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Abstract

This dissertation investigates path planning problems for improving the coverage and
detection performance of mixed sensor networks consisting of both static and mobile
nodes. With recent advances in distributed robotics and low power embedded systems,
such mixed wireless sensor networks (WSNs) are becoming attractive.

Conventionally, WSNs consist of a large number of static sensors randomly deployed
in a large region of interest. However, dense random deployments of static sensors can
not guarantee complete sensing coverage of large areas and also imply prohibitive cost
and excessive radio interference. In this dissertation, a different WSN model that
employs stationary and mobile sensor nodes (mixed WSN) is assumed. The main ob-
jective of this work was to develop path planning algorithms to enable mobile sensors
to collaborate and sample areas not easily or effectively monitored by stationary sen-
sors. The path planning approaches should comply with the specific requirements of
sensor networks like distributed-collaborative processing, limited communication and
computation and partial knowledge of the environment. In addition, proposed path
planning methods, should search the whole sensor field and find as efficient a route as
possible in terms of coverage improvement over time and/or event detection perfor-
mance. However, satisfying all of these criteria, in such complex environments, is not
always possible and thus a priority consideration is required.

In the context of this research work, several methods and algorithms to solve this
path-finding problem with single and multiple mobile sensors, alongside the several
properties and parameters of these algorithms, were extensively investigated. The
main contribution of this dissertation is the development of a distributed collaborative
path planning framework that enables mobile sensors to find their path autonomously
in order to search the sensor field area and minimize event detection delay. The path is
estimated on-line using local information which is essential in the context of large, dis-
tributed WSNs. Further, the proposed approach was also transferred from simulation
to a real-world mixed sensor network test-bed and evaluated experimentally.

This dissertation provides a better understanding and a deeper knowledge of the
current problems of mixed sensor networks. The path planning framework developed
is easily scalable to large numbers of mobile sensors and different static sensor deploy-
ments. Applications of these types of mixed sensor networks include sensor coverage
improvement, search and detection of event sources, and dynamic environment moni-
toring.
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Per…lhyh

Aut» h diatrib» exet£zei ta probl»mata scediasmoÚ diadromèn gia thn belt…wsh thj
k£luyhj kai tou entopismoÚ gegonÒtwn se mikt£ d…ktua aisqht»rwn pou apoteloÚntai apÒ
staqeroÚj kai kinhtoÚj kÒmbouj aisqht»rwn. Tštoia mikt£ asÚrmata d…ktua aisqht»rwn
g…nontai elkustik£ me tij prÒsfatej proÒdouj sta katanemhmšna rompotik£ sust»mata
kai sta enswmatwmšna sust»mata camhl»j iscÚoj.

Sumbatik£, ta d…ktua aisqht»rwn apoteloÚntai apÒ šnan meg£lo ariqmÒ staqerèn
aisqht»rwn oi opo…oi egkaq…stantai se tuca…ej qšseij se mia meg£lh perioc» upÒ parako-
loÚqhsh. WstÒso, oi puknšj tuca…ej egkatast£seij twn staqerèn aisqht»rwn den mporoÚn
na egguhqoÚn pl»rh k£luyh parakoloÚqhshj meg£lwn periocèn kai proãpoqštoun apa-
goreutikÒ kÒstoj kai uperbolikšj parembolšj epikoinwn…aj. Se aut»n thn diatrib», upoqš-
toume šna diaforetikÒ montšlo diktÚou aisqht»rwn to opo…o crhsimopoie… staqeroÚj kai
kinhtoÚj kÒmbouj aisqht»rwn (miktÒ ADA) kai o kÚrioj stÒcoj e…nai h an£ptuxh al-
gor…qmwn scediasmoÚ poreièn pou qa epitršpoun stouj kinhtoÚj aisqht»rej na sunerg£-
zontai kai na parakolouqoÚn periocšj pou den parakolouqoÚntai apÒ touj staqeroÚj
aisqht»rej. Oi mšqodoi eÚreshj diadromèn twn kinhtèn kÒmbwn pršpei na e…nai sumbatšj
me tij eidikšj apait»seij twn diktÚwn aisqht»rwn Òpwj ton katanemhmšno-sunerg£simo
upologismÒ, thn periorismšnh epikoinwn…a kai upologistik» ikanÒthta kai th merik»
gnèsh tou perib£llontoj. Epiplšon, oi proteinÒmenej mšqodoi programmatismoÚ poreièn,
pršpei na epitršpoun stouj kinhtoÚj kÒmbouj na parakolouqoÚn Òlej thj ak£luptej pe-
riocšj tou staqeroÚ diktÚou aisqht»rwn kai na br…skoun mia Òso to dunatÒn kalÚterh
diadrom» se scšsh me thn belt…wshj thj k£luyhj se sÚntomo cronikÒ di£sthma » thj
apÒdoshj entopismoÚ gegonÒtwn. EntoÚtoij, h ikanopo…hsh Òlwn autèn twn krit»rièn se
tštoia sÚnqeta perib£llonta den e…nai p£nta dunat».

Sto pla…sio thj ereunhtik»j ergas…aj diereun»same di£forej meqÒdouj kai algÒriqmouj
gia na lÚsoume prÒblhma eÚreshj poreièn enÒj » pollaplèn kinhtèn aisqht»rwn kai
diereun»qhkan ektenèj di£forej idiÒthtej kai par£metroi autèn twn algor…qmwn. H
kÚria suneisfor£ aut»j thj diatrib»j e…nai h an£ptuxh enÒj katanemhmšnou suner-
gatikoÚ plais…ou programmatismoÚ poreièn pou epitršpei stouj kinhtoÚj aisqht»rej na
upolog…zoun thn diadrom» pou qa akolouq»soun autÒnoma me stÒco na parakolouqoÚn to
d…ktuo aisqht»rwn kai na elacistopoioÚn thn kaqustšrhsh entopismoÚ gegonÒtwn. H di-
adrom» upolog…zetai kaqodÒn crhsimopoièntaj mÒno topikšj plhrofor…ej, autÒ e…nai polÚ
shmantikÒ sta pla…sia meg£lwn kai katanemhmšnwn diktÚwn aisqht»rwn. H proteinÒmenh
mšqodoj šcei ep…shj metaferqe… apÒ to montšlo prosomo…wshj se šna pragmatikÒ peira-
matikÒ d…ktuo aisqht»rwn kinhtèn kai staqerèn kÒmbwn kai axiolog»qhke peiramatik£.

Aut» h diatrib» paršcei kalÚterh katanÒhsh kai baqÚterh gnèsh sta tršconta pro-
bl»mata twn miktèn diktÚwn aisqht»rwn kai to pla…sio scediasmoÚ diadromèn pou ana-
ptÚcqhke uposthr…zei meg£louj ariqmoÚj kinhtèn aisqht»rwn kai diaforetikšj egkatast£-
seij an£ptuxhj staqerèn aisqht»rwn. Oi efarmogšj autèn twn tÚpwn miktèn diktÚwn
aisqht»rwn perilamb£noun belt…wsh k£luyhj, anaz»thsh kai entopismÒj phg»j gegonÒtoj
kai dunamikÒ šlegco tou perib£llontoj.
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Chapter 1
Introduction

Rapid advances in Integrated Circuit (IC) technologies and micro-electrical-mechanical
systems (MEMS) have enabled the generation of low-cost, low-power sensor nodes.
These tiny sensor nodes, which consist of sensing, data processing, and communicating
components, leverage the idea of wireless sensor networks (WSN), where large numbers
of spatially distributed sensor nodes operating cooperatively in a wireless network to
monitor physical or environmental conditions and collaborate to perform an otherwise
difficult task. The technology of WSN promises to revolutionize the way we live, work,
and interact with the physical environment.

The development of wireless sensor networks was originally motivated by military
applications such as battlefield surveillance. However, WSNs are now used in many
industrial and civilian application areas, including, among others, industrial process
monitoring and control, machine health monitoring, environmental monitoring, infras-
tructure security, building and structures monitoring, healthcare applications, home
automation and traffic control.

Recent progress in two seemingly disparate research areas; namely, distributed
robotics and low power embedded systems, has led to the creation of mobile sensor
nodes [3]. These mobile sensor nodes can move around by self-propelling means (e.g.
wheels), or by attaching themselves to transporters (e.g. robots, vehicles). The ability
of a sensor node to self-propel, or to otherwise influence its location, will be critical in
sensor networks. The possibility of combining sensing, computation, communication
and actuation to not only passively monitor the environment (like static sensor net-
works) but also to actively search or track, in some cases, mitigate problems considered.

Augmenting static sensor networks with few mobile nodes immensely benefits the
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Chapter 1

functionality of the sensor network and helps solve many of the design problems of
static sensor networks. Controlled mobility enables a whole new set of possibilities
in sensor networks such as dynamic coverage, optimal deployment, detecting spatially
and temporally spread environmental events, or network repair (e.g. positioning mo-
bile nodes at points of disconnection or by having mobile nodes collecting data from
stationary nodes).

In the last decade, researchers have begun to investigate the use of mobile robots
or unmanned aerial vehicles (UAVs) in surveillance and exploration. Typical applica-
tions include air and ground surveillance, target detection, tracking, search and rescue
operations. The use of multiple collaborative robots or UAVs is ideally suited for such
tasks. However, the coordination of multiple autonomous robots poses significant the-
oretical and technical challenges. A common problem within this area is to find the
paths that a group of robots should follow to reliably and efficiently achieve a com-
mon objective under constrains like obstacles, hazards, cooperation, sensing, motion,
communication and computation capabilities. Effective collaboration strategies should
provide near-optimal, robust and real-time computation performance.

This dissertation investigates the path finding problem for the navigation of single
and multiple mobile sensors to improve the coverage and detection performance of
static sensor networks. The path planning approaches should comply with the spe-
cific requirements of sensor networks like distributed-collaborative processing, limited
communication and computation capabilities, partial knowledge of the environment as
well as adaptivity to the environment. Additionally, proposed path planning methods,
should cover the whole sensor field, while the goal is to find as efficient a route as
possible in terms of coverage improvement over time or event detection performance.
However, satisfying all of these criteria, in such complex environments is not always
possible and thus some priority consideration is required.

1.1 Motivation

Conventionally, WSNs consist of a large number of densely deployed static sensors in
a given region. Sensors remain stationary, in their initial deployed position, and waiting
for the detection of some event. When the environment of interest is inaccessible, or
is located in a hostile area, or when deployment is limited by budgetary constraints,
sensors may be air-dropped from an aircraft, or via other means, resulting in random
placements.

To achieve reliable monitoring of a large area with a WSN, typically, requires a very
large number of stationary nodes (especially when random deployment is considered),
implying a prohibitive cost and excessive (radio) interference. To better exemplify
these, the monitoring of a lake or a reservoir dam may be considered. In this example,
an event occurance may be the exceedance of a given threshold of water turbidity [4].
Assuming a lake area of 500km2, and reliable sensing range of 1m for each sensor,
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Introduction

108 sensor nodes would be necessary (under grid deployment) to effectively monitor
the lake, or more than 1010 sensors are needed, if random deployment is used. With
current technology availability, these scenarios would be accompanied by an immense
cost.

Therefore, considering the near-impossibility of reliably covering such an entire large
area with stationary nodes, this research work focuses on finding an alternative way
of monitoring the area by using a combination of several stationary and some mobile
sensor nodes that collaborate in a way that improves the area coverage and/or the
rapid detection of an event. Such a system, consisting of both stationary and mobile
sensor nodes, will be referred to as a mixed WSN. The cost of mobile nodes can be
comparable (same order of magnitude) to that of stationary nodes, despite the need
for more advanced hardware and motion capabilities. Therefore, such a configuration
will result in significant cost savings.

The aim of this work is to develop a path-planning framework where a set of mo-
bile sensors will collaborate with stationary sensors, and with each other, in order
to search an area, in an efficient manner, and locate events. A key concept of this
collaborative framework is that the mobile sensors should sample the areas that are
least covered (monitored) by the stationary sensors. An important component of the
proposed framework is the fact that mobile nodes can autonomously decide their path
by using local and on-line information (their own beliefs and measurements as well as
information collected from nearby stationary sensors). It should be noted that such
an approach is appropriate in the context of WSNs since it is not feasible to have an
accurate global view of the state of the environment (i.e. some nodes may have failed
or been displaced).

Finding searching paths that guarantee complete coverage of an arbitrary sensor
field, in an efficient manner, under local information, is not feasible. Even when global
information is assumed and simple instances of the problem are considered, finding
complete coverage paths that are optimal with respect to the time needed to complete
coverage has been proved to be an NP-complete problem. Therefore, it can be implied
that an optimal solution of an arbitrary problem instance cannot be found in reason-
able time, which can be attributed to a large number of uncovered regions and multiple
mobile nodes. Instead, a heuristic path-planning method that provides fast and sat-
isfactory solutions for any arbitrary problem instance, under local information, must
be adopted, even though complete coverage and optimal solutions cannot be always
guaranteed.

1.2 Objectives

The main objective of this research work is the development of a distributed on-line
path-planning framework that enables the collaboration of mobile robots in computing
their path, using only local information in the context of mixed WSNs. The develop-
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Chapter 1

ment of such a path-planning algorithm should satisfy the following requirements:

� Distributed - such that each mobile sensor can make local decisions for enhancing
the system’s global performance, since the continuous collection of information
from a large WSN and the computation in a central controller may be infeasible
or too costly.

� Dynamic - to consider the changes taking place in the environment and in the WSN
deployment. For instance, the occurrence of events may be spatially or temporally
random, or some stationary sensors may fail, or be displaced, through time.

� Collaborative - to support collaboration of multiple mobile sensor nodes to achieve
efficiently better system performance (area coverage and event detection) without
the need of a central controller. Mobile nodes should be aware of the actions of
other mobiles, thus collaborating and avoiding overlaps while accomplishing the
common objective.

� Simple and computationally efficient - for implementation on tiny microcontrollers.

� Require limited amount of information - thus extending the lifetime of the wireless
sensor network.

� Efficient - to provide near-optimal performance (e.g. minimize average event-
detection delay)

� Adaptive - to perform consistently under different static WSN deployment densi-
ties, numbers of mobile sensor nodes, sensor field deployment area sizes, and event
source localization algorithms.

1.3 Dissertation Organization and Overview

1.3.1 Dissertation Organization

This dissertation is structured as follows: Chapter 2 presents an extensive literature
review of various pertinent issues. The subsequent two chapters present the investi-
gation of some tools that enable the development of path-planning algorithms in the
context of sensor networks. Specifically, Chapter 3 investigates path-planning methods
for finding the path between two arbitrary points in a sensing field to improve cov-
erage when a single mobile sensor is used. Chapter 4 investigates methods of finding
possible destinations points for the mobile sensors. Centroids of uncovered regions
in a sensing field are considered as such destination points. Chapter 5 builds upon
the tools developed in the previous chapters and proposes a complete coverage path-
planning method for a single mobile node, based on global knowledge of the sensor
field. Chapter 6 proposes a distributed collaborative path-planning method for multi-
ple mobile nodes that succeeds fast coverage improvement rate and given enough time
almost complete coverage of the sensor field could be achieved. The remaining chap-
ters adopt the algorithm presented in chapter 6 and investigate, in depth, several of its
properties and parameters. Specifically, Chapter 7 investigates several collaboration
schemes to reduce information exchange between mobile nodes without significant loss
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Introduction

of the coverage performance. Chapter 8 integrates the measurements mobile sensors
received in the path-planning algorithm and extents the overall framework further. In
addition, several other cost functions as well as target assignment schemes that have
been considered are also presented in Chapter 8. Chapter 9 investigates the problem
of finding the optimal path that minimizes the expected detection delay for a simple
case of the problem and derives the optimal solution. Further extending this simple
case proves that such simple problems are NP-complete. A new global heuristic path-
planning approach to tackle such simple problems is being proposed, and the insights
gained from the analysis help us to further investigate some of the parameters of the
proposed distributed path-planning approach. Chapter 9 concludes that a very impor-
tant parameter of the proposed path planning algorithm is the searching neighborhood
radius. Consequently, Chapter 10 proposes a surrogate metric to select the searching
neighborhood size that enhances the dynamic coverage improvement-rate based on the
statistical properties of stationary nodes deployment as well as other parameters used
in the presented path-planning algorithm. Chapter 11 describes the transfer of the pro-
posed path planning algorithm from simulation to a real-world mixed sensor network
test-bed to experimentally evaluate the proposed approach. Finally, conclusions and
future directions of this work are elaborated in Chapter 12.

1.3.2 Dissertation Overview

The summary of each chapter follows:

Chapter 2 presents an extensive literature review of the state of the art algorithms,
protocols, implementations and solutions proposed for the problem of coverage, event
detection and localization in the context of wireless sensor networks when mobile sensor
nodes are available, and the problem of path planning and cooperative search in the
context of mobile robotics and unmanned aerial vehicles. The first section of this
chapter is a brief summary of the accomplished work that more directly pertains to
this dissertation, while the remaining sections provide the background and cite recent
work related to various issues raised in this dissertation; such as the coverage issue in
WSN, the path planning algorithms for mobile robotics, the cooperative path planning
and control for multi-robot systems and finally the event localization and odor plume
source localization.

Chapter 3 presents the development and investigates the parameters of various
path-planning algorithms for a mobile node to improve the area coverage of a sta-
tionary sensor field. The path planning algorithms developed allow the mobile sensor
node to navigate towards a given, predefined, target-point in the WSN while it passes
through areas that are not adequately sampled by stationary nodes thus improving
area coverage. Two different families of path-planning algorithms, based on artificial
potential field and receding-horizon approaches, were developed. The fact that the
receding horizon family of algorithms achieves good area coverage improvement and
is computationally tractable is demonstrated. Algorithms based on the potential field
approach are also computationally efficient, but may require the use of heuristics to
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allow them to escape from local minima.

Chapter 4 proposes two coverage hole-detection algorithms able to provide auto-
matically the coordinates of coverage holes in a WSN, which can be used as target
points for the navigation of mobile sensors. The theoretical analysis of the computa-
tion complexity of the developed algorithms, as well as the simulation results of the
coverage hole detection efficiency, are presented. A novel algorithm, entitled “Zoom al-
gorithm”, which efficiently provides the locations of coverage holes in a sensor network
with negligible computation needs, was developed.

Chapter 5 presents a case study for complete area coverage of the uncovered regions
in a sparse sensor network using a mobile sensor node. The proposed complete coverage
path-planning method requires global information to solve the problem (i.e. positions
of all static sensor nodes) and thus can be classified as centralized. The algorithm
consists of two major components, the global estimation of all the coverage holes in
the sensor field and a path decision method for visiting all the coverage holes while
avoiding passing over the region already covered by stationary sensor nodes. The
proposed path-planning method succeeds complete area coverage of a sparse WSN.

Chapter 6 presents the development of a distributed collaborative framework for
complete area coverage of the uncovered regions in stationary sensor networks using
a group of mobile sensor nodes. In the proposed architecture, a small set of mobile
nodes collaborate with the stationary sensor nodes, and with each other, in order to
cover areas not covered (monitored) by stationary sensors. An important element of
the proposed system is the ability of each mobile node to autonomously decide its path,
based on local information, which is essential in the context of large WSNs. Mobile
nodes autonomously, and collaboratively, navigate through the field in order to improve
the area coverage. Evaluation results indicate the ability of the proposed algorithm
to significantly improve the area coverage, when compared to other well-known path
planning approaches.

Chapter 7 investigates the information-exchange between mobile nodes in the dis-
tributed on-line path planning algorithm for complete coverage proposed in chapter 6.
The main objective of chapter 7 is to investigate collaboration schemes among sensor
nodes in which the amount of exchanged information between nodes is reduced without
significant loss of area coverage performance.

Chapter 8 investigates the collaborative area monitoring path-planning problem in
stationary sensor networks using multiple cooperative mobile sensor nodes that patrol
the region of interest and locate events. The development of an architecture where
a set of mobile sensors collaborate with the stationary sensors in order to reliably
detect and locate events is presented. Under this setting, when stationary sensors
have a “suspicion” that an event may have occurred, they report it to a mobile sensor
that can then move closer to the suspected area and verify the event. An important
component of the proposed architecture is that the mobile nodes autonomously decide
their path based on local information. An extensive set of simulation results, indicating
the effectiveness of the proposed algorithm, are presented.
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Chapter 9 considers the problem of deciding the optimal searching path for a sin-
gle mobile node that minimizes the expected event detection time when several large,
unconnected, uncovered regions exist in the sensor field. Finding the optimal search-
ing path is an NP-complete problem (it can be reduced to the multi-agent travelling
salesman problem), which implies that we cannot find the optimal solution of an ar-
bitrary problem instance in a reasonable time (due to a large number of uncovered
regions and multiple mobile nodes), but must adopt a heuristic solution method. Thus
a centralized heuristic path-planning strategy is presented in sequel to enable mobile
sensors to decide their searching paths when several large unconnected, uncovered re-
gions exist in the sensor field. This heuristic method has been compared to the general
distributed path planning method presented in chapter 8 which remains valid for the
general case where uncovered regions created by random deployment of static sensor
nodes. Both analytical and simulation results indicate that a “local” search is better
than a “global” search in the context of mixed sensor networks and that that the selec-
tion of the searching neighborhood radius in general distributed path planning method
is of critical importance.

Chapter 10 proposes a surrogate metric that can be used in order to select the
optimal searching neighborhood in the proposed distributed path-planning algorithm
that enhances the dynamic coverage improvement rate. This approximation metric is
based on the theory of coverage processes and is given by the variance of vacancy (i.e.
area not covered) when a number of stationary sensors with identical sensing radius
are distributed independently within a two dimensional region. Evaluation results
demonstrated the effectiveness of this approach.

Chapter 11 describes the implementation, on real hardware, of the proposed on-line
distributed path-planning algorithm for improving area coverage in a sparse sensor net-
work deployment with stationary nodes when two cooperative mobile sensor nodes are
used. The experimental test-bed of the proposed mixed WSN was designed and devel-
oped using off-the-shelf components in order to reduce the overall system implementa-
tion cost. Specifically, mobile sensor nodes prototypes and an indoor vision-positioning
system were designed, developed and calibrated alongside their firmware counterparts.

Chapter 12 presents some concluding remarks and indicates possible future direc-
tions.

1.4 Contributions

This dissertation contributes to the field of collaborative path planning of multi-
robot systems and collaborative area monitoring in the context of mixed sensor net-
works. Specifically, the main contributions of this dissertation are the following:

� A novel coverage hole detection algorithm capable of efficiently providing the loca-
tions of coverage holes in a sensor network with negligible computation needs was
developed.
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� A global off-line path-planning algorithm for complete coverage of uncovered re-
gions in sparse stationary WSN was introduced. This algorithm requires global
knowledge of the stationary sensor deployment and supports only one single mo-
bile node.

� A distributed on-line path-planning algorithm, which allows a group of mobile
nodes to autonomously and collaboratively navigate through the sensor field, sam-
ple the areas not covered by the stationary sensor nodes, and adapt their path to
the sensor field changes, was developed. The algorithm is computationally efficient
and uses a dynamic receding horizon approach where each mobile computes its
path is on-line using only local information.

� An efficient event-driven communication scheme, which enables mobile nodes to
sufficiently reduce information exchange (communication cost) without signifi-
cantly affecting the overall coverage performance, was introduced.

� A dynamic target-switching policy that allows mobile sensors to search and locate
events sources was introduced. Switch path-planning objectives (between source
search and coverage) depends on the state of the sensor measurements obtained by
the mobile node and its neighbors. The distributed on-line path-planning algorithm
has been further extended by incorporating this switching policy and additional
collaboration protocols for when mobiles are searching for event sources.

� The solution of the optimal path problem for a single mobile node that enables
the mobile to search several non-connected uncovered locations with the minimum
average detection delay or with the maximum dynamic coverage over time was
achieved. The resulting optimal strategy confirms that it is better to search ar-
eas that are less likely to hide a target but are located closer to the mobile node,
rather than heading towards the most likely area. It was also proven that the op-
timal search path strategy is an NP-complete problem and, consequently, another
heuristic global path-planning strategy that provides computationally tractable
and near-optimal solutions to this special case problem was proposed.

� A surrogate metric for approximating the optimal search neighborhood radius
(where each mobile is searching for a coverage hole centroid) in the distributed
on-line path planning algorithm that enhances the dynamic coverage over time
was introduced. The proposed approximation associates the optimal neighborhood
radius with several other parameters used in the path-planning method.

� The distributed path-planning algorithm was implemented and experimentally
evaluated on a real-world mixed WSN test-bed that consisted of stationary sensor
and mobile robots that collaborated to monitor uncovered regions.
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Chapter 2
Literature Review

2.1 Overview

This chapter presents an extensive literature review of the state of the art algorithms,
protocols, implementations and solutions proposed for the problem of coverage, event
detection and localization in the context of wireless sensor networks when mobile sensor
nodes are available, and the problem of path planning and cooperative search in the
context of mobile robotics and unmanned aerial vehicles.

The next section gives a brief summary of the proposed work that is more relevant
to this dissertation, for more details and extensive descriptions the reader is prompted
to continue with the forthcoming sections.

2.2 State of the art and related work

The work presented in this section is partially related with two research fields,
the area coverage in WSNs and path planning in the fields of mobile robotics and
unmanned aerial vehicles. Although many researchers in the WSNs area have studied
the coverage problem, to the best of our knowledge, this is the first time that a general
architecture is proposed that combines the coverage problem with distributed path
planning algorithms so that the mobile nodes can navigate towards poorly covered
areas. The benefit of this approach is that events that would have remained undetected
can now be detected.
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Chapter 2

Next, we present a brief overview of papers that address the coverage problem in
the context of WSNs. For a more thorough survey of the coverage problem the reader
is referred to [5] and [6]. Also [7] presents a survey of the holes problem (coverage,
routing, jamming, sink holes, etc) in WSNs.

In [8] authors proposed the Grid Scan algorithm to find the maximum blind region
in order to deploy additional static sensors. The proposed scheme is a multi-step
scheme where each step is a greedy exploration process over all potential redeployment
points. Only one potential point with maximum number of neighboring non-covered
grids in the sensing range is chosen as the point at which the newly added sensor node
will be deployed. As shown in [9], the proposed Zoom algorithm is computationally
significantly more efficient.

Next, we present several other approaches that have been proposed in order to deter-
mine the coverage holes where mobile nodes can be deployed. All these approaches do
not consider the path that the mobile should follow in order to reach to its destination.
In [10] authors used Voronoi diagrams to discover the existence of coverage holes. A
node needs to know the location of its neighbors to construct its Voronoi diagram. The
diagram partitions the whole space into Voronoi polygons. Each polygon has a single
node with the property that every point in the polygon is closer to this node than any
other node. A sensor node compares its sensing disk with the area of its Voronoi poly-
gon to estimate any local coverage hole. Three distributed self-deployment algorithms
have been proposed to calculate new optimal positions to which mobile sensors should
move to increase coverage: Vector based (VEC), Voronoi based (VOR) and Minimax
algorithm.

The same authors in [11] describe a bidding protocol, for mixed sensor networks
that use both static and mobile sensors to achieve a cost balance. Their algorithm
considers a random initial deployment, where static sensors detect their local coverage
holes based on Voronoi diagrams. The mobile sensors calculate coverage holes formed
at their current position if they decide to leave their current position. The static sensors
bid mobile sensors based on the size of their detected coverage hole. A mobile sensor
compares the bids and decides to move if the highest bid received has a coverage hole
size greater than the new hole generated in its original location due to its movement.
The bids are broadcasted locally up to two hops and the static sensors are able to
direct neighboring eligible mobile sensors to a point close to the farthest vertex of their
Voronoi polygon. However, the local broadcast may prevent the bid messages reaching
mobile sensors if they are located farther than two hops. In this case the authors
propose a mixed architecture for the coverage problem.

In [12] authors address the problem of enhancing coverage in a mixed sensor network.
They present a method to deterministically estimate the exact amount of coverage holes
under random deployment using Voronoi diagrams and use the static nodes to estimate
the number of additional mobile nodes needed to be deployed and relocated to the holes
locations to maximize coverage. The static nodes also find out the optimal positions
of those mobile nodes based on certain heuristics. In our case we use a small number
of mobile nodes that move collaboratively using path planning algorithms in order to
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enhance the event detection probability of the stationary sensor network.

Sensor relocation has been studied in [13], which focuses on finding the target lo-
cations of the mobile sensors based on their current locations and the locations of the
sensed events. In [14] a polynomial-time algorithm is presented in terms of the num-
ber of sensors to determine whether every point in the service area of sensor networks
is covered by at least k sensors, where k is a predefined value. With this algorithm,
WSNs work well in situations that require stronger coverage and impose more stringent
fault-tolerant capability. In [15], the authors provide a polynomial-time, greedy, itera-
tive algorithm to determine the best placement of one sensor at a time in a grid based
scenario, such that each grid is covered with a minimum confidence level. They model
the obstacles as static objects and assume that a complete knowledge of the terrain is
available. As already mentioned, none of the aforementioned approaches considers the
actual path that each mobile should follow.

Next, we present some path planning algorithms that have been proposed and are
relevant to our work. A good overview of motion planning in robotics is given in [16].
The path planning algorithms presented in this dissertation have been motivated by
the approach in [17] where an approach for cooperative search by a team of distributed
agents is presented. In that approach two or more agents move in a geographic en-
vironment, cooperatively searching for targets of interest and avoiding obstacles or
threats.

Authors in [18] use the concept of Voronoi diagrams and triangulation to provide
polynomial-time worst case and best case algorithms for determining maximal breach
path and maximal support path, respectively, in a sensing field. On similar lines, in [19],
the authors use the concepts of minimal and maximal exposure paths to find out how
well an object moving on an arbitrary path can be observed by the sensor network over
a period of time. The algorithm in [19] uses certain graph theoretic abstractions and
compute minimal exposure path using Dijkstra’s single source shortest path algorithm
or Floyd-Warshals all pair shortest path algorithm. These approaches are centralized
and solve static problem instances in the sense that they do not allow changes in the
field once the paths have been computed.

In [20], the authors have focused on the coverage capabilities that result from the
continuous random movement of the sensors. However, in this dissertation, we develop
distributed path planning algorithms for cooperative movement of the mobile sensors.

Finally, we present some approaches that address the coverage problem in mobile
sensor networks (all sensors are mobile). In [21] authors have looked at the problem of
how mobile sensors move collaboratively in order to search a region and also incorporate
communication costs into the coverage control problem.

The coverage concept with regard to the many-robot systems was introduced by
Gage [22], who defined three types of coverage: blanket coverage, barrier coverage,
and sweep coverage. Potential field techniques for robot motion planning were first
described by Khatib [23] and have since been widely used in the mobile robotics com-
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Chapter 2

munity for tasks such as local navigation and obstacle avoidance. A robot moving
according to the potential will never hit obstacles, but it may get stuck in local min-
ima.

Assuming that all sensors have motion capabilities, several approaches have been
developed to address the coverage problem using the concept of potential fields [24],
[25], and virtual forces in [26]. In [24], the authors propose a deployment strategy
using mobile autonomous robots that maximize the area coverage with the constraint
that each of the nodes has at least k neighbors. The sensing field is modelled using
attractive and repulsive forces exerted on each node by all other nodes. The network
stabilizes when equilibrium is reached, i.e., the net force on each node becomes zero.
This approach is computationally expensive because as the network size grows or new
nodes join, all nodes need to reconfigure themselves to satisfy the equilibrium criteria.

In a similar fashion, assuming that all sensors have motion capabilities, the authors
of [25] proposed a potential field-based algorithm in which nodes are treated as virtual
particles subjected to virtual force. Virtual forces repel the nodes from each other
and from obstacles, and ensure that the initial configuration of nodes quickly spreads
out to maximize coverage area. In [26], the authors presented another virtual-force-
based sensor movement strategy to enhance network coverage after an initial random
placement of sensors. A cluster head computes the new locations of all the sensors
after the initial deployment that would maximize coverage and then nodes reposition
themselves to the designated locations. After the execution of the algorithm and once
the effective sensor positions are identified, a one-time movement is carried out to
redeploy the sensors.

2.3 Coverage in WSN

Sensing coverage is one of the most fundamental problems in wireless sensor net-
works. In this section, we present and compare several state-of-the-art algorithms and
techniques that aim to address this coverage issue. A typical large-scale WSN consists
of thousands of sensor nodes deployed either randomly or according to some prede-
fined statistical distribution over a geographical region of interest. Each sensor node
can sense only a small portion of the environment. However, a group of sensors col-
laborating with each other can accomplish a much bigger task efficiently. The notion
of area coverage can be considered as a measure of the quality of service (QoS) in a
sensor network, for it means how well each point in the sensing field is covered by the
sensors. Historically, three types of coverage have been defined in [22]:

� Blanket Coverage: To achieve a static arrangement of nodes that maximizes the
detection rate of targets appearing in the sensing field,

� Barrier Coverage: To achieve a static arrangement of nodes that minimizes the
probability of undetected intrusion through the barrier,

� Sweep Coverage: To move a number of nodes across a sensing field, such that it
addresses a specified balance between maximizing the detection rate of events and
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minimizing the number of missed detections per unit area.

The requirements of coverage may vary across applications. For instance, a military
surveillance application possibly requires a high degree of coverage as it would want a
region to be monitored by multiple nodes simultaneously, so that in the event of node
failures the security of the region is not compromised. On the other hand, environ-
mental monitoring applications possibly require a low degree of coverage. Coverage
schemes can be classified in two categories based on certain inherent properties that
are common to these schemes. These categories are:

� Exposure-based: Most of these strategies use tools from computational geometry,
such as the Voronoi diagram and Delaunay triangulation, and are targeted towards
applications that try to detect unauthorized intrusion in the network.

� Mobility-based: Algorithms in this category exploit mobility of nodes in order to
achieve a better degree of coverage. These algorithms typically relocate nodes to
optimal locations after an initial deployment, and try to spread nodes in a uniform
way so that coverage is maximized.

Before describing the algorithms in detail, we first define the sensing models used in
these algorithms and establish a common framework to make the presentation clear.

2.3.1 Sensing models and Coverage

A model is a description of the physical system that captures its important behav-
iors, while abstracting away the gory details that complicate analysis. The fundamental
principle behind modeling is that it should be as simple as possible, but no simpler
that it becomes unrealistic. According to [19, 27], sensing devices generally have widely
different theoretical and physical characteristics. Thus, numerous models of varying
complexity can be constructed based on application needs and device features. In-
terestingly, most sensing device models and empirical observations share one facet in
common: sensing ability diminishes as distance increases. Having this in mind, for a
sensor si, we express the general sensing or measurement model Z at an arbitrary point
p as:

Z(si, p) =

{ λ
r(si,p)

α , rmin ≤ r(si, p) ≤ rmax

0, otherwise
(2.1)

where r(si, p) is the Euclidean distance between the sensor si and the point p, and
parameters rmin and rmax define the range of a sensor’s sensing capability and the
positive constants λ and α are sensor technology-dependent parameters (λ indicates
the energy emitted by events occurring at point p and α is the exponent of the power
law indicating how the signal decays in the environment).

A sensor node detects an event if the received signal strength is greater than the
threshold value of detection, known as the sensing sensitivity. The detection process
depends on the strength of the emitted signal, behavior of the environment and the
sensor hardware of the node.
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Boolean sensing model

The simplest model for detection is the binary sensing model, according to which
each each sensor has a certain sensing range rs. A sensor can only sense the environment
and detect events within its sensing range. This model ignores the dependency of the
condition of the environment and the strength of the emitted signal.

Probabilistic sensing model

Despite its simplicity, the above Boolean sensing model does not capture the degra-
dation of a sensor’s sensing capability as the distance between the sensor and measuring
point increases. The binary sensing model can be extended to a more realistic one,
called the probabilistic sensing model [28, 29]. In this model, a quantity ru is defined
in order to capture the uncertainty in sensor detection. According to this model, the
probability that a sensor detects an event to a distance r is

p(r) =


1, r ≤ ru
e−λ(r−ru)

α

, ru < r < rs
0, r ≥ rs

(2.2)

where, ru defines the starting of uncertainty in sensor detection, rs is the maximum
sensing range of the node and the parameters λ and α are adjusted according to the
physical properties of the sensor and the environment. This model is more general
because it becomes Boolean sensing model when ru = rs.

Area Coverage

The area coverage is defined as the ratio of covered area by the sensor network to
the area of interest. In other words, it defines the probability that an event can be
detected by at least one sensor node in the sensor field. The area coverage depends
on the sensing model, number of nodes, node placement strategy. Consider a vast
two-dimensional area A where N sensors are deployed uniformly (randomly) and the
detection probability for each sensor is given by p(r), thus the probability that the event
will be undetected by an arbitrary sensor is equal to (1−p(r)) and the probability that
the event will be undetected by all N sensor nodes randomly deployed is Puncover =
(1 − p(r))N . The probability that the event will be detected by at least one of the N
nodes is equal to the area coverage and is given by C = 1−Puncover = 1−(1−p(r))N .
Now, for N large and p(r) small the equation above can also be approximated by

C = 1− e−Np(r) (2.3)

Proof: This is a result in stochastic geometry [30, 31] as the sensors are uniformly and
independently distributed and thus following a two-dimensional Poisson point process
with density µ = Np(r). It can also be derived from the approximation of a binomial
random variable with large N and small p(r) using a poisson random variable with
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µ = Np(r). Thus C = P (X > 1) = 1− P (X = 0) = 1− exp(−µ) = 1− exp(−Np(r))

In the case of the boolean sensing model assuming rs and A are the sensing radius
and area of the deployment respectively then the probability that an event will be
detected by an arbitrary sensor is p(r) = prs

2/A. Thus the probability that the event
will be detected by at least one of the N sensor nodes or the area coverage is given by

C = 1− e−
N
A
πr2s (2.4)

In the case of the Probabilistic sensing model the probability that an event will be

detected by an arbitrary sensor is p(r) = 1
A

x=rs∫
x=0

p(x)2πxdx. Thus the area coverage

can be found from 2.3 where p(r) is given above. In the case where ru = 0 and α = 1
the area coverage is given by [29]

C = 1− exp

(
2πN

Aλ2
(
(λrs + 1) e−λrs − 1

))
(2.5)

2.3.2 Coverage based on exposure for WSN

Approaches to solve the coverage problem using the notion of exposure is basically
a combinatorial optimization problem formulation. Two kinds of viewpoints exist in
formulating the coverage problem: 1) worst-case coverage, and 2) best-case coverage.

In the worst-case coverage, the problem is formulated with the goal to find a path
through the sensing region such that, an object moving along that path has the least
observability by the nodes, and thus, the probability of detecting the moving object is
minimum. The two well-known approaches to the worst-case coverage problem are the
Minimal Exposure Path [19] and the Maximal Breach Path (worst covered path) [18].

In the best-case coverage problem formulation, the goal is to find a path that has the
highest observability, and therefore, an object moving along such a path will be most
probable to be detected. The two approaches to solve the best-case coverage problem
are the Maximal Exposure Path [32] and the Maximal Support Path [18].

Informally exposure path is a measure of how well a sensing field is covered in terms
of the expected ability to detect a moving target. Exposure of a stationary sensor
network has been studied in [19, 32] and defined as the path integral of a sensing
function (that is inversely proportional to the distance of the target from sensors)
along a path p(t) as the target moves during the time interval [t1, t2] as shown below

E(p(t), t1, t2) =

∫ t2

t1

I(F, p(t))

∣∣∣∣dp(t)dt

∣∣∣∣dt (2.6)

where the sensing function I(F, p(t)) is a measure of sensitivity Z given by Eq. 2.1 at
a point p on the path by either the closest sensor Ic(F, p(t)) = Z(smin, p(t)) or by all

15

The
ofa

nis
 P

. L
am

bro
u



Chapter 2

the sensors Ia(F, p(t)) =
∑N

1 Z(si, p(t)) in the sensing field where N is the number
of sensors contribute a certain value of sensitivity to the point p depending on their
distance from it. This definition of exposure as given by Eq. 2.6 is a path-dependent
value as given two points in the sensing field, different paths between them are likely
to have different exposures.

The minimal exposure path between two arbitrary points in a sensing field is the one
which minimizes the value of integral given by Eq. 2.6. In [19] the problem in the case
of many sensors is transformed from the continuous domain into a tractable discrete
domain by using a grid. The minimal exposure path is then restricted to straight
line segments connecting any two consecutive vertices on the grid. This approach
transforms the grid into an edge weighted graph, and computes the minimal exposure
path using Djikstra’s single-source shortest path algorithm or Floyd-Warshal’s all-pair
shortest path algorithm. In [32], a distributed localized algorithm based on variational
calculus, and a grid-based approximation algorithm are used to find expressions for the
minimal exposure path for the cases of single sensor and multiple sensors, respectively.

The maximal exposure path between two arbitrary points in a sensing field is defined
as the path following which the total exposure, as given by Eq. 2.6, is maximum. It
can be interpreted as the path having the best quality of coverage. It is shown that
finding a maximal exposure path is NP-hard and can be reduced to the known NP-hard
problem of finding the longest path in an undirected weighted graph. Several heuristics
are proposed in [32] to achieve near-optimal solutions under certain constraints, such
as bounded object speed, path length, exposure value, and time of traversal.

Another very similar concept to the worst-case coverage path is the maximal breach
path. In [18], it is defined as the path through a sensing field, such that, the distance
from any point on the path to the closest sensor is maximum. The structure of Voronoi
diagram is used to find such a maximal breach path. In two dimensions the Voronoi
diagram [33] of a set of discrete nodes partitions the plane into a set of convex polygons
or cells such that any point in the cell corresponding to a node is closer to that node
than to any other node. Since by construction, the maximal breach path lies along the
edges of a Voronoi diagram as this path maximizes the distance from the closest sensor
nodes. An algorithm is described in [18] to find such a maximal breach path.

Alongside the concept of maximal exposure path, in [18] authors also defined an-
other measure of the best-case coverage, called the maximal support path. A maximal
support path through a sensing field between two points is a path for which the dis-
tance from any point on it to the closest sensor is minimum. Such a path can be found
by replacing the Voronoi diagram by its dual, the Delaunay triangulation. Delaunay
triangulation [33] is a triangulation of graph vertices, such that, the circumcircle of each
Delaunay triangle does not contain any other vertices in its interior. The Delaunay
triangulation can be obtained by connecting the nodes in the Voronoi diagram whose
polygons share a common edge. The Delaunay triangulation can be used to find the
two closest nodes by considering the shortest edge in the triangulation.
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2.3.3 Coverage exploiting mobility for WSN

Initial random deployments result in accumulation of nodes at certain parts of the
sensing fields while leaving other parts deprived of nodes. This section describes several
coverage schemes that exploit mobility to relocate nodes to optimal locations and
improve coverage. The first algorithms are based on the notion of potential field and
virtual forces, where the mobile nodes could spread out from an initial configuration
in order to improve area coverage. The next three algorithms known as the VEC,
VOR, and Minimax are based on the structure of Voronoi diagram in which nodes are
relocated to fill up coverage holes. Then, we describe algorithms for improving area
coverage in the context of mixed sensor networks where a limited number of mobile
sensor nodes exists in the network. Next, we describe two schemes aim to reposition
and organize mobile sensors in response to the event distribution in the environment.
Lastly, we present the concept of dynamic coverage, which is useful in applications
where not every part of the terrain is needed to be covered at all times, instead over a
period of time the whole terrain needs to be swept at least once.

Based on Potential Fields and Virtual forces

In [25], a potential field-based deployment technique using mobile robots is proposed,
while in [24], the scheme is augmented so that every node has at least k neighbors.
The potential field technique using mobile robots is first introduced in [23]. The idea
of potential field is that every node is subjected to a force F⃗ = −∇U that is a gradient
of a scalar potential field U . Each node is subjected to two kinds of forces: a repulsive
force F⃗c that causes the nodes to repel each other to increase the coverage and an
attractive force F⃗d that constrains the neighboring degree for nodes by making them
attract towards each other when they are on the verge of being disconnected. By using
a combination of these forces each node maximizes its coverage while maintaining a
degree of at least k neighbors. The forces are modeled as inversely proportional to
the square of inter-node distances thus r(i, j) is the Euclidean distance between two
nodes si and sj, rc is the communication range and n̂ij represents the unit vector along

the line joining the two nodes. Using this notation then F⃗c(i, j) and F⃗d(i, j) can be
expressed as:

F⃗c(i, j) =
−k

r(i,j)2
n̂ij

F⃗d(i, j) =

{
−k

[r(i,j)−rc]
2 n̂ij, for critical connection

0, otherwise

(2.7)

In the initial configuration all the nodes are accumulated in one place, possibly at the
center of the sensing field, and therefore, assuming the total number of nodes is larger
than k, each node has at least k neighbors. Then, they start repelling each other
using F⃗c(i, j) until each node has only k neighbors left. Each node continues to repel
all its neighbors using F⃗c(i, j), but as the distance between a node and its critical k
neighbors increases, F⃗c(i, j) decreases and F⃗d(i, j) increases. Finally, at some distance,
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ηrc , where 0 < η < 1, the total net force F⃗c(i, j)+ F⃗d(i, j) becomes zero and the nodes
reach an equilibrium.

Similar to the potential field-based approach, a sensor deployment technique based
on virtual forces is proposed in [26] and [28] to increase the area coverage after an
initial random deployment. In this model, each node si is subjected to three kinds
of forces: 1) a repulsive force F⃗o(i) exerted by obstacles, 2) an attractive force F⃗a(i)
exerted by areas of preferential coverage (i.e. sensitive areas where a high degree of
coverage is required), and 3) an attractive or repulsive force F⃗s(i, j), by another node
sj depending on its distance from si. A threshold distance dth is defined between two
nodes to control how close they can get to each other. Once the nodes are randomly
deployed in the sensing field, the algorithm calculates the total coverage as defined by
Eq.11.2. Then it calculates the net virtual force exerted on each sensor si by all other
sensors, obstacles, and preferential coverage areas. Depending on the net force, new
locations are calculated by a cluster head and an one-time movement is performed by
the nodes to their designated locations. However, for relocating nodes the algorithm
does not provide any route plan to avoid collision.

In [34] and [25], an incremental and greedy self-deployment algorithm is presented
for mobile sensor networks in which nodes are deployed one at-a-time into an unknown
environment. Each node makes use of the information gathered by previously deployed
nodes to determine its target location, while satisfying the line-of-sight constraint. The
authors in [25] proposed a potential field based algorithm in which nodes are treated
as virtual particles subjected to virtual force. Virtual forces repel the nodes from each
other and from obstacles, and ensure that the initial configuration of nodes quickly
spreads out to maximize coverage area.

Based on Voronoi Diagrams

In [35], three distributed self-deployment algorithms known as VEC, VOR, and
MiniMax are proposed for mobile sensor networks that exploit the structure of Voronoi
diagrams. As noted before, a Voronoi diagram consists of Voronoi polygons with the
property that all points inside a polygon are closest to the node that lies within the
polygon. The common strategy in all these three algorithms is that once the Voronoi
polygons are constructed, each node within its polygon finds out the existence of pos-
sible holes and relocates itself to a new position in order to reduce or eliminate the
coverage holes.

The vector-based algorithm, VEC, pushes nodes away from densely covered areas
to sparsely covered areas. Two nodes exert a repulsive force when they are too close
to each other. If davg is the average distance between any two nodes when they are
evenly distributed in the sensing field, the virtual force between two nodes si and sj
will move each of them a [davg − r(i, j)]/2 distance away from each other. However, if
one of the node’s sensing range completely covers its Voronoi polygon, then only the
other node moves away a distance [davg − r(i, j)]. In addition to the mutual repulsive
forces between nodes, the boundaries also exert forces to push nodes that are too close
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to the boundary inside the sensing field. However, each node before moving to the
new position, it calculates whether its movement would increase the local coverage
within its Voronoi polygon (calculated by the intersection of the Voronoi polygon and
the sensing circle). If the local coverage is not increased, the sensor instead of moving
to the target location, it moves to the midpoint position between its target location
and the current location if the local coverage is increased at the new target location,
otherwise, it will stay at its current position. This strategy is named by the authors
as the movement adjustment scheme.

VOR is a greedy strategy that pulls nodes towards the locations of their local max-
imum coverage holes. If a node detects a coverage hole within its Voronoi polygon,
it will move towards its farthest Voronoi vertex, such that the distance from its new
location to its farthest Voronoi vertex is equal to the sensing radius. However, the
maximum moving distance for a node is limited to at most half the communication
radius, because the local view of the Voronoi polygon might be incorrect due to limited
communication range. VOR also applies the movement adjustment scheme as in VEC,
and additionally applies an oscillation control scheme that limits a node’s movement
to opposite directions in consecutive rounds.

The MiniMax algorithm is very similar to VOR; it moves a node inside its Voronoi
polygon, such that, the distance from its farthest Voronoi vertex is minimized. Since
moving a node to its farthest Voronoi vertex might lead to a situation that the vertex
which was originally close now becomes a new farthest vertex, the algorithm positions
each node such that no vertex is too far away from the node. It defines the concept
of a Minimax circle, the center of which is the new targeted position. The Minimax
point is the center of the smallest circle that enclose all the Voronoi vertices and can
be calculated by the algorithms described in [36].

Between Minimax and VOR, Minimax needs more rounds to terminate and has
higher message complexity but it usually results in better coverage performance.

Based on Combination of Static and Mobile Sensor Nodes

The algorithms described in the previous sections apply to networks where all the
nodes are capable of moving around. However, there is a high cost associated to make
each node mobile, a balance can be achieved by using a combination of static and
mobile nodes, usually referred to as hybrid or mixed sensor networks.

In [11], authors describe a protocol, called the bidding protocol. Their protocol
considers a random initial deployment, where static sensors detect their local coverage
holes based on Voronoi diagrams. The mobile sensors calculate coverage holes formed
at their current position if they decide to leave their current position. The static sensors
bid mobile sensors based on the size of their detected coverage hole. A mobile sensor
compares the bids and decides to move if the highest bid received has a coverage hole
size greater than the new hole generated in its original location due to its movement.
The bids are broadcasted locally up to two hops and the static sensors are able to
direct neighboring eligible mobile sensors to a point close to the farthest vertex of their
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Voronoi polygon.

In [12] authors address the problem of enhancing coverage in a mixed sensor network
by dynamically estimate the number of additional mobile nodes required to improve
coverage. Initially a fixed number of static nodes are deployed and they deterministi-
cally find out the exact amount of coverage holes existing in the entire network using
the structure of Voronoi diagrams. Then dynamically estimate the additional number
of mobile nodes needed to be deployed and relocated to the optimal locations of the
holes to maximize overall coverage. The uncovered area within a Voronoi cell is com-
puted using the triangles formed by the node and its two adjacent Voronoi vertices.
For example see the triangle ∆(s1, v3, v4) in Fig. 2.1. The line I(v3, v4) is the per-
pendicular bisector of the line I(s1, s4) and the area of ∆(s1, v3, v4) can be computed
as 1/4.r(v3, v4).r(s1, s4). The area of the Voronoi cell for a node is the sum of the
area of all triangles contained within the Voronoi cell. However, the exact area of the
uncovered portion of a Voronoi cell might not be equal to the area of this Voronoi cell
minus the area of the sensing disk as the sensing disk of a sensor node may protrude
its Voronoi cell (e.g see s1 sensing disk in Fig. 2.1). The protrusion depends on the
relations between the sensing range and the distance between two Voronoi neighbors
and the lengths of the Voronoi triangle sides. In [12] a complicated calculation for the
exact area of uncovered portion within a Voronoi cell is provided. Finally, for each
Voronoi vertex, one mobile node should be used to cover the coverage hole around this
voronoi vertex, if the size of the hole within the voronoi cell is larger than a threshold.
The target location that the mobile node should be placed, lies on the line that bisects
the angle formed by the voronoi vertex and the adjacent voronoi edges and it is inside
the voronoi cell.

Figure 2.1: Detect and find the area of a coverage hole using Voronoi diagram

In [8] authors proposed the Grid Scan algorithm to find the maximum blind region in
order to deploy additional static or mobile sensors. The proposed scheme is a multi-step
scheme where each step is a greedy exploration process over all potential redeployment
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points. Specifically, the sensor field area is divided into uniform-sized squares (Grid).
The coverage of each grid square is estimated by checking whether its center point
is covered by a predefined number of sensors. Clearly, the true coverage rate of each
square can be approximated when the grid size is sufficiently small. Next a greedy
re-deployment scheme take place where at each step a new additional sensor node is
deployed at the center of the grid square with maximum number of neighboring non-
covered grid squares such that the most non-covered grid squares can be covered by
the new sensor node. The main drawback of Grid Scan scheme is that the entire sensor
field has to be divided into a huge number of small grid squares leading to extremely
high computational cost.

Based on Event Distribution

In this section, we explore the mobility strategies in order to reposition and orga-
nize mobile sensors in response to events in the environment and thus improving the
performance of event coverage.

In [21], the authors propose a distributive coverage control scheme based on a prob-
abilistic sensing range model to maximize the joint detection probability and minimize
the communication cost. They consider an event density function R(x) to represent the
frequency of random events taking place over the mission space Ω (sensor field area)
and develop an optimization problem that aims at maximizing coverage using sensors
with limited ranges, while minimizing communication cost. Starting with initial sensor
positions, the authors develop a gradient algorithm to converge to a (local) solution to
the optimization problem. The sequence of sensor distributions along the solution is
seen as a discrete time trajectory of the mobile sensor network until it converges to the
local minimum. Specifically, they consider a simple probabilistic sensing model (eq.
2.2 where ru = 0 and α = 1) given by pi(x) = e−∥x−si∥, if ∥x− si∥ ≤ rs and they define
the concept of joint event detection probability as given by equation below.

P (x, s) = 1−
∏N

i=1
[1− pi(x)] (2.8)

In other words the joint event detection probability is another definition of the area
coverage defined in paragraph 2.3.1) and gives the probability that an event, taking
place at x is detected by a mobile sensor.

The optimal coverage problem is formulated as a maximization of the expected
event detection frequency by the sensor nodes over the mission space Ω and expressed
by max

s
(F (s)) where

F (s) =

∫
Ω

R(x)P (x, s)dx (2.9)

In this optimization problem, the controllable variables are the locations of mobile
sensors in the vector s. The authors develop a distributed method to solve this op-
timization problem locally via the partial derivatives of the cost function F (s). The

21

The
ofa

nis
 P

. L
am

bro
u



Chapter 2

partial derivatives with respect to si are given by

∂F

∂si
=

∫
Ω

R(x)
∂P (x, s)

∂si
dx (2.10)

This partial derivative can be evaluated locally by each mobile node si and then a
gradient method can be applied to direct nodes towards locations that maximize F (s).
The next waypoint of the mobile sensor si motion trajectory is given by

si(k + 1) = si(k) + α
∂F

∂si(k)
(2.11)

where k is an iteration index and α is the step size. Finally the authors also introduced
a communication cost function into the coverage control problem, viewing the sensor
network as a multi-source, single-base station data collection network to control the
mobile nodes such that the communication cost is minimized.

In [13] the objective is to dispatch more mobile senors to event locations, while
still maintaining complete coverage of the sensor field. In order to approximate event
distributions by mobile nodes, two moving strategies are proposed, namely, the history-
free strategy and the history-based strategy. In the history-free strategy, each sensor
reacts to an event by moving according to a function of the form si(k+1) = si(k)+f(d)
where si(k) is the position of sensor i at step k and d is the distance between a sensor
and an event. An example of the function f is f(d) = αdβe−γd where the values of
parameters α, β, γ must satisfy the inequality αe−γd(βdβ−1 − γdβ) > 1, ∀d. In the
history-based strategy, each sensor needs to maintain event history to improve the
sensor’s approximation of the event distribution. Each sensor maintains a discrete
version of the cumulative distribution function (CDF) of the events, which is updated
after each event and used to compute its next position. The above two strategies move
sensors closer to event locations in order to maintain complete coverage of the sensor
field, the authors also use a Voronoi diagram to determine whether the movement of
a sensor will cause a coverage hole by checking whether if any sensor’s Voronoi vertex
is farther away than the sensing range. In this case, the sensor should stop moving to
maintain its original coverage.

The deployment strategies discussed so far strive to relocate, spread or add addi-
tional sensors to an initial static configuration in order to maximize coverage. The
main difference among these algorithms is how exactly the new positions are com-
puted. However, one drawback is that the final network configuration is again static,
and therefore, parts of the sensing field that are still uncovered even after the relo-
cations will remain so. As a consequence, an intruder moving along those uncovered
regions will never get detected. In addition, static sensor networks are also not able
to cope with dynamic environments where new obstructions may appear after the ini-
tial deployment. To overcome these drawbacks, the concept of dynamic coverage is
introduced as described below.
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Dynamic Coverage based on Continuous Movement of Mobile Sensors

The concept of dynamic coverage is relatively new and provides a new perspective
on looking at coverage that uses node mobility to patrol the environment in order
to provide better quality of coverage and detection capability. In practice, most of
the applications would not require 100% coverage of a region at all times, rather it
is more likely that they would require the region to be covered at least once during
a time interval. Thus, instead of coming up with the optimal deployment strategy of
nodes that guarantees complete coverage of a region at all times, it is more useful to
devise a strategy that could provide complete coverage over a period of time. Coverage
provided by mobile sensors depends on the velocity, mobility patterns, number of
sensors deployed, and the dynamics of the phenomenon being sensed [37]. It must be
noted that although a mobile sensor is able to cover more area than a stationary sensor
over a period of time, the instantaneous area covered by both are the same. Hence,
proper motion planning is required to exploit the full advantage of mobile sensors.

In [20], the authors investigate the area coverage resulting from the continuous ran-
dom movement of mobile sensors during a time interval [0, t) and they also investigate
the detection time of an intruder in such sensor networks. Assuming that the static
distribution of nodes in the two-dimensional plane is a Poisson point process with den-
sity λ and the sensing model is a binary disk of radius rs, the fraction of the region
covered by at least one sensor at time t as mention in paragraph 2.3.1 is given by
Cs = 1 − e−λπr2s . However, if the nodes move around in the sensing field following a
random mobility model, then the fractional area coverage during a time interval [0, t)
is now given by Cm = 1 − e−λ(πr2s+2rsE(v)t) where E[v] represents the expected sensor
speed (see Fig.2.2). The detection time x of a randomly located stationary target, is

tυ

0time = time t=

Figure 2.2: Coverage due to random movement of mobile sensors

defined to be the time at which the target first enters the sensing area of a sensor (i.e.
time for first detection). The authors prove that when mobile sensors move according
to a random mobility model with fixed speed v, the detection time for a stationary
target follows an exponential distribution x ∼ exp(2λrsv). In the case of a moving tar-
get with speed vt and direction θt, authors prove that the detection time also follows
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an exponential distribution with mean 1/2λrsv̄, where v̄ is the effective sensor speed
relative to the target speed. We observe that the detection times of both stationary
and moving targets follow exponential distributions with parameters of the same form.
Thus, minimizing the detection time corresponds to maximizing the effective sensor
speed. For example the movement of the target in any direction will result in a higher
effective speed with respect to the sensors, since the sensors move in all directions with
equal probability and therefore the target will be detected faster, on the other hand if
the target remains stationary the first hit time will become larger.

2.4 Path Planning Algorithms for Mobile Robotics

Path planning is one of the most fundamental problems in mobile robotic agents.
The problem of planning a motion path for mobile robots can be defined as finding a
path between a starting point and the destination in an environment with obstacles
such that no collisions with obstacles occur and the path is optimal with respect to
some particular measure such as shortest path length, least energy consumption or
minimum traveling time, etc. Several deterministic path planning approaches - Road
Map, Cell Decomposition and Potential Fields methods, are broadly surveyed in [38,
16, 39]. Due to the NP-Hardness of the deterministic approaches, heuristic methods
have outperformed deterministic approaches and have gained wide popularity [40, 41].
Path planning methods can also categorized as either being global or local based on
the robot’s knowledge about the environment. A global method assumes that the
environment is completely known before the mobile agent begins its traverse while a
local one assumes partial knowledge of the environment.

2.4.1 Deterministic Path Planning Methods

In mobile robotics the most common approach is to assume, for path-planning pur-
poses, that the robot is holonomic or even that the robot is simply a point. Thus, the
configuration space for a mobile robot is reduced to 2D space. Using this simplified
configuration space, we introduce below the common deterministic techniques for mo-
bile robot path planning. The first step of any path-planning algorithm is to transform
the continuous environmental model into a discrete map. Deterministic path plan-
ning approaches differ as to how they effect this discrete decomposition. Given a way
of describing the free space, the path planning problem reduces to a graph-searching
problem for finding a connected sequence of feasible configurations between the start
and goal from the representation. Several graph-searching methods [39] developed in
artificial intelligence [42] can be used as Dijkstra’s shortest-path algorithm, depth-first,
breadth-first, best-first, A* search, random-search and others.
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Road Map Path Planning

Road map approaches capture the connectivity of the robot’s free space in a network
of 1D curves or lines. Once a road map is constructed, it is used as a network of
road (path) segments for robot motion planning. Path planning is thus reduced to
connecting the initial and goal positions of the robot to the road network, then searching
for a series of roads from the initial robot position to its goal position. The road map
is a decomposition of the robot’s configuration space based specifically on obstacle
geometry. The challenge is to construct a set of roads that together enable the robot
to go anywhere in its free space, while minimizing the number of total roads. Two
well-known road map approaches are the Visibility graph and Voronoi diagram. In the
visibility graph, graph edges joining all pairs of obstacle vertices that can see each other
including both the initial and goal positions as vertices, thus roads come as close as
possible to obstacles and resulting solutions have minimum-length paths (see Fig. 2.3)
In the case of the Voronoi diagram, roads stay as far away as possible from obstacles.

Figure 2.3: An example of Visibility graph Path Planning.

Cell Decomposition Path Planning

The idea behind cell decomposition is to discriminate between geometric areas, or
cells, that are free and areas that are occupied by objects. The free space is decomposed
into a set of simple connected cells, then the adjacency relationships among the cells
are computed and a “connectivity graph” is constructed. A collision-free path between
the start and the goal configuration is found by first identifying the two cells containing
the start and the goal points and then connecting them with a sequence of connected
cells (e.g. passing through the midpoints of the cell boundaries). An important aspect
of cell decomposition methods is the placement of the boundaries between cells. If
the boundaries are placed as a function of the structure of the environment, such that
the decomposition is lossless, then the method is termed exact cell decomposition (see
Fig. 2.4). If the decomposition results in an approximation of the actual map, the
system is termed approximate cell decomposition (e.g. grid-based decompositions with
fixed cell size).
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Figure 2.4: An example of Exact Cell Decomposition Path Planning.

Potential Field Path Planning

The potential field concept was first introduced by Oussama Khatib [23]. The
potential field method treats the robot as a particle moving under the influence of an
artificial potential field U . The robot moves by following the downhill gradient of the
artificial potential field, just as a ball would roll downhill. The goal acts as an attractive
force on the robot and the obstacles act as repulsive forces. The superposition of all
forces is applied to the robot and smoothly guides the robot toward the goal while
simultaneously avoiding known obstacles. It is important to note, though, that this is
more than just path planning. The resulting force is also a control law for the robot.
The artificial force acting at the position of robot is given by F⃗ = −∇U . The potential
field method can be very efficient and under ideal conditions, the robot is smoothly
attracted toward the goal while being repulsed away from the obstacles (see Fig. 2.5).
However there is the risk of getting stuck in local minima or oscillate between the two
closest points, which obviously sacrifice completeness.

Figure 2.5: An example of Potential Field Path Planning.

To overcome the problem of local minima several techniques have been proposed
when planning with potential functions. One approach is the wave-front planner [43]
which affords the simplest solution to the local minima problem, but can only be
implemented in spaces that are represented as grids. For example, consider a two-
dimensional space. Initially, the planner starts with the standard binary grid of zeros
corresponding to free space and ones to obstacles. The planner also knows the grid cell
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locations of the start and goal. The goal grid cell is labeled with a two. In the first step,
all zero-valued cells neighboring the goal are labeled with a three. Next, all zero-valued
cells adjacent to threes are labeled with four, etc. This procedure terminates when the
wave front reaches the cell that contains the robot start location. The planner then
determines a path via gradient descent on the grid starting from the start. The wave-
front planner essentially forms a potential function on the grid which has one local
minimum and thus is resolution complete. The major drawback of this method is that
the planner has to search the entire space for a path and thus becomes computationally
intractable for large configuration spaces.

Another technique to solve the local minima problem is a special function which has
the only minimum at the goal position. This function is called navigation function and
formally defined in [44, 45]. The construction of navigation function resides on algebraic
topology and is based on the assumption that the obstacles are disks with finite radii
placed in such a fashion that none intersect. It is also assumed that the configuration
space is bounded by a sphere (or a star) space. Given the above assumptions an
“almost” global navigation function could be constructed using a steepening parameter.
Increasing the steepening parameter causes the other critical points gravitating toward
the goal and local minima turning into saddles. Unfortunately, this steepening effect
has an adverse consequence as sometimes the navigation function becomes flat near the
goal and far away from the goal and thus has sharp transitions in between, which makes
the implementation of gradient descent approach quite difficult because of numerical
errors. It is worth mentioning that the navigation function methodology has been also
extended to the case of multiple robots systems [46].

2.4.2 Sampling-based Path Planning Methods

The aforementioned Deterministic methods suffer from many drawbacks, such as
high computation complexity and trapping in local minima, which makes them im-
practical. In order to improve the efficiency of classic methods, sampling-based algo-
rithms [47] have been developed, including Probabilistic Road Maps [48] and Rapidly-
exploring Random Trees [49], with major advantage the high-speed implementation.
However, these algorithms depend on having a complete and accurate knowledge of the
environment. In sampling-based or randomized path planning algorithms information
on the configuration space is acquired by generating samples and edges between them
and store them in a suitable data structure. Sampling-based path planning algorithms
can be separated between probabilistic roadmap-based planners and tree-based plan-
ners. Below we introduce the basic ideas in the aforementioned two categories of those
algorithms.

Probabilistic Road Maps

The Probabilistic Road Map (PRM) algorithm works in two steps, the first called
learning stage and the second called query stage. In the learning stage the algorithm
samples the configuration space and builds an undirected graph G = (V,E) which
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captures the information gathered. The graph is called probabilistic road map. In
the query stage, the Probabilistic Road Map is used to solve specific motion planning
instances which are then reduced to a graph search. In learning stage samples randomly
generated over the configuration space are accepted if they belong to the free space and
discarded otherwise. When a sample is accepted, it becomes a vertex of the G graph.
After a vertex is added, the algorithm checks if it is possible to add edges between the
inserted vertex and vertices already in the graph. For this aim a subset of neighboring
vertices are selected and the new vertex is checked whether it can be connected to
them. Two vertices are neighbors if their distance is less than a fixed threshold. The
algorithm simply connects the two points with a straight segment and verifies if it lies
in free space or not. This is done by selecting a set of intermediate points along the
segment and check whether all the intermediate points lie in free space. If the resulting
graph contains more than one connected component (the graph is not fully connected),
an improving stage is performed in order to merging them. In the query stage a start
and goal points are given and the algorithm is required to produce a path between
them using the graph G. The algorithm tries to connect the two points to vertices in
the graph G by using the same technique used to insert edges in the road map and then
the graph is searched to find the path between the start and goal points. Figure 2.6
shows an example of Probabilistic Road Map.

Figure 2.6: An example of Probabilistic Road Map.

Rapidly-exploring Random Trees

The Rapidly-exploring Random Trees approach has become the most popular single-
query motion planner in the last years especially for problems involving nonholonomic
planning. The Rapidly-exploring Random Tree algorithm works by growing a tree
starting from a given root (starting point). The growth is performed one vertex at
a time, by alternating the two steps, selection and propagation, that are common to
most tree-based planners. In the selection step, a new sample is chosen uniformly
at random and the tree is searched to find the nearest neighbor among the samples
already existing in the tree. In the propagation step an edge is then extended from
the selected nearest neighbor toward the new sample, not necessarily reaching it. The
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ending vertex from the edge extended from nearest neighbor is then the new sample
added to the tree. If a start and goal points are given a significant speedup is obtained
by growing two trees, one from start and the other from goal. Figure 2.7 shows an
example of a Rapidly-exploring Random Tree.

Figure 2.7: An example of Rapidly-exploring Random Tree.

2.4.3 Heuristic Path Planning Methods

Also other approaches for robot path planning include Artificial Neural Networks,
Genetic Algorithms, Particle Swarm Optimization, Tabu Search, Simulated Annealing,
Stigmergy, Wavelet Theory etc. Heuristic algorithms do not guarantee to find a solu-
tion, but if they do, are likely to do so much faster than deterministic methods. Below
we outline some heuristic approaches proposed for mobile robot path planning.

A novel biologically-inspired general neural network approach for real-time collision-
free path planning in a dynamic environment is presented in [50]. The state space of
the neural network is the configuration space of the robot, and the dynamic environ-
ment is represented by the dynamic activity landscape of the neural network. The
target globally attracts the robot in whole state space, while the obstacles locally push
the robot away to avoid collisions. In [51] another neural network approach to path
planning for two dimensional robot motion is developed and in [52] a neural network
approach for dynamic task assignment of multiple robots is presented.

The idea of using a genetic algorithm for robot path planning was used in [53] for
generation of collision-free paths. In [54] a multiple path planning method for a group
of mobile robots in a 2D environment using genetic algorithms is presented.

Particle swarm optimization is inspired by the ability of flocks of birds, schools of
fish, and herds of animals to adapt to their environment, find rich sources of food, and
avoid predators by implementing an information sharing approach. An algorithm for
mobile robot path planning using particle swarm optimization for obstacle avoidance
in dynamic environment is presented in [55]. Also, an algorithm is developed in [56] for
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robot path planning using particle swarm optimization of Ferguson Splines. Finally,
obstacle avoidance path planning for soccer robots using particle swarm optimization
has been extended in [57].

Tabu search approach can be used in robot path planning. This algorithm does not
suffer from the local minimum problem. In [58] an online motion planner is developed
to govern the movements of mobile robots during their explorations. By using the tabu
search, a set of tabu (i.e. forbidden) moves are defined at each iteration of the search to
confine the robot’s navigable locations, and guide it toward the goal. Based on range-
sensor readings and the cost function value defined for each ray, the robot is attracted
to certain obstacle vertices, and moves along a path consisted of lines connecting the
vertices of different obstacles. The planner also takes advantage of random moves when
trapped in dead-ends.

2.4.4 Coverage Path Planning

The Coverage path planning problem can be defined as finding a motion path for
mobile robots that guarantees the complete coverage of an environment. Unlike conven-
tional path planning, coverage path planning enables applications such floor cleaning,
lawn mowing, harvesting, mine hunting, painting, searching, contamination cleanup
etc [59]. Recent commercial implementations in consumer products include automatic
vacuum cleaners [60] and automatic lawn mowers [61].

An early paper in 1988 by Cao et al [62] defines the criteria for the region filling
operation or coverage by a mobile robot as follows:

1. Robot must cover (move through) the entire area

2. Robot must cover the region without overlapping path

3. Continuous and sequential operation without any repetition of paths is required

4. Robot must avoid all obstacles

5. Simple motion trajectories (e.g. straight lines or circles) should be used (for sim-
plicity in control)

6. An ”optimal” path is desired under available conditions.

However as mention in [62] it is not always possible to satisfy all these criteria for
complex environments and thus sometimes a priority consideration is required.

In the past years the coverage problem has received much attention and several so-
lutions have been proposed in the literature including single and multi-robot solutions,
a survey on recent results in coverage for robotics is provided in [59]. Many algorithms
either implicitly or explicitly use cellular decomposition of the free space to achieve
coverage. In cellular decomposition, the free space is broken into simple regions, which
should guarantee the coverage. The cellular decomposition algorithms can be classi-
fied into three classes: approximate, semi-approximate and exact [59]. Another other
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way to classify the algorithms is off-line and on-line. Off-line algorithms rely only on
stationary information and the environment is assumed to be known. Usually on-line
algorithms are employed if some kind of adaptivity to the environment is needed. On-
line algorithms use real-time sensor measurements for robots guidance and they can
also be called sensor-based coverage algorithms.

In approximate cellular decomposition, the region is discretized using a grid, which
approximately covers the region, and the algorithm is applied to the grid. Authors
in [63] present an algorithm that solves the coverage path planning problem in a grid
utilizing a distance transform algorithm named wavefront algorithm. The wavefront
algorithm initially assigns a 0 value to the goal and then a 1 to all surrounding cells.
Then, all unmarked cells neighboring the marked 1 are then labeled with a 2. This
process repeats until the wavefront crosses the start. Once this occurs, the robot can
use gradient descent on this numeric potential field to find a path. In [63] after the
wavefront algorithm has spread throughout the entire free space, the robot finds a path
from start to goal by moving from its current cell towards a not visited neighboring cell
with the highest value. In an environment with no obstacles, this approach reduces to
following the equipotential curves from top to bottom. Authors also define a wavefront
potential function to encode path safety by using an obstacle distance transform to
compute distance of each cell to the nearest obstacle. The new path planning algorithm
uses a weighted sum of both potentials to compute the coverage path, resulting in a
path with fewer turns which is beneficial for mobile robots. The main problem in this
algorithm is that it does not count kinematic constraints. Another approximate cellular
decomposition coverage path planning algorithm is proposed in [64]. The algorithm,
called Spanning Tree Covering, subdivides the work-area into disjoint cells and then
follows a spanning tree of the graph induced by the cells, while covering every point
precisely once.

In exact cellular decomposition, the workspace is decomposed into a collection of
non overlapping cells, and then the robot searches the connectivity graph that repre-
sents the adjacency relation among cells. Thus the complete coverage can be achieved
by back and forth robot motions. In [65] a novel boustrophedon cellular decomposition
approach is proposed. The algorithm allows the robot to cover each cell like the way
the ox drags a plough. This solution combines the advantages of cell decomposition
and template based approaches, and minimizes the number of cells used in cell de-
composition. It requires the prior knowledge of the obstacle locations and the critical
points.

The coverage path planning problem has been also approached by many researchers
using random strategies as these approaches were suitable for inexpensive robots be-
cause of their low sensor (localization is not needed) and computational power require-
ments. Random coverage strategies do not guarantee completeness, however Gage [66]
showed that the percentage of the covered area can be increased by either using mul-
tiple robots or sweep the area for long enough time. In [67], it has been shown that
the efficiency of robots with random algorithms is approximately 20% of those that use
more advanced methods. Therefore if a robot with a random algorithm can be con-
structed at 1/5 of the price of a robot with localization and advanced path planning, it
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may be effective to use a randomized search. Recently, a lawn mowing robot [61] that
uses random zigzag motions for coverage was reported in Consumer Reports 2008.

In [68] authors focus on the coverage problem of efficiently coordinate a mobile
robot with uncertain heading to cover a specified area. Five control strategies based
on event-triggered position measurements when the vehicle intersects the boundary of
the area to be covered are compared. They are denoted Receding Horizon, Robust
Receding Horizon, Opportunistic Receding Horizon, boustrophedon and randomized.
The proposed path-planning strategies are evaluated by comparing the number of turns
for various degrees of heading uncertainty. It is shown that for large uncertainties, a
randomized strategy is the best one, which is intuitive since the system state does not
reveal much information in that case. For small uncertainties, a boustrophedon-path
strategy sweeping the area by a simple back-and-forth motion is sufficient.

There are also several studies on coverage path planning of multi robot systems.
The authors in [69] presented a novel neural network approach to solve coverage path
planning problem for non stationary environments. Complete coverage paths are gen-
erated from a dynamic activity landscape of the neural network and the previous robot
location. The dynamics of each neuron in the topologically organized neural network
is characterized by a shunting equation derived from Hodgkin and Huxley’s membrane
equation for a biological neural system. In [70] an off-line multi-robot coverage strategy
is proposed which is suitable for covering unstructured environments using a Voronoi
diagram and a cost function to optimize the collective coverage task. Finally, in [71]
authors proposed an efficient boustrophedon multi-robot coverage algorithm. The al-
gorithm use the same planar cell based decomposition as the Boustrophedon single
robot coverage algorithm, but provide extensions to handle how robots cover a single
cell, and how robots are allocated among cells based on the type of communication
that exists between the robots.

2.5 Cooperative Path Planning and Control for Multi-

Robot Systems

In the previous section, different kinds of path planning algorithms for mobile robots
have been presented, however the majority of research effort has focused on centralized
path planning approaches for single autonomous robots and nothing has been said
about how to control a group of cooperating autonomous mobile robots to achieve
different missions such as search, mapping surveillance, exploration, target detection
and tracking. Moreover, most of algorithms presented previously, do not consider
the maneuverability constraints of robotic vehicles and the dynamic nature of the
environment.

In the recent years (early 2000s), several research efforts have been directed toward
the cooperative path planning and control of a team of autonomous mobile robots
performing cooperative tasks. Cooperative or collaborative indicates the interaction
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among multiple robots, that means, the robots have to communicate, exchange infor-
mation or interact in some way to achieve an overall common mission.

This section review various methods and control approaches dealing with multi-
robot systems. A multi-robot system or multi-vehicle system can be composed of
unmanned aerial, ground or underwater vehicles (UAVs,UGVs or UUVs), however a
significant amount of research in this area is performed under the framework of UAVs.
A survey of recent research in cooperative control of multi-vehicle systems regarding
current applications and technical approaches for formation control, cooperative task-
ing, spatio-temporal planning and consensus algorithms is provided in [72].

2.5.1 Cooperative Search and Surveillance

An important problem in unmanned air vehicle (UAV) and UAV-mounted sensor
control is the target search problem in order to locate target(s) in minimum time.
This task is also referred as the cooperative surveillance problem using a collection of
autonomous vehicles moving in a way that maximizes the probability of finding the
target(s). Theoretical work on optimal searching for targets in unknown location was
initiated by B. Koopman during the World War II to find enemy marine vessels for the
U. S. Navy. Classical search theory as we know it today is based on work by Koopman
[73] and later work by L. Stone [74] who especially study the moving target problem.

Polycarpou et al. [17, 75] developed a general framework for directing a group
of UAVs to cooperatively search a dynamic and uncertain environment. The search
path generation problem is separated into two parts: the on-line environment model-
ing process and a real-time path decision process. The coordination among vehicles is
achieved by considering the group benefit in each vehicle’s decisions. Each UAV main-
tains a knowledge base about the environment (termed a search map) where assigns
an uncertainty measure to each point of the search region. As each UAV moves about,
it continually refines its understanding of the environment by collecting information
from its own sensors and periodically exchanging search maps with other UAVs. Each
UAV uses its search map to dynamically calculate and update its search path to meet
certain criteria, e.g., minimizing the uncertainty in the environment. Each UAV ma-
neuvers autonomously based on its understanding of the environment (which in turn
is formed in part based on information provided by other UAVs). Path planning is
accomplished in a receding-horizon framework where a multi-objective cost function
J , weighing the different competing subgoals of the agents, is optimized at each time
step, over some planning horizon. In general, the cost function J can be written as
J = ω1J1 + ω2J2 + . . . + ωsJs where Ji represents the cost criterion associated with
the i-th subgoal and ωi is the corresponding weight. The weights are normalized such
that 0 ≤ ωi ≤ 1 and the sum of all weights is equal to one,

∑s
i=1 ωi = 1. Pri-

orities to specific subgoals is achieved by adjusting the values of weights associated
with each subgoal. The agents must periodically exchange their knowledge base (as
well as other data, such as course and speed in order to prevent several UAVs from
duplicating efforts by choosing the same optimal path. Based on this framework, a

33

The
ofa

nis
 P

. L
am

bro
u



Chapter 2

Bayesian map-building method to probabilistically model the environment together
with an opportunistic learning method for cooperative path planning is proposed in
[76] to cooperatively search for targets by a group of networked UAVs in an uncer-
tain environment. More recently Liao et al. [77] considered a cooperative search path
planning approach using a team of UAVs with limited communication and focused on
information sharing and information fusing policies. They observed that under the
aforementioned framework it is possible to use significantly less than global communi-
cation range and to communicate less frequently than once every time step without a
serious loss of performance.

Bourgault et al. [78] presented a Bayesian approach to model the search for a
stationary or drifting target at sea, principally with the objective of maximizing the
probability of detection within a given a time. The search environment is discretized
into a large grid of cells, over which a target probability density function is defined.
This function is defined a priori with available information, and updated with a process
model that accounts for wind, current and other factors. Similarly, a distance-based
observation model maps the position of vehicle to the likelihood of detecting the target
in each of the cells. Updating the probability distribution with this model then provides
a posterior accounting for the effects of search. This cooperative search task with
multiple UAVs developed by bringing together a decentralized Bayesian data fusion
technique and a decentralized coordinate control scheme. Due to the large number of
cells involved, the trajectories were calculated using one-step look-ahead.

Another approach to the cooperative surveillance problem proposed by Cortes et
al. [79, 80]. They proposed an algorithm for deploying a group of robots over a region
of interest to provide sensor coverage of the environment. The algorithm divide up
the region into a set of polytopes among the robots and each robot is responsible of
sensing its polytope. The sensing performance of a vehicle depends on its distance from
a sense point. Then, they form the coverage control problem by choosing the locations
of each vehicle in order to minimize an objective function. The proposed cost function
depends on the number and current positions of available robots as well as the event
distribution density function. Using a gradient decent control law, it is shown that
each robot trajectory converges to the centroid of a cell in a Voronoi partition of the
search domain and hence provides (locally) optimal coverage. A key element of this
approach is that the only communication required is with the nearest neighbors of each
vehicle, however it assumes that the collection of available vehicles is sufficient to cover
the entire region of interest.

2.5.2 Formation Control and Consensus Algorithms

One of the simplest cooperative control problems is that of formation control where a
set of mobile robots (vehicles or agents) move in a formation, specified by the relative
locations of nearby robots. Formation control has receive a considerable attention
under the framework of so-called “swarms of vehicles”. Roughly speaking, a swarm is
a large collection of vehicles that perform in a collective fashion, such as flying together
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in a given direction. One early work in swarm-like behavior was that of Reynolds [81],
who developed a set of rules that he used to generate realistic motion of vehicles for
the animation industry. An innovative approach to understanding swarm behavior was
taken by Jadbabaie et al. [82] who described how to achieve coordination for groups
of mobile autonomous agents using nearest neighbor rules. The control law was quite
simple, making use of a simple heading model in which each agent updated its heading
according to the rule

θi(t+ 1) =
1

1 + ni(t)

θi(t) + ∑
j∈Ni(t)

θj(t)

 (2.12)

where θi(t) denotes the heading of agent i at time t, ni(t) is the number of neighbors
of agent i at time t. Equation 2.12 is the average of the headings of agent i and agent
i’s neighbors at time t and hence this control law essentially tells each agent to steer
in the same direction as its neighbors. Jadbabaie et al. are able to demonstrate that
with this control law, all vehicles will converge to a common heading.

Control laws for swarms often involve using attractive and repulsive functions be-
tween nearby vehicles. In addition to rivaling force between agents proposed by Poly-
carpou et al. [17], another representative work is that of Olfati-Saber [83], who pro-
posed a control input ui consisting of three terms ui = fi

g + fi
d + fi

γ. The first term
fi

g is a gradient-based term, the second term fi
d is based on the relative velocities of

neighboring agents and acts as a damping force and third term fi
γ is a navigational

feedback term that takes into account the group objective.

Finally we briefly describe the problem of “consensus” in cooperative control. The
consensus problem is to have a group of vehicles or agents reach a common assess-
ment or decision regarding a certain quality of interest that depends on the state of
all agents. A Consensus algorithm is an interaction rule that specifies the information
exchange between an agent and all of its neighbors on the network. More recently,
there has been a growing interest among researchers in problems related to multi-agent
networked systems with close ties to consensus problems. This includes subjects such
as collective behavior of flocks and swarms, sensor fusion, asynchronous distributed
algorithms, formation control for multi-robot systems, consensus-based belief propa-
gation in Bayesian networks and others (see [84, 85] and references therein). Article
[85] provides a tutorial overview of information consensus in multi-vehicle cooperative
control where theoretical results regarding consensus-seeking under both time invariant
and dynamically changing communication topologies are summarized.

Consider a network of agents interested in reaching a consensus via local communi-
cation with their neighbors. The interaction communication topology between agents
can be represented using a directed graph G = (N,E) where N = {1, 2, . . . , n} is the
set of nodes and E ⊆ N × N are the edges. The neighbors of agent i are denoted by
Ni = {j ∈ N : ai,j ̸= 0} where ai,j ̸= 0 denotes that agent i communicates with agent
j. A = [ai,j] is the adjacency matrix of graph G (representing which agents communi-
cate each other, ai,j = 1). A dynamic graph G(t) = (V,E(t)) is a graph in which the
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set of edges E(t) and the adjacency matrix A(t) are time-varying. Clearly, the set of
neighbors Ni(t) of every agent in a dynamic graph is a time-varying set as well.

The most common consensus algorithm is proposed in [84] where the behavior of
each agent is governed by

ẋi(t) = −
∑

j∈Ni

aij(t) (xi(t)− xj(t)) (2.13)

where xi(t) represents the internal or information state of the i-th agent and aij(t) is
the (i, j) entry of the adjacency matrix of the associated communication graph G(t) at
time t.

A consequence of equation 2.13 is that the information state xi(t) of vehicle i is
driven toward the information states of its neighbors. The critical convergence question
is, when do the information states of all of the vehicles converge to a common value
(x1 = x2 = . . . = xn). For the system representing by eq. 2.13, it has been shown [84]
that if the information flow is bidirectional and time-invariant which means that G is a
connected undirected (aij = aji for all i, j) graph, the states of the individual vehicles
asymptotically converge to the average of the initial state values, α = 1

n

∑n
i=1 xi(0), α

is the collective decision. Thus the consensus algorithm guarantees convergence to a
collective decision via local agent interactions. If G is not bidirectional (so that there
are asymmetries in the information available to each agent), then the interaction above
does not necessarily lead to average consensus. Furthermore, even if the connections
are changing as a function of time, it can be shown that the average consensus can be
reached under certain conditions.

The consensus algorithm described above by eq. 2.13 can be written in matrix form
as ẋ(t) = −L(t)x(t) where x = [x1, . . . ,xn]

T is the information state and L(t) =
[ℓij(t)] ∈ Rn×n is the graph Laplacian of the underlying communication graph G. The
graph Laplacian is defined as L = D−A where D = diag(d1, . . . ,dn) is the degree
matrix of G with diagonal elements di =

∑
j ̸=i aij and zero off-diagonal elements and

A is the adjacency matrix of graph G.

2.5.3 Experimental Testbeds

Experimental work with teams of cooperative mobile robots in the context of WSNs
has been limited, primarily due to the cost and the implementation overhead required
for the experimental validation of the algorithms developed for WSNs. Some experi-
mental testbeds involving only cooperative autonomous robots have been proposed in
the literature.

In [86], the authors develop a testbed with multiple mobile khepera robots [87] that
form a team which cooperates to visit multiple target points to collect the rewards
associated with them. The objective is to maximize the total reward accumulated over
a given time interval. This testbed has also been used to address dynamic network
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deployment in the context of coverage control using only mobile nodes. Khepera robots,
though ideal for such testbeds due to their small size and functionality, they are quite
expensive (each wireless Khepera robot costs approximately 3000 euros). Therefore,
several attempts have been made to develop small, inexpensive, modular and open-
source platforms for developing large-scale mobile robot applications [88, 89, 3].

In [90] the authors develop an experimental testbed to study several issues associated
with the convergence of control, communication and computation. The testbed consists
of remotely controlled cars and each car is controlled by its own dedicated laptop. An
overhead camera provides positioning information and communication between laptops
is based on IEEE 802.11. The authors have tested many scenarios on this testbed
ranging from traffic control to collision avoidance.

Another mobile robot platform that has been incorporated in a testbed is presented
in [91]. In this case study authors develop a mobile sensor node based on the MICA2
board developed by Crossbow Technology. Their main objective is to create a network
of mobile nodes that trace the boundaries of a diffusion contamination process.

In [92], an experimental testbed for studying multi-vehicle, networked control has
been developed. The authors use ducted fans to control the vehicles and develop real-
time feedback control algorithms to stabilize the system while performing cooperative
tasks. Several other researchers have also demonstrated experimentally leader following
cooperation using two Unmanned Aerial Vehicles (UAVs) [93, 94].

Recently, MIT’s Distributed Robotics Laboratory developed an energy efficient four
rotor flying robot for indoor and outdoor navigation [95]. This flying platform offers
a 1 kHz control frequency and motor update rate and thus minimizes uncertainty
in position control and instable behavior during maneuvers. Also researches at Utah
State University have develop another low cost UAV platform [96] for aerial surveillance
missions.

Another well-know experimental testbed of autonomous aerial vehicles and robots
has been developed at GRASP Laboratory of the University of Pennsylvania. In [97],
an experimental study is presented where a team of quadrotor robots cooperatively
grasping, stabilizing, and transporting payloads of different configurations to desired
positions and along three-dimensional trajectories. In addition, experimental work
with Unmanned quadrotor Helicopters for attitude control under the influence of wind
gusts has been presented in [98]. Also in [99], a system using Unmanned quadrotor
Helicopters (UqHs) for forest fire surveillance is presented where UqHs are coordinated
in a decentralized manner to patrol the perimeter of the fire.

Finally, another multi-robot testbed is presented in [100], where a scalable architec-
ture for decentralized traffic management of multi robot systems has been proposed,
implemented and evaluated experimentally. In the proposed scenario, a group of vehi-
cles move autonomously in a shared environment and each vehicle is given a specific
task to accomplish, on its own or in collaboration. A cooperative conflict avoidance
policy is employed to prevent collisions and guarantee that each vehicle eventually ac-
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complishes its individual task. Typical agents are inexpensive robots equipped with
sensors, limited onboard processing and short-range ZigBee wireless communication.
The overall firmware development is based on the Contiki [101] operating system, which
runs on all the mote platforms used in the experiments. Contiki is a lightweight and
flexible operating system for tiny networked sensor motes and it is built around a sim-
ple event driven kernel on top of which application programs are written with stack-less
threads.

2.6 Event Localization and Odor Plume Source Local-

ization in WSN

2.6.1 Event Localization

Localization of the event position is an essential capability of sensor networks in
many practical applications. In many event monitoring applications sensor nodes are
used only to collect data. That data is routed to a base station equipped with more
computational resources where the event location is computed. The position estimation
may be accomplished by a triangulation or a least-squares computation over a set of
sensor measurements.

For example, consider the problem of localizing a stationary signal source using a
set of sensor measurements. In the simplest setting, three or more amplitude mea-
surements, say from microphones, may be used to determine the location of a signal
source (see Figure 2.8). If the signal attenuation model is known (i.e such as the

O

O

O

Sensor1

Sensor2

Sensor3

Figure 2.8: An example of a signal source localization using three sensor measurements.

acoustic model), one can recover one range constraint per amplitude measurement. To
uniquely determine the location on a two-dimensional plane, one needs at least three
independent distance measurements (the third is needed to resolve ambiguities).
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Alternately, one may use the angle of Arrival (AoA) or the time difference of ar-
rival (TDoA). In AoA techniques [102], source location can be estimated by exploiting
the phase or angle difference measured at receiving sensor nodes using radio, sound
or optical sensor arrays, which allow a listening node to determine the direction of a
transmitting coherent, narrow band source. Therefore, by using several spatially sep-
arated sensors (sensor array) and analyzing the phase or angle difference between the
signal”s arrival at different sensor array elements, it is possible to discover the angle of
arrival of the signal. Unfortunately, AoA hardware tends to be bulkier and expensive
since each node must have an array of sensors with specific spatial separation between
sensor elements. Time of arrival (ToA) techniques can not be used since they require
the exact time of signal emission by the unknown signal source as well as precise time
measurement. Therefore, one may use time difference of arrival (TDoA) of signals at
the sensors to estimate the range. TDoA method [103, 104] is suitable for a broadband
source, however, this method requires accurate estimation of time delays between sen-
sors ( precise time synchronization among sensor nodes). TDoA methods could be also
used in an alternative way (as used in the context of node position localization [105] or
as one estimates the distance to a lightning cloud by measuring the TDoA between the
light and the thunder) where the source emits two types of signals with different speed
propagation times (e.g. acoustic and radio signals) and each node estimates distances
by determining the TDoA of these signals using different type of sensors.

In contrast to the aforementioned methods, received signal strength (signal ampli-
tude measurements given that signal attenuation model is known) is comparatively
much easier and less costly to obtain from the time series recordings from each sensor
and does not require any synchronization between the sensor nodes. Next, we focus on
localization using signal amplitude measurements.

Assuming that the signal propagation model or the sensor measurement model is
given by

zi =
Vi(

(xe − xi)
2 + (ye − yi)

2)α
2

+ wi (2.14)

where x= [xe, ye]
T is the unknown position of the signal source, si= [xi, yi]

T is the
position of sensor i, zi is the amplitude measurement of sensor i, wi is additive zero
mean Gaussian noise with known covariance, Vi is a given variable representing the
amplitude of the signal at the target and α is a known attenuation coefficient. Assuming
α = 2 which is equivalent to the inverse distance squared model for power attenuation
and omitting the noise term, we can rewrite the signal model as (xe − xi)

2+(ye − yi)
2 =

Vi

zi
, i = 1, 2, 3, . . .. For each sensor i, this equation gives a quadratic constraint on the

unknown x.

To solve this set of equations, it is more convenient to write it as a set of linear
equations of x. To do so, the quadratic terms xe

2 and ye
2 have to be removed. This

can be achieved by subtracting the i = 1 equation from the rest i ̸= 1 and obtain

2(xi − x1)xe + 2(yi − y1)ye = Vi(
1

z1
− 1

zi
)− (x21 − x2i )− (y21 − y2i ) (2.15)
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Letting ci = 2 [(xi − x1) (yi − y1)] and di = Vi

(
1
z1
− 1

zi

)
− (x21 − x2i ) − (y21 − y2i ) we

can simplify the above as
cix = di (2.16)

Given k sensors, we can obtain k − 1 linear equations, expressed in the matrix form
Ck−1x = Dk−1 and for k = 3, the above uniquely determines the location of the signal
source x. For k > 3, we can solve for it using the least-squares method [106]:

x =
[(
CT

k−1Ck−1

)−1
CT

k−1

]
Dk−1 (2.17)

The above localization method depends on the geometry of the sensor placement as well
as the distance to the signal source which determine the significance of the contribution
of each sensor.

2.6.2 Odor Plume Source Localization in WSN

Another application of mobile robots and mobile sensor networks is that of odor
plume source localization. Robotic odor localization has become a prominent research
area in recent years. It promises many valuable practical applications such as finding
the source of dangerous substances like airborne toxic gases or hazardous chemicals in
industrial plants, detecting fire in its initial stages, locating drugs or explosives, search-
ing for survivors or human bodies in earthquake damaged buildings and landslides.

Odour plume propagation-dispersion includes two processes: advection and diffu-
sion. In advection odor particles are purely shifting from one place to another by fluid
currents. In diffusion odor particles are diffusing from locations with high concentra-
tions to locations with low concentrations.

Dispersion is predicted by the Reynolds number of the flow. At low values, diffusion
dominates producing smooth variations in chemical concentration. The peak occurs
at the source, and decreases according to a Gaussian distribution. At medium to high
Reynolds values, turbulence dominates and odor propagation mainly occurs through
carriage of particles by the fluid currents (advection), causing an odor plume to form
downflow of the source.

Time-varying flow currents and turbulence can cause the plume to meander, become
patchy and to a far lesser extent spread out with diffusion. This creates on average a
decreasing concentration gradient from the centerline of the plume (which may be me-
andering) out towards its edges across the flow. The patchy nature of the plume results
in peak concentration values much higher than the average, and instantaneous concen-
trations fluctuate in magnitude and direction (see figure2.9). More details regarding
the characteristics of odor propagation-dispersion can be found in environmental and
fluid mechanics books [107, 108].

The odor plume localization using mobile robots requires three components; fast and
accurate sensors, a suitable robotic platform and odor source localization algorithms
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Figure 2.9: An example of a real smoke plume propagation-dispersion.

due to the complex propagation of odor molecules in the environment.

Recently many electrochemical sensors have been developed for detecting volatile
chemicals such as alcohol, harmful gases, air contaminants and explosives. However
such sensors, in order to be suitable for robotic plume tracking applications must offer
high sensitivity, fast response and recovery, low power consumption, miniature size,
low cost and long life. A number of different designs and technologies [109] exist in-
cluding among others metal oxide semiconductors, conductive polymers, quartz crystal
microbalances and optical sensors. Thick film metal oxide semiconductor gas sensors
manufactured by Figaro Engineering Inc [110] have been used in the majority of robotic
experiments [111, 112] with chemical plumes in the air. In aquatic environments optical
or conductivity sensors are more appropriate. Optical backscatter sensors or nephelo-
metric sensors are widely used for detecting hydrothermal plumes [113] or chemical
substances released in water [114]. The particle concentration in the water can be
estimated by measuring the amount of light scattered due to turbidity or cloudiness
caused by diffusion.

However, beyond an appropriate sensor and a suitable robotic platform, the com-
plex structures of plumes in the environment require the development of efficient odor
source localization algorithms. Odor plume source localization algorithms can be clas-
sified into three broad categories: 1) bio-mimetic strategies that seek to emulate the
remarkable feats of plume tracing in biological organisms, 2) Probabilistic approaches
that focus on information theory and probabilistic techniques such as bayesian filtering
for plume mapping 3) Multi-agent cooperative approaches. A comprehensive survey
for robotic odor localization approaches that follows a different taxonomy is provided
by Kowadlo and Russell [115]

The development of efficient odor source localization algorithms requires a realistic
odor plume propagation model to test the plume-tracing algorithms through simula-
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tion before being realized in real robots. It’s worth to say that realistic gas/odour
plumes models are difficult to found in simulation environments which results in er-
roneous behavior of robots during real experiment for odor source localization. Two
well known methods used for plume propagation modeling are the numerical solution
to the advection-dispersion equation and stochastic simulation. Farrell et al. [116],
use stochastic simulation to generate plume propagation model. This plume model
was named the filament-based atmospheric dispersion model. It included a continu-
ous wind field which covered the region of interests and the wind vectors varied with
location and time in this region. The odor plume was represented by a sequence of
puffs and each puff was composed of a number of filaments. The shape of the filament
was predefined and the size and location of the filament were determined by the wind
field. In such a plume model, the state of each cell of the plume map can be given by
a Markov chain. At any time k, a cell i will either have a probability pb originating
a new plume release if it contains no plume at time k − 1 or will have a probabil-
ity pc releasing the same amount of plume at time k if it contains a plume source at
k − 1 and with probability pd(j) will have a certain amount of plume at time k com-
ing from the cell j at time k − 1 depending on source intensity. This plume model is
simplified, though computationally efficient but still be quite different from real plume
propagation process.

Below we present a brief description of plume source localization algorithms, that
have been classified into three broad categories:

Biomimetic Approaches

Numerous authors have attempted to implement on robots bio-mimetic approaches
to the problem of odor plume localization. While many of these attempts proved
successful to locate the odor source, the results have generally failed to match the
performance of the biological entities. Two basic concepts generally used is chemotaxis
and anemotaxis.

Chemotaxis is the most widely applied bio-mimetic odor plume localization ap-
proach. It follows a local gradient of the chemical concentration within a plume. In
purely chemotactic search, a robot is equipped with a pair of gas sensors and turn to-
ward the side with the higher concentration. However, the major problem is that there
is no smooth concentration gradient in the patchy meandering plumes. A more sophis-
ticated chemotactic approach is pursued by taking the nature of turbulent plumes into
account [112]. Another approach adopted by Lytridis et al. [117] combine chemotaxis
with a biased random walk, and discover that this hybrid outperforms its components.
Chemotaxis is simple to understand and implement, but it may lead to locations in
the plume that are far away from the true source.

Another popular biomimetic approach is anemotaxis. In anemotaxis agent observes
the direction of fluid flow, and navigates upstream inside the plume. In anemotactic
search, a robot is equipped with airflow sensors in addition to the gas sensors. How-
ever, the performances of the robots are severely limited by the capabilities of airflow
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sensors as their sensitivities are insufficient in general indoor environments. Although
anemotaxis can be a very effective strategy for problems where the flow has no large-
scale turbulence. In the case turbulent flows upstream movement causes anemotaxis
to fail or can lead to a wind source that is not the chemical emitter.

Insects such as moths exhibit a plume-tracking behavior [118]; the flight of a male
moth following a pheromone plume is known to consist of upwind surges when in con-
tact with the plume and casting (cross-wind lateral excursions) when the contact is lost.
The result is a zigzagging pattern that gradually progresses upwind toward the source.
Basic features of the odor anemotactic flight of moths were implemented into mobile
robots and reported in literature [119, 120]. Farrell et al. [121] report a successful
plume tracing algorithm inspired by moths and implemented on a AUV. Their algo-
rithm consisted of six behaviors switched by chemical detection events and timeouts.
In [122] Hayes et al. developed an algorithm called the spiral surge algorithm where
the robot moves along an outward spiral path until it perceives a certain concentration
and then moves straight upwind. As soon as it looses the scent, it starts spiraling
again. The size of the spiral can be decreased when moving closer to the source.

Probabilistic Approaches

Another category of algorithms used for the plume source localization problem is
based on probabilistic approaches such as bayesian methods and information theory.

In [123] authors consider the chemical intermittency (i.e., the ”puff” frequency),
rather than chemical density gradients to find the source location base on the fact that
the frequency of chemical puffs typically increases in the vicinity of the source and also
demonstrate the advantages of chemical intermittency over other approaches.

Another interesting algorithm, entitled “infotaxis”, proposed by Vergassola et al.
[124]. Authors use information theory to decide the direction of the robot in order
to maximize the expected rate of information gain. Their approach is useful in en-
vironments where areas of strong chemical signal are separated by regions of limited
or no signal, so it is not possible to track the gradient to the source. The robot con-
tinuously samples the environment for odor packets and keeps a sequence of discrete
detection events where the signal is above a predetermined threshold. The probabil-
ity of a detection is higher nearer to the source, so the agent can use detections to
build a probability distribution over the source location, P (r0). This distribution is
built using a model of the source, which specifies the rate of emission of tracers, the
lifetime of tracers, a diffusion coefficient and a mean current. The movement of the
robot is determined by which action is likely to reduces the entropy (or uncertainty) of
the source location by the most, where the entropy of a distribution P (x) is given by
S = −∫ P (x) lnP (x)dx. A lattice of potential new poses neighboring the current loca-
tion r is found, and the entropy change on moving from r to each potential new pose
rj is evaluated by ∆S(r → rj) = Pt(rj)[−S] + [1−Pt(rj)][ρ0(rj)∆S0 + ρ1(rj)∆S1 + ...].
The first term of the above equation handles the case where the source is located at
rj , and the entropy drops to zero as the source has been found. The second terms
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ρk(rj) denote the probability that k hits are detected at location rj during a small time
interval. This probability is found by assuming a Poisson hit distribution and ∆Sk

terms represent the change in entropy after detecting k hits at rj. The authors note
that the first term is exploitative, encouraging the robot to go to the most likely source
location, but the second term is exploration-biased, as it allows information gain even
if the agent does not move. Therefore infotaxis provides a natural balance between
exploration and exploitation in search problems. Simulation results show that, in the
absence of hits, the algorithm produces interesting search patterns: without wind,
the agent moves in increasing radius spirals, and with wind, it moves in a mixture of
cross-wind zigzagging and up-wind casting very similar to the behavior of moths. This
algorithm has been tested successfully in a number of numerical simulations, but not
yet applied to even a simple ”real world” plume-tracking situation.

Farrell et al. [114, 125], developed plume mapping and source localization ap-
proaches based on hidden Markov methods and bayesian inference. In [114] authors
have used a hidden Markov model to model the plume and locate an odor source in
simulation. The utilize the idea that moving in upwind direction, when global wind
field is known, it is possible to locate the odor source. However, a robot cannot possess
perfect sensors and the global wind field is not known. Therefore, a stochastic method
(hidden Markov model) has been used. The robot uses the flow velocity and odor
concentration measurements at a specific position to estimate the likely previous tra-
jectory of the chemical plume. The predicted trajectories are accumulated over many
detection events in order to construct an “Online Source Likelihood Map” (OSLIM).
Specifically, they used a grid representation of the environment where the state of each
cell represents the presence of detectable odor. A matrix A represents the transition
probabilities, π represents the initial probabilities of each state, and b represents the
detection probabilities, π is initially unknown and set to be equally distributed over
the entire grid. b is known as it is the probability of detecting an odor if odor is present
and is a constant over all states. A is known: it is calculated using the measured flow
velocity. Using the standard hidden Markov methods, it is then possible to estimate a
source probability vector and determine the path that is most likely to encounter odor.

In [125] the same authors present an improved method that comprises a computa-
tionally efficient algorithm that uses stochastic process theory and Bayesian inference
methods to estimate the vector π. Dispersion of chemical filaments is modeled as a
random walk superimposed on down flow advection (due to mean velocity). The ran-
dom walk is modeled by a Gaussian random noise component. Both methods have
been shown to be effective both simulation and practical implementation. The experi-
ments show that bayesian inference method can be more effective to predict the likely
location of an odor source over a large area, with increasing accuracy, as more data are
gathered.

Multi-Agent Approaches

Several authors have developed multi-agent plume source localization algorithms.
The basic idea is that search times can be reduced by sharing information across a
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distributed group of robots. In [126] each robot is executing its own plume search
algorithm (spiral surge algorithm) and communication between robots is used to direct
the swarm toward the robot having the greatest success. Alternate methods use robots
as nodes in a distributed sensing network to estimate the parameters of a plume model
including source location [127] or to instantaneously compute spatial gradients toward
source location [128]. Zarzhitsky et al. [128] have approached the problem of tracking
chemical plumes from an engineering viewpoint. They have devised an algorithm that
uses flow properties to determine how a swarm of robots should move to locate and
identify the source of a chemical plume. This algorithm, called “fluxotaxis”, has the
robot swarm calculating the local divergence of the mass flux. The swarm then moves
up the gradient of this variable. This method has been implemented in a simulation
environment and tested using a complex plume model where a group of robots has to
maintain a geometrical pattern around a wide enough area to obtain meaningful data
about the area they surround.

2.7 Summary

Obviously there has been much work in many areas related to mixed sensor networks
and autonomous mobile multi-robot systems. In particular, the research work dealing
with the aforemention formulated problems is vast, but most studies share common
principles. In only a short period of time, the field of autonomous mobile multi-robots
systems has developed considerably, from simple applications with single mobile robots,
to complex applications with multi-robots systems that exploit collaboration. This
chapter summarizes recent contributions to the problems of coverage in WSNs with
static and mobile nodes, cooperative path planning and search for mobile robots and
autonomous vehicles and finally the problem of event source localization using WSN
or autonomous vehicles.
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Chapter 3
Finding Paths between Two Arbitrary

Points in Sensor Networks that

Improve Coverage

3.1 Summary

This chapter investigates the path planning problem for improving the area coverage
of a stationary sensor network using a single mobile sensor node. The mobile node is
autonomously plan its path in order to navigate to an area of interest and at the
same time, improve the area coverage by coordinating its movement to pass by areas
that have not been adequately sampled by the static sensors. We present extensive
simulation results of the algorithms investigated.

3.2 Introduction

This chapter considers a sensor network of randomly deployed stationary sensor
nodes and the objective is to deploy a mobile sensor node which will navigate towards
a predefined area of interest and during its motion it must pass through areas that
are not adequately sampled by the stationary nodes and improve area coverage. For
example, if there is a suspicion of an event source at a specific point, or if the user
would like to send a mobile node on a mission to sample a target area, we would like
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to have the mobile sensor navigate autonomously to the area of interest and during its
trip improving the area coverage by coordinating its movements to sample uncovered
areas.

In this chapter, we develop and study the parameters of different path planning
algorithms for a mobile node to improve the area coverage. The area coverage is
defined as the fraction of the geographical area covered by at least one sensor during a
time interval [0, t) and represents the quality of surveillance that the sensor network
can provide. The area coverage of a stationary sensor network is determined by the
initial network deployment and the area coverage of a mobile sensor network depends
not only on the initial network deployment, but also on the mobility behavior of the
sensors.

The main contribution of this chapter is the investigation of the parameters of
various path planning algorithms for a mobile node using local information (information
available at the current position by neighboring sensor nodes via communication). We
investigate several path planning algorithms which are based on sensor node distances
and some heuristics. The path planning algorithms in this chapter differ from robotic
motion planning algorithms because in our case, static sensor nodes are simulated as
“soft” obstacles and mobile nodes may run over them depending on optimization and
time constrains. Moreover in our case coverage is improved by moving only a small
number of mobile nodes and not assuming that all nodes have motion capabilities in
order to reposition themselves in positions that enhance area coverage.

The chapter is organized as follows: Section 3.3 presents the model we have adopted
and the underlying assumptions for the path planning algorithms we investigate. In
Section 3.4 presents and explains the investigated path planning algorithms and Section
3.5, presents several simulation results using a number of sensor fields with randomly
placed sensor nodes.

3.3 Simulation Model & Objectives

Our objective is to improve area coverage in a sensor network with stationary sensor
nodes using a mobile sensor node and the motivation is to monitor a possibly huge area
for events in the environment. For the definition of the problem we make the following
modeling assumptions:

A1. A set of N stationary sensor nodes are randomly placed in a rectangular field
A at positions xs

i = (xsi , y
s
i ), i = 1, · · · , N .

A2. A mobile sensor node is placed in the rectangular field A at the position x(0) =
(x(0), y(0)). Also, x(k) denotes the position of the mobile node after the kth
step, k = 0, 1, 2, · · · .

A3. All sensors (stationary and mobile) know their locations through the use of a
combination of GPS and localization algorithms.
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A4. All sensors have a common sensing range rs. Events within this sensing range
are detected reliably and events outside this range are not detected at all
(Boolean sensing model).

A5. All sensors have a common communication range rc > rs.

A6. An event occurs at a random point in region R. Once the event occurs, it emits
a constant signal/substance that propagates in a circular pattern.

A7. We assume that the target coordinates xt = (xt, yt) of a suspected source are
given either by the static nodes around the event or by a sensor network user
who wants to sample this region.

Also, we define the neighborhood of a sensor node at position x as the set of all
sensors that are located at a distance less than or equal to rc. In other words,

N (x) = {i : ∥x− xs
i∥ ≤ rc, i = 1, · · · , N} (3.1)

Given the above assumptions we develop a simulation environment (see Fig 3.1) and
test the parameters of some path planning algorithms that can be used to improve the
area coverage by coordinating the motion of mobile sensor node to cover areas that
have not been adequately sampled (covered) by static sensors during its navigation
from the initial position x(0) to the target position xt. The objective is to maximize
the area coverage improvement over a time interval.

Figure 3.1: Simulation Environment.
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3.4 Path Planning Algorithms

The investigated path planning algorithms will guide each mobile sensor node in the
sensor field from its initial x(0) to the goal position xt in order to improve the area
coverage. Clearly, given more time, a mobile node can achieve better coverage, thus it
is reasonable to apply a time constraint, such that the mobile will have to arrive at the
target by the deadline. Such a constraint is used in the last simulation study of this
chapter.

3.4.1 Algorithm Based on Artificial Potential Field

The first algorithm is based on artificial potential field method, an approach initially
proposed for real-time collision avoidance in robotics form Khatib in 1986 [23]. In this
algorithm the target (area of interest) generates an attracting potential force on the
mobile node while the nearby stationary sensor nodes generate repulsive potential forces
on mobile node. The mobile node can easily implement this algorithm. It is given the
target position xt (e.g., by a user) and as already mentioned we assume that the mobile
node will know its current position either by GPS or a localization algorithm. Now
at each step k the mobile will communicate with its neighboring nodes, i.e., nodes
in N (x(k)) and will request their coordinates (or it might use RSSI (Received Signal
Strength Indication) measurements to estimate the distance of the neighboring nodes
though RSSI measurements can heavily oscillate [129]). The following algorithm will
execute on the mobile node microcontroller in order to determine the next position of
the mobile node. The force function equations are given below. The target attracting
force is given by

Ft(k) = −kt · (x(k)− xt). (3.2)

The repulsive force of each sensor is given by

Fs
i (k) =


ks

(
1

ri(k)
− 1

rc

)
1

r2i (k)
(x(k)− xs

i ) if ri(k) ≤ rc

0 if ri(k) > rc

(3.3)

where kt, ks, are the force coefficients and ri(k) =
√
(x(k)− xsi )

2 + (y(k)− ysi )
2, is the

distance from the stationary node i.

In this algorithm, the next position of mobile node is given by

x(k + 1) = x(k) + σ
F(k)

∥F(k)∥
(3.4)

where
F(k) = Ft(k) +

∑
i∈N (x(k))

Fs
i (k)
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is the resultant force and σ is the constant step size.

3.4.2 Algorithms Based on Receding-Horizon Approach

The second family of algorithms we investigate, is based on Receding-Horizon Ap-
proach. In this family of algorithms, the controller evaluates the one step cost and
approximates the cost to go for several more steps. Then, it selects the position p∗

that optimizes the overall cost, moves to p∗ and repeats. Suppose, that during then
kth step, the mobile node is at position x(k) and it is heading to a direction θ. The
next possible points are the ν points (y1, · · · ,yν) that are uniformly distributed on
the arc that is ρ meters away from x(k) and are within an angle θ − ϕ and θ + ϕ as
shown in Figure 3.2. Note that the parameters ρ and ϕ can be used to also model the
maneuverability constraints of the mobile platform.

Figure 3.2: Selection of the next position in the mobile sensor node path.

Given the mobile node location/direction, the target point coordinates and neigh-
boring static sensor positions the mobile node will use a cost function J to select the
next step in order to improve (maximize) the area coverage during its motion to the
target region. To achieve this we choose a cost function J that comprises of several
sub-goals as shown in the equation below

J(k) = wt · Jt(k) + ws · Js(k) + wp · Jp(k) + wr · Jr(k) (3.5)

where Jt(k) represents the cost associated with the movement towards the area of
interest (target). Jt(k) = f1(∥x(k) − xt)∥ is a decreasing function of the distance be-
tween mobile node and target position. Js(k) represents the cost when the possible
position xi(k + 1) = yi, i = 1, · · · , ν is near to stationary sensor nodes. Js(k) =
f2(

∑
i∈N (x(k)) (1/ri(k))) is a function of the sum of the inverse distances 1/ri(k) be-

tween mobile node and neighboring stationary sensor positions and minimizes when
the mobile node goes away from all stationary nodes in the neighborhood. Jp(k) rep-
resents an extra cost (penalty) associated with the possible position xi(k + 1) = yi,
i = 1, · · · , ν which takes a non-zero value when there is an overlap between the cov-
erage area of the mobile node with the coverage area of the stationary sensor node.
Jr(k) represents an estimate of the cost to go several more steps in the same direction.
This cost gives the algorithm a more global view of the problem but it also requires
some global (not just local) information. Jr(k) = f4(n) is a function of the number
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n of the sensors that are included in a triangular region associated with the heading
direction of the mobile sensor when going from x(k) to xi(k + 1) = yi, i = 1, · · · , ν
(see Fig 3.3). This triangle has two important parameters, the height µ and the an-
gle δ. Note that as mentioned earlier, the evaluation of Jr(k) requires some global
information (i.e., information on the position of sensor nodes that may not be in the
communication range of the mobile node). To overcome this problem, we assume that
the mobile node, just before starting its trip, requests the positions of all life sensors
and loads a map with all points that are covered by stationary nodes. We point out
that during the trip this map may change because some nodes run out of energy and
some other nodes may be isolated, thus the information contained in the map may
not be very accurate, but for the purposes of this chapter, we assume that the loaded
map is accurate. As the mobile node moves around, it updates the grid map at every
step in order to include the regions that have been covered by the mobile node. As
a result, the mobile node will avoid passing through regions that have been covered
during previous steps. Finally, the cost functions Jt(k), Js(k), Jp(k), and Jr(k) are
normalized such that 0 ≤ Jt(k), Js(k), Jp(k), Jr(k) ≤ 1 and weights wt, ws, wp, and wr

are selected for better performance.

φ
ρ

θ

yyyy i
yyyy1

yyyyν

xxxx(k)

δ

µ

Figure 3.3: Triangular region used for the Jr(k) cost function.

The algorithm will execute on mobile node microcontroller given as inputs the co-
ordinates of the neighboring stationary nodes, its current location/direction and the
coordinates of the target point. In case that we choose to use Jr(k), as already men-
tioned, we have to load on the mobile node controller all stationary nodes positions.
The output of the algorithm will be the next position of the mobile node where the
cost function J(k) gets the minimum value. In this way the mobile sensor will navigate
autonomously to the area of interest and at the same time it will improve the area
coverage because it will pass through regions that are not monitored by the stationary
nodes.

According to the cost functions that we are going to use and their corresponding
weights we will get different paths, computation delays, execution time and field cov-
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erage as shown in the next section.

3.5 Simulation Results

The first simulation study compares the coverage accomplished by the mobile node
from five different paths (algorithms) (see Figures 3.4 and 3.5). The sensor field is
a 200 by 200 area and we assume 250 randomly distributed stationary sensors to
monitor the field. The coverage area of each sensor is a disc with radius rs = 5 while
the communication range of each sensor is also a circular disc but with radius rc = 5rs.
Furthermore, for the receding horizon family of algorithms we assume that the arc
radius is ρ = 1 and the angle ϕ = 45◦.

Path 1: In this case the mobile node is following a straight line from its initial
position to the target point. We show this case in order to get a clear view of the
coverage improvements that we can accomplish using the other algorithms. Note that
stationary sensor field coverage is 23.3% and after the mobile node coverage mission
sensors field coverage is 26.3%.

Path 2: This path is obtained using the Receding-Horizon family of algorithms with
the following weights wt = 0.01, ws = 30, wp = 0, and wr = 0. In other words, we
only utilize the target cost function and the cost due to the neighboring static sensors
function. This algorithm accomplishes 29.3% field coverage.

Path 3: This path is obtained again using the Receding-Horizon family but with the
following weights wt = 0.01, ws = 30, wp = 0.3, wr = 0. In other words, we utilize the
target cost function, the cost due to the neighboring static sensors and the penalty due
to overlap between the covered area by the mobile sensor and that of stationary sensors
in order to force the mobile node to pass as far away from static nodes as possible.
This algorithm accomplishes 29.8% field coverage.

Path 4: This path is obtained again by using the Receding-Horizon family of algo-
rithms but with the following weights wt = 0.01, ws = 30, wp = 0.3, and wr = 0.5
(the triangle has parameters δ = 20◦, and µ = 15). We utilize the target cost function,
the neighboring static sensors cost function, the overlap penalty cost function and the
triangular covered area cost. In this case the mobile node has a coverage map and
global information and achieves the best sensor field coverage 30.9%. Although this
algorithm has the best coverage performance it also has the largest computational cost.

Path 5: This path is obtained using the artificial potential field method with the
following weights kt = 0.005, and ks = 10. This approach accomplishes 28% field
coverage but it has the least computation cost. The problem is that some times the
mobile node gets stuck in local minima and some heuristics in order to avoid this
problem.

As is shown in Figures 3.4 and 3.5, Path 4 achieves the best area coverage. As
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Figure 3.4: Paths followed by the mobile node when using different path planning algorithms.

Figure 3.5: Coverage accomplished from 5 different path planning algorithms.

you can see from Fig 3.5 all others algorithms terminated (find target point) before
algorithm 4, this is shown by a horizontal coverage line at the final time steps. An
algorithm with better performance has a greater gradient over others because it achieves
better coverage over time.
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The second simulation study considers the coverage accomplished by mobile node
using an algorithm from the Receding-Horizon family with the following weights wt =
0.008, ws = 30, wp = 0.5, wr = 0.5, and keeping all other values as in the first
simulation experiment (i.e., this algorithm is similar to the general one that produced
Path 4 earlier). During this experiment, we investigate the triangle parameters µ,
and δ (see Fig 3.3) which maximize sensor field coverage. During this experiment, we
measure the average coverage from 10 different randomly distributed sensor fields and
vary the height of the triangle 0 < µ < 60 and 0 < δ < 60◦ as shown in the Figures 3.6
and 3.7.

Figure 3.6: Average coverage with respect to µ and δ.

Simulation results show that for a 200 by 200 sensor field area, the maximum cov-
erage is achieved at 14 < µ∗ < 22 and 14◦ < δ∗ < 26◦. Therefore, best coverage
is achieved if we have a fairly small triangle with height µ around 8-10% of the area
length. Note that larger triangles, though more computationally demanding (they re-
quire more information) achieve less coverage. One might expect that more information
would generate better results so this is a counter intuitive result. The explanation lies
in the distribution of the stationary sensor nodes in the sensor field. Recall that sensors
are placed uniformly in the field. As a result, the average number of sensors in a large
enough triangle converges to the sensor density of the field. Therefore, all triangles
used for all future positions (yi, k = 1, · · · , ν) will yield the same Jr(·) cost thus this
term is simply a constant that does not play a role in the optimization.

In the third simulation experiment, we study how the weights in the Receding-
Horizon family of algorithms influence the coverage accomplished by the mobile node.
We keep the same values for all other parameters except wq, where q ∈ {t, s, p, r}.
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Figure 3.7: Average coverage with respect to µ and δ.

The results for these experiments are shown in Fig 3.8. The upper plot (Fig 3.8(a))
shows that big values for wt move mobile node straight to the target and coverage is
reduced. For values in the range 0.005 < wt < 0.01 we achieve good coverage and the
mobile node finds the area for interest without significant delay. For small values i.e.,
0 < wt < 0.005 the mobile node may achieve the best coverage but it will never go to
the area of interest. In this case, we have to force the mobile node to go to the target
point by increasing wt after some time. The second plot (Fig 3.8(b)) shows that big
values for ws i.e ws > 50 maximize coverage because mobile nodes will always go away
from static sensors. But the mobile node will avoid the target area if some sensors are
near the target area. The third plot (Fig 3.8(c)) shows that for 0.1 < wp < 0.5 the
mobile node will avoid passing over the sensing radius of a static sensor. Large values
for wp i.e wp > 0.5 might trap the mobile node in a static sensor region. The last
plot (Fig 3.8(d)) shows that small values for wr i.e., 0 < wr < 0.05 minimize coverage
because the sensing triangle has diminished influence on mobile node planning. On
the other hand, large values have better performance in coverage but coverage may
decrease if wr is made so large that mobile node decisions depends only on the Jr
function.

The last simulation study considers the average coverage accomplished over 30 sensor
fields by a mobile node from a set of 6 path planning algorithms with different sets
of parameter values (see Fig 3.9). Each sensor field is again 200 by 200 area with
250 randomly distributed stationary sensors. For these simulations we are using the
following values: ρ = 1, ϕ = 45◦, rs = 5, and rc = 5 · rs.

In this simulation, the mobile node has executed a coverage mission for 1000 time
steps and then we forced the mobile node to find the target point by terminating its
coverage mission and following a straight line to the target point. Results clearly show

56

The
ofa

nis
 P

. L
am

bro
u



Finding Paths between Two Arbitrary Points in Sensor Networks that Improve Coverage

(a) Average coverage as a function of wt

(b) Average coverage as a function of ws

Figure 3.8: Average coverage as function of wt, ws, wp, wr

(see Fig 3.9) that Receding-Horizon algorithm 4 has the best average coverage over all
other algorithms. A comparison between Receding-Horizon 4 and Receding-Horizon
5 algorithms shows that when we use a small triangular covered area, the average
coverage is maximized as mentioned before. Receding-Horizon algorithms 2 and 3
achieve good coverage in short time because mobile node always moves towards the
target point (terminates quickly) and mobile node avoids stationary sensors during its
motion.
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(c) Average coverage as a function of wp

(d) Average coverage as a function of wr

Figure 3.8: Average coverage as function of wt, ws, wp, wr (cont.)

3.6 Conclusion

In this chapter we develop and investigate the parameters of various path planning
algorithms for a mobile node to improve the area coverage of a stationary sensor field.
The path planning algorithms developed allow the mobile sensor node to navigate to
a target point in the WSN while passing from areas that are not adequately sampled
by the stationary sensor nodes. The simulation results show that a receding horizon
family of algorithms achieves good area coverage improvement and is computationally
tractable. Algorithms based on the potential field approach are also computationally
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Figure 3.9: Average Coverage accomplished from 6 path planning algorithms over 30
sensor fields. The parameters used are, 1. Receding-Horizon parameter set: wt = 10,
ws = 0, wp = 0, wr = 0. 2. Receding-Horizon with parameter set: wt = 10, ws = 0,
002, wp = 0, and wr = 0. 3. Receding-Horizon parameter set: wt = 10, ws = 0.002,
wp = 0.3, wr = 0. 4. Receding-Horizon parameter set: wt = 10, ws = 0, 008, wp = 0.4,
wr = 0.5, δ = 20, µ = 16. 5. Receding-Horizon parameter set: wt = 10, ws = 0.008,
wp = 0.4, wr = 0.5, δ = 40, µ = 32. 6. Potential field parameter set: kt = 0.005,
ks = 10

efficient but may require some heuristics to allow them to escape from local minima. Fi-
nally, the receding horizon algorithm using an additional triangular region cost function
achieves better area coverage if the triangular region is fairly small compared with the
sensor field area. Larger triangular regions, though require more information, achieve
less area coverage as the average number of sensors existing in a large enough triangle
converges to the sensor density of the field and thus resulting the triangular region cost
function to be a simply constant that does not play a role in the optimization.

59

The
ofa

nis
 P

. L
am

bro
u



The
ofa

nis
 P

. L
am

bro
u



Chapter 4
Coverage Hole Detection Algorithms

4.1 Summary

This chapter investigates the coverage hole detection problem for improving the
area coverage of a stationary sensor network using mobile sensor nodes. We present
the development of two coverage hole detection algorithms that are able to provide the
coordinates of coverage holes in WSN which can be used as target points for the nav-
igation of mobile sensors. We present theoretical analysis regarding the computation
complexity of the algorithms developed and simulation results regarding the coverage
hole detection efficiency.

4.2 Introduction

In the previous chapter we develop and analyze the performance of various types
of path planning algorithms for navigating a mobile sensor node towards a predefined
target point of interest. In this chapter we relax the assumption of the given target point
(i.e. by WSN operator) by developing algorithms able to provide such a target point
automatically given a sensor network deployment. Such algorithms entitle “coverage
hole detection algorithms” are presented in this chapter. We present two coverage hole
detection algorithms that have been developed and compare them with the Grid Scan
Algorithm presented in [8]. A comparison between the three coverage hole detection
algorithms regarding their computation complexity and hole detection efficiency is
illustrated. A novel coverage hole detection algorithm (Zoom algorithm) capable of
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providing the locations of coverage holes with negligible computation needs has been
developed.

Coverage hole detection algorithms require information about the covered areas of
the sensor field, such information is represented by a grid map stored in the controller of
the mobile nodes. In this chapter it is assumed that all mobiles are “sharing” the same
map, however we point out that in forthcoming chapters we relax this assumption.

The main contribution of this chapter is the development of a novel coverage hole
detection algorithm, entitled “Zoom algorithm”, capable of providing efficiently the
locations of coverage holes in a sensor network with negligible computation needs.
This algorithm can be run by an individual mobile sensor to determine a coverage hole
in its region (used as a destination point) or by the sink to determine the destinations
of all mobiles in the sensor network.

This chapter is organized as follows: Section 4.3 describes the model that has been
adopted. Section 4.4 presents and analyzes the two algorithms for detecting coverage
holes. and Section 3.5 presents several simulation results using various sensor fields
with randomly deployed sensor nodes.

4.3 Model Description

We consider a set S with N = |S| stationary sensor nodes that are randomly placed
in a rectangular field Rx × Ry at positions xi = (xi, yi), i = s1, · · · , sN . In addition,
we assume that a set M of M = |M| mobile sensor nodes are available and their
position after the kth time step is xi(k) = (xi(k), yi(k)), i = m1, · · · ,mM , k = 0, 1, · · · .
We assume that all sensors know their locations through a combination of GPS and
localization algorithms. Each mobile node has a grid map of the field as shown in
Fig. 4.1. The entire field area A = Rx×Ry is divided by congruent rectangles to make
up a grid. Each cell in the grid can be addressed by index (i, j) in two dimensions and
each vertex has coordinates (i × dx, j × dy) in 2D (in sensor field area) for some real
numbers dx and dy representing the grid spacing or cell dimensions. For simplicity
we set dx = dy = dℓ which means that the cells are square. The dimensions of the
grid are X × Y where X = ⌈Rx/dℓ⌉ and Y = ⌈Ry/dℓ⌉. Similarly, the detection range
of each node r = ⌈rd/dℓ⌉. Moreover, we use i = ⌈xi/dl⌉ and j = ⌈yi/dl⌉ in order to
transform sensor coordinates xi into indexes of the Grid. ⌈z⌉ indicates the smallest
integer greater or equal to z. Also, for any cell (i, j) we define a neighborhood as the
set of all cells that are at a distance r from cell (i, j), i.e., for all 1 ≤ i ≤ X, 1 ≤ j ≤ Y

Nr(i, j) = {p, q : (p− i)2 + (q − j)2 ≤ r2 } (4.1)

where 1 ≤ p ≤ X, 1 ≤ q ≤ Y . In the memory of the mobile node, the grid is
represented by a matrix G where each entry g(i, j) in G represents the probability of
detecting the event if the event has occurred in the area that corresponds to the (i, j)-
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Figure 4.1: Field map for the mobile sensor nodes.

th square of the map. For simplicity, initially, every element of the matrix g(i, j) = 1
for all cells that correspond to areas in the detection range of the stationary sensors
and g(i, j) = 0 otherwise.

Note that, it is unlikely that the mobile will have an accurate picture of the state of
all stationary sensors in the field. The main idea is to update the map as the mobile
node moves around in the field. Thus if the mobile encounters a node not on the
map, or if it discovers that a node on the map is no longer functioning, it updates
the corresponding entries in the matrix G appropriately. Furthermore, as it moves
around, it also samples the environment and thus it increases the values of g(i, j) that
corresponds to sampled areas.

Note that in this chapter we assume that all mobiles are “sharing” the same map,
however we point out that in forthcoming chapters we have investigated the scenario
where each mobile has its own map and study algorithms for merging these maps
together when the mobiles come in a communication range.

4.4 Coverage Hole Detection Algorithms

This section presents the two coverage hole detection algorithms developed and a
comparison of their complexities with the Grid Scan Algorithm [8]. Using a coverage
hole detection algorithm a centralized entity such as the sink can estimate the coordi-
nates xt

i = (xti, y
t
i), i ≤ 1, · · · ,M of the M biggest coverage holes centers and assign

them as the target coordinates of theM mobile nodes. As it is assumed that all mobile
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nodes share the same grid, thus it is easy to assign different coverage holes (targets) to
different mobiles. Since this algorithm may run frequently (as new information regard-
ing the state of the field becomes available) it is required that it is computationally
efficient.

We define the coverage C as the probability of detecting an event which can occur
uniformly in the sensor field. Using a grid similar to the grid map defined in section
4.3, C is given by

C =
1

X × Y
×

∑
1≤i≤X
1≤j≤Y

g(i, j). (4.2)

For the purposes of this chapter, we have already assumed that

g(i, j) =

{
1 if c(i, j) > 0
0 otherwise

(4.3)

where 0 ≤ c(i, j) ≤ N is the number of sensors (stationary or mobile) that cover the
area of cell (i, j). The aim of this section is to determine where the M mobiles should
be placed in order to maximize coverage (i.e., maximize (4.2)). This algorithm can be
run by an individual mobile sensor to determine its target destination or by the WSN
sink to determine the destinations of all mobiles.

4.4.1 Grid Scan Algorithm

The Grid Scan algorithm [8] estimates the coverage holes as describe below: For
each available mobile node Grid Scan scheme finds c(i, j) for each cell (i, j). Then, for
each cell (i, j), it finds the number of non covered cells (i.e., c(p, q) = 0), in the sensing
range of radius r. In other words, it counts the cells with c(p, q) = 0 in Nr(i, j). We
denote this by h(i, j). The center of the hole is the center of the cell Z = (i, j) which
has the maximum number of neighboring non covered cells, i.e., Z is the cell (i, j)
where

Z = (i∗, j∗) = arg max
1≤i≤X,1≤j≤Y

{h(i, j)}. (4.4)

The details of the algorithm are listed in Fig. 4.2. Although the Grid Scan scheme
estimates the coverage holes accurately, its computational complexity is fairly high for
the context of WSNs. Another weakness of this algorithm appears in the case where
more than one cells have the same max value. In that case the algorithm selects the
first cell by default and as a result most estimated holes fall very near to each other.
The running time of Grid Scan, if X = Y = L, is

TGS(M,L,N, r) = M ×
(
((N + (M − 1)/2)× L2)

+(L2 × 2r × 2r) + L2
)
. (4.5)
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Given that N ≫M the computation complexity is

O(M × L2 × (N + r2)) (4.6)

Grid Scan Algorithm

1: for each mobile sensor m ∈ M
2: for each sensor n ∈ S
3: for each cell (i, j) ∈ (X, Y )
4: if (i, j) ∈ Nr(xn, yn)
5: c(i, j) = c(i, j) + 1
6: end
7: end
8: end
9: for each cell (i, j) ∈ (X, Y )
10: for each (p, q) ∈ Nr(i, j)
11: if c(p, q) == 0
12: h(i, j) = h(i, j) + 1
13: end
14: end
15: end
16: (i∗, j∗) = argmaxh(i, j)
17: xm = i∗, ym = j∗

18: S = S ∪ {m}
19: end

Figure 4.2: Pseudo code for Grid Scan Algorithm

4.4.2 One Scan Algorithm

The One Scan algorithm is a simple heuristic that improves the computational
efficiency of the Grid Scan algorithm. One Scan scheme finds the c(i, j) value for each
cell in the Grid and for each cell (i, j) it finds the number of the neighboring non covered
cells (c(p, q) = 0 in the sensing range of radius r, i.e h(i, j) values). This computation
take place only once. The new detected hole is the center of the cell Z = (i, j) which
has the maximum number of neighboring non covered cells, i.e Z is the cell (i, j) given
by (4.4). Subsequently, we set h(i, j) = 0 for all cells that are in a neighborhood
with radius 2r from the detected hole center. Finally, we continue finding the next Z
using equation (4.4) until we determine all required coverage holes. The details of the
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algorithm are listed in Fig. 4.3. The running time of One Scan if X = Y = L is

TOS(M,L,N, r) = (N × L2) + (L2 × (2r)2)

+M × ((4r)2 + L2) (4.7)

and since N ≫M , the computational complexity will be

O(L2 × (N +M + r2)) ≈ O(L2 × (N + r2)). (4.8)

One Scan Algorithm

1: for each sensor n ∈ S
2: for each cell (i, j) ∈ (X,Y )
3: if (i, j) ∈ Nr(xn, yn)
4: c(i, j) = c(i, j) + 1
5: end
6: end
7: end
8: for each cell (i, j) ∈ (X,Y )
9: for each (p, q) ∈ Nr(i, j)
10: if c(p, q) == 0
11: h(i, j) = h(i, j) + 1
12: end
13: end
14: end
15: for each mobile sensor m ∈ M
16: (i∗, j∗) = argmaxh(i, j)
17: xm = i∗, ym = j∗

/* scans only cells included in 2r square region */
18: for each cell (p, q) ∈ N2r(xm, ym)
19: h(p, q) = 0
20: end
21: end

Figure 4.3: Pseudo code for One Scan Algorithm

4.4.3 Zoom Algorithm

Using the principle of divide and conquer we propose the Zoom algorithm which
is very efficient in computation complexity, time and memory. The idea is to divide
the Grid in four equal segments, and choose the segment with the maximum number
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of empty cells i.e. the segment with the maximum number of cells with c(i, j) = 01.
Then, this procedure is repeated until either the segment size is equal to a single cell or
until all segments have the same number of empty cells. In the first case the hole center
position will be the center of the cell. In the second case, the hole center position will
be the lower right corner of the upper left segment (the center of the segment during
the previous iteration). Fig. 4.4 illustrates the idea of zooming for hole detection. The
details of the algorithm are listed in Fig. 4.5. To evaluate the complexity of the Zoom

Figure 4.4: Illustration of the Zoom Algorithm (a) Grid Segmentation (b) Generated
Tree

algorithm, we need to determine the number of times that the Grid will be divided.
In the worst case, i.e., when the algorithm will stop with a single cell the Grid will be

1In more general one can choose the segment with the least coverage as defined by (4.2).
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divided at most κ times, such that

L

2κ
≥ 1 ⇒ κ ≤ lgL (4.9)

where κ is the number of iterations (height of the generated tree (see Fig. 4.4), with
κ = ⌊lgL⌋ ∈ Z+, and lgL is the binary logarithm (log2 L). Note that again we assumed
that L = X = Y . As a result, the running time function of Zoom algorithm in the
worst case will be

TZ(M,L,N, r) = (2r)2 × (M +N)

+4M × lgL×
(
1 +

⌊lgL⌋∑
i=1

(
L

2i

)2)
(4.10)

and since N ≫M and L≫ r, its complexity is

O(L2 × lgL×M + r2 × (N +M)) ≈ O(L2 × lgL×M). (4.11)

4.5 Path Planning Algorithm

In this section we present a path planning algorithm utilized by each mobile sensor
in order to navigate towards its target. The requirements for the navigation algorithm
are shown below but first we note that in order to ease the notation, we dropped the
index for each mobile, i.e., x(k) refers to the position of the i-th i ∈ M mobile sensor.

1. Guide each mobile sensor node in the sensor field from its initial position x(0) to
its target position (e.g., the center of the coverage hole) xt.

2. Collaborate with stationary and other mobile nodes in order to improve the area
coverage by sampling areas not covered by other sensors.

The algorithm presented in this section is motivated by [17] and is based on a receding-
horizon approach (see chapter 3).

At each step k the mobile node evaluates a cost function Ji(yi) for all candidate
locations (y1, · · · ,yν) and moves to the location x(k + 1) = yi∗ where i∗ is the index
that minimizes Ji(yi),

Ji∗(yi∗) = min
1≤i≤ν

{Ji(yi)} .

The cost function Ji(·) is in the form

Ji(yi) =
∑

j∈{t,c,m}

wjJ
j
i (yi) (4.12)
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Zoom Algorithm

1: for each sensor n ∈ S
2: for each cell (i, j) ∈ Nr(xn, yn)
3: c(i, j) = c(i, j) + 1
4: end
5: end
6: for each mobile sensor m ∈ M
7: for each zooming step zx, x = 1, ..., κ
8: for each segment qs, s = 1, ..., 4 ∈ Zx

/* each segment has L/2zx × L/2zx cells */
9: for each cell (i, j) ∈ Qs

10: if c(i, j) == 0
11: a(qs) = a(qs) + 1
12: end
13: end
14: end
15: if a(q1) == a(q2) == a(q3) == a(q4)
16: xm = max{i : (i, j) ∈ Q1)}
17: ym = min{j : (i, j) ∈ Q1)}
18: break
19: end
20: (q∗s) = argmax a(qs)

/* select next region to segment */
21: xm = min{i : (i, j) ∈ Q∗

s}
22: ym = min{j : (i, j) ∈ Q∗

s}
23: end
24: place mobile sensor at (xm, ym)
25: for each cell (p, q) ∈ Nr(xm, ym)
26: c(p, q) = c(p, q) + 1
27: end
28: end

Figure 4.5: Pseudo code for the Zoom Algorithm

where the functions J t
i , J

c
i , J

m
i , are defined to achieve certain objectives as defined next

and wt, wc and wm are positive weights such that wt + wc + wm = 1 and are selected
such that a desirable mobility performance is achieved (for example, if it is desired that
a mobile quickly moves to its target destination, then wt is made large).

The cost J t
i (yi) is a function that pulls the mobile towards the target location and

is a function of the distance between mobile node and target position. This function
should take a smaller value as the mobile moves towards the target destination thus
for the purposes of this chapter it is given by

J t
i (yi) =

1√
A
∥y(i)− xt)∥ (4.13)
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where A is the sensor field area.

The cost J c
i (yi) is a function that pushes the mobile away from covered areas (ei-

ther by stationary or mobile sensors). This function should take a larger value if the
candidate position is adequately covered by other sensors and a small value otherwise.
Thus, for this chapter, the following cost is used

J c
i (yi) =

1

πr2d

∑
{i,j}∈Nrd

(yi)

g(i, j) (4.14)

where Nrd is given by (4.1) and recall that rd is the detection range of the sensor.

Finally, to facilitate the collaboration between mobiles, we use the cost function
Jm
i (yi) which penalizes each candidate position yi that is close to other mobiles that are

heading towards (or returning from) the same direction as the mobile tries to determine
its next position. Specifically, when determining its next position, the mobile defines
the set Λ that includes all other mobiles that are in its communication range and
satisfy the following two conditions. 1) The mobiles that do not follow behind and 2)
the mobiles that have a heading direction ξ such that |θ− ξ| ≤ φ (the two mobiles are
heading towards the same direction) or |θ− ξ| ≥ 180o−φ (the two mobiles are heading
towards opposite directions), where φ is the maximum allowed difference in heading
angle. For this chapter the collaboration function is given by

Jm
i (yi) =

∑
λ∈Λ

β exp−
ri,λ
2 (4.15)

where β is a positive design constant and ri,λ is the distance between the candidate
position yi and the mobile λ.

4.6 Simulation Results

In this section we present some simulation results where we first compare the per-
formance of the three hole detection algorithms presented earlier and also show a
representative scenario with the movement of a set of two mobile nodes.

In the first scenario, there are 300 randomly deployed stationary sensors in an area
of 500m × 500m. The coverage area of each sensor is a disc with radius rd = 20m
and we set dℓ = 1m. For this scenario we investigate the required computation time
and the coverage improvement of the three algorithms by assuming that each mobile
node is simply placed in the center of the detected hole. As seen in Fig. 4.6 the Grid
Scan algorithm can achieve slightly better results in terms of coverage than the One
Scan and Zoom algorithms since it can more accurately detect the center of a hole
(Grid Scan and One Scan achieve almost the same coverage). On the other hand,
Fig. 4.7 indicates that the computational time requirements of the zoom algorithm are
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Figure 4.6: Average Coverage over 10 fields
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Figure 4.7: Average Computation Time over 10 fields

negligible (zoom bars are too short to be seen) compared to the requirements of the
One Scan and Grid Scan algorithms. For all experiments we used MATLAB on an
Intel Pentium 4, 3.6 GHz CPU machine. The actual time taken for each experiment
is shown in Table 4.1. We emphasize that the efficiency of the Zoom algorithm allows
it to easily run on a mobile node so that it can dynamically detect new holes (due to
node failures that the mobile node discovers in its path).

In a second scenario we compare the computational requirements of the three algo-
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Table 4.1: Average Computation Time over 10 fields
# Mobile One Scan Zoom Grid Scan

1 24.8768 sec 0.0556 sec 24.8538 sec
2 24.8822 sec 0.0776 sec 51.6161 sec
3 24.8875 sec 0.1001 sec 78.3004 sec
4 24.8928 sec 0.1238 sec 105.0711 sec
5 24.8982 sec 0.1454 sec 131.8238 sec

rithms for a larger field 2km × 2km with 1000 stationary sensors. We set dℓ = 1 and
the detection range for each sensor rd = 30m. We assume that we try to determine the
10 biggest holes in the field. Table 4.2 shows the relative computational times, both
from the simulation results as well as the derived running time functions (theoretical
results column). From these results, we see that the zoom algorithm is 3 to 4 orders
of magnitude faster than the other algorithms. Note that the discrepancy between the
experimental and theoretical results of the zoom algorithm is because the theoretical
results assume the worst case scenario. Finally, note that even though the Grid Scan
achieves a slightly better coverage (see Fig. 4.6), for fields with low to moderate den-
sity, the detected holes fall very close to each other. On the other hand, the Zoom
algorithm identifies holes that are more uniformly distributed in the field as shown in
Fig. 4.8. In the last simulation experiment we use a team of two mobile nodes to

Table 4.2: Relative computational times
Algorithm Experimental Theoretical

results results
GridScan TGS/TGS 1 1
OneScan TOS/TGS 0.09 0.08
Zoom TZ/TGS 0.3× 10−3 3.2× 10−3

illustrate the behavior of the proposed path planning algorithm. We assume a field
with 100 randomly deployed stationary sensors in a 300m× 300m area. The detection
radius of all sensors is rd = 10m and it is indicated by the dotted circles. In this simu-
lation scenario two mobile sensors navigate collaboratively through the field, sampling
points that are not adequately covered by the stationary sensors, moving towards their
target locations, which are computed using the zoom algorithm. For this scenario the
following parameters have been used: ρ = 5m, ϕ = 30◦, ν = 10 and rc = 2.5 · rd, where
rc is the communication range of the mobile nodes. Moreover we set dℓ = 1, φ = ϕ/2,
β = 10. In Fig. 4.9 we show the paths that the mobiles follow for two sets of weights
wt, wc,and wm. In the first set we have wt = 1, wc = 0,and wm = 0, i.e., the objective
is to send the mobiles to the targets as soon as possible. The path followed is show
with red color in Fig 4.9 where one can see that the mobiles move in straight lines
towards their targets and there is no collaboration between the sensors (both mobiles
cover similar areas parts, which are also covered by the stationary sensors).

Fig. 4.9 also show the paths of the two mobiles when the weights are set to wt = 0.1,
wc = 0.4, and wm = 0.5 (black paths). As seen from the paths followed by the two
mobile sensors, there is collaboration between mobile and stationary sensors in the
sense that the mobiles have found two different paths that are least covered by the

72

The
ofa

nis
 P

. L
am

bro
u



Coverage Hole Detection Algorithms

(a) Execution time (b) Blue dots show the hole centers esti-
mated by one scan

(c) Green dots show the hole centers esti-
mated by zoom

(d) Black dots show the hole centers esti-
mated by grid scan

Figure 4.8: Experimental execution time for 10 coverage holes detection and the correspond-
ing target coordinates for mobile sensors

stationary sensors. Also notice how the two mobiles repelled each other due to Jm at
the beginning of their motion.

4.7 Conclusion

In this chapter we propose two coverage hole detection algorithms able to provide
the coordinates of coverage holes in a WSN which can be used as target points for
the navigation of mobile sensors. We present theoretical analysis regarding the com-
putation complexity of the algorithms developed and simulation results regarding the
coverage hole detection efficiency. A novel algorithm entitled “Zoom algorithm” de-
veloped provides efficiently the locations of coverage holes in a sensor network with
negligible computation needs. This algorithm can be run by an individual mobile
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Chapter 4

Figure 4.9: Dynamic path planning using a team of two mobile nodes.

sensor to determine a coverage hole in its region (used as a destination point) or by
the sink to determine the destinations of all mobiles in the sensor network. Finally
a path planning algorithm for navigating mobile nodes towards coverage holes is also
illustrated.
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Chapter 5
Complete Coverage in Sparse Sensor

Networks using a single Mobile Node

5.1 Summary

This chapter investigates the complete coverage path planning problem for improv-
ing the area coverage of a sparse stationary sensor network using a mobile sensor node.
We present a case study for complete coverage of the uncovered regions in a sparse
sensor network. The algorithm consist of two major components, the global estimation
of all the coverage holes in the sensor field and a path decision method for visiting
all the coverage holes while avoiding passing over the region covered by stationary
sensor nodes. We present simulation results based on a real sparse stationary WSN
deployment.

5.2 Introduction

In the previous chapter we present the development of two coverage hole detection
algorithms for finding the coordinates of a number of coverage holes in a sensor network
deployment. In this chapter we modified the One scan Algorithm, proposed previously
(see paragraph 4.4), in order to find the coordinates of all coverage holes in the sensor
field. The estimated coverage holes positions can be used as way-points for complete
area coverage by a single mobile node.
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Chapter 5

This chapter presents a case study for complete area coverage of a given sparse
sensor network deployment shown in Fig. 5.1. This figure presents real WSN with 60
stationary sensor nodes monitoring the temperature in the ground floor of a building.
Although it is possible to estimate the temperature at several points in the area, there
are uncovered zones where we can not estimate the presence of some events with certain
accuracy; for instance a fast increase of the temperature at a certain point due to a
shortcut in the power supply. To overcome these problems, we could either increase the
number of static nodes (i.e to get a dense WSN) or place sensors with more sensitivity.
The former choice has the inconvenience of cost and excessive interference and the
latter is not feasible with today’s sensors and also depends on the propagation of the
sampled signals in the environment. To circumvent these problems, in this chapter a
mobile sensor node is used to allow complete area coverage of the uncover zones and
also increase the probability of detecting any possible event.

The main contribution of this chapter is the development of a complete coverage
path planning algorithm for a mobile node which allows the mobile node to improve
the area coverage and event detection in a real sparse stationary WSN. This algorithm
is based on the estimation of the coverage holes coordinates in a sparse stationary
WSN field. This estimation is done by the mobile node (or the sink) which has a
map with the location of the already deployed static nodes and their sensing range.
Once the coverage holes have been estimated, the mobile sensor visits all the coverage
holes and at the same time avoids passing over covered regions using the path planning
algorithm. Our aim is to improve the coverage of the network in a minimum amount
of time.

The remaining of the chapter is organized as follows. Section 5.3 presents the model
and the assumptions made. Section 5.4 describes the proposed algorithm and Sec-
tion 5.5 presents the path followed by the mobile sensor node.

5.3 Assumptions and Definitions

For the definition of the problem we assume an area A = Rx ×Ry to be monitored
by a stationary sensor field using a set S of S = |S| static sensor nodes are placed in
A at positions si, i = 1, · · · , S. All static sensor and the mobile sensor have a common
sensing range rs and a communication range rc. We assume rc > rs and all nodes can
reach the sink using multihop routing.

The sensor field area A is discretized into a into a X × Y grid G. Each cell in the
grid can be addressed by index (i, j) and each vertex has coordinates (i×dx, j×dy) in
2D for some real numbers dx and dy representing the grid spacing. The sensing range
of each node r = ⌈rs/min{dx, dy}⌉. For simplicity in our case we set dx = dy = 1.
Each cell of the grid c(i, j) gets a value 0 or 1. c(i, j) = 0 means that the cell is not
covered by any static sensor in the field. c(i, j) = 1 means that the cell is covered by
at least one sensor. Fig 5.2 shows the grid of the sensor field of Fig 5.1.
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Complete Coverage in Sparse Sensor Networks using a single Mobile Node

(a) Connectivity Graph

(b) Temperature Histogram

Figure 5.1: Example of a real Wireless Sensor Network (WSN) testbed for temperature
monitoring (100 × 80 square meters floor space). Connectivity Graph (above) and
Temperature Histogram (below).

We define the neighborhood region in the grid G, of a cell (i, j) for a distance r, as
the set of all cells that their Euclidean distance is less than r,

Nr(i, j) = {p, q : (p− i)2 + (q − j)2 ≤ r2 } (5.1)

We define a set H of H = |H| coverage holes. The coordinates hk of a coverage
hole k are represented by the coordinates of the cell c(i, j) which has the following
properties:
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Chapter 5

Figure 5.2: The Grid map of the static sensor network testbed

1. All the cells c(p, q) in hk neighborhood region have a zero value1.∑
{p,q}∈Nrs (hk)

c(p, q) = 0

2. The minimum distance between any two coverage holes is rh ≥ 2rs , which means
that there is no overlapping between their neighborhood regions.

Fig 5.3 shows how to estimate the coverage holes.

1Alternatively, one may define a larger threshold, i.e.,
∑

{p,q}∈Nrs (hk)
c(p, q) ≤ h to allow the

algorithm to detect holes that are smaller than the sensing range of the sensors.
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Complete Coverage in Sparse Sensor Networks using a single Mobile Node

5.4 Complete Area Coverage Path Planning Algorithm

The path planning component of the algorithm requires the positions of all coverage
holes in the sensor field. The coverage hole coordinates detection method is based on
One Scan Algorithm developed in the previous chapter (see paragraph 4.4), where
the Grid map G is scanned and updated in order to identify all the coverage holes
coordinates hi, i = 1, · · · , H in the field. The details of the algorithm are listed in Fig.
5.3.

Coverage Hole Detection Algorithm

1: for each sensor s ∈ S
2: if (i, j) ∈ Nr(xs, ys)
3: c(i, j) = 1
4: end
5: end
6: for each cell (i, j) ∈ (X,Y )
7: Sum = 0
8: for each (p, q) ∈ Nr(i, j)
9: Sum = Sum+ c(p, q)
10: end
11: if Sum == 0
12: k++
13: hk = (i, j)
14: for each cell (p, q) ∈ Nr(hk)
15: c(p, q) = 1
16: end
17: end
18: end

Figure 5.3: Pseudo code for detecting the coverage holes coordinates

In this case study it is assumed that events will appear randomly in space and time
and the minimum time te that the event is active, or the minimum time we need for
the reaction when the event appears is large enough to allow the the mobile node to
visit all the coverage holes in the sparse network and travel from the final position to
the start position tm. Nevertheless, this assumption sets the requirement for visiting
all the coverage holes in the minimum amount of time.

Contrarily if tm > te then the sensor field has to be split into a number of working
areas and each working area will be assigned to a mobile node in order to reliably
detect events (because in each working area tm < te). One simple heuristic way to split
the sensor field into working areas is to divide the field into a number of rectangular
segments with the same number of coverage holes, but this is out of the scope of this
chapter.
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Chapter 5

Once the coverage holes coordinates are being estimated, the mobile node will exe-
cute the proposed path-planning algorithm, described in Fig 5.4, to improve the cover-
age and the event-detection. The mobile node will return to the sink when it is called
by this entity or when it runs out of battery. In our scenario the mobile node has

Path-Planning Algorithm

1: void Exception() {
/* when the sink requests to come back or it is run out of battery */

Finish=TRUE;
}

2: void Main() {
if (NextTarget == NIL)
/* when mobile has visited all holes in its working area*/
List=InitialList;
NextTarget=List(head);

end
while (NOT Finish)

/* Path Planning Code*/
for each CoverageHole h in List

for each MovingStep k
Target = nearest unvisited CoverageHole in List;
for each CandidatePosition i
/* Solving Optimization Problem*/

Ji = wt.J
t
i + ws.J

s
i

end
Move to the CandidatePosition i∗ which has min(Ji)
if (MobilePosition ≈≈ Target)

Remove visited target from List
break;

end
end

end
end

} /*end-main*/

Figure 5.4: Pseudo code for the Path-Planning algorithm executed by mobile node in
order to improve the coverage.

to visit all coverage holes in the sensor field. For each moving step the mobile node
will calculate the nearest hole and move towards it and at the same time it will avoid
passing over regions that are already covered by static sensors. Once the mobile node
has visited a coverage hole it will remove this hole from its list and continue towards
another nearby coverage hole. When it visits all coverage holes it will go to the first
visited coverage hole and repeat. The next position of a mobile node is decided by
solving an optimization problem. This optimization problem consist of two objectives.
The first one it to select the next position such that the distance from the coverage

80

The
ofa

nis
 P

. L
am

bro
u



Complete Coverage in Sparse Sensor Networks using a single Mobile Node

hole is minimized and the second one is to select the next position that is away from
the near stationary nodes (has a minimum overlap with static nodes).

The path planning decision method is based on multi-objective optimization (see
chapter 3), where during the kth step, the mobile node is at position x(k) and it is
heading to a direction θ. The next possible points to move are the ν points (y1, · · · ,yν))
that are uniformly distributed on the arc that is ρmeters away from x(k) and are within
an angle θ−ϕ and θ+ϕ. At the kth position, the mobile node evaluates a cost function
Ji(yi) for all candidate locations (y1, · · · ,yν) and moves to the location x(k+1) = yi∗

where i∗ is the index that minimizes Ji(yi),

Ji∗(yi∗) = min
1≤i≤ν

{Ji(yi)} .

The cost function Ji(·) is in the form

Ji(yi) =
∑

j∈{t,s}

wjJ
j
i (yi) (5.2)

where the functions J t
i , J

s
i , are defined to achieve certain objectives as defined next

and wt and ws are positive weights such that wt + ws = 1 and are selected such that
a desirable mobility performance is achieved (for example, as described below, if it is
desired that a mobile quickly moves to its target destination, then then wt is made
large).

The cost J t
i (yi) is a function that pulls the mobile towards the nearest coverage hole

location and is a function of the distance between mobile node and target (nearest
coverage hole) position. This function should take a smaller value as the mobile moves
towards the target destination thus for the purposes of this chapter it is given by

J t
i (yi) =

1√
A
∥y(i)− ht)∥ (5.3)

where A is the sensor field area and it is used for normalization purposes.

The cost Js
i (yi) is a function that pushes the mobile away from covered areas. This

function should take a larger value if the candidate position is near to stationary sensor
nodes and small value otherwise. Thus, for this chapter, the following cost is used

Js
i (yi) =

∑
k∈Nrc (yi)

1

∥y(i)− sk∥
(5.4)

where Nrc is given by (5.1) and recall that rc is the communication range.

81

The
ofa

nis
 P

. L
am

bro
u



Chapter 5

5.5 Simulation results

Using the deployed WSN in Fig 5.1, we create a simulation environment using a
100 × 80 grid where X = 100 and Y = 80 as shown in Fig 5.5. Once the grid map
G is derived we can estimate the coverage holes using the algorithm of fig 5.3. The
estimated coverage holes positions are indicated by green crosses in Fig 5.5. Finally,
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Figure 5.5: Uncovered zones in the sensing field, where rs = 3m. Coverage holes
coordinates are indicated by × marks.
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Figure 5.6: The path followed by the mobile node using the proposed path planning
algorithm for complete coverage of the sensor field.

Fig 5.6 shows the path that the mobile sensor node follows for complete coverage of
the sensor field. As shown in the figure 5.6 the mobile node visits all the coverage
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Complete Coverage in Sparse Sensor Networks using a single Mobile Node

holes in the sensor field and at the same time it tries to avoid overlapping with static
nodes by evaluating a cost function (solving an optimization problem).

5.6 Conclusions

In this chapter we present a case study for improving the area coverage in sparse
sensor networks. The proposed method requires global information to solve the prob-
lem (positions of all static sensor nodes) and thus one can classify this solution as
centralized. The path planning method developed succeeds complete area coverage
of a sparse WSN with static nodes using a single mobile node. In the next chapter
we proposed a decentralized-distributed complete coverage method that succeeds even
better results regarding coverage time and complexity.
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Chapter 6
Distributed Collaborative Path

Planning for Complete Area Coverage

in WSNs

6.1 Summary

This chapter investigates the collaborative complete coverage path planning problem
in sparse stationary sensor networks using multiple mobile sensor nodes. We present
the development of a distributed collaborative framework for complete area coverage
where a small set of mobile nodes collaborate with the stationary sensor nodes and
with each other in order to cover areas not covered (monitored) by stationary sensors.
An important element of the proposed system is the ability of each mobile node to
autonomously decide its path based on local information, which is essential in the
context of large, distributed WSNs. The contribution of the chapter is the development
of a distributed algorithm that allows mobile nodes to autonomously navigate through
the field and improve the area coverage. We present simulation results for complete
area coverage of sparse stationary WSN deployments and compare the algorithm with
other well known approaches.
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Chapter 6

6.2 Introduction

In the previous chapter we present the development of centralized method for ap-
proximately complete area coverage of a stationary sensor network deployment using
a single mobile sensor node. In this chapter we proposed a decentralized - distributed
algorithm to solve this problem using a set of cooperative mobile sensor nodes.

Monitoring large areas with stationary sensor networks, typically requires a vast
number of nodes to reliably cover the given region. Such an approach however, implies
excessive (radio) interference and a prohibitive cost. Furthermore, in certain appli-
cations these nodes are manually deployed, which makes the deployment cost even
higher. In such applications, involving a large area, coverage holes (areas not suffi-
ciently monitored) are inevitable; either due to an effort to reduce the overall cost, or
due to random failure of some nodes. To overcome the problem of coverage holes, we
could either increase the number of static nodes (i.e. make a dense WSN) or increase
the sensitivity of the sensors (increase the sensor sensing range). The former choice
implies a higher cost and excessive radio interference while the latter may not be fea-
sible either due to the signal propagation characteristics that an event emits in the
environment or possible increase of the false alarm rates of the system. An alternative
approach to address the problem is to employ mobile nodes, e.g. nodes mounted on
robots. The mobile nodes can sample areas poorly covered by the stationary sensors.
This approach that includes both static and mobile nodes is referred to as mixed WSN.

The main contribution of this chapter is the development of a distributed path plan-
ning algorithm, which allows each mobile node to autonomously navigate through the
field and sample the areas least covered by the stationary sensor nodes, thus improving
the area coverage. The algorithm is simple and can be implemented on any robot with
very few resources. Furthermore, the mobile path is computed dynamically using only
“local” information (i.e., information available from the stationary or mobile nodes
within mobile’s communication range). Such quality is particularly important in the
context of large WSNs since it is generally not feasible to have an accurate view of
the state of the field in order to precompute an optimal trajectory for each mobile
node (some nodes may fail or be carried away). Finally, the proposed algorithm allows
for collaboration between sensor nodes (stationary and mobile) in the sense that each
mobile tries to avoid areas covered by other sensors.

The remaining of this chapter is organized as follows: Section 6.3 presents the
model and the assumptions made. Section 6.4 describes the proposed algorithm and
Section 6.5 presents simulation results for evaluating the algorithm in different sensor
field deployments.
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6.3 Assumptions and Definitions

In this section we present the modeling assumptions and define some concepts and
objectives that will be used in the sequel. Furthermore, we present the information
structure that is needed by the mobile nodes in order to run the path-planning algo-
rithm. For the definition of the framework we make the following modeling assump-
tions:

A1. We assume the sensor field area is A = Rx ×Ry.

A2. A set S of S = |S| static sensor nodes are placed in A at positions xi = (xi, yi),
i = 1, · · · , S. It is assumed that all nodes know their coordinates.

A3. A set M ofM = |M| mobile sensor nodes are available and their position after
the k-th time step is xi(k) = (xi(k), yi(k)), i = 1, · · · ,M , k = 0, 1, · · · .

A4. All static and mobile nodes have a common (known) sensing range rs. This
range can be computed from the event propagation model as well as the tol-
erated false alarm rate, e.g., see [130].

A5. All nodes have a common communication range rc > rs and all nodes can reach
the sink using multihop communication.

Next, for convenience, we define the set of all sensor nodes N = S ∪M and re-index
all mobile nodes as m = S+1, · · · , S+M . Furthermore we define the neighborhood of
a sensor s as the set of all sensors that can be reached using single hop communication.
In other words, the neighborhood of sensor s ∈ N is the set of all sensors that are in
the disc centered at xs with radius rc.

Hrc(s) = {j : ∥xs − xj∥ ≤ rc, j ∈ N , j ̸= s} (6.1)

for all s = 1, · · · , S +M .

As already mentioned, the main objective of the chapter is to maximize the area
coverage. To make the concept of coverage more concrete, we divide the field area in
small squares with side da. In other words, we transform the sensor field area A into
a grid G of size X × Y , where X = ⌈Rx/da⌉ and Y = ⌈Ry/da⌉. Thus, we assume that
any sensor s ∈ N is located in the cell zs = (i, j), i = ⌈xs/da⌉ and j = ⌈ys/da⌉ (i.e.,
zs is the discretized coordinate corresponding to xs). Furthermore, we assume that a
sensor located in the cell zs, depending on the sensing range r̄s = ⌈rs/da⌉, covers a
neighborhood of cells Dr̄s(zs),

Dr̄s(zs) =
{
(p, q) : (p− i)2 + (q − j)2 ≤ l2s , x̄s = (i, j), 1 ≤ p ≤ X, 1 ≤ q ≤ Y

}
(6.2)

where p and q are integers. We associate with the grid G, an X × Y matrix Gk,
k = 0, 1, · · · , where each element of Gk captures our “confidence” that if an event
occurs in the corresponding area of the field, it will be detected by the sensor network.
If the (i, j)-th cell falls in the sensing range of a static sensor, then the corresponding
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Gk(i, j) = 1, otherwise, Gk(i, j) = 0. As the mobile nodes move around, if they sample
areas not covered by the static sensors, then our confidence increases and continues
to increase as we take more samples. Furthermore, if a cell has not been sampled for
some time, then it is possible that our confidence will be reduced. Thus at every step,
we use the following updating rule for every element of matrix Gk.

Gk+1(i, j) =

{
0.5 ·Gk(i, j) + 0.5, if (i, j) ∈ Dr̄s(x̄s), s ∈ N .
f ·Gk(i, j), otherwise

(6.3)

where 0 ≤ f ≤ 1 is the “forgetting” factor. Thus, we define coverage as

Ck =
1

X × Y
×

∑
1≤i≤X
1≤j≤Y

Gk(i, j). (6.4)

Finally, to conclude this section, we describe the information required by each mobile
in order to run the proposed path planning algorithm. Each mobile uses an X × Y
matrix Pm

k , m ∈ M where it keeps the state of the field. Ideally Pm
k should remain

Pm
k = Gk at all times k, since the matrix Gk represents the accurate global state of

the field which is used for the computation of the field coverage Ck. Clearly, in a
dynamic environment where several sensors move, fail or more sensors are added, it
is impossible to guarantee that Pm

k = Gk at all times. However, we emphasize, that
the proposed algorithm, that will run by a mobile located at some x̄m(k), computes
its path based only on local information, i.e., information in the submatrix of Pm

k that
corresponds to the cells Dr̄c(x̄m(k)), where r̄c = ⌈rc/da⌉ and thus, it is sufficient to
have accurate information only for the Dr̄c(x̄m(k)) submatrix. This is easily attainable
since the required information can be obtained from the one-hop neighbors.

6.4 Dynamic Path Planning Algorithm

The path planning algorithm is motivated by the receding horizon approach pre-
sented in [17]. In this section in order to simplify the notation we have dropped the
index of the mobile node, i.e. x(k) refers to the xm(k), m ∈ M. Mobile nodes make
path planning decisions (execute the path planning algorithm) at discrete time inter-
vals. At every step k, the mobile nodes decide their next position based on the solution
of an optimization problem that captures the desired qualities of the path that is to
be followed. The objective function is of the form

J(y) =
∑
j

wjJj(y) (6.5)

where y is any position in A, Jj(·) is a specific objective and wj’s are non-negative
constant weights such that

∑
j wj = 1 and are selected so that a desirable mobility

performance is achieved. For the purposes of this chapter, two specific functions will
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Distributed Collaborative Path Planning for Complete Area Coverage in WSNs

be used: Jt(·) which penalizes positions that are away from large coverage holes and
Js(·) which penalize positions that are close to static sensors. How Jt(·) and Js(·) are
computed will be presented in the sequel. It is worth pointing out that one can use
several other functions (see for example chapter 3 where more functions are considered).
Nevertheless, we found that these two are fairly simple and provide satisfactory results.

Suppose, that during the k-th step, the mobile node is at position x(k) and it is
heading towards a direction θ. If the mobile moves at a constant speed, then at the
next step, it will be located ρ meters away from x(k). Thus, the next possible positions
are the ν points (y1, · · · ,yν) that are uniformly distributed on the arc that is ρ meters
away from x(k) and are within an angle θ − ϕ and θ + ϕ as shown in Fig. 6.1. Note
that the parameters ρ and ϕ can be used to model the maneuverability constraints of
the mobile platform. Also note that often it is desirable to have ϕ < π/2 to avoid
possible oscillations in the path of the mobile. At the k-th position, the mobile node
evaluates the cost function J(yi) for all candidate locations (y1, · · · ,yν) and moves to
the location x(k + 1) = yi∗ where i∗ is the index that minimizes J(yi),

J(yi∗) = min
1≤i≤ν

{J(yi)} . (6.6)

Next we present how the specific cost functions Jt(·) and Js(·) used in (6.5) are
computed.

6.4.1 Objective Functions

In order to improve the area coverage, the mobiles should move towards large un-
covered regions and on their path, they should try (to the extend possible) to avoid
areas that are covered by static sensors or have been covered by other mobile nodes.
The two specific functions Jt(·) and Js(·) are selected to achieve these two objectives.

Given the mobile’s position x(k) and matrix Pk, then one can determine the point
which is at the center of the biggest coverage hole in the area. An efficient algorithm
for finding this point will be presented in the next section. We also point out, that
one can find the biggest coverage hole of the entire area or of any sub-area (e.g., the
neighborhood of cells around the current mobile position Dr̄c(x̄(k))). Let xt denote the
coordinates of the center of the obtained largest coverage hole, then this point becomes
a candidate target for the mobile node. Thus, the specific cost Jt(y) is a function that
pulls the mobile node towards the target location and is a function of the distance
between the candidate position y and target position xt. This function is given by

Jt(y) =
∥y− xt∥

rc
(6.7)

where rc is the communication range and it is used for normalization purposes.

The cost Js(y) represents the cost when the candidate position y is very near to
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a sensor node located at xj, j ∈ Hrc(m), where Hrc(m) is the set of sensors in the
neighborhood of mobile m, given by (6.1).

Js(y) = max
j∈Hrc (m)

{
exp

(
− ∥y− xj∥2

r2s

)}
(6.8)

This function serves as a local repulsion force. It repels the mobile node from its
nearest neighboring sensor node. The sensing range rs specifies the region size around
the mobile node to be repelled by its neighbors. When ∥y − xj∥ is big relative to rs,
the whole term approaches zero.

At every step, the mobile node m computes (6.7) and (6.8) for all candidate points
y1, · · · ,yν and moves to the one that minimizes the overall function (6.6). In the
next section, we present an efficient algorithm for estimating the center of the largest
coverage hole in an area which will correspond to the point xt in (6.7).

φ ρθ

y
i

y
1

y
ν

x(k)

Figure 6.1: Evaluation of the mobile node’s next step.

6.4.2 Coverage Hole Estimation Algorithm

Given the matrix Pk or any sub-matrix of Pk, a coverage hole is defined as the set of
contiguous cells with Pk(i, j) ≤ pmin, where pmin is some threshold and for the purposes
of this chapter we use pmin = 0. Each mobile node calculates the coordinates of the
center of the biggest coverage hole inside its communication range rc at each moving
step k. So, if the mobile is currently in the cell x̄(k), it uses the “Zoom” algorithm,
described next to determine the coordinates of the center of the largest coverage hole in
Dr̄c(x̄(k)). The “Zoom” algorithm uses the principle of divide and conquer and is thus
very efficient in computation complexity, time and memory. The algorithm starts by
dividing the neighborhood Dr̄c(x̄(k)) in four equal segments, and chooses the segment
with the maximum number of empty cells i.e the segment with the maximum number
of cells with Pk(i, j) = 0. Then, this procedure is repeated on the selected region, until
either the segment size is equal to a single cell or until all segments have the same
number of empty cells. In the first case the hole center position will be the center of
the cell. In the second case, the hole center position will be the lower right corner of
the upper left segment (the center of the segment during the previous iteration). Fig.
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6.2 illustrates the algorithm for hole detection. More details on the “Zoom” algorithm
can be found in paragraph 4.4 of chapter 4.

The output of the “Zoom” algorithm is the point used as the target position xt

for the next iteration. We point out that at each step k, each mobile node estimates
a new target in a receding horizon fashion. Using this target estimation, the mobile
node always moves towards the biggest uncovered area in its neighborhood. Also this
dynamic target behavior is useful for the collaboration between mobile nodes as will
be described in Section 6.4.3.

Figure 6.2: Illustration of the “Zoom” coverage hole estimation algorithm (a) Grid
region segmentation (b) Generated tree.

In the next section we present a simple scheme that allows the mobiles to collaborate
in the sense that they avoid each other and sample different regions.

6.4.3 Collaboration Between Mobile Nodes

In the proposed scheme, each mobile node autonomously estimates its target (using
the “Zoom” algorithm described above) and when moving towards the target, it tries
to avoid areas covered by neighboring stationary sensors. Therefore, if two mobiles
are located in the same area, it is very likely, that both will estimate the same target
and will move towards the same point. Thus, to avoid this behavior, it is necessary
to execute a simple collaboration scheme that will enable them to coordinate their
movements and sample different areas. The proposed collaboration scheme is described
below:

1. When two or more mobile nodes come in communication range (for the first time)
they share their Pk matrices; this sharing is useful in order to avoid regions that
are already covered (explored) by the other mobiles.

2. At every step, before estimating the next target position (location of the coverage
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hole center), a mobile queries all mobiles in its communication range for their
target locations and their Dr̄c(x̄m(k)) cells. The target locations are treated as
covered areas; like placing a static sensor in the target position. Subsequently,
the “Zoom” algorithm is executed normally by the mobile node.

Note that since a mobile considers the targets of the other mobiles as covered ar-
eas, then it will never estimate the same target position, thus collaboration is easily
achieved. A possible drawback of the algorithm is that the mobiles need to exchange
their targets at every step, however, we point out that this requirement is only for
mobiles that are in the communication range of each other. The pseudo code for the
dynamic path-planning algorithm executed by each mobile node is presented in Fig.
6.3.

Dynamic Path Planning Algorithm

1: interrupt()
/* when the sink requests to come back or it is run out of battery */

{
finish

}
2: main()
{

Initialize matrix Pk

while (! finish)
for each time-step k

Query neighboring nodes for their positions xs, s ∈ Hrc(x(k))
if other mobiles m exist in communication range rc, m ∈ Hrc(x(k))

if a new mobile node is discovered
Share Pk

end
Query neighboring mobile nodes for their xm

t and Dr̄c(x̄m(k))
end
Update Pk given information send by neighboring nodes
Estimate the coverage hole position xt

/* Solving Optimization Problem*/
for each candidate position yi, 1 ≤ i ≤ ν

Ji(yi) = wt.Jt(yi) + ws.Js(yi)
end
yi∗ = argmin(J(yi)), 1 ≤ i ≤ ν
Move to the position yi∗

end
end

}

Figure 6.3: Pseudo code for the dynamic path-planning algorithm executed by a mobile
node in order to improve the coverage.
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6.5 Simulation results

Using a sparse stationary sensor network deployment, we create a simulation envi-
ronment using a 100× 80 grid where X = 100m, Y = 80m and da = 1m as shown in
Fig 6.4 (we use the same deployment as in chapter 5). The sensing range of each sensor
is set to rs = 2.5m and the communication range rc = 4 × rs. For the purposes of
the results presented in this section, the following parameters were also used ρ = 1m,
ϕ = 25◦, ν = 10, and the weights are set to wt = ws = 0.5. Furthermore, it is assumed
that the forgetting factor in (6.3) is set to f = 1.
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Figure 6.4: The Grid map G derived from a sparse stationary sensor network deploy-
ment with sensing range rs = 2.5m.

In the first simulation experiment (Fig. 6.5) we show the paths that the mobile nodes
follow in the sensor field shown in Fig 6.4 when the proposed complete coverage path
planning algorithm (see Fig. 6.3) is used. Fig. 6.5(a) shows the path followed when only
one mobile node is used and tries to improve the coverage. As shown in Fig. 6.5(a), the
mobile node passes through the uncovered regions of the sensor field and at the same
time it tries to avoid overlapping with static nodes. The path is estimated on-line
and can adapt to the sensor field changes. Fig. 6.5(d) shows that the coverage was
improved to 95% after 1487 steps. Figures 6.5(b) and 6.5(c) show the paths followed
by two and three mobile nodes respectively in order to improve the coverage. These
figures illustrate how the mobiles collaborate in order to improve the coverage of the
field; all mobiles typically avoid the paths of each other and they also avoid stationary
sensors. This collaboration is also indicated in Fig. 6.5(d) which shows that one mobile
node needs 1487 steps in order to improve the coverage of the sensor field to 95% while
719 and 470 steps are needed by a group of two and three mobile nodes respectively.
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(a) Path followed using one mobile node. After 1487 moving
steps 95% of the sensor field is covered.
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(b) Path followed using two mobile nodes. After 719 moving
steps for each node 95% of the sensor field is covered.

Figure 6.5: The paths of the mobile nodes and their corresponding coverage over the
WSN using the proposed path planning algorithm. The path of each mobile node is
indicated by a different color

Fig. 6.6 shows the paths followed using two other moving patterns, referred to as the
“random” movement and the “standard” movement. In the random movement, the
next position of a mobile node is ρ = 1m away from the previous one and at random
heading direction 0 ≤ θ ≤ 2π. In the standard movement the mobile scans exhaustively
the entire field using an S-shaped pattern. The standard movement is based on the
so-called zamboni coverage pattern [131]. Fig. 6.6(a) shows typical trajectories of
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(c) Path followed using three mobile nodes. After 470 moving
steps for each node 95% of the sensor field is covered.
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(d) The coverage improvement of the sensor field.

Figure 6.5: The paths of the mobile nodes and their corresponding coverage over the
WSN using the proposed path planning algorithm. The path of each mobile node is
indicated by a different color(cont.)

the three algorithms. Fig. 6.6(b) shows the coverage improvement over time for the
path followed using the proposed path planning algorithm, the path followed using
the “standard” movement and the path followed by the “random” movement. The
ability of the proposed path planning algorithm to navigate the mobile node to the
uncovered areas and avoid overlapping with the stationary sensors results in a faster
rate of coverage improvement as indicated by the slope of the graphs in Fig. 6.6.
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(a) Paths followed by a mobile node over the WSN for
the three moving patterns.
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(b) Coverage improvement for the three moving patterns.

Figure 6.6: Comparison of the coverage improvement for the three moving patterns.
The path followed using the proposed coverage path planning algorithm is indicated by
the black color, the path followed using the “standard” planning is indicated by green
color and the path followed by the “random” movement is indicated by red color.

Finally, to demonstrate the effectiveness of the proposed path planning algorithm in
more general scenarios, we consider a sensor field with 100 sensors randomly deployed
in a 100 by 80 meters area. We consider 100 random field deployments and assume a
group with M = 2 mobile sensors. Fig. 6.7 shows the average coverage accomplished
after each step for the proposed algorithm, as well as the “random” and the “standard”
algorithms. For the “standard” algorithms it is assumed that the two mobiles achieve
“perfect” collaboration in the sense that they move in parallel and there is no overlap
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between their sensing ranges. Fig. 6.7 shows that the proposed algorithm is significantly
better than both the “random” and “standard” algorithms.
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Figure 6.7: The average coverage accomplished over 100 sensor fields with 100 randomly
distributed stationary sensors by a group of two mobile nodes.

6.6 Conclusions

In this chapter we propose a method to improve the area coverage in sparse WSNs
with static nodes, using a group of collaborating mobile nodes. The proposed algorithm
is simple, distributed and dynamic and allows each mobile to autonomously navigate
through the sensor field in order to improve the area coverage. The path is estimated
on-line and can adapt to the sensor field changes. Note that such algorithms are most
appropriate in the context of WSNs. We have shown several results using a sparse
stationary WSN deployment as well as randomly deployed sensor fields. As indicated
by the obtained results, the proposed algorithm is able to significantly improve the
area coverage compared to “random” and “standard” path planning algorithms. In
the next chapter, we will further investigate the different parameters that play a role
in the proposed path planning algorithm and particularly parameters associated with
the information exchange between mobile nodes.
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Chapter 7
Distributed Collaborative Path

Planning with Minimal

Communication

7.1 Summary

This chapter investigates the information exchange between mobile nodes in the
distributed on-line path planning algorithm for complete coverage in WSNs proposed
in the previous chapter. The main objective of this chapter is to investigate different
collaboration schemes between the sensor nodes such that the amount of information
that needs to be exchanged between nodes is reduced without significant loss of the
area coverage performance.

7.2 Introduction

In the previous chapter we presented the development of an efficient distributed
collaboration scheme for a team of autonomous mobile sensor nodes which enables
them to navigate through a sparse sensor network with stationary nodes and improving
area coverage. Each mobile sensor node autonomously plan its trajectory on-line based
on local information. This local information consists of the mobile node’s beliefs and
measurements as well as information collected from the nodes, stationary or mobile,
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that are in a neighborhood around the mobile. This information, which represents the
state of the environment, is stored in each mobile’s memory and it is locally updated.
This information will be refereed as the mobile’s “cognitive map”.

The main contribution of this chapter is that it investigates possible ways for effi-
cient collaboration by which the information exchange or the communication cost is
sufficiently minimized yet the performance in terms of area coverage is no significantly
affected. Different type of information to be exchanged as well as the timing are being
considered and different conclusions based on the communication ranges are derived.

In this chapter we use exactly the same notation, modeling assumptions and infor-
mation structure needed by the mobile nodes to run the path-planning algorithm as in
the previous chapter. The only modification made is the introduction of the parame-
ter rz which represents the radius of the search area in the cognitive map where the
dynamic target (coverage hole) is evaluated using the zoom algorithm. This enable us
to distinguish between the communication range rc for information transmission and
the range rz where the coverage hole is found using the information available in the
corresponding submatrix Dr̄z(x̄m(k)) of the Grid Gk of the mobile node. Also, note
that x̄m(k) is the discretized coordinates corresponding to position of the mobile sensor
m during the k-th step, xm(k).

We plan to investigate the type of information to be exchanged as well as the tim-
ing. The mobiles may exchange their entire cognitive map or just a small part of the
map, or they can only exchange their target locations. The information exchange can
occur at every step or it can occur periodically (every k time steps) or once the mobiles
move sufficiently close to each other. In the following section we try to minimize the
communication cost (information exchange) without seriously affecting the system’s
performance (area coverage). Our aim is to better understand the tradeoff involved
between information exchange and area coverage. Towards this goal, we investigate
schemes that uses the minimum amount of information exchange under certain com-
munication conditions that enhance mobile cooperation and area coverage.

7.3 Simulation Results

This section presents some simulation results in order to compare performance and
analyze the parameters of the collaboration mechanism. Our aim is to reduce the
amount of information needed to be exchanged between sensor nodes without serious
loss of the area coverage performance.

Unless otherwise stated, all experiments refer to Monte Carlo simulations of 100
WSN deployments. Each WSN is deployed in a A = 100m× 100m square region and
consists of 100 randomly placed stationary sensor nodes with sensing radius rs = 4m.
A set of 5 mobile sensor nodes is used in order to improve the area coverage of each
WSN. The mobile nodes maneuverability parameters are set to ρ = 1m and ϕ = 30◦

while for every decision ν = 10 candidate next positions are considered. Moreover
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the weights are set to wt = ws = 0.5 and it is assumed that the forgetting factor
in (6.3) is set to f = 1. Finally it is assumed that when a mobile node receives a
message with position coordinates the received payload data is 2 × b bits and when
it receives messages concerning a “cognitive map”, the received payload data for each
matrix element is b bits, i.e., for the entire matrix X × Y × b bits are needed. For the
simulations it is assumed that b = 32.

In the first simulation experiment (Fig. 7.1(a)) we would like find the optimum
search area range rz where the dynamic target (coverage hole) is evaluated in order to
improve cooperation and area coverage assuming that the mobile nodes can exchange-
merge their maps using global inter-mobile communication (rc =

√
2A)). Note that

rz range indicates the range where the coverage hole is found. Fig. 7.1(a) shows the
average coverage succeeded by mobiles after 200 moving steps. It turns out that the
optimal rz is about 15m (or 15%×

√
A). If rz is smaller then collaboration with static

nodes is poor resulting in less coverage. If rz is bigger than optimal then collaboration is
reduced because mobile nodes tend to move towards the same locations (larger coverage
holes) for long times which sometimes results in paths overlapping. Furthermore, if
targets are found in larger areas (larger rz), larger holes may dominate and as a result
smaller holes close to the mobile’s path are ignored.

Fig. 7.1(b) shows the same scenario when rc = rz + rs. Note that since a mobile
is searching for a hole in an area with radius rz, it needs to have the most accurate
state of the field in that range. Any sensor that is rs meters outside rz, covers some
area that falls inside the mobile’s search area, therefore such information may improve
the collaboration between the static and the mobile sensors. Static sensors located at
a distance greater than rz + rc do not provide any information that can be used when
searching for the target. Therefore, to achieve the best possible collaboration between
static and a mobile, it is necessary that rc ≥ rz+rs and in the sequel we will use this as
a lower bound for the communication range. Even for this case, it turns out that again
the optimal rz is about 15− 20m (or 15− 20%×

√
A) for the same reasons mentioned

above, although bigger rc (i.e., rc > rz + rs) can achieve better results due to better
collaboration between the mobiles. After extensive evaluations we found out that the
value of rz ≈ 15m achieves very good results and is not affected by the number of nodes
available (mobiles or static) in the WSNs. Also note that a smaller rz is advantageous
since it implies less information is needed for the coverage hole estimation.

In the second simulation experiment (Fig. 7.2) we would like to investigate how the
coverage performance is affected by the communication range rc. The communication
range rc defines the maximum distance between mobiles such that they are able to
communicate and exchange/merge their maps. In this scenario it is assumed that if
mobiles are in communication range they exchange their maps at each moving step.
Also, rz was set to rz = 15m. Fig. 7.2(a) shows the average coverage achieved by
mobiles after 200 moving steps. It turns out that in this setup there exists a critical
transmission range rc = 35m where above this range there is no significant improvement
in area coverage but rather resulting in communication waste (see Fig. 7.2(b)). The
transmission range rc = 35m indicates the value where the “cognitive maps” of the
mobiles are almost the same all the time since the mobiles are exchanging/merging their
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(a) Average coverage improvement over 100 sensor
fields by a set of 5 mobiles nodes after 200 moving
steps when rc =

√
2× 100.
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(b) Average coverage improvement over 100 sensor
fields by a set of 5 mobiles nodes after 200 moving
steps when rc = rz + rs.

Figure 7.1: Evaluation of the dynamic target optimum range rz.

maps in multi-hop manner (say at time k mobile m1 can communicate with m2 and
they merge their maps, then, at k+1, due to the large communication range, m2 may
come to communication range with m3 and during the information exchange, m2 will
pass to m3 the information that it received from m1). This simulation indicates that
there is no point to have rc > 35 since there will be higher communication cost without
any benefit in the achieved area coverage. Furthermore, Fig. 7.2 shows the tradeoff
between coverage and communication cost; to achieve a 3.5% coverage improvement,
using a scheme where the entire matrix is exchanged at every step, requires a heavy
communication cost.

In the next simulation experiment (Fig. 7.3(a), 7.3(b)) we study the case when
the map exchanges between mobile nodes are again periodic but less frequent. The
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(a) Average coverage improvement over 100 sensor
fields by a set of 5 mobiles nodes after 200 moving
steps
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(b) Average total payload received by each mobile
node after 200 time steps from other nodes

Figure 7.2: Evaluation of the critical transmission range of rc

communication range was set to rc = 35m and the target evaluation range was set to
rz = 15m. In this scenario if mobile nodes come into communication range for the first
time they exchange their maps and as long as they remain in communication range
for more steps (continuously) they exchange their maps once every k time steps where
1/k indicates the communication frequency. As shown from Fig. 7.3 if the maps are
updated less frequently (not continuously, i.e every 5 time steps) there is no serious
loss of performance in terms of area coverage, however, the communication cost is
significantly improved (see Fig. 7.3(b)). It is worth to mention that a soft threshold,
indicating how much the map of the mobile has been changed, could be defined in
order to find out when each mobile node must share (transmit) its “cognitive” map to
other mobiles when they come into communication range. In other words, one can use
event-driven exchange (rather than time driven) to further reduce the communication
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(a) Average coverage improvement over 100 sensor fields
by a set of 5 mobiles nodes after 200 moving steps when
rc = 35
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(b) Average total payload received by each mobile node
after 200 time steps from other nodes when rc = 35

Figure 7.3: Evaluation of the communication period when the mobiles are into com-
munication range

In the previous experiments, we have studied and evaluated how the system per-
formance is affect by two important parameters, the communication range rc where
the “cognitive” maps are exchanged and the maximum range for the dynamic target
evaluation rz. In the following simulation experiment we investigate the performance
when less information is exchanged. Assuming the distributed path planning scenario
(as previously) with rc = rz + rs we study the area coverage improvement when five
different communication schemes (CS) are applied:

CS1: If mobile nodes are in communication range rc, at every step, they exchange
their entire maps Pm

k and also exchange their positions xm(k) and dynamic
target coordinates xm

t (k).
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CS2: If at step k, the mobile nodes come into communication range when they
were out of range in step k− 1, they exchange their entire maps Pm

k and their
positions xm(k) and target coordinates xm

t (k). If they are in rc at time k − 1
then they exchange their sub-matrices Dr̄c(x̄m(k)) corresponding to their rc
range and their positions xm(k) and dynamic target coordinates xm

t (k).

CS3: If at step k, the mobile nodes come into communication range when they
were out of range in step k− 1, they exchange their entire maps Pm

k and their
positions xm(k) and target coordinates xm

t (k). If they are in rc at time k − 1
then they only exchange their positions xm(k) and dynamic target coordinates
xm
t (k).

CS4: If at step k, the mobile nodes come into communication range when they were
out of range in step k − 1, they exchange their entire maps Pm

k only if their
coverage exceeds a predefined threshold τC since the last time 1 communicated.
If they are in rc at time k − 1 then they only exchange their positions xm(k)
and dynamic target coordinates xm

t (k). In this scheme the Pm
k is exchanged

only in an event driven way.

CS5: If mobile nodes are in communication range rc they only exchange their posi-
tions xm(k) and dynamic target coordinates xm

t (k).(they never exchange either
the Pm

k or the Dr̄c(x̄m(k)))

Note that the merging policy that each mobile is utilized when it receives the entire or
a part of its neighboring mobiles maps is based on a cell value maximization rule. In
other words, each cell in the map of the mobile is updated to the maximum value of
the corresponding cells of the other maps received. This policy is not very optimistic,
however avoids erroneous updates that could occurred when mobiles come in commu-
nication multiple times. More accurate merging policies would require each cell to be
associated with a time-stamp and mobile id which will require excessively additional
memory 2. Also recall that for all communication schemes, the mobiles also receive the
position coordinates of the stationary sensors in their communication range rc.

Fig. 7.4(a) shows the average coverage improvement at each time step when rc =
rz + rs = 19m and five mobiles are collaborating using the information described in
the communication schemes above. The comparison between CS1,CS2, CS3 and CS4
(see figures 7.4(a) and 7.4(b)), shows that although the communication cost in CS4
with τC=5% (or CS3 in general) is seriously minimized, the area coverage improvement
is only slightly affected. Moreover in the case of the CS5, it seems that the coverage
performance is reduced by about 1% (compared to CS1) but the communication cost
is significantly reduced. It is worth to note that if rc = 35m then the above commu-
nication schemes will result in almost the same area coverage performance (differences

1Each mobile must keep in its memory a communication matrix where it tracks with which mobiles
was in communication during the previous step as well as what was its coverage value since the last
time it communicates with another mobile.

2Consider the case when a cell (i, j) has been covered by a mobilem once (e.g. Pm(i, j) = 0.5), after
the mobile m communicate that value to another mobile m + 1, and the latter mobile communicate
again with mobile m afterwards without covering the cell (i, j). If other rule is used (e.g. Pm(i, j) =
1− (1− Pm(i, j)) · (1− Pm+1(i, j)) = 0.75) a duplicated update might occurred.
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Figure 7.4: Comparison of different ”cognitive map” merging communication schemes
when rc = 19m

between graphs in Fig. 7.5(a) are minimized), because as mentioned earlier if rc = 35m
mobiles nodes are communicating with each other most of the times and thus by just
exchanging their positions and target coordinates they always have almost accurate
maps. The final simulation indicates that when global inter-mobile communication is
available (rc ≥ 35m) CS5 seriously minimizes the communication cost without serious
loss in the area coverage performance. On the other hand when local communication is
used (rc ≤ 19m) CS4 (or CS3) sufficiently minimizes the communication cost without
affecting the area coverage performance compared to CS1.
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Figure 7.5: Comparison of different ”cognitive map” merging communication schemes
when rc = 35

7.4 Conclusion

The objective of this work is to develop a collaborative architecture for WSNs con-
sisting of a large number of stationary nodes and a few mobile nodes. We investigate
energy efficient collaboration mechanisms such that communication cost is sufficiently
minimized without serious loss of the area coverage performance. Both global and local
communication ranges are studied and different conclusions based on the communica-
tion ranges are derived.
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Chapter 8
Distributed Collaborative Path

Planning for Coverage and Event

Source Detection in WSNs

8.1 Summary

This chapter investigates the collaborative area monitoring path planning problem
in stationary sensor networks using multiple cooperative mobile sensor nodes to patrol
the region of interest and locate events. We present the development of an architecture
where a set of mobile sensors will collaborate with the stationary sensors in order to re-
liably detect and locate events. The main idea of this collaborative architecture is that
the mobile sensors should sample the areas that are least covered (monitored) by the
stationary sensors. Furthermore, when stationary sensors have a “suspicion” that an
event may have occurred, they report it to a mobile sensor that can move closer to the
suspected area and can confirm whether the event has occurred or not. An important
component of the proposed architecture is that the mobile nodes autonomously decide
their path based on local information. This approach is appropriate in the context
of wireless sensor networks since it is not feasible to have an accurate global view of
the state of the environment. We present extensive simulation results indicating the
effectiveness of the proposed algorithm.
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8.2 Introduction

In the previous chapters we present the development of a distributed collaborative
framework for complete area coverage where a small set of mobile nodes collaborate
with the stationary sensor nodes and with each other in order to improve the area cov-
erage. However the collaborative framework developed does not consider the measure-
ments that sensor nodes received when sampling the environment. In this chapter we
incorporate this information to the path planning problem and also sufficiently model
sensor measurements by considering the noise of the environment and the probability
of false alarms.

This chapter considers the problem of monitoring a large area using wireless sensor
networks in order to detect and locate events. In this context, we assume that an event
emits a signal that is propagated in the environment. The sensors capture attenuated
and noisy measurements of the signal and the objective is to reliably detect the presence
of the event and estimate its position. By reliably we mean that we would like to
minimize the probability of miss event (an event that remains undetected) subject to a
constraint on the probability of false alarms (the sensors report an event due to noise).
Note that in many applications false alarms are as bad (if not worse) than missed
events. In addition to the incurred cost for sending response personnel to the area of
the event, frequent false alarms may lead the users to ignore all alarms and as a result
even detected events will go unnoticed.

To achieve reliable detection in a large area, it is necessary to deploy a huge number
of sensors which with the current technology implies a prohibitive cost [130]. For
example consider a lake to be monitored for events (an event can be a boat that spills
a substance in the lake that changes the water turbidity). If the lake has an area of
20km×20km, and we assume that each sensor has a reliable sensing range (detection
range) rd=10m, then the number of sensor nodes needed to monitor the entire lake is
of the order of 106 which with today’s technology implies a prohibitive cost.

Given that it is infeasible to reliably cover the entire area with stationary nodes,
in this chapter we investigate an alternative way of monitoring the area using several
stationary and some mobile sensor nodes that collaborate in order to improve the area
coverage and to detect an event as fast as possible. The main idea is that the mobile
nodes will collaborate with the stationary nodes (and with each other) in order to
sample areas that are least covered by the stationary nodes and navigate through the
sensor field autonomously searching for event sources.

This chapter investigates the use of signal processing techniques in the path planning
of mobile agents for improving the area monitoring in the context of WSNs. The
main contribution of this chapter is that it investigates a family of path planning
algorithms and proposes a distributed algorithm that is fairly simple, it relies only on
local information (i.e., information collected from the mobile’s neighborhood) and can
achieve very good performance. The strategy used by each mobile is based on receding
horizon optimization where at every step, the mobile node tries to move towards the
least covered area and at the same time it avoids areas covered by other nodes.
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The chapter is organized as follows. Section 8.3 describes the model that has been
adopted and the underlying assumptions. Section 8.4 presents a family of distributed
path planning algorithms that can be utilized by each mobile sensor in order to navi-
gate through the sensor field. Section 8.5 presents the dynamic target estimation and
allocation strategy used for coverage, event detection and collaboration purposes. Sec-
tion 8.6 presents several simulation results using various sensor fields with randomly
deployed sensor nodes. The chapter concludes with Section 8.7.

8.3 Model Description and Problem Formulation

8.3.1 The Environment

The environment is represented as a rectangular area A = Rx × Ry. We consider
a set S with S = |S| static sensor nodes that are randomly placed in the area A,
at positions xi = (xi, yi), i = 1, · · · , S. In addition, we assume that a set M of
M = |M| mobile sensor nodes are available and their position after the k-th time
step is xi(k) = (xi(k), yi(k)), i = 1, · · · ,M , k = 0, 1, · · · . For notational convenience,
we define the set of all sensor nodes N = S ∪ M and re-index all mobile nodes as
m = S + 1, · · · , S +M . It is assumed that all sensors know their location through
a combination of GPS and localization algorithms. Furthermore, it is assumed that
all sensors can reach the fusion center (commonly referred to as sink in the WSN
literature) using multihop communication.

In addition, we consider a set E with E = |E| stationary non-overlapping event
sources1 that are randomly placed in the environment at positions ej = (xej , y

e
j ), j =

1, · · · , E.

Next, we also define the neighborhood of a sensor s as the set of all sensors that
are located at a distance less than or equal to rc from the mobile. In other words, the
neighborhood of sensor s ∈ N is the set of all sensors that are in the disc centered at
xs with radius rc.

Hrc(s) = {j : ∥xs − xj∥ ≤ rc, j ∈ N , j ̸= s} (8.1)

for all s = 1, · · · , S +M . If rc is the communication range of the sensor, then Hrc(s)
defines all sensors that are one hop away from that node. In general however, one can
define larger neighborhoods that include sensors that are two or more hops away.

1Sources with non-overlapping footprints.
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8.3.2 Sensor Model

We assume that each event source j ∈ E emits a constant signal Vj in the surrounding
environment. As we move away from the source, the measured signal is inversely
proportional to the distance from the source raised to some power α ∈ R+ which
depends on the environment. As a result, the t-th measurement of sensor i ∈ N is
given by

zi,t = min

{
Vsat,

E∑
j=1

Vj
rαij

}
+ wi,t (8.2)

where Vsat is the maximum measurement which can be recorded by a sensor, rij is the
radial distance of sensor i from the event source j,

rij =
√
(xi − xej)

2 + (yi − yej )
2, (8.3)

and wi,t is additive Gaussian noise with zero mean and variance σ2
i . A sensor node

reports that it has reliably detected an event if the measurement2 it receives is greater
than the detection threshold τd. This threshold is determined in a way such that the
probability of false alarm is less than a given constraint pfa. This calculation can
be done as in [130] and references therein, but for the purposes of this chapter, it is
assumed that this threshold is given. This threshold together with Vj define a disc
around the source (footprint of the source) where, if sensor i is located inside this disc,
then it will be alarmed (i.e., its measurement will be above the threshold τd) with high
probability, at least 0.5. Given the model (8.2), the radius of the disc is given by

rd =
α

√
Vj
τd
. (8.4)

By symmetry, there exists a disc around every sensor with radius rd where if a source
exists it will cause the sensor to be alarmed with high probability (at least 0.5). This is
referred to as the detection (sensing) range of the sensor and it is assumed known. For
the purposes of this chapter, if the event occurs within this disc, then we say that it is
reliably detected. Furthermore, we assume that an event is detected by the network if
at least one sensor (stationary or mobile) detects the event but other fusion rules can
also be used at the fusion center.

Similarly, we assume that we are given a “suspicion” threshold τs < τd such that if
the measurement of the sensor i, τs ≤ zi ≤ τd, then sensor i does not report a detection,
however, it may report that it “suspects” that there may be an event around its area.
Note that τs defines a disc around the sensor with radius rs > rd, thus a node may
report the suspicion if the event exists in the “donut” that is formed by the suspicion
disc when the detection disc is removed. The event suspicion may be used in different
ways. It can be reported to the sink which may fuse the information from several
sensors or it can be given to a nearby mobile node which will collaborate with the
stationary sensors in order to move closer to the suspected event area to confirm the

2Alternatively one could use the average measurement or simply assume smaller noise variance.
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existence or not of the event. In this chapter, the suspicion will be used as in the latter
example.

The received signal amplitude with respect to sensor – source distance for a sensor
node is illustrated in figure 8.1(a). Figure 8.1(b) illustrates the probability of false
alarms with respect to event detection threshold τd.
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(b) Probability of false alarms pfa(vw > τd) = 1− F(τd; 0, σ2)
with respect to event detection threshold τd. F represents the
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Figure 8.1: Sensor signal amplitude and probability of false alarms for parameters:
V = 3000, Vsat = 100, σ2 = 8, τd = 10 and τs = 5.
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8.3.3 Objectives

The aim of this chapter is to plan the path of the mobile nodes in order to achieve
certain objectives. As already mentioned, the sensor network environment is constantly
changing (sensors may fail or be carried away) thus it is unrealistic to expect that a
central controller will have all necessary information to predetermine the paths that
each mobile should follow, thus we will consider dynamic path planing algorithms that
use locally available information to determine where to go next.

In this type of problems, one can define different objectives that may result in
different strategies. A possible objective is to detect and locate events as fast as
possible. For this objective, a candidate strategy for the mobile nodes is to quickly
move towards large uncovered areas since, if there exists an undetected event source, it
is most likely located in those areas. Another possible objective is to maximize the area
coverage (minimize the average probability that an event source remains undetected).
In this case, a good candidate strategy for the mobile is to navigate through areas not
covered by other sensors (stationary or mobile). As will be shown in the sequel, it
turns out that a combination of these two strategies can achieve very good results.

Figure 8.2: Environment Model.

To make the concept of area coverage more concrete, we divide the field area in small
squares with side da. In other words, we transform the sensor field area A into a grid G
of size X × Y , where X = ⌈Rx/da⌉ and Y = ⌈Ry/da⌉ (see Fig. 8.2). Thus, we assume
that any sensor s ∈ N is located in the cell x̄s = (i, j), i = ⌈xs/da⌉ and j = ⌈ys/da⌉
(i.e., x̄s is the discretized coordinate corresponding to xs). Furthermore, we assume
that a sensor located in the cell x̄s, depending on the detection range r̄d = ⌈rd/da⌉,
covers a neighborhood of cells Dr̄d(x̄s),

Dr̄d(x̄s) =
{
(p, q) : (p− i)2 + (q − j)2 ≤ l2d, x̄s = (i, j)

}
. (8.5)

We associate with the grid G, an X×Y matrix Gk, k = 0, 1, · · · , where each element of
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Gk captures our “confidence” that if an event occurs in the corresponding area of the
field, it will be detected by the sensor network. If the (i, j)-th cell falls in the detection
range of a static sensor, then the corresponding Gk(i, j) = 1, for all k (here we use the
fact that a stationary sensor may perform a long run average of its measurements and
thus the probability of detecting a source in its detection range goes to 1). Otherwise,
initially (at k = 0) Gk(i, j) = 0 and as the mobile nodes move around, if they sample
areas not covered by the static sensors, then our confidence increases and continues to
increase as the mobiles take more samples. Furthermore, if a cell has not been sampled
for some time, then it is possible that our confidence will be reduced. Thus at every
step, we use the following updating rule for every element of matrix Gk.

Gk+1(i, j) =

{
0.5 ·Gk(i, j) + 0.5, if (i, j) ∈ Dr̄d(x̄s)
f ·Gk(i, j), otherwise

(8.6)

where s ∈ N and 0 ≤ f ≤ 1 is the “forgetting” factor. This factor can be used
to account for the physics involved with the phenomena of the events that are being
monitored. For example, it can account for sources that are active only during a
window of time of the observation interval or sources that turn on and off at various
time instances. Consequently, coverage is defined as

Ck =
1

X × Y
×

∑
1≤i≤X
1≤j≤Y

Gk(i, j). (8.7)

8.3.4 Mobile Sensor Node Model

The state of the i-th mobile node at time k is denoted by υi(k) which is comprised
of two components, υi(k) = [xi(k), θi(k)]. As already mentioned xi(k) is the node’s
position and θi(k) is its orientation (heading direction). The mobile nodes move at some
constant speed ψ and make path planning decisions at discrete time intervals, which
means that each mobile node follows a straight line of length ρ = ∥xi(k + 1)− xi(k)∥
when moving from xi(k) to xi(k+1). Moreover, we point out that this model can also
include maneuverability constraints of the mobile platform using some angle ϕ which
constrains the maximum allowed difference between θi(k) and θi(k + 1).

Finally, we describe the information required by each mobile in order to make path
planning decisions. Each mobile uses a coverage cognitive map, an X × Y matrix Pm

k ,
m ∈ M where it keeps the state of the field. Ideally Pm

k should remain Pm
k = Gk at all

times k, since the matrix Gk represents the accurate global state of the field which is
used for the computation of the field coverage Ck. Clearly, in a dynamic environment
where several sensors may accidentally move, fail or more sensors are added, it is
impossible to guarantee that Pm

k = Gk at all times. However, we emphasize, that the
proposed algorithm, that will run by a mobile located at some x̄m(k), computes its next
position based mainly on local information, i.e., information in the submatrix of Pm

k

that corresponds to the cells Dr̄c(x̄m(k)), where r̄c = ⌈rc/da⌉ and thus, it is sufficient to
have accurate information only for the Dr̄c(x̄m(k)) submatrix. This is easily attainable
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since the required information can be obtained from the mobile’s neighbors in Hrc(m).

8.4 Collaborative - Distributed Path Planning

In this section we present a family of distributed path planning algorithms that can
be utilized by each mobile sensor in order to navigate through the sensor field and to
achieve its objectives. These algorithms are based on a receding-horizon approach and
are motivated by [17]. In this family of algorithms, the mobile’s controller evaluates the
cost of moving to a finite set of candidate positions and moves to the one that minimizes
the overall cost as described next. Before we proceed, to simplify the notation, in this
section, we dropped the index for each mobile, i.e., x(k) refers to the position of the
i-th mobile sensor, i ∈ M.

Figure 8.3: Evaluation of the mobile node’s next step.

Suppose that during the kth step, the mobile node is at position x(k) and it is
heading to a direction θ. The next candidate positions are the ν points y1, · · · ,yν

that are uniformly distributed on the arc that is ρ meters away from x(k) and are
within an angle θ− ϕ and θ + ϕ as shown in Fig. 8.3. Note that the parameters ρ and
ϕ can be used to also model the maneuverability constraints of the mobile platform.
At the kth position, the mobile node evaluates a cost function J(yi) for all candidate
locations (y1, · · · ,yν) and moves to the location x(k + 1) = yi∗ where i∗ is the index
that minimizes J(yi),

J(yi∗) = min
1≤i≤ν

{J(yi)} .

The cost function J(·) is of the form

J(yi) =
∑
j∈F

wjJj(yi) (8.8)

where F is a set of indexes such that the functions Jj, j ∈ F are normalized cost
functions with 0 ≤ Jj ≤ 1 and are defined to achieve certain objectives. For the
purposes of this chapter, F = {t, c, s, r,m, b} but other functions can also be included.
The objective of Jc and Js is to achieve collaboration between the mobile and its
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neighboring nodes that are very close to it using only local information. On the other
hand, the objective of Jr and Jt is to use more “global” information in order to avoid
local minima. Jm is a function for achieving collaboration between two or more mobile
nodes and finally Jb is a function for avoiding getting out of the area boundaries.
Furthermore, wj, j ∈ F are positive weights that tradeoff the various objectives (for
example, if it is desired that a mobile moves quickly to its target destination, then wt

is made large).

8.4.1 Path Cost Functions

In this section we present the details for the cost functions that we found to give
the best performance among the algorithms that we have investigated. Also other
functions that have been investigated are presented for completeness and evaluation
purposes.

Neighboring Sensor Collaboration Cost Function using an Artificial Function

A main objective of the collaboration between the mobile and stationary nodes is
for the mobile to avoid areas that have been covered by other nodes. The objective of
this function to push the mobile away from areas covered by other sensors. The cost
function Js(y) used involves a repulsion force that pushes the mobile away from its
closest neighbor. The form of this function is given by

Js(y) = max
j∈Hrc (m)

{
exp

(
− ∥y− xj∥2

r2d

)}
(8.9)

where Hrc(m) is the set of all nodes in the communication range of the mobile m. The
detection range rd quantifies the region size around the mobile m to be repelled by its
neighbors. A related function that we considered consists of the total force applied to
the mobile, i.e., the resultant of all repulsion forces from all neighbors. However, we
found that its performance was inferior to that of (8.9) and thus we do not consider it
any further in the chapter.

Target Cost Function

Assuming that the mobile has a target destination point xt, the cost Jt(y) is a
function that pulls the mobile towards its target and is a function of the distance
between the mobile and the target position. This function should take a smaller value
as the mobile moves towards the target destination thus for the purposes of this chapter
it is given by

Jt(y) =
∥y− xt∥

rz
(8.10)

here rz is the maximum distance between the mobile node and its target and is used
for normalization purposes. There are several ways that one can use to assign a target
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position to a mobile. For example, target points may be chosen by a central controller
as part of the mobile’s mission. During a subsequent section we will describe alternative
ways of determining the target position for each mobile. Depending on the mode of the
mobile’s movement, its target may be either an area that is poorly covered (monitored)
or the estimated location of a “suspected” source.

All cost functions used in the chapter can be easily computed by a mobile node
using information in its cognitive map or by obtaining information from its neighbors.
To compute Jt(·), one needs to determine a target position (xt) and this will be done
in the next section.

Neighboring Sensors Collaboration Cost Function using the Cognitive Map

The cost function Jc(y), similarly to Js, is designed to push the mobile away from
areas that have been covered by other sensors (stationary or mobile) using the relevant
information from the cognitive map of the mobile node. This function takes a larger
value if the candidate position is adequately covered by other sensors and a small value
otherwise. Thus, for this chapter, the following cost is used

Jc(y) =
1

πr2d

∑
{i,j}∈Dr̄d

(ȳ)

G(i, j) (8.11)

where Dr̄d is given by (8.5) and recall that r̄d is the discretized detection range of the
sensor.

Cognitive Map Triangular Region Cost Function

This type of cost function has been proposed in [17] in the context of cooperative
control of Unmanned Aerial Vehicles (UAVs) and its main objective is to give an
estimate of the future cost (cost-to-go) so that the mobile will avoid local optimal
points. This function gives to the path planning algorithm a more global view of the
problem but it also requires some global (not just local) information. Jr(y) represents
the percentage of the covered cells in the cognitive map Gk that are included in a
triangular region associated with the heading direction of the mobile sensor when going
from x(k) to a point y = x(k + 1) (see Fig 8.4). This triangle has two important
parameters, the height µ and the angle δ.

Jr(y) =
1

µ2 · tan(δ)
∑

{i,j}∈T (y)

G(i, j) (8.12)

where T (y) is the set of all cells (i, j) included in the triangular region associated with
the heading direction and the parameters µ and δ (see also [132] where these parameters
have been investigated in the context of wireless sensor networks). Even though this
function has worked very well in the context of searching with UAVs, it does have some
limitations in the context of sensor network coverage as will be demonstrated in the
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simulation results section.
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Figure 8.4: Triangular region used for the Jr(y) cost function.

Mobile Sensors Collaboration Cost Function

In addition we investigated a function proposed in [17] to facilitate the collaboration
between mobiles, Jm(y) which penalizes each candidate position y that is close to other
mobiles that are heading towards (or returning from) the same direction as the mobile
tries to determine its next position. Specifically, when determining its next position, the
mobile defines the set Λ that includes all other mobiles that are in its communication
range and satisfy the following two conditions. 1) The mobiles that do not follow
behind and 2) the mobiles that have a heading direction ξ such that |θ − ξ| ≤ φ (the
two mobiles are heading towards the same direction) or |θ − ξ| ≥ 180o − φ (the two
mobiles are heading towards opposite directions), where φ is the maximum allowed
difference in heading angle (see Fig. 8.5). The collaboration function is given by

Jm(y) =
1

β∥Λ∥
∑
λ∈Λ

β exp− rλ
2 (8.13)

where β is a positive design constant and rλ is the distance between the candidate
position y and the mobile λ. For more information refer to [17].

Boundaries Cost Function

To prevent mobiles from stepping outside the field, a boundary cost function Jb(y)
is introduced that penalizes all candidate positions y that are not included in the field
area A. For completeness, the function used is

Jb(y) =

{
1 if y /∈ A
0 otherwise

(8.14)

119

The
ofa

nis
 P

. L
am

bro
u



Chapter 8

Figure 8.5: Illustration of the set Λ for M1. Only nodes M2 and M4 are used in the
calculation of Jm(yi).

8.5 Dynamic Target Estimation and Allocation

In addition to the possibility of prespecifying a target position for the mobile, in this
chapter we investigate the possibility allowing the mobile to dynamically determine its
target position xt; at every step k the mobile uses the collected information to determine
its new target location. We point out that it is even possible for a mobile to have two
target positions, a short term as well as a longer term target (i.e., include two similar
terms in (8.8) with different weights).

Target = 
coverage 

hole 
position

Source 
Detection

Target = 
estimated 

source 
position

( )s i dkzτ τ< < ( )i dkz τ>

( ) si kz τ< ( )s i dkzτ τ< <

( ) si kz τ<

Figure 8.6: The target allocation strategy for the i-th mobile sensor node during the k-th
step.

The dynamic target estimation is performed using two different algorithms depend-
ing on the state of the measurements obtained by the mobile and its neighbors as shown
in Fig. 8.6. If the mobile does not get any “suspicion” messages from its neighbors (i.e.,
all obtained measurements are below the suspicion threshold τs), then the mobile is in a
coverage mode and its target is the biggest coverage hole in some neighborhood around
the mobile (the size and shape of this area can be a parameter of this problem). On
the other hand, if the mobile receives at least a “suspicion” message then it goes into
the search mode and the target becomes the estimated event source position. Finally,
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if an event source is detected by the mobile, we assume that it is neutralized3 and that
the mobile moves towards its next target. Next we present the specific algorithms used
in each case.

8.5.1 Coverage Hole Estimation Scheme

In this subsection we present a computationally efficient algorithm for coverage hole
detection. Using the coverage hole detection algorithm a central controller (e.g the
sink) can estimate the coordinates of up to the M biggest coverage hole centers (which
can become the target coordinates of the M mobiles). In other words, the aim of this
algorithm is to determine where the M mobiles should be placed in order to maximize
coverage (i.e., maximize (8.7)). We emphasize that this algorithm can run either by
any central controller on the entire field to obtain up to M coverage holes, or by each
mobile node itself, to estimate the coordinates of the biggest coverage hole center inside
a neighborhood rc at each moving step k. Since this algorithm may run frequently (as
new information regarding the state of the field becomes available) it is required that
it is computationally efficient.

Using the principle of divide and conquer we propose the Zoom Algorithm which
is very efficient in computation complexity, time and memory. The idea is to divide
the grid (i.e the matrix Gk) or any sub-grid (i.e a submatrix of Pm

k that corresponds
to the cells Dr̄c(x̄m(k))) in four equal segments, and choose the segment with the
maximum number of empty cells i.e the segment with the maximum number of cells
with G(i, j) = 0. Then, this procedure is repeated until either the segment size is equal
to a single cell or until all segments have the same number of empty cells. In the first
case, the hole center position will be the center of the cell. In the second case, the hole
center position will be the lower right corner of the upper left segment (the center of
the segment during the previous iteration). Fig. 6.2 in chapter 6 illustrates the idea
of zooming for hole detection when this algorithm is used by each mobile node in a
distributed fashion. The pseudocode of the algorithm, when it is used by a central
controller is listed in 4.5 of chapter 4.

8.5.2 Source Position Estimation Scheme

As mentioned earlier, as each mobile node m navigates in the field, it continuously
samples the environment and also queries its neighboring nodes about their positions
and their sensor measurements zj, j ∈ Hrc(m). In the case when one or more sensor
readings are between the τs and τd thresholds, the mobile node uses the measurements
to estimate a likely position of the source which will then become its target location.
For this estimation, a number of estimation algorithms can be used (e.g., see [133],

3This is a modeling assumption that may not be very practical. On one hand we may assume that
the actual time between the step that the mobile detected the event and the next one is long enough
to allow a response crew to respond. On the other hand, the mobile may be programmed to ignore
(subtract) the signal from the known sources so it can continue its mission.
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[134], [135]). For the purpose of this chapter non linear least squares estimation has
been used. The event source location (target position) xt = (xt, yt) is the solution to
the minimization problem:

J =
∑

i∈Ω(k)

(
zi −

V

[(xt − xi)2 + (yt − yi)2]
α
2

)2

(8.15)

where Ω(k) is a set of measurements that includes the measurements of the mobile’s
neighbors at the kth step together with any measurements obtained by the mobile up
until step k. In this chapter, a uniform diffusion model [135] has been adopted and also
the initial source concentration V is assumed to be known. We point out however that
extension for the case where V is unknown is straightforward. As long as the mobile
continues to get “suspicion” signals, it continues to search for the source by updating
the estimated source position. As before, once the source is detected, it is assumed
that it is neutralized and the mobile resumes its coverage function.

8.5.3 Distributed Target Allocation and Collaboration

The previous two subsections describe two different methods that can be used by the
mobiles in order to autonomously decide their target location. Both methods utilize
information that can be obtained by the mobile from its neighborhood. In the case of
the coverage hole estimation, the information is included in a relevant submatrix of the
cognitive map, while for the source position estimation the relevant information is the
measurements of the neighboring nodes. A possible problem arises when two or more
mobiles are close to each other. In this case, it is very likely that the information they
will use to estimate the target position will be the same and as a result they will all
estimate the same target location. Clearly, this is not a good collaboration strategy
since there is no benefit if they all converge to the same point.

To avoid this problem (as well as possible collisions), we utilize the following two
protocols depending on the state of the mobile node (i.e., searching for a source or
coverage).

If a mobile node m is in searching mode and also in communication range with
other mobiles, then it queries its neighboring mobiles for their current position and
their target locations. Then, it computes the distance between its own target and the
target of the neighboring mobiles dtm,j for all neighboring mobiles j,

dtm,j = ∥xt
m(k)− xt

j(k)∥. (8.16)

If this distance is greater than a threshold value then it assumes that the two mobiles
are heading towards different targets and thus it continues normally. If dtm,j is less
than the threshold value then it is very likely that the two mobiles are heading towards
the same suspected point and thus only one should continue the search towards that
target while the other should switch to the coverage mode. This decision is based on
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the distance of each mobile from its target. The mobile that is closest to its target
continues the search while the other switches to the coverage mode. For the purposes
of this chapter, the threshold distance used to decide whether two mobiles are heading
towards the same target is set to 2rd.

Now if a mobile node m is in the coverage mode and is also in neighborhood of
other mobiles, then, in order to avoid going towards the same point, it queries the
other mobiles in its communication range for their current locations and their target
points. Once a mobile has received the target points of all mobile neighbors, then
it updates its cognitive map and assumes that these target points constitute covered
areas. Then it proceeds normally with the coverage hole estimation algorithm (zoom
algorithm). With this simple scheme, the mobiles avoid exploring the same areas.
This scheme has some important benefits. It is distributed (no need for a central
controller), it is simple, and utilizes only local information (the relevant information in
the submatrix Drc(x̄m(k)), which corresponds to the neighborhood rc of the cognitive
map).

Finally, it is worthwhile to mention that when two mobiles come into communication
range, they can also exchange their cognitive maps so that a mobile does not explore
areas already explored by other mobile nodes.

Discussion

The above collaboration protocol is illustrated in Fig. 8.7, each mobile asynchronously
computes its target at each step using local information received for its neighboring
nodes. For example in the snapshot presented in Fig. 8.7 the mobile at the right is
closer to its target than the other mobile and thus it engages its target. Note that
this target may change in the next steps. The mobile at the left is currently engaged
a target which is very close to the target of the mobile at the right. As this mobile is
far away for its target, compared to the mobile at the right, during its next step it will
estimate a different target (the one shown in the figure) which will be not very close
to target of the neighboring mobile at the right. Therefore, at each step neighboring
mobiles exchange their current positions and targets and utilize the collaboration pro-
tocol to collaborate and find spatially separated targets in an asynchronous 4 manner
(synchronization is not needed).

8.5.4 Collision Avoidance and other Conflicts

In the proposed path planning algorithm collision avoidance is achieved efficiently
by the neighboring sensor cost function Js. As mention before Js is a function that
repels each mobile from its nearest neighbor and therefore when mobiles come very

4In the case of a synchronous system, (i.e. when the mobiles simultaneously find their targets)
mobile nodes might keep moving towards the same target, given that their dynamic targets are not
changing over time. To alleviate this extremely rare scenario each mobile should wait for a small
random delay (exponential backoff period) before estimating its target.

123

The
ofa

nis
 P

. L
am

bro
u



Chapter 8

Figure 8.7: Distributed asynchronous collaboration via target allocation

close (< rd)
5, they will repelled from each other and thus selected their next steps in

a way that maximizes the distance between them. This function proactively prevents
collisions as the distance ρ traveled by each mobile during the next step is very small
compared to the distance rd (ρ < rd) where the mobiles start repel each other effectively.
However, due to the collaboration protocols illustrated previously the cases where
mobiles come very close to each other are extremely rare. Additionally one could
employ the mobile sensors collaboration function Jm to prevented the congestion of
mobiles in a small region. It is worth mentioning that the proposed collision avoidance
scheme is based on algorithmic approaches, however to guarantee that the robots will
never collide, some kind of hardware interrupt based on collision avoidance sensor
measurements, should be implemented when mobile robots come seriously close to
each other. Finally, possible deadlocks, livelocks or cases when the robots stuck in local
minima or oscillate between the two closest points are almost impossible to occur due to
the dynamic behavior of the path planning algorithm, the spatially large decision points
available as well as the asynchronous nature of the collaboration protocol. Specifically,
the mobiles at each step are moving towards a spatially different target (dynamic
target) 6, the neighboring sensor cost function Js is based only on the nearest neighbor
avoidance and the selection of the next position of the mobile (see Fig. 8.3) does
not consider the current mobile position and thus the mobile should move to a new
position which is at distance ρ away from its current position and within an angle 2ϕ
(therefore each current position is a “tabu” point). Therefore given the above facts
local minimums as well as other conflicts are almost impossible to occur.

5When rd is comparable to the physical radius of the mobile robot then this physical radius could
be feed in Js

6Even when two mobiles synchronously engage a target at a position which is equidistant from the
mobiles, during the next step the distance of this target will not be the same given that the target is
not changing in the next step!
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8.6 Simulation Results

In this section we present some simulation results with some representative scenarios
that show the movement of a set of mobile nodes and also compare the performance
of different path planning algorithms (all from the family of algorithms presented in
Section 8.4). Depending on which cost functions are used in (8.8) and the weights,
one can obtain different algorithms. To distinguish between the different algorithms
investigated, we use acronyms where each letter corresponds to the individual cost
functions used, for example TS refers to an algorithm for which wt > 0 and ws > 0
while wc = wr = wm = 07.

Unless otherwise stated, all experiments refer to a square 300m × 300m field and
a grid with da = 1m is used. The mobile maneuverability parameters are set to
ρ = 2m and ϕ = 30◦ while for every decision ν = 10 candidate next positions are
considered. For the event propagation model, we assume that V = 1500, Vsat = 100,
and the exponent α = 2. Finally we assume that a detection threshold τd = 15,
thus the sensing radius of all sensors (stationary and mobile) is rd = 10m and the
communication radius rc = 4.5 ·rd = 45m (for the neighborhood of each sensor we only
consider its one hop neighbors).

Next we present some representative scenarios and show the movement of a team of
robots that uses the Distributed TS algorithm, a simple algorithm that performed very
well against all other algorithms investigated. In this algorithm, every mobile makes
autonomous decisions using only the Jt (with rz = rc − rd) and Js cost functions (i.e.,
wt = 0.8, ws = 0.2 and wc = wr = wm = 0). For estimating the target positions,
the mobile uses either the coverage hole detection algorithm (in coverage mode) or
the source position estimation algorithm (in search mode) and the distributed target
estimation scheme presented in the previous section. Finally, for the coverage hole
detection algorithm only the cells in Dr̄c(x̄m(k)) are used. In other words, the coverage
hole is estimated only in its neighborhood.

In the first simulation experiment we use a team of two mobile nodes and show
the behavior of the Distributed TS algorithm in a field with 100 randomly deployed
stationary sensors. In this simulation scenario there is no event source thus Fig. 8.8
shows how the two mobile nodes navigate collaboratively through the field, sampling
points that are not adequately covered by the stationary sensors. As seen from the
paths followed, there is collaboration between mobile and stationary sensors in the sense
that the mobiles have found two different paths that are least covered by the stationary
sensors. Also notice how the two mobiles collaborate and select different targets at the
beginning of their motion. Moreover note that one can adjust the mobile’s parameters
in order achieve different objectives. For example, Fig. 8.8(a) shows a path where
the mobiles move quickly through the field to achieve faster detection. On the other
hand, Fig. 8.8(b) shows a scenario where the mobiles try to achieve better coverage by
covering a hole before they proceed. Finally, we point out that given enough time, all

7For all algorithms and all experiments to prevent any mobile from going outside the area we have
used wb = 1.
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(a) Paths followed when the mobile’s objective is fast detection
(wt = 0.8, ws = 0.2, rc = 45m).
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(b) Paths followed when the mobile’s objective is better cov-
erage (wt = 0.2, ws = 0.8, rc = 25m).

Figure 8.8: Dynamic path planning using a team of two mobile nodes.

algorithms will cover the entire field.

Fig. 8.9 shows the paths followed by two mobile nodes when a set of five non-
overlapping static sources exist (each source is turned on at the beginning of the sim-
ulation time and stays on for the entire simulation with V = 3000). We assume 100
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Figure 8.9: Dynamic distributed path planning using a team of two mobile nodes in the
presence of event sources.

randomly deployed sensors in the field. The detection threshold of all sensors is τd = 30
(thus rd = 10m), and the suspicion threshold is τs = 5 (rs = 24.5m). Fig. 8.9 also shows
the positions of the event sources. One source is reliably detected by the stationary
sensors however for the remaining four there are no stationary sensors in a radius rd
around the event, thus these events would have remained undetected. Initially, both
mobile nodes are navigating towards their current estimated coverage hole positions.
Note that in some cases there are sensors within rs from the event sources and these
sensors are likely to report the “suspicion” to the passing mobile node. Once a mobile
node gets a suspicion message from a static node in its communication range (or its
sensor measurement is inside the “suspicion” region, τs ≤ zi ≤ τd), then it switches its
target to the estimated location of the event.

The next simulation experiment demonstrates the behavior of the Distributed TS
algorithm (with fixed parameters as described above) for sensors fields with different
densities (empty, sparse and dense fields). Fig. 8.10 shows the paths followed by three
mobile nodes after 300 moving steps. From the figure it is evident that the Distributed
TS algorithm is able to easily adapt to different sensor node densities without getting
trapped in local minima. Mobile nodes always keep navigating in the sensor field, pass-
ing/sampling through uncovered regions and improving coverage. Fig 8.10(a) shows
that in the case of an empty field (no stationary sensors are available) mobile nodes
collaborate and navigate similarly to standard search algorithms.
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(a) Paths followed in an empty sensor field (0 station-
ary sensors)
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(b) Paths followed in a sparse sensor field (100 station-
ary sensors)
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(c) Paths followed in a dense sensor field (300 station-
ary sensors)

Figure 8.10: Paths followed after 300 moving steps by a set of three mobile sensor nodes
using the distributed path planning algorithm for different sensor field densities
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In the next simulation experiment (Fig. 8.11) we investigate the value for the suspi-
cion threshold τs. Note that there exists a tradeoff in its actual value. If this threshold
is set too high, then the mobile will get in the searching mode rarely (clearly τs < τd).
On the other hand, if this threshold is set too low, then the mobile will be running after
frequent false alarms. In this experiment we evaluate the number of detected sources
over 20 sensor fields with 100 stationary sensors. In each field 15 non-overlapping
event sources are randomly placed. As shown in Fig. 8.11(a) only a small number of
the sources is detected by the stationary sensors (at time zero, about 6.5 sources on
average are detected). A group of two mobile sensor nodes using the Distributed TS
algorithm is employed. We measure the average number of detected event sources as
well as the average coverage improvement for 1000 moving steps. Moreover the follow-
ing values for other parameters are used: noise variance is σ2 = 10, τd = 15, ν = 5,
rc = 5 · rd, and rz = rc − rd.

Fig. 8.11 shows that if the suspicion threshold is set too low (τs = 1), then the mobile
does run after frequent false alarms and as a result its performance with respect to
either the number of detected sources or the area coverage is not very good. As shown
in the Fig. 8.11 the best value for this experiment is τs = 5 as this value succeeds
coverage close to the maximum which means that it minimizes the uncertainty (or
the probability of miss events) and at the same time achieves the maximum rate of
detected event sources.

In the next simulation results we compare the following path planning algorithms:

1. RCM: This algorithm has been developed in [17], [75] for cooperative search mis-
sions by UAVs. The RCM algorithm uses the cost functions Jr, Jc, and Jm with
the following weights wr = 0.5, wc = 0.2, wm = 0.3 and with triangle parameters
δ = 15◦ and µ = 40. Note that since this algorithm does not use the Jt function,
it can only navigate in the field to reduce uncertainty (maximize coverage) and
cannot move towards a target.

2. TCM: In this algorithm a central controller decides the next step of each mobile
node. Once a mobile node approaches its target destination a new target (coverage
hole point) is assign to the mobile using a centralized target assignment scheme
where the controller computes the biggest coverage hole in the entire field which is
not already assigned to other mobile nodes. The TCM algorithm uses the following
cost functions Jt, Jc, and Jm with the following weights wt = 0.5, wc = 0.2,
wm = 0.3 and with parameters rz =

√
2A, where A is the sensor field area.

3. TSM: This algorithm is similar to the TCM algorithm (uses a central controller to
solve the global target assignment problem). The TSM algorithm uses the following
cost functions Jt, Js, and, Jm with the following weights wt = 0.5, ws = 0.2, and
wm = 0.3 and with parameters rz =

√
2A, where A is the sensor field area.

4. Distributed TS: As described earlier.

Furthermore the following parameters are used: rd = 10 (τd = 15), τs = 5, rc = 3 · rd,
ν = 5 and σ2 = 10.
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(a) Average number of non overlapping event-sources found
over 20 sensor fields

(b) Average coverage improvement over 20 sensor fields

Figure 8.11: Evaluation of the suspicion threshold τs optimum value.

Fig. 8.12 shows the paths followed by two mobile nodes for 500 moving steps when
the above algorithms are employed. We use a randomly deployed sensor field with 100
stationary sensor nodes and 4 non overlapping event sources. As shown in Fig. 8.12(d)
the Distributed TS algorithm achieves better collaboration between the mobiles and
detects all the event sources. Better collaboration is achieved because the paths, fol-
lowed by the mobile sensors using the distributed TS algorithm, have the minimum
overlap (almost zero) compared to the other algorithms.

Next we compare the average performance of each algorithm using Monte Carlo
simulation. We assume 20 sensor fields with 100 randomly deployed static sensors and
15 static non-overlapping sources (also placed at random points). Fig. 8.13 is an
average over the 20 randomly generated sensor fields and shows that the static sensor
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Figure 8.12: Paths followed for 500 moving steps using different path planning algorithms

network would have detected around 6 − 7 event-sources on average and the average
coverage of the stationary field would be about 30%. Next, a set of two mobile nodes is
used for 1000 moving steps. Fig. 8.13 shows that the Distributed TS algorithm outper-
forms the other algorithms both in the average number of detected event-sources (see
(Fig. 8.13(a)), and in the average coverage improvement (Fig. 8.13(b)) and its com-
putation is negligible compared to the RCM algorithm (Fig. 8.13(c)) mainly because
there is no need to compute the triangle needed in Jr.

This performances indicates that the Distributed TS algorithm is able to achieve
better collaboration between the mobile nodes and its computation efficiency shows
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(d) Distributed TS with distributed target assignment

Figure 8.12: Paths followed for 500 moving steps using different path planning algo-
rithms(cont.)

that it is a good candidate to be implemented even onto a tiny microcontroller of a
mobile sensor node [3].

The centralized coverage hole assignment scheme eliminates the detection and the
coverage performance of the TCM and TSM algorithms as the mobile nodes are not
able to adapt their paths on their way towards their targets and they can easily get
trapped by (or move on) other mobiles paths although the are navigating towards the
best coverage hole of the sensor field. This behavior is clearly illustrated in figure 8.14
where we compare the centralized (TSM algorithm) and the distributed (TS algorithm)

132

The
ofa

nis
 P

. L
am

bro
u



Distributed Collaborative Path Planning for Coverage and Event Source Detection in WSNs

(a) Average number of non overlapping event-sources found over
20 sensor fields

(b) Average coverage improvement over 20 sensor fields

Figure 8.13: Comparison of different path planning algorithms

coverage hole estimation scheme.

Fig 8.14(a) shows the scenario where the mobile with the red path has been trapped
by its neighbor path (black path) in the case when the global target assignment scheme
is used. Using the same scenario (sensor field), Fig 8.14(b) shows the path that the 3
mobiles follow when the distributed-dynamic target assignment scheme is used. Using
this decision process each mobile select its optimum target inside its communication
range which is not assigned to any other mobile as they share their current targets
positions when they come into communication range. Moreover these target-coverage
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(c) Average computation times

Figure 8.13: Comparison of different path planning algorithms(cont.)

hole positions are never reached as in the next step a new target will be selected in
order to adapt in the dynamic environment. As shown in Fig 8.14(c) the local target
assignment scheme improves more the area coverage compared to the global target
assignment scheme.

Finally, as mentioned earlier, fast event detection and area coverage may be two
slightly conflicting objectives. Depending on the objective, there may be one or more
optimal paths, however, finding them is not easy. Given a path, an easier problem
is to determine whether it achieves close to optimal performance. For the coverage
objective, this is easily done by observing the coverage overlap between the static and
mobile sensors. In that respect, the paths found by the Distributed TS algorithm have
performance close to the optimal.

8.7 Conclusion

In this chapter we propose a collaborate event detection architecture for WSNs
consisting of a large number of stationary nodes and a few mobile nodes. The benefit
of this architecture is that the mobile nodes collaborate with the stationary nodes so
that they sample the areas least covered by the stationary nodes. In this way, events
that would have remained undetected can now be detected.

For the proposed architecture we have investigated a family of path planning algo-
rithms that are based on the receding horizon approach. At every step, the mobile
controller estimates the cost of moving to a finite set of future positions and moves
to the one that achieves the minimum. This cost is a linear combination of certain
functions each designed to achieve certain objectives. Five such functions have been
investigated in this chapter, but more can also be included (e.g., functions that repre-
sent obstacles). Among the functions investigated, two had a more local perspective
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Figure 8.14: Comparison between centralized and distributed coverage hole assignment

and were designed to avoid stepping to areas covered by immediate neighbors (Jc and
Js). The other two were used to give a more global pictures (Jr and Jt) and one was
explicitly used to facilitate the collaboration between the mobiles (Jm). Our investiga-
tion yielded the following conclusions with respect to these functions when applied in
the context of randomly deployed sensor networks.

� Jc significantly restricts the movement of mobiles and some times it creates ficti-
tious barriers that may “trap” other mobiles and as a result the simpler Js is able
to achieve a better collaboration between the mobile and its neighbors and yield
better performance.

� Even though in the context of UAVs Jr could achieve very good performance, in the
context of randomly deployed sensor networks, its performance was limited and was
often outperformed by Jt. One limitation of the Jr function (other than the com-
plexity) is that for reasonably large triangles, due to the random field deployment,
the number of sensors that fell in the triangle was fairly constant (proportional to
the size and field density) providing no significantly new information.

� When the coverage hole detection algorithm is used to determine the targets of
the mobiles, it is usually more beneficial (achieves better collaboration between
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a group of mobiles) if targets are determined more frequently and closer to the
mobile as opposed to more “globally”. If a far away target is given to the mobile
and is not updated frequently, then it cannot utilize newly discovered information
that can help it achieve a better performance.

� When a target is used, the distributed target assignment scheme is more effective
in facilitating the collaboration between the mobiles compared to the Jm function.

In the next chapter, the optimal path that minimizes the expected event detection time
in the context of mixed sensor networks is investigated. The optimal path problem is
found to be NP-complete but provides evidence that searching for an event ”locally”
leads in fast event detection in our context. The proposed path planning strategy is
optimized further based on that observation.
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Chapter 9
Area Coverage and Event Detection in

Monitoring Applications using Mixed

Sensor Networks

9.1 Summary

This chapter considers the problem of improving the monitoring capability of a
sparse stationary sensor network by using mobile sensor nodes and addresses the trade
off between area coverage and fast event detection. In this context, this chapter pro-
vides a theoretical study for deciding the optimum searching path for one mobile node
that minimizes the expected event detection time when several large uncovered regions
exist in the sensor field. Finding the optimal searching path is an NP -hard prob-
lem, which implies that we can not find the optimal solution of an arbitrary problem
instance in reasonable time, due to large number of uncovered regions and multiple
mobile nodes. Thus using the principles of the derived solution, the proposed path
planning strategy is improved further. Both analytical and simulation results indicate
that a “local” search is better than a “global” search in the context of mixed sensor
networks.
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9.2 Introduction

In the previous chapters we present the development of a distributed collaborative
path planning strategy for area coverage and fast event detection. Simulation outcomes
in chapters 7 and 8 indicate that is better to search - cover local uncovered regions
first instead of searching the most bigger uncovered regions in the sensor field first
(i.e. is better to determine dynamic targets closer to the mobiles). In this chapter,
we investigate optimum path planning strategy for a single mobile node when several
uncovered regions exist in order to gain some insight that can be used to further
optimize the performance of the proposed distributed path planning strategy.

Theoretical work on searching for targets in unknown location was initiated by B.
Koopman [73] during the World War II to find enemy marine vessels for the U. S. Navy.
Search theory as we know it today is based on work by Koopman [73] and later work
by L. Stone [74] who especially study the moving target problem. However, in [73, 74],
there is significant focus on how to allocate search effort across the environment instead
of finding the best search path to follow.

Depending on the type of wireless sensor network used, there is a fundamental trade
off that involves the area coverage and the delay to detect an event. In monitoring
applications with stationary sensor nodes, an event is either detected or not (it is not
detected if it occurs in a coverage hole) and this is done immediately (assuming a
connected network where the message propagation time is negligible). On the other
hand, in applications with mobile nodes, it is possible to search and cover the entire
field, however, this will take time, thus an event may remain undetected for a significant
amount of time. An important question that arises is how to search the area such that
events are detected in minimum time. Intuitively, one may argue that in order to
minimize the detection time, one needs to first search the areas where it is most likely
to find the event. However, because of the time that may be needed by the mobile to
get to the most likely area, it may be faster to first search less likely areas that are
closer to the mobile node. To address this trade off, in this chapter we adopt the mixed
sensor network framework proposed in the previous chapters 6,7 and 8 and consider a
scenario with several coverage holes.

The contribution of this chapter is that it determines the optimal strategy of the
mobile node such that the average detection time is minimized. The resulting strategy
is an optimal trade off between the probabilities of finding an event at a location and
the distance of the mobile from the location. The resulting optimal strategy confirms
that it is better to search areas that are less likely to hide an event but are located closer
to the mobile node rather than heading towards the most likely area. This strategy has
a counter-intuitive implication that a “local” search is better than a “global” search.
This implication is also confirmed in the context of monitoring applications using mixed
sensor networks [136, 137]. We have also proved that the optimal search path strategy
is an NP-complete problem and therefore we proposed a heuristic centralized path
planning strategy that provides computationally tractable and close to optimal solution
to the problem. This heuristic centralized approach has been also compared with the
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proposed distributed collaborative path planning approach which remains valid for the
general case where uncovered regions created by random deployment of static sensor
nodes. Results indicate that the selection of the searching neighborhood radius rz is of
critical importance.

The remaining of the chapter is organized as follows. Section 9.3 describes the
model that has been adopted and the underlying assumptions. Section 9.4 derives the
optimal search strategy of the mobile node with respect to the detection time. Section
9.5 presents a path planning algorithm that can be utilized by a mobile node in order
to navigate through the sensor field. Section 9.6 presents the simulation results. The
chapter concludes with Section 9.7.

9.3 Model Description

In this chapter, we address the problem of detecting a stationary event (target) using
a mixed sensor network consisting of both mobile and static nodes. In this section we
present the modeling assumptions and define some concepts and objectives that will
be used in the sequel. We consider a mixed sensor network made of a large number of
sensor nodes deployed in a large region A as shown in Fig. 9.1.

Figure 9.1: Mixed sensor network model.

When a large region is to be monitored by a sensor network, it is desirable to deploy
randomly a large number of inexpensive, low cost sensor nodes to the given area (as
manual deployment might be infeasible, impractical and costly). However, the problem
is that a dense deployment is not always feasible due to high cost (even though each
sensor could be cheap, deploying a large number of them is still expensive) thus a WSN
with static sensors may not be able to guarantee full coverage. It is also noted that
as time passes, more coverage holes may be created due to the random failure of some
sensors (due to ageing).

We assume that the region under monitored is a rectangular area A = Rx × Ry

and a set S with S = |S| static sensor nodes that are randomly placed in the area
A, at positions xi = (xi, yi), i = 1, · · · , S. In addition, we assume that a set M of
M = |M| mobile sensor nodes are available and their position after the k-th time step
is xi(k) = (xi(k), yi(k)), i = 1, · · · ,M , k = 0, 1, · · · . We also consider a stationary
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event that occurs at random position e = (xe, ye) in the environment.

We assume that all static and mobile nodes have a common (known) sensing range
rd with the sensing area of πr2d and and a common communication range rc > rd (see
Fig. 9.1). For notational convenience, we define the set of all sensor nodes N = S ∪M
and in this set the mobile nodes are re-indexed as m = S + 1, · · · , N , where N =
S +M . It is assumed that all sensors know their location through a combination of
GPS and localization algorithms. Furthermore, it is assumed that all sensors can reach
the gateway (commonly referred to as sink in the WSN literature) using multihop
communication. The neighborhood of a sensor s is the set of all sensors nodes that
are one hop away, i.e., the nodes that are located at a distance less than or equal to rc
from s. This set is denoted by

Hrc(s) = {j : ∥xs − xj∥ ≤ rc, j ∈ N , j ̸= s} (9.1)

The sensor field can be partitioned into two regions in terms of coverage: covered and
uncovered. The covered region (see Fig. 9.2(a)) means that any point in the region is
within the sensing area (coverage) of at least one sensor. The uncovered region (see
Fig. 9.2(b)) is the complement of the covered region. Every sensor has a sensing area
and the union of the sensing areas of all sensors is called the sensing area coverage. If an
event occurs within the sensing range of a sensor node, it can be detected immediately.
If an event occurs in an uncovered region then it is possible to be detected by mobile
sensors with some delay. The aim of this chapter is to plan the path of the mobile nodes
in order to search the uncovered regions such that events are detected in minimum time.
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(a) The grid map of a sensor field
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m
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(b) The coverage holes in the sensor field
detected using image processing tech-
niques

Figure 9.2: Covered and uncovered regions in a WSN of 400 randomly distributed
stationary sensors with sensing radius rd = 5m.

To make the concept of area coverage more concrete, the entire sensor field is dis-
cretized into an X × Y grid as shown in Fig. 9.2(a). The current state of the sensor
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field is represented by a X × Y matrix Gk, k = 0, 1, · · · , which corresponds to the
“confidence” in detecting an event. If the (i, j)-th cell falls in the detection range of
a functioning static sensor, then the corresponding Gk(i, j) = 1, for all k and we are
confident that no event will occur in the area of the corresponding grid cell without
being detected. If the matrix element has the value 0, then we have no way of knowing
if an event has occurred in the corresponding area. This matrix represents the accurate
state of the sensor field and is updated as the mobiles move around in the field. Thus
at every step, we use the following updating rule for every element of matrix Gk.

Gk+1(i, j) =

{
1, if(i, j) ∈ Dr̄d(x̄s)
f.Gk(i, j), otherwise

(9.2)

where x̄s are the coordinates of sensor s in the Grid Gk and Dr̄d(x̄s) is the set of
Grid cells covered by sensor s ∈ N with detection range rd. Also, 0 ≤ f ≤ 1 is the
“forgetting” factor. This factor can be used to account for the time characteristics of
the events that are being monitored. For example, it can account for events that are
active only during a window of time of the observation interval or events that turn on
and off at various time instances.

The area coverage is defined as

Ck =
1

X × Y
×

X∑
i=1

Y∑
j=1

Gk (i, j) (9.3)

If f = 1 then Ck represents the area coverage over a time interval [0, k] and it is an
appropriate quality metric for applications that require coverage of all locations within
some time interval.

9.4 Optimal Search Strategy

To make the analysis more concrete, in this section consider the problem of finding
the optimal path that minimizes the expected detection time of an event that has
occurred in either of h uncovered locations (coverage holes). Let T be the generally
random time when an event has been detected, then the objective of this chapter is to
determine the paths of the mobile sensors in order to solve (P ).

(P ) := min{E [T ]}

where E [·] denotes the expectation operator.
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9.4.1 NP-completeness

In principle, finding the optimal path when h locations are possible and when M
mobiles are available is a problem that is more complex compared to the traveling
salesman problem (TSP) or the multiple TSP (mTSP) [138] which are widely known to
be NP -complete problems. In the TSP the objective is to find the minimum distance
tour through a set of N cities, visiting each city exactly once and returning to the
starting city. The TSP is an NP -hard problem in combinatorial optimization, the
optimal tour can be found using exhaustive search on (N−1)! paths for N cities which
is computationally intractable (takes O(n!) running time) even for a small number of
cities. Dynamic programming yields a much faster solution, though not a polynomial
one (takes O(n22n) running time).

In the following, it is shown that the problem defined above is NP-complete. This
implies that we can not hope to find an optimal solution of an arbitrary instance
of the problem in reasonable time (intractable) but more efficient search approaches
are needed. Furthermore, it is desirable to determine solution strategies that are dis-
tributed in nature, thus each mobile can determine its path by itself utilizing only
information that is locally available since such strategies will significantly reduce the
communication overhead and can easily adapt to changes in the environment (node
failures)

Theorem 9.4.1. The optimal search path problem (OSPP) is NP-complete

Proof. We first show that OSPP ∈ NP. Given an instance of the problem, we use as
a certificate the sequence of h coverage holes searched in the path. The verification
algorithm checks that this sequence contains all holes (each hole exactly once), sums up
the costs (euclidian distances for inter-hole traveling and hole searching), and checks
whether the sum is the minimum. This process can certainly be done in polynomial
time.

To prove that OSPP is NP-hard, we describe a reduction [139] from an arbitrary
instance of a well-known NP -hard problem, namely the Euclidean path TSP (EpTSP )
[140], to a special instance of OSPP . Given an ETSP instance, (N, dij), where N is
the number of cities and dij denotes the matrix with inter-city distances, we choose the
following parameters of OSPP such that the achieved optimal solution corresponds to
that of the EpTSP :

1. Number of mobile nodes M

2. Start and finish depots for all mobile nodes,

3. Stationary node deployment

4. Areas Ah of the coverage holes to be searched

5. Sensor node detection range rd

We choose that M = 1 and this single mobile node is initially located in an arbitrary
coverage hole (note that there is not a requirement of returning to the starting city in
EpTSP although such a requirement does not change the computational complexity of
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the ordinary TSP [140]), the stationary node deployment is such that enables a definite
number of h coverage holes and the area of each Ai, i = 1, · · · , h is set to Ai = 0 and
finally rd = 0. Thus the optimal path of the mobile node is the path that visits all
isolated uncovered points (city locations) with the minimum distance cost. Due to
these choices, the optimal solution of this specially designed instance of the OSPP
will coincide with the optimal solution of the EpTSP . This completes the proof.

9.4.2 Optimal Solution for the single mobile - two hole problem

To simplify the analysis, next we consider the smallest instance of the problem
which can provide some insight to the nature of the general solution. Consider the
scenario where a single mobile node is available and an event has occurred in either of
two locations (h = 2 coverage holes). The objective of the mobile is to decide which
location to search first such that the detection delay E [T ] is minimized. In sequel, we
extend the analysis when h coverage holes exist. Before we proceed with the derivation
of the optimal strategy, the following definitions are made.

D1 There are only two uncovered regions (coverage holes) with areas Ab and As

(Ab > As) and centroids (geometric centers), Cb and Cs respectively. It is
also assumed that there is no overlap between the two holes.

D2 An event can occur at any point of the uncovered region with equal probability.

D3 The mobile node is initially placed at position O at distance db = ∥Cb −O∥
from hole Ab and at distance ds = ∥Cs −O∥ from hole As. The distance
between the two coverage holes is indicated by dsb = ∥Cs −Cb∥.

D4 The mobile node detects an event within its detection range rd with probability
1 while it detects events outside its detection range with probability 0.

D5 The speed of the mobile is v.

D6 An exhaustive search of a coverage hole with area A is performed in A/(2rdv)
time units.

Using definitions D1 and D2 one can obtain the probability of an event occurring in
either of the two holes

P (Ab) =
Ab

Ab + As

, and P (As) =
As

Ab + As

Also, from definitions D2 and D5, given that the event has occurred in a hole of area A,
then the time to detect the event (assuming exhaustive search) is uniformly distributed
in the interval [0, A/(2rdv)]. Therefore the average time to detect the event is simply
A/(4rdv). Note that the uniform distribution assumption was made to simplify the
analysis but the main results would also hold for any other event distribution.

Fig. 9.3 illustrates the geometry of the problem. An event that will occur in either
Ab or As will remain undetected unless a mobile node finds it. A mobile node can reach
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Figure 9.3: Problem geometry

either of the holes and search it sequentially, e.g., by following a path on concentric
circles (spiral-in or spiral-out path) or making “S” shaped moves (parallel sweeps) until
the entire area is covered. Next, consider the scenario where, given that an event has
occurred, a mobile node initially located at O should conduct an exhaustive search of
the two coverage holes in order to find it. In this scenario, the mobile has two options;
it can either go and search Ab first and then to As or it can follow a reverse path, i.e.,
first search As and then Ab. In the following analysis, our objective is to determine
the strategy that the mobile should follow in order to minimize the time to detect the
event. The E [T ] is given by

E [T ] = E [T |As] · P (As) + E [T |Ab] · P (Ab) (9.4)

where E [T |Aj] denotes the expected T given that the event is located in Aj, j ∈ {b, s}.
When the mobile follows the path from O → Cs → Cb, the expected event detection
time E [Tsb] is given by

E [Tsb] =

(
ds
v

+
1

2

As

2rdv

)
As

As + Ab

+

=

(
ds
v

+
As

2rdv
+
dsb
v

+
1

2

Ab

2rdv

)
Ab

As + Ab

(9.5)

On the other hand, if the mobile follows the path from O → Cb → Cs the expected
event detection time E [Tbs] is given by

E [Tbs] =

(
db
v

+
1

2

Ab

2rdv

)
Ab

As + Ab

+

=

(
db
v

+
Ab

2rdv
+
dsb
v

+
1

2

As

2rdv

)
As

As + Ab

(9.6)

In order for the mobile to decide which path to follow, it needs to compute E [Tsb]
and E [Tbs] and follow the path that minimizes the expected detection time. This
decision problem (i.e. which is the minimum expected detection time between E [Tsb]
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and E [Tbs]) can be reduced by comparing the terms of (9.5) and (9.6) and ignoring all
common terms in the inequality E [Tsb] ≶ E [Tbs]. Consequently, we have

E [Tsb] ≶ E [Tbs] ⇔ dsb (Ab − As) ≶ (db − ds) (Ab + As) (9.7)

Next, we consider the following cases:

C1 {Ab = As = A}: The decision problem E [Tsb] ≶ E [Tbs] reduces to ds ≶ db, i.e.,
the mobile should go to its nearest coverage hole first. The proof follows easily by
substituting Ab = As = A in eq. (9.7).

C2 {db = ds = d}: The decision problem E [Tsb] ≶ E [Tbs] reduces to Ab ≶ As,
i.e., the mobile should go to the biggest hole first. The proof again follows easily by
substituting db = ds = d in eq. (9.7).

C3 {Ab > As and db < ds}: The decision is to always go to the biggest hole which
is also located nearer to the mobile. The proof follows by comparing the terms of
eq. (9.7). Using the conditions of this case, the right hand side is always less than the
left hand side, therefore E [Tsb] > E [Tbs].

C4 {Ab > As and db > ds}: The decision depends on the relative position (dsb) and
area ratio (ϱ = Ab/As) of the bigger hole with respect to the smaller one. Specifically,
if the smaller hole is located inside an “egg shaped” area then the decision is to search
the smaller hole first, otherwise, it is better to search the larger hole first. The proof
follows by solving eq. (9.8) defined by the cosines rule of the triangle in Fig. 9.3. Using
the cosines rule we know that

dsb
2 = ds

2 + db
2 − 2dsdb cos(θ). (9.8)

Also, using some algebra, one can rewrite eq. (9.7) according to the condition that the
mobile should visit the smaller hole first. Thus we have

dsb ≤
ϱ+ 1

ϱ− 1
(db − ds) (9.9)

where ϱ = Ab/As > 1. Substituting eq. (9.9) in eq. (9.8), we get a single equation
(eq. 9.10) with one unknown, ds which denotes the decision boundary that determines
which hole will be visited first.(

ϱ+ 1

ϱ− 1
(db − ds)

)2

= ds
2 + db

2 − 2dsdb cos(θ) (9.10)

Therefore, the mobile should search the smaller hole first if its centroid is located within
the egg-shaped region defined by the solution of eq. 9.10 in the polar coordinate system.
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The accepted solution of the eq. (9.10) is the following (eq. (9.11)) where r = ds

r =
db

(
(ϱ+1)2−(ϱ−1)2cos(θ)−

√
((ϱ+1)2−(ϱ−1)2cos(θ))

2
−(4ϱ)2

)
4ϱ

θ = [0, 2π)
(9.11)

This holds true when O = (0,0). One can use eq. (9.11) to draw the region in polar
coordinate system. This egg-shaped region is illustrated in Fig. 9.4 and indicates that
if the centroid of the small hole is located inside this shape the expected detection
time is minimized when following the O → Cs → Cb path. It is also important to
consider that for the case when ϱ = 1 (case C1 {Ab = As = A}) the egg-shaped region
becomes a circular region (r = db in eq. (9.11)) which means that its better to follow
the O → Cs → Cb only if ds < db.
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(a) The Egg-shaped region for ϱ = 2
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Figure 9.4: The Egg-shaped region for ϱ = 2, ϱ = 3 and O = (0,0).

Finally, in the more general case, when O = (x0,y0) = (ro, θo) the analytical
equation can be found using two translations of the polar coordinate system. The first
translation will be a rotation of the polar axis through an angle of θo, thus we have

r′ = r(θ − θo)
θ′ = θ = [0, 2π)

(9.12)

The second translation will be a move from (0, 0) to (ro, θ0) of the polar axis, thus now
we have

r′′ =
√
r′2+r2o+2r′rocos(θ − θo)

θ′′=arctan
(

r′ sin (θ)+ro sin (θo)
r′ cos (θ)+ro cos (θo)

) (9.13)

Fig. 9.5 illustrates the formed egg-shaped region in the case when ϱ = 2 and O =
(ro, θo).

Concluding the analysis above, one can easily find the exact optimal solution to
the OSPP when h = 2 by evaluating eq. 9.7 given the locations and areas of the two
coverage holes in the WSN field.
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9.4.3 Optimal Solution for the single mobile - h hole problem

Now consider the scenario where there are h = 3 coverage holes (see Fig. 9.6). In
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Figure 9.6: Problem geometry with three coverage holes

such case, one can use the following technique to reduce the problem to the h = 2 case
as follows: For each i, i = 1, · · · , 3 consider that the mobile is at Ai and has already
search the Ai hole, then it decides where to go next using eq. (9.5) and eq. (9.6). Thus
the expected event detection time for i = 1 can be given by

min (E [T123] ,E [T132]) =
(

d1
v
+ 1

2
A1

2rdv

)
A1

A1+A2+A3
+(

min (E [T23] ,E [T32]) +
d1
v
+ A1

2rdv

)
A2+A3

A1+A2+A3

(9.14)

Finally the optimal path should be found by comparing the cases of all i, i = 1, · · · , 3
to find the path that minimizes the expected detection time. Thought the proposed
solution needs h!−1 comparisons-evaluations to find the optimal path when h uncovered
holes exist, it easy to tackle the equations using the proposed technique. Note that
the OSPP problem can not easy formulated in Dynamic Programming as the TSP
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problem because the search cost between two holes is not a constant value but depends
on the previous holes that have been already searched.

Next, we present a centralized algorithm for finding the optimal tour for a sin-
gle mobile node when h non-overlapping holes exist using exhaustive search. In this
algorithm we generate all possible permutations (paths) and compute the expected
detection time associated with each path. The optimal solution is the path that results
in the minimum average detection delay. The details of the algorithm are listed in Fig.
9.7.

9.4.4 Discussion

Finding the optimal solution to the problem by using technics as branch and bound
or dynamic programming is still not computationally tractable as the algorithms are
intended to run on tiny microcontrollers of sensor nodes. Therefore, knowing that
OSPP is NP-complete, we can not hope to solve all problem instances to optimality in
reasonable time (as h is usually large) but we must adopt a heuristic solution method
that provides a close to optimal solution.

The solution to the single mobile, two-hole problem indicates that rather than first
searching the areas that are most likely to hide an event, often it is optimal (with
respect to the detection delay) to search areas that are located closer to the current
position of the mobile even if it is less likely to find an event in them. In addition,
from the derived egg-shaped region (see fig. 9.4(b)), there is always a region around
the mobile where if a small hole is located, then it should be searched first even if a
larger hole is present. This implies that a “local” search (i.e., a search closer to the
current location of the mobile) is better than a more “global” search (i.e., a search in
a larger uncovered area far away from the mobile).

This motivates a heuristic centralized approach to solve the single mobile - several
hole problem as follows: Given that the mobile has global information regarding the
coverage holes of the sensor field (i.e. knows the number, the centroid and area of each
hole), it can decide whether to go and search the biggest uncover region in the field or
the nearest uncovered region. The decision is based on eq. 9.9 (i.e. decides based on
egg-shape region). Once the mobile has searched the decided coverage hole decides the
next hole to search based on its current position and the remaining holes of the field.
More information about this heuristic approach is presented in section 9.6.

However, in the context of large and randomly deployed WSNs, it is infeasible to
have a central controller to solve the problem and thus the proposed solution must be
implementable in a distributed fashion and based on local-accurate information. In
addition, it is needed to support multiple mobile nodes and to be dynamic because
coverage holes might change their areas and centroids as some stationary or mobile
sensors failed and/or multiple mobiles are searching the WSN field.

This indicates that the proposed path planning algorithm presented in the previous

148

The
ofa

nis
 P

. L
am

bro
u



Area Coverage and Event Detection in Monitoring Applications using Mixed Sensor Networks

Optimal Search Path Algorithm using Exhaustive Search

function OSP (O, rd, v, h,C,A)
Input: O: initial position of mobile sensor

rd: detection range of mobile sensor
v: velocity of mobile sensor
h: Number of uncovered regions
C: Centroids of uncovered regions
A: Areas of uncovered regions

Output: Optimal Path (ordered set of uncovered regions)
/* Find all h! possible permutations (Johnson-Trotter algorithm)*/

1: P(i, j) = Permutations(h); i = 1, ..., h!, j = 1, ..., h
2: ETP(i,:)(i) = 0; i = 1, ..., h!

/* Create distance matrix*/
3: for i = 1 : h
4: for j = 1 : h
5: d(i, j) = ∥C(i)−C(j)∥;
6: if i == j
7: d(i, j) = ∥C(i)−O∥;
8: end
9: end
10: end

/* Find Optimal Path */
11: for each path P(i, :), i = 1, ..., h!
12: for each hole P(i, j), j = 1, ..., h
13: hf = P(i, 1); /* first hole in P(i, :) */

14: if hf == P(i, j)

15: t(j) = d
(
P(i, j),P(i, j)

)
/v + (1/2)

(
A(P(i, j))/(2rdv)

)
;

16: else
17: t(j) = t(j − 1) + (1/2)

(
A(P(i, j − 1))/(2rdv)

)
+

: d
(
P(i, j − 1),P(i, j)

)
/v + (1/2)

(
A(P(i, j))/(2rdv)

)
;

18: end
19: Et(j) = t(j)

(
A(P(i, j))/

∑
(A)

)
;

20: end
21: ETP(i,:)(i) =

∑
(Et);

22: end
23: i∗ = argmini=1,...,h!

{
ETP(i,:)(i)

}
24: Optimal Path= P(i∗, :)

Figure 9.7: Pseudo code for finding the optimal search path using exhaustive search

chapters, though does not explicitly solve the OSPP , it provides a good heuristic
solution and also tackles the more general case where several overlapping holes exist
and multiple mobile nodes are searching the WSN field. In this approach, each mobile
node searches for coverage holes in a small circular region of radius rz around the itself
instead of the derived egg-shaped region. Therefore it is meaningful to study how the
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radius rz of the search neighborhood affects the event detection performance of the
propose algorithm.

In the next section, we present briefly the distributed path planning algorithm that
can be used by each of the mobiles to search the event with the minimum detection
delay.

9.5 Mobile Distributed Path Planning Algorithm

In this section we present the path planning algorithm that can be used by mobile
node(s) in order to search an area for the event. The objective of each mobile is
to collaborate with the sensor nodes (stationary or mobile) in WSN field so it will
search areas not covered by the other nodes. Furthermore, the approach is dynamic
in the sense that each mobile determines the coverage holes at every step in order to
capture possible changes in the environment, e.g., failures of stationary nodes. Before
we proceed, let us present the information structure that is needed by mobile node(s)
in order to run the path-planning algorithm. Each mobile uses an X × Y matrix Pm

k ,
m ∈ M where it keeps the state of the field. Ideally Pm

k should remain Pm
k = Gk at all

times k, since the matrix Gk represents the accurate global state of the field which is
used for the computation of the area coverage Ck. Clearly, in a dynamic environment
where several sensors move, fail or more sensors are added, it is impossible to guarantee
that Pm

k = Gk at all times. However, we emphasize, that the proposed algorithm, that
will run by a mobile located at some position xm(k), computes its path based only
on local information, i.e., information in the submatrix of Pm

k that corresponds to the
cells Dr̄c(x̄m(k)), and thus, it is sufficient to have accurate information only for the
Dr̄c(x̄m(k)) submatrix. This is easily attainable since the required information can be
obtained from the one-hop neighbors.

9.5.1 Path Planning

The path planning algorithm is based on Receding-Horizon approach where at each
step the mobile’s controller evaluates the cost of moving to a finite set of candidate
positions and moves to the one that minimizes an overall cost. Suppose that during the
kth step, the mobile node is at position x(k) and is heading to a direction θ. The next
candidate positions are the ν ∈ {2n+ 1,∀n ∈ Z+} points y1, · · · ,yν that are uniformly
distributed on the arc that is ρ meters away from x(k) and are within an angle θ − ϕ
and θ+ ϕ. The mobile node evaluates a cost function J(yi) for all candidate locations
(y1, · · · ,yν) and moves to the location x(k + 1) = yi∗ = x(k) + ρ.ei(θ+φi∗ ) where i is
the imaginary unit and i∗ is the index that minimizes J(yi).

J(yi∗) = min
1≤i≤ν

{J(yi)} (9.15)
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In this model, θ is the direction that the mobile is heading, ρ is the distance that the
mobile can cover in one time step, ϕ is the maximum angle that the mobile can turn
in a single step, and ν is the number of candidate positions that is being evaluated for
the next step.

The objective function that each mobile is trying to minimize is of the form

J(y) =
∑
j

wjJj(y) (9.16)

where Jj(·) is a specific objective and wj’s are non-negative constant weights such that∑
j wj = 1.

As indicated by the analysis of the previous section, the optimal policy is to head
towards the bigger hole in the area but in the way, the mobile should search smaller
holes that exist in the egg-shaped area around it. Thus, the objective (9.16) should be
such that the mobile will approximate that behavior. After an extensive investigation
[136], three specific normalized functions have been selected: Jt(·) which penalizes
positions that are away from large coverage holes and Js(·) and Jc(·) which penalize
positions that are close to regions been covered by other sensors (stationary or mobile).
How Jt(·), Js(·) and Jc(·) are computed is presented next.

9.5.2 Path Cost Functions

The objective of Js(·) function is to push the mobile away from areas covered by
other sensors, thus the Js(y) used involves a repulsion force that pushes the mobile
away from its closest neighbor. The form of this function is given by

Js(y) = max
j∈Hrc (m)

{
exp

(
− ∥y− xj∥2

r2d

)}
(9.17)

where Hrc(m) is the set of all nodes in the communication range rc of the mobile m.
The detection range rd quantifies the size of the region around the mobile m to be
repelled by its neighbors.

The cost function Jc(y), similarly to Js, is designed to push the mobile away from
areas that have been covered by other sensors (stationary or mobile) using the relevant
information from the cognitive map of the mobile node. This function takes a larger
value if the candidate position is adequately covered by other sensors and a small value
otherwise. This cost function is given by

Jc(y) =
1

πr2d

∑
{i,j}∈Dr̄d

(ȳ)

Pk(i, j) (9.18)

where Dr̄d(ȳ) is the set of cells existing in a discretized disk of the mobile’s Pk matrix,
centered at the position ȳ = ⌈y⌉ with radius of r̄d = ⌈rd⌉. This objective enables
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the mobile nodes to search large coverage holes efficiently when stationary sensors are
absent and the hole is covered only by the mobile.

Even if the mobile should search holes in its immediate vicinity, it should eventually
make some progress towards approaching the larger coverage hole. This is achieved by
the target1 function. In this function, each mobile has a destination point xt (e.g., the
centroid of the larger coverage hole), and the target cost Jt(y) is a function that pulls
the mobile towards its target. Jt(y) is a function of the distance between the mobile
and the target position and should take smaller values as the mobile moves towards
the target destination thus for the purposes of this paper it is given by

Jt(y) =
∥y− xt∥

rz
. (9.19)

An important parameter of the path planning algorithm is the radius of the search
area where a target position can be found rz. The importance of the parameter will
be discussed in the next section.

To compute Jt(·), one needs to determine a target position xt and in our case the
target position is assumed the centroid of the largest coverage hole in the search area
defined by rz. This is achieved by the Zoom algorithm [9] which is an efficient algorithm
that can run at every step k. The idea of the algorithm is to divide the submatrix of
Pm
k that corresponds to the cells Dr̄z(x̄m(k)) in four equal segments, and choose the

segment with the maximum number of empty cells i.e the segment with the maximum
number of cells with P (i, j) = 0 and repeats until either the segment size is equal to
a single cell or until all segments have the same number of empty cells. In the first
case, the hole center position will be the center of the cell. In the second case, the hole
center position will be the center of the segment during the previous iteration. The
algorithm is based on the divide-and-conquer principle and as such it is very efficient
and can run repeatedly even on simple microprocessors. We point out that both cost
functions used in (11.3) can be easily computed by a mobile node using information in
its cognitive map or by obtaining information from its one-hop neighbors.

For completeness, note that another cost function that prevents mobiles from step-
ping outside the field exist. This boundary cost function Jb(y) penalizes all candidate
positions y that are not included in the field area A and is given by

Jb(y) =

{
1 if y /∈ A
0 otherwise

(9.20)

All cost functions used in (9.16) can be easily computed by a mobile node using in-
formation in its cognitive map or by obtaining information from its one-hop neighbors.

1Not to be confused with the targets (or events) that the mobiles are searching for.
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9.5.3 Search Neighborhood rz

An important consideration for the above path planning algorithm is the size of the
neighborhood rz where the mobile needs to search for its target (largest coverage hole).
Given the analysis of the previous section, the mobile should not always head towards
the biggest hole since this may not result in fast event detection. Rather, it should head
towards big enough holes that are located close to the mobile. Therefore, the objective
of the mobile should be to look for a big enough (not necessarily the biggest) hole that
is located relatively close to it (search for a “local” big enough hole rather than search
for the biggest “global” one). In a sense, this is equivalent to searching for the biggest
hole in a small enough neighborhood around the mobile. Also note that a smaller rz
is advantageous since it implies that less information is needed for the coverage hole
estimation.

Therefore, the proposed algorithm searches for the biggest hole in a radius rz around
the mobile. An important question is how big should rz be. If rz is too small, then
there is a risk that the search strategy of the mobile will be “myopic” always searching
in smaller holes never reaching the larger holes. On the other hand, if rz is too big, then
the mobile will give more priority to larger holes that are located far away ignoring
large enough holes that are located close to it. Thus, an optimal rz exists, however it
is not easy to compute. This question is also addressed in Section 9.6.

9.5.4 Distributed Collaboration between Mobile Nodes

When multiple mobile nodes are used, it is desirable that they collaborate so they
can better achieve their tasks. In this sense, it is desirable that each mobile searches
different areas to avoid duplication of work. Due to the localized nature of the proposed
algorithm (it uses only the information in rz), if two mobiles are located sufficiently far
apart, then they are guaranteed to search different coverage holes which is advantageous
since duplication of work is avoided. A possible problem arises when the two mobiles
come sufficiently close to each other. In this case, it is very likely that the information
they will use to estimate the next target position will be the same and as a result they
will all estimate the same target location. Clearly, this is not a good collaboration
strategy since there is no benefit if they all converge to the same point. To avoid
this problem we utilize a collaboration protocol that enables mobile nodes to exchange
some information in order to avoid converging to the same point.

When two mobiles come into communication range rc for the first time (they are out
of communication range at step k− 1 but they are in communication range at k) they
exchange their cognitive map Pm

k , thus they now what areas each one has searched so
far. From this point onward, at every step, the mobiles exchange their current location
as well as their computed target location (i.e., the centroid of the biggest coverage hole
in their respective rz’s).

After mobile node i has exchanged collaboration messages with its neighboring mo-
biles it has all the necessary information to execute the collaboration protocol. Thus
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at first, it merges its cognitive map P i
k with the cognitive maps P j

k , received from its
neighbors, so that it does not explore areas already explored by other mobile nodes.
Afterwards, the mobile node i utilizes the current locations xj(k) and dynamic target
coordinates xj

t(k) received from its neighboring mobiles j ̸= i in order to avoid going
towards the same point. Once the mobile i has received all target points from its
neighbors, it forms the matrix Dr̄z(x̄i(k)) (which is a copy of the set of P i

k cells that
corresponds to the distance rz from the current position of mobile i) and updates the
Dr̄z(x̄i(k)) matrix by assuming that these targets points constitute covered areas. Fi-
nally, it executes the zoom algorithm [9] where the input is the Dr̄z(x̄i(k)) matrix and
the output is the dynamic target point xi

t(k) of the mobile node i which is definitely
different that the target points of its neighboring mobiles.

With this simple scheme, the mobiles avoid exploring the same areas. This scheme
has some important benefits. It is distributed (no need for a central controller), it is
simple, and utilizes only local information (the relevant information in the submatrix
Dr̄z(x̄i(k)), which corresponds to the neighborhood rz of the cognitive map P i

k). This
approach is also very “intuitive” based on the discussion of Section 9.4.4. If there are
two mobiles and two coverage holes, then one will decide to go to its closer hole while
the other will consider part of that hole covered thus it will probably decide to go to
the second hole unless the first hole is significantly larger than the second.

9.6 Simulation Results

In this section we present a representative scenario of the movement of a mobile
node to illustrate the behavior of the proposed path planning algorithm. We assume a
sensor field with 300 randomly deployed stationary sensors in a 200m×200m area. The
detection radius of all sensors is rd = 5m and the communication range rc = rz + rd =
30m. The weights are set to wt = ws = 0.49, wc = 0.02 and the mobile maneuverability
parameters are set to ρ = 1m and ϕ = 35◦ while for every decision ν = 10 candidate
next positions are considered. In this simulation scenario a static event that is not
detected initially by the stationary sensor field exists and it is indicated by the + sign.

Fig. 9.8 shows how the mobile node navigates through the sensor field, sampling
points that are not adequately covered by the stationary sensors. As seen from the
path followed, there is collaboration between the mobile and stationary sensors in the
sense that the mobile has found a path that is least covered by the stationary sensors
and also the undetected event is now been detected.

Fig. 9.9 also shows representative scenario of the movement of a team of five mobile
nodes. In this simulation we use the same set of parameters as described previously
except the number of randomly deployed stationary sensors which is now 200. Fig. 9.9
shows how the five mobile nodes navigate collaboratively through the field, sampling
points that are not adequately covered by the stationary sensors. As seen from the
paths followed, there is collaboration between mobile and stationary sensors in the
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Figure 9.8: Dynamic path planning using M = 1 mobile node.

sense that the mobiles have found five different paths that are least covered by the
stationary sensors. Notice that the five mobiles collaborate and select different targets
at the beginning of their motion and that the undetected event has now been detected
by a mobile node.
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Figure 9.9: Dynamic path planning using a team of M = 5 mobile nodes.

Next, we provide a simulation experiment to illustrate the behavior of the proposed
path planning algorithm with two different rz values for the scenario presented in
section 9.4. As previously mentioned, rz is the searching range where the mobile node
founds its dynamic target (finds the coverage hole center). Fig. 9.10(a) shows a sensor
field area where two coverage holes exist. Such WSN field deployment could appear
when stationary sensors destroyed in the particular regions due to due to malicious
action or environmental effects (e.g. shadowy regions prevent solar battery charging).
The smaller hole is closer to the mobile node and the big hole has an area Ab = 2×As.
The egg-shaped area is also shown in the figure. Clearly, the mobile node should follow
a path from its current location towards the small hole, search the small hole and
afterwards continue towards the big hole and search the big hole. Fig. 9.10(b) shows
the path followed by the mobile node when rz = 20m and Fig. 9.10(c) shows the path
followed by the mobile node when rz = 60m.
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It turns out that when the mobile node is searching for events “locally” the expected
event detection time could be minimized with high probability (i.e. the mobile in
Fig. 9.10(b) follows the optimal search path according to the analysis provided in
section 9.4). This behavior of the proposed path planning algorithm is very important
as it allows the algorithm to make local decisions for enhancing the system’s global
performance as it is infeasible or costly to continuously collect information from a
large WSN, moreover enables the path planning algorithm to be adaptive and requiring
limited amount of information and computation.
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(a) A sensor field area with two cover-
age holes
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(b) Path followed by the mobile sensor
node to search the coverage holes when
rz = 20m
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(c) Path followed by the mobile sensor
node to search the coverage holes when
rz = 60m

Figure 9.10: Paths followed by the mobile sensor node to search the coverage holes of
the sensor field when two different rz values are used in the proposed path planning
algorithm

In the next simulation results we provide a comparison between two different heuris-
tic path planning methods for the scenario presented in section 9.4 where more than
two (h > 2) circular and non overlapping coverage holes exist in the sensor field. We
consider the following two path planning algorithms:

� CPP: This Centralized Path Planning algorithm is based on a heuristic derived by
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analytical results presented in section 9.4. In this algorithm, the mobile has global
information regarding the coverage holes of the sensor field (i.e. knows the number,
the centroid and area of each hole) and utilizes the following heuristic decision.
At the beginning or once a coverage hole has been searched, the mobile decides
whether to go and search the biggest uncover region in the field or the nearest
uncovered region. This decision is based on based on eq. 9.9 (i.e. decides based on
egg-shape region). Once the mobile has searched the decided coverage hole decides
the next hole to search based on its current position and the remaining holes of the
field. Once the hole to search has been decided, the mobile navigates on a straight
towards that hole. After the mobile enters the hole, it utilizes a coverage path
planning algorithm to search the hole. Various coverage path planning methods for
covering well defined areas have been proposed in the literature [141, 59], however
for the purposes of this simulation we use the method presented in section 9.5.1
with two cost functions Jt and Jc. (see eq. (9.18,9.19)) and the target is defined by
zoom algorithm where the search radius is set equal to the radius of the coverage
hole been searched.

� DPP: This Distributed Path Planning is the proposed algorithm described earlier
in section 9.5. This is an adaptive and on-line algorithm in the sense that the mobile
uses only accurate local information in order to decide where and how to search
the uncovered region of the sensor field (i.e. does not know the number, centroids
or the uncovered regions). The mobile navigates using the method presented in
section 9.5.1 with three cost functions Jt, Js and Jc. The target of the Jt is defined
at each step k using the zoom algorithm with a fixed search radius rz. When this
algorithm is used by the mobile to search holes, in the case when only few circular
and non overlapping coverage holes exist in the sensor field, the mobile seems to
navigate towards the nearest-largest hole in a greedy way. Note that “nearest”
is defined by rz radius. Therefore, using this algorithm, sometimes the mobile
might missed searching a hole completely (because a near by hole is bigger) and
sometimes the mobile might miss to cover a hole at all (because the remaining field
is completely covered and the rz is very small to catch the uncovered hole). To
conclude, note that the searching neighborhood rz radius is an important parameter
of this algorithm and this algorithm works very well for the general case (when
sensors are randomly deployed, see fig 9.2) and also supports easily collaboration
between mobile nodes, when multiple mobiles are available.

Fig. 9.11 shows how the mobile node navigates to search the coverage holes of the
sensor field using the proposed CPP and DPP path planing methods. Also for this
particular scenario we find the optimal tour using the exhaustive search algorithm
presented in Fig. 9.7. The optimal path indicates that the mobile should follow the
path from O → 2 → 3 → 1 → 5 → 4 in order to search for the event with the
minimum expected detection delay.

To further investigate the performance of the previous two path planning algorithms
we compare the average probability of not detecting the event until time k and average
event detection time accomplished over 100 sensor fields after 1000 moving steps of the
mobile node. Each field contains 5 circular coverage holes that are randomly placed in
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(a) The optimal path that the mobile
should follow is the path from O →
2 → 3 → 1 → 5 → 4
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(b) Path followed by the mobile to
search the coverage holes when CPP
algorithm is used
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(c) Path followed by the mobile to
search the coverage holes when DPP
algorithm is used with rz = 50m
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(d) Path followed by the mobile to
search the coverage holes when DPP
algorithm is used with rz = 20m

Figure 9.11: Paths followed by the mobile sensor node to search the four coverage holes
of the sensor field using two different path planning algorithms

the sensor field and each hole has a random radius in the interval [2rd, 2rd
√
ϱ], where

ϱ = 10 is the area ratio of the possible biggest hole with respect to the possible smaller
hole. Finally, each sensor field contains an undetected event which is randomly placed
in one of the coverage holes. The purpose of this Monte Carlo simulation is to find the
algorithm (CPP or DPP) that requires the minimum time to detect the event as well
as to find the near optimum radius rz of the searching neighborhood of the proposed
path planning algorithm DPP.

Results, depicted in Fig. 9.12, indicate that two of the algorithms, CPP and DPP
with rz = 75m, search all coverage holes completely (see Fig. 9.12(a)) and the average
time to detect the event is minimized in comparison with the other algorithms (see
Fig. 9.12(b),9.12(c)). Clearly the heuristic used in CPP algorithm results in fast event
detection, but it can be used only when global knowledge of the sensor field deployment
is available. However, DPP with rz = 75m algorithm has similar performance and uses
less information and computation. It seems that rz = 75m is the near optimum rz to
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(c) Average event detection time.

Figure 9.12: The average coverage, average probability of not detecting the event and
average event detection time accomplished over 100 sensor fields by the mobile node
after 1000 moving steps when CPP algorithm and DPP algorithm with different rz
values are used

search holes in such particular sensor field deployments (non overlapping holes that
appear randomly in 200m × 200m area). This rz value is affected also from other
parameters of the sensor field deployment such as the number of holes, the radius of
the biggest hole etc.

If rz radius is set below the optimum value i.e rz << 75m, the performance is
reduced. Not only in terms of fast event detection but also coverage. This is expected
as the mobile seems to miss some holes that are placed far away from it and rz searching
radius is too small to find those holes. This is also shown in Fig. 9.12(a), where area
coverage is not around 100% as well as in Fig. 9.12(b) where the probability on detection
never approaches 0.

A counter intuitive results came out for the case where rz is above optimum (e.g
rz = 100m). One would expect that as the mobile is able to catch all coverage holes of
the sensor field, the performance should be better either in terms of coverage or in terms
of fast event detection. However is this not how the algorithm works. In the case when
rz is very big (i.e rz >> 75m), the mobile identifies the biggest coverage hole in the
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field and starts moving towards there. This is not good strategy as the mobile spends
much time in moving between holes instead of search them, for instance, consider what
happens when the first biggest hole is far away for the mobile and the second bigger
hole is next to it. But even if the mobile goes to the biggest hole, the coverage should
approximates almost 100% as moving steps increase to 1000, however Fig. 9.12(a)
shows that this algorithm also avoids to provide complete coverage (i.e. some holes or
parts of them never searched). This seems to holds true because as the mobile searches
the biggest hole this biggest hole becomes smaller and smaller and once is smaller than
any other hole in the field, the target (provided by zoom algorithm) changes and thus
the mobile navigates towards the other hole (the current biggest hole) and does not
complete the search of the first biggest hole.

To conclude with, if global knowledge of the sensor field in available and this knowl-
edge does not changes over time, CPP algorithm provides a very good heuristic to
search the coverage holes such that the expected time to detect an event is minimized.
However this heuristic can not provide solution when the sensor field has several over-
lapping (connected) holes or in the general case when static sensors are placed randomly
and/or the static deployment is very sparse. For all previous cases, DPP algorithm
with a searching neighborhood of rz radius that is very small compared to the sensor
field area provides a very good heuristic both for coverage over time as well as for fast
event detection. This is also proved in the next simulation results. This heuristic is
valid because in a sparse sensor network ( as the one shown in Fig. 9.2) the algorithm
searches the largest coverage holes that are located near the mobile. Also for the case
investigated in this simulation (non overlapping holes) there is also an optimum rz
radius that also provides a solution to the problem.

Therefore, if the mobile uses the heuristic to search first the largest holes that
are located near to it (inside an rz radius), there is an optimal rz range that can
provide fast event detection. If this optimum rz is found (e.g. through monte carlo
simulations), then theDPP algorithm provides even faster event detection compared to
CPP algorithm. Finally, this heuristic can provide the solution using less information
compared to the CPP algorithm and also the path can be found on-line and thus adapt
to possible sensor field deployment changes.

In the next simulation, we investigate the average performance in terms of event
detection time and area coverage of the proposed path planning for different rz values
using Monte Carlo simulation. We consider 100 sensor fields with 400 randomly dis-
tributed stationary sensors, each sensor field is deployed in a 200m × 200m area and
in each sensor field one undetected event exists. We present the average area cover-
age, the average probability of not detecting the event until time t and average event
detection time accomplished over 100 sensor fields after 1000 moving steps by M = 1
mobile node at Fig. 9.13 and by M = 5 mobile nodes at Fig. 9.14.

These simulation experiments indicate that when each mobile node is searching for
an event in sparse stationary sensor fields, searching the event in “local” holes rather
than searching it in a more “global” holes results in fast detection of the event. It is
also shown that the neighborhood rz should not be very big (compared to WSN area)
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(c) Average event detection time.

Figure 9.13: The average coverage, average probability of not detecting the event and
average event detection time accomplished over 100 sensor fields with 400 randomly
distributed stationary sensors by M = 1 mobile node after 1000 moving steps for
different rz values.

to avoid always heading towards the biggest hole but it should also be big enough to
prevent the mobile for visiting very small holes compared to the detection range rd
of the mobile node. Also note that this trade off, also maximizes the area coverage
(minimize the average probability that an event remains undetected).

Searching for the event “locally” also promotes the collaboration, when multiple
mobile nodes exist, as it requires less information to be exchanged between sensor
nodes, enables a distributed and simple method for dynamic target assignment and
each mobile decides its next step more accurately as it utilizes updated information in
its neighborhood.

As indicated in simulation experiments of Fig. 9.13 and Fig. 9.14 the optimal rz
radius does not depend much on the number of mobile sensor nodes that move in
the field and also the close to optimal value (rz=25m) that is approximated by the
simulation outcomes is much more less compared to the sensor field diagonal

√
2A.

Of course, when we choose different parameters regarding the stationary sensor field
deployment and/or the path planning algorithm a different optimal rz value should
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(c) Average event detection time.

Figure 9.14: The average coverage, average probability of not detecting the event and
average event detection time accomplished over 100 sensor fields with 400 randomly
distributed stationary sensors by M = 5 mobile nodes after 1000 moving steps for
different rz values.

found. Nevertheless, using Monte Carlo simulation one can set and adjust the different
parameters involved in the path planning based on the stationary sensor field set-up
as well as the hardware constrains of the mobile nodes. However we point out that
in the next chapter we further investigate the searching neighborhood rz radius and
in particular we derive an approximation method that estimates the rz radius without
extensive Monte Carlo simulations.

The next simulation investigates the performance of our approach in more dynamic
environments where the events occur not only randomly in space but in time as well.
Specifically, we consider scenarios where the events are activated at random times and
have finite duration. In such scenarios an event may stay undetected even when it
occurs in areas searched by a mobile because it may become active after the mobile
has searched the area or it may become inactive before the mobile searches the area.
Our approach can address such scenarios using the forgetting factor parameter f in
eq. (9.2).

We consider 100 sensor fields with 200 randomly distributed stationary sensors, each

162

The
ofa

nis
 P

. L
am

bro
u



Area Coverage and Event Detection in Monitoring Applications using Mixed Sensor Networks

sensor field is deployed in a 200m× 200m area and contains 10 undetected events. We
assume that the events are activated according to a Poisson process with rate λ = 1/300
(i.e. 300 time steps is the expectation of inter-arrival time of each event) and they are
uniformly distributed in the areas not covered by the static sensor nodes. Each event
remains active for a time interval that it exponentially distributed with rate µ = 1/100
(i.e. 100 time steps is the expectation of lifetime of each event).

In the following simulation experiment we investigate the performance of our ap-
proach in terms of the average number of detected events as a function of the forgetting
factor f values and also compare our approach with random search using Monte Carlo
simulation. In the random search, the next position of a mobile node is ρ = 1m away
from the previous one and at random heading direction 0 ≤ θ ≤ 2π. The results are
depicted in Fig. 9.15 where a mobile node has moved for 3000 moving steps. Instead
of fixed values one can use a function of time k for the forgetting factor, however this
will require extensive memory and computation (each element of matrix Pk must have
a time-stamp).
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(b) forgetting factor f profiles.

Figure 9.15: Average number of detected events as a function of the forgetting factor
f values when a single mobile is moving for 3000 moving steps with rz=25m.

Under more extensive simulations that we are not tabulated due to space limitations,
we reach the following conclusions regarding the forgetting factor f : The forgetting
factor f and the searching neighborhood rz are two parameters that are affect each
other. For instance if f → 1 and rz is too small to catch this degradation in the
mobile’s Pk the mobile seems to be trapped after searching once the entire field. Such
trapped behavior is also experience when the coverage cost function Jc is used because
sometimes it blocks the mobile to run over a recently searched path when the mobile
tries to go towards areas not search for long time. When multiple mobiles are used this
problematic behavior becomes more significant.

Clearly, when the environment is dynamic the mobiles have to continuously search
the environment for events, given more moving steps or using more mobile nodes more
events can be found. The forgetting factor f must be set in conjunction to rz range such
that the mobile could identify which regions have not been searched recently. Given
that the rz is big enough to catch the degradation in the mobile’s Pk, the forgetting
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factor must set accordingly such that the mobile forgets “smoothly” the regions already
searched. If f = 1 the mobile will avoid search again the field and thus once the field
is searched it will trapped or move randomly in some sense. If the mobile forgets
rapidly i.e. after a few moving steps the mobile can not explore the entire field instead
is searching the field locally. We should mention here that the algorithm outperforms
random search in the number of undetected events found in such dynamic environments.
To conclude with, we mention that depending on the events characteristics the mobiles
should forget “smoothly” such that the entire field can be search. If the number of
mobiles is big enough such that they can communicate among them in a multi-hop
manner and thus having almost the same Pk our approach can address such dynamic
environment successfully.

Finally, the last simulation experiment evaluates the robustness of the distributed
path planning algorithm with respect to the positioning uncertainty on the mobile and
static sensor nodes. That is, when a mobile node requests the positions of its neigh-
boring static and mobile sensors, the positions received are not the accurate positions
but approximate due to inaccuracies in the localization system of sensor nodes. In
particular, if the sensor node (mobile or static) accurate position is x(k), its approxi-
mate position is given by x̂(k) = x(k) + δ where δ is a random vector that represents
the effects of positioning uncertainty (noise). We assume δ is additive white Gaussian
noise with zero mean and variance σ2.

Fig. 9.16 presents the average area coverage achieved by the distributed path plan-
ning algorithm for different σ values after 300 time steps using 5 mobile nodes with
rd = 5m and ρ = 2.5m. As indicated in simulation experiments of Fig. 9.16, small
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Figure 9.16: The average coverage accomplished over 100 sensor fields with 300 ran-
domly distributed stationary sensors by M = 5 mobile nodes after 300 moving steps
for different Gaussian noise standard deviation σ values (positioning uncertainties)

positioning uncertainties do not significantly affect the area coverage performance of
the distributed path planning algorithm, however as the Gaussian noise standard devi-
ation σ is becoming bigger and comparable to ρ (the distance that each mobile covers
in one time step) or even rd, the area coverage performance is significantly affected.

164

The
ofa

nis
 P

. L
am

bro
u



Area Coverage and Event Detection in Monitoring Applications using Mixed Sensor Networks

9.7 Conclusion

The objective of this work is to provide an analysis for deciding the optimum search-
ing strategy that minimizes the expected detection time of an event in the context of
mixed sensor networks. We have prove analytically that searching for an event “lo-
cally” under certain circumstances can lead to fast event detection. Finding the optimal
search path strategy is proved to be an NP-complete problem and therefore we proposed
a heuristic centralized path planning strategy that provides computationally tractable
and close to optimal solution to the problem. The heuristic centralized approach has
been also compared with the proposed distributed collaborative path planning approach
which remains valid for the general case where multiple mobile nodes are searching for
an event in a sensor field area and the shape as well as the number and distribution
of uncovered regions are govern by randomness. Extensive simulation results indicate
that the selection of the searching neighborhood radius rz is of critical importance.
Therefore, in the next chapter we further investigate the searching neighborhood rz
radius and in particular to study how this parameter can be found or approximated
analytically in conjunction with other parameters used in the path planning algorithm
as well as the stationary field random deployment parameters.
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Chapter 10
On the Optimal Search Neighborhood

in Mixed Wireless Sensor Networks

10.1 Summary

This chapter considers the problem of finding the path that improves the area cov-
erage over time in a sparse stationary sensor network with mobile sensor nodes. For a
simplified scenario, the chapter derives the optimal path strategy and extrapolates some
of the properties of the scenario to a more general instance of the problem. Further-
more, the chapter proposes a surrogate metric that can be used in order to determine
the optimal searching neighborhood and presents extensive simulation results which
indicated that this approach can achieve very good results.

10.2 Introduction

In the previous chapter we study the optimum searching path for one mobile node
that minimizes the expected event detection time for a simplified scenario of the prob-
lem and study the event detection capabilities of the proposed path planning algorithm
for the general problem. Obtained results indicated that the selection of the search-
ing neighborhood radius is a crucial issue. In this chapter we further investigate the
searching neighborhood rz radius and we propose a surrogate metric that can be used
in order to determine the optimal size of the search neighborhood as a function of other
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parameters used in the proposed path planning algorithm as well as the stationary field
random deployment parameters. The main objective is to determine the optimal path
that the mobile node (or a group of nodes) should follow in order to that maximize the
area coverage over time. As it will be shown in sequel, this objective is identical to the
objective of minimizing the expected event detection delay.

In principle, assuming there are h coverage holes, at known locations, one could
determine the optimal path of the mobile. However, this problem is NP complete
since it can be reduced to the Traveling Salesman Problem (TSP or the multi-salesmen
problem if there is a group of mobiles). Therefore, finding an optimal solution for
medium or large size problems is not computationally feasible. Furthermore, in general
sensor networks are deployed in harsh environments thus the exact state of the network
(operating condition of each node) is not known a priori. Thus, one of the benefits of
deploying mobiles nodes is that the state of the sensors can also be investigated.

Our approach in addressing this problem is to use a dynamic search strategy where
the mobile determines the biggest coverage hole in an area (neighborhood) around it
which constitutes its target location (i.e., the area that needs to be sampled next)
[136, 142]. An interesting question that needs to be addressed is the size of the neigh-
borhood that the mobile needs to consider when determining its target. Clearly, that
neighborhood cannot be very small since this will lead to myopic strategies where the
mobile will search for very small holes ignoring much bigger holes that are a little fur-
ther away. On the other hand, what we show in this chapter is that the neighborhood
should not be very big either which is a rather counter-intuitive result. This result
indicates that the mobile should look for a “medium” size coverage hole located in the
mobile’s immediate neighborhood and ignore the possibly larger holes that are located
further away. This strategy is justified because the mobile will waste valuable time
traveling towards a bigger hole when it can sample the smaller coverage holes that are
located much closer to it.

As indicated above, the searched neighborhood should not be very small but it
should not be very big either, therefore, there must be an optimal size. Formulating
the problem to determine the optimal neighborhood size is not straightforward1, thus
we resort to a surrogate metric that can lead us to the optimal neighborhood size. The
surrogate metric used is the variance of vacancy used in coverage processes [30, 143]. In
this context, the computation of the variance of vacancy is a function of the size of the
area that is used for the computation. The main idea in this chapter is to associate the
neighborhood where a mobile is going to search for the biggest coverage hole with the
area that maximizes the variance of vacancy. The justification behind this approach
is that the mobile needs to consider as much new information as possible when it will
decide where it will go next. Thus, the mobile uses the neighborhood that maximizes
variance of vacancy. As will be presented in the sequel, this choice achieves very good
results.

1Potentially one could run multiple simulations off-line, under different neighborhood sizes and
pick the one with the best coverage but this is excessively time consuming and does not provide any
important insights about the nature of the problem.
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The contributions of this chapter are the following. In the context of mixed wireless
sensor networks, it shows that it is not optimal to first search the largest coverage
hole in the entire field; rather searching a big enough hole close to the current mo-
bile location can yield faster coverage. Furthermore, the chapter proposes a surrogate
metric that can be used in order to determine the optimal size of the search neigh-
borhood. Even though the proposed search approach cannot guarantee an optimal
solution, the obtained solutions are satisfactory considering that the original problem
is NP -complete.

The remaining of this chapter is organized as follows. Section 10.3 presents the
modeling assumptions as well as the required definitions. Section 10.4 determines the
optimal path of a mobile when only two coverage holes exist and shows that it is
optimal to search smaller holes located closer to the mobile rather than bigger holes
far away. Section 10.5 introduces some basic results relating to the coverage processes
and presents the surrogate metric used in this chapter. Section 10.6 present some
simulation results and finally the chapter ends with the Conclusions.

10.3 Sensor Network Model and Objectives

In this chapter, we adopt the mixed sensor network framework proposed in the
previous chapter and we also use exactly the same notation, modeling assumptions and
information structure needed by the mobile nodes to run the path-planning algorithm
as in the sections 9.5 and 9.3 of previous chapter.

Consider a mixed wireless sensor network that consists of large set of static sensor
nodes and a small set of mobile nodes deployed in a large square area A. Let the
set N to define the set of all sensor nodes in the sensor network and let all nodes
have a common detection range rd where, if an event occurs it will be detected with
probability one.

Next, we define the coverage over time C which will serve as an objective function
to be maximized by the mobile sensors. At any instant t, let I(x, t) be an indicator
function that takes the value 1 if point x ∈ A is covered once by at least one sensor
during the time interval [0, t) and 0 otherwise. In other words, if we define xi + Ui, to
be the set of points covered by sensor xi such that {xi + x : x ∈ Ui} 2 then I(x) = 1 if

x ∈
N∪
i=1

{xi + Ui}. Thus, the coverage achieved by the network at t is given by

C(t) =
1

A

∫
A
I(x, t)dx.

2Ui is the area covered (shape) by sensor xi, i ∈ N , over the time interval [0, t). e.g. it defines a
disk of radius rd for a static sensor or defines the area covered by the track of width rd of a mobile
sensor.
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The coverage C(t) defines the ratio of covered area by the mixed sensor network to
the area of interest in the time interval [0, t). In other words, it defines the probability
P (t) that a static event will be detected by at least one sensor node somewhere in the
time interval [0, t), where t ≤ T and T defines the time that is needed by mobile nodes
to achieve full coverage of the uncovered regions.

As mobile nodes move, they cover new areas, thus the coverage over time is a
reasonable objective function that needs to be maximized by the mobiles.

C(T ) =
∫ T

0

C(t)dt (10.1)

Now, consider the expected time E [τ ] of initial detection denoted to be the time at
which the stationary event falls in the sensing area of a mobile sensor for first time,
where τ is a random variable that denotes the time that the event is first detected.
The probability that a stationary event remains undetected in the time interval [0, t)
can be given by

P (τ ≥ t) = 1− P (τ < t) = 1− C(t) (10.2)

Consequently, the expectation of first detection time E [τ ] is given by

E [τ ] =

∫ T

0

P (τ ≥ t)dt =

∫ T

0

(1− C(t)) dt (10.3)

where T is the time that is needed for full coverage, i.e.C(t ≥ T ) = 1.

Therefore, by comparing eq.(10.1) and eq.(10.3) we get

C(T ) = 1− E [τ ]

Consequently, one can come to the conclusion that C(T ) and E [τ ] are two comple-
mentary objectives. Hence, a proper motion planning strategy should either maximize
C(T ) or minimize E [τ ].

10.4 The Two Hole Problem

As already mentioned, the objective of the mobile nodes is to sample all coverage
holes such that C(T ) is maximized (for some T ). Assuming there are h coverage holes,
then the problem of determining the optimal path of the mobile is NP -complete (it can
be reduced to the TSP). In this section we investigate what happens if there are only
two coverage holes in order to gain some insight that can be used in other heuristic
approaches for efficiently solving the problem.
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Figure 10.1: Problem geometry

Assume that the field has only two coverage holes with areas Ab and As (Ab ≥ As)
and centroids, Cb and Cs respectively (see Fig. 10.1). For simplicity, it is also assumed
that there is no overlap between the two holes. A mobile node is initially placed at
position O at distance db = ∥Cb−O∥ from hole Ab and at distance ds = ∥Cs−O∥ from
hole As. The distance between the two coverage holes is indicated by dsb = ∥Cs−Cb∥.
The objective of the mobile is to maximize C(T ) in eq.(10.1) where T is some time
instant such that in all of the paths considered, the mobiles achieve full coverage.

t

C

As

As + Ab

Ab

As + Ab

1

ts1 ts2 ts3 ts4tb1 tb2 tb3 tb4

W1

W2

W3

Figure 10.2: Coverage over time

Given that there are only two holes, the mobile has only two options3. First go to
Ab, search Ab and then go to As or first go to As, search As and then go to Ab. Fig. 10.2
shows C(t) under the two different paths thus C(T ) for each path is the area under
the corresponding curve from 0 until T ≥ tb4. In this figure, we assume that when the
mobile travels over covered regions Ċ(t) = 0 while when it searches in coverage holes
the coverage improvement is constant at rate Ċ(t) = 2rdv/(As + Ab) where v is the
constant mobile speed4.

3We do not consider paths where the mobile can wander around in covered regions.
4Fig. 10.2 implies that the mobile does not start sampling until it reaches the centroid of the hole

and that the shape and size of the hole are such that constant Ċ(t) is always applicable, however, we
point out that these simplifications do not significantly affect the final result.
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When the mobile follows the path from O → Cs → Cb, Csb(T ) is given by

Csb(T ) =
1

2

As

2rdv

As

As + Ab

+
dsb
v

As

As + Ab

+

Ab

2rdv

As

As + Ab

+
1

2

Ab

2rdv

Ab

As + Ab

+
db − ds
v

(10.4)

Similarly, if the mobile follows the path from O → Cb → Cs, Cbs(T ) is given by

Cbs(T ) =
1

2

Ab

2rdv

Ab

As + Ab

+
dsb
v

Ab

As + Ab

+

As

2rdv

Ab

As + Ab

+
1

2

As

2rdv

As

As + Ab

(10.5)

Comparing (10.4) and (10.5) or simply observing Fig. 10.2, the decision of the mobile
is to follow the path that maximizes C(T ) which is equivalent to comparing the three
areas W1, W2 and W3 in Fig. 10.2. Thus

Csb(T ) ≶ Cbs(T ) ⇔ W1 +W3 ≶ W2 (10.6)

which in turn, after some algebraic manipulations, is equivalent to

Csb(T ) ≶ Cbs(T ) ⇔ dsb (Ab − As) ≷ (db − ds) (Ab + As) (10.7)

This result is complementary to result presented in eq.(9.7) of the previous chapter
where we consider the path that minimizes the expected event detection time. (see
also the previous section).

Next, we consider the following cases:

C1 {Ab = As = A}: The decision problem Csb(T ) ≶ Cbs(T ) reduces to ds ≷ db,
i.e., the mobile should go to its nearest coverage hole first. The proof follows easily by
substituting Ab = As = A in (10.7).

C2 {db = ds = d}: The decision problem Csb(T ) ≶ Cbs(T ) reduces to Ab ≷ As, i.e.,
the mobile should go to the biggest hole Ab first (since by assumption Ab ≥ As). The
proof again follows easily by substituting db = ds = d in (10.7).

C3 {Ab > As and db < ds}: The decision is to always go to the biggest hole which is
also located nearer to the mobile. The proof follows by comparing the terms of (10.7).

C4 {Ab > As and db > ds}: The decision depends on the relative position (dsb) and
area ratio (ϱ = Ab/As) of the bigger hole with respect to the smaller one. Specifically,
if the smaller hole is located inside an “egg shaped” area then the decision is to search
the smaller hole first, otherwise, it is better to search the larger hole first. The proof
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follows by solving (10.8) defined by the cosines rule of the triangle in Fig. 10.1. Using
the cosines rule we know that

dsb
2 = ds

2 + db
2 − 2dsdb cos(θ). (10.8)

Also, using some algebra, one can rewrite (10.7) such that the mobile should visit the
smaller hole first. Thus, the mobile should first visit the smallest hole if

dsb ≤
ϱ+ 1

ϱ− 1
(db − ds) (10.9)

where ϱ = Ab/As > 1. Substituting (10.9) in (10.8), we get a single equation (10.10)
with one unknown, ds which denotes the decision boundary that determines which hole
will be visited first. (

ϱ+ 1

ϱ− 1
(db − ds)

)2

= ds
2 + db

2 − 2dsdb cos(θ) (10.10)

Therefore, the mobile should search the smaller hole first if its centroid is located
within the egg-shaped region defined by the solution of (10.10). In polar coordinates
the solution of (10.10) is eq. (10.11) where r = ds

r =
db

(
(ϱ+1)2−(ϱ−1)2cos(θ)−

√
((ϱ+1)2−(ϱ−1)2cos(θ))

2
−(4ϱ)2

)
4ϱ

θ = [0, 2π)
(10.11)

This holds true when O = (0,0). One can use (10.11) to draw the region in polar
coordinate system. This egg-shaped region is illustrated in Fig. 10.3 and indicates that
if the centroid of the small hole is located inside this shape the coverage improvement
rate is maximized when following the O → Cs → Cb path.

Concluding, the analysis above demonstrates that a mobile should not go immedi-
ately to the largest hole in the field but it should first search smaller holes that are
closer to the mobile (areas in the egg shaped region). However, note that the precise
size of the egg, depends on the relative size of the two coverage holes (ϱ). If for exam-
ple the smaller hole is significantly smaller than the larger one, then the egg will be
significantly narrower, implying that the smaller one should be visited first only if it
is exactly in the straight path to the big hole. Furthermore, in many scenarios it may
be difficult to clearly identify two holes (some holes may be connected) and as already
mentioned there may be more than two holes which makes it impractical to determine
the optimal path of the mobile. Thus, the implementation of such an algorithm is
rather difficult, however, the insight from the analysis is clear: “Large enough holes
close to the mobile should be searched first, before moving towards the biggest holes of
the field”. The simplest way to implement this “insight” is by searching for the biggest
coverage hole in a neighborhood around the mobile (the proposed path planning algo-
rithm presented in the previous chapter 9). If this neighborhood is too small, then the
mobile may waste time searching insignificant holes missing much larger holes. On the
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Figure 10.3: The Egg-shaped region for ϱ = 3 and O = (0,0). If Cs is located inside
the shaded region then a mobile should follow the path O → Cs → Cb to maximize
coverage over time.

other hand, if the neighborhood is too big, then the mobile will move straight towards
much larger holes avoiding significant holes that are located close to it. Therefore,
there is an optimal neighborhood size. In the next section we investigate a surrogate
function that we can use to perform this optimization.

10.5 Vacancy

In this section we use the tools from coverage processes [30, 143] in order to analyse
the coverage holes that are generated from the random deployment of sensors in A.
Consider a two-dimensional point process where a collection of N random points is
thrown in a square area A according to the probability density f(x) = 1

A
. Let the

countable collection of randomly distributed points be P ≡ {x1,x2, · · · ,xN}. Assume
that there exists a disc around each point of radius r (in our case r = rd the detection
range) thus all points in the union of all N discs are considered as covered while all
non-covered points are considered as vacant. Vacancy is the collection of all vacant
points within an arbitrary area R ⊂ A which constitutes a random variable with mean
and variance that are defined in the sequel [144]. Let {U1, U2, ...UN} be a countable
collection of non-empty sets (the coverage area each each sensor). For the purposes of
this chapter, Ui is a disc of radius rd and area a = πr2d. Below we summarize some of
the results presented in [144]. Let I(x) be the indicator function of uncovered points
such that I(x) = 1 − I(x) = 1 if x ∈ A is not covered by any disk of radius rd or
I(x) = 0 otherwise. The vacancy within and arbitrary area R ⊂ A, VR = V (R) is
given by

VR = V (R) ≡
∫
R
I(x)dx (10.12)
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and the mean of vacancy (expected uncovered area) is

E(VR) =

∫
R
E{I(x)}dx =

∫
R
P (x not covered) dx

=

∫
R

(
1− a

A

)N

dx = R
(
1− a

A

)N (10.13)

where p = a
A
is the probability that a point x ∈ A is covered by a disk of area a = πr2d

and (1− p)N is the probability that the point x is not covered by any of the N disks
(sensor positions are independent). Also R is the area of R.

The variance of vacancy is

V ar(VR) = E
(
V 2
R
)
− (E(VR))

2 (10.14)

where the mean square of vacancy is

E(V 2
R) =

∫ ∫
R2

E{I(x)I(y)}dxdy

=

∫ ∫
R2

P (x,y both not covered)dxdy
(10.15)

Thus, V ar(VR) can be computed by numerically performing an integration of the
probability P (x,y both not covered). This technique is explicated in [30, 145].

Let the density λ ≡ N
A
of points per unit area of A converges to a constant value as

A increases. Hence, for N large and a
A
small

(
1− a

A

)N

≈
(
1− λa

N

)N

≈ e−λa

Thus by (10.13) the mean of vacancy in a region R ⊆ A is

E(VR) ≈ Re−λa (10.16)

An approximation of the variance of vacancy in a subregion R ⊆ A with area R is
derived in [144] and is given by

V ar(VR) ≈ Rae−2λa

(
8

∫ 1

0

x
(
eλ

a
π
B(x,1) − 1

)
dx−Raλ2

)
(10.17)

where B(x, r) is the intersection area of two disks with radius r and which are centered
2x apart. This area is given by

B(x, r) =

{
4r2

∫ 1

x/r

√
1− y2dy if 0 ≤ x ≤ r

0 if x > r
(10.18)
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Hence B(x, 1) = 2 arccos (x) − 2x
√
1− x2. Even though (10.17) cannot be computed

analytically, it can be computed numerically5.

Let

Q(λ, rd) =

∫ 1

0

x
(
eλr

2
dB(x,1) − 1

)
dx (10.19)

independent of R, then the V ar(VR) can be written as

V ar(VR) ≈ Rπr2de
−2πr2dλ

(
8Q(λ, rd)−Rλ2πr2d

)
(10.20)

which is a second order polynomial in R with a maximum at

R∗ =
4Q(λ, rd)

πλ2r2d
(10.21)

10.5.1 An Approximation of Optimal Search Neighborhood

Next, we use the optimal area size R∗ in order to determine the optimal neighbor-
hood size rz that the mobile node should use in order to determine the biggest coverage
hole to visit next. Recall that the conjecture is that the neighborhood size should be
large enough such that the new information considered by the mobile in making this
decision is maximized. Assuming that at time t the mobile is at position x(t), then it
should search for the biggest hole in a a circular area R1 with radius rz. During the
next step, the mobile will move to a new location x(t + 1) = x(t) + ρ, ρ ∈ R2, where
the region that the mobile will search for a coverage hole will be R2. Thus, the new
information that the mobile will consider from one step to the next is ∆R = R2 \ R1

(i.e Rc
1 ∩ R2). The objective then is to choose the size of the areas R1 and R2 (the

radius rz [137, 146]) such that the variance of vacancy in ∆R is maximized. As the
variance of vacancy in ∆R is maximized between two consecutive steps, the mobile
can exploit, on average, the “maximum” difference in vacancy at each step t in order
to take, on average, the optimal local decision. Given the result of (10.21), the optimal
radius r∗z is the solution to the equation

∆R =
4Q(λ, rd)

πλ2r2d
(10.22)

where ∆R is the area of ∆R.

Lemma 10.5.1. The solution to (10.22) is approximated by

r∗z ≈
64Q2(λ, rd) + π2(ρλrd)

4

32πρλ2r2dQ(λ, rd)
(10.23)

5Note that in order to avoid the edge effects, the above results assume that the square region A
is a quadratic torus, i.e., when a disk protrudes out of one side of the region it re-enters from the
opposite side. Also, note that the approximation in (10.17) holds true under the assumption that aN
converges to a constant value α (0 < α < ∞) as N → ∞ and a → 0. The proofs are provided in [144]
(see Case B)
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where ρ = ∥ρ∥ is the distance traveled by the mobile in one step.

Proof. Assuming the mobile sensor has moved a distance ρ, the area of ∆R is given by

∆R = πrz
2 − B(ρ/2, rz)

= πr2z − 2r2z arccos(
ρ

2rz
) + ρ

2

√
4r2z − ρ2

Thus, substituting in (10.22), r∗z is the solution of the

πr2z − 2r2z arccos(
ρ

2rz
) +

ρ

2

√
4r2z − ρ2 =

4Q(λ, rd)

πλ2r2d

This equation is difficult to be solved due to the arccos term. Using a Taylor series
expansion, one can approximate

arccos(
ρ

2rz
) ≈ π

2
− ρ

2rz

Therefore, ∆R is approximated by

∆R ≈ ρ

2

(
2rz +

√
4r2z − ρ2

)
which is substituted in (10.22) and as a result, r∗z is the solution to

ρ

2

(
2rz +

√
4r2z − ρ2

)
− 4Q(λ, rd)

πλ2r2d
= 0

which, after some algebraic manipulations reduces to the lemma result.

10.6 Simulation Results

In this section we present some numerical results that support the conjecture of
this chapter, i.e., that the optimal search area is given by Lemma 10.5.1. The precise
algorithm used for navigation by the mobile is presented in [136, 137] with the following
parameters: The mobile evaluates ν = 10 candidate next positions which are uniformly
distributed on an arc with radius ρ = 2.5m and extends ϕ = 35◦ above and below of
the current direction of the mobile. Unless otherwise stated, all experiments refer to a
square sensor field of area A = 40000m2. A set of S = 200 static sensors are deployed
and their coordinates are generated according to a uniform distribution. The detection
radius of all sensors is rd = 5m and the communication range rc = rz+rd. The radius rz
defines the radius of the search area where the mobile is searching for its target (largest
coverage hole center). All simulations performed in MATLAB and the outcomes are
the averages of 100 independent random deployments.
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In the first simulation experiment we investigate the effect of the sensor detection
range rd on the optimal neighborhood size. Using Lemma 10.5.1, the optimal neigh-
borhood size for different rd is presented in Table 10.1. As shown in Table 10.1 as

rd S ρ rz
∗ V ar(V∆R)

2 200 2.5 20.3 35.9
5 200 2.5 21.9 847
8 200 2.5 25.7 2232.1
10 200 2.5 30.1 2417.6

Table 10.1: The optimal search neighborhood r∗z for different rd values

the detection radius rd increases, the r∗z radius, where V ar(V∆R) is maximized, also
increases but remains small compared to the field size (e.g. 200m). This is reasonable
because as the sensing radius of each sensor increases (and given that the number of
sensors is fixed S = 200) it is possible to generate deployments where with higher
variation in the achieved coverage.
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C
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Figure 10.4: The average dynamic coverage accomplished over 100 sensor fields by a
mobile node after 2000 moving steps for different rz values when rd = 5m

Fig. 10.4 presents the average dynamic coverage C(k) achieved by the path planning
algorithms presented in [136, 146] after k = 2000 time steps accomplished over 100
sensor fields by one mobile node when rd = 5m. The figure indicates that coverage
is maximized when rz = 22m which is what was also predicted by Lemma 10.5.1 (see
Table 10.1).

In the next simulation experiment we investigate how the optimal rz value is affected
by the density λ ≡ S

A
of the static sensors. First, using Lemma 10.5.1 we compute the

optimal r∗z as shown in 10.2.
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rd S ρ rz
∗ V ar(V∆R)

5 100 2.5 41.9 1141.3
5 200 2.5 21.9 847
5 300 2.5 15.4 630.4
5 400 2.5 12.1 470.7

Table 10.2: The optimal search neighborhood r∗z for different S values

Fig. 10.4 shows that for S = 200 the optimal r∗z = 22m which is agreement with
the results of Table 10.2. Furthermore, Fig. 10.5 presents the coverage achieved by the
path planning algorithm when S = 300 sensors are deployed. The maximum coverage
is achieved when rz = 15m which is again consistent with the Lemma 10.5.1 prediction
as indicated in Table 10.2.
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Figure 10.5: The average dynamic coverage accomplished over 100 sensor fields by a
mobile node after 2000 moving steps for different rz values when S = 300

Finally the last simulation considers how the optimal rz value is affected by ρ, the
distance that the mobile can move in one time step. Distance ρ also indicates how
frequently the target (biggest coverage hole centroid) in the searching neighborhood is
computed with respect to the distance moved. Again, we evaluate the optimal radius
r∗z using Lemma 10.5.1 as shown in Table 10.3.

rd S ρ rz
∗ V ar(V∆R)

5 200 1 54.8 846.99
5 200 2.5 21.9 846.99
5 200 4 13.8 846.98
5 200 5 11.1 846.97

Table 10.3: The optimal search neighborhood r∗z for different ρ values

179

The
ofa

nis
 P

. L
am

bro
u



Chapter 10

Fig. 10.4 indicated that the optimal rz for ρ = 2.5m is about 22m while Fig. 10.6
indicated that for ρ = 4m the optimal rz is about 15m. Both of these results are
consistent with the Lemma 10.5.1 predictions shown in Table 10.3. Therefore, when
the mobile is searching for targets, once it moves farther (bigger ρ) from its previous
position the optimal rz value decreases.
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Figure 10.6: The average dynamic coverage accomplished over 100 sensor fields by a
mobile node after 2000 moving steps for different rz values when ρ = 4m

Lastly, we have to mention that the approximation method presented for the single
mobile node remains valid for the case of multiple mobiles given that the coverage
process is mainly governed by the initial distribution of stationary nodes (e.g. when
the number of mobiles as well as their coverage rate are small enough). Additionally,
this approximation is also valid when the forgetting factor f < 1 and hence the mobile’s
objective is to improve the dynamic coverage rate over time in a small amount of time.

10.7 Conclusion

In this chapter we propose a method to approximate the optimal searching neigh-
borhood that enhances the dynamic coverage performance in a mixed sensor network
architecture in conjunction with other parameters used in the path planning method
presented in previous chapters. This approximation is based on the variance of vacancy
of the binomial coverage process. Obtained results from numerical evaluations of the
mathematical approximations have been verified by Monte Carlo simulation outcomes
of the dynamic coverage over time performance of the path planning method. In the
next chapter, the proposed path planning algorithm has been transferred from simu-
lation to a real-world testbed to provide experimental validations of simulation results
and to further investigate the performance of the proposed approach experimentally.
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Chapter 11
A Testbed for Coverage Control using

Mixed Wireless Sensor Networks

11.1 Summary

This chapter presents the development of an experimental testbed for mixed WSNs
consisting of stationary and mobile sensor nodes that collaborate to improve the sensing
coverage and event detection of the network in a given deployment area. The chapter
describes the hardware and infrastructure of the testbed as well as a case study for
coverage control that was investigated using the testbed. We point out that the de-
veloped testbed can be used for the evaluation and validation of different algorithms
for coverage control that involve collaboration between stationary and mobile sensors
to improve the WSN’s monitoring capabilities. In addition, it can also be used to
investigate other objectives as well as other concepts (e.g., network control).

11.2 Introduction

In the previous chapters we proposed a distributed collaborative framework for com-
plete area coverage where a small set of mobile nodes collaborate with the stationary
sensor nodes and with each other in order to improve the area coverage. However the
proposed approach has been evaluated only in simulation. In this chapter, the pro-
posed framework has been transferred from simulation to a real-world testbed to further
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investigate the performance of the proposed path planning algorithm experimentally.

This chapter provides an overview of a mixed WSN experimental testbed. The
testbed includes several stationary nodes as well as some nodes mounted on mobile
robots. A main objective of the testbed is to demonstrate and validate algorithms
that allow the mobile nodes to move autonomously in the area in order to achieve
their objectives. For the purposes of this chapter, the objective is to improve the
network’s sensing coverage. Furthermore, the testbed can be used to demonstrate the
collaboration between the sensor nodes. Moreover, we emphasize that the testbed can
also be used to demonstrate other objectives (e.g., network connectivity) as well as
other concepts such as networked control or control over wireless networks, however,
these objectives are out of the scope of this chapter.

The overwhelming majority of approaches for solving the sensing coverage problem
has been validated and evaluated based only on simulation models. Experimental work
with WSNs and teams of cooperative autonomous robots has been limited, primarily
due to cost and practical implementation challenges. Nevertheless, experimental vali-
dation is particularly important in distributed WSNs and multi-robot systems research
since several factors that can significantly affect the behavior and performance of vari-
ous approaches may not be accurately modeled. Such factors may include asynchronous
communication, delayed or dropped packets, hardware limitations, inaccurate sensing
etc. While several experimental testbeds involving either stationary sensors or coopera-
tive autonomous robots have been proposed (e.g. [86, 88, 89, 3, 90, 91, 92, 93, 94, 147]),
to the best of our knowledge, non of these specifically addresses the development of
mixed WSNs.

The contribution of the chapter is the development of an inexpensive testbed that
enables validation and evaluation of mixed WSNs and multi-robot cooperation algo-
rithms through both simulation and experimentation . A case study for improving area
coverage in mixed WSNs using the proposed distributed collaborative path planning
algorithm is also presented.

The remaining of the chapter is organized as follows. Section 11.3 presents an
overview of the developed testbed and describes its main components. Section 11.4
defines the coverage control problem while Section 11.5 presents a case study that is
investigated using the testbed and involves the distributed coverage control problem.
This section presents all algorithms executed by the mobiles for their collaborative path
planning. Section 11.6 presents the results obtained from the testbed under different
scenarios. Finally, the chapter concludes with Section 11.7 where some limitations of
the testbed as well as plans for future developments are presented.

11.3 Mixed WSN Testbed Overview

This section provides an overview of the implementation of the proposed mixed
WSN on real hardware. We describe the various components of the testbed which

182

The
ofa

nis
 P

. L
am

bro
u



A Testbed for Coverage Control using Mixed Wireless Sensor Networks

include the stationary sensors, the mobile sensors, as well as the sensor positioning
system which is based on an overhead camera. A schematic overview of the testbed is
shown in Fig. 11.1.

Figure 11.1: Testbed overview

We point out that the testbed has been designed and developed using commercial
off-the-shelf components in order to reduce the overall system cost. Furthermore,
we emphasize that the coverage control problem is important when the area to be
monitored is very large, however, it is not possible to confine such a large network in
the space of a research lab, thus, an attempt was made to scale down the detection
range rd and the communication range rc of each node. For the detection range, we
assume that an event source can be detected by a node if it is within a distance rd
from the sensor while in practice we use sources that produce very weak signals. For
the communication range, every node drops packets that are received from nodes that
are further than rc as explained in the following subsections.

11.3.1 Stationary Sensor Nodes

MICAz motes [1] are developed by Crossbow Technology and are equipped with
an ATMEL ATmega128L [148] processor operating at 8 MHz. The ATmega128 is a
low-power 8-bit Microcontroller with integrated Flash, EEPROM, and SRAM mem-
ory, it has several internal timers and supports a variety of serial interfaces, including
I2C, SPI, USART (Universal Synchronous Asynchronous Receiver Transmitter) and
analog inputs through a built in 8-channel, 10-bit Analog-to-Digital converter which
for instance gives the possibility to connect up to 8 analog sensors such as photocells,
thermistors, microphones, accelerometers etc. The MICAz mote features an IEEE
802.15.4/ZigBee compliant RF transceiver (Chipcon CC2420 [149]), operating in the
2.4 GHz band with a 250-kbps data transfer rate. The MICAz runs TinyOS [150] and
is compatible with existing sensor boards that are easily mounted onto the mote. A
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photo of a MICAz sensor mote is presented in Fig. 11.2.

Figure 11.2: MICAz stationary sensor hardware. (Image courtesy of Crossbow Tech-
nology [1])

In the context of our testbed, this stationary node is very flexible since it can eas-
ily interface with a variety of sensors. However, it has fairly limited computational
capabilities, thus it can only execute fairly simple collaboration algorithms. Further-
more, even though it uses a ZigBee transceiver, the version used is not compatible with
other ZigBee implementations1 (e.g., the Xbee Pro RF transceivers which was used as
communication devices for the mobile sensor nodes), thus, a TinyOS procedure (com-
ponent) has been developed to allow interoperability of the Micaz stationary nodes
with Xbee Pro RF transceivers.

The stationary sensor nodes have been programmed to receive position messages
from the base station. These messages are sent during the initialization phase of the
testbed and contain information about the stationary sensor’s actual position. They
can also receive position request messages from mobile sensor nodes. When a stationary
sensor receives such a packet a decoding procedure extracts the position of the mobile
sensor which has sent the packet. The stationary sensor finds its distance to the mobile
and decides to respond to the request only if its distance from the mobile is less than
rc. In this case, the stationary node responds to the mobile node and sends a position
reply message containing its id and position.

Finally, we consider several static event sources that can be placed at various points
in the testbed. Such sources include a lamp, a buzzer, a candle or even a chemical source
(e.g., an alcohol emitting source). In this case, all sources emit a signal (light, sound,
heat or alcohol fumes) that propagates in the testbed environment and can be detected
by the appropriate sensor (photocell, microphone, thermistor or chemical sensor [110]).
Each stationary sensor periodically samples the environment and when its reading is
above a predefined threshold τd, called the detection threshold it sends a detection
message to the base station containing its position. Depending on the strength of the
emitted signal, the characteristics of the environment and the sensor hardware, one
can determine the detection range rd of each sensor. As already mentioned, for this

1Communication between RF transceivers from different vendors is not straight-forward because
of the different ZigBee stacks hosted on transceivers by their vendors.
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testbed it is desirable to have sources that emit very weak signals such that not all
sensors can detect the presence of the source.

11.3.2 Mobile Sensor Nodes

The mobile sensor node prototypes are based on microchip’s PIC16F877A micro-
controller [151] and on the Mark III robot chassis platform [152]. The PIC (Peripheral
Interface Controller) microcontroller is used for information processing (path planning
decisions), for controlling the two servo motors [153] (navigation), for sampling the
environment via the various interfaced sensors (microphones, photocells, thermistors,
chemical sensors) and for exchanging information with other (mobile or static) sensor
nodes or the base station through the interconnected RF transceiver [154]. A photo of
a mobile sensor node prototype is presented in Fig. 11.3 while Fig. 11.4 presents a sim-
plified schematic of the PIC microcontroller circuitry along with the several interfaces.

Figure 11.3: The mobile sensor node prototype developed

The developed mobile sensor node has a small size which makes it suitable for exper-
imental investigation for mixed or mobile sensor networks in a laboratory environment.
The dimensions (L×W ×H) of the prototype are only 10cm× 9cm× 7cm. Another
advantage of the developed mobile node is the low development cost. The complete
prototype is built entirely from commercial off-the-shelf components and the cost is of
the order of 100 euros. On the other hand, as explained in Section 11.7, the selection
of this robot has some drawbacks.

The PIC16F877A is a cheap, popular, powerful and low power 40-pin 8-bit micro-
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Figure 11.4: A simplified schematic of the mobile sensor node microcontroller circuitry

controller. The 40-pin PDIP package allows rich interconnection and easy assembly.
The device offers 14KB (8K × 14-bits words) of Flash program memory, 256 bytes
EEPROM, and 368 bytes SRAM data memory which limits the size of the cognitive
map that can be maintained by the node. The program memory can be reprogrammed
and erased up to 100,000 times which makes the device very good for experimental
developments. The PIC16F877A features two 8-bit and one 16-bit internal timers that
enable a variety of ways to schedule and manage timing efficiently through hardware. It
also supports a variety of serial interfaces like I2C, SPI, USART, digital inputs/outputs
(I/O) and analog inputs with 8 built-in channels, 10-bit Analog-to-Digital (A/D) con-
verters. This rich collection of interfaces gives the possibility to connect easily a variety
of peripherals such as analog and digital sensors (up to 8 analog sensors), actuators
(e.g. motors) as well as other devices like wireless communication modules, external
memory modules among many others. The microcontroller is operating at 20 MHz
with an external ceramic resonator which enables a 200 ns instruction cycle (5 MIPS).

It is worth mentioning that the PDIP package pinouts is fully compatible with
more advanced PICs PDIP package pinouts, like the PIC18F4620 which supports up
to 10 MIPS and integrates 64KB program flash and 4KB RAM memory. The internal
RAM memory hosted by the PIC micro is vital for robotics applications requiring the
implementation of cognitive maps since the size of the memory constrains the size of the
map which in turn limits the detailed representation of the environment. Furthermore,
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the limited computational capabilities of the microcontroller limits the complexity of
the path planning algorithms that can be implemented on the node.

An XBee Pro [154] RF transceiver is interconnected to the PIC microcontroller
through its integrated USART module. The XBee-PRO module operates within the
ISM 2.4 GHz frequency band with a 250 kbps data transfer rate. It is easy-to-use,
requires minimal power and provides interoperability with ZigBee devices from other
vendors (ZigBee PRO feature set). The RF transceiver uses the ZigBee protocol to
communicate with other mobile and static sensor nodes and with the base station (vi-
sion positioning system). The PIC microcontroller has been programmed appropriately
in order to control the Xbee Pro RF module and to encode or decode the data frames
which sends or receives. For instance, using the PIC’s USART Received Interrupt,
available data frames are directly received from the RF module with negligible delay.
Once the PIC receives such a data frame, a decoding procedure extracts the useful in-
formation; such information could be the position and orientation of the mobile node or
information concerning the cooperation with the neighboring mobile and static nodes.

Specifically, the mobile sensor node receives position messages from the base station
(vision positioning system) that contain information about its physical position and
orientation. These messages are received either periodically or after the mobile explic-
itly requests the information from the positioning system by sending a position trigger
message containing its id. As mentioned previously, the mobile nodes also send posi-
tion request messages to the other nodes (mobile or static) of the WSN requesting the
position of their neighbors. Once a mobile node receives a position request, it replies
with a position reply message containing its id and position only if the node that has
sent the request is located within a distance rc from the mobile. Mobile nodes also
send/receive collaboration messages to/from their neighboring mobile nodes containing
information which enables them to achieve their objectives (e.g. area coverage). The
actual information exchanged is described in section 11.5.2.

Like stationary sensors, mobile sensors are sampling the environment with their
interfaced sensors (microphone, photocell, thermistor, chemical sensor). When their
measurement exceeds a predefined threshold τd they also send a detection message
containing their position to the base station. In a similar fashion to the stationary
sensors, there exists a detection range rd in which the mobile sensors can provide
sensing coverage and reliably detect events. The detection range rd could be adjusted
to a value that is equal or smaller than the detection range of stationary sensors.

Finally, the PIC microcontroller of the mobile node uses all the information from
its neighbors together with information stored in its cognitive map as well as its own
measurements to decide its path. The specific algorithms used for a case study are
shown in Section 11.5.
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11.3.3 Vision Based Positioning System

The majority of algorithms proposed for sensor networks and cooperative autonomous
agents are based on the assumption that each node (agent) must be aware of its po-
sition and orientation as well as the position of the nodes in its neighborhood. In the
context of coverage control in large areas, it is anticipated that the mobile nodes will
be equipped with a positioning system (e.g. GPS) in order to determine their current
position. However, since the test-bed is implemented in a limited size indoor envi-
ronment, an alternative positioning system is needed to provide the id, position and
orientation of the mobile nodes.

Among the options available we decided to use a vision based system since RSSI
(Received Signal Strength Indicator) based positioning has some disadvantages such as
increased noise vulnerability [155] and in addition, it does not easily provide direction
measurements. Vision-based tracking is used in many robotic laboratories to extract
agent position, orientation and trajectory. However, there is currently no accepted
standard software solution available, so many research groups resort to developing and
using their own custom software. In contrast to other systems, we have implemented
our vision system using MATLAB which makes the implementation easy (some basic
routines are available) however, the positioning speed is rather slow.

For the coverage control problem, measuring and improving the area coverage re-
quires the position of all sensors. For stationary sensors the problem is fairly easy
since the coordinates of each sensor can be preprogrammed at the initialization phase
of the testbed (either using the information provided by the vision positioning system
or simply by (manually) measuring the location of each node). However, for the mo-
bile sensors, there is a need to record the position and orientation at every step of
the experiment, thus the information provided by the localization system is required
periodically (at every step).

The testbed arena is captured with a monochrome camera mounted on the ceiling
(see Fig. 11.1). The developed vision positioning system consists of the following
components: a CCD 1392× 1040 pixels camera (Pulnix TM-1325), a camera lens with
appropriate focal length (8mm2) for capturing the whole arena area, a frame grabber
(NI PCI-1426) which connects the camera to a PC workstation using camera link
interface, an image post processing algorithm (developed in MATLAB) and finally a
ZigBee transceiver (XBee-PRO) for transmitting the position/orientation information
to the sensor nodes.

The camera can capture images of the sensor field either periodically at a rate of
5 frames per second or when triggered (queried by a mobile sensor node via position
triggering messages). A typical field image is shown in Fig. 11.5(a). The testbed
arena is 2.20m × 1.40m and covers a size of roughly 1200 by 770 pixels on the image
(Fig. 11.5(a)). The captured image is processed in a MATLAB environment in order
to extract the positions of the stationary nodes as well as the position and direction of
the mobile nodes. The processing of such a frame takes under 200ms and the results
are illustrated in Fig. 11.5(b). We point out that in order to identify the mobile nodes
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(a) An image of the arena acquired by the overhead camera

(b) Processed image with the position of all sensors and the orientation of the mobile
nodes

Figure 11.5: Images of the vision-based positioning system

and their direction, a set of markers are used as shown in Fig. 11.5. The developed
positioning system can provide the position of the sensor nodes with precision of 2cm
and the orientation of the mobile sensor nodes with precision of 3o degrees. More
details on the image post processing algorithm are presented in the Appendix A Once
the positioning system identifies the position of each mobile node it sends a unicast
position message to each mobile node with its coordinates and orientation. Once each
mobile has the position information for every other sensor in its neighborhood it can
run the decentralized path planning algorithm in order to determine where to go next.
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Figure 11.5: Two sample markers coded based on shape compactness. External shape
allows the extraction of the mobile node’s ID. Internal shapes (circle and triangle)
allows the extraction of robot’s orientation.

The specifics of the path planning algorithm are described in a following section.

Positioning messages between the base station and the mobile nodes are exchanged in
single hop since in coverage control applications it is assumed that the nodes are capable
to determine their own location (e.g., they may be equipped with a GPS receiver), thus
such communication is not relevant. However, for other applications/objectives, it is
also possible to use multi-hop communication with the base station using the distance
rc to emulate limited communication range. Finally, the PC workstation serves also as
the base station of the mixed WSN and thus it receives event detection messages from
sensor nodes and also it measures the performance of the network (area coverage) and
visualizes the operations taking place in the mixed sensor network (track mobile nodes
trajectories).

11.3.4 Node Communication Protocols

All nodes communicate using the ZigBee protocol stack, though we have used chips
from different manufacturers and thus some adaptations were necessary. ZigBee is a
low-cost, low-power, wireless networking standard. A ZigBee Personal Area Network
(PAN) is formed by nodes joining to a coordinator or to a previously joined router.
Once the coordinator defines the operating channel and PAN ID (preprogrammed ini-
tially), it can allow routers and end devices to connect to it. When a node joins a
network, it receives a 16-bit network address (associated with the preprogrammed id).
Once a router has joined the network, it can allow other nodes to join by connecting to
it. ZigBee is built upon the physical layer (PHY) and medium access control (MAC)
portion of the data link layer (DLL) defined in IEEE standard 802.15.4 for Low-Rate
Wireless Personal Area Network (WPAN). The ZigBee protocol stack supports both
beacon and non-beacon enabled networks. In non-beacon-enabled networks, an unslot-
ted CSMA/CA channel access mechanism is used and ZigBee devices typically have
their receivers continuously active. In beacon-enabled networks, nodes may sleep be-
tween beacons (e.g. beacon intervals may range from 15ms to 250s at 250 kbps) thus
lowering their duty cycle and extending their battery life.

The developed testbed has implemented a beacon enabled network with star topol-
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ogy. The module connected to the PC workstation serves as the ZigBee coordinator
(ZC), the modules on the mobile robots are set as routers (ZR) and the stationary
nodes are set as ZigBee End Devices (ZED). As indicated earlier, the deployment area
of the testbed is rather small thus all nodes are generally able to hear transmissions
from all other nodes. In order to emulate the limited communication range of each
node we use the distance rc thus a node drops packets that have been received from
a node which is at a distance greater than rc. At this point we should also point out
that we can extend this packet dropping policy to also emulate non-omnidirectional
propagation models (e.g., nodes with directional antennas).

In the ZigBee transceivers there are two types of data transfer transactions. In the
first transaction, the data is transferred to the coordinator and in the second transaction
the data transfer from the coordinator to the device. When a device needs to transfer
data to the coordinator in a beacon enabled network, it listens for the beacon. When the
device finds a beacon it synchronizes and transmits the data to the coordinator using
slotted CSMA-CA. The coordinator may send an optional acknowledgement frame to
complete the transaction. When the coordinator needs to transfer data to a device
in a beacon enabled network, it indicates in the network beacon that a data message
is pending. The device periodically listens to the network beacon and if a message
is pending, transmits a MAC command requesting the data using slotted CSMA-CA.
The coordinator acknowledges the successful reception of the data request from the
device by transmitting an optional acknowledgement frame. The requested data frame
is then sent by the coordinator using slotted CSMA-CA. The device may send an
optional acknowledgement frame. The coordinator will then remove the frame from its
list of pending frames in the beacon.

11.4 Area Coverage Problem

Area coverage is a measure of the effectiveness of the sensor network to monitor
the entire field. It measures the percentage of the field area that is monitored by at
least one sensor. To compute the area coverage the entire sensor field (arena area)
is discretized into an X × Y grid and thus, the current state of the sensor field is
represented by an X × Y matrix Gk, k = 0, 1, · · · stored in the memory of the base
station (PC Workstation in Fig. 11.1). This Gk matrix represents the accurate state
of the sensor field and is updated as the mobiles move around the field. At every step,
we use the following updating rule for every element of matrix Gk.

Gk+1(i, j) =

{
0.5 ·Gk(i, j) + 0.5, if (i, j) ∈ Dr̄d(x̄s)
Gk(i, j), otherwise

(11.1)

where x̄s are the coordinates of sensor s in the grid Gk and Dr̄d(x̄s) is the set of grid
cells covered by sensor s with sensing range rd.
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The area coverage Ck over a time interval [0, k] is defined as

Ck =
1

X × Y
×

X∑
i=1

Y∑
j=1

Gk (i, j) (11.2)

11.5 Case Study: Distributed Collaborative Path Plan-

ning

In this section we present a case study that was investigated using the testbed
described previously. The case study is motivated by the coverage control problem and
involves a collaborative path planning algorithm that is used by the mobile sensors in
order to achieve their objective which is to search (cover) areas that are not covered
by static sensors or any other mobile sensor.

The path planning algorithm used in this chapter is exactly the same as the one
presented in chapter 6.4. At each step, the mobile considers a finite set of future
positions where the node can move to. For each candidate position, the mobile’s PIC
microcontroller evaluates the cost associated with the position and moves to the one
that has the minimum overall cost defined by eq.(11.3)).

J(y) = wsJs(y) + wtJt(y) (11.3)

where Jt(·) and Js(·) are specific objectives and wt and ws are non-negative constant
weights such that ws + wt = 1.

11.5.1 Path Cost Functions

As presented in chapter 6.4, Jt(·) is a cost function which penalizes positions that
are away from large coverage holes and Js(·) is a cost function which penalizes positions
that are close to static or mobile sensors (i.e., areas covered by other nodes).

The cost function Js(y) is given by

Js(y) = max
j∈Hrc (m)

{
exp

(
− ∥y− xj∥2

r2d

)}
(11.4)

where Hrc(m) is the set of all nodes in the communication range rc of the mobile m.
The detection range rd quantifies the size of the region around the mobile m to be
repelled by its neighbors.
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The cost function Jt(y) is given by

Jt(y) =
∥y− xt∥

rz
(11.5)

where given the matrix Pm
k of the mobile 2, rz defines the radius of the neighborhood

where the mobile will search for the center of the biggest coverage hole from its current
location and xt defines the center of the coverage hole found using the zoom algorithm
[9]. As shown in [136, 137], rz range must be fairly small compared to the sensor field
area which implies that a “local” search is sometimes better than a “global” search.
Also note that a smaller rz is advantageous since it implies that less information (i.e.
less computation and communication) is needed for the coverage hole estimation.

Note that all cost functions used in eq. (11.3) can be easily computed by the limited
resources available at each mobile node.

11.5.2 Distributed Collaboration between Mobile Nodes

Since every mobile determines its path autonomously, a possible problem arises when
two or more mobiles are located close to each other. In this case, it is very likely that
the information they will use to estimate the next target position will be the same and
as a result they will all estimate target locations that are either the same or they are
located very close to each other. Clearly, this is not a good collaboration strategy since
there is no benefit if they all converge to the same point. To avoid this problem we
utilize a collaboration protocol that enables mobile nodes to exchange some information
in order to avoid converging to the same point.

As mentioned earlier, at every step a mobile node i receives the ids and positions of
its neighbors (stationary and mobile nodes) using the position reply messages in order
to update its P i

k cognitive map. When i discovers other mobiles in its neighborhood,
it sends a unicast collaboration request message to these mobile nodes. Once a mobile
node j, j ̸= i is queried for collaboration, it replies with a collaboration reply message
which contains its id j, its current target coordinates xj

t(k) and possibly its current
cognitive matrix P j

k depending on a flag value described next.

Each mobile node j has a small array in its memory where it tracks the ids of
the mobile nodes that were in its communication neighborhood during step k − 1. If
node j was in communication range with node i then the corresponding flag Fi = 1
otherwise Fi = 0. When a mobile node j receives a collaboration request message from
mobile i, j ̸= i, it checks its flag value Fi and replies with a collaboration reply message
that contains its current P j

k if Fi = 0. If Fi = 1 then the collaboration reply message
contains only the mobile’s id j and its current target coordinates xj

t(k) (not P
j
k since

it was sent at a previous step). Thus as the mobiles stay in a neighborhood range rc,

2Pm
k matrix is stored in the PIC’s internal RAM and therefore is restricted by the limited data

memory available on mobile nodes, however an approximate state is good enough for the mobiles to
achieve their objectives.
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they exchange only their current positions x(k) (position reply messages) and target
coordinates xt(k) (collaboration reply messages). This protocol significantly limits
the communication overhead between mobiles. More information about reducing the
collaboration information that needs to be exchanged between the mobiles without
serious loss of the performance can be found in chapter 7.

After mobile node i has exchanged collaboration messages with its neighboring mo-
biles it has all the necessary information to execute the collaboration protocol. At
first, it merges its cognitive map P i

k with the cognitive maps P j
k , j ̸= i it received

from its neighbors, so that it does not explore areas already explored by other mobile
nodes. Subsequently, the mobile node i utilizes the current target position information
received by its neighboring mobiles xj

t(k), j ̸= i in order to avoid going towards the
same point. Once mobile i has received all target points from its neighbors, it forms
the matrix Dr̄c(x̄i) (which is a copy of the set of the P i

k cells that correspond to the
distance rc from the mobile i current position) and updates the Dr̄c(x̄i) matrix by as-
suming that the received targets points constituted covered areas. Finally, the mobile
node executes the zoom algorithm [9] where the input is the Dr̄c(x̄i) matrix and the
output is the mobile’s next target point xi

t(k) which is guaranteed to be different than
the target points of its neighboring mobile nodes.

11.5.3 Firmware of Mobile Nodes

The microcontroller firmware was written using the MikroC compiler, developed by
MikroElektronika [156]. The mikroC is a powerful, feature rich development environ-
ment for PIC microcontrollers. A simplified flowchart of the firmware running on each
PIC microcontroller for executing the proposed path planning algorithm is illustrated
in Fig. 11.6.

The path planning algorithm described earlier determines the next point where the
mobile should move to. This point is given by the distance ρ and the direction θ that
it has to turn to. These parameters (ρ, θ) are further processed by the PIC in order to
generate the lower level control signals that will drive the two servo motors of the mobile
node in order for the mobile to go to the new position. Servomotors have a very simple
electrical interface; they have 3 wires, one for power, one for ground and the other
for the pulse train. The data wire receives encoded signal in the form of pulse width
modulation (PWM). Two PIC’s digital outputs ports have been programmed to output
such a PWM signal. The duty-cycle of each pulse is related to the rotation direction of
the servomotor, while the number of pulses sent is proportional to the rotation angle of
the servomotor. The pulses sent have 20ms period (implemented using a 20 ms Timer
1 interrupt) and the positive pulse width contained within those 20ms varies from 1ms
to 2ms (for 1ms pulse, the servo rotates in the clockwise direction, for 1.5ms pulse, the
servo holds still and for 2ms pulse, the servo rotates in counter-clockwise direction).

Finally, in order to make all interfaces work properly, several initialization and
calibration procedures involving the servos, the sensors and the RF transceiver of the
mobile nodes have been developed (e.g. generate the appropriate pulse that will drive
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Figure 11.6: A simplified flowchart of the firmware running on each PIC microcontroller

the servos in order to navigate the robot to the next desired location).

11.6 Obtained Results for the Experimental Case Study

In this section we present a representative scenario of the movement of the mobile
sensor nodes to illustrate and validate the behavior of the proposed path planning
algorithm.

The experimental setup consists of a sparse wireless sensor network with 12 station-
ary nodes and 2 mobile sensor nodes (see Fig. 11.7). The monitored region (arena)
has dimensions 220cm × 140cm. For the purposes of the experiment, the detection
radius of all sensors is set to rd = 12cm and the dynamic search area range is selected
as rz = 38cm. The neighborhood range is set to rc = rz + rd = 50cm and it is also
fixed in the sensor node firmware such that any node (mobile or static) should drop
any packets received from nodes that are located at a distance greater than rc. The
constant weights are set to wt = ws = 0.5 and the mobile maneuverability parameters
are set to ρ = 5cm and ϕ = 60◦ while for every decision ν = 5 candidate next positions
are considered.

Fig. 11.8(a) shows the paths that the mobile nodes followed in the experimental
testbed and Fig. 11.8(b) shows the paths followed in the simulation environment. The
same set of parameters was used for both the simulation environment as well as the
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Figure 11.7: The experimental mixed WSN scenario setup consisting of twelve station-
ary and two mobile sensor nodes

testbed environment. The two mobile nodes navigate collaboratively through the field,
sampling points that are not adequately covered by the stationary sensors. As seen
from the paths followed, there is collaboration between the mobile and the stationary
sensors in the sense that the mobiles have found two different paths that are least
covered by the stationary sensors. Also notice how the two mobiles collaborate and
select different paths at the beginning of their journey.

Fig. 11.8 presents a comparison between the area coverage improvement achieved
by the mobile nodes in the testbed and simulation environments. The area coverage
improvement in the simulation environment is clearly larger compared to the area
coverage improvement in the testbed. As indicated in Fig. 11.8(b), in the simulation
environment the mobile nodes avoid almost perfectly the regions covered by stationary
nodes. In contrast, in the testbed Fig. 11.8(a), there exists some overlap between the
area covered by static and mobile sensors which are attributed to various unmodeled
parameters (dropped packets, uncertain motion of the mobile nodes).

Finally, for a given scenario (fixed positions of the static nodes and fixed initial posi-
tions for the mobiles), we run the path planning algorithms twenty times and recorded
the average area coverage due to the navigation of the mobiles. In the simulation en-
vironment, the paths of the mobiles for all twenty repetitions are identical (there is
no randomness involved). In the experimental testbed however, the paths vary signif-
icantly as a result of unmodeled phenomena (dropped packets, inconsistencies in the
robot motion).

The average area coverage improvement over all repetitions together with the recorded
standard deviation are depicted in Fig. 11.9. These results indicate that the area cov-
erage improvement obtained in the simulation environment is rather “optimistic”. The
discrepancy between the results obtained through simulation and testbed is due to sev-
eral factors ranging from hardware limitation of the mobile platform (uncertain motion
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(a) The paths followed by two mobile sensor nodes in the experimental
testbed
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(b) The paths followed by two mobile sensor nodes in the simulation envi-
ronment

Figure 11.8: The paths followed by two mobile sensor nodes to collaboratively improve
the sensor area coverage of the sparse stationary sensor network deployment. The
same set of parameters used in both testbed and simulation. The sensing range of each
sensor node is indicated by circles with dotted line. The big (blue) circle indicates is
the communication range rc. A video clip of the motion of the two mobile nodes can
be found at [2]

and processing accuracy) to asynchronous communication faults (delayed or dropped
packets) which are currently being further investigated. These factors affect the path
of the mobiles in a rather random way and thus the variance recorded from the twenty
repetitions is significant.
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Figure 11.8: Comparison of the coverage improvement accomplished when mobile nodes
navigate in the testbed area and when they navigate in the simulation environment
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Figure 11.9: The average coverage improvement accomplished after twenty experi-
mental repetitions when the mobile nodes navigate in the testbed versus the coverage
improvement accomplished when the mobile nodes navigate in the simulation environ-
ment

11.7 Conclusion

Motivated by the need for an experimental platform to validate distributed path
planning algorithms in mixed sensor networks, we have developed a new testbed for
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studying distributed area monitoring techniques in mixed WSNs. The chapter presents
an overview of the testbed developed together with details on the static and mobile
sensor nodes used and the overall infrastructure developed. The testbed has been used
to validate a coverage control case study where mobile nodes collaboratively sample
areas not adequately monitored by the static sensor network. The case study has also
indicated some of the limitations of the testbed mainly due to the selected mobile
platform which turned out to be a little difficult to accurately control.

In the future we plan to upgrade the hardware and software of our testbed in order
to make it faster and more robust. Particular attention will be given to the controlled
motion of the mobile platforms. In the current version, it was evident that the mo-
bile nodes could not accurately implement the path suggested by the path planning
algorithm. In addition, we plan to use the testbed to come up with more accurate sim-
ulation models such that the discrepancies between simulation and experimentation are
eliminated. This approach can lead to better simulation models but more importantly
to more robust algorithms that can tolerate unexpected events.

A Image Post Processing Algorithm for Mobile Node

Localization

This section presents the main steps for processing the images received by the camera
in order to extract the physical coordinates and orientation of the mobile nodes.

1. The PC workstation triggers the camera to capture an image which is represented
by a 1392 × 1040 matrix Im where every matrix element is a number between
0− 255 that represents the grayscaling of the pixel.

2. Im is converted to a binary image Ib by applying an appropriate thresholding
technique.

3. The noise of the binary image is removed using some morphology functions based
on object size filtering.

4. Identifies the external boundaries of the objects (external connected components).

5. Obtains a labeled external connected components image a from the binary image
(distinguish different objects).

6. Extracts the center, perimeter and area of each labeled object.

7. Separates static from mobile nodes using the object area. (During the initialization
phase of the test-bed it also finds static sensor nodes centers).

8. Finds mobile nodes ids and centers based on markers that are placed on the top
of mobile nodes (see Fig. 11.5) and compactness metric. Compactness is defined
by Compactness = 4π.Area

Perimeter2
(e.g. a circular object has a compactness value of 1)
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9. Finds enclosed shapes (circle and triangle) ids and centers in mobile nodes shapes
(using compactness metric) and extract mobile nodes orientation by computing θ

as follows: θ = arctan
(

∆ytc
∆xtc

)
where ∆ytc = (yt − yc) and ∆xtc = (xt − xc) (see

Fig. 11.5). Note that ∆ytc and ∆xtc can be positive or negative, and their signs
together define the heading direction of the mobile robot. Thus the actual robot
orientation is obtained as follows:

θ =



arctan
(

∆ytc
∆xtc

)
, if∆xtc ≥ 0 and ∆ytc ≥ 0

arctan
(

∆ytc
∆xtc

)
+ π, if∆xtc < 0 and ∆ytc ≥ 0

arctan
(

∆ytc
∆xtc

)
+ π, if∆xtc ≤ 0 and ∆ytc < 0

arctan
(

∆ytc
∆xtc

)
+ 2π, if∆xtc > 0 and ∆ytc < 0

(11.6)

10. Determines the positions of the mobile sensor nodes (or static nodes during the
initialization phase) in the physical coordinate system (see Fig. 11.10). Where

Image J axis (j)[1,1]

Im
age I axis (i)

A
rena Y

 axis

Arena X axis(0,0)

W

L

(L,W)[Jmin,Imin]
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(x,y)

min

max min

max

max min

I

j J
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J J

i
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I I

−
=

−

−
=

−

Figure 11.10: Transform the image to physical coordinates in the Test-bed arena

(x, y) is the physical coordinate point in the L = 220 cm × W = 140 cm Test-
bed arena which corresponds to the pixel point [j, i] (i.e., in the i-th row and j-th
column) in the image of (Imax − Imin) rows and (Jmax − Jmin) columns of pixels.

11. Transmits the physical position-orientation information to mobile sensor nodes
through a USB connected XBee-PRO ZigBee transceiver.

The intra-pixel spatial resolution of the image is given by max
{

L
Jmax−Jmin

, W
Imax−Imin

}
cm
pixel

.

In general, the lower this intra-pixel spatial resolution is, the higher the accuracy of
the computed physical position (x, y). Besides, the accuracy of the computed physical
position depends also on optical distortion (associated with lens focal length) especially
when wide angle lens are used. Thus a calibration process is needed to fix this issue.
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Chapter 12
Conclusions, Remarks and Future

Directions

12.1 Conclusions

This dissertation contributes to the field of collaborative path planning of multi-
robot systems and collaborative monitoring in the context of mixed sensor networks.
The main contribution of this research work is the development of a distributed collab-
orative area monitoring framework in the context of mixed sensor networks for efficient
dynamic area coverage and fast event detection. It was shown that the selected cost
functions as well as the distributed dynamic target assignment scheme achieves near-
optimal performance, when compared to the other path-planning approaches investi-
gated. The proposed distributed on-line path-planning algorithm enables the mobile
robots to collaborate and compute their path dynamically using only “local” informa-
tion in the context of mixed WSNs . The algorithm is computationally efficient and
adaptive to large numbers of mobile sensor nodes, different static WSN deployments,
event source localization algorithms, and can cope with dynamic environments in which
spatially and temporally random events occur.

The various parameters and functions associated with the development of the pro-
posed distributed path-planning algorithm were fully investigated and fine-tuned, while
the proposed algorithm was compared with other motion planning techniques, which
were modified to fit the context of WSNs and require either global or local informa-
tion. Moreover, different collaboration-communication schemes between the sensor
nodes were introduced in a way that ensures a reduced amount of information ex-
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change between nodes without significant loss of performance. In addition, results
regarding the optimal path as well as the near optimal search neighborhood of the
proposed algorithm have been derived. Finally, the proposed mixed WSN framework
has been transferred from simulation to a real-world test-bed to further investigate the
performance of the proposed approach experimentally.

Although the coverage and event detection problem, in the context of mobile WSNs,
was previously studied, to the best of our knowledge, this is the first time that a
general architecture, which combines the coverage and event detection problem with
distributed collaborative path-planning algorithms where mobile sensors are searching
the environment to minimize the event detection delay, is proposed.

12.2 Remarks

In the course of this research several lessons, concerning the design and implementa-
tion of collaborative motion planning methods for multi-robot systems in the context
of sensor networks, were drawn.

First, mixed WSNs is a new area of research and methods proposed, in the context of
mobile WSNs, usually considered random mobility models or they do not even consider
the actual path that mobile nodes should follow (e.g. solve the deployment problem).
Second, other methods proposed for finding the worst-case coverage path are based
on the concept of Voronoi diagrams and do not consider the complete coverage-search
problem. These approaches provide only a single path between two given points in a
centralized and static manner (do not consider changes in the field) and hence do not
support multiple mobile nodes.

Efficient path planning under random static sensor deployment is complicated, es-
pecially when the algorithm is intended to be robust to the sensor field density. This
issue has been resolved by normalizing path cost functions as well as using the dynamic
receding horizon policy.

In the context of sensor networks and mobile robotics, it is vital for the algorithms
used to be simple, smart and efficient in terms of computation and communication.
The intention was to follow these requirements throughout the research in this thesis.
Simplicity might sometimes opposed to the accuracy of the operations performed and
therefore one can further trade off these issues.

The dynamic target policy appears to be a very efficient way of improving both cov-
erage and event detection and also enables simple and efficient collaboration protocols
regarding the amount of information that is needed to facilitate the collaboration be-
tween mobile nodes. Moreover, it can easily support different event source localization
algorithms by switching targets using appropriate decision rules.

Finding the optimal path that a mobile sensor should follow, in order to either
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maximize the coverage rate over time or minimize the event detection delay, is a very
hard problem in the context of mixed WSNs, especially under random deployment
of stationary nodes. Even when special simplified cases are considered, the optimal
solutions are NP-complete. However, by solving such simplified cases we gain important
insights that help us to further improve the heuristics used in the developed path-
planning approach.

For instance, it became clearer that large enough uncovered regions, which are close
to the mobiles, should be searched first; before moving towards the biggest uncovered
regions of the WSN field that are located far away from the mobiles. However, if the
searching neighborhood is too small, then the mobile may consume time searching into
relatively insignificantly small holes while missing much larger holes. On the other
hand, if the neighborhood is too big, then the mobile will waste time when moving
straight towards much larger holes avoiding significant holes that are located close to
it. This result inspired the further investigation of the search neighborhood size and
led to the finding of a surrogate metric that approximates the optimal neighborhood
radius. This approximation was based on the statistical properties of the uncovered
regions created by the stationary sensor random deployment.

Finally, we have learned that analysis is only useful up to a point, after which the
true proof of performance is in the implementation of the algorithms on real robot
platforms. This is a fundamental engineering perspective, as no tractable simulation
model will be able to capture the intricacies of the dynamics, noise, and computational
processes so the final proof must be an implementation. Therefore, the proposed dis-
tributed collaborative path-planning algorithm has also been evaluated experimentally
in a developed test-bed. Implementation can lead to deeper investigation, enabling
more robust algorithms. However, scaling down such large scale systems in a small-
sized test-bed sometimes becomes an even more difficult task than in reality.

12.3 Future Directions

Future research, stemming from this dissertation, can lead to a number of several
directions.

The first, immediate, goal to be achieved is to extent the proposed path-planning
approach further by incorporating the probabilistic sensing model (see eq.2.2) and a
dynamic speed policy. Using the probabilistic sensing model one should reexamine how
the detection rule, as well as the map update and merging policies, should be updated.
One could think of a detection rule based on concurrent samples of neighboring mobile
nodes (consider the case of dynamic events), a map update rule likeGk+1 = 1−(1−Gk)∗
(1−p) (see eq.2.2) and a merging policy like in chapter 7. However, considering such a
merging policy might be too pessimistic. Using a dynamic speed policy (i.e. modifying
the speed of the mobile at each step) should enable mobiles to make more precise
movements, which might minimize the distance the mobiles moved (i.e. the energy
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Chapter 12

needed for mobility) and simultaneously maximized the dynamic coverage performance
over time. This dynamic speed policy can be developed by extending the next step
decision policy to consider candidate positions on a circular sector instead of an arc.

Another direction for future work is to move beyond the class of cost functions
considered so far. It would be interesting to consider cost functions that depend on
time or the residual energy of mobile nodes. Also, this will require the modeling of
the energy consumption in the mobile node, which mainly depends on mobility and
communication. Additionally, other cost functions could be investigated; for instance,
an obstacle-avoidance cost function as well as a communication cost function that will
force mobile nodes to stay in communication and, therefore, enable a swarm behavior.

Furthermore, another worth-exploring issue is the investigation of the lower and
upper bounds for the dynamic area coverage and event-detection performance of the
proposed mixed WSN under various search strategies of mobile sensor nodes. For each
search strategy, ranging from random mobility to optimal cooperation, it would be very
important to derive approximate formulas for the performance of the mixed WSN. This
could support the network designer to easily determine the required number of mobile,
or static sensors, or the speed of mobile sensors, as well as other parameters of the
mixed WSN, to achieve a predetermined area-coverage in a given period of time, or to
achieve a desired expected detection delay in the deployment area.

Experimental evaluation of the proposed framework indicates issues that need fur-
ther investigation and development. First, we need to overcome hardware and software
limitations of the experimentation infrastructure to make the testbed faster and more
robust. Particular attention should be given to accurately controlling the motion of the
mobile platforms as well as improving the accuracy and time response of the localization
system. In addition, experimentation indicates various unmodeled parameters such as
asynchronous communication faults (dropped or delayed packets) and uncertainties
in motion control. These parameters can be integrated in the developed simulation
model which will seek to create more robust algorithms that can tolerate such unex-
pected events. Another important direction would be to investigate the impact of node
mobility in Medium Access Control (MAC) protocols. For instance, the IEEE 802.15.4
MAC protocol (used in ZigBee) for low-rate wireless personal area networks is designed
mainly for static sensor networks and its capability to support mobile sensor networks
has not yet been established.

Additionally, the developed collaborative path-planning method can be extended
to solve other types of path-planning problems such as the mobile sink path-planning
problem [158] for collecting information in WSNs, the automated guided vehicles rout-
ing problem for transporting containers in port terminals as well as the coverage path-
planning problem for automated agricultural machines. For the last two problems,
desirable solution approaches should support automated vehicle navigation with vari-
able speed (as well as a stopping option). This is easily implementable in the proposed
path-planning algorithm.

Finally, another long term future direction would be to address the problem of
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Conclusions, Remarks and Future Directions

odor plume source localization. This problem has become a prominent research area in
recent years. However, only a limited number of proposed approaches support multiple
collaborative mobile agents. To address this problem we must first develop an efficient
and realistic odor plume simulation model and then develop a localization algorithm
that can support multiple cooperative mobile agents. Afterwards, additional issues,
such as consensus algorithms and swarm stability, could be investigated.

Research work on the aforementioned open questions is still ongoing and we expect
that these issues will motivate new results and new insights for multi-robot control and
mobility in wireless sensor networks.

205

The
ofa

nis
 P

. L
am

bro
u



The
ofa

nis
 P

. L
am

bro
u



Bibliography

[1] Crossbow Micaz sensor mote, 2010, [online]. Available from: http://www.xbow.
com/Products/Product_pdf_files/Wireless_pdf/MICAZ_Datasheet.pdf.

[2] [online]. Available from: http://www2.ucy.ac.cy/~faniseng/senetslab/

robots.html.

[3] K. Dantu and G. Sukhatme, “Robomote: Enabling mobility in sensor networks,”
in IEEE/ACM Fourth International Conference on Information Processing in
Sensor Networks, Apr 2005, pp. 404–409.

[4] T. Lambrou, C. Anastasiou, and C. Panayiotou, “A nephelometric turbidity sys-
tem for monitoring residential drinking water quality,” in 1st International Con-
ference on Sensor Networks Applications, Experimentation and Logistics, Sen-
sAppeal 2009, Athens, Greece, Sept. 2009.

[5] A. Ghosh and S. K. Das, Mobile, Wireless and Sensor Networks: Technology,
Applications and Future Directions. John Wiley & Sons, 2006, ch. 9.

[6] M. Cardei and J. Wu, Handbook of Sensor Networks: Compact Wireless and
Wired Sensing Systems. CRC Press, 2004, ch. 19.

[7] N. Ahmed, S. S. Kanhere, and S. Jha, “The holes problem in wireless sensor
networks: a survey,” SIGMOBILE Mob. Comput. Commun. Rev., vol. 9, no. 2,
pp. 4–18, 2005.

[8] X. Shen, J. Chen, and Y. Sun, “Grid scan: A simple and effective approach for
coverage issue in wireless sensor networks,” in Communications, 2006. ICC ’06.
IEEE International Conference on, vol. 8, 2006, pp. 3480–3484.

[9] T. Lambrou and C. Panayiotou, “Collaborative event detection using mobile
and stationary nodes in sensor networks,” in The 3rd International Conference
on Collaborative Computing: Networking, Applications and Worksharing, Col-
laborateCom 2007, New York, USA, Nov. 2007.

[10] G. Wang and T. L. Porta, “Movement-assisted sensor deployment,” in Proceed-
ings of the IEEE Infocom, 2004.

207

The
ofa

nis
 P

. L
am

bro
u



Bibliography

[11] G. Wang and T. LaPorta, “A bidding protocol for deploying mobile sensors,” in
Proceedings. 11th IEEE International Conference on Network Protocols, 4-7 Nov.
2003, pp. 315–324.

[12] A. Ghosh, “Estimating coverage holes and enhancing coverage in mixed sensor
networks,” in Local Computer Networks,, 16-18 Nov. 2004, pp. 68–76.

[13] Z. Butler and D. Rus, “Event-based motion control for mobile-sensor networks,”
Pervasive Computing, vol. 2, no. 4, pp. 34–43, 2003.

[14] C.-F. Huang and Y.-C. Tseng, “The coverage problem in a wireless sensor net-
work,” in WSNA ’03. New York, NY, USA: ACM Press, 2003, pp. 115–121.

[15] S. Dhillon, K. Chakrabarty, and S. Iyengar, “Sensor placement for grid coverage
under imprecise detections,” in FUSION, 2002.

[16] J.-C. Latombe, Robot Motion Planning. New York: Kluwer, 1992.

[17] M. Polycarpou, Y. Yang, Y. Liu, and K. Passino, Cooperative Control: Models,
Applications and Algorithms. Kluwer Academic Publishers, 2003, vol. 1, ch.
Cooperative Control Design for Uninhabited Air Vehicles, pp. 283–321.

[18] S. Meguerdichian, F. Koushanfar, M. Potkonjak, and M. B. Srivastava, “Coverage
problems in wireless ad-hoc sensor networks,” in INFOCOM, 2001, pp. 1380–
1387.

[19] S. Meguerdichian, F. Koushanfar, G. Qu, and M. Potkonjak, “Exposure in wire-
less ad-hoc sensor networks,” in MobiCom ’01. New York, NY, USA: ACM
Press, 2001, pp. 139–150.

[20] B. Liu, P. Brass, O. Dousse, P. Nain, and D. Towsley, “Mobility improves coverage
of sensor networks,” in Proceedings of the ACM MobiHoc 2005 Conference, 2005.

[21] W. Li and C. G. Cassandras, “Distributed cooperative coverage control of sensor
networks,” in Proceedings of 44rd IEEE Conference on Decision and Control,
2005.

[22] D. W. Gage, “Command control for many-robot systems,” in Proceedings of the
AUVS-92, 1992.

[23] O. Khatib, “Real-time obstacle avoidance for manipulators and mobile robots,”
International Journal of Robotics Research, vol. 5, pp. 90–98, 1986.

[24] S. Poduri and G. Sukhatme, “Constrained coverage for mobile sensor networks,”
in Robotics and Automation, 2004. Proceedings. ICRA., vol. 1, 2004, pp. 165–171
Vol.1.

[25] A. Howard, M. Mataric, and G. Sukhatme, “Mobile sensor network deployment
using potential fields:a distributed, scalable solution to the area coverage prob-
lem,” in DARS, 2002.

208

The
ofa

nis
 P

. L
am

bro
u



Bibliography

[26] Y. Zou and K. Chakrabarty, “Sensor deployment and target localization based
on virtual forces,” in Proceedings of the IEEE Infocom, 2003.

[27] B. Liu and D. Towsley, “A study of the coverage of large-scale sensor networks,”
in in Proceedings of the IEEE International Conference on Mobile Ad-hoc and
Sensor Systems, Oct. 2004, pp. 475–483.

[28] Y. Zou and K. Chakrabarty, “Sensor deployment and target localization in dis-
tributed sensor networks,” ACM Transactions on Embedded Computing Systems,
vol. 3, pp. 61–91, 2004.

[29] P. B. A. Hossain and S. Chakrabarti, “Sensing models and its impact on net-
work coverage in wireless sensor network,” in in Proceedings of the 3rd IEEE
International Conference on Industrial and Information Systems, Dec 2008.

[30] P. Hall, Introduction to the Theory of Coverage Processes. John Wiley & Sons,
1988.

[31] A. Baddeley, Stochastic Geometry. Springer Berlin, 2007, ch. Spatial Point
Processes and their Applications, pp. 1–75.

[32] G. Veltri, G. Qu, Q. Huang, and M. Potkonjak, “Minimal and maximal expo-
sure path algorithms for wireless embedded sensor networks,” in IN PROC. OF
SENSYS. ACM Press, 2003, pp. 40–50.

[33] A. Okabe, B. Boots, K. Sugihara, and S. N. Chiu, Spatial tessellations: Concepts
and applications of Voronoi diagrams, 2nd ed., ser. Probability and Statistics.
Wiley, 2000, 671 pages.

[34] A. Howard, M. Mataric, and G. Sukhatme, “An incremental self-deployment
algorithm for mobile sensor networks,” Autonomous Robots, Special Issue on
Intelligent Embedded Systems, vol. 13, pp. 113–126, 2001.

[35] G. Wang, G. Cao, and T. F. L. Porta, “Movement-assisted sensor deployment,”
IEEE Transactions on Mobile Computing, vol. 5, no. 6, pp. 640–652, 2006.

[36] S. Skyum, “A simple algorithm for computing the smallest enclosing circle,”
Information Processing Letters, vol. 37, no. 3, pp. 121–125, 1991.

[37] M. Bisnik, A. Abouzeid, and A. Isler, “Stochastic event capture using mobile
sensors subject to a quality metric,” Robotics, IEEE Transactions on, vol. 23,
no. 4, pp. 676–692, Aug. 2007.

[38] H. Choset, W. Burgard, S. Hutchinson, G. Kantor, L. E. Kavraki, K. Lynch, and
S. Thrun, Principles of Robot Motion: Theory, Algorithms, and Implementation.
MIT Press, June 2005.

[39] Y. K. Hwang and N. Ahuja, “Gross motion planning - a survey,” ACM Comput.
Surv., vol. 24, no. 3, pp. 219–291, 1992.

[40] C. Eldershaw, “Heuristic algorithms for robot motion planning,” Ph.D. disserta-
tion, University of Oxford, 2001.

209

The
ofa

nis
 P

. L
am

bro
u



Bibliography

[41] E. Masehian and D. Sedighizadeh, “Classic and heuristic approaches in robot
motion planning-a chronological review,” in in Proceedings of World Academy of
Science, Engineering and Technology, 2007, pp. 101–106.

[42] S. J. Russell and P. Norvig, Artificial Intelligence: A Modern Approach. Pearson
Education, 2003.

[43] J. Barraquand, B. Langlois, and J.-C. Latombe, “Numerical potential field tech-
niques for robot path planning,” Systems, Man and Cybernetics, IEEE Transac-
tions on, vol. 22, no. 2, pp. 224 –241, mar/apr 1992.

[44] D. Koditschek, “Exact robot navigation by means of potential functions: Some
topological considerations,” in Proceedings of the IEEE International Conference
on Robotics and Automation, April 1987.

[45] E. Rimon and D. Koditschek, “Exact robot navigation using artificial potential
fields,” IEEE Transactions on Robotics and Automation, vol. 8, no. 5, pp. 501–
518, 1992.

[46] S. G. Loizou and K. J. Kyriakopoulos, “Closed loop navigation for multiple holo-
nomic vehicles,” in Proc. of IEEE/RSJ Int. Conf. on Intelligent Robots and Sys-
tems, 2002, pp. 2861–2866.

[47] S. Carpin, “Randomized motion planning - a tutorial,” International Journal of
Robotics and Automation, vol. 21, no. 3, pp. 184–196, 2006.

[48] L. E. Kavraki, S. P., J.-C. Latombe, and O. M., “Probabilistic roadmaps for
path planning in high dimensional configuration spaces,” IEEE Transactions on
Robotics and Automation, vol. 12, no. 4, pp. 566–580, 1996.

[49] S. M. Lavalle, Planning algorithms. Cambridge University Press, 2006.

[50] R. Glasius, A. Komoda, and S. C. A. M. Gielen, “Neural network dynamics for
path planning and obstacle avoidance,” Neural Netw., vol. 8, no. 1, pp. 125–133,
1995.

[51] C. Kozakiewicz and M. Ejiri, “Neural network approach to path planning for two
dimensional robot motion,” in Intelligent Robots and Systems ’91. Proceedings
IROS ’91, Nov 1991, pp. 818–823 vol.2.

[52] A. Zhu and S. Yang, “A neural network approach to dynamic task assignment
of multirobots,” Neural Networks, IEEE Transactions on, vol. 17, no. 5, pp.
1278–1287, Sept. 2006.

[53] J. Solano and D. Jones, “Generation of collision-free paths, a genetic approach,”
in Genetic Algorithms for Control Systems Engineering, IEE Colloquium on, May
1993.

[54] R. Ramakrishnan and S. Zein-Sabatto, “Multiple path planning for a group of
mobile robot in a 2-d environment using genetic algorithms,” in SoutheastCon
2001. Proceedings. IEEE, 2001.

210

The
ofa

nis
 P

. L
am

bro
u



Bibliography

[55] H.-Q. Min, J.-H. Zhu, and X.-J. Zheng, “Obstacle avoidance with multi-objective
optimization by pso in dynamic environment,” in Machine Learning and Cyber-
netics, 2005. Proceedings of 2005 International Conference on, vol. 5, Aug. 2005,
pp. 2950–2956.

[56] M. Saska, M. Macas, L. Preucil, and L. Lhotska, “Robot path planning using
particle swarm optimization of ferguson splines,” in Emerging Technologies and
Factory Automation, 2006. ETFA ’06. IEEE Conference on, Sept. 2006, pp. 833–
839.

[57] L. Wang, Y. Liu, H. Deng, and Y. Xu, “Obstacle-avoidance path planning for
soccer robots using particle swarm optimization,” in Robotics and Biomimetics,
2006. ROBIO ’06. IEEE International Conference on, Dec. 2006, pp. 1233–1238.

[58] E. Masehian and M. Amin-Naseri, “A tabu search-based approach for online mo-
tion planning,” in Industrial Technology, 2006. ICIT 2006. IEEE International
Conference on, Dec. 2006, pp. 2756–2761.

[59] H. Choset, “Coverage for robotics - a survey of recent results,” Annals of Math-
ematics and Artificial Intelligence, vol. 31, no. 1-4, pp. 113–126, 2001.

[60] “Trilobite 2.0 vacuum cleaner,” 2009. [Online]. Available: http://trilobite.
electrolux.com

[61] “Husqvarna automower,” 2009. [Online]. Available: http://www.husqvarna.
com/us/homeowner/products/robotic-mowers/automower-solar-hybrid/

[62] Y. H. Z. Cao and E. Hall, “Region filling operations with random obstacle avoid-
ance for mobile robots,” Journal of robotic systems, pp. 87–102, 1988.

[63] A. Zelinsky, R. Jarvis, J. C. Byrne, and S. Yuta, “Planning paths of complete
coverage of an unstructured environment by a mobile robot,” in In Proceedings
of International Conference on Advanced Robotics, 1993, pp. 533–538.

[64] Y. Gabriely and E. Rimon, “Spanning-tree based coverage of continuous areas
by a mobile robot,” in Robotics and Automation, 2001. Proceedings 2001 ICRA.
IEEE International Conference on, 2001.

[65] H. Choset, “Coverage of known spaces: The boustrophedon cellular decomposi-
tion,” Autonomous Robots, vol. 9, no. 3, pp. 247–253, 2000.

[66] D. W. Gage, “Many-robot mcm search systems,” in Proceedings of Autonomous
Vehicles in Mine Countermeasures Symposium, 1995.

[67] T. Balch, “The case for randomized search,” in IEEE International Conference
on Robotics and Automation, 2000.

[68] M. Mazo and K. H. Johansson, “Path-planning for robust area coverage: Evalu-
ation of five coordination strategies,” 2008.

211

The
ofa

nis
 P

. L
am

bro
u

http://trilobite.electrolux.com
http://trilobite.electrolux.com
http://www.husqvarna.com/us/homeowner/products/robotic-mowers/automower-solar-hybrid/
http://www.husqvarna.com/us/homeowner/products/robotic-mowers/automower-solar-hybrid/


Bibliography

[69] S. Yang and C. Luo, “A neural network approach to complete coverage path plan-
ning,” Systems, Man, and Cybernetics, Part B: Cybernetics, IEEE Transactions
on, vol. 34, no. 1, pp. 718–724, Feb. 2004.

[70] D. Kurabayashi, J. Ota, T. Arai, and E. Yoshida, “Cooperative sweeping by
multiple mobile robots,” in Robotics and Automation, 1996. Proceedings., 1996
IEEE International Conference on, Apr 1996.

[71] I. Rekleitis, A. P. New, E. S. Rankin, and H. Choset, “Efficient boustrophedon
multi-robot coverage: an algorithmic approach,” Annals of Mathematics and
Artificial Intelligence, vol. 52, pp. 109–142, 2008.

[72] R. M. Murray, “Recent research in cooperative control of multi-vehicle systems,”
2007.

[73] B. O. Koopman, “The theory of search ii - target detection,” Operations Research,
vol. 4, pp. 503–531, 1956.

[74] L. D. Stone, Theory of optimal search. Academic Press, New York, 1975.

[75] K. Passino, M. Polycarpou, D. Jacques, M. Pachter, Y. Liu, Y. Yang, M. Flint,
and M. Baum, Cooperative Control and Optimization. Kluwer Academic Pub-
lishers, 2002, vol. 66, ch. Cooperative Control for Autonomous Air Vehicles, pp.
233–271.

[76] A. A. M. Yanli Yang and M. M. Polycarpou, “Decentralized cooperative search
in uav’s using opportunistic learning,” in In Proceedings of the 2002 AIAA Guid-
ance, Navigation and Control Conference, 2002.

[77] Y. Liao, Y. Jin, A. Minai, and M. Polycarpou, “Information sharing in coopera-
tive unmanned aerial vehicle teams,” in In Proceedings of 44th IEEE Conference
on Decision and Control and European Control Conference, Dec. 2005, pp. 90–95.

[78] F. Bourgault, T. Furukawa, and H. F. Durrant-Whyte, “Coordinated decentral-
ized search for a lost target in a bayesian world,” vol. 1, 2003.

[79] J. Cortes, S. Martinez, T. Karatas, and F. Bullo, “Coverage control for mobile
sensing networks,” in IEEE Int. Conf. on Robotics and Automation, 2002, pp.
1327–1332.

[80] ——, “Coverage control for mobile sensing networks,” IEEE Transactions on
Robotics and Automation, vol. 20, pp. 243–255, 2004.

[81] C. W. Reynolds, “Flocks, herds, and schools: A distributed behavioral model,”
in Computer Graphics, 1987, pp. 25–34.

[82] A. Jadbabaie, J. Lin, and A. Morse, “Coordination of groups of mobile au-
tonomous agents using nearest neighbor rules,” Automatic Control, IEEE Trans-
actions on, vol. 48, no. 6, pp. 988–1001, June 2003.

212

The
ofa

nis
 P

. L
am

bro
u



Bibliography

[83] R. Olfati-Saber, “Flocking for multi-agent dynamic systems: algorithms and the-
ory,” Automatic Control, IEEE Transactions on, vol. 51, no. 3, pp. 401–420,
March 2006.

[84] R. Olfati-Saber, J. Fax, and R. Murray, “Consensus and cooperation in networked
multi-agent systems,” Proceedings of the IEEE, vol. 95, no. 1, pp. 215–233, Jan.
2007.

[85] W. Ren, R. W. Beard, and E. M. Atkins, “Information consensus in multivehicle
cooperative control,” Control Systems Magazine, IEEE, vol. 27, no. 2, pp. 71–82,
2007.

[86] C. Cassandras and W. Li, “Sensor networks and cooperative control,” in Decision
and Control, 2005 and 2005 European Control Conference. CDC-ECC ’05. 44th
IEEE Conference on, Dec. 2005, pp. 4237–4238.

[87] Khepera II Robots, 2010, [online]. Available from: http://www.k-team.com/

mobile-robotics-products/khepera-ii.

[88] M. Rahimi, R. Mediratta, K. Dantu, and G. Sukhatme, “A testbed for exper-
iments with sensor/actuator networks,” Institute for Robotics and Intelligent
Systems, Tech. Rep., 2002.

[89] S. Bergbreiter and K. Pister, “Cotsbots: an off-the-shelf platform for distributed
robotics,” in Intelligent Robots and Systems, 2003. (IROS 2003). Proceedings.
2003 IEEE/RSJ International Conference on, 2003, pp. 1632 – 1637 vol.2.

[90] S. Graham and P. R. Kumar, “The convergence of control, communication, and
computation,” in In Proceedings of Personal Wireless Communication (PWC.
Springer-Verlag, 2003, pp. 458–475.

[91] Z. Wang, Z. Song, P.-Y. Chen, A. Arora, D. Storniont, and Y. Q. Chen, “Masmote
- a mobility node for mas-net (mobile actuator sensor networks),” in Robotics and
Biomimetics, 2004. ROBIO 2004. IEEE International Conference on, 2004, pp.
816 –821.

[92] L. Cremean, W. Dunbar, D. van Gogh, J. Hickey, E. Klavins, J. Meltzer, and
R. Murray, “The caltech multi-vehicle wireless testbed,” in Decision and Control,
2002, Proceedings of the 41st IEEE Conference on, 2002, pp. 86–88.

[93] E. King, Y. Kuwata, M. Alighanbari, L. Bertuccelli, and J. How, “Coordina-
tion and control experiments on a multi-vehicle testbed,” in American Control
Conference, 2004. Proceedings of the 2004, vol. 6, 2004, pp. 5315–5320 vol.6.

[94] Y. Gu, B. Seanor, G. Campa, M. Napolitano, S. Gururajan, and L. Rowe, “Au-
tonomous formation flight: Hardware development,” in Control and Automation,
2006. MED ’06. 14th Mediterranean Conference on, June 2006.

[95] D. Gurdan, J. Stumpf, M. Achtelik, K.-M. Doth, G. Hirzinger, and D. Rus,
“Energy-efficient autonomous four-rotor flying robot controlled at 1 khz,” in

213

The
ofa

nis
 P

. L
am

bro
u



Bibliography

Robotics and Automation, 2007 IEEE International Conference on, April 2007,
pp. 361–366.

[96] A. Jensen, M. Baumann, and Y. Chen, “Low-cost multispectral aerial imaging
using autonomous runway-free small flying wing vehicles,” in Geoscience and Re-
mote Sensing Symposium, 2008. IGARSS 2008. IEEE International, July 2008.

[97] D. Mellinger, M. Shomin, N. Michael, and V. Kumar, “Cooperative grasping
and transport using multiple quadrotors,” in Proceedings of the International
Symposium on Distributed Autonomous Robotic Systems, Nov 2010.

[98] K. Alexis, G. Nikolakopoulos, and A. Tzes, “Constrained optimal attitude control
of a quadrotor helicopter subject to wind-gusts: Experimental studies,” in Amer-
ican Control Conference, ACC 2010, Baltimore, Maryland, USA, Jun. 2010, pp.
4451–4455.

[99] K. Alexis, G. Nikolakopoulos, A. Tzes, and L. Dritsas, “Coordination of heli-
copter uavs for aerial forest-fire surveillance,” in Applications of Intelligent Con-
trol to Engineering Systems, ser. Intelligent Systems, Control and Automation:
Science and Engineering, K. P. Valavanis, Ed. Springer Netherlands, 2009,
vol. 39, pp. 169–193.

[100] A. Bicchi, A. Danesi, G. Dini, S. La Porta, L. Pallottino, I. Savino, and R. Schi-
avi, “Heterogeneous wireless multirobot system,” Robotics Automation Magazine,
IEEE, vol. 15, no. 1, pp. 62 –70, march 2008.

[101] A. Dunkels, B. Gronvall, and T. Voigt, “Contiki - a lightweight and flexible oper-
ating system for tiny networked sensors,” in Proceedings of the 29th Annual IEEE
International Conference on Local Computer Networks, ser. LCN ’04. Washing-
ton, DC, USA: IEEE Computer Society, 2004, pp. 455–462.

[102] C. Reed, R. Hudson, and K. Yao, “Direct joint source localization and prop-
agation speed estimation,” in Acoustics, Speech, and Signal Processing, 1999.
ICASSP ’99. Proceedings., 1999 IEEE International Conference on, vol. 3, mar
1999, pp. 1169 –1172 vol.3.

[103] K. Yao, R. Hudson, C. Reed, D. Chen, and F. Lorenzelli, “Blind beamforming on
a randomly distributed sensor array system,” Selected Areas in Communications,
IEEE Journal on, vol. 16, no. 8, pp. 1555 –1567, oct 1998.

[104] D. Li and Y. H. Hu, “Energy based collaborative source localization using acous-
tic micro-sensor array,” J. Applied Signal Processing, vol. 2003, pp. 321–337,
2003.

[105] H. Liu, H. Darabi, P. Banerjee, and J. Liu, “Survey of wireless indoor positioning
techniques and systems,” IEEE Transactions on Systems, Man, and Cybernetics,
Part C: Applications and Reviews, vol. 37, no. 6, pp. 1067–1080, 2007.

[106] G. Strang, Linear algebra and its applications, 3rd ed. Harcourt Brace Jo-
vanovich College Publishers, 1988.

214

The
ofa

nis
 P

. L
am

bro
u



Bibliography

[107] G. T. Csanady, Turbulent diffusion in the environment. Springer, 1973.

[108] H. Ekkehard, Environmental Modeling Using MATLAB. Springer, 2007.

[109] R. A. Russell, “Survey of robotic applications for odor-sensing technology,” I. J.
Robotic Res., vol. 20, no. 2, pp. 144–162, 2001.

[110] “Figaro engineering inc.” [Online]. Available: http://www.figaro.co.jp

[111] H. Ishida, G. Nakayama, T. Nakamoto, and T. Moriizumi, “Controlling a
gas/odor plume-tracking robot based on transient responses of gas sensors,” Sen-
sors Journal, IEEE, vol. 5, no. 3, pp. 537–545, June 2005.

[112] A. Lilienthal, H. Ulmer, H. Frohlich, A. Stutzle, F. Werner, and A. Zell, “Gas
source declaration with a mobile robot,” in Robotics and Automation, 2004. Pro-
ceedings. ICRA ’04. 2004 IEEE International Conference on, 2004.

[113] J. L. W. Richard W Dearden, Zeyn A Saigol and B. J. Murton, “lanning for auvs:
Dealing with a continuous partially-observable environment,” in In Workshop on
Planning and Plan Execution for Real-World Systems, ICAPS 2007, September
2007.

[114] J. Farrell, S. Pang, and W. Li, “Plume mapping via hidden markov methods,”
Systems, Man, and Cybernetics, Part B: Cybernetics, IEEE Transactions on,
vol. 33, no. 6, pp. 850–863, Dec. 2003.

[115] G. Kowadlo and R. A. Russell, “Robot odor localization: A taxonomy and sur-
vey,” The International Journal of Robotics Research, vol. 27, no. 8, pp. 869–894,
2008.

[116] W. L. R. T. C. J. Farrell, J. Murlis, “Filament-based atmospheric dispersion
model to achieve short time-scale structure of odor plumes,” Environmental Fluid
Mechanics, vol.2, pp. 143–169, 2002.

[117] E. K. C. Lytridis and S. Virk, “A systematic approach to the problem of odour
source localisation,” Autonomous Robots, Springer, pp. 261–276, 1996.

[118] D. B. Dusenbery, Sensory ecology: How organisms acquire and respond to infor-
mation, 1992.

[119] R. Russell, D. Thiel, R. Deveza, and A. Mackay-Sim, “A robotic system to locate
hazardous chemical leaks,” in Robotics and Automation, 1995. Proceedings., 1995
IEEE International Conference on, May 1995.

[120] M. T. T. N. T. M. H. Ishida, K. Hayashi and R. Kanzaki, “Odour-source local-
ization system mimicking behavior of silkworm moth,” Sensors and Actuators A:
Physical, pp. 225–230, 1996.

[121] W. Li, J. Farrell, S. Pang, and R. Arrieta, “Moth-inspired chemical plume tracing
on an autonomous underwater vehicle,” Robotics, IEEE Transactions on, vol. 22,
no. 2, pp. 292–307, April 2006.

215

The
ofa

nis
 P

. L
am

bro
u

http://www.figaro.co.jp


Bibliography

[122] A. Hayes, A. Martinoli, and R. Goodman, “Distributed odor source localization,”
Sensors Journal, IEEE, vol. 2, no. 3, Jun 2002.

[123] Q. Liao and E. Cowen, “The information content of a scalar plume - a plume
tracing perspective,” Environmental Fluid Mechanics, vol.2., no. 1-2., pp.9-34,
pp. 9–34, 2002.

[124] M. Vergassola, E. Villermaux, and B. I. Shraiman, “ ‘infotaxis’ as a strategy for
searching without gradients,” Nature, vol. 445, no. 7126, pp. 406–409, January
2007.

[125] S. Pang and J. A. Farrell, “Chemical plume source localization,” Systems, Man,
and Cybernetics, Part B, IEEE Transactions on, vol. 36, pp. 1068–1080, 2006.

[126] G. Ferri, E. Caselli, V. Mattoli, A. Mondini, B. Mazzolai, and P. Dario, “A
biologically-inspired algorithm implemented on a new highly flexible multi-agent
platform for gas source localization,” in Biomedical Robotics and Biomechatron-
ics, 2006. BioRob 2006. The First IEEE/RAS-EMBS International Conference
on, Feb. 2006, pp. 573–578.

[127] V. Christopoulos and S. Roumeliotis, “Multi robot trajectory generation for sin-
gle source explosion parameter estimation,” in Robotics and Automation, 2005.
ICRA 2005. Proceedings of the 2005 IEEE International Conference on, April
2005.

[128] D. Zarzhitsky, D. Spears, and W. Spears, “Distributed robotics approach to
chemical plume tracing,” in Intelligent Robots and Systems, 2005. (IROS 2005).
2005 IEEE/RSJ International Conference on, Aug. 2005.

[129] J. R. C. Savarese and K. Langendoen, “Robust positioning algorithms for dis-
tributed ad-hoc wireless sensor networks,” in USENIX Technical Annual Confer-
ence, 2002.

[130] M. Michaelides and C. Panayiotou, “Event detection using sensor networks,” in
Proceedings of 45rd IEEE Conference on Decision and Control, Dec. 2006.

[131] V. Ablavsky and M. Snorrason, “Optimal search for a moving target: a geo-
metric approach,” in Proceedings of AIAA Guidance, Navigation, and Control
Conference, Denver, CO, USA, Aug. 2000.

[132] T. Lambrou and C. Panayiotou, “Improving area coverage using mobility in
sensor networks,” in International Conference on Intelligent Systems And Com-
puting: Theory And Applications, ISYC 2006, 6-7 Jul. 2006.

[133] A. Dhariwal, G. S. Sukhatme, and A. A. Requicha, “Bacterium-inspired robots
for environmental monitoring,” in IEEE International Conference on Robotics
and Automation. New Orleans, Louisiana: IEEE, Apr 2004.

[134] T. He, C. Huang, B. M. Blum, J. A. Stankovic, and T. Abdelzaher, “Range-free
localization schemes for large scale sensor networks,” in MobiCom ’03: Pro-
ceedings of the 9th annual international conference on Mobile computing and
networking, San Diego, CA, USA, 2003.

216

The
ofa

nis
 P

. L
am

bro
u



Bibliography

[135] F. Zhao and L. Guibas, Wireless Sensor Networks: An Information Processing
Approach. Morgan Kaufmann Publishers Inc., 2004, ch. 2.

[136] T. Lambrou and C. Panayiotou, “Collaborative area monitoring using wireless
sensor networks with stationary and mobile nodes,” EURASIP Journal on Ad-
vances in Signal Processing, pp. 1–16, 2009.

[137] ——, “Distributed collaborative path planning in sensor networks with multiple
mobile sensor nodes,” in 17th Mediterranean Conference on Control and Automa-
tion, IEEE MED 2009, Thessaloniki, Greece, Jun. 2009.

[138] T. Bektas, “The multiple traveling salesman problem: an overview of formula-
tions and solution procedures,” Omega, vol. 34, no. 3, pp. 209 – 219, 2006.

[139] T. H. Cormen, C. E. Leiserson, R. L. Rivest, and C. Stein, Introduction to Algo-
rithms, 2nd ed. The MIT Press, 2001.

[140] C. H. Papadimitriou, “The euclidean travelling salesman problem is np-
complete,” Theoretical Computer Science, vol. 4, no. 3, pp. 237 – 244, 1977.

[141] T. Lambrou, S. Felici-Castell, C. Panayiotou, and B. Beferull-Lozano, “Exploit-
ing mobility for efficient coverage in sparse wireless sensor networks,” in 10th
International Symposium on Wireless Personal Multimedia Communications,
WPMC 2007, Jaipur, India, Dec. 2007.

[142] T. Lambrou, C. Panayiotou, S. Felici-Castell, and B. Beferull-Lozano, “Exploit-
ing mobility for efficient coverage in sparse wireless sensor networks,” Wireless
Personal Communications, pp. 1–15, 2009.

[143] J. M. Dietrich Stoyan, Wilfrid S. Kendall, Stochastic Geometry and Its Applica-
tions, 2nd Edition. John Wiley & Sons, 1995.

[144] P. Hall, “Mean and variance of vacancy for distribution of k-dimensional spheres
within k-dimensional space,” Journal of Applied Probability, vol. 21, pp. 738–752,
1984.

[145] M. G. Kendall and P. A. P. Moran, Geometrical Probability. New York: Hafner,
1963.

[146] T. Lambrou and C. G. Panayiotou, “Area coverage vs event detection in moni-
toring applications using mixed sensor networks,” in 8th World Congress of the
International Federation of Automatic Control, IFAC WC 2011, Milano, Italy,
Aug. 2011, accepted.

[147] T. Lochmatter, P. Roduit, C. Cianci, N. Correll, J. Jacot, and A. Martinoli,
“Swistrack - a flexible open source tracking software for multi-agent systems,”
in Intelligent Robots and Systems, 2008. IROS 2008. IEEE/RSJ International
Conference on, 2008, pp. 4004 –4010.

[148] ATMEL ATmega128L Microcontroller, 2010, [online]. Available from: http://

www.atmel.com/dyn/resources/prod_documents/2467S.pdf.

217

The
ofa

nis
 P

. L
am

bro
u



Bibliography

[149] Chipcon CC2420 RF transceiver from Texas Instruments, 2010, [online]. Avail-
able from: http://focus.ti.com/lit/ds/symlink/cc2420.pdf.

[150] TinyOS operating system, 2010, [online]. Available from: http://www.tinyos.

net/.

[151] Microchip PIC16F877A Microcontroller, 2010, [online]. Available from: http:

//ww1.microchip.com/downloads/en/devicedoc/39582b.pdf.

[152] Mark III Chassis Kit, 2010, [online]. Available from: http://www.junun.org/

MarkIII/Info.jsp?item=2.

[153] Parallax (Futaba) Continuous Rotation Servo, 2010, [online]. Available
from: http://www.parallax.com/Portals/0/Downloads/docs/prod/motors_

/900-00008-CRServo-v2.0.pdf.

[154] Digi XBee-PRO 802.15.4 OEM RF Module, 2010, [online]. Available
from: http://ftp1.digi.com/support/documentation/manual_xb_

oem-rf-modules_802.15.4_v1.xAx.pdf.

[155] H. Karl and A. Willig, Protocols and Architectures for Wireless Sensor Networks.
Wiley, 2005, ch. 9: Localization and positioning, p. 526.

[156] MikroElektronika mikroC Compiler for PIC, 2010, [online]. Available from: http:
//www.mikroe.com/eng/products/view/7/mikroc-pro-for-pic/.

[157] M. Fiala, “Artag, a fiducial marker system using digital techniques,” in in IEEE
Computer Vision and Pattern Recognition, IEEE CVPR 2005, San Diego, CA,
USA, Jun. 2005.

[158] T. Lambrou and C. Panayiotou, “A survey on routing techniques supporting
mobility in sensor networks,” in 5th International Conference on Mobile Ad-hoc
and Sensor Networks, IEEE MSN 2009, Wu Yi Mountain, China, Dec. 2009.

218

The
ofa

nis
 P

. L
am

bro
u



Biography

Theofanis P. Lambrou has received his Diploma Degree in Electrical and Computer
Engineering from the National Technical University of Athens, Greece in 2004. From
2004 to 2005 he was a Research Assistant at the microelectronics and electronics sensors
laboratory at the National Technical University of Athens. Since January 2006, he is a
Ph.D. candidate in Electrical and Computer Engineering at the University of Cyprus.
His research interests include wireless sensor networks, sensor technologies and signal
conditioning, sensor and actuator systems design, cooperative control for distributed
robotic systems and motion planning. He is involved in various projects funded by
the European Commission and the Research Promotion Foundation of Cyprus that
involve path planning algorithms, collaboration between mobile and stationary sensor
nodes, sensors design and development. He is a member of the IEEE and the Technical
Chamber of Cyprus (ETEK).

219

The
ofa

nis
 P

. L
am

bro
u



The
ofa

nis
 P

. L
am

bro
u



The
ofa

nis
 P

. L
am

bro
u


	Abstract
	Acknowledgments
	Table of Contents
	List of Publications
	List of Figures
	List of Tables
	Introduction
	Motivation
	Objectives
	Dissertation Organization and Overview
	Dissertation Organization
	Dissertation Overview

	Contributions

	Literature Review
	Overview
	State of the art and related work
	Coverage in WSN
	Sensing models and Coverage
	Boolean sensing model
	Probabilistic sensing model
	Area Coverage

	Coverage based on exposure for WSN
	Coverage exploiting mobility for WSN
	Based on Potential Fields and Virtual forces
	Based on Voronoi Diagrams
	Based on Combination of Static and Mobile Sensor Nodes
	Based on Event Distribution
	Dynamic Coverage based on Continuous Movement of Mobile Sensors


	Path Planning Algorithms for Mobile Robotics
	Deterministic Path Planning Methods
	Road Map Path Planning
	Cell Decomposition Path Planning
	Potential Field Path Planning

	Sampling-based Path Planning Methods
	Probabilistic Road Maps
	Rapidly-exploring Random Trees

	Heuristic Path Planning Methods
	Coverage Path Planning

	Cooperative Path Planning and Control for Multi-Robot Systems
	Cooperative Search and Surveillance
	Formation Control and Consensus Algorithms
	Experimental Testbeds

	Event Localization and Odor Plume Source Localization in WSN
	Event Localization
	Odor Plume Source Localization in WSN
	Biomimetic Approaches
	Probabilistic Approaches
	Multi-Agent Approaches


	Summary

	Finding Paths between Two Arbitrary Points in Sensor Networks that Improve Coverage
	Summary
	Introduction
	Simulation Model & Objectives 
	Path Planning Algorithms
	Algorithm Based on Artificial Potential Field
	Algorithms Based on Receding-Horizon Approach

	Simulation Results
	Conclusion

	Coverage Hole Detection Algorithms
	Summary
	Introduction
	Model Description
	Coverage Hole Detection Algorithms
	Grid Scan Algorithm
	One Scan Algorithm
	Zoom Algorithm

	Path Planning Algorithm
	Simulation Results 
	Conclusion

	Complete Coverage in Sparse Sensor Networks using a single Mobile Node
	Summary
	Introduction
	Assumptions and Definitions
	Complete Area Coverage Path Planning Algorithm
	Simulation results
	Conclusions

	Distributed Collaborative Path Planning for Complete Area Coverage in WSNs
	Summary
	Introduction
	Assumptions and Definitions
	Dynamic Path Planning Algorithm 
	Objective Functions
	Coverage Hole Estimation Algorithm
	Collaboration Between Mobile Nodes

	Simulation results
	Conclusions

	Distributed Collaborative Path Planning with Minimal Communication
	Summary
	Introduction
	Simulation Results 
	Conclusion

	Distributed Collaborative Path Planning for Coverage and Event Source Detection in WSNs
	Summary
	Introduction
	Model Description and Problem Formulation
	The Environment
	Sensor Model
	Objectives
	Mobile Sensor Node Model

	Collaborative - Distributed Path Planning
	Path Cost Functions
	Neighboring Sensor Collaboration Cost Function using an Artificial Function
	Target Cost Function
	Neighboring Sensors Collaboration Cost Function using the Cognitive Map
	Cognitive Map Triangular Region Cost Function
	Mobile Sensors Collaboration Cost Function
	Boundaries Cost Function


	Dynamic Target Estimation and Allocation
	Coverage Hole Estimation Scheme
	Source Position Estimation Scheme
	Distributed Target Allocation and Collaboration
	Discussion

	Collision Avoidance and other Conflicts

	Simulation Results 
	Conclusion

	Area Coverage and Event Detection in Monitoring Applications using Mixed Sensor Networks
	Summary
	Introduction
	Model Description
	Optimal Search Strategy
	NP-completeness
	Optimal Solution for the single mobile - two hole problem
	Optimal Solution for the single mobile - h hole problem
	Discussion

	Mobile Distributed Path Planning Algorithm
	Path Planning
	Path Cost Functions
	Search Neighborhood rz
	Distributed Collaboration between Mobile Nodes

	Simulation Results
	Conclusion

	On the Optimal Search Neighborhood in Mixed Wireless Sensor Networks
	Summary
	Introduction
	Sensor Network Model and Objectives
	The Two Hole Problem
	Vacancy
	An Approximation of Optimal Search Neighborhood

	Simulation Results
	Conclusion

	A Testbed for Coverage Control using Mixed Wireless Sensor Networks
	Summary
	Introduction
	Mixed WSN Testbed Overview
	Stationary Sensor Nodes
	Mobile Sensor Nodes
	Vision Based Positioning System
	Node Communication Protocols

	Area Coverage Problem
	Case Study: Distributed Collaborative Path Planning
	Path Cost Functions
	Distributed Collaboration between Mobile Nodes
	Firmware of Mobile Nodes

	Obtained Results for the Experimental Case Study
	Conclusion
	Image Post Processing Algorithm for Mobile Node Localization

	Conclusions, Remarks and Future Directions
	Conclusions
	Remarks
	Future Directions

	Bibliography
	Biography



