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ΠΕΡΙΛΗΨΗ 
 
  
 
Η κλασσική θεωρία πληροφορίας χρησιμοποιεί την αμοιβαία πληροφορία για να ορίσει 
τη χωρητικότητα των καναλιών και τη συμπίεση των πηγών πληροφορίας. Για κανάλια 
και πηγές χωρίς μνήμη και ανατροφοδότηση, το μέτρο αυτό μπορεί να χρησιμοποιηθεί 
με επιτυχία για να υπολογιστεί η λειτουργική χωρητικότητα των καναλιών και η 
συμπίεση των πηγών. Για κανάλια με μνήμη ανατροφοδότηση και για συμπίεση πηγών 
σε πραγματικό χρόνο, χωρίς καθυστέρηση η αμοιβαία πληροφορία δεν αποτελεί 
κατάλληλο μέτρο πληροφορίας.  
  
Η κατευθυνόμενη πληροφορία μπορεί να χρησιμοποιηθεί για να υπολογιστή τόσο η 
χωρητικότητα καναλιών με μνήμη και ανατροφοδότηση, για χωρητικότητα δικτύων, 
ακόμα και για ανάλυση βιολογικών συστημάτων.  
  
Η συγκεκριμένη διατριβή ερευνά, μέσω της κατευθυνόμενης πληροφορίας, την 
χωρητικότητα καναλιών με μνήμη και ανατροφοδότηση την συμπίεση πηγών σε 
πραγματικό χρόνο, την κοινή κωδικοποίηση πηγής και καναλιού πραγματικού χρόνου, 
όσο και την χρησιμοποίηση της πληροφορίας για στοχαστικό έλεγχο συστημάτων. Η 
παρουσίαση γίνεται σε ένα ενοποιημένο πλαίσιο κατάλληλο για την ανάλυση τέτοιων 
προβλημάτων χρησιμοποιώντας αρχές και έννοιες της στοχαστικής θεωρίας ελέγχου, 
του δυναμικού προγραμματισμού και λογισμού των μεταβολών. 
 
 
 

Chri
sto

s K
. K

ou
rte

lla
ris



Abstract
Traditional information theoretic measures for capacity and lossy compression are defined

via mutual information. For memoryless communication channels and sources these mea-

sures have been successfully applied to compute the operation capacity of channels and

lossy compression of sources, respectively. For channels with memory and nonanticipative

(causal) feedback and nonanticipative lossy compression of sources with memory the valid

information measure is the directed information defined via nonanticipative conditional dis-

tributions. Directed information is also extensively utilized in networks, communication for

real-time stochastic control applications, and in biological system analysis.

This thesis investigates via directed information, capacity of channels with memory and

feedback, lossy nonanticipative data compression, Joint Source Channel Coding based on

nonanticipative transmission, and communication for real-time stochastic control.

The thesis presents a unifying framework to analyze such extremum problems. It utilizes

concepts from stochastic control theory, dynamic programming, and calculus of variations

to address extremum problems of capacity of channels with memory and feedback, ex-

tremum problems of nonanticipative rate distortion function of sources with memory, ex-

tremum problems of Joint Source Channel Coding based on nonanticipative transmission.
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Chapter 1

Introduction

Communication systems have rapidly changed since Claude Shannon’s seminal paper [65]

gave birth to the field of Information Theory. The point to point communication diagram is

illustrated in Figure. 1.0.1. It consists of an information source described via a probability

distribution, a noisy channel described via a conditional probability distribution, a transmit-

ter and a receiver. While the initial task of point to point reliable transmission, has evolved

with time to include sources with memory, channels with memory and feedback, control

communication schemes and networks, the communication problem remains the same. Send

the minimum amount of data from the transmitter to the receiver in order to reconstruct the

initial message, with or without distortion, with arbitrarily small probability of error.

Traditional information theory considers transmission schemes where the transmitter re-

quires the whole symbol sequence to construct infinitely large blockcodes, while the receiver

requires the blockcodes at the channel output to reconstruct the channel source sequence.

This is a significant drawback when dealing with channels with feedback, real time commu-

nication schemes and communication for control applications, where delays must be taken

into consideration.

The main goal of this thesis is to provide a comprehensive analysis of nonanticipative reli-

able communication. The key mathematical tool when dealing with such problems is nonan-

ticipative conditional distributions which are used to define nonanticipative or causal, infor-

mation measures. In this thesis, we describe how this approach affects the traditional aspects

of the lossy compression of general sources with memory, the capacity for general channels

with memory and feedback, and joint source-channel coding. These concepts are embedded

1
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Chapter 1. Introduction 2

FIGURE 1.0.1: Shannon’s communication diagram [65]

into specific examples which are finally merged together to show that nonanticipative trans-

mission is indeed optimal and nothing can be gained in terms of performance by encoding

messages into long codewords. Moreover, we expand these concepts for lossy compression

of sources with feedforward information at the decoder.

1.1 Outline

1.1.1 Chapter 2: Nonanticipative Rate Distortion Function

In lossy compression problems for general sources with memory, the reproduction symbol at

time instant n, Yn, depends on past source symbols {Xn−1 4=X0, . . . ,Xn−1}, the present source

symbol {Xn}, and future source symbols {Xn+1,Xn+2, . . .}. This means that the optimal

reproduction distribution, PY n|Xn(dyn|xn) = ⊗n
i=0PYi|Xn,Y i−1(dyi|xn,yi−1), and has limitations

in terms of real-time applications.

The first limitation is the computational complexity of obtaining an exact expression for the

optimal reproduction distribution of the classical Rate Distortion Function (RDF), which

gives the Optimal Performance Theoretically Attainable (OPTA) by noncausal codes. For

general sources with memory, the exact expression is known only for Gaussian sources.

The second limitation is that the reconstruction distribution cannot be decomposed into a

convolution of causal conditional distributions. This directly implies that, in general, the

classical RDF cannot be used in nonanticipative joint source channel coding and in proba-

bilistic matching of the source to the channel.
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Chapter 1. Introduction 3

In Chapter 2, we overcome this limitation by introducing an analytical framework via the

nonanticipative RDF for general sources with memory, which give optimal nonanticipative

reproduction distributions. The analysis includes discussion on noncausal codes, causal

codes and sequential codes, relation of the nonanticipative RDF with Gorbunov and Pinsker

nonanticipatory ε−entropy [34], and noisy coding theorems via joint source channel match-

ing, which are further elaborated on Chapter 4.

The contributions are the following:

• Theoretical framework of the nonanticipative RDF.

• Closed form expression for the optimal reconstruction distribution, and solution of the

nonanticipative RDF for stationary source-reproduction sequence.

• Bounds on the OPTA by noncausal and causal codes.

• Examples to illustrate the calculation of the nonanticipative RDF and the optimal re-

construction distribution for a binary symmetric Markov source.

1.1.2 Chapter 3: Structural Properties of Encoders for Channels with
Memory and Feedback

Capacity of channels with feedback and associated coding theorems are often classified into

Discrete Memoryless Channels (DMC) and channels with memory, with or without feed-

back [41, 65]. In chapter 3 we generalize current and past research in the area of capacity of

channels with memory and feedback, and indicate the necessity of considering nonanticipa-

tive kernels in capacity optimization problems. We derive structural properties of capacity

achieving encoders and channel input distribution for channels with memory and feedback,

and structural properties of encoders that maximize directed information measure from the

source to the channel output. Moreover, we apply dynamic programming recursions to com-

pute the optimal conditional distributions. Finally, we generalize the Posterior Matching

Scheme proposed in (PMS) [70] for channels with memory and feedback.

We derive a closed form expression for the capacity and the optimal channel input distri-

butions, for a unit memory channel (the binary state symmetric channel). This analysis

includes both the feedback and no feedback case, as well as, constraint and unconstraint

capacity. The final expression of the capacity can be interpreted as the optimal time sharing
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Chapter 1. Introduction 4

among the two states of the channel.

The contributions are the following:

• Structural encoder properties which maximize directed information from the source

to the channel output.

• Structural properties of capacity achieving distribution.

• Dynamic programming recursions to aid the computation of the optimal distributions.

• Optimal form of the channel input distribution that achieves the capacity for the unit

memory channel with feedback.

• Capacity and optimal input distribution for the binary state symmetric channel.

• PMS for designing encoders, to achieve the information capacity for channels with

memory and feedback.

1.1.3 Chapter 4: Nonanticipative Joint Source Channel Coding for
Real-Time Transmission

Coding over infinitely large blocklengths, although optimal under certain conditions, it is not

claimed to be the only optimal choice. Two classical memoryless examples, the Independent

and Identical Distributed (IID) Bernoulli source with a single letter Hamming distortion

criterion transmitted via a binary symmetric channel, and the Gaussian source with a mean

square error distortion criterion transmitted via a Gaussian channel, indicate that real-time

transmission performs optimally. For the case of the Bernoulli source this is achieved by the

absence of an encoder-decoder scheme, hence both cost and complexity are reduced to an

absolute minimum.

In Chapter 4, we merge Chapter 2 and Chapter 3 and we introduce the concept of nonan-

ticipative transmission and minimum excess distortion, to show achievability of SbS codes

with memory without anticipation via a noisy channel. Subsequently, we show that Joint

Source Channel Matching (JSCM) of a binary symmetric Markov source with a single letter

Hamming distortion and a binary state symmetric channel subject to a cost constraint is fea-

sible. We additionally show than even in the unmatched case, where the capacity is greater

than the nonanticipative rate distortion function, that uncoded schemes performs reliably in

terms of average and excess distortion probability.
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Chapter 1. Introduction 5

The contributions are the following:

• Develop theoretical framework for nonanticipative and SbS transmission for general

sources with memory and general channels with memory and feedback.

• Provide noisy coding theorems showing achievability of the nonanticipative code.

• Show that JSCM for a binary symmetric Markov source with single letter Hamming

distortion via a binary state symmetric channel subject to a cost constraint.

• Provide unmatched SbS transmission.

1.1.4 Chapter 5: Nonanticipative Rate Distortion Function with Feed-
forward Information

In Chapter 5, we investigate the role of the nonanticipative feedforward side information,

where the decoder has access to the previously transmitted symbols. We begin the analy-

sis by introducing the concepts of feedforward compression and the nonanticipative RDF

with feedforward information. We identify and compare the RDF when the decoder and the

encoder has the same available information [84], the feedforward RDF [79], and the nonan-

ticipative RDF with feedforward information. Here we prove that the first two measures are

equivalent. Then, we elaborate on the nonanticipative RDF with feedforward side informa-

tion, where we provide a closed form expression for the optimal reproduction distribution.

We continue our analysis focusing on Markov sources with certain distortion criteria, and

we show that the feedforward RDF and nonanticipative RDF with feedforward information

are equivalent. Finally, we solve examples for Markov sources via the proposed method-

ology, by calculating directly the optimal reproduction distribution, and the solution of the

nonanticipative RDF.

The contributions are the following:

• Formulate the nonanticipative RDF with feedforward information at the decoder, char-

acterize the optimal reproduction distribution and provide a closed form expression for

the nonanticipative RDF with feedforward side information.

• Show equivalence between the mutual information with causal conditioning and the

feedforward RDF.
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Chapter 1. Introduction 6

• Prove equivalence between feedforward RDF and nonanticipative RDF with feedfor-

ward information, for Markov sources under certain distortion measures.

• Provide a lower bound for the classical rate distortion problem and describe the Rate

Loss of causal codes with respect to noncausal codes.

• Calculate the RDF for Markov sources with feedforward information.

Chri
sto

s K
. K

ou
rte

lla
ris



Chapter 2

Nonanticipative Rate Distortion Function

2.1 Introduction

In lossy compression source coding with fidelity constraint [4, 38], the sequence of real-

valued symbols Xn 4= {X0,X1, . . . ,Xn}, X0,n
4
= ×n

i=0Xi, n ∈ N, Xi ∈ Xi, generated by a

source distribution PXn , is transformed by the encoder into a sequence of symbols, the

compressed representation Zk 4= {Z0,Z1, . . . ,Zk} (taking values in a finite alphabet set),

which is then transmitted over a noiseless channel. The decoder at the channel output

upon observing the compressed representation symbols produces the reproduction sequence

Y n 4= {Y0,Y1, . . . ,Yn} ∈ Y0,n.

Such a compression system is called causal [56] if the reproduction symbol Yn, depends

on the present and past source symbols {X0, . . . ,Xn} but not on the future source symbols

{Xn+1,Xn+2, . . .}. Thus, in a causal source code the cascade of the encoder-decoder, called

the reproduction coder, is a family of measurable functions { fn : n = 0,1, . . .}, such that

Yn
4
= fn(X0, . . . ,Xn), while the compressed representation itself may be noncausal and have

variable rate [56]. Consequently, the decoder can generate the reproductions with arbitrary

delay.

Zero-delay source coding is a sub-class of causal coding, with the additional constraint that

the compressed representation symbol Zn, depends on the past and present source symbols

Xn 4= {X0,X1, . . . ,Xn}, while the reproduction at the decoder Yn of the present source symbol

Xn, depends only on the compressed representation Zn 4= {Z0, Z1, . . . , Zn } received so far.

7
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Chapter 2. Nonanticipative Rate Distortion Function 8

Thus, a zero-delay coding system consists of a family of encoding-decoding measurable

functions {hi, fi} : i = 0,1, . . ., such that Zi = hi({X j : j = 0,1, . . . , i}) and Yi = fi({Z j : j =

0,1, . . . , i}), ∀i≥ 0 [2, 25, 27, 48, 75].

On the other hand, the most efficient zero-delay coding systems in information theory is

that of uncoded transmission, obtained by Joint Source Channel Coding (JSCC) based on

Symbol-by-Symbol (SbS) transmission [31], also called source-channel matching. Two such

fascinating examples are a) the Independent Identically Distributed (IID) binary source with

Hamming distortion transmitted uncoded over a symmetric channel, and b) the IID Gaussian

source with average squared-error distortion transmitted over an Additive White Gaussian

Noise (AWGN) channel, with the encoder and decoder scaling their inputs. These examples

demonstrate the potential of the joint source-channel coding system operating with zero-

delay coding in complexity, when compared to the asymptotic performance of optimally

separating the encoder/decoder to the source and channel encoders/decoders which require

long processing delays.

In general, very little is known about the Optimal Performance Theoretically Attainable

(OPTA) by causal, zero-delay codes, and based on SbS transmission. Often, bounds are

introduced to quantify the rate loss due to causality and zero-delay of the coding systems

compared to that of the noncausal coding systems.

Clearly, in many delay sensitive applications of lossy compression, limited end-to-end de-

coding delay is often desirable, while for real-time systems, such as, communication for

control over finite rate channels [9, 11, 26, 55, 76], and in general, for systems involving

feedback [77], causal and more importantly, zero-delay coding is preferable to noncausal

coding.

Before we discuss our results and related literature, we identify some limitations of the clas-

sical information RDF with respect to its computation, and its applications to source-channel

matching based on SbS transmission. These limitations, together with our interest to develop

bounding techniques for noncausal and causal codes, motivated us to consider the nonantic-

ipative RDF.

Recall that the classical information RDF. Given a source probability distribution PXn(dxn)

and a reproduction probability distribution PY n|Xn(dyn|xn) the joint probability distribution

PY n,Xn(dyn,dxn) of (Y n,Xn), its Y n marginal PY n(dyn), and product measure PXn(dxn)×
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Chapter 2. Nonanticipative Rate Distortion Function 9

PY n(dyn) are uniquely defined. Let

d0,n : X0,n×Y0,n 7→ [0,∞) (2.1.1)

The single letter distortion function is defined by

d0,n(xn,yn)
4
=

n

∑
i=0

ρ(xi,yi) (2.1.2)

With respect to the distortion function, the fidelity set of reproduction conditional distribu-

tions is defined by1

Q0,n(D)
4
=

{
PY n|Xn :

1
n+1

∫
X0,n×Y0,n

d0,n(xn,yn)(PY n|Xn⊗PXn)(dxn,dyn)≤ D
}

(2.1.3)

The finite-time information RDF is defined by

R0,n(D)
4
= inf

PY n|Xn∈Q0,n(D)
I(Xn;Y n) (2.1.4)

where

I(Xn;Y n)
4
= D(QXn,Y n||PXn×QY n)

=
∫

log
QY n|Xn(dyn|xn)

QY n(dyn)
QY n|Xn(dyn|xn)PXn(dxn)≡ IXn;Y n(PXn,QY n|Xn)

in which D(.||.) is the Kullback−Leibler divergence, defined by

D(P||Q) =


∫

log
(

P(dx)
Q(dx)

)
P(dx) if P << Q and log

(
P(dx)
Q(dx)

)
∈ L1(P)

0 otherwise
(2.1.5)

The functional IXn;Y n(PXn,QY n|Xn) is used to denote the functional dependence of the mutual

information on the source and reconstruction distributions.

The information RDF is defined by

R(D)
4
= lim

n−→∞

1
n+1

R0,n(D) (2.1.6)

1⊗ denotes convolution of distributions.
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Chapter 2. Nonanticipative Rate Distortion Function 10

provided the limit exists and the infimum in R0,n(D) exists (it is finite) [20, 63]. Under

general conditions [4, 38], (i.e., jointly stationary ergodic processes) it is already known that

if the infimum over Q0,n(D) exists, then the limit R(D) = limn−→∞
1

n+1R0,n(D) exists, and

R(D) is the OPTA by noncausal codes.

Moreover, it is also known that if the optimal conditional distribution achieving the infimum

in (2.1.4) exists, then it is given by the implicit expression

P∗Y n|Xn(dyn|xn) =
esd0,n(xn,yn)P∗Y n(dyn)∫

Y0,n
esd0,n(xn,yn)P∗Y n(dyn)

, s≤ 0 (2.1.7)

where s ∈ (−∞,0] is the Lagrange multiplier associated with the fidelity constraint Q0,n(D),

and

P∗Y n(dyn) =
∫
X0,n

P∗Y n|Xn(dyn|xn)PXn(dxn)

Although, from the point of view of establishing a noiseless coding theorem giving an op-

erational meaning to R(D) as the OPTA by noncausal codes is by now standard, R(D) has

certain limitations.

The first limitation of the classical information RDF is the computational complexity of ob-

taining the exact expression of R0,n(D) and P∗Y n|Xn(dyn|xn), for finite n, and R(D), in the

limit n −→ ∞, even for stationary sources. The exact expression of R(D) is only known

for a small class of sources, which are either memoryless or Gaussian, often with respect

to a single-letter distortion function. For example, for finite alphabet sources, the exact

computation of R(D) is based on its single-letter expression. Indeed, for the Binary Sym-

metric Markov Source BSMS(p), the complete characterization of the OPTA by noncausal

codes is currently unknown; more precisely, it is only known for a certain distortion region

0 ≤ D ≤ Dc
2, Dc =

1
2

(
1−

√
1− ( q

p)
2
)

, p = 1− q, q ≤ 1
2 , and only bounds are available

[5, 37, 42].

The second limitation of the classical information RDF is the noncausality or anticipative

form of the optimal reproduction distribution (2.1.7), which implies that for any time n, the

reproduction at time i ≤ n of xi ∈Xi by yi ∈ Yi has the form fi(xi,xi+1, . . . ,xn), ∀i ≤ n,

and hence it depends on the past and future source symbols (i.e., its is noncausal). The

noncausality of the optimal reproduction distribution (2.1.7) follows directly by Bayes’ rule,

2This is the region for which the exact value of R(D) is known [5, 37, 42].
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Chapter 2. Nonanticipative Rate Distortion Function 11
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FIGURE 2.1.1: Block diagram of nonanticipative information transmission.

which yields

P∗Y n|Xn(dyn|xn) =⊗n
i=0P∗Yi|Y i−1,Xn(dyi|yi−1,xn) (2.1.8)

6=⊗n
i=0P∗Yi|Y i−1,X i(dyi|yi−1,xi) (2.1.9)

Therefore, probabilistically, the optimal reproduction distribution (2.1.7) of the classical

information RDF cannot be decomposed into a convolution of causal conditional distribution

(i.e., it is anticipative). The anticipative form of the optimal reproduction distribution (2.1.7)

(or failure of (2.1.9) to hold) implies that, in general, the classical information RDF cannot be

used in JSCC based on nonanticipative transmission (see Figure 2.1.1), and in probabilistic

matching on the channel [10, 31, 44, 45]. An exception is the class of independent sources.

Indeed, a necessary condition for probabilistic matching of the source to the channel via

nonanticipative transmission as illustrated in Figure. 2.1.1, is causal conditioning of the

optimal reproduction distribution, that is, (2.1.8) should be equal to (2.1.9), or equivalently,

the following causality constraint expressed in terms of Markov chains (MC) should hold.

Xn
i+1↔ (X i,Y i−1)↔ Yi, i = 0,1, . . . ,n−1, ∀ n ∈ N (2.1.10)

Among all the classes of sources, the only subclass for which the optimal reproduction distri-

bution (2.1.7) of the classical information RDF is nonanticipative (i.e., causal with respect to

future source symbols), and hence satisfies the necessary conditions for probabilistic match-

ing of the source to the channel via nonanticipative transmission, is the independent source

{Xn : n = 0,1, . . .} with single letter distortion. In this case we have

P∗Y n|Xn(dyn|xn) =⊗n
i=0P∗Yi|Xi

(dyi|xi) (2.1.11)
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Chapter 2. Nonanticipative Rate Distortion Function 12

and hence P∗Yi|Xi
(dyi|xi) satisfies the necessary condition for probabilistic matching of the

source and the channel (memoryless) via nonanticipative transmission. Alternatively stated,

given any source (with or without memory), a necessary condition for probabilistic match-

ing of the source to a noisy channel via nonanticipative transmission (as shown in Fig. 2.1.1)

is the realization of the optimal reproduction distribution by an encoder-channel-decoder

which process, at each time instant symbols causally. Moreover, such realization of the

optimal reproduction distribution is a necessary condition for JSCC via nonanticipative or

uncoded transmission [31, 44, 45]. This nonanticipative nature of the reproduction distribu-

tion is fundamental in the two examples of nonanticipative transmission mentioned earlier

(see also [31]), e.g., the binary IID source with a Hamming distortion, and the IID Gaussian

source with mean-square distortion. In fact, by recalling the necessary and sufficient con-

ditions for source-channel matching based on nonanticipative transmission of memoryless

sources and channels given in [31, Lemma 2, ii)] it requires (by adopting our notation) that

the distortion satisfies

d(xi,yi) =−c2 logPXi|Yi(dxi|yi)+d0(xi) (2.1.12)

where c2 > 0 and d0(·) is an arbitrary function. It is easy to verify that (2.1.12) is just

a restatement of (2.1.7), for memoryless sources (i.e., PXn(xn) = ⊗n
i=0PXi|X i−1(dxi|xi−1) =

⊗n
i=0PXi(dxi)), where

P∗Yi|Xi
(dyi|xi) =

esd(xi,yi)PYi(dyi)∫
Yi

esd(xi,yi)PYi(dyi)︸ ︷︷ ︸
g(xi)

(2.1.13)

By simple manipulations (i.e., P∗Yi|Xi
(dyi|xi) =

P∗Xi|Yi
(dxi|yi)P∗Yi

(dyi)

PXi(dxi)
) from (2.1.13) we have

d(xi,yi) =
1
s

logPXi|Yi(dxi|yi)+
1
s

log
( g(xi)

PXi(dxi)

)
, s < 0

That is, c2 =−1
s , d0(xi) =−1

s log
( g(xi)

PXi(dxi)

)
, ∀i.

The main feature of the optimal reproduction distribution of the information nonantici-

pative RDF is that at each time instant n, it is described by the conditional distribution

PYn|Y n−1,Xn(dyn|yn−1,xn), hence it is causal with respect to the past and present source sym-

bols and past reproduction symbols (Xn,Y n−1) for n = 0,1, . . ..
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Chapter 2. Nonanticipative Rate Distortion Function 13

The information nonanticipative RDF is defined as follows. Given a source distribution

PXn(dxn), a sequence of reproduction distributions {PYi|Y i−1,X i(dyi|yi−1,xi) : i = 0,1, . . . ,n},
and a measurable distortion function

d0,n(., .) : X0,n×Y0,n 7−→ [0,∞), d0,n =
n

∑
i=0

ρ0,i(T ixn,T iyn) (2.1.14)

where T ixn is for each time instant i, a causal mapping of xn, i.e., T ixn is measurable function

of xi, and similarly for T iyn, and an average fidelity set

Qna
0,n(D)

4
=

{
−→
P Y n|Xn(dyn|xn)

4
=⊗n

i=0PYi|Y i−1,X i(dyi|yi−1,xi) :

1
n+1

∫
X0,n×Y0,n

d0,n(xn,yn)(
−→
P Y n|Xn⊗PXn)(dxn,dyn)≤ D

}
(2.1.15)

the finite-time information nonanticipative RDF is defined by

Rna
0,n(D)

4
= inf−→

P Y n|Xn(·|xn)∈Qna
0,n(D)

∫
X0,n×Y0,n

log
(−→P Y n|Xn(dyn|xn)

PY n(dyn)

)
(
−→
P Y n|Xn⊗PXn)(dxn,dyn)

= inf−→
P Y n|Xn(·|xn)∈Qna

0,n(D)
IXn→Y n(PXn,

−→
P Y n|Xn) (2.1.16)

Here, IXn→Y n(·, ·) is used to denote the functional dependence of Rna
0,n(D) on the two distribu-

tions {PXn,
−→
P Y n|Xn}. Whenever, the infimum in (2.1.16) does not exist the value of Rna

0,n(D)

is set to +∞.

The information nonanticipative RDF rate is defined by

Rna(D)
4
= lim

n−→∞

1
n+1

Rna
0,n(D) (2.1.17)

provided the limit exists; if the infimum in (2.1.16) does not exist we set Rna(D) = +∞.

In this chapter, we consider the information nonanticipative RDF and we describe its appli-

cations in

1. Joint source-channel coding via nonanticipative transmission.

2. Bounding the OPTA by noncausal and causal codes [56] for general stationary sources.

3. Computing the OPTA by sequential codes [50, 75] for two dimensional sources.

Chri
sto

s K
. K

ou
rte

lla
ris



2.2. Problem Formulation 14

4. Show equivalence of the information nonanticipative RDF to Gorbunov and Pinsker

nonanticipatory ε−entropy and message generation rates [34–36], which corresponds

to Shannon information RDF with an additional causality constraint imposed on the

optimal reproduction distribution.

5. Demonstrate that Gorbunov and Pinsker definition of nonanticipatory ε−entropy is

limited by its own definition and hence, it cannot be extended to feedback control

applications while the information nonanticipative RDF is easily generalized to such

applications.

6. Derive the expression of the optimal reproduction distribution of the information

nonanticipative RDF and characterize some of its properties.

7. Compute the nonanticipative RDF of the BSMS(p).

2.2 Definition of Lossy Compression Codes

In this section we introduce the precise definitions for the different classes of codes (non-

causal, causal, sequential) and their associated information theoretic definitions (classical

information RDF, causal information RDF based on entropy rate of reproduction symbols,

sequential information RDF), in order to put into context the various applications of the

nonanticipaive RDF.

2.2.1 Noncausal Codes and Classical RDF

Assume a random sequence X∞ 4= {Xi : i ∈ N} taking values in an arbitrary alphabet X0,∞

and a compression scheme consisting of an encoder and a decoder. The encoder upon ob-

serving source sequences {Xi : i ∈ N} ∈X0,∞ generates a message W , the compressed rep-

resentation {Zi : i ∈ N}, taking values in a finite alphabet, which is then transmitted over a

noiseless channel of rate R bits per source symbol to the decoder. At the channel output the

decoder upon observing W obtains an estimate {Yi : i ∈ N} ∈ Y0,∞ called the reproduction

of the source sequence {Xi : i ∈ N}. The cascade system consisting of the encoder and the

decoder is often called the reproduction coder. The reproduction coder is a family of mea-

surable functions { fi : i ∈ N} such that Yi = fi({X j}∞
j=0) is the reproduction of the source
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Chapter 2. Nonanticipative Rate Distortion Function 15

Encoder Decoder
X
n

W=1,2,…,2
nR
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n

FIGURE 2.2.2: The source coding model

output. This coding scheme consists of the following encoding and decoding mappings.

Definition 2.1. (Noncausal codes)

A noncausal (n,2nR) source code of block length n and normalized rate R consists the fol-

lowing encoding and decoding mappings.

Encoding mapping: en : X n→W
4
= {1,2, ..,2nR} and W = en(Xn)

Decoding mapping: gi : W → Yi and Yi = gi(W ), i ∈ Nn

Note that the ith component of Y n is Yi = gi(W )= gi◦en(Xn) and Y n = gn(W ). The distortion

associated with the (n,2nR) code is defined by

D =
1

n+1
E
{

d0,n(Xn,gn(en(Xn)))
}
=

1
n

∫
X0,n

d0,n(Xn,gn(en(Xn)))PXn(dxn)

where the expectation is with respect to the distribution PXn(.) induced by Xn. The objective

is to minimize the rate R subject to the fidelity constraint defined by 1
n+1E{d0,n(xn,yn)} ≤

D, D > 0. The operational definition of a code (n,2nR) is defined as follows.

Definition 2.2. (Achievable Rate)

A rate distortion pair (R,D) is called achievable if ∀ε > 0 and sufficiently large n there

exists a sequence (n,2nR) of noncausal code such that

1
n+1

E
{

d0,n(Xn,Y n)
}
≤ D+ ε

The rate distortion region for a source is the closure of the set of achievable rate distortion

pairs (R,D). The classical RDF R(D) is the infimum of rates R such that (R,D) is in the rate

distortion region of the source for a given distortion D.

Suppose for a given n ∈N, a set of 2nR reproduction sequences {yn
(i) ∈Y0,n : i = 1, . . . ,2nR}

are chosen, and the source sequences {xn
(i) ∈X0,n : i = 1, . . . ,2nR} are mapped into this set

of reproduction sequences. Thus, a noncausal code (n,2nR) is specified, in which {yn
(i) ∈

Chri
sto

s K
. K

ou
rte

lla
ris



Chapter 2. Nonanticipative Rate Distortion Function 16

Y0,n : i = 1, . . . ,2nR} are all the possible codewords. Each codeword in such an encoding

can be represented by a sequence of length nR binary bits. These bits are transmitted over

a noiseless channel reliably such that the distortion between the reproduction sequence (one

of the codewords) and the source sequence is the distortion defined for the encoding.

Given a source distribution PXn(dxn) and the encoding specified by a given noncausal code,

the joint distribution PXn,Y n(dxn,dyn) of a joint ensemble {(Xn,Y n) : n ∈ N} is defined as

follows. The conditional distribution of a reproduction sequence Y n given a source sequence

Xn is given by

PY n|Xn(dyn|xn) = δen(xn)(dyn)

where δz(.) denotes the delta measure concentrated at point z. That is, PY n|Xn(.|xn) becomes

a point mass measure if yn is the codeword into which the source sequence xn is mapped

into. The joint distribution is

PXn,Y n(dxn,dyn) = PY n|Xn(dyn|xn)⊗PXn(dxn) = δen(xn)(dyn)⊗PXn(dxn)

The analysis of the achievable rate is done by utilizing a test-channel, and then studying

the behaviour of a randomly selected set of chosen codewords. Specifically, for a given test

channel PY n|Xn(dyn|xn), and a source distribution PXn(dxn), an ensemble of source codes is

generated by selecting sets of 2nR sequence yn
(1),y

n
(2), . . . ,y

n
(2nR)

drawn independently accord-

ing to the distribution PY n(dyn) =
∫
X0,n

PY n|Xn(yn|xn)⊗PXn(xn). The probability measure

on this ensemble is denoted by Pc. For a given set of codewords yn
(1),y

n
(2), . . . ,y

n
(2nR)

in the

ensemble each source sequence xn is mapped into that codeword, yn
( j), which minimizes

d0,n(xn,yn
( j)), j ∈ {1,2, . . . ,2nR}. The selection of codeword is arbitrary if the minimum is

not unique.

Next we define the classical information RDF, a functional of the source distribution and re-

construction conditional distribution, which gives the OPTA by noncausal codes (see (2.1.1),

(2.1.2)).

Definition 2.3. (Classical Information RDF) Let Q0,n(D) (assuming is non-empty) denote

the average distortion or fidelity constraint defined by

Q0,n(D)
4
=
{

PY n|Xn(dyn|xn) :
1

n+1

∫
X0,n,Y0,n

d0,n(xn,yn)PY n|Xn(dyn|xn)⊗PXn(dxn)≤ D
}

(2.2.18)
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Chapter 2. Nonanticipative Rate Distortion Function 17

where D≥ 0. Define

R0,n(D) = inf
PY n|Xn∈Q0,n(D)

IXn;Y n(PXn,PY n|Xn) (2.2.19)

The classical information RDF is defined by

R(D) = lim
n−→∞

1
n+1

R0,n(D) (2.2.20)

It is well-known that for stationary ergodic sources, finite alphabet spaces, and single let-

ter distortion functions d0,n(xn,yn) = ∑
n
i=0 ρ(xi,yi), that the information RDF, R(D), is the

OPTA by noncausal codes at distortion D. For memoryless sources (e.g., {Xi : i ∈ N}, IID),

R(D) is given by the single letter expression

R(D) = inf
PY |X :

∫
ρ(x,y)PY |X (dy|x)⊗PX (dx)≤D

IX ;Y (PX ,PY |X) (2.2.21)

For information stable sources and distortion stable [41], R(D) is also the optimal theoret-

ically attainable rate at distortion D. Further, it is shown in [20, 63] that for Polish spaces

(X0,n,Y0,n) in which Y0,n is compact, and d(xn, .) continuous on Y0,n, that the infimum is

attained at

P∗Y n|Xn(dyn|xn) =
esρ(T ixn,T iyn)PY n(dyn)∫
Y0,n

esρ(T ixn,T iyn)PY n(dyn)
(2.2.22)

where s ∈ (−∞,0] is the Lagrange multiplier associated with the distortion constraint. The

condition on the compactness Y0,n in [20] is removed in [63]. The generation of ensemble of

codes is done via any test-channel distribution which achieves the RDF (2.2.21) for a given

distortion D.

It is clear that in general, the optimal conditional distribution P∗Y n|Xn(dyn|xn) which gives the

infimum in (2.2.21) is noncausal, since by Bayes rule

PY n|Xn(dyn|xn) =⊗n
i=0PYi|Y i−1,Xn(dyi|yi−1,xn)

This conditional distribution cannot be applied in causal compression [56], since it violates

the definition of causality that requires conditional independence on future source symbols,

given the past and present source symbols. Therefore, in order to characterize the causal

information RDF and to establish coding theorems, an information measure needs to be
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Chapter 2. Nonanticipative Rate Distortion Function 18
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FIGURE 2.2.3: The causal source coding model

introduced, in order to impose a causality or nonanticipation constraint on the admissible set

of reproduction conditional distributions. This is elaborated in the next subsection.

2.2.2 Causal Codes and Causal Information RDF

Following Neuhoff and Gilbert [56], the cascade of an encoder and decoder is called the re-

production coder, and a coder is called causal if its reproduction coder is causal. The precise

definition is the following.

Definition 2.4. (Causal reproduction coder)

A reproduction coder fi : X0,n 7→ Yi, i ∈ Nn is called causal, if the mapping xn 7→ fi(xn) is

measurable, ∀ i ∈ Nn, n ∈ N, and

fi(xn) = fi(x̂n), ∀ xn such that xi = x̂i ∀ i≤ n

A source code is causal if the induced reproduction coder is causal. For a given i ∈N the set

of such reproduction codes fi is denoted by Fi, and F0,n
4
=×n

i=0Fi = { fi ∈Fi : i= 0,1, . . . ,n}.

Therefore for causal codes, the induced reproduction coder, which is the cascade of the

encoder and the decoder, must satisfy the causality constraint of Definition 2.4. Thus, causal

codes are a subset of noncausal codes. In [56], Neuhoff and Gilbert have also shown that

for IID sources one may design the reproduction coder first, followed by a lossless code as

shown in figure Fig.2.2.3. Causal codes are dealt with the entropy rate of Y n, while coding

theorems are generalized in [83], in the presence of side information. However, no closed

form expression is given for the reconstruction distribution, as in the OPTA of noncausal

codes.

The probabilistic equivalent to Definition 2.4 is the following. Since for any i ∈ Nn the

reconstruction symbol, Yi, is allowed to depend on past and present source symbols {X j :

j = 0,1, . . . , i} but not on the future ones {X j : j = i+ 1, i+ 2, . . . ,n}, then the following
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Chapter 2. Nonanticipative Rate Distortion Function 19

Markov chain must hold

Xn
i+1↔ (X i,Y i−1)↔ Yi, ∀ i ∈ Nn (2.2.23)

Given a source distribution PXn(.) and a causal reproduction coder { fi : i= 0,1, . . . ,n}∈F0,n,

the joint distribution PXn,Y n(., .) is specified uniquely as follows.

PXn,Y n(dxn,dyn) = PY n|Xn(dyn|xn)⊗PXn(dxn)

= ⊗n
i=0PYi|Y i−1,Xn(dyi|yi−1,xn)⊗PXn(dxn)

(α)
= ⊗n

i=0PYi|Y i−1,X i(dyi|yi−1,xi)⊗PXn(dxn)

= ⊗n
i=0δ fi(xi,yi−1)(dyi)⊗PXn(dxn)

where the equality in (α) is due to the causality of the reproduction coder which satisfies

Markov chain (2.2.23). Next, we provide the definition of causal codes and the operational

definition of causal codes for noiseless channels.

The coding scheme for causal codes consists of the following encoding and decoding map-

pings, as well as the causal reproduction coder.

Definition 2.5. (Causal Codes)

A (n,2nR) causal source code of block length n, and rate R consists the following encoding

mappings.

Encoding mapping: en : X n→W
4
= {1,2, ..,2nR} and W = en(Xn)

Decoding mapping: gi : W → Y and Yi = gi(W ), i ∈ Nn

such that the sequence of reproduction coders { fi = gi ◦ en}n
i=0 are causal.

Next, we give the operational definition of causal codes for which an information theoretic

measure and a coding theorem are derived in [56].

Definition 2.6. (Operation of causal codes)

Let Q f
0,n(D) (assuming is non-empty) denote the average distortion or fidelity constraint

defined by

Q f
0,n(D)

4
=
{
( f0, f1, . . . , fn) ∈ F0,n :

1
n+1

E
{

d0,n(xn,yn)
}
≤ D

}
(2.2.24)
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Chapter 2. Nonanticipative Rate Distortion Function 20

where D≥ 0. Define

Rc,o
0,n(D)

4
= inf

( f0, f1,..., fn)∈Q f
0,n(D)

H(Y0,Y1, . . . ,Yn) (2.2.25)

The classical information causal RDF is defined by

Rc,o(D) = lim
n−→∞

1
n+1

Rc,o
0,n(D) (2.2.26)

provided the limit exists and the infimum of (2.2.25) is finite. If the infimum in (2.2.25) is

not finite we set Rc,o
0,n(D) = +∞.

By Definition 2.6, the classical (noncausal) RDF does not account for (2.2.23), hence in

general the optimal reconstruction distribution does not satisfy causality, therefore a new

RDF needs to be defined and its operational meaning established.

Before we define the information definition of causal codes we recall Neuhoff and Gilbert

[56] operational and information definition of causal codes based on entropy. Consider a

causal source code with an induced reproduction coder { fi : i ∈ N} ∈ F0,∞ applied to a

source {Xi : i ∈ N} and define the average distortion by

d̄(x,y) 4= limsup
n−→∞

1
n+1

E{d0,n(Xn,Y n)}, d0,n(xn,yn)
4
=

n

∑
i=0

ρ(xi,yi)

The average operational rate of the reproduction coder is defined by

r
4
= limsup

n−→∞

1
n+1

E
{
`n(X∞)

}
where `n(X∞) is the total number of bits received by the decoder at the time it reproduces

the output sequence {Y j : j ∈N} when the source is X∞ 4= {Xi : i ∈N}. That is, if Z1,Z2, . . . ,

is the sequence of bits produced by the encoder in response to {Xi : i ∈ N}, and if Yn is pro-

duced by the decoder after receiving Zl but before Zl+1, then `n(X∞) = l (here it is assumed

that the decoder has already produced Y n−1).

Definition 2.7. (Causal Achievable Rate)

A rate distortion pair (R,D) is called achievable if ∀ε > 0 and sufficiently large n there

exists a sequence (n,2nR) of causal codes such that

1
n+1

E
{

d0,n(Xn,Y n)
}
≤ D+ ε
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Chapter 2. Nonanticipative Rate Distortion Function 21

The causal rate distortion region for a source is the closure of the set of causal achievable

rate distortion pairs (R,D). The operational causal RDF is the infimum of rates R such that

(R,D) is in the rate distortion region of a source for a given distortion D.

In [56] the OPTA by causal codes for a source {Xi : i ∈ N} denoted by rc(D), is shown

to be the infimum of the average rates of all causal codes subject to an average distortion

constraint d̄(x,y)≤ D, defined by

rc(D) = inf
{ fn(.): Yn= fn(X∞), fn(.) causal, n∈N}, d̄(x,y)≤D

limsup
n−→∞

1
n+1

H(Y n) (2.2.27)

Furthermore, it is shown that rc(D) is determined by properties of the reproduction coders.

The general, coding system has an equivalent representation as shown in Figure 2.2.3.

Next, we define the test-channel conditional distribution of causal reproduction coder, and

establish a lower bound to rc(D) via a variation of directed information. By definition, a

causal reproduction coder utilizes a test-channel of the form

QY n|Xn(dyn|xn) =
−→
P Y n|Xn(dyn|xn)

4
=⊗n

i=1PYi|Y i−1,X i(dyi|yi−1,xi), n ∈ N

Similarly to the classical case, given a source PXn(.) and a sequence of causal reproduction

distributions PYi|Y i−1,X i : i ∈N the joint distribution PXn,Y n(., .) and the marginals are obtained

as follows.

PXn,Y n(dxn,dyn) = ⊗n
i=0PYi|Y i−1,X i(dyi|yi−1,xi)⊗PXi|X i−1(dxi|xi−1)

=
−→
P Y n|Xn(dyn|xn)⊗PXn(dxn)

PY n(dyn) = PXn,Y n(X0,n,dyn)

PY n(dyn) =
∫
X0,n

−→
P Y n|Xn(dyn|xn)⊗PXn(dxn)

The sequence uniquely defines the convolution measure
−→
P Y n|Xn(dyn|xn) = ⊗n

i=0PYi|X i,Y i−1

(dyi|xi,yi−1) and vice-versa. The ensemble of causal codes, should be drawn independently

according to the distribution PY n(dyn). Therefore, the new information measure that should

be used instead of mutual information, is

D(−→P Y n|Xn⊗PXn||PY n×PXn)≡ IXn→Y n(PXn,
−→
P Y n|Xn)
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Chapter 2. Nonanticipative Rate Distortion Function 22

The notation IXn→Y n(PXn ,
−→
P Y n|Xn) is used to define the directed information evaluated at

PXi|X i−1,Y i−1 = PXi|X i−1 .

At this stage, it is informative to establish the relation between rc(D) and the information

measure IXn→Y n(PXn,
−→
P Y n|Xn). Let Z(n)(X∞) denote the first `n(X∞) bits produced by de-

coder, e.g., Z(n)(X∞) is the sequence of bits received by the decoder at the time it produces

Yn (assuming the decoder already produced Y n−1). Then,

1
n+1

E{`n(X∞)}
(α1)
≥ 1

n+1
H(Z(n))

(α2)
≥ 1

n+1
H(Y n)

(α3)
≥ 1

n+1

n

∑
i=0

(
H(Yi|Y i−1)−H(Yi|Y i−1,X i)

)
=

1
n+1

n

∑
i=0

I(X i;Yi|Y i−1)

=
1

n+1
IXn→Y n(PXn,

−→
P Y n|Xn)

where (α1) holds since the average length of the sequence of R.V.s is not less than the

entropy of the sequence of the R.V.s, (α2) holds since the entropy of a function of a sequence

of R.V.s is not greater than the entropy of a sequence R.V, and (α3) holds since the entropy

is positive for finite alphabets. Note that inequality (α3) is actually an equality because Y i−1

is causally dependent on {X j : j = 0,1, . . . , j−1}. The last equality holds since by (2.2.23),

PXi|X i−1,Y i−1 = PXi|X i−1 -a.s for all causal reproduction coders. Hence, taking the infimum on

both sides

rc(D)≥ inf
{ fn(.): Yn= fn(X∞), fn(.) causal, n∈N}, d̄(x,y)≤D

limsup
n−→∞

1
n+1

IXn→Y n(PXn,
−→
P Y n|Xn)

≥ limsup
n−→∞

1
n+1

inf−→
P Y n|Xn∈Qna

0,n(D)
IXn→Y n(PXn,

−→
P Y n|Xn) (2.2.28)

The bound on (2.2.28), obtained by randomizing reproduction coders is the quantity we

obtained from (2.1.13), the nonanticipative information RDF. Moreover, since causal repro-

duction coders impose the additional causality constraint on the test channel of classicalChri
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RDF, then the following relations hold.

rc(D)≥ limsup
n−→∞

inf
PY n|Xn∈Q0,n(D),PY n|Xn(dyn|xn)=

−→
P Y n|Xn(dyn|xn)

1
n+1

IXn;Y n(PXn,PY n|Xn)

= limsup
n−→∞

inf−→
P Y n|Xn∈Qna

0,n(D)

1
n+1

IXn→Y n(PXn ,
−→
P Y n|Xn)

≥ limsup
n−→∞

inf
PY n|Xn∈Q0,n(D)

1
n+1

IXn;Y n(PXn,QY n|Xn)

The last inequality holds because the infimum is over a larger set since Qna
o,n(D)⊆ Qo,n(D).

Therefore, we can investigate the rate loss of causal codes with respect to the noncausal

codes by the equation RL
4
= R(D)− rc(D)≤ R(D)−Rna(D).

2.2.3 Sequential Codes and Sequential RDF

Clearly, causal coding regards only the information structure of the decoder, since no con-

straints are imposed on how the compressed representation {Z0,Z1,Z2, . . .} is created from

{X0,X1,X2, . . .} by the encoder and interpreted by the decoder. Since no restrictions are

imposed on how the index W , or its equivalent binary representation {Z0,Z1,Z2, . . .}, is gen-

erated, causality does not imply zero-delay between the output of the decoder and the output

of the source. This is obvious by the encoding mapping since the encoder takes n time units,

until the index W is produced. Thus, the time ordering of the random variables for general

causal codes is X1,X2, ..,Xn,Y1,Y2, ..,Yn.

A further restriction on causal codes is to require zero-delay between the time Xn enters

the decoder and Yn is produced by the decoder. A causal code is said to have zero delay

or it is sequential, if each compressed representation symbol Zn depends on the past and

present source sequence X0,X1, . . . ,Xn, and the reproduction at the decoder Yn of the present

source symbol Xn, depends on the compressed representation Z0,Z1, . . . ,Zn received so far.

Thus, a zero delay or sequential code consists of a family of encoder-decoder measurable

function {(hi, fi) : i = 0,1, . . .} such that Zi = hi({X j}i
j=0) and Yi = fi({Z j}i

j=0), i = 0,1, . . ..

Such codes are desirable for delay-sensitive applications and for communication for control

application. Delayless codes are a subset of the family of causal source codes.

Coding theorems for Sequential Rate Distortion Function (SRDF) are discussed and derived

in [75] utilizing a two-parameter random processes. Specifically, consider a two dimensional

source XT,N 4= {Xt,n : t = 0,1, . . . ,T, n = 0,1, . . . ,N} where t represents the time index and
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Chapter 2. Nonanticipative Rate Distortion Function 24

n represents the spatial index, such as in video coding applications. The natural time or-

der is with respect to the time index, hence for a fixed t, one observes the spatial process

{Xt,0,Xt,1, . . . ,Xt,N}. In this formulation, the notation used for sequential codes is the fol-

lowing. For each t ∈ {0,1, . . . ,T}, the time index alphabet is denoted by X N
t
4
=⊗N

n=0Xt,n,

for each n ∈ {0,1, . . . ,N} the spatial index alphabet is denoted by X T
n
4
=⊗T

t=0Xt,n, and the

joint time and spatial alphabet is denoted by X T,N 4= ⊗T
t=0⊗N

n=0 Xt,n. Thus, for a fixed

t ∈ {0,1, . . . ,T}, xN
t ∈X N

t , for a fixed n ∈ {0,1, . . . ,N}, xT
n ∈X T

n , and xT,N = {xi, j : i =

0,1, . . . ,T, j = 0,1, . . . ,N} ∈X T,N .

The precise definition of a sequential quantizer is the two-dimension generalization of the

causal reproduction coder defined as follows.

Definition 2.8. (Sequential reproduction coder)

A reproduction coder { f N
t : X T,N 7→Y N

t : t = 0,1, . . . ,T} is called sequential, if the mapping

xT,N 7→ f N
t (xT,N) is measurable, and ∀t = 0,1, . . . ,T ,

f N
t (xT,N) = f N

t (x̂T,N) ∈ Y N
t , ∀ xT,N such that xt,N = x̂t,N ∀ t ≤ T,∀T,N ∈ N (2.2.29)

and the range of each function is at most countable. For a given t ∈ {0,1, . . . ,T}, the set of

such reproduction coders denoted by FN
t
4
=⊗N

n=0FN
t = { ft,n ∈ Ft,n : n = 0,1, . . . ,N}, FT,N 4=

⊗T
t=0FN

t = { f N
t ∈ FN

t : t = 0,1, . . . ,T}.

Clearly, a sequential reproduction coder is simply a two parameter generalization of the

causal reproduction coder, in which for a fixed time index t, the reproduction symbol yN
t ∈

Y N
t is allowed to depend on past, present and future spatial symbols {Xt, j : j = 0,1, . . . ,N}.

Therefore, the probabilistic equivalent of a sequential reproduction coder is such that it sat-

isfies the following Markov chain.

{Xt+1, j,Xt+2, j, . . . ,XT, j : j = 0,1, . . . ,N}↔ (X t,N ,Y t−1,N)↔ Y N
t t ∈ {0,1, . . . ,T}

(2.2.30)
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Given a source distribution PXT,N (.) and a sequential reproduction coder { f N
t : t = 0,1, . . . ,T},

the joint distribution PXT,N ,Y T,N (., .) is uniquely specified as follows

PXT,N ,Y T,N (dxT,N ,dyT,N) = PY T,N |XT,N (dyT,N |xT,N)⊗PXT,N (dxT,N)

= ⊗T
t=0PY N

t |Y t−1,N ,XT,N (dyN
t |yt−1,NxT,N)⊗PXT,N (dxT,N)

(a)
= ⊗T

t=0PY N
t |Y t−1,N ,X t,N (dyN

t |yt−1,Nxt,N)⊗PXT,N (dxT,N)

= ⊗T
t=0δ f N

t (xt,N ,yt−1,N)(dyN
t )⊗PXT,N (dxT,N)

where the equality in (a) is due to the causality constraint of causal reproduction coder

which satisfies Markov chain (2.2.30).

The sequential coding scheme consists the following encoding and decoding mappings and

reproduction coder.

Definition 2.9. (Zero Delay Sequential Codes)

A sequential (N,2NRt ) source code of block length N and normalized rate Rt at time t ∈
{0,1, . . . ,T}, consists of the following causal encoding and causal decoding mappings.

Encoding mappings:

eN
t : X t,N →W N

t
4
= {1,2, ..,2Rt} and W N

t = eN
t (X

t,N), ∀ t ∈ {0,1, . . . ,T}

Decoding mapping:

gN
t : W N

t ×Y t−1,N → Y N
t and Y N

t = gN
t (W

N
t ,Y t−1,N), ∀ t ∈ {0,1, . . . ,T}

Note that the reproduction codes { f N
t = gN

t ◦ eN
t : t = 0,1, . . . ,T} are causal.

Sequential codes as introduced by Tatikonda [75] are dealt with mutual information between

Xn and Y n subject to a causal constraint on the reconstruction kernel. However, no closed ex-

pression is given for the optimal reproduction distribution PY N
i |Y i−1,N ,X i,N (dyN

i |yi−1,N ,xi,N), i =

0,1, . . . ,n. The coding theorems are derived for two dimensional random precesses XT,N ,

where N denotes the spatial block and T the time block, under the assumption that

P(dXT,N) = ⊗N
n=0P(dXT

n ), and {XT
n : n = 1, . . . ,N} is identically distributed. In sequen-

tial codes the time-ordering between the output of the source and the output of the decoder

is XN
0 ,Y N

0 ,XN
1 ,Y N

1 , . . . . Next we define the operational definition of a sequential RDF.Chri
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Definition 2.10. (Operational Sequential RDF)

Let QN, f
0,T (D) denote the average distortion or fidelity constraint defined by

QN, f
0,T (D)

4
=

{
( f N

0 , f N
1 , . . . , f N

T ) ∈ FT,N :
1

T +1
E
{

dT,N(XT,N ,Y T,N)≤ D
}}

,

dT,N(xT,N ,yT,N)
4
=

T

∑
t=0

ρ
N
t (xt,N ,yt,N) (2.2.31)

where D≥ 0 and E(.) denotes expectation with respect to distribution PXT,N (.). Define

RS,N,O
0,T (D)

4
= inf

( f N
0 , f N

1 ,..., f N
T )∈QN, f

0,T (D)

H(Y N
0 ,Y N

1 , . . . ,Y N
T ) (2.2.32)

The sequential operational RDF is defined by

RS,O
0,T (D)

4
= lim

N−→∞

1
N +1

RS,N,O
0,T (D)

provided the limit exists and the infimum in (2.2.32) is finite. If the infimum in (2.2.32) does

not exist, then RS,O
0,T (D) = +∞.

Remark 2.11. The operational definition of sequential RDF above, is a slight variation of the

one given in [75]. Specifically, on [75] there are two formulations. Formulation 1 assumes

a pointwise distortion function

QN, f ,1
0,T (D)

4
=
{
( f N

0 , f N
1 , . . . , f N

T ) ∈ FT,N : E{dN(XN
t ,Y N

t )≤ Dt}, t = 0,1, . . . ,T
}

and formulation 2 assumes an average distortion

QN, f ,2
0,T (D)

4
=
{
( f N

0 , f N
1 , . . . , f N

T ) ∈ FT,N :
1

T +1

T

∑
t=0

E{ρN
t (XN

t ,Y N
t )} ≤ D

}

Next, we describe the test-channel conditional distribution of sequential reproduction coder

(i.e. (2.2.30)), and derive a converse coding theorem. By definition of sequential reproduc-

tion coder, the test channel is of the form

−→
P Y T,N |XT,N (dyT,N |xT,N)

4
=⊗T

t=0PY N
t |Y t−1,N ,X t,N (dyN

t |yt−1,N ,xt,N)Chri
sto
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Therefore, given a source distribution defined by PXT,N and the test channel, the joint distri-

bution PXT,N ,Y T,N (., .) is defined uniquely by

PXT,N ,Y T,N (dxT,N ,dyT,N) = ⊗T
t=0PY N

t |Y t−1,N ,X t,N (dyN
t |yt−1,N ,xt,N)

⊗PXN
t |X t−1,N ,Y t−1,N (dxN

t |xt−1,N ,yt−1,N)

= ⊗T
t=0PY N

t |Y t−1,N ,X t,N (dyN
t |yt−1,N ,xt,N)⊗PXN

t |X t−1,N (dxN
t |xt−1,N)

where the last equality follows because of the definition of causal reproduction coder satisfy-

ing (2.2.30). The ensemble of codes should be drawn independently according PY T,N (dyT,N)

given by

PY T,N (dyT,N) =
∫
X T,N

−→
P Y T,N |XT,N(dyT,N |xT,N)⊗PXT,N (dxT,N) (2.2.33)

.

Next we define the sequential information RDF as a functional of the source distribution

PXT,N (.) and a sequential reproduction conditional distribution

QY T,N |XT,N(dyT,N |xT,N) =
−→
P Y T,N |XT,N (dyT,N |XT,N)

Therefore, the new information measure that should be used is a special case of directed

information defined by

IPT,N
X

(XT,N → Y T,N)
4
= D(−→P Y T,N |XT,N ⊗PXT,N ||

−→
P Y T,N ⊗PXT,N )

≡ IXT,N→Y T,N (PXT,N ,
−→
P Y T,N |XT,N )

The functional IXT,N→Y T,N (., .) indicates the dependence on the distributions

{PXT,N ,
−→
P Y T,N |XT,N}. This functional is a variant of directed information from XT,N to

Y T,N and the sequential information RDF its defined via is infimum over the average

distortion constraint.

Definition 2.12. (Sequential Information RDF)

Let QS,N
0,T (D), assuming is non-empty, denote the average distortion or fidelity constraint

defined by

QS,N
0,T (D)

4
= {−→P Y T,N |XT,N (.|.) :

1
T +1

∫
X T,N ,Y T,N

dN
0,T (x

T,N ,yT,N)

−→
P Y T,N |XT,N (dyT,N |xT,N)⊗PXT,N (dxT,N)≤ D}
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where D≥ 0.

Define

RS,N
0,T (D)

4
= inf−→

P Y T,N |XT,N∈QS,N
0,T (D)

IXT,N→Y T,N (PXT,N ,
−→
P Y T,N |XT,N ) (2.2.34)

The sequential RDF is defined by

RS
0,T (D) = lim

N−→∞

1
N +1

RS,N
0,T (D) (2.2.35)

provided the limit exists and the infimum in (2.2.34) is finite. If the infimum in (2.2.34) does

not exist, then RS
0,T (D) = +∞.

Next, we give a converse coding theorem for sequential RDF.

Theorem 2.13. (Sequential Converse Coding Theorem)

Let { ft,n : t = 0,1, . . . ,T,n = 0,1, . . . ,N} ∈ FT,N be a sequential reproduction coder satisfy-

ing the average distortion constraint. Then

RS,N,O
0,T (D)≥ RS,N

0,T (D)

Proof. Consider any sequential reproduction coder. Then

1
(T +1)(N +1)

T

∑
t=0

log
(
eRt
)

≥ 1
(T +1)(N +1)

T

∑
t=0

H( f N
t (X t,N))

≥ 1
(T +1)(N +1)

H( f N
0 (X0,N), f N

1 (X1,N), . . . , f N
T (XT,N))

≥ 1
(T +1)(N +1)

I(XN
0 ,XN

1 , . . . ,XN
T ;Y N

0 ,Y N
1 , . . . ,Y N

T )

=
1

(T +1)(N +1)
IPT,N

X
(XN

0 ,XN
1 , . . . ,XN

T ;Y N
0 ,Y N

1 , . . . ,Y N
T )

=
1

(T +1)(N +1)
IXT,N→Y T,N (PXT,N ,

−→
P Y T,N |XT,N )

Taking the infimum over { ft,n : t = 0,1, . . . ,T,n = 0,1, . . . ,N} ∈ FT,N which satisfies the

average distortion constraint yields

1
(N +1)(T +1)

RS,N,O
0,T (D)≥ 1

(N +1)(T +1)
IXT,N→Y T,N (PXT,N ,

−→
P Y T,N |XT,N ),

∀−→P Y T,N |XT,N ∈ QS,N
0,T (D)
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Further, taking the infimum over
−→
P Y T,N |XT,N ∈ QS,N

0,T (D) the inequality is obtained.

Next, we introduce specific assumptions which are sufficient to apply the coding theorem

derived in [75].

Assumption 2.14.

1. The source is a two dimensional process {Xt,n : t = 0,1, . . . ,T, n = 0,1, . . . ,N} with

finite alphabet, Xt,n ∈Xt,n ∀ t ∈ {0,1, . . . ,T}, n ∈ {0,1, . . . ,N}, having finite di-

mensional distributions PXT,N (dxT,N) =⊗N
n=0PXT

n
(dxT

n ) and {XT
n : n = 0,1, . . . ,N} are

identically distributed.

2. The distortion functions dT,N : X T,N×Y T,N 7→ [0,∞) is measurable and

dT,N(xT,N ,yT,N)
4
=

1
T +1

T

∑
t=0

ρ
N
t (xN

t ,y
N
t )

=
1

(T +1)(N +1)

T

∑
t=0

N

∑
n=0

ρt(xt,n,yt,n)

=
1

N +1

N

∑
n=0

ρ0,T (xT
n ,y

T
n )

where,

ρ0,T (xT
n ,y

T
n ) =

1
(T +1)

T

∑
t=0

ρt(xt,n,yt,n)

Assumption 2.14.1 states that the random processes XT
n
4
= {X0,n,X1,n, . . . ,XT,n} and XT

m
4
=

{X0,m,X1,m, . . . ,XT,m} are independent ∀m 6= n, m,n ∈ {0,1, . . . ,N}, and that the processes

{XT
n : n = 0,1, . . . ,N} are identically distributed. Assumption 2.14.2 states that the distortion

function is single letter.

The next theorem establishes that under Assumptions 2.14 it is sufficient to restrict the ex-

pression of sequential operational RDF to a single letter with respect to the spatial index.

Theorem 2.15. Suppose Assumption 2.14.1 holds. Then we have the following
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1. The following lower bound holds.

IXT,N→Y T,N (PXT,N
−→
P Y T,N |XT,N ) = IPXT,N (X

T,N ;Y T,N)

=
T

∑
t=0

IPXT,N (X
t,N ;Y N

t |Y t−1,N) (2.2.36)

≥
T

∑
t=0

N

∑
n=0

IPXt
n
(X t

n;Yt,n|Y t−1
n )

=
N

∑
n=0

IPXTn
(XT

n ;Y T
n ) (2.2.37)

2. The lower bound in (2.2.37) holds with equality if and only if the following almost

sure condition hold.

PY N
t |Y t−1,N ,XN

t
(dyN

t |yt−1,NxN
t ) =⊗N

n=0PYt,n|Y t−1
n ,X t

n
(dyt,n|yt−1

n xt
n), t = 0,1, . . . ,T (2.2.38)

Moreover, under the Assumption 2.14.2 the infimum over conditional distributions
−→
P Y T,N |XT,N

∈ QS,N
0,T of IXT,N→Y T,N (PXT,N ,

−→
P Y T,N |XT,N ) has the property (2.2.38), and

RS,N
0,T (D) = (N +1) inf−→

P Y T |XT ∈QS
0,T (D)

IXT→Y T (PXT ,
−→
P Y T |XT )≡ (N +1)R̄S

0,T (D) (2.2.39)

where R̄S
0,T (D) is the single letter with respect to space index n∈ {0,1, . . . ,N} of the sequen-

tial RDF RS,N
0,T (D), and PXT (.) is the single letter source distribution,

QS
0,T (D) = {−→P Y T |XT : E{d0,T (XT ,Y T )} ≤ D}, d0,T (xT ,yT )

4
=

1
T +1

T

∑
t=0

ρt(xt ,yt)

and
−→
P Y T |XT (.|xT ) is the single letter reproduction channel.

Proof. See [75].

The sequential coding theorem described below is derived in Tatikonda [75].

Theorem 2.16. (Sequential Coding Theorem)

Suppose the source alphabet is finite and Assumption 2.14 hold. Then, for any ε > 0 and

Chri
sto

s K
. K

ou
rte

lla
ris



Chapter 2. Nonanticipative Rate Distortion Function 31

finite T , there exists an N(ε,T ) such that for all N ≥ N(ε,T )

1
N +1

RS,O
0,T ≤ R̄S

0,T (D)+ ε

Proof. The derivation is based on strong typicality of sequences utilizing the IID assumption

of random processes {XT
n : n = 0,1, . . . ,N}.

Finally, note that the sequential RDF is not delayless because it corresponds to block coding.

That is, it is causal with respect to the blocks of the data.

2.3 Nonanticipative Information RDF

In this section, we define the nonanticipative information RDF as a functional of a source

distribution PXn and a causal reproduction conditional distribution
−→
P Y n|Xn(dyn|xn). This

functional is a variant of directed information from the source Xn to the reconstruction Y n

and the nonanticipative information RDF is defined via its infimum over the average distor-

tion constraint.

Definition 2.17. (Nonanticipative Information RDF)

Let Qna
0,n(D) (assuming is non-empty) denote the average distortion or fidelity constraint

defined by

Qna
0,n(D)

4
= {−→P Y n|Xn(.|.) :

1
n+1

∫
X0,n,Y0,n

d0,n(xn,yn)
−→
P Y n|Xn(dyn|xn)⊗PXn(dxn)≤ D} (2.3.40)

where D≥ 0. Define

Rna
0,n(D)

4
= inf−→

P Y n|Xn∈Qna
0,n(D)

IXn→Y n(PXn,
−→
P Y n|Xn) (2.3.41)

The nonanticipative RDF is defined by

Rna(D) = lim
n−→∞

1
n+1

Rna
0,n(D) (2.3.42)

provided the limit exists and the infimum in (2.3.41) is finite. If the infimum in (2.3.42) does

not exist we set Rna(D) = +∞ .

Chri
sto

s K
. K

ou
rte

lla
ris



Chapter 2. Nonanticipative Rate Distortion Function 32

An equivalent statement of the Definition 2.17 is that the source is conditional independent

on the previous reconstruction symbols given all previous source symbols (see Lemma 2.21).

This holds since its reproduction symbol at any time instant is a function of up to current

source symbols. The nonanticipative property is necessary for showing operational meaning

to the JSCC based on nonanticipative transmission, for delayless communication.

Next, we provide the converse coding theorem for the nonanticipative information RDF.

Theorem 2.18. (Converse Theorem for Causal Codes)

The following bounds hold

(n+1)rc
0,n(D)≥ Rna

0,n(D)≥ R0,n(D) (2.3.43)

where

rc
0,n(D)

4
= inf
{ fi(.): Yi= fi(Xn), fi(.) causal i=0,1,...,n}, d̄(x,y)≤D

1
n+1

E
{
`n(Xn)

}
,∀ n ∈ N

Proof. Consider the joint distribution defined by PXn(dxn), and a causal conditioning repro-

duction distribution
−→
P Y n|Xn(·|xn). Then, by data processing inequality we have the following

bounds.

1
n+1

E
{
`n(X∞)

}
≥ 1

n+1
H(Y n)

≥ 1
n+1

n

∑
i=0

{
H(Yi|Y i−1)−H(Yi|Y i−1,X i)

}
(α)
=

1
n+1

IXn→Y n(PXn,
−→
P Y n|Xn) (2.3.44)

where (α) follows from the fact that the joint distribution is defined by PXn(dxn) and the

conditional reproduction distribution
−→
P Y n|Xn(·|xn). Therefore, given a distortion function

d0,n(xn,yn) and a distortion level D ≥ 0, for any finite time n ∈ N, by using (2.3.44), and

taking the infimum over the reproduction codes over randomized reproduction distribution
−→
P Y n|Xn(·|xn) ∈ Qna

0,n(D) we have the following bounds.

(n+1)rc
0,n(D)≥ Rna

0,n(D)≥ R0,n(D), ∀n≥ 0 (2.3.45)Chri
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The bounds in (2.3.45) remain valid if we divide by 1
n+1 take limsupn−→∞ and then the

infimum giving

rc(D)≥ Rna,+(D)
4
= limsup

n−→∞

1
n+1

Rna
0,n(D)≥ R+(D)

4
= limsup

n−→∞

1
n+1

R(D) (2.3.46)

where

rc(D)
4
= limsup

n−→∞

1
n+1

rc
0,n(D) (2.3.47)

Therefore, the information nonanticipative RDF, Rna(D), is a lower bound on rc(D), the

OPTA by causal codes, and an upper bound to the classical RDF R(D), the OPTA by non-

causal codes. These bounds are investigated recently in [22] for quadratic fidelity and sta-

tionary Gaussian sources, but due to the complexity of computing Rna(D), they introduced

additional bounds.

While the expression provided for causal codes [56, 83] is quite attractive, its computation

for general sources is very difficult, and no specific examples are computed for sources with

memory aside for the case of high resolution [49]. The OPTA by causal codes is bounded

below by the expression of nonanticipative RDF rate, which by its turn is bounded below

by the expression of classical RDF. The advantage of the proposed nonanticipative RDF,

Rna
0,n(D), is that the optimal reproduction distributions are easily computable.

Remark 2.19. (Letter-by-Letter (LbL) and Coupled Distortion Functions)

Although in our analysis of information nonanticipative RDF we consider an average fidelity

set, namely, Qna
0,n(D), we can also handle Letter-by-Letter (LbL), and Coupled Letter (CL)

Distortion Functions (i.e., the current value of the source depends on the previous and cur-

rent values of the reproduction) defined by d0,i : Xi×Y0,i 7−→ [0,∞), i = 0,1, . . . ,n, with

corresponding fidelity set

Qna,CL
0,n (D0, . . . ,Dn)

4
=
{−→

P 0,n(·|xn) : E
(

d0,i(Xi,Y i)
)
≤ Di, i = 0,1, . . . ,n

}
(2.3.48)

where Di ≥ 0, i = 0,1, . . . ,n.

Such LbL and CL distortion functions are employed in sequential coding of correlated

sources with encoding and/or decoding frame-delays in [50, 80]. However, the average

distortion includes thess as special cases.
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2.3.1 Relation to Nonanticipatory ε-Entropy and Message Generation
Rates

In this section, we recall Gorbunov-Pinsker’s definition of nonanticipatory ε-entropy [34].

Then, we show equivalence of certain statements regarding conditional independence and

finally, we show equivalence of the information nonanticipative RDF, information nonantic-

ipative RDF rate, and Gorbunov and Pinsker’s definition of nonanticipatory ε-entropy and

message generation rates, respectively.

For a given source distribution PXn and a reproduction PY n|Xn ∈ Q0,n(D), Gorbunov and

Pinsker restricted the fidelity set of classical RDF Q0,n(D) to those reproduction distributions

which satisfy the following Markov chain (MC).

X∞
n+1↔ Xn↔ Y n⇐⇒ PY n|X∞(dyn|x∞) = PY n|Xn(dyn|xn)−a.a. x∞ ∈X0,∞,n = 0,1, . . .

(2.3.49)

Then, they introduced the nonanticipatory ε-entropy and nonanticipatory message genera-

tion rate as follows.

Definition 2.20. ( Nonanticipatory ε-entropy and message generation rate)

Consider the fidelity constraint set Q0,n(D). The nonanticipatory ε-entropy is defined by

Rε
0,n(D)

4
= inf

PY n|Xn∈Q0,n(D):
Xn

i+1↔X i↔Y i, i=0,1,...,n−1

I(Xn;Y n) (2.3.50)

provided the infimum in (2.3.50) over Q0,n(D) and Xn
i+1 ↔ X i ↔ Y i, i = 0,1, . . . ,n− 1,

exists; if not, then we set Rε
0,n(D) = +∞. The nonanticipatory message generation rate of

the source is defined by

Rε(D)
4
= lim

n−→∞

1
n+1

Rε
0,n(D) (2.3.51)

provided the limit in the RHS of (2.3.51) exists; if the infimum in (2.3.50) does not exist, we

set Rε(D) = +∞. In addition, we have

Rε,+(D)
4
= inf

PY ∞|X∞∈Q0,∞(D):
X∞

i+1↔X i↔Y i, i=0,1,...

lim
n−→∞

1
n+1

I(Xn;Y n)≥ Rε(D) (2.3.52)
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The MC constraint (2.3.49) is a probabilistic version of a randomized causal reproduction

coder as defined in Definition 2.4. Thus, a source code is called causal if the reproduction

code is causal. Since the class of randomized reproduction codes embeds deterministic

codes, then probabilistically, a reproduction coder is causal if and only if the following MC

holds X∞
i+1 ↔ X i ↔ Yi, ∀i ∈ N. Therefore, nonanticipatory ε-entropy, Rε

0,n(D), imposes a

probabilistic causality constraint on the optimal reproduction distribution.

Gorbunov and Pinsker [36, 60] proceeded further to compute Rε(D)
4
= limn−→∞

1
n+1Rε

0,n(D),

whenever the limit exists, for the class of stationary ergodic scalar Gaussian sources by

working on the frequency domain using power spectral densities. Further, in [36, 60] it is

also shown that in the limit as D→ 0, the nonanticipatory message generation rate Rε(D) of

stationary Gaussian sources converges to the classical information RDF. Recently in [22],

the authors revisited the nonanticipatory ε-entropy for Gaussian sources and a quadratic

distortion function to derive several bounds for the OPTA by causal and noncausal codes,

using another expression which is an upper bound on Rε(D).

Now, we are ready to establish the connection between nonanticipatory ε-entropy (2.3.50)

(e.g., Rε
0,n(D)) and information nonanticipative RDF (e.g., Rna

0,n(D)), and message genera-

tion rate of the source (2.3.51) (e.g., Rε(D)) and information nonanticipative RDF rate (e.g.,

Rna(D)), which follow directly from the following equivalent statements of MCs.

Lemma 2.21. (Equivalent Nonanticipative Statements)

The following statements are equivalent.

MC1: PY n|Xn(dyn|xn) =
−→
P Y n|Xn(dyn|xn) =⊗n

i=0PYi|Y i−1,X i(dyi|yi−1,xi), ∀n ∈ N.

MC2: Yi↔ (X i,Y i−1)↔ (Xi+1,Xi+2, . . . ,Xn) forms a MC, for each i = 0,1, . . . ,n−1, ∀n ∈
N.

MC3: Y i↔ X i↔ Xi+1 forms a MC, for each i = 0,1, . . . ,n−1, ∀n ∈ N.

MC4: Xn
i+1↔ X i↔ Y i forms a MC, for each i = 0,1, . . . ,n−1, ∀n ∈ N.

Proof. See Appendix A.1.

The fact that MC1, MC2, MC3 is obvious. The implication of MC4 that implies any of

MC1, MC2, MC3 is also known. What is new in Lemma 2.21 is the equivalence of MC4
with any of MC1, MC2, MC3. Note that MC3 of Lemma 2.21 is precisely Granger’s

definition of temporal causality [71], which is used in econometrics to unravel complex
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relation between macroeconomic variables from a time series observation. It is also applied

in bioengineering [47, 71] and more recently in neuroimaging to infer that {Yn : n ∈N} does

not cause {Xn : n ∈ N}. Note also that [57] refers to MC4 as the “weak union” property of

conditional independence. For further elaboration on this issue see [62].

In the next theorem, we utilize Lemma 2.21, specifically the fact that MC4 is equivalent

to MC2 and MC1, to show that the extremum of the nonanticipatory ε-entropy (2.3.50),

Rε
0,n(D), is equivalent to the extremum of nonanticipative RDF, Rna

0,n(D).

Theorem 2.22. (Equivalence of Rna
0,n(D) and Rε

0,n(D))

Definition 2.17 and Definition 2.20 are equivalent, i.e.,

Rna
0,n(D) = Rε

0,n(D)

Proof. By the definition of nonanticipatory ε-entropy Rε
0,n(D), the infimum is taken over the

set Qε
0,n(D)

4
= Q0,n(D)

⋂
{Xn

i+1↔ X i↔Y i, i = 0, . . . ,n−1}. Using Lemma 2.21 we deduce

that the set Qε
0,n(D) is equivalent to

Q0,n(D)
⋂
{PY n|Xn : PY n|Xn(·|xn) =

−→
P Y n|Xn(·|xn)}

Moreover, for any PY n|Xn =
−→
P Y n|Xn , the mutual information between Xn and Y n is given by

I(Xn;Y n)≡ IPXn (PXn,
−→
P Y n|Xn).

Since {PYi|Y i−1,X i(·|yn−1,xn) : i = 0, . . . ,n} uniquely defines
−→
P Y n|Xn(·|xn) and vice-versa,

then

Rε
0,n(D) = inf−→

P Y n|Xn(·|xn): 1
n+1

∫
d0,n(xn,yn)

−→
P Y n|Xn(dyn|xn)⊗PXn(dxn)≤D

IXn→Y n(PXn,
−→
P Y n|Xn)

≡ Rna
0,n(D)

This completes the derivation.

Next, we show that Gorbunov and Pinsker’s definition although, as stated in [34, I. Introduc-

tion], is motivated by real-time applications, such as, “control-related problems,” the MC

condition Xn
i+1 ↔ X i ↔ Y i, i = 0,1, . . . ,n− 1, imposed in the Definition 2.20 of Rε

0,n(D),

rules out any applications to control systems. On the other hand, we show how Rna
0,n(D) can

be generalized to handle control applications.
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FIGURE 2.3.4: Communication for real-time control processes.

Remark 2.23. Consider the typical block diagram of real-time communication for con-

trol over a finite rate channel (which can be noiseless or noisy) illustrated in Figure 2.3.4.

Here, {Xi : i = 0,1, . . .} is the controlled process specified by the conditional distributions

{PXi|X i−1,U i−1(dxi|xi−1,υ i−1) : i = 0,1, . . .}, {Ui : i = 0,1, . . .} is the control process speci-

fied by the conditional distribution {PUi|U i−1,Y i(dυi|υ i−1,yi) : i = 0,1, . . .}, which receives

information from a finite rate channel (noisy or noiseless), as shown in Figure 2.3.4.

This is a typical control system subject to rate constraint analysed in [9, 11, 26, 55, 76].

In Figure 2.3.4 the control laws or strategies are randomized (conditional distributions).

One may consider regular strategies, i.e., strategies which are measurable functions by

letting {PUi|U i−1,Y i(dυi|υ i−1,yi) : i = 0,1, . . .} to be delta measures concentrated at {υi =

µi(υ
i−1,yi) : i = 0,1, . . .}. A typical example is the linear controlled system Xi+1 = AXi +

BUi+Ni, X0 = x, where {Ni : i = 0,1, . . .} is an IID process. In either case, since the control

laws or strategies take as inputs previous controls U i−1 = υ i−1, and past and present repro-

duction Y i = yi, if we impose Gorbunov and Pinsker’s MC X∞
n+1↔ Xn↔ Y n, then this MC

rules out the dependence of the controlled process distribution {PXi|X i−1,U i−1(dxi|xi−1,υ i−1) :

i = 0,1, . . .}, on {Ui : i = 0,1, . . .}. On the other hand, given the control strategies, since

PXi|X i−1,U i−1 ≡ PXi|X i−1,Y i−1 , then the information nonanticipative RDF is easily extended byChri
sto
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considering the information measure

IXn→Y n(PXi|X i−1,Y i−1,PYi|Y i−1,X i : i = 0,1, . . . ,n)

4
=
∫
X0,n×Y0,n

log
(←−P Xn|Y n−1(dxn|yn−1)⊗−→P Y n|Xn(dyn|xn)

←−
P Xn|Y n−1(dxn|yn−1)⊗PY n(dyn)

)
(
←−
P Xn|Y n−1⊗

−→
P Y n|Xn)(dxn,dyn)

(2.3.53)

where
←−
P Xn|Y n−1(dxn|yn−1)

4
= ⊗n

i=0PXi|X i−1,Y i−1(dxi|xi−1,yi−1), and PY n(·) is the marginal of

the joint distribution on Y0,n. Clearly, the information measure (2.3.53) is the directed infor-

mation from Xn to Y n [53].

For such control system applications, we can define as a measure of performance (distortion

function) for control and compression, a generalized distortion function which includes the

cost of control and decompression, such as,

d0,n(xn,yn,un)
4
=

n

∑
i=0

{
||υi||2 + ||xi− yi||2

}
(2.3.54)

and then define the corresponding average fidelity set. An interesting problem with practical

implication is to minimize over the reproduction distribution and control policies the rate

subject to the fidelity defined by (2.3.54), namely,

1
n+1

inf
µi(υ i−1,yi): i=0,1,...,n−1

inf−→
P Y n|Xn∈Qna

0,n(D)
IXn→Y n(

←−
P Xn|Y n−1,

−→
P Y n|Xn)

and its limit. This demonstrates our preference in information nonanticipative RDF, Rna
0,n(D),

over Rε
0,n(D).

Clearly, Theorem 2.22 states that information nonanticipative RDF which is a special case of

directed information from Xn to Y n, is equivalent to Gorbunov and Pinsker’s nonanticipatory

ε-entropy defined via mutual information and Lemma 2.21, MC4.

2.3.2 Noisy Coding Theorem and Zero-Delay Codes

The achievability of nonanticipative RDF, can be shown via a noisy coding theorem using

delayless codes, by relating the channel capacity to the average distortion obtained from

the nonanticipative RDF. Before giving the main results, we state certain data processing

inequalities, relating mutual and directed information, which are necessary conditions for
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reliable communications.

Theorem 2.24. (Data Processing inequalities)

Consider the basic block diagram of information transmission illustrated in Figure 2.1.1.

Then the following hold.

1. Suppose X t ↔ (Ai,Bi−1)↔ Bi forms a Markov chain for i = 0,1, . . . ,n, t ≤ n, then

I(X t ;Bn)≤ I(An→ Bn) (2.3.55)

2. Suppose Y t ↔ (X i−1,Bn)↔ Xi forms a Markov chain for i = 0,1, . . . , t, t ≤ n, then

I(X t ;Y t)≤ I(X t ;Bn) (2.3.56)

3. If the conditions of statements 1), 2) hold, then

I(X t → Y t)≤ I(X t ;Y t)≤ I(An→ Bn)≤ I(An;Bn), t ≤ n (2.3.57)

Proof. 1. By the identity of mutual information we have

I(X t ;Bn) = H(Bn)−H(Bn|X t)

= H(Bn)−
n

∑
i=0

H(Bi|X t ,Bi−1)

(α)
≤ H(Bn)−

n

∑
i=0

H(Bi|X t ,Bi−1,Ai)

(β )
= H(Bn)−

n

∑
i=0

H(Bi|Bi−1,Ai)

= I(An→ Bn), ∀t ≤ n (2.3.58)

where (α) holds because conditioning does not increase entropy, and (β ) follows from the

Markov chain.
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2. Similarly,

I(X t ;Y t) = H(X t)−
t

∑
i=0

H(Xi|X i−1,Y t)

≤ H(X t)−
t

∑
i=0

H(Xi|X i−1,Y t ,Bn)

(γ)
= H(X t)−

t

∑
i=0

H(Xi|X i−1,Bn)

= I(X t ;Bn), ∀t ≤ n (2.3.59)

where equality (γ) follows from the Markov chain.

3. The lower bound follows from the fact that I(X t ;Y t) = I(X t→Y t)+I(X t←Y t)≥ I(X t→
Y t), which holds with equality hold if and only Y i↔ X i↔ Xi+1, i = 0,1, . . . , t is a Markov

chain or equivalently Yi↔ (X i,Y i−1)↔ X t
i+1 is a Markov chain for i = 0,1, . . . , t− 1. The

upper bound is obtained by (2.3.56) and (2.3.55)

Therefore, given any communication channel with feedback {PBi|Bi−1,Ai(dbi|bi−1,ai) : i =

0,1 . . . ,n} with a pre-encoder and a post-decoder connected to it, as in Figure 2.3.5, the fol-

lowing theorem is established.

Theorem 2.25. (Nonanticipative Data Drocessing Inequalities)

Suppose the following Markov chains hold.

X i↔ (Ai,Bi−1)↔ Bi, i = 0,1, . . . ,n

Y n↔ (X i−1,Bi)↔ Xi, i = 0,1, . . . ,n

A necessary condition to achieve end-to-end causal information RDF over the channel

{PBi|Bi−1,Ai(dbi|bi−1,ai) : i = 0,1 . . . ,n} is

Rna
0,n(D)≤ I(An→ Bn), ∀ n ∈ N (2.3.60)

for all channels {PBi|Bi−1,Ai(dbi|bi−1,ai) : i = 0,1, . . . ,n} and encoders

{PAi|Ai−1,X i(dai|ai−1,xi) : i = 0,1, . . . ,n}
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FIGURE 2.3.5: JSCC based on nonanticipative transmission.

Proof. Similarly to Theorem 2.24, we can show that I(Xn;Y n) ≤ I(An → Bn). Given

any source with distribution PXn(xn), a channel {PBi|Bi−1,Ai(dbi|bi−1,ai) : i = 0,1, . . . ,n}
an encoder {PAi|Ai−1,X i(dai|ai−1,xi) : i = 0,1, . . . ,n} and a decoder with average distortion

1
n+1EPXn,Y n{d0,n(Xn,Y n)} ≤ D, then by taking the infimum over PY n|Xn satisfying the aver-

age distortion constraint and the MC: Xn
i+1 ↔ (X i,Y i−1)↔ Yi : i = 0,1, . . . ,n− 1, yields

(2.3.60).

We proceed by establishing an operational meaning for the information nonanticipative RDF

for sources with memory based on a noisy coding theorem. To this end, we define JSCC

with emphasis on nonanticipative coding i.e., the encoder and decoder at each time instant

i process samples independently, with memory on past symbols, and without anticipation

with respect to symbols occurring at times j > i.

We also show that even in the unmatched case, uncoded nonanticipative transmission of

sources with memory has an operational meaning, in the sense that the excess distortion

probability can be made arbitrarily small, based only on the properties of the information

nonanticipative RDF. Figure 2.3.5, describes the block diagram of JSCC using nonantici-

pative transmission. We assume that the cost of transmitting symbols over the channel is a

measurable function

c0,n:A0,n×B0,n−1 7→[0,∞), c0,n(an,bn−1)
4
=

n

∑
i=0

γ(T ian,T ibn−1) (2.3.61)

where T ibn−1 is a measurable function of {b0,b1, . . . ,bi−1}. We use the following definition

of a nonanticipative code.
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Definition 2.26. (Nonanticipative code)

An (n,d,ε,P) nonanticipative code is a tuple(
X0,n,A0,n,B0,n,Y0,n,PXn ,

−→
P An|Bn−1,Xn,

−→
P Bn|An,Xn,

−→
P Y n|Bn,d0,n,c0,n

)
where {PAi|Ai−1,Bi−1,X i(·|·, ·, ·) : ∀i ∈ Nn}, {PYi|Y i−1,Bi (·|·, ·) : ∀i ∈ Nn} is the code,

{PBi|Bi−1,Ai,X i(·|·, ·, ·) : ∀i ∈ Nn} is the channel, with excess distortion probability

P
{

d0,n(Xn,Y n)> (n+1)d
}
≤ ε, ε ∈ (0,1), d ≥ 0

and transmission cost

1
n+1

E
{

c0,n(An,Bn−1)
}
≤ P, P≥ 0

where P is taken with respect to the joint distribution induced by source-encoder-channel-

decoder PXn,An,Bn,Y n(dxn,dan,dbn,dyn).

An uncoded nonanticipative code, denoted by (n,d,ε), is a subset of an (n,d,ε,P) nonantici-

pative code in which an encoder and decoder are identity maps, PAi|Ai−1,Bi−1,X i (dai|ai−1,bi−1,xi)=

δXi(dai), PYi|Y i−1,Bi(dyi|yi−1,bi) = δBi(dyi), that is, Ai = Xi, Yi = Bi, i = 0,1, . . . ,n, and the

channel PBi|Bi−1,Ai(·|·, ·) is used without feedback and power constraint.

Next, we define the minimum excess distortion as follows.

Definition 2.27. (Minimum Excess Distortion)

The minimum excess distortion achievable by a nonanticipative code with memory without

anticipation (n,d,ε,P) is defined by

Do(n,ε,P)
4
= inf

{
d : ∃(n,d,ε,P) nonanticipative code

}
(2.3.62)

For the uncoded nonanticipative code, (2.3.62) is replaced by

D̄o(n,ε)
4
= inf

{
d : ∃(n,d,ε) nonanticipative code

}
(2.3.63)Chri
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Note that in our definition of nonanticipative code (n,d,ε,P) we have assumed indirectly

that the finite time information capacity is defined by

C0,n(P)
4
= sup
{PAi|Ai−1,Bi−1(ai|ai−1,bi−1): i=0,1,...,n}∈P0,n(P)

1
n+1

I(An→ Bn) (2.3.64)

where the average power constraint is

P0,n(P)
4
=
{
{PAi|Ai−1,Bi−1(ai|ai−1,bi−1) : i = 0,1, . . . ,n} :

1
n+1

E{c0,n(An,Bn−1)} ≤ P
}

(2.3.65)

in which I(An→ Bn) is the directed information from An to Bn defined by

I(An→ Bn)
4
=

n

∑
i=0

I(Ai;Bi|Bi−1) (2.3.66)

The information channel capacity is given by

C(P) = lim
n−→∞

1
n+1

C0,n(P) (2.3.67)

Thus, we have assumed the supremum (2.3.64) is finite and the limit exists.

Since at a first glance, the probabilistic realization of the optimal nonanticipative reproduc-

tion distribution of the information nonanticipative RDF by an encoder-channel-decoder is

necessary for probabilistic matching of the source to the channel, we introduce the following

definition of realization.

Definition 2.28. (Realization of the nonanticipative RDF)

Given a source {PXi|X i−1 (dxi|xi−1) : ∀i ∈Nn}, a channel {PBi|Bi−1,Ai,X i (dbi|bi−1,ai,xi) : ∀i ∈
Nn} is a realization of the optimal reproduction distribution {P∗Yi|Y i−1,X i(dyi|yi−1,xi) : ∀i ∈
Nn}, if there exists a pre-channel encoder {PAi|Ai−1,Bi−1,X i (dai|ai−1,bi−1,xi) : ∀i ∈ Nn} and

a post-channel decoder {PYi|Y i−1,Bi (dyi|yi−1,bi) : ∀i ∈ Nn} such that

−→
P
∗
Y n|Xn(dyn|xn) =⊗n

i=0P∗Yi|Y i−1,X i(dyi|yi−1,xi) =⊗n
i=0PYi|Y i−1,X i(dyi|yi−1,xi) (2.3.68)Chri
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where the joint distribution from which (2.3.68) is obtained is precisely

PXn,An,Bn,Y n(dxn,dan,dbn,dyn) =⊗n
i=0PYi|Y i−1,Bi(dyi|yi−1,bi)⊗PBi|Bi−1,Ai,X i(dbi|bi−1,ai,xi)

⊗ PAi|Ai−1,Bi−1,X i(dai|ai−1,bi−1,xi)⊗PXi|X i−1(dxi|xi−1)

Moreover, we say that Rna(D) is realizable if in addition the realization operates with average

distortion D and limn−→∞
1

n+1IXn;Y n(PXn,
−→
P ∗Y n|Xn) = Rna(D)

4
= limn−→∞

1
n+1Rna

0,n(D).

Using the above definition of realization we now prove achievability of nonanticipative code

for sources with memory.

Theorem 2.29. (Achievability of a nonanticipative Code with Memory Without Anticipation)

Suppose the following conditions hold.

1. Rna
0,n(D) has a solution and the optimal reproduction distribution converges to a sta-

tionary distribution corresponding to Rna(D).

2. The encoder and the decoder are unitary maps (no coding), and the channel PBi|Bi−1,Ai

corresponds to PYi|Y i−1,X i (i.e., Ai = Xi, Yi = Bi), i = 0,1, . . . ,n.

3. For a given D ∈ [Dmin,Dmax], Rna(D) is finite, and limn→∞
1

n+1 I(An→ Bn) is finite.

If

P
{ n

∑
i=0

ρ0,i(T iXn,T iY n)> (n+1)d
}
≤ ε (2.3.69)

where P is taken with respect to PY n,Xn(dyn,dxn) =
−→
P
∗
Y n|Xn(dyn|xn)⊗PXn(dxn), then there

exists an uncoded (n,d,ε) nonanticipative code.

Proof. By conditions 1., 2., 3. and the data processing inequality we know that Rna(D) ≤
limn→∞

1
n+1 I(An→ Bn)< ∞. Hence, if (2.3.69) holds, there exists an uncoded (n,d,ε) SbS

code.

Next, we describe several consequences of Theorem 2.29.

Remark 2.30.

1. The method described in Theorem 2.29 is simple; find the optimal reproduction dis-

tribution of Rna(D), then use this distribution as the channel and ensure that (2.3.69)
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holds, which implies achievability. The only disadvantage is the loss of resources,

because in general the channel will have higher capacity than the value of Rna(D).

Ideally one would like to ensure JSCC so that the channel operates at the supremum

of all achievable rates and hence Rna(D) is the minimum rate of reproducing source

messages at the decoder.

2. In Chapter 4, we will revisit Theorem 2.29 to address the optimal JSCC problem,

in which Rna(D) = C(P), by designing the encoder, decoder for a specific channel

with memory so that matching of the source and the channel is made feasible, often

requiring transmission cost constraint imposed on the channel, to reduce the capacity

to that of Rna(D).

2.4 Optimal Stationary Solution of the Nonaticipative RDF

The goal of this section is to to derive the optimal causal reproduction distribution to char-

acterize the solution of the nonanticipative RDF, for the stationary case.

Given the source {PXi|X i−1(dxi|xi−1) : i = 0,1, ...,n}, and a causal reproduction distribution

{PYi|Y i−1,X i(dyi|yi−1,xi) : i = 0,1, ...,n}, the joint measure PXn,Y n(dxn,dyn) and the marginal

measures, PY n(dyn), PXn(dxn) are uniquely defined. Hence, the directed information from

Xn to Y n is also defined via

IXn→Y n(Xn→ Y n) =
n

∑
i=0

∫
X0,i×Y0,i

log
(PYi|Y i−1,X i(dyi|yi−1,xi)

PYi|Y i−1(dyi|yi−1)

)
PX i,Y i(dxi,dyi)(2.4.70)

where

PXn,Y n(dxn,dyn) =⊗n
i=0

(
PYi|Y i−1,X i(dyi|yi−1,xi)⊗PXi|X i−1,Y i−1(dxi|xi−1)

)
(2.4.71)

The solution of the nonanticipative RDF can be made precise by first identifying the appro-

priate spaces on which existence of solution to Rna
0,n(D) is sought, and equivalence between

the constrained and unconstrained problems is shown. This is done in [8] using the weak∗

convergence topologies, and in [72, 73] using weak topology.

Assumption 2.31. Appropriate conditions are assumed (i.e., [8]) so that an optimal solution

exists and the constrained problem Rna
0,n(D) is equivalent to the unconstrained problem, that
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is,

Rna
0,n(D) = sup

s≤0
inf

{PYj |Y j−1,X j (dy j|y j−1,x j): j=0,1,...,n}

{
IXn→Y n(Xn→ Y n)

−s
( n

∑
j=0

∫
X0, j

∫
Y0, j

ρ0, j(T nx j,T ny j)PX j,Y j(dx j,dy j)−D(n+1)
)}

(2.4.72)

where s≤ 0 is the Lagrangian multiplier and the solution is stationary.

Next, we provide the optimal stationary solution for the nonanticipative RDF, Rna
0,n(D). An

alternative derivation based on Gateaux differential is found in [8, 73], for the case when the

source is not affected by past reproduction symbols.

Next, we provide the optimal solution for the nonanticipative RDF.

Theorem 2.32. Suppose Assumption 2.31 holds.

The optimal (stationary) reproduction distribution which achieves the infimum, assuming it

exists, of the rate distortion function, Rna
0,n(D), is given by

P∗Yi|Y i−1,X i(dyi|yi−1,xi) =
esρ0,i(T ixn,T iyn)P∗Yi|Y i−1(dyi|yi−1)∫
Yi

esρ0,i(T ixn,T iyn)P∗Yi|Y i−1(dyi|yi−1)
, i = 0,1, . . . ,n (2.4.73)

where s ≤ 0 and denotes the optimal Lagrange multiplier in (2.4.72), and it is the solution

of s = d
dDRna

0,n(D).

The information nonanticipative RDF, Rna
0,n(D), is given by

Rna
0,n(D) = sD(n+1)−

n

∑
j=0

∫
X0, j×Y0, j−1

log
(∫

Y j

esρ0, j(T jxn,T jyn)P∗Y j|Y j−1(dy j|y j−1)
)

PX j|X j−1(dx j|x j−1)⊗P∗X j−1,Y j−1(dx j−1,dy j−1) (2.4.74)

where

P∗X j−1,Y j−1(dx j−1,dy j−1)
4
=⊗ j−1

i=0

(
P∗Yi|Y i−1,X i(dyi|yi−1,xi)⊗PXi|X i−1(dxi|xi−1)

)
(2.4.75)

Proof. See [73].

Theorem 2.32 treats the stationary case. The nonstationary case is much more involved and

is given in [73].
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Remark 2.33.

1. The optimal stationary reproduction distribution (2.4.73) is causal, hence decoding can

be done without waiting to receive the entire sequence xn before the symbol yi, i ≤ n

is reconstructed.

2. From (2.4.73), we deduce that if ρ0,i(T ixn,T iyn) = ρ(xi,yi), then

P∗Yi|Y i−1,X i(dyi|yi−1xi) = P∗Yi|Y i−1,Xi
(dyi|yi−1,xi)−a.a.(yi−1,xi), i = 0,1, . . . ,n

Hence, from (2.4.73) we obtain

P∗Yi|Y i−1,X i(dyi|yi−1,xi) = P∗Yi|Y i−1,Xi
(dyi|yi−1,xi)

=
esρ(xi,yi)

∫
Xi

P∗Yi|Y i−1,Xi
(dyi|yi−1,xi)PXi|Y i−1(dxi|yi−1)∫

Yi

∫
Xi

esρ(xi,yi)P∗Yi|Y i−1,Xi
(dyi|yi−1,xi)PXi|Y i−1(dxi|yi−1)

(2.4.76)

where (2.4.76) is obtained by reconditioning. Similarly for other cases.

However, in general we do not know the length of the sequence Y i−1 ∈ Y0,i−1 on

which the optimal reproduction distribution depends on. Properties of the solution are

derived for complete separable metric spaces in [73], and they are often very important

when solving specific examples like the Gaussian multidimensional process.

3. The optimal reproduction conditional distribution (2.4.73) is implicit because its right

hand side term depends on its left side, therefore one has to show existence and possi-

bly uniqueness via fixed point theorems.

2.5 Nonanticipative RDF of a Binary Symmetric Markov

Source BSMS(p)

In this section, we compute the optimal reproduction distribution of the information nonan-

ticipative RDF and rate Rna(D) for a finite alphabet source with memory, the BSMS(p). The

classical RDF for the BSMS(p) is only known for the distortion region 0 ≤ D ≤ Dc [37],

while for the remainder of the distortion region only bounds are known [5]. We additionally,

Chri
sto

s K
. K

ou
rte

lla
ris



Chapter 2. Nonanticipative Rate Distortion Function 48

compare these bounds to the one we proposed based on Rna
0,n(D) and compute the rate loss

of causal codes with respect to noncausal codes, by using the fact that this rate loss is at

most Rna(D)−R(D) bits/sample, for the region where R(D) is computable. The achievabil-

ity of the nonanticipative RDF for the BSMS(p) based on nonanticipative transmission is

addressed in Section 4.3.4, Chapter 4.

Consider a BSMS(p), with stationary transition probabilities PXi|Xi−1(xi = 0|xi−1 = 0) =

PXi|Xi−1(xi = 1|xi−1 = 1) = 1− p and PXi|Xi−1(xi = 1|xi−1 = 0) = PXi|Xi−1(xi = 0|xi−1 = 1) = p

and i ∈ 0,1, . . .. We consider single letter Hamming distortion criterion ρ(x,y) = 0 if x = y

and ρ(x,y) = 1 if x 6= y. The transition probabilities are illustrated via row stochastic matri-

ces.

Theorem 2.34. The nonanticipative RDF Rna(D) for BSMS(p) and single letter Hamming

distortion function is given by

Rna(D) =

{
H(m)−H(D) if D≤ 1

2

0 otherwise

where m = 1− p−D+2pD.

Proof. First, we compute the steady state distribution of the source. Since the transition

matrix of the BSMS(p) is doubly stochastic with alphabet cardinality 2, the transition prob-

abilities is given by PX(0) = PX(1) = 0.5. The stationary reproduction distribution obtained

from Theorem 2.32, is Markov with respect to the source and it is given by

P∗Yi|Y i−1,X i(yi|yi−1,xi) = P∗Yi|Y i−1,Xi
(di|yi−1,xi)

=
esρ(xi,yi)PYi|Y i−1(yi|yi−1)

∑yi∈{0,1} esρ(xi,yi)PYi|Y i−1(yi|yi−1)
, i = 0,1, . . . (2.5.77)

For i = 0,1, . . ., we calculate P∗Yi|Y i−1(dyi|yi−1) by reconditioning it on Xi and then substitute

it into the RHS of (2.5.77) and solve the systems of equations. Since we do not how much

the reproduction distribution depends from the past reproduction symbols Y i−1, we start the

iterations from i = 0. The reconstruction distributions is given by

PY0|X0(y0|x0) =
esd(x0,y0)PY0(y0)

∑y0∈{0,1} esd(x0,y0)PY0(y0)
(2.5.78)
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where PY0(y0) = ∑X0 PY0|X0(y0|x0)PX0(x0). Solving the systems of equations yield the follow-

ing results.

PY0|X0(y0|x0) =


1

1+ es
es

1+ es

es

1+ es
1

1+ es


while the distribution of the output symbol, at each time instance 0 is IID, and it is given

by PY0(y0) = 0.5, y0 ∈ {0,1}. Next, we calculate PX1|Y0(x1|y0), which is necessary in the

subsequent iteration, in order to calculate PY1|Y0(y1|y0). This is done by reconditioning on

X0.

PX1|Y0(x1|y0) = ∑
x0∈{0,1}

PX1|Y0,X0(x1|y0,x0)PX0|Y0(x0|y0)

= ∑
x0∈{0,1}

PX1|Y0,X0(x1|y0,x0)
PY0|X0(y0|x0)PX0(x0)

PY0(y0)

= ∑
x0∈{0,1}

PX1|Y0,X0(x1|y0,x0)PY0|X0(y0|x0)

(α)
= ∑

x0∈{0,1}
PX1|X0(x1|x0)PY0|X0(y0|x0) (2.5.79)

where equation (α) holds due to Lemma.2.21.

Then, we proceed to the iteration (i= 1), by calculating the conditional probability PY1|Y0(y1|y0)=

∑x0∈{0,1}PY1|X0,Y0(y1|x0,y0)PX0,Y0(x0|y0), replacing it into

PY1|X1,Y0(y1|x1,y0) =
esd(x1,y1)PY1|Y0(y1|y0)

∑y1∈{0,1} esd(x1,y1)PY1|Y0(y1|y0)

and solve the resulting systems. This procedure yields the following reproduction distribu-

tion.

PY1|X1,Y0(y1|x1,y0) =



0,0 0,1 1,0 1,1

0
p

p+ es(1− p)
1− p

1− p(1− es)

es p
1− p(1− es)

es(1− p)
p+ es(1− p)

1
es(1− p)

p+ es(1− p)
es p

1− p(1− es)

1− p
1− p(1− es)

p
p+ es(1− p)
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For iteration, i = 2, we verify that PY2|X2,Y1,Y0 = PY1|X1,Y0 , and that the optimal reproduction

distribution is characterized by P∗Yi|Y i−1,X i(dyi|yi−1,xi)=P∗Yi|Y i−1,Xi
(dyi|yi−1,xi) =P∗Y1|X1,Y0

(dy1|x1,y0),

for all i≥ 2. The Lagrange multiplier s is found from fidelity constraint as follows.

E
{

ρ(xi,yi)
}
=

es

1+ es = D =⇒ es =
D

1−D
, D≤ 0.5

By substituting the Lagrangian multiplier s, we obtain the expression for the optimal sta-

tionary reproduction distribution, given by

P∗Yi|Xi,Yi−1
(yi|xi,yi−1) =


0,0 0,1 1,0 1,1

0 α β 1−β 1−α

1 1−α 1−β β α

 (2.5.80)

where

α =
(1− p)(1−D)

1− p−D+2pD
, β =

p(1−D)

p+D−2pD

It is easy to verify that the distribution of the reproduction sequence is identical to the distri-

bution of the source sequence, and is given by

P∗Yi|Yi−1
(yi|yi−1) =

[ 0 1

0 1− p p

1 p 1− p

]
(2.5.81)

while the steady state distribution of the output process is IID, given by

P∗Yi
(yi) = 0.5, ∀ yi ∈ {0,1} (2.5.82)

The distribution of the source symbol given the previous reconstruction symbol is evaluated

using (2.5.79), and it is given by

P∗Xi|Yi−1
(xi|yi−1) =

[ 0 1

0 m 1−m

1 1−m m

]
, m = 1− p−D+2pD (2.5.83)

Since the optimal distributions defined by (2.5.80)-(2.5.83) hold for i = 1,2, . . . ,n, we will

evaluate the nonanticipative RDF for i = 1. This is done by substituting (2.5.80)-(2.5.83) in
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the expression of the nonanticipative RDF, as follows

Rna(D) = lim
n−→∞

1
n+1

I(Xn→ Y n)

= lim
n−→∞

{
1

n+1
I(X0→ Y 0)+

1
n+1

I(Xn
1 → Y n

1 )

}
= lim

n−→∞

n
n+1 ∑

x1,y1,y0

log

(
P∗Y1|Y0,X1

(y1|y0,x1)

P∗Y1|Y0
(y1|y0)

)
P∗X1,Y1,Y0

(x1,y1,y0)

= ∑
x1,y1,y0

log

(
P∗Y1|Y0,X1

(y1|y0,x1)

P∗Y1|Y0
(y1|y0)

)
P∗X1,Y1,Y0

(x1,y1,y0)

= ∑
x1,y1,y0

log

(
P∗Y1|Y0,X1

(y1|y0,x1)

P∗Y1|Y0
(y1|y0)

)
P∗Y1|X1,Y0

(y1|x1,y0)P∗X1|Y0
(x1|y0)P∗Y0

(y0)

= H(p)−mH(α)− (1−m)H(β )

= H(m)−H(D) (2.5.84)

The achievability of the nonanticipative RDF for the BSMS(p), based on the excess distor-

tion probability, is addressed in Section 4.3.4, Chapter 4. There, we show that Rna(D) is

achievable when the BSMS(p) is transmitted uncoded over a unit memory channel that has

the same transition probabilities as the optimal reproduction distribution (2.5.80).

Remark 2.35. The graph of Rna(D) is illustrated in Figure 2.5.6. Note that for p = 1
2 , the

BSMS(p) reduces to an IID Bernoulli source, m = 1− p−D+2pD = 0.5, and the nonantic-

ipative RDF is given by Rna(D) = 1−H(D),D < 1
2 , which is equal to the classical RDF of

the Bernoulli source, as expected. The methodology to calculate the optimal reproduction

distribution and the solution of the nonanticipative RDF, is outlined in Algorithm 1.
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FIGURE 2.5.6: Rna(D) for different values of parameter p.

Algorithm 1: Calculation of the Nonanticipative RDF for a Markov source.

Data: d0,n(xn,yn), PXn(xn) : steady state distribution, end← 1, i← 0

while end=1 do
Apply PXi|Y i−1 in PYi|Y i−1;

Replace PYi|Y i−1 in PYi|X i,Y i−1;

Solve system equations in (2.5.77) and calculate PYi|X i,Y i−1;

Calculate PXi+1|Y i;

if PYi|X i,Y i−1 = PYi−1|X i−1,Y i−2 then
end←0;

else
i←i+1;

end

end
Calculate the Lagrangian s from E[ 1

n+1d0,n(xn,yn)] = D;

Replace on PYi|X i,Y i−1 , PXi|Y i−1 , PYi|Y i−1;

Result: Apply the distributions on Rna(D);
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FIGURE 2.5.7: R(D) for BSMS(p) for 0≤ D≤ Dc and Bounds for p = 0.25.

In the next section we apply the result of the nonanticipative RDF to provide an upper bound

for the classical RDF, and to compute the OPTA by causal codes with respect to that of

noncausal codes.

2.5.1 Evaluation of Bounds

The classical RDF for the BSMS(p) is only known for the distortion region 0≤D≤Dc [37],

and is given by

R(D) = H(p)−H(D) if D≤ Dc =
1
2

(
1−
√

1−
( p

q

)2
)
, p≤ 0.5 (2.5.85)

For the remainder of the distortion region D > Dc only bounds are known [5]. It is also

shown in [37] that (2.5.85) provides a lower bound for the classical RDF for D > Dc
3. Our

expression of the nonanticipative RDF provides an upper bound on the classical RDF for all

possible values of D, 0 ≤ D ≤ 0.5. Next, we compare the upper and lower bounds, derived

by Berger in [5], which hold for 0 ≤ D ≤ 1
2 and we show that the upper bound in [5] is not

as tight as the one obtained via Rna(D). For the BSMS(p), we also compute the Rate Loss

3In Chapter 5 we will derive Gray’s lower bound [37] by using the nonanticipative RDF with feedforward
information.
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FIGURE 2.5.8: Comparison of the functional behaviour of Rna(D) and R(D) for BSMS(p)
with p = 0.12.

(RL) of causal codes with respect to noncausal codes, by using the fact that this RL is at most

Rna(D)−R(D),∀D≤ Dc bits/sample.

Figure 2.5.7 shows the graph of R(D) for 0 ≤ D ≤ Dc, Berger’s lower and upper bound

[5], Shannon’s lower bound and the upper bound based on Rna(D). We observe that for

p = 0.25, the upper bound based on Rna(D) does slightly better than Berger’s upper bound.

Moreover, since Rna(D) is nonincreasing and convex as a function of D, and nonincreasing

for all values of p ∈ [0,0.5] (these are easily shown), then the upper bound based on Rna(D)

is convex, when compared to Berger’s upper bound which is not necessarily convex and

nonincreasing. This observation is illustrated in Figure 2.5.8. Finally, we use the bound

R(D) ≤ Rna(D) ≤ rc,+(D) to deduce that the (RL) of causal codes for the BSMS(p) cannot

exceed

RL = Rna(D)−R(D)≤

{
H(m)−H(p) if 0≤ D≤ p

H(m)−H(D) if Dc < D≤ 0.5

This bound on the rate loss is illustrated in Figure 2.5.9 which demonstrates the fluctuation

of the RL for p ∈ [0,0.5]. It is interesting to see that the maximum value of the RL is 0.2144

and corresponds to (p = 0.1012,D = 0.1012). This bound is exact for D ≤ Dc ≤ p. For
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FIGURE 2.5.9: Comparison of the Rate Loss (RL) for p ∈ [0,0.5].

high resolution (D→ 0), the classical rate distortion function and the nonanticipative rate

distortion function are equivalent and equal to H(p).

2.6 Multidimensional Partially Observed Gaussian Process

Here, we consider a multidimensional partially observed Gaussian-Markov process and we

compute the closed form expression of the information nonanticipative RDF, Rna(D).

Consider the following discrete-time multidimensional partially observed linear Gauss-Markov

system described by {
Zt+1 = AZt +BWt , Z0 = z, t ∈ N
Xt =CZt +NVt , t ∈ N

(2.6.86)

where Zt ∈ Rm is the state (unobserved) process and Xt ∈ Rp is the information source,

obtained from noisy measurements of CZt . The model in (2.6.86) is often encountered in

applications where the process {Zt : t ∈N} is not directly observed; instead, what is directly

observed is the process {Xt : t ∈ N} which is a noisy version of it. This is a realistic model

for any sensor which collects information for the underlying process CZt , since the sensor

is a measurement device often subject to additive Gaussian noise. Hence, in this application

Chri
sto

s K
. K

ou
rte

lla
ris



Chapter 2. Nonanticipative Rate Distortion Function 56

Encoder
Noisy 

Channel
Decoder

tA tB
Unobserved

Process

Noise 

Generator
+

tBW

Noise

tNV

tCZ tX tY

Initial RV
0
Z

Information Source

FIGURE 2.6.10: Communication System.

the objective is to compress the sensor data, which is the only observable information. Next,

we introduce certain assumptions which are sufficient for existence of the limit, Rna(D)
4
=

limn−→∞
1

n+1Rna
0,n(D).

(G1) (C,A) is detectable and (A,
√

BBtr) is stabilizable, (N 6= 0) [7];

(G2) The state and observation noise {(Wt ,Vt) : t ∈ Nn} are Gaussian IID vectors Wt ∈ Rk,

Vt ∈Rd , mutually independent with parameters N(0, Ik×k) and N(0, Id×d), independent

of the Gaussian RV Z0, with parameters N(z̄0, Σ̄0).

(G3) The distortion function is single letter defined by d0,n(xn,yn)
4
= ∑

n
t=0 ||xt− yt ||2Rp .

For the fully observed scalar case corresponding to Xt = Zt ∈ R, the reconstruction of

{Zt : t ∈ Nn} and its realization over a scalar additive white Gaussian noise (AWGN) chan-

nel is discussed in [76], while the partially observed (2.6.86) for the scalar case Xt ∈ R, is

discussed in [9] via indirect methods. However, as pointed out in [22], the computation of

the nonanticipative RDF for the vector Gaussian process is unsolved. Here, we show that

the conjecture stated in [12] is indeed true. To this end, we provide a closed form expression

to the nonanticipative RDF for the vector Gaussian process.

According to Theorem 2.32, the optimal stationary reproduction distribution is given by

P∗Yt |Y t−1,X t (dyt |yt−1,xt) =
es||yt−xt ||2Rp P∗Yt |Y t−1(dyt |yt−1)∫
Yt

es||yt−xt ||2Rp P∗Yt |Y t−1(dyt |yt−1)
, s≤ 0

≡ P∗Yt |Y t−1,X t (dyt |yt−1,xt)−a.a. (yt−1,xt). (2.6.87)

Hence, from (2.6.87), it follows that the optimal reproduction is Markov with respect to

the process {Xt : t ∈ N}. Moreover, since the exponential term ||yt − xt ||2Rp in the RHS

of (2.6.87) is quadratic in (xt ,yt), and {Zt : i ∈ N} is Gaussian then {(Zt ,Xt) : t ∈ N}
are jointly Gaussian, and it follows that a Gaussian distribution PYt |Y t−1,Xt

(·|yt−1,xt) (for

a fixed realization of (yt−1,xt)), and Gaussian distribution PYt |Y t−1(·|yt−1) can match the

left and right side of (2.6.87). Therefore, at any time t ∈ N, the output Yt of the optimal
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FIGURE 2.6.11: Realization of the optimal stationary reproduction distribution.

reconstruction channel depends on Xt and the previous outputs Y t−1, and its conditional

distribution is Gaussian. Hence, the channel connecting {Xt : t ∈ N} to {Yt : t ∈ N} has the

general form

Yt = ĀXt + B̄Y t−1 +V c
t , t ∈ N (2.6.88)

where Ā ∈ Rp×p, B̄ ∈ Rp×t p, and {V c
t : t ∈ N} is an independent sequence of Gaussian

vectors N(0;Q).

Introduce the error estimate {Kt : t ∈ N}, and its covariance {Λt : t ∈ N}, defined by

Kt , Xt− X̂t|t−1, X̂t|t−1
4
= E

{
Xt |σ{Y t−1}

}
, Λt , E{KtKtr

t }, t ∈ N (2.6.89)

where σ{Y t−1} is the σ -algebra generated by the sequence {Y t−1}. The covariance is diag-

onalized by introducing a unitary transformation {Et : t ∈ N} such that

EtΛtEtr
t = diag{λt,1, . . .λt,p}, Γt , EtKt , t ∈ N. (2.6.90)

Note that although {Γt : t ∈ N} has independent Gaussian components, each component is

correlated. Analogously, introduce to the process {K̃t : t ∈ N} defined by

K̃t
4
= Yt− X̂t|t−1, Γ̃t = EtK̃t , t ∈ N. (2.6.91)

We shall compute the information nonanticipative RDF by considering the realization shown

in Fig. 2.6.11, where {V t
c : t = 0,1, . . .} is Gaussian N(0;Q), and {At ,Bt : t = 0,1, . . .} are

to be determined. Note that the square error fidelity criterion d0,n(·, ·) is not affected by the

preprocessing and post processing of {(Xt ,Yt) : t ∈N}, since d0,n(Xn,Y n) = d0,n(Kn, K̃n) =
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∑
n
t=0 ||K̃t −Kt ||2Rp = ∑

n
t=0 ||Γ̃t −Γt ||2Rp = d0,n(Γ

n, Γ̃n). Using basic properties of conditional

entropy, if necessary, we can show the following expressions are equivalent.

Rna(D) = lim
n−→∞

Rna,Kn,K̃n

0,n (D)
4
= lim

n−→∞
inf

−→
P K̃n|Kn : E

{
d0,n(Kn,K̃n)≤D

} 1
n+1

n

∑
t=0

I(Kt ; K̃t |K̃t−1)

= lim
n−→∞

Rna,Γn,Γ̃n

0,n (D)
4
= lim

n−→∞
inf

−→
P

Γ̃n|Γn : E
{

d0,n(Γn,Γ̃n)≤D
} 1

n+1

n

∑
t=0

I(Γt ; Γ̃t |Γ̃t−1).

(2.6.92)

Next, we state the main results.

Theorem 2.36. (Rna(D) of multidimensional partially observed Gaussian source)

Under Assumptions (G1)-(G3), the information nonanticipative RDF rate for the multidi-

mensional partially observed Gaussian source (2.6.86) is given by

Rna(D) =
1
2

p

∑
i=1

log
(

λ∞,i

δ∞,i

)
(2.6.93)

where diag{λ∞,1, . . . ,λ∞,p}= limt−→∞ EtΛtEtr
t = E∞Λ∞Etr

∞ ,

Λ∞ = lim
t−→∞

E
{(

C
(
Zt−E

{
Zt |σ{Y t−1}

})
+NVt

)(
C
(
Zt−E

{
Zt |σ{Y t−1}

})
+NVt

)tr}
=C lim

t−→∞
ΣtCtr +NNtr =CΣ∞Ctr +NNtr (2.6.94)

δ∞,i
4
=

{
ξ∞ if ξ∞ ≤ λ∞,i

λ∞,i if ξ∞ > λ∞,i
, i = 2, . . . , p (2.6.95)

and ξ∞ is chosen such that ∑
p
i=1 δ∞,i = D. Moreover, Σ∞ is the steady state covariance of the

error Zt−E{Zt |Y t−1} ∼ N(0,Σ∞), Ẑt|t−1
4
= E{Zt |Y t−1}, of the Kalman filter given by

Ẑt+1|t = AẐt|t−1

+AΣ∞(Etr
∞ H∞E∞C)trM−1

∞

(
Yt−CẐt|t−1

)
, Ẑ0 = E{Z0|Y−1},Z0− Ẑ0 ∼ N(0,Σ∞)

(2.6.96)

Σ∞ = AΣ∞Atr−AΣ∞(Etr
∞ H∞E∞C)trM−1

∞ (Etr
∞ H∞E∞C)Σ∞Atr +BBtr

∞ (2.6.97)

M∞ = Etr
∞ H∞E∞CΣ∞(Etr

∞ H∞E∞C)tr +Etr
∞ H∞E∞NNtr(Etr

∞ H∞E∞)
tr +Etr

∞B∞QBtr
∞E∞

(2.6.98)
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and

H∞ = lim
t−→∞

Ht , Ht
4
= diag{ηt,1, . . . ,ηt,p}, ηt,i = 1−

δt,i

λt,i
, i = 1, . . . , p, t ∈ N (2.6.99)

B∞ = lim
t−→∞

Bt =
√

H∞∆∞Q−1, Bt ,
√

Ht∆tQ−1, t ∈ N (2.6.100)

∆∞ = lim
t−→∞

∆t , ∆t = diag{δt,1, . . . ,δt,p}, t ∈ N. (2.6.101)

Proof. See [73].

In the next remark, we confirm that Theorem 2.36 gives, as a special case, the value of

Rna(D) for scalar Gaussian stationary source found in [22, Theorem 3].

Remark 2.37. Consider the special case of first-order (scalar) Gaussian-Markov source [22,

Theorem 3]

Xt+1 = αXt +σwWt , Wt ∼ N(0,1).

This corresponds to the dynamical system (2.6.86) with m = p = 1, C = 1, N = 0, A = α ,

B=σw, i.e., σwWt ∼N(0,σ2
w), hence Xt = Zt . Clearly, Λ∞ =Σ∞, ∆∞ =D, where H∞ = 1− D

Σ∞

and E∞ = 1.

Using (2.6.98), we have

M∞ = Σ∞H2
∞ +H∞D = H∞

(
Σ∞H∞ +D

)
= H∞

(
Σ∞(1−

D
Σ∞

)+D
)
= Σ∞H∞. (2.6.102)

Also, by (2.6.97), we get

Σ∞ = α
2
Σ∞−α

2
Σ

2
∞H2

∞M−1 +σ
2
w

(a)
= α

2
Σ∞−α

2
Σ

2
∞H2

∞H−1
∞ Σ

−1
∞ +σ

2
w

= α
2
Σ∞−α

2
Σ∞H∞ +σ

2
w = α

2
Σ∞−α

2
Σ∞

(
1− D

Σ∞

)
+σ

2
w = α

2D+σ
2
w (2.6.103)

where (a) follows from (2.6.102). Finally, by substituting (2.6.103) in the expression of the

nonanticipative RDF (2.6.93) we obtain

Rna(D) =
1
2

log
|Λ∞|
|∆∞|

=
1
2

log
Σ∞

D
=

1
2

log
(

α2D+σ2
w

D

)
=

1
2

log
(

α
2 +

σ2
w

D

)
. (2.6.104)

which is the expression derived in [22, Theorem 3]. Hence, Theorem 2.36 generalizes pre-

vious work to multidimensional (vector) Gaussian-Markov stationary process.
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In the following lemma, we show that {K̃t : t ∈N} is the innovation process of {Yt : t ∈N},
and hence the two processes generate the same σ -algebras (they contain the same informa-

tion).

Lemma 2.38. (Equivalence of σ -algebras)

The following hold.

FY
0,t
4
= σ{Ys : s = 0,1, . . . , t}= F K̃

0,t
4
= σ{K̃s : s = 0,1, . . . , t}, ∀t ∈ N.

that is, FY
0,t ⊆F K̃

0,t and F K̃
0,t ⊆FY

0,t , ∀t ∈ N.

Proof. Since K̃s =Ys−E
{

Xs|Y s−1}, 0≤ s≤ t, then F K̃
0,t ⊆FY

0,t , ∀t ∈N. Hence, we need to

show that FY
0,t ⊆F K̃

0,t , ∀t ∈ N. The innovation process of {Yt : t ∈ N} is by definition (see

Fig. 2.6.11, (2.6.91).

It = Yt−E
{

Yt |Y t−1}
= Etr

∞ H∞E∞

(
Xt−E

{
Xt |Y t−1})+Etr

∞B∞V c
t +E

{
Xt |Y t−1}−E

{
Xt |Y t−1}

= Etr
∞ H∞E∞

(
Xt−E

{
Xt |Y t−1})+Etr

∞B∞V c
t = K̃t . (2.6.105)

Since the innovation process {Is : 0≤ s≤ t} and the optimal reproduction process {Ys : 0≤
s≤ t} generates the same σ−algebras, then F I

0,t ⊆FY
0,t , FY

0,t ⊆F I
0,t , i.e., FY

0,t = F I
0,t , and

hence, by (2.6.105) we also obtain FY
0,t ⊆F K̃

0,t . This completes the proof.

We now observe the following consequence of Lemma 2.38.

Remark 2.39. By Lemma 2.38, all conditional expectations with respect to the process {Yt :

t = 0,1, . . .} can be replaced by conditional expectations with respect to the independent

process {K̃t : t = 0,1, . . .}. Hence, the process {Kt : t = 0,1, . . .} can be written as Kt =

Xt−E
{

Xt |σ{Y t−1}
}
= Xt−E

{
Xt |σ{K̃t−1}

}
, and its reconstruction is given by

K̃t = Etr
∞ H∞E∞

(
Xt−E

{
Xt |K̃t−1})+Etr

∞B∞V c
t = Etr

∞ H∞E∞Kt +Etr
∞B∞V c

t , t = 0,1, . . . .

Moreover, by Lemma 2.38, Kt and K̃t are independent of Y0, . . . ,Yt−1, and K̃0, . . . , K̃t−1,

t = 0,1, . . .. This property is analogous to the JSCC of a scalar RV over a scalar additive

Gaussian noise channel with feedback [41, Theorem 5.6.1].Chri
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2.7 Conclusions

In this chapter we provide a framework based on nonanticipative RDF for general sources

with memory, which is suitable for nonanticipative transmission. We describe the connection

of this new information measure with Gorbunov and Pinsker nonanticipatory ε−entropy and

with the classical RDF. A noisy coding theorem is derived and the optimal reproduction

distribution as well as the solution of the nonanticipative RDF are calculated.

We then apply these theoretical results, to calculate the nonanticipative RDF and the optimal

reproduction distribution of the binary symmetric Markov source. We compare our results

with other existing bounds on the classical RDF (i.e., OPTA by noncausal codes), and we

presented the rate loss of causal codes with respect to noncausal codes.

We kept the mathematical sophistication simple, by concentrating on the importance of this

nonanticipative RDF and its application meanings. In [73] all mathematical issues are ad-

dressed for general abstract spaces, complete separable metric spaces, while the multidi-

mensional Gaussian example is also derived.
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Chapter 3

Structural Properties of Extremum
Problems of Capacity

3.1 Introduction

Channel capacity coding theorems are often classified into Discrete Memoryless Channels

(DMC), and channels with memory, with or without feedback. For channels with memory

and feedback the information measure often employed is the mutual information from the

source output to the channel output [41]. It is related to the so-called directed informa-

tion, which accounts for causality and direction of information flow, introduced by Masssey

[52] and subsequently applied by Kramer [46]; this directional measure of information is

attributed to Marko [51].

Historically, Shannon [66] and Dobrushin [23] derived formulas for capacity of DMC and

established coding theorems, while Ebert [24] and Cover and Pombra [19] characterized

the capacity of Gaussian channels with memory and feedback, showing that memory can

increase capacity. Chen and Berger [18] analysed limited memory channels with feedback,

when the channel output and the channel input-output pair are first-order Markov models,

presented a formulae for channel capacity in terms of directed information, derived sufficient

conditions under which coding theorems hold, and applied dynamic programming to analyze

the capacity achieving distribution of the unit memory channel. Tatikonda [75] applied

information spectrum methods to derive coding theorems for general finite alphabet channels

with memory and feedback. Moreover, in [85] dynamic programming is used to describe the

capacity of certain types of channels. However, aside from certain memoryless and Gaussian

62
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Chapter 3. Structural Properties of Extremum Problems of Capacity 63

channels, computing the capacity achieving input distribution and the capacity of channels

with memory, with and without feedback, are open questions.

Recently, Shayevitz and Feder [68–70] introduced the so-called Posterior Matching Scheme

(PMS), a recursive encoding scheme that achieves the capacity of DMC with feedback,

provided one knows the capacity achieving input distribution. This scheme goes back to

the idea put forward by Horstein [40], who designed encoders that achieve the capacity of

discrete memoryless symmetric channels with feedback. The PMS is further investigated by

Gorantla and Coleman [33] for DMC with feedback.

In this chapter we consider general channels with memory and feedback and general sources

with memory and feedback, and we derive results along the following directions.

1. Structural encoder properties which maximize the directed information from the source

to the channel output, and tight bounds on the converse to the coding theorem.

2. Structural properties of capacity achieving distribution.

3. Dynamic programming recursions to compute the encoder and the achieving distribu-

tion in 1. and 2., respectively.

4. Generalize PMS for designing encoders, which achieve the information capacity for

channels with memory and feedback.

5. Capacity and optimal input distribution of the Binary State Symmetric Channel (BSSC)

with or without feedback, with and without transmission cost constraints.

The material on structural encoder properties and capacity achieving distribution, general-

izes current and past research in the area of capacity of channels with memory and feedback.

Specifically, the material on the structural encoder properties of the capacity achieving dis-

tribution, and the tight bounds on the converse to the coding theorem, state that for general

sources and channels, maximizing directed information over all encoder strategies which are

non-Markov with respect to the source is equivalent to maximizing it over Markov encod-

ing strategies. These results generalize the previous work found in [6, 18], for memoryless

channels.

The material on PMS describes coding schemes which achieve the capacity of channels with

memory and feedback. These results generalize previous work found in [33, 68–70] from

memoryless channels to channels with memory and feedback.
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The material in applying dynamic programming to extremum problems of capacity is mo-

tivated from optimal stochastic control theory with partial information, in which separated

strategies are employed [13, 14]. Here, an information state is identified which carries all the

information available in any channel output sequence. The material on maximizing directed

information from the channel input to its output over all channel input distributions with

specific structural properties, via dynamic programming, simplifies the previous dynamic

programming described in [85].

Throughout this chapter we do not present the direct channel coding theorem, because such

theorems are derived in [18, 43, 59, 77], for finite alphabet channels, and they can easily

extended to abstract alphabets. In addition, we do not address existence of solutions to

extremum problems because such results follow directly form [10].

3.2 Problem Formulation

In this section we introduce the various blocks of the communication system of Figure 3.2.1.

We assume all processes (introduced below) are defined on a complete probability space

(Ω,F,P) with filtration {Ft : t ∈ N}. The alphabets of the source output, channel input,

channel output and decoder output are assumed to be sequences of Polish spaces (complete

separable metric spaces) {Xt : t = 0,1, . . . ,n}, {At : t = 0,1, . . . ,n}, {Bt : t = 0,1, . . . ,n},
and {Yt : t = 0,1, . . . ,n}, respectively. Moreover, we associate these alphabets with their

corresponding measurable spaces (Xt ,B(Xt)), (At ,B(At)), (Bt ,B(Bt)) and (Yt ,B(Yt))

(e.g., B(At) is a Borel σ−algebra of subsets of the set At generated by closed sets). Thus,

we identify sequences with the product measurable spaces as follows.

(X0,n,B(X0,n))
4
=×n

k=0(Xk,B(Xk))

(A0,n,B(A0,n))
4
=×n

k=0(Ak,B(Ak))

(B0,n,B(B0,n))
4
=×n

k=0(Bk,B(Bk))

(Y0,n,B(Y0,n))
4
=×n

k=0(Yk,B(Yk))Chri
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We denote the source output, channel input, channel output, and decoder output by the

following processes.

Xn 4= {Xt : t = 0,1, . . . ,n}, X : {t}×Ω 7→Xt

An 4= {At : t = 0,1, . . . ,n}, A : {t}×Ω 7→At

Bn 4= {Bt : t = 0,1, . . . ,n}, B : {t}×Ω 7→Bt

Y n 4= {Yt : t = 0,1, . . . ,n}, Y : {t}×Ω 7→ Yt

We denote the set of probability measures on any measurable space (Z ,B(Z )) by M1(Z ).

Often, we describe conditional distributions by stochastic Kernels and Markov chains by

conditional independence, defined below.

Definition 3.1. Consider the measurable spaces (A ,B(A )), (B,B(B)). A stochastic Ker-

nel is a mapping q : B(B)×A → [0,1] satisfying the following two properties:

1) For every a ∈A , the set function q(·;a) is a probability measure (possibly finitely addi-

tive) on B(B).

2) for every F ∈ B(B), the function q(F ; ·) is B(A )-measurable.

The set of all such stochastic Kernels is denoted by K (B;A ).

Next we introduce the definition of conditionally independence.

Definition 3.2. Consider a probability space (Ω,F,P) and the measurable spaces (A ,B(A )),

(B,B(B)),(Z ,B(Z )) on it. The σ -algebra B(Z ) is called conditionally independent of

B(A ) given B(B) if and only if

P(Z|A,B) = P(Z|B), ∀ Z ∈ B(Z ), for almost all A ∈A ,B ∈B

If (A ,B(A )),(B,B(B)),(Z ,B(Z )) are associated with R.V.’s A : (Ω,F) 7→ (A ,B(A )),

B : (Ω,F) 7→ (B,B(B)), Z : (Ω,F) 7→ (Z ,B(Z )), for q(.; ., .) ∈K (Z ;A ×B) then the

above definition is equivalent to q(dz;a,b) = q(dz;b), for almost all a ∈ A ,b ∈B. Such

conditional independence is denoted by A↔B↔ Z forms a Markov chain in both directions.

Note that, A↔ B↔ Z if and only if q(da,dz;b) = q(da;b)⊗q(dz;b), for almost all b ∈B.
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Source Encoder Channel Decoder

Delay

FIGURE 3.2.1: General Communication System with Feedback

The general communication system is described by two random processes. The information

source process {Xt : t ∈ N} and the output of the channel {Bt : t ∈ N}. The rest of the

system components are the encoder generating the encoder process {At : t ∈ N}, and the

decoder generating the decoder process, {Yt : t ∈ N}, by manipulating the functions of the

encoder and decoder, which are functions of the processes {(Xt ,Bt) : t ∈ N}. Specifically,

the communication system design consists of selecting the encoder and decoder variables

based on the available information at each time instant in such a way to achieve a desired

performance for the overall communication system.

Suppose the information process satisfies the recursive dynamics1

Xt = f (t,X t−1,Bt−1,wt), w0 = ω0, t ∈ N (3.2.1)

and the channel process satisfies the recursive dynamics.

Bt = h(t,Bt−1,At ,νt) t ∈ N (3.2.2)

where f (., ., .), h(., ., ., .) are measurable functions. The primitive RV’s (source of random-

ness) are

ω = {w0,v0, . . . ,wn,νn} ∀ n≥ 0 (3.2.3)

which may or may be not be a vector of independent RV’s. The spaces of {wt : t = 0,1, . . .}
and {νt : t = 0,1, . . .} are {Wt : t = 0,1, . . .} and {Vt : t = 0,1, . . .}. The distribution of the

primitive RV’s is defined by their joint probability on a probability space (Ω,F,P), where

ω ∈Ω, with ω given by (3.2.3).

1We allow dependence on previous channel outputs, Bt−1, to avoid excluding control sources.
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Consider a feedback encoder, with information available at the encoder at time t given by

X t 4= (X0,X1, . . . ,Xt), Bt−1 4= (B0,B1, . . . ,Bt−1), t = 0,1, . . . (3.2.4)

Then, the encoder process is described by

At = e(t,X t ,Bt−1,At−1)≡ At(X t ,Bt−1,At−1), t = 0,1, . . . (3.2.5)

where e(t, ., .) is a measurable function called the deterministic encoder function at time t.

If the encoder does not have feedback then the encoder process is described by

At = e(t,X t)≡ At(X t), t = 0,1, . . . (3.2.6)

Consider a decoder with information available at the decoder at time t given by Bt . Then the

decoder process is described by

Yt = d(t,Y t−1,Bt)≡ Yt(Y t−1,Bt), t = 0,1, . . . (3.2.7)

where d(t, .) is a measurable function called the deterministic decoder function at time t.

At time t = 0, we may consider two scenarios for the information available to the encoder.

The first scenario assumes no available feedback information so that A0 is a deterministic

function of X0, i.e. A0 = A0(X0), and hence B(B−1) = { /0,Ω} is the trivial σ -field. The

second scenario assumes that A0 is a deterministic function of X0 and B−1 is stationary

process having an invariant measure. One may also consider a third scenario, in which

A0 = A0(x0,y0), where y0 is a fixed realization of Y0.

Therefore, the measurable function f (t, ., .) and h(t, ., .) together with the alphabet spaces

Xt ,At ,Bt ,Yt describe the communication system of Figure 3.2.1. Often it is desirable to

describe the encoder function by

et(.)
4
=

{
e(0, ., .),e(1, ., .), . . . ,e(t, ., .)

}
≡

{
A0(.),A1(.), . . . ,At(.)

}
≡ At(.), t = 0,1, . . . (3.2.8)Chri
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called the encoder laws or strategies, and the decoder function by

dt(.)
4
=

{
d(0, ., .),d(1, ., .), . . . ,d(t, ., .)

}
≡

{
Y0(.),Y1(.), . . . ,Yt(.)

}
≡ Y t(.), t = 0,1, . . . (3.2.9)

based on the available information entering as inputs to the strategies. The available infor-

mation to the encoder and the decoder is often called “information structure”.

For a given encoder strategy

At(.)
4
= {At : t = 0,1, . . .}

and decoder strategy

Y t(.)
4
= {Yt : t = 0,1, . . .}

the processes

Xt ,At ,Bt ,Yt : t ∈ N

can be expressed by successive substitution of equations (3.2.1), (3.2.2), as follows.

X0 = w0

A0 = e(0,w0,B−1)≡ E0(w0,B−1)

B0 = h(0,B−1,A0,ν0)≡ H0(w0,B−1,ν0)

Y0 = d(0,Y−1,B0,B−1)≡ D0(Y−1,H0(w0,B−1,ν0),B−1)

X1 = f (1,w0,B−1,H0(w0,B−1,ν0),w1)≡ FA0(w0,B−1,ν0,w1)

A1 = e(1,w0, f (1,w0,B−1,H0(w0,B−1,ν0),w1),B−1,B0,A0)≡ EA0
1 (w1,ν0,B−1)

... (3.2.10)

The probability measure induced on the space (X0,t × A0,t ×B0,t × Y0,t , B(X0,t) ×
B(A0,t)×B(B0,t)×B(Y0,t)) by the functions of recursions (3.2.10) for i = 0,1, . . . , t is

indicated by PAt ,Y t
or Pet ,dt

. Expectation with respect to the measure PAt ,Y t
will be indicated

by EAt ,Y t
[.] or Eet ,dt

[.]. We shall often omit the index ”t” and write EA,Y [.], and when clear

from the context omit the dependence of the measures on the strategies. Specifically, for a

measure function ` : Xt×Bt 7→ R we write

EAt(.),Y t(.)[`(Xt ,Bt)] =
∫
Xt×Bt

`(xt ,bt)P
A,Y
Xt ,Bt

(dxt ,dbt) =
∫

Ω

`(FA
t (ω),HA

t (ω))P(ω)
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Clearly under the strategy At , the source and channel model are used to define the conditional

probability

P{ω : Xt(ω) ∈ J,Bt(ω) ∈ K|X t−1,Bt−1}

≡ PA
Xt ,Bt |X t−1,Bt−1

(
Xt ∈ J,Bt ∈ K|X t−1,Bt−1

)
, ∀ J ∈ B(Xt), K ∈ B(Bt)

The following illustrates how stochastic Kernels will be used in connection to conditional

distribution.

PA
Xt+1,Bt+1|X t ,Bt (Xt+1 ∈ J,Bt+1 ∈ K|X t ,Bt) = Pt+1(J×K;X t ,Bt ,At(X t ,Bt−1)), ∀ J ∈ B(Xt+1),

K ∈ B(Bt+1)

PA
Xt+1|X t ,Bt (Xt+1 ∈ J|X t ,Bt) = Pt+1(J;X t ,Bt), ∀J ∈ B(Xt+1)

PA
Bt+1|X t+1,Bt (Bt+1 ∈ K|X t+1,Bt) = Pt+1(K;X t+1,Bt ,At+1(X t+1,Bt)),∀K ∈ B(Bt+1)

We often describe the source, encoder, channel, decoder by stochastic Kernels.

3.2.1 Definition of Subsystems

Given the communication block diagram of Figure 3.2.1, we define its different blocks be-

low, by emphasizing on the information structures of each processing block.

Generalized Information Source:
The generalized information source is a sequence of stochastic Kernels{

Pj(dx j;x j−1,b j−1,a j−1) ∈K (X j;X0, j−1×B0, j−1×A0, j−1) : j ∈ Nn
}

(3.2.11)

In most communication applications the following Markov chain holds.

(B j−1,A j−1)↔ X j−1↔ X j, ∀ j ∈ Nn

The reason we consider the general definition of (3.2.11) is to include controlled sources, in

which the control process is applied using feedback, either from channel output or decoder

output.
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Channel Encoder:
The encoder is a sequence of stochastic Kernels{

Pj(da j;a j−1,x j,b j−1) ∈K (A j;A0, j−1×X0, j×B0, j−1) : j ∈ Nn
}

(3.2.12)

Based on the information structure available at the encoder, the encoder strategies are clas-

sified as follows.

Definition 3.3. (Encoder Strategies)

1. Randomized Feedback.

The set of randomized feedback encoders is denoted by E RF [0,n]⊆{K (A j;A0, j−1×
X0, j ×B0, j−1) : j = 0,1, . . . ,n}. For each time j ∈ Nn, the randomized encoder

depends on the entire history of the source symbol X j = x j, in addition to B j−1 =

b j−1,A j−1 = a j−1.

2. Randomized Markov.

The set of randomized Markov encoder strategies is denoted by E RM[0,n] ⊆
{K (A j;X j×B0, j−1) : j = 0,1, . . . ,n}. For each time j ∈ Nn, the randomized en-

coder depends on the symbol X j = x j in addition to B j−1 = b j−1. Thus, such encoders

satisfy

Pj(da j;a j−1,x j,b j−1) = Pj(da j;x j,b j−1)−a.a (a j−1,x j,b j−1), ∀ j ∈ Nn

3. Randomized Open loop.

The set of randomized open loop encoder strategies is denoted by E ROL[0,n] ⊆
{K (A j;A j−1,X j) : j = 0,1, . . . ,n}. For each time j ∈ Nn, the randomized encoder

depends on the symbols X j = x j, A j−1 = a j−1 and not on B j−1 = b j−1. Note that the

Randomized Open Loop Markov strategies with respect to the source is a subclass of

E ROL[0,n].

Deterministic encoders are sequences of delta measures and hence they are identified

by sequences of measurable functions

{
e j : A0, j−1×X0, j×B0, j−1 7→A j : a j = e j(a j−1,x j,b j−1), j ∈ Nn

}
Chri

sto
s K

. K
ou

rte
lla

ris



Chapter 3. Structural Properties of Extremum Problems of Capacity 71

4. Deterministic Feedback.

The set of deterministic feedback encoder strategies is denoted by E DF [0,n] ⊆K RF

[0,n]. For each time j ∈ Nn, A j(.) is B(X j)×B(A j−1)×B(B j−1) measurable. Thus,

for each realization B j−1 = b j−1,A j−1 = a j−1 the encoder strategy e j(·, ·, ·) is a mea-

surable function of the past realizations X j = x j. Thus, such an encoder is of the

form {
e j : X0, j×A0, j−1×B0, j−1 7→A j : a j = e j(x j,a j−1,b j−1), j ∈ Nn

}

5. Deterministic Markov.

The set of deterministic Markov encoder strategies is denoted by E DM[0,n] ⊆K RM

[0,n]. For each time j ∈ Nn, A j(.) is B(X j)×B(B j−1) measurable. Thus, such an

encoder is of the form

{e j : X j×B0, j−1 7→A j : a j = e j(x j,b j−1), j ∈ Nn}

6. Deterministic Open loop.

The set of deterministic open loop encoder strategies is denoted by E DOL[0,n] ⊆
K ROL[0,n]. For each time j ∈ Nn, A j is B(X j) measurable. Thus, such an encoder is

a sequence of measurable functions of the form{
e j : X0, j×A0, j−1 7→A j : a j = e j(x j,a j−1), j ∈ Nn}

Note that, deterministic Open Loop Markov with respect to the source is a subset of

E DOL[0,n], of the form{
e j : X j 7→A j : a j = e j(x j), j ∈ Nn

}

Feedback strategies, randomized or deterministic, can be used when the channel allows feed-

back between its output and its input, while open loop strategies, randomized or determinis-

tic are used when no channel feedback is allowed.

Communication Channel with Memory:
A communication channel is a sequence of stochastic Kernels{

Pj(db j;b j−1,a j,x j) ∈Q(B j;B0, j−1×A0, j×X0, j) : j ∈ Nn
}

(3.2.13)
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Note that, often the channel takes the simplified form

Pj(db j;b j−1,a j,x j) = Pj(db j;b j−1,a j)−a.a. (b j−1,a j,x j), j ∈ Nn

especially for channels in which the information capacity is defined between the input and

the output of the channel.

A channel, with or without feedback, is called memoryless channel if and only if the follow-

ing Markov chain holds.

(B j−1,X j,A j−1)↔ A j↔ B j, ∀ j ∈ Nn (3.2.14)

Any channel with finite input and output alphabets satisfying (3.2.14) is called Discrete

Memoryless Channel (DMC).

Channel Decoder:
The decoder is a sequence of stochastic Kernels{

Pj(dy j;y j−1,b j) ∈K (Y j : Y0, j−1×B0, j) : j ∈ Nn
}

(3.2.15)

Deterministic decoders are sequences of delta measures identified by sequences of measur-

able functions {
d j : Y0, j−1×B0, j 7→ Y j : y j = d j(y j−1,b j), j ∈ Nn

}
Next, we give the definition of a channel code.

Definition 3.4. An {(n,Mn,εn) : n = 0,1, . . .} code sequence for the channel with feedback

consists of the following.

1. A set of messages Mn
4
=
{

1,2, . . . ,Mn

}
and a class of encoders (deterministic or ran-

dom) measurable mappings
{

ϕi : Mn×Bi−1 7→Ai : i= 0,1, . . . ,n−1
}

that transforms

each message X ∈Mn into a channel input An−1 ∈ A0,n−1 of length n. For example,

ϕ ∈ E DM[0,n− 1] is the set of encoding strategies {ϕi : i = 0,1, . . . ,n− 1} such that

{Ai = ϕi(X ,Bi−1) : i = 0,1, . . . ,n− 1}. Note that the more general strategies satisfy

{ϕ̄i(X ,Ai−1,Bi−1) : i = 0,1, . . . ,n−1}= {ϕi(X ,Bi−1) : i = 0,1, . . . ,n−1}. For x∈Mn

we call ux ∈A0,n, ux = (ϕ0(x,b−1),ϕ1(x,b0),ϕ2(x,b1), . . . ,ϕn(x,bn−1)) the codeword

for message x ∈Mn and code Cn = (u1,u2, . . . ,uMn) the code. Thus, when the trans-

mitter wishes to send the message x ∈Mn, it transmits the codeword ux of the current

message x.
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2. A class of decoder measurable mappings dn : B0,n−1→Mn, Y = dn(Bn−1), such that

the average probability of decoding error satisfies

Pn
e
4
=

1
Mn

∑
x∈Mn

Prob(Y 6= x|X = x) = εn

Thus, the receiver which has access to the realization bn−1 ∈B0,n−1 can partition B0,n−1

into Mn disjoint subsets, B0,n =D1∪D2∪ . . .DMn , Di∩D j = /0,∀i 6= j, before the start of the

transmission operation, and then decide that message x ∈Mn is transmitted if Bn−1 ∈ Dx.

Hence, Dx, x ∈Mn is the decoding region of message x ∈Mn, which may be specified

via the typical set decoding, maximum-likelihood set decoding, e.t.c.. With respect to this

decoder, the average probability of error is also expressed as

Pn
e =

1
Mn

∑
x∈Mn

Prob(bn−1 ∈Dc
x |ux) (3.2.16)

Next, we give the definition of achievable rate.

Definition 3.5 (Operational Capacity).
(a) R is an achievable rate if there exists an {(n,Mn,εn) : n = 0,1, . . .} code sequence

satisfying limn→∞ εn = 0 and liminfn→∞
1
n logMn≥ R. The supremum of all achievable

rates R is defined as the capacity.

(b) R is an ε-achievable rate if there exists an {(n,Mn,εn) : n = 0,1, . . .} code sequence

satisfying limsupn→∞ εn ≤ ε and liminfn→∞
1
n logMn ≥ R. The supremum of all ε

achievable rates R for all 0≤ ε < 1 is defined as the ε-channel capacity.

Direct and converse coding theorems that link the operational Definition 3.5 to its informa-

tional definition are derived in [39] for channels without feedback using mutual information.

For channels with feedback, that link the operational Definition 3.5 to its informational def-

inition are derived in [41] and [19] using mutual information between Xn and Bn; when

Xn↔ (An,Bn−1)↔ Bn, n = 0,1, . . . holds, coding theorems are derived using directed in-

formation from An to Bn in [18, 75].

Over the years Walrand-Varaiya [81] and Teneketzis [78] treated the problem of optimizing

a given pay-off, for various classes of sources and channels, over encoder-decoder strate-

gies. However the considered pay-offs are not related to any of the information theoretic

measures, while they often assume DMC.
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3.2.2 Directed Information

Given a source, a channel, and encoder and decoder strategies, we define the joint probability

measure on X0,n×A0,n×B0,n×Y0,n using stochastic Kernels as follows.

P0,n(dxn,dan,dbn,dyn) =⊗n
i=0

(
Pi(dyi;yi−1,bi)⊗Pi(dbi;bi−1,ai,xi)

⊗Pi(dai;bi−1,ai−1,xi)⊗Pi(dxi;xi−1,bi−1,ai−1)
)

(3.2.17)

To obtain (3.2.17), we have assumed the following Markov chains hold.

Y i−1 ↔ (X i−1,Bi−1,Ai−1)↔ Xi, ∀ i ∈ Nn (3.2.18)

Y i−1 ↔ (X i,Bi−1,Ai−1)↔ Ai, ∀ i ∈ Nn (3.2.19)

Y i−1 ↔ (X i,Bi−1,Ai)↔ Bi, ∀ i ∈ Nn (3.2.20)

(X i,Ai) ↔ (Y i−1,Bi)↔ Yi, ∀ i ∈ Nn (3.2.21)

The right hand side of (3.2.17) is further simplified by considering specific channels and

sources, and specific information structures for the encoder and the decoder. For example, it

is often the case that the channel satisfies

Pi(dbi;bi−1,ai,xi) = Pi(dbi;bi−1,ai)−a.a. (bi−1,ai,xi), ∀ i ∈ Nn

However, there are examples in which capacity cannot be defined from the channel input to

the channel output [19].

Feedback channels, and in general network information theory utilizes information theoretic

measures which are directional. Here, we provide an elaborate discussion on directional

information starting with definition introduced by Marko [51], and subsequently developed

by Massey [52].

Suppose we are given the two distributions PXn(dxn) and PBn|Xn(dbn|dxn), which uniquely

define PXn,Bn(dxn,dbn) and PBn(dbn). The definition of Shannon’s self-mutual information

i(Xn;Bn) between two sequences Xn and Bn, is defined via the information density (loga-

rithm of a Radon-Nykodym derivative) by

i(xn;bn)
4
= log

PXn,Bn(dxn,dbn)

PXn(dxn)⊗PBn(dbn)
(3.2.22)
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Note that PBn|Xn << PBn×PXn if and only if PBn|Xn(.|xn)<< PBn(.)-a.s., thus

PXn,Bn(dxn,dbn)

PXn(dxn)⊗PBn(dbn)
=

PBn|Xn(dbn|xn)

PBn(dbn)
a.s. (3.2.23)

By taking the average of i(xn;bn) over all realizations with respect to the joint distribution

PXn,Bn(dxn,dbn), we obtain the expression of mutual information between Xn and Bn, as

follows:

I(Xn;Bn) = D(PXn,Bn ||PXn×PBn)

=
∫
X0,n×B0,n

log
(PBn|Xn(dbn|xn)

PBn(dbn)

)
PBn|Xn(dbn|xn)⊗PXn(dXn)

≡ IXn;Bn(PXn,PBn|Xn) (3.2.24)

Hence, mutual information is a functional of two distributions {PBn|Xn,PXn}, and thus the

adopted notation IXn;Bn(PXn,PBn|Xn). Since i(Xn = xn,Bn = bn) is interpreted as the informa-

tion provided about Xn = xn by observing Bn = bn, then I(Xn;Bn) is the average information

that Bn provides about Xn with respect to being independent process. In view of the symme-

try I(Xn;Bn) = I(Bn;Xn), mutual information is also the average information Bn provides

about Xn over the channel Xn ⇒ PBn|Xn ⇒ Bn, or Xn provides about Bn over the channel

Bn⇒ PXn|Bn ⇒ Xn.

Suppose we are given the families of conditional distributions {PB j|B j−1,X j(db j|b j−1,x j) : j =

0,1, . . .} and {PX j|X j−1,B j−1(dx j|x j−1,b j−1) : j = 0,1, . . .}, which uniquely define the joint

and marginal distributions PXn,Bn(dxn,dbn), PXn(dxn) and PBn(dbn). Clearly, the self-mutual

information admits the decomposition

i(Xn;Bn) = log
(
⊗n

j=0

PB j|B j−1,X j(db j|b j−1,x j)⊗PX j|X j−1,B j−1(dx j|x j−1,b j−1)

PB j|B j−1(db j|b j−1)⊗PX j|X j−1(dx j|x j−1)

)
= log

(
⊗n

j=0

PB j|B j−1,X j(db j|b j−1,x j)

PB j|B j−1(db j|b j−1)

)
+ log

(
⊗n

j=0

PX j|X j−1,B j−1(dx j|x j−1,b j−1)

PX j|X j−1(dx j|x j−1)

)
= i(Xn→ Bn)+ i(Xn← Bn)Chri
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where

i(Xn→ Bn)
4
= log

(
⊗n

j=0

PB j|B j−1,X j(db j|b j−1,x j)

PB j|B j−1(db j|b j−1)

)
(3.2.25)

i(Xn← Bn)
4
= log

(
⊗n

j=0

PX j|X j−1,B j−1(dx j|x j−1,b j−1)

PX j|X j−1(dx j|x j−1)

)
(3.2.26)

Define

I(Xn→ Bn)
4
=

n

∑
i=0

I(X i;Bi|Bi−1) (3.2.27)

I(Xn← Bn)
4
=

n

∑
i=0

I(Bi−1;Xi|X i−1) (3.2.28)

Taking the expectation with respect to the joint distribution yields

I(Xn;Bn) = E
{

i(Xn→ Bn)
}
+E
{

i(Xn← Bn)
}

(3.2.29)

= I(Xn→ Bn)+ I(Xn← Bn) (3.2.30)

Note that I(Xn→Bn) is the directed information in the direction Xn→Bn over a sequence of

causal channels (X i,Bi−1)⇒ PBi|Bi−1,X i ⇒ Bi, i = 0,1, . . . ,n, the feedforward information.

On the other hand, I(Xn ← Bn) is the directed information in the direction Xn ← Bn over

a sequence of causal channels (X i−1,Bi−1)⇒ PXi|X i−1,Bi−1 ⇒ Xi, i = 0,1, . . . ,n, the called

feedback information.

Next, we give three interpretations of (3.2.27) and (3.2.28) which are important in our sub-

sequent analysis.

• Representation 1

The next representation is given in [51, 52] .

I(Xn→ Bn) =
n

∑
i=0

∫
log

PBi|Bi−1,X i(dbi;bi−1,xi)

PBi|Bi−1(dbi;bi−1)
PBi,X i(dbi,dxi)

=
n

∑
i=0

∫
D(PBi|Bi−1,X i(.|bi−1,xi)||PBi|Bi−1(.|bi−1))PXi|X i−1,Bi−1(dxi|xi−1,bi−1)

⊗i−1
j=0

(
PB j|B j−1,X j(b j|b j−1,x j)⊗PX j|X j−1,B j−1(dx j|x j−1,b j−1)

)
≡ IXn→Bn(PXi|X i−1,Bi−1,PBi|Bi−1,X i : i ∈ Nn) (3.2.31)
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This representation shows that I(Xn → Bn) is a function of two causal conditional distri-

butions, {PXi|X i−1,Bi−1,PBi|Bi−1,X i : i ∈ Nn}, and it is consistent with the interpretation given

above. Note, that unlike mutual information, IXn;Y n(PXn,PY n|Xn), which is a functional of

two distributions, {PXn,PY n|Xn}, and inherits several of its properties from the properties of

relative entropy, such as lower semicontinuity with respect to PXn for fixed PY n|Xn and vice

versa, convexity with respect to PY n|Xn for fixed PXn , and concavity with respect to PXn for

fixed PY n|Xn , these properties are not easily extended to the directed information functional

IXn→Bn(PXi|X i−1,Bi−1 ,PBi|Bi−1,X i : i ∈ Nn). However, in [10, 73, 74] all these properties are

extended to the directional information using the following alternative definition.

Define the (n+1)-fold convolution measures by

−→
P Bn|Xn(dbn|xn)

4
= ⊗n

i=0PBi|Bi−1,X i(dbi|bi−1,xi) (3.2.32)
←−
P Xn|Bn−1(dxn|bn−1)

4
= ⊗n

i=0PXi|X i−1,Bi−1(dxi|xi−1,bi−1) (3.2.33)

It is known [10, 73, 74] that
−→
P Bn|Xn(dbn|xn) uniquely defines {PBi|Bi−1,X i(dbi|bi−1,xi) : i ∈

Nn} and vice-versa, and similarly for
←−
P Xn|Bn−1(dxn|bn−1). Then, an equivalent expression

for I(Xn→ Bn) is the following.

I(Xn→ Bn) =
∫

log

(−→
P Bn|Xn(dbn|xn)

PBn(dbn)

)
−→
P Bn|Xn(dbn|xn)⊗←−P Xn|Bn−1(dxn|bn−1)

≡ IXn→Bn(
←−
P Xn|Bn−1 ,

−→
P Bn|Xn)

The functional IXn→Bn(
←−
P Xn|Bn−1,

−→
P Bn|Xn) inherits all properties of mutual information, be-

cause the subset of conditional distributions on (B0,n,B(B0,n)) and (X0,n,B(X0,n)) defined

by (3.2.32) and (3.2.33), respectively, are convex sets. These results are found in [10, 73, 74].

The representation (3.2.31) has a very interesting interpretation in terms of a controlled

conditional distribution as follows. Suppose the channel depends on the input via the most

recent symbol, that is

Pi(dbi;bi−1,xi) = Pi(dbi;bi−1,xi)−a.a. (bi−1,xi), ∀i ∈ Nn (3.2.34)Chri
sto
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Then, I(Xn→ Bn) reduces to

I(Xn→ Bn) =
n

∑
i=0

I(Xi;Bi|Bi−1)

=
n

∑
i=0

∫
log

(
PBi|Bi−1,Xi

(dbi|bi−1,xi)

PBi|Bi−1(dbi|bi−1)

)
PBi|Bi−1,Xi

(dbi|bi−1,xi)

⊗PXi|Bi−1(dxi|bi−1)⊗PBi−1(dbi−1) (3.2.35)

Consider the case when the sequence of channels {PBi|Bi−1,Xi
(dbi|bi−1,xi) : i ∈ Nn} is fixed,

and {PXi|Bi−1(dxi|bi−1) : i ∈ Nn} is the variable designed to maximize (3.2.35). Then, by

Bayes rule

PBi|Bi−1(dbi|bi−1) =
∫
Xi

PBi|Bi−1,Xi
(dbi|bi−1,xi)⊗PXi|Bi−1(dxi|bi−1)

=
∫
Xi

PBi|Bi−1,Xi
(dbi|bi−1,xi)⊗πi(dxi|bi−1)

≡ Pπi
Bi|Bi−1(dbi|bi−1) (3.2.36)

Clearly, (3.2.36) demonstrates that {Pπi
Bi|Bi−1(dbi|bi−1) : ∀i ∈ Nn} is the controlled process

controlled by the conditional distribution {πi(dxi|bi−1) : ∀i ∈ Nn}.

The interpretation is that, in the calculation of channel capacity via maximization of di-

rected information, the probability distribution of Bi given past channel outputs Bi−1, namely

PBi|Bi−1(dbi|bi−1) is the controlled process, and the probability distribution of Xi given the

past channel outputs Bi−1 namely PXi|Bi−1(dxi|bi−1) = πi(dxi|bi−1) is the control process

∀i ∈ Nn. The process {πi(dxi;bi−1) : i = 0, . . . ,n} is induced by the channel input distribu-

tion in a specific way, depending on whether the channel is used with or without feedback.

Therefore, by the additivity property of the pay-off (3.2.35), we can derive a dynamic pro-

gramming equation to determine the sequence of {πi(dxi|bi−1) : ∀i ∈Nn} which maximizes

directed information. We shall revisit this observation in subsequent sections.

• Representation 2

I(Xn→ Bn) =
n

∑
i=0

∫
B0,i

D(PX i|Bi(.|bi)||PX i|Bi−1(.|bi−1))PBi(dbi)

=
n

∑
i=0

E
{

log
PX i|Bi(dxi|bi)

PX i|Bi−1(dxi|bi−1)

}
(3.2.37)
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This representation shows that each term in (3.2.37) can be expressed as a relative en-

tropy distance between the á posteriori distributions {PX i|Bi(dxi|bi),PX i|Bi−1(dxi|bi−1)}, av-

eraged over the distribution PBi(dbi), ∀ i ∈ Nn. At each instant of time, logPX i|Bi(dxi|bi)

− logPXi|Bi−1(dxi|bi−1) may be viewed as the new information gained about the random

variable X i, by receiving an additional observation Bi = bi, given all previous observations

Bi−1 = bi−1. Moreover by writing equation (3.2.37) as

I(Xn→ Bn) =
n

∑
i=0

∫
B0,i

D(PX i|Bi(.|bi)||PX i|Bi−1(.|bi))PBi(dbi) (3.2.38)

then each term in the right hand side of equation (3.2.38) can be viewed as the averaged new

information measured in a sequence of relative entropies between PX i|Bi(.|bi) and PX i|Bi−1(.|bi−1)

about X i, by receiving an additional observation Bi = bi given all passed observations Bi−1 =

bi−1, for all i ∈ Nn.

Note that by assuming a channel of the form (3.2.34), then we obtain the simplified form

I(Xn→ Bn) =
n

∑
i=0

I(Xi;Bi|Bi−1)

=
n

∑
i=0

∫
B0,i

D(PXi|Bi(.|bi)||PXi|Bi−1(.|bi−1))PBi(dbi) (3.2.39)

where

PBi(dbi) =⊗i
j=0 PB j|B j−1(db j|b j−1) =⊗i

j=0

∫
X j

PB j|B j−1,X j
(db j|b j−1,x j)⊗π j(dx j|b j−1)

(3.2.40)

≡⊗i
j=0 Pπ j

B j|B j−1(db j|b j−1)

Thus, when the channels {PB j|B j−1,X j
(db j | b j−1,x j) : i= 0, . . . ,n} are fixed and {PX j|B j−1(dx j|

b j−1) : i = 0, . . . ,n} are variable over which (3.2.39) is maximized, then the former is the

controlled process and latter is the control process.
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• Representation 3

I(Xn→ Bn) =
n

∑
i=0

{
H(Bi|Bi−1)−H(Bi|Bi−1,X i)

}
≤

n

∑
i=0

H(Bi|Bi−1)−
n

∑
i=0

H(Bi|Bi−1,Xn) (3.2.41)

= I(Xn;Bn) (3.2.42)

The interpretation of this representation is similar to the one above, since it denotes the

reduction of uncertainty at each step given the message until up to that step. Note that

inequality in (3.2.41) holds with equality if and only if the following Markov chain holds.

(Xi+1, . . . ,Xn)↔ (X i,Bi−1)↔ Bi, i = 0,1, . . . (3.2.43)

Since (3.2.43) is often valid (unless the source is affected by the past channel outputs, (such

as control applications), its is clear that the information measure can be either I(Xn;Bn) or

I(Xn→ Bn), and in this case

I(Xn;Bn) = I(Xn→ Bn) = IXn→Bn(PXn,
−→
P Bn|Xn) (3.2.44)

Clearly, (3.2.44) is the information measure utilized to define Rna
0,n(D) in Chapter 2. If this

channel is used without feedback then (3.2.43) holds and (3.2.44) is valid.

3.3 Structural Properties of Encoders

In this section, we address the following issue.

• Identify general structural properties of encoders, for a given class of sources and

channels with memory and feedback, which maximize the directed information from

the source to the channel output.

Hence, this problem addresses the design of encoders and their properties, when the infor-

mation capacity has an operational meaning.

The problem is stated below.

Problem 3.6. (Maximizing Directed Information)
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(a) Randomized Encoders
Given an admissible randomized class of encoders E RF [0,n], find the structural properties of

{P∗j (da j;a j−1,x j,b j−1) : j ∈ Nn} ∈ E RF [0,n] which maximizes directed information

JR
0,n(P

∗
j : j = 0,1, . . . ,n)

4
= sup
{Pj: j=0,1,...,n}∈E RF [0,n]

I(Xn→ Bn)

(b) Deterministic Encoders
Given an admissible deterministic class of encoders E DF [0,n], find the structural properties

of {e∗j(a j−1,x j,b j−1) : ∀ j ∈ Nn} ∈ E DF [0,n] which maximizes directed information

JD
0,n(e

∗
j : j = 0,1, . . . ,n)

4
= sup
{e j: j=0,1,...,n}∈E DF [0,n]

I(Xn→ Bn)

We make the following comments regarding Problem 3.6.

1. Problem 3.6.(a) with JR
0,∞
4
= liminfn→∞

1
n+1JR

0,n is an infinite horizon encoder design,

with respect to randomized strategies, under the assumption that the corresponding

channel has operational meaning

2. Problem 3.6.(b) with JD
0,∞
4
= liminfn→∞

1
n+1JD

0,n is an infinite horizon encoder design

with respect to deterministic strategies, under the assumption that the corresponding

channel has operational meaning.

The reason we introduce randomized strategies is due to the fact that often existence of

deterministic strategies is difficult to ensure [1]. Therefore, our aim is to understand the

structural properties of the encoder, such as, symbol by symbol transmission is optimal,

which implies that nothing can be gained by designing encoder which operates on block of

source symbols at each transmission.

Consider Problem 3.6.(a) of maximizing directed information over the class of randomized

strategies {PA j;A j−1,X j,B j−1(da j;a j−1,x j,b j−1) : j = 0,1, . . . ,n} ∈ E RF [0,n]. An interesting

question is to determine for a given channel and source, the information structure of the

encoder over which JR
0,n should be optimized. To address such questions consider the pay-

off expressed utilizing Representation 2 (3.2.37) of directed information as follows.

JR
0,n(Pj : j = 0,1, . . . ,n) =

n

∑
i=0

E
{

log
PX i|Bi(dxi|bi)

PX i|Bi−1(dxi|bi−1)

}
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Since the pay-off is additive, to apply dynamic programming the first question is whether

E
{

log
PX i|Bi(dxi|bi)

PX i|Bi−1(dxi|bi−1)

∣∣∣X i,Ai,Bi−1
}

?
= E

{
log

PX i|Bi(dxi|bi)

PX i|Bi−1(dxi|bi−1)

∣∣∣Xi,PX i−1|Bi−1(dxi−1|bi−1),PX i−1|Bi−2(dxi−1|bi−2)
}

(3.3.45)

If (3.3.45) holds, and the joint process {Xi,PX i|Bi(dxi|bi),PX i|Bi−1(dxi|bi−1) : i= 0,1, . . . ,n} is

jointly Markov process, controlled by {Ai : i= 0,1, . . . ,n}, then we can proceed by deriving a

dynamic programming equation. In view of this, it is natural to derive the recursive equations

for {PX i|Bi(dxi|bi),PX i|Bi−1 (dxi|bi−1) : i = 0,1, . . . ,n} to determine whether they are jointly

Markov process, and hence (3.3.45) is valid. Moreover, if this is the case then the optimal

encoder has the property that for each time i, it is a functional of

{Xi,PX i|Bi(.|bi),PX i|Bi−1(.|bi−1)}, ∀ i ∈ Nn (3.3.46)

The above discussion also applies to Representation 1.

Consider Problem 3.6.(b). Then an interesting question is under what conditions on the

channel and source distributions, the maximizing encoders are Markov with respect to the

source, i.e., {a j = e j(x j,y j−1) : j = 0,1, . . . ,n}. If this is the case there is no additional gain

using encoders that depend on the whole past of the source, such as {a j = e j(a j−1,x j,yi−1) :

j = 0,1, . . . ,n. Suppose that for a given channel the information definition of capacity is also

operational. Then, we know that there exists an encoder-decoder which achieves capacity,

that is, a direct channel coding theorem is shown, and the problem of finding the encoder

strategy, is equivalently formulated as an optimization problem, of maximizing the informa-

tion rate from the source to the channel output, by choosing the optimal encoder strategy,

among all permissible encoders.

Problem 3.6.(b)

We start by addressing Problem 3.6.(b), of maximizing the directed information over the

class of deterministic encoder strategies {e j(a j−1,x j,b j−1) : j = 0,1, ...n} ∈ E DF [0,n]. The

information structure of the encoder at any time j is {a j−1,x j,b j−1} and a specific strategy
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{e0, ....,en} ∈ E DF [0,n] is given by

a j = e j(a j−1,x j,b j−1) = e j

(
e0(a−1,x0,b−1),

e1(a0,x1,b0), ...,e j−1(a j−2,x j−1,b j−2),e j(a j−1,x j,b j−1)
)
, ∀ j ∈ Nn

This is the most general class of deterministic encoder strategies E DF [0,n], since no assump-

tions are imposed either on the source or the channel.

Our goal is to identify general conditions on the source and channel distributions so that

maximizing I(Xn → Bn) over the class of encoders E DF [0,n] with information structure

{(a j−1,x j,b j−1) : j ∈ Nn} is equivalent to maximizing I(Xn → Bn) over an encoder that

belongs to E DM[0,n], i.e., having an information structure {(x j,b j−1) : j ∈ Nn}, and hence

the encoder strategies are of the form {e j(x j,b j−1) : j ∈ Nn} ∈ E DF [0,n].

Encoder structures of the form E DM[0,n] are of particular interest in real-time communica-

tion applications, because it implies Symbol-by-Symbol (SbS) transmission is optimal (i.e.,

only one symbol is encoded at each transmission instant) and hence, no additional gain can

be obtained by block coding of source sequences, in terms of performance, thus reducing

the complexity of block coding.

The following conditions are important to prove that encoder structures E DM[0,n] are indeed

optimal.

Assumption 3.7. The information source is restricted to a sequence of stochastic Kernels

Pj(dx j;x j−1,b j−1,a j−1) = Pj(dx j;x j−1,b j−1,a j−1)− a.a (x j−1,a j−1,b j−1), ∀ j ∈ Nn

(3.3.47)

Assumption 3.8. The communication channel is restricted to a sequence of stochastic Ker-

nels

Pj(db j;b j−1,a j,x j) = Pj(db j;b j−1,a j,x j),−a.a (x j,a j,b j−1), ∀ j ∈ Nn (3.3.48)

We make the following observations regarding Assumptions 3.7, 3.8.

1. The condition on the source described by equation (3.3.47) allows feedback depen-

dence on the channel output history and Markovian dependence on the previous source
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and encoder outputs. The reason we treat this general source is motivated by control

applications, in which the source is a controlled process, controlled by a control pro-

cess which uses information from the channel or decoder outputs. For communication

application, (3.3.47) should be replaced by

Pj(dx j;x j−1,b j−1,a j−1) = Pj(dx j;x j−1)− a.a (x j−1,a j−1,b j−1), ∀ j ∈ Nn

(3.3.49)

2. The condition on the channel described by (3.3.48) allows dependence on the channel

output history and current source and encoder outputs. Such channels are generalized

versions of those often used when feedback increases capacity as in [19]. For channels

in which the information capacity is defined between the input and the output of the

channel, then (3.3.48) is replaced by

Pj(db j;b j−1,a j,x j) = Pj(db j;b j−1,a j)− a.a (x j−1,a j−1,b j−1), ∀ j ∈ Nn (3.3.50)

Most communication channels analysed in literature assume the form (3.3.50).

3. Assumptions 3.7, 3.8, can be further generalized to sources and channels which de-

pend on previous source and encoders symbols having limited memory, by introducing

additional variables into the formulation.

The first main result, which appeared in [17] on structural properties of the encoder is given

in the next theorem.

Theorem 3.9. Consider Problem.3.6 under Assumptions 3.7, 3.8.

Then we have the following.

(a) Randomized Encoders (E RF [0,n])

1. For a given {Pj(da j;a j−1,x j,b j−1) : j = 0,1, . . . ,n} ∈ E RF [0,n] the directed information

I(Xn→ Bn) is given by

I(Xn→ Bn) =
∫

log
(−→P 0,n(dbn;xn)

P0,n(dbn)

)
(
−→
P 0,n⊗

←−
P 0,n)(dxn,dbn) (3.3.51)Chri
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where

P0,n(dxn,dbn) =
∫
A0,n

⊗n
j=0

(
Pj(db j;b j−1,a j,x j)⊗Pj(da j;a j−1,x j,b j−1)

⊗Pj(dx j;x j−1,b j−1,a j)
)

(3.3.52)
←−
P 0,n(dxn;bn−1) =⊗n

i=0 Pi(dxi;xi−1,bi−1) (3.3.53)

and the marginals are constructed from the joint distribution.

2. The sequence of optimal encoder strategies maximizing I(Xn→ Bn) over E RF [0,n] has

the form

P∗j (da j;x j,b j−1,a j−1) = P∗j (da j;x j,b j−1)−a.a (x j,a j−1,b j−1), ∀ j ∈ Nn (3.3.54)

and

JR
0,n(P

∗
j : j = 0,1, . . . ,n)

4
= sup
{Pj(da j;a j−1,x j,b j−1): j=0,1,...,n}∈E RF [0,n]

I(Xn→ Bn) (3.3.55)

= sup
{Pj(da j;x j,b j−1), j=0,1,...,n}∈E RM [0,n]

I(Xn→ Bn) (3.3.56)

where

I(Xn→ Bn) =
n

∑
i=0

∫
log
(Pi(dbi;bi−1,xi)

Pi(dbi;bi−1)

)
P0,i(dxi,dbi) (3.3.57)

Pi(dbi;bi−1,xi) =
∫
Ai

Pi(dbi;bi−1,ai,xi)⊗Pi(dai;xi,bi−1), i = 0,1, . . . ,n (3.3.58)

Pi(dbi,bi−1) =
∫
Ai×Xi

Pi(dbi;bi−1,xi,ai)
(

Pi(dai;xi,bi−1)⊗Pi(dxi;bi−1)
)
, i = 0,1, . . . ,n

(3.3.59)
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(b) Deterministic Encoders (E DF [0,n])

1. For a given e ∈ E DF [0,n] the directed information I(Xn→ Bn) is given by

I(Xn→ Bn)
4
=

n

∑
i=0

Ee
{

log
(Pi(dBi;Bi−1,X i)

P(dBi;Bi−1)

)}
(3.3.60)

=
n

∑
i=0

Ee
{

log
(Pi(dBi;Bi−1,Xi,ei(X i,Bi−1))

P(dBi;Bi−1)

)}
(3.3.61)

=
n

∑
i=0

I(Xi,Ai;Bi|Bi−1)
∣∣∣
Ai=ei(X i,Bi−1)

(3.3.62)

where

Pi(dbi,bi−1) =
∫
X0,i

Pi(dbi;bi−1,xi,ei(xi,bi−1))⊗Pi(dxi;bi−1), i = 0,1, . . . ,n (3.3.63)

2. The sequence of optimal encoder strategies maximizing I(Xn→ Bn) over E DF [0,n] has

the form

e∗j(a
j−1,x j,b j−1) = g∗j(x j,b j−1), ∀ j ∈ Nn (3.3.64)

and

JD
0,n(e

∗
j : j = 0,1, . . . ,n)

4
= sup
{e j(x j,a j−1,b j−1): j=0,1,...,n}∈E DF [0,n]

I(Xn→ Bn) (3.3.65)

= sup
{g j(x j,b j−1): j=0,1,...,n}∈E DM [0,n]

I(Xn→ Bn) (3.3.66)

where for g ∈ E DM[0,n]

I(Xn→ Bn) =
n

∑
i=0

Eg
{

log
(Pi(dBi;Bi−1,Xi,gi(Xi,Bi−1))

P(dBi;Bi−1)

)}
(3.3.67)

=
n

∑
i=0

I(Xi,Ai;Bi|Bi−1)
∣∣∣
Ai=gi(Xi,Bi−1)

(3.3.68)

=
n

∑
i=0

I(Xi;Bi|Bi−1) (3.3.69)

=
n

∑
i=0

∫
log
(Pi(dbi;bi−1,xi,gi(xi,bi−1))

P(dbi;bi−1)

)
Pi(dbi,dbi−1,dxi) (3.3.70)

Pi(dbi;bi−1) =
∫
Xi

Pi(dbi;bi−1,xi,gi(xi,bi−1))⊗Pi(dxi;bi−1), i = 0,1, . . . ,n (3.3.71)
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Proof. see Appendix B.1.

Remark 3.10. The following observations are consequences of the previous theorem.

1. Theorem 3.9 states that under Assumptions 3.7, 3.8, maximizing directed information

over non-Markov strategies (with respect to the source) is equivalent to maximizing

it over Markov (with respect to the source) strategies, for both deterministic and ran-

domized strategies. This is a surprising result because it implies that no source block

coding can give better performance.

2. The optimal encoder g ∈ E DM[0,n] has the property that

I(Xn→ Bn) =
n

∑
i=0

I(Xi,Ai;Bi|Bi−1)
∣∣∣
Ai=gi(Xi,Bi−1)

=
n

∑
i=0

(
I(Xi;Bi|Bi−1)+ I(Ai;Bi|Bi−1,Xi)

)∣∣∣
Ai=gi(Xi,Bi−1)

=
n

∑
i=0

I(Xi;Bi|Bi−1) (3.3.72)

and

I(Xn→ Bn) =
n

∑
i=0

I(Xi,Ai;Bi|Bi−1)
∣∣∣
Ai=gi(Xi,Bi−1)

=
n

∑
i=0

(
I(Ai;Bi|Bi−1)+ I(Xi;Bi|Bi−1,Ai)

)∣∣∣
Ai=gi(Xi,Bi−1)

(3.3.73)

3. According to (3.3.71) the control process {Pi(dbi;bi−1) : i = 0,1, . . . ,n} is a linear

functional of the a posteriori distribution {Pi(dxi;bi−1) : i = 0,1, . . . ,n} and these are

controlled by the control process {Ai : i = 0,1, . . . ,n} via the policies {gi(xi;bi−1) : i =

0,1, . . . ,n}.

4. The encoder structural properties will be used together with structural properties of

the capacity achieving channel input distribution to identify structural properties when

designing systems based on SbS (JSCC) transmission.

Next, we derive the consequences of Theorem 3.9, for the generalized unit memory channel,

which is not independent of the source.Chri
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Corollary 3.11. Suppose Assumptions 3.7, 3.8 are replaced by

Pj(dx j;x j−1,b j−1,a j−1) = Pj(dx j;x j−1)−a.a. (x j−1,b j−1,a j−1), ∀ j ∈ Nn (3.3.74)

Pj(db j;b j−1,x j,a j) = Pj(db j;b j−1,x j,a j)−a.a. (x j,b j−1,a j), ∀ j ∈ Nn (3.3.75)

Define the restricted policies E DMM[0,n]⊆ E DM[0,n] by

E DMM[0,n]
4
=
{

g ∈ E DM[0,n] : gi(xi,bi−1) = gM
i (xi,bi−1), i = 0,1, . . . ,n

}
(3.3.76)

Then, the optimal deterministic encoder maximizing I(Xn → Bn) over E DF [0,n] has the

property

e∗j(a
j−1,x j,b j−1) = gM

j (x j,b j−1),∀ j ∈ Nn (3.3.77)

the process {Bi : i = 0,1, . . .} is a first-order Markov, that is,

Pi(dbi;bi−1) = Pi(dbi;bi−1)−a.a. bi−1, i = 0,1, . . . ,n (3.3.78)

and

sup
{e j(x j,a j−1,b j−1): j=0,1,...,n}∈E DF [0,n]

I(Xn→ Bn)

= sup
{g j(x j,b j−1): j=0,1,...,n}∈E DM [0,n]

n

∑
i=0

Eg
{

log
(Pi(dBi;Bi−1,Xi,gi(Xi,Bi−1))

P(dBi;Bi−1)

)}
(3.3.79)

= sup
{g j(x j,b j−1): j=0,1,...,n}∈E DM [0,n]

n

∑
i=0

I(Xi,Ai;Bi−1)
∣∣∣
Ai=gi(Xi,Bi−1)

(3.3.80)

= sup
{gM

j (x j,b j−1): j=0,1,...,n}∈E DMM [0,n]

n

∑
i=0

EgM
{

log
(Pi(dBi;Bi−1,Xi,gM

i (Xi,Bi−1))

P(dBi;Bi−1)

)}
(3.3.81)

= sup
{gM

j (x j,b j−1): j=0,1,...,n}∈E DMM [0,n]

n

∑
i=0

I(Xi,Ai;Bi|Bi−1)
∣∣∣
Ai=gM(Xi,Bi−1)

(3.3.82)

≡ sup
{gM

j (x j,b j−1): j=0,1,...,n}∈E DMM [0,n]

n

∑
i=0

I(Xi;Bi|Bi−1) (3.3.83)
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where

Pi(dbi;bi−1) =
∫
Xi

Pi(dbi;bi−1,xi,gM
i (xi,bi−1))⊗Pi(dxi;bi−1), i = 0,1, . . . ,n

(3.3.85)

Pi(dbi,dbi−1,dxi) =Pi(dbi;bi−1,xi,gM
i (xi,bi−1))⊗Pi(dxi;bi−1)⊗Pi(dbi−1), i = 0,1, . . . ,n

(3.3.86)

Pi(dxi;bi−1) =
∫
Xi−1

Pi(dxi;xi−1)⊗Pi−1(dxi−1;bi−1), i = 0,1, . . . ,n (3.3.87)

Proof. By Theorem 3.9, the maximization occurs over the set E DM[0,n]. For a g∈E DM[0,n],

{ai = gi(xi,bi−1) : i = 0, . . . ,n} then

I(Xn→ Bn) =
n

∑
i=0

I(X i;Bi|Bi−1)

=
n

∑
i=0

Eg
{

log
Pi(dBi;Bi−1,X i)

Pi(dBi;Bi−1)

}
=

n

∑
i=0

Eg
{

log
Pi(dBi;Bi−1,X i,Ai)

Pi(dBi;Bi−1)

}
=

n

∑
i=0

Eg
{

log
Pi(dBi;Bi−1,Xi,Ai)

Pi(dBi;Bi−1)

}
=

n

∑
i=0

I(Xi,Ai;Bi|Bi−1)
∣∣∣
Ai=gi(Xi,Bi−1)

(3.3.88)

Hence,

sup
g∈E DF [0,n]

I(Xn→ Bn) = sup
g∈E DF [0,n]

n

∑
i=0

I(Xi,Ai;Bi|Bi−1)
∣∣∣
Ai=gi(X i,Bi−1)

= sup
g∈E DM [0,n]

n

∑
i=0

I(Xi,Ai;Bi|Bi−1)
∣∣∣
Ai=gi(Xi,Bi−1)

(3.3.89)

≥
n

∑
i=0

I(Xi,Ai;Bi|Bi−1)
∣∣∣
Ai=gi(Xi,Bi−1)

,∀ g ∈ E DM[0,n] (3.3.90)

Take a gM ∈ E DMM[0,n] such that {Bi : i = 0, . . . ,n} is a first order Markov process, i.e.,

P(dbi;bi−1) = P(dbi;bi−1)−a.a. bi−1, i = 0, . . . ,n, defined by

E DMM,∗[0,n]
4
= {g ∈ E DMM[0,n] : Pi(dxi;bi−1) = Pi(dxi;bi−1)−a.a. bi−1, i = 0, . . . ,n}Chri
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Then for gM ∈ E DMM,∗[0,n] we have

P(dbi;bi−1) =
∫
Xi

P(dbi;bi−1,xi,gM
i (xi,bi−1))⊗Pi(dxi;bi−1)

=
∫
Xi

P(dbi;bi−1,xi,gM
i (xi,bi−1))⊗Pi(dxi;bi−1)

= Pi(dbi;bi−1)

=
∫
Xi

P(dbi;bi−1,xi,gM
i (xi,bi−1))⊗Pi(dxi;bi−1) (3.3.91)

For such a gM ∈ E DMM,∗[0,n]⊆ E DM[0,n], by (3.3.89), (3.3.90) and (3.3.91) we have

sup
g∈E DF [0,n]

I(Xn→ Bn) = sup
g∈E DM [0,n]

n

∑
i=0

I(Xi,Ai;Bi|Bi−1)

≥
n

∑
i=0

EgM
{

log
Pi(dBi;Bi−1,Xi,gM

i (Xi,Bi−1))

Pi(dBi;Bi−1)

}
=

n

∑
i=0

EgM
{

log
Pi(dBi;Bi−1,Xi,gM

i (Xi,Bi−1))

Pi(dBi;Bi−1)

}
=

n

∑
i=0

I(Xi,Ai;Bi|Bi−1)
∣∣∣
Ai=gM

i (Xi,Bi−1)
, ∀gM ∈ E DMM,∗[0,n] (3.3.92)

On the other hand for a given g ∈ E DM[0,n], by (3.3.88), we have

I(Xn→ Bn) =
n

∑
i=0

I(Xi,Ai;Bi|Bi−1)
∣∣∣
Ai=gi(Xi,Bi−1)

=
n

∑
i=0

H(Bi|Bi−1)−
n

∑
i=0

H(Bi|Bi−1,Xi,gi(Xi,Bi−1))

≤
n

∑
i=0

H(Bi|Bi−1)−
n

∑
i=0

H(Bi|Bi−1,Xi,gi(Xi,Bi−1)) (3.3.93)

=
n

∑
i=0

I(Xi,gi(Xi,Bi−1);Bi|Bi−1)

where the inequality follows from the fact that conditioning does not increase entropy. The

inequality (3.3.93) holds with equality if gi ∈ E DMM,∗[0,n], that is, (3.3.91) holds. By

(3.3.93) taking the supremum of the left hand side over E DM[0,n], we have

sup
g∈E DM [0,n]

I(Xn→ Bn) = sup
g∈E DM [0,n]

n

∑
i=0

I(Xi,Ai;Bi|Bi−1)
∣∣∣
Ai=gi(Xi,Bi−1)

≤
n

∑
i=0

I(Xi,Ai;Bi|Bi−1)
∣∣∣
Ai=gi(Xi,Bi−1)

, ∀g ∈ E DM[0,n] (3.3.94)
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Since (3.3.94) holds ∀g ∈ E DM[0,n], evaluating at gi ∈ E DMM,∗[0,n], we have

sup
g∈E DM [0,n]

n

∑
i=0

I(Xi;Bi|Bi−1)≤
n

∑
i=0

I(Xi,Ai;Bi|Bi−1)
∣∣∣
Ai=gi(Xi,Bi−1)

, ∀g ∈ E DMM,∗[0,n] (3.3.95)

Combining (3.3.92) and (3.3.95), we deduce that the supremum, if it exists it is achieved in

gM ∈ E DMM,∗[0,n]. This completes the derivation.

Remark 3.12. The previous corollary, includes as a special case, the channel with feedback

satisfying

Pj(db j;b j−1,a j,x j) = Pj(db j;b j−1,a j)−a.a.(b j−1,a j), i = 0,1, . . . ,n (3.3.96)

which does not have more information capacity. The capacity achieving distribution of this

simplified channel with unit memory, is discussed in the Shannon Lecture by Berger in [6],

where it is conjectured that the capacity achieving distribution is of the form2

Pj(da j;a j−1,b j−1) = Pj(da j;b j−1)−a.a.(ai−1,b j−1), i = 0,1, . . . ,n (3.3.97)

and that the finite-time capacity is given by

sup
Pi(dai;bi−1):i=0,1,...,n

n

∑
i=0

I(Ai;Bi|Bi−1) (3.3.98)

Unfortunately, we did not managed to find any derivation of property (3.3.97) for the unit

memory channel (3.3.96). Nevertheless, the previous general Corollary can be used to derive

property (3.3.97) as follows.

By Corollary 3.11 and assuming (3.3.96) we have the following identities.

2The derivation in [6] is insufficient because the author utilized mutual information instead of the directed
information as the information measure.
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sup
e∈E DF [0,n]

I(Xn→ Bn) = sup
g∈E DM [0,n]

n

∑
i=0

I(Xi,Ai;Bi|Bi−1)
∣∣∣
Ai=gi(Xi,Bi−1)

(3.3.99)

= sup
g∈E DM [0,n]

n

∑
i=0

Eg
{

log
Pi(dBi;Bi−1,Xi,gi(Xi,Bi−1))

Pi(dBi;Bi−1)

}
(3.3.100)

= sup
gM∈E DMM [0,n]

n

∑
i=0

EgM
{

log
Pi(dBi;Bi−1,Xi,gM

i (Xi,Bi−1))

Pi(dBi;Bi−1)

}
(3.3.101)

= sup
gM∈E DMM [0,n]

n

∑
i=0

I(Xi,Ai;Bi|Bi−1)
∣∣∣
Ai=gM

i (Xi,Bi−1)
(3.3.102)

= sup
gM∈E DMM [0,n]

n

∑
i=0

EgM
{

log
Pi(dBi;Bi−1,Xi,gM

i (Xi,Bi−1))

Pi(dBi;Bi−1)

}
(3.3.103)

= sup
gM∈E DMM [0,n]

n

∑
i=0

I(Ai;Bi|Bi−1)
∣∣∣
Ai=gM

i (Xi,Bi−1)
(3.3.104)

= sup
Pi(dai;bi−1):i=0,1,...,n

n

∑
i=0

I(Ai;Bi|Bi−1) (3.3.105)

where

(3.3.99) follows from Theorem 3.9;

(3.3.100) follows by definition;

(3.3.101) follows from Corollary 3.11;

(3.3.102) follows by definition;

(3.3.103) follows (3.3.96) (the MC);

(3.3.104) follows by definition;

(3.3.105) follows from the fact that maximizing over randomized strategies does not increase

the pay-off (since in our case the information structure is classical).

The previous structural properties of encoders imply that the maximization can be done us-

ing stochastic control and dynamic programming techniques, of partially observed systems.

In stochastic optimal control of partially observed systems, the control process is a func-

tional of the observations. Often, such problems are converted to equivalent stochastic con-

trol problems, in which the controlled process is the á posteriori distribution, and the control

process is replaced by a function of this distribution, called “separated controls”. Next, we

describe an analogous procedure, by first introducing the definition of separated encoder
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strategies.

Definition 3.13. (Separated Encoder Strategies)

Consider a source and a channel, specified by Assumptions 3.7, 3.8. Given a set of en-

coder strategies (E RM[0,n]), define the á posteriori conditional distribution Πa
j(dx j;b j−1)

4
=

Prob(X j ∈ dx j|B j−1 = b j−1), ∀ j ∈ Nn.

(a) Randomized Encoders:

A randomized encoder {Pj : j ∈ Nn} ∈ E RM[0,n] is called separated if Pj(da j;x j,b j−1) de-

pends on B j−1 = b j−1 only through the conditional distribution Πa
j(dx j;b j−1), ∀ j ∈ Nn.

The set of separated randomized encoder strategies is denoted by E sep,RM[0,n].

(b) Deterministic Encoders:

A deterministic encoder {g j : j ∈ Nn} ∈ E DF [0,n] is called separated if a j = g j(x j,b j−1)

depends on B j−1 = b j−1 only through the conditional distribution Πa(dx j;b j−1), ∀ j ∈ Nn.

The set of separated deterministic encoder strategies is denoted by E sep,DM[0,n].

Thus, for any {g j : j ∈ Nn} ∈ E sep,DM[0,n] then the encoder strategy at time j is of the

form a j = g j(x j,b j−1) = g j(x j,Π
a(dx j;b j−1)). Such separated encoder strategies are well

analyzed in stochastic control problems with partial information [13, 14]. The connection to

stochastic control is established as follows.

Although, one starts with a partially observable stochastic control problem, by identifying

some information state (a quantity that carries the same information as the observations), in

this case, conditional distribution, then the partially observable problem is converted into a

fully observable problem with pay-off expressed as a functional of the information state. The

resulting equivalent optimization problem is to control the information state, via separated

control strategies in order to incur the best possible performance. The important assumption

to utilize separate strategies is that the information state, for example, the á posteriori dis-

tribution, is a Markov process. Mathematically this is equivalent to the following. For any

bounded continuous test function Φ : X j 7→ R, the following should hold.

E
{∫

X j

Φ(x)Πa
j(dx|B j−1)

∣∣∣B j−2
}

= E
{∫

X j

Φ(x)Πa
j(dx|B j−1)

∣∣∣Πa
j−1(dx|B j−2) = π j−1(B j−2)

}
(3.3.106)Chri
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If (3.3.106) is satisfied, then B j−2 carries the same information as Πa
j−1(dx|b j−2). Consider

for example the case where the conditional distribution satisfies the following recursion.

Π
a
j(dx|b j−1) = Tj(b j−1,Π

a
j−1(.|b j−2))

where Tj(., .) is a mapping form (b j−1,Π
a
j−1) to Πa

j , j = 0,1, . . . ,n. Then (3.3.106) holds.

However, if the mapping is replaced by Tj(b j−1,b j−2,Π
a
j−1(.|b j−2)), then (3.3.106) holds

provided the conditioning includes the additional information B j−2.

By analogy with stochastic control problems, one can express the directed information

I(Xn → Bn) in terms of the information state, {Πa
j(dx j|b j−1) : j = 0,1, . . . ,n} and then

employ separated encoder strategies to maximize it, subject to a dynamic recursion satisfied

by the information state. In principle, and under certain assumptions, this methodology will

lead to a principle of optimality and an associated dynamic programming satisfied by the

optimal cost-to-go.

3.3.1 Encoder Design via Dynamic Programming

The objective in this section is to derive recursive equations for the information available to

the encoder, and then introduce dynamic programming recursions to characterize the optimal

encoders which maximize directed information.

As before, all processes are initially defined on a complete probability space (Ω,F(Ω),Pa).

Define the following complete σ algebras (completion is with respect to the null sets of

measure zero of (Ω,F(Ω),Pa)):

G0,n
4
= σ{X0,X1, . . . ,Xn,B0,B1, . . . ,Bn}

F0,n
4
= σ{X0,X1, . . . ,Xn,B0,B1, . . . ,Bn−1}

J0,n
4
= σ{B0,B1, . . . ,Bn} (3.3.107)

where σ{X} denotes the σ -algebra generated by R.V. X . Clearly, a deterministic encoder

e j ∈ E DM[0,n] for each j ∈ Nn, is an F0, j− measurable function.Chri
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Consider Problem 3.6.(b) of maximizing the directed information over encoder class E DF [0,n].

Define the conditional pay-off on the interval [k,n] by

J̄D
k,n({e j : j = k, . . . ,n},F0,k)

4
= Ee

{ n

∑
i=k

log
(Pi(dBi;Bi−1,ei(X i,Bi−1),X i)

Pe
i (dBi;Bi−1)

)∣∣∣F0,k

}
By the smoothing property of conditional expectation we have

JD
k,n({e j : j = k, . . . ,n}) 4= Ee

{
Ee
[ n

∑
i=k

log
(Pi(dBi;Bi−1,ei(X i,Bi−1),X i)

Pe
i (dBi;Bi−1)

)∣∣∣F0,k

]}
= Ee

{
J̄D

k,n({e j : j = k, . . . ,n},F0,k)
}

Further,

max
{e j: j=k,...,n}∈E DF [k,n]

JD
k,n({e j : j = k, . . . ,n})

= Ee
{

max
{e j: j=k,...,n}∈E DF [k,n]

J̄k,n({e j : j = k, . . . ,n},F0,k)
}

(3.3.108)

Define the value function by

Vk(F0,k) = max
{e j: j=k,...,n}∈E DF [k,n]

J̄D
k,n({e j : j = k, . . . ,n},F0,k)

}
(3.3.109)

Next, we present the dynamic programming recursion satisfied by (3.3.109).

Theorem 3.14. Suppose there exists encoder strategies {e∗j : j = 0,1, . . . ,n} ∈ E DF [0,n] and

a function Vk(F0,k) which satisfies the dynamic programming recursion:

Vk(F0,k) = max
ek∈E DF [k,k]

Ee
{

log
(Pk(dBk;Bk−1,ek(Xk,Bk−1),Xk)

Pe
k (dBk;Bk−1)

)
+Vk+1(F0,k+1)|F0,k

}
, k = 0,1, . . . ,n−1 (3.3.110)

Vn(F0,n) =
∫
Bn

log
(Pn(dBn;Bn−1,en(Xn,Bn−1),Xn)

Pe
n (dBn;Bn−1)

)
Pn(dBn;Bn−1,en(Xn,Bn−1),Xn)

(3.3.111)Chri
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Then {e∗j : j = 0,1, . . . ,n} ∈ E DF [0,n] obtained from the solution of (3.3.110), (3.3.111) is

an optimal encoder strategy and

JD
0,n({e j}n

j=0) = E
{

V0(F0,0)
}

(3.3.112)

Proof. Follows from dynamic programming (see Peter Caines book [7]).

Remark 3.15. The dynamic programming recursion given in Theorem 3.14 is quite gen-

eral; no assumptions are introduced on the channel or the source. Theorem 3.14 simpli-

fies considerably if we assume Assumptions 3.7, 3.8, and then use Theorem 3.9(b), i.e.,

e j(xi,b j−1) = g j(xi,b j−1), j = 0,1, . . . ,n. For the unit memory channel of Corollary 3.11,

(3.3.110) and (3.3.111) become

Vk(xk,bk−1) = max
gM

k ∈E DMM [k,k]
EgM

{
log
(Pk(dBk;Bk−1,gM

k (Xk,Bk−1),Xk)

PgM

k (dBk;Bk−1)

)
+Vk+1(xk+1,bk)|Xk = xk,Bk−1 = bk−1

}
(3.3.113)

Vn(xn,bn−1) =
∫
Bn

log
(Pn(dBn;Bn−1,gM

n (Xn,Bn−1),Xn)

PgM
n (dBn;Bn−1)

)
Pn(dBn;Bn−1,gM

n (Xn,Bn−1),Xn)

(3.3.114)

Clearly, (3.3.113) and (3.3.114) are easy to compute. Similar recursions also hold for

E DM[0,n].

3.4 Structural Properties of Capacity Achieving Distribu-

tion

In this section, we address the following issue.

• Identify structural properties of capacity achieving input distribution, for channels

with memory and feedback.

Thus, this problem addresses the calculation of the capacity achieving distribution, when the

information capacity has an operational meaning.
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The problem is stated below.

Problem 3.16. (Achieving Information Capacity)

(a) Given an admissible set of source and channel input distributions defined by

−→
P 0,n(dxn,dan;bn−1)

4
=⊗n

i=0(Pi(dai;ai−1,xi,bi−1)⊗Pi(dxi;xi−1,bi−1,ai−1)) (3.4.115)

and the definition of information capacity over a finite horizon defined by

C0,n(P)
4
= sup
−→
P 0,n(dxn,dan;bn−1)∈P0,n(P)

I(Xn→ Bn) (3.4.116)

where, for a given power P > 0, the cost constraint is defined by

P0,n(P)
4
=
{−→

P 0,n(dxn,dan;bn−1) :
1

n+1
E
{ n

∑
j=0

e j(X j,A j−1,B j−1)
}
≤ P

}
(3.4.117)

find the structural properties of
−→
P 0,n(dxn,dan;bn−1) ∈P0,n(P) which achieves the infor-

mation capacity C0,n(P).

(b) Given an admissible set of channel input distributions {Pi(dai;ai−1,bi−1)∈K (Ai;A0,i−1

×B0,i−1) : i ∈ Nn}, and the definition of information capacity over a finite horizon defined

by

C0,n(P)
4
= sup
{Pi(dai;ai−1,bi−1):i=0,1,...,n}∈P0,n(P)

I(An→ Bn) (3.4.118)

where, for a given P > 0 the cost constraint is defined by

P0,n(P)
4
=
{
{Pi(dai;ai−1,bi−1) ∈K (Ai;A0,i−1×B0,i−1) : i = 0,1, . . . ,n} :

1
n+1

E
{ n

∑
j=0

e j(A j,B j−1)
}
≤ P

}
(3.4.119)

find the structural properties of input distribution which achieves the information capacity.

Similarly, the unconstraint information capacity is defined over the distributions
−→
P 0,n(dxn,

dan;bn−1) and {Pi(dai;ai−1,bi−1) : i = 0,1, . . . ,n}, respectively, and it is denoted by C0,n.

Remark 3.17. Note that (3.4.115) is only required in control applications since the source

{Xi = 0,1, . . . ,n} is affected by the channel outputs (or decoder), and encoder law. For
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communication applications it is assumed that (3.4.115) is replaced by

−→
P 0,n(dan,dbn;bn−1)

4
=⊗n

i=0(Pi(dai;ai−1,xi,bi−1)⊗Pi(dxi;xi−1)) (3.4.120)

If in addition, Pi(dai;ai−1,xi,bi−1) = Pi(dai;ai−1,bi−1)-a.a. (ai−1,xi,bi−1), i = 0,1, . . . ,n,

then (3.4.115) is replaced by (3.4.118).

We make the following comments regarding Problem 3.16. Problem 3.16.(a) with C0,∞(P)
4
=

liminfn→∞
1

n+1C0,n(P), together with coding theorems, implies that this quantity has an op-

erational meaning, hence C0,∞(P) is the supremum of all achievable rates. Therefore, our

interest is to identify the structural properties of the capacity achieving distribution. Simi-

larly, Problem 3.16.(b) identifies structural properties of the achieving input distribution, for

the case when the following MC holds.

X i↔ (Ai,Bi−1)↔ Bi, i = 0,1, . . . ,n

First we clarify certain issues concerning the proper information measures for addressing

capacity of channels with memory and feedback, which also apply to networks. Recall that

the mutual information between two random sequences Xn and Bn, denoted by I(Xn;Bn) is

a measure of average information the sequence Bn conveys to the sequence Xn. Since it is

symmetric then it is also a measure of average information the sequence Xn conveys to the

sequence Bn.

I(Xn;Bn)
4
= E

{
log

PBn|Xn(dbn|xn)

PXn(dxn)

}
≡ IXn;Bn(PXn,PBn|Xn)

= I(Xn→ Bn)+ I(Xn← Bn) (3.4.121)

= IXn;Bn
(
PXi|X i−1,Bi−1 ,PBi|Bi−1,X i : i = 0,1, . . . ,n

)
where the terms in (3.4.121) are given by (3.2.25), (3.2.26).
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The notation IXn;Bn(PXi|X i−1,Bi−1,PBi|Bi−1,X i : i = 0,1, . . . ,n) indicates the functional

dependence of the mutual information on the two sequences of stochastic Ker-

nels {PXi|X i−1,Bi−1,PBi|Bi−1,X i : i = 0,1, . . . ,n}, and the notation IXn;Bn(PXn , PBn|Xn)

its dependence on {(PXn , PBn|Xn}. The quantity I(Xn → Bn) represents the aver-

age information in the direction Xn → Bn (feedforward) via the sequence of chan-

nels {PBi|Bi−1,X i(dbi|bi−1,xi) : i = 0,1, . . . ,n} while I(Xn ← Bn) represents the aver-

age information in the direction Xn ← Bn (feedback) via the sequence of channels

{PXi|X i−1,Bi−1(dxi|xi−1,bi−1) : i = 0,1, . . . ,n}.

Therefore, it will be a mistake to use I(Xn;Bn) to define capacity of the channel connecting

Xn to Bn, unless some assumptions are introduced. We will explain this issue shortly.

Define the (n+1) convolution measures

−→
P 0,n(dbn;xn)

4
=⊗n

i=0Pi(dbi;bi−1,xi)≡⊗n
i=0PBi|Bi−1,X i(dbi|bi−1,xi)

←−
P 0,n(dxn;bn−1)

4
=⊗n

i=0Pi(dxi;xi−1,bi−1)≡⊗n
i=0PXi|X i−1,Bi−1(dxi|xi−1,bi−1)

Then,

I(Xn→ Bn) =
∫ (

log
−→
P 0,n(dyn;xn)

P0,n(dyn)

)−→
P 0,n(dbn;xn)⊗←−P 0,n(dxn;bn−1)

≡ IXn→Bn(
−→
P 0,n,

←−
P 0,n) (3.4.122)

Hence, if the source {Xi : i = 0,1, . . .} is affected by {Yi : i = 0,1, . . .}, only the directed

information expression (3.4.122) should be used to define capacity of the channel.

The next theorem helps clarify the implications of the Markov chain Bi−1 ↔ X i−1 ↔ Xi,

i = 0,1, . . . ,n, on various notions of information capacity for which operational meanings

can be sought, and often derived in the literature.

Theorem 3.18. The following statements are equivalent.

1. P0,n(dbn;xn) =
−→
P 0,n(dbn;xn), ∀ n ∈ N.

2. B j↔ (X j,B j−1)↔ Xn
j+1, ∀ j ∈ Nn−1, ∀n ∈ N.

3. I(Xn;Bn) = IXn;Bn
(
P0,n(dxn),

−→
P 0,n(dbn;xn)

)
.

4. I(Xn← Bn) = 0, ∀ n ∈ N.
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5. B j↔ X j↔ X j+1, ∀ j ∈ Nn−1.

6. Xn
j+1↔ X j↔ B j , ∀ j ∈ Nn−1, ∀ n ∈ N

Proof. The proof is similar to the proof of Lemma 2.21 (Appendix A.1).

Remark 3.19. Note that for any source-channels then Bi−1 ↔ X i−1 ↔ Xi, i = 0,1, . . . ,n,

forms a Markov chain if and only if I(Xn← Bn) = 0. Thus, under the Markov chain Bi−1→
X i−1→ Xi, i = 0,1, . . . ,n, the information capacity of channels with memory and feedback

can be defined via mutual information or directed information because of the following

identity.

I(Xn;Bn) = IXn;Bn
(
P0,n(dxn),

−→
P 0,n(dbn;xn)

)
(3.4.123)

= IXn→Bn(Pi(dxi;xi−1),Pi(dbi;bi−1,xi) : i = 0,1, . . . ,n) (3.4.124)

Actually (3.4.123), (3.4.124) are special cases of mutual and directed information, because

the joint distribution is obtained via the source P(dxn) and the channel
−→
P 0,n(dbn;xn).

We state the next assumption because it is often hidden on the definitions of capacity of

channels with memory and feedback.

Assumption 3.20. (Bi−1,Ai−1)↔X i−1↔Xi, i= 0,1, . . . ,n, equivalently, Pi(dxi;xi−1,bi−1,ai−1)

= Pi(dxi;xi−1)−a.a.(xi−1,bi−1,ai−1), i = 0,1, . . . ,n, ∀ n ∈ N.

Clearly, for an encoder Ai = ei(X i,Bi−1), i = 0,1, . . . ,n, any channel of the form Bi =

gi(X i,Bi−1,Ai) + fi(X i−1,Bi−1,Ai)Vi, i ∈ Nn, where {Vi : i ∈ Nn} is any noise such that

Pi(dxi;xi−1, vi−1) = Pi(dxi;xi−1), i = 0,1, . . . ,n, satisfies Assumption 3.20. For example,

a random process {Xi : i ∈Nn} defined via Xi+1 = f (X i,Bi,Wi), i ∈Nn, X0 a R.V., in which

{{Vi : i ∈ Nn},{Wi : i ∈ Nn},X0} are mutually independent satisfies Assumption 3.20.

Therefore, given a general channel with memory and feedback, which does not satisfy As-

sumption 3.20, the quantity which should be used to give operational meaning of capacity is

the information capacity I(Xn→ Bn).

Definition 3.21. The finite time information capacity is defined by

C1
0,n
4
= sup
−→
P 0,n(dxn,dan;bn−1)

I(Xn→ Bn) (3.4.125)
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The information capacity is defined by

C1
∞

4
= liminf

n→∞
sup

−→
P 0,n(dxn,dan;bn−1)

1
n+1

I(Xn→ Bn) (3.4.126)

Similarly for C1
0,n(P), C1

∞(P).

If Assumption.3.20 holds, then in (3.4.125), (3.4.126) the directed information is equal to the

mutual information, i.e., I(Xn → Bn) = I(Xn;Bn) ≡ IXn→Bn(P(dxi;xi−1), Pi(dbi; bi−1,xi) :

i = 0,1, . . . ,n).

The classical paper by Pombra and Cover [19], utilizes a special form of (3.4.125)

and (3.4.126), with directed information replaced by mutual information, to

find the capacity of Gaussian channels with memory and feedback, which sat-

isfy Assumption 3.20, because I(Xn;Bn) = I(Xn → Bn)
4
= ∑

n
i=0 I(X i;Bi|Bi−1)

= IXn→Bn(Pi(dxi;xi−1),Pi(dbi;bi−1,xi) : i = 0,1, . . . ,n).

Next, we recall a fundamental inequality of mutual information, which is often used together

with Fano’s inequality [28] to derive upper bounds on the information capacity using the

converse coding theorem. Let X ,Y,Z be real-valued RV’s and Z a measurable function of Y ,

defined by Z = f (Y ). Then

I(X ;Y )≥ I(X ;Z), Z = f (Y ) (3.4.127)

and if f (.) is a bijection and the inverse f−1(.) is also measurable, then the equality holds in

(3.4.127). Using (3.4.127) for an encoder structure Ai = ēi(Ai−1,X i,Bi−1)= ei(X i,Bi−1), i=
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0,1, . . . ,n, then

I(Xn→ Bn) =
n

∑
i=0

I(X i;Bi|Bi−1) (3.4.128)

=
n

∑
i=0

{
H(Bi|Bi−1)−H(Bi|Bi−1,X i)

}
(3.4.129)

=
n

∑
i=0

{
H(Bi|Bi−1)−H(Bi|Bi−1,X i,Ai)

}
(3.4.130)

=
n

∑
i=0

I(X i,Ai;Bi|Bi−1) (3.4.131)

=
n

∑
i=0

I(X i;Bi|Bi−1,Ai)+
n

∑
i=0

I(Ai;Bi|Bi−1) (3.4.132)

(α)
=

n

∑
i=0

I(Ai;Bi|Bi−1) (3.4.133)

= I(An→ Bn) (3.4.134)

and (α) holds if ei(.,Bi−1) is a bijection and the inverse e−1
i (.,Bi−1) is measurable ∀i ∈ Nn.

Note that if the encoder is constructed based on a measurable function of the error, i.e.,

Ai = ei(X i−σ(Bi−1)) and ei(.,σ(Bi−1)) is a bijection and its inverse measurable, then the

equality holds.

Remark 3.22. For a source P(dxi;xi−1,ai,bi−1), i= 0,1, . . . ,n, a channel P(dbi;bi−1,ai,xi),

i = 0,1, . . . ,n, by Theorem 2.24, if the MC X i↔ (Ai,Bi−1)↔ Bi, i = 0,1, . . . ,n, holds, then

I(Xn→ Bn)≤ I(An→ Bn) (3.4.135)

Moreover, if Ai = ei(X i,Bi−1), ei(.) is measurable, and ei(.,Bi−1) is a bijection, and e−1
i (.,Bi−1)

is measurable, for i = 0,1, . . . ,n, then

I(Xn→ Bn) = I(An→ Bn) (3.4.136)

Remark 3.23. Under Assumption 3.20, in the case of no feedback, Ai = gi(X i) in Defini-

tion 3.21 the supremum is replaced by P0,n(dxn,dan). Since by Theorem 2.24, under the MC

X i↔ (Ai,Bi−1)↔ Bi, I(Xn;Bn) = I(Xn→ Bn)≤ I(An→ Bn), a possible choice of achieving

equality in I(Xn;Bn) = I(An → Bn) is Xi = Ai, i = 0,1, . . . ,n, and consequently the supre-

mum over P0,n(dxn,dan) ∈M1(X0,n×A0,n) reduces to the supremum over An ∈M1(A0,n)

of I(An;Bn) = I(An→ Bn) = I(Xn→ Bn) = I(Xn;Bn).
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Next, we describe the case when the operational capacity is defined via I(An → Bn) (i.e.,

from the channel input to the channel output).

Assumption 3.24. X i↔ (Bi−1,Ai)↔ Bi is a MC, equivalently Pi(dbi;bi−1,ai,xi) = Pi(dbi;

bi−1,ai), a.a. xi,ai,bi−1 for i = 0,1, . . . ,n, ∀n ∈ N.

Note, that any channel of the form Bi = fi(Bi−1,Ai,Vi), i = 0,1, . . . and encoder of the form

{Ai = ei(Ai−1,X i,Bi−1) : i = 0,1, . . .} ∈ E DF [0,n] for which {Vi : i = 0,1, . . .} is independent

of {X i : i = 0,1, . . .}, satisfies Assumption 3.24. However, if {Vi : i = 0,1, . . .} is correlated

with {X i : i= 0,1, . . .} then assumption 3.24 might fail, and capacity cannot be defined using

I(An→ Bn).

Next, we relate directed information I(Xn→ Bn) to I(An→ Bn). Under Assumption 3.24,

given an encoder strategy {Ai = ei(X i,Ai−1,Bi−1) : i = 0,1, . . . ,n} ∈ E DF [0,n], then

I(Xn→ Bn) =
n

∑
i=0

I(X i;Bi|Bi−1)

=
n

∑
i=0

E
{

log
(

Pi(dBi;Bi−1,X i)

Pi(dBi;Bi−1)

)}
=

n

∑
i=0

E
{

log
(

Pi(dBi;Bi−1,X i,Ai)

Pi(dBi;Bi−1)

)}
=

n

∑
i=0

I(X i,Ai;Bi|Bi−1)
∣∣
Ai=ei(Ai−1,X i,Bi−1)

(a)
=

n

∑
i=0

E
{

log
(

Pi(dBi;Bi−1,Ai)

Pi(dBi;Bi−1)

)}
(b)
= I(An→ Bn) (3.4.137)

where (a) holds due to Assumption 3.24 and (b) follows by definition. The sequence of

equations leading to equation (3.4.137) demonstrates the assumptions required so that in-

formation capacity can be defined using the channel input and the channel Kernel, indepen-

dently of the source output.

Definition 3.25. Suppose Assumption 3.24 hold. The finite time information capacity is

defined by

C2
0,n = sup

{Pi(dai;ai−1,bi−1)∈K (Ai;A0,i−1×B0,i−1):i=0,1,...,n}
I(An→ Bn)
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Moreover, the information capacity is defined by

C2
∞ = liminf

n→∞
sup

{Pi(dai;ai−1,bi−1)∈K (Ai;A0,i−1×B0,i−1):i=0,1,...,n}

1
n+1

I(An→ Bn)

Similarly for C2
0,n(P), C2

∞(P).

A coding theorem for C2
∞ of Definition 3.25 is derived in [75]. The source coding theorem

states that if the source entropy per unit time is less than the channel capacity per unit time,

then the error probability can be arbitrary small using encoding and decoding. The converse

states that if the source entropy is greater than the capacity, arbitrary small probability of

error cannot be achieved. Next we prove the converse coding theorem, which is analogous

to those found in literature, without feedback.

Consider a source {Xi : i ∈ Nk} of length k+ 1 connected to a decoder over a sequence of

n+1 channel outputs {Bi : i ∈Nn}, n≥ k. The next theorem relates the k+1 source outputs

and n+ 1 channel outputs to the time interval between each source letter, τs and the time

interval between each channel letter τc.

Theorem 3.26. Consider a source {Xi : i ∈ Nk} and its reproduction {Yi : i ∈ Nk} having

finite alphabet of cardinality M. Define the error at the jth transmission j ∈ Nk by

P(k)
e, j
4
= Prob(Yj 6= X j)

and the average probability of error

P(k)
e
4
=

1
k+1

k

∑
j=0

P(k)
e, j (3.4.138)

Assume

1. For k ≤ n, Xi↔ (X i−1,Bn)↔ Y k, i = 0,1, . . . ,k.

2. For k ≤ n, Xk↔ (Ai,Bi−1)↔ Bi, i = 0,1, . . . ,n.

3. The source produces letter at a rate of one letter each τs seconds, and the channel has

capacity C2
∞ and it is used at a rate of one letter each τc seconds.Chri
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If the source sequence is connected to the decoder through (n+1) channel uses, where

n+1 =
⌊(k+1)τs

τc

⌋
then for any length (k+1), the average error probability P(k)

e satisfies

P(k)
e log(M−1)+H(Pk

e )≥ limsup
k→∞

1
k+1

H(Xk)− τs

τc
C2

∞ (3.4.139)

Proof. The following inequalities hold

P(k)
e log(M−1)+H(P(k)

e )
(a)
≥ 1

k+1
H(Xk|Y k)

(b)
=

1
k+1

H(Xk)− 1
k+1

I(Xk;Y k)

(c)
≥ 1

k+1
H(Xk)− 1

k+1
I(Xk;Bn)

(d)
≥ 1

k+1
H(Xk)− τc

τs(k+1)
τs

τc
I(An→ Bn)

where (a) follows from Theorem 4.3.2, of Gallager [28], (b) is an identity, (c) follows from

1. and in view of Theorem 2.24.2, finally (d) follows from 3., in view of Theorem 2.24.2.

Taking the liminf and limsup retains the above identity.

The above inequality shows that no matter what coding is done, the average probability of

error per source symbol must satisfy (3.4.139). This average probability of error is bounded

away from zero if

limsup
k→∞

1
k+1

H(Xk)>
τs

τc
C2

∞

Remark 3.27. Note that SbS transmission Theorem 3.26 corresponds to n = k and the MC1

is replaced by Y i−1↔ (Bi−1,X i−1)↔ Xi, i = 0,1, . . . ,n, (i.e. such as in controlled sources),

so converse to coding theorem holds. However, one should show achievability of C1
∞, C2

∞

as well without imposing this MC. This will be done using SbS transmission, based on the

duality to Theorem 2.29.

A simplified information definition is obtained by invoking the following assumption.
Chri

sto
s K

. K
ou

rte
lla

ris



Chapter 3. Structural Properties of Extremum Problems of Capacity 106

Assumption 3.28. Ai−1 ↔ (Ai,Bi−1)↔ Bi, i = 0,1, . . . ,n, equivalently Pi(dbi;bi−1,ai) =

Pi(dbi;bi−1,ai), i = 0,1, . . . ,n, ∀n ∈ N.

Assumption 3.28 is the analogue of the one used in Theorem 3.9, to derive structural encoder

properties.

Lemma 3.29. Suppose Assumption 3.28 holds.

Then

I(Ai;Bi|Bi−1) = I(Ai;Bi|Bi−1) = E
{

log
Pi(dBi;Bi−1,Ai)

Pi(dBi;Bi−1)

}
, ∀ i ∈ N (3.4.140)

and

n

∑
i=0

I(Ai;Bi|Bi−1) =
n

∑
i=0

I(Ai;Bi|Bi−1), ∀ n ∈ N (3.4.141)

Proof. This is a direct consequence of the Assumption 3.28.

Definition 3.30. Suppose Assumptions 3.24 and 3.28 hold. The finite time information

capacity is defined by

C3
0,n = sup

{Pi(dai;ai−1,bi−1)∈K (Ai;A0,i−1×B0,i−1):i=0,1,...,n}

n

∑
i=0

I(Ai;Bi|Bi−1) (3.4.142)

The information capacity is defined by

C3
∞ = liminf

n→∞
sup

{Pi(dai;ai−1,bi−1)∈K (Ai;A0,i−1×B0,i−1):i=0,1,...,n}

1
n+1

n

∑
i=0

I(Ai;Bi|Bi−1)(3.4.143)

Similarly for C3
0,n(P), C3

∞(P).

Next, we prove the structural form of the capacity achieving distribution for C3
0,n.

Theorem 3.31. Suppose Assumptions 3.24 and 3.28 hold.

Then

I(An→ Bn) =
n

∑
i=0

I(Ai;Bi|Bi−1)≡
n

∑
i=0

E
{

log
(

Pi(dBi;Ai,Bi−1)

Pi(dBi;Bi−1)

)}
, ∀ n ∈ Nn (3.4.144)Chri
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The sequence of optimal conditional distributions {Pi(dai;ai−1,bi−1)∈K (Ai;A0,i−1×B0,i−1) :

i = 0,1, . . . ,n} that maximize (3.4.144) (assuming they exist) have the form

P∗i (dai;ai−1,bi−1) = π
∗
i (dai;bi−1)− a.a. (ai−1,bi−1), i = 0,1, . . . ,n (3.4.145)

and

C3
0,n = max

{Pi(dai;ai−1,bi−1)∈K (Ai;A0,i−1×B0,i−1):i=0,1,...,n}

n

∑
i=0

E
{

log
(

Pi(dBi;Bi−1,Ai)

Pi(dBi;Bi−1)

)}
= max

{Pi(dai;bi−1)∈K (Ai;B0,i−1):i=0,1,...,n}

n

∑
i=0

E
{

log
(

Pi(dBi;Bi−1,Ai)

Pi(dBi;Bi−1)

)}
(3.4.146)

Proof. The equality in (3.4.144) follows from Assumptions 3.24 and 3.28. Note that the

right side of (3.4.144) depends on the channel, and the conditional distribution {Pi(dbi;bi−1) :

i = 0,1, . . . ,n}. Define πi(dai;bi−1)
4
= Pi(dai;bi−1), i = 0,1, . . . ,n. Then,

Pi(dbi;bi−1) =
∫
Ai

Pi(dbi;ai,bi−1)Pi(dai;bi−1)

≡
∫
Ai

Pi(dbi;ai,bi−1)πi(dai;bi−1),

≡ Pπi
i (dbi;bi−1) i = 0,1, . . . ,n (3.4.147)

where the superscript in (3.4.147) inficates the dependence of Pi(dbi;bi−1) on πi(dai;bi−1),

i = 0,1, . . . ,n. For a fixed Bi−1 = bi−1, {Pi(dbi;bi−1) ≡ Pπi
i (dbi;bi−1) : i = 0,1, . . . ,n} is

the controlled process controlled by the input distribution {Pi(dai;bi−1)≡ πi(dai;bi−1) : i =

0,1, . . . ,n}, the control process. Thus, {Pπi
i (dbi;bi−1) : i = 0,1, . . . ,n} is the state of the

system controlled by {πi(dai;bi−1) : i = 0,1, . . . ,n}. By (3.4.147), we have

E
{ n

∑
i=0

log
(

Pi(dBi;Bi−1,Ai)

Pi(dBi;Bi−1)

)}
= E

{ n

∑
i=0

E
(

log
Pi(dBi;Bi−1,Ai)

Pi(dBi;Bi−1)

∣∣∣∣Bi−1,Ai,πi(dAi;Bi−1),{Pj(dA j;A j−1,B j−1) : j = 0, . . . , i}
)}

(α)
= E

{ n

∑
i=0

E
(

log
Pi(dBi;Bi−1,Ai)

Pi(dBi;Bi−1)

∣∣∣∣Bi−1,Ai,πi(dAi;Bi−1)

)}
= E

{ n

∑
i=0

`
(

Bi−1,Ai,Pπ
i (dAi;Bi−1),πi(dAi;Bi−1)

)}
(3.4.148)

where the equality (α) follows from Assumption 3.28. Since Pi(dbi;bi−1) depends on bi−1

and the control process πi(dai;bi−1). Then, the maximization of (3.4.148) over {Pi(dai;ai−1,

bi−1) : i= 0,1, . . . ,n} is equivalent to that over the smaller set {πi(dai;bi−1)∈K (Ai;B0,i−1) :
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i = 0,1, . . . ,n}. This maximization is done by choosing {πi(dai;bi−1) : i = 0,1, . . . ,n} to

control {Pπ
i (dbi;bi−1) : i = 0,1, . . . ,n}, which depend on bi−1 and the control distribu-

tion πi(dai;bi−1), hence the maximizing distribution has the form {P∗i (dai;ai−1,bi−1) =

π∗i (dai;bi−1) : i = 0,1, . . . ,n}. This completes the derivation

Next we make some observations concerning the statements of Theorem 3.31.

Remark 3.32. The following statements are consequences of Theorem thccach and Theo-

rem 3.31.

1. By Theorem 3.31 (under Assumptions 3.24, 3.28) we deduce that the class of capacity

achieving distributions has the following conditional independence property.

Pi(dai,ai−1,bi−1) = πi(dai;bi−1)−a.a.(ai−1,bi−1), i = 0, . . . ,n

2. By Theorem 3.9 (under Assumptions 3.7, 3.8), we have the following identities.

sup
e∈E DF [0,n]

I(Xn→ Bn)
(α)
= sup

g∈E DM [0,n]

n

∑
i=0

Eg
{

log
Pi(dBi;Bi−1,Xi,gi(Xi,Bi−1))

Pi(dBi;Bi−1)

}
(3.4.149)

(β )
= sup

g∈E DM [0,n]

n

∑
i=0

I(Xi,Ai;Bi|Bi−1)
∣∣∣
Ai=gi(Xi,Bi−1)

(3.4.150)

(γ)
= sup

g∈E DM [0,n]

n

∑
i=0

I(Ai;Bi|Bi−1)
∣∣∣
Ai=gi(Xi,Bi−1)

(3.4.151)

(δ )
= sup
{πi(dai;bi−1)∈K (Ai;B0,i−1):i=0,...,n}

n

∑
i=0

I(Ai;Bi|Bi−1) (3.4.152)

(ε)
= sup
{πi(dai;bi−1)∈K (Ai;B0,i−1):i=0,...,n}

n

∑
i=0

Eπ

{
log

Pi(dBi;Bi−1,Ai)

Pπ
i (dBi;Bi−1)

}
(3.4.153)

(ζ )
= sup
{πi(dai;ai−1,bi−1)∈K (Ai;A0,i−1×B0,i−1):i=0,...,n}

n

∑
i=0

I(Ai;Bi|Bi−1)

(3.4.154)

where

(α) follows from Theorem 3.9.

(β ) follows from Theorem 3.9.

(γ) holds if the MC, X i↔ (Bi−1,Ai)↔Bi (Assumption 3.24), is satisfied, or gi(.,bi−1)

is one-to-one and onto measurable, and its inverse also measurable, i = 0,1, . . . ,n,
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because by the chain rule

I(Xi,Ai;Bi|Bi−1)
∣∣∣
Ai=gi(Xi,Bi−1)

= I(Xi;Bi|Bi−1,Ai)
∣∣∣
Ai=gi(Xi,Bi−1)

+ I(Ai;Bi|Bi−1),

i = 0,1, . . . ,n

the first right hand side term is zero if Ai = gi(Xi,Bi−1) has the stated property.

(δ ) follows from the fact that randomized strategies do not incur a higher pay-off (the

information structures are classical).

(ε) and (ζ ) are the statements of Theorem 3.31.

3. By Corollary 3.11 and statement 2 above, for the unit memory channel defined by

Pi(dbi;bi−1,xi,ai) = Pi(dbi;bi−1,ai)−a.a.(bi−1,xi,ai), i = 0, . . . ,n (3.4.155)

we deduce the following equalities.

sup
g∈E DM [0,n]

I(Xn→ Bn)
(α)
= sup

gM∈E DMM [0,n]

n

∑
i=0

I(Xi,Ai;Bi|Bi−1)

(β )
= sup

gM∈E DMM [0,n]

n

∑
i=0

I(Ai;Bi|Bi−1)
∣∣∣
Ai=gM

i (Xi,Bi−1)

(γ)
= sup
{πM(dai;bi−1)∈K (Ai;Bi−1):i=0,...,n}

n

∑
i=0

I(Ai;Bi|Bi−1)

(δ )
= sup
{π(dai;bi−1)∈K (Ai;B0,i−1):i=0,...,n}

n

∑
i=0

I(Ai;Bi|Bi−1)

where (α),(β ) follows from Theorem 3.9, (γ) follows from the fact that maximizing over

randomized strategies yields the same pay-off, and (δ ) is the equivalent of (α).

This property of capacity achieving distribution, that is,

Pi(dbi;bi−1) = Pi(dbi;bi−1)−a.a. bi−1, i = 0,1, . . . ,n (3.4.156)

Pi(dai;ai−1,bi−1) = π
M
i (dai;bi−1)−a.a. (ai−1,bi−1), i = 0,1, . . . ,n (3.4.157)

is first addressed in Shannon Lecture [6] using mutual information as the information mea-

sure. In our opinion this is the first complete derivation of properties (3.4.156) and (3.4.157)

using directed information. Recently the authors in [58] consider a special case of the unit

memory channel, with binary input and output alphabets, which breaks into the S-channel
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and the Z-channel and derived (3.4.156)-(3.4.157) using existing capacity results of the S-

channel and the Z-channel.

Next we provide an independent derivation of the structural properties of the unit memory

channel, which is the analogue of Corollary 3.11. We shall make use of the variational

equality of directed information derived in [10].

Given the general causal conditioned distribution
−→
P 0,n(dbn|an) = ⊗n

i=0Pi(dbi;bi−1,ai) and
←−
P 0,n(dan|bn−1) = ⊗n

i=0Pi(dai;ai−1,bi−1), the joint measure P(dan,dbn) = (
−→
P 0,n⊗

←−
P 0,n)

(dan,dbn) and the marginal measure P0,n(dbn) =
∫
A0,n

(
−→
P 0,n⊗

←−
P 0,n)(dan,dbn), then the

following variational equality holds

I(An→ Bn)
4
=
∫
A0,n×B0,n

log

(−→
P 0,n(dbn|an)

P0,n(dbn)

)
(
−→
P 0,n⊗

←−
P 0,n)(dan,dbn)

= inf
ν0,n(dbn)∈M1(B0,n)

∫
A0,n×B0,n

log

(−→
P 0,n(dbn|an)

ν0,n(dbn)

)
(
−→
P 0,n⊗

←−
P 0,n)(dan,dbn)

where the infimum is achieved at

ν0,n(dbn) =
∫
A0,n

(
−→
P 0,n⊗

←−
P 0,n)(dan,dbn)≡ P0,n(dbn)

Corollary 3.33. Suppose the following holds

Pi(dbi;bi−1,ai,xi) = Pi(dbi;bi−1,ai)−a.a. (bi−1,ai,xi), i = 0,1, . . . ,n (3.4.158)

Define the policies E RMM[0,n] by

E RMM[0,n]
4
=
{

π(dai;bi−1) ∈K (Ai;B0,i−1) : π(dai;bi−1) = π
M(dai;bi−1)−a.a.

bi−1, i = 0,1, . . . ,n
}
⊆ E RM[0,n]

4
=
{

Pi(dai;bi−1) ∈K (Ai;B0,i−1) :

i = 0,1, . . . ,n
}

Then the optimal capacity achieving channel input distribution {Pi(dai;ai−1,bi−1)∈K (Ai;

A0,i−1×B0,i−1) : i = 0,1, . . . ,n} maximizing I(An→ Bn) has the following form

Pi(dai;ai−1,bi−1) = πi(dai;bi−1) = π
M
i (dai;bi−1)−a.a. (ai−1,bi−1), i = 0,1, . . . ,n (3.4.159)Chri
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and

sup
Pi(dai;ai−1,bi−1)∈K (Ai;A0,i−1×B0,i−1)

I(An→ Bn)

= sup
π∈E RM [0,n]

n

∑
i=0

E
{

log
(

Pi(dBi;Bi−1,Ai)

Pπ
i (dBi;Bi−1)

)}
(3.4.160)

= sup
πM∈E RMM [0,n]

n

∑
i=0

E

{
log

(
Pi(dBi;Bi−1,Ai)

PπM

i (dBi;Bi−1)

)}
(3.4.161)

= sup
πM∈E RMM [0,n]

n

∑
i=0

I(Ai;Bi|Bi−1) (3.4.162)

where

Pπ
i (dbi;bi−1) =

∫
Ai

Pi(dbi;bi−1,ai)πi(dai;bi−1), i = 0,1, . . . ,n (3.4.163)

PπM

i (dbi;bi−1) =
∫
Ai

Pi(dbi;bi−1,ai)π
M
i (dai;bi−1), i = 0,1, . . . ,n (3.4.164)

and the resulting process {Bi : i = 0,1, . . . ,n} which achieves the supremum, is a first order

Markov process.

Proof. By Theorem 3.31, since E RMM[0,n]⊆ E RM, then

sup
πM∈E RMM [0,n]

n

∑
i=0

I(Ai;Bi|Bi−1)≡ sup
πM∈E RMM [0,n]

n

∑
i=0

∫
log

(
Pi(dbi;bi−1,ai)

PπM

i (dbi;bi−1)

)
PπM

i (dbi,dbi−1,dai)

≤ sup
π∈E RM [0,n]

n

∑
i=0

∫
log
(

Pi(dbi;bi−1,ai)

Pπ
i (dbi;bi−1)

)
Pπ

i (dbi,dbi−1,dai)

≡ sup
π∈E RM [0,n]

n

∑
i=0

I(Ai;Bi|Bi−1) (3.4.165)

where {(Pπ
i (dbi;bi−1),PπM

i (dbi;bi−1)) : i = 0, . . . ,n}; they are induced by the channel and

{πi(dai;bi−1),πM
i (dbi;bi−1) : i = 0, . . . ,n} . Next, we show that the right hand side of

(3.4.165) is bounded above as follows.

sup
π∈E RM [0,n]

n

∑
i=0

I(Ai;Bi|Bi−1)≤ sup
πM∈E RMM [0,n]

n

∑
i=0

I(Ai;Bi|Bi−1) (3.4.166)Chri
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Using the variational equality, for policies π ∈ E RM[0,n], we have

sup
π∈E RM [0,n]

n

∑
i=0

I(Ai;Bi|Bi−1)

= sup
π∈E RM [0,n]

inf
ν0,n(dbn)∈M1(B0,n)

∫
A0,n×B0,n

log

(−→
P 0,n(dbn|an)

ν0,n(dbn)

)
Pπ(dan,dbn)

where Pπ(dan,dbn) is the one defined by the channel satisfying (3.4.158), π ∈ E RM[0,n],

and ν0,n(dbn) ∈M1(B0,n) is any arbitrary distribution. Consequently, since ν0,n(dbn) is

arbitrary, we take the one induced by

ν0,n(dbn) =⊗n
i=0ν

πM

i (dbi;bi−1)≡ ν
πM

0,n (dbn) (3.4.167)

ν
πM

i (dbi;bi−1) =
∫
Ai

Pi(dbi;bi−1,ai)π
M
i (dai;bi−1), i = 0,1, . . . ,n (3.4.168)

to obtain the upper bound

sup
π∈E RM [0,n]

n

∑
i=0

I(Ai;Bi|Bi−1)
(α)
≤ sup

π∈E RM [0,n]

∫
log

( −→
P 0,n(dbn|an)

νπM

i (dbi;bi−1)

)
Pπ(dan,dbn)

(β )
= sup

πM∈E RMM [0,n]

∫
log

( −→
P 0,n(dbn|an)

PπM

i (dbi;bi−1)

)
PπM

i (dbi,dbi−1,dai)

(3.4.169)

where the equality in (β ) follows since νπM

i (dbi;bi−1) is a Markov process conditioned on

{bi−1,π
M
i (dai;bi−1)}. Combining (3.4.165) and (3.4.169) we deduce that the supπ∈E RM ∑

n
i=0

I(Ai;Bi|Bi−1) is achieved in πM ∈E RMM, which implies (3.4.159) and the identities (3.4.160)-

(3.4.162). This completes the proof.

Remark 3.34. We make the following observation regarding Theorem 3.31.

1. Suppose Assumption 3.28 is replaced by the following MC.

Ai−2↔ (Ai−1,Ai,Bi−1)↔ Bi, i = 0,1, . . . ,n, n ∈ N (3.4.170)Chri
sto
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Then under the Assumptions 3.24, and validity of (3.4.170) we have

I(An→ Bn) =
n

∑
i=0

I(Ai,Ai−1;Bi|Bi−1), ∀n ∈ N

= E
{

log
Pi(dBi;Bi−1,Ai,Ai−1)

Pi(dBi;Bi−1)

}
(3.4.171)

Moreover,

Pi(dbi;bi−1) =
∫
Ai×Ai−1

Pi(dbi;ai,ai−1,bi−1)Pi(dai;ai−1,bi−1)Pi−1(dai−1;bi−1)

≡
∫
Ai×Ai−1

Pi(dbi;ai,ai−1,bi−1)πi(dai;ai−1,bi−1)πi−1(dai−1;bi−1)

≡ Pπi,πi−1
i (dbi;bi−1), i = 0,1, . . . ,n (3.4.172)

Then, the derivation of Theorem 3.31 with (3.4.140) replaced by (3.4.171) is repeated,

and we have the following generalization

sup
{Pi(dai;ai−1,bi−1)∈K (Ai;A0,i−1×B0,i−1):i=0,1,...,n}

n

∑
i=0

E
{

log
(

Pi(dBi;Bi−1,Ai,Ai−1)

Pi(dBi;Bi−1)

)}
= sup
{Pi(dai;ai−1,bi−1)∈K (Ai;Ai−1×B0,i−1):i=0,1,...,n}{ n

∑
i=0

E
{

log
(

Pi(dBi;Bi−1,Ai,Ai−1)

Pi(dBi;Bi−1)

)}}

Moreover one can also define ā=(ai,ai−1) so that the optimization is over {Pi(dāi;bi−1) :

i = 0,1, . . . ,n}.

2. The above conclusion also holds for channels satisfying the MC

Ai−m−1↔ (Ai−m, . . . ,Ai−1,Ai,Bi−1)↔ Bi, i = 0,1, . . . ,n, n ∈ N

and optimizing I(An→Bn)=∑
n
i=0 I(Ai

i−m;Bi|Bi−1) over Pi(dai,ai−1;bi−1) : i= 0,1, . . . ,n

is the same as that over {Pi(dai;ai−1
i−m,b

i−1) : i = 0,1, . . . ,n}. Indeed, several conclu-

sions hold if the channel has limited memory of the form

Pi(dbi;bi−1,bi−2, . . . ,bi−k,ai,ai−1, . . . ,ai−m), k ∈ {1,2, . . . ,K}, m ∈ {0,1, . . . ,M}

3. The main point to be made here is that the {Pi(dbi;bi−1) : i = 0,1, . . . ,n} is the con-

trolled process and {Pi(dai;ai−1,bi−1) : i = 0,1, . . . ,n} is the control process.
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4. The structural properties of channel input distribution which maximize information

capacity also hold for information capacity with transmission cost constraints defined

by

P0,n(P)
4
=
{

Pi(dai;ai−1,bi−1) ∈K (Ai;A0,i−1×B0,i−1) : i = 0,1, . . . ,n :

1
n+1

E

{
n

∑
j=0

ei(a j,b j−1)

}
≤ P

}

provided the following condition holds.

• Condition 1.

If for every F ∈ B(Bi), the channel Pi(F ; ., .) is B(Ii)-measurable then ei(., .) is also

B(Ii)-measurable for i = 0,1, . . . ,n.

For example Condition 1 holds if the channel satisfies

Pi(dbi;bi−1,ai,xi) = Pi(dbi;bi−1,ai,ai−1)−a.a. (bi−1,ai,xi), i = 0,1, . . . ,n

and the cost function is

ei(ai,bi−1) = ē(ai,ai−1,bi−1), i = 0,1, . . . ,n

Remark 3.35. Theorem 3.31 can be generalized to channels of the form

Pj(db j;b j−1,x j,a j) = Pj(db j;b j−1,a j−k,a j−k+1, . . . ,a j)− a.a. (x j,b j−1,a j), j = 0,1, . . . ,n

and even to channels which also depend on {xi : i = 0, . . . ,n}.

Theorem 3.31 gives as a special case the results stated in [6, 18] for the unit memory channel

defined by

Pj(db j;b j−1,x j,a j) = Pj(db j;b j−1,a j)− a.a. (x j,b j−1,a j), j = 0,1, . . . ,nChri
sto
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3.5 Equivalence of Encoder Design and Capacity Achiev-

ing Distributions

In this section, we put together the structural properties of extremum problems of design-

ing encoders and finding the capacity achieving distribution to show that these optimization

problems are equivalent. Therefore, one does not need to treat these problems separately,

but rather one can indeed synthesize JSCC and source-channel matching based on nonantic-

ipative transmission.

Here, we consider the special case when the information capacity is defined via C3
0,n and we

show how to design encoders so that directed information including the encoder but not the

decoder, is precisely equal to C3
0,n, and it is achievable via SbS code.

The results of this section are valid under the following assumption.

Assumption 3.36. Assumption 3.7 holds and assumption 3.8 is replaced by

Pj(db j;b j−1,a j,x j) = Pj(db j;b j−1,a j)−a.a. (b j−1,a j,x j) : j = 0,1, . . . ,n

(3.5.173)

Remark 3.37. The reason we consider the source given by Assumption 3.7 instead of

Pj(dx j;x j−1,a j−1,b j−1) = Pj(dx j;x j−1)−a.a.(x j−1,a j−1,b j−1) : j = 0,1, . . . ,n

is to allow controlled sources as well, hence we do not impose Assumption 3.20. Condi-

tion (3.5.173) implies that the information capacity is that of Definition 3.30.

We state the following corollary of Theorem 3.9.

Theorem 3.38. Under Assumption 3.36 for any encoder from the class E DF [0,n] we have

sup
e∈E DF [0,n]

I(Xn→ Bn)
4
= sup

e∈E DF [0,n]

n

∑
i=0

Ee

{
log

(
Pe

Bi|Bi−1,X i(dBi|Bi−1,X i)

Pe
Bi|Bi−1(dBi|Bi−1)

)}
(3.5.174)

= sup
g∈E DM [0,n]

n

∑
i=0

I(Ai;Bi|Bi−1)|Ai=gi(Xi,Bi−1) (3.5.175)
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Proof. The following identities hold.

I(Xn→ Bn) =
n

∑
i=0

Ee
{

log
(

Pi(dBi|Bi−1,X i)

Pi(dBi|Bi−1)

)}
=

n

∑
i=0

Ee

{
log
(

Pi(dBi|Bi−1,X i,Ai)

Pi(dBi|Bi−1)

)∣∣∣∣
A j=e j(X j,B j−1): j=0,1,...,i

}

=
n

∑
i=0

Eg

{
log
(

Pi(dBi;Bi−1,Ai

Pi(dBi|Bi−1)

)∣∣∣∣
Ai=gi(Xi,Bi−1)

}
(3.5.176)

=
n

∑
i=0

I(Ai;Bi|Bi−1) (3.5.177)

where (3.5.176) follows from the MC of Assumption 3.36. Therefore, by Theorem 3.9 max-

imizing I(Xn→ Bn) over E DF [0,n] is equivalent to maximizing ∑
n
i=0 I(gi(Xi,Bi−1);Bi|Bi−1)

over E DM[0,n], and (3.5.175) is obtained .

By the MC of Assumption 3.36, and the structural properties of the channel input distri-

butions {Pi(dai;ai−1,bi−1) ∈K (Ai;A0,i−1×B0,i−1) : i = 0,1, . . . ,n} which maximize di-

rected information I(An → Bn), we derive a converse coding theorem to identify a tight

upper bound for which an operational meaning will be saught, which is compatible to the

expression (3.5.175).

Then, we show equivalence between the problem of computing capacity and the problem of

designing the capacity achieving encoder.

Theorem 3.39. Suppose Assumptions 3.36 hold.

1. Any achievable rate R satisfies

R≤ liminf
n→∞

1
n

logMn

≤ liminf
n→∞

sup
{Pi(dai;ai−1,bi−1)∈K (Ai;A0,i−1×B0,i−1):i=0,1,...,n−1}

1
n

C3
0,n−1 (3.5.178)

= liminf
n→∞

sup
{Pi(dai;bi−1)∈K (Ai;B0,i−1):i=0,1,...,n−1}

1
n

n−1

∑
i=0

I(Ai;Bi|Bi−1)≡C3
∞ (3.5.179)Chri
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2. The encoder design and the calculation of capacity are related by

sup
g∈E DM [0,n]

1
n

n−1

∑
i=0

I(Ai;Bi|Bi−1)|Ai=gi(Xi,Bi−1)

= sup
{Pi(dai;bi−1)∈K (Ai;B0,i−1):i=0,1,...,n−1}

1
n

n−1

∑
i=0

I(Ai;Bi|Bi−1) (3.5.180)

where {Xi : i = 0,1, . . . ,n−1} is a jointly uniform random process in [0,1]n.

Proof. 1. This part is given in Appendix B.2. 2. Since for general complete separable

metric spaces any randomized strategy from the class {Pi(dai;ai−1,bi−1) ∈K (Ai;A0,i−1×
B0,i−1) : i = 0,1, . . . ,n− 1} can be realized by deterministic strategies from the class g ∈
E DM[0,n], then (3.5.180) holds.

The point to be made regarding Theorem 3.39 is that by (3.5.174), the upper bound (3.5.179)

is tight, since under very general conditions randomized strategies can be realized by deter-

ministic strategies, via the solution of the maximizing encoder problem (3.5.175). Moreover,

this upper bound could not be obtained without knowing the structural properties of encoders

maximizing directed information from the source to the channel output, and the structural

properties of the information capacity achieving distributions of C3
0,n.

Also, for any rate R violating the bound (3.5.179), the probability of decoding error can be

arbitrarily near to 1.

Therefore, the information measure for which an achivable SbS code should be saught is the

one defined below.

Definition 3.40. Suppose Assumption 3.36 hold.

The finite time information capacity is defined by

C3
0,n = sup

{Pi(dai;bi−1)∈K (Ai;B0,i−1):i=0,1,...,n}

n

∑
i=0

I(Ai;Bi|Bi−1) (3.5.181)

The information capacity is

C3
∞ = liminf

n→∞
sup

{Pi(dai;bi−1)∈K (Ai;B0,i−1):i=0,1,...,n}

1
n+1

n

∑
i=0

I(Ai;Bi|Bi−1) (3.5.182)

Similarly for C3
0,n(P), C3

∞(P).
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Therefore, to need to determine the value of the optimization problem C3
0,n and C3

∞ and the

achieving distribution, {P∗i (da;bi−1) : i = 0,1, . . . ,n}, which is also equivalent via (3.5.180)

to the optimization problem over deterministic encoder policies.

Using Theorem 3.39 we can purse two methods for designing encoder so that the directed

information including the encoder, I(Xn → Bn) is precisely equal to the supremum in C3
∞.

One method is via dynamic programing to find the optimal encoder, and then the operational

capacity C3
∞ via (3.5.180). The other method is to solve (3.5.181) to find the capacity achiev-

ing distribution {P∗i (dai;bi−1) ∈K (Ai;B0,i−1) : i = 0,1, . . . ,n}. We describe the later.

Let {P∗i (dai;bi−1) ∈K (Ai;B0,i−1) : i = 0,1, . . . ,n} be the sequence of stochastic Kernels

which achieves the supremum of C3
0,n, and let F∗Ai|Bi−1(ai) be its corresponding conditional

distribution.

Consider a separated encoder of the form{
a∗i = g∗i (xi,bi−1) = g∗,sep

i (xi,Pi(dxi;bi−1)) : i = 0,1, . . . ,n
}
∈ E sep,DM[0,n]

where Pi(dxi;bi−1) ∈K (Xi;B0,i−1) is a stochastic Kernel, and denote by FXi|Bi−1(xi), i =

1, . . . ,n its corresponding conditional distribution function. Define the á posterior matching

scheme by{
A∗i = g∗,sep

i (Xi,FXi|Bi−1(Xi)) = F∗,−1
Ai|Bi−1 ◦FXi|Bi−1(Xi) : i = 0,1, . . . ,n

}
(3.5.183)

This scheme corresponds to an encoder transmitting at each i ∈ Nn the symbol A∗i via the

mapping g∗,sep
i (·,Bi−1). The following hold at each i ∈ Nn.

1. For a fixed Bi−1 = bi−1, FXi|Bi−1(xi) is a random variable uniformly distributed on the

interval [0,1). Hence, it is independent of bi−1.

2. For a fixed Bi−1 = bi−1, F∗,−1
Ai|Bi−1(·) is the inverse of a distribution function, applied to a

uniformly distributed random variable. Hence, it transforms the uniform random vari-

able Ui = FXi|Bi−1(xi) into a random variable A∗i having the finite capacity achieving

distribution F∗Ai|Bi−1(ai). That is, F∗,−1
Ai|Bi−1 ◦FXi|Bi−1(xi) for a fixed Bi−1 = bi−1 trans-

forms A∗i into a RV distributed according to F∗Ai|Bi−1 .
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Substituting the above PMS into I(Xn→ Bn) = ∑
n
i=0 I(X i;Bi|Bi−1), by (3.5.175) we have

I(Xn→ Bn) =
n

∑
i=0

I(A∗i ;Bi|Bi−1)|A∗i =g∗,sep
i (Xi,Bi−1)

= sup
{Pi(dai;bi−1)∈K (Ai;B0,i−1):i=0,1,...,n−1}

n−1

∑
i=0

I(Ai;Bi|Bi−1) (3.5.184)

Remark 3.41. The left hand side of (3.5.180) when solved, determines g∈ E DM[0,n] which

transforms via the uniform random process {Xi : i = 0,1, . . . ,n−1}, {Ai = gi(Bi−1,Xi) : i =

0,1, . . . ,n−1} into the capacity achieving distribution.

Remark 3.42. Although, we have shown, PMS holds under the general Assumption 3.36,

we need to ensure this scheme has an operational meaning, in terms of decoding error prob-

ability.

This can be done via the Dual of the SbS code achievability of Theorem 2.29 as follows.

1. In Definition 2.26 of SbS code, (n,d,ε,P), the channel Pi(dbi;bi−1,ai,xi), i = 0, . . . ,n

is fixed and the capacity achieving PMS encoder is found and fixed (and Assump-

tion 3.36 hold).

2. In Definition 2.27 of minimum excess distortion specify the decoding error function,

for example, precisely as the excess distortion probability.

3. In Definition 4.9 of realization of Rna(D), fix the channel and the capacity achieving

PMS encoder, and find the decoder which realizes the optimal reproduction distribu-

tion of the nonanticipative RDF, Rna(D), and realizes Rna(D).

4. For fixed source-encoder-channel-decoder, and for a given P find a D ∈ [Dmin,Dmax],

so that Rna(D) is finite, and the excess decoding error probability is satisfied.

Then the SbS code is achievable (JSCC) with respect to decoding error probability and

limn→∞
1

n+1C0,n(P)≥ limn→∞
1

n+1Rna
0,n(D),∀n ∈ N.

Since in general C0,n(P) ≥ Rna
0,n(D),∀n ∈ N this does not correspond to the minimum rate

of reproducing the source at the decoder, that is, it does not correspond to a source-channel

matching code.

The achievable SbS code corresponds to the source-channel matching for a given P, if there

exists a D∈ [Dmin,Dmax], so that Rna(D) is finite and limn→∞
1

n+1C0,n(P)= limn→∞
1

n+1Rna
0,n(D).
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Remark 3.43.

1. The previous PMS can be generalized to information capacity formulae without im-

posing Assumptions 3.36, for certain general channels of the form

Pj(db j;b j−1,a j
j−K,x

j
j−m), j = 0,1, . . . ,n, K,M f inite (3.5.185)

For DMCs with feedback the capacity achieving channel input distribution satisfies

P∗i (dai;bi−1) = P∗(da)≡ F∗Ai|Bi−1(ai) = F∗A (a),∀i ∈ N, the joint process {(Ai,Bi) : i ∈
Nn} is independent and in the limit ergodic, that is, F∗A (.) is the distribution which

achieves the supremum of the single letter expression I(A;B), and the PMS is{
A∗i = g∗,sep

i (Xi,FXi|Bi−1(Xi)) = F∗,−1
A ◦FXi|Bi−1(Xi) : i = 0,1, . . . ,n

}
(3.5.186)

2. The achievability for the PMS will be revisited Chapter 4 to address source-channel

maching so that limn→∞
1

n+1C0,n(P) = limn→∞
1

n+1Rna
0,n(D).

3.6 The Binary State Symmetric Channel

In this section we apply the previous results regarding the structural properties of encoders

to a specific channel with memory, with or without feedback. Chen and Berger [18] derived

coding theorems for channels with unit memory and feedback, in which the channel output

{Bi : i = 0,1, . . .} and the channel input-output pair {(Ai,Bi) : i = 0,1, . . .} is assumed to

be first order Markov process, while Berger in his Shannon lecture [6], conjectured the

form of the capacity achieving input distribution. The Binary State Symmetric channel

BSSC(α1,β1), or POST channel [3], is a special case of the limited memory channel [6],

defined by the transition probabilities given below.

PBi|Ai,Bi−1(bi|ai,bi−1)=

[ 0,0 0,1 1,0 1,1

0 α1 β1 1−β1 1−α1

1 1−α1 1−β1 β1 α1

]

Recently Asnani, Permuter and Weissman [3, 58], derived a closed form expression for the

unconstraint feedback capacity of the Previous Output State (POST) channel, while they
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proved the surprising result that feedback does not increase the capacity of this channel. In

their approach they consider the previous channel output as the state of the channel.

Our work which is motivated by SbS joint source channel coding of a binary source with

memory via the BSSC(α1,β1) (Chapter 4), compliments the recent work of Asnani, Permuter

and Weissman [3, 58]. In our analysis, we define the state of the channel as the modulo2 ad-

dition of the current channel input and the previous channel output, which breaks the channel

into two binary symmetric channels. We additionally impose a “natural” cost constraint on

the channel which is necessary for JSCC elaborated in Chapter 4. In general the cost func-

tion is an important element to achieve optimality of source-channel communication system

[6, 29].

Our main contributions are the analytical expressions for the constraint capacity with feed-

back, and the optimal input and output distributions. Moreover, we provide the optimal input

distribution for the no feedback capacity, constraint or unconstraint, where we show that a

first order Markovian input distribution induces the optimal output distribution of the feed-

back case, and we give an analytical expression for the no feedback capacity. Finally, from

the constraint capacity with feedback, we obtain as a special case the unconstraint feedback

capacity formulae, derived in [3, 58]. However, our capacity formulae highlights the optimal

time sharing among the two binary symmetric channels (states of the general unit memory

channel), and provide the capacity achieving channel input distribution.

The unit memory channel is defined by

−→
P Bn|An(dbn|an)

4
=⊗n

i=1PBi|Ai,Bi−1(dbi|ai,bi−1) (3.6.187)

Definition 3.44. (Cost constraint for the unit memory channel)

The cost of transmitting a specific symbol over the unit memory channel, defined by a mea-

surable function γn : A n×Bn−1 7→ [0,∞),

γn(an,bn−1)
4
=

n

∑
i=1

ci(ai,bi−1)

Definition 3.45. (Capacity achieving distribution with feedback)

The form of the capacity achieving distribution for the unit memory channel with feedback

is given by (follows from Theorem 3.31)

←−
P An|Bn−1(dan|bn−1)

4
=⊗n

i=1PAi|Bi−1(dai|bi−1) (3.6.188)
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Definition 3.46. (Capacity achieving distribution without feedback)

The form of the capacity achieving distribution for the unit memory channel without feed-

back is given by {PAi|Ai−1(dai|ai−1) : i ∈ Nn}

PAn(An) =⊗n
i=1PAi|Ai−1(dai|ai−1)

The Binary State Symmetric Channel (BSSC) is a special case of the unit memory channel,

and is defined via the transition probabilities

PBi|Ai,Bi−1(bi|ai,bi−1)=

[ 0,0 0,1 1,0 1,1

0 α1 β1 1−β1 1−α1

1 1−α1 1−β1 β1 α1

]
(3.6.189)

We define the state of the channel, at any time instant i ∈Nn, as the modulo2 addition of the

input symbol ai and the previous output symbol bi−1, si = ai⊕bi−1. Due to the invertability

of the state, given the channel state and any of the channel input or previous output symbol,

the remaining symbol is uniquely defined. Thus, we may transform the channel PBi|Ai,Bi−1

to its equivalent form PBi|Ai,Si . The channel then breaks down into two symmetric binary

channels with crossover probabilities (1−α1) and (1−β1), given by

PBi|Ai,Si(bi|ai,si = 0) =

[
α1 1−α1

1−α1 α1

]
= PBi|Si,Bi−1(bi|si = 0,bi−1)

PBi|Ai,Si(bi|ai,si = 1) =

[
β1 1−β1

1−β1 β1

]
= PBi|Si,Bi−1(bi|si = 1,bi−1)

We define the Binary Symmetric Channel with crossover probability (1−α1), BSC(1−α1),

as the “state zero” channel, and the Binary Symmetric Channel with crossover probability

(1−β1), BSC(1−β1), as the “state one” channel. Next, we define a cost constraint on the

channel that has the following physical interpretation. Assume α1 > β1 ≥ 0.5. Then the

capacity of the state zero channel (1−H(α1)), is greater than the capacity of the state one

channel (1−H(β1)). With “abuse” of terminology, we interpret the (BSC(1−α1)) as the

“good channel” and the (BSC(1−β1)) as the bad channel. It is further reasonable to assume
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that we pay a larger fee to use the “good channel” and a smaller fee to use the “bad channel”.

We quantify this policy by assigning a binary pay-off to each of the channels. Hence, we

assign a cost equal to 1 for the good channel, and a cost equal to 0 for the bad channel,

∀i ∈ N, given by

ci(ai,bi−1) =

{
1 if ai = bi−1, or si = 0

0 if ai 6= bi−1, or si = 1

The letter-by-letter average cost constraint is given by

E{c(Ai,Bi−1)}= PAi,Bi−1(0,0)+PAi,Bi−1(1,1) = PSi(0)

The binary form of the constraint does not downgrade the problem, since it can be easily

upgraded to more complex forms, without affecting the proposed methodology (i.e. (1−δ ),

δ , where δ = constant). Additionally, if β1 > α1 ≥ 0.5 we reverse the cost, while if α1

and/or β1 are less than 0.5 we flip the respective channel input.

3.6.1 Capacity of the BSSC with Feedback

In this section we provide closed form expressions for the feedback capacity and the optimal

input distributions, both for the constrained case and the unconstrained case. The feedback

capacity of the BSSC(α1,β1) without cost constraint is given by,

C f b 4= lim
n→∞

max←−
P An|Bn−1

1
n

I(An→ Bn)

= lim
n→∞

max←−
P An|Bn−1

1
n

n

∑
i=1

{
H(Bi|Bi−1)−H(Bi|Bi−1,Ai)

}
(α1)
= lim

n→∞
max

{P(Ai|Bi−1)}n
i=1

1
n

n

∑
i=1
{H(Bi|Bi−1)−H(Bi|Ai,Bi−1)} (3.6.190)

where (α1) holds from the property of the input distributions that generates a Markov pro-

cess at the output (Theorem. 3.31). By the form of the input distribution we have

1. {Bi : i = 1,2, . . . ,n} is a first order Markov chain.

2. {(Ai,Bi) : i = 1,2, . . . ,n} is a first order Markov chain.
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If we further assume that {PAi|Bi−1 : i = 1,2, . . .} is stationary, then the output process {Bi :

i = 1,2, . . .} is a stationary Markov chain (by reconditioning). Moreover, it is shown in [18]

the input distribution convergence to a stationary distribution as n−→ ∞. Using [18], then

C f b = max
{P(Ai|Bi−1)}

{H(Bi|Bi−1)−H(Bi|Ai,Bi−1)} (3.6.191)

Expression (3.6.191) is also shown in [58].

3.6.1.1 Constrained Capacity with Feedback

The constraint capacity of the BSSC(α1,β1) with feedback, is defined by (3.6.190), where

the input distribution additionally satisfies the average cost constraint, as follows

C f b4= lim
n→∞

max←−
P An|Bn−1 : 1

n ∑
n
i=1E{c(Ai,Bi−1)}=κ

1
n

I(An→ Bn)

= lim
n→∞

max←−
P An|Bn−1 : 1

n ∑
n
i=1E{c(Ai,Bi−1)}=κ

1
n

n

∑
i=1
{H(Bi|Bi−1)−H(Bi|Ai,Bi−1)}(3.6.192)

Due to the form of the cost constraint, it can be shown that the derivation in [18] remains

valid, and and that the limiting channel input distribution is stationary, i.e., {PAi|Bi−1 : i =

1,2, . . . ,n} convergence to a stationary distribution as n−→ ∞, as in the unconstraint case.

While for the unconstraint case the input distribution PAi|Bi−1(ai|bi−1) ∈ [0,1],∀(ai,bi−1) ∈
{0,1}, the imposed average cost constrain E{c(ai,bi−1)}= κ , κ ∈ [0,1], restricts the set of

input distributions PAi|Bi−1(ai|bi−1) to those that satisfy

PAi|Bi−1(0|0)PBi−1(0)+PAi|Bi−1(1|1)PBi−1(1) = κ (3.6.193)

The constraint rate of the BSSC with feedback is illustrated in Figure 3.6.2. The projection

on the distribution plane, denoted by the black dotted line, shows all possible pairs of input

distributions that satisfy the cost constraint defined in (3.6.193).

Next, we state the main theorem regarding the constraint capacity of the BSSC(α1,β1) with

feedback.
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FIGURE 3.6.2: Rate of the BSSC with feedback subject to the cost constraint for α1 = 0.92,
β1 = 0.79 and κ = 0.71.

Theorem 3.47. (constraint capacity of the BSSC(α1,β1) with feedback)

The feedback capacity of the BSSC(α1,β1) subject to the average cost constraint E{c(Ai,Bi−1)}
= k is given by

C f b(κ) = H(λ )−κH(α1)−(1−κ)H(β1) (3.6.194)

where λ = α1κ +(1−κ)(1−β1). The optimal input and output distributions are given by

P∗Ai|Bi−1
(ai|bi−1) =

[
0 κ 1−κ

1 1−κ κ

]
(3.6.195)

P∗Bi|Bi−1
(bi|bi−1) =

[
0 λ 1−λ

1 1−λ λ

]
(3.6.196)Chri
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Proof. The second term of the RHS of (3.6.192) is fixed by the cost constraint, and it is

given by

H(Bi|Bi−1,Ai) = κH(α1)+(1−κ)H(β1) (3.6.197)

We proceed by calculating H(Bi|Bi−1), with respect to the input distributions that satisfy the

cost constraint. The conditional distribution of the output is given by

PBi|Bi−1 = ∑
Ai

PBi|Ai,Bi−1PAi|Bi−1 (3.6.198)

For computational reasons it is preferable to find the maxima with respect to the distribution

of the output process that satisfy the average distortion constrain. By combining (3.6.193)

and (3.6.198) we rewrite the cost constraint as a function of PBi|Bi−1 , as shown below,

PBi|Bi−1(0|0)PBi(0)+PBi|Bi−1(1|1)(1−PBi(0)) = λ , (3.6.199)

PBi(0)=PBi|Bi−1(0|0)PBi(0)+(1-PBi|Bi−1(1|1))(1-PBi(0)) (3.6.200)

where λ = α1κ + (1− β1)(1− κ). Manipulating (3.6.199) and (3.6.200), we obtain the

following expressions for PBi|Bi−1(0|0) and PBi(0), as functions of PBi|Bi−1(1|1) and constants

α1,β1,κ .

PBi(0) =
1+λ −2PBi|Bi−1(1|1)
2(1−PBi|Bi−1(1|1))

, (3.6.201)

PBi|Bi−1(0|0) =
2λ − (1+λ )PBi|Bi−1(1|1)

1+λ −2PBi|Bi−1(1|1)
(3.6.202)

To simplify the notation, we set qb
4
= PBi|Bi−1(1|1). The conditional entropy H(Bi|Bi−1) is

then equal to

H(Bi|Bi−1) =− ∑
Bi,Bi−1

(
log(PBi|Bi−1)

)
PBi|Bi−1PBi−1

=−2λ − (1+λ )qb

2(1−qb)
log
(

2λ − (1+λ )qb

1+λ −2qb

)
−1−m

2

(
log(1−qb)+

qb

1−qb
logqb

)
−1−m

2
log
(
(1−m)(1−qb)

1+m−2qb

)
(3.6.203)

Maximizing (3.6.203) with resect to qb, yields
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FIGURE 3.6.3: Input distributions and the respective capacity for κ = 0,0.025,0.05 . . .,1

dH(Bi|Bi−1)

dqb
=

1−λ

2(qb−1)2 log
(

2λ − (1+λ )qb

1+λ −2qb

)
− (λ −1)2

2(qb−1)(1+λ −2qb)
− 1−λ

2(qb−1)

− 1−λ

2(qb−1)2 logqb +
(1−λ )qb

2(qb−1)qb
+

(λ −1)2

2(qb−1)(1+λ −2qb)
= 0

⇒ 1−λ

2(qb−1)2

(
log
(

2λ − (1+λ )qb

1+λ −2qb

)
− logqb

)
= 0

⇒ log
(

2λ − (1+λ )qb

(1+λ −2qb)qb

)
= 0

⇒ qb = λ and qb = 1 (trivial solution) (3.6.204)

By substituting the non-trivial solution of (3.6.204) into the single letter expression of the

constraint capacity we obtain (3.6.207), (3.6.208).

The capacity of the BSSC for various values of κ is illustrated in Figure 3.6.3. Each curve

illustrates the input distributions that satisfy the average constraint for a fixed κ , while the

red mark illustrates the pair of optimal input distribution that achieve the capacity. These

conditional distributions are projected on the line PAi|Bi−1(0|0)+PAi|Bi−1(0|1) = 1. which in

context with (3.6.197) yield the already proven distribution of the output symbol.
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FIGURE 3.6.4: Rate of the BSSC with feedback, for α1 = 0.92 and β1 = 0.79.

3.6.1.2 Unconstraint Capacity with Feedback

While the constraint capacity restricts the set of input distributions PAi|Bi−1(0|0),PAi|Bi−1(0|1)
to those that satisfy the average cost constraint, the unconstraint capacity allows any values

of the input distributions on the set [0,1]× [0,1]. The rate for the unconstraint BSSC with

feedback, for fixed α1,β1 and κ , is illustrated in Figure 3.6.4.

Next, we show how to obtain the unconstraint capacity with feedback, and thus verify exist-

ing results in [58].

Theorem 3.48. (Unconstraint capacity of the BSSC(α1,β1) with feedback)

The unconstraint feedback capacity of the BSSC(α1,β1) is given by

C f b = H(λ ∗)−κ
∗H(α1)−(1−κ

∗)H(β1) (3.6.205)Chri
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where

λ
∗ = α1κ

∗+(1−κ
∗)(1−β1), κ

∗ =
β1(1+2

H(β1)−H(α1)
α1+β1−1 )−1

(α1 +β1−1)(1+2
H(β1)−H(α1)

α1+β1−1 )

(3.6.206)

The optimal input and output distributions are given by

P∗Ai|Bi−1
(ai|bi−1) =

[
κ∗ 1−κ∗

1−κ∗ κ∗

]
(3.6.207)

P∗Bi|Bi−1
(bi|bi−1) =

[
λ ∗ 1−λ ∗

1−λ ∗ λ ∗

]
(3.6.208)

Proof. The unconstraint capacity is defined as the maximization of directed information

over all possible channel input distributions. Alternatively, it may be defined via the double

maximization of the input distributions that satisfy the average cost constraint maximized

over all possible values of the constraint, via

C = max
κ

C f b(κ) (3.6.209)

The second approach can be easily computed by maximizing the already known expression

of the constraint capacity, with respect to k, as follows.

dC(κ)

dκ
= (α1 +β1−1) log(b−κ

∗(α1 +β1−1))

−(α1 +β1−1) log(1−b+κ
∗(α1 +β1−1))+H(β1)−H(α1)

= 0

⇒ κ
∗(α1 +β1−1)(1+2

H(β1)−H(α1)
α1+β1−1 ) = β1(1+2

H(β1)−H(α1)
α1+β1−1 )−1

Therefore the optimal average cost constraint the maximizes the capacity is given by

κ
∗ =

β1(1+2
H(β1)−H(α1)

α1+β1−1 )−1

(α1 +β1−1)(1+2
H(β1)−H(α1)

α1+β1−1 )
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FIGURE 3.6.5: Comparison of the results for the POST(a) channel and the BSCC(1,a).

The result of the unconstraint feedback capacity may be physically interpreted as the optimal

time sharing (κ∗) among the two symmetric states of the channel.

In Figure 3.6.5 we show the graphs of the unconstraint capacity of the BSSC(1,α) with

feedback, and that derived in [58], to illustrate that they are identical as expected. For all

values chosen the graph is identical.

3.6.2 Capacity of the BSSC without Feedback

In general, feedback increases the capacity of a channel with memory. This statement does

no hold for the BSSC [3, 58]. Feedback and no feedback capacity are the same if there

exists an input distribution PAn which induces the optimal output distribution, P∗Bn , and joint

distribution P∗An,Bn of the channel with feedback.

Next we introduce an intermediate step to additionally guarantee that the average cost con-

straint is satisfied. This approach applies to the cost constraint case as well.

Lemma 3.49. Assume there exists an input distribution of the form P∗An = ⊗n
i=0PAi|Ai−1 that

induces the optimal input distribution
←−
P
∗
An|Bn = ⊗n

i=0P∗Ai|Ai−1,Bi−1 and optimal output distri-

bution P∗Bn of the feedback case.
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Then, the feedback capacity is achieved via a no feedback input distribution and the average

constraint is satisfied.

Proof. The feedback capacity is a functional of {←−P An|Bn−1 ,
−→
P Bn|An}, which define uniquely

the joint distribution {PAn,Bn} and the marginal distribution PBn . In the no feedback case,

the capacity is a functional of {PAn,
−→
P Bn|An} and the maximization is over PAn . However, if

there exists an input distribution for the no feedback case, P∗An , which induces the optimal

input and marginal distribution of the feedback case,
←−
P
∗
An|Bn ,P∗Bn , then the expression of the

no feedback capacity is the same as the feedback capacity.

Theorem 3.50. For the BSSC(α1,β1), the first-order Markovian input distribution P∗An =

⊗n
i=0P∗Ai|Ai−1

, which induces the optimal input and output distribution of the feedback case

given by P∗Ai|Bi−1
and P∗Bn respectively, is given by

P∗Ai|Ai−1
(ai|ai−1) =


1−κ− γ

1−2γ

κ− γ

1−2γ

κ− γ

1−2γ

1−κ− γ

1−2γ

 (3.6.210)

where γ = α1κ +β1(1−κ).

For the unconstraint case κ = κ∗ and γ = γ∗.

Proof. To prove the claims, we need to show that a Markovian input distribution achieves

the capacity achieving channel input distribution with feedback. Consider the following

identities.

P∗Ai|Bi−1
= ∑

Ai−1

PAi|Ai−1,Bi−1PAi−1|Bi−1

= ∑
Ai−1

PAi|Ai−1,Bi−1

PBi−1|Ai−1PAi−1

PBi−1

= ∑
Ai−1

PAi|Ai−1PAi−1

PBi−1
∑

Bi−2

PBi−1|Ai−1,Bi−2PBi−2|Ai−1

= ∑
Ai−1

PAi|Ai−1

PBi−1
∑

Bi−2

PBi−1|Ai−1,Bi−2PAi−1|Bi−2PBi−2

(3.6.211)

Thus, we search for an input distribution without feedback PAi|Ai−1,Bi−1 =PAi|Ai−1 that satisfies

(3.6.211). Solving iteratively this system of equations yields the values of the optimal input
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distribution without feedback given by (3.6.210). Since P∗Bi|Bi−1
= ∑Ai P∗Bi|Bi−1,Ai

P∗Ai|Bi−1
and

P∗Ai|Ai−1
given by (3.6.210) induce P∗Ai|Bi−1

, then it also induce P∗Ai|Bi−1
.

If we assume that we begin from the steady state distribution of the output, PB0(0) = 0.5,

then (3.6.210) holds for i≥ 1. Moreover, if we assume that we begin from an arbitrary initial

state, then the optimal input distributions at any time instant is process which converges

to a stationary symmetric Markov form given by (3.6.210), in finite number of steps. In

Figure 3.6.6, we illustrate that the input distribution converges for the worst case scenario,

in terms of convergence, where α1 = 1 and β1 = 0.5. The terms P0(.|.) and P1(.|.) indicate

the conditional input distribution without feedback given B0 = 0 and B0 = 1, respectively,

while the terms P0(.) and P1(.) indicate the distribution of the output symbol given B0 = 0

and B0 = 1, respectively.

If any PAi|Ai−1(ai|ai−1) induces P∗Ai|Bi−1
(ai|bi−1), then it also induces the optimal output pro-

cess P∗Bi|Bi−1
(bi|bi−1) and P∗Ai|Ai−1

(ai|ai−1) = PAi|Ai−1(ai|ai−1). The capacity for the uncon-

straint case is then equal to

C = lim
n→∞

max
PAn

1
n

I(An→ Bn)

= max
PAi|Ai−1

I(Ai;Bi|Bi−1) =C f b (3.6.212)

and similarly for the constraint C(κ) =C f b(κ).

3.6.3 Special Cases of the BSSC with and without Feedback

Next, we provide two special cases of the BSSC where we apply our results and evaluate

the unconstraint capacity, the optimal input distributions, with or without feedback, and the

optimal output distributions.

I. Memoryless BBSC (α1 = β1 = 1− ε):

Consider the case where α1 = β1 = 1−ε . This reduces the BSSC to the memoryless Binary

Symmetric Channel (BSC) since both of the channels are binary symmetric channels with

cross over probability ε . Then, κ∗ = 0.5 and λ ∗ = 0.5, thus the optimal input and outputChri
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FIGURE 3.6.6: Convergence of the input distribution without feedback for the worst case
scenario (α1 = 1,β1 = 0.5). The index i denotes the time index.

distributions are IID processes. The capacity is then equal to

C = H((1− ε)(1−0.5)+ ε0.5)−0.5H(ε)−0.5H(ε)

= 1−H(ε)

These results are consistent to the known results of the memoryless BSC.

II. Best and Worst BBSC (α1 = 1,β1 = 0.5):

Consider the case where α1 = 1 and β1 = 0.5. In this case the ”state zero” channel behaves as

a perfect channel, where the output equal to the input, while the ”state one” channel behaves

as a bad channel where the output is equal to the input with probability 0.5. By applying

equations (3.6.206)-(3.6.208) and (3.6.210), we obtain κ∗ = 0.6, λ ∗ = 0.8. Therefore the

capacity is equal to

C = H(0.2)−0.6H(1)−0.4H(0.5) = 0.3219

The optimal input distributions, with or without feedback, are given by
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P∗Ai|Bi−1
(ai|bi−1) =

[
0.6 0.4

0.4 0.6

]

and

P∗Ai|Ai−1
(ai|ai−1) =

[
2/3 1/3

1/3 2/3

]

while the optimal output distribution for both is given by

P∗Bi|Bi−1
(bi|bi−1) =

[
0.8 0.2

0.2 0.8

]

3.7 Conclusions

In this chapter we studied two fundamental optimization problems for general channels with

memory and feedback.

The first problem investigates the structural properties of encoders, for a given source and

channel which maximize the directed information from the source to the channel output. For

this problem we focus on the design of encoders, and their structural properties, when the

information capacity has an operational meaning. We gave the first complete derivation of

the capacity achieving distribution for the unit memory channel.

The second problem investigates the structural properties of capacity achieving distribution.

For this problem we focus on the calculation of the capacity achieving distribution, and its

structural properties, when the information capacity has an operational meaning.

In addition we presented dynamic programming which can be used to determine the en-

coders and the capacity achieving distribution. We have used the encoder structural proper-

ties and capacity achieving distribution to show how to design encoders which achieve the

capacity.

We also generalize the Posterior Matching of designing encoders and decoders which achieve

capacity for general channels with memory and feedback.
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Finally, we applied the theoretical framework to the unit memory channel, and we showed

that the optimal encoder with feedback depends only on the channel output and not the whole

sequence. Subsequently, we calculated closed form expressions for the capacities and the

optimal input distributions, in the presence or absence of feedback and cost constraint. Our

methodology highlights the symmetric form of the channel, and is interpreted as the optimal

time sharing among the two states.
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Chapter 4

Nonanticipative Joint Source Channel
Coding for Real-Time Transmission

Shannon in his seminal paper [65] showed that source coding and channel coding may be

treated separately without affecting the optimality of the overall design. Over the years,

reliable communication analysis is divided into two parts; optimal source compression and

optimal channel coding. Although this separation procedure introduces significant advan-

tages with respect to the theoretical analysis and practical design of the codes, it applies

mostly to point to point ergodic communications systems, and it does not apply to multiuser

channels or non-ergodic systems. Even for the case of ergodic point-to-point communica-

tion link, the drawback of this approach is that it introduces delays by assuming arbitrarily

large codeword lengths. Thus, it is not suitable for delay sensitive communication schemes.

Additionally, it increases the complexity due to the complex structure of encoders and de-

coders, and leads to excess demands of resources (memory, computational power, power

consumption).

Similarly, classical Joint Source Channel Coding (JSCC) [67], although capable of solving

more complex communication problems, such as, sources and channels with memory, or

even network communication problems, fails to deal with delays, since its performance is

also evaluated in the limit of large blocklengths. JSCC over finite blocklengths, on the

other hand, may reduce delays while its error exponent outperforms that of separate source

channel coding [21]. Additionally, achievable bounds exists for certain kind of sources with

fidelity constraints and channels with cost constraint pairs.

136
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Coding over infinitely large blocklengths, although optimal under certain conditions, it is not

the only optimal choice [29, 31]. Two well known source-channel pairs, the IID Bernoulli

source with single letter Hamming distortion criterion transmitted via a binary symmetric

channel, and the Gaussian source with mean square error distortion transmitted via a Gaus-

sian channel, reinforce the belief that the encoder and the decoder can be jointly designed

optimally, processing symbols in real time. This optimal transmission scheme is very simple

compared to the complexity of separated source and channel coding. For the IID Bernoulli

source, this is achieved by uncoded transmission (the encoder and the decoder are identity

maps) over a binary symmetric channel, and this design eliminates the delay and the com-

plexity of the overall scheme. For the IID Gaussian source, it is achieved via semi-coded

transmission, to meet the power constraint, over an additive Gaussian noisy channel, with

or without feedback. The overall transmission scheme is delayless, while the complexity

reduces to minimum, due to the simple form of the encoder-decoder. Therefore, nonantici-

pative JSCC, uncoded or semi-coded, is an optimal coding approach for these two examples

[29, 31].

The objective of this chapter is to put forward a framework for optimal performance and

reliable communication based on nonanticipative JSCC for sources and channels with mem-

ory, with or without feedback. The necessary theoretical framework builds on the material

of the previous two chapters; the nonanticipative rate distortion for sources with memory,

and the capacity of channels subject to cost constraint with memory, with and without feed-

back, which are elaborated extensively in Chapter 2 and Chapter 3. After we introduce the

mathematical framework for nonanticipative transmission, we apply it to the Binary Sym-

metric Markov source with crossover probability p, (BSMS(p)) transmitted over the Binary

State Symmetric Channel (BSSC(α1,β1)), and we show optimality for the overall design.

To evaluate the performance of the nonanticipative transmission of the overall system, we

apply the average distortion which evaluates the performance in the limit, and the minimum

excess distortion which evaluates the performance for finite number of transmissions.

This chapter consists of the following parts.

• Definitions of nonanticipative and Symbol-by-Symbol (SbS) code 1, and definition of

the minimum excess distortion.

• Realization of the optimal non-anticipative reproduction distribution and achievability

of the nonanticipative code via a noisy channel.

1Recall that SbS code encodes causally the current source symbol.
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• Nonanticipative and SbS JSCC scheme for the Binary Symmetric Markov Source

(BSMS(p)), via a Binary State Symmetric Channel, (BSSC(α1,β1)). We discuss both

feedback and no feedback realizations as well as the unmatched case, where the ca-

pacity of the channel is greater that the nonanticipative RDF of the source. The per-

formance is evaluated by the excess distortion probability.

4.1 Problem Formulation

In this section we define the elements of a nonanticipative and SbS code in an abstract

setting. Let N 4= {0,1, . . .}, Nn 4= {0,1, . . . ,n}. Let X ,A ,B,Y denote the source out-

put, channel input, channel output, and decoder output alphabets, respectively, which are

assumed to be complete separable metric spaces (Polish spaces) to avoid excluding con-

tinuous alphabets. We define their product spaces by X0,n
4
= ×n

i=0X , A0,n
4
= ×n

i=0A ,

B0,n
4
=×n

i=0B, Y0,n
4
=×n

i=0Y . Let xn 4= {x0,x1, . . . ,xn} ∈X0,n denote the source sequence

of length n, and similarly for channel input, channel output, decoder (reproduction) output

sequences, an ∈ A0,n, bn ∈ B0,n, yn ∈ Y0,n, respectively. We associate the above prod-

uct spaces by their measurable spaces (X0,n,B(X0,n)), (A0,n,B(A0,n)), (B0,n,B(B0,n)),

(Y0,n,B(Y0,n)). Next, we introduce the various distributions of the blocks appearing in Fig-

ure 4.1.1.

Definition 4.1. (Source) The source is a sequence of conditional distributions defined by

PXn(dxn)
4
=⊗n

i=0PXi|X i−1(dxi|xi−1), n ∈ N

• The source is called Markov if

PXi|X i−1(dxi|xi−1) = PXi|Xi−1(dxi|xi−1)−a.a xi−1, ∀ i ∈ Nn

Definition 4.2. (Encoder) The encoder is a sequence of conditional distributions defined by

−→
P An|Bn−1,Xn(dan|bn−1,xn)

4
=⊗n

i=0PAi|Ai−1,Bi−1,X i(dai|ai−1,bi−1,xi), n ∈ N

Thus, the encoder assumes feedback from the output of the channel, and it is nonanticipative

in the sense that at each time i∈Nn, PAi|Ai−1,Bi−1,X i(dai|ai−1,bi−1,xi) is a measurable function
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FIGURE 4.1.1: Real-Time Communication scheme with feedback.

on past and previous source symbols xi ∈X0,i, past channel input symbols ai ∈ A0,i, and

past channel output symbols yi ∈ Y0,i.

• The encoder is called Markov with respect to the source if

PAi|Ai−1,Bi−1,X i(dai|ai−1,bi−1,xi) = PAi|Ai−1,Bi−1,Xi
(dai|ai−1,bi−1,xi)−a.a.

(ai−1,bi−1,xi), ∀ i ∈ Nn

Markov encoders are SbS encoders because at each time the encoded symbol depends on

the last source symbol and not the whole past of the source.

Definition 4.3. (Channel) The channel is a sequence of conditional distributions defined by

−→
P Bn|An,Xn(dbn|an,xn)

4
=⊗n

i=0PBi|Bi−1,Ai,X i(dbi|bi−1,ai,xi), n ∈ Nn

Thus the channel has memory, feedback and it also depends nonanticipatively on the source

sequence.

• The channel is called Markov with respect to the source if

PBi|Bi−1,Ai,X i(dbi|bi−1,ai,xi) = PBi|Bi−1,Ai,Xi
(dbi|bi−1,ai,xi)−a.a. (ai,bi−1,xi), ∀ i∈Nn

• The channel is defined from the input to the channel, An, to the output of the channel,

Bn, if

PBi|Bi−1,Ai,X i(dbi|bi−1,ai,xi) = PBi|Bi−1,Ai(dbi|bi−1,ai)−a.a. (ai,bi−1,xi), ∀ i ∈ Nn
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• The channel is called first order Markov if

PBi|Bi−1,Ai,X i(dbi|bi−1,ai,xi) = PBi|Bi−1,Ai,Xi(dbi|bi−1,ai,xi)−a.a. (ai,bi−1,xi), ∀ i∈Nn

• The channel is called memoryless if

PBi|Bi−1,Ai,X i(dbi|bi−1,ai,xi) = PBi|Ai(dbi|ai)−a.a. (ai,bi−1,xi), ∀ i ∈ Nn

Definition 4.4. (Decoder) The decoder is a sequence of conditional distributions defined by

−→
P Y n|Bn(dyn|bn)

4
=⊗n

i=0PYi|Y i−1,Bi(dyi|yi−1,bi), n ∈ N

• The decoder is called Markov with respect to the channel output if

PYi|Y i−1,Bi(dyi|yi−1,bi) = PYi|Y i−1,Bi
(dyi|yi−1,bi)−a.a. (yi−1,bi), ∀ i ∈ Nn

The above Definitions 4.1-4.4, of source-encoder-channel-decoder are general, they have

memory and feedback without anticipation, hence we call the encoder-decoder code, a

nonanticipative code.

Given a source, an encoder, a channel, and a decoder, one can define uniquely the joint

measure on (X0,n×A0,n×B0,n×Y0,n,B(X0,n)×B(A0,n)×B(B0,n)× (B(Y0,n)) by

PXn,An,Bn,Y n(dxn,dan,dbn,dyn) = ⊗n
i=0PYi|Y i−1,Bi,Ai,X i(dyi|yi−1,bi,ai,xi)

⊗PBi|Bi−1,Y i−1,Ai,X i(dbi|bi−1,yi−1,ai,xi)

⊗PAi|Ai−1,Bi−1,Y i−1,X i(dai|ai−1,bi−1,yi−1,xi)

⊗PXi|X i−1,Ai−1,Bi−1,Y i−1(dxi|xi−1,ai−1,bi−1,yi−1)

= ⊗n
i=0PYi|Y i−1,Bi(dyi|yi−1,bi)

⊗PBi|Bi−1,Ai,X i(dbi|bi−1,ai,xi)

⊗PAi|Ai−1,Bi−1,X i(dai|ai−1,bi−1,xi)

⊗PXi|X i−1(dxi|xi−1)Chri
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The previous equality holds if and only if the following Markov chains (MCs) hold.

(Ai−1,Bi−1,Y i−1)↔ X i−1↔ Xi, ∀i ∈ Nn (4.1.1)

Y i−1↔ (Ai−1,Bi−1,X i)↔ Ai, ∀i ∈ Nn (4.1.2)

Y i−1↔ (Ai,Bi−1,X i)↔ Bi, ∀i ∈ Nn (4.1.3)

(Ai,X i)↔ (Bi,Y i−1)↔ Yi, ∀i ∈ Nn. (4.1.4)

Next, we introduce the distortion function between the source and its reproduction, and the

cost function of the channel. The quality of reproducing at each time instant i ∈Nn, of xi by

yi is evaluated by the measurable distortion function

d0,n : X0,n×Y0,n 7→ [0,∞), d0,n(xn,yn)
4
=

n

∑
i=0

ρ(T ixn,T iyn)

where (T ixn,T iyn) are causal mapping (i.e., for each i ∈ Nn, T ixn and T iyn depend on their

past and their current symbols respectively). For a single letter distortion function we take

ρ(T ixn,T iyn) = ρ(xi,yi). The cost of transmitting a specific symbol over the channel is a

measurable function

c0,n : A0,n×B0,n−1 7→ [0,∞), c0,n(an,bn−1)
4
=

n

∑
i=0

γ(T ian,T ibn−1)

where at each time instant t ∈Nn, T ibn−1 depends on b0, . . . ,bi−1. Next, we state the defini-

tion of a nonanticipative code with respect to the excess distortion probability.

Definition 4.5. (Nonanticipative code) Let d≥ 0, ε ∈ (0,1) and P≥ 0. An (n,d,ε,P) nonan-

ticipative code for (X0,n,A0,n,B0,n,Y0,n ,PXn,
−→
P Bn|An,Xn, d0,n,c0,n) is a source-channel code

{PAi|Ai−1,Bi−1,X i(·|·) : i ∈ Nn}, {PYi|Y i−1,Bi(·|·) : i ∈ Nn} with excess distortion probability

P
{

d0,n(xn,yn)> (n+1)d
}
≤ ε (4.1.5)

and average transmission cost

1
n+1

E
{

c0,n(an,bn−1)
}
≤ P (4.1.6)

Such a code is by definition nonanticipative. A SbS code is a nonanticipative code which

satisfies PAi|Bi−1,X i = PAi|Bi−1,Xi
. Moreover, such a code is called SbS if the encoder is Markov
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with respect to the source if, that is,

PAi|Bi−1,X i(ai|bi−1,xi) = PAi|Bi−1,Xi
(ai|bi−1,xi)−a.a. (bi−1,xi), ∀i ∈ Nn

and similarly for the decoder.

The objective of the chapter is to design nonanticipative and SbS codes and show achiev-

ability. Next, we define the minimum achievable excess distortion.

Definition 4.6. (Minimum Excess Distortion) The minimum excess distortion achievable by

a nonanticipative code (n,d,ε,P) is defined by

Do(n,ε,P)
4
= inf

{
d : ∃(n,d,ε,P) Nonanticipative code

}

This performance measure is suitable for nonanticipative and SbS transmission of finite

length, since it is able to bound the probability of error for a fixed n. Another performance

measure which is suitable for nonanticipative transmission in the limit as n→ ∞, is the

average distortion.

Clearly, our definition of nonanticipative code is randomized, hence it embeds deterministic

codes as a special case. Note that in the absence of a cost constraint on the channel, a

nonanticipative code is denoted by (n,d,ε), and we set Do(n,ε,P) = Do
1(n,ε).

Next, we give an alternative definition of achievability by defining a nonanticipative code

via the outage rate probability and the outage capacity.

Definition 4.7. (Nonanticipative code via outage probability) An alternative definition of

achievability is obtained by considering an (n,R,ε,D) nonanticipative code with outage rate

probability

P
{
(An,Bn) :

1
n+1

log
PBn|An(bn|an)

PBn(bn)
< R

}
≤ ε (4.1.7)

and average fidelity constraint

1
n+1

E
{

d0,n(Xn,Y n)
}
≤ D (4.1.8)
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Definition 4.8. (Outage capacity) The outage capacity achievable by a nonanticipative code

(n,R,ε,P) is defined by

Co(n,ε,P)
4
= sup

{
R : ∃(n,d,ε,P) Nonanticipative code

}

4.2 Coding Theorems

In this section we show achievability of nonanticipative code.

The realization of the optimal reproduction distribution by an encoder-channel-decoder such

that the reproduction of the sequence Xn by the Y n matches the nonanticipative minimizing

reproduction distribution, is necessary for probabilistic matching of the source and the chan-

nel. Moreover, if the realization satisfies the fidelity constraint and limn→∞
1

n+1 IPXn (PXn,
−→
P Y n|Xn) = Rna(D), then Rna(D) has an operational meaning. Next, we give the precise defi-

nition of the realization. Such a realization is not optimal because the channel in general has

higher capacity.

Definition 4.9. (Realization) Given a source {PXi|X i−1 (dxi|xi−1) : i = 0,1, . . . ,n}, a general

channel {PBi|Bi−1,Ai,X i (dbi|bi−1,ai,xi) : i = 0,1, . . . ,n} is a realization of the optimal repro-

duction distribution {P∗Yi|Y i−1,X i(dyi|yi−1,xi) : i = 0,1, . . . ,n} obtained from the solution of

nonanticipative RDF, if there exists a pre-channel encoder {PAi|Ai−1,Bi−1,X i (dai|ai−1,bi−1,xi)

: i = 0,1, . . . ,n} and a post-channel decoder {PYi|Y i−1,Bi (dyi|yi−1,bi) : i = 0,1, . . . ,n} such

that

−→
P
∗
Y n|Xn(dyn|xn) =⊗n

i=0PYi|Y i−1,X i(dyi|yi−1,xi) (4.2.9)

where the right hand side of (4.2.9) is obtained from the joint distribution of the source,

encoder, channel, decoder, given by

PXn,An,Bn,Y n(dxn,dan,dbn,dyn) = ⊗n
i=0PYi|Y i−1,Bi(dyi|yi−1,bi)

⊗PBi|Bi−1,Ai,X i(dbi|bi−1,ai,xi)

⊗PAi|Ai−1,Bi−1,X i(dai|ai−1,bi−1,xi)

⊗PXi|X i−1(dxi|xi−1) (4.2.10)
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Moreover we say that Rna(D) is realizable if in addition the realization operates with average

distortion D and limn→∞
1

n+1 IPXn (PXn,
−→
P Y n|Xn) = Rna(D)≤ ∞.

Clearly, (4.2.10) holds if and only if the MCs (4.1.1)-(4.1.4) hold. Moreover, if the optimal

reproduction distribution is realizable according to Definition 4.9, then the following data

processing inequality holds (see Chapter 2, Theorem 2.24).

IXn→Y n(PXn,
−→
P Y n|Xn)≤ I(Xn→ Bn), ∀n ∈ N (4.2.11)

Note that (4.2.9) and (4.2.10) are very general and include as a special case the joint distri-

bution

PXn,An,Bn,Y n(dxn,dan,dbn,dyn) = ⊗n
i=0PYi|Y i−1,Bi(dyi|yi−1,bi)

⊗PBi|Bi−1,Ai(dbi|bi−1,ai)

⊗PAi|Ai−1,Bi−1,X i(dai|ai−1,bi−1,xi)

⊗PXi|X i−1(dxi|xi−1) (4.2.12)

Equation (4.2.12) holds if and only if (4.1.3) is replaced by

(Y i−1,X i)↔ (Ai,Bi−1)↔ Bi, ∀i ∈ Nn (4.2.13)

Moreover if (4.2.13) holds, then we have the data processing inequality (see Chapter 2,

Theorem 2.24)

IXn→Y n(PXn,
−→
P Y n|Xn)≤ I(An→ Bn), ∀n ∈ N (4.2.14)

If Rna(D) is realizable according to Definition 4.9, then the source is not necessarily matched

to the channel, but Rna(D) can be given an operational meaning, based on Definition 4.5.

Now, we are ready to prove achievability of a nonanticipative code. To this end, we need to

introduce the operational definition of channel capacity.

Consider the average cost constraint defined by

P0,n(P)
4
=
{−→

P Xn,An|Bn−1 :
1

n+1
E{c0,n(An,Bn−1)} ≤ P

}
Since we consider the general scenario that (4.1.1)-(4.1.4) hold (e.g., MC (4.2.13) is not

assumed), we define the finite-time information channel capacity from the source to the
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channel output [19], by

C0,n(P)
4
= sup
−→
P Xn,An|Bn−1∈P0,n(P)

I(Xn→ Bn)

The information channel capacity (provided sup is finite and the limit exists) is defined by

C(P) = lim
n→∞

1
n+1

C0,n(P)

We have the following achievability theorem.

Theorem 4.10. (Achievability of nonanticipative code).

A. Instantaneous. Suppose the following conditions hold for any finite n.

1. Rna
0,n(D) has a solution;

2. C0,n(P) has a solution;

3. The optimal reproduction distribution
−→
P ∗Y n|Xn(dyn|xn) is realizable, and (Rn,Dn) is

realizable;

4. For a given Dn ∈ [Dmin,Dmax] there exists a P such that the realization gives Rna
0,n(Dn)=

C0,n(P) = I(Xn→ Bn).

B. Limiting. Suppose the following conditions hold.

1. Rna(D) has a solution;

2. C(P) has a solution;

3. The optimal reproduction distribution
−→
P ∗Y ∞|X∞(dy∞|x∞) for Rna(D) is stationary and

realizable, and (R,D) is realizable;

4. For a given D ∈ [Dmin,Dmax] there exists a P such that the realization gives Rna(D) =

C(P) = lim−→∞
1

n+1 I(Xn→ Bn).

If P∗Xn,Y n

{
∑

n
i=0 ρ(T iXn,T iY n) > (n+ 1)d

}
≤ ε,d > D, where P∗ is taken with respect to

P∗Y n,Xn(dyn,dxn) = ⊗n
i=0

(
P∗Yi|Y i−1,X i(dyi|yi−1,xi)⊗ PXi|X i−1,Y i−1(dxi|xi−1,yi−1)

)
then there exists an

(n,d,ε,P) nonanticipative code.

Proof. Part B: If conditions B.1.−B.3. hold then the optimal stationary reproduction dis-

tribution is realizable, and this realization achieves Rna(D), and C(P). By 4. the source is
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matched to the channel so that the excess distortion probability of a nonanticipative code

with memory without anticipation satisfies the excess distortion.

Note that, if we replace the excess distortion by average distortion, an example for a Gaus-

sian RV transmitted over a memoryless additive Gaussian channel is given in [5].

Remark 4.11. An equivalent definition achievability for a nonanticipative code can be

shown by applying the concepts of outage rate probability and outage capacity, as giben

in Definition 4.7 and Definition 4.8.

Next, recall that when the source is Markov, and the channel is Markov with respect to the

source, nothing can be gained by considering encoders which at each time instant i depend

on the entire past block of the source symbols X i. This will imply that the optimal code is

not only nonanticipative but it is also a SbS code, Markov with respect to the source.

We introduce the following assumption, to simplify the search for source-channel matching,

in terms of the encoder, optimal reproduction distribution and decoder.

Assumption 4.12. (Markov Source and Channel Markov w.r.t. the Source)

The distortion, transmission cost, and source and channel conditional distributions satisfy

the following conditions

1. ρ(T ixn,T iyn) = ρ(xi,T iyn), γ(T ian,T ibn−1) = γ(ai,bi−1) ∀i ∈ Nn

2. PXi|X i−1(dxi|xi−1) = PXi|Xi−1(dxi|xi−1)−a.a.(xi−1), ∀i ∈ Nn

3. PBi|Bi−1,Ai,X i(dbi|bi−1,ai,xi)=PBi|Bi−1,Ai,Xi
(dbi|bi−1,ai,xi)−a.a.(bi−1,ai,xi), ∀i∈Nn.

By Assumption 4.12 and Theorem 4.10, the optimal reproduction distribution is of the form

PYi|X i,Y i−1(dyi|xi,yi−1) = PYi|Xi,Y i−1(dyi|xi,yi−1)−a.a. (X i,Y i−1), ∀i ∈ Nn

In view of Assumption 4.12 we have

I(Xn→ Bn)
4
=

n

∑
i=0

I(X i;Bi|Bi−1) =
n

∑
i=0

E

{
log

PBi|Bi−1,Xi
(dbi|bi−1,xi)

PBi|Bi−1(dbi|bi−1)

}

Theorem 4.13. Under Assumption 4.12, maximizing directed information over non-Markovian

encoders with respect to the source is equivalent to maximizing it over Markovian encoders
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with respect to the source, that is,

sup
PAi|Ai−1,Bi−1,Xi : i=0,1,...,n

1
n+1E{c0,n(An,Bn−1)}≤P

I(Xn→ Bn) = sup
PAi|Bi−1,Xi

: i=0,1,...,n
1

n+1E{c0,n(An,Bn−1)}≤P

I(Xn→ Bn) (4.2.15)

Moreover, the maximization in (4.2.15) with respect to deterministic encoders {ai =

ei(xi,ai−1,yi−1) : i = 1, . . . ,n} is equivalent to the maximization with respect to encoders

{ai = ei(xi,yi−1) : i = 1, . . . ,n}.

Next we introduce the following Assumptions, which allow us to define the information ca-

pacity between the input of the channel An, and the output of the channel Bn.

Assumption 4.14. The following MC holds

X i↔ (Ai,Bi−1)↔ Bi, ∀i ∈ Nn

Under Assumptions 4.12 and 4.14, the following identity holds

I(Xn→ Bn) = I(An→ Bn) =
n

∑
i=0

I(Ai;Bi|Bi−1) (4.2.16)

Therefore, we have the following variation of Theorem 4.13 (see Theorem 3.31, Chapter 3).

Theorem 4.15. Suppose assumptions 4.12, 4.14 hold.

The finite-time information capacity satisfies

C0,n(P)
4
= sup

PAi|Ai−1,Bi−1 : i=0,1,...,n
1

n+1E{c0,n(An,Bn−1)}≤P

I(An→ Bn) = sup
PAi|Bi−1 : i=0,1,...,n

1
n+1E{c0,n(An,Bn−1)}≤P

I(An→ Bn)

4.3 Joint Source Channel Matching of a BSMS(p) via a

Unit Memory Channel

In this section, we apply Theorem 4.10 to show that SbS joint source channel coding for the

Binary Symmetric Markov Source (BSMS(p)) transmitted over the Binary State Symmetric
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Channel (BSSC(α1,β1)) with cost constraint, is indeed feasible. For the sake of complete-

ness, we begin by recalling the results of the nonanticipative RDF of a BSMS(p) and the

capacity of the state symmetric channel with feedback, elaborated explicitly in Chapters 2

(Section 2.5) and Chapter 3 (Section 3.6), respectively. We provide the necessary conditions

for JSCC coding schemes, with and without feedback, which operate optimally.

Moreover, we show the surprising result that even in the unmatched case of C(P)≥ Rna(D)

reliable communication is still feasible, with respect to the excess distortion probability. Fi-

nally, we prove that finite length SbS transmission (transmission of a finite number of sym-

bols) is possible by providing bounds for the excess distortion probability for this schemes.

4.3.1 Nonanticipative RDF of Binary Symmetric Markov Source and
Capacity of the Binary State Symmetric Channel

We begin by stating the main results of the nonanticipative RDF of the binary symmetric

Markov source (Section 2.5, Chapter 2), for further use. The nonanticipative RDF of the

BSMS(p) and single letter Hamming distortion criterion is given by

Rna(D) =

{
H(m)−H(D) = H(p)−mH(α)− (1−m)H(β ) if D≤ 1

2

0 otherwise

where

m = 1− p−D+2pD

The optimal reproduction distribution depends only on the current source symbol and the

previous reproduction symbol, the conditional distribution of the source symbol given all

previous reproduction symbols depends only on the last reproduction symbol, while the

distribution of the reproduction symbols also depends only on the previous reproduction

symbol. These distributions are given below.

P∗Yi|Xi,Yi−1
(yi|xi,yi−1) =

[ 0,0 0,1 1,0 1,1

0 α β 1−β 1−α

1 1−α 1−β β α

]
(4.3.17)Chri
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P∗Xi|Yi−1
(xi|yi−1) =

[ 0 1

0 m 1−m

1 1−m m

]
, P∗Yi|Yi−1

(yi|yi−1) =

[ 0 1

0 p 1− p

1 1− p p

]

where

α =
(1− p)(1−D)

m
, β =

p(1−D)

1−m

Next, we define the capacity of the BSSC, subject to a cost constraint. The channel over

which source symbols are transmitted is chosen to have the form of the optimal reproduc-

tion distribution, given by

PBi|Ai,Bi−1(bi|ai,bi−1) =

[ 0,0 0,1 1,0 1,1

0 α1 β1 1−β1 1−α1

1 1−α1 1−β1 β1 α1

]
(4.3.18)

By applying the one to one and onto, hence invertible, transformation si = ai⊕ bi−1, we

rewrite the transition probability matrix as follows.

PBi|Ai,Si(bi|ai,0) =

[ 0 1

0 α1 1−α1

1 1−α1 α1

]
, PBi|Ai,Si(bi|ai,1) =

[ 0 1

0 β1 1−β1

1 1−β1 β1

]
(4.3.19)

This transformation highlights the symmetric form of channel defined by the transition prob-

ability matrix (4.3.18), and provides an interpretation for the final expression of the capacity.

We call this channel “state symmetric channel”, since subject to the transformation si, it re-

duces to two symmetric channels with crossover probabilities (1−α1) and (1−β1).

In Chapter 3, we also introduced an average cost constraint for the BSSC of the following

form.

E{c(Ai,Bi−1)} = 1.{PAi,Bi−1(0,0)+PAi,Bi−1(1,1)}+0.{PAi,Bi−1(0,1)+PAi,Bi−1(1,0)}

= 1.PSi(0)+0.PSi(1) = E{Si)}= PSi(0)≡ κ (4.3.20)

where κ ∈ [0,1] is a given constant.
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Feedback does not increase the capacity of this channel. The capacity subject to the prede-

fined binary cost constraint of the state symmetric channel is given by

C(S) = H(β1(1−κ)+(1−α1)κ)−κH(α1)− (1−κ)H(β1) (4.3.21)

The optimal input distributions, with and without feedback, are given by

P∗Ai|Bi−1
(ai|bi−1) =

[
0 κ 1−κ

1 1−κ κ

]
, P∗Ai|Ai−1

(ai|ai−1) =


0 1

0
1−κ− γ

1−2γ

κ− γ

1−2γ

1
κ− γ

1−2γ

1−κ− γ

1−2γ


where γ = α1κ +β1(1−κ).

Recall also that the unconstraint capacity is given by

C = H(β1(1−κ
∗)+(1−α1)κ

∗)−κ
∗H(α1)− (1−κ

∗)H(β1) (4.3.22)

where the value of κ that maximizes the capacity is defined by κ∗ and is equal to

κ
∗ =

β1(1+2
H(β1)−H(α1)

α1+β1−1 )−1

(α1 +β1−1)(1+2
H(β1)−H(α1)

α1+β1−1 )

Of course, this will result in a value which is at least greater than the capacity of the con-

straint case. The unconstraint capacity will be applied to the unmatched realization, while

its exact calculation will be used to evaluate the rate loss, (C−Rna(D)), of uncoded trans-

mission over a channel with capacity larger than the nonanticipative RDF.

Another equivalent representation of the state symmetric channel is also possible by condi-

tioning over the state and the previous channel output, since PBi|Ai,Bi−1(bi|ai,bi−1) uniquely

defines PBi|Si,Bi−1(bi|si,bi−1), given by

PBi|Si,Bi−1(bi|si,bi−1) =

[ 0,0 0,1 1,0 1,1

0 α1 1−α1 1−β1 β1

1 1−α1 α1 β1 1−β1

]
(4.3.23)

and vice versa. This alternative equivalent representation of the channel defined by (4.3.17),

is given by (4.3.18). We will apply this equivalent channel to construct the encoder-decoder

Chri
sto

s K
. K

ou
rte

lla
ris



Chapter 4. Nonanticipative Joint Source Channel Coding for Real-Time Ttransmission 151

scheme for the state symmetric channel in the presence of noiseless feedback.

Next, we prove that the capacity of the channel defined by (4.3.18), subject to average cost

constraint defined by (4.3.20), is equal to the capacity of the channel defined by (4.3.23)

over the same cost constraint.

Lemma 4.16. The capacity of the state symmetric channel with feedback subject to a cost

constraint E{c(Ai,Bi−1)} = E{Si} = κ , where si = ai⊕bi−1, is expressed by the following

equivalent representations.

C(S) = max
PAi|Bi−1

:E[ ¯Ai⊕Bi−1]=κ

I(Ai;Bi|Bi−1) = max
PSi|Bi−1

:E[S̄i]=κ

I(Si;Bi|Bi−1), ∀ i ∈ Nn

Proof. The conditional distribution of the channel defined by (4.3.18) uniquely defines

(4.3.23) and vice-versa, while the conditional distribution PSi|Bi−1 is uniquely defined by

PAi|Bi−1 and vice-versa. Additionally, the average cost constraint defined by {PAi|Bi−1 :

E[ ¯Ai⊕Bi−1] = κ} uniquely defines {PSi|Bi−1 : E[S̄i] = κ}. Thus,

max
PAi|Bi−1

:E[ ¯Ai⊕Bi−1]=κ

(Ai;Bi|Bi−1) = max
PSi|Bi−1

:E[S̄i]=κ

I(Si;Bi|Bi−1), ∀ i ∈ Nn

The optimal input distribution P∗Si|Bi−1
, is given by

P∗Si|Bi−1
(si|bi−1) =

[ 0 1

0 κ κ

1 1−κ 1−κ

]
(4.3.24)

4.3.2 Joint Source Channel Matching: Information Matching and Re-
alizations

The joint source channel matching itself consists of two parts; the information matching of

the RDF and the capacity, and the realization scheme. The information matching is achieved

if the nonanticipative RDF of the source (based on the fidelity constraint) is equal to the

capacity of the channel subject to a cost constraint (i.e., Theorem 4.10 holds).
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The second part, and in most cases the most challenging one, is to construct an actual

encoder-decoder scheme that fulfils the following conditions:

• Achieves the information matching.

• Satisfies the average distortion of the source.

• Satisfies the average cost constraint of the channel.

In this section, we show how to achieve information matching between the nonanticipative

RDF of a BSMS(p) with single letter Hamming distortion measure, and the capacity of

the state symmetric channel with cross over probability of each state (1−α) and (1−β ),

and with average cost constraint that satisfies 1
n ∑

n
i=1E{c(Ai,Bi−1)} = κ . Subsequently,

we present the realization schemes, with or without feedback, that achieve the information

matching and satisfy both the average distortion and the average cost constraint.

4.3.2.1 Information Matching

Comparing the nonanticipative RDF of the BSMS(p) with single letter Hamming distortion

measure, and the capacity of the state symmetric channel with a binary cost constraint, we

observe that these two information measures become equal by setting the cost constraint

κ = m, and the channel parameters α1 = α and β1 = β . Therefore,

C(S) = H(β1(1−κ)+(1−α1)κ)−κH(α1)− (1−κ)H(β1)

= H(β (1−m)+(1−α)m)−mH(α)− (1−m)H(β )

= H(p)−mH(α)− (1−m)H(β ) = Rna(D)

Remark 4.17. For p = 0.5, the source reduces to an IID Bernoulli source and the nonantici-

pative RDF is equal 1−H(D) (RDF of the IID Bernoulli source with single letter distortion

criterion). Moreover, consider the case where the channel parameters (α1,β1) are both equal

to 1−D, and that there is no cost constraint on the channel. Then, the channel distribution

is the same for the two possible states s = 0 and s = 1, and it reduces to a memoryless bi-

nary symmetric channel with crossover probability D (BSC(D)). The unconstraint capacity

is achieved at κ = 0.5, and it is equal to 1−H(D), which is equal to the capacity of the

memoryless BSC(D). Thus, our general nonanticipative RDF of the Markov source and a

channel capacity with memory reduces to the well known case of the joint source channel
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BSMS(p) BSSC(α,β)

Delay

FIGURE 4.3.2: Feedback communication scheme for JSCC
.

matching of the IID Bernoulli source with single letter distortion criterion over the binary

symmetric channel, which is achieved via uncoded transmission [29].

4.3.2.2 Feedback Realization

The communication scheme is illustrated in Figure 4.3.2. The source and the channel are

fixed while the encoder and the decoder must be designed in such a manner that JSCM is

achieved. The encoder consists of two blocks, the identity transformation I : X 7→ A (or the

pre-encoder) and the S-Encoder (or th modulo2 encoder). The proposed encoder-decoder

scheme is the following:

• Pre-encoder: This pre-encoder performs a unitary transformation on the source data,

(ai = xi). While practically it might be omitted, it is useful since it generates the

variable ai that defines the cost constraint of the channel. Its utilization keeps the

notation clean since it generates a cost constraint for the channel that does not depend

on the source.

• S-Encoder: Generates the input of the channel by performing a modulo2 addition

between the output of the pre-encoder and the previous channel output (si = ai⊕bi−1).

• Decoder: This decoder performs an identity transformation on the channel output

data, thus (yi = bi).

Summarizing, the encoder-decoder scheme, the only active block is the S-Encoder, while the

two other blocks (pre-encoder and decoder) perform identity transformation on their inputs.

Thus, practically the transmission of the data is characterized as semi-uncoded. To verify

its optimality in terms of channel capacity, we first need to show that the channel input

distribution is equal to the source output distribution, and that the average cost constraint is

satisfied. We begin our analysis from the average distortion.
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Suppose that the symmetric binary Markov source is transmitted via the proposed semi-

uncoded transmission scheme. The average distortion, ∆, is computed by evaluating the

following expression.

∆ = E[ρ(Xi,Yi)]

= E[ρ(Ai,Bi)]

= E[ρ(Si⊕Bi−1,Bi)]

= ∑
Si,Bi,Ai

ρ(Si⊕Bi−1,Bi)PBi|Si,Bi−1(bi|si,bi−1)PSi|Bi−1(si|bi−1)PBi−1(bi−1)

= 1(1−β )(1−m)0.5+1(1−α)m0.5+1(1−α)m0.5+1(1−β )(1−m)0.5

= (1−β )(1−m)+(1−α)m = D

Hence, the proposed semi-uncoded scheme achieves the average distortion. The channel

input distribution achieves the optimal channel input distribution, since for κ = m, Ai = Xi

and Yi = Bi, we have

P∗Ai|Bi−1
= P∗Xi|Yi−1

=

[ 0 1

0 m 1−m

1 1−m m

]
(4.3.25)

and

P∗Ai|Bi−1
7→ PSi=Ai⊕Bi−1|Bi−1 =

[ 0 1

0 m m

1 1−m 1−m

]
(4.3.26)

which are the optimal input distributionS subject to the transformation as defined by equation

(4.3.24). For this input distribution the power constraint is also satisfied, as verified below.

EPAi|Bi−1
{c(Ai,Bi−1)}= 1.[0,5.PAi|Bi−1(0|0)+0,5.PAi|Bi−1(1|1)] = m (4.3.27)

Remark 4.18. The form of the input distribution defined by (4.3.26), has independent prop-

erty that the channel input Si given the previous output symbol Bi−1, is independent of Bi−1,

i.e., PSi|Bi−1 = PSi . Thus, the S-Encoder by performing the modulo2 addition of the current

source symbol and the previous output symbol, it generates an input to the channel which is

independent of the previous output. This surprising result is similar to well known concept

Chri
sto

s K
. K

ou
rte

lla
ris



Chapter 4. Nonanticipative Joint Source Channel Coding for Real-Time Ttransmission 155

of the innovation encoder, which is widely applied in the Gaussian JSCC, where by sending

the innovation, the probability distribution of the input symbol given the output symbol is

independent from the previous output symbols [5].

4.3.2.3 No Feedback Realization

It is already shown in [3, 58], as well as in Chapter 3, that feedback does not increase the

capacity of the BSSC (or POST) channel. The optimal input distribution for this channel is

given by

P∗Ai|Ai−1
(ai|ai−1) =



0 1

0
1−κ− γ

1−2γ

κ− γ

1−2γ

1
κ− γ

1−2γ

1−κ− γ

1−2γ

, γ = α1κ +β1(1−κ)

This input distribution satisfies the average cost constraint, even in the absence of feedback.

Setting κ = m, and α1 = α,β1 = β , yields γ = 1−D and 1−κ−γ

1−2γ
= 1− p. Thus, the optimal

input distribution of the BSSC without feedback that achieves the average cost constraint is

given by

P∗Ai|Ai−1
(ai|ai−1) =

[ 0 1

0 1− p p

1 p 1− p

]
(4.3.28)

The above result is extremely convenient to design the encoder-decoder scheme, due to the

fact that the optimal input distribution without feedback is equal to the distribution of the

source, hence it eliminates the need of an encoder. Next, we check whether the average

distortion, and the average cost constraint are satisfied in the absence of a decoder. If this

holds, then uncoded transmission is indeed optimal.

Recall, that even in the absence of feedback the optimal input distribution without feed-

back, P∗Ai|Ai−1
induces the capacity achieving input distribution of the feedback case P∗Ai|Bi−1

(Proposition 3.50, Chapter 3). Thus, the average power constraint, EPAi|Bi−1
{c(Ai,Bi−1)}, is
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equal to

EPAi|Bi−1
{c(Ai,Bi−1)}= 1.[0,5.PAi|Bi−1(0|0)+0,5.PAi|Bi−1(1|1)] = m (4.3.29)

The average distortion between the source symbols and the reproduction symbols, ∆, is equal

to

∆ = E[ρ(Xi,Yi)]

= E[ρ(Ai,Bi)]

= ∑
Ai,Bi,Bi−1

ρ(Ai,Bi)PBi|Ai,Bi−1(bi|ai,bi−1)PAi|Bi−1(ai|bi−1)PBi−1(bi−1)

= (1−β )(1−m)+(1−α)m = D

Therefore, the rate of the proposed uncoded scheme achieves its upper bound which is the

capacity of the feedback channel while both average distortion and cost constraint are sat-

isfied. Thus, uncoded transmission of a binary symmetric Markov source via a binary state

symmetric channel subject to an average cost constraint, is indeed optimal.

Next, we evaluate the convergence of the distortion, via simulations. We construct a binary

symmetric Markov source of length n and crossover probability p, encode it by applying

modulo2 addition of the source symbol and the previous channel output, and send it via

the channel PBi|Si,Bi−1 . The average distortion is then calculated by calculating ∑
n
i=1 Xi⊕Yi.

The results of a typical simulation are illustrated on Figure 4.3.3, and verify the expected

convergence of the average distortion to D.

4.3.3 Communication over an Unmatched Realization

Due to data processing inequality, the capacity of the channel is always greater or equal

to the rate distortion. For the uncoded transmission, equality holds if the optimal input

distribution of the channel is equal to the distribution of the source. For the binary state

symmetric channel this is achieved via a cost constraint which was explicitly addressed in

the previous sections.

In this section, we drop the cost constraint (κ = κ∗) on the channel, and examine the uncoded

transmission of a BSMS(p) over the binary state symmetric channel with parameters α1 = α

and β1 = β . We define the unmatched rate loss, as the excess amount of capacity that is lost,
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FIGURE 4.3.3: Simulation of a BSMS(p) via the feedback realization for p = 0.3 and
D = 0.1

.

and it is equal to the unconstrained capacity minus the nonanticipative RDF. The average

distortion between the source symbols and the reproduction symbols, ∆, is equal to

∆ = E[d(Xi,Yi)]

= E[d(Ai,Bi)]

= ∑
Ai,Bi,Bi−1

ρ(Ai,Bi)PBi|Ai,Bi−1(bi|ai,bi−1)PAi|Bi−1(ai|bi−1)PBi−1(bi−1)

= (1−β )(1−m)+(1−α)m = D

The rate loss for a binary symmetric Markov source with crossover probability p, which is

transmitted over a binary state symmetric channel with parameters α,β is defined by

RLun 4=
(
H(λ ∗)−H(p)

)
− (κ∗−m)H(α)− (m−κ

∗)H(β )

The above transmission schemes satisfies the average distortion constraint, since the channel

is equal to the optimal nonanticipative reproduction distribution of the Markov source. The

cost of the rate loss is often balanced by the simplicity of the proposed scheme which is both
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SbS (real-time transmission) and uncoded (absence of both encoder and decoder).

Remark 4.19. The unmatched rate loss decreases as p and/or D→ 0.5 , and converges to

0 for p = 0.5, since this is the case of the uncoded transmission of an IID Bernoulli source

transmitted over a binary symmetric channel with crossover probability 1−D.

4.3.4 Excess Distortion Probability

In previous section we discuss the average distortion, which is a performance measure suit-

able for infinite number of transmissions. Next, we discuss the excess distortion probability,

a performance measure suitable for a finite number of transmissions.

The exact calculation of the excess distortion probability defined by P
{

d0,n(xn,yn) > (n+

1)d
}
≤ ε, ε ∈ (0,1), d ≥ 0, is not as straightforward as it is for the case of the IID Bernoulli

source [44]. Thus, instead of evaluating exactly the probability of the distortion exceeding

(n+1)d, we bound it by applying an extension of Hoeffding’s inequality for Markov chains

[32], which bounds the probability of a function of a Markov source. Therefore, we must

show that the joint process defined by (Yi,Xi) : i = 1,2, . . . is Markov. Define

Zi
4
= (Yi,Xi), Sn

4
=

n

∑
i=1

ρ(Xi⊕Yi)

Theorem 4.20. For the optimal reproduction distribution characterized by P∗Yi|Y i−1,X i

(yi|yi−1,xi) of a Binary Symmetric Markov Source, the following MC holds

Zi↔ Zi−1↔ Zi−2, i = 0,1, . . .

Proof.

P∗Yi,Xi|Y i−1,X i−1(yi,xi|yi−1,xi−1) = P∗Yi|Y i−1,X i(yi|yi−1,xi)PXi|Y i−1,X i−1(xi|yi−1,xi−1)

= P∗Yi|Yi−1,Xi
(yi|yi−1,xi)PXi|Xi−1(xi|xi−1)

Moreover,

P∗Yi,Xi|Yi−1,Xi−1
(yi,xi|yi−1,xi−1) = P∗Yi|Yi−1,Xi−1

(yi|yi−1,xi
i−1)PXi|Yi−1,Xi−1(xi|yi−1,xi−1)

= P∗Yi|Yi−1,Xi
(yi|yi−1,xi)PXi|Xi−1(xi|xi−1)

Chri
sto

s K
. K

ou
rte

lla
ris



Chapter 4. Nonanticipative Joint Source Channel Coding for Real-Time Ttransmission 159

0 2 4 6 8 10

x 10
6

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

n

P
[d

0,
n(x

n ,y
n )>

(n
+

1)
d]

≤ε

FIGURE 4.3.4: Hoeffding bound for excess distortion probability (p= 0.3,d = 0.1,ε = 0.1)

Thus,

P∗Yi,Xi|Y i−1,X i−1(dyi,dxi|yi−1,xi−1) = P∗Yi,Xi|Yi−1,Xi−1
(dyi,dxi|yi−1,xi−1)

This shows that the joint process is Markov.

The transition probabilities of the Markov process {Zi : i = 1,2, . . .} are given by

PZi|Zi−1(zi|zi−1) =



α(1− p) (1−β )p (1−α)(1− p) β p

α p (1−β )(1− p) (1−α)p β (1− p)

β (1− p) (1−α)p (1−β )(1− p) α p

β p (1−α)(1− p) (1−β )p α(1− p)


(4.3.30)

By applying the Hoeffding’s inequality [32], the probability of the error is bounded by

P
[Sn−E[Sn]

n
≥ ε

]
≤ exp

(
− λ 2(nε−2‖ f‖m/λ )2

2n‖ f‖2m2

)
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where ‖ f‖ 4= sup{yi : i = 1,2, . . .} = 1, m = 1 and λ = min{p,1− p}min{α,β ,1−α,1−
β}, and for n > 2‖ f‖m/(λε).

The probability of error for fixed values of p,d and ε is illustrated in Figure 4.3.4. For p =

0.3, d = 0.1, ε = 0.1, Figure 4.3.4 illustrates how the upper bound on the excess distortion

probability changes as a function of the number of transmissions. It will be of interest to

find tighter upper bounds to evaluate the excess distortion probability for finite “n”.

4.4 Conclusions

In this chapter we put together the material of previous chapters to introduce the framework

for nonanticipative transmission of general sources with memory via general channels with

memory and feedback, derive noisy coding theorems based on nonanticipative and SbS code,

and construct examples of JSCC based on SbS transmission with respect to average and

excess distortion probability.

The theory is applied to analyze the SbS transmission of a binary symmetric Markov source

with memory and Hamming distortion measure, transmitted over a binary state symmetric

channel, subject to a state dependent cost constraint. For this example, we showed informa-

tion matching among the nonanticipative RDF and the capacity, as well as optimal realiza-

tions with or without feedback. We additionally illustrated that unmatched transmission is

also possible, and may be preferable in cases where the unmatched rate loss is negligible.
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Chapter 5

Nonanticipative RDF with Feedforward
Information

5.1 Introduction

Lossy compression with side information at the encoder and/or decoder is investigated by

Wyner-Ziv in the seminal paper[84]. Lossy compression with feedforward side information

available at the decoder in terms of previous source symbols is investigated by Weissman and

Merhav [82], and subsequently for Gaussian sources by Pradhan [61]. Recently, the OPTA

by noncausal codes with feedforward side information, the so-called feedforward RDF, is

characterized by Venkataramanan [79], in terms of the minimization of the directed infor-

mation from the reproduction symbol to the source symbols subject to a fidelity constraint.

A lossy compression scheme with (causal) feedforward side information is illustrated in Fig-

ure 5.1.1. The signal is transmitted over two independent channels, where the first channel

is noisy and has zero delay, while the second channel is noiseless but suffers from a delay. If

the delay of the noiseless channel corresponds to a unit delay, then at each time instant i, the

receiver knows the previously transmitted symbols. This model becomes more interesting

if the source symbols are not packed into packets, but instead are sent form the transmitter

to the receiver using nonanticipative processing. In such a formulation, the feedforward in-

formation is always causally known to the decoder, thus for the rest of this chapter we will

refer to this scenario as feedforward information instead of (causal) feedforward informa-

tion. The information measure introduced in [79], is not generally suitable to handle such

nonanticipative coding.

161
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Unit Delay
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FIGURE 5.1.1: The feedforward rate distortion problem

This chapter consists of the following parts.

• Provides an information measure which is suitable for nonanticipative transmission

with feedforward information at the decoder.

• Provides the relation between feedforward RDF, nonanticipative RDF with feedfor-

ward information, and relates them to Wyner-Ziv general formulation [84] for com-

pression with side information, both at the encoder and the decoder. The later formu-

lation utilizes mutual information between the source and its reproduction symbols,

causally conditioned on the previous source symbols.

• Shows that for Markov sources and certain distortion criteria, all the above informa-

tion measures are equivalent, and shows that for this case, the nonanticipative RDF

with feedforward side information has an operational meaning. This is the Optimal

Performance Theoretically Attainable (OPTA) by noncausal codes, with nonanticipa-

tive decoder side information.

• Computes the nonanticipative RDF with feedforward information at the decoder, the

corresponding optimal reproduction distribution, and their respective bounds for the

no feedforward case.

• Discusses the application on nonanticipative RDF with feedforward side information

at the decoder in JSCC based on nonanticipative transmission.

• Compute examples.

5.2 Feedforward RDF

In this section we review certain definitions and results presented in [79], which we use

in subsequent sections. Let N 4
= {0,1,2, . . . ,}. Throughout we assume that the source
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{Xi : i= 0,1, . . .}, and its reproduction {Yi : i= 0,1, . . .} take values in finite alphabets spaces

X,Yi : i = 0, . . . respectively, and they are jointly stationary ergodic. Given the source and

the reproduction distribution denoted by {PXn : n ∈ N} and {PY n|Xn : n ∈ N}, respectively,

the joint distribution is defined by PXn,Y n = PY n|Xn⊗PXn, ∀ n ∈ N.

Consider a measurable, bounded, nonnegative distortion function denoted by

d0,n(xn,yn)
4
= ∑

n
i=0 ρ(T ixn,T iyn), where for each i, T ixn is a causal mapping of xn.

The noncausal source code with feedforward information at the decoder is defined as

follows.

Definition 5.1. An (n,2nR) feedforward source of code rate R and block length n, consists

of the following encoder and decoder mappings:

e : X n 7→ {1,2, . . . ,2nR}

gi : {1,2, . . . ,2nR}×X0,i−1 7→ Yi, i = 0,1, . . . ,n

The decoder receives the index {1,2, . . . ,2nR} of the codeword and among with the available

side information constructs the reproduction symbols at each time instant i = 0,1, . . . ,n. The

objective of this feedforward lossy compression scheme is to minimize the rate R, subject to

the predefined distortion function d0,n(xn,yn). An achievable rate is defined as follows.

Definition 5.2. R is an achievable rate at expected distortion D > 0 if ∀ ε > 0, and n suffi-

ciently large, there exists an (n,2nR) feedforward code such that

1
n+1

EPXn,Y n

{
d0,n(Xn,Y n)

}
≤ D+ ε

The information measure which is used to derive direct and converse coding theorems is the

directed information from the reproduction sequences to the source sequence, defined by

[79]

I(Y n→ Xn) =
n

∑
i=0

I(Y i;Xi|X i−1)

The following theorem is derived in [79].Chri
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Theorem 5.3. Define the average fidelity set by

Q0,n(D)
4
=
{

PY n|Xn :
1

n+1
E
{

d0,n(Xn,Y n)
}
≤ D

}
(5.2.1)

The finite-time information feedforward RDF is defined by

R f f
0,n(D)

4
= inf

Q0,n(D)
I(Y n→ Xn) (5.2.2)

The OPTA by noncausal codes with feedforward information is

R f f (D)
4
= lim

n→∞

1
n+1

R f f
0,n(D) (5.2.3)

provided the infimum exists and the limit is finite.

For Markov sources with finite memory m, it is shown in [79] that any family of distortion

criteria, d0,n(xn,yn), satisfies

d0,n(xn,yn) =−c
1
n

log
⊗n

i=0P∗Yi|X i
i−m

PXi|X i−1
i−m

⊗n
i=0 ∑Xi P∗

Yi|X i
i−m

PXi|X i−1
i−m

+d0(xn) (5.2.4)

where c > 0 and P∗Yi|X i
i−m

is the optimal reproduction distribution. The family of these distor-

tion criteria, restricts the admissible set of joint probability distributions to

P∗Xn,Y n
4
=⊗n

i=0P∗Yi,Xi|X i−1
i−m

=⊗n
i=0P∗Yi|X i

i−m
PXi|X i−1

i−m
(5.2.5)

while the family of reproduction distributions satisfies

P∗Y n|Xn =⊗n
i=0P∗Yi|Y i−1,Xn =⊗n

i=0PYi|X i
i−m

(5.2.6)

The point to be made regarding (5.2.6), is that unlike the general RDF with feedforward

information (which is not necessarily nonanticipative), this expression is a convolution of

nonanticipative conditional distributions. However, computing R f f (D) appears to be diffi-

cult, and one has to introduce additional assumptions (see [79]).Chri
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5.2.1 Information Measure Identities

In this section we show that the feedforward RDF can be derived from the general framework

of Wyner-Ziv [84], and that it is equivalent to the maximization, over a fidelity set, of the

mutual information causally conditioned on the previous source symbols. Moreover, we

show that when side information is available both at the encoder and the decoder, then an

equivalent information measure of (5.2.3) is the causally-conditioned mutual information.

Hence, we identify another equivalent definition of the feedforward rate distortion function.

The causally conditioned mutual information is defined by

I(Xn;Y n||Xn−1)
4
=

n

∑
i=0

I(Xn;Yi|Y i−1,X i−1) =
n

∑
i=0

E
{

log
PYi|Xn,Y i−1

PYi|Y i−1,X i−1

}
(5.2.11) (5.2.7)

where E denotes the expectation over the joint probability distribution PXn,Y n . Note that

PXn,Y n =⊗n
i=0(PYi|Y i−1,Xn⊗PXi|X i−1) (5.2.8)

=⊗n
i=0(PYi|Y i−1,X i⊗PXi|X i−1,Y i−1) (5.2.9)

=⊗n
i=0(PYi|Y i−1,X i−1⊗PXi|X i−1,Y i) (5.2.10)

Define the following information measures.

I(Y n→ Xn)
4
=

n

∑
i=0

I(Y i;Xi|X i−1) (5.2.11)

I(Xn← Y n)
4
=

n

∑
i=0

I(Y i−1;Xi|X i−1) (5.2.12)

I(Xn→ Y n||Xn−1)
4
=

n

∑
i=0

I(X i;Yi|Y i−1,X i−1) (5.2.13)

Next, we presents theorems that relate the information measures (5.2.7), (5.2.11) and (5.2.11).

Theorem 5.4. The mutual information causally conditioned defined by (5.2.7) is equivalent

to the feedforward directed information defined by (5.2.11). Therefore,

I(Xn;Y n||Xn−1) = I(Y n→ Xn)
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Proof. By combining (5.2.8) and (5.2.10), we obtain

I(Xn;Y n||Xn−1) =
n

∑
i=0

E
{

log
PYi|Y i−1,Xn

PYi|X i−1,Y i−1

}
= E

{
log⊗n

i=0
PYi|Y i−1,Xn⊗PXi|X i−1

PYi|X i−1,Y i−1⊗PXi|X i−1

}
= E

{
log

PXn,Y n

⊗n
i=0PYi|X i−1,Y i−1⊗PXi|X i−1

}
(5.2.14)

(α)
= E

{
log⊗n

i=0
PYi|Y i−1,X i−1⊗PXi|X i−1,Y i

PYi|Y i−1,X i−1⊗PXi|X i−1

}
=

n

∑
i=0

E
{

log
PYi|Y i−1,X i−1⊗PXi|X i−1,Y i

PYi|Y i−1,X i−1⊗PXi|X i−1

}
=

n

∑
i=0

E
{

log
PXi|X i−1,Y i

PXi|X i−1

}
= I(Y n→ Xn) (5.2.15)

where (α) follows from (5.2.10). Hence by (5.2.15), it follows that mutual information

causally conditioned on the previous source symbols gives the information measure of the

feedforward directed information. Thus, we establish the following equivalent representa-

tion of feedforward RDF.

Corollary 5.5. The feedforward RDF is alternatively defined as follows.

R f f (D) = lim
n→∞

inf
Q0,n(D)

1
n+1

I(Xn;Y n||Xn) (5.2.16)

In general, the optimal reproduction distribution of (5.2.16) is not causal, Additionally, by

combining (5.2.8) and (5.2.9) we have the following theorem.

Theorem 5.6. The following information identity holds

I(Y n→ Xn) = I(Xn;Y n||Xn−1) = I(Xn→ Y n||Xn−1)+ I(Xn← Y n)
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Proof.

I(Xn;Y n||Xn−1) =
n

∑
i=0

E
{

log
PYi|Y i−1,Xn

PYi|Y i−1,X i−1

}
(α)
=

n

∑
i=0

E
{

log
PYi|Y i−1,X i⊗PXi|X i−1,Y i−1

PYi|Y i−1,X i−1⊗PXi|X i−1

}
=

n

∑
i=0

E
{

log
PYi|Y i−1,X i

PYi|Y i−1,X i−1

}
+

n

∑
i=0

E
{

log
PXi|X i−1,Y i−1

PXi|X i−1

}
= I(Xn→ Y n||Xn−1)+ I(Xn← Y n) (5.2.17)

where (α) is obtained from (5.2.14). Combining (5.2.15) and (5.2.17), results the provided

information identity.

The term I(Xn→ Y n||Xn−1) appearing in (5.2.17), will be used in a subsequent section to

characterize the nonanticipative RDF with feedforward side information.

Remark 5.7. Suppose the MC holds: Xn
i+1 ↔ X i ↔ Y i, i = 0,1, . . . ,n− 1. Then, from

(5.2.17) we have I(Xn;Y n||Xn−1) = I(Xn → Y n||Xn−1), in which the joint distribution is

PXn,Y n = ⊗n
i=0(PYi|Y i−1,X i⊗PXi|X i−1). This leads to the definition of the nonanticipative RDF

with feedforward information.

5.3 Nonanticipative RDF with FeedForward Side Informa-

tion

In this section we modify the nonanticipative RDF of Chapter 3, to include feedforward side

information. We also show that for m-order Markov sources and certain coupled letter distor-

tion criteria, feedforward RDF and nonanticipative RDF with feedforward information are

equivalent. This implies that the coding theorem derived in [79] is directly applicable to the

nonanticipative RDF with feedforward information, and hence it is the OPTA by noncausal

codes with causal side information. Moreover, we give the form of the optimal reconstruc-

tion distribution, and several of its properties which are important in solving examples. We

utilize the optimal reproduction distribution to specific examples which are analysed in [79],

to illustrate the simplicity by applying the general solution.
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Recall the nonanticipative RDF defined by

Rna
0,n(D) = inf

PY n|Xn∈Q0,n(D)

Xn
i+1↔X i↔Y i, i=0,1,...,n−1

I(Xn;Y n)

Notice that the only difference between the classical RDF is that the following MC must

hold.

Xn
i+1↔ X i↔ Y i i = 0,1, . . . ,n−1, n≥ 0 (5.3.18)

Remark 5.8. The main point to be made regarding Rna
0,n(D) is that the optimal reproduction

is restricted by (5.3.18) to be nonanticipative. Hence, it is suitable for realization based

on nonanticipative transmission, via an encoder-channel-decoder scheme, using real-time

operations (causal). This property is necessary for joint source channel coding based on SbS

or uncoded transmission schemes.

We recall the following Lemma derived in Section 2.3.1, Chapter 2.

Lemma 5.9. The following statements are equivalent.

1) Yi↔ (X i,Y i−1)↔ Xn
i+1, i = 0,1 . . . ,n−1 forms a MC

2) Xi+1↔ X i↔ Y i, i = 0,1 . . . ,n−1 forms a MC

3) Xn
i+1↔ X i↔ Y i, i = 0,1 . . . ,n−1 forms a MC

By applying Lemma 5.9, we obtain the following result.

Theorem 5.10. Suppose MC 3) of Lemma 5.9 holds.

Then,

I(Y n→ Xn)
(α)
= I(Xn;Y n||Xn−1)

=
n

∑
i=0

∫
log

(
PYi|Y i−1,X i

PYi|Y i−1,X i−1

)
⊗i

j=0PY j|Y j−1,X j(dy j|y j−1x j)⊗PX j|X j−1(dx j|x j−1) (5.3.19)

= I(Xn→ Y n||Xn−1)

≡ IXn→Y n||Xn−1(PXi|X i−1,PYi|Y i−1,X i : i = 0,1, . . . ,n) (5.3.20)
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Moreover,

PYi|Y i−1,X i−1 =
∫
Xi

PYi|Y i−1,X i(dyi|yi−1,xi)⊗PXi|X i−1,Y i−1(dxi|xi−1,yi−1)

(β )
=
∫
Xi

PYi|Y i−1,X i(dyi|yi−1,xi)⊗PXi|X i−1(dxi|xi−1)

Proof. Equality (α) holds due to (5.2.15). Directed information causally conditioned (with-

out assuming any of the statements of Lemma 5.9) is defined by

I(Xn→ Y n||Xn−1) =
n

∑
i=0

∫
log

(
PYi|Y i−1,X i

PYi|Y i−1,X i−1

)
⊗i

j=0 PY j|Y j−1,X j(dy j|y j−1,x j)

⊗PX j|X j−1,Y j−1(dx j|x j−1,y j−1) (5.3.21)

By MC 2), PX j|X j−1,Y j−1(dx j|x j−1,y j−1) = PX j|X j−1(dx j|x j−1), and by (5.3.21) we obtain

(5.3.19), that is, PXn,Y n = ⊗n
i=0PYi|X i,Y i−1 ⊗ PXi|X i−1 . Equality in (β ) holds due to MC 2).

This completes the derivation.

The functional IXn→Y n||Xn−1(., .) indicates the dependence on the conditional distributions

{PXi|X i−1 ,PYi|X i,Y i−1 : i = 0,1, . . . ,n}, when {PXi|X i−1 : i = 0,1, . . . ,n} and {PYi|X i,Y i−1 : i =

0,1, . . . ,n} is the reproduction conditional distribution.

We now proceed to define the nonanticipative RDF with feedforward information. Since

{PYi|X i,Y i−1 : i= 0,1, . . . ,n} uniquely defines
−→
P Y n|Xn(dyn|xn)

4
=⊗n

i=0PYi|X i,Y i−1 and vice-versa,

we have the following. Given a source distribution PXn and a causal (n+1)-fold convolution

conditional distribution
−→
P Y n|Xn , the joint distribution, PXn,Y n , is well defined.

Definition 5.11. (Nonanticipative RDF with Feedforward Information)

The nonanticipative RDF with feedforward information is defined by

Rna, f f (D)
4
=

1
n+1

lim
n→∞

Rna, f f
0,n (D)

where

Rna, f f
0,n (D)

4
= inf

PY n|Xn∈Q0,n(D)

Xn
i+1↔X i↔Y i, i=0,1,...,n−1

I(Xn;Y n||Xn−1) (5.3.22)Chri
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Q0,n(D)
4
=
{

PY n|Xn :
1

n+1
E(d0,n(Xn,Y n))≤ D

}
(5.3.23)

By Theorem 5.10, an equivalent definition is

Rna, f f
0,n (D) = inf

{PYi|Y i−1,Xi : i=0,1,...,n}∈Qna
0,n(D)

IXn→Y n||Xn−1(PXi|X i−1,PYi|Y i−1,X i : i = 0,1, . . . ,n)

≡ inf−→
P Y n|Xn∈Qna

0,n(D)
IXn→Y n||Xn−1(PXn,

−→
P Y n|Xn) (5.3.24)

where

Qna
0,n(D)

4
=
{

PYi|Y i−1,X i : i = 0,1, . . . ,n :
1

n+1
E(d0,n(Xn,Y n))≤ D

}
≡
{−→

P Y n|Xn :
1

n+1

∫
E(d0,n(Xn,Y n))

−→
P Y n|Xn(dyn|xn)⊗PXn(dxn)≤ D

}
(5.3.25)

Next, we assume existence of the extremum solution of (5.3.24), and we give the optimal re-

production distribution
−→
P ∗Y n|Xn which uniquely defines {P∗Yi|X i,Y i−1 : i = 0,1, . . . ,n}, and vice

versa [73]. The existence of the optimal solution can be addressed following [73].

Theorem 5.12. The optimal stationary reproduction conditional distribution for Rna, f f (D)

is given by

−→
P
∗
Y n|Xn =⊗n

i=0

esρ(T ixn,T iyn)P∗Yi|Y i−1,X i−1∫
Yi

esρ(T ixn,T iyn)P∗Yi|Y i−1,X i−1

(5.3.26)

P∗Yi|Y i−1,X i−1(dyi|yi−1,xi−1) =
∫
Xi

P∗Yi|Y i−1,X i(dyi|yi−1,xi)PXi|X i−1(dxi|xi−1) (5.3.27)

and

Rna, f f
0,n (D) = sD(n+1)−

n

∑
i=0

∫
X i×Y i−1

log
(∫

Yi

esρ(T ixn,T iyn)P∗Yi|Y i−1,X i−1

)
PXi|X i−1⊗P∗X i−1,Y i−1

(5.3.28)

where s, denotes the Lagrange multiplier associated with the fidelity constraint (5.3.25), and

P∗X i−1,Y i−1 =
−→
P
∗
Y i−1|X i−1PX i−1 .

Proof. The derivation is similar to Theorem 2.32, [73].
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By (5.3.26) we deduce that the stationary reproduction conditional distribution is given by

P∗Yi|Y i−1,X i(dyi|yi−1,xi) =
esρ(T ixn,T iyn)P∗Yi|Y i−1,X i−1(dyi|yi−1,xi−1)∫
Yi

esρ(T ixn,T iyn)P∗Yi|Y i−1,X i−1(dyi|yi−1,xi−1)
(5.3.29)

Hence, (5.3.29) is a nonlinear equation of the form

ξ
∗(yi−1,xi) = T (s,ρ(T ixn,T iyn),xi−1,ξ ∗(yi−1,xi)) (5.3.30)

where ξ ∗(yi−1,xi)
4
= P∗Yi|Y i−1,X i(dyi|yi−1,xi). Thus, if (5.3.30) has a unique solution, then

the distortion function ρ(T ixn,T iyn) and the source distribution PXi|X i−1(dxi|xi−1) determine

the dependence of ξ ∗(., .) on (yi−1,xi). Since the operator T (s,ρ(T ixn,T iyn), xi−1, .) is

nonlinear, the existence and uniqueness of solutions to (5.3.27) can be addressed by fixed

point theorems.

The following Theorem gives some of the property of the nonanticipative RDF with feed-

forward information.

Theorem 5.13. Suppose the optimal stationary reproduction conditional distribution (5.3.29)

is unique. Then the following hold.

1. P∗Yi|,X i,Y i−1(dyi|yi−1,xi) depends on the history (yi−1,xi) through the source distribution

PXi|X i−1(dxi|xi−1), history xi−1, and the distortion function ρ(T ixn,T iyn).

2. If the source is m-order Markov process denoted by PXi|X i−1
i−m

(.|.) 4=PXi|Xi−m,Xi−m+1,...,Xi−1(.|.),
m ∈ {1,2, . . . ,M}, and the distortion function is k ∈ {1,2, . . . ,K} letter coupled, and

l ∈ {1,2, . . . ,L} letter coupled with respect to T ixn and T iyn, respectively, defined by

ρ(T ixn,T iyn)
4
= ρ̄(xi−k+1,xi−k+2, . . . ,xi,yi−l+1,yi−l+2, . . . ,yi)

then

P∗Yi|Y i−1,X i(dyi|yi−1,xi) = P∗Yi|Y i−1
i−l+1,X

i
i− j
(dyi|yi−1

i−l+1,x
i
i− j) (5.3.31)

where j
4
= max{k−1,m} and yl

m = { /0} if l < m.Chri
sto

s K
. K

ou
rte

lla
ris



Chapter 5. Nonanticipative RDF with Feedforward Information 172

Proof. 1. This follows from (5.3.27). 2. Under the stated conditions, the operator T (., ., ., .)

in (5.3.27) depends on {xi−k+1,xi−k+2, . . . ,xi,yi−l+1,yi−l+2, . . . ,yi} through ρ(., .), and on

{xi−m,xi−m+1, . . . ,xi−1} through the source PXi|X i−1(.|xi−1). Hence the claim.

The next remark discusses several cases of m-order Markov sources and coupled distortion

functions, and identifies fundamental differences between the optimal reproduction distribu-

tion of Rna, f f
0,n (D) and Rna

0,n(D)

Remark 5.14. The following special cases follow directly from the previous Theorem.

1. If ρ(T ixn,T iyn)= ρ̄(xi,yi) and the source is Markov PXi|X i−1(dxi|xi−1)=PXi|Xi−1 (dxi|xi−1),

then

P∗Yi|Y i−1,X i(dyi|yi−1,xi) = P∗Yi|Xi,Xi−1
(dyi|xi,xi−1)

2. If ρ(T ixn,T iyn) = ρ̄(xi−1,xi,yi) and the source is m-order Markov PXi|X i−1(dxi|xi−1) =

PXi|X i−1
i−m

(dxi|xi−1
i−m), then

P∗Yi|Y i−1,X i(dyi|yi−1,xi) = P∗Yi|X i
i−m

(dyi|xi
i−m)

3. If ρ(T ixn,T iyn)= ρ̄(xi−1,xi,yi−1,yi) and the source is m-order Markov PXi|X i−1(dxi|xi−1)

= PXi|X i−1
i−m

(dxi|xi−1
i−m), then

P∗Yi|Y i−1,X i(dyi|yi−1,xi) = P∗Yi|Yi−1,X i
i−m

(dyi|yi−1,xi
i−m)

Note that the optimal reproduction distribution corresponding to Rna, f f
0,n (D) has the same

form as the optimal reproduction distribution of Rna
0,n(D), with PYi|Y i−1 replaced by PYi|Y i−1,X i−1 .

However, unlike the nonanticipative feedforward RDF, Rna, f f
0,n (D), for the nonanticipative

RDF, Rna
0,n(D), even for ρ(T ixn,T iyn) = ρ(xi,yi) we cannot determine á priori the depen-

dence of the optimal reproduction conditional distribution on yi−1, because its right hand

side term depends on P∗Yi|Y i−1 . Specifically, from Theorem 2.32, Chapter 2, we have

P∗Yi|Y i−1,X i(dyi|yi−1,xi)≡ P∗Yi|Y i−1,Xi
(dyi|yi−1,xi) =

esρ̄(xi,yi)P∗Yi|Y i−1(dyi|yi−1)∫
Yi

esρ̄(xi,yi)P∗Yi|Y i−1(dyi|yi−1)
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Upon conditioning, the right hand side conditional distribution gives

P∗Yi|Y i−1(dyi|yi−1) =
∫
Xi

P∗Yi|Y i−1,Xi
(dyi|yi−1,xi)⊗PXi|Y i−1(dxi|yi−1) (5.3.32)

Comparing (5.3.32) and (5.3.29) it is clear that feedforward side information reduces the

computational complexity of the optimal reproduction conditional distribution of Rna, f f (D).

In the next Theorem we provide lower and upper bounds for Markov sources using the

nonanticipative RDF and the nonanticipative RDF with feedforward information.

Theorem 5.15. Consider an m-oder Markov source and distortion criteria that satisfy (5.2.4).

Then

R f f (D) = Rna, f f (D)≤ R(D)≤ Rna(D)

Proof. The first equality holds since the optimal reproduction distribution of the feedforward

RDF is nonanticipative. The second inequality holds since side information both at the

encoder and the decoder does not increase the classical RDF. Finally, the last inequality

because the infimum is over a larger set since Qna
o,n(D)⊆ Qo,n(D).

In general, noisy coding theorems for the nonanticipative RDF can be shown by nonan-

ticipative JSCC, in the sense of Chapter 4. The optimal reproduction distribution of the

nonanticipative RDF will define the form of the channel. For this channel and its respective

average cost constraint P, one must design and encoder-decoder scheme that achieves the

information matching, i.e. Rna, f f (D) = C(P), and satisfies the average cost constraint and

the average distortion.

5.4 Examples

In this section we apply Theorem 5.12 and Remark 5.14, for sources with feedforward infor-

mation, to derive the expressions of the nonanticipative RDF with feedforward information,

for specific Markov sources and distortion criteria.Chri
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5.4.1 Binary Symmetric Markov source

Consider a binary symmetric Markov source with transition probabilities PXi|Xi−1(0|0) =
PXi|Xi−1(1|1) = 1− p and PXi|Xi−1(0|1) = PXi|Xi−1(1|0) = p, p ≤ 0.5, i = 0,1, . . . ,n, and a

single letter Hamming distortion which is equal to 0, when the source symbol is identical

to reproduction symbol, and 1 otherwise. A closed form expression for the classical RDF

without side information, is only available for a small region of distortion, D ≤ Dc, and is

given by [37]

R(D) = H(p)−H(D), if 0≤ D≤ 1
2

(
1−

√
1−
( p

q

)2
)
≡ Dc (5.4.33)

where q = 1− p. For any D ∈ [Dc,Dmax], (5.4.33) provides a lower bound on the classical

RDF. Other lower and upper bounds are also known [5]. In the current example we assume

that the decoder has feedforward information, which is the previous transmitted bit. The

available side information will reduce the rate required to reconstruct the source subject to

the fidelity criterion. By Theorem 5.15, the obtained result, Rna, f f (D), is a lower bound on

the classical RDF without side information, R(D).

By using Theorem 5.12 and Remark 5.14.1, the optimal reproduction distribution of the

nonanticipative RDF with feedforward is given by.

P∗Yi|Xi,Xi−1
=

[ 0,0 0,1 1,0 1,1

0 a b 1−b 1−a

1 1−a 1−b b a

]
(5.4.34)

P∗Yi|Xi−1
=

[ 0 1

0 a b

1 1−a 1−b

]
(5.4.35)

where a = (1−D)(1−p−D)
(1−p)(1−2D) and b = (1−D)(p−D)

p(1−2D) , while the Lagrange multiplier s, calculated via

the average distortion constraint, is s = D
1−D . Substituting (5.4.34) and (5.4.35) to (5.3.28),

we obtain

Rna, f f (D) =

{
H(p)−H(D) if 0≤ D≤ Dmax

0 otherwise
(5.4.36)

where Dmax = min{p,1− p}= p.
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FIGURE 5.4.2: Upper and lower bounds for the classical RDF of a BSMSp.

It is surprising to observe that Rna, f f (D), given by (5.4.36), is identical to the lower bound of

the classical rate distortion problem without side information derived by Gray [37], which

is tight for D≤ 1
2

(
1−
√

1−
(

p
q

)2
)

, and identical to the RDF of a Bernoulli source. This

interesting result is easily physically interpreted, since the knowledge of the previous trans-

mitted symbol at the decoder converts the problem to its respective memoryless, Bernoulli

p,1− p problem.

By using the solution of the nonanticipative RDF with feedforward information given by

(5.4.36), and the result of the nonanticipative RDF without side information obtained in

Section 2.5, Chapter 2, the classical RDF is bounded below by the nonanticipative RDF

with feedforward and above by the nonanticipative RDF. Define {x}+ = max(0,x). Then,

{H(p)−H(D)}+ ≤ R(D)≤ {H(m)−H(D)}+ (5.4.37)

The bounds defined by 5.4.37) for various values of p is illustrated in Figure. 5.4.2.Chri
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5.4.2 Stock Market Problem

In this section we reproduce the solution of an example given in [79] using the expression

of the optimal reproduction distribution. Assume the value of a stock X in the stock market

over an n time period, is modelled by a Markov chain that takes k different values, as shown

in Figure 5.4.3. Thus, by assuming that at a given time instant the value of the stock is j,

the next day the value may be either increase to j+ 1 with probability p j, either decrease

to j−1 with probability q j, or remain the same with probability 1− p j−q j. Additionally,

assume that the previous values of the stock are known, as side information. Our purpose is

to send information when the value of the stock drops. Thus, Yi = 1 when the value drops

from day n−1 to day n, and Yi = 0 otherwise. The distortion is modelled using a Hamming

distortion measure as shown in Table 5.4.1.

xi,xi−1

j+1 , j j , j j-1 , j

yi
0 0 0 1

1 1 1 0

TABLE 5.4.1: Distortion table: ρ(yi,xi,xi−1)

Summarizing, the objective of this problem is to estimate the minimum amount of infor-

mation that needs to be sent in order to reconstruct the value of the source subject to a

predefined average distortion D, taking into consideration the available feedforward infor-

mation. By using Theorem 5.12 and Remark 5.14.2, the optimal reproduction distribution

of the nonanticipative RDF with feedforward is given by.

Rna, f f (D) = inf
PYi|Xi,Xi−1

∈Qna(D)
∑

Yi,Xi,Xi−1

log
PYi|Xi,Xi−1

PYi|Xi−1

PYi,Xi,Xi−1

where {Qna(D) = PYi|Xi,Xi−1 : ∑Yi,Xi,Xi−1 ρ(Yi,Xi,Xi−1) PYi|Xi,Xi−1PXi|Xi−1PXi−1 ≤ D}. The opti-

mal reproduction distribution is given by

PYi|Xi,Xi−1 =
esρ(yi,xi,xi−1)PYi|Xi−1

∑Yi esρ(yi,xi,xi−1)PYi|Xi−1

(5.4.38)

The results for the optimal reproduction distribution, are obtain iteratively by using (5.4.38).

The distribution PYi|Xi−1 is given by (5.4.39) where ε = D
1−π j

, and {π j : j = 0,1, . . .} is the
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FIGURE 5.4.3: Stock value model

steady state probability of each state j : j = 1,2, . . . ,k of the source.

PYi|Xi−1(yi|xi−1) =


0 j

0 1
1−q j− ε

1−2ε

1 0
q j− ε

1−2ε

 (5.4.39)

From the solution of the causal rate distortion function we obtain

Rna, f f (D) = sD− ∑
xi,xi−1

[
log∑

yi

esd(yi,xi,xi−1)PYi|Xi−1

]
PXi|Xi−1PXi−1

= ε(1−π j) log
ε

1− ε
−

k

∑
j=1

π j

[
(1−q j) log

1−q j

1− ε
+(q j) log

q j

1− ε

]
=

k

∑
j=1

π j

[
H(q j)−H(ε)

]

To calculate the maximum value of the distortion, Dmax, we set the above equation equal

to zero, thus we get D j = q j(1− π0) and D j = (1− q j)(1− π0). Consequently Dmax =

min[q j(1−π0),(1− q j)(1−π0)]. This is an interesting result since the maximum value of

the distortion depends on the previous value of the stock. For example, for some values of

the stock, Dmax might be overreached, thus sending any information for that value is useless.

The solution of the nonanticipative RDF with feed-forward information is given by

Rna, f f (D) =

 ∑
k
j=1 π j

[
H(q j)−H(ε)

]
if D≤ Dmax

0 if D > Dmax
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5.4.3 Gaussian Markov Source

Consider a stationary ergodic Gaussian Markov source {Xi : i = 0,1, . . .} with mean 0 and

variance σ2 described by

Xi = ρXi−1 +Ni where Ni ∼N (0,(1−ρ
2)σ2), i = 1,2, . . . (5.4.40)

Suppose that we want to reconstruct a linear combination aXi + bXi−1, i = 1,2, . . ., subject

to the mean squared error distortion criterion 1
n ∑

n
i=1(Yi− (aXi+bXi−1))

2, where a and b are

constants. Since the source is stationary we will assume time instant n = 2 for the rest of the

problem. The optimal rate distortion function is given by

Rna, f f (D) = lim
n→∞

1
n

I(Xn→ Y n||Xn−1)

= lim
n→∞

1
n

n

∑
i=0

∑
X i,Y i

log
fYi|X i,Y i−1

fYi|X i−1,Y i−1
fX i,Y i

= lim
n→∞

1
n

n

∑
i=0

∑
X i,Y i

log
fYi|Xi,Xi−1

fYi|Xi−1

fYi|Xi,Xi−1PXi,Xi−1

= ∑
X2,X1,Y2

log
fY2|X2,X1

fY2|X1

fY2|X2,X1 fX2,X1

= ∑
X2,X1,Y2

log
fY2,X2,X1 fX1

fX2,X1 fY2,X1

fY2|X2,X1 fX2,X1

= ∑
X2,X1,Y2

log
fX2|Y2,X1

fX2|X1

fY2|X2,X1 fX2,X1

= h(X2|X1)−h(X2|Y2,X1) (5.4.41)
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FIGURE 5.4.4: Test channel

Next, we will find a lower bound for the rate distortion function as defined in 5.4.41 and

then prove that this is achievable.

h(X2|X1)−h(X2|Y2,X1)

=
1
2

log2πe(1−ρ
2)σ2−h(X2|Y2,X1)

=
1
2

log2πe(1−ρ
2)σ2−h((X2 +

b
a

X1−
1
a

Y2)|Y2,X1) (5.4.42)

=
1
2

log2πe(1−ρ
2)σ2−h(

1
a
(aX2 +bX1−Y2)|Y2,X1)

(1∗)
=

1
2

log2πe(1−ρ
2)σ2−h(aX2 +bX1−Y2|Y2,X1)− log

1
a

=
1
2

log2πe(1−ρ
2)σ2−h(aX2 +bX1−Y2|Y2,X1)+

1
2

loga2

(2∗)
≥ 1

2
log2πe(1−ρ

2)σ2−h(aX2 +bX1−Y2)+
1
2

loga2

(3∗)
≥ 1

2
log2πe(1−ρ

2)σ2−h(N (0,E((aX2 +bXi)−Y2)
2))+

1
2

loga2

=
1
2

log2πe(1−ρ
2)σ2− 1

2
log(2πe)E((aX2 +bXi)−Y2)

2 +
1
2

loga2

(4∗)
≥ 1

2
log2πe(1−ρ

2)σ2− 1
2

log(2πe)
D
a2 (5.4.43)

=
1
2

log
2πe(1−ρ2)σ2a2

D

where (1*) follows from a property of relative entropy, (2*) holds since conditioning can not

increase uncertainty, (3*) follows from the fact that Gaussian distributions for a given vari-

ance maximizes the entropy and (4*) follows from the average distortion constraint. After

the calculation of the lower bound, what remains is to find a conditional density f (Y2|X2,X1)

that achieves that lower bound. To do this, we first calculate the test channel, f (X2|Y2,X1)

and then use Baye’s rule to calculate the desired conditional density. Thus we assume that
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the test channel as described in Figure has the following form

X2 = αY2 +βX1 + γ ⇒ X2−αY2−βX1 = γ (5.4.44)

where the parameters α,β and γ must equalize equations (5.4.42) and (5.4.43). This yields,

γ ∼N (0, D
a2 ), α = 1

a and β =−b
a . Since equation (5.4.44) is well defined both conditional

density f (Y2|X2,X1) and the test channel are defined.

5.5 Conclusion

The equivalence between RDF with feedforward information [79] and Wyner’s general for-

mulation of lossy compression with side information is established, using causally condi-

tioned mutual information [84] .

The nonanticipative RDF with feedforward information is formulated and its stationary so-

lution is obtained. General properties of the optimal reproduction conditional distribution

are identified, which are very important in solving such problems with coupled distortion

functions and m-order Markov sources.

The nonanticipative RDF with feedforward information, is also shown to have an operational

meaning for the case of m-order Markov sources and coupled distortion function, which fol-

lows from that of RDF with feedforward information [79]. The nonanticipative RDF with

feedforward information is shown to be a lower bound on classical RDF (the OPTA by non-

causal codes). The exact solution of the nonanticipative RDF with feedforward information

is derived for several examples, using properties of the optimal reproduction conditional

distribution.

The nonastationary solution of the nonanticipative RDF with feedforward information ap-

pears feasible and much simpler than the case of no feedforward information derived in [73].
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Chapter 6

Summary and Future Directions

Delayless or nonanticipative information transmission has several applications such as sen-

sor networks, communication for control, and biomedical modelling and analysis. In this

thesis, we introduced a theoretical framework of nonanticipative information theory for lossy

compression of sources with memory, and we derived structural properties of encoders, for

communication channels with memory and feedback. Subsequently, we integrated these re-

sults to provide the framework for symbol-by-symbol joint source channel coding. Finally,

we discussed an extension of the nonanticipative rate distortion function, in situations where

the decoder has access to previous transmitted symbols.

6.1 Summary and Concluding Remarks

Nonanticipative RDF for sources with memory

Summary:

We formulated the Nonanticipative RDF for general sources, by imposing a Markov chain

constraint on the optimization problem, which does not allow current reproduction symbols

to depend on future source symbols. We derived the stationary optimal reproduction distribu-

tion, corresponding to the nonanticipative RDF, a noisy coding theorem, and we elaborated

on its relations to other compression schemes. Finally, we calculated the nonanticipative

181
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RDF of a binary symmetric Markov source.

Concluding Remarks:

• Nonanticipative lossy compression is operational over noisy coding theorems.

• The Rate Loss of nonanticipation defined by RL
4
= Rna(D)−R(D), characterizes the

excess amount of the information, with respect to non causal codes, due to nonantici-

pation.

• A closed form expression for the classical RDF for sources with memory, is not al-

ways available. Hence, we may apply the nonanticipative RDF to provide a realizable

upper bound for the classical RDF.

Structural Properties of Extremum Problems of Capacity

Summary :

We derived structural encoder properties which maximize the directed information from the

source to the channel output, and structural properties of capacity achieving distribution.

We derived dynamic programming recursions to compute the encoder and the achieving

distribution. Moreover, we generalized PMS from memoryless channels to channels with

memory and feedback, to aid the design of encoders which achieve the information capac-

ity. Finally, we calculated the capacity and optimal input distribution of the Binary State

Symmetric Channel (BSSC) with or without feedback information at the encoder, and with

and without imposing transmission cost constraint.

Concluding Remarks:

• For the class of channels with memory which are Markov with respect to the source,

nothing can be gained by encoding blocks of source symbols, instead of encoding

symbol-by-symbol.

• Posterior Matching Scheme, is feasible even for channels with memory and feedback.Chri
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• Feedback does not increase the capacity of the BSSC, while the capacity achieving

input distribution is Markov.

Nonanticipative Joint Source Channel Coding for Real-Time Transmis-
sion

Summary:

We introduced definitions of symbol-by-symbol code without anticipation, and minimum

excess distortion, discussed the realization of the optimal non-anticipative reproduction dis-

tribution, and proved achievability of symbol-by-symbol code with memory and without

anticipation via a noisy channel. We applied the framework to demonstrate optimality of the

symbol-by-symbol JSCC for the Binary Symmetric Markov Source BSMS(p), communi-

cated over a Binary State Symmetric Channel, BSSC(α1,β1), while we discussed feedback,

no feedback, and unmatched realizations. Finally, we provided a bound for the excess dis-

tortion for finite length case.

Concluding Remarks:

• Symbol-by-symbol JSCC shows achievability for the nonanticipative RDF.

• Uncoded transmission of a BSMS(p) over a BSSC(α1,β1) is optimal in terms of

symbol-by-symbol transmission.

• The feedback realization of a BSMS(p) over a BSSC(α1,β1), yields a conditional

input distribution which is independent of the previous output, showing optimality of

an innovation encoder.

• Unmatched realization is achievable. The unmatched rate loss is a useful tool to

compare the performance of uncoded transmission compared to classical coding ap-

proaches.

Nonanticipative RDF with Feedforward Information

Summary:
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We provided an information measure suitable for nonanticipative transmission with feed-

forward information at the decoder, compared it with feedforward RDF, and discussed its

operation meaning for Markov sources. Finally, we computed the nonanticipative RDF with

feedforward information, for a Binary Markov source, and provided the corresponding opti-

mal reproduction distribution.

Concluding Remarks:

• The nonanticipative RDF with feedforward information, provides an upper bound on

the feedfoward RDF.

• For Markov sources with certain disortion criteria, nonanticipative RDF with feedfor-

ward information and feedfoward RDF are equivalent.

• The nonanticipative RDF with feedforward of Markov sources, provides a lower bound

on classical RDF without feedforward information.

6.2 Future Directions and Open Problems

6.2.1 Future Directions

Control over Communication Constraints

The general framework of Chapter 3, where the source may depend on previous channel

outputs, is suitable to develop the subject of communication for control [15, 16]. One can

apply the framework to address analysis and synthesis questions, related to stochastic opti-

mal control over finite rate noisy channels, under general conditions on the channel and the

controller. The main problem is to optimize a control pay-off subject to rate constraints on

the feedback link, between the controlled system outputs or/and the input to the controller.

The feedback link is often subject to limited rate, and the interest is to design encoders,

decoders and controllers for general channels with memory and feedback, for reliable com-

munication. It would be interesting and design optimal encoders, decoders and controllers,

which minimize a control pay-off, subject to a rate constraint, and understand the trade-off
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between control and communication performance.

The Gilbert-Elliot Channel

The Gilber-Elliot channel is a time varying binary symmetric channel with crossover prob-

abilities determined by a binary-state Markov process, and its capacity is obtained via a

limiting expression [54]. Its capacity is often obtained via algorithms [64]. In Chapter 3, we

discussed the binary state symmetric channel, where we showed that subject to the proposed

transformation, it decomposes into two binary symmetric channels. Moreover, we applied

an average cost constraint, by fixing the state of the channel, and calculated its capacity. If,

instead of fixing the steady state distribution of the state, we fix the transition probabilities of

the states, then the channel transforms to the Gilbert-Elliot channel. It would be interesting

to investigate whether it is possible to provide a closed form expression for some special

cases of the Gilbert-Elliot channel, based on the proposed approach.

Symbol-by-symbol Joint Source Channel Coding in the Presence of Feed-
forward Information at the Decoder

In Chapter 5, we discussed the nonanticipative RDF with feedforward side information of a

binary Markov source with single letter distortion criterion. The optimal reproduction distri-

bution depends on the current and previous channel input. It would be interesting to provide

a symbol-by-symbol JSCC for a channel that has the form of the optimal reproduction dis-

tribution. This preassumes a closed form expression for the capacity of this channel. To

calculate the capacity of this channel we may consider different schemes such as: adopting

the approach of Section 3.6, Chapter 3, considering it as a special case of the Multiple Ac-

cess Channel (MAC), in which the second input is a delay version of the first input, or even

approaching it as a relay network in which the relay imposes a unit delay to its respective

output. A similar approach to third alternative (relay network), is adopted in [30], and re-

gards a multiple Gaussian network where each relay node i introduces i-delay.Chri
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Nonanticipative Transmission for Networks

As illustrated explicitly in the binary symmetric Markov source example in the presence of

feedforward information, the reproduction distribution represents a specific network chan-

nel. It is on our interest to calculate the nonanticipative RDF of other sources with memory,

not necessarily symmetric or Markov, and provide symbol-by-symbol JSCC schemes that

perform optimally in terms of symbol-by-symbol transmission. Initially, we will restrict our

interest in cases where the respective capacities are known, in order to provide matching

conditions and the possible unmatched rate loss. We aim also to find cases where uncoded

transmission schemes perform optimally, in terms of symbol-by-symbol transmission.

6.2.2 Open Problems

Additional general open problems are the following.

• The solution of the nonstationary nonanticipative RDF is of interest in limited length

reliable communications.

• Characterizing the realizability conditions, for JSSC is of interest in designing com-

putational algorithms for symbol-by-symbol transmission.

• Generalizing nonanticipative RDF with general side information available to the de-

coder, which is complementary to the Wyner-Ziv formulation for non causal codes.

• Applying the framework to network information theory is an open challenge

• Trade-off between rate and minimum number of transmissions, for finite length symbol-

by-symbol transmission.
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Appendix A

Proofs of Chapter 2

A.1 Proof of Lemma. 2.21

First, recall that given the RV’s X , Y , Z, we say X and Y are conditionally independent

given Z if PX ,Y |Z(dx,dy|z) = PX |Z(dx|z)PY |Z(dy|z)− a.s. This statement is equivalent to

PX |Y,Z(dx|y,z)=PX |Z(dx|z)−a.s. and PY |X ,Z(dy|x,z)=PY |Z(dy|z)−a.s. or X↔Y↔ Z forms

a MC in both directions. Now we proceed with the derivation, by often assuming existence

of densities to avoid lengthy measure theoretic arguments.

MC1 =⇒ MC2: Since MC1 states that PY n|Xn(dyn|xn) = ⊗n
i=0PYi|Y i−1,Xn(dyi|yi−1,xn) =

⊗n
i=0PYi|Y i−1,X i(dyi|yi−1,xi), which is valid if and only if PYi|Y i−1,Xn(dyi|yi−1,xn) =

PYi|Y i−1,X i(dyi|yi−1,xi), i = 0,1, . . . ,n, or equivalently, Xn
i+1 ↔ (X i,Y i−1)↔ Yi forms a MC

for each i = 0,1, . . . ,n−1, then MC2 is obtained.

MC1 ⇐= MC2: By Bayes’ rule PY n|Xn(dyn|xn) = ⊗n
i=0PYi|Y i−1,Xn(dyi|yi−1,xn)

(a)
=

−→
P Y n|Xn(dyn|xn), where equality in (a) holds due to MC2, hence MC1.

MC1 =⇒ MC3: We need to show that PXi+1|X i,Y i(dxi+1|xi,yi) = PXi+1|X i(dxi+1|xi), i =

187
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Appendix A. Proofs of Chapter 2 188

0, . . . ,n−1. Note that

PXi+1|X i,Y i(dxi+1|xi,yi) =
∫
Xi+2,n

PXi+1,Xn
X+2|X i,Y i(dxi+1,dxn

i+2|xi,yi)

=
∫
Xi+2,n

PXn
i+1|X i,Y i(dxn

i+1|xi,yi)

(b)
=
∫
Xi+2,n

PXn
i+1|X i,Y i−1(dxn

i+1|xi,yi−1)

= PXi+1|X i,Y i−1(dxi+1|xi,yi−1), i = 0, . . . ,n−1 (A.1.1)

where (b) follows because MC1 and MC2 are equivalent. We show the rest of the derivation

by assuming existence of density functions which are denoted by lower case letters p̄(·|·).
From (A.1.1), we have

p̄(xi+1|xi,yi) = p̄(xi+1|xi,yi−1) =
p̄(xi+1,yi−1)

p̄(xi,yi−1)
=

p̄(yi−1|xi+1)p̄(xi+1)

p̄(yi−1|xi)p̄(xi)

=
×i−1

j=0 p̄(y j|y j−1,xi+1)p̄(xi+1)

×i−1
j=0 p̄(y j|y j−1,xi)p̄(xi)

(c)
=
×i−1

j=0 p̄(y j|y j−1,x j)

⊗i−1
j=0 p̄(y j|y j−1,x j)

.
p̄(xi+1)

p̄(dxi)

= p̄(xi+1|xi), i = 0, . . . ,n−1

where (c) follows because MC1 and MC2 are equivalent. This shows MC1 =⇒MC3.

MC2⇐= MC3: We need to show that p̄(yi|yi−1,xi,xn
i+1) = p̄(yi|yi−1,xi), i = 0, . . . ,n− 1.

But

p̄(yi|yi−1,xi,xn
i+1) =

p̄(yi,xi,xn
i+1)

p̄(yi−1,xi,xn
i+1)

=
p̄(xn|xn−1,yi)p̄(xn−1|xn−2,yi) . . . p̄(xi+1|xi,yi)p̄(xi,yi)

p̄(xn|xn−1,yi−1)p̄(xn−1|xn−2,yi−1) . . . p̄(xi+1|xi,yi−1)p̄(xi,yi−1)

(d)
=

p̄(xi,yi)

p̄(xi,yi−1)
=

p̄(yi|yi−1,xi)p̄(xi,yi−1)

p̄(xi,yi−1)
= p̄(yi|yi−1,xi), i = 0, . . . ,n−1

where (d) follows from MC3. This shows MC3 =⇒MC2. Thus, we have the equivalence

MC1⇐⇒MC2⇐⇒MC3.

MC4 =⇒MC3: Since for i = 0, . . . ,n−1, by MC4 we have

PXn
i+1|X i,Y i(dxn

i+1|xi,yi) = PXn
i+1|X i(dxn

i+1|xi)
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then by integrating over Xi+2,n both sides of the previous identity we obtain MC3.

MC4 ⇐= MC3: Since MC3 ⇐⇒ MC2, we show that if Xn
i+1↔ (X i,Y i−1)↔ Yi forms a

MC for i = 0,1, . . . ,n−1, then Xn
i+1↔ X i↔Y i forms a MC for i = 0,1, . . . ,n−1. We show

this by induction. First, we show that (Xi+1,Xi+2)↔ X i↔ Y i forms a MC, or equivalently,

p̄(xi+1,xi+2|xi,yi) = p̄(xi+1,xi+2|xi). Since

p̄(xi+1,xi+2|xi,yi) =
p̄(xi,xi+1,xi+2,yi)

p̄(xi,yi)
=

p̄(yi|yi−1,xi+2)p̄(yi−1,xi+2)

p̄(xi,yi)

=

p̄(yi|yi−1,xi)︸ ︷︷ ︸
(e)

p̄(xi+2|xi+1,yi−1)p̄(xi+1,yi−1)

p̄(xi,yi)

=

p̄(yi|yi−1,xi) p̄(xi+2|xi+1)︸ ︷︷ ︸
( f )

p̄(xi+1|xi,yi−1)p̄(xi,yi−1)

p̄(yi|yi−1,xi)p̄(xi,yi−1)

= p̄(xi+2|xi+1) p̄(xi+1|xi)︸ ︷︷ ︸
(g)

= p̄(xi+2,xi+1|xi).

where (e) is implied from MC2, while ( f ), (g) follows from MC3⇐⇒MC2. Hence, MC4
holds for n = i+2.

Suppose Xk
i+1↔ X i↔Y i forms a MC, for some i+2≤ k < n−1. We show that it holds for

k −→ k+1.

p̄(xk+1
i+1 |x

i,yi) =
p̄(xk+1

i+1 ,x
i,yi)

p̄(xi,yi)
=

p̄(xk+1|xk
i+1,x

i,yi)p̄(xk
i+1,x

i,yi)

p̄(xi,yi)

=

p̄(xk+1|xk)︸ ︷︷ ︸
(h)

p̄(xk
i+1|xi,yi)p̄(xi,yi)

p̄(xi,yi)

= p̄(xk+1|xk) p̄(xk
i+1|xi)︸ ︷︷ ︸
(i)

= p̄(xk+1
i+1 |x

i)

where (h), (i) follow from MC3⇐⇒MC2. This completes the derivation.Chri
sto

s K
. K

ou
rte

lla
ris



Appendix B

Proofs of Chapter 3

B.1 Proof of Theorem. 3.9

We first address part (b).

(b) We give a derivation based on stochastic optimal control techniques. Let

{e∗i (xi,ai−1,bi−1) : i = 0,1, . . . ,n} denote the optimal encoder strategy. Consider the pay-off

I(Xn→ Bn) =
n

∑
i=0

Ee
{∫

Bi

log
Pe

Bi|Bi−1,X i(dbi|Bi−1,X i)

Pe
Bi|Bi−1(dbi|Bi−1)

Pe
Bi|Bi−1,X i(dbi|Bi−1,X i)

}
(B.1.1)

= Ee
{ n

∑
i=0

log
Pe

Bi|Bi−1,X i(dBi|Bi−1,X i)

Pe
Bi|Bi−1(dBi|Bi−1)

}
(B.1.2)

where superscripts emphasize the dependence on the policies. Since ai = ei(x j,ai−1,b j−1)

then Pe
Bi|Bi−1,X i(dbi;bi−1,xi)=Pi(dbi;bi−1,xi,ai), i= 0,1, . . . ,n. Moreover by Assumption 3.8

then Pi(dbi;bi−1,xi,ai)= qi(dbi;bi−1,xi,ai)-a.a.(bi−1,xi,ai), i= 0,1, . . . ,n. Hence under As-

sumption 3.8 the pay-off becomes

I(Xn→ Bn) = Ee
{ n

∑
i=0

log
qi(dBi;Bi−1,Xi,Ai)

ve
i (dBi;Bi−1)

}
=

n

∑
i=0

I(Xi;Bi|Bi−1) (B.1.3)

where ve(dbi;bi−1) ∈K (Bi;B0,i−1) is the conditional distribution obtained via integration

ve(dbi;bi−1) =
∫
Xi

qi(dbi;bi−1,xi,ai)Pe
i (dxi;bi−1)
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By the property of conditional expectation, we have

n

∑
i=0

I(Xi;Bi|Bi−1) = Ee
{ n

∑
i=0

Ee
(

log
qi(dBi;Bi−1,Xi,Ai)

ve
i (dBi;Bi−1)

|X i,Bi−1,Ai
)}

By Assumption.3.8, the inner expectation is with respect to the conditional measure

Pe
Bi|Bi−1,X i(dbi|bi−1,xi) = qi(dbi;bi−1,xi,ai), i = 0,1, . . . ,n. Thus

I(Xn→ Bn) =
n

∑
i=0

I(Xi;Bi|Bi−1)

= Ee
{ n

∑
i=0

Ee
(

log
qi(dBi;Bi−1,Xi,Ai)

ve
i (dBi;Bi−1)

∣∣∣Xi,Bi−1,Ai

)}
≡ Ee

{ n

∑
i=0

`(Xi,Bi−1,Ai)
}

(B.1.4)

where

`(Xi,Bi−1,Ai)
4
=
∫
Bi

log
(qi(dbi;Bi−1,Xi,Ai)

ve
i (dbi;Bi−1)

)
qi(dbi;Bi−1,Xi,Ai)

Define Zi
4
= (Xi,Bi−1), i = 0,1, . . . ,n. Clearly the maximization of I(Xn→ Bn) over {ai =

ei(xi,ai−1,bi−1) : i = 0,1, ..,n} is performed by choosing the encoder output sequence {ai =

ei(xi,ai−1,bi−1) : i = 0,1, ..,n} to control the joint process {Zi
4
= (Xi,Bi−1) : i = 0,1, ..,n}.

Thus

I(Xn→ Bn) = Ee
{ n

∑
i=0

`(Zi,Ai)
}

.

From stochastic optimal control theory, it is known that if {Zi
4
= (Xi,Bi−1) : i = 0,1, . . . ,n}

is a Markov process controlled by the encoder process {Ai : i = 0,1, ..n}, then the opti-

mal encoder strategies {e∗j(a j−1,x j,b j−1) : i = 0,1, ..n} will reduce to the simplified form

{ḡi(zi) = gi(xi,bi−1) : i = 0,1, ..,n}. Under Assumption.3.7 is sufficient to show that {Zi :

i = 0,1, ...,n} is a Markov process controlled by {Ai : i = 0,1, ...,n}, that is

Pi(dzi;ai−1,zi−1) = Pi(dzi;ai−1,zi−1)−a.a. (ai−1,zi−1),∀ i ∈ Nn
+

Next, we show that {Zi : i = 0,1, . . . ,n} is a Markov process controlled by the channel input

process {Ai : i = 0,1, . . . ,n}. The rigorous way to prove this is by using the a.s. definition

of conditional independence. However,without loss of generality we assume existence of
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probability density functions

Pi+1(dzi+1;zi,ai) = pi+1(zi+1|zi,ai)dzi+1

Pi+1(dzi+1;zi,ai) = pi+1(zi+1|zi,ai)dzi+1

and we show that Pi+1(dzi+1;zi,ai) = pi+1(dzi+1;zi,ai)dzi+1, for almost all (ai,zi) : i =

0,1, . . . ,n−1. First we note that

pi+1(zi+1|zi,ai) = pi+1(xi+1,bi|xi,bi−1,ai)

= pi+1(xi+1|xi,bi,ai)pi+1(bi|xi,bi−1,ai)

By Assumptions 3.7 and 3.8, then

pi+1(zi+1|zi,ai) = pi+1(xi+1|xi,bi,ai)pi+1(bi|xi,bi−1,ai)

= pi+1(xi+1,bi|xi,bi−1,ai)

= pi+1(zi+1|zi,ai) (B.1.5)

Now, from (B.1.4) we have

I(Xn→ Y n) = EA
{ n

∑
i=0

`(Xi,Bi−1,Ai)
}

4
= EA

{ n

∑
i=0

¯̀(Zi,Ai)
}

(B.1.6)

and by (B.1.5), the process {Zi : i = 0,1, . . . ,n} is a Markov process controlled by {Ai : i =

0,1, . . . ,n}. Since the payoff in (B.1.6) is additive, the minimization of I(Xn → Bn) over

{Ai : i = 0,1, . . . ,n} is done by choosing {Ai : i = 0,1, . . . ,n} to control the Markov process

{Zi : i = 0,1, . . . ,n}. Hence, from optimal control theory the encoder structure should be of

the form ai = gi(xi,bi−1), for some measurable function g(., .).

(a) The derivation for randomized strategies is similar, hence it is omitted. It follows from

the fact that for general complete separable spaces and strategies based on classical nested

information over time, that randomized strategies and deterministic strategies are equivalent

in terms of optimal performance.Chri
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B.2 Proof of Theorem. 3.39.1

The derivation utilizes from the above discussion and Fano’s inequality as follows. Suppose

rate R is achievable and hence there exists an (n,Mn,εn) code, Cn
4
= {u1,u2, . . . ,uMn}, u j ∈

A0, j−1 satisfying

lim
n→∞

εn = 0 and liminf
n→∞

1
n

logMn ≥ R

Let An−1 ∈ A0,n−1 be a random variable which is uniformly distributed over the code Cn.

Denote by Bn−1 ∈ B0,n−1 the channel output corresponding to the channel input An−1 ∈
A0,n−1, Ai = ϕi(X ,Bi−1), i = 0,1, . . . ,n−1, x∈Mn. Define another random variable Ân−1 ∈
Cn such that Ân−1 = ux if x = dn(Bn−1). The probability of error is expressed as

εn = Prob
{

Ân−1 6= An−1
}

Then

logMn = H(Mn)

= H(X |Bn)+ I(X ;Bn−1)
(a)
≤ H(εn)+nRεn + I(X ;Bn−1)

= H(εn)+nRεn +H(Bn−1)−
n−1

∑
i=0

H(Bi|Bi−1,X)

(b)
= H(εn)+nRεn +H(Bn−1)−

n−1

∑
i=0

H(Bi|Bi−1,X ,Ai)

(c)
= H(εn)+nRεn +

n−1

∑
i=0

{
H(Bn−1)−H(Bi|Bi−1,Ai)

}
(d)
= H(εn)+nRεn +

n−1

∑
i=0

{
H(Bn−1)−H(Bi|Bi−1,Ai)

}
= H(εn)+nRεn +

n−1

∑
i=0

I(Ai;Bi|Bi−1) (B.2.7)

where (a) follows from Fano’s inequality, (b) knowing the codebook implies knowing the en-

coder law, and knowing the encoder law among with the message and previous channel out-

puts specifies the current value of the encoder, since Ai = ϕi(X ,Bi−1), i = 0,1, . . . ,n−1, (c)

follows from the Markov chain X↔ (Ai,Bi−1)↔ Bi, , i= 0,1, . . . ,n−1 and (d) follows from

Markov chain Ai−1↔ (Ai,Bi−1)↔Bi, , i= 0,1, . . . ,n−1. Further, maximizing the right side
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of (B.2.7) over all deterministic feedback encoders is less than or equal to maximizing the

same quantity over all randomized strategies {Pi(dai;ai−1,bi−1)∈K (Ai;A0,i−1×B0,i−1) :

i = 0,1, . . .n− 1}, and by Theorem 3.31, this maximization (if it exists) it is achieved over

randomized strategies {P∗i (dai;bi−1)∈K (Ai;B0,i−1) : i= 0,1, . . .n−1}. Taking the supre-

mum over all such randomized strategies and using limn→∞ εn → 0 implies limn→∞ H(εn)

= 0, then

R≤ liminf
n→∞

1
n

logMn ≤ liminf
n→∞

sup
{Pi(dai;bi−1)∈K (Ai;B0,i−1):i=0,1,...n−1}

1
n

n−1

∑
i=0

I(Ai;Bi|Bi−1)(B.2.8)

This completes the derivation.
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