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Περίληψη 

Η ανίχνευση αντικειμένων είναι μια βασική και απαραίτητη λειτουργίας για 

ενσωματωμένα συστήματα όρασης, καθώς τους δίνει τη δυνατότητα να αλληλεπιδρούν με πιο 

έξυπνο τρόπο με το περιβάλλον τους και γίνεται όλο και πιο αναγκαία για ένα ευρύ φάσμα 

εφαρμογών που σχετίζονται με την επεξεργασία εικόνων, ρομποτική, συστήματα ασφαλείας 

και βίο-πληροφορική. Υφιστάμενα συστήματα που βασίζονται μόνο σε υλοποίηση σε 

λογισμικό παρέχουν την απαιτούμενη απόδοση μόνο για εικόνες μικρών διαστάσεων και 

κάτω από ιδανικές συνθήκες. Συνεπώς, υπάρχει ανάγκη για ανάπτυξη αρχιτεκτονικών σε 

υλικό που μπορούν να χρησιμοποιηθούν σε διάφορες εφαρμογές για εύρεση διαφορετικών 

αντικειμένων, σε εικόνες διαφόρων μεγεθών. 

Η διατριβή ασχολείται με μια βασική πρόκληση στις μέρες μας που σχετίζεται με το 

σχεδιασμό και την υλοποίηση αρχιτεκτονικών υλικού για την ανίχνευση αντικείμενων σε 

εικόνες, που να έχουν χαμηλή κατανάλωση ενέργειας και να λειτουργούν σε πραγματικό 

χρόνο, αξιοποιώντας τη χρήση αναδιατασσόμενου υλικού. Συγκεκριμένα, προτείνονται 

αρχιτεκτονικές για δύο αλγόριθμους, των αλγόριθμο Viola-Jones και τις διανυσματικές 

μηχανές υποστήριξης, με στόχο την ανίχνευση αντικειμένων σε πραγματικό χρόνο, 

διατηρώντας παράλληλα μια καλή ακρίβεια. Επιπλέον ένας ακόμη στόχος αυτής της διατριβής 

είναι η ανάπτυξη γενικών και επεκτάσιμων αρχιτεκτονικών υλικού, που να επιτρέπουν τη 

χρήση τους σε ένα ευρύ φάσμα εφαρμογών και διαφορετικές πλατφόρμες. Επιπλέον, ευφυείς 

μηχανισμοί ενσωματωθεί μαζί με τις προτεινόμενες αρχιτεκτονικές υλικού με σκοπό την 

περαιτέρω βελτίωση της απόδοσης. Επιπλέον, η διατριβή προτείνει μια μεθοδολογία για την 

περαιτέρω βελτίωση της απόδοσης των αλγορίθμων ανίχνευσης αντικειμένου με τη 

χρησιμοποίηση ακμών εικόνας, και τρισδιάστατων δεδομένων ώστε να επιτυχή την μείωση 

του αριθμού των παραθύρων που δημιουργούνται για μια εικόνα ώστε να αυξηθεί η συνολική 

απόδοση του συστήματος ανίχνευσης. Οι προτεινόμενες αρχιτεκτονικές αξιολογήθηκαν 

πειραματικά σε πλατφόρμες αναδιατασσόμενου υλικού και είναι ικανές να παρέχουν 

επεξεργαστικές επιδόσεις που ξεπερνούν τις    εικόνες ανά δευτερόλεπτο, επιτρέποντας να 

χρησιμοποιηθούν σε εφαρμογές ανίχνευσης αντικειμένων πραγματικού χρόνου. 
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Abstract 

Object detection is a necessary task for embedded vision systems as it enables them to 

interact more intelligently with their host environment, and increases their responsiveness and 

awareness with regards to their surroundings. The typical object detection process involves 

extracting information of an image/video frame at various scales and classifying it using a 

machine learning pattern recognition algorithm to determine the presence of objects of 

interest. Object detection is a tedious process that needs to be performed within real-time 

constraints. Hence, this thesis addresses a key challenge nowadays related to the design and 

implementation of a hardware architecture for visual object detection in order to operate under 

low power requirements and facilitate real-time performance, both important constraints in 

embedded applications, while exploiting the use of reconfigurable hardware (FPGAs). In 

particular, two popular algorithms are implemented, the Viola-Jones and Support Vector 

Machines with the overall aim in increasing the performance of real-time object detection 

while maintaining the accuracy. Another goal of the thesis is to develop novel, generic and 

scalable architecture models in order to allow their usage in a wide range of applications and 

different hardware platforms. Furthermore, intelligent mechanisms are integrated along with 

the proposed hardware architecture in order to further improve performance or reduce 

computation overheads. In addition, and beyond the hardware implementation contributions, 

the thesis proposes a methodology to further improve the performance of object detection 

algorithms by utilizing edge image features,    depth data and classification in order to 

reduce the number of windows generated for an image and, hence, increase the overall 

performance of the detection problem. The proposed architectures are experimentally 

evaluated on Field Programmable Gate Arrays (FPGAs) computing platforms demonstrating 

real-time performance (over    frames-per second) that enables them to be used in real-time 

object detection applications, and maintain detection accuracy comparable to software 

implementations. 

Keywords: AdaBoost, Cascade Classifier, Disparity Estimation, Edge Detection, Field Programmable Gate 

Array (FPGA), Haar-features, Local Binary Pattern (LBP), Monolithic Classifier, Neural Network, Object 

Detection, Parallel Architecture, Real-time and Embedded Systems, Supervised Learning, Support Vector 

Machines (SVMs) 

Chri
sto

s K
yrk

ou



- viii - 

 

  

Chri
sto

s K
yrk

ou



- ix - 

 

Acknowledgements  

My immense appreciation and wholehearted gratitude goes to my thesis and research 

supervisor Dr. Theocharis Theocharides for his guidance and support throughout the whole 

period of my studies, and for providing me with the opportunity to interact with leading 

researchers in the area of computer engineering. I also wish to express my warm and sincere 

thanks to PhD committee members from the University of Cyprus Dr. Marios Polycarpou, Dr. 

Maria K. Michael and Dr. Constantinos S. Pattichis for their feedback, comments, and 

insightful advice. I would like to extend a special thanks to Dr. David Atienza from École 

Polytechnique Federale de Lausanne (EPFL), who as an external member, provided an 

insightful perspective to the research in this thesis. I would also like to thank Dr. Christos-

Savvas Bouganis, from Imperial London College for his collaboration and insights for part of 

the research done in this thesis.  

I would also like to thank my colleagues at KIOS Research Center and fellow members of 

the Embedded and Application-specific System-on-Chip laboratory for their sincere 

friendship, and interesting discussions and experiences we shared together as part of the same 

research group.  

Finally and most importantly I am deeply grateful to my loving parents, my brother, and my 

girlfriend, for their constant and unconditional love, care and sincere belief in me. Without 

their encouragement and endless support this thesis would not have been possible. 

 

 

 

 

 

 

 

 

Chri
sto

s K
yrk

ou



- x - 

 

 

Chri
sto

s K
yrk

ou



- xi - 

 

  

 

 

 

 

 

 

 

 

Dedication 

This dissertation is dedicated to my father, my mother, my brother, and my girlfriend for 

their constant support and unconditional love. This wouldn't be possible without you. 

 

 

 

 

 

 

 

 

 

 

 

 

Chri
sto

s K
yrk

ou



- xii - 

 

 

Chri
sto

s K
yrk

ou



- xiii - 

 

  Publications 

Journal publications stemming from this thesis 

[J1] Christos Kyrkou and Theocharis Theocharides, "SCoPE: Towards a Systolic Array for 

SVM Object Detection", IEEE Embedded System Letters, vol. 1, no. 2, pp. 46-49, August 

2009.  

[J2] Christos Kyrkou and Theocharis Theocharides, "A Flexible Parallel Hardware 

Architecture for AdaBoost-Based Real-Time Object Detection", IEEE Transactions on Very 

Large Scale Integration (TVLSI) Systems, vol.19, no.6, pp.1034-1047, June 2011. 

[J3] Christos Kyrkou and Theocharis Theocharides, "A Parallel Hardware Architecture for 

Real-Time Object Detection with Support Vector Machines", IEEE Transactions on 

Computers, vol.61, no.6, pp.831-842, June 2012. 

[J4] Christos Kyrkou, Christos Ttofis, and Theocharis Theocharides, "A Hardware 

Architecture for Real-Time Object Detection Using Depth and Edge Information", ACM 

Transactions on Embedded Computing Systems, vol. 13 no. 3 pp. 54:1-54:19, December 2013. 

[J5] Christos Kyrkou, Christos-Savvas Bouganis, Theocharis Theocharides, Marios 

Polycarpou " Embedded Hardware-Efficient Real-Time Classification with Cascade Support 

Vector Machines ", (Under Submission). 

 

Conference proceedings stemming from this thesis 

[C1] Christos Kyrkou, Christos Ttofis, Theocharis Theocharides, "Depth-Directed Hardware 

Object Detection", Design Automation & Test in Europe Conference & Exhibition (DATE), 

2011, 14-18 March 2011. 

[C2] Christos Kyrkou, Christos Ttofis, Theocharis Theocharides, "FPGA-Accelerated Object 

Detection using edge information", International Conference on Field Programmable Logic 

and Applications (FPL), pp.167-170, 5-7 Sept. 2011.  

Chri
sto

s K
yrk

ou



- xiv - 

 

[C3] Alina Gavrijaseva, Ago Mõlder, Olev Märtens, Christos Kyrkou, Theocharis 

Theocharides "Cross-Correlation-based Image Matching of Coins", The Baltic Electronics 

Conference (BEC), Tallinn, Estonia, October 3-5, 2012. IEEE, 319 - 322, 2012. 

[C4] Christos Kyrkou, Christos-Savvas Bouganis, Theocharis Theocharides, "FPGA-based 

Acceleration of Cascaded Support Vector Machines for Embedded Applications", 21st 

ACM/SIGDA International Symposium on Field-Programmable Gate Arrays (FPGA 2013), 

11-13 February 2013.  

[C5] Christos Kyrkou, Christos-Savvas Bouganis, Theocharis Theocharides, "A Hardware-

Efficient Architecture for Embedded Real-Time Cascaded Support Vector Machines 

Classification", ACM/IEEE Great Lakes Symposium on VLSI - GLSVLSI 2013, May 2-4 

2013. 

[C6] Christos Kyrkou, Christos-Savvas Bouganis, Theocharis Theocharides, "An Embedded 

Hardware-Efficient Architecture for Real-Time Cascade Support Vector Machine 

Classification", International Conference on Embedded Computer Systems: Architectures, 

Modeling, and Simulation (SAMOS XIII), Samos, Greece, pp. 129-136, 15-18 July 2013. 

 

Other publications  

[O1] Christos Kyrkou and Theocharis Theocharides, "Neural Network-Based Face Detector 

Implementation on a Virtex2 Pro FPGA Platform", Proceedings of the 3rd Greek National 

Student Conference of Electrical and Computer Engineering, page 62, Salonica, Greece, April 

2009. 

[O2] Christos Ttofis, Christos Kyrkou, Theocharis Theocharides and Maria. K. Michael, 

"FPGA-Based NoC-Driven Sequence of Lab Assignments for Manycore Systems", in the 

Proceedings of the IEEE International Conference on Microelectronic Systems Education 

(MSE 2009), co-located with the 46th Design Automation Conference, San Francisco, USA, 

July, 2009. Best Paper Award. 

Chri
sto

s K
yrk

ou



- xv - 

 

CONTENTS  

CHAPTER 1 INTRODUCTION ......................................................................................................................... 1 

1.1 INTELLIGENT EMBEDDED VISION: SYSTEMS THAT SEE AND UNDERSTAND ........................................................... 1 

1.2 VISUAL OBJECT DETECTION SYSTEMS ......................................................................................................... 2 

1.3 THESIS SCOPE AND CONTRIBUTIONS: ENABLING EMBEDDED VISUAL OBJECT DETECTION SYSTEMS ......................... 3 

1.4 ORGANIZATION OF THE THESIS.................................................................................................................. 6 

CHAPTER 2 GENERAL BACKGROUND, THEORY AND ALGORITHMS ............................................................... 9 

2.1 SUPERVISED LEARNING MACHINES ............................................................................................................ 9 

2.1.1 Monolithic Classifiers ................................................................................................................. 11 

2.1.2 Cascade Classification Scheme ................................................................................................... 13 

2.2 INTELLIGENT EMBEDDED VISION - VISUAL OBJECT DETECTION ...................................................................... 15 

2.3 CHALLENGES AND TRADE-OFFS FOR EMBEDDED VISUAL OBJECT DETECTION .................................................... 18 

2.3.1 Sliding Window Search Process .................................................................................................. 18 

2.3.2 Pattern Recognition Classification Algorithm ............................................................................. 20 

2.3.3 Overview of Computing Platforms for Embedded Object Detection .......................................... 20 

2.3.4 Applications of Visual Object Detection Systems ....................................................................... 28 

2.4 VIOLA AND JONES FRAMEWORK FOR RAPID OBJECT DETECTION .................................................................... 29 

2.4.1 AdaBoost Boosting Algorithm .................................................................................................... 29 

2.4.2 Haar-Features and Integral Image Representation .................................................................... 31 

2.4.3 Haar-Feature AdaBoost-Based Cascade Classifier ..................................................................... 33 

2.4.4 Parallelism Opportunities and Computational Trade-offs .......................................................... 36 

2.5 SUPPORT VECTOR MACHINES OVERVIEW ................................................................................................. 36 

2.5.1 Support Vector Machine Formulation - Training ........................................................................ 37 

2.5.2 Support Vector Machine Classification ....................................................................................... 44 

2.5.3 Computational Challenges of Support Vector Machines ............................................................ 45 

2.6 COMPLIMENTARY MATERIAL .................................................................................................................. 50 

2.6.1 Feature Extraction ...................................................................................................................... 50 

2.6.2 3D Stereo Computer Vision......................................................................................................... 56 

CHAPTER 3 A FLEXIBLE PARALLEL HARDWARE OBJECT DETECTION ACCELERATOR FOR THE ADABOOST-

BASED HAAR-FEATURE CASCADE ..................................................................................................................... 59 

3.1 RELATED WORK ON HAAR-FEATURE ADABOOST-BASED CLASSIFIER CASCADE IMPLEMENTATIONS ....................... 59 

3.2 MAPPING ALGORITHM TO HARDWARE ..................................................................................................... 63 

Chri
sto

s K
yrk

ou



- xvi - 

 

3.2.1 Opportunities for parallelism ..................................................................................................... 63 

3.2.2 Hardware Architecture Requirements and Mapping ................................................................. 64 

3.3 PROPOSED HARDWARE ARCHITECTURE .................................................................................................... 66 

3.3.1 Image Pyramid Generation (IPG) Unit ........................................................................................ 67 

3.3.2 Integral Image and Haar-Feature Processing Array ................................................................... 69 

3.4 EXPERIMENTAL METHODOLOGY AND EVALUATION RESULTS ......................................................................... 78 

3.4.1 Performance, metrics, limitations and constraints .................................................................... 79 

3.4.2 FPGA Implementation and Emulation ........................................................................................ 81 

3.4.3 ASIC Implementation and Evaluation ......................................................................................... 85 

3.4.4 Discussion ................................................................................................................................... 89 

3.5 CONCLUSION ...................................................................................................................................... 90 

CHAPTER 4 HARDWARE ACCELERATION OF SUPPORT VECTOR MACHINES ................................................ 93 

4.1 RELATED WORK ON ACCELERATION OF SVMS ............................................................................................ 93 

4.2 HARDWARE ACCELERATION OF MONOLITHIC SVMS ................................................................................... 98 

4.2.1 Array Processing Hardware Architecture ................................................................................... 99 

4.2.2 Flow of Operation ..................................................................................................................... 105 

4.2.3 Scalability and Implementation Issues ..................................................................................... 107 

4.2.4 Multiclass Classification Support .............................................................................................. 107 

4.2.5 Experimental Methodology and Evaluation Results................................................................. 109 

4.2.6 Discussion and Impact .............................................................................................................. 119 

4.3 HARDWARE ACCELERATION OF CASCADE SVMS ...................................................................................... 119 

4.3.1 Challenges in the Acceleration of Cascade Support Vector Machines ..................................... 120 

4.3.2 Hybrid Hardware Architecture and Optimization Approaches ................................................. 122 

4.3.3 Experimental Platform and Results .......................................................................................... 136 

4.4 CONCLUSIONS ................................................................................................................................... 147 

CHAPTER 5 REAL-TIME HARDWARE ACCELERATION OF OBJECT DETECTION USING DEPTH AND EDGE 

INFORMATION ............................................................................................................................................... 149 

5.1 DEPTH- AND EDGE-DIRECTED SEARCH SPACE REDUCTION ......................................................................... 150 

5.1.1 Depth Extraction and Object-Size Estimation ........................................................................... 151 

5.1.2 Edge-Based Window Rejection Process .................................................................................... 152 

5.1.3 Depth- and Edge- Accelerated Object-Detection Process......................................................... 153 

5.2 HARDWARE VISUAL OBJECT DETECTION SYSTEMS .................................................................................... 155 

5.3 HARDWARE ARCHITECTURE FOR DEPTH- AND EDGE- BASED OBJECT DETECTION ACCELERATION .......................... 159 

Chri
sto

s K
yrk

ou



- xvii - 

 

5.3.1 Edge Computation Core ........................................................................................................... 160 

5.3.2 Disparity Computation Unit ...................................................................................................... 162 

5.3.3 Window Extraction Unit ........................................................................................................... 164 

5.3.4 Classification Engine ................................................................................................................. 166 

5.4 EXPERIMENTAL METHODOLOGY AND RESULTS ......................................................................................... 167 

5.4.1 Experimental FPGA Platform and Methodology ...................................................................... 167 

5.4.2 FPGA Implementation Discussion ............................................................................................. 169 

5.4.3 Performance Results and Discussion ........................................................................................ 171 

5.5 CONCLUSIONS ................................................................................................................................... 176 

CHAPTER 6 CONCLUSION ......................................................................................................................... 177 

6.1 OVERVIEW AND CONCLUDING REMARKS ................................................................................................ 177 

6.2 FUTURE RESEARCH DIRECTIVES ............................................................................................................. 178 

6.2.1 Short Term Research - Pre Processing/Post Processing & Potential Improvements ................ 178 

6.2.2 Long Term Research ................................................................................................................. 183 

APPENDIX A: A CASE STUDY FOR EDGE-ACCELERATED OBJECT DETECTION .............................................. 187 

APPENDIX B: IMPACT OF FEATURES ON SVM CLASSIFICATION ................................................................ 193 

APPENDIX C: A NOTE ON THE HARDWARE IMPLEMENTATION OF ARTIFICIAL NEURAL NETWORKS ......... 197 

REFERENCES ............................................................................................................................................. 203 

Chri
sto

s K
yrk

ou



- xviii - 

 

 

 

 

 

 

 

Chri
sto

s K
yrk

ou



- xix - 

 

 LIST OF FIGURES 

FIGURE 2-1. SUPERVISED LEARNING WITH MONOLITHIC CLASSIFIERS .................................................................. 12 

FIGURE 2-2. SUPERVISED LEARNING WITH CASCADE CLASSIFIERS ........................................................................ 14 

FIGURE 2-3. OBJECT DETECTION PROCESS ............................................................................................................. 18 

FIGURE 2-4. ARCHITECTURE OF A FIELD PROGRAMMABLE GATE ARRAY (FPGA) .................................................. 24 

FIGURE 2-5. A HETEROGENEOUS EMBEDDED VISION SOC ..................................................................................... 25 

FIGURE 2-6. OUTLINE OF THE ADAPTIVE BOOSTING (ADABOOST) ALGORITHM .................................................... 30 

FIGURE 2-7. EXAMPLES OF HAAR-LIKE FEATURES .................................................................................................. 32 

FIGURE 2-8. INTEGRAL IMAGE AND FAST FEATURE COMPUTATION ...................................................................... 33 

FIGURE 2-9. VIOLA AND JONES ALGORITHM FLOW ............................................................................................... 34 

FIGURE 2-10. SUPPORT VECTOR MACHINE MAIN CONCEPTS ................................................................................ 37 

FIGURE 2-11. KARUCH-KUHN-TUCKER (KKT) CONDITIONS ..................................................................................... 39 

FIGURE 2-12. KERNEL TRICK AND KERNEL CONSTRUCTION ................................................................................... 41 

FIGURE 2-13. THE SMO ALGORITHM ...................................................................................................................... 44 

FIGURE 2-14. SUPPORT VECTOR MACHINE CLASSIFICATION PROCEDURE............................................................. 46 

FIGURE 2-15. REDUCED-SET METHOD .................................................................................................................... 48 

FIGURE 2-16. LOCAL BINARY PATTERN CODE GENERATION PROCESS ................................................................... 51 

FIGURE 2-17. LOCAL BINARY PATTERN HISTOGRAM GENERATION PROCESS ........................................................ 52 

FIGURE 2-18. EDGE DETECTION PROCESS .............................................................................................................. 53 

FIGURE 2-19. HISTOGRAM OF ORIENTED GRADIENT ............................................................................................. 54 

FIGURE 2-20. HISTOGRAM EQUALIZATION ............................................................................................................. 55 

FIGURE 2-21. STEREO SETUP AND DEPTH COMPUTATION ..................................................................................... 57 

FIGURE 3-1. PARALLELIZATION IN THE ADABOOST-BASED OBJECT DETECTION .................................................... 63 

FIGURE 3-2. SYSTOLIC-ARRAY INSPIRED ACCELERATOR ARCHITECTURE WITH THE TWO MAJOR UNITS .............. 67 

FIGURE 3-3. IMAGE PYRAMID GENERATION UNIT ................................................................................................. 68 

Chri
sto

s K
yrk

ou



- xx - 

 

FIGURE 3-4. SYSTOLIC PROCESSING ARRAY ARCHITECTURE AND COMPONENTS .................................................. 70 

FIGURE 3-5. COLLECTION AND COMPUTATION UNIT ............................................................................................. 72 

FIGURE 3-6. PROCESSING ARRAY BITWIDTH REQUIREMENTS ............................................................................... 73 

FIGURE 3-7. EVALUATION UNIT .............................................................................................................................. 74 

FIGURE 3-8. SYSTOLIC ARRAY COMPUTATION FLOWS ........................................................................................... 76 

FIGURE 3-9. FPGA SYSTEM PROTOTYPE ................................................................................................................. 84 

FIGURE 4-1. SUPPORT VECTOR MACHINE ARRAY PROCESSING ARCHITECTURE.................................................... 99 

FIGURE 4-2. VECTOR UNIT .................................................................................................................................... 101 

FIGURE 4-3. SCALAR UNIT ..................................................................................................................................... 102 

FIGURE 4-4. WINDOW BUFFER REGISTER ARRAY ARCHITECTURE ....................................................................... 104 

FIGURE 4-5. TRANSFERRED DATA WORD IN THE HORIZONTAL DIRECTION ......................................................... 106 

FIGURE 4-6. SUPPORT VECTOR MACHINE PROCESSING ARRAY MULTICLASS SUPPORT ...................................... 108 

FIGURE 4-7. IMPLEMENTED FPGA SUPPORT VECTOR MACHINE ARRAY PROCESSING SYSTEM ........................... 113 

FIGURE 4-8. FPGA SYSTEM PROTOTYPE ............................................................................................................... 114 

FIGURE 4-9. SVM CASCADE CLASSIFICATION PROCESS OVERVIEW ...................................................................... 122 

FIGURE 4-10. HARDWARE REDUCTION METHOD ................................................................................................. 124 

FIGURE 4-11. CASCADE RESPONSE EVALUATION METHOD ................................................................................. 126 

FIGURE 4-12. SUPPORT VECTOR MACHINE CASCADE SYSTEM ARCHITECTURE ................................................... 127 

FIGURE 4-13. PARALLEL PROCESSING MODULE (PPM) ARCHITECTURE ............................................................... 128 

FIGURE 4-14. SEQUENTIAL PROCESSING MODULE (SPM) ARCHITECTURE ........................................................... 130 

FIGURE 4-15. RESPONSE PROCESSING UNIT (RPU) ............................................................................................... 132 

FIGURE 4-16. LOCAL BINARY PATTERN PROCESSING HARDWARE ....................................................................... 134 

FIGURE 4-17. OPTIMIZED I/O MECHANISM .......................................................................................................... 135 

FIGURE 4-18. BLOCK DIAGRAM OF THE FPGA SYSTEM......................................................................................... 136 

FIGURE 4-19. CASCADE SUPPORT VECTOR MACHINE STRUCTURE ...................................................................... 138 

FIGURE 4-20. SUPPORT VECTOR MACHINE CASCADE EARLY STAGE RESPONSES ................................................ 138 

Chri
sto

s K
yrk

ou



- xxi - 

 

FIGURE 4-21. ADAPTATION USING THE ROC CURVE AND NEW DETECTION RATES ............................................. 139 

FIGURE 4-22. DETECTION RESULTS ON 800×600 IMAGES .................................................................................... 142 

FIGURE 4-23. COMPARATIVE RESULTS OF DIFFERENT CASCADE CONFIGURATIONS ........................................... 143 

FIGURE 5-1. NUMBER OF WINDOWS AS THE IMAGE SIZE AND NUMBER OF SEARCH SCALES INCREASE ............ 150 

FIGURE 5-2. WINDOW SIZE ESTIMATION USING DEPTH INFORMATION .............................................................. 151 

FIGURE 5-3. OBJECT VS BACKGROUND EDGE INFORMATION .............................................................................. 153 

FIGURE 5-4. OBJECT DETECTION PROCESS USING EDGE AND DEPTH INFORMATION ......................................... 154 

FIGURE 5-5. DEPTH AND EDGE BASED SYSTEM ARCHITECTURE ........................................................................... 160 

FIGURE 5-6. SOBEL EDGE OPERATOR.................................................................................................................... 161 

FIGURE 5-7. EDGE COMPUTATION CORE .............................................................................................................. 162 

FIGURE 5-8. DISPARITY COMPUTATION UNIT ....................................................................................................... 163 

FIGURE 5-9. WINDOW EXTRACTION UNIT ............................................................................................................ 164 

FIGURE 5-10. DYNAMIC IMAGE DOWNSCALING THROUGH REVERSE MAPPING. ................................................ 165 

FIGURE 5-11. SUPPORT VECTOR MACHINE CLASSIFIER ARCHITECTURE .............................................................. 166 

FIGURE 5-12. STEREO CAMERA SYSTEM ............................................................................................................... 168 

FIGURE 5-13. REDUCTION IN THE NUMBER OF WINDOWS USING DEPTH AND EDGE INFORMATION ................ 172 

FIGURE 5-14. DEPTH AND EDGE DIRECTED FACE DETECTION RESULTS ............................................................... 174 

FIGURE 5-15. DEPTH AND EDGE DIRECTED CAR DETECTION RESULTS ................................................................. 175 

FIGURE 6-1. INTEGRATING PREPROCESSING TO SVM CLASSIFICATION ARCHITECTURE ...................................... 179 

FIGURE 6-2. ONLINE TRAINING OF CASCADE CLASSIFIERS ................................................................................... 181 

FIGURE A-1. EDGE-BASED WINDOW EXTRACTION METHOD ............................................................................... 187 

FIGURE A-2. EDGE ACCELERATION SYSTEM ARCHITECTURE ................................................................................ 188 

FIGURE A-3. DETECTION RESULTS USING EDGE AND COMPARED TO SLIDING WINDOW ................................... 191 

FIGURE C-1. NEURAL NETWORK AND NEURON MODEL ....................................................................................... 198 

 

 

Chri
sto

s K
yrk

ou



- xxii - 

 

 

 

Chri
sto

s K
yrk

ou



- xxiii - 

 

 List of Tables 

TABLE 2-1 SUPPORT VECTOR MACHINE KERNEL FUNCTIONS ................................................................................ 42 

TABLE 3-1: ALGORITHM AND METHOD COMPARISONS FOR RELATED FPGA WORKS ........................................... 62 

TABLE 3-2. SYNTHESIS RESULTS FOR THE VIRTEX II PRO FPGA IMPLEMENTATION ................................................ 83 

TABLE 3-3. RESULTS COMPARISON OF RELATED WORK IMPLEMENTATIONS ON FPGAS ...................................... 85 

TABLE 3-4: DETECTION APPLICATIONS TRAINING DATA ........................................................................................ 86 

TABLE 3-5: ASIC IMPLEMENTATION - SIMULATION RESULTS ................................................................................. 88 

TABLE 3-6: ASIC IMPLEMENTATION - RELATED WORK COMPARISON ................................................................... 89 

TABLE 4-1 COMMON SVM KERNEL FUNCTIONS ................................................................................................... 100 

TABLE 4-2: SUPPORT VECTOR MACHINE PROCESSING ARRAY PARAMETERS AND RESULTS ............................... 112 

TABLE 4-3: ARRAY PROCESSING ENGINE FPGA SYNTHESIS RESULTS .................................................................... 113 

TABLE 4-4: SUPPORT VECTOR MACHINE ARRAY HARDWARE PARAMETERS ....................................................... 114 

TABLE 4-5: SUPPORT VECTOR MACHINE CASCADE SYSTEMS OVERVIEW ............................................................ 121 

TABLE 4-6: CASCADE DETECTION SYSTEM PARAMETERS ..................................................................................... 139 

TABLE 4-7: FPGA RESOURCE REQUIREMENTS PER UNIT AND SYSTEM ................................................................ 141 

TABLE 4-8: STATISTICS FOR EACH CASCADE STAGE .............................................................................................. 143 

TABLE 4-9: COMPARISON WITH RELATED WORK ................................................................................................. 144 

TABLE 5-1: SUMMARY OF FPGA IMPLEMENTATIONS OF OBJECT DETECTION SYSTEMS ..................................... 156 

TABLE 5-2: SYSTEM PARAMETERS ........................................................................................................................ 169 

TABLE 5-3: FPGA RELATED WORK SYNTHESIS RESULTS ........................................................................................ 171 

TABLE A-1: CLASSIFICATION SYSTEMS FPGA SYNTHESIS RESULTS ........................................................................ 191 

TABLE C-1 COMMON ANN ACTIVATION FUNCTIONS ........................................................................................... 199 

 

 

 

 

Chri
sto

s K
yrk

ou



- xxiv - 

 

 

 

 

 

 

 

 

 

Chri
sto

s K
yrk

ou



- 1 - 

 

CHAPTER 1 

INTRODUCTION 

In recent years there has been a growing interest in integrating senses (e.g. hearing, touch, 

vision, etc.) into embedded systems in order for them to interact more intelligently with their 

host environment, make decisions and take actions based on the additional sensing 

information. An integral part of this effort is to enhance embedded systems with vision, the 

principle sense not only in human beings but also in almost all living animals, which has the 

potential to transform the way embedded systems are used in existing as well as emerging 

applications such as security and surveillance, automotive, medical, gaming, aerospace, retail, 

industrial and robotics amongst others.  

1.1 Intelligent Embedded Vision: Systems that see and understand 

Intelligent embedded vision refers to embedded vision systems that use intelligent 

algorithms, tools and technologies from the fields of computer vision, machine learning, and 

digital signal processing that enable computing systems to “see and understand” their 

environment through visual means [1]. Through the advances in the technologies of integrated 

chip (IC) design and manufacturing, as well as the development of advanced algorithms from 

the aforementioned scientific fields, it is possible to integrate embedded vision into a wide 

range of computing systems, including embedded systems, mobile devices, personal 

computers and recently the cloud. Vision-based technologies have been established in a 

number of markets, the most successful of which include factory automation for 

pharmaceuticals and automotive assembly for tasks such as quality control and packaging. 

These applications offer a glimpse at the potential of embedded vision applications and as the 

processing technologies and platforms improve there is a growing interest in the integration of 

vision technologies and features in embedded systems [1]. The Embedded Vision Alliance 

(EVA) [2], which is a consortium of companies and institutions that aims to enable rapid 

growth of embedded vision applications, foresees that the next few years there will be an ever 

increasing interest in the adoption of vision technologies. It is predicted that     million 

smartphones with vision-based gesture recognition will be shipped in      (ABI Research) 
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[2], while there will be an annual revenue growth of      worldwide for special-purpose 

vision processors targeting automotive applications [2], reaching      million by      [2] 

(IMS Research), while augmented reality applications and technologies are expected to 

generate close to      million in      [2] (Juniper Research). These figures suggest that 

embedded vision technologies will become more and more common in computing systems. 

Thus it is anticipated that there will be a wealth of opportunities for new applications in 

security and surveillance, automotive and transportation systems, aerospace, defense, 

healthcare, as well as augmented reality applications. In many cases, the addition of vision 

capabilities can transform existing products. For example, incorporating gesture recognition, 

face detection, facial recognition and eye tracking into embedded devices will make those 

systems more responsive and aware of their environment and increase their interaction 

capabilities. In addition there will be a growing number of new embedded applications that 

will extend beyond the current trends, such as autonomous vehicles and human-like robots. It 

is anticipated that such systems will be necessary for various embedded applications that will 

require higher-level vision processing to perform various functions such as handwritten digits 

recognition for reading, vehicle detection for navigation, as well as face and human detection 

for "human-like" interaction as well as security and surveillance purposes.  

1.2 Visual Object Detection Systems 

Visual object detection is a fundamental task towards higher-level vision and refers to the 

ability of a computing system to analyze an image/video in order to determine the presence of 

an object(s) of interest. This is a necessary step towards image understanding and decision 

making. Humans have the ability to recognize and identify a large number of objects very fast 

and with very high accuracy. As such, research in visual object detection over the past twenty 

years has strived to develop algorithms and methods to allow computers to perform object 

detection as efficiently as humans, and for some well studied applications such as face 

detection [3],[4] and pedestrian detection [5] these algorithms have demonstrated very good 

accuracies. However, they are still lacking in terms of processing efficiency and performance 

compared to the human visual system. This aspect is crucial in order to be able to integrate 

object detection tasks into embedded applications which operate under real-time and low-
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power constraints. As such, software implementations of object detection for embedded 

applications, even if highly flexible, have difficulties in satisfying these constraints due to the 

lack of available processing resources [6], [7], [8]. Consequently, hardware acceleration has 

gained considerable interest as a way to meet the imposed real-time and power constraints [1], 

[9],[10] and perform efficient visual object detection for embedded applications. With 

hardware acceleration it is possible to use a specialized parallel digital hardware architecture 

to perform these functions faster and more efficient than it is possible in software running on 

the general-purpose processing platforms [11].  

Common hardware acceleration platforms that have been used for visual object detection 

applications include specialized Digital Signal Processors (DSPs), Graphics Processing Units 

(GPUs), and Field Programmable Gate Arrays (FPGAs) [1]. General purpose computing 

capabilities for embedded GPUs are not yet widely supported on embedded platforms [12], as 

a result current generations of General Purpose GPUs (GPGPUs) that are found as 

components on PCs are difficult to be used in embedded environments due to power 

consumption issues [11]. On the other side Digital Signal Processors (DSPs) are optimized for 

low-power operation and for executing a small code footprint for a large amount of data [1]. 

However, the fixed logic and low number of processing cores prohibit this platform from 

offering the required parallelism for real-time performance. FPGAs allow the design of an 

application specific architecture with true parallel execution which can also be later be 

implemented as an Application Specific Integrated Circuit (ASIC). Hence, FPGAs have 

emerged as an attractive and capable platform to trade-off the various constraints found in 

embedded applications and such are becoming a popular solution for the hardware 

acceleration of embedded vision systems [1], [13]. 

1.3 Thesis Scope and Contributions: Enabling Embedded Visual Object 

Detection Systems 

Hardware acceleration through custom parallel hardware architectures is a promising 

means towards efficient embedded visual object detection systems in order to address the 

various constraints of embedded applications. However, at the same time it poses many 

challenges as hardware architectures must keep a low area overhead by using the minimum 
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amount of hardware resources for the specific functionality to keep both size and power at low 

levels, while also providing the required real-time performance (30 FPS for video, need to be 

higher for applications requiring higher response rates), maintain the desired accuracy, and 

operate within the allowed power budget. Furthermore, the same hardware design may not be 

suitable for all embedded applications as each has its own set of specifications and platform 

implementation. As such, hardware architectures for embedded object detection must have a 

modular and a regular design to maintain scalability, and also should provide a degree of run 

time reconfigurability to handle different embedded applications. Finally embedded hardware 

architectures for object detection must provide efficient memory management, with parallel 

memory access and predictable access patterns in order to facilitate high performance. 

Hence, the research in this thesis is concerned with the design and development of efficient 

generic hardware accelerators for visual object detection which can be used in embedded 

environments. The most popular and successful approaches for object detection are 

appearance-based methods which use example images (called templates or exemplars) of the 

objects to train a supervised learning algorithm to recognize the desired object [14]. 

Appearance-based methods have shown significantly superior performance over other 

methods. Thus this thesis investigates the hardware acceleration of two widely used 

approaches [3] for object detection based on machine learning classification algorithms 

namely the Viola and Jones AdaBoost haar-feature cascade classifier [15], and Support Vector 

Machines (SVMs) [16]. Both are widely used and popular approaches and have attracted 

interest for different reasons, the former because of the its computational efficiency [3] and the 

latter for its solid mathematical foundations and accuracy results as well as its generic 

approach that makes it a very useful tool for vision applications [17]. 

The Viola-Jones rapid object detection framework is considered a seminal work towards 

real-time    object detection for a wide range of applications and platforms [3]. The 

framework has been implemented in a wide range of software libraries including Intel's 

OpenCV [18] as well as on FPGAs using hardware architectures. However, existing 

architectures rely on parallelizing the processing of only a single window and thus require 

more hardware to achieve higher performance as the image size increases or if they need to 

process more windows in parallel. Also, such architectures are fixed for a specific application 
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training set and thus are not flexible enough to be used in other applications. The architecture 

for the Viola-Jones detection framework relies on a scalable systolic array processing 

architecture which processes many windows in parallel which yields extremely high detection 

frames per second (FPS) compared to reported works and is also able to process different 

training sets thus also providing flexibility. As the array elements are modular and simple, and 

communication is regular and predetermined, the architecture is highly scalable and can 

operate on high frequency. The designer can select all the appropriate design parameters with 

the targeted operating environment in mind, without affecting the real-time constraints. The 

architecture was prototyped on an FPGA platform, and also synthesized for ASIC design flow 

for high-end applications. Through both the FPGA emulation and large-scale implementation 

the architecture can detect objects in large images (up to          pixels) with frame rates 

that can vary between        fps for various applications and input image frame sizes. In 

addition, the hardware implementation achieves similar detection rates to the equivalent 

software implementation. 

SVMs have demonstrated excellent classification accuracies in a wide range of tasks, 

including generic object detection [19],[20]. However, because of the computational intensive 

operations involved they have not been considered for real-time embedded object detection. 

As such, SVM-based hardware object detection systems proposed application specific 

architectures for small scale problems (low number of Support Vectors (1-100) or and low 

dimensionality (8-256)). Overall, there are limited proposed hardware architectures that offer 

the flexibility and parallelism capabilities to be used in a variety of object detection 

applications. In order to tackle larger scale problems this thesis presents an array-based 

processing architecture which provides parallel processing, resource sharing amongst the 

processing units, and efficient memory management. Furthermore, the size of the array-based 

architecture is scalable to the hardware demands, and can also handle a variety of applications 

such as multi-class classification problems. The proposed architecture is integrated into an 

object detection system that is implemented on an FPGA and is evaluated using three object 

detection applications: face, pedestrian and car side view detection. Results indicate high 

performance in terms of frame rate (       FPS for a variety of applications) and detection 

accuracy (      ) for the three benchmark applications. Also, the presented work in this 

thesis is one of the first to address a hardware architecture for cascade SVM classification.
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Existing hardware architectures consider only single SVM classifiers which are not optimized 

to efficiently handle problems where the majority of data belongs to one of the two classes, 

such as object detection. Cascade classification schemes can offer speedups over single SVMs. 

As such, a hybrid architecture is presented that is able to process cascade SVMs and enables 

real-time classification ~40 FPS for 800×600 resolution images. 

In addition to the hardware acceleration of intelligent machine learning algorithms for 

object detection, this thesis also presents how additional mechanisms can be integrated into 

such systems in order to improve performance in an intelligent manner. Typically, such 

approaches relied on motion detection and/or object color information, however, these do not 

address the limiting factor in the performance of object detection systems which is to find the 

sizes of the objects in the image. As such this thesis also presents an alternative to the 

traditional sliding window search approach based on    depth and edge information that can 

be integrated into object detection accelerators to recognize the object size and background 

regions respectively, thus improving performance and increasing the awareness of object 

detection systems. A dedicated hardware is proposed that integrates together edge image 

processing,    processing and classification in order to provide an efficient and generic 

framework for real-time object detection. The proposed architecture is implemented on an 

FPGA platform targeting a face detection application, and is able to handle various image 

sizes of        ,        , and         pixels, and the introduction of these methods 

results in an average reduction by       in the number of data that needs to be processed by 

the SVM classification system, achieving    ,   , and    frames-per second (FPS) 

respectively, while also providing a     reduction in the false positive rate, compared to 

traditional object detection search methods. 

1.4 Organization of the Thesis 

This thesis is organized as follows. First, relevant topics to the research conducted in this 

thesis as well as background material and related algorithms are discussed in Chapter 2. These 

include a general discussion on classification and pattern recognition approaches and a more 

detailed look at the theory of support vector machines and the Viola and Jones object detection 

framework, as well as other complementary material such as computing platforms and 
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preprocessing methods. The related work on implementations of object detection systems for 

the two classification algorithms are presented separately in each respective chapter. 

A real-time hardware architecture for the Viola and Jones object detection framework is 

presented in Chapter 3. It is based on a systolic-array inspired architecture which offers 

massive parallel processing for multiple search windows which enables it to offer real-time 

performance of     FPS for         images. 

In Chapter 4 two hardware architectures for SVM-based object detection are presented. The 

first target monolithic (single) SVM processing and facilitates the parallel processing of search 

windows in order to boost classification performance, achieving        FPS for a variety 

of applications. The second is optimized for cascade classification where different classifiers 

have different computational demands and are thus implemented with different architectures. 

Furthermore, a hardware reduction method is proposed which reduces the amount of 

computational resources needed, and a meta-learning approach is used to improve 

performance resulting in        for         images. 

An alternative approach to the traditional sliding window search is presented in Chapter 5. 

It is based on using    depth information to find the size of a possible object thus avoiding the 

image downscaling process. In addition, edge information is used to discard image regions 

which do not contain many edges (i.e. background regions). This approach manages to offer 

real-time performance (          ) for different image sizes.  

 Chapter 6 draws conclusions and summarizes the main contributions and outcomes of this 

thesis and discusses some ideas for the potential short-term as well as long-term directions of 

this research. 

Appendix A describes a method to accelerate object detection using only edge information, 

while Appendix B shows how different features and preprocessing methods impact the 

accuracy of the Support Vector Machine classification method. Finally, Appendix C, provides 

some details on artificial neural networks.  
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CHAPTER 2 

GENERAL BACKGROUND, THEORY AND ALGORITHMS 

This chapter provides an overview on important background material regarding supervised 

machine learning algorithms and cascade classifiers in general, visual object detection in 

images and the computing platforms used for evaluation of approaches, as well as more 

specific material regarding AdaBoost-based cascade Haar-classifiers, Support Vector 

Machines (SVMs), and other complementary material that have been used in the research done 

in this thesis. In addition, it also provides details on related subjects that have not been directly 

used in this thesis but can be used as alternative approaches. 

2.1 Supervised Learning Machines 

As the applications and demands for ambient intelligence and autonomous systems become 

more prominent, embedded computing systems are applied to solve ever more complex 

problems. In many cases, the method of computing the desired output from a set of inputs 

might be computationally very expensive and infeasible, or even in some cases not known 

[14]. Hence, tasks cannot be solved using an algorithm, which is a set of instructions and steps 

that should be carried to find a given output for a set of inputs. As an example, one might 

consider the case where it is necessary to tell spam emails from genuine emails. An email is 

essentially a set of characters but we do not have a way to systematically and analytically go 

from the input to the output which is a yes/no answer to the question, is this email spam?  

                 concerns the development of alternative approaches that can help 

computers acquire knowledge (     ) from a given set of data, in order to be able to solve 

more complex problems. A specific approach called                     [21] relies 

on                     , that in a way is similar to the human learning process, where 

the computer is presented with input/output pairs and attempts to       the input/output 

functionality from examples without being given exact specifications of how the output is 

generated. The examples of input/output pairs are referred to as the                   [14]. 

Given a labeled training set                                            , a 

supervised learning algorithm tries to compute a mapping function/model   such that       
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   for sample   in the training set. So in the case of spam emails for example the training set 

would consists of emails that we know beforehand are either spam or genuine. These will be 

examined to find patterns that constitute each category in order to determine an appropriate 

mapping between the input which is a set of characters and the output which is the 

predetermined classification label. This mapping function describes the relationship between 

the data samples and their respective class labels, and is used to classify new unknown data, or 

in the specific example new incoming emails. The process of obtaining the mapping 

function/model is called the               , and is usually an optimization problem with 

certain objectives. The algorithm used to solve it is called the                   . The 

training results in a function/model with corresponding                        (weights, 

thresholds, etc.). This model can different forms and structures depending on the specific 

machine learning approach which can consist of if-then-else or other decision rules 

predetermined by an expert, layers of interconnected weighted processing elements, majority 

voting schemes, or a linear combination of weighted data. Once this model is obtained we can 

use that model to predict the label/classification result for a data point which has not been 

observed before. This process is called                    and is the process that needs to 

be implemented by systems and devices that will be used in the targeted classification 

application.  

A learning problem with binary outputs (a two-class classification problem) is referred to as 

a                       problem and the target labels    have only two values (either   and 

  or    and   depending on the problem formulation). An example, is the spam email 

classification problem considered thus far. A learning problem with a finite number of 

categories/classes is called                            (              , where   is the 

number of classes) and one example is when we want to recognize each of the characters 

inside an email. Finally, when the target values    correspond to real-numbers the problem 

becomes known as            and it can be used to predict option prices in the stock market 

for example. This thesis is primarily concerned with binary classification problems. Such 

classification problems often use either monolithic (single) classification algorithms to learn 

the association between data and their labels or cascade (multistage) classification schemes 
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that utilize multiple single classifiers of increasing complexity. Details for these types of 

classifiers are provided next. 

2.1.1 Monolithic Classifiers 

Monolithic classifiers consist of a single supervised learning algorithm and subsequent 

classification model, obtained after training, which is used to classify all the input data. In both 

the training and classification procedures (Figure 2-1) preprocessing of the training and test 

sets may need to take place and also meaningful features may need to be extracted. These are 

issues which will be discussed in more detail in the succeeding Sections. The main 

characteristic of monolithic classifiers is that all inputs go through the same classification 

process. Training of a supervised learning algorithm first requires constructing the training set 

which contains examples of positive data (whose target label    is   ) and negative data 

(whose target label    is either   or   ). Second, it is necessary to select the parameters of the 

classification algorithm. These parameters determine how well the underlying algorithm will 

fit to the training set and also the form of the decision boundary where one side corresponds to 

positive samples and the other to negative samples. Most importantly, however, these 

parameters also control how well the classification algorithm will generalize, i.e. how well it 

will be able to classify new unseen data. These parameters and the resulting training 

data/features derived from the training phase constitute the classification model and also affect 

the amount of algorithmic-specific operations that must be carried out in order to classify new 

data. The number of parameters that need to be determined and the size of the training set 

impact the overall complexity of a classifier and consequently its performance in terms of 

classification accuracy and classification speed. 

The accuracy of a classifier is measured using a          of samples that have not been 

used for training. This is information captured in what is called the                 . The 

confusion matrix (illustrated in Figure 2-1) displays four values: the                    rate, 

the                    rate, the                     rate, and the                     

rate. Ideally a classification algorithm would exhibit a      TP rate and a    FP rate. 

However, since the classification model is unknown and the machine learning algorithm tries 

to find an approximation of that model based on a finite set of samples, these perfect 
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classification rates are not possible. However, the objective of the training phase is to obtain 

detection rates which are close to those figures. Better detection rates can be achieved by 

increasing the complexity of the classification algorithm either by increasing the number of its 

free parameters, by enlarging the training set, or by extracting features from the raw data 

samples that would aid the training process in achieving a better discrimination, or by a 

combination of these approaches. Appendix B illustrates how feature extraction approaches 

can aid the classification algorithm in obtaining better results. Also Section 2.6.1 provides 

more details on feature extraction methods.  

 

(a) 

 Predicted "POSITIVE" Predicted "NEGATIVE"    

True  

Class  

"POSITIVE" 

TP: Number of samples 

predicted as positive when true 

class is positive 

FN: Number of samples 

predicted as negative when true 

class is positive 
 

 

Erroneous 

Detections  

 

True  

Class  

"Negative" 

FP: Number of samples 

predicted as Positive when true 

class is Negative 

TN: Number of samples 

predicted as Negative when 

true class is Negative 
 

 

Correct 

Detections  

 

(b) 

Figure 2-1. Supervised learning with monolithic classifiers 

(a) Training and Classification for a monolithic classifier. (b) Confusion Matrix 

The performance of a classifier depends on the interrelationship between the training set 

size, the number and type of features as well as classifier complexity. It has been often 

observed that the added features may actually degrade the performance of a classifier if the 

number of training samples that are used to design the classifier is small relative to the number 

of features [21]. However, increasing the training set size means that the classifier complexity 

will also increase either because more samples will be selected from the training set or 

because the number of free parameters of the classifier will need to increase to accommodate 

the larger training set. In both cases the trade-off for higher accuracy is reduced classification 
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speed. The classification speed of high accuracy monolithic classifiers can be improved by 

utilizing a hierarchy of classifiers.  

2.1.2 Cascade Classification Scheme 

The detection accuracy of a monolithic classifier can be improved by increasing the 

training set size and the capacity of the model to allow it to better fit the data thus achieving 

higher true positive rates and lower false positive rates. However, the major drawback of such 

classifiers is that they will require more time to compute the classification outcome for new 

data. Furthermore, the higher complexity is required to discriminate between samples that 

belong to different classes but exhibit a high degree of similarity. In contrast however, there 

are many samples that can be distinguished by classifiers of lower complexity since the 

samples have distinctively different features. The cascade classification scheme tries to take 

advantage of this very observation by building a hierarchy of classifiers with different training 

data and feature requirements in order to provide increased detection performance while 

radically reducing computation time. Thus the early classifiers in the hierarchy focus on 

discriminating between the easily distinguished samples while the latter focus on the more 

difficult samples that exhibit a high degree of similarity. As such, cascade classification 

schemes attempt to reject as many negative data as possible at the earliest stage possible. 

While only a positive instance will trigger the evaluation of every classifier      in the 

cascade, which happens only for a small fraction of the input data.  

Training of cascade classifiers involves a tradeoff between the number of cascade stages, 

the number of features in each stage and the threshold of each stage. Due to the difficulty in 

finding the optimum solution to this problem a simple yet efficient approach is usually 

followed to construct a cascade of classifiers and is outlined in Figure 2-2. A stage in the 

cascade is first trained using the desired supervised machine learning algorithm until the 

desired detection rates for that stage have been reached. Then the whole cascade classifier is 

evaluated using a test set that determines the stopping condition. Another stage is added to the 

hierarchy, with increased complexity (i.e. more features and more training data), if the overall 

detection rates of the cascade are not sufficient. This process is repeated until the maximum 

number of stages have been reached or if the overall targeted accuracy has been achieved. The 
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negative training set used to train each additional stage is filtered each iteration by first 

passing negative samples to the current cascade and collecting the false detections (i.e. those 

that have been classified as positive). This results in reduced training time for each additional 

stage and allows the additional stage to focus on the "difficult" examples that cannot be 

distinguished by simpler models.  

 Given a training set of     positive samples, and     negative samples and a test set 

of     positive samples, and     negative samples. 

 Do 

i. Select a random subset of the negative training set         
    . 

ii. Train a classifier      using     and    
    . 

iii. Get accuracy of classifier      using     and    . 

iv. Adjust threshold of classifier      to minimize false negatives (FN). 

v. Screen the negative training set     and remove the true negatives (TN) from 

the training set resulting in a new negative training set    
 .  

vi. Substitute the training set    
      .  

vii. Evaluate classifier cascade using     and     and stop if accuracy is 

satisfactory. Else add an     stage and repeat process. 

(a) 

 

(b) 

Figure 2-2. Supervised learning with cascade classifiers 

(a) Cascade classifier construction overview (b) Cascade classification scheme 

The cascade approach has been one of the mostly widely used schemes for problems where 

one class appears more frequently than the other. It manages to speedup both the training as 

well as the classification process which are both equally important the latter to allow for trying 

out new methods and the former to meet real-time detection constraints. Hence, cascade 
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classification schemes are widely used for real-time embedded applications, such as visual 

object detection, where performance speed is a critical constraint. The cascade classification 

scheme is only one of the ways to combine different classifiers together. Depending on the 

application different ensembles/structures can be utilized to combine the classifiers. For 

example, tree classifiers can be used for multi-class applications where each path triggers a 

different class. Majority voting schemes can be used to combine different classification 

algorithms and obtained a more accurate and robust classification result rather than improved 

detection speeds. 

2.2 Intelligent Embedded Vision - Visual Object Detection 

The detection/discovery of visual objects is a perceptual and cognitive task fundamental to 

vision and intelligence. It can be useful for a wide range of embedded applications ranging 

from robotics, surveillance and census systems, human-computer-interaction, intelligent 

transport systems, and military. Hence, the realization of intelligent embedded vision systems 

that can perform visual object detection is critical for such applications.  

The process of visual object detection deals with determining whether an object of interest 

is present in an image/video frame or not: regardless of its size, orientation, and the 

environmental conditions which is found in. The high degree of variability makes it difficult to 

describe an object analytically by following an algorithmic step by step approach. Hence, 

object detection is typically viewed as a machine learning pattern recognition problem where 

the goal is to given an image to classify it as an object or non-object. There are different 

methods used to perform object detection the most notable of which are [22],[23],[17]: 

Knowledge-based methods: These techniques are based on rules that codify the human 

knowledge about the object of interest and its characteristics.  

Feature invariant techniques: These methods consists of finding structural object features 

that remain invariant regardless of pose, lighting conditions, or viewpoint.  

Template matching methods: Several standard patterns/models are stored to describe the 

object as a whole or as different components. The correlations between the stored models and 

input are computed to perform detection.  
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Appearance-based methods: In contrast to template-based methods the models are learned 

by examples of objects and non-objects, through supervised machine learning algorithms 

(Support Vector Machines, Neural Networks, etc.), which find relationships between data 

instances and classes to capture the variability of visual appearance. 

Obviously, the above methods are interrelated and can be used together in order to provide 

higher and more robust detection accuracies. Appearance-based methods constitute the most 

popular detection approaches [22] but they are often combined with knowledge-based or 

feature invariant techniques to improve detection performance. These types of methods obtain 

good results due to the fact that they can generalize well given that the variability in the object 

appearance can be captured by the given training set and the chosen features offer adequate 

descriptive capabilities. Moreover, the incur a lower computation cost compared to other 

methods.  

The overall visual object detection process begins by first receiving an input image/video 

frame from a camera or other adequate image source, which subsequently will then be 

searched in order to find possible objects of interest. This search is done by extracting smaller 

regions from the frame, called search windows, of     pixels, which are processed by a 

classification algorithm to determine if they belong to the object of interest class or not [9]. 

The search window size is such so that it corresponds to the size of the object of interest. Thus, 

the classification algorithm learns to categorize search windows of a particular size. However, 

the object of interest may appear in the image/video frame at a larger size than the size of the 

search window. In such a case, the classification algorithm will not be able to detect the 

object. To account for this scenario an object detection system may either increase the size of 

the search window, or decrease the size of the input image (downscaling), effectively reducing 

the size of the object of interest, and then reexamines the downscaled image with the same 

search window size. The latter process is often preferred as it is more efficient [58] as the 

former requires training many classifiers, one for each window size, and also to process large 

images as the window size increases. On the other hand, the former approach requires training 

only a single classifier for the targeted window size. The downscaling process is done in steps 

to account for various object sizes, down to the size of the search window and scaling happens 

by mapping old coordinates to new ones using a                as shown in Equation 2-1. 
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Hence, many downscaled images are produced from a single input image/video frame, each in 

turn producing a number of search windows, which increases the amount of data that must be 

processed by the classification algorithm. Search windows can be extracted from every pixel 

location in the image (exhaustively) or every few pixels. The term which determines the 

distance between successive search windows is called the                  . This window 

step is application specific and is relative to the size of the object of interest. Small objects can 

appear within a distance of a few pixels between them and as such, usually a small window 

step is chosen, whereas for larger search windows the window step can be increased.  

 
    
    

   
   
   

   
    
    

  Equation 2-1 

Each window that is extracted from the image is processed to account for different lighting 

conditions and other environmental variations, or to extract meaningful features which are 

used for classification. These features can either be shape, color, intensity, and responses of 

various filters and feature extraction algorithms (edges, local binary patterns, Haar wavelets, 

histograms, etc.). Using features makes the detection process more robust since it provides a 

more representative description of the object and reduces the within-object-class variability. 

However, the addition of feature extraction approaches and preprocessing methods can have a 

negative effect on the classification speed even though the accuracy can be improved. An 

illustration of how features can improve the classification performance is given in Appendix 

B, while different features are discussed in Section 2.6.1. 

It is important to consider the metrics used to measure the performance of an object 

detection system. An image object detection system is characterized by how accurately it can 

classify data as well as how many image frames it can process per second. Thus, the two 

commonly used performance metrics are the detection accuracy, and 

                        or           . Detection accuracy is usually measured on a 

given test set where the expected outcome for a sample is compared to the actual outcome of 

the object detection system. The detection accuracy is the percentage of samples for which the 

expected outcome matches the actual outcome of the detection system. FPS concerns the 

throughput of a system and is the maximum number of digital video/image frames, of a given 

size, that the detection system can process in one second. A minimum performance of        

is required in order for an object detection system to be capable for real-time video processing 
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[58]. However, depending on the application higher frame-rates may be necessary thus higher 

system performance is needed. This is typically the case if other image processing and 

recognition algorithms have to coexist with detection, or if multiple video feeds from different 

sources need to be processed. 

 

Figure 2-3. Object detection process 

Object Detection Process: A) Image pyramid generation: The larger input image is downscaled. B) Sliding 

window search: A search window slides across the image every few pixels to extract smaller image regions. C) 

Window preprocessing: The image region is preprocessed to account variations and/or to feature extraction. D) 

Window classification: The image region is classified using a machine learning/pattern recognition algorithm. 

2.3 Challenges and Trade-offs for Embedded Visual Object Detection 

The two major challenges in meeting the performance metrics of intelligent embedded 

vision systems regard the complexity of the classification algorithm and the sliding window 

search process. A visual object detection system exhaustively scans all sub-windows in an 

image. Many downscaled images are produced from a single input image/video frame, each in 

turn producing a number of search windows, which increases the amount of data that must be 

processed by the classification algorithm. Evaluating all sub-windows becomes a tedious task 

when the classifier consists of several thousand training data/features and in addition features 

need to be extracted from the image.  

2.3.1 Sliding Window Search Process 

The overall search process can be a tedious task and impacts both processing speed which 

depends on the number of generated windows, as well as accuracy with regards to the 

granularity of the search. The parameters that impact the search process are: the search 
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window size, window pixel step, image size, and downsampling rate. The search window size 

is the smallest possible object size that can be detected and impacts the number of generated 

windows for a given frame size. The number of scales depends on the downsampling rate and 

is important since it enables detecting larger objects. The window pixel step is the distance 

between consecutive windows and affects the granularity of the detection system as it 

determines the percentage of the image region that will not be processed while also 

determining the number of windows for a given frame size. A small pixel step between 

windows ensures that the detection system will examine all possible candidates in the image, 

increasing the probability of finding all objects in the image. However, the number of 

generated search windows per scaled image version will increase and consequently decrease 

the frame-rate. Overall, these parameters are collectively used to find the number of windows 

generated from a single image frame. The number of generated windows can be calculated 

from the following: 

                

       

   
               

     

   

        

   
                

     

 

         

   

 
Equation 

2-2 

where        is the window width,        , is the window height,      is the window pixel 

step (assumed to be the same in both vertical and horizontal directions),         is the input 

frame width,          is the input frame height,    is the downsampling rate, and   is the 

current iteration. The total number of iterations depends on the desired number of scales that 

need to be processed which can be down to the smallest window size. It is evident from the 

above equation that the number of windows is increased as the window pixel step becomes 

smaller, the downsampling rate decreases slowly (i.e. its value is closer to  ), the window size 

becomes smaller, or if many scales need to be searched. By appropriately setting the above 

four parameters for a given application it is possible to achieve an adequate trade-off between 

frame-rate and classification accuracy. The number of generated search windows can be the 

bottleneck in the frame-rate of an embedded object detection system. This has prompted 

research towards alternative search method that rely on color- and video- based approaches 

(e.g. skin detection, interest point detection, motion-detection, etc.) to reduce the search space. 

Although these methods reduce the locations where exploration needs to be performed they do 
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not provide a means to find the actual window size, as a result a scale exploration still needs to 

be performed.  

2.3.2 Pattern Recognition Classification Algorithm 

The computational demands for the implementation of a classification algorithm depend on 

the amount of training data and the complexity of the operations. Usually, the operations that 

need to be carried out may range from convolution of the input window with predefined 

kernels, to more complicated operations such as square roots and exponential functions. 

Complex operations take more time to compute and thus it may be necessary to approximate 

them or pre-store their values for fast rapid function evaluation. Of course this option also 

involves a trade-off between the loss due to the approximation and The amount of the 

resulting training data that may be required by the classification algorithm is directly related to 

the amount of training set and the algorithm complexity. The complexity of each algorithm, 

however, is different and depends on the training method and model parameters. Nevertheless, 

considering that appearance-based methods may need a large amount of data to achieve the 

targeted accuracy for visual object detection applications the underlying classification process 

is generally considered a tedious task.  

2.3.3 Overview of Computing Platforms for Embedded Object Detection 

This section aims to provide an overview of the different computing platforms that have 

been used in the design of vision systems [24] where real-time object detection application can 

be used in order for the reader to understand the capabilities and limitations of each platform 

in terms of detection speed performance, power dissipation as well as potential system size. 

These architectures are the multi-core Central Processing Unit (CPU), the Digital Signal 

Processor, the Graphics Processing Unit (GPU), and the Field Programmable Gate Array 

(FPGA). It must be noted, however, that the choice of platform also depends on the 

application scenario, algorithm, constraints, as well as cost and devoted development time. 
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A. Multi-core CPUs 

Multi-core CPUs have been the trend in mainstream CPU architectures over the past 

decades in an attempt to find other ways to improve performance primarily due to three 

limiting factors (power consumption, memory latency and wiring delays, and limits of 

instruction-level parallelism) that have stalled the progression of single CPU architectures 

[25]. As the name suggests instead of having a single core with very high frequency and deep 

pipelines, it is replaced with two or more simpler cores that process different threads (a small 

sequence of program instructions). Multi-core CPU architectures have been the traditional 

processing platform for the implementation of computer vision algorithms since they offer 

high flexibility, ease of use, and fast development times. Recent multi-core systems consist of 

    physical CPU cores with operating frequencies in the order of GHz. They also have 

floating point support, and support for vector processing through single instruction-multiple 

data (SIMD) instructions. However, the parallelism and achievable performance is 

proportional to the number of cores, which are fewer compared to other platforms, setting a 

limit to the maximum achievable performance [24]. In addition, existing vision systems 

developed using high end CPUs that can provide real-time video rate require utilizing all the 

cores and thus exhibit high power consumption (the reader is referred to [26] for more details). 

As such, they are not suitable for embedded environments.. Reducing power consumption 

requires reducing the frequency or reducing the processing resources both of which end up 

reducing the performance. Hence, multi-core CPU systems have traditionally been used for 

security and surveillance systems on desktop computers where power consumption is not a 

key constraint, rather than embedded environments.  

B. Digital Signal Processors (DSP) 

A digital signal processor (DSP) is similar to a general purpose processor in the sense that 

it also has fixed logic, can execute a finite number of instruction types, and the instructions 

have a sequential flow [1]. However, the main distinction from general purpose CPUs is that 

their ISA is optimized for matrix operations, particularly multiplication and accumulation 

(MAC) which is the most common operation in signal processing applications, and expect a 

linear program flow with infrequent conditional statements where a large amount of data 

needs to be processed with the same mathematical program/operations. For this reason, they 
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provide SIMD (single instruction, multiple data) instructions to exploit parallelism by 

executing the same instruction on multiple data streams, as well as VLIW (Very Long 

Instruction Word) instructions to process different instructions with different data [1]. High 

performance DSPs often pack multiple processing cores with a general purpose CPU structure. 

They also include multiple DMA (Direct Memory Access) units and dedicated I/O units for 

fast access to off-chip memory. DSPs are an attractive platform for embedded vision systems, 

offering programmability, low-cost and low-power, and parallelism in the form of SIMD, 

VLIW, or both. However, the fixed number of processing resources on a DSP coupled with 

lower frequencies than multi-core CPUs, can be the bottleneck in the highest achievable 

performance [27]. 

C. Graphics Processing Units (GPUs) 

Graphics processing units (GPUs) deal with processing of information in order to produce a 

   image from a scene (made up of know objects at different scales, orientations, size, 

distances, colours, shapes, etc.). This is the inverse to computer vision where the goal is to 

construct a description of a scene from an input    image. Recently GPUs have evolved from 

a dedicated graphics coprocessor to a host CPU, into a massively parallel programmable 

compute engine. GPUs employ grids of massively parallel programmable stream processing 

cores [28] that are efficient for high performance computing, while using additional fixed 

function hardware for graphics processing. Hence, since early           there has been a 

massive interest in utilizing GPUs for general purpose computing applications [29], called 

general-purpose computation on GPUs (GPGPU) [28], using C-style language definition and 

compliers such as NVIDIA's CUDA (which stands for Compute Unified Device Architecture).  

 The architecture of a GPU is drastically different from that of a CPU, in that transistors are 

used for computational processing units instead of caches and branch prediction and their 

architecture is optimized for high throughput instead of low latency. Consequently, GPUs 

offer order(s) of magnitude greater performance and are widely considered as the 

computational engine for the future. GPUs also have a different memory hierarchy which aims 

at delivering high bandwidth through wide memory busses and specialized graphics memory. 

In addition GPUs employ small read-only caches that help in reducing the bandwidth 

requirements on the main memory and benefit from small caches that capture spatial locality. 
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As the number of programmable processors increases significant amounts of on-chip storage 

are used to hold execution context, stream data, and temporary data. GPUs provide raw 

horsepower for compute intensive tasks requiring real-time performance such as in vision 

applications that. However, there are trade-offs to be made between power and performance as 

higher-end GPUs tend to have high power consumption (in the order of hundreds of watts 

[11]) [1]. Another potential drawback for use of GPU technology in embedded environments 

is the fact that even though programmability capabilities of GPUs have improved dramatically 

in the last few years, debugging and is still a challenging task [30]. Finally, necessary data 

transfers between GPU and the host CPU increase the latency of the application [30], 

something that is often not considered in embedded vision application implementations on 

GPUs. On the other hand, embedded GPUs (eGPUs) require have less demands in terms of 

power consumption but do not offer the same programmability features and have less 

processing and memory resources [12].  

D. Field Programmable Gate Arrays (FPGAs) 

Field programmable gate arrays (FPGAs) [31], as shown in Figure 2-4, are a type of 

reconfigurable integrated circuit made up of configurable logic blocks (CLBs) consisting of 

look-up tables (LUT) which are programmed to store given outputs for all input combinations, 

as well as other logic such as registers and logic gates. The CLBs are interconnected via an 

interconnection network of programmable switches and I/O Blocks are available on the 

perimeter to allow communication with external devices. In addition, modern FPGAs also 

come equipped with dedicated hardwired processing blocks such as embedded processors, 

MAC units, and embedded memory. All these components make FPGAs a fully 

programmable integrated circuit which the designer can use to develop any desired digital 

circuit while also taking advantage of the available dedicated resources.  

A digital circuit (hardware architecture) is configured on the FPGA using a hardware 

description language (HDL) which specifies its behavior and functionality. The huge benefit 

of FPGAs compared to the aforementioned computing platforms is that the application circuit 

can be tailored to the demands of the application with respect to how the processing will be 

performed, the data flow, control and synchronization of various components and interfacing 

with I/O. Hence, FPGAs offer a large amount of parallel resources that can be exploited with 
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the appropriate hardware architecture in order to provide the necessary performance, and since 

they can be reconfigured also provide a high degree of flexibility. In addition, FPGAs offer a 

deterministic performance and a complete solution since a full system along with peripherals 

can be integrated on the same FPGA with a deterministic number of cycles needed to carry out 

the computations. However, the downside is that designing with FPGAs requires long 

development cycles which can be substantial, hence FPGAs are mostly used as prototyping 

platforms for potential future application specific accelerators for vision applications. In 

addition FPGAs often have lower frequencies than other platforms because of the complex 

fixed interconnection network which results in longer delay paths. However, the low 

frequencies can be compensated by designing a highly parallelized architecture. As such, there 

is a growing research effort to design dedicated hardware architectures for vision applications 

in order to provide the real-time performance along with the lower power consumption of 

FPGAs.  

 

Figure 2-4. Architecture of a Field Programmable Gate Array (FPGA) 
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E. Towards a Heterogeneous Embedded Vision System-on-Chip 

The above analysis of the main concepts and properties of each computing platform 

demonstrates that each platform comes with its own strengths and weaknesses. As such, given 

the diverse nature of computer vision applications in terms of data flow and operations and the 

need for specialization as well as flexibility it is reasonable to envision a heterogeneous 

embedded vision system-on-chip (SoC) [24],[32] where the above processing platforms will 

be utilized to carry out different application tasks (Figure 2-5).  

 

Figure 2-5. A heterogeneous embedded vision SoC 

For example, for a vision processing application the control flow mechanisms of a CPU are 

well suited for system supervision and synchronization purposes, the signal processing 

capabilities of a DSP can be used to handle video transmission and reception, a GPU can be 

used to handle image preprocessing, manipulation and rendering, and an FPGA can be used to 

provide customized and optimized application specific parallel processing for image analysis. 

Anticipating this trend towards a heterogeneous platform [33] this thesis addresses the design 

of a hardware architecture for the acceleration of object detection systems that can be used for 

real-time embedded applications. FPGAs are used as a prototype to evaluate the architectures, 

however, they can be used with different programmable hardware platforms. Compact low-

power and real-time architectures can be used to design specialized processors which can be 
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used to embed visual detection capabilities in cameras, handheld devices, autonomous 

vehicles and humanoid robots. However, there are various design challenges associated with 

the development of hardware architectures which are summarized next.  

 Hardware Design Issues and Challenges 

Designing a hardware architecture for object detection that can be used either with FPGAs 

or with other hardware platforms, involve a trade-off between different factors that affect both 

detection accuracy and performance. This are briefly mentioned below but will become more 

apparent in the following sections and chapters. 

A. Input & Training Data Representation 

The data representation plays a central role in the implementation of a hardware 

architecture for object detection. Typically, for object detection applications which concern 

pixel images the input is represented by  -bits for grayscale images (intensity values of 

     ), and    bits ( -bits per color channel) for RGB (red-green-blue) images. The vast 

majority of object detection applications perform classification on the grayscale images. 

However, it is not necessary to use  -bits since the input can be preprocessed and normalized 

to fit the requirements of the hardware implementation platform. As such, depending on the 

preprocessing method and feature extraction approaches bits necessary to represent the value 

can vary. In addition, the value may not be an integer such as in grayscale images but a real 

number. Training data (weight and threshold values) are also typically real numbers.  

The representation of real-numbers in hardware can be done either floating or fixed point 

arithmetic and twos complement or signed representation. Usually fixed point twos-

complement representation is used due to the simpler hardware needed for mathematical 

operations. However, there needs to be a design space exploration to find the optimal number 

of bits to use in the representation in order to both minimize the memory requirements and 

preserve the targeted accuracy rate.  

B. Parallel Processing 

A pattern recognition algorithm requires processing each input data with training data in 

order to obtain the classification output. The amount of training data that needs to be 

processed by the algorithm and the total amount of input data that need to be processed per 
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input image affect the performance. Hence, in order to provide real-time performance the 

hardware architecture needs to be designed in such a way as to facilitate parallel data 

processing. There are two possible ways to exploit parallelism in object detection systems. 

The first is pixel-level parallelism which aims at processing the data of a single window in 

parallel with one or more training data. The second is window-level parallelism which 

processes multiple windows with one or more training data, possibly sacrificing some speed 

for the classification of one window. A combination of window- and pixel-level parallelism is 

also possible but is not as simple and requires a more rigorous design-space exploration. Of 

course an important factor to consider is the available resources and how the data-flow 

between them can facilitate each level of parallelism. Assuming that the hardware resources 

are available the limiting factor is then how fast can the architecture be loaded with data. As 

such, providing an efficient data flow is equally important to having a parallel architecture. 

Furthermore, the complexity of controlling and managing a more parallel system is also an 

important aspect to consider.  

C. Memory and I/O 

The memory issues concerning an object detection system include latency, access, size, 

structure, and bandwidth. External memories such as DRAM or compact flash are used to 

store image/video frames. An image buffer can be used as local memory to store the active 

image frame on-chip to speed up the classification procedure, and provide more flexibility in 

the way the image memory is accessed. Memory access is important to provide a higher 

degree of parallelism. Additionally, image buffer structures can be tailored to accommodate 

the system requirements (e.g. by distributing the image into banks to provide parallel access). 

In many cases where on-chip memory prohibits the storage of a whole image frame, a window 

buffer is used to store only the window that needs to be processed.  

In addition to the image data storage requirements the pattern recognition algorithm also 

requires the storage of training data used for classification. The frequency with which the 

training data is accessed affects how the complicated the memory management becomes. If the 

request to training data is sparse, then it is preferable to store the training data in an off-chip 

memory, and fetch only the currently required data. Consequently, on-chip memory resources 
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can then be used for the image frames. However, if the access to training data is frequent then 

using on-chip memory to provide fast and parallel access is the preferred option.  

2.3.4 Applications of Visual Object Detection Systems 

Thus far this section has provided the basic concepts for visual object detection from an 

overview of the detection process to the available computing platforms. As a final note it is 

important to consider how a hardware accelerated visual object detection system can be used 

and what are the targeted embedded applications. As mentioned earlier in the text, real-time 

performance for video applications is considered to be around       . This number stems 

from how humans perceive motion and is the target for human-centric applications which 

require real-time interaction and responsiveness. As such, for those applications DSP 

processing platforms, and when the power budget permits it CPUs and GPUs, can provide the 

necessary performance of around          . However, it is not difficult to envision other 

scenarios where the system response and processing rates need to be higher than this value. 

For example, applications such as cloud image sequence analysis, quality control in industrial 

environments require detection to be performed at higher frame-rates, while other applications 

such as surveillance from multiple cameras, automated driver assistance, smart transportation 

systems, and aerial and terrestrial autonomous navigation, also require low-power 

consumption. The higher performance is necessary in order to alert or intervene with a host 

within given time limits, or in the case of multiple cameras where the input stream rate 

increases with each image sensor, or even when additional tasks need to be implemented such 

as recognition and analysis. These cases require well over        [9], while also operating 

under relatively small power budget for the whole system [1],[10]. These are the types of 

applications that the research in this thesis attempts to tackle by demonstrating how 

customized hardware architectures can be used to accelerate object detection applications and 

provide high frame-rates and low-power consumption using FPGAs as the prototyping and 

evaluation platform. 

A description of the background theory and details for two widely used classification 

algorithms for visual object detection which are considered in this thesis, namely the 

Adaboost-based Haar-cascade classifier, and Support Vector Machines, are provided in the 
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following sections. In addition, through this overview the trade-offs and challenges in the 

design of these classification algorithms will become more apparent. 

2.4 Viola and Jones Framework for Rapid Object Detection 

The following sections detail the Viola and Jones detection framework [15] which 

incorporates a set of methods and approaches that result in rapid object detection. It was the 

first object detection framework to provide competitive accuracy rates with a real-time 

processing rate of        back in 2001. It can be used for a variety of objects but was 

primarily motivated by face detection. It was implemented as a part of Intel's OpenCV [18] 

computer vision library. There are three main components in the framework, integral image 

representation and evaluation of rectangular features, feature selection and learning through 

AdaBoost, and cascade classification architecture. All concepts are described next in more 

detail.  

2.4.1 AdaBoost Boosting Algorithm 

Boosting is a general method for improving the accuracy of any given learning algorithm. 

There are many variants of boosting methods which mainly differ in the training process. One 

of the most well known boosting approaches is called Adaptive Boosting (AdaBoost) [34]. 

The main advantage of AdaBoost is that it does not suffer from overfitting. It is based on the 

idea that a single strong classifier can be created from a set of weak classifiers. A weak 

classifier can be is considered as a classifier which manages to label examples only slightly 

better than random guessing. In contrast, a strong learner is a classifier which manages to 

correlate arbitrarily well with the true classification outcome. Boosting then tries to produce 

accurate classification prediction rules (strong classifiers) by combining not so accurate, 

rough, rule-of-thumb classifiers (weak classifiers). Specifically, the strong classifier   is a 

weighted sum of all the weak features  . So for a new unknown input the outcome of weak 

classifiers    are multiplied with their respective weight values    derived from the training 

phase to predict the class the class. The main steps of the AdaBoost boosting algorithm are 

outlined in Figure 2-6.  
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 Given example data                 where           for negative and positive 

examples respectively. 

 Initialize weights    for all samples so that that they form a probability distribution  

→    
 

 
         

 For           

i. Find classification hypothesis   which minimizes the error  

 Calculate error    of    for each example with respect to    

                 
 
     

 Choose the classifier   , with the lowest error   .  

 If    
 

 
 stop. Set T=t-1.  

ii. Update the weights for next round:        
    

 
    

    , where      if 

example    is classified correctly,      otherwise, and    
  

    
, where   is 

a normalization factor such that the group of   form a probability distribution 

iii. If        and set       and stop 

iv. Find total strong classifier error   : 

                    
 
   ,  

where the current classifier error is    
 

 
                

 
    

and      
                                

                                   
   

and    
 

 
     

 

  
  

 Set T=t 

 if      stop  

 The final strong classifier with T stages is:  

                  
 
    , where       

 

  
. 

Figure 2-6. Outline of the Adaptive Boosting (AdaBoost) algorithm  

At each iteration   of the AdaBoost algorithm, a weak classifier is trained to produce a 

hypothesis    that classifies the training samples   . The error of this hypothesis with respect 

to the current weight values is calculated as the sum of the errors of the instances misclassified 

by   . AdaBoost requires that this error be less than     so that the classifier effectively 

performs slightly better than random guessing. If a classifier cannot meet this requirement, the 

algorithm aborts and the current structure of weak classifiers is chosen as the strong classifier 

  . Otherwise, the normalized error   , is then computed so that the actual error that is in the 

[     ] interval is mapped to [   ] interval. The normalized error is used in the weight update 
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rule. Then the weights are normalized so that they correspond to a probability distribution. The 

way that the weights are updated every iteration ensures that that subsequent weak classifiers 

focus on increasingly difficult instances as the weights of the instances that are misclassified 

are effectively increased. This update rule ensures that the weights of all correctly classified 

instances and the weights of all misclassified instances always add up to    . More 

specifically, the requirement for the training error of the base classifier to be less than   

  forces the algorithm to correct at least one mistake made by the previous base model. Once 

the training is complete, samples are classified by an ensemble of   weak classifiers using 

weighted majority voting, where each classifier    receives a voting weight that is inversely 

proportional to its normalized error. The weighted majority voting then chooses the class that 

receives the highest total vote from all classifiers. This process trains a single strong classifier 

  . The next strong classifier      is trained by first filtering out the samples that are correctly 

classified by the current strong classifier structure    to    as described in Section 2.1.2. 

2.4.2 Haar-Features and Integral Image Representation 

Viola and Jones introduced a set of simple features for computer vision applications 

derived from Haar wavelets [35], instead of directly using pixel intensity information. These 

features, called                    due to their intuitive similarity with Haar-wavelets, act 

as filters that can detect the presence or absence of certain visual characteristics in an image 

(lines, corners, etc). Each feature consists of a set of black and white rectangles in a horizontal 

or vertical structure (Figure 2-7). A feature can have 2-4 rectangles in different configurations 

as shown in Figure 2-7 and so each can detect certain image features and object patterns. The 

computation of Haar-like features involves computing sums of image regions and finding their 

difference. Specifically it is done by overlaying the feature over the input image, as in a 

convolution operation, and calculating the sum of the pixel values in the white rectangles of 

the feature, minus the sum of pixel values in the black rectangles, (Figure 2-7). The resulting 

value of the difference of white and black rectangles can indicate the presence of visual 

features in the image. Thus a group of Haar features can potentially describe an object and its 

characteristics and can be used to categorize images.  
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Figure 2-7. Examples of Haar-like features 

A potential drawback of Haar-features, however, lies in the fact that for each feature, 

multiple rectangle sums need to be computed in order to speed up the feature computation, 

Viola and Jones proposed an alternative input image representation, called the 

              . The integral image is simply a transformation of the original input image, to 

an image where each pixel location holds the sum of all the pixels to the left and above of that 

location [15], as shown in Figure 2-8. The advantage of using the integral image is the ability 

to compute the sum of a rectangle in constant time. As shown in Figure 2-8 (rectangle 

computation), the computation for rectangle   is simply two additions and two subtractions of 

the four corner points of the rectangle when using the integral image rather than the original 

image. Hence, regardless of the feature or search window size, only four values per rectangle 

are necessary to compute the value of each feature. Additionally, the location of the rectangles 

within each feature is predetermined from the training set, hence to evaluate each rectangle the 

offsets    and    values from the starting coordinate of each feature are needed (Figure 2-8). 

The offset coordinates are part of the training set, where each feature is associated with a list 

of the feature’s rectangles and the four pairs of (dx,dy) offsets necessary. This holds true 

during feature upscaling as well, as since the rectangle coordinates are fixed,    and    are 

also scaled linearly with the scale factor. For example, if a feature scales from 24×24 to 

30×30, (i.e. a scale factor of 1.25) a rectangle that in the initial feature would be located at 

starting coordinate (   = 4,   = 8) would be mapped to (   = 5,   =10), with    and    

multiplied by the scale factor (rounded to the nearest integer). 
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Figure 2-8. Integral image and fast feature computation 

2.4.3 Haar-Feature AdaBoost-Based Cascade Classifier 

The algorithms and concepts described in the previous sections have been incorporated into 

a dedicated framework for robust real-time object detection by Viola and Jones [15]. 

Specifically AdaBoost [36] was used as part of a learning algorithm to select a number of 

Haar-features from a larger pool, in order to construct a cascade classifier of strong and 

accurate classifiers from the weaker Haar classifiers. The combined framework presents two 

significant advantages that have contributed to it being considered state of art approach for 

object detection. First, it has the ability to quickly eliminate non-object regions, and second 

the classification process itself and the computations per window is simple and fast. A group 

of features composes a strong classifier, the outcome of which is the sum of the feature 

outcomes. Multiple strong classifiers with a varying number and type of features are arranged 

in a cascade of stages. The sum of all weighted feature rectangles in the Haar-like feature is 

used to determine the feature sum, if this sum exceeds a certain value then it is set to a 

predetermined value obtained from the training set, otherwise it is set to another 

predetermined value, also obtained from the training set. All feature sums are computed and 

accumulated to compute the stage sum. At the end of each stage, the stage sum is compared to 

a predetermined                           . If it is larger, the image is a successful 

candidate region to contain the object of interest, otherwise, it is discarded, and omitted from 

the rest of the computation. This technique accelerates the process of rejecting an image 
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region that does not contain objects of interest, so that computation time will focus only on 

successful candidates. The original algorithm [15] used features starting at       pixels, 

however, the feature size can vary with the application. The number of rectangles for each 

feature and their configuration vary also depending on the object of interest and the more 

informative visual features of that object.  

 

 

Figure 2-9. Viola and Jones algorithm flow 

(top) Outline of the Viola and Jones detection procedure. (bottom) Stage evaluation outline. 
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Objects in the image frame which are larger than the search window and the feature, do not 

get detected. This is usually solved by downscaling the original image frame, subsequently 

reducing the object size, and making it detectable. However, Viola and Jones suggest 

enlarging the feature instead, this way, image data that could potentially be lost by 

downscaling remains, and the features that are simply black and white rectangles, scale 

linearly without loss of data. Consequently, when all search windows finish, features are 

scaled by a predetermined factor, to detect objects larger than the original feature size. The 

computation is repeated again, using new training values set for the larger scale, until all 

objects of all sizes are detected in the image frame and until the size of the feature reaches the 

size of the largest possible object (in terms of pixels) in the input image frame. The amount of 

scaling also impacts the detection speed significantly, which further stresses the need for rapid 

feature computation. Figure 2-9 shows the overall detection process and classification 

algorithm flow chart and computation stages. 

       
   
           
   

    
 

 

 

           

   

           Equation 2-3 

         Equation 2-4 

All the above computations are essential for the classification process required by the 

detection algorithm. There are also some additional computations necessary to deal with the 

varying characteristics in which the object of interest may appear, due to the lighting and 

environmental variations. These computations regard a lighting correction technique to 

compensate for these variations. This technique requires the computation of the squared 

integral image for each input image (each image location holds the sum of the squared pixel 

values). This is necessary to compute the variance (   ) and the standard deviation ( ) of the 

image, to compensate for the lighting variations, as shown in Equation 2-3. The standard 

deviation is multiplied with the original feature threshold (  ) given in the training set, to 

obtain the                           (Equation 2-4) which dynamically takes care of any 

lighting variations encountered during the detection stage, and improves the overall accuracy 

of the algorithm. It is needed to be done only once for every search window however, all 
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subsequent features evaluated over that search window can use the computed standard 

deviation value as shown in Equation 2-3.  

2.4.4 Parallelism Opportunities and Computational Trade-offs 

Overall, the Viola-Jones detection framework offers a lot of opportunities to exploit 

parallelism. First, each downscaled image can be processed independently from the other 

versions. Second, within each image the sub-windows can all be classified in parallel. Third 

each feature in a stage can be processed in parallel and independent from each other. Finally, 

the operations for computing the rectangle sums within the feature can be done together. Of 

course these parallel operations require that the data can be accessed in parallel. Also the fact 

that the computations of the rectangles require only four values once the integral image is 

computed makes the computation and access to the integral image values all the more 

important. Furthermore, computing the integral image for every window is quite tedious both 

in terms of memory access and computations. Hence, there is the need to not only compute the 

integral image only once and fast, but to also exploit the memory hierarchy and local data 

storage and access in order to achieve high performance. Also the scaling method is important. 

As the features are scaled up the access to integral image becomes sparser hence making it 

difficult to exploit spatial localities for fast data access. On the other hand, scaling the image 

up instead of the features requires re-computing the integral image for every scale and may 

also result in some accuracy loss.  

2.5 Support Vector Machines Overview  

The goal of this section is to provide the central ideas of Support Vector Machine 

learning and overview of the basic concepts. The reader is referred to textbooks such as [37] 

and [38] for a more detailed and in-depth look. Support Vector Machines (SVMs) have been 

widely adopted since their introduction by Cortes and Vapnik [16], [39]. They are considered 

one of the most powerful classification engines due to their mathematical background that is 

based on statistical learning and is able to accurately model classification boundaries [39]. 

Consequently, there has been growing interest in utilizing SVMs in numerous applications 

including visual object detection systems [40].  
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2.5.1 Support Vector Machine Formulation - Training 

A SVM tries to find the mapping function   for binary classification problems (where class 

label   is either    or  ) by utilizing some basic concepts from                

            and                 . The SVM algorithm is derived by applying Lagrangian 

optimization theory to the                            optimization problem [37]. 

Training SVMs requires solving a                                            (CQP). 

An overview of these fundamental concepts of SVMs follows next. 

 

Figure 2-10. Support vector machine main concepts 

(a) Maximum margin and supporting hyperplanes (b) Slack variables (c) Support vectors 

A. Maximum Margin Classifiers 

Maximum margin classifiers are linear classifiers which given a two class data set try to 

construct the "best" hyperplane that separates the two classes. The best hyperplane is found in 

terms of the boundary from each class. Hence, in order to find the best separating hyperplane 

the distance between the hyperplanes which lie at the boundary of each class needs to be 

maximized [19]. The hyperplane can be described by a                 and an offset      

term  . The equation of the hyperplanes at the boundary of each class is given by Equation 2-5 

where    is a data point and    its corresponding class label. The distance between these two 

hyperplanes, as shown in Figure 2-10, is the margin between the two classes and is equal to 

 

    
. Thus in order to maximize the margin it is necessary to minimize the normal vector 
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norm. This results in the optimization problem for maximum-margin hyperplane classifiers 

shown in Equation 2-6. Those points for which the equality in Equation 2-6 holds lie on the 

supporting hyperplanes (Figure 2-10) and referred to as                      , and there 

removal from the data set would result in a change in solution of the optimization problem. 

                                                      

                                           
Equation 2-5 

   
 
 
    

 
                            Equation 2-6 

However, the above optimization problem can find the best separating hyperplane given 

that the problem under consideration is linearly separable and that all samples lie in the 

"correct side" of the hyperplanes. Such problems are not often encountered in real-world 

scenarios due to outliers/noise. An extension of the maximum margin hyperplane called the 

            can allow for some data samples to be misclassified to deal with such problems. 

The concept of soft margin permits for the constraints on some of the training data to be 

relaxed by adding slack variables    to the constraint optimization problem. However, this may 

lead to trivial solutions where all the data samples are considered as noise/outliers and are thus 

misclassified. To prevent such cases the slack variables are also added to the minimization 

function of the optimization problem in the form of a penalty factor. The penalty of 

misclassification is controlled by a regularization parameter  , which effectively controls the 

number of misclassifications. 

The formulation thus far assumes that the data samples of a given set can be adequately 

separated by a linear separating hyperplane even in the presence of a few outliers. However, 

many data sets are not linearly separable in which case a linear function will not result in good 

data separation. Hence, the SVM formulation needs to be enhanced to account for non-linear 

separations of the data. To this end, a mapping function can be used to project the data from 

the input space to a feature space of a higher dimensionality, so that data become more easily 

separated or better structured. Doing so makes it possible to compute a linear separating 

hyperplane for the data that corresponds to non-linear separation in the original space. Such a 

mapping function   maps points from an  -dimensional space to an  -dimensional space 
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where    , then by replacing    with      , the normal vector   can be found in   . 

Taking everything into consideration the SVM optimization problem then becomes: 

   
 
 
    

 
     

 

                                     Equation 2-7 

B. Lagrangian Optimization 

The above optimization problem is a quadratic programming (QP) problem which requires 

minimizing a quadratic function subject to linear constraints on the problem variables. This 

problem can be solved using its dual representation which is always convex and thus ensures a 

bound on the objective value and also is in general easier to compute than the original 

problem. To obtain the dual representation of the QP optimization problem in Equation 2-7, 

one first needs to form the Lagrangian equation using nonnegative Lagrange multipliers and 

add them to the constraints of the objective function. In general for problems where we need 

to find local minima and maxima of a function subject to equality constraints of the form 

                       , the general form of the Lagrangian is given by          

                  , where        is the cost function and        are the linear 

constraints. Hence, for the specific problem at hand the Lagrangian is given by Equation 2-8. 

The Lagrangian now needs to be optimized with respect to the variables      and  . However, 

in order for the solution to this problem to be optimum some conditions need to be met. These 

are called Karush-Kuhn-Tucker (KKT) conditions [38] (Figure 2-11) and allow using the 

Lagrange multipliers formulation when the constraints also have inequalities instead of only 

equalities.  

 All  's need to satisfy the following within a small epsilon  , typically      and    is 

classification result 

i.                  An   is   iff an example is correctly labeled with room to 

spare 

ii.                  An   is   iff an example is incorrectly labeled or in the 

margin area 

iii.                     An   is properly between         (is "unbound") iff 

that example is correctly labeled and lies on the boundary correctly  

Figure 2-11. Karuch-Kuhn-Tucker (KKT) Conditions 
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The KKT conditions are formed by taking the derivative of the Lagrangian with respect to 

the three aforementioned variables thus formulating Equation 2-9-Equation 2-11 as shown 

below. The KKT conditions provide relationships for parameters  ,  , and   and are 

necessary in order to find a solution to the optimization problem. The solution for the vector   

can be computed using Equation 2-10, which, however, implies that the corresponding alpha 

coefficients (also called Lagrangian multipliers)   , need to be found. Substituting these 

relationships into the Lagrangian equation results in what is known as the      optimization 

problem shown in Equation 2-12, that needs to be solved in order to obtain a solution and 

which now is only expressed in terms of the Lagrange multipliers and dot-products of the 

projected data samples     . 

               
    

 
                                         

Equation 2-8 

 
    

 
                                                   

  

  
        

 

   Equation 2-9 

  

  
               

 

 
Equation 2-10 

  

  
           Equation 2-11 

   
 
   
 

 
 

 
                    

  

          
 

             
Equation 2-12 

C. Kernel Trick 

The final part in the formulation of SVMs concerns the computation of the mapping 

function  . In some cases the mapping functions may not be known explicitly and even if it is 

known it may be computationally costly to calculate it for each sample. The              is a 

mathematical tool [41] which can be applied to any linear algorithm, where the data appear in 

the form of dot/inner products          , to transform it into a non-linear one. Wherever a dot 

product is used, it is replaced by an appropriate                 such that          

          . Because kernels are used, the mapping function  , which in cases may be infinite 
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dimensional and hence infeasible to compute, does not need to be ever explicitly computed 

and the mapping is done implicitly using kernels (Figure 2-12). 

 

Figure 2-12. Kernel trick and kernel construction 

(a) Kernel trick illustration. (b) Given valid kernels          and          the illustrated kernels will also be 

valid. In which    , is a constant,      is a polynomial with nonnegative coefficients,      is a function 

       ,         is a valid kernel in   , and A is a symmetric positive semi-definite matrix.  

When using the kernel trick there are no constraints on the form of the mapping, which 

could even lead to infinite-dimensional spaces, nor to the nature of the input vectors, since dot 

products could be defined between any kind of structure, such as trees or strings. In addition 

kernel functions can be interpreted as a similarity measure of two vectors in the input space.  

However, Kernel functions must be continuous, symmetric, and most preferably should have a 

positive (semi-) definite Gram matrix [42]. Kernels which are said to satisfy the Mercer's 

theorem [19] are positive semi-definite, meaning their kernel matrices have no non-negative 

Eigen values. The use of a positive definite kernel insures that the optimization problem will 

be convex and thus it has a unique solution. However, many kernel functions [43] which are 

not strictly positive definite (i.e. are only positive semi-definite for certain parameter alues) 

also have been shown to perform very well in practice (shown in Table 2-1). An example is 

the hyperbolic tangent or sigmoid kernel Equation 2-17, which is not positive semi-definite for 

certain values of its parameters. Existing kernel functions can be used to construct new kernels 

[44] as shown in Figure 2-12. Choosing the most appropriate kernel for a given application is 

a difficult task and often depends highly on the problem at hand and fine tuning its parameters 

can easily become a tedious and cumbersome task. Common kernel functions used in SVMs 
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are shown in Equation 2-13 through to Equation 2-20, in which    are the two vectors and 

                               are kernel-specific parameters that define the behavior 

of each kernel. 

 

TABLE 2-1 SUPPORT VECTOR MACHINE KERNEL FUNCTIONS 

Standard Kernels 

                         Equation 2-13 

The Linear kernel is the simplest kernel function. It is essentially a dot product and the feature space is simply 

the same as the input space. 

                                    
                           Equation 2-14 

                                          
                  Equation 2-15 

Polynomial kernels are well suited for problems where all the training data is normalized. They allow to model 

feature conjunctions up to the order of the polynomial. Homogeneous 2
nd

 degree polynomials allow for exact 

solution to the reduced support vector set problem. 

                   
       

 

        
          Equation 2-16 

The adjustable parameter sigma plays a major role in the performance of the kernel and the resulting 

generalization capabilities. This kernel allows to pick out circles or hyperspheres. 

Other Kernels (Conditionally Positive Semi Definite) 

                                                       Equation 2-17 

An SVM model using the hyperbolic tangent kernel function is similar to a two-layer neural network. Even 

though this kernel is only conditionally positive definite, it has been found to perform well in practice. 

                                 
 
          Equation 2-18 

                               
 
       Equation 2-19 

The log and power kernels seem to be particularly interesting for images, however, they are only conditionally, 

positive definite. 

                                    
               Equation 2-20 

Approximation of the RBF kernel. When used in conjunction with CORDIC algorithms it can be implement in 

hardware without multipliers. 
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Incorporating the kernel trick into Equation 2-12 yields the final optimization problem 

(Equation 2-21) that needs to be solved to find the solution for the SVM parameters. The 

solution to this problem can be found by using QP solvers which attempt to globally solve the 

optimization problem by considering all the data samples together. However, this requires a 

lot of memory and is a slow process proportional to the size of the training set. Instead 

iterative methods can be used such as the very popular and widely used Sequential Minimal 

Optimization (SMO) [45] algorithm found in popular SVM training packages such as MATLAB 

[46], and LIBSVM [44]. These algorithms decompose the problem into a set of smaller 

problems which are then solved analytically, thus improving the efficiency of the training 

process, since they require no extra matrix storage, while staying close to the optimal solution 

[40]. Specifically, the SMO algorithm attempts to solve the smallest possible sub-problem at 

every step which is to find the optimal values of two Lagrange multipliers (  ). The basic steps 

of the SMO [45], also shown in Figure 2-13, can be summarized as follows:    Choose two 

Lagrange multipliers to jointly optimize     Find the optimal values for Lagrange multipliers 

and      Update the SVM to reflect the new optimal values. 

   
 
   
 

 
 

 
                  

  

          
 

             Equation 2-21 

The support vectors usually correspond to a small fraction of the training set and 

correspond in non-zero alpha coefficients         ) in the Lagrangian optimization problem. 

The support vectors form the SVM classification model since the normal vector   cannot be 

computed directly as shown in Equation 2-10. This is due to the fact that there is no vector in 

the  -dimensional space that maps directly to   which lives in the  -dimensional space. 

Hence, SVMs lead to a sparse classification model where only the support vectors need to be 

processed. Furthermore, the decision of which training samples are support vectors is 

automatically made and there is no need to explicitly determine the model such in the case of 

neural network [19]. For this reason SVMs have developed into a widely used pattern 

recognition tool and have been used in a wide range of diverse applications.  
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 Load    for each samples    and initialize    and   to a random value,                

(usually     where   is a positive or negative integer)  

 Define:            , where       is predicted output for input    

 Repeat until     conditions are satisfied within a small margin epsilon   for all    

i. Choose Lagrange multipliers to optimize 

 Find a Lagrange multiplier    that violates the KKT conditions for the 

optimization problem.  

 Choose randomly, prefer unbound examples        

 Choose a second Lagrange multiplier    to maximize        , or 

choose randomly  

ii. Find solution to the reduced optimization problem: 

 Subject to constrains                          , where   is a 

constant that depends on the previous values of    and     

iii. Update SVM by computing new threshold   

Figure 2-13. The SMO algorithm 

2.5.2 Support Vector Machine Classification 

A. Monolithic Support Vector Machines 

After solving the SVM optimization problem the values for the alpha coefficients   are 

obtained. The vector  , however, that describes the separating hyperplane cannot be obtained 

analytically from Equation 2-10 because the mapping into higher dimensional spaces is done 

through the kernel function. Hence the training data samples need to be used to classify new 

data. However, for the majority of samples the alpha coefficients are zero, with non-zero 

alphas corresponding only to support vectors. Hence, only the support vectors are used for 

classification purposes. The SVM classification decision function (CDF) that is used to predict 

the class for an unknown input data   is shown in Equation 2-22, where     is the number of 

support vectors,    are the alpha coefficients,    are the class labels of the support vectors,    

are the support vectors,   is the input vector,        is the chosen kernel function, and   is the 
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bias which be estimated by substituting data sample and their label into the classification 

equation and finding the mean value of the bias. 

                                                          

   

   

    Equation 2-22 

B. Multiclass Support Vector Machines 

The SVM classifier and concepts described thus far target binary classification problems. 

The concept of SVMs can also be extended to handle multiclass problems. However, 

formulating the SVM algorithm to handle multiclass problems increases the computational 

complexity. Hence, as an alternative, two other common approaches are used to extend binary 

classification algorithms, including SVMs, in order to solve multiclass problems. The first is 

the                 approach in which one group of samples belonging to one class is 

chosen as the positive class while all the rest are combined to form the negative class. Under 

this setup it is necessary to train   classifiers for an   class problem. A voting scheme is used 

then to determine the dominant class. The second method is                 approach 

where a classifier is constructed for each class pairing. It is necessary to train 
       

 
 

classifiers for an   class problem. The final classification result can be obtained by 

accumulating the number of times each class has been predicted. The one with the majority of 

predictions is chosen as the resulting class. It is possible to alter the SVM formulation to take 

into consideration   classes instead of just 2, however, it is a computationally more difficult 

problem as it increases the training set and the accuracy is not that much better than the other 

two approaches. 

2.5.3 Computational Challenges of Support Vector Machines 

The SVM classification decision function (Equation 2-22) must be calculated for every 

input vector that needs to be classified. To do so the kernel must be evaluated, which requires 

all vector components to be processed with the corresponding support vector, its outcome 

multiplied with the alpha coefficients and support vector class label, and accumulated to the 

total sum before the bias can be processed (a process shown in Figure 2-14). The number of 

operations needed to compute the kernel depends on the number of support vectors (the 
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number of operations increases linearly with the number of support vectors), and the vector 

dimensionality. In general the classification phase is of the order          , where     is 

the number of SVs and    is the vector dimensionality.  

Now specifically, processing each input vector takes time proportional to the kernel 

computation time which requires both vector and scalar operations. The vector operations are 

usually proportional to the vector dimensionality O(  ), while the scalar operations denoted as 

   depends on the kernel function. Hence, the actual number of operations needed to compute 

the outcome of a kernel is              . In the linear kernel case, the value of    is equal 

to zero. However, for the other kernels which have additional operations the value of    

depends on the actual implementation and resources on the processing platform. Usually, 

however, the vector operations necessary are more than the operations needed for the 

processing of the scalar value, and thus dominate the overall computation of the SVM feed-

forward phase.  

 

Figure 2-14. Support vector machine classification procedure 

A. Improving the Classification Speed of Support Vector Machines 

The classification time is proportional to the number of SVs since vector operations 

dominate the overall SVM computation flow. In turn the number of SVs is proportional to the 

size of the training set. In many real-world problems the training set can be quite large leading 
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to an increased size of SVs which results in slow classification speeds. Hence, one way to 

reduce the processing time is to reduce the number of SVs necessary to classify an input. 

Another approach is to reduce the dimensionality of each vector to obtain speedups [47], [48]. 

Literature suggests different ways to approximate the SVs with a fewer number of vectors, the 

most noticeable of which are outlined next.  

One technique is to select a subset of SVs from the complete set and use only them to 

classify a new input [49], [50]. The key challenge for such methods is how to select the subset 

of SVs. The selection process aims at preserving the SVs which contribute the most to the 

SVM classification (Equation 2-22). The importance of each SV    can be measured by the 

mean square value [49], shown in Equation 2-23, over all the other SVs (the only samples with 

    ). Then the support vectors are sorted in decreased order and the first      SVs are 

selected to form the new subset,           according to the ranking order. However, due to 

the change in the classification decision function vectors the old alpha coefficients  , and bias 

term   cannot be used since they are optimized for the complete SV set. Hence, the new 

parameters   
    and      need to be computed, resulting in a new classification equation 

show in Equation 2-24. However, in the case where all SVs have similar contributions leading 

to poor classification results even when removing only a few SVs.  

 

   
               

 

   

   

 
 

   
  
          

 

   

   

 Equation 2-23 

                   
            

    

   

       Equation 2-24 

 Hence, there are other approaches which attempt to approximate all SVs with a different 

set. This approach was first proposed in [51] and improved in [52,53]. It is based on the idea 

that it is possible to approximate the decision surface using a             of vectors (RSVs) 

  
   ,         , where          . The reduced set method starts with a trained SVM 

and tries to find the reduced set of vectors through an approximated pre-image expansion. The 

SVs encode a vector   normal to the separating hyperplane in the feature space as shown in 

Figure 2-15. It is possible then to find a new set of vectors (of a much smaller size than the 

original set          ) that encode a new vector      that approximates the original vector 

Chri
sto

s K
yrk

ou



- 48 - 

 

such that the distance   between the new and original vectors is minimum. A key point here is 

that although the vector   is not known explicitly and is computed through the kernel. Hence, 

the problem becomes to find the set of vectors that encode     .  

 The normal vector   is given by the set of support vectors   , and weights    

i.             
   
  

 To classify a new sample   one computes 

i.                 
   
  

 Consider now the approximation vector vector      given by a set   
               

and corresponding weights   
   , where           

i.         
       

    
    
  

 Then it is desired that the approximation vector      is as close to   as possible and 

hence their difference   must be minimum 

i.           
 
 

  Hence one needs to find the vector set   
    and weights   

    in order to minimize 

i.         
 
              

   
         

     
       

      
    

    
      

       
          

    
    
   

   
    

 Once they are found a new sample is classified using 

           
           

    
    
  

Figure 2-15. Reduced-Set Method 

This problem as formulated in Figure 2-15 is commonly solved using iterative, greedy, and 

gradient decent algorithms. Since the solution is not exact, there tends to be a small decrease 

in classification performance. However, it has been shown that in most cases it is not 

significant and these solutions work well for real-world problems. It must be noted that since 

the reduced-set-vectors (RSVs) are approximations the association with the original problem 

is lost, hence the support vectors no longer correspond to the original data interpretation (face 

image, digit image, etc). Finally, it has been shown in [51] that for the 2
nd

 degree 

homogeneous polynomial kernel a solution can be found analytically for the desired number 

of reduced of support vectors. This makes it an extremely attractive kernel for embedded 
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applications since it offers a way to trade-off accuracy and processing performance based on 

the application demands. For other kernels such as the RBF an approximation of the reduced 

set may be found however, it is often infeasible and computationally very demanding.  

B. Multistage Cascade Support Vector Machines 

It is also possible to speed-up SVM-based classification by exploiting certain application 

characteristics such as that: (a) samples from one class may appear more frequently and (b) 

samples of one class may be more easily categorized than those of the other class. To this end, 

works in literature have tried to take advantage of these two observations by utilizing 

multistage SVM classifiers, with stages of classifiers of increasing complexity which are 

sequentially applied to the input data. Multistage SVM classification schemes include SVM 

classifiers that mostly follow a cascade structure [54], [55], [56], and are constructed and 

trained in the manner presented in Section 2.1.2. Another form of a cascade SVM is to not use 

different classifiers at each stage but a single SVM and assign a number of SVs at each stage. 

Thus the SVs of a single SVM are sequentially applied to the input data given that they pass a 

threshold at each stage [57], [58]. Other examples of multistage SVMs include tree structures 

[59], and ensembles of SVMs which utilize voting schemes [60]. These works tried to improve 

the classification times over single SVM classifiers demonstrating speedups as well as 

improved accuracy. The characteristic of such arrangements is that the early stages process the 

majority of the data and usually have low complexity, meaning that they require less SVs to be 

processed, and as such take less time to process. Conversely, the latter stages have higher 

complexity as they require more SVs to be processed, and hence have a longer classification-

time. The SVM speedup methods outlined in the previous section can be used in combination 

with cascade SVMs to reduce the processing time of each individual SVM stage.  
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2.6 Complimentary Material 

This section outlines complementary material that is relevant to the research presented in 

this thesis. 

2.6.1 Feature Extraction 

To recognize or classify an object in an image, one first needs to extract some features out 

of the image, and then use these features inside a pattern recognition algorithm to obtain the 

final classification results. Feature extraction (or detection) aims to locate significant visual 

feature in image regions depending on their intrinsic characteristics and applications. These 

features can be defined in global or local neighborhood and distinguished by shapes, textures, 

sizes, intensities, statistical properties, and so on. Feature extraction algorithms are considered 

as a necessary step, in order to deal with issues stemming from object variations due to 

illuminations and cluttered environments. The goal of feature extraction algorithms is to 

choose those good features that allow data belonging to different categories to occupy 

compact and disjoint regions this allowing machine learning algorithms to form improved 

decision boundaries. Hence, there has been increasing research interest in research on 

discriminative features that can lead to more efficient detection.  

The Haar-like features, described in detail in Section 2.4.2, are very attractive because they 

are simple features that can be computed at any position and scale in constant time, given that 

the integral image is computed, and thus allow for fast rapid processing. However, a large 

number of Haar-like features are necessary to reach the desired detection/false acceptance rate 

trade-off. It results in a long training procedure [54] and cascades with several stages which 

are difficult to design. Furthermore, Haar-like features are not robust to local illumination 

changes. Alternatively, two other popular approaches for visual object detection which have 

been widely adopted in recent years include Histogram-of-Oriented Gradients (HoG) [61] and 

Local Binary Patterns (LBP) [62]. In both cases histograms are constructed from features 

extracted from smaller image blocks. However, when considering embedded vision systems 

LBPs are a very attractive option because of their low computational complexity while 

providing the necessary invariance to local illumination changes compared to Haar-features. 
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Other approaches that are described include edge detection features and histogram 

equalization. 

A. Local Binary Patterns (LBP) 

 

Figure 2-16. Local binary pattern code generation process 

Local Binary Patterns (LBPs) have been used for a wide range of applications ranging from 

face detection [63], [64], face recognition [65], facial expression recognition [66], pedestrian 

detection [67], to remote sensing and texture classification [68] amongst others in order to 

build powerful visual object detection systems [69]. LBPs are local patterns that describe the 

relationship between a pixel and its neighborhood. Many variants of LBPs have been proposed 

in literature[70]. The most common approach however, dictates that each 3×3 window in the 

image is processed to extract an LBP code. The processing involves thresholding the center 

pixel of that window with its surrounding pixels using the window mean, window median or 

the actual center pixel, as thresholds. Then the LBP code is given by Equation 2-25, where 

        is the chosen threshold value and    are the intensities of the surrounding window 

pixels with            .  

                                 
 

 

   

                
        
        

  Equation 2-25 

The overall process consists of the following steps (shown in Figure 2-16): 1) Threshold 

the values in a     neighborhood (image window) with the chosen threshold placing 1 

where the value is greater or equal than the threshold and 0 otherwise. 2) Multiplying the 

resulting binary map with a predefined mask (usually incremental powers of two). 3) Sum the 

values to obtain an  -bit LBP Code.  
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The result of LBP processing is an image assembled by LBP features. The next step to 

creating an LBP-based descriptor requires dividing the LBP-based image in      blocks of 

      
           

    pixels (e.g.            ). A local histogram is generated for each 

block in the image in order to build local image descriptors. The local histograms are then 

concatenated to form a single global histogram, as show in Figure 2-17. The global histogram 

approach effectively expresses information in three different levels: the individual LBP code 

contains information at the pixel-level, the local histograms contain information on a regional 

level, and the concatenated regional histograms contain a global description. As such, the 

resulting histogram encodes both local and global characteristics in a compact representation 

which makes it more robust to object pose and illumination variations.  

 

Figure 2-17. Local binary pattern histogram generation process 

Each local histogram measures the occurrence of each of the     possible LBP codes in the 

block. The number of bins necessary for the histogram description can be determined by the 

resulting accuracy after the training and testing phases. When all     bins are used this will 

result in a long histogram descriptor which will have both high computational and storage 

demands. Alternatively, Ojala et al, propose the concept of uniform and non-uniform patterns 

to both reduce the number of possible LBP patterns and improve discrimination power. An 

LBP pattern is called uniform if it has   or less transitions e.g.         , and non-uniform if 

it has have more than   transitions e.g.         . It was observed that textured images are 

consisted mostly by uniform patterns. This also applies for object images since they can be 

seen as the composition of micro-textures. Hence, the histogram is divided into 59 bins instead 

of the possible 256, where one bin is devoted for all non-uniform patterns, and the rest are 

assigned to the remaining    uniform patterns. The general histogram descriptor can be used 
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to feed an adequate classifier or discriminative scheme, such as support vector machines, in 

order to perform object detection. 

B. Edge Features 

Edge detection refers to image processing operations which aim at finding image regions 

with sharp illumination discontinuities [71]. Edge detection is a fundamental tool in image 

processing, machine vision and computer vision, particularly in the areas of feature 

detection and feature extraction. Edges are important features in images that can convey 

information about structures of objects and surfaces within a scene such as boundaries of 

objects or overlapping items [71]. As such edge detection methods are commonly used in 

many image processing and computer vision applications including visual object detection 

[72],[73]. in order to significantly reduce the amount of processed data and filter out 

unnecessary information. Their major characteristic and is that they typically result in binary 

images and thus can be processed very efficiently and also reduce storage requirements. Edges 

are identified by finding regions of sharp illumination changes within an image, however, in 

itself not a trivial task. In general the edge detection methodology uses an edge operator which 

can rely on mask approximations or first and second order image derivatives applied to both 

the spatial or frequency domains to find areas of sharp transitions [74]. Then these areas are 

compared against a threshold to remove false or weak edges. This process is outline shown in 

Figure 2-18 which also shows common edge operators. The threshold affects the number of 

edges that will appear in the edge image and the susceptibility of subtle changes and noise and 

a suitable threshold is determined experimentally.  

 

Figure 2-18. Edge Detection Process 
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C. Histogram of Oriented Gradients 

Histograms of Oriented Gradients (HoGs) [61],[75] are feature descriptors which attempt to 

capture object appearance and shape by finding how the different gradient orientations are 

distributed in an image, and are thus able to capture the shape of an image. Hence, they have 

successfully been used for non-rigid objects with flexible silhouette such as pedestrians [61], 

and are often coupled with a Support Vector Machine (SVM) classifier.  

The process to generate the HoG descriptor, show in Figure 2-19, begins by first computing 

the 1
st
 order horizontal and vertical gradients        of an image       , using Equation 2-26. 

This is necessary in order to find the magnitude        of the gradients as well as their 

direction        for each pixel location       using Equation 2-27 and Equation 2-28 

respectively. After the computation of this two values the image is separated into cells where 

each location has a respective gradient magnitude and direction, and for each cell a histogram 

is computed. The histogram is generated as follows: 1) select the bin where each location 

belongs to using the direction       . 2) increment the value of that bin using the magnitude 

      . 3) Group the cells into rectangular or circular bocks and normalize each histogram 

cell using Equation 2-29, where    is a vector corresponding to the combined histograms 

within the block and   is the normalized histogram. 4) Concatenate the normalized histograms 

  of each block to form the histogram descriptor. The parameters specific to the HoG 

descriptor such as the cell size, block size, number of histogram bins and overlap between 

cells and blocks are determined experimentally and are different for different object detection 

applications.  

 

Figure 2-19. Histogram of Oriented Gradient 

(a) Example of orientations in a gradient image. (b) The HoG descriptor process. 
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                       Equation 2-26 

               
         

  Equation 2-27 

               
       

       
  Equation 2-28 

  
  

     
   

 
Equation 2-29 

D. Histogram Equalization 

Histogram equalization is a non-linear gray-level transform function which is applied on an 

input image in order to yield a new image of enhanced quality. In the object detection process 

it is performed for every search window prior to the classification process in order to 

compensate for differences in illumination, brightness, different cameras, and contrast 

variations [76]. Thus reducing within class variability by enhancing common features in 

images (Figure 2-20) thus leading to more accurate classification results.  

  

(a) (a) 

Figure 2-20. Histogram Equalization  

(a) Histogram Stretching (b) Example of the effect of histogram equalization 
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The goal of this process is to "stretch" the histogram (Figure 2-20) of the image so that the 

pixel values that appear in the image appear throughout the entire spectrum of possible values. 

So the goal of the histogram equalization algorithm is to find a gray-level transformation   

which makes the histogram flat. The histogram of an image   is a discrete function       

   where    is the     pixel gray level, and    is the number of pixels in the image having the 

gray level   . Hence, An estimate of the probability   of occurrence of gray level    can be 

found by normalizing the histogram thus deriving       
  

  , where   is the total number 

of pixels in the image (                  ). In order to obtain the transformation 

function we first need to find the cumulative distribution function (   ) which for every pixel 

value    is given by                
 
    which essentially amounts to summing the 

estimated probabilities of occurrence up to value  . This will map all pixel values    to new 

values    which will have a stretched and almost flat histogram. However, the    correspond 

to cumulative probabilities and as such are within the range (   ) so a final transformation 

needs to take place to remap the values to (0-255) form the new image    giving leading to the 

transformation in Equation 2-30. The results is rounded to produce an integer pixel value. 

                                                   Equation 2-30 

2.6.2 3D Stereo Computer Vision 

Stereo vision is a technology for extracting the depth of objects in a scene by matching the 

left and right images taken from a stereo camera setup. Therefore, it is commonly employed in 

emerging embedded applications such as surveillance, autonomous vehicles and mobile robots 

in order to increase contextual awareness of computers and vision machines.  

Depth information can be extracted by using a stereo vision system which works similarly 

to the way that a biological visual system infers depth. Stereo vision systems can infer depth 

information about a scene from a stereo image pair (usually referred to as left and right 

images) [77]. Depth information evolves from the computation of the disparity map, from 

which information about the depth of objects in an image frame, relative to the location of the 
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camera(s), can be extracted. There are three important tasks for computing the disparity map: 

                  ,                            and                      .  

 

Figure 2-21. Stereo setup and depth computation 

(a) Stereo setup with each camera capturing the same object (scene) but from a different angle. (b) Computation 

of depth from a stereo image pair by measuring the displacement from one image to the other. 

Calibration integrates information from intrinsic camera parameters such as focal length 

( ), and extrinsic parameters such as relative orientation angles between the two cameras, to 

determine the camera perspective projection matrices, necessary for the stereo rectification 

algorithm. Rectification can project one of the two images in the other’s common plane to 

reduce a    search problem in non-rectified images into a    search problem along the 

horizontal raster lines of the rectified images [77]. The stereo correspondence algorithm takes 

the two rectified images as input and produces a disparity map for each pixel in one of the two 

images (Figure 2-21). Generally, the disparity map stores distances between corresponding 

points of interest in the two images, and is computed using searching and matching 
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techniques. First, it is necessary to locate a common point of reference in the two images. This 

is done by a small window which horizontally scans both images and compares the left and 

right regions. The location which exhibits the highest similarity between the left and right 

images is then used to derive the disparity map. Depth information can then be computed from 

the disparity map by triangulation using the focal length and the baseline distance between the 

stereo camera optical centers. The extraction of depth using a stereo camera system can make 

it possible to combine depth information with traditional    object image processing and 

computer vision techniques in order to increase the awareness the capabilities of a visual 

processing system.  
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CHAPTER 3 

A FLEXIBLE PARALLEL HARDWARE OBJECT DETECTION ACCELERATOR FOR 

THE ADABOOST-BASED HAAR-FEATURE CASCADE  

The AdaBoost-based object detection framework, presented in the seminal work by Paul 

Viola and Michael Jones in 2001 [15], is widely considered as a state of the art in terms of 

object detection and has been integrated into many object detection systems through its 

implementation in the Intel® Open Source Computer Vision library (Open CV) [18]. The 

framework incorporates the integral image representation, cascade classification scheme, and 

simple rectangular features called Haar-features in order to improve processing speed. The 

capability for real-time processing is a very important for a wide range of embedded 

applications such as automotive, surveillance, and interactive entertainment. Though a number 

of techniques are used in the framework to speedup processing, real-time performance on 

resource-constraint, low-power embedded systems is still difficult to achieve because of the 

computationally intensive nature of the algorithm. Hence, some type of acceleration is 

necessary to take advantage of the huge amount of parallel computations so that it is possible 

to achieve real-time performance while meeting additional constraints.  

3.1 Related Work on Haar-Feature AdaBoost-based Classifier Cascade 

Implementations 

Recent attempts to accelerate the Viola and Jones proposed visual object detection process 

can be summarized with respect the acceleration approaches. The first, is to develop parallel 

software that attempts to take advantage of the multiple processing cores found on modern 

general-purpose computing platforms with such as CPUs and GPUs. Implementations of the 

AdaBoost algorithm on multi-core CPU systems [78]
1
, [79]

2
 for pedestrian and face detection 

respectively, maintain a high degree of flexibility, however, they do not fully exploit the 

                                                 

1 Two Intel® Core™ 2 quad processors @ 2.33 GHz 
2 Intel Core i7-2655LE CPU @ 2.2 GHz and 4GB RAM 
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available parallelism (i.e. speedup is not proportional to the number of cores) due to load 

imbalance and synchronization overheads which limit the utilization of the cores. Thus CPU 

implementations rely on limiting detection to small image sizes and object sizes [78] (using a 

machine with), or permit only a fixed number of objects to be present in the image [79] (run 

on an) to provide real-time processing. In addition, multi-core processing systems have high 

power consumption demands. Alternatively GPU platforms have a much richer pool of 

parallel computing resources to rely and are designed to execute independent parallel tasks 

(kernels). Consequently, related GPU implementations [27]
1
,[80]

2
 both targeting face 

detection, manage to achieve real-time processing frame-rate when maintaining high core 

utilization and make efficient use of the GPU memory hierarchy. However, GPUs need to be 

controlled by a host CPU which increases communication overheads and data transfers 

between CPU and GPU memories, and also operate at high power levels which restricts their 

use in embedded domains. Furthermore, feature upscaling is not efficient since it underutilizes 

the cores which decreases performance, 

The second approach, is ASIC implementation which is on the opposite end of the 

spectrum in terms of flexibility compared with general purpose platforms, but is tailored made 

for the targeted application thus offering the highest performance with the least power 

consumption and gate count. An example is the implementation in [81] where a specialized 

recognition processor was presented. However, ASIC design is costly and the fixed circuitry 

reduces its flexibility which is necessary for many embedded applications.  

Third, is the implementation of the algorithm on FPGA platforms [82], [83], [84], [85], 

[86],[87]. This approach is attractive for embedded applications since it offers lower power 

consumption compared to GPUs with the parallel processing capabilities of a dedicated ASIC 

architecture but with increased flexibility through reconfiguration. The majority of these 

FPGA implementations are based on array processing architectures which offer both parallel 

data access and processing. One of the first works to show the benefits of array processing 

architectures is the work in [82], and suggests the computation of the integral image as well as 

                                                 

1 NVIDIA GeForce GTX 285 GPU (30 cores, 16 KB shared memory per core, and 1GB RAM) 
2 NVIDIA GTX 470 
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the access of its values to be implemented as a systolic array rather than using a central, or 

even distributed, memory. The work by M. Hiromoto et al [83] proposes a hybrid model 

consisting of parallel and sequential modules and the goal is to reduce the necessary 

computational resources by assigning more resources to the parallel modules and less to the 

sequential ones. The parallel modules are assigned to the early stages of the algorithm which 

are frequently used whereas the latter stages are mapped onto sequential modules as they are 

executed less frequently. However, the split point between the stages executed on the parallel 

and sequential modules becomes a critical design choice and needs to be reevaluated for a 

different cascade which may lead to performance/accuracy degradation. Furthermore, the 

parallel modules may still need considerable amount of resources even with this scheme. The 

work in [84] utilizes an architecture that is based on register different array structures that 

perform integral image computation and classification per single window. A window is fed to 

the array-based integral image computation module through a scan-line buffer which holds 

part of the image. The integral image pixels are processed in parallel by the Haar-feature 

classifiers. Up to three classifiers can be instantiated in parallel in order to boost performance. 

In the work presented by Y. Shi et al [86] proposes an array-based architecture for a single 

window that introduces two pipelines to increase the detection process. The vertical pipeline in 

the array computes the integral image and the horizontal pipeline computes a rectangle feature 

in one cycle. However, the architecture was only evaluated on small scale images. The 

implementation in [87] employs very similar architecture to the one presented previous works 

but with a massively reduced number of training features which allows the architecture to 

exceed 100 FPS, illustrating that training set optimizations are also a factor that can be 

potentially explored. However, a major drawback of that work was that it provided no 

information on the method used to reduce the training set or its impact on the overall detection 

accuracy. A simpler version of the AdaBoost-based Haar-feature Cascade was implemented in 

[85] where only 3 cascade stages are used, with an input image size of a 120×120 image. The 

integral image is computed for each sub window that is generated, rather than once for the 

whole image. Furthermore, an image pyramid generation unit is used to produce downscaled 

versions of the input image. The implementation in [7] demonstrates a complete vision system 

based on the AdaBoost Haar-feature cascade that also incorporates skin and motion detection 

to reduce the search space. The integral image is generated for the whole image and a single 
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window is extracted from the memory and processed in parallel for all window sizes. 

However, it downscales the input 640×480 image to 80×60 image to achieve real-time 

performance while considering only three object sizes. Table 3-1 presents a summary of 

existing implementations, and gives a brief comparison in terms of the training sets used 

(features and stages) and methodologies. 

TABLE 3-1: ALGORITHM AND METHOD COMPARISONS FOR RELATED FPGA WORKS 

Related 

Works 

Hiromoto 

[83] a 

Cho  

[84] 

Wei 

[85] 

Shi 

[86] 

Lai 

[87] 

He 

[7] b 

Presented 

Architecture 

C
as

ca
d

e 
in

fo
rm

at
io

n
 Features 2,913 [18] 2,135 225 2,913 [18] 52 115 2,913[18] 

Stages 25 [18] 22 3 25 [18] 1 9 25 [18] 

Feature 

Size 
24×24 20×20 24×24 24×24 20×20 

11×11, 
19×19, 27×27 

24×24 

Image Size 640×480 
320×240, 
640×480 

120×120 176×144 640×480 80×60 320×240 

Scaling 

Method 

Image 
Downscaling 

Image 
Downscaling 

Image 
Downscaling 

N/P 
Image 

Downscaling 
Image 

Downscaling 

Image 

Downscaling 
and 

Feature 
Upscaling 

Downscale 

Factor(s) 
1.2 1.2 1.25 N/P 1.25 None 1.25, 1.33, 2 

Image Scales 18 

14 
(320×240), 

18 (640×480) 

4 N/P ~15 3 

3 downscaled 
images, 5 

upscaled 
features 

Integral Image  

Computation 

Per window, 

using a 

register-array 

Per window, 

using a 

register-array  

Sequential 

computation 
per window 

Per window, 

using a 

register-array 

Per window, 

using a 

register-array 

For the whole 
image 

For an image 
region 

Rectangle & 

Feature 
Computation 

First 10 stage 

in parallel, 

other 

sequentially 

Up to three 

feature 

classifiers in 

parallel 

Single feature 
at a time 

Single feature 
at a time 

Single feature 
at a time 

A single 

feature of all 
window sizes. 

A single 

feature for 

multiple 

windows 

a Uses a sequential and parallel processing execution model. Split point is at stage 10. 
b Includes skin and motion detection to reduce search space 

N/P - Not Provided 

Overall, the majority of FPGA related works use a fixed feature size to process the whole 

image and its downscaled versions. Furthermore, they rely on the rapid processing of a single 

window in order to achieve real-time performance. They utilize register array buffers to 

compute the integral image and Haar-features in parallel. Under this approach in order to 
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maintain the frame-rate as the number of windows increases either the frequency needs to be 

increased or more hardware will be necessary to increase parallelism. In both cases power 

there will be an increase in power consumption and required hardware resources and as a 

result this approach will not suffice for embedded applications. Alternatively, the other 

approach is to design an architecture that will be optimized to process many windows in 

parallel, with less parallelism afforded to the Haar-feature computations. However, there are 

challenges in designing such an architecture which are outlined in the following section.  

3.2 Mapping Algorithm to Hardware 

3.2.1 Opportunities for parallelism 

 

Figure 3-1. Parallelization in the AdaBoost-based object detection 

Available parallelism in the AdaBoost detection Framework: Coarse-Gran Parallelism: (a) Different image 

scales can be explored either by upscaling the feature and rescanning the image or by downscaling the image and 

scan each scale with a single feature size. (b) Each scale factor generates multiple windows. Also each image can 

be partitioned to be processed independently. Fine-Gran Parallelism: (c) The features within a stage can be 

computed in parallel. (d) The processing required by features and rectangles can be executed in parallel.  

An analysis of the algorithm, which has also been discussed in Section 2.4.4, can provide 

an insight on the available parallelism thus outlining what the characteristics and requirements 

of the hardware architecture need to be. The parallelism can be classified in the two groups, 

coarse-grained and fine-grained, illustrated in Figure 3-1. The coarse-grained parallelization 

includes processing different scale factors, different image partitions and multiple windows. 

On the other, hand, the parallelization of Haar-features in the same stage as well as feature and 

rectangle computations belong to the fine-grained parallelization. While the latter form has 

been the focus of most related FPGA works in the literature, FPGAs provide the means to also 
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take advantage of coarse-grained parallelism which will be necessary as the amount of 

windows increases (i.e. image size increases). 

3.2.2 Hardware Architecture Requirements and Mapping 

In order to design an architecture that can take advantage of the different forms of 

parallelism that are available in the AdaBoost-based Haar cascade detection algorithm, first it 

is necessary to consider the impact of each parallelization approach on the amount of 

computing and memory resources needed, as well as how flexibility is affected. 

A. Integral Image Computation 

The input image first needs to be transformed as an integral image so that the Haar-features 

can be computed more efficiently. One challenge in the implementation of the integral image 

computation however, lies in the implementation of the addition and storage required for 

computing and storing the integral image values. As the size of the input image grows, the 

adder and storage grow proportionally as well. Recall that an integral image pixel located at 

      holds the sums of all pixels above   and to the left of   (Figure 2-8). As the range of   

and   grows, the amount of pixels summed for computing the value of integral image pixel 

      grows exponentially      , hence, the adder precision and memory requirements 

change as well. This can be addressed by applying the algorithm over smaller regions of the 

input image rather than the entire image. Given that the bulk of the computation focuses on 

computing each feature, and given that the computation is identical, the challenge when 

processing multiple windows shifts to finding an efficient way to access the values of the 

integral image in parallel, and be able to employ the inherent parallelism of computing these 

rectangles over the entire image. Thus, storing the integral and integral squared images into 

single memory blocks essentially limits the number of rectangle coordinates accessed in 

parallel and creates contention. Similarly, replicating the memory blocks to increase 

parallelism results in high memory requirements, and if the memory is off-chip, in an 

increased latency. Overall, since the inter data computations of the image preprocessing and 

integral image generations are regular and independent, they are fit to be accelerated through a 
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systolic-array inspired computing architecture, which allows parallel data movement and 

calculation the pixels in an image block.  

B. Haar-Feature Evaluation 

Since the feature value calculation of each Haar-like feature is independent and large 

amounts of Haar-like features will be generated based on the sub-windows, the computations 

of the feature value can be processed in parallel. This however, increases the need for 

computational resources as well as on-chip storage requirements and parallel access of the 

Haar-feature data. The computations of the Haar-feature need to also take into consideration 

the window size in order to support the enlargement of the searching window. Since the sizes 

of the windows are different as the feature windows are scaled up, it requires the array to have 

flexible scaling capability to also support the scaling of the feature windows along with image 

downscaling. These processing tasks include different operations, and hence require the array 

to have the flexibility, in terms of arithmetic and logic units, to change the computing logics to 

meet the requirements for processing an image region with different training set setups 

(different number of stages, number of features and number and position of rectangles per 

feature). 

C. Illumination Compensation 

The integral image representation benefits both the feature computation and the 

illumination compensation technique outlined in Section 2.4.3, that adapts the original feature 

threshold    to a compensated image threshold   (Equation 3-1) which dynamically takes care 

of any lighting variations encountered during the detection stage. It is needed to be done only 

once for every search window however, as shown in Equation 3-2, it requires to compute the 

standard deviation of the window   which in turn requires that first the window variance     

is found using the sum of an area of pixels.  

         Equation 3-1 

       
   
           
   

    
 
 

 
           
               Equation 3-2 

           
      

      Equation 3-3 
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Division and the square root, which are the necessary operations for these calculations, are 

tedious tasks when implemented in hardware, hence, better solutions need to be explored. 

Given that the search window size is known, the costly division operation can be avoided 

using the reciprocal of the area as a constant, and multiply it. The sum of the pixels is then 

squared, and subtracted from the computed value of the squared integral image, to give us the 

variance. To compute the standard deviation, the square root of the variance is needed and to 

compute the                       the product of the original threshold and the 

                        are needed. Therefore both sides of the equation can be squared, 

multiplying the variance with the squared value of the original threshold (can be pre-computed 

during training and stored in the training set), to yield the squared value of the compensated 

threshold. Thus, the square root operation becomes a multiplication instead. 

The above considerations are addressed through the proposed hardware architecture for 

AdaBoost-based Haar-feature cascade object detection detailed in the following section, which 

aims to provide massive parallelism by simultaneously processing multiple windows both for 

integral image as well as Haar-feature computations. It also provides a hybrid scaling 

mechanism utilizing both image downscaling and feature upscaling.  

3.3 Proposed Hardware Architecture 

The hardware accelerator for the Viola-Jones detection framework consists of two major 

blocks, an image pyramid generation (IPG) unit and a systolic array which implement the 

different tasks in the algorithm. The IPG receives the input video frame and generates image 

regions which are examined for the targeted object(s) of interest by the systolic array 

processor. Each search window in the extracted image region is then processed in parallel, 

feature by feature and stage by stage through the systolic array. The array is responsible for 

computing the integral image, computing the rectangles for each feature, and evaluating both 

the features and the stage sums. If an object of interest is detected within that image region, 

the array outputs the coordinates of the window within the region which contains the object, 

taking into consideration the scale of the feature that the object was found at. When the array 

completes the examination of an image region, a new image region is fed into the array from 

the IPG unit, until the entire image is searched. The original image is also downscaled through 
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the IPG unit, producing more image regions for each downscaled version of the original 

image, until the downscaled image equals the search window size. This creates a hybrid 

architecture that evaluates features over a number of image scales, and a number of feature 

sizes over a single search window. A brief description of each of the units is given next, while 

a block diagram of the system architecture is shown in Figure 3-2. 

 

Figure 3-2. Systolic-array inspired accelerator architecture with the two major units 

3.3.1 Image Pyramid Generation (IPG) Unit 

The IPG unit, shown in Figure 3-3, receives the input video frame and extracts image 

regions to be processed by the systolic array. The unit receives pixels row-wise, and generates 

    image regions, which are then buffered and fed row-wise in parallel in the systolic 

array. The size of the extracted image regions is determined by the size of the systolic array. 

The IPG and the systolic array operate in a pipelined fashion, where the systolic computation 

happens as soon as an image region has been generated. However, the IPG continues to 

generate search window pixel data while the systolic array is computing, preparing the next 

search window(s) that will be used. Typically (depending on the systolic array size and 

subsequently search window size), the IPG can generate a second search window before the 

first one is computed by the array, therefore one search window buffer is sufficient.  

 The IPG unit also downscales the original image, ensuring that objects bigger than the 

search window size are downscaled, and eventually can fit into a search window as well. In 

this way, the search window can be made as large as the silicon budget allows the systolic 

array to be. Moreover, data loss due to downscaling is limited, as the image will not be scaled 
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down after it reaches a certain size. Instead a hybrid scaling mechanism is incorporated that 

utilizes traditional input image downscaling, as well as the original feature upscaling scheme 

that Viola and Jones proposed. This feature upscaling continues to iterate, in order to detect 

objects in the search window larger than the feature size. Iterations continue until the feature 

size equals the size of the smaller dimension of the search window size (typical features are 

square, whereas search window sizes can be rectangular). For example, when considering a 

starting feature size of 24×24, and a search window size of 80×60, features will be scaled up 

until the feature size will be 60×60. In this way, there is a reduction in the image size where 

features are being evaluated, reducing the overall cost and amount of computation, and still 

allow the system to process large input images. 

The IPG unit consists of three stages, the input stage, where pixels are received from the 

frame memory, the partitioning stage where incoming pixels are partitioned into the search 

window buffer, and the scaling stage. The first stage is customized to satisfy the input 

conditions (i.e. number of pixels per cycle, etc.). The second stage is a finite state machine that 

is responsible for generating the address of the pixel values that are to be received in the next 

I/O operation and directs incoming pixels in their corresponding search window buffer 

location. Lastly, the scaling stage simply computes the coordinates (and subsequently memory 

address) of the downscaled image for each incoming pixel, generating the address where each 

pixel is to be stored. It must be noted that depending on the choice of the downscaling 

algorithm used, some pixels will be mapped to the same location. In the proposed IPG, the 

algorithm used is a simple multiplication, and the pixel that was lastly computed to be stored 

in the generated location, overwrote any previously written pixels. Additionally, the 

 

Figure 3-3. Image pyramid generation unit 
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downscaled image (depending on the generated size and thus its memory requirements) can be 

stored either on-chip or on external memory, and retrieved at a later stage during the 

computation in similar fashion as the original image is received. This procedure was chosen to 

enable flexible scaling of downsized images, allowing the designer to select the scale and the 

number of produced downsized images. The output search windows are fed pixel by pixel, 

row-wise, in the systolic array.  

3.3.2 Integral Image and Haar-Feature Processing Array 

The systolic array performs the bulk of the computation, it computes the integral image, 

collects and computes the rectangle points, computes and evaluates the feature and stage sums, 

and determines whether a region passes a cascade stage so that it can be considered for further 

search. The array also maintains the location of detected objects. The array consists of two 

types of processing elements (PEs), the collection and computation units (CCUs), and the 

evaluation units (EUs). The EUs are placed as the leftmost PEs in each row in the array, the 

CCUs make up the rest of the array. Each EU communicates via a direct link to its 

neighboring CCUs, and a toroidal link to the far right CCUs, as shown in Figure 3-4. The 

array also contains distributed control units (CUs), small FSMs that direct the overall 

operation by global control signals. The distributed control units also maintain the temporal 

consistency of the entire operation, acting as coordinators throughout the entire computation. 

Given the modular operation of the array, and the identical operation of each of the CCUs and 

EUs respectively, the control units maintain that communication is uniform across the array 

and towards the necessary direction, and that all units are synchronized, either doing data 

transfer, or computation. Distributed multiple CUs can be used, in order to reduce the size of 

the control region for each CU, since the control signals delivered to the PEs are identical. The 

array units can communicate with each of its neighbors via bidirectional data links. 

The chosen array size depends largely on the application requirements in terms of frame 

rate and budget, and the training set and feature sizes used in the detection algorithm. The 

minimum size has to match the original size of the features, whereas the maximum size of the 

array can be determined based on the silicon budget available. The dimensions of the array can 

be made to match the proportions of the extracted image region to be processed. 
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The systolic array operates by firstly computing the integral image for the incoming frame. 

Next, it computes the rectangles for each Haar feature in parallel for the image extracted 

region. Stage evaluation is also done in parallel for all locations in the search window, and 

after the outcome of each stage is known, the array proceeds by evaluating the next stage and 

its features in parallel over the entire search window. The candidate regions that fail each stage 

are marked and do not participate in the computation, in an attempt to reduce dynamic power 

consumption. Every CCU can act as the top-left-most corner for each feature, and is 

responsible for collecting the integral image values belonging to the rectangles for that 

particular feature. Each CCU holds the integral and integral squared image values, partial 

sums from rectangle and feature computations, and the variance for the search window that 

they represent as the top-left-most corner. Each CCU consists of minimal hardware to 

propagate data in all directions in the array, and is able to perform additions and subtractions, 

enabling the computation of the integral and integral squared image in a systolic manner. The 

rectangle sum can also be computed within the CCUs. The EUs are equipped with 

multiplexing hardware and contain a multiplier for stage evaluation purposes (to compute the 

weighted sum of each rectangle in each feature and the feature sum). A more detailed 

description of the units in the array is given next. 

A. Collection and Computation Unit (CCU) 

Each CCU represents the starting upper left corner of a search window in the image, and 

holds the necessary data for that window (such as image variance, whether or not the window 

 

Figure 3-4. Systolic processing array architecture and components 

Chri
sto

s K
yrk

ou



- 71 - 

 

has so far passed the classification process, etc.). The CCUs are responsible for data 

movement throughout the system, collecting and accumulating integral image data for 

rectangle computation. Each unit is composed of an adder/subtractor, a local bus controller 

and a register file that holds the data necessary for the computation. The register file provides 

data storage for the integral image value, the squared integral image value, the collected 

rectangle sums (supports up to four rectangles per feature), the accumulated stage sum, the 

standard deviation of the image for the search window represented by that particular CCU, and 

temporary registers used to store data during data movement. Furthermore, the CCU holds a 

flag bit (FB) which is reset only when the search window represented by the CCU does not 

contain the object of interest. The bit is set at the beginning of every computation and is reset 

by the EUs at the end of a stage computation if the search window represented by that CCU 

does not pass a stage. To maintain temporal consistency, the bit is moved with the 

accumulated stage sum. A detailed block diagram of the CCU is shown in Figure 3-5. The 

CCU’s critical path lies in the adder, depending on the required bit-width of the adder, various 

optimizations can be made to improve the speed of the CCUs. 

Each CCU performs a set of predetermined actions. These are shifts to all four directions, 

addition and accumulation of incoming pixel values and squared pixel values, addition and 

accumulation of incoming rectangle points, and being idle. Each action is determined by the 

CUs, which send a global op-code of four bits to all CCUs, so that all CCUs can synchronize 

on the appropriate action. 

One particular design parameter that the algorithm dictates lies on whether all CCUs should 

act as collection points for each feature. If each feature is evaluated over every possible 

location of the search window, then each CCU has to act as a collection and computation 

point. This is not always necessary however, it depends on the type and size of objects of 

interest. For example, a large object does not need a pixel-by-pixel exhaustive search, a search 

offset of five pixels will probably be sufficient. The modularity of the systolic array allows the 

designer to take advantage of this offset, by designing CCUs that are capable of collecting and 

computing rectangle information, and CCUs that do not. Additionally, CCUs located at the 

bottom and left parts of the array are not required to act as upper left collection points, since 

the feature computation will have reached the end of the search window. Therefore, a set of 
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CCUs can be designed without the adder/subtractor, and without the control logic necessary to 

perform collection and computation. These CCUs simply act as memory elements, and can be 

placed in locations in the array where the CCUs are not required to collect rectangle data. 

An additional design optimization lies in the design of the adder inside each CCU and the 

registers holding the integral image and integral squared image values. As the location of each 

pixel in the integral image, relative to the integral image’s origin increases, the value of the 

integral image (and the integral square image) increases in terms of required adder precision 

and in terms of storage requirements. This is illustrated in Figure 3-6(a). For example, for a 

        grayscale image (8-bits per pixel, maximum intensity of    ), the maximum value 

that needs to be stored at the bottom-right corner (location    ,   ) of the integral image, is 

            (in the unlikely event that all pixels have intensity value of    ). This 

requires    bits. Since the integral squared image is also needed, the bitwidth requirements 

increase to    bits for the adder. However, at location (  ,   ), the maximum value that will 

be stored is          , which requires only    bits for the integral image, and    bits for 

the adder, to compute the integral squared image. Figure 3-6(b) shows the bit-width 

requirements of the adder, in a sample         image, to indicate a relative hardware 

demands as the location in the array changes. 

 

Figure 3-5. Collection and computation unit 
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Figure 3-6. Processing array bitwidth requirements 

Consequently, parameterized CCUs are designed, with variable adder bit-widths and 

variable-sized registers, which can be appropriately placed depending on the distance of each 

CCU relative to the origin of the array. This can be done either by one-by-one CCU case, or 

by designing different groups of CCUs with different bitwidths that can cover regions in the 

array, allowing some CCUs to have redundant bits. Alternatively, this can be done by limiting 

the size of the extracted image region partitions, this helps keeping the overall number of 

pixels required for both integral and integral square image summations small, resulting in 

relatively small bit-widths. The architecture was designed with the former approach. 

B. Evaluation Unit (EU) 

The EUs are located to the left of the array, at the beginning of each row, and act as input 

terminals to the array. The EUs are first used during the input of the search window into the 

array to compute the integral squared image values, by squaring each incoming pixel value to 

be used towards the squared integral image computation. During the computation, the EUs 

receive data from their neighboring CCUs (and through systolic manner, eventually from all 

CCUs in the corresponding row of each EU), starting from the rectangle values, the variance 

of the image and lastly the accumulated stage sum. The rectangle sums are multiplied with the 

rectangle weights read from the training set stored in off-chip memory. The variance is 

multiplied with the squared feature threshold, to determine the compensated threshold, which 

in turn is used to determine the feature sum to be added to the accumulated stage sum. If the 
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computed feature is the last feature of a stage, the accumulated stage sum is compared to the 

stage threshold and the flag bit is reset if the stage computation discards the search window. 

Else, both the accumulated stage sum and flag bit are shifted out using a toroidal link into the 

far right CCU. The EU starts the computation when signaled from the CUs, when the 

computation ends, the EU signals to the CUs to proceed with the next feature. The CU in the 

meantime stalls shifting in the CCU values during an EU computation, waiting on the EU to 

complete. When a stage is evaluated, the EU sends a signal to the CUs, so that they can 

coordinate all CCUs in starting the next stage of features.  

Each of the EUs interfaces to the external memory that holds the training data necessary for 

the feature computation, and reads the training data in a FIFO manner. Given that features are 

evaluated one at a time, the latency to retrieve the feature values does not affect the overall 

latency, as this can happen while the CCUs evaluate the feature’s rectangles. This also enables 

storing of the training data (offsets) for all feature sizes, thus removing the need to scale the 

rectangle offsets (dx, dy) dynamically when the computation shifts to larger feature sizes. It 

must be noted however, that feature scaling can be done on-chip as well, where each (dx, dy) 

offset can be scaled according to the preset feature scale factor. Upon computation of each 

feature, the next feature rectangle off-sets are read from the training memory and propagated 

along with the resulting feature sum, using the torroidal link, back to the CCUs. Consequently, 

 

Figure 3-7. Evaluation unit 

Chri
sto

s K
yrk

ou



- 75 - 

 

when a feature is evaluated with the rightmost CCUs receiving the last outcome of each 

computation, the entire array already holds the required off-sets for all rectangles associated 

with the next feature. The EU block diagram is shown in Figure 3-7. The EU multiplier has 

the longest critical path in the array, and various optimizations can be done to improve the 

frequency of the unit, such as using pipelined. 

C. Control Unit (CU) 

The systolic array architecture operation is controlled by distributed control units (CUs) 

which are spread in the system to reduce size of each CU’s control region and wiring 

requirements. Each CU consists of finite-state-machine (FSM) logic, a multiply-accumulate 

unit, memory blocks and two control counters. One control counter is dedicated to the control 

flow while the other counts the number of objects that pass a stage, if no object passes a stage 

then it is possible to terminate the algorithm operation earlier. The FSM ensures that the 

computation units, the CCUs and EUs are synchronized to each other. The action they 

performed is determined via a four-bit op-code.  

D. Systolic Computation Overview 

The operation essentially is partitioned into the following stages: configuration, 

computation of integral and integral squared images, computation of image variance, 

computation of rectangles per Haar-feature, feature computation, stage evaluation and image 

evaluation. The computation is repeated for all upscaled features over a single search window, 

and for all search windows generated by the IPG. When the image has been searched at all 

search window sizes, the system is ready for the next image frame. 

In each case, all units collaborate to perform the computation. Incoming pixels, stream in 

the array in parallel along all rows of the array, and are shifted in row-wise every cycle. The 

integral image and integral squared image are computed first. The computation consists of 

horizontal and vertical shifts and additions. Incoming pixels are shifted inside the array on 

each row. Depending on the current pixel column, each of the computation units performs one 

of three operations, it either adds the incoming pixel value into the stored sum, or propagates 

the incoming value to the next-in-row processing element while, either shifting and adding in 

the vertical dimension (downwards) the accumulated sum or simply doing nothing in the 
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vertical dimension. The computation is illustrated in Figure 3-8(a). To compute the squared 

integral image, the same procedure is followed. The incoming pixel passes through the 

multiplier in the EU, which computes the square of the pixel value, and then that value 

alternates with the original pixel value as inputs to the array. As such, the integral and squared 

integral image are computed in alternate cycles with the entire computation taking   

                cycles, for an     input image. 

 

(a) 

 

(b) 

Figure 3-8. Systolic array computation flows 

(a) Systolic array integral image computation and data flow (b) Systolic array feature computation flow 
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The rectangle computation takes place next. For each rectangle in a feature, each corner 

point is shifted towards the CCU acting as collection point. The points move one at a time, but 

in parallel for all rectangles in the array. At each collection point, the point is either added or 

subtracted to the accumulated rectangle sum, with the final rectangle value computed when all 

points of each rectangle arrive at the collection point. As such, each point requires dx+dy 

cycles to reach the collection point, where dx and dy are the offset coordinates of the point with 

respect to the upper left corner of the search window. When all rectangle sums for a single 

feature have been collected in the CCU that represents the starting corner for each feature, 

they are then shifted leftwards, towards the EUs, one sum at a time per EU. From left to right, 

eventually all sums arrive in each EU, where the rectangle weights are multiplied with the 

incoming sums, in order to evaluate the feature. It must be noted that each CCU contains the 

rectangle sums, the accumulated feature sum from the previous feature computation and the 

variance. Hence each CCU takes n+2 cycles to shift the data to its neighboring CCU, where n 

equals the number of rectangle sums per feature. When each rectangle sum enters the EU, it is 

multiplied with the respective rectangle weight given by the training set, and accumulated 

together to compute the feature sum. The compensated threshold is then computed using the 

original threshold and the variance as described earlier. The feature sum is then squared using 

the multiplier, and compared to the compensated threshold to set the feature result. The partial 

stage sum is accumulated with the feature result and shifted with the flag bit in a toroidal 

fashion to the CCU on the far right of the grid, to continue the computation. Eventually, when 

all feature results are computed, they are stored back into the CCUs in the grid and the 

computation resumes with the next feature. The computation is illustrated in Figure 3-8(b). 

At the end of a stage, the computed stage sum is compared against the stage threshold 

obtained from the training set. Depending on the outcome of the comparison, the location of 

the CCU is flagged as an object of interest candidate and continues further evaluation, or is 

discarded by resetting the flag bit that is shifted with the stage sum. When a location which 

does not contain an object of interest arrives for computation at the EUs, the EU does not 

compute the feature sum, rather remains idle, and simply propagates the data to the far right 

CCU to resume computation. The CCUs that do not act as collection/computation points, 

(only hold integral image info as mentioned earlier) simply propagate their values in order to 

maintain temporal consistency. 
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When all stages complete for a certain feature scale inside the search window, the flagged 

locations correspond to the ones that contain the object of interest. If the feature computed is 

the last one, the computation ends. Each location that contains an object of interest is shifted to 

the right and outside of the array, for the host application to proceed. 

This parallel approach yields several advantages. First, it does not require the training set 

data to be stored on-chip, as it only computes one feature at a time. Instead, it operates on the 

image data in parallel. Second, the systolic implementation returns predictable and fast 

operation, in the context of high frequency. Third, computations that are expensive in terms of 

delay and hardware overhead such as multiplication are isolated and computed together in 

parallel during each evaluation step, thus amortizing their delay towards the whole operation. 

Fourth, in contrast to the software implementation of the AdaBoost algorithm, the detection 

rate remains constant regardless of the number of objects of interest that exist in a single 

frame, whether they are detected positively or negatively (i.e. false positives). The software 

implementation suffers when the amount of object increases, as the algorithm will have to 

follow the entire classifier cascade multiple times. In contrast, the proposed architecture 

searches and performs the cascade only once for the entire image, rather than for each object, 

as done in software. Lastly, when used in conjunction with an IPG process, it can be scaled to 

the application’s requirements and available budget, as the array size can vary from being 

equal to the size of the training feature to as much as the budget and performance requirements 

allow and demand. 

3.4 Experimental Methodology and Evaluation Results 

Two different approaches were followed to evaluate the architecture under different 

scenarios. First, the architecture was designed and verified using FPGA emulation. Second, a 

full functional simulation was performed using an ASIC implementation over a commercial 

CMOS library, with three different object detection applications used as benchmarks. Both 

systems were designed with emphasis on the corresponding hardware constraints, and 

evaluation was performed taking into consideration several design constraints and limitations. 

Prior to detailing the implementation details, the concept of performance under an object 

Chri
sto

s K
yrk

ou



- 79 - 

 

detection system is first discussed, and list the factors, which explicitly impact the 

performance of the system. 

3.4.1 Performance, metrics, limitations and constraints 

There are two important performance metrics in object detection, the detection frame rate 

which defines the ability of the system to process a number of input image frames per second 

(FPS), and the detection accuracy, which defines the effectiveness of the system in detecting 

the object(s) of interest. For real-time video processing, the system needs to detect at least    

FPS. However, if other image processing and recognition algorithms have to co-exist with 

detection, the system needs to be much faster, which is typically the case. Moreover, the 

system’s accuracy largely depends on the training, and partially on the way that the training 

set is represented when implemented in hardware. In the development and design of the 

propose architecture, several performance metrics, limitations and constraints, were 

considered and are outlined in this section. 

Firstly, the training set size, particularly the number of features and stages in the training 

set, largely impacts the performance. As each feature is processed in parallel, the algorithm 

depends on the total number of features and stages to return a positive result. Training set 

optimization can improve the performance by maintaining a high accuracy in the detection 

while reducing the number of features. This was done in [87], however, no detailed 

discussions were given related to the accuracy of the detector, especially the false positives. In 

the presented implementation the architecture is developed independent of the training set 

size, and thus can take advantage of potential emerging research that reduces training set data. 

The second factor that has an impact on the performance is the size of the search window 

and the size of the array. As features are enlarged and computation is repeated to detect bigger 

objects, the number of enlargements necessary is defined by the search window size (i.e. until 

the size of the enlarged feature meets the search window size). Consequently, a large search 

window size will result in computation over several feature sizes. This increases the amount of 

computations and limits the performance. A small search window on the other hand limits the 

amount of feature enlargements and results in a larger number of search windows generated 

for each input image frame. However, the number of generated search windows increases 
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exponentially as the input image frame size increases, and potentially results in loss of data 

due to several downscaling iterations. The IPG and the systolic array are combined in the 

presented architecture in order to provide flexibility in selecting an appropriate search window 

size as the application demands, depending on the performance and cost requirements. The 

nature of the application, such as the amount of training data required, the feature size, the size 

of the object(s) of interest, input image size and number of objects concurrently appearing on 

the input image are all factors that play a role in determining a good ratio of the IPG to the 

search window size (and subsequently the systolic array size). A system-level optimization 

framework can potentially be used to determine these sizes for various applications, and is left 

as future work. 

The third factor that impacts the performance is the input image frame size. Obviously a 

large frame results in more data to be explored and a larger number of search windows, but it 

also impacts the size of objects relative to the input image frame. Large-sized objects typically 

result in wasted computations when using small-sized features, whereas small objects result in 

wasted computations when using large-sized features. This is even worst when two or more 

objects of interest appear in different sizes, the largest the variance in the sizes of the objects, 

the larger the number of feature and stage computations overall. The proposed architecture is 

ideal for large image sizes, as the high degree of parallelism can process large images in 

parallel, resulting in satisfactory frame rates. Three image sizes where used for evaluation 

purposes indicating only a relatively small decline in the frame rate when going from a small 

to a much larger image frame size. 

The fourth factor relates to the object of interest itself, and the targeted video application. In 

particular, the amount and size of objects of interest contained in a single frame plays a 

dominant role in the overall performance, especially in sequential software implementations. 

The big advantage of the AdaBoost algorithm, which results in large detection frame rates, lies 

in the ability of the algorithm to reject several search windows which do not pass certain 

thresholds during an early stage in the computation. However, if the amount of objects of 

interest in an image frame is relatively large, the algorithm slows down significantly, as it will 

have to go through the full computation several times. The architecture however, is 

independent of the number of objects, as the entire search window is explored in parallel, the 
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time required to search for a single object, is the same time as the time required to search for 

all objects in the search window. Furthermore, when two or more objects of interest of 

different sizes are present in the source image, detection will occur at different feature scales. 

A worst case scenario would be at for least one object of interest inside the search window, in 

every scale where a feature is evaluated. In reality however, this is a highly improbable 

scenario, a large object will usually cover smaller objects in an image. Furthermore, there are 

cases where objects of interest are not present in an image frame, the search windows will 

likely fail somewhere through the first few stages for all search windows at all feature sizes, 

thus enabling a new image frame to be processed. In such cases, the frame rate obviously 

increases. Additionally, changes within a video signal (i.e. new objects of interest entering the 

image frame or other objects leaving) typically happen within a few frames apart. Hence, 

consecutive frames are usually similar to each other. This of course implies that a lower frame 

rate than the video frame rate could be sufficient, however, in the likely scenario that object 

detection is part of a chain of operations that have to meet real time video processing, the 

detector still has to operate as fast as possible. Consequently, to conclusively evaluate any 

architecture, one has to choose a sequence of test frames containing a number of objects, of 

different sizes, taking these observations into consideration. 

The last factor obviously lies on the hardware itself, most notably the operating frequency. 

In the design of the presented architecture, regular and modular components where used, with 

small critical paths. The CCU contains minimal hardware, with a fast carry-look-ahead adder. 

The EUs, which take more cycles, and burden potential delays in memory accesses and 

multiplications, only operate during certain time intervals (i.e. during each feature and stage 

evaluation and I/O operation), allowing the bulk of the computation (i.e. rectangle collection 

and summation) to the much faster CCUs. 

3.4.2 FPGA Implementation and Emulation 

A proof of concept of the proposed architecture, was designed targeting the Xilinx XUP 

Virtex II Pro platform [88]. The FPGA evaluation targets a face detection application, using 

the training set and parameters given with the Open Computer Vision library [18]. The Open 

CV library provides a state-of-the-art software implementation of the AdaBoost detector, 
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utilizing a very accurate pool of features. The training set uses a starting feature size of 

      pixels, and scales each feature by a factor of      (taking the ceiling of the result), 

resulting in   scaled feature sizes (                        and      ). Each 

feature has between   to   rectangles. The training set consists of       features in    stages. 

The number of features per stage range from   to    , and the total number of rectangles is 

     .  

The training set is organized on a feature by feature basis. Each feature data includes the 

feature sequence number, the number of rectangles in the feature, the dx and dy offset values 

for each rectangle in the feature, the weight associated with each rectangle, and the squared 

threshold value for each feature. Additionally the stage data includes a certain threshold per 

stage. To represent the training set, 8 bits per rectangle weight were used, for each threshold 

value and for each predetermined feature sum, using signed fixed point numbers of   integer 

bits and   decimal bits. The dynamic range supported is            , close to the required 

accuracy for the Open CV training set. The external memory that holds the training set, holds 

also the upscaled feature data, that is rectangle offsets and weights. The rectangle offset was 

stored using   bits each, as the largest feature size utilized was       (to fit the       

array). Each rectangle needs to store up to      and    values. The training set is stored in the 

off-chip (on-board) memory, as features and stage data are used only once every array 

collection and computation. As already mentioned, the upscaled feature data were stored in 

off-chip memory as well, since when features are enlarged, new rectangle offsets are used. 

This however is of minor importance, as the offsets can simply be scaled on-chip, 

dynamically, since the feature training set is loaded feature by feature. For simplicity 

purposes, the rectangle offsets for all feature sizes are stored in off-chip memory, as part of the 

training set. 

In designing the CCUs, adequate storage needs to be provided for the case where all pixels 

will have an intensity value of    , an unlikely scenario, but necessary for correct operation. 

Thus, the maximum integer value that can be stored in an integral image is           

and the maximum integer value that can be stored in an integral squared image is         

  . This requires    bits and    bits respectively. Knowing these requirements, the 

architecture was designed using       CCUs,    MEUs and   CUs. Each CCU connects to 
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its neighbors through an 8 bit bus, which however can increase to a larger size if necessary for 

bandwidth purposes. The platform contains external memory (DRAM), which was used to 

store input image frames and the training set. The evaluation image were landscape grayscale 

images of size         pixels, and an array size of       cells (   rows by    columns), 

the largest size that could fit on the targeted FPGA, maintaining the     ratio of the initial 

image frame). The IPG receives   pixels per clock cycle (the DRAM I/O bandwidth), and 

generates       sized search windows, at a pixel offset of five pixels (i.e. every search 

window starts five pixels after the previous). The IPG also downscales the image by scale 

factors of      and    , creating three downscaled images of sizes             

             . The generated downscaled images are stored on the FPGA Block RAM. 

The number of downscaled images is parametrizable, the scale factor is simply stored in a 

register, and scaling is done by matrix multiplication. The IPG uses two       frame 

buffers, generating search windows in lockstep fashion (i.e. it generates the first, and then 

proceeds to generate the second while the systolic array processes the first one, with both the 

IPG and the array alternating between each buffer). FPGA synthesis and utilization results 

were collected using the Xilinx ISE 9.2 and are shown in Table 3-2. 

The system, which system operates at     MHz, was verified and evaluated using the 

application of face detection, through a sample of     test images which contained several 

faces of different sizes, obtained through the World Wide Web, and sized and formatted to the 

design requirements. The test images were stored in a Compact Flash card during the system 

initialization stage, and then loaded on the DRAM prior to running the detection framework.  

TABLE 3-2. SYNTHESIS RESULTS FOR THE VIRTEX II PRO FPGA IMPLEMENTATION 

FPGA 

Resources 

Slices 

(13696) 

Flip Flops 

(27392) 

LUTs 

(27392) 

BlockRAM 

(312.5kB) 

Multipliers 

DSPs 

(136) 

IPG 
2,248 

(16%) 

2,101 

(8%) 

2,445 

(9%) 

52.8kB 

(17%) 

8 

(5%) 

Array 

(80x60) 

10918 

(80%) 

20185 

(74%) 

22706 

(83%) 

0 

(0%) 

60 

(44%) 

System 
13455 

(98%) 

23744 

(87%) 

25118 

(92%) 

52.8kB 

(17%) 

68 

(50%) 
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(a) (b) 

Figure 3-9. FPGA system prototype 

(a) Output image frames (b) Experimental platform block diagram 

The frames were input to the detector, which processed them. A custom VGA controller 

was then designed and used in order to output the result of the detector to a VGA monitor, for 

visual verification, along with markings on where the candidate faces were detected. A 

diagram of the FPGA prototype and image detection results are shown in Figure 3-9. 

The frame rate depends on several factors, some of which are independent of the 

architecture. The system processed all     test images in      seconds, an estimated rate of 

   frames per second, which for the type and frequency of the FPGA is relatively high. 

Additionally, the FPGA implementation achieved     accuracy detecting the faces on the 

images when compared to the corresponding Open CV software implementation, running on 

the same test images. This discrepancy can be justified to the fact that the Open CV 

implementation only scales the features up (no image downscaling) which does not result in 

data loss. Additionally, some training data was not able to be represented within the dynamic 

range employed by the hardware design.  

 Table 3-3 presents a comparison table between existing FPGA implementations along with 

their characteristics, and the proposed architecture implemented on FPGA, for the application 

of face detection. As seen in the table, the proposed architecture is significantly faster and 

more accurate than most implementations. The implementation in [86] was based on pure 

cycle-accurate simulation rather than implementation, and the clock frequency is twice as the 

one used in the evaluated implementation (which was limited by the capabilities of the FPGA 

board). The work in [87] yields a reported     FPS, but uses a much smaller training set (two 

orders of magnitude smaller than the one in Open CV) in order to achieve such a high frame 

rate. Furthermore, the reported accuracy focuses on a specific data set, and no detailed 
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discussion is provided on the rate of false positives. The implementation in [7] uses a       

image, an order of magnitude less features, and two search reduction methods (skin and 

motion detection) in order to achieve over 600 FPS, however it only considers three object 

sizes all these optimizations considerably minimize the size of search windows that need to be 

processed. In addition no accuracy information is provided to measure the impact of all these 

optimizations.  

TABLE 3-3. RESULTS COMPARISON OF RELATED WORK IMPLEMENTATIONS ON FPGAS  

Work 
Hiromoto 

[83] 

Cho 

[84] 

Wei 

[85] 

Shi 

[86] a 

Lai 

[87] 

He 

[7] 

Presented 

Architecture 

FPGA 
XC5VLX3

30-2 
XC5VLX1

10 
XC2V2000 N/A XC2VP30 

XC5FX130
T 

XC2VP30 

Frames per Second 30 26  15 102 143 625 64 

Image Size 640×480 320×240 120×120 176×144 640×480 80×60 320×240 

Cascade  

Information 

Stages 25 22 3 25 1 9 25 

Features 2913 2135 225 2913 52 115 2913 

F
P

G
A

  

R
es

o
u

rc
es

 

Slice LUTs 
63443 

/207360 

66851 

/69120 

13853 

/21504 
N/A 

20901 

/27392 

67704 

/81920 

25818 

/27392 

Slice 
Registers 

55515 

/207360 

21,902 

/69120 

4573 

/21504 
N/A 

7782 

/27392 

37828 

/81920 

23744 

/27392 

DSPs N/P N/P 28/56 N/A N/P 161/320 68/136 

Mem N/P 41/128 56/56 N/A 44/136 276/298 24/136 

Clock Frequency (MHz) 160.9 N/P 91 200 126 73 100 

Accuracy N/P N/P 85%  N/P 
86% on 

faces 
N/P 93% (overall) 

a 
Implementation of a cycle accurate simulator 

N/P – Not Provided | N/A – Not Applicable 

3.4.3 ASIC Implementation and Evaluation 

In addition to the FPGA emulation, a larger system was designed (that could not fit on large 

existing FPGAs), targeting an ASIC implementation. The objective of the ASIC 

implementation was to obtain experimental insights on the scalability and feasibility of the 

proposed architecture, towards large scale integration. The ASIC implementation was 

evaluated using three object detection applications, face detection, road sign detection, and 

vehicle detection. The training set used in the face detection application was the same one 

used in the FPGA prototype. The training set for the other two applications was constructed 

using Open CV and MATLAB, using sample images obtained from the World Wide Web. The  
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TABLE 3-4: DETECTION APPLICATIONS TRAINING DATA 

Detection 

Application 

Object Per 

Frame 

Feature Size 

(pixels) 

# of Rectangles per 

feature 

# of 

Stages 

Total # of 

Features 

Detection 

Accuracy 

Face 1-7 24×24 2 to 4 25 2913 93% 

Road Sign 1-2 12×12 2 to 3 12 414 83% 

Vehicle 2-10 24×36 2 to 4 20 1715 78% 

objective was not to construct an accurate training set per se, rather than a realistic one to be 

used as an experimental set. The training sets were constructed using road sign and vehicle 

images, and training set details for each application (including the face detection) are given in 

Table 3-4. Input images of four sizes (                                    ) 

were used, again obtained through the World Wide Web, containing several faces, road signs 

and vehicles, depending on the targeted application. Then proceeded to design and implement 

an architecture which could receive as input at least a          grayscale image, and 

process it as fast as possible, using the training sets mentioned. It must be noted that each 

application differs from each other in the context of their training sets (and feature sizes), the 

underlying hardware architecture is the same for all the targeted applications, as well as input 

image sizes and formats. 

The experimental platform was designed using search windows of size         pixels. 

Consequently, the size of the array was set to be the same, consisting of         CCUs and 

    EUs. The IPG was designed with two image partition buffers, producing search windows 

in similar fashion to the FPGA implementation. The original input image size was scaled 

down using a scale factor of     , and the features were scaled up using a scale factor of     . 

The training set, downscaled images from the IPG and input image frames were modeled as 

external memory, everything else was considered on-chip. Additionally, all parameters 

outlined in the FPGA implementation were modified to reflect the new search window size 

(such as storage considerations for the integral and integral squared images, data bus between 

CCUs and EUs, etc.).  

The system was synthesized with using Synopsys Design Compiler targeting a commercial 

TSMC   nm CMOS library, in order to obtain relevant metrics such as area, operating 

frequency and power consumption. The default library values, and Synopsys’ synthesis 
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primitives were used (focused on area optimization over performance), as well as components 

from Synopsys Designware IP library. Pre-layout results indicated that the critical path in the 

system was identified in the EU multiplier (a   -bit multiplier). An 8-stage multiplier from 

Designware IP library was used in the design targeting high frequency. It must be noted that 

the synthesized design does not consider the IPG memory modules, hence the CACTI toolset 

[89] was used to obtain the potential operating frequency for the two IPG memory modules, 

estimated at     MHz. As such, the targeted frequency of the entire system was set to     

MHz. The post-synthesis, pre-layout results also indicate an area estimation of roughly    

million transistors.  

Preliminary results also were collected for some indicative power consumption merits using 

1V power supply voltage and 50% probability of switching activity on all lines. Prior to 

reporting the obtained power consumption results however, it needs to be stated that the 

overall power consumption depends on several factors not related only to the architecture. The 

power consumption depends on the input image size and subsequently the number of 

downscaled images produced, the number of search windows, the number of features in the 

training set and the number of necessary computations. The latter is determined by the number 

of objects of interest found in the input frame. Obviously the chosen operating frequency and 

power supply of the system are important as well. Consequently, power comparison with 

architectures found in literature is not suitable without the use of the same input data sets and 

input image sizes. Hence, instead of reporting only the total power consumption for one frame, 

an overview is given of how this power is consumed throughout the computation. 

To compute and evaluate a       feature (rectangle collection and computation, 

propagation to the EUs, computation and evaluation in the EUs, and propagation of the feature 

sum back to the array), the system consumes 0.06mW. The IPG unit also consumes        

mW to downscale a         image to a         image and        mW to produce one 

      search window. Overall, to compute a single         frame with one object of 

interest (human face), the unit consumes       mW of power. The only power optimization 

mechanisms considered was to not compute feature values when a region was marked as a 

non-candidate since the overall focus was not on optimizing with regards to power. 
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TABLE 3-5: ASIC IMPLEMENTATION - SIMULATION RESULTS 

Application 

/Accuracy 

Detection 

Accuracy Input Image Size 
Time to process 10 

frames (seconds) 

Projected Frame 

Rate  

(FPS) 

Face 

Detection 
95-96% 

1024×768 0.109  ~91 

800×600 0.098  ~102 

640×480 0.084  ~118 

320×240 0.075  ~133 

Road Sign  

Detection 
92-97% 

1024×768 0.099  ~101 

800×600 0.093  ~107 

640×480 0.083  ~120 

320×240 0.072  ~139 

Vehicle  

Detection 
91-96% 

1024×768 0.128  ~78 

800×600 0.116  ~86 

640×480 0.108  ~93 

320×240 0.098  ~102 

Using text files that contained the input image files and training set data, functional RTL 

simulation of the system was performed using Modelsim using a set of 10 test images per 

image size per application (i.e. 40 test images per each application), and obtained the total 

number of cycles required to process each test case. The resulting frames were stored as text 

files, and reconstructed to images using MATLAB, to visually verify the results. Using the 

obtained clock frequency from the synthesis results, the detection frame-rate was estimated (as 

well as the detection accuracy when compared to the corresponding software implementation). 

Table 3-5 summarizes the results for each application, under the four input image frame sizes. 

Table 3-6 presents a summary of the synthesis results, and a brief comparison with the 

special-purpose vision processor presented in [81]. When comparing equal sized input images, 

the frame rate achieved by the proposed architecture is significantly larger. The associated 

power consumption and hardware overhead costs cannot be compared, however, the overall 

simulation results indicate that the proposed architecture can be scaled to significant sizes, and 

potentially be used in high-performance applications with large input image sizes, or can be 

designed to consume minimal energy and hardware overheads for small-scale embedded 

systems. 
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TABLE 3-6: ASIC IMPLEMENTATION - RELATED WORK COMPARISON 

Work Proposed Architecture Hanai [81] 

Technology TSMC 65nm CMOS 90 nm CMOS 

FPS (320x240) ~133 8 

Area (# of 

transistors) 
88 million 2.1 million 

Power (mW) 2.45 per 320×240 frame 0.47/FPS – 3.72 total 

Clock Frequency 800 MHz 54 Mhz 

Accuracy 95% 81% 

3.4.4 Discussion 

Both the FPGA prototype as well as the large scale ASIC implementation have shown great 

potential for applications with real-time performance requirements, such as real time object 

detection in vehicular embedded and applications involving multiple camera streams. The 

system is particularly useful in monitoring populated areas such as airports and transportation 

terminals, where it can process frames from alternate video streams, regardless of the amount 

and size of objects found in the input image frames. The scalability of the system and its 

independence from the training set also provide flexibility to the designer, allowing the 

designer to determine the most efficient size of the system directly from the application 

requirements. By merging the IPG with the feature upscaling originally used, the system 

achieves a fully parametrizable performance-to-cost ratio, if the silicon budget allows it, an 

increase in the array size will boost the performance (by increasing the degree of parallelism). 

On the other hand, a smaller array, while slower, costs less and can still satisfy certain 

performance requirements. 

There are some useful conclusions extracted from the simulations with respect to the 

algorithm. The FPGA implementation shows that the architecture can scale well in smaller, 

less demanding environments, while maintaining reasonable frame rates. The ASIC 

implementation on the other hard illustrates the full-throttle operation of the detector, and its 

suitability for multiple video streams and detection of objects that could appear in different 

numbers and sizes within an input image frame. Obviously, depending on the budget and 
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application constraints, the designer can select the type of implementation that satisfies the 

operating conditions and application specifications. 

3.5 Conclusion 

Object detection is an important step in multiple applications related to computer vision and 

image processing, and real-time detection is critical in several domains. This chapter presented 

a systolic-array inspired accelerator for the AdaBoost-based Haar feature cascade classifier 

proposed by Viola and Jones that can perform generic object detection using the AdaBoost 

algorithm. The architecture targets both parallel computation and parallel data movement and 

thus combines an image pyramid generation process, along with highly parallel systolic 

computation, to offer a flexible design that is suitable for several types of applications and 

hardware budgets. These features allow the architecture to process the input image in a 

radically different manner than other works by parallelizing the processing of multiple 

windows instead of just one and to also permit for feature upscaling to be performed. 

Furthermore, the advantage of the architecture over software implementations is that is 

maintains a constant frame rate regardless of the number of objects found in the image. Two 

experimental platforms of the architecture were presented, a low-end FPGA implementation 

and a high-end ASIC implementation, both of which achieved significantly high detection 

frame rates and accuracy compared to related works.  

Further optimizations in terms of power consumption can significantly improve the 

architecture. System-level optimization algorithms, of determining a systolic array size that 

best satisfies the performance/cost requirements can be explored. Finally, this architecture can 

be combined with other on-chip implementations of related applications to form a complete 

high-performance embedded computer vision and image processing hardware platform. 

The seminal work by Viola and Jones has been considered a major step towards real-time 

object detection. One drawback of this approach however, is that detection performance 

depends heavily upon the available pool of features which the AdaBoost uses to specify weak 

and strong classifiers [90]. Alternative algorithms such as Support Vector Machines offer 

built-in mechanisms for new feature generation and can often perform equally well [3],[91]. 
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Hence, in addition to the proposed Haar-cascade architecture, the hardware acceleration of 

Support Vector Machines (SVMs) is also considered and is presented in Chapter 4. 
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CHAPTER 4 

HARDWARE ACCELERATION OF SUPPORT VECTOR MACHINES 

Support Vector Machines (SVMS) [39] have emerged as a powerful supervised machine 

learning algorithm which has been widely adopted since its introduction by Cortes and Vapnik 

[16]. SVMs are considered a very good tool for classification and regression applications due 

to their mathematical formulation which is based on statistical learning theory [39] and 

guarantees good generalization capabilities. In particular their major advantage over other 

methods such as neural networks and Gaussian mixture models is that they are less likely to 

get stuck at a local minimum during training [92] and also the structure of the classifier is 

data-driven and thus determined automatically [93]. Due to these properties SVMs have 

exhibited excellent classification accuracy rates for a wide range of applications [19], 

[93],[94]. Consequently, they have attracted a lot of interest from the computer vision 

community to be used in object detection and image processing applications such as 

pedestrian detection [95],[96], car side view detection [97] and face detection in [76], [98], 

[99] and have again demonstrated high classification accuracies. However, the major 

disadvantage of SVMs is there slow classification speed. The classification complexity of 

SVMs is proportional to the number of training samples needed to specify the separating 

hyperplane between classes, which are called support vectors (SVs). Hence, for large scale 

problems, the high classification accuracy rates demonstrated by SVMs come at the cost of 

increased computational complexity. As such, when considering embedded applications, e.g. 

embedded vision, automotive, and security, SVM-based classification systems with hundreds 

of support vectors and a large number of instances that need to be classified, find it difficult to 

meet real-time and power consumption constraints under limited resources and area 

constraints.  

4.1 Related work on Acceleration of SVMs 

Dedicated SVM hardware architectures have emerged as a potential solution in order to 

meet real-time performance and power-consumption constraints in embedded applications. 

The majority of related work on SVMs can mostly be divided into three categories: (i) 
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application specific architectures that are tailored to specific classification problems (ii) 

optimizations that aim at reducing the hardware complexity and improve classification speed 

and (iii) coprocessors for speedup of the training phase. While there has been a considerable 

amount of work done in accelerating support vector machines with dedicated hardware, there 

is a lack of works that have looked into hardware architectures for embedded object detection 

that are not constrained by the vector dimensionality and can be scaled to processed multiple 

windows from an input image. Furthermore, only recently there has been some work on trying 

to accelerate cascade SVMs. A detailed description of related works on SVM accelerators is 

given next. 

There exists a fair amount of work on accelerating both the SVM training and classification 

for general-purpose processors and DSPs, aiming to provide higher performance on such 

platforms. The work in [100] presents an evaluation of SVM implementation on embedded 

processor architectures, and proposes architectural modifications in order to improve their 

performance. An analysis was performed in [101] where critical parts of the SVM algorithm 

were mapped between hardware and software, demonstrating how hardware can be used to 

accelerate SVM computations. An implementation of an SVM classifier on a microcontroller 

was presented in [102]
1
, dealing with issues such as limited memory and hardware. Attempts 

to accelerate the SVM training phase with multi-core processing platforms have been 

demonstrated in [103]
2
. However, performance on such systems is limited by locality issues 

and limited cache size for large dimensionality vectors. Furthermore, multi-core processing 

systems require higher power consumption than dedicated hardware accelerators. Overall, the 

limited resources of DSP and multiprocessor systems does not provide the necessary 

parallelism to allow for real-time operation. 

NVidia's compute unified device architecture (CUDA) has also been used in 

[104]
3
,[105]

4
,[106]

5
,[107]

6
 in order to speedup SVM classification using the parallel 

                                                 

1 Microcontroller: PIC16F877 @ 1MHz  
2 2 CPUs 8 Cores @ 2.3 GHz, 4GB RAM 
3 Intel Core i7 920 @ 2.67, 6GB RAM | NVIDIA Tesla C1060 @ 1.3 GH, 4GB RAM 
4 GeForce 8800 GTX @ 1.35 GHz. 768 MB RAM 
5 Intel Core 2 DUO @ 2.66 GHz | NVIDIA GTX260 
6 Intel Core i7 CPU 920 @ 2.66 GHz | NVIDIA GeForce GTX 925 
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computing resources of a GPU showing improved results compared to CPU implementations. 

However, GPUs are power hungry devices compared to FPGAs [108],[109],[26], as FPGAs 

consume approximately an order of magnitude less power, and as such they are not suitable 

for power-constrained embedded applications. In addition, existing GPU implementations do 

not translate well to the more energy-efficient embedded GPUs due to less available resources 

(less registers, cache, cores) [12]. 

Hardware implementations of SVMs been also proposed both for the training as well as for 

the classification phase, in order to address the constraints and limitations of the above 

platforms using custom hardware architectures, while mostly utilizing FPGAs. Early work on 

the hardware implementation of SVMs focused on simple circuital architectures for the 

training phase [110]. More recently, other works [111] for the SVM training phase exploit the 

diversity in bitwidth precision requirements of the training data in order to develop scalable 

architectures. Architectures have also been developed for the SVM classification phase in 

order to design intelligent embedded systems. A mixed-signal SVM processor was presented 

in [112], utilizing analog computation for accuracy and digital output for VLSI integration. 

Anguita et al [113] propose hardware architecture for a modified SVM training algorithm 

showing comparable results with respect to the widely used Sequential Minimal Optimization 

(SMO) training algorithm [45]. Implementations of SVM classification systems have been 

restricted to small scale data [114], with only a few support vectors [115],[116] low 

dimensionality [115],[117],[92],[118],[119] and small-scale multiclass implementations 

[120],[121],[122]. Overall, the architectures proposed in these works use parallel processing 

units to rapidly process a single vector or multiple processing units to process many support 

vectors in parallel for a single input. In both cases, however, the proposed architectures were 

developed for specific problems and thus are not easily extendable to other scenarios and 

cannot be easily scaled to process multiple windows or support vectors simultaneously. The 

works in [108] and [123] have tried to develop coprocessors for CPU clusters in order to 

speedup SVM computations. They utilize clusters of vector processing elements and also 

compare the proposed hardware implementation with GPU and CPU SVM implementations, 

demonstrating both higher performance and lower power consumption. However, these works 

offload the kernel computations to the CPU coprocessor and the parallel processing 

capabilities depend on parallel input through the PCI express and external DRAM which have 
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high power consumption and are thus unsuitable for embedded applications. Nevertheless, 

considering the implementation of kernel functions is necessary for standalone embedded 

visual object detection systems. From the aforementioned works only [107],[116],[119] use 

SVMs for visual object detection applications utilizing FPGAs.  

The main vector operations in SVMs require multiplications that can be expensive in terms 

of area, power, and performance. Thus, research has also been done on potential 

simplifications to make SVM classification and training more suitable for digital 

implementation and suitable for devices with limited computational resources. One of the 

earliest attempts was proposed by Anguita et al [124], where the multiplications in the training 

phase are substituted by shift and add operations. Other approaches use training algorithms 

commonly used to train neural network, and are more suitable for hardware implementation, 

and adapt them to train SVMs [125]. Similar approaches have also been proposed for the SVM 

classification as well. These approaches include using CORDIC algorithms to compute kernel 

functions [117],[121],[122], however, more compact implementations that require less 

hardware have increase latency [122], thus the experiments were limited to problems with a 

small number of input data and SVs. Other works [126],[127] proposed that the computations 

be done in the logarithmic number system so that all multiplications are substituted by 

additions. This approach requires a costly double transformation from the decimal number 

system to the logarithmic one and back again in order to compute a multiply-accumulate 

operation. However, they only consider a single processing module, hence, when adopting a 

more parallel architecture, to facilitate real-time operation, the additional cost from 

incorporating the double transformation, for all the inputs, to convert between the decimal 

number system to the logarithmic one and back again increases. Alternatively, a pseudo-

logarithmic number system was proposed in [128], however, the overheads for converting 

between number systems in order to perform additions still remain. The works in [129], [130], 

[131],[132], have looked at how the bitwidth precision impacts the classification error, in an 

effort to find the best trade-off between hardware resources, performance and classification 

speed. Although the kernel operations still need to be implemented with multipliers leading to 

high resource demands for parallel implementations. A hardware friendly kernel was proposed 

in [133] as an alternative to the RBF kernel. It operates in conjunction with a CORDIC 
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algorithm to remove multiplication operations, however, it is unclear how this kernel behaves 

for a variety of applications and as such may not have the generalization capabilities of more 

established kernels. Finally, in [134], Irick et al propose hardware optimizations for the RBF 

kernel.  

The aforementioned works have only considered hardware implementations and 

optimizations for monolithic SVMs while hardware, implementations for cascade SVMs have 

only recently been explored. In [135] and [109] the authors implement cascade classifiers with 

low and high precision bitwidth and also explore word-length optimizations for heterogeneous 

datasets. The dynamic ranges of heterogeneous datasets are exploited to design a cascade 

architecture for SVM processing that is optimized with respect to the bitwidth precision and 

throughput. 

Considering implementations of previous works for SVM there is lack of architectures that 

can provide efficient parallel processing for both support vectors as well as multiple windows 

in a scalable manner that is suitable for object detection applications. In addition related works 

for SVM classification consider the implementation of a single kernel and the architecture is 

not generic to handle different kernel operations. Furthermore in their majority, none the 

previously presented works focus on the implementation of architectures for cascade SVMs, 

and are instead only optimized for monolithic SVM processing. Moving towards large scale 

embedded applications where thousand windows need to be classified, cascade SVMs will 

need to be utilized to provide speedups. Introducing new challenges for hardware 

implementation since cascade SVMs multiple classifiers need to be implemented on the same 

silicon fabric, each with different processing and memory requirements. As such, single SVM 

architectures, which do not exploit the properties of the cascade classification scheme, are not 

suited for this purpose. Hence, this research addresses the above two issues by proposing two 

architectures one for generic and parallel SVM processing and one for hardware-efficient 

cascade SVM processing. The following two sections detail the architectures and experimental 

evaluations for monolithic as well as cascade SVM architectures.  
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4.2 Hardware Acceleration of Monolithic SVMs 

Embedded visual object detection applications require processing thousands of windows 

with hundreds of support vectors [76], [136] in real-time. As the number of input vectors and 

vector dimensionality increases existing architectures that rely on rapid processing of a single 

vector will not scale since there will be increasing demand for processing resources as well as 

higher power consumption. In addition other architectures that process multiple support 

vectors do not address the kernel implementation. To tackle these issues a flexible architecture 

is needed that is constraint by the vector dimensionality and can scale depending on the 

number of support vectors and input windows. Hence, an array processing architecture is 

presented that addresses the above concerns. The array-based architecture has many benefits 

compared to previous works, as it provides parallel processing of many input and support 

vectors, it is modular and regular thus allowing for a scalable design and reduced complexity, 

as well as efficient memory management and data flow between the processing units. 

Furthermore, the hardware units are designed to implement different kernels thus the same 

architecture can be used for different object detection applications, while demanding hardware 

units are shared amongst between the more common units. Finally, the proposed architecture 

is flexible to the application characteristics since it can be modified to allow for single input 

vector processing with multiple support vectors, multiple vector processing with groups of 

support vectors and can also be configured to handle multi-class problems, which has not been 

considered in previous works. 

The array processing architecture is comprised of three main regions. The memory region 

comprised of a chain of memory units where the support vectors and alpha coefficients are 

stored, the vector processing region which is responsible for the vector processing, and is the 

largest region in the array, and the scalar region that processes the results produced from the 

vector operations. The array is comprised of two types of processing elements that serve 

different purposes: the Vector Unit (VU) is used for all vector computations, and the Scalar 

Unit (SU) operates on the scalar values produced by the VUs. In addition to these processing 

elements, the architecture contains dedicated memory units that feed the array with training 

data, and a finite state machine (FSM) control unit that synchronizes the array operation. The 

structure of the array is shown in Figure 4-1. The main regions of the array are detailed next, 
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followed by a description of the array data flow and the issues associated with the scalability 

of the array, as well as details on extending its operation to address multi-class classification 

problems. 

 

Figure 4-1. Support vector machine array processing architecture 

4.2.1 Array Processing Hardware Architecture 

A. Vector Processing Region 

The Array is comprised mostly of VUs (shown in Figure 4-2) which are responsible for 

processing input windows with support vectors according to the kernel function operation to 

produce the scalar values required for the latter computations. Multiple VUs are 

interconnected to form a processing array to allow for massively parallel vector processing. A 

generic VU should be able to perform the necessary operations to process the most common 

kernels (shown in Table 4-1). These operations are the dot product       for linear and 

polynomial kernels and the Euclidean norm         for the RBF kernel, which happen on 

each component of vectors    and   . The latter requires the multiplication and accumulation 

of vector components while the latter requires the squaring and accumulation of the difference 
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of two vectors. In [108], the dot product variant of the RBF kernel is used resulting in a more 

uniform architecture that computes just dot products. However, the variant is not as 

numerically stable and also requires that squares of vectors are pre-computed and stored on  

TABLE 4-1 COMMON SVM KERNEL FUNCTIONS 

                         Equation 4-1 

                                    
                           Equation 4-2 

                                          
                  Equation 4-3 

                   
       

 

        
          Equation 4-4 

chip which dramatically increases memory demands. Thus the initial RBF kernel is considered 

for the implementation of the architecture. However, instead of designing different 

components for each kernel the components necessary for the implementation of the RBF- and 

dot-product-based kernels have been merged into a unified configurable architecture. In this 

way the RBF kernel only requires minimal additional hardware in the form of a subtractor, 

compared to the dot product-based kernel. Hence, the VUs are comprised of a subtractor, a 

multiplier, an accumulator and multiplexing logic to satisfy the processing needs for both 

vector operations. The multiplier either computes the product of the two vector components, 

or squares the difference of the two vector components. An 8×8-bit multiplier would suffice 

for the majority of object detection applications most of which operate on grayscale images (8-

bits per pixel). The result of the 8×8-bit multiplier (a 16-bit value) is passed to an accumulator 

to complete the dot product computation. The bit-width of the accumulations is proportional to 

the vector dimensionality, denoted as c. The accumulator therefore, performs   accumulations 

of 16-bit operands, thus the accumulator bit-width requirements are given by          
   

   . 

The VUs are interconnected with each other through a vertical and a horizontal pipeline. 

The Support vectors travel through the vertical pipeline while the input vector data and scalar 

results travel through the horizontal pipeline. Each VU has three operational states: 

PROCESSING, IDLE and TRANSFERRING. In the PROCESSING state the VU is involved 
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with the computation of the vector operation, and simultaneously transfers data/control values 

to its neighboring VUs. During the TRANSFERRING state, the scalar value computed by 

each VU is transferred towards the SUs. Transfer data switching is done through a 2-1 

multiplexer and data propagation through the dedicated registers of the VU. Moreover, a 

vector operation signal determines the input to the multiplier and consequently the resulting 

vector operation. Lastly, the VUs simply remain inactive during the IDLE state. 

It is possible to allow for multiple components of the same vector to be processed in 

parallel. However, doing so increases the resources required per VU and thus, depending on 

the hardware budget, this approach to increasing parallelism may reduce the number of VUs 

that can be used in the array. This decision involves a tradeoff between vector-level 

parallelism (process more vectors in parallel) and component-level parallelism (process vector 

components in parallel). Increasing the component-level parallelism requires the following 

changes to the VU architecture. First, for each vector component that is to be processed a 

dedicated subtractor and multiplier is needed. Second, the products produced by each 

multiplier must be summed up. This can be done sequentially using a cascade of adders, or in 

parallel using a tree of adders. Notice that the additional adders also increase the hardware 

utilization per VU. Processing   additional vector components increases the hardware 

overhead per VU by i additional subtractors and multipliers, and     adders. 

 

Figure 4-2. Vector unit 
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B. Scalar Processing Region 

The Scalar Units (SUs) are involved in the latter stages of the computation and process the 

scalar values produced by the VUs, after the vector operations have been completed. Each SU 

receives the scalar values of the VUs in its row, one per cycle via the right-most VU in the 

array. The SUs are comprised of two major components, the kernel scalar module (KSM) and 

a multiply-accumulate unit (MAC). The kernel scalar module performs the scalar operation of 

each kernel. The MAC unit multiplies each scalar value with its respective alpha coefficient 

and accumulates the outcome, finally it adds the bias to the accumulated result once the 

processing of all support vectors is complete. The MAC’s bit-width (precision) is determined 

by the choice of kernel (i.e. the kernel’s output bit-width), the number of support vectors 

(determines the number of accumulations and consequently the precision of the accumulator) 

and the chosen precision for the alpha coefficients. The architecture of the SU is shown in 

Figure 4-3. 

 

Figure 4-3. Scalar unit 

The KSM computes the kernel outcome for each scalar value it receives. The operation it 

performs depends on the kernel function. The implementation of the kernel function is an 

important issue. The computations of mathematical functions necessary for the kernel 

operations may take several cycles if the dedicated circuitry is not present, while the direct 

hardware implementation of mathematical functions required by kernels, such as division, 

exponential, hyperbolic tangent and square root is a challenging task and will require many 

processing resources. Thus, approximation algorithms such as CORDIC and Look-up table 
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(LUTs) techniques are the most preferred implementation strategy instead of a direct 

implementation of the kernel function. However, CORDIC-like algorithms require a few cycle 

to iteratively compute the result using shift and add operations, while on the other hand LUTs 

only take a cycle to retrieve the result from the memory, and hence, they are the preferred 

option for the implementation of such functions. The most common function used in literature 

for image object detection is the 2
nd

 degree polynomial kernel [76],[119]. As such, the 

necessary components for that specific kernel are hardwired, into a single module called the 

     module, which are an adder and a multiplier. The LUT approach was used to implement 

the rest of the kernels. The LUT in the KSM can be initialized to the values corresponding to a 

specific kernel, let that be an RBF kernel or a polynomial with a degree other than 2. A 

selection signal (Kernel Select) is used to determine whether the      module or the LUT will 

provide the input to the latter stages. This KSM configuration allows the SU to implement a 

variety of kernel functions, however, the tradeoff involved is that the precision of the LUT in 

the KSM impacts the classification accuracy and memory demands. The implementation 

requirements of the kernel functions result in processing units that may require a lot of 

resources (high bit-width resources especially), and may also reduce the operating frequency. 

As such, the SUs are pipelined to reduce long delay paths and increase clock frequency.  

One of the key benefits from arranging the processing units in an array structure, in contrast 

to existing works, is that the resource-hungry components in the SUs are shared amongst 

multiple VUs and thus are used in computing the scalar value of many support vectors, instead 

of having dedicated units for each vector operation. This is possible as the vector operations 

and the produced scalar values have no dependencies between them. Furthermore, due to the 

systolic nature of the array architecture the scalar values, in the same row, are produced 

sequentially and since all scalar values will be subject to the same processing operations, it is 

efficient to process them with the same unit using resource sharing thus, reducing hardware 

demands and complexity without negatively impacting performance. 

C. On-Chip Data Memory Management 

Support Vector Machines, like many other machine learning algorithms, exhibit 

characteristics such as predictable memory access patterns and independent operations, while 

having to process large amount of training data. Thus, providing parallel access to the training 
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data is critical in exploiting the inherit parallelism of SVMs. Under these considerations an 

efficient parallel memory structure was developed that feeds the array of VUs with training 

data. The memory structure consists of banks of memories (equal to the number of array 

columns) that supply the array with support vector data through the VUs in the top row of the 

array (Figure 4-1). The support vectors are distributed amongst the memory banks to allow for 

parallel access and processing. The memories are arranged in a pipelined structure that 

facilitates address data movement in the same manner as in the processing array. This helps 

maintain temporal consistency as well as provide parallel access to the memories since the 

address data are moved in a pipelined fashion, from memory to memory, avoiding the use of 

dedicated wires per memory that would have increased the hardware complexity. 

 

Figure 4-4. Window buffer register array architecture 

(a) Part of the image containing search windows is loaded into the register array window buffer (b) Window 

buffer architecture and interface with the array. The window buffer outputs pixels from multiple windows in 

parallel. 

A window buffer structure is used to provide temporary storage of the input windows and 

provide parallel input to the array and it is based on a register array structure that is capable of 

receiving serial input and providing parallel output and is illustrated in Figure 4-4. The register 

array receives a pixel each cycle until all pixels corresponding to search windows loaded and 

correctly placed into the array. At that point the output begins and each row of the processing 
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array receives pixels from a specific register in the register array as shown in Figure 4-4. In 

this way the overlapping regions contained in more than one window are loaded only once and 

used for all windows as they are propagated through the register array, thus providing a 

constant stream of data to the SVM processing array every clock cycle. It is necessary to add 

delay registers to the outputs of the register array in order to synchronize the pixels with the 

support vectors and maintain temporal consistency.  

4.2.2 Flow of Operation 

Processing of the input vectors (search windows) in the array happens in steps. During each 

step, a number of support vectors, equal to the number of columns in the array, is being 

processed. The number of steps required is determined by the maximum number of support 

vectors in each memory unit. For example, if there are 80 columns and memory units, and 120 

support vectors, then 40 memory banks will hold 2 support vectors and the other 40 will have 

1 support vector each. Processing an input vector will require two steps, in the first step the 

first 80 support vectors will be processed while the remaining 40 will be processed in the 

second. At each step, the VUs which do not process any support vectors simply propagate data 

to the SUs. The arrangement of support vectors in memories is application specific and 

depends on the available hardware resources as well. If the hardware budget allows it, the 

array can be made as parallel as possible, otherwise, it can be adapted to the available 

hardware. 

Before the computation of the feed-forward phase begins the array must first be initialized 

with the SVM parameters. These include the bias value, the support vectors, the alpha 

coefficients, and the kernel function data. The initialization can be done at run time by an I/O 

controller that interfaces with the array. The memory region must first be initialized with the 

training data (support vectors and alpha coefficients). The vector operation is selected in each 

VU via a control signal that is propagated in systolic manner through the array. Another 

control bit is used to select between the LUT and the poly module in the SUs. The LUT must 

first be initialized with the appropriate data. Initialization is done through the top row SU, 

which transmits data values through the same pipeline that is used for the alpha coefficients.  
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Figure 4-5. Transferred data word in the horizontal direction  

Transfer word: (1) In the PROCESSING state the input vector component is transferred in the 8 least 

significant bits. (2) During the TRANSFERRING state the accumulation result is transferred in the n least 

significant bits. (3) In both states the four most significant bits are control signals encoded in the following 

order: VU reset signal, Vector operation select, VU enable signal, Transfer data select. 

After the array is initialized with the SVM parameters and training data, the classification 

procedure can be initiated. It begins with the all the array processing elements in the IDLE 

state. The top-left-most VU is the first one to be enabled after it receives the first components 

of the input and support vectors, thus entering the PROCESSING state. The neighboring VUs 

follow next and continue to propagate the vector values and control signals leading more VUs 

to the PROCESSING state. After                            cycles, all the VUs in 

the array will be in the PROCESSING state, at which point the array will reach its full 

processing potential. Input vector values and control signals are propagated row-wise, while 

the incoming support vector values are propagated column-wise by each VU. The transferred 

control and data values are encoded in a data word as shown in Figure 4-5.  

When the scalar value is computed in all VUs, after c (number of components in vector) 

cycles, they all enter the TRANSFERRING state simultaneously, each propagating the 

computed scalar values towards the right-most VUs, which in turn propagate them on to the 

SUs. At this point the SUs are enabled and begin processing each scalar value that they 

receive from the right-most VUs. Along with the SUs, the alpha coefficients memory, which 

provides the SUs with the alpha coefficients, is also enabled. Each alpha value is transferred 

through a pipeline downwards to each SU. This is necessary to maintain temporal consistency, 

as the alpha coefficients must be multiplied with the scalar value of their respective support 

vectors. The following cycle after the VUs have entered the TRANSFERRING state they are 
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reset in systolic manner starting from the top-left-most VU, each VU will again enter the 

PROCESSING state to begin a new vector operation the following cycle after it has been 

reset. When all scalar values have been processed, the bias is added to the accumulated result 

to obtain the classification outcome. The transfer from one state to another is facilitated by 

dedicated control signals that flow in systolic manner through the array avoiding the use of 

global control signals. From the above analysis the total number of cycles required for the 

classification of input vectors equal to the number of rows is given by: 

                                               

                              
Equation 4-5 

The array processes in parallel as many support vectors as the number of columns in the 

array. Hence, assuming m support vectors in a training set,                  repetitions are 

necessary to process the input vector with all support vectors. 

4.2.3 Scalability and Implementation Issues 

An array consisting of   columns and   rows, will have     VUs,   SUs, and it can process 

  parallel input vectors and   parallel support vectors. The hardware resources are determined 

by the number of SUs and VUs, as well as minor overheads for wiring and control of the 

array. Increasing the number of rows requires additional VUs equal to the number of columns, 

and a single SU. On the other hand, increasing the number of columns requires additional VUs 

equal to the number of rows in the array. Increasing the array size in either way increases 

parallelism and the hardware overheads to the array rows and columns increase linearly as 

well. The array rows are however, constrained by the memory I/O bandwidth and the array 

columns are constrained by the number of support vectors and support vector memory 

bandwidth and capacity. 

4.2.4 Multiclass Classification Support 

The proposed array architecture is not only suitable for binary SVM classification 

problems, but can also be extended to handle multi-class classification as well, with minimal 

hardware overhead. An example of a multi-class classification problem is face recognition, 
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where the input window must be classified in one of the possible candidates in a face database 

[137]. To handle such problems the rows in the array must be decoupled so that they can work 

independently towards different classification problems. Each row must be supplied with its 

own set of support vectors and alpha coefficients. The following modifications must take place 

to allow the architecture to handle multi-class classification problems (also shown in Figure 

4-6). 

i. Each VU requires a multiplexer to select between the support vector from its above 

VU, or a support vector memory unit. 

ii. Multiple controllers are required, one per row. Each controlling the operation of a 

row under different classification parameters. However, only one is necessary when 

the system operates as an array. 

iii. The left-most VUs will also require multiplexers to select between different control 

signals. When operating as an array the control signals will come from one central 

control unit, while when each row operates independently the control signals will 

come from the dedicated control units 

iv. Each SU will also require a multiplexer to select between the alpha coefficients 

from the previous SU when operating as an array, or from one of the alpha 

coefficient memories. 

 

Figure 4-6. Support vector machine processing array multiclass support 

Chri
sto

s K
yrk

ou



- 109 - 

 

The main advantage that stems from enhancing the array with the additional multiplexers is 

that the array can operate in various configurations depending on the application demands. 

First, it can operate as a fully parallel systolic array to speed up a single object detection 

problem, using one of the available training set memories. Second, each row can work 

independently on one classification problem (face recognition). Finally, any combination of 

the above two configurations is possible, such as multiple systolic arrays, or a single systolic 

array with multiple independent rows. This flexibility allows the enhanced array processing 

engine to adapt to a variety of object detection scenarios and specific application demands, 

making it suitable for embedded environments which exhibit a high degree of variability. 

4.2.5 Experimental Methodology and Evaluation Results 

A prototype of the array architecture was implemented on an FPGA platform as a proof of 

concept, and evaluated it using three popular detection applications. Prior to detailing the 

FPGA implementation, the factors that affect the performance of an object detection system 

are first discussed, followed by details on the training methodology for the three applications. 

A. Performance and Constraints 

There are several factors that impact the performance of an object detection system, but 

first, it is important to consider the metrics used to measure performance. An image object 

detection system is characterized by how accurately it can classify data as well as how many 

image frames it can process per second. Thus, the two commonly used performance metrics 

are the detection accuracy, and frames per second (FPS) or frame rate. A minimum 

performance of        is required in order for an object detection system to be capable for 

real-time video processing. However, certain applications that process multiple streams may 

require higher processing rates.  

A factor that affects both the detection accuracy as well as the frame rate is the number of 

support vectors. The fewer the support vectors the better the performance, since less 

operations are required per input vector. However, the detection accuracy may be reduced 

when fewer support vectors are used. Also, the detection accuracy is also affected by the bit-

width used to represent the training data in hardware. However, if the bit-width is chosen 
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appropriately with respect to the targeted application domain, the resulting accuracy loss can 

be minimal.  

Performance is also affected by several other factors, typically encountered in object 

detection applications. The first is the number of search windows that need to be processed per 

frame. This is determined both by the size of the object of interest, and the search window 

overlap. When the object of interest has a relatively small size, and consequently a small 

search window is used, more windows will be generated per input frame increasing the 

processing time per frame. Conversely, if the targeted object of interest is large, fewer 

windows will be generated. The window overlap between successive windows also determines 

the number of generated windows, and is determined by the size of the object of interest. 

Choosing the appropriate window overlap involves a tradeoff between the granularity of the 

window search and as such the detection accuracy, and the resulting FPS. 

The input image size is also equally important to the performance of an object detection 

system. A larger input image will generate more search windows increasing the time needed to 

process the whole frame. At the same time the number of downscaled versions of the input 

image will increase to account for objects of different sizes. The input image size and number 

of downscaled frames have a greater impact on performance when the search window size is 

small and as a result a large number of windows will be generated.  

Another factor that limits the performance of object detection systems is the memory access 

mechanism and I/O capabilities. Memory access for both the input and support vectors is of 

great importance as it limits the capabilities of a system for parallel processing. It is important 

to have parallel access to the training set and at the same time fetch multiple search windows, 

in order to take full advantage of the capabilities of a fully parallel architecture. Additionally, 

it is important to consider where the data will be located, off-chip or on-chip. Input data are 

usually stored off-chip as they arrive from an external image/video acquisition source. The 

training data on the other hand, can be stored on-chip if the memory is available, otherwise, 

they are also stored off-chip as well. The latter may decrease performance if the number of 

support vectors is large, as off-chip communication will become the bottleneck to the system 

performance.  
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Finally, the operating frequency of the object detection system greatly impacts the 

performance. For FPGA based designs this is a limiting factor as fixed routing and LUT 

placement may not allow for a design to operate at its full potential. High frequencies can be 

achieved by regular and modular designs with small critical paths, such as the proposed array-

based hardware architecture. 

B. SVM Training Set and Parameters 

Three object detection applications are used as benchmarks for evaluating the proposed 

architecture: pedestrian detection [80],[95], car side view detection [97], and face detection 

[76],[136]. All three detection problems are interesting for the proposed implementation, as 

they can be applied in intelligent embedded environments for surveillance and security 

purposes, as well as traffic and street monitoring. Furthermore, the three detection problems 

concern different objects, consequently, each one has different detection parameters such as 

search window size, window overlap, and number of downscaled images. As a result, the 

architecture is evaluated under different application parameters and is analyzed for its 

suitability for generic object detection. Details of the parameters and characteristics of each 

application are shown in Table 4-2. All detection problems concern grayscale images 

corresponding to 8 bit pixel values. Training of the SVM models was done using the SMO 

algorithm implementation [138] provided in MATLAB R2010b [46], with publicly available 

data sets from [139], [140], [141], each consisting of training and test sets for both the 

negative and positive classes. To further test and evaluate the generalization capabilities of the 

trained SVM models full test frames obtained from [142], [140], and [143] for face, car side 

view, and pedestrian detection respectively were used. These frames were rescaled to     

    pixel images and used to evaluate the performance of the hardware implementation in 

terms of detection accuracy and frame rate. The most generally used 2
nd

 degree polynomial 

and RBF kernels where used in the experiments. The former was found to be efficient for 

object detection applications[119], while the latter is also widely used in many applications 

with very good detection results [37]. The best SVM model was selected based on the 

following two criteria. First, the memory required to store the support vectors must not exceed 

the available memory of the experimental platform. Second, the selected model must maintain 

good accuracy rate on the full frame images for each application. Using selected full-frame 
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test images from the datasets [140],[142], and [143], the accuracy of each SVM model was 

evaluated (for each application the number of windows that must be processed per frame is 

shown on Table 4-2).  

The true positive (TP) and false positive (FP) rates are given in Table 4-2. True positives 

correspond to rectangles on the resulting output image which correctly contained an object of 

interest, all other image regions that are marked as containing an object of interest, but do not 

in fact contain such an object, are categorized as false positives. The reported accuracy rates of 

course depend on the training data, and obviously a stronger training set can increase the 

detection accuracies. The SVM model parameters selected for each detection problem are also 

given in Table 4-2. 

TABLE 4-2: SUPPORT VECTOR MACHINE PROCESSING ARRAY PARAMETERS AND RESULTS 

Applications 

Window 

Size/ 

Dimensionality 

Downscaled 
Images 

Window 
Overlap 

Total 

Search 

Windows 

Support 

Vectors 

Kernel 
Function 

Accuracy 

FPS 
TP FP 

Face 

Detection 

19×19 

 (361) 
5 5 4405 400 

Polynomial 

degree=2, 

const=0 

77% 0,2% ~40 

Pedestrian 

Detection 

18×36 

 (648) 
4 8 1955 467 

RBF 

sigma=5 
76% 0,35% ~46 

Car 

Side-view 

Detection 

100×40 

 (4000) 
4 10 790 74 

Polynomial 

degree=2, 

const=0 

78% 0,2% ~122 

C. FPGA Implementation and Evaluation 

A prototype of the array processing architecture was implemented to perform the SVM feed 

forward phase for the three applications targeting the ML505 evaluation platform [88]. The 

selected platform is equipped with a Virtex 5 LX110T FPGA, an external DDR2 DRAM with 

a capacity of 256MB, a DVI output, a compact flash card reader, and 64 DSP units (embedded 

multipliers and accumulators), which makes it suitable for evaluating object detection 

algorithms that require large amounts of memory as well as visual verification of results. A 

prototype of the presented array processing architecture was developed on the FPGA, which 

interfaced with an embedded Xilinx Microblaze soft-processor [144] for I/O purposes. The 

overall system is illustrated in Figure 4-7, while resource utilization, obtained using Xilinx 
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ISE 12.4 and EDK 12.4, for both the Microblaze system and the implemented array are given 

in Table 4-3. Performance results (frame rate and detection accuracy) are shown in Table 4-2. 

Finally, the FPGA prototype running face detection is illustrated in Figure 4-8-(a) and some 

examples of test image detection results are shown in Figure 4-8-(b). 

TABLE 4-3: ARRAY PROCESSING ENGINE FPGA SYNTHESIS RESULTS 

FPGA Resources 

Logic Elements Embedded 

Multipliers 

DSP48E 

(64) 

Block 

RAMs 

(148) 

Frequency 

(MHz) Slice LUTs 

(69120) 

Slice Registers 

(69120) 

Processing 

Array 
57296 (82%) 23220 (33%) 40 (62%) 83 (56%) 

100 
Microblaze 

I/O System 
6221 (9%) 7251 (10%) 3 (4%) 37 (27%) 

Vector Unit 153 (<1%) 50 (<1%) --- --- 

Scalar Unit 288 (<1%) 372 (<1%) 10 (15%) --- 

 

 

Figure 4-7. Implemented FPGA support vector machine array processing system 
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TABLE 4-4: SUPPORT VECTOR MACHINE ARRAY HARDWARE PARAMETERS 

Parameters VU Multiplier VU Accumulator 
Alpha Coefficients 

Memory 

KSM 

LUT Memory 

Bitwidth/ 

Memory 
8×8 bits 28 bits 3 KB 2 KB 

Parameters 
KSM Polynomial 

multiplier 
Alpha Coefficients 

Alpha Coefficient 

Multiplier 
SU Accumulator 

Bitwidth/ 

Memory 
28×28 bits 24 bits 56×24 bits 90 bits 

 

  

(a) (b) 

Figure 4-8. FPGA system prototype 

(a) SVM Array Processing Prototype on a Virtex 5 FPGA running face detection (b) Detection Results 

 

Microblaze handles tasks such as system supervision, control and data transferring to and 

from the array, while the array is responsible for the SVM classification. Microblaze 

communicates with external components via dedicated interfaces for data transfer and 

monitoring purposes. Input image frames were initially stored in a Compact Flash card (acting 
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as the image acquisition source) and loaded to the external DDR2 DRAM prior to the 

detection phase. Microblaze retrieves pixel data from the external DRAM and sends it to the 

array via the Fast-Simplex-Link (FSL) bus interface. Evaluation and verification as well as 

overall system monitoring were done using a serial communication interface, and a DVI 

interface to output the image frames with the detected objects on a monitor. 

 Object detection applications exhibit a high degree of data reuse, as a large amount of the 

currently processed window will also be used for the next window. To reduce the external I/O 

memory accesses a suitable memory hierarchy was developed and integrated into the 

architecture. At the first level a memory block is utilized to store an image region (the whole 

image if possible), while at the second level a register array window buffer is used to store the 

active image region (i.e. the search windows that are currently processed by the array) and 

feed the array with data. The window buffer has a capacity to store 4 windows and has a size 

of       pixels. A  -row by   -column array was implemented based on the proposed array 

architecture and synthesized targeting an FPGA prototype. A total of     VUs,    memory 

units and   SUs were implemented in the prototype. Each memory unit was allocated a 

capacity of   KB, thus, a total of     KB of FPGA block ram was allocated for the training 

set. With the rest of the memory available on the FPGA whole input image can be stored on 

chip to reduce off-chip memory accesses.  

The VUs were mapped on the FPGA custom logic as they did not consume many FPGA 

resources. The SUs, on the other hand, were more demanding (because of the alpha coefficient 

multiplier which is the critical path of the design) and thus were mapped on the dedicated DSP 

units of the FPGA. The entire SU was pipelined in an effort to maintain high frequency. It 

must be noted that the number of DSPs on the FPGA does not limit the number of SUs that 

can be instantiated, as any additional SU can be instantiated on the FPGA custom logic. Table 

4-4 summarizes the hardware parameters of the implemented array. The clock frequency of 

the design was set at 100 MHz, which is the system clock frequency of the FPGA. Higher 

clock frequencies can be achieved by further optimizing the design, especially the SU that is 

the system bottleneck in terms of the operating frequency. However, for prototyping purposes 

no further optimizations were carried out regarding frequency.  
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Depending on the application I/O demands and interface, the structure can be chosen 

accordingly to provide the necessary tradeoff between performance and hardware area. The 

memory units were initialized according to each application’s training data. If the number of 

support vectors necessary for each application (as derived by the training set) is larger than the 

columns of the array, the computation will have to be repeated (using time-division 

multiplexing) until all support vectors are processed for each input vector. 

D. Performance Results and Discussion 

Typically performance in object detection systems is measured in frames per second (FPS). 

The processing of a frame also includes processing all downscaled versions. The time needed 

for the proposed architecture to process a single frame can be calculated using (Equation 4-5) 

from Section 4.2.2, and it depends on the total number of windows that must be processed for 

all scaled image versions, the number of windows that are processed in parallel, the input rate, 

and the operating frequency of the array. Also the structure of the array (number of units and 

size) is important to the resulting performance. To evaluate the performance of the architecture 

on the FPGA images of         pixels are considered for the three benchmark 

applications, selected from publicly available data sets from [142], [140], and [143]. These 

images contain a varying number of objects in various sizes. The number of generated 

windows per image frame (including the downscaled versions) for each application was then 

computed (given in Table 4-2).  

The implemented array prototype can process four windows in parallel, while the operating 

frequency of the FPGA is     MHz, and the input rate to the array is four pixels every cycle 

from the register array. Using this information, the resulting frame rates achieved by the 

proposed architecture are   ,    and    , for face detection, pedestrian detection and car-

side-view detection respectively, which are sufficient for real time object detection. It must be 

noted, that the frame rate of the proposed architecture depends only on the number of search 

windows, and architecture-specific details (such as number of units). As such, computing the 

performance is not affected by variable parameters such as number of objects or their size, 

since all search windows will go through the whole classification procedure. The resulting 

frame rates suggest that the system is capable of processing larger input images. The 

performance of the proposed architecture depends linearly on the image size (i.e. number of 
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windows in the image). As such, when the input image size increases above a certain size it is 

expected that the frame rate will decrease below the adequate real-time performance levels (30 

FPS) since the amount of data that needs to be processed (number of windows and downscaled 

image versions) increases as well. This is also true for most hardware implementations found 

in the literature. To handle higher resolution images or an increasing number of search 

windows it is possible to use cascade SVMs [54] to speed up the classification procedure of a 

single window. However, a hardware architecture for this approach will be the main focus of 

the following section.  

A single array structure was used to evaluate the performance of all three benchmark 

applications to illustrate that a single structure can be used in a variety of applications. As such 

the bit-widths of the processing units were chosen to cover the most demanding application. 

However, if only a single application was to be considered, the array could be optimized for 

that application in terms of bit-width for each processing unit, thus permitting for more units 

to be implemented, leading to higher frame rates. The car side view detection application has 

the highest frame rate, an order of magnitude higher than the other two applications. This is 

primarily due to the fact that it must process an order of magnitude less support vectors and 

generated windows compared to the other two applications. This shows the impact of the 

search window size with respect to the input image size, the primary reason for the small 

number of generated windows. On the other hand, the face detection application produces the 

largest number of generated windows, when compared to the other two applications, as it has 

the smallest search window size, resulting in the lowest frame rate. The pedestrian detection 

frame rate is higher than that of face detection since it has four times less generated windows 

to process, even though it requires processing more support vectors. In addition the frame rate 

suffers for both the pedestrian and face detection applications because the number of columns 

is less than the number of support vectors for each application. As a result the input vectors 

must pass through the array multiple times until they are computed across all support vectors. 

Overall, for a variety of window sizes and amount of training data, the targeted architecture 

under the limitation of the given FPGA resources, manages to offer adequate real-time 

performance for all three benchmark applications. 
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Detection accuracy is also an important performance measure in the context of object 

detection. The accuracy when dealing with SVMs is determined by the support vectors and 

alpha coefficients that are derived during training, and their representation in hardware. 

Through software simulations the appropriate bit-width representation was determined so no 

accuracy loss was observed for the test set of each application. The sufficient number of bits 

to satisfy all three benchmark applications was found to be twenty-four. By using this bit-

width representation the hardware implementation of the proposed architecture maintains the 

same accuracy rates as the equivalent software SVM models in MATLAB These accuracies are 

similar to software implementations found in the literature [97], [76], [20].  

E. Comparison with Other Works 

Comparing architectures evaluated with different applications other than video object 

detection is not practical, as factors that possibly affect performance (input image size, number 

of downscaled images) were not considered in related works. Consequently, a comparison is 

made based on the provided information. Related works that have proposed the hardware 

implementation of the SVM feed-forward phase include [108], [115], [92], [118], and [119]. 

From these works, [115], [92], and [118] propose architectures which depend on the vector 

dimensionality (i.e. target a specific application) and as such would not be applicable for 

different object detection applications. The vector coprocessor implementation in [108] 

primarily targets SVM training, and thus no clear results are given in terms of classification 

performance, which the authors measure in GMACS. The presented coprocessor consists of 

100 vector processing elements clocked at     MHz providing a sustained performance of 

about    GMACS. Using a similar configuration, with     VUs clocked at     MHz, the 

presented array architecture can also provide    GMACS. However, given that in the 

presented implementation three times more VUs were used, the resulting compute 

performance is much greater. In [119], matrix bar-code detection in images is performed using 

a search window size of       pixels (    vector components), and    support vectors. 

The implemented vector coprocessor aims at parallelizing the processing of a single vector 

and as such it processes input vectors sequentially, and each requires     cycles to be 

processed. By utilizing a similar configuration to the one used for the benchmark applications 

(  rows and    columns), the presented architecture can process   input vectors in     cycles. 
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In both cases the presented architecture shows that due to its parallel systolic nature and 

modular design, it can outperform existing works. 

4.2.6 Discussion and Impact 

An array processing engine for object detection with monolithic SVMs was presented in 

this section that can achieve real-time performance (  -    FPS for three benchmark 

applications) while maintaining high detection accuracies (76-78% for a variety of 

applications). The architecture scales linearly to the hardware budget taking full advantage of 

its modular and regular design, while providing true parallel processing for both input and 

support vectors. It is also capable to implement different kernels through the generic vector 

and scalar processing units. Also the demanding kernel implementation has also been 

addressed by sharing it amongst many vector processing units. Furthermore, the same array 

structure can be used for different applications regardless of the window size, number of 

support vectors and image size. Additionally, using the enhanced version of the proposed 

architecture it can be configured to operate in a variety of modes and is able to adapt to 

different application demands (such as multi-class applications). Overall the proposed 

architecture is capable of real-time SVM-based object detection while providing a 

configurable detection platform that can operate in a variety of embedded object detection 

scenarios, and adapt to specific application and designer demands. To enable higher-frame 

rates as the image size increases or the number of search windows increases it is possible to 

use a cascade of SVMs similar to the Viola and Jones attentional cascade discussed in the 

previous chapter. 

4.3 Hardware Acceleration of Cascade SVMs 

Cascade Support Vector Machine (SVM) classifiers are widely used for various embedded 

applications, such as object detection, and provide speedups over monolithic (single) SVM 

classifiers. However, multiple SVM classifiers need to be implemented in this approach 

making it challenging to achieve real-time classification with low resource utilization and 

power consumption, all key constraints for embedded systems. Existing SVM hardware 

architectures implemented on FPGAs consider only monolithic SVM classifiers. Hence, such 
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hardware architectures are not optimized for problems where the majority of data belong to 

one of the two classes. As such, designing specialized hardware architectures for multistage 

cascade SVMs based on existing approaches is a challenging task due to the increase in the 

number of classifiers, especially for embedded applications which require low power, real-

time operation, and often with limited available resources. In an attempt to improve the 

suitability of cascade SVMs for embedded applications a suitable hardware-efficient 

architecture tailored to the cascade processing flow is presented in this section. Specifically, it 

is a hybrid hardware architecture of sequential and parallel processing modules that exploits 

the cascade SVM flow, where classifiers at the beginning are used more frequently than 

subsequent stages, to efficiently utilize the available hardware resources while providing real-

time classification. In addition, a method to reduce the hardware complexity of cascade SVMs 

is presented, which relies on rounding off the SVM training data of the early cascade stages to 

the nearest power of two values to replace multiplications with shifts. Thus achieving a 

reduction in the resources needed for the architecture implementation. Finally, a novel 

approach to reduce the samples that reach the more computationally demanding latter cascade 

stages is explored, by evaluating the responses of the early cascade stages, leading to 

improved classification speeds. 

4.3.1 Challenges in the Acceleration of Cascade Support Vector Machines 

It is possible to speed-up SVM-based classification for a certain class of applications, such 

as object detection, that exhibit the following characteristics: (a) the majority of the samples 

presented to the classifier belong to the negative class and (b) the majority of negative samples 

can be easily distinguished from positive samples. To this end, works in literature have tried to 

take advantage of these two observations by utilizing stages of SVMs of increasing 

complexity, which are sequentially applied to the input data (Figure 4-9). Stages of SVM 

classifiers that mostly follow a cascade structure [54],[55],[56], and in other cases a tree 

structure [59], [145], [91], sequential evaluation of SVs, [58] have been implemented in 

software. These works, shown in Table 4-5, demonstrated speedups as well as improved 

accuracy over monolithic SVM classifiers. The stages at the beginning of the hierarchy have 

lower computational complexity (i.e. need to process only a small number of SVs) and are  
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TABLE 4-5: SUPPORT VECTOR MACHINE CASCADE SYSTEMS OVERVIEW 

Work 
Kukenys 

 [55] 
Heisele  

[54] 
Romdhani 

 [57] 
Ma  

[56] 
Presented 

Work 

Application 
Human Eye 

Detection 
Face Detection Face Detection Face Detection Face Detection 

S
V

M
 C

a
sc

a
d

e
 

S
tr

u
ct

u
re

 

Stages N/P 5 7 6 4 

SVM 

Type 
RBF Kernel 

4 Linear stages 

&1 2
nd

 degree 

Polynomial 

stage 

RBF Kernel 

5 linear stages 

&1 2
nd

 degree 

Polynomial 

stage 

2 linear stages 

& 2 Polynomial 

stages 

Number 

of SVs 

100 Reduced 

Set Vectors 

from 1796 SVs 

N/P 

100 Reduced 

Set Vectors 

from 8291 SVs 

N/P 

2 for linear 

SVMs, 20 for 

first 

Polynomial, 

100 for second 

polynomial 

Additional 

Methods, 

Features, 

Preprocessing 

N/P 

Multi-resolution 

window 

processing, 

Feature 

Reduction, 

Histogram 

Equalization 

N/P 

Histogram 

Equalization & 

Lighting 

Correction 

Local Binary 

Pattern 

Histogram 

Descriptors 

 T
ra

in
in

g
 S

et
 

Database N/P 

[139] with 

additional 

samples 

N/P N/P 

[139] with 

additional 

samples 

Positive 

Samples 
1066 

9662 for linear 

2429 for 

polynomial 

3600 5000 ~6000 

Negative 

Samples 
2132 

33045 for linear 

4548 for 

polynomial 

25000 

(additional 

110000 samples 

using 

bootstrapping) 

Collected from 

63 images 

~50000 

Collected from 

various negative 

images 

Classifier 

Window Size 

/ Vector 

Dimensionality 

20×20 

(400 vector 

dimension) 

3×3,4×4,11×11,

19×19 for linear 

19×19 for 

polynomial 

20×20 

(400 vector 

dimension) 

20×20 

(400 vector 

dimension) 

20×20 

(400 & 1062 

vector 

dimension) 

Scale Factor N/P 5 scales 1.42 N/P 1.2 (18 Scales) 

Test Databases N/P [142] N/P [142] 
[142],[146],[14

7] 

Test Image Size 500×300 320×240 N/P N/P 800×600 

Detection 

Speed 

0.389 seconds 

per image 

4 frames per 

second 
N/P N/P 40 FPS 

Detection 

Accuracy 
88% CD 80% CD 

TP: 80.7% 

FP: 0.001% 
80.6% CD 

TP: 80% 

FP: 0.001% 
1 These figures are not average but rather examples stated in the work 

N/P – Not Provided | N/A – Not Applicable | CD - Correct Detection | TP - True Positive | FP - False Positive 
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tasked with removing the majority of samples from the negative class. The latter stages then 

are able to perform more accurate classification on the remaining samples, which, however, 

incurs a higher computational cost (i.e. need to process more SVs). Hence, an input sample 

needs to pass all stages to be classified as positive (Figure 4-9). Under this scheme a large 

amount of input samples are discarded early in the classification process by the stages at the 

beginning of the cascade, resulting in significant speedups. In addition, it is also possible to 

use the reduced-set-method [51], to reduce the number of support vectors required by the non-

linear kernel stages in order to further improve classification times. Furthermore, since the 

latter stages need to better discriminate between positive and negative samples, feature 

extraction algorithms may be used to improve accuracy, which however, further increases 

computational demands. 

 

Figure 4-9. SVM cascade classification process overview 

4.3.2 Hybrid Hardware Architecture and Optimization Approaches 

Cascade classifiers have demonstrated significant speeds over single SVMs, however, it is 

still challenging to achieve real-time performance, especially as the amount of data that needs 

to be classified increases. Hence, a parallel hardware architecture is presented aiming at 

providing higher classification throughput and a hardware reduction method leading to a more 

compact hardware implementation suitable for embedded system applications. In addition, the 

following sections also outline a novel way to improve classification speed by taking 

advantage of cascade classification information to reduce the amount of data samples that 
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reach the more computationally-intensive latter cascade stages. Finally, in many classification 

problems some form of feature extraction/preprocessing method needs to take place in order to 

deal with different invariances and improve detection accuracy. Since cascade classifiers have 

been prominently used for object detection one such popular method used in a variety of 

object detection applications namely local binary pattern (LBP) descriptors [62], is also 

integrated to the architecture. 

A. Cascade SVM Hardware Reduction Method 

Existing cascade SVM classification schemes utilize a hierarchy of SVM classifiers which 

can be different classifiers or expansions of a single classifier. Nonetheless, the common 

feature of these cascade structures is that stages at the beginning of the cascade usually require 

processing less SVs than subsequent stages making them computationally less demanding. 

This is because the objective of the early SVM stages is to guarantee that the positive samples 

will go through to the final stage while a large amount of negative samples will be discarded 

rather quickly. However, this implies that a few negative samples will be classified as positive. 

In contrast, subsequent stages need to be more accurate and discriminate better between 

positive and negative samples, and hence build decision functions with more SVs.  

The fact that the early SVMs stages are not optimal classifiers can be exploited to reduce 

the resources required for their hardware implementation by adapting their parameters (SVs 

and alpha coefficients), while maintaining their ability to discard a large amount of negative 

samples. The proposed hardware reduction method is to approximate the support vector and 

alpha values of the low complexity kernels with the nearest power of two values. This will 

result in all the multiplication operations in the SVM classification phase (the kernel dot-

product calculations and computations related to the alpha coefficients) becoming shift 

operations. Additionally, since the support vectors and alpha coefficients are now power of 

two values there is no need to store the binary representations of decimal numbers but only 

shift data (shift amount, shift direction, and number sign). Hence, this results in an adapted 

cascade SVM with reduced storage and computational demands. However, by approximating 

the support vectors and alpha coefficients the resulting classification accuracy will be different 

from that of the initial SVM cascade. The receiver-operating-characteristic (ROC) curve of 

each cascade stage rounded off to the nearest power of two is used to adjust its accuracy, to 
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similar rates of that of the initial cascade stages. The ROC curve shows the performance of a 

binary classifier by illustrating the corresponding true positive and false positive rates, given a 

test set. As such, by setting the appropriate threshold the performance of the adapted stages in 

the SVM cascade can be adjusted to match the true positive rate of the initial SVM cascade 

stages. This is necessary in order to maintain the true positive rate. There are trade-offs which 

stem from changing the original classification model. Specifically, the reduced computational 

and storage requirements come at a cost of an increase in the false positive rate of the adapted 

classifiers. However, the overall accuracy tends to meet the accuracy of the final classification 

stage and hence the increase is not significant. Adapted stages, which do not yield the targeted 

accuracy, are reverted back to the initial model. The process is summarized in Figure 4-10. 

The hardware reduction process takes place after the cascade structure is decided, meaning 

that the kernel function, and number of support vectors or reduced-set-vectors (RSVs) for each 

SVM cascade stage are determined. As such, the proposed method can easily be used with 

different SVM training frameworks. Furthermore, the method does not dependent on the 

specific hardware architecture used for the implementation of the cascade and as such can be 

optimized to different architecture requirements. 

 

Figure 4-10. Hardware reduction method 

The initial cascade support vector machine is adapted to reduce its hardware processing requirements after the 

cascade training phase 

B. Cascade Response Evaluation Method 

Exploiting cascade information of the individual classifier stages was usually done in the 

training phase to eliminate samples from the training set so that the training time could be 

reduced. Only few attempts have been made to do something similar in the classification 

phase with reported methods [148], [149] performing some sort of joint operation (AND-OR) 

on the outcome of the cascade stages in order to correct/reevaluate the detection result. Such 
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methods are usually used to improve detection and require that all the stages process the input 

data in order to reach a decision. However, this means that the overall detection speed is 

reduced. In order to improve performance there is a need for a mechanism that can indicate 

whether an input sample needs to move on to the more computationally demanding stages. A 

way that this can be done is by examining the responses of early cascade stages in order to 

rapidly eliminate data samples prior to reaching the latter stages. It is based on the observation 

that when looked at collectively, the responses of the individual cascade stages can exhibit 

patterns which can help in discriminating between samples belonging to different classes. This 

adds an additional dimension to the cascade classification phase that amongst others can be 

used to speedup the overall process.  

Such a response processing mechanism can be constructed as shown in Figure 4-11. First, 

test samples must be classified by the selected cascade stages so that a response feature vector 

can be constructed. Next, the samples which are predicted as positive class, i.e. have passed all 

stages, are chosen so that their corresponding response vectors form a new training set of 

negative and positive response feature vectors. Using this new training set a machine learning 

algorithm, which will act as a response evaluator, can be used in order to discriminate between 

different responses. This process is further outlined in Figure 4-11. Of course, the positive and 

negative samples can often have similar cascade responses. Hence, the training goal for the 

machine learning algorithm is to make sure that the positive responses will be correctly 

classified so that the true positive accuracy of the whole cascade is not affected. With regards 

to responses corresponding to negative classes, any correct classification is beneficial since 

those samples will not need to be classified by the final stage. The desired true positive rate 

can be adjusted experimentally by setting an appropriate threshold value. This is a general 

approach of handling the cascade responses and thus can be used similarly to benefit both 

software and hardware implementations. With regards to software implementations the 

additional computations necessary for the latter cascade stages are eliminated, while for 

hardware implementations, the reduced workload can result in more compact architecture 

implementations for the latter stages.  
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Figure 4-11. Cascade response evaluation method 

(Top) A machine learning algorithm is trained to perform response evaluation of the early cascade stages to 

further reject data instances to the final stage. (Bottom) Response evaluation method steps. 

C. Cascade Hardware Architecture 

Due to the nature of the cascade classification scheme each SVM stage will have fewer 

input data to process and more SVs to process than the previous. Hence, efficient hardware 

architectures need to take into consideration the throughput and processing needs of each stage 

in the cascade. Accordingly then, the proposed hardware architecture (Figure 4-12) for the 

cascaded SVM classifier consists of two main processing modules, which provide different 

parallelism with respect to the input data and SVs, in order to meet the different demands of 

the cascade stages. 

The first is a fully parallel processing module (PPM) which performs the processing 

necessary for all the adapted SVM stages. The second is a sequential processing module 

(SPM) which is optimized for the high complexity SVM stages which demand processing a 

large number of SVs but only a fraction of the input data. Thus parallelism focuses on 

processing more SVs in parallel. In addition, a shift register structure is used to provide 
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sequential and parallel data access to the two processing modules, and also to take advantage 

of potential data overlap and reduce memory I/O. A frame buffer is employed to hold part of 

the image for fast local access. The cascade response information processing is implemented 

with a low-latency, low-resource consuming neural network architecture to minimize 

hardware overheads while boosting performance. Finally, the architecture incorporates a 

specialized processor that performs local binary pattern (LBP) histogram extraction which is 

used as features for classification.  

 

Figure 4-12. Support vector machine cascade system architecture  

The architecture is comprised of the sequential processing module (SPM), the parallel processing module 

(PPM), the register array, frame buffer memory, the LBP processor and the response processing unit (RPU). 

  Parallel Processing Module (PPM) 

The parallel processing module (PPM) handles the processing of the low complexity SVM 

stages which have been adapted using the proposed hardware reduction method. Specifically, 

the proposed architecture can process linear and 2
nd

 degree polynomial kernels, but the plug 

and play approach of the architecture means that other kernel modules implementing different 

kernel functions can be used instead. The characteristic of the early cascade stages is that they 

require processing only a few SVs per input vector. Furthermore, they will have to process the 

majority of input vectors. As such, parallelism focuses on processing vector elements in 

parallel to reduce the processing time per vector. 

The architecture of the PPM is comprised of three main regions (Figure 4-13): SVM shift 

operations, adder tree pipeline and kernel computation. The first region is comprised of 

parallel SV data memories, arithmetic shifters and parallel sign conversion units. The second 
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region is comprised of a tree of adders that sum the results of the previous stage in order to 

calculate the dot-product scalar value. The final region is dedicated to kernel processing and is 

also mostly implemented using arithmetic shift units.  

 

Figure 4-13. Parallel processing module (PPM) architecture 

The PPM handles the processing of the nearest power of two adapted SVM stages. The shift units and adder 

tree are used by all kernels while only non-linear kernels use the rest of the kernel module. 

The operation of the parallel processing module begins with the processing of the input 

vector elements by the sign conversion units which are used to preserve the sign of the initial 

multiplication operation. The signed numbers are then processed by arithmetic shift units 

which perform the shift according to the data that they receive from the ROMs. The shift data 

are fetched in parallel from small ROMs, and include the sign of the support vector used to 

convert the input vector element to a positive or negative two's complement format, the shift 

amount, and finally the direction of the arithmetic shift operation. The partial results are added 

together using a pipelined tree of adders so that the dot-product outcome can be obtained. The 

length of the adder tree impacts the latency of the PPM and depends on the number of 

operands of individual adders used and the vector dimensionality. The latency of the adder 

tree is thus given by: 

                   
                          

                     
  Equation 4-6 
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Once the dot-product scalar value becomes available the kernel computation follows. In the 

case of linear kernels (Equation 4-1), adding a bias value to the dot-product outcome will 

suffice in order to obtain the classification result. However, for 2
nd

 degree polynomial kernels, 

as well as other kernels, the kernel computation module handles the latter steps of the 

classification phase. Only one multiplier is used in the parallel processing module and is used 

to perform the square operation. The processing of the alpha coefficients is done with a sign 

conversion unit and an arithmetic shift unit similarly to the processing of the SVs. An 

accumulator is used to accumulate the result of each SV processing, and once all SVs are 

processed, an adder is used to process the bias with the accumulated result. The PPM stages 

are pipelined, so one SV enters the pipeline every cycle. Hence, the total number of cycles 

needed to process the input vector at stage   are given by Equation 4-7, where        is the 

number of support vectors that need to be processed by stage  . 

        

 

   

                      Equation 4-7 

The PPM architecture describes a fully unrolled implementation and allows for all vector 

elements to be processed in parallel, thus providing higher detection speeds. In cases where 

the resources are not available or the vector elements cannot be accessed in parallel, the PPM 

architecture can be implemented using fewer resources, to meet the given constraints, by 

processing fewer vector elements in parallel. 

 Sequential Processing Module (SPM) 

The sequential processing module (SPM) is responsible for performing the processing 

necessary for the final SVM stage. This final stage will most likely process only a small 

percentage of the input data, however, it will have the largest number of SVs. As such, instead 

of processing the input vector in parallel the focus is on processing more support vectors in 

parallel. This is achieved with the architecture shown in Figure 4-14, which is comprised of a 

series of pipelined processing and memory elements. The majority of the units in the module 

are vector processing units (VUs) and each unit handles the dot-product for one support vector 

with the input vector. They are comprised of a multiply-accumulate unit, and also a ROM 

which contains the data for one or more support vectors, along with register and multiplexer 

Chri
sto

s K
yrk

ou



- 130 - 

 

logic for data transfer between vector units. The final unit in the pipeline is the kernel 

processing unit which is equipped with multipliers and accumulators to carry out the scalar 

operations of the SVM processing flow.  

 

Figure 4-14. Sequential processing module (SPM) architecture  

The architecture consists of two processing units: The dot-product processing units handle the dot-product 

computation, and the kernel processing unit, which is shared amongst the dot-product units, handles the kernel-

related operations. 

The input vector is processed with a group of support vectors at a time, and each vector 

processing unit handles the processing of one support vector. Once a group of support vectors 

is processed the next group follows. In total depending on the number of groups a total of 

                processing repetitions are necessary. Hence, the size of the pipeline 

can be adjusted to fit the available resources by adjusting the number of support vector groups. 

Each vector processing unit in the pipeline processes one support vector with the input vector 

at a time. The data in the SPM flows in a systolic manner as the input vector values are 

propagated from one unit to the next, through the dedicated transfer mechanisms, while the 

ROMs feed each VU with SV data in parallel. When the processing of the input vector with 

the group of SVs is done, the multiplexers and registers in each vector unit are used to switch 

from propagating input vector values to scalar results. The scalar values are transferred 

sequentially through the pipeline and are processed by the kernel processing unit (with a   
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cycle initial delay due to the pipeline stages). In this way the kernel processing unit is shared 

between the units, reducing hardware requirements and also making it easy for the designer to 

substitute it with the desired kernel without having to change much of the system 

functionality. Each scalar value that enters the kernel unit is processed by the kernel operation 

and the alpha coefficient. In the case of kernel (3) the operation involves a multiplier to find 

the square of the value and multiply-accumulate units to process the alpha coefficients. Once 

all scalar values are processed, the final classification result is obtained by adding the bias to 

the accumulated result. Overall the number of cycles needed to process an input vector is 

given by:  

                                              Equation 4-8 

 Response Processing Unit (RPU) 

As previously described the objective of the cascade response evaluation process is to 

remove samples prior to the final SVM classification in order to improve processing speed. 

However, this needs to be done in a hardware efficient manner so that performance is not 

negatively impacted and not many resources are required. Hence, computationally and 

memory intensive algorithms are not the desired choice. For this reason a compact neural 

network (NN) is selected to perform the response evaluation which is computationally 

efficient and more importantly manages to sufficiently differentiate between cascade 

responses. 

The neural network model is shown in Figure 4-15-(a). It is a two layer structure with a 

single neuron in each layer. The first neuron receives the responses from the cascade stages 

and multiplies them with their respective weights and accumulates the products. Then it adds 

the bias value and sends it through a hyperbolic tangent activation function and to the output 

neuron. The output neuron performs the same process and generates the classification 

outcome. 

The neural network hardware architecture Figure 4-15-(b) processes cascade responses 

produced by the PPM. Since each response is generated at different time intervals, it can be 

processed once it is available by the PPM, so each response is processed sequentially. 

Multiplexers are utilized to select the output of the desired classifier and its corresponding 
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weight value, which is represented in a fixed point format. The two values are multiplied and 

accumulated. Once all the cascade responses are accumulated the bias is processed. A Look-

Up Table (LUT) memory is used to implement the hyperbolic tangent function while 

exploiting the facts that this function is symmetric with respect to negative and positive inputs, 

and that its results range from        . Consequently, only the results for positive numbers are 

stored with the input being processed to obtain its absolute value. This leads to a more 

compact and efficient implementation. The sign of weighted accumulated sum is used to 

adjust the result of the hyperbolic function memory after the appropriate value is loaded. Then 

it is processed with the output layer weight which is implemented using an arithmetic shift 

unit. Finally, the bias is added and the final outcome is computed. It is not necessary to use a 

hyperbolic function for the output layer neuron since it does not change the sign of the result, 

which determines the class, thus reducing the memory requirements. The RPU takes 

                        cycles to process the response vector that is generated from the 

PPM.  

 

Figure 4-15. Response processing unit (RPU) 

 (a) Neural network model (b) NN-based RPU Hardware Architecture 

 Local Binary Pattern (LBP) Processing Units 

Local Binary Patterns (LBPs) [62] describe the relationship between a pixel and its 

neighborhood, and have been used in a wide range of computer vision applications [70]. Their 

major advantage is their low computational complexity [116]. Generating the LBP [70] 
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consists of the following steps: 1) Compare the values in a 3×3 neighborhood against a 

threshold (the center pixel or the window mean value) placing 1 where the value is greater or 

equal, and 0 otherwise. 2) Multiply the resulting binary map with a powers of two mask. 3) 

Sum the values to obtain the LBP Code. 4) Divide the LBP-based image into   blocks of     

pixels (e.g. 4×4, 8×8) and construct a local histogram of   bins. 5) Concatenate the local 

histograms to form a single global histogram descriptor.  

 The LBP descriptors can be used as features by the latter stages which have to process 

fewer data samples but require better discrimination capabilities. Since only a fraction of 

samples will be processed using LBP, it must have low area overhead. This is different to 

works such as [116] where the goal is to parallelize the LBP operations and thus dedicate more 

resources for LBP processing. Accordingly then, the developed LBP processor architecture 

features parallel processing of the values of only a single 3×3 window from the input image 

located in the register array (Figure 4-16-(a)). Those values are then loaded from the register 

array and each window value is compared against the center window value in parallel and the 

results are concatenated to generate the LBP code. This was preferred instead of using the 

mean-based threshold which in [116] which involves multiplication/division operations and 

adder trees to compute the mean, and would consume more resources. The number of 

transitions in the LBP code is found next. This is necessary to identify a pattern as uniform 

LBP code (which has 2 or less transitions e.g. 11110000) or non-uniform LBP code (which 

have more than 2 transitions e.g. 10100101). This offers a more meaningful interpretation of 

the LBP codes which can achieve higher discrimination. One LBP code is generated from a 

3×3 window per cycle. 

The histogram generation circuit receives the transition count for each LBP code and 

assembles the local histograms which are stored in the same central memory (of size    ), a 

process further illustrated in Figure 4-16-(b). The histogram counts the uniform LBP codes 

against the non-uniform. It has been shown [62] that uniform patterns account for the majority 

of image information. Thus, the histogram is split between uniform and non-uniform patterns 

where all non-uniform patterns are stored in one bin and each uniform in a separate bin. The 

first step in the histogram computation is to find the starting address for the local histogram 

which the LBP code belongs. This is achieved by counting the row and column of each LBP 
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code. By keeping track of the MSBs of the row and column coordinates it is possible to 

identify the block which it belongs to. Then by setting the appropriate address offset the 

corresponding histogram region is selected. The actual bin in the histogram is found using a 

LUT which maps the LBP code to one of 59 possible histogram bins. A dual ported memory is 

utilized to store the histogram. In this way an immediate reset can be performed right after the 

value is sent to the SVM from the second port which receives the same address but delayed by 

a single cycle. 

 

Figure 4-16. Local binary pattern processing hardware 

(a) Local binary pattern (LBP) processor architecture (b) Histogram generation process 

 Cascade Processing Flow and I/O 

The different throughput requirements of the cascade SVM processing modules require an 

I/O mechanism that can adjust to the different needs of each module, that is parallel as well as 

sequential data transfer. It should also take advantage of the application-specific 

characteristics to facilitate data reuse and reduce memory accesses. Furthermore, different 

classifiers may utilize different data points or need to preprocess the data. The cascade I/O 

structure should be able to handle this. To illustrate the above features first, the design of such 

a structure for object detection applications is considered. An optimized I/O mechanism for 

object detection can be developed based on an array of shift registers that incorporates the 

above features and also acts as local storage for the image segment that is currently being 

processed (Figure 4-17). The register array has a size of size               , where      is 

the height of the maximum window and           corresponds to the width of the array, i.e. 
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how may additional image columns are stored. The input image pixels enter the register array 

and are propagated row-wise into the structure. The image region that is at the left-most part 

of the register array corresponds to a           window and each unit receives data from 

specific registers that window. For example, the LBP processor receives 9 pixels from the left-

most 3×3 window (             ) to produce a               image made up 

of LBP features. The PPM can receive register data corresponding to either a           

window or any other downscaled version (e.g. a (    /2)×(     /2) window) if deemed 

necessary, by selecting the appropriate registers, thus achieving dynamic downscaling of the 

larger           window, referred to as           window. In this data flow the image 

region is processed in a window-by-window fashion. Once, a window has been processed a 

part of it is shifted out of the array, while new pixels are shifted in, thus a new window is 

formed at the leftmost region of the scanline buffer and is ready to be processed next. The data 

flow of the left-most registers changes depending on whether the data are used for parallel or 

sequential processing. In the case of the parallel processing module, window data are 

outputted and processed in parallel. In the case of sequential processing, which happens when 

the LBP features are generated, the registers form a chain so that data are outputted 

sequentially from the leftmost top row register. Furthermore, during sequential output 

operation, the window data are looped back to the scanline buffers, using a multiplexer on the 

start of the chain (Figure 4-17). This is required so that the window is formed again and placed 

correctly with respect to the rest of the image in the register array to maintain consistency. 

 

Figure 4-17. Optimized I/O mechanism  

(a)The array stores part of the image to be processed and outputs a window. The array operates in two modes: 

(b) The parallel output mode where all window pixels are outputted in parallel and (c) The sequential output 

mode where the window pixels are outputted serially and looped back to the array using a multiplexer. 
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4.3.3 Experimental Platform and Results 

The proposed hardware architecture and methods were evaluated using the embedded 

application of face detection considering 800×600 (SVGA) resolution images. It was 

evaluated in terms of frame-rate, detection accuracy, power consumption, as well as 

requirements in terms of computing resources. The cascade structure, illustrated in Figure 

4-19, was trained using MATLAB R2010b [46] and was used for evaluation of the architecture 

and proposed framework. Additionally, the proposed hardware architecture, which will be 

referred to as the adapted cascade, is compared against a baseline system which implements 

the same cascade SVM structure, but without applying the hardware reduction method, and 

thus the parallel processing module is implemented using multipliers. Both implementations 

were evaluated and compared using a Xilinx Spartan-6 Industrial Video Processing board 

equipped with a Spartan-6 XC6SLX150T FPGA [88] using Xilinx ISE 12.4 and EDK 12.4. A 

Microblaze-based [144] video-pipeline system was used for I/O and verification purposes, 

while for both systems an on-chip buffer is used to store the input image and a 60×20 register 

array for data loading and processing (Figure 4-18), which was experimentally found to 

provide an adequate between balancing I/O delays and hardware resources.  

 

Figure 4-18. Block diagram of the FPGA system. 

A. SVM Cascade Structure and Training 

To evaluate the proposed hardware architecture and approaches an SVM cascade structure 

was designed, with kernels, and parameters similar to what has been used in the literature [54], 

[55], [56] and outlined in Table 4-5. The early stages tasked with the fast rejection of samples 
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correspond to linear SVMs or non-linear kernels with low computational demands [54]. Hence 

the cascade (shown in Figure 4-19 along with the parameters for each stage) used for 

evaluation purposes was comprised of two linear kernel SVMs and two 2
nd

 degree polynomial 

kernel SVMs. The response processing acts as an intermediate stage between the adapted and 

final stages. The cascade structure processes       windows extracted every 5 pixels, which 

is similar to other works of cascade SVMs in the literature. This window size results in a    -

dimensional vector which is passed to the first three SVM cascade stages for rapid processing. 

Once a window has passed all three stages successfully its responses are given to the RPU 

which if it predicts a positive outcome the       window is processed to produce an 

      LBP feature image. Different experiments were carried out with all possible non-

overlapping block sizes to find the one which provided the best accuracy results. This resulted 

in an LBP histogram descriptor with the parameters in Table 4-6. The resulting     -

dimensional LBP histogram vector is passed as input to the final SVM cascade stage.  

Face and non-face samples from [139] were resized to       pixels, resulting in    -

dimensional vectors, and used to setup an initial training set, which was later enhanced with 

additional samples (total of ~     positive and ~      negative samples). The three first 

cascade stages were trained using MATLAB, in incremental fashion [54], [56], [58]. The first 

stage was trained on the initial training set from [139] and adapted using the hardware 

reduction method. Then, the initial training set was enhanced with negative samples that were 

misclassified by the first stage, and the new training set was used to train the second classifier, 

and the same was done for the third stage. The final SVM stage was excluded from the process 

and was trained using the complete training set which was first processed using the LBP 

feature extraction. The first polynomial SVM (Stage  , Figure 4-19) was reduced to    RSVs 

which was the smaller number of reduced vectors in order to maintain the original accuracy. In 

contrast     RSVs where needed to maintain the accuracy for the final stage (Stage  , Figure 

4-19) [56], [58]. The three first stages retained similar accuracy level after being rounded-off 

to the nearest power of two, as shown in Figure 4-21. However, for the final SVM there was a 

significant discrepancy between the classification accuracies of the adapted and original 

model. Hence the final SVM was not approximated and was implemented using the SPM 

architecture.  
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Figure 4-19. Cascade support vector machine structure 

The first three stages have been rounded-off to the neatest power of two values and process 20×20 windows. 

The final SVM stage remained unchanged and processes the LBP feature histogram. The intermediate stage is 

a NN-based RPU and processes the responses of the adapted cascade stages. 

 

 

Figure 4-20. Support vector machine cascade early stage responses 

Responses of the first three SVM cascade stages for 500 negative (square) non-face and 500 positive (filled 

circle) face samples. Each axis corresponds to the response for each classifier. 
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TABLE 4-6: CASCADE DETECTION SYSTEM PARAMETERS 

Search Window Size Downsampling Rate Window Step Image Resolution 

20×20 1.2 (18 scales) 5 pixels 800×600 (SVGA) 

LBP Block Size Number of LBP Blocks LBP Histogram Bins Number of Windows 

                  ~56984 

After the SVM cascade training, the training of the NN-based RPU followed using the 

process described in Figure 4-11. Additional       images of face and non-face samples, 

not used in the training phase, where cropped, resized and extracted from various images and 

were passed through the first three adapted SVM cascade stages to collect their responses. 

This resulted in a three dimensional response vector per sample. The response vectors 

corresponding to positive samples were selected to form a new training set. The cascade 

responses for a subset of this training set are shown in Figure 4-20, where it is evident that the 

responses of the early stages exhibit different patterns for positive and negative class samples. 

The NN-based RPU training resulted in a correct classification rate of 99% for positive and 

    for negative responses. 

 

Figure 4-21. Adaptation using the ROC curve and new detection rates  

(a) Adjustment of accuracy using the ROC curves (b) Accuracies before and after adaptation 

Chri
sto

s K
yrk

ou



- 140 - 

 

B. FPGA Implementation and Resource Utilization 

The two cascade implementations (baseline and adapted) have the same basic architecture 

(Figure 4-12) and data flow. The PPM architecture was based on a fully unrolled 

implementation, while the SPM was implemented with    DSP units (           =   ), 

meaning that the input data to the SPM is processed two times with different SV groups. 

Increasing this to     VUs, and process the input vector only once, can improve performance, 

however, the DSP utilization increases and so does power consumption. The NN-based RPU 

was mapped on the FPGA LUTs. The only difference between the two implementations is that 

in the adapted cascade case the PPM was optimized using the hardware reduction method. 

Consequently, the multiplication units where replaced with shift units and the data stored in 

the training data ROMs corresponded to shift values instead of support vector values. All the 

shift units were identical, even though not all support vector data require the full shift 

capabilities. As such, it is possible to exploit the flexibility of FPGAs in future iterations to 

design different shift units optimized for the specific requirements of support vector groups 

stored in the same ROM, resulting in fewer logic resources being utilized. Each ROM holds 

the support vector data for the first three cascade SVM stages for the specific vector elements. 

In the adapted cascade implementation 6 bits are needed to store the shift data: 4 bits for the 

shift amount, corresponding to a maximum shift amount of 15 bits, one bit for the sign of the 

support vector, and one for the arithmetic shift direction. For the baseline implementation 8 

bits are needed to represent the decimal number SVs to maintain the same accuracy. In 

addition adder trees, used by the PPM and LBP processor, utilize ternary adders instead of 

two-input adders, to reduce the latency by a few cycles.  

Both implementations utilize the same DSP and BRAM units since these were mapped to 

modules which are the same in the two implementations. These are the SPM, the RPU, and the 

LBP processor. Also, both implementations on the Xilinx Spartan-6 XC6SLX150T FPGA 

have the same critical path, the SPM kernel unit mapped on the DSPs, and as such have the 

same operating frequency of       . The implementation of the adapted PPM requires 40% 

fewer FPGA logic resources compared to the baseline PPM. This is reflected with a     

reduction in the utilized resources when considering full system implementations, as shown in 

Table 4-7. 
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TABLE 4-7: FPGA RESOURCE REQUIREMENTS PER UNIT AND SYSTEM 

FPGA 

Resources 

Registers 

(184304) 

LUTs 

(92152) 

BRAMs 

(268) 

DSPs 

(180) 

SPM 1736 (1%) 2241 (2%) 51(19%) 50 (27%) 

Adapted PPM 2679 (1%) 19006 (20%) 
1 (<1%) --- 

Baseline PPM 3724 (2%) 30791 (33%) 

NN-based RPU 82 (<1%) 379 (<1%) 2 (<1%) 6 (3%) 

LBP Processor 32 (<1%) 94 (<1%) 2 (<1%) --- 

Memory & I/O 

Units 

1831 

(1%) 

1200 

(1%) 

180 

(67%) 
--- 

Microblaze Video 

Pipeline 

10780 

(5%) 

9891 

(10%) 

20 

(7%) 

3 

(2%) 

Baseline Cascade 

System 

21214 

(11%) 

47396 

(51%) 256 

(96%) 

59 

(32%) Adapted Cascade 

System 

20153 

(11%) 

35532 

(38%) 

C. Detection Accuracy and Frame-Rate 

Accuracy and frame-rate are two important metrics in object detection and thus this section 

outlines these results. It also highlights the impact of the LBP processor and RPU on accuracy 

and frame-rate.  

The accuracy of the adapted cascade SVM was evaluated on the JAFFE database of faces 

[146]. In addition these results were also verified on     images cropped and resized to 

        (SVGA) resolution from the CMU-MIT database [142], the Bao face database 

[147], and the world-wide-web. Full frame detection results are shown in Figure 4-22. The 

same set was used to evaluate the frame-rate of the cascade SVM implementations. Each 

800×600 image generates a total of             search windows for    scales and a 

window step of   pixels. Each frame requires a different time to be processed, by the cascade 

implementations, depending on how many windows reach each stage, and by how many 

cycles it takes a stage to process an input. All generated windows are processed by the first 

SVM stage, however, only     of them reach the final SVM stage, as shown in Table 4-8. In 

addition to the actual processing time, the I/O delays per frame also negatively impact 

classification speed. In order to achieve higher detection rates, I/O and memory operations 

such as filling the register-array buffers, overlap with window processing.  
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Figure 4-22. Detection results on 800×600 images 

(a) Detection Results using the RPU (b) Activity in the image: The darkness of the pixels indicates that the 

region has gone through more stages. (Some dark regions are formed by overlapping grey areas) (c) Detection 

Results without the RPU. Notice the increased false positives. 

Performance metrics for different cascade configurations are shown in Figure 4-23. 

Specifically, Figure 4-23 shows true positive (TP) and false positive (FP) detection accuracies 

and average frames-per-second with and without using the LBP processor and RPU. The 

cascade SVM boosted by the NN-based RPU was able to achieve an accuracy of     which 

was only    less than the same system without using the RPU. The minimal drop in accuracy, 

when using the RPU, is offset by a    increase in performance. It allows the cascade system 

to operate at         instead of        , making the system capable of real-time 

performance. This happens because even though most windows are discarded by the first two 

cascade stages, the NN-based RPU manages to reduce the number of windows (~    instead 

of ~   , Table 4-8) that reach the slower SPM. Furthermore, the introduction of the LBP 

feature extraction process helped to improve both the true positive (TP) rate as well as the 

false positive (FP) rate, the latter by an order of magnitude, even though configurations that do 

not incorporate the LBP processor provide higher performance since the additional processing 

is not required and the feature vector dimensionality is reduced. Overall, the combination of 

LBP features and the RPU results in an adequate trade-off between frame-rate and detection 

accuracy with only a     overhead in hardware. 
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TABLE 4-8: STATISTICS FOR EACH CASCADE STAGE 

Cascade Stages 
Stage 1 

(PPM) 

Stage 2 

(PPM) 

Stage 3 

(PPM) 

Stage 4 

(RPU) 

Stage 5 

(LBP & 

SPM) 

Number of Windows Processed 
56984 

(100%) 

3025 

(5%) 

2334 

(4%) 

713 

(1,2%) 

228 

(0,4%) 

Rejection Rate 94,6% 22,8% 69,4% 76,4% --- 

Cumulative Processing Cycles 9 10 30 35 2697 

Vectors per stage        1 1 20 --- 100 

 

 

Figure 4-23. Comparative results of different cascade configurations 

D. Power Consumption 

Power analysis tools from Xilinx were used to measure power consumption demands of the 

adapted and baseline cascade SVM FPGA implementations. The characteristic of the cascade 

architectures is that the PPM and SPM are not used at the same time since they implement 

different cascade stages. Hence, the dynamic power consumption ranges depending on which 

module is active. The total power budget, including the Microblaze video pipeline, for the 

adapted cascade SVM system ranges from 4,1 W to 8 W while for the baseline cascade system 

it ranges from     to     W. The peak power consumption happens when the PPM module is 

used. The lowest consumption happens when the NN-based RPU is used when the SPM and 

LBP cores are used power consumption reaches     W. Overall, the utilization of less LUT 

resources by the PPM results in reducing the peak power needed for the system to operate by 
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E. Summary 

There are some useful conclusions extracted from the Spartan-6 FPGA evaluation. Overall, 

the proposed approaches improve various aspects of SVM classification problems such as the 

frame-rate through the parallel hybrid architecture and the response evaluation method 

(       for        ), the false detection rate through a compact LBP processor (by an 

order of magnitude), as well as power consumption and resource utilization through the 

hardware reduction method (by     and     respectively). In addition the compact 

implementations of the RPU and LBP processor added only a    overhead in logic resources, 

while there is only a    penalty in the detection accuracy.  

TABLE 4-9: COMPARISON WITH RELATED WORK  

Related Works Rojas [119] 
a
 Kryjak [116] 

b
 Bauer [107] 

c
 Presented Work 

Application Barcode Detection 
Head-Shoulder 

Detection 
Pedestrian Detection Face Detection 

Classification 

Methods 

Polynomial SVM 

with 88 SVs 
Linear SVM & LBP 

SVM (GPU) & 

HOG (FPGA) 

Cascade SVM & 

LBP 

Platform 
Xilinx Virtex II Pro 

XCV3000 

Xilinx Virtex 6 

XC6VLX240T 

Xilinx Spartan 3 & 

NVIDIA GPU 
c
 

Xilinx Spartan 6 

XC6SLX150T 

F
P

G
A

 

R
es

o
u

rc
e
s LUT 22938/28672 12068/150720 28616/62208 35532/92152 

REG N/P 15893/301440 N/P 20153/184304 

BRAM 160 KB 124/416 100  256/268 

DSP N/P 66/768 18/96  59/180 

Image Size 512×512 640×480 800×600 800×600 

Window Size 16×16 32×24 48×96 20×20 

Vector Size 

(          ) 
256 1440 1980 400 & 1062 

Number of SVs 88 1 N/P 122 

Frequency 166 MHz 40 MHz 
b
 63 MHz  70 

Detection 

Accuracy 

TP: 91,8% | 

FP: 4,2% 
TP: 83% 

TP: 95,4% 

FP: 0,1% 

TP ~80% 

FP: ~0,001% 

FPS N/P 
a
 60 10 40 

a Performance is 352 cycles per sample just for the vector operations. No I/O delays are included. 
b Uses a frequency multiplier to multiply the clock three times for the SVM processing Core (120 MHz). 
c A hybrid system where the GPU implements the SVM and the feature extraction based on HOG is implemented on the FPGA. 

N/P – Not Provided | N/A – Not Applicable | CD - Correct Detection | TP - True Positive | FP - False Positive 
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F. Comparison with Related Work 

Related works for object detection applications are shown in Table 4-9, along with 

information regarding parameters and performance. These works use different algorithms, 

training and test sets, and benchmark applications, hence it is difficult to make a direct 

comparison between implementations. Nevertheless, a discussion is made to attempt to 

position this work against others and clarify its contributions. 

SVMs have been used in various object detection applications and as a result FPGA 

implementations for SVM-based object detection have used different applications and 

parameters to benchmark the proposed architectures. However, since the SVM classification 

flow treats all data as vectors, the number of samples and SVs processed and vector 

dimensionality can provide an indication to the processing performance for each work. The 

number of samples depends on the search window size and granularity of the search. The 

different benchmark applications mean that the search window size and feature vector size are 

different. A head-shoulder detection system is presented in [116]. It utilizes an SVM and LBP 

descriptors to classify       windows from         images. It trade-offs accuracy for 

performance by using a single linear SVM, with a clock frequency of        , and processes 

only a few elements of the SV feature vector in parallel to keep the resource utilization low 

thus achieving       . However, non-linear kernels often provide better and more robust 

results compared to linear kernels and thus might be the preferred choice for applications that 

require high accuracy, in which case more processing resources will be required to maintain 

real-time performance. In order to compensate for the accuracy of linear SVMs they use 

foreground detection to verify detection results. The implementation in [119] scans a     

    image in non-overlapping blocks to perform bar-code detection. It performs the dot-

product operations in 352 cycles for one window however, the scalar operations are not 

included. Furthermore, it processes only around            window samples, 

corresponding to    -dimensional vectors, per image, and it does not downscale the input 

image which simplifies the I/O and memory accesses. The hybrid FPGA-GPU pedestrian 

detection [107] for         images achieves over        for the classification of      

windows. The lower frame-rate can be attributed to the larger feature size, however, the 

number of processed windows is an order of magnitude less than in the present work. In 
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addition, the use of GPU may prohibit such implementations to be used in embedded 

applications due to power consumption constraints. 

 Overall, in order to achieve real-time performance existing works rely on processing a few 

window samples, smaller image resolutions, or process a few SVs. Through the proposed 

architecture and methods it is possible to process higher resolution images in real-time while 

also reducing the implementation requirements.  

The SVM hardware implementations target different applications and thus accuracy is 

difficult to compare. Software based implementations [54],[55],[56] that utilize cascade SVMs 

for face detection achieve accuracies that range between        while utilizing similar 

training set sizes (Table 4-5). The proposed optimized SVM cascade system achieves a 

detection rate of     which is on par with other works. 

G. Discussion and Impact 

There are some useful conclusions extracted from the FPGA evaluation. Firstly, exploiting 

cascade information in the form of the responses of previous stages has shown great promise 

in improving the performance both in terms of frame-rate and false detection rate for SVM 

classification applications. In this regard it is anticipated that it can be used with other cascade 

structures in order to provide speedups as well. Furthermore, there is the potential for online 

training of the RPU using the final SVM stage as the supervisor to retrain and adjust the RPU 

based on run-time information. This opens up new possibilities to further improve its 

capabilities and to dynamically respond to different scenarios. Second, the proposed hardware 

reduction method provides an efficient way to reduce the required logic resources of the 

cascade which is easy to implement and can thus be widely adopted. Finally, the hybrid 

processing hardware architecture and flexible I/O structure demonstrated how it is possible to 

efficiently utilize the available hardware and provide the necessary performance, by 

optimizing the design for the specific data flow and processing demands of cascade SVMs. It 

is anticipated that the proposed architecture and methods can be used to both design low-cost 

fast SVM coprocessors to accelerate more demanding monolithic SVM classifiers, or optimize 

existing cascade SVM classifiers. 
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4.4 Conclusions 

Support vector machines are a widely used state-of-the-art classification algorithm that has 

exhibited high classification rates for a wide range of applications including visual object 

detection. This chapter described the hardware acceleration of monolithic SVMs through a 

dedicated array-based hardware architecture. The presented architecture is able of provide 

real-time processing by parallelizing both support vector and input vector operations and is 

generic and can process different kernel functions. Through the array-based architecture 

different units communicate seamlessly and thus parallel access can be provided using a 

serial-in-parallel-out register structure, while the more demanding units can be shared amongst 

the simpler units to reduce hardware overheads.  

The hardware acceleration of cascade SVMs was also considered, which can be used to 

design intelligent embedded visual object detection systems. The hybrid processing 

architecture takes advantage of the nature of the cascade classification problems, and along 

with a hardware reduction method and a novel response evaluation method, manages to 

achieve adequate trade-off between accuracy, performance, power, and resource utilization. 

Also useful methods were presented which can be used to design optimized hardware-efficient 

architectures with respect to constraints involved in embedded applications.  

Overall, the research with regards to SVMs demonstrated how the development of array-

based hardware accelerators adapted and optimized for the SVM processing flow can lead to 

real-time performance using FPGA platforms.  
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CHAPTER 5  

REAL-TIME HARDWARE ACCELERATION OF OBJECT DETECTION USING DEPTH 

AND EDGE INFORMATION 

The previous chapters have outlined FPGA-based object-detection hardware architectures 

which focus on the parallelization of the classification phase. The majority of these 

architectures employ a traditional sliding-search-window-approach to search for objects, and 

also downscale the image several times to find objects of different sizes. However, as the 

image resolution increases, the number of generated search windows increases as well 

depending on many factors including the number of scales that need to be searched (from 

highest to lowest resolution), the overlap between successive windows and the window size 

itself. This increase in search space can make it difficult to meet real-time constraints while 

being able to detect objects at different sizes. This is apparent from Figure 5-1, which shows 

how the number of windows increases with the image size and number of scales for typical 

object sizes from datasets [5],[139],[140] for different applications (face detection, pedestrian 

detection, car detection). Both these factors make it challenging to provide real-time 

processing. Furthermore, as the number of data to be classified increases the probability of a 

false detection also increases and also energy is wasted on processing windows that most 

probably do not contain an object of interest. It is possible to increase the window size as the 

image size increases in order to reduce the search space, however, in such a case, the classifier 

demands on hardware resources, memory, and processing speed will also increase. Thus it is 

preferable to keep the window size at a considerably small size and introduce techniques to 

compute the size of windows without having to exhaustively search the scale space. 

Software implementations of object detection applications use background removal 

techniques such as motion detection [150] and color processing [151], [152], to reduce the 

search space. However, only a few hardware implementations feature such search-reduction 

methods that could potentially improve the efficiency of embedded object-detection systems 

[7], [72], [153]. Additionally, some of these techniques, such as color processing, are 

application/object specific and thus cannot be used in a variety of object-detection 

applications. Finally, search-reduction techniques that have been used in hardware do not 
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provide a way to identify the object size, and thus, exhaustive search must still take place even 

in a smaller image region. 

Alternatively, with the emergence of 3D systems and algorithms and corresponding camera 

sensors [71] it is possible to utilize depth information to accelerate object detection. Depth 

information has been successfully used in software implementations for intelligent object 

recognition systems mostly to remove false detections [154], [155], [156] and to find object 

sizes [157]
1
, however, many assumptions and simplifications (such as reduced search 

granularity) are made to allow for software implementations to achieve near real-time 

performance (11- 20 FPS). Furthermore, recently, edge information has been proposed as a 

medium to reduce the search space involved in object detection in software [158]. This chapter 

present research on how the preceding two methods can be merged together into a single 

algorithm and how that algorithm can be implemented in hardware utilizing a dedicated 

architecture in order to provide an efficient approach for acceleration of embedded object 

detection applications.  

 

Figure 5-1. Number of windows as the image size and number of search scales increase 

5.1 Depth- and Edge-Directed Search Space Reduction 

Object detection is concerned with identifying the presence of an object of interest in an 

image. This is a tedious task which typically involves a sliding window scanning the input 

image and various downscaled versions of it in order to find objects of interest in various 

                                                 

1 Pentium 4 (R) @ 3GHz, Bumblebee Stereo Vision Camera Point Grey Research 
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sizes. This exhaustive search makes it difficult to meet real-time constraints, especially as the 

image resolution increases, since more scales will need to be searched for the object of 

interest, and as a result, the number of search windows also increases. The remainder of this 

section outlines how depth and edge information can be utilized to reduce the search space and 

speed up the object-detection process. 

5.1.1 Depth Extraction and Object-Size Estimation 

 

Figure 5-2. Window size estimation using depth information 

Depth information (i.e., the distance of an object from the camera) can be extracted from 

the host environment of the embedded object-detection system. There are a number of 

methods that could be used to extract depth information from the host environment, such as 

the Microsoft ® Kinect
TM

 sensor or a stereo vision system that processes a stereo image (a pair 

of left and right images) [77]. In the context of stereo camera systems, information about 

depth (Z) evolves from the computation of the disparity map        using the formula   

             , where   refers to the baseline distance between the stereo camera optical 

centers, and   refers to the focal length of the stereo camera system. As such, any stereo-based 

depth extraction method that can produce the disparity map could work in the context of the 

presented approach. By using depth information extracted from a vision system, it is possible 

to estimate the size of the object at a given location of the image, thus avoiding downscaling 

the input image several times and subsequently reducing the number of windows that need to 

be classified. The actual size of the object (     ), as is represented in the real world, and its 

projection in one of the stereo image frames (     ) can be estimated using Equation 5-1 [77]. 

The equation is derived from the arrangement shown in Figure 5-2, which shows that the 

ration between the size of the object is the real world (     ) and the distance from the camera 
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( ) equals the ratio between the size in the image (     ) and the camera focal length ( ). 

Additionally, using the relationship between depth and the disparity map ( ) that applies for 

stereo vision systems, the disparity value can be used instead (Equation 5-2), thus avoiding the 

need to compute the actual depth. 

                                          Equation 5-1 

                            Equation 5-2 

5.1.2 Edge-Based Window Rejection Process 

The performance of object-detection systems also suffers from the necessity that all 

windows need to go through the classification process. Thus valuable computational time as 

well as power are wasted on potentially unpromising regions. An efficient way to eliminate 

windows prior to the classification process, in a manner that can be parallelized in hardware 

and does not require many hardware resources, is utilizing edge information. Edges provide 

information about visual features in an image, and thus the number of edge pixels in an image 

can give an indication of the useful information in a particular image region. Hence, edges can 

be used to discard non promising regions (image regions that do not exhibit high pixel changes 

and thus there is a high probability that these regions will not contain any useful information), 

eliminating them from the detection process. The edges are extracted from the image by 

convolving the image with an appropriate edge mask (e.g. Sobel operator), and are then used 

to identify background and non-background regions. An example is shown in Figure 5-3. 

An early approach to eliminating windows from the classification process, in addition to 

constructing the windows, was first proposed by Anila and Devajan [158]. The proposed 

algorithm relied on edge information to find boundaries of objects in order to enclose it with a 

window and extract that region. In the case where there were zero edge pixels within that 

region then that window was discarded from the classification phase and was classified as 

background. However, this approach was only tested on single face images with uniform 

background regions where edged are clearly formed only on object boundaries. However, the 

zero edge pixels threshold is susceptible to noise and is only able to remove regions with 
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almost uniform intensity. Hence, for cluttered backgrounds and noisy environments this 

approach would have diminishing returns since all windows would be considered for 

classification. A better approach would be to set an edge pixel threshold that is empirically 

derived from the object training set, by averaging the number of edge pixels found in object 

images. Finally, another potential problem with the original algorithm is that not all objects are 

enclosed within a boundary such as faces. Nevertheless, for certain applications and 

environments the edge-directed object detection processes can provide a computationally 

efficient way of reducing the search space involved in object detection.  

Hence, in this research the window rejection process is altered to have a non-zero 

threshold, assigned according to the object of interest, and is combined with the depth-based 

window size estimation process into a novel approach in order to achieve both accurate 

window size estimation and rapid window rejection. The proposed algorithm is outlined in the 

following section. 

 

Figure 5-3. Object vs background edge information 

 (Top) Full Frame images with their respective edge image. (Bottom) Edge information for marked image 

regions 

5.1.3 Depth- and Edge- Accelerated Object-Detection Process 

An overview of the proposed accelerated object-detection approach is given in Figure 5-4. 

The approach relies on the computation of the disparity map from a stereo image to extract 

depth information. Each value in the disparity map corresponds to the center of a candidate 
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window. The candidate window size is determined by Equation 5-2, and a candidate window 

is formed around each disparity value. The disparity map is sampled every few pixels 

(disparity search overlap), and a candidate window is extracted for the sampled disparity 

values only rather than for every pixel in the disparity map. Furthermore, if the size of the 

candidate window exceeds the image boundaries, indicating the presence of a large object at 

the border of the image, that window can be discarded, as the object may fully fit in another 

candidate window. Finally, any disparity values that map to window sizes which are smaller 

than the size of the classifier can also be discarded on the premise that they wouldn’t be 

considered for classification in the sliding-window approach either. After the size of the 

candidate window has been validated, that window is extracted from the edge image, resized 

to the search window size, as shown in Figure 5-4, and the number of edge pixels contained in 

the window is determined. If it exceeds a predetermined threshold, the candidate window is 

considered valid, and that window is extracted from the grayscale image, resized to the search 

window size, and then classified by the classification algorithm. Otherwise, it is discarded and 

the window extraction process is then repeated for the next disparity value. 

 

Figure 5-4. Object detection process using edge and depth information  

Depth- and edge- accelerated process: (a) The disparity map is sampled every few pixels. Each disparity value 

corresponds to the center of a candidate window. (b) If the window size is valid, then the edges of that window 

are extracted from the edge image. (c) Corresponding window sizes in the original image. (d) Extracted edge 

windows. (e) Corresponding extracted windows from the original image. (f) Resized windows used for the 

calculation of the mean number of edge pixels and classification, respectively. 
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5.2 Hardware Visual Object Detection Systems 

In recent years, a fair amount of work has been done on development of algorithms and 

techniques used in 3D vision systems. For example, [159] uses local feature histograms 

extracted from range images to recognize single object images. Both 2D and 3D features from 

color and depth images are used in [160] respectively, in order to recognize objects. Affine 

feature finders are combined with SIFT in [161] in order to provide robust 3D recognition 

under viewpoint changes and lighting and scale changes. More recently, efficient 3D feature-

extraction algorithms have been proposed in the literature, such as the Fast Point Feature 

Histograms (FPFH) used for 3D image registration [162] and Normal Aligned Radial Features 

(NARF) that are used to find and recognize 3D objects in range images [163]. Finally, other 

approaches, such as [164], use generated 3D object representations to recognize different 

objects. Common classification methods that have been used in 3D object-recognition 

methods include nearest-neighbor methods [164], multilayer perceptrons [160], and support 

vector machines [165]. The main focus of these works was on providing higher recognition 

accuracy that could be used in a generic framework for 3D object recognition. However, 

hardware implementations of such 3D object-recognition systems have been rather limited to 

simple problems with low-resolution images [121]. Nevertheless, the advancements in the 

research of 3D vision systems provide an opportunity to utilize additional available 

information, such as depth, in order to accelerate 2D object-detection systems by reducing the 

search space. 

A fair amount of work has been done in hardware implementations of 2D object-detection 

algorithms, mostly utilizing FPGAs and targeting face detection. These work use appearance-

based methods that either employ pattern-recognition algorithms for the classification stage, 

such as neural networks, support vector machines, or a boosting learning approach (AdaBoost 

by Viola and Jones) and utilize the sliding-window approach to search for objects of various 

sizes. The following illustrates some of the most important works found in the literature, while 

Table 5-1 provides a summary of the techniques used in each work and the achieved 

performance. 
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TABLE 5-1: SUMMARY OF FPGA IMPLEMENTATIONS OF OBJECT DETECTION SYSTEMS 

Work Algorithms 
Image 

Resolution 

Classifier 

Window 

Size 

Frames Per 

Second 
Accuracy 

He 

[7] 

Skin Detection, 

Motion Detection 

Haar-Features and 

Neural Network 

640×480 

downscaled 

to 80×60 

11×11, 

19×19, 

27×27 

625 N/P 

Han 

[166] 

Modified Census 

Transform, 

Viola Jones 

320×240 N/P 149 99.76% 

 Sadri 

[72] 

Neural Network, 

Skin Detector 
800×600 

18×22 

or 

36×44 

9 

N/P 
90 

Cho 

[84] 

Viola-Jones Detection 

Framework 
320×240 20×20 23 N/P 

Hiromoto 

[83] 

Viola-Jones Detection 

Framework 
640×480 24×24 30 N/P 

Farrugia 

[167]
 a 

Convolutional Neural 

Network Face Finder 

320×240 
32×36 

127 
a
 

TP: 87% 29 

640×480 35 
a
 

McCready 

[168] 
Neural Network 320×240 30×32 30 87 % 

Presented 

Work 

Depth Extraction, 

Edge Detection, Support 

Vector Machines 

320×240 

20×20 

271 TP: 82% | FP: < 1% 

640×480 42 TP: 82% | FP: < 1% 

800×600 23 TP: 80% | FP: < 1% 

a 127 and 35 FPS are achieved with a 25 PE ring on a Virtex 5 LX330. No utilization results are given. 

N/P - Not Provided | TP - True Positives | FP - False Positives 

One of the first attempts at implementing face detection in hardware was that of McCready 

et al. [168], and it was the first to demonstrate the benefits from a dedicated hardware solution. 

The authors designed a custom face-detection algorithm based on a neural network classifier 

and optimized it for the TM-2 (Transmogriffer 2) configurable multiboard FPGA platform. It 

operated on a 320×240 image frame and achieved a frame rate of 30 FPS while having a 

detection accuracy of 87%. However, the proposed implementation utilized nine boards on the 

TM-2 system. 

The detection framework by Viola and Jones [15] is a widely used approach for 2D object 

detection. The main benefit of this algorithm in terms of hardware implementation is that it 
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only requires additions and only a few multiplications, making it attractive for resource-

constrained systems. Hence, a few hardware implementations of this algorithm can be found 

in the literature. Hiromoto et al. [83] proposed a hybrid model that consisted of parallel and 

sequential modules. The most frequent parts of the algorithm are implemented by the parallel 

modules, while the least frequent by the sequential. Through this approach, the authors 

manage to save hardware resources while achieving 30 FPS. Cho et al. [84] showed a parallel 

implementation of this algorithm on an FPGA, demonstrating near real-time performance of 

23 FPS for 320×240 images. 

Han et al. [166] proposed a face-detection system that utilizes the Modified Census 

Transform (MCT) and the AdaBoost learning algorithm with cascaded classifiers targeting 

mobile environments. They use only a single classification stage, and their system can detect 

up to 32 faces. Their system achieves high frame rates and high detection accuracies, however, 

the FPGA architecture and FPGA utilization information are not presented, making it difficult 

to assess their proposed system. 

The hardware implementation of a convolutional face finder [169] based on a convolutional 

neural network was demonstrated in [167]. The proposed architecture consisted of a ring of 

processing elements (PEs) that implemented the CFF algorithm and demonstrated how 

pipelined architectures can be used to speed up the detection process. They exploit parallelism 

by dividing the image in vertical strips with overlapping regions, and each PE processes a 

block of that strip. However, a 25-ring PE is required to achieve a real-time performance on 

640×480 images, and consequently, a large FPGA is used to fit the architecture. Furthermore, 

not enough details are given on the I/O requirements of their architecture and the memory and 

buffering requirements. 

The aforementioned works have demonstrated how dedicated hardware solutions and 

classifier optimizations in hardware can provide high speed ups and real-time performance. 

However, higher frame-rates can only be achieved by integrating hardware search-space-

reduction mechanisms. The following works demonstrate different methods and approaches 

that have been implemented in hardware in order to reduce the search space. 

Ming and Yisong [153] use a hardware/software approach to design an FPGA-based face-

detection system with skin-detection acceleration. A Nios-embedded soft processor handles 
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the face identification task, while a dedicated hardware accelerator handles the skin-detection 

process. This specific work focuses on accelerating the search-space reduction in hardware 

rather than the actual classification. The processor can then handle the classification process, 

since the search space is reduced. However, this also depends on the input image size. 

Sadri et al. [72] implemented a face-detection neural-network algorithm on a Virtex II Pro 

FPGA, which included a skin color filter to reduce the search space within the image and an 

edge-detection mechanism to produce a binary image on which the neural network operates. 

The majority of the system was implemented on the FPGA custom logic fabric, while higher-

level operations were left to the Power PC processor. Their system operated on 800×600 input 

images with a frame rate of 9 FPS if the entire image was processed. The resulting frame rate 

could be improved up to 90 FPS if only 25% of the image was searched, using skin detection, 

and only up frontal detection was considered. The approach of using binary-image data 

demonstrates the potential performance benefits, however, the impact on detection accuracy is 

unclear. 

Finally, He et al. [7] demonstrated the hardware implementation of a massively-parallel 

face-detection system that achieved frame rates of over 600 frames per second. They utilize 

two search-reduction techniques, motion detection and skin detection. They also make a few 

simplifications on the face-detection procedure and adding two search-reduction techniques. 

The input image is of 640×480 pixels, however, all subsequent operations, including the 

detection process, happen on a downscaled 80×60 image, greatly reducing the search space, 

while only considering three face sizes (11×11, 19×19, and 27×27). The classification for the 

three window sizes is done in parallel and thus the proposed system needs a lot of resources to 

provide these high frame rates. This approach may not be suitable for other object-detection 

applications, as downscaling the input image may result in loss of quality. 

These works have demonstrated the successful implementation of object-detection systems 

on FPGAs. The majority of these implementations have targeted face detection applications 

using the sliding-window approach or integrated face-detection-specific search-reduction 

techniques, such as skin detection. The majority of these works have targeted image sizes of 

320×240 pixels for face detection, however, other applications may require processing higher-

resolution images. Recognizing that there is a need for generic object-detection and with the 
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advancements in the field of 3D vision systems, an object-detection methodology and a 

hardware architecture are proposed that is based on depth as well as edge information that can 

provide a more generic platform for various detection applications and can facilitate real-time 

processing of larger image sizes. 

5.3 Hardware Architecture for depth- and edge- based object detection 

acceleration 

The architecture that implements the depth and edge directed object-detection process 

consists of four major hardware units, each implementing the major tasks of the algorithm, as 

outlined in Section 5.1.3. These units are the Disparity Computation Unit (DCU) which 

computes the depth information from a stereo image, the Edge Computation Core (ECC) that 

implements a Sobel edge detector, the Window Extraction Unit (WEU) that processes the 

depth and edge information and extracts windows, and the Classification Engine (CE) which 

implements a support vector machine classifier. It is also possible to use different approaches 

and algorithms for each of these units that meet application specific constraints for accuracy 

and power as well as performance. The specific approaches for depth and edge were selected 

since they provided high performance at a low cost of processing resources. The system also 

consists of a memory controller and a system controller that optimizes accesses to the external 

memory, control I/O operation, and synchronize the other major units. The system uses three 

on-chip buffers to store the image data, there are dedicated buffers for the edge image, the 

disparity image, and the left image of the stereo pair, which is used as the reference image for 

the disparity computation. Figure 5-5 shows an overview of the system architecture and the 

communication flow between units. Certain features of the architecture were optimized for 

FPGA implementation, however, the architecture can also be implemented using an ASIC 

design flow with only minor adjustments. 

The whole process begins when the memory controller fetches stereo image data from the 

external memory or camera source to the ECC in raster-scan fashion and stores the incoming 

pixels of the left stereo image in the input image buffer, while the produced edge image is 

stored in the edge image buffer. The DCU reads the edge image pixels, performs the disparity 

map computation, and stores the disparity pixels in line buffers (disparity image buffer). The 
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WEU reads pixels from the line buffers to validate the candidate window and extract window 

pixels from the edge image and the left stereo image. All valid windows are then fed to the CE 

for classification. The proposed hardware architecture (Figure 5-5) for depth and edge 

accelerated object detection consists of the four major hardware units, as well as a system 

controller that optimizes accesses to the external memory, controls I/O operation, and 

synchronizes the other major units. These major units are described in the following 

paragraphs. 

 

Figure 5-5. Depth and edge based system architecture 

5.3.1 Edge Computation Core 

The Edge Computation Core (ECC) integrated to the system implements a flexible and 

scalable Sobel edge detection architecture. While there exist several edge detection methods, 

this work integrates the Sobel edge detector in the FPGA-based detection system, mainly due 

to its simplicity and good performance on an FPGA [16]. The Sobel operator performs a 2D 

spatial gradient measurement on the input grayscale image using a pair of 3x3 convolution 

masks (Figure 5-6).  

It employs hardware features such as parallelism and pipelining in an effort to parallelize 

the repetitive calculations involved in the Sobel operation, and uses optimized memory 

structures in order to reduce the memory reading redundancy. These features enable the 

architecture to obtain frame rates that exceed the 5,000 FPS for an image size of 320×240. 
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This is particularly important, as the overheads from the additional edge detection operations 

need to be small enough in order to obtain a speedup in the overall operation. The architecture 

of the ECC is shown in Figure 5-7 and consists of an I/O controller, a set of FIFO line buffers 

(scan-line buffers) used for temporary pixel storage and parallel window processing, and a 

series of convolution units (CONV), as well as comparators. The architecture is pipelined into 

2 stages: FETCH/WRITE BACK and PROCESSING. In the                  stage the 

I/O controller fetches pixel data from the input stereo image in a row-wise fashion and 

forwards them to the input port of the scan-line buffers. During the            stage the 

scan-line buffers produce four successive 3×3 windows per cycle, which are convoluted with 

the 3×3 Sobel kernels by the convolution units. The masks for the Sobel Kernels hold data 

values between -2 and 2, as shown in Figure 5-6, thus the overall convolution can be 

implemented in hardware using shifters instead of multipliers. By avoiding the costly 

multiplication operation, higher frequencies are possible allowing integration of this method 

into object detection systems without affecting their performance, leaving the multiplier units 

to the more demanding classification engine. Furthermore, an approximation of the sobel 

detector was used which avoids the tedious tasks of square root and square operations as 

shown in Figure 5-6. The results of each CONV unit are compared against a threshold and 

produce 1 indicating the presence of an edge or 0 indicating its absence. The 1-bit pixel 

intensity values are concatenated into a 4-bit value which is stored in the edge map memory. 

 

Figure 5-6. Sobel edge operator 

(a) The two Sobel gradient masks in the vertical (Gy) and horizontal (Gx) edges can applied vertically to the 

input image. (b) The results of the two are combined to find the magnitude of the gradient. (c) This process can 

be approximated by summing the absolute value of the two mask results. 
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Figure 5-7. Edge computation core 

The edge map of the left stereo image, stored in the edge image buffer, is used by the 

WEU, in the latter stages, to determine if a candidate window should be rejected prior to 

classification or not. Additionally, the produced edge-detection images are also used for the 

fast computation of the disparity map, as described in [170]. Thus the architecture incorporates 

two edge-detection units, one for the left and one for the right input image. 

5.3.2 Disparity Computation Unit 

The Disparity Computation Unit (DCU) used in the architecture extracts depth in-formation 

from a stereo vision system, and its architecture is based on an improved version of the 

hardware architecture that was proposed in [170]. The architecture, which is shown in Figure 

5-8, combines the sum-of-absolute-difference (SAD) matching algorithm with edge features 

for faster and more efficient processing. Specifically, the use of edge features reduces the 

hardware demands, since processing happens with one-bit pixels rather than eight-bit for 

grayscale images. Thus the area saved is used to increase parallelism and performance. This is 

significant for the efficient integration of this unit into an object detection system, since the 

overhead introduced must not affect the performance of the classification process.  

Chri
sto

s K
yrk

ou



- 163 - 

 

 

Figure 5-8. Disparity computation unit 

The DCU follows the ECC in the computation flow, as it receives edge pixels from the 

ECC and uses them to perform correlation on the input stereo images to produce the disparity 

map. The DCU can process images with a disparity range of 80 pixels and window sizes up to 

11×11 pixels. The DCU architecture consists of scan-line buffers in order to receive edge 

pixels from the ECC in streaming fashion. The scan-line buffers temporarily store the pixels 

and allow for parallel processing of many windows. As such, multiple parallel adders and 

subtractors are utilized which facilitate in the parallel implementation of the SAD algorithm. 

Through this parallel structure, the DCU is capable of producing disparity values every cycle. 

The disparity values are produced faster than they are consumed by the WEU and CE, thus, it 

is only necessary to store a couple of lines of the disparity map in the disparity image buffer. 

More disparity map pixels can be produced very rapidly, so there will always be data available 

for the WEU which follows the DCU in the computation flow. There are additional 

advantages of activating the DCU only when disparity values are needed by the WEU. First, 

energy is saved, since the DCU is not active for a large amount of time unless a lot of disparity 

values are not valid, in which case, the DCU will constantly produce disparity values. 

However, in that case, the CE will not be active again, resulting in energy savings. Second, 

on-chip memory requirements for storing the disparity map can be reduced and the remaining 

memory resources can be used to store the input image. The reader is referred to [170] and 

[171] for a more detailed description of the concepts used in the design of the DCU. 
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5.3.3 Window Extraction Unit 

The Window Extraction Unit (WEU), shown in Figure 5-9, is the third unit in the detection 

system pipeline and performs the necessary operations for the validation of candidate 

windows, which are the window-size estimation and the accumulation of edge pixels. 

Additionally, it also performs the reverse mapping process that rescales large windows to the 

appropriate window size for the classifier (   , can be either square or rectangular). The 

WEU is enabled once the DCU starts generating and storing disparity values in the disparity 

image buffer. The disparity map is sampled by the WEU every few pixels, depending on the 

object size, and thus not all values of the disparity map are processed. The WEU loads them 

from the buffer and proceeds to determine the corresponding window size of each disparity 

value using Equation 5-2. 

 

Figure 5-9. Window extraction unit 

 To implement the equation, the incoming disparity value is multiplied by the fixed-point 

preloaded value (       ), producing the window size in pixels. The calculated window size 

goes through some comparators that check if the size is equal or larger than the classifier 

window size, and if the window is within the image ranges. If the conditions are met, then the 

corresponding window is extracted from the edge image buffer, using the reverse mapping 

process, and the edge pixels in the window are counted. The reverse mapping technique is 

implemented by multiplying the actual window coordinates with a predetermined scaling 
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factor (                                           ). This ensures that for every 

window, regardless of the estimated window size, only     pixel values will be read and 

processed by the subsequent stages. Details on the reverse mapping process are given in 

Figure 5-10. Through reverse mapping the edge image pixel values, which are either   or  , 

are accumulated as they are fetched to find the number of edge pixels in the window. This 

process is implemented through an adder tree of simple 1-bit adders. Storing and processing of 

the edge image pixels happens in groups of four bits to improve performance, and as such, the 

accumulation is done for four edge image pixels as well. Once all the pixels are accumulated, 

the sum is compared to a threshold to determine if it should be discarded or not. If the 

threshold is exceeded, the WEU starts fetching window pixels, this time from the input image 

buffer using the reverse mapping technique, to the classifier. This requires first finding the 

window size and then fetching the pixels from that window that correspond to the equivalent 

classifier window size window.  

 

Figure 5-10. Dynamic image downscaling through reverse mapping. 

The reverse mapping process involves reading only the pixels that correspond to an     window 

on a larger image. Each pixel address in the     window is transformed into an address corresponding 

to the pixel’s location in the larger image using scaling factors   ,   , which are computed by the larger 

window dimensions divided by the classifier window dimensions. 
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5.3.4 Classification Engine 

The CE architecture is based on the SVM array processing architecture presented in 

Chapter 4. It consists of an array of processing elements (PEs) and reflects the processing 

requirements of the SVM computation flow, which requires the calculation of a kernel 

function that has both vector and scalar operations. The architecture consists of two types of 

PEs which perform the vector and scalar operations of the SVM computation flow (i.e., the 

vector and scalar units). The kernel used for the SVM is the second degree homogeneous 

polynomial (       
  which has been extensively used for object detection [76],[136] and 

could be adapted to have less support vectors without sufficient accuracy loss [51] as shown in 

Chapter 2.5.3. As a result the vector units in the SVM architecture compute the dot-product 

between vectors while the scalar units perform the squaring of the dot-product result and the 

latter SVM classification flow operations (Alpha multiplication, accumulation, Bias 

processing). 

 

Figure 5-11. Support vector machine classifier architecture 

(a) Support vector machine classification core. (b) Vector unit. (c) Scalar unit. 

The architecture described in the previous chapter permits the SVM processing core to 

handle the processing of multiple windows, as each row can perform classification of one 

window. Additionally, it allows trading off processing the training data in parallel or 
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processing input windows in parallel. The latter, however, depends on the memory I/O and 

parallel access capabilities. The multi-window processing approach is useful when many 

windows are generated from a single image and need to be processed. Through the depth and 

edge directed search space reductions the number of generated windows is reduced, hence 

more important to classify a single window really fast. As such, the array-based architecture 

has been optimized for the specific task at hand. Specifically, in the case of the developed 

system dual port on-chip memories are used, which are available on the FPGA, for storing the 

input image, with one port used for writing while the other is used for reading, only one 

window can be accessed at a time. As such, the SVM classifier architecture was adapted in 

order to speed up the classification of a single window by processing as many support vectors 

as possible. The modified array architecture, which is shown in Figure 5-11, consists of five 

rows, each processing the same window but with different reduced-set vectors (RSVs) 

(training data), thus reducing the classification time. The results of each row’s vector units are 

accumulated by that row’s scalar unit. In turn, the result of each scalar unit is also accumulated 

to produce the final classification result. Using this approach, a window with corresponding 

dimensionality      can be classified in                             cycles. The 

classification process is the bottleneck in the overall computation, since the ECC and DCU 

can produce results almost each cycle. Hence, employing a cascade classification structure 

such as the one proposed in Chapter 4 can lead to further performance improvements. 

5.4 Experimental Methodology and Results 

5.4.1 Experimental FPGA Platform and Methodology 

The proposed architecture was evaluated after implementation on a Xilinx ML505 board 

(Virtex 5-LX110T FPGA), targeting the application of face detection as benchmark. The 

evaluation image dataset consisted of real-world images that were taken from a custom-built 

stereo vision system
1
 as well as synthetic digital images. The stereo image capturing was 

comprised of two video cameras system (Figure 5-12) separated by a baseline distance of 

                                                 

1 Two sony handycam digital HD video cameras - HD CX115E 
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     , both with a focal length of      . Offline callibration was performed with a 

calibration pattern using [172]. Stereo image pairs were loaded to the FPGA board DRAM 

from the compact flash through a Microblaze subsystem that was used for initialization and 

verification purposes. After the initialization phase, the object-detection architecture was 

enabled, and data was retrieved from the DRAM by a custom memory controller. A total of 

twenty images per size (       ,        , and        ) were used to evaluate 

performance metrics, such as frame-rate and detection accuracy. Classification was performed 

by a support vector machine which was trained on       images using the 2
nd

 degree 

polynomial kernel which was found to perform well for image-processing applications [76]. 

The SVM model was trained using MATLAB and the CBCL Face Database #1 [139] which was 

enhanced with additional face and non-face images from the world-wide-web. The training 

followed the guidelines from [51], [76] and the resulting SVM model was reduced to of 80 

RSVs following the methodology proposed by Burges [19]. The parameters of the depth and 

edge accelerated object detection system as well as the SVM model parameters are 

summarized in Table 5-2. 

 

 

Figure 5-12. Stereo camera system 
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TABLE 5-2: SYSTEM PARAMETERS 

SVM Kernel 

2
nd

 degree homogeneous 

polynomial 

(x • y)
2
 

Number of Reduced Set 

Vectors 
80 

Reduced Set vector 

Encoding 
8-bits 

Alpha Coefficients 

Encoding 
10-bits 

Disparity Window 11 × 11 
Disparity  

Range 
80 pixels 

Minimum Number of 

Edge Pixels Threshold 
50 pixels Edge Detection Threshold 175 pixels 

SVM Classification 

Window Size 
20 × 20 Disparity Search Overlap 5 pixels 

5.4.2 FPGA Implementation Discussion 

The system architecture was implemented as a proof of concept on a Virtex 5 LX110T 

ML505 FPGA board and was optimized for the specific FPGA hardware features and 

resources in order to be able to process images up to         pixels. Specifically, the image 

buffers are implemented as dual-port block RAMS, which are available on the FPGA, to 

facilitate the streaming nature of the operations. One port is used for writing image data and 

the other for reading. A total memory space of         pixels was allocated for buffering 

the input grayscale image. As such, a whole image of         can fit on the FPGA, for 

larger images (        and        ), only a part of the image is stored on-chip. This is 

sufficient, as in most cases, the window will be available on the on-chip memory, and as a 

result, external memory access will not be needed. Furthermore, whenever the window pixels 

are not on-chip, this will indicate the presence of a very large object, which covers most of the 

image, as such, a large portion of the image will not need to be processed and so the overhead 

from accessing the external memory is negligible. The Sobel convolution process of the ECC 

unit was implemented using shift registers rather than multiplications to save hardware 

resources and increase frequency. The SVM array was comprised of a total of    vector units 

(  rows and    columns), with each vector unit handling the processing of the input window 

with one reduced-set vector. A total of five scalar units was required for the implementation of 

the SVM computation flow. All the units in the SVM processing core require multiplication 
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and accumulation units, however, since the scalar units have a higher demand in bitwidth 

requirements, they were mapped on the DSP48E units of the FPGA for performance 

improvement, while the vector units where mapped on the LUT logic. 

The FPGA resource utilization of the proposed system is illustrated in Table 5-3, which 

also shows relevant results from related works. The FPGA technology used plays an important 

role in the efficiency and performance of a design. A feature-rich FPGA platform that 

provides more processing power in the form of more reconfigurable logic, embedded 

multipliers, and embedded block RAM to further exploit parallelism, could potentially provide 

higher performance. However, the architecture design has to be scalable and utilize the FPGA 

resources efficiently in order to deliver the full performance potential of a given FPGA 

platform. As such, comparing architectures implemented using different FPGA technologies, 

even if it may be indicative of potential performance and required hardware, may not be fair. 

Thus, comparison is focused with works that have used the Virtex 5 FPGA technology, 

however, other works are also included in Table 5-3 for a more comprehensive view.  

 The reported figures for the implementation are for a system capable of processing images 

of up to        . Fewer resources would be needed if the system is only going to process 

lower-resolution images. The presented architecture requires less LUT resources than other 

works and only half of the available register resources of the targeted FPGA for the 

implementation of the architecture. The CE requires the majority of the DSP48E units, which 

could be reduced by reducing the number of rows in the classifier, possibly reducing, how-

ever, the classification performance per window. Architectures that use the Viola-Jones 

detection algorithm have an additional advantage in that they do not require many multiplier 

units, since the algorithm is mostly implemented with adders/subtractors and accumulators. 

On-chip storage is critical for reducing external memory I/O and increasing performance, as 

also demonstrated in [7]. Hence, the developed system utilizes the majority of available FPGA 

block RAMs to reduce external I/O. The targeted frequency was set to be the one offered on 

the available FPGA board, and as such, the critical paths of the design were pipelined to 

achieve a frequency of        . The frequency can be improved with further optimization 

for higher throughput. With this frequency, the system manages to offer very good 

performance results. 
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TABLE 5-3: FPGA RELATED WORK SYNTHESIS RESULTS 

Work FPGA Platform 

Logic Elements 
Embedded 

Multipliers/ 

DSP48E 

Block RAM / 

Embedded 

Memory 

Operating 

Frequency 

(MHz) 
Slice 

Registers 

Slice 

LUTs 

He 

[7] 

Xilinx FX130T  

Virtex 5 ML510 board 

37828 

(46%) 

67704 

(83%) 

161 

(50%) 

276 

(93%) 
73 

Han 

[166] 

Virtex 5 

LX330 
N/P n/a N/P N/P 54 

Sadri [72] XC2VP20 N/P 17000 (74%) N/P N/P 200 

Ming 

[153] 

Altera Cyclone II 

EPC2C70 
9679 N/P 856605 bits 100 

Cho [84] Virtex-5 LX155 21902 (22%) 84232 (86%) 7 (5%) 97 (50%) N/A 

Hiromoto 

[83] 

Virtex 5 

XCVLX330 

55515 

(26%) 

63443 

(30%) 
N/P N/P 160.9 

Farrugia 

[167] a 
Virtex 4 SX35 

2466 

(16%) 

19 

(9%) 

8 

(4%) 
80 

McCready 

[168] 

Transmogrifier 2A 

Altera 10K100 
31500 N/P N/P 12.5 
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 SVM Core 7128 (10%) 13555 (19%) 45 (70%) 46 (31%) 

100 

Edge Unit 20868 (30%) 2812 (4%) --- 3 (2%) 

Disparity Unit 1008 (1%) 31504 (45%) --- --- 

Other 8438 (13%) 8316 (12%) 3 (5%) 87 (58%) 

Overall 37442 (54%) 56020 (81%) 48 (75%) 136 (91%) 

a Synthesis results for one PE on a Virtex4 SX35. Four PEs are instantiated on the specific FPGA. 
b Utilization when processing images up to        . Less resources are needed for smaller images. 

N/P - Not Provided | N/A - Not Applicable 

5.4.3 Performance Results and Discussion 

Performance in object-detection systems is measured in terms of frame-rate and detection 

accuracy. A real-time performance of around 30 frames per second (FPS) can be deemed 

sufficient for most video-processing applications, however, applications with multiple data 

streams and high-resolution video analysis may require higher frame rates. Both these metrics 

are affected by the number of windows that needs to be processed for each of the considered 

image resolutions. From the numbers illustrated in Figure 5-13, there is on average a      

reduction in the number of generated windows compared to the sliding window approach. 

Even in the worst case scenario where the depth and edge directed search corresponds to all 

windows being valid for classification, though highly unlikely, there is still a      reduction 
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in the number of windows. Through this significant reduction the FPGA implementation of the 

proposed depth- and edge-directed object-detection system is capable of real-time 

performance for         and         images (    and    FPS, respectively), while 

achieving near real-time performance of    FPS for         images which can be 

improved by adjusting the disparity map search granularity. The average frame rate achievable 

by the presented implementation as well as other systems is shown in Table 5-1. The 

bottleneck in the performance of the system is the CE, which takes a few hundred cycles to 

classify a window (depending on its size), whereas the ECC (because of the parallel window 

operations) and the DCU (because of the binary data processing) produce a result almost every 

cycle. Thus, they are capable of achieving over 100 FPS for all targeted image resolutions, as 

demonstrated in [171]. The achieved performance is then limited by the number of windows 

that need to be classified and the classification time per window. The work in [7] achieved 

    FPS for         images, however, the actual size of the processed image size is 

     , with only three object sizes considered. The FPGA system by Sadri et al. [72] can 

process         images in    FPS, however, this is achieved if only     of the image is 

searched through skin detection and the detection itself happens on binary images, and thus it 

is unclear how detection accuracy is affected. 

 

Figure 5-13. Reduction in the number of windows using depth and edge information 

The depth of objects, the number of edge pixels in the image, and disparity map sampling 

step are all factors that affect the frame rate. Depending on the depth of objects and the 

number of edge pixels in the input stereo image, the frame rates may be a bit higher or lower. 

Coarser grain sampling of the disparity map could further improve performance, as fewer 

windows would be generated. An increase of the disparity search overlap for 800×600 images 
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from five pixels to ten pixels could potentially double the performance without any significant 

loss in detection accuracy. Increasing the disparity search overlap could enable the 

architecture to also process larger image sizes than 800×600 in real time. The proposed system 

architecture was tailored to the available FPGA resources, and as such, there are a few 

limitations that could be overcome by investigating an ASIC design especially for higher-

resolution images. Some of the things that could be explored through an ASIC implementation 

are the design of on-chip memory structures that would allow for higher pixel throughput and 

optimizations on the CE architecture to increase classification performance per window.  

Detection accuracy is an equally important performance metric for object-detection 

systems, and it heavily depends on the classification algorithm used as well as the training 

data. The Viola-Jones detection algorithm has demonstrated very good results in terms of 

detection accuracies for    object detection, however, SVMs have also shown very good 

results, and literature suggests that the detection results are comparable [76],[103]. 

Furthermore, SVMs have also been used for    object recognition [165], [121]. Detection 

results of the presented system and other related works are shown in Table 5-1. A direct 

comparison of the detection accuracies, however, is not fair, since the image datasets used in 

other works are comprised of a single image, and as such, they cannot be used to evaluate the 

stereo processing system. Additionally, the training data and preprocessing methods also 

impact the classification performance. The proposed depth-and edge-accelerated system can 

achieve classification rates of ∼80% which would suffice for most applications. The detection 

accuracy is a bit lower than the Viola-Jones face-detection implementation in the OpenCV 

library [18], however, higher classification rates are possible by improving the training dataset 

and by incorporating other features. An inherit advantage of the proposed depth and edge 

search-reduction approach comes from the fact that the number of windows that are processed 

is reduced, as a result, the false alarm rate also decreases when compared to the traditional 

sliding-window approach. This is true regardless of which classifier is used, granted that it has 

acceptable discrimination capabilities. In the performed experiments the number of falsely 

classified faces (false positives) decreased an average of    , compared to the sliding-

window approach, while the percentage of correctly classified faces (true positives) remained 

relatively the same. Some synthetic and real-world images used for the experiments and the 

resulting detections are illustrated in Figure 5-14. 
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Figure 5-14. Depth and edge directed face detection results 

(a) Detection results using depth and edge information. (b) Disparity maps of input stereo images. (c) Edge 

detection results for the input images. 

The proposed hardware architecture has been optimized for face detection, however, with 

minor modifications, it could be adjusted to perform detection of any object. First, the changes 

necessary in order for the architecture to be used for other applications are outlined. In 

general, only the classifier needs hardware changes, if an SVM produces adequate results, then 

a similar architecture to the one presented in the preceding chapter can also be used, however, 

any other classifier could be incorporated in the architecture if necessary (e.g., the Viola-

Jones-based classifier presented in Chapter 3). The other changes concern specific parameters 

that need to be adjusted in each hardware module and are necessary in order to facilitate the 

new object of interest. Specifically, the window size for each detection scenario is different, 

and as a result, the pre-computed WEU parameters are adjusted to the object size 

characteristics (window height and window width in Figure 5-9). The threshold for the 

minimum number of edge pixels in a window could also be adjusted, since the window is now 

different. Additionally, it is also possible to introduce an upper threshold on the number of 

edge pixels depending on the object of interest to eliminate noisy regions or cluttered 

background regions. Finally, any feature extraction algorithm (LBP, HOG, etc.) could be 

integrated by implementing an appropriate processing unit that would perform processing on 

the valid windows prior to the classification process. 
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Figure 5-15. Depth and edge directed car detection results 

Early simulation results for car side-view detection on         images. A polynomial SVM of    reduced-

set vectors is used for classification, (a) Detection using depth and edge information, (b) disparity maps of 

input stereo images, (c) edge-detection results for the input images. 

To illustrate that the proposed approaches could be used in other applications, simulations 

were carried out for car side-view detection for         cropped and resized test images 

from EISATS Set 1 [173] using a window size of       . Some detection results are shown 

in Figure 5-15. The necessary changes done to facilitate the car side-view detection are briefly 

described next. The disparity and edge-detection tasks were carried out with the same 

parameters as face detection, as they do not take any object-specific parameters, while the 

window-extraction process was adjusted for a        window (window size estimation 

parameters, scaling factors for reverse mapping, and number of edges threshold). The 

classifier architecture was adapted to the new training set. A 2
nd

 degree polynomial SVM with 

   reduced-set vectors was utilized. Because of the larger search window size, it was possible 

to increase the disparity search overlap, which resulted in fewer generated windows compared 

to face detection. However, the time needed for classification and edge-pixel accumulation 

increased, as both tasks are dependent on the window size (vector dimensionality). The 
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hardware demands for the SVM classifier also changed because of the increased window size. 

The memory needed was increased, since the reduced-set vectors have higher dimensionality, 

however, the processing resources needed were reduced, as there were fewer reduced set 

vectors. Using the Xilinx synthesis and simulation tools, it was estimated that the expected 

performance for this application could reach up to    FPS for         images. The figure 

is lower than face detection, since the classification time per window, which is the bottleneck 

in the overall computation, was increased. 

5.5 Conclusions 

This chapter presented a search-reduction approach that utilizes depth and edge information 

and its hardware realization on an FPGA, which can be integrated into existing    vision 

systems in order to build efficient, embedded image-analysis systems. The implemented 

object-detection system offers improvements terms of frame rate as the number of windows 

that need to be classifier decreases significantly. Furthermore, the detection accuracy is also 

improved with respect to the sliding window approach, as a lot of windows are discarded, 

through the depth and edge related constraints, prior to the classification process which 

reduces the probability of erroneous classification.  
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CHAPTER 6 

CONCLUSION 

6.1 Overview and Concluding Remarks 

Visual object detection is an important step for many embedded vision applications, such as 

human-computer interaction, surveillance, biomedical imaging, space missions, and 

automobile, that require computing systems with the ability to "see and understand" their 

environment and surroundings through visual means. A key challenge in integrating visual 

object detection in embedded applications is to meet real-time performance constraints. 

Traditional CPUs fail to take advantage of the inherit parallelism of such algorithms due to 

limited computing resources, and so cannot be used for embedded applications. On the other 

hand, the raw computing power of GPUs comes at a cost of higher power consumption which 

makes them unsuitable for embedded applications. FPGAs offer a reasonable trade-off 

between performance, power, and flexibility for the development of hardware architectures 

which can then be ported to ASIC for higher performance and improved power efficiency. 

Hence, this thesis has presented hardware architectures for the acceleration of two of the most 

widely used algorithms for object detection [3], the Viola and Jones detection framework, and 

Support Vector Machines (SVMs). Furthermore, it has also looked at how additional vision 

information in the form of    depth and edges can be used for further acceleration of object 

detection in hardware.  

Overall, it has been demonstrated how utilizing array-based hardware architectures for the 

Viola and Jones detection framework and SVMs can offer the required real-time performance 

through the parallelization of the processing of many search windows, as well as a modular 

and scalable design. In addition, the hybrid architecture for cascade SVMs takes advantage of 

the cascade classification processing flow in order to offer real-time performance. It is also 

coupled with a hardware reduction method which enables scalable design and a meta-learning 

method for further improving performance. Finally, this research has also addressed the design 

of a hardware acceleration that utilizes depth and edge information in order to achieve real-
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time performance by reducing the number of windows generated from the input image, thus 

proposing an effective alternative for the commonly used sliding window search approach.  

As a whole the research conducted in this thesis aims at the design and development of 

novel and generic hardware architectures and design frameworks that will result in more 

efficient and real-time intelligent embedded systems which can be used in a wide range of 

applications. 

6.2 Future Research Directives 

6.2.1 Short Term Research - Pre Processing/Post Processing & Potential Improvements 

There are a number of directions that future research can take in order to improve upon the 

findings of this research thesis. Some of the most interesting steps are mentioned next. 

A. Integrating Features into the Array Processing Architecture for Monolithic SVM 

Good quality features are critical towards achieving robust detection performance. As such, 

the first possible improvement is to integrate preprocessing and feature extraction capabilities 

into the SVM classification array presented in Section 4.2 in order to improve the detection 

accuracy by preprocessing each window prior to classification to compensate for illumination 

variations and noise. These features can either be Haar features [174] or LBP features [70] 

which are computationally efficient or preprocessing in the form of histogram equalization 

which is also a commonly used approach [76]. However, this needs to be done in an efficient 

and rapid manner and with a compact architecture in order to facilitate real-time performance 

and low resource utilization. Hence, such architecture need to either exhibit low latency or 

have a way to overlap the preprocessing delays with other tasks so that the overall 

performance will not be affected.  

Such preprocessing/feature extraction algorithms can be integrated with the array 

architcture through the scan-line register array buffers (Figure 6-1). There are two types of 

feature extraction processes that can be integrated. First, there are histogram-based approaches 

that attempt to normalize the image using statistical information (e.g. histogram), or perform 

some form of illumination compensation. These are global methods and thus need to read the  
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Figure 6-1. Integrating Preprocessing to SVM classification architecture 

There are three ways to introduce preprocessing into the SVM array architectures. (a) Each pixel enters the 

scanline buffer sequentially and is also processed by the respective hardware for histogram generation or 

illumination correction. Once a whole window is loaded and the first pixel will be outputted to the array the 

adjustment parameters will also be ready for processing. (b) Each window is processed independently by the 

mask. The input pixels are loaded into the array and the convolution mask results (center location in the 

preprocessing mask processing array) are outputted to the array. (c) Processing of the mask happens for all 

windows with the same hardware. The results are propagated to the rest of the scan-line buffer and 

subsequently the array. 

 whole window in order to generate the necessary preprocessing information that will use to 

adjust pixel values. Such approaches can be integrated through a coprocessor to process pixel 

values while they are loaded into the scanline buffers. Once, all window values are loaded into 

the scanline buffer and are ready to be outputed, the histogram or adjustement parameters will 

also be ready and hence each pixel value that is loaded out of the scanline buffers and into the 

array is first adjusted based on the histogram parameters. The second approach convolves the 

image using a predetermined mask or operations in order to generate features or enhance the 

image quality. There are two ways to integrate such processes into the processing array, and in 

both cases specific registers are selected to act as input terminals to a preprocessing co-
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processor where the convoloution operation will take place. The first way is to process all 

windows from the same region in the scanline buffer and propagate the results to the rest of 

the scanline buffers. The second is to process the output of each window separately and 

provide the results to the array, while only input pixels will be propagated within the scanline 

buffer. 

B. Online Training for Object Detection Systems 

Learning involves changing the behavior of a model in a way that makes it perform better 

in the future. Thus enhancing the presented classification architectures/algorithms with the 

learning capabilities in order to retrain/adjust their parameters in the "field" opens up new 

possibilities and enhances the adaptability and flexibility of object detection systems to be 

used in dynamic environments and situations. In addition, to being able to improve what has 

been learned at run-time, adaptive training can also allow for a vision system to learn to detect 

new objects. However, there are two main questions that will need to be answered in order to 

achieve this: when will this retraining take place, and how will it be implemented. There are 

different ways that this can be done depending on the classification scenario.  

First, a monolithic classifier is considered which for example can be the monolithic SVM 

classifier from Chapter 4. In general since machine learning approaches do not guarantee 

     correct detection there is no widely accepted method of knowing whether a 

classification is correct or not until it is examined by a human expert. Hence, without external 

supervision the machine learning approach will not be able to reliably readjust its parameters. 

Hence, in this scenario the retraining process must be done offline. To do this the system will 

first need to capture samples which are deemed as difficult, i.e. for which the classification 

result is close to the boundary (for class labels   &    it is around  ). Then a human expert 

will need to intervene in order to correctly label the stored data so that the system can be 

retrained using those samples. This process, given that there are thousands of samples that are 

classified at run time per image, can be time consuming if done regularly. In addition 

collecting samples that belong to the same scene/frame will result to samples that are similar 

without any variability and hence training will be biased. Considering these factors the 

capturing of these samples needs to happen every few frames and only keep a few samples per 

frame. In addition, implementing training algorithms on the same silicon as classification is 
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desirable in order to reduce external memory access and allow for a more autonomous system. 

Hence, there is a lot of potential in exploring a unified training/classification hardware 

architecture.   

The second scenario concerns cascade classification systems where the key difference 

compared to the previous is that the succeeding stage can provide a classification label for the 

data to the previous stage although there is some probability of error as well. As such, every 

succeeding stage can act as a supervisor to the previous stage, and every previous stage can 

then be trained online whenever the classification results between the current stage and the 

supervisor are different. The training process can either involve a simple readjustment the 

classification threshold or more complicated methods where the classification model will need 

to be reevaluated. However, for the latter approach to be feasible the underlying machine 

learning algorithm needs to support on-line training (i.e. training using one sample at a time) 

such as neural networks. Hence, machine learning approaches such as the AdaBoost as well as 

Support Vector Machines which are trained with batch methods, that consider all training 

samples together, require research in different training methods and approaches that support 

on-line model evaluation. 

 

Figure 6-2. Online training of cascade classifiers 

The last stage is used as a supervisor to the previous stages. The training data (weights)/threshold can be 

readjusted using the classification outcome of the succeeding stage. 

C. Hybrid Processing Architecture for Cascade SVM 

The presented architecture targeting cascade SVMs was optimized for the cascade 

classification flow. That is parallel vector element processing for linear SVMs and parallel SV 

processing for non-linear SVMs. The bottleneck in the classification phase was the slower 

sequential processing module which handled processing of multiple SVs a single element at a 
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time. However, additional modules can be integrated into the architecture that offer parallel 

processing of both support vectors as well as vector elements at different degrees in order to 

adapt to different demands and performance bottlenecks.  

Another potential improvement would be to explore the possibilities offered by the neural-

network response processing unit. As it is the unit is trained considering all responses 

collectively with a single neuron which makes the classification process simpler. However, 

better discrimination and classification results can be expected if pairs of classifier responses 

are considered, as this would increase the features and also provide more ways of exploiting 

the different sensitivities of each cascade classifier.  

D. Depth and Edge Accelerated Object Detection 

The presented alternative to the sliding window search based on depth and edge 

information provides an attractive framework on top of which the next generation of object 

detection systems can be developed. However, as the presented study was an initial proof of 

concept there are a number of ways that the overall framework can be improved. First, using a 

cascade classifier can dramatically improve performance. As such, exploring the    depth 

information processing with the AdaBoost approach seems to hold much promise. Second the 

depth computation process relies on edge features to compute the disparity and so the resulting 

disparity map is sparse. Essentially, this implies that some values in the disparity map may be 

erroneous. In order to account for these wrong values it is possible to compute more than one 

window size simultaneously based on slightly different scaling factors (e.g. 

                                   ) which also accounts for slightly different object sizes. 

Finally, the third way the framework can be improved is by altering the edge-based 

background rejection process which is carried out using a fixed predetermined threshold. The 

threshold in the presented experiments was determined empirically using a data set, and hence 

does not account for variations in lighting conditions. To account for this an adapting edge 

threshold can be used instead based on image information such as mean value of pixels and 

variance. Also the framework only accounts for uniform background regions but it is possible 

to enhanced it by adding an adaptive upper edge threshold, following the same methodology, 

in order to discard cluttered and noisy background regions as well.  
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E. Integration with Other Real-Time Vision Tasks 

The real-time implementation of object detection systems can enable new applications and 

additional tasks that can be integrated either before or after the detection phase [1]. Typically, 

these processes are considered independently and not much research has been made to 

integrate them together in the same hardware architecture. There are many benefits stemming 

from such integration. By integrating motion estimation [175] for instance the search space 

involved for object detection will be reduced since it will be possible to predict the movement 

and next location of objects within a frame. Recognition and analysis tasks[1] can also be 

integrated as latter steps to enhance the potential of object detection systems. Analyzing the 

state of an object and recognizing its specific identity from objects of the same class can be 

considered a major step towards more intelligent, aware and autonomous embedded vision 

systems. In contrast to the object detection processes recognition and analysis algorithms 

operate on the detection results which is a substantially smaller portion of the image space. In 

addition they are also based on feature extraction and classification algorithms so in this 

respect similar hardware architectures and approaches can be used for implementation of 

recognition and analysis algorithms.  

6.2.2 Long Term Research 

A. Neuromorphic Visual Processing 

The algorithms concerned in this thesis belong to the fields of computer vision and machine 

learning. These algorithms perform object detection through computational methods which do 

not exhibit similarities with the human visual detection system. However, understanding the 

fundamental mechanisms used in the visual cortex, can enable the design of new vision 

algorithms and hardware fabrics that mimic the visual cortex information processing 

[176],[177]. This paradigm shift is possible through the insights provided by neuroscience in 

the past few years [177], and can be used to design the next generation of vision systems that 

exhibit improved power, faster processing speed, flexibility and higher detection/recognition 

accuracies relative to existing computer vision systems [176]. The advantage of neuromorphic 

vision systems stems from the fact that they are stimulus-driven meaning that they are only 

triggered by significant events which increases their efficiency in term of computations, 
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storage and power. Researchers can engineer these principles into bio-inspired embedded 

vision technologies in two ways. The first is to develop basic processing blocks based on 

spiking neural network CMOS architectures which when connected together will be able to 

mimic the structure and operations of the visual cortex [176], [178]. The second, is through 

understanding of the computational principles and information processing of biological 

systems which will allow the development of computational methods/algorithms that can 

perform equivalent tasks akin to the biological ones, in order to improve the efficiency of 

traditional computer vision methods. One example is saliency estimation [179] which attempts 

to determine visually important parts in an image in order to focus the computation on those 

regions. Another is the use of multimodal image processing [180] in order to improve 

efficiency by extracting relevant features and reducing redundancy. It is anticipated that bio-

inspired neuromorphic vision have the potential to outperform conventional frame-based 

vision approaches and thus can be used to realize advanced functionality like    vision, visual 

feedback loops, and others, in real-time. 

B. Embedding Intelligence in Computing Systems 

Pattern recognition and machine learning are important towards embedding intelligence 

into computing systems for a wide range of applications. The research in the thesis was 

concerned with classification and pattern recognition algorithms targeting visual object 

detection systems. However, the presented architectures, design approaches, and algorithms 

targeting object detection are generic enough so that they can be used for other real-time 

embedded classification applications that are in need for acceleration through hardware 

platforms, and exhibit properties such as regular data access and streaming input data. As such 

the applications that can be targeted by the presented architectures include but are not limited 

to financial prediction applications [181], speech recognition [40], handwritten digit 

recognition [40], communication channel equalization [182] and fault detection in various 

systems [183], as well as other applications from aerospace, and communication to networking 

and broadcasting [184]. Finally, pattern recognition and classification algorithms cannot only 

be used to design intelligent systems but also for the monitoring of intelligent systems as well. 

interestingly, existing approaches can be used to monitor processing systems found on-chip 

[185] in order to determine abnormal system behavior and patterns that indicate the presence 
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of a fault or to predict future events in order to avoid hazards and bottlenecks in processor 

performance. Overall, the presented architectures have the capability to be adapted to the 

needs of the application in terms of data storage and flow, as well as input/output rate 

requirements which enables them to be used in a variety of existing as well as emerging 

applications.  
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APPENDIX A: 

A CASE STUDY FOR EDGE-ACCELERATED OBJECT DETECTION 

Edge information can be used to discard non promising regions, as shown in Chapter 5, 

(image regions that do not exhibit high pixel changes and thus there is a high probability that 

these regions will not contain any useful information), eliminating them from the detection 

process. The edges are extracted from the image by using the Sobel operator, and are then 

used to identify background and non-background regions. In addition to background removal 

edges show the outline of an object, and so they can be used as indication of the size of the 

object as an alternative to sliding window and    information. Consequently, edges can be 

used to construct a window for the object. Each window can then be processed to determine if 

it belongs to the background or not. The classification algorithm then classifies only non-

background regions. This appendix presents a hardware architecture that performs edge-

directed object detection as a low-cost alternative to the traditional sliding window process. 

    

(a) (b) (c) (d) 

Figure A-1. Edge-based window extraction method 

(a) Input Image (b) Compute edge map from input image and find first edge (c) Find second edge and compute 

their distance (d) Use distance to form square window. Then compute candidate window mean and if it 

exceeds a certain threshold send it to classifier 

The first task of the edge-directed object detection algorithm (Figure A-1) is to search for 

edges that may enclose an object and then use them to construct a candidate window. Working 

in a row-wise fashion, this edge search process locates an edge and uses the position of that 

edge as the top-left coordinate of the candidate search window. The algorithm then searches 

for the next edge point at the same row starting from the position that indicates the minimum 

window size until a certain pixel limit. That point is considered as the top-right coordinate of 

the candidate window. The coordinates of the top-left and top-right edge points are next used 
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to extract a candidate search window of square shape. The mean value of the window is 

computed next to identify whether it contains enough information to be considered a non-

background region or not. If the candidate window does not exceed a certain threshold it is 

considered as background and skipped to extract the next candidate-window. Otherwise, the 

corners of the candidate window are used to extract that window from the original image, 

which is in turn given as input to the classification algorithm. 

The proposed hardware architecture (Figure A-2) for edge based object detection consists 

of three major hardware units, the Edge Computation Core (ECC), the Window Extraction 

Unit (WEU) and the Classification Engine (CE). The system also consists of a system 

controller that optimizes accesses to the external memory, controls I/O operation, and 

synchronizes the other major units.  

 

Figure A-2. Edge acceleration system architecture 

The overall operation of the system involves edge computation, candidate window 

extraction, and window classification. The memory controller fetches data from the external 

memory to the ECC in raster-scan fashion, and stores the incoming pixels in the input image 

buffer. The ECC first computes the edge map of the first frame, which is stored in the edge 

map memory, and then the WEU starts the edge-search process, enabling the CE when a valid 

window is found. The ECC and CE are pipelined and thus operate concurrently. However, the 
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ECC only writes to memory regions that are already processed by the WEU to maintain data 

consistency. The system can have multiple CEs operating in parallel to increase performance, 

each controlled by a WEU that searched different rows in the edge map.  

The Edge Computation Core (ECC) integrated to the system implements a flexible and 

scalable Sobel edge detection architecture. It employs hardware features such as parallelism 

and pipelining in an effort to speedup the Sobel operation, and uses optimized memory 

structures in order to reduce accesses to the input image memory. These features enable the 

architecture to obtain frame rates that exceed       FPS for an image size of        . This 

is particularly important, as the time allocated for edge detection must be small enough in 

order to obtain a speedup in the overall operation (edge detection + object detection). 

The Window Extraction Unit (WEU) is responsible for searching for pairs of edges that are 

used to create a candidate window The edge search procedure is carried over by examining 

groups of edges together, rather than focusing on single edge image pixels as in [158], in order 

to take advantage of the parallelism offered by the hardware and speed up the search 

procedure. The WEU is tightly coupled with the ECC and the edge map memory. The WEU 

reads groups of pixels form the edge map memory and passes them through an OR gate which 

if asserted will indicate the presence of an edge. Then the coordinates of the first pixel in the 

group are marked as the coordinates of the top-left-most pixel of the candidate window. If an 

edge is found in the following pixel groups in the same row the coordinates of the first pixel of 

that group are marked as the coordinates of the top-right-most pixel of the candidate window. 

The two marked coordinates are used to form a square candidate window. The candidate 

window belongs to the background region if the number of edges in the window is below a 

certain threshold. Otherwise, the WEU enables the CE and passes it the coordinates of that 

window to begin classification.  

The classification is done using a simple, yet powerful Support Vector Machine (SVM) 

hardware architecture which is a variation of the processing array presented in Chapter 4.2. 

The proposed architecture consists of a chain of processing elements and reflects the 

processing requirements of the SVM computation flow which requires the calculation of a 

kernel function that has both vector and scalar operations. It consists of two types of 

processing elements, one type for the vector operations and one for the scalar operations. 

Chri
sto

s K
yrk

ou



- 190 - 

 

Multiple vector units are pipelined to form a row and allow parallel processing of the training 

data, while a single scalar unit, which is the final pipeline stage, is shared amongst the vector 

units. The SVM architecture is modular and scalable, and thus allows for multiple rows to be 

instantiated all sharing the same training data, and each processing one input window. 

The proposed architecture was implemented using a Xilinx ML505 board (Virtex-5 

LX110T FPGA) as a proof of concept, targeting face detection. The Microblaze soft processor 

was used as the system I/O controller to handle tasks such as memory transfers and external 

I/O. Input images of         pixels were stored on the on-board DRAM, and were used as 

input data to the system. Visual output was directed to a digital monitor, through the on-board 

DVI output. The ECC only adds an overhead of just 2% compared to the sliding window 

system as shown in Table A-1.A test set of            images were used for the evaluation 

of the proposed architecture and detection results are shown in Figure A-3. The training of the 

Support Vector Machine classifier was carried out in MATLAB R2010b using the face detection 

database from [139] and the classifier is able to process windows of       resolution. Two 

different configurations were setup to evaluate the performance of the proposed architecture: 

one utilizing the edge information to find candidate windows, and one using the traditional 

sliding window approach. 

The performance of edge accelerated object detection system is measured by the time 

necessary to compute the edge map of the input image and the time needed by the 

classification engine (in this case SVM) to classify the generated windows from the input 

image. However, since the ECC is capable of very high frame-rates (an order of magnitude 

greater than that of the CE) the bottleneck of the system is the CE. The performance speedups 

when using the edge-directed search and the traditional sliding window search are compared 

observing an average speed up of    . This speedup is primarily attributed to the reduced 

number of windows that are generated and need to be classified. Overall, the sliding window 

process generates      windows achieving       , while the edge directed process classifies 

     windows which results in an average of       . 
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TABLE A-1: CLASSIFICATION SYSTEMS FPGA SYNTHESIS RESULTS 

FPGA Resources 

Logic Elements Embedded 

Multipliers 

DSP48E 

(64) 

Block 

RAMs 

(148) 

Frequency 

(MHz) Slice LUTs 

(69120) 

Slice Registers 

(69120) 

WEU 222 (< 1%) 98 (< 1%) --- --- 

100 

CE 14,385 (20%) 5,197 (8%) 8 (13%) 37 (24%) 

ECC 1,073 (2%) 371 (1%) --- 3 (2%) 

Microblaze 

System 
7,016 (10%) 8,180 (11%) 3 (4%) 48 (33%) 

Sliding Window 

System 
21,401 (30%) 13,377 (20) 11 (17%) 

88 (59%) 
Edge Detection 

System 
22,696 (32%) 13,857 (20%) 11 (17%) 

 

 

Figure A-3. Detection results using edge and compared to sliding window 

Detection accuracy is an important performance metric for object detection systems, and is 

affected by the search method used. In the case of the proposed edge approach the number of 

falsely classified faces (false positives) decreased by     while the number of correctly 

classified faces (true positives) remained relatively the same with only    decrease. The 

reduced number of false positives is attributed to the reduced amount of data that are classified 

compared to the sliding window approach. The reduced true positive rate is due to the absence 

of edges around some objects which does not allow a window to be formed around those 
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objects, and also because there is no clear path between two edges to form a boundary of an 

object. The true positive rate can be improved by using other edge detection algorithms, or by 

searching for edges in neighboring rows as well. Another factor for discrepancies between the 

edge-directed search and sliding window search is that with the latter approach because of the 

gap between successive windows, a window may not be centered on the object and thus the 

object is not fully captured in the window. A way to avoid this is to reduce the window step 

size which, however, increases processing demands so it is a choice of trading-off accuracy 

and performance.  

Experiments were also performed to compare the two configurations in terms of energy 

consumption using the Xilinx 12.4 X-Power Analyzer tool and image data as input to the 

system. Results indicate an approximately     energy reduction in energy per frame which is 

attributed to the lower number of generated windows. 

The results indicate that the hardware overheads for the WEU and ECC are minimal 

(   ), illustrating the potential of the proposed architecture to be used in embedded and 

mobile applications where hardware resources are limited, in order to accelerate the visual 

object detection process. 
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APPENDIX B: 

IMPACT OF FEATURES ON SVM CLASSIFICATION 

This appendix presents results concerning the impact of different features on the resulting 

accuracy using the very popular application of face detection [3] as the benchmark. The 

classifier used for evaluation is a     degree polynomial SVM which has widely been used for 

object detection [76], A standard small-scale face database [139] was used for evaluation 

without any additional samples included or enhancements using bootstrapping. Furthermore, 

full frames where obtained from [147] to also test the results on unknown full         

images. A description of each database is shown below. Finally, the search process involved 

searching   pyramid images and extracting a window every   pixels. 

The presented results do not provide conclusive results and are not meant for absolute 

comparison but rather to demonstrate how features can impact the classification accuracy. 

Another factor that also needs to be considered, especially for embedded applications, is the 

computational complexity of each feature type. The reader is referred to Chapter 2.6.1 for a 

brief overview of each feature extraction algorithm.  

 

 Database: CBCL Face Databse #1 [139] 

o Available Online: http://cbcl.mit.edu/software-datasets/FaceData2.html 

o Training Dataset: 2429 Face Samples | 4548 Non-face Samples 

o Training Test Set: 472 Faces | 23573 Non-face Samples 

o Images scaled to 40×40 pixels from original 19×19 size 

 

 Full Frames Test Database: Bao Face Database [147] 

o Available Online: http://www.facedetection.com/facedetection/datasets.htm 

o Images scaled, cropped and/or resized to fit 320×240 resolution 
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(1) Raw Pixel Values 

Features Original pixel values  Data scaling 0-1 

SVM Kernel Polynomial 
Number of 

support vectors 
454 

Vector 

Dimensionality 
400 

CBCL Test Set Accuracy: 91.8%  

Full Frame Results 

 

Remarks: Using the raw pixel values [98] as input to classification requires no proceprocessing. However, as is 

evident from the full frame results the number of false detections is very high. This happens because of the fact 

that the within class variability is very high, hence illumination changes and pixel intensity variations result in a 

high missclassification rate. The raw pixel values offer an attractive approach, however, the dataset needs to be 

enhanced significantly to achieve better discrimination.  

 

(2) Histogram Equalization 

Features Normalized Pixel Values  Data scaling 0-1 

SVM Kernel Polynomial 
Number of 

support vectors 
361 

Vector 

Dimensionality 
400 

CBCL Test Set Accuracy: 93.6% 

Full Frame Results 

 

Remarks: Histogram equalization [76] is a common preprocessing method for object detection however, it is 

acomputationally intensive task as whole window needs to be processed prior to classification. Furthemore, the 

equalization process may sometimes distort the images resulting in missed detections.  
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(3) Edge Detection 

Features Edge Image Pixel Values  Data scaling 0-1 

SVM Kernel Polynomial 
Number of 

support vectors 
1340 

Vector 

Dimensionality 
400 

CBCL Test Set Accuracy: 86.6% 

Full Frame Results 

1  

 

Remarks: The advantage of using edge features [72] is that the preprocessing is computationally efficient and 

also the classification is done on binary images instead of greyscale. However, the trade-off is that a lot of 

information is lost and so there is a high number of false detections. Instead the edge based classification can be 

used to filter out unnecessary information priot to the final more accurate classification. 

 

(4) Histogram of Oriented Gradients 

Features Histogram Values Data scaling 0-1 

SVM Kernel Polynomial 
Number of 

support vectors 
244 

Vector 

Dimensionality 
128 

CBCL Test Set Accuracy: 94.7% 

Full Frame Results 

 

Remarks: The histogram of oriented gradient [61] features is a powerfool tool that can capture shape 

characteristics of an object thus achieving high accuracy. However, there disadvantage is that they are 

computationally demanding and thus slower than the other approaches. 
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(5) Local Binary Patterns 

Features Histogram Values Data scaling 0-1 

SVM Kernel Polynomial 
Number of 

support vectors 
395 

Vector 

Dimensionality 
400 

CBCL Test Set Accuracy: 95% 

Full Frame Results 

 

Remarks: Local binary patterns [70] analyse the relationships between neighbouring pixels and capture 

histogram information at three different levels. They offer accuracy comparable to histogram of oriented 

gradients but are computationally more efficient and thus may be prefered choice for embedded applications. 
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APPENDIX C: 

A NOTE ON THE HARDWARE IMPLEMENTATION OF ARTIFICIAL NEURAL 

NETWORKS 

A. Artificial Neural Networks 

An artificial neural network (ANN) is an information processing computational system 

inspired by the basic properties of the biological nervous system of the brain [42]. The brain 

learns from experience and so ANNs can also be trained to classify input data into two or 

more categories depending on given training samples. An ANN consists of interconnected 

layers of processing elements called neurons (Figure C-1). The number of layers ranges from 

just one to several depending on the network structure. Direction and density of 

interconnections between layers and neurons may also vary, according to the application, 

depending on whether the network is feed-forward (data flow only moves forward) or 

feedback (output from a next layer neuron is an input to a previous layer neuron). Each of 

these network types can be fully or partially connected. Although there are useful networks 

which contain only one layer, or even one processing element (such as the compact neural 

network in Section 4.3), most applications require networks that contain at least the three 

normal types of layers. 

The core processing element of an ANN, the neuron, can be mathematically modeled as an 

object with   input signals and one output [14]. Each neuron input is assigned a weight value 

during the training phase of the ANN. This weight determines the input’s influence in the 

overall computation. In the neural network structure, neurons perform a multiplication of 

inputs with the respective neuron weights and then perform different operations such as 

accumulation, maximum, minimum or another operation (Figure C-1). Following the weight 

processing, a threshold value is subtracted from the result and it then goes through an 

activation function. Activation functions are used to describe the non-linear output behavior of 

a neuron and to saturate the output within a certain range. The output of the activation function 
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is then propagated to the next layer or the network’s output. Some of the most popular 

activation functions that are used are given below (Table C-1).  

 

(a) 

 

(b) 

Figure C-1. Neural network and neuron model 

(a) An example of a fully connected multilayer neural network (b) Model of a neuron, the basic processing 

element of a neural network 

ANNs are typically trained using the backpropagation algorithm [17] either using the batch 

approach or online training. The weights and threshold values of the neural network are 

determined during this training phase which is typically performed off-line, using existing 
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software training algorithms. The classification operations is typically needed at run-time and 

needs to be performed in real-time. Hence, hardware implementations of neural networks have 

received noticeable interest [186]. The major trade-offs and challenges for the hardware 

implementation of neural networks are discussed next. 

TABLE C-1 COMMON ANN ACTIVATION FUNCTIONS 

                     
      
       

  Equation C-1 

                                  Equation C-2 

              
 

     
 Equation C-3 

B. Hardware Implementation Challenges 

 Training Data Format and Representation 

The ANN training data includes the neuron weights and threshold values. The weights are 

usually real numbers represented in floating point arithmetic. The most common 

representation of the training data for hardware implementation is fixed-point arithmetic. This 

involves associating a specified number of bits to represent the integer value and a specific 

number of bits for the decimal value. Such representation is easier to implement than floating-

point because the multiplication operation is performed in the same way as with integers, thus 

no special floating-point hardware is necessary. The other issue is the precision of the 

representation, finding the optimal number of bits to use in the representation in order to 

minimize the memory requirements and preserve the targeted accuracy rates. The optimal 

number of bits required is usually found through high-level simulations and there have been 

previous attempts in optimal weight precision. All the aforementioned decisions not only 

affect the precision and operation of the ANN but also the memory requirements of the 

algorithm. The weights need to be stored either in an on-chip or on external memory. Ideally, 

the best scenario is to place them in on-chip memories, however, sometimes it can be 

necessary to trade-off accuracy for precision by limiting the number of bits used for 

representation to fit the weights on-chip which would significantly benefit the performance. 

Again, these trade-offs are explored through high level simulations prior to the actual 

implementation. 
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 Algorithm-Specific Operations 

The main and most common operation performed by a neuron is the multiply-accumulate 

(MAC) operation and the calculation of the activation function. Embedded MAC units, also 

readily available in current generations of FPGAs, are used to implement these operations. 

The wiring and interconnect between MAC units determines the data flow and it usually 

mimic that of the neural network structure. Multiplexers and registers are used to facilitate the 

data transfer between processing elements. In addition, an important factor to consider is the 

bitwidth of the accumulation process that will be dedicated for the accumulation result which 

is used as input to the activation function. This depends on the targeted accuracy and can be 

again resolved with high-level simulations. There are a number of possible options in 

implementing the activation function. The first choice is through high-level synthesis resulting 

in the logic structure that directly implements the activation function. However, for functions 

other than the step-function this is complex and would consume a lot of hardware resources 

and in a circuit with high latency. A more hardware-efficient way is to approximate the 

function using piecewise linear approximation, or a look-up table (LUT) to store the activation 

functions results for the input range. A drawback though for the use of LUT’s is that it utilizes 

memory resources and this reduces the available space that is left for the weights and input 

data. The LUT method involves deciding the precision of the stored values in the same 

reasoning as the ANN weights, which is the bit-width and arithmetic representation. 

Obviously, certain properties of the activation function such as symmetry, saturation and 

oddity could be exploited. Resource sharing can be utilized as well, by sharing the LUT 

memory between neurons that complete their MAC operation in different times. 

 Opportunities for parallelism 

ANN’s provide a lot of opportunities for parallelism because of their parallel processing 

capabilities, especially in feed-forwards networks. Each neuron in one layer performs 

independently form the others, so all neurons in that layer can process data in parallel. 

Furthermore a neuron may process more than one input at the same time. This is determined 

by the number of available hardware resources and how they can be distributed for the 

neurons in the network. ANNs can have a variety of topologies which affects the amount of 

parallelism that can be achieved and the data flow. A fully connected network operates slower 
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than a partially connected network because there is more dependency between layers in fully 

connected networks. As the ANN connectivity increases, the network becomes increasingly 

demanding in terms of the required communication between neurons. Communication 

becomes the bottleneck in the implementation, as the wiring and interconnectivity increase the 

design complexity. This is further elevated on FPGA designs, as their routing and wiring are 

fixed. Hence, hardware implementations of ANNs could significantly benefit from the 

Network on Chip paradigm [187].  
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