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ABSTRACT 
 

“Adaptable Dual Control Systems” 
 

The addition of secondary members within the primary frame to compose dual systems has 

proven to be beneficial under static loading in terms of reduction of self-weight of 

members, ease of construction and structural design optimization through attractive design 

configurations. The nature of dual response in frame systems leads to an overall improved 

behavior under static loading, but has not been investigated for dynamic excitations. 

Concerned with the logic of adaptable response through a dual action of frame systems the 

proposals made refer to the use of inventive seismic resisting technology methods suitable 

for basic forms of general architectural design applications. 

The technology of passive seismic control systems is realized though the addition of 

damping devices with bracings to compose a secondary system within the primary frame. 

The structural aim of the added members is to succeed in resisting seismic ground motions 

through dissipation of the input energy leaving the primary frame to resist in its elastic 

region. The method provides configuration designs of energy dissipation systems, which 

incorporate conventional sections of braces. Such mechanisms sometimes fail to 

effectively develop a continuous activation of energy dissipation during a complete cycle 

of vibration, due to compression buckling of the bracings members. Alternatively, a few 

most recently developed research proposals involve the use of flexible members as 

bracings, which are able to develop kinetic mechanisms during the energy dissipation 

process while working only in tension. 

Contributing to the field of research and development of kinetic mechanisms, the 

current research work investigates, through numerical simulations and parametric studies, 

the effects of potential application of Adaptable Dual Control Systems in frame structures 

for seismic passive control. Common denominator for every aspect of the present research 

comprises the integration of a bracing-damper mechanism in frame structures that consists 

of tension-only members and hysteretic steel plates, for the development of an adaptable 

dual response behavior against moderately strong, extremely irregular motions. The effects Ton
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of Adaptable Dual Control Systems on the performance of frame structures are 

demonstrated using four different configuration design alternatives. 

The investigation is concentrated in simulation and modeling research techniques to test 

the conceptual design idea and its implementation potential. The basic mechanical 

behavior principles of ADCS are illustrated using a single degree of freedom structural 

model utilized in a Finite-Element analysis software, SAP2000. The analytical 

investigations revealed the dominating design parameters for ADCS. The non-linear link 

parameter, defined as the ratio of the stiffness to the yield force of the hysteretic damper, 

DR , characterizes the behavior of the controlled systems in each configuration. Optimum 

DR values are proposed for each system configuration in achieving high energy dissipation 

capacity, while preventing possible increase of the maximum base shear and relative 

displacements. 

ADCS dynamic behavior is analytically provided under three international seismic 

records and it is verified under ten records of the Mediterranean region. Some interesting 

conclusions are indicated as regards the potential use of ADCS alternative configuration 

designs in passive seismic control applications, aiming at maximization of the energy 

dissipation capacity and practically a negligible coupling effect of the added secondary 

slender bracings and hysteretic damper plates to the primary frame. 
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ΠΕΡΙΛΗΨΗ 
 

«Προσαρμόσιμα Συστήματα Δυαδικού Ελέγχου» 
 

Η προσθήκη δευτερευόντων μελών εντός της πρωτεύουσας πλαισιακής κατασκευής 

για τη σύνθεση δυαδικών συστημάτων έναντι στατικών φορτίων έχει αποδειχθεί ότι 

υπερτερεί ως προς τη μείωση του ίδιου βάρους της κατασκευής, την ευκολία της 

ανέγερσης της και τη βελτιστοποίηση του δομικού σχεδιασμού μέσω ελκυστικών 

μορφοποιήσεων. Η φύση της δυαδικής μορφής της απόκρισης πλαισιακών 

συστημάτων επιφέρει βελτίωση στη συμπεριφορά κατά την απόκριση καθολικά έναντι 

στατικής φόρτισης, ενώ δεν έχει διερευνηθεί για δυναμικές φορτίσεις. Οι εισηγήσεις 

εντός του πλαισίου της λογικής μιας προσαρμόσιμης συμπεριφοράς κατά την 

απόκριση, ικανές να αναπτύξουν δυαδική λειτουργία, επιστρατεύουν καινοτόμες 

μεθόδους αντισεισμικής τεχνολογίας κατάλληλες για εφαρμογή σε βασικές μορφές 

γενικών αρχιτεκτονικών μορφοποιήσεων δομικών συστημάτων. 

Η τεχνολογία συστημάτων παθητικού σεισμικού ελέγχου γίνεται εφικτή μέσω της 

προσθήκης στοιχείων απόσβεσης με συνδέσμους ακαμψίας που συνιστούν ένα 

δευτερεύον σύστημα εντός του πρωτεύοντος πλαισίου. Ο δομικός στόχος των 

πρόσθετων μελών είναι η επιτυχής απόκριση έναντι σεισμικών εδαφικών δονήσεων 

μέσω της απόσβεσης της εισαγόμενης ενέργειας επιτρέποντας στο πρωτεύον πλαίσιο 

να συμπεριφερθεί ελαστικά. Η μέθοδος παρέχει λύσεις για μορφοποίηση συστημάτων 

απόσβεσης ενέργειας, οι οποίες εμπεριέχουν συμβατικές διατομές συνδέσμων. 

Συναφείς μηχανισμοί κάποτε αποτυγχάνουν να αναπτύσσουν αποτελεσματικά συνεχή 

ενεργοποίηση απόσβεσης ενέργειας καθ’ όλη τη διάρκεια ενός πλήρους κύκλου της 

επαναληπτικής φόρτισης της διέγερσης εξαιτίας του φαινομένου λυγισμού των 

θλιβόμενων μελών ακαμψίας. Εναλλακτικά έχουν εντοπιστεί σποραδικές πρόσφατες 

ερευνητικές προτάσεις που αφορούν τη χρήση εύκαμπτων μελών σαν συνδέσμους, οι 

οποίοι είναι ικανοί να αναπτύξουν κινητικούς μηχανισμούς κατά τη διαδικασία 

απόσβεσης ενέργειας ενώ ενεργοποιούνται μόνον σε εφελκυσμό. 

Συνεισφέροντας στο πεδίο έρευνας και ανάπτυξης των κινητικών μηχανισμών, η Ton
ia 
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παρούσα ερευνητική εργασία διερευνά, μέσω αριθμητικής προσομοίωσης και 

παραμετρικών αναλύσεων, τις επιδράσεις της πιθανής εφαρμογής των προσαρμόσιμων 

συστημάτων δυαδικού ελέγχου σε πλαισιακές κατασκευές για σκοπούς παθητικού 

σεισμικού ελέγχου. Κοινός παρονομαστής για κάθε μέρος της παρούσας έρευνας 

αποτελεί η ένταξη εφελκυόμενων μελών ακαμψίας και υστερετικού μηχανισμού 

απόσβεσης ενέργειας από μεταλλικά ελάσματα, σε πλαισιακές κατασκευές, ώστε να 

είναι δυνατή η ανάπτυξη μιας προσαρμόσιμης και δυαδικής συμπεριφοράς κατά την 

απόκριση έναντι σχετικά ισχυρών, ιδιαιτέρως ακανόνιστων μετακινήσεων. 

Παρουσιάζονται οι επιδράσεις των προσαρμόσιμων συστημάτων δυαδικού ελέγχου 

χρησιμοποιώντας τέσσερις διαφορετικούς δυνατούς τρόπους μορφοποίησης.  

Η διερεύνηση επικεντρώνεται σε τεχνικές προσομοίωσης και μοντελοποίησης για 

την επιτελεστικότητα της ιδέας σχεδιασμού και της δυνατότητας εφαρμογής της. Οι 

βασικές αρχές της μηχανικής συμπεριφοράς των προσαρμόσιμων συστημάτων 

δυαδικού ελέγχου παρουσιάζονται χρησιμοποιώντας μονοβάθμιο στατικό μοντέλο στο 

απλοποιητικό λογισμικό ανάλυσης πεπερασμένων στοιχείων, SAP2000. Η αναλυτική 

διερεύνηση έχει αποκαλύψει τις δεσπόζουσες παραμέτρους σχεδιασμού των 

προσαρμόσιμων συστημάτων δυαδικού ελέγχου. Η μη γραμμική παράμετρος 

συνδέσμου που ορίζεται σαν ο λόγος της ακαμψίας ως προς τη δύναμη διαρροής του 

υστερητικού αποσβεστήρα, DR , καθορίζει τη συμπεριφορά των συστημάτων ελέγχου 

για κάθε δυνατή μορφοποίηση. Προτείνονται βέλτιστες τιμές DR για κάθε μία από τις 

δυνατές μορφοποιήσεις ώστε να προσδίδεται υψηλή ικανότητα απόσβεσης ενέργειας 

και να αποτρέπει πιθανή αύξηση της τέμνουσας και των σχετικών μετακινήσεων.  

Παρουσιάζονται τα αποτελέσματα από διεξοδικές αναλύσεις ως προς τη δυναμική 

απόκριση υπό τρεις διαφορετικές σεισμικές διεγέρσεις από το διεθνή χώρο και η 

συμπεριφορά των συστημάτων επικυρώνεται υπό δέκα καταγραφές από την περιοχή 

της Μεσογείου. Επισημάνονται ενδιαφέροντα συμπεράσματα που σχετίζονται με την 

προοπτική χρήσης των εναλλακτικών μορφοποιήσεων προσαρμόσιμων συστημάτων 

δυαδικού ελέγχου σε εφαρμογές σεισμικού παθητικού ελέγχου που έχουν στόχο τη 

μεγιστοποίηση της δυνατότητας απόσβεσης ενέργειας και πρακτικά αμελητέας Ton
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αλληλεπίδρασης των επιπρόσθετων δευτερευόντων εύκαμπτων συνδέσμων και 

ελασμάτων υστερητικής απόσβεσης με το πρωτεύον πλαίσιο.  
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CHAPTER 1 INTRODUCTION 

1.1 Structures Configurations 

The design of any structural system to provide interesting solutions and achieve a clear, 

stable and controllable load-bearing behavior comprises a challenge for engineers and 

architects. This challenge is made more complex for earthquake resistant systems.  

In the present study several significant proposals are made for structures to better resist 

both static and dynamic loads. The moment resisting frames’ static behavior is improved 

with the addition of a secondary strengthening system of cables and struts. Such composed 

systems, defined as dual systems, are beneficial due to the effective distribution of internal 

stresses and they may provide interesting solutions in terms of the configuration designs. 

The dual-system concept is investigated under seismic loads, aiming at a stable behavior. 

In moment resisting steel frames with an eccentric bracing for example, the more rigid 

eccentric braces provide primarily a stable seismic behavior, while the moment frame 

provides good flexural behavior. Steel-moment resisting frames and passive seismic 

control devices provide high damping that significantly reduces the seismic loads imparted 

to the primary frames. 

1.2 Energy Dissipation for Frames 

Structural control through energy dissipation systems has been increasingly implemented 

internationally in the last years and has proven to be a most promising strategy for 

earthquake safety of the structures. The control concept is based on the integration of 

passive damping devices within the structure for the necessary energy dissipation and the 

elastic response of the primary system. Passive metallic yielding, friction, viscoelastic and 

viscous damping devices may be added to frame structures to dissipate the input energy 

during an earthquake and to substantially reduce or eliminate damage to the primary 

frames ([1.4], [1.7]). Ton
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1.3 Motivation 

The design of frame structures with added control members for earthquake resistance 

refers primarily to the need for the primary systems to exhibit a linear elastic behavior 

under seismic actions. In principle the damping devices are added in moment resisting 

frames, attached on steel bracings of large hollow sections. Such bracing components 

increase the overall stiffness of the system, as they consist of steel members stressed in 

compression, tension and bending. Before any hysteretic action is undertaken by the 

damper, the stiff bracings may reduce inter-story displacements, while producing high 

accelerations ([1.5]). In addition, the application of the members under compression leads 

under cyclic loading, to a relatively inefficient behavior of the system: in every half-

loading cycle the compression diagonal buckles and it therefore cannot participate in the 

energy dissipation process. 

Slender bracing members for the integration of dampers in frame structures have found 

up to date limited applications ([1.2]). A reason for this is their tendency of becoming slack 

under tension yielding and compression buckling. In addition sudden increases of the 

tensile forces in the slender braces create detrimental impact loadings on the connections 

and the other structural members ([1.13]). On the other hand, the application of light-

weight secondary systems for earthquake resistance seems to be a promising alternative as 

regards the avoidance of stiffness interaction with the primary system, as well as the 

achievement of both, simplicity and aesthetic qualities of the structures in the broader 

architectural context. The implementation of tension-only bracings with damping devices 

in frame structures may only be realized through the development of suitable bracing-

damper configurations, whereas all bracing members would effectively contribute during 

the entire load duration to the operation of the integrated damper. In this way, optimization 

of the control system’s operation principles, for earthquake structural resistance, may be 

achieved. 
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1.4 Literature Review 

A control mechanism that enables the contribution of all structural members in the energy 

dissipation process is the Pall-Marsh friction mechanism with slender cross braces, as 

described in ([1.3]). Under lateral loads, one pair of braces is subjected to tension and the 

other to compression. The rectangular damper deforms into a parallelogram, dissipating 

energy at the bolted joints through sliding friction. With the completion of a loading cycle, 

the resulting areas of the hysteretic loops are identical for both braces. An alternative of 

this friction mechanism with cross braces has been proposed in ([1.15]). An 

implementation of chevron cable members with a friction damper that consists of three 

rotating plates and circular friction pad discs placed in between is described in ([1.8]). 

In few other recently proposed light-weight control systems, hysteretic dampers are 

connected with slender bracing members that activate the former for the necessary energy 

dissipation through their joints’ relative displacements. Effective energy deformation is 

achieved through the optimization of the integrated hysteretic damper plates’ section. 

Along this line, the cross braces with the articulated quadrilateral with steel dissipaters 

work only in tension, whereas energy dissipation develops through elasto-plastic flexure of 

the steel plates with varying depth ([1.11]). A similar cross cable bracing configuration has 

been proposed in ([1.6]), with a central energy dissipater consisting of two steel plates that 

are interconnected through a rotational spring and eight elastic cables. All cables are in 

tension under lateral loads. Under seismic excitation four cables in tension rotate the steel 

plates in opposite directions. The remaining cables connected across the shortened 

diagonal are stressed elastically in compression and do not become slack, when the loading 

direction changes, due to the permanent rotation of the steel plates. 

1.5 Adaptable Dual Control Systems 

Adaptable Dual Control Systems, ADCS that are developed and investigated in their 

dynamic behavior in the present study, consist of tension-only bracing members with 

closed circuit and a hysteretic damper of steel plates. The implementation of ADCS in 

frame structures enables a dual function of the composed system, leading to two practically Ton
ia 

Sop
ho

cle
ou

s-L
em

on
ari



CHAPTER 1 - INTRODUCTION 

30 

 

uncoupled systems, i.e. the primary frame, responsible for the static vertical and static 

horizontal forces and the bracing-damper mechanism, for the earthquake forces and the 

necessary energy dissipation. In all cases the aim is for the hysteretic damper to utilize 

effectively the relative displacements between its connection joints, i.e. a bracing- and a 

primary frame’s member, through its own yielding deformations for the necessary energy 

dissipation. Parametric dynamic analyses of the SDOF system’s responses are performed 

based on three representative international earthquake motions of differing frequency 

content. The dynamic response behavior is verified based on ten selected seismic input 

records of the Mediterranean earthquake prone area. A non-linear link parameter, equal to 

the ratio of the stiffness to the yield force of the hysteretic damper, DR , is defined to 

characterize the behavior of each controlled system for the range of the relative stiffness 

ratios of the composed members. Optimum DR  values are proposed for each configuration 

for achieving high energy dissipation capacity of the systems preventing possible related 

increase of the maximum base shear and relative displacements.  

The initial ADCS proposal describing a cross bracing mechanism of closed circuit with 

a hysteretic damper of steel plates was studied in ([1.9]). During strong ground motions 

relative displacements between the bracing and the frame member interconnected through 

the hysteretic damper, yield to the damper’s own deformations and energy dissipation. This 

kinetic system’s principle is applied in the development and improvement of further 

possible configurations for ADCS ([1.10]). In principle, ADCS introduce a prototype 

connections’ design for the bracing members, based on rotating discs. The connection 

principle may be applied in different bracing configurations that share common features in 

respect to the kinetic model and the control behaviour of the system ([1.12]). Furthermore, 

the hysteretic damper applied in ADCS, may follow the section principles of hysteretic 

dampers subjected to shear forces at their connections. The dampers consist of X- or 

triangular-shaped steel plates for achieving uniform deformation curvatures over the 

sections’ height, as applied in the examples of ADAS- and TADAS-devices ([1.1], [1.14]). 

The present analysis refers to four particular ADCS-configurations, the cross bracing as a 

reference, ADCS0, a portal bracing, ADCS1, a portal- and a chevron bracing, ADCS2 and Ton
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a bracing that forms with three cables a triangular shape, ADCS3. Each bracing’s 

configuration obviously provides a differentiated seismic performance, but also an 

alternative structural form that can be applied within the broader architectural context of 

the building. 

1.6 Research Outline 

Chapter 1 provides an introduction to some of the key issues involved in the configuration 

of dual frame systems that have to resist external loads through the development of an 

adaptable behavior, i.e. dual behavior for the purpose of structural control. It includes a 

summary of the up-to-date methods of energy dissipation for passive control. 

Chapter 2 outlines the beneficial characteristics of dual systems behavior under uniform 

vertical static loading. It acknowledges the need for possible improvements as regards 

configurations of frame systems towards minimal architectural impact, while it poses the 

research interest in developing attractive dual systems for earthquake resistance. 

Chapter 3 explains the method of passive structural seismic control through the use of 

energy dissipation devices. It presents the state of the art as regards available 

configurations of moment resisting frames with added bracing for the integration of 

damping mechanisms within. It distinguishes the energy dissipation systems from the 

concept of kinetic mechanisms and emphasizes the benefits of contributions to this new 

field of research and development: the energy dissipation mechanisms through the 

activation of movement in response. 

Chapter 4 introduces the adaptable dual control systems concept. It describes the 

principle characteristics based on four different configurations and exemplifies the kinetic 

mechanisms, which activate the integrated hysteretic device to dissipate most part of the 

input seismic energy. The systems’ configuration designs are developed and the 

construction design of the connections is presented. 

Chapter 5 presents the SDOF-model used in the analytical simulations. The selection of 

international seismic input records is shown. The chapter concludes with the predominant Ton
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mechanical properties of the hysteretic damper as they result from respective sensitivity 

analyses, while the range of population to capture the important features of the controlled 

systems is presented. 

Chapter 6 outlines the results of the dynamic responses of all four ADCS configurations 

under the international seismic input records. It emphasizes ADCS potential for maximum 

energy dissipation for each configuration, as well as different mechanical characteristics of 

the integrated damper. The resulting systems’ performance in terms of base shear and 

relative displacements is emphasized. Provided in this chapter are also the optimization 

studies’ results for the selection of the optimum design parameters for each configuration.  

Chapter 7 concentrates on the results for the optimum design parameters, as far as the 

dynamic responses of three configurations of ADCS, subjected to ten records of seismic 

events of the Mediterranean region, are concerned. The potentials for promising dynamic 

responses by ADCS are verified in terms of energy dissipation, base shear and relative 

displacements of the controlled systems. 

Chapter 8 addresses the conclusions of the current study.  
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CHAPTER 2 DUAL STATIC SYSTEMS  

2.1 Dual Static Systems Characteristics 

Dual static systems are defined through the linkage of two different component systems 

that are combined to resist forces by developing a specific mechanical behavior due to their 

different resisting nature ([2.1]). In principle, the dual systems’ behavior depends on the 

parallel superposition of a primary frame and a secondary system, suspension or 

strengthening system, to the frame’s linear members ([2.5]). Dual static frames employ 

cables to support the primary members as external supports and to create a unified reaction 

under both mechanical- (flow of forces and form of deflections) and visual considerations 

([2.3]). 

The principles of dual static systems behavior may be clarified through analytical 

investigations of differing configurations ([2.2]). The case examples presented in this 

chapter, contribute to the general field of architectural vision towards structural innovation 

through the design of structures ([2.4]). The following dual static systems’ behavior is 

approached based on uniform vertical loading, whereas the weight of the primary frame is 

assumed to be adequate to counteract the uplift due to wind pressure. The cables’ 

configuration follows in principle the moment diagram shape and aims at achieving an 

improved distribution of the internal stresses of the primary members. The design approach 

follows some basic assumptions: the tensile stays are inextensible, the primary beam is 

hinge-connected to the columns, the columns’ bases are hinge-supported and the columns 

are enhanced to carry axial forces instead of bending moments. Optimization involves the 

reduction of the beam moments to a minimum, while a significant amount of load is 

carried by the beam in axial action. The dual system is internally indeterminate due to the 

elastic cables or the rods supports.  

Different configurations of dual systems with hinge-connected primary members have 

been investigated in their static behavior under uniform vertical loading and compared to Ton
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the respective portal frame of the same geometrical characteristics of column height and 

beam length. 

2.2 Primary Frames 

The primary frames that are used for comparison purposes differ in their configuration as 

regards their supports and connection design. Three primary frames are defined: the fixed-

supported, moment-resisting or rigidly-connected frame, the fixed-supported, hinge-

connected frame and the hinge-supported, rigidly-connected frame (Figure 2.1). 

The internal stresses developed in each of the three primary frames are discussed. In the 

fixed-supported, hinge-connected frame, the beam develops shear and bending moment, i.e. 

flexural resistance, while the columns contribute to the axial resistance only and they do 

not deflect due to their idealized hinge connection with the beam, since they do not have to 

carry shear forces or bending moments. The fixed-supported, rigidly-connected frame 

resists the external vertical loading by developing bending moments and shear forces in the 

beam and the columns, as a result of the rigid connections and therefore the transfer of the 

respective internal forces. The bending moments at the beam’s midpoint decrease by 

approximately 45 %, since the frame’s rigid joints are able to attract bending at the beam’s 

ends. Therefore the moment-resisting primary frame, i.e. with rigidly-connected joints, 

develops reduced moments in the beam that has to resist 55 % at the field and 45 % at the 

joints of the respective maximum moment of the simply supported beam, whereas the 

hinge-supported beam, 64 % at the field and 40 % at the joints. 
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2.5 Sub-Tensioned Dual Static Frames with Struts 

Sub-tensioned, dual static frames with struts give support to the frame from below, in 

contrary to conventional cable stayed structures giving support from above. They consist 

of a continuous beam, which functions in bending and a suspension system, i.e. the cables 

with compression struts, supporting the beam from below. They form truss-like systems 

with compression members as top chords, tension cables as bottom chords and 

compression struts as web members. The beam is compressed, the cables are under tension 

and the struts resist in less compression than the beam. There is a considerable effect of the 

secondary system’s stiffness on the moment distribution of the beam. The configuration 

design may involve a single strut and a multi-strut cable supported beam (Figure 2.5), 

(Figure 2.6), (Figure 2.7). The behavior of the systems is compared with that of a fixed-

supported, hinge-connected primary frame. 

The sub-tensioned, two-strut system’s behavior follows the principles of this type of 

systems (Figure 2.5). The two-strut cable-supported frame may succeed in minimizing the 

bending moment at midpoint of the beam of the respective frame, to 22.67 % at the field 

and 13.00 % at each point, where each strut supports the beam. The compression carried by 

the struts accounts to 48.15 % of the equivalent force to the applied load, and by the beam, 

to 95.64 %. All cables are stretched to the maximum carrying a tension of 96.12 % of the 

reference load equivalent force.  
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Table 2.1 Sections of primary frame and dual frame composed members. 

System 

Primary 

frame’s 

beam 

Dual 

frame’s 

beam 

Cables Strut 
Load: vertical, 

distributed 
Length 

 * * [D],(cm)
[D],(cm); 

[t],(mm) 
(kN/m) (m) 

System with 

stayed cables 
IPE600 IPE270 2.87 

D=21.30, 

t=3.20 
200 6 

System with 

stayed cables and 

single under strut 

IPB450 IPE220 5.00 
D=7.30, 

t=14.00 
100 12 

System with 

suspended cables 
IPB900 IPE360 5.08 D=5.08 50 24.38 

Sub-tensioned 

two-strut system 
IPE450 IPE240 2.00 

D=3.34, 

t=3.37 
100 6 

Sub-tensioned 

triple-strut system 
IPE600 IPE330 2.87 

D=48.30, 

t=5.00 
200 6 

Sub-tensioned 

two-strut cross 
system 

IPE600 IPE270 2.00 
D=3.34, 

t=3.37 
200 6 

*DIN 1025 St 37-2, IPB: EURONORM 53-62 (HE-B); IPE: EURONORM 19 

2.6 General Remarks 

Improvements of the moment resisting frames involve alternative configurations with the 

addition of secondary members to compose dual systems. By adding cables and struts 

within the primary frame the following benefits in the static behavior of the systems may 

be achieved: 

 The resistance primarily in tension and/or compression rather than bending reduces 

the requirement of self-weight, thus taking into account the construction process. 

The supporting frames are hinged rather than rigid or trussed and are laterally 

stabilized by diagonal bracing, while the site connections may generally be hinged. 

 Members are hinge-connected to ease the construction standardization, while the 

attempt for the structural design optimization is for all members to be stressed at Ton
ia 
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their maximum to succeed in economy of the material as well. 

 The design configurations are attractive in their simplicity and minimal proportions 

for the level of their free spans, whereas alterations of the basic forms of the systems 

may easily adjust to a broader range of requirements (e.g. by adding more struts or 

more stays to cover longer spans). 

 The level of internal redundancy that upgrades due to the added members is 

effectively used as a second line of defense in the cases of local loss of strength or 

stability, of having to resist loads other than the design loads and of bracing the 

structure against lateral action.  

 The assembly parts are clearly identified, i.e. rigid members, connections and 

tension hangers and diagonals, whereas particularly important are the details of the 

members’ connections. 

In general, the dual systems’ design enables the creative synergy of the two component 

systems to result in an overall improved behavior considering stability, (since lack of 

bending stiffness makes them vulnerable to fluttering), resolution of bending to axial 

forces and best possible distribution of forces by activating all members to maximize their 

potential use in the static response.  

On the other hand, dynamic loads may initiate vibrations and loads larger than the 

comparative static ones. The inquiry of the effectiveness of the dual nature of frame 

systems in resisting dynamic loads needs to be further investigated and developed. There 

are both a great concern and an interesting challenge in investigating new proposals, which 

may integrate inventive engineering technology and the process of construction into 

architectural design concerned with the logic of the structure.  
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Both systems utilize mechanisms to amplify displacements and accordingly lower force 

demands in the energy dissipation devices. The kinetic mechanism in turn amplifies the 

damper force through its shallow truss configuration and delivers it to the structural frame. 

Related experimental results indicate that displacement amplification factors in the range 

from two to five are quite practical. 

3.4 Kinetic Systems with Tension-Only Members 

Driven by certain advantages in architectural, aesthetic, constructability and economic 

context, the implementation of tension-only bracings with damping devices in frame 

structures may be realized through the development of suitable bracing-damper 

configurations, whereas all bracing members contribute during the entire load duration to 

the operation of the integrated damper. An optimization of the control system’s operation 

principles for earthquake structural resistance may thus be achieved. 

3.4.1 Tension-only bracings with friction dampers 

The concept of tension-only bracings with friction dampers was initially followed with the 

Pall-Marsh friction mechanism using slender cross braces ([3.9], [3.25]). In principle the 

rectangular damper deforms into a parallelogram, dissipating energy at the bolted joints 

through sliding friction. The kinematics of the system prevents the diagonals to buckle in 

compression. With the completion of a loading cycle, the hysteresis loops are identical for 

all bracing members (Figure 3.14). The hysteretic loop of the friction damper at the cross 

centre follows the rectangular shape (Figure 3.15). 
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3.5 General Remarks 

The design of frame structures with additional control members for earthquake resistance 

refers primarily to the requirement for the primary systems to exhibit essentially a linear 

elastic behavior under seismic actions ([3.5]). A reduction of the energy dissipation 

demand on primary structural systems was successfully aimed at by a number of 

researchers through integration of damping devices, such as passive viscoelastic, viscous, 

friction and metallic yielding damping devices ([3.4]). In principle the damping devices are 

added in moment resisting frames attached on steel bracings that may be of accountable 

self-weight and stiffness ([3.14]). 

The integration of energy dissipation systems to the structure results in a respective 

reduction of displacements and therefore, damage. Increases in force are also possible, 

when the energy dissipation system causes substantial increases in either the strength or 

stiffness of the frame. There exist ranges of the fundamental period of the controlled 

systems in which the damper is either ineffective or even detrimental. 

The bracing components consist of steel members stressed in compression, tension and 

bending. The seismic control resistance of the bracings in braced frames weakens by the 

fact that under cyclic loading and in every half-loading cycle, the compression diagonal 

buckles and it therefore cannot participate in the energy dissipation process. On the other 

hand, a braced frame that consists only of cables or tension rods is often not suitable for 

earthquake resistance, due to the fact that the members become slack under their tension 

yielding and compression buckling. 

While the energy dissipation system can achieve a considerable reduction in the systems’ 

displacement response, it is often desirable to achieve, to a less degree, a reduction in the 

total forces exerted on the structure. Comparable reductions in displacements and forces of 

the primary system can be achieved with the development of dual systems that do not 

increase the strength or stiffness of the structure to which they are attached ([3.9], [3.17], 

[3.22], [3.23], [3.26], [3.28]). Ton
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Another related difficulty pertains to the negative impact of conventional bracing on the 

architectural aspects of the design ([3.19], [3.20]). Open bays are often preferred. In order 

to address this issue, while achieving the necessary prevention of damage through energy 

dissipation, alternative design configurations may be realized through the investigation of 

bracing mechanisms and hysteretic dampers. 
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CHAPTER 4 ADAPTABLE DUAL CONTROL SYSTEMS 

The Adaptable Dual Control Systems, ADCS development focuses on the investigation of 

a new concept for structural passive seismic control that is based on a dual function of the 

system’s components and the activation of a kinetic control mechanism. The conceptual 

principles followed in an original design introduced in ([4.12]) are reevaluated. New 

configurations that enable several important developments, i.e. the realization of improved 

designs, the numerical verification and the extension of the potential use of ADCS, are 

investigated.  

The design and manufacture of the well known ADAS and TADAS mechanical metallic 

dampers support the development of the current investigation studies ([4.1], [4.2], [4.3], 

[4.5], [4.7], [4.21], [4.22], [4.23], [4.24]). In addition the SAP2000 software program is 

used for the analysis of the frame structures, which includes non-linear material properties, 

as well as real recorded earthquake ground motions for the evaluation of the structural 

performance ([4.4]). Finally the development of prestressed cables in structural 

engineering proposals encouraged their potential use as bracings in ADCS. Following the 

construction design of the control system’s members, numerical dynamic response 

analyses are performed for representative seismic input records of differing frequency 

content. The research development contributes to the field of seismic design of moment 

resisting frames using seismic passive control methods that are characterized by minimal 

architectural impact ([4.6], [4.8], [4.9], [4.10], [4.11], [4.15]). 

4.1 Systems Characteristics  

ADCS performance is based on a dual function resulting from the effective synergy of its 

component members, which practically involves two uncoupled systems: the primary 

frame that consists of the columns and the beam, which is responsible for the static vertical 

and horizontal forces and the bracing-damper mechanism that consists of the bracing and 

the hysteretic damper, which is responsible for the earthquake forces and the necessary 

energy dissipation ([4.13][4.14][4.16][4.17][4.18][4.19][4.20]). Ton
ia 
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ADCS design enables the primary frame to respond elastically, while inelastic action 

due to the seismic event is handled by the hysteretic damper, which acts as a second line of 

protection against earthquake damage. In principle, the control concept is based on the 

achievement of predefined performance levels during the dynamic systems’ response, 

through the development of deformation rather than stiffness. The ductility, i.e. ability of 

mild steel to dissipate energy through permanent and inelastic deformation, is used in 

ADCS design through integration of plate sections acting as hysteretic damper. A kinetic 

mechanism is activated in ADCS during the dynamic excitation by the horizontally 

induced motion at the base of the structure. In every half-loading cycle the respective 

displacement of the primary frame is followed by the connected bracing movement 

through rotations of the eccentric discs. The rotations result to respective axial 

displacements of the bracing at the connection joints, stretching the members. Since the 

bracing members form a kinetically closed circuit due to the configuration designs utilizing 

the discs, ideally the reactions on the primary frame are neutralized at the end of each cycle 

of movement and all members contribute to the energy dissipation mechanism. Therefore 

during strong ground motions, the relative displacements between the bracing and a 

member of the primary frame lead to yielding deformations of the damper. The kinetically 

closed circuit controls not only the axial displacements of the bracing, but also the relative 

displacements between the damper’s joints, so that the energy dissipation is maximized. 

4.2 ADCS Design Requirements 

The optimization of the bracing-damper mechanism in all ADCS-configurations involves 

tuning between the stiffness, the yield force and the inelastic deformations of the hysteretic 

damper, so that the energy flow in terms of hysteresis by the damper and the elastic strain 

energy in the bracing and the primary frame is effectively managed during the earthquake 

induced motion. 

In general, the triangulation of primary frames results in stiffness increase, which 

comprises an advantage in resisting wind loads and seismic loads of small amplitude. 

Nevertheless, such a stiffness increase is sometimes a disadvantage as regards strong Ton
ia 
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earthquakes due to the proportionally related increase in acceleration and base shear, which 

in some circumstances may lead to larger demands in strength upgrading and therefore 

larger sections for the members. Therefore the challenge of ADCS design is not only to 

define the effective relations between the stiffness of the members used and the load at 

which the damper yields but also to hold the response properties, i.e. the maximum base 

shear and the relative displacements of the controlled system in bounds with the respective 

responses of the primary system. The results of the investigation studies provide these 

characteristic properties in four configuration designs named after ADCS0, ADCS1, 

ADCS2 and ADCS3. 

4.3 ADCS0 Design 

4.3.1 General for ADCS0 design 

The conceptual idea of ADCS0 was originally presented in a recent past study, whereas it 

was investigated under the simulated action of the El-Centro earthquake record. The study 

indicated the potential for future work of new proposals ([4.12]). The benefits of the 

control method are realized through the investigation as regards the performance of the 

original configuration under some new improved realizations. The configuration followed 

by ADCS0 is reevaluated for the effectiveness of its design with a different more suitable 

plate’s section used, i.e. triangular steel plates instead of rectangular ones that were 

initially applied, and the controlled system’s dynamic response behavior is further 

evaluated under the action of two additional international seismic records. 

The areas of appropriate stiffness relations of the frame to the hysteretic damper and the 

braces when the energy dissipation of the entire system is controlled by the damper-

bracing mechanism were deduced in the original study and are followed as initial 

estimations for the new ADCS developments. 
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CHAPTER 5 ADCS MODELS AND MECHANICAL 
PROPERTIES 

The Finite-Element analysis of ADCS relies on a simplified single-degree-of-freedom, 

SDOF, 2D-model, ([5.1], [5.3]). The resulting mechanical behavior of the systems is based 

on the following assumptions: the primary structural- and bracing members are designed to 

remain in the elastic region, while non-linearity is only addressed to the hysteretic damper 

([5.10], [5.11], [5.12], [5.13], [5.14], [5.15], [5.16]). The software program SAP2000 was 

used for the evaluation of the dynamic behavior of the controlled SDOF system ([5.5]). 

The behavior examined is derived from the horizontal lateral displacement, being the 

single free movement of the controlled frame, and the response is compared with the 

primary frame’s dynamic behavior. 

5.1 Primary System 

A typical geometry was assigned for the ideal 2D-model of a steel moment resisting frame 

of 6.0 m long beam and 4.5 m high column members. IPBl550 section was selected for the 

beam and IPBv500 for the columns ( 235S , E  = 2.1x104 kN/cm2,   = 78.5 kΝ/m3). The 

dimensioning of the members fulfilled Eurocode 3 design requirements, for a static vertical 

load of 1200 kN, a horizontal wind load of 15 kN and 25 % of the vertical load as static 

equivalent seismic load. The primary frame’s fundamental period results to T  = 0.34 s and 

its stiffness to k  = 41717.37 kN/m. 

5.2 ADCS Model  

The basic principles in modeling considerations followed in ADCS0 are adopted at first 

step in order to compare the resulting behavior of the new alternatives with the reference 

one ([5.9]). Though, for the purposes of the current study, i.e. preliminary investigation of 

the dynamic performance of all ADCS, the model of hysteresis of the damper is simulated 

based on the wen-plasticity model and the nature of tension-only bracings is captured. In 

ADCS1 design, tension rods are suggested, whereas for ADCS2 and ADCS3 cable Ton
ia 
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members may be used as bracings ([5.12], [5.14], [5.16]). The bracing elements in all 

ADCS design configurations were modeled as frame objects with zero compression limits. 

In addition, for avoiding any compression force in the cables, they are assigned a suitable 

pretension stress through a target force. The resulting maximum forces in the bracing under 

the seismic loadings of the analysis, considering the prestress load, enable the members’ 

deformations to be kept within the elastic range. For the range of the developed stresses 

and strains in the bracing members the material’s mechanical behavior is assumed to be 

linear. 

The implementation of cable members in ADCS1 was avoided due to high prestress 

values that would be required for the members. In ADCS2 and ADCS3, the magnitude of 

the prestress target force is slightly higher than the maximum resulting force in the bracing 

when subjected under the selected seismic excitations. Each bracing of ADCS2 and 

ADCS3 was assigned a suitable prestress, identified through a trial and error procedure, at 

the level of 25 and 10 % of the maximum allowable stress of allowablef  = 140 kN/cm2, 

respectively. The members are kept straight and taut when they are deformed.  

The rotating disc is modeled as a composition of three short-length frame objects, each 

assigned with suitably large stiffness values to represent the real property of a mechanical 

disc’s shaft. 

The hysteretic damper is modeled as a two joints non-linear link element, NLINK. The 

ideal model assumes that the stiffness coefficient of the hysteresis of the damper 

corresponds to the initial elastic values of the yielding element. The NLINK follows the 

wen-plasticity model of hysteresis. 

5.3 Seismic Input Records 

The primary frame and the controlled systems are evaluated in their dynamic behavior 

under the action of three selected international earthquakes (Table 5.1). The earthquake 

records represent “moderately long, extremely irregular motions”, while the predominant 

periods of the selected ground motions range in their respective displacement response Ton
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5.4 ADCS Mechanical Properties 

5.4.1 General 

Buildings incorporating hysteretic damping devices may be designed for an optimum 

strength and stiffness ratio of the hysteretic damper over the frame’s respective properties, 

to provide significant measurements of seismic input energy dissipation ([5.2], [5.4], [5.7], 

[5.8], [5.20]). ADCS may result to significant energy dissipation for the selected 

earthquake cases of the analysis, provided that the geometrical and mechanical parameters 

of the hysteretic element are predefined accordingly. The hysteretic element selected in 

ADCS has been modeled and tested both analytically and experimentally by other 

researchers in the last years ([5.6], [5.18], [5.18]). 

The hysteretic damper’s force-deformation relationship that governs its behavior is 

considered through an independent spring hinge that connects the primary members, i.e. 

beam or column, with the added secondary members, i.e. slender tension elements. The 

internal deformation in the damper is the plastic deformation that causes the damper to 

dissipate energy through heating. 

5.4.2 Mechanical properties of hysteretic damper 

The seismic response of the controlled systems for the desirable level of seismic protection 

depends primarily on two main properties: 

a. The effective values of the relative stiffness of the primary frame, the bracing and the 

hysteretic device at the target displacement that leads to the selection of the design 

elastic stiffness of the damper, dk , given by the following Equation: 

 
3

3

6h

nEbt
kd 

 (5.1) 

where h  is the steel plate’s height, b  is the width (fixed to the beam or column), t  is 

the -thickness and n  is the number of steel plates ( 235S , E  = 2.1x104 kN/cm2,   = Ton
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78.5 kΝ/m3). 

b. The load, at which the damper yields and dissipates energy through its inelastic 

yielding deformation, yP , given by the following Equation: 

 h

btnf
P y

y 6

2


 (5.2) 

where yf  is the yield stress ( 235S , yf  = 24 kN/cm2). 

Hysteretic dampers may exhibit a bilinear or trilinear hysteresis, an elasto-plastic or 

rigid-plastic behavior. The analytical modeling of the damper’s stiffness properties 

followed in the present study is based on the linear equivalent assumption (tangent 

stiffness model). The damper’s force-deformation relationship, for the respective degree of 

freedom that corresponds to shear, is assumed to follow the hysteretic model defined as 

“wen-plasticity property type of uniaxial deformation” ([5.5]). The results are calculated 

based on this characteristic hysteresis model, which is mathematically described as follows: 

 zyieldratiodkratiof  )1(  (5.3) 

where f  is the force, d  is the induced displacement, k  is the elastic spring constant, i.e. 

initial stiffness, “yield” is the yield force, “ratio” is the specified ratio of the post-yield 

stiffness to the elastic stiffness, i.e. secondary stiffness ratio, and z  is an internal hysteretic 

variable that evolves according to the following differential Equation: 

 

 
0

1
exp






 









zdif
otherwised

zd

yield

k
z

 (5.4) 

where “exp” is an exponent greater than or equal to unity (practically about 20) and z  is a 

path dependency parameter. SAP2000 provides the analytical model described in Equation 

(5.3), which represents the hysteretic behavior of the device. 
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During the dynamic motion, inertia forces are activated by all lumped masses, including 

the mass distributed on the rigid plates’ section. The inertia forces contributed by the 

damper are expressed through the resistance to the angular acceleration. The related 

resistance is given as the integral of the “second moment” about an axis of all the elements 

of mass md , which compose the body of the steel plate used for added damping, MMI, as 

follows: 

 RIdVrMMI  2  (5.5) 

where MMI is the mass moment of inertia (RI in SAP2000 software),   is the density of 

the material used, V  is the volume of the section shape and r  is the perpendicular distance 

from the axis to the arbitrary element md . 

The damper provides energy dissipation through its hysteretic behavior. A design 

parameter, the Damper Ratio, DR , that describes the response of ADCS as a function of 

the damper’s stiffness and yield force, may be introduced as follows: 

 y

d

P
k

DR 

 (5.6) 

By substituting Equations (5.1) and (5.2) in Equation (5.6), DR  may be written in the 

following form: 

 
2hf

EtDR
y



 (5.7) 

The controlled systems may be tuned to perform in such a way that a specific 

earthquake hazard protection level is reached. The performance level is possible to be 

predefined by the designer in quantifiable energy measures of deformation. Thus, ADCS 

may be designed for a target performance level. In the present study the performance index 

for structural safety is defined as Effective Energy Deformation Index, EEDI, which 

physically represents the amount (e.g. area) of input seismic energy dissipated by the 

hysteretic device over the entire seismic time duration. Ton
ia 

Sop
ho

cle
ou

s-L
em

on
ari



CHAPTER 5 – ADCS MODELS AND MECHANICAL PROPERTIES 

81 

 

5.4.3 ADCS mechanical properties investigation 

Mechanical and geometrical properties for the investigation of ADCS vary in a wide range 

of values (Table 5.2). The respective values of the Damper Ratio vary between a minimum 

value of DR  = 64.29 1/m and a maximum value of DR  = 784.25 1/m for ADCS1, 

between a minimum value of DR  = 84.22 1/m and a maximum value of DR  = 481.3 1/m 

for ADCS2, whereas DR  for the proposed ADCS3 varies between a minimum value of 

DR  = 44 1/m and a maximum value of DR  = 700 1/m. These ranges of DR values are 

considered adequate to clearly distinguish the trend and guide the selection of the 

respective characteristic value for the damper in each configuration design that leads to an 

optimum EEDI. 

Table 5.2 ADCS’s mechanical properties investigation values. 

ADCS 
Stiffness 

dk  [kN/m] 
Yield force 

yP  [kN] 

Number 
of plates 

n  

Thickness 
t  [cm] 

Height 
h  [cm] 

Width 
b  [cm] 

ADCS1 423.18 – 15748 4.94 – 55.13 1 – 11 0.9 – 3.6 5 – 40 4 – 20 
ADCS2 150 – 5250 1.75 – 17.5 2 – 6 1.0 – 2.4 20 – 40 5 
ADCS3 112 – 24192 2.60 – 42.66 6 – 10 0.8 – 2.0 15 – 40 4 – 6 
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CHAPTER 6 DYNAMIC RESPONSE 

The results from the numerical simulations and parametric studies presented in this chapter 

demonstrate the effects of the bracing-damper mechanisms within the dual systems for 

passive seismic control. In parallel to the investigation of the energy dissipated by the 

hysteretic damper over the seismic input energy, the related base shear and relative 

displacements of the controlled systems for different stiffness- and yield force values of the 

damper are further investigated ([6.6], [6.8], [6.10], [6.11]). 

A number of numerical simulations have been conducted considering different 

combinations of assigned values of the parameters that govern the response of the ADCS 

proposals. ADCS1 was analytically investigated for 366, ADCS2 for 397 and ADCS3 for 

342 cases, in order to identify the dynamic behavior of the three different configuration 

designs. The results from the simulations are presented to identify the energy dissipation 

over the seismic input energy through a defined ratio, as well as the maximum values of 

base shear and the relative displacements of the controlled systems ([6.5], [6.7], [6.9]). 

6.1 ADCS0 Dynamic Response  

6.1.1 General for ADCS0 design 

The potentials of using the conceptual idea of the adaptable mechanisms in frame 

structures were indicated and the stiffness properties of the composed system’s members 

are followed as initial estimations in the new ADCS designs ([6.4]). ADCS0 reference 

configuration is reevaluated following the new adjustments, which concern new sections of 

damper and additional seismic records ([6.6], [6.8]). The intention is to reevaluate and 

compare the dynamic responses with the ones of the alternative control configurations.  
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6.1.2 Energy dissipation results for ADCS0 

ADCS0 inherits the suggested values of damper’s stiffness of dk  = 3910 kN/m and yield 

force of yP  = 14.73 kN. These are derived for the present analysis by using ten triangular-

shaped steel plates, instead of rectangular ones that have been originally considered, with t  

= 1.2 cm, h  = 20 cm and b  = 5 cm (damper: 1012205). 

ADCS0 is implemented in the respective primary system and analyzed for its energy 

dissipation performance under the three international seismic loading cases (Figure 6.1). 

For the selected design value of a Damper Ratio of DR  = 265.45 1/m, the respective 

energy dissipation accounts to 92.43 % in seismic case A and 90.61 % in case C. In 

seismic case B with highest peak ground acceleration the controlled system’s effective 

energy deformation index, EEDI, remains comparatively poor with a value of 58.86 %. 
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6.1.3 Base shear results for ADCS0 

The maximum base shear of ADCS0 for a DR  value of 265.45 1/m (damper: 1012205) 

compared to the primary frame’s response, yields to a respective decrease of 23 % in 

seismic case A and 2 % in case C. In seismic case B the maximum base shear increases by 

almost 24 % (Table 6.1). 

Table 6.1 Primary frame’s and ADCS0 (damper: 1012205) maximum base shear 

BS and effective energy dissipation index EEDI. 

Seismic case Max. base shear [kN] 
Effective energy  

dissipation index [%] 

 Primary frame ADCS1 
A 2102 1619 92.43 
B 5570 6880 58.86 
C 2304 2253 90.61 

 

The time history response for the first 25 s of the primary frame’s base shear to the 

controlled system’s base shear is shown in (Figure 6.2). 
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Table 6.2 Primary frame’s and ADCS0 (damper: 1012205) maximum relative 

displacements Ux. 

Seismic case Max. relative displacement [cm] 

 Primary frame ADCS0
A 2.561 3.625 
B 6.779 15.490 
C 2.805 4.959 

 

The system’s relative displacements response, when the optimum hysteretic device 

(damper: 1012205) is used in ADCS0 for the seismic cases A, B and C, is illustrated in 

(Figure 6.3).  

It may be concluded that, for the previously suggested ADCS0 design, the good results 

in energy dissipation performance achieved take place at the cost of respective increased 

relative displacements. 
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performance is less satisfactory for the seismic case B, which is the loading case 

characterized by the highest peak ground acceleration. 

The selected geometry of the damper’s steel plates accounts to n  = 2, t  = 2.8 cm, h  = 

25 cm and b  = 10 cm (damper: 2282510). The respective optimum DR  value accounts to 

392 1/m, which results from the selected parameters for the damper stiffness, i.e. dk  = 

9835 kN/m, and the characteristic yield force of yP  = 25.09 kN. The Effective Energy 

Deformation Index, EEDI, reaches 82.40 % in seismic case A, 80.90 % in case B and 

87.15 % in case C. 

In the parametric study the damper’s plates’ height h , proves to influence stronger the 

system’s behavior than the other geometric parameters, i.e. b , t  and n . The form of the 

respective hysteresis curves depends primarily on the level of the plastic hysteretic 

damping. The selected hysteretic damper develops in seismic case A primarily hysteresis 

curves of the elasto-plastic type model, whereas in the cases B and C, of the rigid-plastic 

type model. Especially in the latter cases the damper determines the dynamic behavior of 

the system. 
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2282510) by 35 % in seismic case A and by 26 % in case B, whereas in case C it increases 

slightly by almost 0.05 % (Table 6.3). The average decrease of the maximum base shear 

accounts to 20 %, whereas the energy dissipation exceeds in all cases a benchmark of 80 % 

of the input seismic energy. The time history for the first 30 s of the primary frame’s base 

shear (light line) to the ADCS1 base shear (bright line) under the three loading cases for 

the DR  value of 392 1/m (damper: 2282510) is shown in (Figure 6.11). 

Table 6.3 Primary frame’s and ADCS1 (damper: 2282510) maximum base shear 

BS and effective energy dissipation index EEDI. 

Seismic case Max. base shear [kN] 
Effective energy  

dissipation index [%] 

 Primary frame ADCS1 
A 2102 1374 82.40 
B 5570 4139 80.90 
C 2304 2413 87.15 
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maximum value of the primary frame (Table 6.4). The relative displacements of the 

controlled system reduce thus on average by 8 %. 

Table 6.4 Primary frame’s and ADCS1 (damper: 2282510) maximum relative 

displacements Ux. 

Seismic Case Max. relative displacement [cm] 

 Primary frame ADCS1 
A 2.561 1.906 
B 6.779 5.628 
C 2.805 3.330 

 

The time history variation for the first 30 s of the primary frame’s relative 

displacements (light line) to the controlled system’s relative displacements (bright line) 

under the three loading cases for the DR  value of 392 1/m (damper: 2282510) is shown in 

(Figure 6.15). 
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loadings of the analysis were kept in all cases within the elastic range of deformations 

(Table 6.5). The implementation of cable members in ADCS1 is avoided due to high 

prestress values that would be required for the members. Tension rods are considered 

instead. 

Table 6.5 ADCS1 bracing members’ axial forces (damper: 2282510). 

Seismic case Max. tension force [kN] 

 
Horizontal 
member 

Side 
members 

A 20.39 75.20 
B 44.75 164.95 
C 36.17 133.36 

 

6.3 ADCS2 Dynamic Response 

6.3.1 Natural period identification for ADCS2 

Compared to the primary frame’s fundamental period of T  = 0.34 s the controlled 

system’s period decreases to the range of T  = 0.27 s. This may provide first indications in 

respect to possible stiffness-, base shear- and related input energy variations through the 

integration of ADCS2 within the primary frame. For verification purposes the relation of 

the controlled system’s period in respect to all damper’s characteristic parameters, dk , yP  

and DR , is shown in (Figure 6.17). 
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Figure 6.28 Damper’s shear deformation Dd and ADCS2 relative displacement Ux 

time history (damper: 616355): (a) seismic case A; (b) seismic case B; (c) 

seismic case C. 

6.3.6 Bracings axial forces identification for ADCS2 

In the selected controlled system the cables are modeled as frame objects with zero 

compression limits. To avoid any related modification of the resulting members’ axial 

forces, these are assigned with a suitable pretension stress through a target force. For the 

range of the developed stresses and strains in the bracing members the material’s 

mechanical behavior is assumed to be linear. 

The static vertical and horizontal loading of the frame causes tension-only to the bracing 

although under seismic loading compression has also been developed in the members. The 

magnitude of the prestress target force is slightly higher than the maximum resulting force 

in the bracing under the selected seismic excitations. In seismic case B a maximum 

compression force of 107.35 kN was developed in the side diagonal of ADCS2 portal 

bracing. To prevent this a prestress of 25 % of the maximum allowable stress of allowablef  = 

140 kN/cm2 was applied at the end of a trial and error procedure. The prestress force leads 

to a linear elastic resistance by the bracings in all seismic loading cases (Table 6.8). 

Table 6.8 ADCS2 bracing members’ axial forces (damper: 616355). 

Seismic case Max. tension force [kN] 

 
Horizontal 

member 
Side 

members
Chevron 
 members 

A 46.23 190.37 103.22 
B 56.49 244.94 121.05 
C 42.64 173.43 98.46 
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5376 kN/m and yields at yP  = 11.52 kN. EEDI reaches 79.93 % in seismic case A, 83.19 % 

in case B and 74.16 % in case C (Figure 6.31). 

The parametric study for ADCS3 dynamic responses shows high variations in EEDI, 

when different heights of the plates are used, whereas when the width and number of plates 

change, the variations are minimal and almost with no practical meaning. The form of the 

corresponding hysteresis curves depends primarily on the grade of the plastic hysteretic 

damping. The selected hysteretic damper develops in all three seismic cases exclusively 

hysteresis curves of the rigid-plastic type model. In these cases the damper determines the 

dynamic behavior of the system. 
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case B, whereas in case C it increases slightly by 1 % (Table 6.9). On average it decreases 

by 14.33 %. In all three cases the energy dissipation effected by ADCS exceeds 74 % of 

the input seismic energy. 

Table 6.9 Primary frame’s and ADCS3 (damper: 612155) maximum base shear BS 

and effective energy dissipation index EEDI. 

Seismic case Max. base shear [kN] 
Effective energy 

dissipation index [%] 

 Primary frame ADCS3 
A 2102 1764 79.93 
B 5570 4031 83.19 
C 2304 2321 74.16 

 

The time history for the first 30 s of the primary frame’s base shear (light line) to the 

controlled system’s base shear (bright line) under the three loading cases for the DR  value 

of 466.67 1/m (damper: 612155) is shown in (Figure 6.35). 
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Table 6.10 Primary frame’s and ADCS3 (damper: 612155) maximum relative 

displacements Ux. 

Seismic Case Max. relative displacement [cm] 

 Primary frame ADCS3
A 2.561 2.372 
B 6.779 5.409 
C 2.805 3.129 

 

The time history for the first 30 s of the primary frame’s relative displacements (light 

line) to the controlled system’s relative displacements (bright line) under the three loading 

cases for the DR  value of 466.67 1/m (damper: 612155) is shown in (Figure 6.39). 
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controlled system. For this reason, following a trial and error procedure, a prestress of 10 % 

of the maximum allowable stress of the cables’ section, of allowablef  = 140 kN/cm2, was 

applied to the bracing members. In the case of the cables’ diameter of dc = 20 mm their 

respective pretension was set equal to the target force of yP  = 43.98 kN. The resulting 

maximum axial tension forces of the members under the seismic loading cases of the 

analysis were kept minimum and within the elastic range of deformations (Table 6.11). 

Table 6.11 ADCS3 bracing members’ axial forces (damper: 612155). 

Seismic case Max. tension force [kN] 

 
Horizontal 

member 
Diagonal 
member 

Vertical 
member

A 46.05 72.32 50.46 
B 48.56 104.69 59.04 
C 47.67 85.84 55.93 

 

6.5 ADCS selected effective stiffness ratios 

ADCS optimum effective stiffness ratios considered in the analyses refer to the following: 

k  denotes the ratio of the damper’s stiffness, dk , over the stiffness of the primary frame 

k . k   denotes the ratio of the equivalent effective stiffness of the bracing, as it results 

from the weakest connected bracing-link, bk , over the damper’s stiffness dk .They result 

from the weakest bracing in the chain-connected members (Table 6.12). 

Table 6.12 Controlled systems optimum effective stiffness ratios. 

System 
yP

 
[kN] 

DR
 

[
m

1
] k

k
k d

 d

b

k

k
k   

ADCS0 14.73 265.45 0.1062 1.65 
ADCS1 25.09 392.00 0.2360 0.42 
ADCS2 8.78 114.30 0.0240 4.10 
ADCS3 11.52 466.67 0.1290 0.77 
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CHAPTER 7 DYNAMIC RESPONSE VERIFICATION 

7.1 Dynamic Response Verification 

ADCS designs are verified based on a wider range of seismic input records from the 

Mediterranean earthquake prone area. The optimum damper that was selected based on the 

parametric studies conducted is employed for each one of the three systems. The dynamic 

response verification studies aim at providing both validation and reliability of ADCS 

potential for ensuring earthquake safety of the primary system ([7.1], [7.2], [7.4]). 

7.1.1 Seismic records of the Greek-Mediterranean area 

The dynamic performance of the three ADCS systems was examined under ten selected 

seismic events recorded in the Greek-Mediterranean region (Table 7.1). Both the peak 

ground acceleration and the frequency content are different for each of the selected records, 

while the time duration varied in the range between 13.91 and 46.01 s (Figure 7.1). 

Table 7.1 Seismic records of the Greek Mediterranean area. 

Seismic case Record Station PGA [g] Duration [s] 

1 Aigio 95 Aigio, 00 0.50 30.04 

2 Athens 99 Sepolia, 00 0.33 46.01 

3 Ionian 83 Argostoli, 90o 0.24 32.33 

4 Kalamata 86 Kalamata, 00 0.22 59.63 

5 Heraklio 84 Heraklio, 900 0.21 16.67 

6 Aigio 90 Aigio, 900 0.20 16.13 

7 Etolia 88 Valsamata, 900 0.18 25.43 

8 Killini 88 Zakinthos, 900 0.15 27.83 

9 Preveza 81 Preveza, 00 0.14 18.35 

10 Gulf of Corinth Nafpaktos, 900 0.10 13.91 
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7.2 ADCS1 Dynamic Response Verification 

7.2.1 Energy dissipation verification for ADCS1 

The capability of ADCS1 design configuration to enhance energy dissipation in the system 

under the action of the ten selected seismic records was verified for the selected damper’s 

steel plates of n  = 2, t  = 2.8 cm, h  = 25 cm and b  = 10 cm (damper: 2282510, DR  = 392 

1/m, dk  = 9835 kN/m, yP  = 25.09 kN). EEDI reaches 73.98 % in seismic case 1, 88.36 % 

in case 2, 27.90 % in case 3, 79.00 % in case 4, 28.82 % in case 5, 56.82 % in case 6, 

70.20 % in case 7, 52.45 % in case 8, 67.23 % in case 9, whereas practically no energy 

dissipation is succeeded in case 10 (Figure 7.2). 

ADCS1 resistance to the different seismic events in terms of energy dissipation depends 

strongly on the dynamic properties of each seismic excitation ([7.3]). The configuration 

design is tuned to mitigate the relative sensitivity to each ground motion and in 30 % of the 

cases the system performs unsatisfactorily, i.e. in seismic cases 2, 4 and 10, whereas in 20 % 

of the cases the system’s performance is on average, i.e. in seismic cases 6 and 8 and in 

half of the cases the system performs successfully with an energy dissipation of over 67.00 % 

of the input energy. On average, EEDI accounts for all ten earthquake excitations to 

54.48 %. 
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Table 7.2 Primary frame’s and ADCS1 (damper: 2282510) maximum base shear 

BS. 

Seismic Case Max. base shear [kN] 

 
Primary 
frame 

ADCS1 

1 1577.00 1355.27 
2 2048.00 1798.69 
3 500.30 471.28 
4 1278.00 1218.54 
5 1738.00 730.50 
6 1361.00 1172.43 
7 882.90 1407.06 
8 2516.00 656.47 
9 2445.00 1646.02 

10 519.10 500.47 

 

7.2.3 Relative displacements verification for ADCS1 

The absolute values of the relative displacements of ADCS1 under the ten seismic records 

of the Mediterranean are compared to the respective responses of the primary frame. The 

results verify that in 60 % of the cases the relative displacements responses of the 

controlled system are not increased, whereas a slight increase is obtained in 40 % of the 

cases as follows: 0.27 % in seismic case 3, 0.77 % in case 4, 0.84 % in case 7 and 0.97 % 

in case 10. The respective responses decrease accounts to 2.50 % in case 1, 0.56 % in case 

2, 52.34 % in case 5, 2.47 % in case 6, 70.00 % in case 8 and 23.41 % in case 9 (Table 7.3). 

On average ADCS1 causes 14.84 % decrease of the system’s maximum relative 

displacements. 
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Table 7.3 Primary frame’s and ADCS1 (damper: 2282510) maximum relative 

displacements Ux. 

Seismic Case Max. relative displacement [cm]

 
Primary 
frame 

ADCS1 

1 1.918 1.87 
2 2.494 2.48 
3 0.633 0.65 
4 1.542 1.66 
5 2.119 1.01 
6 1.661 1.62 
7 1.067 1.96 
8 3.066 0.91 
9 2.977 2.28 
10 0.629 0.69 

 

7.3 ADCS2 Dynamic Response Verification 

7.3.1 Energy dissipation verification for ADCS2 

ADCS2 (damper: 616355, DR  = 114.3 1/m, dk  = 1003.10 kN/m, yP  = 8.78 kN) for the 

selected damper’s geometry of n  = 6, t  = 1.6 cm, h  = 35 cm and b  = 5 cm, was verified 

under the action of the ten selected seismic records of the Mediterranean region ([7.6], 

[7.7]). The following EEDI values are obtained (Figure 7.3): 92.36 % in seismic case 1, 

88.96 % in case 2, 92.04 % in case 3, 95.39 % in case 4, 81.57 % in case 5, 76.41 % in 

case 6, 91.52 % in case 7, 79.50 % in case 8, 70.03 % in case 9 and 86.82 % in case 10. In 

all the events ADCS2 dissipates on average 85.46 % of the input energy. 
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Table 7.4 Primary frame’s and ADCS2 (damper: 616355) maximum base shear BS. 

Seismic Case Max. base shear [kN]

 
Primary 
Frame 

ADCS2 

1 1577.00 1395.31
2 2048.00 1894.39 
3 500.30 645.57 
4 1278.00 1192.3 
5 1738.00 1261.95 
6 1361.00 1206.59 
7 882.90 1042.11 
8 2516.00 1389.42 
9 2445.00 2094.37 
10 519.10 521.68 

 

7.3.3 Relative displacements verification for ADCS2 

Favorite results are obtained in 70 % of the cases. In seismic cases 2, 3 and 6 an increase of 

the relative displacements is registered, by 0.38 %, 0.36 % and 0.25 % respectively. The 

respective decrease accounts to 29.60 % in case 1, 31.25 % in case 4, 31.00 % in case 5, 

0.90 % in case 7, 38.35 % in case 8, 0.23 % in case 9 and 62.90 % in case 10 (Table 7.5). 

On average ADCS2 causes 19.32 % decrease of the system’s maximum relative 

displacements. 
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Table 7.5 Primary frame’s and ADCS2 (damper: 616355) maximum relative 

displacements Ux. 

Seismic Case Max. relative displacement [cm]

 
Primary 
frame 

ADCS2 

1 1.918 1.35 
2 2.494 2.59 
3 0.633 0.86 
4 1.542 1.06 
5 2.119 1.46 
6 1.661 1.62 
7 1.067 0.97 
8 3.066 1.89 
9 2.977 2.91 
10 0.629 0.45 

 

7.4 ADCS3 Dynamic Response Verification 

7.4.1 Energy dissipation verification for ADCS3 

ADCS3 system with an optimum damper of n  = 6, t  = 1.2 cm, h  = 15 cm and b  = 5 cm 

(damper: 612155,
 
DR  = 466.67 1/m, dk  = 5376 kN/m, yP  = 11.52 kN) is validated for its 

energy dissipation under the ten seismic records of reference [(7.5)]. EEDI accounts to 

86.00 % in seismic case 1, 60.82 % in case 2, 86.35 % in case 3, 76.57 % in case 4, 86.45 % 

in case 5, 74.61 % in case 6, 89.57 % in case 7, 84.28 % in case 8, 62.80 % in case 9 and 

53.32 % in case 10. On average ADCS3 reaches an EEDI of 76.08 % (Figure 7.4). 
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Table 7.6 Primary frame’s and ADCS3 (damper: 612155) maximum base shear BS. 

Seismic case Max. base shear [kN]

 
Primary 
frame 

ADCS3 

1 1577.00 1263.62
2 2048.00 1801.96 
3 500.30 547.84 
4 1278.00 301.38 
5 1738.00 817.43 
6 1361.00 1248.33 
7 882.90 1245.33 
8 2516.00 1295.47 
9 2445.00 1809.32 
10 519.10 519.39 

 

7.4.3 Relative displacements verification for ADCS3 

The maximum magnitudes for the relative displacements in absolute values for ADCS3 

and the primary frame are included in (Table 7.7). In general the relative displacements are 

mitigated in respect to their peak values. Except for seismic cases 3 and 7, where an 

increase of 16.90 and 55.60 % is respectively valid, in all remaining cases the controlled 

system performed well. No respective variation was observed in case 6. Respective 

responses reductions account to 11.36 % in case 1, 2.96 % in case 2, 74.00 % in case 4, 

49.00 % in case 5, 43.90 % in case 8, 19.00 % in case 9 and 0.97 % in case 10. On average 

ADCS3 causes 12.87 % decrease of the system’s maximum relative displacements. 
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Table 7.7 Primary frame’s and ADCS3 (damper: 612155) maximum relative 

displacements Ux. 

Seismic case Max. relative displacement [cm]

 
Primary 
frame 

ADCS3 

1 1.918 1.70 
2 2.494 2.42 
3 0.633 0.74 
4 1.542 0.40 
5 2.119 1.08 
6 1.661 1.66 
7 1.067 1.66 
8 3.066 1.72 
9 2.977 2.41 
10 0.629 0.69 
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CHAPTER 8 CONCLUSIONS 

8.1 Research Contributions 

This research work focuses on the investigation of bracing-damper mechanisms, defined as 

Adaptable Dual Control Systems, ADCS, for earthquakes of moderately long, extremely 

irregular motions. ADCS provide alternative choices for the designer for passive structural 

control, as regards frame structures with control members for an effective energy 

dissipation behavior. A key difference from the research on the performance of 

conventional energy dissipation systems is that rods or cables are used as bracings that 

activate a respective kinetic mechanism by utilizing mechanical discs as connection 

devices of the tension-only members. The investigation in respect to the configuration and 

construction design of the control members has led to the present proposal for three new 

configuration designs and a modification of an already proposed one.  

As regards previous limited studies on bracing mechanisms with hysteretic dampers, 

this research work provides additional information in respect to the effectiveness of the 

configuration designs of ADCS, when the selected input records differ in their frequency 

content, peak ground acceleration and time duration. The results indicate that significant 

portions of input energy may be dissipated, when optimum geometrical and mechanical 

parameters are assigned to the secondary control members, enabling the primary frame to 

resist elastically. At the same time the base shear and relative displacement responses of 

the controlled systems are kept under controllable limits. 

The design configurations of the bracing-damper mechanisms investigated in the 

present study lead to a continuous most uniform counteraction of all structural members to 

resist the earthquake loading, while they practically avoid an interaction on the stiffness of 

the primary frame. Therefore the application of the control mechanism in ADCS1, ADCS2 

and ADCS3 becomes an attractive alternative, not only for the design of earthquake 

resistant structures, but also for the seismic retrofit of existing ones. The proposals are Ton
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attractive within the broader architectural, aesthetic, constructability and economic context 

offering four alternative forms to serve differing preferences in applications.  

8.2 Research Results  

The code dominated capacity design for earthquake resistant systems, relies upon the 

inherent ductility of buildings to prevent catastrophic failure, while accepting a certain 

level of structural and nonstructural damage. Within this philosophy approach, the 

structure is designed to resist the earthquake equivalent static loads and yields reasonably 

successful results. However, by considering the actual dynamic nature of the earthquake 

phenomenon, new and innovative concepts of structural protection have been advanced. 

The method of integrating hysteretic dampers within the structure, with the primary 

purpose to provide a source of energy dissipation and therefore reduce seismic damage, 

comprises an increasingly promising method for passive structural control. For the SDOF 

frames subjected to seismic loading, the hysteretic energy dissipation demand for the 

primary systems reduces with the increase of damping due to the added hysteretic devices, 

although the input energy also changes since it depends on the deformation. In cases with 

an input energy increase, associated consequences in terms of accumulated dependent 

damages, need to be avoided.  

As far as the application of bracings is concerned, stiff members are used that interact 

with the stiffness of the primary frame resulting to possibly increased strength demands for 

the controlled system. This disadvantage could be overcome, if flexible members are used 

instead. Flexible bracings though are vulnerable to compression buckling and tension 

yielding, when the design displacements enter the inelastic region of the members’ 

response. Therefore the application of cable-bracings for earthquake is not self evident. 

In order to effectively resist seismic forces using tension-only members the design and 

development of a suitable kinetic mechanism is required. Energy dissipation and an 

effective performance of the bracing-damper mechanism may be achieved with a closed 

circuit in its configuration and through a dual action in its response. The displacement Ton
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dependent damper, responsible for the energy dissipation, exhibits hysteresis of the wen-

plasticity model, while the response when optimum values for the design parameters are 

assigned, may be independent of frequency of excitation.  

In the frame of the current Ph.D. thesis the development of Adaptable Dual Control 

Systems, ADCS, based on three new configuration alternatives and a minor modification 

of an already proposed one, concentrates on the investigation of the dynamic response 

behavior of the controlled systems under three selected international seismic input records. 

The systems’ behavior is further verified under ten selected Mediterranean earthquakes. 

ADCS design proposals for frame systems, consist of added slender bracings that form a 

closed circuit and a hysteretic damper of steel plates. ADCS potential for effective energy 

deformation is investigated, while base shear and relative displacement responses are 

compared with the respective values of the primary frame.  

ADCS innovative mechanisms differ in their configuration design: ADCS0 consists of a 

cross and a horizontal bracing and hysteretic damper plates placed at the midpoint of the 

primary beam; ADCS1 forms a portal frame assembly of tension rods and hysteretic 

damper plates at the midpoint, ADCS2 is formed with a chevron bracing added to the 

portal framing and the damper plates added at midpoint of the primary beam and ADCS3 

follows a triangular shape in its bracing, while the damper is placed at the main joint 

region to utilize the energy dissipation component from the horizontal- and diagonal tensile 

members. ADCS share common features in terms of the enhancement of the elastic 

response of the primary structure and the dissipation of the earthquake induced energy 

through plastic hysteresis of the dampers. Research studies of ADCS follow simulation and 

modeling methods with the software SAP2000 and are based on a simplified SDOF model. 

The optimization procedure in the parametric studies conducted, yielded the dominant 

values of the damper’s mechanical and geometrical properties governing each system for a 

related desirable performance in seismic control. In this respect the quantifiable criterion of 

the Effective Energy Deformation Index, EEDI and the Damper Ratio, DR, seem to govern 

the control efficiency of ADCS. Ton
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From the numerical analyses of the controlled systems conducted the following 

conclusions can be drawn: 

 The integration of the bracing damper mechanism in frames enables the elastic 

response of the primary system. 

 The control mechanism in all configuration alternatives ensures that all members 

contribute to the energy dissipation during a complete cycle of seismic excitation. 

 Under static loading, the control mechanism does not practically influence the 

response of the primary system, since the overall stiffness increases practically 

insignificantly with the addition of the bracings and the damper within. Therefore 

the control mechanism may also be suitable for retrofitting purposes of existing 

structures. 

 The use of cables in ADCS for the activation of the control mechanism, offers 

additional benefits of aesthetic qualities as regards architectural form, economy and 

ease of construction and repetition for industrial production in a broader 

architectural and technological content.  

In respect to the dynamic behavior of the four controlled systems under investigation, 

the following specific conclusions are possible to be drawn: 

The results of ADCS0, which was modified in terms of the damper section used, are 

reevaluated for the same seismic record as in the original proposal and estimated for two 

more records of earthquakes of the international region, yielding the following information: 

 On average, for the international seismic records, the Effective Energy Deformation 

Index, EEDI, reaches 80.63 %, when the optimum value of Damper Ratio, DR  = 

265.45 1/m, (damper: 1012205, dk  = 3910 kN/m, yP  = 14.73 kN) is assigned to the 

integrated hysteretic damper. 
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The portal configuration of the bracing-damper mechanism in ADCS1 is realized with 

tension rods instead of cables for the bracing, since the associated required pretension is 

triggered high. Also a diaphragm constraint for the controlled frame at roof level and the 

out of plane direction should be assured. In summary ADCS1 seismic behavior is 

satisfactory. In particular:  

 The Effective Energy Deformation Index, EEDI, reaches on average 83.48 % for the 

international- and 54.48 % for the Mediterranean seismic records, when the 

optimum Damper Ratio, DR  = 392 1/m, (damper: 2282510, dk  = 9835 kN/m, yP  = 

25.09 kN) is assigned to the integrated hysteretic damper.  

 The average decrease of the maximum base shear accounts to 20 % for the 

international- and 15.91 % for the Mediterranean seismic records.  

 The relative displacements of the controlled system reduce on average by 8 % for 

the international- and 14.84 % for the Mediterranean seismic records. 

In the case when a chevron bracing is added to the portal bracing in order to form 

ADCS2 configuration, the earthquake response of the controlled system may be further 

improved. As it is verified through the investigation, the additional chevron- to the portal 

bracing succeeds in increasing the damper’s own plastic deformations during strong 

seismic excitations. In particular:  

 The Effective Energy Deformation Index, EEDI, reaches on average 84.38 % for the 

international- and 85.46 % for the Mediterranean seismic records, when the 

optimum value of Damper Ratio, DR  = 114.3 1/m, (damper: 616355, dk  = 1003.10 

kN/m, yP  = 8.78 kN) is assigned to the integrated damper.  

 The average decrease of the maximum base shear accounts to 6.3 % for the 

international- and 1.70 % for the Mediterranean seismic records.  
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 The relative displacements of the controlled system reduce on average by 8 % for 

the international- and 19.32 % for the Mediterranean seismic records. 

The third alternative configuration design studied, ADCS3, provides similarly to the 

former an opening at the façade, but with less bracing members. In particular:  

 The Effective Energy Deformation Index, EEDI, reaches on average 79.09 % for the 

international- and 76.08 % for the Mediterranean seismic records, when the 

optimum value of Damper Ratio, DR  = 466.67 1/m, (damper: 612155, dk  = 5376 

kN/m, yP  = 11.52 kN) is assigned to the integrated damper.  

 The average decrease of the maximum base shear accounts to 14.33 % for the 

international- and 19.32 % for the Mediterranean seismic records.  

 The relative displacements of the controlled system reduce on average by 5 % for 

the international- and 12.87 % for the Mediterranean seismic records. 

Respective publications of ADCS numerical analyses conducted and the controlled 

systems’ dynamic behavior evaluation, included in international refereed scientific 

conference proceedings and international refereed scientific journals, are presented in the 

references of the present chapter ([8.1], [8.2], [8.3], [8.4], [8.5], [8.6], [8.7], [8.8], [8.9], 

[8.10], [8.11], [8.12]) 

8.3 Future Work 

The results of dynamic analyses conducted in the present study are based on the model 

of elastic equivalent damper stiffness. A more realistic description of the controlled frame 

behavior can be supplied from time history analyses, whereas the real damper stiffness as 

based on its developed hysteretic loop is considered.  

Further investigations on the applicability of ADCS concept can also address multi-storey 

structures as regards both the stiffness- and damping distribution over the height. Ton
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