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Abstract

Location awareness is the key enabler for a wide variety of services that are envisioned or
have already been deployed in the mobile and pervasive computing era. These services span
from safety-critical applications in sensor networks, including large area monitoring, event
localization and target tracking, to assistive and commercial applications in wireless networks,
such as user navigation, visitor guidance, asset tracking and forwarding of location-dependent

advertisements to consumer devices (e.g., smartphones, tablets, laptops, etc.).

In this thesis, we focus on two types of wireless networks that have attracted attention for
determining location, namely binary Wireless Sensor Networks (WSN) and Wireless Local
Area Networks (WLAN). A binary WSN is a network featuring a large number of cheap sen-
sor nodes, densely deployed inside the monitoring area, that can only detect the presence of an
event or not. Such simple nodes are preferred in certain applications because they are generally
easier to implement, are less prone to calibration errors and can save bandwidth and energy
by communicating only a single bit of information. On the other hand, WLANSs are nowadays
ubiquitous and the relevant infrastructure, i.e., Access Points (AP), can be quite dense espe-
cially in metropolitan areas. Due to the capability to penetrate obstacles and concrete walls,
as well as the availability on commercial mobile devices, WLANSs have the potential to deliver
highly reliable location information right where the highest demand is anticipated in the near
future; in large indoor environments, such as shopping malls, museums, exhibition centres,

conference venues, and airports.

Despite their increasing popularity, binary WSNs and WLANSs bring unique research chal-
lenges in respect to localizing and tracking events, objects or individuals. WSNs are usually
deployed in harsh environments and are envisioned to work unattended for prolonged pe-
riods of time, while performing their tasks without human intervention. Also, WLANSs are

changing dynamically because APs can be removed or relocated or new APs may be installed.

In this sense, binary WSNs and WLANs may suffer from faults, caused either uninten-

tionally or deliberately. For instance, in binary WSNs some nodes may fail unexpectedly due



to board overheating or battery depletion, reporting that they have detected an event/target
when they did not and vice versa; or they may be compromised by a malicious attacker that
aims to conceal the presence of an enemy vehicle. In WLAN-based localization, faults may
appear in unpredictable ways, e.g., an AP may become unavailable as the result of power out-
age, hardware failure or due to network maintenance. Alternatively, faults may occur in case
an adversary cuts the power supply of some APs or uses specialized equipment to severely
jam the communication channels and make the attacked APs unavailable.

Another issue that is inherent in WLAN-based localization is device diversity. This is be-
cause users typically carry heterogeneous mobile devices that usually report measurements
quite differently. Such devices may not be anticipated by the system, leading to significant
localization errors. For instance, several studies report a linear relation between the signal
strength received by two different devices at the same location. In that sense, device diversity
can also be viewed as a bias sensor fault, where the sensor (i.e., WLAN adapter) in the device
reports the disturbed, rather than the expected, measurements.

While hardware faults may severely degrade the localization and tracking accuracy in bi-
nary WSNs and WLANS, the use of heterogeneous devices affects user experience and hinders
the proliferation of WLAN-based localization systems. These facts necessitate the develop-
ment of appropriate fault models and fault tolerant algorithms, as well as device-insensitive
localization algorithms to maintain a high level of accuracy in the presence of faults or when
users request location information through diverse devices, respectively.

To this end, the main contributions of this thesis are threefold. First, we introduce fault
models for binary WSNs and propose a multiple target tracking solution that exhibits high
resilience to sensor node faults and is applicable to centralized and distributed network ar-
chitectures. Second, we investigate fault models in the context of WLAN and propose fault
detection mechanisms combined with fault tolerant localization algorithms to mitigate the ef-
fect of failed APs. Third, we look into device heterogeneity in WLAN-based localization and
present two effective approaches to address this problem in real-time. We demonstrate the
effectiveness of the proposed methods with extensive simulations and real-life experimental

data.



ITepiAnun

H avtiAnyn tng 0¢ong anotelei to Pactkd muAdva yia pia HeydAn motkihia vNPEcLOV
TIOL AVAHEVOVTAL 1) XPT|OLoTToloDVTaAL IO OTNVY €MOXT TOL POPNTOD Kal SLAXVTOL LTTOAOYL-
OHOV. AUTEG OL VTN peDieg eKTEIVOVTAL ATIO KPIOIUEG EQAPHOYESG aoPdAelag o€ dikTva atoOnTr-
pWV, OTIWG 1 TtapakoAoVON o™ peydAwY eKTAoEWY, 0 TTPOOdLOPLOOG TNG BEong cupPavtwy kat
1 XVNAATNO™ 0TOXWV, HEXPL PONONTIKEG Kal EUTOPIKEG EQAPHOYEG O aoVppaTa SIKTVA, OTWG
0 TPOoadlopLopog TG B€ong Kat 1) TAONYNon TWV XPNOTWY, ] LYVNAATNON TEPLOVOLAKWY GTOL-
Xelwv kat n tpowdnon Stagnuicewy, mov oxetiCovrat dpeoa pe TN B€0n TWV KATAVAAWTWOV,
TPOG TIG GLOKEVEG TOVG (T.X., £EuTva KIVNTA TNAEQWVA, TAUTAETEG, POPNTOL LTTONOYLOTEG,

KTA.).

Avtn 1 StatpiPny emkevTpwveTat o SVo THTTOVG ACVPUATWY SIKTVWV Ta OTTOlA EXOVV TPO-
0eAKVOEL TNV TIPOOOXN Yl ToV ipoadioptopd Béong, ot Ta dvadikd Acvppata Aiktva At-
oOntrpwv (AAA) kot Ta AoOppata Tomkd Aiktva (ATA). Eva dvadikd AAA eivar éva diktvo
nov StaBétet peydho aplBpd Onvwv acdntipwy, pe mokvr Stdta&n evtog g meploxng eAéy-
XOV, Ol OTO{0L HTTOPOVY VA AVIXVEDGOLY HOVO TNV Tapovaia 1 OxL evog ovpuPavTtos. Avtoi ot
amhoi aloOnTNPEG TPOTIUWVTAL OF OPLOUEVEG EPAPHOYEG ETELOT) OE YEVIKEG YPAUES Elval TILO
€VKOAQ VAOTIOOLHOL, eival AtyoTtepo emippemeis oe Aabn Pabupovopnong kat éxovv tn dvva-
TOTNTA Va e§otkovopungovy eVpog {wvng kat evépyeta pe TNy avapetddoon TAnpoopia evog
Hovo dvadikod yn@iov. Amo v AN mhevpd, ta ATA éxovv mAéov e§amhwBei mavtoL kat 1
oxetwkn vrodoun, dnA. Ta Xnpeia IIpooPaong (XI1), eivat apketd mUKVA 18iwG € UNTPOTOAL-
TIKEG TTIEPLOXEG. AOYW TNG IKAVOTNTAG TOVG Va SLamepvovy eUmOdia Kat CLPTAYEIG TOiXOVG, Ka-
Bwg emiong e€autiag g StaBeopdTNTAG TOVG O EUTOPLKEG POPNTEG OLOKEVEG, Tat ATA éxovv
TNV TPOOTITIKI| Va TTapEXOLV e§atpeTikd a&lomioteg TAnpoopieg Tonobeaiag ekel 6oL ava-
Hévetal  vynAotepn (Rtnon oto eyyvs péEANov, dnA. o€ peydAovg ecwTepLkoDg XWPOLG OTIWG

EUTOPIKA KEVTPA, povaoeia, ekBeatakoi xwpol, ovvedplakd kEvTpa kat agpodpdpia.

[Tapd tnv ad&non g SnuotikdTNTAG TOLg, Ta Svadikd AAA kat tae ATA yapaxtnpifovtat

ano HovadIKEG EPEVVITIKEG TPOKANOELG avaQopLkd (e Tov ipoadtoplopd tng Béong kat Tnv



txvnAdtnon ovppaviwy, avtikeipevwy 1 atopwov. Ta AAA ovvrfwg avantvocoovtal o€ avTi-
§oeg ovvOnKkeg kat TpoPAémeTar va Aettovpyodv xwpic emiPAeyn yia TapateTapéva Xpovika
Saotnpata, evw ekteAoV Ta kabnKovTd Tovg Xwpig avBpwmivn mapépBaon. Eniong, ta ATA
ahalovy Suvapika, emedn pmopei opiopéva XIT va agatpebovv 1 va petagepBovv oe dAAa
onueia 1 evdexopévwg va eykataotabovv véa ZI1.

Yno avtd to mpiopa, Ta Svadikd AAA kat Ta ATA egvdéxetal va vto@épovy and o@al-
HaTa, Ta omoia pokalovvTal gite akobola, eite eokeppéva. a mapddetypa, oe Svadika AAA
optopévol atoOntrpeg wmopel va mapovotacovy anpoodokntn PAAPn efattiag vepOepuav-
ong TG mAakétag N e§AvVTANONG TNG HIatapiog Kat vo ava@épovy OTL €YUV aviXVEVOEL Eva
ovpPav/oToxo evw kATl TETolo dev LoxveL Kat To avTtioTpogo. H umopel va €xet aAlowwbei n
Aettovpyia Tovg and €vav kakoPovlo eloBoléa, o 0moiog £XEL WG OTOXO VA ATTOKPVYEL TNV
napovoia evog exOpikod oxnpatog. Ooov agopd tov mpoodiopiopd g Béong oe ATA, ta
OQAApAT UTTOPODV VAL EUPAVIOTOVV AOYw ampOPAENTWY KATAOTACEWY, T.X., éva XIT umopel
va uny eivat Stabéoipo wg amotédeopa tng Stakomrg pevpatog, pag PAAPng oto VAIKO Tov, 1)
Aoyw tng ovvtrpnong tov diktvov. EvalhakTikd, oQAaApaTa Hmopovy va eQavioTovy oTnv
nepintwon mov évag avtimalog dtakdyel Ty tpopodoaia oplopévwy XIT 1} xpnoiponotioet
eldiko eEomAiopnod ya va dnpovpynoet coPapég mapepPorég oTa KavAla EMKOVWVIAG WOTE
va anmokoyel ovykekppéva ZI1.

Eva dAAo {ftnpa, mov eivan épeuto otov mpoadloptopd g Béong pe xprion ATA, eivat
1 TTOIKIAOHOPPia TWV CLOKEVWYV. AVTO OPEIAETAL GTO YEYOVOG OTL OL XPTIOTEG XPTOLUOTIOLOVY
ovvnBwg eTepoyeveis YOPNTEG OVOKEVEG TTOV CLVHOWG AVAPEPOLYV TIG LETPHOELG [lE APKETA
SrapopeTikd Tpomo. TéToleg oVOKEVEG iowG va pnv €xovv ipoPAe@bel katd TN Aettovpyia TOv
OVLOTNHATOG, YEYOVOG TIov 00N Yel 0g onuavTikh andkAion g akpifetag. Iia mapaderypa, ap-
KETEG LEAETEG AVAPEPOLY ia ypappikn oxéon petald Tng loxvog Tov onpatog mov Aappave-
Tat ano 600 SlagopeTikéG oVOKeVEG oV idla TooBeoia. Yo avtn TNV évvola, 1) ToKIAOpop-
@ia Twv ovokevwv pnopel emiong va Bewpndei wg €va opaipa TOAwonG, 6TOL 0 aLcdNTPaAg
(OnA. n kapta ATA) 0T GVOKEVT AVAPEPEL TIG ETPANUEVEG, AVTL VLA TIG AVALEVOUEVEG LETPT -
oelG.

Evo ta o@alpata otovg aoOntipeg kat ta ZIT pnmopovv va vroPabuicovv oe onpavtiko
Babuo v axpifeta otov mpoodiopiond tng B€ong kat Ty yvnAdtnon oe dvadikd AAA kot
ATA, n Xp1ion €TEPOYEVWY CLOKELWV eMMpPedlel TV eumelpia Tov XproTn Kat eumodilet Tov
TOANATAQOLAOUO TWV CLOTNUATWY TIPOadtoptopov Tng Béong ta omoia Bacilovtat oe ATA.
[ avtd 10 AdYO eivar avaykaia n KATaAANAnN povtelomoinon Twv o@alpdtwy kat n avantvén

akyoplBuwv mov eivau avektikoi o o@aApata, kabwg kat alydpBuwv mov dev egaptwvtal



Ao TO VAIKO TG GLOKELVNG, woTe va dtatnpnbei To vYnAo eminedo akpiPelag oTny mepinTwon
TIOL TTPOKVYOLV OQAApaTaA 1} OTAV OL XpTioTeG {NTroovy TANpoPopieg yla TV Tomobeoia Tovg
XPTOLLOTIOLOVTAG ETEPOYEVELG TLOKEVEG AvTioTOLXAL

[a 0 0KOTO AVTO, OL KUPLEG OVVELTPOPEG AT TNG StatpiPrig evtomilovtat oe Tpelg do-
veg. Ilpwtov, mapovoidlovpe katdAAnAa povtéha o@alpdtwy yia Svadikd AAA kat mportei-
Voupe piat Avon yia Ty iyvnAarnon moAlamhwv otoxwy, n omoia xapaktnpiletal and vynAn
avBekTIkOTNTA 08 TQANpaTA AUoONTAPWY Kal PTOPEL Vo eQAPIOOTEL TOCO OE KEVTPIKOTIOL-
HEVEG, OCO0 KAl OF KATAVEUNUEVEG APXITEKTOVIKEG SIKTVOV. AgVTEPOV, dlepeuvolpe HOVTENQ
o@alpdtwv 0to mAaioto Twv ATA kal TpoTeivovpe UNXAVIOHOUG aviXvevong oQalpdTwy o€
ovvdLAOO pe alydptBpovg mpoadioplopol g Béong mov eival avekTikoi o€ oQApaTa WoTe
va petptacBoiv ot ovvémneteg Twv ZIT mov mapovaoiacav PA&PN. Tpitov, eEetalovpe tn xprion
ETEPOYEVWYV OVOKEVWYV KATA TOV TIpoadloptopd tng Béong oe ATA kat mapovaotdlovpe vo
AMOTEAEOUATIKEG TIPOOEYYIOELG Yl TNV AVTIHETWTILOT AUTOV TOV TPOPANUATOG O€ TPayHa-

TIKO XpOVO.
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Chapter 1

Introduction

1.1 Importance of Location Information

Location has nowadays become an integral part of the mobile user’s daily life. For example,
Google is already reporting that a third of searches on portable electronic devices refer to
spatially relevant content, while 94% of smartphone users have searched for local information.
In particular, there has been an increasing interest in location-aware content specific to large
indoor environments, such as shopping malls, museums, exhibition centres and airports. This
is explained by recent statistics from Strategy Analytics indicating that people spend 80-90%
of their time inside buildings, while 70% of cellular calls and 80% of data connections originate
from indoors. These facts have triggered the development of indoor mobile applications, such
as location-based advertising, in-building guidance, indoor navigation, asset tracking, and
others.

Furthermore, accurate and reliable location information is very important not only for
supporting consumer services, but also for enabling security and safety-critical applications.
These are typically deployed in harsh conditions or hostile environments and are usually built
on top of sensors networks. Indicative applications include environmental monitoring, mil-
itary area surveillance, safeguarding critical infrastructure, localizing an event (e.g., fire or

pollutant source) and tracking a target (e.g., enemy vehicle or intruder).

1.2 Wireless Network Aided Localization

Admittedly, Global Navigation Satellite Systems (GNSS), such as the Global Positioning

System (GPS), is the dominant technology for outdoor localization, tracking and naviga-
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tion applications. GNSS deliver localization accuracy within few meters, however such sys-
tems have several shortcomings. For instance, GNSS receivers have high energy requirements,
which is undesirable for battery-powered devices, such as sensor nodes. Moreover, satellite-
based systems have limited availability in urban canyons and indoor environments due to the
severe attenuation of the positioning signals. In addition, when the GNSS receiver is turned on
it may take several minutes to detect and lock enough satellite signals to determine location
(i.e., high time-to-first-fix). Finally, not all devices are equipped with GNSS chipsets, while
several applications, such as the weather forecast in the user’s home town, do not require the
high accuracy provided by GNSS.

These facts have motivated the development of alternative localization systems that rely on
wireless communication technologies, including Wireless Local Area Networks (WLAN) and
Wireless Sensor Networks (WSN). Such systems are preferred because they either exploit the
existing network infrastructure, i.e., Access Points (AP), or the network is cheap and easy to
deploy like in the case of WSNs. Moreover, localization systems based on wireless networks are
non-intrusive because they do not require the installation of dedicated and costly hardware
(e.g., transmitters, antennas, cabling) or privacy-infringing equipment (e.g., cameras).

WSNs comprise a large number of cheap sensor nodes that are usually densely deployed
inside the area of interest. Such nodes are envisioned to operate unattended for prolonged
periods of time and are expected to perform their task successfully without human inter-
vention. Event source localization is a popular task undertaken by WSNs, where the events
can be intruders, enemy vehicles, pollutant sources or fires depending on the application [3].
In all situations, the event source emits a signal or substance that attenuates inside the area
under observation and is measured by a subset of the nodes that are located in the vicinity
of the event. The objective is to use the sensor readings to localize the event source, e.g., by
translating the signals measured by the neighbouring sensors, whose location is known, into
distances from the corresponding sensors.

In particular, binary sensors can only detect the presence of a source inside their sensing
area or not. Such simple sensor nodes are attractive for certain applications because they are
generally easier to implement and have low circuitry complexity, while they are also less sen-
sitive to calibration mismatches and varying sensor sensitivities. Moreover, the bandwidth
usage is reduced and valuable sensor energy is conserved because single-bit information is
transmitted in case of detection. Based on the sensor binary observations the goal is to local-
ize the source and track its movement in real-time.

Localization in WLAN can be performed using radio signal propagation models that relate
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the unknown location of the user-carried device to the known locations of the surrounding
APs. Different types of measurements can be employed, including angle, timing and signal
strength measurements. Subsequently, the user location can be determined by solving a sys-
tem of non linear equations in a least squares sense. However, modelling signal propagation
is difficult, especially in deep urban and indoor environments, due to the presence of non-
line-of-sight (NLOS) paths between the receiver and the transmitter and the prevalence of
multipath conditions. Thus, high localization errors may occur.

Fingerprinting localization methods address this issue by using fingerprints collected a
priori in the entire area of interest. The fingerprints are vectors containing location related
information, e.g., angle, timing or signal strength samples, that are associated with a set of
predefined reference locations to build the radiomap of the area. Location can then be esti-
mated by finding the best match between the observed fingerprint duringlocalization and the
reference fingerprints.

WLAN fingerprinting using Received Signal Strength (RSS) measurements has become
an attractive solution, owing to the abundance of WLAN APs, especially in urban and indoor
areas, combined with the proliferation of mobile devices with WLAN connectivity and the
ease of collecting RSS values on mass market devices. Interestingly, the exact location of the
APs is no longer required. This is important because the localization system can exploit not
only the limited number of APs inside a private fully-controlled network, where AP locations
can be easily obtained, but also public and residential APs like in the case of public localization

systems that cover larger urban areas, e.g., Google Maps Geolocation® or Skyhook®.

1.3 Thesis Motivation

Nowadays, WSNs can well handle difficult tasks in a collaborative fashion and are becom-
ing increasingly popular for demanding applications, such as large area monitoring, event
localization and target (source) tracking [148]. However, experience has shown that the cur-
rently available sensor nodes often fail due to various reasons, including battery depletion,
calibration problems, software errors or harsh environmental conditions.

When binary WSNs are considered, often some nodes may fail and suffer from Byzan-
tine faults, e.g., they may transmit that they have detected a target when they did not, or they

may not transmit anything when a target is actually present. Such behaviours have been doc-

"The Google Maps Geolocation API, https://developers.google.com/maps/documentation/business/geolocation/
*Skyhook Inc., http://www.skyhookwireless.com



umented in the literature; for example, in some cases sensors were erroneously reporting the
presence of an event due to board overheating or due to software bugs [6, 112]. Similarly,
events were not detected due to wrong threshold configuration or were not reported due to
dropped packets. In all these cases, network performance with respect to the intended task

can be severely degraded. Therefore, fault tolerant methods are required.

Another reason that motivates our work is the fact that in such settings it is generally
infeasible or costly to know the health state of every individual sensor node. Estimating the
sensors’ health state would be beneficial in order to treat the corresponding observations ac-
cordingly. For instance, measurements originating from sensors that are considered as faulty

could be ignored or filtered before processing.

In WLAN fingerprinting systems, the focus so far has been on reducing the localization
error. While location accuracy is an important requirement, fault tolerance is also highly de-
sirable because the RSS values in the fingerprints may be corrupted in the presence of faults,
thus leading to accuracy degradation. For instance, some WLAN APs may become unavail-
able during positioning, either due to unexpected failures, such as power outages, or as a result
of a malicious attack. Even though fault tolerance is important, surprisingly it has received lit-
tle attention in the literature. Our goal is to develop localization methods that are resilient to

AP faults.

Even if no AP faults occur, the reliability of location estimates in WLAN fingerprinting
systems also depends on the user device itself. This is because users usually carry heteroge-
neous devices that do not report the RSS measurements from the surrounding APs in the
same way, e.g., due to different WLAN chipsets, varying antenna gain, etc. In most real-life
applications it is expected that the user-carried device will be different from the reference
device, which was employed to collect the RSS radiomap, thus incurring higher localization
errors compared to the case of using the same device. A linear relation between RSS values
measured by diverse devices has been reported in several experimental studies [52, 88, 116].
Thus, the device heterogeneity problem is equivalent to using the same reference device for
localization, while the on-board WLAN adapter suffers from a bias fault that disturbs the ex-
pected RSS values. Our objective is to develop localization methods that are robust to device

heterogeneity.



1.4 Research Challenges

1.4.1 Localization and tracking in binary WSNs

In the context of binary WSNSs, several algorithms have been presented for target local-
ization which differ in complexity, accuracy and fault tolerance [38, 103, 108, 113]. These al-
gorithms, however, are snapshot estimators that do not consider possible correlations among
sensor observations while a target is moving inside the field. In target tracking applications,
the data received by the sensor nodes will appear correlated both in space and time [139].
In particular, spatial correlation will be observed between sensors located in the vicinity of
the target inside an area that is based on the signal propagation characteristics. For exam-
ple, assuming a uniform propagation model, we expect the sensor nodes located inside a disc
centred around the target location to detect the target with high probability. On the other
hand, temporal correlation is a direct consequence of the constraints imposed by the target
movement. For example, a binary sensor node is expected to detect a target for several con-
secutive measurement periods, while it is passing through the sensor’s neighbourhood. Such
spatiotemporal information is used for localizing and tracking a target. Several tracking al-
gorithms rely on Bayesian filtering, including Kalman and particle filters [7, 26, 28, 60, 114].

However, these approaches do not consider sensor faults.

The spatiotemporal information provided by the sensors is not only useful for localization
and tracking. Additionally, it can assist in detecting sensor faults. It is often the case that cer-
tain types of sensor faults appear to be highly correlated in both the time and space domain.
Consider, for example a sensor being stuck at a particular value because of overheating, bat-
tery depletion or software malfunction [6, 112]. During this fault, the sensor would produce
several consecutive erroneous values that appear highly correlated in the time domain. As
another example, consider an adversary who deploys a malicious actuator network in order
to perturb the sensor readings in the actuators’ neighbourhoods [37]. Under such conditions,
the sensor faults will also exhibit spatial correlation based on the positions of the actuator
nodes. Therefore, the challenge is to exploit the spatiotemporal information, obtained while a
target is moving through the field, to distinguish between healthy and faulty sensors in order
to employ only those sensors that are thought to be healthy for the localization and tracking

tasks.



1.4.2 Localization in WLAN

Several localization systems rely on WLANSs and exploit RSS measurements from the sur-
rounding APs to determine the unknown user location through fingerprinting. Location ac-
curacy is an important requirement and has been the main interest of researchers so far. How-
ever, fault tolerance is also highly desirable because the RSS values in the fingerprints may be
corrupted in the presence of faults, thus leading to accuracy degradation. For instance, some
APs may become unavailable during positioning either due to unexpected failures, such as
power outages, or as a result of a malicious attack. In this context, there are three research
challenges that need to be addressed: fault modelling and simulation, fault detection and fault
tolerant localization.

Existing fault models consider only the case that the RSS values are altered by a constant
value, so that the expected RSS value is either attenuated or amplified, or disturbed by Gaus-
sian noise. Although these models capture some hardware malfunctions and attacks, they fail
to capture other realistic scenarios, such as APs being removed or relocated, that manifest
themselves as faults from the perspective of the fingerprinting system.

Moreover, detecting faulty APs is important in order to trigger an alert for maintenance
or security personnel and switch to a fault tolerant positioning method, if required. However,
fault detection has received little attention so far.

Lastly, traditional fingerprinting approaches do not consider faults. Thus, the challenge is
to build fault tolerant algorithms to guarantee that the localization error is acceptable in the

presence of faults.

1.4.3 Localization for Diverse Devices

In fingerprinting systems the best localization accuracy is guaranteed in case the user car-
ries the same device that was used to collect the data for the RSS radiomap. The existence of
a wide variety of WLAN-enabled mobile devices, which may report the observed RSS values
in a different way, necessitates a calibration step to make the user-carried device compatible
with the existing radiomap. Several calibration methods rely on data fitting to create a map-
ping between the RSS values collected with different devices [52,62,109,116]. However, these
methods require the collection of a considerable volume of data at several known or unknown
locations prior to positioning, which can be prohibitive in real-life applications.

Alternatively, calibration-free methods remove the device-dependent component in the

RSS values using data transformation. For instance, differential fingerprinting approaches rely
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on RSS differences, instead of absolute RSS values, to form the fingerprints [40,101,102]. These
methods, however, suffer either from higher computational complexity, or poor localization
performance, compared to traditional RSS fingerprinting methods. Thus, the challenge is to
enable the use of any device during localization, while maintaining adequate accuracy.
Moreover, dealing with diverse devices is also very important in the increasingly popular
crowdsourced fingerprinting systems. In general, crowdsourcing approaches rely on volun-
teers for collecting measurements on their smartphones in a participatory sensing fashion that
they later contribute to the system [24]. This is also known as crowdsensing and the measure-
ments may come from all sensors available on modern smartphones, including GPS trajectory
data [147] or MAC addresses and RSS values from WLAN APs on a planet scale [65]. Specif-
ically in crowdsourced fingerprinting systems, device heterogeneity comes naturally because
users typically carry diverse mobile devices, including smartphones, PDAs, tablets, laptops,
etc. Thus, cross-device measurements are incompatible, which renders the fusion of location-

tagged RSS values from different devices in a single radiomap a great challenge.

1.5 Thesis Contributions

With respect to the research challenges identified in the field of localization and tracking
in wireless networks, the contributions of this thesis are three-fold.

First, we address fault tolerant target localization and tracking in binary WSNs [76, 83,84,
104,107]. We start by introducing a novel Markov Chain (MC) fault model that captures the
spatiotemporal dynamics of sensor node faults and is capable of simulating various types of
faults (e.g., temporary or permanent, reverse status and stuck at a particular value, spatially
correlated faults) [83,84]. Moreover, we formulate the sensor health state estimation problem
as a Hidden Markov Model (HMM) and devise efficient stochastic estimators to infer the un-
known sensor states simultaneously with target tracking [76, 84]. Then, we develop a closed
loop architecture, referred to as ftTRACK, that combines sensor health state estimation, with
target localization and location smoothing by means of Bayesian filtering. The fTRACK ar-
chitecture is a centralized solution that utilizes the spatiotemporal information provided by
the sensor network to detect individual faulty sensors, which are subsequently excluded from
the target tracking process [76]. Working towards a distributed ft TRACK architecture, we de-
velop a fault tolerant approach that enables the identification of multiple targets and couple
that with a distributed target localization algorithm [104, 107].

Second, we deal with faults in WLAN fingerprinting localization systems [74, 75, 85, 86].
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Starting with fault modelling, we treat WLAN AP failures and attacks in a unified frame-
work because they both inject faults that may lead to significant accuracy degradation during
localization. In particular, we define realistic fault models that capture the effect of AP mal-
functions or adversary attacks [74]. Regarding AP fault detection, we introduce RSS distance-
based fault indicators [85], as well as likelihood-based indicators inspired by probabilistic
fingerprinting methods, and evaluate their performance in terms of detection accuracy under
various fault models [86]. Next, we develop a class of fault tolerant localization algorithms for
WLAN fingerprinting systems. One approach is inspired by a fault tolerant method applica-
ble in binary WSNs that we properly modify and adapt to the WLAN setup [75]. In another
approach, we combine our fault detection mechanisms with modified distance and likelihood
metrics to build hybrid fingerprinting algorithms that are robust to AP faults [86].

Third, we cope with device diversity in WLAN fingerprinting systems [87-89]. We present
an innovative device self-calibration method that uses histograms of RSS values to fit a linear
mapping between the reference device, which was used to create the RSS radiomap, and the
heterogeneous user-carried device [87,88]. A linear relation between RSS values measured by
heterogeneous devices has been reported in several experimental studies [52,62,87,88,116].
In addition, we propose a novel method based on RSS differences that performs considerably
better than existing differential fingerprinting approaches, in terms of localization accuracy
and computational complexity. Moreover, we formulate the problem of crowdsourcing in fin-
gerprinting systems, introduce the notion of RSS differences in our formulation and evaluate

various differential approaches to fuse heterogeneous RSS data into a single radiomap [89].

1.6 Thesis Structure

The remainder of this thesis is structured as follows.

In Chapter 2 we provide an overview of existing works related to localization and track-
ing in binary WSNs, fingerprinting localization in WLAN and localization for heterogeneous
devices.

In Chapter 3 we deal with tracking in binary WSNs and present the ftTRACK architecture
for robust target tracking in the presence of different types of sensor faults.

In Chapter 4 we focus on WLAN fingerprinting and describe our work on improving the
resilience of existing algorithms to different types of network faults, starting with fault mod-
elling and fault detection schemes and followed by fault tolerant fingerprinting algorithms.

In Chapter 5 we investigate device diversity in WLAN localization and discuss two differ-
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ent approaches, one that exploits RSS histograms and another one based of differential RSS
fingerprints, for addressing this problem. Then, we extend our findings in crowdsourced sys-
tems.

In Chapter 6 we summarize the thesis contributions and provide concluding remarks, as

well as directions for future work.






Chapter 2

Related Work

2.1 Localization and Tracking in Binary WSNs

2.1.1 Target Localization

Over the last 20 years there has been an increasing interest in event source or target lo-
calization in the context of WSNs. Several techniques have been proposed in the literature
that exploit signal strength, angular or timing measurements and rely on arrays of sensors
for radar, sonar and acoustic target localization applications; see [5,27, 127] and references
therein. These are also known as range-based techniques in which location is estimated in a
least squares sense through multilateration, using a set of distances from at least three land-
marks with known locations. The resistance of this class of techniques to distance spoofing
attacks, e.g., by altering the RSS level that leads to erroneous distance calculation, is analysed
in [19] and a mechanism for secure positioning, coined verifiable multilateration, is described.

In this thesis we focus on location estimators that use binary data, i.e., decisions made by
binary sensors that simply compare their measurements with a predefined threshold. Among
the various methods studied for localization in binary WSNs, the simplest is the Centroid
Estimator (CE) [38], while another approach is based on the classical Maximum Likelihood
(ML) estimator [113]. However, both methods do not consider sensor faults and may yield
significant estimation errors when faults are present in the field. To this end, the Fault Tolerant
Maximum Likelihood (FTML) estimator was recently proposed [103] and its performance is
closely approximated by the Subtract on Negative Add on Positive (SNAP) algorithm, which
has also low computational complexity [108]. Authors in [129] use geometric techniques that
rely on the overlap of the sensing areas of sensors and employ a non-ideal sensing model for

localization. On a different line, authors in [58, 59] achieve robust target localization by first
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using a Local Vote Decision Fusion (LVDF) scheme for correcting the original decisions based
on the majority of the neighbouring sensors’ decisions followed by numerical optimization

techniques.

2.1.2 Target Tracking

Tracking techniques, as opposed to the localization techniques discussed previously, usu-
ally incorporate a target mobility model and assume a probability distribution for the sensor
measurement errors to improve performance. They rely on Bayesian filtering variants [47],
such as Kalman or particle filters, to mitigate the effect of measurement noise and alleviate
high localization errors that do not reflect the target’s mobility pattern. In general, tracking
methods are classified into centralized, decentralized and distributed approaches.

In centralized methods, the sensor measurements are communicated to a central repos-
itory, where there is also a processing unit to run the localization and tracking algorithms
[7,39,128,129].

In decentralized approaches, a cluster is formed when a target is detected and all the sen-
sors in the vicinity of the target forward their measurements to the cluster head (leader), which
is responsible for estimating the target location [28, 60, 133].

In distributed approaches, each node exchanges messages only with its neighbours in the
network and runs the tracking algorithm locally by using available measurements from all

neighbouring nodes [26, 114].

2.1.3 Sensor Health State Estimation

Some related works address the sensor health state estimation problem [45,111], however
they assume that the raw signal generated by the source is sampled at the sensors, thus they
cannot be applied directly in binary WSNs. Recently, trust index methods have been studied
for detecting misbehaving sensors and reducing their impact on the underlying task [136]. For
instance, authors in [141] reduce the effect of faulty or malicious sensors by decreasing their
trust indices according to an exponential rule, while the target is moving inside the sensor
field. However, trust index methods have some fundamental limitations. For example, once
a sensor loses its trust it takes a long time to recover (i.e., regain its trust), while it might
have been a temporary fault. Thus, it makes sense to re-evaluate the sensor state and make
sudden decisions in real time. Importantly, sensors considered as faulty are still involved in

the localization task, but with reduced weight, while a better approach would be to ignore
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them completely.

2.2 Fingerprinting Localization in WLAN

2.2.1 Standard Localization Methods

As already discussed, RSS is very convenient for inferring location in WLAN-based local-
ization systems. In this case, a signal propagation model, such as the log-distance model [122],
can be used to translate RSS values to distances from the respective WLAN APs and then the
unknown location is determined through multilateration.

According to the simple log-distance propagation model, the RSS values in dBm are given
by

RSS = K—-10flog,,d + X, (2.1)

where d denotes the distance between the transmitter (e.g., a WLAN AP) and the receiver
(e.g., a mobile device), while the intercept term K provides the RSS value whend = 1m
and encapsulates device specific characteristics, such as the gain at the transmitter and the
receiver antennas, the AP transmit power, etc. The coefficient f depends on the propagation
environment, while X ~ N(0,0?) is the Gaussian noise disturbing the RSS values.

A major drawback of model-based WLAN localization is the requirement for exact AP
locations, which are usually unknown in real-life applications. Moreover, the performance of
propagation models in indoor environments is questionable. This is primarily due to NLOS
conditions and the existence of multipath components. Several methods employ propaga-
tion models that are calibrated to best fit the specific environment in the target area. These
methods try to express the effects of walls, ceilings or people moving, through a set of model
parameters, which are estimated using a large amount of RSS data collected by mobile de-
vices throughout the area [9,33,67,130]. Similarly, recent methods calibrate the propagation
model by using measurements collected at a few known user locations [36]. Alternatively, the
model parameters can be estimated by measuring the device’s signal strength received at the
surrounding APs [51], or by taking pairwise measurements between the deployed APs [10]
or by using RSS measurements among APs and user devices [96]. However, these model cal-
ibration methods require firmware modifications at the APs. Thus, it is difficult to apply such
methods on off-the-shelf APs.

Even though indoor propagation models can be calibrated to some extent, it is extremely

hard to model accurately other factors that affect the signal strength level, such as the user

13



orientation or the use of directional antennas in the WLAN APs. To this end, fingerprint-
ing localization methods address the limitations of model-based approaches by exploiting a
discrete RSS profile of the target area. This comes at the expense of data collection time and
effort. Essentially, the fingerprints contain RSS values from neighbouring WLAN APs and are
associated with a set of predefined reference locations. The unknown user location can then
be estimated by finding the best match between the observed fingerprint during localization
and the reference fingerprints. An overview and taxonomy of RSS fingerprinting methods is

available in [63].

A wide variety of fingerprinting methods have been presented so far. Deterministic meth-
ods, including the Nearest Neighbour (NN) approach [9, 10], estimate user location as a con-
vex combination of the reference locations [55, 94, 120, 144]. In probabilistic approaches the
user location is treated as a random vector that can be estimated by calculating the conditional
probabilities (posterior) of being at a particular location given the observed RSS fingerprint

during localization [22,52,70,71,100, 115,125, 146].

The fingerprinting research community has also employed computational intelligence
methods, including fuzzy logic [1,2,4,8,48,49,134,135]. For instance, a two-stage fuzzy logic
method first investigates a number of candidates of proximate calibration points (i.e., refer-
ence locations) and subsequently the second stage is responsible for an appropriate weighting
of their coordinates to yield the positioning result [134, 135]. Authors in [48, 49] present a
fuzzy logic-based system which employs an incremental lifelong learning approach for ad-
justing its behaviour to the varying and changing WLAN signals in order to localize a given
user in ambient intelligent environments. The approach presented in [1,2] extends the Fuzzy
ArtMap neural network system [20] to enable on the fly expansion and reconstruction of lo-
cation systems. A fuzzy location algorithm using fuzzy inference systems with WLAN RSS
measurements is presented in [8], while tracking is performed by means of a fuzzy automa-
ton. Authorsin [4] describe a hybrid localization solution that combines a multi-variable fuzzy

inference system with a multi-NN algorithm.

Other approaches employ decision trees [32, 145] or artificial neural networks, including
Multi Layer Perceptron (MLP) designs [12, 16, 17,43, 126], Radial Basis Function Networks
(RBEN) [73,77,81,91] and Generalized Regression Neural Networks (GRNN) [110].

All these fingerprinting methods, however, do not consider AP faults during localization.
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2.2.2 Fault and Attack Models

Some early works investigate the performance of localization algorithms when a single
AP is shut down, either intentionally or accidentally. For instance, authors in [120] evaluate
several variants of the NN method and weighting schemes in a multi-floor area covered by 10
APs to determine their robustness when the AP, which is closest to the mobile device during
localization, becomes unavailable. In [54] the effect of eliminating one out of five APs in the
position estimation accuracy is studied using Monte Carlo simulations based on IEEE 802.11
channel models. Both works reach the conclusion that NN approaches, especially if more than
one neighbours are used, are quite robust to single AP failures.

In [95] a signal attenuation or amplification attack is simulated by randomly choosing the
RSS readings of one or two out of six APs and multiplying them with a constant. Authors
in [30] consider a similar linear attack model which is simulated by perturbing the original
RSS values over all APs by a constant value. It was observed that using a real material, such
as glass, metal, foil, books, etc., causes a constant percentage power loss that is independent
of distance. This type of attacks is easy to launch with low cost materials and at the same time
the adversary may control the effect of the attack by selecting the appropriate material [31].
On the other hand, amplification attacks can be performed by deliberately increasing the AP
transmit power. Another attack model assumes that RSS measurements are corrupted by ad-
ditive Gaussian noise with higher variance [69]. Under this model, an RSS attack is caused by
altering the propagation environment and is simulated by adding more noise to the collected

test data.

2.2.3 Fault and Attack Detection

Fault tolerant localization systems could be supported by fault (attack) detection mecha-
nisms that are efficient, i.e., exhibit high detection and low false positive rates. For instance,
a detection component could trigger an alert for the security personnel each time there is a
fault (attack) indication. Furthermore, the positioning component could also switch to a fault
tolerant counterpart for mitigating the effect of the fault (attack) and still provide adequate
level of accuracy until the problem is resolved.

Attack detection in wireless localization is studied in [29, 31] for a variety of localization
methods, including range-based and RSS fingerprinting, and detection relies on statistical
significance testing. For example, in the case of the NN fingerprinting method, the mini-

mum distance between the observed fingerprint during localization and the fingerprints in
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the pre-constructed radiomap, denoted as D, is used as the test statistic. The distribution of
the training data contained in the radiomap is used to select an appropriate threshold 7 and
subsequently an attack is signified during localization in case Ds; > 7. A key observation in
this work is that the performance of the proposed detection method is better under signal
amplification attacks, compared to signal attenuation attacks. For probabilistic fingerprinting
techniques equivalent test statistics are studied, including the likelihood of the location with
the highest value or the sum of the likelihoods over all locations. Both test statistics are found
to decrease significantly under attack.

Authors in [97] exploit the communication capabilities among transmitters in a WSN
setup based on MicaZ beacon nodes to decide whether there are node failures in the system.
In this approach, beacon nodes periodically measure their local neighbourhood, defined as
the set of other beacon nodes that they can communicate with. This neighbourhood is com-
pared to the original neighbourhood, which is measured shortly after the system has been
installed. If the intersection between the current and original neighbourhoods is large, the
system is assumed to be fault-free. On the other hand, if the fraction of failed nodes exceeds
some threshold, then failure (or similarly an attack) is detected. However, this approach as-
sumes adequate connectivity between beacon nodes that does not change substantially over
time. Moreover, due to the node communication requirement, this approach cannot be di-
rectly applied to localization methods that rely on WLAN APs. Recently, we have proposed
to leverage the inertial sensors found in modern smartphones (i.e., accelerometer, gyroscope,
and digital compass) to track the user in the background by means of Pedestrian Dead Reck-
oning (PDR) and use the PDR location stream for detecting AP failures in the fingerprinting

system [53].

2.2.4 Fault Tolerant Localization Methods

Traditional fingerprinting methods do not consider faults. Some early works examine per-
formance when a single AP is shut down or eliminated [54, 120], while it is reported that
the accuracy can be severely degraded when the percentage of faulty APs in the system is
increased [85]. Thus, it is essential to build fault tolerant algorithms to guarantee that the
localization error does not increase rapidly in the presence of faults.

As a first step to improve the robustness of the localization system to RSS-based attacks,
authors in [95] suggest to increase redundancy by using more sensors or APs. Moreover, the

effect of outlier APs is reduced with the introduction of a median-based, instead of the Eu-
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clidean, distance metric that is applicable in both range-based and fingerprinting localization
methods. Similarly, in the context of the MoteTrack system [97], the Euclidean distance in
the NN algorithm is replaced by an adaptive fingerprint distance metric to cater for faulty
nodes. Under the presence of faults, the adaptive metric penalizes only RSS values found in
the currently observed fingerprint and not in a reference fingerprint, so as to minimize the er-
rors introduced from failed nodes’. In the fault-free case, the algorithm reverts to the standard
metric, thus penalizing RSS values from all nodes not found in common between the observed
and reference fingerprints. On a different line, Kushki et al. [69] describe a sensor selection
methodology, based on a nonparametric estimate of the Fisher Information, for increasing
the resilience of fingerprinting systems to RSS attacks. Essentially, this method selects only a

number of reliable APs from the set of available APs to mitigate the attack.

2.3 Cross Device Localization

Device independent localization has recently attracted researchers’ interest, due to the re-
quirement for the provision of accurate and reliable location estimates regardless of the device
carried by the user. Several works assume that the fingerprinting radiomap has been created
using RSS data collected with a single device and try to address the device diversity issue,
that arises when the user performs a location request with a different device, mainly through
signal strength data fitting approaches or calibration-free techniques.

Moreover, the device heterogeneity issue comes naturally in crowdsourced fingerprinting
systems, where the radiomap creation is facilitated through user collaboration [15,72,117].
This is because volunteers typically carry diverse mobile devices that do not report the RSS
values in a similar way. Thus, cross-device measurements are incompatible. Crowdsourced
fingerprinting systems try to deal with heterogeneous devices to enable the fusion of location-

tagged RSS values from different devices in a single usable radiomap.

2.3.1 Signal Strength Data Fitting Methods

The RSS data fitting methods try to create a mapping between different devices and are
motivated by the linear relation between the RSS values reported by heterogeneous devices,

which has been observed experimentally in several studies [52, 62, 90].

'The intuition behind this statement will become clear later during the description of our fault tolerant lo-

calization algorithms in Section 4.4.
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One approach, referred to as manual calibration, is to collect a series of RSS measurements
at several known locations with a pair of devices and subsequently estimate the linear fitting
parameters. Essentially, if a sufficient number of colocated RSS pairs (i.e., collected at the same
location and time with two different devices) is available, then the linear parameters can be
estimated through standard least squares fitting [52, 62, 90]. Authors in [46] report that the
relationship between the RSS values of different devices can sometimes be nonlinear and use a
Support Vector Regressor (SVR) and a GRNN as learning algorithms. Nevertheless, the man-
ual calibration method requires a considerable data collection effort by the user prior to posi-
tioning. To reduce this effort, authors in [143] investigate the case where a very small labelled
calibration dataset is collected with the user-carried device and exploit linear adaptation on
Gaussian processes. When few location-tagged samples are available for each different device,
a multi-task SVR algorithm is used to learn a device-specific mapping in a common latent, i.e.,
lower dimension, subspace [149]. However, it is difficult for the SVR to deal with missing RSS
values, e.g., due to partial AP coverage or transient effects [143]. Similarly, a dimensionality
reduction method is described in [131], which learns a mapping between a source dataset and
a target dataset in a low-dimensional space, so that the knowledge can be transferred between
devices using the mapping relationship. Recently, we proposed the use of RSS data generated
by a 3D Ray-Tracing simulation tool to build the fingerprinting radiomap and investigated
the localization accuracy achieved with the manual calibration method, when these artificial
data are used with heterogeneous devices [123, 124].

Even though the time and labour overhead for calibrating a new device can be significantly
reduced when the localization area is covered by several APs [87], manual calibration still has
limited applicability in real-life applications. In a typical scenario, where users enter an indoor
environment, such as shopping malls, airports, etc., carrying an uncalibrated device, they have
to be guided to specific known locations for collecting RSS data. This implies that the users
are already familiar with the area, which is usually not the case.

Device calibration with RSS data recorded by the user at unknown locations is feasible, but
computationally expensive methods are required to obtain the linear fitting parameters. For
instance, the parameters can be estimated by maximizing the confidence value produced by
Markov localization [52] or through a weighted least squares method [62]. These are known
as quasi-automatic calibration methods.

In automatic calibration methods, RSS data collected at unknown locations are used as
in the quasi-automatic calibration case. The objective, however, is to minimize the user in-

tervention and ideally perform localization and device calibration simultaneously, while the
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user walks freely inside the area of interest. To this end, an Expectation-Maximization (EM)
algorithm is proposed in [52]. Alternatively, authors in [62] detect when the user is stationary
during localization in order to divide the data into parts which come from the same unknown
location and then use these data with a quasi-automatic calibration approach. An unsuper-
vised learning method uses the Pearson product-moment correlation coefficient to label the
RSS readings with a rough location estimate, while the user is walking, and then employs EM
and neural network learning algorithms to obtain the linear fitting parameters [138]. Authors
in [61] also assume a linear fitting function and localization is performed when a signal peak
is detected, while the user location is estimated as the location of the maximum RSS recorded
during the training phase. This approach is justified by the fact that the location of the maxi-
mum RSS is preserved, even though the RSS range varies significantly among heterogeneous
devices. A major limitation, however, is that the location can be determined only when a sig-
nal peak is detected. Authors in [13] assume that the RSS values from heterogeneous devices
differ only by a common factor (offset) and incorporate the online estimation of this factor in
the likelihood function of their probabilistic localization algorithm.

The possibility of using RSS histograms for automatic calibration is mentioned without
implementation details in [66]. Authors in [109] create the empirical Cumulative Distribu-
tion Function (CDF) for several devices using the RSS values collected at known locations
and then use the inverse CDF function, instead of least squares fitting, to build a database of
device models that map the RSS values of the user device to the reference device. However,
this method cannot easily scale to a large number of device pairs, while the selection of the
appropriate model during localization is based on the existence of an easily distinguishable

location (e.g., building entrance or exit) that may never be visited by the user.

2.3.2 Calibration-free Methods

The approaches that fall under this category try to remove the device-dependent compo-
nent in the RSS values through data transformation. For instance, differences between RSS
values can be used to form the fingerprints, instead of absolute RSS values. This effectively
removes the constant term K in the log-distance model (2.1) and makes RSS differences from
diverse devices compatible with each other. The differential fingerprints can be created by
taking the difference between all possible AP pairs, i.e., if there are 7 APs inside the area of
interest then the transformed fingerprint contains (;,) RSS differences [40,102]. However, this

method may increase dramatically the dimensionality of the fingerprints, especially is areas
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covered by a large number of APs, thus leading to higher computational complexity compared
to the traditional RSS fingerprints. To address this issue, the Signal Strength Difference (SSD)
approach creates the fingerprints by subtracting the RSS value of an anchor AP from the other
RSS values [101], so that the differential fingerprints contains only the n — 1 RSS differences
that are independent. The anchor AP can be selected as the one that exhibits the least average
deviation of RSS values over the whole localization area [56]. However, selecting the anchor
AP is not trivial, especially in large scale setups where the APs do not provide ubiquitous cov-
erage. In general, RSS differences exhibit higher noise variance, compared to traditional RSS
values, which may degrade the localization accuracy, especially if the localization device is
the same with device used to build the radiomap [87,101].

The Hyperbolic Location Fingerprinting (HLF) approach combines normalized logarithm
ratios of the RSS power from different APs to remove the device-dependent component [64].
However, the resulting RSS logarithm ratios are not totally free from the intercept term K in
the propagation model (2.1), thus they cannot fully mitigate the hardware variations [101].

On a different line, RSS ranking methods rely on ranked, rather than absolute, RSS values
(i.e., RSS values from a set of APs are ranked from high to low). The intuition is that the
ranking of RSS values is not affected by device-specific hardware features [35,99]. However,
Ranked-Based Fingerprinting (RBF) is expected to perform worse, compared to standard RSS
fingerprinting, because the fine-grain information of the RSS levels is lost when ranks are used

as indicated by our experimental evaluations [88].

2.3.3 Crowdsourced Localization Systems

Crowdsourcing has recently emerged as a viable solution to address the maintenance cost,
as well as scalability issues, related to the RSS radiomap. Some early systems employed the idea
of crowdsourcing to expand a core radiomap created by trained contributors. For instance, the
Active Campus project developed a user-assisted system that employs user feedback for fast,
accurate and low-maintenance localization [14]. Along the same line, the system presented
in [23] reduces the radiomap creation effort by merging user-supplied data with an initial
radiomap set up by the system operator.

On the other hand, Place Lab is a fully crowdsourced solution, i.e., it does not require an
initial radiomap, although it does not rely on RSS fingerprinting, but rather uses a Google
Maps wardriving approach for populating a database with approximate AP coordinates [72].

Redpin is one of the first attempts to build a fingerprinting system that relies entirely on user
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collaboration [15]. Other fully crowdsourced localization systems have also been presented
in [11,50,93], however, all these systems do not consider device heterogeneity.

The WiFiSLAM application, which was recently acquired by Apple [41], allows the user to
carry any device during localization. Still, a homogeneous radiomap, i.e., built from RSS data
collected with a single device or by several contributors carrying the same device, is required.
Similarly, the Molé system relies on a homogeneous radiomap and applies a linear transfor-
mation on the signal strengths values, followed by kernelisation of the RSS histogram to sup-
port different user devices during localization [90]. The Zee system enables crowdsourcing
of location-annotated WLAN measurements, without requiring any active user intervention
in terms of location input or placement of the phone [121]. Yet, these systems cannot exploit
the full benefit of crowdsourcing, as they do not address the radiomap creation using diverse
devices.

The Elekspot system deals with device heterogeneity when the radiomap is built and uses
linear relations among device pairs based on duplicated contributions in the same locations,
while the linear parameters are maintained in a square matrix for all devices [92]. However,
this approach relies on the condition that enough duplicated contributions are made. Alter-
natively, authors in [34] use standard clustering algorithms to put similar devices in the same
cluster, so that they can share the fingerprints among them. In case a new device wants to con-
tribute data to the system, they employ an EM algorithm to learn the linear fitting parameters
for matching the best cluster. Finally, the FreeLoc system handles heterogeneous data by using
relative, rather than absolute, RSS values in the radiomap fingerprints [142]. This approach is
similar to ranked RSS values, thus the fine-grain information of the RSS values is lost and the

quality of the crowdsourced radiomap may deteriorate.

2.4 Chapter Summary

In this chapter we provide a literature review and outline the research that is related to our
work.

Firstly, we overview target localization and tracking algorithms in binary WSNs and dis-
cuss existing sensor health state estimation approaches.

Subsequently, we put our focus on WLAN fingerprinting localization and start with a short
survey of standard algorithms that do not consider faults. In the following, we present relevant
works that aim to improve the resilience of fingerprinting algorithms to network faults or

attacks through fault and attack modelling, fault and attack detection, as well as fault tolerant
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localization.
Finally, we discuss methods addressing the device heterogeneity problem that is inherent
in WLAN-based localization systems, especially those systems leveraging crowdsourced data

collected with a variety of user-carried devices.
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Chapter 3

Fault Tolerant Tracking in Binary WSNs

3.1 Background

3.1.1 Sensor Network Model

We make the following assumptions, which are common and reasonable for monitoring

applications using WSNs:

1. A set of N static sensor nodes is uniformly spread over a rectangular field ‘A and their

location €, = (x,, y»),n = 1,..., N is assumed to be known.

2. A single event source' is moving at steady speed inside A and at time f it is located at
Cs(8) = (xs(8), ys(t))-

The alarm status of the n-th sensornoden = 1,..., N atevery time stept,t = 1,..., M,
is given by
0 ifz,(t) <T
Au(t) = , (3.1)
1 ifz,(t) =T
where z,,(t) is the signal present at sensor n1 and T is a predefined threshold. If sensor node  is
alarmed, i.e. A,(t) = 1, it sends a packet to the sink, otherwise it remains silent. In this thesis,

we assume that the target emits a constant signal ¢ which is attenuated inversely proportional

to the distance from the target raised to power C € R™. The signal z,(t) is given by

z, (1)

C
:1+@Uﬂ+wdm o

where w), (t) is additive white Gaussian noise, i.e., w, (t) ~ N(0,02) and d,(t) is the radial dis-

tance between sensor node 71 and the targetat time £, i.e.,d, (£) = /(x4 — x5(£))2 + (v — ys(£))2.

"The terms source and target are used interchangeably.
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The parameter C depends on the environmental conditions, while the threshold T is chosen
large enough to minimize the probability of the sensor being falsely alarmed, e.g., as a result
of noise. The probability of false alarms Py, is the probability that at least one of the sensors

mistakenly reports the presence of a source and is given by

N
Pa=1-]]e), (33)
i=1 w

where ®(x) = % f_ xoo exp(—g)dy is the CDF of the standard Gaussian random variable
N (0, 1). Moreover, the optimal threshold can be selected to minimize the following cost func-

tion | representing the overall error in detection as a function of the threshold T

J(T) = WPy + (1 = )Py, (3.4)

where P,,; is the probability of no detection and 0 < w < 1 is a user specified weight that
should be chosen with care according to the application [105]. A small w implies that the ap-
plication can tolerate more false alarms, but it cannot tolerate any missed events. For example,
in networks that monitor for toxic terrorist attacks in crowded areas, w could be set close to
zero. On the other hand, larger values of w imply that some missed events may be tolerated to
reduce the cost of false alarms. For example, in applications such as environmental monitor-
ing of large areas, false alarms may incur a significant cost because a response crew may have
to travel to the suspected area. Also, in many cases, frequent false alarms may make the users
simply ignore all alarms and as a result important events may go undetected. Alternatively,
one could also formulate the problem as a constrained optimization problem, i.e., minimize
Py, subject to P,y < szis for some desired value PZZS . More details about the computation of
the threshold can be found in [105].

Next, we define the footprint of the events.

Definition 1. The Region of Influence (ROI) of a target is the area around the target location

inside which a sensor node will be alarmed with probability at least 0.5°.

For the model of (3.2) the ROI becomes a disc centred at the target location with radius

R[ = \C/C/T— 1.

*Using 0.5 is a convenient way to define the source ROI because the ROI size becomes independent of the

noise variance when dealing with noise that has symmetric distribution function, e.g., Gaussian, [108].
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Figure 3.1: Different regions with respect to the sensor and target locations and behaviour of

faulty sensors in binary WSNs.

Definition 2. The Region of Coverage of sensor node n (ROC,,) is the area around the location
of sensor node n inside which if a target is present, then it will be detected with high probability
(at least 0.5).

By symmetry, for the single source case, ROC,, is a disc centred at the alarmed sensor node
location with radius Rc, while R¢ = R;, Vn. The different regions with respect to the sensor

and target locations in our WSN model are illustrated in Figure 3.1.

3.1.2 Sensor Node Fault Types

In applications with dense node deployments over large areas it is expected that at any
point in time, a set of sensors may not be functioning correctly due to some fault. A fault
model commonly used by the research community assumes that each node can exhibit er-
roneous behaviour with some probability Py, i.e., the sensor state is temporally independent,
and in this case its original observation is reversed [98,106,108]. However, this model may not
fully capture the non-zero autocorrelation of the stochastic process that drives the health state
of the sensor because in real WSNs applications the nodes may spend several time steps being
healthy before becoming faulty and vice versa. For instance, the measurements provided by a
sensor may get stuck at a high or low value for a period of time, e.g., due to board overheat-
ing or battery depletion [6, 112], that manifest themselves as either temporary or permanent
faults. An example of a temporary power fault is when the batteries of a node connected to

a photovoltaic deplete after prolonged cloudy periods and are then recharged when the sun
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comes up. If no photovoltaic is available to recharge the node, then battery depletion results

in a permanent fault.

For the purposes of this thesis we assume that a sensor may suffer from the following three

types of faults.

Reverse Status (RS) faults: Binary sensors may report the opposite readings than the cor-
rect ones due to software bugs because such nodes are often reprogrammed wirelessly. Alter-
natively, in a sophisticated attack scenario, the attacker may have compromised a number of
sensors or deployed a malicious sensor network, so that several sensors deliberately reverse
their original output to prevent intruder detection [37]. In this case, faulty sensors that fall
inside the ROI of the target become non-alarmed; these are denoted as false negatives and are
shown as light gray circles in Figure 3.1. On the other hand, sensors located outside the ROI

become alarmed and are denoted as false positives (dark gray circles).

Stuck-At-1 (SA1) faults: A sensor may exhibit a stuck-at fault, i.e., the sensor measure-
ments get stuck at a specific value for a period of time. This fault can be attributed to processing
board overheating [6] or low battery level [112]. For binary sensors, a node may constantly
report the presence of a target during a SA1 fault, i.e., a series of false positives, in case the
stuck-at value exceeds the detection threshold T. Similar behaviour is observed if the thresh-
old T is wrongly programmed, e.g., the threshold value is set below the noise level. Moreover,
a possible attacker strategy could be the deployment of small decoy sources to make the actual

intruder detection more difficult [132].

Stuck-At-0 (SA0) faults: These faults reveal themselves when sensor node 7 fails to report
the presence of a target inside its ROC,,, i.e., a series of false negatives. They occur when the
sensor measurements are stuck at a value below the detection threshold T, e.g., due to power
depletion. They also appear in case of dropped packets, because packets from an alarmed sen-
sor that do not reach the sink are equivalent to the target not being detected by that particular
sensor. SAQ faults may also appear by unintentionally setting the detection threshold at a very
high value, so that it is never exceeded even if the target is in close proximity to the sensor.
Another scenario captured by our SAO fault model is the offset bias, which is a very common
sensor error [68]. Offset bias alters the sensor measurements uniformly by a certain value.
For example, the error could result that a light sensor always reads only 60% of the correct
luminance due to dust or other obstacles accumulated on a subset of its sensor cells. In such a
case a binary light sensor would be falsely non-alarmed (i.e., suffers a SA0 fault) while a light

source approaches.
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3.1.3 Sensor Node Fault Model

We capture the temporal state of each sensor by assuming that its health state is represented
with a MC. In our preliminary works we assumed that each sensor can be either at healthy or
faulty state, i.e., a simple two-state MC model, [83,84]. To take into account the different fault
types described previously, we consider a four-state MC model that features three distinct
faulty states, as shown in Figure 3.2a. In this case, the state probabilities vector of sensor n
at time step t is 7,(t) = [R5(t) 7SAL(t) 5A0(t) (D)), i, T (t) = Plsu(t) = i], i €

{RS,SA1,SA0, H} where 7f5(t) + moAL(t) + n549(¢) + mli(t) = 1 and (-)T indicates the

transpose. The state transition matrix is

RS,RS RS,5A1 RS,SA0 RS,H |

p
SALRS
p

p
| P

p

SALSA1L
p

p
p

p

SA1,5A0
p

p
p

p

SALH
p

SAO,RS SA0,5A1 SA0,SA0 pSAO,H

H,RS H,SA1 H,SA0 H,H

p

where p/, i, j € {RS,SA1, SA0, H} is the transition probability from state i to state j. In this
model, the MC dynamics are given by 71, (t+1) = C'1,(t), while the steady state probabilities
are denoted as 7/, = lim;_,, P[s,(t) = 1], i € {RS,SA1,SA0, H}. When sensor 7 is in the
healthy state, its alarm status A, (¢) is given by equation (3.1), otherwise when the sensor is in
one of the faulty states its alarm status is determined based on the corresponding type of fault.

We now demonstrate the capability of our fault model to generate various real faults, either
temporary or permanent, that have been documented in the literature [112]. For instance, as-
suming that there are no transitions between faulty states and setting the remaining transition
probabilities as p" = 0.91, pR¥H = 0.2, p>AH = 0.4, p5OH = 0.4 and p'7 = 0.03, ] €
{RS, SA1, SAO}, we can simulate different types of failures that appear simultaneously and are
also non uniform, e.g., a sensor that suffers from a RS fault is less likely to recover, compared
to SA1 and SAO faults. In this case, [t%° 754! 7540 7H]T = [0.11 0.06 0.06 0.77]" indicating
that each sensor is expected to spend 77% of time behaving normally and 23% of time being
faulty, with more time spent at the RS state.

In general, one can generate any desired scenario by properly adjusting the transition
probabilities in matrix C and solving the steady state equation of the MC. Moreover, per-
manent faults can be generated by making the faulty states absorbing, i.e., p = 1, i €
{RS, SA1,SA0}. In addition, by adjusting the probability p"#* we can control how much time
the sensor behaves normally before it exhibits the permanent fault. Finally, we point out that

it is easy to apply various fault models at the same time, each one with different transition
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(a) Fault model with multiple faulty states. (b) State estimation model with grouped faulty states.

Figure 3.2: Markov Chain sensor node fault and health state estimation models.

probabilities, in order to control the behaviour of individual sensors or clusters of sensors.
In this way, one can generate spatially correlated faults by using the same MC for a subset of

neighbouring sensors.

3.1.4 Target Mobility and Measurement Model

We assume that the target is traversing the sensor field according to a linear discrete-time

process disturbed by noise

12 TSIQ 712
X(t) = X(E—1) + W(t-1) (3.50)
0 I Ty
g/—/ ——
) P Iy
Y(t) =| 1, 0]X(t)+U(t), (3.5b)

where X(t) = [xs(t) Ys(t) ux(t) uy(t)]T represents the process state at time step t, i.e., the
combined vector of the target position [x() ys(t)]" and velocity [ux(t) uy(t)]T. The mea-
surement vector Y'(f) in equation (3.5b) only measures the target location, which is estimated
by the underlying target localization algorithm, while W(t) and U(#) represent the process
and measurement Gaussian noise, respectively. The sampling interval is denoted by T’ and I,

is the 2 X 2 identity matrix.
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Figure 3.3: Block diagram of the ftTRACK target tracking architecture.

3.2 The ftTRACK Architecture

The proposed fault tolerant target tracking architecture (ff TRACK) consists of three main
components connected in a closed loop, as indicated in Figure 3.3 [76]. Given the latest target
location estimate £,(t) = (%,(t), s(t)), the Sensor State Estimation component determines
the health state of each sensor 5, (t), i = 1,...,N as either healthy or faulty. Subsequently,
the sensor states are passed to the Localization component which uses information only from
those sensors estimated as healthy in order to compute the current target location fs(t) =
(%5(t), Ys(t)) and the uncertainty ¢é;(f), i.e., localization error, associated with this location
estimate. Finally, the Smoothing component filters the current location estimate, by means
of a particle filter, to obtain a less noisy target location estimate. Next, we present the three

components of the fTRACK architecture in more detail.

We point out that we assume a centralized network architecture, where fTRACK runs on
the sink that collects all sensor observations at every time step. To address scalability issues in
terms of increasing number of moving sources and varying sensor node density, in Section 3.4
we extend this approach to a distributed architecture, where i TRACK would run locally on
the current leader node to process the series of target location estimates. When the target is
about to leave the range of the current leader, a new tracking region is created with the election
of a new leader and the former leader propagates to the next one all the sensor health state

information and filter parameters required to continue the ftTRACK computations.

3.2.1 Sensor Health State Estimation

In this section, we present a Bayesian approach for estimating the sensor health state
Sy, n = 1,...,N. The estimator can be in one of two states (healthy or faulty), as shown

in Figure 3.2b. It is assumed that the transitions from one state to the other are based on a
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HMM with an estimated transition matrix
G0
n 7
Pt () pr()

where ;5;] (t), i,j € {F,H} is the estimated probability that the sensor health state estimator

C (3.6)

will transition from state 7 to state j. The intuition for using a two-state MC is that we are only
interested to estimate whether sensor 7 is faulty in order to exclude it from the tracking task.
Identifying the exact fault type is beyond the scope of this thesis and we leave it as future work.
We also denote the estimated sensor state probabilities at time step t as 7, (t) = [7c], () 7t (¢)]7,
i.e, 7t (t) = P[3,(t) = i], i € {F, H}. The observations used by the estimator to update its state

are given by the error signal 7,,(t).

Definition 3. The error signal r,(t) € {0, 1} is computed based on the sensor alarm status and

the distance from the actual target location. This error signal is formally given by

ifd,(t) < R; AND A, (t
if dy(t) > R; AND Ay (t
if d,(t) < Ry AND A,(t
if d,(t) > R AND A,(t

, (3.7)

0
1
ra(t) =
1

t

)
)
)
)

o O = =

where d, (t) = ||€, — €{s(t)|| denotes the distance between the location of the n-th sensor €, and

the actual target location €s(t).

In particular, the sensor output at time f is wrong (r,(t) = 1), in case sensor # is inside
the circular ROI with radius R; centred at £(f) and is non-alarmed or in case the sensor is
outside the ROI and is alarmed. On the other hand, the sensor output is correct (r,,(t) = 0),
in case sensor 7 is inside the ROI and is alarmed or in case the sensor is outside the ROI and
is non-alarmed.

We obtain S, (f + 1) by calculating the probability of a sensor being at a specific state given
the current error signal, i.e., 7t |q(t‘) = P[s,(t) = ilr,(t) = q], i € {F,H}, g € {0, 1}. In this

case, the maximum likelihood sensor state estimate is

Su(t + 1)l y=g = arglrel{qFalgI(}n ( ), g €1{0,1}. (3.8)

Using Bayes’ rule, we compute 7t lq(t) as
_ P[ra(t) = qlsu(t) = 75, (1)
P[r,(t) = q]
Blry (1) = g () = D740
X jete Plra(t) = qlsa(t) = fl7ea(t)

(3.9a)

(3.9b)

i (t) =
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For convenience, we define the following two probabilities of a sensor having a wrong

output.

Definition 4. The probability of sensor n having wrong output at time t given that its state is
Healthy is pl'(t) = P[r,(t) = 1]s,(t) = H].

The probability of sensor n having wrong output at time t given that its state is Faulty is
pa(t) = Plra(t) = Llsu(t) = F]

Using these definitions in equation (3.9b), we get the following conditional probabilities

for sensor n

f ~F
N n(t) : nn(t)
() = 4 (3.10a)
ph(t) - () + plh(t) - ()
h ~H
pa(t) - 70, () + ph(t) - 7 (t)
. f S
A0 (p) = (1 =pu(t)) - 10,(t) (3.100)

T (L=l AR+ (1) - A (E)
o ~H
ﬁIZlO(t) _ - (1 pn(t)) T4y (t) . (3.10d)
(1= pl(t) - /L) + (1 - ph(t)) - ()

Using equations (3.10a) - (3.10d) in equation (3.8) the following result holds.

Lemma 1. In case the sensor output is wrong (r,(t) = 1), the maximum likelihood sensor state

estimate is given by

f
H lfﬁH(t) > pa(t)
St + Vlyyn=r = g RO+ (3.11)
F  otherwise.

Similarly, in case the sensor output is correct (1,(t) = 0), the maximum likelihood sensor

state estimate is given by

f
Foifadi(t) < 20
Su(t+ Dl =0 = ! 27 (Oh() (3.12)
H otherwise.

The derivation of equations (3.11) and (3.12) is relegated to Appendix A.

Corollary 1. Ifp(t) + pf; (t) = 1, then the sensor health state estimators in equations (3.11)
and (3.12) are simplified to

. H ifati(t) > ph(t)
Su(t+ Dlr,y=1 = (3.13)
F  otherwise.

) F iffl(t) <pu(t)
Su(t+ Dlr,y=0 = . (3.14)
H otherwise.

31



100

100 —t T+

++

+
4
-
n
1

it + Sensors 4ot Lt + Sensors

+ ¥
+ 4 T +
T+ #+_ o+ o T+ E s
9 B Pt i 20 T P I
w1 4\#** e 0 (t)
* B+ 4 =1 | A\ 7
80 N S P © 5 ‘ * 4
F s + w
+ @ B o
+ ! O r(t)=1 e} t)=1
70 ++ * —.- } n() H A1() i
8 AN G 0 r0=1
601 ¥ T '"@'@””#T e 2 — —
T+ 48y + =R + + + +
0 4+ T+ |
"""" * *
w+ L + 4 3 4 + tq:hr + tqd;
a0t + & 4 1 i L H L+
i o + - T o+ o
N t LR o it gt
30 i L Eo b
-+ 4 e +7 + - +
20 R I P U e A e e
[ S VS o +1, * +3,
10 P &) . A A
+ 4 ++ A Loy
+ bt
0 + T + P + +
0 10 20 30 40 50 60 70 80 90 100 80 920 100

(a) Actual error signal 7, (f). (b) Estimated error signal 7, (¢).

Figure 3.4: Comparison between the actual and estimated sensor node error signal.

Given the error signal 7,(t), it is evident that we only need to compute 7¢/{(#), p(t) and
pfi (t) in order to estimate the sensor health state with equation (3.11) or (3.12). Note, how-
ever, that 7,,(t) is not available because the actual target location is unknown. Thus, we use an
estimate of the error signal, denoted as 7, (£), by substituting d,,(t) with d,,(t), where d,,(t) =
|16, — fs(t)ll denotes the distance between the 7n1-th sensor and the estimated target location
£,(t) provided by ftTRACK. The confidence we have on 7,(t) depends on the uncertainty of
the location £,(t). For instance, Figure 3.4 demonstrates how 7,(t) is compared to the actual
error signal r,(¢). In this target tracking snapshot 7,,(t) # r,(t) for 6 sensors. Thus, the esti-
mated sensor state should be updated with caution because 7,,(¢) may not be reliable for some

SENSors.

Next, we propose three different estimators for computing the sensor health state.

Simple Estimator

Assuming that the error signal 7,(¢) is always equal to 1 when the sensor is Faulty and
always equal to 0 when the sensor is Healthy, then pf; (t) = 1and pli(t) = 0, Vt. Therefore,
if 7,(t) = 1 then equation (3.11) gives that the estimated state is H if 7t//(t) > 1 which is
infeasible, thus in this case, the estimated state should always be F. Similarly, if 7,(t) = 0
then based on equation (3.12) the next state should be estimated as F if 7t!/(t) < 0, which
implies that the sensor state can never be estimated as Faulty. This leads to a simple estimation
policy [83] given by

St 1) = H ifr,(t)=0
F ifr,(t) =1

This estimator is quite intuitive and essentially, it says that if we fully trust the error signal,
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which is the basic assumption because p{;(t) = 1 and p"(t) = 0, then the sensor health state
is reliably estimated by 7, (). However, in the problem we are looking at, it is not possible to
tully trust the error signal. For example, it is possible to have correct output when the sensor

is faulty, e.g., if a sensor located far away from the target suffers a SA0 fault.

Static Estimator

The static estimator assumes that the MC has reached equilibrium and employs an esti-
mate of the unknown steady state probability 7! in equation (3.11) or (3.12) to determine the
sensor health state. The procedure is summarized in Algorithm 1 at Appendix B. The steady

state probabilities are computed with

F

n
~H
T

The transition probabilities ﬁ;] (t) in C,,(t) can be estimated simultaneously with target track-

>

~

=CI()

F
. (3.15)
s

ing by observing a sample of the estimated state s, (¢). The maximum likelihood estimate for
the MC transition probabilities is given by
i - — i jetr, (3.16)
Tketra Ry (¢)
where R%/(t) is a counter that increments by one in case 5,(t — 1) = i is followed by 5, (t) = .
For example, if §,(t) = {H, F,F,F, H, H, H} we easily see that p;" (t) = p,""(t) = 2/3, while
P (t) = P (£) = 1/3.

Regarding the probabilities p' (t) and pﬁ; (t), in the general case p'(t) # 0 because even in
the fault-free case a healthy sensor that lies close to the ROI bound may have a wrong output
due to noise in the measurements. On the other hand, pi(t) can be less than 1; for instance,
if sensor 7 suffers from SA1 fault while the target passes through its neighbourhood, then
1a(f) = 0 even though the actual sensor state is Faulty. Similarly, if sensor # suffers from SA0
fault while the target moves far away, then again 7,,(f) = 0. These cases indicate that p{i (t) < 1.
Thus, for the static estimator, contrary to the simple estimator that uses p{l (t) = landpi(t) =
0, we calculate p’(t) and pi(t) for each sensor node according to the noise conditions in the

field.

Lemma 2. Assuming that w,(t) ~ N(0,02) is the noise disturbing the sensor measurements

and the distance d,(t) is a normally distributed random variable d,(t) ~ N (jn(t),og) the
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probabilities pl'(t) and p’,j(t) are given by

ph(E) = (1= Qu(®))(1 = Qu(t)) + Qu(t)Qu(t) (3.17)
ph() = (1= Qu(t))Qu(t) + Qu()(1 - Qu(t), (3.18)

where Q,(t) = Q(T pn(t )wzth tn(t) = 1+d —and Qu(t) = Q(Rl_jdn(t) )
The derivation of equations (3.17) and (3.18) is detailed in Appendix C.

The static estimator is expected to perform better compared to the simple estimator that
fully trusts the error signal 7,,(¢). However, the static estimator employs the estimated steady
state probability 7tfl, rather than the estimated state probability 7t/ (¢) at time ¢, which leaves

room for improvement using the following dynamic state estimation scheme.

Dynamic Estimator

The dynamic estimator, as opposed to the static estimator, considers the current mea-
surement 7, (t) not only for estimating the unknown sensor state, but also for updating the
estimated sensor state probabilities according to

~ F|
7, (£)
ﬁflq

= CI (1) , g€ 10,1}, (3.19)

(£)
where C,Tl(t) is given by equation (3.6) and the state transition probabilities are estimated using
equation (3.16).

Essentially, all previous measurements 7,,(¢) are encapsulated in the estimated sensor state
probabilities and affect the future estimation steps. Thus, compared to the static estimator,
the dynamic estimator is expected to improve the state estimation performance. However,
our findings suggest that the performance of the dynamic estimator depends on the accu-
racy of the underlying target localization algorithm; see the discussion in Section 3.3.2. The

estimation steps are listed in Algorithm 2 at Appendix B.

3.2.2 Target Localization

In principle, any target localization algorithm can be used in the fTRACK architecture,
including the simple CE algorithm [38] that estimates the target location as the arithmetic

mean of the alarmed sensor locations

bu(t) = (% Z X 5 Z yp) (3.20)
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where (x,,y,), p =1,...,P (P < N) are the locations of the sensors that have been alarmed
at time t, i.e., A,(t) = 1.

However, such a localization algorithm is very sensitive to faults and may affect the per-
formance of the i TRACK architecture, especially when a large number of sensors fail. Thus,
for the purposes of this thesis we adopted the SNAP algorithm [108] that is resilient to sensor
faults. The SNAP algorithm fits well in our ftTRACK architecture because it is fault tolerant
by itself and is therefore capable of handling some wrongly estimated sensor states during the

ftTRACK computations. The SNAP algorithm consists of four components:

1. Grid Formation: The entire area is divided into a grid G with dimensions R, X R, and

grid resolution g.

2. Region of Coverage (ROC,): Given G, the ROC,, of a sensor 7 is an area of grid cells

around the sensor node.

3. Matrix L(t) Construction: If A,(t) = 1, sensor n adds +1 inside the cells of matrix
L(t) that correspond to ROC,; otherwise (A,(t) = 0), it adds —1. We calculate the
“pseudo-likelihood” of a target found in each grid cell by summing the corresponding

sensor contributions.

4. Maximization: The maximum value in the £(f) matrix, denoted L, (), points to the

estimated target location £ (£).

An example using a square ROC,, is shown in Figure 3.5a. In this example, the target is cor-
rectly localized in the grid cell with L, (t) = +3.

The target location estimates fs(t) provided by the SNAP algorithm may occasionally de-
viate from the actual target path due to low sensor density in some parts of the field and/or
high number of faulty sensors in the vicinity of the target. Our objective is to compensate for
location estimates of diverse quality in order to penalize those estimates that are considered
less accurate, while those that are more accurate are trusted more in the subsequent location
smoothing process of ffTTRACK. We estimate the localization error of SNAP ¢,(¢) using the

following rule

&) = ,BL#M, (321)

where B, > 0 is a scaling factor. The rationale is that L, (t) reflects the uncertainty of the
SNAP location estimate. For example, the higher the L, () value, the more accurate the
SNAP location estimate is considered because it implies the contribution of a larger number

of alarmed sensors.
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Figure 3.5: SNAP localization and estimation of the associated location uncertainty.

The validity of equation (3.21) in the presence of faults is illustrated in Figure 3.5b, where
the L, values for 100,000 independent SNAP executions using a randomly generated target
in each execution are plotted against the corresponding actual localization errors. We observe
that this heuristic reflects the quality of the SNAP location estimates because the mean local-
ization error and the associated standard deviation are both decreasing as the L, value is
increased. The effectiveness of equation (3.21) will also become evident later in the simulation

results in Section 3.3, where we investigate the tracking error of the fTRACK architecture.

3.2.3 Adaptive Particle Filter Smoothing

For the moving target, we use the target state and measurement model given by equa-
tions (3.5a) and (3.5b) and employ a particle filter to approximate the posterior Probability
Density Function (PDF) of the target state given a series of measurements p(X(#)|Y(1:t)).
The details of the centralized particle filter derivation can be found in [26]. Assuming that the
PDF of the target state at time ¢ — 1 is available, the required posterior PDF is obtained in a
recursive fashion through a prediction and an update step by using a set of N,, particles, i.e.,
random samples {X'(t — 1)}21 with associated weights {w'(t — 1)}21. The weights ' (t) are

updated according to
@'(t) = @'(t = Dp(Y(DIX'(H)), (3.22)

followed by a normalization step. We compute p(Y (¢)|X'(t)) using an approach similar to [42]
in order to assign higher weight to those particles that are closer to the location estimate fs(t)

provided by the Localization component. In particular, we assume that p(Y (¢)|X'(t)) follows
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a Gaussian distribution

(3.23)

PY(OIX (1) — (X - Y<”)2],

1
Varo(t) l_ 20()?
where X'(t) denotes the position components in the state X’(¢) of the i-th particle, which is
updated using equation (3.5a). The parameter o(t) reflects the confidence in the measurement
Y(t), i.e., the uncertainty in the location estimate £;(t). One option is to set this parameter to
a constant value that represents the mean localization error of the SNAP algorithm [83, 84].
However, the SNAP estimates may sometimes be far from the actual target location, as dis-
cussed previously. For this reason, we use the estimated localization error of SNAP, computed
at every time step using equation (3.21) in order to dynamically adapt the parameter () by
setting o (t) = és(t).

Also, to avoid the particle degeneracy phenomenon, we employ a select with replacement
linear time resampling algorithm for eliminating particles with low weights and moving them
closer to particles with high weights, while keeping the computational overhead low [21].

The posterior PDF p(X(t)[Y(1:t)) is approximated as

pX(OIY(1:6) = ) & (DB(X(1) = X'(1), (3.24)

where 6(-) is the Dirac delta function. Finally, the filtered target location estimate is given by

(t) ~ Z W' (DX (1) (3.25)

The computation steps in the ftTRACK architecture are listed in Algorithm 3 at Appendix B.

3.3 Simulation Results

For the simulations we use a square 100 X 100 sensor field with N = 600 sensors, a single
target that follows a staircase path sampled at M = 180 discrete time steps and we assume
the measurement model of equation (3.2). A snapshot of the simulation setup is illustrated
in Figure 3.6. The target follows a staircase trajectory (cyan) and at time ¢ the actual target
location £,(t) is shown in red, while the location estimated with ff TRACK &4(t) is shown in
green. The alarmed sensors (A, () = 1), either correctly due to the presence of the target or
falsely due to noise or as a result of a fault, are marked with red circle. The sensors having
an estimated wrong output (7,(t) = 1) based on the circular ROI around &,(t) with radius

R; = 10m are marked with black square.
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Faults are generated according to the four-state fault model presented in Section 3.1.3. By
selecting the transition probabilities pi'f , 1,7 € {RS,SA1, SAO, H} we control which fault type
is present in the field, as well as the percentage of faulty sensors, denoted a. For instance, if
we set pfH = (0.925, pRSRS = 0.7, pHRS = 0.075 and pR>H = (.3, while fixing the remain-
ing transition probabilities to 0, then the steady state probabilities of the MC fault model are
[7RS 75AL 540 )T = 0.2 0 0 0.8]7. Thus, each sensor is expected to be at the RS state 20%
of time or equivalently @ = 20% (i.e., around 120 out of 600 sensors will exhibit RS fault
at each time step). Using pH'H = 1 corresponds to the fault-free case (¢ = 0%). We point
out that in our simulations we assume no prior knowledge about the transition probabili-
ties of the four-state fault model, while the Static and the Dynamic estimators compute the
transition probabilities in the underlying two-state MC simultaneously with tracking using
equation (3.16).

We assess the performance of the Simple, Static and Dynamic sensor health state estima-
tors, when employed in the ftTRACK architecture, and compare them in terms of the cumu-

lative estimation error, defined as & = 5 YM YN €,(t), where

0 ifs,(t) = HANDs,(t) =H
0 0 ifs,(t) = F ANDs,(t) € {RS, SA1, SA0}
€n(t) =
1 ifs,(t) = FANDs,(t) = H
(

1 if$,(t) = H AND s,(f) € {RS, SAL, SAO}

In particular, we examine the estimation error &; at the end of the target path (i.e., t = M).
We also evaluate the ffTRACK architecture in terms of fault tolerance for different types of
faults and report the tracking error pertaining to the whole target path defined as & =
= YM 16(t) = &(b)]), ie. the mean Euclidean distance between the actual and estimated
target locations. Fault tolerance suggests that the tracking error degrades smoothly as the
percentage of faulty sensors («) is increased. The results on the sensor health state estima-
tion error and the tracking error are averaged over 20 runs, where each run uses randomly

deployed sensors.

3.3.1 ftTRACK with Centroid Estimator Localization

First, we investigate the performance of the ftTRACK architecture when the Localization
component implements an algorithm that is sensitive to faults, such as CE that estimates the
target location with equation (3.20). The Smoothing component is based on a particle filter

with N}, = 500 particles, while we assume that the uncertainty of the CE location estimates
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Figure 3.6: Simulation setup for the evaluation of fTRACK.

is fixed to a constant value and selected o(t) = é;(t) = 4, Vt. Moreover, we assume ¢ =
3000, C = 2, w, ~ N(0,1), T = 5and R; = 24.5 for the measurement model given by
equation (3.2).

The simulation results with respect to the state estimation error and the tracking error,
using different health state estimators, are shown in Figure 3.7 and Figure 3.8. We observe
that the performance of the ffTRACK architecture under RS and SA1 faults is very similar
and both the Static and the Dynamic estimators attain lower sensor state estimation error,
compared to the Simple estimator, as shown in Figure 3.7a and Figure 3.7c. This indicates that
considering the previously estimated sensor states in conjunction with the error signal 7,(f)
is beneficial for both types of faults and consequently this improves the tracking error; see
Figure 3.7b and Figure 3.7d, respectively. For comparison, we also plot the tracking error of the
original CE algorithm combined with the same particle filter that does not employ any sensor
health estimator, denoted CE+PE. It is evident that the fTRACK architecture improves the
fault tolerance of the CE algorithm significantly and exhibits smoother accuracy degradation
compared to CE+PE

On the other hand, the CE algorithm is itself very resilient to SAO faults because it takes
into account only the alarmed sensors for estimating the target location. Thus, the tracking
error of the CE+PF approach does not change much as « is increased. For this type of fault
using the Static or Dynamic estimator in the ft TRACK architecture leads to lower sensor state
estimation error (Figure 3.8a), while the improvement in the tracking accuracy is marginal,

as shown in Figure 3.8b.

The observations above are also confirmed in a scenario with mixed faults, as shown in
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Figure 3.7: Performance for RS and SA1 faults using the CE algorithm in ftTRACK.

Figure 3.8c and Figure 3.8d. We assume that there are no transitions between faulty states and
we fix the transition probabilities as p*>H = 0.1, p>4H = 0.4 and p51°H = 0.4, while we ap-
propriately vary the probabilities p' € [0.96, 1], p7R> € [0, 0.008] and p™/ € [0, 0.016], j €
{SA1, SA0}. In this way, we simulate the case where different faults are present in the field at
the same time, while a sensor that suffers from a RS fault is much less likely to recover, com-

pared to SA1 and SAO faults.

3.3.2 ftTRACK with SNAP Localization

When the CE algorithm is used, the fftTRACK architecture provides adequate tracking
performance for a small number of faulty sensors. To get the full benefit of f TRACK we pro-
pose to employ a localization algorithm that is fault tolerant itself, such as SNAP. In this way,
we can further improve the tracking performance, especially in case a large number of faulty

sensors are present in the field.
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Figure 3.8: Performance for SAO and mixed faults using the CE algorithm in fftTRACK.

Evaluation of the Adaptive Particle Filter

First, we demonstrate the effectiveness of the Particle Filter (PF) that is employed in the
ftTRACK architecture for smoothing the location estimates derived with the SNAP localiza-
tion algorithm. In these simulations we assume the measurement model of equation (3.2)
with ¢ = 5000, C = 2, w, ~ N(0,1), T = 50 and R; = 10. We consider two variants of the
ftTRACK architecture that differ only with respect to the location smoothing component. The
first variant, denoted ftTRACK(SPF), uses a Standard PF where the uncertainty of the SNAP
estimates is fixed to a constant value and we selected o (t) = 2, Vt [83,84]. The second variant,
referred to as Adaptive PF and denoted ftTRACK(APF), adapts the uncertainty in the current
SNAP estimate dynamically using equation (3.21) with 5 = 20. Both fTRACK variants em-
ploy the Simple estimator for estimating the sensors’ health states. For comparison, we also
plot the performance of the original SNAP algorithm combined with the Standard PF that
does not employ any sensor health estimation scheme, denoted SNAP+SPE. Note that in all
three PF implementations we have used N, = 500 particles for approximating the posterior

PDF of the target state.

The tracking error for different types of faults is plotted in Figure 3.9. Our first observa-
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tion is that the proposed i TRACK architecture improves the fault tolerance of the original
SNAP algorithm, mainly due to sensor health state estimation. Moreover, we observe that the
variant based on the Adaptive PF provides considerable improvement over the Standard PF
approach, especially when RS or SAO faults are considered. For SA1 faults the tracking error
is only slightly improved because the SNAP algorithm is extremely robust to this type of fault.
In general, the adaptive rule in equation (3.21) seems to handle well the different types of
faults and can adequately quantify the uncertainty in the SNAP location estimates for vary-
ing number of faulty sensors in the field. Thus, we employ the Adaptive PF in the fftTRACK

computations hereafter.
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Figure 3.9: Effectiveness of the Adaptive Particle Filter in the ffTRACK architecture.

Performance Evaluation of ftTRACK

Next, we investigate the state estimation error and the tracking error when each of the
sensor health state estimators are used in ffTRACK. We are interested in the performance
of ftTRACK in the presence of faults and higher noise, thus for the following simulations

we assume the same measurement model as before with w, ~ N(0,1000). For comparison
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we plot the tracking error of SNAP+SPF, which is not using any sensor state estimator, as
shown in Figure 3.10 and Figure 3.11. We also consider a representative Trust Index algorithm
(TT) [141] combined with Standard PF, denoted as TI+SPE Note that the TT algorithm tries
to reduce the impact of faulty sensors by reducing their trust indices during target tracking
according to an exponential function.

For RS faults, we observe that the sensor state estimation error & when o < 25% is much
higher for the Simple estimator, compared to the Dynamic estimator; see Figure 3.10a. Espe-
cially in the fault-free scenario (@ = 0%), &; is three times larger because the Simple esti-
mator incorrectly estimates the state of several healthy sensors as faulty, while those sensors
may sometimes have wrong output due to measurement noise. However, the superiority of
the Dynamic estimator is not reflected in the tracking error because the SNAP algorithm is
fault tolerant and effectively masks these incorrect sensor state estimates. Using the Static or
the Dynamic estimator provides additional improvement only when the percentage of faulty
sensors increases beyond 25%, as shown in Figure 3.10b. In general, the t TRACK architecture
proves to be very robust to RS faults and outperforms both the SNAP+SPF and the TI+SPF
approaches in terms of the tracking error for & > 15%, which demonstrates the effectiveness
of sensor health state estimation in the tracking process.

In the case of SA1 faults, the Dynamic estimator always achieves lower &; compared to
the Static estimator and is better than the Simple estimator when a < 30% (Figure 3.10c).
However, the SNAP algorithm compensates the incorrect sensor state estimates and the ft-
TRACK architecture provides similar tracking accuracy for all three sensor state estimators;
see Figure 3.10d. The Simple estimator has high & when few sensors are faulty due to the
measurement noise, but as the number of faulty sensors grows larger trusting only the error
signal 7,,(t) is a good strategy and this is reflected in the tracking error of the ftTRACK ar-
chitecture when more than 40% of the sensors are faulty. Note that the SNAP algorithm is by
default very resilient to this type of fault because several SA1 sensors must be concentrated
far from the actual target location in order to introduce error in the SNAP localization.

When SAO faults are present in the field, & is significantly increased for all three estimators
compared to RS and SA1 faults; see Figure 3.11a. This is expected because there are several
sensors located far from the target path that exhibit SA0 fault and these sensors are estimated
as Healthy because according to their locations with respect to the target location they should
not be alarmed. The state of these sensors can only be estimated correctly if the target passes
by their neighbourhood, so that they provide wrong output for some time. These sensors do

not affect the performance of the i TRACK architecture because they would anyway remain
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Figure 3.10: Performance under RS and SA1 faults using the SNAP algorithm in fftTRACK.

silent under normal operation. The tracking accuracy can only be affected by SAO sensors
falling inside the target ROI because such sensors falsely indicate that the target is not located
in their vicinity. We point out that these faulty sensors are correctly identified by our sensor
state estimators. In particular, the Static and the Dynamic estimators can better handle this
type of fault when the measurement noise is high and the tracking error of the ffTRACK
architecture is further decreased when o > 25%, compared to the Simple estimator.

Finally, to generate mixed faults we assume that there are no transitions between faulty
states and we fix the transition probabilities as pR>H = 0.1, p>AVH = 0.4 and p*o = 0.4,
while we appropriately vary the probabilities p™H € [0.75, 1], p"RS € [0, 0.05] and p/ €
[0, 0.1], j € {SA1, SAO}. In this case, the fftTRACK architecture reduces the tracking error

significantly, as shown in Figure 3.11c and Figure 3.11d.

Effect of Permanent Faults

In the simulation results presented so far, we have considered faults that come and go in a
temporary fashion. However, some failures, including software bugs, too high/low detection

threshold or a dirty sensor, may also manifest themselves as permanent faults. Different types
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Figure 3.11: Performance under SA0 and mixed faults using the SNAP algorithm in fftTRACK.

of permanent faults can be generated with our fault model by fixing the transition probability
of the MC as pi'i =1, i € {RS,SA1, SA0}. The tracking error of fTRACK with the SNAP
localization algorithm, when permanent RS faults are present, is depicted in Figure 3.12a. An
important observation is that the Simple estimator is severely affected by permanent faults
and the tracking error increases sharply, compared to the Static and Dynamic estimators. This
behaviour is attributed to the fact that the Simple estimator does not consider the previously
estimated sensor state. Thus, the errors in the estimated source locations make the estimator
oscillate between the healthy and faulty state, even though the faults are actually permanent.

On the other hand, permanent faults can be handled effectively using the Static and Dy-
namic estimators in ftTRACK. This is also confirmed in a more realistic scenario where a
subset of randomly selected sensors exhibit temporary mixed faults, while another smaller

subset suffers from permanent RS faults, as shown in Figure 3.12b.

Effect of Spatially Correlated Faults

The results above indicate that the fftTRACK architecture is capable of tracking a target

reliably even when a large number of sensors fail, either temporarily and/or permanently.
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Figure 3.12: Performance of ftTRACK in the presence of permanent faults.

So far, we have assumed that the sensors’ health states are spatially independent. This is suf-
ficient for modelling different types of failures that appear to be uncorrelated in real WSN
applications, however, in some cases the sensor faults may exhibit strong spatial correlation.
For instance, if there is a fire in a part of the field, then several sensors in that area may suffer
from stuck-at fault due to board overheating. In another scenario, an intruder may deploy a
number of small decoy sources far from its actual location [106]. Thus, all sensors around the
decoy sources will become alarmed, i.e., exhibit SA1 fault. This is similar to the case reported
from the 1980s, where the rebels in Afghanistan threw rabbits over base fences that caused

the motion detectors to generate a series of false alarms [132].

To simulate spatially correlated faults we assume that the sensor field is divided into 10X 10
non-overlapping subregions, while each subregion contains 6 sensors on average. All sensors
in a subregion form a cluster and we have randomly selected one sensor as the head. We used
our fault model to control the state of the cluster heads, while all other sensors in each cluster
have the same health state with the corresponding cluster head at each time step. The track-
ing error for increasing percentage of faulty sensors in the field is depicted in Figure 3.13. We
observe that ftTRACK is very resilient to spatially correlated SAO faults and all estimators
perform similarly, while the fftTRACK architecture outperforms both the SNAP+SPF and
TI+SPF approaches (Figure 3.13a). Note that these SA0 faults affect the tracking task only
when the target moves through a faulty sensor cluster. On the other hand, spatially correlated
SA1 faults have a greater effect on the tracking performance because they introduce high er-
rors in the localization algorithm, i.e., the estimated target location may diverge towards the
falsely alarmed sensors in a faulty cluster. In this case, TI+SPF performs poorly, while ft-

TRACK is more fault tolerant especially if the Static or Dynamic estimators are employed,
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instead of the Simple estimator, as shown in Figure 3.13b.

We point out that the estimators in this work do not consider spatially correlated faults
explicitly and the health state is estimated independently for each sensor according to the as-
sociated error signal. As part of our future work, we plan to investigate sensor state estimators

that will take this correlation into account.
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Figure 3.13: Performance of fTRACK in the presence of spatially correlated faults.

Effect of Variable Source Energy

We now investigate another interesting scenario in which the source that moves through
the field has an unknown energy level c, which is different than the expected one. Recall that
¢ determines the ROI of the source, because the radius of the ROI is R} = {"/c/Ti—l, while
the ROI size affects the likelihood matrix of SNAP, as well as the error signal used by the
sensor health estimator. To investigate how the value of ¢ affects the tracking performance
of tTRACK, we perform additional simulations by keeping constant the anticipated energy
value within the ff TRACK computations (i.e., ¢’ = 5000), while varying the real source energy
¢ € [4000, 9000].

The real source energy c affects the number of sensors around the source that are actu-
ally alarmed. When ¢ > ¢’, additional sensors that are further away from the source can also
get correctly alarmed, however, the sensor health state estimator eventually estimates these
alarmed sensors as faulty because they fall outside the anticipated ROI. These sensors are
simply excluded from the tracking task, while the remaining sensors inside the anticipated
ROI continue to be considered as healthy. Thus, the accuracy of the SNAP localization algo-
rithm is not affected and the smooth operation of ftTRACK is preserved. On the other hand,

when ¢ < ¢, fewer sensors become correctly alarmed and the performance of SNAP may be
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degraded. Moreover, there are several sensors falling inside the anticipated ROI, which are
estimated as faulty, even though they correctly remain non alarmed. Thus, these wrong sensor
state estimates may affect the subsequent tracking steps by excluding sensors that are healthy.

The tracking error in the presence of temporary faults is plotted in Figure 3.14a and Fig-
ure 3.14b assuming 25% RS faults and 38% mixed faults, respectively. We observe that ft-
TRACK is resilient to energy variations, even in the presence of faults. The plots indicate that
it is better to be conservative in the value of the anticipated source energy in order to be able
to handle sources with different energy effectively. Moreover, this highly desirable behaviour
comes without extra cost, as no modifications are required in the ft TRACK architecture. As a
point for future work, we note that a better approach would be to estimate the source energy
online, i.e., simultaneously with tracking. In this way, the sensor state estimator will use the

appropriate value for the ROI radius within ftTRACK to match the actual source energy.
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Figure 3.14: Performance of ftTRACK for variable source energy.

Discussion on Estimators

Looking at the simulation results, in conjunction with the results in Section 3.3.1 obtained
with the CE localization algorithm, we observe that in most cases the Dynamic estimator
does not perform better than the Static estimator. In order to shed light on this behaviour, we
carefully examined several tracking scenarios in our simulation setup. Our findings suggest
that the Dynamic estimator is more sensitive to the wrongly estimated source location. In
other words, we noticed that when the error in the estimated source location is high, this has
a greater effect on the Dynamic estimator. This is because the Dynamic estimator uses the
current error signal 7,,(t), which is determined according to the estimated source location, to

predict the state probabilities of the MC for the next time step; see equation (3.19), as well as
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steps 11 and 19 of Algorithm 2 in Appendix B. On the other hand, the Static estimator relies
on the steady state probabilities that are not immediately affected by the error signal.

This is confirmed by our simulation results. In particular, when the CE localization algo-
rithm is employed, then the estimated source location is not very accurate, e.g., for RS and SA1
faults (see red line in Figure 3.7b, Figure 3.7d) and the Dynamic estimator performs slightly
worse than the Static estimator in terms of the state estimation error, thus leading to higher
tracking error of ftTRACK when more sensors fail (Figure 3.7a-Figure 3.7d). On the other
hand, the SNAP localization algorithm is more accurate, e.g., under SA1 faults (see red line in
Figure 3.10d) and in this case the Dynamic estimator is better, leading to lower tracking error

when a large number of sensors have failed.

3.4 Distributed ftfTRACK

3.4.1 Preliminaries

Following our developments in the context of single source tracking in a centralized net-
work architecture, our objective now is to enhance ftTRACK for enabling multiple source
tracking in a distributed manner. Three issues need to be addressed for supporting such a
distributed i TRACK variant, namely source identification, distributed localization and dis-
tributed sensor health state estimation. Next, we present efficient solutions for distributed
source identification and localization, while we leave the challenging problem of distributed
sensor health state estimation as part of our future work.

For the purposes of distributed multiple source tracking, we assume that each sensor node
has alimited communication range R and a set of K point event sources are moving inside the
sensor field A according to a piecewise linear pattern. At time ¢, the k-th source is located at
position € (t) = (xk(t), y(t)) inside A. In the distributed environment, z,(¢) is the received
signal of sensor 1 located at (x,, y,) and is given by the sum of the signals from all sources at

the sensor location

1~

zo(t) = ) sui(t) + wu(t), (3.26)

k=1
where w,(t) is additive white Gaussian noise, w,(t) ~ N(0,02) forn = 1,...,Nand t =
1,...,M.Inaccordance with the single source signal model given by equation (3.2), the signal

from each source k is given by
Ck

surlt) = T e

(3.27)
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where ¢, is some constant characterizing the k-th source and d,, () is the radial distance of

sensor node 7 from source k at time ¢

dup(t) = (0 = 1) + (v = yilt))2 (328)

Moreover, following the definitions of the source ROI and sensor node ROC, in Sec-
tion 3.1.1 we now define the Region of Subscription (ROS) of node n that is needed in the

context of distributed computation.

Definition 5. Region of Subscription (ROS,,) of sensor node n, is the area around the sensor
node n location inside which the sensor node needs to subscribe for information from all other

sensor nodes which are relevant to the application considered.

We also refer to this region as the neighborhood of sensor node 1; see Figure 3.15a.
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Figure 3.15: Computations in the distributed i TRACK architecture.

3.4.2 Source Identification

We now describe an efficient source identification scheme for detecting and correctly
counting the number of sources in the distributed architecture [107]. In a nutshell, during
the identification phase a subset of the sensor nodes are elected as leaders and our objective is
that the number of elected leaders will correspond (or at least be close) to the actual number
of sources in the field. Note that the number of sources is not known in advance, so we cannot
make any assumption regarding the number of sources or the time that they enter the field.

Sensor node 7 can become a leader in two possible ways:
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1. Through a Distributed Fault Tolerant Leader Election Protocol (D-FTLEP), where node
n did not hear any neighbour becoming a leader and the majority of its neighbours are

alarmed.

2. Through leadership transfer, where node 7 receives a message from a neighbouring
node, which is currently a leader, indicating that a source is moving closer to n and

thus it should become the new leader.

D-FTLEP

Initially, each alarmed sensor node 1 broadcasts an ALARM message inside its ROS,, and

subsequently it computes the following function F, using the received information,

F, — Z b, (3.29)
meROS,
where
1 ifA, (1) =1
b, — A () =1 (3.30)
1 ifAn(f) =0

Note that for the sensor nodes inside ROS,, for which no message is received, a non-alarm
status (A,,(t) = 0) is implied. If F,, > O for at least one alarmed sensor node, then at least one
source has been detected.

The use of the value F, is an essential part of the leader election protocol for the two
following reasons. First, it causes the leader node to be elected close to the actual source loca-
tion because sensor nodes closer to the source have (on average) more alarmed neighbours.
Note that this is achieved using only binary information from the sensors. Second, by using a
bounded +1 contribution from the sensors our protocol can handle a percentage of erroneous
observations provided by faulty nodes.

Next, sensor node 1 with F,, > 0 waits for a period that is given by a strictly increasing
function h(x). If during this period, n does not receive a LEADER message with value f > F,
it implies that 7 is the node with the most alarmed neighbours and is likely located close
to the source. Thus, it becomes the node leader [ and broadcasts a LEADER message to its
neighbours.

If node n receives a LEADER message with value f > F,, then it is “suppressed” meaning
that for a certain period it cannot become a leader itself. Note that according to the algorithm
a sensor m outside the ROS; of an elected leader with F,, > 0 may also become leader if
it has the maximum value among its neighbours (excluding the ones in the ROS; of the al-

ready elected leader which are suppressed). This turns out to be an important feature of the

51



algorithm for correctly counting sources that are located close to each other (e.g., targets with
crossing trajectories). Also, note that for every source the number of messages required for the
leader election protocol is linear with respect to the cardinality of the leader’s neighbourhood.

A leader may initiate and maintain a track as described above. A leader should also ter-
minate a track when a source moves away and it is not clear who the next leader is going
to be. Therefore, a leader / who did not determine the next leader and for three consecutive
steps computes a value F,, < 0 simply terminates the track. The steps of D-FTLEP are listed

in Algorithm 4 at Appendix D.

Leadership Transfer

Alternatively, a current leader can determine whether a source has moved closer to one
of its neighbours through the particle filter algorithm running in the Smoothing component
of ftTRACK. Thus, it can inform this neighbour that it should become the next leader, i.e.,
transfer the leadership.

At every iteration, the particle filter produces a prediction of the next state of the target,
including the target’s position and velocity; see step 3 of Algorithm 3 in Appendix B. If the
predicted position is closer to a neighbor n of the current leader /, then the leader sends a
message to 11 with the current state of the filter, so that n will be the new leader to continue
the track. At this point, the new leader will also broadcast a LEADER message in order to

suppress all of its neighbours from becoming leaders.

Corollary 2. In order to guarantee that a set of consecutive leaders can continuously track a
moving target, the separation distance between any two consecutive leader nodes 5oy (ly, l141)

should be less than 2R .

Proof. If the two leaders (/; and I,) are located at a distance greater than 2R, their ROCs do
not overlap. When the source is about to exit from the ROC of Iy, [; informs [, that it will
become the new leader. However, at this point, it is also possible that the source may change
direction and as a result is will never enter the ROC of I,. In this case, I, will lose track of the

source, as shown in Figure 3.16. O

In situations where the distance between two consecutive leaders is more than 2R or
when the next source position is “wrongly” computed, then the next leader might be elected
outside of the ROI of the source and as a result the track is falsely abandoned (e.g., when

the majority of the nodes inside the leader neighbourhood become non-alarmed). At this
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point a new track will be initiated by a newly elected leader following the D-FTLEP algorithm
described previously.

Another situation where a track is falsely terminated is when the paths of two sources cross
each other and their separation distance is 75, < 2Rc. In this case, the localization algorithm
“sees” only a single source and consequently only a single target can be tracked, thus the other
is abandoned. When the two sources move sufficiently apart, the D-FTLEP can once again

detect the source that has been abandoned and a new track is re-initiated.

Figure 3.16: Target tracking scenario where next elected leader loses target.

3.4.3 Distributed Source Localization

The SNAP algorithm described in Section 3.2.2 is a centralized localization algorithm
[108]. Motivated by that algorithm, we now present a variant, denoted dSNAP, which is adapted
for distributed network architectures [104, 107].

The dSNAP algorithm assumes a quantized field, thus the entire area is divided in a grid
G with G X G cells and grid resolution g. Depending on the resolution a cell may contain
multiple sensors or no sensors at all. The position index of eachnoden = 1,---, N is denoted
by (X, Yy), where X, Y,, € {1,2, ..., G} are the discrete position indices related to the real-
valued position of the node (x,, y,,) by X, = [%”] VY, = [%]

The algorithm is run by the leader node ! which needs to collect the alarm status of all
sensors inside its ROS;. Note that this information is already available from the identification
phase. Using this information, the leader constructs the scoring matrix £; over a sub-grid G,
around its location. The maximum value of £; points to the estimated position of the source.

Next, we present the details of the algorithm.
The leader node I,/ € {1,---, N} is associated with G, a sub-grid of G with G; X G; cells,
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centred around its location (Xj, Y;). The size of the sub-grid G, = I_%J +1 depends on the size
of the ROS; and the grid resolution g. Furthermore, node / defines a G; X G; scoring matrix
L; where each element (i, j) of £; corresponds to a cell (u,v) of G;. This relation is given by
a mapping M; : G; — L, thus

M, ([u,v]T) = [u - X+ [%} ,o—=Y + {%-HT,

where u,v € {1,--- ,G}and i,j € {1,---, G;}. For every element of £, the leader adds the
contribution of each sensor that has the corresponding cell in its ROC. The contributions
can be +1 depending on the sensor’s status: positive observation +1 when A,,(f) = 1 and
negative observation —1 when A,,(t) = 0. Specifically, the leader updates every element (i, j)

of L using
LI(Z/]) = Z bm(Z/])/ Z/] € {1/ IGI}/

meROS;
where

+1 if A, (t) = 1 AND M:(i, j) € ROC,,
bu(i,j)={ =1 if Ay(t) = 0AND M:'(i, j) € ROC,,
0  otherwise
and ROC,, is the set of all grid cells that are covered by the ROC of sensor 1. In other words,
the leader in a distributed fashion Subtracts on Negative and Adds on Positive (ASNAP). The
maximum of the scoring matrix points to the estimated position of the event source which
is taken to be the center of the corresponding cell of G;. Let £;(i", j*) = max;; £i(i, j), then
the estimated source position is the center of M (i*, j*). If two or more elements have the
same maximum value, the estimated position is the centroid of the corresponding cell centres.
Figure 3.15b illustrates how dSNAP works in a simple scenario assuming a square ROC.
The complexity of the algorithm is linear with respect to the number of elements of the
L) matrix, or O(G7) which is significantly more efficient than the centralized approach where
the number of messages is proportional to the total number of nodes in the field (not just the
neighbours) and the search for the maximum is over a scoring matrix that covers the entire
field. The steps used by the leader node for constructing the scoring matrix are outlined in

Algorithm 5 at Appendix D.

Selection of the ROS Size

In order to estimate the event location, leader node [ needs to collect information from
sensor nodes located inside its neighbourhood (ROS;). Since energy efficiency is a major con-

sideration in wireless sensor networks and communication is the most expensive operation in
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terms of energy, we would like to find the smallest ROS; that achieves the desired objectives

in terms of estimation accuracy. This is given by the following Lemma.

Lemma 3. Assuming the leader is correctly alarmed (i.e., it falls in the ROI of the source) then
its ROS; radius Rs = 2Rc.

Proof. If the leader is correctly alarmed (i.e, it falls in the source ROI) then the maximum
of the scoring matrix should occur in the elements that correspond to the ROC of the leader
(ROC)). By definition, ROC; is a disc of radius R centred at the leader location. Since, we do
not know the exact location of the source, ROS; should include all sensor nodes relevant to
the estimation problem. The ROC of a sensor that is within a distance 2R from the leader
can directly influence the results of the scoring matrix so we need to have Rg > 2Rc.

On the other hand, the ROC of any sensor located further away than 2R has no overlap
with ROC; and therefore it cannot affect the computation of the element with the maximum

value. This implies that Rs < 2R, which completes the proof. O

3.4.4 Simulation Results on Source Identification

For all subsequent experiments we use a square 100 X 100 sensor field with N = 625
randomly deployed nodes, unless otherwise stated in the experiment, where the sensor read-
ings are given by equation (3.26) with ¢, = 5000, Vk. Furthermore, we assume w,(t) to be
white Gaussian noise N(0, 1). For the distributed localization algorithm dSNAP, we use grid
resolution ¢ = 1 and ROC radius R¢ = 10. Finally, the mean values reported are the average

over 100 Monte-Carlo simulations, each with a randomly deployed sensor field.

Two Sources Identification

We evaluate the performance of D-FTLEP using a simulation scenario with two sources
located in the middle of the sensor field as we vary the separation distance 7., between them so
that 7y, € [5m, 50 m|. The identification algorithm in D-FTLEP should correctly estimate the
number of sources in the field by electing a leader for each source present. We are particularly
interested in exploring the limits of the proposed algorithm as the two sources move closer
together. The performance of D-FTLEP is compared against another “naive” leader election
protocol referred to as D-NLEP, which allows any alarmed sensor node to become a leader
irrespective of the value of F,,, whereas for D-FTLEP only alarmed sensor nodes with F,, > 0
are eligible for becoming leaders. Other than this, D-FTLEP and D-NLEP follow exactly the

same protocol for estimating the number of targets in the field.
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First, we investigate the performance of the identification algorithms in terms of the mean
number of leaders elected, as we vary the separation distance 7., between the 2 sources; see
Figure 3.17a, where the error bars indicate the standard deviation. For the simulations we used
100 experiments and 10 repetitions for each value of 7, producing 1000 results for each tested
scenario. From these plots it becomes evident that D-FTLEP has very good performance and
on average it correctly counts the sources, even in situations where the two sources are located
almost next to each other (5, = 5m). The reason lies in the distributed implementation. Even
though the closely spaced sources are hard to distinguish, D-FTLEP can still separate the two
sources because the superposition of the corresponding signals becomes strong enough, so it
can be detected outside the ROS of the leader sensor. Thus, a second leader is also correctly
elected. Our findings also indicate that the mean distance between the elected leaders and the
associated source locations drops, as 7, is increased. This confirms that the elected leaders

are located very close to the sources.

Second, we investigate the performance of D-FTLEP for various ROS sizes, i.e. by varying
the radius Rg. Recall that Rg defines the neighbourhood where a sensor node can subscribe
for information for calculating the F,, value according to D-FTLEP. Moreover, ROS is the
neighbourhood where a leader node would send the suppression message in order to avoid
the election of other leaders. So far, we have been using R = 1.5R¢. Since, ROS plays such
an important role for the algorithm, in the following set of experiments we investigate its
performance as we vary R for the two sources identification scenario. The simulation results
for leader count for different values of 7, are shown in Figure 3.17b as we vary Rs from 10 m
to 30 m. For these experiments we kept Rc = 10 m. From the plot it becomes evident that on
average Rg = 15m (i.e., 1.5R() achieves the most accurate results with a leader count close
to two for all values of 7, tested. Based on these results, for all subsequent experiments we

continue to use Rg = 1.5Rc.

Scalability for Multiple Sources and Varying Node Density

In this section, we address scalability issues in the more general case where we have K
randomly deployed sources in the field and evaluate the performance of the two identifica-
tion algorithms (D-FTLEP and D-NLEP) by varying the percentage of faulty sensor nodes
(suffering temporary mixed faults) and the node density in the field. In the simulation results
that follow, the D-FTLEP algorithm is portrayed with solid lines, while the D-NLEP algorithm

is shown with dotted lines.
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Figure 3.17: Performance of D-FTLEP and D-NLEP for two sources identification.

The performance of the identification algorithms in terms of the leader count and the
leader distance from the actual source locations is depicted in Figure 3.18 for K € {2, 3,5}
sources as we vary . In Figure 3.18a we observe that in the fault-free case (¢ = 0%) the D-
FTLEP algorithm accurately counts the number of sources when K = 2, 3, while for K = 5 the
leader count is 5.8. This is expected because by increasing the number of randomly deployed
sources there is a higher probability that two or more sources are located very close to each
other and this may lead to additional leaders becoming elected; see the two source simulation
scenario in Figure 3.17a. Interestingly, the D-FTLEP algorithm is able to retain its accuracy
for all different numbers of sources by electing the same number of leaders as in the fault-free
case. In fact, the fault tolerance of D-FTLEP is evident even when & = 40% of the sensor nodes
give erroneous observations. At the same time, the D-NLEP identification algorithm (dotted
lines) fails immediately when faults occur and ends up electing a large number of leaders in
all cases. For instance, the number of elected leaders using D-NLEP is close to 20 for K = 2
source and @ = 15%. To make things worse, the D-NLEP algorithm always elects leaders
that are far (more than 6 m) from the actual source locations even in the absence of faults. In
contrast, the D-FTLEP algorithm tends to elect leaders that are much closer to the sources,

while the leader distance is slightly affected when the number of faulty sensors is increased.

Figure 3.19 depicts the results on the leader count and leader distance using K = 5 sources
as we increase the number of sensor nodes in the field, while @ € {0%, 29%, 44%}. Looking at
Figure 3.19a it is obvious that D-FTLEP is robust with respect to the number of sensor nodes
for different percentages of faulty nodes and the number of elected leaders is always close to
5. On the other hand, the D-NLEP algorithm counts the number of sources correctly only

in the fault-free case, while introducing faults affects its performance severely. Regarding the
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Figure 3.18: Performance of D-FTLEP and D-NLEP for multiple sources identification under

temporary mixed faults.

distance between the elected leaders and the actual source locations, D-FTLEP tends to elect
leaders that are on average further away when the number of sensor nodes in reduced. The
leaders elected using the D-NLEP algorithm are always further away (more than 7 m) from

the actual source locations regardless of the sensor node density, as shown in Figure 3.19b.

The above findings suggest that the distributed counterpart of the proposed fTRACK
architecture can easily scale and performs well for increasing number of moving sources in

the field, as well as varying sensor node density.
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Figure 3.19: Performance of D-FTLEP and D-NLEP for K = 5 sources and varying sensor

density under temporary mixed faults.
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3.5 Chapter Summary

In this chapter, we study target tracking using a binary WSN and focus on improving the
resilience to faults that disturb the original sensor observations. In this way, we manage to
maintain high tracking accuracy, even when a large number of faulty sensors exist.

We introduce a new MC fault model to generate temporally correlated faults, which may
occur unintentionally or due to a malicious attack. Using this fault model we are able to simu-
late different realistic types of binary sensor faults, including reverse status and stuck-at faults,
that can be either transient or permanent. In addition, we can simulate spatially correlated
faults.

Subsequently, we investigate the sensor health estimation problem because accurate and
reliable sensor state estimates (i.e., either healthy or faulty) can greatly improve the fault tol-
erance of localization and tracking algorithms. Typically, such algorithms use all sensor con-
tributions to determine the target location, while faulty sensors should not be considered
because they may lead to accuracy degradation. To this end, we formulate the sensor health
state estimation problem as a HMM and present three state estimators.

Next, we combine our sensor state estimators with localization and location smoothing
algorithms and integrate them into a closed loop tracking system. The resulting ftTRACK
architecture is a centralized solution that exploits spatiotemporal information for intelligently
choosing only healthy sensors for estimating the unknown target location and tracking it,
while it traverses the sensor field. Our simulation results indicate that fTRACK can greatly
improve the fault tolerance of the underlying target localization and tracking algorithms.

Finally, we work towards a distributed fTRACK architecture to enable multiple target
tracking, while addressing the limitations of the centralized ftTRACK architecture. To this
end, we present a distributed fault tolerant leader election protocol for detecting and count-
ing the number of targets in the field. We also describe a distributed version of the SNAP
localization algorithm that can be run by each leader to localize the associated target. As part
of our future work we will investigate the sensor health state estimation problem in the dis-
tributed environment, so that the elected leaders will employ the observations only from those

neighbouring nodes considered to be healthy.
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Chapter 4

Fault Tolerant Localization in WLAN

4.1 Background

4.1.1 Problem Formulation & Definitions

Traditionally, RSS fingerprinting consists of two phases, namely the offline (training) and
the online (localization) phases.

In the offline phase, we consider a set of predefined reference locations {L : {; = (x;, y;), i =
1,...,1} onagrid that spans the area of interest to collect RSS values from 1 APs. A reference
fingerprint r; = [ry1,..., rm]T associated with location £, is a vector of RSS samples and 7;;
denotes the RSS value related to the j-th AP. Usually, r; is averaged over multiple fingerprints
collected at ¢; to alleviate the effect of noise in RSS measurements and outlier values.

In the online phase, we exploit the reference data to obtain a location estimate ¢, given a
new fingerprint s = [sq, ..., sn]T measured at the unknown user location ¢, using any desired
fingerprinting algorithm as discussed in Section 2.2.1.

We assume that the reference RSS data collected in the offline phase are not corrupted.
This assumption is not restricting because reference data can be validated using security and
attack prevention or detection mechanisms [18] prior to deploying the localization system.
Thus, we focus on non-cryptographic RSS-based attacks and failures that may occur during

the online phase. Before describing the fault models we define the Region of Coverage (RoC)
of an AP.

Definition 6. The Region of Coverage denoted RoC; C L, j = 1,...,n is the subset of reference
locations inside the area of interest that contains those locations where the j-th AP is sensed

during the offline phase.
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Figure 4.1: Example RoC of an AP in the VTT dataset.

For instance, all reference locations (small black dots) and the locations inside the RoC
of a single AP (larger dots) in the VTT dataset are depicted in Figure 4.1. The AP is located
in the top left wing (black triangle) and the colorbar indicates the mean RSS level from that
AP at each location. The VT'T experimental setup and corresponding dataset is described in

Section 4.1.3.

4.1.2 Basic Fingerprinting Algorithms

For easy reference we briefly outline two basic fingerprinting algorithms that will be later

used for enabling the detection of faulty APs and for building fault tolerant counterparts.

Deterministic approach

The NN algorithm [9,10], is a deterministic approach that estimates location by minimiz-
ing the Euclidean distance d;, between the observed fingerprint during localization s and the

reference fingerprints r; in the radiomap

—_

{(s) = arg rri)in di, d; = (4.1)

Essentially, all reference locations are ordered according to increasing d; and location ¢;
with the shortest distance between r; and s in the n-dimensional RSS space is returned as
the location estimate. A variant known as K-Nearest Neighbour (KNN) method estimates the

unknown location at the centroid of the corresponding K ordered candidate locations.
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Probabilistic approach

In the probabilistic approach, location ¢ is treated as a random vector that can be estimated
by calculating the conditional probabilities p(€ils), i = 1,...,1 (posterior) given the observed
fingerprint s. We adopt the approach of [125] in order to calculate the expected value of ¢,
e, l = E[lls] = Y., £ip(£ils), which provides the Minimum Mean Square Error (MMSE)
location estimate. Applying Bayes’ rule we get

(slé)p(t) _  p(sltp(t)
p(s) Yiop(slep(t)’

where p(s|¢;) is the likelihood of s given ¢;, p({;) is the prior probability of ¢; and p(s) is a

p(tls) = £ (42)

normalizing constant. The prior can be assumed to be uniformly distributed, ie., p({;)) =
1/1, ¥¢;, thus the problem reduces to estimating p(s|¢;). Assuming that the RSS measurements

from APs are independent we get
p(sit) = | [ p(silt)- (4.3)
j=1

We estimate the probability p(s;l{;) of observing the RSS value s; from the j-th AP at
location ¢; duringlocalization by using Gaussian kernels centred at 7;; with user-defined width

0.

4.1.3 Experimental Setups & Datasets

In the following we describe the localization areas and measurement setups that we have
used to collect experimental RSS data. Our datasets contain reference data, collected at pre-
defined reference locations with one WLAN-enabled mobile devices, which are used to build
the required radiomap for the fingerprinting algorithms. Moreover, the datasets contain ad-
ditional test data, collected at several test locations with the same mobile device, which are

used for the validation of the developed algorithms.

VTT Dataset

For this dataset, we collected the reference data in a typical modern office environment on
the second floor of a three storey building at VTT Technical Research Centre, Finland'. The
size of the floor is around 5.000 m* and it consists of eight wings containing offices and meet-

ing rooms connected with corridors. There are 31 Cisco Aironet APs installed throughout the

'http://www.vtt.£i/
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building that use the IEEE 802.11b/g standard, while 10 of them are uniformly deployed on
the second floor. We used a Fujitsu-Siemens Pocket Loox smart phone with Windows Mobile
operating system to collect RSS measurements from all APs at 107 distinct reference locations
on the second floor. These locations are separated by 2-3 meters and form a grid that covers
all public places and meeting rooms.

A total of 3210 reference fingerprints, corresponding to 30 fingerprints per reference lo-
cation, were collected at the rate of 1 sample per second. Due to the open plan interior design,
the APs can be partially sensed on the second floor, and the average number is 9.7 APs per
reference location. The floorplan of the experimentation area and the reference locations are
depicted in Figure 4.2a, while the colorbar indicates the number of APs sensed at each loca-
tion. The RSS values range from —101 dBm to —34 dBm.

For testing purposes, we collected additional fingerprints on the second floor by walking
at a constant speed over a path that consists of 192 locations. One fingerprint is recorded at

each location, and the same path is sampled 3 times for a total of 576 test fingerprints.

KIOS-A Dataset

We collected our RSS data inside the premises of KIOS Research Center, University of
Cyprus®. The total area is around 560 m? and the floor consists of several open cubicle-style
and private offices, labs, a conference room and corridors. We have installed 9 local WLAN
APs (IEEE 802.11b/g) that provide full coverage throughout the floor. In addition, there are
64 other neighbouring APs that can be partially sensed in different sections.

We used a HP iPAQ hw6915 PDA with Windows Mobile operating system to collect RSS
measurements from all 73 APs at 105 distinct reference locations. These locations are sepa-
rated by 2-3 meters and form a grid that covers all public places. A total of 4200 training fin-
gerprints were collected for our radiomap, corresponding to 40 fingerprints per location. The
floorplan of the experimentation area and the reference locations are depicted in Figure 4.2b,
where the color bar indicates the number of APs sensed at each location. On average approx-
imately 20 APs can be sensed per location, while the raw RSS values range from —90 dBm to
—10 dBm.

For testing purposes, we have also collected 1920 fingerprints at 96 locations (20 finger-
prints per location) inside the experimentation area, while most of the test locations do not

coincide with the reference locations.

*http://www.kios.ucy.ac.cy/
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Figure 4.2: Reference locations and number of sensed APs in the setups.

4.2 Fault Models

In the following we introduce several fault models to capture the effect of AP malfunc-
tions or malicious attacks during localization [74]. Then, we describe how these new models
can be simulated using the original test data to allow extensive evaluation and comparison of
fingerprinting algorithms. Each model is followed by a short discussion on the feasibility of
the underlying attack or the occurrence probability of the relevant failure, in both private and
public WLAN-based localization systems. As discussed in Section 1.2, the former rely only
on the APs deployed inside a private fully-controlled network, while the latter consider all

available APs, including neighbouring public and residential APs.

4.2.1 AP Failure Model

In this scenario we consider the case where several APs used in the offline phase are not
available during localization. This type of fault may occur due to power outages, WLAN sys-
tem maintenance, AP firmware upgrades, etc., or can be caused by unpredicted AP failures
or malfunctions. Regarding public localization systems, an AP listed in the database may be
temporarily shut down or permanently removed by its owner. This constitutes an AP failure
during localization from the user perspective, until the database is updated. Alternatively,
when an attack is assumed an adversary can easily cut off the power supply of some APs or
use specialized equipment to severely jam the communication channels and make the attacked
APs unavailable in order to compromise the localization performance. Jamming attacks can
be easily launched, as described in [140].

We simulate the AP Failure model by removing the valid RSS values of randomly selected

APs in the original test fingerprints. For instance, if AP, is faulty we replace all RSS values in

65



Loc AP; | AP, | AP; APys | AP4g AP, | AP73
1 (uv) |35 |66 |53 | .. INaN F15 |.. NaN }70
2 v |33 [67 |50 | .. INaN F18 |.. NaN Je9
19 (up,vi) |-36_[-62 |-54 ... INaN }13 ... NaN _ §73
20 | (uv) [34 [68 |52 | .. [NaN F14 |.. NaN |72
21 (uz,V2) 40 |[-70 [NaN | ... |88 |25 ... NaN NaN
22 (up,vp) |-43 |-72 |NaN | ... |86 |27 ... NaN NaN
40 | (uwvo) |41 |69 [NaN | .. |84 |24 |.. NaN RNaN
741 | (usgvag) | -58 |-42 [NaN | ... |51 |36 . 78 59
742 | (Uss,vae) | 55 |44 [NaN | .. |54 F33 |.. 175 [s5
1901 (Ugs,VgG) NaN [-88 -66 -47 NaN e 81 87
1920 | (uge,Vos) | NaN |-86  [-65 .. 49 NaN | ... 80 86

Figure 4.3: Sample RSS values in the test fingerprints of the KIOS-A dataset.

the corresponding column of our test data from the KIOS-A dataset, as shown in Figure 4.3,

with NaN values. This designates that AP, is not available during localization.

4.2.2 AP Relocation Model

This scenario considers the effect of relocating a set of APs and thus a faulty AP is sensed
during localization inside an area that can be different than the expected one. This may happen
in case that the AP is moved to a new location, e.g., for network operation reasons, and the data
in the radiomap are not updated by collecting additional fingerprints to cater for the affected
areas. In public localization systems this can happen quite often because the AP owners may
move them around inside their private properties.

On the other hand, an adversary may launch an attack with the same effect by physically
relocating an AP. Alternatively, the attacker can impersonate a specific AP (i.e., Sybil attack),
while at the same time eliminates the AP signals through jamming. AP impersonation can be
easily implemented, especially in public localization systems, because rogue APs can forge the
MAC addresses of legitimate APs and transmit at arbitrary power levels within their physical
capabilities. Details on the feasibility of impersonation and replication attacks can be found
in [137], where the application of these attacks on the Skyhook public localization system is
reported.

We simulate the AP Relocation model by replacing the RSS readings of the corrupted AP
in the test data with the values of another randomly selected AP. For example, if AP3 is moved
to a new location close to AP, then we replace all RSS values of AP3 with the respective

values of AP,5; see Figure 4.3.
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4.2.3 False Negative Model

In this model, the assumption is that an AP may no longer be sensed in some locations
inside its original RoC. This can happen accidentally if furniture or equipment is moved, so
that the propagation path is blocked and the AP signal cannot be sensed in locations where
it was previously weak. This type of fault may also occur in public localization systems due to
the construction of a building in the vicinity of that AP.

We simulate this model by ignoring valid RSS readings for a set of APs in a number of test
fingerprints. For instance, if AP; suffers from False Negative fault we replace with NaN value
some of its RSS values in our original test data, e.g., corresponding to 70% of the test locations
(randomly selected), where that AP was previously sensed. Note that the AP Failure model is

an extreme case of this model.

4.2.4 False Positive Model

Another scenario is when an AP is sensed during localization in locations outside its origi-
nal RoC. Contrary to the False Negative model, this can happen unintentionally in case a heavy
object or equipment, which was previously obstructing the propagation path, was moved after
collecting the reference data. Essentially, the transmission signals can travel further and make
that AP hearable in locations outside its original RoC. An attack scenario that manifests in a
similar manner is when a rogue AP is deployed and programmed to replicate an existing AP.
In this fashion, the corrupted AP is thereafter sensed during localization in locations possibly
far beyond its original RoC.

The False Positive model is simulated by injecting random RSS values to the test data for
a set of APs that would not be sensed otherwise in those locations where the respective test
fingerprints were collected. For example, if AP, suffers from False Positive fault we replace
with random RSS values some of its NaN values in our original test data, e.g., corresponding to

70% of the test locations (randomly selected), where that AP would not be sensed otherwise.

4.3 Fault Detection

Standard localization methods do not take faults into account and cannot guarantee ac-
ceptable performance in terms of accuracy. Thus, it is important to use a robust detection
scheme, as a first step, to signify that the observed fingerprint s is corrupt due to faults.

A potential fault indicator is the number of missing APs duringlocalization, denoted 71,js;.
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In the presence of faults a subset of the APs, which would otherwise be sensed under normal
conditions, are no longer present. In this case, several missing RSS values are injected into the
observed fingerprint, thus increasing the value of 7,,;s. Our experimental findings indicate
that 71,55 is not a robust fault indicator, because in most practical implementations the APs
provide only partial coverage in the area of interest and there are several missing APs, even
under normal conditions. Such indicator is suitable only for small scale setups where all APs
cover the whole area; however, these cases are of limited interest in practice.

In the following we discuss some fault indicators inspired by RSS fingerprinting meth-
ods and describe how to select an appropriate threshold for detecting faults that follow the
AP Failure and AP Relocation models. Some of these fault indicators were discussed in [31],
however, they were only employed to detect signal attenuation or amplification attacks.

The main idea in all our fault detection schemes is the selection of an appropriate threshold
¥ based on the distribution of the relevant fault indicator when no faults are present, i.e., by
using the fingerprints contained in the original test set. Specifically, we select y by setting the
acceptable false detections in the fault-free case. Under faults the value of the fault indicator is
increased because the corrupt fingerprint is very dissimilar to the fingerprints in the radiomap
and a fault can be detected duringlocalization if the threshold y is violated. We have found that
selecting ¥ according to this empirical methodology provides a good compromise between
low false detection rate, especially in the fault-free case, and high correct detection rate as the

percentage of faulty APs is increased [85].

4.3.1 Distance-based Detection

In the context of the KNN method we can exploit the distances d; that are already com-
puted with equation (4.1) to decide whether fingerprint s is corrupt. We may use a fault in-
dicator based on these distances, e.g., the distance from the K-th nearest neighbor, and the
intuition is that under faults the value of the indicator will violate a certain threshold. For
instance, authors in [31] use the distance from the nearest neighbour (i.e., K = 1), denoted
D, to detect signal attenuation or amplification attacks. We use the sum of distances to the
K nearest neighbours, denoted Dgf;, as a fault indicator which was proved experimentally to
be more robust compared to Dy, under the fault models described in Section 4.2. Note that in
case K = 1 these two fault indicators are equivalent.

As afirst step in our fault detection scheme, we select an appropriate threshold y based on

the distribution of Dgﬁ for the fingerprints contained in the original test set. Subsequently, a
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Figure 4.4: CDF of the Ds(z,)n fault indicator under different fault models.

fault can be detected during localization if Dgf,)n > y for the currently observed fingerprint.

We examined several values for K and the best performance, in terms of fault detection
accuracy, was obtained for K = 2. The CDF of Dgi,)n is plotted in Figure 4.4a for the fault-free
case (solid line) and when we inject faults in the test fingerprints according to the AP Failure
model. The first observation is that the CDF curves are shifted to the right as the number
of faulty APs is increased. In particular, we observe that in the fault-free case Ds(gz,, is below
76 dBm for 95% of the time and this corresponds to the 88th, 53th, 15th, 7th and 1st percentile
as the number of faulty APs is increased from 3 to 15. Thus, setting y = 76 dBm leads to 5%
false detections in the fault-free case and suggests that the corrupt fingerprints will be detected

with high probability.

Faults under the AP Relocation model seem to affect the RSS fingerprints more heavily
and the CDF curves are sharper, as shown in Figure 4.4b. In this case our threshold value cor-
responds to the 66th, 7th and Oth percentile for 3, 6 and more than 6 faulty APs, respectively.
This is significantly lower compared to the AP Failure model case, especially when few APs are
faulty, and this is a strong indication that this type of fault will be detected more easily. From
another perspective, less faulty APs will be required to detect a corrupt fingerprint under the

AP Relocation model, compared to the AP Failure model.

When the False Negative model is considered, our threshold value corresponds to the 86th,
64th, 21st, 11th and 7th percentile, as the number of faulty APs is increased from 3 to 15. These
percentiles are similar with the case of AP Failure faults indicating that corrupt fingerprints
that follow the False Negative model will also be detected effectively. Regarding the False Pos-
itive model, our threshold value corresponds to the Oth percentile when only 3 APs are faulty,
suggesting that this type of faults can heavily disturb the localization fingerprints. Thus, the

corrupt fingerprints that follow the False Positive model can be easily detected.
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Figure 4.5: CDF of the P, fault indicator under different fault models.

4.3.2 Likelihood-based Detection

Regarding the probabilistic MMSE method, we use the likelihoods p(s|;), i = 1,...,1
that are already calculated with equation (4.3) to detect possible faults. As discussed in [31],
we build a fault indicator based on the maximum likelihood of the candidate locations ¢;,

which is formally given by

P = —log mgaxp(sl&). (4.4)

The CDF curves of P,,, are plotted in Figure 4.5a in the presence of AP Failure faults.
Similar behaviour to the Dﬁ}n indicator is observed and in the fault-free case P, < 94 for
95% of the time. Assuming that we can tolerate around 5% false detections, we set y = 94.
This corresponds to the 84th, 23th, 11th, 2nd and 1st percentile as the number of faulty APs
is increased from 3 to 15. On the other hand, when the AP Relocation model is considered,
¥ = 94 corresponds to the 40th, 2nd and Oth percentile for 3, 6 and more than 6 faulty APs;
see Figure 4.5b. Regarding the False Negative model, our threshold value corresponds to the
81st, 39th, 13th, 8th and 4th percentile, as the number of faulty APs is increased from 3 to 15.
When the False Positive model is considered, the threshold corresponds to the Oth percentile

when more that 3 APs are faulty.

To summarize, the P, fault indicator has similar behaviour with the Ds(z,)ﬂ distance-based
indicator discussed above. Another possible fault indicator that can be applied to probabilistic
fingerprinting algorithms is the negative logarithm of the sum of likelihoods, i.e., Py, =
—log Y\, p(s|¢;). This fault indicator demonstrates similar behaviour with P, under all

fault models, thus in the following only P, is considered.
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4.3.3 Performance Evaluation

We evaluate the fault indicators by adopting two performance metrics, namely the correct
detections rate (R;) and the false detections rate (Rf;) that are defined as the ratio of the test
fingerprints detected to be corrupt, either correctly or falsely, over all test fingerprints. In our
previous work, we investigated the detection rates R,y and Ry, of the Dgizn indicator under
AP Failure faults for various threshold values and concluded that based on the selection of
there is a trade off between the corrupt fingerprints that will go undetected when faults are

present and false detections in the fault free-case [85].

For our evaluation we apply the AP failure and AP Relocation fault models to corrupt the
original test data and the results are averaged over 100 runs using randomly selected subsets
of faulty APs in each run®. We keep the thresholds fixed for Ds(zzn and Py, i.e., the y values are
selected as discussed in Sections 4.3.1 and 4.3.2, and compare both fault indicators in terms of
fault detection. The detection rate curves under AP Failure faults are plotted as a function of
the percentage of faulty APs (@#%) in Figure 4.6a. We observe that the performance of Déz,)n and
P,10x is almost identical and the R4 grows beyond 0.85 when o > 25%. When the percentage
of faulty APs is low, i.e. & < 10%, the R for Dgizn and P,,,, does not exceed 0.6. In this
case it is hard to discern whether the missing values in the fingerprints are due to APs that
have failed, because the APs do not provide ubiquitous coverage and there are missing values
at different locations even under normal conditions. Thus, some corrupt fingerprints can be
undetected. However, as it will be shown later, when few APs are faulty then the localization
accuracy is not severely degraded, thus failing to detect these faults is not crucial. Regarding

false detections, the R4 for both indicators is less than 0.01 when & > 15%; see the inset plot

in Figure 4.6a.

When the AP Relocation model is considered the Dgi,)ﬂ and P, indicators are very ef-
fective in detecting this type of fault. For instance, the R, is close to 0.9 for both indicators
when @ = 15%, as shown in Figure 4.6b, compared to 0.67 in the case of AP Failure faults.
Moreover, false detections decrease rapidly and the Ry; drops below 0.01 when just 5% of the
APs are faulty; see the inset plot in Figure 4.6b. As pointed out previously, AP Relocation faults
corrupt the RSS fingerprints severely leading to higher R.; and lower R¢; with only few faulty
APs.

These results verify that both Dgifn and P,,,, are robust fault indicators that detect the

*Results on the detection capability under the False Negative and False Positive models are not reported for

brevity because they are similar with our findings using the AP failure and AP Relocation models, respectively.
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Figure 4.6: Correct and false detection rates for different fault indicators.

corrupt fingerprints, which would otherwise degrade the localization accuracy. More impor-
tantly, in an attack scenario an adversary will not be able to compromise the localization sys-
tem without being detected. Moreover, selecting the threshold for each fault indicator with
the empirical methodology discussed previously delivers a high level of correct detections,

especially when the number of faulty APs is increased.

Notably, our fault detection scheme, based either on the Dﬁﬁ,)ﬂ or P, fault indicators,
can be applied in any fingerprinting system to signify the presence of faults, regardless of the
underlying localization algorithm. However, distinguishing between different types of faults
is not possible with either approach. Fault identification is out of the scope of this thesis and

is part of our ongoing research.

4.4 Fault Tolerant Localization

The standard KNN and MMSE localization algorithms cannot provide the required level
of accuracy when faults are present in the localization system [74]. Another KNN variant,
referred to as MED, uses a median-based distance metric to improve fault tolerance in case
of failures or incorrect RSS readings [95]. In this case, location is estimated by

—_

{(s) = arg rrgn di, di = medjnzl(ri]. - sj)z- (4.5)

Our approach is to utilize the fault detection schemes described previously and modity the
localization algorithms in order to build hybrid KNN and MMSE counterparts that achieve

higher resilience to faults.
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4.4.1 Localization Under AP Failure Faults
Hybrid KNN Algorithm

The distances d; computed with equation (4.1) can be viewed as

d; = \/Z dij-i- Z dl‘j—F Z dij, (4.6)

jeRiNS jER\S jES\R;

where d;; = (rij -5 j)z, while R; and S denote the sets of APs that are present in fingerprints
r; and s, respectively. The first term refers to the intersection of R; and S and represents the
distance with respect to those APs that are common in r; and s. The second term employs
those APs that are sensed in r; and not in s, while the last term considers those APs that are
found in s and not in r;.

In practical deployments a small constant is used to replace the missing RSS values s; and
rij in equation (4.6). This is effective in the fault-free case, because all APs that are not found
in common between r; and s are penalized. However, in the presence of faults, the distances
d; can be affected and this leads to the wrong ordering of candidate locations, thus degrading
the localization accuracy. In order to mitigate errors introduced by faulty APs, we employ the
following distance metric given by

d: = \/Z dl']‘ + Z di]'. (4.7)

jeRiNS jES\R;

This metric ignores faulty APs in R;\S and was shown to improve the fault tolerance of the
standard KNN method, especially when a large number of APs are faulty [74,85]. We also ex-
pect this metric to be equally effective in the case of faults that follow the False Negative model.
Our hybrid KNN algorithm, denoted as H-KNN, incorporates the detection mechanism de-
scribed in Section 4.3.1 and couples that with the modified distance metric given in equa-
tion (4.7) to provide smooth performance degradation in the presence of AP Failure faults.
The required threshold ) can be selected using the methodology described in Section 4.3.1.
The steps of the H-KNN algorithm are listed in Algorithm 6 at Appendix E.

Hybrid MMSE Algorithm

We follow the same approach for the probabilistic MMSE method and by using the nota-

tion introduced previously the likelihood p(s|¢;) in equation (4.3) can be viewed as

psie) = 1] pisiie [ pisiien ] pisiteo. (48)

jERiNS jeR\S jES\R;

73



Missing RSS values in fingerprint s due to faults can severely affect the calculation of p(s|¢)
because these values are replaced with a small constant. We propose to compute the likelihood

according to

psie) = T pisie) T pesieo- (4.9)

jeRiNS jES\R;

Essentially, the faulty APs that fall in the subset R;\S are ignored and the fault tolerance
of the MMSE method can be greatly improved. This also holds for faults under the False Neg-
ative model. Algorithm 7 in Appendix E provides the details of the proposed hybrid MMSE
algorithm, denoted H-MMSE, that combines the detection mechanism based on the P,
fault indicator with the fault tolerant likelihood calculation formulated in equation (4.9). The

required threshold ) can be selected using the methodology described in Section 4.3.2.

4.4.2 Localization Under AP Relocation Faults

The modified distance metric in equation (4.7), which is employed in the proposed H-
KNN algorithm, greatly improves fault tolerance under the AP Failure model. However, our
preliminary results indicated that it is not very effective under the AP Relocation and False Pos-
itive models, contrary to the median-based metric, that improved to some extent the perfor-
mance of the standard KNN method [74]. Thus, the median-based metric is a good candidate
for mitigating AP Relocation and False Positive faults. On the other hand, the median-based
metric employed in the MED method performs poorly in the fault-free case or when half of
the APs are faulty [69, 85].

To this end, we develop the hybrid MED algorithm, denoted H-MED, that combines the
Euclidean distance metric in equation (4.6) with the median-based metric in equation (4.5)

and switches to the latter in case of fault detection, as detailed in Algorithm 8 in Appendix E.

4.4.3 Experimental Results

We consider the KIOS-A experimental setup, described in Section 4.1.3, and investigate
fault tolerance with respect to the accuracy degradation when faults occur. In particular, an
algorithm is considered as fault tolerant, if the mean positioning error & does not increase
rapidly as the percentage of faulty APs a% is increased. From another perspective, we may
select an acceptable upper bound on the performance, e.g., &, = 5m, and examine the per-
centage of faulty APs that each algorithm can tolerate. We apply the fault models described in

Section 4.2 to corrupt the original test data and the results for & are averaged over 100 runs
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using randomly selected subsets of faulty APs in each run.

Performance Under AP Failure Faults

In the fault-free case, & is around 2.4 m for the standard KNN and MMSE methods, as
well as for the hybrid H-KNN and H-MMSE algorithms; see Figure 4.7a for « = 0%. On
the other hand, the MED algorithm performs poorly and the mean error is 4.55m. As « is
increased, & grows rapidly for KNN and MMSE methods and when @ > 20% they both
fail to provide acceptable performance. In contrast, both hybrid algorithms exhibit smoother
performance degradation. For instance, in an extreme scenario where half of the APs are faulty
(@ = 50%), & = 3m for H-KNN compared to & = 9.93 m for KNN, while the standard
deviation (std) of the localization error is 2.6 m and 5.6 m, respectively. Similar behaviour
is observed when we compare the H-MMSE and MMSE algorithms. The MED method also
seems to be more resilient to faults than KNN and MMSE; when a = 50%, & is increased
by 1 m with respect to the fault-free case, however & = 5.6 m is still much higher compared
to our hybrid algorithms. Moreover, if &,;, = 5m is an acceptable upper bound, then both
hybrid algorithms can tolerate up to 80% faulty APs compared to 30% for MED and only 10%
for KNN and MMSE algorithms.

Performance Under AP Relocation Faults

The performance of the localization methods in the presence of AP Relocation faults is
depicted in Figure 4.7b. When the percentage of relocated APs remains below 20%, then the
H-MED algorithm exhibits lower & compared to the original MED method. Beyond that point
H-MED is identical to the MED method, because the corrupt fingerprints are detected with
high probability (R,; = 0.97, as shown in Figure 4.6b) and the H-MED algorithm always
switches to the median-based metric. In this fashion low localization error is maintained in
the fault-free case, while the performance under AP Relocation faults is better than the other
methods.

In the case that @ > 30% the KNN, MMSE, H-KNN and H-MMSE are all less fault tol-
erant compared to H-MED. For instance, when half of the APs are relocated & = 5.57 m for
H-MED, compared to other algorithms for which & > 7.8 m. Moreover, in case &, = 5m
is acceptable, H-MED can tolerate up to 40% of faulty APs compared to 20% for H-KNN or
H-MMSE and 10% for KNN and MMSE methods. Note that the H-MED algorithm is fault

tolerant, however AP Relocation faults are more difficult to mitigate in comparison with AP
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Figure 4.7: Fault tolerance of fingerprinting algorithms under various types of faults.

Failure faults, where the proposed hybrid algorithms can tolerate up to 80% of faulty APs.
Moreover, as already discussed in Section 4.3.3, the Dgizn and P,,;, indicators cannot distin-
guish between the two different types of faults. Therefore, new mechanisms are required in

the future in order to identify faults and select the most appropriate algorithm.

Performance Under False Negative and False Positive Faults

When the fingerprints are corrupted using the False Negative model, the behaviour of the
hybrid algorithms is similar with the case of the AP Relocation model, as shown in Figure 4.7a
and Figure 4.7¢, and both H-KNN and H-MMSE outperform the H-MED algorithm. On the
other hand, the modified metrics employed in the H-KNN and H-MMSE algorithms cannot
handle the corrupt fingerprints that follow the False Positive model and the localization error
increases rapidly; see Figure 4.7d. In contrast, the H-MED algorithm is able to mitigate the
effect of this type of fault and outperforms the other two hybrid algorithms when o > 20%,
while the localization error remains below 6 m even when 80% of the APs provide corrupt

RSS values.
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Figure 4.8: Mean and standard deviation of the localization error with 73 APs (KIOS-A setup).

4.4.4 Scalability for Varying AP Density

We now investigate the scalability of our fault tolerant localization algorithms in terms of
varying AP density. The experimental results discussed previously indicate that the proposed
hybrid algorithms are very resilient to faults occurring when APs either fail or are relocated.
Looking at the RSS data in the KIOS-A dataset, there are 73 APs available; 9 APs are installed
locally to fully cover the area of interest proving mostly strong RSS values and 64 other neigh-
bouring APs are partially sensed providing mostly weak RSS values in the boundaries of the
floor. Such conditions are observed in public localization systems, such as Skyhook, which rely
not only on some local APs, but also publicly available and non-physically accessible APs that
are further away and provide partial coverage. In this setup, the standard deviation of the lo-
calization error attained by the H-KNN algorithm is acceptable, even when a = 50% of the

APs suffer from AP Failure faults, as shown in Figure 4.8.

We have also evaluated our algorithms using the data in the VTT dataset, which are col-
lected in another larger office environment covered by 31 APs as described in Section 4.1.3.
Our findings, discussed in detail later in Section 4.5.4, show similar trends suggesting that our

algorithms scale well to other setups.

Furthermore, we have also examined the case of considering fewer APs, e.g., only local APs
and ignoring neighbouring weaker APs, to create a scenario of a private localization system,
where almost every location sees all 9 local APs [85]. First, we follow the our methodology
described to select the fault detection threshold y for our H-KNN algorithm. Assuming that
we can tolerate around 5% false detections when no faults are present, the appropriate value

in this case is y = 40 dBm.

In Figure 4.9, & is plotted for the MED, KNN, MMSE and H-KNN algorithms in the

presence of AP Failure faults. In the fault-free case, the MMSE algorithm provides the best
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accuracy (& = 1.98 m). For the KNN algorithm & = 2.08 m, while for MED the mean error
is 3.45 m. For the H-KNN hybrid algorithm & = 2.07 m, which shows that the false detec-
tions in this case do not affect the localization accuracy. We can also observe that the KNN
and MMSE algorithms exhibit similar fault tolerance and if the percentage of faulty APs is low
(@ < 10%, i.e. one AP is faulty) the localization error remains below 5m for both methods,
which may be acceptable for some location-based applications; see Figure 4.9a. However, be-
yond that point the localization error degrades sharply. For instance, when half of the APs are
faulty, then for KNN & is increased by 8 m compared to the fault-free case, while the standard
deviation of the error is around 5.5 m; see Figure 4.9b. Similar behaviour is also observed for
the MMSE algorithm.

On the other hand, the MED and H-KNN algorithms exhibit similar fault tolerance in
case @ < 40%. The MED algorithm provides less accurate location estimates in the fault-free
case, but & and the standard deviation of the error remain almost unaffected (around 3.30 m
and 2.50 m, respectively) by the presence of AP Failure faults, as shown in Figure 4.9c. For the
H-KNN algorithm, & is only increased by 0.85 m when a grows up to 40%, while the standard
deviation is 2.44 m at that point, providing the same level of accuracy with MED; see Fig. 4.9d.
However, for the MED algorithm, & explodes when o > 50%. This is due to the fact that the
median-based algorithm requires that at least half of the APs provide uncorrupted RSS values.
This behaviour was also reported in [69]. This is not the case for the H-KNN algorithm for
which & remains well below 6 m, even when 80% of the APs are faulty.

To summarize, we observe that the same conclusions hold in all three different setups.
Thus, our results are independent of the AP density or application specific AP layout and can
be easily applied to other environments by collecting some test data, selecting the appropriate
fault detection threshold, as described in Section 4.3, and then using the hybrid algorithms

for localization.

4.4.5 Discussion

We show the effectiveness of the hybrid algorithms in the case of AP Failure and AP Relo-
cation faults with a simple numerical example.

Assume that we have collected RSS measurements from 5 APs at 6 distinct locations
ti, i=1,...,6 (Figure 4.10a) and the fingerprints in the radiomap are shown in Figure 4.10b.
Now, assume that in the fault-free case the fingerprint observed at the unknown location

¢ during localization (shown with x-mark) is s = [-69, —33, =56, —77, —31]. By using the
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Figure 4.9: Mean and standard deviation of the localization error with 9 APs (KIOS-A setup).

Euclidean metric of equation (4.6) we obtain the ordering {{s, {5, {4, {5, {1, {s} for the can-
didate locations with respect to increasing RSS distance. Thus, the standard NN algorithm
would correctly determine €5 as the user location. Notice that by using the modified met-
ric of equation (4.7) we still obtain exactly the same ordering. Assuming that AP, has failed
and is not sensed at the unknown location, the user would observe the corrupt fingerprint
s’ = [-69,NaN, —56, =77, —31]. In this case using equation (4.6) to calculate the RSS dis-
tances would result in the wrong ordering {5, €4, {5, {s, {1, {3}, thus introducing high error
in the estimated user location. (The value —90 dBm is used to handle the missing RSS value.)
In contrast, the modified distance metric of equation (4.7) ignores the missing RSS value in
the distance calculations and location ¢35 is still ranked first. This demonstrates that H-KNN

outperforms the KNN algorithm under AP Failure faults.

Regarding AP Relocation faults assume that we have moved AP, close to AP», so that the
corrupt fingerprint would become s” = [-69, —33, =56, —33, —31]. In this case, the metrics

of equations (4.6) and (4.7), used in KNN and H-KNN algorithms respectively, lead to the
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Figure 4.10: Example application of the hybrid fault tolerant algorithms.

wrong ordering {€5, {5, {3, s, €4, €1}. On the other hand, our H-MED algorithm is not severely
affected because the median-based metric of equation (4.5) can tolerate the erroneous RSS

value and location €5 is ranked first.

Regarding probabilistic algorithms, the H-MMSE algorithm is more resilient to AP Failure
faults than the standard MMSE algorithm because it uses the appropriately modified distance
metric of equation (4.9), instead of (4.8). H-MMSE is not better for handling a specific type
of fault and exhibits similar behaviour with H-KNN, as shown in Figure 4.7. Thus, H-MMSE
should be preferred for fingerprinting systems that rely on the MMSE algorithm (or any other

probabilistic approach) to exploit the likelihoods that are computed during localization.

4.5 Fault Tolerant Localization with SNAP

The SNAP algorithm described in Section 3.2.2 addresses the problem of event localiza-
tion in binary sensor networks and demonstrates some desirable properties, such as low com-
plexity and fault tolerance. In this section, we build upon the SNAP algorithm to develop a

solution that is resilient to AP faults in WLAN fingerprinting.

Firstly, we adapt the SNAP algorithm to the WLAN setup using only information of whether
an AP is sensed during localization or not. Secondly, we show how the accuracy of SNAP can
be improved by introducing the idea of zones to exploit the discrete RSS levels. This algorithm
achieves a level of accuracy that is comparable to other well-known localization methods, but
is considerably simpler and much faster, which is desirable for low power mobile devices in
order to save valuable energy. Finally, we investigate the fault tolerance of SNAP against other
algorithms for a variety of fault or attack scenarios and present a variant of SNAP that exhibits

smooth performance degradation, as the percentage of faulty APs is increased [75].
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4.5.1 Localization with SNAP using Binary Data

We exploit the available RSS fingerprints by utilizing only binary information, i.e., an AP
is either sensed in the online phase or not. During localization, the currently observed fin-
gerprint s contains RSS values from a subset S of the available APs. In this case, the SNAP

algorithm employs three main components to derive the unknown user location.

1. Region of Coverage (RoC): In the offline phase, we determine the Region of Coverage

RoCj, j =1,...,n for all APs, based on the reference data in the radiomap.

2. Likelihood Matrix L: In the online phase, each element in the [ X n matrix £ is updated
to reflect the contribution of the j-th AP to the reference locations £; € RoC;. Every AP
that is sensed in the currently observed fingerprint s adds a positive one +1 contribution
to the elements of £ that correspond to the locations inside its respective RoC. On the
other hand, every AP that is not sensed in s adds a negative one —1 contribution to the
elements of L that correspond to the locations inside its respective RoC. Formally, the

elements of £ are obtained by

+1 ] € S AND fz' (S ROC]
L(i,j)={ -1 j¢SANDY € RoC; - (4.10)
0 fi ¢ ROCj

Then, for each location ¢;, i = 1, ...,I we calculate the likelihood value LV; of the user

being located at £; by summing the contributions of all APs
LVi=Y L)) (4.11)
=1

3. Location Estimation: The maximum of the likelihood values points to the estimated lo-
cation given by

—_

{(s) = argmax LV;. (4.12)
l;eLl

If more than one reference locations ¢; have the same maximum value LV, then the

estimated location is the mean of the corresponding locations.

Example: The positive or negative contributions of a single AP (triangle) on the locations
that this AP covers (dots) are shown in Figure 4.11a and Figure 4.11b, respectively. We now
illustrate the application of SNAP algorithm in a simple scenario, where we consider only

four APs in our reference data; see Figure 4.11c. During localization, the user resides in an
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Figure 4.11: Fingerprinting localization in WLAN using SNAP with binary data.

unknown location (square) and the observed fingerprint s contains RSS values from three APs,
while the AP installed in the top middle wing is not sensed. The three APs that are sensed, add
a positive one +1 contribution to the elements of £ that correspond to the locations inside
their respective RoC. The AP that is not sensed adds a negative one —1 contribution to the
elements of L that correspond to the locations inside its RoC. The resulting likelihood values,
after adding and subtracting the contributions of all APs, are shown in Figure 4.11c. The user
location is estimated (shown with a star) as the mean of the reference locations that have the

same maximum likelihood value +3.

4.5.2 Improving Accuracy with RSS Levels

The original SNAP algorithm uses only binary information and thus it is not expected to
provide a high level of accuracy. We can further improve the performance by taking into ac-
count the information about RSS levels. The idea is that if an AP is sensed during localization,
then the user is more likely to reside in the locations inside the RoC of a specific AP that have
similar RSS values to the observed RSS value.

Based on the reference data we may determine the range of RSS values and let s,,;, and
Smax denote the minimum and maximum RSS values, respectively. We divide this range of RSS
values into N, subranges, i.e., non overlapping equally spaced intervals, and the m-th interval

Z,, is given by

Zow = [Swin + (m = 1Ay, spin +mA,|, m=1,...,NL, (4.13)

Smax —Smin

where A, = 25
z

We can now define the Zone of Coverage (ZoC) of an AP.
Definition 7. The Zone of Coverage denoted ZoC,,; C RoC,m =1,...,Nyandj=1,...,n,
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is the subset of reference locations {; where the j-th AP is sensed during the collection of reference

RSS fingerprints and 1ij € Zy,.

The zones ZoC,,; for all available APs are determined prior to localization and essentially
each RoC; is divided into N, zones so that RoC; = UI,ZZ: 1 Z0Cyj. The modified SNAP algo-
rithm, denoted as SNAPz, incorporates the notion of zones and the elements of £ are now

obtained by

+1 ] € S AND fl' S ZOij
0 ] € SAND ¢, € ZOC(m_l)j U ZOC(m+1)j

L(i,j)=3 -1 jeSAND¢ € RoC;— U™ | ZoCyj - (4.14)
-1 j¢SANDfi€ROCj
0 fl‘ ¢ ROC]‘

Using this rule, every AP that is sensed in the currently observed fingerprint s adds a pos-
itive one +1 contribution only to those elements of L that correspond to locations inside the
appropriate zone Z0Cy;. A zero 0 contribution is added to the locations inside the neighbour-
ing zones, i.e., Z0C(;,_1); and ZoC;,11), while a negative one —1 contribution is added to the
locations inside the remaining zones.

The intuition is that when an AP is sensed in the online phase with certain RSS value,
then the user resides with high probability in the zone where the reference locations have
similar RSS values. Due to the noise disturbing the RSS values the user may be located with
some probability in the neighbouring zones. Finally, the user is located with low probability in
the other zones, where the reference locations have RSS values that are very dissimilar to the
observed RSS value. We define ZoCy; = ZoCy,+1); = 0 to handle the boundary conditions

for m = 1 and m = N in equation (4.14).

4.5.3 On the Fault Tolerance of SNAP

In the SNAP algorithm, an AP contributes to the location estimation whether it is sensed
in the observed fingerprint s during localization or not. This can be very effective in the fault-
free case, however, in case of faults SNAP may not be able to provide adequate performance.
For instance, if faults occur during localization that follow the AP Failure model, then a subset
of the APs that would otherwise be present in s, are no longer sensed. Thus, the negative con-
tributions of these APs may introduce high errors in the estimated user location. We modify

the SNAP algorithm in order to ignore the negative contributions of the failed APs and in this
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case the elements of L are obtained by

o +1 ]ESAND&EROCJ
L(i, ]) = : (4.15)
0 fz' ¢ ROC]'

We incorporate the idea of zones into this modified algorithm to build a fault tolerant

variant, denoted as SNAPft-z.

4.5.4 Performance Evaluation

We use the VT'T dataset to evaluate the performance of SNAPz and SNAPft-z algorithms
with respect to accuracy for varying number of zones in the fault-free case and resilience to AP
faults, respectively. In the VTT dataset, we found that s,,;, = —101 dBm and 5,5, = —34 dBm.
This range is divided in intervals of size I% dBm and each zone contains the locations with
RSS values that fall into the respective interval.

In the case of faults, we use the fault models introduced in Section 4.2 and investigate fault
tolerance with respect to the localization accuracy, as the percentage of faulty APs is increased.
Moreover, we compare the SNAP-based fingerprinting algorithms to the fault tolerant algo-
rithms H-KNN, H-MMSE and H-MED presented in Section 4.4. We apply our fault models
to corrupt the original test data and the results are averaged over 20 runs using randomly

selected subsets of faulty APs in each run.

Localization Accuracy of SNAPz

The mean positioning error (&) pertaining to all test data is plotted in Figure 4.12a, as
a function of the number of zones. If N, is small, then each zone contains many reference
locations. Thus, when a zone is “activated” during localization, then more locations are likely
to be used in the location estimation and the error is increased. Note that in case N, = 1,
SNAPz is equivalent to the SNAP algorithm that uses only binary data. On the other hand, if
N, is large, then each zone contains only few locations and due to the noise in the RSS values
the wrong zone may be activated during localization, leading to accuracy degradation.

The curve indicates that the highest level of accuracy is achieved for N, = 10 zones,
however & does not vary significantly for 4 < N, < 11. For reasons that are related to fault
tolerance and will become clear shortly, we select N, = 4 and this value is used for the rest of
the experiments.

In the following, we further investigate the localization accuracy of SNAPz and the statis-

tics for the localization error are summarized in Table 4.1. Results indicate that the MMSE al-
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Table 4.1: Localization Error [m] of the SNAPz Algorithm

Mean Median Std Min Max

KNN 2.70 2.39 1.61 0.16 8.78
MMSE 2.46 2.18 1.63 0.09 8.99
SNAPz 3.64 3.37 241 0.06 13.21
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Figure 4.12: Performance of SNAPz for varying number of zones.

gorithm achieves the highest level of accuracy (& = 2.46 m), followed by KNN (& = 2.70 m).
SNAPz provides less accurate location estimates and the mean error is increased by around
1 m compared to other algorithms. However, this accuracy degradation is acceptable and

& = 3.64 m is adequate for most indoor location-based services and applications.

Computational Complexity of SNAPz

Next, we investigate the estimation time of the localization algorithms by using a Matlab
implementation on an Intel Pentium 4 processor 3.6 GHz with 1 GB RAM, while the execution
times are averaged over 100 runs using the test data. The number of computations and the time
required by each method are summarized in Table 4.2.

SNAPz does not require heavy computations and one location estimate takes 0.49 ms,
which is 1.6 and 3.5 times lower compared to KNN and MMSE algorithms, respectively.
Therefore, the SNAPz method can extend the battery life of mobile devices, especially when

frequent localization requests or tracking applications are considered.

Fault Tolerance of SNAPz and SNAPft-z

The performance of SNAPz under the AP Failure model for varying number of zones is
plotted in Figure 4.12b. In the fault-free case and when less than 50% of APs are corrupted, us-

ing N, = 4 zones provides a high level of accuracy and the performance degrades smoothly. In
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Table 4.2: Computational Complexity of Localization Methods

additions  multiplications exp sorts time (ms)

KNN  (2n-1) nl 0 I 1.25
MMSE (n+3)[-3 (2n 4+ 4)1 nl 0 2.18
SNAPz  (n—1)I 0 0 I 0.49

I: # of reference locations, n1: # of APs, sorts: # of floats to be sorted

case more than half of the APs are corrupted, using N, = 1 zone improves the fault tolerance
of SNAPz. Using more zones has a negative effect and & increases rapidly. Similar behaviour
was observed for the other fault models. Thus, we use N, = 4 zones in SNAPz algorithm that
is a good trade-off between accuracy and fault tolerance. Interestingly, we found that N, = 4
zones is a good option for SNAPft-z as well. In the following, we do not consider the SNAPz
algorithm because our findings indicate that it is less fault tolerant than SNAPft-z [75].

We apply all fault models described in Section 4.2 to simulate different types of faults
and compare the SNAPft-z algorithm against the H-KNN, H-MMSE and H-MED algorithms
with respect to fault tolerance. The H-KNN, H-MMSE and H-MED algorithms can be easily
applied to the experimental setup of the VT'T dataset. In particular, we use the methodologies
described in Section 4.3 to obtain the appropriate fault detection thresholds for this setup, i.e.,
y = 61 dBm for H-KNN and H-MED and y = 42 for H-MMSE.

Under the AP Failure model, the H-MED does not provide adequate fault tolerance, espe-
cially when the percentage of faulty APs exceeds 30%, as shown in Figure 4.13a. Beyond that
point, the SNAPft-z algorithm proves to be more resilient to faults, however its performance
is inferior compared to the H-KNN and H-MMSE algorithm:s.

In the case of AP Relocation faults, SNAPft-z has higher fault tolerance than H-KNN and
H-MMSE when a > 30% and its performance is similar to the H-MED algorithm; see Fig-
ure 4.13b.

When the False Negative model is assumed, we observe similar behaviour with AP Failure
faults. SNAPft-z exhibits high fault tolerance and outperforms the H-MED algorithm when
more that 40% of the APs are corrupted, as shown in Figure 4.13c. Still the H-KNN and H-
MMSE algorithms can handle better this type of fault.

Faults under the False Positive model cause severe performance degradation when the H-
KNN and H-MMSE algorithms are considered, as shown in Figure 4.13d. This confirms our
previous findings (Figure 4.7d) using the KIOS-A dataset. In this case, the SNAPft-z algorithm

delivers high fault tolerance and outperforms the H-MED algorithm when more that 60% of
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Overall, the SNAPft-z algorithm is less accurate compared to H-KNN, H-MMSE and H-

MED in the fault-free case, as well as when the percentage of faulty APs remains low. This is

expected because the SNAPft-z algorithm does not exploit the full range of RSS values in the

computations, contrary to the other algorithms. Under AP Failure and False Negative faults,

SNAPft-z attains adequate fault tolerance, however it is outperformed by H-KNN and H-

MMSE. On the other hand, SNAPft-z is a very good option when AP Relocation and False

Positive faults are present in the fingerprinting system. To summarize, SNAPft-z should be

preferred for mitigating any type of fault on mobile devices with limited processing and energy

resources, due to its low computational complexity. Moreover, it is the best candidate solution

for fault tolerant localization in the presence of False Positive faults.

4.6 Chapter Summary

The presence of faults during localization, e.g., caused by AP failures or relocations and

malicious attacks, can lead to significant accuracy degradation. In this chapter we focus on

fault detection and mitigation in order to improve the fault tolerance of localization algo-

rithms.



To this end, we start by introducing realistic fault models, namely the AP Failure, AP re-
location, False Negative and False Positive models, that capture different types of abnormal
behaviour with respect to AP functionality in fingerprinting localization systems owing to
hardware failures or malicious attacks. We discuss the feasibility of the underlying attack or
the occurrence probability of the relevant failure and describe how these new models can be
simulated using the original test data.

Subsequently, we develop robust fault detection schemes using RSS distance-based or
likelihood-based indicators. By coupling these detection mechanisms with properly modified
metrics in the underlyinglocalization algorithm we derive hybrid algorithms that significantly
improve the resilience of the standard fingerprinting algorithms to faults.

In particular, we propose three new fault tolerant algorithms, namely H-KNN, H-MMSE
and H-MED. The H-KNN algorithm combines the RSS distance-based fault detection mech-
anism with a modified distance metric and greatly improves the fault tolerance of the original
KNN algorithm, when APs fail accidentally or maliciously. The H-MMSE algorithm com-
bines our likelihood-based fault detection mechanism with a modified likelihood metric to
increase the resilience of the MMSE algorithm to AP Failure faults. The H-KNN and H-MMSE
algorithms exhibit high fault tolerance in the presence of AP Failure and False Negative faults,
however they are less effective under other types of faults.

To this end, the H-MED hybrid algorithm switches between the Euclidean and the median-
based distance metrics to alleviate the effect of AP Relocation faults, while at the same time
improves the accuracy of the median-based localization algorithm in the fault-free case.

On a different line, we build upon the SNAP algorithm, which exhibits high resilience to
sensor faults in binary WSNs, and adapt it to WLAN setups. We introduce an implementation
of the SNAP algorithm for RSS fingerprinting in WLAN that is simple and time efficient, i.e.,
by using only binary information of whether an AP is sensed or not. This algorithm is mod-
ified to derive the SNAPft-z algorithm that reduces the localization error and improves the
resilience to AP faults. Experimental results indicate that SNAPft-z achieves high fault toler-
ance, especially when False Positive faults are present, while maintaining low computational

complexity.
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Chapter 5

Localization for Diverse Devices

5.1 Background

5.1.1 Problem Formulation & Definitions

For the purposes of this chapter we extend the formulation of the RSS fingerprinting prob-
lem, introduced in Section 4.1.1. In particular, these extensions allow to deal with the device

diversity problem in a formal way for the following two cases:

1. The device carried during the online phase may differ from the device that was used to

collect the reference data for building the radiomap

2. The reference data in the radiomap may be collected with multiple devices in a crowd-

sourcing fashion

In the offline phase, we consider a set of predefined reference locations {L : {; = (x;, i), i =
1,...,1} ona grid over the localization area. We collect RSS measurements from n APs with a
set of heterogeneous devices D™ m =1,..., M. Device m visits a subset of the reference lo-
cations {L" : €; = (x;,y3), i=1,...,1"},sothat L") C Land L = Ufle L. A reference
fingerprint r'™ = [r

i

(m) (M)]T

o s, 1, ] associated with location ¢; is a vector of RSS samples and
rf]’.”) denotes the RSS value from the j-th AP collected using device D™, These fingerprints
are contained in the device-specific radiomap R € Z . that may partially cover the
area, while all devices contribute their respective radiomaps for building the crowdsourced
radiomap R € Z,_, that covers the whole area. This is done by aggregating the RSS values for

each AP across all contributing devices M; at location ¢;, where 1 < M; < M, according to

1 M;
— 2 (m)
rij = 1- rij . (51)
m=1
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Note that this formulation includes the extreme cases where the device-specific radiomaps
correspond to non-overlapping contributions (M; = 1, Vi) in the localization area, as op-
posed to fully overlapping contributions (M; = M, Vi).

In the online phase, we exploit the crowdsourced radiomap R to obtain a location estimate
T

¢, given a new fingerprint s = [sy,...,S,]

carried device D), m’ € {1,..., M’} with M’ > M.

measured at the unknown location € by the user-

5.1.2 Experimental Setup & Dataset

Our dataset contains reference data, collected at predefined reference locations with one
or more WLAN-enabled mobile devices, that are used to build the required radiomap for
the fingerprinting algorithms. Moreover, the datasets contain additional test data, collected at
several test locations with one or more mobile devices, that are used for the validation of the

developed algorithms.

KIOS-B Dataset

The KIOS-B dataset was collected at the KIOS Research Center, later than the KIOS-A
dataset described in Section 4.1.3, using exactly the same reference and test locations. This
new dataset differs from the KIOS-A dataset only with respect to the number of devices and
the number of collected samples. In particular, apart from the HP iPAQ hw6915 PDA de-
vice, we have also used 4 other different mobile devices for our data collection, namely an
Asus eeePC T101MT laptop running Windows 7, an HTC Flyer Android tablet and two other
Android smartphones (HTC Desire and Samsung Nexus S)*. The data collection for the An-
droid devices was conducted with our award winning Airplace logging and positioning plat-
form? [78-80, 82]. Specifically, we used the Airplace Logger application to collect RSS values
from the surrounding APs at several reference and test locations, as follows. The floorplan
map is displayed on the Android device within the Airplace Logger user interface, enabling
the users to select their current location by clicking on the map and then click the on-screen
buttons to initiate and end the logging process.

For our reference data we recorded fingerprints, which contain RSS measurements from
the surrounding APs, at 105 distinct reference locations by carrying all 5 devices at the same

time. The RSS measurements come from 9 APs installed locally to provide full coverage. More-

"The KIOS-B dataset is available to download at http://goo.gl/u7IoG
*Airplace has been released as an open source project and is available at http://goo . gl/3uaGKe

90



A

H-HH

iz

Figure 5.1: Reference and test locations in the KIOS-B dataset.

over, there is a varying number of neighbouring APs that can be sensed in different parts of
the floor and in some locations more than 60 APs could be sampled, depending on the device.
A total of 2100 training fingerprints, corresponding to 20 fingerprints per reference location,
were collected with each device. These data are used to build device-specific radiomaps by
calculating the mean value RSS fingerprint that corresponds to each reference location.

Two weeks later, we collected additional test data at 96 locations by carrying all 5 devices
simultaneously, while 10 fingerprints were recorded at each test location. The test locations
(red dots), most of which do not coincide with the reference locations (blue circles), lie along
a path marked with red line that has two segments (green square indicates the end of the first

segment and the beginning of the second segment), as shown in Figure 5.1.

5.2 Revisiting Manual Device Calibration

Several experimental studies have reported a linear relation between the RSS values re-
ported by heterogeneous devices [52, 62, 116]. Thus, if a sufficient number of colocated RSS
pairs (i.e., collected at the same location and time with two different devices) is available,
then the linear parameters can be estimated through standard least squares fitting. To put it
formally, for two devices D) and D® we use the RSS data in the respective radiomaps to

compute the parameters by

7’5]-2) = Aurfjl) + Bia, (5.2)
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Figure 5.2: Linear relation between RSS values from diverse devices.

where rfjl) and rij) denote the mean RSS value at location ¢; from the j-th AP for DY) and D
respectively, while A5 and Bj, are the linear parameters for mapping the RSS values from
D to D). Some indicative correlation plots for various pairs of devices using data from
our KIOS-B dataset are shown in Figure 5.2. These plots confirm the linear relation between
the RSS values reported by heterogeneous devices and justify the effectiveness of first order
polynomials for device calibration.

Assuming that the radiomap contains data from a single reference device D!, an impor-
tant question is how much data should be collected with a new device D™, m # 1 to achieve
a good mapping to the reference device D*) and guarantee acceptable accuracy when this
new device D™ is used for localization. For instance, if a considerable volume of RSS data
that spans the whole area of interest needs to be collected with another device D™, then this
new dataset may as well be used as a second radiomap that will be employed whenever device
D) is carried by a user. Thus, manual calibration is only justified if a small number of RSS

fingerprints collected at a few calibration locations suffice to obtain an adequate mapping.
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Authors in [52] report that in their setup, where around 15 APs are sensed at each location,
manual calibration is very effective when RSS fingerprints collected at three to five locations
are used for fitting. Our experimental results are in agreement and in the following we provide
a justification to support this observation.

Suppose that the colocated RSS pairs from two different devices y = [rfjl), rf].Z)]T follow
a normal distribution, i.e. y[k]|x N (x,R), where x is a bivariate random vector and R is
the covariance matrix. Roughly speaking, x and R represent the center and the shape of the
cloud of RSS pairs in this 2-D space, respectively; see Figure 5.3a. In the linear fitting given by
equation (5.2), the parameter By, is directly related to the cloud center x, while the parameter
Ay is related to the principal axis of the cloud shape R. For brevity, we assume that R is
known, i.e. Ay, value is fixed, and in the following we study the behaviour of the cloud center
x for increasing number of RSS pairs that provides insight into the convergence of the By,
parameter”.

Assuming prior distribution x ~ N (m]0], P[0]), the posterior distribution given a series

of colocated RSS pairs is x|y[1:k] ~ N (m[k], P[k]) with
Plk] = Plk — 1] — P[k — 1](P[k — 1] + R)"'P[k — 1] (5.3)

mlk] = mlk — 1] + Pk — 1)(P[k — 1] + R) ™ (y[K] = m[k — 1]). (5.4)

These equations are used for updating m k| and P[k] recursively [119] and improve the es-

timate of x by sequentially processing the RSS observations from pairs of devices. By Cheby-

shev’s inequality, the disk with center m[k] and radius r = +/trace(P[k])/0.05 contains x with
probability at least 95% [119]. It can be shown that trace(P[k]) < trace(R)/k and consequently
the 95% disK’s radius is proportional to 1/ Vk. As a rule of thumb, to get for example 10 times
better accuracy, 100 times more data are required. We may use the sample covariance esti-

mator to calculate R from a series of colocated RSS pairs y[1:k| and study the 95% error disk’s

radius by plotting +/trace(R)/(0.05k). The center of the RSS cloud (shown in green) for in-
creasing number of locations that contribute their mean RSS pairs to the fitting is illustrated in
Figure 5.3a. Note that these locations are uniformly distributed and each location contributes

9 RSS pairs*. It is observed that the center x, when data from few locations are used, converges

*The simultaneous estimation of x and R is also possible by treating them both as unknown and assuming a
flat prior for x and a Wishart prior for R and then using recursive formulas for the posterior means of x and R

given y[1:k], as discussed in [25].
*For simplicity, in this analysis we consider only the RSS values from the 9 APs installed inside the experi-

mentation area.
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Figure 5.3: Manual device calibration using a small amount of RSS data.

quickly to the center obtained when data from all 105 locations (i.e., around 945 RSS pairs) are
considered. Moreover, the 95% error disk’s radius decreases as the number of locations grows
from 1 to 40, indicating that colocated RSS pairs from 15 to 20 locations seem to suffice; see

Figure 5.3b.

The above analysis justifies the effectiveness of the manual calibration using a small amount
of data and in practice we observed that around 5 known locations uniformly distributed in-
side the area of interest can provide good device calibration. The statistics of the positioning
error using data from a variable number of locations (pertaining to the whole test set) are
listed in Table 5.1 using the HP iPAQ and the HTC Flyer as reference and new device, re-
spectively. These results indicate that the localization accuracy can be significantly improved
when manual calibration is applied. For instance, the mean error decreases to 2.7 m when we
use colocated RSS pairs collected with the HTC Flyer at all 105 reference locations, compared
to 7.6 m when no device calibration is applied. Interestingly, we observe that using 20 or only
5 locations (i.e., 180 or 45 colocated RSS pairs) for manual calibration has marginal effect
on the localization error. Note that in the cases where few reference locations are considered
for manual calibration, the results pertain to 10 experiments assuming different subsets of

randomly selected locations.

These results confirm that manual calibration with colocated RSS pairs collected at known
locations is a very effective approach. More importantly, when the area of interest is covered
by several APs then only a few locations need to be visited with an uncalibrated device, thus

reducing the time and labour overhead for calibrating a new device.

However, this approach has limited applicability in real-life applications where users enter

an indoor environment, such as shopping malls, airports, etc., carrying an uncalibrated device,
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Table 5.1: Positioning error [m] of the manual device calibration.

Uncalibrated All 20 5
Mean 7.6 2.7 2.7+0.0 2.9+0.2
Median 7.3 23 23+00 2.4+0.1
67% CDF 9.4 3.0 3.0£0.0 3.1+0.3
95% CDF 15.7 6.2 63+03 7.0+0.8
Max 19.1 16.2 15.0£1.3 14.6=x1.1

because they have to be guided to specific known locations for collecting RSS data. This implies
that a user is already familiar with the area of interest, which is usually not the case. Moreover,
a considerable data collection effort is still required by the user prior to localization. Our
approach described in the following is to exploit histograms of RSS values collected with the
reference and user-carried device in order to develop a fully automatic approach that does not

require any user intervention.

5.3 Histogram-based Device Calibration

5.3.1 RSS Histograms

The RSS histograms of three different devices are shown in Figure 5.4. These histograms
correspond to the mean RSS values from all available APs collected at all 105 reference loca-
tions. The first observation is that two histograms may differ significantly with respect to the
range of RSS values, as well as the probability of each RSS value, as in the case of HP iPAQ
and HTC Flyer. On the other hand, the respective histograms for some device pairs can be
quite similar, as in the case of Asus eeePC and HTC Flyer. Note that compared to our results
reported in [87], where we considered only the RSS values from the 9 APs installed locally, the
histograms in Figure 5.4 are left-skewed because there is a large number of weak RSS values
recorded from APs that are located far from the user. This is most evident in the histogram
of the iPAQ device, which features a more sensitive WLAN adapter and is able to sense very
distant APs (Figure 5.4a).

Assuming that the relation between the RSS values reported by diverse devices is linear,
there is a simple way to exploit the histograms that are accumulated on each device for some

time. Specifically, one can deduce the extreme values from the respective RSS histograms and
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Figure 5.4: Histograms of the mean RSS values and corresponding empirical CDFs.

then obtain the linear fitting parameters from the following system of equations
8(2) = Algs(l) + B12, (55)

where S = [Si(nli)n s,(,:u)x]T and S® = [51(1121)11 S%)X]T denote the vectors that contain the mini-
mum and maximum RSS values in the histograms of devices D) and D®), respectively. This
method is very appealing due to its low complexity, however the calibration performance
can deteriorate significantly under some conditions, as shown by the experimental results in

Section 5.3.3.

5.3.2 Self-calibration Method

The relation among the RSS histograms of different devices is also reflected in the equiva-
lent empirical CDF (eCDF), as shown in Figure 5.4d. We have observed that the eCDF of the
raw RSS values, recorded while walking around with a particular device for a few seconds, re-
sembles the respective eCDF of the mean RSS values collected with the same device at several
uniformly distributed known locations. This implies that we may exploit these eCDFs to per-

form device calibration during localization. The main idea in our self-calibration method is
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Figure 5.5: Block diagram of the device self-calibration method.

the use of RSS histograms to obtain a mapping between the reference and various user devices,
thus avoiding the bother of the manual calibration approach.

The block diagram of our method is shown in Figure 5.5. First, we use the existing ra-
diomap to obtain the RSS histogram of the reference device DY), Subsequently, when the
user enters a building and starts localizing, the RSS values in the currently observed finger-
print s)(t) are recorded simultaneously in the background in order to create and update
the histogram of raw RSS values for the user-carried device D(?). Then, we use the RSS values
that correspond to specific percentiles of the eCDF to fit a linear mapping of the form in equa-
tion (5.2) between the user and reference devices. Subsequently, the parameters (A, Bo ) are
used to transform the RSS values observed with the user device and obtain the corresponding
fingerprint s(!)(t), where 351)(1‘) = A215§2)(t) + Boy, j = 1,...,n. The resulting fingerprint
s (t) is compatible with the radiomap and finally the unknown location £(t) can be esti-
mated with any fingerprinting algorithm. The Device Calibration component in our method
that computes the parameters (A, Boy ) is detailed in the following.

Let F1(x) and F5(x) denote the eCDFs of the reference and user devices, respectively. In
general the CDF F(x) gives the probability of observing an RSS value that is less than x, while
the inverse CDF F~!(y) returns the RSS value that corresponds to the y-th CDF percentile.
We use the RSS values that correspond to the 10-th, 20-th, . . ., 90-th percentiles of the eCDF
to fit a least squares linear mapping between the user and reference devices and estimate the

parameters (As;, Bo;) according to
F'(y) = AuFy' (y) + Bay, ¥y €1{0.1,0.2,...,0.9}. (5.6)

A formal proof on the validity of the least squares mapping in equation (5.6) that uses the

inverse CDF percentile values to reveal the underlying functional relationship between the
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RSS values collected with different devices can be found in Appendix F.

A question that arises is how much time is needed in practice until the user device is self-
calibrated. While the user is walking, the current fingerprint s'? () contributes only a few RSS
values and F»(x) does not change significantly between two consecutive samples. Thus, it is not
necessary to update F(x) every time a new fingerprint s()(t) is available, but rather one can
buffer the RSS values contained in a number of successive fingerprints and then update Fa(x)
before performing the linear fitting. We have experimentally found that the buffer size by = 10
works well in our setup, i.e., the parameters (As;, Bo;) are recalculated every 10 seconds. At
the beginning, we initialize the parameters to (As;, Ba1) = (1,0), i.e., no transformation is
performed, to handle the localization requests until the buffer is full and the parameters are
estimated for the first time. Using a lower value for b; does not seem to improve the localization
accuracy significantly, while it introduces unnecessary computational overhead. On the other
hand, increasing b; means that the parameters are not updated frequently enough and the
performance is degraded, especially at the beginning until (As;, Bo;) are estimated for the
first time.

Calculating the least squares fitting parameters (As;, Bo1) is the most demanding task
in our self-calibration method in terms of computational power. We propose a modification
to address this issue in case such computation is costly for low-resource mobile devices. In
particular, we fix Ay; = 1, so that we actually fit a unit slope linear mapping and only estimate

the parameter By; using the following median estimator
B = med(F;*(y) — F;'(y)), v € {0.1,0.2,...,0.9}. (5.7)

This approach is valid because several experimental studies [64,87,138] have reported that the
A values among different device pairs are usually around 1. With this modification only one,
instead of two parameters, needs to be estimated and the computational overhead of the least-
squares fitting in equation (5.6) is significantly reduced. More importantly, this benefit comes
without compromising the performance of the self-calibration method, as the experimental

results in Section 5.3.3 indicate.

5.3.3 Experimental Results

We assess the performance of the proposed self-calibration method using the experimen-
tal data from all 5 devices in the KIOS-B dataset, described in Section 5.1.2. For simplicity

we drop the subscripts in the linear fitting parameters and in the following (A, B) denotes
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the fitting parameters between the reference and user devices that can be any of the 5 devices
considered in our dataset.

As we have visited the test locations in that dataset one after the other, for the purposes
of this section, the test data can also be viewed as sampling the same path 10 times with all
devices, while 1 fingerprint was recorded at each test location. Moreover, the results reported
here take into account all available APs. Preliminary results based only the APs installed lo-
cally inside the experimentation area are reported in [87].

We consider two variants, namely the self-calibration method, denoted SC, that calcu-
lates the fitting parameters with equation (5.6) and the modified self-calibration method that
assumes A = 1 and estimates B with equation (5.7), denoted SCmed. We also evaluate the
histogram-based method of equation (5.5) that computes the fitting parameters using only
the minimum and maximum RSS values for each device pair, referred to as MM.

In our comparison we also include some state-of-the-art calibration-free methods, such
as the SSD method [101], the DIFF method [40], the HLF method [64] and the RBF method
[99]. For the SSD method we select the anchor AP as the one with the least average deviation
of RSS values over the whole localization area [56] and we apply the same approach to the
HLF method. Finally, for completeness we report the localization accuracy of the manual
calibration method [52, 62], denoted MC, that uses the mean RSS values collected with the
user device at all 105 locations visited with the reference device, as well as the two extreme
cases of No Calibration (NC) and using a Device Specific radiomap (DS) collected with each
device that provide the upper and lower bound on the performance, respectively.

First, we demonstrate the efficiency of the SC method on a single route using the iPAQ
radiomap, while the user carries the Flyer device. The performance of our method is illustrated
in Figure 5.6a, where we have used a buffer size by = 10. We observe that in the first 10 seconds
the accuracy is not adequate, because the device is still uncalibrated. While the user is walking
the raw RSS values are collected in order to build the RSS histogram that will be used for the
self-calibration. It is obvious that beyond that point, the user device has been automatically
calibrated and the localization system delivers accuracy that is considerably better compared
to the no calibration case and is much closer to the case of using a radiomap that is created
from data collected with the Flyer device.

Next, we investigate the performance of the SC method in terms of the localization error
attained while the user is walking. In particular, we calculate the mean positioning error € for
a single route, which is defined as the distance between the estimated and actual user locations

averaged over the 96 locations that comprise the testing route. By sampling the testing route 10
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times, we calculate the statistics for €. These statistics, pertaining to all 10 routes, are depicted
as boxplots in Figure 5.6 for some indicative device pairs. On each box, the central mark is
the median, the edges of the box are the 25th and 75th percentiles, while the whiskers extend
to the most extreme values of €, except outlier values which are shown individually as red
crosses.

The first observation is that localizing without device calibration should be avoided be-
cause it may lead to significant accuracy degradation. For instance, for the iPAQ - Desire
pair (Figure 5.6b) if the Desire device is not calibrated the median of the mean error € is
around 10 m compared to 2.2 m in case we use a radiomap collected with the Desire device
(i.e., DS method), instead of the iPAQ. Both variants of our self-calibration method (i.e., SC
and SCmed) are very effective and achieve performance that is very close to the manual cali-
bration approach as shown in Figure 5.6b, but with considerably less effort.

Note that for the calculation of the error statistics we have included all the initial location
estimates, obtained before the parameters (A, B) have been estimated. Regarding the estima-
tion of the parameters (A, B), the process was restarted at the beginning for each one of the 10
testing routes, i.e., for each route the parameters were initialized to (1,0) and then estimated
using the proposed methodology, to guarantee the same conditions for the 10 experiments.
Of course, in real life applications, these parameters can be estimated once when the user
walks inside a given indoor environment for the first time and then be stored on the device
for future use in the same environment.

Surprisingly, the SSD and HLF methods perform poorly for the iPAQ - Desire pair. It
turns out that their performance can be improved, if we consider only the local APs, instead
of all the APs in the vicinity, during localization as reported in [87]. This is a strong indication
that for small-scale, fully-controlled setups, where the APs provide full coverage, the SSD and
HLF methods are adequate. However, in large-scale setups, where the APs provide intermit-
tent coverage, their performance might deteriorate. For other device pairs, the SSD and HLF
methods seem to be more robust to device diversity, however they are still both outperformed
by the proposed self-calibration method; see for example Figure 5.6c and Figure 5.6d. This is
not the case for the other differential fingerprinting method (DIFF) that attains almost the
same localization accuracy with our self-calibration methods. This will be further analysed
and discussed later in Section 5.4.

The performance of the RBF method is also very poor in most scenarios, highlighting
that the fine-grain information of the RSS levels is lost when ranks are used. On the other

hand, the simple histogram-based MM method seems to work well in practice for some de-

100



25

. 11
No Calibration +
Self-Calibration 10 £ 1
Device-Specific
I = ,
E s b
E g
5 151 ¢ 7r b
= 5 =
w a T
2 5 6 |
H 5 _
:% 10F g 5 E E| 1
S 2
o @
& 4T T & 7
L 257
5 =9 = 1
- =
2l ]
O L i ir 7
0 20 40 60 80 100
Samples e mMC SC  SCmed MM SSD  DIFF  HLF RBF DS
(a) Positioning error in a single route. (b) HP iPAQ radiomap - HTC Desire user.
6 6
+ an
I [ = |
E E L +
= . 5
['4 ['4
3 — _ 3 g‘ B g
s + s T
S e S = T O |
N . = -] s o
:% L e E % ‘i' —
1, =
g g
= =
1 B 1 B
0 NC MC SC SCmed MM SSD DIFF HLF RBF DS ) NC MC sC SCmed MM SSD DIFF HLF RBF DS

(c) HTC Flyer radiomap - Samsung Nexus S user. (d) HTC Flyer radiomap - Asus eeePC user.

Figure 5.6: Localization accuracy of the self-calibration method.

vice pairs and achieves the same level of accuracy as our self-calibration method, as shown
in Figure 5.6b and Figure 5.6c. However, our experimental results reveal that in some cases,
relying only on the minimum and maximum RSS values for the device mapping is not a good
strategy, as demonstrated in Figure 5.6d. For the Flyer — eeePC device pair, the MM method
fails to calibrate the eeePC device and the resulting localization error almost doubles, com-
pared to the SC and SCmed methods. In particular, the MM method computes the fitting
parameters (A, B) as (0.76, —27.35), while the optimal values attained by the MC method are
(0.89,—11.09). This is due to the fact that the eeePC device recorded an outlier maximum
RSS value that caused the B parameter to deviate from the optimal, thus leading to poor cal-
ibration and consequently high localization error. Similar behaviour was observed for other

device combinations, as shown in the following.

We have also investigated the performance of the calibration methods in case the user-
carried device is the same as the device used to collect the RSS data for the radiomap [88].

Even though, in many real life applications the localization system is expected to track mostly
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diverse devices, there is always the possibility of a user carrying the same device. We observed
that the localization error of the SSD and HLF methods is increased compared to the self-
calibration method and in fact it would be better not to employ them at all if this situation
can be identified (e.g., the device transmits its brand and model to the localization system).
This behaviour is due to the smaller dimensionality of the SSD and HLF fingerprints [101].
Moreover, transforming the RSS values in SSD and HLF methods reduces the discriminative
capabilities of the RSS values at the expense of better accuracy when heterogeneous devices
are considered.

The results for five different user-carried devices assuming that the reference device is
either the Asus eeePC or the HTC Desire are summarized in Table 5.2 and Table 5.3, respec-
tively. For every device pair the median of the mean positioning error € in meters is reported
for various calibration methods, while each row indicates the device used during localization.
The calibration performance of the MM method seems to be affected in several cases, e.g., the
eeePC - iPAQ, the eeePC - Nexus S (Table 5.2) or the Desire — eeePC (Table 5.3) device pairs.

Looking at these results it is evident that the proposed self-calibration method improves
accuracy for all device pairs and provides similar calibration performance with the MC method.
Note that the SCmed method attains the same level of performance with the SC method, de-
spite its reduced computational cost, and interestingly it proves to be more resilient to device
heterogeneity; see for example the eeePC - iPAQ (Table 5.2) and the Desire - iPAQ (Table 5.3)
device pairs. This is probably because the estimated slope parameter A is usually close to 1,
so the intercept parameter B is more important to obtain a good fitting. Thus, in practice, the
SCmed method seems to perform better than the SC method for some device pairs because

it avoids overfitting when the signal strength histograms have not yet converged.

Table 5.2: Localization error for various calibration methods (eeePC radiomap).

eeePC
SC SCmed MM SSD DIFF HLF RBF MC

iPAQ 3.7 2.8 3.8 45 3.4 46 56 27
eeePC 2.2 2.2 23 27 2.2 27 36 22
Flyer 2.2 2.2 2.7 26 2.2 25 36 23
Desire 2.5 2.5 25 27 2.5 3.0 3.8 25
NexusS 2.3 2.3 29 29 2.3 27 39 24

We have also investigated the maximum error pertaining to the same 10 testing routes

102



Table 5.3: Localization error for various calibration methods (Desire radiomap).

Desire

SC SCmed MM SSD DIFF HLF RBF MC

iPAQ 42 3.0 36 55 4.2 5.8 51 29
eeePC 2.7 2.6 36 33 24 3.3 3.7 2.6
Flyer 2.4 2.3 24 3.0 2.3 2.9 38 24
Desire 2.4 2.3 22 29 2.3 2.9 36 23
NexusS 2.5 2.4 27 27 2.5 27 38 24

and the results reported in [88] highlight that both self-calibration methods can alleviate high
localization errors for most device pairs, while the SCmed method provides a slight improve-
ment over the SC method. Beyond the MC method that is not practical in real-life applica-
tions, only the DIFF method achieves similar performance with SCmed. However, as it will be
demonstrated in the following, the DIFF method entails high computational cost. Moreover,
the SCmed method is still better whenever the iPAQ device is involved.

Thus, according to our findings, the SCmed method is a good candidate solution that
exhibits two highly desirable properties, i.e., robustness to device diversity and low computa-

tional complexity.

5.4 Differential Fingerprinting

Asalready discussed, signal strength fingerprinting consists of the offline and online phases.
In the offline phase we use a reference device D™V to collect the reference fingerprints r; =
[Fi1, ..., 7in)" at the respective locations ¢; = (x;,v;), i = 1,...,1, which are stored in ra-
diomap R € Z. ;- In the online phase, we exploit the reference data to estimate location ¢,
given a new fingerprint s = [s,...,s,| measured at the unknown location £ by some device
D™ m=1,..., M.

In this section, we use the NN method [9] that estimates location by

n
— . ) 2
{(s) = arg min di, di = Z (rij - sj) , (5.8)
1 ],:1

where d? is the squared Euclidean distance between the reference fingerprints r; and the ob-
served fingerprint s. Essentially, all reference locations are ordered according to increasing d;

and location ¢; with the shortest distance between r; and s in the 7-dimensional RSS space is

returned as the location estimate.
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Using signal strength differences removes the constant term K in the log-distance propa-
gation model of equation (2.1) and makes the differential fingerprints from diverse devices
compatible with each other. This allows the user-carried device to be any device D), m’ =
1,...,M" with M’ > M. There are two approaches in the literature for creating the differential

fingerprints, namely the DIFF and SSD methods, which are defined in the following.

5.4.1 Differences of Signal Strength
DIFF Approach

The DIFF approach [40] creates the differential fingerprints by taking the difference be-

n(n-1)

tween all pairwise AP combinations, thus the transformed fingerprints contain () = ==

RSS differences. In this sense, the DIFF reference fingerprint r; at location ¢; in the differential

radiomap R and the DIFF fingerprint during localization § are defined as

t o= [Fao e, Figity) (5.9)

s = [§12/ ey g(n—l)n]T/ (510)

where 7, = 1;j — i and Sy = s; — s, 1 < j < k < n denote the RSS difference between the
j-th and k-th APs in the reference and localization fingerprint, respectively. Positioning with
the NN method is performed by replacing d? in equation (5.8) with

n k-1

ZZ rz]k S]k (5.11)

For convenience, we use the following Lemma that holds for DIFF fingerprints.

Lemma 4.

n k-1
Z rl]k S]k

k=2

n

»\-
,_.,_.

2
(1”1']' — Tk — (S]' — Sk))
1
n n

2
Bijk’
k=1 j=1

=

:2]

N | —

(5.12)

where Bjjx = rij — rix — (s; — sx). The complete proof of Lemma 4 using mathematical
induction is included in Appendix G.
Now, let r; be the RSS reference fingerprint at location ¢; and s the RSS positioning fin-

gerprint in a localization area covered by 11 APs. As a consequence of the DIFF definition, we
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prove the following theorem that relates the DIFF with the traditional RSS fingerprints in case

the NN method is used for localization.

Theorem 1. The distance ailz between the DIFF fingerprints t; and s with respect to the distance

d? between the corresponding RSS fingerprints r; and s is given by

& = n(d? —n(F — 5)2). (5.13)

Proof. Starting from Lemma 4 we have for the inner sum

2
Tz; — 1k — (sj — Sk))

Z Ble

- ||M

(7’1‘]' —S5;— (rik - Sk>)2

(rij —s; 22C1]k+2 (ri — sp)?

=1
= d? -2 Z Cz‘jk + Vl(i’ik - Sk)z, (5.14)
j=1

1

Il
-
= |l

‘\..

where Cijx = (ij — s;)(ri — sx) and for the last equality we have used the squared Euclidean

distance between RSS fingerprints in equation (5.8). We also have

=1
n n
Y Z NI
]: : j:]_ j:]_
= Nryr; — NrpS — N¥;Sk + NSiS. (5.15)
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By replacing equations (5.14) and (5.15) into equation (5.12) we get

d? = ;Xn:(f QZCUkJrn Tik — Sk) )

k=1

ZZdQ ZZCl]k+ 22 Fi —

n
n n
2 = 5 z 2
= Edi - Z(Wﬂd’i — NryS — NS + nsiS) + Edi
k=1
n n n n

:nd?—nfinik+n§Zrik+n17iZsk—ns_Zsk

k=1 k=1 k=1 k=1
= nd; — n’7; + n°7S + n’r;s — n’s’
= n(d? - n(7 - 275 + 5°))
— n(d? —n(F - §)2). (5.16)

SSD Approach

In the SSD method [56, 101], the differential fingerprints are created by subtracting the
RSS value of an anchor AP from the other RSS values in the original fingerprint. Thus, the
transformed fingerprints contain only the n — 1 RSS differences that are independent. The
anchor AP can be selected as the one that exhibits the least average deviation of RSS values
over the whole localization area [56]. Without loss of generality we assume that p is the anchor
AP and we define the SSD reference fingerprint ¥; at location ¢; in the differential radiomap R

and the SSD fingerprint during localization § as

t o= [Fu,.. Fipen)” (5.17)

§ = [§1,...,8.4]%, (5.18)

where 7;; = 1;j —rj, and §; = s; —s,, j = 1,...,n, j # p denote the RSS difference between
the j-th AP and the anchor AP p in the reference and localization fingerprint, respectively.
Localization with NN is performed by replacing d? with

y - 2
@2 =Y (7-5). (5.19)
=1
#p
Similarly with the DIFF approach, we prove the following theorem that relates the SSD

with the traditional RSS fingerprints in case the NN method is used for localization.
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Theorem 2. The distance d? between the SSD fingerprints ¥; and § with respect to the distance

d? between the corresponding RSS fingerprints r; and s is given by
d? = d? = 2n(ri, —s,)(F: = 5) + n(rip —s,)°, (5.20)
where p is the reference AP used to create the SSD fingerprints.

Proof. Starting from equation (5.19) we have

=1
j#p
n
2
= Z (1’1’]' —S5j— (rip - Sp))
=1
n n n
=Y (rij—sj) 22(711 $i)(rip —5p) + Z(rip —5p)°
=1 j=1 j=1
n n
=d? —2(r;p sp)( rij — Z sj) +n(rip —s,)?
j=1 j=1
= d? = 2n(riy = s,)(7; = ) + n(rip —s,)°. (5.21)

5.4.2 Mean Differential Fingerprints

Looking at equation (5.11) we can see that the DIFF method may increase dramatically the
dimensionality of the fingerprints, especially is areas covered by a large number of APs, thus
leading to higher computational complexity compared to the traditional RSS fingerprints.
On the other hand, equation (5.19) suggests that the dimension of the SSD fingerprints is in
the same order as RSS fingerprints. However, selecting an anchor AP is not trivial, especially
in large scale setups where the APs provide partial coverage. Moreover, recent experimen-
tal studies report that the DIFF method achieves higher localization accuracy than the SSD
method [44]. Our experimental results in Section 5.3.3 also confirm this observation.

Our goal is to keep the best of these two methods in order to preserve the localization
accuracy, while keeping the computational overhead low. We propose the Mean Differential
Fingerprint (MDF) approach that uses the mean value of the RSS fingerprint to create the RSS

differences. In the following, we formally define the MDF fingerprints.
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For convenience, let 7; = % 27:1 rijand s = % 27:1 s; denote the mean RSS value over
all APs in the reference RSS fingerprint r; and the localization fingerprint s, respectively. The
MDEF fingerprint ; at location ¢; in the differential radiomap R and the MDF fingerprint dur-

ing localization s are defined as

r, = [?1'1, ooy ?in]T (5.22)

s = [51,...,54%, (5.23)

where 7;; = r;j — 7;and 5; = s; —5, j = 1,...,n denote the RSS difference between the j-th
AP and the mean RSS value in the reference and localization fingerprint, respectively. Finally,

positioning with the NN method is performed by replacing d? with

n

& = Z (7 - §j)2. (5.24)

=1
Note that the MDF fingerprints have the same dimension as the original RSS fingerprints,
while from the processing power perspective only the mean RSS value 5 needs to be calculated
during localization. Moreover, by observing the radio propagation model in equation (2.1) we
can easily see that the MDF approach removes the device-dependent term K, thus addresses

the device diversity problem equally well compared to DIFF and SSD methods.

As a consequence of the MDF definition, we can derive the relation between the MDF and
the traditional RSS fingerprints in case the NN method is used for positioning. First, we see

that the following Lemma holds.

Lemma 5. For a vector x = [xy,...,x,|" with mean value X = % Y.\, x; it holds that
n n
Z(xi —-X)? = Z x? — nx’,

i=1 i=1

The proof of Lemma 5 is included in Appendix G. We now prove the following theorem

for the MDF fingerprints.

Theorem 3. The distance ai.z between the MDF fingerprints r; and s with respect to the distance

d? between the corresponding RSS fingerprints r; and s is given by

d? = d? —n(r; — 5)% (5.25)
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Proof. Starting from equation (5.24) we have

n

=Y (7 - §1)2
=
_ Z (rij =7 (s, - §))2
- Z ry =) = 20y = 7)(5 =) + (5= 5)°)
_ Z‘(m —7)? - 2;1417 + ]Z:;(sj -s)?
_Zr a2 -2Y a1 Y s n, (5.26)
==

where A;j = (rij — 7;)(s; — 5) and for the last equality we have used Lemma 5. We also have

Zn:Aij = Zn:(ri]- —1i)(s; —5)
=1

=1
n
= Z (T’i]‘S]‘ — Tijg = 171'5]' + fl‘g)
j=1
n n n
= ZTUS]' —§ZT’,‘]' —fiZS]‘ +71171'S_
=1 =1 =1

n
= Z 1’1']'5]' — nr;S — nris + nr;s
=

n
= Z 1’1']'5]' — nr;s. (5.27)

j=1

By replacing equation (5.27) into equation (5.26) and using the squared Euclidean distance
between RSS fingerprints given by equation (5.8), we get

n

d:f:Zr — N7 —22r1]5]+2nrls+z
—Zr,]—s] —n(r; — 5)*

=d’ —n(7; —3)° (5.28)

Combining Theorem 1 and Theorem 3 the following corollary holds.

109



Corollary 3. The distance ji? between the MDF fingerprints t; and s is proportional to the dis-
tance 6?1.2 between the DIFF fingerprints t; and s

&= %ci?. (5.29)

The importance of this result is that, given a RSS fingerprint s during positioning, the
ordering of the candidate locations ¢; € L is preserved when either MDF or DIFF fingerprints
are used. Thus, the NN localization method provides exactly the same location estimates in
both cases. The results presented in the following confirm that the proposed MDF approach
achieves the same level of accuracy with DIFE, but with significantly lower computational

complexity, due to the lower dimension of the MDF fingerprints.

5.4.3 Probability of Correct Location Estimation

In order to gain more insight about the behaviour of the differential fingerprints, we de-
rive analytical models to determine the probability of returning the correct location during
localization.

Let £; and ¢ be two neighbouring locations in the localization area, while r and r5 are the
corresponding RSS fingerprints in the radiomap. We assume that during localization the user
is located at £; and observes the RSS fingerprint s. The fingerprint s is a normally distributed
random vector, i.e. s ~ N(r;,2), where ¥ = ¢2I, is the covariance matrix, while 0 is the
variance of the Gaussian noise that disturbs the RSS values and I, is the identity matrix. The
objective is to derive analytically the probability that the NN localization method will return
the correct location ¢, instead of the incorrect location £, when RSS, DIFE, MDF or SSD fin-
gerprints are used, respectively. Next, we generalize our results for areas where the radiomap

contains several location fingerprints.

Analytical Model for RSS Fingerprints

In the case of traditional RSS fingerprints, the NN method will return the correct location

{1 only if the following condition is satisfied
d; < ds. (5.30)

In other words the unknown user location is correctly identified only if the distance be-
tween observed fingerprint s and the correct location fingerprint r; is smaller than the distance

between the observed fingerprint and the incorrect neighbouring location fingerprint r».
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Starting from equation (5.30) we have
n n
d% < d% (=4 Z(Tl]' — S]')2 < 2(7’2]‘ — S]')2
j=1 j=1
n n n n n n
@Y =2 s ) S <Y i =2) st ) S,
=1 =1 =1 =1 i=1 =1
n n
< QZﬁfoJerj <0, (5.31)
=1 =1

where §; = (r2j—71j) and y; = (rf]. - rgj). For convenience, we use vector notation to rewrite

equation (5.31) as

Ps+y <0, (5.32)

where § = 2[B1,...,Bs] and y = 27:1 Vi
The random variable C = fs + y is normally distributed, as a linear function of the

multivariate normal vector s, i.e. C ~ N(uic, 07) with

tc=pri+y
o2 = BSB’. (5.33)

This is equivalent with the result reported in [57]. Thus, the probability of correct location
estimation, when the NN method compares the observed fingerprint with just two location

fingerprints in the radiomap, is given by

PrC <0} = - + err( ) (5.34)

,2 2
Finally, in a real localization system where the radiomap is expected to contain several
location fingerprints, depending on the size of the area and the density of the reference loca-

tions, the probability of correct location estimation $¢ can be calculated as

!
Pc=Pr{C, <0,...,C; <0} HPr{Ci <0}, (5.35)
i=2
where the variable C; corresponds to the condition d% < d?, i = 2,...,1. Although this
analytical model is based on the assumption that the random variables C; are independent,
which is not true, it still provides a good approximation of the probability of correct location
estimation [57]. We also validate the analytical model in equation (5.35) with simulations later

in Section 5.4.5.
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Analytical Model for MDF and DIFF Fingerprints

We follow a similar approach to obtain the analytical model for the probability of correct
location estimation when MDF, rather than RSS, fingerprints are used in the NN localization

method. In this case, using Theorem 3, we can show that

n

di<die2) Bilsi—5)+ ) 0;<0, (5.36)
=1

=1
where ; = (r2j — 1) and 0; = (rf]. -7 - rgj + 72).

Using vector notation, equation (5.36) is equivalent to
BJs +6 <0, (5.37)

where  =2[B1,..., B, [ =1—1tele,e =[1,...,1]and 6 = Z';:l 6;. It can be shown that
the random variable Q = BJs+ 0 is normally distributed, i.e. Q ~ N (g, GQQ) with mean and

variance

o = BJra+0
oy =BIS]' B (5.38)

The detailed derivation of the inequality (5.36) and the proof that Q is a normally dis-
tributed random variable is included in Appendix H.1I.

Consequently, the probability of correct location estimation, using the NN localization
method with MDF fingerprints, in the two-location case and the multiple location setup re-

spectively, are given by

11 —HQ
PriQ <0} = = + —er (5.39)
I
Pq ~ H Pr{Q; < 0}. (5.40)
i=2

It follows directly from Corollary 3 that the analytical model for the DIFF approach, is

exactly the same with the model derived for the MDF approach.

Analytical Model for SSD Fingerprints

When SSD fingerprints are considered, using Theorem 2 with p being the anchor AP, we

can show that

n

i?<d e 2Z(ﬁj—ﬁp)(sj—sp)+26j <0, (5.41)
j=1

=1
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where f; = (13 — 11j), fp = (rop —11p) and €; = (rf]. + rfp — 1 - rgp — 2111 + 2r9,73).

j
Again, using vector notation we may rewrite equation 5.41 as

nMs +¢€ <0, (5.42)

where n = 281 — By, ..., fu — B, M =1 - elu,e=11,...,1,u=10,...,1,...,0] and
€= Z?:l €;. The detailed derivation is relegated to Appendix H.2.
Following the same process with the MDF approach, we can show that the random variable

R = nMs + € is normally distributed, i.e. R ~ N'(g, 03) with mean and variance

tr =nMr; +€
0% = nMYM'n". (5.43)
Finally, the probabilities that the NN localization method returns the correct location

when it compares the observed SSD fingerprint with just two SSD location fingerprints and

several SSD location fingerprints respectively are given by

PriR <0} = E + lerf( —HR ) (5.44)
22 5
20R
1
Pp ~ H Pr{R; < 0. (5.45)

5.4.4 Performance Analysis of Differential Fingerprinting

We now use the analytical models for RSS given by equation (5.35), for MDF and DIFF
given by equation (5.40) and for SSD given by equation (5.45) to analyse the performance of
the differential fingerprinting approaches.

We consider a simple localization setup, adopted from [57], which is depicted in Fig-
ure 5.7. The numbered WLAN APs (marked with triangles) are deployed in the perimeter
of the localization area and we start with n = 3 APs that are placed at the corners of the area,
while the maximum number is 7 = 16 APs. There are [ = 9 reference locations (marked with
circles) that are uniformly spread over a square grid, while the grid spacing is 1 m.

We assume that the RSS values from the surrounding APs at the reference locations are

collected with device DY) and are given by the log-distance propagation model

rt) =K—10flog,ydy, i=1,..,L j=1,...,m, (5.46)
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Figure 5.7: Small-scale localization setup.

where d;; denotes the distance between the i-th reference location and the j-th AP. We use
typical values for the model parameters and set K = —22.7 dBm, while f = 3.3. Moreover, we
assume that rfjl) is deterministic because it has been averaged over a sufficiently large number
of samples to filter out the noise.

During localization, the user is located at the central location ¢; = (2,2) and we assume
that the user carries either the same device D) or a different device D®. When D) is the
user-carried device, the observed fingerprint is s} ~ N (rgl), ), where 3 = 0%I. When the
second device D? is carried, we assume a linear relation between the RSS values reported by

D® and the corresponding RSS values of D), such that
8(2) ~ N(Algrgl) + Blg, E), (547)

where (Ajs, B12) are the fitting parameters between devices D® and DW. Such linear re-
lation between RSS values measured by heterogeneous devices has been reported in several
experimental studies [52,88,116].

We start out with the case of a user carrying the same device D) that was used to collect
the fingerprints in the radiomap. The results for varying number of APs, assuming that the
standard deviation of the noise disturbing the RSS values is 0 = 3 dBm, are illustrated in Fig-
ure 5.8a. We observe that using MDF or DIFF fingerprints does not have a considerable effect
and the performance is quite similar with the case of using the traditional RSS fingerprints.
The probability of correct location estimation $ is around 80% when 6 APs are considered

and seems to converge to 100% as the number of APs increases. On the other hand, perfor-
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mance is significantly degraded when SSD fingerprints are used and interestingly Pr < 80%
(mean value), even when all 16 APs are considered. The errorbars in the SSD curve reflect the
standard deviation with respect to different anchor AP p. The result in Figure 5.8a implies
that the selection of the anchor AP is not critical and the SSD approach has reduced accuracy,
even if the user carries the same device that was employed to collect the fingerprints for the
radiomap.

The probability of correct location estimation for varying noise standard deviation o is
plotted in Figure 5.8b, where we have fixed the number of APs ton = 7 (i.e., only AP}, j =
1,...,7 are considered). We observe that in low noise conditions (e.g., 0 = 1dBm) the per-
formance of the SSD fingerprints is close to the MDF and DIFF fingerprints. As ¢ is increased,
however, the SSD fingerprints perform worse and P decreases by around 3%-25% depend-
ing on the noise level. On the other hand, the MDF and DIFF fingerprints attain almost the
same level of performance with the RSS fingerprints.

Next, we focus on the case that the user carries a heterogeneous device D®, which is more
likely to happen in real-life applications. For simplicity, we consider a linear relation between
the RSS values reported by devices D) and D®), as shown in equation (5.47), and we have
set the linear fitting parameters to (A1, B12) = (0.95, 10). In this case, the corresponding
probability curves are plotted in Figure 5.8c for increasing number of APs, while 0 = 3 dBm.
It is evident that the MDF and DIFF fingerprints are capable of mitigating the device diversity
problem, thus maintaining the same level of performance during localization, as in the case
of carrying the same device DY). The SSD fingerprints are also not affected, however they fail
to achieve the same level of performance with the MDF and DIFF fingerprints.

As expected, the performance of the RSS fingerprints is poor, especially when a few APs
are considered. For instance, Pc = 5% when n = 5 APs, while P = 38% when n = 7 APs.
Their performance, however, is greatly improved when n > 11 APs are considered and inter-
estingly they outperform the SSD fingerprints. This suggests that in localization areas covered
by a large number of APs, the RSS fingerprints may be able to handle different devices and
the use of SSD fingerprints might not be justified. Another interesting observation is that the
probability curve of the RSS fingerprints peaks at certain points. This situation occurs in case
the available APs are uniformly distributed around the localization area, i.e. n € {4, 8,12, 16}
APs, as shown in Figure 5.7. This scenario creates symmetries capable of masking the defi-
ciency of the RSS fingerprints. This observation was also reported in [138], where the authors
used a simple 1-D analytical model to explain the behaviour of RSS for diverse devices in

symmetrical AP deployments under the assumption that A;o = 1 and By2 # 0. In contrast,
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our analytical models apply to the more general 2-D case and VA5, Bis.

In real-life applications the APs are not expected to be symmetrically deployed and in
addition the signal propagation indoors is more complicated compared to our simple local-
ization setup. Moreover, we observe that if RSS fingerprints are used, then P < 50% when
n = 7 APs are considered even under low noise conditions; see Figure 5.8d. This implies that
the localization accuracy is expected to deteriorate significantly in practice, when RSS finger-

prints are used to localize a different device. Therefore, differential fingerprints, specifically

using the MDF approach, should be preferred.
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Figure 5.8: Analytical results for differential fingerprinting.

5.4.5 Evaluation of Differential Fingerprinting with Simulations

Next, we validate our analytical results with simulations. We consider the same setup

shown in Figure 5.7, while the user resides at location £; = (2,2) during localization car-

rying either the same device D!V or a different device D),
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When D) is the user-carried device, we generate the RSS localization fingerprint s(*) by

(1)
1

noise, i.e. Sgl) = rS.) + X; where X; ~ N(0,0%). When the second device D® is carried, we

taking the corresponding RSSlocation fingerprint r; ’ and disturbing it with additive Gaussian

assume a linear relation to generate the RSS values reported by D such that
S;Q) = A121’S) -+ 312 —+ XQ, (548)

where (A12, B12) = (0.95,10) are the fitting parameters between devices D and D), while
Xy ~ N(0,0%).

The NN method estimates the user location through the ordering of the 9 candidate loca-
tions with respect to increasing Euclidean distance between the localization fingerprint and
each location fingerprint in the radiomap using RSS, DIFF, MDF and SSD fingerprints, re-

spectively. In this sense, the probability of correct location estimation can be calculated as

N
psin — VZ Y €{C,Q,R}, (5.49)

where Ny denotes the number of times that the correct location ¢; was identified using RSS,
MDF/DIFF or SSD, while Ny is the total number of simulations. The results pertaining to
10,000 simulated localization fingerprints are illustrated in Figure 5.9.

We observe that the analytical models tend to underestimate the probability of correct lo-
cation estimation compared to the simulation results. For instance, as the number of APs is in-
creased, the Pk curve for SSD converges to 77% when the analytical model in equation (5.45)
is used (recall Figure 5.8a), while the simulation results indicate that 3" converges to 85%
as shown in Figure 5.9a. This is expected because in the derivation of the analytical models
we assumed that the probabilities of correct location estimation between the correct location
and each of the incorrect neighbouring locations are independent. In general, however, we
see that the analytical models provide a good approximation and the analytical results reveal
similar trends with the simulations for varying number of APs and varying RSS noise both
for the same device DUV (Figure 5.9a and Figure 5.9b), as well for a heterogeneous device D)

(Figure 5.9¢ and Figure 5.9d).

5.4.6 Experimental Evaluation of Differential Fingerprinting

We validate our simulation results using experimental data from the publicly available
KIOS-B dataset, described in Section 5.1.2. We employ the reference data to build the device-
specific radiomaps, by calculating the mean value fingerprint at each reference location. We

also create the corresponding DIFFE, SSD and MDF radiomaps. Moreover, we use the test data

117



[N

o
©
)
©

T T
—#— RSS
SSD 5
=——+— MDF/DIFF

o
©
o
)

o
~
o
~

Probability of correct location estimation
o o o o
w ES o o <
Probability of correct location estimation
o o o o
w ES & o
T

o
N
o
)

—w— RSS
SSD
=——+— MDF/DIFF
T T

o
-
o
[

o

o

i i i i i i i i i i i i
4 6 8 10 12 14 16 2 4 6 8 10 12 14

2 Number of access points [n] Standard deviation of RSS noise (o)
(a) DM with varying number of APs (0 = 3). (b) DM with varying noise (7 APs).

1

T T

—#— RSS
——— SSD

=——+— MDF/DIFF

09r 0.9r

o
©
T

0.8

o
3
T

0.7F

o
o
T

0.6

0.4r

Probability of correct location estimation
o
o

Probability of correct location estimation
o
ol

—#— RSS
01r SsD b 0.1f
=——4+— MDF/DIFF
0 i i i i i n n 0 i i i i i i i
2 4 6 8 10 12 14 16 2 4 6 8 10 12 14
Number of access points [n] Standard deviation of RSS noise (o)
(c) D@ with varying number of APs (0 = 3). (d) D@ with varying noise (7 APs).

Figure 5.9: Simulation results for differential fingerprinting.

to evaluate the differential fingerprinting approaches in terms of the localization error, which
is defined as the physical distance between the actual and estimated user locations. In partic-
ular, we examine the distribution of the localization error pertaining to the test data for each
device.

The localization error when the Nexus S device was used to create the radiomap, while the
user-carried device is the iPAQ, is depicted in Figure 5.10a. The error distribution is shown
with box plots, where the central mark indicates the median error, the box edges correspond
to the 25th and 75th percentiles and the whiskers extend to the 5th and 95th percentiles of
the distribution, respectively. We also consider the case where the RSS radiomap was col-
lected with iPAQ, instead of Nexus S, denoted DS (device-specific). As the radiomap and
user-carried devices are the same, DS is the best case that provides the lower bound on the lo-
calization error. The SCmed self-calibration method, presented in Section 5.3.2, is also plotted
for comparison.

Our first observation is that the localization error is reduced significantly with the pro-
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Figure 5.10: Localization error of differential approaches for various device pairs.

posed MDF approach. For example, the median error is 3 m when the MDF or DIFF finger-
prints are used, compared to 5.4 m with the traditional RSS fingerprints, while the median er-
ror is improved less with the SSD fingerprints (4.7 m). Moreover, the MDF fingerprints seem
to mitigate higher localization errors that occur when RSS fingerprints are used. In particular,
the 75th and 95th percentiles drop from 7.8 m and 11.8 m to 4.7 m and 8.4 m, respectively.
More importantly, the performance of MDF is very close to the DS approach that uses the
iPAQ radiomap.

The median localization error when the Asus eeePC radiomap is used, while the user car-
ries various devices during localization, is illustrated in Figure 5.10b. We observe that when
the localization device is the same with the reference device (Asus eeePC), then the SSD
method performs worse than our MDF method, which confirms our analytical and simulation
results. The experimental results indicate that the MDF fingerprints attain higher localiza-
tion accuracy than the RSS fingerprints for all diverse device combinations. Moreover, MDF
performs better than SSD in all cases and the median localization error decreases between
8%-25% for different device pairs. Compared to the SCmed device self-calibration method,
MDF has similar or marginally better performance, except for the case where the iPAQ device
is used for localization.

Next, to investigate the computation time of the differential fingerprinting approaches, we
use a Matlab implementation on an Intel Xeon E520 dual core processor 2.4 GHz and 8 GB
RAM. The Nexus S-iPAQ device pair is used as before and we consider all 44 APs that are
sensed by both devices. The execution times are averaged over 100 runs using the test data

from the iPAQ device and the execution times are tabulated in Table 5.4. One location esti-
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mate takes around 24 ms using the MDF approach. This is comparable to RSS fingerprinting
(23 ms) and as expected the SSD approach requires the same computation time as MDE. On
the other hand, the DIFF approach needs 30 ms to estimate the user location, which is 25%
higher compared to MDE.

Table 5.4: Computation time [ms] of differential fingerprinting

RSS MDF DIFF SSD

Time® 23 24 30 24

“For a single location calculation.

To summarize, the MDF approach should be preferred among the differential fingerprint-
ing methods, because it maintains high level of localization accuracy for different user-carried
devices, while the computational overhead remains low. In comparison with the SCmed self-
calibration method, MDF is easier to apply in practical localization scenarios. For example,
SCmed relies on the buffer size b; that affects the number of samples required to build the
eCDF of the user-carried device for the determination of the linear fitting parameters. The
parameter b, needs to be selected experimentally, while the users still need to walk around for
a few seconds until their devices are calibrated. Moreover, if the user takes only a very short
walk or moves within a region where the sensed APs have a different distribution than the
entire area, then the collected samples might not reflect the eCDF adequately. This may lead
to incorrect device calibration and consequently high localization errors. These facts might
degrade the performance of the SCmed method in some scenarios.

On the other hand, MDF can be applied in a more straightforward manner, while no pa-
rameters need to be fine-tuned. Moreover, the MDF approach facilitates the crowdsourcing of
the radiomap with diverse devices by fusing directly the contributions (i.e., RSS differences)

of the participating devices, as discussed in the following.

5.5 Crowdsourcing with Differential Fingerprints

As mentioned in Section 5.2, mobile devices do not report the RSS values in the same
way and there is a linear relation between the RSS values measured by heterogeneous devices;
see Figure 5.2. Therefore, direct fusion of the RSS radiomaps R™ collected with m differ-
ent devices using equation (5.1) may compromise the quality of the resulting crowdsourced
radiomap. To address this issue, we propose to use signal strength differences in order to re-

move the constant term K in the propagation model given by equation (2.1) and make the
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fingerprints from diverse devices compatible with each other. In the following, we investigate
the differential fingerprinting approaches presented in Section 5.4 for crowdsourcing the ra-
diomap. In particular, we assess the performance of the crowdsourced differential radiomap,
using either the MDE DIFF or the SSD approach, with experimental data from the KIOS-B

dataset.

5.5.1 Evaluation of Differential Crowdsourcing Approaches

We employ the reference data in the KIOS-B dataset to build the device-specific radiomaps
and also create the crowdsourced radiomap using different device combinations. Moreover,
we use the test data to evaluate the various crowdsourcing approaches in terms of the local-
ization error, which is defined as the physical distance between the actual and estimated user
locations, and we examine the distribution of the localization error pertaining to the test set
for each device.

In particular, we examine the performance when the RSS crowdsourced radiomap is used,
while the distance between the RSS fingerprints in the computations of the NN localization
method is given by equation (5.8). We also compare the two variants of the differential crowd-
sourced radiomap, namely the MDF and SSD approaches where the distance between the fin-
gerprints is given by equations (5.11) and (5.19), respectively. The DIFF approach is omitted
because its performance is exactly the same with our MDF approach, but is more computa-
tionally expensive as discussed previously. For completeness we report the localization error
when the device-specific RSS radiomap of the test device, instead of the crowdsourced RSS
radiomayp, is considered. This approach, denoted DS, provides the lower bound on the local-
ization error.

First, we consider only two contributing devices, namely the iPAQ and Nexus devices,
and each device fully covers the localization area for crowdsourcing the radiomap. The exper-
imental results are depicted in Figure 5.11 with box plots. Figure 5.11a plots the experimental
results when the iPAQ serves as the test device for localization. We observe that the localiza-
tion error is considerably reduced with the differential approaches. For instance, the median
error is 3.4 m for the traditional RSS approach, compared with around 2 m for the MDF and
SSD approaches. Moreover, the 75th percentile drops from 5.2 m to 2.7 m for MDF and 3.2 m
for SSD. More importantly, the performance is very close to the non-crowdsourcing DS ap-
proach that uses the RSS radiomap collected only with the iPAQ device. Using another test

device (i.e., HTC Desire), which was not considered for crowsourcing, produces similar re-
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Figure 5.11: Localization with two-device (iPAQ, Nexus) crowdsourced radiomaps.

sults and again the MDF approach filters out the high errors more effectively, compared to

SSD; see Figure 5.11b.

In case more devices are used for crowdsourcing, the performance of the traditional RSS
fingerprints may deteriorate further, as shown in Figure 5.12, where the bars depict the median
localization error. For instance, using data from five devices to crowdsource the radiomap
increases the median localization error to 4.3 m for the iPAQ device (Figure 5.12a). This is
much higher compared with 1.8 m median error of the MDF approach and 2.3 m of the SSD
approach. We observe that the localization error of both differential approaches does not vary

significantly as the number of crowdsourcing devices increases.

Another interesting observation is that the MDF approach seems to perform better than
the DS approach. This is not surprising because the area is covered by all five devices, thus the
crowdsourced differential radiomap has been created by aggregating data from more than one
device in each location, contrary to DS that uses RSS data collected only with the iPAQ device.
However, this is not the case with SSD, which also performs worse compared with MDF for
any number of contributing devices. This is in line with our experimental results presented
earlier in Section 5.4.6. Even though the performance of the RSS approach with respect to the
median error can be adequate in some cases, the differential fingerprinting approaches still
provide some improvement, as shown in Figure 5.12b, where the eeePC device is localized
using non-overlapping radiomaps from a varying number of devices.

The experimental results indicate that the differential approaches are more robust to device
diversity and should be preferred for crowdsourcing, especially as the number of the devices
that contribute data to the system grows larger. The MDF approach, in particular, brings the

full benefit of crowdsourcing regardless of the user-carried device during localization, while
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the computational overhead is similar with the case of using traditional RSS fingerprints.

5.6 Chapter Summary

Device diversity is one of the reasons that hinders the proliferation of RSS-based finger-
printing systems. For instance, in traditional fingerprinting systems, where a single device is
used to populate the RSS data in the radiomap, the user needs to carry the same device dur-
ing localization to guarantee the best accuracy. Using a different device is feasible, but the
RSS values are not usually compatible with the radiomap, leading to accuracy degradation.
In fact, heterogeneous mobile devices may report RSS values from the surrounding APs quite
differently, even if they are placed at the same location. This is also a major limitation for the
emerging crowdsourced fingerprinting systems, where device heterogeneity is inherent due
to the diverse mobile devices carried by the contributors.

To this end, we investigate the device diversity issue in fingerprinting systems and revisit
the manual calibration approach to provide insight on the amount of RSS data that need to
be collected at known locations with different devices, so that adequate localization accuracy
is achieved for heterogeneous devices. Furthermore, we propose a new method based on RSS
histograms that runs concurrently with localization and enables a mobile device to be self-
calibrated in a short time, thus improving the localization accuracy on-the-fly. Moreover, no
user involvement is required in the calibration phase (e.g., visiting several locations and press-
ing a calibration button on the device) and the tedious data collection is avoided.

Importantly, we develop a novel calibration-free method for diverse devices based on RSS
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differences. Our approach achieves the same level of localization accuracy with existing dif-
ferential fingerprinting approaches, but is considerably less expensive in terms of compu-
tation time. Our calibration-free approach performs equally well with our self-calibration
approach with respect to accuracy, while it exhibits higher applicability in real-life applica-
tions. This is because it does not require the fine-tuning of specific parameters, contrary to the
self-calibration approach. In addition, our differential fingerprinting approach can be easily
extended to crowdsourced localization systems for exploiting the data uploaded by diverse

devices in a straightforward way.
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Chapter 6

Conclusions

6.1 Summary of Contributions

Our work in the context of localization and tracking in wireless networks contributes to
three areas, namely fault tolerant localization and tracking in WSNSs, fault tolerant localiza-
tion in WLAN fingerprinting systems and localization with heterogeneous mobile devices in
WLAN fingerprinting systems.

With respect to fault tolerant localization and tracking in binary WSNs our contributions

are summarized as follows:

« A novel MC fault model that captures the spatiotemporal dynamics of sensor node faults

and is capable of simulating various types of faults [83, 84].

« Formulation of the sensor health state estimation problem as a HMM and derivation of
efficient stochastic estimators to infer the unknown sensor states simultaneously with

target tracking [76, 84].

o The ftTRACK tracking solution for a single target that combines sensor health state es-
timation, with target localization and location smoothing by means of Bayesian filtering

in centralized WSN architectures [76].

o A fault tolerant multiple target identification approach based on the D-FTLEP leader
election protocol and the dSNAP fault tolerant target localization algorithm applicable
to distributed WSN architectures [104,107].

Regarding fault tolerant localization in WLAN fingerprinting systems our contributions

include:
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o Realistic fault models that capture the effect of WLAN AP malfunctions or adversary
attacks [74].

« Robust fault indicators that are either RSS distance-based [85] or likelihood-based, and
evaluation of their AP fault detection accuracy and reliability under various fault models

(86].

o A class of fault tolerant localization algorithms for WLAN fingerprinting systems that
are inspired by the SNAP fault tolerant algorithm applicable in binary WSNs [75] or
developed by combining our fault detection mechanisms with modified distance and

likelihood-based metrics into hybrid fingerprinting algorithms [86].

Finally, we make the following contributions in regards to localization with heterogeneous

mobile devices in WLAN fingerprinting systems:

 An innovative device self-calibration method that uses histograms of RSS values to fit
a linear mapping between the device that was used to create the RSS radiomap and the

heterogeneous user-carried device [87, 88].

« A novel calibration-free approach based on RSS differences that performs considerably
better than existing differential fingerprinting approaches, in terms of localization ac-

curacy and computational complexity.

 Formulation of crowdsourcing in WLAN fingerprinting systems with the introduction
of RSS differences and evaluation of various differential fingerprinting approaches for

fusing RSS data from heterogeneous devices into a single radiomap [89].

6.2 Directions for Future Work

As part of our future work in fault tolerant localization and tracking in WSNs we plan to

investigate and address the following challenges:

« Fault identification and isolation in the context of our fTRACK target tracking archi-

tecture in order to identify the exact type of fault and pinpoint the faulty sensor(s).

o Our sensor health state estimators determine the state of each sensor independently
from each other using only the error signal of the individual sensor. Taking into account
the spatial correlation of sensor faults in the design of future sensor state estimators is

expected to further improve the performance of our sensor health state estimators.
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« Distributed sensor health state estimation using information from each sensor’s neigh-
bourhood for enabling of a fully distributed ftTRACK variant capable of tracking mul-

tiple targets reliably in the presence of sensor faults.

Regarding fault tolerant localization in WLAN fingerprinting systems we plan to pursue

the following directions:

 Develop fault identification mechanisms (i.e, recognize the type of fault that has oc-
curred) to trigger the most effective fault tolerant localization algorithm and fault iso-
lation methodologies (i.e, pinpoint the faulty or attacked WLAN AP) for guiding the

security or maintenance personnel.

« Apply the analytical modelling approach, which was developed for the device diver-
sity problem in WLAN, to gain more insight into the performance of our fault tolerant

algorithms in the presence of different types of faults.

Finally, with respect to localization using heterogeneous mobile devices in WLAN finger-

printing systems our future steps include:

o Integration of the proposed differential fingerprinting approach in our Anyplace local-
ization system for commercial Android smartphones [118] to measure and report the
savings on computation time and power consumption on real mobile devices, com-

pared with other differential fingerprinting approaches.
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Appendix A

Maximum Likelihood Sensor State

Estimate

The maximum likelihood sensor state estimate in case the sensor output is wrong, i.e.
r.(t) = 1, is given by

0)

o~ H
H 708 > e

§n(t + 1)|rn(t):1 =
F otherwise.
Proof. From equation (3.8), estimating the sensor state as Healthy in case the sensor output is

wrong implies that

(1) > 7)o Z’:(t)-ﬁzz(w . iﬁ(t)-ﬁﬁ(t) _
ph(t) - () + ph(e) - 7 (E) () - Ah(E) + plh(e) - 7 ()
& ph(t) - mll(t) > ph(t) - (1)
& ph(t) - 7l(t) > pi(t) - (1 — 7l (1))
ph(t)

Otherwise, since the sensor output is wrong, its state is estimated as Faulty.

The maximum likelihood sensor state estimate in case the sensor output is correct, i.e
ra(t) = 0, is given by

1-p) ()

o~
Bt < orm

§n<t + 1)|rn(t):0 =
H otherwise.

Proof. From equation (3.8), estimating the sensor state as Faulty in case the sensor output is
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correct implies that

ﬁ[le(t) < ﬁﬂo(t) o (1 _Pﬁ(t)) : ﬁIn{(t) <
(1= ph(t)) - 7h(t) + (1 = pl(t)) - 7 (t)

(1= pu(t)) - 75 (1)

=Pl - AR + (1 phe) - /(D)

& (L-ph(t) - 7ll(t) < (1= ph(r)) - k(1)

& (L= ph(0) - /() < (1 - pl(t) - (1 - (0
e 718~ ph(6) - 711(E) < 1 - 721(E) — pLH) + pL)

f
AH(t < 1_pn<>

STt .
2 — ph(t) - ph(t)

Otherwise, since the sensor output is correct, its state is estimated as Healthy.
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Appendix B

Sensor Health State Estimation Algorithms

ALGORITHM 1: Static Sensor Health State Estimator

Input: Target location £4(t), sensor locations £,,, alarm status A, (t), ROI radius R;.
Output: Estimated sensor state 5,(f + 1).
for each sensor node n do

1
2
3 | Determine the error signal 7, (f);
4 Calculate Cz(t) using equation (3.16) in equation (3.6);
5 | Calculate [7th 7H]T with equation (3.15);
6 | if 7,(t) = 1then
e H o P
7 if T, > m then
8 | Su(t+1) = H;
9 else
10 | Su(t+1) =F;
11 end
12 else
o~ H A
13 if T, < P T then
14 | Su(t+1) =F;
15 else
16 ‘ Su(t+1) =H;
17 end
18 end
19 end
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ALGORITHM 2: Dynamic Sensor Health State Estimator

Input: Target location £4(t), sensor locations £,,, alarm status A, (t), ROI radius R;.
Output: Estimated sensor state 5, (¢ + 1).

1 8,(0) = H; [75,(0) 7 (0)]T = [0.5 0.5];
2 for each sensor node n do
3 | Determine the error signal 7, (t);
4 | if7,(t) = 1 then

i AH pa(t)
5 if 7, (t) > T then
6 | Su(t+1) = H;
7 else
8 ‘ Su(t+1) =F;
9 end
10 Calculate 7! (t) with equation (3.10a) and 7t 'L (#) with equation (3.10b);
1 Predict [7ih(t + 1) 7 (t + 1)]7 = CT (1) [ (1) 7l (0)]T;
12 else

f

13 if 7el(t) < #”_(:}m then
14 ‘ Su(t+1)=F;
15 else
16 ‘ Su(t+1)=H;
17 end
18 Calculate 7t5/° () with equation (3.10c) and 7!°(#) with equation (3.10d);
19 Predict [7ef(t + 1) 7 (¢ + 1)]T = CT (1) [#50 (1) 710 (1)]T;
20 end
21 end

ALGORITHM 3: ftTRACK Target Tracking

Input: Sensor locations ¢;;, alarm status Ay(t), ROI radius R;.
Output: Estimated target location ¢5(f).

1 8a(0) = H; (XI(0)127, = [£:(0) 00]T; {/(0))
2 whilet > 0 do

// Prediction step

3 | Xi(t)=®Xi(t—1)+TW(t-1);

// Target localization

s | (&(b),é4(t)) = Localization(s,(t), An(t));
// Update step

5| @'(t) = @l(t = Dp(Gs(HIX(1);

6 w'(t) = ;
®) TP wi(t)

7 {a)i(t)}ii’l = LinearTimeResampling({aw'(t) f\i’l);

s | L(t) = LM, @l ()XI(b);

// Sensor Health State Estimation

9 | 8,(t+ 1) = SensorHealthStateEstimator(€,, {s(t), Au(t), R;)
10 end

Np 1.,
i=1 Ny’
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Appendix C

Calculation of the Probabilities p/’(t) and
f t
P(t)

During target tracking, d,() and d,,(f) denote the distance of sensor 1 from the actual
target location ¢;(t) and the estimated target location £,(t), respectively. Due to the noise
w,(t) ~ N(0,02) disturbing the sensor measurements, as well as the presence of faults that
degrade the localization accuracy, d,,(t) and d,,(t) are not necessarily equal. We assume that
d,(t) is a normally distributed random variable d,,(t) ~ N (d,(t), 07), where o, reflects the
uncertainty in the estimated target location. In this context, the probability p' (t) of sensor 1
having a wrong output at time ¢ given that its state is Healthy can be calculated as:

pi(t)

P[rn(t) = 1|Sn(t) = H]
PIAL(t) = 00y (£) < RIPId (1) < Ri] + P[A,(£) = 1y (t) > R[Pld (£) > Ry
P[z,(t) < Tl () < RP[dy(t) < R] + Plza(t) > Tldo(f) > RP[d,(t) > Ry]

o2 oo i)

where p,(t) = ——— and Q(x) = % fx - exp(—y—2)dy is the right-tail probability of a

Tdn (£)Y 2
Gaussian random variable N (0, 1).

In a similar way, the probability p{i(t) of sensor 1 having a wrong output at time ¢ given
that its state is Faulty can be calculated as:

pht)

Pr,(t) = 1ls,(t) = F]
P[An(t) = Oldn(t) > RI]P[dn(t) > RI] + P[An(t) = 1|dn(t) < RI]P[dn(t) < RI]
P(z,(t) < T|d,(t) > R{|P[d,(t) > R;] + P[z,,(t) > T|d,,(t) < R;|P[d,,(t) < R

oot o)
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Appendix D

Algorithms for Distributed f{tTRACK

ALGORITHM 4: Distributed Fault Tolerant Leader Election Protocol (D-FTLEP)

=T CREN e Y L o

e
No= O

Input: Set of neighbouring alarmed sensor nodes.
Output: Elected leader status.

All alarmed sensors broadcast an ALARM message;
Node 7 calculates the function F;, using the received ALARM messages from its neighbours;
if F,, > 0 then
‘ Continue with next step;
else
| STOP;
end
Wait for a period h(1/F);
if during the waiting period a LEADER message with value f > F,, is received then
| STOP;
end
Broadcast LEADER message with value F,, and assume leadership role;

ALGORITHM 5: Scoring Matrix Construction

1
2

3
4
5
6

Input: [X,,, Yy, by for sensor nodesn = 1,...,N; € ROS;.
Output: Scoring matrix L;.
Ll — 0;
for all cells Ml_l(i, j) € Gido
for all sensor nodes n that have cell Ml_l (i, j) € ROC, do
| Lii, j) < Lii, j) + bys
end
end
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Appendix E

Fault Tolerant Fingerprinting Algorithms

ALGORITHM 6: Hybrid KNN (H-KNN) Localization

Input: Observed fingerprint s, Fingerprints r; in the radiomap, Fault detection threshold y.
Output: Estimated user location £(s).

1. RSS Distance Calculation: Use (4.6) to calculate the distances d; between fingerprint s and all
fingerprints in the radiomap r;.

2. Fault Indicator Computation: Compute the fault indicator Ds(j,)ﬂ using d;.

3. Location Estimation: If Ds(zlzn >y (i.e., afault is signified), then calculate the distances d’ with

—

(4.7) and estimate location £(s); otherwise use the distances d; calculated in step (1) to
determine location.

ALGORITHM 7: Hybrid MMSE (H-MMSE) Localization

Input: Observed fingerprint s, Fingerprints r; in the radiomap, Fault detection threshold y.
Output: Estimated user location £(s).

1. Likelihood Calculation: Use (4.8) to calculate the likelihood p(s|¢;) of s at each candidate
location ;.

2. Fault Indicator Computation: Compute the fault indicator P,y with (4.4) using p(s|¢;).

3. Location Estimation: If the condition Py, > ) is satisfied then calculate the likelihood

p’ (sl¢;) with (4.9) and estimate location €(s); otherwise use p(s|¢;) calculated in step (1) to
determine location.
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ALGORITHM 8: Hybrid MED (H-MED) Localization

Input: Observed fingerprint s, Fingerprints r; in the radiomap, Fault detection threshold y.
Output: Estimated user location £(s).

1. RSS Distance Calculation: Use (4.6) to calculate the distances d; between fingerprint s and all
fingerprints in the radiomap r;.

2. Fault Indicator Computation: Compute the fault indicator Dﬁzn using d;.

(2)

3. Location Estimation: If Dsz > 7, then calculate the RSS distances with the median-based

—

metric in (4.5) and calculate {(s); otherwise use the distances d; calculated in step (1) to
determine location.

150



Appendix F

Least Squares Mapping with Inverse CDF
Percentiles

If u is a continuous random variable and y = f(u) with monotonically increasing f then
f = F;' o F,. In particular, the inverse CDF ordered pairs

{(ui, yz) = (F;l(ql),F;l(ql)) 2 qi € {01, .. ,09}}
lie on the curve y = f(u).

Proof. We have

Fu(u) = P(u<u)=P(f(u) < f(u)) =
— Py < f(u) = Fy(f(w).

Applying F.' to both sides gives the identity f = F,' oF,. Also, the components of the inverse
CDF ordered pairs satisfy

yi = F; N (qi) = F; ' (Fu(ui) = f(w)).
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Appendix G

Useful Lemmas for Differential
Fingerprinting

We show that the following statement holds for DIFF differential fingerprints

rz]k S]k

2
(Vij —rik—(sj = sk))

where Bijk = 1’1']' —Tik — (S]' - Sk).
Proof. From the definition of B;j we have

B, = B, (G.1)

B}, = B =0. (G.2)

Basis: We show that the statement holds for n = 2. Using equations G.1 and G.2, we can
easily see that

2 2 2
1
2 2
HEEIN T
k=2 j=1 k=1 j=1
1
2 2
lez 5(3111 + B121 + lez + B122)
2 2
Bi15 = Biys

thereby indeed the statement holds for n = 2.
Inductive step: We assume that the statement holds for n = A, that is

1 A A
Bl =5 kZ X; B2, (G.3)

It must then be shown that the statement also holds for n = A 4 1, that is
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A41 k-1 A4+1 A+1

;ZBW 2ZZBUk

/:]_ k=

Splitting the outer sum and then using the induction hypothesis in equation G.3, the left-
hand side can be rewritten to

A+1 k-1 A k-1 A
Buk Z Blfk + Z Bl] A+1)
k=2 j=1 k=2 j=1 j=1
1 A A
=30 2Bt 3 ZBZJ . ZBZJM
k=1 j=1
1 A1 A
=30 2B+ 3 ZBW
k=1 j=1 =
1 A4+1 A )H—l
2
=30 2Bt 3 ZB
k=1 j=1
A+1 A+1
_ 1 32
- 2 ijk’
k=1 j=1

thereby showing that indeed the statement holds for n = A + 1, while for the last equality we
have used equations G.1 and G.2.

Since both the basis and the inductive step have been performed, by mathematical induc-
tion, the statement holds for all natural 7. O

We also show that the following holds

where x = [xy,...,x,] is a vector with mean value X = % Yo X

Proof.

n n

Y (-2 =) (32 - 2w + )
; pa
n n n
Y
i=1 i=1 i=1
n
= Z X7 = 2nx* + nx’
P
n
= Z X7 —nx’.
-1
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Appendix H

Analytical Models for Differential
Fingerprinting

H.1 Derivation of the MDF Analytical Model

In the case of MDF differential fingerprints, the NN localization method will return the
correct location ¢; only if the following condition is satisfied

2 P2
Using Theorem 3 the above condition is equivalent to
1<dyod —n(f—35)°<d —n(f,—35)°

n
& Z(rlj — )% — nFy + 2n75 — ns* < Z(rgj —5)% — N7 + 2175 — 1§
: —

n n n n n n
@erj—QZrljstrZs?—n?§+2nf1§§ ngj—QZerstrZs]?—nf§+2nf2§
=1 =1 =1 =1 =1 =1
@22;81514_2 "= 2] —2n(fy = 71)s +n(r5 = 77) <0
1 n
@2Zfﬁjsj—2n(ngr2]——2r1jS+Z(S <0
j= =
n n
@QZﬁjsj—QZﬁjHZéjso
=1 =1 =1
n n
@22‘3]‘(Sj—§)+25j§0,
j=1 =1

where B = (rsj—11j) and 6; = (12 T - T >). Using vector notation, this can be written
as
BJs+06<0,

where B, = 2[B1, ..., Buls Juoxn = In — 2eTe,e1xs = [1,..., 1] and 6 = Yi1 0.
In the following we show that the random variable Q = B]s + 6 is normally distributed.

Proof. Assuming that the user resides at location {; during localization, the observed RSS
fingerprint s = [sy,...,s,]|7 is a multivariate Gaussian random vector, i.e. s ~ N(r;,X),
where ¥ = ¢21,.

155



We define the random vector z = [zy,...,2,]T, where zi =s;—5j=1,...,nand
5§ = = Y.4_1 Sk. The random vector z is a linear function of the multivariate normal vector s

z=Js,
where [ = I,, — %eTe. Thus, z is also multivariate normal vector , i.e. z ~ N(Jry, X,), where
¥, = ]3],

Next, the random variable Q can be viewed as a linear function of the multivariate normal
z,i.e. Q = Pz + 6. Therefore, Q is also normally distributed with mean and variance

to =pJri +0
o = BIoI g

H.2 Derivation of the SSD Analytical Model

In the case of SSD differential fingerprints, the NN localization method will return the
correct location ¢; only if the following condition is satisfied

2 o 2
di < d.
Using Theorem 2 the above condition is equivalent to

2 <d’ e d - 2n(r1p — $p)(F1 = 5) + 1(r1p — 5p)° < ds — 2n(rap — 5,) (F2 = 5) + 1(r2p — 5p)°

& df = 2n(ri,Fy — 11,8 — F15,) + n(rfp — 211,8p) < dy — 21(1opTa — T2y8 — F2S)) + ”(7§p = 25p5p)

& df —dy = 2n(ry, — 1 + Fo — 19p)8p — 201(rap — 11p)5 + (1], — 2r1pF1 = 13, + 2r3pT3) <0

o 225151+Z Vb] ( 2—7’1 ﬁp) QﬁpZS]“i‘Z(T%p—erpfl —T§p+27’2p772> <0

j=1 j=1
1
& 22([3j —Bp)s; n Z (1oj = 1aj) = Bp)Sp + Z ra] + rlp - rb] - r2p 211,71 + 2r9pT2) <0
= j=1 j=1
@22(51 5;))5]'_22(‘31 Bo SP+Z€]
j=1 =1
n n
S 2Y (Bi—B)(si—5,) + Y € <0,
j=1 j=1

where f; = (raj = 11)), Bp = (rop —11p) and €; = (r}; + 11, = 17

5 = T2p 21,71 + 2r9pT).
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