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Abstract

In this study we extend the real options framework to include managerial interacting learning
and control options i.e. actions that are expected to enhance value but have uncertain outcome.
We allow the history of decisions to affect the impact (expected profitability, variance and cost)
of future decisions and we show the optimal timing and optimal decision regions by also
allowing early exercise and abandonment options. This framework allows the study of the effect
on the value of firm’s investment opportunities of options to change the distribution of future
payoffs through for example marketing research and advertisement (or product redesign or
repositioning), basic research or exploration actions and product attribute or quality enhancing
actions. The framework also allows the analysis of optimal timing of such actions, optimal timing
of introduction of pilot projects, early development of the complete project and abandonment
options. We provide analytic compound formulas for sequential options with embedded control
and learning actions under the assumption that project value follows either diffusion or a jump
diffusion process. We also extend the model to complex multistage problems with path dependent
actions, by developing a numerical lattice based model. We illustrate the importance of this
theoretical framework through applications in R&D projects and the valuation of new products.
Building on recent theories based on the contingent claim approach we also model the
determination of optimal investment policy (with respect to timing of investment) and the
simultaneous determination of optimal capital structure and we study the impact of debt
financing constraints on firm value, the optimal timing of investment and other important
variables like the credit spreads. We also explore the social welfare implications of financing
constraints. Finally we incorporate managerial learning and control actions in this more
general framework that can be interpreted as pre-investment risky growth options (e.g. R&D, or
pilot projects) using the methodology of this study and we investigate their effect on firm value

and other important variables like leverage, equity and the credit spreads.



1. Introduction

The real options theory has been mostly associated with investment appraisal and firm valuation
by taking into consideration managerial flexibility to react under uncertainty. The option to defer
investment for the potential of favourable conditions in the value of the investment, the option to
abandon when conditions become unfavourable (thus limiting losses), the option to expand or
contract capacity depending on demand conditions, are only few examples of the valuable
flexibility that exists in managerial hands and is analyzed in the real options literature.
Conceptually the real options approach can be seen as an Expanded version of the NPV approach
(see Trigeorgis, 1996) that takes into account managerial flexibility (and also possible flexibility
under competitive interactions)- the traditional Net Present Value (NPV) approach can be seen as
a special case of this more general approach where this flexibility value zero (see also Dixit and
Pindyck, 1994, for an overview of the theoretical framework and applications and Copeland and
Antikarov, 2001, for a more applied approach to real options). The purpose of this study is to
add another dimension in these problems, namely introduce managerial actions to improve the
value of a project (or the firm) that have action specific uncertainty beyond that introduced by
exogenous competition. For example the price of the a particular product might be out of the
control of management and move stochastically over time; on the other hand the firm may
engage in actions to improve its market share (quantity of sales) or efforts to reduce it’s costs.
Some examples include the introduction of new products, the improvement of attributes or
quality enhancement of a current product, the adoption of technological innovations in
operations (e.g. new software or operational processes). The exercise of these plans/options
would be made at a cost, will be targeting an increase in demand but may have a random
outcome (this uncertainty exists beyond exogenous uncertainty). A firm that does not take these
actions will simply abandon a potentially valuable option to improve revenues. The value of
these actions are due to the expected improvements in cash flows but also from the additional
(resolved) volatility that combined with the option to invest and other managerial flexibility (e.g.
abandonment option) further enhances flexibility value. Our approach has similarities with
Pindyck (1993) who presents a framework for the analysis of options where costs are driven by

two components regarding uncertainty: exogenous uncertainty (e.g. prices of materials or inputs



into a process) modeled as a continuous diffusion process and additional uncertainty that is
purposefully (and at a cost) being resolved by the firm’s management. The latter component of
uncertainty can be used to model technical uncertainty (see also Schwartz and Moon, 2000 for
further applications of this framework in new drug development). In this study we explore an
alternative approach where actions are taken in discrete points in time and have an impulse
outcome. Our analysis in the first part of the thesis focuses on the analysis of these “managerial
control” actions with random outcome on the value side and allows for positive expected impact
on value (in contrast to Pindyck, 1993 where the expected impact is zero) using the framework
of Martzoukos (2000). Childs and Triantis (1999) also consider a situation where completion of a
research project resolves uncertainty but does not affect the expected impact. We specifically
investigate path-dependency in the characteristics (average impact, volatility and costs) of these
managerial control actions which adds economically and methodologically interesting issues.
This feature is important, since in many situations encountered in practice the sequence of
actions affects the outcome; an interesting example is learning-by-doing where the impact of a
follow-up investment may be higher than the previous or the costs may be less. Path-
dependency introduces methodological challenges that once met allow for other interesting
issues that are also analyzed in this study like time-to-learn (lags in realization of impact and
volatility of controls) and convex adjustment costs (abandonment values with path-dependent

recovery amounts).

Another dimension that is investigated in this study is that of learning actions. Investment in pure
learning actions like research, experimentation, and marketing research is difficult to be
motivated and explained in a real option setting. This is because learning is often thought to
decrease volatility while option values are increasing in volatility-why would then a manager
ever invest in learning actions? Learning is essential when real assets may exhibit specific
uncertainty (noise) due to incomplete markets or unique physical, contractual locational
characteristics (this motivation is provided in Childs et al., 2001 and Childs et.al., 2002); see also
Martzoukos 2003, and Martzoukos and Trigeorgis, (2001). Effectively, under these cases the
firm may find it valuable to resolve more uncertainty regarding the true value of the project. Our
model is consistent with Childs et. al. (2001) and (2002) filtering approach and is extended in a

multi-stage setting with path-dependency. We make explicit and we distinguish between options



to enhance value with random outcome- for example quality enhancement, R&D, or
advertisement-and learning actions like pure research, marketing or experimentation. The
methodological treatment of learning and managerial control actions is similar thus keeping the
problem tractable and practical for implementation. Our results elaborate and provide further
insights on the importance of information acquisition an issue that is absent in most real option
models. We show how learning may improve option values and how it affects the probability of
development. The investigation of learning and control actions in a unified framework is
demonstrated in the second part of the thesis where analytic compound option formulas with
embedded learning or control actions, early exercise, abandonment and path-dependency are
provided. The compound option formula of Geske (1979) and the extendible option of Longstaff
(1990) are special cases of this more general formulation. Competitive interactions that may limit
or sometimes destroy some forms of flexibility are often for simplicity modelled using a
competitive erosion parameter- in analogy to the dividend yield modelling of financial options.
This modelling approach cannot handle cases of random arriving changes that can be
accommodated in the form of jumps. For this reason we furthermore demonstrate the jump-
diffusion case implementation with managerial control and learning actions. In general, our
setting (with managerial control and learning) captures the notions described in Weitzman and
Roberts (1981) while also maintaining the correct adjustment for risk in the real options
framework. The learning and the control actions are induced endogenously by the firm by
optimally weighing the expected benefits (in terms of additional option value) compared with the
additional costs. Our assumption throughout the study regarding the risk of controls or learning
volatility is that is uncorrelated with market risk and is not priced (alternatively a risk-neutral

agent approach could be implemented like in Childs et al, 2001).

An additional important feature that is only recently being explored in the literature is the
integration of investment options and financing decisions in a unified framework. Financing
choices may affect the value of investment opportunities and investment timing. For example,
the benefits of debt financing due to tax advantages arising from tax deductibility of interest
payments may be exposed to the risk of being lost if the firm waits due to unfavourable
movements in demand; this in general pushes investment earlier. Including debt into the picture

also brings issues of optimal capital structure, default risk, and the determination of credit



spreads and the selection of optimal default trigger by equity holders. We build on Mauer and
Sarkar (2005) (that in turn has extended Leland, 1994) to include optimal capital structure and
optimal investment timing in a unified framework and we analyze the important issue of debt
financing constraints. Debt holders may reduce the provision of credit due to moral hazard or
asymmetric information (see Jensen and Meckling, 1976 and Myers and Majluf, 1984, for
discussion of these issues). Asymmetric information has also been provided as a reason
justifying why the suppliers of credit engage in credit rationing (see Fazzari et al., 1988, Stiglitz
and Weiss, 1981). Boyle and Guthrie (2003) analyze the effect of financing constraints on
investment policy but their model focuses on liquidity/cash constraints while ours on constraints
on the level of debt financing. Furthermore, our model shares the good characteristics of the
Mauer and Sarkar (2005) model in that it explicitly models optimal capital structure decisions
(with the added constraint in our setting), the tax benefits of debt, credit spread determination

and the optimal default policy of the firm.

The thesis consists of three parts. In the first part, we maintain the traditional real option setting
(with the options to react under uncertainty incorporated in prior literature), and we introduce
active managerial actions to control (enhance) cash flows, albeit with random outcome. The first
part of the thesis extends prior literature results as follows:
= A multi-stage investment setting with path dependency between value-enhancing
managerial control actions with random outcome
= Delays in the realization of managerial control’s impact (time-to-learn)
= Accelerated versus sequential investment policies, learning-by-doing and decreasing
marginal reversibility of capital invested (Convexity in adjustment costs)
= Applications in new product development and innovation adoption and discussion of
implications
In the second part we extend the analysis of the first chapter and do the following:
* Incorporate managerial actions to learn besides option to enhance
= Extend stochastic process dynamics for project value that accommodates jumps

(discontinuities) coming from intense competition, political, or regulatory reasons



* Provide analytic solutions for sequential (compound) options with embedded
learning and value-enhancing controls and exogenous jumps and describe the factors
affecting the determination of decision regions

* Discuss numerical applications in new product development (including pilot projects,
learning actions before development).

In the third part of the thesis, we build on recent theories of the capital structure that use the
contingent claim approach and provide a natural extension of the real option theory developed in
the first two parts to provide for the potential of debt financing. This new setting provides the
environment for the analysis of new interesting issues highlighted below:

= Simultaneous determination of optimal investment and capital structure decisions

under exogenous uncertainty

= Discussion of the factors affecting the trade-off between investment and financing

flexibility

= The valuation of corporate securities, equity and debt, the determination of credit

spreads and investment and default triggers

= The effect of financing constraints on debt on firm value, the investment and default

triggers, the credit spreads and the values of equity

» The effect of managerial control actions with random outcome on firm value, the

value of corporate securities, the credit spreads and investment and default triggers (also

simultaneously considering the effect of financing constraints on debt)

Each chapter in the thesis separately provides all the relevant literature review, the models, the

main findings and contributions and applications.
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2. Real R&D Options with Time-to-learn and Learning-by-doing

Abstract

R&D actions are implemented as optional, costly and interacting control actions expected to
enhance value but with uncertain outcome. We examine the interesting issues of the optimal
timing of R&D, the impact of lags in the realization of the R&D outcome, and the choice
between accelerated versus staged (sequential) R&D. These issues are also especially interesting
since the history of decisions affects future decisions and the distributions of asset prices and
induces path-dependency. We show that the existence of optional R&D efforts enhances the
investment option value significantly. The impact of a dividend-like payout rate or of project
volatility on optimal R&D decisions may be different with R&D timing flexibility than without.
The attractiveness of sequential strategies is enhanced in the presence of learning-by-doing and

decreasing marginal reversibility of capital effects.
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2.1. Introduction

We adopt a real options framework (see Dixit and Pindyck, 1994, Trigeorgis, 1996) to model
optional and costly R&D actions. The real options literature has analyzed the impact of
uncertainty in making optimal investment timing decisions. Our model helps expand the insights
derived in evaluating such R&D efforts. We analyze a firm which can select among a number of
optional actions: defer investment in costly value-enhancing control actions (R&D), invest in a
control action (or select from mutually exclusive ones), invest in several control actions
sequentially, develop the project early (exercise an investment option), or abandon it for a resale
value (see Myers and Majd, 1990). Our approach can be applied in cases where firms, before
making the final capital-intensive investment decision to bring a product to market, can invest in
efforts to enhance its market appeal or lower the cost of production. Consider, for example, a
leading car manufacturer contemplating bringing a new model to the market. Before doing so,
the firm has the option to delay the commercialization phase and invest (via R&D or by adopting
existing technological innovations) in improving the attributes of the initial design. Such
improvements may affect the aerodynamic performance, the looks, the engine design, the brake
or the suspension system, etc. Some of these improvement efforts may occur at a reduced total
cost if they take place not sequentially but together in a focused (accelerated) effort. Other efforts
may occur more effectively if they take place sequentially, due to the firm’s learning during the
early stages. Such actions can be seen as R&D investments (or adoption of existing innovations)
intended to enhance the value of existing investment opportunities. The outcome of such
improvement efforts is uncertain, and in some cases the new product may even prove to be less

valuable than the original one.’

An early treatment of controls with random outcome is Korn (1997). Impulse-type random
controls were introduced in real options by Martzoukos (2000) (see also Martzoukos, 2003).
These authors treated independent controls available at predetermined times only, while we
focus on the optimal timing of interacting controls. Control interactions introduce path-

dependency since the history of decisions affects future decisions and the distribution of asset

! Such may be the case, for example, in the redesign of a product with the intention to strengthen the price and/or market share, potentially with a

negative customer response or reduced productivity (see Brynjolfsson and Hitt, 2000).

14



prices. Path-dependencies are important in new product development or in innovation adoption.
Efforts to improve the features of software, for example, may have lower cost and higher
expected impact if they follow earlier R&D to introduce basic features and functionality to the
software. Similarly, the effect of a new innovation may be different if it follows a prior
innovation, reflecting learning-by-doing or other synergies. These additional features via path-
dependencies can substantially affect investment option values and optimal investment

thresholds.

R&D actions were previously studied in a statistical framework by Roberts and Weitzman
(1981), but without proper adjustment for risk (as in a real options framework). Pennings and
Lint (1997) present a real options model for the valuation of an R&D project where the arrival
time of new information regarding profitability is random and exogenous. Schwartz and Moon
(2000) discuss information revelation regarding the level of costs in the case of development of a
new drug in a compound-option framework without path-dependency. They concentrate on the
effect of technical and input-cost uncertainty and use assumptions similar to those in Pindyck
(1993) that costs follow a controlled diffusion process. Schwartz and Gorostiza (2000) value
information technology in development and acquisition projects. Childs and Triantis (1999)
consider a situation where completion of a research project resolves uncertainty (learning-by-
doing). They focus on the choice between accelerated versus staged (sequential) R&D, but
assume completion of R&D is mandatory before any realization of profits, whereas in our case
this is optional. Effectively, they focus on the sequential development process of a new project
whereas we focus on optional R&D efforts to enhance the value of an existing investment
opportunity. Grenadier and Weiss (1997) analyze alternative innovation adoption strategies for
firms confronted with a sequence of randomly arriving innovations. Innovations in their setting
arrive at random times and the firm can follow different strategies regarding their adoption. They
focus on the uncertainty regarding the arrival of new technologies while in our framework the
firm has an option to adopt an existing innovation with unknown impact and it must select the
best alternative at an optimal timing. We also allow for a multistage setting with other potential

strategies (like abandonment or early exercise of the investment option), and incorporate path-
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dependencies between actions”. R&D investments may also take time to complete, an effect we
call “time-to-learn” due to lag in the realization of the control’s impact (e.g., due to delayed
response of consumers to the new features or time needed to build them). Lags in the
development process of construction projects were previously analyzed by Majd and Pindyck

(1987), who used the term “time-to-build” (see also Bar-Ilan, Sulem, and Zanello, 2002).

We consider as a benchmark the case of a single R&D action without timing flexibility in its
activation. Then we study numerically the general case with optimal timing of R&D, and the
impact that lags in the realization of the research outcome have on investment option value. The
presence of optional R&D actions can significantly enhance investment option value and can
affect the critical decision thresholds. We investigate the dividend-like payout rate and asset
volatility effects on project value and optimal thresholds. Results differ significantly with timing
flexibility for the control actions than without. We also show that lags (time-to-learn) reduce
option value, and that the sensitivity of thresholds to parameter values of the stochastic process
depends on the degree of timing flexibility in controls. Finally, in a more general setting we
analyze a complex situation with two potential R&D strategies: an accelerated strategy with
higher cost and higher average impact, versus a (flexible) staged strategy involving two
sequential control actions. Contrary to what one might expect, the sequential strategy does not
dominate the accelerated strategy. The appeal of the sequential strategy is enhanced if there are

learning-by-doing effects or decreasing marginal reversibility of capital invested in research.

The chapter is organized as follows. In the next section we discuss the (benchmark) special case
of R&D without timing flexibility, and then describe the general framework for optimal
activation and timing of control actions involving path-dependency. Section 3 presents our
numerical results. The last section concludes. An Appendix provides numerical evidence

concerning the accuracy and convergence of our numerical scheme.

2 Qur setting is one of active control, unlike the passive learning case studied in Majd and Pindyck (1989) where efficiencies in production

accumulate simply while the firm is in operation.
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2.2 A general framework with control actions and path-dependency

We assume that project returns follow a risk-neutral process of the form:

ds,

=(r—9)dit+odz, +k;dgq; . (1)
‘

In the above equation r is the riskless rate, 0 is a dividend-like payout rate representing an

opportunity cost of waiting to invest, and ¢ is the standard deviation of the rate of change in

project value. The term dz, is an increment to a standard Wiener process describing the

uncertainty of project value in the absence of control actions. Equation (1) is similar to that of

jump-diffusion, but this equation does not refer to jump-diffusion. The similarity exists because

the control is of an impulse-type, multiplicative nature (with random outcome). We denote by k|

the impact on project returns of control action j, specified by its cost, /¢, and the distribution of

I+k;. Counter dq, takes the value one if control j is activated by the decision-maker and zero if
not. dq, is a control variable, not a random variable (unlike the case of jump-diffusion). The

decision maker has the option to activate controls at a cost, solving the optimization problem
discussed in section 2.2. Since the system is stochastic with project value S being the primary
driver, at each point in time when a control is available the level of S helps determine whether
control activation is optimal or not. Other determinants of control activation are the parameter
values of the stochastic process of S, the remaining time to option maturity, and the control
characteristics (distribution of the impact, parameter values of the distribution, and the cost of the
control). Control activation is also affected by whether there is timing flexibility in control
activation, and whether other mutually-exclusive controls also exist. The cost of the control and
the parameter values of its distribution may be dependent on time and previous activation of

other controls.

We assume that an equilibrium model like the continuous-time CAPM (see Merton, 1973) holds
and that controls have firm-specific risk which is uncorrelated with the market portfolio and is
thus not priced. We use risk-neutral valuation as established in Constantinides (1978), Harrison
and Pliska (1981), and Cox, Ingersoll, and Ross (1985). The dividend-like payout rate (or

opportunity cost of waiting to invest) 0 can be deducted from the equilibrium-required rate of
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return as in McDonald and Siegel (1984)°. Denoting the accumulated (Brownian) noise from ¢ =

0 to T'by Zr, we can rewrite equation (1) in the following form

2
%:exp{(;ﬂ—é—%)TJraZT [T0+k4dq)). (1a)
J

0

H(1+k ) denotes the impact of j multiplicative controls that have been activated (dg; = 1)
j

before time 7. Equations (1-1a) imply that the underlying asset in the absence of controls is log-

normally distributed. The multiplicative effect of control action 1+k, is assumed to be log-

normally (logN(.)) distributed:

1+k, ~ logN(eXP(Vj),eXP(%)(eXp(GJZ')_1)0.5)’ (2)

In[S,]-1n[S,]= j-(r—é—O.Saz)dt+jadZt +> (In(1+k,)dg, ). (22)
0 0 J

The assumption of log-normally distributed controls is convenient. It not only ensures non-
negative asset values, but also conditional on control activation asset values retain their general

distributional properties since the product of two log-normal distributions is log-normal. Control

J 1s characterized by its average impact and volatility parameters, y, and af respectively, and
by its cost /c. Parameter y, > 0 represents efforts to enhance the value of project returns. When a

control is activated, immediate return to R&D equals (kS — I¢)/Ic and it can be either positive or
negative. This return will be realized only when (and if) the final investment is made. In general
we consider an investment opportunity to pay a capital cost X and realize net value S — X. The
control problem involves efforts to enhance project value S before the final investment decision
takes place. The objective is to activate available controls optimally by choosing the best among
several alternative controls at an optimal time taking into account potential path-dependencies in
the parameter values of controls. The parameter values (including the cost) of these control

actions may depend on the sequence in which they are activated. Even though control actions are

* It may also account for competitive erosion to the project’s cash flows (e.g., Childs and Triantis, 1999, Trigeorgis, 1996, ch.9, and Trigeorgis,

1991).
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expected to enhance project value S (at a cost), the final outcome is uncertain. Of course, we

expect that the availability of such “optional” actions will enhance real option value.

The parameter values of controls may depend on activation of previous controls, but not on the
exact value outcome of the activation, neither on the level of S. The outcome of previous
activation, however, will influence future optimal actions since optimal decisions depend on the
level of asset value S at each time. Due to the numerical nature of the solution it is feasible to
allow controls have characteristics (cost and parameter values of the distribution of its impact)
that are functions of the level of state-variable S. The assumption that the outcome of a control is
independent of the outcome of other previously-activated controls is reasonable when each
control in the sequence treats different aspects of the problem under consideration. In some

situations (not treated in this paper) this may not be the case.

2.2.1. Simple case (without timing flexibility): A benchmark

We first consider a special (single-period) case without flexibility in the timing of the control
that has an analytic solution. This will allow us to investigate the possible action regions at ¢ = 0
for different levels of project value S (where for notational convenience we drop the dependence
of S on time). It will also serve as a benchmark for testing the accuracy of our numerical results.
The benchmark relates to the simple case of a European investment (call) option conditional on
activation of a single control (at a cost /¢), without timing flexibility. The solution to the option

value in this special case becomes:

Ve =8e " N(d)-Xe "N(d,) -1, (3)

In(S/X)+(r—0)T +y, +0.50°T +0.50;
[0°T +07]"

with 4 dy=d, (0T +371",

where Ic, y,, and 0'12 are, respectively, the cost, average impact, and variance of the impact of

the control action. If the control were costless (/¢ = 0), it would always increase option value as

long as the average impact is positive (, > 0) for a call option. In this simple case the firm owns
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(has monopoly power over) an investment option, and can (at t = 0) take any of the following
actions. First, it can simply wait (W) and keep the investment option alive (but sacrifice the
embedded optional control). In this case the value of waiting V" equals the simple Black and
Scholes (1973) solution (V< with 7, =0, =0 and Ic = 0). Second, it can take the single control
action (C) and get V*. Finally, it can exercise early (EE) the investment option for an immediate

value V*¥ = § — X. Thus, the optimal value V'* is the best among the three possible alternatives

VC, VW, and V2L,

Figure 1. Payoff function slopes and optimal decisions for a European

option involving control and possible early exercise at =0
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Panel B
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Notes: We illustrate typical examples for the determination of optimal decision regions for a single-stage
investment problem where the firm can either invest early (EE) at ¢ = 0, Wait (W), or activate a managerial control (C)
and then decide whether to invest at = 7. We examine the slope of the payoff functions for each strategy (partial
derivatives of option value with respect to S) using the analytic formulas in equations (3) and (4). The average impact of

control is denoted by y.

To examine the optimal decisions among these three action choices as a function of the level of
the underlying project value S, it is useful to compare (see Figure 1) the slopes of the respective

claim values from the following equations:

w C EE
v _ e'N(d,) — e-”,—aV =e "' N(d,) —> e-"‘T*y,—aV
oS S>>X oS S>>X oS

=1, “4)

where $>>X means S sufficiently higher than X (so that N(d,) —1). Panel A in Figure 1 shows

the case where for very large project values ($>>X) the slope in case of early exercise remains
always above the other slopes so the optimal decision is to exercise early (EE). Panel B in Figure
1 shows the case where the slope with control activation remains the highest and for high values
of §, activating the control (C) is the optimal decision. For low values of S, neither the costly
control nor the early exercise decision would have much value, and thus the wait () decision

will prevail. At higher values of S (assuming the average control impact y,is positive) the
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increase in value is higher for control activation, and after some critical threshold the wait
decision (W) gets dominated by the control decision (C). But at certain values of S > X, the
decision can also be early exercise (EE). Thus, in Panel B (at # = 0) for increasingly higher
project values S the regions of optimal decisions can be {W,C.EE,C}, {W.EE,C} or {W,C}. If the
slopes of the (W) and (C) cases were to cross, we could have {W,C. W .EE,C}, {W,C,W,C} or
{W,EE,C}, etc. In the first panel, the order could be {W,C,W,C,EE}, {W,C,EE}, or {W,EE}, etc.
For each Panel some regions may vanish and the regions that actually prevail would also depend
on other option parameter values like project volatility and the opportunity cost of waiting to
invest. The regions of optimal decisions at # = 0 derive from the simple case where an analytic
solution exists (which in the presence of control timing flexibility is equivalent to the decision
stage just before option maturity). They can provide insights for the more general case where the
control(s) can be activated at an optimal time. The exact level of thresholds that separate the
various regions as well as the actual regions that result may also depend on the additional
flexibility to time the control activation, the number and order of path-dependent controls, etc.
These can be analyzed with precision only as part of a numerical investigation. We do so right
after we discuss in the next subsection the more general problem, structure and solution

methodology.

2.2.2. Multi-stage decisions with optimal timing of path-dependent R&D

actions

This section discusses our more general framework. Consider the managerial investment
decision problem with 7, control actions shown in Figure 2 (with n, =4 for illustration
purposes). The firm has an option to invest an amount X to obtain project value S. It can also
invest in n, control actions to improve the level of cash flows (or alternatively to reduce costs)
before the project development/commercialization decision. This (optional and costly)

investment in controls may occur in the context of mutually exclusive actions or sequences of

actions involving path-dependency. The information regarding the firm’s actions at each decision
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point t is captured by the operating mode m, at that time. In general, there is a starting mode
reflecting the decision to wait () before project development or any control decisions are made.
There are n, possible controls {Ci, Cy,...,C, } and n, intermediate wait modes between control
actions {W,, W>,..., w, }. Finally, there are two terminal boundary conditions: an early exercise

of the investment option involving a development/commercialization (EE) decision, and an
abandonment mode for capital recovery (4). Modes {EE, A} are absorbing states. In early
exercise mode (EE) the firm obtains S — X, while in mode (4) the firm recovers a percentage « of

total investment 7C in prior control actions®.

Figure 2. A general decision framework with path-dependent R&D control actions

Notes:  The firm starts in a wait (//) mode and has the option to defer investment in controls, or invest in controls (C))-(Cy)
either sequentially or by skipping some control actions. After investing in a control action the firm can also move to wait (W))-
(W,) modes, invest in other remaining control actions, exercise the early investment option (EE) or abandon (4) the project for a

recovery amount. The modes (EE) and (4) are accessible at any time.

* This recovery factor is usually below 100% depending on recovery (the extent of partial reversibility) of capital, but sometimes it may be above

100% due to accumulated know-how, sale of patents, etc.
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We divide the time to option maturity 7 into n, equally-spaced decision points,

ma
withn, = {123..}. Thus =0, 2L (=DT
n n n

N s S

represent the corresponding action times

with n_+1 being the terminal decision point at time 7. At maturity 7 the firm has a last chance
to decide whether to develop or abandon the project. The effect of the jth control action, 1+k, is
assumed to be log-normally distributed with average impact y; and volatility . In the more

general specification y (4, ;) and o(h,j) are conditional on the previous state / since there is
path-dependency between actions; we use this notation for simplicity, although the parameter
values may depend not only on the previous action but also on a whole sequence of actions.

Following activation of control action j at time 7, je{C,,C,,...,C, }, and conditional on the

previous action A, project log-returns are normally distributed:

m(—ng | h,j] ~ N((r ~5- ot (b j).0 A+ o j)j- ®)

t

If no control is activated, j € {W,W,W,,....W, }, the terms involving the average impact y (4, j)

and the volatility of the control’s impact o> (4, j) in equation (5) vanish.

The average impact and volatility of controls, and their cost, is determined by the sequence
(path) in which the controls are being activated. For example, a particular control C, may
represent an expensive new design. This new design alone may have a different average impact
(if it is activated directly from W), y(W,C>), than if it follows another recently introduced similar
design Cj, y(C;,C,). The cost of each control action j may also be path-dependent. For example,
suppose Cy is an accelerated control strategy of high impact with cost I(W,Ca). If {C,C2} is a
sequential control strategy, each individual control with half the impact of the accelerated
strategy, total costs may differ from I(W,C,). Pre-specified switching matrices provide the

parameter values (average impact, volatility, and cost) of controls for every feasible decision
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sequence (transition). These switching matrices must be economically (or logically) consistent.
If, for example, Cx and the sequence {C;, C,} are mutually exclusive alternatives, we should
compare I(W,Cy) with I(W,Cy) + I(C,,Cy). If I(W,Ca) > I(W,C)) + I(C;,(C>) cost efficiencies that
favor the sequential strategy may be achieved due to learning-by-doing. If I(W,Cy) < I(W,C)) +

1(C,,(C,), there may be scale efficiencies.

When path-dependency is involved we can only define payoffs conditional on prior decisions

and search for the optimal sequence of actions. We assume decisions can be revised at periodic
intervals At. " (.) is the payoff under decision m, This payoff is a function of the level of

project value S at that point determined by the path of actions followed, including the switching

costs I(h, j), the average impact of controls, the development cost X, the recovery rate a in case

of abandonment, etc. Superset M includes all information about admissible actions, action

sequences, and the parameter values of controls in each case. At each time t, stochastic subset

M, describes the history of actions up to time t, and stochastic subset M, defines the remaining

admissible actions and relevant parameter values. More specifically, the problem of finding the
optimal value function V *(.) involves maximizing V™ (.) by choosing the optimal action at t

given the past decisions:

V(S| M M M) =max{P ™ |, (6)
M;

We differentiate the following cases.

For m, € {C,,Cy,....C, }: V™ (S,,t|M,M],M])=

ne

e(*"Af)Et[V*(S t+At|SI,M,M;ANM;A;)}_I(mt—Atﬁmt) . (63.)

t+At

For m, e {EE}: VS | MM M )=8, - X . (6b)
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For m, € {4}, with TC (M t‘) being the total control costs paid until t:

VS, MM M) = aTC (M), (6¢)

For m, e W,,W,,..W, }:

VISt | MM M) = e B [ V(S t+ ALS, MM ML) | (6d)

t+At?

Equations (6a-6d) incorporate various path-dependent factors like costs I(m, ,,,m,), average

impact and volatility, early development options, and abandonment to recover a percentage of

total past investment in controls 7C. The expectation operator E[.] is taken with respect to the

distribution of log-returns given earlier.

At the last decision point, n_ +1, we have the terminal condition:

V(ST M, My, M;) = max (S, - X,aTC(M; ). (7)

To find the optimal project value at ¢ = 0, equations (6) are evaluated for each decision mode at
each decision point and (after discretization) for each state of the realization of the underlying
asset S. Due to path-dependencies, ¥~ cannot be evaluated in the usual backward dynamic
programming manner. Rather, we must take into account all feasible combinations of actions and

paths of project value.

We use the above framework in order to study the optimal timing of controls, and optimal

activation of controls with delay in the realization of their outcome (time-to-learn). We also
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study the optimal activation of mutually exclusive sequences of controls, specifically the choice
between an accelerated strategy with high impact and cost and a sequential strategy in two

controls each having lower impact and cost.

2.2.3. Numerical lattice implementation and accuracy investigation

To evaluate the expectation operator in equations (6) we discretize the state-space using a
numerical lattice scheme. This is in contrast to Martzoukos (2000) who used a finite-difference
(rectangular) scheme with Markov-chain methods to solve for sequential (independent) controls;
that method could easily handle sequential controls, but not path-dependency. We approximate

the log-normal distribution between decision points (stages) with a binomial lattice with N
steps (the total number of steps N being n N ). The terminal nodes of each sub-lattice serve as

starting nodes for new ones. Figure 3 illustrates a simple case where decisions are allowed at t =
0,t=17/2, and t = T. Controls are allowed only at # = 0 and t = 7/2 (a two-stage decision

problem, i.e. n_=2). The very first sub-lattice starts at node 1 with terminal nodes points 4, 5,

and 6. From each of these terminal nodes starts a different sub-lattice. For example, the sub-
lattice that starts from node 4 ends at nodes 11, 12, and 13. In this example, each sub-lattice is

constructed with two steps (N, =2). At node 1 all decisions are examined successively. For

each decision, the value is provided by the option value given by the sub-lattice. At the terminal
nodes 4, 5, 6 we evaluate each possible decision and keep the one with the highest value;
allowing for more in-between steps enhances accuracy. For decisions to be evaluated at nodes 4,
5, and 6 each time a new sub-lattice is constructed, and so on. Effectively this defines the state
and decision space over which a forward-backward exhaustive search method is applied. Despite
the fact that the figure for simplicity shows an overall recombining lattice, this will not generally
be the case: each sub-lattice is a recombining one, but the overall lattice is not. Only in the
absence of path-dependencies, would the approach reduce to using a simple backwards induction
and the overall lattice would be a recombining one. In the absence of path dependency and with
the optional controls available at predetermined times, the numerical solution would become

similar to that for sequential (compound) options (see Geske, 1979).
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Figure 3. Example of sub-lattice construction

/ 11
7 \
4 < 12
2 8 <
13
1 5 /
9
3 \
6 / 14
10 \
15
v v *
t=0 t=1/2 t=T

Notes:  In this example of sub-lattice construction, there are decision stages at # =0, = 7/2, and at t =
T; and two steps per sub-lattice. Since controls can be activated at = 0 and at ¢ = 7/2, this is a 2-stage

problem. Sub-lattices are defined by nodes (1-4-6), (4-11-13), (5-12-14), and (6-13-15).

The overall lattice may not be recombining because, the distribution of outcomes at i + 1 will
differ, depending on the decision at decision point i. We thus employ different volatility, up and

down probabilities, and up and down jumps for the sub-lattice implementation depending on the

decision. The conditional volatilities v* (m,,m,,,,) between decision points are as follows:

For m, €{C,,C,,..,C, }:
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T o*(m,m
Vz(mmmHAt):O-z_é"_ ( - H—At)'
N N

S s

(8)

When controls are not activated and m, e {W,W,,..,W, }, the conditional volatilites simply

N

reduce to the diffusion volatility v*(m,,m,,, )= o’ ——. Between stages, we use the following

N

up and down project value steps:

1
u(mt ’mHAt) = exp(v(mt 7mt+At)) ) d = &
u(mt’mHAt)

The probabilities of an up and down move for the case of controls, i.e., form, € {C,,C,,..., C, b,

arc :

T, m,,m, x
exp[(r—5)]\;+7/( lN A )J_d(mtﬁmHAt)

S s

; )

p.(m,m,_ )=
! : u(mz’mHAz) _d(mt’mt+At)

Pa (mt’ mt+At) =1- D, (mt’ mt+At)'

Form, € (W, W,,...,W, }, the term involving y in equation (9) vanishes. The above specification

allows us to evaluate the expectation in equations (6). Note that in the special case discussed

earlier involving a single (n, =1) control decision at ¢ = 0 without any timing flexibility, the

whole lattice is just the single sub-lattice. In the following applications we use a discretization

scheme with one step per month.
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Evaluation of real (investment) claims with path-dependency is generally a complex and
computationally intensive problem. Such problems rarely allow for analytic-type solutions’. The
numerical complexity in the case of real option problems was discussed in Kulatilaka (1988) and
Ritchken and Kamrad (1991). Hull and White (1993) demonstrated that it is feasible to solve
American (or semi-American) option problems with path-dependency using a lattice
framework®. Thompson (1995) analyzes a specialized contract called “take or pay” where the
path-dependency was also due to past decisions. Being able to describe the path with one value
and due to the specific structure of his problem he was able to solve it with backwards induction,
with the additional use of an auxiliary variable that describes the possible path realizations. In
our model path-dependency involves both the history of decisions and (due to the random
outcome of decisions) the history of the asset price. Furthermore, we allow a rich set of
alternative actions the firm can take at each point in time. Each action not only affects the future
distribution of the state variable but also affects the set of remaining actions. Problems with such
features of path-dependency can be solved with a backward-forward approach of exhaustive
search. At each decision point a (finite) set of alternatives is investigated by taking the induced

path-dependencies into account.

We investigate the accuracy of our lattice scheme using one step per month. This is quite feasible
in the simple case with a single control available at t = 0 (that has an analytic solution). We have
derived numerical results with several parameterizations and compare them against the known
analytic solution (see Table A0 of the Appendix). In the next section we analyze more complex
problems with no analytic solutions, for which the high accuracy observed earlier may not be
achieved. For those problems we investigate how the solution behaves as the number of steps in
the lattice implementation increases. Our calculations show (see tables A1-A3 in the appendix)
that the numerical model appears to converge relatively quickly and the chosen lattice scheme

with one step per month is adequate.

* For exceptions with analytic solutions, see Bar-Ilan and Strange (1998) and Hartman and Hendrickson (2002).
® They actually solved exotic derivative problems where dependency was due to the history of the asset price and evaluated American lookback

and Asian options using interpolation techniques.
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2.3. Applications, numerical results and discussion

In this section we apply our framework to real option problems with optional R&D actions at the
pre-investment stage. We study option valuation and optimal decisions in problems with
increasing level of complexity. We start with the optimal timing of a single control action,
compared to the case where there is no timing flexibility. We also consider the ability to abandon
operations for recovery of capital invested in controls. An additional complexity involves a
possible delay in the effect of the control (time-to-learn). We then consider mutually exclusive
control strategies, namely the choice between an accelerated and a sequential strategy, and
examine cases involving learning-by-doing or diminishing marginal recovery rates. We provide
sensitivity results to parameter values of the controls as well as to the standard option
parameters, namely the project (Brownian) volatility and the opportunity cost of waiting to invest

(“dividend-like payout rate”) & .

For our numerical results we use as base case a single control action with cost /; =10, average
impact (on project value) 1 = 0.20, and volatility of impact o1 = 0.30. The other base case
parameters are: » = 0 = 0.05, volatility of the diffusion process o= 0.15, investment horizon 7' =
5 years, and project development cost X = 100. In the case involving timing flexibility, we

assume n, =5 decision points, whereas if there is no timing flexibility n, =1. The choice of

parameter values is consistent with the literature. The level of X defines the investment scale, and
approximates the value of the single-project firm (before adjusting for the net present value of
the investment). A cost for the control /; = 10 is consistent with the empirical observation that
R&D expenditures are about 9% of the market value of equity (Amir, Guan, and Livne, 2004).
Chan, Martin, and Kensinger (1990) find that event announcements to increase R&D
expenditures have a positive and statistically significant impact on share value. Such
announcements increase return variance by a factor of about 100% on the announcement day.
Grabowski and Vernon (1990) document returns to Pharmaceutical R&D of around 15%-30%.

As they demonstrate, the return distribution is highly skewed, with the top decile providing a

7 Sensitivity to the dividend-like rate is important, since it may also indirectly (in a non-game theoretic framework) capture effects like value

erosion due to actions of competitors, etc. (see Trigeorgis, 1991).
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return around 400%-500%. Kothari, Laguerre, and Leone (2002) present empirical evidence for
a positive relation between R&D expenditures and uncertainty of future benefits. They also point
out that if R&D expenditures were to replace all capital expenditures, earnings variance would
increase by 30-70%. Childs and Triantis (1999) use a standard deviation of 0.40 assuming it is
completely attributed to R&D and that the volatility attributed to the Brownian motion is zero.
Our choice of control volatility o7 = 0.30 thus seems plausible (if one control is activated within
a year, the total volatility would equal 33.5%). For brevity we present selected numerical results,

but our insights are supported by sensitivity on a much wider range of parameter values®.

2.3.1. Optimal timing of a single R&D control action

The simplest case with induced path-dependency involves the optimal timing of a single control
action. This case exhibits path-dependency because control activation affects the forward lattice
construction, so simple backwards induction cannot take into account the possibility of earlier
control activation. We present results for various cases at different levels of the initial project
value S. In contrast to Grenadier and Weiss (1997), we focus on the flexibility in the timing of
innovation adoption; in general we show how the results differ according to the level of the
stochastic variable, the parameters of the control actions and the parameter values of the

exogenous stochastic process (which is absent in their model).

For comparison purposes we present numerical results for cases involving both timing and no
timing flexibility. Option values and optimal decision thresholds are presented in Tables 1 — 2.
Table 1 describes the case with no timing flexibility. With timing flexibility (Table 2), the single
control may be activated at any of five decision stages before option maturity. In both tables the
first column refers to the base case. Note that due to the specific option and control parameter

values in Table 1, for much higher than reported values of S,

8 We have investigated (partly only reported) parameter values for a cost I; = 5, 10, 20, 30, 40; for a mean impact y = 0.10, 0.20, 0.30, 0.40, 0.80;
and for a volatility of impact o; = 0.10, 0.30, 0.50. For the parameter values of the stochastic process, we have made numerical investigations for

a dividend-like payout rate 5= 0, 0.03, 0.05, 0.08, 0.10, 0.20; and for a Brownian volatility o= 0.05, 0.15, 0.30, 0.50.
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and the dominant strategy is early exercise (EE). This is not the case in Table 2, where the
presence of flexibility to delay R&D decisions may make decisions other than early exercise

(EE) dominant at high project values.

Table 1. Option value and optimal decisions:

Single R&D action without timing flexibility

Base Case ;=40 0=0.1 o =0.50 71=0.30 a1=0.50
S | Value Dec. | Value Dec. | Value Dec. | Value Dec. | Value Dec. | Value Dec.
260 | 160.00 EE | 160.00 EE | 160.00 EE | 171.52 ( 185.50 (4 160.27 C
251 | 151.00 EE | 151.00 EE | 151.00 EE | 16337 ( 176.05 151.83 (G
250 | 150.05 C 150.00 EE | 150.00 EE | 16247 C( 175.00 C, 15090 (
240 | 140.58 140.00 EE | 140.00 EE | 153.57 (, 164.51 C, 141.57
230 | 131.11 G 130.00 EE | 130.00 EE | 14483 ( 154.02 C, 13225 (
220 | 121.67 C 120.00 EE | 120.00 EE | 136.09 (, 143.55 C 12292 (¢
210 | 11224 110.00 EE | 110.00 EE | 12734 (, 133.09 ( 113.72  C;
200 | 102.83 C 100.00 EE | 100.00 EE | 11860 (, 122.63 C 104.55 C
190 | 9349 (G 90.00 EE | 90.00 EE | 109.86 (, 11223 G 9538
180 | 84.15 (4 80.00 EE | 80.00 EE |101.19 C(C; 101.82 86.36 (
170 | 7493 70.00 EE | 70.00 EE 92.89 C 91.51 C 7744
160 | 65.74 ( 60.00 EE | 60.00 EE 84.58 C 8120 68.52 (C
150 | 56.75 ( 50.00 EE | 50.00 EE 76.28 C, 71.05 C 5994 C
140 | 4785 ( 40.00 EE | 40.00 EE 67.97 C 60.96 C, 5138
130 | 39.23 ( 30.00 EE | 30.00 EE 59.95 C 51.10 C, 43.14 C
123 | 3335 ( 23.00 EE | 23.00 EE 54.54 C, 4432 C, 37.50 C
120 | 30091 C 20.81 w 20.00 EE 52.23 C 41.48 C 35,09 G
110 | 2292 (G 15.20 w 10.00 EE 44 .51 C 32.15 C 27.48 C
104 1842 12.25 w 4.00 EE 39.88 C 26.80 C 23.04 C;
100 1542 G 10.33 w 2.98 w 36.79 C 2324 C 20.08 C;
90 870 6.45 w 1.61 w 29.81 C 15.05 C 1348 C;
83 453 4.28 w 0.94 w 2492 C 986 (; 9.10 (
80 3.54 w 3.54 w 0.74 w 22.82 C 7.67 C; 739
79 3.29 w 3.29 w 0.67 w 2212 (G 6.96 C; 6.82
71 1.72 w 1.72 w 0.29 w 18.10 w 193 C 249 G
70 1.58 w 1.58 w 0.26 w 17.66 w 1.58 w 202 (G
69 1.46 w 1.46 w 0.24 w 17.22 w 1.46 w 1.5 G
60 0.55 w 0.55 w 0.07 w 13.23 w 0.55 w 055 W
Notes: We show option values and optimal decisions (Dec). This is the case of no timing flexibility of the control, and we use time to

maturity (7 = 5) with decision at ¢ = 0 only (no flexibility to delay). Admissible actions (Dec.): Wait (W), R&D Control (C;), and early
exercise of investment option (EE). Base case parameter values are » = J = 0.05, 6 = 0.15, development cost X =100. For R&D control:

average impact y,= 0.20, volatility ;= 0.30, and cost /; = 10. Results are numerically derived using one step per month. Sensitivity is with
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respect to project value S, control cost /;, opportunity cost of waiting J, exogenous project volatility ¢, average impact y, and volatility of

control impact o,.

Table 2. Option value and optimal decisions:

Single R&D action with timing flexibility

Base Case I,=40 0=0.1 c=10.50 71=10.30 o1=0.50 Abandonment
S Value Dec. | Value Dec. | Value Dec. | Value Dec. | Value Dec. | Value Dec. | Value Dec.
220 | 150.59 G 120.59 138.07 160.07 C; 17741  C 15192 150.63 C
217 | 147.12 ¢, | 11712 C, | 13476 C 156.87 173.56 14851 147.16 C
210 | 139.02 C, 110.00 EE | 127.05 C; 14940 C 164.59 140.61 C 139.06
200 | 12745 100.00 EE | 116.03 C,; 138.75 151.77 G 12933 127.51 C
190 | 11594 C,; 90.00 EE | 105.05 C 128.14 C; 13899 118.11 C 116.06 C
180 | 10449 C,; 80.00 EE 94.13 C 117.62 C; 126.24 10692 104.63 C
170 93.08 C 70.00 EE 83.23 C 10748 113.51 C 96.01 C 93.25 C
160 81.72 C 60.00 EE 7237 G 9755 ( 100.81 85.23 (G 82.03 C
150 70.62 C, 50.00 EE 61.80 88.20 w 88.28 (4 7459 G 70.99 C
140 59.63 C 40.00 EFE 5130 79.08 w 75.83 G 64.11 60.10 C;
136 5528 C 36.00 EE 47.11 C 75.48 w 70.87 5995 55.80 C;
135 54.19 C 35.00 EE 46.06 C; 74.58 w 69.63 C 5891 (G 5476  C;
130 48.87 C; 30.86 w 41.02 C; 70.22 w 63.53 C 53.86 C 49.60
123 41.67 C, 25.49 w 3424 C, 64.25 w 55.19 C 47.04 C, 42.51 C
120 38.62 C 23.27 w 3135 C 61.71 w 51.64 C, 44.16  C, 39.54 C
110 28.71 C 16.63 w 21.90 C 53.37 w 40.00 C 3481 C 29.95 C
104 23.23 ( 13.23 w 16.90 C; 48.48 w 3344 2939 (¢ 24.66 C;
100 19.98 w 11.07 w 13.67 C; 45.27 w 29.16 C; 2584 C; 21.28 C
99 19.24 w 10.62 w 12.88 C; 44 .51 w 28.11 2497 C; 2045 C
94 15.66 w 8.39 w 9.02 ( 40.77 w 2298 (C; 20.86 C; 16.78 w
93 14.96 w 7.96 w 825 40.03 w 22.07 w 20.06 C; 16.10 w
92 14.30 w 7.52 w 748 C; 39.30 w 21.17 w 19.27 ( 15.44 w
90 13.03 w 6.79 w 599 ( 37.82 w 19.49 w 17.72 w 14.15 w
80 7.58 w 3.67 w 2.68 w 30.60 w 12.01 w 11.10 w 8.50 w
70 3.71 w 1.62 w 0.94 w 23.94 w 6.31 w 6.12 w 4.41 w
60 1.40 w 0.55 w 0.25 w 17.83 w 2.71 /4 2.71 w 1.79 W
Notes: We show option values and optimal decisions (Dec). This is the case with timing flexibility of the control, and we use time to maturity

(T = 5) with five yearly decision stages (ny;=5). Admissible actions (Dec.): Wait (W), R&D Control (C)), and early exercise of investment option

(EE); in the last two columns we also allow Abandonment (A) to recover 50% of R&D expenditures. Base case parameter values are » = J = 0.05,

6 =0.15, development cost X = 100. For R&D control: average impact y,= 0.20, volatility 6, = 0.30, and cost 7; = 10. Sensitivity is with respect to

project value S, control cost /;, opportunity cost of waiting J, exogenous volatility o, average impact y; and volatility of control impact c;.

In both tables we observe that option value increases and control activation thresholds decrease

when the control is more valuable (e.g., when it has a higher average impact and/or higher

volatility of impact or when it has a lower cost). At the limit, for reasonably high values of the

control cost, the model effectively becomes equivalent to the one in the absence of controls

where only the actions of early exercise (EE) or wait (W) are possible. For example, when I =

40, control activation occurs very rarely, and option value is substantially lower.
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The other option parameters (dividend-like payout rate, 5, and Brownian volatility, 6) provide
interesting differences worth of discussing. In both cases (with and without timing flexibility of
control action) an increase in the payout rate or a decrease in project volatility results in lower
option values, consistent with standard real options theory. Their impact on threshold levels,
though, is different: With no timing flexibility an increase in the payout rate o or a decrease in
the volatility of project value may increase the control threshold. In contrast, with timing
flexibility an increase in & or a decrease in project volatility decreases the control activation
threshold (in which case the traditional real options intuition still holds). For 0 = 0 (results not
reported for brevity) and timing flexibility all actions are deferred and waiting (W) prevails for
all levels of S. This means that early exercise (EE) would occur at the end of the time horizon,
but investing in a control action (C) could occur at the decision stage just before option maturity,

since at that point the control action cannot be further deferred.

We also examine in the last column of Table 2 the case where capital invested in control
action(s) can be recovered via later abandonment. In the table we show results assuming partial
reversibility of invested capital (including “rights resale” value) equal to the total capital invested
in control action(s), i.e., a known recovery factor o. = 50%°. With the ability to abandon (with
capital reversibility), option values are higher and investment in the control action occurs earlier.
For higher recovery values, option values increase further and critical activation thresholds
further decrease. These results are consistent with the intuition deriving from the literature on
partial reversibility of investment. For example, Abel et. al. (1996) in a two-period option model
of investment with partial reversibility of invested capital show that the option to disinvest raises
the incentive to invest. Similarly, Abel and Eberly (1997) study a firm that faces revenue
uncertainty and compare the case with and without capital reversibility. They find that the case

of reversible investment increases the fundamental value of the firm.

° We have also tried (not shown) o = 150%, 125%, 100%, 75%, 25% without affecting the derived insights.
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2.3.2. The effect of time-to-learn

Time-to-complete before realizing the impact of an R&D action can also be an important feature
in many investment projects'’. In Table 3 we investigate the impact of time-to-learn constraints
for different periods needed for the impact (and volatility) of control to materialize. We assume
the general case where during the delay early development is still possible at any time.
Sensitivity to several parameters is provided in groups of three columns, first with no delay (no
delay), then with a delay of one decision stage (delay = 1), and finally with a delay of three
decision stages (delay = 3) (recall the total number of decision stages is five). The first upper
three columns report results using the base case parameters. They show that such restrictions
(delays) in the realization of the control reduce option value. Comparing the base case to the
lower part of the table we see that, as expected, a higher control cost reduces option value and
defers control exercise, whereas more valuable controls (having higher average impact or higher

impact volatility) increase option value and lead to earlier control activation.

' For example, Schwartz and Moon (2000) mention that the stages needed for a drug development based on US Federal Drug Administration

(FDA) standards may take more than 11 years to complete.
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Table 3. Option value and optimal decisions: Single R&D action with time-to-learn (delay) effects

Base case 0=0.10 a=10.50
No delay Delay =1 Delay =3 No delay Delay =1 Delay =3 No delay Delay =1 Delay =3
S Value Dec. | Value Dec. | Value Dec. | Value Dec. | Value Dec. | Value Dec. | Value Dec. | Value Dec. | Value Dec.
220 | 150.59 C,; 142.82 C,; 128.38 C; 138.07 C; 120.00 EE | 120.00 EE | 160.07 C 154.91 C 142.75 C
210 | 139.02 C, 131.82 C; 11847 C, 127.05 C,; 110.00 EE | 110.00 EE | 14940 C(C 14477 C 133.57
200 | 12745 G 120.87 C; 108.58 C 116.03 C 100.00 EE | 100.00 EE | 13875 (, 134.69 C, 12442 C
190 | 11594 C 10993 C 98.72 C, 105.05 C 90.00 EE | 90.00 EE | 128.14 ( 124.67 C 115.31 C
180 | 10449 (C 99.06 C 88.93 C 94.13 C 80.20 C 80.00 EE | 11762 ( 11473 G 10628 C
170 | 93.08 C 88.25 C 79.19 C, 83.23 C, 70.48 C, 70.00 EE | 10748 C 10493 C 97.39 C
160 | 81.72 C 77.54 C 69.56 C, 72.37 C, 60.88 C, 60.00 EE | 97.55 C 95.31 C 88.62 C
150 | 70.62 C, 66.97 C, 60.05 C, 61.80 C, 51.47 C, 50.00 EE | 88.20 w 85.82 C 79.95 C
140 | 59.63 C, 56.58 C, 50.71 C, 51.30 C, 42.26 C, 40.00 EE | 79.08 w 76.44 C 71.33 C
135 | 54.19 C, 51.48 C, 46.12 C, 46.06 C, 37.77 C, 35.00 EE | 74.58 W 71.82 o 67.09 C,
130 | 48.87 C, 46.44 C, 41.60 C, 41.02 C, 33.35 C, 30.00 EE | 70.22 w 67.45 w 62.90 C
120 | 38.62 C, 36.67 C, 32.80 C, 31.35 C, 24.89 C, 2000 EE | 61.71 w 59.20 w 54.69 C
110 | 28.71 C, 27.38 C, 24.43 C, 21.90 C, 17.00 C, 10.00 EFE | 53.37 w 51.16 w 46.65 C,
104 | 23.23 C; 22.10 C 19.66 C 16.90 C 12.62 C 7.06 w 48.48 w 46.42 w 41.89 C
103 | 22.35 w 21.25 C 18.89 C 16.09 C 11.92 C 6.62 w 47.67 w 45.65 w 41.10 C;
101 | 20.75 w 19.55 C; 17.36 C, 14.47 C 10.52 C 5.75 w 46.07 w 44.09 w 39.65 w
100 | 19.98 w 18.71 w 16.59 C, 13.67 C, 9.83 C, 5.33 w 45.27 w 4331 w 38.94 /4
97 17.78 w 16.56 w 11.54 C, 11.33 C, 7.85 C, 441 w 43.01 w 41.10 /4 36.91 w
93 14.96 w 13.85 w 11.54 C; 8.25 C, 5.38 C; 3.26 w 40.03 w 38.19 w 34.25 /4
90 13.03 W 11.98 W 9.72 W 5.99 C, 4.20 W 2.55 W 37.82 w 36.06 w 32.26 /24
84 9.55 w 8.60 w 6.61 W 3.81 C; 2.54 W 1.50 W 33.45 W 31.85 w 28.34 w
80 7.58 W 6.71 W 4.89 W 2.68 w 1.76 W 1.05 w 30.60 w 29.08 w 25.81 w
70 3.71 w 3.09 w 1.92 W 0.94 w 0.56 w 0.34 W 23.94 w 22.62 w 19.97 w
60 1.40 w 1.04 /4 0.58 w 0.25 W 0.13 W 0.08 W 7.59 w 16.75 w 14.62 w
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Table 3 (continued)

I]= 30 "= 0.30 o1~ 0.50
No delay Delay =1 Delay =3 No delay Delay =1 Delay =3 No delay Delay =1 Delay =3
S | Value Dec.| Value Dec. | Value Dec. | Value Dec. | Value Dec. | Value Dec. | Value Dec. | Value Dec. | Value Dec.
220 | 130.59 122.82 C 120.00 EE | 17741 (C 16830 15140 C 151.92 C 144.16 C, 129.72 C,
210 | 119.02 111.82 C 110.00 EE | 164.59 ( 156.12 C, 14039 140.61 C, 13340 C 120.00 C,
200 | 107.45 C, 100.87 C 100.00 EE | 151.77 C 14395 ( 12941 129.33 122.70  C, 11034 C,
191 | 97.08 ( 91.02 ( 91.00 EE | 14026 133.01 119.54 11923 113.13 101.70 C
190 | 9594 ( 90.00 EFE 90.00 EE | 13899 ( 131.80 11844 118.11 112.07 100.74 C,
180 | 8449 ( 80.00 EE 80.00 EE | 12624 ( 119.69 107.51 G 10692 101.54 91.24 C
170 | 73.08 70.00 EE 70.00 EE | 11351 107.61 C 96.63 C 96.01 C 91.11 C 81.83 (
160 | 61.72 60.00 EE 60.00 EE | 10081 95.60 C 85.81 (G 8523 (G 80.82 C 7254 C
150 | 50.62 ( 50.00 EE 50.00 EE 8828 ( 83.69 (C 75.08 C 74.59 C 70.71 C 63.41 C
145 | 4510 C 45.00 EFE 45.00 EE 82.03 (G 77177 G 69.76  C, 69.33 C 65.73 C 58.92 C
141 | 41.00 EE 41.00 EE 41.00 EE 77.07 G 73.07 C 65.53 C 65.15 C 61.78 C, 5535 C
140 | 40.03 w 40.00 EE 40.00 EE 75.83  C 71.90 C 64.48 C, 64.11 C, 60.80 C, 5447 C,
136 | 36.42 w 36.00 EE 36.00 EE 70.87 C, 6724 C, 60.29 C, 5995 56.91 C 5095
135 | 35.54 w 35.00 w 35.00 EE 69.63 C, 66.08 C 59.25 C 5891 C 5594 C 50.07 C,
130 | 31.28 w 30.86 w 30.86 w 63.53 60.30 54.06 C 53.86 C 51.15 G 4575 C;
120 | 2347 w 23.27 w 23.27 w 51.64 C 49.00 C; 4389 C; 4416 C; 41.83 C; 3733 C
110 16.73 w 16.63 w 16.63 w 40.00 C; 38.08 ( 34.07 G 3481 32.91 C 2926 C
100 11.13 w 11.07 w 11.07 w 29.16 C; 2771 C; 2473 G 25.84 2448 C 21.62 C
94 8.42 w 8.39 w 8.39 w 2298 C; 21.86 C; 1945 20.86 19.72 C 17.31 C
92 7.55 w 7.52 w 7.52 w 2117 G 1997 17.74  C, 19.27 18.18 C 1591 C
90 6.80 w 6.79 w 6.79 w 19.49 w 18.18 w 16.06 C; 17.72 w 16.68 C, 14.55 C
86 5.41 w 5.40 w 5.40 w 16.30 w 15.09 w 12.84 C; 14.80 w 13.75 (G 11.89 C
83 4.46 w 4.45 w 4.45 w 14.04 w 12.88 w 1051 G 12.90 w 11.88 w 997
80 3.68 w 3.67 w 3.67 w 12.01 w 10.90 w 8.55 w 11.10 w 10.15 w 8.11
70 1.62 w 1.62 w 1.62 w 6.31 w 5.41 w 3.43 w 6.12 w 5.33 w 3.55 w
60 0.56 w 0.55 w 0.55 w 2.71 w 2.06 w 0.88 w 2.71 w 2.15 w 0.98 w

Notes:

We show option values and optimal decisions (Dec). This is the case with timing flexibility of the control, and we use time to maturity (7 = 5) with five yearly decision stages (n,= 5). Time-

to-learn (delay) refers to the delay periods for the realization of the control’s impact. Admissible actions (Dec.): Wait (W), R&D Control (C,), and early exercise of investment option (EE). Base case

parameter values are » = = 0.05, ¢ = 0.15, development cost X = 100. Parameter values for R&D control: average impact y, = 0.20, volatility 6, = 0.30, and cost /, = 10. Sensitivity is with respect to

project value S, control cost I;, opportunity cost of waiting 3, exogenous volatility ¢, average impact v, and volatility of control impact o;.
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As expected, a higher payout rate reduces option value whereas a higher volatility
enhances option value. The effect of these two parameters on control activation is more
subtle though. The earlier discussion in Tables 1 — 2 about the impact of timing flexibility
is relevant here. When there is no delay, timing flexibility has bigger impact and
increasing the opportunity cost of waiting to invest or lowering project volatility shifts
the activation threshold earlier. When there is time delay (of several decision stages out
of a total of five), this effect is reduced (with delay = 1) or even reversed (with delay =
3); increasing the opportunity cost of waiting to invest or lowering volatility shifts the
activation threshold to higher project values S. This impact of  is similar to the time-to-
build effect in Majd and Pindyck (1987). A higher level of & when it takes time to
complete development of a new construction means higher erosion of value and therefore
a higher level of project value S is needed to induce investment. Furthermore, since we
allow the investment to be made without activation of the (optional) control, with higher

d the early exercise region in our case becomes more attractive and may even dominate.

2.3.3. Optimal choice between accelerated and sequential control

strategies

In this section we investigate the more involved case where a firm can invest in a more
costly (accelerated) R&D action with higher expected impact, or in a sequential strategy
where a first-stage low-cost R&D investment can be followed by another small-scale
R&D investment. We investigate the critical control thresholds for the single high-cost
high-impact accelerated action versus the low-cost low-impact sequential strategy. Figure

4 describes the set of possible decisions.



Figure 4. Choice between accelerated (C4) and sequential (C;, C;) R&D strategies

(2 =
c, ‘® @ iW, | %
C, @ 2 JU
Notes: The firm starts in a wait mode (/) and has the option to defer investment in controls, or invest in either of two mutually

exclusive strategies: an Accelerated control strategy (C,) that gives a high expected impact at a high cost, and a Sequential (staged)
control strategy (C, C,) where each control has less impact, less volatility, and less cost. The firm can exercise early the investment

option (EE), or abandon the project (4) at any time.

At the start, the firm can either wait (W), implement an accelerated control action Cp by
paying I, invest in the first stage C; of the sequential strategy by paying I;, or move
directly to exercise early (EE) the development/commercialization option. If it chooses
the accelerated action C,, it can later develop the project or abandon it by recovering aly,
or delay further actions (W,). Similarly, development and abandonment options also
exist after first-stage R&D action C,, while the firm can proceed with second-stage R&D
action C, by paying I,. After C,, it can continue with project development (EE), delay

(W,), or abandonment to recover a(/, +1,). Abandonment depends on the recovery

factor, o, as well as the preceding control actions. Childs and Triantis (1999) study R&D

investments by examining the choice between accelerated versus staged (sequential)
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R&D. In their treatment, completion of the research project is mandatory before any
realization of profits, whereas in our case it is not. In contrast to Childs and Triantis
(1999), we focus our investigation more on factors that affect our control strategy choice.
For the base case, we use the same option parameter values as before, and for the
accelerated control strategy the same parameter values as in the previous case of a single
control. For the sequential strategy, we assume initially that each control action involves

half the cost, half the average impact, and half the variance of the accelerated strategy,
e, i=L=57v=y=0.10,and o, =0, = 0.30/+/2 . With this specification, if both
controls of the sequential strategy were simultaneously activated, the total costs and

expected benefits of the sequential strategy would match those of the accelerated one.

The results are illustrated in Table 4. Those for the base case (first column) are rather
typical. Often it is not beneficial to follow a sequential strategy. The value of the
flexibility to stage the R&D investment in this case is not so important, since the total
impact of the accelerated strategy (and its high volatility) can be realized sooner. The
accelerated strategy may have advantages (especially at large project values) since the
investment option can be exercised soon after (whereas the full impact of a sequential
strategy might not be realized). The sequential strategy may still be advantageous at
lower project values, as in the 2" column when the total expected impact is high. We
investigate this case further, focusing on the additional option to abandon and recover
R&D costs, as well as on the sensitivity to the opportunity cost of waiting to invest, and
project volatility. The presence of abandonment enhances option value, and can justify
earlier control activation. In addition, it may also enhance the range where the sequential
strategy prevails. Consistent with the discussions in previous subsections, lower project
volatility and higher opportunity cost of waiting to invest will also justify earlier control

activation.
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Table 4. Accelerated (C,) versus sequential (C/C3) control strategy

74=0.2 74=0.8 74=0.8 74=0.8 74=0.8 74=0.8 74=0.8

7=72=01 | y,=p,=04 | y=p:=04 | p;=p;=04 | p=p,=04 |y;=y,=04 |y =p;=04

( Base Case) & Abandon o =0.05 =03 0=0.03 0=0.08

S Value Dec. | Value Dec. | Value Dec. | Value Dec. | Value Dec. | Value Dec. | Value Dec.
200 | 12745 C, | 31828 C, | 31828 C, | 31828 C, | 31835 C, | 32683 C, | 30576 Cyu
190 | 11594 Cx | 297.11  Cx | 297.11  Ca | 297.11  Ca | 29720 Ca | 30523 Cp | 28522 Cy
180 | 104.49  Cx | 27594 Cx | 27594 Ca | 27594 Cp | 276.05 Cup | 283.64 Cp | 264.68 Cy
170 93.08 Cx | 25477 Cx | 254777 Ca | 254777 Ca | 25494 Ca | 262.05 C, | 24413 Ca
160 81.72  Cp | 233.60 C, |233.60 Cp | 233.60 C, |233.87 Cx |24045 C, | 22359 C,
150 70.62 Cn | 21243 C, | 21243 Cp | 21243 Cp | 21281 Cp | 218.86 Cp | 203.04 C,
140 59.63 Cx | 19126 Cx | 19127 Cx | 19126 Ca | 19176  Ca | 19729 C, | 18250 Ca
130 | 4887 Cx | 170.10 Cx | 170.12 Cx | 170.09 Cx | 17087 Ca | 17573  Cp | 161.96  Cy
120 3862 Cx | 14895 Cx | 14898  Ca | 14892 Cx | 150.11  Ca | 15419 Cy, | 14143 Cy
110 | 2871  Cx | 12781  Cx | 12788  Ca | 12775 Ca | 12939  Cx | 13274  Cp | 12091  Cy
104 2323 C, | 115.16 Cx | 11526 Cx | 115.05 Ca | 11717  Ca | 119.89 Cp | 108.62  Cy
100 19.99 W | 106.74 C, | 106.86 Ca | 106.59 C, | 109.14 C, | 11136 C, | 10043  C4
90 13.03 w 85.73  Ca 86.04 Cx 85.44  Cy 89.23  Cx 90.26  C, 80.05 Cyu
84 9.55 w 7330  Ca 73.71  Ca 72.78  Ca 7742  Cx 7771 Cy 6791 Cy
80 7.58 w 65.06 Cx 65.54 Cx 64.35 Cx 69.89  Cx 69.78  C 59.84 Cyu
76 5.83 w 56.86  Cx 57.58 Ca 5595 Ca 62.52  Cx 6198 C 51.88  Cyu
74 5.08 w 5278  Ca 53.70 Ca 51.77  Ca 5886 C, 58.16 w 4799  C,
70 3.72 w 4492  Cy 46.03 C, 4347 Cy 52.12 w 50.70 w 40.25 Cy
66 2.61 w 37.17  Ca 3851 C, 3523  Ca 45.83 w 43.46 w 3259  Cyu
64 2.16 w 3337 Ca 35.06 C 31.16  Ca 42.80 w 39.94 w 28.78  Cy
60 1.40 w 26.58 C 28.79 C 2328 Ca 36.84 w 33.13 w 21.83  C,
59 1.26 w 2498 C 2727  C 2135 Cy 35.38 w 31.49 w 20.13  Cy
56 0.87 w 2039 G 2285 (C 1629 (C 31.25 w 26.70 w 1509 Cyu
53 0.57 w 16.33 w 18.84 (C 11.60 C 27.33 w 22.17 w 10.66 C,
50 0.35 w 12.69 w 1510 G 735 C 23.52 w 17.95 w 7.68 w
48 0.25 w 10.56 w 12.85 w 480 C; 21.15 w 15.33 w 6.03 w
40 0.04 w 4.08 w 5.87 w 0.25 w 12.81 w 6.76 w 1.79 w
Notes: We show option values and optimal decisions (Dec). This is the case with timing flexibility of the control, and we use time

to maturity (7= 5) with five yearly decision stages (n, = 5). Admissible actions (Dec.): Wait (W), accelerated R&D control (Ca), 1¥

stage of the sequential R&D Control (C,), early exercise of investment option (EE). Base case parameter values are r =8 = 0.05, 6 =

0.15, development cost X = 100. Parameter values for the accelerated strategy: y4 = 0.20, 64 = 0.30, and I, = 10; and for the sequential

strategy: y;=7v,= 0.10, 6;= 06,=6,/\2, and I, = I, = 5. Sensitivity is with respect to project value S, control cost I, opportunity cost of

waiting d, exogenous volatility o, average impact y,, and abandonment.
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Table 5. Accelerated (C,) versus sequential (C1/C,) control strategy:

Learning-by-doing effects and convexity of adjustment costs

Base case and abandonment effect Learning by doing Volatility
effect
Higher
Abandonment | Abandonment | Lower cost | impact
Base Case (linear) (convex) L=5L=4 7,=0.12 o1=06,=0.30
S | Value Dec. | Value Dec. | Value Dec. | Value Dec. | Value Dec. | Value Dec.
200 | 127.45  Ca 127.51  Ca 12751  Cx | 12745 Ca | 12745 Cp | 12745 Cy
190 | 11594 C, 116.06  Ca 116.06 C, | 11594 Cx | 11594 C, | 11594 C,
180 | 10449 C,4 104.63  Ca 104.63 Cx | 10449 C, | 10449 C, | 10449 C4
170 | 93.08 C,4 9325 Ca 93.25  Ca 93.08 Ca 93.08 Ca 93.08 C,
160 | 81.72 C,4 82.03 C,u 82.03 C, 81.72  C\ 81.72  Ca 81.72 Cy
150 | 70.62 Ca 70.99  Ca 7099  Ca 70.62  Ca 70.62 Ca 70.62  Ca
145 | 65.10 Cau 6553  Ca 6553  Ca 65.10 Ca 65.10 C, 65.10 Ca
140 | 59.63 Ca 60.10 Cy 60.10 Cx 59.63 Ca 5981 59.63 Ca
137 | 5636 Cy 56.86 Cy 56.86 Cx 5636 Ca 56.67 C 5636 C,
130 | 48.87 Ca 49.60 Ca 49.60 Ca 48.87 Ca 4942 C 4953 C
128 | 46.80 C, 4756  Ca 4756  Ca 46.80 C, 4740 G 4764 C
120 | 38.62 C, 3954  C, 3954  Ca 39.06 C 3947 C 4021 G
110 | 28.71 Cu 2995 Ca 2995 Ca 2986 C; 30.01 G 3131 G
104 | 2323 C, 24.66  Ca 2466 Ca 2471  C, 24.68 (| 2628 C
101 | 20.75 w 2211  Ca 2211 Cy 2222 C 22,12 C 2386 C
100 | 1999 W 21.28  Ca 2131  C 2140 G 21.28 (C 23.06 C
99 1924 W 2045 Cy 20.54 C 20.61 G 2046 C, 2227 G
95 1636 W 17.48 w 17.67 C; 1752 C 1726 C, 1922 C
94 15.66 W 16.79 w 16.97 w 16.77 C, 1648 1847 C
91 13.66 W 14.80 w 14.98 w 14.60 C 14.41 w 16.28 C
90 13.03 w 14.16 w 14.34 w 1392 w 1377 W 1557 G
86 1129 w 11.70 w 11.95 w 1247 W 11.29 W 1285 C;
80 7.58 W 8.50 w 8.77 w 8.23 /4 8.06 W 9.40 /4
70 372w 4.41 w 4.65 w 4.11 /4 397 W 491 /4
60 140 W 1.79 w 1.97 w .57 W .50 W 2.00 /4
50 0.35 w 0.50 w 0.59 w 040 W 037 W 0.54 w
40 0.04 W 0.07 w 0.09 w 0.05 w 0.05 w 0.07 w

Notes: We show option values and optimal decisions (Dec). This is the case with timing flexibility of the control, and we use time to
maturity (7= 5) with five yearly decision stages (1, = 5). Admissible actions (Dec.): Wait (W), accelerated R&D control (C,), 1% stage
of the sequential R&D Control (C), early exercise of investment option (EE). Base case parameter values are » =J = 0.05, ¢ = 0.15,
development cost X = 100. Parameter values for the accelerated strategy: y, = 0.20, o4 = 0.30, and I, = 10; and for the sequential
strategy: y; =y, = 0.10, 61 = 0, = aA/\/Z, and /, = ,=5. For learning-by-doing: in the lower-cost case /; = [, = 4; in the higher impact
case 7, = 0.12; in the higher volatility case ;= o, = 0.30; abandonment (linear) is for & = 0.50 of R&D expenditures; and abandonment

(convex) is for & =0.90 > a4 = 0.50 > &, = 0.10 .
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2.3.4. The effects of learning-by-doing, and convexity of adjustment

costs

The sequential strategy may often offer certain advantages. We will consider two general
cases, the case of learning-by-doing, and the case of diminishing marginal reversibility of
R&D capital (convexity of adjustment costs). For example, the sequential strategy may
offer more than half the average impact and/or volatility per stage, or the combined
effects can be achieved at a lower total cost. This is the case with learning-by-doing
effects, similar to that analyzed extensively in the case of manufacturing to model
efficiencies in production (e.g., Majd and Pindyck, 1987). When learning-by-doing
efficiencies appear in the form of reduced total costs, the firm invests an initial low
amount /; = 4 in the first stage. It can then implement the second stage by incurring
another cost /> = 4, for a total of 8 (instead of 10 for the accelerated strategy). For similar
reasons we can also justify a higher average impact in the second only stage of a
sequential strategy (7 = 0.12). This may be the case when the particular technology is
disruptive, having low impact at the beginning but a greater one subsequently (e.g.,
Schwartz and Gorostiza, 2000b).

We also provide the example where o1 = 0, = 0.30 (whereas the accelerated strategy has
a combined volatility of oy = 0.30). We have finally considered recovery of capital
invested in sequential R&D in the case of convexity of adjustment costs (decreasing
marginal recovery of investment, as in Abel and Eberly, 1997). We have investigated the
case where after C; we can recover o/, after C; we can recover ail; + axlp, and after Cy
we can recover a4l,. To capture convex adjustment costs, we use a; = 0.90 > a4 = 0.50 >
o = 0.10 (and like before we assume I, = I; + ;) and we compare it to the linear

adjustment cost function with o1 = a4 = o = 0.50.

Table 5 confirms that learning-by-doing and convexity in adjustment costs can play an
important role in R&D project decisions. With learning-by-doing option values are
enhanced and control is activated earlier. The presence of such effects also alters the

optimal decisions: for low values of S, the first stage of the sequential strategy may be
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chosen instead of the costly accelerated strategy; at higher values of S, the sequential
strategy does not offer any advantages. Similarly, when the combined uncertainty of the
sequential control actions is higher than that of the accelerated strategy (last column),
option values are higher and the sequential strategy may again become the preferred
choice. The second column in Table 5 shows the case with abandonment. Abandonment
increases the value of the investment opportunity, and leads to earlier investment in
R&D. The third column presents the results for the case of convexity in the adjustment
costs when R&D capital is reversible. Sensitivity results (not reported) confirm that
convexity increases option value and can enhance the relative attractiveness of the

sequential R&D.

2.4. Conclusions

This paper has investigated control actions (R&D and innovation adoption) with
uncertain outcome in a real options framework with features of path-dependency. In the
special case involving optimal timing of a single action, our results confirm the
significant impact of time-to-learn effects and capital recovery of realized costs. We
investigate the critical threshold to activate the control action (rather than wait, or
proceed directly to project development) and the impact of key parameters on this
threshold. When there is flexibility to activate a control action at an optimal time, an
increase in the dividend-like payout rate or a decrease in the volatility of project value
induces earlier control activation (i.e., lowers the threshold level). The opposite is often
observed in the case with no timing flexibility in R&D. With time-to-learn effects, the
impact of such parameters is more subtle since there are varying degrees of timing
flexibility. We also investigate the case of two mutually-exclusive alternative strategies,
one with a single (accelerated) control action versus a sequential strategy. Interestingly,
the assumed flexibility in a sequential strategy is not always that valuable in this setting.
The sequential strategy often has less appeal unless there is abandonment (with recovery
of R&D invested capital), presence of learning-by-doing effects, or decreasing marginal

recovery of capital invested in research. Our approach can be beneficial in other areas
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beyond R&D, such as in marketing research and advertisement actions prior to the

introduction of a new product.
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Appendix

This Appendix investigates the convergence of our numerical lattice scheme. We have
investigated the accuracy of our lattice scheme with one step per month, in the simple
case with a single control available at # = 0 that has an analytic solution. To make
exposition simpler we consider the case where the cost of control is zero and control is

always activated (y, >0). The accuracy of the numerical scheme can be established by

how closely it approximates the known benchmark with analytic solution (equation 3).
We provide numerical results with several parameterizations and compare against the
known analytic solution. Table A0 summarizes the results.

Table A0. Accuracy of numerical lattice against analytic benchmark (European

option with single control without timing flexibility)

% Difference

Numerical Analytic (Num/Anal)
S$=80 | S=100 | $=120 | S=80 | $=100 | S=120 | S=80 | $=100 | S=120
71=0, 61=0 3.536 | 10.329 | 20.807 | 3.511 | 10.372 | 20.822 | 0.007 | -0.004 | -0.001
0=0.05, | y,=0.1, 64=0.3 | 8.994 | 18.979 | 31.874 | 9.026 | 19.041 | 31.825 | -0.004 | -0.003 | 0.002
6=0.15 | =05, 6:=0.3 | 31.258 | 53.405 | 77.569 | 31.374 | 53.493 | 77.570 | -0.004 | -0.002 | 0.000
71=0.1, 6:=0.5 | 13.255 | 23.669 | 36.367 | 13.199 | 23.751 | 36.362 | 0.004 | -0.003 | 0.000
71=0.5, 6:=0.5 | 35.925 | 57.081 | 80.286 | 35.924 | 57.197 | 80.314 | 0.000 | -0.002 | 0.000
71=0, 1=0 0.739 | 2979 | 7.639 | 0.731 | 3.023 | 7.686 0.010 | -0.015 | -0.006
0=0.10, | y,=0.1, 54=0.3 | 3.254 | 8.115 | 15447 | 3.270 | 8.171 | 15.407 | -0.005 | -0.007 | 0.003
0=0.15 | 7,=0.5, 6:=0.3 | 15.079 | 29.148 | 45.996 | 15.138 | 29.221 | 45.962 | -0.004 | -0.002 | 0.001
7=0.1, 6,=0.5 | 6.245 | 12.160 | 20.033 | 6.200 | 12.233 | 20.036 | 0.007 | -0.006 | 0.000
7,=0.5, 6:=0.5 | 19.803 | 33.736 | 49.976 | 19.756 | 33.829 | 49.980 | 0.002 | -0.003 | 0.000
71=0, 6,=0 22.481 | 32.873 | 44.632 | 22.449 | 33.009 | 44.531 | 0.001 | -0.004 | 0.002
0=0.05, | y,=0.1, 64=0.3 | 27.777 | 39.912 | 53.463 | 27.732 | 40.060 | 53.350 | 0.002 | -0.004 | 0.002
0=0.5 71=0.5, 6:=0.3 | 52.922 | 73.777 | 96.213 | 52.903 | 73.969 | 96.113 | 0.000 | -0.003 | 0.001
71=0.1, 6:=0.5 | 29.430 | 41.735 | 55.429 | 29.366 | 41.891 | 55.307 | 0.002 | -0.004 | 0.002
71=0.5, 6:=0.5 | 54.900 | 75.823 | 98.311 | 54.856 | 76.023 | 98.199 | 0.001 | -0.003 | 0.001

Notes: Comparative results are provided for the case of a European call option with a single embedded managerial control

using the numerical lattice and the analytic solution of equation (3). Parameter values are X = 100, » = 0.05, 7= 5, and cost of

control /- = 0. We provide sensitivity with respect to the level of S (80, 100, 120), the average impact y (0.10, 0.50), the volatility

of impact o (0.30, 0.50), the opportunity cost of waiting J (0.05, 0.10), and the project volatility ¢ (0.15, 0.50). The case where

= 01 = 0 is equivalent to the absence of control.

47




Sensitivity results are given with respect to the moneyness of the option (S being above,
equal to, or lower than X), the average impact and volatility of the impact, the
opportunity cost of delaying (8), and project volatility (o). We value a five-year
investment option (using a discretization scheme with one step per month). The results
confirm that very reasonable accuracy levels can be achieved (with numerical error in all
cases investigated being less than 1.5%). This comparison is not a proof of accuracy
since only a special case (without optimal R&D timing) allows for an analytic solution,

but it provides evidence that high accuracy levels can be achieved.

We examine all cases considered in the applications with a different number of steps and
check for numerical differences when more steps are used in the lattice implementation.
Table A1 presents results for the optimal control timing case, Table A2 for the time-to-
learn case, and Table A3 for the choice between accelerated versus sequential actions
(without and with learning-by-doing). We have checked from 3 to 24 steps per year (3, 6,
9,12, 15, 18, 21, and 24-step schemes), but report only a subset due to space constraints.
Convergence is rather fast and the chosen 12-step scheme is very adequate; from 12 steps
and beyond oscillations are of minimal magnitude, and the difference between our
scheme and ones that are somewhat more accurate but highly more intensive
computationally is negligible. Further, optimal decisions are generally not affected
(except in just a few cases). To save space we report option values for 12, 21, 24, and the
average of 21 and 24 steps, and show the % difference between the 12-step scheme used
and either the 24-step scheme or the average of the 21 and 24 steps (an odd and a nearby
even number). The chosen 12-step scheme differs marginally from the more accurate
results provided by the 21/24-step schemes. Our calculations show that the numerical
model appears to converge relatively quickly and the chosen lattice scheme with one step

per month is adequate.
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Table Al. Investigation of numerical accuracy/convergence:

Optimal timing of a single R&D action

y = 0.2 (Base case) y=0 vy=04
S=
Number of yearly steps 80 | $=100 | S=120 | S=80 | S=100 | $=120 | S=80 | S=100 | $=120
12 7.584 | 19.980 | 38.618 | 3.668 | 11.071 | 23.265 | 18.033 | 40.517 | 66.689
21 7.576 | 20.010 | 38.585 | 3.634 | 11.128 | 23.270 | 18.139 | 40.624 | 66.719
24 7.593 | 20.003 | 38.596 | 3.654 | 11.098 | 23.271 | 18.163 | 40.599 | 66.733
Avg(21,24) 7.584 | 20.007 | 38.591 | 3.644 | 11.113 | 23.271 | 18.151 | 40.611 | 66.726
% Diff.(24-12) 0.001 | 0.001 | -0.001 | -0.004 | 0.002 | 0.000 | 0.007 | 0.002 | 0.001
% Diff.(Avg(21,24)-12) | 0.000 | 0.001 | -0.001 | -0.007 | 0.004 | 0.000 | 0.007 | 0.002 | 0.001
o1= 0.3 (Base case) o,=0.1 61=0.5
S=
Number of yearly steps 80 §$=100 | $=120 | S=80 | $=100 | $S=120 | $S=80 | $=100 | $=120
12 7.584 | 19.980 | 38.618 | 6.081 | 17.586 | 35.329 | 11.104 | 25.835 | 44.160
21 7.576 | 20.010 | 38.585 | 6.085 | 17.604 | 35.390 | 11.105 | 25.908 | 44.069
24 7.593 | 20.003 | 38.596 | 6.090 | 17.579 | 35.401 | 11.107 | 25.896 | 44.133
Avg(21,24) 7.584 | 20.007 | 38.591 | 6.087 | 17.591 | 35.395 | 11.106 | 25.902 | 44.101
% Diff.(24-12) 0.001 | 0.001 | -0.001 | 0.002 | 0.000 | 0.002 | 0.000 | 0.002 | -0.001
% Diff.(Avg(21,24)-12) | 0.000 | 0.001 | -0.001 | 0.001 0.000 | 0.002 | 0.000 | 0.003 | -0.001

Notes: Time to maturity (T = 5) with five yearly decision stages (ny=5). For the base case we use r = 6 = 0.05, 6 = 0.15, development
cost X =100. Parameter values for R&D control: average impact y;= 0.20 with volatility ¢; = 0.30, and cost I; = 10. Admissible
actions: Wait (W), R&D Control (C,), and early exercise of investment option (EE). Sensitivity is with respect to the average impact

v; and the volatility of control impact ;.
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Table A2. Investigation of numerical accuracy/convergence:

Time-to-learn

y =0.2 (Base case) y=0 y=04
S=
Number of yearly steps 80 | $=100 | $=120 | S=80 | $=100 | S$=120 | S=80 | $=100 | S=120
12 5.813 | 17.686 | 34.746 | 3.668 | 11.071 | 23.265 | 15.550 | 36.452 | 59.916
21 5.819 | 17.711 | 34.755 | 3.634 | 11.128 | 23.270 | 15.727 | 36.567 | 59.978
24 5.826 | 17.715 | 34.755 | 3.654 | 11.098 | 23.271 | 15.759 | 36.585 | 59.988
Avg(21,24) 5.822 | 17.713 | 34.755 | 3.644 | 11.113 | 23.271 | 15.743 | 36.576 | 59.983
% Diff.(24-12) 0.002 | 0.002 | 0.000 | -0.004 | 0.002 | 0.000 | 0.013 | 0.004 | 0.001
% Diff.(Avg(21,24)-12) | 0.002 | 0.002 | 0.000 | -0.007 | 0.004 | 0.000 | 0.012 | 0.003 | 0.001
o1= 0.3 (Base case) o;=0.1 61=0.5
S=
Number of yearly steps 80 | $=100 | $=120 | S=80 | S=100 | S=120 | S=80 | S=100 | $=120
12 5.813 | 17.686 | 34.746 | 4.612 | 15.011 | 32.052 | 9.128 | 23.054 | 39.565
21 5.819 | 17.711 | 34755 | 4.585 | 15.054 | 32.080 | 9.143 | 23.052 | 39.542
24 5.826 | 17.715 | 34755 | 4.588 | 15.052 | 32.085 | 9.136 | 23.046 | 39.541
Avg(21,24) 5.822 | 17.713 | 34.755 | 4.586 | 15.053 | 32.083 | 9.140 | 23.049 | 39.541
% Diff.(24-12) 0.002 | 0.002 | 0.000 | -0.005 | 0.003 | 0.001 | 0.001 | 0.000 | -0.001
% Diff.(Avg(21,24)-12) | 0.002 | 0.002 | 0.000 | -0.006 | 0.003 | 0.001 | 0.001 | 0.000 | -0.001

Notes: Time to maturity (7 = 5) with five yearly decision stages (n, = 5). For the base case we use r = § = 0.05, ¢ = 0.15,

development cost X = 100. Parameter values for R&D control: average impact y; = 0.20 with volatility o, = 0.30, and cost I, = 10.

Admissible actions: Wait (), R&D Control (C)), and early exercise of investment option (EE). Time-to-learn (delay) refers to the

delay periods for the realization of the control’s impact. Here we assume delay = 2. Sensitivity is with respect to the average impact

v; and the volatility of control impact ;.
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Table A3. Investigation of numerical accuracy/convergence:

Accelerated versus sequential strategy with learning-by-doing

No learning by doing
vy = 0.2 (Base case) y=0 y=04
S=
Number of yearly steps 80 | S=100 | =120 | S=80 | $=100 | S=120 | S=80 | $=100 | S=120
12 7.584 | 19.986 | 38.618 | 3.668 | 11.071 | 23.265 | 18.035 | 40.517 | 66.689
21 7.576 | 20.010 | 38.585 | 3.634 | 11.128 | 23.270 | 18.139 | 40.624 | 66.719
24 7.593 | 20.003 | 38.596 | 3.654 | 11.098 | 23.271 | 18.166 | 40.599 | 66.733
Avg(21,24) 7.584 | 20.007 | 38.591 | 3.644 | 11.113 | 23.271 | 18.152 | 40.611 | 66.726
% Diff.(24-12) 0.001 | 0.001 | -0.001 | -0.004 | 0.002 | 0.000 | 0.007 | 0.002 | 0.001
% Diff.(Avg(21,24)-12) | 0.000 | 0.001 | -0.001 | -0.007 | 0.004 | 0.000 | 0.007 | 0.002 | 0.001
1= 0.3 (Base case) c=0.1 =05
S=
Number of yearly steps 80 | $=100 | S=120 | S=80 | S=100 | $=120 | S=80 | S=100 | S=120
12 7.584 | 19.986 | 38.618 | 6.081 | 17.586 | 35.329 | 11.170 | 25.835 | 44.160
21 7.576 | 20.010 | 38.585 | 6.085 | 17.604 | 35.390 | 11.176 | 25.908 | 44.069
24 7.593 | 20.003 | 38.596 | 6.090 | 17.579 | 35.401 | 11.176 | 25.896 | 44.133
Avg(21,24) 7.584 | 20.007 | 38.591 | 6.087 | 17.591 | 35.395 | 11.176 | 25.902 | 44.101
% Diff.(24-12) 0.001 | 0.001 | -0.001 | 0.002 | 0.000 | 0.002 | 0.001 | 0.002 | -0.001
% Diff.(Avg(21,24)-12) | 0.000 | 0.001 | -0.001 | 0.001 0.000 | 0.002 | 0.001 | 0.003 | -0.001
Learning by doing (Lower costs of sequential strategy)
y = 0.2 (Base case) y=0 y=04
S=
Number of yearly steps 80 | $=100 | =120 | S=80 | $=100 | S$=120 | S=80 | $=100 | S=120
12 8.226 | 21.403 | 39.057 | 3.676 | 11.094 | 23.275 | 19.408 | 40.971 | 66.689
21 8.225 | 21.416 | 39.034 | 3.649 | 11.140 | 23.279 | 19.498 | 41.010 | 66.719
24 8.231 | 21.409 | 39.037 | 3.661 | 11.117 | 23.286 | 19.514 | 41.020 | 66.733
Avg(21,24) 8.228 | 21.412 | 39.035 | 3.655 | 11.128 | 23.282 | 19.506 | 41.015 | 66.726
% Diff.(24-12) 0.001 | 0.000 | -0.001 | -0.004 | 0.002 | 0.000 | 0.005 | 0.001 | 0.001
% Diff.(Avg(21,24)-12) | 0.000 | 0.000 | -0.001 | -0.006 | 0.003 | 0.000 | 0.005 | 0.001 | 0.001
1= 0.3 (Base case) o=0.1 o1=0.5
S=
Number of yearly steps 80 | S=100 | $=120 | S=80 | S=100 | S=120 | S=80 | S=100 | $=120
12 8.226 | 21.403 | 39.057 | 6.300 | 18.051 | 36.105 | 12.732 | 27.100 | 44.229
21 8.225 | 21.416 | 39.034 | 6.284 | 18.077 | 36.110 | 12.712 | 27.102 | 44.206
24 8.231 | 21.409 | 39.037 | 6.294 | 18.059 | 36.110 | 12.715 | 27.090 | 44.191
Avg(21,24) 8.228 | 21.412 | 39.035 | 6.289 | 18.068 | 36.110 | 12.713 | 27.096 | 44.199
% Diff.(24-12) 0.001 | 0.000 | -0.001 | -0.001 | 0.000 | 0.000 | -0.001 | 0.000 | -0.001
% Diff.(Avg(21,24)-12) | 0.000 | 0.000 | -0.001 | -0.002 | 0.001 | 0.000 | -0.002 | 0.000 | -0.001

Notes: Time to maturity (7 = 5) with five yearly decision stages (n, = 5). For the base case we use r = § = 0.05, ¢ = 0.15,

development cost X = 100. Admissible actions: Wait (W), accelerated R&D control (Ca), 1¥ stage of the sequential R&D Control

(C)), early exercise of investment option (EE). Parameter values for the benchmark case: Accelerated strategy: ya= 0.20, 6, = 0.30,

and I, = 10; Sequential strategy: v, = y, = 0.10, 6, = 6, = 6,/V2, and I, = , = 5. For learning-by-doing the sequential strategy has

lower costs per stage (/,= L= 4).
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3. Sequential options with exogenous jumps and active

interacting managerial control actions

Abstract

We study the interaction between learning and value-enhancing actions with random
outcome before irreversible investment decisions are made. We employ diffusion process
for the value of the project and we add endogenous, optimally determined, costly
managerial controls to learn or enhance value. This framework allows the study of the
effect on the value of firm’s investment opportunities of options to change the distribution
of future payoffs through for example marketing research and advertisement (or product
redesign or repositioning), basic research or exploration actions and product attribute or
quality enhancing actions. The framework also allows the analysis of optimal timing of
such actions, optimal timing of introduction of pilot projects, early development of the
complete project and abandonment options. We provide analytic formulas for sequential
options with embedded control and learning actions under the assumption that project
value follows either diffusion or a jump diffusion process and we investigate the decision
regions that will appear under different parametization of the model. We also extend the
model to complex multistage problems with path dependent actions, by developing a
numerical lattice based model. The implementation for the jump-diffusion process case is
provided in the appendix. We illustrate the importance of this theoretical framework

through an application for the valuation of new product development.
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3.1. Introduction

The real options approach to firm and project valuation extends traditional NPV analysis
and accommodates managerial flexibility to react under uncertainty. For example,
McDonald and Siegel (1986) value an irreversible investment opportunity when the value
of the project and its costs are uncertain and the firm has the flexibility to delay
investment. They show that the value of the investment opportunity can be substantially
higher than the NPV with the extra value reflecting the value of waiting. There are
several other cases where the real option flexibility is important like the case of flexible
manufacturing systems (e.g. Kulatilaka (1988)), construction (e.g. Majd and Pindyck
(1987)) R&D investments (e.g. Pennings and Lint (1997) or Childs and Triantis (1999))
and the adoption of technological innovations (Grenadier and Weiss (1997)). Recently,
there is a tendency to also incorporate game theoretic interactions, optimal capital
structure and other corporate policy features in these models (see for example Lambrecht,

2001, and Mauer and Sarkar, 2005)

An aspect not incorporated in many real options models is that of the value of learning
and managerial intervention to enhance value or reduce costs that may have action-
specific uncertainty. In the present paper we make this step and introduce managerial
“control” options to enhance project value through learning or direct value enhancing
actions (or efforts to reduce costs). Learning options prior to investment include
investments in marketing research, R&D or exploration activities and pilot projects or
experimentation of new production processes. These actions resolve uncertainty about
true project value or cost enabling management to have valuable information before
irreversible investment is undertaken. Childs et al. (2001) (see also Childs et al., 2002)
also model information acquisition for options on noisy claims and Epstein et al. (1999)
discuss the value of market research in a real options model. Impulse-type random
controls were introduced in real options by Martzoukos (2000) who also analyzes
learning. Direct value-enhancing (control) actions include advertising, efforts to improve
the attributes or the quality of a product or efforts to reduce cost through adoption of new

technologies in production. These actions are targeting to an increase in project value
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albeit have a random outcome. Traditionally, the way to incorporate sequential actions to
improve value in the real options framework has been through compound-growth options.
Differentiation among alternative strategies is done through different growth factors. Our
approach captures the action-specific uncertainty of these actions and at the same time
captures interactions in the form of path-dependency i.e. one action affecting the
expected average impact and volatility of another action. Abraham and Taylor (1997)
create an option pricing model that incorporates the uncertain impact of exogenous
events; in our case action specific uncertainty is endogenously determined in the model at
optimal time. Another possible method of capturing synergies between different actions
is to analyze their values separately and incorporate correlations linking the effect of
different actions (e.g. in Childs et al. (1998) where they compare sequential versus

parallel development).

Our setting captures the notions described in Weitzman and Roberts (1981) while also
maintaining the correct adjustment for risk in the real options framework. The learning
and the control actions are induced endogenously by the firm by optimally weighing the
expected benefits (in terms of additional option value) compared with the additional
costs; the additional induced risk is assumed to be firm specific and thus not priced. Other

related papers is Childs and Triantis (1999) and Grenadier and Weiss (1997).

We first develop analytic formulas for compound-growth options with embedded
learning and attribute improvement control actions in a two stage model. Our analytic
model includes Geske (1979) and Longstaft (1990) as special cases and is not limited to
the standard call on call case but extend to other cases like call on put, put on call and put
on put. We similarly provide formulas for the case where the underlying asset follows
jump diffusion with multiple sources of jumps. Furthermore, we show how to incorporate
path-dependency using the analytic formulas. We then focus on the compound-growth
option (call on call) case that has interesting applications in real investment problems.
The analytic formulas show how learning and control actions affect the value of an
investment opportunity, the probability to proceed to next stage, the probability to
proceed and develop in the final stage and the probability to develop early.
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Real life investment problems include multiple stages decisions with the potential for
early development, optimal timing of actions, and interactions between learning and
control actions. For these reasons we extend the analysis by implementing a numerical
model that can be used for the evaluation of such complex cases with path dependencies.
Our theoretical model is then applied in the context of new product development showing
the importance of marketing research, attribute or quality improvement actions,

advertisement, pilot projects, etc.

3.2. Model assumptions

In this section we set up the framework and assumptions that we will also use to develop
the analytic formulas of the next section and the more general multistage model in section
IV. Our first assumption relates to the stochastic process of the underlying asset (present
value of project cash flows). Our results in the main text are based on diffusion case and
the jump diffusion with multiple classes of jumps case is discussed in the appendix. In the

possible presence of i=MC,,MC,,..MC,  optional managerial learning or control

actions the process is defined as:

%:adt+0'dz+kidqi (1)

t

Parameter a denotes the expected rate of return (capital gain) of the project (including
the impact of jumps). For managerial controls we assume that they induce an additional
effect on expected returns''. Parameter o is the standard deviation of the rate of return,
and dz is an increment to a standard Wiener process describing the exogenous uncertainty

of the state variable. Parameter &, is a random variable that represents the effect on

" This effect can be thought to be an effect not captured by historical information but based on managerial
discretion. Effectively, the realization of this return is on managerial discretion by weighing the expected
benefits with the expected costs of control actions.
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project returns of control or learning action i and dg, is a control variable that takes the

value one if the action is activated and zero if not.

The PDE that the option should satisfy is

NMC

rV = %azSzVSS +(r=38)SVs +V, ++Y_E[[V(SY,.t)-V(S,t)ldg, ] 2)

i=1

To derive the PDE one can follow Merton’s (1976) replication argument, which imposes
two further assumptions, that the intertemporal CAPM of Merton (1973b) holds and that
managerial controls have firm specific risks, which are uncorrelated with the market
portfolio and thus not priced. Alternatively, we can use the framework developed in
Garman (1976), Cox, Ingersoll, and Ross (1985) and Hull and White (1988) that use a

complete markets framework and no arbitrage arguments.

For real options valuation the latter approach is probably more suitable and avoids
assumptions about the existence of a “twin” security that mimics the risk of the project
cash flows and is used to replicate the option. The no-arbitrage approach maintains the
expected returns should be adjusted to their certainty equivalent measure and their
payoffs discounted at the risk free rate (see for example Constandinides (1978) for an
application of this idea in project appraisal)'>.An opportunity cost of waiting (&) that
should be deducted from the equilibrium required rate of return (see McDonald and
Siegel, 1984) is also incorporated, which may also be used to model exogenous
competitive erosion to the project’s cash flows (e.g., Childs and Triantis, (1999), and

Trigeorgis (1996) ch.9)

Denoting the accumulated (Brownian) noise from ¢ = 0 to 7 by Z, we then have that asset

values at a future period 7 will be determined by:

12 As stated in Constantinides (1978) the project value S may or may not be traded in capital markets but
the results will still hold by requiring only that assets earn the equilibrium rate of return as defined by the
intertemporal CAPM.
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1

‘;—T = exp| (r — 6—%2)T +0Z, }{H(l + kidql.)} (3)

We assume that the effect of control actions are log-normally distributed. Each control,

learning action has impact ¥ = 1+, that follows a lognormal distribution:

Y = (1+k;) ~ log N{exp(7,), exp(7, )(exp(o?) = 1)°*) “4)

The assumption of log-normally distributed controls is adopted since it allows non-
negative asset values, and also, conditional on control, asset values retain log-normality.

We will use (y,,0,)to denote characteristics of control or learning actions. We use
7; > 0 to describe efforts to enhance value with random outcome. Alternatively, if S was
interpreted as a cost , 7, <0 would mean efforts to reduce costs. In this study we focus on

efforts to enhance project value. The special case of y, =0 with o’ >0 while

methodologically similar to the control case, it is nevertheless used to capture costly
learning actions i.e. resolution of uncertainty about the true project value. These
formulation is consistent with a Bayesian approach and the above parameters of the
lognormal distribution can be estimated as the parameters of the preposterior distribution
(see Kaufman,1963, and a recent application by Davis and Samis, 2005).Alternative
approach called empirical based on Hui and Berger (1983) for estimating the volatility of

option prices is presented in Karolyi (1993) and is applied for financial options.
ption p p y pp p

The risk neutral distribution of S at 7 conditional on the activation of control i/ and on the

is given by:
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The distribution of returns conditional on no activation of control is found by

settingy, =0 =0.

The boundary condition at the maturity of the option 7 is the maximum of the values of
the decision to exercise (EE) and getting S, — X (X is the final/development cost) or
abandon (A) the project for some recovery amount a of the total costs TC that have been
paid until that point. The recovery amount may be a function of the costs that have been
paid for enhancing the product features or resale of expertise obtained. In the most
general setting we allow the firm to take decisions at N, discrete points in time before
expiration of the option. The decision points can be at any point in time but for
convenience we use equally spaced decision points for the numerical model with denote

N, —DT
t, =0,¢, :L,t2 :]\2[—]1,...,@1 :M to be the corresponding time where

dec dec dec

actions can be taken before the maturity of the option. For the analytic solutions with two

stage problems we have decisions at #, =0 and #, <7 .Note that at time 7 the decision

would either be exercising or abandoning the project. Growth options like pilot projects
are incorporated by allowing the firm to acquire a fraction m of the project value. Growth
factors can in general exist under different decisions where the firm can continue to the

next stage i.e. in modes {W,MC,,MC,,...,MC NMC} and can be path-dependent. The set of
all possible actions is denoted by M = {W,A,EE,MCI,MCZ,...MCNC,WI,Wz,...WNMC}; it
includes wait (W), abandon ( 4 ), exercise investment option ( EE) , a set of managerial
controls (MC,) and a set of possible states of inaction after a control has been performed
(W.). Note that W, denotes the “wait” mode after managerial enhancement action i has

taken place and is used a separate action to keep track of the realized path. At any

decision point in time#, and depending on the problem, the set of available choices M,

will not necessarily include all decisions and will be a subset of the superset M i.e.
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M, c M . The set of actions at t as well as their characteristics (e.g. impact and volatility
of control and costs) is affected by the action history M, ; this is practically monitored by
keeping track of the previous actiond, ,. This allows the incorporation of path-
depedency in the problem specification so that the value of the project under decisiond,,
V% is a function of the history of actions (M, or d, ). The modes {EE, A} are

absorbing states since under both cases the decision process stops (no further actions are

performed).

3.3. Analytic formulas

We now derive valuation formulas for investment options with embedded multiple
managerial controls with different characteristics in a two stage framework. We also
analyze the optimal timing issue by considering early exercise and extendible options.
Multiperiod extensions of the valuation formulas are feasible but involve keeping track of
the decision paths and the evaluation of multivariate normal integral. For these reasons
we present a numerical multistage lattice solution in the next section that can also

accommodate path dependency between actions.

Here we present the compound call on call case with embedded learning, control, early

exercise and abandonment at #, =0 and ¢, >0 (the appendix, section A provides other

interesting cases of call on put, put on call and put on put and appendix B solutions for

the jump diffusion case). At ¢, =0 if the firm early exercises the investment option will
get S, — X and if it decides to abandon zero; with respect to the latter the firm is at least

in the same position by deciding to wait. If the firm decides wait or managerial control

action i.e. d, e M, \{EE, A} then the payoff at an intermediary point #, <7 under

decision d, and conditional on decision d,, is generally defined by:

VA, 4 M M) =m(d,,d)S, +e""ENS, | M, M)~ X(d,,d,)+aX, (6)
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where d, e M, ={W,EE,MC,,MC,,..MCy }. With d, =W the second term is

basically a standard call option. With d, = MC, the second term is given by a modified

version of the standard call option formula that we describe below (see also Martzoukos,
2003). Note that the value function at the intermediary point is a function of previous
decisions; the growth factors, expected impact and volatility but also the costs are
functions of previous decision. Furthermore, the model allows the incorporation of
recovery of a percent of past paid costs. The model of Geske (1979) and Longstaff (1990)
are special cases of this specification. Geske (1979) model applies zero growth factors
and abandonment option and no managerial controls and Longstaff (1990) does not

include growth options, managerial controls and abandonment options.

We next define a general two stage compound option valuation formula that

accommodates early exercise {EE}, wait or extend {#} and N,,. managerial controls at
the intermediary point ¢, is as follows. X, defines cost of delaying the option to next
stage; X, =0 will be used for standard wait and X, >0. X, defines the cost of early
exercise which can in general be different than X and X, ,i=MC,,MC,,.MC,
denotes the costs for the each of N, controls. Additionally, define
R,, d, e{W,EE,MC,,MC,,..MC, }to be the number of regions that decision

d,optimally appears at ¢, and use L to denote the lower boundary of that region and H to

denote the high boundary of that region. Then the value of the general sequential two

stage option is given by:
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Call_on_Call (.|d, € M \{EE, A} = {W,MC,,MC,,..MC, })=

REE
Se 0o |:Z [N, (aéE,l )—N, (agE,l )]:|
=

1=1

- XEEe_rtl |:ZEE: [N, (aéE,z) - N, (agE,z )]i|

+m(d,, W)Se_5t1+y0 [% [V, (a;/,l) - N, (al/ll_/],l )]:|

=1

-X(d,, W)e"" [Zu [N, (aVLV,z) - N, (a;/[,z )]}

Ry,

Nyc m(do 5 i)S€_§tl+y0 Z [Nl (atL,l) o Nl (aiﬁ )]

+ z I=1

Ry,
i1 Ll

- )((do’i)eﬂstl Z[Nl (azL,z) - N, (ai,HZ )]

=1

+e aX, N(=a,,)

RW
+ Se 0T+ {Z[N, (ay 150y 15 Py ) = Ni(ay by 1 Py )]}

=1

I=1

Ry
- Xe™" [Z [N, (aVLV,Z ’bW,2 s Pw)— N, (a;/[,z 5 bw,z > Pw )]}

i=1 =1

N . Rye
+ Z Se ™o 070 Z[Nl (aiL,l 2b15p) =N, (ailj D15 p; )]}

Ny Ry

- Z XeirT Z[Nl(ailjzabj,zapi)_Nl(aj{{zabi,zapi)]}

i=1 =1

RW

+e" Z a(XdO +X(dy,W))IN, (aVLV,2 =Dy =Py )] — N, (avltj,z =Dy =Py )]
I=1
Nyge Buc;

+eT Y > a(X, + X(do, DN, (a57b,5-p)] = N, (a)5,=b,5.-p))]

i=l I=1

way _ I0(S/8 " (dy,d)) +(r=5+0.567) +7,, +0.50;,

where a’

2

2 2 \1/2
(c°t,+0y)

(7
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(L,H) (L,H)

_ 2 2 \1/2
a,s =a, —(0°t +oy)

In(S/S;(dy,d))+(—T +(y, +7/(d0,d1))+0.562T+O.5(c7a2,n +0’(d,,d,))
- (0’ T+o) +0°(d,.d,))"

d,.l

bdl,z =bd1,1 _(02T+0§0 +0'2(d09d1))1/2

(O-ztl +O_§ ) . . D)
Py = oT+o" + ZZd ) where for decision d, =W ,0°(d,,W)=0 and
o 04, 7O (4y,4,

_ (6t +07)
\ (6T +07)

w

Ri
Note that {Z[N,(af 2)—N,(a,-’h;)]},ieM1 can be interpreted as the probability of
I=1
reaching a particular region i at t, while
Ri
Y IN,(afy.b,0.p) = Ni(alh.b, 5, p)]i € MN{EE} = (W, MC,,MC,,..MC,, }gives the
I=1 o
probability of reaching region i at f#and also exercising investment option at7 .
Furthermore,
Ri
D IN(afy b, —p)— Ny(a]y,=b,,,—p)].i € M \{EE} = {W,MC,,MC,,..MC,, }
=1

denotes the probability to reach region i € M, at ¢, and abandoning the project at 7 .

R;
At the same time m.Se *"*7 {Z[N,(afl)—N,(aﬁ)]} gives the expected value that the

/=1

optionholder gets if it enters region ie M at ¢ (note that for EE m;, =1) and
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R.
Se M WNIN (a}1,b,1,p) = N,(a]1,b,,,p)] |gives the expected value the
I=1

optionholders gets at 7' given that he has passed through decision i € M, \ {EE} (note
that for W y(d,,d,) =0) at ¢,. Insection A of the appendix we provide similar formulas

for compound-growth options of call on put, put on call and put on put. Appendix B
provides formulas for all the cases for the special case of two sequential controls using
the jump diffusion assumption where all the information needed for numerical evaluation

is provided.

Equation (7) as well as the generic formulas in appendix A have some “abstract” features.
There are two pieces of information that need to be determined (1) the number of optimal
regions for each action (2) the critical point for switching from one region to the another.
The discussion that follows focuses exactly on the determination of this information for

the call on call case. Similar discussion applies for other cases but we avoid it for brevity.

The critical threshold at maturity is determined by applying the value matching condition:
S;(do-dl)_X = a(X(d09d1)+Xd0)

Note that depending on the path the critical trigger point at maturity will differ.

At the intermediary point, we need a graphical inspection for finding all possible regions.
Although there might be special cases where we know the regions a priori-some
mentioned in next section-in general there is no easy way to determine the optimal payoff
(the optimal decisions might interchange at differentS, ). The exact critical point of S
where we switch from optimal decision ito j would be determined by solving for S that

equates the payoff of the current optimal decision with the new one i.e. by applying a

value matching condition of the form:
VI(S: (dOJdi)atl | MaMt_) = VJ(S: (dOJd_,‘)atl ’ MaMt_) la] € Ml
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Note that in general the payoff at ¢, will have the following form:
Vi(S:tl | M, M, )= [M,e{W,MC,} [miS + e 0o )N(V1) - X, e_r(r_tl)N(Vz)]
- IM,e{W,MC,}X(doadi) + a(XdO + IM,E{W,MCi}Xi)N(_VZ)
with

- In(S/S;(dy,d))+ (@ —6)T —t,)+y(d,,d,)+0.50°(T —t,)+0.50°(d,.d,)
: [6’T +0%(d,,d,)]"”’

V, =V —[O'2T+O'2(d0,d1)]1/2

Ly cow e,y =1, zero otherwise

Theoretically S, can take any values from [0,00) and so this searching process would be

practically infeasible if the payoffs intertwine as S increases with no payoff dominating
the other. Fortunately we are able to determine which payoffs dominate at the two limits
and so this searching process can be accomplished by only searching within a finite
interval. For S e Oobviously the optimal decision would be to abandon the project13.
For the upper decision region suppose for example that we find that decision i dominates
other decisions for a high value of S, S" and we want to ensure that i dominates all other
decisions for any S > S”". To ensure this we only need to show that the rate at which the

payoff of i increases is higher than any other slope forS > S” .Since the slope of the

payoff function shows the increase in the payoftf though an incremental increase in S, this

1 Another choice would be to wait until maturity but as a practical matter this would also give a zero
payoff. Furthermore if the abandonment value is some positive amount then we will always choose to
abandon.
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means that decision i will be preferred for a high value of §, if its slope for any S > S,

is higher than the other payoffs. From equation 6 we find that:

V(s |.
Slopedl=—a(St‘ ) = m(do,dl)+ef‘s(Tftl)”(d“’d‘)N(adljl)

Also note that for a sufficiently large S we have N(a, ,) -1 for W or MC payoffs. If by

moving from slope at S”to slope evaluated at S >S” the increment in N(a 41) 18

negligible this means that decision will be determined from growth factor and expected

impact y. The optimal decision for high values of S thus in fact depends on
m(d,.d,)+ e *Ta " For decision {4} the slope is zero for any S so abandonment will

not be preferred for high values of S over all other decisions (wait for example will be
preferred). Exercise of the investment option {EE} gives a slope equal to one for all S'i.e.

there is a one to one translation of value of S to payoff to the option holder while for {#}

~5(T~1,,

the slope would be e ' <1 which means that {EE} will dominate {W} for high

values of §.Our arguments make intuitive sense since as S increases the optimal
decision will depend on the way each decision translates S into value rather than the costs
of following a particular decision. In turn this means that growth factors and value

enhancing impact factors (y ’s) will play the most important role for high values of S.

Unfortunately, there is no easy answer to the question of which decision dominates for
the intermediary values of S in the general framework we have just described since for
low values of § all factors including costs, growth components, volatility of learning and
enhancing options and the impact of controls will play their role in determining the
optimal decision. The determined regions are in this cases determined though a graphical
inspection of the regions. This difficulty is alleviated in the numerical solution procedure
that we describe in the next section since the regions are automatically determined. The

slope argument we have just discussed can give us some intuition on when some actions
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and in particular learning and enhancement options are likely to be more important- we

discuss this, some applications of the formula as well as special cases in the next section.

3.3.1. Some special cases illustrated

The formula we have described in previous section (see equation 7) encompasses
managerial control actions with random outcome, learning, early development and path-
dependency in both the impact and volatility of control/learning actions and the recovery
amount of abandonment. Naturally it can encompass many other cases appearing in the
literature as special cases. First, the case of Geske (1979) can be calculated by applying

the following parameters:

Va, = Oua, =0

NMC :REE =0

Note that in the intermediary decision point there are two regions appearing A, W and
S, (dy,W) == N(ay,,by; p) = N(ay ,,by ,; p) = 0. There are also alternative ways

to get the same result, using for example a costly control action with zero impact and

volatility. Also note that with X (d,,W)=0 we reduce to the case of simple European
call option (if we additionally allow for y, = 0'50 # (0 we have a formula for European

call option with embedded managerial control). The case of the extendible option of
Longstaff (1990) which is more complex than the Geske (1979) case is obtained as

follows:
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R w =1
N,=0
my, =
dy=W
X(d,,W)>0
a=0

In this case there are three regions appearing in the intermediary decision point, A, W, EE
(the Wait mode here is equivalent with extension option in Longstaff, 1990). There are
two trigger points from 4 to W and from W to EE that can be calculated by applying
appropriate value matching conditions described in previous section: the value of Wait

equated with Abandon and the value of Early Exercise with Wait; note that additionally
S, (dy, EE) =0 = N(agy,) = N(ag,) =0.

The interesting special case of the compound-growth option with two sequential controls,

(optionally) activated at £ =0 and/or at the intermediate datef =¢, is discussed below.
The first control MC,, has mean impact and variance of impact characteristics (o, 0 )
and can be activated at # = O at a cost X, and the second control (MC)) has distributional
characteristics (y;, 0, ) and can be activated at ¢ =¢, at a cost.X,. Using previous notation
the set of available decisions are M, = {W,MC,}, M, ={4,MC,} with abandonment
value for simplicity set to zero. For MC, we also allow a growth option i.e. if MC, is
activated the firm gets a fraction of S equal to m, (e.g. a pilot project). The value of the

compound-growth option conditional on the activation of control d,, at # = 0is given by:

Call _on_Call(.|d, e M\{E, A} ={W,MC,MC,,.MC })=
Se oTron N(ay,b,, p)—Xe " N(a,,b,, p)+m, Sei(stleroN(al )= X,e""N(a,)
(8)

where
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- In(S/S)+(r—5+0.50°), +y,+0.50,
! (azt1 + 05)

_ 2 2:1/2
= ,a,=a,—(0°t,+0y)

3 In(S/X)+(r—-38)T +(y,+y,)+0.56°T +0.5(c; +0/)

b
: (0'2T+(702+(712)”2

2 2 25\1/2
b,=b—-(cT+o,+0))

p=\/ (6t +07)

(c’T+0o, +0;)

The value of the option assuming MC, is not activated at ¢ =0 but waiting is decided is
given by setting y,=0,=0. The value of the project at ¢ = 0
equalsmax(Call _on _Call(.| MC,)—X,,Call _on_Call(.|W)). The compound call
option of Geske (1979) is a special case by settingy, =oc,=y,=0,=0, X, =0

andm, =0.

This case is a simple case of the general model discussed in the previous section where
there is only one region at # above which the managerial control will be activated. Note

that the upper critical boundary is oo and this is what makes some terms from equation 7
for the upper boundary to disappear. Obviously in this case the managerial control payoff

will lie above the abandonment payoff for all values of § where

mS+S8e " N(d) - Xe""N(d,) - X, >0 .

So there is only one critical value, S;,,C] , which is found by solving numerically the value

matching condition:
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mS+Se "M Nw ) - X, e " TIN®W,) - X, =0 9)

with

 In(S/X)+(r=6NT —t,)+y, +0.5¢0*(T —t,)+0.50;
[GZT+GIZ]1/2

1

v, =d,—[c’T+0c]]"

The analytic solutions for the European compound-growth call on put, put on call and put

on put are similarly derived and provided in section B of the appendix.

3.3.2. Insights on region determination and the value of learning and
control

Focusing on the special case of the control-growth option described above we see in
figure 1 a numerical example of the joint effect of the changes in impact of a managerial

action y,and volatility o, will affect the value of the compound-growth option. As we

can see the marginal impact of these managerial actions is more profound for out of the
money options where a small increase in the values of either impact or volatility can give
a high increase in the value of the option. For the at the money and in the money cases,
the increase in value due to an increase in either impact or volatility increases more
smoothly, almost linearly. Later on we show some more numerical results using the

above formula for selected parameter values and discuss some implications.
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Figure 1: Sensitivity of compound call option with embedded learning and control

with respect to changes in control’s impact and volatility
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Notes: Numerical results using analytic formula for the compound option with controls (equation 8 of the main text) by varying y, and

0y. Parameters are development cost X = 100, cost of control X; =5,7=6=0.05,6=0.1,4 =1 and T=2.
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Interesting insights can also be gained though an investigation of the slope of the paoff
functions. In order to concentrate on the learning and enhancement effect let’s assume

m(d,,d,)=0Vd eM, and 0=0. Other parameters are as
followsr =0.05,X =100,0 =0.2,T =2,f, =1. Figure 2, panel a shows the behaviour of
the slope of learning payoff as a function of S for different values of volatility versus the

slope of the wait payoff.

Figure 2: Slope of payoffs for learning versus wait as function of

the underlying value
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Notes: We analyze the slope of payoff function (see equation 6 and the discussion that follows in the main text). The
slope shows the rate at which the payoff increases under wait strategy versus learning or value enhancing strategy.
For d; = W, L use m(dy,d;) = 0. Other parameters are » = 0.05, 6 = 0, X = 100, ¢ = 0.2, #i=1 and T =2 .For

learning use o, = 0.3 or o, = 0.5 and for the value enhancement control action use oyc = 0.3

andy=020ry=04.



The figure clearly shows that learning is important for low values of S and reduces in
importance for higher values of S where the wait decision starts to payoff more.
Depending on the costs of the learning action it is then likely that a wait region at low
values of S could be followed by a learning region and wait will again be optimal in the
upper region. The results indicate there is a higher incremental value of learning when
the uncertainty resolution is substantial and when the project is not deep in the money. In
figure 1 panel b we focus on the behaviour of the slope for value enhancement action
relative to the passive strategy of waiting. We see that the value enhancement action
increases more rapidly than the wait payoff for all values of S. This means that a value
enhancement action will at some point be preferred (but how valuable this strategy will
be depends on the cost of the particular action). The exact regions will be determined by
a graphical inspection of the payoff functions to determine the optimal regions for each

decision (R, for each ieM,) and though the use of appropriate value matching

conditions to get accurate values for all “trigger” points S : .

3.3.3. A complex example with multiple learning and managerial
control actions

Now we will see how we would practically use equation 7 to evaluate a two stage
problem with multiple control actions, wait and early exercise features and path-
dependency. Assume we have the set of actions at t=0 areM, ={W,EE,L,,MC}.
This means that the firm can either wait, early exercise, perform a learning action (for
example R&D or marketing research) or engage in a managerial action to enhance value
(for example advertisement or improve attributes of a product). Then we assume that at
t =¢, the firm can choose from the set of actions M, = {W,EE,L,, MC,} . This means that
it can wait again until maturity, early exercise the investment option, perform a second
learning action (L, ) or perform a second enhancement option (MC,). Notice that in this
case we allow that the firm makes all possible combinations of actions between t=0 and

t=t 1e.
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Combination of actions:

w.w),w,L),(w,MC,),(W, EE),
(Lo, W), (L,, EE),(Ly, L), (L, MC)),
(mc,,w),(MC,,EE),(MC,,L,),(MC,,MC,)

To be able to solve for the value of the project we need to determine the optimal regions

at the intermediate point #, and then evaluate equation 7 three times, conditional on W7,
conditional on L, and conditional on MC,. The value of the project at £ =0 would then
be calculated as the maximum of the value of S-X, Call _on_Call(.|d,=W),
Call _on_Call(.|dy=MCy)— X, and Call _on_Call(.|d,=L,)— X, . Notice that
the optimal regions and the critical points at #, are not affected by the decision at 1 =0;
however several other variables are affected: the probabilities of reaching a region
(N (af2) -N (al.{é) i€ M,), the probabilities to reach a region and develop in the final
stage (N(af’z,b[’z,p[)—N(a[’Hz,b[jz,p[) ieM,|{EE}), the risk neutral expected value of
the project if it ends in the money at # (given by m.Se ™ 7° N (a;,)) and the risk neutral

expected value at 7 given that S pass through region i at # (given

R.
by Se_aT+y0+yiZ[Nl(afl’bi,l’pi)_Nl(ai[j’bi,lﬂpi)] )-
=1

To perform a numerical investigation, assume that the initial value of the project

isS, =100, the development costs are X =100, »=06=0.05, o =0.2 with time to

maturity of the option of 7" =2 years and intermediate managerial decision point at #=1.

For the first learning action assume y, =0,0, =0.5 and costX, =2.5, and for
managerial ~enhancement option at ¢=0assume y,. =0.1,0,, =03 with
cost X, =5. For the second stage managerial control actions assume that they have the

same characteristics but double costs ie. y, =0,0, =0.5and cost X, =5 and
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Yue, = 0.1, 0, =03 with costX,, =10. Given these parameter values the optimal

regions at #, are obtained by comparing the payoffs for different possible values of the

realization of the value of the stochastic value of the project cash flows. This is illustrated
in figure 3.

Figure 3: The payoff functions of the compound-growth option with two managerial

controls, wait and early exercise at the intermediate point ¢,
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Figure 3 (cont.)
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Notes: We investigate the payoffs for alternative decisions at ¢, =1 for an investment option with maturity 7 =2 . The set of possible actions

at ¢, is Wait (W), Early Exercise (EE), Managerial Control 1 (MC) or Learning 1(L). The general parameters for the problem is S =100, » =

0 =0.05,0=0.2. For learning 1 use o, = 0.5 , X; =5 while for managerial enhancement option use oy = 0.3, ypc = 0.1, Xy = 10.
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Figure 3 shows that there will be three possible regions of actions at ¢,, W, L,,MC, (the
three different panels take a closer look over the regions). This means that the decision to
EE is a dominated strategy and will not appear at ¢, regardless of the decision at 1 =0.
Notice that at low values of realization of the value of the project S, W will be the
optimal strategy while for very high values of § MC, is the dominating strategy. The
MC, payoff grows at a higher rate than any other payoff for any high values of § and so
no other payoff will surpass it. This is shown by the slopes of the payoffs. For example at

~5(T1,,

§ =250 we have that Slope . |S =250=e W"N(aMCIJ) =1.05 while for wait we

~5(T~1,,

have SlopeW|S =250=¢ )N(aWIJ) =0.951 and for learning we

~5(T—t,,

have Slope, |S =250=e¢ 'N(a 1,1) =0.928. Given that the cumulative normal terms

have almost reached their limits of one (N(ay,,) =1, N(a, ) =0.998,N(a, ,)=0.976)

and that e "7 > ¢ for any » > 0then we should not expect the payoff of W or
L, to surpass the payoff of MC, ' Note that the payoff of EE would dominate both the

payoffs of W, and L, because it crosses them at some point and then it is impossible for

the other payoffs to surpass it again (since they do not grow more than the EE payoff
which equals one). This happens because of the positive opportunity cost o but even if

0 = 0the payoffs of W and L, could only grow at a rate equal to one at the limit as §
tends to infinity. Finally note that the payoff of W dominates L, for high values of

S'since the learning payoff does not grow faster in the upper range. All these
observations are confirmed if we plot the payoffs for even higher values of S as figure 3

panel d illustrates.

' Even if the slope of learning goes to one for an incremental increase in S (i.e. added 0.024) while the
slope of managerial enhancement action does not change, it is still not be possible for the learning payoff to
surpass the managerial enhancement payoff.
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In order to determine the critical points with accuracy we apply the value matching

conditions. First note that the lower boundary where W is activated is SZL (d,,W)=0.To

find the critical point where we switch from wait to learning we solve:

yh (S:L(do:Ll):tl | M, M) = VW(S:H(dO,W),tl | M, M)
= S (dy, W) = S;M(dy, ;) = 65.844

Then we need to determine the highest boundary for the decisionZ,. This is found by

solving:

VYOS (dy, MC),t | MM = V(S (dy, L)ty | M M)
= 8, (dy, L) = S;" (dy, MC,) =131.096

With this information we can use equation 7 to get:

Call _on_ Call(.|d,=W) =15.888
Call _on_Call(.|d,=L,) =24.827
Call _on_Call(.|d,=MC,)=26.159

After considering the costs of each strategy at =0 the optimal decision would be to
perform learning at 7=0 and the value of the complete project at ¢+ = 0

isCall _on_Call(.|d, =L,)~ X, =24.827-2.5=22.327.

Table 1 provides additional information about the above case. Specifically it shows the

probability of reaching a particular region at ¢, , the present value of costs expected to be
paid at ¢,, the joint probability of reaching a region at ¢, and developing or abandoning at

T and the present value of the project and it’s costs under each scenario expected at 7.
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These calculations are provided for each possible decision at # =0 and may proof useful

in practical applications since they provide further insights for managerial planning and

budgeting purposes'”.

Table 1: Probabilities to reach regions, expected costs and

expected values using the analytic formula

Panel a: Conditional on dg =W

Region at t; & Region at T

Expected Joint prob. Expected |Expected
Region at t;| Marginal Prob. | Costatt; | A EE Sum | Value atT | Costat T
w 0.023 0.000 1.000 0.000 1.000| 0.015 0.014
L, 0.904 4.298 0.664 0.336 1.000| 47.284 30.446
MC, 0.073 0.694 0.937 0.063 1.000| 9.709 5.667
Sum 1
Panel b: Conditionalondy =L,
Region at t; & Region at T
Expected Joint prob. Expected |Expected
Region at t;| Marginal Prob. | Costatt; | A EE Sum | Value atT | Costat T
w 0.306 0.000 0.999 0.001 1.000| 0.059 0.055
L, 0.474 2.253 0.836 0.164 1.000| 22.894 14.810
MC, 0.220 2.093 0.796 0.204 1.000] 39.503 18.417
Sum 1
Panel c: Conditional on d g = MC,
Region at t; & Region at T
Expected Joint prob. Expected |Expected
Region at t;| Marginal Prob. | Costatt; | A EE Sum | ValueatT | Costat T
w 0.105 0.000 1.000 0.000 1.000| 0.036 0.036
L, 0.639 3.038 0.763 0.237 1.000| 33.408 21.401
MC, 0.257 2.441 0.768 0.232 1.000| 40.662 21.032
Sum 1

Notes: Parameters are S = 100, » = 6 = 0.05, T = 2, t, =

L, Vmc, =Vme, = 0.1 Oumc, =Omc, = 0.3

X, =2-X, =5- XMC, =2. XMC0 =10- This case is evaluated using equation 7 of the main text.

o, =0, =05

> The results are based on calculations based on risk-neutral world. In practice, calculation of the real
growth rate will be necessary.
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Interestingly, if the firm decides to wait at # = 0 then most likely will move to learning at
t,. Exercise of learning at # =0 reduces the probability to exercise the second learning
(and its associate expected costs) but increases the likelihood of exercising a control
action, the overall probability of development and expected value received at T.
Compared with the decision to exercise learning at , exercise of managerial control at
t =0 increases the probability to exercise the second learning and control and the overall
probability of development and expected value received at T; due to the higher cost

however will not be preferred at # = 0.

We have also implemented the same case assuming a recovery amount in case of
abandonment of 50% of past paid costs. For example, if learning is exercised at # = 0 the
firm can recover 1,25 at ¢, while if additionally a control is exercise at #, the firm may
recover 6.25 (=1,25+5) at T. Analogously path-dependent recovery costs hold if the firm
exercises control at ¢ = 0. If the firm decides to wait and then exercise learning or control

at ¢, then it can recover 50% of the paid costs at 7. Under this specification we have the

following results (net of associated costs of each action):

Call _on_Call(.|d,=W) =17,264
Call _on_Call(.|d,=L,) =23.951
Call _on_ Call(.|d, =MC,)=23.515

Again, the optimal decision at # = 0 will be to exercise the learning action. The decision
regions will be 4, W, L;, MC at ¢, (abandon now appears in the lower region). Similar

calculations for the probabilities of reaching each region and expected values and costs

are possible but are avoided for brevity.

Now consider a slightly modified version of the above problem where we keep all the

parameters of the problem the same and we double the costs for L, to X, =10and of

MC, to X, =20.In this case we will have the following regions appearing at 7,: ¥,
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L, EE, MCj i.e. we will also have a region where EE appears to be optimal region as
figure 4 illustrates.

Figure 4: The payoff functions of the compound-growth option with two managerial

controls, wait and early exercise at the intermediate point/, : Higher costs for learning
and control at #
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Figure 4 (cont.)
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Notes: We investigate the payoffs for alternative decisions at # =1 for an investment option with maturity 7' =2 . The set of possible

actions at ¢, is Wait, Early Exercise, Managerial Enhancement 1 or Learning 1 i.e. M, = {W,EE,ME,,L,} . The general parameters for

the problem is S, =100,r =6 =0.05,0=0.2. For leamning 1 use o, =0.5,X, =10 while for managerial enhancement option

use o)y =03, =0.1,X,, =20.
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We know from the slope criterion that for high values of §

=0(T=t))+7mc,

Slope ¢, =€ =1.051 while for EE the slope is everywhere equal to one, so that

the payoff of MC, will surpass the EE payoff at some point. This is indeed confirmed in
the panel d of figure 4.

Our analytic formulas where confined to a two stage investment problem. The results can
be extended to multi-period problems but one would then have to evaluate the cumulative
multivariate normal functions. Furthermore, one would have to check for the various
combinations of actions that are increasing as the number of stages increase. Another
issue is that of path dependency of the characteristics of actions. For example a
managerial enhancement action may have higher impact if activated after a learning
action than if activated after a passive wait decision. The analytic model we have just
developed allows for path dependency between actions of period 0 and that of period

at?,. For instance, in the examples above we may allow that y,,.. is higher if the previous

action was MC, than anything else. In the context of R&D this could reflect an

increasing effectiveness of the second R&D action if some fundamental research

development has first taken place.

In the next section we extend the framework to multi-period sequential managerial
actions with possible path dependencies using a numerical lattice model. The numerical
model allows a more effective way of searching for the best alternative and allowing
complex path dependence structures and at the same time as we will see is relatively

accurate.
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3.4. A sequential numerical model with interacting learning and control
actions

3.4.1. A generalization to multiple stages with path dependencies
between actions

Now we consider an extended version of the investment problem discussed earlier to
allow for multiple stages, multiple interacting learning and control actions with path
depedencies, growth options, abandonment options and early development in a unified
framework. We discuss a numerical method that can be used to evaluate these complex

cascs.

We now use the more general specification y(4,7) and o(h,i) for the description of the
impact and volatility of control, conditional on the previous state 4. With activation of

action d, = MC, at t, log-returns for the diffusion process will follow:

S

t

h{ﬂ | hJ - N((r -5 o). oA az(h,i)J (19)

The information regarding the expected impact and volatility of controls will be
determined by the sequence (path) in which the controls are being activated. Note also
that we may allow the cost of each control action to be path dependent. We define the
information regarding the path dependency of controls’ costs in a matrix where we define

the costs x(4,7) that need to be paid for switching from decision h to i.

An example of path-dependency is discussed in Koussis, Martzoukos and Trigeorgis

2005. First, interpret MC; to be an accelerated control strategy of high impact then
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x(W,MC)) it’s associated cost. Additionally assume that {MC,,MCs} are the first and
second of two sequential investments in controls with total outcome of impact and
volatility comparable to that of the first control. Total costs might however differ from
x(W,MC)) due for example to learning by doing. In general X(W,ME,) > X(W,ME,) +
X(ME2,ME3) can be used to model implies cost efficiencies achieved due to learning by
doing. The opposite, X(W,ME|) < X(W,ME;) + X(ME,;,ME3), would imply scale
efficiencies. Similarly, the impact or volatility might be different for the sequence

compared with the accelerated strategy.

3.4.2. A lattice based numerical solution framework

We allow decisions to be made sequentially at At (assumed for simplicity equal)
intervals. We define V' (.) the payoff the firm gets under decision d; = i. This payoff is a

function of the level of cash flows S at that decision point, the characteristics of available

controls, the development cost X, the switching (path-dependent) control costs X (4,i),
the recovery rate o for the case of abandonment options, growth factors m, of S, etc. At

each decision point # <7 we wish to maximize the value of the investment by making

the optimal pre-investment learning/exploration and/or control actions:

VRS, | MM, M) = n}lax{Vdf} (12)

t

We have the following cases for V% (.):

VS, t|M,M;} M, )=
S TIEL Y * (S, t AL S, M M M) 4 my S, — X(d,y,d,) (132)

for dt € {MCUMCZ """MCNME}’
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VS t|M,M" M )=S,-X (13b)

for d, e {EE},

VS, | MM M) = o, TC(M ) (13c)

for d, e {4},

where TC(M, ) are the total costs paid for learning or value  enhancing actions until ¢

and

VS, | MM M) = & E (S, t + A S,, MM M) | (13d)

for d, e{W,W,,...W, }.

Finally, at the last decision point at t = T, the optimal values are given by the terminal

condition:

Va(S,,T|M,M; ,M;)=max(S, - X,a TC(M)) (13e)

We can see that equations (13) incorporate path dependent costs, impact and volatility of
controls and learning, early development options and abandonment options to recover a
fraction o of the total investments in controls and pilot projects. Expectation when

d, e {MC,MC,,...MC, }is taken with respect to the distribution of log-returns that
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depend on the specification chosen for the exogenous process and the impact of controls;

for the case of no control with d, € {W,Wl,Wz,...,WNC }, expectation is taken excluding

the impact of controls. Note further that for d, {EE , A} the expectation operator returns

zero (these are terminal/absorbing states with no feasible continuation of decisions)'®.

In order to find project value at t = 0, we should the value functions in equation (13) is

evaluated for each decision mode, at each decision point in time and for each state of the

underlying asset S. Due to the presence of path dependency, V™ cannot be evaluated in
the usual backward solution method of dynamic programming. Instead, we must take into
account all alternative combinations of actions and paths of the state-variable. We thus
implement a forward-backward looking algorithm of exhaustive search (alternatively, see
Hull and White, 1993, or Thompson, 1995), and the optimal decision will determine

today’s option value.

In order to evaluate the expectation operator defined in equations (13) we need a
discretized state-space and we use a numerical lattice scheme. From equation (10) the
underlying asset S has a lognormal distribution between decision points. We approximate

this distribution between steps with a binomial lattice with N, number of steps, with
total number of steps N equal toN, N ,. The conditional volatilities v*(d,,d,.,,)

between decision points for the diffusion case are:

): 0_2 Tsub + Gz(dtﬂdHAt)
N

sub s

vi(d,,d

: (14)

t+At

for d, € {MC,,MC,....MC,, }

'® We demonstrate the implementation for the jump diffusion case in the appendix.
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The specification in (14) allocates the volatility of control actions and jumps to N,

points for a total uncertainty of o’(m,,m,,,, ). When controls are not activated we just

set the volatility of controls to zero.

Furthermore we use the following up and down moves for the lattice between stages:

1

up(d,d,,,)=exp(v(d,,d,,,.)), down(d,,d,,,,) = a3
to t+At

Finally the probabilities for an up and down move (diffusion case)

ford, e {MC,,MC,,..,MC, '} are:

Tsu }/(d[,dH t)
eXp[(’” _5) N L+ N 5 J_down(ddeAt)

up(dt s dt+At ) - dOWI’l(dt s dt+At )

sub sub

pu (dt s dt+Az) =

2

Pa (dt9dt+m) =1 — P, (dt7dt+At)

while ford, e (W, W,,...,W, } we set the y and ¢ parameters of controls to zero.

With this specification between decision points for the sub-lattice construction we are
able to incorporate the asset price and embedded control actions and evaluate the

expectation in equations (13).
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In the next section we test the accuracy of the numerical model with the analytic
solutions provided in the section II. Then, we discuss the importance of options to learn

and enhance value by analyzing the new product development case.

3.5. Numerical results and applications

Our first set of numerical results shows the accuracy of the numerical model by
comparing with the results of the analytic formula for the compound option with learning
or control. In the next section we analyze a realistic multi stage application for new

product development.

3.5.1. A comparison of the analytic and numerical model

Table 2 shows the comparison between the analytic and lattice based numerical model for
the case of a compound-growth option with learning. At the intermediate date7;, besides

the value of the option to invest at the terminal date, the firm may also acquire a fraction
m of the project value (a pilot project). In our problem specification, the firm cannot take
the investment option unless it pays X;, which we interpret as the cost of getting the pilot
project cash flows plus resolving uncertainty for the final project. The first panel provides
results for the case where no growth option is available (only learning) and the second
panel considers the case with an option to acquire a fraction m = 0.1 of the project value,
plus learning. We can see that the numerical model provides a very good approximation
to the analytic formulas in both cases. Focusing on the first panel we note that the case of
zero volatility of control and zero impact reflects the case of the compound option of
Geske (1979). The results show that when the volatility are positive the value of learning

options embedded in investment options can be extremely important (this result will be
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even more considerable with positive expected impact). Taking for example the case
where S = 100 we see that compared to the case of a simple compound option with no
learning, the value of the compound option with a learning potential (volatility) of 0.1
increases by more than 50%, while a learning potential (volatility) of 0.2 increases value
by 242%. In the second panel we see that the availability of growth options besides
learning can further enhance project values. It captures the realistic case where a pilot
project provides learning. Overall, the results indicate that project value can be
substantially underestimated if learning, control, and other project attributes like growth
options are neglected. If we interpret the learning action as marketing research, the higher
the uncertainty that marketing research will resolve for a given cost the more likely that it
will be performed. In the next section we investigate more complex investment decision

scenarios in the context of new product development.
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Table 2: Compound option with learning: Comparison of numerical and analytic

values
Growth option factor m =0
S =80 S=100 S=120
Time |Vol. of Control| Analytic [Numerical Analytic [Numerical Analytic [Numerical
0.000 0.000 0.000 1.103 1.094 14.320 14.315
0.100 0.001 0.001 1.656 1.662 14.839 14.838
=1 0.200 0.016 0.015 3.773 3.774 16.864 16.863
0.300 0.282 0.282 7.079 7.093 19.883 19.892
0.400 1.743 1.753 10.660 10.678 | 23.341 23.357
0.500 4.424 4.438 14.266 14.288 | 26.991 27.012
0.000 0.013 0.013 2.123 2.118 14.100 14.094
0.100 0.027 0.026 2.648 2.654 14.675 14.675
T=2 0.200 0.126 0.127 4.406 4.410 16.547 16.550
0.300 0.616 0.618 7.203 7.214 19.310 19.319
0.400 2.038 2.050 10.447 10.461 22.506 | 22.519
0.500 4.400 4.416 13.792 13.811 25.906 | 25.924
0.000 0.302 0.300 3.860 3.859 13.635 13.643
0.100 0.378 0.380 4.244 4.244 14.091 14.094
T=5 0.200 0.668 0.664 5.427 5.439 15.462 15.464
0.300 1.338 1.338 7.339 7.348 17.560 17.566
0.400 2.552 2.563 9.747 9.758 20.091 20.102
0.500 4.319 4.328 12.402 12.418 | 22.850 | 22.866
Growth option factor m = 0.1
S =80 S=100 S=120
Time |Vol. of Control| Analytic [Numerical Analytic [Numerical Analytic |Numerical
0.000 2.964 2.963 8.670 8.662 25992 | 25.989
0.100 3.220 3.218 10.239 10.243 | 26.537 | 26.536
=1 0.200 4.511 4.511 13.344 13.349 | 28.567 | 28.567
0.300 6.707 6.712 16.827 16.841 31.587 | 31.595
0.400 9.357 9.368 20.413 | 20.431 35.045 | 35.061
0.500 12.223 12.237 | 24.019 | 24.041 38.695 | 38.716
0.000 3.133 3.134 9.857 9.846 25.407 | 25.401
0.100 3.506 3.505 11.001 11.005 | 26.045 | 26.044
T=2 0.200 4.796 4.797 13.576 13.584 | 27.957 | 27.961
0.300 6.838 6.843 16.674 16.685 30.725 | 30.734
0.400 9.299 9.310 19.957 19.972 | 33.921 33.934
0.500 11.973 11.989 | 23.304 | 23.323 37.321 37.339
0.000 3.946 3.951 11.345 11.331 23.977 | 23.986
0.100 4.320 4.320 12.004 12.009 | 24.510 | 24.512
r=5 0.200 5.400 5.403 13.699 13.705 | 25.991 25.995
0.300 7.029 7.033 15.970 15.978 | 28.137 | 28.144
0.400 9.006 9.014 18.527 18.540 | 30.679 | 30.691
0.500 11.187 11.199 | 21.220 | 21.236 | 33.440 | 33.456

Notes: Parameters are » = 6 =0.05,6=10.10,#4,=7/2 , y=0 and cost of control X; =5. For the numerical lattice we use N, = 60

steps.
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3.5.2. The new product development case

In this section we employ the numerical model and we discuss the case of new product
development by incorporating more complex and realistic features than in the previous
cases. First, we take the scenario where 7 =5 and o,, =0.3 as base case and we
extend it in several dimensions while maintaining only two decision points (at # = 0 and

t=T/2). Then we will extend the framework adding more decision points and more

path-dependency.

The first two columns of Table 2 provide the project’s option value at t = 0 for a simple
base case, where the firm can only choose to activate a learning action (L) at7;, and it can
only wait (W) at t = 0. The first extension we consider is the optimal timing of learning

when early development is also possible. The set of all possible sequence of actions are

given in panel a of figure 5.

Figure 5: A two stage investment problem with learning (L), managerial control

(MC), and early development (EE) in: The set of possible actions

Panel (a): Optimal timing of learning (L) and early development (EE) with no
control action (MC)
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Panel (b): Optimal timing of learning (L), early development (EE), and control
action (MCO)

—
1
o
—
1
_|
[y

gg|g|

Zl=zr|r|r
0|0
<
E(‘)

In column 3 and 4 of Table 3 we provide numerical results for this scenario of the
optimal timing of learning and development case. In comparison with the results of the
base case we see that optimal values are enhanced and optimal decisions may differ; L
and EE may now be optimal at # = 0. Another extension concerns the availability of other
actions to learn or enhance value. For example the firm may have the option to activate
two learning actions sequentially at =0 and ¢t =7/2. Alternatively, the firm may have
the option to learn initially and then enhance project value by a control action. We
concentrate on the case where the firm can activate both a learning action and a control.
The set of all possible combinations of marketing research (learning), improvement
actions (controls) and early development that can be made are given in panel b of figure
5.Note that the case described in panel b is substantially more complex. For example it
allows the firm to perform L and then choose at the intermediary decision point between
MC, W, or EE. Columns 5 and 6 of Table 3 provide results for this case where the

characteristics of control are yyc = 0.1 with g, =0.3.
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Table 3: Project value for four different scenarios with increasing flexibility and

impact
Learning only Learning and control
(1) (I (1) (Iv)
Timing of L, MC Diff. impact of MC
L only att, Timing of L and EE and EE after L
Dec. Dec. Dec. Dec.
S | Value |atz=0| Value | at7=0 | Value att=0 Value | atz=0

240 | 109.032] W | 140.000| EE 140.000 EE 140.000) EE
230 | 101.245] w | 130.000, EE 130.000 EE 130.000| EE
220 93457/ W ]120.000 EE 120.000 EE 120.000| EE
210 85.671) W |[110.000] EE 110.000 EE 110.000) EE
200 77.886| W ]100.000 EE 100.000 EE 100.000, EE
190 70.106| W 90.000| EE 90.000 EE 90.000| EE
180 62.336| W 80.000| EE 80.000 EE 80.690, L
170 54589, W 70.000| EE 70.000 EE 71520 L
160 46.891| W 60.000| EE 60.000 EE 62.472) L
150 39292 W 50.000| EE 50.000 EE 53.567| L
140 31.889| W 40.000| EE 40.480 MC 44896 L
130 24806 W 30.000| EE 31.670 MC 36417 L
120 18.223] W 20.000| EE 23.362 MC 28458 L
110 12.401| W 13.272| L 15.592 MC 20911 L
100 7.503| W 7.824| W 8.656 w 13.954) L
90 3.833| W 3912 W 4.322 w 7934, L
80 1489, W 1.499| W 1.618 w 2999 L
70 0377, W 0378 W 0.395 w 0395 W
60 0.052] w 0.052| W 0.053 w 0.053] W
50 0.003] w 0.003 w 0.003 w 0.003| W

Notes: Parameters are » = 6 = 0.05, 6 =0.10, T=5and t, = T/ 2, o, = 0.30 with X; = 5 for all cases. For case I there is no
carly development or timing of learning; learning is available only at #. For case II there is optimal timing of learning and
development option. For case III there is optimal timing of learning, control and development option with y(W,MC) =
YL,MC) = 0.1 and o(W,MC) = o(L,MC) = 0.30 . Case IV is the same as case III but the control characteristics are different if
prior action is L i.e y(W,MC) = 0.1, o(W,MC) = 0.30, p(L,MC) = 0.2, o(L,MC) = 0.30. For the numerical lattice we use Ny, =
30 steps.

The results show that option values change and more importantly that there is a large

region where it pays to proceed with further improvement actions (MC) immediately. The
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last two columns of the table provide numerical results for the case where the
characteristics of control after learning action are different from the case where the firm
proceeds directly to control). Specifically, if the firm performs control directly it gains
y(W,MC) = 0.1, and if the firm performs control after marketing research it gains y(L,MC)
= 0.2 while the volatility of control remains the same in both cases to o(W,MC) =
o(L,MC) = 0.3. The results indicate a large change in optimal values and optimal
decisions. Under this scenario there is a large region where it is optimal to go for
marketing research first so that the firm can later capture a higher effectiveness of

control.

Next, we consider a complex scenario with 5 decision points, 2 learning actions and 2
controls with optimal timing and path dependency. Figure 6 gives a general description of
the problem and a base case specification of the parameters of the problem. There are two

learning (L,, L. )and two control actions (MC,,MC,). In the first phase we can activate
either L, or MC,, then we can proceed with a pilot project that will give a fraction m of
the project cash flows S and at the same time will create a learning effect(L ). The first

phase actions can be skipped altogether and the firm can move directly to the pilot project
or even to early development. Furthermore, we allow the firm to also activate a second
phase of actions The firm can move from a learning action to a control, specifically from

L, to MC,, and from L., to MC,. The volatility of the pilot project is set to be double

the volatility of the first learning action (reflecting the fact that the pilot project is
expected to be more effective in revealing the true demand level). If instead a first phase
of learning action has already been activated then the first action resolves half of the total
uncertainty and the other half can be optionally revealed through the pilot project. The
volatilities of control actions are all set to 0.30. For the impact of controls we assume that

the impact of controls doubles if learning has been performed.
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Figure 6: A multi stage investment option with multiple interacting learning and

control actions for the new product development problem

- R

Learning (L))

(e.g. Mﬁ;ketmg Pilot Project (Lg) 2™ Phase

rescarc — Control (MC,)

> I (e.g. improve

A4 _ A

Control (MC))

Start » | (e.g.change

attributes)
| 4

Early Develop +—

Notes: The firm has the option to invest in a first phase of learning or controls ( Z; , C} ), develop the project early (EE), invest in a

pilot project ( L ) and invest in a second phase control action C, . Base case parameters are » = 6 = 0.05, 6 = 0.1 and 7 = 5 and the

cost for each action is X, =Xye =Xy, =10 and XG =20. Growth factor of pilot project is m = 0.1. The average impact and

volatility of learning and control actions are given in the following matrices.

Volatility matrix of learning and control actions Mean impact matrix of control actions

To To
L, Lg MC, MC, L, L. MC, MC,
W 03°[2003)40.3)°] - w [0 o0 o1 -
From - 0.3y [(0.3)° -~ oo b [0 Toa]
Ls | - - - [(0.3) Lg | - - - |02
McC| - - - 03y mc,| - | - - | o1
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The costs of each the actions are X, = X, = X, =10, X, =20 and the maturity of

the option is 7= 5. Our numerical results provide sensitivities with respect to the growth
option parameter m, and the importance of learning actions to enhance the impacts of
controls that are reflected in parameters y(L,,MC,)and y(L,,MC,). Table 4 provides
sensitivity with respect to the effectiveness of learning action while keeping the growth

option potential to m = 0.1.

103



Table 4: Multistage investment program with a pilot project option and two
phases of learning and controls: Sensitivity with respect to the effectiveness of

learning actions

Growth m =0.1

V(L M C,)=0.1

Y(L M Cy) =0.2

YL ,MCy)=0.1

YL ,MCy)=0.2

YL ,MCy)=0.2

Dec. Dec. Dec.
S | Value | at#=0 [ Vvalue | at¢= Value | atz=0

240 155.495| MC, 164.770 L, 170.096 Lg
230 144.523| MC, 153.281 L, 158.230 Lg
220 133.564) MC, 141.814 L, 146.400 Lg
210 122.629) MC, 130.381 L, 134.615 Lg
200 111.747, MC, 118.995 L, 122.890 Lg
190 100.925| MC, 107.689 L, 111.274 Lg
180 90.153] MC, 96.446 L, 99.761 Lg
170 79471 MC, 85.296 L, 88.365 Lg
160 68.965 MC, 74.308 L, 77.109 Lg
150 58.589| MC, 63.483 L, 66.080 Lg
140 48.468) MC, 52.891 L, 55.347 Lg
130 38.700| MC, 42.644 L, 44.903 Lg
120 29.294| MC, 32.784 L, 34.831 Lg
110 20.575| MC, 23.535 L, 25.390 Lg
100 12,514 MC, 14.982 L, 16.521 Lg
90 6.599 w 7.840 w 9.006 w
80 2.720 w 3.198 w 3.951 w
70 0.755 w 0.849 w 1.180 w
60 0.113 w 0.119 w 0.179 w
50 0.006 w 0.006 w 0.009 w
40 0.000 w 0.000 w 0.000 w

Notes: see problem description and base case parameters in figure 6
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The first two columns show the results when the learning actions cannot improve the
impact of the controls that are activated in next stages; columns 3 and 4 provide option

values and optimal decisions for the case where only L, can improve the impact for MC,
and the last two columns when both L, and L. can improve the impact, for MC, and
MC, respectively. The results show that if learning does not provide any additional

value-enhancement for the control actions, then it is likely that it will be skipped and the
firm will proceed to the controls immediately. If instead, L, provides a better impact for
the control actions then it is likely that the firm will proceed with learning at # = 0. The

pilot project L, will not be preferred over L, at ¢ = 0 unless it also provides an improved

impact for the second phase control MC,as well. In Table 5 we provide sensitivity with

respect to the level of the growth factor.
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Table S: New product development (investment program with a pilot

project option and two phases of learning and control): Sensitivity

with respect to the level m of pilot project cash flows

YL MCy) =02, y(L,,MC,)=0.2

Growth m =0 Growth m =0.1 Growth m =0.2
Dec. Dec. Dec.
S Value | atz=0 | Value atr=0 Value atr=0
240 164.770| L, 170.096 Lg 194.096 Lg
230 153.281 L, 158.230 Lg 181.230 Lg
220 141.814| L, 146.400 Lg 168.400 Lg
210 130.381 L, 134.615 Lg 155.615 Lg
200 118.995 L, 122.890 Lg 142.890 Lg
190 107.689| L, 111.274 Lg 130.274 Lg
180 96.446| L, 99.761 Lg 117.761 Lg
170 85296, L, 88.365 Lg 105.365 Lg
160 74308, L, 77.109 Lg 93.109 Lg
150 63.483 L, 66.080 Lg 81.080 Lg
140 52.891 L, 55.347 Lg 69.347 Lg
130 42.644| L, 44.903 Lg 57.903 Lg
120 32.784| L, 34.831 Lg 46.831 Lg
110 23.535 L, 25.390 Lg 36.390 Lg
100 14.982 L, 16.521 Lg 26.521 Lg
90 7.840 w 9.006 w 17.430 Lg
80 3.198 w 3.951 w 9.360 w
70 0.849 w 1.180 w 3.920 w
60 0.119 w 0.179 w 1.002 w
50 0.006 w 0.009 w 0.105 w
40 0.000 w 0.000 w 0.002 w

Notes: see problem description and base case parameters in figure 6

As expected, the higher the growth factor the more likely that we will proceed with the

pilot project immediately.
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3.6. Conclusions

We analyze investment options with embedded learning (explorative research, marketing
research, etc,) and control (attribute or quality improvement, advertisement etc.) actions.
The paper extends the analysis of investment options to provide analytic solutions for
compound options with embedded optional pilot project, learning, and control actions,
early development and abandonment when the project value follows diffusion or jump
diffusion process. Geske (1979) and Longstaff (1990) are special cases. We show that the
availability of options to learn and control can substantially affect project option values
and optimal decisions. We demonstrate the incorporation of path-dependency in the
impact, volatility and cost of actions and we extend the results for multiperiod sequential
options using a numerical lattice. Within this extended framework we demonstrate the
importance of learning actions like exploration activities, investigative R&D, marketing
research that can be launched prior to value-enhancing investments (attribute enhancing

R&D, advertising activities, etc.).
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Appendices

Appendix A: General valuation formulas for the call on put, put on put
and put on put cases

In this section we provide analytic valuation formulas for the general case of the European
compound-growth options (under Geometric Brownian motion assumptions) conditional on

controls activated at =0 and with optional actions (W,MC,,MC,,..MC, ) at t,. The

formulas are for the cases of call on put, put on call and put on put. For the case of the call

on put the optionholder has the option to pay a fixed amount X, and a fraction m, of S at ¢,

and acquire a put option that expires at 7 or early exercise and get X —§ . S should in this
case be interpreted as a cost and controls are directed towards a decrease in S (y’s are
expected to be negative in this case). For the case of a put on call, the optionholder has the

option at #; to give up a call (short a call), pay a fraction m, of the underlying asset value
and get X, or early exercise and get X —§ . § should again be interpreted as a cost and

controls increase optionholder’s value when are directed towards a decrease in S (y’s are

negative). For the case of a put on put the optionholder has the option at #, to get X, and a
fraction m, of the underlying and give up a put or early exercise and getS — X . S in this

case should be interpreted as project value and the controls are directed towards an
increase in project value (y’ s are positive). Note that readjustments on the signs of certain
variables like X;’s and m;’s can give rise to other special cases with possible different
economic interpretations. The formulas are generic assuming that multiple regions exist
at #; and the actual thresholds are not specified. In general they could be found by
applying value matching conditions depending on the regions (see discussion in main
text). Also note that we do not explicitly consider path-dependency and abandonment
options in the notation although these features can be easily incorporated in direct

analogy to equation 7 of the main text.
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The formulas are:

Call _on_Put(.|d, e M \{E, 4y = (W,MC,,MC,,..MC,, })=

Rggp Rep
XEEe_”] |:z [N, (_aéEJ) - N, (_agg,z )]} —Se o {Z [V, (_aéE,l) - N, (_aZE,l )]}
[

=1

Ry
+Xe " |:Z [N, (_aI/LV,2 by 5, Pw) — N, (_ava[,z by 55 Pw )]i|
=1
5Ty | & L "
—Se 770 {Z [N, (=ay ,=by 1s Py ) = Ny (=ay 1 ,=by 1, Py )]}
=1

Nyc RMCi
+ Z|:Xe—”T Z[N[ (_a;:z a_b,',z 5 ,01) - N[ (_aj,Hz a_b,',z 5 p;)]:|
i=1

=1

NMC RMC,
- Z |:SeéT+}/o+}/i Z[Nl (_aiL,l ’_bi,l ,Pi)— N, (_ailj ’_bi,l > Pi )]:|
in1 =1

RW

- Xweim |:[Z_: [V, (_avLV,z) - N, (_a;f{,z )]} 2 mWSe_&‘ §° |:[Z_W: [V, (_avLV,l )—N, (_a;,l )]}

Nyc RMQ RMO
- Z{Xie_&‘ Z[Nz (—an) - N, (—ai’H2 )+ ml.Sef&‘“0 Z[N, (—afl) - N, (—af’1 )]}
i=1 =1

=1
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Put _on_Put(.|d, e M\{E, A} ={W,MC,,MC,,.MC, })=

REE REE
Se 2 |:Z[N1 (aég,l )—N, (agE,l )]:| ~Xppe {Z LN, (aéE’Z) N (CZZE,Z )]}
[ =
Ry
+ Se 0170 [Z[Nz (avLm by =Py ) — N, (alf[;,l by = Pw )]}
[
=

R!/V
—~Xe " |:Z[Nl (a!/LV,Z by 2= Py ) — N, (awh/’,z by =Py )]i|

NM('_ RMCi
+ Z S~ 10T Z[Nl (aiL,l 9_bi,1 —P;)— N, (ag’bi,lapi)]:|
=1

NMC_ RMC,»
- Z Xe_rT Z[Nl (aiL,z a_b,‘,z 9_p[) - Nl (ail:lz a_bi,z P, )]j|
j =1

+ mWSe-5f1+70 [RZ_W:[NI (al/LV,l) - N, (a;l)]} - /YWe_rt1 [RZ_W:[NJ (aVLV,Z) - N, (Cl;z)]}

Nyc Ry, Ric;
+ Z|:miSe5fl+70 Z[Nz (azL,l )—N, (a,h; )]- Xie_atl Z[Nl (azL,z) - N, (a,Hz )]}
i=1 =1

I=1
Put _on_Call(.|d, e M\{E, A} ={W,MC,,MC,,.MCy })=

REE REE
)(EEeirt1 |:Z[N1 (—aég,z) - N[ (—agE,z )]:| B S67§t1+70 |:Z[N1 (_aéE,l) - Nl (_agE’l )]:|

P I=1

r Ry L H
+ Xe™ {Z[Nl (_aW,Z s bW,Z =Py )— N, (_aW,z 5 bW,Z " Pw )]}
I=1
8T < L a
—Se " |:Z [Nl (_aW,l 7bW,1 a_pW) - Nl (_aW,l > bW»l "~ Pw )]:|
I=1

NMC_ Ry,
i z Xe" Z[Nl (_aiL,Z’bi,Z —pi) =N, (_ai,HZ’bi,Z ’_pi)]:|
i I=1

NMC_ RMC[
- Z Seié‘”yow' Z[N, (_aiL,l abi,l ’ p,') - N] (_ailj abi,l ’ pi)]:|
i=1 =1

R W

+ )(Weirt1 {Z [N, (_aVLV,Z) - N, (_a;/[,z )]} - mwseimlw0 {RZW [N, (_aVLV,l) - N, (_aVIZ,l )]}

I=1

Ry,

Nye RMC[
+ Z|:Xie&] Z[Nl (_alL,z) - N, (_ai,Hz )] - miSe_&lwo Z[Nl (_azL,l) - N, (_ailj )]}

i=1 I=1 I=1

The parameters of the univariate and multivariate cumulative Normal are defined in

equation (7) of the main text.
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Section B: Analytic formulas and the numerical lattice implementation
for the jump-diffusion case

The assumptions and PDE for the jump-diffusion case

In the possible presence of i=MC,,MC,,..MC, = optional managerial learning or
control actions the process and N ;independent classes of jumps the value of the project

1s defined as:

ds,

N; _ N;
=(a—) Ak,)dt + odz + k,dg, + ) k,dr, (A1)
= =

t

Jumps have an impact &k, of ;j=1,2,...,N; jumps with dr; denoting Poisson processes
with frequency of arrival 4, per year. The diffusion case with controls is simply obtained

by setting the last term in equation (A1) equal to zero. This applies also for the discussion

that follows.

The PDE that the option should satisfy is

Nl —_ N.f
PV = L0 S Wy (r— 5 - S A,k)SV 4V, + S A,E(SY,.0 - V(S.0)]]
2 Jj=1 j=1 (A2)

N’VI(T
Y E[[V(SY,.,t)—V(S,t)]dqi]
i=1

To derive the PDE one can follow Merton’s (1976) replication argument, which imposes
two further assumptions, that the intertemporal CAPM of Merton (1973b) holds and that

managerial controls and jumps have firm specific risks, which are uncorrelated with the
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market portfolio and thus not priced. Alternatively, we can use the framework developed
in Garman (1976), Cox, Ingersoll, and Ross (1985) and Hull and White (1988) that use a

complete markets framework and no arbitrage arguments.

Denoting the accumulated (Brownian) noise from ¢ =0 to 7 by Z; we then have that asset

values at a future period 7 will be determined by:

i‘_T _ exp{(l’ —5- %)T +0Z, }{H (I+kdg,)+][(+k,dg,) (A3)

t

We assume that the effect of control actions and jumps are log-normally distributed. Each

control, learning action or exogenous jump has impact ¥ = l+k, that follows a

lognormal distribution:

Y =(1+k,) ~log Nlexp(z,),exp(y, )exp(a2)=1)**) p=i,j  (A4)

The assumption of log-normally distributed controls and jumps is adopted since it allows
non-negative asset values, and also, conditional on control or jump activation, asset

values retain log-normality. We will use (y,,0,)to denote characteristics of control or
learning actions and (¥ j,af) to denote the characteristics of randomly arriving jumps,
with j = 1,2,...,N; jump classes. We use y, >0 to describe efforts to enhance value with

random outcome. Alternatively, if S was interpreted as a cost, 7, <0 would mean efforts

to reduce costs.
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The risk neutral distribution of S at 7 conditional on the activation of control i and on the

realization n = {n,n,,...,n, }of jumps is given by:
J

N,

lr{% |i,n= {nl,n2,...ﬂ]\,j }] ~A{(r—6—éoz —Z/:ﬂjl;j)(T—t)ﬂ/i +%:nj}/j,02(T—t)+o;2 +lenjofJ (AS)

J

The distribution of returns conditional on no activation of control is found by

N, - N; N;
settingy, = o7 =0 and the diffusion by settingthe} A, k, =Y n;y, =Y n,c, =0.
=1 =

/=

Analytic formulas

Due to the complexity of the notation we present the formulas for the case of compound-
growth options. The formulation can be easily generalized to multiple actions and regions
but is not reported for brevity. Our results are consistent with Gukhal (2004) who prices
compound options for the jump-diffusion case but here we also allow for endogenous
controls and learning. In the case where project value follows jump diffusion with

J=12,..N; sources of jumps with impact yand volatility o, and like before there

exist two controls at r=0 and 7=¢,, the compound-growth option conditional on

activation of control action at # = 0 is given by:

Call_on_Call(.|dy e M\{E, 4} =W, MG, MC,,..MCy, })=

i i i {p(n(tl)l,...,n(tl)N/)p(n(tz)l,...,n(tz)Nj)

n(t,),=0 n(t)y =0n(,),=0 n(t, )Nj_ =0

)
Nj

—ST=3 (4, &, D+ 00, +1(0), Y+ 47) T
= = -
> | | N(al’”(fl 0k bl,n(tz )> Pa(t,).n(t, ) —Xe N (az,n(tl )2 b2,i’l(lz )> Pn(t,)on(t, 13
0 0 —5T—i(/1j k; t1)+zln([l)]_},j +7,
’ z Z {p(n(tl)l""’n(tl)Nj }ml Se 7= =

n(t,),;=0 n(hl)m, =0

)

N(ay ) — X, e N (a9 ,))]1}
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where

N/' - N./ N./
In(S/S™)+(r =6 =2 (A k)+0.507), + Y n(t),7; +7,+0.52.n(t) ;07 +0.50;
i=1 j=1 i

j=1

alan(ll) =

N 172
J
(aztl +>n(t);00 + oﬁ]
=

N 1/2
2 / 2 2
@31y = ungy) —| O 0+ 2 n(t) ;075 + 04
j=1

N, -
In(S/X)+(r—8-3 (1 k,)+0.56)T + (7o +7,)
j=1

N/ N.f
X (), + (), )y, + 053 (n(1), +n(1y), Jo 2 +0.5(02 +07)
__J=l J=1
bl,n(tz) - N 1/2
[o*zT +og+ol+ Y n(t, jajz}
j=1

N 0.5
2 2, 2 V¥ 2
j=1

Nj
o’ti+o, + ynt);0;

Jj=1

Prn(t,)n(ty) = N,
2 2, 2 2
[0' T+oy+0] + Z(n(tl)j +n(t2)j)0']}

J=1

Ni
PO (D) ) = q[e(”f’)(zjt)”(”f In(t) 1,
-

fort=t;and t = t,=T-t;, j = (1,2,...,N;)
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In this case we weight the value of the compound option with the probabilities of

occurrence of all combinations of jumps that can be realized untilz,,
n(t) = (n(tl)l,..,n(tl)N_ ), and those realized from ¢, to 7, i.e., n(t,) = (n(tz)l,..,n(tz)Nv ), t

=T-1;.

The critical value SLCI is found by solving numerically the equation:

m,S + i i {p(n(tz)l,n(tz)z,...,n(tz)Nj)

n(ty), "(tz)Nj

—5(T=1,)=> (A, ks (T=1)+ D (n(t,),7,)+7,

[Se - N(dy ) = Xe TNy )] = X, =0

N, _ N, N,
In(S/ X)+(r=8=3.(4,k;) =056 WT —t))+ Y.n(t,);7; +7, 0.5 .n(1,) ;07 +0.507
j=1 Jj=1 Jj=1

i niry) = N,
[O'Z(T_tl)"'zn(tz)jo",z' +o7]"?
=
N/
2 2, 2912
dy e,y = yne,) o7 (T —1) + Zln(tz)jaj +oy]
j:

We also provide the analytic valuation formulas the cases of call on put, put on call and put
on put. The parameters of the univariate and bivariate Normal and the probability of

occurrence of jumps are given in equation above for the call on call case.

Compound-growth call on put:
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Call on_puf(.| k)= i i i i {p(n(ll)l,...,n(tl)Nj)p(n(tz)l,...,n(tz)Nj)

n(t,),=0 n(tl)Nj =0n(t,),=0 ”(tz)Nj =0

. T K T fuw), (), roers)
[Xe N(_aZ,n(tl)a_bZ,n(tz)apn(tl),n(tz)]_Se " " N(_ala"(ﬁ)’_bla"(tz)’p"(ﬁ)a”(tz))}
=5t,=Y (A, ki) n(t) 7,47,

-2 X {p(n(tl)la---an(tl)Njine_rth(_aZn(tl))-i_mSe . . N(=ay )1}
n(t;),=0 ”([1)1\*]-:0

Compound-growth put on call:

Put_on_Call.| k) = i i i i {p(n(tl)l,...,n(tl)N/)p(n(tz)l,...,n(tz)N/)

n(#),;=0 n(tl)N/ =0n(t,),=0 n(tz)N/- =0

Nj B Nj
; ST (A, T+ Y (n(ey), 4002, b +(ro+7)
—r j= j=
[Xe ™" N (—az,n(t1 ) 9b2,n(t2 o Pn(t)n(t,) ~ Se \ 1 N (_al,n(n ) ’bl,n(tz)’_pn(t, ),n(tz))] h
Nj N/
—ST=) (A kj 1)+ (1), 7,47,

+ Z cee Z {p(n(tl)l,...,n(tl)N/ ):Xleirtl N(—Clz’n(tl))]—mse = = N(_al’n(tl))]}
n(t),=0 n(tl)N/- =0

Compound-growth put on put:

Put_on_Puf(.| k)= i i i i {p(n(tl)l,...,n(tl)N/)p(n(tz)l,...,n(tz)N/)

n(t;), =0 n(t, )Nj =0n(t,),=0 n(tz)Nj =0

N Nj
. =T (A k; T+ D (n(e)) +0(t), by 4o 470)
— j=1 j=1
[Xe " Ni (—az,n(z1 ) 9_b2,n(t2 )2 Pa(t,).n(t, )) —Se N (_"l,n(tl ) ’_bl,n(tz )2 Pn(t,).n(ty) b

Nj - Nj
=0T=) (A K 1)+ (67,47

+ z Z {p(n(tl)lr--an(tl)N/}Xle_rth(aZ,n(tl))—i_mSe a " N(al,n(hl))]}
n(t,),=0 n(tl)Nj:O
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The numerical solution for the jump-diffusion case

For the jump diffusion case the conditional on the realization of n = {n,,n,,...,n N, } jumps

log-returns follow:

lr{%m,n:{nl,nz,..n/vj }J~N[(r—é'—%0'2)T+;/(h,i)+zinj]/j,fT+f(h,i)+injofj (11)

In the cases where no control is activated, d, = {W,W,}, we have y(h,i) = o’ (h,i)=0

regardless of the previous action /.

Equations (13b), (13c), and (13e) stay the same, and we have the following adjustments
to equations (13a) and (13d):

VSt | MM M) =

e(_rAt) i...i[p(l’ll,-..,nm )Et I:V*(SHAt’t +At | SI,M,M:,MI_,H = (nl’nz""’an ))H

m=0 ny;

+m, S, ~X(d,_,.d,)
ford, € {ME,,ME,....,ME, }
(13°a)
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VS, e | MM M) =

e(rAt)[imip(l’ll,...,an )[Et I:V*(SH—At’t + At | St,M,Mf,M[,n = (nl’nZ""’an ))]]

=0 iy

(13°d)

We note that for the jump diffusion case the expectations should be taken over all

possible realizations of jumps, weighted by the probability of occurrence as the term

[ZZ p(n,,..., ny, )} demonstrates.
m=0 ny.

The volatility for the jump diffusion conditional on the realization of

n=(n,ny,..;ny ) jumps is:

T c*d,d,. ) 1 L
2 _ _ -2 “sub > M+ A 2 )
vid, d, \n=(n,ny,..ny)) =0 N + ]\t/wbt ) N ;njo-j (14%)

The up and down steps stay like in the diffusion case (with the above specification of
volatility used) and the up and down probabilities for the jump-diffusion case are given

by:

T vd,.d,,) 1 %
exp| (r—0) 2 4 Fo T ny. |-down(d,.d,,
p(( ) Nsub Nsub Nsub /Z:; ’ }/] ( t t At)

d,.d,,)= ’
pu( t A) up(dt,dﬁ_m)—dOWn(dt,dH_At)

pd(dt’dt+At) = l_pu(dt’dt+At)
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4. Investment Options with Debt Financing Constraints

Abstract

Building on the Mauer and Sarkar (2005) model that captures both investment flexibility
and optimal capital structure and risky debt, we study the impact of debt financing
constraints on firm value, the optimal timing of investment and other important variables
like the credit spreads. We also explore the social welfare implications of financing
constraints. Interestingly, we show that under some circumstances financing constraints
will be beneficial for social welfare, i.e., a socially optimum level of financing constraints
may exist but in other cases it might be harmful for social welfare (e.g. when imposed on
firms with high growth rates). The importance of debt financing constraints regarding
firm value and investment policy depends largely on the relative importance of
investment timing flexibility and debt financing gains. In cases where investment
flexibility has high relative importance the firm can mitigate the effects of debt financing
constraints by adjusting its investment policy. We show that these adjustments are non-
monotonic and may create a U shape of the investment trigger as a function of the degree
that debt is constrained. We show that for shorter investment horizon, constraints have a
more significant impact on firm value. We also consider managerial pre-investment risky
growth options (e.g. R&D, or pilot projects). We see that they reduce the maturity effect,
and (in contrast to the Brownian volatility) they tend to reduce expected credit spreads.
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4.1. Introduction

The main purpose of this study is to investigate the effect and importance of debt
financing constraints on firm’s timing of investment decision, firm value and some other
important variables like the credit spreads. The study of these issues are also important
for policy makers since some parameters like the tax rate, the risk-free rate, but also the
level of debt constraints themselves, can be potentially (directly or indirectly) be
controlled by policy makers. For this reason we also explore the social welfare

implications of debt financing constraints.

We build on the contingent claim approach to investigate these issues. Since the initial
contingent claims approach of valuing equity and debt was set by Merton (1974), several
papers generalized and extended this idea into new dimensions including coupon
payments, the tax benefits of debt and bankruptcy costs (for example, Kane et al., 1984,
and 1985). Leland (1994) uses a perpetual horizon assumption and derives closed form
expressions for the value of levered equity, debt and the firm in the presence of taxes and
bankruptcy costs. Security values are contingent on the uncertain unlevered value of the
firm. He abstracts from the investment decision and he analyzes equity holders optimal
trigger point of default (unprotected debt case). Leland and Toft (1996) extend Leland
(1994) to allow the firm to choose the optimal maturity of the debt, and debt level.

The above papers do not incorporate equity holders investment option decisions. Brennan
and Schwartz (1984) present a finite horizon model for the valuation of the levered firm
when equity holders optimally choose both the investment and financial policy
continuously over time. Bankruptcy is triggered by bond covenant provisions when the
value of the firm is less than the face value of debt that matures at the end of the time
horizon. Mauer and Triantis (1994) analyze interactions of investment and financing
decisions. The model allows for dynamic change in capital structure and default is
triggered through a positive net worth bond covenant restriction. Gamba et al. (2005)

analyze investment options with exogenous debt policy and both corporate and personal
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taxes. Mauer and Sarkar (2005) include optimal capital structure, optimal default and the

. . . . 1
investment option of the firm and discuss agency issues'’.

We adopt the contingent claims framework of Mauer and Sarkar (2005) and we study
debt financing constraints which may exist due to exogenous regulatory restrictions set to
financial institutions'®. Debt holders may also wish to reduce their stakes in a firm due to
moral hazard or asymmetric information (see Jensen and Meckling, 1976 and Myers and
Majluf, 1984, for discussion of these issues). Asymmetric information also can justify
why the suppliers of credit may engage in credit rationing (see Fazzari et al., 1988,
Stiglitz and Weiss, 1981 and Pawlina and Renneboog, 2005, for analysis of financing
constraints and credit rationing issues). In contrast to Boyle and Guthrie (2003) our
model does not focus on liquidity/cash constraints but on constraints on the level of debt
financing. Furthermore, we explore the effect of debt constraints in a model that allows
endogenous capital structure decisions, endogenous default and valuation of risky debt
(using the Mauer and Sarkar, 2005 setting), issues not considered explicitly in that
paper'”.In our model investment can be launched with sufficient equity and debt funds,
the latter being constrained, even in the absence of available internal financing. This
situation might be particularly relevant in closely own private firms or where the
information asymmetries on the equity side are of lesser importance. Other related work
is that of Uhrig-Homburg (2004) that explores costly equity issue that can lead to a cash-
flow shortage restriction. In relation to Mauer and Triantis (1994) the model we use here
(prior to imposing the constraints) captures optimal default decisions rather than default
based on bond covenant restrictions. Since our focus is on the effect of financing

constraints we however avoid issues of recapitalization (financing flexibility) like they

' Fries et al (1997) explore the valuation of corporate securities (debt and equity) incorporating the tax
benefits, bankruptcy costs and the agency costs of debt in a competitive industry with entry and exit
decisions. Valuation of corporate securities in a duopoly with entry and exit decisions has been studied by
Lambrecht (2001). In this paper we do not explicitly model competition but we allow for exogenous
competitive erosion.

' Such restrictions may implicitly arise due to compliance to minimum capital requirements.

' Boyle and Guthrie (2003) modelling approach of external financing constraints does not distinguish
between debt or equity financing. Effectively in this way they ignore the issues involved with respect to
optimal capital structure, the tax benefits of debt, and endogenous default decisions that lead to risky debt.
Furthermore their model implies immediate repayment as opposed to coupon paying debt that is explicitly
modelled here.
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do. Gamba and Triantis (2005) consider personal and corporate taxes, capital issuance
costs and liquidity constraints in a dynamic model, without the endogenous (optimal)
default determination in the analytic framework of Leland and Mauer and Sarkar that we

use.

We study the effect of debt financing constraints with respect to the risk-free rate,
dividend yield (competitive erosion), volatility of the value of unlevered assets,
bankruptcy costs and taxes. The importance of financing constraints under different
parametarizations of the model depends on the relative importance of investment
flexibility versus the net benefits of debt. Further insights are provided through a
comparison of the Mauer and Sarkar model with Leland (1994) and the McDonald and
Siegel (1986). Leland’s (1994) model includes only the financing decision (with no
investment timing) while McDonald and Siegel (1986) is an all-equity model that focuses
on the investment option decision. Using this comparison we clearly demonstrate the
trade-off between investment timing and the net benefits of debt and explain the
importance of debt financing constraints under different parameter values. This analysis
also provides insights on the observed U shape of the investment trigger with respect to
the level of financing constraint. In the numerical sensitivity we also show the effect of
financing constraints on equity value, the bankruptcy triggers, the optimal leverage, and
the credit spreads. Additionally, we implement the models with finite maturity horizon
for the investment option using a numerical lattice scheme and investigate the effect of
financing constraints depending on the maturity of the investment option. In this section
we also analyze the welfare effects of debt financing constraints. Interestingly, we show
that under some circumstances financing constraints will be beneficial for social welfare,
i.e., a socially optimum level of financing constraints may exist; but in other cases it
might be harmful for social welfare (e.g. when imposed on firms with high growth rates).
We also explore the effect of financing constraints in the components of social welfare

(firm value and government taxes).

Finally, we introduce at the pre-investment stage the (growth) option to enhance the value

of the unlevered asset, but in our setting the exercise of this option has random outcome.
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This assumption is similar to Martzoukos (2000) (see also Martzoukos, 2003 for the
special case with analytic solution) where an all-equity framework was used. Koussis,
Martzoukos and Trigeorgis (2005) have extended it to include path-dependency between
actions, and optimal timing of the exercise of growth options. Our assumption of growth
options that when exercised have a random outcome differs from the growth option
component of Childs, Mauer and Ott (2005) and Mauer and Ott (2000) in that the
potential exercise of the (equity financed) pre-investment growth option affects the
distribution of project value before investment is made and uncertainty reverts to
“normal” once the full investment is in place. This situation is particularly relevant for
risky start-up ventures. Leland (1998) investigates alternative modes of riskiness of the
project but he uses this to investigate equity holders ability to engage in “asset
substitution” i.e. engage in riskier strategies ex-post to debt agreement thus transferring
wealth from bond holders to equity holders. Equity holders in that model can switch
between low risk and high risk strategies. Our emphasis is on the study of the interaction
between these pre-investment managerial actions and investment options and financing
decisions with borrowing constraints. We find that a managerial decision to exercise
these growth option increases firm value, mostly by increasing the value of the option on
the unlevered assets; their effect on the expected net benefits of debt is of lesser
importance. We also find that exercise of these growth options decrease leverage ratios
and expected credit spreads in the presence of constraints, in contrast to the case of no
constraints where managerial actions have no effect on leverage ratios and expected

credit spreads.

In the next section, we present the theoretical framework of Leland (1994) and its
extension based on Mauer and Sarkar (2005) and we then introduce the borrowing
constraints. We also implement the model with finite investment horizon using a
numerical binomial tree approach to study the effect of investment horizon. In section 3
we study numerically and discuss the model with investment option and optimal capital
structure, and the impact of the financing constraints on firm value, the optimal threshold
to invest, and other interesting variables like credit spreads. We also include a section on

the welfare effects of financing constraints. In section 4 we consider pre-investment
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managerial growth actions with random outcome and their interaction with borrowing

constraints.

4.2. The Leland and Mauer and Sarkar model with financing
constraints

In this section, we review the theoretical framework of Leland (1994) that allows for
optimal default policy and optimal capital structure and its extension by Mauer and
Sarkar (2005) that also incorporates the optimal investment timing decision. Then we
incorporate and discuss the debt financing constraints (studied numerically in section 3).
The control-growth option will be added in the model and its numerical investigation will

be discussed separately in section 4.
We assume that the firm’s unlevered assets follow a Geometric Brownian Motion

d7V=,udt+O'dZ (1)

where u denotes the capital gains of this asset, o denotes its volatility, dZis an

increment of a standard Weiner process.

We also consider a dividend-like payout rate in the form of opportunity cost of waiting to
investo that can be used to model coupon payments on debt and may also have the
interpretation of competitive erosion on the value of assets (e.g., Childs and Triantis
(1999), Trigeorgis (1996) ch.9, and Trigeorgis (1991)). Similarly to Leland (1994) we
avoid using the first interpretation and we assume that V' is unaffected by the firm’s
capital structure: any coupon payments on debt are financed by new equity leaving the
value of unlevered assets unaffected. Leland (1994) has shown that liquidation of assets
to meet debt coupon obligation is inefficient (reduces firm value) compared to equity

financed payments. Using either a replication argument of Black and Scholes-Merton or
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the risk-neutral valuation as established in Constantinides (1978) we know that any

contingent claim f on V should satisfy the following PDE:

%azvsz V=8 fy —f, 1 =0.

Figure 1 shows the sequence of decisions in our model. Working backwards and in the
absence of a control, or after the control has been activated, we refer to (V) as the value
of the firm. F(V) is the value of an option (see figure 1) to invest capital / (potentially
with borrowing) at the optimal time ¢, and acquire a levered position E(V). The money

the firm actually needs to pay (the equity financing, not to be confused with equity value)

equals/ — D(V). Thus the firm has the option on max(E(V)— (I — D(V)),0) which is
equivalent to max(E(V)+ D(V')—1,0). This demonstrates that optimal exercise of the
investment option is by using the first best approach to maximize the total value of the
levered firm. The maturity 7 of the investment option can be either finite (in which case
a binomial lattice will be implemented) or infinite (in which case the analytic solution of
the following equation 2 holds). The investment option is exercised when V hits the
optimal investment trigger ¥, which is determined by simultaneously finding optimal
capital structure (through coupon payment R) and the optimal default triggerV,. To

retain an analytic component for the values of E(V)and D(V), default can be triggered

after ¢, and at any time up to infinity (following Leland, 1994).
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Figure 1: Extended Leland model with
growth option, investment option, and debt
financing constraints

Time 0: Control decision (F*(}))
e Exercise of growth options, or
e exercise investment option, or
e wait

Time t€[0,7] (T is infinite in the

analytic solution case): Investment

and capital structure decision

409))

e Wait, or

e exercise investment option at ¢,
when V' hits optimal investment
trigger V,; determine optimal
coupon subject to financing
constraints, and optimal default
trigger V

Time ¢ > ¢, until oo: Default decision

(E(W))
o Defaultif V<V,

When both the investment and the default horizons are infinite we use Mauer and Sarkar
(2005) to get the following equation which is a variant of their model* more consistent
with Leland and a focus on the value of unlevered assets (see Appendix for a review of

the steps followed):

% In their model the underlying asset equals the present value of a stochastic yearly revenue flow minus the
present value of constant costs. We make an assumption consistent with Leland (and McD&S) that the
underlying unlevered asset does not have a fixed component and follows a geometric Brownian motion.
Because of the absence of the fixed yearly costs, the abandonment option treated in Mauer and Sarkar
(2005) is meaningless in our version of the model.
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By I,7,R,r we denote the investment cost, tax rate, coupon, and the risk free rate
respectively. The term b denotes proportional (to V) bankruptcy costs and V, the
bankruptcy trigger point that will be optimally selected by equity holders in order to
maximize equity value E(V;). E(V;) is equity holders position once investment is

initiated which can be re-written in the form

s s s
_y || SRRV R RV
E0) =V, V{VJ {L} oL [}[V}

and has the following interpretation: conditional on investment, equity holders will obtain
the value of unlevered assets V, minus the expected value of unlevered assets at
bankruptcy (second term) minus a perpetual stream of coupon payments (third term) that
is netted with the payments that will not be made after bankruptcy (fourth term) plus the
tax benefits (fifth term) also netted in the event of bankruptcy (sixth term). At the

investment trigger, debt can also be re-written as
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B B

which equals a perpetual stream of coupons received (first term) netted with the expected
coupon payments not received after bankruptcy trigger (second term) plus the expected
value of the firm received at the bankruptcy trigger netted for the potential bankruptcy

costs (third term). The derivations of the above formulas are discussed in Leland (1994).

For the optimal investment threshold we use a “first best” rule throughout the paper
numerical results where V, is selected to maximize the levered value of the firm (equity

plus debt) as opposed to the “second best” of equity maximization. The first order

condition is (see the appendix):

B
1+ ,B((l - r)E —Vy j(g—’j (VLJ +

B
ﬂ((l by, - 5)(% (Vij - a(Vi](E(V,) +D(V})~1)=0

Equation (6) is solved numerically by simultaneously searching for optimal R.

3)

Effectively, the model presented here so far is a special case of Mauer and Sarkar (2005)
and we will call it the extended-Leland/MS model. It includes Leland (1994) and
McDonald and Siegel (1986) (McD&S thereon) as special cases. Leland’s model can be
obtained by setting V' =V, in equation (2) (immediate development with no investment
timing). McD&S model can also be obtained by setting coupons R equal to zero (all-
equity firm with an investment option), effectively imposing a zero debt restriction and

that the firm never defaults (V' = 0). Furthermore, applying R = 0 in equation 3 we get

the McD&S investment trigger that equalsV, = I.

a
(a-1)
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Replacing for E(V;)and D(V;) into F(V) (see equation 2) the firm value can also be

written as:

a B a B a
o o5 S 2] ()
v, r Ve v, Vg v, 4)

= E(V -I)+ E(TB) - E(BC)

where E in the last line now reads “expected value”. The last line effectively shows that
the value of the firm can be written as the expected value of the unlevered assets (option
on unlevered assets) plus the expected value of tax benefits minus the expected value of
bankruptcy costs (as in Mauer and Sarkar, 2005, but with emphasis on the value of the
unlevered assets). The net benefits of debt are defined as the difference between the

expected tax benefits and the expected bankruptcy costs i.e. NB = E(TB)—E(BC). As

we will show in the next section, this decomposition proves useful since it is shown that
optimal coupon and investment trigger selection involves a trade-off between obtaining
higher option on unlevered assets (the investment flexibility that the McD&S model
studies) versus higher NB of debt (debt financing gains that the Leland model studies).

Before moving to the discussion of financing constraints that is our main issue of analysis
we show how F(V) in the extended-Leland/MS model in finite investment option

horizon can be obtained by implementing a numerical lattice scheme. With N lattice steps

we have that up and down lattice moves and the probabilities of up and down equal:

u—exp(a\/7) d=1/u
(5)

_exp (r-6)T)-d
" u—d

> Pa zl_pu

135



vVEW)

For optimal coupon selection for a given V' value we apply the condition =0

which gives:

B B B B
[ 1 B A=V LN R
r[l (VBJ +'Br[V3j ]+b(lﬂ) r (VJ +ﬂbVB(V3j R ©)

with V; given in equation (2).

We apply equation 6 at each node of the lattice and we additionally allow for the early

exercise of the investment option. At exercise, option value equals E(V)+ D(V')— I with

E(V) and D(V) given in equation (2).

We now make the above framework more realistic by adding financing constraints that

may exist for example due to asymmetric information, moral hazard or even by internal
or regulatory constraints set to the banks. Debt financing constraints set a cap D™ to the
level of debt financing so that D(V;) < D™ . Without the constraint, D(V,) could even
be higher than the required level of investment, which is rather unrealistic in practical

applications. Furthermore, we could have percentage constraints i.e. D(V)<cV* (V),

VE(WV)=E®WV)+ D) which can be interpreted as a cap on the maximum allowable
leverage ratio (e.g. imposed by debt holders). In this paper we discuss the effects of the
constant value D™ . We now effectively face a constrained maximization problem.
When we use the analytic solution of equation 5 we impose the constraint by running a
numerical search for the coupon that satisfies the first order condition of the investment
trigger and at the same time satisfies that debt does not exceed D™ . Our approach is
consistent with the “first-best” strategy for the firm value maximization. In the cases
where the lattice framework is used the constraint is applied and must be satisfied at each

lattice node. In the following section we discuss how the firm will adjust its investment
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and optimal default strategies in the face of financial constraints and control-growth

options.

4.3. Numerical results and discussion

In this section we provide numerical results for the extended-Leland/MS model described
earlier. In subsection 3.1 we provide insights on the trade-off between investment timing
flexibility and the net benefits of debt that will be useful in the subsequent discussion of
financing constraints. The effects of financing constraints from firm’s perspective will be
discussed in subsection 3.2. The social welfare effects of financing constraints are

discussed in section 3.3.

4.3.1. Insights on the trade-off between investment timing flexibility and
the net benefits of debt

In order to illustrate the trade-off between investment flexibility and debt financing gains,
we first use the decomposition of firm value from equation (7). Figures 2 and 3 use
arbitrary (not optimal) values for the investment trigger. Figure 2 shows that the net
benefits of debt, are decreasing in the investment threshold, while there is an optimal
coupon at immediate exercise that maximizes firm value. It can be seen in figure 3, that
the option on unlevered assets is invariant to the coupon and there is an investment
trigger higher than the current value of unlevered assets that maximizes option value. It
is thus expected that optimal investment trigger and coupon decisions involve a trade off

between investment option benefits and the net benefits of debt financing.
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Figure 2: Net benefits of debt as a function of the coupon and investment trigger
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Notes: Net benefits of debt (VB) are defined as the tax benefits minus bankruptcy costs (see equation 7 of the
main text). We use a value of unlevered assets /' =100, a risk-free rate » = 0.06, an opportunity cost d = 0.06, an
investment cost / = 100, a volatility of unlevered assets ¢ = 0.25, a tax rate 7 = 0.35 and a bankruptcy costs level

of b =0.5.

Figure 3: Option on Unlevered Assets as a function of the coupon and
investment trigger
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Notes: Option on unlevered assets is defined as the option to pay / and get V' (see equation 7 of the main text). We use
a value of unlevered assets ' =100, a risk-free rate » = 0.06, an opportunity cost & = 0.06, an investment cost / = 100, a

volatility of unlevered assets ¢ = 0.25, a tax rate z = 0.35 and a bankruptcy costs level of 5=0.5.
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This tradeoff can be further seen in Table 1, where we compare the extended-Leland/MS
model (that has both investment and financing options), with the McDonald and Siegel
(1986) model (with the investment only option) and the Leland (1994) model (with the
financing only option). It provides the firm values, and then the (%) net gain that has the
following decomposition in (%) gain of investment flexibility and (%) gain in net

benefits of debt:

V)~ F(v) _ [E(Vv-1)-E'\V-I)] [NB-NB']

% Net Gain = - - + ‘
F'(V) F'(V) F(V)

(7)

where i = {McD&S, Leland}. We keep the base case of parameters of Leland (1994) plus
a positive opportunity cost o of 6%. Other parameters are as follows: value of unlevered
assets V' =100, risk-free rate » = 0.06, investment cost / =100. For the extended-
Leland/MS and the Leland models bankruptcy costs b = 0.5 and tax rate T = 0.35. The
table provides sensitivity analysis for the risk-free rate », the opportunity cost J, the
volatility of unlevered assets o, the bankruptcy costs b, and the tax rate 7 and the
investment cost /. Note that the different components for Leland’s model are found by

applying ¥, =V in equation (2). When we compare the extended-Leland/MS model with

the McD&S, we see that the net gain is due to the net benefits of debt only (at a loss in
investment flexibility). When comparing it to the Leland model, the net gain is due to

investment flexibility only (at a loss in the net benefits of debt).
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Table 1: Comparison of three models with various levels of flexibility: firm value
and investment and debt financing gains analysis

Ext.-Leland/MS vs McD&S Ext.-Leland/MS vs Leland

Firm Value
Ext.- % Gain % Gain % Net % Gain % Gain % Net
LelandMS  McD&S Leland E(V-I) NB Gain E(V-I) NB Gain

Base 35.42 25.48 18.18 -0.03 0.42 0.39 1.36 -0.41 0.95
r=10.02 23.92 18.28 11.19 -0.03 0.33 0.31 1.59 -0.46 1.14
r=0.04 29.48 21.74 14.73 -0.03 0.39 0.36 1.43 -0.43 1.00
r=0.08 41.38 29.27 21.34 -0.03 0.45 0.41 1.33 -0.39 0.94
0=0.02 68.30 53.27 21.95 -0.01 0.29 0.28 2.41 -0.30 2.11
0=0.04 47.29 35.49 19.96 -0.02 0.35 0.33 1.75 -0.38 1.37
0=0.08 28.05 19.28 16.68 -0.05 0.51 0.45 1.10 -0.42 0.68
o=10.05 35.99 5.30 35.99 -1.00 6.79 5.79 0.00 0.00 0.00
c=0.15 28.88 15.69 23.76 -0.17 1.01 0.84 0.55 -0.33 0.22
o=0.35 43.09 34.40 15.04 -0.01 0.26 0.25 2.26 -0.40 1.87
b=0.05 39.93 25.48 25.58 -0.06 0.63 0.57 0.93 -0.37 0.56
b=0.25 37.51 25.48 21.67 -0.04 0.52 0.47 1.12 -0.39 0.73
b=0.75 33.94 25.48 15.65 -0.02 0.36 0.33 1.59 -0.42 1.17
t=0.15 27.30 25.48 3.57 0.00 0.07 0.07 7.12 -0.48 6.64
1=0.25 30.41 25.48 9.38 -0.01 0.20 0.19 2.69 -0.45 2.24
=045 43.43 25.48 31.04 -0.09 0.80 0.70 0.75 -0.35 0.40
1=60 58.23 41.88 58.18 -0.03 0.42 0.39 0.01 -0.01 0.00
=280 44.01 31.65 38.18 -0.03 0.42 0.39 0.28 -0.13 0.15
1=120 29.66 21.33 0.00 -0.03 0.42 0.39 - - -

Notes: “Ext.-Leland/MS” refers to the main model used with investment and debt financing gains. “McD&S” refers to McDonald and
Siegel (1986) model of the perpetual investment option and “Leland” to the Leland (1994) model with optimal debt financing and no
investment flexibility. Base case used for all models: value of unlevered assets ¥ =100, risk-free rate » = 0.06, opportunity cost J =
0.06, volatility o = 0.25, investment cost / = 100. For the Ext.-Leland/MS and the Leland model we use bankruptcy costs b = 0.5, tax
rate 7 = 0.35. The notation “% gain E(V-1)” refers to the % change in value of the option on unlevered assets and “% gain NB” refers
to the % change in the net benefits of debt relative to the other two models. Sensitivity analysis is with respect to the risk-free rate 7,
opportunity cost d, volatility of unlevered assets o, bankruptcy costs b, and the tax rate 7, investment cost /.

The comparison will provide insights on the effect of financing constraints that is studied
in detail in the next subsection. It is expected that when debt financing gains are
relatively more important, the effect of financing constraints will be more severe. First
note that, as expected, the firm value in the extended model is higher than in both other
models. The (%) differences between the extended and the McD&S (Leland) models are
at a maximum (minimum) at higher opportunity cost J, higher risk-free rate », lower
volatility o, lower bankruptcy costs b, and higher tax rate . In absolute values, this
relation is reversed for the comparison with the Leland model in the case of the risk-free

rate r, and for the comparison with the McD&S model in the case of the opportunity cost

0.
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Another interesting observation is the effect on firm value of changes in the above
parameters. Higher risk-free rate » and lower opportunity cost  increase firm value in all
models (both investment flexibility and net benefits of debt are affected positively).
Taxes and bankruptcy costs affect the extended model only through the effect on net
benefits similarly with the Leland model. A significant observation is on the effect of
volatility. An increase in volatility increases the firm value in the McD&S model
(investment flexibility increases) but it decreases firm value in the Leland model (net
benefits of debt decrease). In the extended-Leland/MS model, these opposite forces
result in a U-shape in firm value (a result not reported in Mauer and Sarkar, 2005).
Finally, at higher investment cost /, firm value decreases in all models. Investment
flexibility to delay is relatively more important than the net benefits of debt and thus the
differences between the extended-Leland/MS and the Leland model are increasing. At
high investment costs it is possible (i.e., / =120) that immediate investment is not feasible

since firm value will be negative (so in the Leland model firm value equals zero).

Table 2 shows additional information with respect to the three models. The investment
triggers and the bankruptcy triggers are reported first’'. The other columns show for all
models, equity and debt values, optimal coupon and credit spreads, reported at the
optimal investment trigger (note that for the standard Leland model, investment takes
place immediately at time zero). We first see that the investment triggers in the extended
model are in all cases lower than in the McD&S model. This result is driven by the
existence in the extended model of the benefits of debt which are decreasing in the
investment trigger (see discussion in the previous subsection and figure 2). Note that the
comparison is for two extreme cases, the extended model at optimal debt, and the
McD&S which is effectively a model constrained to zero debt. As we will see in the next
subsection, for in-between cases (with arbitrary levels of debt constraint) this relationship

is not monotonic. We also note that the bankruptcy triggers in the extended-Leland/MS

2! Note that in the case of low volatility, 6 = 0.05, we report the theoretical trigger although the current
value of V'is higher than that; the investment option is exercised immediately so that firm value reported is
equal to that of the Leland model.
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model are higher than in the Leland model. It can be seen that the optimal coupon that is
actually paid is higher in the extended model than in the Leland model. The optimal
leverage and the credit spreads are the same in the extended-Leland/MS and in the Leland

model, despite the differences in the equity and debt values and in the optimal coupon.

The sensitivity results for the Leland model are consistent with the analysis in Leland
(1994). For the extended model, we can see that the bankruptcy trigger at the investment
trigger may exhibit a U-shape with respect to the volatility. Also, as we know from
Leland, the optimal capital structure is invariant to the level of unlevered assets V, and

the same holds for the extended model.
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Table 2: Comparison of three alternative with various levels of flexibility: Investment and bankruptcy triggers, optimal
leverage, optimal coupons and credit spreads

Optimal Capital Structure at Investment Trigger V;

Inv. Trigger (V) Bankr. Trigger (V3) Equity Debt Optimal Leverage Optimal Coupon Credit Spread
Ext. — Ext.- Ext.- Ext.- Ext.- Ext.- Ext.-

Leland/MS McD&S Leland/MS Leland Leland/MS Leland Leland/MS Leland Leland/MS Leland Leland/MS Leland Leland/MS Leland

Base 171.57 202.77 57.92 33.76 74.82 43.60 127.94 74.57 0.63 0.63 10.84 6.32 0.0247 0.0247
r=0.02 148.61 165.24 30.88 20.78 77.69 52.27 87.55 58.92 0.53 0.53 4.71 3.17 0.0338 0.0338
r=0.04 158.75 182.15 43.42 27.36 75.71 47.68 106.43 67.05 0.58 0.58 7.30 4.60 0.0286 0.0286
r=0.08 186.71 226.57 73.97 39.62 74.78 40.04 151.77 81.29 0.67 0.67 15.47 8.29 0.0219 0.0219
0=10.02 406.51 495.73 165.73 40.77 159.98 39.36 335.77 82.60 0.68 0.68 25.28 6.22 0.0153 0.0153
0=10.04 227.75 273.23 84.39 37.06 94.73 41.59 178.47 78.37 0.65 0.65 14.19 6.23 0.0195 0.0195
0=10.08 145.64 169.93 45.14 30.98 66.01 45.34 103.92 71.34 0.61 0.61 9.44 6.48 0.0308 0.0308
o= 0.05 84.93 115.51 56.74 66.83 20.05 23.57 95.45 112.42 0.83 0.83 6.05 7.13 0.0034 0.0034
c=0.15 124.17 153.68 54.77 44.12 46.40 37.36 107.27 86.40 0.70 0.70 7.77 6.26 0.0124 0.0124
o=0.35 229.71 264.24 64.16 27.93 108.65 47.30 155.61 67.73 0.59 0.59 15.65 6.81 0.0406 0.0406
b=0.05 161.48 202.77 76.72 47.50 44,13 27.34 158.65 98.24 0.78 0.78 14.36 8.89 0.0305 0.0305
b=0.25 166.65 202.77 67.05 40.24 59.10 35.46 143.66 86.21 0.71 0.71 12.55 7.53 0.0274 0.0274
b=0.75 175.34 202.77 50.97 29.06 87.73 50.05 115.05 65.60 0.57 0.57 9.54 5.44 0.0229 0.0229
=0.15 195.76 202.77 39.61 20.25 124.03 63.34 78.72 40.24 0.39 0.39 5.67 2.90 0.0120 0.0120
=0.25 185.38 202.77 52.22 28.16 95.15 51.34 107.63 58.04 0.53 0.53 8.47 4.57 0.0187 0.0187
7=10.45 154.75 202.77 58.73 37.94 59.18 38.25 143.61 92.79 0.71 0.71 12.99 8.39 0.0305 0.0304
1=60 102.96 121.66 34.78 33.76 44.87 43.60 76.81 74.57 0.63 0.63 6.51 6.32 0.0248 0.0247
=280 137.25 162.21 46.32 33.76 59.86 43.60 102.33 74.57 0.63 0.63 8.67 6.32 0.0247 0.0247
=120 205.89 243.32 69.51 33.76 89.78 43.60 153.54 74.57 0.63 0.63 13.01 6.32 0.0247 0.0247

Notes: “Ext.-Leland/MS” refers to the model developed with both investment timing flexibility and debt financing gains. “McD&S” refers to McDonald and Siegel (1986) model of the perpetual
investment option and “Leland” to the Leland (1994) model with optimal debt financing and no investment flexibility. Base case used for all models: value of unlevered assets ¥ =100, risk-free rate » =
0.06, opportunity cost J = 0.06, volatility o = 0.25, investment cost / = 100. For the Ext. Leland and Leland model use bankruptcy costs b = 0.5, tax rate ¢ = 0.35.Equity, debt, optimal leverage, optimal
coupons and the credit spread are calculated at the investment trigger. Sensitivity analysis with respect to the risk-free rate r, opportunity cost J, volatility of unlevered assets o, bankruptcy costs b, and
the tax rate t, investment cost /.



4.3.2. The effect of financing constraints on firm value and optimal firm
decisions

In this section we explore the effect of financing constraints on firm and equity value,
bankruptcy and investment thresholds, and on leverage and the credit spreads. In the
following figures, firm values are reported at time zero. All other information about
equity values, etc. is for a value of V" equal to the optimal investment trigger V;. Figures 4
and 4A show the implications of financing constraints on firm and equity value, the
investment and bankruptcy triggers, leverage and the credit spread at different levels of
risk-free rate, opportunity cost ¢ and volatility. Our discussion will concentrate on
realistic levels of debt equal to the total required investment (= 100) and below. We
compare the base case with ones reflecting lower parameter values. As can be seen from
the figures, the truly unconstrained case often leads to unrealistic debt levels above 100%
of the required investment capital, with an unrealistically high firm value. This is an
important observation that shows the significance of our constrained borrowing approach,
since to even remain at 100% debt, we need to apply the constraints. Similarly
unrealistic is the high investment and bankruptcy trigger values for the truly

unconstrained case.

Figure 4: Firm value, equity values, and investment trigger as a function of
maximum levels of debt: Sensitivity with respect to r, 6 and o.
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Notes: Base case used: Value of unlevered assets /' =100, risk-free rate » =0.06, oopportunity cost J =
0.06, investment cost / =100, volatility of unlevered assets o = 0.25, tax rate 7 = 0.35 and bankruptcy
costs b= 0.5. Sensitivity with respect to the risk free rate r, opportunity cost J, and volatility o.
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Figure 4A: Bankruptcy trigger, leverage and credit spreads as a
function of maximum levels of debt: Sensitivity with respect to r,

o and o.
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Notes: Base case used: Value of unlevered assets /' =100, risk-free rate » =0.06, oopportunity cost J =
0.06, investment cost / =100, volatility of unlevered assets o = 0.25, tax rate 7 = 0.35 and bankruptcy
costs b= 0.5. Sensitivity with respect to the risk free rate r, opportunity cost J, and volatility o.
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In figure 4 as expected we see that financing constraints decrease firm values and
increase equity values. An interesting observation is that they often produce a U-shape in
the investment trigger. This result differs from Boyle and Guthrie (2003) since they
effectively focus on constraints on cash balances and we focus on constraints on debt.
We interpret this U-shape as follows: when the firm is unconstrained, it will use debt at a
maximum. As constraints start to become binding, the firm will adjust its investment
policy by lowering the investment trigger so as to capture net benefits of debt (as we have
discussed in the previous subsection, the net benefits of debt are decreasing in the
investment trigger). When constraints become much more binding, the effect of net
benefits of debt becomes less important, and the firm gives priority to the exploitation of
its investment timing flexibility by increasing the investment trigger. After careful
inspection, we also see that a small dividend yield results in a less pronounced (%)
decrease in firm value (due to the higher importance of investment flexibility at lower 6
discussed in subsection 3.1). A small volatility results in a more pronounced (%) decrease
in firm value (reducing thus the larger financial flexibility benefits of low volatility

discussed in subsection 3.1).

In figure 4A we see that bankruptcy trigger and leverage ratios are decreasing. The fact
that lines on the figures may cross, shows that firms with different characteristics (i.e.,
different parameter values) will adjust optimal leverage differently in respect to imposed
constraints. The last figure shows the impact of constraints on credit spreads, which is
far from linear. Compared to the base case, for lower J credit spreads are lower (see table
2 of subsection 3.1). This in general reflects lower bankruptcy risk, since investment
trigger is higher, the bankruptcy trigger is lower, and the (risk-neutral) drift is higher.
With stricter constraints, the difference between the levels of the bankruptcy and the
investment triggers is larger, thus the credit spreads are further reduced. Again compared
to the base case, for lower interest rates credit spreads are higher (see table 2 of
subsection 3.1). This now reflects higher bankruptcy risk, since although both the

investment and the bankruptcy trigger are somewhat lower, the (risk-neutral) drift is
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lower. With stricter constraints, the investment trigger goes up and the bankruptcy trigger
goes down, thus further decreasing bankruptcy risk and credit spreads. The case of
volatility is more complex. Lower volatility reduces the gap between the two triggers,
which would increase bankruptcy risk, but with lower volatility the probability of hitting
the bankruptcy trigger may be reduced and apparently this latter effect is more important.

In figures 5 and 5A we similarly see the implications of financing constraints on firm and
equity value, the investment and bankruptcy triggers, leverage and the credit spread at
different levels of bankruptcy costs and tax rates. In figure 5 and to the left, all values for
zero debt converge to the same point which corresponds to the McD&S case, since the
bankruptcy costs and tax rates affect the net benefits of debt only.

Figure 5: Firm value, equity values, and investment trigger as a

function of maximum levels of debt: Sensitivity with respect to ¢
and b.
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Notes: Base case parameters used: Value of unlevered assets V' =100, risk-free rate » = 0.06, opportunity
cost 0 = 0.06, investment cost /=100, volatility of unlevered assets ¢ = 0.25, tax rate 7 = 0.35 and
bankruptcy costs b=0.5. Sensitivity with respect to bankruptcy cost b and tax rate

Figure 5A: Bankruptcy trigger, leverage and the credit spread as
a function of maximum levels of debt: Sensitivity with respect to

7 and b.
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Notes: Base case parameters used: Value of unlevered assets V' =100, risk-free rate » = 0.06, opportunity
cost 0 = 0.06, investment cost / =100, volatility of unlevered assets ¢ = 0.25, tax rate 7 = 0.35 and
bankruptcy costs b=0.5. Sensitivity with respect to bankruptcy cost b and tax rate 7.

We observe that for low taxes, stricter constraints have a small effect on firm value and
the investment trigger since for low taxes the net benefits of debt are low. In figure SA
we see that leverage and more importantly credit spreads tend to converge in the
constrained region, whereas in the unconstrained region there can be significant
differences for different levels of bankruptcy costs and tax rates. In the constrained region
the optimal bankruptcy trigger for low tax rates is higher than in the base case. In both

figures we see that reducing bankruptcy costs in the constrained region has a negligible

effect.
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We have also implemented a numerical lattice with 2 steps per year (figures not shown
for brevity). The lattice captures a finite investment horizon. We have observed that for
stricter constraints, the decrease in firm value is more pronounced when option maturity
is lower. For looser constraints, the decrease in option value is rather insensitive to option

maturity.

4.3.3. Welfare effects of debt financing constraints

In this section we investigate the welfare implications of financing constraints on debt.
We use the definition of welfare described in Mauer and Sarkar (2005) as the sum of firm
value and the expected taxes of the government. The analysis could prove useful for
policy makers when they wish to examine the total effect of a policy on financing
constraints for a particular industry but the analysis of this section also provides useful

information with respect to the tax raising potentials of such policies.

Taxes are contingent on the continuous flow of revenues that are generated by the firm.
Keeping as underlying source of uncertainty the value of unlevered assets in this case
would not allow for the analysis of welfare effects since we would not be able to
calculate the continuous flow of tax revenues. For this reason in this section we use the
price of the product as the driving source of uncertainty like in Mauer and Sarkar (2005)

and we use the relationship:
P
V==(0-7
5 (1-7)

Effectively, the value of unlevered assets is the present value of after tax income stream
(we set operational costs to zero and we exclude the option to abandon that where used in

the Mauer and Sarkar, 2005 model). To maintain the same initial values for V' like in our

previous base case (remember that}) =100) we then invert to get P = 0 to be the

—7)
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. . o : R
starting price of the product. Note that to maintain consistency P, = — P 0 — so that

-p) r

P
Vy :?(1—1) is like before. P, is selected using first best approach where V, is

P
replaced with 7, =§’(1—r) in the first order condition. Our results are now fully

consistent with previous section’s results defined with respect to the value of unlevered
assets i.e. the price investment and price default triggers (and optimal coupon) will
generate the same investment and default triggers with respect to the value of unlevered
assets and the same firm, equity and debt values like before. This formulation allows the

calculation of taxes as:

Social welfare at time zero is calculated as:

SW = (F(P,>+T<P,>)(§}

1

Note that the function of firm value F{(.) is the same like before evaluated with respect to

the price of the commodity.

In contrast to Mauer and Sarkar (2005) we do not allow the social planner (government)
to control the investment trigger but only to possibly control the level of debt financing.
While obviously firms will benefit by being unconstrained on the level of debt financing,
it is less clear in advance that the government will also find that unconstrained debt
financing is optimal from the social point of view. In particular, the government is also
interested in optimizing the level of taxes received that can be used to finance projects of

public interest. Taxes received will be affected by the investment trigger and the level of
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default trigger which are beyond the control of government (can only be indirectly

controlled by selecting the level of debt constraint).

Figure 6: Social Welfare and it’s components, firm value and
taxes as a function of debt financing constraints
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Figure 6A: Social Welfare and it’s components, firm value and
taxes as a function of debt financing constraints: Lower tax rate

(r=0.15)

35,2
35

34,8
34,6 -
34,4 4

\\0—<>

34,2
34

Social Welfare

33,8

25

50

75

100 Unconstrained

—eo—Taxes
—— Firm value

30
L—/'/F
3 25
X
&
. 20 -
s
° 15 -
=
S 10, R .
£ M v & O
ic 5 A
O T T T T
0 25 50 75 100 Unconstrained

Notes: Base case used: Price of the product P = 7.059 which is equivalent to a value of unlevered
assets ' =100. Risk-free rate  =0.06, opportunity cost d = 0.06, investment cost / =100, volatility of

unlevered assets o = 0.25, tax rate 7 = 0.15 and bankruptcy costs b= 0.5.
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Figure 6B: Social Welfare and it’s components, firm value and
taxes as a function of debt financing constraints: Lower
opportunity cost (6 =0.02)
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Notes: Base case used: Price of the product P = 3.077 which is equivalent to a value of unlevered
assets ¥ =100. Risk-free rate » =0.06, opportunity cost J = 0.02, investment cost / =100, volatility of
unlevered assets o = 0.25, tax rate 7 = 0.35 and bankruptcy costs b= 0.5.

In figures 6 we see the effects of financing constraints on welfare and its components,
firm value and taxes for the base case parameters used in the previous section. Figure 6A
shows the results for a lower tax rate and lower opportunity cost J. Interestingly, using
the base case parameters we find that social welfare is maximized when the government
sets a constraint of 75% on total investment cost. This result is driven by the fact that
government taxes exhibit a concave shape i.e. increase initially but as more debt

financing is allowed they tend to decrease (firm value is always increasing in the level of
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available debt financing). The behaviour of taxes is driven by the behaviour of the
investment and default trigger and will vary depending on the parameters used. For the
base case parameters, remember that the investment trigger exhibits a U shape and the
default trigger is higher as more debt can be used. Starting from zero debt and allowing
for some debt to be used will decrease the investment trigger and will start generating
taxes earlier. The earlier receipt of taxes seems to dominate the decreased taxes that will
be received once investment is initiated at the investment trigger (the decreased taxes at
the investment trigger is due to the lower revenues generated at a lower trigger and
because of the earlier default after investment is launched). The opposite forces seem to
dominate as the financing constraint is relaxed even more. Interestingly for a tax rate of
15% (see figure 6A) social welfare is maximized at around 50% level of constraint. With
lower taxes it is shown that taxes decrease as more debt financing is allowed. This is
because the investment trigger is rather stable (see previous section) while the default

trigger increases as the level of debt financing increases.

It should be emphasised that corner solutions are possible. In particular, for lower interest
rates (r = 0.02) (figures for lower r and ¢ not shown to preserve space) social welfare
increases as the financing constraint on debt increases reaching a maximum at zero debt.
Taxes are thus increasing as the constraints become stricter. On the hand, for low rate of
competitive erosion (6 = 0.02) social welfare increases as debt financing constraints are
relaxed, reaching a maximum in the unconstrained case. This is an interesting observation
showing that higher debt financing potentials allowed for growth firms can also be
beneficial from social welfare perspective (see figure 6C). For a lower volatility (o =
0.15) and lower bankruptcy costs (b = 0.25) the results regarding the maximum point of
the base case are not affected i.e. social welfare reaches a maximum at a 75% level of

debt financing constraint.
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4.4. The effect of managerial control/growth options with random
outcome

In this section we use the previous models and we introduce managerial control/growth
options that exist prior to the exercise of the investment option (see Martzoukos, 2000).
These controls may be costly, they have an instantaneous (impulse) and random outcome
and they are assumed to be equity financed (a reasonable assumption for start-up growth
firms). Control characteristics are their volatility, expected impact and cost. Such
actions may represent managerial growth options to engage in R&D, product redesign,
advertisement, marketing, or any other actions that are targeted towards an increase in
value, albeit have a random outcome. We wish to study the effect of such actions on firm
value and its components (option on unlevered assets and the net benefits of debt), and on
the expected at development optimal leverage, equity and debt value, and credit spreads.
Of particular interest is the effect of the volatility of such actions on the aforementioned
variables in contrast to the effect of Brownian volatility. Changes in the Brownian
volatility that we discussed in the previous section hold both before and after the
investment decision; they thus affect both the investment timing option, and the risk of
debt and debt capacity of the firm. The effect (increase) of uncertainty due to the
control/growth actions is action-specific and thus affects volatility before the investment

decision and not after®?.

We assume that the control can be activated at time zero at a cost /.. Its effect on the

unlevered asset will have a random outcome (1+4% ) where:

2 Merton (1974) uses the Black and Scholes model to value equity and risky debt. In that model, increases in volatility create the so-
called asset-substitution effect by transferring value from debt holders to equity holders. The assumption is that the investment and
the level of debt have been already decided upon, and then there is a change in volatility. In the Leland (1994) model asset
substitution can be studied by first deciding on the coupon level, and then changing volatility given the coupon level decision (see also
Leland, 1998). In section 3 we discussed the sensitivity to volatility for the Leland and the extended Leland model. In our
implementation of both models the new volatility level holds both before and after the investment decision. In our implementation
thus of the Leland model, optimal coupon is decided given the new level of volatility. In section 4, the action-specific volatility has a
direct effect on uncertainty before the investment decision and not after.
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1n(1+k)~N(y—%o%,aéj. (8)

The assumption of a lognormal distribution is convenient since we retain the

lognormality of the asset values when controls are activated. The expected multiplicative

impact of control on V' is 1+k= exp(y) with a variance exp(y) (exp((fé)—l)o'5 (from

lognormal distribution). We assume that an equilibrium continuous-time CAPM (see
Merton, 1973) holds and that controls have firm-specific risks which are uncorrelated

with the market portfolio and are thus not priced.

In general we may have optimal timing of controls and issues of path dependency (see
Koussis, Martzoukos, and Trigeorgis, 2005, for an all-equity model with control/growth
actions). For simplicity here we assume that controls are available only at ¢ = 0, although
optimal timing of those actions could be added in the present capital structure framework
but at a significant expense of computational intensity and without offering any important

additional insights.

Optimal firm value, F*(V) is calculated as the option to invest capital /. in control-

growth action at time zero that will potentially enhance V but has a random outcome.

This gives the investment option F (V') to pay capital cost / and acquire a potentially

levered position V' (V)= E(V)+ D(V) . Note that E(V) and D(V) denote the stochastic

values of equity and debt respectively (see section 2). Optimal firm value at # = 0 can be

defined as follows:

F*(V)=max{E[F(/)]-1c,F(V)] ©)
Pre

where, = {exercise of growth option, no exercise of growth option} and E ‘L] is

expectation under the managerial control distribution. For the evaluation of the

expectation under control activation we use a Markov chain implementation. Effectively,
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we create a grid of V' values with attached probabilities consistent with the distribution of
control-growth option activation described in equation (8). In the Tables 3 and 4 that
follow, all the values reported are expected due to the presence of control uncertainty,
since we report them conditional on control activation. They are calculated with the use
of the Markov-Chain that approximates the lognormal distribution of the multiplicative
effect of the control as discussed earlier. In the extended model where delay is possible,
the values are the expected ones given control activation of the expected values at the

investment trigger given the uncertainty coming from the Wiener process.

Martzoukos (2000) and Koussis, Martzoukos and Trigeorgis (2005) have shown that
these managerial control actions increase investment option value for an all-equity firm.
Here we investigate their effect with both investment timing flexibility and net benefits of
debt. Table 3 shows numerical results for the effect of controls on firm value and its two
components, the expected value of unlevered assets and the expected net benefits of debt.
In the same table we explore the effect of control actions with random outcome in the
presence of financing constraints on debt. We assume that the cost of the control is zero
to concentrate on the effect of the control distributional characteristics. Effectively, the
control can be activated if its cost is less than the increase in added value it provides. For
example, the firm value in the extended Leland model equals 35.42 without any control
activated, and 55.18 when a control with volatility 0.60 and mean impact 0.10 is
activated. Thus, an equity-financed cost up to 55.18 — 35.42 = 19.76 could be paid for
this control action. Concentrating on the first panel (the case with no constraints) we see
that in all models firm values are increasing in both the volatility of control and the
expected impact.  This is in contrast to the effect of an increase in the Brownian
volatility (see discussion on Table 1) that decreases firm value in the Leland model (and
creates a U-shape in the extended model). In both the extended Leland and the Leland
models, an increase in the mean impact has a positive effect on both the option on
unlevered asset and the net benefits of debt. An increase in volatility though, increases
the option on unlevered assets, but may decrease the net benefits of debt. The net effect

though of an increased control volatility is still positive, since the effect of higher

159



volatility on the option on unlevered assets is strong enough to counterbalance a negative

effect on the net benefits of debt.

Table 3: The effect of managerial control actions and financing constraints on

firm value and its components (option on unlevered assets and expected net

benefits of debt)
Option on
Unlevered Assets Net Benefits
Firm value E(V-I) of Debt (NB)
Ext.- Ext.- Ext.-
Leland/MS McD&S Leland Leland/MS  Leland  Leland/MS  Leland
No constraints
No control 35.42 25.48 18.18 24.67 0.00 10.75 18.18
y=0.10
oc=0.2 44 .81 32.24 31.56 31.23 13.37 13.58 18.18
oc=04 49.34 35.86 37.50 35.02 21.23 14.32 16.26
oc=0.6 55.18 41.01 44.94 40.35 30.29 14.83 14.65
0c=0.2
vy=0.1 44 .81 32.24 31.56 31.23 13.37 13.58 18.18
vy=03 66.25 47.74 59.60 46.41 35.30 19.84 24.30
vy=0.5 96.90 70.46 94.85 69.17 64.88 27.73 29.96
Max Debt = 75
No control 32.70 25.48 18.18 24.02 0.00 8.68 18.18
y=0.10
6c=0.2 41.36 32.24 30.41 30.45 13.37 10.92 17.04
6c=04 45.24 35.86 35.07 3441 21.23 10.84 13.84
6c=0.6 50.06 41.01 41.10 39.88 30.29 10.18 10.81
cc=02
vy=0.1 41.36 32.24 30.41 30.45 13.37 10.92 17.04
vy=03 61.02 47.74 56.16 45.46 35.30 15.57 20.86
vy=0.5 88.66 70.46 87.40 68.43 64.88 20.22 22.52
Max Debt = 50
No control 30.25 25.48 14.87 24.67 0.00 5.59 14.87
vy=0.10
6c=0.2 38.28 32.24 26.58 31.23 13.37 7.05 13.21
oc=04 42.13 35.86 31.76 35.01 21.23 7.11 10.53
6c=0.6 47.08 41.01 38.23 40.35 30.29 6.74 7.94
0c=02
vy=0.1 38.28 32.24 26.58 31.23 13.37 7.05 13.21
vy=03 56.58 47.74 50.71 46.40 35.30 10.18 15.40
vy=0.5 82.74 70.46 80.93 69.16 64.88 13.58 16.05

Notes: “Ext.-Leland/MS” refers to the model with both investment timing flexibility and debt financing gains. “McD&S” refers
to McDonald and Siegel (1986) model of the perpetual investment option and “Leland” to the Leland (1994) model with optimal
debt financing and no investment flexibility. Base case used for all models: value of unlevered assets ' =100, risk-free rate » =
0.06, opportunity cost d = 0.06, volatility o = 0.25, investment cost / = 100. For the Ext. Leland and Leland model use
bankruptcy costs b = 0.5, tax rate 7 = 0.35. Managerial control parameters have expected impact y and volatility ¢ and are
implemented using a Markov-chain with N =50 states. Max. Debt refers to constraints on the total amount of debt that can be

issued.
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Table 4: The effect of managerial control actions and financing constraints on optimal capital
structure, expected costs, expected leverage ratio and on expected credit spreads.

Optimal capital structure

Expected Expected Expected Expected Expected
Equity Debt Cost Leverage Credit Spread
Ext. - Ext.- Ext.- Ext.- Ext.-
Leland/MS Leland Leland/MS  Leland Leland/MS  Leland Leland/MS Leland Leland/MS Leland
No constraints
No control 25.79 43.60 44.10 74.57 34.47 100.00 0.63 0.63 0.0247 0.0247
y=0.10
oc=0.2 32.58 43.61 55.71 74.58 43.47 86.63 0.63 0.63 0.0247 0.0247
oc=04 34.35 39.01 58.74 66.71 43.75 68.23 0.63 0.63 0.0247 0.0247
6c=0.6 35.58 35.14 60.84 60.09 41.24 50.29 0.63 0.63 0.0247 0.0247
0c=02
y=0.1 32.58 43.61 55.71 74.58 43.47 86.63 0.63 0.63 0.0247 0.0247
vy=10.3 47.59 58.28 81.38 99.68 62.73 98.35 0.63 0.63 0.0247 0.0247
y=0.5 66.53 71.87 113.76 122.91 83.39 99.93 0.63 0.63 0.0247 0.0247
Max Debt = 75
No control 42.24 43.60 28.61 74.57 38.15 100.00 0.40 0.63 0.0109 0.0247
y=0.10
oc=0.2 53.35 53.11 35.96 63.93 47.95 86.63 0.40 0.55 0.0108 0.0194
oc=04 57.05 53.07 35.43 50.23 47.24 68.23 0.38 0.49 0.0103 0.0173
oc=0.6 61.04 53.72 32.96 37.67 43.95 50.29 0.35 0.41 0.0096 0.0147
oc=02
y=0.1 53.35 53.11 35.96 63.93 47.95 86.63 0.40 0.55 0.0108 0.0194
vy=10.3 78.07 81.02 51.12 73.50 68.17 98.35 0.40 0.48 0.0106 0.0154
y=0.5 110.56 11241 65.71 74.93 87.61 99.93 0.37 0.40 0.0098 0.0115
Max Debt = 50
No control 47.50 64.87 17.25 50.00 34.50 100.00 0.27 0.44 0.0061 0.0122
y=0.10
6c=0.2 60.03 69.90 21.75 43.32 43.50 86.63 0.27 0.38 0.0061 0.0105
oc=04 64.01 65.88 21.89 34.11 43.77 68.23 0.25 0.34 0.0058 0.0096
6c=0.6 67.71 63.37 20.63 25.15 41.26 50.29 0.23 0.28 0.0055 0.0080
6c=0.2
yi= 0.1 60.03 69.90 21.75 43.32 43.50 86.63 0.27 0.38 0.0061 0.0105
y=03 87.96 99.88 31.38 49.18 62.77 98.35 0.26 0.33 0.0060 0.0086
y=0.5 124.45 130.90 41.71 49.97 83.42 99.93 0.25 0.28 0.0057 0.0067

Notes: “Ext.-Leland/MS” refers to the model with both investment timing flexibility and debt financing gains. “McD&S” refers to McDonald and Siegel
(1986) model of the perpetual investment option and “Leland” to the Leland (1994) model with optimal debt financing and no investment flexibility. Base
case used for all models: value of unlevered assets V=100, risk-free rate » = 0.06, opportunity cost d = 0.06, volatility o = 0.25, investment cost / = 100. For
the Ext. Leland and Leland model use bankruptcy costs b = 0.5, tax rate z = 0.35. Managerial control parameters have expected impact y and volatility o¢
and are implemented using a Markov-chain with N =50 states. All values reported are time zero expected values. Max. Debt refers to constraints on the total
amount of debt that can be issued.

The second and third panel of table 3 show the effect of different levels of financing

constraints on firm value and its components. For a given debt constraint, the effect of
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controls is like before. Comparing the panels with increasingly strict debt constraints, we
still see (as expected) a decrease in firm values. The driver of the decrease in firm value
is mostly due to the decrease in the net benefits of debt. But now, we do not necessarily
observe a decrease in expected option on unlevered assets. This is because of the often
observed U-shape of the investment trigger (see discussion on figure 4) where the firm

adjusts its investment policy to stricter constraints.

Table 4 presents more information for the expected optimal capital structure (expected
leverage) and the expected credit spread. Note that firm values (of Table 3) are equal to
expected equity plus expected debt minus the expected investment cost. We see that (in
both the unconstrained and the constrained cases) expected equity is increasing in both
control volatility and control mean impact in the extended model, while in Leland’s
model it is only increasing in the mean impact (but may be decreasing in control
volatility). In the unconstrained case, expected leverage and expected credit spreads stay
unchanged in the presence of controls (and expected debt is affected positively in the
impact and volatility of the control). With the simultaneous presence of controls and
stricter debt constraints we see a decrease in expected optimal leverage and an
accompanying decrease in expected credit spreads. This is to be contrasted with the case

of an increase in Brownian volatility that would increase credit spreads.

Expected costs reflect the probability of development. We see that, in both the
unconstrained and the constrained cases, an increase in control volatility decreases

expected cost while an increase in its mean impact increases expected cost.
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Table 5: The effect of controls and financing constraints with finite
investment option maturity

Firm value
T=2 T=5 T=10 T=20 T=50

No constraints

No control 24.83 29.06 32.17 34.34 35.22
y=0.10
oc=0.2 36.02 39.38 41.99 43.79 44.52
cc=04 41.38 4433 46.71 48.38 49.08
oc=0.6 48.05 50.54 52.70 54.32 55.03
6c=02
y=0.1 36.02 39.38 41.99 43.79 44.52
vy=0.3 61.08 62.83 64.38 65.51 65.97
vy=0.5 95.07 95.55 96.09 96.53 96.71

Max Debt =50

No control 21.03 24.74 27.44 29.33 30.08
y=0.10
oc=0.2 30.62 33.57 35.84 37.39 38.03
oc=04 35.22 37.79 39.86 41.30 4191
cc=0.6 40.90 43.07 44.95 46.34 46.96
6c=0.2
vy=0.1 30.62 33.57 35.84 37.39 38.03
vy=0.3 52.07 53.62 54.97 55.95 56.34
vy=0.5 81.14 81.57 82.04 82.42 82.57

Notes: Base case used models: value of unlevered assets =100, risk-free rate » = 0.06, opportunity cost o
= 0.06, volatility o = 0.25, investment cost / = 100, bankruptcy cost b = 0.5 and tax rate r = 0.35. Firm
values are calculated using a Markov-chain implementation with N =50 states for the controls (with
average impact y and volatility o¢) and a numerical lattice scheme for the investment option with dt = 0.5
years. Max. Debt refers to constraints on the total amount of debt that can be issued.

In the results for the numerical implementation shown in table 5, we see the impact on
the firm value in the extended Leland model of investment maturity, constraints and
controls. Note that with very high maturities (7 = 50) the numerical solution
approximates the analytic model (see first column of table 3). Reduced maturity
obviously results in a decreased firm value. This result appears in both constrained and
unconstrained case, and both in the presence and in the absence of controls. An
interesting observation is that in the presence of controls, the effect of maturity on firm

values i1s lessened.
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4.5. Summary

We use the Mauer and Sarkar (2005) contingent claims model of firm value with the
option for optimal investment timing and net benefits of risky debt (that allows for
optimal capital structure and endogenously determined optimal bankruptcy), with an
adaptation so that it is consistent with Leland (1994). We make the interesting
observation that in this extended model firm value exhibits a U-shape in volatility (not

reported in previous research).

To this (extended Leland/MS) model we add financing constraints, and with the use of a
Markov-Chain method we also accommodate the presence of pre-investment
control/growth options with random outcome. Beyond the analytic solution for a
perpetual horizon, we also implement the investment option in a finite horizon on a
binomial lattice, while maintaining the analytic structure for the capital structure
decisions. The scope is to study the effect of capital constraints on firm, equity and debt

value, optimal investment and bankruptcy trigger, leverage and credit spreads.

A comparison of the extended model with the McD&S model that does not include a debt
financing option and the Leland (1994) model that does not include an investment option
provides insights on the trade-off between investment timing flexibility and the net
benefits of debt. We show that financing constraints have a more significant relative
impact on firm values at higher opportunity cost (dividend yield), riskless rate of interest
and taxes, and lower volatility and bankruptcy costs. The effect of financing constraints
is more severe when investment option maturity is lower. Financing constraints also
reduce leverage and credit spreads in a nonlinear fashion. An important observation is a
U-shape of the investment trigger as a function of the constraint. This result is driven by

the trade-off between investment timing flexibility and the net benefits of debt.
We also explore the social welfare implications of financing constraints on debt. Our

analysis shows the effects of constraints on the components of welfare (firm value and

taxes). We show that there are cases where the government can maximize social welfare
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by setting a constraint. In some other case social welfare is maximized when debt
financing is not constrained-the most interesting case being when firms have large growth

rates (lower parameter 0).

Exercise of pre-investment managerial growth options increase firm value, although they
may decrease expected net benefits of debt. In contrast to the Brownian volatility, the
volatility of the managerial growth options does not create a U-shape on the firm value.
This action-specific volatility affects uncertainty prior to the investment decision and has
no effect in the absence of constraints (and a very small reduction effect in the presence
of constraints) on expected credit spreads after development. The probability of
investment increases in the mean impact and decreases in the volatility of the growth
option; however, firm value always increases in the mean and the volatility of the growth
options. Reduced maturity results in a decreased firm value, with and without
constraints. In the presence of controls, this maturity effect on firm value tends to

disappear.
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Appendix:

In this appendix, we show the derivation of the analytic solution for the extended
Leland/MS model (see equations 2 and 3) with the embedded investment option.
Although the model is a special case of Mauer and Sarkar (2005), we retain the derivation
in order to demonstrate the exact form of the first order condition we use in the paper.
Similarly with Leland (1994), and conditional on investment, the optimal default point

V, is found by solving for the following smooth-pasting condition:

OE

- =0 Al
W lyy, Al

which is equivalent to maximizing E(V;) at V' =V, . The optimal bankruptcy trigger is:

B R
B = (1—ﬁ')( )
1 (=8 |1 s\ 2 (A2)
r— ) r
ﬁ_E 0_2 \/[5_—02] +?<O

Equation (A2), compared to the one in Leland, includes dividend-like competitive
erosion (included in term £ ). Since £ < 0, this means that V, >0 for any positive level

of coupons R.

The general solution of the option to invest (V') can be written as:

FV)=AV + AV’ (A3)

The option also satisfies the usual ordinary deferential equation (since the investment

horizon is perpetual):
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IF = %anZFW +(r—O)VF, (A4)

By applying the general solution (A3) to the differential equation we find the solution for

parameters a to be:

o

a:l_@Jr\/(l_ﬂj AN (AS)
2 o

Consistently with Mauer and Sarkar (2005) we apply three boundary conditions to obtain
the values for4,, 4, and the investment thresholdV,. In particular we have the

following boundary conditions:

F0)=0 (A6)
EV)=EV)+DV,)-1 (A7)
L
oF = & (Second best) or or = o (First best) (AS8)
aV V=v; aV V=, V V=r, aV V=v,

where E(.) and D(.) functional forms are given in equation 5 (derived in Leland, 1994)
and are evaluated at ¥, and V" (V,) = E(V,)+ D(V,)is the value of the levered firm at
the investment trigger. Using (A6) we find that 4, =0 (since § < 0). With (A7) we find

A, = [E(Vl)+D(V,)—I (VL] so replacing into (A3) we find equation (5) for the firm

1

value:
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FO) =[E(W,)+DW,) - I(VLJ (A9)

I
Finally, we use (AS8) to find the investment threshold. If the second best (equity

maximization) approach is used we arrive at the following non-linear first order condition

that can be solved (numerically) for V, :

B
_aX_ /AN
ree-ofn)| 2 )
s
O{LJIVI(lT)£+((IT)£VB)(£] +D(V1)I}—O
v, r r Vg

(A10)

Alternatively, if the first best (firm value maximization) approach is used we have the

first order condition:

Vit
o (raA CA(EN

B
+ﬁ((1—b>VB —%{Z—j (Vij—a(%](E(V,HD(V,)—I): 0
B I I

For optimal capital structure, when coupon is also a choice variable, we solve the first-

(Al1)

order condition for the investment trigger by simultaneously searching for the optimal

coupon R. In this paper, we use the first best approach and we implement equation A11.
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