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Abstract

Over the last few decades, the size and complexity of telecommunications networks

have steadily increased and this trend will continue for the foreseeable future. Fiber-

optic communication networks that provide a huge available amount of capacity

and low bit-error rates are currently widely used as the telecommunication medium

of choice that is able to supply high-speed and reliable communications. Optical

networks, where the provisioning and fault recovery functionalities are dealt with

at the physical layer, have been at the forefront of research for several years, espe-

cially for unicast applications, and these networks are currently being realized today

mostly in the backbone arena.

However, new traffic requirements are currently emerging for these new types of

network architectures, including new high-bandwidth applications (such as video-

on-demand, teleconferencing, distance-learning, remote medical diagnostic appli-

cations, etc.) that require point-and-click provisioning of multicast sessions in the

physical domain.

Furthermore, due to the very large amount of information carried on the optical

fiber links, the fact that for multicast applications a single link failure may poten-

tially disrupt traffic to a large number of destinations, and the availability service

requirements offered by the service providers to the customers (and quantified via

service level agreements (SLAs)), fast recovery from failures is also an essential part

of network operation in backbone mesh optical networks.

This thesis addresses precisely the problem of multicast routing and fault re-

covery in wavelength-division multiplexed (WDM) optical networks with arbitrary

mesh topologies. The main contribution of the thesis is in the design of novel mul-

ticast routing and protection heuristic algorithms for undirected- and mixed-graph

networks. An undirected graph is defined as one having only bidirectional connec-

tions between its nodes, and a mixed graph as one having both bidirectional and
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unidirectional connections. The modeling of a network as a mixed graph is closer

to practical networks, since even if the network is designed to be undirected, the

already established requests hold resources of it, resulting in a mixed-graph network

for the subsequent requests. For both the undirected and mixed-graph networks,

new multicast routing and protection techniques are developed, and it is shown

through examples and simulations on randomly created networks that they demon-

strate enhanced network performance compared to the currently most widely used

relevant techniques in mesh optical networks.

Various network architectures were investigated in this work including networks

with full- and sparse-splitting capabilities, and networks with drop-and-continue

and drop-or-continue nodes. For these types of networks, heuristic algorithms were

developed that give efficient solutions to the problems of splitter allocation in the

network and to the problem of multicast routing.

Furthermore, a load balancing technique is presented, that takes into account the

already established multicast requests and the congestion they cause to each link, in

order to route the upcoming requests more efficiently.

While all the aforementioned heuristics were developed in order to deal precisely

with the problem of multicast routing and protection in mesh optical networks, it

must be noted that most of them are general and they can be used in other types of

networks as well, with minor modifications.
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Περίληψη 

Κατά τα τελευταία χρόνια, το μέγεθος και η πολυπλοκότητα των τηλεπικοινωνιακών δικτύων 

αυξάνονται σταθερά και η τάση αυτή αναμένεται να συνεχιστεί και στα επόμενα χρόνια. Τα 

τηλεπικοινωνιακά συστήματα οπτικών ινών τα οποία παρέχουν τεράστια χωρητικότητα και 

χαμηλά ποσοστά σφάλματος, χρησιμοποιούνται ευρέως στα σημερινά τηλεπικοινωνιακά 

δίκτυα και παρέχουν αξιόπιστες επικοινωνίες υψηλής ταχύτητας. Τα αμιγώς οπτικά δίκτυα, 

όπου το σήμα παραμένει συνεχώς στο οπτικό επίπεδο, και οι λειτουργίες δρομολόγησης και 

αποκατάστασης βλαβών εκτελούνται στο φυσικό στρώμα, είναι στην πρώτη γραμμή της 

έρευνας τα τελευταία χρόνια, ειδικά για εφαρμογές μονοσημειακής σύνδεσης. 

 

Ωστόσο, υπάρχουν αρκετές νέες εφαρμογές (όπως βίντεο κατά απαίτηση, τηλεδιάσκεψη, εξ’ 

αποστάσεως μάθηση, εξ’ αποστάσεως εφαρμογές ιατρικής διάγνωσης, κλπ), οι οποίες 

απαιτούν πολυσημειακή σύνδεση στο φυσικό πεδίο.  

 

Επιπλέον, λόγω του ότι οι οπτικές ίνες μεταφέρουν πολύ μεγάλο όγκο πληροφορίας, το 

γεγονός ότι στις εφαρμογές πολυσημειακής σύνδεσης η βλάβη μιας μόνο οπτικής ίνας 

μπορεί να επηρεάσει τη μετάδοση της πληροφορίας σε μεγάλο αριθμό προορισμών, και το 

επίπεδο ποιότητας υπηρεσίας που προσφέρεται από τους παροχείς στους χρήστες, 

οδηγούν στην αναγκαιότητα ενσωμάτωσης μηχανισμών γρήγορης αποκατάστασης βλαβών 

στη λειτουργία των οπτικών δικτύων. 

 

Η παρούσα διατριβή ασχολείται ακριβώς με το πρόβλημα της δρομολόγησης και 

αποκατάστασης βλαβών σε εφαρμογές πολυσημειακής σύνδεσης, σε οπτικά δίκτυα με 

πολυπλεξία μήκους κύματος και αυθαίρετη τοπολογία πλέγματος. Η κύρια συνεισφορά της 

διατριβής είναι η ανάπτυξη καινοτόμων αλγορίθμων δρομολόγησης και προστασίας  
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πολυσημειακών συνδέσεων, για δίκτυα μη κατευθυνόμενου και μικτού γραφήματος. Ένα μη 

κατευθυνόμενο γράφημα ορίζεται ως εκείνο που έχει μόνο αμφίδρομες συνδέσεις μεταξύ των 

κόμβων του, και ένα μικτό γράφημα ως εκείνο που έχει τόσο αμφίδρομες όσο και μονόδρομες 

συνδέσεις. Η μοντελοποίηση ενός δικτύου ως ένα μικτό γράφημα είναι πιο κοντά στην 

πραγματικότητα, δεδομένου ότι στην πράξη, ακόμα και αν το δίκτυο έχει σχεδιαστεί ως μη 

κατευθυνόμενο, οι συνδέσεις που έχουν ήδη υλοποιηθεί δεσμεύουν κάποιο μέρος της 

χωρητικότητας του, με αποτέλεσμα η εναπομένουσα χωρητικότητα να οδηγεί σε δίκτυο μικτού 

γραφήματος για τις επικείμενες συνδέσεις. 

  

Διάφορες αρχιτεκτονικές δικτύων ερευνήθηκαν στη παρούσα εργασία, όπως δίκτυα με οπτικούς 

διαχωριστές σε όλους τους κόμβους, δίκτυα με οπτικούς διαχωριστές σε μερικούς από τους 

κόμβους, και δίκτυα με κόμβους τερματισμού-και-συνέχειας και τερματισμού-ή-συνέχειας. Για 

αυτές τις κατηγορίες δικτύων, αναπτύχθηκαν αλγόριθμοι που δίνουν αποτελεσματικές λύσεις 

στα προβλήματα της κατανομής των οπτικών διαχωριστών στο δίκτυο και της δρομολόγησης 

πολυσημειακών συνδέσεων. 

 

Επιπλέον, παρουσιάζεται μια τεχνική εξισορρόπησης φορτίου, η οποία λαμβάνει υπόψη τις ήδη 

εγκατεστημένες εντολές πολυσημειακών συνδέσεων και τη συμφόρηση που προκαλούν σε κάθε 

σύνδεση του δικτύου, ώστε η δρομολόγηση των επερχόμενων συνδέσεων να γίνει με πιο 

αποτελεσματικό τρόπο. 

 

Παρά το γεγονός ότι οι προτεινόμενοι αλγόριθμοι αναπτύχθηκαν για την περίπτωση των 

αδόμητων οπτικών δικτύων, οι περισσότεροι από αυτούς, με ελάχιστες τροποποιήσεις, 

μπορούν να εφαρμοστούν και σε άλλους τύπους δικτύων. 
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Όλοι οι προτεινόμενοι αλγόριθμοι αξιολογήθηκαν και συγκρίθηκαν με τους σχετικούς 

υφιστάμενους. Η βελτιωμένη τους απόδοση φαίνεται μέσα από παραδείγματα και 

προσομοιώσεις σε πραγματικά και τυχαία δημιουργημένα δίκτυα. 
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Chapter 1

Introduction

1.1 Background

Over the last few decades, the size and complexity of telecommunications networks

have steadily increased. The number of Internet users as well as the average us-

age time per person are increasing every year (it is estimated that more than two

billion people are nowadays Internet users [1]), and this trend will continue for

the foreseeable future. Therefore, the usage of a telecommunications medium with

huge available amount of capacity and low bit-error rate, that is able to supply

high-speed and reliable communications, is a necessity. Optical fiber was the suc-

cessor to copper-wire in telecommunication transmission systems, since it has all the

aforementioned characteristics [2].

Both optical fibers and copper cables are waveguides that guide the signal and

keep it focused for a reasonable distance without being scattered [3]. The signal

arrives at the receiver with enough power so that the message can be successfully

decoded. The main physical difference between these two communication mediums

is that optical fiber transports photons, while in copper cables electrons are the carriers

of information. Photons have the ability to travel faster and they do not affect

one another, since they are not electrically charged [4]. Moreover, the amount of

data that can be transmitted through an optical fiber is much greater compared to

copper-based systems.

Networks that use optical fibers as the communication medium are called optical

networks. This kind of networks combine several advantages such as: they offer

much higher bandwidth than copper cables, they have low signal attenuation and
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low signal distortion, they have very low bit-error rates, they have small space re-

quirements, and they are less susceptible to electromagnetic interference [3]. Optical

networks are separated in two categories, in terms of the multiplexing technique

they use: Time Division Multiplexing (TDM) and Wavelength Division Multiplexing

(WDM) optical networks [3]. In TDM networks, many lower speed data streams are

multiplexed into a higher speed stream at the transmission bit rate. The multiplexer

typically interleaves the lower speed streams to obtain the higher speed stream. In

WDM networks, the idea is basically the same as frequency division multiplexing

(FDM), which has been used in radio systems. Different data are transmitted simul-

taneously using different wavelengths, that do not interfere. This thesis deals with

the latter case, since it is the most widely-used case for optical network deployment.

Fiber-optic communication systems utilizing WDM nowadays comprise of 40-

channel or 80-channel 10 Gbps optical communications systems while under devel-

opment are next-generation optical communications systems with single-channel

data rates of 40 and 100 Gbps for long-haul. With the successful commercializa-

tion of WDM, the optical transport network (OTN) has been standardized by the

ITU-T as the underlying infrastructure of the network, thus allowing the network

to transport huge amounts of data that are needed for many current and future

communication services and applications, including a host of bandwidth-intensive

multicast applications.

In initial optical network deployments, while the transmission medium was opti-

cal (fiber-optic links), the rest of the network control and management functionalities

took place at higher (electrical) layers such as the SONET, ATM, and IP/MPLS layers.

Only recently have these control and management functionalities started to move

down to the optical layer, and this was a direct consequence of the development

of intelligent optical cross-connects (OXCs) that can support such functionalities.

OXCs have functions similar to optical add/drop multiplexers (OADMs) (an optical

add/drop multiplexers drops and adds a selective number of wavelengths from a

WDM signal, while allowing the remaining wavelengths to pass through), but on

a much larger scale in terms of the number of ports and wavelengths involved.

OADMs are typically deployed in linear or ring topologies, while OXCs are usu-

ally used in mesh networks. These cross-connects that can switch any wavelength

from any input port to any output port belong to two categories: opaque (OEO)

cross-connects where switching takes place utilizing an electronic switch fabric and
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all-optical (OOO) cross-connects where switching is done exclusively in the optical

domain (e.g., utilizing a MEMS-based optical switch).

In the OEO case the main advantage is the fact that it allows access to the electrical

signal and thus to the overhead bytes, making it very easy to provide all of the

network control and management functionality at the optical layer. Specifically,

in this case, automated network database creation and maintenance, automated

provisioning, fault detection, isolation, and recovery, multiplexing and grooming,

as well as unrestricted routing through the network can be very easily provided.

On the other hand, the OOO approach will provide for significant cost savings

(achieved by removing all OEO conversions) and transparency in terms of bit rate,

protocol format, and modulation format. However, OOO solutions, where the signal

stays in the optical domain throughout, make it very difficult (but not impossible)

to provide the necessary control and management functionalities, as now there is

no access to the overhead bytes until the signal terminates at the destination nodes.

Other challenges that also arise in completely transparent (OOO) networks include

the accumulation of physical impairments along the entire path, the requirement for

end-to-end system engineering, and the fact that fault recovery is practically limited

to dedicated protection. All of these challenges can be tackled but with difficulty in

transparent optical networks. In this thesis the assumption is that the cross-connect

switches can be either opaque or all-optical.

Current and next-generation optical networks not only provide transmission

capacities to higher transport levels, but now have the intelligence to support a

number of real-time control functionalities previously provided only by the higher

(electrical) layers such as IP/MPLS. Thus, control functions such as connection provi-

sioning and fault recovery can now be handled by the optical layer rather by higher

(electrical) layers. The emergence of intelligent optical network elements (including

optical cross-connects) are instrumental in making such optical architectures a re-

ality today. For example, the Generalized Multiprotocol Label Switching (GMPLS)

control protocol was proposed to provide the control functions at the physical layer.

GMPLS is a generalization of the Multiprotocol Label Switching (MPLS) protocol,

which was designed to provide automated provisioning, connection maintenance,

and network resource management, including providing Quality-of-Service (QoS)

and Traffic Engineering (TE) for IP/MPLS networks.

Therefore, there has been a steady evolution of optical networks from point-to-
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point WDM transmission systems, to ring, and finally to arbitrary connected mesh

networks that utilize intelligent OXCs along with control protocols at the phys-

ical (optical) layer, in order to support network functionalities such as automated

provisioning of optical services and automated fault recovery capabilities. The appli-

cations that are supported in these networks range from mainstream point-to-point

voice and data services to frontier services such as HDTV, webcasting, and stream-

ing video, to future services such as web agents, metacomputing, 3-D multimedia,

telemedicine, etc. Clearly, frontier and future services include not only unicast ap-

plications but a host of multicast applications as well. The provisioning and fault

recovery of these applications is precisely the topic of this dissertation.

1.2 Motivation

The majority of the traffic carried over an optical mesh network currently corre-

sponds to unicast connections, mostly in the form of point-to-point connections

for enterprise customers. However, a number of new customer applications have

emerged that are driving the need to support multicast connections, potentially

over optical mesh networks. These applications include video distribution for resi-

dential customers, video conferencing between telepresence-equipped rooms, video

training, e-learning and on-line teaching, emerging grid-computing applications re-

quiring collaborative and interactive high-definition visualization, and telemedicine

applications amongst others.

Multicasting in optical networks is achieved by the calculation of light-trees.

Since this is equivalent to the Steiner tree problem in graphs, Steiner tree heuristic

algorithms are exploited for finding these trees. The calculation of trees of low

cost (i.e., consisting of a small number of arcs) is important, since this leads to the

minimization of the network resources used. The heuristics that are widely used for

multicasting in optical and other networks, are Minimum Path Heuristic (MPH) and

Pruned Prim Heuristic (PPH). If new, more efficient heuristic algorithms are created,

the network multicast calls will be established using less network resources, and

this will increase the number of the calls the network can serve, thus reducing the

blocking probability for the multicast connections to be provisioned.

Furthermore, all the multicast routing heuristic algorithms used in optical and

other networks are used under the assumption that the network can be modeled as
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an undirected graph (a graph where all the connections are bidirectional). However,

this is not the practical case. Modeling a network as a mixed graph (a graph that

consists of both unidirectional and bidirectional connections) is more realistic, as

even if the network is designed to be undirected, when some requests arrive and

hold resources of the network, some of the arcs have all their wavelengths occupied,

and cannot be used for the upcoming requests. Therefore, the resulting network

graph is mixed, and the routing for the new requests will be calculated on this mixed

graph. Another case where the routing is performed on a mixed graph, is when

the challenge is to find a pair of arc-disjoint trees (e.g., for protection against single

link failures). In this case, the second tree, after the removal of the first one, will be

calculated on a mixed graph. Therefore, new multicast routing heuristic algorithms

must be created specifically for mixed-graph networks.

For the realization of light-trees, the node architectures must also be multicast-

capable. Since it may not be possible to have multicast-capable architectures at

each network node and assuming that only a fraction of the network nodes will be

multicast-capable (resulting in sparse-splitting networks), efficient multicast routing

heuristic algorithms must be created for this category of networks as well, including

techniques on the placement of the multicast-capable nodes.

Protection of multicast connections is also a very important aspect for the opera-

tion of intelligent optical networks. Optical network architectures can suffer failures,

either due to accidental fiber cuts and human mistakes, or due to equipment failures.

As any failure in these networks can potentially result in a large amount of infor-

mation loss if it is not recovered quickly, efficient recovery techniques are extremely

important when provisioning the multicast requests. Therefore, it is important to

devise protection methods that can find working and protection trees with less cost,

that will subsequently lead to the saving of network resources and will increase the

possible number of multicast requests that the network can serve. Furthermore, all

existing multicast protection techniques ignore the current network status, for the

calculation of the light-trees of the upcoming requests. New techniques are required

that take into account the load distribution on the network, and the congestion each

network link has, which will in turn lead to lower blocking probability, since such

techniques will decrease the possibility that the network will be disconnected due

to high congestion on specific links.

Clearly, there is fertile ground for a number of research innovations in the area
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of multicast routing and protection in mesh optical networks and this is exactly the

work performed in this dissertation as explained in detail in the section that follows.

1.3 Thesis Objective/Contribution

The objective of this thesis is to study problems related to multicast routing and

protection in optical WDM networks with arbitrary mesh topologies. The main

contributions of this dissertation are in the design and implementation of novel

multicast provisioning and protection heuristic algorithms for different types of

networks including unidirectional and mixed-graph networks, as well as networks

with sparse-splitting capabilities. A number of heuristic algorithms that outperform

the existing ones are presented, explained, and evaluated through examples and

simulations.

Specifically, this dissertation initially develops a new multicast routing heuristic

algorithm, called Steiner Node Heuristic (SNH), that is a general algorithm, i.e., it

can use any appropriate algorithm as its basis and follow a recursive procedure to

improve the solution obtained by this algorithm. The proposed method outperforms

the widely-used multicast routing heuristic algorithms for mesh optical networks.

The tradeoff for the performance gain achieved by the proposed algorithm is an

acceptable increase of its time-complexity (the increase of the time-complexity is

considered acceptable since it remains polynomial).

For sparse-splitting networks (i.e., networks where not all nodes are multicast

capable (MC)) both problems of multicast routing and multicast-capable node al-

location are investigated. A second contribution of this dissertation is the devel-

opment of heuristic algorithms for multicast routing and MC-node placement that

outperform the best of the existing ones. The multicast routing heuristic algorithms

proposed in the current thesis locate the multicast-capable nodes, that, if used for

the calculation of the multicast tree, will reduce its cost. Furthermore, new splitter

allocation techniques are presented that outperform the existing ones in terms of the

resulting average tree cost. The routing and placement techniques were developed

for architectures where all the multicast-incapable nodes were Drop-and-Continue

(DaC) nodes as well as for architectures where all the multicast-incapable nodes

were Drop-or-Continue (DoC) nodes.

A third major contribution of the thesis is the heuristic algorithms developed
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for mixed-graph networks. Up-to-date, research work on multicast routing in opti-

cal networks was performed according to the assumption that the network can be

modelled as an undirected graph (a graph consisting only of bidirectional connec-

tions). However, in the thesis, this work is expanded to the more general case of

mixed-graph networks (graphs consisting of both bidirectional and unidirectional

connections). As it is reasoned in the thesis these types of networks are closer to

the practical case that is encountered during the provisioning request of unpro-

tected and protected multicast requests. The performance of the undirected-graph

multicast routing heuristic algorithms if applied in mixed graphs is mathematically

analyzed and evaluated through simulations. The mathematical analysis shows

that the creation of mixed-graph multicast routing heuristic algorithms is important.

Consequently, new multicast routing heuristic algorithms were specifically designed

for this category of networks, and analyzed via simulations for randomly created

networks. Performance results indicated that these new heuristics outperform (in

terms of the cost of the calculated trees) the existing ones that were initially designed

for undirected graphs but were applied to the mixed-graph case.

Since, as reasoned in the previous section, it is of critical importance to have effi-

cient fault recovery techniques that can provide the required SLAs for the multicast

connections, a fourth contribution of this dissertation is the development of new pro-

tection techniques for single link failure and single link/node failure scenarios that utilize

the proposed undirected- and mixed-graph multicast routing heuristic algorithms to

provide protection against failures as well. Performance results show that when the

newly developed routing techniques are used for protection purposes they are more

efficient compared to the case where the existing routing approaches were used.

Another contribution in terms of multicast protection in mixed-graph networks is

the development of an algorithm that provides protection for multicast connections

in mixed-graph networks based on finding pairs of working and protection paths

(and being able to deal with certain “trap” topologies where other algorithms fail).

This algorithm is also shown to outperform its counterpart (in terms of the cost of

the calculated trees) that was designed for undirected graph networks.

Another important contribution of the thesis is the development of a “load bal-

ancing” technique that decreases the blocking probability of multicast connections.

Until now, the existing algorithms were not taking into consideration the state of the

network (due to the already deployed requests), for the establishment of upcoming
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multicast requests. The method developed in this dissertation modifies the cost of

each network arc according to the distribution of the load in the network, in order

to achieve a balanced load distribution and thus to minimize the possibility that

the network will be disconnected in some areas due to load congestion on certain

arcs, which will subsequently lead to higher blocking probability for the multicast

connection requests that follow.

It must be stated that, even though the proposed heuristic algorithms were de-

veloped for optical networks, most of them are general, i.e., they can be used in other

kinds of networks as well. This fact increases the importance of the proposed multi-

cast routing and protection heuristic algorithms and, consequently, the contribution

of the work performed in this thesis.

1.4 Thesis Outline

The outline of the rest of the dissertation is as follows:

Chapter 2 describes the existing state-of-the-art for multicasting in optical net-

works, including the multicast-capable optical switch architectures for opaque and

transparent networks and the mathematical formulation for the routing and wave-

length assignment of several (protected) multicast groups for networks with full-

splitting capability (i.e., where all network nodes are multicast capable). Some of the

most notable heuristic algorithms for multicast routing in full-splitting and sparse-

splitting (i.e., where only a fraction of the network nodes are multicast capable)

networks are presented as well.

In Chapter 3, the focus is on multicast routing techniques for full-splitting

undirected-graph networks. Initially, several existing multicast routing techniques

are presented, followed by a newly proposed multicast routing technique (and its

generalized version). The theoretical analysis of the proposed technique is given as

well. An extensive performance evaluation is obtained via simulations on a widely-

used network, on random network topologies, and on other categories of networks

(regular, small-world, and scale-free).

Chapter 4 considers architectures with sparse splitting where there are only a

few multicast-capable (MC) nodes in the network and the rest of the nodes are

multicast incapable (MI). The MI nodes are further classified as drop-and-continue

or drop-or-continue. For these types of networks multicast routing techniques as
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well as MC-capable node placement approaches are developed. For all proposed

techniques, performance evaluation is obtained via simulations on random network

topologies.

Chapter 5 focuses on the design of multicast routing heuristic algorithms for

mixed-graph networks. Initially, in this chapter an evaluation of the widely-used

multicast routing heuristic algorithms is performed for the case of mixed-graph

networks, as well as the theoretical calculation of their worst-case performance. A

modification of the Chu Liu algorithm for multicasting applications is also given.

Furthermore, novel heuristic algorithms that are generalizations of the existing ones

and are more efficient for mixed graphs are presented, in addition to the mixed graph

version of the newly developed multicast routing heuristic algorithm presented in

Chapter 3. Again, for all techniques developed performance evaluation is obtained

via simulations on random network topologies.

Chapter 6 extends the routing discussion of Chapter 3 by investigating the prob-

lem of multicast protection in mesh optical networks. It starts with a description

of arc-disjoint protection techniques utilizing the existing multicast routing heuris-

tic algorithms, and continues with the description and performance evaluation of

arc-disjoint protection techniques for the newly developed multicast routing heuris-

tic algorithms for undirected graphs as described in Chapter 3. The description

of a protection method based on Suurballe’s algorithm, that jointly finds pairs of

working and protection paths, is given as well, followed by a “load balancing” tech-

nique that tries to minimize link congestion and in turn establish dynamic multicast

connections more efficiently.

Chapter 7 is devoted to protection of multicast connections in networks with

mixed-graph topologies. This is an extension of the routing discussion of Chap-

ter 5 that utilizes arc-disjoint protection techniques while using the existing and

the newly developed mixed-graph multicast routing heuristic algorithms. Further-

more, it describes a new approach for protection in mixed graphs that jointly finds

pairs of working and protection paths in these types of networks, demonstrating its

improved efficiency compared to its undirected counterpart.

Chapter 8 concludes the thesis by summarizing the original contributions of this

dissertation and presenting possible research directions that were not covered in

this thesis. As pointed out in this chapter, the list of future directions presented is

not exhaustive but describes some of the interesting problems that warrant further
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investigation.

At the end of the dissertation, some important graph theory definitions that

are used throughout the thesis are given in Appendix A. Furthermore, a list of

publications that resulted from this thesis and related telecommunication systems

work is given in Appendix B.
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Chapter 2

Optical Multicasting

2.1 Introduction

Multicasting is the transmission of information from a single source to multiple

destinations. It is established by the calculation of a tree on the network graph, that

has the source of the multicast request as the root, and spans all the destinations.

The problem of finding a cost-efficient multicast tree is equivalent to the classical

mathematical Steiner Tree Problem (STP) on graphs. Therefore, Steiner tree heuristics

are exploited in network applications for the derivation of multicast trees. The

calculation of the multicast tree is called Multicast Routing. For the transmission of

information between the source and every destination, a wavelength must also be

selected for each tree arc, for the case of an optical Wavelength Division Multiplexing

(WDM) network. This procedure is called Wavelength Assignment. Note that in the

case of a network that has wavelength converters at each node, different wavelengths

can be used in the tree arcs. Otherwise, if no wavelength converters exist, the same

wavelength must be used for the entire tree [6].

Therefore, for the establishment of a multicast request, the Multicast Routing and

Wavelength Assignment (MC-RWA) problem must be solved. When the multicast

routing and wavelength assignment is completed, the resulting tree is referred to as

a light-tree in optical networks [5].

For the implementation of a light-tree, optical splitters are required in the network

nodes. An optical splitter is a passive device that optically splits the input signal into

multiple identical output signals. The nodes that have the ability of optical splitting,

are called multicast-capable (MC) nodes, otherwise they are called multicast-incapable
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(MI) nodes. If all network nodes are equipped with an optical splitter, the network

is called a full-splitting network. On the other hand, if only a fraction of the nodes

has this ability, it is called a sparse-splitting network. A summary of optical node

architectures that can be used as MC and MI nodes is presented in Section 2.2 that

follows.

2.2 Multicasting Optical Node Architectures

2.2.1 Multicast-Capable Network Nodes

There are two approaches to design multicasting switches [8] for the network

multicast-capable nodes. The first one is called the opaque approach where the optical

bit streams are converted into electronic data, switched (and split via duplication)

using an electronic cross-connect, and then the electronic bit streams are converted

back to the optical domain (the opaque switch architecture is shown in Figure 2.1).

The second approach is called the transparent (all-optical) approach, where the signal

remains in the optical domain throughout and splitting is performed utilizing opti-

cal splitters as described previously. An example of a transparent multicast-capable

switch architecture is shown in Figure 2.2. This switch design is called a splitter-and

delivery (SaD) switch and can be found in [7].

2.2.2 Multicast-Incapable Network Nodes

The multicast-incapable network nodes can be either Drop-or-Continue (DoC) or

Drop-and-Continue (DaC) [11]. Optical DoC cross-connects can either terminate the

incoming lightpath or allow the incoming lightpath to optically bypass the node. In

such architectures, lightpaths are established between source-destination node pairs

and cannot be directly utilized by intermediate nodes (Figure 2.3).

In a DaC optical cross-connect, incoming optical signals can be split unequally.

Consequently, a small portion of the optical signal can be dropped and processed

electronically, while the remaining portion continues to travel optically to the next

node with negligible degradation (Figure 2.4). The main advantage of the DaC

optical cross-connect architecture is that it allows an available lightpath to be shared

by connection requests whose destinations are intermediate or end-nodes of the
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Figure 2.3: DoC MI network node.

lightpath. However, a potential drawback of this architecture is the excessive power

loss that a lightpath may experience as it passes through many nodes.

2.3 Multicast Routing and Wavelength Assignment (MC-

RWA)

Routing is the procedure of selecting paths (or trees) in a network along which the

information will be sent. It is a general engineering problem that is performed for

any kind of network, such as telephone, computer, or transportation networks. The

node that sends the message is considered as the source and the receiving nodes are

the destinations. In terms of the number of destinations that the information is sent

to, there exist three categories of routing:

• unicast routing, where the information is sent to one destination,

• broadcast routing, where all network nodes are considered as destinations, and

• multicast routing, where only a set of nodes will receive the information.

The above three cases are, in fact, three fundamental combinatorial optimization

problems: Shortest Path (SP), Minimum Spanning Tree (MST), and Steiner Minimal
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Figure 2.4: DaC MI network node.

Tree (SMT) respectively. Polynomial-time algorithms that give the optimal solution

exist only for the SP and MST problems, since SMT is considered an NP-complete

problem [12] and no optimal polynomial-time algorithms are likely to exist. The

optimal solution for this problems can be calculated using exhaustive search, i.e.,

checking all the possible solutions and selecting the one with the least cost. This

method is not useful in practice however, due to the huge amount of time and com-

putational power needed, which makes it unrealistic for dynamically provisioned

networks. Therefore, approximate algorithms that have efficient average- and worst-

case performance have been proposed for the SMT problem. These heuristics have

polynomial time complexity i.e., the time needed for the calculation of the solution is

a polynomial function of the input of the problem. Integer Linear Programming (ILP)

can be also used for solving this problem. This method does not have polynomial

time complexity, but in practice it is acceptably fast for small size networks. It is not

used for real dynamic provisioning applications, but it is exploited in simulations,

to be compared with a heuristic algorithm, in order to evaluate the performance

of the latter. ILPs are also commonly used in design (static) problems where the

computation is performed offline and the time required to obtain the results is not

as critical.
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Routing is performed according to a specific routing metric. This can be for

example the number of hops from source to destination, physical distance from

source to destination, monetary cost of each hop, latency, or a combination of them.

Each optical fiber consists of a number of wavelengths. Therefore, for the trans-

mission of information in an optical network, except for the selection of the path

or tree along which the information will be sent, a wavelength must be selected for

each link that will be used. This procedure is called wavelength assignment (WA).

The main constraint in assigning wavelengths to different calls in the network is that

there cannot exist two calls on the same wavelength traversing the same fiber (color

clash constraint). The various WA algorithms depend on the number of wavelength

converters [13] that exist in the network. In the absence of them, the same wave-

length must be assigned for the whole route (wavelength continuity constraint). If

every network node has wavelength conversion capability, a different wavelength

can be assigned for every link. A more difficult and complicated case, is the one

where the network has sparse placement of wavelength converters. In this case,

research focuses not only on the WA algorithms, but also on methods for efficient

placement of the limited number of converters as well.

The terms of path (route between the source and a single destination) and tree

(route between the source and a group of destinations), in optical networks (when

used in combination with the wavelength assignment for that path or tree) are now

expressed as lightpath and light-tree [5] respectively.

Solving the RWA problem jointly (even though more efficient) has been proven

to be an NP-complete problem even for the case of unicast connections [3]. Thus,

the RWA problem is commonly handled by solving the routing and wavelength

sub-problems independently. Specifically, in the case of multicasting, first the tree is

calculated and then a wavelength is assigned to each link of it in order to create the

light-tree.

Since the majority of today’s optical networks allow full wavelength conversion,

in that case the solution to the problem of wavelength assignment is trivial; if any

free wavelengths exist in a fiber, it can be used for information transmission. if not,

that link is considered not to exist in the network. On the other hand, the problem

of multicast routing still remains a hard and challenging problem. It is even more

difficult for the case of sparse-splitting networks. The main heuristics that are used

in optical networks are the Minimum Path Heuristic (MPH) [15] and the Pruned
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Prim Heuristic (PPH) (utilizing Prim’s MST algorithm [18]) that are described in

detail in Chapter 3 that follows.

Furthermore, additional heuristics have been developed for routing and for split-

ter placement in the case of sparse-splitting networks. The state-of-the-art for the

routing heuristics for these types of networks include the Member-Only approach

(for DaC networks) [19], the On-Tree MC Node First (OTMCF) and Nearest MC Node

First (NMCF) techniques [20], and the Multicasting Using Splitters (MUS) approach

[21]. These are described in detail in Chapter 4 of the thesis, together with current

approaches in the literature for efficient splitter placement.

2.3.1 Mathematical Formulation

The mathematical formulation for the routing and wavelength assignment of several

(protected) multicast groups for networks with full-splitting capability (i.e., where all

nodes are multicast capable), is detailed below in order to describe the multicasting

RWA problem as an optimization problem [14]:

Input:

1. A physical topology Gp = (V,Ep) is given consisting of a weighted undirected

graph, where V is a set of network nodes and Ep is the set of links connecting

the nodes. Each link is assigned a weight to represent the cost (number of hops

or equipment operating cost) of moving traffic from one end to the other.

2. A group of k primary multicast sessions are given along with a binary digit

Pi, (i = 1, 2, ..., k) associated with each of them to indicate whether they require

protection or not.

The goal is to set up (if possible) all 2k primary and backup multicast sessions on

the given physical topology while minimizing the total cost. The cost of a multicast

session is the sum of the weights on the physical links occupied by it. If network

resources available are insufficient, select as many sessions as possible (preferably

the ones yielding maximum revenue) and establish them optimally to minimize the

operating cost and, hence, maximize the net profit. In the case of a network with full

wavelength conversion capability, the problem is formulated as follows:

1. s and d refer to source node and destination nodes, respectively, in a multicast

session.
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2. m and n denote endpoints of a physical link that might occur in a light-tree.

3. i is used as an index for session number, where i = 1, 2, ..., 2k. Indexes 1 through

k are used for the primary trees and indexes k + 1 through 2k are used for the

backup trees. If a primary session i requires protection, then its corresponding

backup tree index is i+k. Otherwise, the index is left unused, and the variables

corresponding to that backup tree are ignored.

Given:

• Number of nodes in the network is equal to N.

• The maximum number of wavelengths per fiber is equal to W.

• The physical topology Pm,n, where Pm,n = Pn,m (i.e., fiber links are bidirectional),

indicates whether there is a direct physical fiber link between nodes m and

n, where m,n = 1, 2, ...,N. If there is no fiber link between nodes m and n,

Pm,n = Pn,m = 0.

• Every physical link between nodes m and n is associated with a weight wm,n.

• The capacity of each channel is equal to C.

• A group of k multicast sessions Si is given for i = 1, ..., k and Pi = 1 or is specified

as 0 for each session signifying whether session i requires protection or not,

respectively.

• Each session S1 has a source node and a set of destination nodes denoted by

{si, di,1, di,2, ...}. The cardinality of a multicast session i is denoted by Li, which

is equal to the number of source and destination nodes in that session.

• Every multicast session is at full capacity of a channel, i.e., at C bps.

• Every node is equipped with wavelength converters capable of converting a

wavelength to any other wavelength among the W channels.

Variables:

• A Boolean variable Bi
m,n, which is equal to 1 if the link between nodes m and n

is occupied by the multicast session i; otherwise, Bi
m,n = 0.
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• A Boolean variable Vi
p, which is equal to 1 if node p belongs to multicast session

i; otherwise, Vi
p = 0. A node belongs to a session if it is either the source or the

destination or an intermediate node in the light-tree for the multicast session,

e.g., Vi
si

= 1 and Vi
di1

= 1.

• An integer commodity-flow variable Fi
m,n. Each destination node for a session

needs one unit of commodity. Therefore, there are Li units of commodity

flowing out of source si for session i. Fi
m,n is the number of units of commodity

flowing on the link from node m to node n for session i. Fi
m,n is also the number

of destination nodes in session i downstream of the link between nodes m and

n.

Optimize:

Minimize total cost of all multicast sessions:

Minimize
2k∑
i=1

∑
m,n

wm,n ·Mi
m,n (2.1)

Constraints:

• Tree-creation constraints are:

∀i,∀n , si :
∑
m,n

Mi
m,n = Vi

n (2.2)

∀i :
∑

m

Mi
m,si

= 0 (2.3)

∀i,∀ j ∈ Si : Vi
j = 1 (2.4)

∀i,∀m , di j , j ≥ 1 :
∑

n

Mi
m,n ≥ Vi

m (2.5)

∀i,m :
∑

n

Mi
m,n ≤ Dp(m) · Vi

m (2.6)

∀m,n :
∑

i

Mi
m,n ≤ Pm,n ·W (2.7)

43

Cos
tas

 K
. C

on
sta

nti
no

u



• The commodity-flow constraints are:

∀i,∀m,< Si :
∑

n

Fi
m,n =

∑
n

Fi
n,m (2.8)

∀i,∀m = si :
∑

n

Fi
si,n = Li (2.9)

∀i,∀m = si :
∑

n

Fi
n,si

= 0 (2.10)

∀i,∀m = di j , j ≥ 1 :
∑

n

Fi
n,m =

∑
n

Fi
m,n + 1 (2.11)

∀i,m,n : Mi
m,n ≤ Fi

m,n (2.12)

∀i,m,n : Fi
m,n ≤ N ·Mi

m,n (2.13)

• The directed-link disjointness is:

∀i = 1, ..., k∀m,n : Mi
m,n + Mi+k

m,n ≤ 1 (2.14)

Equation (2) ensures that every node that belongs to a multicast session (except

the source) has at least one incoming edge. Equation (3) says that the source node has

no incoming edge, as it is the root of the tree. Equation (4) ensures that every source

node and the destination node of a multicast session belong to the tree. Equation

(5) ensures that every node (except the destination nodes) belonging to the tree has

at least one outgoing edge. Equation (6) ensures that every node with at least one

outgoing edge belongs to the tree. Equation (7) restricts the number of lightpaths

between nodes m and n by Pm,n ·W in each direction.

Equations (8)−(13) are flow-conservation equations to create a connected tree

with the source having a lightpath to every destination in the session. Equation (8)

ensures that at any intermediate node (which is neither a source nor a destination),

the incoming flow is the same as the outgoing flow. However, outgoing flow at

the source node for a session is the number of destinations in the session, and the

incoming flow is zero. These are achieved by Equations (9) and (10), respectively.

Equation (11) ensures that the total outgoing flow is one less than the incoming

flow for destination nodes. Equations (12) and (13) ensure that links occupied by

a session have a positive flow and that links not occupied by the session have no

flow. In Equation (13), N can be replaced by Li without altering its meaning. A flow

on any link for a multicast session is limited by the number of destinations in that

session. Finally, Equation (14) ensures that the primary and backup tree share a link,

if any, only in opposite directions.
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2.4 Optical Multicast Protection

Since multicasting applications (such as video-on-demand, teleconferencing, distance-

learning, remote medical diagnostic applications, etc.) are highly sensitive to net-

work failures, due to the fact that a single link failure may potentially disrupt traffic

to a large number of destinations, efficient and reliable recovery from failures is

an essential part of optical network operation. Several protection schemes have

been proposed in the literature in order to protect the network against equipment,

link, and node failures. These include link-based, path-based, segment-based, and

cycle-based protection techniques amongst others. The majority of them focuses on

protection against single link failures, since this is the predominant case of network

malfunction.

2.4.1 Path-Based Dedicated Protection

In this case, a pair of disjoint trees is calculated; one is the working (or primary) tree

and the other one is the protection (or secondary) tree. Examples of path-based (in

this case tree-based) protection techniques include:

1. Dual-Tree (DT) Protection: The most basic approach for dedicated protection

of a multicast tree is to build a second tree that does not share any links or

nodes (except the source and destination nodes) with the working tree [22].

The two trees are fully disjoint. If a failure occurs on the primary tree, the

affected destinations are automatically reconfigured receiving the signal from

the backup tree. Thus, the failure is restored automatically and very fast. DT

protection consists of the following steps : (i) Calculate the primary light-tree

using a multicast routing heuristic algorithm, (ii) Remove all nodes and all links

along the primary tree (except for the source and destination nodes) and (iii)

Calculate the secondary tree on the resulting graph using a multicast routing

heuristic algorithm.

2. Link-Disjoint Tree (LDT) Protection: Another approach to protect multicast

traffic is to calculate primary and link-disjoint backup multicast trees [23]. This

approach can provide (1+1) dedicated protection against link failures. Pitfalls

of this approach include excessive use of resources (although less than with

DT protection). Also, unlike the DT technique, this scheme cannot protect
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against intermediate node failures. LDT consists of the following steps: (i)

Calculate the primary light-tree using a multicast routing heuristic algorithm,

(ii) Remove all links along the primary tree and (iii) Calculate the secondary

tree on the resulting graph using a multicast routing heuristic algorithm.

3. Arc-Disjoint Tree (ADT) Protection: An improvement over the link-disjoint

approach is arc-disjoint tree protection [23], which can significantly reduce net-

work resources reserved for protection from a link failure. Arcs are defined as

unidirectional edges and links are defined as bidirectional edges with an edge

in each direction. In arc-disjoint tree protection, a backup tree is constructed

which is arc-disjoint from the primary tree. ADT consists of the following

steps: (i) Calculate the primary light-tree using a multicast routing heuris-

tic algorithm., (ii) Remove all arcs along the primary tree and (iii) Calculate

the secondary tree on the resulting graph using a multicast routing heuristic

algorithm.

Path-based dedicated protection approaches can provide very fast protection

against failures against the expense of large redundant capacity. Segment-based ap-

proaches described below on the other hand try to minimize the usage of redundant

capacity while also keeping the recovery time low.

2.4.2 Segment-Based Protection

The working tree is divided into segments and a protection path is calculated for

each segment. Examples of segment-based protection techniques include:

1. Shared Disjoint Segments Protection (SDS): . In this scheme [23] the authors

define a segment as a sequence of arcs from the source or from any splitting

point on a tree to a leaf node or to a downstream splitting point. A destination

node is always considered as a segment end-node because it is either a leaf node

in a tree or is a splitting point where a portion of a signal is dropped locally

and the remainder continues downstream (drop-and-continue). SDS consists

of the following steps : (i)Compute a primary tree from network graph, (ii)

Identify the primary segments on the primary tree, (iii) Reset cost on all arcs

used in the primary tree to 0, (iv) For every primary segment repeat Step 5 to 8,

(v) Remove links along the primary segment, (vi) Create an arc-disjoint backup

46

Cos
tas

 K
. C

on
sta

nti
no

u



segment, (vii) Reset cost of links on backup segment to 0 and (viii) Replace the

links along the primary segment.

2. Adaptive Shared Segment Protection: This method [24] exploits two charac-

teristics of multicast trees: (i) a tree does not contain any cycles, and (ii) a tree

must contain at least two destination nodes. The authors consider relevant

only the segments formed by two destination nodes and an upstream split-

ting node, which is a common ancestor of both destination nodes. They claim

that any such segment is protected if a path could be established between the

two destination nodes that forms a cycle in the graph defined by the segment.

Therefore, the ASSP algorithm builds the primary multicast tree, creates a set

of all destination nodes, and tries to find a shortest path between any two

destination nodes that is link-disjoint from the primary multicast tree. The cost

of the links in an already-found shortest path is set to 0 in order to maximize

intra-tree sharing. The algorithm then selects as backup paths the shortest

paths that protect the maximum possible number of relevant segments with

the least possible amount of resources.

3. Dynamic Segment Shared Protection: This technique is presented in [25].

Each link is dynamically adjusted according to the current network state with

proper setting of the link costs to encourage load balancing and sharing. A seg-

ment is defined as a sequence of directed wavelength links, from the source or

a multicast splitting node on the light-tree to a downstream multicast splitting

node or a destination node.

4. Optimized Collapsed Rings (OCR) Protection: The OCR scheme [26] is sig-

nificant because it does not compute a backup tree but traverses the primary

tree backwards instead. The primary tree is computed by starting from the

source node and visiting all destinations in an optimized order. The first desti-

nation visited after the source is the one closest to it. The algorithm computes

the shortest path between the source and the destination. All links along the

path are removed and the destination becomes the new source. After that, the

path is expanded to include the second closest destination and so on until all

destination nodes are included in the primary tree. For the backup path, the

OCR algorithm computes the shortest path between the original source and the
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last destination visited and then traverses the primary tree backwards until the

first destination is reached to create a backup tree. The OCR technique consists

of the following steps: (i) Given a source s and a set of multicast destinations

{d1, d2, ..., dn}, form a ring set of vertices {v1, v2, ..., vn}, where v1 is the source

s and v2, ..., vn are the multicast destinations, (ii) For primary path, find the

closed destination to the source using the shortest path algorithm (e.g., node

di). Remove all the links along the path. The new source is set to be node di,

(iii) Repeat Step 2 until no more vertices are included in the ring set and (iv)

For backup path, find the shortest path from node s to the last destination node

in the primary path and traverse the primary path backwards until the first

destination is reached.

5. Optimal Path Pair-based Shared Disjoint Paths (OPP-SDP) Protection: This

scheme [23] finds a pair of paths between the source and each destination of the

multicast request. It consists of the following steps: (i) For every destination

node repeat Steps 2 and 3, (ii) Find optimal path-pair between source and

destination nodes (using Suurballe’s algorithm [27]) and (iii) Reset cost for

already found optimal path-pairs to 0.

2.4.3 Cycle-Based Protection

Cycle-based protection techniques also try to minimize the usage of redundant

capacity while also keeping the recovery time low by breaking the network into

cycles and utilizing these cycles for protection purposes. An example of a p-cycle

based approach for multicast protection in optical networks is described in this

section. This technique is called the intelligent p-cycle protection technique and it

was first presented in [28]. In this approach, when a multicast request arrives, a

multicast tree is computed for it (using any known multicast routing algorithm) and

then the intelligent p-cycle scheme is used to compute a set of efficient p-cycles on

demand to protect the multicast tree. p-Cycles are a cycle decomposition of the

network so that all network links are either on the cycles or are chords of these

cycles and were first introduced in [29]. The proposed scheme has the following

features: (i) it provides fast restoration since preconfigured p-cycles are used to

protect the multicast tree links; (ii) it makes efficient use of spare capacity since a

set of high-efficiency p-cycles are computed on demand to protect the multicast tree
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links; (iii) both intra-session sharing and inter-session sharing are achieved since a

p-cycle can provide protection to links belonging to not only the same multicast tree,

but also different multicast trees; (iv) the capacity efficiency is further improved by

combining the existing p-cycles whenever possible; (v) assuming sufficient capacity

is available in the network, a set of p-cycles can always be found to protect any

multicast tree as long as the network is two-edge-connected.

Clearly, there are a multitude of techniques that can be used for protecting mul-

ticast connections in WDM optical networks with arbitrary mesh topologies. In

this thesis we focus on dedicated tree-based solutions as they provide the fastest

recovery speed, trying to limit the average cost of the working and protection trees

as well as the blocking probability that the connections may experience (assuming

that for a connection to be established, both the working and protection trees must

be provisioned).
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Chapter 3

Full-Splitting Undirected-Graph

Networks: Multicast Routing

Heuristic Algorithms

3.1 Introduction

The Steiner Tree Problem (STP) is a classical combinatorial optimization problem

that tries to find the shortest interconnection for a given finite set of points. It has

applications in circuit design, network design (multicast routing), computational

biology, transportation networks, and other fields. There are several variations of it:

Euclidean Steiner Tree, Rectilinear Steiner Tree, and Steiner Tree in graphs [30]. The

work in this dissertation is related to the latter case.

STP in graphs is defined as follows: Given a connected, undirected, simple,

weighted graph G(V,E) with a positive cost function for every edge, and a subset Z

of V, find the connected acyclic subgraph T∗(V∗,E∗) with the minimum cost among

all connected subgraphs that contain set Z. An acyclic subgraph T∗(V∗,E∗) of graph

G(V,E) is an acyclic graph such that V∗ ⊂ V and E∗ ⊂ E. T∗ is a tree, called Steiner

Minimal Tree (SMT). Except of the required vertices of set Z, T∗ possibly contains

some other vertices S ⊂ (V − Z), which are called Steiner vertices.

Let |V| = n and |Z| = k. For k = 2, the problem is reduced to the extensively

studied “shortest path problem”. For this problem, there are several algorithms that

give an optimal solution in polynomial time. The most widely used are Dijkstra’s

[31], Bellman-Ford’s [32, 33], and Floyd-Warshall’s [16, 17]. For k = n, the problem is
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reduced to the “minimum spanning tree problem”. This is also a classical problem

which has polynomial-time algorithms that solve it optimally. The most commonly

used are Prim’s [18], Kruskal’s [34], and Boruvka’s [35].

For the rest of the cases the problem is NP-complete, hence it cannot be solved

exactly in polynomial time [12]. In practice, heuristic algorithms are used. When

this problem is applied to multicast routing, one of the vertices in Z is considered

as the source s and the rest as the destinations di, 1 ≤ i ≤ k − 1. Regardless of the

selection of the source, the resulting tree is the same.

The worst case performance of a Steiner tree heuristic algorithm is given by the

Steiner Ratio (SR) (called as Approximation Ratio as well). SR is equal to the upper

bound on the ratio of the cost of the found solution over the cost of an optimal

solution [36]. It is calculated theoretically.

Clearly, the best heuristic algorithms are the ones that have an SR ratio close

to 1. A number of heuristic algorithms have been defined theoretically that give

SR < 2 (for example in [36] a heuristic that has SR = 1.55 is presented). The SR of

a heuristic algorithm gives the worst-case performance of it. However, the average-

case performance for the cost of the trees compared to the optimal solution is what

is interesting in network applications and it is something that cannot be calculated

formally but can only be derived using simulations.

3.2 Existing SMT Heuristic Algorithms

The straightforward method for establishing a multicast connection is to calculate

a unicast path from the source node to every destination node. It is obvious from

Figure 3.1 that this method is not cost-effective.

A more effective approach to solve the problem is to find a tree that connects the

source to the set of destinations. This tree is called a “Steiner tree”. There are various

approaches in the literature for calculating the Steiner tree in graphs [36-44]. A simple

way to do this is to calculate the minimum spanning tree (MST) of the graph using

one of the classical algorithms, and then delete the unnecessary edges. Assuming

Prim’s algorithm [18] is used to find the MST, the heuristic algorithm is called the

Pruned Prim’s Heuristic (PPH) and it has time complexity O(elogn) (e = |E| and

n = |V|) [45]. Another heuristic algorithm widely utilized in the literature to solve

the STP, with better performance than the PPH, is the “Minimum Path Heuristic”
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Figure 3.1: Comparison of unicast-based and multicast-based routing.

(MPH) [15]. MPH consists of the following steps:

Input: Graph G(V,E), set Z of vertices that must be connected.

Output: Steiner Tree T∗(V∗,E∗).

1. Choose an arbitrary vertex v in Z and define a tree T1 consisting of v only. i = 1.

2. Determine a vertex u in Z−V(Ti), closest to Ti. Construct a tree Ti+1 by adding

the minimum cost path joining u to Ti. i = i + 1.

3. Repeat Step 2. STOP when all vertices of Z are connected to the tree.

where the shortest paths (and the corresponding distances) between every pair of

graph nodes, are calculated using Floyd-Warshall’s all-pair shortest path algorithm

[16, 17].

MPH works as follows: In the beginning, the tree consists of only one vertex

that is chosen arbitrarily from set Z. In each step, the algorithm finds the shortest

path that connects the current tree and one of the unconnected vertices of set Z.

The algorithm terminates when all vertices of Z have been connected to the tree.

While MPH is a very popular STP heuristic algorithm, it has a weakness; it cannot
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find the vertices that, if added in the tree, will decrease its cost. To explain exactly

the weakness of MPH and in fact the difficulty of this interesting problem, Steiner

vertices are divided in two categories: the Required Steiner Vertices (RSV) and the

Optional Steiner Vertices (OSV) for a destination. An RSV is every vertex in (V − Z)

that belongs to the tree calculated by MPH, and an OSV is every vertex not belonging

either in MPH-tree or in Z. A Basic Steiner Vertex (BSV) is an OSV which if it is used

(i.e., added in Z), it will give a Steiner Tree with less cost.

A 

E 

F 

C 

D 

B 

destination destination 

source 

8 

8 

9 

10 

9 

10 

10 

Figure 3.2: Example test network demonstrating the weakness of MPH.

Consider the example network shown in Figure 3.2. Vertex A is considered as

the source node and vertices D, E as the destinations d1 and d2 of the multicast call.

If MPH is implemented, it will connect vertex D through path A-B-D (path cost=16

units) and E through A-C-E (path cost=19 units) and the total tree cost will be 35

units. Therefore, according to the aforementioned definitions, vertices B and C are

RSVs and vertex F is an OSV. An alternate path for D is A-F-D (path cost=19 units)

and for E is A-F-E (path cost=20 units). If these paths are used, the total tree cost

will be 29 units. This result makes vertex F a BSV. It is obvious that, if vertex F is

added in Z, MPH will calculate these paths and, consequently, will give a tree with

less cost. If an algorithm has the ability to find these BSVs (that MPH fails to find),

it will be able to find Steiner trees with less cost. In the following section, a novel

heuristic algorithm is described, called Steiner Node Heuristic (SNH), that is capable

of finding these critical vertices and, consequently, of finding a Steiner tree with less

cost.

Examples of other heuristic algorithms that deal with the Steiner tree problem in
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graphs are Zelikovsky’s algorithm [38] and Robins-Zelikovsky’s algorithm [36]. Other

heuristic algorithms can also be found in [37, 39-44].

Zelikovsky’s algorithm finds, as long as possible, the best reduction of the cost

of the initially calculated Steiner tree, by recursively adding to it three edges with a

common end, and removing the longest edges from each resulting cycle. After the

triple contraction the next Steiner tree is obtained, until no further cost reduction is

possible. Robins-Zelikovsky algorithm repeatedly chooses appropriate full compo-

nents and then contracts them to form the overall solution. (A Steiner tree over a

subset S∗ of the set S of nodes to be connected, in which all nodes of set S∗ (called

terminals) are leaves is called a full component). It discards an already accepted

full component, if later a better full component, that conflicts with this previously

accepted component, is found out (two components conflict if they share at least

two terminals). The main idea is to contract as little as possible so that a chosen

full component may still participate in the overall solution, but not many other full

components would be rejected. It iteratively modifies the initially calculated Steiner

tree, by incorporating into this, loss-contracted full components greedily chosen.

Loss serves as an upper bound on the optimal solution cost increase during the algo-

rithm’s execution. As soon as the algorithm selects a full component K it contracts

its Loss(K), i.e., collapses each connected component of Loss(K) into a single node.

More details can be found in the corresponding paper [36].

It must be stated that due to their implementation complexity and their running

time, none of the aforementioned heuristic algorithms has been exploited in the liter-

ature for multicasting applications in optical or other telecommunication networks.

Their theoretically calculated improved performance describes their worst-case per-

formance. In practical applications, however, it is the average case performance that

counts. The aforementioned heuristic algorithms have improved performance only

under certain trap topologies, that are not met in real networks.

In optical networks, the widely-used Steiner tree heuristic algorithms are MPH

and PPH. Examples of papers that utilize them are [10, 20, 23, 46-51].

3.3 Steiner Node Heuristic Algorithm

The Steiner Node Heuristic (SNH) uses MPH as its basis, but manages to find all

Basic Steiner Vertices (BSVs). It consists of the following steps:
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Input: Graph G(V,E), set Z of vertices that must be connected.

Output: Steiner Tree T∗(V∗,E∗).

1. Calculate Steiner Tree T∗(V∗,E∗) using MPH and find its cost, called C.

2. For every vertex vi ∈ {V − V∗} do the following:

(a) {Z′} ← {Z} + vi.

(b) Calculate Steiner Tree Ti(Vi,Ei) on G(V,E) for set {Z′}, using MPH, and find

its cost, ci.

(c) {Z′} ← {Z}.

3. Find v j and T j : c j = mini{ci}.

4. If c j ≥ C, the solution is T∗(V∗,E∗), STOP.

(a) If c j < C, replace {Z}with {Z} + v j, C with c j, and T∗(V∗,E∗) with T j(V j,E j).

(b) If set {V − V∗} , 0, return to Step 2. Else STOP.

Explanation of SNH: The key function of the heuristic is the discovery of those

vertices that the addition of them in set Z gives a less-cost tree. In the first step,

the Steiner Tree using MPH is calculated (called “TREE” (TR) here, for explanation

purposes). Then, in Step 2, for every vertex in graph G but not in TR, MPH is

utilized again for the calculation of the corresponding tree, if the specific vertex was

temporarily in set Z. After the comparison of these trees, the one with the least cost

(called “New Tree” (NT) here, for explanation purposes) is kept. If costNT ≥ costTR,

the heuristic terminates and tree TR is the final solution, whereas if costNT < costTR,

tree TR is replaced with NT, the corresponding vertex is added permanently in set

Z and Step 2 is repeated. The heuristic terminates, with tree TR as the final solution,

either if, after the procedure of Step 2 NT has more than or equal cost to TR, or if all

vertices of the graph belong to TR.

Example of SNH: In the following example a more detailed explanation of SNH

is given, as well as a comparison with MPH. The network graph is given in Figure

3.3a. Node A is considered as the source and nodes B,C,F,G as the destinations.

When MPH is used, the following steps take place:

• Step 1: A is chosen arbitrarily as the source.
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Figure 3.3: SNH example.

• Step 2: The destination that is closest to the source A is B (or C). The selected

path is A − B.

• Step 3: The procedure is continued and the connected vertices are C (path

A−C), F (path C−E− F), and G (path C−E−G). The heuristic terminates and

the resulting tree has cost=46 as shown in Figure 3.3b.

When SNH is used, the process is as follows:

• Step 1: Start with the calculated MPH tree T∗(V∗,E∗), with cost equal to C = 46.

• Step 2: The set {V − V∗} consists of vertices D,H. If D is added (temporarily)

in set Z, the resulting tree has cost equal to 42. After the removal of D and

(temporary) addition of H in Z, the resulting tree has cost equal to 43.

• Step 3: From the vertices in set {V −V∗}, D gives the minimum cost if added in

Z.

• Step 4: Vertex D is added (permanently) in set Z, C = 42, T∗(V∗,E∗) is replaced

with the tree derived after the addition of D in Z, and Step 2 is visited again.

Now the only vertex in {V − V∗} is H. The resulting tree, if H is added in Z

(considering that now D belongs to Z as well), has cost equal to 39. Hence, H
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is added permanently in set Z, C = 39 and T∗(V∗,E∗) is replaced with the tree

derived after the addition of D and H in Z. The set {V − V∗} now is empty

and the heuristic terminates. The resulting tree is presented in Figure 3.3c with

cost=39.

According to the aforementioned terminology, vertex E is an RSV and vertices

D,H are OSVs and, eventually, BSVs. A theoretical analysis of SNH is given in the

following section.

3.4 Theoretical Analysis

3.4.1 Performance of SNH for Unicasting and Broadcasting

Theorem 3.1. SNH is optimal for unicasting and broadcasting.

Proof. MPH gives optimal results for the case of k = |Z| = 2 and k = n. Since SNH

uses MPH as its basis and applies a recursive procedure to improve the solution

obtained by the latter, it always performs at least as efficiently as MPH. Therefore,

for the cases of k = |Z| = 2 (unicasting) and k = n (broadcasting), it has optimal

results. �

3.4.2 Maximum Possible Number of BSVs in a Graph

Theorem 3.2. Every Basic Steiner Vertex (BSV) connects at least two destinations with the

source.

Proof. If a node x connects only one destination with the source, this path is calculated

by MPH, and x is not a BSV, according to the definition of the latter. Therefore, each

BSV connects at least two destinations with the source. �

Lemma 3.1. The maximum possible number of BSVs that may be added in Z is bD
2 c,

where D = k − 1 is the number of destinations.

Proof. The maximum possible number of BSVs that may be added in Z appears in

the case where each BSV connects the least possible number of destinations. i.e., two

destinations, according to Theorem 3.2. Therefore, the maximum possible number

of BSVs that may be added in Z is equal to
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|BSV|max = b
D
2
c (3.1)

�

3.4.3 Maximum Possible Cost Reduction of SNH Compared to

MPH

The Cost Reduction (CR) of SNH compared to MPH is defined as the cost of the tree

obtained by MPH over the cost of the tree obtained by SNH:

CR =
MPHcost

SNHcost
(3.2)

Theorem 3.3. The maximum possible value of CR is 2.

Proof. The worst-case performance of MPH is the calculation of a tree that has cost

twice the cost of the optimal tree [15], i.e., max{MPHcost
OPTcost

} = 2, where MPHcost
OPTcost

is calculated

over all possible graphs, for the derivation of its maximum value (OPTcost stands for

the cost of the optimal tree).

The best case performance of SNH is the calculation of the optimal tree i.e.,

min{SNHcost
OPTcost

} = 1.

The maximum value of CR is equal to:

max{CR} = max{
MPHcost

SNHcost
} = max{

MPHcost
OPTcost

SNHcost
OPTcost

} =
max{MPHcost

OPTcost
}

min{SNHcost
OPTcost

}
(3.3)

If a graph exists where MPHcost
OPTcost

takes its maximum value and SNHcost
OPTcost

takes its mini-

mum value, Theorem 3.3 is proven. This graph is given in Figure 3.4:

In this figure, s is the source, d1, d2, ..., dn are the destinations, and n � α � ε.

MPH will give tree s − d1, s − d2, ..., s − dn that has a cost equal to 2αn, while the tree

derived by SNH (which is the optimal one as well), is s − x, x − d1, x − d2, ..., x − dn,

with a cost equal to α + ε + αn. Therefore, for this case,

MPHcost

OPTcost
=

2αn
α + ε + αn

=
2αn

α(n + 1) + ε
≈

2αn
αn

= 2 (3.4)

SNHcost

OPTcost
= 1 (3.5)

(3.4), (3.5)⇒ CR = 2 (3.6)
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Figure 3.4: Graph topology for CR=2.

�

3.4.4 Complexity of SNH

The derivation of the time complexity for SNH is as follows:

• The MPH heuristic, which is the basis for SNH, has time complexity O(kn2)

[15], where k and n were previously defined.

• The set {V − V∗} has at most n elements. Therefore, each iteration of Step 2 of

the SNH algorithm, multiplies the order of time-complexity by n.

• According to Equation 3.1, Step 2 is repeated no more than b(k−1)/2c+1 times.

Hence, the order of time-complexity is multiplied by k.

The result of the three previous statements is that the time-complexity of SNH is

O(k2n3).

3.5 Performance Evaluation

The performance of SNH was evaluated via simulations, using the sample network

(USNet) shown in Figure 3.5, as well other randomly created networks.

The network of Figure 3.5 consists of 24 vertices and 43 links (bidirectional con-

nections) between vertex pairs. The numbers shown for every link in the network

graph represent the link cost (in terms of physical distance, monetary cost, etc). Let
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Figure 3.5: Sample network (USNet) used in the simulations.

D be the number of destinations of the multicast group that must be connected. The

experiment was repeated for all possible multicast groups (from D = 1 (unicasting)

to D = 23 (broadcasting)).

The following procedure was repeated for every possible D: Fifty thousand

(50000) multicast calls were randomly created, with the vertices of each connection

uniformly distributed across the network. Each multicast call was assumed to depart

from the network before the arrival of the following ones as in this case the interest is

in the cost of the trees generated, without any blocking in the network. The multicast

routing tree was calculated with both the MPH and SNH heuristic algorithms, for

each one of the 50000 calls. The average cost of the trees derived by MPH and by

SNH, over the 50000 calls, is denoted by MPHcost and SNHcost respectively. The %Gain

of the performance of SNH compared to MPH is calculated as follows:

%Gain = 100 ∗
MPHcost − SNHcost

MPHcost
(3.7)

The results of the simulation for the USNet are presented in Figure 3.6. The per-

formance of the SNH was also evaluated through simulations on randomly created

undirected network graphs as well, with varying number of nodes and links. Let the

nominal distance (di j
nom) between two nodes i and j of the created graphs be defined
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Figure 3.6: Performance gain of the SNH heuristic compared to the MPH approach.

as di j
nom = |i − j|. The constraint that every arc that was added in the graph had to

connect nodes that satisfy di j
nom ≤ x ∀i, j, (1 ≤ x ≤ k) was used for some of the created

graphs. The reason is that the graph must simulate a real network, where nodes that

are connected belong to the same neighborhood. Simulations were performed with

and without taking this constraint into account. A randomly calculated cost varying

from 1 to 1000 was also assigned to each network link.

The simulation was repeated for various possible multicast group sizes. The

experiment was executed 50000 times for every multicast group size, as described

previously. The results are presented in Figures 3.7-3.14 (the characteristics of each

graph derived from the simulation are given in each figure’s caption).

Simulations were performed on other categories of networks as well. Figures

3.15, 3.16, and 3.17 give the comparison of MPH and SNH heuristics for regular,

small-world, and scale-free networks respectively.

Analysis of the Results

For unicast and broadcast calls, MPH and SNH give trees with equal cost. This

was expected, because for these two cases MPH is optimal. For every other case (i.e.,

multicast calls), for all types of networks, SNH always gives better results. SNH has

improved performance regardless of the characteristics and the size of the network

graphs (up to 3.5% reduction to average tree cost). The maximum gain appears
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Figure 3.7: Performance gain of the SNH heuristic compared to the MPH approach:

Graph with 50 nodes, 100 links, dnom ≤ 5.
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Figure 3.8: Performance gain of the SNH heuristic compared to the MPH approach:

Graph with 50 nodes, 100 links, dnom ≤ 50.
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Figure 3.9: Performance gain of the SNH heuristic compared to the MPH approach:

Graph with 50 nodes, 200 links, dnom ≤ 5.
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Figure 3.10: Performance gain of the SNH heuristic compared to the MPH approach:

Graph with 50 nodes, 200 links, dnom ≤ 50.
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Figure 3.11: Performance gain of the SNH heuristic compared to the MPH approach:

Graph with 100 nodes, 200 links, dnom ≤ 10.
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Figure 3.12: Performance gain of the SNH heuristic compared to the MPH approach:

Graph with 100 nodes, 200 links, dnom ≤ 100.
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Figure 3.13: Performance gain of the SNH heuristic compared to the MPH approach:

Graph with 100 nodes, 400 links, dnom ≤ 10.
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Figure 3.14: Performance gain of the SNH heuristic compared to the MPH approach:

Graph with 100 nodes, 400 links, dnom ≤ 100.

66

Cos
tas

 K
. C

on
sta

nti
no

u



  5 15 25 35 45 55 65 75 85 95
0

0.5

1

1.5

2

2.5

3

3.5

Number of Destinations

%
 G

ai
n

Figure 3.15: Performance gain of the SNH heuristic compared to the MPH approach:

Regular graph with 100 nodes and 180 links.
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Figure 3.16: Performance gain of the SNH heuristic compared to the MPH approach:

Small-world graph with 50 nodes and 112 links.
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Figure 3.17: Performance gain of the SNH heuristic compared to the MPH approach:

Scale-free graph with 100 nodes and 180 links.

for relatively small multicast sessions. This is important, since this is the case that

appears more in practical applications for mesh optical networks.

3.6 Kou’s Heuristic Algorithm Used as Basis for SNH

Kou’s heuristic algorithm [37] is another heuristic that can be used as basis for SNH.

It consists of the following steps:

Input: An undirected distance graph G(V,E) and a set of Steiner nodes Z ⊂ V.

Output: A Steiner tree T∗ for G and Z.

1. Construct the complete undirected graph G1 = (V1,E1) from G and Z.

2. Find the minimal spanning tree, T1 of G1.

3. Construct the subgraph, GZ, of G by replacing each edge in T1 by its corre-

sponding shortest path in G.

4. Find the minimal spanning tree, TZ, of GZ.
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5. Construct a Steiner tree, T∗, from TZ by deleting edges in TZ, if necessary, so

that all the leaves in T∗ are Steiner nodes.

The shortest paths between every pair of graph nodes in Kou’s heuristic algorithm

are calculated using Floyd-Warshall’s all-pair shortest path algorithm [16, 17], and

the minimal spanning tree can be calculated using Prim’s algorithm [18].

SNH is compared with Kou’s heuristic algorithm, via simulations similar to the

comparison between MPH and SNH in Section 3.5. The results are presented in

Figures 3.18-3.21. Simulations have shown that once again SNH outperforms Kou’s

algorithm, that was used as its basis.
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Figure 3.18: Performance gain of the SNH heuristic compared to Kou’s heuristic

algorithm: Graph with 40 nodes, 100 links, dnom ≤ 5.

In the following section, a generalized version of SNH is presented.

3.7 Generalized SNH

In the explanation of the SNH heuristic given in Section 3.3, Step 2 is repeated for

every vertex not belonging to the current tree. This step can be generalized, leading

to the Generalized SNH (GSNH), as follows:
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Figure 3.19: Performance gain of the SNH heuristic compared to Kou’s heuristic

algorithm: Graph with 40 nodes, 100 links, dnom ≤ 40.
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Figure 3.20: Performance gain of the SNH heuristic compared to Kou’s heuristic

algorithm: Graph with 40 nodes, 150 links, dnom ≤ 5.
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Figure 3.21: Performance gain of the SNH heuristic compared to Kou’s heuristic

algorithm: Graph with 40 nodes, 150 links, dnom ≤ 40.

1. Calculate Steiner Tree T∗(V∗,E∗) using MPH and find its cost, called C.

2. For every possible set i of vertices v ∈ {V − V∗}, consisting from 1 up to Q

vertices, do the following:

(a) {Z′} ← {Z} + vi.

(b) Calculate Steiner Tree Ti(Vi,Ei) on G(V,E) for set {Z′}, using MPH, and find

its cost, ci.

(c) {Z′} ← {Z}.

3. Find v j and T j : c j = mini{ci}.

4. If c j ≥ C, the solution is T∗(V∗,E∗), STOP.

(a) If c j < C, replace {Z}with {Z} + v j, C with c j, and T∗(V∗,E∗) with T j(V j,E j).

(b) If set {V − V∗} , 0, return to Step 2. Else STOP.

In this case, Q is determined before the application of the algorithm. For example,

if Q = 2, the check will be performed for all possible single vertices and all possible
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pairs of vertices, that belong to {V − V∗}. GSNH will have better performance

compared to SNH, but higher complexity. Its complexity is O((nP1 +n P2 + ... +n

PQ))k2n2), where aPb are the permutations of a elements from the total number of

b elements of a set. Obviously, as Q increases, the performance of the heuristic is

improved, but the time-complexity is increased.

It must be noted that although GSNH has theoretical interest, in practice it will

give only a slight improvement in the cost of the multicast tree compared to SNH, and

the tradeoff will be high time-complexity and, consequently, unacceptable running

time especially for dynamically provisioned multicast connections.

3.8 Conclusion

A new heuristic algorithm, called Steiner Node Heuristic (SNH) was presented for

solving the Steiner Tree Problem in graphs. The proposed heuristic has polynomial

time complexity of order O(k2n3), where n is the number of network nodes and k is

the subset of them to be connected. For the special cases of k = 2 and k = n, it has

the same (optimal) results as the widely-used MPH algorithm. For all other cases,

its results are, in general, better.

The major importance of the new heuristic algorithm is that it is a general method

for improving the solution obtained by a certain multicast routing heuristic algo-

rithm. In this thesis, MPH and Kou’s heuristic were used as the basis for the proposed

algorithm. However, any other appropriate algorithm can be used, in order to have

improved results and this approach can also be applied to multicasting in other

categories of networks, apart from optical networks. The tradeoff for the perfor-

mance gain achieved by the proposed algorithm, is an acceptable increase of the

time-complexity.
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Chapter 4

Sparse-Splitting Undirected-Graph

Networks: Heuristic Algorithms for

Multicast Routing and Efficient

Placement of Multicast-Capable Nodes

4.1 Introduction

Multicasting in optical networks is based on the calculation of light-trees, utilizing

optical splitters in the network nodes [5]. The information through an optical fiber

is sent using a specific wavelength for each multicast request. If no wavelength

converters exist at the network nodes, the same wavelength must be used in all

fibers [2]. In this section it is assumed that each network node has full wavelength

conversion, therefore the information can be sent in different wavelengths through

the light-tree fibers.

An optical splitter [5] is a passive device that splits the input optical signal into

multiple identical output signals. The nodes that have this splitting capability are

called Multicast-Capable (MC) nodes, otherwise they are called Multicast-Incapable

(MI) nodes. Assuming an optical splitter with n outputs, optical splitting reduces

the optical power at each splitter output port to (1/n)th of the input power. Thus, since

the optical signal power at the photoreceiver needs to be higher than a threshold

to be detected, an optical network with a large number of multicast-capable nodes

may cause the signal to experience a significant power loss, limiting the reach of
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the optical signal. To combat this effect, a larger number of optical amplifiers will

be required in the network, further adding amplified spontaneous emission (ASE)

noise in the system and requiring a worst-case network engineering and design [76].

To limit the impact of optical splitters in the network we can only place them at

some of the network nodes (multicast-capable (MC) nodes), resulting in a sparse-

splitting network [??, 77]. As previously discussed, multicast-capable nodes can also

be opaque nodes where the signal is electrically duplicated at the opaque switch

before it is sent out of the node on the same (or different) wavelength. This is an

architecture that is also exploited in some of the heuristic algorithms presented in

this section.

This section focuses on the following open problems that are related to this cat-

egory of networks: development of efficient multicast routing heuristic algorithms

under the sparse-splitting constraint, efficient allocation of the multicast-capable

nodes, and calculation of the optimal percentage of network nodes that must be

multicast capable. It is assumed that the splitting factor of MC nodes is not limited

i.e., an MC node is able to split (duplicate) the incoming signal as many times as

required.

The problem of multicast routing in sparse-splitting networks is NP-hard, since

this is a special case of the Steiner problem in graphs which is NP-hard [12]. The

problem of efficient allocation of MC nodes in the network was also proven to be

NP-complete [52]. Therefore, polynomial-time heuristics are used in practice for

both problems.

The MI nodes of the network may be Drop-and-Continue (DaC) or Drop-or-Continue

(DoC) nodes (Figures 2.4 and 2.3 respectively). A DaC node can transmit the signal

to the next node and can receive it locally as well, while a DoC node can either

transmit the signal to the next node or receive it locally. Since networks of both cases

are referred to in the literature (e.g., [19] for DaC case and [53] for DoC), this section

deals with both DaC and DoC networks. It is noted that although the placement of

DaC nodes in the network leads to cost-efficient routing, it is more costly compared

to a DoC solution. Thus, the study of both cases will give a comparison between

them, i.e., for the same performance of two networks, one with DaC and the other

with DoC, it can be calculated how many MC nodes are needed for each one, and

comparing the cost of MC nodes and DaC nodes, the network designer can apply

the most economical solution.

74

Cos
tas

 K
. C

on
sta

nti
no

u



4.2 Multicast Routing in Networks with Sparse-Splitting

Capability: Existing Heuristic Algorithms

There are a number of approaches in the literature on the problem of multicast routing

in sparse-splitting mesh optical networks that can be found in [20, 21, 19, 53, 46, 54, 55, 56],

as well other sources. As it is not possible to compare the proposed solution with all

the heuristics in the literature, a few of the heuristics were identified that produce the

most efficient solutions amongst the existing works. These heuristics are presented

in this section and will be the ones that will be compared with the proposed heuristic

algorithm for multicast routing in sparse-splitting networks.

4.2.1 Member-Only

The Member-Only approach was created for DaC networks and this heuristic is

presented in [19]. The basic idea of the Member-Only technique is similar to that of

the shortest-path heuristic for constructing a near-minimum multicast tree, with the

main feature being that, as long as an MI node y on a tree is a non-leaf node, other

members will not join the tree at y.

4.2.2 On-Tree MC Node First (OTMCF), Nearest MC Node First

(NMCF)

The On-Tree MC Node First (OTMCF) and Nearest MC Node First (NMCF) heuristics

algorithms that were created for DoC networks are presented in [20]. For both

heuristics the following preprocessing takes place.

Initially, a multicast-capable (MC) network MG is derived from the original net-

work G as follows:

1. All the MC nodes in network graph G are included as its vertex set, say W.

2. If there is a path between two MC nodes in G, these two MC nodes are connected

in MG.

3. The link cost from node i to node j in graph MG is set to the cost of the

minimum-weight path from node i to node j in G, for all i, j ∈W.

Subsequently, the Auxiliary Network Transformation (ANT) is performed as follows:
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1. The MC network graph MG of the original network graph G is determined.

2. A Steiner tree heuristic is applied to graph MG to generate a minimum-cost

tree TR for multicast session R.

3. The resulting light-tree T is obtained by substituting each link, say (i, j), in TR

with the corresponding minimum-cost path from node i to node j in G.

Finally, the multicast tree can be derived by the following two heuristic algorithms

that utilize ANT and were created for DoC networks:

On-Tree MC node First (OTMCF):

This approach attempts to minimize the cost of an MC tree. An MC tree is

constructed by first including all the MC nodes to which group members are directly

connected, and then expanded as follows: the MI nodes to which the remaining

members are directly connected join the tree through the nearest on-tree MC nodes.

Nearest MC node First (NMCF):

This approach attempts to minimize the costs of MI nodes which join the MC

tree. The set of MC nodes used to construct an MC tree consists of all the MC nodes

directly connecting to the destinations of the group and the MC nodes which are the

nearest to the MI nodes connecting to the remaining destinations. NMCF expands

on-tree MC nodes in such a way that each MC node nearest to each MI node in the

group must also be on-tree.

4.2.3 Cost-Effective Multicasting Using Splitters (MUS)

This heuristic is presented in [21] and was also created for DoC networks. According

to a given graph G, an auxiliary graph G′(M,E′) is created that consists of MC nodes

only (set M), where the cost of a link in E′ is the cost of the corresponding shortest

path in the original graph. An initial Steiner tree T is then created that consists of

the source node and the destination nodes that are MC. Let MonTree be the set of MC

destinations, and Mremain the set of the rest of the destinations in a given session.

The latter are MI nodes and are not as of yet connected to the tree. The procedure

presented next is then followed for the connection of the Mremain nodes on the initial

tree T.

1. For each node in Mremain, find the MC node in MonTree that it can connect to via

the shortest path.
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2. Select the shortest path among the corresponding paths and add it to tree T.

3. If an MC node exists on the shortest path, then the MC node is added to MonTree.

4. The MI node connected to T is excluded from the set Mremain.

5. Repeat the above steps until Mremain is an empty set.

MUS is similar to NMCF with two basic improvements that make it more efficient.

The first one is that, after the addition of a path that connects a MI destination to the

tree, the unconnected MI destinations are checked whether they can be connected

efficiently (i.e., with low cost) through any MC nodes belonging to this path (whereas

NMCF ignores these nodes). The second one is that, using MUS, the MI destinations

are connected in increasing order according to the cost of the shortest path between

them and the tree, while in NMCF this is not taken into account.

For DoC networks, OTMCF and NMCF outperform Member-Only, and MUS

outperforms OTMCF and NMCF, according to simulations in [20] and [21] respec-

tively. Other sparse-splitting multicast routing heuristic algorithms can be found in

the literature (e.g., [46, 53-56]), but the ones discussed in this section are shown to

have the best performance results.

The proposed algorithms for multicast routing in sparse-splitting networks are

presented in the following section.

4.3 Multicast Routing in Networks with Sparse-Splitting

Capability: Proposed Heuristic Algorithms

4.3.1 MPH∗ Heuristic Algorithm

A heuristic algorithm that is used extensively in the literature for multicast routing

is the Minimum Path Heuristic (MPH) [15]. It consists of the following steps (the

shortest paths (and the corresponding distances) between every pair of graph nodes

are calculated using Floyd-Warshall’s all-pair shortest path algorithm [16, 17]):

1. Tree T1 consists only of the source s. Set V1 = {s}. i = 1.

2. Determine a node u in {D − V1} (D is the destination set), that is closest to Ti.

Construct a tree Ti+1 by adding the minimum cost path joining u and Ti. Add

the nodes of this path in set {V1}. i = i + 1.
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3. Repeat Step 2. STOP when all nodes of D are connected to the tree.

The MPH heuristic algorithm can be applied only in networks with full-splitting

capability, since the minimum cost path of Step 2 can originate from any network

node. In order to be applicable to sparse-splitting networks without DaC nodes, this

path must originate either from the source or from a multicast-capable node that

belongs to the current tree. In the case that all multicast-incapable nodes are DaCs,

the path can also originate from destinations that are part of the current tree and

have outdegree equal to zero. The modified heuristic algorithm, called MPH∗, that

works for sparse-splitting networks as well, consists of the following steps:

1. Tree T1 consists only of the source s. Set V1 = {s}. i = 1.

2. (i) Non-DaC networks: Determine a node u in {D − V1}, that is closest to Ti,

which is connected through a path originating either from the source, or from

a multicast-capable node that belongs to Ti.

(ii) DaC networks: Determine a node u in {D − V1}, that is closest to Ti, which

is connected through a path originating either from the source, or from a

multicast-capable node that belongs to Ti, or from a destination that belongs

to Ti and has outdegree equal to zero.

3. Construct a tree Ti+1 by adding the minimum-cost path joining u and Ti. Add

the nodes of this path in set {V1}. i = i + 1.

4. Repeat Step 2. STOP when all nodes of D are connected to the tree.

The MPH∗ heuristic algorithm has the same complexity as MPH, i.e., O(kn2) [15],

where n is the number of nodes of the graph and k is the number of nodes that must

be connected.

Although, in general, the MPH∗ heuristic algorithm is efficient, Figure 4.1 shows

an example demonstrating that it does not perform well in all cases. In this example,

node S is the source of the multicast request, nodes d1, d2 are the destinations, and

node b is a multicast-capable node. In the first network all nodes are DaC nodes,

while in the second all are non-DaC nodes. For both cases the MPH∗ heuristic finds

paths S− a− d1 and S− a− d2, with a total tree cost equal to 40. The optimal solution

for both cases are paths S−a−b−d1 and b−d2, with a tree cost equal to 33 for the first

case and 22 for the second. Therefore, an algorithm that will have the ability to use
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MC node b for the calculation of the two paths, will calculate the optimal solution

for both cases. This can be achieved if node b is added in the destination set. A new

heuristic algorithm that was created to take advantage of the MC nodes, is presented

in the following section.

S a 

d1 

d2 

b MC 

DaC 

10 1 

10 

10 

11 

11 

S a 

d1 

d2 

b MC 

Non DaC 

10 10 

10 

10 

1 

1 

Figure 4.1: Example demonstrating drawbacks of the MPH∗ heuristic algorithm.

4.3.2 Sparse-Splitting Multicast Routing Heuristic Algorithm

The Sparse-Splitting Multicast Routing Heuristic (SSMRH) consists of the following

steps (D is the destination set):

1. Calculate the multicast tree, using the MPH∗ heuristic algorithm.

2. Calculate the cost c of the resulting tree.

3. For each multicast-capable node MCi not belonging to the current tree:

(a) Add it to D.

(b) Calculate the multicast tree, using MPH∗.

(c) Calculate the cost ci of the resulting tree.

(d) Remove MCi from D.
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4. Find ci
min. If ci

min
≥ c, go to Step 5. Else,

(a) c = ci
min.

(b) Add MCi permanently to D and return to Step 3.

5. Calculate the multicast tree for the new D, using MPH∗.

The SSMRH heuristic algorithm works as follows: the MC nodes that are not part

of the multicast tree are added and removed from the destination set and the new

tree is calculated every time using MPH∗. The MC node that gives the tree with the

least cost is added permanently into the destination set. The procedure is repeated

until no further cost reduction can be succeeded. It can be easily verified that for the

networks of Figure 4.1, the proposed heuristic gives the optimal solution. It must

be noted that, for every case, SSMRH gives a tree at least as good as the one derived

from MPH∗, since it is a generalization of the latter.

It is important to note that even though Step 3 of SSMRH can find all MC nodes

that give a tree with less cost if added into D, Step 3 is not executed only once and

all MC nodes that give a tree with less cost are added permanently in D. The reason

for doing this is explained using Figure 4.2. Here, S is the source node, d1 − d4 are

the destination nodes, and b, c, y, z are the MC nodes. If MPH∗ is used, the resulting

tree is S − a − d1, S − a − d2, S − x − d3, and S − x − d4. After the execution of Step 3 in

SSMRH, it is found that the addition of each one of the nodes b, c, y, z will give a tree

with less cost, with b giving the best improvement. If node b is added, destinations

d1 and d2 come closer to the source, and the use of MC node c as well, will not

give any improvement (the opposite will happen), since this node “serves” the same

destinations as MC node b. Therefore, it is not correct to add in D all MC nodes that

Step 3 finds. After the addition of b, Step 3 must be repeated, to find the next MC

node to be added in D, node y in this case, and in the third iteration the procedure

stops, since no further improvement can be achieved.

SSMRH was presented using MPH∗ as its basis. Other sparse-splitting multicast

routing heuristic algorithms can be used as well, for example OTMCF, NMCF, or

MUS. If algorithm X is used as basis, SSMRH will outperform it, since it starts from

the tree derived by X and recursively tries to improve the initial solution. Therefore,

in the worst case, it will find a tree with the same cost as the one found by X. On the

average, the resulting trees obtained by SSMRH will have less cost compared to the
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Figure 4.2: Example of the SSMRH heuristic algorithm.

results found by technique X.

An example where the SSMRH heuristic algorithm has improved performance

compared to the algorithm used as its basis, is shown in Figures 4.3-4.7. Here, the

network is considered as DoC, s is the source node, d1, d2, d3 are the destinations, and

square-shaped nodes are the MC nodes.

It can easily be verified that for every case, SSMRH is more efficient compared

to the algorithm used as its basis. The lowest cost tree is obtained by SSMRH using

either MPH∗, NMCF, or MUS. For these three cases, the tree has cost equal to 132.

Complexity of SSMRH: The complexity of the proposed heuristic for a network

that has x MC nodes, with an algorithm having complexity O(y) used as basis, is

derived as follows:

• Complexity of Step 1: O(y)

• Complexity of Step 3: O(xy)

• Step 3 is repeated at most x times

Therefore SSMRH has complexity O(y+x2y) = O(y(1+x2)) = O(yx2). For example,

its complexity is O(kn2x2), if MPH∗ (O(kn2)) is used as its basis (n is the number of

the network nodes and k is the number of the nodes that must be connected).
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Figure 4.3: Network graph used for explanation and comparison of existing and

proposed heuristic algorithms.
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Figure 4.4: Tree obtained by MPH∗, NMCF, and OTMCF.
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Figure 4.5: Tree obtained by MUS.
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Figure 4.6: Tree obtained by SSMRH, using MPH∗, NMCF, or MUS as basis.
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Figure 4.7: Tree obtained by SSMRH, using OTMCF as basis.

In the following section, some important existing heuristic algorithms for the

allocation of optical splitters are presented, followed by new proposed techniques

for the placement of the optical splitters in sparse-splitting networks.

4.4 Allocation of Splitters: Existing Heuristic Algorithms

4.4.1 k-Maximum Degree Method

The idea of this method [57] is that a node with a large number of neighboring nodes

(high outdegree) is more likely to become a branch node of a multicast tree. Hence,

placing a splitter on that node is expected to be effective in reducing the wavelength

resource usage of the multicast connections. Therefore, this method sorts the nodes

in the network in descending order according to their degree and selects the first

k nodes to place the splitters. The computation time of this method includes the

time for checking the degree of each of the nodes and the time for sorting the nodes

according to their degree.
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4.4.2 k-Maximum WR (Wavelength Reduction) Method

This method works as follows [57]: if the placement of a splitter at a node yields

more reduction on the wavelength resource usage, it is more beneficial to place a

splitter at that node.

Let si be the shortest path spanning tree rooted at node i. Let h(si) denote the

wavelength resource usage of si when no splitter is placed in the network. Note

that when no splitter is placed in the network, each multicast connection is realized

by multiple lightpaths. The wavelength resource usage h(si) can be calculated by

traversing the shortest path spanning tree si in a depth-first manner.

Let h be the total wavelength usage of the set of all shortest path spanning

trees rooted at each of the nodes when no splitter is placed in the network. Then,

h =
∑

i∈V h(si).

Let f (i, s j) be the wavelength resource usage of s j when a splitter is placed at

node i. Let f (i) denote the wavelength resource usage of the set of all shortest path

spanning trees rooted at each of the nodes when a splitter is placed at node i. Then,

f (i) =
∑

j∈V f (i, s j).

Let R(i) be the amount of reduction in wavelength resource usage when a splitter

is placed at node i compared to the case where no splitter is placed in the network.

Then, R(i) = h − f (i).

The k-maximum WR method sorts the values of R(i), i = 1, 2, ... , |V|, in descending

order and selects the first k nodes to place the splitters.

4.4.3 Most-Saturated Node First (MSNF)

This heuristic is presented in [52]. The main idea behind this greedy heuristic is

to allocate the MC nodes to those nodes in the network which are used the most

by routed sessions as branching nodes. The MSNF heuristic starts with solving

the multicast routing and wavelength assignment problem using some available

heuristic. The cross-connects are then sorted in decreasing order of |∆(t)|, where ∆(t)

denotes the set of trees requiring cross-connect t as a branching node. The fist K

cross-connects in the sorted order become MC cross-connects and the rest become

MI cross-connects. All sessions affected by this assignment are then deallocated and

re-established taking into consideration now the real allocation of the MC nodes.
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4.4.4 Simulated Annealing

This heuristic is presented in [52] as well. It is a general optimization technique

motivated by a physical process related to the cooling of a material in a heat bath. It

employs a variation of the well-known search technique called neighborhood search

(also known as local search). It starts with an initial solution created by randomly

assigning the splitters and deallocating all routed sessions not supported by the

initial assignment. The initial state (called temperature), τ, is assigned. For a number

of iterations Itermax, a new solution in the neighborhood is selected. If the new

solution is better than the current solution, the new solution replaces the current

solution. Otherwise, depending on the current solution, the new solution, and the

current value of τ, a function is used that decides whether the new solution should

replace the current solution. The probability of accepting the new solution is given

by PAccept = e−
δ
τ , where δ is the difference in terms of the objective function value

between the two solutions. After Itermax, the current value of τ is decreased, thus

making it difficult to accept bad solutions as the search process progresses in time.

The reduction of τ is controlled by a geometric reduction function τk+1 = a ·τk, where

a is the reduction factor.

Other splitter allocation heuristics can be found in [58-61], as well other sources.

Section 4.5 that follows presents the proposed splitter allocation techniques.

4.5 Allocation of Splitters: Proposed Heuristic Algo-

rithms

Since in sparse-splitting networks the number of MC nodes is limited, the perfor-

mance of the sparse-splitting multicast routing heuristic algorithms depends on the

position of these nodes. Three proposed heuristic algorithms for efficient place-

ment of MC nodes are presented: Decreased Number of Branches (DNB), Decreased

Number of Children-Destinations (DNCD), and Least Used Removed First (LURF).

The idea behind them is that the optical splitters must be allocated at the nodes

that will exploit them the most. Three different heuristics were developed and all

of them are presented and compared through simulations. For a large number of

multicast requests randomly created, DNB counts the total number of branches each

network node had to serve, and allocates the optical splitters to the nodes that had
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the largest number of branches, while DNCD allocates the optical splitters to the

nodes that serve the largest number of destinations. On the other hand, the op-

posite procedure is followed for LURF. All the network nodes are assumed to be

equipped with an optical splitter, and the ones that use them the least are converted

to multicast-incapable nodes; the procedure stops according to the available number

of optical splitters. All three heuristics that are described below use the following

definitions:

• {MC}: set of MC network nodes.

• M: number of network nodes.

• P: number of nodes that can be MC.

• I: number of iterations of the heuristics.

4.5.1 DNB Heuristic Algorithm

The Decreased Number of Branches (DNB) heuristic algorithm consists of the following

steps:

1. Assume that every network node is an MC node.

2. Repeat for all K possible multicast group sizes (1 ≤ k ≤ K):

• Repeat I times (1 ≤ i ≤ I):

(a) Select randomly the source and destinations, according to the multi-

cast group size.

(b) Calculate the multicast tree using a multicast routing heuristic algo-

rithm.

(c) For each tree node x that has outdegree > 1, calculate the number

(Nk,i
x ) of its branches.

3. For each network node x that has outdegree > 1, calculate Cx =
∑M

k=1
∑I

i=1 Nk,i
x .

4. Arrange network nodes in decreasing order according to their C values.

5. If the network can have P nodes with splitting capability, select the P ones with

the highest C values.
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4.5.2 DNCD Heuristic Algorithm

The Decreased Number of Children-Destinations (DNCD) heuristic algorithm consists

of the following steps:

1. Assume that every network node is an MC node.

2. Repeat for all K possible multicast group sizes (1 ≤ k ≤ K):

• Repeat I times (1 ≤ i ≤ I):

(a) Select randomly the source and destinations, according to the multi-

cast group size.

(b) Calculate the multicast tree using a multicast routing heuristic algo-

rithm.

(c) For each tree node x that has outdegree > 1, calculate the number

(Nk,i
x ) of its descendants that are destinations.

3. For each network node x that has outdegree > 1, calculate Cx =
∑K

k=1
∑I

i=1 Nk,i
x .

4. Arrange network nodes in decreasing order according to their C values.

5. If the network can have P nodes with splitting capability, select the P ones with

the highest C values.

4.5.3 LURF Heuristic Algorithm

The Least Used Removed First (LURF) heuristic algorithm consists of the following

steps:

1. Add all network nodes in {MC}.

2. Repeat M − P times:

• Find the minimum spanning tree and calculate its cost c.

• Repeat for each network node x that is an MC node:

(a) Remove it temporarily from {MC}.

(b) Find the minimum spanning tree and calculate its cost cx.

(c) Calculate Ax = cx − c.

(d) Add it in {MC}.

• Find node x that has Amin
x and remove it permanently from {MC}.
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Explanation of the Heuristics

Heuristic algorithms DNB and DNCD work as follows: the Steiner tree for a random

multicast session is calculated and, for each network node that is a branch node on the

tree (i.e., that has outdegree > 1), the number of branches, for DNB, and the number

of destinations that are descendants of it, for DNCD, is counted. The procedure is

repeated I times for each possible multicast group size. If the graph has M nodes for

example, the procedure is repeated I · (M − 1) times. The total number of branches

for, DNB, that each tree branch node had, and the total number of destinations, for

DNCD, that each tree branch node had as descendants, over the I · (M− 1) iterations,

is calculated for each network node that was a branch point at least once. Then, the

nodes are selected to have multicasting capability according to this number. The

idea behind these heuristics is that a node has more value as an MC node the more

branches, for DNB, and the more number of destinations, for DNCD, it serves. If

the heuristics are executed for a large number of iterations (i.e., I is large), many

more trees for different multicast group sizes will be calculated, thus making a more

efficient selection of the MC nodes.

Heuristic LURF works as follows: All network nodes are considered to be MC,

and the cost of the minimum spanning tree is calculated using a sparse-splitting

routing heuristic algorithm (The source of the tree is selected arbitrarily). The multi-

casting capability is removed temporarily from a network node, and the minimum

spanning tree cost is calculated again. The node that, if converted from MC to MI,

gives the least cost increase, is removed permanently from the MC set. If the network

consists of M nodes and P of them can be MC the procedure is repeated M−P times,

i.e., until M − P nodes will be converted from MC to MI.

It must be stated that a different version of the LURF heuristic was also tested,

where the average cost over all possible minimum spanning trees was calculated at

Step 2, instead of just one with its source selected arbitrarily. Simulations showed

that this heuristic did not give better results compared to the one stated here, though.

Therefore, the one presented here was selected for comparison with the other allo-

cation heuristic algorithms, since it is simple and with lower complexity.

Complexity of the proposed splitter allocation heuristic algorithms:

DNB, DNCD: O(KIY), where O(y) is the complexity of the multicast routing

heuristic algorithm, K is the number of the possible multicast groups and I is the
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number of iterations.

LURF: O((M − P)(M + 1)y) = O((M − P)My), where M is the number of network

nodes, P in the number of MC nodes, and O(y) is the complexity of the algorithm

used for the calculation of the minimum spanning tree.

High complexity of the splitter allocation heuristic algorithms is acceptable (as

long as it is polynomial in time), since the splitter allocation problem is a network

design problem, and these algorithms will not be applied in real time.

4.6 Performance Evaluation

The performance of the proposed heuristics for efficient multicast routing in sparse-

splitting networks, and for efficient placement of a limited number of MC nodes,

was evaluated through simulations. The network graph was randomly created, it

consisted of 50 nodes and 200 links, and it was undirected (i.e., every connection was

bidirectional). Let the nominal distance (di j
nom) between two nodes i and j be defined

as di j
nom = |i − j|. The constraint that every arc that was added in the graph had to

connect nodes that satisfy di j
nom ≤ 5 ∀i, j, was used for the random graph creation.

The reason is that the graph must simulate a real network, where nodes that are con-

nected belong to the same neighborhood. Each link had cost randomly selected from

1 to 100. The simulation was repeated for various possible multicast group sizes,

from D = 5 to D = 25 (D stands for the number of destinations), with a step equal

to 5. The experiment was executed 5000 times for every multicast group size, while

the source and destinations of the multicast connections were distributed uniformly

across the network. The cost of the multicast tree was calculated using the existing

heuristics OTMCF, NMCF, and MUS. Member-only was omitted since it underper-

forms the aforementioned. MPH∗ and SSMRH were also used for the calculation of

the multicast tree for every case. MPH∗, MUS, and OTMCF were exploited as the

basis for SSMRH and the resulting heuristics were named SSMRH1, SSMRH2, and

SSMRH3 respectively. NMCF was not used, since MUS is a generalization of it that

performs at least as good for every case. The average cost over the 5000 iterations

was extracted for each multicast group size. The procedure was repeated for the

following splitter allocation heuristic algorithms: kmaxD, kmaxWR, DNB, DNCD,

and LURF. All the above scenarios were repeated for both DoC and DaC networks.

For the case of DaC networks, MUS was modified in order to be applicable to this
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type of networks: the MI destinations could be connected to the tree either through

the source, or through an MC node, or through an already connected MI destination

x, as long as x was a leaf node. The other existing routing heuristic algorithms

remained the same for DaC networks, since they cannot be modified in order to be

more efficient for this category of networks.

The results of heuristics OTMCF, NMCF, and SSMRH3 for DaC networks are not

presented, since their performance was very poor compared to the other algorithms,

i.e. they gave trees with cost much higher compared to the cost obtained by MPH∗,

MUS, SSMRH1, and SSMRH2.

The performance of the routing heuristic algorithms was averaged over all mul-

ticast group sizes used during the simulation (D = 5 to D = 25, with step equal to 5)

(defined as Cost). The number of MC nodes varied from 5 to 25 with a step equal to 5,

i.e. from 10% to 50% of the total number of network nodes, since in sparse-splitting

networks the MC nodes rarely exceed half the number of network nodes. The results

of the simulations are given in Figures 4.8-4.17.

4.6.1 Comparison of the Multicast Routing Heuristic Algorithms

In Figures 4.8-4.17, the x-axis gives the number of MC nodes and the y-axis gives

the Cost. The description under each graph gives the heuristic algorithm that was

used for MC node placement and whether the MI nodes of the network were DoC

or DaC.

Analysis of the Results

From the simulation results, it is clear that the proposed heuristics outperform the

existing ones (i.e., the average cost of the resulting trees is less), regardless of the

selection of the splitter allocation method. They are more efficient for both cases of

DoC and DaC networks. For the case of DoC networks, SSMRH2 (i.e., using MUS

as its basis) is the most efficient. For the DaC case, SSMRH1 (i.e., using MPH∗ as its

basis) outperforms the rest of the heuristics. An example of the comparison between

MPH∗ and MUS is given in Figure 4.18. In this example it is shown that for the same

network graph, MPH∗ is more efficient for the case that the MI nodes are DaC, and

MUS performs better for the DoC case.

Simulations have also shown that:
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Figure 4.8: Comparison of the multicast routing heuristic algorithms using kmaxD

for splitter allocation (DoC network).
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Figure 4.9: Comparison of the multicast routing heuristic algorithms using kmaxWR

for splitter allocation (DoC network).
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Figure 4.10: Comparison of the multicast routing heuristic algorithms using DNB

for splitter allocation (DoC network).
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Figure 4.11: Comparison of the multicast routing heuristic algorithms using DNCD

for splitter allocation (DoC network).
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Figure 4.12: Comparison of the multicast routing heuristic algorithms using LURF

for splitter allocation (DoC network).
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Figure 4.13: Comparison of the multicast routing heuristic algorithms using kmaxD

for splitter allocation (DaC network).
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Figure 4.14: Comparison of the multicast routing heuristic algorithms using

kmaxWR for splitter allocation (DaC network).
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Figure 4.15: Comparison of the multicast routing heuristic algorithms using DNB

for splitter allocation (DaC network).
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Figure 4.16: Comparison of the multicast routing heuristic algorithms using DNCD

for splitter allocation (DaC network).
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Figure 4.17: Comparison of the multicast routing heuristic algorithms using LURF

for splitter allocation (DaC network).
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Figure 4.18: Comparison of MPH∗ and MUS for DoC and DaC networks.

• SSMRH3 (i.e., using OTMCF as its basis) has poor performance; it performs

the same as OTMCF.

• SSMRH1 and SSMRH2 gave better results compared to the heuristic algorithms

used as their basis (i.e., MPH∗ and MUS respectively) for all cases, regardless

of the splitter allocation heuristic algorithm used, or whether the network was

DoC or DaC.

4.6.2 Comparison of the MC Node Placement Heuristics

The performance of the proposed heuristics for the placement of the MC nodes

in the network were evaluated and compared. The network graph was randomly

created. It consisted of 50 nodes and 200 links and it was undirected (i.e., every

connection was bidirectional). Again, the constraint that every arc that was added

in the graph had to connect nodes that satisfy di j
nom ≤ 5 ∀i, j, was used for the random

graph creation. Each link had cost randomly selected from 1 to 100. The following

procedure was repeated for each different number of MC nodes:

The simulation was repeated for various possible multicast group sizes, from

D = 5 to D = 25 (D stands for the number of destinations), with a step equal to

5. The experiment was executed 5000 times for every multicast group size, while
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the source and destinations of the multicast connections were distributed uniformly

across the network. The average tree cost was calculated for each multicast group

size, over the 5000 repetitions. This was averaged again, over the different multicast

group sizes (defined as Cost).

The multicast tree was calculated by the SSMRH2 heuristic for the case of DoC MI

nodes, and by the SSMRH1 heuristic for the case of DaC MI nodes. The simulation

was performed for MC nodes up to the total number of network nodes (i.e., up to

the case of a full-splitting network). The procedure was executed for both DoC and

DaC networks and Figures 4.19 and 4.20 give the respective results. The x-axis gives

the number of MC nodes and the y-axis gives the Cost.
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Figure 4.19: Comparison of the MC node placement heuristics for DoC networks,

using SSMRH2 as the multicast routing heuristic algorithm.

Analysis of the Results

For the case of DoC networks, LURF is the most efficient approach for small number

of MC nodes: up to 9 MC nodes over a 50-node network, i.e. 18%. For larger numbers

of MC nodes, the DNB and DNCD splitter allocation heuristic algorithms were the

most efficient, having approximately the same performance (DNB is slightly better).

It must be noted, though, that in sparse-splitting networks a small number of MC
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Figure 4.20: Comparison of the MC node placement heuristics for DaC networks,

using SSMRH1 as the multicast routing heuristic algorithm.

nodes is usually used, in order to avoid possible multiple attenuation of the optical

signal due to splitting.

For the case of DaC networks, DNB and DNCD clearly outperform the rest, for

all possible numbers of MC nodes, with all three proposed methods outperforming

the existing solutions by a wide margin.

4.6.3 Optimal Percentage of MC Nodes

The study of the results of heuristic algorithm DNB (since this is the most efficient)

of Figures 4.19 and 4.20, provides the percentage of MC nodes a network must have.

The percentage of the MC nodes depends on their cost. If more of them exist in

the network, the average multicast tree cost will be less, but the cost of the network

deployment will be more (the assumption is that MC nodes are more expensive

than MI nodes). Figures 4.19 and 4.20 show that for both DoC and DaC networks,

utilizing up to 20 MC nodes (i.e., up to 40% of the total number of network nodes)

provides a significant decrease of the average cost. More than this percentage gives

little improvement, showing that most of the benefit of a network with full-splitting

capability is achieved with less than half the number of MC nodes. Their exact
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percentage from 5% to 40% depends on the available network deployment budget.

4.6.4 Comparison Between DaC and DoC Networks

The importance of the existence of DaC nodes is given in Figure 4.21, by calculating

the average performance for both DaC and DoC networks. The multicast tree was

calculated by the SSMRH2 heuristic for the case of DoC MI nodes, and by the

SSMRH1 heuristic for the case of DaC MI nodes. Heuristic DNB was used for the

placement of the MC nodes. The results were averaged over the different multicast

groups, for each different number of MC nodes. The simulations were performed

for MC nodes up to the total number of network nodes.

460

510

560

610

660

710

5 10 15 20 25 30 35 40 45 50

A
ve

ra
ge

 C
o

st
 

Number of MC Nodes 

DoC DaC

Figure 4.21: Comparison between DaC and DoC networks, using the DNB splitter

allocation heuristic algorithm.

Analysis of the Results

DaC networks perform better compared to DoC, as it was expected. The average cost

difference is large for a small percentage of MC nodes, and decreases for networks

with more MC nodes. For networks where 70% or more of the network nodes are

MC, the existence of DaC nodes is unnecessary. However, for networks with a small

number of MC nodes (e.g., 5 − 10%), DaCs are essential.
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Another result that is obtained from this graph, is the equivalence between the

two types of networks. The equivalent of a DaC network with 5 MC nodes (10%) is

a DoC network with 17 MC nodes (34%). These two cases have approximately the

same average cost performance. Therefore, the selection between them depends on

the cost of DaC nodes compared to the cost of MC nodes during network deployment.

For the current example (where the network consisted of 50 nodes), if DaCcost is the

cost of a single DaC node and MCcost is the cost of a single MC node, the total cost

of a DaC network with 5 MC nodes would be 45 ·DaCcost + 5 ·MCcost, and the cost of

the alternative solution would be 17 ·MCcost. Since these two networks perform the

same, the better solution will then be the one that provides the smallest total cost for

network deployment.

4.7 Conclusions

In the current chapter, the problems of multicast routing and MC node placement for

networks with sparse-splitting capabilities were studied. New heuristic algorithms

for both problems were presented, explained, and evaluated through simulations.

Both cases of DaC and DoC networks were simulated. It was shown through

simulations that the proposed heuristics outperform the existing ones, in terms

of average cost of the calculated trees.

The best multicast routing heuristic (for the network graphs used for the simula-

tions) is SSMRH, regardless of the technique used for the allocation of the MC nodes,

the number of the MC nodes, or the size of the multicast group. More specifically,

SSMRH using MPH∗ as its basis is the most efficient heuristic for DaC networks and

SSMRH using MUS as its basis is the most efficient for DoC networks.

The best splitter allocation technique for DoC networks is LURF for small percent-

age of MC nodes (up to 18%) and DNB for networks consisting of a larger number of

MC nodes. For DaC networks, DNB is the most efficient for any percentage of MC

nodes. Finally, it was shown that DaC networks perform better than DoC, especially

for networks with a small number of MC nodes.
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Chapter 5

Full-Splitting Mixed-Graph Networks:

Multicast Routing Heuristic

Algorithms

5.1 Introduction

The calculation of least-cost multicast trees is a fundamental problem in graph the-

ory called the “Steiner Minimal Tree” (SMT) problem and it was proven to be an

NP-complete problem for undirected, mixed, and directed graphs [12]. Therefore,

algorithms with polynomial-time complexity that find the optimal solution in every

case likely do not exist. The heuristics that are used extensively give satisfactory solu-

tions for undirected graphs, but have poor performance for mixed graphs, defined as

graphs consisting of both bidirectional and unidirectional connections between their

nodes. The SMT problem for mixed graphs, theoretically, is the most fundamental

problem to be solved, since the extensively studied SMT problem for undirected

graphs is a special case of it. This case is very important in practice as well; even

if the network is designed to be undirected, when some demands arrive and hold

some of the resources of the network, the resulting network graph is mixed, therefore

the routing for subsequent demands will be calculated on a mixed-graph network.

Another case where mixed-graph routing is required is when two arc-disjoint trees

must be found on a graph (e.g., for protection against a single-link failure scenario).

If the calculation of the primary and secondary trees is done sequentially, the sec-

ondary tree, after the removal of the primary one, will be calculated on a mixed
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graph. Furthermore, it is possible that certain network nodes can receive informa-

tion from other nodes, but they are not able to transmit information to them due

to physical layer impairments. All the aforementioned cases lead to a network that

must be modelled as a mixed graph.

This chapter addresses the problem of multicast routing in mixed-graph mesh

optical networks. New heuristic algorithms that are designed for mixed graphs, are

presented and evaluated. These heuristics are also compared with multicast routing

heuristic algorithms widely used in mesh optical networks. It is shown through

simulations that the proposed heuristics have enhanced performance compared

to the existing ones in terms of the cost of the resulting multicast trees for different

multicast group sizes and different percentages of directionality for the mixed-graph

networks. The worst-case performance of multicast routing heuristic algorithms

widely used in optical networks is also theoretically calculated and analyzed in

order to motivate the design of algorithms specifically for mixed-graph networks.

5.2 Definitions

5.2.1 Undirected, Mixed, and Directed Graphs

Prior to the description and evaluation of the existing and proposed multicast rout-

ing heuristic algorithms for mixed-graph networks, it is essential to provide some

important definitions that will be used in the rest of the chapter. These can be found

in [62, 63], as well as other sources.

Unidirectional edges of a graph are defined as arcs and bidirectional edges are

defined as links. Therefore, every link consists of a pair of opposite arcs (arcs with

opposite orientation and equal weight in this work). A graph is considered as

undirected if all edges are links, directed if all edges are arcs, and mixed if it has both

links and arcs.

An example of these definitions is given in Figure 5.1; in the first graph all

connections are bidirectional, therefore this graph is considered to be undirected,

while in the second one the connections 2−3, 2−5, 7−5, and 8−7 are unidirectional

(i.e., the opposite arcs do not exist) and the rest are bidirectional. This graph is thus

mixed.
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Figure 5.1: Undirected and mixed graphs.

5.3 Widely-Used Multicast Routing Heuristic Algorithms

5.3.1 PPH and MPH Heuristic Algorithms

As discussed extensively in Chapter 3, the SMT is an NP-complete problem and

several heuristic algorithms have been developed for obtaining the multicast trees.

Furthermore, as also discussed in Chapter 3, the heuristics that are widely used for

solving the Steiner tree problem and, consequently, for multicasting applications in

optical and other networks, are the Pruned Prim Heuristic (PPH) and the Minimum

Path Heuristic (MPH) [15]. Even though these heuristics work satisfactorily for

undirected graphs (although even more efficient heuristics can be found for this

case, as it was shown in Chapter 3), they are not optimized for use in mixed-graph

networks. Their limited performance in mixed-graph networks, in terms of the

cost of the calculated tree, is shown in an example of a mixed graph in Figure 5.2.

Here, node s is the source node and nodes d1 and d2 are the destination nodes of the

multicast connection. Heuristics MPH and PPH give a tree of cost equal to 41, while

the Steiner Minimal Tree (SMT) has cost equal to 32.

These two undirected-graph multicast routing heuristic algorithms (especially
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Figure 5.2: Example of the MPH and PPH heuristic algorithms for a mixed-graph

network.

MPH) are extensively used in mesh optical networks [20, 23, 46-51, 56]. Several

other heuristics have also been written for this problem [36, 38, 39, 41-44]. For

the undirected graph case, all the latter heuristics have smaller SR compared to

MPH and PPH, i.e., they have better worst-case performance. Despite this, the

former are generalized in this chapter in order to work more efficiently for mixed-

graph networks. The reasons are: (i) MPH and PPH are the multicasting heuristic

algorithms that are widely used in optical networks. In fact, no papers were found in

the literature that utilize the heuristics presented in [36, 38, 39, 41-44] for any network

applications. Therefore, in this thesis it was considered important to generalize these

two heuristics and compare them to the newly proposed multicast routing techniques

for mixed-graph networks; (ii) They are simple and easy to develop and implement

and they have lower complexity compared to the aforementioned heuristics that have

smaller SR, which is an important parameter when provisioning dynamic multicast

connection requests. Thus, their generalization to the mixed-graph network case

will also yield lower complexities compared to the heuristic algorithms in [36, 38,

39, 41-44]; (iii) The heuristics in [36, 38, 39, 41-44] are more efficient than MPH and
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PPH only in terms of worst-case performance. In practical applications, though, it is

the average-case performance that is of interest. Therefore, there is the possibility that

for network applications the benefit of using the heuristics with lower SR will not be

important enough as to merit the cost of higher time-complexity; (iv) Their enhanced

performance appears only under certain “trap” topologies, which are highly unlike

to appear in telecommunication network topologies; and (v) Based on the way the

heuristic algorithms are designed, it is not even clear whether it is even possible for

any of the algorithms in [36, 38, 39, 41-44] to be modified and be applied for mixed

graph networks.

The aforementioned algorithms deal with the undirected case of the Steiner prob-

lem in graphs. Algorithms that give a solution for the mixed-graph Steiner tree

problem do not exist in the literature. For the directed-graph case, little work exists

in the literature, and the main techniques are restricted to [64] and [65] and other

related papers.

In the following section, the worst-case performance of PPH and MPH is math-

ematically derived in order to demonstrate the necessity of developing multicast

routing heuristic algorithms that are designed specifically for mixed-graph topolo-

gies.

5.3.2 Theoretical Worst-Case Performance of PPH and MPH in

Mixed Graphs

Figure 5.3 presents a graph where the PPH and MPH heuristic algorithms have

their worst performance. Suppose that C >> 1 >> ε and consider the case where

all nodes except node k are destinations. Prim’s algorithm will connect all nodes

named i, 1 ≤ i ≤ k through arcs (source, i) respectively, and then node x will be

connected through arc (source, x). Since node k does not belong to the destination

set, arc (source, k) is deleted (it is pruned). The same tree is obtained when the MPH

heuristic algorithm is applied. The resulting tree has cost equal to (C · k + ε).

The optimal tree is achieved by adding node x in the first step and all the re-

maining destinations will be connected through this node. The cost of the resulting

(optimal) tree is (k − 1) + (C + ε). The ratio of the cost of the tree obtained by PPH

and MPH over the cost of the optimal one, called A, is then calculated as:
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Figure 5.3: Worst-case performance of PPH and MPH.

A =
Ck + ε

(k − 1) + (C + ε)
≈

Ck
k + C

(5.1)

Therefore, A is not bounded above. It can take an arbitrary large value, with the

appropriate values of k and C. For example, if k = C = 1000, then A = 500, i.e., the

tree calculated by PPH and MPH has cost 500 times the cost of the optimal one.

Since a graph was found (the one given in Figure 5.3) where the cost of the tree

calculated by the PPH and MPH heuristics over the cost of the optimal tree can

take an arbitrarily large value, the conclusion is that the worst-case performance

of the aforementioned heuristics is not bounded above. Thus, it is necessary to

develop multicast routing heuristic algorithms that are designed specifically for

mixed graphs.

In the following section, an algorithm that calculates the MST in mixed graphs,

called the Chu-Liu algorithm, is presented. It is also described how it can also be

used for mixed-graph multicasting.

108

Cos
tas

 K
. C

on
sta

nti
no

u



5.4 Pruned Chu-Liu Heuristic Algorithm

One algorithm that can be used for multicast routing in mixed graphs is the Chu-

Liu algorithm [66]. This is an algorithm that calculates the minimum spanning

tree on directed and mixed graphs. An equivalent algorithm was also written by

Edmonds in [67]. Furthermore, Bock [68] has also created a similar algorithm that

is stated on matrices instead of graphs. The focus in this section is on the Chu-Liu

implementation which is the most commonly used in algorithmic graph theory. The

Chu-Liu algorithm consists of the following steps:

Chu-Liu Algorithm

Input: Directed graph G0(V,E) (|V| = n, |E| = e).

Output: Tree T0(V,E∗) (E∗ ⊂ E).

Notations:

• (x, y) is an arc that originates from node x and ends at node y.

• c(x, y) is the cost of arc (x, y).

1. i = 0. The initial graph is G0.

2. For each node of graph Gi except the source, select the entering arc with the

smallest cost;

3. If the resulting subgraph is a tree (i.e., no cycles exist) go to Step 5. Otherwise,

continue to Step 4.

4. (a) i = i + 1;

(b) Each cycle is retracted into a single pseudo-node.

(c) A new graph is obtained after these retractions, called Gi. The cost of each

of its arcs that does not end at a pseudo-node remains the same as in graph

Gi−1. Each arc (x, j) that originates from node x outside pseudo-node k and

ends at a node j in pseudo-node k, is replaced by arc (x, k) that has cost

equal to c(x, k) = c(x, j) − c(y, j) + MAX, where (y, j) is the arc that belongs

to pseudo-node k and ends in j and MAX is the maximum cost of the arcs

of the cycle that was retracted into k.

(d) Return to Step 2.
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5. If the procedure stops at the first iteration, the calculated tree is the final

solution. Otherwise, the resulting tree is TI. Tree TI−1 is extracted from tree

TI by expanding the pseudo-nodes in it. Each pseudo-node is replaced by the

corresponding cycle and the arc that belongs to the cycle and ends at the real

node at which the arc that connects the cycle with the tree ends as well, is

deleted. This procedure is repeated until tree T0 (without any pseudo-nodes)

is obtained.

The aforementioned algorithm gives the minimum spanning tree for a directed

graph and its time complexity is (O(e + nlogn)) [66], where e = |E|, n = |V|. For

multicasting applications, a modification of it can be used by simply pruning the un-

wanted arcs and nodes (Pruned Chu-Liu Heuristic (PCLH)). It consists of the following

steps:

Pruned Chu-Liu Heuristic

1. Calculate the minimum spanning tree using the Chu-Liu algorithm.

2. Keep only the paths that connect the source with the destinations of the multi-

cast session and delete (“prune”) the rest of the arcs and nodes of the minimum

spanning tree.

3. The resulting tree is the multicast tree.

5.5 Proposed Mixed-Graph Routing Heuristic Algorithms

5.5.1 Mixed-Graph Pruned Prim Heuristic Algorithm

It was proven theoretically and shown through a simple example that Prim’s algo-

rithm and consequently the PPH heuristic, do not perform well for mixed-graph

networks. The reason is that, after the addition of a node in the tree, it is possible

that the already added nodes can be connected to the tree more efficiently through

the last added node. Two algorithms that are generalizations of Prim’s algorithm

are presented here. They both outperform Prim for mixed graphs, and they have the

same performance with it for undirected ones. They are called Mixed Graph Spanning

Tree (MGSTa and MGSTb). The second one is more efficient in terms of the cost of

the calculated tree, but with larger time-complexity. Both of them are polynomial in

time. For their description, the following are used:
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• s: source node.

• p(i): predecessor of node i in the tree.

• c(i, j): cost of arc (i, j).

• D: destination set.

(For the following heuristics, the shortest paths (and the corresponding distances)

between every pair of graph nodes, are calculated using Floyd-Warshall’s all-pair

shortest path algorithm [16, 17]).

MGSTa Heuristic

1. Tree T1 initially consists only of the source node s. Set V1 = {s}, i = 1.

2. (a) Determine the node u in {V −V1}, that is closest to Ti (which is connected

through an arc originating from Ti and ending at u). Construct a tree Ti+1

by adding the arc joining u and Ti.

(b) For every node v ∈ {V1 − {s, p(u)}}: Compare arcs (u, v) and (p(v), v). If

c(u, v) < c(p(v), v) and the addition of (u, v) in the tree does not create a

cycle, replace (p(v), v) with (u, v) and put p(v) = u.

(c) Replace {V1}with {V1} + v. i = i + 1.

3. Repeat Step 2. STOP when V1 = V, i.e., when all nodes are connected to the

tree.

MGSTb Heuristic

1. Tree T1 initially consists only of the source node s. Set V1 = {s}, i = 1.

2. (a) Determine the node u in {V −V1}, that is closest to Ti (which is connected

through an arc originating from Ti and ending at u). Construct a tree Ti+1

by adding the arc joining u and Ti.

(b) For every node v ∈ {V1 − {s, p(u)}}: Compare arcs (u, v) and (p(v), v). If

c(u, v) < (cp(v), v) replace (p(v), v) with (u, v). Put p(v) = u. In the case a

cycle was created, modify the cost of each arc which enters a node j in the

cycle and originates from some node i in the current tree (not belonging

to the cycle or to the cycle branches), according to the following equation:
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c∗(i, j) = c(i, j) − c[p( j), j]. From these arcs, select the one with the smallest

modified cost and replace the arc which enters the same node (“w”) in the

cycle by the new selected arc. Modify the predecessor of w, according to

the node from which the new selected arc originated.

(c) Replace {V1}with {V1} + v. i = i + 1.

3. Repeat Step 2. STOP when V1 = V, i.e., when all nodes are connected to the

tree.

In these algorithms, when a node is added to the tree, it is checked whether the

nodes that are already on the tree, can be connected to it via a “shorter” way, through

the newly added node. MGSTa stops if this change creates a cycle and MGSTb allows

the cycle to be created and finds the most optimal way to break it. In some cases this

leads to the same tree as before the creation of the cycle, but, in general, the creation

and breaking of this cycle gives a tree with less cost.

Both of the proposed spanning tree algorithms are more efficient for mixed

graphs, compared to Prim’s algorithm. MGSTb gives better results than MGSTa,

but has higher time-complexity.

The application of the two heuristics to the example of Figure 5.4 will make them

more understandable. The first three steps are identical to Prim’s algorithm. In Step

4, after the connection of node 3 to the tree, the arcs (3, 4) and (2, 4) are compared.

As c(3, 4) < c(2, 4), arc (3, 4) now replaces arc (2, 4) in the tree, since this change

does not create a cycle. In Step 5, arc (4, 5) is added. After the insertion of node 5

in the tree, node 3 is closer to the tree through arc (5, 3) instead of arc (1, 3). This

replacement will create a cycle, therefore MGSTa ends at Step 5, since all nodes are

connected. On the other hand, using MGSTb, the arcs are replaced (Step 6) and the

resulting cycle must break. The arc that enters the cycle from a node outside the

cycle and has the minimum modified cost is (1, 3). Consequently, arc (1, 3) is added

and arc (2, 3), which is the arc in the cycle that terminates at node 3, is removed. (The

predecessors of each node are modified appropriately in each step). The heuristic

algorithm terminates because all nodes are added in the tree and all cycles have been

removed. MGSTb succeeds in finding a MST with cost= 18, while MGSTa finds a

tree with cost= 19, and Prim gives a tree with cost= 23.

It should be noted that if for example arc (5, 3) had now cost 4 instead of 1, the

two heuristic algorithms would give the same result, since the creation and breaking
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of the cycle would lead to the same tree as before the creation of the cycle, i.e., Steps

5 and 7 would result in the same tree.
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Figure 5.4: Example of the MGSTa and MGSTb heuristic algorithms.

Time Complexity

The derivation of the time-complexity for MGSTa and MGSTb is as follows:

1. Prim’s algorithm has time complexity on the order of O(elogn) [45] (e = |E|,

n = |V|).

2. In Step 2b of MGSTa, all nodes in set V1 − (s, p(u)) are checked, therefore the

complexity is multiplied by O(n).

3. In Step 2b of MGSTb, all nodes in set V1 − (s, p(u)) are checked (O(n)). For the

breaking of a created cycle, a set of arcs that originate from the current tree and

end at the cycle are checked (O(n)).

The result of the three previous statements is that the time-complexity of MGSTa

is O(nelogn) and MGSTb has time-complexity O(n2elogn).

The two proposed heuristic algorithms can now be utilized for multicasting

in a way similar to PPH: the minimum spanning tree is calculated using MGSTa or
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MGSTb, and the unnecessary arcs are pruned. The resulting multicasting algorithms

are called Mixed-Graph Pruned Prim Heuristic algorithms (MG-PPHa and MG-PPHb).

It can be easily verified that both of them give the Steiner minimal tree, if they are

applied to the example of Figure 5.2 as well as to the example in Figure 5.3.

5.5.2 Mixed-Graph Minimum Path Heuristic Algorithms

When MPH is applied in mixed graphs, after the addition of a destination u in

the tree, there is the possibility that some of the already added destinations can be

connected more efficiently through the nodes of the path that connects u to the tree.

For example, in Figure 5.2, after the addition of destination d2, d1 can be connected

through arc d2−d1 (cost= 1), instead of arc b−d1 (cost= 10) that connects it to the tree.

A family of new heuristic algorithms, called Mixed Graph Minimum Path Heuristic

algorithms (MG-MPHa, MG-MPHb, and MG-MPHc) were developed to overcome

this.

For their description, the following are used:

• s: source node.

• D: destination set.

• Z: set consisting of the source and the destinations.

MG-MPHa Heuristic

1. Tree T1 initially consists only of the source node s. Set V1 = {s}, i = 1.

2. (a) Determine a node u in {D − V1} that is closest to Ti (which is connected

through a directed path originating from Ti and ending at u). Construct

a tree Ti+1 by adding the minimum cost path joining u and Ti. Add the

nodes of this path in set {V1}.

(b) Keep only the path from source node to node u as the current tree and

delete all other arcs.

(c) Add again to the current tree all the destinations that were part of the tree

before u, using the MPH algorithm.

(d) i = i + 1.
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3. Repeat Step 2. STOP when all nodes of D are connected to the tree.

The heuristic functions as follows: After the addition of destination u (let U be

the set of the nodes that are added to the tree for the connection of destination u),

only the path from source s to u is kept as the current tree. All destinations that were

part of the tree before the addition of u and do not belong to path s→ u, are added

again using the MPH algorithm. Therefore, they will be connected either through

the path that they were already connected, or through a path that originates from a

node of set U. The best path between the two will be selected.

The MG-MPHa heuristic algorithm is applied to the graph of Figure 5.2, and its

steps and result are shown in Figure 5.5. In the first step, destination d1 is connected

to the tree, since it is closer to the source than destination d2. In Step 2, d2 is added

(MPH would stop here). In Step 3, only the path s − d2 is kept as the current tree

and the paths that connect the rest of the destinations (i.e., path b − d1) are removed

from the tree. Then, in Step 4, the destinations that were part of the tree before d2

was added (i.e., d1) are connected again using the MPH heuristic (d1 is connected

to the tree though d2 using arc d2 − d1), and the heuristic terminates. Therefore,

the calculated tree has cost equal to 32, while the PPH and MPH heuristics had

calculated a tree with cost equal to 41.

MG-MPHa checks whether the destinations that were added in the tree before

the last added destination u, can be added in a shorter way after the addition of u and

its corresponding path. This procedure is not applied though for the destinations

added before u that belong to path that connects the source node s and node u (see

Step 2b). Therefore, two other heuristic algorithms that overcome this weakness

were developed. Suppose that the destinations that were added before u belong

either to set A (if they are not part of path source− u) or set B (if they are part of path

source − u); the check if nodes of set B can be connected in a shorter way through

u can be done before the addition of nodes of set A in the tree (heuristic algorithm

MG-MPHb), or after (heuristic algorithm MG-MPHc).

MG-MPHb Heuristic

1. Tree T1 initially consists only of the source node s. Set V1 = {s}, i = 1.

2. (a) Determine a node u in {D − V1}, that is closest to Ti (which is connected

through a directed path originating from Ti and ending at u). Construct
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Figure 5.5: Example of the MG-MPHa heuristic algorithm.

a tree Ti+1 by adding the minimum cost path joining u and Ti. Add the

nodes of this path in set {V1}.

(b) Keep only the path from source node to node u as the current tree and

delete all other arcs and calculate its cost, costa (resulting current tree:

treea).

(c) Remove this path, connect node u with node s through the shortest path,

add again in the tree the destinations of set B, and calculate the cost of the

resulting current tree, costb (resulting current tree: treeb).

(d) If costa < costb, keep treea, otherwise keep treeb.

(e) Add again to the current tree all the destinations that were part of the tree

before u (i.e., nodes of set A), using the MPH algorithm.

(f) i = i + 1.

3. Repeat Step 2. STOP when all nodes of D are connected to the tree.

Simply, heuristic MG-MPHb checks whether the destinations that belong to path

source − u (i.e., were added into the tree before u) can be connected to the tree in a
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shorter way, after the addition of node u. The more efficient way between the two

is selected. This procedure is applied before the re-addition of nodes of set A in the

tree.

A third heuristic algorithm, MG-MPHc, performs this procedure after the re-

addition of nodes of set A in the tree:

MG-MPHc Heuristic

1. Tree T1 initially consists only of the source node s. Set V1 = {s}, i = 1.

2. (a) Determine a node u in {D − V1}, that is closest to Ti (which is connected

through a directed path originating from Ti and ending at u). Construct

a tree Ti+1 by adding the minimum cost path joining u and Ti. Add the

nodes of this path in set {V1}.

(b) Keep only the path from source node to node u as the current tree and

delete all other arcs and calculate its cost, costa (resulting current tree:

treea).

(c) Add again to the current tree all the destinations that were part of the tree

before u (i.e., nodes of set A), using the MPH algorithm. Calculate the cost

of the resulting current tree treea, costa.

(d) Check path source − u: Find the first node after the source, that has

outdegree > 1. Name this node x. If no node with outdegree > 1 exists,

x = u.

(e) Remove path source − x, connect x with s through the shortest path, add

again in the tree the destinations of set B, and calculate the cost of the

resulting current tree treeb, costb.

(f) If costa < costb, keep treea, otherwise keep treeb.

(g) i = i + 1.

3. Repeat Step 2. STOP when all nodes of D are connected to the tree.

An example of the MG-MPHb and MG-MPHc heuristic algorithms is given in

Figure 5.6. Here, s is the source and d1, d2, d3 are the destinations. For the first

graph of the figure, it can easily be verified that MPH gives a tree of cost equal to 49

(s− b− d3, s− d1 − a− d2), and the cost of the tree derived by MG-MPHa is equal to 40

(s − d1 − a − d2 − d3). If either MG-MPHb or MG-MPHc are exploited, the resulting
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Figure 5.6: Example of the MG-MPHb and MG-MPHc heuristic algorithms.

tree has cost equal to 32 (s − d2 − d1, d2 − d3). This is due to the fact that, after the

addition of d2, d1 can be connected in a shorter way through d2. MG-MPHa does not

perform this check, since d1 belonged to the path that connected the source and d2.

The second graph of Figure 5.6 explains why the comparison of costa and costb

in MG-MPHb and MG-MPHc (steps d and f respectively) is necessary. Here, MG-

MPHa, MG-MPHb, and MG-MPHc give the same tree (s − d1 − a − d2 − d3) that has

cost 40. If the aforementioned steps were omitted, MG-MPHb and MG-MPHc would

give tree s − d1, s − d2 − d3, with cost 41.

Complexity of the MG-MPH Heuristic Algorithms

The time-complexity of MPH is O(kn2) [15] (k = |Z|, n = |V|), since it applies Dijk-

stra’s algorithm that has complexity O(n2) [31], for the addition of each destination

in the tree. MG-MPH heuristics apply MPH after the addition of each destination,

therefore they have complexity of order O(k2n2).

Based on the discussion in Chapter 3, another heuristic algorithm which is a

generalization of MPH, that on the average performs better, and can be modified to

be applicable in mixed-graph networks, is the SNH heuristic described in detail in

Section 3.3.

If one of the MG-MPH heuristics is used in Steps 1 and 2b of SNH (as described

in Section 3.3), instead of MPH, then the resulting heuristic algorithm (called the
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Mixed Graph Steiner Node Heuristic (MG-SNH)), will be applicable to mixed-graph

networks.

Mixed Graph Steiner Node Heuristic (MG-SNH)

1. Calculate Steiner Tree T∗(V∗,E∗) using MG-MPH and find its cost, called C.

2. For every node vi ∈ {V − V∗} do the following:

(a) {Z′} ← {Z} + vi.

(b) Calculate Steiner Tree Ti(Vi,Ei) on G(V,E) for set {Z′}, using MG-MPH, and

find its cost, ci.

(c) {Z′} ← {Z}.

3. Find v j and T j : c j = mini{ci}.

4. If c j ≥ C, the solution is T∗(V∗,E∗), STOP.

(a) If c j < C, replace {Z}with {Z} + v j, C with c j and T∗(V∗,E∗) with T j(V j,E j).

(b) If set {V − V∗} , 0, return to Step 2. Else STOP.

Complexity of the MG-SNH Heuristic Algorithm

The time-complexity of MG-MPH is O(k2n2), as shown previously. Since MG-

MPH is applied once in Step 1, and Steps 2 and 4 are repeated no more than V − D

times each, the complexity of MG-SNH is O(k2n2 + (n − k)2k2n2) = O((n − k)2k2n2).

The existing and proposed heuristic algorithms for mixed-graph networks are

evaluated in the section that follows.

5.6 Performance Evaluation

In this section, the average performance of the existing and proposed heuristic

algorithms for mixed-graph networks discussed previously, is evaluated through

simulations. It must be noted that for network applications it is the average per-

formance that counts, since the worst-case one may appear only for certain trap

topologies that rarely exist in real telecommunication network topologies.

The simulations were performed on a random graph that was created as follows:

Initially, it had 40 nodes and 100 arcs. The cost of each arc was randomly selected from

1 to 1000. The graph was simple, therefore all of the 100 edges connected a different
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pair of nodes. There were no arcs with opposite orientation (the graph initially

was directed). According to the Percentage of Directionality (PoD) (i.e., the ratio

arcs/edges) the appropriate number of arcs (unidirectional edges) were converted

to links (bidirectional edges). For example, in the case of a graph with PoD =

20%, 20 arcs were chosen randomly, to be converted to links, i.e., the opposite

arc of each one of them was added to the graph. The simulation was repeated

for PoD = 20%, 40%, 60%, 80%. For each one of these cases with different PoD, the

procedure was repeated for all possible multicast groups (from D = 2 to D = 39). The

experiment was executed 5000 times for each multicast group size, while the source

and destinations of the multicast connection were distributed uniformly across the

network. For every PoD, 5000 Steiner trees were calculated with each one of the

existing and proposed heuristic algorithms and their average cost was calculated

for each heuristic. The results are presented in Figures 5.7-5.14. The horizontal axis

of each diagram is the multicast group size (i.e., the number of destinations) and

the vertical one gives the average cost. Two graphs were created for each PoD, one

for small multicast group sizes (up to half of the network nodes) and one for large

multicast group sizes (more than half of the network nodes), for better clarity.

For the simulations, the MG-SNH technique in this analysis was realized using

MG-MPHb, since this has (slightly) better performance compared to MG-MPHa and

MG-MPHc, as simulations showed.

Analysis of the results

As it can be seen from the graphs, heuristic MG-MPHb performs slightly better

than heuristics MG-MPHa and MG-MPHc, therefore this is the one exploited in

MG-SNH.

For all cases of PoD, MG-SNH has the best performance, compared to the rest of

the heuristics, for small multicast sessions (i.e., for number of destinations up to half

of the network nodes). For large multicast sessions, PCLH has the best performance

for all cases of PoD. It must be stated, though, that in practice, multicast sessions

with number of destinations more than half of the network nodes, rarely exist (the

number of destinations in multicast sessions usually consist of a small number of

the network nodes).

As the PoD increases, the average cost reduction that the new heuristics achieve,

increases as well. Let gaini for multicast group size i be defined as:
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Figure 5.7: Average cost vs. multicast group size (PoD = 20%, small multicast

sessions (D ≤ 20)).
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Figure 5.8: Average cost vs. multicast group size (PoD = 20%, large multicast

sessions (20 < D ≤ 39)).
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Figure 5.10: Average cost vs. multicast group size (PoD = 40%, large multicast

sessions (20 < D ≤ 39)).
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Figure 5.11: Average cost vs. multicast group size (PoD = 60%, small multicast

sessions (D ≤ 20)).
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Figure 5.12: Average cost vs. multicast group size (PoD = 60%, large multicast

sessions (20 < D ≤ 39)).
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Figure 5.13: Average cost vs. multicast group size (PoD = 80%, small multicast

sessions (D ≤ 20)).
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Figure 5.14: Average cost vs. multicast group size (PoD = 80%, large multicast

sessions (20 < D ≤ 39)).
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gaini = 100 ·
min{costPPH, costMPH, costPCLH} − costMG−SNH

min{costPPH, costMPH, costPCLH}
, (5.2)

where costX is the cost of the multicast tree obtained by heuristic X. Simply, gaini

gives the cost reduction achieved by MG-SNH, compared to the best among the

existing heuristics PPH, MPH, and PCLH. If GAIN is defined as

GAIN = average{gaini}, i = 2...
M
2
, (5.3)

i.e., gaini is averaged over all possible multicast group sizes up to half of the network

nodes, according to the above simulations, GAIN ≈ 6.5% for the cases of PoD = 60%

and 80%, and GAIN ≈ 1% for the cases of PoD = 20% and 40%.

The reasons that MG-SNH and PCLH have the best performance for small and

large multicast sessions respectively, are the following:

• SNH, as mentioned before, uses MPH as its basis and applies a recursive

procedure in order to find the nodes that, if added into the destination set, give

a tree with less cost. Therefore, it is more efficient compared to MPH, for both

cases of undirected- and mixed-graph networks. Furthermore, MG-MPHb was

specifically designed for mixed graphs, therefore it has enhanced performance

in this category of networks, compared to MPH. Thus, since MG-SNH is the

combination of the aforementioned algorithms, it is more efficient than SNH,

and MG-MPHb, since it exploits the advantages of both.

• Chu Liu’s algorithm gives optimal results for calculating minimum spanning

trees in mixed graphs. Therefore, the multicast version of it (i.e., PCLH)

has good performance for large multicast sessions, since in this case almost all

network nodes are destinations and few arcs of the spanning tree are deleted in

order to find the corresponding Steiner tree. However, as mentioned before this

is a not such a practical case in real telecommunication network applications.

5.7 Conclusions

In this chapter, the existing as well as newly proposed mixed-graph multicast rout-

ing heuristic algorithms were presented, compared, and evaluated. It was shown
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through simulations that the proposed heuristics outperform the existing ones in

terms of average cost performance. For the network graphs used in the simulations,

MG-SNH has the best performance for small multicast sessions; up to 8.1% average

cost reduction, compared with the existing algorithms. For large multicast sessions,

a case which is not very practical in real networks, PCLH is the most efficient as these

multicast sessions tend to give (almost) spanning trees. The difference between MG-

SNH (for small multicast sessions) / PCLH (for large multicast sessions) and the rest

of the algorithms, becomes larger as the PoD of the graph increases. The worst-case

performance of the widely-used multicast routing heuristic algorithms in optical

networks was also theoretically calculated, to demonstrate the need for multicast

routing heuristics that are specifically designed for mixed-graph networks.
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Chapter 6

Full-Splitting Undirected-Graph

Networks: Multicast Protection

Techniques

6.1 Protection of Optical Networks Against Failures

The vast amount of information that a fiber carries, as well as the amount of infor-

mation loss in case of a failure on a light-tree that can affect the traffic to multiple

destinations (Figure 6.1), have led to the necessity for the development of efficient

multicast survivability techniques. These techniques are designed to provision mul-

ticast calls that are protected against any single link failure (e.g., an optical fiber cut),

since this is the predominant form of failures in optical networks.

Two types of survivability techniques exist in optical networks, namely protection

and restoration. Protection is the calculation of secondary (“backup”) routes for every

multicast request at the moment the request arrives (precomputed protection routes

prior to the failure event), while restoration dynamically discovers a backup route

after the link failure [69]. Several approaches were proposed in the literature for

protecting multicast calls. These can be divided into dedicated and shared techniques,

depending whether the redundant resources are dedicated or shared amongst sev-

eral connections. Examples of dedicated protection are link-disjoint and arc-disjoint

light-trees [23]. In these schemes one working and one protection tree are calculated

for each multicast request, which have their links/arcs disjoint respectively. If there

are sufficient resources for the assignment of these two trees for a multicast request,
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s 1 d2

Light-path: the failure of fiber S-1 affects only one destination 

s 1 d2

Light-tree: the failure of fiber S-1 affects five destinations 

d

d

d

d

Figure 6.1: Lightpath and light-tree fiber failure.

then the request is realized. If not, it is blocked. Shared protection can be further

divided into self-sharing and cross-sharing. These two cases can be found for example

in [23] and [70] respectively. In the first case, the secondary tree of a multicast request

can share arcs with the primary one. In the second case, secondary trees of different

requests can share arcs. The advantage of these techniques is the minimization of

the redundant capacity required in the network to protect the multicast sessions.

The performance metrics used in this thesis for the protection techniques are

blocking probability (BP)) and average cost (cost). Blocking probability is the fraction

of the realized multicast requests over the total number of requests (percentage of

blocking referred to here as blocking probability). The costi of a realized multicast call

i is in this case the cost of the primary and secondary routes for all its destinations

(calculated in terms of link weights). Therefore, if x are the successful calls, the

average cost is given by the following equation:

cost =
1
x

x∑
i=1

costi (6.1)

The less BP and cost a technique gives, the more successful it is considered.
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6.1.1 General Arc-Disjoint and Node-Disjoint Protection Techniques

The purpose of a large number of multicast protection schemes is the calculation of

two disjoint paths from the source node to each destination node of the specific mul-

ticast request. If this is realizable, the multicast request will be serviced regardless

of any single link failure in the network. One way to achieve this is by calculating

two disjoint trees for every multicast request [23].

For the case of a single link failure, two Link-Disjoint Trees (LDT), or two Arc-

Disjoint Trees (ADT) can be calculated to ensure the survivability of the network.

Both of these protection techniques can protect the network from any single link

failure. The former is omitted in this analysis, since it needs more network resources

compared to the latter. A simple example where the efficiency of ADT is shown, is

presented in Figure 6.2. In this example, link d1 − d2 is utilized by both the primary

tree (arc d1−d2) and the secondary tree (arc d2−d1). In the case that this link fails (i.e.,

both arcs of it fail), the information can be sent to d1 using the primary tree (s − d1)

and to d2 using the secondary tree (s− d2). Therefore, although the two trees are just

arc- and not link-disjoint, the network can survive from link failures as well.

s 

d1 d2 

s 

d1 d2 

Graph 

Primary Tree 

s 

d1 d2 

Secondary Tree 

Figure 6.2: Example of two arc-disjoint trees.

For the case of a single link/node failure, two Node-Disjoint Trees (NDT) must be

calculated to ensure the survivability of the network. The two trees must not share
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any arcs, or intermediate nodes and their corresponding arcs. (An intermediate

node is every node that is a part of the light-tree and it is not either the source or the

destination. The corresponding arcs of a node are the arcs that originate from or end

at this node.)

The general procedure for the calculation of two arc-disjoint or node-disjoint

trees is as follows:

1. Calculate the primary light-tree using a multicast routing heuristic algorithm.

2. • For arc-disjoint trees: Remove the arcs of the primary tree from the network

graph.

• For node-disjoint trees: Remove the arcs of the primary tree from the net-

work graph, its intermediate nodes and the corresponding arcs.

3. Calculate the secondary tree on the resulting graph using a multicast routing

heuristic algorithm.

The selection of the multicast routing heuristic algorithm is critical; if an algorithm

that manages to calculate light-trees with less arcs is utilized, after the calculation

of the primary tree the resulting graph will have more arcs available, and this will

increase the possibility that a secondary tree will be found on this resulting graph.

Therefore, the average blocking probability will subsequently be decreased and the

average cost (in terms of number of arcs for the pair of primary and secondary trees)

will be decreased as well.

Also note that for the case of a node failure, it is assumed that for the source and

the destination set a malfunction never occurs. To protect the network against those

failures, ensuring that source and destination node failures are also recoverable,

requires redundancy (and “dual-homing” techniques) for every network node.

6.1.2 Existing and Proposed ADT- and NDT-Based Protection Tech-

niques

As described in Chapter 3, the two widely-used multicast routing heuristic algo-

rithms in the literature are the Pruned Prim Heuristic (PPH) [45] and the Minimum

Path Heuristic (MPH) heuristics [15]. If these heuristics are exploited for the calcula-

tion of the pair of the disjoint trees, the resulting arc-disjoint techniques are PPH-ADT

and MPH-ADT and the node-disjoint ones are PPH-NDT and MPH-NDT.
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A more efficient multicast routing heuristic algorithm is the Steiner Node Heuristic

(SNH), also presented in Chapter 3. This heuristic outperforms PPH and MPH in

terms of the cost of the calculated multicast tree. Therefore, after the calculation

of the primary tree using SNH, the resulting graph will have more arcs available

compared to the case PPH or MPH were used, and this will increase the possibility

that a secondary tree will be found on this resulting graph. Therefore, the average

blocking probability and the average cost will decrease. If SNH is exploited in the

aforementioned protection method, the resulting techniques are called SNH-ADT

and SNH-NDT for the case of arc and arc/node failures respectively.

6.1.3 Performance Evaluation

The performance of the existing and proposed protection methods was evaluated

via simulations, using the sample network (USNet) shown in Figure 6.3, consisting

of 24 nodes and 43 bidirectional links. The cost of each link is denoted in the figure.

This cost may be the actual length of the link or any other cost assigned for it (e.g.,

latency, port cost, etc).

Figure 6.3: Test network used for performance evaluation.

Let D = k − 1 be the number of destinations of the multicast group that must

be established. The experiment is executed for all possible multicast groups (from
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D = 1 (unicast call) to D = 23 (broadcast call)) using the PPH-ADT, MPH-ADT,

and SNH-ADT techniques to calculate the pair (working and protection) of the arc-

disjoint trees. For each multicast group case, the simulation is repeated 5000 times,

while the source and destinations of each connection are randomly generated and

are distributed uniformly across the network. Each multicast call was assumed to

depart from the network before the arrival of the following ones. A multicast request

is established, if a pair of working and protection arc-disjoint trees can be found for

that request, otherwise it is blocked. (It is possible to fail to find a protection tree

when the removal of the arcs of the primary one leads to a disconnected network

graph.)

The blocking probability and the average cost (in terms of link weights utilized

for the working and protection trees) for the three arc-disjoint multicast protection

techniques are presented in Figures 6.4-6.5 respectively, for different multicast group

sizes (a multicast group as shown in the plots does not include the source node). For

the calculation of the average cost, only the non-blocked demands are considered.
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Figure 6.4: Blocking probability for the MPH-ADT, PPH-ADT, and SNH-ADT mul-

ticast protection techniques.

As it can be seen from the performance results, for the single link failure case the
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Figure 6.5: Average cost for the MPH-ADT, PPH-ADT, and SNH-ADT multicast

protection techniques.

proposed SNH-ADT multicast protection method gives lower blocking probability

compared to the MPH-ADT technique and lower blocking compared to the PPH-

ADT approach for larger multicast group sizes. Also, it is always much better than

the PPH-ADT technique and always equal or better than the MPH-ADT approach

in terms of the average cost. Thus, the SNH-ADT technique will be preferred over

both existing techniques when both the blocking probability and average cost are

taken into consideration.

The blocking probability and the average cost (in terms of link weights utilized

for the working and protection trees) for the three node-disjoint multicast protection

techniques are presented in Figures 6.6-6.7 respectively. For this case (i.e., single

link/node failure), the SNH-NDT technique always outperforms the PPH-NDT and

MPH-NDT approaches in terms of blocking probability, while it has slightly better

results compared to MPH-NDT and significantly better results compared to PPH-

ADT, in terms of average cost.

The enhanced results of SNH-ADT and SNH-NDT are a direct consequence of

the proposed SNH Steiner tree routing heuristic algorithm that has increased cost
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performance compared to the PPH and MPH heuristics.

The form of the graph of Figure 6.6 (i.e., it has turning points) is due to the fact

that the source and the destination sets are considered to always work properly

(i.e., never fail). Therefore, if the multicast group size is increased, more nodes are

considered not to fail, and the blocking probability is decreased. When the multicast

group size becomes even larger, it is less possible for the secondary tree to exist,

even with the removal of just the arcs of the primary tree. Therefore the blocking

probability increases again.

6.1.4 Conclusion

An improved protection technique (SNH-ADT, SNH-NDT), is presented in this sec-

tion. Simulations have shown that it outperforms the existing ones in terms of

blocking probability and average cost, for both single link and single link/node

failure scenarios.

6.2 A Load Balancing Technique for Protecting Dynamic

Multicast Calls in Mesh Optical Networks

6.2.1 Introduction

There is only very limited work in the literature that takes into account the current

status of the network for the calculation of the primary and secondary trees for the

upcoming requests [71], [72]. Most of the existing multicast protection methods

ignore the distribution of the network load and the congestion it causes to the

network connections. This may lead to the routing of several requests through

certain arcs, something that eventually causes disconnection to some areas of the

network (due to the complete utilization of resources on some links) and increases

the blocking probability for the upcoming requests. An efficient way to overcome

this weakness is to use a load balancing technique in order to intersperse the routing

of the multicast requests in the network. This can be achieved by modifying the cost

of the network arcs according to the change of flow of traffic through them after the

establishment of each successful multicast request.

A very efficient and well known heuristic algorithm for provisioning survivable
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multicast connections in mesh optical networks is the Optimal Path-Pair Shared

Disjoint Paths (OPP-SDP) technique [23]. Therefore, this is the heuristic selected in

order to be combined with the load balancing technique developed in this section.

The resulting technique is called Load Balancing Optimal Path-Pair Shared Disjoint

Paths (LB-OPP-SDP). Simulations show that the proposed technique has enhanced

performance in terms of blocking probability (50% lower average blocking probabil-

ity) under the scenario of dynamic multicast call arrivals, when compared with the

OPP-SDP approach.

6.2.2 Load Balancing Optimal Path Pair Shared Disjoint Paths

The Optimal Path Pair Shared Disjoint Paths (OPP-SDP) method, has a major ad-

vantage over the arc-disjoint techniques discussed in the previous section, as it can

handle the cases of trap topologies (as shown in Figure 6.8), where the arc-disjoint

techniques will give poor results. (In this figure, an example with one destination

is given. The case of multicasting is the generalization of this topology for more

destinations.) In this example, s is the source node and d is the destination node, the

first topology is the network graph, the second figure shows the first path between

s and d and the third figure shows that, after the removal of the first path, a second

one does not exist, i.e., the arc-disjoint method would not work for this topology.

This case can be handled using Suurballe’s algorithm [27]. If this algorithm is

applied to the aforementioned network, two disjoint paths can be found, as shown

in Figure 6.9.

The characteristic that makes OPP-SDP multicast protection method outperform

other existing techniques is that, by utilizing Suurballe’s algorithm, it can efficiently

calculate together both the (arc-disjoint) working and protection paths, managing

also networks that include “trap topologies”, where simpler protection methods that

find the working and protection paths sequentially would be more inefficient or even

fail (as the removal of the working path prior to the calculation of the protection path

would result in a disconnected graph, thus precluding the calculation of a protection

path) [23].

The OPP-SDP heuristic algorithm consists of the following steps:

1. For every destination node of the session, repeat Steps 2 and 3.
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Figure 6.8: Failure of ADT multicast protection method.
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Figure 6.9: Pair of disjoint paths found using Suurballe’s algorithm.
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2. Find an optimal path-pair between the source and destination node using

Suurballe’s algorithm.

3. Update cost= 0 for already found optimal path pairs.

Although this heuristic is very efficient, for the realization of a new multicast

request it does not take into account the change of the network state, due to resource

holding of previous requests. The proposed Load Balancing Optimal Path-Pair

Shared Disjoint Paths (LB-OPP-SDP) heuristic algorithm was designed specifically

to overcome this weakness. It essentially uses load balancing in order to intersperse

the routing of the multicast requests in the network by modifying the cost of the

network arcs depending on the flow of traffic on them at any instance (i.e., depending

on the network state in terms of routed connections when a new multicast connection

arrives and must be provisioned in the network). It consists of the following steps

for every arriving multicast request:

LB-OPP-SDP Heuristic

Given a connected graph G(V,E) where each element of V is network node and

each member of E is a network edge, with weights for every arc (unidirectional edge)

(i, j) denoted by cost[i][ j].

• The indegree(v) (outdegree(v)) of vertex v, id(v), (od(v)) corresponds to the in-

bound (outbound) edges incident to vertex v.

• Define degree(v) as the min{id(v), od(v)}.

1. Calculate the id(v) and od(v) of each network node v, considering only the arcs

that have free (available) wavelengths.

2. Calculate the degree(v) of each network node v, considering only the arcs that

have free (available) wavelengths.

3. For each network arc that has free wavelengths (corresponding cost is denoted

by cost[i][ j], where i is the node that is the origin of it and j is the ending node)

and degree(i) · degree( j) > 0:

• If degree(i) > degree( j) then cost[i][ j] = cost[i][ j]/degree( j)

• If degree(i) < degree( j) then cost[i][ j] = cost[i][ j]/degree(i)
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4. For every destination node of the session, repeat Steps 5 and 6.

5. Find an optimal path pair between the source and destination node utilizing

Suurballe’s algorithm [27].

6. Update cost = 0 for already found optimal path-pairs.

The proposed heuristic algorithm works as follows: Before the application of

OPP-SDP (i.e., before the calculation of the optimal path-pair between the source

and each destination) the network graph is modified in order to achieve a balanced

distribution of the load. More precisely, the Maximum Possible Flow (MPF) through

a network node is determined by the minimum between the numbers of incoming

and outgoing arcs (only arcs with free wavelengths are considered). This is calculated

for every node, and it is named in this algorithm as the degree of the node (Step 2).

The MPF through an arc is determined by the MPFs of the associated nodes (the

minimum of them is selected as the MPF for the arc). The modified cost of the arc is

the initial cost divided by the arc’s MPF. In this way, the cost of an arc is increased

inversely to its MPF (Step 3). Therefore, the arriving requests are more possible to

be routed through arcs with higher MPF, and the possibility of a disconnection of a

network area due to load concentration, is decreased. Finally, OPP-SDP is applied

to the modified network graph (Steps 4-6).

a

b

d

c

e

f

cost: 120

cost: 150

new cost: 60

new cost: 50

Figure 6.10: Example of the LB-OPP-SDP heuristic.

An example of the proposed heuristic is given in Figure 6.10. Suppose that there

is a request with node a as the source node and node f as the destination node.
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Node id od degree 

b 2 3 2 

c 3 2 2 

d 3 4 3 

e 4 4 4 

Figure 6.11: Example of the LB-OPP-SDP heuristic.

The assumption in this example is that arcs a − b, c − f , a − d, and e − f have the

same cost. In this case, OPP-SDP would select path a − b − c − f since b − c has

lower cost compared to d − e. If LB-OPP-SDP is applied instead, the cost of the

two arcs will be modified. For arc b − c, degree(b) = min{id(b), od(b)} = min{2, 3} = 2,

degree(c) = min{id(c), od(c)} = min{3, 2} = 2 (Figure 6.11), therefore the new cost for

arc b− c will be 120/2 = 60. Similarly, the new cost for arc d− e will be 50. Therefore,

path a−d− e− f will be selected if the LB-OPP-SDP heuristic was implemented. This

selection is better, since, for the current network status, arc d− e has higher MPF and

it is less probable to have load congestion (and disconnection) at this arc compared

to arc b− c. The advantage of the proposed heuristic is that, for the calculation of the

multicast tree, it takes into account the routing of the already established multicast

requests, a critical factor that OPP-SDP ignores.

Complexity of the LB-OPP-SDP Heuristic

Suurballe’s algorithm has time complexity of O(n2 log n) for a graph consisting

of n nodes [27]. Since it is applied for every destination, the time-complexity of

LB-OPP-SDP is equal to O(Dn2 log n), where D is the number of destinations.

6.2.3 Performance Evaluation

The performance of the LB-OPP-SDP multicast protection technique was evaluated

and compared with OPP-SDP. The simulations were performed on one randomly

created undirected graph with 35 nodes and 100 links. This graph was simple (i.e., it
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had no self-loops or multiple edges having the same pair of end-vertices), therefore

all links connected different pairs of nodes. For this graph, a constraint was used for

the graph creation, namely that every arc that was added in the graph had to con-

nect nodes that satisfy di j
nom < 6 for all i, j. The simulation was repeated for various

possible multicast group sizes (D), from D = 2 to D = 34 (D stands for the number

of destinations of the multicast group). The simulation was executed 25000 times

for every multicast group size, while the source and the destinations of the mul-

ticast connections were distributed uniformly across the network. The simulation

was performed for multicast calls arriving dynamically, i.e., they were considered

to arrive, stay for some time, and then depart. The time of arrival was generated

according to a poisson distribution with λpoisson = 100 and the connection holding

time was exponentially distributed with λexp = 1 (setting the network load to 100

Erlangs). Every fiber was considered to have 64 wavelengths and wavelength con-

version was assumed at every network node. If a pair of paths that originated from

the source and ended at a destination was able to be calculated for every destination

in the multicast call, the call was considered to be successful. Otherwise, it was

considered as unsuccessful and the entire multicast call was blocked. The blocking

probability (BP) was calculated as the ratio of blocked/total multicast requests, for

every multicast group size. The results of the simulation for both the OPP-SDP and

LB-OPP-SDP techniques are presented in Figures 6.12 and 6.13. The cases of small

(up to 17 destinations) and large (18 destinations and more) multicast group sizes

were presented in different graphs for clarity purposes.

As shown from the results in Figures 6.12 and 6.13, the LB-OPP-SDP technique

significantly outperforms the OPP-SDP approach for small multicast sessions (up to

approximately half of the network nodes). It must be noted that this is a more realistic

case, since it is highly unlikely that there will be multicast requests that will have

as destinations more than the half of the network nodes. The average BP reduction

for small multicast sessions (consisting of 6 to 17 destinations, as the cases with less

than 6 destinations are not considered for the calculation of average BP since both

heuristics have BP = 0) is approximately 50%. For large multicast sessions, both

techniques have the same performance (LB-OPP-SDP performs slightly better for

cases up to 24 destinations whereas OPP-SDP performs slightly better for multicast

sessions of 25 destinations and more) as in those cases the limiting factor is not

the design of the multicast protection technique but rather the network resources
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Figure 6.12: Blocking probability for small multicast group sessions.
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Figure 6.13: Blocking probability for large multicast group sessions.

142

Cos
tas

 K
. C

on
sta

nti
no

u



(number of wavelengths per fiber in the network under consideration).

6.2.4 Conclusions

A new multicast protection technique, Load Balancing Optimal Path-Pair Shared Dis-

joint Paths (LB-OPP-SDP) is presented in this section. It is the combination of the

very efficient and well-known OPP-SDP multicast protection heuristic, and a load

balancing technique that recalculated the cost of each network arc according to the

load distribution on the network due to the already established multicast requests.

Simulations have shown that the proposed method outperforms OPP-SDP in terms

of blocking probability (50% lower average blocking probability) for small multicast

group sizes. Note that the proposed load balancing technique can also be combined

with any other protection method as well. For example, it can be combined with the

arc-disjoint-trees (ADT) and node-disjoint-trees (NDT) protection methods, in order

to enhance the performance of these techniques.
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Chapter 7

Full-Splitting Mixed-Graph Networks:

Multicast Protection Techniques

7.1 Introduction

In Chapters 3 and 6, the heuristic algorithms that are mainly used in the literature

for the calculation of the primary and secondary arc-disjoint light-trees (Pruned Prim

Heuristic (PPH) and Minimum Path Heuristic (MPH)) and their resulting protection

techniques (PPH-ADT and MPH-ADT respectively) were described [23]. However,

as discussed in Chapter 5, these multicast routing heuristic algorithms were designed

for undirected graphs, and although they are able to find a tree in mixed graphs as

well, they do not perform well for this category of graphs (in terms of cost of the

calculated tree, i.e., number of arcs). This is demonstrated, for example, in the simple

test network given in Figure 7.1. Here, node s is the source and nodes d1 and d2 are

the destinations. The MPH and PPH heuristics give a tree of cost equal to 7, while

the minimal multicast tree has cost equal to 6.

Furthermore, as previously motivated in Chapter 5, even if the network is de-

signed to be undirected, when some multicast requests arrive and hold resources

of the network, the resulting network graph is mixed, therefore the calculation of

multicast trees for the new requests, will be calculated on a mixed graph. Also, for

the case of protected connections, even in the case that the two trees are calculated on

an undirected graph, the arcs of the working tree are removed from the graph for the

calculation of the protection tree, and the latter is calculated on the resulting mixed

graph. Therefore, it is clear that the development of new protection algorithms that
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Figure 7.1: MPH and PPH heuristics.

are designed to work efficiently for mixed-graph networks, is very important.

7.2 Proposed Arc-Disjoint Tree Multicast Protection Heuris-

tic Algorithms

7.2.1 MG-MPH-ADT Protection

Chapter 5 introduced a new multicast routing heuristic algorithm that was developed

specifically for mixed graphs and outperforms the aforementioned PPH and MPH

heuristics for the calculation of multicast light-trees in mixed-graph networks (called

MG-MPH). For example, the MG-MPH heuristic is applied in graph of Figure 7.1

and its steps and result are shown in Figure 7.2. Note that contrary to the MPH and

the PPH heuristics the MG-MPH heuristic succeeds in finding the minimum cost

tree.

This multicast routing heuristic algorithm that is more efficient for routing in

mixed graph networks can then be utilized in the arc-disjoint tree protection method

for the protection against single arc failures in mixed-graph networks. The resulting

protection method is called MG-MPH-ADT and consists of the following steps:
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Figure 7.2: MG-MPH heuristic algorithm.

1. Calculate the primary light-tree using the MG-MPH heuristic algorithms de-

scribed in Chapter 5.

2. Remove the arcs of the primary tree from the network graph.

3. Calculate the secondary tree on the resulting graph using the MG-MPH heuris-

tic algorithm.

7.2.1.1 Performance Evaluation

The performance of the MG-MPH-ADT approach is evaluated and compared with

the existing relevant protection techniques (MPH-ADT and PPH-ADT). The evalu-

ation is performed via simulations on a mixed graph that was randomly created. In

the first step, the graph had 40 nodes and 200 arcs. This graph should be simple,

therefore all of the 200 arcs connected a different pair of nodes. There were no arcs

with opposite orientation (the graph initially was directed). The constraint that ev-

ery arc that was added in the graph had to connect nodes that satisfy di j
nom ≤ 4 ∀i, j,

was used for the random graph creation. According to the Percentage of Direction-

ality (PoD) (i.e., the ratio arcs/edges) the appropriate number of arcs (unidirectional

edges) were converted to links (bidirectional edges). In this simulation, the graph

was selected to have PoD = 80%, therefore 160 arcs were chosen randomly, to be
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converted to links, i.e., the opposite arc of each one of them was added to the graph.

The procedure was repeated for various possible multicast group sizes (D), from

D = 2 to D = 38, with a step equal to 2. The experiment was executed 5000 times for

every multicast group size, while the source and destinations of the multicast con-

nections were distributed uniformly across the network. 5000 pairs of arc-disjoint

trees were calculated with each one of the existing and proposed multicast protection

techniques (MPH-ADT, PPH-ADT, and MG-MPH-ADT). The cost criterion for the

routing heuristic algorithms was the number of arcs that were used for the primary

and secondary trees. The blocking probability and the average cost (i.e., the sum of

the arcs of the two disjoint trees) were calculated for each protection method. The

results are presented in Figures 7.3 and 7.4.
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Figure 7.3: Blocking probability vs. multicast group size for the three different

multicast protection techniques (MPH-ADT, PPH-ADT, and MG-MPH-ADT).

Analysis of the results

Simulations show that the MG-MPH-ADT multicast protection algorithm, based

on the MG-MPH mixed-graph multicast routing heuristic algorithm, outperforms

the existing techniques in terms of blocking probability (BP). The BP for this tech-

nique is significantly lower compared with the existing ones, for all multicast group

sizes. More importantly, there is no tradeoff, since the average number of arcs that
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Figure 7.4: Average number of arcs vs. multicast group size for the three different

multicast protection techniques (MPH-ADT, PPH-ADT, and MG-MPH-ADT).

are used is slightly less compared with the best of the existing methods (MPH-ADT).

Therefore, in the case of mixed-graph networks, the application of the proposed

protection method has only advantages.

7.2.2 MG-SNH-ADT Protection

The Mixed-Graph Steiner Node Heuristic (MG-SNH) described in Chapter 5 can

also be utilized for the calculation of a pair of arc-disjoint trees, and the resulting

technique is called MG-SNH-ADT [73]. This technique was designed to perform well

for both undirected and mixed graphs, due to the fact that it exploits the benefits of

both the SNH and MG-MPH multicast routing heuristic algorithms.

The MG-SNH-ADT multicast protection method consists of the following steps:

1. Calculate the primary light-tree using the MG-SNH heuristic as described in

Chapter 5.

2. Remove the arcs of the primary tree from the network graph.

3. Calculate the secondary tree on the resulting graph using the MG-SNH algo-

rithm.
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7.2.2.1 Performance Evaluation

The performance of the MG-SNH-ADT protection method is evaluated and com-

pared with the existing relevant heuristic algorithms (MPH-ADT) and the ones pro-

posed previously (SNH-ADT, MG-MPH-ADT). PPH-ADT is omitted in this analysis

since it performs much worse compared to the other three techniques [49, 74, 75]. The

evaluation is performed via simulations on a mixed graph that was randomly cre-

ated. The graph was created to be strongly connected. It has 40 nodes, 160 arcs (uni-

directional connections), and 40 links (bidirectional connections). This graph should

be simple, therefore all 200 edges connect different pairs of nodes. The Percentage of

Directionality (PoD) (i.e., the ratio arcs/edges) was set to PoD = 160/200 = 0, 8 = 80%.

The simulation was repeated for various possible multicast group sizes (D), from

D = 2 to D = 39. The experiment was executed 50000 times for every multicast group

size, while the source and destinations of the multicast connections were distributed

uniformly across the network. Fifty thousand (50000) pairs of arc-disjoint trees were

calculated with each one of the existing and proposed multicast protection methods.

If an arc-disjoint pair of trees was able to be calculated, the multicast request was

considered as realizable. In the opposite case it was considered as blocked. The

blocking probability was calculated as the ratio of blocked/total multicast requests.

The cost criterion for the routing heuristic algorithms was the sum of the arcs that

were used for the primary and secondary trees. The blocking probability and the

average cost (i.e., the sum of the arcs of the two disjoint trees) were calculated for

each protection method. The results are presented in Figures 7.5-7.8. The cases of

small (up to 20 destinations) and large (21 destinations and more) multicast group

sizes were presented in different graphs for clarity purposes.

Analysis of the results

Small multicast group size (size of destination set up to half the size of the network): It is

clear that the MG-SNH-ADT multicast protection method outperforms the rest in

terms of blocking probability (BP) and average cost, for small multicast sessions.

The first reason is that this method is able to find the nodes that give light-trees

with less arcs if they are added in the destination set. The second reason is that

the proposed method was specifically designed for mixed graphs, therefore it has

enhanced performance for this category of networks. Since MG-SNH-ADT finds

trees with less arcs, it is obvious that this minimizes the average cost (average cost
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Figure 7.5: Blocking probability vs. multicast group size for the four different

multicast protection techniques (MPH-ADT, SNH-ADT, MG-MPH-ADT, MG-SNH-

ADT) for multicast group size up to 20 destinations.

is calculated in terms of number of arcs of the primary and secondary trees). It

minimizes the blocking probability as well; if the primary tree uses a small number

of arcs, the resulting graph after the removal of them consists of more arcs and this

decreases the possibility that a secondary tree will not exist. Therefore, the BP is

decreased as well.

Large multicast group size: For the case of large multicast sessions, MPH-ADT

and SNH-ADT have the same blocking probability. The blocking probability of

MG-MPH-ADT and MG-SNH-ADT is equal, much lower compared to the other two

techniques. The reason is that if the destination set has many network nodes, the

possibility of the existence of non-destination nodes that will give trees with less arcs

if added in the destination set, is negligible. Therefore, the only characteristic that

can give better results is the mixed-graph specialization of an algorithm. The four

methods also have practically the same average cost for large multicast sessions.
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Figure 7.6: Blocking probability vs. multicast group size for the four different

multicast protection techniques (MPH-ADT, SNH-ADT, MG-MPH-ADT, MG-SNH-

ADT) for multicast group size ≥ 21 destinations.

7.2.3 Conclusions

An arc-disjoint multicast protection method called MG-MPH-ADT, that is based

on the mixed-graph routing heuristic algorithm MG-MPH presented in Chapter 5,

is presented and evaluated in the current work. Simulations show that the new

method outperforms the ones mainly used in the literature (arc-disjoint protection

methods MPH-ADT and PPH-ADT) for mixed-graph networks in terms of blocking

probability and average cost.

Furthermore, another multicast routing heuristic algorithm that performs effi-

ciently for mixed-graph networks, called Mixed Graph Steiner Node Heuristic (MG-

SNH), that was also introduced in Chapter 5 is applied for the provisioning of

survivable multicast requests via the calculation of arc-disjoint tree pairs. The re-

sulting technique is MG-SNH-ADT. It was specifically designed to work efficiently

for mixed graphs and simulation results verify this, showing that for this category of

networks, MG-SNH-ADT outperforms the existing relevant methods (MPH-ADT,

SNH-ADT, and MG-MPH-ADT) for small multicast sessions (size of the destination
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Figure 7.7: Average number of arcs vs. multicast group size for the four different

multicast protection techniques (MPH-ADT, SNH-ADT, MG-MPH-ADT, MG-SNH-

ADT) for multicast group size up to 20 destinations.

set up to half the number of the network nodes), in terms of blocking probability

while having the same average cost.

7.3 Generalization of OPP-SDP for Multicast Protec-

tion in Mixed-Graph Networks

As explained in Chapter 6, the advantage of the OPP-SDP multicast protection

method is that it can manage cases where the trap topology of Figure 6.8 exists. Its

drawback is that it has poor performance for mixed-graph networks. An example to

demonstrate this is given in Figure 7.9 (s is the source and a, b are the destinations).

In this example, the OPP-SDP heuristic will give the solution of Step 2, where the

optimal is the one given at Step 4.

The weakness of OPP-SDP in mixed-graph networks is that it cannot manage the

case where, after the addition of a destination into the path-pairs-tree (i.e., the tree

derived by OPP-SDP, where a pair of paths between the source and each destination
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Figure 7.8: Average number of arcs vs. multicast group size for the four different

multicast protection techniques (MPH-ADT, SNH-ADT, MG-MPH-ADT, MG-SNH-

ADT) for multicast group size ≥ 21 destinations.

exists), the already added destinations may can be reconnected to the tree through a

shorter way. Therefore, a new multicast protection algorithm is presented here, called

Mixed Graph Optimal Path Pair-Shared Disjoint Paths (MG-OPP-SDP), consisting of the

following steps:

Mixed Graph Optimal Path-Pair Shared Disjoint Paths (MG-OPP-SDP):

1. Tree T1 consists only of the source s. Set V1 = {∅}. i = 1.

2. (a) Determine the node u in {D − V1}, that has the shortest path-pair that

originates from the source node s and ends at node u. Construct the tree

Ti+1 by adding this path-pair to Ti. Add u in set {V1}.

(b) Keep only the path-pair from source to node u as the current tree and

delete all other path-pairs.

(c) Update cost = 0 for this path-pair.

(d) Update cost = initial − graph − cost, for the removed path-pairs.
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Figure 7.9: Example where OPP-SDP does not give the optimal solution.

(e) Add again to the current tree all the destinations that were part of the tree

before u, by calculating their path-pairs using Suurballe’s algorithm.

(f) Update cost = 0 for their path-pairs.

(g) i = i + 1.

3. Repeat Step 2. STOP when all nodes in D are connected to the tree.

Note that the path-pairs are derived using Suurballe’s algorithm and Initial −

graph − cost of a path-pair, is the cost that the path-pair had before it was set to 0.

Also, for OPP-SDP, the destinations are added in the tree sequentially, while in this

case the one with the shortest path-pair is added first.

The heuristic algorithm functions as follows: After the addition of destination

u (let U be the set of the nodes that are added to the tree for the connection of

destination u), only the path-pair from source s to u is kept as the current tree. All

destinations that were part of the tree before the addition of u and do not belong

to path s → u, are added again using Suurballe’s algorithm. Therefore, they will

be connected either through the path-pair that they were already connected to, or

through a path-pair that passes through the nodes in set U and uses the arcs that

their cost has been updated to 0, since they are used for destination u as well. The
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best path between the two will be selected. It is obvious that OPP-SDP and MG-

OPP-SDP have the same performance for undirected graphs: using MG-OPP-SDP,

the already added destination path-pairs will be removed and the same ones will be

added again. For mixed graphs, the proposed algorithm has improved performance,

as Figure 7.9 shows: OPP-SDP stops at Step 2, while MG-OPP-SDP stops at Step 4

and gives the optimal solution.

Complexity of the MG-OPP-SDP Heuristic

• Suppose that the destination set consists of D nodes.

• Suurballe’s algorithm has time complexity of O(n2 log n) for a graph consisting

of V nodes [27].

• Step 2 of MG-OPP-SDP is repeated for every destination (i.e., D times), and

Suurballe’s algorithm is applied at most D times for each iteration of Step 2.

The result of the aforementioned statements is that MG-OPP-SDP has time com-

plexity of O(D2n2 log n).

7.3.1 Performance Evaluation

The performance of the MG-OPP-SDP multicast protection technique was evaluated

and compared to OPP-SDP. The simulations were performed on a mixed graph that

was randomly created. The graph was created to be strongly connected. It had 30

nodes, 50 arcs (unidirectional connections) and 50 links (bidirectional connections),

for a total of 100 edges (sum of arcs and links) and a Percentage of Directionality

(PoD) (i.e., the ratio arcs/edges) equal to PoD = 50/100 = 0, 5 = 50%. This graph

should be simple, therefore all 100 edges connected different pairs of nodes. The

simulation was repeated for various possible multicast group sizes (D), from D = 1

to D = 29 (D stands for the number of destinations of the multicast group). The

simulation was executed 25000 times for every multicast group size, while the source

and destinations of the multicast connections were distributed uniformly across the

network. The simulation was performed for dynamic arrival of multicast calls:

they were considered to arrive, stay for some time, and then depart. The time of

arrival was generated according to poisson distribution with λpoisson = 100 and the

connection holding time was exponentially distributed with λexp = 1. Therefore,

the network load was set to 100 Erlangs. Every fiber was considered to have 64
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wavelengths. If a pair of paths that originated from the source and ended at a

destination was able to be calculated for every destination of the multicast call, the

call was considered to be successful. Otherwise, it was considered as blocked. The

blocking probability was calculated as the ratio of blocked/total multicast requests, for

every multicast group size. The results are presented in Figures 7.10 and 7.11. The

cases of small (up to 15 destinations) and large (16 destinations and more) multicast

group sizes were presented in different graphs for clarity purposes.
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Figure 7.10: Blocking probability vs. multicast group size for OPP-SDP and MG-

OPP-SDP, for multicast group size ≤ 15 destinations.

Analysis of the results

For the results, it is demonstrated that the MG-OPP-SDP technique has lower block-

ing probability compared to OPP-SDP. For up to 10 destinations, the blocking prob-

ability is zero for both heuristic algorithms. The difference of blocking probability

between the two heuristics was averaged for multicast groups from 11 to 29 desti-

nations. The result was that MG-OPP-SDP algorithm gives on average 16.6% lower

blocking probability compared to OPP-SDP.
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Figure 7.11: Blocking probability vs. multicast group size for OPP-SDP and MG-

OPP-SDP, for multicast group size ≥ 16 destinations.

7.3.2 Conclusions

The existence of protection techniques that are efficient in mixed graphs is important,

since in practice some connections in the network are unidirectional due to the

resource holding of other applications. A new heuristic algorithm, called Mixed

Graph Optimal Path-Pair Shared Disjoint Paths (MG-OPP-SDP), that is a generalization

of the OPP-SDP algorithm, is presented in this section for protection of multicast

connections in mixed-graph networks. While for undirected-graph networks OPP-

SDP and MG-OPP-SDP have the same performance, for mixed-graph networks MG-

OPP-SDP clearly outperforms OPP-SDP. Specifically, simulation results showed that

the performance of MG-OPP-SDP is on the average 16.6% better compared to that

of OPP-SDP.
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Chapter 8

Conclusions and Future Research

8.1 Conclusions

This dissertation dealt with the problems of multicast routing and protection in opti-

cal WDM networks, a current problem in mesh optical networks where a number of

multicast applications are being established in the network. Several heuristic algo-

rithms that outperform the existing ones were presented, explained, and evaluated

through examples and simulations for undirected networks and for mixed-graph

networks.

The thesis achieved all its objectives as highlighted in Chapter 1. New heuristic

algorithms and techniques were developed that enable the provisioning and protec-

tion of multicast requests in optical mesh networks with varying architectures (e.g.,

undirected networks, mixed-graph networks, networks with full or sparse-splitting

capabilities, networks with DoC or DaC MI nodes, etc) while at the same time out-

performing the most-utilized existing routing and protection techniques that are

present up-to-date in the literature.

A new multicast routing heuristic algorithm, called Steiner Node Heuristic (SNH)

was presented in this dissertation. This heuristic uses MPH as its basis, and applies

a recursive procedure to find a tree that has less cost compared to the one obtained

by MPH. It achieves this by locating the nodes that, if added into the destination set,

will give a less-cost tree. It is a general algorithm, i.e., it can use any appropriate

algorithm X as its basis and follow the recursive procedure to improve the solution

obtained by X. It is noted that algorithms that use this method (i.e., to locate and

add certain nodes in the destination set to improve the solution) did not exist in the
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literature for multicast routing applications.

For sparse-splitting networks (i.e., networks where not all nodes are multicast

capable) both problems of multicast routing in these types of networks and splitter

allocation were investigated. For the first problem, novel heuristic algorithms were

created, that outperform the best ones that exist in the literature. The proposed

Sparse-Splitting Multicast Routing Heuristic (SSMRH) outperforms the existing ones,

since it locates the multicast-capable nodes, that, if used for the calculation of the

multicast tree, will reduce its cost. For the second problem, new splitter allocation

heuristic algorithms were presented, that outperform the existing ones. These are

the Decreased Number of Branches (DNB), Decreased Number of Children Destinations,

and Least Used Removed First (LURF) approaches. All proposed techniques were

analyzed and evaluated for networks where the multicast-incapable nodes were

Drop-and-Continue and for networks where the multicast-incapable nodes are Drop-

or-Continue.

Another major contribution of the current thesis was the research performed on

mixed-graph networks. Previous research work on routing in optical networks was

performed according to the assumption that the network can be modelled as an

undirected graph (a graph consisting only of bidirectional connections), and rout-

ing was performed using undirected-graph multicast routing heuristic algorithms.

However, this is not a practical scenario, and in the thesis the reasons of modelling

the network as a mixed graph (a graph consisting of both bidirectional and unidirec-

tional connections) were given. The performance of the undirected-graph multicast

routing heuristic algorithms if applied in mixed graphs was mathematically ana-

lyzed and evaluated through simulations. Consequently, new multicast routing

heuristic algorithms that are specially designed for this category of networks, were

presented and evaluated. A modification of the Chu Liu algorithm for multicasting

applications, was presented as well. The proposed solutions that were specifically

designed for mixed-graph networks were shown to outperform solutions that were

initially designed for undirected networks.

The proposed undirected- and mixed-graph network multicast routing heuristic

algorithms were further exploited for the creation of new protection techniques for

single link failure and single link/node failure scenarios. The created techniques were

SNH-ADT, SNH-NDT, MG-MPH-ADT, and MG-SNH-ADT and these solutions were

shown to outperform the existing ones in terms of blocking probability and average
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cost.

Another important contribution of the thesis was the development of a load

balancing technique that decreases the blocking probability of multicast connections.

Currently, for the establishment of upcoming multicast requests, the network state

due to the already deployed connections, was ignored by all existing heuristics. The

developed method modifies the cost of each network arc according to the distribution

of the load in the network, in order to achieve a balanced load distribution and to

minimize the possibility that the network will be disconnected in some areas due

to load congestion on certain arcs. This technique was used in conjunction with

the OPP-SDP protection method, that is one of the best protection methods in the

literature, and demonstrated significant improvement in the network performance

in terms of blocking probability (50% lower average blocking probability for small

multicast group sizes).

Additionally, a novel heuristic algorithm was developed, that provides protection

for multicasting in mixed-graph networks, and is able to deal with certain “trap”

topologies where other heuristic algorithms fail. It is a generalization of Optimal

Path Pair Shared Disjoint Paths (OPP-SDP), called Mixed Graph Optimal Path Pair

Shared Disjoint Paths (MG-OPP-SDP), which was shown to outperform OPP-SDP in

terms of blocking probability for mixed-graph networks.

For the evaluation of the proposed heuristics and the comparison with the existing

ones, simulations for both static and dynamic arrivals of multicast requests were

performed. Furthermore, the simulations were performed for several multicast

group sizes, on existing networks, randomly created graphs, as well as complex

graph topologies (small-world and scale-free), with varying characteristics in terms

of connectivity, directionality, etc.

The proposed heuristics have increased performance compared to the existing

ones, while their time complexity remains polynomial. However, as the proposed

solutions increase the time complexity, it is up to the user to decide when it is

appropriate to use them. If the computational power is limited and the capacity

is not, the existing heuristic algorithms are more appropriate. However, in today’s

networks, computational power is enough to deal with the increased complexity of

the proposed heuristics. On the other hand, capacity is limited. Therefore, the new

heuristic algorithms are the most suitable solution for most of the applications.

The proposed heuristics of the current thesis were developed in order to deal with
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multicast routing and protection in mesh optical networks. It must be stated though,

that most of them are general, i.e., they can be used in other types of networks as

well, with some minor modifications.

8.2 Future Research

The work presented in this dissertation did not cover a number of topics that could be

exploited as future work by other researchers working in this area. Some examples

for future directions are given below. There are a number of possible avenues that

one can explore as a continuation of the work presented in this thesis. This section

serves only as a guide towards some interesting future directions that could be

investigated but is by no means an exhaustive list.

One possible avenue for further exploration is to enhance the multicast routing

heuristic algorithms developed in this dissertation:

• The problem of multicast traffic grooming in optical networks can be a subject

of future research. In the current thesis it was assumed that each multicast

request used the entire wavelength capacity. However, in order to deal with

scenarios were the multicast request does not require the entire wavelength

capacity, multicast traffic grooming techniques must be developed where a

wavelength is concurrently supporting multiple requests.

• The case of multicast routing and MC-node allocation in mixed-graph sparse-

splitting networks can also be examined for networks where the multicast-

incapable nodes are either DaCs or DoCs. Furthermore, scenarios where the

multicast-capable nodes have full or limited splitting capability can be a subject

of future research (limited splitting capability refers to the case where an optical

splitter has a limited splitting fanout (splitting capacity)).

• Multicast routing heuristic algorithms for optical networks with sparse (or

limited) wavelength-conversion capability can be created, as well as heuristics

for efficient placement of nodes that have this capability. An important issue

related to this is the efficient allocation of the wavelength converters. Another

open problem is the development of efficient multicast routing and protection

heuristic algorithms, for the case of sparse wavelength-conversion networks.
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Networks with limited wavelength conversion can be studied as well (limited

conversion refers to the case where there is wavelength conversion capabil-

ity in the network, but it may be restricted so that not all combinations of

input/output wavelength channels may be possible).

• The new multicast routing heuristic algorithms developed in this dissertation

ignored the physical layer impairments, such as fiber attenuation, component

insertion loss, amplifier spontaneous emission noise, chromatic dispersion, po-

larization mode dispersion, and others. The proposed routing and protection

algorithms can thus be generalized considering the degradation of the signal

quality due to the aforementioned factors.

There are a number of future research directions that can also be undertaken for

the case of multicast protection:

• One possible direction is to further improve on the OPP-SDP heuristic that is

currently the most efficient one found in the literature for providing protection

in undirected-graph networks. An improved heuristic can be created (e.g.,

“Improved OPP-SDP” (I-OPP-SDP)), that will be able to locate the nodes that,

if added in the destination set, will give a less-cost tree. The new heuristic

can subsequently be combined with MG-OPP-SDP, to provide a more efficient

solution for mixed-graph networks. The heuristic algorithms developed can

also be combined with the developed load balancing technique for provisioning

dynamically arriving multicast calls with decreased blocking probability.

• The proposed protection methods can also be combined with cross-sharing

techniques. If cross-sharing is exploited, two multicast requests can share the

arcs used for protection, as long as their working trees are arc-disjoint. This will

lead to slightly longer restoration times, but the redundant capacity required

in the network will be decreased.

• The problem of multicast routing in sparse-splitting networks was examined

in the current thesis. No algorithms that provide multicast protection for this

type of networks were developed though. This can be a subject of future

research. The developed heuristic algorithms can be combined with the arc-

disjoint-trees protection method, in order to provide survivable multicasting
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for this category of networks. Apart from these, heuristic algorithms that

provide efficient multicast protection in sparse-splitting networks by being

able to overcome certain network trap topologies, can be developed.

• The load balancing technique presented in the thesis took into account the pos-

sible network flow through each fiber a − b, according to the free wavelengths

of the arcs ending at a and originating from b. The free wavelengths of a − b

were ignored though. A new load balancing technique can also be created and

evaluated, that will take this factor into account as well.

Apart from new directions in heuristics, future work can also focus on the com-

parison of all proposed routing and protection heuristic algorithms with the optimal

solution obtained by Integer Linear Programming to ascertain how close to the

optimal solution are the proposed techniques.

Furthermore, the SNH heuristic was compared to the MPH and PPH heuristics,

since these are the ones that are most widely used in optical networks. Another

heuristic, written by Kou [37], was also compared to SNH. However, other heuristics,

that have better worst-case performance, were not used for comparison purposes.

SNH can also be compared to them as well. This comparison can be performed both

theoretically (through mathematical analysis) and experimentally (via simulations).

Finally, the generalization of the proposed heuristic algorithms, so that they

can be applied in a distributed rather than a centralized control and management

environment, as well as the development of multicast protocols that exploit the pro-

posed multicast routing and protection heuristic algorithms can be another direction

of future work.

Obviously, the aforementioned are just some of the interesting future directions

that could be investigated. The main focus of any future research direction would

be to develop efficient techniques and heuristics that can allow for the provisioning

and survivability of multicast applications in telecommunication networks, trying

to bring the proposed solutions closer to real-network implementations.
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APPENDIX A: Graph Theory
Definitions

Some important graph theory definitions that are used throughout the thesis are
presented in this appendix. These can be found in [62], [63], as well as other sources.

• A graph G(V,E) is a finite, nonempty set V together with a (possibly empty) set
E (disjoint from V) of two-element subsets of (distinct) elements of V.

• Each element of V is referred to as a vertex or node. The members of set E are
called edges.

• The degree (dv) of a vertex v in a graph G is the number of edges incident to v.

• A trivial graph is a graph with one vertex and no edges.

• A graph is considered connected if there is a path between every pair of its
vertices.

• It is called simple graph if it has no self-loops or multiple edges having the same
pair of end vertices.

• In the case that a real number is assigned as a weight (or cost) for every edge,
then the graph is weighted (c(i, j) denotes the cost of edge (i, j)).

• Unidirectional edges are defined as arcs and bidirectional as links. Therefore,
every link consists of a pair of opposite arcs (arcs with opposite orientation and
equal weight).

• A graph is considered as undirected if all edges are links, directed if all edges are
arcs, and mixed if it has both links and arcs.

• A directed or mixed graph that contains a directed path between every pair of
its vertices is strongly connected. It is weakly connected if it has this feature only
under the replacement of all its arcs with links.

• The indegree (outdegree) of vertex v, id(v) (od(v)) corresponds to the inbound
(outbound) edges incident to vertex v.

• A tree of a graph G is a connected acyclic directed subgraph of G.

• The weight (or cost) of a tree is defined as the sum of the weights (or costs) of
its arcs.

• If the tree spans all the vertices of G, it is called spanning tree. The Minimum
Spanning Tree (MST) is the spanning tree with the minimum weight.
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• If the tree spans a subset of the vertices of G (but not all), it is called Steiner tree.
The Steiner Minimal Tree (SMT) is the Steiner tree with the minimum weight.

• A cycle is a path starting and ending on the same vertex, while a cycle branch is
a path that the starting vertex belongs to the cycle and the ending vertex and
the intermediate ones do not belong to it.
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