diagram of EF PHB..96
Figure 51: Outstanding Data...97
Figure 52: Outstanding Data...98
Figure 53: RTT of Flow 1...98

 7

Figure 54: RTT of Flow 2...99
Figure 55: Block Diagram of EF PHB..100
Figure 56: Outstanding Data of Flow 1 ..101
Figure 57: Outstanding Data of Flow 2 ..102
Figure 58: RTT of Flow 1...102
Figure 59: RTT of Flow 2...103

 8

1 Introduction

1.1 IP Quality of Service

1.1.1 Introduction to IP QOS

The existing Internet architecture is based on the “best effort” model for

delivering packets across the Internet. The current architecture delivers a packet at

its best possible (best-effort) but doesn’t guarantee when it will be delivered. The

IP has succeeded in meeting the requirements of its designers at the time it was

implemented. At that time the expectations of the users' were very low, in terms

of the variety of services and the quality of service offered to them. However,

nowadays IP can't scale very well with increasing demands by the users in terms

of supporting a variety of increasingly integrated services, with more predictable

quality. The users work and play habits are changing, e.g. users expect to watch

movies through the network, play 3-D games, check their stock online,

videoconference and other. The demands of the users have changed dramatically

since the creation of IP, where it was mostly used for email, ftp, and lately the

World Wide Web (WWW, or the web). The WWW has created a new friendly

interface for the user, and has been widely adopted (some suggesting that it is the

main reason for the phenomenal adoption of the Internet). It has stimulated new

demands and requirements for the computer networks.

The existing architecture of IP is inadequate to handle new applications. Time

critical applications such as video, audio and several others have created an even

greater demand (in terms of expected quality of service provision) on the Internet.

Lately, several alternative solutions were proposed, but most have failed to

replace IP.

One of these proposals and the most threatening to the IP architecture is the

ATM architecture. One may argue that ATM has succeeded to win the technical

battle for the provision of (Quality of Service) QoS to the users (i.e. better service

provision, in comparison to the IP), but lost the battle in the applications domain.

Not many applications that run under pure ATM can be identified.

 9

The ATM is a very expensive (in terms of bandwidth and efficiency)

protocol to have and without the pure ATM applications there is not a lot to gain.

The IP has the advantage of many well-established applications, and because of

its simplicity, it offers a more cost effective solution but not with inbuilt service

guarantee in its present form. ATM is currently used for backbone but it does not

appear that it will win the battle to the doorstep. In order to make IP better able to

support some form of Quality of Service provision to the users, several new

architectures are proposed.

Quality of Services as seen by the customer is affected by the performance

of several layers of the TCP/IP stack, including the application and network

related functions. In this thesis we will focus on the effect of the network on the

delivered QoS.

1.1.2 QoS Definition

The main target of the QoS is to satisfy customers’ needs. The word QoS

has different meanings among people. Even though, there are different views on

the definition of the QoS, there is an agreement on the key concepts and on the

terminology of QoS. Class of Service is a more general term that is used to

describe a set of features and other characteristics available with a specific

service. A QoS service is a term used to specify a set of performance

characteristics for a service. Some of those characteristics are: service availability,

delay and delay variation, throughput and packet loss rate [13].

The QoS is always limited by the weakest link in the chain along the path,

between the sender and receiver. The most critical characteristics of QoS are

minimizing delivery delay, minimizing delay variations and providing consistent

data throughput capacity. These QoS characteristics should be provided together

with efficient use of the limited bandwidth resources. The ideal performance,

from a link viewpoint, is to be able to use the link bandwidth efficiently. The most

critical characteristics of QoS are:

 Minimizing delivery delay

 Minimizing delay variations

 10

 Providing consistent data throughput capacity

 Minimizing Losses

1.1.3 Parameters of QoS

To be able to implement a QoS certain parameters need to be defined by

the applications. These parameters will help us to implement QoS for our

customers. Some of these parameters are the following:

 Latency

 Jitter

 Bandwidth

 Packet Loss

 Availability.

 QoS Terminology

Classes

 Classes, this term is used to categorize the users or applications in

different classes, such as Premium, Assured and Best-effort. Classes will

be discussed in more detail later on.

 Latency

 Latency is referred to as the time it takes to send a message from the

sender until to the time it is received by the receiver (i.e. end-to-end delay

experienced by a packet).

Router Latency

 It’s the time it takes a router to retransmit the packet once it has arrived at

the router.

Jitter (Delay variation)

 Refers to the variation in time delay between all packets in a session. This

parameter can be critical, as for example when sending a video stream

over the network and the packets arrive with a big variation in the delay

 11

between them. This affects the quality of the playback, and if the variation

in delay is very high it can distort our video to unacceptable levels.

Bandwidth

Bandwidth is the ideal capacity that the network can operate. The

networks never work on ideal maximum capacity since there are negative

factors that cause deterioration of the quality of the network. Such factors

include transmission delay, noise, etc.

Packet Loss

 Packet loss takes place when we are experiencing congestion on our

network. This parameter is the maximum packet loss we can accept. In the

event of network congestion this parameter may be used to discard packets

intelligently, up the defined Packet Loss parameter.

Service Availability

Availability is the reliability of the user’s connection to the Internet

service. In other words what is the probability to connect to my service

provider network when I want to. In order to be able to maintain all these

parameter there is a need of Service Level Agreement (SLA).

1.1.4 Service Level Agreement

SLA is a contract between the service provider and the customer. The

SLA can be applied to a customer, a group of customers, or a group of businesses.

The SLA defines end-to-end service specifications and may consist of the

following:

Availability

Services offered

Service Guarantees

Responsibilities

Auditing the service

Pricing

 12

Availability-guarantee uptime, service latency. It's the time it takes for the user to

access the network.

Services offered-the specification of the service levels offered.

Service Guarantees-for each class. The service guarantees are the guarantees for

the throughput, loss rate, delay, delay variation and class over-subscription

handling for each class. For instance if the premium class and best effort get the

same guarantees then there is no reason for paying more money to belong in the

premium class.

Responsibilities-In case the ISP breaks the SLA what the consequences are. Does

the ISP have 24 hours support?

Auditing the service-Does the ISP or the customer have the software or the tools

to audit the connections?

Pricing-It's a very hot topic under discussion and research that addresses the issue

of pricing according the SLA that the client had requested.

The Service Level Specifications and /or Service Level Objectives (SLOs)

describe in more detail the characteristics of the SLA.

The Service Level Specification, SLS, consists of following:

• Expected throughput

• Drop probability

• Latency

• Constraints on the ingress

• Constraints on the egress points

 13

• Scope of service

• Traffic profiles

An SLO partitions an SLA into individual objectives that can be mapped

into policies that can be executed. The SLO is responsible for that. The SLOs

define metrics to enforce, police, and/or monitor the SLA. Some metrics that are

being used are performance response time, component system availability (up

time), and serviceability.

Traffic Conditioning is control functions that can be applied to a behavior

aggregate application flow, or other operationally useful subset of traffic e.g.

routing updates.

1.1.5 Policy Management

Policy management responsibilities are to manage and control the entry of

packets into to the network, and define which services are available. To be able to

implement the policy management we need a QoS policy server that would

distribute, manage, and capture the network policy in the service provider's

domains. A management system needs to be able to do the following:

• Create a policy

• Directory storage of policy information

• Policy server (distribution of the policies)

• Networks elements, which perform policy enforcement

• An application interface to all interaction between the

policy elements and external applications

1.1.6 QoS Policies

To be able to enable QoS on the Internet we need policies to include

preferential queuing or dropping, admitting or denying access, or encrypting the

packet’s payload. Some protocols that support all these functions are:

• COPS

 14

• RADIUS RSVP

• IntServ

• DiffServ

The ability of these protocols to successfully scale depends on the

effectiveness of the network to administer and distribute consistent policy

information to the multiple devices in the network, which perform the

classification and packet conditioning or treatment. Protocols that are being used

for distribution of the policy include LDAP, COPS, SNMP and TELNET/CLI.

Some of these protocols will be discussed in greater detail on later sections of this

thesis.

1.1.7 Qos Ranking

Table 1 shows the ranking list of the protocols based on the QoS support they

offer.

QoS Network Application Description

Most X Provisioned Resources end-to-end

X X RSVP [IntServ Guarantee Services]

X X RSVP [IntServ Controlled Services]

X Multi-Protocol Label Switching [MPLS]

X X DiffServ.

X X DiffServ or SBM

X Diffserv applied at network core ingress.

X Fair queuing applied by network elements (e.g.

CFQ,WFQ,RED)

Least Best effort service

Table 1: QoS Ranking

 15

It’s obvious that RSVP can provide us with the most guaranteed QoS and

Best-effort with the least guaranteed QoS support. As we will see later, RSVP

does not scale well enough for use on the Internet. MPLS and DiffServ seem to be

better solutions than RSVP and they seem to be making their way up. The worst

of all these protocols in terms of QoS is the Best-effort, since it doesn’t offer any

QoS control.

1.2 New protocols for IP QoS provision

As discussed earlier, there are a few protocols that aim to support IP QoS.

Some of these have already failed to provide a scalable efficient service. Others

are still investigated. A few of these protocols are the ReSerVation Protocol

(RSVP), Integrated Services (IntServ), Differentiated Services (DiffServ) and the

Multi Protocol Labeling Switching (MPLS). The two most promising protocols

are MPLS and DiffServ [16]. The RSVP seems to be failing since it's very

complex system and does not scale easily. RSVP provides a reservation setup

through the routers. MPLS tries to solve the problem with the addressing of the IP

protocol at the routers. The MPLS uses a 20-bit label to simplify the routing of the

IP. MPLS is an independent protocol and can be complementary to DiffServ. It's

expected that the use of MPLS with DiffServ may prove a good solution. MPLS

resides in the routers.

1.2.1 Integrated services (IntServ)

The Integrated Services has been implemented to solve the problems we

have today with the Internet. The Integrated Services aims to establish a QoS in

the Internet and to enhance the Internet services, as was done in ATM. The main

components of the Integrated Services architecture are the traffic control, traffic

classes and the resource reservation setup protocol.

The Traffic Control consist of Admission control, Packet classifier and Packet

scheduler.

 16

The Admission control functions like a policeman. The Admission control checks

the recourses of the network to decide whether it will make a new reservation or

not. In this way it can also check to see if the connections use more resources

from what are supposed to. Then accordingly the ISP can re-allocate bandwidth.

The Packet classifier is responsible to map the incoming packets into different

classes. A class can be a single flow or a many flows.

The Packet scheduler is responsible for transmitting the packets streams

according to the resources that have been reserved for them.

The IntServ architecture has 3 Traffic Classes. These three classes are the

Guaranteed, controlled load, and Best-effort. By having these 3 classes we can

categorize our users into these classes and charge them based on the class they

use.

Guaranteed

The Guaranteed class guarantees the delay, bandwidth and packet loss.

This class can be used for real-time application such as video, audio, etc.

Controlled Load

This class offers a better service than Best-effort but lower service than the

Guaranteed class. It’s mainly used for users who don’t want to pay a lot of money

for the guaranteed class, but also wants to get a better service than the average

user. The packet losses and delays in this class will be minimized.

Best-effort

Best-effort will be all of the users who don’t have strict quality of service

requirements. This is the only class used in today’s IP Internet. It’s good for

elastic applications, such as e-mail, and ftp.

 17

1.2.2 Reservation Setup Protocol (RSVP)

The signaling protocol in the IntServ architecture is the RSVP. The RSVP

is invoked when a request for a new reservation has been made. The source sends

out the traffic requirements and will traverse along every node, which will check

if it can obtain those resources, and sends it to the next hope, until it reaches the

receiver. The receiver sends the reservation to the next node and passes it to the

next node until reaches the source where the transmission starts. In case, one of

the nodes can’t allocate the resources that it has been requested from, it can

announce the maximum resources that it can provide and the receiver will decide

whether it can’t accept it or decline it. In Figure 1 shows the steps of the RSVP

procedures [17].

Figure 1: RSVP Architecture

Disadvantages of RSVP

The RSVP is been already implemented in the Microsoft Windows 2000

server edition. The RSVP is been used for Intranets mostly but not for the

 18

Internet. Some of the reasons that it has not been used in the Internet are the

following:

• Scalability

• Security

• Policy control

• Scalability

The RSVP is a soft state protocol. This means that the RSVP has to

refresh the state of each reservation. This requires higher CPU power and memory

at the routers. The routers manipulate thousands of sessions that can be reserved

by the RSVP; as an outcome is to cause delays on other critical applications.

Security

The RSVP doesn’t provide any security to which nodes have authority to

reserve network resources. In that respect the security on this protocol is not good

enough to prohibit unwanted users to reserve more of what resources they are

suppose to reserve.

Policy control

Again the RSVP doesn’t have a good control to be able to policy that

granted access to the resources.

 19

1.2.3 Multi-Protocol Label Switching (MPLS)

Multi-Protocol Label switching (MPLS) is one of the three emerging

technologies which support IP QoS. The MPLS approach will be the networking

technology that delivers the traffic engineering capability and QoS performance

for backbone networks to enable the support of differentiated services [9]. MPLS

might solve the problems that IP networks face today, as for example deliver real-

time applications, guarantee a certain QoS to the customer, and control the traffic

over the network.

Forwarding and Routing

MPLS uses a label to route and forward the packet in the MPLS domain. This

label is assigned by the ingress Label Switching Router. At the ingress of the

MPLS domain the edge LSR functions like a classifier, and assigns a short fixed

size label on each packet, based on the concept of forwarding equivalence classes,

FEC. All packets belonging to one FEC take the same path and get the same

treatment. After a packet has been assigned with a label is admitted in the MPLS

domain where this label is been used to be routed accordingly. In the MPLS

domain, the routers usually lookup the label of the packet and not the original

packet to forward the packet to the appropriate router. At the egress point of the

MPLS domain the edge router removes the label and forward the packet to the

host. The major components of the MPLS network are shown in Figure 2.

The labels construct the Label Switched Path. The network administrators

can direct traffic where they want by changing the LSP. There are two ways to

establish the route for a given LSP: the control-driven, or the explicit route (ER-

LSP).

 20

Figure 2: MPLS Architecture

In the case where we are setting up control driven LSP, each LSR

determines the next interface to route the LSP based on its Layer 3 routing

topology database, and sends the label request to the L3 next hop [9]. When

setting up an ER-LSP, the route for the LSP is specified in the “setup” message

itself, and this route information is carried along the nodes the setup message

traverses [9]. In this case all the nodes along the ER-LSP will follow the route

specification and send the label request to the next indicated interface .In this way

the network administrators can manage and control the traffic engineering by

using the ER-LSP. They can direct the traffic exactly where they want by

specifying the exact nodes and interfaces the ER-LSP will traverse. Also, they can

be less strict working on a higher level and not give all the details about the route.

The labels of the packets have only local meaning in the MPLS domain. There are

cases that we need to have more than one label for one packet. This is called

label-stack. The label-stack uses the last in, first out stack that can contain as

many labels as needed. This method is used for transmitting a label to a router that

is not a direct neighbor.

 21

Advantages of MPLS over Internet

A list of the Advantage of MPLS over the Internet is following:

• A router doesn’t need to analyze the network layer packet header. The

router can run a wide range of network layer protocols.

• Every packet that comes into the MPLS domain at the ingress router is

assigned an FEC, forwarding equivalence class. This decision is made

based on the packet header information or more information that the

administrator wants to use.

• The edge routers require higher CPU and memory power because they

do most of the work. The routers in the core they are cheaper and

lower end routers since they just have to forward the packet based on

the label.

• With MPLS the administrator has control over the engineering traffic.

With the label packets can be forced to take a certain route through the

network.

• The precedence or class of service (DiffServ) can be encoded in a

label.

1.3 Introduction to DiffServ

Since 1997, a number of different approaches of implementing DiffServ

networks have appeared in the literature [27] [29] [30]. These approaches are

different in two ways: the high-level user perceivable services and the

mechanisms required to achieve these services. In 1998, a working group for

Differentiated Services (DiffServ WG) had been established. The main goal of

this group is to standardize the use of Type of Service in both IPv4 and IPv6.

DiffServ exploits the ToS (Type of Service) field in the IPv4 packet header

to provide rudimentary QoS to the users, see Figure 3. Briefly, DiffServ provides

a classification or differentiation of classes among the users. By classifying the

users in different classes you can provide them with better (prioritized) QoS. All

packets belonging to the same class are treated the same way. DiffServ uses the 6

 22

bits of the 8-bit ToS field that it has been renamed to DS (Differentiated Services

field). The other two bits are reserved for future use; see Figure 3.

Figure 3: DS Byte in IPv4 and IPv6

CU=currently unused (2-bits)

DSCP= Diff-Serv code point (6-bits)

DSCP=101100: EF (Expedited Forwarding)

DSCP=000000: DE (Best effort)

others still under study

DiffServ appears to be a promising architecture for providing differentiation

of service to aggregated users. It has received a lot of attention in the literature

and lately some implementations are appearing, as for example in Linux

implementation [6], and commercially on some routers [14]. In this thesis we will

focus on the DiffServ architecture, details of which appear in the later chapters.

 23

2 Differentiated Services (DiffServ)
2.1.1 Differentiated Services Model

Figure 4 shows the Differentiated Services Model. The DiffServ domain is

broken down to boundary nodes and interior nodes. The boundary nodes are

responsible for setting the DS bits in the packet, and the conditioning of packets.

The interior nodes are responsible for forwarding packets in different ways based

on the DS field. In order to have consistent service you must have common rules.

The rules are used to set the bits of the DS field code points and how the packets

are conditioned at the boundary nodes. Rules also define how the packets are

forwarded inside the network at the interior nodes.

Figure 4: DiffServ Domain

2.1.2 Terminology

Some terminology is necessary to be explained for better understanding of

Differentiated Services.

 24

Per-Hop Behavior (PHB)

PHB denotes a combination of forwarding, classification, scheduling and

drop behaviors at each hop. The main purpose of PHB is to make a

comprehensible connection between packet-level implementations and service

models [3].

 Some of guidelines for designing a PHB are the following:

• PHB is primarily a description of desired behavior on a relatively high

abstraction level; in particular, a PHB must have a comprehensible

motivation.

• PHB should allow the construction of predictable services.

• The desired behavior should be externally observable.

• The desired behavior should be local-that is, it should concern behavior

within one node rather than the whole network.

• The description of behavior is related to an aggregate that consists of all

packets belonging to the same PHB in a certain point of the network.

• The PHB description should not suppose any particular conditioning

function at the network boundary.

The traffic conditioning and service provision functions must be separated

from forwarding behaviors (RFC 2475). The reason of the separation of the traffic

conditioning and forwarding is flexibility, see Figure 5.

 25

Figure 5: Per-Hop Behavior

PHB class

A PHB class is a collection of PHBs intended to be applicable for

transmitting packets of one application. The packets shouldn’t be reordered inside

the network. The PHB class with the appropriate traffic conditioning functions is

the nearest equivalent for the network services in connection-oriented networks.

Codepoints

Codepoints are the 8 bits that used to inform the interior nodes about the

PHB of the packet. Several different codepoints can map to the same PHB.

Mechanisms

Mechanism is the implementation of one or more Per-Hop Behaviors

according to a particular algorithm. A mechanism can be used for implementing

several PHBs, and several mechanisms are usually needed to implement a PHB.

Figure 6, shows the main building blocks of DiffServ.

 26

Figure 6: Main Blocks of DiffServ Services

 27

2.2 DiffServ Architecture

The RFC 2475 defines the Architecture for Differentiated Services. Mostly

the RFC2475 talks about the scalability based on the DS field. The service

characteristics may be specified in terms of throughput, delay, jitter, loss, or

relative priority of access to network resources. The PHBs are developed based on

the above characteristics.

The main requirements of a basic architecture of a DiffServ Services are the

following:

Versatility: A wide variety of end-to-end services should be possible to

realize; network services should be independent of applications, and

they should be directly applicable with current applications and with

current network services.

Simplicity: The overall system or parts of it should not depend on

signaling for individual applications. A small set of forwarding

behaviors should be necessary.

Cost efficiency: Information about individual flows or customers should

not be used in core nodes, but only states of aggregated streams should

be used in core nodes.

2.2.1 Architecture Model

This section focuses on the architecture model of the Differentiated

Services. For better understanding of the architecture model, we need to clarify

some more terminology. Figure 7 shows the basic elements of Differentiated

Services Network. A list of the basic elements of DiffServ is the following:

• Boundary node: A collection of functions needed to interconnect a DS

domain to another DS domain or to non-DS-capable domain.

 28

• Interior node: A collection of functions needed if a node is connected

only to other DS-capable nodes.

• Ingress node: A collection of functions needed to handle incoming traffic

streams to a DS domain.

• Egress node: A collection of functions needed to handle outgoing traffic

streams from a DS domain.

In reality, the boundary node can be a boundary node for some traffic stream and

an interior node for some other streams. An interior node may have a limited

capacity of traffic conditioning.

Figure 7: Basic elements of a Differentiated Services network

 29

At the boundary nodes takes place the traffic condition based on the Service level

Agreements. There are two level agreements.

• Service-level agreement (SLA): A contract between a customer and a

service provider that specifies the forwarding service

• Traffic-conditioning agreement (TCA): Defines the rules used to realize

the service, such as metering, marking, and discarding

2.2.2 Traffic Classification and Conditioning

Figure 8 shows the logical structure of traffic classification and

conditioning functions. Traffic conditioners are usually located at DS boundary.

The classification is made according to the source-destination and DS filed. A

traffic profile is one way to present the traffic-conditioning rules. The packets can

be either in-profile or out-of-profile, based on the results at the arrival time of the

packet. The in-profile packets have higher priority over the out-of profile packets.

The traffic meter measures each traffic stream.

Figure 8: Packet classifier and traffic conditioning according to the RFC2475

Traffic meter informs the marker, shaper and dropper mechanisms about the state

of the stream:

• Marker: Sets an appropriate codepoint to the DS field of the packet.

 30

• Shapers: Used to smooth the traffic process of particular aggregate

streams

• Dropper mechanisms: Based on the SLA and TCA, some packets can be

discarded at the traffic-conditioning element.

2.3 Per-Hop Behavior Groups

This section describes the per-hop behavior groups. It concentrates on the

following four PHB groups:

• Class Selector PHB

• Assured Forwarding

• Expedited Forwarding PHB

• Dynamic RT/NRT PHB

2.3.1 Class Selector PHB

The Class Selector PHBs is been defined for backward compatibility for Ipv4

TOS octet. There is some usage of the 0-2 bits of the TOS of Ipv4 that were

intended for the Department of Defense applications. The RFC 2474 states the

following:

A class Selector PHB should give packets a probability of timely forwarding

that is not lower than that given to packets marked with a lower Class Selector

PHB, under reasonable operating conditions and traffic loads.

The CS PHB is situated for Resource Sharing Model. Figure 9 shows an

implementation of Class Selector PHB. The first two queues are high priority

queues and they accept queues as long as they have space. The lowest queue is

divided in thresholds. The lowest queues could be RED.

 31

Figure 9: Class Selector PHB Implementation

2.3.2 Assured Forwarding (AF)

The assured forwarding (AF) has four classes and within each class 3

drop-precedence. Any packet exceeding their profile will be demoted but not

necessarily dropped. Every node that supports AF must at least implement these

four classes. In AF every node must reserve a certain amount of resources such as

bandwidth, buffer size and etc. Every packet that enters at the edge router is

subject to traffic conditioning. At the edge router the packets can be dropped,

shaped, reassigned to another class or to higher or lower drop precedence. After

the packet is in the network it just forwarded to the next router. With AF PHBs

have the flexibility to implement different service models based on applications,

individual’s customers, or organizations. Figure 10 shows an implementation of

AF PHB.

 32

Figure 10: AF implementation based on four queues

2.3.3 Expedited Forwarding (EF)

The Expedited Forwarding minimizes the delay, loss and jitter. In the EF

if the packet exceeds its profile will be discarded. In order to keep the loss, delay

and jitter low the packet should see no queues. The EF uses a single bit to indicate

that it is high priority [3]. The EF guarantees the minimum departure rate at every

node. The network administrator can set the minimum and maximum departure

rate from every node. If the packets exceed the maximum departure rate then it

discarded so it doesn’t damage any other traffic.

 The classification takes place at the ingress router. For every packet that

comes in the ingress router, the router classifies the packet according to its SLA

(Service Level Agreement). After the packet has been classified then the rest of

the routers can use the DS field to forward the packet to its destination, with the

appropriate priority. There is no marking at the EF PHB since there is only one

level of importance. In case the packets arrive before its scheduled time there are

three options at the boundary and interior nodes:

• To forward the packet immediately

• To forward the packet at the scheduled time

• To discard the packet

 33

The EF PHB can implement a leased line service as a primary model and

guaranteed connection as a secondary service model. An implementation of EF

PHBs is shown at Figure 11.

Figure 11: Expedited forwarding Implementation

Figure 11 show a small queue with strict priority and a default queue with

RED mechanism. This is because we want to minimize the RTT and the delay.

Keep in mind that in case we are transmitting a real time data they are useless if

the data exceed a certain delay.

2.3.4 Dynamic RT/NRT PHB Group

The DRT-PHB contains two classes and six PHBs. Figure 12 shows the

classes. The PHB classes offer two distinctly delays. One delay is for the real time

applications such as videoconferencing, IP telephony and etc. The second delay is

for elastic applications such as email, ftp and etc. Six importance levels offer wide

dynamics for various traffic-control. The two delays and the six-importance level

can be increased.

 34

Figure 12: Structure of DRT-PHB group

The DRT-PHB group has the flexibility to be applied to any of the three

service models: application, customer, or organization model. This flexibility is

gained because the DRT-PHB group uses the nominal bit rate, NBR. NBR defines

the relative amount of resources that a certain entity is supposed to achieve from

the network. An implementation of the RT-PHB group is shown at Figure 13.

Figure 13: Implementation of the DRT-PHB

 35

3 Traffic Management in DiffServ
In order to deliver differentiated services, it is necessary to offer the means to

manage traffic. In a DiffServ setting one can identify a number of alternatives,

such as Class Selector PHB, Assured forwarding Group, Expedited Forwarding

PHB and DRT/NRT PHB. Next we discuss the terms urgency and importance and

then detail some of the mechanisms than can be employed, with special emphasis

on the LINUX implementation.

3.1 Urgency and Importance

Urgency and importance are very important terms for traffic handling. What

do we mean when we say this packet has a high urgency? A packet with high

urgency must be delivered as soon as possible with as small delay as possible. Of

course there are many combinations of urgency and importance. A packet can be

urgent and important, urgent but not important, important but not urgent, or not

urgent and not important.

Real time applications such as IP telephony and videoconferencing require

a small urgency otherwise their data can be useless.

Importance on the other hand can be used to differentiate certain packets over

others. For instance if we wanted to give a higher priority to a telnet application

over email we could do that by using importance characteristics. We could mark

all the telnet packets with higher importance and at the event of a congested

network the email packets will be discarded first before the telnet packets

[3]. Figure 14 shows the scenario based on important versus less important. We

can see from the figure that in case of one individual flow there is a higher

probability to drop an important packet rather the non-importance. At aggregated

flows, there are more chances to drop a non-important packet since there is a

higher chance in that time slot to have non-important packets.

 36

Figure 14: Selection of Packets

3.2 Traffic Management in Boundary nodes

The traffic handling can be broken down into four phases:

1.Setting the target

2.Collecting information

3.Making the decision

4.Executing the decision

3.2.1 Classifiers

A classifier is a mechanism used to select the PHB class for a traffic flow.

There are various models that can be used to classify a PHB class such models are

the following:

• The user selects a definite service class from the available classes.

• The application automatically selects a preferable service class for

each flow or packets.

 37

• The network selects an appropriate service class based on

information about the application.

• The network selects an appropriate service class based in the

customer contract regardless of the application.

• A combination of the first four approached.

The first approach is not very practical to implement, since it requires

additional mechanisms to allow the simultaneous use of several classes, such as

IP telephony and data. The second approach seems more practical, to have the

application to select a service class. In order to be able to implement this scheme

the customer and the service provider have to use the same DS codepoints. The

problem is that the classification must be made at the customer premises and

might not have the equipment for it.

The third approach seems the more reasonable in the case the customer

doesn’t have the equipment. The fourth approach is applicable and reasonable by

using SLAs between the provider and the customers. The packet classifiers are

broken down into two types, the behavior aggregate, BA, classifier and multi-field

classifier, MF.

3.2.1.1 Behavioral Aggregate Classifier

 BA classifies or selects packets based on the DS field only. It’s used

mostly on the interior routers because it’s very difficult to classify packets for

customers, since it classifies packets based on the DS field.

3.2.1.2 Multi Field Classifier

 As we have seen at the BA classifier is mostly used for interior routers, a

multi field classifier is used at the boundary of a DS domain. The MF classifier

selects or classifies packets on the header of the packet.

 38

3.2.2 Meters

The traffic-metering module is responsible for sorting the classified

packets into the right importance level. One way to do this, the packet marking

must take into account several measuring results. Another way is that the

marking, shaping, and dropping decisions must be taken based on the measuring

result of the class to which the packet belongs.

3.2.3 Packet Marking

The main objective of the packet marking is to map packets into one of the

available importance levels of the PHB class used by the flow. There are two

marking principles:

• When a packet exceeds a threshold, it is marked as low importance,

but it is not used to determine the load level of the following packets.

Effectively, the allowed bit rate of the higher importance level is

totally independent of the load of lower level importance level.

• When the momentary load level exceeds a threshold, every packet is

marked with lower importance.

3.2.4 Traffic Shaping

The shaping module is responsible for remarking the packets to lower

importance level. The user has the freedom to shape its traffic before it sent to the

network.

3.2.5 Packet Dropping at Boundary Nodes

In case the customer uses leased-line or guaranteed connections services, it

may require that nonconforming packets be discarded immediately.

 39

3.3 Traffic-Management Functions in Interior Nodes.

There are some differences between the interior router and the boundary

router. The main parts of the interior routers are the buffering and discarding. At

the interior nodes the classification is based on the DSCP field of packet.

There are many different queuing systems that are available for buffering such as

FIFO,SFQ, CBQ, RED, and etc.

3.3.1 Queuing Disciplines

3.3.1.1 Pfifo_fast

PFIFO stands for packet First In, First Out. Also know as First Come First

Served (FCFS) queuing. There is only one queue and all the packets are treated

equally. The default size of the PFIFO queue is 100 packets in Linux operating

system. The queue contains three bands, 0, 1 and 2. All the bands must comply

with the FIFO rules. The bands are processed based on their priority. Band 0 has

the highest priority and band 1 has priority over 2. In order to process band 1,

band 0 must be empty. PFIFO stores the packets when is congested and forward

them based on the arrival time [14].

PFIFO will not give priority to high priority packets over low priority

packets. Ill-behaved sources can exploit most of the bandwidth with the result that

important traffic will be dropped at the expense of lower priority traffic. At the

event of congestion, when the queue fills up the PFIFO will drop all the packets.

PFIFO is very suitable for large links that don’t have large delays and minimal

congestion.

3.3.1.2 Priority Queuing

Priority Queue, PQ, allows to configure four traffic priorities. This can be

done by using several filters in series. The packets will be placed to the

appropriate queues based on the header characteristics of the packets. The queues

with highest priority is dequeued until it’s empty and then move to the next

 40

queue. Every time a packet is transmitted, the queues are scanned based on their

priorities and start it’s transmition.

Figure 15: Priority Queuing

Packets can be classified based on the following list:

• Protocol or sub protocol type

• Incoming interface

• Packet size

• Fragments

• Access List

3.3.1.3 Custom Queuing

Figure 16 shows how the custom queuing works. CQ dequeues the packets in a

round robin fashion. CQ allows specifying the number of packets or bytes each

queue will be transmitting. In this way, CQ allocates the bandwidth among the

queues. For every network interface the CQ maintains 17 queues. The queue

number 0 has the highest priority of the other 16 queues. The system queue

number 0, services the keep alive packets and signaling packets. CQ is statically

configured and cannot be configured dynamically.

 41

Figure 16: Custom Queuing

3.3.1.4 Stochastic Fairness Queuing (SFQ)

SFQ was proposed by McKenney. SFQ is a simple implementation of fair

queuing algorithms family. The incoming packets are classified based on the

source-destination address and port number. This is achieved by using a simple

hash function to map the incoming packet to an available queue. The

classification of the incoming packet to the queue is probabilistic. Different flows

can reside in the same queue despite their importance. The hash function changes

periodically in order to avoid packets coming from the same source to reside in

the same queue.

Flow is the sequence of data packets having enough common parameters

to separate them from other flows. SFQ consists of dynamically allocated number

of FIFO queues [4]. Based on McKenny, an SFQ may need to have 5 to 10 times

more queues than the active source-destination pairs. The SFQ runs in a round

robin, sending one packet from each FIFO in one turn. In table x, you can see the

probability that one flow can share a queue with other flows. SFQ can divide the

bandwidth exactly among all active queues and that the bandwidth of a queue is

divided exactly evenly among flows directed to it. The benefits of SFQ are that

requires little CPU and memory usage.

 42

3.3.1.5 Weight Fair Queuing

WFQ provides dynamic fair queuing to the entire network by dividing

bandwidth across queues of traffic based on weights. WFQ is a flow-based

algorithm that simultaneously schedules interactive traffic to the front of a queue

to reduce response time [14]. Most variants of the WFQ discipline are compared

to the Generalized Processor Sharing (GPS) scheduler, which is a theoretical

construct, based on a form of a processor sharing.

Figure 17: Weighted Fair Queuing

Figure 17 shows the WFQ architecture. WFQ provides traffic priority

management that dynamically sorts traffic into messages that make a

conversation. WFQ breaks up the train of packets within a conversation to ensure

that bandwidth is shared fairly between individual conversations and that low-

volume traffic is transferred in a timely fashion. The classification of traffic is

based on packet header addressing such as source and destination network or

MAC address, protocol, TOS and etc. In WFQ there are two categories of flows:

high-bandwidth sessions and low-bandwidth sessions. Low bandwidth has a

higher priority over the high-bandwidth session.

 43

The order of removal from the fair queues is determined by the virtual

time of the delivery of the last bit of each arriving packet. WFQ is aware of the IP

presence of the packet. In other words WFQ detects higher priority packets

marked with precedence by the IP forwarder and can schedule them faster. As the

precedence increases, WFQ allocates more bandwidth to the conversation during

periods of congestion. WFQ uses weights to determine the order of the queues

that are emptied. First serves the queues with the lower weights.

 44

3.3.1.6 Random Early Detection

The Random Early Detection was proposed by Sally Floyd and Van

Jacobson. The basic idea of the RED is to calculate the average queue size and if

the average exceeds a certain threshold the incoming packets are dropped

randomly based on the probability that depends on the average queue size. RED

increases the fairness over the previous method, the drop tail method.

The RED can be used with Explicit Congestion Notification (ECN). In the case

that we use ECN with RED instead of dropping the packets we mark them. If the

queue gets full then it will drop the packets, see Figure 18.

 The ECN notifies the TCP sources by suing some bits in the TCP header.

Then the TCP sources reduce their sending rate, by doing this we are avoiding a

congestion state. Red can keep the queue size low if we use the correct

parameters.

Figure 18: RED Packet Drop Probability

Disadvantages of RED

In the case where we have a few TCP sources using one link and the TCP

source reduces its sending rate when it experiences a packet loss it will lead to

underutilization of the link. In case there are many TCP sources only few sources

may be reduced and the behavior of red will be similar to drop tail. These

problems have been solved with the Adaptive RED and BLUE.

 45

3.3.1.7 n-RED

The n-RED is the expansion of the RED. In n-RED we have two classes of

traffic, called IN and OUT. This queue has been named as RIO, RED IN and

OUT. The RIO has the following two sets of parameters:

 1st set:

 Thresholds

 Drop probability

 2nd set: Variables

 Average queue size

There are two averages of sizes that needed to be calculated in RIO. The

first average of queue size is for the drop probability of the IN-packets. This

average queue size counts only the IN-packets that are coming in the queue. The

second average queue size for the OUT-packets is calculated based on the total

queue size (OUT- and IN-packets). In other words the second average queue for

the drop probability it counts and the IN and OUT-packets. The RIO queue uses

two RED queues therefore is called 2-RED. We can implement n-RED queues as

far we have n sets of parameters and variables.

3.3.1.8 Weighted Random Early Detection

The WRED uses the RED algorithm and the IP Precedence to provide for

preferential traffic handling of higher priority packets. The WRED at a congested

point can drop lower priority packets and give priority to the preferable classes.

The IP Precedence controls which packets are dropped [14]. For instance traffic

that has lower precedence has a higher drop rate. In Figure 19, we can see a

diagram of the WRED and how it works. WRED avoids the problem of the

globalization and tries to make an early detection of congestion as it also provides

for multiple classes of traffic. The WRED is used on the core routers rather on the

 46

network’s edge. The WRED gives the flexibility to the network administrator to

assign a weight to the IP precedence, as he/her believes is better for its network.

Figure 19: Weighted Random Early Detection

The WRED drops packets selectively based on the IP Precedence. It works

on the notion that if the packet has a high IP Precedence then it's very highly to be

delivered to its destination. Packets with lower IP Precedence will be dropped

first. The WRED starts dropping packets as soon it see the queue to start getting

congested in order to prevent the congestion. By doing this avoids the global

synchronization because it will not need to drop very large packets at once. Users

who are sending a lot of traffic over the network are more likely that their sending

rate will be reduced in comparison with the users who are not sending so much

traffic.

3.3.1.9 Class Based Queuing

Class Base Queering is another queuing discipline that solve the resource

denial problem that we could have with other disciplines. In other words, CBQ

can prevent classes from starvation. The CBQ is based on the link-sharing

 47

concept [1]. In a non-congestion state at the leaf classes, CBQ uses a general

scheduler.

Figure 20: CBQ link share structure under no congestion

At the event that the classes become congested a link share scheduler is

activated see Figure 20. This scheduler is responsible for isolating the traffic

among the classes. CBQ has several parameters that can isolate, borrow or

bounded traffic among the classes. This can be done from the top-level stage, see

Figure 21. The general scheduler within a priority class is freely chosen.

Implementations of CBQ use weighted round robin (WRR) and packet-by-packet

round robin (PRR).

 48

Figure 21: CBQ link share structure under congestion

3.3.1.10 CSZ Scheme

The CSZ objective is to isolate the link capacity to different traffic classes.

In CSZ guaranteed service is provided by WFQ scheduler. WFQ assigns a share

of link capacity to each flow. WFQ assigns a share of link capacity to each active

flow. The predictive service in CSZ is a provided by priority queue. Figure 22

shows the CSZ scheme.

 49

Figure 22: CSZ scheduler

3.3.1.11 Deficit Round Robin

Deficit Round Robin scheduler alleviates the problem with the various

sizes of packets. The regular round robin is ignoring the fact that packets have

different sizes and this causes some issues of fairness. DRR uses stochastic fair

queuing to assign packets into the queues [4]. The queues are served with round

robin with the only difference if a queue was not able to send a packet in the

previous round because its packets was too large, the remainder from the previous

quantum is added to the quantum for the next round. See Figure 23 and Figure 24.

 50

Figure 23: Deficit Round Robin: Initialize the variables to zero.

 51

Figure 24: Deficit Round Robin: After sending out a packet of size 200, queue

had 300 bytes of its quantum left.

3.3.1.12 Token Bucket Filter

The TBF is a simple queue that monitors the traffic that is transmitted by

single source and limits the traffic on the desirable rate. Figure 25 shows the

function of TBF. The bucket size, b, of the TBF is the most important parameter

since it defines the numbers of tokens that can be stored. A token is removed from

the bucket every incoming byte that is sent by the source. New tokens are placed

back to the bucket based on the rate, r, of the token. When the bucket is empty the

arriving packets are dropped.

 52

Figure 25: Token Bucket Filter

There are three possibilities based on the TBF algorithm:

• The data arrives into TBF at rate equal the rate of incoming tokens. In this

case each incoming packet has its matching token and passes the queue

without delay.

• The data arrives into TBF at rate smaller than the token rate. Only some

tokens are deleted at output of each data packet sent out the queue, so the

tokens accumulate, up to the bucket size. The saved tokens can be then

used to send data over the token rate, if short data burst occurs.

• The data arrives into TBF at rate bigger than the token rate. In this case

filter overrun occurs -- incoming data can be only sent out without loss

until all accumulated tokens are used. After that, over limit packets are

dropped.

 53

4 Implementing Differentiated Services on Linux
There are many networking function that can be used to implement and

deliver differentiated service. In this thesis we will briefly mention two software

tools designed to configure a DiffServ router. One of the tools is known as

UCLA software and the other the EPFL software.

The designers of the UCLA package wanted to have low level forwarding

path for providing different levels of network services. A Bandwidth Broker

manages the allocation of resources. The BB configures routers forwarding

parameters in the domain accordingly with a policy database. The policy database

stores information about flows requiring increased network service.

The UCAL package runs on FreeBSD Unix.

The EPFL software runs under Linux. Based on the modularity that Linux

offers makes it a very flexible platform for experiments with PHBs already under

standardization as well as experiments with new PHBs. And that’s why we used

the EPFL package for our experiments.
4.1 Introduction to Linux Networking Services

Linux is an open source operating system, which is freely available to the

public. Linux had gained popularity all over the world but mostly in the academic

environment. Most of the testbeds are released in Linux or in Unix environment

first. Linux offers a rich set of Traffic Control (TC) functions for networking.

Lists of possible network traffic control functions include:

• Throttle bandwidth for certain computers

• Throttle bandwidth to certain computers

• Fairness for bandwidth sharing

• Protect your network from DoS attacks

• Protect the Internet from your customer

• Multiplex several servers as one, load balancing, or

enchanted availability

• Restrict access to your computers

 54

• Limit access of your users to other hosts

• Do routing based on user id, MAC address, source IP

address, port type of service, time of day or content.

The Linux kernel offers support for IntServ, DiffServ and QoS. Before we

get into the details of traffic control configuration of Linux we have to understand

how the TC works under Linux. In order to transmit data into the network we

have to setup the network card, using appropriate driver software.

 Two functions of the driver software are:

• The Linux Networking Code can request the network driver to send a

packet on the physical network.

• The network driver can deliver packets that it has received on the physical

network to the Linux Networking Code. The current architecture sends the

data from the application to the networking driver, see Figure 26.

Figure 26: Default Setup of a Linux

Figure 27 shows an extra function, the Traffic Control function, included

in the LINUX implementation. With the traffic control in between the Linux

 55

Networking Code and the Network driver, packets can be manipulated in several

ways.

Figure 27: Linux Setup with Traffic Control

Figure 28 shows the block diagram of the kernel processes, the packets received

from the network and how it generates new data to be sent on the network [5].

Figure 28: Processing of network data

The Input interface is responsible for passing packets to the Ingress

Policing module. Packets could be policed at the Input interfaces. The Ingress

policing modules are responsible for discarding traffic in the event that packets

are arriving too fast. Then the packets are either forwarded on different interface,

in case the machine is acting as a router, or are passed to the higher layers for

further processing. The forwarding module is responsible for the selection of the

 56

output interface, the selection of the next hop, encapsulation etc. Then the packet

is queued at the output interface. The traffic control can drop packets based on

several parameters that can be selected by the user.

The major conceptual components of the traffic control of Linux code are:

• Queuing disciplines

• Classes (with queuing disciplines)

• Filters

• Policing (and related concepts)

4.2 Queuing Discipline

Every network device has its own queuing discipline that controls how the

packets are enqueued. There are several queuing disciplines such as pFIFO,

bFIFO, SFQ, RED and so on. Figure 29 shows a queuing discipline.

Figure 29: A simple queuing discipline without classes.

Figure 30 shows a queuing discipline that uses filters to prioritize packets

into to different classes. More than one filter can be mapped to a class [7].

Figure 30:A simple queuing discipline with multiple classes.

 57

Classes use another queuing discipline to store their data; such queuing

disciplines can be pFIFO, bFIFO, RED, SFQ and etc. Figure 31 shows this

scenario.

Figure 31: Combination of priority. TBF and FIFO queuing disciplines.

The queuing discipline implements a two-delay priority. The packets are

filtered and classified into these two classes. The first queue is a token bucket

filter, which is the high priority class. The TBF is served with 1Mbps rate and has

a higher priority than the FIFO. All the other packets are classified into the lower

priority queue, which is served with a queuing discipline FIFO.

Each queuing discipline is identified by unsigned 32 bit numbers, u32.

The identification number of the queuing discipline is split into two parts, the

major number and the minor number. The major number and the minor number

are 16 bit each. The notation is major:minor, where a minor number is always

zero for the queuing disciplines see Figure 32. At the network device eth0, there

must be only one queuing discipline, which the major number of the queuing

discipline must be unique. In case the user doesn’t define the major number of the

queuing discipline the system assigns one automatically.

 58

Figure 32: Addressing for queuing disciplines and classes.

Each queuing discipline has a set of certain functions that uses to control

its operations. Such functions are enqueue, dequeue, requeue, drop, init, reset,

destroy, change, and dump. More detail description of these functions can be

found at [19]. There are some statistics that are maintained by each queuing

discipline. The minimum sets of statistics that are maintained are the following:

• The current queue length

• The cumulative number of bytes enqueued

• The cumulative number of packets enqueued

• The cumulative number of packets dropped

4.3 Classes

There are two ways that you can identify a class, by the class ID, and the

internal ID. The class ID is been assigned by the user, and the internal ID by the

queuing discipline. The internal ID must be unique with a given queuing

 59

discipline. The data type of the Class ID is u32 and the internal ID is unsigned

long. The kernel is accessing the class by its internal ID.

Queuing disciplines with classes provide a set of functions to manipulate

classes. A list of these functions is graft, leaf, get, put, change, delete, walk,

tcf_chain, bind_tcf, unbind_tcf and dump_class [19].

4.4 Filters

The incoming packets have to be assigned into the various classes. This is done

using filters. Queuing disciplines are responsible for this task and with the usage

of filters can assign incoming packets into classes. This takes place during the

enqueue operation. The filters are organized based on the queuing discipline or

class. All filters are stored in a filter list. This list is organized either by the

queuing discipline or by class. It’s also ordered based on the priority, in ascending

order. The structure of the filters can been seen at Figure 33.

Figure 33: Structure of filters

Like classes, filters have internal IDs that are used to be reference for

some internal tasks. Figure 33 shows the handles and the internal ID that are used

for internal purposes. These handles are 32-bit and the internal IDs are unsigned

long type. The order of which the filters and their elements are examined to get a

match for the incoming IP is shown at Figure 34.

 60

Figure 34: Looking for Filter Matching

There are several functions that can be used in order to control the filters.

A list of these functions is classify, init, destroy, get, put, change, delete, walk,

and dump. For more information regarding these functions can be obtained from

[19] [5].

Filters are broken down to generic and specific filters. Generic filters can use one

instance per queuing discipline that can classify packets for all classes. The

cls_fw, cls_route, and cls_tcindex are generic filters. Specific filters use one or

more instances of the filter or its internal element per class. The cls_rsvp and

cls_u32 are specific filters.

4.5 Policing

In order to make sure that the traffic doesn’t violate a certain limitation, we use

policing. The policing is broken down to five policing mechanisms, policing

 61

decisions by filters, policing at ingress, refusal to enqueue packets, dropping

packets from an inner queuing discipline and dropping a packet when enqeueing.

4.6 Classifiers under Linux

Some of the classifiers that are used by the tc program are the following:

• fw

 Bases the decision on how the firewall has marked the packet.

• f32

 Bases the decision on fields within packet (source-destination address, etc)

• route

 Bases the decision on which route the packet will be routed.

• rsvp, rsvp6

Bases the decision on the target (destination, protocol) and optionally the source as

well.

The classifiers that we have listed above accepted several parameters that some of

them are common. A list of these parameters follows:

• protocol

 The classier defines the protocol that will accept. Required IP only.

• parent

The handle this classifier is to be attached to. This handle must be an already existing

class. Required.

• prio

 Defines the priority of this classifier.

• handle

 This handle means different things to different filters.

 62

5 Evaluating Differentiated Services on Linux
5.1 Topology Under Study

Figure 35 shows the network setup that we have implemented at University

of Cyprus (UCY). The Linux router is an Acer PII300MHZ, 128MRAM. We

have installed Linux Mandrake with a Kernel 2.4. The clients are connected on a

100Mbps switch and the outgoing interface of the router goes on a 10Mbps Hub.

Figure 35: Network Topology for DiffServ Architecture

In order to obtain some statistics we have used various tools such as IPERF,

TCPDUMP, TCPTRACE and XPLOT. IPERF generates UDP and TCP data

traffic. It has the ability to transmit the data at specific port, or at specific bit rate,

or a certain amount of data. IPERF runs under Linux and Windows. When we

 63

used IPERF under windows we have noticed some discrepancies. Another tool

that we have used is the TCPDUMP. TCPDUMP captures the traffic at the

Ethernet card. And last, we have used the TCPTRACE tool. TCPTRACE analyses

the data that are generated from the TCPDUMP. TCPTRACE generates some

files that can be used by the XPLOT tool to generate graphs.

5.2 Evaluating Linux Implementation for DiffServ

This section focuses on the evaluation of the DiffServ architecture under

Linux. Several Scenarios were considered which aim to show the behavior of the

Linux implementation of Differentiated Services under various queuing

disciplines, topologies, various parameters etc.

We have broken down the results in two categories. The first category is

the scenarios that have one queue. For this category we have run tests to verify the

expected behavior of the queuing disciplines for non-DiffServ networks. The

results can be found in Appendix I.

The second category is the scenarios with two queues and with DiffServ

implementation. The results appear in section 5.2.1. First we present a table

giving an overview of the four scenarios we have investigated.

 64

SCENARIO 1

 Scheduler Class
Priority

Class
Weight

Filter
Priority

Queue
Types

Traffic
Type

Test 1
5 500K 1 pFifo UDP CBQ

 5 500K 1 pFifo UDP
Test 2

 100
 1

Test 3
1 1

 5 1
Test 4

4 1
5 1

Test 5
5 800K 1
5 200K 1

Test 6
5 500K 1 UDP
5 500K 1 TCP

Test 7
5 500K 1 TCP
5 500K 1 TCP

Table 2

Scenario 2
Test 1

Scheduler Class
Priority

Class
Weight

Filter
Priority

Queue
Types

Traffic
Type

5 200K 2 TBF UDP

 CBQ

 5 800K 1 pFifo UDP
Test 2

 UDP
 TCP

Table 3

Scenario 3
 Scheduler Class

Priority
Class
Weight

Filter
Priority

Queue
Types

Traffic
Type

Test 1
PQ1 200K 5 pFifo UDP PQ

 PQ2 800K 5 pFifo UDP
Test 2

PQ2 200K 5 pFifo UDP PQ
 PQ1 800K 5 pFifo UDP

Table 4

Note: unfilled table entries indicate that they use the same parameters as in test 1.

 65

Scenario 4
 Scheduler Class

Priority
Class
Weight

Filter
Priority

Queue
Types

Traffic
Type

Test 1
5 300K 2 pFifo UDP CBQ

 5 700K 1 RED UDP
Test 2

 TCP
 TCP

Test 3
 UDP
 TCP

Test 4(TCP Window size 64K)
 500K TCP

 500K TCP
Test 5 (TCP Window size 128K)

 500K TCP
 500K TCP

Table 5

Note: unfilled table entries indicate that they use the same parameters as in test 1.

5.2.1 Scenario 1 (pFIFO, pFIFO)

Test 1

In this scenario we are using two pFifo queues, see Figure 36.The source

192.168.2.5 generates traffic for the receiver 192.168.1.4. The flow 1 represents

the traffic that travels from 192.168.2.5 through the upper pFifo and to the

192.168.1.4. The flow 2 represents the traffic that starts from 192.168.2.3 and

traverse through the lower pFifo towards to 192.168.1.7. From the Table 6, we

can see that both of the flows have the same priority and the same weight. Both of

the sources transmit the same amount of data at the same bit rate. In all the tests,

we have weighted the super class of the CBQ at 1Mbit.

 66

Figure 36: Block Diagram of pFifo queues

with same class and filter priorities and weights
Router Setup Parameters

Source IP Classifier Scheduler Class

Priority

Class

Weight

Filter

Priority

Bandwidth Notes

192.168.2.5 U32 CBQ 5 500K 1 5Mbps

192.168.2.3 U32 CBQ 5 500K 1 5Mbps

Table 6
Source Results

Source IP Destination

IP

Transfer

Mbytes

Rate

Mbps

Frame

Length

Queue

Type

Queue

size

Traffic

Type

Packets

Transmitted

Time (s)

Duration

192.168.2.5 192.168.1.4 20 7 1514 pFifo 50 UDP 14267 22.9

192.168.2.3 192.168.1.7 20 7 1514 pFifo 50 UDP 14267 22.9

Table 7

Flow 1 and flow 2 are 5Mbps each. Table 6 shows the transferred data and

the bit rates that we have been transmitting from the sources.

 67

Destination Results

Destination IP Incoming

Traffic

Data

Transferred

Jitter Delay

(ms)

Packet Loss Total

Packets

Time (s)

Duration

192.168.1.4 4.5Mbps 13.1Mbytes 9.294 4926 14267 23.1

192.168.1.7 4.6Mbps 13.1Mbytes 1.421 4918 14267 23

Table 8

The results from this test can be seen in Table 7 and Table 8. The results

appear reasonable since the incoming rate at the receivers is below 5Mbps. This

test shows fairness over the UDP flows.

 68

Test 2

In this test, we would like to investigate the effect of the filter priorities.

Table 9 shows the setting of the filter priorities.

Figure 37: Block Diagram of pFifo queues

with different filter priorities

Router Setup Parameters

Source IP Classifier Scheduler Class

Priority

Class

Weight

Filter Priority Bandwidth Notes

192.168.2.5 U32 CBQ 5 500K 100 5Mbps

192.168.2.3 U32 CBQ 5 500K 1 5Mbps

Table 9

Source Results

Source IP Destination

IP

Transfer

Mbytes

Rate

Mbps

Frame

Length

Queue

Type

Queue

size

Traffic

Type

Packets

Transmitted

Time (s)

Duration

192.168.2.5 192.168.1.4 20 7 1514 pFifo 50 UDP 14267 22.9

192.168.2.3 192.168.1.7 20 7 1514 PFifo 50 UDP 14267 22.9

Table 10

 69

Destination Results

Destination IP Incoming

Traffic

Data

Transferred

Jitter Delay

(ms)

Packet

Loss

Total Packets Time (s)

Duration

192.168.1.4 4.5Mbps 13.0Mbytes 8.294 5029 14267 23.1

192.168.1.7 4.6Mbps 13.3Mbytes 1.345 4913 14267 23

Table 11

The results are similar to the test 1; see Table 10 and

Table 11. In this test, observe that the filter priorities do not play a critical

role on the bandwidth allocation. We have to keep in mind that the filter priorities

are for the classification of the data into the queues. Of course, we cannot assume

the same if we were sending TCP and UDP traffic at the same time. An important

observation is that the jitter of the two flows seems questionable. IPERF, the tool

that we are using, uses the formula 1, to compute the jitter.

E{(Wi)-E[Wi])]} Formula (1)

Wi is a random delay that rises out of the buffering within network

After analyzing the formula we can notice that the results are correct.

Keep in mind that was impossible to synchronize the two sources to start

transmitting data at the same time. By knowing this, on of the two sources can

take the advantage of not giving very accurate results. We noticed the following

behavior; at the starting time the source that started transmitting first had a

different jitter than the other. At the period that both of the sources were

 70

transmitting we noticed the same jitter at both ends, and towards the end we

noticed again different jitter time since one of them had finished transmitting.

 71

Test 3

In this test, we set the class priorities. Flow 1 has a higher priority over

flow 2, see Table 12. All the other parameters remain the same as were in test 1.

Figure 38: Block Diagram of pFifo queues

with different classes priorities and same weights

Router Setup Parameters

Source IP Classifier Scheduler Class

Priority

Class

Weight

Filter Priority Bandwidth Notes

192.168.2.5 U32 CBQ 1 500K 1 5Mbps

192.168.2.3 U32 CBQ 5 500K 1 5Mbps

Table 12

Source Results

Source IP Destination

IP

Transfer

Mbytes

Rate

Mbps

Frame

Length

Queue

Type

Queue

size

Traffic

Type

Packets

Transmitted

Time (s)

Duration

192.168.2.5 192.168.1.4 20 7 1514 pFifo 50 UDP 14267 22.9

192.168.2.3 192.168.1.7 20 7 1514 pFifo 50 UDP 14267 22.9

Table 13

 72

Destination Results

Destination IP Incoming

Traffic

Data

Transferred

Jitter Delay

(ms)

Packet

Loss

Total Packets Time (s)

Duration

192.168.1.4 7.0Mbps 20.0Mbytes 0.708 0 14267 22.9

192.168.1.7 2.1Mbps 6.2Mbyte 11.459 9876 14267 23.1

Table 14

Table 13 and Table 14 show that we can differentiate flows with higher

priorities. The results are remarkable since we got rates up to 7Mbps on the

192.168.1.4. The lower the number is set at the class priority, the higher the

priority it has over the other flow. When a class has a higher priority over the

other one, the scheduler has to execute the packets in that class and then move to

the next one.

 73

Test 4

In test 4 we investigate the sensitivity of the priority level. For instance,

what is the relation between two classes that have priority 1 and 5 and 4 and 5.

Figure 39: Block Diagram of pFifo queues

with same class and filter priorities and weights
Router Setup Parameters

Source IP Classifier Scheduler Class

Priority

Class Weight Filter Priority Bandwidth Notes

192.168.2.5 U32 CBQ 4 500K 1 5Mbps

192.168.2.3 U32 CBQ 5 500K 1 5Mbps

Table 15

Source Results

Source IP Destination

IP

Transfer

Mbytes

Rate

Mbps

Frame

Length

Queue

Type

Queue

size

Traffic

Type

Packets

Transmitted

Time (s)

Duration

192.168.2.5 192.168.1.4 20 7 1514 pFifo 50 UDP 14267 22.9

192.168.2.3 192.168.1.7 20 7 1514 pFifo 50 UDP 14267 22.9

Table 16

 74

Destination Results

Destination IP Incoming

Traffic

Data

Transferred

Jitter Delay

(ms)

Packet

Loss

Total Packets Time (s)

Duration

192.168.1.4 7.0Mbps 19.9Mbytes 0.683 47 14267 22.9

192.168.1.7 2.2Mbps 6.2Mbyte 12.690 9838 14267 23.1

Table 17

The results of this test show that there is not much of a differentiation among the

distances of the priorities. As far we got a difference among the priorities is good

enough in order to give a higher priority to the queue.

 75

Test 5

Here we investigate the weight behavior of a class. In order to accomplish

this, we change the weights of the classes to be non-proportional to their

bandwidths.

Figure 40: Block Diagram of pFifo queues

with same class priorities and filter priorities but different weights

Table 18 shows the parameters of the routers. The weights are 800K for flow 1

and 200K for flow 2.
Router Setup Parameters

Source IP Classifier Scheduler Class

Priority

Class

Weight

Filter

Priority

Bandwidth Notes

192.168.2.5 U32 CBQ 5 800K 1 5Mbps

192.168.2.3 U32 CBQ 5 200K 1 5Mbps

Table 18
Source Results

Source IP Destination

IP

Transfer

Mbytes

Rate

Mbps

Frame

Length

Queue

Type

Queue

size

Traffic

Type

Packets

Transmitte

d

Time (s)

Duration

192.168.2.5 192.168.1.4 20 7 1514 pFifo 50 UDP 14267 22.9

192.168.2.3 192.168.1.7 20 7 1514 PFifo 50 UDP 14267 22.9

Table 19

 76

Destination Results

Destination IP Incoming

Traffic

Data

Transferred

Jitter Delay

(ms)

Packet

Loss

Total Packets Time (s)

Duration

192.168.1.4 6.6Mbps 19.0Mbytes 0.683 691 14267 22.9

192.168.1.7 2.5Mbps 7.2Mbyte 8.838 9154 14267 23.1

Table 20

 Table 19 and Table 20 show the results of this test. The results confirm the

expectation, since the incoming traffic at the receivers is adjusted based on the

weight value. This behavior is expected since the weights take place when the

class priorities are the same.

 77

Test 6

In this test, we change the traffic type that we are generating at the

sources. The source 192.168.2.5 generates UDP traffic and the 192.168.2.3

generates TCP traffic.

Figure 41: Block Diagram of pFifo queues

with the same class priorities and weights

Router Setup Parameters

Source IP Classifier Scheduler Class

Priority

Class

Weight

Filter

Priority

Bandwidth Notes

192.168.2.5 U32 CBQ 5 500K 1 5Mbps

192.168.2.3 U32 CBQ 5 500K 2 5Mbps

Table 21

Source Results

Source IP Destination

IP

Transfer

Mbytes

Rate

Mbps

Frame

Length

Queue

Type

Queue

size

Traffic

Type

Packets

Transmitted

Time (s)

Duration

192.168.2.5 192.168.1.4 20 7 1514 PFifo 50 UDP 14267 22.9

192.168.2.3 192.168.1.7 20 3.8 1514 PFifo 50 TCP 14267 41.7

Table 22

 78

Destination Results

Destination IP Incoming

Traffic

Data

Transferred

Jitter Delay

(ms)

Packet Loss Total

Packets

Time (s)

Duration

192.168.1.4 6.9Mbps 19.9Mbytes 0.736 100 14267 22.9

192.168.1.7 3.8Mbps 20Mbytes ---------- 0 41.7

Table 23

It’s obvious that UDP is getting most of the bandwidth at 6.9Mbps and the TCP is

getting 3.0Mbps. This behavior is as expected, since the UDP traffic rate is not

controlled. In contrast TCP is flow controlled, using a variant of the Jacobson

algorithm. Observe that the uncontrolled UDP behavior has a substantial number

of losses (recall no flow control, no sensing for retransmission of lost packets)

 79

Test 7

Test 7 sets both sources to use TCP.

Figure 42: Block Diagram of pFifo queues

with the same class priorities and weights

Router Setup Parameters

Source IP Classifier Scheduler Class

Priority

Class

Weight

Filter Priority Bandwidth Notes

192.168.2.5 U32 CBQ 5 500K 1 5Mbps

192.168.2.3 U32 CBQ 5 500K 2 5Mbps

Table 24

Source Results

Source IP Destination

IP

Transfer

Mbytes

Rate

Mbps

Frame

Length

Queue

Type

Queue

size

Traffic

Type

Packets

Transmitted

Time (s)

Duration

192.168.2.5 192.168.1.4 20 3.5 1514 pFifo 50 TCP 46.5

192.168.2.3 192.168.1.7 20 3.4 1514 PFifo 50 TCP 47.5

Table 25

 80

Destination Results

Destination IP Incoming

Traffic

Data

Transferred

Jitter Delay

(ms)

Packet

Loss

Total

Packets

Time (s)

Duration

192.168.1.4 3.5Mbps 20Mbytes ---------- 46.5

192.168.1.7 3.4Mbps 20Mbytes ----------- 47.5

Table 26

We can see from Table 25 and Table 26 that using TCP in both flows we get a fair

treatment over the packets. We have to note that in TCP we mostly get zero

packets losses, since the TCP window size is not big enough to exceed the

bandwidth rate. At later a stage, we will show the effect of increasing the TCP

window size.

 81

5.2.2 Scenario 2 (TBF, pFIFO)

In this scenario, we change queuing disciplines. Here we use a Token

Bucket Filter, TBF, at the upper queue and pFIFO at the lower queue. Also, we

have allocated the bandwidth differently from the previous scenario. Here we give

2Mbps to the upper queue of the TBF queue and 8Mbps to the pFifo. Even though

we have allocated 2Mbps to the TBF class, the TBF have been configured to limit

the traffic at 1.5Mbps.

Test 1

In this test we have set up both of the classes with the same priority. The weights

have been set based on the bandwidth allocation. The flow 1 gets 1.5Mbps and

flow 2 gets 8Mbps. Both of the sources generate UDP traffic at 7Mbps.

Figure 43: Block Diagram of TBF. and pFifo

with same class and filter priorities and weights

Router Setup Parameters

Source IP Classifier Scheduler Class

Priority

Class

Weight

Filter

Priority

Bandwidth Notes

192.168.2.5 U32 CBQ 5 200K 2 2Mbps

192.168.2.3 U32 CBQ 5 800K 1 8Mbps

Table 27

 82

The parameters of the TBF are the following:

Rate 1.5Mbps

Burst 1.5KByte

Limit 1.5Kbytes

Source Results

Source IP Destination

IP

Transfer

Mbytes

Rate

Mbps

Frame

Length

Queue

Type

Queue

size

Traffic

Type

Packets

Transmitted

Time (s)

Duration

192.168.2.5 192.168.1.4 20 7 1514 TBF UDP 14267 22.9

192.168.2.3 192.168.1.7 20 7 1514 pFifo 50 UDP 14267 22.9

Table 28
Destination Results

Destination IP Incoming

Traffic

Data

Transferred

Jitter Delay

(ms)

Packet Loss Total

Packets

Time (s)

Duration

192.168.1.4 1.1Mbps 3.2Mbytes 15.313 11979 14267 23.1

192.168.1.7 7.0Mbps 20Mbyte 0.268 0 14267 22.9

Table 29

The results are outstanding. We can see that the incoming traffic at the

receivers is almost what we have expected. Keep in mind that we have limited the

upper queue, TBF, at 1.5Mbps. Even though, there are some looses at the UDP

traffic we can ignore since the main goal here is to limit UDP traffic not to steal

traffic from other classes.

 83

Test 2

In this test we transmit UDP traffic through flow 1 and TCP through flow

2.

Figure 44: Block Diagram of EF PHB

Router Setup Parameters

Source IP Classifier Scheduler Class

Priority

Class

Weight

Filter

Priority

Bandwidth Notes

192.168.2.5 U32 CBQ 5 200K 2 2Mbps

192.168.2.3 U32 CBQ 5 800K 1 8Mbps

Table 30

The parameters of the TBF are the following:
Rate 1.5Mbps

Burst 1.5KByte

Limit 1.5Kbytes

Source Results

Source IP Destination

IP

Transfer

Mbytes

Rate

Mbps

Frame

Length

Queue

Type

Queue

size

Traffic

Type

Packets

Transmitted

Time (s)

Duration

192.168.2.5 192.168.1.4 20 7 1514 TBF UDP 14267 22.9

192.168.2.3 192.168.1.7 20 7 1514 pFifo 50 TCP 14267 28.0

Table 31

 84

Destination Results

Destination IP Incoming

Traffic

Data Transferred

Jitter Delay (ms) Packet

Loss

Total

Packets

Time (s)

Duration

192.168.1.4 1 Mbps 2.8Mbytes 21.664 12255 14267

192.168.1.7 5.7Mbps 20Mbyte 28.1

23.1

Table 32

Table 32 and Table 33 show something very interesting. Using, TBF we can limit

the UDP traffic from stealing traffic from other classes. Keep in mind that we

have limited the upper queue, TBF, at 1.5Mbps. Even though, there are some

looses at the UDP traffic we can ignore since the main goal here is to limit UDP

traffic not to steal traffic from other classes. We can conclude that TBF is a good

limiter for UDP traffic.

 85

5.2.3 Scenario 3 (Priority Queues)

In this scenario we evaluate the Priority Queues. The main focus here is to

see the behavior of the PQ. Figure 45 shows the topology.

Test 1

Figure 45: Block Diagram of Priority Queue

The PQ discipline is executing first the queue with the highest priority and

then the rest. In our test we have assign flow 1 to be classified at Priority 1, which

has the highest priority and flow 2 on the lower priority queue.

Router Setup Parameters

Source IP Classifier Scheduler Class

Priority

Class Weight Filter Priority Bandwidth Notes

192.168.2.5 U32 PQ PQ1 5

192.168.2.3 U32 PQ PQ2 5

Table 33
Source Results

Source IP Destination

IP

Transfer

Mbytes

Rate

Mbps

Frame

Length

Queue

Type

Queue

size

Traffic

Type

Packets

Transmitted

Time (s)

Duration

192.168.2.5 192.168.1.4 20 7 1514 UDP 14267 22.9

192.168.2.3 192.168.1.7 20 7 1514 UDP 14267 22.9

Table 34

 86

Destination Results

Destination IP Incoming

Traffic

Data

Transferred

Jitter Delay

(ms)

Packet

Loss

Total

Packets

Time (s)

Duration

192.168.1.4 7.0Mbps 20Mbytes 0.759 0 14267 22.9

192.168.1.7 2.2Mbps 6.2Mbyte 8.322 9829 14267 23.1

Table 35

As it expected flow 1 gets most of the bandwidth. This means that it has

priority over the others. It’s obvious that flow 1 gets more priority than flow 2.

 87

Test 2

In order to prove the consistency of this test we have reversed the

priorities of the flows and we get the results that we expected. See the following

tables 32,33 and 34

Figure 46: Block Diagram of Priority Queue

Router Setup Parameters

Source IP Classifier Scheduler Class

Priority

Class

Weight

Filter Priority Bandwidth Notes

192.168.2.5 U32 PQ PQ2 5

192.168.2.3 U32 PQ PQ1 5

Table 36

Source Results

Source IP Destination

IP

Transfer

Mbytes

Rate

Mbps

Frame

Length

Queue

Type

Queue

size

Traffic

Type

Packets

Transmitted

Time (s)

Duration

192.168.2.5 192.168.1.4 20 7 1514 UDP 14267 22.9

192.168.2.3 192.168.1.7 20 7 1514 UDP 14267 22.9

Table 37

 88

Destination Results

Destination IP Incoming

Traffic

Data

Transferred

Jitter Delay

(ms)

Packet

Loss

Total Packets Time (s)

Duration

192.168.1.4 2.2Mbps 6.2Mbytes 3.371 9839 14267 23.0

192.168.1.7 7.0Mbps 20Mbyte 0.735 0 14267 22.9

Table 38

Flow 1 is assigned to the priority queue 2. This means that it has lower

priority over the others.

 89

5.2.4 Scenario 4 (pFifo, RED)

DiffServ architecture has been focusing on various Per Hop Behavior

groups. One of the most important one is the Expedited Forwarding. In this

scenario, we have implemented an EF PHB, and we have analyzed it to a certain

extent.

Test 1

In test 1 of the 3rd scenario we have two queues; a pFifo (upper queue) and

a RED (lower queue). In this test the priorities of the classes and the filters are set

the same. The weights of the classes are proportional to the bandwidth of the

classes. Flow 1 has 3Mbps and flow 2 has 7Mbps. Both sources transmit UDP

traffic at 7Mbps.

Figure 47: Block Diagram of EF PHB

Router Setup Parameters

Source IP Classifier Scheduler Class

Priority

Class

Weight

Filter

Priority

Bandwidth Notes

192.168.2.5 U32 CBQ 5 300K 1 3Mbps

192.168.2.3 U32 CBQ 5 700K 2 7Mbps

Table 39

 90

The parameters for the RED queue are the following:
Limit 60KB

Maximum 45KB

Minimum 15KB

Probability 0.1

Source Results

Source IP Destination

IP

Transfer

Mbytes

Rate

Mbps

Frame

Length

Queue

Type

Queue

size

Traffic

Type

Packets

Transmitted

Time (s)

Duration

192.168.2.5 192.168.1.4 20 7 1514 pfifo 10 UDP 14267 22.9

192.168.2.3 192.168.1.7 20 7 1514 RED UDP 14267 22.9

Table 40
Destination Results

Destination IP Incoming

Traffic

Data

Transferred

Jitter Delay (ms) Packet

Loss

Total

Packets

Time (s)

Duration

192.168.1.4 2.7Mbps 7.9Mbytes 0.708 8659 14267 23.1

192.168.1.7 6.4Mbps 18.2Mbyte 0.596 1253 14267 22.9

Table 41

The results are matched expectations. We get 2.7Mbps and 6.4Mbps for

flow 1 and flow 2 respectively. Flow 1 is been limited at 3Mbps and flow 2 at

7Mbps.

 91

Test 2

In this test we change the traffic type of the sources. Both sources transmit

TCP traffic.

Figure 48: Block Diagram of EF PHB

Router Setup Parameters

Source IP Classifier Scheduler Class

Priority

Class

Weight

Filter

Priority

Bandwidth Notes

192.168.2.5 U32 CBQ 5 300K 1 3Mbps

192.168.2.3 U32 CBQ 5 700K 2 7Mbps

Table 42

Source Results

Source IP Destination

IP

Transfer

Mbytes

Rate

Mbps

Frame

Length

Queue

Type

Queue

size

Traffic

Type

Packets

Transmitted

Time (s)

Duration

192.168.2.5 192.168.1.4 20 3.2 1514 pfifo 10 TCP 50.6

192.168.2.3 192.168.1.7 20 3.5 1514 RED TCP 45.7

Table 43

 92

Destination Results

Destination IP Incoming

Traffic

Data

Transferred

Jitter Delay (ms) Packet

Loss

Total Packets Time (s)

Duration

192.168.1.4 3.2Mbps 20Mbytes 50.6

192.168.1.7 3.5Mbps 20Mbyte 10 45.7

Table 44

Table 43 and Table 44 show the results. Once again TCP traffic shows

fairness. At the receivers we get 3.5Mbps and 3.2 Mbps for flow 1 and flow 2.

These results are as expected since the TCP window size is controlling the

sending rate of the sources and its below the available bandwidth.

 93

Test 3

Still using the same scenario as above with the difference that the one

source transmits a TCP and the other UDP traffic. Flow 1 transmits UDP traffic

and flow 2 transmits TCP traffic.

Figure 49: Block Diagram of EF PHB

Router Setup Parameters

Source IP Classifier Scheduler Class

Priority

Class

Weight

Filter

Priority

Bandwidth Notes

192.168.2.5 U32 CBQ 5 300K 1 3Mbps

192.168.2.3 U32 CBQ 5 700K 2 7Mbps

Table 45

Source Results

Source IP Destination

IP

Transfer

Mbytes

Rate

Mbps

Frame

Length

Queue

Type

Queue

size

Traffic

Type

Packets

Transmitted

Time (s)

Duration

192.168.2.5 192.168.1.4 20 7 1514 pfifo 10 UDP 14267 22.9

192.168.2.3 192.168.1.7 20 4.1 1514 RED TCP 39

Table 46

 94

Destination Results

Destination IP Incoming

Traffic

Data

Transferred

Jitter Delay

(ms)

Packet

Loss

Total

Packets

Time (s)

Duration

192.168.1.4 4.8 Mbps 13.7Mbytes 1.204 4518 14267 22.9

192.168.1.7 4.1Mbps 20Mbyte 39.2

Table 47

Table 46 and Table 47 show the results of the test. Once again, we can see

that the UDP traffic steals traffic from the TCP traffic.

 95

Test 4
In this test we repeat test 2 with focus on the queue behaviors. The setup

parameters have been changed. We are allocating 5Mbps per flow, and we set the

same class priorities. Both of the sources are transmitting TCP traffic. The TCP

window size is 64K bytes at the sources and the receivers.

Figure 50: Block Diagram of EF PHB

The weights of the classes are the same 500K each class.

Router Setup Parameters

Source IP Classifier Scheduler Class

Priority

Class Weight Filter Priority Bandwidth Notes

192.168.2.5 U32 CBQ 5 500K 1 5Mbps

192.168.2.3 U32 CBQ 5 500K 2 5Mbps

Table 48

The parameters for the RED queue are the following:

Limit 60KB

Maximum 45KB

 96

Minimum 15KB

Probability 0.1

Source Results

Source IP Destination

IP

Transfer

Mbytes

Rate

Mbps

Frame

Length

Queue

Type

Queue

size

Traffic

Type

Packets

Transmitted

Time (s)

Duration

192.168.2.5 192.168.1.4 20 3.6 1514 pfifo 10 TCP 44.2

192.168.2.3 192.168.1.7 20 3.4 1514 RED TCP 47.0

Table 49

Destination Results

Destination IP Incoming

Traffic

Data Transferred

Jitter Delay (ms) Packet

Loss

Total

Packets

Time (s)

Duration

192.168.1.4 3.6Mbps 20Mbytes 0 46.5

192.168.1.7 3.4Mbps 20Mbyte 107 47.1

Table 50

In this test we observe some losses over flow 2, (107 lost packets). These

packets are caused by RED since it is dropping packets based on the probability

that we have assigned to the queue length. Figure 51and Figure 52 show the

outstanding packets of both sources.

Figure 51: Outstanding Data

 97

Figure 52: Outstanding Data

Figure 53 and Figure 54 show the Round Trip Time of both queues. We

can see that the pFifo queue has larger RTT than the RED queue.

Figure 53: RTT of Flow 1

 98

Figure 54: RTT of Flow 2

The TCP behavior on pFifo is straightforward. The TCP source sends

packets based on the TCP window size and if the rate is higher than what the

pFifo can sustain then the queue drops the packets. In this case we don’t have

packet drops in pFifo but we do have in RED. The drops in RED queue are

expected, since after a certain threshold, RED has a certain probability that start

dropping packets.

 Note that the RTT time on both queues varies. On pfifo the RTT is larger

than the RED. And that’s again was expected. The RTT time is defined by how

large the queue size is and since the pFifo is a fixed size then the RTT is fixed. On

the other hand, the queue size of RED queue varies based on the mean queue size.

 99

Test 5

In test 5 we used exactly the same parameters that we used in Test 4 with

the exception that the TCP window size here is 128K bytes on both ends. We

have increased the TCP window size in order to increase the throughput of the

TCP traffic.

Figure 55: Block Diagram of EF PHB

Router Setup Parameters

Source IP Classifier Scheduler Class

Priority

Class

Weight

Filter Priority Bandwidth Notes

192.168.2.5 U32 CBQ 5 500K 1 5Mbps

192.168.2.3 U32 CBQ 5 500K 2 5Mbps

Table 51

Source Results

Source IP Destination

IP

Transfer

Mbytes

Rate

Mbps

Frame

Length

Queue

Type

Queue

size

Traffic

Type

Packets lost Time (s)

Duration

192.168.2.5 192.168.1.4 20 3.6 1514 pfifo 50 TCP 11 44.6

192.168.2.3 192.168.1.7 20 3.4 1514 RED TCP 21 46.7

Table 52

 100

Destination Results

Destination IP Incoming

Traffic

Data

Transferred

Jitter Delay (ms) Packet Loss Total

Packets

Time (s)

Duration

192.168.1.4 3.6Mbps 20Mbytes 11 44.6

192.168.1.7 3.4Mbps 20Mbyte 21 46.7

Table 53

Table 52 and Table 53 show the results. With both sources transmitting

TCP traffic we get 3.6Mbps and 3.4 Mbps for flow 1 and flow 2. Here we can see

that packets were dropped at the pFIFO queue. This happens since we have

increased the window size of the TCP.

Figure 56: Outstanding Data of Flow 1

Figure 56 shows the slow start of the TCP and then shows the packets that are

dropped. That’s where the source starts sending at lower rates and start congestion

avoidance algorithm.

 101

Figure 57: Outstanding Data of Flow 2

Figure 57, on the other hand shows a different behavior. There are

dropped random drops based on the probability drop of the RED queue. This

shows some smoothness over the queue. We don’t get big variations in the queues

as in the pFifo.

Figure 58: RTT of Flow 1

 102

Figure 59: RTT of Flow 2

Figure 58 and Figure 59 show the RTT of the pFifo and RED queues

respectively. It’s obvious the RED queue get smaller RTT because the mean

queue size of the queue is smaller. The maximum RTT of the RED is 250ms and

the pFifo is 500ms.

 103

5.3 Summary of Results

In this section we present a summary of the results. At the right most

column you can find some comments for each test.

Results of Scenario 1 (scheduler CBQ)
 Class

Priority

Class

Weight

Filter

Priority

Queue

Types

Traffic

Type

Results Comments

Test 1

5 500K 1 pFifo UDP 4.5Mbps As Expected

5 500K 1 pFifo UDP 4.6Mbps As Expected

Test 2

 100 4.5Mbps No effect as expected

 1 4.6Mbps No effect as expected

Test 3

1 1 7Mbps As Expected

 5 1 2.1Mbps As Expected

Test 4

4 1 7Mbps

5 1 2.2Mbps

Not sensitive to priority

level. Rather to higher prio.

Test 5

5 800K 1 6.6Mbps Close Enough

5 200K 1 2.5Mbps Close enough

Test 6

5 500K 1 UDP 6.9Mbps Expected

5 500K 1 TCP 3.8Mbps Expected

Test 7

5 500K 1 TCP 3.5Mbps Expected

5 500K 1 TCP 3.4Mbps Expected

Table 54

 104

Results of Scenario 2
 Scheduler Class

Priority

Class

Weight

Filter

Priority

Queue

Types

Traffic

Type

Results Comments

Test 1

5 200K 2 TBF UDP 1.1Mbps As Expected CBQ

 5 800K 1 pFifo UDP 7.0Mbps As Expected

Test 2

 UDP 1Mbps As Expected

 TCP 5.7Mbps As Expected

Table 55

Results of Scenario 3
 Scheduler Class

Priority

Class

Weight

Filter

Priority

Queue

Types

Traffic

Type

Results Comments

Test 1

PQ1 200K 5 pFifo UDP 7Mbps As Expected PQ

 PQ2 800K 5 pFifo UDP 2.2Mbps As Expected

Test 2

PQ2 200K 5 pFifo UDP 2.2Mbps As Expected PQ

 PQ1 800K 5 pFifo UDP 7Mbps As Expected

Table 56

 105

Results of Scenario 4

 Scheduler Class

Priority

Class

Weight

Filter

Priority

Queue

Types

Traffic

Type

Results Comments

Test 1

5 300K 2 pFifo UDP 2.7Mbps As Expected CBQ

 5 700K 1 RED UDP 6.4Mbps As Expected

Test 2

 TCP 3.2Mbps As Expected

 TCP 3.5Mbps As Expected

Test 3

5 1 UDP 4.8Mbps As Expected

 5 1 TCP 4.1Mbps As Expected

Test 4(TCP Window size 64K)

5 500K 1 TCP 3.6Mbps As Expected

5 500K 1 TCP 3.4Mbps As Expected

Test 5 (TCP Window size 128K)

5 500K 1 TCP 3.6Mbps As Expected

5 500K 1 TCP 3.4Mbps As Expected

Table 57

5.4 Recommendations for selecting between various network functions and

settings

This section provides some practical recommendation regarding the

selection between various networking functions and their settings, based on

different user demands. . Analyzing the results we have obtained from the

experiments we can see that certain queuing disciplines can favor certain types of

traffic.

We will first provide two scenarios to show that for different

user/application demands there may be a need for differentiation of services and

that there are various ways to implement differentiation of services. We will then

generalize some recommendations for various networking conditions.

 106

Scenario 1

A company has a network link of capacity 10Mbps and the IT manager

wants to limit the employees for using real time applications such as video

on demand, videoconferencing and etc to 2Mbps. He doesn’t want his

employees to use most of the company’s bandwidth and not having

enough bandwidth for the company’s Web Server.

Under normal TCP/IP, we observe, as expected1, that UDP traffic is out

beating TCP traffic in most of the scenarios; see Chapter 5. We can

provide some fairness in various ways.

Recommendation 1:

One solution for this scenario is to use DiffServ and create two classes by

using CBQ discipline. Class A will be for real applications (UDP traffic)

and will be allocated 2Mbps bandwidth. A pFifo queuing discipline can be

used for Class A. In Class B can be assigned 8Mbps for all the other

applications. In Class B a RED queuing discipline can be used. This

solution eliminates the problem of starvation at the peak times, but in case

Class B doesn’t require the 8Mbps that has been assigned, then Class A

can utilized the excess (above 2 Mbits/sec) bandwidth.

Recommendation 2

Another approach of this scenario is to use Token Bucket filter, TBF, for

Class A. By using TBF we restrict Class A, real time applications, to use

any bandwidth from Class B. TBF acts as a limiter and doesn’t allow to

the UDP traffic to use more traffic than it supposed to.

1 Because TCP is controlled by the state of the network, it backs off when congestion is sensed.
On the contrary UDP sends packets into the network as the application demands.

 107

Scenario 2

A company has a network link of capacity 10Mbps and the IT manager

wants to differentiate the services of the company based on the

departments. He believes that the marketing department should have more

priority on the Internet than the other departments.

Recommendation 1

 He can implement this scenario by using Priority Queue. He has to assign

the Marketing Department on the first queue and the rest to the second

queue with lower priority. The packets on the second queue will be

serviced only when the first queue is empty. This way the Marketing

Department gets a higher priority over the others.

Recommendation 2

Another way to implement this scenario is to use CBQ, Class Based

Queuing, and assign different priorities for each class. We need to create

at least two classes and assign one for the Marketing Department and one

for the other departments. We could have created more classes and more

priorities if we wanted to. CBQ allows to the IT manager to isolate or

create more priorities within the company. Even more he could use

different queuing disciplines such as pFIFO for the marketing department

and RED for the others.

Note: As can be seen, there are various queuing disciplines that can implement

differentiation of service. The following are some general recommendations,

derived from the experimentation in this thesis:

General recommendations

• PFIFO is best used for UDP traffic. The queue length should be small in

order to obtain smaller RTT.

 108

• RED is best used for TCP traffic. As we know RED drops packets based

on a probability we assign. This is good for TCP traffic to avoid sharp

fluctuations and avoid congestion.

• TBF is best used where we want to limit UDP traffic.

 109

6 Conclusions
In this thesis, we implemented a differentiated services pilot network in

Linux environment and investigated the performance of network functions that

provided quality of service.

 We observed that the basic functions required for differentiated service

could be implemented under the proposed Linux operating system. The observed

results show that a number of different approaches maybe taken to implement

differentiation of service.

We cannot generalize the results since the available topology is limited,

however some observations and recommendations have been offered. It’s strongly

recommended to expand the current topology to a more realistic one, including

LAN and WAN segments and generalize the observations and recommendations.

Basically, our investigation show that differentiation of services can be

achieved by using variety of network functions and parameters, and for a simple

network topology some conclusions and recommendations are drawn. However,

large-scale applications are a much more complex task requiring further study.

In the future we also want to investigate traffic management. In particular we

expect to implement congestion control strategies that are more suitable for

differentiated services such as the Integrated Switching strategy [32].

 110

7 Appendix I
Scenarios

The following scenarios aim at verifying the expected behavior of the TCP/IP

implementation and the traffic Control (TC) under this Linux implementation. In

general, expected behavior has been validated.

Parameters

Source IP Dest IP Load

%

Load

Mbps

Frame

Length

Queue Queue

size

Traffic

type

Duration

(seconds)

192.168.2.3 192.168.1.4 pfifo 50 TCP 60

192.168.2.5 192.168.1.4 pfifo 50 TCP 60

192.168.2.3 192.168.1.4 pfifo 100 TCP 60

192.168.2.5 192.168.1.4 pfifo 100 TCP 60

Results

Source IP Incoming

Traffic

Outgoing traffic Packet Loss Average Delay

192.168.2.3 3.6Mbps 3.6Mbps

192.168.2.5 3.5Mbps 3.5Mbps

119

192.168.2.3 3.6Mbps 3.6Mbps

192.168.2.5 3.6Mbps 3.6Mbps

12

 111

Parameters

Source IP Dest IP Load

%

Load

Mbps

Frame

Length

Queue Queue

size

Traffic

type

Duration

(seconds)

192.168.2.3 192.168.1.4 pfifo 50 TCP 60

192.168.2.5 192.168.1.4 pfifo 50 UDP 60

192.168.2.3 192.168.1.4 pfifo 100 TCP 60

192.168.2.5 192.168.1.4 pfifo 100 UDP 60

Results

Source IP Incoming

Traffic

Outgoing traffic Packet Loss Average Delay

192.168.2.4 65Kbps 64.9Kbps 71

192.168.2.5 10Mbps 9.1Mbps 4826

192.168.2.4 71.5Kbps 71.4Kbps 48

192.168.2.5 10Mbps 9.1Mbps 4727

Parameters

Source IP Dest IP Load

%

Load

Mbps

Frame

Length

Queue Queue

size

Traffic

type

Duration

(seconds)

192.168.2.3 192.168.1.4 pfifo 50 UDP 60

192.168.2.5 192.168.1.4 pfifo 50 UDP 60

192.168.2.3 192.168.1.4 pfifo 100 UDP 60

192.168.2.5 192.168.1.4 pfifo 100 UDP 60

Results

Source IP Incoming

Traffic

Outgoing traffic Packet Loss Average Delay

192.168.2.3 9.5Mbps 2.5Mbps 37231

192.168.2.5 10Mbps 6.6Mbps 18133

192.168.2.3 9.4Mbps 2.6Mbps 36276

192.168.2.5 10Mbps 6.6Mbps 17915

 112

Test 2 (bfifo)

Parameters

Source IP Dest IP Load

%

Load

Mbps

Frame

Length

Queue Queue

size

Traffic

type

Duration

(seconds)

192.168.2.3 192.168.1.4 bfifo 75K TCP 60

192.168.2.5 192.168.1.4 bfifo 75K TCP 60

192.168.2.3 192.168.1.4 bfifo 150K TCP 60

192.168.2.5 192.168.1.4 bfifo 150K TCP 60

Results

Source IP Incoming

Traffic

Outgoing traffic Packet Loss Average Delay

192.168.2.3 3.4Mbps 3.4Mbps 105

192.168.2.5 3.1Mbps 3.1Mbps

192.168.2.3 3.3Mbps 3.3Mbps 14

192.168.2.5 3.7Mbps 3.7Mbps

 113

Parameters

Source IP Dest IP Load

%

Load

Mbps

Frame

Length

Queue Queue

size

Traffic

type

Duration

(seconds)

192.168.2.3 192.168.1.4 bfifo 75K TCP 60

192.168.2.5 192.168.1.4 bfifo 75K UDP 60

192.168.2.3 192.168.1.4 bfifo 150K TCP 60

192.168.2.5 192.168.1.4 bfifo 150K UDP 60

Results

Source IP Incoming

Traffic

Outgoing traffic Packet Loss Average Delay

192.168.2.3 93Kbps 92.9Kbps 71

192.168.2.5 10Mbps 9.1Mbps 4832

192.168.2.3 89.1Kbps 89.1Kbps 73

192.168.2.5 10Mbps 9.1Mbps 4790

Parameters

Source IP Dest IP Load

%

Load

Mbps

Frame

Length

Queue Queue

size

Traffic

type

Duration

(seconds)

192.168.2.3 192.168.1.4 bfifo 75K UDP 60

192.168.2.5 192.168.1.4 bfifo 75K UDP 60

192.168.2.3 192.168.1.4 bfifo 150K UDP 60

192.168.2.5 192.168.1.4 bfifo 150K UDP 60

Results

Source IP Incoming

Traffic

Outgoing traffic Packet Loss Average Delay

192.168.2.3 9.5Mbps 2.6Mbps 36881

192.168.2.5 10Mbps 6.6Mbps 18160

192.168.2.3 9.5Mbps 2.6Mbps 36539

192.168.2.5 10Mbps 6.6Mbps 18136

 114

Test 3 (SFQ)

Parameters

Source IP Dest IP Load

%

Load

Mbps

Frame

Length

Queue Queue

size

Traffic

type

Duration

(seconds)

192.168.2.3 192.168.1.4 SFQ TCP 60

192.168.2.5 192.168.1.4 SFQ TCP 60

Results

Source IP Incoming

Traffic

Outgoing traffic Packet Loss Average Delay

192.168.2.3 3.5Mbps 3.5Mbps 0

192.168.2.5 3.5Mbps 3.5Mbps 0

Parameters

Source IP Dest IP Load

%

Load

Mbps

Frame

Length

Queue Queue

size

Traffic

type

Duration

(seconds)

192.168.2.3 192.168.1.4 SFQ TCP 60

192.168.2.5 192.168.1.4 SFQ UDP 60

 115

Results

Source IP Incoming

Traffic

Outgoing traffic Packet Loss Average Delay

192.168.2.3 851Kbps 850Kbps 0

192.168.2.5 10Mbps 8.3Mbps 9162

*381 datagrams received out of order

Parameters

Source IP Dest IP Load

%

Load

Mbps

Frame

Length

Queue Queue

size

Traffic

type

Duration

(seconds)

192.168.2.3 192.168.1.4 SFQ UDP 60

192.168.2.5 192.168.1.4 SFQ UDP 60

Results

Source IP Incoming

Traffic

Outgoing traffic Packet Loss Average Delay

192.168.2.3 9.5Mbps 3.6Mbps 31165

192.168.2.5 10Mbps 5.5Mbps 23858

84 out of order

 116

Test 4 (RED)

Limit 50000 bytes

Min 15000 bytes

Max 45000 bytes

Parameters

Source IP Dest IP Load

%

Load

Mbps

Frame

Length

Queue Queue

size

Traffic

type

Duration

(seconds)

192.168.2.3 192.168.1.4 RED TCP 60

192.168.2.5 192.168.1.4 RED TCP 60

Results

Source IP Incoming

Traffic

Outgoing traffic Packet Loss Average Delay

192.168.2.3 6.1Mbps 6.1Mbps 51

192.168.2.5 350Kbps 350Kbps 51

 117

Parameters

Source IP Dest IP Load

%

Load

Mbps

Frame

Length

Queue Queue

size

Traffic

type

Duration

(seconds)

192.168.2.3 192.168.1.4 RED TCP 60

192.168.2.5 192.168.1.4 RED UDP 60

Results

Source IP Incoming

Traffic

Outgoing traffic Packet Loss Average Delay

192.168.2.3 78.5Kbps 78.5Kbps 109905

192.168.2.5 10Mbps 4.6Mbps 28952

1

 2345678910111213141516171819

 118

8 Acronyms
ADU Application Data Unit

AF Assured Forwarding

AS Autonomous System

ATM Asynchronous Transfer Mode

BGP Border Gateway Protocol

CBS Committed Burst Size

CE Congestion Experienced

CIR Committed Information Rate

CL Controlled Load

COPS Common Open Policy Service

CRC Cyclical Redundancy Check

CSMA/CD Carrier Sense Multiple Access with Collision Detection

cwnd Congestion window, one of the state variables maintained by TCP

CWR Congestion window reduced

Deficit-WRR Deficit Weighted Round Robin

DNS Domain Name System

DSAP Destination Service Access Point

DSCP Differentiated Services CodePoint, a six-bit field in the IP header used to en-code

the per-hop-behavior

EBS Excess Burst Size

EF Expedited Forwarding, one of the Differentiated Services defined by IETF [JNP99]

E-LSP EXP-Inferred Packed Scheduling Class Label Switched Path

ER Edge Router

FF Fixed Filter, one of the sender filters supported by RSVP

FIFO First In First Out

FTP File Transfer Protocol

GPS Generalized Processor Sharing, an ideal scheduler

GS Guaranteed Service, one of the Integrated Services defined by IETF

ICMP Internet Control Message Protocol

IETF Internet Engineering Task Force, see http://www.ietf.org

IHL IP Header Length, one of the fields of the IP header

IP Internet Protocol

ISDN Integrated Services Digital Network

IS-IS Intermediate System - Intermediate System

ISP Internet Service Provider

LAN Local Area Network

 119

LDAP Lightweight Directory Access Protocol

L-LSP Label-Only-Inferred Packet Scheduling Class Label Switched Path

LSA Link State Attribute, a type of control packet distributed by OSPF

LSP Label Switched Path

MPLS Multiprotocol Label Switching

MSS Maximum Segment Size

MTU Maximum Transfer Unit

NFS Network File System

OSPF Open Shortest Path First

PDB Per Domain Behaviour

PHB Per Hop Behaviour

PDP Policy Decision Point

PDU Protocol Data Unit

PEP Policy Enforcement Point
PGPS Packetized Generalized Processor Sharing

PIR Peak Information Rate

PNNI Private Network-Network Interface, the routing protocol used in ATM Net-works

PPTP Point-to-Point Tunneling Protocol

PQ Priority Queuing, a priority-based scheduler

PS Processor Sharing, an ideal scheduler

QoS Quality of Service

RED Random Early Detection, a buffer acceptance algorithm

RIP Route Information Protocol

RPC Remote Procedure Call

RSVP Resource Reservation Protocol

RTCP RTP Control Protocol

RTP Real Time Transport Protocol

RTSP Real Time Streaming Protocol

RTT round trip time

rwin receiving window, a state variable maintained by TCP

SCFQ Self Clocked Fair Queueing

SDES Source Description, used by RTCP

SE Shared Explicit filter, one of the sender filters supported by RSVP

SIP Session Initiation Protocol

SNMP Simple Network Management Protocol

SSRC Synchronization source identifier, used by RTP

sstresh slow start threshold, state variable maintained by TCP

 120

swin sending window, state variable maintained by TCP

TCP Transmission Control Protocol

TDM Time Division Multiplexing

THL TCP Header Length, part of the TCP header

ToS Type of Service

TTL Time To Live
UDP User Datagram Protocol

WAN Wide Area Network

WF Wild-card filter, one of the sender filters supported by RSVP

WFQ Weighted Fair Queueing

WRED Weighted Random Early Detection, a buffer acceptance algorithm supporting

several packet dropping preferences

WRR Weighted Round Robin, a scheduler suitable for fixed-length packets

20212223242526272829303132

 121

9 Bibliography

1 M. Luoma, QoS and queuing disciplines, traffic and admission control, submitted for
publication.

2 F. Baumgartner, T. Braun, P. Habegger, University of Berne Proc. of the 8th IFIP Conference
on High Performance Networking - HPN'98, September 1998.

3 K. Kilkki. Differentiated services for the Internet. MacMillan Technology Series, 1999.

4 M. Shreedhar and G. Vargese. Efficient fair queuing using deficit round robin. In Proc. ACM
SICOGMM’95, pages 231–242, 1995.

5 W. Almesberger, Linux Network Traffic Control- Implementation Overview, Technical Report
EPFL ICA, April 1999

6 . Braun, H. Einsiedler, M. Scheidegger, K. Jonas, H. Stttgen: A Linux Implementation of a
Differentiated Services Router, submitted for publication

7 W. Almesberger, J. Hadi Salim, and A. Kuznetsov. Differentiated services on Linux. Internet
draft, draft-almesberger-wajhak-diffserv-linux-00.txt, work in progress, February 1999.

8 W. Stevens. TCP/IP Illustrated, volume 1 : The protocols. Addison-Wesley,
1994.

9 P. Britaain, A. Farrel, "MPLS TRAFFIC ENGINEERING: A CHOICE OF SIGNALING
PROTOCOLS" Data Connection, January 17,2000.

10 Quality of Services Networking -Chapter 46 of Internetworking Technology Overview June
1999. Accessible at http://www.cisco.com

11 Feng, D. Kandlur, D. Saha, K. Shin, "BLUE: A New Class of Active Management Algorithms"
Department of EECS, University of Michingan and IBM T.J Watson Research Center.

12 C. Metz, "IP QOS: Traveling in First Class on the Internet," IEEE Internet Computing April
1999, Accessible at http://computer.org/internet

13 Nortel/Bay Networks, IP QoS --A Bold New Network , white paper, Accessible at
http://www.nortelnetworks.com

14 Congestion Avoidance Overview. Accessible at http://www.cisco.com

15 U. Schafer, "Investigation of the Differentiated Services Concept in the Future Internet."
University of Wurzburg.

16 IP Traffic Engineering for Carrier Networks: Using Constraint-Based Routing to Deliver New
Services. Accessible at http://www.nortelnetworks.com

17 QoS Protocols and Architectures. Accessible at http://www.qosforum.com

18 J. Padhye, J. Kurose, D. Towsley, and R. Koodli, "A model based TCP-friendly rate control
protocol," in Proc. International Workshop on Network and Operating System Support for Digital
Audio and Video (NOSSDAV), Basking Ridge, NJ, June 1999. 20

 122

http://computer.org/internet
http://www.cisco.com/

19 S. Radhakrishman, Linux- Advanced Networking Overview, V1, Department of Electrical
Engineering & Computer Science, University of Kansas

20 S. Blake, D. Black, M. Carlson, E. Davies, Z. Wang, and W. Weis-s. An architecture for

differentiated services. Internet RFC 2475, December 1998.
21 S. Floyd and V. Jacobson. Random early detection for congestion

avoidance. IEEE/ACM Transactions on Networking, 1(4):397–413, August 1993.
22 S. Floyd. RED (Random Early Detection) queue management. available from http://www-

nrg.ee.lbl.gov/floyd/red.html, 1999.
23 R. Guerin, S. Kamat, V. Peris, and R. Rajan. Scalable QoS provi-sion through buffer

management. In SIGCOMM 98, pages 29–40, Vancouver, Canada, August 1998.
24 R. Guerin and V. Peris. Quality of service in packet networks: basic mechanisms and directions.

Computer Networks, 31:169–189,1999.
25 V. Jacobson, K. Nichols, and K. Poduri. An expedited forwarding PHB. Internet RFC2598, June

1999.
26 E. Ellesson and S. Blake. A proposal for the format and se-mantics of the TOS byte and traffic

class byte in IPv4 and IPv6 headers. Internet Draft, draft-ellesson-tos-00.txt, November 1997.

(Work in progress). September 1997.
27 Dovrolis, C., Stiliadis, D., and Ramanathan, P. Proportional Differentiated Services. In

Proceedings of SIGCOM (October 1999), vol. 29
28 RFC2475; Blake, Steven; Black, David; Carlson, Mark; Davies, Elwyn; Wang, Zheng; Weiss,

Walter. An Architecture for Differentiated Services, IETF, December 1998.
29 Feng, W., Kandlur, K., Saha, D., and Shin, K. Understanding tcp dynamics in an integrated

services Internet. In NOSSDAV ’97 (MAY 97)
30 Feng, W., Kandlur, K., Saha, D., and Shin, K. Adaptive packet marking for providing

differentiated services on the Internet. In proceedings of 1998 International conference on

Network Protocols (INCP ‘98) (October 1998)
31 A. Pitsillides, P. Ioanou, L. Rossides, Congestion Control using Non-linear Control Theory:

Integrated dynamic Congestion Controller, ISCC 2001, Hammanet, Tunisia, July 1-3, 2001
32 L. Rossides, S Kohler, A. Pitsillides, T-G. Phuoc, Fuzzy RED: Congestion control for TCP/IP

Diff-Serv, Melecon 2000, Limasol, May 29-31, 2000

 123

	Introduction
	IP Quality of Service
	Introduction to IP QOS
	QoS Definition
	Parameters of QoS
	Service Level Agreement
	Policy Management
	QoS Policies
	Qos Ranking

	New protocols for IP QoS provision
	Integrated services (IntServ)
	Reservation Setup Protocol (RSVP)
	Multi-Protocol Label Switching (MPLS)

	Introduction to DiffServ

	Differentiated Services (DiffServ)
	
	Differentiated Services Model
	Terminology

	DiffServ Architecture
	Architecture Model
	Traffic Classification and Conditioning

	Per-Hop Behavior Groups
	Class Selector PHB
	Assured Forwarding (AF)
	Expedited Forwarding (EF)
	Dynamic RT/NRT PHB Group

	Traffic Management in DiffServ
	Urgency and Importance
	Traffic Management in Boundary nodes
	Classifiers
	Behavioral Aggregate Classifier
	Multi Field Classifier

	Meters
	Packet Marking
	Traffic Shaping
	Packet Dropping at Boundary Nodes

	Traffic-Management Functions in Interior Nodes.
	Queuing Disciplines
	Pfifo_fast
	Priority Queuing
	Custom Queuing
	Stochastic Fairness Queuing (SFQ)
	Weight Fair Queuing
	Random Early Detection
	n-RED
	Weighted Random Early Detection
	Class Based Queuing
	CSZ Scheme
	Deficit Round Robin
	Token Bucket Filter

	Implementing Differentiated Services on Linux
	Introduction to Linux Networking Services
	Queuing Discipline
	Classes
	Filters
	Policing
	Classifiers under Linux

	Evaluating Differentiated Services on Linux
	Topology Under Study
	Evaluating Linux Implementation for DiffServ
	Scenario 1 (pFIFO, pFIFO)
	Scenario 2 (TBF, pFIFO)
	Scenario 3 (Priority Queues)
	Scenario 4 (pFifo, RED)

	Summary of Results
	Recommendations for selecting between various network functions and settings

	Conclusions
	Appendix I
	Acronyms
	Bibliography

