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A Book on the Occasion of the Conference of 
Five Cities

This book was published on the occasion of the “Conference of Five Cities” which was 

the first in a series of conferences on Research in Mathematics Education. In the 

following years the conferences will be organized in turn, in four Greek- and Italian-

speaking cities: Rhodes, Bologna, Palermo and Locarno. 

The first conference took place at the University of Cyprus in Nicosia (Cyprus), from 

the 13th until the 14th of September, 2008. It was organized with great success by the 

University of Cyprus, University of the Aegean, University of Bologna, University of 

Palermo and ASP Pedagogical High School, Locarno, in cooperation with the Cyprus 

Mathematical Society. 

The core of this book is based on a selection of papers presented at the “Conference of 

Five Cities” while some of the articles included were not presented at the conference. 

The main aim of this publication is to promote research in mathematics education. The 

contributions in this book are interesting, stimulation and thoughtful and will give the 

reader insight into research in the area of mathematics education. 

New directions in research are presented in the six chapters of the book which cover a 

variety of topics such as, representations and visualization, teaching and learning of 

geometry, proportionality and pseudo-proportionality, problem solving, the history and 

philosophy of mathematics and teaching and learning in mathematics. 

This book provides avenues to engage mathematics education researchers, teachers and 

prospective teachers in critical and productive discussions about specific mathematical 

topics not only in the five cities mentioned above but in all Europe.

Athanasios Gagatsis

Professor in Mathematics Education 

Dean, School of Social Sciences and Sciences of Education

University of Cyprus 
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The stability of students’ approaches in function problem solving: 
A coordinated and an algebraic approach

Annita Monoyiou & Athanasios Gagatsis

Department of Education, University of Cyprus

Abstract

The aim of this study was twofold. First to contribute to the understanding of the 
algebraic and “coordinated” approaches teachers develop in solving function tasks and 
to examine which approach is more correlated with teachers’ ability in problem 
solving. Secondly, to investigate the stability of these approaches and to examine the 
impact teachers’ mathematical background has on them. The study was conducted in 
two phases. Participants were 288 pre service teachers. Results were similar in both 
phases, indicating the stability of teachers’ approaches and providing support for their 
intention to use the algebraic approach. Teachers who were able to use the coordinated 
approach had better results in problem solving. Teachers who dealt with mathematics 
systematically used more often the coordinated approach.

Introduction and theoretical framework 

The concept of function is central in mathematics and its applications. The 
understanding of functions does not appear to be easy. Students of secondary or even 
tertiary education, in any country, have difficulties in conceptualizing the notion of 
function. A factor that influences the learning of functions is the diversity of 
representations related to this concept (Hitt, 1998). An important educational objective 
in mathematics is for pupils to identify and use efficiently various forms of 
representation of the same mathematical concept and move flexibly from one system of 
representation of the concept to another. 

The use of multiple representations has been strongly connected with the complex 
process of learning in mathematics, and more particularly, with the seeking of students’ 
better understanding of important mathematical concepts (Greeno & Hall, 1997), such 
as function. The ability to identify and represent the same concept through different 
representations is considered as a prerequisite for the understanding of the particular 
concept (Duval, 2002; Even, 1998). Some researchers interpret students’ errors as either 
a product of a deficient handling of representations or a lack of coordination between 
representations (Greeno & Hall, 1997). The standard representational forms of some 
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mathematical concepts, such as the concept of function, are not enough for students to 
construct the whole meaning and grasp the whole range of their applications. 
Mathematics instructors, at the secondary level, traditionally have focused their 
teaching on the use of the algebraic representation of functions (Eisenberg & Dreyfus, 
1991). Sfard (1992) showed that students were unable to bridge the algebraic and 
graphical representations of functions, while Markovits, Eylon and Bruckheimer (1986) 
observed that the translation from graphical to algebraic form was more difficult than 
the reverse. 

The theoretical perspective used in this study is mainly based on the studies of Even 
(1998) and Mousoulides and Gagatsis (2004). Even (1998) focused on the intertwining 
between the flexibility in moving from one representation to another and other aspects 
of knowledge and understanding. This study indicated that subjects had difficulties 
when they needed to flexibly link different representations of functions. An important 
finding was that many students deal with functions pointwise (they can plot and read 
points) but cannot think of a function in a global way. The data also suggested that 
subjects who can easily and freely use a global analysis of changes in the graphical 
representation have a better and more powerful understanding of the relationships 
between graphical and symbolic representations than people who prefer to check some 
local and specific characteristics. 

Mousoulides and Gagatsis (2004) investigated students’ performance in mathematical 
activities that involved principally the conversion between systems of representation of 
the same function, and concentrated on students’ approaches as regards the use of 
representations of functions and their connection with students’ problem solving 
processes. The most important finding of this study was that two distinct groups were 
formatted with consistency, that is, the algebraic and the geometric approach group. The 
majority of students’ work with functions was restricted to the domain of algebraic 
approach. Only a few students used an object perspective and approached a function 
holistically, as an entity. Students who had a coherent understanding of the concept of 
functions (geometric approach) could easily understand the relationships between 
symbolic and graphical representations in problems. 

In this study the concept of function is viewed from two different perspectives, the 
algebraic and the coordinated perspective. The algebraic perspective is similar to the 
pointwise approach described by Even (1998) and the one described by Mousoulides 
and Gagatsis (2004). In this perspective, a function is perceived of as linking x and y 
values. The coordinated perspective combines the algebraic and the graphical approach. 
In this perspective, the function is thought from a local and a global point of view at the 
same time. The students’ can “coordinate” (flexibly manipulate) two systems of 
representation, the algebraic and the graphical one. 

The purpose of this study is to contribute to the understanding of the algebraic and 
coordinated approaches teachers develop and use in solving function tasks and to 
examine which approach is more correlated with teachers’ ability in solving complex 
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problems. Furthermore, this research study aims to investigate the stability of teachers’ 
approaches and to examine the impact teachers’ mathematical education in high school 
has on them. 

Method 

The study was conducted in two phases. The first phase was conducted in 2005 with 
135 participants and the second phase was conducted two years later, in 2007, with 153 
participants. The participants of the second phase graduated from a slightly different 
type of high school with different textbooks and different procedures for the selection of 
lessons as a result of the major changes happened in the educational system, at high 
school. The participants, in both phases, were pre service teachers. The subjects were 
for the most part students of high academic performance admitted to the University of 
Cyprus on the basis of competitive examination scores. Nevertheless there are big 
differences among them concerning their mathematical education in high school. More 
specifically, 122 of them dealt with mathematics systematically in high school 
(Mathematics group). In contrast, the other 166 teachers did not have a special interest 
or specialization on mathematics and in high school they dealt systematically with 
theoretical lessons such as history (Theoretical group). 

A test was administrated to all the participants. The test consisted of seven tasks. The 
first four tasks were simple tasks with functions (T1a, T1c, T2a, T2c, T3a, T3c, T4a, 
T4c). In each task, there were two linear or quadratic functions. Both functions were in 
algebraic form and one of them was also in graphical representation. There was always 
a relation between the two functions (e.g. f(x)= 2x, g(x)= 2x+1). The participants were 
asked to interpret graphically the second function. The other three tasks were complex 
problems. The first problem consisted of textual information about a tank containing an 
initial amount of petrol (600 L) and a tank car filling the tank with petrol. The tank car 
contains 2000 L of petrol and the rate of filling is 100 L per minute. Students were 
asked to use the information in order to give the two equations (Pr1a), to draw the 
graphs of the two linear functions (Pr1b) and to find when the amounts of petrol in the 
tank and in the car would be equal (Pr1c). The second problem consisted of textual and 
algebraic information about an ant colony. The number of ants (A) increases according 
to the function: A=t2+1000 (t= the number of days). The amount of seeds, the ants save 
in the colony, increases according to the function S=3t+3000 (t= the number of days). 
Students were asked to use the information in order to draw the graphs (Pr2a) of the 
quadratic and linear functions and to find when the number of ants in the colony and the 
number of seeds would be equal (Pr2b). The third problem consisted of a function in a 
general form of f(x) = ax2+bx+c. Numbers a, b and c were real numbers and the f(x) 
was equal to 4 when x=2 and f(x) was equal to -6 when x=7. Students were asked to 
find how many real solutions the equation ax2+bx+c had and explain their answer (Pr3). 
The test was administered to students in a 60 minutes session. 

The results concerning students’ answers to the four tasks were codified by an 
uppercase T (task), followed by the number indicating the exercise number. Following 
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is the letter that signifies the way students solved the task: (a) “a” was used to represent 
“algebraic approach – function as a process” to the tasks, (b) “c” stands for students 
who adopted a “coordinated approach – function as an entity”. A solution was coded as 
“algebraic” if students did not use the information provided by the graph of the first 
function and they proceeded constructing the graph of the second function by finding 
pairs of values for x and y. On the contrary, a solution was coded as coordinated if 
students observed and used the relation between the two functions in constructing the 
graph of the second function. In this case students used and coordinated two systems of 
representation. They noticed the relationship between the two equations given and they 
interpreted this relationship graphically by manipulating the function as an entity. The 
following symbols were used to represent students’ solutions to the problems: Pr1a, 
Pr1b, Pr1c, Pr2a, Pr2b and Pr3. Right and wrong answers to the problems were scored 
as 1 and 0, respectively.

For the analysis of the collected data the similarity statistical method was conducted 
using a computer software called C.H.I.C. Two similarity diagrams of teachers’ 
responses, one for each phase, were constructed (Gras, Peter, Briand, & Philippe, 1997). 
In order to examine whether there are statistically significant differences between the 
teachers of phase A and B and to determine whether teachers’ mathematical education 
in high school affect the approach they used and their performance in problem solving, 
multivariate analysis of variance (MANOVA) was performed by using SPSS.

Results

The main purpose of the present study was to examine the mode of approach pre service 
teachers, participating in phase A and B, used in solving simple tasks in functions and 
to investigate which approach is more correlated with solving complex mathematical 
problems. Table 1, shows teachers’ responses to the first four tasks. According to Table 
1, most of the teachers, participating in both phases, solved correctly Task 1 and 2.

Task 1 involved a linear function and Task 2 the simplest form of an equation of a 
parabola (y=x2). Their achievement radically reduced in tasks involved “complex” 
quadratic functions (T3 and T4). More than half of the teachers chose an algebraic 
approach to solve the first three tasks. In Task 4 most of the teachers chose a 
coordinated approach. In this task a coordinated approach seemed easier and more 
efficient than the algebraic. The teachers participating in both phases gave quite similar 
responses to the four tasks. The only difference was that the teachers of phase B used 
less the coordinated approach and gave more incorrect responses than teachers of phase 
A. 

In the case of Task 1 (y=2x, y=2x+1), some teachers who used an algebraic approach 
found the points of intersection with x and y axis and constructed the graph. Others 
constructed a table of values in order to help them construct the graph. The teachers 
who used a coordinated approach compared the two equations and mentioned that the 
slope was the same and the two functions are parallel. Then they referred to the fact that 
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the points of the second function are “one more” than the points of the other. Some of 
them found a point in order to verify their assertion. 

Table 1: Teachers’ responses to the first four tasks (Phase A and B)

Tasks 
(%)

Algebraic 
approach with 
correct answer

Coordinated 
approach with 
correct answer

Incorrect 
answer

A 54.8 32.5 12.7
1

B 56.2 22.2 21.6

A 54.8 31.1 14.1
2

B 56.9 25.5 17.6

A 56.3 17.7 26
3

B 43.8 15 41.2

A 24.4 48.1 27.5
4

B 24.8 47.1 28.1

In the case of Tasks 2 (y=x2, y=x2-1) and 3 (y=x2+3x, y=x2+3x+2), teachers who used 
an algebraic approach found the real solutions of the second equation and the minimum 
point and constructed the graph without using the first graph. In contrast, teachers who 
used a coordinated approach first compared the two equations and realized that they are 
parallel. Then they mentioned that the minimum point in the first case is “one down” 
and in the second case “two above”. Some of them found another point in order to draw 
the graph more precise. In the case of Task 4 (y=3x2+2x+1, y=-(3x2+2x+1)), the 
teachers who used an algebraic approach found the point of intersection with y-axis and 
the maximum point. The participants who used a coordinated approach compared the 
two equations and mentioned that the two functions are “opposite” and “symmetrical” 
to the x-axis. In this task, an algebraic approach was more complicated due to the fact 
that the equation does not have real solutions. Most of the teachers, after an 
unsuccessful effort to find the points of section with x-axis drew the graph using a 
coordinated approach.  

Table 2 shows teachers’ responses to complex problems. Teachers’ performance was 
moderate. In Problem 1 only 38.5% of the phase A teachers and 22.9% of the phase B 
teachers managed to use the information given in order to give the two equations. A 
larger percentage constructed the two graphs correctly (59.2% and 45.8% respectively) 
and found their point of intersection (70.4% and 55.6%). Many teachers were unable to 
give the equations but manage to construct the graphs by constructing a table of values 
for x and y. Some of the teachers did not construct the graphs but found their point of 
intersection by using the table of values. In Problem 2 only 46.6% of the phase A and 
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35.3% of the phase B teachers managed to construct the graphs. A smaller percentage 
(35.5% and 27.5%) found their point of intersection. In this problem in order to find the 
point of intersection the teachers had to solve a second degree equation and that caused 
difficulties. Problem 3 was quite difficult for the teachers of both phases since only 37% 
and 20.3% respectively managed to solve it correctly. The teachers participating in 
phase A performed better than the teachers of phase B.  

Table 2: Teachers’ responses to the complex problems (Phase A and B)

Problems (%) Correct answer Incorrect answer

A 38.5 61.5
1a

B 22.9 77.1

A 59.2 40.8
1b

B 45.8 54.2

A 70.4 29.6
1c

B 55.6 44.4

A 46.6 53.4
2a

B 35.3 64.7

A 35.5 64.5
2b

B 27.5 72.5

A 37 63
3

B 20.3 79.7

In order to examine whether there are statistically significant differences between the 
teachers of phase A and B concerning the approach they used and their problem solving 
ability, a multivariate analysis of variance (MANOVA) was performed. Overall, the 
effects of teachers’ phase were significant (Pillai’s F (3, 284) = 3.66, p<0.05).
Particularly, there were significant differences between the two phases concerning the 
effectiveness in problem solving (F (1, 284) = 10.11, p<0.05). There were not 
statistically significant differences between the teachers of phase A and B concerning 
the algebraic (F (1, 284) = 0.25, p=0.62) and coordinated approach (F (1, 284) = 1.43, 

p=0.23). Specifically, the teachers of phase A ( X =2.87, SD=2.24) performed better 

than the teachers of phase B in problem solving ( X =2.07, SD=2.04).  

Teachers’ (participating in phases A and B) correct responses to the tasks and problems 
are presented in the similarity diagrams in Figure 1 and 2 respectively. The two 
similarity diagrams are quite similar. More specifically in both diagrams, two clusters 
(i.e., groups of variables) can be distinctively identified. The first cluster consists of the 
variables “T1c”, T2c”, “T3c”, “T4c”, “Pr1a”, “Pr1b”, “Pr1c”, “Pr3”, “Pr2a” and “Pr2b” 
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and refers to the use of the coordinated approach and the solving of problems. The 
second cluster consists of the variables “T1a”, “T2a”, “T3a” and “T4a” which represent 
the use of algebraic approach.

Figure 1: Similarity diagram of teachers’ participating in phase A responses

Figure 2: Similarity diagram of teachers’ participating in phase B responses

From the similarity diagrams it can be observed that the first cluster includes the 
variables corresponding to the solution of the complex problems with the variables 
representing the coordinated approach. More specifically, teachers’ coordinated 
approach to simple tasks in functions is closely related with effectiveness in solving 
problems. This close connection may indicate that teachers, who can use effectively 
different types of representation- in this situation both algebraic and graphical 
representation- are able to observe the connections and relations in problems, and are 
more capable in problem solving. It is noteworthy the fact that the similarity clusters 
presented in the two diagrams are almost the same indicating that the connections and 
relationships between the approaches and problem solving are very strong and long-
lasting. The first cluster of both groups is exactly the same, while the second cluster 
although it contains the same variables it presents small differences concerning the 
relations between the tasks. Thus, the highest similarity in 2nd cluster, in phase B, 
concerns the tasks T3a and T4a that are the most complex as it has been noticed 
previously.  

T1c T2c T3c T4c P
r1

a
P
r1

b
P
r1

c
P
r3

P
r2

a
P
r2

b
T1a T4a T2a T3a

1st cluster 
2nd cluster

T
1c

T
2c

T
3c

T
4c

P
r1

a

P
r1

b

P
r1

c

P
r3

P
r2

a

P
r2

b

T
1a

T
2a

T
3a

T
4a

2nd cluster
1st cluster



A. Monoyiou, A. Gagatsis

10

In order to determine whether there are significant differences between the two groups 
(Mathematics and Theoretical Group) concerning the approach they used and their 
performance in problem solving, a multivariate analysis of variance (MANOVA) was 
performed. Overall, the effects of teachers’ mathematical education in high school were 
significant (Pillai’s F (3, 284) = 65.78, p<0.001). Particularly, the mean value of the 

Mathematics group concerning the coordinated approach ( X = 1.93, SD= 1.54) was 
statistically significant higher (F (1, 284) = 116.99, p<0.001) than the mean value of the 

Theoretical group ( X =0.64, SD=0.98).  In contrast, the mean value of the Mathematics 

group concerning the algebraic approach ( X = 1.83, SD= 1.46) was lower than the 
mean value of the Theoretical group ( X =1.88, SD=1.47) but this difference was not 
statistically significant (F (1, 284) = 0.087, p=0.78). As far as the problem solving 

concerns the Mathematics group ( X =3.97, SD=1.94) outperformed the Theoretical 
group ( X =1.33, SD=1.57) and this difference was statistically significant (F (1, 284) = 
488.57, p<0.001). The Mathematics group used more often the coordinated approach 
and had also better results in problem solving.

Discussion

A main question of this study referred to the approach teachers use in order to solve 
simple function tasks. It is important to know whether teachers are flexible in using 
algebraic and graphical representations in function problems. Most of the teachers, 
participating in phase A and B, used an algebraic approach in order to solve the simple 
function tasks. A coordinated approach is fundamental in solving problems even though 
many students have not mastered even the fundamentals of this approach. This finding 
is in line with the results of other studies that suggest that many students deal with 
functions pointwise, although a global approach is more powerful (Even 1998). 
Students who can easily and freely use a global approach have a better and more 
powerful understanding of the relationships between graphical and algebraic 
representations and are more successful in problem solving. Students’ preference in the 
algebraic solution is probably the curricular and instructional emphasis dominated by a 
focus on algebraic representations and their manipulation. 

Teachers’ performance in problem solving was moderate. Teachers participating in 
phase A performed better than teachers of phase B. Although problems used in this 
study are some of those taught at school, subjects had difficulties. This finding suggests 
that in order to give a correct solution to a complex function problem the students must 
be able to handle different representations of function flexibly and move easily from 
one representation to the other. Furthermore, an important finding of this study is the 
relation between the coordinated approach and the problem solving. The data from both 
phases suggest that students who have a coherent understanding of the concept of 
function (coordinated approach) can easily understand the relationships between 
symbolic and graphical representations and therefore are able to provide successful 
solutions to complex problems. Furthermore, it is noteworthy that this close relationship 
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between the coordinated approach and problem solving ability is strong and stable. 
Although the second phase conducted two years later and major changes have happened 
in the educational system, teachers’ approaches were the same and a strong relationship 
between the coordinated approach and problem solving ability still existed. The only 
difference between the two phases was the effectiveness in problem solving. The 
teachers participating in phase A performed better than teachers participating in phase 
B. This difference is probably the result of the major changes happened in high school. 

Although all the participants of this study were pre service teachers they had many 
differences concerning their mathematical education in high school. Some of the 
students had dealt with mathematics systematically in high school (Mathematics group). 
The Mathematics group used more often the coordinated approach to solve the simple 
tasks. Furthermore, they were able to use an algebraic and a graphical representation at 
the same time and therefore were very successful in problem solving. It’s obvious that 
the students who dealt with mathematics systematically in high school had developed a 
conceptual understanding of the concept of function. They were able to handle different 
representations of the concept, easy translate one representation to the other and as a 
consequence they were more successful in problem solving. 
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Abstract 

In this paper we will demonstrate a consequence at times manifest in the semiotic 
transformations involving the treatment and conversion of a semiotic representation 
whose sense derives from a shared practice. The shift from one representation of a 
mathematical object to another via transformations maintains the meaning of the object 
itself on the one hand, but on the other hand it can change its sense. This is 
demonstrated in detail through a specific example, while at the same time it is 
collocated within a broad theoretical framework that poses fundamental questions 
concerning mathematical objects, their meanings and their representations.

Episodes

In D’Amore (2006), D’Amore and Fandiño Pinilla (2007a, b), we have reported and 
discussed, exclusively from a semiotic structural point of view, episodes taken from 
classroom situations in which students are mathematics teachers in their initial training, 
engaged in facing representations problems. Some examples of the phenomenon have 
been given orally in Rhodes, on April 13th 2006, during a general conference (How the 
treatment or conversion changes the sense of mathematical objects) at the 5th

MEDCONF2007 (Mediterranean Conference on Mathematics Education), 13-15 April 
2007, Rhodes, Greece (D’Amore, 2007).

The task consisted in this: working in small groups the trainee teachers received a text 
written in natural language; such texts had to be transformed into algebraic language. 
Once they had come to the algebraic formulation, this was explained by the group and 
collectively discussed. Our duty as university teachers was to suggest the further 
transformation of the obtained algebraic expressions into other algebraic expressions, to 
face collective discussions on their meaning.

We present three examples below:

Example 1
[We omit the original linguistic formulation which, in this case, is not relevant];
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The final algebraic formulation proposed by group 1 is: x2+y2+2xy-1=0, which in 
natural language is interpreted as follows: «A circumference» [the interpretation error is 
evident, but we decide to pass over]; we carry out the transformation which leads to: 

x+y=
yx 

1
 that after a few attempts is interpreted as «A sum that has the same value of 

its reciprocal»;

question: «But x+y=
yx 

1
 is it or not the “circumference” we started with?»;

student A: «Absolutely no, a circumference must have x2+y2»;
student B: «If we simplify, yes».
One can ask whether or not it is the transformation that gives a sense: from the episode 
it seems that if one would perform the inverse passages, then one would return to a 
“circumference”. But it could also instead be that the meanings are attributed to the 
specific representations, without links between them, as if the transformation that makes
sense for the teacher it does not make sense for the person who performs it.

Example 2
The text written in natural language requires the algebraic writing of the sum of three 
consecutive natural numbers and the proposal of group II is: (n-1)+n+(n+1) [obviously 
the doubt remains in the case of n=0, but we decide to pass over]; we carry out the 
transformation that leads to the following writing: 3n that is interpreted as: «The triple 
of a natural number»;
question: «But 3n can be thought as the sum of three consecutive natural numbers?»;
student C: «No, like this no, like this it is the sum of three equal numbers, that is n».

Example 3
We consider the sum of the first 100 natural positive numbers: 1+2+…+99+100; we 
perform Gauss classical transformation; 101×50; this representation is recognized as the 
solution of the problem but not as the representation of the starting object; the presence 
of the multiplication sign compels all the students to look for a sense in mathematical 
objects in which the “multiplication” term (or similar terms) appears;
question: «But 101×50 is it or not the sum of the first 100 positive natural numbers?»;
student D: «That one, is not a sum, that is a multiplication; it corresponds to the sum, 
but it is not the sum».

In these episodes we witness a constant change of meaning during the transformations: 
each new representation has a specific meaning of its own not referable to the one of the 
starting representations, even if the passage from the first to the second ones has been 
performed in an evident and shared manner.
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The causes of the changes of meaning

What are the causes of the changes of meaning, what origin do they have?
We can start from this diagram that we appreciate a lot because of its attempt to put in 
the right place the ideas of sense and understanding (Radford, 2004a).

The process of meanings endowment moves at the same time within various semiotic 
systems, simultaneously activated; we are not dealing with a pure classical dichotomy: 
treatment/conversion leaves the meaning prisoner of the internal semiotic structure, but 
with something much more complex. Ideally, from a structural point of view, the 
meaning should come from within the semiotic system we are immersed in. Therefore, 
in Example 2, the pure passage from (n-1)+n+(n+1) to 3n should enter the category: 
treatment semiotic transformation. But what happens in the classroom practice, and not 
only with novices in algebra, is different. There is a whole path to cover, starting from 
single specific meanings culturally endowed to the signs of the algebraic language (3n is 
the triple of something; 101×50 is a product, not a sum). Thus, there are sources of 
meanings relative to the algebraic language that anchor to meanings culturally 
constructed, previously in time; such meanings often have to do with the arithmetic 
language. From an, so to speak, “external” point of view, we can trace back to seeing 
the different algebraic writings as equally significant since they are obtainable through 
semiotic treatment, but from inside this picture is almost impossible, bound as it is to 
the culture constructed by the individual in time. In other words, we can say that 
students (not only novices) turn out bridled to sources of meaning that cannot be simply 
governed by the syntax of the algebraic language. Each passage gives rise to forms or 
symbols to which a specific meaning is recognised because of the cultural processes 
THROUGH which it has been introduced.

Object

Presentation 1 Presentation 2 Presentation 3

Known object

s
e
n
s
e

unde-
rsta-
nd-
ing

Presentation synthesis related to reason concepts
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In Luis Radford’s semiotic anthropological approach (ASA) mathematical knowledge is 
seen as the product of a reflexive cognitive mediated praxis. «Knowledge as cognitive 
praxis (praxis cogitans) underlines the fact that what we know and the way we come to 
know it are underpinned by ontological positions and by cultural processes of meaning 
production that give form to a certain way of rationality within which certain types of 
questions and problems are posed. The reflexive nature of knowledge must be 
understood in Ilyenkov’s sense, that is, as a distinctive component that makes cognition 
an intellectual reflexion of the external world in accordance with the forms of 
individuals’ activity (Ilyenkov, 1977, page 252). The mediated nature of knowledge 
refers to the role played by tools and signs as means of knowledge objectification and as 
instruments that allow to bring to a conclusion the cognitive praxis» (Radford, 2004b, 
page 17).

On the other hand, «the object of knowledge is not filtered only by our senses, as it 
appears in Kant, but overall by the cultural modes of signification (...). (...) the object of 
knowledge is filtered by the technology of the semiotic activity. (...) knowledge is 
culturally mediated» (Radford, 2004b, page 20). «(…) These terms are the semiotic 
means of objectification. Thanks to these means, the general object that always remains 
directly inaccessible starts to take form: it starts to become an “object of consciousness” 
for the pupils. Although general, these objects however remain contextual» (Radford, 
2004b, page 23).

The approach to the object and its appropriation on the part of the individual who 
learns, are the result of personal intentions with which individuals express themselves
through experiences that see the objects used in suitable contexts: «Intentions occur in 
contextual experiences that Husserl called noesis. The conceptual content of such 
experiences he termed noema. Thus, noema corresponds to the way objects are grasped 
and become known by the individuals while noesis relates to the modes of cultural 
categorical experiences accounting for the way objects become attended and disclosed 
(Husserl, 1931)» (Radford, 2002, page. 82).

In the cases we presented above, and in mathematics in general, it is clear that the 
objects are attended from the first moment in their formal expression, in our case in the 
algebraic language; the individual learns to formally handle these signs, but what 
happens to the initial mathematical object? What happens to the initial meanings? We 
suppose that these meanings are tightly bound to the arithmetic experience of the pupil 
and overall to the way in which such an experience becomes objective through its 
objective transposition into ordinary language. Deep understanding of algebraic or, in 
general, formal manipulation, holds a prominent position.

Through an interesting comparison, Radford expresses himself on this point as follows: 
«While Russell (1976, page 218) considered the formal manipulations of signs as empty 
descriptions of reality, Husserl stressed the fact that such a manipulation of signs 
requires a shift of intention, a noematic change: the focus becomes the signs themselves, 
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but not as signs per se. And he insisted that the abstract manipulation of signs is 
supported by new meanings arising from rules resembling the rules of a game (Husserl 
1961, page 79), which led him talk about signs having a game signification (...)» 
(Radford, 2002, page 88).

After having shown the broad and complex significance of the phenomenon, we must 
refer to other disciplines in order to understand better and better the issue of the 
different meanings of algebraic expressions, that is, in order to give a significant 
contribution to this aspect of mathematics education.

Analysis of the phenomenon thanks to theories “external” of mathematics 
education

We believe that some theories “external” of mathematics education can have, and in fact 
they already have, a strong influence on the analyses of various phenomena, like the 
ones described here, therefore giving a contribution to changing the theoretical frame of 
our discipline in its future research developments.

Philosophy. In section 2, we have seen how philosophy (Husserl’s phenomenology) can 
have remarkable contribution and we will not repeat ourselves.

Learning is taking consciousness of a general object in accordance with the modes of 
rationality of the culture one belongs to.

More importantly we must face here the issue of the philosophical dilemma on concept 
and object, and even more the problem of the need of a previous choice between realist 
and pragmatist positions (D’Amore, Fandiño Pinilla, 2001; D’Amore, 2003; D’Amore, 
2007).

In realist theories the meaning is a «conventional relationship between signs and ideal 
or concrete entities that exist independently of linguistic signs; they therefore suppose a 
conceptual realism» (Godino and Batanero, 1994). As Kutschera (1979) already 
claimed: «According to this conception the meaning of a linguistic expression does not 
depend on its use in concrete situations, but it happens that the use holds on meaning, 
since a clear distinction between pragmatics and semantics is possible».

In the realist semantic that it derives, we attribute to linguistic expressions purely 
semantic functions; the meaning of a proper name (as: ‘Bertrand Russell’) is the object 
that such proper name indicates (in such a case: Bertrand Russell); the individual 
statements (as: ‘A is a river’) express facts that describe reality (in such a case; A is the 
name of a river); the binary predicates (as: ‘A reads B’) designate attributes, those 
indicated by the phrase that expresses them (in this case: person A reads thing B). 
Therefore every linguistic expression is an attribute of certain entities: the nominal 
relationship that derives is the only semantic function of expressions.
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We recognise here the bases of Frege’s, Carnap’s and Wittgenstein’s (Tractatus)
positions.
A consequence of this position is the acknowledgement of a “scientific” observation (at 
the same time therefore, empiric and subjective or intersubjective) as it could be, at a 
first level, a statement and predicate logic.

From the point of view we are mostly interested in, if we apply to Mathematics the 
ontological assumption of realist semantics, we necessarily draw a platonic picture of 
mathematical objects: notions, structures, etc. have a real existence that does not depend 
on human being, as they belong to an ideal domain; “to know” from a mathematical 
point of view means “to discover” in such domain entities and relationships between 
them. It is also obvious that such picture implies an absolutism of mathematical 
knowledge, since it is thought as a system of external certain truths that cannot be 
modified by human experience because they precede or, at least, are extraneous and 
independent from it.

Akin positions, although with different nuances, were sustained by Frege, Russell, 
Cantor, Bernays, Goedel,…; they also encountered violent criticisms [Wittgensteins’ 
Conventionalism and Lakatos’ quasi-empirism : see Ernest (1991) and Speranza 
(1997)].

In pragmatic theories linguistic expressions have different meanings according to the 
context in which they are used and therefore any scientific observation is impossible, 
since the only possible analysis is a “personal” and subjective one, anyway 
circumstantial and not generalizable. We cannot but analyse the different “uses”: the set 
of “uses” in fact determines the meaning of objects.

We recognize here Wittgenstein’s positions of the Philosophical Investigations, when 
he admits that the significance of a word depends on its function in a “linguistic game”, 
since in such game it has a way of ‘use’ and a concrete purpose for which it has been 
precisely used: therefore the word does not have a meaning per se, but nevertheless, it 
can be meaningful.

Mathematical objects are therefore symbols of cultural units that emerge from a system 
of uses that characterise human pragmatics (or at least of individuals’ homogeneous 
groups) and that continuously modify in time, also according to needs. In fact, 
mathematical objects and the meaning of such objects depend on the problems that we 
face in Mathematics and on their solution processes.
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“REALIST” THEORIES “PRAGMATIC” THEORIES
meaning conventional relationship between 

signs and concrete or ideal entities 
independent of linguistic signs

depends on the context and use

semantics Vs 
pragmatics

clear distinction no distinction or faded distinction

objectivity
or 
intersubjectivity

complete missing or questionable

semantics linguistic expressions have purely 
semantic functions

linguistic expressions and words have 
“personal” meanings, are meaningful in 
suitable contexts, but they don’t have 
absolute meanings per se

analysis possible and licit: logic for example only a “personal” or subjective  analysis is 
possible, not generalizable, not absolute 

consequent 
epistemological 
picture

platonic conception of mathematical 
objects

problematic conception of mathematical 
objects

to know to discover to use in suitable contexts.
knowledge is an absolute is relative to circumstance and  specific use
examples Wittgenstein in Tractatus, Frege, 

Carnap [Russell, Cantor, Bernays, 
Gödel]

Wittgenstein in Philosophical Invesigations
[Lakatos]

It is obvious and it would be easy to prove with philosophical examples, that the two 
fields are not fully complementary and clearly separated even if, for reasons of clarity, 
we preferred giving this “strong” impression.

With regard to the philosophical bases of mathematics education, we have decided to 
stay in the pragmatic domain that seems much closer to the reality of the empiric 
process of Mathematics teaching/learning. It seems that each specification that appears 
in the right column, cell by cell, is part of the same process and of its explicitation. It 
seems that focusing didactic activity (and therefore research) on learning and 
consequently on epistemology of the domain that has the student as a protagonist, we 
are obliged to interpret each step of knowledge construction as responding to the 
language game, therefore admitting that the semantics blur the use pragmatics.

Sociology. In D’Amore (2005) and D’Amore and Godino (2007), we show how the 
results of the analyses relative to the behaviours of individuals engaged in an activity of 
conceptual learning of mathematical objects, their transformations of the descriptions of 
such objects from ordinary language to formal language, the manipulations of such 
formalizations can be framed within a sociological interpretation key: the learning 
environment is framed within a sociological interpretation key and the individuals’ 
behaviours are interpreted through the notion of “practice” and its “meta-practice” 
evolution. Essentially the individuals shift from a shared practice, recognized as 
characteristic of the social group they belong to, to a meta-practice that modifies such 
characteristic; the interpretative behaviour therefore ceases to be global and social and 
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becomes local and personal; the notions that come into play in such interpretations are 
specific of the circumstance and not of the situation in its entirety.

We pass over this point, referring back to the quoted texts.

Anthropology. In D’Amore and Godino (2006, 2007) we go into strongly 
anthropological details in order to explain the nature of the choices of the individual 
who learns mathematics. In such articles we highlight how «Having obliged the 
researcher to point all his attention to the activities of human beings who have to do 
with mathematics (not only solving problems, but also communicating mathematics) is 
one of the merits of the anthropological point of view, inspiring other points of view, 
amongst which the one that today we call “anthropological” in the proper sense: the 
ATD, anthropological theory of didactics (of mathematics) (Chevallard, 1999; page 
221). Why this adjective “anthropological”? It is not an exclusiveness of the approach 
created by Chevallard in 80s, as he himself declares (Chevallard, 1999), but an “effect 
of the language” (page 222); it distinguishes the theory, identifies it, but it is not 
peculiar to such theory in a univocal way» (D’Amore and Godino, 2006, page 15). The 
ATD is almost exclusively centred on the institutional dimension of mathematical 
knowledge, as a development of the research program started with fundamental 
didactics. The crucial point is that «ATD places the mathematical activity, and therefore 
the study in mathematics activity, in the set of human activities and of social 
institutions» (Chevallard, 1999).
This kind of analyses, although subjected to criticisms in D’Amore and Godino (2006, 
2007), has opened the way to the use of anthropology as a critical instrument, as a new 
theoretical frame at research into mathematics education, in accordance with what has
been already highlighted in the above quoted articles. It is the human being, strong of 
the acquired culture, strong of the specific expressive, communicative luggage, who 
handles formal writings and gives them a meaning that it cannot be anything else but 
coherent with his social history; every meaning of each formal expression is the result 
of an anthropological comparison between a lived history and a here-and- now that must
be coherent with that history.

We pass over this point, referring back to the quoted texts.

Psychology. In D’Amore and Godino (2006) we show how the shift from the 
anthropological picture to the onto-semiotic one is made necessary (amongst other 
things) by the need of not trivializing the presence of psychology in the study of 
learning and, in general, classroom situations. In D’Amore (1999) we show, for 
example, how ideas on representation drawn from psychology, regarding the 
explanation of the passage from image (weak) to model (stable) of concepts (Paivio, 
1971; Kosslyn, 1980; Johnson-Laird, 1983; Vecchio, 1992), can be placed as a unitary 
basis of the explanation of several didactic phenomena, as intuitive models, the shift 
from internal to external models, the figural concepts, up to misconceptions, studied 
mainly in the 80s. Also the ideas of frame and script (Bateson, 1972; Schank and 
Abelson, 1977) have been used for the same purpose.
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Abstract

The aim of the study was to combine and compare the outcomes of confirmatory factor 
analysis (CFA), hierarchical clustering of variables and implicative method concerning
5th and 6th graders fraction addition understanding. CFA affirmed the existence of seven 
first-order factors indicating the differential effect of task modes of representation, 
representation functions and required cognitive processes, two second-order factors 
representing multiple representation flexibility and problem solving ability and a third-
order factor that corresponded to the fraction addition understanding. Using 
hierarchical and implicative analysis, evidence was provided of students’ attempt to 
overcome compartmentalized thinking. However, primary students did not construct the 
whole meaning of the concept of fraction addition yet. The outcomes of the three 
methods were found to coincide and complement.

Introduction

There is a basic difference between mathematics and other domains of scientific 
knowledge as the only way to access mathematical objects and deal with them is by 
using signs and semiotic representations. Given that a representation cannot describe 
fully a mathematical construct and that each representation has different advantages, 
using multiple representations for the same mathematical situation is at the core of 
mathematical understanding (Duval, 2006). 

Nowadays the centrality of different types of external representations in teaching and 
learning mathematics seems to become widely acknowledged by the mathematics 
education community (e.g. Elia & Gagatsis, 2006). Furthermore, the NCTM’s 
Principles and Standards for School Mathematics (2000) document includes a new 
process standard that addresses representations and stresses the importance of the use of 
multiple representations in mathematical learning. Duval (2006) maintains that 

                                                
1 This report constitutes a part of the medium research project MED19, funded by the University of 

Cyprus.
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mathematical activity can be analyzed based on two types of transformations of 
semiotic representations, i.e. treatments and conversions. Treatments are 
transformations of representations, which take place within the same register that they 
have been formed. Conversions are transformations of representations that involve the 
change of the register in which the totality or a part of the meaning of the initial 
representation is conserved, without changing the objects being denoted. In fact, 
recognizing the same concept in multiple systems of representations, the ability to 
manipulate the concept within these representations as well as the ability to convert 
flexibly the concept from one system of representation to another are necessary for the 
acquisition of the concept (Lesh, Post, & Behr, 1987) and allow students to see rich 
relationships (Even, 1998). Moving a step forward, Hitt (1998) identified different 
levels in the construction of a concept, which are strongly linked with its semiotic 
representations. The particular levels are as follow: 1) incoherent mixture of different 
representations of the concept, 2) identification of different representations of a concept, 
3) conversion with preservation of meaning from one system of representation to 
another, 4) coherent articulation between two systems of representations, 5) coherent 
articulation between two systems of representations in the solution of a problem.

Lack of competence in coordinating multiple representations of the same concept can be 
seen as an indication of the existence of compartmentalization, which may result in 
inconsistencies and delays in mathematics learning at school. The particular 
phenomenon reveals a cognitive difficulty that arises from the need to accomplish 
flexible and competent translation back and forth between different modes of 
mathematical representations (Duval, 2002). 

Aim and research predictions

The aim of the study was to combine and compare the outcomes of confirmatory factor 
analysis (CFA), hierarchical clustering of variables and implicative method on the same 
sample data concerning student multiple representation flexibility and problem solving 
ability as far as fraction addition understanding was concerned. In fact, a main concern 
was to gain insight into the distinct features, advantages and limitations of each of the 
three statistical methods in a significant topic of mathematics education, namely the 
understanding of the concept of fraction addition, and to examine whether they 
coincided or even complemented each other.   

Method

The study was conducted among 829 pupils aged 10 to 12 of different primary schools 
in Cyprus (414 5th graders, 415 6th graders). The test that was constructed in order to 
examine the hypothesis of this study included:
1. Recognition tasks in which the pupils were asked to identify similar (RELa, RECa, 

RERa, RELb, RERb) and dissimilar (RELc, RERc, RECc) fraction addition in 
number line, rectangular and circular area diagrams. 

2. Conversion tasks having the diagrammatic and the symbolic representation as the 
initial and the target representation, respectively. Similar fraction additions were 
presented in number line (COLSs) and circular area diagram (COCSs), whereas
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dissimilar fraction additions were presented in number line (COLSd) and 
rectangular area diagram (CORSd). 

3. Symbolic treatment tasks of similar (TRSa) and dissimilar (TRSb, TRSc) fraction 
addition. 

4. Conversion tasks having the symbolic and the diagrammatic representation as the 
initial and the target representation, respectively. Pupils were asked to present the 
similar fraction addition in circular area diagram (COSCs) and in number line 
(COSLs), whereas they were asked to present the dissimilar fraction additions in 
rectangular area diagram (COSRd). 

5. Diagrammatic addition problem in which the unknown quantity was the summands 
(PD).  

6. Verbal problem that was accompanied by auxiliary diagrammatic representation and 
the unknown quantity is the summands (PVD). 

7. Verbal problem whose solution required not only fraction addition but also the 
knowledge of the ratio meaning of fraction (PV).

8. Justification task that was presented verbally and was related to similar or dissimilar 
fraction addition (JV). 

Representative samples of the tasks used in the test appear in the Appendix. It should be 
noted, that not any diagrammatic representation treatment tasks are included in the test 
since the students’ ability to manipulate diagrammatic representations was examined 
through conversion tasks in which the target representation is a diagram. 

Results

Confirmatory factor analysis outcomes

CFA was used to test statistically whether a hypothesized connection pattern between 
the observed variables and the underlying factors exist. Our first prediction dealt with 
the structure of the processes underlying fraction addition understanding. Specifically, 
keeping in mind the classic difference between “exercise” and “problem” (Polya, 1945; 
Dunker, 1945; D’ Amore & Zan, 1996), we expected that fraction addition multiple 
representation flexibility and problem solving ability would differentially affect the 
fraction addition understanding, since they activate different mental processes. 

We also assumed that fraction addition multiple representations flexibility would 
constitute a multifaceted construct in which other variables in addition to functions 
(recognition, treatment, conversion, according to Lesh et al., 1987) the representations 
fulfilled would be involved. These variables would be the modes of representations and 
relative concepts of similar and dissimilar fraction addition. To be specific, primarily we 
expected that the ability to recognize fraction addition in various diagrammatic 
representations, the ability to manipulate symbolic fraction addition equations and to 
convert from one fraction addition representation to another would come out as distinct 
dimensions of performance. We also assumed that the concept of similar and dissimilar 
fraction addition would affect the ability to recognize fraction addition in multiple 
diagrammatic representations. In fact we pointed out that a student who recognizes a 
similar fraction addition in a diagrammatic representation should bear in mind that the 
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summands are represented on the same diagram which has the same number of 
subdivisions (or a multiple) as the denominator. On the other hand, when a student
recognizes dissimilar fraction addition in a diagrammatic representation he/she should 
bear in mind that each summand were represented on a different diagram. Each of these 
diagrams has the same number of subdivisions as the denominator of the corresponding 
fraction. Then, the student identifies a diagram in which the number of subdivisions is
the least common multiple of the two denominators. Taking this process into account 
the high association of the fraction equivalence with dissimilar fraction addition 
understanding was indicated, as well. Thus, in CFA the ability to recognize similar and 
dissimilar fraction addition would come out as distinct dimensions of performance. On 
the other hand, we assumed that the ability to solve symbolic similar and dissimilar 
fraction addition would be one factor since students were familiar with both of them. In 
fact, symbolic similar and dissimilar fraction addition treatments based heavily on basic 
algorithms and the specific processes automated by the age group students involved 
here. 

Furthermore, we expected that the different types of representation would differentially 
affect the solution process, because they activated different mental processes when 
processing the tasks. Demetriou, Efklides and Platsidou (1993) showed that the nature 
of representation and symbol system used to express information is an independent 
dimension organizing cognitive performance in addition to the mental operations and 
types of relations involved. Therefore, in confirmatory factor analysis, the ability to 
convert flexibly from diagrammatic to symbolic equation would come out as a 
dimension of performance distinct from the ability to convert flexibly from a fraction 
addition equation to a diagrammatic representation. Furthermore, we expected that the 
presence of a diagrammatic representation would differentially influence fraction 
addition problem solving. 

In order to explore the structure of the various fraction addition understanding 
dimensions a third-order CFA model for the total sample was designed and verified. 
Bentler’s (1995) EQS programme was used for the analysis. The tenability of a model 

can be determined by using the following measures of goodness-of-fit: 2x , CFI 
(Comparative Fit Index) and RMSEA (Root Mean Square Error of Approximation). The 
following values of the three indices are needed to hold true for supporting an adequate 

fit of the model: 2x /df < 2, CFI > .9, RMSEA < .06. The a priori model hypothesized 
that the variables of all the measurements would be explained by a specific number of 
factors and each item would have a nonzero loading on the factor it was supposed to 
measure. The model was tested under the constraint that the error variances of some pair 
of scores associated with the same factor would have to be equal. 

Figure 1 presents the results of the elaborated model, which fits the data reasonably well 

( 2x /df=1.911, CFI=0.968, RMSEA=0.033). In fact, the third-order model which was
considered appropriate for interpreting fraction addition understanding, involved seven 
first-order factors. The first-order factors F1 to F5 regressed on a second-order factor 
that stood for the multiple representations flexibility. The first-order factor F1 referred
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to the similar fraction addition recognition tasks, while the first-order factor F2 to the 
dissimilar fraction addition recognition tasks in a variety of diagrammatic 
representations. The first-order factor F3 consisted of the similar and dissimilar fraction 
addition treatment tasks. Conversion tasks in which the initial and the target 
representation was similar and dissimilar fraction equation and diagrammatic
representation, respectively, constituted the first-order factor F4, while the first-order 
factor F5 referred to the similar and dissimilar fraction addition conversion tasks from a 
diagrammatic to a symbolic representation. 

The factor loadings indicated that conversion from a diagrammatic to a symbolic 
representation was more closely associated with multiple representations flexibility than
the other first-order factors were. Nevertheless, the first-order factor F1 to F4 loadings 
strength revealed that the flexibility in multiple representations of similar and dissimilar 
fraction addition constituted a multifaceted construct in which relations between: a) 
modes of representation (symbolic, diagrammatic), b) functions (recognition, treatment, 
conversion) fulfilled by representations and c) relative concepts (similar and dissimilar 
fractions, equivalence) arose. 

The majority of tasks which involved number line had higher loadings than the other 
tasks, suggesting that the number line model was more strongly related to multiple 
representations flexibility than the circular and rectangular diagrams. Furthermore, 
dissimilar fraction tasks loadings were higher than the respective similar fraction 
addition loadings, indicating that in order to be solved different mental processes were 
required since the fraction equivalence understanding was involved, as well. The 
specific knowledge was also needed to solve similar fraction addition recognition tasks 
in which the number of subdivision was double that of the denominator (e.g. RERa). As 
a result, higher loadings were observed in these tasks relative to other similar fraction 
addition tasks. 

The other two first-order factor F6 and F5 regressed on a second-order factor that 
represents problem solving ability. The first-order factor F6 consisted of problems 
having a diagram as an autonomous or an auxiliary representation. Both of them had a 
common mathematical structure since they had the summands as the unknown quantity. 
On the other hand, the verbal problem whose solution required the knowledge of the 
ratio meaning of fraction and the justification task formed the first-order factor F7, since 
in order to be solved different cognitive processes were needed. The two second-order 
factors that correspond to the multiple representations flexibility and to the problem 
solving ability regressed on a third-order factor that stood for the fraction addition 
concept understanding. Their loadings values were almost the same revealing that 
pupils’ fraction addition understanding is predicted from both multiple representations 
flexibility and problem solving ability. 
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Figure 1: The CFA model of the fraction addition understanding

Note: 1. Errors of the variables were omitted. 2. MRF=multiple representation 
flexibility, PSA= problem solving ability, FAU=fraction addition understanding

The outcomes of the hierarchical clustering of variables and the implicative method 
of analysis

The hierarchical clustering of variables aimed at bringing to light the consistency among 
student responses to the various tasks in a hierarchical manner. The implicative method 
gave information about whether success on one task implied success at another task and 
about the relative difficulty of the tasks based on student performance. In fact, we 
expected that similarity and implicative relationships would be primarily established 
among the variables corresponding to the functions the representation fulfilled, namely 
recognition, treatment and conversion, and secondly among the variables corresponding 
to the conversions of the same starting representation, namely symbolic and 
diagrammatic representation. This hypothesis was based on findings suggesting the 
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fragmentary way of student thinking when dealing with different types of representation 
(Duval, 2006; Gagatsis, Elia, & Mougi, 2002) and the lack of flexibility between 
different ways of approaching concepts (Elia, Panaoura, Eracleous, & Gagatsis, 2006). 
A second prediction was that distinctly close relationships will be formed among 
variables standing for similar or dissimilar fraction addition recognition tasks. Third, we 
assumed that success on similar fraction addition tasks would entail success on 
dissimilar fraction addition tasks. In fact, we considered the understanding of similar 
fraction addition and fraction equivalence, as well, as the prerequisite for the 
understanding of dissimilar fraction addition concept.     

Figure 2: The hierarchical similarity diagram among the responses of primary school 
students to fraction addition tasks

Figure 2 illustrates the similarity relations among the variables corresponding to grade 5 
and 6 student responses to the tasks of the test. Two distinct clusters of variables were 
established in the hierarchical similarity diagram. The first cluster involved three 
similarity groups. The first group included a symbolic similar fraction addition 
treatment task, the conversion having circular area diagram and a similar fraction 
addition equation as the source and the target representation, respectively, and the 
justification fraction addition problem (TRSa, COCSs, JV). The second group involved
the dissimilar fraction addition recognition tasks in various diagrammatic 
representations (RECc, RELc, RERc), while similar fraction addition recognition tasks 
in which the number of subdivision was double that of the denominator (RERa, RERb, 
RELb) formed the third similarity group. The connection between treatment and
conversion from diagrammatic to symbolic representation fraction addition tasks
implied that students carried out these tasks in a similar way since even though these 
tasks fulfilled different functions they referred to the similar fraction addition concept. 
Similar fraction addition concept influence also arose in justification problem solving. 
Furthermore, the second and third group formation indicated that in order to solve 
similar and dissimilar fraction addition recognition tasks different cognitive processes 
were required. However, their similarity connection provided further support for the
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assertion that equivalent concept knowledge was needed so as to develop similar and 
dissimilar fraction addition recognition ability. 

The second cluster involved three similarity groups, as well. The first group mainly
included dissimilar fraction addition treatment and conversion tasks as well as the 
diagrammatic fraction addition problem (TRSb, TRSc, COSRd, PDa, COLSd, TRSd, 
CORSd). Thus, the formation of the first group underlined the differential role similar 
and dissimilar fraction addition exerted on multiple representation flexibility. The 
similarity connection among these variables indicated also that the students tackled
diagrammatic fraction addition problem solving and dissimilar fraction addition 
treatment and conversion tasks, using similar processes. The second and the third group
included mainly similar fraction addition tasks. Specifically, conversion task having the
number line and similar fraction addition equation as the source and the target 
representations were linked together in the second group (COLSs, RELa, RECa). On the 
other hand, the third group included two conversion tasks having similar fraction 
addition equation and diagrammatic representation as the source and the target 
representations, respectively, the verbal problem with diagrammatic auxiliary 
representation and the verbal problem task (COSCs, COSLs, PVDa, PVa). The
similarity relationships were established among the two group variables corresponding 
to similar and dissimilar fraction concept and the initial mode of representation. In fact, 
conversion tasks having a diagram and an equation as the source representation were 
involved in the second and the third group, respectively. Even though, similar fraction
addition tasks were included in distinct groups, the similarity relationship between them
revealed that the students tackled them almost in a “de-compartmentalized” way. 

Nevertheless, the phenomenon of compartmentalization still exists since the tasks 
included in two clusters were differentially approached. In fact, the 5th and 6th graders
did not yet understand that even though the various representations fulfilled different
functions they referred to the same concept. It is also worth mentioning that the students
did not approach problem solving tasks in a different way from multiple representation 
flexibility tasks. As a result, the interaction of both multiple representations flexibility 
and problem solving ability as far as fraction addition conceptual understanding was 
concerned revealed.  

Figure 3 shows the implicative relations among the variables corresponding to 5th and 
6th graders responses to the tasks of the test.
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Figure 3: The implicative diagram among the responses of primary school students to 
the test tasks

The establishment of different implicative chains between similar and dissimilar 
fraction addition recognition tasks gave further support to the differential role similar 
and dissimilar fractions exerted on recognition ability. As far as conversion tasks are
concerned, carrying out the conversion task having the dissimilar fraction addition 
equation and rectangular area diagram as the source and the target representation, 
respectively, implied success in the conversion task having the similar fraction addition 
equation and circular area diagram as the source and the target representation,
respectively. Furthermore, carrying out the conversion task having number line and 
dissimilar fraction equation, as the source and target representation, respectively, 
implied success in the conversion task having number line and similar fraction addition 
equation as the source and the target representation, respectively, which in turn entailed 
correct performance in the similar fraction addition recognition in a number line task. In 
fact, the results indicated that implicative relationships primarily formed among 
variables corresponding to the conversions of the same starting representation. 
Furthermore, the students’ difficulties in carrying out dissimilar fraction addition tasks 
were underlined. The fact that similar and dissimilar fraction addition treatment tasks 
were found in the chain endings implied that the specific processes automated by the 
primary school students were involved here. It should be also mentioned that problem 
solving tasks entailed success in symbolic similar and dissimilar fraction addition 
treatment tasks, indicating that 5th and 6th graders depended primarily on symbolic 
manipulations in order to solve them. 
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Discussion

This study investigated students’ fraction addition understanding as far as multiple 
representation flexibility and problem solving ability were concerned. The data were 
analyzed from different perspectives using three distinct statistical methods, each of 
which was based on a different rationale. A major concern of this study was to compare 
in detail the findings of the hierarchical clustering of variables, implicative statistical 
analysis and confirmatory factor analysis so as to learn whether their outcomes on the 
same sample data were congruent and complement to each other. 

The results provided a strong case for the important role of the multiple representations 
flexibility and problem solving ability in 5th and 6th graders fraction addition 
understanding. Specifically, CFA showed that two second-order factors were needed to 
account for the flexibility in multiple representations and the problem solving ability. 
Both of these second-order factors were highly associated with a third-order factor 
representing the fraction addition understanding. The outcomes of the other two 
methods were in line with CFA findings. In fact, the similarity connection between 
problem solving and multiple representation flexibility tasks and implicative relations 
between problem and treatment tasks suggested the interaction of both multiple 
representation flexibility and problem solving ability in fraction addition understanding.

CFA also showed that five first-order factors were required to account for the second-
order factor that stood for the flexibility in multiple representations and two first-order 
factors were needed to explain the second-order factor that represented the problem 
solving ability. Thus, the results indicated the varying effect of both problem modes of 
representation and required cognitive processes on problem solving ability. 
Furthermore, the findings provided evidence to Duval’s (2006) view that changing 
modes of representation is the threshold of mathematical comprehension for learners at 
each stage of the curriculum since the conversion from a diagrammatic to a symbolic 
representation dimension was more strongly related to multiple representations 
flexibility than the other dimensions were. Nevertheless, the factors loadings of the 
proposed three-order model suggested that the flexibility in multiple representations 
constituted a multifaceted construct in which representations, functions of 
representations and relative concepts were involved. In fact, the ability to recognize 
similar and dissimilar fraction addition in a variety of diagrammatic representations, 
manipulate similar and dissimilar fraction addition equations and converse flexibly from 
diagrammatic to symbolic representation standing for similar and dissimilar fraction 
addition, and vice versa, were necessary for multiple fraction addition representation 
flexibility. As a result, the separate grouping of the responses to multiple representation 
flexibility tasks in hierarchical clustering of variables analysis revealed student
inconsistencies when dealing with them. In fact, the students tackled in a distinct way
relative to the other multiple representation flexibility tasks, the similar and dissimilar 
fraction addition recognition tasks in which the number of subdivisions was a multiple
of the denominator, a similar fraction addition equation and a conversion task having 
circular area diagram and similar fraction equation as a source and target representation, 
respectively. 
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On the other hand, the students carried out similar and dissimilar fraction addition 
treatment and conversion tasks in an almost consistent way taking into account the 
underlying concept. Furthermore, similarity connection among conversion tasks with 
different initial representation indicated 5th and 6th graders’ attempt to breach the 
“compartmentalization” phenomenon. However, implicative relations established 
primarily among conversion tasks with the same starting representation indicated that 
students did not construct the whole meaning of the concept of fraction addition yet.

Regarding CFA findings it is worth mentioning that the high factor loadings in tasks 
involving number line revealed the specific model’s importance in fraction addition and 
the different cognitive processes which were activated in order to handle it relative to 
other diagrammatic representations. In fact the number line is a geometrical model, 
which involves a continuous interchange between a geometrical and an arithmetic 
representation. Operations on real number are represented as operations on segments on 
the line (e.g. Michaelidou, Gagatsis, & Pitta- Pantazi, 2004). That is, the number line 
has been acknowledged as a suitable representational tool for assessing the extent to 
which students have developed the measure interpretation of fractions and for reaching 
fractions additive operations (e.g. Keijzer & Terwel, 2003).

Furthermore, the strength of factor loadings in dissimilar fraction addition tasks 
confirmed that different mental processes relatively to the corresponding similar 
fraction addition were required so as to be solved since the knowledge of fraction 
equivalence was also needed. The fact that recognition of similar and dissimilar fraction 
recognition tasks were found to have considerable autonomy between them and the 
other tasks in implicative chains confirmed the CFA findings. Implicative relations 
revealed also that dissimilar fraction addition tasks increased difficulty in relation to the 
corresponding similar fraction addition tasks. In fact, the high association of the fraction 
equivalence with fraction addition understanding was highlighted by all the three 
analyses. As Smith (2002) points out in order to develop fully the measure personality 
of fractions pupils need to master the equivalence of fractions. 

On the other hand, the fact that success in similar and dissimilar fraction addition 
treatment tasks entailed success in problem solving and conversion tasks provided 
evidence that the treatment processes were automatically carried out by the 5th and 6th

graders. This is in line with CFA results that similar and dissimilar fraction did not 
differentially affect fraction addition symbolic manipulation ability. 

In general, the application of all the analyses yielded congruent results. However, at the 
same time given that these statistical processes approached the data from different 
perspectives, they emphasized different aspects of student outcomes. This 
differentiation allowed for the accumulation of a number of new distinctive elements in
each analysis that contributed to the unravelling and making sense of student
performance, the structure of abilities, difficulties and inconsistencies on the particular 
subject. The findings of the study suggested that the three statistical methods were open 
to complementary use and each one did not operate at the expense of the other. CFA 
provided a means of making sense of the structure of student multiple representation 
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flexibility and problem solving ability as far as fraction addition understanding was 
concerned. The hierarchical clustering of variables provided a means of classifying 
student responses, of identifying student consistencies and inconsistencies among 
different abilities and for investigating the factors influencing this behaviour. The 
implicative method provided a means of examining the implicative relations among the 
responses to the tasks and the relative difficulty of the fraction addition tasks on the 
basis of student performance. Provided that applying these methods of analysis is 
consistent with the objectives of a study, their combination on the same sample data 
could contribute to the overcoming some significant limitations of each analysis 
employed separately, and consequently could enrich and deepen the outcomes of the 
investigation.
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Appendix

1. Circle the diagram or the diagrams whose shaded part corresponds to the equation 
3/14 + 5/14.

             (RELa)                                        (RECa)                         (RERa)

2. 1/6 + 4/12 = …..  (TRSb)

3. Write the fraction equation that corresponds to the shaded part of the following
diagram:

       Equation: ....................... (CORSd)

4. Present the following equation on the diagram:

1/12 + 7/12=….                       

                                                 (COfSLs)

5. In the addition of two fractions whose 
numerator is smaller than the denominator, the sum may be bigger than the unit. Do 
you agree with this view? Explain. (JV)

6. Each kind of flower is planted in a part of the rectangular garden as it appears in the 
diagram below:

Which three kinds of flowers are planted in the 3/4 of the garden?(PD)

7. A juice factory produces the following kinds of natural juice: 

 1/4 of the production is grapefruit juice.

 5/18 of the production is orange juice.

 3/36 of the production is tomato juice.

 2/9 of the production is peach juice.
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 1/18 of the production is grapes juice.

 4/36 of the production is apple juice.

Which four kinds of juice make up 1/2 of the production? (PVD)

8. The manager of a circus is preparing the performance that will be given in a few 
days. He wrote the duration of each program in his notes:  Clowns: 1/2 hour, 
Dancers: 1/3 hours, Animals: 1 hour,  Acrobats: 1/6 hour, Jugglers: 2/1 hour 

Write as a fraction, what part of the total duration of the performance corresponds to the 
jugglers’ program (PV, Evapmib, 2007).
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Abstract
This study investigates the role of representational and decorative picture in solving 
one-step mathematical problems of the additive structure with the unknown in the first 
part (a) by primary second grade students. It also investigates pupils’ attitude towards 
the use and the role of pictures. For the purposes of the study, 125 pupils were asked to 
complete a questionnaire with two verbal problems, two problems accompanied by a 
representational picture and two by a decorative one. The results indicate that the 
presence of both the representational and the decorative picture did not have a 
significant impact in pupil’s performance, even though pupils’ attitude towards them is 
positive. 

Theoretical and empirical background 

Introduction

Last decades a great attention has been given on the concept of representation and its 
role in the learning of mathematics. A basic reason for this emphasis is that 
representations are considered “integrated” with mathematics (Kaput, 1987). This study 
aims to shed light on the influence of two types of representation on additive problems. 
Specifically, we investigate the role of representational and decorative pictures. These 
are contrasted to each other and to the use of plain verbal description (written text) for 
the solution of one-step addition problems presented in a number of different structures 
to be described below. Specifically, below we first discuss the nature and possible 
effects of different types of representation of arithmetic problems and then the different 
structures in which these problems may be presented.

Representations in mathematics learning

A representation is defined as any configuration of characters, images and concrete 
objects that can symbolize or “represent” something else (Kaput, 1985; Goldin, 1998; 
DeWindt-King & Goldin, 2003). Kaput (1987) suggested that the concept of 
representation involves the following five components: A representational entity, the 
entity that it represents, particular aspects of the representational entity, the particular 
aspects of the entity that it represents that form the representation and finally the 
correspondence between the two entities. 

A basic discrimination that is pointed out in the region of representations is between 
internal/mental and external/semiotic representations (Dufour – Janvier et al., 1987). 
Internal/mental representations are mental schemes constructed by individuals in order 
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to represent, explain and understand reality. External/semiotic representations are 
external symbolic carriers, such as symbols, shapes and diagrams, which aim at 
representing a specific reality, for example mathematics. Goldin and Kaput (1996) 
suggest that there is a dual, two-way relationship between external/semiotic and 
internal/mental representations.

A type of external representation that is used extensively in mathematics textbooks and 
is considered to enhance problem solving in all the phases of the certain process is 
visual representations (Larkin & Simon, 1987). Schnotz (2002) suggests that text and 
visual displays belong to different classes of representations, namely descriptive and 
depictive representations, respectively. Descriptive representations consist of symbols 
that have an arbitrary structure and are associated with the content they represent simply 
by means of a convention. Depictive representations include iconic signs that are 
associated with the content they represent through common structural features on either 
a concrete or a more abstract level.

In mathematics education, visual representations play an important role both as an aid 
for supporting reflection and as a means for communicating mathematical ideas. 
Therefore, many researchers consider imagistic representations as a fundamental 
cognitive system for mathematical learning (DeLoache, 1991) and problem solving (De 
Windt-King & Goldin, 2003; Diezmann & English, 2001), while experts 
mathematicians as well as mathematics students perceive visual representations as a 
useful tool in Mathematical Problem Solving (MPS) and frequently attempt to use them
(Stylianou, 2001). 

However, the use of pictorial representations may not have the intended effects due to 
obstacles they may cause to mathematics learning and problem solving (Bishop, 1989). 
For instance, these representations may divert attention to irrelevant details and they 
may highlight some aspects of the problem at the expense of others, more relevant to 
the task requirements (Colin, Chauvet, & Viennot, 2002; Presmeg, 1986). Moreover, a 
pictorial representation may fail to help in an educational setting, such as mathematical 
problem solving, when students do not understand how the representation is related to 
its referent (DeLoache, Uttal, & Pierroutsakos, 1998).

Given that a representation cannot describe fully a mathematical construct and that each 
representation has different advantages, using multiple representations for the same 
mathematical situation is at the core of mathematical understanding (Duval, 2002). 
Three presuppositions for the mastery of a concept in mathematics are the following: 
First, the ability to identify the concept in multiple systems of representation; second, 
the ability to handle flexibly the concept within the particular systems of representation; 
and third, the ability to “translate” the concept from one system of representation to 
another (Lesh, Post & Behr, 1987). Principles and Standards for School Mathematics 
(NCTM, 2000) include a standard referring exclusively to representations and stress the 
importance of the use of multiple representations in mathematics learning. Ainsworth, 
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Bibby, and Wood (1997) suggest that the use of multiple representations can help 
students develop different ideas and processes, constrain meanings and promote deeper 
understanding. By combining representations students are no longer limited by the 
strengths and weaknesses of one particular representation. For example, we use pictures 
in mathematics textbooks to increase the ‘‘readability’’ of standard mathematical 
expressions. However, interacting with multiple representations requires the 
understanding of the relationship between them. This is a complex process. Research 
shows that students encounter difficulty in integrating information from different 
sources (Case & Okamoto, 1996; Demetriou, Christou, Spanoudis, & Platsidou, 2002) 
or in moving from one representation of a mathematical object to another. As a result, 
they tend to use representations in isolation (Ainsworth, 2006; Duval, 2002).

Although, the mental processes, and particularly the visual-spatial images, used in MPS 
or mathematics learning have received extensive research in the field of mathematics 
education (e.g., Presmeg, 1992; Gusev, & Safuanov, 2003), the role of pictorial 
representations or number line in MPS, has received much less attention (Gagatsis & 
Elia, 2004). An effort to study the function of pictorial representations was made by 
Carney and Levin (2002) who proposed five functions that pictures serve in text 
processing – decorative, representational, organizational, interpretational and 
transformational. Given Carney and Levin’s (2002) five functions that pictures serve in 
text, Theodoulou, Gagatsis & Theodoulou (2003) proposed a similar categorization for 
the functions of pictures in MPS. Specifically, they suggested that pictures have the 
following four functions in MPS: (a) decorative, (b) auxiliary-representational, (c) 
auxiliary-organizational and (d) informational.

Decorative pictures do not provide any actual information concerning the solution of the 
problem, but simply decorate the page bearing little or no relationship to the problem
content. Auxiliary-representational pictures represent part or all of the problem content, 
but are not necessary to be used in order to solve the problem. Auxiliary-organizational 
pictures help the students to solve the problem by guiding them to organize the given 
statements of the problem. Finally, informational pictures provide information that is 
essential for the solution of the problem; in other words, the problem is based on the 
picture. 

Recent researches tried to examine the role of specific types of pictures in MPS. A first 
research by Gagatsis and Markou (2002) showed that the incorporation of decorative 
pictorial representations in unused verbal problems did not lead to a change in students’ 
behavior towards these problems, thus not breaching of the didactical contract. Pupils 
ignored the existence of pictures and their attention was detracted by the numerical data 
in the problem statement.

Theodoulou, Gagatsis and Theodoulou (2004) examined the role of the four different 
types of pictures according to their function in MPS. The results showed that the 
presence of decorative and informational pictures had no significant effect on students’ 
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problem solving performance, whereas auxiliary-organizational pictures had a 
significant positive effect. Auxiliary-representational pictures had a significant positive 
effect in some cases, according to the mathematical operations needed in order to solve 
the problem. It was also found that the kind of mathematical operation needed in order 
to solve the problem had a more significant effect on students’ problem solving 
performance than the kind of picture that accompanied the problem. In many cases, 
although the children used the picture in order to solve a problem, they claimed that the 
picture was not useful for solving the problem. 

Elia and Philippou (2004) explored the role of pictures based on their function, in the 
solution of non-routine problems by pupils of Grade 6, in the context of an experimental 
model of communication. Findings of the particular study revealed that the 
representational, informational and organizational picture, but not the decorative one, 
had a significant effect on MPS. 

Elia, Gagatsis and Demetriou (2007) investigated the role of the four different types of 
representation in MPS and developed a model, which provided information about the 
structural organization underlying students’ processes in the solution of one-step 
additive problems in multiple representations. This model involved four first-order 
representation-specific factors indicating the differential effects of each particular type 
of representation and a second-order factor representing the general ability to solve 
additive problems. The size of the factor coefficients of the proposed model indicated 
that pupils’ general problem solving ability was highly associated with the abilities in 
solving problems in verbal form, with decorative pictures and number line. This finding 
suggested that students used similar processes to solve the problems in the three modes 
of representation, indicating that pupils overlooked the presence of the line or the 
decorative picture and gave attention only to the text of the problem. The decorative 
pictures had no impact on students’ behavior in MPS. The informational pictures had a 
rather complex role in problem solving compared to the use of the other modes of 
representation. It is possible that it required extra and more complex mental processes 
relative to the other modes of representation, since it involved not only pictorial but 
verbal information as well (Pyke, 2003). 

According to the studies of Deliyianni, Gagatsis and Koukkoufis (2003), and Gagatsis 
and Andronicou (2004), similar results occurred in the case of representational pictures. 
To be specific, it appeared that pupils certain times did not take them into consideration 
since their use was not essential for MPS. Thus, representational pictures were very 
often tackled in a similar way the verbal problems were tackled, presenting, as a 
consequence, the same degree of difficulty. On the other hand, the problems 
accompanied with organizational pictures seemed to be solved more easily by the 
pupils. Nevertheless, the presence of organizational pictures in the context of some 
problems made the solution of them more complicated. That is because the pupils could 
resolve these problems successfully without any picture. Certain times organizational 
pictures provided pupils with unnecessary directions for drawing or written work. 
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Besides, even though some pupils partly drew and wrote correctly what was asked for 
in the organizational picture, they were still unable to go on to the correct mathematical 
equation. A likely explanation is that no one can guarantee that pupils will conceive the 
symbolic relation between the representation and the entity in which it corresponds 
(DeLoache, Uttal & Pierroutsakos, 1998). 

To sum up, in a comparative article of a number of studies related to the contribution of 
pictures and number line in MPS, Gagatsis and Deliyianni (2004), provided evidence 
for the non-significant role of the decorative picture, the negative effect of the 
informational picture, the ambiguous role of the representational picture and the 
positive influence of the organizational picture on students’ performance in MPS. 

Considering the research studies reported here, due to the fact that they were conducted 
in different settings, with various age samples, using distinct research methods, some of 
their findings are congruent, whereas others are incompatible. However, these 
investigations seem to concur with an important assertion: that apart from the nature of 
the notion involved in a mathematical task, such as the structure or the content of a 
problem, the different modes of representation do have an effect on students’ 
performance. This suggests that problem solving, which is a major dimension of 
mathematical learning endeavor, and probably other mathematical activities as well, 
incorporate an important interaction between the mode of representation and the 
mathematical structure or the inherent mathematical properties involved (Monoyiou, 
Spagnolo, Elia & Gagatsis, 2007). 

As regards the effects of visual representations, in some cases the presence of visual 
representations in addition to verbal ones was found to have a helpful role on students’ 
performance. In other cases, visual representations were found not to differentiate at all 
students’ performance or even to impede their solutions. This variation of the visual 
representations’ impact is due to several factors. A number of these factors concern the 
types of visual representations and specifically their nature, structure and complexity; 
the mathematical concepts involved in the task; the relation or correspondence of the 
visual representations with the concepts or situations they represent; and students’ 
features, such as their cognitive styles, familiarity with the representations and generally 
existing knowledge (Monoyiou, Spagnolo, Elia & Gagatsis, 2007). In the light of the 
above, the use of visual representations in mathematical teaching and learning is a 
multidimensional and complicated process and should be conducted with great attention 
(Seeger, 1998). Reading and using images constitute skills that should not be left to 
chance, but should be taught systematically (Dreyfus & Eisenberg, 1990) and not in 
isolation, but in association with linguistic representations.

Regarding the role of pupils’ emotions and attitudes towards the use of pictures in MPS, 
De Bellis & Goldin (2006) supported that affect constitutes an internal representational 
system. According to their model, the person’s ability to solve mathematical problems 
is based on five kinds of internal, mutually interacting systems of representation. One of 
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these systems is the affective, which refers to the person’s emotions, attitudes, beliefs, 
morals, values, and ethics. In the research they conducted, De Bellis & Goldin (2006) 
found that the affective domain can enhance or undermine pupils’ performance in 
Mathematics. 

Structures of addition problems

Researchers have analyzed the structure of one-step word problems and highlighted its 
role in the solution strategies employed by students (Christou & Philippou, 1998). 
Previous studies on one-step additive problems have identified three main types of 
semantic structures: change or transformation of a measure, combine or composition of 
two measures and compare two measures to each other (Nesher, Greeno, & Riley, 1982; 
Vergnaud, 1982). In the present study, we focused on one class of problems: one-step 
composition problems.

Empirical evidence suggests that problems within the same semantic category vary in 
difficulty, since the placement of the unknown influences students’ strategies and 
performance (Carpenter & Moser, 1984; Nesher et al., 1982). In the present study, we 
explore the use of two other modes of representation in addition to the verbal 
description. Specifically, we examine the role of decorative and representational 
pictures, on additive problem solving. 

The study

Purpose

The purpose of this study was to investigate the role of three different modes of 
representation (decorative picture, representational picture and verbal description – text) 
in MPS. More specifically the aim of the study was to explore and compare the effects 
of decorative and representational picture in the solution procedures of one-step 
problems of the additive structure. Furthermore, the study aimed to identify the pupils’ 
attitudes towards the use and the role of pictures in MPS.   

Methodology

Participants

The sample of the research consisted of 125 second grade (7 to 8 years old) students (70 
boys and 55 girls) from four elementary schools in two districts of Cyprus. The sample 
was selected with convenience sampling method. The students were acquainted with 
one-step problems of the additive structure from the first grade of elementary school. 
Also, they were exposed to teaching using verbal, decorative and representational 
pictures before through their textbooks and school materials. 
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Data collection

In order to collect the data needed for this study, a questionnaire was constructed. The 
questionnaire consisted of 6 one–step grouping (part – part – whole) problems with 
additive structures (a+b=c), based on the classification of problems with additive 
structures proposed by Vergnaud (1982). More specifically, the focus was on situations 
with the placement of the unknown in the first part (a) because, in this case, the problem 
is considered to be more difficult. The problems were accompanied with or represented 
in different representational modes. All the categories of problems are presented in the 
following table. 

Table 1: Specification Table of the problems included in the test

Type of representation Problem Example

Verbal 1, 4 Helens’ classroom has some boys and 7 girls. All 
the children are 13. How many boys are there in 
Helens’ classroom?
                                               
                                                                  boys

Representational picture 2, 5 Costas cut some roses and 5 marguerites. All the
flowers he cut were 11. How many roses did he 
cut? 

                                                          
                                                         roses

Decorative picture 3, 6 At the birthday party of Carina were some red 
and 9 yellow balloons. All the balloons were 13. 
How many red balloons were at the party?
                                                                                                                

                                                                                                 
red balloons

Furthermore in the test, there were questions relative to the students’ attitude towards 
the presence and the role of the different representational modes in MPS. Those 
questions were answered by choosing either “Yes” or “No”. 
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Procedure

The written questionnaire was administered to the students in usual classroom 
conditions. Students were asked to solve all the items explaining their solution 
strategies. They were not obliged to use the pictures that accompanied the problems. 
Actually, they were instructed to use the representations if they believed that they could 
help them resolve the problems.  Students were given 40 minutes to solve the problems. 
After the completion of the problem tasks, the questionnaires were collected.  

Scoring of the tasks

Problem tasks were scored as follows: 0=wrong answer or no answer, 1=correct answer. 
Relatively to the questions, which concerned the use of the pictures by the students and 
their attitude towards them, affirmative answers were marked as 1 and negative answers 
were marked as 0. 

Variables of the study

The variables of the study were the following:

V1, V2: Verbal problem   
Iv1, Iv2: Problem solving by drawing a representational picture
Sv1, Sv2: Problem solving by using mathematical symbols
R1, R2: Problem accompanied with representational picture
Ir1, Ir2: Problem solving by using representational picture
D1, D2: Problem accompanied with decorative picture
Id1, Id2: Problem solving by using decorative picture
Idr1, 
Idr2: 

Students solve the problem which is accompanied with decorative picture 
by drawing a representational picture

A1: Students’ attitude towards the pictures
Be1: Students’ opinion about the assistant role of the pictures in MPS

Method of analysis

Multiple methods of analysis were performed, using the collected data, including 
Descriptive Statistics Analysis by using the computer software SPSS and Gras’s 
Implicative Analysis by using the computer software C.H.I.C (Classification 
Hié rarchique, Implicative et Cohé sitive) (Bodin, Coutourier & Gras, 2000). Gras’s 
Statistical Model is a method appropriate for collecting and analyzing data in order to 
reinforce or refute hypotheses and draw conclusions. This method determines the 
connections and the implicative relations of factors. The similarity diagram allows for 
the arrangement of tasks into groups according to their homogeneity. The implicative 
method gives the implicative graph, which represents the implicative relations among 
all variables which indicate whether success in one task entails success in another task 
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related to the former one. The implications are valid at a level of significance of 99%, 
95% or 90%. 

Results 

Students’ performance on problem tasks accompanied with different representational 
modes. 

A basic aim of the study was to examine whether different modes of representation 
(decorative picture, representational picture and verbal description – text) affect second 
grade students’ performance in solving one-step problems of the additive structure. 
Table 2 shows the students’ performance on the six problem tasks of the questionnaire. 
The highest percentage (95%) is observed when the problem is accompanied with 
representational picture (R1), whilst the lowest percentage (76%) refers to the verbal 
problem (V2) and to the problem which is accompanied with decorative picture (D2). 
The results show that the percentages are high in all the problem tasks. Therefore, 
students’ performance is not altered by the mode of representation used.

Table 2: Students’ performance on addition problems accompanied with different 
representational modes

Variables V1 V2 R1 R2 D1 D2
Percentage of 
Success

82 % 76 % 95 % 78 % 77 % 76 %

Use of decorative and representational pictures 

A second aim of the study was to examine whether students use the decorative and 
representational pictures when they solve one-step grouping (part – part – whole) 
problems of additive structure. Table 3 shows the percentages of students who declare 
that they used pictures to solve the mathematical problems. Students mention that they 
used more the representational pictures (Ir1 =67%, Ir2 = 62%) and less the decorative 
ones (Id1=31%, Id2=32%). From Table 3 it is also evident that few students draw a 
picture on verbal problems (Iv1= 2%, Iv2=3%) or solve problems which are 
accompanied with decorative picture by drawing a representational picture (Idr1= 3%, 
Idr2= 4%).

Table 3: Percentages of picture use.

Variables Iv1 Iv2 Ir1 Ir2 Id1 Id2 Idr1 Idr2
Percentage 
of use

2 % 3 % 67 % 62 % 31 % 32 % 3 % 4 %
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Students’ attitude towards decorative and representational pictures

The study also aimed to investigate students’ attitude towards decorative and 
representational pictures. As shown in Table 4, students seem to have a positive attitude 
to the presence and the role of decorative and representational pictures in MPS. 

Table 4: Students’ attitude towards decorative and representational pictures.

Variables A1 Be1

Percentage 71 % 73 %

Similarity between the tasks

The Similarity Diagram (Figure 1) shows how tasks are grouped according to the 
similarity of the ways in which they have been solved. The similarities in bold color are 
important at level of significance 99%. 

Figure 1: Similarity diagram of students’ responses to the tasks

According to the Similarity Diagram (Figure 1), two groups are clearly distinguished. 
The first group consists of the variables V1, D1, V2, R2, D2, Sv1, Sv2 and R1, which 
represent students’ efficiency in solving the problem tasks and using mathematical 
symbols. The variables Iv1, Idr1, Idr2, Iv2, Ir1, Ir2, Id1, Id2, A1 and Be1 are included 
in the second similarity group that concerns solving the problem tasks by using pictures 
and also students’ attitudes and beliefs towards pictures. 

In the first group, two subgroups are distinguished. The first subgroup consists of the 
variables V1, D1, V2, R2 and D2 which represent the students’ efficiency in solving the 
addition problems. The second subgroup consists of the variables Sv1, Sv2 and R1. The 
connection between Sv1 and Sv2 is not surprising, as these variables represent students’ 
tendency to solve verbal problems by using mathematical symbols and equations. 

In the second group two subgroups are also distinguished. The first subgroup consists of 
all problem tasks which students solved by using decorative and representational 
pictures (Iv1, Idr1, Idr2, Iv2, Ir1, Ir2, Id1and Id2). The second subgroup consists of the 
variables which represent students’ attitudes and beliefs towards pictures (A1, Be1).
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According to the similarity diagram, the most significant similarity relationships can be 
observed between the variables of the second group.  For example the variables Id1 and 
Id2 are connected with the most significant relationship. Thus, students justifiably 
behaved in a similar way when they solved the addition problems which were 
accompanied with a decorative picture. Furthermore, the variables Id1 and Id2 are 
significantly connected with the variables Ir1 and Ir2. This connection is not surprising 
because some of the students who declared that they used the decorative pictures to 
solve the problem tasks, they did the same for the representational pictures. 

Moreover, significant similarity relationship can be observed between the variables 
Idr1, Idr2 and Iv2 which represent the cases in which students solved the verbal 
problems or the problems which were accompanied with decorative picture, by drawing 
a representational picture. This behavior can be considered as systematic because, 
students who need and draw representational pictures to solve verbal problems, do the 
same for the problems which are accompanied with decorative picture. However, as 
shown in Table 3, this behavior can be observed rarely.  

Considering the similarity diagram, there is a similarity connection between the 
variables Iv1, Idr1, Idr2, Iv2, Ir1, Ir2, Id1, Id2 (group 1) and the variables A1, Be1 
(group 2). This connection is expected, because students who use pictures to solve 
addition problems, have a positive attitude towards them. 
Furthermore, as shown in the Similarity Figure, there is no similarity relationship 
between the two groups. This finding indicates that picture use and students attitudes 
towards them are not connected with students’ performance in solving one-step 
problems of the additive structure.  

Implicative Graph

The Implicative Graph (Figure 2) shows the implications between problem tasks, 
questions which referred to picture use and questions which referred to students’ 
attitude towards pictures. The implications are important at level of significance 90%, 
95% and 99%, according to the thickness of the line. 

According to the Implicative Graph (Figure 2), variables which referred to the picture 
use on problem tasks which were accompanied with representational and decorative 
image (Id1, Id2, Ir1, Ir2), are connected with implicative relationships. From Figure 2 it 
can be concluded that students who use the decorative pictures (Id1, Id2), use also 
representational pictures (Ir1, Ir2) to solve the addition problems. This finding is in 
agreement with the percentages shown in Table 3 which indicate that more students use 
representational than decorative pictures.    

It is also evident that picture use (Id1, Id2, Ir1, Ir2) entails positive attitude towards 
them (A1, Be1).  Concretely, students who solve the problem tasks by using either 
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decorative or representational picture, refer that they like pictures because they help 
them in problem solution.  

Figure 2: Implicative graph of students’ responses to the tasks

Discussion

The gap in the research literature on the role of pictures in MPS (Gagatsis & Elia, 2004) 
contributed to conduct this study. Based on the functions that pictures serve in text 
processing, as proposed by Carney and Levin (2002), this study attempted to examine 
the role of decorative and representational picture in solving mathematical problems of 
the additive structure with the unknown in the first part (a). Moreover, considering that 
the affective domain can enhance or undermine pupils’ performance in Mathematics 
(De Bellis & Goldin, 2006), we also focused on the role of pupils’ emotions and 
attitudes towards the use of pictures in MPS.

A basic aim of the study was to investigate the role of decorative and representational 
pictures in solving one–step grouping (part – part – whole) problems with additive 
structures. As the results have shown, students’ performance in MPS is not affected by 
the presence and use of decorative and representational pictures. This finding coincides 
with the findings of a previous study by Gagatsis et al (1999), which showed that 
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different modes of representation, such as pictures, do not always assure successful 
overlapping of cognitive difficulties in Mathematics. 

In this study we also examined the relation between students’ performance and the 
nature of the representation (decorative or representational pictures) used. It is evident 
that the success percentages are high enough in all the problem tasks. Therefore 
students’ performance is not altered according to the mode of representation used. This 
finding is in agreement with the results of a previous study by Gagatsis and Marcou 
(2002) which showed that decorative pictures did not lead to a change in students’ 
behavior towards non-routine verbal problems. These results also support Theodoulou, 
Gagatsis and Theodoulou’s (2004) conclusions that auxiliary-representational pictures 
had a significant positive effect only in some cases. 

As regards the decorative picture, it seems that decorative pictures have no impact on 
pupils’ behavior in MPS. It is also remarkable the fact that pupils sometimes draw a 
representational picture in order to solve a problem which is accompanied with 
decorative picture. Thus, Carney and Levin’s (2002) opinion that decorative pictures do 
not enhance any understanding or application to the text appears to extend itself in the 
case of mathematical problems.  

The results have also shown that students attitudes towards the role and use of pictures 
is not connected with their performance in MPS. Further research is needed to 
investigate the relationship between pictorial representations and affect, which 
constitutes an internal representational system according to De Bellis and Goldin 
(2006), in order to conclude that the affective domain can enhance or undermine pupils’ 
performance in Mathematics. 
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Abstract
Following D’Amore’s constructive interpretation for the term misconception, we 
propose a semiotic approach to misconceptions, within the theoretical frameworks 
proposed by Raymond Duval and Luis Radford.

Introduction

In this article we deal with one of the most common terms for decades in Mathematics 
Education research, the word “misconception”, interpreted according to a constructive 
perspective proposed by D’Amore (1999: p. 124): «A misconception is a wrong concept 
and therefore it is an event to avoid; but it must not be seen as a totally and certainly 
negative situation: we cannot exclude that to reach the construction of a concept, it is 
necessary to go through a temporary misconception that is being arranged». According 
to this choice, misconceptions are considered as steps the students must go through, that 
must be controlled under a didactic point of view and that are not an obstacle for 
students’ future learning if they are bound to weak and unstable images of the concept; 
they represent, instead, an obstacle to learning if they are rooted in strong and stable 
models. For further investigation into this interpretation, look in D’Amore, Sbaragli 
(2005). 
To understand what a misconception is, we believe it is necessary to make clear what is 
a concept and a conceptualization. Taking the special epistemological and ontological 
nature of mathematical objects as a starting point, we will show that mathematics 
requires a specific cognitive functioning that coincides with a complex semiotic activity 
immersed in systems of historical and cultural signification. This paper highlights that 
handling the semiotic activity is bristling with difficulties that hinder correct conceptual 
acquisition. 

We will follow a constructive approach to misconceptions, analyzing them within the 
semiotic-cognitive and semiotic-cultural frameworks, upheld by Raymond Duval and 
Luis Radford respectively.
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Theoretical framework

 D’Amore’s constructive approach to misconceptions

The problem of misconceptions developed within cognitive psychology studies, aiming 
at understanding the formation of concepts. In what follows, we refer to D’Amore 
(1999), but for the sake of brevity, we will not quote him.

This kind of approach focusses on the cognitive activity of the individual who is 
exposed to adequate stimuli and solicitations, and adapts his cognitive structures 
through assimilation and accommodation processes. The cognitive structures we 
mentioned above are characterised by two important functions that the human mind is 
able to perform: images and models formation.

The main characteristics of images and models are:

 Subjectivness, i.e. a strong relationship with individual experiences and 
characteristics.

 Absence of a proper sensorial productive input.

 Relation to a thought, therefore it does not exist per se, as a unique entity.

 Sensory and bound to senses.

An image is weak and transitory and accounts for the mathematical activity the pupil is 
exposed to in the learning process; it undergoes changes to adapt to more complex and 
rich mathematical situations set by didactical engineering as a path to reach a concept C.

A model has a dynamical character and it is seen as a limit image of successive 
adaptations to richer and richer mathematical situations. We recognise the limit image 
when a particular image doesn’t need further modifications as it encounters new and 
more difficult situations. We can conclude that a model is a strong and stable image of 
the concept C the teacher wants the pupil to learn. A model among the images is the 
definitive one which contains the maximum of information and it is stable when facing 
many further solicitations. When an image is formed there are two possibilities:

 The model M is the correct representation for the concept C.

 The model M is formed when the image is incomplete and it had to be further 
broadened. At this point it is more difficult to reach the concept C, because of 
the strength of M towards changes.

The adaptive process the student has to handle in his path towards the construction of a 
concept gives rise to a cognitive and emotional conflict, since he has to move to a new 
cognitive tool when the one he was using was working well; we usually call such 
conflict an error and the student requires specific support on the part of the teacher.

An image that worked well, has become inappropriate in a new situation and needs to 
be broadened for further use of the concept, is called a misconception. In the 
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constructive perspective we have chosen, a misconception is not seen as a negative 
phenomenon, as long as it is bound to weak images. As we have already said, 
misconceptions are necessary stages the pupil has to go through in his learning process, 
and they must be controlled under a didactic point of view to ensure they are bound to 
modifiable images, and not to stable models that would hinder the student’s conceptual 
acquisition.

We propose a classical primary school example of this path that leads the pupil towards 
the conceptualisation, starting from an image and ending with a model, passing through 
a cognitive conflict.

A grade 1 primary school student has always seen the drawing of a rectangle “lying” on 
its horizontal base with its height vertical and shorter. He constructed this image of the 
concept “rectangle” that has always been confirmed by experience. Most textbooks 
propose this prototypical image:

At a certain point the teacher proposes a different image of the rectangle that has the 
base smaller than its height. 

The pupil’s spontaneous denomination in order to adapt the concept already assumed is 
extremely meaningful: he defines this new shape as “standing rectangle”, opposed to the 
former “lying rectangle”, which expresses the more inclusive character of this image.

This denomination testifies the positive outcome of a cognitive conflict between a 
misconception (an improper fixed image of the concept “rectangle”) and the new image 
wisely proposed by the teacher. The student already had an image bound to his 
embodied sensorial activity and the teacher’s new proposal, obliging the student to 
move to a higher level of generality of this mathematical object. 

An example of a misconception bound to a model that hinders the pupil’s cognitive 
development is of a grade 11 high school pupil dealing with second degree equations. 

We propose the solution in an assessment of the following equation:  2x2+3x+5 = 0
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The student behaves as follows:  2x2 = -3x-5, x   3x  5  2

At this point, he is unable to go further, even with the teacher’s help. We highlight that 
the solution of second degree equations had already been explained to the class.

In this example, we can see how the procedure for the solution of first degree equations 
condensed into a strong model that didn’t change even after the teacher’s further 
explanations and mathematical activities.

This example shows that a misconception is not a lack of knowledge or a wrong 
concept, but knowledge that doesn’t work in a broader situation.

In this purely psychological perspective, the construction of concepts in mathematics is 
independent of the semiotic activity. Signs are used only for appropriation and 
communication of the concept, after it has been obtained by other means. In 
mathematics, both when dealing with the production of new knowledge and with 
teaching-learning processes, this position is untenable, due to the ontological and 
epistemological nature of its objects. 

In fact, we witness a reverse phenomenon: «Of course, we can always have the 
“feeling” that we perform treatments at the level of mental representations without 
explicitly mobilising semiotic representations. This introspective illusion is related to 
the lack of knowledge of a fundamental cultural and genetic fact: the development of 
mental representations is bound to the acquisition and interiorisation of semiotic 
systems and representations, starting with natural language» (Duval, 1995, p. 29).

Duval’s semiotic-cognitive approach

Every mathematical concept refers to “non objects” that do not belong to our concrete 
experience; in mathematics ostensive referrals are impossible, therefore every 
mathematical concept intrinsically requires to work with semiotic representations, since 
we cannot display “objects” that are directly accessible.

The lack of ostensive referrals led Duval to assign the use of representations, organized 
in semiotic systems, a constitutive role in mathematical thinking; from this point of 
view he claims that there isn’t noetics without semiotics. «The special epistemological 
situation of mathematics compared to other fields of knowledge leads to bestow upon 
semiotic representations a fundamental role. First of all they are the only way to access 
mathematical objects» (Duval, 2006).

The peculiar nature of mathematical objects allows outlining a specific cognitive 
functioning that characterises the evolution and the learning of mathematics. The 
cognitive processes that underlay mathematical practice are strictly bound to a complex 
semiotic activity that involves the coordination of at least two semiotic systems. We can 
say that conceptualisation itself, in Mathematics, can be identified with this complex 
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coordination of several semiotic systems. 

Semiotic systems are recognizable by:

 Organizing rules to combine or to assemble significant elements, for example 
letters, words, figural units.

 Elements that have a meaning only when opposed to or in relation with other 
elements (for example decimal numeration system) and by their use according 
to the organizing rules to designate objects (Duval, 2006). 

Duval (1995a) identifies conceptualisation with the following cognitive-semiotic 
activities, specific for Mathematics: 

 formation of the semiotic representation of the object, respecting the constraints 
of the semiotic system;

 treatment i.e. transformation of a representation into another representation in 
the same semiotic system; 

 conversion i.e. the transformation of a representation into another representation 
in a new semiotic system. 

The very combination of these three “actions” on a concept can be considered as the 
“construction of knowledge in mathematics”; but the coordination of these three actions 
is not spontaneous nor easily managed; this represents the cause for many difficulties in 
the learning of mathematics.

Duval bestows upon conversion a central role in the conceptual acquisition of 
mathematical objects:
«(…) registers coordination is the condition for the mastering of understanding since it 
is the condition for a real differentiation between mathematical objects and their 
representation. It is a threshold that changes the attitude towards an activity or a domain 
when it is overcome. (…) Now, in this coordination there is nothing spontaneous» 
(Duval, 1995b).

The coordination of semiotic systems, through the three cognitive activities mentioned 
above, broaden our cognitive possibilities because they allow transformations and 
operations on the mathematical object. When the object is accessible, distinguishing the 
representative from its representation and recognizing the common reference of several 
representations bound by semiotic transformations is guaranteed by the comparison 
between each single representation with the object. In Mathematics the situation is more 
complicated, because there is no object to carry out the distinction mentioned above and 
to guarantee the common reference of different representations to the object. The lack 
of ostensive referrals makes the semiotic activity problematic in terms of production, 
transformation and interpretation of signs.
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From an educational point of view, this is a fundamental issue that leads the student to 
confuse the mathematical object with its representations and requires a conceptual 
acquisition of the object itself to govern the semiotic activity that in turn allows the 
development of mathematical knowledge. This self-referential situation is known as 
Duval’s cognitive paradox: «(...) on one hand the learning of mathematical objects 
cannot be but a conceptual learning, on the other an activity on the objects is possible 
only through semiotic representations. This paradox can be for learning a true vicious 
circle. How could learners not confuse mathematical objects if they cannot have 
relationships but with semiotic representations? The impossibility of a direct access to 
mathematical objects, which can only take place through a semiotic representation leads 
to an unavoidable confusion. And, on the other hand, how can learners master 
mathematical procedures, necessarily bound to semiotic representations, if they do not 
already possess a conceptual learning of the represented objects?» (Duval, 1993, p. 38).

In the example that follows, given by Duval (2006) at the beginning of high school, we 
can see how the semiotic activity, in this case conversion, is crucial for the solution of 
the problem. Students encounter difficulties finding the solution because they are stuck 
on the fractional representation of rational numbers or, worse, they consider fractions 
and decimal representation different numbers. The mathematical procedure is grounded 
on the cognitive semiotic activity. The mathematics involved is very simple but the 
semiotic task is not trivial. 

1+1/2+1/4+1/5+… = 2

The following conversion solves the problem brilliantly, shifting from the fraction 
representation of rational numbers to the decimal one. 

1+0.5+0.25+0.20+… = 2

Radfrod’s semiotic-cultural approach

Within the semiotic path we follow to understand mathematical thinking, we make a 
step forward and move on to Radford’s semiotic- cultural framework.

Radford’s theory of knowledge objectification, considers thinking a mediated reflection
that takes place in accordance with the mode or form of individuals’ activity (Radford, 
2005):
 The reflexive nature refers to the relationship between the individual 
consciousness and a culturally constructed reality.

 The mediated nature refers to the means that orient thinking and allows 
consciousness to become aware of and understand the cultural reality; Radford calls 
such means Semiotic Means of Objectification (Radford, 2002). The word semiotic is 
used in a broader sense to include the whole of the individuals embodied experience 
that develops in terms of bodily actions, use of artifacts and symbolic activity: artifacts, 
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gestures, deictic and generative use of natural language, kinaesthetic activity, feelings, 
sensations and Duval’s semiotic systems. Semiotic Means of Objectification mustn’t be 
considered as practical and neutral technical tools, but they incarnate historically 
constituted knowledge. They bare the culture in which they have been developed and 
used. The semiotic means determine the way we interpret and understand reality that is 
given through our senses. The mediated nature of thinking is constitutive of our 
cognitive capabilities and makes thinking culturally dependent.

 Activity refers to the fact that mediated reflection is not considered here a 
solitary purely mental process, but it involves shared practices that the cultural and 
social environment considers relevant. 

Before analyzing the learning process, we need to deal with the notion of mathematical 
object in Radford’s objectification theory. Going beyond realist and empiristic 
ontologies, the theory of knowledge objectification considers mathematical objects 
culturally and historically generated by the mathematical activity of individuals. In 
agreement with the mediated reflexive nature of thinking and from the viewpoint of an 
anthropological epistemology Radford claims that «(…) Mathematical objects are fixed 
patterns of activity embedded in the always changing realm of reflective and mediated 
social practice» (Radford, 2004; p.21). 

Learning is an objectification process that allows the pupil to become aware of the 
mathematical object that is culturally already there, but it is not evident to the student. 
Ontogenetically speaking, the student carries out a reflection on reality, not to construct 
and generate the object as it happens phylogentically, but to make sense of it. Learning 
is therefore an objectification process that transforms conceptual and cultural objects 
into objects of our consciousness. In this meaning-making process, the semiotic means 
of objectification within socially shared practices allow the student’s individual space-
time experience to encounter the general disembodied cultural object. 

The access to the object and its conceptualization is only possible within a semiotic 
process and it is forged out of the multifaceted dialectical interplay of various semiotic 
means, with their range of possibilities and limitations. This multifaceted interplay 
synchronically involves, within reflexive activity, bodily actions, artefacts, language 
and symbols. At different levels of generality these three elements are always present. 
For example, at the first stage of generalization in algebra students have mainly 
recourse to gestures and deictic use of natural language, whereas in dealing with 
calculus the use of formal symbolism will be predominant, nevertheless without 
disregarding the kinaesthetic activity or the use of artefacts.

In the objectification process the student lives a conflict between his reflexive activity 
situated in his personal space-time embodied experience and the disembodied meaning 
of the general and ideal cultural object. The teaching-learning process has to face the 
dichotomy between the phylogenesis of the mathematical object and the ontogenesis of 
the learning process. The cognitive processes phylogenetically and ontogenetically 
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involve the same reflexive activity, but with a significant difference: in the first case the 
mathematical object emerges as a fixed pattern; in the second case the object has its 
independent existence and the didactic engineering has to devise specific practices to 
allow the student becoming aware of such object.

To heal the conflict between embodied and disembodied meaning, the student has to 
handle more complex and advanced forms of representation «that require a kind of 
rupture with the ostensive gestures and contextually based key linguistic terms that 
underpin presymbolic generalizations» (Radford, 2003: p. 37).

The following example proposed by Radford (2005) shows the difficulty students 
encounter when they have to use algebraic symbolism that cannot directly incorporate 
their bodily experience. Students were asked to find the number of toothpicks for the n-
th figure of the following sequence. 

After resorting to gestures, deictic use of natural language, students manage to write the 
algebraic expression n+(n+1) [n is the number of the figure in the sequence], but they 
are not ready to carry out the trivial algebraic transformation that leads to 2n+1. The 
parentheses have a strong power in relating the algebraic representation to their visual 
and spatial designation of the figure, disregarding them implies a disembodiment of 
meaning that it is not easily accepted. Even though 2n+1 is synthactically equivalent to 
n+(n+1), the former expression requires a rupture with spatial based semiotic means of 
objectification and a leap to higher levels of generality.

Misconceptions: a semiotic interpretation

The semiotic approach we have outlined in the previous sections provides powerful 
tools to understand the nature of misconceptions. From what we said, the path that from 
weak images leads to strong models can be seen as the interiorisation of a complex 
semiotic activity; the student has acquired a correct model of the concept when he 
masters the coordination of a set of representations, relative to that concept, that is 
stable and effective in facing diverse mathematical situations. The student acquires 
control of an adequate set of representations, through an adaptation process that 
enlarges the representations of the set and coordinates them in terms of semiotic 
activity. From a semiotic point of view an image, is a temporary set of representations 
that needs to be developed, both in terms of representations and of their coordination, as 
the student faces new and more exhaustive solicitations. 

A misconception is a set of representations that worked well in previous situations but it 

Fig. 1 Fig. 2 Fig. 3
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is inappropriate in a new one. If a misconception is relative to a weak image the student 
is able to enlarge the set of representations and he is also ready to carry out more 
complex semiotic operations. In this case a misconception is a necessary and useful step 
the student must go through. If, instead, a misconception is related to a strong model the 
student will refuse to incorporate new representations and commit himself to more 
elaborated semiotic transformations. At this point, the pupil’s cognitive functioning is 
stuck and he is unable to solve problems, deal with non standard mathematical 
situations and broaden his conceptual horizon. His reasoning is bridled in repetitive 
cognitive paths related to the same representations and transformations. In this case, a 
misconception is a negative event that must be avoided.

The representations we mentioned above are Radford’s Semiotic Means of 
Objectification, including also Duval’s semiotic systems. We can broaden D’Amore’s 
(2003, p.55-56) constructivist view point of mathematical knowledge based on Duval’s 
semiotic operations (formation, treatment and conversion) on semiotic systems, to 
include also bodily activity and artefacts and deal with more general Semiotic Means of 
Objectification. The positive outcome of the construction of a mathematical concept is 
therefore the dialectical interplay of Semiotic Means of Objectification that includes 
also treatments and conversions on semiotic systems. Such positive outcome is not a 
plain solitary process but it is culturally embedded in shared activity and it must 
overcome three synchronically entangled turning points that give rise to 
misconceptions; for sake of clarity we will discuss them separately but to show how 
entangled they are we will propose always the same example to explicit them.

 The first turning point we discuss is the cognitive paradox. The first and only 
possible approach to the mathematical object the student has is with a particular 
semiotic means of objectification. It can be an artefact, a drawing or a linguistic 
expression. He necessarily identifies the object with the first representation he 
encounters and connecting it with others is not spontaneous and requires a specific 
didactic action to go through this misconception. The student spontaneously sticks to 
the first representation that worked well in the situation devised by the teacher, but he is 
in trouble when a new situation requires to connect the first representation to a new one, 
because he believes that such representation is the mathematical object.

We can take the prototypical example of the rectangle we analyzed in section 2.1. In 
primary school the first access to the rectangle usually is a drawing with the base longer 
than the height. The student thinks that the object rectangle is that drawing with those
specific perceptual characteristics. He is in trouble when the teacher proposes the new 
representation; he calls it “standing rectangle”. If the teacher hadn’t exposed the student 
to a new solicitation that first misconception would have condensed into a model, 
hindering the pupil’s further cognitive development. 

 The second turning point is the coordination of a variety of representations. In terms 
of Semiotic Means of Objectification the student has to handle a very complicated 
situation. First of all, the semiotic means can be very different from each other in terms 
both of their characteristics and the way they are employed. For instance a gesture is 
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very different from an algebraic expression. The first one is used spontaneously, while 
the second is submitted to strict syntactic rules. The first one is related to the 
kinaesthetic activity, whereas the second one is a semiotic system that does not 
incorporate the students’ kinaesthetic experience in a direct manner. An algebraic 
expression requires treatment and conversion transformations, while these operations 
are impossible with gestures. The student has to handle a semiotic complexity that leads 
to misconceptions mainly related to the coordination of semiotic means. The interplay 
of heterogynous Semiotic Means of Objectification is not spontaneous and it requires a 
specific didactic action. 

Let us turn back to the example of the rectangle. In his cognitive history the student will 
have to coordinate more and more representations of this object. We have seen that he 
started with a very simple drawing, perceptively effective. The teacher proposes a 
treatment that leads the student to consider a new representation that is in conflict with 
the previous one. This is not enough to construct a model of the rectangle. As the 
mathematical problems become more complicated he will need to resort, through 
conversions, to other semiotic systems like natural language, the cartesain system or the 
algebraic one. We can ask him if a square is a rectangle, at this point he needs to 
combine his perceptual experience bound to the figural semiotic system with the 
definition given in natural language. Many students cannot accept that a square is a 
rectangle. In high school we could ask him to calculate the area of a rectangle obtained 
by the intersection of four straight lines given as first degree equations. Although the 
problem is simple from a mathematical point of view, it puzzles the student because of a 
complex semiotic activity that involves conversions between cartesian and algebraic 
representations. In this case, conversion is a heavy task to accomplish because of non 
congruence phenomena (Duval, 2005a, pp. 55-59). The student has to face a 
misconception that will cause a compartmentalization of semiotic systems, hindering his 
semiotic degree of freedom.

The coordination of many representations is a source of misconception, also because, as 
recent researches in the field conducted by (D’Amore, 2006) show, semiotic 
transformations change the sense of mathematical objects. For the student each 
representation has its own meaning related to the nature of the semiotic means of 
objectification and to the shared practices on the object carried out through such 
representation. The misconception of the rectangle is a good example of this 
phenomenon. Students bestow different senses upon each representation, at such a point 
that the child calls them “lying” and “standing” rectangles, as if they were different 
objects. It turns out that keeping the same denotation of different representations is a 
cognitive objective difficult to acquire because it demands to handle many 
representations without accessing what is represented. 

 The last turning point we want to discuss regards the disembodiment of meaning. We 
have seen that there is a dichotomy between the space-time situated embodied 
experience of the pupil and the disembodied general mathematical object. The student 
lives a conflict between the embodied and situated nature of his personal learning 
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experience and the disembodied general nature of the mathematical object. The 
mathematical cognitive activity of the child cannot start but in an embodied manner 
resorting mainly to Semiotic Means of Objectification related to bodily actions and the 
use of artefacts. But, when the mathematical activity requires a higher level of 
generality, the student must also engage in abstract symbols; the toothpicks shows how 
difficult it is for the student to give up his space situated experience, and how the 
algebraic language is meaningful to him as long as it describes his contextual activity. 
The conflict between situated experience and the generality and abstraction of the 
mathematical object is a source of misconceptions. At present, it is not completely clear 
how the disembodiment of meaning takes place. We know that the disembodiment of 
meaning requires the coordination of Duval’s semiotic systems, in terms of treatment 
and conversion, and what we usually do is to expose students to an abstract symbolic 
activity, aware that we must handle the rise of misconceptions. Turning back to the 
example of the rectangle, the “lying” rectangle and the “standing” one are symptoms of 
the embodied meaning bound to the student’s perceptual and sensorial experience. The 
treatment between the two figurative representations implies a disembodiment of 
meaning that must continue as natural language and other semiotic systems will be 
introduced so that the pupil can grasp the general and abstract sense of the rectangle.

We have presented a thorough analysis of misconceptions from a semiotic perspective. 
Anyway, it is possible to single out from what we have said a pivot upon which the 
issue of conceptualization and misconception turns, i.e. the lack of ostensive referrals of 
mathematical objects. The inaccessibility of mathematical objects both imposes the use 
semiotic representations and makes the semiotic activity intrinsically problematic.

A first classification of misconceptions

From what we have said above, on the one hand it seems that misconceptions are 
somehow a necessary element of the learning of mathematics and on the other the role 
of the teacher is crucial to overcome them by supporting the student’s ability to handle 
the semiotic activity. We have, hence, divided misconceptions into two big categories:
“unavoidable” and “avoidable” (Sbaragli, 2005); the first does not depend directly on 
the teacher’s didactic transposition, whereas the second depends exactly on the didactic 
choices and didactic engineering devised by the teacher. Avoidable misconceptions
derive directly from teachers’ choices and improper habits proposed to pupils by 
didactic praxis. Unavoidable misconceptions derive only indirectly from teachers 
choices and are bound to the need of beginning from a starting knowledge that, in 
general is not exhaustive of the whole mathematical concept we want to present.

We will analyze avoidable and unavoidable misconceptions referring to the three 
turning points mentioned above.
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“Unavoidableness”

“Unavoidable” misconceptions, that do not derive from didactical transposition and 
didactic engineering, depend mainly on the intrinsic unapproachableness of 
mathematical objects. Duval’s (1993) paradox is a source of misconceptions that gives 
rise to an unavoidable confusion between semiotic representations and the object itself, 
especially when the concept is proposed for the first time. Another source of 
unavoidable misconceptions derives from the conflict between embodied and 
disembodied meaning of the mathematical concept. When the student learns a new 
mathematical concept he cannot begin to approach it with Semiotic means of 
Objectification related to his practical sensory-motor intelligence. These Semiotic 
Means of Objectification can lead the student to consider relevant “parasitical 
information”, in contrast with the generality of the concept, bound to the specific 
representation and the perceptive and motor factors involved in his mathematical 
activity. The student unavoidably misses the generality of the mathematical object and 
grounds his learning only on his sensual experience. 

The following example highlights an unavoidable misconception.

We know from literature (D’Amore and Sbaragli, 2005) that a typical misconception, 
rooted in the learning of natural numbers is that the product of two numbers is always 
greater than its factors. When students pass to the multiplication in Q, they do not 
accept that the product of two numbers can be smaller than its factors. They are stuck to 
the misconception that “multiplication always increases”. This is true in N and it is 
reinforced by the embodied meaning enhanced by the array model of multiplication 
perceptually very strong, effective in the first stages of students’ learning of arithmetic 
and in strong agreement with the idea of multiplication as a repeated sum. We can see 
that there is strong congruence between the figural representation and the symbolic one 
that makes conversion very natural. 

When we pass to Q and consider 6×0.2 what does it mean to sum 6, 0.2 times, and what 
is an array with 0.2 rows and 6 columns?

We can see how the strong identification of the mathematical object with its 
representation hinders the development of the concept, and it is also clear that this 
identification is an unavoidable passage.
This example clearly shows, on the one hand, the rupture that leads from embodied to 
disembodied general meaning, the student has to go through when he faces rational 
numbers and how difficult it is to give up the perceptual and sensory evocative power of 

6×3=6+6+6
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the array. On the other hand, it is also evident that we cannot avoid the embodied 
meaning skipping directly to a general and formal definition of multiplication. 

The array is an effective Semiotic Means of Objectification when the student begins to 
learn multiplication in N, but if there is no specific didactic action that fosters the 
generalizing process towards the mathematical concept, it condensates into a strong 
model, difficult to uproot. The array image of multiplication is a typical example of a 
parasitical model. This last remark opens the way for the discussion of avoidable 
misconceptions.

“Avoidableness”

Avoidable misconceptions derive directly from didactic transposition and didactic 
engineering, since they are a direct consequence of the teachers’ choices. 

We have seen that the cognitive paradox and disembodiment of meaning give rise to 
unavoidable misconceptions. Nevertheless the teacher has an important degree of 
freedom to intervene in the students’ ability to handle the semiotic activity. Even if 
misconceptions are unavoidable they must be related to images without becoming stable 
models. This is possible if the student is supported in handling the complex semiotic 
activity, within socially shared practices, that fosters the cognitive rupture, allowing the 
pupil to incorporate his kinaesthetic experience in more complex and abstract semiotic 
means. The student thus goes beyond the embodied meaning of the object and endows it 
with its cultural interpersonal value. In this perspective, Duval (1995) offers important 
didactic indications to manage the rupture described above, when he highlights the 
importance of exposing the student, in a critical and aware manner, to many 
representations in different semiotic registers, overcoming also the cognitive paradox. 
Nevertheless didactic praxis is “undermined” by improper habits that expose pupils to 
univocal and inadequate semiotic representations, transforming avoidable 
misconceptions in strong models or giving rise to new ones. 

An emblematic example of an inadequate semiotic choice that brings to improper and 
misleading information relative to the proposed concept, regards the habit of indicating 
the angle with a “little arc” between the two half-lines that determine it. Indeed, the 
limitedness of the “little arc” is in contrast with the boundlessness of the angle as a 
mathematical abstract “object”. This implies that in a research involving students of the 
Faculty of Education, most of the persons interviewed claimed that the angle 
corresponds to the length of the little arc or to the limited part of the plane that it 
identifies, falling into an embarrassing contradiction; two half lines starting from a 
common point determine infinite angles! (Sbaragli, 2005). 

An inadequate didactical transposition or didactic engineering can in fact strengthen the 
confusion, lived by the student, between the symbolic representations and the 
mathematical object. The result is that «the student is unaware that he is learning signs 
that stand for concepts and that he should instead learn concepts; if the teacher has 
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never thought over this issue, he will believe that the student is learning concepts, while 
in fact he is only “learning” to use signs» (D’Amore, 2003; p. 43).

It thus emerges how often the choice of the representation, is not an aware didactical 
choice but it derives from teachers’ wrong models. And yet, in order to avoid creating 
strong misunderstandings it is first required that the teacher knows the “institutional”
meaning of the mathematical object that she wants her students to learn, secondly she 
must direct the didactical methods in a critical and aware manner.

From a didactical point of view, it is therefore absolutely necessary to overcome 
“unavoidable” misconceptions and prevent the “avoidable” ones, with particular 
attention to the Semiotic Means of Objectification, providing a great variety of 
representations appropriately organized and integrated into a social system of meaning 
production, in which students experience shared mathematical practices. 

From what we have said, learning turns out to be a constructive semiotic process that 
entangles representations and concepts in a complex network, with the rise of 
misconceptions. Therefore the task of the teacher is to be extremely sensible towards 
misconceptions that can come out during the teaching-learning process. The teacher 
must be aware that what the student thinks as a correct concept, it can be a 
misconception rooted in an improper semiotic activity.
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Abstract

In this study, Greek students’ ability in statistical problem solving related to the concept 
of average was investigated. Three different kinds of tasks in a test for sixth grade were 
given to Greek students. Principal Components Analysis and Implicative Statistical 
Analysis were used for the analysis of the data. Both statistical analyses suggest the 
same grouping of students’ responses and confirm the absence of high cognitive 
competence in statistical problem solving and flexibility related to translation of
different representation modes of statistical notions.

Introduction

Nowadays probability and statistics are part of mathematics curricula for primary and 
secondary schools in many countries. The reasons for this development are related to
the usefulness of statistics for daily life(Chadjipadelis, 2003), its instrumental role in 
other disciplines, the need for basic stochastic knowledge in many professions, and its 
key role in developing critical reasoning (Batanero et al., 2004). 

Understanding of statistical concepts does not appear to be easy, given the diversity of 
representations associated to this concept, and the difficulties inherent in the processes 
of articulating systems of representation involved in probabilistic and statistical problem 
solving (SPS) (Anastasiadou, 2007). Statistical notions are difficult to teach for various 
reasons, including disparity between intuition and conceptual development even 
regarding apparent elementary concepts (Chadjipadelis & Gastaris, 1995). 

The need for a variety of semiotic representations in the teaching and learning of 
probability is usually explained through reference to the cost of processing, the limited 
representation affordances for each domain of symbolism and the ability to transfer 
knowledge from one representation to another (Duval, 1987; Gagatsis, Elia, I. & Mougi, 
2002; Gagatsis, & Elia, 2004). A representation is any configuration (of characters, 
images, concrete objects, etc.), that can denote, symbolize, or otherwise “represent” 
something else (Palmer, 1978; DeWindt-King & Goldin, 2003; Goldin, 1998; Kaput,
1985). DeWindt-King & Goldin (2003) mentioned that according to Goldin & Kaput 
(1996) and Vergnaud (1998) such representing relationships are often two-way, so that 
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the depiction or sympolization can be interpreted in either direction, In the last decades, 
great attention has been devoted to the concept of representation and its role in the 
learning of mathematics (Gagatsis, & Elia, 2004; 2005; Gagatsis, Elia, I. & Mougi, 
2002; Elia, & Gagatsis, 2006). A basic reason for this emphasis is that representations 
are considered as an “integral” part of mathematics (Kaput, 1987). In certain cases, 
specific representations are so closely connected to a mathematical concept that it is 
difficult for the concept to be understood and acquired without the use of these
representations. Students experience a wide range of representations from their early 
childhood years. A main reason for this is that most mathematics textbooks today use a 
variety of representations in order to enhance understanding. Greeno & Hall (1997) 
maintain that representations may be considered useful tools for constructing 
understanding and for communicating information. They underline how it is important
to engage students in activities like choose or construct representations in such forms 
that help them to see patterns and perform calculations, taking advantage of the fact that 
different forms provide different support for inference and calculation. Similarly, 
Kalathil & Sheril (2000) describe ways in which representations may be useful in 
providing information on how students think about a mathematical issue, and serve as 
classroom tool for the students and the teacher. In mathematics instruction 
representations get a crucial role as teachers can improve conceptual learning if they use 
or invent effective representations (Cheng, 2000).

The use of multiple representations, such as pictures and text combined, is a main 
feature of mathematics education, which deals with a wide range of representations of 
ideas in order to enhance understanding. Generally, there is strong support in the 
mathematics education community that students can grasp the meaning of mathematical 
concepts by experiencing multiple mathematical representations (Lesh, Post, & Behr 
1987; Sierpinska, 1992). Principles and standards for school mathematics (NCTM, 
2000) include a standard referring exclusively to representations and emphasize their
value for understanding. Learning from verbal and pictorial information has generally 
been considered beneficial for learning (Carney & Levin, 2002; Schnotz, 2002). For 
example, Ainsworth, Wood, & Bibby (1997) suggest that the use of multiple 
representations may help students develop different ideas and processes, constrain 
meanings, and promote deeper understanding. Furthermore, a second representation 
may be provided to support the interpretation of a more complicated or less familiar 
representation (Gagatsis & Michaelidou, 2002). 

Students may have very different representations and, as Kendal and Stacey (2000) 
stated, representations which are emphasized in the teaching influence on the 
construction of students’ internal representations. According to Goldin (1998) 
representation systems are proposed to develop through three stages, so that first, new 
signs are taken to symbolize aspects of a previously established system of 
representation. Then the structure of the new representation system develops in the old 
system and finally the new system becomes autonomous.

Janvier introduced the notion of “translation” between two different representations. By 
a translation process, we denominate the psychological processes involved when
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moving from one mode of representation to another (Janvier, 1987). Janvier (1987)
mentioned that translation is an activity, one where the naive interpretation is of 
preservation of meaning', but anyone who has seriously attempted to translate a text will 
be aware of needing to work simultaneously on the three major components of 
language: the forms, the functions and the meanings. Similarly, changing representation 
requires attention to all three of these aspects.

 Several researchers in the last two decades addressed the critical problem of translation 
between and within representations, and emphasized the importance of moving among 
multiple representations and connecting them (Elia & Gagatsis 2006; Gagatsis, & Elia, 
2004; Hitt, 1998; Yerushalmy, 1997). Duval (2002) mentioned that there is a key 
distinction for analysing mathematical activity from a learning and teaching perspective 
rather than a perspective of mathematical research by mathematicians. There are two 
types of transformation of semiotic representations which are radically different: 
treatments and conversions. Treatments are transformations of representations which 
happen within the same register. Conversions are transformations of representation 
which consist of changing a register without changing the objects being denoted (Duval 
2002). According to Elia & Gagatsis (2006), the role of representations is a central issue 
in the teaching of mathematics. The most important aspect of this issue refers to the 
diversity of representations for the same concept, the connection between them and the 
conversion from one mode of representation to others. Gagatsis & Shiakalli (2004) and 
Ainsworth (2006) suggest that different representations of the same concept 
complement each other and contribute to a more global and deeper understanding of it. 

Understanding a mathematical concept presupposes the ability to recognise this concept 
when it is presented by a series of qualitatively different representation systems
(registers), the ability to flexibly handle this concept in the specific representation 
systems, and finally, the ability to translate the concept from one system to another 
(Dufur-Janvier, Bednarz & Belanger, 1987; Lesh, Post, & Behr, 1987). Duval (2002)
suggested that it is the decompartmentalization of registers which constitutes one of the 
conditions for access to mathematical comprehension and not vice versa. As Gray and 
Tall (2001) underline it’s very important to connect perceptual representations to 
symbolic representations. 

There are four main ideas in order to conceptualise representation. Firstly, within the 
domain of mathematics, representation may be a thought of internal- abstraction of 
mathematical ideas or cognitive schemata that are developed by the learner through 
experience (Pape & Tchoshanov, 2001). Secondly, representation can be explicated as 
“mental reproduction of a former mental sate”. Thirdly, “a structurally equivalent 
presentation through pictures, symbols and signs” (also means to representation). 
Finally, it is also known as “something in place of something” (Seeger, 1998).

Recent research tried to examine the role of representations in Statistics learning, 
teaching and instruction.

Anastasiadou and Gagatsis (2007) tried to identify students’ abilities to handle various 
representations, and to translate among representations related to the same statistical 
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relationship across three age levels in primary education. Their findings provide a 
strong case for the role of different modes of representation on students’ performance to 
tasks on basic statistical concepts such as frequency. At the same time, these findings
enable a developmental interpretation of students’ difficulties in relation to 
representations of frequency. Students’ success was found to increase with age. But 
despite the improvement of students’ performance from third to fifth grade, students in 
both grades encountered difficulties in the understanding of statistical concepts and 
more specifically in moving flexibly from one representation to another. Sixth grade 
students’ success was found to be independent of the initial or the target representation 
of the tasks. Their high and consistent outcomes in all of the conversion tasks indicate 
that they have developed the understanding of the relations among representations and 
the skills of representing and handling flexibly basic statistical knowledge in various 
forms. The above finings are in line with the results of a similar study of Anastasiadou, 
Elia and Gagatsis (2007).

The main objective of Anastasiadou (2008) study was to contribute to the understanding 
of the role of different types of representations and translations in statistical problem 
solving (SPS) when the concept of average is involved in Greek primary school. 
Specifically, this study investigates the abilities of 3rd, 5th and 6th grade primary school 
indigenous students and immigrants in using representations of basic statistical concepts 
and in moving from one representation to another. The results of this study reveal that 
indigenous students have not acquired sufficient abilities for transformation from one 
representation system to another. Results reveal the differential effects of each form of 
representation on two groups of students’ performance and the improvement of 
performance with age of indigenous students.

This study analyzes the role of different modes of representation on understanding of 
some basic probabilistic concepts. Teachers’ performance is investigated in two aspects 
of probabilistic understanding: the flexibility in using multiple representations and the 
ability to solve the problems posed.

Tasks 

The test included 12 tasks covering the concepts of average, its estimation, and its
relation to bar charts, diagrams and predictions, and more generally, its application to 
solving everyday problems. Students’ responses to the tasks comprise the variables of 
the study which are codified by an uppercase letter followed by the number of the item 
and two letters. The uppercase letters denote the concept involved in the task; V stands 
for tasks, the number followed stands for the exercise number. The lower case letters 
following denote the type of representation: b = bar chart, g = graphic/ diagram, v = 
verbal, a= average. Correct answers are encoded as 1, wrong or no answers as 0, and 
partial solutions are encoded as 0.5. For example, V2ba and V3ga tasks are the 
following:
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V2ba: in the diagram (bar chart) below the financial profits of a supermarket during a 
week. Which is the average of financial profits of the supermarket daily?

V3ga: I observe and write down the temperature development during the day of Friday.

Find the average of the temperature of the day of Friday. Put up it in the diagram with a 
red pencil.

Participants – Research methodology 

The sample was 120 sixth grade Greek primary school students from the region of 
Western Macedonia. For the analysis of the collected data we use a multilevel statistical 
analysis, a combination of two statistical methods, Principal Components Analysis and 
statistical implicative analysis.

Principal Components Analysis: Principal Components Analysis was applied in order to 
test the structure or construction of the proposed test. Axes rotation was carried out by 
using the Varimax method. This means that the factors (components) that were 
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extracted are linearly uncorrelated. The criterion of the eigenvalue or characteristic root 
(Eigenvalue) 1 was used to determine the number of factors that were maintained. 

The following measures of sampling adequacy were used: a) Kaiser-Meyer-Olikin 
(KMO), and b) Bartlett's test of sphericity which tests whether the correlation matrix of 
the variables participating in the analysis presents significant differences, in terms of 
statistics, compared to the unit matrix, and therefore data analysis would be useful.

In order to determine whether the construction of the measurement tool actually follows 
the theoretical model, three criteria are taken into consideration: Questions with high 
factor loadings are taken into consideration upon the construction and interpretation of 
axes. Questions with factor loadings over 0.30 are used and taken into consideration 
upon the construction and interpretation of axes. Questions with high factor loadings on 
two factors are excluded. 

Implicative Statistical Analysis: The research data analysis was based on Gras's (Gras et 
al., 1997) and Lerman’s (1981) implicative analysis, which enables the distribution and 
classification of variables as well as the implicative identification among variables or 
variable categories. The resulting relations are not cause relations, but a quality 
indicator, which advocates that the answer to a question entails the answer to another 
question related to the first one.

The similarity was adopted from Gras's implicative analysis. In the similarity tree, the 
questions (V1va, V2va, V3va, V4va, V1ba, V2ba, V3ga, V4ga, V1ap, V2ap, V3ap, and 
V4ap) that were employed in the research are grouped according to the subjects' answer 
similarity. The implicative statistics data analysis was made by employing CHIC 
software (Classification Hierarchique Implicative et Cohesive) (Bodin, 2000).

The results of the research

The KMO=0.825>0.60 measure of sampling adequacy showed that the sample data 
were adequate in order to undergo factor analysis and Bartlett's test of sphericity 
(sign<0.01) also showed that principal components analysis is useful. 

Based on the analysis (Table 1), 3 uncorrelated factors occurred, which explain 78.94% 
of the total data inactivity, and which are described separately further on. Lastly, the 
values of common factor variance (Communality) for each question shows that most 
have a value greater than 0.50, a fact that indicates the satisfactory quality of 
measurements by the component model – three-factor model.

More specifically, based on student attitudes as presented by the factor analysis, 
variables  V1va, V2va, V3va and V4va load mainly on the first axis-factor F1, which 
explains, following Varimax rotation, 38.92% of the total dispersion. Factor F1 
represents the tasks-variables related to the verbal form of the problem data, in which 
the average was asked to be measured. This factor highlights the students’ way of 
handling verbal problems in a discrete way. 
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Tasks V1ba, V2ba, V3ga and V4ga load on the second factor (F2), which explains 
21.43% of the total dispersion. The second factor consists of the tasks related to 
graphical form of the problem data, in which the average was asked to be estimated. 

Table1: Principal Components Analysis’ Results

Factors
Tasks-Variables F1 F2 F3 Communality

V1va 0.762 0.712
V2va 0.731 0.698
V3va 0.711 0.613
V4va 0.676 0.569
V1ba 0.745 0.704
V2ba 0.716 0.687
V3ga 0.683 0.654
V4ga 0.657 0.572
V1ap 0.687 0.623
V2ap 0.658 0.593
V3ap 0.532 0.518
V4ap 0.508 0.534

Eigenvalue 3.345 2.657 1.503
Variance Explained % 38.92% 21.43% 18.59%

Total Variance Explained  
%

78.94%

Mean score per Factor 8.65 7.91 6.36
Standard Deviation per 

Factor
4.546 3.183 4.167

Kaiser-Meyer-Olkin Measure of Sampling Adequacy = 0.825
Bartlett's Test of Sphericity: x2=1231.342, p=0.000

It must be noted that none of the tasks of the test have factor loading on any other factor 
except of the one mentioned above, and therefore the factors ale not interrelated. This 
suggests that the tasks-variables related to verbal form of the problem data, in which the 
average was asked to be measured, affected students in such way that they treated the 
task differently compared to the tasks.

The fourth factor (F3), which explains 18.59% of the total data inactivity, is constructed 
and interpreted by tasks V1ap, V2ap, V3ap, and V4ap. The third factor consists of 
variables that concern predictions given the average of the data. 
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Figure 1: Similarity tree

Figure 1 illustrates the similarity diagram of the test. Students’ responses to the tasks 
(V1va, V2va, V3va, V4va, V1ba, V2ba, V3ga, V4ga, V1ap, V2ap, V3ap, and V4ap) are 
responsible for the formation of three clusters (i.e. groups of variables) of similarity.
The similarities in bright red have a significance level of 99%. 

The first group (Cluster A) consists of tasks V1va, V2va, V3va, V4va, which represent 
students’ efficiency in solving the problem tasks, specifically in estimating the average 
value and using verbal representations. The strongest similarity occurs between 
variables V2va and V3va (Almost 1) in the first Cluster. It is suggested that students 
employed similar processes to construct a problem solving strategy estimating the 
average value by calculating the given data.

The second similarity group (Cluster B) consists of tasks V1ba, V2ba, V3ga, V4ga, and 
it suggests that students employed similar processes to estimate the average of a data set 
represented in a bar chart or another kind of graph. The strongest similarity occurs 
between variables V2ba and V3ga (0.87) in the second Cluster that verifiers the above 
assertion. The similarity connection of those variables to the variables V1ba and V4Pga 
reveals students’ consistency with regard to their performance in evaluating the concept 
of average by drawing information from the graph, interpreting it algebraically and 
making computations.

Lastly, the following similarity group (Cluster C) is made up of tasks V1ap, V2ap, 
V3ap, and V4ap. The similarity connection of those reveals students’ consistency with 
regard to their performance in evaluating the meaning of average and making significant 
predictions.

The similarity Cluster A is disconnected from the other similarity clusters, Cluster B 
and Cluster C, demonstrating students’ compartmentalized ways of handling average 
and recognizing this concept when it is presented by a series of qualitatively different 
representation systems. The absence of students’ flexibility that means the inability of
concept recognition in various representations systems and its translation from one 
system to another is an indicator of students’ cognitive incompetence. This conclusion 

                  Cluster A                Cluster B                     Cluster C
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was resulted with the application both of the analysis to principal components and 
through implicative statistical analysis.

Conclusions

The multidimensional analysis of the preset study reveals that the results of both 
statistical analyses used, Principal components analysis and Implicative statistical 
analysis, are in line. Both methods indicate that sixth grade students’ performance on 
average tasks that it was differentiating, depending on where the task gave the data in 
verbal form, or in graphic form of predictions base on the average value was asked to be 
made. At the same time, the findings enable a developmental interpretation of students’ 
difficulties in relation to predictions establishment based on average. Lack of 
connections among different modes of representations in the similarity diagram 
indicates the difficulty in handling two or more representations of the same concept.
Statistics instruction needs to engage students in activities including translations 
between different modes of representation. As a result, students will be able to 
overcome the compartmentalization difficulties and develop flexibility in understanding 
and using the most basic concept of average and others within various contexts or 
modes of representation and in moving from one mode of representation to another. It 
seems that there is a need for further investigation into the subject with the inclusion of 
a more extended qualitative and quantitative analysis. In the future, it would be 
interesting to compare strategies and modes of representations students use in order to 
solve the problems. Besides, longitudinal investigations might reveal new insights on 
how the flexibility in using the multiple representations grows.
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Abstract

The present study investigates the ability of primary school pupils to use external 
representations and move flexibly from one system of representation to another in the 
context of fractions and decimals. The understanding of fractions and decimals does 
not appear to be easy, given the diversity of representations associated with these
concepts. Streefland (1991, p. 6) suggests that fractions and decimals "are without 
doubt the most problematic area in mathematics education”. 

Introduction

Fractions and rational numbers are considered the most complex mathematical domains 
in school mathematics (Mack, 1990). The above concepts admit a variety of 
representations and consequently have the capability of being taught using diverse 
representations, each of which offers information about particular aspects of the 
concepts without being able to describe them completely. The use of multiple 
representations (Kaput, 1992) and the conversions from one mode of representation to 
another have been strongly connected with the complex process of learning in 
mathematics, and more particularly, with the seeking of students’ better understanding 
of important mathematical concepts (Duval, 2002; Romberg, Fennema, & Carpenter, 
1993). Some researchers interpret students’ errors as either a product of a deficient 
handling of representations or a lack of coordination between representations (Duval, 
2002; Greeno & Hall, 1997).

The role of representations in mathematical understanding and learning is a central issue 
of the teaching of mathematics. The most important aspect of this issue refers to the 
diversity of representations for the same mathematical object, the connection between 
them and the conversion from one mode of representation to others. This is because 
unlike other scientific domains, a construct in mathematics is accessible only through its 
semiotic representations and, in addition, one semiotic representation by itself cannot 
lead to the understanding of the mathematical object it represents (Duval, 2002). 

In mathematics teaching and problem solving, five types of external systems of 
representations are used: Texts, concrete representations/models, icons or diagrams, 
languages and written symbols. These external representations are associated with 
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internal representations (Lesh et al., 1987; Duval, 1987; Kaput, 1987 Janvier, 1987; 
Even, 1998; Hitt, 1998; Gagatsis et al., 2001). By a translation process, we mean the 
psychological process involving the movement from one representation to another 
(Janvier, 1987). Mathematics teaching, school textbooks and other teaching materials in 
mathematics submit children to a wide variety of representations. The representational 
systems are fundamental for conceptual learning and determine, to a significant extent, 
what is learnt (Cheng, 2000).  Understanding an idea entails: (a) the ability to recognize
an idea, which is embedded in a variety of qualitatively different representational 
systems; (b) the ability to flexibly manipulate the idea within given representational 
systems and (c) the ability to translate the idea from one system to another accurately 
(Gagatsis & Shiakalli, 2004). This is due to the fact that a construct in mathematics is 
accessible only through its semiotic representations and, in addition, one semiotic 
representation by itself cannot lead to the understanding of the mathematical object it 
represents (Duval, 2002).  Understanding any concept entails the ability to coherently 
recognize at least two different representations of the concept and the ability to pass 
from the one to the other without falling into contradictions (Duval, 2002; Gagatsis, & 
Shiakalli, 2004; Griffin, & Case, 1997).  

Kaput (1992) found that translation disabilities are significant factors influencing 
mathematical learning.  Strengthening or remediating these abilities facilitates the 
acquisition and use of elementary mathematical ideas. To diagnose a student’s learning 
difficulties or to identify instructional opportunities teachers can generate a variety of 
useful kinds of questions by presenting an idea in one representational mode and asking 
the student to illustrate, describe or represent the same idea in another mode.  An 
important educational objective in mathematics is for pupils to identify and use 
efficiently various forms of representation of the same mathematical concept and move 
flexibly from one system of representation of the concept to another (Hitt, 1998; 
Janvier, 1987). Despite this fact, many studies have shown that students face difficulties 
in transferring information gained in one context to another (e.g. Gagatsis, Shiakalli, & 
Panaoura, 2003; Yang, & Huang, 2004). In the last two decades, several researchers 
have addressed the critical problem of translation between and within representations, and 
emphasized the importance of moving among multiple representations and connecting 
them (Goldin, 1998). Researchers have also found that the translations among 
representations are important for students' learning (Lesh, Post & Behr, 1987), since each 
representation yields its own insights into mathematical concepts (Confrey & Smith, 
1991). Yerushalmy (1997) showed that most students do not take into consideration the 
transition from one type of representation to another and thus are unable to generalize the 
concept. In some cases, students identify a mathematical concept with its 
representations but do not seem to abstract the concept from them (Vinner & Dreyfus, 
1989).

In the present study we examined 5th and 6th grade students’ ability to recognize 
fractions and decimal numbers in different representation systems, their ability to 
flexibly manipulate these concepts within a representational system and their ability to 
translate from one system of representation to another. More specifically, the research 
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questions were the following:

a) Is there a compartmentalization of the tasks based on the cognitive subject that is 
being examined: recognition, flexible manipulation and translation of fractions and 
decimal numbers? b) Are the 5th and 6th grade students encountering difficulties in 
solving verbal problems of translation from one form of rational number to another? c) 
Does age (5th or 6th grade) influence the degree and type of response to representation 
systems? and d) Where are the 5th and 6th grade students more successful: in fractions or 
in decimal numbers?

Method

The participants were 105 students of the 5th grade and 105 students of the 6th grade 
from schools in the city of Pafos, during the 2006-2007 school year. 

Four tests were administrated to all the participants (Test A, B, C and D). In test A the 
students were asked to recognize fractional and decimal numbers that were presented in 
a variety of different representations. Test A had a multiple choice format and included 
four recognition exercises, two exercises of recognizing fractional numbers and two 
exercises of recognizing decimal numbers. In exercise one, a fraction that was smaller 
than 1 was presented, while in exercise two, the fraction was larger than 1. The same 
was applied on exercises three and four for decimal numbers. 

Choose the write answer in each column (A, B, C)

4

3

A B C

α) 
8

6
                      β) 

12

6 α) 0, 75          β) 3, 4

Test B aimed to examine students’ ability to flexibly manipulate fractions and decimal 
numbers through a representational system. The test was consisted of four equations: 
two additions of dissimilar fractions, in the first of which the denominators are multiple 
numbers while in the second they aren’t, and two additions of decimal numbers.  

2

1
+

6

1
=                  

4

1

3

2
                   0, 8 + 0, 1 =               1, 1 + 0, 9 =

Test C included exercises dealing with translation from one representation system to 
another (symbolic, diagrammatic, and verbal representation). The first three exercises
involved fractional numbers and the other three decimal numbers. In the first exercise,
the students were given a symbolic representation and they were asked to translate it to 
its diagrammatic and verbal expression. In the second exercise the students were asked 
to present the symbolic and verbal representations where the source was presented in 
diagrammatic form. In the third exercise the verbal form was given and the students 
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were asked to translate it to its diagrammatic and symbolic expressions. The decimal 
number exercises were presented in the same form and order as the exercises involving 
fractions. All these exercises were equivalent and isomorphic, which means that the 
degree of difficulty in the corresponding exercises of each part was the same. 

Symbolic form diagrammatic form verbal form

2

1
+

6

1
=

The collection of quantitative data was completed with Test D. Test D included two 
word problems which involved conversion from decimal to fractional numbers and vice 
versa. The purpose of this test was to examine whether the students were capable of 
performing conversions from decimal to fractional numbers and vice versa, through 
problem-solving situations. 

e.g. Miss Maria, works in a bakery. She bought 10Kg flavor. She used  4
5

2
Kg flavor 

for the cakes and 4,4 Kg for biscuits. In which case she used more flavor? 

For the analysis of the collected data the similarity statistical method was conducted 
using a computer software called C.H.I.C. (Classification Hié rarchique, Implicative et 
Cohé sitive). A similarity diagram and an implicative diagram of students’ responses at 
each task or problem of the four tests were constructed. The similarity diagram, which 
is analogous to the results of the more common method of cluster analysis, allows the 
arrangement of the tasks into groups according to the homogeneity by which they were 
handled by the students. This aggregation may be indebted to the conceptual character 
of every group of variables. The implicative diagram, which is derived by the 
application of Gras’s statistical implicative method, contains implicative relations that 
indicate whether success to a specific task implies success to another task related to the 
former one. The statistical program SPSS was also used. 

Variables of the study 

The first letter, which is capitalized, represents the type of exercise. The recognition 
exercises are labeled with an R (Test A), the treatment exercises are labeled with an O 
(Test B), the translation exercises are labeled with an M (Test C) and the verbal 
exercises are labeled with a P (Test D). For Test A, the second letter, which is in lower 
case, shows whether it is a fraction (f) or a decimal number (d). The third letter 
represents the type of recognition (d-decimal number, f-fraction and p-diagram). In 
those cases where the number is larger than 1, the letter u is used. The number of the 
exercise is added to the end. For example, Rfdu2 refers to a recognition exercise (R) of 
a fraction (f) which will be translated to a decimal number (d) which is larger than 1 in 
exercise 2. In Test C the capital letters D, S, L refer to the type of initial representation, 
while the lower case letters d, s, l refer to the final-target representation. The fourth 
letter, which is also in lower case, shows whether the exercise is about fractional (f) or 
decimal (d) numbers. For example MDsf2 refers to an exercise of translation (M), to a 



Fractions, decimal numbers and their representations

89

symbolic representation starting from a diagram (Ds), second exercise with the addition 
of dissimilar fractions (f2).

Results

The similarity diagram allows for the grouping of students’ responses at the tasks based 
on their homogeneity. This means that the subjects succeed or fail in their grouped 
exercises together. 

In diagram 1 four similarity groups are formed for the 5th grade. The first group consists 
of two subgroups and includes exercises Rff1, MSlf1, MSdf1, Rfdu2, Rdfu4 and Rdpu4. 
These are all exercises that require recognition (Rff1, Rfdu2, Rdfu4, Rdpu4) and 
translation (MSlf1, MSdf1) and reflect both conceptual fields that are being examined 
(fractions, decimals). We can observe that children of the second subgroup display 
similar behavior during the recognition of fractions and decimal numbers that are larger 
than 1 (Rfdu2, Rdfu4, Rdpu4).
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Diagram 1: Similarity diagram for the 5th grade

In the second group, it is obvious that the responses of the students to the four tests have 
been split into two subgroups, in which there is no compartmentalization according to 
the cognitive subject, since in each subgroup exercises from different tests appear 
(recognition, flexible handling, translation). There is a strong connection between 
exercise MLsf3 which involves the translation of a verbal expression to a symbolic 
expression (addition of dissimilar fractions) and exercise MLdf3 which concerns the 
translation of a verbal expression to a diagrammatic expression (addition of dissimilar 
fractions) from the same source and conceptual field. A significant correlation is also 
observed between exercises P1 and P2 which are verbal exercises of conversion from 
one form of rational number to the other. 

The third group comprises of exercises that mainly examine the ability of recognizing 
fractional and decimal numbers (Rfp1, Rffu2,Rfpu2, Rdd3, Rddu4, Rdf3, Rdp3), while 
there are only two exercises that involve flexible handling (Of3) and translation from 
one representation form to the other (MLsd6).

The fourth group comprises of exercises from Test C, which are exercises of translation 
from one representation system to the other (MSdd4, MSld4, MLdd6, MDld5 και
MDsd5). This particular group consists of two subgroups which are not very closely 
connected. In the first group there is a grouping of exercises with a symbolic source, 
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while in the second group there is a grouping of exercises that mainly start with a 
diagrammatic representation. This fact obviously underlines a compartmentalization 
towards the two representations. 

The implicative diagram in Figure 2 derived from the implicative analysis of the data 
and contains implicative relations, indicating whether success to a specific task implies 
success to another task related to the former one. The implicative relationships that arise 
through the translation exercises are intra-relational or intra-representational. The intra-
relational implicative relationships are about the same concept, while the intra-
representational relationships are about the same representation field. The inferences in 
bright red color are statistically significant at the 99% level of significance, while those 
in blue are significant at the 95% level of significance. Based on the implicative 
diagram we can see that almost all of the variables are correlated. 
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MLdf3

MSld4

MDlf2

P1

MDld5P2

Diagram 2: Inferential diagram for the 5th grade

At the peak of the implicative diagram (diagram 2) exercises of Tests C and D are 
presented, which are exercises of translation from one representation system to the other 
and verbal exercises of conversion from one form of rational number to the other 
respectively (P1, P2, MDlf2, MDsf2, MSlf1). A fact that outlines the difficulty that 
students encounter both in exercises of translation and in exercises of conversion from 
fractional to decimal numbers and vice versa, in problem-solving situations. At the base 
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of the inferential diagram we can see exercises of recognition and flexible handling of 
fractions and decimal numbers, a fact that underlines an ease of handling these 
particular fields by the students (Rdf3, Rdd3, Rdfu4, Of1).

For the 6th grade (diagram 3), the responses of the students in the four tests have been 
split into two groups, in both of which, however, there is no compartmentalization of 
cognitive subjects, since in each group we can see exercises from different tests 
(recognition, flexible handling, and translation). 
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Diagram 3: Similarity diagram for the 6th grade

At the peak of the implicative diagram of the 6th grade (diagram 4) we can see exercises 
from tests C and D, which are exercises on the ability to translate from one 
representation system to another and verbal exercises of translation from one form of 
rational number to the other respectively (P1, P2, MLdd6, MDlf2, MSdd4, MSld4). A 
fact that underlines the difficulty that students are having in both exercises of translation 
and exercises of conversion from fractional to decimal numbers and vice versa, through 
problematic situations. At the base of the implicative diagram we can find exercises of 
recognition and flexible handling of fractions and decimal numbers, a fact that 
underlines the ease that students have when dealing with these fields (Of1, Of3, Of4, 
Rdd3, Rddu4, Rdf3).  
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Diagram 4: Inferential diagram for the 6th grade

Below we shall answer the questions that were addressed at this phase using the proper 
statistical methods from the SPSS software. 

What is the reliability index of these tests?

Gronbach’s Alpha Model was used to examine the reliability index. In order to establish 
reliability, which would be defined as internal consistency in the statements of the test, 
that index would have to be a>0.70. The reliability index of the tests which were used in 
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the present study was a=0.89 for the 5th grade and a=0.91 for the 6th grade respectively, 
both of which show high reliability. 

Table 1:  Success rate in the four types of tests according to grade.

Test parts Test content 5th Grade 6th Grade

Test Α Recognition 72% 75%

Test Β Flexible handling 77% 76%

Test C Translation 42% 31%

Test D Exercises 30% 22%

Total performance 55% 51%

Table 2: Comparison of average success rates by type of test.

Test parts Importance indicator 5th – 6th  (p)

Test A: Recognition 0,144

Test B: Flexible handling 0,479

Test C: Translation 0,734

Test D: Exercises 0,625

Total performance 0,108

The highest success rates are observed in table 1, in tests A and B which measure the 
ability to recognise fractions and decimal numbers within different representation 
systems, and the flexible handling of fractions and decimal numbers within a 
representation system. The lowest success rates are observed in tests C and D, which 
test the ability to translate from one representation system to another and in the 
exercises with fractions and decimal numbers. It is worth mentioning that the total 
performance rate in the 5th grade was 55%, as compared to 51% in the 6th grade.

Based on the results presented in table 1, it is clear that 5th grade students present only 
slightly superior success rates in all the tests, with the exception of test A (recognition). 
A comparison of average success rates of students in the two grades (table 2) did not 
yield statistically significant differences in any of the four tests, nor in the students’ total 
performance (p>0.05).
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Table 3: 5th and 6th grade success rates in fractions and decimal numbers (Tests A, B 
and C).

5th Grade 6th Grade

Total fraction

performance
65% 61%

Total decimal number 
performance

63% 60%

A comparison of the total performance in fractions and decimal numbers reveals that 
students of both the 5th and 6th grade present almost identical performances. 

Conclusions

Based on the research results a compartmentalisation in terms of the cognitive subject in 
5th grade tests was shown. Compartmentalisation in terms of the cognitive subject was 
not shown in 6th grade tests. Students in both grades handle initial representation-source 
exercises as different problems without the ability to recognise that the three different 
types of representation (symbolic, diagrammatic, verbal) comprise different types of 
expression of the same concept. 

These results yielded only intra-relational relationships in both grades, relationships 
relating to the same concept, a fact which shows that the ability to translate to different 
representation fields has not been established. 

Furthermore, it is worth mentioning that at the top of the co-inferential diagram in both 
grades 5 and 6 we find exercises from tests C and D, which are exercises that relate to 
the ability to translate from one representation system to another, and verbal conversion 
exercises, converting from one type of rational number to another, respectively. This 
shows the students’ difficulty in translation exercises, as well as in exercises that relate 
to the conversion from fractional to decimal numbers (and vice versa) in problematic 
situations. At the base of the inferential diagram we find exercises of recognition and 
flexible handling of fractions and decimal numbers, which suggests that these particular 
fields are handled by the students with more ease. Rates of success in the four tests of 
the two grades lead to the same conclusions. Tests A and B yielded the highest success 
rates, while tests B and C yielded the lowest success rates. This result confirms previous 
findings, according to which the algorithmic approach and the emphasis on procedural 
knowledge with reference to the teaching of fractions and decimal numbers presents 
difficulties in the comprehension of rational numbers, since the rules and processes are 
implemented mechanically (Philippou & Christou, 1994).

The students had difficulty in solving verbal conversion exercises from one type of 
rational number to the other. It was shown that students of both grade 5 and 6 do not 
realise the need to convert the two types of rational numbers into one in order to 
successfully complete the exercise. In many cases they tried to complete the exercises 
by implementing qualities of whole numbers. This result is in accordance with research 
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results, according to which the implementation of rules and algorithms which have no 
meaning results in a superficial comprehension of the concept of rational numbers and 
the difficulty in finding solutions to exercises with rational numbers (Ball, 1993; 
Philippou & Christou, 1994).

In terms of success in the four tests, no statistically significant differences were 
observed in the vast majority of the exercises between the two grades, a fact which 
suggests that de-compartmentalisation of the different representation fields has not been 
established in the progression from one grade to the next. 

A comparison of the total performance in fractions and decimal numbers revealed that 
students of the 5th and 6th grade presented the same results. This shows that these two 
mathematical concepts (fractions and decimal numbers) are taught and comprehended 
on an equal basis.

Comprehension of a mathematical concept is achieved in 3 different stages at least: the 
recognition of a mathematical concept through different representational systems, the 
flexible handling of the concept within a representational system and the ability to 
translate from one representational system to another (Janvier, 1987). Therefore, the 
concept of fractions and decimal numbers must be presented to students in all the 
different fields of expression (symbolic, verbal and diagrammatic) in order to avoid a 
segmental approach to the various representations of the concepts. Teachers should aim 
to achieve similar success rates on the part of the students, regardless of the 
representation system used in the exercises. The representations performed by the 
children comprise an integral part of their mathematical comprehension. It is possible 
for the teacher to ascertain what the students comprehend by watching and conversing 
with the students about their mathematical representations. 

This study was limited to the examination of fractions and decimal numbers with 
reference mainly to the addition of dissimilar fractions and decimal numbers. Therefore, 
research into all the algorithmic operations, as well as percentages, would be very 
interesting. It is possible that such research might yield significant differences between 
the two grades.
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Abstract

In this paper we (a) empirically test and validate a model which identifies three 
subcomponents of spatial ability (image manipulation, mental rotation, and 
coordination of perspectives and frames of reference) and (b) examine the relation 
between primary (grades 4 and 6) and secondary school (grade 8) students’ spatial 
abilities and their performance in tasks involving net-representations of geometrical 
solids. Path analysis revealed that “spatial ability”, described by the three 
aforementioned constructs, constitutes a good predictor of students’ performance in 
geometry tasks involving net-representations of solids. The similarity analysis revealed
that, while 4th graders work with tasks involving nets of geometrical solids in a different 
way than with spatial ability tasks, this is not the case for the older students. The 
findings imply that 6th and 8th graders begin to realize that the same cognitive processes 
underlie spatial abilities tasks and manipulation of items involving net-representations 
of geometrical solids.

Introduction

Geometry and spatial reasoning are important as a way to interpret and reflect on the 
physical environment. As Bishop (1983) has noted, geometry is the mathematics of 
space. Mathematics educators, therefore, are concerned with helping pupils gain 
knowledge and skills in the mathematical interpretations of space.

Research in geometry and spatial thinking has evolved from studies in psychology, 
when in the 1970s some researchers were interested in the relationship of spatial 
abilities to mathematical learning and problem solving (Owens & Outhred, 2006). 
Research on spatial ability as a single component has indicated that it has a strong 
connection with achievement in mathematics (Clements and Battista, 1992). However, 
researchers now agree that spatial ability is not a unitary construct, so it would be useful 
to investigate how clearly defined subcomponents of spatial ability are related to 
students’ performance in certain geometry tasks. 

A number of studies in geometry education have focused on the ways in which children 
visualize and represent their space and, especially, on the representations of geometrical 
solids on a plane (Potari & Spiliotopoulou, 2001). In this paper we chose to study three 
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spatial ability subcomponents (Demetriou & Kyriakides, 2006) i.e. image manipulation, 
mental rotation, and coordination of perspectives and frames of reference, in relation to 
students’ performance in tasks involving net-representations of geometrical solids. The 
subject ‘net-representations of solids’ appears in mathematics curricula in the geometry 
section. However, it is a subject which by nature, we could say, seems to be related to 
spatial abilities, since it involves processes like folding, rotating, transforming. This 
study aims to examine students’ performance in the specific subject in relation to their 
spatial abilities.

Theoretical background and research questions

Spatial abilities

When mathematics educators consider geometry from a theoretical perspective, the key 
role of spatial abilities is universally accepted. In many countries the development and 
improvement of spatial ability is regarded to be one of the basic aims of geometry in 
elementary school (Reinhold, 2002), since “spatial understandings are necessary for 
interpreting, understanding, and appreciating our inherently geometric world” (NCTM, 
1989, p. 48). Furthermore, for many mathematics educators, spatial ability is regarded 
an important prerequisite for geometry problem solving in particular, and by some 
researchers even for mathematics learning in general. High levels of spatial abilities 
have frequently been linked to high performance in mathematics in general, but little is 
known about the relation of spatial abilities and students’ performance in different 
geometry tasks. But, what is the meaning of the term “spatial abilities”?

According to Demetriou’s theory (Demetriou & Kazi, 2001), the spatial-imaginal 
specialized structural system of the human mind is directed to those aspects of reality 
which can be visualized by the “mind’s eye” as integral wholes and processed as such.
Generally speaking, the concept of spatial ability is used for the abilities related to the 
use of space and implies the generation, retention, retrieval, and transformation of well-
structured visual images (Lohman, 1996) or visuo-spatial information (Colom, 
Contreras, Botella, & Santacreu, 2001). Psychologists as well as mathematics educators 
have contributed to the discussion of how spatial ability may be understood. But, as 
Wheatley (1998) has noted, the way the term spatial ability (and other related terms) 
have been defined and the instruments used to collect data are nearly as varied as the 
number of studies using this term.

Nevertheless, researchers agree that spatial ability is not a unitary construct. Different 
components of “spatial ability” have been identified as a result of a number of analytic 
studies, each emphasizing different aspects of the process of image generation, storage, 
retrieval, and transformation. The three dimensions of spatial ability that are commonly 
addressed are spatial visualization, spatial relations and spatial orientation. Spatial 
visualization involves the ability to imagine the movements of objects, and spatial 
visualization tasks (e.g. paper folding tasks) require mental manipulation of images. 
Spatial relations tasks involve manipulations such as mental rotations. Spatial 
orientation tests are designed to engage the self-to-object representational system.
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In the present study, we follow Demetriou and Kyriakides (2006) argument that there 
are three components related to the spatial-imaginal specialized structural system of the 
human mind: image manipulation, mental rotation, and coordination of perspectives and 
frames of reference.

Net-representations of geometrical solids

In attempting to investigate how space is perceived and interpreted by individuals, 
researchers examine the two-way relation between three-dimensional objects and their 
two-dimensional representations (Hershkowitz, 1990). A number of studies in geometry 
education have focused on the representations of geometrical solids on a plane (Potari & 
Spiliotopoulou, 2001). One might think of many different plane representations of 
solids, such as orthogonal, isometric or, by layers. In this paper we study net-
representations of geometrical solids, i.e. the two-dimensional figures which can be 
folded to form a solid. A net has been described by Borowski and Borwein (1991) as a 
diagram of a hollow solid consisting of the plane shapes of the faces so arranged that the 
cut-out diagram could be folded to form the solid.

In the case of nets of solids, children’s conceptions can be considered as mental 
representations rather than iconic. The whole process of developing solids is a mental 
construction that requires the child not only to “see” the objects and recognize their 
elements, but also to combine the latter in a transformed position and probably take into 
consideration the reverse process (Potari & Spiliotopoulou, 2001). This procedure 
implies that a manipulation and analysis of the single components of the object (faces, 
vertices and edges) takes place. Such geometrical thinking requires the total fusion of 
the conceptual and figural aspects of the concept.

In the literature one can identify two main strands of articles referring to nets of solids. 
On the one hand, researchers explore students’ strategies and reasoning when they work 
with tasks involving net-representations of solids. For example, in a study conducted by 
Stylianou, Leikin, & Silver (1999) with eighth grade students, the researchers focused 
on students’ problem-solving strategies when constructing different types of nets of 
cube. Potari & Spiliotopoulou (1992, 2001) attempted to study the process of 
developing physical objects and explore the characteristics of children’s representations.
On the other hand, there are articles where series of lessons are described and useful 
suggestions are provided for the teaching of net-representations of solids (e.g., 
Mistretta, 2000; Woodward & Brown, 1994).

The present study

The aim of the present study is twofold. First, we investigate the structures of primary 
and secondary school students’ spatial ability. To this end, we test a theoretically driven 
model about the constructs of spatial ability using empirical data to validate it. Second, 
we examine whether and how students’ spatial abilities are related to their performance 
in tasks involving net-representations of geometrical solids. The second aim is analyzed 
into the following research questions:
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- Is students’ spatial ability a predictor to their performance in tasks involving net-
representations of geometrical solids?

- Do primary and secondary school students confront spatial ability tasks and 
items involving nets of geometrical solids in a similar or in a different way?

- Do implicative relations exist amongst spatial ability tasks and geometry tasks 
involving net-representations of geometrical solids?

So, in this study we investigate the relation between students’ spatial abilities and their 
geometry performance in tasks involving net-representations of geometrical solids, 
trying to extend the research on geometry and spatial thinking in three ways: First, we 
accept that spatial ability is not a unitary construct and we propose a model which 
integrates three spatial ability subcomponents: image manipulation, mental rotation, and 
coordination of perspectives. Second, in our model we propose that students’ spatial 
ability is a possible predictor of students’ performance in tasks involving net-
representations of geometrical solids. Third, we make a further step towards the relation 
of spatial abilities and geometry performance trying to gather information on the tasks’ 
level investigating the existence of similarity and implicative relations amongst spatial 
ability tasks and geometry tasks involving net-representations of geometrical solids. At 
this point, we should clarify that students’ performance in geometry tasks involving net-
representations of geometrical solids is described here across two dimensions: (a) 
performance in tasks involving net-representations of a cube, and (b) performance in 
tasks involving net-representations of other geometrical solids.

Method

Participants

The participants were 1000 primary and secondary school students (488 males and 512 
females). Specifically, 332 were 4th graders (10 years old), 333 were 6th graders (12 
years old) and 335 were 8th graders (14 years old).

Materials and Procedure

Data were collected through a written test which was administered to all students of the 
three age groups and consisted of spatial ability tasks and geometry items. The test was 
administered in two parts during normal teaching.

The choice of the geometry tasks involving nets of geometrical solids was based on 
some previous research work we did about children working with nets (Panaoura & 
Gagatsis, 2003). Additionally, the choice of the tasks was made taking into 
consideration the geometry curriculum in Cyprus and the net-representations tasks 
presented in mathematics books at the primary education level. The geometry test
included tasks referring to nets of cube and to nets of other geometrical solids: net-of-
cube drawing task, net-of-cube completing task, nets-of-solids recognition tasks, and 
problems involving both the drawing and the net of a solid. Examples of the items used 
can be found in the Appendix.
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The spatial ability battery test administered consisted of tasks used by Demetriou and 
his associates in their studies of mind (for full description of the tasks, see Demetriou & 
Kyriakides, 2006). It included tasks addressed to image manipulation (paper folding
task), mental rotation (cubes task and clock task), and coordination of perspectives 
(tilted bottle task and car task). Each item involved was scored on a pass (1) / fail (0) 
basis. The total task score equaled the number of items passed by the participant.

Statistical Analyses

With the use of the Extended Logistic Model of Rasch (Rasch, 1980), an interval scale 
presenting both item difficulties and students’ performance was created (a) for the net-
representations test and (b) for the spatial abilities test. Data analysis revealed that the 
two batteries of tests had satisfactory psychometric properties, namely construct validity 
and reliability. 

The assessment of the proposed model was based on a confirmatory factor analysis
(CFA). Specifically, the data was first analyzed by using CFA to assess the fit of the 
hypothesized a-priori model about the three components of spatial ability (image 
manipulation, mental rotation and, coordination of perspectives) to the data. Path 
analysis was used to investigate the relation between students’ spatial abilities and their 
performance in net-representations tasks.

EQS computer program (Bentler, 1995) was used to test the proposed models and three 
fit indices were examined, in order to evaluate the extent to which the data fit the 
models tested: the chi-square to its degrees of freedom ratio (x2/df), the comparative fit 
index (CFI), and the root mean-square error of approximation (RMSEA). The observed 
values for x2/df should be less than 2, the values for CFI should be higher than 0.9, and 
the RMSEA values should be lower than 0.08 to support model fit (Marcoulides & 
Schumacker, 1996). Additionally, the factor parameter estimates for the model with 
acceptable fit were examined to help interpret the model.

Gras’s similarity and implicative statistical analyses were conducted by using the 
computer software CHIC (Classification Hié rarchique Implicative et Cohé sitive) 
(Bodin, Coutourier, & Gras, 2000). For the purposes of this paper, we refer to the 
similarity diagrams and implicative graphs produced by CHIC when conducting 
similarity and implicative analysis of the data. A similarity diagram allows for the 
arrangement of tasks into groups according to their homogeneity. An implicative graph 
contains implicative relations, which indicate whether success to a specific task implies 
success to another task related to the former one. A similarity diagram and an 
implicative graph were produced for each age group. Due to space limitations, we do 
not present all six diagrams here, but we sum up the observations that arise from them.

Results

The main findings of this study are presented in two sections. In the first section, we 
present the findings of confirmatory factor analyses which were conducted to assess the 
proposed model. The second section elaborates on the similarity and implicative 
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statistical analysis conducted based on students’ performance in spatial ability and net-
representations tasks.

The three constructs of spatial ability and the relation to performance in net-
representations tasks

In this study we proposed a theoretically driven model about the components of spatial 
ability: image manipulation, mental rotation, and coordination of perspectives. This 
model consisted of three first-order factors and one second-order factor. The first-order 
factors represented the components of spatial ability: image manipulation (F1), mental 
rotation (F2), and coordination of perspectives (F3). The above three factors were 
hypothesized to construct a second-order factor “spatial abilities” (F4) that is postulated 
to account for any correlation or covariance between the first-order factors. The spatial 
ability model is presented on the left-hand side of Figure 1.

The fit of the spatial ability model was very good. The descriptive-fit measures 
indicated support for the hypothesized first and second order latent factors 
[x2(42)=59.99; CFI=0.996; RMSEA = .019 (.001, .030)].

After validating the model describing spatial ability as a construct of the three 
aforementioned factors, path analysis was used to investigate the relation between 
students’ spatial abilities and their performance in net-representations tasks. The 
proposed model incorporated the spatial ability factor as described in the previous 
model and a second-order net-representations performance latent factor. The model 
hypothesized that the variables of the net-representations test would be explained by 
two first-order factors. In particular, we assumed that one of the first-order factors 
would be measured by the tasks involving net-representations of cube (F5). This 
assumption was based on previous research findings (Panaoura & Gagatsis, 2003) 
suggesting that 4th and 6th graders confront different net-of-cube representation tasks in 
a similar way. We assumed that the other first-order factor (F6) would correspond to the 
scores of the tasks involving net-representations of geometrical solids other than the 
cube. So, the validity of a model where the second-order latent variable “net-
representations performance” (F7) is regressed on the second-order latent factor “spatial 
abilities” (F4) was tested, assuming a causal effect between spatial ability and net-
representations performance (Figure 1).
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Figure 1: The structure of the proposed model*
*V1-V12 refer to the spatial ability tasks, V13-V18 refer to the net-representations 
tasks, F1=Image Manipulation, F2=Mental Rotation, F3=Coordination of Perspectives, 
F4=Spatial Abilities, F5=Performance in tasks involving net-representations of cube, 
F6=Performance in tasks involving net-representations of other solids, F7=Net-
representations Performance 
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The model fitted the data and fitting indices were adequate to provide evidence that 
supported the relation implied in it [x2(118)=188.708; CFI=0.985; RMSEA =.024 (.018,
.031]. The regression coefficient of spatial ability on net-representations performance 
gave evidence to the assumption that spatial ability is a predictor of net-representations 
performance.

Similarity and Implicative Analyses Results

The objective of conducting Gras’s similarity analysis was to examine whether students 
of the three different age groups confronted spatial ability tasks and net-representations 
tasks in a similar or in a different way. 

Figure 2 illustrates the similarity diagram of all variables (tasks involving net-
representations of geometrical solids and spatial abilities items) for the 4th grade 
students. Students’ responses to the tasks are responsible for the formation of four 
clusters (i.e. groups of variables) of similarity. The two first groups consist of geometry 
tasks involving nets, while the third and fourth group consists of spatial abilities items. 
The first cluster is formed by the tasks involving nets of cube. Cube is perhaps the most 
familiar geometric solid to the students of this age, and it is the one widely used in 
geometry lessons to introduce the concept of nets of solids. So, all the tasks involving 
net-representations of cube were confronted by the 4th graders in a similar way. The 
second cluster is formed by all the other tasks involving nets of geometrical solids.

No relation is observed between nets-representations clusters and spatial abilities 
clusters. This implies that 4th grade students confront tasks involving nets of geometrical 
solids in a different way than with spatial abilities items. They do not see any similarity 
in the cognitive processes that underlie these two kinds of tasks. This is partly the case 
for 6th grade students, as revealed from the similarity analysis. Most of the tasks 
involving nets of geometrical solids were confronted in a different way than spatial 
abilities tasks. But, in the corresponding similarity diagram some net-representations 
items appeared in the same group of variables with spatial abilities items. Specifically, 
two items involving nets of cube were confronted in a similar way as spatial items 
referring to folding figures, while two other nets-of-cube tasks were confronted in a 
similar way to spatial tasks involving rotation. So, 6th grade students begin to realize 
that the same cognitive processes underlie certain spatial abilities and manipulating net-
representations of cube.
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Figure 2: Similarity diagram of the variables of net-representations test and spatial 
abilities test for the 4th grade students

Note: Items with ‘N’ as a first index refer to net-representations tasks. Items with ‘S’ as a first index refer 
to spatial abilities tasks. 

In Figure 3, all the similarity relations of the net-representations tasks and the spatial 
abilities items which refer to the responses of the 8th grade students are illustrated. As in 
Figure 2, four distinct similarity groups are formed. But in this figure, in contrast to the 
previous one, only the fourth cluster consists of tasks of the same category, namely 
spatial abilities tasks. What is interesting in this similarity diagram is the fact that the 
other three clusters of similarity consist of both spatial abilities and net-representations 
items, indicating that these students have confronted net-representations tasks in a 
similar way to spatial abilities items. 

The way students have confronted spatial ability tasks in relation to the geometry tasks 
involving nets of solids differentiated in relation with their age. More specifically, in the 
case of 4th graders, tasks involving nets of solids were confronted in a totally different 
way than the spatial ability items. The young students could not see any similarity in the 
underlying geometrical concepts. But in the case of 6th graders and more clearly in the 
case of 8th graders the involvement of spatial ability tasks in the same clusters with net-
representations items provided evidence that the older students realize to a bigger extent 
that the same cognitive processes underlie spatial abilities and manipulating net-
representations of geometrical solids.
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Figure 3: Similarity diagram of the variables of net-representations test and spatial 
abilities test for the 8th grade students

Note: Items with ‘N’ as a first index refer to net-representations tasks. Items with ‘S’ as a first index refer 
to spatial abilities tasks. 

The objective of conducting Gras’s implicative analysis was the investigation of the 
presence of any implicative relations between spatial ability and net-representations 
tasks. As mentioned above, the implicative graphs produced contain implicative 
relations, which indicate whether success on a specific task implies success on another 
task related to the former one.

Though in the case of the younger students (4th graders), no implicative relations were 
observed between nets items and spatial ability tasks, this was not the case for the older 
students. Apart from intra-categorical relations, the analysis revealed a number of 
implicative relations between tasks from the two different categories: nets items leading 
to spatial ability tasks and spatial ability tasks leading to tasks referring to nets. In the 
older students’ minds, we might think, there are not only intra–categorical relations, but 
it seems that successful performance on tasks involving nets of geometrical solids 
implies success on spatial ability tasks and vice versa.

Discussion

In this paper we have tried to extend the research on geometry and spatial ability.
Specifically, confirmatory factor analysis has been employed to explore the structural 
organization of three distinct dimensions of spatial ability, as proposed by Demetriou 
and Kyriakides (2006) (image manipulation, mental rotation and coordination of 
perspectives), and we investigated how spatial abilities are related to primary (grade 4 
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and grade 6) and secondary (grade 8) students’ geometry performance in tasks involving 
net-representations of geometrical solids.

First, the proposed model proved to be consistent with the data, leading to the 
conclusion that image manipulation, mental rotation, and coordination of perspectives 
mediate students’ spatial ability. Additionally, path analysis revealed a causal effect 
between students’ spatial ability and their performance in tasks involving net-
representations of geometrical solids, indicating that spatial ability constitutes a good
predictor of students’ performance in this kind of tasks. This finding suggests that an 
improvement of students’ aforementioned spatial abilities may result to an improvement 
of their specific geometrical performance.

Furthermore, we made a further step towards the relation of spatial abilities and 
geometry performance by investigating the existence of similarity and implicative 
relations between spatial ability tasks and geometry tasks involving net-representations 
of geometrical solids. The similarity and implicative analyses conducted in the study 
provided evidence that only the students in grade 4 considered the tasks involving nets 
of geometrical solids totally different from the spatial abilities tasks. Younger students 
did not recognize any similarities between those two categories of tasks, while the older 
students in the study confronted a number of tasks involving nets similarly to spatial 
abilities tasks. This implies that the older students could realize that the same cognitive 
processes underlie spatial abilities such as image manipulation and mental rotation on 
the one hand, and manipulating net-representations of geometrical solids on the other. 
This finding is in line with Potari’s and Spiliotopoulou’s proposition that the whole 
process of developing solids and handling their net-representations requires the student 
not only to “see” the objects and recognize their elements, but also to mentally 
“combine the latter in a transformed position and probably take into consideration the 
reverse process” (Potari & Spiliotopoulou, 2001, p. 41). 

In addition to extending the research literature on the relation of students’ spatial 
abilities and their performance in net-representations tasks, this research may enhance 
information available to curriculum designers and teachers. Working with nets means 
that a student activates cognitive processes also used when confronting spatial ability 
tasks involving folding or rotating abilities. But, additionally, working with nets 
involves geometrical knowledge concerning, for example, the shape and numbers of the 
faces of a certain geometrical solid. So, some useful instructional implications can be 
drawn from this study’s findings. In most mathematics curricula there is not explicit 
focus on teaching and developing students’ spatial abilities. Although it was not our 
intent in this paper to make claims about specific aspects of an instructional program, 
the results of this study provide preliminary evidence that the cognitive processes of 
image manipulation, mental rotation and coordination of perspectives can be used in 
mathematics classroom in a way that may enhance students’ geometrical performance. 
Our findings make us consider once again the idea that systematic training in spatial 
abilities should be one of the aims of teaching geometry. The challenge is for 
curriculum designers and classroom mathematics teachers to devise strategies for 
helping students improve the state of connectedness of their abilities; in this case, to 
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help them see the relation of spatial abilities to net-representations of geometrical solids 
and other subjects of geometry.
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Appendix : Examples of tasks used

(A) Net-representation item         (B) Spatial ability item (image manipulation)
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Abstract

The goal of this study was to investigate the relationships between students’ 
motivational beliefs: self-efficacy, task value and goal orientation, metacognitive 
strategies use and the volume measurement performance. A group of sixth grade 
students (N=173) completed a self-report questionnaire and solved six volume 
measurement of cuboid tasks given in different modes of representations (text, diagram 
of 3-D cube array, net diagram). Perceived efficacy to solve mathematical and volume 
measurement tasks was found to be a strong predictor of the general volume 
measurement performance. Further, students’ metacognitive strategies use predicted 
only their performance on the verbal volume measurement tasks. The factor of students’ 
self - representation of spatial ability was a statistically significant predictor of the 
achievement in one of the verbal tasks which required high spatial abilities to solve it. 
We also found statistically significant differences oft self-efficacy beliefs among 
students who have high and low volume measurement performance. Many of the 
students used wrong strategies to volume measurement tasks with diagram of 3-D cube 
array or net diagram: counting the cube faces shown in the diagram or doubling that 
number. 

Introduction

Research on mathematics teaching and learning has recently moved away from purely 
cognitive variables (Panaoura, 2007) and focused on affective variables, which were 
found to play essential role that influences behaviour and learning (Bandura, 1997). A 
number of researchers have examined thoroughly the connections and the relationship
among affect and mathematics learning (Ma & Kishor, 1997; Philippou & Christou, 
2001). However, although much work has been done in this area, little attention has 
been given to the relationship between affective variables, the use multiple 
representations in mathematics in general (e.g. Patterson & Norwood, 2004) and in 
specific areas of mathematics in particular. 

Motivation is an important factor of students’ classroom learning and achievement, 
because numerous studies indicated that students who are more highly motivated tend to 
provide greater effort and persist longer at academic tasks than students who are less 
motivated (Pintrich & Schunk, 1996; Pintrich & Schrauben, 1992). Weiner (1990) 
claimed that various beliefs, attitudes and perceptions of the student affect his/her 
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motivation. Especially, task value beliefs, students' perceived self-efficacy, and the 
goals orientation beliefs comprise components of the motivational beliefs system 
(Wolters & Rosenthal, 2000). 

Additionally, metacognitive knowledge is another important factor for successful 
performance on mathematical problem solving. Students benefited from training that 
was sensitive to the metacognitive demands of the task, that is from learning when and 
how to apply learning strategies (Mayer, 1998). Specifically, metaskills involves 
knowledge of when to use, how to coordinate, and how to monitor various skills in 
problem solving (Mayer, 1998).

In this paper we try to investigate the relationships between motivational beliefs to solve 
mathematics problems generally and volume measurement tasks specifically, 
metacognitive strategies employed to solve mathematical problems and performance on 
volume measurement of cuboid tasks which are given in different modes of 
representations: text, diagram of three dimensional cube of array and net diagram. In 
this end, section two presents the theoretical background, including a discussion on the 
relationship between motivational beliefs, metacognitive strategies and mathematics 
performance, and a brief review of students understanding of three dimensional 
rectangular arrays of cubes. Section three gives information about the sample of the 
study, the test used and the analysis employed. The results are presented in section four 
and section five discusses these results. 

Theoretical background 

Motivational beliefs, metacognitive strategies and mathematics performance

The affective domain has in recent years attracted much attention from mathematics 
research community; empirical data seem to increasingly support experts’ opinion that 
affect plays a decisive role in the process of cognitive development (Philippou & 
Christou, 2002). Except that, the National Council of Teachers of Mathematics (1989) 
stressed the necessity to create educational goals which connect with affective domain: 
interesting, confidence and understanding of the meaning of mathematics. Also, 
indicated from the same organization the necessity to examine cognitive and affective 
variables during the analysis of teaching. 

Motivational beliefs: task value, goal orientation and self-efficacy, are a part of affective 
domain that play an essential role in students classroom learning and achievement. Task 
value beliefs refer to students’ evaluation about the usefulness and importance of the 
task (Eccles & Wigfield, 1995). Goal orientation refers to students reasons adopted
when they engage in academic tasks (Pintrich & Schunk, 1996). Students' perceived 
self-efficacy for a task, are defined as their judgments about their ability to complete a 
task successfully (Bandura, 1997).

A number of studies have found a positive relationship between students’ motivational 
beliefs, especially students’ self-efficacy beliefs and mathematics performance (Pajares, 
1996). More specifically, Pajares and Miller (1994) reported that self-efficacy in solving
math problems was more predictive of that performance than sex, math background, 
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math anxiety, math self-concept and perceived usefulness of mathematics. Additionally 
to this, Pajares and Kranzler (1995) found that self-efficacy made as strong a 
contribution to the prediction of problem-solving as did general mental ability, an 
acknowledged powerful predictor and determinant of academic outcomes. In this line, 
Mayer (1998) stressed that students who improve their self efficacy will improve their 
success in learning to solve problems. 

Researchers have also indicated that high-ability students have stronger self-efficacy 
and have more accurate self-perceptions (e.g. Pajares & Kranzler, 1995; Zimmerman, 
Bandura, & Martinez-Pons, 1992). Schunk and Hanson (1985) found that students who 
expected to be able to learn how to solve the problems tended to learn more than 
students who expected to have difficulty. In other words, students understand 
mathematics better when they have high self-efficacy than when they have low self-
efficacy. 

Also, students’ motivational beliefs correlate with metacognitive strategies use. 
Researchers found a positive relation between students' valuing of academic tasks and 
their use of metacognitive strategies (Pintrich & DeGroot, 1990; Wolters & Pintrich, 
1998). Especially, Wolters and Pintrich (1998), found that middle school students who 
expressed greater valuing of the material in a subject area were more likely to also 
report using self-regulatory strategies (a kind of metacognitive strategies) with regard to 
that subject area. Wolters, Yu, and Pintrich (1996) found that students' having a learning 
goal orientation predicted their self-reported use of both cognitive and self-regulatory 
strategies in mathematics. Pintrich and De Groot (1990) found strong correlations 
between students’ self-efficacy and their use of active learning strategies in various 
classes.

Motivational beliefs, especially self-efficacy beliefs have already been studied in 
relation to a lot of aspects of mathematics learning, such as arithmetical operations, 
problem solving and problem posing (Nicolaou & Philippou, 2007). However, these 
beliefs haven’t been examined in relation to volume measurement tasks and this study 
tries to investigate these relationships. 

Students understanding of three dimensional rectangular arrays of cubes

The ability to understand and manipulate three dimensional figures is very important in 
mathematics education. Mitchelmore (1980) stressed that it is of great value to be able 
to visualize and represent three dimensional configurations and to comprehend the 
geometrical relations among various parts of a figure. Although, Mariotti (1989) 
hypothesized that the manipulation of three dimensional figures implies coordination of 
a comprehensive mental representation of the object with the analysis of the single 
components. 

A number of researchers studied students understanding of three dimensional 
rectangular arrays of cubes, using interviews or test (Ben – Chaim, Lappan & Houang, 
1985, 1989; Battista & Clements, 1996; Battista, 1999). In particular, Ben – Chaim et 
al. (1985) indicated four types of errors that students in grades 5-8 made on the volume 
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measurement tasks with three dimensional cube array. The first error was the estimate 
the number of faces of cubes shown in a given diagram, while the second error was 
identified from doubling that number. The third error was counting the number of cubes 
shown in the diagram and the forth error was doubling that number. In this study, 
researchers asked students to determine how many cubes it would take to built such 
prisms and they found that only 46% of students gave correct answer, while most of 
them made the errors of type 1 or 2 (Ben-Chaim et al., 1985). These results indicated 
from a recent work of Battista and Clements (1996) where they found that 64% of the 
third graders and 21% of the fifth graders double-counted cubes. These types of errors 
students made are clearly related, according to Ben-Chaim et al. (1985), to some aspects 
of spatial visualization. Addition on this explanation, Battista and Clements (1996) 
stressed that many students are unable to correctly enumerate the cubes in such an array, 
because their spatial structuring of the array is incorrect. In particular, they found that 
for some students the root of such errant spatial structuring seemed to be their inability 
to coordinate and integrate the views of an array to form a single coherent mental model 
of the array. However, Hirstein (1981) believes that these errors caused from confusion 
between volume and surface area. 

The present study

The purpose of the study

This study has two main objectives. First, we set out to explore the relationships 
between students’ motivational beliefs, metacognitive strategies use and volume 
measurement performance. Second, we examined the solutions strategies and errors of 
students in dealing with three dimensional cube arrays and net diagram. More 
specifically, the present study addresses the following questions: (a) Are there 
differences at performance of students on verbal problems, problems with 3-D cube 
array diagram and problems with net diagram?, (b) What are the relationships between 
motivational beliefs, metacognitive strategies use and volume measurement 
performance? (c) Can self efficacy beliefs and generally motivational beliefs be strong 
predictors of students’ volume measurement of cuboids performance? (d) Are there 
differences at self-efficacy beliefs between students of varied abilities? (e) Which 
strategies did students use to calculate the volume of cuboids in problems with different 
modes of representations? 

Sample

In the present study data was collected from 173 sixth grade students (84 females and 
89 males) ranging from 11 to 11.5 years old. These students were from 10 primary 
schools in Cyprus from rural and urban areas. 

Test

All participants completed a two part test in a period of 40 minutes in March 2008. The 
first part was a self-report questionnaire which assesses the three types of motivational 
beliefs (MB): self efficacy beliefs (SE) (e.g. “I am very good in 3-D geometry”, 
“Compared with others students in this class, I think I am a good student in 
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mathematics”), task value beliefs (TV) (e.g. “I like 3-D tasks that I’ll learn from, even if 
I make a lot of mistakes”, “I like math problems best when it really makes me think”), 
goal orientation (GO) (e.g. “I would feel really good if I were the only one who could 
answer the teacher’s questions in math class”), the metacognitive strategies use (S) (e.g. 
“Before I begin solving a mathematical problem, I often decide how to organize its 
solution”, “When I don’t understand a mathematical problem, I read it again”), the self-
representation of spatial ability (SA) (e.g. “I can easily imagine the picture which is on 
a deflated balloon”, “I find it difficult to imagine how a three-dimensional geometric 
figure would exactly look like when rotated”) and the  preference of students for the use 
of representations in problem solving (R) (e.g. “I prefer solving problems that present 
the data with diagrams or tables”, “In order to explain an idea to my classmates I use a 
picture or a diagram”). This 22-item questionnaire was based on the MSLQ 
questionnaire (see Pintrich, Smith, Garcia & McKeachie, 1993) and the Patterns of 
Adaptive Learning Survey (PALS; see Middleton & Midgley, 2002) to measure 
motivational beliefs and metacognitive strategies use. Items from OSIQ questionnaire 
used to measure the self-representation of spatial ability (see Blajenkova, Kozhevnikov 
& Motes, 2006) and measures of the preferences for the use of representations taken 
from the questionnaire of the study of Panaoura (2007). Responses were recorded on a 4 
point Likert scale with 1 indicating total disagreement and 4 total agreement. Ratings 2 
to 3 indicated intermediate degrees of agreement/disagreement. The second part of the 
test was six volume measurement tasks which were given in different modes of 
representations: text, diagram of 3-D cube array and net diagram (see table 1).

Table 1: Volume Measurement Tasks.

MODE OF 
REPRESENTATIONS 

TASKS

1. Mary tries to put 28 unit-sided cubes (1 cm edge) in a 
rectangular box with dimensions 2 cm x 5 cm x 3 cm. Is this 
possible? Explain your answer. (VPr1)

Verbal tasks

4. Four friends went to the cinema. They decided to buy some bags 
of nuts during the movie. The vendor said to them that there were 
two size bags of nuts, where:

• The price of small bag was €1.

• The large bag’s dimensions were two times the small bag’s 
dimensions and its price was €6.

The dimensions of the small bag were 20 cm, 10 cm and 5 cm. 

One child suggested to his friends that it was better to buy and 
share one large size bag, instead of buying four small bags.  Do
you agree? Explain your answer. (VPr4)
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Find the volume (the number of cubes) of the following cuboids:

2a.

(SPr2a)

2b. 

(SPr2b)

Tasks with diagram of three 
dimensional cube array

Which one of these cuboids has the greatest number of cubes? 
Explain your answer. (SPr2Ans)

The figures below show the nets of cuboids with on its sides 
missing. Find the volume (number of cubes) of these nets when 
folded:  

3α. 

(NPr3a)

3β. 

(NPr3b)

Tasks with net diagram

Which one of these nets when folded can carry the minimum 
number of cubes?  Explain your answer. (NPr3Ans)

Firstly, students completed the self-report questionnaire and then they solved the tasks, 
because according to Bandura (1997), the time between these two measures must be 
short. 

The coefficient of reliability Gronbach’s Alpha of the two part of test was very high. 
Specifically, we found that the reliability of students’ answers in the questionnaire was 
α=0.746 and the reliability of their answers in volume measurement tasks was α=0.810. 

Data analysis

Students correct responses in volume measurement tasks were marked with 1 and the 
incorrect response with 0. However, the marks to the responses in the questions “Which 
one of these cuboids has the greatest number of cubes? Explain your answer” and 
“Which one of these nets when folded can carry the minimum number of cubes?  
Explain your answer” were 1 to fully correct response, 0.5 to partly correct response 
(wrong explanation) and 0 to incorrect answer. To examine the strategies students use to 
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find the volume in 3-D cube array diagram and net diagram, categories from previous 
studies (Ben Chaim et al., 1985; Battista & Clements, 1996) were used. 

To explore the relationships between motivational beliefs, metacognitive strategies and 
volume measurement performance, we employed regression analysis, Pearson 
correlation and one way ANOVA. Gras’s Implicative Statistical Model (Bodin, 
Coutourier & Gras, 2000) was used to examine the performance of students in volume 
measurement tasks in different modes of representations. It is a method of analysis that 
determines the similarity connections and the implicative relations of factors. Finally, 
descriptive statistics were used to present the strategies students use to find the volume 
in 3-D cube array diagram and net diagram. 

Results

The section of results has two parts. In the first part we examined the relationships 
between motivational beliefs, metacognitive strategies use and volume measurement 
performance and in the second part we described the strategies students use to volume 
measurement tasks in different modes of representations.  

Relationships between motivational beliefs, metacognitive strategies use and volume 
measurement performance

Firstly, we presented the students’ performance in volume measurement tasks.  
According to table 2, a large number of students gave correct answer to the question of 
task 2 where 54, 3% of students indicated correctly the 3-D cube array diagram which 
has the greatest number of cubes. 

Table 2: The means and the standard deviations of students’ performance in volume
measurement tasks.

Tasks Μean ( ) Standard deviation (SD)

Verbal task 1 0,529 0,460

Task 2a with 3-D cube array diagram 0,301 0,460

Task 2b with 3-D cube array diagram 0,289 0,455

Task 2 answer 0,543 0,323

Task 3a with net diagram 0,156 0,364

Task 3b with net diagram 0,145 0,353

Task 3 answer 0,356 0,336

Verbal task 4 0,307 0,368

Ν = 173

However, only 30% of students gave the correct number of cubes of cuboids which 
given in 3-D cube array diagrams (tasks 2a and 2b). At verbal tasks, 52,9 % of students 
explained correct that 28 unit-sided cubes can be placed in a rectangular box with 
dimensions 2 cm x 5 cm x 3 cm (task 1) and 30, 7% of students gave correct answer to 
task 4. Also, only 15% of students counted correct the number of cubes (tasks 3a and 
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3b) of nets folded and 37% of them indicated the cuboid which has the minimum 
number of cubes. These tasks require from students to imagine in their minds the 
cuboids created when the given nets are folded and count their volume.  It is a very 
complex mental procedure (Mariotti, 1989) and that is why many of the students gave 
wrong responses.   

We used the Gras model to determine the similarity connections of students’ responses 
to volume measurement tasks which were given in different modes of representations. 
The similarity diagram (figure 1) identified a cluster which has all tasks of test. The way 
to solve verbal volume measurement tasks are statistically similar to the way to solve 
the tasks with 3-D cube array diagram and net diagram. But figure 1 shows that the 
verbal tasks grouped in a different cluster from other tasks. 

Figure 1. Similarity diagram of students’ responses to volume measurement tasks in 
different representations. 

Using Pearson correlation, we examined the relations between the factors: Self-
Efficacy, Motivational Beliefs, Self-representation of Spatial Ability, Metacognitive 
Strategies use and preference for the use of representation in problem solving. We found 
that there are statistically significant correlations between students’ self-efficacy beliefs 
to solve mathematics problems generally and volume measurement problems 
specifically, and metacognitive strategies use, preference for the use of representation 
and self-representation of spatial ability (see table 3). 

Table 3: Coefficients Correlations between the factors SE, MB, SA, S, R.

Self-Efficacy 
Beliefs 

Motivational 
Beliefs 

Self - representation of spatial ability 0.32* 0.38*

Metacognitive strategies use 0.26* 0.50*

Preference for the use representations in problem 
solving 

0.17* 0.34*

*p<0.05, N = 173

In other words, students which have high self-efficacy beliefs, they stated more than 
others that they used often metacognitive strategies to solve a mathematical problem, 
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they preferred to use representation in problem solving and they had high spatial 
abilities. Also, we found statistically significant correlations between students’ 
motivational beliefs and other factors (see table 3). Specifically, students who are more 
highly motivated, they stated more than others that they use metacognitive strategies, 
they have high spatial abilities and they preferred to use representations in problem 
solving.

We used regression analysis with independent variables students’ self-efficacy beliefs
and students’ motivational beliefs and dependent variable the general volume 
measurement performance at test. According to table 4, students’ self-efficacy beliefs 
and students’ motivational beliefs can be statistically significant predictors of general 
volume measurement performance. Specifically, students’ self-efficacy beliefs predicted 
14,2 % of the general volume measurement performance, while students’ motivational 
beliefs predicted only 3% of the general volume measurement performance. 

Table 4: Regression analysis of Self-efficacy beliefs and Motivational beliefs with 
dependent variable total achievement. 

Independent  Variables R R2 F Β

Self-Efficacy beliefs 0.38 0.142 28.200* 0.977*

Motivational beliefs 0.172 0.03 5.202* 0.529*

*p<0.05

To examine the predictive role of students’ self-efficacy beliefs, motivational beliefs, 
self-representation of spatial ability and preference for the use of representations in 
problem solving to verbal volume measurement tasks performance, volume 
measurement tasks with 3-D cube array diagram performance and volume measurement 
tasks with net diagram performance, regression analysis used. We found that students’ 
self-efficacy beliefs can be a statistically significant predictor of volume measurement 
performance in every task, expert the performance at task 2a (see table 5). Students’ 
motivational beliefs can be a statistically significant predictor of volume measurement 
performance only at verbal tasks (3%) and at task 2Ans (3%), where students indicated 
the cuboid which has the greatest number of cubes. The factor of self-representation of 
spatial ability predicted only the performance at verbal task 1 and specifically 5% of 
that. The verbal task 1 required from students to imagine a rectangular box with given 
dimensions and 28 one sided cubes to put in that box. Spatial abilities such as mental 
rotation of figure and spatial relations of cubes in the box, were necessary to successful
performance at that task. Also, metacognitive strategies use can be a statistically
significant predictor of the volume measurement performance at verbal tasks only (3%). 
The factor of metacognitive strategies was used to refer to students’ strategies in 
problem solving which were given in text form. That is probably the reason for the 
predictive role of metacognitive strategies to the verbal tasks performance only. 
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Table 5: Regression Analysis of SE, MB, SA, S with dependent variables the 
performance on tasks.

Dependent Variables Independent  Variables R R2 F β

Self-Efficacy beliefs 0.320 0.102 19.475* 0.239*

Motivational beliefs 0.176 0.031 5.489* 0.156*

Self-representation of 
spatial ability

0.221 0.049 8.778* 0.175*Verbal task 1 performance

Metacognitive strategies 
use

0.160 0.026 4.499* 0.128*

b Self-Efficacy beliefs 0.198 0.039 6.740 0.163

Self-Efficacy Beliefs 0.216 0.047 8.059* 0.125*

Task 2 with 3-D cube array 
diagram performance

Ans

Motivational beliefs 0.172 0.030 5.244* 0.107*

A Self-Efficacy beliefs 0.197 0.039 6.674* 0.129*

B Self-Efficacy beliefs 0.179 0.032 5.462* 0.114*
Task 3 with net diagram 

performance

Ans Self-Efficacy beliefs 0.250 0.063 11.044* 0.151*

Self-Efficacy beliefs 0.369 0.136 25.790* 0.243*

Motivational beliefs 0.197 0.039 6.837* 0.139*

Verbal task 4

Performance

Metacognitive Strategies 
use 

0.194 0.038 6.662* 0.124*

*p<0.05

The sample of this study was clustered into three groups according to their volume 
measurement performance at tasks of the second part of the test. Specifically, the first 
group had the students with the lowest performance, the second group had the students 
with medium performance and the third group had the students with highest 
performance. The performance of the three clusters of students was examined in respect 
to their students’ self-efficacy beliefs. The comparison of the means by one way 
ANOVA indicated statistically significant differences between these groups 
(F(2,163)=8.155, p=0.000) at self-efficacy beliefs. Using Bonferroni procedure, we found 
only statistically significant differences of self-efficacy beliefs between students with 
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the lowest performance ( = 3.0182) and highest performance ( =3.5490) at volume 
measurement tasks. 

Also, the students were divided into three groups according to their self-efficacy beliefs. 
The first group had the students with low self-efficacy beliefs, the second group had the 
students with medium self-efficacy beliefs and the third group had the students with 
high self-efficacy beliefs. The self-efficacy of the three clusters of students was 
examined in respect to their general volume measurement performance. The comparison 
of the means by one way ANOVA indicated statistically significant differences between 
these groups (F(2,163)=8.257, p=0.000) at volume measurement performance. Using 

Bonferroni procedure, students with high self-efficacy beliefs ( =2.1747) and students 

with medium self-efficacy beliefs ( =1.2177) differed significantly in their general 
volume measurement performance. 

Strategies students use to volume measurement tasks

The second aim of this study was to examine the solutions, strategies and errors of 
students in dealing with three dimensional cube arrays and net diagram. To examine 
this, the types of errors from previous studies (Ben – Chaim et al., 1985; Battista & 
Clements, 1996) were used. We found that only fifty two students in the task 2a and 
forty nine students in the task 2b, counted correctly the number of cubes of cuboids 
(which given in 3-D cube array diagram). Also, according to table 6, many of the 
students who gave wrong answers, counted the number of faces of cubes shown in the
3-D cube array diagram and doubled that number or used other wrong strategy which 
can’t be categorized. Thirteen students in the task 2a and fourteen students in the task 
2b, counted the number of faces of cubes shown in 3-D cube array diagram and gave 
wrong answer. 

Table 6: Students Strategies use to volume measurement tasks with 3-D cube array 
diagram.

Number of 
studentsStudents Strategies use 

2a 2b

Correct answer 52 49

Count the number of faces of cubes shown in the 3-D cube array 
diagram

13 14

Count the number of faces of cubes shown in the 3-D cube array 
diagram and double that number

48 58

Other wrong strategy 42 31

No answer 18 21
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In the question “Which of cuboids (given in the 3-D cube array diagram) has the 
greatest number of cubes?”, ninety five students answered correctly counting the 
volume of cuboids, while thirty seven students gave correct answer using their “optic 
feeling”. In some words, these students compared the two 3-D cube array diagrams 
without counted the number of cubes of cuboids and gave their answer.

Table 7, shows students’ strategies use to volume measurement tasks with net diagram. 
Many of students gave wrong responses or didn’t answer those tasks. Fifty seven 
students in the task 3a and fifty three students in the task 3b, counted the number of 
faces of cubes in net diagram and gave wrong answers. Also, twenty one students in the 
task 3a and twenty in the task 3b, counted the number of faces of cubes shown in net 
diagram and added the number of faces of cubes of base. A small number of students 
counted the number of faces of cubes shown in net diagram and doubled that number 
(see table 7).

Table 7: Students Strategies use to volume measurement tasks with net diagram.

Number of 
students

Students Strategies use 

3a 3b

Correct answer 27 25

Count the number of  faces of cubes shown in net diagram 57 53

Count the number of  faces of cubes shown in net diagram plus the 
number of faces of cubes of base 

21 20

Count the number of  faces of cubes shown in net diagram and 
double that number 

13 15

Other wrong strategy 7 13

No answer 48 47

In the question “Which of the given nets when folded can carry the minimum number of 
cubes?”, forty six students gave correct response counting the volume of cuboids from 
net diagram, while forty four students answered correctly using their “optic feeling”. In 
some words, these students compared the two net diagrams without counting the 
number of cubes of cuboids and gave their answer.   

Discussion

The first aim of the present study was to investigate the relationships between students’ 
motivational beliefs, metacognitive strategies use and volume measurement 
performance. We found statistically significant correlations between students’ 
motivational beliefs and students’ self-efficacy beliefs especially, and metacognitive 
strategies use. Previous studies confirm these findings (Pintrich & De Groot, 1990; 
Pintrich, 1999). Specifically, students with strong self-efficacy beliefs, goal orientation 
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and high task value, employ different kinds of cognitive and metacognitive learning 
strategies more actively (Pintrich, 1999). 

Also, we found that students’ self-efficacy beliefs was a strong predictor of the general 
volume measurement performance and the volume measurement performance in every 
task. The predictive role of self-efficacy beliefs was indicated from various studies in 
different concepts of mathematics (Pajares & Miller, 1994; Pajares & Kranzler, 1995; 
Mousoulides & Philippou, 2005; Nicolaou & Philippou, 2007). Specifically, we found 
that the confidence with which students approach maths problem solving and volume 
measurement problems had stronger direct effects on their volume measurement 
performance that did their self-representation of spatial ability, metacognitive strategies 
use and preference for the use of representation in problem solving. 

On the contrary, we found that students’ metacognitive strategies predicted only the 
performance on the verbal volume measurement tasks. We particularly expected to find 
a positive relationship between volume measurement performance and students’ 
metacognitive strategies. A possible reason for this may be the fact that students used 
metacognitive strategies in mathematical problems which were given in text form and 
maybe they didn’t know how to use them in the tasks with diagram of 3-D cube array or 
net diagram. They probably considered that these tasks with the diagram of 3-D cube 
array or net diagram were not mathematical problems. 

Additionally, we found that students’ self-representation of spatial ability was a 
statistically significant predictor of the performance on the verbal task where students 
were asked to make a decision: 28 one sided cubes can be placed in a rectangular box 
with given dimensions. The task was not simple and required high spatial abilities 
(mental rotation and spatial relations).

We found statistically significant differences of self-efficacy beliefs between students 
with high-ability (high volume measurement performance) and students with low ability 
(low volume measurement performance). This finding is in agreement with other 
researchers’ findings (e.g. Pajares & Kranzler, 1995; Zimmerman, Bandura, & 
Martinez-Pons, 1992) who found that high-ability students have stronger self-efficacy 
and have more accurate self-perceptions. Also, we found statistically significant 
differences at volume measurement performance between students with high self-
efficacy and medium self-efficacy. Specifically, students who have high self-efficacy 
understand the volume measurement tasks better that the students who have medium 
self-efficacy. The study of Schunk and Hanson (1985) confirmed this finding. 

The second aim of this study was to examine the strategies students use to volume 
measurement tasks in different modes of representations. We found that many of the 
students gave wrong answer using the two strategies in the main: (a) count the number 
of faces of cubes shown in diagram (net or 3-D cube array) and (b) count the number of 
faces of cubes shown in diagram (net or 3-D cube array) and double that number. These 
strategies were also used by many of the students of the sample of the study of Ben-
Chaim et al. (1985). A number of students of the research of Battista and Clements 
(1996) used the strategy b. These errors are caused, according to Gutié rrez (1996), from 
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the difficulty of reasoning of flat representations of three dimensional figures to three 
dimensional figures because some information are lost. Hirstein (1981) stressed that 
students confuse the concepts of the volume and the surface area. Battista and Clements 
(1996) claimed that students’ spatial structuring of the array is incorrect. Specifically, 
the mental procedure which is required in that task is very complex (Mariotti, 1989) 
because students must be able to coordinate and integrate the views of an array to a 
single coherent mental model of the array (Battista & Clements, 1996). 

In conclusion, the findings of the present study suggest that developing efficacy beliefs 
in mathematical problems generally, should be an integral part of mathematics teaching 
and learning. 
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Abstract
The present study examined the structure of primary (grades 4 and 6) and secondary 
(grade 8) students’ geometrical knowledge and abilities referring to tasks involving 
different geometrical figures. Based on the assumption that students’ ability to solve 
tasks involving different geometrical figures is not a unitary construct, we developed in 
the structural equation modelling a framework to investigate its subcomponents. 
Confirmatory factor analysis affirmed the existence of three constructs of this 
geometrical ability: (a) students’ ability to work with tasks involving 2D geometrical 
figures, (b) the ability to work with tasks involving 3D geometrical figures and (c) the 
ability to work with net-representations of 3D geometrical figures. Multiple group 
analysis results supported the invariance of this structure across the three age groups of 
students. 

Introduction

The study of geometry helps students represent and make sense of both the world in 
which they live and the world of mathematics. The importance of studying and teaching 
geometry is well established in the literature and is stressed in contemporary 
mathematics curricula, not only as an autonomous mathematics field, but also as a 
means to develop other mathematical concepts. As Duval (1998) has noted, geometry 
can be used to discover and develop different ways of thinking. The content of 
geometry can be used to develop lower mathematical reasoning, such as recognizing 
figures, and higher mathematical reasoning, such as discovering the properties of 
figures, inventing geometrical patterns, or solving problems (NCTM, 1989).
Additionally, geometric ideas are useful in representing and solving problems in other 
areas of mathematics as well as in real-world situations (NCTM, 2000).

During the past twenty years, several mathematics educators have investigated students’ 
geometrical reasoning based on different theoretical frames, such as Van Hiele’s model 
referring to levels of geometric thinking (Van Hiele, 1986), Fischbein’s theory of figural 
concepts (Fischbein, 1993), Duval’s cognitive analysis of geometrical thinking (Duval, 
1998). Considering the importance of geometrical reasoning in mathematics education, 
there is a need for a framework of abilities that could be used in fostering students’ 
geometrical performance. Although there are many studies on different aspects of 
geometrical reasoning, in the literature, there are no structural models describing the 
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way students’ experiences arising from geometry teaching at school are built into 
meaningful structures. This is what the present study aims to do.

Theoretical considerations

Geometry consists of ways of structuring space (for example, when we conceptualize it 
in terms of lines, angles, polygons, and polyhedra) and analyzing the consequences of 
that structuring (Battista, 1999). As a mathematical domain, geometry is to a large 
extent concerned with specific mental entities, the geometrical figures. Through the 
study of geometry, students learn “about geometrical shapes and structures and how to 
analyze their characteristics and relationships” (NCTM, 2000, p. 41).

Teaching geometry so that students learn it meaningfully requires an understanding of 
how students construct their knowledge of various geometric topics (Battista, 1999). 
This means it is necessary that mathematics educators investigate and mathematics 
teachers understand how students construct knowledge as a result of their learning 
experiences in school.

The problem of how mathematical knowledge is acquired and understood and how the 
mathematical structure is built have been described and studied from several points of 
view. Sfard’s theory of reification (Sfard, 1989), Sierpinska’s theory of understanding 
(Sierpinska, 1994), the suggestion of procepts (Gray & Tall, 1994) are some examples 
that illustrate this effort. It is generally accepted that students acquire, as a result of the 
experiences they have during their geometry education, pieces of geometrical 
knowledge, which are initially stored as isolated events, or images (Hejny, 2002). The 
obtained isolated models of a creating piece of knowledge are later organized, and put 
into hierarchies to create a structure (Hejny, 2003).

Demetriou’s model (Demetriou, 1998; Demetriou, 2004; Demetriou & Kazi, 2001) 
about the dynamic organization and development of mind postulates that the mind 
involves systems oriented to the understanding of the environment and of itself, in 
addition to general processing functions. The development of each of the systems 
involves both system-specific and system-wide mechanisms of development and 
learning. The idea about a hierarchical and multisystem mind which involves structures 
that deal with different types of problems in the environment suggests that learning may 
be either domain-specific or domain-free. Domain-specific or modular learning springs 
from particular domains in the environment and it affects the functioning of the 
corresponding domain-specific modules. Using Demetiou's model about the architecture 
of mind as a “departure point framework”, we consider the set of geometrical abilities 
developed by an individual as a specific domain which deals with its own types of 
problems and, we investigate students’ geometrical knowledge and abilities related to 
tasks involving different geometrical figures.

The present study

The present study was based on the assumption that students’ geometrical knowledge 
and abilities related to tasks involving different geometrical figures is a multifaceted 
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construct, with subcomponents which are probably related to the students learning 
experiences in geometry lessons throughout their schooling years. Therefore, the main 
purpose of the study was to propose and validate a framework which describes the 
components of students’ (age 10, 12 and 14) abilities to solve tasks involving different 
geometrical figures and to investigate its factorial structure across students of three 
different grades.

We know that primary school students acquire, through geometry teaching at school,
knowledge referring to two-dimensional and three-dimensional geometrical figures, as 
well as the net-representations of geometrical solids. What we do not know is whether 
and how these pieces of knowledge are connected or related to each other. As 
mentioned earlier, the major aim of this study was to prescribe a framework of students’ 
geometrical knowledge and abilities related to tasks involving different geometrical 
figures. In other words, examining the knowledge base that students acquire through 
their learning experiences in geometry lessons during their primary school years, we 
investigated to what extent and how various pieces of geometrical knowledge referring 
to different geometrical figures are built into meaningful structures.

In the present study, we initially focused on the geometrical knowledge and abilities 
related to tasks involving different geometrical figures of students at the end of primary 
school (6th graders), just before entering the secondary school. Considering that students 
in Cyprus experience difficulties which are evident in their mathematics performance 
during the transition from elementary to secondary school (Meletiou-Mavrotheris & 
Stylianou, 2003), we sought to compare the aforementioned geometrical knowledge and 
abilities structure of the 6th graders with the corresponding one of secondary school 
students. So, finally we chose to gather data from three different school grades: students 
terminating primary school education (6th graders – age 12), primary school students in 
grade 4 (age 10) and students which have been in secondary school for two years (8th

graders – age 14). Apart from suiting our aim of comparing the geometrical structures 
of students from two educational levels, the choice of the three age groups participating 
in our study, was based on the idea that changes in the cognitive system of children 
between the age of 10 and 14 are of major importance (Demetriou, Christou, Platsidou, 
& Spanoudis, 2002).

Method

Participants

Participants were 1000 primary and secondary school students (488 males and 512 
females) from 29 existing classes of 9 elementary schools and 12 classes of 8 secondary 
schools in four different districts of Cyprus. Specifically, the sample involved students 
from three grades (fourth grade – primary school: 332, sixth grade – primary school: 
333 and, eighth grade – second grade of secondary school: 335). The mean age of the 
three grades was as follows: fourth grade, 9.8 years; sixth grade, 11.7 years; eighth 
grade, 13.9 years. The school sample is representative of a broad spectrum of 
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socioeconomic backgrounds. In each intact class there were students of different levels 
of achievement.

Instrument and Procedure

Geometrical performance in tasks involving different geometrical figures was 
determined using a test that was constructed for the purpose of the present study. One of 
the requirements for the development of the test was its alignment with the national 
curriculum followed in Cyprus in all primary schools. A content analysis of the 
curriculum and the textbooks employed in the three upper primary grades (grade 4 to 
grade 6) was undertaken. The analysis revealed that tasks involving 2D geometrical 
figures occupy a predominant place both in the curriculum and the mathematics 
textbooks.

In the construction of the test we took into consideration Duval’s framework analyzing 
geometrical thinking (Duval, 1998) and therefore included in the test a number of tasks 
involving two cognitive processes described in his framework, naming ‘visualization’ 
and ‘reasoning’. Additionally, for the tasks involving 2D figures, we used items that 
could be solved either based on visual perception indicating students working in the 
Natural Geometry paradigm, or based on the properties of figures indicating students 
working in the Natural Axiomatic Geometry paradigm (Houdement & Kuzniak, 2003).

The geometrical-figures performance test consisted of tasks involving 2D geometrical 
figures, 3D figures and nets of geometrical solids.  The 2D geometrical figures tasks 
included recognition items in simple and complex geometrical figures, problem solving 
items which involved the use of geometrical reasoning to be solved, multiple choice 
items examining declarative knowledge of geometric concepts and properties of figures 
and items involving analysis of geometrical figures and area calculation. The 3D 
geometrical figures tasks included recognition items, multiple choice items referring to 
the faces or other properties of 3D figures, items demanding analysis of a three-
dimensional figure to its consisting parts. The net-representations tasks included items 
referring to constructing and recognizing nets of a cube, items involving a net of a 
specific cube and its corresponding drawing and items referring to recognition of nets of 
other geometrical solids. Examples of the geometry items used can be found in the 
Appendix.

The items of the test were content and face validated by two experienced primary school 
teachers, two university tutors of Mathematics Education and, one university tutor of 
Cognitive Psychology. Based on their comments, minor revisions were made.

The test was administered in two parts during normal teaching, either by the first author 
or by students in Mathematics Education at the University of Cyprus, who followed 
specific instructions concerning the test administration. Administration time was 40 
minutes per part. The first part of the test was administered to all schools in the same 
week, while the second part of the test was administered one week later.
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Recognition items and multiple choice items were scored on a pass (1) / fail (0) basis. 
The problem solving items were scored using a scale from 0 to 2 as follows. No answer 
or a wrong answer was marked with 0. Complete right answers were marked with 2. In 
the cases that the students followed a correct solution process but gave a wrong answer, 
the item was marked with 1.

Statistical Analyses

With the use of the Extended Logistic Model of Rasch (Rasch, 1980), an interval scale 
presenting both item difficulties and students’ performance was created for geometrical 
test. Data analysis revealed that the test had satisfactory psychometric properties, 
namely construct validity and reliability. 

The assessment of the proposed model was based on a confirmatory factor analysis, 
which is part of a more general class of approaches called structural equation modeling. 
EQS computer software (Bentler, 1995) was used to test model fitting. In order to 
evaluate model fit, three fit indices were calculated by the maximum likelihood method 
(Bentler, 1995): the chi-square to its degrees of freedom ratio (x2/df), the comparative 
fit index (CFI), and the root mean-square error of approximation (RMSEA). These 
indices recognized that the following needed to hold true in order to support model fit: 
The observed values for x2/df should be less than 2, the values for CFI should be higher 
than 0.9, and the RMSEA values should be lower than 0.08 (Marcoulides & 
Schumacker, 1996). Additionally, the factor parameter estimates for the model with 
acceptable fit were examined to help interpret the model.

Results

For the analysis of the data we reduced the number of raw scores by conducting 
exploratory factor analysis (the factors extracted were treated as entering variables in 
the confirmatory factor analysis).  This was done to increase the reliability of the 
measures fed into the analysis and hence to facilitate the identification of latent 
variables (Bentler, 1995).

In order to refute the assumption that students’ geometrical-figures performance is a 
unitary construct, a first-order model was examined within the structural equation 
modeling framework. This model involved only one first-order factor, which associated 
all of the items involved and could be taken to stand for students’ general ability to 
work with geometry tasks involving different geometrical figures. As reflected by the 
iterative summary [x2/df=22.46; CFI=0.530; RMSEA= .147], this model did not have a 
good fit to the data and therefore, could not be considered appropriate for explaining 
students’ aforementioned ability.

At this point, we tested a model consisting of six first-order factors, representing six 
processes involved in manipulating tasks with different geometrical figures: 
representations of 3D geometrical figures (F1), analysis of 3D geometrical figures (F2), 
measuring and recognition abilities in 2D geometrical figures (F3), problem solving 
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involving 2D geometrical figures (F4), manipulation of tasks involving net-
representations of cube (F5) and manipulation of tasks involving net-representations of 
geometrical solids other than the cube (F6). The six factors F1-F6, appearing on the left 
hand side of Figure 1, are described below.

F1: Representations of 3D geometrical figures. Four variables (V1-V4) construct F1. V1 
refers to different representations of a cube, V2 refers representations of pyramids, V3 
refers to representations of other geometrical solids and V4 refers to the ability to 
identify non-representations of 3D figures. Therefore, F1 is called “representations of 
3D geometrical figures”.

F2: Analysis of 3D figures. F2 consists of three variables, which refer to students’ 
ability to analyze 3D figures. V5 refers to the shape of the faces, while V6 refers to the 
number of the faces of a geometrical solid. V6 refers to analyzing a 3D figure to smaller 
parts which have been used for its construction.

F3: Measuring and recognition abilities in 2D geometrical figures. Three variables (V8-
V10) construct F3. V8 refers to area calculation of simple 2D geometrical figures. V9 
refers to the ability to recognize simple 2D geometrical figures, while V10 refers to 
recognizing simple 2D geometrical figures in complex diagrams.

F4: Problem solving involving 2D geometrical figures. F4 consists of three variables 
(V11-V13), which refer to students’ abilities to solve geometrical problems involving 
2D geometrical figures. V11 refers to area calculation of complex 2D geometrical 
figures, while V12 and V13 refer to students’ ability to solve problems presenting 2D 
geometrical figures using geometrical reasoning strategies.

F5: Manipulation of tasks involving net-representations of cube. This factor consists of 
three variables (V14-V16), which refer to students’ ability to work with different tasks 
involving net-representations of cube: recognizing different nets of cube (V14), 
corresponding the drawing with the net of specific cube (V15) and, constructing the net 
of a cube (V16).

F6: Manipulation of tasks involving net-representations of geometrical solids other than 
the cube. Three variables (V17-V19) construct F6. V17 refers to the ability to identify 
net-representations of geometrical solids excluding the non-representations. V18 refers 
to recognizing simple net-representations (in which the faces of the solid are arranged 
around the base), while V19 refers to recognizing complex net-representations.

The six first-order factors model did not have a good fit to the data [x2/df=6.18; 
CFI=0.906; RMSEA= .069], so we decided to test a higher order factor model. The 
proposed framework consisted of the six first-order factors described above, three 
second-order factors, and one third-order factor. The six first-order factors [recognizing 
representations of 3D geometrical figures (F1), analysis of 3D geometrical figures (F2), 
measuring and recognition abilities in 2D geometrical figures (F3), problem solving 
involving 2D geometrical figures (F4), manipulation of tasks involving net-
representations of cube (F5) and manipulation of tasks involving net-representations of 
geometrical solids other than the cube (F6)] were hypothesized to construct three 
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second-order factors: ability to work with tasks involving 2D geometrical figures (F7), 
ability to work with tasks involving 3D geometrical figures (F8), ability to work with 
net-representations of geometrical solids (F9). These second-order factors are postulated 
to account for any correlation or covariance between the first-order factors. Finally, the 
three second-order factors (F7, F8 and F9) were hypothesized to construct a third-order 
factor “geometrical performance in tasks involving different geometrical figures” (F10) 
that was assumed to account for any correlation or covariance between the second-order 
factors.

Figure 1 outlines the structural equation model with the latent factors (F1 – F10) and 
their indicators. The fit of the model was very good and the descriptive-fit measures 
indicated support for the hypothesized first, second and third-order latent factors 
[x2/df=1.66, CFI=0.958; RMSEA = .045 (.040, .051)].

This finding indicated that recognizing different representations of 3D geometrical 
figures, analyzing 3D geometrical figures, measuring and recognizing 2D geometrical 
figures, solving problems which involve 2D geometrical figures, manipulation of tasks 
involving net-representations of cube and, manipulation of tasks involving net-
representations of geometrical solids other than the cube can represent six distinct 
functions of students’ performance in geometry tasks involving different geometrical 
figures. Furthermore, it is obvious that ‘recognizing different representations of 3D 
geometrical figures’ (F1) and ‘analyzing 3D geometrical figures’ (F2) share some 
common characteristics which can be captured by the second-order factor called 
“students’ ability to work with tasks involving 3D geometrical figures (F7). In the same 
way, the results indicate that ‘measuring and recognizing 2D geometrical figures’ (F3) 
and ‘solving problems which involve 2D geometrical figures’ (F4) can be captured by 
the second-order factor called “students’ ability to work with tasks involving 2D 
geometrical figures (F8), while the second-order factor called “students’ ability to work 
with net-representations of geometrical solids” (F9) is analyzed into two distinct (but 
with common characteristics) sets of abilities referring to the ability to work with net-
representations of cube (F5) and the ability to work with net-representations of other 
geometrical solids (F6). The presence of a third-order factor in the validated model 
indicates that, although “students’ ability to work with tasks involving 2D geometrical 
figures”, “students’ ability to work with tasks involving 3D geometrical figures” and, 
“students’ ability  to  work  with net-representations of geometrical solids” are To test 
for possible differences between the three age groups in the structure described above, 
multiple-group analysis was applied where the third order model was fitted separately 
on each age group. The model was first tested under the assumption that the structure of 
students’ performance in tasks involving different geometrical figures is the same across 
the three age groups. The fit of this model was good [x2/df=1.86, CFI=0.905; RMSEA = 
.040 (.039, .042)]. 
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Figure 1: A hierarchical model of students’ abilities in tasks involving geometrical 
figures *

*V1-V19 refer to the factors extracted from exploratory factor analysis conducted using the study’s raw 
data, F1= Representations of 3D geometrical figures, F2= Analysis of 3D figures, F3= Measuring and 
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recognition abilities in 2D geometrical figures, F4= Problem solving involving 2D geometrical figures, 
F5= Manipulation of tasks involving net-representations of cube, F6= Manipulation of tasks involving 
net-representations of geometrical solids other than the cube,  F7=ability to work with tasks involving 2D 
geometrical figures, F8=ability to work with tasks involving 3D geometrical figures, F9=ability to work 
with net-representations of geometrical solids, F10=geometrical performance in tasks involving different 
geometrical figures

Subsequent model tests referred to equality constraints on the factor parameter 
estimates. A model tested under the assumption that all the relations of the variables to 
the six first-order factors, the first-order factors to the three second-order factors and the 
second-order factors to the third order factor would be equal across the three age groups 
was rejected, since the fitting of this model to the data was poor. This finding indicated 
that some of the equality constraints were not to hold. Holding the equality constraints 
for the three age groups in the case of the second-order factor “students’ ability to work 
with tasks involving 3D geometrical figures” (F7) and its subcomponents F1 and F2 
and, releasing the constraints for the other factors, the iterative summary reflected that 
such a model had a good fit to the data [x2/df=1.87, CFI=0.905; RMSEA = .041 (.039, 
.042)]. 

Obviously, the three fit indices we used to evaluate model fit were very much alike in 
the case (a) of a model assuming that the structure of students’ performance in tasks 
involving different geometrical figures is the same across the three age groups and (b) 
of a model assuming that the structure is the same and additionally the parameters of the 
factor describing students’ ability to work with 3D geometrical figures are equal. 
Calculating the difference of chi-square we found that the addition of the equality 
constraints, which essentially leads us to a simpler model, resulted to statistically 
significant improvement of the model fit [Δ x2(10)=20.922, p<0.001]. Concluding, the 
second model, which assumes that the structure of students’ performance in tasks 
involving different geometrical figures is the same across the three age groups and 
additionally holds for equal parameters of the factor describing students’ ability to work 
with 3D geometrical figures, is the best model describing our data.

Discussion

The present study was based on the assumption that students’ geometrical knowledge 
and abilities related to tasks involving different geometrical figures is a multifaceted 
construct, with subcomponents which are related to the students learning experiences in 
geometry lessons throughout their schooling years. Although considerable research has 
been devoted to localized studies on geometrical reasoning or performance, less 
attention has been paid to the wider picture. The importance of this study lies in the fact 
that it purported to capture a more holistic view of students’ geometrical performance.

The study aimed to empirically test a model formulated to identify and classify the 
subcomponents of students’ geometrical performance related to the manipulation of 
different geometrical figures. The proposed model was validated through data obtained 
from 4th, 6th and 8th grade students in Cyprus. Confirmatory factor analysis affirmed the 
existence of six first-order factors (recognizing representations of 3D geometrical 
figures, analysis of 3D geometrical figures, measuring and recognition abilities in 2D 
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geometrical figures, problem solving involving 2D geometrical figures, manipulation of 
tasks involving net-representations of cube and, manipulation of tasks involving net-
representations of geometrical solids other than the cube), three second-order factors 
indicating students’ abilities to work with 2D geometrical figures, 3D geometrical 
figures and, net-representations of geometrical solids respectively and one third-order 
factor representing the general ability to solve tasks involving different geometrical 
figures. This framework indicates that students’ system of geometrical abilities referring 
to manipulation of tasks involving different geometrical figures is harmonized with 
students’ learning experiences in such a way that experiences related to a specific 
domain are embedded into common structures. In other words, this system is 
constructed so that it processes in different structures the information related to different 
geometrical figures. The findings of the present study are in line with the results of 
previous research work which have empirically shown that experiences related to a 
specific domain are embedded into common structures (Demetriou, 1998; Demetriou 
2004; Demetriou & Panaoura, 2006).

Multiple group analysis results provided support for the invariance of the structure 
described above across the three age groups of students who participated in the study, as 
well as equality constraints related to the factor describing students’ ability to work with 
3D geometrical figures. These results indicate that the basic structure of students’ 
abilities to manipulate different geometrical figures begins to be built from the upper 
classes of elementary school and remains the same until the end of the second year of 
secondary school. Additionally, the result indicating lack of differences across the three 
age groups of students on the factor describing their performance in tasks involving 3D 
geometrical figures means that students’ learning experiences in geometry lessons do 
not result in obvious differentiation of their corresponding abilities. The specific finding 
is in line with the results of a long-term research started by Hejný and Jirotková 
showing that the structure related to solids is built in students’ minds mainly through 
visual and tactile perception and depends mostly on their life experience rather than the 
school mathematics curriculum and geometry classroom teaching (Jirotková & Littler, 
2005).

The present study has extended research literature on students’ geometrical performance 
providing, through the proposed model, a framework of students’ performance in tasks 
involving different geometrical figures. This framework provides a theoretical 
foundation for curriculum designers and for assessment programs in geometry 
education. It also provides teachers with useful background on students’ geometrical 
reasoning. Accordingly, further research is needed to evaluate the viability of using the 
proposed framework for informing geometrical instruction in regular classroom 
situations.

A concluding remark. In classrooms students have the opportunity to learn. But ‘the 
opportunity to learn’ may be conceived of as having two major dimensions: (a) the 
amount of exposure, which includes enrolment, rate, and length, and (b) the quality of 
exposure, which includes intensity and accessibility (Kilgore & Pendleton, 1993). It is 
obvious that teachers and students make decisions about these two dimensions. Further 
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research is needed to investigate how these dimensions affect students’ geometrical 
performance and abilities.
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Appendix: Examples of the tasks used in the study

        

Task involving 2D geometrical figures

Task involving net-representations of 
geometrical solids

Task involving 3D geometrical figures
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Abstract

This study extends our previous study on proportional reasoning and explores students’ 
behavior on the solution of proportional and non-proportional situations that respond 
to the routine proportionality and meta-analogical awareness aspect of proportional 
reasoning, respectively. This was impelled with the help of two written tests involving 
the recognition and handling of proportional and non-proportional situations, that were 
administered to elementary and secondary school students from Grade 5 to Grade 9.
The results indicate a great discrepancy in students’ achievement scores at the two 
aspects of proportional reasoning, indicating their different nature. A more thorough 
analysis of students’ responses at the items of the two aspects revealed that,
irrespectively of their age group, students handled certain tasks similarly but due to the 
application of different solution strategies. 

Introduction

From very early, proportionality has been proved to be a universal mathematical 
tool of explaining and mastering phenomena in different fields of human activity 
(Freudenthal, 1973). Proportionality’s fundamental importance for everyday life
resulted in early systematic attempts towards the definition of the concept. Today 
however, gaps appear in defining those elements that are directly connected with the 
ability to use proportions and therefore apply proportional reasoning (Lamon, 1999).

Proportional reasoning is much more complex than often thought (Tourniare & 
Pulos, 1985), something that makes even more difficult the adequate elaboration of the
term “proportional reasoning”. In most of the cases, the way that the concept of 
proportional reasoning is being perceived is indirectly implied through the tasks that are 
included in relevant researches (Misailidou & Williams, 2003), as well as in 
mathematical textbooks. We can assume that the majority of textbook examples and 
tasks used by researchers constitute the image of the concept of proportionality which is 
not formally defined but learned to be recognized through experience and usage in 
relevant contexts (Tall & Vinn, 1981). In particular, proportional reasoning has been 
traditionally considered synonymous with the ability to solve proportional missing-
value problems (Cramer, Post, & Currier, 1993). Therefore, missing-value problems 
have been naively assumed to provide a valid measure of proportional reasoning.
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However, recent research on the illusion of linearity (De Bock, Verschaffel, & 
Janssens, 1998; Modestou & Gagatsis, 2007; Van Dooren, De Bock, De Bolle, 
Janssens, & Verschaffel, 2003) suggests that this typical approach of proportional 
reasoning is not accompanied with understanding of the concept of proportion itself. 
Pupils, irrespective of age, even though succeeding in solving typical proportional 
problems, fail to distinguish between proportional and non-proportional situations (De 
Bock et al, 1998; Modestou & Gagatsis, 2007). Consequently, an illusion of the 
existence of linearity is created in pupils, resulting in the erroneous use of proportional 
strategies for the solution of non-proportional situations.

Therefore, a proportional thinker cannot be identified as someone who can 
mechanically solve a proportion (Cramer et al., 1993). In fact the wide use of rote 
algorithms, such as the cross multiplication, or even primal additive solution methods, 
indicates that not all persons who solve correctly a problem involving proportions 
necessarily use proportional reasoning (Lesh, Post & Behr, 1988; Lamon, 1999). On the 
contrary, it is the ability to decide whether a problem is being solved by applying direct 
proportion, inverse proportion, additive reasoning or any other numerical relationship 
that is essential for proportional reasoning (Karplus, Pulos & Stage, 1983).

Consequently, the implicit model that considers proportional reasoning as identical 
with the ability to solve routine proportional problems does not prove to be adequate. In 
fact new research on proportional reasoning (Modestou & Gagatsis, in press) has shown 
that proportional reasoning is not a one component process but encompasses wider and 
more complex spectra of cognitive abilities and it can be described better by a three-
aspect model. In this model, the aspect of routine proportionality, representing the 
ability for solving routine proportional tasks has still an indispensable part, but the 
model is completed with the inclusion of two other aspects. These aspects refer to the 
handling of verbal and numerical analogies of the form a:b::c:d (analogical reasoning), 
as well as to the awareness of discerning non-proportional situations (meta-analogical 
awareness).

The present study expands on the data of the research of Modestou and Gagatsis (in 
press) by focusing on the way primary and secondary school students handle the 
proportional and the non-proportional tasks that were used to measure the different 
aspects of the presented model of proportional reasoning. In particular, the main aim of 
this study is to explore students’ behavior while handling proportional reasoning tasks, 
by means of finding similarities or disparities between different ages and between tasks 
themselves. This exploration does not take into account only students’ achievement 
scores in the different tasks but also the strategies applied for the solution of each task.

Theoretical framework

Throughout the literature the ability to construct and algebraically solve proportions 
is implicitly considered as a fundamental component of proportional reasoning (Lamon, 
1999). This aspect of proportional reasoning includes second-ordered relations that 
involve an equivalent relationship between two ratios (Demetriou, Platsidou, Efklides, 
Metallidou, & Shayer, 1991). The existence of a relation between two relations and the 
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recognition of this structural similarity is according to Piaget (Piaget & Inhelder, 1958) 
the essential characteristic of proportionality. Every proportional relation involves the 
same pattern of relations or operations and the components are multiplicatively related 
(Lesh et al., 1998). It can be represented graphically by a straight line passing through 
the origin and therefore, at the same time refers to the linear function of the form f(x) = 
ax (with a≠0) (Van Dooren et al., 2003).

Vergnaud (1983) suggests that there is essentially one situation model involved in 
the understanding of simple proportional relationships: the isomorphism of measures 
model.  In this model, parallel transformations can be carried out within or between the 
variables-measures maintaining their values proportional.  These transformations reflect 
the different methods-strategies that can be used to solve the problems and indicate the 
type of comparison preferred by the pupils (Karplus et al., 1983). For example, consider 
the following problem: “If 5 pencils cost 40 cents, how much do 15 pencils cost?”. 
There are two measure spaces in this problem: The first one contains the set of the 
cardinalities of the two sets of pencils and the other contains the cardinalities of the two 
sets of cents. The within measures strategy compares the number of pencils to the
number of pencils and the amount of money to the amount of money. These two
relations form the ratios 5/15 and 40/x. The between measures strategy compares the 
number of pencils to the corresponding amount of money and form the ratios 5/40 and 
15/x.

Proportional tasks can also be assigned to different categories according to their 
linguistic structure. The basic linguistic structure for problems involving proportionality 
is that of missing-value, like the one given above, which is presented with three 
numbers a, b, and c and the task is to find the unknown x such as a/b=c/x (Tourniare & 
Pulos, 1985). However, this format is not always accompanied with multiplicative 
solution methods, as numerous pupils are inclined towards using primitive additive 
strategies. In addition, the missing-value format has been linked with pupils’ tendency 
to use the mnemonic “cross-multiply” rule, which in most cases precludes the use of 
proportional reasoning (Lest et al., 1988; Lamon, 1999). This rule is especially popular 
in Cyprus, as it is formally presented through 6th and 8th Grade mathematic textbooks. 
In addition to the cross multiplication strategy, Cypriot students use also “the rule of 
three”, according to which, in order to solve a missing-value proportional problem one 
just had to multiply the second quantity presented in the problem with the third one and 
divide it by the first.  Therefore, the connection between the missing-value format and 
mechanical methods for solving proportional tasks is something well cultivated in 
Cyprus. 

The comparison tasks, a different kind of tasks for studying pupils’ proportional 
reasoning, are not accompanied with the “problem” of the application of a rote rule, but 
are more rarely used. These tasks are presented with four numbers a, b, c, and d and 
pupils are asked to determine whether they form a proportion. For example, a 
reformulation of the previous missing-value task into a comparison task would be: “A 
set of 5 pencils cost 40 cents. A set of 15 pencils cost €1.10. In which set the pencils are 
cheaper?”.
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The missing-value format is not only associated with the application of superficial 
rote rules in proportional tasks. Greer (1997) points out that multiplicative missing-
value structure is also connected with the inappropriate invocation of proportionality, as 
a result of an unconscious reaction to linguistic form. In fact recent research on the 
phenomenon of the illusion of linearity has shown that students, irrespective of age, fail 
to distinguish between proportional and non-proportional situations with similar 
linguistic characteristics. Thereafter they handle the non-proportional situations as 
proportional, by applying the same strategies. 

We can claim that this behavior indicates students’ lack of a fundamental aspect of 
proportional reasoning that lies in the success of analyzing the quantities in a given 
situation in order to establish whether or not a proportional relation exists (Karplus et 
al., 1983; Lamon, 1999). This aspect defined as meta-analogical awareness (Modestou 
& Gagatsis, in press) is closely related with the illusion of linearity as it refers to the 
awareness of situations which appear proportional but are not. For example, students’ 
response that a five year old boy of 83cm of height will be 1.66m when he gets to the 
age of ten is characteristic of this lack of meta-analogical awareness and consequently 
of the illusion of linearity. Students fail to determine the non-proportional nature of the 
task and therefore apply proportional strategies for its solution, without taking into 
consideration its realistic constrains.

Another well known example, indicating students’ limited meta-analogical 
awareness appears in the field of geometry and it concerns relations between the side’s 
length and the reduced or enlarged figure’s area or volume. Different studies (De Bock 
et al., 1998; Modestou & Gagatsis, 2007; Van Dooren et al., 2003) have revealed that 
the majority of students (even 16 year old) fail in handling non-proportional problems in 
this field because of the created  “illusion” that the area and volume of a geometrical 
figure is enlarged x times when the dimensions are enlarged x times. These tasks are 
included in the study of the meta-analogical awareness aspect of proportional reasoning.

Method

Participants

The sample of the study consisted of 982 students of Grades 5- 9 (10-14 year olds) 
of different elementary and secondary schools covering all provinces of Cyprus. In 
particular, 184 students attended the 5th Grade, 199 the 6th Grade, 221 students the 7th 
Grade, 186 the 8th Grade and the remaining 155 students attended the 9th Grade. These 
grades were chosen as suitable for the study as they enable the study of students’ 
transition from elementary to secondary education and at the same time mark the end of 
the mandatory education in Cyprus. Therefore, it was indented to explore the way 
students’ proportional reasoning is reflected between ages that students are obliged to 
change scenery in education.

Test Batteries

The items used in this study addressed the routine proportionality and meta-
analogical awareness aspects of proportional reasoning. These items were organized 
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into two tests that included tasks addressing both aspects, in order to avoid any possible 
influence of the task category on the participants. It must be noted here that one could 
claim that even though a pupil proves able to discern proportional from non-
proportional items will not necessarily discern them in all cases. Although this is 
possible, the whole design of this study is based on the fact that the items used in tests 
provide clear indications for students’ abilities in the two different aspects of
proportional reasoning.

Table 1: Example of the Items Included in Test I –Direct Measures

Part A

Cod.
st1-st6

“If a 9 year-old boy is 1.23m tall then at his 18th birthday will be 2.46m”
The statement is correct/incorrect, because…………………………………

Complete only if the statement is incorrect

Can the statement be corrected by changing only one number? If yes, in 
what way? If no, explain why………………………………………………

(Lamon, 1999)
Part B

Cod.
pmv1-
pmv3

 Recipe for chocolate cake for three
120g chocolate

9 spoons of cream
3 eggs

4 spoons of coffee liqueur
4 spoons of sugar

“Mother wants to bake the cake for four persons instead of three. How 
much sugar will she need?” 

(Misailidou & Williams, 1998)
Part C

Cod.
pc1-pc3

 “John makes concentrate by using 6 spoonfuls of sugar and 12 cups of 
lemon juice. Mary makes concentrate by 4 using spoonfuls of sugar and 7 
cups of lemon juice. 

John/ Mary has the sweeter lemonade because…………………………
In order both children have the same lemonade…………......…………

(Karplus et al., 1983)

The first test (Test I) consisted of three parts that required students to:  
(a) Recognise if a statement is correct or not and to change it, if possible, in order to 
become mathematically acceptable. Six statements were included in this section, each of 
which included four quantities. The relation between these quantities was proportional 
(proportional statements) or constant, additive or unknown (non-proportional 
statements). The four non-proportional statements were formulated in such a way that 
they could easily mislead pupils to treat them as proportional and therefore state that 
they are correct (see for example Table 1, part A). Therefore, in order to handle these 
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tasks pupils should have been able first to discriminate the proportional from the non-
proportional statements and then correct them if possible.   

(b) Solve proportional missing-value tasks which were given in the context of a cake 
recipe that needs to change in order to be suitable for more persons (see Table 1, part B) 
and 

(c) Solve proportional comparison tasks that concerned the sweetness of two lemonades 
(see Table 1, part C). In sections (b) and (c), the proportional missing-value and 
comparison tasks were direct, in the sense that the relation between the two quantities in 
each task was directly proportional (Van Dooren et al., 2003).   

The second test (Test II) comprised four proportional and four non-proportional 
tasks that were also presented in a missing-value and comparison format (see Table 2). 
These tasks were geometrical. That is, the proportional tasks referred to the linear 
enlargement of the perimeter of rectangular and circular figures and the non-
proportional tasks referred to the square enlargement of the area of respective figures. 
All the tasks involved indirect measures for indicating the perimeter and the area of the 
figure (Van Dooren et al., 2003). For instance the ribbon that was going to be sewed 
around a tablecloth was used as an indirect measure of perimeter, while the paint for 
covering the interior of a picture was used as an indirect measure for area. 

Table 2: Example of the Items Included in Test II –Indirect Measures

Missing- value format
Non-proportional
Area                             
Cod. npmv1, npmv2

If 8ml of paint are needed in order to fill the inside of a 
square picture with 4cm of length, how much paint is 
needed for an enlargement of the same picture with 
12cm of length?

Comparison format 
Proportional
Perimeter

Cod. ppc3, ppc4

Ann needs 5 minutes in order to sew a ribbon around a 
square towel of 30cm length. She calculated that it will 
take her 30 minutes to sew the same ribbon around a 
square tablecloth of 180cm of length. Are Ann’s 
calculations correct? If not, how much time will she 
need for the tablecloth? 

Methods of data analysis 

Students’ answers to the tasks of the tests were not simply codified as correct or 
wrong. On the contrary, depending on the degree and the way each student handle each 
task, a different mark could be assigned ranging from 0 (wrong answer) to 1 
(completely correct answer). The in-between marks were 0.25 (presenting a number 
with no justification), 0.5 (conducting one from two steps) and 0.75 (indicating correct 
reasoning but with errors in the application of the procedure). It must be noted that the 
explanations given in brackets are indicative and were adjusted depending on the task 
itself. 
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For the analysis of the collected data two different analyses were conducted: An 
Implicative Statistical Analysis, with the use of the computer software CHIC (Bodin, 
Coutourier, & Gras, 2000) and a Multivariate Analysis of Variance (MANOVA).  The 
multivariate analysis of variance (MANOVA) was performed to specify the possible 
influence of students’ age on their performance on tasks representing different aspects 
of proportional reasoning. 

The implicative statistical analysis enables the distribution and classification of 
variables, as well as the implicative identification among the variables or variable 
categories (Modestou & Gagatsis, 2007). It generated two similarity diagrams of 
students’ responses at the tasks of both tests, referring to the two different aspects of 
proportional reasoning, examined here.  The similarity diagram, which is analogous to 
the results of the more common method of cluster analysis, allows the arrangement of 
the tasks into groups according to the homogeneity by which they were handled by 
students. 

Results

The results of this study are organised into two parts based on the method of 
analysis they derived from. The first part focuses on an exploration of students’ 
achievement scores at the tasks included in the two aspects of proportional reasoning 
described in previous sections, in relation to grade. The second part deals with possible 
similarities in the way students handled the different tasks, similarities that cannot be 
derived only through the study of students’ success percentages at the different tasks.

Exploration of the routine proportionality and meta-analogical awareness aspect of 
proportional reasoning in relation to grade

Routine proportionality aspect. Pupils’ mean achievement scores in the four 
categories of proportional tasks did not differentiate in the same way in relation to 
pupils’ age (see Figure1). A multivariate analysis of variance was used with dependent 
variables pupils’ mean achievement scores at the categories of the missing-value 
proportional tasks with direct measures, comparison proportional tasks with direct 
measures, missing-value proportional tasks with indirect measures and comparison 
proportional tasks with indirect measures. This analysis was applied in order to examine 
whether the observed differences between the five age groups were statistically 
significant. Pupils’ grade was used as an independent variable. The results of the 
analysis showed that statistically significant differences exist (Pillai’s F(4,937) = 11.52, p 
< .001) between the five age groups for the different categories of proportional tasks.
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Figure 1. Students’ mean achievements scores at the proportional tasks (routine
proportionality aspect)

The polynomial contrast post hoc analysis revealed the grades amongst which 
statistically significant differences exist for the categories of the proportional tasks with 
direct and indirect measures. Pupils presented statistically significant improvement on 
all proportional tasks presented with direct measures when passing from Grade 5 to 
Grade 6(tmv=5.25, p<.001; tc=4.08, p<.001), as well as when passing from Grade 7 to 
Grade 8(tmv= 2.43, p<.05; tc=2.39, p<.05). Similar results were observed and in the case 
of the proportional tasks with indirect measures. In particular, students’ mean 
achievement scores in the missing value tasks were improved when passing from Grade 
5 to Grade 6 (tmv=2.00, p<.05), as well as when passing from Grade 7 to Grade 8(tmv= 
2.71, p<.01). However, in the case of the comparison tasks with indirect measures 
statistically significant improvement was observed only among Grade 7 and Grade 8 
(tc=2.39, p<.05).

These results provide strong indications of the fact that students’ ability to solve 
routine proportionality tasks is affected by teaching. In fact all the statistically 
significant improvements of students’ mean achievement scores can be explained if we 
considered the fact that 6th and 8th graders receive systematic teaching in proportional 
relations through mathematics’ textbooks. This teaching is in its majority based on 
solving similar proportional tasks with the use of mechanical strategies, something that 
can justify 6th and 8th graders better performance compared to 7th and 9th graders, 
respectively.

Meta-analogical awareness aspect. The majority of the non-proportional tasks 
referring to the aspect of meta-analogical awareness created substantial difficulties to all 
pupils, irrespectively of their grade, compared to the proportional tasks of the routine 
proportionality aspect (see Figure 2). Within this aspect of meta-analogical awareness 
pupils’ achievement scores in the categories of the non-proportional items with indirect 
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measures and of the non-proportional statements appeared to be static in all grades of 
the elementary school (Grade 5 and 6) as well as the first two grades of the secondary 
education (Grade 7 and 8).  An improvement was only observed in the achievement 
scores of the 9th Grade. The results of the multivariate analysis of variance showed the 
age groups for which statistically significant differences exist (Pillai’s F(4,937) = 13.72, 
p < .001) for the tasks belonging to the aspect of meta-analogical awareness.

Figure 2. Students’ mean achievements scores at the non-proportional tasks (meta-
analogical awareness aspect)

The polynomial contrast post hoc analysis showed that in the case of the 
proportional statements statistically significant differences exist only at students’ 
transition from 5th to 6th Grade (tp=2.72, p<.01.). On the contrary, in the case of the non-
proportional tasks statistically significant differences were mostly observed amongst the 
8th and 9th Grade for both tasks that involve the recognition of the non-proportional 
statements (tnpst=4.92, p<.001), as well as the solution of the non-proportional situations
presented either in a missing value (tnpmv=3.97, p<.001) or a comparison format 
(tnpc=6.10, p<.001). These patterns may suggest that the meta-analogical awareness 
aspect of proportional reasoning begins to develop only by the end of the compulsory
secondary education.

Exploration of the relations among the tasks of the different aspects of proportional 
reasoning revealed by the implicative statistical analysis

A different analysis by means of the computer software CHIC (Bodin, et al., 2000) 
was conducted in order to provide insights regarding the relations between the tasks 
themselves. These relations are revealed by the formulation of different groups of tasks, 
in respect to students’ way of handling these tasks. Figure 3, illustrates the similarity 
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1 2 3

diagram of all proportional and non-proportional tasks included in Tests I and II, for 
Grades 5 and 6 (elementary education).  Students’ responses at each task form the 
different variables. All the statistically significant relations are indicated with a thick red 
line.
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Figure 3. Similarity diagram amongst the routine proportionality and meta-analogical 
awareness tasks, handled by 5th and 6th graders of the elementary education.

Students’ responses to the tasks form two clusters (i.e., groups of variables) of 
similarity, where the smaller one (B) consists only of the two proportional comparison 
tasks of Test I that reefer to the sweetness of lemonade (pc2, pc3). The third comparison 
task of the same category (pc1) is part of the first and larger sub-cluster of similarity 
(A1). This sub-cluster consists of elementary school students’ responses at the 
proportional missing-value tasks (pmv1, pmv2, pmv3) of Test I, at the non-proportional 
tasks (npc1, npc2, npmv1) of Test II and finally at the proportional statements of Test I 
(st2, st6). In this sub-cluster of similarity the stronger relations lie among tasks pmv1, 
pmv2 and pmv3, where the statistically significant similarity index of 1 indicates that 
elementary school students handled these tasks as identical, irrespectively of the 
existence of an integer or a non-integer ratio among the quantities.

In particular, the majority of the 5th and 6th graders that successfully solved the 
specific tasks applied the unit-rate strategy. This strategy constitutes the factor 
contributing the most at the formation of the specific sub-cluster. This is something very 
much expected if we consider the fact that this is the strategy emphasized the most in 
elementary school teaching, and in the respective mathematical textbooks. According to 
this strategy, in order to determine the total unknown quantity you divide the total given 
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quantity by the quantity per unit to obtain the number of units and then multiply the 
number of units by the corresponding quantity per unit (Christou & Pilippou, 2002). 

Very strong similarly relations are also observed in the second sub-cluster of 
similarity (Α2) which  is formed by students’ solutions at the indirect proportional tasks 
of Test II (ppmv3, ppmv4, ppc3, ppc4). The statistically significant relations indicate 
that students’ solutions were not affected by the linguistic formulation of the tasks 
(missing-value and comparison) and handled the tasks similarly. In fact for the solution 
of these tasks the majority of students preferred the application of a within measures
strategy. This strategy is based on finding the ratio between the quantities of one
measure and then applying it to the other measure in order to find the unknown 
quantity.

It must be noted here that the within measures strategy also reflected students 
handling of the non-proportional items (sub-cluster A1). This provides a clear indication 
of students’ inability to discriminate these non-proportional situations and apply proper 
strategies for their solution. Elementary school students’ responses at the non-
proportional statements of Test I (st1, st3, st4) did not participate in the formation of the 
same similarity cluster as the non-proportional items. These statements constituted a 
different similarity sub-cluster (A3), something that indicates that elementary school 
students could not eliminate the specific characteristics that made all the items 
belonging to the meta-analogical awareness aspect of proportional reasoning, similar.

When applying the same method of analysis to secondary students’ responses at the 
same tasks, similar clusters of similarity arise, but due to the application of different 
strategies (see Figure 4). One large cluster of similarity is presented which is formulated 
by five similarity sub-clusters. These sub-clusters include exclusively either 
proportional (Clusters 1, 3, 4, 5) or non-proportional tasks (Cluster 2), but not a 
combination of both. In particular, Cluster 2 is formed by all tasks related with the 
meta-analogical awareness aspect of proportional reasoning. These tasks include the 
recognition of the non-proportional statements (st1, st3, st4) as well as the solution of 
non-proportional tasks presented either in a comparison (npc1, npc2),  or missing-value 
format (npmv1, npmv2). The grouping of these tasks indicates that students’ handled 
the non-proportional tasks in a similar manner irrespectively of the context that were 
presented, recognizing their common non-proportional character. In particular, this 
similar handling lies in the application of a correct strategy for the solution of the non-
proportional situations. According to this strategy, students solved the non-proportional 
items with indirect reference to the area, by first finding the area of the given shape and 
then applying direct proportionality in relation the known measure (i.e. side’s length).

This however, is not the case with the tasks belonging to the routine proportionality 
aspect of proportional reasoning. These tasks are grouped into four different similarity 
clusters based on their linguistic and context formulation. In particular, Cluster 4 is 
created by students’ responses at the two proportional statement items (st2, st6). Cluster 
1 is formulated by the direct missing-value proportional tasks of Test I (pmv1, pmv2, 
pmv3), whereas Cluster 3 is formed by secondary school students’ responses to the 
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respective direct comparison proportional tasks of Test II (pc1, pc2, pc3). In the case of 
the indirect proportional tasks of Test II (ppmv3, ppmv4, ppc3, ppc4), their linguistic 
formulation into comparison and missing-value tasks did not affect students’ way of 
handling. Therefore, these tasks are included in the same similarity cluster (Cluster 5) 
with a very high similarity index (0.9859). Behind the formation of these clusters of 
similarity with proportional items (Clusters 1, 3 and 5) lies the application of the cross 
multiplication strategy, a strategy widely used in the secondary education and especially 
in the 8th Grade.
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Figure 4. Similarity diagram amongst the routine proportionality and meta-analogical 
awareness tasks, handled by 7th, 8th and 9th graders of the secondary 
education. 

When we compare the two similarity diagrams (Figures 3 and 4), deriving from 
the responses of elementary and secondary students respectively, we find a lot of
common elements. In fact all the similarity sub-clusters described above can be found 
both in elementary and secondary education but in different places and with different 
connections between them. This however does not indicate that elementary and 
secondary school students handled these tasks in the same way. Behind the same sub-
clusters of similarity lie different factors in the elementary and secondary education that 
affected students in handling certain tasks in the same way. These factors are the 
different strategies that students applied for solving the items included in both Tests. 
Therefore, while in the elementary school the factors contributing the most to the 
formation of the proportional clusters of similarity are the within measures and the unit-
rate strategy, in the secondary education students prefer the cross-multiplication 
strategy. In the case of the similarity clusters with the non-proportional items, 
significant differences arise as their similar handling by elementary school students is 
due to the application of an improper proportional strategy due to students’ inability to 
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discriminate them from the proportional ones. One the other hand in secondary 
education, students, especially in the 9th Grade, begin to recognize the non-proportional 
situations and therefore apply proper strategies for their solution.

Discussion 

The main aim of the present study was to explore students’ behavior while 
handling proportional reasoning tasks referring to two different aspects of proportional 
reasoning, the routine proportionality and meta-analogical awareness aspects. This was 
achieved by means of finding similarities or disparities between different ages and 
between tasks themselves. The results confirmed the great discrepancies in students’ 
achievements scores in tasks belonging to different aspects of proportional reasoning, 
irrespectively of students’ grade (De Bock et al, 1998; Van Dooren et al., 2003). In fact 
pupils’ achievement scores at the non-proportional tasks were extremely low compared 
to their respective performance at the tasks of the routine proportionality aspect, 
especially at Grades 5, 6, 7 and 8. The implicative statistical analysis also revealed that 
especially in the case of the elementary school, students handled the non-proportional 
items in the same way as proportional by erroneous applying the same proportional 
strategies. 

These results confirm previous arguments (Modestou & Gagatsis, 2007) 
according to which pupils’ ability to handle non-proportional situations, and therefore 
their meta-analogical awareness, is influenced by the epistemological obstacle of 
linearity. This obstacle is not a difficulty or a lack of knowledge but it occurs because of 
the appearance of the concept of linearity. Linearity produces responses which are 
appropriate within the context of proportional situations but outside this context, in the 
case of non-proportional situations that are included in the meta-analogical awareness
aspect, it generates false responses (Modestou & Gagatsis, 2007). Consequently the 
aspect of meta-analogical awareness is attained with a more epistemological character 
and it begins to appear only by the end of the compulsory secondary education.

When dealing with the proportional tasks of the routine proportionality aspect of 
proportional reasoning, students displayed a rather bazaar behavior. Students’ mean 
achievement scores even though improving significantly from grade to grade, they 
decreased when passing from Grade 6 to Grade 7 and from Grade 8 and Grade 9. This 
can be considered as a result of the systematic teaching that 6th and 8th graders receive in 
proportional relations.  In fact students in these grades become expert in solving 
proportionality problems quickly and accurately with the help of automatized 
procedures. In Grade 6, students focus on the use of the unit-rate strategy whereas in 
Grade 8 on the application of the cross multiplication strategy. Therefore, students 
apply the same exclusive strategy for the solution of all the proportional tasks 
depending from the grade they study in and the strategies taught in that grade. 

However, the exclusive use of one strategy (i.e. unit rate in elementary school 
and cross multiplication in secondary education) without a meaningful understanding of 
multiplicative reasoning becomes a procedurally oriented operation that disembodies 
from students’ initial sense making of proportional reasoning. Students’ expertise is 
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proved to be only routine and not adaptive as it was not accompanied with 
understanding of how and why procedures work and how these procedures can be 
modified to suit the constrains of a problem (Hatano, 1988). Therefore, the rote use of 
these automatized procedures appears to be responsible for the occurrence of high 
achievement scores in these grades that do not represent pupils’ real abilities in solving 
proportional tasks. These results show that the teaching of mathematics is not a simple 
transfer relation from the teacher to the student. The students in the 7th and 9th Grade 
disregard in some degree the mechanical strategies being taught in earlier years and use 
primal additive strategies, being this way more prone to mistakes (Modestou & 
Gagatsis, in press). Therefore, it is evident that the aspect of routine proportionality is 
affected by teaching together with age, factors that do not affect in the same way the 
meta-analogical awareness aspect of proportional reasoning.
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Abstract
This paper aims to examine if the undergraduate students of the Department of

Education, University of Cyprus, are able to transfer their mathematical knowledge and 
to contextualize it in everyday life.  More specifically, their ability to connect the 
mathematical concepts of direct and inverse proportion with everyday life examples was 
investigated. Generally speaking, the results show that it is not easy for the students to 
make connections between mathematical concepts and real life and that knowing the 
mathematical concept itself is not sufficient to enable connections. It was evident that 
prospective teachers propose a limited range of everyday examples for proportional 
situations and they consider many situations that are not proportional as being 
proportional.

Introduction
A modern tendency in mathematics teaching is the effort to bridge the gap between 

school mathematics and everyday life mathematics. Therefore, innovative curricula
have been applied internationally, for example Standards 2000 in the U.S.A, Numeracy 
program in England, Realistic Mathematics in Holland, Everyday Mathematics in the 
University of Chicago (Isaacs, et al., 1998), “Nature and Life Mathematics” in Greece, 
(Lemonidis, Ch., 2005) etc.

This new perception of Mathematics teaching according to which a greater 
connection between school Mathematics and everyday life situations, student’s 
experiences and preexisting knowledge should exist, teachers are expected to have 
certain skills. They should be able to make connections between school mathematics 
and real life mathematics. In a constructivist and discovery-orientated teaching, where 
we move from concrete to abstract, what usually happens is the decontextualization of
empirical situations and, by means of successive abstractions, a movement towards
formal mathematical concepts which are the lesson objectives. A necessary condition to 
reach these objectives is the teacher’s ability to contextualize mathematical concepts 
that he/she already knows. That is to say he/she is able to find and select the suitable 
applications to teach the mathematical concepts of a lesson.

There is limited research concerning teachers’ or future teachers’ abilities to 
transfer mathematical knowledge in real contexts.  

A case concerning the education of future schoolteachers within the frame of 
“Nature and Life Mathematics” is presented by Lemonidis (Lemonidis Ch., 2005). The 
conclusions drawn in that paper indicate that the connections between mathematical



C. Lemonidis

164

concepts and everyday situations are not made automatically by the prospective 
teachers. A special intervention is essential, so that they become able to use richer and 
more profound activities from everyday routine when teaching. In this paper I try to 
examine the ability of prospective teachers to transfer and to connect the mathematical 
concept of proportional and inversely proportional quantities with applications in 
everyday life.

Theoretical background

    The issue of transfer of learning, from a psychological, sociological and educational
point of view, has recently been debated in the research community, but important 
aspects concerning the process of transfer of learning itself in relation to everyday life 
and realistic situations have not been clarified. Many researches about the importance of 
transfer of learning in different contexts have been conducted. However, according to 
the research, the way the transfer process works and the ways it can emerge and be 
facilitated are not found yet (Royer et al, 2005). 

Moreover, there is only limited research that examines the transfer of knowledge 
in general, and in mathematics in particular, from the school class in everyday life 
situations or vise versa (Pugh and Bergin, 2005).

This transfer can take the following forms: Use of a school subject (eg. 
mathematics) in a different context (e.g. physics or economics), application of 
knowledge from a pedagogical context (e.g. school) in workplace or everyday life, 
harnessing of out of school activities to facilitate learning in school.   

From a cognitive point of view, transfer is defined by Hammer et al. (2005) and 
other researchers, as the knowledge/capability that an individual acquires in a certain
context and the transfer of this knowledge/capability in another context. Evans (2000, p. 
5) agrees with this definition and he mentions that the transfer is the use of ideas and 
knowledge from a context (region or field) in another.
      Researchers who are interested in a re-development of the idea of transfer or in the 
development of different mechanisms in order to explain the obvious continuity of in 
and out-of school experience, tend to shift the responsibility of the process of transfer 
from the individual and transmit it to the communities (Boaler, 1993, reference in 
Lobato and Siebert, 2002).    

Placing emphasis in this point, in the effect of the social and cultural environment, 
it is remarkable that this effect seems to be more intense when it is about the transfer of 
mathematical knowledge and skills to out-of-school situations, everyday life or vise 
versa (Stanic and Lester, 1989). Often, in real life situations, the individuals understand
mathematical concepts and use mathematical processes in a different way than taught 
and learned at school (Stanic and Lester, 1989: Masingila et al., 1996).

According to Masingila et al. (1996) there should be a constant interaction between
in and out-of school mathematical experience, in order to bridge the gap that keeps apart 
classroom practices and everyday life. Boaler (1993) as well as Stanic & Lester (1989)
agree with Masingila et al. and add that maths should have a special important meaning 
for children, so as to solve the problem of transfer and to bridge the gap between school 
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and real life. Schoenfeld (Hung, 2000) claims that the knowledge on how to use maths 
also includes understanding the meaning of real life situations. Moreover, Lemire
(2002), despite his previous opposition, points out that since mathematics are taught at 
school, it should be taught properly, incorporating mathematical theory into the real 
world students live in.

What seems to be even more necessary, according to Masingila et al. (1996), is the 
process of transfer from school teaching into real life, as they mention that the 
individuals need the school experiences, but even more outside of it, in everyday life, in 
order to help learning have real meaning.  Fuchs et al. (2002) agree and they stress that
children learn better when they comprehend and are aware of what they learn and why 
they learn it through real life situations.  

Primary and middle education curricula place great emphasis to the proportional 
relations that form a basic model with which we can easily and quickly approach 
various problematic situations. This model is the linear function f(x) = ax (where a≠0) 
which can mathematically describe any proportional relation. This linear model is used,
almost spontaneously, via various methods, in all situations that fulfil certain informal 
“conditions”, leading however to many errors. This happens because the linear model is 
so powerful that creates a hallucination that there exists a proportion in a problematic 
situation, without this being essentially right. This phenomenon of wide use of the linear 
model f(x) = ax to situations that are not proportional is mentioned in literature as
«illusion of linearity», «linear trap», «linear obstacle» or «linear misconception» (De
Bock, Verschaffel, & Janssens, 1998). 

Many researches have tried to examine and to face student’s tendency to handle not 
proportional problems as proportional. (Van Dooren, De Bock, Hessels, Janssens, and 
Verschaffel, 2005; Modestou & Gagatsis, 2007; Modestou, Gagatsis and Pitta-Pantazi, 
2004). 

The results of all these researches show that the linear model appears to be 
deeply rooted in the intuitional knowledge of students and to be used spontaneously,
making the proportional approach look natural and unquestioned (De Bock et al., 2002). 
Modestou (2007) claims that the linear model, as it intervenes in the solution of 
proportional problems, is an epistemological obstacle for handling pseudo-proportion 
and she proposes the concept of meta-proportional awareness, which has a 
metacognitive character and concerns the skill to distinguish and solve no-proportional 
situations.

The research

Aim

In this paper we would like to see teacher-students’ ability to transfer the proportional 
and inversely proportional quantities concept in real life and to mention examples of 
application. More precisely the questions posed are the following:   

1. Are the students capable to mention a variety of everyday life examples where 
the concepts of proportional and inversely proportional quantities are applied?    



C. Lemonidis

166

2. Do they make mistakes in the examples they mention? That is to say do they 
mention examples where the situations do not describe proportional quantities?  

3. Do they use a wide range of examples of everyday situations?   
4. Is it easier for them to mention examples of proportional rather than inversely

proportional quantities?  
5. Does the ability to transfer the proportion concept in real life contexts depend on

their mathematical knowledge or on their general performance in mathematics?

Methodology

During an official written intermediate student examination in mathematics course, the 
following exercise was given:  “You should mention all everyday life phenomena you 
know where proportional and inversely proportional quantities exist. In each of your 
examples of proportional quantities (apart from the cost, kilos, price of kilo) you should 
find the formula, the value table and the graph. In each example that you give you 
should describe the phenomenon precisely”. 

Seventy seven undergraduate students of 1st year from the Department of Sciences of 
Education participated in the research. Fifteen of them were boys and 62 were girls.  
The answers of students were recorded in Excel and were analyzed with SPSS.   

Results

Answers for proportional quantities 

Table 1: Right and wrong examples concerning proportional quantities

Number of 
right  examples

Frequency 
of students

Percentage 
%

Number of 
wrong 

examples

Frequency 
of students

Percentage
%

0 1 1,3 0 33 42,9
1 18 23,4 1 24 31,2
2 26 33,8 2 12 15,6
3 27 35,1 3 5 6,5
4 4 5,2 4 1 1,3
5 1 1,3 6 2 2,6

TOTAL 77 100,0 77 100,0

According to the table 1 presented above, less than half of the students (33 
students, 42,9%) give examples of proportion without making mistakes. When we say 
mistakes we mean examples in which the quantities mentioned are not really 
proportional. The majority of students mentions two or three right examples. The 
average of right examples is 2,23. Eighteen students (23,4%) mention a right example, 
26 students (33,8%) mention two right examples and 27 students (35,1%) mention three 
right examples.
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The errors  

Forty four students (57,1%) mention erroneous examples of proportion. The majority of 
these students mention one or two erroneous examples. The average of erroneous 
examples is 1,03. Twenty four students (31, 2%) mention an erroneous example, 12 
students (15,6%) mention two erroneous examples.

The variety of examples

The students mentioned a total of 173 right examples of proportional quantities in 
which 23 different types of examples existed. Four were the most popular examples, 
130 from the 173 that were totally given:  Forty one students (53,2%) mentioned the 
example “hours of work - wage”. Thirty eight students (49,3%) mentioned “quantity of 
products - price”. This was an example also mentioned in the instructions for the
exercise. Twenty nine students (37,6%) mentioned “travel distance - cost” and 22 
students (28,5%) mentioned “distance - time”. Generally speaking, we can say that the 
themes were very limited in the examples mentioned by the students. Very few students
mentioned examples from the area of geometry. The geometrical examples mentioned 
were: “increase of the side of a square or rectangle- increase of area”. In this example 
however the proportion is not described by the relation y=αx but y=α2x.

The students mentioned 79 wrong examples in which 58 different types of situations
existed. The errors the students made were usually pseudo-proportional situations, that 
is to say situations where the quantities were increased or decreased simultaneously but 
no proportionally. For example: Eighteen students (23,3%) mentioned “increase of 
demand - increase of cost”, 7 students (9%) “Increase of length of the side of a square or 
rectangle - increase of area”, 8 students (6,5%) “increase of quantity of food - increase 
of weight”.  We see that in the wrong examples of proportion the students use a wider 
variety of examples (58 types of examples in 79 answers) than they do in the right 
examples (23 types of examples in 173 answers). It seems that the students make 
mistakes easily when trying to give examples from everyday life that are different than
usual.

Answers for inversely proportional quantities 

Table 2: Right and wrong examples concerning inversely proportional quantities

Number of right  
examples

Frequency 
of students

Percentage 
%

Number of 
wrong examples

Frequency 
of students

Percentage
%

0  8  10,4 0 40 51,9
1 21 27,3 1 23 29,9
2 38 49,4 2 8 10,4
3 10 13 3 2 2,6

4 2 2,6
5 2 2,6

TOTAL 77 100,0 77 100,0
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In table 2 above we see that the 51,9% of students mention examples of 
inversely proportional quantities without being mistaken. Most students (38 students, 
49,4%) mention two right examples, 21 students (27,3%) mention one right example 
and 10 students (13%) mention three right examples. On average, they mention 1,65 
right examples of inversely proportional quantities. 

 The errors

Thirty seven students (48,1%) mention examples of inversely proportional 
quantities which are wrong. Most students that make a mistake mention one or two 
wrong examples. Twenty three students (29,9%) mention one wrong example and 8 
students (10,4%) mention two wrong examples.  Also 8 students (10,4%) cannot 
mention any example at all for inverse proportion.

The variety of examples

In total, the right examples of inversely proportional quantities mentioned by the 
students were 127, but there were only 9 different types of examples. Three were the 
most popular (118 out of 127): Fifty three students (68,8%) mentioned the example 
“Increase of car speed - reduction of time needed”. When the distance is the same. Forty 
eight students (62,3%) mentioned the example “Increase of number of workers -
Reduction of time to complete the work” and 17 students (22%) mentioned the 
geometrical example “Increase of length of the rectangle side - Reduction of width”. 
When the area remains the same. We therefore see that the majority of students propose 
very limited range of examples on the concept of inversely proportional quantities. 
These situations are limited in the three examples above.

There were 63 wrong examples, which included 50 different situations, while in 
the 127 right examples there were only 9 different situations. Therefore we could say 
that, for the inversely proportional as well as for the proportional quantities, students 
make lots of mistakes when they try to avoid the cliché  examples by giving their own 
examples from everyday life.  

The most frequent wrong situation mentioned by 17 students (22%), concerned 
the issue of offer and the price of products: “Increase of offer - reduction of product
price” or “Increase of product price- reduction of demand”. Certain other remarkable 
wrong examples are: “Increase of age - reduction of output”, “Increase of quantity -
reduction of quality”, “Increase of production - reduction of natural resources”, etc.

Comparison between examples of proportion and inverse proportion

The average of right examples of proportional quantities ([M]=2,23, SD=0,95) and 
inversely proportional quantities ([M]=1,65, SD=0,83) differ considerably (t=4,45 
DF=76, p=0,000 double size). That means that the students mention more examples of 
proportional quantities than of inversely proportional. It is also interesting that there is 
not cross-correlation between the student answers in the two tasks (proportional and 
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inversely proportional examples), (X2 = 1,73, DF=1, p=0,18). It seems that these two 
situations are not connected for the students.

Comparison between mathematical knowledge on proportion and the ability to create 
examples   

The ability of students to mathematically handle proportional quantities was examined 
by answering the following question:  

“For one of the examples with proportional quantities (apart from the cost, kilos, price 
of kilo) you should find the formula, the value table and the graph”.

At this mathematical task students performed really well: 92,2% of the students
wrote the right formula, 81,8% the value table and 89,6% the graph. 77,9% of the 
students gave the right answers for all three things (formula, table and graph). 
  We compare student success in the three mathematical tasks with the success in 
mentioning examples of proportional quantities (X2 = 0,51, DF=1, p=0,47), or with the 
success in mentioning examples of inversely proportional quantities (X2 = 0,79, DF=1, 
p=0,37), or with the simultaneous success in both proportional and inversely 
proportional quantities examples (X2 = 1,30, DF=1, p=0,25).  We can see that the 
performance of students in mathematical task is not connected with the success in 
mentioning examples of proportional or inversely proportional quantities neither with 
the success in finding examples of both situations.     
  According to the final semester evaluation in this mathematic course, where the 
intermediary examination but also the final examination was included, we divided 
students in two groups: in those that had good performance in the course and in those 
that did not.  

Below the final performance of students in mathematics is compared with: 
- the simultaneous success in the three questions of the mathematical task given 

(formula, table, graph) (X2 = 8,60, DF=1, p=0,003)   
- The success in mentioning examples of proportional quantities (X2 = 1,56, 

DF=1, p=0,21)  
- The success in mentioning examples of inversely proportional quantities (X2 = 

0,11, DF=1, p=0,73)  
- The simultaneous success in mentioning examples of proportional and 

inversely proportional quantities (X2 = 0,34, DF=1, p=0,55). 

It’s evident that there is a statistically important correlation between the final 
performance of students in the mathematics course and the success in answering the 
questions of mathematic task on proportion given to them. On the contrary there is not 
correlation between the performance of students in the mathematics course and the
success in finding examples of proportional or inversely proportional quantities as well 
as the simultaneous success in mentioning proportional and inversely proportional
quantities examples.  Based on these findings we can conclude that the ability of 
students to connect their mathematical knowledge on proportion with examples from 
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everyday life does not seem to correlate with their general ability in maths. That means 
that students who are good at mathematics and understand proportion are not supposed 
to be able to find right examples of proportion in real life. And vise versa, students that 
do not perform well in mathematics and in proportion are not supposed to be unable to 
find right examples of proportion in real life

Conclusion

  According to the results presented so far we can conclude that the sample of 
prospective teachers examined during their second year in university, cannot transfer the
concept of proportion and give examples from everyday situations, even if they are 
familiar and they understand proportion as a mathematical concept.  More specifically, 
these students when asked to provide with examples of everyday routine concerning
proportional and inversely proportional situations, they use very limited range of 
examples that are classic and taught. When they try to give their own examples from
everyday life they are mistaken by pseudo-proportion for proportional and inversely 
proportional quantities. This means that they consider proportional the quantities which 
are simply increased and decreased simultaneously and inversely proportional the 
quantities which are increased and decreased inversely.

   Students are capable to propose much more right examples of proportional 
quantities rather than inversely proportional. It seems that finding right examples of 
proportional quantities and inversely proportional quantities are not related situations 
for the students. Also not related situations seem to be, the students’ ability to 
mathematically handle proportion efficiently or to perform well in mathematics and the 
ability to find examples of proportional and inversely proportional quantities and to 
connect these concepts with the reality.     

This shows that prospective teachers of our sample have two unconnected abilities, 
mathematical knowledge on the one hand and application of this knowledge in reality
on the other. This means that the transfer of mathematical knowledge in reality is not 
easy.    

Teachers, when teaching mathematics, should be capable to transfer mathematical
concepts in real life, in rich and meaningful contexts for the students. Therefore 
prospective maths teachers should perhaps receive special teaching of many examples 
and applications of mathematic concepts in reality during their studies.
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Abstract
This paper reports on a small-scale study on primary school students’ problem-solving 
performance. In the study, problem solving is understood as solving non-routine puzzle-
like word problems. The problems require dealing simultaneously with multiple, 
interrelated variables. The study employed an ICT environment both as a tool to 
support students’ learning by offering them opportunities to produce solutions, 
experiment and reflect on solutions, and as a tool to monitor and assess the students’ 
problem solving processes. In the study, 24 fourth-graders were involved from two 
schools in the Netherlands. Half of the students who belonged to the experimental group 
worked in pairs in the ICT environment. The analysis of the students’ dialogues and 
actions provided us with a detailed picture of students’ problem solving and revealed 
some interesting processes, for example, the bouncing effect that means that the 
students first come with a correct solution and later give again an incorrect solution. 
The test data collected before and after this “treatment” did not offer us a sufficient 
basis to draw conclusions about the power of ICT environment to improve the students’ 
problem-solving performance.

Introduction

Problem solving is a major goal of mathematics education and an activity that can be 
seen as the essence of mathematical thinking (Halmos, 1980; NCTM, 2000). With 
problems tackled in problem solving typically defined as non-routine (Kantowski, 1977), 
it is not surprising that students tend to find mathematical problem solving challenging 
and that teachers have difficulties preparing students for it. Despite the growing body of 
research literature in the area (Lesh & Zawojewski, 2007, Lester & Kehle, 2003, 
                                                
1 Paper presented in TSG19 at ICME11, 6-13 July, 2008
Theme (d): Research and development in problem solving with ICT technology
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Schoenfeld, 1985), there is still much that we do not know about how students attempt 
to tackle mathematical problems and how to support students in solving non-routine 
problems.

In order to get a better understanding of Dutch primary school students’ 
competences in mathematical problem solving, the POPO study started in 2004. In this 
study, 152 fourth-grade students who are high achievers in mathematics were 
administered a paper-and-pencil test on non-routine problem solving. In a few items, 
students were asked to show their solutions strategies. The results were disappointing. 
Students did not show a high performance in problem solving, despite their high 
mathematics ability (Van den Heuvel-Panhuizen, Bakker, Kolovou, & Elia, in 
preparation). Although the students’ scribbling on the scrap paper gave us important 
information about their solution strategies, we were left with questions about their 
solution processes. Moreover, after recognizing that even very able students have 
difficulties with solving the problems, we wondered what kind of learning environment 
could help students to improve their problem solving performance. The POPO study 
thus yielded a series of questions. To answer these questions we started the iPOPO 
study which – in accordance with the two main questions that emerged from the POPO 
study – implied a dual research goal.

First, the iPOPO study aimed at gaining a deeper understanding of the primary 
school students’ problem solving processes, and, second, it explored how their problem-
solving skills can be improved. For this dual goal of assessing and teaching, the study 
employed ICT both as a tool to support students’ learning by offering them 
opportunities to produce solutions, experiment and reflect on solutions, and as a tool to 
monitor and assess the students’ problem solving processes. In particular, we designed a 
dynamic applet called Hit the target, which is based on one of the paper-and-pencil 
items used in the POPO study. Like several of these items, it requires students to deal 
with multiple, interrelated variables simultaneously and thus prepares for algebraic 
thinking.

This paper focuses on the following two research questions: Which problem-
solving strategies do fourth-grade students deploy in this Hit the target environment? 
Does this ICT environment support the students’ problem-solving performance?

Theoretical background

Mathematical problem solving
The term “problem solving” is used for solving a variety of mathematical problems, 
ranging from real-life problems to puzzle-like problems. Our focus is on the latter. We 
consider problem solving as a cognitive activity that entails strategic thinking, and that 
includes more than just carrying out calculations. An episode of problem solving may be 
considered as a small model of a learning process (D’Amore, & Zan, 1996). In problem 
solving, the solution process often requires several steps. First the students have to 
unravel the problem situation. Subsequently, they have to find a way to solve the problem 
by seeking patterns, trying out possibilities systematically, trying special cases, and so on. 
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While doing this they have to coordinate relevant mathematical knowledge, organize the 
different steps to arrive at a solution and record their thinking. In sum, in our view 
problem solving is a complex activity that requires higher order thinking and goes beyond 
standard procedural skills (cf., Kantowski, 1977).

An example of a mathematical problem used in the POPO study is shown in Figure 1. 
Someone who knows elementary algebra might use this knowledge to find the answer to 
this problem by, for example, solving the equation 2x – 1(10 – x) = 8. Fourth-grade students, 
however, have not yet learned such techniques, but can still use other strategies such as 
systematic listing of possible solutions or trial and error. Grappling with such problems 
might be a worthwhile experiential base for learning algebra in secondary school (cf., Van 
Amerom, 2002).

Figure 1: Problem used in the POPO Study

Within the complexity that characterizes problem-solving activity, D’Amore and Zan 
(1996) identify the involvement of three interrelated discrete variables, as follows: the 
subject who solves the task; the task; and the environment in which the subject solves the 
task. This study primarily focuses on the third variable, referring to the conditions, which 
may help a subject to improve his problem solving abilities.

The research questions stated in Section 1 address two different aspects that are 
closely related: monitoring learning and supporting that learning. We have chosen to use 
ICT for both of these aspects, because – as Clements (1998) recognized – ICT (1) can 
provide students with an environment for doing mathematics and (2) can give the 
possibility of tracing the students’ work.

 ICT as a tool for supporting mathematical problem solving

A considerable body of research literature has shown that computers can support children in 
developing higher-order mathematical thinking (Suppes, 1966; Papert, 1980; Clements & 
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Meredith, 1993; Sfard & Leron, 1996; Clements, 2000; Clements, 2002). Logo 
programming, for example, is a rich environment that elicits reflection on mathematics and 
one’s own problem-solving (Clements, 2000). Suitable computer software can offer unique 
opportunities for learning through exploration and creative problem solving. It can also help 
students make the transition from arithmetic to algebraic reasoning, and emphasize 
conceptual thinking and problem solving. According to the Principles and Standards of the 
National Council of Teachers of Mathematics (NCTM, 2000) technology supports decision-
making, reflection, reasoning and problem solving.

Among the unique contributions of computers is that they also provide students 
with an environment for testing their ideas and giving them feedback (Clements, 2000). 
In fact, feedback is crucial for learning and technology can supply this feedback 
(NCTM, 2000). Computer-assisted feedback is one of the most effective forms of 
feedback because “it helps students in building cues and information regarding 
erroneous hypotheses”; thus it can “lead to the development of more effective and 
efficient strategies for processing and understanding” (Hattie & Timperley, 2007, p.102). 
More generally, computer-based applications can have significant effects on what 
children learn because of “the computer’s capacity for simulation, dynamically linked 
notations, and interactivity” (Rochelle, Pea, Hoadley, Gordin, & Means, 2000, p. 86).

This learning effect can be enhanced by peer interaction. Pair and group work 
with computer software can make students more skilful at solving problems, because 
they are stimulated to articulate and explain their strategies and solutions (Wegerif & 
Dawes, 2004). Provided there is a classroom culture in which students are willing to 
provide explanations, justifications, and arguments to each other, we can expect better 
learning.

 ICT as a window onto students’ problem solving

Several researchers have emphasized that technology-rich environments allow us to 
track the processes students use in problem-solving (Bennet & Persky, 2002). ICT can 
provide mirrors to mathematical thinking (Clements, 2000) and can offer a window onto 
mathematical meaning under construction (Hoyles & Noss, 2003, p. 325). The potential 
of computer environments to provide insight into students’ cognitive processes makes 
them a fruitful setting for research on how this learning takes place.

Because software enables us to record every command students make within an 
ICT environment, such registration software allows us to assess their problem solving 
strategies in more precise ways than can paper-and-pencil tasks. Therefore, computer-
based tasks as opposed to conventional paper-and-pencil means have received growing 
interest in the research literature for the purposes of better assessment (Clements 1998; 
Pellegrino, Chudowsky, & Glaser, 2001; Bennet & Persky, 2002; Burkhardt & Pead, 
2003; Threlfall, Pool, Homer, & Swinnerton, 2007; Van den Heuvel-Panhuizen, 2007).

Where early-generation software just mimicked the paper-and-pencil tasks, recent 
research shows that suitable tasks in rich ICT environments can also bring about higher-
order problem solving. For example, Bennet and Persky (2002) claimed that 
technology-rich environments tap important emerging skills. They offer us the 
opportunity to describe performance with something more than a single summary score. 
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Furthermore, a series of studies indicated that the use of ICT facilitates the assessment 
of creative and critical thinking by providing rich environments for problem solving 
(Harlen & Deakin Crick, 2003).

By stimulating peer interaction we also expect that students will articulate more 
clearly their thinking than when working individually. Thus, student collaboration has a 
twofold role: it helps them shape and broaden their mathematical understandings and it 
offers researchers and teachers a nicely bounded setting in order to observe collaboration 
and peer interaction (Mercer & Littleton, 2007).

Method

Research design and subjects

The part of the iPOPO study described in this paper is a small-scale quasi-experiment 
following a pre-test-post-test control group design. In total, 24 fourth-graders from two 
schools in Utrecht participated in the study. In each school, 12 students who belonged to 
the A level according the Mid Grade 4 CITO test – in other words to the 25% best 
students according to a national norm – were involved. Actually, the range of the scores 
that correspond to level A of the Mid Grade 4 CITO test is between 102 and 151 points. 
In both schools, the average mathematics CITO score of the class was A and the 
average “formation weight” of the class and the school was 1. This means that the 
students were of Dutch parentage and came from families in which the parents had at 
least secondary education. First, of each school six students were selected for the 
experimental group. Later on, the group of students was extended with six students to be 
in the control group. These students also belonged to the A level, but, unfortunately, 
their average score was lower than that of the experimental group. The teacher 
obviously selected the more able students first.

An ICT environment was especially developed for this study to function as a 
treatment for the experimental group. Before and after the treatment, a test was 
administered as pre-test and post-test. The control group did the test also two times, but 
did not get the treatment in between. The quasi-experiment was carried out in March-
April 2008. The complete experiment took about four weeks: in the first week the 
students did the test, in the second week the experimental group worked in the ICT 
environment and in the fourth week the students did again the test.

Pre-test and post-test

The test that was used as pre-test and post-test was a paper-and-pencil test consisting of 
three non-routine puzzle-like word problems, titled Quiz (see Figure 1), Ages, and Coins. 
The problems are of the same type and require that the students deal with interrelated 
variables. The test sheets contain a work area on which the students had to show how they 
found the answers. The students’ responses were coded according to a framework that was 
developed in our earlier POPO study. The framework covers different response 
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characteristics including whether the students gave specific strategy information, how they 
represented that strategy and what kind of problem-solving strategies they applied.

Applet used as treatment

The treatment consisted of a Java applet called Hit the target. 2 It is a simulation of an 
arrow shooting game. The screen shows a target board, a score board featuring the 
number of gained points, and the number of hit and missed arrows, a frame that contains 
the rules for gaining or loosing points, and an area in which the number of arrows to be 
shot can be filled in. A hit means that the arrow hits the yellow circle in the middle of the 
target board; then the arrow becomes green. A miss means that the arrow hits the gray 
area of the board; in that case, the arrow becomes red.

Figure 2: Screen view of applet in the computer-shooting mode

The applet has two modes of shooting: a player shoots arrows by him or herself or lets 
the computer do the shooting (see Figure 2). In case the player shoots, he or she has to 
drag the arrows to the bow and then draw and unbend the bow. The computer can do the 
shooting if the player selects the computer-shooting mode and fills in the number of 
arrows to be shot. Regarding the rules for gaining points there are also two modes: the 
player determines the rules or the computer does this. The maximum number of arrows 
is 150 and the maximum number of points the player can get by one shot is 1000.

As the player shoots arrows or lets the computer do so, the total score on the 
scoreboard changes according to the number of arrows shot and the rules of the game. 
The player can actually see on the scoreboard how the score and the number of hits and 
misses change during the shooting. The player can also remove arrows from the target 
board, which is again followed by a change in the total score. When the player wants to 
start a new shooting round, he or she must click on the reset button. The player can 
change the shooting mode or the rules of the game at any time during the game.

                                                
2 The applet has been programmed by Huub Nilwik.



An ICT environment and students’ non-routine puzzle-like mathematical problem-solving

181

The aim of the applet is that the students obtain experience in working with 
variables and realize that the variables are interrelated (see Figure 3); a change in one 
variable affects the other variables. For example, if the rules of the game are changed, 
then the number of arrows should be also changed to keep the total points constant.

Total points

Rules of the game 
Number of arrows  
- hits and misses
- total arrows

Total points

Rules of the game 
Number of arrows  
- hits and misses
- total arrows

Figure 3: Variables involved

The 12 students of the experimental group worked for about 30 minutes in pairs with 
the applet. The pairs were chosen by the researcher in such a way that all of them would 
have about the same average CITO score and consisted of a boy and a girl. The dialogue 
between the students and their actions on the applet were recorded by Camtasia 
software, which captures the screen views and the sound in a video file. Scrap paper 
was also available to the students. Before the students started working, it was explained 
to them that they should work together, use the mouse in turns, explain their thinking to 
each other, and justify their ideas.

The work with the applet started with five minutes of free playing in which the 
students could explore the applet. Then, they had to follow a pre-defined scenario 
containing a number of directed activities and three questions (see Table 1). The first 
two questions (A and B) are about the arrows while the rules of the game and the gained 
points are known. In the third question (C), which consists of two parts, the rules of the 
game are unknown.

Table 1: Questions in the pre-defined scenario

Arrows Rules Gained 
points

A. How many hits and 
misses?

Hit +3 points, miss –1 point 15 points

B. How many hits and 
misses?

Hit +3 points, miss +1 point 15 points

15 hits and 15 misses C1. What are the rules?
C2. Are other rules possible to get
       the result 15 hits-15 misses-15 
points?

15 points



A. Kolovou et al. 

182

The directed activities were meant to assure that all the students had all the necessary 
experiences with the applet. During these activities, the students carried out a number of 
assignments in order to become familiar with the various features of the applet: the 
player-shooting mode, the computer-shooting mode, the rules of the game, and the total 
score. First, the students had to shoot one arrow, followed by shooting two arrows and 
then a few more, in order to get five arrows on the target board. Their attention was then 
drawn to the scoreboard; they had five hits and zero misses and their total score was 
zero since the rules of the game had been initially set to zero. After that, the rules were 
changed so that a hit meant that three points were added. Then, the students had to shoot 
again five arrows in both shooting modes, each resulting in a total score of 15 points. 
Afterward, the rule was changed again. A miss then meant that one point had to be 
subtracted. At this point, Question A was asked, followed by Questions B and C.

Results

 The students’ problem-solving strategies in the ICT environment

All pairs were successful in answering the Questions A, B, and C. The solutions were 
found based on discussions and sharing ideas for solutions. In all cases, explanations 
were provided and the talk between the students stimulated the generation of hypotheses 
and solutions. However, some students provided more elaborate explanations and 
suggested more successful problem-solving strategies than others.

In order to identify the problem-solving strategies the students applied, we 
analyzed all dialogues between the students. In this paper, however, we will only 
discuss our findings with respect to Questions C1 and C2, which triggered the richest 
dialogues.

Characteristic for Question C is that the number of hits and misses, and the number 
of points were given, but that the students had to find the rules. All pairs were able to 
answer Questions C1 and C2, and most of them could generalize to all possible solutions 
(“It is always possible if you do one less”), albeit on different levels of generalization. 
The Tables 2 and 3 show which strategies the pairs used when solving Questions C1 and 
C2. Each pair of students is denoted with a Roman numeral. Pairs I, II, and III belong to 
school A, while Pairs IV, V, and VI belong to school B.

When answering Question C1 (see Table 2), four out of the six pairs directly came 
up with a correct solution. Pair VI found the correct solution in the third trial. The most 
interesting strategy came from Pair IV. This pair found the correct solution in the 
second trial. The pair started with a canceling-out solution (+1 –1) resulting in a total 
score of zero and then changed the solution to get 15 points in total.
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Table 2: Problem-solving strategies when solving C1

Strategy Pairs

I II III IV V VI
Average CITO score per pair 

111 111 114 11
0

111 10
7

1a Directly testing a correct solution (+2 –1 or 
+1 +0)

1* 1 1 1

2a Testing incorrect canceling-out solution
(+1 –1)

1

2b Testing other incorrect solution(s) 1
3 Adapting the rules of the game until a 

correct solution is reached
2 2

Number of trials 1 1 1 2 1 3
* The numbers in the cell indicate the order in which the strategies were applied

Table 3 shows that having found a correct solution in C1 did not mean that the 
students had discovered the general principle (or the correct solution rule) of getting “15 
hits-15 misses-15 points”. Even after finding the correct solution rule and generating a 
series of correct solutions, some students tested wrong solutions again (we could call 
this the “bouncing effect”). Perhaps they were not aware that there is only one correct 
solution rule; the difference between the number of points added for every hit and the 
number of points subtracted for every miss (or vice versa) should be 1, or the difference 
between the number of hit-points and miss-points should be 15 points. The highest level 
of solution was demonstrated by Pair VI, who recognized that the difference between 
the points added and the points subtracted should be 15 (and that explains why the 
difference between the number of points added for every hit and the number of points 
subtracted for every miss – or vice versa – should be 1). A clever mathematical solution 
came from the Pairs I and II. These students just used the correct solution to C1 in the 
reverse way to get the required result of 15 points in total.

Besides strategies that directly or indirectly lead to a correct solution or rule, some 
other characteristics were found in the solution processes (see Table 4). Four pairs 
altered or ignored information given in the problem description. It is noteworthy that 
during subsequent attempts to answer Question C2, some students insisted on keeping 
the rules constant and changing the number of hits and misses in order to get a total of 
15 points. Pair V, for example, changed the problem information (15 hits and 15 misses) 
and started C2 with trying out the solution 1 hit is 15 point added and 1 miss is 15 
points subtracted. The total score then became zero; subsequently, they set the number 
of hits to 30 and the number of misses to 15, which resulted into a high score. Even 
though at that point the researcher repeated the correct problem information, the 
students ignored it persistently. In their third attempt, they changed the number of hits 
and misses to 1 and 0 respectively and the total score became 15 instead of the reverse 
(15 hits and 15 misses resulting in 15 points). Only when the researcher repeated the 
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question they considered the correct information and tried out the solution +4 –2 with 
15 hits and 15 misses.

Table 3: Problem-solving strategies when solving C2
Strategy Pairs

I II III IV V VI
Average CITO score per pair 

111 111 114 11
0

111 10
7

4a Repeating the correct solution to C1 2
4b Reversing the correct solution to C1 to 

find another correct solution (–1 +2 or –0 
+1/+0 +1)

1* 1/3

5a Generating a correct solution rule based 
on testing of (a) correct solution(s) for 
which the difference between the number 
of points added for every hit and the 
number of points subtracted for every 
miss (or vice versa) is 1

2 4 6 1 4

5b Generating a correct solution rule based 
on understanding that the difference 
between hit-points and miss-points is 15

1

5c Generating a general correct solution rule 
(“the difference of 1 also applies to 16-16-
16”)

8

6 Testing more correct solutions from a 
correct solution rule

3 7 2 2

2b Testing other incorrect solution(s) 4 2 1/3/
5

1/3/
5

7 Generating an incorrect solution rule 
(keeping ratio 2:1 or using rule +even 
number –odd number) based on correct 
solution(s)

2/4

* The numbers in the cell indicate the order in which the strategies were applied

However, the total score was 30 points and they suggested doubling the number of 
misses to 30 so that the number of total points would be halved. This is clearly an 
example of a wrong adaptation. Another example is from Pair VI. After having +3 and –
1 as the rule of the game, resulting in a total of 30 points, the students change the 
number of hits into 10 in order to get 15 points as the result but forgetting that the 
number of hits should be 15.
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Table 4: Other characteristics of the solution processes

Characteristics C1 C2
Pairs Pairs

I II III IV V VI I II III IV V VI
Altering or ignoring 
information

X X X X

Exploring large 
numbers (≥1000)

X X X X X

Another characteristic of the solution processes was testing rules including large numbers. 
Four of the six pairs tried out numbers bigger than 1000. These explorations all took place 
when answering the second part of Question C. The students found this working with 
large numbers quite amusing, since they then could get a large amount of total points. 
That the students worked with numbers larger than 1000 was quite remarkable, because it 
was not possible to fill in numbers of this size in the applet. Consequently, the students 
had to work out the results mentally. It is also worth noting that some students understood 
that one could go on until one million or one trillion (Pair IV). This means that several 
students knew that there are infinite solutions, as it was made explicit by one pair (see 
Pair II). Furthermore, most of the students used whole numbers and no one used negative 
numbers. In one occasion, a student (from Pair II) suggested adding 1½ points for a hit, 
but the applet does not have the possibility to test solutions with fractions or decimals.

Observing the students while working on the applet revealed that the students 
demonstrated different levels of problem-solving activity. For example, there were 
students that checked the correctness of their hypotheses by mental calculation, while 
others just tried out rules with the help of the applet. None of them questioned the 
infallibility of the applet; when they used the applet after they had found out that a rule 
was wrong, they did this to make sure that they were really wrong. Furthermore, the 
students also showed differences in the more or less general way in which they 
expressed their findings. One of the students articulated that the general rule “a hit is 
one point more (added) than the number of points (subtracted) by a miss” also applies to 
other triads such as 16 hits-16 misses-16 points and in general to all triads of equal 
numbers.

To conclude this section about the ICT environment, we must say that observing 
the students while working with the applet gave us quite a good opportunity to get 
closer to the students’ problem-solving processes.

 Does the ICT environment support the students’ problem-solving performance?

In this section, we discuss the results from the pre-test and the post-test in the 
experimental and control group. Figure 4 shows the average number of correct answers 
per student in both groups in school A and school B.
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Figure 4: Average number of correct answers per student in the pre and the post-test in 
both groups
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Figure 5: Average CITO score of the experimental and control group

As can been seen in Figure 4, if the group of students is taken as a whole, the 
experimental group gained slightly from the treatment. However, we have too few data 
to give a reliable answer to the research question. Only 12 students from school A and 
12 students from school B were involved in this study and among these schools, the 
results were quite different. Only in school A, there is a considerable improvement in 
the scores of the post-test. Another issue is the mismatch between experimental and 
control group (see also Section 3.1). In both schools, the control group scored lower 
than the experimental group. This mismatch was more evident in school A. A plausible 
explanation for these differences could be that although all students had an A score in 
mathematics, the average CITO scores of the experimental group and the control group 
were different in school A and school B (see Figure 5).

In fact, the differences between the average CITO score of the experimental and 
control group in each school, presented in Figure 5, are similar to the differences 
between the average scores of these groups in the paper-and-pencil test. In school A, the 
control group has a lower CITO score than the experimental group. The same holds for 
school B, but there the difference is smaller than in school A.
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Discussion

We started this study with two questions that emerged from the earlier POPO study. To 
investigate these questions, we set up, as a start, a small-scale study in which an ICT 
environment played a crucial role. The dialogues between the students and their actions 
when working in the ICT environment gave us a first answer to the first research 
question. The collected data provided us with a detailed picture of students’ problem 
solving and revealed some interesting processes, for example, the bouncing effect and 
the making of wrong adaptations.

Our second question is difficult to answer. The sample size, and the number of the 
test items were not sufficient to get reliable results and the time we had at our disposal 
was not enough to gather and analyze more data. Moreover, the time that the 
experimental group worked in the ICT environment was rather limited to expect an 
effect. Despite these shortcomings, we decided to carry out a small-scale study in order 
to try out the test items and the ICT environment with a small group of students first.

Clearly, more data (more students, more schools and more problems) are needed 
to confirm or reject our conjecture that having experience with interrelated variables in 
a dynamic, interactive ICT environment leads to an improvement in problem solving 
performance. For this reason, we will extend our study to larger groups of students, 
involving students of higher grades and different mathematical ability levels as well. 
Moreover, to see more of an effect we will enlarge the working in the ICT environment 
substantially. In addition, we will extend the study by analyzing the students’ problem-
solving strategies when solving paper-and-pencil problems. Our experiences from the 
present study will serve as a basis for doing this future research.
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Abstract

This paper is a part of wider study on teaching and learning of school algebra. 
We used a functional approach to school algebra in order to teach basic mathemati-
cal concepts, such as equation and inequality. In this paper we are interested with the 
inequality concept and our aim is to investigate if and how a functional approach can 
facilitate students to understand the inequality concept and to solve inequality prob-
lems. In order to examine these questions we analyze students’ answers given during 
their problem solving processes at individual interviews. Results are encouraging and 
show that students who were taught these concepts via this approach can use function 
representations as problem solving strategies and they appear to prefer mainly the 
graphs and the values tables and secondly the symbolic representations in problem 
solving. Students could use one representation in order to minimize a disadvantage of 
another. In addition, they gave meaning to symbols, through the problem context, and 
developed important actions of inequality understanding.

Introduction 

Equations and inequalities play an important role in mathematics. This paper 
deals mainly with inequalities which is a difficult subject for students and a subject 
scarcely considered till now by researchers in mathematics education (Boero and 
Bazzini, 2004). While there is enough research on equations, the same does not hap-
pen with inequalities (Sokolowski, 2000). In most countries (Greece included), ine-
qualities are taught in secondary school as a subordinate subject (in relationship with 
equations), dealt with in a purely algorithmic manner. This approach implies a ‘trivi-
alisation’ of the subject, resulting in a sequence of routine procedures, which are not 
easy for students to understand, interpret and control. As a consequence of this ap-
proach, students are unable to manage inequalities which do not fit the learned sche-
mas (Boero & Bazzini, 2004; Tsamir, Almog & Tirosh, 1998). According to Sackur 
(2004, p 151) an important and indeed crucial question is the apparent similarity 
among finding the solutions of equations and of inequalities. Emphasis is given to 
formal algebraic methods and generally graphic heuristics are not exploited; and alge-
braic transformations are performed without care for the constraints derived from the 
fact that the inequality sign (>) does not behave like the equality sign (=) (Tsamir & 
Almog, 1999; Sackur, 2004). The NCTM Standards recommends that all students 
should learn to represent situations that involve (equations and) inequalities, and that 
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they should understand the meaning of equivalent forms of expressions, equations and 
inequalities and solve them fluently (NCTM, 2000). To put into practice these rec-
ommendations it is crucial to analyze students’ ways of understanding of the concepts 
of equations and inequalities after a concrete didactical approach. 

Theoretical framework

As many teachers and researchers point out, the presentation of algebra almost 
exclusively as the study of expressions and equations can pose serious obstacles in the 
process of effective and meaningful learning (Kieran, 1992). As a result, mathematics 
educators recommend that students use various representations from the very begin-
ning of learning algebra (NCTM 2000). Using verbal, numerical, graphical and alge-
braic representations has the potential of making the process of learning algebra 
meaningful and effective (Friedlander & Tabach, 2001, p 173). Although each repre-
sentation has its disadvantages, their combined use can cancel them out and prove to 
be an effective tool (Kaput, 1992). Ainsworth, Bibby and Wood (1998) mention two 
ways that multiple representations may promote learning; (a) it is highly probable that 
different representations express different aspects more clearly and that, hence, the 
information gained from combining representations will be greater than that which 
can be gained from a single representation, (b) multiple representations constrain each 
other, so that the space of permissible operators becomes smaller. Similarly, Duval 
(2002) suggests that a representation cannot describe fully a mathematical concept 
and each representation has different advantages, so the use of various representations 
for the same concept is at the core of mathematical understanding. But, Friedlander 
and Tabach (2001) point out, we cannot expect the ability to work with a variety of 
representations to develop spontaneously, therefore, when students are learning alge-
bra, their awareness of and ability to use various representations must be promoted 
actively and systematically. Kieran (2004) points out “the positive role that graphical 
representations can play in helping students to better conceptualize the symbolic form 
of inequalities, as well as the pitfalls involved in attempting to apply to the solving of 
inequalities some of the transformational techniques employed with equations [...] 
Despite its foray into graphical representations, this same body of research has been 
quite narrow in emphasis with its almost exclusive focus on the manipulat-
ive/symbolic aspects of inequalities”.

Concerning the content and the teaching of mathematics, Klein (1945), a great 
mathematician, from the beginning of 20th century, had strongly supported the idea of 
introducing functions early in the secondary school as a basis for development of 
mathematics. Klein advocated the introduction of the notion of function “not as a new 
abstract discipline but as an organic part of the total instruction, staring slowly … with 
simple and concrete examples ... [and] the teacher must take account of the psychic 
processes in the boy in order to grip his interest; and he will succeed only if he pre-
sents things in a form intuitively comprehensible. A more abstract presentation will be 
possible only in the upper classes”. Other researchers support this view, as Thorpe 
(1989) who supports that “functions are basic in algebra and in mathematics more 
general, so we do not teach functions in algebra, let’s make functions the epicentre of 
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teaching of algebra” (p. 18), and Schwartz & Yerushalmy (1993) who point out that 
“the concept of function is central in mathematics […] it is the fundamental object of 
algebra and it ought to be present with a variety of representations in teaching and 
learning of algebra from the beginning (1993, p. 41). We believe that function is piv-
otal, central and the synthesis of many topics students traditionally learns in isolation 
in elementary school. Functions are important in the development of mathematical 
knowledge and knowledge in other subject areas in school curriculum. 

The research (Bednarz, Kieran & Lee, 1996; Stacey, Chick & Kendal, 2004) 
proposes various approaches in school algebra; between these, this that uses the mul-
tiple representations and extends the meaning of algebraic thinking is the functional 
approach. A functional approach assumes the function to be a central concept around 
which school algebra can be meaningfully organized. This means that representations 
of relationships can be expressed in modes suitable for functions and that the letter-
symbolic expressions are one of these modes. Thus, algebraic thinking can be defined 
as the use of a variety of representations in order to handle quantitative situations in a 
relational way (Kieran 1996, p.275). 

In this paper we research students’ understanding of inequality concept and its 
relation with equation concept, and more specifically we try to answer the following 
questions: which ways students, who were introduced to algebra via a functional ap-
proach in a problem solving context, (a) realized the conceptual transition from equa-
tion to inequality? (b) used multiple representations for problem solving strategies? 
(c) used multiple representations in order to control their solutions? 

Method

The research has argued that the traditional approach to algebra (based on equa-
tion with an abstract and formal way) creates various obstacles to the students, in or-
der to understand basic mathematic concepts as function, equation, inequality and to 
solve problems of linear equations and inequalities. Adopting a functional approach in 
a problem solving context we planned a research project (reconceptualizing of school 
algebra) which concerned linear equations and inequalities for novice student to 
school algebra. Our instructional design is constituted by (a) planning of activities; (b) 
realisation in a real conditions class (23 students), grade 8, in a public school of Ath-
ens (a course of 26 lessons); and (c) its evaluation; (see Farmaki, Klaoudatos, 
Verikios, 2004; Farmaki, Klaoudatos, Verikios, 2005; Verikios, Farmaki, 2006). The 
goals of our wider research were to examine if and in which level the students were 
capable to: develop a conceptual comprehension for variable, function, equation and 
inequality; to connect those concepts; mathematize a situation using function repre-
sentations and use these representations for solve problems of linear equations and 
inequalities. In the Greek curriculum for the second class of 13+-year-old students in 
junior high school, equations precede the functions and in the students’ textbook they 
are found in two different chapters. The solution of equations ax+b=c and ax+b=cx+d 
is presented in a typical way, concentrating on symbol manipulations, while, as a final 
paragraph, the solution of the inequalities ax+b<c and ax+b<cx+d follows as a subor-
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dinate subject (in relationship with equations). In functions’ chapter the linear one of 
the form y=ax+b is the main subject. So the students are taught to solve equation only 
with a typical algebraic way. The inequality is solved in a similar way as happens for 
the equation.  

Our course replaced the course on equations and the one on functions in the cur-
riculum. Initially, we taught intuitively the concept of function, giving accent to 
graphic representations. At the same time, we tried to expand the notion of function 
from its view of an abstract object to an understanding that functions describe real-
world phenomena. While there was not formal teaching of definition of function, 
function notation (e.g. y=3x-2) and the notion of a relationship between a dependent
and an independent variable is used. Algebraic letters stand primarily for variables 
and we restrict ourselves to use representations more as mathematical tools (and less 
as means of communication). Generally we viewed function from a coordinated per-
spective (Monoyiou and Gagatsis, 2007), that combines the algebraic and the graphi-
cal approach. The teaching was almost all set in the context of real world problems 
which were familiar to the students (Freudenthal, 1991), because   young children un-
derstand the notion of a contingency relationship between two quantitative variables 
when they see this relationship demonstrated in a concrete, physical context (Piaget, 
Grize, Szeminska, & Bang, 1968) and students who were working with context prob-
lems are helped to ‘relate things and to produce answers which make sense’ (Bardini, 
Pierce & Stacey, 2004). The functional orientation enabled us to connect various 
problem situations to graphs, tables and letter-symbolic representations as well as to 
connect these representations to the notions of equation and inequality. In the begin-
ning of the solution of a problem, attention was paid to the graphic representation of 
it, where x was seen as a variable rather than an unknown quantity. In this way the 
symbols as letters, lines or tables, acquired a meaning from the situational context of 
the problem. In contrary to traditional course that focuses on algebraic solutions of 
equations and inequalities, our algebra courses focuses on ‘ways to solve a problem’ 
rather than ‘the way to solve a problem’ so as to equip students with multiple solution 
strategies..

A functional approach to algebra with emphasis on multiple representations of 
concepts is drastically different from the traditional methods in which symbolic alge-
bra is emphasized and the concepts are studied in isolation from one another. For 
many teachers this new approach to teaching is often complex and difficult. This is for 
several reasons. On the one hand, this new approach to content is drastically different 
from the “mathematics” they know and experienced as learners themselves. On the 
other hand, the instructional techniques are, for the most part, unfamiliar to them. 
Thus, a major challenge associated with reforming school algebra and this study is, 
between others, to help teachers to implement reformed algebra in their classrooms.

For evaluation of our research project we selected data in three different ways: 
from class observations, from works and tests given to students, and mainly from in-
terviews; unstructured interviews were used in order to develop an explanation con-
cerning student understanding. More concretely, eight students were interviewed indi-
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vidually (four interviews every student) and asked to solve a related task in each in-
terview, covering essentially all the subjects taught in the course. The interviews were 
audiotaped and the protocols were analyzed to document student conceptions. Our 
paper can be viewed on two levels: It can be considered as an overview of the course 
and also as a research report about the progress and the obstacles that students met 
under the specific course. 

The tasks of interviews

The units, which the interviewer (1st author) gives to the students, begin with 
stories about a taxi and a parking. The cost of a route (distance) is set up as a function 
of how much kilometres it does, first in a table, on a graph and in a formula. The cost 
in the parking is set up as a function of how much hours the car will parking. Students 
graph the function and read various information related to the problem setting, from 
the graph. The given tasks, in the interviews, ware the following: 

The taxi problem: When we use a taxi we pay a standard charge 0.80€ and 0.30€ 
per kilometer. Questions: 1. If we pay y€ for a route of x kilometers, express y as a func-
tion of x. Describe how you can construct the graph of this function. 2. Two friends, 
George and Tom, are in the center of Athens, in Omonia square. George takes a taxi for 
his house. He pays for this route 3.5€.  How many kilometers is his house from Omonia 
square? 3. Tom takes also a taxi for his house. For this route, he gives the taxi driver 5€ 
and takes change. How many kilometres can be his house from Omonia square?

The parking problem: Mr. Georgiou goes by car every work day to the centre of 
Athens, where his office is located. Nearby there are two car parks. The first demands 4 
euros to enter and 2 euros per hour. The second demands only 3 euros per hour. Mr. 
Georgiou does not have a regular timetable. So, his choice about where he parks his car 
depends on how many hours he will stay at his office. Questions: 1. Express the amount 
of money as a function of time for both car parks. Describe how you can construct the 
graphs of these functions. 2. For how many hours can he park his car and pay the same 
amount of money at each car park? 3. Which parking you believe that it is more economic 
for Mr Georgiou, in order to park his car?

We are interested for the answer to the last question of each problem. The stu-
dents, working in the previous questions of the problems, already had constructed the 
model of the situation by the functions y=0.3x+0.8 (taxi), y=2x+4 and y=3x (parking) 
or by their graphs, and had answered question 2, using a values table or a graph or 
solving an equation (0.3x+0.8=3.5 for the taxi and 0.3x+0.8=3.5 for the parking). 
Both problems are formulated in such way that is facilitated a functional approach; 
but, the first is more instructive from the second, which is more open. Concerning the 
structure with regard to graphs the two problems are different. In taxi we have only a 
graph and it appears rather difficult for students to suppose the equation y=5 as the 
constant function and to compare the two graphs. In opposite, in parking we have two 
graphs that describe with a whole way the situation; so, students can compare the 
graphs as concern their positions. It should be noted that in the class less time was de-
voted for the inequality than for the equation and the students had not completely con-
structed a cognitive scheme for this concept. So, we can suppose that during the inter-
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view the students were trying to develop and evolve an adequate cognitive scheme 
through problem solving for the inequality concept. 

Data Analysis

Approaching the inequality ax+b<c in a problem solving context

Via the taxi problem we can investigate the way that students approach the 
inequality of the form ax+b<c using multiple representations. All the interviewed stu-
dents realized the difference between the question 2, which is referred to equation, 
and 3. The situation context and more concretely the word change is crucial and con-
stitutes a bridge from equation to inequality, as it appears from the students’ answers. 
Precisely, we received the following answers: 

Olivia: we will proceed as before… 5=x.0.3+0.8 based on formula y=x.0.3+0.8 with 
y=5€… ok, he did not pay precisely 5€, almost 5€. 

Helen: he takes changes … 5-y … there are a lot of solutions.  

Sia: it doesn’t look to me like an equation, but more like an inequality, isn’t it?

Sotiris: we know that he gave 5€… we don’t know the final cost, it is hard, it is not as 
before, because it does not give us, e.g. 3.5€ … the cost precisely.

The situation context helped students to realize the difference between situa-
tions that from the expert’s perspective, involve the concepts equation or inequality, 
respectively; as a result the students realised the first step to transition from equation 
to inequality. The students were encouraged to use any mode in order to solve the 
problem. When a student gave an answer to the question, the interviewer encouraged 
him to think of an alternative method. Only one student adopted from the beginning 
the algebraic way of solving, while all the others used the already constructed graph 
of the function y=0.3x+0.8; of them, two students used the values table. So the strate-
gies used were: the values table, the graph, and the algebraic mode. Only Andrea, a 
performer above average, answered from the beginning to question with an algebraic 
way. She answered the question constructing the inequality y<5 and then the equiva-
lent x·0.30+0.80<5, solving it without difficulty. Then, she was encouraged by the 
interviewer to provide an answer using the graph representation. There, she faced an 
obstacle concerning how to interpret the inequality y<5, as it appears in the following 
extract from her interview: 

Andrea: if we go up to some value less than 5 … and continue in straight line with all 
the values until… [She brings a ‘mental’ line parallel to x-axis, beginning a little be-
fore 5, with her pencil] … 12 appear [in x-axis]. 

Interviewer: can we also get to 12.5? 

Andrea: yes, if we continue … how to find it with precision?

Interviewer: up to what can we continue? 

Andrea: up to 4.5 [she shows in the y-axis].  

Interviewer: can we up to 4.9? 
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Andrea: yes, and up to 4.9.

Interviewer: can we go to 5? 

Andrea: … no, because he took some change.

Then, based on her ‘algebraic’ answer, she observed that the value x=14 results 
for the value y=5, and  she drew the suitable lines (figure 1), determining 14 on the x-
axis and saying: ‘ to 5 and … hence from 14 … under 14’. When the researcher asked 
from her to show on the x-axis the solutions, she pointed out the numbers from 1 up to 
a little before 14 on the x-axis (figure 1). So, with this defect she means that 14 is not 
included in the solutions. It will now be observed that she is gradually succeeding in 
building and developing a cognitive scheme for inequality; and that intuitively she 
approaches the concept of limit, trying to interpret the genuine inequality 0<x<14, via 
the graphic representation. 

Figure 1

On the other hand Helen, an average performer, answered the question using the 
graph without difficulty. She overcomes an initial difficulty in order to understand the 
meaning of the word change  and she begins to conceive a main difference between 
inequality and equation; that there are, more than one, solutions for the inequality: 

Helen: … if we gave 5€ we would go 14 kilometres (she did it using the graphic rep-
resentation, as figure 2) …  he gave us exchange … if we gave him 4.5€ we would do 
13.5 kilometres…   there are many solutions.

Contrary to Andrea, the fact that the cost of way was not precisely 5€, did not 
prevent Helen to bring, from 5 on y-axis, the suitable line in order to determine the 
corresponding value of x. Also, with her phrase there are many solutions show that 
she comprehends a basic conceptual difference between equation and inequality, and 
she starts to build a bridge between these two concepts, as it appears in the following 
extract:

Helen: we can pay various cost of money… with bigger the 5€ that corresponds to 14 
kilometres…we can pay and half € and 2€… we can do also 13 and 12 and 10 and 11 
kilometres… 14 cannot, that is to say the kilometres are less than 14. 

An inequality is equivalent with ‘many´ equations
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When Helen was encouraged by the interviewer to answer with an alternative 
way, she developed a very interesting approach to inequality, based on the notion of 
equation, namely via a collection of equations, whose solutions as a totality is equiva-
lent to the inequality solution. Specifically she reported: 

Helen: …we find it with examples… or with the formula [she shows y=0.3x+0.8]…
5€ gives 14 kilometres [it had been found graphically]… 0.3x+0.8… 14 kilometres … 
we can do the same also with 4€ and 3€ and … equation… there are many solutions.

She comprehends that the taxi fare is a number less than 5 and in order to find 
each route corresponding to such a fare she should solve the corresponding equation. 
Thus in order to find the routes for 4€ or 3€, she has to solve the equations 
x.0.30+0.80=4 and x.0.30+0.80=3, respectively, and in general for each fare less than 
5, in order to find the route, the same procedure is to be used. According to Helen’s 
thought all the solutions of these equations are possible answers to the question and 
hence possible answers to the inequality x.0.30+0.80<5. So the inequality represents 
the collection of all these equations. This idea, closely related to her initial conclusion 
that ‘there are many solutions’, is an important action of understanding inequality, in 
that it locates  a basic difference between inequality and equation, and so creates a 
‘bridge’ between the two concepts, extending the equation concept. Speaking mathe-
matically, Helen’s idea is an intuition approach of the inequality solution set, that is: 
{xєR/0.3x+0.8<5} = {xєR/0.3x+0.8=a, a<5}.

The values table mode substantially constitutes a numerical, informal method, 
with trials for various values of x until y=5 come out, as developed for example from 
Helen:

Helen: 5 minus y, I want to see how many possibilities are there for the change he has 
taken … there are a lot of solutions … I will find them  with a values table … I will con-
sider examples [Then she completed the values table with various values, until 6 € ap-
peared and concluded] as it appears here, when he pays 5 euros he does 14 kilome-
tres… well, we knew it before… however he takes back some change that is to say he 
pays less than 5… then he will do less than 14 kilometres … as we see for example for 
4.7 euros we do 13 km, more than 5 euros more than 14 kilometres

We believe that the values table strategy constitutes a fine and understand-
able first approach to the inequality, before its formal teaching. 

Difficulties in constructing the inequality ax+b<c

Let us see the obstacles that students faced in order to give an algebraic solu-
tion to the problem. Two students (Sia and Sotiris under average performers) had dif-
ficulties to construct the inequality. For example:

Sia: ‘y equals … ok y is equal less … can I say y equals less than 5 and to continue… 
because euros are less than 5… y<5’.

Sia could not make the transition from the inequality y<5 to the equivalent ine-
quality 0.80+0.30x<5 and thereby find the x values. Similarly, Sotiris had many diffi-
culties in constructing the inequality. Although he realized that the cost paid is less 
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than 5 euros and reported the word inequality, understanding intuitively that the situa-
tion was not an equality relation, he presents an obvious disability to mathematize the 
situation formulating the inequality 5-y>0, or the equivalents 5>y or 5>0.3x+0.8.  
These two students’ symbolizations are interesting, however the transition to inequal-
ity was an important problem and they were able to represent correctly only a part of 
the situation. It is possible that the formula y=0.80+0.30x constituted an obstacle for 
them, because they could not identify the representation of the cost y with the expres-
sion 0.80+0.30x. Only with the important and decisive interventions of researcher, 
these students ‘achieved’ to construct the inequality. Without these essential interven-
tions it was impossible that they could ‘mathematize’ the problem constructing the 
inequality. The difficulty of the inequality construction was clearly formulated: 

Sia: ‘the equation and the inequality ok, I can solve them ... I can not easily construct 
them’. 

Olivia, an average performer, faced a different kind of difficulty for the inequal-
ity construction. The context of the problem helps her to distinguish that the situation 
is not exactly equation, but it requires a critical step, one more action of understanding 
in order to abandon the framework of equation and to realise the inequality: 

Olivia: we will do that as before … 5=x.0.3+0.8 based on the formula y=x.0.3+0.8 with 
y=5€ … ok, he did not pay precisely 5€, almost 5€. 

With the word almost, she appears to comprehend the difference between the 
two situations. But the translation in mathematical code requires one more step, a 
push. The critical push for this passage is given by the researcher: 

Interviewer: more or less? Olivia: less… that is to say we should not use equality… it 
should be 5>x. 0.3+0.80. 

The intervention of the researcher (‘more or less’) was essential in her attempt 
to mathematize the situation and to construct the inequality. Firstly, the word almost
and then the more concretely less make the difference between the equation (=) and 
the inequality (>). So, Olivia realise the transition from equation to inequality. 

Difficulties in solving the inequality ax+b<c

In this point we should identify the obstacles that students faced in order to 
solve the inequality. The students solved algebraically the inequality using the same 
procedures as in the algebraic solution of the equation. Olivia and Sotiris reported it 
clearly from the beginning: ‘the solution of the inequality will be as in the equation’. 
This powerful identification, in solving equation and inequality, gives the impression 
to the students that the only difference is on the sign. That misunderstanding leads to 
faults, because algebraic transformations are performed without taking into considera-
tion the constraints deriving from the fact that the > sign does not behave like the = 
sign (Tsamir et al., 1998). For example, Sotiris, solving the inequality 0.3.x+0.8<5,
wrote the equivalent 0.3x<4.2 and continued dividing by 0.3 both sides. He did not 
appear sure about the inequality sign and lastly he concluded that:
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S: ‘I have to change the symbol ... it always changes in the end’ [and he wrote 
0.3x/0.3>4.2/0.3]. 

Similarly, Helen solving the inequality 5>0.8+0.3x, wrote the equivalent -
0.3x>-4.2. She divided with -0.3 both sides without changing the sign > and found as 
solution x>14. Observing this answer with her answer from the graph strategy, she 
understood that something wasn’t going right, so she changed the sign > with < and 
justified it: ‘it changes because it is negative’. Here appears that the combined use of 
the different solution ways can use as a metacognitive process, and also, one represen-
tation can cancel out the disadvantage of another and prove to be an effective tool 
(Kaput, 1992). Although her explanation seems adequate, in another interview, solv-
ing the inequality -1x<-4, she acted without deeper understanding: 

Helen: I don’t remember… I believe that it changes because in the right side there is a 
negative’.

Also, when Olivia was solving the inequality 5>0.3x+0.8, and wrote the equiva-
lent 4.2>0.3x she divided with 0.3 writing x=14 (the erased equation, 2nd line in figure 
3). The dialogue with the interviewer is characteristic:

Interviewer: why the sign > changed and became =? 

Olivia: [she changes her solution x=14 and write x≥14]. 

Interviewer: x was in the right side, why did you put it in the other side?

Olivia: aaa ...yes [she erases the previous x≥14 and writes 14≥x]. 

Interviewer: why did you put the equal sign here? ... Could we have equality here? 

Olivia: ... if he gave 5 euros he would do 14 ... he takes change ... no it can’t [and she 
erases the sign = and write 14>x].

She handled the unequal sign almost like the sign of the equation. This misun-
derstanding allows her to consider equivalent the inequalities 14>x and x>14, as it 
happens for the equations x=14 and 14=x. The context of the problem helped him to 
check her solution and to correct the sign in 14≥x writing 14>x. 

How to read the inequality x<14?

Three students read the inequality x<14 as follows: ‘x equal less than 14’. One 
possible interpretation is that these students are still thinking in terms of equation and 
make a corresponding mental transfer to inequality considering that the solution is 14. 
Another possible interpretation is that ‘equal’ is used with the meaning of ‘is’, that is 
to say x is (a number) less than 14. In favor of the second interpretation is our obser-
vation that many students when they wish to represent by symbols the element re-
quested in solving a problem, such as ‘the number of the days’, write ‘x=days’ instead 
of the typical correct expression ‘x is the number of days’. The interpretation intended
requires further investigation. 

An obstacle in handling zero
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Sotiris solving inequality transports all the terms to the right side and he ob-
serves that does not remain anything on the left side and concludes: 

S: we cannot continue because here there isn’t anymore inequality.

Sotiris, after moving the sole term from the left side to the other side, was un-
able to continue the solving process, because he considered that on the left side noth-
ing remains and it was now an inequality that did not have one side. As such situation 
did not conform to his concept image (Vinner & Tall, 1981) for equation / inequality, 
he decided, finding himself in an impasse, that I can not continue the process. In this 
behaviour we detect an obstacle in handling symbols, specifically student’s weakness 
in handling or accepting zero as a number’.  

Approaching the inequality ax+b<cx in a problem solving context

The graphs as problem solving strategy

Via the parking problem we can investigate the way that students approach the 
inequality of the form ax+b<cx using multiple representations. From the beginning, 
all the students of the study use the graphs (visual representations) in order to answer 
the question. Firstly, they interpret them intuitively:

Helen: both are economic, proportionally with the hours

Step by step they concluded correctly which parking is better proportionally 
with the hours. Their explanations are based (a) on the spatial place of two lines (this 
one is over the other), or (b) finding the corresponding costs for concrete number of 
hours; taking values on x-axe less and great 4 (4 is the x-coordinate of the common 
point of lines) and then comparing the values of functions bringing vertical lines to 
axes x until they meet the graphs (figure 2). Students intuitively conceive the rate of 
change of functions observing the lines:

Panagiotis: it goes up faster from this or 

Sotiris: it begins from tally but as hours go up they are not a lot of money

Then, interpreting them based on the situation context. All the students could 
use the graph as an important strategy of solving the inequality ax+b<cx problem. 

Figure 2.  The values tables as problem solving strategy
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Three students used the values tables of function to answer the question. They 
comprehend that the initial tables have few pairs of variable values and they should be 
supplemented (a) with as much as possible more pairs and (b) to give same values to 
independent variable in two tables. From the previous question (equation) they have 
found the common pair (answer to equation 2x+4=3x) and now they supplement with 
other pairs until they can conclude when each parking is cheaper, as for example:

Helen: we see that for 4 hours we pay the same… less than 4 the 2nd parking is more 
economic, for more than 4 is the 1st  

The inequality as problem solving strategy

The students tried to answer the question algebraically, only after interviewer 
prompt:

Interviewer: can you answer the question in another way … using symbols for example?

Then they attempted to use the functions formulas in order to construct a model 
of the situation, in this case to write an inequality. The variable y in the two formulas 
appeared to create an obstacle for some students, for example:

Olivia: I can’t do something as before [mean equation] … I have two unknowns

The interventions of researcher and the problem context facilitated them to real-
ize the situation, as for example it appears in the following extract: 

Andrea: for the first parking … to be more interest this amount [2x+4] should be 
smaller than it [3x, and then to write the inequality 2x+4<3x] 

For low performance students there are more important obstacles in algebraic 
resolution of inequality. For example their solving processes are exactly similar to 
corresponding equations with result, among others, the following misunderstandings: 
(a) to divide with an negative number without change the inequality sigh; (b) to write 
4>x as x>4, because they consider that these inequalities are equivalent as the equa-
tions 4=x and x=4. The last misunderstanding is a result of the difficulty to interpret 
the inequality 4>x based on the situation. Generally, in the solution of the inequality
of the parking problem the students faced analogous problems and obstacles as they 
referred in the taxi problem.

Discussion

The situation context and the use of function representations helped students to 
develop multiple solution ways. The transition, from one to another way of resolution, 
constituted a support for the students in order to improve their thought developing
control processes. In addition, situation context was proved decisive for meaning con-
struction with regard to inequality concept and the corresponding symbolisms. A
characteristic example is the inequality approach as a collection of infinity equations, 
something that recommends an important energy of comprehension. The functional 
approach gave them a tool to distinguish the two concepts in contrary to the tradi-
tional way that creates misunderstanding that equation and inequality are ‘same’, only 
the symbol changes. 
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The graphic representations as models of problems give a more clear view of 
the situations which has as a result the students to have a deeper comprehension of 
problem solving processes. Representations acted complementary. One representation 
could cancel the disadvantages of another (Kaput, 1992). This was decisive for con-
trolling the problem solving processes; for example when the algebraic solution did 
not agree with the graphic solution student should seek out the ‘error’. 

Also, the tables constitute a numerical, not formal, but however understandable 
approach from students. And we agree with Meyer (2001), who considers that it is 
preferable for student to use a less formal strategy with comprehension rather than a 
most formal without comprehension. 

Symbolic representations and their handlings (algebraic inequalities) create a lot 
of obstacles in novice understanding. We consider that this approach must be the final 
level of approach of concept, contrary to that it happens with the traditional way of 
teaching the inequality. An obstacle with regard to the inequality comprehension is 
the uniqueness of solutions. For example linear equation 0.8+0.3x=3.5 has the number 
9 as solution, while in inequality 0.8+0.3x<5 (in problem context) has the open inter-
val (0, 14), a concept very difficult even for older students. 

Generally, we observed that this approach to beginning algebra, based on func-
tion and their multiple representations in a problem solving context, facilitated stu-
dents: to develop a deeper understanding on basic concepts as variable, function, 
equation and inequality; to connect these concepts and to use function representations 
as strategies for solving problems of linear equations and inequalities. But, we con-
sider that is required moreover research on students who have not any previous ex-
perience with algebra (equations, rational numbers, algebraic expressions) in order to 
realised her effect in novices, who imported in algebra via function representations for 
a long time period.
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Abstract

The interpretation of Zeno’s three fragments B2, B1 B3 has been traditionally 
considered as difficult and opaque. These fragments have been studied by distinguished
scholars, especially Frankel and Vlastos, who are responsible for the dominant 
interpretation. However, existing interpretations present serious weaknesses, including
(a) that they are in no position to explain exactly how Zeno’s arguments helped the 
basic philosophical thesis of his teacher Parmenides on the existence of intelligible 
beings, separate from the sensibles, (b) that they are in no position to interpret
Simplicius’ extensive and significant scholia on Zeno’s fragments in his work eis 
Phusika, the only ancient work which presents verbatim a small part of the 
philosopher’s own work, (c) that they are forced to change the (logical) order in which 
these fragments-arguments are presented, (d) that they are forced to take refuge in the 
questionable and indeed erroneous hypothesis that Zeno himself makes rather gross
logico-mathematical errors, and (e) that they are in no position to connect Zeno’s 
thought to Plato’s dialectics  in the Parmenides, despite Frankel’s fundamental intuition
that the two are strongly related. In this paper we present a novel interpretation of 
Zeno’s fragments, based upon the anthyphairetic interpretation (of the Pythagorean 
philosophy and) of Plato’s dialectics in the Parmenides, given earlier by S. Negrepontis,
and on the strong connection between Plato’s dialectics in the Parmenides and Zeno’s 
fragments, that has none of the aforementioned weaknesses. In this paper we 
concentrate on  the presentation of  our interpretation, in a preliminary and self-
contained form and so existing interpretations are not systematically analyzed.

1. The order of Zeno’s arguments

Simplicius, in his work eis Phusika, mentions and comments on three fragments by 
Zeno concerning plurality-division, which are symbolised (according to Diels-Kranz 
(1964)) with B2 for fragment 139.11-15, B3 for fragment 140.29-33, and B1 for 
fragment 141.2-8. According to the analysis which follows, B1 organically includes 
B1.0=139.18-19 (=denoted S1 by Vlastos) [References to Simplicius’ eis Phusika will 
be made using page and line numbers]. It is important to define the correct order in 
which Zeno develops those arguments, which Simplicius mentions, as this order partly 
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reveals the overall logic of these arguments (described in the next section 2). 
Fortunately, Simplicius offers enough information from which it is possible to 
determine with accuracy the order of Zeno’s arguments B1, B2 and B3.

The infinite according to magnitude, i.e. the infinite in argument B1, is, according to 
Simplicius, ‘first’ (‘proteron’) established by the same process (140,34-35), that the
infinite multitude, i.e the infinite in argument B3, is established. But the infinite in 
argument B3 follows from dichotomy (140,34), hence the infinite in argument B1, 
following by the same process (140,35), follows from dichotomy. We conclude that not 
only the argument of fragment B3, as Simplicius explicitly mentioned in 140,34, but 
also the argument of fragment B1, is a dichotomy argument.
Consequently Β1 precedes B3, and both are arguments of dichotomy.

In order to explain (the explanatory nature of the sentence being deduced from the 
presence of the term ‘gar’) the fact that B1 precedes B3, Simplicius adds “For, having 
first shown (“prodeixas gar”) (141,1)  Β2, he “induces” (‘epagei’) Β1. Here the word
“induces” has the sense of “proceeds directly with”, so that after the argument of B2, he 
transfers directly to argument B1, and it is for that for that reason that B3 follows B1.
Consequently B2 precedes B1.

Furthermore B1 consists of two parts: (a) each one (‘hekaston’) of the many has no
magnitude and (b) each one (‘hekaston’) of the many has magnitude, indeed there are
infinite in magnitude. Simplicius informs us that Zeno proves the second one (b),
having first proven (‘prodeixas’) (139,18-19) the first (a). The conclusion to B1 is 
formulated in the same order (“small so…great so as”), as opposed to the order in the 
preliminary description “are both large and small”. In B3, which also consists of two
parts, the two parts have correspondingly the same order: “the same things are both 
finite and infinite” (140,28-29, and 140,31)).

Thus the sequence in which Zeno develops his arguments is now clearly defined:
first fragment B2,
then the two dichotomy arguments in the fragments B1 and B3,
initially fragment B1 (the first part of which, Β1.0=S1=139,18-19 is the argument of
“no magnitude”, not explicitly stated as such, the second that of the infinite), and
finally fragment B3 (first with the argument of the Finite (‘peras’), then with the 
argument of the Infinite).

2. The logical structure of Zeno’s arguments

The argument of fragment B2 is a direct argument, while the arguments (from 
dichotomy) of B1, B3 are arguments of reductio ad absurdum. The origin of this type of
arguments must be credited to the Pythagoreans and is related to the proof of the 
incommensurability, according to the arguments given by S. Negrepontis (preprint a).
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Such an argument is based in the logical acceptance that for any statement (Α), the 
double logical denial, denoted ~(~(A)), of (A), is logically equivalent to statement (A) ,
and thus in order to prove the validity of (A) it is enough to prove that statement ~(A)
false. Thus, in such an argument we presume the logical negation, denoted ~(A), of 
statement (A) which we want to prove, and with this assumption, i.e.  ~(A), we attempt 
to deduce something false, impossible and absurd. 
In the case of Zeno, “if ~(A)” is the statement “if there are many”. The question is what 
is the meaning of this statement (“if there are many”) and what exactly statement (A) is, 
which Zeno wanted to establish. In this direction there is some evidence which could 
help us. First, Simplicius explains with clarity and invoking Eudemus, that “the many” 
are “the sensibles” (eis Phusika 97, 13-15 and 138,29-139,5). Second, Zeno was a pupil
of Parmenides. Parmenides believed that there were two separate ways, the way of
opinion (“doxa”), characterized by continuous unceasing phenomenal but deceptive
change, and the way of truth, which is characterized by unity, stability and lack of 
change. It is clear that the sensibles are identical to the way of opinion (30.14-16). With 
such dogma, Parmenides appears to be the first thinker in the history of humanity, who
expressed the existence of beings beyond the sensibles, separated from the sensibles, i.e. 
expressed the existence of “intelligible”, as Plato named them later, beings. Simplicius
(eis Phusika 88,24-27), expresses with clarity the difference between the sensible and
the intelligible: “the sensible fragmentation…” (‘o aisthetos diaspasmos’) does not 
accept the “intelligible union” (‘noeten henosin’), and it is not possible to observe “in
the sensibles” (‘en tois aisthetois’), “the complete unification of the one”, which 
comprises the characteristic “in the intelligible”, that “the unified 
existence”…”embraces”…”multiple division”.
Furthermore, according to Plato, in the Parmenides 128c5-d6, and to Simplicius, eis 
Phusika 134.2-4, Parmenides’ contemporaries ridiculed his philosophical views about
the existence of intelligible beings. Zeno tried to construct arguments which ridiculed
the views of Parmenides opponents, those that is who did not believe in the existence of
beings separate from the sensibles.
Hence we can accept with confidence that statement (A) which Zeno tried to prove was
“there are intelligible beings separate from the sensibles”. Then the statement ~(A), the
logical negation of (A), must state that “there are no beings separate from the sensibles”, 
i.e. in Zeno’s words, “there are no beings separate from the many”. But Zeno’s
hypothesis ~(A) is “ta polla hestin”, the many are. We conclude then, that the Zenonian
hypothesis ~(A) is the statement “the many, the sensibles, are identical to the true 
intelligible beings”.

3. The basic methodology for the interpretation of Zeno’s fragments

At this point we might ask in which way, from this statement ~(A), 
sensible=intelligible, Zeno could reach something illogical and ridiculous, and thus 
succeed in defeating Parmenides’ opponents. Apparently he must have possessed a 
model for the intelligible beings, which are not accessible to us, to compare with the 
sensible familiar to us. How then could we obtain the knowledge of this model for 
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intelligible beings, which Zeno had? Based on the fact that from Zeno’s beliefs, the
only authentic word for word arguments preserved are the three short fragments B2, B1, 
B3, it is clear that we can have a chance of success only if we attempt to escape the
narrow confines of these fragments and seek relations between these and the arguments 
of other subsequent thinkers, who have a philosophical affinity to Zeno. We find this 
affinity in Plato, especially in his dialogue Parmenides: indeed, as we shall see in 
subsequent sections, careful study reveals remarkable similarities between Zeno’s
fragments and passages from Plato’s Parmenides. 
The use of the Parmenides for the interpretation of Zeno’s fragments was conceived by
Fraenkel (1975), p.124, who, however, failed to follow through his correct intuition. 
This is so because the exploitation of the Parmenides as the base for the interpretation
of Zeno’s fragments must be preceded by the correct and true interpretation of Plato’s
dialogue, and generally of Plato’s dialectics; Fraenkel and probably subsequent
researchers might well be in a position to locate the remarkable linguistic similarities
between Zeno’s fragments and the Parmenides (although we have no explicit evidence 
of that), but they were in no position to use these similarities, as long as the Parmenides
itself remained inaccessible to an essential interpretation, based on the philosophical
analogue of the geometrical method of periodical anthyphairesis and its resulting self-
similarity. 

The bare outline of such an interpretation of the Parmenides is as follows: in the 
Parmenides, after an important introduction (126a-137c), where the basic philosophical
questions  related with the nature of intelligible beings and their relation with the 
sensibles are posed (including the separation of the intelligibles from the sensibles and
the participation of the sensibles in the intelligibles), Plato first, in the “first hypothesis”
(137c-142a) , deals with the absolute One, the One itself , which has a negative 
character, and then, in the “second hypothesis” (142b-157b), with the One Being, the 
One which is not the One itself, but that One which characterizes the intelligible beings. 

The interpretation of Division and Collection, the basic method of Plato’s dialectics in
his trilogy Theaetetus-Sophistes-Politicus and in the dialogues the Phaedrus and the 
Philebus, as the philosophical analogue of the geometrical method of periodical
anthyphairesis, has been developed by S. Negrepontis in a sequence of articles (1999), 
(2000), (2005), (preprints b, c), who proves in (preprint b) that the intelligible Platonic
Being, described in the second hypothesis of the Parmenides (142b-157b), is the
philosophical version of a pair of opposing species (‘indefinite dyad’) with the power of 
periodical anthyphairesis and resulting self-similar Oneness; the plethora of the
seemingly contradictory claims in the second hypothesis turn into fully consistent and 
logically true statements, under this interpretation.

We will see that fragment B2 is closely related to the first hypothesis of the Parmenides, 
and that Fragments B1 and B3 to the second, and thus to the philosophic analogue of 
periodic anthyphairesis and resulting self-similar Oneness.
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4. The interpretation of Fragment B2

4.1. The translation of Fragment B2 (139,9-15)
“Now in this [work] he proves that what has neither magnitude, nor mass, nor bulk,
would not even exist”. “For”, he says, “if it were attached to something else that exists, 
it would not make it larger; for if it is of no magnitude but is attached, that thing cannot 
increase at all in magnitude. And in this way what is attached will thereby be nothing. 
And if, when it is detached, the other thing is no smaller, and, when it is attached again, 
it will not grow, it is clear that what is attached is nothing, and likewise what is 
detached. [Barnes (1986), p. 238]

4.2. The interpretation of Fragment B2
Fragment B2 is an absolute statement with a true conclusion, and not one under the
hypothesis “if there are many”, aiming at a reductio ad absurdum. The statement of  B2 
is simple: if an entity is an intelligible being, then this entity cannot be absolutely
partless, on the contrary it must have parts.

Zeno’s fragment B2 fully agrees with Plato’s belief about the intelligible being in the
first hypothesis of the Parmenides (137c-142a) and in passage 244b-245d in the 
Sophistes. We ascertain that the One of the first hypothesis in the Parmenides
completely lacks parts (137c-d), and hence is identical with the One itself in the
significant passage in the Sophistes (245a1-c5), which also has no parts. According to
the Parmenides 141d-142a the One of the first hypothesis is rejected as intelligible 
being, and this agrees with the Sophistes 245a-c, where the absolutely partless One itself 
is not the intelligible Being, but on the contrary it is a subjected, passive one (‘hen 
peponthos’), a One subjected to division, passively accepting division, and thus with 
parts.

In addition Simplicius makes clear that the model for the absolutely partless One itself, 
described by Zeno’s Fragment B2, is the “stigme”, the geometrical point (81,36-37; 
82,8-9; 97,15; 99,11; 139,1). It must be noted that a similar rejection of ‘stigme’ (in 
favour of the indivisible line) by Plato is reported in Aristotle’s Metaphysika (992a19-
24).

This correlation, of Zenonian Fragment B2 with the first hypothesis in the Platonic 
Parmenides, reveals the probable reasons for which Zeno was obliged to move away
from the absolutely partless geometrical point. In the introduction of the Parmenides, 
specifically in the passage 133a11-135c4, the necessity that the intelligibles be
participated by the sensibles is dramatically set forth. In the main part of the 
Parmenides, the first hypothesis about the One corresponds to the non communicative
absolute partless One, as clearly stated in the final paragraph 141d7-142a8 of the first
hypothesis, with the sentences: “nor is there any knowledge or perception or doxa of it”
and “nor will it be an object of opinion or knowledge, nor does anything among things 
which are perceive it”.
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This appears to be the major difficulty of the Parmenidean intelligible One, the total
separation from the sensible, a separation which excessively reduces the world in which 
we live, and severs it off from something superior. Such a permanent and definite
abasement of human nature could not possibly meet with acceptance in the profoundly 
anthropocentric Greek civilization.

It is then maintained that the arguments developed in the Parmenides by Plato, for the 
necessity of communication, reflect Zeno’s thought to reject the non communicating
One and to seek another intelligible One, which communicates with the sensibles and 
hence has magnitude and parts; and that Zeno with his argument in B2 is trying to move 
away from a non communicating Parmenidean One and to seek this suitable One, which 
has the power of communication with the sensibles.

5. The interpretation of Fragment B1

5.1. The translation of passage B1.0=S1 (139,16-19) and of fragment B1 (140,34-
141,8)

Simplicius’ passage B1.0=S1 (139,16-19) is rendered as follows:

‘And Zeno says this not in order to reject the One, but to show that each of the many 
things has a magnitude- and an unlimited one at that (for there is always something in 
front of what is taken, because of the unlimited division).
And he proves this having first proved that each of the many has no magnitude from the 
fact that each is the same as itself and one.’ [Barnes (1986), pp. 238-239]

Zeno’s fragment B1 (140,34-141,8) runs as follows:

‘The infinity of magnitude he showed previously by the same process of reasoning. For, 
having first shown that “if what is had not magnitude, it would not exist at all”, he 
proceeds:’[Lee (1936), p. 20, fr10]
“So if [many] exist, each [existent] must have some size and bulk and some [part of 
each] must lie beyond (‘apechein’) another [part of the same existent]. And the same 
reasoning [‘logos’] holds of the projecting [part]: for this too will have some size and 
some [part] of it will project. Now to say this once is as good as saying it forever. For 
no such [part—that is, no part resulting from this continuing subdivision] will be the last 
nor will one [part] ever exist not [similarly] related to [that is, projecting from] another.”
(Fr. 1, [Zeno B1 ] first part) [Vlastos (1967), p. 243]

"Thus, if there are many, they must be both small and great: on one hand, so small as to 
have no size; on the other, so large as to be infinite" (Fr. 1, concluding part). [Vlastos 
(1967), p. 244]
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5.2. Zeno’s transition from the position of rejecting B2 to the position of adopting
B1

With the argument of fragment B2, Zeno rejected the absolutely partless One, whose 
model is the geometrical “stigme”, as the proper One for the intelligible Being. As
discussed above in 4.2, the reason for the rejection must be sought in Zeno’s
ascertainment that the sensibles are many and divisible, hence they need some kind of
unifying power; but the partless One (and the geometrical point), as absolutely partless, 
is not suitable to unify the sensibles. The quest for the proper unifying power of the
intelligible and real Being is undertaken under the all-important condition that this
Being is in some kind of communication with the sensibles and that there is no complete 
lack of communication and participation. 
At this crucial point, Eudemus’ testimony, which is reported to us repeatedly by
Simplicius (97,9-19 and 138,30-139,3), is particularly enlightening about Zeno’s
thought. According to this testimony, Zeno was perplexed, as to the proper unifying
power, which could describe the Being. (“if anyone would explain to him what the one 
is, he would be able to speak about existent things”) [Lee (1936), p.15]. 
We must realize that Zeno, after and the rejection of the One itself as being with his
argument B2, still remains faithful to the basic Parmenidean thesis, that the intelligible 
is some kind of One; but the condition of communication with the sensibles, which
Zeno seems to adopt, leads to the search for some kind of One that has parts. But how 
could an entity with parts, ever possibly be described as One? Such an entity would 
then be One and many, something which Aristotle rejects as contradictory in Phusika
185b25-186a3 (“could not be at the same time one and many”, it is not possible for the 
same to be both one and many”). It is for this reason, as Simplicius informs us in 138,3-
6, that the Aristotelian commentator Alexander believes that Zeno refuted the One as
the proper description of the intelligible Being. But Simplicius assures us that this is not
the case (141,8-10): Zeno with his argument B2 has absolutely no intention to refute the 
One as intelligible Being. This results, according to Simplicius, from the fact that Zeno
in the next dichotomy argument B1, from the hypothesis that “the many are”, i.e. “the 
many are intelligible Beings”, proves that each one of the many
[a] “has no magnitude(‘ouden echei megethos’), because it is “self similar ” (‘heauto
tauton’)  and One, and
[b] “it has magnitude” (‘echei megethos’).
According to the argument, which we developed in section 2 above, it follows that
every intelligible Being, is according to Zeno
[a] “heauto tauton” and One, hence “ouden echei megethos”, and
[b] “echei megethos”.
As we will argue below, it follows from [a] that the Zenonian intelligible Being is One, 
in the sense of self similarity (5.3 and 5.4), and from [b] that the Zenonian intelligible
Being is many (5.5 and 5.6). Hence it follows, from the dichotomy argument B1, that
the Zenonian Being is not ONLY One, but BOTH One and Many. This property, which,
as we have seen, is rejected by Aristotle as contradictory, is however valid for the
Platonic intelligible One of the second hypothesis in Parmenides, as declared explicitly 
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in 145a2. Simplicius informs us that Zeno was called “speaking both ways” or “double-
tongued” (‘amphoteroglossos’), exactly because he argued for an intelligible Being
which was One and many (139,4 and 1011,13). Simplicius, in 139,19-23, reinforces this 
thesis by referring to Themistius’ description of the oneness of the Zenonian Being as
being both infinitely divisible (since ‘contiguous’) and indivisible.

5.3. The interpretation of the expression “tauton heauto” (139,18-19)

In order to be able to reach the correct interpretation of the Zenonian “tauton heauto” (in 
terms of self-similarity, we examine the interpretation of this expression in Plato 
generally, and especially in the Second hypothesis of the Parmenides. At first sight, the 
statement ‘x is tauton heauto’ could be considered a trivial tautological assertion of the
type ‘x=x’. That this is not the case can be realized by the fact that the proof provided 
that the One of the second hypothesis in Parmenides satisfies this property (in 146b2-
c4), is a non trivial one, and also by the fact that the One of the first hypothesis DOES 
NOT satisfy this property (139b4-e6). 
From passages 78c1-d9, 80a10-b7 in the Phaedo, it results that “heauto homoiotaton” is 
described as incomposite (‘asuntheton’), indissoluble (‘adialuton’), self similar
(‘monoeides’) and according to the same analogously (‘kata tauta hosautos’). These
descriptions are consistent with the anthyphairetic interpretation of the Parmenides’
passage 146b2-c4, which is given in Negrepontis (preprint b), according to which the
One of the second hypothesis is “tauton heauto”, in the sense that the One is preserved
unchanged, while moving from  one stage to the next, and, since this process is
anthyphairetic, as it moves from one stage of anthyphairesis to the next, and this 
preservation and self similarity is achieved because of the periodic nature of the 
anthyphairesis.

Vlastos (1971), in his attempt to reconstruct the proof that every Zenonian intelligible 
Being is “heauto tauton”, refers to fragment B9 of Melissus. But (a) the intelligible
Being in Melissus’ B9 is absolutely partless, hence is identical to the One of the first
hypothesis of Parmenides, which, as we have seen in paragraph 4, has been rejected by
Zeno’s B2 as an intelligible Being and (b) the intelligible Being in Β1.0=S1 (=139,18-
19) and generally in Zeno’s B1 fragment, is identical to the One of the second
hypothesis of Parmenides. So, Vlastos’ reconstruction could be refuted, because it 
erroneously identifies the One of the first hypothesis with the One of the second 
hypothesis.

Solmsen (1971), differentiating his interpretation from that of Fraenkel-Vlastos, 
considers that Β1.0=S1 (=139,18-19) is employed, in combination with B2, for the 
refutation of the One and the support of the many, as follows: (b) from B1.0, if x is
“heauto tauton” and one, then x is partless, and (a) from B2, if x is partless then x is not 
an intelligible Being. Hence, according to Solmsen’s interpretation, the One is not an 
intelligible Being. Solmsen’s error is similar to Vlastos’: (b) x in B1.0 and generally in
B1, is the One of the second hypothesis of Parmenides (it is both partless and infinite in
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magnitude), while (a) x in B2, is the One of the first hypothesis of Parmenides (it is 
ONLY without magnitude, as absolutely partless). 

5.4. The interpretation of the sentence “homoion de touto apax te eipein kai aei 
legein” 

The basic method of Division and Collection, with which the human soul acquires the
knowledge of Platonic Beings and Ideas, is presented in the trilogy Theaetetus-
Sophistes- Politicus, and also in Phaedrus and in Philebus. An equivalent description of
Division and Collection is the “Name and Logos”, where the Name corresponds to
Division and the Logos to Collection. The anthyphairetic interpretation of Division and
Collection has been described by S. Negrepontis (2000), (preprint c). In the second
hypothesis in Parmenides 147c1-148d4, there is a significant description of the process 
Onoma and Logos, in a way closely related to Zeno’s fragment B1. We especially 
examine passage Parmenides 147d3-e6; according to it, the “logos”, which is set in the 
same “tauton” name (particularly in the name other “heteron”), once or many times, is
always “tautos”. The anthyphairetic interpretation of this passage of Parmenides, 
according to Negrepontis (manuscript b), is that one “pros ti” being, one “heteron pros
heteron”, i.e. one logos of one part- anthyphairetic remainder to the successive part-
anthyphairetic remainder, which were born in the division process (Diairesis) of one
intelligible Being, is “tauton”, according to the periodic and hence self-similar
procedure of Collection to every one “pros ti” being of the same intelligible Being.
We observe that the sentence ‘homoion the touto apax te eipein kai aei legein’ (141,5) 
in Zeno’s fragment B1presents an irresistible similarity to the passage of Parmenides 
which we examined. It is logical, that from this anthyphairetic interpretation of 
Parmenides 147d3-e6, we can infer the corresponding interpretation of Zeno’s B1 
fragment. It follows that the word “touto” refers to “heteron” of line 141,3, and that the 
Zenonian “heteron” has the Platonic meaning of “heteron”, and furthermore that the 
meaning of the Zenonian sentence under examination is identical to the meaning of the 
similar Platonic, which has already been interpreted with anthyphairesis. 

5.5. In the Zenonian intelligible being, an infinite number of parts is produced

Let us see first how Zeno proves that each of the many is “infinite according to 
magnitude”. 
The part of Argument B1, which is quoted verbatim, is analyzed in the following 
phrases:
[0] “if (many) exists” (‘ei polla hestin’),
[a] then “each one has magnitude and bulk” (‘hekaston megethos ti echein kai pachos’),
[b] “must lie beyond (‘apechein’) another [part of the same existent]” (‘apechein autou 
to heteron apo tou heterou’).
[c] “And the same reasoning holds of the projecting [part]” (‘kai peri tou prouchontos o 
autos logos’);
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[d] “for this too will have some size and some [part] of it will protrude” (‘kai gar ekeino
exei megethos kai proexei autou ti’)
[e] “Now to say this once is as good as saying it forever.” (‘homoion the touto apax te 
eipein kai aei legein’).
[f] “For no such [part—that is, no part resulting from this continuing subdivision] will 
be the last nor will one [part] ever exist not [similarly] related to [that is, projecting 
from] another.” (‘ouden gar autou toiouton eschaton hestai oute heteron pros heteron 
ouk hestai’).
As Fraenkel correctly argued, the word “autou” in sentences [b], [d], [f] has the 
meaning of possession of part (“partitive-possessive”). Thus in [b] it is declared that the 
“hekaston” of [a] has two parts, both of which are referred to as “heteron” and 
“heteron”. According to [c], one of these two “hetera” parts is the “proechon” 
(protruding), i.e. the bigger in relation to the “heteron” part. If a1 is the initial 
“hekaston” part, a2 the protruding part of a1, and a3 the “heteron” non-protruding part of 
a1, then the relation described in [a] and [b] between these parts is precisely the 
following:
a1=a2+a3 with a2>a3.
We recognize that, of course, this is an anthypairetic relation. We note here that 
Fraenkel (1975), p.118, had initially proposed a clumsy procedure, according to which 
“the one (part) of it (of the single thing) must be distant from the other”, “the contrasted 
two parts of it are likely to be opposite sides or surfaces” , which Vlastos (1971)
seriously improved on Fraenkel and obtained the above relation. Vlastos however does 
not realize that the relation is an anthyphairetic one. The next part of Vlastos’ 
interpretation is divisional ad infinitum with the production of infinite number of parts, 
but it is not anthyphairetic, like the one we propose. Before we proceed with our
interpretation, we must note a problem which previous scholars, and especially Vlastos, 
do not appear to have dealt with. How come the divisional relation which we have 
obtained (a1=a2+a3 with a2>a3) (independently of whether it be anthyphairetic or not), 
and which constantly reproduces itself, while is clearly a division in two UNEQUAL
sections, is nevertheless called a dichotomy? 
Sentences [c] and [d] signify that exactly the same holds for the protruding part a2, as 
for the initial “hekaston” a1, and that the protruding part a2 is composed also of two 
parts, one of which is again the protruding , i.e. the bigger one, in relation to the other. 
At this point we note that a3, the smallest of the two parts of the initial “hekaston”, is 
equal to a fraction of the protruding part a2, and thus we can consider a3 as part of a2.
According to [f], there is no final “heteron”, on the contrary every “heteron” will be 
“heteron” to another following and smaller “heteron”, and thus [f] indicates clearly that 
the sequence of “heteron” is linear, totally ordered. Hence since a2 is “heteron” and a3 is 
also “heteron” and a fraction of the protruding a2, we may reasonably conclude that the 
protruding part of a2 is equl to a3, and is completed by another “heteron” a4, so that we 
have the second relation:
a2=a3+a4, with a3>a4.
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Of course, this second relation is the continuation of the anthyphairetic process.  From 
sentences [c] and [e] (which we have already analyzed in 5.4, above), it is clear that the 
anthyphairesis continues in the same way ad infinitum: 
an=an+1+an+2, with an+1>an+2  for any n=1,2,3,…

The divisional-anthyphairetic ad infinitum procedure, which is described in B1, is 
identical to the anthyphairetic process of the One of the second hypothesis in 
Parmenides, especially in passage 142b5-143a3. Indeed S. Negrepontis (preprint b) 
fully analyzes this passage, shortly described as follows: The One Being of the second 
hypothesis, consists of the indefinite dyad, whose two initial parts, One and Being, are 
divisible ad infinitum, so that:
One=Being+One1, with One1< Being
Being=One1+Being1, with Being1<One1

…
Onek=Beingk+Onek+1, with Onek+1<Beingk

Beingk=Onek+1+Beingk+1, with Beingk+1<Onek+1,
…
The close connection between the divisional process in Zenonian fragment B1 and the 
divisional process of the One in Parmenides’ second hypothesis, is obvious; it is 
emphasized by the fact that the Platonic argument, which appears as the anthyphairesis 
of the indefinite dyad of parts One and Being, is described in the immediately 
succeeding passage Parmenides 143a4-b8, exactly like the Zenonian, by means of the 
term “heteron”. 

The anthyphairetic interpretation we have reached can be reinforced by the following 
association: “proechein” also appears in the description of Zeno’s second paradox, the 
so called “Achilleus”, by Aristotle in Phusika 239b14-29, where Zeno claims to prove
that the slower should always protrude (‘proechei’) in relation to the faster. We could 
plausibly suppose that the rather unusual word “proechein”, which appears in different 
forms three times in the passage, is Aristotle’s loan from Zeno, and that Zeno uses it in 
the paradox “Achilleus” with the same meaning as in fragment B1. As Zeno’s first 
paradox of dichotomy has an anthyphairetic interpretation, described in Negrepontis 
(preprint a), and the second is a slight variation of the first, it is reasonably expected that 
the second paradox has an anthyphairetic interpretation, similar to the first.  Thus, 
fragment B1, related to “Achilleus”, because of the presence in both of the word 
“proechein”, could plausibly have an anthyphairetic interpretation as well. 

5.6. The meaning of “infinity according to magnitude” 

The conclusion of the (divisional) argument, which we analyzed in 5.4, in fragment B1, 
is summarized as follows: “if there are many…it is necessary for them…to be large, so 
as to be infinite” (‘ei polla hestin…anagke auta…megala [einai], hoste apeira einai’). 
Simplicius, in 140,34, describes this conclusion as: “ei polla hestin” (if there are many), 
then “hekaston” (each one) of the many is infinite “according to magnitude”. The 
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meaning of the expression “kata megethos apeiron” (“infinite according to magnitude”) 
is not clear and requires clarification. 
Among scholars on Zeno, the dominant interpretation of “kata megethos apeiron” is ‘a 
magnitude with infinite extent, e.g. a line with infinite length or a surface of infinite 
area. 
Fraenkel (1975), pp.119-120, suggests that Zeno, in B1.2 and B1.3, deceived his readers 
consciously, by pretending that the mathematically false statement “every infinite 
sequence of positive terms diverges” is valid and true, while he knew that the opposite 
is true, because he needed to reach a contradiction.
Vlastos (1959), pp.169-170, and (1971), pp.233-237, disagrees only with Fraenkel’s 
interpretation of Zeno’s intentions, arguing that Zeno commits the logical error “every 
infinite sequence of positive terms diverges”, but without the element of conscious 
deception. Furley (1967), pp.358-9, also rejects Fraenkel’s opinion and in essence 
agrees with Vlastos. 
So, all three scholars agree that Zeno, consciously or not, commits the logical error that 
“the sum of every infinite sequence of line segments is infinite in length”; and it is due 
to this mathematical error that a (seeming and artificial) contradiction is reached.

As will be explained, this conclusion is based on a misconception: these scholars, 
believed that with the expressions “apeiron megethos” (infinite magnitude), or “apeiron
kata to megethos” or “megethei apeiron” (infinite as to magnitude), infinite length is
implied in Simplicius’ ancient text. For the rendering of ancient terms, Fraenkel uses
Aristotle, Phusika 206b34 and 206b7ff. 
Simplicius explains that generally the term “apeiron to megethei” means magnitude 
which is composed of infinitely many magnitudes (“ex apeiron to plethei”- from infinite 
in multitude, 142,12-15). The similar expression “to megethei apeiron” means “ex 
apeiron to plethei megethon”-“ from infinite in multitude magnitudes” (575,23-24). 
Themistius agrees with this explanation in eis Phusika 91,29-30: “this which is 
composed of infinite is infinite according to magnitude”.
Simplicius, proceeding into a clearer description, defines “apeiron to megethos” as 
“apeira to plethei” “te aphe sunechizomena” (460,2-4), and the “apeiron megethos” as 
“apeira to plethei” “homogene…haptesthai allelon” (462,3-5). The touch and the 
continuity of infinite in multitude homogeneous magnitudes, is explained in detail as 
follows: “apeiron megethos” is created from “ta apeira to plethei te haphe
sunechizomena all’ouchi te henosei” (the infinite in multitude is infinite in the touch of 
continuation, but not infinite in union) (458,27-29); and, the “kata megethos” infinite is 
the infinite “te haphe suneches…kai ou te henosei” (infinite by being continuous in 
touch, but not infinite in union) (459,20-26). After explaining the description of “kata
megethos apeiron”, Simplicius adds, in this last passage, that if we have “apeira to
plethei” (infinite in multitude) parts “megethos echonta” (having magnitude), which are
“homoeide” (homogeneous, i.e. all line segments or all parts of the same circle etc.),
and “haptesthai allelon” (touch one another), something possible exactly because they 
are of the same homogeneous, then an “infinite magnitude” which is “constant to touch” 
is produced. He also interprets Eudemus’ words, according to whom the “kata to
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megethos apeiron” “ouden diapherei” (in no way differs) from “to kata
plethos…omoeidei apeira” (the infinite in multitude of homogeneous entities). 

The “ouchi te enosei” seems to exclude the interpretation of “apeiron kata to megethos” 
as magnitude of infinite length, but Simplicius in his attempt to leave no doubt, 
excludes infinite length in the most explicit way, in passage 508,19-509,20, according to 
which the infinite according to magnitude CANNOT possibly exceed some fixed given 
magnitude: “it is not possible to exceed every given magnitude” (‘hupervallein pantos 
megethous adunaton’), “does not exceed every magnitude”, “without exceeding every 
specific magnitude”, “it is impossible for it to exceed every specific magnitude”. 

The misconception by Fraenkel, Vlastos, Furley among others, of the real meaning of 
“infinity according to magnitude”, resulted in the serious and persistent misconception
that the ancient Greeks, and especially Zeno, erroneously believed that the sum of the 
infinite sequence of parts, each one of which is a straight segment with (positive)
magnitude, has necessarily an infinite length! 
We deduce that the notion ‘infinite according to magnitude’, for line segments, does not 
differ from the notion ‘infinite in multitude’ in any essential way, the only difference
being that the infinite according to magnitude results from an infinite multitude of line 
segments, by attaching the end of the nth line segment to the beginning of the (n+1)th

line segment (for every natural number n) in one continuous line segment (of finite 
length, of course). 

5.7. The anthyphairetic interpretation of fragment B1

Hence fragment B1 is interpreted as follows: If the many (sensible) are identical to the 
intelligible Beings, then every one of the sensible has magnitude (which is furthermore 
infinitely divisible) and is partless. 
An intelligible Being is an initial whole, composed of two unequal parts. The 
anthyphairesis of these two parts, precisely because of the necessity for unity according 
to the initial Parmenidean demand that these parts be “the same” (‘tauta’), “similar” 
(‘homoia’) and hence “equal” (‘isa’), is characterized by the periodicity of the ratio 
(logos) of two successive parts. This is the reason why it runs ad infinitum. The infinity 
of anthyphairesis is described, according to our interpretation in 5.6, as “infinity 
according to magnitude”, but the periodicity makes the intelligible Being self-similar 
and “tauton heauto” and “partless”, since a magnitude by itself is certainly not self-
similar with any part of itself. Self similarity and equalization of the unequal, as to 
magnitude, parts of anthyphairetic division, because of the periodicity of “ratio”-
“logon”, explains the apparent peculiar appellation of argument B1 as a dichotomy 
argument. 
Here, we must emphasize that the absurd does not consist in the fact that some being 
has magnitude and at the same time is without magnitude, as erroneously believed by 
Fraenkel and Vlastos. In fact every INTELLIGIBLE BEING is both infinite according 
to magnitude and without magnitude, as has been explained. The absurd which Zeno 
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reaches is that THE SENSIBLE BEINGS have these two qualities, and thus the 
hypothesis that the sensible are identical to the intelligible, exactly as Parmenides 
wished, is refuted.

6. The interpretation of Fragment B3

6.1. The translation of fragment B3 (140,27-34)

‘There is no need to labour the point; for such an argument is to be found in Zeno’s own 
book. For in his proof that, if there is plurality, the same things are both finite and 
infinite, Zeno writes the following words:’ [Lee (1936), p. 20]

‘If there are many things, they must necessarily be as many as they are, neither more nor
less. And if they are as many as they are, they will be limited. If there are many things, 
the things that are are unlimited. For there are always other things between the things 
that are, and again other things between those, and thus the things that are are 
unlimited.’ [Fraenkel (1975), p. 103]

‘Thus he demonstrates numerical infinity by means of the argument from dichotomy.’ 
[Lee (1936), p. 20, fr11]

6.2. The correct meaning of the word “metaxu” (between) in Zeno’s fragment B3

In order to understand the second half of fragment B3, it is important to understand the
sense in which Zeno uses the word between (‘metaxu’). By the most obvious
interpretation something is “metaxu” two objects if it is intermediate and separates these
two objects, in an implicit arrangement, and hence Zeno’s argument seems to be a
“density” argument (e.g. the density of rational numbers means that given any two
numbers, there will always be one between them), this which leads to infinite parts. And
actually, this is the interpretation which Fraenkel and Vlastos give to the word “metaxu” 
in B3. 
As we will see, the word “metaxu” has another meaning and is critical  in the
description of genesis in Plato, where one being is between two others, not if it 
separates these two things, but if this being consists of these two other things, and thus
it is an offspring of these two.
In the Phaedo 71a12-b4, 71c6-7 two beings ‘enantia allelon” (against each other), e.g.
the major and the minor, (“hetera” in the Sophistes), give two “births” (geneseis), 
between (metaxu) these two beings. It is clear that the things which are “metaxu” initial
beings of this birth, hold the role of offspring. 
In the Timaeus 50c7-d4 the genesis is described as composed of the “othen” (from 
which)-father, of the “en’ho” (in which)-mother and the “metaxu”-offspring produced.
Again here we have a clear interpretation of “metaxu” as the offspring of genesis. 
In the Theaetetus 153e4-a2, 157c6-158b8, 182a3-b7  the two opposite beings are “the
active” light (or “swiftness”, quick) and   “the passive” eye (or “slowness”, slow), 
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which fulfill the twin ‘genesis’ of “vision” and “color”, each one of them characterized
as “generated” (‘gegenemenon’, ‘genomenon’, ‘gignomenon’),  and “metaxu” the two 
initial parts.

The process of genesis is anthyphairetic, as has been shown in Negrepontis (2005): the
passive part, let us call it a, is the slowness and corresponds to the major, because the 
major is the passive, as the divided part of anthyphairesis, while the active part, let us 
call it b, is swiftness , and corresponds to the minor, because the minor is the active, as 
the dividing part of anthyphairesis. The image, the offspring a1, of the intercourse of
slow a and quick b, where as we saw a>b, is quicker, i.e. b>a1, thus symbolically
a=b+a1, with b>a1, an anthyphairetic relation. In the next stage of genesis, b, until then
active, becomes passive, with respect to the quicker a1, and thus we have again b=a1+b1, 
where a1>b1, and b1 is the offspring color. The twin offsprings, vision a1 and color b1, 
are “metaxu” the parts of the initial dyad eye a and light b.  
The meaning of “metaxu” as offspring of the (anthyphairetic) generation, is preserved
by Simplicius, eis Phusika, in fragments 186,8-15 (where he explains that in genesis the
“metaxu” are “not those separated by the two, but those generated by the two),  186,36-
187,9 and 223,24-26 (where he describes “metaxu” exactly as in Timaius : “And we
may liken the receiving principle to a mother, and the source or spring to a father, and
the intermediate nature to a child”, Timaius 50d, 2-4) (see also 284,9 and 313,16). 
This interpretation of the “metaxu” beings, in fragment B3, as anthyphairetic offsprings, 
is reinforced by the fact that the “metaxu” beings are described as “other between” 
(‘hetera metaxu’). The naming of anthyphairetic offsprings as “hetera”, has already 
been analyzed in paragraph 5, in relation to fragment B1.
We conclude that the production of infinitely many parts in the second part of fragment
B3, refers to infinite anthyphairesis, exactly as in fragment B1.

6.3. “tosauta… hosa” , “peperasmena” 

The first part of B3, attempts to prove that “if the many are (Beings)”, i.e. if the
sensibles are identical to the intelligible beings, then they must be finitely many in
number. The proof is based in the fact that under this hypothesis, the sensibles “must be 
just as many as they are, and neither more nor less”. It is not at all clear what exactly
may be implied by this enigmatic sentence, and taken on its own will lead us with 
difficulty to anything substantial. But this changes as soon as we observe that this
sentence is found almost identical in a crucial point of the second hypothesis in
Parmenides, and specifically in 144d4-e3:
“Moreover, what is divisible must be as many as its parts…for it has not been 
distributed to more parts than unity, but to equally many; for what does not lack unity, 
and what is one does not lack being; the two are equal through everything.”

In this passage, interpreted in Negrepontis (preprint b), Plato defines the dialectics
“eiditikoi” numbers, i.e. the numbers which are composed of units which are equal and
indivisible species (Respublika 522b-526c, Philebus 56c10-e6, Politicus 257a1-b8, 
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Aristotle’s Metaphusika 1083a.17-b.8), especially the number two which is composed 
of units One and Being, which are clearly unequal because they are subject to
anthyphairetic division (according to our examination in 5.5 above). However, Plato can
conclude that the two parts One and Being “are equal through everything” (‘exisousthon
duo onte aei para panta’), and the one is not lacking over the other, because the parts of 
the One are equal to the parts of the other; this happens because the parts of the Being
are as many (‘tosauta’) as (‘hosaper’) the parts of the One, and are therefore finite. From
the anthyphairetic division of the indefinite dyad One Being, infinitely many parts for
The One and also infinitely many parts for the Being can be produced. But, in what 
sense does Plato maintain that the parts of the One and the Being are finite and equal in 
number? The answer can be found in another passage of Parmenides (in the second
hypothesis again), i.e. in passage 148d5-149d7, related with the contacts of units
(hapseis monadon) in which the “eiditikoi” numbers are defined, as follows: Let
a1>a2>…>an>an+1>… the sequence of successive parts of Zenonian intelligible Being, as
in fragment B1 (paragraph 5), with an+1 the protruding part of an for every n=1,2,… The
parts of a1 constitute the sequence a2>…>an>an+1>…, while the parts of a2 the sequence
a3>…>an>an+1>…. Since anthyphairesis is periodic, there is a natural number N so that
the ratio (logos) a1/a2 is equal to the ratio aN/aN+1. According to the interpretation of
passage 148d5-149d7 in Parmenides, in Negrepontis (preprint b), one “eiditikos” 
number consists of the number of contacts-ratio of successive parts of anthyphairesis + 
1. Thus the ratio a1/a2 defines the “eiditikos” number two, with parts a1 and a2 as 
equalized units. The “logoi” a1/a2, a2/a3,…, aN/aN+1 are N-1 in number and hence define
the “eiditikos” number N, with parts a1, a2 …, aN  as equalized units. The next “logos” 
aN/aN+1 is equal to the initial a1/a2, and thus cannot be employed as an additional unit to 
create a larger number. Hence the NUMBER of the parts of a1 is the finite number N, as 
opposed to the infinitely many of his parts. Respectively, the fact that Ν-1 is the number 
of ratios different from each other a2/a3,…, aΝ-1/aΝ, aΝ/aΝ+1 proves that the NUMBER of 
parts of a2 is also the finite number Ν. It is in precisely this sense that the parts of a1, 
finite in number, are as many as the parts of a2, as the parts of a3,… as the parts of an, for
every n=1,2,…
The fact that “eiditikoi” numbers have been misinterpreted by studies of Plato’s 
dialogue Parmenides, is evident, e.g.  in Allen’s interpretation [(1997), pp.250-260].

6.4. The anthyphairetic interpretation of fragment B3

Hence fragment B3 interpreted as follows:
If the many (sensible) are identical to intelligible beings, then each one of the sensible 
must have infinitely many parts and be finite.
Here we must emphasize, as in fragment B1, that here the contradiction does NOT lie
with the fact that some being is finite and at the same time infinite, as is falsely believed 
by Fraenkel and Vlastos. Indeed any intelligible being must have the two properties at 
the same time. The contradiction which Zeno reaches lies with the fact that THE
SENSIBLE BEINGS (‘the many’) are assumed to satisfy the two properties, and thus
the hypothesis that the sensibles are identical to the intelligibles is proved to be wrong.
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Abstract 

What mathematical concepts represent and how they are represented in a given context 
are two distinct things that in this paper I argue that keeping them clearly apart is 
necessary to avoid obscuring mathematical processes. I tried to clarify the distinction 
and to demonstrate the logical differences between representation per se and 
‘representation as’.

Introduction

Much enlightening empirical work in mathematics education has revealed a number of 
results of utmost interest and of much usefulness for. These include: how different 
representations of mathematical concepts facilitate problem solving (Elia et al. 2006,
Elia et al. 2007), how students translate from one representation of a mathematical 
concept to another and the difficulties involved in these translations (Gagatsis & 
Shiakalli 2004, Artigue 1992, Hitt 1998), how multiple representations of the same 
mathematical concept is important and often essential to mathematical visualization and 
understanding (Duval 2002, Dufour-Janvier et al.1987, Greeno & Hall 1997).1

Despite the usefulness of such results I do want to raise caution regarding their
interpretation, particularly my concern is that our interpretations would be much more 
refined and accurate if an important distinction is clarified. This distinction concerns 
what a representation per se is for mathematical concepts and propositions and how a 
‘representation as…’ of a mathematical concept is used for, among other things, 
conceptualizing or visualizing a mathematical problem. In this paper I try to motivate 

                                                          
1 In these approaches to the notion of representation, attention is confined to the application of 
mathematics in modeling physical problems or problems describing possible worldly situations. The 
problem of representation of a mathematical calculus and of how that affects inferences by manipulating 
the calculus, e.g. proving a theorem by the use of some axioms or other proven theorems, is not dealt 
with. Although the latter is, admittedly, a more difficult task, I do think that a correct understanding of the 
notion of representation is one that is involved in both the application of mathematical languages to 
different domains and pure derivation from the calculus. 
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this distinction and clarify some issues regarding the notion of representation in the light 
of the distinction.

The first element of the distinction concerns the deductive character of mathematics in 
general, the reference of mathematical propositions, and the nature of mathematical 
concepts, and it has been an issue for debate among philosophers and logicians for more 
than a century. The philosophical-logical debate derives its justification from the 
conviction that a mathematical representation per se is a canonical issue, and hence 
what mathematical terms represent (and the rules for making that representation) is a 
matter of learning for the mathematics student – in more or less the same manner as the 
language of mathematics is a matter of learning. In this paper, I shall spare the reader of 
the arguments of philosophical schools of thought on the issue, and I will restrict myself 
firstly in explaining what mathematical propositions are true of, hence what without 
qualifications they represent, and secondly to the less ambitious task of showing what a 
mathematical representation per se is not. By understanding what representation per se
is not we can make sense of ‘representation as…’. The latter concerns our 
understanding of mathematical problems, our understanding of the particular 
mathematical concepts in question, and the particular ways by which we feel most 
comfortable for conceptualizing or visualizing the mathematical situation at hand. These 
are not canonical issues, they belong, by and large, to subjective aspects of human 
intelligence, hence empirical research is most welcome on this issue if it can help 
identify the different varieties of ‘representing as’, if it can help categorize these 
varieties and if it can help improve our understanding of how these categories of 
varieties can function in conceptualizing and visualizing different mathematical 
situations. 

Clarifying the distinction

The distinction manifests its importance once we want to give an answer to two quite 
different questions: “What a mathematical concept or relation represents?” and ‘How a 
mathematical concept or relation is –or, more precisely, can be– represented?’ The first 
question demands an answer to what mathematical representation per se is and, it seems 
to me, it cannot be addressed by means of empirical investigations. Mathematical 
concepts refer to relations of numbers (or sets, or, more generally, abstract objects) 
hence whatever is represented by a mathematical concept belongs to the abstract realm 
of numbers and the relations defined upon numbers, or more generally to the realm of 
abstract mathematical objects and the relations defined upon those objects. The concept 
of ‘function’, for instance, represents a mapping from one set of abstract objects onto 
another such set, in other words what the function represents is the relation defined 
upon two distinct sets of abstract objects. In this sense ‘representation is a form of 
interpretation (as logicians would say), that is the function is given by means of a syntax 
(language) which is interpreted (i.e. its semantics is supplied) by understanding its terms 
to refer to the mapping between the sets. More accurately, if one is to use the language 
of logic, a mathematical proposition is satisfied by (i.e. is true of) a mathematical 
structure, which is another way of saying that it is satisfied by a set of objects and a set 
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of relations defined upon those objects. The different sets of abstract objects and 
relations that satisfy the given proposition is what the latter represents. Understanding 
our mathematical concepts and relations to represent anything other than sets of abstract 
objects and relations defined upon those sets, obscures the actual reference of 
mathematical languages and, in a sense, misguides the student of mathematics into 
thinking that mathematical languages are directly connected to the empirical world.2

The second question, i.e. “How a mathematical concept or relation can be 
represented?”, on the other hand, invites an answer to how a mathematical concept can 
be ‘represented as’ and it concerns our attempts to visualize the concept in a particular 
context for a particular problem solving task. The contextualization involved in this 
notion of representation implies that a number of features or consequences of the 
mathematical situation will be abstracted (i.e. ignored) in the ostensible representation. 
In the process of constructing such representations the goals are simplification and 
resemblance. We want to simplify the complexities of the concept or of the 
consequences of a mathematical syllogism by abstracting some features of the 
concept(s) for the purposes of fitting it to a particular application, and in doing this 
maintain some sort of resemblance to the initial situation. Both simplification by 
abstraction and resemblance are key notions to ‘representing as’. Abstraction (i.e. in its 
Aristotelian sense of subtracting some features of the actual situation at hand) is the 
conceptual process by which we achieve simplification without losing resemblance in 
relevant respects. Although it deserves an analysis of its own, I shall not occupy myself 
with the process of abstraction as it would lead me away from the central thesis of this 
paper. Analyzing the notion of resemblance is, however, important in order to see the 
philosophical underpinnings of the distinction I want to motivate.

What Representation per se is not

In much of the literature on representation in mathematics the notion of ‘resemblance’ 
or ‘similarity’ is considered a replica of some sort of the notion of ‘representation’. 
Possibly because it is a more mundane notion ‘resemblance’ makes the concept of 
‘representation’ simpler to comprehend. However, as I have claimed above resemblance 
is only related to ‘representing as’ not to representation per se. Because the notion of 
‘representation’ seems to be a vital component of mathematics (and the physical 
sciences) its characteristics must be carefully contrasted to its ostensible synonyms, 
before we can jump to the conclusion that the synonymy actually holds, otherwise we 
are led to miscomprehensions. It is not difficult to show that representation cannot be 
grounded in resemblance. For the two notions to be synonymous, and thus for 
representation to be reducible to the concept of resemblance, the following condition 

                                                          
2 It may be the case that mathematics is not strictly speaking an a priori science after all, as some 
philosophical schools of thought would argue, but what is almost certain is that its link to the empirical 
world is far more complex and intricate than that implied by the naïve view that mathematical terms refer 
to empirical objects.
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must hold: “X represents Y if and only if X resembles Y”. Where, X and Y are any two 
objects of any kind. This condition can be broken up to the conjunction of the following 
two conditions: (1) “if X resembles Y then X represents Y” and (2) “if X represents Y 
then X resembles Y”. Condition (1) expressed as a relation between X and Y states that
“resemblance is a sufficient condition for representation” and condition (2) states that 
“resemblance is a necessary condition for representation”.

Nelson Goodman (1976) has shown that to hold the view that representation is 
synonymous to resemblance is a naïve view of representation per se. His argument 
shows that resemblance is neither a sufficient nor a necessary condition for 
representation. It is not a sufficient condition because resemblance is a reflexive and 
symmetric notion whereas representation is neither reflexive nor symmetric. That is to 
say, it makes sense to claim that X resembles itself (this is the highest degree of 
resemblance), but it does not make sense to claim that X represents itself at least not for 
all X. It also makes sense to claim that X resembles Y implies that Y resembles X, but it 
does not make sense to claim that X represents Y implies that Y represents X. In other 
words, when we use the notion of resemblance to make claims such as, Mary resembles 
her sister Helen we also mean that Helen resembles Mary in much the same way. On the 
other hand, when we use the notion of representation to make claims such as, Picasso’s 
Guernica represents the aftermath of the Nazi bombing of Guernica we do not mean that 
the aftermath of the Nazi bombing of Guernica represents Picasso’s Guernica. One 
could even extent Goodman’s argument and claim that resemblance is transitive 
whereas representation is not. That is to say, if X resembles Y and Y resembles Z then it 
makes sense to claim that X resembles Z. On the other hand, if X represents Y and Y 
represents Z then it does not imply the claim that X represents Z. Think of a painting 
depicting the photograph of Helen, of course it represents the photograph but it does not 
represent Helen. In other words, representing the means of representation of a target 
does not imply representing the target. Since the logical properties of the two concepts 
are clearly different it is not logically possible (i.e. without implicitly leading to 
contradiction) to use resemblance in order to explicate representation. Hence the 
position that the concept of resemblance provides the foundation for the concept of 
representation is groundless.

But can we claim that resemblance is a necessary condition for representation? If yes 
then every representation must appreciably resemble its target. Goodman’s answer is 
that we do not need any degree of resemblance to achieve representation. He claims, 
correctly I think, that almost anything can represent anything else. For instance, two 
stones on the ground can represent two armies ready for battle. That is to say, 
representation can be achieved even when the means of representing do not resemble in 
any way their target. I would even add that the mere concept of appreciable resemblance 
is context dependent, in the sense that it is relative to the domain of discourse. For 
instance, in the context of the Darwinian theory of Natural Selection ‘man’ appreciably 
resembles ‘ape’, whereas in the context of Newtonian Mechanics ‘man’ appreciably 
resembles ‘table’. Thus, the claim that resemblance is a necessary condition for 
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representation is not an assertion that admits generalization; it is dependent on the 
context dictated by the given discourse, and the latter’s interpretation imposes 
psychological states from which the resemblances ensue. That is to say, because we 
interpret within a language that X represents Y we discern resemblance in some respects 
between the two objects. This conclusion is, I think, congruent with Goodman’s 
conclusion that the core aspect of representation is denotation and thus it is independent 
of resemblance. It is also congruent with what I have been urging so far, that 
‘representing as’ is correlated to resemblance. Because representing a mathematical 
concept as something of our choice is something we do in order to visualize it, thus 
resemblance is imposed from our part. Representation per se is, however, independent 
from resemblance; it is a product of our mathematical languages (i.e. any symbolic 
system) and their interpretation.

The fact that we use iconic (diagrammatic etc.) representations does not counter the 
above conclusion. Any picture can be described through a sufficiently rich language and 
not all linguistic expressions can be represented pictorially. The well known saying that 
“a picture is worth a thousand words” refers to the economy of thought and not to the 
representational power of the picture. Representationally speaking, “every linguistic 
expression conveys a thousand pictures”. But, as in other domains of discourse, in 
Mathematics no matter how many pictures we use it is impossible to represent some of 
the things we do represent using the linguistic expressions of our mathematical 
concepts.

Some practical consequences of the distinction

Mathematics education researchers are interested (and rightly so), among other things, 
in understanding mathematical concepts in ways that facilitate practical applications. So 
far the distinction I have been urging seems to be of interest only for the philosophically 
minded. However, two characteristics, one attached to ‘representation as’ and one to 
‘representation per se’, are of most valuable practical interest. The characteristic 
implied by the practice of ‘representing as’ is that the latter often implies counterfactual 
representation, i.e. X is represented as Y, could mean that Y acts as if it is a 
representation of X for a particular purpose but actually it is not, and often we know that 
it is not. That is, we may say that the triangle I drew in my notebook represents the 
concept of a mathematical isosceles triangle but it does not and, in fact, it cannot be 
what the concept represents. What we actually mean is that the drawn triangle acts as if 
it is a representation of the mathematical concept of isosceles triangle, i.e. the 
mathematical concept of isosceles triangle is represented as a drawn triangle. The drawn 
triangle acts as a representation because it resembles the mathematical concept in 
relevant respects and we do this because representing in diagrammatic form is one way 
by which we can simplify our mathematical syllogisms in particular problem solving 
tasks. Of course, I would be hesitant to generalize this observation, because there are 
cases where a particular concept is represented as something seemingly distinct, and the 
representation relation needs no ‘as if’ clause. Such is the case when we represent a 
mathematical function by means of a graph. The function is represented as a graph, and 
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not as if it is a graph of two variable quantities. The reason that such cases of 
‘representation as’ exist, and in particular graphical representation is because what the 
function actually represents, i.e. a mapping between two sets of objects, can also be 
represented by the graph. In other words, there is what looks to be a direct translation 
between the syntactic form of the function and the graphical form which in fact is 
carried out via what they actually both represent. This, however, is not always as clear 
in all cases of translations from one ‘representation as’ to another, and this brings us to 
the characteristic attached to representation per se. In many cases we must look closely 
in order to make sense of how a translation is carried out. Nevertheless, one thing is 
always clear, that a translation from one ‘representation as’ to another is validated if 
both represent the same sets of objects and relations. In other words, ‘representation per 
se’ always mediates in translations. I am not claiming, here, that the translating agent 
consciously uses the representation per se to guide his/her translation, but that for a 
translation to be valid and non-arbitrary this condition must hold.

Both of these observations are, in my view, of practical interest to the mathematics 
educator. The practical significance stems from the synthesis of the following two 
things. Firstly that we know that a translation is valid when both representational 
systems refer to the same things (i.e. the same sets of objects and relations) and 
secondly we can empirically support the claim that understanding mathematical ideas 
entails: “(1) the ability to recognize an idea, which is embedded in a variety of 
qualitatively different representational systems, (2) the ability to manipulate the idea 
flexibly within given representational systems, and (3) the ability to translate the idea 
from one system to another accurately” [Gagatsis & Shiakalli 2004, pp. 645-646]. The 
first and second claims above, i.e. how an idea is embedded in a variety of qualitatively 
different representational systems, and  manipulating the idea flexibly within given 
representational systems, are abilities that are fully acquired when the student 
recognizes that often we represent mathematical concepts as if they refer to things that 
actually they do not.

Conclusion

The philosophical underpinnings of the distinction between what mathematical concepts 
and propositions represent (representation per se) and how mathematical concepts can 
be represented (representation as), has been demonstrated. The distinction, as such, can 
be of usefulness to the Mathematics Educator, as the kinds of problems that arise in the 
learning of mathematics can be categorized in the light of this distinction, and treated 
appropriately. Clearly, the mundane notion of ‘representing as’ is embedded in ordinary 
thinking, and does not require mathematical maturity in order to comprehend and 
handle. In order to recognize that it is one thing to ‘represent as’ for the purposes of 
practical problems and it is another different thing for the abstract concepts of
Mathematics to represent something also abstract, requires, however, mathematical 
maturity. And the question of when and how ‘representation per se’ can be taught 
effectively is a matter also of empirical research.
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Abstract
As it is possible to read from numerous research studies (Spagnolo, 2005; Nisbet, 2001,
2003) the reasoning schemes and the cognitive process specifically referred to the 
argumentation, conjecturation and demonstration phases are not possible to be defined 
in a universal way without taking into consideration the cultural context in which 
people live and study (linguistic aspects, philosophical aspects, beliefs and values etc.). 
This characteristic is evident in a clear manner analyzing different cultures as the 
Italian and the Chinese. The article aims to augment, in an experimental way, as some 
of the cultural differences verified trough the Italian and Chinese cultures (we will refer 
to the epistemological aspect of the two cultures) tacitly influence the didactical sphere 
of the discipline, putting in evidence differences in the basic nature of the cognitive 
process utilized by the students. The didactical experience discussed in this work, 
conducted in multicultural classes in Palermo, aims to analyze the cognitive behavior of 
pupils aged 3-10 in resolving pre-algebraic problems. The present work is inserted in a 
broader research project, conducted within the GRIM of Palermo and essentially 
dedicated to the analysis of the logical argumentative schemes verified in the Chinese 
and Italian cultures in the resolution of different task (tips of solution, resolute 
algorithmic, verifiable errors) structured in diverse mathematical contexts, created ad 
hoc. As for the research methodology, the activity was conducted according to 
Brousseau’s theoretical framework. The selected concept that constituted the 
mathematical specific milieu was choice in relation to the arithmetical thought, the 
algebraic thought, and so to the first approach to the concept of variable and unknown. 
The collected data have been analyzed in parallel according to a quantitative and 
qualitative analysis. Quantitative analysis has been conducted using the software CHIC 
3.0 for non parametric statistics.

Introduction
What we analyze when we discuss about of the binomials mathematics-culture, 

fundamental relation for this work and for a large tradition of research in didactic of 
mathematics, is not only the presentation of specific techniques trough witch a certain 
group of people treat the mathematical knowledge; but a critic discussion of possible 
correlations between the cultural context on witch these people live and the treated 
mathematical concepts that are elaborated and obtained. This is the approach that we are 
following, even if in a first approximation, in our work. What we are interesting in is in
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fact the analysis of the reasoning schemes adopted by the student and strictly interpreted 
in relation to particular aspects of their own culture; with particular attention on the 
logical-linguistic problems.   

For what we said before and with the aim to discuss the treated problematic, we think 
that could be useful to present briefly:

1. the role of the history of mathematics as an instrument of observation and analysis 
of multicultural learning/teaching situations: the case of the Nine Chapter as canon for 
the construction of mathematics (1st Cent. B.C.-1st Cent. A.D.);

2. the role of natural language in the development of mathematics in the history of 
thought. (Spagnolo, 1996, 2002);

3. the role of fuzzy logic (an approach of the linguistic type) as an interpretive 
instrument for the Chinese students of some problem situations in class correlated to 
“common sense” (Spagnolo, 2002, 2005). The main references are those of Zadeh, (as 
regards the fundamental considerations of fuzzy logic of the linguistic approach) and of 
Kosko (1995) as regards the relationships and analogies identified between fuzzy logic 
and oriental thinking.

The first of the reference, the historic and historic-epistemological analysis of 
mathematical thinking, according to us, could be useful to study the different patterns of 
reasoning (deducing, conjecturing, demonstrating) in the European and Chinese 
cultures. This kind of analysis is conducted with the typical argumentations of history 
and epistemology and it is the basic reference for all the work. In this specific case we 
are discussing to the principal reference for mathematics in Chinese education: the 
“Nine Chapters on Mathematical Procedures”.

The second and the third reference specifically refer to the initial acquisition of 
“symbols” and variable (in a pre-algebraic sense) in children and so an interpretation of 
the reasoning scheme referred to this.

The “Nine Chapters on Mathematical Art (Jiuzhang suanshu)”, typical Chinese 
reasoning schemes and possible East Asian Identity in Mathematics Education.

The Jiuzhang suanshu or Nine Chapters on the Mathematical Art is a practical 
handbook of mathematics consisting of 246 everyday problems of engineering, 
surveying, trade, and taxation. It played a fundamental role in the development of 
mathematics in China, not dissimilar to the role of Euclid's Elements in the western 
mathematics. It is so principal reference for mathematics in Chinese education, a canon 
both for the construction of mathematics (1st Cent. B.C.-1st Cent. A.D.) and for the 
teaching/learning of the same in the various historic periods. Among the most notable is 
the commentary of Liu Hui (263 A.D.) presented in the collection of the Mathematical 
Canons of the Tang Dynasty (618-907 A.D.). Let us now give a short description of 
each of the nine chapters of the book. 
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Chapter 1:

Land Surveying. 

This consists of 38 problems on land surveying. It looks first 
at area problems (the types of shapes for which the area is 
calculated includes triangles, rectangles, circles, trapeziums), 
at rules for the addition, subtraction, multiplication and 
division of fractions. The Euclidean algorithm method for 
finding the greatest common divisor of two numbers is also 
presented. In the problem number 32 an accurate 
approximation is given for π.

Chapter 2:

Millet and Rice.

This chapter contains 46 problems concerning the exchange 
rates among twenty different types of grains, beans, and 
seeds. It possible to find a study of proportion and 
percentages and an introduction of the rule of three for 
solving proportion problems. Many of the treated problems 
apply as simple exercise to give to the reader the practice to 
work with the calculations with fractions.

Chapter 3:

Distribution by 
Proportion.

There are 20 problems which involve proportion (direct 
proportion, inverse proportion and compound proportion). In 
particular arithmetic and geometric progressions are used in 
some of the problems.

Chapter 4:

Short Width.

24 problems (the first eleven problems take the name to the 
chapter). Problems 12 to 18 involve the extraction of square 
roots, and the remaining problems involve the extraction of 
cube roots. Notions of limits and infinitesimals appear also
in this chapter.

Chapter 5:

Civil Engineering.

28 problems on construction of canals, ditches, dykes, etc. it 
is possible to find volumes of solids such as prisms, 
pyramids, tetrahedrons, wedges, cylinders and truncated 
cones Liu Hui, in his commentary, discusses a "method of 
exhaustion" that he invented to find the correct formula for 
the volume of a pyramid.

Chapter 6:

Fair Distribution of 
Goods.

This chapter contains 28 problems involving ratio and 
proportion. The problems refer to travelling, taxation, 
sharing etc.

Chapter 7:

Excess and Deficit.
20 problems that report the rule of double false position.
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Chapter 8:

Calculation by 
Square Tables.

This chapter contains 18 problems which are reduced to 
solving systems of simultaneous linear equations. However 
the method given is basically that of solving the system 
using the augmented matrix of coefficients. The problems 
involve up to six equations in six unknowns and the only 
difference with the modern method is that the coefficients 
are placed in columns rather than rows. The matrix is so 
reduced to triangular form, using elementary column 
operations as is done today in the method of Gaussian 
elimination, and the answer interpreted for the original 
problem. Negative numbers are used in the matrix and the 
chapter includes rules to compute with them.

Chapter 9:

Right angled 
triangles.

In this final chapter there are 24 problems which are all 
based on right angled triangles. The first 13 problems are 
solved using an application of Pythagoras's theorem, which 
the Chinese knew as the Gougu rule.

The key concept that organizes the description of the Jiuzhang suanshu is the concept 
of “class” or “category” (lei) that plays a fundamental role in the commentaries. The 
elements that we find relevant to understand the specificity of the book and so of the 
related culture are so: the problems and so the typology of the problematic situation 
putted on the book and  judged relevant for the Chinese culture for the time of the book, 
the modus operandi described in the book (the “procedure” (shu), the algorithmics in 
the term sense intended by Chemla (2004, 2007) that are useful to classify, understand 
and so describe the categories), the calculus instruments, the demonstrations (in the 
Chinese sense of term), the epistemological values.

The structure of the book is gradually articulated from the simple given of a problem 
(wen) related to a particular category, to solve it, “generalizing” step by step, trough an 
analogical reasoning, trough a variable mutation 1, the proposed situation and defining 
hence a general solution strictly connected to the proposed contest in a holistic vision 
(Nisbet, 2001).  So, it is through a work on the procedure that is possible to define the 
situation classes. The solution process is an abtudive process where deduction and 

                                                     
1

 According with the Chinese philosophy in which nothing is clear divided in white and black, neither the colors 

interpreting the circle Ying e Yang. “The oriental dialectic welcome the possible contradiction inside on a logic reasoning since only 

trough these the verity is known. (Nisbett, 2003). The fundamental principles that regulate the oriental dialectic are so verifiable on:

a) Principle of mutation: the reality is a process subjected to a constant mutation;

b) Principle of contradiction: since the mutation is constant, the contradiction is also constant;

c) holistic principle: since all the thing varying continually and it is always in contradiction, nothing, in the human life as 

in nature, is possible to understand  independently. All is linked.

All gave them the possibility to tolerate the paradox, it isn’t absolutely absent in the western culture.
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induction are together in a unique reasoning scheme. The perfection is defined in terms 
of simplicity and generality trough a global vision of the problematic. 

As Nisbet declare “The social worlds of East and West today reflect to a substantial 
degree their origin in Chinese and Greek culture, respectively…the social differences 
influence cognitive processes…we might expect to find cognitive differences among 
contemporary peoples that parallel those found in ancient times. 

Some of the differences that Nisbet puts in evidence are:
-the relationship between the field and the object, and the perceived relations among 

events;
-the organization into categories and covering rules, instead of organizing in terms of 

similarities and relationships (typical for the Chinese culture);
-apparent contradictions, Westerners resolve the situation by deciding which of the 

two  propositions is correct, whereas Easterners are inclined to find some truth in both 
propositions. Westerners thus emphasize non-contradiction, whereas Easterners value 
the “Middle Way.”.

Trying to define an universal identity for the features of the East Asian mathematics 
education with the underlying values in contrast to features and values in the West, 
Leung in the ICME-9 in Tokyo/Makuhari, Japan, 2000, defined six interesting 
dichotomies that, according to us, are strictly linked with the other two aspects
presented before about the natural written Chinese language and the role of fuzzy logic 
(an approach of the linguistic type) as interpretive instrument of some problematic 
situations correlated to the “common sense:

1. Product (content) versus process;
2. Rote learning versus meaningful learning: “Understanding is not a yes or no 

matter, but a process or a continuum”
3. Studying hard versus enjoying the study “the East Asian view is that learning or 

studying is necessarily accompanied by hard work, and a deeper level of pleasure or 
satisfaction is derived only as an end result of the hard work”

4. Extrinsic versus intrinsic motivation 
5. Whole class teaching versus individualized learning “Chinese proverb: teaching 

students in accordance with their aptitude”
6. Competence of teachers: subject matter versus pedagogy.

Observations on the Chinese written language

For the observations regarding language we are referring to the research works of 
Chemla (2001), Needman (1981) and Granet (1988). 

As Granet declares

“Chinese was able to become a powerful language of civilization and a great 
literary language without having to worry about either phonetic wealth or 
graphic convenience, without even trying to create an abstract material of 
expressions or supplying itself with a syntactic armament. It managed to maintain 
for its words and sentences a completely concrete emblematic value. It knew how 
to reserve only for rhythm the care of organizing the expression of thought. As if, 
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above all, it wanted to liberate the spirit from the fear that ideas can become 
sterile if expressed mechanically and economically, the Chinese language refused 
to offer these convenient instruments of specification and apparent coordination 
which abstract signs and grammatical artifices are. It kept itself obstinately 
rebellious against formal precisions for the love of the concrete, synthetic 
adequate expression. Chinese does not seem organized for noting concepts, 
analyzing ideas or conversationally expressing doctrines. In its completeness, it is 
constructed for communicating sentimental behaviors, for suggesting conduct, for 
convincing, for converting.”  (Granet, 1988, p.243)        

The words are nouns (ming) that refer to “existing things” (wu) in effective reality 
(shi). As an example we could consider the word that means “old”. It does not exist; in 
compensation there is a great number of terms which illustrate different aspects of old 
age, with a full series of subtleties. The Chinese character to express the meaning of 
“old” is  [lǎo] in wich  is for huà “change”. máo means “hair”. "The modern form is 
an extreme corruption of a seal containing  hair  changing (color): old" (Karlgren, 
2002).

The construction of the ideograms are classified in different categories or “meta-
rules” of composition. The ideogram presented, in the Chinese writing, is one of the 
composition rules of the fundamental characters.  Needham reports the classification in 
six classes and he discuss them in this way:

a) Hsiang hsing, lett. «Forms of imagines» (pictograms): tree ; sun ;moon ;
mountain ;horse ; bird ; crow� (it like  “bird”, but missing the dot in the head; the 
eye is invisible because a crow's eye is black like the feathers); 

b) Chih shih, lett. «Indicators of situation» (indirect symbols);
c) Hui i, lett. «Union of ideas» (composition by association or logic composition). 

80% of the ideograms are of the associative kind (Needman, 1981). They represent a 
sort of mental equations as semantic combinations of two or more characters that are 
composed by association. We could find different examples for this:

- [nán] man=  (tián) “field” +  (lì) “strength.
 Such equations constitute a semiconscious mental foundation for whoever is 

acquiring familiarity with the language.”  (Needham, 1981, pp. 35-36, vol. I).
- � [hǎo] good = � (nǚ) “woman” and � (zǐ) “child”;
The two components combine to represent the 
meanings “good” and “like”;
-  [lín] ( sēnlín) forest = tree  + tree  (plus ). Two  (mù) trees side by side.
-  [xiū] stop, rest = ( ré n) +  (mù) tree. A person stopping to rest under a tree.
d) Chuan chu, lett. «Transferable sense» (symbols that is possible to interpret 

reciprocally). 
e) Hsing sheng, lett. «Language or sound». These characters are defined in a 

determinate general manner: the radical is associated to a phonetic sign to indicate the 
category on which we have to find the meaning of the word. So a lot of words with the 
same sound are written without confusion. (Needham, 1981, p. 38).
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- [yuán] garden =  (wé i) “surround”, suggesting a garden fence, and (full form:) 
yuán phonetic or (simple form:) yuán phonetic;

- yuán or (simple form:) yuán phonetic, and ( chuò ) “go” (to go far) = “far”
f) Chia chieh, lett. «Loan» (caratteri fonetici in prestito). The formation is much 

similar to the precedent case but the way to construct the character is different. 

Equal definition is reported on all the Chinese grammatical in different volumes on 
the history of Science in China as in the volumes of Enciclopedia Treccani (1977).

Other two transversal interesting observation could be made regarding the reasoning 
scheme to the written Chinese language:

a) the use of the contradiction in a contemporary of the opposites (From the point of 
view of Fuzzy Logic2 ) inside the language: 

-  [bēi] cup: from  (mù) “wood” and bù “not” phonetic. From the association of 
these two characters and so from the idea of “opposition/contrast” born the concept of 
cup: Everybody knows that cups are � (not) made of � (wood).

- From bù “no” and kǒu “mouth” we find the character linked with the idea of not 
to use the mouth. 

b) the idea of a variable (as thing that varying) and a parametric system inside the 
composition of many characters. Some simple examples could be: 
- Gǔ ( ) = as unitary ideograms “old” composed by “ten” and “mouth” (in reference to 
the Chinese philosophy That which has passed through  ten  mouths, i.e. a tradition 
dating back ten generations) strictly licked to other different characters licked with it by 
a semantic or phonetic units:  

-  = to harden (annoyed and hardened), with the radical 31: 
-  = to fade (annoyed and done harden) “From  (mù) “tree” and gǔ (“old”) 

phonetic.  “old” also it is  suggested the meaning, “withered”
-  = reason, cause (aged, dried him and fixed him) with the radical 66
-  = mother-in-law (elderly woman “dried him”) with the radical 66 to the left.  
-  = solid thing and hardened,  
-(  = old men)

Another example in this sense could be with regard to the radical  (tián) “field”. We 
could find other 138 different characters linked with it:

-  [lǐ] “village”: From � (tián) 'field' and � (tǔ) 'earth'. “Village of 25 or 50 
families; place of residence; (the length of the side of the said village:) length measure 
of about 600 meters” Since the adoption of the metric system, a lǐ is exactly 500 meters. 
The word lǐ meaning 'inside' in its full form is written with � and � (yī) 'clothing', 
either �, split with � on top and the rest below, or �, with �(�) on the left side. The 
simple form is just � without � (Karlgren, 2002)

-  [guǒ] “fruit”: field + tree

                                                     
2

 A set A and the set not-A have in fuzzy logic an intersection which varies from a minimum to a maximum that depends 

on the possibility of receiving A and not-A and distinguishing A and not-A.
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-  [jiè] “boundary”: From � (tián) 'field' and � jiè 'introduce'. According to 
Karlgren, � jiè is etymologically the same word as � jiè, which originally also meant 
'boundary'.

-  [sī] ( sīxiǎng) “thought”: The top depicted a brain, now it happens to look 
like � tián 'field'. The bottom is � (xīn) 'heart'.

- (F ) [bèi] ( ) “get ready”, “prepare”;  “equipment”: The explanation of  is 
obscure. There have been numerous different forms, including the full form � and the 
simple form . Mnemonic for : � (zhǐ) walk slowly around a � (tián) field, preparing 
equipment?

-  [liú ] “stay”;  “hand down”;  “arrest”: From �(�) mǎo phonetic and �
(tián) 'field'.

- (F ) [huà] “draw”; “picture”: "Draw boundary lines...delineate, draw, paint; 
drawing, painting; stroke (in writing) -- � to draw � or � lines: boundaries of a �
field" (Karlgren, 2002).

An old form is �. In the common full form �, the bottom � is reduced to �. In the 
simple form � the top � is left out. Compare �(�) zhòu which is similar to �(�) in the 
full form.

These characteristics of the written language seem to put in evidence an internal 
research to a use of a common strategy to define “different characters” in which the 
radicals part assume a role of a parameter (in a mathematical sense of the terms) and 
vehicle the meaning or the sound of the character. It seems to us a sort of research of a 
possible fundamental algorithmic to construct different “words” and so to read and to 
write these in a continuous parallelism, in a continuous relationship, between “serial 
thought” and “global thought” on each single character.

Ex: Algebra  =   =   (to represent) +  (number)  = [ (men) +   (an arrow that points 
out: it represents the phonetic part)]  + [(  (clapping, tapping rhythmically to facilitate in 
counting) +  (“that is obscure”)]

The  ideogram is formed therefore from two meaningful parts that give a new meaning, 
but at the same time one of the parts also has phonetic value and it communicates the 
sound.  

This observation seems to us to argue how the reasoning pattern inducted from the 
written natural language brings naturally, unconsciously, the Chinese people to use (in 
different contest) some pre-algebraic reasoning schemes. 

Some reflections on “arguing, conjecturing and demonstrating” in Chinese 
Culture with relation to Occidental Culture. 

This paragraph briefly analyses, in a schematic way, some substantial differences 
founded in the history of the Chinese and Western thought.
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In the comparative analysis of science in pre-modern China and the west, Geoffrey 
E.R. Lloyd   (2001, pag.574) says that, “The aspirations of ancient Greek tradition 
represented by Euclid, which  proposed deducing all mathematics from a single set of 
indemonstrable but evident axioms were not shared by the Chinese at least until the 
modern age. In China, as a matter of fact, the goal was not axiomatic-deductive 
demonstration, but gathering unifying principles from all of mathematics.”

The following table analyses some differences in reasoning patterns in a holistic 
vision.

Occident Orient
1200 algebra: no 
formalization 200 B.C. algebra: no formalization

Paradigm of geometry, 
Equations

Positional system, matrices (system of 
the rods)

Aprioristic formulas that 
hide the processes, favoring, 
with the result, determinism

Solving equations by means of 
algebraic manipulations with the 

strategies: 1) making equals, 2) making 
homogeneous, 3) research for fundamental 

algorithms.
Reduction ad absurdum in 

a potential infinite
Existing infinity of operations

What we focus on in this work is the algorithmic aspect and the holistic thought that 
transpire from the Chinese culture, as it is possible to read trough the table and in 
relation to what we said before about the historical mathematical reference of the 
Jiuzhang suanshu. According to us and to other research work in the didactics of 
mathematics, it is in fact one of the main reference for the Chinese mathematical 
thinking and so for the procedures in argumentation, conjecturation and demonstration. 
It plays a central role in the Canon of mathematics and also represents a tool to 
demonstrate. In problem solving, the concept of variable varies and permits, after 
different steps (algorithmic strategy), to find the unknown value that has to be obtained 
in the problem. This process for the solution is standard and it is therefore an algorithm. 
Demonstrating the validity of that reasoning means demonstrating the correctness of the 
procedure (use of the properties of the operations) in the steps of the algorithm. Thus, 
the algorithm is a combination of an iteration and of chosen ‘conditionals’. The chosen 
conditional is a first interesting element of the pattern of reasoning: Iteration; 
Conditionals (If…then…); Assignment of variables.

The following table attempts to find analogies and differences between the meanings 
that the algorithm assumes in the two cultures.
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From the occidental point of 
view:

From the oriental point of 
view

Intuitive 
algorithm

Procedure
Procedure.
Research of fundamental 
algorithms as reference.

Formalized 
algorithm

Algorithm:
1) Effectiveness, actually feasible by 
an automaton. The automaton must 
be able to recognize the minimum 
parts of the description of the 
algorithm (accepting the language in 
which the algorithm is written; the 
well formed sentences are called 
instructions).
2) Finiteness of expression: finite 
succession of instructions. Cycles, 
conditions, jumps.
3) Finiteness of the calculation: in 
the concept of algorithm there is 
usually included the condition of 
termination of the procedure for any 
situation of initial data within a 
certain domain.
4) Determinism: at each step of the 
execution of the procedure one and 
only one operation must be defined 
and successively carried out.

A paradigmatic example is the 
“rule of three”:
the rule of three rests on the 
“quantity of that which one has” 
and on the pair constructed from 
the “lü of that which one has” 
and of the “lü of that which one 
is looking for” to give rise to the 
“quantity that one is looking 
for”.

Determinis
tic 

algorithm

Condition 1 is inalienable. The others 
give rise to different types of 
algorithms. If 4 is missing, the 
algorithm is called non-deterministic.

Research toward analogies of 
valid algorithms for classes of 
homogeneous problems. 
Reference to the algorithms as 
true and real models.

Probabilist
ic 

algorithms

Approximate, probabilistic, NP-
complete algorithms (if there exists a 
polynomial algorithm able to confirm 
whether or not this is effectively the 
solution of the problem), algorithms 
that stop after a number of steps 
which grows exponentially.

Fuzzy algorithms?

In this sense, the algorithm seems as an instrument for demonstrating the precision of 
an argument (in the Jiuzhang suanshu each argument is concluded with phrases of this 
type “from here the result”).



Different procedures in argumentation and conjecturation in primary school

245

Through this cultural aspect another stable reasoning pattern in the Chinese culture is 
possibly defined: the continuous research to the strategy to “Making homogeneous and 
making equal”: (from the commentaries of Liu Hui, 263 B.C. (Chemla, 2001, pg. 142))

 “Making equal” and “making homogeneous” are strategies of reference to be able to 
concretize the correctness of the reasoning through an algorithm and it could present, 
according to us, concrete indications on algebraic manipulations of formulas.

An interesting example of the “Making homogeneous and making equal” is that of 
the rule of three (from the commentaries of Li Chunfeng, 656 B.C. (Chemla, 2001, pg. 
142). This algorithm once again is an operation which “makes equal” and “makes 
homogeneous” (in the reduction to unity).  So, the rule of three, as a fundamental 
algorithm, is the parallel in western culture of the postulate. The fundamental algorithm 
can combine itself several times always arriving at a sure argument.

As Liu Hui observes, in this joke of relationships between “serial thought” and 
“global thought” in reading and understanding a problem, particular attention must be 
given to the examination of the algorithm on the classes of problems, to be able to 
highlight its correctness.

An experience with Italian and Chinese students: theoretical framework
One of the open problems of the “new” school is to interpret the behavior of students 

introduced into multicultural classes. In Italy, the issue of "multi-cultural" classes is a 
phenomenon that, even though rather new, it is in wide expansion: the integration of 
foreign students in the Italian classes had, in the recent years, an increasing rate and has 
become no more an exception but, on the contrary, an inevitable reality. «The present 
situation requires therefore to consider and to reorganize an idea of education in 
balance with the new needs and resources, in order to strengthen the trend of 
differences integration, the change and mutual adaptation, an open trial correlated with 
identities recognition and acceptation and with incorporated knowledge» (Canevaro 
1983).  

The differences that could be detected in the class activities from this point of view, 
will turn into sources that enrich the whole class. In these relationships, the teacher has 
to play the essential role of a “knowledge mediator”. In the specific case of 
Mathematics, a greater attention was paid in recent years to the problems of the 
didactics in a multicultural school milieu and these themes were included into several 
school programs and described in many papers. It becomes evident in this context, that 
the starting point of any activity facing problems which have arisen out of the presence 
of cultural differences in the class, is to specify and highlight  all moments that 
characterize cultural models of integration: pupil’s previous knowledge, his 
motivations, his expectations and abilities, his personal and intellectual characteristics; 
all that constitutes the necessary prerequisites of every correct pedagogic intervention. 
(Garcia Hoz-Guerriero-Di Nuovo-Zanniello 2000).

The research activity we propose in this paper belongs to this context.  Specifically, 
it proposes a reflection on teaching/learning methodologies of the concept 
variable/unknown and therefore on their understanding (augmenting and conjecturing in 
natural language but not only) in primary school pupils involved in experiments 
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(Chinese and Italian pupils). As we said before, the problem regarding the sense of 
variable could be connected with some particular aspects of the Chinese culture, for 
example the structure of the ideograms in the written Chinese language and the logical-
argumentative schemes adopted by the Chinese students in the class. It is also connected 
(this is the aim of the project in which this research is inserted) with the difficulty to 
delineate a general framework that can allow to individualize the fundamental steps for 
the development of the algebraic thought in relationship to the arithmetical and 
geometrical ones.   

In this context, research at national and international level underlines the complex 
problematic regarding the passage from the arithmetical thought to the algebraic thought 
and so the birth and the evolution of the sense of the concept of variable for the 
students. In the phase of transition between arithmetical thought and algebraic thought, 
they verify then as some epistemological obstacles strictly connected to the passage 
from a meaningful semantic field, precedent, (the arithmetic) and the syntactic 
construction of a new language (the algebraic one) can delay the development of the 
algebraic language and so the algebraic thought. (Spagnolo, 2002)

These experimental analysis allowed us to underline a different behavior of the 
students in relationship to: the logical structure of the proposed problematic situation, 
the type of study course attended and the origin country (different culture, different 
system education, different teaching’s strategies…). Thus, one of the open problems is 
to interpret the obtained results, in presence of multicultural classes.

The choice to study the Chinese mathematical thought is, as we just said before, due 
to the fact that the Chinese culture, as regards Natural Language, Philosophy, Logic 
etc., is the most distant from the western culture; to analyze the reasoning schemes used 
by the Chinese student in the resolution of a mathematical problem allows us not only to 
reflect on the differences of argumentation adopted in the two countries in the resolution 
of a same assignment but, above all, it allows us to reflect on our cultural reference 
system, the Western one.
 Do the Italian and Chinese students, in the resolution of particular problems, put 

in evidence different resolution strategies reported to the effect of their origin 
culture (Natural Language, logical-argumentative schemes, algorithms, etc…)?  

 Is it possible to underline these differences analyzing their argumentation and 
conjecturation on in the passage from the arithmetic thought to the algebraic 
thought?

 Can the study of such differences help the understanding of the phenomenon of 
teaching/learning in multicultural situation?

To be able to interpret the comparative study between the Chinese thought and the 
Italian one in situations of teaching/learning in a multicultural perspective, we are 
referring to the studies of J. G. Gheverghese (1987) and U. D’Ambrosio (2002).   

The principal theoretical reference for the methodology of the study is Brousseau`s 
theory of the situations (Brousseau 1998); in a multicultural milieu it could result 
central in the specific phase of socialization of the cognitive styles. To put in evidence 
the socialization of the cognitive styles (phase of validation of the a-didactic situation) 
became then the carrying element for the comprehension of the phenomenon.   
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Having accepted the principle that education comes to be "realized" around the 
student, considering then the social and physical milieu in which he lives, the Didactics 
of Mathematics has to build on the different experiences offered by the contemporary 
presence in class of different cultures, each one with the own mathematical inheritance
and mathematical knowledge, to a cultural exchange and a mutual enrichment.

The topic we deal with allows also a series of transversal theoretical reflections that 
need to a consider as broad as possible frame of reference that considers not only 
motivation/emotional side of the didactical activities but also the role of such a 
didactical methodology, centered on playing and creative activities. (Piaget, 1976, 
Brousseau, 1998), that “disrupts” that pre-arranged context expected and feared by the 
pupil in which he carries out mathematics. 

Methodology and first results 
The problematic situation on witch we are referring on this paper is a particular 

game, experimented with Chinese children of infancy and elementary school, 
Sudoku/Magic box opportunely simplified. 

The game is the box/matrix shown in the figure aside. 
We proposed it in the classroom with other five different 

images of animals on the cards and a series of rules for the 
composition/solution of it:

1.each animal cannot be in the same line or column with its 
enemy 

(we presented the enemy animals);  
2. each animal has to appear in the square only once;
3. each student has to insert in the box, all of the nine possible different 
Animals shown in the image cards; 
4. the solution has to be only one.  
This is one of the possible games for a first approximation research, conducted in a 

multicultural milieu with Chinese students and also pupils from other countries, into the 
relationships between the “serial thought” and the “global thought” in the reading and 
understanding of the problem. In a first approximation, we could consider, this kind of 
reasoning connected to the arithmetical and algebraic thinking and their relationship.

We involved in the experiment about 95 children (13 Chinese students) aged 3-10; 
the age range was chosen to investigate in the broadest possible way the different 
behaviors and different verbalizations of the pupils in this situation. 

The experimentation was divided in two phases:  
1. situation/game with children of the infancy School “Ferrara" of Palermo and of the 

of the Primary School "Costa G." of Palermo, first two years, to observe through 
quantitative and qualitative analysis (classroom experiences videotaped), the behaviors 
enacted by the students and the different playing strategies and the recurrent reasoning 
of Italian and Chinese students;  

2. Semi-structured interviews (videotaped) to two foreign (Chinese) students, 
inserted in the Sicilian scholastic context at the Elementary school, regarding the same 
situation/game. 
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As we previously said the game was chosen and adapted according to a series of 
critical reflections and research previously carried out within the GRIM on the same 
topic. To structure the game, we considered some of the particular linguistic aspects that 
characterize the structures of Chinese written language and in particular the possibility 
to interpret an ideogram as union of single elements (local vision, Western vision) 
or/and unitary character (global vision, Chinese vision), the possibility to find a first 
approach to the sense of variable inside the written Chinese  language and also some of 
the typical reasoning schemes discussed before and referred to an algorithmic approach 
to the solution of a mathematical problem including “one problem multiple solutions,” 
“multiple problems one solution,” and “one problem multiple changes.” (Cai, 1999, 
2007)

The selected data, is analyzed both quantitatively, through the analysis of the 
protocol, and qualitatively with single case studies. For the quantitative analysis we 
used the software for inferential statistic Chic 3.0 (Classification Hié rarchique 
Implicative et Cohé sitive).

Trough this quantitative analysis of the collected data, shown in the presentation of 
the article, the proposed game will be examined in relationship to the results underlined 
previously in other relevant works (realized in other different mathematical contexts) 
conducted in multicultural milieu with Chinese student of different ages; research work 
realized within the GRIM.

In this sense, the game of Sudoku/Magic Box seems to confirm, even though it is a 
first approximation, results previously discussed in other research works: compared to 
Italian students, Chinese pupils present a different kind of logic in the following items: 
problem reading data, data organization, “type” of language used to describe the 
solution and hence different schemes of reasoning in argumentation and conjecturation.

We can therefore consider the situation/game as a first good instrument of 
investigation of the argumentation, conjecturation and demonstration ability of the 
involved students. In particular, the collected data relative to the Chinese students, seem 
to confirm a concrete, pragmatic behavior, already highlighted in the works of Chemla 
(2001) and Spagnolo (2002); behaviors strictly bound to procedural thinking, to 
algorithm through which students use each single case (each animal proposed in the 
game) not only as simple procedural description (each case as a particular problem) but 
also as a representative of all the possible series, connected through the construction of 
an algorithm; typical reasoning of construction adopted in the written Chinese language.

This kind of strategy is evident comparing videotapes with the data analysis; it does 
not appear analyzing strategies adopted by Italian students. 

With regard to our research, there are other interesting aspects regarding the way 
to “read” the box/matrix and discuss it in its “solution”. 

The most evident difference between Chinese and autochthonous argumentation is 
that Chinese students seem to use mainly a pragmatic way of reasoning. During the 
game it often happens that they try indeed to show the truthfulness of a particular 
assertion with a sketch or a particular “operation”. The Italian students instead used to 
justify the adopted strategy, a kind of “local reasoning”, with “theoretical” reference to 
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the scheme of the situation. The chosen “theoretical” references result to be more and 
more formally rigorous during the game.

From the analysis of the strategies adopted by the students (Italians and Chinese) in 
the resolution of the assignment, it is also possible to underline the ability of the 
Chinese children to read and therefore to interpret the box/matrix proposed in a holistic 
way, with a global vision. They show therefore attention to the particularity of each 
single case, each single card image presented in the game, reading the table, in a unitary 
vision. They underlined immediately, as first step of the game, what was important for 
the solution of the game, the essential elements of the situation where the data was 
meaningful for the problem. 

Examples of question to Chinese students were: 
…We have one “non influence” animals that we can consider only at the end;
…We have animals that can be posed only in one part of the box.
If the Italian children prefer and argued strategies based on attempts and errors, 

looking for first step, the single relationships among the various image cards (animals) 
in the game and working on the box for lines or columns and only after in parallel, 
through lines and columns; the Chinese student, maybe only because, as we just said, of 
the relationships that is possible to find between this kind of situation/game and some of 
the linguistic aspect of the Chinese written language, underlines a more uninhibited 
attitude, working immediately in parallel on lines and columns and reading so the box  
in an unitary way and justify their behavior with holistic procedures in argumentation 
and conjecturation.

Other interesting considerations can be driven from the videotaped classroom 
experience, in particular the interview to the two Chinese students. From this further 
qualitative analysis, evidently comes out how, in the two cultures (Italian and Chinese), 
the meaning of the term “To think for cases” is interpreted. Is it a behavior connected to 
the arithmetical thought, to attempts and errors? It is a scheme for augmenting a 
solution and conjecture different possible cases? In this sense the proposed activities 
could allow critical and more careful reflections on the possible correlation between 
Chinese language, entirely "abstract" and with an “algebraic nature” (in the 
mathematical meaning) with a complex syntax, Chinese thought and mathematical 
reasoning schemes (logical-argumentative problematic) adopted by students in class to 
solve a mathematical problem. In according in fact with idea, the hypothesis,  that exists 
a strong correlation among the Chinese language, at least written language, and the 
mathematical thought (Spagnolo 2002); this correlation involves also the behavior of 
students in class when they solve a mathematical problem and to support Hok Wing and 
Bin (2002, 223-224) who sustain that the Chinese students furnish the tallest 
performances of the world in assignments that ask the application of mathematical 
abilities we could consider, as we said previously, this analyzed situation/problem as 
starting point for future more specific and deepest researches in this context. Particular 
attention in this sense will be turned, in the future developments of the research to the 
depended analysis of the algebraic nature of the written Chinese language and the 
correlation that it could have in the main study of the difficulties showed by the student 
(western and Chinese) of different grades in the phase of argumentation and 
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conjecturation in the passage from the Arithmetical thought to the Algebraic one, from 
“To think for cases” in the arithmetical acceptation to the final formalization; problems 
already well documented and discussed in literature when looking at Western research.  
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Abstract
This paper describes a multi-cultural and historical approach to the teaching of 
mathematics, created through the views of researchers and authors who support 
approaching school mathematics through its history and the various applications of 
mathematics in different cultures around the world. A specific design within the context 
of this new approach was implemented as a pilot course at a private school and the 
participant students were attending year 5 (out of 6) of high school. The selection of the 
material was based upon the syllabus taught at Greek Public schools, called Core 
Mathematics (in contrast to Advanced Mathematics), and it was enriched with 
historical and cultural elements. The detailed description of the material used aims into 
highlighting the idea for approachable and meaningful mathematics, without 
diminishing the value of more traditional exercises. A brief literature review is found at 
the beginning of this paper, along with some information on the methodology. Emphasis 
is given on the presentation of the material used and how the original ideas were 
changing while the course was evolving.

Introduction
A wider world view and the need for multicultural education are the main triggers for 
this pilot mathematics course, as described here. Authors, researchers, but also 
educators around the world have sought historical elements as well as cultural elements 
in order to enrich the teaching of various lessons, and therefore students’ general 
pedagogy. This quest and its findings –whatever these may be – does not only target 
into enriching the teaching of the various lessons, but also in discovering facts and 
elements that can encourage a deeper understanding of the sciences, how did they 
evolve, why did they flourish, how society influenced their development, how the 
results influenced the society itself, and many more questions regarding the history of 
sciences For a more detailed description of the questions that the science historians may 
pose, one can refer to Gavroglou (2004).

Supporting the new approach
Ubitaran D’Ambrosio was the first to introduce the notion of Ethnomathematics. In his 
1985 paper, he defined Ethnomathematics as the bridges that connect historians and 
anthropologists from one side and mathematicians from the other side, in order to 
identify the different kinds of mathematics that exists. This stance is not a widely 
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accepted one; A number of mathematicians and mathematics teachers cannot agree with 
the idea of the existence of different kinds of mathematics.

Zaslavsky (1973) discovered numerous interesting habits during her long research in 
African countries. These habits or perceptions were related to the mathematical tradition 
of the place, the methods they needed as well as strategy games children were playing at 
their leisure time. Shan and Bailey (1991) discuss the using of mathematics in our 
everyday lives and how mathematical textbooks may be biased towards specific groups 
of people. They believe that even racist behaviors can be challenged through the proper 
usage and teaching of mathematical notions.

The problems that emerge when such perceptions are expressed have been spotted and 
analyzed by Bishop (1991, 2001). In an article of his in Issues of Mathematics Teaching 
journal, titled “What values do you teach when you teach mathematics?” not all 
mathematics teachers would find his question valid. Do they teach any values at all to 
make it worth wondering what these values are? Derivatives are, in themselves, without 
any values and, therefore, the only value mathematics can carry is purely scientific. 
Nevertheless, there are educators who are convinced that mathematics is rich values 
that, although they may not be taught in the same immediate way as history, are such 
that mathematics conveys many more messages to the students than the teachers 
themselves would like to believe.

Joseph (1991) emphasizes the fact that mathematics is usually taught from a purely 
Euro-centric point of view, while contributions from other cultural groups, such as 
Egyptians, Babylonians, Arabs, Hindu, Chinese, are often omitted completely. This fact 
on its own focuses on the development of the sciences in Europe, as if the rest of the 
world never contributed, even though some non-European contributions are of central 
importance. Arabic numerals where created in India and the Arabic world and, if it was 
not for the Arab scientists, many scientific documents would have been lost forever 
during the medieval years. Cotton (2001) refers to another aspect of the options in the 
teaching of mathematics, regarding the ways in which mathematics can build or alter the 
understanding we have of our world. Mathematical tools provide a range of solutions 
that most people cannot understand. 

This literature review can be extended further.   On one hand the aim is to acknowledge 
the fact that Mathematical Education is a complicated issue and the approaches 
available are varied and rich in ways that move beyond traditional approaches. On the 
other hand, an aspect closely related to the first one is the recognition that the role of 
mathematics in education is not just to provide pupils with the scientific tools – which 
are important – but also to answer pupils’ questions, such as “where does the 
mathematics from?”, “why did it come about?”, “how”, “when” and so on, providing 
the students with a more understanding of mathematics as a science and as a human 
endeavor. This is how the role of a program for teaching mathematics through history 
and culture can be described in short.
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Past researches on the role of the history of mathematics in the teaching of mathematics 
include teaching secondary school students and future maths teachers, but mainly the 
latter. Unfortunately, publications on using history of mathematics in secondary schools 
are sparse. Between 1994 and 1999, some students in England had the opportunity to 
select History of Mathematics as a unit towards the completion of their maths A level 
through the Nuffoeld Advanced Mathematics course (Neill, 1994). Lawrence (2007) has 
also been trialing historical elements for the secondary maths classroom and 
information, ideas and material from her project can be found online. Another example 
of research on approaching mathematics through history and culture in secondary 
schools is the doctoral dissertation by Pompeu (1992), which is nevertheless 
unpublished.

As far as using history of mathematics to train future teachers, Furinghetti (2007) 
describes a mathematical workshop for future teachers, where they studied history of 
mathematics, as well as historical recourses directly in order to gain a deeper 
understanding of the mathematical notions and where they came from and why did they 
survive up to today. Philippou and Christou (1998) noted that, after the completion of a 
three year program of teacher education using history of mathematics, the negative 
perceptions of the students towards mathematics were changing. An important factor 
influencing this change was probably the satisfaction students found when discovering 
the utility in mathematics. 

The course described in this paper is based upon this very rationale: to disclose the 
utility in mathematics, where the maths came from, why it exists, and so on. The 
participating students were weak and had strongly negative attitudes towards 
mathematics. also In this paper, I focus on the description of the material and how 
decisions were made on changes during the year, since the methodology used was 
Action Research.

Action Research is the methodology used when the researcher is also the practitioner. 
When a problem has been located in a setting – in this case it is a school environment –
actions are taken aimed at developing solutions to the problem. The practitioner brings 
in suggestions and modifies the actions according to the results or responses they 
receive (Gray, 2004). Since the researcher is also the teacher at this school setting, 
where a group of students has failed in the past or has very negative attitudes towards 
mathematics, Action Research was considered the most appropriate in terms of bringing 
suggestions for improving students’ perceptions as well as achievement and 
understanding. Data collection methods included questionnaires, assessment material, 
interviews, observations, and journal keeping.

The participating students were aware of the fact that the course they attended was a 
pilot course and that they were not only allowed but also expected to express their 
opinions and sentiments regarding the material covered, what was most engrossing or 
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indifferent to them. The interaction between the teacher-researcher and her students was 
of great importance and it facilitated the receiving of feedback on what students 
considered to be relevant to them, helpful and important. This is how changes were 
decided, ending up with a proposition quite different from the original one, in terms of 
material and in ways of assessment. The material, the changes as well as the assessment 
methods suggested form the main part of this paper.

Detailed analysis of the original plan along with the changes
There is a rich bibliography to support such an endeavor and some indications of this 
are listed below. There are also many internet resources.  Some of the ideas 
implemented in this program can also be found online at 
http://www2.warwick.ac.uk/fac/soc/wie/staff/staff_interests/hom/ioanna/, where 
students could find some information useful to them as well. The set of notes was 
prepared under the title “Mathematics through History and Culture”.

1. Dictionary of Mathematics (1989, 1998, 2003) Penguin Reference, Penguin 
Books

2. Eagle M.R. (1995) Exploring Mathematics Through History, Cambridge 
University Press Bicester Oxon 

3. Lumpkin, B., Strong, D. (1995) Multicultural Science and Math Connections; 
Middle School Projects and Activities J. Weston Walch Publisher Portland, 
Maine

4. Katz, J.V. (1993) A history of Mathematics; an introduction Harper Collins 
College Publishers New York

5. Sesiano, Jacque (2000) Islamic Mathematics across Cultures; the history of the 
Non-Western Mathematics Selin, H. (ed.) Kluwer Academic Publishers 
Dordrecht Boston London

6. Wesley, A (1993) Multiculturalism in Mathematics, Science, and Technology: 
Readings and Activities Addison-Wesley Publishing Company

7. Wright, P. (1999) (ed.) The Maths and the Human Rights Resource Book; 
Bringing Human Rights into the secondary mathematics classroom Amnesty 
International UK

8. Historical Topics for the Mathematics Classroom (1969,1989) The National 
Council of teachers of Mathematics

The program was implemented throughout school year 2007-08 and it took place at a 
private English-speaking school in Cyprus. Participating students were 16-17 years old 
and attended year 5 out of 6 before graduating. The material was based upon the 
respective material suggested by the Core Mathematics Curriculum of the Ministry of 
Education of Cyprus. The chapters were originally related to those in the book 
distributed by the Ministry, but approached in a different way. The origins of each 
notion are examined up to a point: why this notion emerged, how it was used in the 
various cultures and how it is applied in our own (or the students’ own) current culture. 
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After the end of each chapter there was a small “chapter-break” that presented issues 
from a greater “mathematical” area.

The first chapter introduced the students to the idea behind the preparation of this 
course. The students were informed that the material to be taught largely coincides with 
the public schools’ curriculum and that the approach was intended to be more helpful to 
them in terms of how approachable and how meaningful math can become through this 
course. The first activity was for the students to place some important historical facts on 
a number line. This action targeted the students acquiring a general perspective of 
history, an essential quality for a course heavily related to history. For example, many 
students were ignorant of how far back human civilization may go, and of how recent 
are the world wars, or even how we “measure” time.

The second chapter was a newspaper article written by a Mathematics Professor who 
aimed to demonstrate how mathematics is everywhere around us, without us realizing. 
The article is about Thanasis and his “adventures” from the time he wakes up, until he 
goes to his work. It was followed up by three questions open for discussion in class. 
These questions invited students to consider what the aim of the author was when 
writing this short story and if it was achieved, and to identify which mathematical fields 
were mentioned. The article was quite short but nevertheless rich; some students failed 
to see any purpose in it. The article can be found in the appendix.

Chapter three dealt with “Pythagoras, his theorem and the Pythagoreans”. The 
respective chapter in the public school book included the theorem and some exercises 
involving it. Since it is a theorem students have met at an earlier stage, the approach of 
the public school book was used as the introduction to the chapter; that included a 
reminder of the theorem along with a few standard exercises. The next part dealt with 
“Pythagoras’s theorem before Pythagoras”. Students learned that the Babylonians dealt 
with finding the relation between the side of a square and its diagonal, which is a special 
case of Pythagoras’s theorem, as it was named centuries after the Babylonians. They 
were also told that the Chinese used this theorem centuries before Pythagoras as well. 
This provides them with a sense of utility in math, since Babylonians and the Chinese 
used Pythagoras’s theorem, not for the sake of mathematics, but because they needed it 
as a tool. Williams, J. (1993) and Gerdes, P.(1994) provide justifications as to why this 
kind of knowledge is important for the structuring of perceptions of the students.

Pythagoras’s theorem was then examined as it existed in Ancient Greece, where it was 
proved, and it was no longer a mere tool. The Pythagoreans were also examined as a 
special society, which held specific beliefs and was heavily influenced by the strong 
perception that whole numbers may have special powers. These beliefs were diminished 
after the discovery of irrational numbers, with the use of Pythagoras’s theorem.  The 
hypotenuse of an isosceles right triangle with the two sides equal to 1cm is √2cm. After 
commenting on irrational numbers, the chapter closed with the introduction to students 
of a project that could include a biography, or Pythagoreans’ practices or any other 
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ideas the students might have. Since most students for this project chose the “secure” 
option of writing a biography of Pythagoras, subsequent projects were designed to be 
more open-ended so as to make students use their imagination and abilities.

Chapter 4 was the “break-chapter”. Students familiarized themselves with representing 
number using fingers. The discussion revolved around the fact that the current number 
system is not unique; other number systems were used in the past, and each system 
facilitated some needs. Students engaged during this lesson, and made comments 
regarding who might need this way of counting. What made the difference here was that 
the need for counting on fingers effectively was obvious; even though they probably 
wouldn’t need it themselves, they did acknowledge the need for the existence of these 
alternative systems.

Chapter 5 introduced sequences through Fibonacci sequence. Fibonacci’s problem of 
modelling a rabbit population initiated the discussion, which was extended through the 
application of Fibonacci sequence in nature and in art. Arithmetic and geometric 
sequences were then introduced through Malthus’s assumption on population growth. 
Malthus, tried to predict what the results of the geometric growth of the population and 
the arithmetic growth of food production would be. He predicted that world would run 
out of food relatively early. The question of what Malthus meant by the terms 
“arithmetic” and “geometric” as well as why he was wrong, dominated a discussion 
where a lot of students joined and expressed their opinion. This resulted in students 
understanding of the sequences and how mathematical tools can be used to describe 
real-world facts. They ended up being more receptive when the discussion on sequences 
became more theoretical. An idea that emerged from the discussion in the classroom 
was about radioactive particles and how significant their “half-life” is. If we began with 
200 radio-active particles after an explosion (such as the one in Chernobyl) and half of 
them give their radio activity every a given amount of time, how long will it take for the 
area to get clear? This is a brilliant example of a situation that may be modelled using a 
geometric sequence with common ratio equal to 0.5. In this chapter, students were 
assessed using a “traditional” test, which included general questions as well as 
exercises.

The next “break-chapter” consisted of part of a transcribed university lecture on 
mathematics. This lecture was about mathematical problems yet to be solved and the 
solution (or the proof that no solution exists) will turn the mathematician into a 
millionaire. The accomplishments of such a reading are multiple. Students find out that 
even mathematicians have trouble in solving some problems, that not all problems have 
solutions and that the “production” of new mathematics is an endless procedure. What 
was revealed was that students thought that professors of mathematics could become 
millionaires just by their profession.

In chapter 7, efforts were made to deal with trigonometry, mainly through astronomy. 
The plan was to have logarithms next, as the invention that facilitated the use of 
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trigonometry rules due to the fact the logarithms required less labour. However, 
trigonometry appeared to be too difficult and uninteresting to the students, and the 
chapter was eventually abandoned, as were the logarithms. The project that was planned 
for trigonometry was replaced by the Professionals’ Project, an idea that arose from an 
informal interview with students. The instructions for this project were as follows: 

The results were very encouraging. Students could not find ready-made solutions online 
or anywhere else, so they had to use their imagination and communication skills to 
respond to this project. The professions chosen were quite varied and included an 
accountant, a house wife, a shoe sales person, an engineer, an architect, a computer 
programmer and more.

In the mean time, students were introduced to a board game taken from SMILE material 
(SMILE card number 0279), the HIGH JUMP GAME. The handout was double-sided 
and had the instructions on the one side and the board on the other. Students sat in pairs 
and small pieces of paper were used as counters. The winner of each pair would play 
against the winner of another pair until there was a winner. Student developed various 
strategies, some of them did not risk much – playing safe could not help them remain in 
the game for longer. Some more strategy games students learnt during this course were 
Tapatan from Kenya and Oware from Africa. Games helped them stay focused for 
longer and put sincere effort in devising an effective strategy.

The lessons then moved to Discussing Taxes. These lessons revolved around different 
kinds of taxes, how to calculate income tax, as well as calculating VAT using either the 
original value or the price paid at the till. The tables used to calculate these taxes can be 
seen below. Later came the calculation of VAT along with discounts. Students had to 
consider the question of which one should be calculated first and why.  Does the 
decision make a real difference? 

The aim of this project you are being assigned is to discover what kind of 
mathematics is used by different professionals.

You must choose any three different professionals and interview them 
about the kind of mathematics they use when they work. Try to get details 
as well as some examples that will enrich your project and make your 
descriptions more vivid.

You should write down the questions you asked and the answers you got as 
if you were writing for a journal. The minimum number of words is 500, 
but you should include all the information you manage to get, as there is no 
upper limit.
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The following table can be used to calculate income tax, according to the laws in the 
Republic of Cyprus, in 2008.

Income Difference Percentage Tax

€0 – €19 500 € 0%

€19 501 – €28000 € 20%

€28 001 – €36 300 € 25%

€36 301 – € 30%

Total Sum:

The table that follows helps in calculating VAT, as well as original value and final price 
for products that are subject to a 15% VAT.

Value VAT Final Price

100 15 115

x y z

Students’ attitudes towards this chapter were significantly more positive than any of the 
previous chapters. They felt that general knowledge on taxes as well as the ability to 
calculate them was something relevant to their lives, consequently useful to them. They 
demonstrated good behavior, asked a lot of questions and also did quite well at their 
test.

The original plan for chapter 10 was to deal with some more consumer problems but, 
after covering taxes, a substantial skill for a consumer, the lesson moved towards 
statistics. The occasion that brought about the discussion of statistics was the recent 
election in Cyprus. Students had many questions related to the procedures, the exit 
polls, the blank votes and so on; consequently statistics was proved to be an area of 
interest to the students and mathematically rich as well. Newspaper or magazine articles 
which used statistics, were brought into the classroom in order to initiate discussions, 
about the issues they addressed and about the statistics they used. Data collection 
methods as well as presenting data were worked upon. The assessment for this chapter 
involved a project once more: students had the chance to choose any subject area they 
were interested in, devise a questionnaire, distribute it to at least ten people and present 
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their results along with a discussion. This project became the final part of the course, 
although the original plan had included more.
The parts left out regarded visual illusions, geometry and perspective as well the reading 
of “Flatland”, by Abbot (1884) and discussions around mathematical novels. The idea 
about reading mathematical novels belongs to a Greek organization “Thales and 
Friends” who discusses approaching mathematics through fictional literature. 

Conclusion

Opportunities to employ an annual program such as this are sparse. Such material is 
nevertheless an invaluable input that has been shown to help make mathematics 
meaningful and relevant to the students. The main inference made after the completion 
of this program and prior to any detailed analysis is that mathematics that is applicable 
in the students’ own culture, or which carries social concerns, receives positive 
reactions from the students. Historical elements did not seem to be of any special 
interest to these specific students. Another issue raised is that the project is a wonderful 
assessment method, even for mathematics, and that original ideas that involved the 
students’ personal experiences provided them with a great opportunity to demonstrate 
their understanding and skills.
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Appendix

An ordinary morning…
By Tefkros Michaelides
PhD Mathematics, Math’s Teacher, Writer, Translator
Newspaper TA NEA 02/03/05

Thanasi’s radio- alarm clock rang at seven. Due to the digital technology, which is 
based on numerical analysis and the binomial system, the sound filled the room, as if a 
whole orchestra had gathered next to his pillow. He got up. His fridge and microwave 
oven, functioning with fuzzy logic, a branch of the multi-value symbolic logic – which 
also was in charge for the secure function of the ABS of his car – had provided him 
with a huge breakfast in ten minutes time. At 7:40, he was typing the 4-digit code for 
the house alarm (according to the probability theory the potential burglar had only 1 
chance in 10 000 to break in) and left for work, feeling safe. He used the tube; what a 
miracle! Tunnels, channels, supply nets, a whole underground city, designed according 
to Euler’s Graph Theory. He got inside, made himself comfortable, and opened his 
newspaper: “12% reduction of accidents, after applying the alcohol tests – 27% of the 
drivers had already conformed to the new strict regulations”. 12%, 27%! How on earth 
did they find that? He turned to the Sports section: Konstantinou scores a goal by 
sending Archimedes’ b-type semi-regular 32-hedron (the football that is) into the net. At 
8:30 he was entering his office. He switched on his computer (which was filled with 
integrated network based on Boolean Algebra, which Thanasis didn’t know, nor he 
wanted to find out about it) and logged on to the internet. RSA code, based upon prime 
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numbers, provided him with a secure connection on the web. He opened his mailbox. 
Message from Maria – the you-know-who. She’s a nice person he thought. Intelligent, 
polite, cheerful, smart, pretty. Her disadvantage was one and only; she was studying 
math. Couldn’t she be studying something else? Something closer to real-life? 
Something useful anyway! These were Thanasi’s thoughts when he saw the manager 
approaching, so he immediately signed out of his e-mail account…
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Is it possible to communicate mathematical meaning? –
Epistemological analysis of interactive meaning construction in the 

classroom

Heinz Steinbring

Universität Duisburg–Essen, Campus Essen

Abstract of the theoretical part

Mathematical concepts are not empirical things, but represent relations. "... there is an 
important gap between mathematical knowledge and knowledge in other sciences such 
as astronomy, physics, biology, or botany. We do not have any perceptive or 
instrumental access to mathematical objects, even the most elementary ... The only way 
of gaining access to them is using signs, words or symbols, expressions or drawings. 
But, at the same time, mathematical objects must not be confused with the used semiotic 
representations." (Duval, 2000, p.61). With regard to this epistemological position, 
mathematical knowledge is not simply a finished product. The (open) concept-relations 
make up mathematical knowledge, and these relations are constructed actively by the 
student in social processes of teaching and learning. 

In the interaction, the children have to deal with the not directly palpable mathematical 
knowledge and with the hidden relations by means of exemplary, partly direct in-
terpretations - and not by means of abstract descriptions, notations, and definitions. By 
means of epistemological analysis (cf. Steinbring, 2000a; 2000b) it is to be found out 
whether the exemplary description used in the documented statement aims at a 
generalizing knowledge construction or whether it is a statement in the frame of the old, 
familiar knowledge facts.

The particular epistemological character of mathematical knowledge consists in the 
concentration on relations which are neither openly visible nor directly palpable. 
(Duval, 2000). In order to develop these relations and to be able to operate with them, 
they have to be represented by signs, symbols, words, diagrams, and references to 
reference contexts (Steinbring, 2000c), learning environments, or experiment fields. 
Thereby, the scientific status of the mathematical knowledge does not depend on the 
choice or the abstractness of the means of representation; neither are there any universal 
means of illustration distinguished a priori which would automatically guarantee the 
epistemological quality of the mathematical knowledge. The development of 
mathematical knowledge always occurs - be it in the academic discipline or in 
classroom learning processes - in social contexts which can, however, differ concerning 
their objectives and particular constraints (Steinbring, 1998).
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In the exemplary episodes, an essential epistemological attribute of mathematical 
knowledge appears: A situatively tied form of describing and constituting the relations 
of mathematical knowledge in the frame of the exemplary learning environment; using 
exemplary, independent descriptions and words, but with the intentions - identifiable in 
the analysis - of generalizing exemplary attributes of the situation to the invisible 
general mathematical relations. In this regard, substantial learning environments 
represent a productive base for the interactive acquisition of knowledge, on which 
knowledge about mathematical knowledge can be acquired through the interaction at 
the same time, i.e., in the interaction, a specific, partly situation-bound, social 
epistemology of mathematical knowledge constitutes itself - which is not given by an 
independent authority from the outside. 

This particular social epistemology constitutes itself in the course of the according 
situation, for example during the treatment of a learning environment, and for this 
purpose, it needs situative, exemplary context conditions as well as words and relations 
already known and familiar for communication. In order to understand how relations in 
mathematical knowledge - which are not directly, empirically palpable - can actually be 
expressed and communicated in this way, a thorough epistemological analysis is 
required (Steinbring, 2000b). Such qualitative analyses of different situative 
epistemological interpretations of mathematical knowledge in interactive treatments of 
learning environments have different objectives and react upon the perspective of 
mathematical knowledge taken in the different chapters. So, feedback to the design and 
construction of learning environments, especially such modifications which make these 
environments become living systems, occur; furthermore, testing analyses of 
environments by teachers or students can increase the awareness concerning the 
complex (professional) application conditions as well as the classroom interaction with 
mathematical learning environments.

A main issue of the presentation will be to carefully analyse how young students try 
with their own means of communication (i.e. pointing, verbalizing, using own 
descriptions and characterizations, etc.) to overcome the problem of communicating 
invisible mathematical knowledge. The students in the episodes presented try to »point 
directly« to the knowledge in question, that means to use a specific »objectification« of 
mathematical relations and invisible structures in the sense of quasi »empirical« 
mathematical objects they can speak about and that they can use in communication for 
mediating their understanding and interpretation of a mathematical idea to other 
students.

References

Duval, R. (2000). Basic Issues for Research in Mathematics Education. In: Nakahara, 

Tadao & Koyama, Matsataka (Eds.), Proceedings of the 24thInternational 
Conference for the Psychology of Mathematics Education, Hiroshima, Japan: 
Nishiki Print Co., Ltd., 2000, vol. I, 55 – 69.



Epistemological analysis of interactive meaning construction in the classroom

269

Steinbring, H. (1998). Epistemological constraints of mathematical knowledge in social 
learning settings. In A. Sierpinska & J. Kilpatrick (Eds.) Mathematics Education as 
a Research Domain: A search for identity. Kluwer Academic Publishers, 
Dordrecht, 513 - 526.

Steinbring, H. (2000a). Mathematische Bedeutung als eine soziale Konstruktion –
Grundzüge der epistemologisch orientierten mathematischen 
Interaktionsforschung. In: Journal für Mathematik–Didaktik, Jahrgang 21, Heft 1, 
S. 28 – 49.

Steinbring, H. (2000b). Epistemologische und sozial-interaktive Bedingungen der 
Konstruktion mathematischer Wissensstrukturen (im Unterricht der Grundschule). 
(Abschluß bericht zu einem DFG–Projekt, 3 Bände). Dortmund: Universität 
Dortmund, April 2000.

Steinbring, H. (2000c). Interaction Analysis of Mathematical Communication in 
Primary Teaching: The Epistemological Perspective. In: Zentralblatt für Didaktik 
der Mathematik, 5, 138 – 148.

Steinbring, H. (2005). The Construction of New Mathematical Knowledge in Classroom 
Interaction – An Epistemological Perspective, Mathematics Education Library, vol. 
38, Springer, Berlin, New York.

Wittmann, E. Ch. (2000). Plenary Lecture at ICME-9, Japan, ESM.

Appendix

Transcripts of Teaching Episodes:

1. Episode »Matthi ›points at‹ mathematical relations«

The following short episode is taken from a 4th grade mathematics lesson; the students 
work on number walls of four levels. The problem is to find out in common interaction 
in which way the increase of a base stone by 10 changes the value of the top stone; 
furthermore the students are expected to develop a justification for the operative change. 

Explanation: When describing the position of the numbers 
on the number wall, the stones are numbered consecu-
tively in the transcript from the bottom to the top and from 
the left to the right.

3

6

8 9

7

41

10

5

2

Before the beginning of the episode regarded here, the following three number walls 
with calculated numbers and also with magnetic chips can be found on the black board:
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20 3050 80

50130 100

230 150

380

20 30809050 20 30

140 110 50

250 160

410

60

50100140

Fig. 1: Operative changes in four level number walls.

First of all the change in the second base stone (stone # 2) of 10, compared to the 
number wall above which is completely calculated, was examined. It was worked out 
that the top stone increases by 30; the stones in which an operative change occurred are 
marked with magnetic chips. In order to work on the question how the top stone 
increases when the left base stone (stone # 2) is raised by 10, the teacher has first 
changed the value of this stone to 60 and put a chip there; then a student has calculated 
the second row of the wall..

Now the student Matthi is called to the board; he wants to calculate the numbers of the 
third level but the teacher first asks for a justification. 

 196 T [whispers] …Matthi!

 197 Ma [goes to the black board] One hundred plus one 
hundred- [takes the chalk and wants to calculate the 

eighth stone] #

 198 T # No. Matthi, would you stop, please? Did you 
notice anything? #
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199 Ma # Ohm, here [points at the fifth stone] is also ten more-
[points at the chip of the first stone] #

 200 T # [whispers] Ca you hand him a ten? #

201 Ma # [C gives Ma a chip] -because here is also ten more. 
[puts one chip into the fifth stone of the right lower 
number wall] Because here as well, because it's ten 
more here, [points at the chip of the first stone], here is 
ten more [points at the fifth stone] than there ten more. 
[points at the upper number wall] …

20 3060 80

50130 100

230 150

380

20 308060

50100140

1

32

5

4

6

Here is the same then [points at the sixth stone "100" 
and then repeatedly alternately at the first and second 
stone of the right lower number wall], because one 
cannot this here plus that, if one that [points at the fifth 
stone]. 20 308060

50100140

12 3
4

One does not get along with this here [points 
alternately at the first and at the third stone] then there 
[points at the sixth stone and then at the first stone], or 
so. That one that. [points at the sixth stone]……

20 308060

50100140

31
2

4
5
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And here [points at the seventh stone] it's also the 
same, because that one is at the margin. [points at the 
first stone] 20 308060

50100140

2 1

 202 T Yes well, then we can go on calculating. ……

2. Episode »Kim uses an empty box in a number square like a number«

This short sequence of lessons has been conducted in a mixed 3rd and 4th grade class 
and deals with the topic of „crossing out number squares“. Crossing out number squares 
develop out of the addition of certain border numbers (in form of a table; cf. Fig. 1). 
Crossing out number squares have the following characteristics: In a (3·3) crossing out 
number square, one is allowed to chose (circle) any three numbers, so that there is one 
circled number in every row and every column. The sum of three numbers determined 
in this way is constant - independent on their choice (cf. Fig. 2). This number was called 
the »magic number«.

15

14

13

16

15

14

17

16

+

10

5 6 7

9

8 15
 Fig. 1

15

14

13

16

15

14

17

16

15

Fig. 2

15

14

13

16

15

14

17

16

Fig. 3

In the previous lessons the children have observed the constancy of the sum with given 
squares with the help of the so-called crossing algorithm; then procedures for producing 
crossing out number squares out of addition tables have been discussed and the 
connection between the crossing sum and the margin numbers has been examined. 

In this lesson the children have to work on the following problem: How can one fill a 
gap in a crossing out number square with a missing number in such a way that the 
crossing out number square is re-established? (cf. Fig. 3). Different strategies are 
developed: The number 15 is mentioned because of its visible arithmetical pattern; then 
possible margin numbers are reconstructed (cf. Fig. 1). During the course of this lesson 
Kim makes another proposal; she wants to use the magic number (the constant sum of 
three circled numbers) for determining the missing number. With her own words – that 
other children have difficulty with to understand - she formulates her proposal.

59 T Well, and now? Kim.
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60 K Eh, one could also do it like this, that one, one would do that now 
already. Then and then doesn't have the number yet. And then calculates 
together what's missing there. And then one can also 
calculate how, what belongs there.

61 T What do you mean by that?

62 K Ehm, that one now circles the thirteen, for example. And then would just 
cross out the fourteen. ...

63 T So you ha...

64 K [incomprehensible] ... fifteen. And then circles the fiftee..., no, yes, the 
fifteen. Circles the fourteen and the sixteen. And then 
circles the seventeen and crosses out the sixteen.

65 T Listen, Tim, eh, Kim! That's a really neat trick! We'll come to speak 
about that directly.

Later in the lesson, Kim is asked to concretize her proposal. First she uses the procedure 
to calculate the magic number by circling and crossing numbers in the square; she 
circles the following possible numbers and calculates the magic number with the task 
„13 + 15 + 17“ .

15

1514

14

16

13

16

17

13 + 15 + 17 = 45

Then Kim repeats with her own words her proposal for calculating the missing number.

147 K And then one could already do it this way. One circles the fifteen [points at 
the fifteen in the first line] and this fifteen [points at the fifteen in the second 
line] and adds them. And then one still calculates how much there must be 
up to forty-five.

Kim gives the following explanation:

161 K First one calculates, one first calculates these numbers, 
that I have, which are there, what is their result. And 
then..., and then one calculates...

162 L # So. Now Kim explains how it goes on! Kim. #
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163 # Yes. One first calculates the numbers there, that are 
there. # [Kim points with her open left hand globally at all 
numbers in the square]

15

1514

14

16

13

16

17

13 + 15 + 17 = 45

165 K These three, oh, yes, this, this and then afterwards one 
calculates fifteen [circles the fifteen in the second line], 
one takes this way. Cross out that, and that. And cross out 
that, and that. [crosses out numbers which are in the same 
line or column as the fifteen] 

15

1514

14

16

13

16

17

13 + 15 + 17 = 45

Then one takes the fifteen. [circles the fifteen in the first 
line] Crosses the seventeen and the thirteen. [[crosses out 
the not yet crossed numbers which are in the same line or 
column as the fifteen] 

15

1514

14

16

13

16

17

13 + 15 + 17 = 45

And then one circles this here, this here. [circles the empty 
field] And then one has to calculate fifteen and fifteen. 
This makes thirty; how much is left up to forty-five?

15

1514

14

16

13

16

17

13 + 15 + 17 = 45

166 T Just write that down like this as an addition exercise! As 
you just did it, with a gap if you want to. [Kim wants to 
wipe out the exercise "13 + 15 +17 = 45"] No, just leave 
that below!

On the teacher's inquiry, Kim writes down the following 
supplementary exercise below the addition exercise:

15

1514

14

16

13

16

17

13 + 15 + 17 = 45
15 + 15 + __ = 45
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Fuzziness, or probability in the process of learning?
A general question illustrated by examples from teaching mathematics

Michael Gr. Voskoglou
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Abstract

We introduce a fuzzy model to describe the process of learning a subject matter by 
students. Our model is presented in contrast to a probabilistic model, introduced in an 
earlier paper. A classroom experiment, that was performed in order to illustrate the use 
of the probabilistic model in practice, was repeated twice during the teaching process 
of the same cognitive object, with the same didactic material, the same conditions and 
the same method of teaching. The outputs of these two repetitions of the experiment are 
interpreted here in terms of the fuzzy model, so that the conclusions obtained from the 
application of the two models become easily comparable to each other. 

The probabilistic model

The concept of learning is fundamental to the study of the human cognitive action. But 
while everyone knows in general what learning is, the understanding of the nature of 
this concept has proved to be complicated. This basically happens because it is very 
difficult for someone to understand the way in which the human mind works, and 
therefore to describe the mechanisms of the acquisition of knowledge from the 
individual. 

There are very many theories and models developed from the psychologists and the 
education researchers for the description of the mechanisms of learning.  Voss (1987) 
has developed an argument that learning is a specific case of the general class of 
transfer of knowledge and therefore any instance of learning involves the use of already 
existing knowledge. Thus learning consists of successive problem – solving activities, 
in which the input information is represented of existing knowledge, with the solution 
occurring when the input is appropriately interpreted. 

The whole process involves the following steps: Representation of the stimulus input, 
which is relied upon the individual’s ability to use contents of his (or her) memory to 
find information, which will facilitate a solution development; interpretation of the 
input data, through which the new knowledge is obtained; generalization of the new 
knowledge to a variety of situations, and categorization of the generalized knowledge, 
so that the individual becomes able to relate the new information to his (or her) 
knowledge structures.
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In an earlier paper (Voskoglou, 1997) we have constructed a probabilistic model –
based on the above argument of Voss -  for measuring the abilities of a student group in 
learning mathematics. More explicitly we obtained – in terms of the relevant 
frequencies - the probabilities P(A), P(B) and  P(C) for a student of the group to face 
successfully during the learning process of a new mathematical topic in the classroom 
the steps A of interpretation, B of generalization and C  of categorization  respectively, 
of the new information. Then the conditional probabilities P(B/A), P(C/B) and P(C/A) 
give the probabilities for  a student, after facing successfully a certain step, to do so and 
for the next step, or next steps of the learning process.

All the above were illustrated by a classroom experiment, presented also in Voskoglou 
(1997). 

Fuzzy Sets

They are often situations in our everyday life in which definitions do not have clear 
boundaries, e.g. this happens when we speak about the "high mountains" or the "young 
people" of a country etc . The fuzzy sets theory was created in response to have a 
mathematical representation of such kind of situations.

Let U denote the universal set, then a fuzzy subset A of U, initiated by Zadeh (1965), is 
defined in terms of the membership function mΑ which assigns to each element of  U a  
real value from the interval [0,1].

More specifically  Α = {(χ,mΑ(χ)) : χU}, where mΑ :  U   [0,1].

The value mΑ(χ), called the membership degree (or grade) of x in A, expresses the 
degree to which x verifies  the characteristic property of A. Thus the nearer the value 
mΑ(χ) to 1,  the higher the membership degree of x in A. The methods of choosing the 
suitable membership function for each case are usually empiric, based on experiments 
made on a sample of the population that we study. 

Obviously every classical (crisp) subset A of  U  may be considered as a fuzzy subset of U with 
mΑ(χ)=1, if xU and mΑ(χ)=0,  if xU. Most of the concepts of classical sets are extended in 
terms of this definition  for fuzzy sets. For example, if  A and B are fuzzy subsets of U, then A 
is called a subset of B if mΑ(χ) m B (χ) for each χ in U, while the intersection AB is a fuzzy 

subset of U with membership function defined by  m BA (χ) = min { mΑ(χ), m B (χ) }, etc.

The application research currently taking place  in the field of fuzzy sets covers almost 
all the sectors of the human activities, such as natural, life and social sciences, 
engineering, medicine, management and decision making, operational research, 
computer science and systems' analysis, etc (e.g. Herrera & Verdegay, 1997, Klir & 
Folger, 1988) .

For the complete understanding of this paper the reader is considered to be familiar with 
the basics of the fuzzy sets theory, for which we refer freely to Klir & Folger (1988).
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The fuzzy model

Knowledge that students have about the various concepts is usually imperfect, 
characterized by a different degree of depth. From the teacher’s point of view on the 
other hand,, there exists a vagueness about the degree of acquisition of the steps of 
learning – as they have been described in the previous section - from students. All these 
give the hint to introduce the fuzzy sets theory in order to achieve a mathematical 
representation of the process of learning a subject matter from students.

Let us consider a group of n students, n2, during the learning process in the 
classroom. We denote by Ai , i=1,2,3 , the states of interpretation, generalization and 
categorization respectively, and by a, b, c, d, and e the linguistic labels of negligible, 
low, intermediate, high and complete acquisition respectively of each of the Ai’s.

Set U={a,d,c,d,e}; then we are going to represent the Ai’s  as fuzzy sets in U.

For this, if nia, nib, nic, nid and nie denote the number of students that have achieved 
negligible, low, intermidiate, high and complete acquisition of the state Ai respectively, 
i=1,2,3, we define the membership function mAi in terms of the frequences, i.e. by 

mAi(x)=
n

nix , for each x in U. Thus we can write 

Ai = {(x, 
n

nix ) :  xU}, i=1,2,3.

In order to represent all the possible profiles (overall states) of a student during the 
learning process, we shall consider a fuzzy relation, say R,  in U3 of the form

R={(s, mR(s)) : s=(x,y,z) U3}

In order to determine properly the membership function mR  we give the following 
definition: A tuple s=(x,y,z), with x,y,z in U, is said to be well ordered if  x corresponds 
to a degree of acquisition equal or greater than y,  and y corresponds to a degree of 
acquisition equal or greater than z; e.g. the tuple (c,c,a) is well ordered, while the tuple 
(b,a,c) is not. 

We define now the membership function mR to be mR(s)=m
1A (x)m

2A  (y)m
3A (z) , if s is 

a well ordered tuple, and 0 otherwise. In this way we block the possibility for student 
profiles like (b,a,c) to possess non zero membership degrees, which is absurd. In fact, if 
a student has not generalized at all, how can categorize the new generalized knowledge? 

In order to simplify our notation we shall write ms instead of mR(s). Then the possibility 

rs of the profile s is given by  rs=
}max{ s

s

m

m
, where max{ms} denotes the maximal value 

of ms , for all s in U3.

Notice that during the learning process students may use reasoning that involves 
ampliative inferences whose content is beyond the available evidence and henceobtain 
conclusions not entailed in the given premises (e.g. such conclusions for mathematics 
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could be the illusion that baba  , or log(a+b)=log a + log b, etc)  The 
appearance of conflict in the conclusions requires that the conclusions be appropriately 
adjusted so that the resulting generalization is free of conflict. 

The value of the student group conflict during the learning process can be measured by 
the strife function on the ordered possibility distribution r :  r1=1  r2 …….  rn  rn+1

of  the group defined by:  

S(r) = 





n

i
i

j
j

ii

r

i
rr

1

1

1 log)([
2log

1
] .

In general, the amount of information obtained by an action can be measured by the 
reduction of uncertainty that results from the action. Thus the total possibilistic 
uncertainty T(r) of the student group during the process of learning can be used as a 
measure for its capacity for learning a subject matter. This is reinforced by Shackle 
(1961), who argues that human reasoning can be formalized more adequately by 
possibility theory rather, than by probability theory. 

The value of T(r) is measured by the sum of the strife S(r) and nonspecificity N(r) (Klir, 
1995, p.28), defined by:

N(r) = 



n

i
ii irr

2
1 log)([

2log

1
].

In contrast to strife, which, as we have already seen above, expresses conflicts among 
the various sets of alternatives, nonspecificity is connected with the sizes (cardinalities) 
of relevant sets of alternatives.

The lower is the value of T(r), the higher the acquisition of the new information from 
the corresponding student group.

Assume now that one wants to study the combined results of the behaviour of k
different student groups, k2, during the learning process of the same subject matter. 
Then it becomes necessary to introduce the fuzzy variables Ai(t), with i=1,2,3 and 
t=1,2,…,k, and determine the possibilities r(s) of the profiles s(t) through the 

pseudofrequences f(s)=


k

t
s tm

1

)( . 

Namely r(s)=
)}(max{

)(

sf

sf
  , where max{f(s)} denotes the maximal pseudofrequency.

The possibilities r(s) of all the profiles s(t) measure the degree of evidence of the 
combined results of the k student groups. 

Obviously the same method could be applied when one wants to study the behaviour of 
a student group during the learning process of k different cognitive objects, k 2 .



Fuzziness, or probability in the process of learning?

279

A classroom experiment for the learning process of mathematics

Mathematical activity is an original and natural element of the human cognition. It is of 
great importance therefore to find an effective way to describe the learning process of 
mathematics from students. This gave us the impulse to perform the following 
experiment, which is based on the fuzzy model for learning presented in the previous 
section.

The experiment took place at the higher Technological Educational Institute of 
Messolonghi in Greece, when I was teaching the definite intergal to a group of 35 
students of the School of Administration and Economics.

During my 3 hours lecture I used the method of rediscovery (Voskoglou, 1997) keeping 
in mind what Polya (1963) says about active learning: “For an effective learning the 
learner discovers alone the biggest possible, under the circumstances, part of the new 
information”.

Thus in my short introduction I presented the concept of the definite integral through 
the need of calculating an area under a curve, but I stated the fundamental theorem of 
the integral calculus – connecting the indefinite with the definite integral of a 
continuous in a closed interval function - without proof. Then I left students to work 
alone and I was inspecting their efforts and reactions, giving to them from time to time 
suitable hints, or instructions. My intension was to help them to understand the basic 
methods of calculating a definite integral in terms to the already known methods for the 
indefinite integral (state A1 of the model).   

I observed that 17,8 and 10 students achieved intermediate, high and complete 
interpretation of the new subject matter respectively. Therefore, in terms of our model, 
we have that nia=nib=0, nic=17, nid=8 and nie=10. Thus the state of interpretation is 
represented as a fuzzy set in U as

A1 = {(a,0),(b,0),(c, 35
17 ),(d, (),35

8 e, 35
10 )}.

In the next step I gave to students for solution a number of exercises and simple 
problems involving calculations of improper integrals – as limits of definite integrals-
and of the area under a curve, or among curves. My aim was to help them to generalize 
the new information to a variety of situations (state A2 of the model).  In the same way 
as above I found that

A2 = {(a, 35
6 ),(b, 35

6 ),(c, 35
16 ),(d, 35

7 ),(e,0)}.

At the final step I gave to students for solution a number of composite problems 
involving applications of the definite integral to economics, such as calculation of the 
present value in cash flows, of the consumer’s and producer’s surplus resulting from the 
change of prices of a given good, of probability density functions, etc (Dowling, 1980, 
chapter 17). My intension was to help them to relate the new information to their 
existing knowledge structures (state A3 of the model). In this case I found that

A3 = {(a, 35
12 ),(b, 35

10 ),(c, 35
13 ),(d,0),(e,0)}.
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Observing the above representations of the Ais as fuzzy sets in U, it can be seen that,
the higher is i, the lower the membership degree of intermediate, high and complete 
acquisition of Ai in U. In other words, the higher is the state of the learning process, the 
lower the degree of acquisition of it from students, as it was normally expected.

It is a straightforward process now to calculate the membership degrees of all the 
possible profiles of the students (see column of ms(1) in Table 1). For example, if 
s=(c,b,a), then 

ms = m
1A (c). m

2A (b). m
3A (a) = 35

12
35
6

35
17  = 42875

1224 0,029.

It turns out that (c,c,c) is the profile with the maximal membership degree 0,082 and 

therefore the possibility of each s in U3 is given by rs= 082,0
sm . For example the possibility 

of (c,b,a) is 082,0
029,0 0,353, while the possibility of (c,c,c) is  of course equal to 1.

Calculating the possibilities of the 53=125 in total student group profiles (see  column of 
rs(1) in Table 1 ) one finds that the ordered possibility distribution r of the student group 
is: r1=1, r2=0,927, r3=0,768, r4=0,512, r5=0,476, r6=0,415, r7=0,402, r8=0,378, 
r9=r10=0,341, r11=0,329, r12=0,317, r13=0,305, r14=0,293, r15=r16=0,256, r17=0,207, 
r18=0,195, r19=0,171, r20=r21=r22=0,159, r23=0,134, r24=r25=……..=r125=0

Therefore the total possibilistic uncertainty of the group is 
T(r)=S(r)+N(r)=0,565+2,405=2,97 ( the value of T(r)  was calculated with accuracy up 
to the third decimal point). 

A few days later I gave the same lecture to a group of 30 students of another department 
of the School of Administration and Economics. I worked in the same way and this time 
I found that :

A1={(a,0),(b, 30
6 ),(c, 30

15 ),(d, 30
9 ),(e,0)},

           A2={(a, 30
6 ),(b, 30

8 ),(c, 30
16 ),(d, 0),(e,0)},   and

A3={(a, 30
12 ),(b, 30

9 ),(c, 30
9 ),(d,0),(e,0)}.

Then I calculated the possible profiles of the student group (see column of ms(2) in 
Table 1). It turns out that (c,c,a) is the profile possessing the maximal membership 

degree 0,107 and therefore the possibility of each s is given by  rs= 107,0
sm  (see column of 

rs(2) in Table 1).

Finally, in the same way as above, I found that T(r)=S(r)+N(r)=0,452+1,87=2,322 .

Thus, since 2,322<2,97 ,  the second group had in general a better understanding of the 
new mathematical topic (definite integral) than the first one. This happened despite to 
the fact that the profile (c,c,c) with the maximal possibility of appearance in the first 
student group is a more satisfactory profile than the correponding profile (c,c,a) of the 
second group. 
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Next, and in order to study the combined results of the behaviour of the two groups, we 
introduced the fuzzy variables Ai(t), i=1,2,3 and t=1,2. Then the pseudo-frequency of 
each student profile s is given by f(s)=ms(1)+ms(2) (see the corresponding column of 
Table 1). It turns out that (c,c,a) is the profile with the highest pseudofrequency 0,183 

and therefore the possibility of each student profile is given by r(s)= 183,0
)(sf  . The 

possibilities of all profiles having nonzero pseudo-frequencies are given in the last 
column of Table 1  

Table 1: Student profiles with non zero pseudofrequencies

A1    A2    A3         ms(1)         rs(1)     ms(2)       rs(2)      f(s)        r(s)

b      b       b            0                0       0,016      0,150     0,016     0,087
b      b      a            0                0        0,021      0,196     0,021     0,115
b      a       a            0                0        0,016      0,150     0,016    0,087
c      c       c         0,082            1       0,080      0,748     0,162     0,885

               c      c       a         0,076         0,927    0,107          1        0,183         1
c      c       b         0,063         0,768    0,008      0,075     0,071     0,388
c      a       a         0,028         0,341    0,040      0,374     0,068     0,372
c      b       a         0,028         0,341    0,053      0,495     0,081     0,443
c      b       b         0,024         0,293    0,040      0,374     0,064     0,350
d      d       a         0,016         0,495        0            0         0,016     0,087
d      d       b         0,013         0,159        0            0         0,013     0,074
d      d       c         0,021         0,256        0            0         0,021     0,115
d      a       a         0,013         0,159    0,024      0,224     0,037     0,202
d      b       a         0,013         0,159    0,032      0,299     0,045     0,246
d      b       b         0,011         0,134    0,024      0,224     0,035     0,191
d      c       a         0,031         0,378    0,064      0,598     0,095     0,519
d      c       b         0,026         0,317    0,048      0,449     0,074     0,404
d      c       c         0,034          0,415    0,048     0,449     0,082      0,448
e      a       a         0,017          0,207        0            0        0,017      0,093
e      b       b         0,014          0,171        0            0        0,014      0,077
e      c       a         0,039          0,476        0            0        0,039      0,213
e      c       b         0,033          0,402        0            0        0,033      0,180
e      c       c         0,042          0,512        0            0        0,042      0,230
e     d        a         0,025          0,305        0            0        0,025      0,137
e     d        b         0,021          0,256        0            0        0,021      0,115
e     d        c         0,027          0,329        0            0        0,027      0,148

Note: The outcomes of Table 1 are with accuracy up to the third decimal point.

Remark:  The above experiment is actually a double repetition of the experiment 
presented in [6], during the teaching process of the same cognitive object (definite 
integral), with the same didactic material, the same conditions and the same method of 
teaching (rediscovery). Thus the conclusions obtained from the application of the two 
models - the probabilistic and the fuzzy one – become easily comparable to each other. 
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Conclusions

On comparing the probabilistic with the fuzzy model for learning, as well as the 
outcomes of the experiments, performed under the same conditions for the application 
of the two models in classroom, one is led to the following conclusions:

 Both models are based on the problem-solving argument of Voss for the process 
of learning.

 It becomes evident that, apart from mathematics, both models may be used –
with the proper modifications each time – for the study of the learning process 
of any other subject matter by a student group.

 Both models provide useful quantitative information, which enables the 
instructor to get a concentrating view of the students’ cognitive behaviour in 
terms of the new information presented. In this way he (or she) is helped 
efficiently to readapt the process, the rate and possibly the method of his (her) 
tuition, according to each case.  

 The probabilistic model is easily understood and it is simple in its use for the 
teacher, who wants to apply it in practice. However it is self - restricted to give 
only quantitative information, i.e. probabilities of some indicators, which are 
connected to the abilities of a student group in learning a subject matter. 

 On the contrary the fuzzy model, although a little bit difficult to be understood 
by the non expert and rather complicated in its use, it is not restricted only to 
quantitative information (possibilities, value of T(r), etc), but it also gives a 
qualitative view of the behaviour of the learning group.  In fact, through it one 
studies all the possible profiles of the learning students, and gets – in terms of 
the linguistic labels – an exact idea about the degree of acquisition of the 
successive steps of the learning process by them. In this sense the fuzzy model is 
a more useful tool for the education’s researcher, than the probabilistic one.

 Another advantage of the fuzzy model is that it gives the possibility to study –
through the calculation of the pseudo-frequencies of the several profiles – the 
combined results of behaviour of two, or more, student groups during the 
learning process of the same subject matter. Alternatively it gives also the 
possibility to study the combined results of behaviour of the same student group 
during the learning process of two, or more, different cognitive objects. 

There is a lot of work in the area of student modelling in general and student diagnosis 
in particular. Our propabilistic and fuzzy models for the learning process give a new 
approach for the further study of this area. Analogous efforts, but with different 
methodologies, to use the fuzzy logic towards this direction and in mathematical 
education in general, have been attempted and by other researchers, e.g. see Perdikaris 
(1996), Espin & Oliveras (1997), Ma & Zhou (2000), Weon & Kim (2001), etc.



Fuzziness, or probability in the process of learning?

283

We must finally notice the importance of the use of stochastic methods (Markov chain 
models) for the same purposes, e.g. see Voskoglou & Perdikaris (1993), Voskoglou 
(2007), etc.
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Abstract
This paper aims to discuss theoretical ideas, research evidence and practical ways 
related to the issue of making mathematics accessible to children with learning 
difficulties. Thus, an overview of the concept ‘learning difficulties’ is provided, followed 
by a discussion of the difficulties children face in mathematics and the teaching 
approaches that can facilitate learning.  The paper focuses on children with difficulties 
in maths as well as children with difficulties in maths and reading.  It aims to inform 
practitioners about their role in teaching maths in an inclusive education context where 
differentiation is the principal element of teaching.

Introduction
In a constantly changing educational scene, differentiating teaching becomes a crucial 
skill for all educators wishing to respond to the principles and values of inclusive 
education.  Considering that schools are now expected to welcome individual 
differences and are encouraged to provide equal educational opportunities for all 
children, the targets set in all curriculum areas are under reconsideration.  Increasingly, 
the process of individualised learning becomes more important than the group 
acquisition of a set amount of knowledge in a given time.  Within this context, Didactics 
of Mathematics is an area that has much to offer in the common effort to maximise
inclusion.  It demonstrates a rich theoretical background and valuable research findings 
regarding the obstacles children face while learning specific mathematical concepts.  
What’s more, research in the Didactics of Mathematics has gone far in identifying how 
children with learning difficulties cope with mathematical concepts in relation to
children who are not diagnosed as children with learning difficulties  

Prior to engaging in the task of exploring how children with learning difficulties
conceptualize mathematical concepts and how teaching can be enriched with 
meaningful approaches, it might be useful to explain in more detail what I mean by 
inclusion and inclusive classrooms.  To begin with, inclusive education has gathered 
momentum at international level (UNESCO, 1994) as an approach that respects human 
rights and aims in providing equal education opportunities for all.  According to 
Armstrong and Barton (1999: 215), ‘inclusive education is concerned with the human 
right for all children to attend their local school’.  However, as inclusion is not an end in 
itself, rather it is a means to an end of establishing an inclusive society (Barton in 
Armstrong and Barton, 1999), it requires political, social and financial commitment in 
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restructuring the education system (i.e. internal structures, curriculum, in-service 
training) and the school (i.e. strategic planning for inclusion, pedagogical focus on 
differentiation, accessibility of buildings, reconsideration of the stakeholders’ role –
teachers, specialists, parents, children) in order to educate all children, regardless their
gender, ethnicity, language, religion, disability and social class.  

In principle, inclusion rejects all previous approaches in the education of children 
known as having ‘special educational needs’, such as segregation (educating children 
with special needs in the special school and children without special needs in the 
mainstream school) and integration (placing children with specific types of impairments
in the mainstream school and expecting their adjustment in an environment that made 
minimum or no efforts to accommodate them).  Inclusion is about an extension of the 
comprehensive ideal in education and thus, it is concerned less with children’s supposed 
‘needs’ and more with their rights (Thomas and Loxley, 2001).  Following this line of 
thought, schools operating in an inclusive spirit are expected to demonstrate inclusive 
classrooms; classrooms that not only respect difference in principle, but are committed 
in employing pedagogical ways for raising each child’s education to the best possible 
level.

In this paper, I will draw upon the definition and characteristics of children with 
learning difficulties. I will focus on the main research findings regarding children with 
learning difficulties on mathematics and children with difficulties both in reading and 
mathematics.  Finally, I will make suggestions for approaches for differentiated 
teaching, targeting in facilitating learning for all in an inclusive maths classroom.

Understanding learning difficulties
Children with learning difficulties constitute a significant percentage of children 
attending mainstream school classes.  Literature is rich in providing percentages 
indicating the prevalence of learning difficulties in different cultures, but focussing on 
percentage is not the terminus of this paper.  As the appearance of children with 
learning difficulties does not differ from the appearance of their classmates without 
learning difficulties, the former are often marginalized and labelled as ‘lazy students’, 
‘indifferent for learning’ or even ‘not clever enough’.  However, understanding this 
group of children is much more complicated than looking for percentages and adhering 
humiliating labels.  

To begin with, children who experience difficulties in learning are characterised as 
children with learning difficulties (English term, employed in this paper) or children 
with learning disabilities (American term).  As this is a long researched area, literature 
records numerous definitions, others developed for political reasons (legislation), others 
for academic reasons and others for purposes of assessment.  As it is usually the case, 
different definitions grasp the substance of the phenomenon, while at the same time 
they emphasise different aspects of it.  According to Lerner (1993), the common 
elements in most definitions of learning difficulties are: neurological dysfunction, 
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uneven growth pattern, difficulty in academic and learning tasks, discrepancy between 
achievement and potential, and exclusion of other causes.  A quite comprehensive 
definition is the one developed by the National Joint Committee of Learning Difficulties 
(NJCLD) based in the United States of America.

Learning disabilities is a general term that refers to a heterogeneous group of 
disorders manifested by significant difficulties in the acquisition and use of 
listening, speaking, reading, writing, reasoning or mathematical abilities.  These 
disorders are intrinsic to the individual, presumed to be due to central nervous 
system dysfunction, and may occur across the life span. Problems in self-
regulatory behaviours, social perception, and social interaction may exist with 
learning disabilities but do not, by themselves, constitute a learning disability.  
Although learning disabilities may occur concomitantly with other disabilities 
(e.g., sensory impairment, mental retardation, serious emotional disturbance), or 
with extrinsic influences (such as cultural differences, insufficient or 
inappropriate instruction), they are not the result of those conditions or influences 
(NJCLD, 1998: 1).

The above definition clearly states that there can be six areas of difficulties in the 
acquisition and use of: listening, speaking, reading, writing, reasoning or mathematical 
abilities.  According to Dockrell and McShane (1995) the difficulty children face can 
either be specific, as occurs when a child experiences problems with a particular task 
(such as reading, writing or mathematics) or it can be general, as occurs when learning 
is slower than normal across a range of tasks.  They also argue that frequently, it can be 
problematic to distinguish between general or specific learning difficulties, as a specific 
learning difficulty may lead to other difficulties (e.g. a specific learning difficulty in 
reading may lead to difficulties with arithmetic as arithmetic requires reading abilities).  
Furthermore, children with general learning difficulties may show considerable 
competence in a specific area of cognitive functioning.  

What is the profile of children with learning difficulties?  Children with general learning 
difficulties may have poor memory, they tend to be slow in performing tasks (i.e. 
solving a problem) or in performing simple mental processes, they can easily be 
distracted, they are usually unable to generalize from one situation to another, they may 
face difficulties in identifying the problem and generating a problem-solving strategy, 
they may have difficulty with if-then relationships and they tend to be imprecise, 
impulsive and non-systematic in collecting information (Raban and Postlethwaite, 
1992).  This list can be enriched with the psychological condition of children with 
learning difficulties (i.e. poor self-esteem, learned helplessness, anxiety, frustration and 
a feeling of rejection).  Turning the focus on specific difficulties such as difficulties in 
reading, writing and mathematics, literature is rich in recording long lists with 
children’s characteristics.  However, before outlining the profile of children with 
difficulties in reading, writing and mathematics, a clarification of important terms, such 
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as dyslexia and dyscalculia, needs to be made and their connection with learning 
difficulties needs to be drawn.  

As I have already explained, learning difficulties are related to difficulties in listening, 
speaking, reading, writing, reasoning or mathematical abilities, they arise when a person 
lacks the necessary prerequisites for learning (perception, memory, language, thinking, 
problem solving) and they can be either specific or general.  Dyslexia refers to a specific 
learning difficulty in reading, writing and spelling (Reid, 2008).  It appears in all ages, 
races, and income levels. Dyslexia is described as a syndrome, which means that there 
is a pattern of signs and if several of them co-occur in the same individual, then the 
person can be characterised as dyslexic.  The degree of dyslexia is dependent upon the 
number of signs possessed by a person.   It is believed that children with dyslexia learn 
in a different way from other people and many of them are talented in other areas (i.e. 
art, music, and drama).  Importantly, dyslexia has nothing to do with low intelligence as 
people who demonstrate dyslexic characteristics have usually typical IQ.  

Dyscalculia refers to specific learning difficulties in mathematics (Chinn and Ashcroft, 
1995).  It is a contested term as researchers have not yet reached a consensus regarding 
its definition.  According to Poustie (2000) children’s condition may result from
developmental or acquired dyscalculia; the former resulting from a specific learning 
difficulty in numeracy/mathematics – a condition that is present from birth – and the 
latter referring to all kinds of learning problems in mathematics caused by various 
factors, including developmental and acquired dyscalculia.  Mazzocco (2007) 
approaches the issue using a different terminology.  She explains that dyscalculia 
(which she also calls mathematical learning disability) is a biologically based and 
behaviourally defined condition.  She distinguishes dyscalculia from ‘mathematical 
difficulties’, which are considered to be difficulties of environmental and not biological 
aetiology.  

Apart from terminology and definition issues, dyscalculia becomes a contested term due 
to its unclear connection to dyslexia.  Miles T. R. (1992) argues that questions about the 
relationship between dyslexia and dyscalculia are difficult to be answered as dyslexia is 
generally accepted as a syndrome, but it is not certain if this is the case for dyscalculia 
as well.  Thus, Miles continues, it is misleading to ask how many dyslexics are also 
dyscalculic and how many dyscalculics are or are not dyslexic.  Furthermore, there 
seems to be a consensus that most or all children with dyslexia have mathematical 
difficulties of some kind (i.e. problems with their immediate memory for ‘number 
facts’, difficulty in learning the tables, lose the place in adding up columns and 
numbers, difficulties over ‘left’ and ‘right’ which may affect their calculations), but 
these can be overcome in varying degrees, and in some cases they can become 
extremely successful mathematicians (Miles T.R., 1992).    

Either we adopt the distinction between developmental and acquired dyscalculia or we 
distinguish between dyscalculia and mathematical difficulties, the real issue is that 
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children (with or without dyslexia) may face learning difficulties in mathematics that 
need to be identified.  In what follows, there is a list of difficulties in reading, writing 
and mathematics that may be helpful to practitioners engaging in the process of 
identification. 

Table 1: Reading difficulties, writing difficulties and difficulties in mathematics

Reading Difficulties Writing Difficulties Difficulties in Mathematics
 Poor reading ability (slow 

reading, no intonation, 
inability to understand what 
is read)

 Additions (adds words to 
facilitate reading and/or 
make meaning)

 Substitutions (reads the first 
letter/syllable and guesses 
the word or uses the context 
to make meaning)

 Repetitions (reads same 
w0rd twice)

 Transpositions (i.e. clod for 
cold, gril for girl)

 Omissions (skips a word)
 Reversals (dirb for bird, 9

for 6)
 Difficulties in reading 

combinations of letters (i.e. 
th, ph, wh, ch, sh)

 Difficulties in remembering 
the different sounds of the 
same combination of letters 
(i.e. ‘gh’ -> (f) or silent, e.g. 
enough, brought, ‘ou’ -> (u) 
or (ă u), e.g. soup, cloud)

 Poor writing ability (untidy 
hand-writing, poor sentence 
structure, poor use of 
capitals, commas, full-
stops)

 Additions (palay for play)
 Substitutions (desk for 

office)
 Repetitions (and and)
 Transpositions (fier for fire)
 Omissions (laer for later)
 Omissions of combinations 

of letters (heory for theory)
 Reversals (dolb for bold)
 Splits words (be come for 

become)
 Unifies words (andgo for 

and go)

 Difficulty arising from 
relative slowness in simple 
calculation

 Multiplication tables -
memorising difficulty

 Difficulty in counting up
 Difficulty in counting 

backwards
 Difficulty in remembering 

carrying figures
 Directional difficulties
 Difficulties in subtraction 

(bridging the 10, directional 
difficulties and/or 
misunderstanding the 
direction of the principle of 
subtraction, difficulty in 
performing some methods 
of subtraction)

 Multiplication and division
 Difficulty due to copying 

down figures incorrectly
 Arithmetical rules and 

mathematical formulae 
memorising difficulties

British Dyslexia Association in 
Gagatsis, 1999.

The above lists are not exhaustive as children may demonstrate additional 
characteristics to those mentioned here, or they may not face all the difficulties stated in 
each area.  

In this paper, the focus is on children with learning difficulties in mathematics, 
including children with reading and writing difficulties (dyslexia). In order to reach 
children with learning difficulties, it is essential to be aware of the nature of 
mathematics and the potential areas of difficulty in the particular subject, issues that I 
now turn to explain.  
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In what ways can mathematics hinder children’s learning?

Knowing the nature of mathematics is a prerequisite of conceptualizing the difficulties 
children face in this area.  Chinn and Ashcroft (1995) argue that mathematics has an 
interrelating/sequential/reflective structure, and they go on to explain that it is a subject 
where one learns the parts; the parts build on each other to make a whole; knowing the 
whole enables one to reflect with more understanding on the parts, which in turn 
strengthen the whole. Knowing the whole also enables one to understand the sequences 
and interactions of the parts and the way they support each other so that the getting there 
clarifies the stages of the journey.  Therefore, gaps in learning the different parts or 
difficulty in conceptualizing how the parts make a whole may result in poor 
achievement in mathematics.  Furthermore, mathematics is communicated by using a 
special language expressed with symbols, graphic images and special vocabulary 
(Gagatsis, 1999).  Consequently, mathematical texts demand special reading skills often 
acting as a barrier for children’s learning.  

Learning mathematics is highly associated with the individual’s cognitive style.  Pitta-
Pantazi and Gagatsis (2001) report on research in psychology and mathematics
education which points to the fact that individuals vary in their cognitive style.  
Although there can be many distinctions and terms referring to different learning styles, 
it might be useful to refer to two cognitive styles, known as the inchworms and the 
grasshoppers (Bath and Knox, 1984).  In brief, inchworms and grasshoppers have 
differences in the way they analyse and identify a problem, in the methods they employ 
for solving the problem and in verifying the answer.  For example, the inchworms focus 
on parts, attend to detail and they tend to separate, whereas the grasshoppers have a 
holistic approach, they form concepts and they put different parts together; the 
inchworms use a formula/recipe to solve a problem whereas the grasshoppers employ 
controlled exploration; the inchworms are unlikely to verify their answer and if they do, 
they use the same method, whereas the grasshoppers are more likely to verify and they 
will probably use alternate method.

There are many potential areas of difficulty in mathematics.  Reviewing relevant 
literature, one can find different sets of difficulties proposed by researchers who focus 
on different aspects of learning and/or mathematics.  For example, Butterworth and 
Reigosa (2007) refer to dyscalculia and they focus on information processing deficits in 
memory, language and space.  However, commenting on relevant research evidence, 
they explain how complex it is to conceptualize how these areas contribute to 
difficulties in mathematics and how they interact.  Chinn and Ashcroft (1995) list
directional confusion, sequencing problems, visual perceptual difficulties, spatial 
awareness problems, problems in short term and long term memory, the language of 
mathematics difficulties in naming, word skills, cognitive style, conceptual ability,
anxiety and self image.  The British Dyslexia Association has also listed ten potential 
areas of difficulty in maths for children with dyslexia, shown in the table presented 
earlier.  In this paper, I will focus on language and I will explain how it can be 
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associated to specific difficulties encountered by children struggling with several 
aspects of mathematics.   

Although it is argued that the language and number circuits in the adult brain are 
distinct, and thus, the individual can be successful in language tests but fail in numeracy 
tests (Butterworth and Reigosa, 2007), research and practice suggest that language, in 
its broad sense, can be associated with difficulties in mathematics.  Jordan (2007) 
argues that reading difficulties appear to aggravate rather than cause math difficulties, 
and he adds that although reading skill predicts math achievement, number sense is a 
stronger predictor.  Having examined several studies comparing children with math 
difficulty only (MD only) to children with math difficulty and reading difficulty 
(MD/RD) or to children with reading difficulty only (RD only), Jordan (2007: 110) 
ended up with a list of the possible problematic skills in mathematics.

Table 2: Areas of difficulty in children with MD only, MD/RD, and RD only

Skill MD only MD/RD RD only
Counting
Number knowledge
Rapid fact retrieval
Number naming
Problem solving
Reliance on fingers
Digit span
Mazes (spatial skill)
Word articulation speed

+
+
+
+
–
+
–
–
–

+
+
+
+
+
+
+
–
+

–
–
–
–
–
–
–
–
+

Note: + = deficiency, – = no deficiency

In the light of the compilation of results from several studies presented above, it 
becomes clear that children with math difficulty only, as well as children with math 
difficulty and reading difficulty, show similar functional profiles with respect to number 
(i.e. weak calculation fluency reflects basic deficits in counting procedures and number 
knowledge).  Considering this relationship, it becomes important to consider how poor 
reading skills may be associated with difficulties in mathematics and, in particular, how 
they can interfere with understanding the text of a problem and the symbolic language 
of mathematics.  

With regard to difficulties with the text, Miles, E. (1992) addresses the difficulties 
related to the vocabulary of technical terms, which are divided into two categories: (a) 
deceptively familiar terms used in a different sense (i.e. makes – mother makes a 
cake/two plus three makes five, take away – Chinese take away/five take away three, 
odd – something peculiar/odd numbers, even – keep your handwriting even/even 
numbers etc.) and (b) more lengthy terms which are totally new (i.e. isosceles, vector,
coefficient, simultaneous etc.).  Although these examples refer to the English language, 
there are equivalent examples in other languages as well.  Gagatsis (1997) provides 
similar examples in Greek language (i.e. aktina – ray (of light)/radius (of a circle), tokso
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– bow/arc, kentro – restaurant/centre (of a circle), dinami – power/force).  Another 
problem, according to Miles, E. (1992), can be that the same operation may be signalled 
by a large number of everyday terms (i.e. ‘altogether’, ‘total’, ‘sum’, ‘plus’, ‘add’, 
‘and’, must all be interpreted as ‘addition sum needed here’; ‘minus’, ‘difference’, ‘how 
much more’ must all be interpreted as ‘subtraction sum needed here’).

As far as the difficulties with the symbolic language of mathematics are concerned, 
Miles, E. (1992) notes that these can be related to the Arabic numerals, the algebraic 
symbols and mathematical symbols other than numerals.  Some of the difficulties with 
Arabic numerals are: confusion between numbers of similar visual appearance (i.e. 6 
and 9), changing the position of numbers (i.e. 342 and 423), difficulties in identifying 
small differences in the position of numbers in order to continue a series of numbers, 
understanding the symbolization of fractions considering that numbers in that case 
cannot be treated as whole numbers, difficulties over direction when operating a vertical 
addition or multiplication.  These difficulties are related with difficulties in reading and 
writing, such as confusion of similar letters, reversals of the letters in a word and the 
fact that in order to read or right a person is taught to move from left to right and not to 
change directions as it is often the case in mathematics.  The algebraic symbols can also 
be confusing as the child is required to associate letters with numbers and not letters 
with words, as it is the case in reading (i.e. Mr Smith has a number of cars C – C does 
not stand for cars but for the number of cars).  Last but not least, mathematical symbols 
other than numerals are also a source of difficulty.  Starting from the fundamental 
symbols +, – , X, : , a child needs to differentiate between the four and then make the 
connection between addition and multiplication, and subtraction and division.  The 
difficulty arises as the two symbols of each pair look like each other.  Another difficulty 
is the direction on the symbols > (greater than) and < (less than) and the identification 
of different sorts of brackets, such as ( ), { } and [ ].  According to Gagatsis (1997), an 
additional difficulty could be that the same mathematical symbol often takes a 
completely different meaning in different contexts.  For example, the symbol – is used 
for subtraction (3 – 2), for negative numbers (– 2), for fractions etc.

In what ways can we teach children in order to facilitate their understanding of 
mathematical concepts?

Nowadays, teachers are expected to differentiate their teaching approaches in order to 
reach all children attending mixed ability classes.  In particular, teachers need to adopt 
an inclusive philosophy and demonstrate a good ability to include all children in the 
learning process by identifying individual differences and by differentiating curriculum, 
instruction and material accordingly.  To make the connection with the previous section, 
children who face difficulties in mathematics and children whose difficulties in 
mathematics become more evident due to difficulties in reading should be identified and 
confronted by the teacher in a systematic and effective way.  In what follows, I will 
explain how difficulties with the language of mathematics can be tackled and how the 
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concept of number can be approached in order to overcome difficulties associated with 
mathematics and language.

With regard to the vocabulary of mathematical texts, teachers need to be aware of the 
particularities of mathematics presented in the previous section and modify their 
teaching in such a way to prevent further difficulties or to aid children overcome any 
difficulties they may have.  Raban and Postlethwaite (1992) argue that it is important to 
establish consistency from teacher to teacher in the language used to talk about maths 
and careful thinking on behalf of the teacher about the language s/he uses to discuss 
mathematical ideas is essential.  Furthermore, Gagatsis (1997) suggests that it is 
pointless to force students learn new vocabulary if we do not intend to use it.  It is 
recommended that students learn only a small number of new terms and symbols, and 
that the same terms and symbols are used throughout the maths textbook or handouts.  It 
might be useful to encourage children create small cards, easy to store in their pencil 
case, where they can write down the basic terminology of each chapter/thematic area.  
They can also draw a figure that helps them associate the term with its meaning.  This 
card can be used as a source of reference every time a child is not sure about the 
meaning of a term.  

Linked to the difficulties arising from unfamiliar terminology are the difficulties of 
reading a maths problem.  Arguably, children who have difficulties in reading any text, 
it is certain that they will have difficulties reading and understanding a maths problem.  
A simple response to this difficulty could be that the teacher encourages children to 
draw a picture related to the problem, help them pick the essentials of what is required 
and rewrite the question in their own words (Miles, E. 1992).  Another matter that 
teachers should take into consideration when differentiating is the structure of the 
sentences comprising a problem.  Children with reading difficulties may need 
rewording of some sentences.  For example, the sentence ‘The perimeter of a 
rectangular piece of paper is 4.8 cm’ is tortuous and condensed as the key-word 
‘rectangular’ is in the middle of the sentence and it can be easily missed by the child 
(Miles, E. 1992).  A simpler version of this sentence could be ‘A rectangular piece of 
paper has a perimeter of 4.8 cm’. In this sentence, information is presented in such a 
way that may aid children to decode, and perhaps draw, the necessary information in the 
order they find it while reading.

It has already been argued that children with difficulties in maths and children with 
difficulties both in reading and maths face difficulties in number knowledge (Jordan, 
2007).  As this is one of the basic areas of the maths chain, it might be useful to 
consider ways of making it accessible to all learners.  Chinn and Ashcroft (1995) argue 
that although children may recognize small numbers, they have difficulties in large 
numbers.  Recognition of larger numbers can be facilitated if the objects are arranged in 
a recognizable pattern and if the number can be seen as a combination of other numbers.  
Chinn and Ashcroft (1995: 34) suggest that children can be taught how to break down 
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or build up numbers and visualize them through patterns familiar to them from dice or 
dominoes.

Table 3: Breaking down and building up numbers

Ioannou and Symeou (2008) refer to another approach developed in Germany, known as 
the ‘Numerical House’.  In the heart of this approach lies the belief that children who 
are encouraged to conceptualize numbers visually in a recognizable pattern can apply 
this knowledge to more advanced concepts, and thus overcome possible difficulties.  
The central concept of this method is the figure of a house in which numbers are 
represented in a particular way, as shown below:  

   

To help children establish the above figures in their memory, teachers develop games 
using normal and special dice (1-6 and 4-9 respectively), and the figure of the house 
either in wood or in laminate paper. 
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Apart from the conceptualization of numbers, this method is useful for understanding 
the tens, the place value, addition, subtraction, multiplication and division.  Ioannou and 
Symeou (2008) report that they found this method extremely helpful and they have 
developed it further as a result of their teaching experience to a great number of 
children.  

The approaches explained here are not exhaustive.  Both researchers and practitioners 
may propose other methods that they find useful.  However, it is important to take into 
consideration that teaching numeracy concepts entails serious consideration of the 
common difficulties children face and research evidence about ways to be overcome.  
One important tip is that teaching approaches need to be coherent as the concepts 
become more complex.  Chinn and Ashcroft (1992: 102) list the principles of the 
scheme of presentation that should be used to encourage dyslexics visualize the 
numbers from 1 to 100: 

a. The scheme should help organization
b. The scheme should be consistent over all the numbers – all the numbers should 

be present in logical positions
c. The scheme should unify all aspects of numeracy
d. From the scheme should grow naturally the required extra algorithms 
e. The scheme should be capable of supporting all future work

Another important tip is that children should be encouraged in ‘doing’ first and then in 
‘naming’.  Once the necessary foundations have been acquired by doing, then the 
abstract reasoning becomes less problematic (Miles T. R., 1992).  The approaches 
presented here regarding numeracy rely on the above principles and it is up to the 
practitioners how far they can go with making numeracy teaching meaningful to 
children.

Conclusion
The question guiding this paper was ‘How can mathematics reach children with 
learning difficulties?’ and in my attempt to initiate a discussion, I have tried to outline 
the range of learning difficulties, the difficulties children may face in mathematics and 
some possible approaches that can facilitate their understanding of mathematical 
concepts.  As mathematics is a huge area, I focussed on children with difficulties in 
maths only and children with difficulties in reading and maths.  It becomes clear that 
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practitioners have a lot to learn from research in this area and that they have alternative 
ways of approaching maths in order to respond to mixed ability classes.  Their guiding 
principle should be how to differentiate teaching in order to reach all children.  In other 
words, practitioners are expected to focus on how to promote inclusive education 
through maths on the one hand, and on how to make maths accessible to all learners, on 
the other.  This is not an easy task, but it is definitely possible.
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