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Abstract 
The existing Internet architecture is based on the “best effort” model for 

delivering packets across the Internet. The current architecture delivers a packet at 

its best possible (best-effort) but doesn’t guarantee when it will be delivered. 

Nowadays, the users work and play habits are changing, e.g. users expect to 

watch movies through the network, play 3-D games, and check their stock online, 

videoconference and other. The demands of the users have changed dramatically 

since the creation of IP, where it was mostly used for email and ftp. Another new 

application is the WWW that has been widely used worldwide. WWW has 

created a new friendly interface for the user, and stimulated further demands from 

the network.  

The existing architecture of IP is inadequate to handle new applications. Time 

critical applications such as video, audio and several others have created an even 

greater demand on the Internet. Recently, several different solutions were 

proposed, but most have failed to replace IP.  

Lately, several new protocols and architecture were proposed to enable basic 

quality of service provision in Internet. In this thesis we investigate the 

Differentiated Services (DiffServ) architecture. DiffServ is a new architecture  

based on the concept of aggregated differentiated treatment of services. DiffServ 

was proposed in 1997. Since then it has attracted a lot of attention by many 

researchers.  

The aim of this thesis is to implement a differentiated services pilot network 

in Linux environment and investigate the performance of various network 

functions, that may provide differentiated quality of service. These functions 

include various queuing disciplines such as pFifo, RED, and TBF. Through the 

pilot network we aim to investigate different ways to implement differentiated 

networks and present recommendations for different network traffic and 

conditions.  
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1 Introduction 
 

1.1 IP Quality of Service 

1.1.1 Introduction to IP QOS 

The existing Internet architecture is based on the “best effort” model for 

delivering packets across the Internet. The current architecture delivers a packet at 

its best possible (best-effort) but doesn’t guarantee when it will be delivered. The 

IP has succeeded in meeting the requirements of its designers at the time it was 

implemented. At that time the expectations of the users' were very low, in terms 

of the variety of services and the quality of service offered to them. However, 

nowadays IP can't scale very well with increasing demands by the users in terms 

of supporting a variety of increasingly integrated services, with more predictable 

quality. The users work and play habits are changing, e.g. users expect to watch 

movies through the network, play 3-D games, check their stock online, 

videoconference and other. The demands of the users have changed dramatically 

since the creation of IP, where it was mostly used for email, ftp, and lately the 

World Wide Web (WWW, or the web).  The WWW has created a new friendly 

interface for the user, and has been widely adopted (some suggesting that it is the 

main reason for the phenomenal adoption of the Internet). It has stimulated new 

demands and requirements for the computer networks. 

The existing architecture of IP is inadequate to handle new applications. Time 

critical applications such as video, audio and several others have created an even 

greater demand (in terms of expected quality of service provision) on the Internet. 

Lately, several alternative solutions were proposed, but most have failed to 

replace IP. 

One of these proposals and the most threatening to the IP architecture is the 

ATM architecture. One may argue that ATM has succeeded to win the technical 

battle for the provision of (Quality of Service) QoS to the users (i.e. better service 

provision, in comparison to the IP), but lost the battle in the applications domain. 

Not many applications that run under pure ATM can be identified.  
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The ATM is a very expensive (in terms of bandwidth and efficiency) 

protocol to have and without the pure ATM applications there is not a lot to gain. 

The IP has the advantage of many well-established applications, and because of 

its simplicity, it offers a more cost effective solution but not with inbuilt service 

guarantee in its present form. ATM is currently used for backbone but it does not 

appear that it will win the battle to the doorstep. In order to make IP better able to 

support some form of Quality of Service provision to the users, several new 

architectures are proposed. 

Quality of Services as seen by the customer is affected by the performance 

of several layers of the TCP/IP stack, including the application and network 

related functions. In this thesis we will focus on the effect of the network on the 

delivered QoS.  

 

1.1.2 QoS Definition 

The main target of the QoS is to satisfy customers’ needs. The word QoS 

has different meanings among people. Even though, there are different views on 

the definition of the QoS, there is an agreement on the key concepts and on the 

terminology of QoS. Class of Service is a more general term that is used to 

describe a set of features and other characteristics available with a specific 

service. A QoS service is a term used to specify a set of performance 

characteristics for a service. Some of those characteristics are: service availability, 

delay and delay variation, throughput and packet loss rate [13].  

The QoS is always limited by the weakest link in the chain along the path, 

between the sender and receiver. The most critical characteristics of QoS are 

minimizing delivery delay, minimizing delay variations and providing consistent 

data throughput capacity. These QoS characteristics should be provided together 

with efficient use of the limited bandwidth resources. The ideal performance, 

from a link viewpoint, is to be able to use the link bandwidth efficiently. The most 

critical characteristics of QoS are: 

 Minimizing delivery delay 

 Minimizing delay variations 
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 Providing consistent data throughput capacity 

  Minimizing Losses 

 

1.1.3 Parameters of QoS 

To be able to implement a QoS certain parameters need to be defined by 

the applications. These parameters will help us to implement QoS for our 

customers. Some of these parameters are the following: 

     

      Latency 

      Jitter 

      Bandwidth  

      Packet Loss 

      Availability. 

 QoS Terminology 

Classes 

 Classes, this term is used to categorize the users or applications in 

different classes, such as Premium, Assured and Best-effort. Classes will 

be discussed in more detail later on. 

 Latency  

 Latency is referred to as the time it takes to send a message from the 

sender until to the time it is received by the receiver  (i.e. end-to-end delay 

experienced by a packet).  

 

Router Latency 

 It’s the time it takes a router to retransmit the packet once it has arrived at 

the router. 

Jitter (Delay variation) 

 Refers to the variation in time delay between all packets in a session. This 

parameter can be critical, as for example when sending a video stream 

over the network and the packets arrive with a big variation in the delay 
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between them. This affects the quality of the playback, and if the variation 

in delay is very high it can distort our video to unacceptable levels. 

Bandwidth 

Bandwidth is the ideal capacity that the network can operate. The 

networks never work on ideal maximum capacity since there are negative 

factors that cause deterioration of the quality of the network. Such factors 

include transmission delay, noise, etc. 

 

Packet Loss  

 Packet loss takes place when we are experiencing congestion on our 

network. This parameter is the maximum packet loss we can accept. In the 

event of network congestion this parameter may be used to discard packets 

intelligently, up the defined Packet Loss parameter. 

 

Service Availability 

Availability is the reliability of the user’s connection to the Internet 

service. In other words what is the probability to connect to my service 

provider network when I want to. In order to be able to maintain all these 

parameter there is a need of Service Level Agreement (SLA).  

 

1.1.4 Service Level Agreement 

SLA is a contract between the service provider and the customer. The 

SLA can be applied to a customer, a group of customers, or a group of businesses. 

The SLA defines end-to-end service specifications and may consist of the 

following: 

Availability 

Services offered 

Service Guarantees 

Responsibilities 

Auditing the service 

Pricing 
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Availability-guarantee uptime, service latency. It's the time it takes for the user to 

access the network.  

 

Services offered-the specification of the service levels offered. 

 

Service Guarantees-for each class. The service guarantees are the guarantees for 

the throughput, loss rate, delay, delay variation and class over-subscription 

handling for each class. For instance if the premium class and best effort get the 

same guarantees then there is no reason for paying more money to belong in the 

premium class. 

  

Responsibilities-In case the ISP breaks the SLA what the consequences are. Does 

the ISP have 24 hours support?  

 

Auditing the service-Does the ISP or the customer have the software or the tools 

to audit the connections? 

 

Pricing-It's a very hot topic under discussion and research that addresses the issue 

of pricing according the SLA that the client had requested. 

 

The Service Level Specifications and /or Service Level Objectives (SLOs) 

describe in more detail the characteristics of the SLA.  

 

The Service Level Specification, SLS, consists of following: 

 

• Expected throughput 

• Drop probability 

• Latency 

• Constraints on the ingress 

• Constraints on the egress points 
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• Scope of service 

• Traffic profiles 

 

An SLO partitions an SLA into individual objectives that can be mapped 

into policies that can be executed. The SLO is responsible for that. The SLOs 

define metrics to enforce, police, and/or monitor the SLA. Some metrics that are 

being used are performance response time, component system availability (up 

time), and serviceability. 

Traffic Conditioning is control functions that can be applied to a behavior 

aggregate application flow, or other operationally useful subset of traffic e.g. 

routing updates.  

 

1.1.5 Policy Management 

Policy management responsibilities are to manage and control the entry of 

packets into to the network, and define which services are available. To be able to 

implement the policy management we need a QoS policy server that would 

distribute, manage, and capture the network policy in the service provider's 

domains. A management system needs to be able to do the following: 

 

• Create a policy 

• Directory storage of policy information 

• Policy server (distribution of the policies) 

• Networks elements, which perform policy enforcement 

• An application interface to all interaction between the 

policy elements and external applications 

 

1.1.6 QoS Policies 

To be able to enable QoS on the Internet we need policies to include 

preferential queuing or dropping, admitting or denying access, or encrypting the 

packet’s payload.  Some protocols that support all these functions are: 

• COPS 
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• RADIUS RSVP 

• IntServ 

• DiffServ 

 

The ability of these protocols to successfully scale depends on the 

effectiveness of the network to administer and distribute consistent policy 

information to the multiple devices in the network, which perform the 

classification and packet conditioning or treatment. Protocols that are being used 

for distribution of the policy include LDAP, COPS, SNMP and TELNET/CLI. 

Some of these protocols will be discussed in greater detail on later sections of this 

thesis. 

 

1.1.7 Qos Ranking 

Table 1 shows the ranking list of the protocols based on the QoS support they 

offer. 

 

QoS Network Application Description 

Most X  Provisioned Resources end-to-end 

X X RSVP [IntServ Guarantee Services] 

X X RSVP [IntServ Controlled Services] 

X  Multi-Protocol Label Switching [MPLS] 

X X DiffServ. 

X X DiffServ or SBM 

X  Diffserv applied at network core ingress. 

 

X  Fair queuing applied by network elements (e.g. 

CFQ,WFQ,RED) 

Least  Best effort service 

 

Table 1: QoS Ranking 
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It’s obvious that RSVP can provide us with the most guaranteed QoS and 

Best-effort with the least guaranteed QoS support. As we will see later, RSVP 

does not scale well enough for use on the Internet. MPLS and DiffServ seem to be 

better solutions than RSVP and they seem to be making their way up. The worst 

of all these protocols in terms of QoS is the Best-effort, since it doesn’t offer any 

QoS control. 

 

1.2 New protocols for IP QoS provision 

As discussed earlier, there are a few protocols that aim to support IP QoS. 

Some of these have already failed to provide a scalable efficient service. Others 

are still investigated. A few of these protocols are the ReSerVation Protocol 

(RSVP), Integrated Services (IntServ), Differentiated Services (DiffServ) and the 

Multi Protocol Labeling Switching (MPLS). The two most promising protocols 

are MPLS and DiffServ [16]. The RSVP seems to be failing since it's very 

complex system and does not scale easily. RSVP provides a reservation setup 

through the routers. MPLS tries to solve the problem with the addressing of the IP 

protocol at the routers. The MPLS uses a 20-bit label to simplify the routing of the 

IP. MPLS is an independent protocol and can be complementary to DiffServ. It's 

expected that the use of MPLS with DiffServ may prove a good solution. MPLS 

resides in the routers.   

 

1.2.1 Integrated services (IntServ) 

The Integrated Services has been implemented to solve the problems we 

have today with the Internet. The Integrated Services aims to establish a QoS in 

the Internet and to enhance the Internet services, as was done in ATM. The main 

components of the Integrated Services architecture are the traffic control, traffic 

classes and the resource reservation setup protocol. 

 

The Traffic Control consist of  Admission control, Packet classifier and Packet 

scheduler. 
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The Admission control functions like a policeman. The Admission control checks 

the recourses of the network to decide whether it will make a new reservation or 

not. In this way it can also check to see if the connections use more resources 

from what are supposed to. Then accordingly the ISP can re-allocate bandwidth. 

  

The Packet classifier is responsible to map the incoming packets into different 

classes. A class can be a single flow or a many flows. 

   

The Packet scheduler is responsible for transmitting the packets streams 

according to the resources that have been reserved for them. 

 

The IntServ architecture has 3 Traffic Classes. These three classes are the 

Guaranteed, controlled load, and Best-effort. By having these 3 classes we can 

categorize our users into these classes and charge them based on the class they 

use.  

 

Guaranteed 

The Guaranteed class guarantees the delay, bandwidth and packet loss. 

This class can be used for real-time application such as video, audio, etc.  

 

Controlled Load 

This class offers a better service than Best-effort but lower service than the 

Guaranteed class. It’s mainly used for users who don’t want to pay a lot of money 

for the guaranteed class, but also wants to get a better service than the average 

user. The packet losses and delays in this class will be minimized. 

 

Best-effort 

Best-effort will be all of the users who don’t have strict quality of service 

requirements. This is the only class used in today’s IP Internet. It’s good for 

elastic applications, such as e-mail, and ftp. 
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1.2.2 Reservation Setup Protocol (RSVP) 

The signaling protocol in the IntServ architecture is the RSVP. The RSVP 

is invoked when a request for a new reservation has been made. The source sends 

out the traffic requirements and will traverse along every node, which will check 

if it can obtain those resources, and sends it to the next hope, until it reaches the 

receiver. The receiver sends the reservation to the next node and passes it to the 

next node until reaches the source where the transmission starts. In case, one of 

the nodes can’t allocate the resources that it has been requested from, it can 

announce the maximum resources that it can provide and the receiver will decide 

whether it can’t accept it or decline it. In Figure 1 shows the steps of the RSVP 

procedures [17]. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1: RSVP Architecture 

 

Disadvantages of RSVP 

The RSVP is been already implemented in the Microsoft Windows 2000 

server edition. The RSVP is been used for Intranets mostly but not for the 
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Internet. Some of the reasons that it has not been used in the Internet are the 

following: 

• Scalability 

• Security 

• Policy control 

• Scalability 

 

The RSVP is a soft state protocol. This means that the RSVP has to 

refresh the state of each reservation. This requires higher CPU power and memory 

at the routers. The routers manipulate thousands of sessions that can be reserved 

by the RSVP; as an outcome is to cause delays on other critical applications. 

 

Security 

The RSVP doesn’t provide any security to which nodes have authority to 

reserve network resources. In that respect the security on this protocol is not good 

enough to prohibit unwanted users to reserve more of what resources they are 

suppose to reserve. 

 

Policy control 

Again the RSVP doesn’t have a good control to be able to policy that 

granted access to the resources. 

 

 

 

 

 19



1.2.3 Multi-Protocol Label Switching (MPLS) 

Multi-Protocol Label switching (MPLS) is one of the three emerging 

technologies which support IP QoS. The MPLS approach will be the networking 

technology that delivers the traffic engineering capability and QoS performance 

for backbone networks to enable the support of differentiated services [9]. MPLS 

might solve the problems that IP networks face today, as for example deliver real-

time applications, guarantee a certain QoS to the customer, and control the traffic 

over the network.  

Forwarding and Routing 

MPLS uses a label to route and forward the packet in the MPLS domain. This 

label is assigned by the ingress Label Switching Router. At the ingress of the 

MPLS domain the edge LSR functions like a classifier, and assigns a short fixed 

size label on each packet, based on the concept of forwarding equivalence classes, 

FEC. All packets belonging to one FEC take the same path and get the same 

treatment.  After a packet has been assigned with a label is admitted in the MPLS 

domain where this label is been used to be routed accordingly. In the MPLS 

domain, the routers usually lookup the label of the packet and not the original 

packet to forward the packet to the appropriate router. At the egress point of the 

MPLS domain the edge router removes the label and forward the packet to the 

host. The major components of the MPLS network are shown in Figure 2. 

 

The labels construct the Label Switched Path. The network administrators 

can direct traffic where they want by changing the LSP. There are two ways to 

establish the route for a given LSP: the control-driven, or the explicit route (ER-

LSP). 
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Figure 2: MPLS Architecture 

 

In the case where we are setting up control driven LSP, each LSR 

determines the next interface to route the LSP based on its Layer 3 routing 

topology database, and sends the label request to the L3 next hop [9].  When 

setting up an ER-LSP, the route for the LSP is specified in the “setup” message 

itself, and this route information is carried along the nodes the setup message 

traverses [9]. In this case all the nodes along the ER-LSP will follow the route 

specification and send the label request to the next indicated interface .In this way 

the network administrators can manage and control the traffic engineering by 

using the ER-LSP. They can direct the traffic exactly where they want by 

specifying the exact nodes and interfaces the ER-LSP will traverse. Also, they can 

be less strict working on a higher level and not give all the details about the route. 

The labels of the packets have only local meaning in the MPLS domain. There are 

cases that we need to have more than one label for one packet. This is called 

label-stack. The label-stack uses the last in, first out stack that can contain as 

many labels as needed. This method is used for transmitting a label to a router that 

is not a direct neighbor.  

 21



Advantages of MPLS over Internet 

A list of the Advantage of MPLS over the Internet is following: 

• A router doesn’t need to analyze the network layer packet header. The 

router can run a wide range of network layer protocols. 

• Every packet that comes into the MPLS domain at the ingress router is 

assigned an FEC, forwarding equivalence class. This decision is made 

based on the packet header information or more information that the 

administrator wants to use.  

• The edge routers require higher CPU and memory power because they 

do most of the work. The routers in the core they are cheaper and 

lower end routers since they just have to forward the packet based on 

the label. 

• With MPLS the administrator has control over the engineering traffic. 

With the label packets can be forced to take a certain route through the 

network. 

• The precedence or class of service (DiffServ) can be encoded in a 

label. 

 

1.3 Introduction to DiffServ 

Since 1997, a number of different approaches of implementing DiffServ 

networks have appeared in the literature [27] [29] [30]. These approaches are 

different in two ways: the high-level user perceivable services and the 

mechanisms required to achieve these services. In 1998, a working group for 

Differentiated Services (DiffServ WG) had been established. The main goal of 

this group is to standardize the use of Type of Service in both IPv4 and IPv6. 

DiffServ exploits the ToS (Type of Service) field in the IPv4 packet header 

to provide rudimentary QoS to the users, see Figure 3. Briefly, DiffServ provides 

a classification or differentiation of classes among the users. By classifying the 

users in different classes you can provide them with better (prioritized) QoS. All 

packets belonging to the same class are treated the same way. DiffServ uses the 6 

 22



bits of the 8-bit ToS field that it has been renamed to DS (Differentiated Services 

field). The other two bits are reserved for future use; see Figure 3. 

 

 
Figure 3: DS Byte in IPv4 and IPv6 

 

CU=currently unused (2-bits) 

DSCP= Diff-Serv code point (6-bits) 

DSCP=101100:  EF (Expedited Forwarding) 

DSCP=000000:  DE (Best effort) 

others still under study 

 

DiffServ appears to be a promising architecture for providing differentiation 

of service to aggregated users. It has received a lot of attention in the literature 

and lately some implementations are appearing, as for example in Linux 

implementation [6], and commercially on some routers [14]. In this thesis we will 

focus on the DiffServ architecture, details of which appear in the later chapters. 
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2 Differentiated Services (DiffServ) 
2.1.1 Differentiated Services Model 

Figure 4 shows the Differentiated Services Model. The DiffServ domain is 

broken down to boundary nodes and interior nodes. The boundary nodes are 

responsible for setting the DS bits in the packet, and the conditioning of packets. 

The interior nodes are responsible for forwarding packets in different ways based 

on the DS field.  In order to have consistent service you must have common rules. 

The rules are used to set the bits of the DS field code points and how the packets 

are conditioned at the boundary nodes. Rules also define how the packets are 

forwarded inside the network at the interior nodes.  

 

 
Figure 4: DiffServ Domain 

 

2.1.2 Terminology 

Some terminology is necessary to be explained for better understanding of 

Differentiated Services. 

 24



 

Per-Hop Behavior (PHB) 

PHB denotes a combination of forwarding, classification, scheduling and 

drop behaviors at each hop. The main purpose of PHB is to make a 

comprehensible connection between packet-level implementations and service 

models [3]. 

 

 Some of guidelines for designing a PHB are the following: 

 

• PHB is primarily a description of desired behavior on a relatively high 

abstraction level; in particular, a PHB must have a comprehensible 

motivation. 

• PHB should allow the construction of predictable services. 

• The desired behavior should be externally observable. 

• The desired behavior should be local-that is, it should concern behavior 

within one node rather than the whole network. 

• The description of behavior is related to an aggregate that consists of all 

packets belonging to the same PHB in a certain point of the network. 

• The PHB description should not suppose any particular conditioning 

function at the network boundary. 
 

The traffic conditioning and service provision functions must be separated 

from forwarding behaviors (RFC 2475). The reason of the separation of the traffic 

conditioning and forwarding is flexibility, see Figure 5. 
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Figure 5: Per-Hop Behavior 

 

PHB class 

A PHB class is a collection of PHBs intended to be applicable for 

transmitting packets of one application. The packets shouldn’t be reordered inside 

the network. The PHB class with the appropriate traffic conditioning functions is 

the nearest equivalent for the network services in connection-oriented networks. 

 

Codepoints 

Codepoints are the 8 bits that used to inform the interior nodes about the 

PHB of the packet. Several different codepoints can map to the same PHB. 

 

Mechanisms 

Mechanism is the implementation of one or more Per-Hop Behaviors 

according to a particular algorithm. A mechanism can be used for implementing 

several PHBs, and several mechanisms are usually needed to implement a PHB. 

Figure 6, shows the main building blocks of DiffServ. 
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Figure 6: Main Blocks of DiffServ Services 
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2.2 DiffServ Architecture  

The RFC 2475 defines the Architecture for Differentiated Services. Mostly 

the RFC2475 talks about the scalability based on the DS field. The service 

characteristics may be specified in terms of throughput, delay, jitter, loss, or 

relative priority of access to network resources. The PHBs are developed based on 

the above characteristics. 

The main requirements of a basic architecture of a DiffServ Services are the 

following: 

Versatility: A wide variety of end-to-end services should be possible to 

realize; network services should be independent of applications, and 

they should be directly applicable with current applications and with 

current network services. 

 

Simplicity: The overall system or parts of it should not depend on 

signaling for individual applications. A small set of forwarding 

behaviors should be necessary. 

 

Cost efficiency: Information about individual flows or customers should 

not be used in core nodes, but only states of aggregated streams should 

be used in core nodes. 

 
2.2.1 Architecture Model 

This section focuses on the architecture model of the Differentiated 

Services. For better understanding of the architecture model, we need to clarify 

some more terminology. Figure 7 shows the basic elements of Differentiated 

Services Network. A list of the basic elements of DiffServ is the following: 

 

• Boundary node: A collection of functions needed to interconnect a DS 

domain to another DS domain or to non-DS-capable domain. 
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• Interior node: A collection of functions needed if a node is connected 

only to other DS-capable nodes. 

 

• Ingress node: A collection of functions needed to handle incoming traffic 

streams to a DS domain. 

 

• Egress node: A collection of functions needed to handle outgoing traffic 

streams from a DS domain. 
 

In reality, the boundary node can be a boundary node for some traffic stream and 

an interior node for some other streams. An interior node may have a limited 

capacity of traffic conditioning. 

 

 
 

Figure 7: Basic elements of a Differentiated Services network 
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At the boundary nodes takes place the traffic condition based on the Service level 

Agreements. There are two level agreements.  

 

• Service-level agreement (SLA): A contract between a customer and a 

service provider that specifies the forwarding service 

 

• Traffic-conditioning agreement (TCA): Defines the rules used to realize 

the service, such as metering, marking, and discarding 

 

2.2.2 Traffic Classification and Conditioning 

Figure 8 shows the logical structure of traffic classification and 

conditioning functions. Traffic conditioners are usually located at DS boundary. 

The classification is made according to the source-destination and DS filed. A 

traffic profile is one way to present the traffic-conditioning rules. The packets can 

be either in-profile or out-of-profile, based on the results at the arrival time of the 

packet. The in-profile packets have higher priority over the out-of profile packets. 

The traffic meter measures each traffic stream.  

 

 
Figure 8: Packet classifier and traffic conditioning according to the RFC2475 

 

Traffic meter informs the marker, shaper and dropper mechanisms about the state 

of the stream: 

 

• Marker: Sets an appropriate codepoint to the DS field of the packet. 
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• Shapers: Used to smooth the traffic process of particular aggregate 

streams 

• Dropper mechanisms: Based on the SLA and TCA, some packets can be 

discarded at the traffic-conditioning element. 

 

2.3 Per-Hop Behavior Groups 

This section describes the per-hop behavior groups. It concentrates on the 

following four PHB groups: 

• Class Selector PHB 

• Assured Forwarding  

• Expedited Forwarding PHB 

• Dynamic RT/NRT PHB 

 

2.3.1 Class Selector PHB 

The Class Selector PHBs is been defined for backward compatibility for Ipv4 

TOS octet. There is some usage of the 0-2 bits of the TOS of Ipv4 that were 

intended for the Department of Defense applications. The RFC 2474 states the 

following:  

 

A class Selector PHB should give packets a probability of timely forwarding 

that is not lower than that given to packets marked with a lower Class Selector 

PHB, under reasonable operating conditions and traffic loads. 

 

The CS PHB is situated for Resource Sharing Model. Figure 9 shows an 

implementation of Class Selector PHB. The first two queues are high priority 

queues and they accept queues as long as they have space. The lowest queue is 

divided in thresholds. The lowest queues could be RED. 
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Figure 9: Class Selector PHB Implementation 

 

2.3.2 Assured Forwarding (AF) 

The assured forwarding (AF) has four classes and within each class 3 

drop-precedence. Any packet exceeding their profile will be demoted but not 

necessarily dropped. Every node that supports AF must at least implement these 

four classes. In AF every node must reserve a certain amount of resources such as 

bandwidth, buffer size and etc. Every packet that enters at the edge router is 

subject to traffic conditioning. At the edge router the packets can be dropped, 

shaped, reassigned to another class or to higher or lower drop precedence. After 

the packet is in the network it just forwarded to the next router. With AF PHBs 

have the flexibility to implement different service models based on applications, 

individual’s customers, or organizations. Figure 10 shows an implementation of 

AF PHB. 
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Figure 10: AF implementation based on four queues 

 

2.3.3 Expedited Forwarding (EF) 

The Expedited Forwarding minimizes the delay, loss and jitter. In the EF 

if the packet exceeds its profile will be discarded. In order to keep the loss, delay 

and jitter low the packet should see no queues. The EF uses a single bit to indicate 

that it is high priority [3]. The EF guarantees the minimum departure rate at every 

node. The network administrator can set the minimum and maximum departure 

rate from every node. If the packets exceed the maximum departure rate then it 

discarded so it doesn’t damage any other traffic. 

 The classification takes place at the ingress router. For every packet that 

comes in the ingress router, the router classifies the packet according to its SLA 

(Service Level Agreement). After the packet has been classified then the rest of 

the routers can use the DS field to forward the packet to its destination, with the 

appropriate priority. There is no marking at the EF PHB since there is only one 

level of importance. In case the packets arrive before its scheduled time there are 

three options at the boundary and interior nodes: 

 

• To forward the packet immediately 

• To forward the packet at the scheduled time 

• To discard the packet 
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The EF PHB can implement a leased line service as a primary model and 

guaranteed connection as a secondary service model. An implementation of EF 

PHBs is shown at Figure 11. 

 

 

 
 

Figure 11: Expedited forwarding Implementation 

 

Figure 11 show a small queue with strict priority and a default queue with 

RED mechanism. This is because we want to minimize the RTT and the delay. 

Keep in mind that in case we are transmitting a real time data they are useless if 

the data exceed a certain delay. 

 

2.3.4 Dynamic RT/NRT PHB Group 

The DRT-PHB contains two classes and six PHBs. Figure 12 shows the 

classes. The PHB classes offer two distinctly delays. One delay is for the real time 

applications such as videoconferencing, IP telephony and etc. The second delay is 

for elastic applications such as email, ftp and etc. Six importance levels offer wide 

dynamics for various traffic-control. The two delays and the six-importance level 

can be increased.  
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Figure 12: Structure of DRT-PHB group 

 

The DRT-PHB group has the flexibility to be applied to any of the three 

service models: application, customer, or organization model. This flexibility is 

gained because the DRT-PHB group uses the nominal bit rate, NBR. NBR defines 

the relative amount of resources that a certain entity is supposed to achieve from 

the network. An implementation of the RT-PHB group is shown at Figure 13. 

 

 
Figure 13: Implementation of the DRT-PHB 
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3 Traffic Management in DiffServ 
In order to deliver differentiated services, it is necessary to offer the means to 

manage traffic. In a DiffServ setting one can identify a number of alternatives, 

such as Class Selector PHB, Assured forwarding Group, Expedited Forwarding 

PHB and DRT/NRT PHB. Next we discuss the terms urgency and importance and 

then detail some of the mechanisms than can be employed, with special emphasis 

on the LINUX implementation. 

 

3.1 Urgency and Importance 

Urgency and importance are very important terms for traffic handling. What 

do we mean when we say this packet has a high urgency? A packet with high 

urgency must be delivered as soon as possible with as small delay as possible. Of 

course there are many combinations of urgency and importance. A packet can be 

urgent and important, urgent but not important, important but not urgent, or not 

urgent and not important. 

Real time applications such as IP telephony and videoconferencing require 

a small urgency otherwise their data can be useless.  

Importance on the other hand can be used to differentiate certain packets over 

others. For instance if we wanted to give a higher priority to a telnet application 

over email we could do that by using importance characteristics. We could mark 

all the telnet packets with higher importance and at the event of a congested 

network the email packets will be discarded first before the telnet packets 

[3]. Figure 14 shows the scenario based on important versus less important. We 

can see from the figure that in case of one individual flow there is a higher 

probability to drop an important packet rather the non-importance. At aggregated 

flows, there are more chances to drop a non-important packet since there is a 

higher chance in that time slot to have non-important packets. 
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Figure 14: Selection of Packets 

 

3.2 Traffic Management in Boundary nodes 

The traffic handling can be broken down into four phases: 

 

1.Setting the target 

2.Collecting information 

3.Making the decision 

4.Executing the decision 

 

3.2.1 Classifiers 

A classifier is a mechanism used to select the PHB class for a traffic flow. 

There are various models that can be used to classify a PHB class such models are 

the following: 

 

• The user selects a definite service class from the available classes. 

• The application automatically selects a preferable service class for 

each flow or packets. 
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• The network selects an appropriate service class based on 

information about the application. 

• The network selects an appropriate service class based in the 

customer contract regardless of the application. 

• A combination of the first four approached. 

 

The first approach is not very practical to implement, since it requires 

additional mechanisms to allow the simultaneous use of several classes, such as 

IP telephony and data.  The second approach seems more practical, to have the 

application to select a service class. In order to be able to implement this scheme 

the customer and the service provider have to use the same DS codepoints. The 

problem is that the classification must be made at the customer premises and 

might not have the equipment for it. 

The third approach seems the more reasonable in the case the customer 

doesn’t have the equipment. The fourth approach is applicable and reasonable by 

using SLAs between the provider and the customers. The packet classifiers are 

broken down into two types, the behavior aggregate, BA, classifier and multi-field 

classifier, MF. 

 

3.2.1.1 Behavioral Aggregate Classifier 

 BA classifies or selects packets based on the DS field only. It’s used 

mostly on the interior routers because it’s very difficult to classify packets for 

customers, since it classifies packets based on the DS field. 

 

3.2.1.2 Multi Field Classifier 

 As we have seen at the BA classifier is mostly used for interior routers, a 

multi field classifier is used at the boundary of a DS domain. The MF classifier 

selects or classifies packets on the header of the packet. 

 

 38



3.2.2 Meters 

The traffic-metering module is responsible for sorting the classified 

packets into the right importance level. One way to do this, the packet marking 

must take into account several measuring results. Another way is that the 

marking, shaping, and dropping decisions must be taken based on the measuring 

result of the class to which the packet belongs.  
 

3.2.3 Packet Marking 

The main objective of the packet marking is to map packets into one of the 

available importance levels of the PHB class used by the flow. There are two 

marking principles: 

 

• When a packet exceeds a threshold, it is marked as low importance, 

but it is not used to determine the load level of the following packets. 

Effectively, the allowed bit rate of the higher importance level is 

totally independent of the load of lower level importance level. 

 

• When the momentary load level exceeds a threshold, every packet is 

marked with lower importance.  

 
3.2.4 Traffic Shaping 

The shaping module is responsible for remarking the packets to lower 

importance level. The user has the freedom to shape its traffic before it sent to the 

network. 

 
3.2.5 Packet Dropping at Boundary Nodes 

In case the customer uses leased-line or guaranteed connections services, it 

may require that nonconforming packets be discarded immediately. 
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3.3 Traffic-Management Functions in Interior Nodes. 

There are some differences between the interior router and the boundary 

router. The main parts of the interior routers are the buffering and discarding. At 

the interior nodes the classification is based on the DSCP field of packet. 

There are many different queuing systems that are available for buffering such as 

FIFO,SFQ, CBQ, RED, and etc.  

 

3.3.1 Queuing Disciplines 
 

3.3.1.1 Pfifo_fast 

PFIFO stands for packet First In, First Out. Also know as First Come First 

Served (FCFS) queuing. There is only one queue and all the packets are treated 

equally. The default size of the PFIFO queue is 100 packets in Linux operating 

system. The queue contains three bands, 0, 1 and 2. All the bands must comply 

with the FIFO rules. The bands are processed based on their priority. Band 0 has 

the highest priority and band 1 has priority over 2. In order to process band 1, 

band 0 must be empty. PFIFO stores the packets when is congested and forward 

them based on the arrival time [14]. 

PFIFO will not give priority to high priority packets over low priority 

packets. Ill-behaved sources can exploit most of the bandwidth with the result that  

important traffic will be dropped at the expense of lower priority traffic. At the 

event of congestion, when the queue fills up the PFIFO will drop all the packets. 

PFIFO is very suitable for large links that don’t have large delays and minimal 

congestion. 

 

3.3.1.2 Priority Queuing 

Priority Queue, PQ, allows to configure four traffic priorities. This can be 

done by using several filters in series. The packets will be placed to the 

appropriate queues based on the header characteristics of the packets. The queues 

with highest priority is dequeued until it’s empty and then move to the next 
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queue. Every time a packet is transmitted, the queues are scanned based on their 

priorities and start it’s transmition.  

 

 
Figure 15: Priority Queuing 

 

Packets can be classified based on the following list: 

 
• Protocol or sub protocol type 

• Incoming interface 

• Packet size 

• Fragments 

• Access List 
 

3.3.1.3 Custom Queuing 

Figure 16 shows how the custom queuing works. CQ dequeues the packets in a 

round robin fashion. CQ allows specifying the number of packets or bytes each 

queue will be transmitting. In this way, CQ allocates the bandwidth among the 

queues. For every network interface the CQ maintains 17 queues. The queue 

number 0 has the highest priority of the other 16 queues. The system queue 

number 0, services the keep alive packets and signaling packets. CQ is statically 

configured and cannot be configured dynamically. 
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Figure 16: Custom Queuing 

 

3.3.1.4 Stochastic Fairness Queuing (SFQ) 

SFQ was proposed by McKenney. SFQ is a simple implementation of fair 

queuing algorithms family. The incoming packets are classified based on the 

source-destination address and port number. This is achieved by using a simple 

hash function to map the incoming packet to an available queue. The 

classification of the incoming packet to the queue is probabilistic. Different flows 

can reside in the same queue despite their importance. The hash function changes 

periodically in order to avoid packets coming from the same source to reside in 

the same queue.  

Flow is the sequence of data packets having enough common parameters 

to separate them from other flows. SFQ consists of dynamically allocated number 

of FIFO queues [4].  Based on McKenny, an SFQ may need to have 5 to 10 times 

more queues than the active source-destination pairs. The SFQ runs in a round 

robin, sending one packet from each FIFO in one turn. In table x, you can see the 

probability that one flow can share a queue with other flows. SFQ can divide the 

bandwidth exactly among all active queues and that the bandwidth of a queue is 

divided exactly evenly among flows directed to it. The benefits of SFQ are that 

requires little CPU and memory usage. 
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3.3.1.5 Weight Fair Queuing  

WFQ provides dynamic fair queuing to the entire network by dividing 

bandwidth across queues of traffic based on weights. WFQ is a flow-based 

algorithm that simultaneously schedules interactive traffic to the front of a queue 

to reduce response time [14]. Most variants of the WFQ discipline are compared 

to the Generalized Processor Sharing (GPS) scheduler, which is a theoretical 

construct, based on a form of a processor sharing. 

 

 
Figure 17: Weighted Fair Queuing 

 

Figure 17 shows the WFQ architecture. WFQ provides traffic priority 

management that dynamically sorts traffic into messages that make a 

conversation. WFQ breaks up the train of packets within a conversation to ensure 

that bandwidth is shared fairly between individual conversations and that low-

volume traffic is transferred in a timely fashion.  The classification of traffic is 

based on packet header addressing such as source and destination network or 

MAC address, protocol, TOS and etc. In WFQ there are two categories of flows: 

high-bandwidth sessions and low-bandwidth sessions. Low bandwidth has a 

higher priority over the high-bandwidth session.  
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The order of removal from the fair queues is determined by the virtual 

time of the delivery of the last bit of each arriving packet. WFQ is aware of the IP 

presence of the packet. In other words WFQ detects higher priority packets 

marked with precedence by the IP forwarder and can schedule them faster. As the 

precedence increases, WFQ allocates more bandwidth to the conversation during 

periods of congestion. WFQ uses weights to determine the order of the queues 

that are emptied. First serves the queues with the lower weights.  
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3.3.1.6 Random Early Detection  

The Random Early Detection was proposed by Sally Floyd and Van 

Jacobson. The basic idea of the RED is to calculate the average queue size and if 

the average exceeds a certain threshold the incoming packets are dropped 

randomly based on the probability that depends on the average queue size. RED 

increases the fairness over the previous method, the drop tail method. 

The RED can be used with Explicit Congestion Notification (ECN). In the case 

that we use ECN with RED instead of dropping the packets we mark them. If the 

queue gets full then it will drop the packets, see Figure 18. 

 The ECN notifies the TCP sources by suing some bits in the TCP header. 

Then the TCP sources reduce their sending rate, by doing this we are avoiding a 

congestion state. Red can keep the queue size low if we use the correct 

parameters. 

 

 

 
 

Figure 18: RED Packet Drop Probability 

 

Disadvantages of RED 

In the case where we have a few TCP sources using one link and the TCP 

source reduces its sending rate when it experiences a packet loss it will lead to 

underutilization of the link. In case there are many TCP sources only few sources 

may be reduced and the behavior of red will be similar to drop tail. These 

problems have been solved with the Adaptive RED and BLUE. 
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3.3.1.7 n-RED 

The n-RED is the expansion of the RED. In n-RED we have two classes of 

traffic, called IN and OUT. This queue has been named as RIO, RED IN and 

OUT. The RIO has the following two sets of parameters: 

 
 1st set: 

  Thresholds 

  Drop probability 

 

 2nd set: Variables 

  Average queue size 

 

 

There are two averages of sizes that needed to be calculated in RIO. The 

first average of queue size is for the drop probability of the IN-packets. This 

average queue size counts only the IN-packets that are coming in the queue. The 

second average queue size for the OUT-packets is calculated based on the total 

queue size (OUT- and IN-packets). In other words the second average queue for 

the drop probability it counts and the IN and OUT-packets. The RIO queue uses 

two RED queues therefore is called 2-RED. We can implement n-RED queues as 

far we have n sets of parameters and variables. 

 

3.3.1.8 Weighted Random Early Detection 

The WRED uses the RED algorithm and the IP Precedence to provide for 

preferential traffic handling of higher priority packets. The WRED at a congested 

point can drop lower priority packets and give priority to the preferable classes. 

The IP Precedence controls which packets are dropped [14]. For instance traffic 

that has lower precedence has a higher drop rate. In Figure 19, we can see a 

diagram of the WRED and how it works. WRED avoids the problem of the 

globalization and tries to make an early detection of congestion as it also provides 

for multiple classes of traffic. The WRED is used on the core routers rather on the 
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network’s edge. The WRED gives the flexibility to the network administrator to 

assign a weight to the IP precedence, as he/her believes is better for its network.  

 

 
 

Figure 19: Weighted Random Early Detection 

 

The WRED drops packets selectively based on the IP Precedence. It works 

on the notion that if the packet has a high IP Precedence then it's very highly to be 

delivered to its destination. Packets with lower IP Precedence will be dropped 

first. The WRED starts dropping packets as soon it see the queue to start getting 

congested in order to prevent the congestion. By doing this avoids the global 

synchronization because it will not need to drop very large packets at once. Users 

who are sending a lot of traffic over the network are more likely that their sending 

rate will be reduced in comparison with the users who are not sending so much 

traffic. 

 

3.3.1.9 Class Based Queuing  

Class Base Queering is another queuing discipline that solve the resource 

denial problem that we could have with other disciplines. In other words, CBQ 

can prevent classes from starvation. The CBQ is based on the link-sharing 

 47



concept [1]. In a non-congestion state at the leaf classes, CBQ uses a general 

scheduler.  

 

 
 

Figure 20: CBQ link share structure under no congestion 

 

At the event that the classes become congested a link share scheduler is 

activated see Figure 20. This scheduler is responsible for isolating the traffic 

among the classes. CBQ has several parameters that can isolate, borrow or 

bounded traffic among the classes. This can be done from the top-level stage, see 

Figure 21. The general scheduler within a priority class is freely chosen. 

Implementations of CBQ use weighted round robin (WRR) and packet-by-packet 

round robin (PRR). 
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Figure 21: CBQ link share structure under congestion 

 
3.3.1.10 CSZ Scheme 

The CSZ objective is to isolate the link capacity to different traffic classes. 

In CSZ guaranteed service is provided by WFQ scheduler. WFQ assigns a share 

of link capacity to each flow. WFQ assigns a share of link capacity to each active 

flow. The predictive service in CSZ is a provided by priority queue. Figure 22 

shows the CSZ scheme. 
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Figure 22: CSZ scheduler 

 
3.3.1.11 Deficit Round Robin 

Deficit Round Robin scheduler alleviates the problem with the various 

sizes of packets. The regular round robin is ignoring the fact that packets have 

different sizes and this causes some issues of fairness. DRR uses stochastic fair 

queuing to assign packets into the queues [4]. The queues are served with round 

robin with the only difference if a queue was not able to send a packet in the 

previous round because its packets was too large, the remainder from the previous 

quantum is added to the quantum for the next round. See Figure 23 and Figure 24. 
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Figure 23: Deficit Round Robin: Initialize the variables to zero. 
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Figure 24: Deficit Round Robin: After sending out a packet of size 200, queue 

had 300 bytes of its quantum left. 

 

3.3.1.12 Token Bucket Filter 

The TBF is a simple queue that monitors the traffic that is transmitted by 

single source and limits the traffic on the desirable rate. Figure 25 shows the 

function of TBF. The bucket size, b, of the TBF is the most important parameter 

since it defines the numbers of tokens that can be stored. A token is removed from 

the bucket every incoming byte that is sent by the source. New tokens are placed 

back to the bucket based on the rate, r, of the token. When the bucket is empty the 

arriving packets are dropped. 
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Figure 25: Token Bucket Filter 

There are three possibilities based on the TBF algorithm: 
 

• The data arrives into TBF at rate equal the rate of incoming tokens. In this 

case each incoming packet has its matching token and passes the queue 

without delay.  

 

• The data arrives into TBF at rate smaller than the token rate. Only some 

tokens are deleted at output of each data packet sent out the queue, so the 

tokens accumulate, up to the bucket size. The saved tokens can be then 

used to send data over the token rate, if short data burst occurs.  

 

• The data arrives into TBF at rate bigger than the token rate. In this case 

filter overrun occurs -- incoming data can be only sent out without loss 

until all accumulated tokens are used. After that, over limit packets are 

dropped.  
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4 Implementing Differentiated Services on Linux 
There are many networking function that can be used to implement and 

deliver differentiated service. In this thesis we will briefly mention  two software 

tools designed to configure a  DiffServ router. One of the tools is known as 

UCLA software and the other the EPFL software. 

The designers of the UCLA package wanted to have low level forwarding 

path for providing different levels of network services. A Bandwidth Broker 

manages the allocation of resources. The BB configures routers forwarding 

parameters in the domain accordingly with a policy database. The policy database 

stores information about flows requiring increased network service. 

The  UCAL package runs on FreeBSD Unix. 

The EPFL software runs under Linux. Based on the modularity that Linux 

offers makes it a very flexible platform for experiments with PHBs already under 

standardization as well as experiments with new PHBs. And that’s why we used 

the EPFL package for our experiments. 
4.1 Introduction to Linux Networking Services 

Linux is an open source operating system, which is freely available to the 

public. Linux had gained popularity all over the world but mostly in the academic 

environment. Most of the testbeds are released in Linux or in Unix environment 

first. Linux offers a rich set of Traffic Control (TC) functions for networking. 

 

Lists of possible network traffic control functions include: 

 

• Throttle bandwidth for certain computers 

• Throttle bandwidth to certain computers 

• Fairness for bandwidth sharing 

• Protect your network from DoS attacks 

• Protect the Internet from your customer 

• Multiplex several servers as one, load balancing, or 

enchanted availability 

• Restrict access to your computers 
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• Limit access of your users to other hosts 

• Do routing based on user id, MAC address, source IP 

address, port type of service, time of day or content. 

 
The Linux kernel offers support for IntServ, DiffServ and QoS. Before we 

get into the details of traffic control configuration of Linux we have to understand 

how the TC works under Linux. In order to transmit data into the network we 

have to setup the network card, using appropriate driver software. 

 

 Two functions of the driver software are: 

 

• The Linux Networking Code can request the network driver to send a 

packet on the physical network.  

 

• The network driver can deliver packets that it has received on the physical 

network to the Linux Networking Code. The current architecture sends the 

data from the application to the networking driver, see Figure 26. 

 
 

Figure 26: Default Setup of a Linux 

 

Figure 27 shows an extra function, the Traffic Control function, included 

in the LINUX implementation. With the traffic control in between the Linux 
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Networking Code and the Network driver, packets can be manipulated in several 

ways.  

 
 

 

Figure 27: Linux Setup with Traffic Control 

 

 

Figure 28 shows the block diagram of the kernel processes, the packets received 

from the network and how it generates new data to be sent on the network [5]. 

 

 
Figure 28: Processing of network data 

 

The Input interface is responsible for passing packets to the Ingress 

Policing module. Packets could be policed at the Input interfaces. The Ingress 

policing modules are responsible for discarding traffic in the event that packets 

are arriving too fast. Then the packets are either forwarded on different interface, 

in case the machine is acting as a router, or are passed to the higher layers for 

further processing. The forwarding module is responsible for the selection of the 
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output interface, the selection of the next hop, encapsulation etc. Then the packet 

is queued at the output interface. The traffic control can drop packets based on 

several parameters that can be selected by the user.  

The major conceptual components of the traffic control of Linux code are: 

 

• Queuing disciplines 

• Classes (with queuing disciplines) 

• Filters 

• Policing (and related concepts) 

 

 

4.2 Queuing Discipline 

Every network device has its own queuing discipline that controls how the 

packets are enqueued. There are several queuing disciplines such as pFIFO, 

bFIFO, SFQ, RED and so on. Figure 29 shows a queuing discipline. 

 
Figure 29: A simple queuing discipline without classes. 

 

Figure 30 shows a queuing discipline that uses filters to prioritize packets 

into to different classes. More than one filter can be mapped to a class [7].  

 
Figure 30:A simple queuing discipline with multiple classes. 
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Classes use another queuing discipline to store their data; such queuing 

disciplines can be pFIFO, bFIFO, RED, SFQ and etc. Figure 31 shows this 

scenario. 

  

 

 
Figure 31: Combination of priority. TBF and FIFO queuing disciplines. 

 

The queuing discipline implements a two-delay priority. The packets are 

filtered and classified into these two classes. The first queue is a token bucket 

filter, which is the high priority class. The TBF is served with 1Mbps rate and has 

a higher priority than the FIFO. All the other packets are classified into the lower 

priority queue, which is served with a queuing discipline FIFO. 

Each queuing discipline is identified by unsigned 32 bit numbers, u32. 

The identification number of the queuing discipline is split into two parts, the 

major number and the minor number. The major number and the minor number 

are 16 bit each. The notation is major:minor, where a minor number is always 

zero for the queuing disciplines see Figure 32. At the network device eth0, there 

must be only one queuing discipline, which the major number of the queuing 

discipline must be unique. In case the user doesn’t define the major number of the 

queuing discipline the system assigns one automatically.  
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Figure 32: Addressing for queuing disciplines and classes. 

 

Each queuing discipline has a set of certain functions that uses to control 

its operations. Such functions are enqueue, dequeue, requeue, drop, init, reset, 

destroy, change, and dump. More detail description of these functions can be 

found at [19]. There are some statistics that are maintained by each queuing 

discipline. The minimum sets of statistics that are maintained are the following: 

 

• The current queue length 

• The cumulative number of bytes enqueued 

• The cumulative number of packets enqueued 

• The cumulative number of packets dropped 

 

4.3 Classes 

There are two ways that you can identify a class, by the class ID, and the 

internal ID. The class ID is been assigned by the user, and the internal ID by the 

queuing discipline. The internal ID must be unique with a given queuing 
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discipline. The data type of the Class ID is u32 and the internal ID is unsigned 

long. The kernel is accessing the class by its internal ID. 

Queuing disciplines with classes provide a set of functions to manipulate 

classes. A list of these functions is graft, leaf, get, put, change, delete, walk, 

tcf_chain, bind_tcf, unbind_tcf and dump_class [19]. 

 

4.4 Filters 

The incoming packets have to be assigned into the various classes. This is done 

using filters. Queuing disciplines are responsible for this task and with the usage 

of filters can assign incoming packets into classes. This takes place during the 

enqueue operation.  The filters are organized based on the queuing discipline or 

class. All filters are stored in a filter list. This list is organized either by the 

queuing discipline or by class. It’s also ordered based on the priority, in ascending 

order. The structure of the filters can been seen at Figure 33. 

 

 
Figure 33: Structure of filters 

Like classes, filters have internal IDs that are used to be reference for 

some internal tasks. Figure 33 shows the handles and the internal ID that are used 

for internal purposes. These handles are 32-bit and the internal IDs are unsigned 

long type. The order of which the filters and their elements are examined to get a 

match for the incoming IP is shown at Figure 34. 
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Figure 34: Looking for Filter Matching 

 

There are several functions that can be used in order to control the filters. 

A list of these functions is classify, init, destroy, get, put, change, delete, walk, 

and dump. For more information regarding these functions can be obtained from 

[19] [5].  

Filters are broken down to generic and specific filters. Generic filters can use one 

instance per queuing discipline that can classify packets for all classes. The 

cls_fw, cls_route, and cls_tcindex are generic filters. Specific filters use one or 

more instances of the filter or its internal element per class. The cls_rsvp and 

cls_u32 are specific filters. 

 

4.5 Policing  

In order to make sure that the traffic doesn’t violate a certain limitation, we use 

policing. The policing is broken down to five policing mechanisms, policing 
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decisions by filters, policing at ingress, refusal to enqueue packets, dropping 

packets from an inner queuing discipline and dropping a packet when enqeueing. 

 

4.6 Classifiers under Linux 

Some of the classifiers that are used by the tc program are the following: 

 
• fw 

  Bases the decision on how the firewall has marked the packet. 

• f32 

   Bases the decision on fields within packet (source-destination address, etc) 

• route 

   Bases the decision on which route the packet will be routed. 

• rsvp, rsvp6 

Bases the decision on the target (destination, protocol) and optionally the source as 

well. 

 

The classifiers that we have listed above accepted several parameters that some of 

them are common. A list of these parameters follows: 

 
• protocol 

  The classier defines the protocol that will accept. Required IP only. 

• parent 

The handle this classifier is to be attached to. This handle must be an already existing 

class. Required. 

• prio 

   Defines the priority of this classifier.  

• handle 

   This handle means different things to different filters. 
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5 Evaluating Differentiated Services on Linux 
5.1 Topology Under Study 

Figure 35 shows the network setup that we have implemented at University 

of Cyprus (UCY). The Linux router is an Acer PII300MHZ, 128MRAM. We 

have installed Linux Mandrake with a Kernel 2.4. The clients are connected on a 

100Mbps switch and the outgoing interface of the router goes on a 10Mbps Hub.  

 
 

Figure 35: Network Topology for DiffServ Architecture 

In order to obtain some statistics we have used various tools such as IPERF, 

TCPDUMP, TCPTRACE and XPLOT. IPERF generates UDP and TCP data 

traffic. It has the ability to transmit the data at specific port, or at specific bit rate, 

or a certain amount of data. IPERF runs under Linux and Windows. When we 
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used IPERF under windows we have noticed some discrepancies. Another tool 

that we have used is the TCPDUMP. TCPDUMP captures the traffic at the 

Ethernet card. And last, we have used the TCPTRACE tool. TCPTRACE analyses 

the data that are generated from the TCPDUMP. TCPTRACE generates some 

files that can be used by the XPLOT tool to generate graphs.   

 

5.2 Evaluating Linux Implementation for DiffServ 

This section focuses on the evaluation of the DiffServ architecture under 

Linux. Several Scenarios were considered which aim to show the behavior of the 

Linux implementation of Differentiated Services under various queuing 

disciplines, topologies, various parameters etc. 

We have broken down the results in two categories. The first category is 

the scenarios that have one queue. For this category we have run tests to verify the 

expected behavior of the queuing disciplines for non-DiffServ networks. The 

results can be found in Appendix I. 

The second category is the scenarios with two queues and with DiffServ 

implementation. The results appear in section 5.2.1. First we present a table 

giving an overview of the four scenarios we have investigated. 
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SCENARIO 1 

 Scheduler Class 
Priority 

Class 
Weight 

Filter  
Priority 

Queue 
Types 

Traffic  
Type 

Test 1 
5 500K 1 pFifo UDP  CBQ 

 5 500K 1 pFifo UDP 
Test 2 

  100     
  1   

Test 3 
1  1     

 5  1   
Test 4 

4  1     
5  1   

Test 5 
5 800K 1     
5 200K 1   

Test 6 
5 500K 1  UDP   
5 500K 1  TCP 

Test 7 
5 500K 1  TCP   
5 500K 1  TCP 

Table 2 
 

Scenario 2 
Test 1 

Scheduler Class 
Priority 

Class 
Weight 

Filter  
Priority 

Queue 
Types 

Traffic  
Type 

5 200K 2 TBF UDP 

 
 
 CBQ 

 5 800K 1 pFifo UDP 
Test 2 

    UDP   
     TCP 

 
Table 3 

Scenario 3 
 Scheduler Class 

Priority 
Class 
Weight 

Filter  
Priority 

Queue 
Types 

Traffic  
Type 

Test 1 
PQ1 200K 5 pFifo UDP  PQ 

 PQ2 800K 5 pFifo UDP 
Test 2 

PQ2 200K 5 pFifo UDP  PQ 
 PQ1 800K 5 pFifo UDP 

 
Table 4 

 
 
Note: unfilled table entries indicate that they use the same parameters as in test 1. 
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Scenario 4 
 Scheduler Class 

Priority 
Class 
Weight 

Filter  
Priority 

Queue 
Types 

Traffic  
Type 

Test 1 
5 300K 2 pFifo UDP  CBQ 

 5 700K 1 RED UDP 
Test 2 

    TCP   
     TCP 

Test 3 
    UDP   
    TCP 

Test 4(TCP Window size 64K) 
 500K   TCP   

  500K   TCP 
Test 5 (TCP Window size 128K) 

 500K   TCP   
  500K   TCP 

Table 5 
 

Note: unfilled table entries indicate that they use the same parameters as in test 1. 
 

5.2.1 Scenario 1 (pFIFO, pFIFO) 

Test 1 

In this scenario we are using two pFifo queues, see Figure 36.The source 

192.168.2.5 generates traffic for the receiver 192.168.1.4. The flow 1 represents 

the traffic that travels from 192.168.2.5 through the upper pFifo and to the 

192.168.1.4. The flow 2 represents the traffic that starts from 192.168.2.3 and 

traverse through the lower pFifo towards to 192.168.1.7. From the Table 6, we 

can see that both of the flows have the same priority and the same weight. Both of 

the sources transmit the same amount of data at the same bit rate. In all the tests, 

we have weighted the super class of the CBQ at 1Mbit. 
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Figure 36: Block Diagram of pFifo queues 

with same class and filter priorities and weights 
Router Setup Parameters 

Source IP Classifier Scheduler Class 

Priority 

Class 

Weight 

Filter 

Priority 

Bandwidth  Notes 

192.168.2.5 U32 CBQ 5 500K 1 5Mbps  

192.168.2.3 U32 CBQ 5 500K 1 5Mbps  

Table 6 
Source Results 

Source IP Destination 

IP 

Transfer 

Mbytes 

Rate 

Mbps 

Frame 

Length 

Queue 

Type 

Queue 

size 

Traffic 

Type 

Packets 

Transmitted 

Time (s) 

Duration 

192.168.2.5 192.168.1.4 20 7 1514 pFifo 50 UDP 14267 22.9 

192.168.2.3 192.168.1.7 20 7 1514 pFifo 50 UDP 14267 22.9 

Table 7 

 

Flow 1 and flow 2 are 5Mbps each. Table 6 shows the transferred data and 

the bit rates that we have been transmitting from the sources.  
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Destination Results 

Destination IP Incoming 

Traffic 

Data 

Transferred 

 

Jitter Delay 

(ms) 

Packet Loss Total 

Packets 

Time (s) 

Duration 

192.168.1.4 4.5Mbps 13.1Mbytes 9.294 4926 14267 23.1 

192.168.1.7 4.6Mbps 13.1Mbytes 1.421 4918 14267 23 

Table 8 

The results from this test can be seen in Table 7 and Table 8. The results 

appear reasonable since the incoming rate at the receivers is below 5Mbps. This 

test shows fairness over the UDP flows.  
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Test 2 

In this test, we would like to investigate the effect of the filter priorities. 

Table 9 shows the setting of the filter priorities.  

 

 
Figure 37: Block Diagram of pFifo queues 

with different filter priorities 

 
Router Setup Parameters 

Source IP Classifier Scheduler Class 

Priority 

Class 

Weight 

Filter Priority Bandwidth  Notes 

192.168.2.5 U32 CBQ 5 500K 100 5Mbps  

192.168.2.3 U32 CBQ 5 500K 1 5Mbps  

Table 9 

 
Source Results 

Source IP Destination 

IP 

Transfer 

Mbytes 

Rate 

Mbps 

Frame 

Length 

Queue 

Type 

Queue 

size 

Traffic 

Type 

Packets 

Transmitted 

Time (s) 

Duration 

192.168.2.5 192.168.1.4 20 7 1514 pFifo 50 UDP 14267 22.9 

192.168.2.3 192.168.1.7 20 7 1514 PFifo 50 UDP 14267 22.9 

Table 10 
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Destination Results 

Destination IP Incoming 

Traffic 

Data 

Transferred 

 

Jitter Delay 

(ms) 

Packet 

Loss 

Total Packets Time (s) 

Duration 

192.168.1.4 4.5Mbps 13.0Mbytes 8.294 5029 14267 23.1 

192.168.1.7 4.6Mbps 13.3Mbytes 1.345 4913 14267 23 

 

Table 11 
 

The results are similar to the test 1; see Table 10 and  

Table 11. In this test, observe that the filter priorities do not play a critical 

role on the bandwidth allocation. We have to keep in mind that the filter priorities 

are for the classification of the data into the queues. Of course, we cannot assume 

the same if we were sending TCP and UDP traffic at the same time. An important 

observation is that the jitter of the two flows seems questionable. IPERF, the tool 

that we are using, uses the formula 1, to compute the jitter. 

 

 

E{(Wi)-E[Wi])]}        Formula (1) 

 

 

Wi is a random delay that rises out of the buffering within network 

 

After analyzing the formula we can notice that the results are correct. 

Keep in mind that was impossible to synchronize the two sources to start 

transmitting data at the same time. By knowing this, on of the two sources can 

take the advantage of not giving very accurate results. We noticed the following 

behavior; at the starting time the source that started transmitting first had a 

different jitter than the other. At the period that both of the sources were 
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transmitting we noticed the same jitter at both ends, and towards the end we 

noticed again different jitter time since one of them had finished transmitting.  
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Test 3 

In this test, we set the class priorities. Flow 1 has a higher priority over 

flow 2, see Table 12. All the other parameters remain the same as were in test 1. 

 

 
Figure 38: Block Diagram of pFifo queues 

with different classes priorities and same weights 

 
Router Setup Parameters 

Source IP Classifier Scheduler Class 

Priority 

Class 

Weight 

Filter Priority Bandwidth  Notes 

192.168.2.5 U32 CBQ 1 500K 1 5Mbps  

192.168.2.3 U32 CBQ 5 500K 1 5Mbps  

Table 12 
 
 

Source Results 

Source IP Destination 

IP 

Transfer 

Mbytes 

Rate 

Mbps 

Frame 

Length 

Queue 

Type 

Queue 

size 

Traffic 

Type 

Packets 

Transmitted 

Time (s) 

Duration 

192.168.2.5 192.168.1.4 20 7 1514 pFifo 50 UDP 14267 22.9 

192.168.2.3 192.168.1.7 20 7 1514 pFifo 50 UDP 14267 22.9 

Table 13 

 

 72



 
Destination Results 

Destination IP Incoming 

Traffic 

Data 

Transferred 

 

Jitter Delay 

(ms) 

Packet 

Loss 

Total Packets Time (s) 

Duration 

192.168.1.4 7.0Mbps 20.0Mbytes 0.708 0 14267 22.9 

192.168.1.7 2.1Mbps 6.2Mbyte 11.459 9876 14267 23.1 

Table 14 

Table 13 and Table 14 show that we can differentiate flows with higher 

priorities. The results are remarkable since we got rates up to 7Mbps on the 

192.168.1.4. The lower the number is set at the class priority, the higher the 

priority it has over the other flow. When a class has a higher priority over the 

other one, the scheduler has to execute the packets in that class and then move to 

the next one. 
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Test 4 

In test 4 we investigate the sensitivity of the priority level. For instance, 

what is the relation between two classes that have priority 1 and 5 and 4 and 5. 

  

 
Figure 39: Block Diagram of pFifo queues 

with same class and filter priorities and weights 
Router Setup Parameters 

Source IP Classifier Scheduler Class 

Priority 

Class Weight Filter Priority Bandwidth  Notes 

192.168.2.5 U32 CBQ 4 500K 1 5Mbps  

192.168.2.3 U32 CBQ 5 500K 1 5Mbps  

Table 15 

 
Source Results 

Source IP Destination 

IP 

Transfer 

Mbytes 

Rate 

Mbps 

Frame 

Length 

Queue 

Type 

Queue 

size 

Traffic 

Type 

Packets 

Transmitted 

Time (s) 

Duration 

192.168.2.5 192.168.1.4 20 7 1514 pFifo 50 UDP 14267 22.9 

192.168.2.3 192.168.1.7 20 7 1514 pFifo 50 UDP 14267 22.9 

Table 16 
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Destination Results 

Destination IP Incoming 

Traffic 

Data 

Transferred 

 

Jitter Delay 

(ms) 

Packet 

Loss 

Total Packets Time (s) 

Duration 

192.168.1.4 7.0Mbps 19.9Mbytes 0.683 47 14267 22.9 

192.168.1.7 2.2Mbps 6.2Mbyte 12.690 9838 14267 23.1 

Table 17 

The results of this test show that there is not much of a differentiation among the 

distances of the priorities. As far we got a difference among the priorities is good 

enough in order to give a higher priority to the queue.  
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Test 5 

Here we investigate the weight behavior of a class. In order to accomplish 

this, we change the weights of the classes to be non-proportional to their 

bandwidths.  

 
Figure 40: Block Diagram of pFifo queues 

with same class priorities and filter priorities but different weights 

 

Table 18 shows the parameters of the routers. The weights are 800K for flow 1 

and 200K for flow 2. 
Router Setup Parameters 

Source IP Classifier Scheduler Class 

Priority 

Class 

Weight 

Filter 

Priority 

Bandwidth  Notes 

192.168.2.5 U32 CBQ 5 800K 1 5Mbps  

192.168.2.3 U32 CBQ 5 200K 1 5Mbps  

Table 18 
Source Results 

Source IP Destination 

IP 

Transfer 

Mbytes 

Rate 

Mbps 

Frame 

Length 

Queue 

Type 

Queue 

size 

Traffic 

Type 

Packets 

Transmitte

d 

Time (s) 

Duration 

192.168.2.5 192.168.1.4 20 7 1514 pFifo 50 UDP 14267 22.9 

192.168.2.3 192.168.1.7 20 7 1514 PFifo 50 UDP 14267 22.9 

Table 19 
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Destination Results 

Destination IP Incoming 

Traffic 

Data 

Transferred 

 

Jitter Delay 

(ms) 

Packet 

Loss 

Total Packets Time (s) 

Duration 

192.168.1.4 6.6Mbps 19.0Mbytes 0.683 691 14267 22.9 

192.168.1.7 2.5Mbps 7.2Mbyte 8.838 9154 14267 23.1 

Table 20 

 Table 19 and Table 20 show the results of this test. The results confirm the 

expectation, since the incoming traffic at the receivers is adjusted based on the 

weight value. This behavior is expected since the weights take place when the 

class priorities are the same. 
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Test 6 

In this test, we change the traffic type that we are generating at the 

sources. The source 192.168.2.5 generates UDP traffic and the 192.168.2.3 

generates TCP traffic.  

 

 
 

Figure 41: Block Diagram of pFifo queues 

with the same class priorities and weights 

 
Router Setup Parameters 

Source IP Classifier Scheduler Class 

Priority 

Class 

Weight 

Filter 

Priority 

Bandwidth  Notes 

192.168.2.5 U32 CBQ 5 500K 1 5Mbps  

192.168.2.3 U32 CBQ 5 500K 2 5Mbps  

Table 21 

 
Source Results 

Source IP Destination 

IP 

Transfer 

Mbytes 

Rate 

Mbps 

Frame 

Length 

Queue 

Type 

Queue 

size 

Traffic 

Type 

Packets 

Transmitted 

Time (s) 

Duration 

192.168.2.5 192.168.1.4 20 7 1514 PFifo 50 UDP 14267 22.9 

192.168.2.3 192.168.1.7 20 3.8 1514 PFifo 50 TCP 14267 41.7 

Table 22 
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Destination Results 

Destination IP Incoming 

Traffic 

Data 

Transferred 

 

Jitter Delay 

(ms) 

Packet Loss Total 

Packets 

Time (s) 

Duration 

192.168.1.4 6.9Mbps 19.9Mbytes 0.736 100 14267 22.9 

192.168.1.7 3.8Mbps 20Mbytes ---------- 0  41.7 

Table 23 

It’s obvious that UDP is getting most of the bandwidth at 6.9Mbps and the TCP is 

getting 3.0Mbps. This behavior is as expected, since the UDP traffic rate is not 

controlled. In contrast TCP is flow controlled, using a variant of the Jacobson 

algorithm. Observe that the uncontrolled UDP behavior has a substantial number 

of losses (recall no flow control, no sensing for retransmission of lost packets) 
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Test 7 

Test 7 sets both sources to use TCP.  

 
Figure 42: Block Diagram of pFifo queues 

with the same class priorities and weights 

 

 
Router Setup Parameters 

Source IP Classifier Scheduler Class 

Priority 

Class 

Weight 

Filter Priority Bandwidth  Notes 

192.168.2.5 U32 CBQ 5 500K 1 5Mbps  

192.168.2.3 U32 CBQ 5 500K 2 5Mbps  

Table 24 

 
Source Results 

Source IP Destination 

IP 

Transfer 

Mbytes 

Rate 

Mbps 

Frame 

Length 

Queue 

Type 

Queue 

size 

Traffic 

Type 

Packets 

Transmitted 

Time (s) 

Duration 

192.168.2.5 192.168.1.4 20 3.5 1514 pFifo 50 TCP  46.5 

192.168.2.3 192.168.1.7 20 3.4 1514 PFifo 50 TCP  47.5 

Table 25 
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Destination Results 

Destination IP Incoming 

Traffic 

Data 

Transferred 

 

Jitter Delay 

(ms) 

Packet 

Loss 

Total 

Packets 

Time (s) 

Duration 

192.168.1.4 3.5Mbps 20Mbytes ----------   46.5 

192.168.1.7 3.4Mbps 20Mbytes -----------   47.5 

Table 26 

We can see from Table 25 and Table 26 that using TCP in both flows we get a fair 

treatment over the packets. We have to note that in TCP we mostly get zero 

packets losses, since the TCP window size is not big enough to exceed the 

bandwidth rate. At later a stage, we will show the effect of increasing the TCP 

window size. 
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5.2.2 Scenario 2 (TBF, pFIFO) 

In this scenario, we change queuing disciplines. Here we use a Token 

Bucket Filter, TBF, at the upper queue and pFIFO at the lower queue.  Also, we 

have allocated the bandwidth differently from the previous scenario. Here we give 

2Mbps to the upper queue of the TBF queue and 8Mbps to the pFifo. Even though 

we have allocated 2Mbps to the TBF class, the TBF have been configured to limit 

the traffic at 1.5Mbps. 

 

Test 1 

In this test we have set up both of the classes with the same priority. The weights 

have been set based on the bandwidth allocation. The flow 1 gets 1.5Mbps and 

flow 2 gets 8Mbps. Both of the sources generate UDP traffic at 7Mbps. 

 
Figure 43: Block Diagram of TBF. and pFifo  

with same class and filter priorities and weights 

 
Router Setup Parameters 

Source IP Classifier Scheduler Class 

Priority 

Class 

Weight 

Filter 

Priority 

Bandwidth  Notes 

192.168.2.5 U32 CBQ 5 200K 2 2Mbps  

192.168.2.3 U32 CBQ 5 800K 1 8Mbps  

Table 27 
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The parameters of the TBF are the following: 
 

Rate 1.5Mbps 

Burst 1.5KByte 

Limit 1.5Kbytes 
 

Source Results 

Source IP Destination 

IP 

Transfer 

Mbytes 

Rate 

Mbps 

Frame 

Length 

Queue 

Type 

Queue 

size 

Traffic 

Type 

Packets 

Transmitted 

Time (s) 

Duration 

192.168.2.5 192.168.1.4 20 7 1514 TBF  UDP 14267 22.9 

192.168.2.3 192.168.1.7 20 7 1514 pFifo 50 UDP 14267 22.9 

Table 28 
Destination Results 

Destination IP Incoming 

Traffic 

Data 

Transferred 

 

Jitter Delay 

(ms) 

Packet Loss Total 

Packets 

Time (s) 

Duration 

192.168.1.4 1.1Mbps 3.2Mbytes 15.313 11979 14267 23.1 

192.168.1.7 7.0Mbps 20Mbyte 0.268 0 14267 22.9 

Table 29 

 

The results are outstanding. We can see that the incoming traffic at the 

receivers is almost what we have expected. Keep in mind that we have limited the 

upper queue, TBF, at 1.5Mbps. Even though, there are some looses at the UDP 

traffic we can ignore since the main goal here is to limit UDP traffic not to steal 

traffic from other classes. 
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Test 2 

In this test we transmit UDP traffic through flow 1 and TCP through flow 

2.  

 
Figure 44: Block Diagram of EF PHB 

 
Router Setup Parameters 

Source IP Classifier Scheduler Class 

Priority 

Class 

Weight 

Filter 

Priority 

Bandwidth  Notes 

192.168.2.5 U32 CBQ 5 200K 2 2Mbps  

192.168.2.3 U32 CBQ 5 800K 1 8Mbps  

Table 30 

The parameters of the TBF are the following: 
Rate 1.5Mbps 

Burst 1.5KByte 

Limit 1.5Kbytes 

Source Results 

Source IP Destination 

IP 

Transfer 

Mbytes 

Rate 

Mbps 

Frame 

Length 

Queue 

Type 

Queue 

size 

Traffic 

Type 

Packets 

Transmitted 

Time (s) 

Duration 

192.168.2.5 192.168.1.4 20 7 1514 TBF  UDP 14267 22.9 

192.168.2.3 192.168.1.7 20 7 1514 pFifo 50 TCP 14267 28.0 

Table 31 
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Destination Results 

Destination IP Incoming 

Traffic 

Data Transferred 

 

Jitter Delay (ms) Packet 

Loss 

Total 

Packets 

Time (s) 

Duration 

192.168.1.4 1 Mbps 2.8Mbytes 21.664 12255 14267 

192.168.1.7 5.7Mbps 20Mbyte    28.1 

23.1 

Table 32 

Table 32 and Table 33 show something very interesting. Using, TBF we can limit 

the UDP traffic from stealing traffic from other classes. Keep in mind that we 

have limited the upper queue, TBF, at 1.5Mbps. Even though, there are some 

looses at the UDP traffic we can ignore since the main goal here is to limit UDP 

traffic not to steal traffic from other classes. We can conclude that TBF is a good 

limiter for UDP traffic. 
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5.2.3 Scenario 3 (Priority Queues) 

In this scenario we evaluate the Priority Queues. The main focus here is to 

see the behavior of the PQ. Figure 45 shows the topology. 

Test 1 

 
Figure 45: Block Diagram of Priority Queue 

The PQ discipline is executing first the queue with the highest priority and 

then the rest. In our test we have assign flow 1 to be classified at Priority 1, which 

has the highest priority and flow 2 on the lower priority queue. 

 
Router Setup Parameters 

Source IP Classifier Scheduler Class 

Priority 

Class Weight Filter Priority Bandwidth  Notes 

192.168.2.5 U32 PQ PQ1  5   

192.168.2.3 U32 PQ PQ2  5   

Table 33 
Source Results 

Source IP Destination 

IP 

Transfer 

Mbytes 

Rate 

Mbps 

Frame 

Length 

Queue 

Type 

Queue 

size 

Traffic 

Type 

Packets 

Transmitted 

Time (s) 

Duration 

192.168.2.5 192.168.1.4 20 7 1514   UDP 14267 22.9 

192.168.2.3 192.168.1.7 20 7 1514   UDP 14267 22.9 

Table 34 
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Destination Results 

Destination IP Incoming 

Traffic 

Data 

Transferred 

 

Jitter Delay 

(ms) 

Packet 

Loss 

Total 

Packets 

Time (s) 

Duration 

192.168.1.4 7.0Mbps 20Mbytes 0.759 0 14267 22.9 

192.168.1.7 2.2Mbps 6.2Mbyte 8.322 9829 14267 23.1 

Table 35 

As it expected flow 1 gets most of the bandwidth. This means that it has 

priority over the others. It’s obvious that flow 1 gets more priority than flow 2. 
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Test 2 

In order to prove the consistency of this test we have reversed the 

priorities of the flows and we get the results that we expected. See the following 

tables 32,33 and 34 

 

 
Figure 46: Block Diagram of Priority Queue 

 
Router Setup Parameters 

Source IP Classifier Scheduler Class 

Priority 

Class 

Weight 

Filter Priority Bandwidth  Notes 

192.168.2.5 U32 PQ PQ2  5   

192.168.2.3 U32 PQ PQ1  5   

Table 36 

 

 
Source Results 

Source IP Destination 

IP 

Transfer 

Mbytes 

Rate 

Mbps 

Frame 

Length 

Queue 

Type 

Queue 

size 

Traffic 

Type 

Packets 

Transmitted 

Time (s) 

Duration 

192.168.2.5 192.168.1.4 20 7 1514   UDP 14267 22.9 

192.168.2.3 192.168.1.7 20 7 1514   UDP 14267 22.9 

Table 37 
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Destination Results 

Destination IP Incoming 

Traffic 

Data 

Transferred 

 

Jitter Delay 

(ms) 

Packet 

Loss 

Total Packets Time (s) 

Duration 

192.168.1.4 2.2Mbps 6.2Mbytes 3.371 9839 14267 23.0 

192.168.1.7 7.0Mbps 20Mbyte 0.735 0 14267 22.9 

Table 38 

Flow 1 is assigned to the priority queue 2. This means that it has lower 

priority over the others. 
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5.2.4 Scenario 4 (pFifo, RED) 

DiffServ architecture has been focusing on various Per Hop Behavior 

groups. One of the most important one is the Expedited Forwarding. In this 

scenario, we have implemented an EF PHB, and we have analyzed it to a certain 

extent.  

 

Test 1 

In test 1 of the 3rd scenario we have two queues; a pFifo (upper queue) and 

a RED (lower queue). In this test the priorities of the classes and the filters are set 

the same. The weights of the classes are proportional to the bandwidth of the 

classes. Flow 1 has 3Mbps and flow 2 has 7Mbps. Both sources transmit UDP 

traffic at 7Mbps. 

 
Figure 47: Block Diagram of EF PHB 

 
Router Setup Parameters 

Source IP Classifier Scheduler Class 

Priority 

Class 

Weight 

Filter 

Priority 

Bandwidth  Notes 

192.168.2.5 U32 CBQ 5 300K 1 3Mbps  

192.168.2.3 U32 CBQ 5 700K 2 7Mbps  

Table 39 
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The parameters for the RED queue are the following: 
Limit 60KB 

Maximum 45KB 

Minimum 15KB 

Probability 0.1 
 

Source Results 

Source IP Destination 

IP 

Transfer 

Mbytes 

Rate 

Mbps 

Frame 

Length 

Queue 

Type 

Queue 

size 

Traffic 

Type 

Packets 

Transmitted 

Time (s) 

Duration 

192.168.2.5 192.168.1.4 20 7 1514 pfifo 10 UDP 14267 22.9 

192.168.2.3 192.168.1.7 20 7 1514 RED  UDP 14267 22.9 

Table 40 
Destination Results 

Destination IP Incoming 

Traffic 

Data 

Transferred 

 

Jitter Delay (ms) Packet 

Loss 

Total 

Packets 

Time (s) 

Duration 

192.168.1.4 2.7Mbps 7.9Mbytes 0.708 8659 14267 23.1 

192.168.1.7 6.4Mbps 18.2Mbyte 0.596 1253 14267 22.9 

Table 41 
 

The results are matched expectations. We get 2.7Mbps and 6.4Mbps for 

flow 1 and flow 2 respectively. Flow 1 is been limited at 3Mbps and flow 2 at 

7Mbps.  
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Test 2 

In this test we change the traffic type of the sources. Both sources transmit 

TCP traffic. 

 
 

Figure 48: Block Diagram of EF PHB 

 
Router Setup Parameters 

Source IP Classifier Scheduler Class 

Priority 

Class 

Weight 

Filter 

Priority 

Bandwidth  Notes 

192.168.2.5 U32 CBQ 5 300K 1 3Mbps  

192.168.2.3 U32 CBQ 5 700K 2 7Mbps  

Table 42 

 

 

Source Results 

Source IP Destination 

IP 

Transfer 

Mbytes 

Rate 

Mbps 

Frame 

Length 

Queue 

Type 

Queue 

size 

Traffic 

Type 

Packets 

Transmitted 

Time (s) 

Duration 

192.168.2.5 192.168.1.4 20 3.2 1514 pfifo 10 TCP  50.6 

192.168.2.3 192.168.1.7 20 3.5 1514 RED  TCP  45.7 

Table 43 
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Destination Results 

Destination IP Incoming 

Traffic 

Data 

Transferred 

 

Jitter Delay (ms) Packet 

Loss 

Total Packets Time (s) 

Duration 

192.168.1.4 3.2Mbps 20Mbytes    50.6 

192.168.1.7 3.5Mbps 20Mbyte  10  45.7 

Table 44 

Table 43 and Table 44 show the results. Once again TCP traffic shows 

fairness. At the receivers we get 3.5Mbps and 3.2 Mbps for flow 1 and flow 2. 

These results are as expected since the TCP window size is controlling the 

sending rate of the sources and its below the available bandwidth. 
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Test 3 

Still using the same scenario as above with the difference that the one 

source transmits a TCP and the other UDP traffic. Flow 1 transmits UDP traffic 

and flow 2 transmits TCP traffic.  

 
Figure 49: Block Diagram of EF PHB 

 

Router Setup Parameters 

Source IP Classifier Scheduler Class 

Priority 

Class 

Weight 

Filter 

Priority 

Bandwidth  Notes 

192.168.2.5 U32 CBQ 5 300K 1 3Mbps  

192.168.2.3 U32 CBQ 5 700K 2 7Mbps  

Table 45 

 
Source Results 

Source IP Destination 

IP 

Transfer 

Mbytes 

Rate 

Mbps 

Frame 

Length 

Queue 

Type 

Queue 

size 

Traffic 

Type 

Packets 

Transmitted 

Time (s) 

Duration 

192.168.2.5 192.168.1.4 20 7 1514 pfifo 10 UDP 14267 22.9 

192.168.2.3 192.168.1.7 20 4.1 1514 RED  TCP  39 

Table 46 

 

 

 

 94



Destination Results 

Destination IP Incoming 

Traffic 

Data 

Transferred 

 

Jitter Delay 

(ms) 

Packet 

Loss 

Total 

Packets 

Time (s) 

Duration 

192.168.1.4 4.8 Mbps 13.7Mbytes 1.204 4518 14267 22.9 

192.168.1.7 4.1Mbps 20Mbyte    39.2 

Table 47 

 

Table 46 and Table 47 show the results of the test.  Once again, we can see 

that the UDP traffic steals traffic from the TCP traffic.   
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Test 4 
In this test we repeat test 2 with focus on the queue behaviors. The setup 

parameters have been changed. We are allocating 5Mbps per flow, and we set the 

same class priorities. Both of the sources are transmitting TCP traffic. The TCP 

window size is 64K bytes at the sources and the receivers. 

 

 
Figure 50: Block Diagram of EF PHB 

 

The weights of the classes are the same 500K each class. 

 
Router Setup Parameters 

Source IP Classifier Scheduler Class 

Priority 

Class Weight Filter Priority Bandwidth  Notes 

192.168.2.5 U32 CBQ 5 500K 1 5Mbps  

192.168.2.3 U32 CBQ 5 500K 2 5Mbps  

Table 48 

 

The parameters for the RED queue are the following: 

 
Limit 60KB 

Maximum 45KB 
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Minimum 15KB 

Probability 0.1 
 

Source Results 

Source IP Destination 

IP 

Transfer 

Mbytes 

Rate 

Mbps 

Frame 

Length 

Queue 

Type 

Queue 

size 

Traffic 

Type 

Packets 

Transmitted 

Time (s) 

Duration 

192.168.2.5 192.168.1.4 20 3.6 1514 pfifo 10 TCP  44.2 

192.168.2.3 192.168.1.7 20 3.4 1514 RED  TCP  47.0 

Table 49 

 

 

 

 
Destination Results 

Destination IP Incoming 

Traffic 

Data Transferred 

 

Jitter Delay (ms) Packet 

Loss 

Total 

Packets 

Time (s) 

Duration 

192.168.1.4 3.6Mbps 20Mbytes  0  46.5 

192.168.1.7 3.4Mbps 20Mbyte  107  47.1 

Table 50 

In this test we observe some losses over flow 2, (107 lost packets). These 

packets are caused by RED since it is dropping packets based on the probability 

that we have assigned to the queue length. Figure 51and Figure 52 show the 

outstanding packets of both sources. 

 
Figure 51: Outstanding Data 
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Figure 52: Outstanding Data 

 

Figure 53 and Figure 54 show the Round Trip Time of both queues. We 

can see that the pFifo queue has larger RTT than the RED queue.  

 

 
Figure 53: RTT of Flow 1 
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Figure 54: RTT of Flow 2 

 

The TCP behavior on pFifo is straightforward. The TCP source sends 

packets based on the TCP window size and if the rate is higher than what the 

pFifo can sustain then the queue drops the packets. In this case we don’t have 

packet drops in pFifo but we do have in RED. The drops in RED queue are 

expected, since after a certain threshold, RED has a certain probability that start 

dropping packets.  

 Note that the RTT time on both queues varies. On pfifo the RTT is larger 

than the RED. And that’s again was expected. The RTT time is defined by how 

large the queue size is and since the pFifo is a fixed size then the RTT is fixed. On 

the other hand, the queue size of RED queue varies based on the mean queue size.  

 

 

 

 

 99



Test 5 

In test 5 we used exactly the same parameters that we used in Test 4 with 

the exception that the TCP window size here is 128K bytes on both ends. We 

have increased the TCP window size in order to increase the throughput of the 

TCP traffic. 

 
 

Figure 55: Block Diagram of EF PHB 

 
Router Setup Parameters 

Source IP Classifier Scheduler Class 

Priority 

Class 

Weight 

Filter Priority Bandwidth  Notes 

192.168.2.5 U32 CBQ 5 500K 1 5Mbps  

192.168.2.3 U32 CBQ 5 500K 2 5Mbps  

Table 51 

 

 
Source Results 

Source IP Destination 

IP 

Transfer 

Mbytes 

Rate 

Mbps 

Frame 

Length 

Queue 

Type 

Queue 

size 

Traffic 

Type 

Packets lost Time (s) 

Duration 

192.168.2.5 192.168.1.4 20 3.6 1514 pfifo 50 TCP 11 44.6 

192.168.2.3 192.168.1.7 20 3.4 1514 RED  TCP 21 46.7 

Table 52 
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Destination Results 

Destination IP Incoming 

Traffic 

Data 

Transferred 

 

Jitter Delay (ms) Packet Loss Total 

Packets 

Time (s) 

Duration 

192.168.1.4 3.6Mbps 20Mbytes  11  44.6 

192.168.1.7 3.4Mbps 20Mbyte  21  46.7 

Table 53 

 

Table 52 and Table 53 show the results. With both sources transmitting 

TCP traffic we get 3.6Mbps and 3.4 Mbps for flow 1 and flow 2. Here we can see 

that packets were dropped at the pFIFO queue. This happens since we have 

increased the window size of the TCP. 

 

 
Figure 56: Outstanding Data of Flow 1 

 

Figure 56 shows the slow start of the TCP and then shows the packets that are 

dropped. That’s where the source starts sending at lower rates and start congestion 

avoidance algorithm. 
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Figure 57: Outstanding Data of Flow 2 

Figure 57, on the other hand shows a different behavior. There are 

dropped random drops based on the probability drop of the RED queue. This 

shows some smoothness over the queue. We don’t get big variations in the queues 

as in the pFifo. 

 

 
Figure 58: RTT of Flow 1 
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Figure 59: RTT of Flow 2 

Figure 58 and Figure 59 show the RTT of the pFifo and RED queues 

respectively. It’s obvious the RED queue get smaller RTT because the mean 

queue size of the queue is smaller. The maximum RTT of the RED is 250ms and 

the pFifo is 500ms. 
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5.3 Summary of Results 

In this section we present a summary of the results. At the right most 

column you can find some comments for each test.  

 

Results of Scenario 1 (scheduler CBQ) 
 Class 

Priority 

Class 

Weight 

Filter  

Priority 

Queue 

Types 

Traffic 

Type 

Results Comments 

Test 1 

5 500K 1 pFifo UDP 4.5Mbps As Expected  

5 500K 1 pFifo UDP 4.6Mbps As Expected 

Test 2 

  100   4.5Mbps No effect as expected  

  1   4.6Mbps No effect as expected 

Test 3 

1  1   7Mbps As Expected  

 5  1   2.1Mbps As Expected 

Test 4 

4  1   7Mbps  

5  1   2.2Mbps 

Not sensitive to priority 

level. Rather to higher prio. 

Test 5 

5 800K 1   6.6Mbps Close Enough  

5 200K 1   2.5Mbps Close enough 

Test 6 

5 500K 1  UDP 6.9Mbps Expected  

5 500K 1  TCP 3.8Mbps Expected 

Test 7 

5 500K 1  TCP 3.5Mbps Expected  

5 500K 1  TCP 3.4Mbps Expected 

Table 54 
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Results of Scenario 2 
 Scheduler Class 

Priority 

Class 

Weight 

Filter  

Priority 

Queue 

Types 

Traffic 

Type 

Results Comments 

Test 1 

5 200K 2 TBF UDP 1.1Mbps As Expected  CBQ 

 5 800K 1 pFifo UDP 7.0Mbps As Expected 

Test 2 

    UDP 1Mbps As Expected   

     TCP 5.7Mbps As Expected 

Table 55 
 
 
 

Results of Scenario 3 
 Scheduler Class 

Priority 

Class 

Weight 

Filter  

Priority 

Queue 

Types 

Traffic 

Type 

Results Comments 

Test 1 

PQ1 200K 5 pFifo UDP 7Mbps As Expected  PQ 

 PQ2 800K 5 pFifo UDP 2.2Mbps As Expected 

Test 2 

PQ2 200K 5 pFifo UDP 2.2Mbps As Expected  PQ 

 PQ1 800K 5 pFifo UDP 7Mbps As Expected 

Table 56 
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Results of Scenario 4 

 Scheduler Class 

Priority 

Class 

Weight 

Filter  

Priority 

Queue 

Types 

Traffic 

Type 

Results Comments 

Test 1 

5 300K 2 pFifo UDP 2.7Mbps As Expected  CBQ 

 5 700K 1 RED UDP 6.4Mbps As Expected 

Test 2 

    TCP 3.2Mbps As Expected   

     TCP 3.5Mbps As Expected 

Test 3 

5  1  UDP 4.8Mbps As Expected   

 5  1  TCP 4.1Mbps As Expected 

Test 4(TCP Window size 64K) 

5 500K 1  TCP 3.6Mbps As Expected   

5 500K 1  TCP 3.4Mbps As Expected 

Test 5 (TCP Window size 128K) 

5 500K 1  TCP 3.6Mbps As Expected   

5 500K 1  TCP 3.4Mbps As Expected 

 

Table 57 
 

 
5.4 Recommendations for selecting between various network functions and 

settings 
 

This section provides some practical recommendation regarding the 

selection between various networking functions and their settings, based on 

different user demands. . Analyzing the results we have obtained from the 

experiments we can see that certain queuing disciplines can favor certain types of 

traffic.  

We will first provide two scenarios to show that for different 

user/application demands there may be a need for differentiation of services and 

that there are various ways to implement differentiation of services. We will then 

generalize some recommendations for various networking conditions. 
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Scenario 1 

A company has a network link of capacity 10Mbps and the IT manager 

wants to limit the employees for using real time applications such as video 

on demand, videoconferencing and etc to 2Mbps. He doesn’t want his 

employees to use most of the company’s bandwidth and not having 

enough bandwidth for the company’s Web Server.  

 

Under normal TCP/IP, we observe, as expected1, that UDP traffic is out 

beating TCP traffic in most of the scenarios; see Chapter 5. We can 

provide some fairness in various ways. 

 

Recommendation 1: 

One solution for this scenario is to use DiffServ and create two classes by 

using CBQ discipline. Class A will be for real applications (UDP traffic) 

and will be allocated 2Mbps bandwidth. A pFifo queuing discipline can be 

used for Class A. In Class B can be assigned 8Mbps for all the other 

applications. In Class B a RED queuing discipline can be used. This 

solution eliminates the problem of starvation at the peak times, but in case 

Class B doesn’t require the 8Mbps that has been assigned, then Class A 

can utilized the excess (above 2 Mbits/sec) bandwidth.  

 

Recommendation 2 

Another approach of this scenario is to use Token Bucket filter, TBF, for 

Class A. By using TBF we restrict Class A, real time applications, to use 

any bandwidth from Class B. TBF acts as a limiter and doesn’t allow to 

the UDP traffic to use more traffic than it supposed to.   

  

 

                                                           
1 Because TCP is controlled by the state of the network, it backs off when congestion is sensed. 
On the contrary UDP sends packets into the network as the application demands. 
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Scenario 2 

A company has a network link of capacity 10Mbps and the IT manager 

wants to differentiate the services of the company based on the 

departments. He believes that the marketing department should have more 

priority on the Internet than the other departments. 

 

Recommendation 1 

 He can implement this scenario by using Priority Queue. He has to assign 

the Marketing Department on the first queue and the rest to the second 

queue with lower priority. The packets on the second queue will be 

serviced only when the first queue is empty. This way the Marketing 

Department gets a higher priority over the others. 

 

Recommendation 2 

Another way to implement this scenario is to use CBQ, Class Based 

Queuing, and assign different priorities for each class. We need to create 

at least two classes and assign one for the Marketing Department and one 

for the other departments. We could have created more classes and more 

priorities if we wanted to. CBQ allows to the IT manager to isolate or 

create more priorities within the company. Even more he could use 

different queuing disciplines such as pFIFO for the marketing department 

and RED for the others. 

 

Note: As can be seen, there are various queuing disciplines that can implement 

differentiation of service. The following are some general recommendations, 

derived from the experimentation in this thesis: 

 

General recommendations 

• PFIFO is best used for UDP traffic. The queue length should be small in 

order to obtain smaller RTT. 
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• RED is best used for TCP traffic. As we know RED drops packets based 

on a probability we assign. This is good for TCP traffic to avoid sharp 

fluctuations and avoid congestion.  

 

• TBF is best used where we want to limit UDP traffic. 
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6 Conclusions 
In this thesis, we implemented a differentiated services pilot network in 

Linux environment and investigated the performance of network functions that 

provided quality of service.  

 We observed that the basic functions required for differentiated service 

could be implemented under the proposed Linux operating system. The observed 

results show that a number of different approaches maybe taken to implement 

differentiation of service. 

We cannot generalize the results since the available topology is limited, 

however some observations and recommendations have been offered. It’s strongly 

recommended to expand the current topology to a more realistic one, including 

LAN and WAN segments and generalize the observations and recommendations.  

Basically, our investigation show that differentiation of services can be 

achieved by using variety of network functions and parameters, and for a simple 

network topology some conclusions and recommendations are drawn. However, 

large-scale applications are a much more complex task requiring further study. 

In the future we also want to investigate traffic management. In particular we 

expect to implement congestion control strategies that are more suitable for 

differentiated services such as the Integrated Switching strategy [32]. 
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7 Appendix I 
Scenarios 

The following scenarios aim at verifying the expected behavior of the TCP/IP 

implementation and the traffic Control (TC) under this Linux implementation. In 

general, expected behavior has been validated. 

  

 
 

 

Parameters 

Source IP Dest IP Load 

% 

Load 

Mbps 

Frame 

Length 

Queue Queue 

size 

Traffic 

type 

Duration

(seconds) 

192.168.2.3 192.168.1.4    pfifo 50 TCP 60 

192.168.2.5 192.168.1.4    pfifo 50 TCP 60 

192.168.2.3 192.168.1.4    pfifo 100 TCP 60 

192.168.2.5 192.168.1.4    pfifo 100 TCP 60 

 

 

Results 

Source IP Incoming 

Traffic 

Outgoing traffic Packet Loss Average Delay 

192.168.2.3 3.6Mbps 3.6Mbps  

192.168.2.5 3.5Mbps 3.5Mbps 

119 

 

192.168.2.3 3.6Mbps 3.6Mbps  

192.168.2.5 3.6Mbps 3.6Mbps 

12 
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Parameters 

Source IP Dest IP Load 

% 

Load 

Mbps 

Frame 

Length 

Queue Queue 

size 

Traffic 

type 

Duration

(seconds) 

192.168.2.3 192.168.1.4    pfifo 50 TCP 60 

192.168.2.5 192.168.1.4    pfifo 50 UDP 60 

192.168.2.3 192.168.1.4    pfifo 100 TCP 60 

192.168.2.5 192.168.1.4    pfifo 100 UDP 60 

 

 

Results 

Source IP Incoming 

Traffic 

Outgoing traffic Packet Loss Average Delay 

192.168.2.4 65Kbps 64.9Kbps 71  

192.168.2.5 10Mbps 9.1Mbps 4826  

192.168.2.4 71.5Kbps 71.4Kbps 48  

192.168.2.5 10Mbps 9.1Mbps 4727  

 

 

Parameters 

Source IP Dest IP Load 

% 

Load 

Mbps 

Frame 

Length 

Queue Queue 

size 

Traffic 

type 

Duration

(seconds) 

192.168.2.3 192.168.1.4    pfifo 50 UDP 60 

192.168.2.5 192.168.1.4    pfifo 50 UDP 60 

192.168.2.3 192.168.1.4    pfifo 100 UDP 60 

192.168.2.5 192.168.1.4    pfifo 100 UDP 60 

 

 

Results 

Source IP Incoming 

Traffic 

Outgoing traffic Packet Loss Average Delay 

192.168.2.3 9.5Mbps 2.5Mbps 37231  

192.168.2.5 10Mbps 6.6Mbps 18133  

192.168.2.3 9.4Mbps 2.6Mbps 36276  

192.168.2.5 10Mbps 6.6Mbps 17915  
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Test 2 (bfifo) 

 

 

 
 

 

Parameters 

Source IP Dest IP Load 

% 

Load 

Mbps 

Frame 

Length 

Queue Queue 

size 

Traffic 

type 

Duration

(seconds) 

192.168.2.3 192.168.1.4    bfifo 75K TCP 60 

192.168.2.5 192.168.1.4    bfifo 75K TCP 60 

192.168.2.3 192.168.1.4    bfifo 150K TCP 60 

192.168.2.5 192.168.1.4    bfifo 150K TCP 60 

 

 

Results 

Source IP Incoming 

Traffic 

Outgoing traffic Packet Loss Average Delay 

192.168.2.3 3.4Mbps 3.4Mbps 105  

192.168.2.5 3.1Mbps 3.1Mbps   

192.168.2.3 3.3Mbps 3.3Mbps 14  

192.168.2.5 3.7Mbps 3.7Mbps   
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Parameters 

Source IP Dest IP Load 

% 

Load 

Mbps 

Frame 

Length 

Queue Queue 

size 

Traffic 

type 

Duration

(seconds) 

192.168.2.3 192.168.1.4    bfifo 75K TCP 60 

192.168.2.5 192.168.1.4    bfifo 75K UDP 60 

192.168.2.3 192.168.1.4    bfifo 150K TCP 60 

192.168.2.5 192.168.1.4    bfifo 150K UDP 60 

 

 

Results 

Source IP Incoming 

Traffic 

Outgoing traffic Packet Loss Average Delay 

192.168.2.3 93Kbps 92.9Kbps 71  

192.168.2.5 10Mbps 9.1Mbps 4832  

192.168.2.3 89.1Kbps 89.1Kbps 73  

192.168.2.5 10Mbps 9.1Mbps 4790  

 

Parameters 

Source IP Dest IP Load 

% 

Load 

Mbps 

Frame 

Length 

Queue Queue 

size 

Traffic 

type 

Duration

(seconds) 

192.168.2.3 192.168.1.4    bfifo 75K UDP 60 

192.168.2.5 192.168.1.4    bfifo 75K UDP 60 

192.168.2.3 192.168.1.4    bfifo 150K UDP 60 

192.168.2.5 192.168.1.4    bfifo 150K UDP 60 

 

 

Results 

Source IP Incoming 

Traffic 

Outgoing traffic Packet Loss Average Delay 

192.168.2.3 9.5Mbps 2.6Mbps 36881  

192.168.2.5 10Mbps 6.6Mbps 18160  

192.168.2.3 9.5Mbps 2.6Mbps 36539  

192.168.2.5 10Mbps 6.6Mbps 18136  
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Test 3 (SFQ) 

 

 

 

 

 

Parameters 

Source IP Dest IP Load 

% 

Load 

Mbps 

Frame 

Length 

Queue Queue 

size 

Traffic 

type 

Duration

(seconds) 

192.168.2.3 192.168.1.4    SFQ  TCP 60 

192.168.2.5 192.168.1.4    SFQ  TCP 60 

 

 

Results 

Source IP Incoming 

Traffic 

Outgoing traffic Packet Loss Average Delay 

192.168.2.3 3.5Mbps 3.5Mbps 0  

192.168.2.5 3.5Mbps 3.5Mbps 0  

 

 

Parameters 

Source IP Dest IP Load 

% 

Load 

Mbps 

Frame 

Length 

Queue Queue 

size 

Traffic 

type 

Duration

(seconds) 

192.168.2.3 192.168.1.4    SFQ  TCP 60 

192.168.2.5 192.168.1.4    SFQ  UDP 60 
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Results 

Source IP Incoming 

Traffic 

Outgoing traffic Packet Loss Average Delay 

192.168.2.3 851Kbps 850Kbps 0  

192.168.2.5 10Mbps 8.3Mbps 9162  

 

 

*381 datagrams received out of order 

 

Parameters 

Source IP Dest IP Load 

% 

Load 

Mbps 

Frame 

Length 

Queue Queue 

size 

Traffic 

type 

Duration 

(seconds) 

192.168.2.3 192.168.1.4    SFQ  UDP 60 

192.168.2.5 192.168.1.4    SFQ  UDP 60 

 

 

Results 

Source IP Incoming 

Traffic 

Outgoing traffic Packet Loss Average Delay 

192.168.2.3 9.5Mbps 3.6Mbps 31165  

192.168.2.5 10Mbps 5.5Mbps 23858  

 

84 out of order 
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Test 4 (RED) 

 

 

 
 

Limit 50000 bytes 

Min 15000 bytes 

Max 45000 bytes 

 

Parameters 

Source IP Dest IP Load 

% 

Load 

Mbps 

Frame 

Length 

Queue Queue 

size 

Traffic 

type 

Duration

(seconds) 

192.168.2.3 192.168.1.4    RED  TCP 60 

192.168.2.5 192.168.1.4    RED  TCP 60 

 

 

Results 

Source IP Incoming 

Traffic 

Outgoing traffic Packet Loss Average Delay 

192.168.2.3 6.1Mbps 6.1Mbps 51  

192.168.2.5 350Kbps 350Kbps 51  
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Parameters 

Source IP Dest IP Load 

% 

Load 

Mbps 

Frame 

Length 

Queue Queue 

size 

Traffic 

type 

Duration

(seconds) 

192.168.2.3 192.168.1.4    RED  TCP 60 

192.168.2.5 192.168.1.4    RED  UDP 60 

 

 

Results 

Source IP Incoming 

Traffic 

Outgoing traffic Packet Loss Average Delay 

192.168.2.3 78.5Kbps 78.5Kbps 109905  

192.168.2.5 10Mbps 4.6Mbps 28952  

     

 
1 

 2345678910111213141516171819 
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8 Acronyms 
ADU Application Data Unit 

AF Assured Forwarding 

AS Autonomous System 

ATM Asynchronous Transfer Mode 

BGP Border Gateway Protocol 

CBS Committed Burst Size 

CE Congestion Experienced 

CIR Committed Information Rate 

CL Controlled Load 

COPS Common Open Policy Service 

CRC Cyclical Redundancy Check 

CSMA/CD Carrier Sense Multiple Access with Collision Detection 

cwnd Congestion window, one of the state variables maintained by TCP 

CWR Congestion window reduced 

Deficit-WRR Deficit Weighted Round Robin 

DNS Domain Name System 

DSAP Destination Service Access Point 

DSCP Differentiated Services CodePoint, a six-bit field in the IP header used to en-code 

the per-hop-behavior 

EBS Excess Burst Size 

EF Expedited Forwarding, one of the Differentiated Services defined by IETF [JNP99] 

E-LSP EXP-Inferred Packed Scheduling Class Label Switched Path 

ER Edge Router 

FF Fixed Filter, one of the sender filters supported by RSVP 

FIFO First In First Out 

FTP File Transfer Protocol 

GPS Generalized Processor Sharing, an ideal scheduler 

GS Guaranteed Service, one of the Integrated Services defined by IETF 

ICMP Internet Control Message Protocol 

IETF Internet Engineering Task Force, see http://www.ietf.org 

IHL IP Header Length, one of the fields of the IP header 

IP Internet Protocol 

ISDN Integrated Services Digital Network 

IS-IS Intermediate System - Intermediate System 

ISP Internet Service Provider 

LAN Local Area Network 
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LDAP Lightweight Directory Access Protocol 

L-LSP Label-Only-Inferred Packet Scheduling Class Label Switched Path 

LSA Link State Attribute, a type of control packet distributed by OSPF 

LSP Label Switched Path 

MPLS Multiprotocol Label Switching 

MSS Maximum Segment Size 

MTU Maximum Transfer Unit 

NFS Network File System 

OSPF Open Shortest Path First 

PDB Per Domain Behaviour 

PHB Per Hop Behaviour 

PDP Policy Decision Point 

PDU Protocol Data Unit 

PEP Policy Enforcement Point 
PGPS Packetized Generalized Processor Sharing 

PIR Peak Information Rate 

PNNI Private Network-Network Interface, the routing protocol used in ATM Net-works 

PPTP Point-to-Point Tunneling Protocol 

PQ Priority Queuing, a priority-based scheduler 

PS Processor Sharing, an ideal scheduler 

QoS Quality of Service 

RED Random Early Detection, a buffer acceptance algorithm 

RIP Route Information Protocol 

RPC Remote Procedure Call 

RSVP Resource Reservation Protocol 

RTCP RTP Control Protocol  

RTP Real Time Transport Protocol  

RTSP Real Time Streaming Protocol  

RTT round trip time 

rwin receiving window, a state variable maintained by TCP 

SCFQ Self Clocked Fair Queueing 

SDES Source Description, used by RTCP 

SE Shared Explicit filter, one of the sender filters supported by RSVP 

SIP Session Initiation Protocol 

SNMP Simple Network Management Protocol 

SSRC Synchronization source identifier, used by RTP 

sstresh slow start threshold, state variable maintained by TCP 
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swin sending window, state variable maintained by TCP 

TCP Transmission Control Protocol 

TDM Time Division Multiplexing 

THL TCP Header Length, part of the TCP header 

ToS Type of Service 

TTL Time To Live 
UDP User Datagram Protocol 

WAN Wide Area Network 

WF Wild-card filter, one of the sender filters supported by RSVP 

WFQ Weighted Fair Queueing 

WRED Weighted Random Early Detection, a buffer acceptance algorithm supporting 

several packet dropping preferences 

WRR Weighted Round Robin, a scheduler suitable for fixed-length packets 

 
 
 
20212223242526272829303132 
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