
 7

T I T L E PA G E (INSID E PA G E)

D EPA R T M E N T O F []

[D O C T O R A L T H ESIS T I T L E]

[F U L L N A M E O F D O C T O R A L C A NDID A T E]

A Dissertation Submitted to the University of Cyprus in Partial
Fulfillment of the Requirements for the Degree of Doctor of

Philosophy

[Month and Year of PhD submission]

DEPARTMENT OF ELECTRICAL AND

COMPUTER ENGINEERING

A BIOINSPIRED SYSTEM FOR
ACOUSTIC SCENE ANALYSIS

GUILLAUME GARREAU

A Dissertation Submitted to the University of Cyprus in Partial

Fulfillment of the Requirements for the Degree of Doctor of

Philosophy

March 2014

Guil
lau

me G
arr

ea
u

c©Guillaume Garreau, 2014

Guil
lau

me G
arr

ea
u

VALIDATION PAGE

Doctoral Candidate: Guillaume Garreau

Doctoral Thesis Title: A Bioinspired System for Acoustic Scene Analysis

The present Doctorate Dissertation was submitted in partial fulfillment of the requirements

for the Degree of Doctor of Philosophy in the Department of Electrical and Computer En-

gineering, and was approved on March 10th, 2014 by the members of the Examination

Committee.

Examination Committee:

Committee Chair
Marios Polycarpou, Ph.D.

Research Supervisor
Julius Georgiou, Ph.D.

Committee Member
Constantinos Pitris, Ph.D, M.D.

Committee Member
Chris Christodoulou, Ph.D.

Committee Member
Giacomo Indiveri, Ph.D.

iii

Guil
lau

me G
arr

ea
u

iv

Guil
lau

me G
arr

ea
u

The present Doctoral Dissertation was submitted in partial fulfillment of the

requirements for the degree of Doctor of Philosophy of the University of Cyprus.

It is a product of original work of my own, unless otherwise mentioned through

references, notes, or any other statements.

..

..

v

Guil
lau

me G
arr

ea
u

vi

Guil
lau

me G
arr

ea
u

Περίληψη

Η ακουστική ανάλυση χωρικού πεδίου είναι ένα αχανές ερευνητικό πεδίο το οποίο πα-

ραδοσιακά επικεντρώνεται στην αναγνώριση του ήχου στο ακουστικό φάσμα καθώς και

στον τρόπο με τον οποίο ο εγκέφαλος διαχωρίζει και ταξινομεί τις διάφορες πηγές ήχου

σε σημασιολογικά αντικείμενα. Οι προγενέστερες έρευνες επικεντρώθηκαν εύλογα κυ-

ρίως στο ακουστικό φάσμα, που είναι και το πιο οικείο στους ανθρώπους. Το ακουστικό

φάσμα εμπεριέχει, την ανθρώπινη επικοινωνία, το θόρυβο των αυτοκινήτων, τον άνεμο, τα

κελάιδισμα των πουλιών, το γάβγισμα των ζώων, το μουγκρητό, το σφύριγμα. . . και οι

γλώσσες μας είναι πλούσιες στο να τα περιγράφουν όλα αυτά [99,245].

Ωστόσο, πολλές πληροφορίες περιέχονται και σε άλλα συχνοτικά φάσματα, όπως το

φάσμα των υπερήχων και το φάσμα των πολύ χαμηλών συχνοτήτων (σεισμικό φάσμα).

΄Ενα παράδειγμα είναι οι νυχτερίδες και τα δελφίνια που ως γνωστό χαρακτηρίζονται α-

πό την ικανότητα τους να εντοπίζουν και να αρπάζουν την τροφή τους αναδίδοντας και

λαμβάνοντας υπερήχους. Αρκετά είδη πουλιών, τα ποντίκι, τα ψάρια και τα έντομα με πα-

ρόμοιο τρόπο κυνηγούν τη λεία τους, βρίσκουν ταίρι και επικοινωνούν μέσω υπερήχων. Οι

δονήσεις χαμηλών συχνοτήτων χρησιμοποιούνται από τους σκορπιούς κατά τη νυκτερινή

αναζήτηση σκουληκιών.

΄Εχουν την ικανότητα να ανιχνεύουν μετατοπίσεις την άμμου της τάξης του 0.1nm και

να εντοπίζουν την κατεύθυνση του θηράματος τους [218]. Επιπλέων, οι ελέφαντες με το

κτύπημα του ποδιού τους στο έδαφος, αναδίδουν και λαμβάνουν σεισμικές δονήσεις στο

φάσμα 10Hz-40Hz, καθιστώντας έτσι δυνατή την επικοινωνία τους σε απόσταση μέχρι

και 16km [181]. Τέλος, οι φάλαινες χρησιμοποιούν χαμηλές συχνότητες της τάξης των

14Hz αναδίδοντας με ένταση που ξεπερνά τα 180dB re 1µPa στο 1m, για την επικοινωνία

τους σε μεγάλες αποστάσεις (1600km) [246].

Το παρουσιασθέν ερευνητικό έργο χρησιμοποιεί ένα ευρύ ακουστικό φάσμα συχνο-

τήτων, για την εξαγωγή πληροφοριών που αφορούν ένα χωρικό πεδίο. Μέρος αυτής

της εργασίας εμπεριέχει τη δόμηση ενός πρωτότυπου συστήματος συλλογής ακουστικών

vii

Guil
lau

me G
arr

ea
u

δεδομένων αφού δεν υπάρχει εμπορικά διαθέσιμο σύστημα που να έχει τη δυνατότητα

να λειτουργεί σε ένα τόσο ευρύ συχνοτικό φάσμα, χρησιμοποιώντας πολλαπλούς διανε-

μημένους αισθητήρες και διατηρώντας ακριβές συγχρονισμό και υψηλή δυναμική περιοχή.

Επιπρόσθετα, το εν λόγω σύστημα σχεδιάστηκε με νευρο-μορφική προσέγγιση καθιστών-

τας δυνατή τη υλοποίηση βιο-εμπνευσμένων μοντέλων σε επίπεδο υλικού χρησιμοποιώντας

διατάξεις πεδιακά προγραμματιζομένων πυλών (FPGAs) που βρίσκονται στις θυγατρικές

κάρτες που είναι τοποθετημένες στους ακουστικούς κόμβους. Επιπλέων, αναπτύχθηκα-

ν/εφαρμόστηκαν ποικίλοι βιο-εμπνευσμένοι αλγόριθμοι, για την επεξεργασία των δεδο-

μένων που συλλέχθηκαν και την δημιουργία σημασιολογικών ακουστικών αντικειμένων.

Τέλος, αυτά τα ακουστικά αντικείμενα ταξινομούνται και διαβαθμίζονται αυτόματα μέσω

του συστήματος ακουστικής ανάλυσης χωρικού πεδίου σε πραγματικό χρόνο.

Επισκόπηση Κεφαλαίων

Το Κεφάλαιο 1 εξηγεί το λόγο για τον οποίο η ακουστική ανάλυση χωρικού πεδίου είναι

σημαντική καθώς και το λόγο για τον οποίο η νευρο-μορφική τεχνολογία δύναται να

καταστήσει εφικτή την ανάπτυξη γρηγορότερων, λιγότερο ενεργοβόρων και ισχυρότερων

συστημάτων ακουστικής επεξεργασίας.

Το Κεφάλαιο 2 περιγράφει τη σχεδίαση του βιο-εμπνευσμένου συστήματος συλλογής

ακουστικών δεδομένων, παρουσιάζει την λύση που εφαρμόστηκε για την ανάπτυξη του

υλικού και αποδεικνύει τις μοναδικές του ικανότητες για υψηλού συγχρονισμού πολυκάνα-

λη συλλογή δεδομένων. Το εν λόγω σύστημα επιτρέπει την υλοποίηση βιο-εμπνευσμένων

μοντέλων σε επίπεδο υλικού.

Το Κεφάλαιο 3 δείχνει ότι χρησιμοποιώντας υλικό ακουστικής συλλογής δεδομένων

και σεισμικών ήχων, δύναται να εντοπιστεί και να ακολουθηθεί ένα άτομο που βαδίζει.

Για το σκοπό αυτό χρησιμοποιείται ένα μοντέλο βασισμένο σε παλμικό νευρωνικό δίκτυο.

Το Κεφάλαιο 4 δείχνει ότι χρησιμοποιώντας υλικό ακουστικής συλλογής δεδομένων

και υπερήχους δύναται να ταυτοποιηθούν άτομα, το μέσο διακίνησης τους καθώς και να

ταυτοποιηθεί το φύλο τους και να διαβαθμιστούν ποικίλες δράσεις αυτών.

Το Κεφάλαιο 5 παρουσιάζει ένα απλοποιημένο μοντέλο της ακουστικής οδού (βασική

μεμβράνη και θαλαμο-φλοιώδεις δίκτυο) και παρουσιάζει τα αποτελέσματα της εφαρμογής

του εν λόγω μοντέλου σε μερική υλοποίηση υλικού σε διατάξεις πεδιακά προγραμματιζο-

μένων πυλών (FPGAs), λαμβάνοντας τα δεδομένα με συνεχές ροή πραγματικού χρόνου

από το εξατομικευμένο υλικό που παρουσιάστηκε.

viii

Guil
lau

me G
arr

ea
u

Το Κεφάλαιο 6 δείχνει την υλοποίηση ενός πολυτροπικού συστήματος που συγχωνεύει

ετερογενή ακουστικά δεδομένα, ο οποίος τείνει να αυξάνει την επίδοση των λειτουργιών

αναγνώρισης και ταξινόμησης, συγκρινόμενο με μονοτροπικά συστήματα.

Τέλος, το Κεφάλαιο 7 κλίνει τη διατριβή και διερευνά μελλοντικές κατευθύνσεις για

την εν λόγω έρευνα.

ix

Guil
lau

me G
arr

ea
u

x

Guil
lau

me G
arr

ea
u

Abstract

Acoustic scene analysis is a vast field that traditionally focuses on sound recognition

in the audible range and on how the brain segregates and classifies different sound

sources into meaningful objects. Previous research has mainly been focused on the

audible range, since this is the most familiar to humans. It is filled with human

communication, cars noises, wind, birds songs, animals barking, roars, whistles...

and our languages are rich in words to describe them all [99, 245].

A lot of information however is also contained in other frequency ranges, such as

the ultrasonic range and the very-low frequency range (seismic range). For example,

bats and dolphins are well known for their ability to locate and catch food through

ultrasonic vocalisation and reception. Similarly, several bird species, mice, fish and

insects also hunt for prey, find a mate, or communicate through ultrasonic sounds.

Low-frequency vibrations are used by sand scorpions to find worms at night. They

can detect variations in sand as small as 0.1nm and pinpoint the direction of their

prey [218]. Furthermore, elephants communicate up to 16km away [181] by stamping

their legs on the ground to ‘vocalise’ and ‘listening’ for seismic vibrations through

their legs, in the 10Hz-40Hz range. Finally, whales use frequencies as low as 14Hz

to communicate over huge distances (1600km) by vocalising at volumes that exceed

180dB re 1µPa at 1m [246].

The presented research utilizes a broad acoustic frequency range in order to ex-

tract information about a scene. Since there is no commercially available hardware

that can tackle such a broad frequency range from multiple distributed sensors and

maintain accurate timing, whilst maintaining a very high dynamic range, part of

this work involved building a unique acoustic data collection system. In addition,

this system was designed with neuromorphic applications in mind and thus al-

lows hardware implementation of bioinspired models through FPGAs contained on

daughterboards mounted on the acoustic nodes. Furthermore, various bioinspired

xi

Guil
lau

me G
arr

ea
u

algorithms were developed/implemented, to process the collected data and to create

meaningful auditory objects. Finally, these objects were automatically classified as

part of a real-time auditory scene analysis system.

Overview of the chapters

Chapter 1 explains why acoustic scene analysis is important and why neuromorphic

technology can enable the development of faster, more energy efficient and powerful

acoustic processing systems.

Chapter 2 describes the design of the bioinspired hardware for the acoustic data

collection system, presents the solution developed and proves its unique capabil-

ities for highly synchronized multi-channels data collection. This system allows

hardware implementation of bioinspired model.

Chapter 3 shows that using the acoustic data collection hardware and seismic

sounds one can locate a person walking and follow it. A sand-scorpion based

spiking neuron network model is used.

Chapter 4 shows that using the acoustic data collection hardware and ultrasonic

sounds one can identify individuals, their mode of transport, discriminate their

gender and classify various actions.

Chapter 5 presents a simplified model of the auditory pathway (basilar mem-

brane and thalamocortical network) and show the results of the partial hardware

implementation of this model on FPGA, streaming the data in real-time from the

custom hardware previously presented.

Chapter 6 shows that multimodal sensory fusion has been implemented on acous-

tic data collected and is shown to increase the performance of recognition and clas-

sification tasks, in comparison to single mode systems.

Finally, Chapter 7 concludes the thesis and future directions of this area are

discussed.

xii

Guil
lau

me G
arr

ea
u

Acknowledgement

After four and a half years of hard work under the welcoming sun of Cyprus, it is

time to finish my PhD thesis and thank all those who assisted, advised and supported

me during this wonderful adventure. I hope I will not forget anyone.

First and foremost I would like to thank my PhD supervisor Julius Georgiou who

taught me so much during the last four years, he has been a great teacher, patient

guide and a friend too. I am glad I had the opportunity to meet him and work with

him.

I would like to especially thank Charalambos Andreou, fellow master student,

that invited me to apply for a position in the lab, without him I would have never

thought about coming to Cyprus for a PhD program. On several occasions he helped

me to debug some of the boards and also helped populate some of the hardware

units.

I would like to thank all the researchers (Nicoletta Nicolaou, Horacio Rostro-

Gonzalez and Adrian Romiński), PhD candidates (Panayiota Demosthenous, Char-

alambos Andreou, Evripides Kyriakides, Guillermo Stuarts and Christopher Beck)

and undergraduate students/trainees (Eleni Proxenou and Cyrille D’Urbal), who

supported me in good and bad times! A special mention to Nicoletta for her endless

help in proof reading (papers and PhD thesis) and her help for the data processing

with the autoregressive modeling. Horacio Rostro-Gonzalez and Adrian Romiński

closely collaborated to the cochlea and the thalamocortical model hardware imple-

mentation. Eleni Proxenou participated as her undergraduate project to the initial

modifications of the scorpion spiking neuron network model.

I would like to thank also the University of Cyprus and the KIOS research center

for providing a pleasant, comfortable, and inspiring work environment. Of special

mention our two wonderful Administrative Assistants, Skevi Chrysanthou and De-

spina Petrou and IT Antonis Antoniou, who I know got mad a few times during my

xiii

Guil
lau

me G
arr

ea
u

computer emergencies...

I would like to thank all the partners of the EU FP7 project SCANDLE that

provided a lot of support and motivation for many aspects of my PhD. In particular,

I would like to acknowledge Salvador Dura-Bernal for his close collaboration in the

data collection (treadmill experiment) and the fusion of active and passive acoustic

data.

I would also like to thank the members of the Sensory Communication and

Microsystems Laboratory, Johns Hopkins University, Baltimore (USA). I learnt a

lot from them through a fruitful partnership and I felt especially welcome on both

visits to the USA in 2010. In particular I would like to thank Professor Andreas G.

Andreou, Dr. Philippe Pouliquen, Dr. Andrew Cassidy, Thomas Murray, Joseph Lin

and Sean McVeigh. Philippe provided his valuable expertise and close collaboration

in the design of the hardware solution and testing of the synchronization solution.

Thomas helped in the testing and tuning of the synchronization solution.

Also my interest in doing research was given during my master internship at

the MESA+ Institute for Nanotechnology at the University of Twente in Enschede

(NL) and a special thank to my supervisors Professor Niels Tas and Dr. Sandeep

Unnikrishnan. As well during my master thesis at the Biomedical Signals and

System Lab at the University of Twente with Professor Wim L. C. Rutten and all the

members of the team.

I would like to thank as well all my friends, futsal teammates, flatmates, Couch-

surfers and InterNations members from all other the world and the places I have

been studying and working, for all the good moments, the laughs and the support.

Special mention to Ainura, Alina, Anne-Lise, Anton, Benoı̂t, Bogdan, Chloé, Diana,

Dimitar, Elsa, François, Frédéric, Guillaume GL, Julien D., Julien G., Lucas, Malick,

Marios, Mohamed, Nina, Sadique, Salvador, Seyla, Sina, Sophie, Tanya M., Tanya T.,

Tatiana, Zhon: Merci!

Last but not least, I want to thank my parents, Marie-Dominique and François,

my brother and sisters, Astrid, Hélène, Sophie, Stanislas and Marie-Liesse, and my

grand-mother Marie-Thérèse, for their love and support and especially for the time

home during the last summer during which they spoiled me while I was initiating

the writing of the PhD thesis. I love you!

To all and to those I did not mention MERCI...

xiv

Guil
lau

me G
arr

ea
u

Publications

Book chapters

1. S. Dura-Bernal, G. Garreau, C. M. Andreou, A. G. Andreou, J. Georgiou, T.

Wennekers, and S. Denham, “Human Action Categorization Using Ultrasound

Micro-Doppler Signatures,” 2nd International Workshop on Human Behavior Un-

derstanding (HBU), Lecture Notes in Computer Science (LNCS) 7065, 18-28, 2011.

Published journal publications

1. T. M. Böhm, L. Shestopalova, A. Bendixen, A. G. Andreou, J. Georgiou, G.

Garreau, P. Pouliquen, A. Cassidy, S. L. Denham and I. Winkler, “The Role of

Perceived Source Location in Auditory Stream Segregation: Separation Affects

Sound Organization, Common Fate Does Not,” Learning and Bistable Perception

special issue of Learning and Perception, Vol. 5, No. 2, 55-72, June 2013.

2. S. Dura-Bernal, G. Garreau, J. Georgiou, A.G. Andreou, S.L. Denham, and T.

Wennekers, “Multimodal Integration of Micro-Doppler Sonar and Auditory

Signals for Behaviour Classification with Convolutional Networks,” Interna-

tional Journal of Neural Systems, Vol. 23, No. 5, October 2013.

3. L. Shestopalova, T. M. Böhm, A. Bendixen, A. G. Andreou, J. Georgiou, G.

Garreau, B. Hajdu, S. L. Denham and I. Winkler, “Do Audio-Visual Motion

Cues Promote Segregation of Auditory Streams?,” Frontiers in Neuroscience,

Auditory Cognitive Neuroscience,Vol. 8, No. 64, 1-11, April 2014.

Published conference proceedings

1. G. Garreau, Eleni Proxenou, Andreas G. Andreou and Julius Georgiou, “Person

Localization Through Ground Vibrations using a Sand-Scorpion Inspired Spik-

ing Neural Network,” Proceedings of the 47th Annual Conference on Information

Sciences and Systems (CISS), 1-4, 2013.

xv

Guil
lau

me G
arr

ea
u

2. G. Garreau, N. Nicolaou and J. Georgiou, “Individual Classification Through

Autoregressive Modelling of Micro-Doppler Signatures,” Proceedings of the

IEEE Biomedical Circuits and Systems Conference (BioCAS), 312-315, 2012.

3. H. Rostro-Gonzales, G. Garreau, A. G. Andreou, J. Georgiou, J.H. Barron-

Zambrano and C. Torres-Huitzil, “An FPGA-Based Approach for Parameter

Estimation in Spiking Neural Networks,” Proceedings of the IEEE International

Symposium on Circuits and Systems (ISCAS), 2897-2900, 2012.

4. G. Garreau, C. M. Andreou, A. G. Andreou, J Georgiou, S. Dura-Bernal, T.

Wennekers and S. Denham, “Gait-Based Person and Gender Recognition Us-

ing Micro-Doppler Signatures,” Proceedings of the IEEE Biomedical Circuits and

Systems Conference (BioCAS), 444-447, 2011.

5. S. Dura-Bernal, G. Garreau, C. M. Andreou, A. G. Andreou, J. Georgiou, T.

Wennekers, and S. Denham, “Human Action Categorization Using Ultrasound

Micro-Doppler Signatures,” Proceedings of the 2nd International Workshop on Hu-

man Behavior Understanding (HBU), 2011.

6. G. Garreau, N. Nicolaou, C. M. Andreou, C. D′Urbal, G. Stuarts and J. Geor-

giou, “Computationally Efficient Classification of Human Transport Mode Us-

ing Micro-Doppler Signatures,” Proceedings of the 45th Annual Conference on

Information Sciences and Systems (CISS), 1-4, 2011.

7. P. O. Pouliquen, A. Cassidy, A. G. Andreou, G. Garreau and J. Georgiou, “A

Wireless Architecture for Distributed Sensing/Actuation and Pre-Processing

with Microsecond Synchronization,” Proceedings of the 45th Annual Conference

on Information Sciences and Systems (CISS), 1-6, 2011.

8. J. Georgiou, P. Pouliquen, A. Cassidy, G. Garreau, C. Andreou, G. Stuarts, C.

d′Urbal, S. Denham, T. Wennekers, R. Mill, I. Winkler, T. M. Böhm, O. Szalárdy,

G. M. Klump, S. Jones, A. Bendixen and A. G. Andreou, “A Multimodal-Corpus

Data Collection System for Cognitive Acoustic Scene Analysis,” Proceedings of

the 45th Annual Conference on Information Sciences and Systems (CISS), 1-6, 2011.

xvi

Guil
lau

me G
arr

ea
u

Contents

1 Introduction 1

1.1 Why acoustic scene analysis? . 1

1.1.1 Scene Analysis . 1

1.1.2 Acoustic scene analysis . 3

1.2 Why bioinspired systems? . 4

1.2.1 “Brick Wall” . 4

1.2.1.1 “Moore’s Law” and “Dennard Scaling” 4

1.2.1.2 “Power Wall” . 6

1.2.1.3 “ILP Wall” . 9

1.2.1.4 “Memory Wall” . 13

1.2.1.5 “Dark silicon” or “Utilisation Wall” 15

1.2.2 Solutions to the “Brick Wall” 16

1.2.2.1 Quantum computer 17

1.2.2.2 DNA computing . 17

1.2.2.3 Dynamic scaling . 17

1.2.2.4 CPU on DRAM . 18

1.2.2.5 ASIC, FPGA and GPU 19

1.2.2.6 3D chip . 20

1.2.2.7 Carbon nanotube-based Integrated Circuit (IC) . . . 22

1.2.2.8 Neuromorphic computing 22

1.2.3 Conclusion . 25

2 Instrumentation for Acoustic Data Acquisition 29

2.1 Introduction . 29

2.2 State of the art acquisition systems . 30

2.2.1 Multi modal data acquisition 30

xvii

Guil
lau

me G
arr

ea
u

2.2.2 Existing synchronization solutions 31

2.2.3 Additional requirements . 33

2.3 Custom built acoustic data acquisition unit 35

2.3.1 Specifications and trade-offs . 36

2.3.1.1 Multichannel recordings 37

2.3.1.2 Parallel processes . 37

2.3.1.3 Dynamic range . 37

2.3.1.4 Trade-off between performance and sensing range . 38

2.3.1.5 Safety requirement 39

2.3.1.6 Data storage . 39

2.3.1.7 Sampling . 39

2.3.1.8 Pre-processing . 39

2.3.1.9 Design technology . 40

2.3.2 Actual design . 40

2.3.2.1 Synchronization considerations 40

2.3.2.2 FM transmitter . 42

2.3.2.3 FM receiver . 42

2.3.2.4 FM SYNC unit . 45

2.3.2.5 DACQ unit . 47

2.3.3 Hardware testing . 54

2.3.3.1 Analog pattern synchronization test 55

2.3.3.2 Digital pattern synchronization test 58

2.4 Conclusion . 61

3 Scorpion-inspired LF Acoustic Wave Analysis 65

3.1 Introduction . 65

3.2 Scorpion bioinspired model literature 66

3.2.1 Original neural model . 67

3.2.2 Adaptations of the Brette implementation 69

3.2.3 Real implementation issues of the Stürzl et al. Model 70

3.3 Data collection . 72

3.3.1 Data collection setup . 72

3.3.2 Data processing . 76

3.3.3 Data collection results . 79

xviii

Guil
lau

me G
arr

ea
u

3.3.4 Comparison with a time of arrival approach 81

3.4 Conclusion . 82

4 Ultrasonic Range Acoustic Scene Analysis 87

4.1 Introduction . 87

4.1.1 Doppler effect . 87

4.1.2 A little bit of history . 89

4.1.3 Previous work with ultrasound 90

4.2 Bioinspired model literature . 91

4.2.1 Evidence of spectro-temporal brain processes 91

4.2.2 Mode of transport classification 92

4.2.3 Gender and individual recognition 93

4.2.4 Action classification . 94

4.2.5 Individual recognition with AR model 94

4.3 Data collection . 95

4.3.1 Mode of transport classification 95

4.3.1.1 Data collection setup 95

4.3.1.2 Data processing . 95

4.3.1.3 Results . 100

4.3.2 Gender and individual recognition 102

4.3.2.1 Data collection setup 102

4.3.2.2 Data processing . 102

4.3.2.3 Results . 107

4.3.3 Action classification . 112

4.3.3.1 Data collection setup 112

4.3.3.2 Data processing . 112

4.3.3.3 Results . 112

4.3.4 Individual recognition with AR model 117

4.3.4.1 Data collection setup 117

4.3.4.2 Data processing . 117

4.3.4.3 Results . 119

4.4 Conclusion . 125

xix

Guil
lau

me G
arr

ea
u

5 Towards an FPGA-based Auditory Pathway Implementation 129

5.1 Introduction . 129

5.2 Bioinspired model literature . 135

5.2.1 Cochlea filter bank . 135

5.2.2 Thalamocortical model . 137

5.3 Data collection . 140

5.3.1 Hardware simulation of full implementation with Handel-C . 141

5.3.2 Hardware implementation of the cochlea filter bank 149

5.3.3 Comparison of hardware and software implementation of the

cochlea filter bank . 153

5.3.4 Hardware implementation of the TC model 156

5.3.5 Comparison of FPGA-based and hybrid analog/digital VLSI-

based hardware implementation of the TC model 166

5.4 Conclusion . 170

6 Multimodal Sensory Fusion 173

6.1 Introduction . 173

6.2 Bioinspired model literature . 175

6.2.1 ConvNets: overview . 175

6.2.2 ConvNets: stage by stage . 176

6.2.2.1 Pre-processing . 176

6.2.2.2 Classifier . 177

6.2.3 ConvNets: parameters values 179

6.2.3.1 Micro-Doppler data 179

6.2.3.2 Auditory data . 180

6.2.3.3 Learning . 183

6.2.3.4 Multimodal integration 184

6.2.4 ConvNets: real-time . 185

6.3 Data collection . 186

6.3.1 Performance . 186

6.3.2 Discussion of results . 189

6.3.3 Robustness . 190

6.3.4 Comparison with other classification algorithms 191

6.3.5 Comparison with other work 194

xx

Guil
lau

me G
arr

ea
u

6.4 Conclusion . 196

7 Conclusions 199

7.1 Summary . 199

7.2 Future work . 201

7.3 Contributions . 201

Bibliography 203

A VHDL and UCF Scripts 227

B Matlab R© Scripts 293

C Python R© Scripts 297

D Synchronization & Phase-Lock 305

E DACQ frames data format 313

F Handel-C Scripts of Auditory Pathway Implementation 319

xxi

Guil
lau

me G
arr

ea
u

xxii

Guil
lau

me G
arr

ea
u

List of Acronyms and Abbreviations

AASP Audio and Acoustic Signal Processing

ADC Analog-to-Digital Converters

AER Address Event Representation

AM Amplitude Modulation

AR Autoregressive Model

ASA Acoustic or Auditory Scene Analysis

ASIC Application Specific Integrated Circuit

ASIP Application-Specific Instruction-set Processor

ASU Acoustic Surveillance Unit

BCSS Basitarsal Compound Slit Sensilla

BNC Bayonet-Neil-Concelman or British Naval Connector

BRAIN Brain Research through Advancing Innovative Neurotechnologies

CASA Computational Acoustic or Auditory Scene Analysis

CD Contrastive Divergence

CDBN Convolutional Deep Belief Network

CISC Complex Instruction Set Computer

CMOS Complementary Metal Oxide Semiconductor

ConvNets Convolutional Neural Networks

CPU Central Processing Unit

xxiii

Guil
lau

me G
arr

ea
u

CW Continuous Wave

DAC Digital-to-Analog Converters

DACQ unit Data Acquisition unit

DCM Digital Clock Manager

DCM Dynamic Causal Modeling

DNA Deoxyribose Nucleic Acid or Deoxyribonucleic Acid

DRAM Dynamic Random Access Memory

DSNN Dynamic Synapse Neural Network

DSP Digital Signal Processor

EM Electro-Magnetic wave

EM Expectation-Maximization algorithm

FFT Fast Fourier Transform

FLOPS FLoating-point Operations Per Seconds

FM Frequency Modulation

FM SYNC unit Frequency Modulation Synchronization unit

FP7 Seventh Framework Programme for Research and Technological Develop-

ment

FPE Final Prediction Error

FPGA Field Programmable Gate Array

GMM Gaussian Mixture Model

GPS Global Positioning System

GPU Graphic Processing Unit

HF High Frequency

I&F Integrate and Fire

xxiv

Guil
lau

me G
arr

ea
u

IC Integrated Circuit

ICA Independent Component Analysis

ICP Integrated Circuit Piezoelectric

IEEE Institute of Electrical and Electronics Engineers

IFR Instantaneous Frequency Reassigned

IIR Infinite Impulse Response

ILP Instruction Level Parallelism

ITD Interaural Time Delay

kNN k-Nearest Neighbour

LAN Local Area Network

LF Low Frequency

LMS Least Mean-Square

LOO Leave-One-Out

LUT Look-Up Table

MCC Maximum Correlation Coefficient

mD micro-Doppler

MEMS Micro Electro-Mechanical Systems

MFCC Mel-Frequency Cepstral Coefficients

MOS Metal Oxide Semiconductor

MOSFET Metal Oxide Semiconductor Field-Effect Transistor

NTP Network Time Protocol

PAMR Professional Amateur Mobile Radio

PBCH Physical Broadcast Channel

PCB Printed Circuit Board

xxv

Guil
lau

me G
arr

ea
u

PLL Phase-Locked Loop

PMR Professional Mobile Radio

PSC Post Synaptic Current

PSD Predictive Sparse Decomposition

PTP Precision-Time-Protocol

RBS Reference-Broadcast Synchronization

RC Resistor Capacitor

RF Radio Frequency

RISC Reduced Instruction Set Computer

ROI Regions of Interest

RSSI Received Signal Strength Indicator

RTSI Real-Time System Integration

SAR Synthetic Aperture RADAR

SCANDLE acoustic SCene Analysis for Detection of Living Entities

SGA Spatial-Gradient Algorithm

SGD Stochastic Gradient Descent

SNN Scorpion Neural Network

SNR Signal to Noise Ratio

SoC System on Chip

SOI Silicon On Insulator

SONAR SOund Navigation And Ranging

SPL Sound Pressure Level

SSD Sensory Substitution Device

STDP Spike Timing Dependent Plasticity

xxvi

Guil
lau

me G
arr

ea
u

STFT Short-Time Fourier Transform

SVM Support Vector Machine

SyNAPSE Systems of Neuromorphic Adaptive Plastic Scalable Electronics

TC ThalamoCortical

TCXO Temperature Controlled Crystal Oscillator

ToA Time of Arrival

TOMI Thread-Optimized Multiprocessor Instruction

UCF User Constraints File

UCY University of CYprus

UFTRX Ultrasonic Frequency TRansceiver

UNIX Uniplexed Information and Computing System

USB Universal Serial Bus

VHDL VHSIC Hardware Description Language

VHF Very High Frequency

VHSIC Very High Speed Integrated Circuit

VLSI Very-Large-Scale Integration

Wi-fi Wireless-Fidelity

xxvii

Guil
lau

me G
arr

ea
u

xxviii

Guil
lau

me G
arr

ea
u

List of Figures

1.1 Number of transistors per processor core and main innovation mile-

stones (adapted from [130]). 5

1.2 Number of transistors per processor core and technological revolution

milestones (from [110]). 6

1.3 History of Intel chip introductions by clock speed and number of

transistors (adapted from [222]). 7

1.4 Increase of power consumption with frequency (from [71]). 8

1.5 Power density trend (adapted from [130]). 9

1.6 Four steps pipelined multiplier (adapted from [88]). 10

1.7 RISC five-stage pipeline (adapted from [88]). 11

1.8 Comparison of speed of access of the different types of memory

(adapted from [242]). 12

1.9 Performance versus the number of nodes in the multicore (from [180]). 14

1.10 Overview of the methodology and the models to project the perfor-

mances of future multi-cores (from [80]). 16

1.11 Cost of 1 billion transistors built with microprocessor or memory

technological process (adapted from [87]). 19

1.12 Comparison of the characteristics of the different types of memory

(adapted from [2]). 20

1.13 Comparison of flexibility versus efficiency of the different types of

processors (adapted from [142]). 21

1.14 Comparison of flexibility versus speed of development and cost of the

different technologies (from [225]). 21

1.15 Growth in supercomputer power since 1980 (adapted from [89]). . . 24

xxix

Guil
lau

me G
arr

ea
u

2.1 Relationship between dB SPL input and dBV output for analog mi-

crophones (from [150, 151]). 34

2.2 Schematic of FM transmitter with all components shown. 42

2.3 Schematic of FM transmitter as actually implemented. 43

2.4 FM receiver. 43

2.5 Schematic of FM receiver. 44

2.6 Block diagram of the FM SYNC unit. 46

2.7 Picture of the FM SYNC unit. 46

2.8 FM comparator output signal decoding. 49

2.9 Block diagram of the data acquisition unit. 51

2.10 Picture of an ASU data acquisition unit. 53

2.11 Optimal waveform used for synchronization precision measurement. 55

2.12 Schematic of the setup used for the analog synchronization precision

measurement. 56

2.13 Waveform used for the analog synchronization precision measurement. 57

2.14 Histograms of the synchronization pulse delay on the 3 acquisition

units for end-to-end measurement. 57

2.15 Schematic of the setup used for the digital synchronization precision

measurement. 59

2.16 Histograms of the synchronization pulse delay on the 3 acquisition

units for direct digital input. 60

3.1 Original spiking neuron model developed for the sand-scorpion, from

Stürzl et al. [218]. The eight command neurons are colored in black.

For two of them, k = 3 and k = 7 = 3̄ corresponding to R3 and L2,

respectively, the inhibitory partner neurons are shown as well in grey.

The triad of R3 consists of L1, L2, and L3. 68

3.2 Pictures of the acquisition setup in various locations: (a) tennis court,

(b) parking lot, (c) building roof, (d) terrace, (e) university hall. 73

3.3 Power density of the seismic signal. 75

3.4 Geophone Mark Product L-15B 4.5hz x,y,z (a) with inside view (b). . 77

3.5 Picture of the data acquisition setup. 78

3.6 Schematic of the data acquisition setup. 78

xxx

Guil
lau

me G
arr

ea
u

3.7 Plot of the subject position on the circle (in red actual position assum-

ing constant subject velocity, in blue Scorpion Neural Network (SNN)

model result). 80

3.8 Definition of the Time of Arrival (ToA) calculation, time that the vi-

bration wave needs to travel the distance δl. 81

3.9 Picture of the arachnid robot T8 of RobugtixTM. 83

4.1 Doppler effect: sound waves that move toward you are compressed

while those moving away are stretched [116]. 88

4.2 The UFTRX is composed of the controller part (1&2), the ultrasound

emitter channel (3 to 5) and the ultrasound receiver and sampling

channel (6 to 10). More specifically: (1) a high-performance Spar-

tan3 FPGA XC3S50AN at 90MHz; (2) a RS-232 serial to usb controller

FT232R; (3) 2 programmable DAC LTC2642; (4) a low noise rail-to-rail

output 28MHz dual amplifier AD8656; (5) a transmitter transducer

400ET180; (6) a receiver transducer 400ER180; (7) a precision virtual

ground TLE2425 (8) a low noise rail-to-rail output 28MHz dual am-

plifier AD8656; (9) a zero drift programmable gain amplifier PGA112;

(10) a 16bit A/D converter at 500kSps AD7686. 96

4.3 The pictures show: (a) a subject on inline skates passing in front of

the UFTRX module and, (b) the top-view of the experimental set-up. 97

4.4 Mode of transport data collection setup. Spectrograms show a relative

velocity that tends to zero as the velocity is the orthogonal projection

of the velocity of the subject relative to the UFTRX module and the

component value changes with the angle between the motion direc-

tion and the UFTRX module transmission direction. 99

4.5 Characteristic spectrograms for each motion are shown. The x-axis is

time in seconds. The y scale shows frequencies from 40kHz to 41kHz.

Spectrograms shown are: (a) a walking subject, (b) a running subject,

(c) a subject cycling slowly, (d) a subject cycling fast and, (e) a subject

on inline skates. 101

4.6 (a) Average classification performance for the 5 transport modes. (b)

Categorization of misclassifications. 103

xxxi

Guil
lau

me G
arr

ea
u

4.7 The figure shows the step by step of the processing of the data from

spectrogram determination to the event template calculation and then

classification. 106

4.8 The effect of the cluster number on individual recognition is shown.

The average over all subjects is plotted and reaches a maximum of

87.1%. The error bars represent the subjects variability. For one

subject, the average is equal to 99.7% over all event template size. . . 108

4.9 Event templates for the 13 subjects for number of clusters equal to 50. 109

4.10 Gender classification: the top spectrograms are the event templates

for female and male categories for cluster number of 50 and the bottom

spectrograms are one example for each gender. 110

4.11 Gender classification as a function of the number of clusters. Average

accuracy as high as 92.4% is obtained for a cluster number of 20. . . . 111

4.12 Some action templates for dataset 1. 113

4.13 Action categorization for dataset 1 as a function of the number of

event templates per category. 114

4.14 Action categorization for dataset 1 as a function of the number of test

events used per action. Longer actions improve recognition. 114

4.15 Some action event templates for dataset 2. 115

4.16 Action categorization for dataset 2 as a function of the number of

event templates per category. 115

4.17 Action categorization for dataset 2 as a function of the number of test

events used per action. Longer actions improve recognition. 116

4.18 Example of estimated FPE over different AR model orders. 118

4.19 Estimated coefficient a10 for walking towards the UFTRX unit. Each

row corresponds to one person and many events concatenated together.119

4.20 Estimated coefficient a2 AR coefficient for walking towards the UFTRX

unit. Each row corresponds to one person and many events concate-

nated together. 120

4.21 Estimated coefficient a10 for different occurrences of walking towards

the sensor for 4 randomly chosen subjects ((a)-(d) respectively). . . . 121

xxxii

Guil
lau

me G
arr

ea
u

4.22 Top figure shows the a10 AR coefficient estimated for different occur-

rences of walking towards the sensor for one subject as well as the

maximum (in red) of the a10 AR coefficient. The bottom shows the

different occurrences shifted after using the ‘icoshift’ function. 122

4.23 The template obtained after averaging the different a10 AR coefficient

shifted by the ‘icoshift’ function for the same set of data as in Fig. 4.22. 124

5.1 The human ear and frequency mapping in the cochlea. Information

from the cochlear receptor cells is transmitted to the cochlear nuclei

via the 8th cranial nerve, which then flows through the midbrain to

the cortex (from [50]). 130

5.2 Cross section of the cochlea (from [244]). 131

5.3 An overview of afferent ipsilateral and contralateral interactions in

the auditory brainstem (from [165]). 132

5.4 Diagram of the model of the cochlea. 136

5.5 Filter amplitude response requirements. 137

5.6 Synaptic dynamics: time evolution of the simulated internal variable

X(t) describing the synaptic state (center), pre-synaptic spikes (top)

and depolarization V(t) of post-synaptic neuron (bottom, from [92]). 139

5.7 The figure shows a simplified Thalamocortical Neural Network that

is fed with voltage spikes coming from a cochlea model. Each “A”

neuron gets stimulated by tonotopic inputs. Only 3 columns are

shown, however the targeted final implementation has 32 columns. . 140

5.8 This figure shows the delayed projections from neurons in layer B1

to neurons in layer B2. The scale of the delays is represented in

milliseconds, where 0ms (dark blue) correspond to the case of no

connection between B1 and B2 (i.e. neurons in the same column). . . 143

5.9 Connectivity matrix. This figure shows the initial strength of synapses

between B1 and B2. The initial lack of connection within each partic-

ular column is presented in dark blue. All the other connections are

assumed to be of same weight. 143

5.10 This figure shows the power output of a 30 channels cochlear model

[156], which is used as a stimulus for the 30 columns of the simplified

TC model. 144

xxxiii

Guil
lau

me G
arr

ea
u

5.11 Membrane potential in layer A. 144

5.12 Spiking activity in layer A. This figure shows the response (repre-

sented as spikes) of neurons in layer A, which are propagated through

excitatory synapses to layers B1 and B2. 145

5.13 Synaptic response in A-B1 and A-B2. Here, the synapses are modeled

by an alpha profile. 145

5.14 Membrane potential in B1. 146

5.15 Spiking response in B1. 146

5.16 Synaptic response in B1-B2, which shows the response of the synapses

with an alpha profile, which inhibits neurons in layer B2. 147

5.17 Membrane potential in B2, which shows the response of neurons in

layer B2 from the integration of incoming inputs from A, B1 and re-

current connections. 147

5.18 Spiking response in B2. This figure shows the resulting dynamics of

the 30 neurons in the thalamocortical network. 148

5.19 Synaptic response among the recurrent connections B1-B2. Here, we

can observe the effects of the transmission delays in the network. . . 148

5.20 Synaptic weights after STDP. The weights are adapted in the network

following the Fusi-Brader learning rule. 149

5.21 Diagram of the cochlea model. 150

5.22 Diagram of a second order band-pass IIR filter. 153

5.23 (a) Output of the software implementation of the cochlea model. (b)

Output of the hardware implementation on the Opal Kelly board

(version 1). The input signal is a 1s chirp of increasing frequency sine

wave. 155

5.24 Output of the hardware implementation on the Opal Kelly board

(version 2). The input signal is a pure sine wave. 156

5.25 (a) Picture of the DACQ board connected to a signal generator, the

data sampled is streamed to the Opal Kelly board, processed by the

cochlea and then, the output cochleagram is sent to a computer. (b)

Zoom on the DACQ unit with the OK board on top of it. 157

5.26 Diagram of the model of the thalamocordical model. 158

xxxiv

Guil
lau

me G
arr

ea
u

5.27 This figure shows the power output of a 32 channel cochlear model

[156], which is used as a stimulus for the 32 columns of the simplified

thalamocortical model. (a) Output of the software implementation of

the cochlea model. (b) Output of the hardware implementation on

the Opal Kelly board (version 1). The input signal is two different

mixtures of frequencies, which are non-overlapping in time. 160

5.28 This figure shows the response (represented as spikes) of neurons in

layer A, which are propagated through excitatory synapses to layers

B1 and B2. (a) Membrane potential in layer A. (b) Spiking activity in

layer A. 161

5.29 Synaptic response in A-B1 and A-B2. Here, the synapses are modelled

by an alpha profile. 162

5.30 (a) Membrane potential in B1. (b) Spiking response in B1. 163

5.31 Synaptic response in B1-B2, which shows the response of the synapses

with an alpha profile, which inhibits neurons in layer B2. 164

5.32 This figure shows the resulting dynamics of the 32 neurons in the

thalamocortical network. (a) Membrane potential in B2, which shows

the response of neurons in layer B2 from the integration of incoming

inputs from A, B1 and recurrent connections. (b) Spiking response in B2.165

5.33 The chips are mounted on custom PCBs (AMDA) which supply bias

voltages to the chips. These biases can be configured via a USB inter-

face connected to the PC workstation. The AER events are handled by

dedicated PCBs equipped with FPGAs (AEX, [86]). These events are

transmitted from one board to the other over SATA cables in a serial

loop. Events can also be sent and monitored from a PC workstation

via a USB interface (from [207]). 167

5.34 Neural network diagram, with one column highlighted and two

neighboring ones in gray, included to indicate lateral connections.

Circles represent neurons from neuronal populations A, B1, B2, and C.

The output of the network is represented by the activity of population

B2 (from [207]). 168

xxxv

Guil
lau

me G
arr

ea
u

5.35 Comparison between hardware result using a synthetic stimulus pat-

tern (A,B) and learning prediction using a real sound file (C,D). Top

row shows raster of synthetic exposure stimulus (A) and resulting

network connectivity after exposure (B) for hardware network, these

figures are taken from [207]. Bottom row shows spectrogram of

comparable sound file (C) and the analytically predicted pattern of

connectivity (D) based on correlations in the stimulus representation

(from [54]). 169

6.1 The ConvNets architecture is composed of 2 main stages: pre-processing

and classifier. 176

6.2 Pre-processing block diagram, first stage of the ConvNets. 177

6.3 Classifier block diagram, second stage of the ConvNets. 178

6.4 Convolutional Neural Network for ultrasonic data classification. The

output of each of the six layers in the network is shown schematically

for an input signal of 5s. The input is first pre-processed by calculating

its IFR spectrogram, which serves as input to the model. Along the

left-hand side, the different learning stages and resulting filters are

also represented schematically. The output of the model consists of a

probability distribution over the classes for each top layer time step,

obtained using an SVM classifier (from [69]). 181

6.5 The top-left panel is for the mode selection: learn new categories,

train the network with the current data files or test the model. The

bottom-left panel gives the labels of the categories and the training

files currently stored for each one. The middle panel shows the output

of Layers 1 to 5 of the ConvNet model. The right panel shows the

probability distribution over categories for the last 10 events (top),

the current probability distribution over categories (middle) and the

input IFR spectrogram (bottom). 187

xxxvi

Guil
lau

me G
arr

ea
u

6.6 Classification results for the ConvNet models of ultrasonic and au-

ditory processing, as well as for multimodal integration. Results

are shown for the overall average over classes and for all individual

classes. The error bars indicate the standard deviation over 50 cross-

validation repetitions. The first top layer time step represents 2.57s of

data and each additional time step adds 0.39s of new data, such that

13 time steps represent 7.25s. 188

6.7 Classification performance of the micro-Doppler model as a function

of the ConvNet architecture parameters. The scale bar of each graph

indicates the minimum and maximum correct classification percent-

age, providing a measure of the model robustness to variations of

those specific parameters. 192

xxxvii

Guil
lau

me G
arr

ea
u

xxxviii

Guil
lau

me G
arr

ea
u

List of Tables

2.1 Comparison of available solutions for synchronization. 33

2.2 Data bit encoding. 47

2.3 List of the different types of data acquisition units used. 50

2.4 Format of data acquisition frame. 52

2.5 Format of data acquisition frame header. 53

2.6 Statistics for the analog test. 57

2.7 Sources of error/delay and their solutions. 58

2.8 Statistics for the direct digital test. 59

2.9 Comparison of available solutions for synchronization. 61

3.1 Test of the original Brian model with only 5 legs, prey angle is 68◦. . . 70

3.2 Velocity of surface acoustic wave in different material (adapted from

[227]). For the experiment the value is calculated based on the data

collected. 72

3.3 Average result of the model according to velocity of surface acoustic

wave and radius, prey angle is 68◦. 74

3.4 Test of the original Brian model with different frequency, prey angle

is 68◦. 74

3.5 Table showing the error analysis of the SNN model result for the raw

dataset. In Nature, a 13◦ to 15◦ error on the direction of the source is

observed [30]. 81

4.1 Effect of training set size . 104

4.2 Average performance in individual identification and gender classifi-

cation. 112

4.3 Average performance in individual identification Leave-One-Out clas-

sification. 123

xxxix

Guil
lau

me G
arr

ea
u

5.1 Parameters used for the cochlea implementation. 151

5.2 Frequency and coefficient parameters of the pre-emphasis filters. . . 151

5.3 Frequency and coefficient parameters of the cochlea filter bank. . . . 152

5.4 Utilisation table of the cochlea implementation on the XEM3010, ver-

sion 1 (OK alone). 154

5.5 Utilisation table of the cochlea implementation on the XEM3010, ver-

sion 2 (DACQ and OK). 154

5.6 Utilisation table of the TC network implementation on the XEM3010. 159

5.7 Estimation of the FPGA utilization ratio. The XEM3050 has a full TC

model using the simplest STDP implementation. The XEM6010 has a

full TC model using the most complex STDP implementation. These

estimations are based on the partial implementation reported here

and the work reported in [41]. 166

5.8 Main characteristics of the 2 hardware implementations of the thala-

mocortical model by Coath et al. [53]. 169

6.1 Parameters of the ConvNet for ultrasonic (middle) and auditory (right)

data processing, [69]. 182

6.2 Classification performance of GMM versus ConvNet, [69]. 193

6.3 Comparison of existing auditory models based on ConvNets, [69]. . 195

xl

Guil
lau

me G
arr

ea
u

Pour Bon-Papa, repose en paix.

xli

Guil
lau

me G
arr

ea
u

xlii

Guil
lau

me G
arr

ea
u

“I hope that posterity will judge me kindly,

not only as to the things which I have explained,

but also to those which I have intentionally omitted

so as to leave to others the pleasure of discovery.”

René Descartes

xliii

Guil
lau

me G
arr

ea
u

xliv

Guil
lau

me G
arr

ea
u

Chapter 1

Introduction

“Le seul véritable voyage, le seul bain de Jouvence, ce ne serait pas d’aller vers de nouveaux

paysages, mais d’avoir d’autres yeux, de voir l’univers avec les yeux d’un autre, de cent

autres, de voir les cent univers que chacun d’eux voit, que chacun d’eux est.”

Proust in La Prisonnière

“The only true voyage of discovery, the only fountain of Eternal Youth, would be

not to visit strange lands but to possess other eyes, to behold the universe through

the eyes of another, of a hundred others, to behold the hundred universes that each

of them beholds, that each of them is.” The implications of this are simple: “The

real voyage of discovery consists not in seeking new landscapes, but in having new

eyes.” Finding an innovative solution to a challenging problem does not always

involve the discovery of a completely new technology, material or physic law but

‘simply’ by taking an already existing methodology and applying it in a novel way

and sometimes in a different field. The work presented in this thesis follows a

bioinspired approach: solutions provided by nature itself after millions of years of

evolution are utilized to provide an innovative solution to a particular engineering

challenge. The work focuses on the challenging question of acoustic scene analysis,

for which a bioinspired system is designed and proposed.

1.1 Why acoustic scene analysis?

1.1.1 Scene Analysis

Scene analysis is the extraction of information from the environment in order to

take decisions and act. The ability to answer questions before acting is important.

1

Guil
lau

me G
arr

ea
u

For example if one wants to ‘put the yellow triangle on top of the green square’,

one must answer multiple questions beforehand: what is a triangle? what is yellow?

where is the yellow triangle? what do I need to do to hold and move it? what is a square?

what is green? where is the green square? what is ‘top’? what do I need to do to put

the triangle on top of the square? When all these questions are answered, the action

can be performed and then the goal is completed. However, the environment may

interfere with the action, e.g. some wind, a moving square or even both triangle and

square moving, could make the task more difficult. Though humans can adapt to

a changing environment in an almost automatic way, Colgate and Hogan showed

that getting a robot to perform a similar task is extremely challenging [56].

In order to reproduce a similar situation in the field of robotics, researchers have

been working on visual scene analysis, the computer’s version of visual perception

(human). Wang showed that it involves two basic perceptual processes: the seg-

mentation of the visual scene into a set of objects and the recognition of memorized

ones [238, 239].

One approach, which has received recent attention, is to create a grammar of

actions to segment the scene and task into a set of basic objects and actions (Ryoo

and Aggarwal [199], Wallraven et al. [237], Pastra and Aloimonos [185]). Coming

back to the previous example of the triangle and the square, the grammar would

be composed of colors (yellow, green), objects (triangle, square), and action (put

on top). Thus we can construct a tree structure whose branches are the different

possible combinations of the basic grammatical elements and achieving the aimed

task would be equivalent to climbing up the branches of this tree.

Then, one must choose which technology will be used to capture and identify

the different segments of the scene. The most widespread technology used for scene

analysis is the video camera. Compared to other sensors, cameras are cheap, offer

high spatial definition and provide a lot of information regarding objects in the scene;

however this high-dimensionality makes them more difficult to parse. Teixeira et

al. reported a detailed survey on human sensing [223]. One challenge presented

in vision-based problems is the high number of false positives. To solve this, one

solution is to use motion detection, which naturally limits false detection compared

to background subtraction or pattern matching approaches, and has low processing

requirements. However, a drawback of motion detection is that if the objects be-

come immobile they also become invisible to the system. Numerous applications of

2

Guil
lau

me G
arr

ea
u

scene analysis have been reported in the literature with strong emphasis on secu-

rity applications such as road traffic (Yguel et al. [252], Ellis [75]) or natural actions

classification (Wallraven et al. [237]). However, the use of cameras for scene analysis

is not an option for environments where visibility is impaired, e.g. smoke-filled

room, absence of light. In addition, the use of camera-based systems for security

monitoring in public spaces raises a host of privacy issues.

1.1.2 Acoustic scene analysis

In contrast to visual-based systems and visual scene analysis, acoustic scene analysis

show relatively low computational overhead and resistance to occlusions, and is not

affected by illumination (Bregman [24], Wang and Brown [240], Teixeira et al. [223]).

Sounds are also not affected by smoke or by lack of light, and thus offer an alternative

solution in environments where video-cameras cannot be used or are not desired. It

has to be noted that acoustic scene analysis is not limited to auditory scene analysis.

The audible range is usually referred to as frequencies between 20Hz and 20kHz,

but audio range has a much wider frequency bandwidth: from lower frequencies

and waves travelling through the ground to higher frequencies such as ultrasounds

used in sonars. Benetos et al. showed that acoustic scene analysis can be used to

classify full scenes such as train station, an outdoor scene, a school, a kitchen or

individual acoustic objects (speech recognition or other noises) [12]. The growing

interest in acoustic scene analysis motivated the organisation of a competition, the

Institute of Electrical and Electronics Engineers (IEEE) Audio and Acoustic Signal

Processing (AASP) Challenge, in order to encourage research and development

with comparable and repeatable results, and to stimulate new ground-breaking

approaches to specific problems in the AASP technical scope. In 2012, the challenge

was dedicated to acoustic scene analysis and the evaluation of the performance of

systems for the detection and classification of acoustic events and audio scenes [104].

Acoustic scene analysis does not replace camera-based systems, but has access

to information that is otherwise inaccessible. Therefore, camera-based and acoustic-

based scene analysis should be used as complementary solutions.

3

Guil
lau

me G
arr

ea
u

1.2 Why bioinspired systems?

Nowadays classical electronics is reaching a “Brick Wall”. This wall is composed

of three walls (Patterson et al. [186]): 1- “Power Wall” - faster computers get very

hot, 2- the “Memory Wall” - memory on a Central Processing Unit (CPU) package

is limited because of the difficulty of routing too many pins, and 3- the “Instruction

Level Parallelism (ILP) Wall” - the deeper the instruction pipeline, the deeper the

power hole. In other words, the benefits of the continuously decreasing size of the

transistor and Complementary Metal Oxide Semiconductor (CMOS) semiconductor

is reaching a point where problems such as power dissipation and leakage outper-

form the advantages on speed and power consumption. The trade-off between these

three areas implies that optimization of one wall will have the opposite effect on the

other two walls, therefore computers will stop becoming more efficient.

1.2.1 “Brick Wall”

1.2.1.1 “Moore’s Law” and “Dennard Scaling”

For more than 40 years “Moore’s Law” has been driving the innovation in the

semiconductor world by stating that “the number of transistors on integrated circuits

doubles approximately every year” (Moore [177]), which later became two years.

This increase in the number of transistors per processor core is illustrated in Fig.

1.1 for the period from 1971 to 2011. Today the two biggest processors are the

Xbox One Main System on Chip (SoC), a game station released by Microsoft R© in

2013 [253], and the 62-Core Xeon Phi of Intel R© released in 2012 in 22nm process

[130], with each containing 5 billions of transistors. In addition to the increase

in the number of transistors per chip, the increased computational power of the

new processors has led to an exponential acceleration of technological achievement

(Fig. 1.2). Furthermore, on a technological insight, “Dennard Scaling”, which

was named after the IBM scientist Robert Dennard, postulates that “Metal Oxide

Semiconductor Field-Effect Transistors (MOSFETs) continue to function as voltage-

controlled switches while all key figures of merit such as layout density, operating

speed, and energy efficiency improve provided geometric dimensions, voltages,

and doping concentrations are consistently scaled to maintain the same electric

field”(Dennard et al. [63]). In other words, the smaller you make the transistors,

4

Guil
lau

me G
arr

ea
u

Figure 1.1: Number of transistors per processor core and main innovation milestones

(adapted from [130]).

the better they get. As the supply voltage decreases, the power consumption also

decreases by the square of the voltage, which means that Dennard predicted that

smaller transistors also become faster, cheaper and with less power consumption.

Nowadays, we are approaching the atomic level in the transistors’ dimensions

and the downscaling is reaching its limits. Issues that were negligible at large scale

now have a huge impact on the performance of circuits that are manufactured.

Figure 1.3 illustrates this phenomenon: as more and more transistors are placed in

commercial microprocessors (exponential increase), the clock speed, the dissipated

power and the number of instructions executed per clock cycle have reached a limit

and increase much lower than predicted by the “Dennard Scaling”.

5

Guil
lau

me G
arr

ea
u

Figure 1.2: Number of transistors per processor core and technological revolution

milestones (from [110]).

1.2.1.2 “Power Wall”

The first problem is the energy consumption, or “Power Wall”. Energy is the ability

to work over a period of time. The power dissipated is divided in two parts, which

are the dynamic power and the static power.

The dynamic power (or ‘useful’ power) P is calculated as P = αCV2
dd f , where α is

the activity factor, C the load capacitance, Vdd the supply voltage and f the working

frequency. To decrease the power, several options are available. Improvements

based on a lower α or C are limited by technological processes. Improvements based

on the supply voltage Vdd have received a lot of attention as it is a squared term in

the formula. However as it is decreased, the threshold voltage, voltage necessary

to turn the transistor on, is also reduced (now as low as 0.3V), and the closer this

voltage gets to zero, the more difficult it gets to turn the transistor completely off.

In addition, lower supply voltage means increased current to maintain a constant

power level. This translates to the power pins having to supply more current or, the

packages must have more power pins (up to 70% in some of them), with the latter

being the common option. Increased current may cause voltage droop across the

internal power buses and if these droops are high enough, the circuits it connects

will stop working. Changing the frequency f is the last option but we are more

interested in increasing it rather than lowering it. Unfortunately higher frequency

6

Guil
lau

me G
arr

ea
u

Figure 1.3: History of Intel chip introductions by clock speed and number of tran-

sistors (adapted from [222]).

7

Guil
lau

me G
arr

ea
u

Figure 1.4: Increase of power consumption with frequency (from [71]).

means more heat to dissipate, according to the first Law of Thermodynamics. This

is indicated in Fig. 1.4, which plots the average clock speed and heat dissipation of

Intel and AMD processors over time and shows that higher frequency requires more

power dissipation.

In addition an increasing temperature creates new problems as heat has an impact

on both electrical and mechanical characteristics of semiconductor circuits, electrical

wiring and packaging. Higher temperature means slower transistors and increased

transistor leakage and more power consumed. This causes a vicious circle of in-

creasing heat and power consumption up to breaking point, i.e. it can cause solder

connections to melt. Figure 1.5 shows the power density in the CPUs and the impor-

tance of cooling them. The Core 2 Extreme QX9775 Yorkfield XE (45nm process) is

running at 3.2GHz and consumes 150W of power [130]. If we consider a 1 cm2 chip,

the power density is equivalent to that of a nuclear reactor.

The static power, or ‘wasted’ power, is the power consumed when the circuit

is powered on but not clocking. This power mainly depends on the drain-source’s

leakage and the insulation layer’s leakage (Rabaey et al. [190]). The insulation layer

is the layer that separates the gate, the electrical connection that controls the Metal

Oxide Semiconductor (MOS) switch, from the rest of the transistor. As the layer

gets thinner, the performance of the transistors improves, until it becomes so thin

that it starts to leak electrons. As gate leakage became an increasing problem, the

8

Guil
lau

me G
arr

ea
u

Figure 1.5: Power density trend (adapted from [130]).

silicon dioxide, which was historically used as the insulator, was replaced by other

materials. These materials are known as high-k: they are characterised by high

dielectric constant and are thus less likely to leak. To get an idea of how important

this problem is, current multi-core microprocessor transistors leak 50W of power

while in idle mode, with power leakage (Chen et al. [49]). Even reaching 100W in

the latest multicore Xeon! [130] This static power is wasted and as power is neither

infinite nor free, a lot of work is done to minimize it.

All these problems mean that the power consumption improvement has reached

a limit and if we want the technology to keep improving we need to find innovative

solutions.

1.2.1.3 “ILP Wall”

In first computers programming was simple and instructions were executed serially

one after the other. In the early 60s, engineers at Control Data Corporation CDC

(Seymour Cray, Dean Roush and Jim Thomton) started to use multiple instructions

computers to speed up execution. The Instruction Level Parallelism (ILP), which

is the execution of multiple instructions or pieces of instructions at the same time,

9

Guil
lau

me G
arr

ea
u

Figure 1.6: Four steps pipelined multiplier (adapted from [88]).

was a great innovation at that time and allowed to speed up computations of the

CDC-6600 computer more than ten times compared to their fastest competitors [19].

But the benefits come at a cost of complexity in logics, more transistors, more heat

dissipated and harder programming compared with the scalar architectures. The

greater the parallelism, the bigger the difficulties in each of these areas. The ILP

process works as follows. First, an execution pipeline breaks each instruction in a

series of steps. Second, the steps of many instructions are executed simultaneously

such that many instructions can be performed in parallel. The more steps, the more

instructions executed at the same time and thus the faster the computer can run.

For example, an operation that would require n clock cycles to complete, could be

broken into n steps. Then n operations can be executed at the same time, producing

the first result after n clock cycles and then one result every clock cycles. Figure 1.6

gives an example of a four steps pipelined multiplier.

General purpose processors have to perform many different tasks. In order for the

pipeline to accelerate those tasks, all the instructions must be broken into the same

number of steps. For that reason David Patterson created the Reduced Instruction

10

Guil
lau

me G
arr

ea
u

Figure 1.7: RISC five-stage pipeline (adapted from [88]).

Set Computer (RISC), which greatly simplified the pipeline process compared to

the variable-length instructions of the Complex Instruction Set Computer (CISC).

Theoretically, a five stage pipeline RISC CPU is five times faster than a non-pipelined

CPU, (Fig. 1.7), as some instructions may be inter-dependent and require the result

of another operation for their execution. There are also branches and loops that

make the problem more challenging.

To solve the synchronization problem, several solutions have been proposed.

A simple instruction decoder that can identify the problem and slow down one

instruction in order to wait for the result but this will slow down the execution time

of the program. A more complex instruction decoder can detect the problem and

execute during the delay of other instructions’ steps. This is called “multi-threading”

or “hyper-threading”. However, this adds huge complexity to the architecture,

requires thousands of transistors and increases power dissipation. Another solution

can be achieved through the use of registers: a kind of memory located on the CPU

and much faster than ordinary memory. Figure 1.8 shows the speed and latency of

access for the different types of memory.

Compilers were designed to use the registers as much as possible to avoid “nor-

mal” memory access that would slow down program execution. However, registers

11

Guil
lau

me G
arr

ea
u

Figure 1.8: Comparison of speed of access of the different types of memory (adapted

from [242]).

12

Guil
lau

me G
arr

ea
u

cost instructions bits to be selected. Five opcode bits are necessary for selection of

one through 32 registers. Thus if one needs to specify two operands and a des-

tination, this is already 15 bits used just for the selection of the registers. All the

added architectural complexity and logical tricks to optimize the instruction cycle

executions have reached the “ILP Wall” due to the induced logical complexity and

power consumption. At some point execution speeds actually start to reduce.

1.2.1.4 “Memory Wall”

Another great revolution that started in 2004 was the shift to multi-core scaling to

continue the performance growth required by Moore’s Law. The idea, as the Instruc-

tion Level Parallelism, may seem obvious: instead of increasing the complexity of

the CPU on one chip (leading to the the problems presented above), why not just

have multiple simple cores on the same chip or a multi-core chip. In a multi-core

processor chip, two or more complete microprocessors are built on the same chip and

attached to a shared memory bus. However, the positive increase in performance

achieved by a multi-core processor is not scalable, i.e. doubling the number of cores

does not double the performance increase, which even decreases after some point,

as shown in Fig. 1.9. Sandia Labs reported that as the number of cores increased, the

processor power increased at substantially less than linear improvement and then

decreased at an exponential rate (Murphy et al. [180]).

This is mainly due to the lack of memory bandwidth and the contention between

processors over the memory bus (also known as the “Memory Wall”, Patterson et al.

[186]) and the fact that software are not yet ready to use the available multi-cores. The

one task that multi-cores can perform very efficiently today is the “embarrassingly

parallel” problem or “Recognition, Mining, and Synthesis”. This task is similar to

searching for a phone number in the phone-book. It could take up to several hours

to find a phone number if you perform the search on your own. However, if the

search is split into smaller tasks and is performed by more people, then it could be

mere seconds before the number is found. This technique is also called MapReduce,

and it is the same method that runs Google’s million server network search engine.

Such data mining across enormous datasets seemed to be perfect for the multiple

CPU system, until the “Memory Wall” appeared again. One solution to the problem

was computer cache. Similarly to the registers that were described above, caches are

small dedicated local memories that sit between the CPU core and the main memory.

13

Guil
lau

me G
arr

ea
u

Figure 1.9: Performance versus the number of nodes in the multicore (from [180]).

14

Guil
lau

me G
arr

ea
u

Caches take advantage of the fact that instructions may need to reuse the same data,

thus the core can simply access the data that is already present in the cache, without

the need to access the main memory, which is up to 100 times slower than cache

access (Fig. 1.8). Going back to the phone number search example, if you are looking

for another number, you do not need a new phone-book or to give new pages to your

friends, but you can simply give the new name to look for. The problem is that the

dataset is exponentially increasing over time and caches already occupy over half of

the silicon area of some CPUs and consume much of the power (Huang et al. [124]).

The cache size being an issue, the solution is to increase the memory bus bandwidth

to get data in and out faster. Three ways are possible: increase the memory transfer

speed, increase the memory transfer size and finally, move the data closer to the

CPU. However, each of those solutions is limited by the three “Walls” encountered

before. The memory transfer speed, the clocking or the CPU frequency, is limited by

the “Power Wall”, as faster means more heat generated. In 2007, Intel designed some

processors using high-speed technology called Rambus [72], which was faster but

much more expensive than other technologies. The memory transfer size is linked

to the “ILP Wall” and even though it has increased over the years, it is still limited to

64 bits in most of the new CPUs, while many CPUs are still 32 bits. Transfer size is

also limited by the “Power Wall”, as an increased memory bus width implies more

pins that change state (charge/discharge) at each clock cycle and thus more power

is consumed. The last option, which is to get the memory closer to the CPU to limit

the transfer and thus substantially limit the “Memory Wall”, will be discussed in

more detail later together with other innovative solutions already used by mature

technologies. Instead of moving the memory to the CPU, the CPU is placed onto the

memory.

1.2.1.5 “Dark silicon” or “Utilisation Wall”

The “Utilisation Wall” or “dark silicon” is a new challenge that appeared with the

rise of the multi-core CPU. It refers to the portion of the chip that has to be powered

off during runtime and it is linked to the “Power Wall”. This is the result of the

increase of the number of cores and transistors, while keeping a constant power

budget. Esmaeilzadeh et al. created three models to project the performances of

future multi-cores and evaluate the size of the dark silicon (Fig. 1.10) [80]. They

predict that “in just five [technological] generations, at 8nm, the percentage of dark

15

Guil
lau

me G
arr

ea
u

94 COMMUNICATIONS OF THE ACM | FEBRUARY 2013 | VOL. 56 | NO. 2

research highlights

widely appreciated by the computing community. In just
five generations, at 8nm, the percentage of dark silicon in
a fixed-size chip may grow to 50%. Given the recent trend of
technology scaling, the 8nm technology node is expected to
be available in 2018. Over this period of ten years (from 2008
when 45nm microprocessors were available), with optimistic
international technology roadmap for semiconductors
(ITRS) scaling projections,16 only 7.9× average speedup is pos-
sible for commonly used parallel workloads,4 leaving a nearly
24-fold gap from a target of doubled performance per genera-
tion. This gap grows to 28-fold with conservative scaling pro-
jections,5 with which only 3.7× speedup is achievable in the
same period. Further investigations also show that beyond
a certain point increasing the core count does not translate
to meaningful performance gains. These power and parallel-
ism challenges threaten to end the multicore era, defined as
the era during which core counts grow appreciably.

2. OVERVIEW
Figure 1 shows how we build and combine three models to
project the performance of future multicores. Ultimately,
the model predicts the speedup achievable by multicore
scaling and shows a gap between our model’s projected
speedup and the expected exponential speedup with each
technology generation. We refer to this gap as the dark
 silicon performance gap, since it is partly the result of the
dark silicon phenomenon, or the nonideal transistor scal-
ing that prevents fully utilizing the exponential increases
in transistor count. Our modeling considers transistor
scaling projections, single-core design scaling, multicore
design choices, application characteristics, and microar-
chitectural features. This study assumes that the die size
and the power budget stay the same as technology scales,

an assumption in line with the common practice for micro-
processor design. Below we briefly discuss each of the three
models.

Device scaling model (M-Device). Two device (transistor)
scaling models provide the area, power, and frequency
scaling factors at technology nodes from 45nm through
8nm. One model is based on aggressive ITRS projections16
while the other builds on more conservative predictions
from Shekhar Borkar’s recent study.5

Core scaling model (M-Core). Through Pareto-optimal
curves, derived from measured data, the M-Core model
provides the maximum performance that a single-core can
sustain for any given area. Further, it provides the minimum
power that is consumed to sustain this level of performance.
At each technology node, these two Pareto frontiers, which
constitute the M-Core model, define the best-case design
space of single cores.

Multicore scaling model (M-CMP). The M-CMP covers
two mainstream classes of multicore organizations,
multicore CPUs and many-thread GPUs, which represent
two extreme points in the threads-per-core spectrum. The
CPU multicore organization represents Intel Nehalem-
like multicore designs that benefit from large caches and
offer relatively high single-thread performance. The GPU
multicore organization represents NVIDIA Tesla-like
lightweight cores with heavy multithreading support and
poor single-thread performance. In modeling each of the
two multicore organizations, we consider four topologies:
symmetric, asymmetric, dynamic, and composed (also called
“fused” in the literature15).
Symmetric multicore. The symmetric, or homogeneous,
multicore topology consists of multiple copies of the
same core operating at the same voltage and frequency

ITRS
Projections

Device Scaling
(M-Device)

Core Scaling
(M-Core)

Multicore Scaling
(M-CMP)

Optimal No. of Cores
Multicore Speedup
% of Dark Silicon

Conservative
Projections

Tech Node

Tech Node Performance

Performance
Applications

C
or

e
Po

w
er

%
 o

f D
ar

k
Si

lic
on

M
ul

tic
or

e
Sp

ee
du

p

D
ar

k
Si

lic
on

G
ap

C
or

e
A

re
a

Tech Node

Tech Node

Tech Node

2 Projection
Schemes

Data for 152
Processors

2 Chip Organizations x 4 Topologies Search 800 Configs
for 12 Benchmarks12 Benchmarks

V d
d

Po
w
er

C
f

A
re
a

Collecting
Empirical Data

Analytical Models
Microarchitectural
Features
Application Behavior

CPU-Like
Multicore

GPU-Like
Multicore

1

+1 – f
S(q) N(q)S(q)

Year

Model Projections

Year

Historic
al P

erfo
rm

ance

Scaling

Deriving
Pareto Frontiers

f

Figure 1. Overview of the methodology and the models.

Figure 1.10: Overview of the methodology and the models to project the perfor-

mances of future multi-cores (from [80]).

silicon in a fixed-size chip may grow to 50%.”

The work of Esmaeilzadeh and colleagues was criticised in a study by Ganssle

[95], whereby the author points out that Esmaeilzadeh et al. have not taken into

consideration memory related issues (such as contention, locks, and interprocessor

communication) and that prediction should be even worse in terms of performance,

especially as the models are used on applications where 75% to 99% of the work

can be done in parallel, which is again very optimistic. However, the study by

Ganssle ends with the optimistic belief that “some cool and unexpected inventions

will continue to drive computer performance on its historical upward trajectory.”

1.2.2 Solutions to the “Brick Wall”

Recent years have seen numerous solutions to the “Brick Wall” problem appear,

some of which introduce totally new technologies while others use well known

technologies in an innovative and ingenuous way.

In the list of the ‘new’ technologies, two are particularly innovative and challeng-

ing: the quantum computer and the bio-integration.

16

Guil
lau

me G
arr

ea
u

1.2.2.1 Quantum computer

The quantum computer is a computer based on the principles of quantum-mechanics

phenomena, such as superposition and entanglement, and that can perform opera-

tions on data. Whereas classical electronics and CPU require data to be encoded into

binary digits (bits), quantum computation uses quantum properties to represent data

and perform operations on these data. This quantum property is called quantum bit

or qubit. Commercial applications in cryptology have been released by SwissQuan-

tum, Id Quantique or MagiQ Technologies and large-scale quantum computers are

predicted to be able to solve specific problems tremendously faster than any classical

computer using the best currently known algorithms (Simon [213]), such as integer

factorization using Shor’s algorithm or the experimental determination of the Ram-

sey numbers (Bian et al. [16]). Quantum computing technology is still at an early

stage, the computers are very large, extremely expensive and require a tremendous

amount of power (Hughes and Boshier [127]). In May 2013 Google announced a

joint project with NASA for building a $15 million quantum computer, the D-Wave

Two, which will be housed in a box the size of a garden shed while cooling the

computer’s quantum chip to temperatures approaching absolute zero [114].

1.2.2.2 DNA computing

The second technology is bio-integration or Deoxyribose Nucleic Acid (DNA) com-

puting. It is a form of computing which uses DNA, biochemistry and molecular

biology, instead of the traditional silicon-based computer technologies. DNA com-

puting, or, more generally, bio-molecular computing, is a fast developing interdisci-

plinary area (Rotman [196]).

Another way to solve the “Brick Wall” is, as inspired by Proust’s quote, “not

in seeking new landscapes, but in having new eyes.” Instead of ground-breaking

and new technologies, try to see how to use technologies that we already master in

innovative ways.

1.2.2.3 Dynamic scaling

In order to reduce the power consumption, one innovation was to break the CPU

chip in subparts working at different voltage levels or even to have them powered off.

17

Guil
lau

me G
arr

ea
u

Given that power is proportional to voltage squared, it is easy to see how powering

down or switching off the processors that can run slower or are not being used can

reduce the power consumption. This is called “dynamic voltage scaling”. But this

trick has a limited effect now that up to 2/3 of the chip is used by the cache in many

microprocessors, as the cache would lose its data if powered down.

A similar effect can be achieved with frequency decrease. It is named “dynamic

frequency scaling”. However, the frequency decrease induces only a linear decrease

in power dissipated. It is less helpful today as with state of the art processes, static

power is more important than dynamic power consumed by the microprocessor.

1.2.2.4 CPU on DRAM

As mentioned previously, in order to break the “Memory Wall” one needs to increase

the memory bandwidth. One way of achieving this is to bring the memory and CPU

closer. We have shown the limitations of moving the memory, cache, closer to the

CPU. Several have tried and have actually demonstrated good results, but the cost of

the solution was so high than none of was commercialized [87]. Figure 1.11 gives an

idea of the cost. The quick explanation is that memory is manufactured with three

metal layers process, which keeps the cost of manufacture low; this is in contrast to

the CPU, which is manufactured with up to 12 layers and, hence, is expensive (Fig.

1.11).

The other way is to bring the CPU onto the memory. The solution, proposed by

Venray engineers, was to simplify the CPU such that it could be manufactured with

a three metal layers process and then added to a common Dynamic Random Ac-

cess Memory (DRAM). The result, the Thread-Optimized Multiprocessor Instruction

(TOMI) Borealis chip [158] is a 2.1GHz 98mW 32 bits microprocessor core (exclud-

ing the cache) “implemented in 22,000 transistors, including multiplier and barrel

shifter. The virtual memory controller adds another 3,500 transistors.” 16 of those

chips are configured to fit on a 4inch circuit board. The board includes 128 cores,

2Gbyte DRAM, network controller, and a switching power supply. Four rows of 32

of these boards were arranged on a 19inch motherboard and outran an entire 19inch

rack of Intel Xeon E5620 multicores running a MapReduce algorithm on 256GByte

of dataset [87]. In addition, DRAM transistors are low leakage by design, as leakage

would mean loss of information. The capacitances of the buses are very small and

the process produces very cheap transistors. This is good news not only for the

18

Guil
lau

me G
arr

ea
u

Figure 1.11: Cost of 1 billion transistors built with microprocessor or memory

technological process (adapted from [87]).

“Memory Wall”, but for the “Power Wall” as well. However, this comes at the cost

of slower execution, as DRAM transistors are about 20% slower, and a sensitivity

to high current spikes as they are mostly analog devices. Figure 1.12 shows the

trade-off between speed and memory capacity for the different types of memory.

1.2.2.5 ASIC, FPGA and GPU

Another optimization was to use a specialized microprocessor, which is extremely

efficient and fast on a specific task. A Graphic Processing Unit (GPU) is a spe-

cialized processor designed to operate and alter memory to accelerate the creation

of images. GPUs are very efficient at manipulating computer graphics and their

highly parallel structure makes them more effective than general-purpose CPUs for

algorithms where processing of large blocks of data is done in parallel. GPUs are

specialized Digital Signal Processors (DSPs). Even more specialized and efficient

are the Application Specific Integrated Circuits (ASICs), but their development cost

is much higher. As a trade-off between efficiency and specialization, the Field Pro-

grammable Gate Arrays (FPGAs), are commonly used. FPGAs have the advantage

19

Guil
lau

me G
arr

ea
u

Figure 1.12: Comparison of the characteristics of the different types of memory

(adapted from [2]).

of being more efficient than CPU and GPU, with lower development cost than ASIC,

as well as being reprogrammable. Figure 1.13 show the trade-off between flexibility

and computational efficiency of the different types of processors.

On Fig. 1.14, four parameters are used to compare ASIC, FPGA, Application-

Specific Instruction-set Processor (ASIP)/DSP and generic processors. It shows that

a flexible system with a quick and low cost development comes at the cost of lower

performance.

1.2.2.6 3D chip

A 3D chip is a chip in which two or more layers of active electronic components are

integrated both vertically and horizontally into a single circuit. This offers benefits

such as: shorter wiring length, higher bandwidth, smaller footprint, heterogeneous

integration, lower power and new design possibilities. However some challenges

are created: more difficult testing of parts, repairing defects in the inner layers and

heat dissipation (Emma and Kursun [78]).

20

Guil
lau

me G
arr

ea
u

Figure 1.13: Comparison of flexibility versus efficiency of the different types of

processors (adapted from [142]).

!"#$$ %&$ $ '(#)$ *$ *$&%(%

+,-./01-02,1$314/56

Figure 1.14: Comparison of flexibility versus speed of development and cost of the

different technologies (from [225]).

21

Guil
lau

me G
arr

ea
u

1.2.2.7 Carbon nanotube-based Integrated Circuit (IC)

Another innovation is carbon nanotube-based IC. In late 2012, IBM claimed placing

more than 10,000 working nanotube transistors on a single device using standard

semiconductor processes [234]. Carbon nanotubes are single atomic sheets of carbon

rolled up into a tube. The carbon nanotube forms the core of a transistor device that

could work in a fashion similar to the current silicon transistor, but with better

performance. In September 2013, Shulaker et al. reported the first carbon nanotube

computer [211]. The computer is rudimentary by modern standards: it contains just

178 carbon nanotube-based transistors. It operates on only 1 bit of information. And

it clocks in at just 1 kHz.

1.2.2.8 Neuromorphic computing

The last innovation that is of particular interest to this thesis is the neuromorphic com-

puting [26,43,175]. In general, neuromorphic engineering is the use of a Very-Large-

Scale Integration system (VLSI) and an electronic analog circuit to create bioinspired

systems that mimic biological neural networks and nervous systems [43]. This field

comprises of the development of analog, digital, and mixed-mode analog/digital

VLSI and software systems that implement models of neural systems for perception,

motor control (Ijspeert [128]), or sensory integration (Liu and Delbruck [154]). An

important challenge of neuromorphic computing is to understand how the morphol-

ogy of individual neurons and group of neurons work in biological nervous systems

to represent information and perform computations with robustness to interferences

and damages. How do these networks create learning and memory? How can they

adapt to change (brain plasticity)? Neuromorphic engineering is an interdisciplinary

area that involves fields such as biology, electrical engineering, computer science,

physics and mathematics in order to understand natural neural systems and design

artificial neural systems that can perform auditory, visual, recognition and learning

tasks. The neuromorphic approach has several advantages, particularly considering

the problem of the “Brick Wall”.

Firstly, parallelism is an inherent characteristic of biological neural systems. Com-

plex tasks, such as image recognition, are performed in a few 100ms by the brain,

due to specialized areas working in parallel.

Secondly, the power efficiency of our brains is tremendous compared with mul-

22

Guil
lau

me G
arr

ea
u

ticore processors or supercomputers. The brain is using as much energy as a 10W

light bulb and with its 100 billion neurons and more than 100 trillions synapses

can perform about 10kPFLOPS (peta is 1015 FLoating-point Operations Per Sec-

onds) [5, 148, 212] and it is believed to store a rough estimate of 10TByte of memory.

All of it fits in about 1200cm3 and weights about 1.4kg. The study of spiking axons

by Goldberg et al. showed that neural communication was developed in a way that

maximizes energy efficiency rather than information rate [106]. As of March 2014,

the most powerful supercomputer is the Chinese Tianhe-2, which uses 17.8MW of

power (plus 24MW for cooling) to reach 33.86PFLOPS [171]. It uses about 1,408TiB

of memory, costs about $400million and is the size of a basketball field.

Thirdly, the advantageous computational complexity versus cost of neural net-

work is discussed in [4, 109, 183] and shows a great improvement compared with

classical computing solutions. It is still a long way before developing a computer

of the computational capabilities of the human brain for the same power and size

budget, though similar computational capabilities are expected to be reached the by

2025 (Fig. 1.15).

Fourthly, in neuron networks, there is no dedicated memory space, memory and

processing are fused, the neurons doing the calculations and the synapses’ weight

the ‘memory’ (Engelbrecht et al. [79]). Learning as well can be done using neurons

(Brader et al. [22]).

Finally in neural systems, preprocessing is delocalized such that not all data

is transmitted to the ‘end user’. For example in the visual system, preprocessing

(filtering) is done at the retina level, and then at the optical nerve level before reaching

the visual processing areas (Liu and Delbruck [154]). This has inspired work such

as the analog VLSI neuromorphic image acquisition system with pre-processing

described in [4]. A methodology for engineering bioinspired hardware systems is

proposed in [4], with this work leading to the development of various hardware

neural arrays [37, 39] and the first million neuron system design on a single FPGA

(Cassidy et al. [38]).

Furthermore, neuromorphic design can be use with other technologies such as

3D chip for even greater performances. An example of bioinspired system using 3D

Silicon On Insulator (SOI) CMOS is reported by Marwick and Andreou [167]. They

reported an increased connectivity of the basic cells and a better energy efficiency

compared with a traditional 2D CMOS solution.

23

Guil
lau

me G
arr

ea
u

Figure 1.15: Growth in supercomputer power since 1980 (adapted from [89]).

24

Guil
lau

me G
arr

ea
u

Today large amounts of money are spent in order to get a deeper understand-

ing of the human brain and be able to design artificial systems with comparable

capabilities. The most important projects currently running are the Systems of

Neuromorphic Adaptive Plastic Scalable Electronics (SyNAPSE) project of IBM that

started a few years ago, the human Brain project where the EU invested e1billion

over 10 years, and more recently the Brain Research through Advancing Innova-

tive Neurotechnologies (BRAIN) Initiative with an investment of $100million by the

American government.

1.2.3 Conclusion

After 40 years of innovation to keep up with Moore’s Law and multiple break-

throughs in technological processes (CMOS), hardware (multi-core, GPU, FPGA,

ASIC) and software (RISC, multithreading), classical electronics based on transistors

have reached a “Brick Wall” that predicts the end of a significant increase in the

performance of computers, unless ground-breaking innovations are made. Some

researchers have been working on new and totally different technologies and solu-

tions as quantum computing and bio-integration or DNA computing. Others have

tried to used existing technologies in new ways, or combined different technologies.

One of them is to take inspiration from Nature and biological neural systems.

In Chapter 2 a novel neuromorphic-based instrumentation system for acoustic

data acquisition, processing and classification is presented.

25

Guil
lau

me G
arr

ea
u

26

Guil
lau

me G
arr

ea
u

27

Guil
lau

me G
arr

ea
u

28

Guil
lau

me G
arr

ea
u

Chapter 2

Instrumentation for Acoustic Data

Acquisition

2.1 Introduction

The human auditory system processes sounds at almost every level of the auditory

pathway in order to enable perception by the brain at a later stage. However,

it is not yet perfectly known where and how perception occurs in the brain. Of

particular interest here, the role of the auditory system in perception is not clear.

Some colleagues at the Magyar Tudományos Akadémia Pszichológiai Kutatóintézet

(MTAPI, Budapest, Hungary) wanted to develop psycho-physiological experiments

to help understand how perceptual organization of audio stimuli works. However,

in order to achieve these experiments, they first needed to collect audio-visual data

of multiple mobile and immobile sources of sound. This would later allow to

reconstruct an artificial environment based on real-life data and study perceptual

construction of acoustic objects in the human brain, and investigate how audio-visual

motion cues promote segregation of auditory streams [18, 208].

It has been shown that timing is extremely important for acoustic scene analysis

by humans (Shinn-Cunningham [209]). The time can be obtained as time of arrival

or, in the case of various sources, as interaural time difference or delay. Interaural

time difference also provides information regarding the location of the source(s)

(Kandel et al. [136]). The human auditory system is sensitive to interaural delays

as small as 10µs and displays an accuracy of location of 1 degree to the front and

15 degrees to the side [136, 240]. Animals, just as humans, also rely on interaural

time difference for auditory analysis, but it is more important for those that use

29

Guil
lau

me G
arr

ea
u

echolocation and ultrasounds as a means of communication or prey location, such

as bats and dolphins (Moss and Surlykke [178]). Others, such as sand scorpions,

measure the vibrations in the ground and use the seismic sounds to locate a prey,

using the difference of time of arrival of the sound wave between different legs to

evaluate the direction and, at short distances, the exact location of the source of

the wave (Brownell and Farley [30]). In addition the human hearing system as a

remarkable dynamic range of over 130dB (from threshold of hearing to the threshold

of pain, Leather et al. [144]). It is capable to discern anything from a quiet murmur

to the loudest sounds of jet engine starting up.

As shown by the examples given above, the timing parameter is crucial for the

correct behavior of the auditory perceptual system.

When collecting distributed multimodal acoustic data (vibrational, ultrasonic

and audible sounds in addition to video stream to establish the ground truth) an

estimated 12MB/s of data is generated and processed in realtime. This would not be

possible if we were to use single PC or other pre-existing methods, whilst maintain-

ing µsec synchronization. Hence it was decided to develop a hardware solution to

fulfil these requirements.

2.2 State of the art acquisition systems

2.2.1 Multi modal data acquisition

In the data collection scenario introduced above, the same single event will be

captured by multiple sensors (same mode and/or different modes). In order to be

able to identify that the event is the same, in the dataset of each sensor, the time

delay between each sensor has to be known. This is called relative time of arrival.

One way to do that is to embed time markers in the data, so that the processing

computer can time align (i.e. synchronize) waveforms obtained from distinct data

acquisition units. One way to avoid the tagging would be to connect all the sensors

in a given subgroup to the same data acquisition unit. However, this requires a

small number of units of data converters (analog-to-digital ADC or digital-to-analog

DAC) in locksteps, and located near one another. When a single computer or a

standalone device is used for data acquisition, measurements rely on the device’s

own internal clock, which is typically driven by a crystal oscillator. This crystal

30

Guil
lau

me G
arr

ea
u

shows a frequency stability of 50ppm in general, which means that a 40kHz sine

wave may stretch or shrink by two periods over one second. It is, thus, necessary to

tag the data collected in a way that it can be processed coherently. For instance, an

ultrasonic transmitter unit and an ultrasonic receiver unit must be synchronized so

that Doppler information can be extracted.

Furthermore, we are interested in higher hierarchical levels for the data process-

ing. This means that data from different subgroups is correlated to create a coherent

picture of the overall scene; for example, the motion of an individual’s foot detected

by ultrasound Doppler is correlated with the sound of the footsteps localized by

the microphone array. As the complexity of the different scenarios increases, more

sensors may be required, reaching the point where too many sensors are necessary

for a single data acquisition unit, either because the data acquisition unit becomes

too complex to design and build, or because the bandwidth required to send the data

to the processing computer becomes prohibitively large. In that case the acquisition

system would have data tagged with timestamps linked to different crystals, which

means that little by little, they would start to drift away from each other and then the

timestamps would be meaningless when re-aligning the data. This means we need

one single crystal to serve as the reference to all nodes. If the crystal frequency drift

all the timestamps values will drifted of the same amount and thus the relative time

delays will stay correct when realigning the data. In conclusion we need a central

time reference that is sent to all nodes and timestamps the data collected with a time

delays of less than 10µs between reference and each nodes.

2.2.2 Existing synchronization solutions

Numerous synchronization solutions are commercially available, in both wired and

wireless form. Even though wired solutions usually have better accuracy of synchro-

nization, they suffer from the requirement of cables that run between the different

units of a system.

Existing popular solutions for operating multiple data converters in lockstep

involve electrically wiring together multiple data acquisition computer peripheral

cards in a single computer. This is exemplified by products from National In-

struments Corporation, which make use of a Real-Time System Integration (RTSI)

interface connector and a ribbon cable to synchronize data acquisition cards to a

31

Guil
lau

me G
arr

ea
u

single clock source [129]. This approach works well within a single computer, but

becomes more onerous with multiple computers, especially as the distance between

them increases.

Another solution is to utilize timing information provided by the ubiquitous Lo-

cal Area Networks (LANs), which already interconnect most computers. However,

in this context, the typical Network Time Protocol (NTP) does not provide an ac-

curate enough clock (Mills et al. [173]), and when corrections occur, discontinuities

are formed in the data (Minar [174]). The Precision-Time-Protocol (PTP) is much

better, but also suffers from abrupt jumps to corrected values [129]. Furthermore,

in practice, these protocols only work well on a wired network. Indeed, wireless

network latencies have a standard deviation of over 7ms, meaning that offsets of

21ms in simultaneous samples are not unheard of.

Another solution using the Wireless-Fidelity (Wi-fi) network has been presented

in (Elson et al. [76, 77]). This is called RBS for Reference-Broadcast Synchronization,

and it is a solution where nodes send reference beacons to their neighbours using

physical-layer broadcasts. A reference broadcast does not contain an explicit times-

tamp; instead, receivers use its arrival time as a point of reference for comparing

their clocks. They demonstrate µs performance using off-the-shelf 802.11 wireless

Ethernet. The main limitation of this solution is that it requires a network with

a Physical Broadcast Channel (PBCH), not available for example in point-to-point

networks. It is also a solution where the time between two broadcasts may vary

from 10ms to seconds. In addition, it relies on reference broadcast reaching every

node at same time. Finally the standard deviation is over 6µs which means that the

95% bound is around 20µs, which is not acceptable for our system.

Global Positioning System (GPS) is currently the only solution that can guarantee

a sub-microsecond accuracy (Behrendt and Fodero [11]). Its main drawback is that

it operates via line-of-sight to a GPS satellite. Otherwise synchronization will be lost

with the typical GPS receiver chip in just a few hours, or even a few seconds for the

cheapest chips (Lombardi [157]). In addition, despite the high accuracy, the update

rate provided by typical GPS chips is low (on the order of 50ms to 500ms).

Table 2.1 lists the different solutions available for synchronizing networks of

sensors.

32

Guil
lau

me G
arr

ea
u

Solution Technology Sync performance Type Cost

NI cards RTSI/PXI 10ns±500ps [129] wired high

LAN NTP 8.2ms±18ms [174] either low

LAN PTP
IEEE 1588 25µs±150ns [129] wired high

GPS GPS 35ns (2σ=340ns) [11] wireless high

Wi-Fi Wi-Fi 5ms±7ms [77] wireless low

RBS Wi-Fi 6.29µs±6.45µs [76, 77] wireless low

Table 2.1: Comparison of available solutions for synchronization.

2.2.3 Additional requirements

As said earlier, the human hearing system has a remarkable dynamic range of over

130dB [144]). This means that, in addition to an efficient synchronization system,

the acquisition system needs a dynamic range wide enough to be able to record the

full range of data with high precision.

The optimal case is to know the minimum and maximum signal that will be

measured and utilise the entire sensitivity range to obtain the best measurement

possible. The auditory threshold at 1kHz is p0 = 20µPa (rms), which is used as a

reference for the sound pressure level (SPL) measured. This means that a normal

conversation SPL of 40 to 60dB (ref p0 at 1m) is equivalent to 2 × 10−3 to 2 × 10−2Pa:

SPL = 20 ∗ log(
Prms

p0
) (2.1)

In the following estimation we will consider a pressure of PSPL = 50dB (20µPa).

The standard reference input signal for microphone sensitivity measurements is a

1 kHz sine wave at 94dB sound pressure level (SPL), or 1 pascal (Pa). Most of

the commercially available MEMS have a sensitivity of S = -42dBV (for the same

reference of 0dB = 1Vrms/Pa (Fig. 2.1).

The conversion between input (dB SPL) and output (dBV) is given by:

Output(dBV) = S − (94 − Input(dBSPL)) (2.2)

This means that the input of 50dB (SPL) is equivalent to an output (dBV) of:

Output(dBV) P = −42 − (94 − 50) = −86 (2.3)

or

Output(V) VoutP = 10(−86/20) = 50µV (2.4)

33

Guil
lau

me G
arr

ea
u

(a)

120

110

100

90

80

70

60

50

40

30

20

10

0

MAXIMUM ACOUSTIC INPUT

REFERENCE SPL (94dB)

NOISE FLOOR OF MICROPHONE
WITH 65dB SNR

0

–10

–20

–30

–40

–50

–60

–70

–80

–90

–100

–110

–120

SENSITIVITY (−38dBV)

D
Y
N
A
M
IC
R
A
N
G
E

dB SPL INPUT

dBV OUTPUT

S
IG
N
A
L
-T
O
-N
O
IS
E
R
A
T
IO

Figure 2.1: Relationship between dB SPL input and dBV output for analog micro-

phones (from [150, 151]).

34

Guil
lau

me G
arr

ea
u

This means that for an input of a normal conversation (P = 50 dB SPL = -86dBV),

we can expect an output voltage of only VoutP = 50µV (Eq. 2.4).

Another important information to take into account is the Signal to Noise Ratio

(SNR). Considering commercially available MEMS microphones, an average SNR

value is 59dB, which means a noise floor output of:

VoutSNR = 10
−42−59

20 = 8.9µV (2.5)

Furthermore, if the signal is sampled with an ADC with 16bits precision and 5V

reference, then the sampling accuracy is equivalent to:

SADC = 5V/(216
− 1) = 7.63µV/bit (2.6)

Which is of the same order of magnitude of amplitude than the expected output

signal. Therefore pre-amplification will be necessary before sampling our micro-

phone output.

24bits ADCs are also available: these allow higher precision (Eq. 2.7), but addi-

tional processing is required as the standard data format nowadays is 8 or 16bits.

SADC = 5V/(224
− 1) = 0.3µV/bit (2.7)

The last parameter to take into account is the dynamic range of the microphone,

which is linked to the maximum output value the microphone gives. It is defined

by a maximum acoustic input level of 120dB SPL at the upper end and the SNR at

the lower end (Fig. 2.1):

dynamic range = 120 − 94 + SNR = 120 − 94 + 59 = 85dB (2.8)

which is far from the human hearing system capability.

The 85dB dynamic range of the microphone output voltage is equivalent to:

dynamic range = 1085/20 = 158.5mV (2.9)

Again, to make a better use of the full range of value offered by the ADC (5V),

pre-amplification is required.

2.3 Custom built acoustic data acquisition unit

Section 2.1 has shown how timing is crucial in natural systems, while section 2.2

provided an overview of the state of the art synchronization systems commercially

35

Guil
lau

me G
arr

ea
u

available. The challenge raised by quantization and dynamic range to exploit the

ADC’s full capacity for sampling audio signals was also introduced. In this section,

the list of the specifications and trade-offs for the acoustic data acquisition system

are given.

2.3.1 Specifications and trade-offs

A particular aspect of this work is to obtain as much information as possible about

animate entities (with main target being humans) in an area under surveillance.

The methods used range from techniques such as source localization and source

separation, to source identification through the processing of both passive and active

acoustic signatures. For example, source separation can be used to determine the

number of speakers in a room and micro-Doppler (mD) to identify the people present

in a room through their characteristic walking gate.

To fulfil these tasks a large number of distinct data acquisition units, each of

which may be recording and/or emitting sound waves, is used. Furthermore the

waveforms of the collected acoustic data are digitized and processed by computer.

Acoustic data cover three different ranges: the first is the audible range, which

consists of the range of frequencies that the human acoustic system can sense, which

will henceforth be referred to as the “Audible Frequency” range. It is traditionally

defined as 20Hz to 20kHz and is usually chosen for the study and simulation of the

human auditory system. The second range is the “Low Frequency” (LF) range or

seismic range. It contains frequencies range below 20Hz. It will be use for seismic

wave measurement to model how sand scorpions use vibrations in the ground to

locate and catch their prey. Finally, the third range is the high frequency (HF) range,

referred to as “Ultrasonic Frequency” range in this work. It is the frequency range

above 20kHz (this work focuses in the 40±1kHz window). The work here is mostly

inspired from what bats do and in a lesser extend dolphins.

The specifications listed below are general specifications for an acquisition sys-

tem, however some may only be relevant to a specific frequency range and it will be

indicated. In addition some specifications are related to different parts of the system

(software or hardware) or related to legal issues (legislation that may differ from one

country to the other).

36

Guil
lau

me G
arr

ea
u

2.3.1.1 Multichannel recordings

The system must allow capability for multichannel recordings, as data from several

sensors will be acquired at the same time and in a synchronous manner (the crucial

importance of the synchronization was explained in the previous section). In addi-

tion, as the interest is to record various frequency ranges, the channel design must

be done bearing in mind that flexibility in implementation must be allowed for easy

adaptation to different frequency ranges.

2.3.1.2 Parallel processes

The system must support several parallel processes on-board. This is important as

the system will simultaneously record from multiple channels, while monitoring the

synchronization process both internally and externally in a network of nodes (made

from multiple copies of the system). Furthermore, in the case of the ultrasonic range,

the system needs to have the ability to generate and emit a sound wave at a precise

frequency and of a chosen periodic pattern (sine, square, triangle...).

2.3.1.3 Dynamic range

The system must be designed in a way that the recorded signal uses as much of the

available dynamic range as possible to create the best dataset possible. In order to

do so, amplification of the signal at the output of the sensor must be done with the

correct gain. A variable gain chain may be necessary in order to allow adaptation

to various scenarios, for example a source moving towards or away from the sensor

will cause variation in the signal amplitude measure.

A microphone with higher sensitivity, meaning a higher level output for a fixed

acoustic input (i.e. a lower absolute value in the dB scale), could be chosen for

better performance. However a microphone with higher sensitivity typically has

less headroom between the output level under typical conditions, such as normal

conversation sound level, and the maximum output level (120dB SPL, Fig. 2.1). A

microphone with higher sensitivity is more likely to cause distortion. This distortion

often reduces the overall dynamic range of the microphone.

37

Guil
lau

me G
arr

ea
u

2.3.1.4 Trade-off between performance and sensing range

In the ultrasonic case, a trade-off must be made in the system performance. The

maximum sensing range is limited by the attenuation of the sound wave in the air.

The attenuation is the sum of several components: the power of the transducer

emitting the sound, the scattering of the sound wave in the air (Eq. 2.10), the

absorption of the sound in the air (Eq. 2.11), the reflection parameter of the obstacle

(i.e. the acoustic object to be detected) and the sensitivity of the receiver.

The scattering of sound waves is governed by an inverse square law :

scattering(x) = 20 ∗ log(1/x) (2.10)

with x the distance in meter.

The attenuation of the sound in the air is calculated with:

I(x) = I0 ∗ exp(−µx) (2.11)

with I0 is the intensity of the sound at the origin (transducer) and I(x) the intensity

at distance x, µ is the linear attenuation coefficient. The attenuation coefficient of the

sound in the air α is:

α = 10 ∗ log(
I(x)
I0

) = k ∗ f 2(dB/m) (2.12)

with f the frequency in Hz and k a constant.

Hence a lower frequency means a further detection range, but frequency is also

linked to the minimum size of the features that can be detected as the minimum

detectable feature, when measuring with a wave, is equal to its wavelength:

λ = c/ f (2.13)

with c being the speed of sound in air.

Hence the importance of the frequency, if one wants to sense far away, a lower

frequency must be used. But lower frequency means a lower precision, i.e. the

minimum size of the features that can be detected increases.

One way to decrease this limitations is to use a higher voltage; this follows from

the fact that if more energy is send out, potentially more energy can be received

back and, thus, smaller features or features that are further away can be measured.

However, this requires the supply of more power to the system, which is important

if the system has to be deployed outside, far from the main power supply or if it

38

Guil
lau

me G
arr

ea
u

is receives its power from a usb cable that limits the amount of power that can be

transmitted. In case of a battery operated system, increased power usage means a

shorter recording ability.

The last two factors, reflection parameter of the acoustic object and sensitivity of

receiver, are less dependent of the frequency. The reflection parameter is character-

istic of each object. The choice of receiver sensitivity was discussed previously.

2.3.1.5 Safety requirement

In addition, careful attention has to be given to safety issues. In the case of the sound

emission, strict safety rules exist and these have to be respected. A maximum sound

pressure level of 115dB SPL is permitted [7].

2.3.1.6 Data storage

The system needs to be able to locally store the data collected, which will be sub-

sequently transmitted to a central storage unit that will contain the data collected

from all the nodes of the network. Thus, the format of the data collected must take

into account local memory, communication bandwidth available, and the dynamic

range in order to optimize data transmission and storage. The number of parallel

channels, the ADC sampling speed and precision are additional parameters to be

taken into account for data storage. In addition, local buffer size and buffer size on

the central unit, as well as final file size, have to be carefully chosen.

2.3.1.7 Sampling

In order to limit the communication bandwidth usage and/or the storage required

for the data recorded, front end data processing may be necessary. Filtering of the

signal before sampling can be performed with passive components (RC filters) in the

sampling channel to ‘clean’ the data and remove unwanted frequencies. In addition,

digital filtering or re-sampling may be implemented to sub-sample and, thus, reduce

the data set size.

2.3.1.8 Pre-processing

The system must be capable of more advanced local pre-processing of the data,

for example a filter bank and an Address Event Representation (AER) coding sim-

39

Guil
lau

me G
arr

ea
u

ilarly to cochlea operation. Work has been done in this direction, where multiple

neural network-like hardware systems are brought together to form a “brain” or

“distributed cortex” (Andreou et al. [43, 103]).

2.3.1.9 Design technology

The design must allow for certain flexibility in the system, such as adaptation to

different kinds of sensors and different frequency ranges, therefore a preconfigurable

module should be chosen, as well as VLSI technology, with one or more FPGA.

Even though an ASIC design would assure better performance and lower power

consumption, the flexibility requirement would not be met and, development time

would be longer and at a higher cost.

2.3.2 Actual design

Taking into account the requirements for the acoustic data acquisition system which

were outlined in the previous section, the actual hardware-software platform that

was designed for the experiments is presented in this section.1 The hardware plat-

form is based on two types of units: a frequency modulation synchronization unit

(FM SYNC unit) and a data acquisition unit (DACQ unit). A distributed sensor

network comprises of one FM SYNC unit and multiple DACQ units.

2.3.2.1 Synchronization considerations

In section 2.2, after demonstrating the necessity of a highly synchronized acquisition

system, an overview of the different commercially available solutions, for synchro-

nizing networks of sensors was given while showing that none is satisfactory. The

GPS solution is not compatible with the indoors scenarios, the RBS solution has lim-

itations such as none regular synchronization period (10ms to several seconds) and

a synchronization accuracy too widely spread (95% bound is 20.53µs) and the other

solutions are wired, which is a disadvantage when deploying multiple devices to

cover medium to large area of surveillance. As a consequence, efforts were focused

1The version of the system presented here was fully built at UCY by Guillaume Garreau. The

underlying design (FPGA code, PCB layout) was a collaborative effort with Philippe Pouliquen, who

was also working on the SCANDLE project. Testing and tuning of the solution was conducted at

UCY but also at JHU where Thomas Murray also helped.

40

Guil
lau

me G
arr

ea
u

on engineering a custom synchronization solution. A wired solution was not an

option, as some of the experimental protocols required significant movement of the

subjects between the sensors, and arranging the wires to avoid creating unnatural

obstacles would be impractical. An optical link solution (similar to what is used for

infra-red consumer electronic remote controls) was also rejected as the signals are

easily blocked unless the system is operated indoors where the room walls serve

as convenient reflectors. Finally, a wireless architecture was selected, employing a

single master transmitter that transmits the synchronization information to the slave

receivers in each data acquisition unit to coordinate the operation of the digital-to-

analog converters (DAC) and analog-to-digital converters (ADC).

Different methods of broadcasting radio waves and choosing the frequency

and/or phase modulation (FM) were investigated as it is more robust than amplitude

modulation (AM) with respect to interferences and simpler to implement compared

to other methods, such as spread-spectrum. To calculate how much bandwidth BW

is necessary to use to reliably transmit a signal, FM modulation engineers use a rule

of thumb, also called Carson’s rule, which states that:

BW = 2 ∗ (βFM + 1) ∗ fs (2.14)

βFM is the modulation index and fs the signal frequency. Another way to im-

plement this, is to take a ratio of at least 7 between fs and BW. In this work, a

ratio of 10 is selected. Thus, in order to transmit a 100kHz synchronization signal

with FM a radio band of approximately 1MHz in width, on which it was possible to

transmit without a license, is required. The radio frequency selected was 72.5MHz,

which is the midpoint of the 72 to 73MHz band, a band currently reserved for ra-

dio controlled model airplanes (US standard [57]). The used bandwidth, though

not reserved for controlled model airplanes in Cyprus (which is the 34.995MHz to

35.225MHz, [182]) is dedicated to Professional and Professional Amateur Mobile

Radio (PMR/PAMR), which is mainly used for mobile communication and broad-

casting (EU standard [182]). Shifting the main frequency to the Radio-controlled

frequencies window in Europe is simply done by updating the FPGA code with dif-

ferent digital clock manager (DCM) input parameters. It is also possible to change

the main crystal clock frequency. In addition, the use of low power ensures that the

range of synchronization is limited.

41

Guil
lau

me G
arr

ea
u

�
FM OUT I ✧

❍❥

✦

H�
H

✦�✁�✁�✁�✁

�
H

� � � �
✁❆

�✄�✄�✄�✄�✄�✄�✄�✄�� �
�✒✄�✄�✄�✄�✄�✄�✄�✄�� �

�✒

XC3S50AN

Figure 4.20: Schematic of FM transmitter with all components shown.

FM OUT
100nF � 3.83kΩH

✦

H3.83kΩ

100nFH10Ω

✧
❍❥�

�
2N3866

10pF

✁❆
RF Choke
(3 turns)

�✁�✁�✁�✁
✦

XC3S50AN

Figure 4.21: Schematic of FM transmitter as actually implemented.

is connected to the 5V power supply through an RF choke, which increases the amplitude of the output wave to
approximately 10V. The antenna is connected to the colector through a 10pF coupling capacitor.

4.8 Device programming
Once the PCB is assembled, the USB interface chip and the FPGA need to be configured.

4.8.1 FT232R programming
The USB interface chip can be programmed with FTDI’s FT Prog application,which can be freely downloaded from
their web site (www.ftdichip.com). Most of the device settings can be left in their default state, except for the
CBUS pin configuration which must be set properly. Use the following steps to configure the FT232R:

1. Launch the FT Prog application.

2. Select Devices then Scan and Parse from the pull-down menu.

3. In the new window, select and expand Hardware Specific.

4. Then, select and expand IO Controls.

5. Configure CBUS0 through CBUS4 as follows:

• C0 ⇒ CLK12.

29

Figure 2.2: Schematic of FM transmitter with all components shown.

2.3.2.2 FM transmitter

The FM transmitter uses a Xilinx XC3S50AN FPGA (in a -5 speed grade) with internal

configuration memory to synthesize the transmitted waveform. All that is needed

is an external amplifier and optionally additional filtering to reduce the harmonics.

In principle, since the FPGA is producing a square wave output, the harmonics of

the square wave need to be removed from the signal at the antenna connector. In

practice, the FPGA output pins are slew rate limited at the carrier frequency, and no

additional filtering was deemed necessary. Nonetheless, the PCB contains mounting

holes for the full circuit, as diagrammed in Fig. 2.2.

The actual circuit used is shown in Fig. 2.3. From the FPGA, the FM signal goes

through a DC blocking capacitor (100nF) to the base of the RF bipolar transistor

(2N3866 or equivalent). The transistor base is biased by the resistive divider formed

from the two 3.83kΩ resistors. The transistor emitter is connected to ground via

a 10Ω emitter degeneration resistor (to prevent thermal runaway) and an AC by-

pass capacitor (100nF). The transistor collector is connected to the 5V power supply

through an RF choke, which increases the amplitude of the output wave to ap-

proximately 10V. The antenna is connected to the collector through a 10pF coupling

capacitor.

2.3.2.3 FM receiver

The FM receiver is composed of a SA602A RF mixer, a SA604A FM decoder, an

LTC1196 8bit 1Msps ADC and an LT1719 high speed comparator. A block diagram

is given in Fig. 2.4 A/. The complete circuit is shown in Fig. 2.5.

The signal from the antenna is coupled to the SA602A input, where it is mixed

with the reference signal (14
17 75MHz ≈ 61.8MHz) generated by the Xilinx XC3S50AN

42

Guil
lau

me G
arr

ea
u

�
FM OUT I ✧

❍❥

✦

H�
H

✦�✁�✁�✁�✁

�
H

� � � �
✁❆

�✄�✄�✄�✄�✄�✄�✄�✄�� �
�✒✄�✄�✄�✄�✄�✄�✄�✄�� �

�✒

XC3S50AN

Figure 4.20: Schematic of FM transmitter with all components shown.

FM OUT
100nF � 3.83kΩH

✦

H3.83kΩ

100nFH10Ω

✧
❍❥�
�
2N3866

10pF

✁❆
RF Choke
(3 turns)

�✁�✁�✁�✁
✦

XC3S50AN

Figure 4.21: Schematic of FM transmitter as actually implemented.

is connected to the 5V power supply through an RF choke, which increases the amplitude of the output wave to
approximately 10V. The antenna is connected to the colector through a 10pF coupling capacitor.

4.8 Device programming
Once the PCB is assembled, the USB interface chip and the FPGA need to be configured.

4.8.1 FT232R programming
The USB interface chip can be programmed with FTDI’s FT Prog application,which can be freely downloaded from
their web site (www.ftdichip.com). Most of the device settings can be left in their default state, except for the
CBUS pin configuration which must be set properly. Use the following steps to configure the FT232R:

1. Launch the FT Prog application.

2. Select Devices then Scan and Parse from the pull-down menu.

3. In the new window, select and expand Hardware Specific.

4. Then, select and expand IO Controls.

5. Configure CBUS0 through CBUS4 as follows:

• C0 ⇒ CLK12.

29

Figure 2.3: Schematic of FM transmitter as actually implemented.

SA602,
mixer

amplification

Antenna,
carrier

72.5MHz

61.8MHz

10.7MHz

Filter Filter

Sinusoidale
wave

ADC, 8 bits

RSSI

Comparator

Variable
Inductor

Mixer

90º phase shift
Output = 0

@ 10.7MHz

/Output

FPGA
Quadrature Detector

FilterFilter
Sinusoidale

wave

Comparator

IN

OUT

A/

B/ Amplification

C/

1.5μs

SA604,
demodulator

Figure 2.4: FM receiver.

43

Guil
lau

me G
arr

ea
u

IN
A

1

IN
B

2 3
G

N
D

4
O

U
TA

V
C

C

O
S

C
A

O
S

C
B

O
U

TB

8 7 6 5

A
M

P
 D

E
C

1

G
N

D
2 3

M
U

TE
4

V
C

C

A
M

P
 IN

A
M

P
 D

E
C

A
M

P
 O

U
T

G
N

D

16 15 14 13

R
S

S
I

5

A
U

D
 O

U
T

6 7
Q

U
D

 O
U

T
8

Q
U

D
 IN

LI
M

 IN

LI
M

 D
E

C

LI
M

 D
E

C

LI
M

 O
U

T

12 11 10 9

FPGA

5V

1uF

10uF

0.1uF

SA602

Antenna

22pF

82pF

0.27uH

10.7MHz
ceramic filter

430ohm

12pF

1.1uH

120pF15pF

1nF

91Kohm

SA604A

MUTE

RSSI to
ADC

V- (to
comparator)

* Connected to
GND or across

tuning coil

0.1uF

0.1uF

0.1uF

0.1uF

0.1uF

0.1uF

0.1uF

0.1uF

10.7MHz
ceramic filter

430ohm

V+ (to
comparator)

5V

Figure 2.5: Schematic of FM receiver.

FPGA. Since the original signal has a carrier frequency of 72.5MHz, the mixed

signal will appear at 72.5 - 61.8 = 10.7MHz. The signal is then filtered by a ceramic

filter with a center frequency of 10.7MHz and a bandwidth of 150kHz. The signal

is amplified by an amplitude limited amplifier in the SA604A, then filtered and

amplified a second time up to saturation. So the current consumption depends on

the input signal (Fig. 2.4 B/). The signal is then phase shifted by 90 degrees in

the quadrature tank composed of the 1.5µH tunable coil and a 135pF capacitance

(formed of the parallel combination of a 15pF and a 120pF capacitors). The phase

shifted signal is then mixed with the un-phase shifted signal to produce the decoded

output (demodulated). The output of the tank circuit is multiplied by the original

(0 degree phased) signal and low-pass filtered (to remove the 21.4MHz component).

So the center frequency results in 0Vdc and the off center will produce a positive

or negative voltage. The SA604A has complementary decoded outputs at pins 6

and 7 that get the 0 degree phased and 180 degree phased demodulated signal.

These outputs are fed to the high speed comparator to create a digital signal for the

FPGA to decode further. The length of the pulse is about 1.5µs, It is determined

by the components used for the tank and can not be changed. It represents the

44

Guil
lau

me G
arr

ea
u

time needed by the demodulator to re-adapt itself to a new frequency (Fig. 2.4 C/).

The desired waveform for the output is a square wave, although the transitions will

necessarily be quite noisy. It is best if the pulse width is somewhat shorter than

5µs. The FM receiver has to be tuned manually, it is very accurately done with the

help of an oscilloscope. However, a Matlab R© script has been developed to help the

tuning (script “tune.m” in AppendixB). The VHDL script and User Constraints File

(UCF) file used for the tuning of the FM receiver of each DACQ units can be found

in AppendixA. The SA604A also has a Received Signal Strength Indicator (RSSI)

output, which is digitized by the 8-bit ADC (controlled by the FPGA).

2.3.2.4 FM SYNC unit

The purpose of the FM SYNC unit is to transmit a signal that can be used by each data

acquisition unit to tag its data and to compensate for variations in the unit’s local

oscillator. The main component of the FM SYNC unit is the FM transmitter presented

earlier. Because of the high accuracy desired of the synchronisation signal, the

bandwidth of the radio signal is quite large (approximately 1MHz). For this reason,

the carrier frequency chosen for its operation is 72.5MHz, which is the midpoint of

the 72 to 73MHz band reserved for radio controlled model airplanes (US standard).

In addition the crystal oscillator used is a 20MHz temperature controlled crystal

oscillator (TCXO) with an accuracy of 0.28ppm. The other units used a 75MHz

oscillator (no temperature controlled) with 50ppm accuracy. A block diagram is

given in Fig. 2.6 and a picture of the board is shown on Fig. 2.7.

The FM SYNC unit sends raw bits at a fixed rate of 200,000 bits per second

(200kbps). A raw bit of one is encoded as a phase shift, while a zero is encoded as

no phase shift. An encoded data bit is composed of four raw bits, the encoding is

given in Tab. 2.2. The data rate is therefore 50,000 bits per second (50kbps). This

gives a modulation index of:

βFM = 2 ∗
fs

bitrate
= 4 (2.15)

The FM SYNC unit transmits a SYNC bit followed by the 60 data bits of the

timestamp (least significant bit first), followed by 419 zero data bits. The pattern

then repeats, with the timestamp incremented by one. Thus, a new timestamp is

sent every 9.6ms, which corresponds to the length of a frame in the DACQ units.

The FM SYNC unit can be connected to a computer running either Microsoft

45

Guil
lau

me G
arr

ea
u

Power
Supply

Transmitter
circuitry

FPGA
Spartan

3AN

USB
Port

Figure 2.6: Block diagram of the FM SYNC unit.

Figure 2.7: Picture of the FM SYNC unit.

46

Guil
lau

me G
arr

ea
u

Data bit Encoding

0 1000

1 1010

SYNC 0010

Table 2.2: Data bit encoding.

Windows or UNIX System through USB. The timestamp transmitted by the FM

transmitter can be read and altered at any time. The VHDL script and UCF file for

the FM SYNC unit programming can be found in Appendix A. Scripts for setting

and reading the timestamp can be found in Appendix B.

The FM SYNC unit sends the timestamp to all the other units, so each unit crystal

is locked to the same reference signal. If a unit loses the reference, it will keep

running normally until it finds again the reference signal and then re-align its clock

cycles to the reference.

2.3.2.5 DACQ unit

Multimodality and flexibility of implementation are two of the main characteristics

of the DACQ units.

Overview of the DACQ unit Data acquisition on the custom-built boards is con-

trolled by the same FPGA as the FM SYNC unit, but with a lower speed grade.

The board uses a 75MHz crystal oscillator (50ppm). It is used to create a 61.8MHz

clock, used as reference for the FM receiver, and a 90MHz clock for the FPGA. This

FPGA coordinates the operation of the data converters and transmits the data to the

host computer through the USB interface IC. The analog input section of the Printed

Circuit Board (PCB) consists of four parallel sampling chains. Each chain consists of

an AD8656 dual OpAmp, a PGA112 programmable gain amplifier and an AD7686

16bit 500ksps ADC. The reference voltage is supplied by a TLE2425 2.5V reference.

The FM receiver section of the PCB is composed of a SA602A Radio Frequency (RF)

mixer, a SA604A FM decoder, a LTC1196 8bit 1Msps ADC and a LT1719 high speed

comparator. The details of the FM receiver were presented earlier.

A block diagram of the DACQ unit is given in Fig. 2.9. The board was de-

signed to accommodate more powerful FPGAs. However, rather than replacing

47

Guil
lau

me G
arr

ea
u

the XC3S50AN part with another, it only adds connectors for an Opal Kelly type

FPGA daughter board (www.opalkelly.com). This allows to increase the capabili-

ties of the unit by adding some pre-processing and can thus be used for a much

wider range of applications, including, standalone and real-time applications. This

would permit implementation of an artificial neural network on FPGA as described

in [37, 39, 41, 175]. It has be shown that learning of real-world stimuli can be imple-

mented using a spike-driven neural network [22]. In case of several DACQ units

used, each for a different modality, a network of communicating neuron arrays can

be implemented as shown in [40, 42, 45] that would allow to simulate a ‘brain’ like

system [103, 154].

Decoding the synchronization pattern The signal from the FM receiver section

(comparator output) is sampled and if it is high more than half of a 5µs period then

it is a ‘1’, else a ‘0’. This value is later referenced as raw bit. The pulse width from

the comparator is expected to be shorter than 5µs (Fig. 2.4 C/), so if the interval ends

with the comparator output high, it is assumed that the intervals are straddling bit

boundaries, and that the interval phase needs to be adjusted (Fig. 2.8). The direction

of the adjustment is based on whether the interval had a majority of ones, in which

case the interval is stretched, or a majority of zeros, in which case the interval is

shrunk.

Every 5µs, a new raw bit is stored. Four raw bits will make a data bit, using

encoding given in Tab. 2.2. When a series of “00SYNC” data bits is detected the

reference sync pulse is set to ‘1’ for one clock cycle. Then there are 60 additional

cycles of 4× 5µs to read the timestamp value, followed by 419 cycles of zero data bits.

The FPGA has also its own sync pulse, named local sync pulse, that goes high for

one clock cycle every 9.6ms. A counter counts the number of clock cycles between

the two sync pulses. Another counter, the sequencer counter, is used as reference

for all the periodic processes that are controlled by the FPGA (ADCs, PGA, ADC,

serial connection, buffers, data storage). The sequencer counter period needs to be

adjustable so that the DACQ unit clock is phase-locked to the FM transmitter clock.

The increment adjustment is phs inc (1 integer bit, 18 fractional bits) and it is done by

integrating the error signal (delay between the two sync pulses). phs inc is updated

with the delay between the sync pulses in number of clock cycles when the local

sync pulse is 1 and the reference pulse sync is 0. The code limits the value of phs inc

48

Guil
lau

me G
arr

ea
u

Time

A
m

pl
itu

de

Time

A
m

pl
itu

de

Time

A
m

pl
itu

de

Ideal case

Interval ending late, shrink needed

Interval ending early, stretch needed

1

1

1

1

1

1

0

0

0

0

0

0

5us 10us 15us 20us

fm_smp

Figure 2.8: FM comparator output signal decoding.

49

Guil
lau

me G
arr

ea
u

Unit type Analog inputs Analog outputs Sampling rate

Ultrasound 1 2 100kHz

ASU (4 microphones) 4 0 25kHz

Geophones 3 0 33kHz

Mannequin (2 biased microphones) 2 0 50kHz

Table 2.3: List of the different types of data acquisition units used.

to be between 0 and 2 (non-inclusive), nominally 1.

The phase-locking of the DACQ crystal unit is updated every 180 clock cycles or

2µs by 0 or ±1 clock cycle. However, the sync pulses have a period of 9.6ms (frames

length). The phase-locking accuracy is embodied in the number of bits in phs inc (1

part in 218) not by the 1 part in 180. For additional details, refer to the AppendixD.

Sampling lines Each unit is design to have up to four analog inputs and two

analog outputs. The actual configuration depends on the components installed on

the PCB (printed circuit board) and the firmware programmed into the FPGA. Note,

however, that physical space constraints limit the number of analog connectors to a

total of four, so only three or two analog inputs are available if the analog output(s)

are used.

The analog inputs and outputs are connected to 16bits data converters. The

digital data is transferred between a data acquisition unit and a host computer via

a USB cable. The USB interface IC (integrated circuit) used in the data acquisition

units limits the total bandwidth to 100,000 samples per second (100ksps). This in

turn limits the analog sampling to 100ksps for a single channel data acquisition unit,

50ksps for a two channel unit, 33.3ksps for a three channel unit and 25ksps for a four

channel unit. Table 2.3 summarizes these characteristics. A picture of an example

of implementation is given on Fig. 2.10. It is the Acoustic Surveillance Unit (ASU)

implementation which is a unit with four microphones, it is used to monitor an area,

based on acoustic data.

Note that the ultrasonic units are listed as using two analog outputs as the

ultrasonic transmitter transducer element is driven differentially to increase output

power. The connector type is typically a BNC connector, unless the sensor requires

a power supply (such as microphones). It is also possible to use Integrated Circuit

50

Guil
lau

me G
arr

ea
u

Power
Supply

FM
Receiver

FPGA
Spartan

3AN

USB
Port

Data Sampling Lines

PGA

ADC

ADC

ADC

ADC

DAC

DAC

Filter

Filter

Filter

Filter

Analog In 1

Analog In 2

Analog In 3

Digital Domain Analog Domain

Analog Out 1

Analog In 4

Analog Out 2

P
H
Y
S
I
C
A
L

E
N
V
I
R
O
P
N
M
E
N
T

PGA

PGA

PGA

Figure 2.9: Block diagram of the data acquisition unit.

Piezoelectric (ICP) type microphones where the power is supplied using the same

wire as the returned audio signal.

The components on the PCB are further customized according to the data acqui-

sition units intended application. This customization includes adjustments to the

gain and bandwidth of the analog channels, as well as the type of filters used (e.g.

Butterworth versus conventional). The PCB design allows a large amount of flexi-

bility in this regard, and a programmable gain amplifier is also included to extend

the range of the ADCs (analog-to-digital converters).

The data acquisition units can be connected to a computer running either Mi-

crosoft Windows or UNIX through USB. The data acquisition units send their infor-

mation in frames. Each frame is composed of a header of 12 16bit words followed by

960 samples. The arrangement of the frame data is shown in Tab. 2.4. Note that the

sample words are interleaved, so that their arrangement depends on the number of

input channels that the data acquisition unit has. The detailed content of the header

is shown in Tab. 2.5. Additional informations are given in Appendix E.

The VHDL script and UCF file for the DACQ units programming can be found

in Appendix A.

51

Guil
lau

me G
arr

ea
u

location 1 analog input 2 analog inputs 3 analog inputs 4 analog inputs

word 0 sync sync sync sync

word 1 sync sync sync sync

word 2 module ID module ID module ID module ID

word 3 module ID module ID module ID module ID

word 4 frame index frame index frame index frame index

word 5 timestamp timestamp timestamp timestamp

word 6 timestamp timestamp timestamp timestamp

word 7 timestamp timestamp timestamp timestamp

word 8 timestamp timestamp timestamp timestamp

word 9 PGA and RSSI PGA and RSSI PGA and RSSI PGA and RSSI

word 10 frame minimum frame minimum frame minimum frame minimum

word 11 frame maximum frame maximum frame maximum frame maximum

word 12 sample 0 channel 0 sample 0 channel 0 sample 0 channel 0 sample 0 channel 0

word 13 sample 1 channel 0 sample 0 channel 1 sample 0 channel 1 sample 0 channel 1

word 14 sample 2 channel 0 sample 1 channel 0 sample 0 channel 2 sample 0 channel 2

word 15 sample 3 channel 0 sample 1 channel 1 sample 1 channel 0 sample 0 channel 3

word 16 sample 4 channel 0 sample 2 channel 0 sample 1 channel 1 sample 1 channel 0

word 17 sample 5 channel 0 sample 2 channel 1 sample 1 channel 2 sample 1 channel 1

word 18 sample 6 channel 0 sample 3 channel 0 sample 2 channel 0 sample 1 channel 2

word 19 sample 7 channel 0 sample 3 channel 1 sample 2 channel 1 sample 1 channel 3

word 20 sample 8 channel 0 sample 4 channel 0 sample 2 channel 2 sample 2 channel 0

word 21 sample 9 channel 0 sample 4 channel 1 sample 3 channel 0 sample 2 channel 1

word 22 sample 10 channel 0 sample 5 channel 0 sample 3 channel 1 sample 2 channel 2

word 23 sample 11 channel 0 sample 5 channel 1 sample 3 channel 2 sample 2 channel 3

· · ·

word 971 sample 959 channel 0 sample 479 channel 1 sample 319 channel 2 sample 239 channel 3

Table 2.4: Format of data acquisition frame.

52

Guil
lau

me G
arr

ea
u

Figure 2.10: Picture of an ASU data acquisition unit.

Most significant byte Least significant byte

7 6 5 4 3 2 1 0 7 6 5 4 3 2 1 0

word 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1

word 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

word 2 module ID, byte 1 module ID, byte 0

word 3 module ID, byte 3 module ID, byte 2

word 4 frame index

word 5 1 timestamp, bits 14 to 0

word 6 1 timestamp, bits 29 to 15

word 7 1 timestamp, bits 44 to 30

word 8 1 timestamp, bits 59 to 45

word 9 PGA RSSI

word 10 frame minimum

word 11 frame maximum

Table 2.5: Format of data acquisition frame header.

53

Guil
lau

me G
arr

ea
u

2.3.3 Hardware testing

This section provides evidence in support of the claimed synchronization perfor-

mance of the FM SYNC unit described above. Initially, a Tektronix AFG 3252 signal

generator was used to generate a 1kHz sync pulse every 100ms (10Hz). It was con-

nected to a resistive attenuator and then through BNC cable extension to 3 DACQ

units (each one connected to a computer). The FM SYNC unit was connected to

a fourth computer. However, the first set of data collected was too noisy, because

the resistive attenuator at the function generator output made the cabling more sus-

ceptible to noise coupling. Furthermore, one of the DACQ was programmed as a

ultrasonic unit and the output DAC was adding noise (a sine wave) to the ADC

data. Additional noise was also noticed coupling in from the USB cables when data

collection was active. As a result, the DACQ units were reprogrammed to disable

the DAC and the attenuation was moved to each unit input. Then another data set

was collected. However, there were a few problems still. The main problem was that

the sync pulse was too short (only about 10 samples of the ASU units, which sample

every 40µs) and the amplitude was a bit low. So the amplitude was increased and

the frequency lowered to 100Hz (to stretch out the sync) while keeping the repetition

rate of 100ms. In addition all units were reprogrammed with the ultrasound bit code

(and DAC disabled), so that they only sample on one channel, resulting in a 10µs

sampling rate for all modules. But the results were still not as good as desired.

In the mean time, the idea came up that a different waveform might work better

for measuring jitter. After a bit of trial and error, the optimal waveform was found

(Fig. 2.11). Essentially, the long upward sloping section is used to measure the

shift amount. The procedure is to find the lower (blue) and upper (green) plateaus

which bound the sloping section (red line) by starting from the min and max and

adding point to each set whose value is close enough to the min/max. The threshold

is currently 1% of the overall amplitude (max-min). The min/max plateaus were

introduced because each module has a slightly different voltage gain and offset (due

to the components mismatch in the ADC channels). The two plateaus essentially

allow a two-point correction of the data for these variations. The sloping portions

before and after are there only to make the waveform symmetric.

54

Guil
lau

me G
arr

ea
u

0 200 400 600 800
0

1

2

3

4

5

6

x 10
4

Sample Number

A
m

p
li
tu

d
e

Figure 2.11: Optimal waveform used for synchronization precision measurement.

2.3.3.1 Analog pattern synchronization test

In the analog pattern test, four DACQ units and the FM SYNC unit are all controlled

by different computers (five in total). The setup is shown schematically in Fig. 2.12.

One of the DACQ units is programmed to generate a specific waveform through its

DACs (with a period of 9.6ms and a sampling rate of 1MHz, unit noted waveform

generator in Fig. 2.12) which is sent to three other DACQ units (noted US25, US33,

US40 in Fig. 2.12) that digitize the waveform with their ADCs (at a sampling rate

of 100kHz). The digitized waveform is then sent back to each host computer for

analysis. Note that in order to reduce the noise in the measurement the ADCs,

on the waveform generating DACQ, and the DACs, on the waveform receiving

DACQ units, are disabled. Furthermore, attenuators were installed at the input of

the waveform receiving DACQ units, so that the waveform generating DACQ unit

could produce signals using the full dynamic range of its DACs without saturating

the ADCs in the other units.

This experiment is designed to test the end-to-end synchronization performance

of the DACQ units. Indeed, any measured time shift between the original waveform

and the digitized waveform incorporates the effect of the phase-locked loop (PLL)

phase error in the waveform receiving DACQ unit as well as the waveform generat-

ing DACQ unit, and also any phase delay caused by the analog signal chains within

the DACQ units. By connecting each DACQ unit to a different computer, we are

emulating the usual scenario for the intended use of the system.

55

Guil
lau

me G
arr

ea
u

SYNC_DEVICE

US33US25 US40Waveform
generator

wireless sync pattern

to data storage to data storage to data storage

wired sync pattern

Figure 2.12: Schematic of the setup used for the analog synchronization precision

measurement.

The generated waveform was designed to simplify the calculation of the time

shift. A sample of the captured waveform is shown in Fig. 2.13. The waveform

is composed of a central upward sloping section (approximately 100 samples at

100kHz), bounded by two plateaus (approximately 50 samples at 100kHz). These

minimum and maximum plateaus are present to allow the calculation of the actual

gain and offset of analog channel, which may differ from the nominal values due

to manufacturing variations, drift and temperature. The central sloping section,

after correction for gain and offset, and after fitting to a line, allows the calculation

of the actual time shift (zero-crossing time). The short downward sloping sections

(approximately 50 samples at 100kHz) on either side of the plateaus match the slope

of the central section to avoid introducing additional frequency components in the

signal spectrum and ensure that the waveform has a zero overall mean.

The histogram of the time shift measurements collected continuously over a

period of approximately 30 hours (approximately 11×106 measurements) are shown

in Fig. 2.14, and the mean and standard deviation are summarized in Tab. 2.6.

The result obtained (max delay of less than 5µs, average 0.4µs and standard

deviation of 0.35µs) are very good. However, the measurements do include signal

56

Guil
lau

me G
arr

ea
u

-

6

+1
-1

+2
-2

+3
-3

+4
-4 time shift (ms)

+2

+1

-1

-2

amplitude (V)

qqq
qqqqqqqqqqqqqq
qqqqqqqqqqqqqq
qqqqqqqqqqqqqq
qqqqqqqqqqqqqq
qqqqqqqqqqqqqqq
qqqqqqqqqqqqqqq
qqq

�minimum

-maximum

Figure 2.13: Waveform used for the analog synchronization precision measurement.

-

6

-5 -4 -3 -2 -1 +0 +1 +2 +3 +4 +5
time (µs)

0

5×104

10×104

15×104

20×104

25×104

counts US25
US33
US40

Figure 2.14: Histograms of the synchronization pulse delay on the 3 acquisition

units for end-to-end measurement.

Unit Minimum Maximum Mean Std.

US25 −3.522µs +4.756µs +0.422µs ±0.380µs

US33 −4.444µs +2.622µs −0.650µs ±0.328µs

US40 −3.856µs +3.911µs −0.118µs ±0.339µs

Table 2.6: Statistics for the analog test.

57

Guil
lau

me G
arr

ea
u

Test Source of error/delay Solution

Digital supply chain noise/mismatch bypass sampling line

Analog attenuator noise
moving attenuator from

signal generator to input sampling line

Analog sync pattern optimized waveform

Analog & Digital delay in cables assumed negligeable

Analog & Digital cross-talk disable ADC/DAC

Analog & Digital jitter noise 5 samples averaging

Analog & Digital crystal drift FM SYNC
(what we are interested in measuring)

Table 2.7: Sources of error/delay and their solutions.

chain noise and jitter, although the line fit is an average of about 100 samples and

each sample is the average of 5 ADC samples, so that should attenuate the effects of

jitter and noise from the signal chain. Thus it was decided to do a digital sync test

were a sync pattern would be directly connected to the FPGA in order to bypass the

sampling lines. In Tab. 2.7 is given the different sources of error/delay and how they

were fixed/diminished, it is also specified which test (analog/digital they are applied

to).

2.3.3.2 Digital pattern synchronization test

In the digital pattern test, three DACQ units (GEO1, GEO2, GEO3) and the FM

SYNC unit are connected to the same computer. The computer is used to initialize

the timestamp, power the units and read out the data from the DACQ units. Ad-

ditionally, the FM transmitter is programmed to generate a reference digital square

wave (at 100kHz) that is synchronous to the transmitted wireless signal and which

is connected directly to a spare pin of the FPGA on each DACQ unit. The setup is

shown schematically in Fig. 2.15.

With this setup, the DACQ’s FPGA can directly compare the synchronization

pulse received wirelessly with the reference signal received digitally from the FM

transmitter. The DACQ therefore records the clock cycle number at which a rising

edge on the reference signal was observed. Since the clock cycle counter is phase-

locked to the wireless FM signal, this measurement allows us to calculate the jitter

and the absolute timing error for each DACQ unit. Note that in order to reduce the

58

Guil
lau

me G
arr

ea
u

SYNC_DEVICE

GEO2GEO1 GEO3

Square wave
 sync pulse

100KHz

wireless sync pattern

wired sync pattern

to data storageto data storage to data storage

Figure 2.15: Schematic of the setup used for the digital synchronization precision

measurement.

Unit Mininimum Maximum Mean Std.

GEO1 +1.244µs +1.522µs +1.378µs ±0.049µs

GEO2 +0.900µs +1.167µs +1.022µs ±0.047µs

GEO3 +2.500µs +2.811µs +2.630µs ±0.065µs

Table 2.8: Statistics for the direct digital test.

noise in the measurement (from digital lines cross-talk), the DACs and ADCs are

disabled in this setup.

The histogram of these measurements collected continuously over a period of

approximately 44 hours (approximately 16 × 109 measurements) are shown in Fig.

2.16, and the mean and standard deviation are summarized in Table 2.8. Note that in

each case, the maximum spread of the measurement distribution is no greater than
1
3µs, but each distribution has a distinct mean. Note that the standard deviation of

the results is 7 times better than the one obtained in the analog synchronization test,

this shows the high precision of the phase locking.

The reason for the distinct mean is that each DACQ unit implements a software

PLL locked to the wireless FM signal. In a PLL, the phase error between the local

59

Guil
lau

me G
arr

ea
u

-

6

0 1 2 3 4 5 6 7 8 9 10
time (µs)

0

3×108

6×108

9×108

12×108

15×108

18×108

counts GEO1
GEO2
GEO3

Figure 2.16: Histograms of the synchronization pulse delay on the 3 acquisition

units for direct digital input.

oscillator and the external signal is used to drive the local oscillator frequency. Hence,

unless the local oscillator has a natural frequency exactly equal to the external signal,

a non-zero phase error will be required to drive the local oscillator to a matching

frequency. Since each DACQ unit has its own local crystal oscillator module, the

distinct mean is simply a reflection of the manufacturing variability in the actual

frequencies of these modules.

These performances assure that the system can be used for synchronization with

recordings of signals from the audio (up to 16kHz) and seismic range (in the<2kHz).

For the ultrasonic range, though the working frequency is typically higher than that

(40kHz or more, which means period of 25µs or less) the targeted information is

spanned between 0 to 2kHz around it [96, 133, 255].

60

Guil
lau

me G
arr

ea
u

2.4 Conclusion

After a short introduction on the importance of precise timing in natural acoustic

system, the state of the art synchronization systems were presented. Then the re-

quirements for a bioinspired hardware platform for acoustic scene analysis were

listed. The hardware platform is a custom distributed wireless data acquisition

system for passive and active multimodal sensing. As commercially available syn-

chronization modules have particular limitations (Tab. 2.9), the details of the design

of a unique synchronization module (the FM SYNC unit) and a data acquisition

module (DACQ unit) were given.

Solution Technology Sync performance Limitation

NI cards RTSI/PXI 10ns±500ps [129] wired

LAN PTP
IEEE 1588 25µs±150ns [129] wired

LAN NTP 8.2ms±18ms [174] sync >10µs

Wi-Fi Wi-Fi 5ms±7ms [77] sync > 10µs

RBS Wi-Fi 6.29µs±6.45µs [76, 77]
requires PBCH

irregular sync period

GPS GPS 35ns (2σ=340ns) [11] outdoor only

This work FMDASYNC 0.40µs±0.35µs –

Table 2.9: Comparison of available solutions for synchronization.

The designed system relies on Very High Frequency (VHF) radio operated in the

72MHz band to achieve fine resolution in synchronization as well as functionality

over distances exceeding 100m. It can be deployed indoors and outdoors. The

system is capable of synchronized signal sampling with a precision of 1µs and an

update rate of 2µs. This is demonstrated in two data acquisition tests, one using a

digital synchronization signal and the other using a custom analog synchronization

signal.

In the following chapters, the custom built system is used to collect data for

various categorization tasks using the three frequency ranges defined in section 2.3.

61

Guil
lau

me G
arr

ea
u

62

Guil
lau

me G
arr

ea
u

63

Guil
lau

me G
arr

ea
u

64

Guil
lau

me G
arr

ea
u

Chapter 3

Scorpion-inspired LF Acoustic Wave

Analysis

3.1 Introduction

In this chapter, an implementation of a scorpion-inspired neural network model is

presented. The acoustic range of interest is the low frequency range, i.e. the range of

frequencies below the human hearing threshold, range below 20Hz. Low-frequency

energy traveling through the ground is usually produced by earthquakes (seismic

activity) or explosions. Thus seismic sensors are used to detect these vibrations and

predict future activity.

In nature, many animals use low frequencies for multiple purposes [246]. For

communication purposes several species of whales use frequencies as low as 14Hz.

They communicate over huge distances (1600km) [58,214] by vocalising at volumes

that exceed 180dB with a reference at 1µPa at 1m [241]. These high powered broad-

casts are used mostly to find a mate as it is not rare that the whale is the only one of its

specie in an area with a radius of several hundreds of kilometres. On a smaller scale,

elephants communicate up to 16km away [181] by stamping their legs on the ground

to ‘vocalise’ and ‘listen’ for seismic vibrations through their legs, in the 10Hz-40Hz

range. They not only communicate but are also able to identify precisely who is the

individual they are talking to. Finally, on an even smaller scale, of the order of a

few tens of centimetres, low-frequency vibrations are used by sand scorpions to find

worms at night. They can detect variations in sand as small as 0.1nm and pinpoint

the direction of their prey [30, 218].

A recent trend in the marketing-related field is the personalisation of advertise-

65

Guil
lau

me G
arr

ea
u

ments according to the customer. This creates the need of a quick and efficient way

to identify gender and even individuals in order to offer services that fit the needs

and desires of the clients as much as possible. In the online world it is easy to

provide such service via the use of cookies, which are stored by the web browser,

and/or registered accounts, but this is more complicated in the ‘real world’. Studies

were conducted to offer cost effective systems to achieve this need. It has been

shown that it is possible to identify gender and individuals from their footsteps

(Sudo et al. [219], Ekimov and Sabatier [73]). It is also possible to envision applica-

tions in security (banks, home) or monitoring (toilettes in public facilities) without

any privacy concerns. For example, an implementation of a footstep-based indoor

location system using the traditional Japanese GETA sandals, equipped with force,

ultrasonic, orientation, RFID sensors and an accelerometer to produce a wearable

location tracking system that demands little infrastructure in the deployed environ-

ment is presented by Yeh et al. [251]. Another example is a system based on footstep

vibration signals measured by a MEMS accelerometer for the estimation of indoor

physical activity level for personal health care under smart home environments (Lee

et al. [147]).

In the work presented here, a prototype spiking-neural-network localisation sys-

tem is used, inspired by the way that sand-scorpions locate their prey. The system

utilizes custom-built hardware, designed for accurate timing of concurrent data sam-

ples. Seismic sensors are used to detect the ground vibrations, which are fed to a

spiking neural model, capable of working with real data.

3.2 Scorpion bioinspired model literature

A spiking neural model is used to calculate the subject direction from the ground

vibration created by the footsteps. It is inspired from sand scorpions and how they

locate their prey at night in the desert using the vibration traveling in the ground.

The first researchers to investigate the theory behind arachnid prey localization

were Brownell and Farley [28–30]. Arachnids locate their prey through mechanore-

ceptors (sensilla) located at the tips of their eight legs. Each mechano-receptor can

be modelled by a noisy leaky integrate-and-fire (I&F) neuron, which responds to

vibrations with stimulus-locked action potentials, thus encoding the prey direction.

When a sensilla receives an excitatory input the corresponding neuron will send an

66

Guil
lau

me G
arr

ea
u

inhibitory signal to the triads of neurons opposite it. The neurons with the strongest

activity give the direction of the prey. This model was further developed by Stürzl

et al. who showed that time-coding through spiking neurons is key to this pro-

cess [218]. Brownell and van Hemmen then compared biological measurements to

the theoretical model [31] mentioned above. Kim investigated different excitatory

and inhibitory combinations (monad, dyad, pentad) [137], whilst Adams demon-

strated, through simulations, the possibility of using this model in robotic applica-

tions [1]. Furthermore, the model of Stürzl et al. has been implemented on a python

spiking neural network simulator called Brian (Brette and Goodman [26, 107, 108]),

and tested using artificially generated data (Brette and Goodman [25, 107]). Finally,

implementation of a simplified version of the model has been proposed for 6 legged

robots by Wallander [236] and Kim [138].

The following section provides an overview of the original model and the im-

provements made at the University of Cyprus (UCY) for adaptation to real data.1

3.2.1 Original neural model

The model created by Stürzl et al. has 8 command neurons and 8 inhibitory neurons

[218]. Each of the 8 legs of the arachnid is connected to one command neuron and

three inhibitory partner neurons (shown in Fig. 3.1 in black and grey respectively).

The sense organ of each leg of the arachnid, the basitarsal compound slit sensilla

(BCSS), located just above the joint of the foot (tarsus) is compressed as a transverse

wave passes along (Rayleigh waves, approximately 50m/s). The reaction mechanism

is sensitive to movements smaller than 0.1nm and creates an excitatory spike at the

command neuron corresponding to this leg. It also creates an excitatory spike at the 3

inhibitory partner neurons connected to the leg and projecting their inhibitory spike

to the command neurons of the opposite legs (Fig. 3.1). Spike generation is modeled

by an inhomogeneous Poisson process. Leg j makes an angle θ j with respect to a

reference (arbitrary selected as the head to tail axis of the scorpion) and spikes with

a rate a j. The leg closest to the source spikes at a higher rate whilst inhibiting others

from spiking as fast. Thus we can compute the direction of the source. The polar

position of the prey, x, can be estimated from the angle, θ j, of leg j (Eq. 3.1). The

1The initial work on the adaptation of the model was started by Eleni Proxenou as part of an

“Undergraduate Research Opportunities Program” project under the direct supervision of Guillaume

Garreau.

67

Guil
lau

me G
arr

ea
u

VOLUME 84, NUMBER 24 P HY S I CA L R EV I EW LE T T ER S 12 JUNE 2000

we can predict is a probability density. The response is a
set of stimulus-locked action potentials (or spikes) [2,5].
For each Rayleigh wave maximum, there is at most one
spike per neuron that is transported to a ring-shaped struc-
ture [13] in the suboesophageal ganglion (SOG), where the
axons from the eight legs meet.
We consider M active axons per BCSS and assume that

each direction gk with 1 # k # 8 innervates an excitatory
neuron, which we call a command neuron since together
they evaluate the sensory input and “command” the motor
neurons; cf. Fig. 2 where M ! 1. Moreover, the neigh-
boring directions gk21, gk , and gk11 innervate the in-
hibitory interneuron k. The interneuron blocks the action
of the “opposite” neuron coding the direction gk̄ , where
k̄ ! !"k 1 3#mod8$ 1 1. So for each command neuron
we have a 3%1 configuration with one excitatory input from
the direction under consideration and one inhibitory in-
put from three opposite directions forming an inhibitory
“triad” that determines Dt given by (1). This configura-
tion has been suggested by Brownell and Farley [6]. A
verification such as that in Fig. 3 has never been provided.
Neither did one analyze the mechanism at a neuronal level.
Both are done here.
Because of the inhibitory triad, each command neuron

has a time window during which it can respond to the stim-
ulus. If the inhibition arrives before the excitation, there
is a spike with low probability. This happens, if the di-
rection wS of the stimulus is roughly opposite to the di-
rection gk of the command neuron k under consideration.
On the other hand, if wS & gk , excitatory input may trig-
ger a spike before inhibition can block it. Because of the
interneuron there is an additional delay DI ! 0.7 ms of
inhibitory input. As the stimulus angle wS varies, the time
difference between excitatory input and inhibitory input is
2Dt 1 DI , whereDt varies in a range as given by Eq. (1);

FIG. 2. Diagram of eight command neurons (black). For two
of them, k ! 3 and k ! 7 ! 3̄ corresponding to R3 and L2,
respectively, the inhibitory partner neurons (grey) are shown as
well. The triad of R3 consists of L1, L2, and L3.

Dt , 0 if k is hit before its triad k̄. We neglect conduc-
tion delays from the slit sensilla to the SOG, since they
are practically identical for all feet and for inhibitory/ex-
citatory input. Because of the sharp peak at 300 Hz of the
vibrational power spectrum of sand [2,3], spikes belonging
to different amplitude maxima of Rayleigh waves hardly
interact with each other.
The direction of a Rayleigh wave is coded by spikes in

that each command neuron in the SOG generates spikes ac-
cording to the width of its time window, a time code. How,
then, does the animal decide what to do? The motor sys-
tem of the legs, whose input is in the direct neighborhood
of the direction-coding ring [13], uses a rate code. It is
generally accepted that conversion from time to rate code
is performed by means of a population vector [14–16], a
notion whose reliability has been tested extensively. Here
the N ! 8 command neurons constitute a population. The

FIG. 3. Response angle f of a scorpion (vertical axis) as a
function of the stimulus angle wS (horizontal axis). (a) System-
atic deviation of the response of an intact animal that hardly
ever manages the complete turn wS . (b)– (f) Ablated basitarsal
compound slit sensilla (BCSS) are indicated by dots at the end
of the tarsi. Both the probability density P"f# (dark shadings)
and experimental points (dots) are indicated. Experimental data
have been taken from Brownell [4,6]. Parameters are as in Fig. 4
and as specified in the main text. If the inhibitory triad is re-
placed by a single inhibitory neuron, we find the dashed line as
the mean response; the agreement with experiment is in general
less good.

5669

Figure 3.1: Original spiking neuron model developed for the sand-scorpion, from

Stürzl et al. [218]. The eight command neurons are colored in black. For two of them,

k = 3 and k = 7 = 3̄ corresponding to R3 and L2, respectively, the inhibitory partner

neurons are shown as well in grey. The triad of R3 consists of L1, L2, and L3.

computed source angle φ can then be calculated from the polar position of the prey

via Eq. 3.2.

x =

8∑
j=1

(
a j ∗ exp(iθ j)

)
(3.1)

φ = arg(x) (3.2)

This model has been implemented on a spiking neural simulator Brian using the

following equations [25, 107]. The spiking rates at the leg mechanical receptors can

be estimated as:
dv
dt

=
(1 + rates(t − δ) − v)

τlegs
+ σ ∗

√
2
τlegs
∗ xi (3.3)

where v is the neuronal potential of the receptor neuron, t is the time, rates gives

the value of the front wave at time t − δ, δ is the wave delay between the legs,

τlegs=1ms, σ=0.01 and xi is the added white noise. The neuron activity is calculated

68

Guil
lau

me G
arr

ea
u

assuming a threshold equal to 1, a reset value (after spiking) of 0, and a refractory

period of 1ms. In other words, when v reaches 1, a spike is generated and then v is

reset to 0 and stays null for the next 1ms.

The spiking rates at the command neurons are estimated as::

dv
dt

=
(x − v)
τ

(3.4)

dx
dt

=
(y − x)
τs

(3.5)

dy
dt

=
−y
τs

(3.6)

where v is the neuronal potential of the command neuron, t is the time, x is

the ratio between excitatory and inhibitory synaptic conductances, and τ and τs are

equal to 1ms. The neuron activity is calculated assuming a threshold equal to 1, a

reset value (after spiking) of 0 and no refractory period. The excitatory synapses

weight, wex, is equal to 7 and the inhibitory synapses weight, winh, is equal to -2. In

addition, the inhibitory synapses have an inter-neuron synaptic delay, ∆I, of 1ms.

The post synaptic current (PSC) y is modeled as an alpha function.

The Python script used can be found in Appendix C. However, this implementa-

tion, by Brette et al., has certain limitations. The main limitation is that it uses a single

simulated Rayleigh wave that is fed to each leg with a certain delay, which depends

on the location of source of the wave and the position of the leg. The same method

was applied when noise was added to the simulated wave, thus exposed each leg

to the same (but delayed) noise. This is different to the case of real data, where

each sensor/leg has a different characteristic response and completely different noise

contributions. Finally, the above model was not tested on moving sources.

3.2.2 Adaptations of the Brette implementation

First, several factors needed to be taken into account, in order to adapt the Brette

implementation to our dataset.

Input Signals: The Brette implementation generates one simulated Rayleigh wave

and add delays, calculated according to source location, for the different legs. The

modified model is rewritten so as to accommodate the five unique input signals

collected by each one of the seismic sensors.

69

Guil
lau

me G
arr

ea
u

Model Mininimum Maximum Mean Std.

Original (8 legs - triad) 42.1◦ 106.0◦ 71.7◦ 9.3◦

Ours (5 legs - dyad) 40.1◦ 107.2◦ 72.1◦ 11.9◦

Table 3.1: Test of the original Brian model with only 5 legs, prey angle is 68◦.

Number of Legs and Inhibitory Partners: Given that we have only 5 seismic

sensors at our disposal, the triad (three partners) inhibitory network is replaced by

a dyad (two partners) instead to avoid creating an asymmetrical inhibitory system.

The original spiking neuron network was modified and tested with only the number

of legs changed and with a dyad inhibitory system. The modified model showed no

difficulty in locating the source of the transversal wave (Table 3.1). The average was

calculated on 200 simulation runs.

Moving Source: The code is designed for a fixed source, thus it was modified for

a moving source, i.e a loop was added to run the simulation with a different set of

data at each loop.

3.2.3 Real implementation issues of the Stürzl et al. Model

Additional adaptations had to be made to take into account the real implementation

issues linked to the Stürzl et al. model.

In order to collect and process real data for location computation several key

parameters needed to be taken into account, which were initially explored through a

modified version of the Brette implementation. A noisy artificial wave source located

at 68◦ was used, whilst different parameters were varied. In each case, 200 different

simulation runs were performed, thus indicating the effect of key parameters on

the reliability of the results. Furthermore, as shown in Fig. 3.2, different locations

were used to run data collections. Those different trials helped to fully understand

the model and the impact of various parameters on the final results. These are as

follows:

Scorpion Radius: The size of the scorpion, i.e. the maximum delay that a Rayleigh

wave will need to travel between two legs. This parameter is critical as it determines

the refractory period of the neurons and the time constants of the equations that

70

Guil
lau

me G
arr

ea
u

control the neurons spiking activity. Similarly to the case of the ultrasonic system

and the trade-off on sensing range and precision, which is mainly driven by the

frequency used, the optimal spacing between the legs is linked to the wavelength of

the sonic waves traveling in the ground with the relation:

λ = c/ f (3.7)

with λ the wavelength, c the speed of sound in the ground (depends on the type

of material, cf Tab. 3.2) and f the frequency of the wave. It is usually advisable to use

a λ/4 spacing in-between the sensors to get the best measurement possible. This is a

similar problem to that encountered in choosing spacing of sensors in phased arrays

(Harput and Bozkurt [115]). The original model uses sand and Rayleigh waves are

measured at a velocity of 50m/s, a frequency of 250Hz and a radius of 2.5cm. For

our setup, the velocity of the surface acoustic wave is measured using the time delay

at each seismic sensor for the peaks created by the tapping in position 1 (Fig. 3.6)

at the beginning of the recording. Several measurements in different environment

were made to evaluate the speed of the sonic wave in the ground and evaluate its

frequency in order to determine the optimal locations of the sensors. Tab. 3.3 shows

the source of sound direction angle for an immobile source when assuming different

velocity of the sonic wave and having different radius. For the data collection in

the room with marble tiles, the wave velocity obtained is 315m/s. Thus, the optimal

radius for placing the sensors was determined to be 20cm. This corresponds to

a wave frequency of 197Hz. However, when doing the frequency analysis of the

seismic data, the strongest energy response is found for a window of 3 to 4Hz (Fig.

3.3), which is expected in the case of multiple footsteps (Ekimov and Sabatier [73]).

A footstep can be assimilated to a Dirac, i.e. many frequency are generated and most

of them will be attenuated by the seismic sensors internal filters. The main reason

of this discrepancy is that the seismic sensors have a frequency response range of

4.5 to 10Hz [55]. But this does not cancel the validity of the results obtained from

the measurements. The theory would require a spacing of several meters between

the seismic sensors (11.5m radius for a velocity of 315m/s and a frequency of 3.5Hz),

however, Cauwenberghs et al. have shown that it is possible to do sub-wavelength

beam-forming for source localization using array of sensors [44, 216, 217]. They

used a technique named gradient flow, where time delays have been converted

to relative amplitude by taking derivatives, thus allowing to use sensor arrays of

71

Guil
lau

me G
arr

ea
u

Material Velocity surface acoustic wave

Sand 50m/s

Concrete 2500m/s

Brick 4170m/s

Wood 3300-3600m/s

Rubber 40-150m/s

Data collection ground 315.0m/s

Table 3.2: Velocity of surface acoustic wave in different material (adapted from [227]).

For the experiment the value is calculated based on the data collected.

smaller dimension than the wavelength of the signal. Their work is based on studies

of parasitoid flies made by Robert et al. [194, 195].

Sampling Frequency: The original model uses 10kHz sampling rate. Our custom

made hardware has a sampling rate of 33kHz, which was then downsampled by a

ratio of 10 to speed up calculations. The sampling rate parameter did not change the

performance of the model (Table 3.4).

Additional features: A number of parameters were kept as in the Brette imple-

mentation: a) the refractory index was set to equal the maximum interleg delay.

This insures that a neuron does not fire multiple times before the acoustic wavefront

reaches the opposite side of the neural network. It would inhibit any spiking activity

in the other neurons of the network, which would disturb the correct behavior of the

model. b) the inter-neurons delay was kept at 70% of the maximum interleg delay.

This is to simulate the intra neuron delay and the time-delay needed for a spike to

travel from one neuron to the next. c) the excitatory and inhibitory weights were

kept at 7 and -2 respectively.

3.3 Data collection

3.3.1 Data collection setup

In this section a physical system is presented, which builds upon the model of Stürzl

et al. [218] in order to work with real data in real time, via the addition of the ability to

72

Guil
lau

me G
arr

ea
u

(a) (b)

(c) (d)

(e)

Figure 3.2: Pictures of the acquisition setup in various locations: (a) tennis court, (b)

parking lot, (c) building roof, (d) terrace, (e) university hall.

73

Guil
lau

me G
arr

ea
u

Radius Wave velocity Mininimum Maximum Mean Std.

2.5cm 50m/s 42.1◦ 106.0◦ 71.7◦ 9.3◦

5cm 50m/s 1.5◦ 244.9◦ 64.5◦ 64.5◦

7.5cm 50m/s 3.3◦ 247.6◦ 73.2◦ 83.3◦

10cm 50m/s 1.4◦ 245.0◦ 63.1◦ 97.3◦

2.5cm 100m/s 60.0◦ 75.7◦ 67.2◦ 2.5◦

5cm 100m/s 45.8◦ 92.8◦ 72.0◦ 8.6◦

7.5cm 100m/s 9.1◦ 247.5◦ 71.2◦ 82.1◦

10cm 100m/s 3.8◦ 237.7◦ 78.1.1◦ 69.7◦

2.5cm 200m/s 53.6◦ 77.2◦ 67.2◦ 4.3◦

5cm 200m/s 61.5◦ 74.0◦ 67.5◦ 2.5◦

7.5cm 200m/s 56.3◦ 75.9◦ 67.4◦ 3.5◦

10cm 200m/s 46.4◦ 93.0◦ 71.2◦ 8.8◦

15cm 200m/s 7.3◦ 247.7◦ 65.9◦ 74.7◦

20cm 200m/s 3.3◦ 243.5◦ 63.2◦ 64.0◦

Table 3.3: Average result of the model according to velocity of surface acoustic wave

and radius, prey angle is 68◦.

Model Mininimum Maximum Mean Std.

Original (1e4Hz) 42.1◦ 106.0◦ 71.7◦ 9.3◦

Ours ((1e5/3)Hz) 21.7◦ 97.5◦ 67.7◦ 11.0◦

Ours ((1e5/30)Hz) 46.9◦ 87.0◦ 67.1◦ 7.1◦

Table 3.4: Test of the original Brian model with different frequency, prey angle is

68◦.

74

Guil
lau

me G
arr

ea
u

2 4 6 8 10 12
0

0.5

1

1.5

2

x 10
12 Power spectral density

Frequency (Hz)

A
m

p
lit

u
d

e

Figure 3.3: Power density of the seismic signal.

75

Guil
lau

me G
arr

ea
u

process vibrations produced by a person walking on circle on a marble floor. To the

best of my knowledge this is the first time that such a system has been implemented.

The vibration data was collected from five seismic sensors (Mark Product L-15B

4.5hz x,y,z geophones, Fig. 3.4) positioned at the center of the circle. To ensure

correct timing the sensors were connected to the acoustic data acquisition system

(presented in the Chapter 2), which time-stamped the incoming data. The data was

fed to the modified version of the spiking neuron model, which determined the

direction of the subject.

The acquisition setup is based on three of the custom-built units described previ-

ously (section 2.3): one that is used for the synchronization (FM SYNC unit) and the

other two for the data acquisition (DACQ unit). The setup, which is shown in Fig.

3.5, consisted of five seismic sensors (Mark Product L-15B 4.5hz x,y,z geophones,

marked 1 to 5 on Fig. 3.6), two DACQ units (marked GEO1 & GEO2 on Fig. 3.6), a

laptop for data storage and processing and the synchronization device (marked as

sync in Fig. 3.6). The five seismic sensors were positioned on a 20cm radius circle

with 72◦ between each sensor, on a marble floor in a large room. The area was not

protected from external vibrations and was less than 50m from a busy road. The sub-

ject walked on a circle of radius 1.2m. The subject was asked to start from position

1 (marked pos1 in Fig. 3.6, aligned with sensor 1) and tapped the ground 10 times

with his/her heel before starting to walk. The tapping data was used to calculated

the velocity of the surface acoustic wave in the ground. The subject proceeded to

walk two circles counter-clockwise, and then turned back to walk two additional

circles clockwise.

3.3.2 Data processing

The data recorded by the seismic sensor network is first pre-processed before being

fed into the model. Firstly, the data is aligned by using the timestamps placed in

the data by the custom-built data acquisition system (presented in the Chapter 2).

Secondly, the data stamps are removed from the data. Thirdly, the data is segmented

into smaller windows in order to reduce the data file size to be loaded in the memory

for processing. Then, for each sensor, the signal is normalised by removing the mean

and dividing by the standard deviation of the data (removes DC offsets and gain

mismatch). The normalization was done assuming that the amplitude of the actual

76

Guil
lau

me G
arr

ea
u

(a)

(b)

Figure 3.4: Geophone Mark Product L-15B 4.5hz x,y,z (a) with inside view (b).

77

Guil
lau

me G
arr

ea
u

Figure 3.5: Picture of the data acquisition setup.

1.2m radius
circle0.2m radius

circle

Seismic
sensor #1

Seismic
sensor #5

Seismic
sensor #4

Seismic
sensor #3

Seismic
sensor #2

pos0

pos1

Data acquisition
laptop

sync

dacq
GEO1

dacq
GEO2

Figure 3.6: Schematic of the data acquisition setup.

78

Guil
lau

me G
arr

ea
u

sonic wave does not decay when passing from one leg to the other. This is true to

a certain extend, as in Nature, scorpions use this to determine the exact location of

the prey (direction and distance), but they can do that only up to short distances,

further away only direction is perceived [30]. Several trials of normalization were

applied to the data sets (removing mean value and divide by max/min amplitude,

normalization to 1, and combinations of using those different parameters) but none

of these attempts gave satisfactory results. This is due to the fact that a minimum

amount of similarity between the different data threads is necessary in order to get

positive results. That is why using matched response sensors and amplifiers would

improve the results. Perfect matching is not necessary, as it has been shown that

not only neural networks are quite resistant to noise (as seen here in the different

simulations) but noise could be ‘used’ to perform optimal performance at lower

computational and energetic cost (Salinas [201]). The processing is performed with

Matlab R©2012. Finally, the processed signal is fed to the model, each sensor matching

one leg. The scorpion inspired model is implemented in the Brian spiking neuron

network simulator [25,108] with Spyder2 c© on Python2.7 R©. The Python script used

can be found in Appendix C.

3.3.3 Data collection results

By feeding a modified spiking-neural-network scorpion model with normalized raw

data, it is possible to get a reasonable estimation of the subject location, as shown in

Fig. 3.7. In that case, the velocity of the subject is assumed constant for each circle.

In the first 10 seconds the subject is stationary at about 0◦ (pos1 in Fig. 3.6). The

subject then walks along the circle twice with increasing angle values, turns back

and walks two circles in the opposite direction. As mentioned before, no special

precautions were taken to avoid unwanted external vibrations from reaching the

system, which may explain the larger deviations in the computed position. As well

if the subject does a short pause, then the calculated position is based only on the

external vibrations. It should be noted that the response of the seismic sensors

is not perfectly matched in frequency and gain. Also the component properties

used in the signal chain of the acquisition boxes are susceptible to manufacturing

variations and consequently also introduce mismatch, thus contributing to errors in

angle estimation. The impact of such mismatches on the performance of the sound

79

Guil
lau

me G
arr

ea
u

20 40 60 80 100
0

50

100

150

200

250

300

350

400

Subject Location Scorpion Spiking Neurons Model

Time (in second).

A
n

g
le

 p
o

s
it

io
n

 o
f

p
re

y
 (

in
 d

e
g

re
e

).

Figure 3.7: Plot of the subject position on the circle (in red actual position assuming

constant subject velocity, in blue Scorpion Neural Network (SNN) model result).

localization in air has been discussed by Julian et al. [132]. In nature, the scorpion

has a 13◦ to 15◦ error on the localization of its prey, an error which is compensated

by the size of the pedipalps [30].

In order to evaluate the performance of the model, a ±13/15◦ error margin was

used. On the raw data, see Table 3.5, the performance obtained was very low, less

than a third of the data points are in the acceptable error range. However, considering

a time delay of 1s (equivalent to 1 time window) in the system response, then 50% of

the data points are within the acceptable margin. Furthermore, if a wider margin is

used, which is acceptable considering we have 5 legs instead of 8, for a error margin

of 24◦, then a performance of 60% is obtained. 24◦ is chosen as with 5 legs, the

distance between the legs is 72◦, to compare with the 45◦ of a 8 legs system (which

means 15◦ is an error equal to one third of the interleg distance).

These results are obtained when considering constant velocity of the subjects

walking on the circles. If during the data collection, the real trajectory would be

measured (camera based or ultrasonic sonar system) then one could expect greater

precision and performance.

80

Guil
lau

me G
arr

ea
u

error margin (◦) raw data (%) with 1point/1s delay window (%)

13 24 45

15 32 50

24 40 60

Table 3.5: Table showing the error analysis of the SNN model result for the raw

dataset. In Nature, a 13◦ to 15◦ error on the direction of the source is observed [30].

Figure 3.8: Definition of the Time of Arrival (ToA) calculation, time that the vibration

wave needs to travel the distance δl.

3.3.4 Comparison with a time of arrival approach

Given that the problem seems to be a classical time of arrival (ToA, Fig 3.8) process,

the use of a neural network implementation does not seem necessary. In terms of

performance, the results reported by Wallander et al. [236], using a ToA approach

with a 6 legged robot, are 75% of the point within 20◦ (one third of the interleg

angle) of the correct direction for a source at 15cm from the nearest leg, the standard

deviation is 46.7 and goes up to 60.9 when the source is at 30cm. This is a 30% increase

of error with a doubling of the distance. One point is calculated every 500ms. For

comparison, as shown in Table 3.5, our system reaches 60% of the points within

24◦ at 1m (almost 7 times further away). Furthermore, the use of a neural network

allows to extend the implementation to more complex application while keeping the

same computational infrastructure. For example, using an array of microphones,

additional layers of neurons are capable of identification of acoustic object while the

first layer is used only for finding the direction of the source of sound.

81

Guil
lau

me G
arr

ea
u

3.4 Conclusion

This chapter presented a system that performs person localization through 5 closely

spaced seismic sensors and a bioinspired spiking neuron model, that is capable of

providing an additional information source for performing acoustic scene analysis.

This is the first time where a real working system using the SNN has been shown

to track a vibration source. In addition to the different improvements detailed in

section 3.2, the data collection on the field gave the opportunity to discover the link

between the size of the artificial scorpion and the properties of the environment.

It would be interesting to see if this can be matched with observation of the size

of real scorpions in their natural environment or if scorpions would change their

leg geometry according to changes in environment properties. The noise in the

calculated location could be improved by using matched Micro Electro-Mechanical

Systems (MEMS) based ground vibration sensors.

Furthermore, as an extension of this work, it seems to be possible to design a low-

cost arachnoid robot that would have the ability to follow a ‘prey’. This could be done

using 3D-printed parts as the T8 of RobugtixTM (http://www.robugtix.com/t8/)

and an FPGA. By giving reconfigurable abilities to the robot, one can think of having

software updates for more efficient algorithm implementations or new and more

complex behaviors. The T8 is basically a radio-commanded spider (Fig. 3.9). For

example after an earthquake, a search and rescue team could use such a spider robot

to explore a destroyed building and find the location of persons trapped inside.

The robot would use acoustic information generated from the victim to locate and

navigate to the victim. A thermal imager could be added to use body heat to locate

someone and a camera and microphone would allow communication between the

rescue team and the victim. Such system could also be used as a kit for children to

experience engineering in a fun way. In a high security area, they could be used for

surveillance, by wandering in a building or outdoors, as shown in [73,147,219,251].

Footsteps can be used to locate, track, identify a person and characterize their activity.

82

Guil
lau

me G
arr

ea
u

Figure 3.9: Picture of the arachnid robot T8 of RobugtixTM.

83

Guil
lau

me G
arr

ea
u

84

Guil
lau

me G
arr

ea
u

85

Guil
lau

me G
arr

ea
u

86

Guil
lau

me G
arr

ea
u

Chapter 4

Ultrasonic Range Acoustic Scene

Analysis

4.1 Introduction

In nature ultrasounds have been used by some animals for millions of years to locate

and identify a prey and also to communicate. Well known examples are bats and

dolphins, but different species of birds, mice, fish or insects also use ultrasounds.

Ultrasounds are pressure waves in the 18khz to 200kHz frequency range and are

outside the audible human range. Sound waves are reflected by objects in the

environment and echoes are analyzed to extract useful information such as position

or identification of a prey. The principle behind this is the reflection of sound waves

by objects and the Doppler effect.

4.1.1 Doppler effect

The Doppler effect is named after the Austrian physicist Christian Doppler, who

discovered the effect in 1842 [66]. He discovered that sound waves have a higher

frequency when the source is moving toward the observer and a lower frequency

when the source is moving away from the observer. He tested this idea by standing

next to a rail track while a train full of musicians passed by the rail track. This test

confirmed that sound pitch is higher when the sound source is approaching, and

lower when the sound source moves away. The same is true with sirens on police

cars and the engines of race cars. One way to visualize the Doppler effect is to think

of sound waves as pulses emitted at regular intervals, Fig. 4.1. Imagine that each

87

Guil
lau

me G
arr

ea
u

Figure 4.1: Doppler effect: sound waves that move toward you are compressed

while those moving away are stretched [116].

time you take a step, you emit a pulse. Each pulse in front of you would be a step

closer than if you were standing still and each pulse behind you would be a step

further away. In other words, the frequency of the pulses in front of you is higher

and the frequency of the pulses behind you is lower. The Doppler effect does not

just apply to sound. It applies to all types of waves, including light. It is widely

used in astronomy to study the speed of stars and galaxies.

The Doppler effect can be modeled by a simple equation:

f =
v + vr

v + vs
∗ f0 (4.1)

where v is the velocity of waves in the medium; vr is the velocity of the receiver

88

Guil
lau

me G
arr

ea
u

relative to the medium, and is positive if the receiver is moving towards the source;

vs is the velocity of the source relative to the medium, and is positive if the source

is moving away from the receiver; f0 is the frequency of the source and f is the

observed frequency.

Here, we have a stationary source and moving receiver, the equation can be

simplified as:

f = f0 ∗
(
1 +

vr

c

)
(4.2)

with the same notations as in Eq. 4.1 and c is the speed of sound in air. It is as-

sumed that the receiver is reflecting the sound wave without changing its frequency,

thus a linear relation between the speed of motion of the receiver and the variation

of wave frequency is obtained:

∆ f = f − f0 = f0 ∗
vr

c
(4.3)

4.1.2 A little bit of history

Human technologies using this principle are quite recent, despite the first report of

using sounds travelling in water to detect approaching boats dates back to Leonardo

Da Vinci in 1490 (Fahy and Walker [81]), who reported using a tube inserted into

the water to listen for, and detect, approaching vessels. It was not until the 19th

century that another application was reported, when an underwater bell was used

as an ancillary to lighthouses to provide warning of hazards. The first patents for

underwater echo location system were filed (Hill [120]) in 1912 at the British Patent

Office by the English meteorologist Lewis Richardson, and in 1913 by the German

physicist Alexander Behm. It is described as the “use of sound to ‘echo locate’

underwater in the same way as bats use sound for aerial navigation” [120] and it

is believed to have been prompted by the recent tragedy of the Titanic disaster a

few months earlier. The need to detect submarines during World War I led to the

discovery and development of hydrophones and, later on, the SONAR; SONAR is

an acronym for SOund Navigation And Ranging. Sonar uses sound propagation

(usually underwater, as in submarine navigation) to navigate, communicate with

(underwater Morse code [120]) or detect objects on or under the surface of the water,

such as other boats and submarines. In 1915, the French physicist Paul Langevin and

the Russian electrical engineer Constantin Chilowski worked on the development

of active sound devices for detecting submarines using quartz.

89

Guil
lau

me G
arr

ea
u

Sonar is classed in two types of technologies: passive sonar is essentially lis-

tening for sound made by vessels; active sonar is emitting pulses of sounds and

listening for echoes. The acoustic frequencies used in sonar systems vary from very

low (infrasonic) to extremely high (ultrasonic). In recent years the major military

development led to an increasing interest in low frequency active systems. Sonar

is also used in biomedical application, and more specifically in bio-imaging, such

as diagnostic sonography (or ultrasonography), a technique used for visualizing

subcutaneous body structures including tendons, muscles, joints, blood vessels and

internal organs for possible pathology or lesions. Obstetric sonography (or echog-

raphy) is commonly used during pregnancy. The frequencies used in diagnostic

ultrasound are typically between 2 and 18MHz. The work presented here is using

a frequency of 40KHz and traveling in air, as opposed to traveling through liquids

and body tissue.

4.1.3 Previous work with ultrasound

In any physical human action, several body parts, whose loci are constrained with

respect to one another, move in a coordinated manner in order to generate the

action. The velocity of each of these moving parts can be used to modulate and

reflect incoming waves. Hence, the micro-Doppler (mD) signature is linked both to

a particular action, as well as to the particular physical constraints of an individual’s

body part (related to size, flexibility, coordination etc.).

In recent years the use of mD gait signatures has been growingly reported in var-

ious safety and surveillance applications where the ability to identify an individual

quickly and accurately is critical. Some examples are objects localization and identifi-

cation [33,34,141], passability through a door [126], presence detection [101,184,200],

presence and tracking [117,191], individual identification [8,68,133,134,161,172,255],

gender classification [133], behavior/actions classification [32,82,135,139,140] or aged

persons safekeeping [153, 250].

A number of features set the different systems apart, such as the transmission

mode of the wave, the type of wave used for micro-Doppler (acoustic or electromag-

netic) and the data analysis methods.

The radar and synthetic aperture radar (SAR) studies focus on electro-magnetic

(EM) wave radars and the MHz and GHz frequency range. There are two modes

90

Guil
lau

me G
arr

ea
u

of transmission: the continuous wave (CW) sonar RF at 10.5GHz [101, 184] and

the Pulse Doppler RF [153, 250] with a carrier at 5.8GHz and pulse modulated at

a lower frequency. However, there is an increasing interest in exploration of the

acoustic range (20kHz to 100kHz) and the use of a CW sonar at a fixed frequency

(40kHz [9, 133–135, 255–257] or 80kHz [8]) or chirps, sweeping frequencies from

25kHz to 100kHz [68, 172].

Most of mD analysis focuses on time-frequency features [101,200,255] and starts

with a Fast Fourier Transform (FFT) or a Short-Time Fourier Transform (STFT) to pro-

cess the data and then a classifier is used for pattern recognition. Various classifiers

have been used: linear [184], neural network [68], Bayesian [133,134], Gaussian Mix-

ture Model (GMM, [135]), Maximum Correlation Coefficient (MCC, [172]), Support

Vector Machine (SVM, [153]), and k-Nearest Neighbour (kNN, [153]).

This work focuses on the use of a module, the ultrasonic frequency transceiver

(UFTRX), that creates a continuous ultrasonic wave at 40kHz, records the amplitude

of the echo that is processed and displayed. This module is a version of the DACQ

unit presented in Chapter 2, configured specifically for transmitting and receiving

ultrasound. It was successfully used to: distinguish different means of transport

for human beings (pedestrians, inline skaters and cyclists) based on their mD time-

frequency signatures with accuracies as high as 97% [97]; to identify an individual,

with accuracy as high as 100% for some individuals [96,98], recognise an individual’s

gender with accuracy as high as 92% [96]; and to identify different actions performed

by the individual [70].

4.2 Bioinspired model literature

4.2.1 Evidence of spectro-temporal brain processes

A computational model of auditory object processing based on spectro-temporal

features, is described by Kumar et al. [143], a study that employed Dynamic Causal

Modeling (DCM) to evaluate the functional connectivity between three different

regions of the auditory system. It gives convergent evidence that some of the

principles of auditory processing in the cortex make use of spectrotemporal features

and a hierarchical organization. Regarding mD sonar processing, evidence suggests

that the auditory system in bats is also organized hierarchically (Suga [220]). Similar

91

Guil
lau

me G
arr

ea
u

time-frequency and hierarchical organization is found in dolphins (Cauwenberghs et

al. [46]). Even though echolocation is not a common human ability, some examples

have been reported of early and even late blind people developing the ability to

navigate and precisely identify their environment through echolocation via mouth

clicks and listening to the returning echoes [67]. A neuroimaging study showed that

processing of click-echoes recruits brain regions typically devoted to vision rather

than audition in both early and late blind echolocation experts (Thaler et al. [224]).

In this section the algorithms that have been investigated in this thesis, which are

based on spectro-temporal processes, are presented [69, 70, 96–98].

4.2.2 Mode of transport classification

Initial investigations involved the discrimination between different mode of trans-

port using a linear classifier and features calculated as the standard deviation of the

energy spread on a spectrogram of the echo of the sound wave [97].

The important of mode of transport classification is evident considering that

pedestrian-vehicle collisions represent 15% of the deaths in road accidents in de-

veloped countries, and up to 80% in the developing countries. This corresponds to

1.2 million deaths and 50 million injuries annually according to the World Health

Organization [187]. Prevention of such collisions has been the focus of a number of

studies recently [94, 162]. Furthermore cyclists or inline skaters sometimes ignore

legislation and use pavements instead of their reserved lanes, consequently leading

to injuries every year [119]. A potential way of reducing the number of injuries

is to have dedicated lanes for each mode of transport and to make sure that no

violations are incurred. If most of the systems used to police traffic segmentation

on the road, utilize one or more visible light cameras [111, 205, 248, 252], infra-red

technologies [15,83] or cellular technology [60]; However, existing technologies have

some drawbacks as explained in Chapter 1.

The physical differences between these modes of transport can be used to explain

particular characteristics that are key for discriminating between the different signa-

tures. During running and walking, if the torso moves roughly at speed ν, then the

speed of the legs ranges between 0 (foot on floor) and an average forward recovery

speed of 2ν. In addition the arms swing to counteract the leg motion. During cycling

or inline skating, the subject torso is sliding on wheels with a velocity V, whilst the

92

Guil
lau

me G
arr

ea
u

leg cyclic movements are slower in relation to the absolute torso speed. The arm

motion during inline skating can be used to differentiate between inline skating and

cycling, in addition to the more pronounced leg movements of skating. The different

body part speeds are captured in the spectrogram according to Eq. 4.4.

VT = −VS ∗ (F − FmD)/FmD (4.4)

where VS is the speed of sound (348 m/s), F is the average of the frequency

components (Hz) and FmD is the frequency of the UFTRX module (40kHz). Visual

examination of the obtained spectrograms (Fig. 4.5), reveals that each mode of trans-

port is characterized by different spread of energy across both time and frequency.

This spread of energy can be estimated as the standard deviation of the spectral

power across all frequencies at a given point in time with respect to the torso ve-

locity. As the torso is much larger than the limbs one can expect that at any point

in time, the frequency component with the maximum amplitude will correspond

to the torso velocity, hence one can find the maximum value in each column (after

smoothing) and store the corresponding frequency. The average value of these fre-

quencies over a short time frame can accurately determine the torso velocity. Once

the torso velocity is found one can then proceed to calculate the amplitude-weighted

standard deviation of the constituent frequency components at each point in time.

In the case of modes with pronounced limb motions, such as running, the spread

of energy around the torso will be larger. Thus, one can expect a larger standard

deviation for modes with significant limb motions and lower standard deviation for

the modes with small limb motions, such as cycling.

4.2.3 Gender and individual recognition

In [96], the mD signatures of walking subjects were analyzed in order to perform gen-

der and individual recognition based on well-known algorithms, such as FFT, time

and frequency averaging, k-means clustering and nearest neighbour classification.

Individual recognition has obvious application in security. Gender classification can

be of interest for security purposes at single sex facilities, e.g. at a gym or bathrooms.

Furthermore this could be useful for dynamic marketing on flat screen displays, e.g

in a shop, for the personalisation of advertisements according to the customer. This

creates the need of a quick and efficient way to identify gender and even individuals

in order to offer services that fit the needs and desires of the clients as much as

93

Guil
lau

me G
arr

ea
u

possible. Another case is when statistics are created in order to learn more about

clients, customers or users of public or private services.

4.2.4 Action classification

Additional investigations involved the discrimination between different set of ac-

tions [70]. These included walking (unknown speed), walking slowly (3km/h),

walking fast (6km/h) , running (unknown speed), running slowly (9km/h), running

fast (12km/h), inline skating, slow cycling (approximately 11km/h), fast cycling (ap-

proximately 22km/h), clapping hands, calling“help me” while moving their arms up

in the air and, calling“come her” while beckoning with their right arm.

4.2.5 Individual recognition with AR model

Whilst there are many algorithms that could have been tested for individual recogni-

tion, such as the spectrogram-based methods used above, we decided to investigate

the use of the autoregressive model (AR) and its time-varying coefficients, since these

coefficients can be linked to the changing frequency content of the micro-Doppler

signatures [3]. AR models are linear filters whereby current samples of a time series

are modelled as a weighted sum of p past values. This segmentation is similar to

the segmentation produced by the cochlea where complex sound mixtures are dis-

tributed through a cascade of low pass filters and differences between consecutive

filters are examined. First it absorbs the high frequency components at the beginning

of the cochlea and then progressively the low frequencies are propagated until the

end of the cochlea. Let us consider a given time series, X(t) = [x(1), x(2), ..., x(T)],

with T time samples. An AR model can then be defined as:

x(t) =

P∑
p=1

apx(t − p) + ε(t) (4.5)

where ap are the estimated AR coefficients at time lag p, and ε(t) is normal noise.

There are various ways of estimating the AR coefficients, such as least squares,

forward-backward method and Yule-Walker method (Söderström and Stoica [215]).

AR models were fitted to the raw mD data collected. The estimated AR coefficients

capture individual movement characteristics. Such features can be used to identify

different subjects.

94

Guil
lau

me G
arr

ea
u

4.3 Data collection

In the previous section the models used for mode of transport classification, gender

and individual recognition and actions categorization have been detailed. Now the

data collection set-ups will be described, the data processing and the results of the

various experiments given.

The data was collected using the UFTRX module, which is a version of the

DACQ unit, presented in Chapter 2, dedicated to ultrasonic data collection (Fig.

4.2). It has one analog output that powers a 40kHz ultrasonic emitter and one analog

input connected to an ultrasonic receiver. The receiver convert the acoustic wave

returned (mechanical energy) into a voltage (electrical energy) with a piezoelectric

sensor. Then the signal is filtered at 50kHz with a passive Resistor Capacitor (RC)

filter, amplified with a PGA and finally sampled at 500kHz by the ADC. The FPGA

subsamples the data collected to 100kHz and sends the data to a laptop connected

to the DACQ unit. The ultrasonic transceiver hardware is connected to a computer

via a usb cable, through which the raw data is transmitted to the PC, for subsequent

analysis with Matlab R©.

4.3.1 Mode of transport classification

4.3.1.1 Data collection setup

For the first dataset (dataset 1) [97], six subjects (two females and four males) partici-

pated in the study. They were of the same age range of 25 to 35 years old. The UFTRX

module was placed on a table at a height of 0.8m and the subjects were required

to move in front of the UFTRX module in one of the following modes of transport:

(1) walking, (2) running, (3) inline skating, (4) slow cycling (approximately 11km/h),

and (5) fast cycling (approximately 22km/h). Data was collected from several repe-

titions of each action. Specifically, 74 successful trials were collected for modes 1, 2

and 4. Furthermore, 54 successful trials were collected for mode 3 and 80 trials for

mode 5. Figure 4.3 shows the data collection setup.

4.3.1.2 Data processing

The mD signatures are visualized using a spectrogram, which can be obtained as

the squared magnitude of the short-time Fourier Transform (STFT) of the data [17].

95

Guil
lau

me G
arr

ea
u

Figur e
4.2:

T
he

U
FT

R
X

is
com

posed
of

the
controller

part(1&
2),the

ultrasound
em

itter
channel(3

to
5)

and
the

ultrasound
receiver

and

sam
pling

channel
(6

to
10).

M
ore

specifically:
(1)

a
high-perform

ance
Spartan3

FPG
A

X
C

3S50A
N

at
90M

H
z;

(2)
a

R
S-232

serial
to

usb

controller
FT

232R
;(3)

2
program

m
able

D
A

C
LT

C
2642;(4)

a
low

noise
rail-to-railoutput

28M
H

z
dualam

plifier
A

D
8656;(5)

a
transm

itter

transducer
400ET

180;(6)a
receiver

transducer
400ER

180;(7)a
precision

virtualground
TLE2425

(8)a
low

noise
rail-to-railoutput28M

H
z

dualam
plifier

A
D

8656;(9)a
zero

driftprogram
m

able
gain

am
plifier

PG
A

112;(10)a
16bitA

/D
converter

at500kSps
A

D
7686.

96

Guil
lau

me G
arr

ea
u

(a)

Pillar of the
basement

Table with
computer

US module

Subject

Subject motion direction

US module transmission direction

Pillar of the
basement

(b)

Figure 4.3: The pictures show: (a) a subject on inline skates passing in front of the

UFTRX module and, (b) the top-view of the experimental set-up.

97

Guil
lau

me G
arr

ea
u

A Hamming window was used in calculating the STFT. The obtained spectrograms

were segmented into regions of interest (ROIs) containing the mD signatures of each

mode of transport (see Fig. 4.5 for some examples). The frequency range of each

ROI’s frequency range spanned between 40kHz (the frequency of the transmitted

ultrasound) and 41kHz (determined by the maximum object speed of interest). The

length of the ROIs was 130 samples (2.6s) for walking, 65 samples (1.3s) for running,

90 samples (1.8s) for inline skating, 135 samples (2.7s) for slow cycling, and 55

samples (1.1s) for fast cycling. The length of the ROIs depends on the time when the

subjects were in the detection zone of the UFTRX module; the faster a subject moves

the shorter the duration spent in the detection zone.

Once the ROIs have been determined, it is necessary to extract the velocity of the

subject. The velocity captured by the sensor is the orthogonal projection of the actual

velocity of the subject (Fig. 4.4). As the subject passes by the ultrasonic module, this

component tends to zero due to the incidence angle and the directional response of

the transducers (Fig. 4.5). Consequently, the estimation of VT is done only on the

first half of the spectrogram where the velocity is constant. Finally, the classification

feature, C f eature, for a spectrogram Si j of length N is given by relation (4.6):

C f eature = VT ∗
1
N

N∑
j=1

(∑
i

(ai fi − µi)2∑
i

(ai fi)

)
(4.6)

where fi is the frequency component, ai the amplitude and µi the frequency com-

ponent with maximum amplitude. Based on the obtained spectrograms (Fig. 4.5),

it is expected that each mode of transport will have different energy characteristics,

thus allowing discrimination between them. This algorithm will only work for sin-

gle object observations. A more sophisticated algorithm is needed for simultaneous

multiple object classification, e.g. Independent Component Analysis (ICA).

Average classification performance is estimated over 100 bootstrap cycles (Fig.

4.6). In each cycle 60% of data from each transport mode is randomly chosen for

training, while the remaining 40% of the data is used as a test set. The classification

features are estimated for each mode in the training set. This gives a threshold for

each mode. Then for each sample of the test set the features are computed and the

sample is classified as the condition with the nearest feature value. A simple linear

classifier was used to show the potential of this method. It is expected that there is

room for improvement by using more advanced classifiers to be able to discriminate

98

Guil
lau

me G
arr

ea
u

Subject
position 1

UFTRX

Subject
position 2

Figure 4.4: Mode of transport data collection setup. Spectrograms show a relative

velocity that tends to zero as the velocity is the orthogonal projection of the velocity of

the subject relative to the UFTRX module and the component value changes with the

angle between the motion direction and the UFTRX module transmission direction.

99

Guil
lau

me G
arr

ea
u

between significantly larger populations, as is done in face recognition software.

4.3.1.3 Results

Figure 4.5 shows example ROIs for each of the five activities for a specific subject.

The spectrograms show the frequency of the echo as a function of time. The straight

line present in all spectrograms is the ultrasound transmitted from the module (at

40kHz). Deflections in frequencies above 40kHz denote a target moving towards

the transmitter. The frequency deflection is proportional to the speed of travel: the

faster the speed, the higher the deflection. In addition, the spread of the energy is

dependent on the motion of the limbs. Characteristic mD signatures are obtained

for each type of activity, which are similar for all subjects.

As expected a larger standard deviation is found for modes with significant limb

motions and lower standard deviation for the modes with small limb motions, such

as cycling. The average value of standard deviation, σA, is equal to 20.7 for fast

cycling mode and 25.7 for running.

Figure 4.6 shows the average performance for classification of means of transport

(top) and the categorization of errors (bottom). The average threshold values for

the classification feature are: 2.42 for running, 1.10 for walking, 3.14 for fast cycling,

1.63 for slow cycling and 1.82 for inline skating. Average performances, expressed as

mean±(standard deviation), were obtained as 96±3.2%, 95±3.9%, 81±5.7%, 62±6.9%,

and 66±8.5% for running, walking, fast cycling, slow cycling and inline skating re-

spectively. These performances can be explained by 2 effects: 1-the average standard

deviation of the spectrogram and 2- the average velocity of the subject torso. The

walking and running modes have high standard deviation due to the motions of

the arms and legs. They are easily recognizable from the other conditions, and the

average speed differentiates them from each other. For fast cycling, even though the

subjects’ limbs perform small motions, the effect of the average speed of the torso

still allows a good recognition. The slow cycling and inline skate modes shows

similar standard deviation and speed and consequently are more prone to error.

The false positive classifications can also be seen in Fig. 4.6 (bottom). An interest-

ing observation is that all false negatives of walking are a result of misclassification

as slow cycling. This could be a result of some walkers displaying small arm move-

ments, resulting into signatures similar to those of cycling. Fast cycling is mostly

misclassified as running (80%). Slow cycling is misclassified as walking (53%) and

100

Guil
lau

me G
arr

ea
u

(a) (b)

(c) (d)

(e)

Figure 4.5: Characteristic spectrograms for each motion are shown. The x-axis is

time in seconds. The y scale shows frequencies from 40kHz to 41kHz. Spectrograms

shown are: (a) a walking subject, (b) a running subject, (c) a subject cycling slowly,

(d) a subject cycling fast and, (e) a subject on inline skates.

101

Guil
lau

me G
arr

ea
u

as inline skating (26%). Finally inline skating is misclassified at 63% as slow cycling

and 26% as running. Overall, misclassifications are almost equally spread between

walking, running and slow cycling (about 25%) and less likely for fast cycling (9%).

This seems contradictory, as fast cycling seems to be the less confusing, with a

much higher threshold value, one would expect a better recognition performance.

A greater variation of the standard deviation could explain the poorer recognition

rate.

Finally the effect of the training set size on classification performance is shown

in Table 4.1. It is shown that size of the training set has only a small effect on the

classification performance. An improvement of 5% in performance was observed

between training set size with the lowest performance (training set size of 10%) and

the training set size with the best performance (training set size of 80%). It is shown

that even with 10% training set size correct recognition for walking and running is

as high as 91%.

4.3.2 Gender and individual recognition

4.3.2.1 Data collection setup

For the second dataset (dataset 2) [96], 13 subjects (six females and seven males)

participated in the study. They were of the same age range of 25 to 35 years old.

The UFTRX module was placed at a height of 1.5m and the subjects were required

to walk at two different speeds (3 and 6km/h) on a treadmill positioned 2.5m away

from the UFTRX module. The subjects were facing the UFTRX module. Data was

collected from 5 repetitions of each action (each of a duration of 10s).1

4.3.2.2 Data processing

The mD signatures are visualized using a spectrogram, which can be obtained from

the fast Fourier Transform (FFT) of the data. The processing models consist of

seven steps (Fig. 4.7) that can be grouped into 2 stages: the segmentation stage

(steps 1-5), which obtains a set of features or events from each micro-sonar file; and

the categorization stage (steps 6-7), which calculates representative templates from

these events that are used as category event templates. The segmentation consists

of the following steps: (1) the spectrogram is first calculated and (2) then centred on

1The data collection was done at UCY in collaboration with Salvador Dura-Bernal.

102

Guil
lau

me G
arr

ea
u

10 20 30 40 50 60 70 80 90 100
50

60

70

80

90

100

Iterations of training/testing cycle

C
la

ss
ifi

ca
ti

on
ac

cu
ra

cy
(%

)
Classification accuracy with Bootstrap method

training ration is: 60%

Running
Walking
Fast cycling
Slow cycling
Inline skating

(a)

Running Walking Fast cyclingSlow cyclingInline skating
0

20

40

60

80

100

Actual class

M
is

cl
as

si
fic

at
io

n

Misclassification distribution

Running
Walking
Fast cycling
Slow cycling
Inline skating

Figure 4.6: (a) Average classification performance for the 5 transport modes. (b)

Categorization of misclassifications.

103

Guil
lau

me G
arr

ea
u

training
setsize

10%
20%

30%
40%

50%
60%

70%
80%

90%

r unning
91.4

93.3
95.0

95.2
95.7

95.8
96.3

96.5
96.4

w
alking

92.8
94.5

94.8
95.1

95.6
95.2

95.8
95.9

96.8

fastcycling
81.2

82.1
81.9

81.8
80.9

80.8
80.6

82.1
78.4

slow
cycling

57.0
58.0

61.1
62.8

63.2
62.8

61.9
63.0

60.1

inline
skating

61.7
60.2

63.8
64.3

64.7
66.8

64.7
66.9

64.5

Table
4.1:

E
ffectoftraining

setsize

104

Guil
lau

me G
arr

ea
u

40kHz (the frequency of the transmitted ultrasound) with a window of ±620Hz. The

obtained spectrograms are (3) scaled to a logarithmic scale and normalised to keep

amplitude values higher than half of the maximum amplitude of the spectrograms.

They are finally segmented (4) into regions of interest (named events). The length

of the events is set to 134ms i.e about 75 events per file and the distance between 2

consecutive events is 74ms. (5) The amplitudes for each frequency are summed over

time during one event, in order to obtain a single amplitude value for each frequency

component for each event. This collapses the event from a 3D representation into a

2D representation and forms the basis for the event templates.

The categorization stage is implemented using k-means clustering (MacQueen

[163]) to learn a set of event templates from the data, followed by a nearest neighbour

approach to determine the closest event template (Euclidean distance) for each test

event.2 This is achieved by randomly dividing the full set of data in 2 equal parts, one

being the training set and the other one the testing set. (6) The k-means clustering

algorithm is applied to all the events of each category separately. This ensures that

there are a set of event templates strongly representative of each category and that,

within each category, the event templates are relatively uncorrelated. Given that

the number of clusters (n) must be fixed before hand, the clustering procedure is

repeated for different numbers of clusters (n from 5 to 70 in steps of 5), in order

to find the optimum value. (7) During testing the Euclidean distance of the test

event feature vector and the centroid of each cluster is estimated. Thus, for each

incoming event we obtain N values, representing the distance to each of the N event

templates, where N is equal to the number of clusters per category multiplied by

the number of categories. Then the average distance over the event templates of

each category is calculated for all incoming events belonging to the same trial, such

that the minimum distance indicates the winning category. This has the advantage

of showing some invariance with respect to the temporal position of the test event.

However, it is also easier to obtain a false positive as there is a higher probability of

finding a similar event in the wrong category when comparing to all events. This is

repeated 30 times and the average success rate is estimated.

2A simple linear classifier was used to show the potential of this method. It is expected that

there is room for improvement by using more advanced classifiers to be able to discriminate between

significantly larger populations.

105

Guil
lau

me G
arr

ea
u

Full	

spectrogram	

Zoomed	

spectrogram	

Thresholded,	

zoomed	

spectrogram	

Thresholded,	

zoomed	

spectrogram	

+	
 Event	
 9mes	

Event	
 vectors	

(summed	

spectrogram)	
 	

Event	

templates	

k-­‐means	

clustering	

Distance	
 to	

event	

templates	

400	

channels	

100	

channels	

100	

channels	

100	

channels	

100	

channels	

n	
 templates	
 x	

13	
 categories	

=	
 N	
 templates	

Sum	
 ac9vity	
 within	

event	
 window	

10	
 secs	

10	
 secs	

10	
 secs	

10	
 secs	

80	
 events	

(1)	

(2)	

(3)	

(4)	

(6)	

(7)	

	
 S
eg
m
en

ta
9o

n	

st
ag
e	

	
 C
at
eg
or
iz
a9

on
	
 s
ta
ge
	

(5)	

Figure 4.7: The figure shows the step by step of the processing of the data from

spectrogram determination to the event template calculation and then classification.

106

Guil
lau

me G
arr

ea
u

4.3.2.3 Results

Investigations concentrated on the effect of the number of clusters for one event

template on individual and gender classification performance. Even though other

parameters, such as events size, interval variation between events or precision of

the spectrogram, have potentially interesting effects on the performance, these re-

main the subject of future work. Figure 4.8 shows the effect of cluster number on

individual identification; the number of clusters investigated ranged from 5 to 70,

in steps of 5. Average performances, expressed as mean±(standard deviation), are

72.1±19%, 81.6±12.5%, 81.6±12.6%, 84.1±11.6%, 85.4±11.0%, 87.1±9.3%, 83.6±10.3%,

84.2±10.5%, 84.4±9.4%, 85.1±10.3%, 85.0±10.1%, 81.1±13.2%, 85.3±11.0% and 83.7±11.2%

for cluster number of 5 to 70 by step of 5. The overall average recognition accuracy

is 83.2%. The best average recognition rate is 87.1% for a cluster number of 30 for

13 subjects and 88.7% for 12 subjects. This is similar to results reported by Zhang

and Andreou [255] (90%, 8 subjects) and higher than those reported by Kalgaonkar

and Raj [133] (72%, 30 subjects). For 1 subject, performance as high as 100% was

obtained for almost all clusters number (12 over 14) and an average of 99.7% over

all cluster number. As expected, the average performance varies with the cluster

number. A very low cluster number as well as a high cluster number results in worse

performance. If the number of clusters is too high, the algorithm cannot generalize

to basic event patterns larger than the event template size (Fig. 4.7, top right) as it

does not have enough data to extract a useful pattern. At the other extreme if the

cluster number is too low, the performance in classification is worse as the event

pattern contains too many repetitions of the identical basic pattern. The size of the

event template (number of clusters) has to be chosen relative to the events size (in

our study about 134ms). Figure 4.9 shows the event templates for each subject for a

cluster number of 50.

We can see in Fig. 4.10 that gender is characterized by distinct event templates

(top). Even though one example can be quite different from the event template

(bottom), the classification between gender is straightforward. For the same number

of clusters, male event template contains more repetition of the same curvy pattern

(similar to inverted S) than female one. In addition, the female basic pattern is

flattened compared with male one.

Figure 4.11 shows the effect of cluster number on gender identification. The

107

Guil
lau

me G
arr

ea
u

10 20 30 40 50 60 70
40

50

60

70

80

90

100

Number of clusters per category

A
c
c
u

ra
c
y
 o

f
c
la

s
s
if

ic
a
ti

o
n

 (
%

)

Individual recognition

Figure 4.8: The effect of the cluster number on individual recognition is shown. The

average over all subjects is plotted and reaches a maximum of 87.1%. The error bars

represent the subjects variability. For one subject, the average is equal to 99.7% over

all event template size.

108

Guil
lau

me G
arr

ea
u

Subject1

F
Il
te

r
(=

fr
e

q
 c

h
a

n
n

e
ls

)

10 20 30 40 50

20
60

100

Subject2

10 20 30 40 50

20
60

100

Subject3

10 20 30 40 50

20
60

100

Subject4

Event template
10 20 30 40 50

20
60

100

Subject5

10 20 30 40 50

20
60

100

Subject6

F
Il
te

r
(=

fr
e

q
 c

h
a

n
n

e
ls

)

10 20 30 40 50

20
60

100

Subject7

10 20 30 40 50

20
60

100

Subject8

Event template
10 20 30 40 50

20
60

100

Subject9

10 20 30 40 50

20
60

100

Subject10

10 20 30 40 50

20
60

100

Subject11

F
Il
te

r
(=

fr
e

q
 c

h
a

n
n

e
ls

)

10 20 30 40 50

20
60

100

Subject12

Event template
10 20 30 40 50

20
60

100

Subject13

Event template

10 20 30 40 50

20
60

100

Figure 4.9: Event templates for the 13 subjects for number of clusters equal to 50.

109

Guil
lau

me G
arr

ea
u

Female
F

Il
te

r
(=

fr
e
q
 c

h
a
n
n
e
ls

)

10 20 30 40 50

20

40

60

80

100

Male

Event template

F
Il
te

r
(=

fr
e
q
 c

h
a
n
n
e
ls

)

10 20 30 40 50

20

40

60

80

100

Female

F
Il
te

r
(=

fr
e
q
 c

h
a
n
n
e
ls

)

10 20 30 40 50

20

40

60

80

100

Male

Input Event

F
Il
te

r
(=

fr
e
q
 c

h
a
n
n
e
ls

)

10 20 30 40 50

20

40

60

80

100

Figure 4.10: Gender classification: the top spectrograms are the event templates for

female and male categories for cluster number of 50 and the bottom spectrograms

are one example for each gender.

110

Guil
lau

me G
arr

ea
u

5 10 15 20 25 30 35 40 45 50 55 60 65 70
80

82

84

86

88

90

92

94

96

98

100

Number of clusters per category

A
cc

ur
ac

y
of

cl
as

si
fic

at
io

n

Gender classification
Female
Male

Figure 4.11: Gender classification as a function of the number of clusters. Average

accuracy as high as 92.4% is obtained for a cluster number of 20.

averages are 89.6±7.6%, 90.2±8.4%, 91.7±3.7%, 92.4±1.6%, 91.9±0.2%, 91.6±0.5%,

91.7±1.3%, 90.8±1.4%, 91.2±1.1%, 91.4±1.2%, 92.2±0.9%, 91.4±2.5%, 91.5±1.4%, 92.1±1.9%,

for cluster number of 5 to 70 in steps of 5. The best recognition rate is 92.4% which is

much higher than the 68.7% reported by Kalgaonkar and Raj [133]. It is interesting to

point out that gender classification gives better performance than individual recog-

nition, whereas Kalgaonkar and Raj [133] showed better individual recognition than

gender classification. This suggests that the proposed methodology can recognize

general features. It would be interesting to test this on other characteristics, such

as size of subject and speed of motion. It must also be mentioned that the effect of

event template size is different for each gender (Fig. 4.11). Males obtain the best

performance for a number of clusters of 70, with 93.4%, while best performance for

female is 96.1% for a number of clusters of 10. This can be explained considering

that the number of repetitions of the curvy pattern in the event template for female

is lower than the one for male (Fig. 4.10). 8 patterns can be seen for male and only 6

for female, thus the female event template can be recognized faster.

Table 4.2 shows the best average performance obtained and the performance

reported in other studies [133,255]. It is shown that regarding individual recognition

111

Guil
lau

me G
arr

ea
u

Source Kalgaonkar et al., 2007 Zhang et al., 2008 Garreau et al., 2011

Subjects (%) 72 90 87

Gender (%) 69 no data 92

Table 4.2: Average performance in individual identification and gender classifica-

tion.

the proposed system has similar accuracy than the one of Zhang and Andreou and

better than the one of Kalgaonkar and Raj. The proposed system shows the best

accuracy for gender classification.

4.3.3 Action classification

4.3.3.1 Data collection setup

Datasets 1 and 2 were also analysed in terms of actions classification (these investiga-

tions are described in [70]). In total 13 different actions were selected from datasets

1 and 2: walking (unknown speed), walking slowly (3km/h), walking fast (6km/h),

running (unknown speed), running slowly (9km/h), running fast (12km/h), inline

skating, slow cycling (approximately 11km/h), fast cycling (approximately 22km/h),

clapping hands, calling “help me” while waving arms up in the air and, calling

“come here” while beckoning with the right arm.3

4.3.3.2 Data processing

The processing is the same than in previous subsection 4.3.2.2.

4.3.3.3 Results

Examples of the event templates obtained for each action category are shown in Fig.

4.12 and Fig. 4.15 and action categorization results for datasets 1 and 2 as a function

of the number of k-means clusters (event templates) per category are shown in Fig.

4.13 and Fig. 4.16 respectively. The optimum number of clusters for dataset 1 is 17,

reaching 95.5% accuracy; and for dataset 2, 55 clusters with 95.3% accuracy.

3The data collection was done at UCY for dataset 1. The data collection was done at UCY

in collaboration with Salvador Dura-Bernal for dataset 2. The data processing methods was a

collaborative effort with Salvador Dura-Bernal conducted both at UCY and University of Plymouth.

112

Guil
lau

me G
arr

ea
u

fast bike

event template

fr
e

q
 c

h
a

n
n

e
l

5 10 15

10

20

30

40

50

slow bike

event template

fr
e

q
 c

h
a

n
n

e
l

5 10 15

10

20

30

40

50

skating

event template

fr
e

q
 c

h
a

n
n

e
l

5 10 15

10

20

30

40

50

running

event template

fr
e

q
 c

h
a

n
n

e
l

5 10 15

10

20

30

40

50

walking

event template

fr
e

q
 c

h
a

n
n

e
l

5 10 15

10

20

30

40

50

Figure 4.12: Some action templates for dataset 1.

The action categorization results for datasets 1 and 2 as a function of the number

of test events used per action are shown in Fig. 4.14 and Fig. 4.17 respectively.

An accuracy of approximately 90% or above was achieved with only 4 out of 17

incoming events for dataset 1, and only 20 out of 70 events for dataset 2.

The results above confirms the excellent performance of the categorization model.

In previous investigations, a performance of 87% for individual recognition on all

subjects (as high as 100% for one subject) and 92.4% for gender classification were

reported [96]. Here an accuracy greater than 95% for two different datasets composed

of mD signatures of human actions was achieved.

This outperforms the results for dataset 1, with categorization accuracy of 81%

[97], as well as similar action categorization studies previously published, such

as [135], which reported 88.4% for an 8-category dataset. Importantly, all results are

obtained using a 50% training ratio, which means the model is able to generalize

to new data well. For dataset 2 the accuracy of all categories was close to 100%

except for ‘clapping’ (85%). This can be explained, by considering that the ultrasonic

reflected wave was least affected by the relatively small clapping motion, and that

the particular action had the highest inter-trial variability as people clapped at many

different frequencies and with different hand positions.

113

Guil
lau

me G
arr

ea
u

2 4 6 8 10 12 14 16 18 20
60

65

70

75

80

85

90

95

100

Number of event templates per category

%
C

or
re

ct
ly

ca
te

go
ri

ze
d

te
st

fil
es

Categorization performance for DATASET 1 (files length: 2 secs)

Fast bike
Slow bike
Inline skating
Running
Walking
AVERAGE

Figure 4.13: Action categorization for dataset 1 as a function of the number of event

templates per category.

2 4 6 8 10 12 14 16
60

65

70

75

80

85

90

95

100

Number of events per test file

C
or

re
ct

ly
ca

te
go

ri
ze

d
te

st
fil

es
(%

)

Categorization performance for DATASET 1 (files length: 2 secs)

Fast bike
Slow bike
Inline skating
Running
Walking
AVERAGE

Figure 4.14: Action categorization for dataset 1 as a function of the number of test

events used per action. Longer actions improve recognition.

114

Guil
lau

me G
arr

ea
u

Figure 4.15: Some action event templates for dataset 2.

5 10 15 20 25 30 35 40 45 50 55 60 65 70
60

65

70

75

80

85

90

95

100

Number of event templates per category

C
or

re
ct

ly
ca

te
go

ri
ze

d
te

st
fil

es

Categorization performance for DATASET 2 (files length: 10 secs)

Clapping
Come here
Fast run
Fast walk
Help me
Slow run
Slow walk
AVERAGE

Figure 4.16: Action categorization for dataset 2 as a function of the number of event

templates per category.

115

Guil
lau

me G
arr

ea
u

5 10 15 20 25 30 35 40 45 50 55 60 65 70
60

65

70

75

80

85

90

95

100

Number of events per test file

C
or

re
ct

ly
ca

te
go

ri
ze

d
te

st
fil

es
Categorization performance for DATASET 2 (files length: 10 secs)

Clapping
Come here
Fast run
Fast walk
Help me
Slow run
Slow walk
AVERAGE

Figure 4.17: Action categorization for dataset 2 as a function of the number of test

events used per action. Longer actions improve recognition.

It was also noticed that the number of event templates can be significantly reduced

compared to the number of events per action. It means that it is possible to keep

high categorization performance, > 90% with only 3 event templates in dataset 1,

and suggests that the individual periodic components of each action, like steps in

the walking condition, are captured by the event templates. Therefore only a small

number, corresponding to single cycles of an action, is required. The length of the

event templates, approximately 200ms, is consistent with this interpretation.

It was noticed that if the number of test events per action-file is reduced it does not

have a significant effect on the performance (higher than 90% accuracy with less than

25% of the test events). It confirms that only a small number of events, corresponding

to one cycle, are required to characterize each action. This is interesting as it suggests

that a real time implementation of the model is possible. Along with the onset of the

events, the events contribute to form a belief of the current action, by reinforcing or

weakening the previous hypothesis.

Similarly, the model also showed a strong robustness to variations of the event

length (< 3% variation for values between 140ms and 500ms) and event interval

116

Guil
lau

me G
arr

ea
u

(< 3% variation for values between 140ms and 500ms). The optimum value of the

event length and interval provides a compromise between the model’s selectivity

and invariance in the temporal domain.

4.3.4 Individual recognition with AR model

4.3.4.1 Data collection setup

For the third dataset [98], subjects are asked to walk towards the UFTRX from a

distance of six meters. They each repeated the task 10 times. Six subjects (two

females and four males) participated in the data collection. They were of the same

age range of 25 to 35 years old.

4.3.4.2 Data processing

The first processing step is to isolate the ROI containing the subjects mD signatures.

Segmentation of the ROIs is performed in real-time during continuous data collection

from the UFTRX unit. About 10 ROIs of three to four seconds were collected for each

subject (2 females and 4 males). The second step is to create a model or template

for each subject, which will be used for the classification. The template is created in

2 steps. Firstly, a predictive model for each individual trial is created using an AR

model. The estimated AR coefficients obtained from each trial are aligned in time

using the ’icoshift’ function. Finally, a template for each individual is created by

averaging the estimated model coefficients of each trial of the same class. Individual

classification is obtained using Leave-One-Out (LOO) cross-validation.4

Once the ROIs have been isolated, a model of each trial is computed using AR

models. The optimum AR order was estimated using the Final Prediction Error

(FPE) [215]. AR models of orders p=2,3,...,19 were fitted on the raw data and the FPE

was obtained for each p, using the System Identification toolbox for Matlab R©. Based

on the FPE AR models of order 10 were chosen. Figure 4.18 shows an example of

the decreasing FPE for a randomly chosen trial and subject.

The raw mD data were split into windows of 10000 samples (0.1s), overlapping

by 8000 samples (0.08s). On each of these segments 10th order AR models were

4A simple linear classifier was used to show the potential of this method. It is expected that

there is room for improvement by using more advanced classifiers to be able to discriminate between

significantly larger populations.

117

Guil
lau

me G
arr

ea
u

0 5 10 15 20
0

2

4

6

8

10

12

14

16

18
x 10

4

AR order

F
in

a
l
P

r
e
d

ic
ti

o
n

 E
r
r
o

r

Figure 4.18: Example of estimated FPE over different AR model orders.

fitted using the forward-backward algorithm. The individual gait characteristics

for a particular movement sequence and subject were identified by tracking the

estimated AR coefficients at different time delays.

A template for each category is obtained using the average of the estimated AR

coefficients of all trials of the category. The first step is to align all trials using the

‘icoshift’ function. This Matlab R© function is specifically designed for solving signal

alignment problems. Alignment is performed with reference to a template, which

can be estimated as the average, maximum or median of the dataset. The peaks in

the spectra are used for the alignment. This function was originally implemented

for spectra alignment, but can also be successfully applied for alignment in the time

domain (for more details see [202, 226]).

Finally the performance for individual recognition is obtained using Leave-One-

Out (LOO) cross-validation. At each LOO validation, the template for the particular

subject and movement type is created from all trials but one (test trial). The correla-

tion between the test trial and all templates created for all subjects is then obtained

(‘xcorr’ function in Matlab R©). The test trial is classified as belonging to the subject

of the corresponding template with highest correlation.

118

Guil
lau

me G
arr

ea
u

0 500 1000 1500 2000
−0.5

0

0.5

0 500 1000 1500
−1

0

1

0 500 1000 1500 2000
−0.5

0

0.5

A
R

 c
o

e
ff

ic
ie

n
ts

 a
m

p
li
tu

d
e

0 500 1000 1500 2000
−1

0

1

0 500 1000 1500 2000
−1

0

1

0 500 1000 1500
−1

0

1

Aggregated windows of AR coefficient ROI for different trials

Figure 4.19: Estimated coefficient a10 for walking towards the UFTRX unit. Each

row corresponds to one person and many events concatenated together.

4.3.4.3 Results

An AR model of order 10 was fitted to the data and the estimated AR coefficients ap at

different delays p were tracked over time. Figures 4.19 and 4.20 show the 10th order

AR coefficient for walking towards the ultrasonic transceiver module for all trials of

all subjects; an AR model order of 10 corresponds to 0.1ms.5 The following can be

deduced: individual gait characteristics can be identified from the AR coefficients,

with some delays being more appropriate than others – e.g. the coefficient estimated

at a delay of 0.1ms Fig. 4.19; see Fig. 4.20 for an example of AR coefficient that do

not capture individual gait characteristics). This implies that gait characteristics are

related to the time lag. This is explained by the fact that if each limb was modeled

as an oscillator, each one would have a different characteristic frequency. The torso

will have a lower oscillatory frequency than the arm and thus the time lag needed

to model it (i.e. predict the next limb position) will be shorter.

As seen in Fig. 4.19, there is a consistency between different trials of the same

subject. This property is interesting and suggests that the AR coefficients at particular

5Please note that there was a mistake in the related publication, where the delay was stated as

10ms [98].

119

Guil
lau

me G
arr

ea
u

0 500 1000 1500 2000
−1

−0.5

0

0 500 1000 1500

−0.4
−0.2

0

0 500 1000 1500 2000
−1

−0.5

0

A
R

 c
o

e
ff

ic
ie

n
ts

 a
m

p
li

tu
d

e

0 500 1000 1500 2000
−1

−0.5

0

0 500 1000 1500 2000
−1

−0.5

0

0 500 1000 1500
−0.6

−0.4

−0.2

Aggregated windows of AR coefficient ROI for different trials

Figure 4.20: Estimated coefficient a2 AR coefficient for walking towards the UFTRX

unit. Each row corresponds to one person and many events concatenated together.

120

Guil
lau

me G
arr

ea
u

Windows of ROI of 20ms
(a)

C
o

e
ff

ic
ie

n
t

a
m

p
li
tu

d
e

Windows of ROI of 20ms
(b)

C
o

e
ff

ic
ie

n
t

a
m

p
li
tu

d
e

Windows of ROI of 20ms
(c)

C
o

e
ff

ic
ie

n
t

a
m

p
li
tu

d
e

Windows of ROI of 20ms
(d)

C
o

e
ff

ic
ie

n
t

a
m

p
li
tu

d
e

Figure 4.21: Estimated coefficient a10 for different occurrences of walking towards

the sensor for 4 randomly chosen subjects ((a)-(d) respectively).

time delays can track the movement of individual subjects over time. Alignment of

the different trials for each subjects (Fig. 4.21) reveals a pattern that remains robust

with respect to time and different occurrences of the same event. Furthermore, these

patterns are characteristic for each subject.

The ‘icoshift’ function was then used to align the trials for each subject. An

example of such alignment is shown in Fig. 4.22 for a randomly chosen subject. The

top part of the figure shows the different trials for that subject. The bold line shows

the reference chosen for the alignment estimated using the max of the dataset. The

bottom part shows the trials after alignment. The template used for the Leave-One-

Out cross-validation is obtained using the average of the trials after the alignment is

done. Figure 4.23 shows the corresponding template estimated from the data shown

on Fig. 4.22.

Recognition performance was obtained for each subject and AR coefficients,

estimated at delays p=4,9,10.

121

Guil
lau

me G
arr

ea
u

50 100 150 200 250 300 350 400 450

0

0.1

0.2

0.3

0.4

0.5

Raw data

Windows of ROI of 20ms
(a)

C
o
e
ff
ic

ie
n
t
a
m

p
lit

u
d
e

50 100 150 200 250 300 350 400 450

0

0.1

0.2

0.3

0.4

0.5

Whole spectra aligned data

Windows of ROI of 20ms
(b)

C
o
e
ff
ic

ie
n
t
a
m

p
lit

u
d
e

max

Figure 4.22: Top figure shows the a10 AR coefficient estimated for different occur-

rences of walking towards the sensor for one subject as well as the maximum (in

red) of the a10 AR coefficient. The bottom shows the different occurrences shifted

after using the ‘icoshift’ function.

122

Guil
lau

me G
arr

ea
u

Te
m

pl
at

e
re

fe
re

nc
e

m
ax

m
ed

ia
n

av
er

ag
e

A
R

co
effi

ci
en

t
10

9
4

10
9

4
10

9
4

Su
bj

ec
t1

(%
)

10
0

10
0

63
.6

10
0

10
0

60
10

0
10

0
60

Su
bj

ec
t2

(%
)

88
.9

88
.9

44
.4

10
0

10
0

44
.4

10
0

10
0

44
.4

Su
bj

ec
t3

(%
)

80
90

80
90

80
80

90
80

80

Su
bj

ec
t4

(%
)

10
0

10
0

18
.2

10
0

10
0

0
10

0
10

0
0

Su
bj

ec
t5

(%
)

10
0

90
0

10
0

10
0

0
10

0
10

0
0

Su
bj

ec
t6

(%
)

70
20

20
10

0
20

20
90

20
20

A
ve

ra
ge

(%
)

89
.8
±

12
.7

81
.5
±

30
.5

37
.7
±

30
.4

98
.3
±

4.
1

83
.3
±

32
.0

34
.1
±

32
.9

96
.7
±

5.
2

83
.3
±

32
.0

34
.1
±

32
.9

T a
bl

e
4.

3:
A

ve
ra

ge
pe

rf
or

m
an

ce
in

in
di

vi
du

al
id

en
ti

fic
at

io
n

Le
av

e-
O

ne
-O

ut
cl

as
si

fic
at

io
n.

123

Guil
lau

me G
arr

ea
u

0 50 100 150 200 250 300 350 400 450 500
−0.1

0

0.1

0.2

0.3

0.4

0.5

0.6

Windows of ROI of 20ms

C
oe

ffi
ci

en
t a

m
pl

it
ud

e

Figure 4.23: The template obtained after averaging the different a10 AR coefficient

shifted by the ‘icoshift’ function for the same set of data as in Fig. 4.22.

Performance was assessed as the average recognition accuracy (4.7):

P(%) = 100 ∗
Tcc

Ttt
(4.7)

where Ttt is the total number of ‘ground truth’ examples and Tcc is the number

of ‘ground truth’ examples correctly classified. Performance was evaluated using

the 3 different types of alignment reference for the ‘icoshift’ function (maximum,

median and average) and with 3 different coefficients ap of the 10th order AR model.

The particular delays were chosen to illustrate best, good and worst performance.

Some coefficients result in high performance (>80%, e.g. a9 and a10) while others

give poor recognition (<40%, e.g. for a4). It should be noted (Tab. 4.3) that the

recognition rate shows large variations (from 0% to 100%) from subject to subject for

the same parameters configuration (alignment reference and estimated coefficient

of the AR model). The best result (98.3±4.1%) is obtained for a median reference for

the ‘icoshift’ alignment and a10. When using the 9th coefficient (a9) of the 10th order

AR, the average performance is 83±32% and when using the 4th coefficient (a4) only

34.1±32.9% is obtained.

To explain the good performance of this method, one has to remember that during

walking several body parts, whose loci are constrained with respect to one another,

move in a coordinated manner in order to generate the action. The velocity if each

124

Guil
lau

me G
arr

ea
u

one of these moving parts can be used to modulate and reflect incoming ultrasonic

waves. Hence, the mD signature is linked to a particular individual’s body part

physical constraints (related to size, flexibility, coordination etc.). Another way of

viewing this is as the coupling of various oscillating body parts, thus revealing a

unique time-frequency signature for each individual. Fitting an AR model to the

raw mD data, over a sliding window, is equivalent to applying an adaptive low-pass

filter whose coefficients change depending on the frequencies present in the signal.

Thus, by tracking the estimated autoregressive coefficients over time, one can obtain

a unique signature describing an individual’s motion.

4.4 Conclusion

In this chapter, it has been shown that using the DACQ unit described in Chapter 2,

adapted to an ultrasonic use and with different algorithms, described in section 4.2,

it is possible to classify individuals, gender, actions or mode of transport using the

reflected sonic wave and time-frequency representations of mD signatures.

More specifically, individuals were recognised with 87% accuracy using short

temporal events learned through k-means clustering and gender was recognised

with 92% accuracy, outperforming other methods reported in the literature [133,255].

Individuals were also recognized using autoregressive coefficients for the first time,

with an accuracy ranging between 90% and 100%. For the first time, mode of trans-

port was correctly classified with an 81% rate using the standard deviation of the

energy spread on the spectrogram of the mD signatures and with a linear classifier.

Actions were recognized with average accuracy greater than 95% using a spec-

trogram segmentation method that facilitates the learning of representative event

templates and permits the continuous categorization of temporally short incoming

events. It is the first reported used of this technique with ultrasonic data.

The above results were obtained with a relatively low number of subjects (from

six to thirteen) and with a close age range (25 to 35 years old). In applications where

a larger number of subjects and greater diversity is required, it may be necessary to

implement more complex classifiers and use further sensory modalities. Another

possible way of increasing the performance is to create a skeleton model of the

human body, then generate artificial mD signatures and match artificial data with

real data.

125

Guil
lau

me G
arr

ea
u

In addition, such identification can be achieved with a low-cost, low-power

compact system. The algorithms and the results presented are based on evidence

of that some of the principles of auditory processing in the cortex make use of

spectrotemporal features and a hierarchical organization. They encourage a full

hardware implementation targeting real-time application. Real-time demonstration

of learning new simple actions (clapping, punching) has been successfully done on

a public event during the EU Seventh Framework Programme for Research and

Technological Development (FP7) funded acoustic SCene Analysis for Detection

of Living Entities (SCANDLE) project workshop at the University of Plymouth in

February 2012 (Making Sense of Sound 2012).

One recent trend has been to investigate and commercialize ultrasonic navigation

system to help blind people [21, 100, 115, 131, 166, 176, 206]. Furthermore, work has

been already done fusing neuromorphic hardware and sonar data with applications

in robotics [10, 46].

Overall, such systems may have a wide range of applications in the context of

robotics, security, surveillance, human behavior monitoring and even gaming.

126

Guil
lau

me G
arr

ea
u

127

Guil
lau

me G
arr

ea
u

128

Guil
lau

me G
arr

ea
u

Chapter 5

Towards an FPGA-based Auditory

Pathway Implementation

5.1 Introduction

In the previous chapters, it has been shown that it is possible to extract information

from the environment, such as localization of source of sound, identification of

individuals or recognition of actions, solely based on acoustic waves. In primitive

biological organisms, such as flies, there is evidence of acoustic scene analysis done

with simple neural networks (Robert et al. [194,195]). Understanding and modelling

these processes will allow to develop robotic systems that can perform acoustic scene

analysis with better performance than current solutions.

In humans, the acoustic scene analysis is performed by the auditory system. It

is composed of the peripheral auditory system and the central auditory system. If

the auditory periphery does not form part of the nervous system, its components

feed directly into the nervous system, performing mechano-electrical transduction

of sound pressure-waves into neural action potentials (Fig. 5.1).

The auditory periphery starts with the outer ear (in green in Fig. 5.1). The

pinna reflects and attenuates the incoming sound waves into the auditory canal

that amplifies the 3 to 12kHz sounds. Then comes the middle ear (in red in Fig.

5.1) with the tympanic membrane. Also called eardrum, it is composed of three

delicate bones that convert the lower-pressure eardrum sound vibrations into higher-

pressure sound vibrations at another, smaller membrane called the oval window. At

this stage occurs the first transduction of sounds from an air filled medium to a liquid

filled medium of the inner ear. The inner ear consists of the cochlea and several

129

Guil
lau

me G
arr

ea
u

Tympanic
Cavity

Incus
Malleus

Semicircular
Canals

Vestibular
Nerve

Cochlear
Nerve

Eustachian TubeTympanic
Membrane

External
Auditory Canal

Stapes
(attached to
oval window)

Cochlea

Round
Window

16 kHz

6 kHz

0.5 kHz

Figure 5.1: The human ear and frequency mapping in the cochlea. Information from

the cochlear receptor cells is transmitted to the cochlear nuclei via the 8th cranial

nerve, which then flows through the midbrain to the cortex (from [50]).

non-auditory structures (in purple in Fig. 5.1). The cochlea has three liquid-filled

chambers, and supports a fluid wave driven by pressure across the basilar membrane

separating two of the chambers, the scala vestibuli and scala tympani (Fig. 5.2). The

organ of Corti forms a ribbon of sensory epithelium which runs lengthwise down

the cochlea’s entire scala media. Its hair cells transform the fluid waves into nerve

signals. This is the second stage of transduction of sounds from mechanical waves

to electric signals in neurons. Because of the mechanical properties of the basilar

membrane within the snail-shaped cochlea, high frequencies will produce a vibration

peak near the oval window, whereas low frequencies will stimulate receptors near

the apex of the cochlea (locations for three frequencies indicated schematically on

Fig. 5.1).

The central auditory system re-encodes the sound information and sends it to the

vestibulo-cochlear nerve, through intermediate stations such as the cochlear nuclei

and superior olivary complex of the brainstem and the inferior colliculus of the

midbrain, being further processed at each waypoint. The information eventually

reaches the thalamus, and from there it is relayed to the cortex (Fig 5.3).

Although the cochlea has been extensively studied, there are still mechanisms

130

Guil
lau

me G
arr

ea
u

Figure 5.2: Cross section of the cochlea (from [244]).

that have yet to be fully understood. For example, the precise location of the cochlear

amplifier in living sensitive ears has only been recently demonstrated experimen-

tally (2011). The cochlea amplifier resides at a small longitudinal region basal to the

response peak in the sensitive cochlea (Ren et al. [192]). This data provides critical

information for advancing our knowledge on cochlear mechanisms responsible for

the remarkable hearing sensitivity, frequency selectivity and dynamic range. More-

over, there is no commonly accepted theory of Interaural Time Delay (ITD) based

localization that explains both the behavioral and neural data for the processing of

fine temporal differences between the incoming signals at both ears for azimuthal

sound source localization. A unifying theory was proposed by Benichoux et al. in

2011 for the barn owl [13] and in 2013 for mammals [14].

A lot of work has been published on acoustic scene analysis; some representative

examples are presented, in order to put the contributions of this thesis in context

with prior work. For a more detailed review see a historical review by Leong et

al. [149].

The first and oldest group of studies is the one using classical or bioinspired

algorithms for signal processing. The second and more recent group is using neural

network processing with software or hardware processing.

131

Guil
lau

me G
arr

ea
u

Figure 5.3: An overview of afferent ipsilateral and contralateral interactions in the

auditory brainstem (from [165]).

132

Guil
lau

me G
arr

ea
u

In the first group, some studies focus on single sound source localisation. Julian

et al. compared four different algorithms, for sound localization, using MEMS mi-

crophones and signals recorded in a natural environment [132]. The spatial-gradient

algorithm (SGA) gave the best results. Its implementation requires a sampled data

analog architecture able to adaptively solve a standard least mean-square (LMS)

problem. Masson et al. used a data fusion algorithm to perform the estimation

of the position based on measurements from five nodes, each having four MEMS

microphones [168]. The measurement is made using a unique fixed source emitting

a 1kHz signal. Zhang et al. used cross correlation of the signals received and a zero

crossing point to estimate the bearing angles of moving vehicles [254]. The hardware

was an ASU with four MEMS microphones, that required an acoustic horn.

Other studies used techniques for separation of multiple sound sources. Prior

work for bioinspired (from flies) acoustic surveillance units, such as that of Cauwen-

berghs et al., used spatial and temporal derivatives of the field over a sensor array of

MEMS microphones, power series expansion and Independent Component Analy-

sis (ICA) for localizing and separating mixtures of delayed sound sources [44]. It

showed that the number of sources that can be extracted, depends strongly on the

number of resolvable terms in the series. Similar work was also done by Sawada et

al. using ICA for estimating the number of source of sound [121] and localization of

multiple sources of sound [121, 203, 204].

Finally, the most interesting application of acoustic scene analysis is the detection

and classification of real-world acoustic events and audio scenes or soundscape (for

instance a train station or a classroom). Andringa et al. addressed the problem of

recognizing acoustic events present in an unconstrained input. The authors pro-

posed a novel approach to the processing of audio data, which combined bottom-up

hypothesis generation with top-down expectations, which unlike standard pattern

recognition techniques, can ensure a physically realizable representation of the input

sound [6]. This was used in verbal aggression detection in complex social environ-

ments [228] and with the Sensor City Sound project in the Dutch city of Groningen

(www.sensorcity.nl). Brown et al. reviewed the principles underlying Acoustic

or Auditory Scene Analysis (ASA) and showed how they can be implemented in

computational ASA (CASA) systems [27]. They linked CASA and automatic speech

recognition, and drew distinctions between the CASA and ICA approaches.

The reported algorithms have demonstrated good results at the expense of high

133

Guil
lau

me G
arr

ea
u

computational cost in comparison to using a neural network approach. The ad-

vantages of neuron network computation compared to other digital algorithms are

discussed in [109, 183].

The second group of studies works on the same applications, but adding the

constraint of neural network processing. Identification of acoustic signals in noisy

environments remains one of the most difficult signal processing problems and

Dibazar et al. proposed a hardware implementation of a novel biologically based

Dynamic Synapse Neural Networks (DSNN) for Acoustic Sound Recognition [64].

The hardware, named acoustic SENTRI is based on Texas instrument TMS320C6713

DSK and a custom designed data acquisition board. An array of four microphones

is attached to the board for sound input.

Other solutions have an artificial cochlea, which is used as first stage of the

signal processing. Hardware implementations of electronic cochlea models have

traditionally used analog VLSI as the implementation medium due to their small

area, high speed, and low power consumption. The first analog electronic cochlea

was designed by Lyon and Mead [159, 160]. Van Schaik et al. proposed a silicon

cochlea using compatible lateral bipolar transistors [232] and a pseudo-voltage do-

main implementation of a 2-dimensional silicon cochlea [229]. They were used for a

neuromorphic sound localizer with two MEMS microphones are connected to two

analog neuromorphic cochlea. The system is low power and the average standard

deviation of the estimated azimuth is 4.5◦ [231, 233]. The system bases its azimuth

estimation on the interaural delay between the two ‘ears’. An AER module was

also added to the cochlea for sound processing for identification [155,230] or source

localization using ITD [47].

Note that groups have also been working on implantable systems to help hearing-

impaired patients, such as the 126µW cochlear chip for speech processor/stimulator

developed by Georgiou and Toumazou [102].

Other groups proposed digital cochlea on FPGAs for several reasons: FPGA-

based implementations offer shorter design time, improved dynamic range, higher

accuracy, and a simpler computer interface. Leong et al. presented a module gener-

ator that can produce an FPGA-based implementation of an electronic cochlea filter

with arbitrary precision [149]. The authors show the cochleagram resulting from an

implementation example with 88 infinite impulse response (IIR) filters covering a

frequency window of 0Hz to 16khz. Clarke et al. presented an implementation of

134

Guil
lau

me G
arr

ea
u

neuromimetic cochlea for a bionic bat head using a virtex II FPGA [51]. Gambin et al.

proposed a cochlea with a cascade of 24 filters covering the frequency range 20Hz to

20kHz on a Spartan3 FPGA [93]. Mugliette et al. extended the previous work with

automatic gain control [179].

Currently a full auditory pathway hardware implementation of a cochlea with

advanced signal processing and learning capabilities is a target avidly pursued. The

work presented here is a first step towards the implementation of such a system based

on a compact neural network solution using a single FPGA. An FPGA approach

is chosen as it has a shorter development time and higher flexibility compared

with an analog VLSI approach. In addition, it was demonstrated that very large

neural population can be implemented on FPGA (Cassidy et al. demonstrated that

1 million neurons can be implemented on a single Spartan Virtex5 FPGA [38]). In

the next section, a model of the cochlea is presented, it was developed by Liu et

al. [156]. Then a simplified model of the auditory thalamocortical (TC) network

developed by Coath et al. [53] is presented. It is followed by the latest progress

towards a full implementation of the cochlea (32 channels, covering the 500Hz to

16kHz) and the simplified TC model on a single FPGA. Finally, the latest progress

in implementing the same model using an hybrid software and analog/digital VLSI

implementation [54,207] is presented and compared with our partial implementation

of the TC model.

5.2 Bioinspired model literature

The hardware implementation of the auditory pathway presented here is composed

of two main parts. The first part is the filter bank simulating the cochlea and the

second part is the thalamocortical (TC) network.

5.2.1 Cochlea filter bank

Several models of cochlea were evaluated, they gave similar results and thus it was

decided to implement the cochlea model of Liu et al. [156]. This model gives a good

trade-off between complexity and accuracy. It consists of a cascade of first-order,

low-pass IIR filters, the majority of which branch into cascades of two second-order,

band-pass IIR filters. A diagram of the model is provided in Fig. 5.4. The inputs are

135

Guil
lau

me G
arr

ea
u

fed at the left-hand side of the diagram, which represents the base of the cochlea;

the outputs are read from the taps along the bottom of the diagram, which represent

points spaced along the cochlea between its base and apex. Note that, as in the

natural cochlea, these series of low-pass filters start with a high bandwidth that gets

progressively lower.

The core of cochlea is composed of 32 sensory channels. Each channel is com-

posed of one first-order low-pass IIR filter (P). It branches out into the next channel

P filter and a cascade of two second-order band-pass or biquadratic IIR filters (Q and

R). The output of the R filter is then rectified and used as an input to the first stage

of the TC model.

The core is preceded by a cascade of three first-order low-pass IIR filters (S) used

for pre-emphasis of the signal. The cochlea is specified using six parameters: the

channel number nch, the sampling interval dt, the resonator frequency at the base

fbase, the resonator tuning at the base qbase, the resonator frequency at the apex fapex

and the resonator tuning at the apex qapex. The last four parameters are illustrated in

Fig. 5.5.

S1 S2 S3 P P

Q

R

Q

R

Rectification

IN

OUT OUT

chan 1 chan 32
base apex

1st order low-pass
IIR filters

2nd order (biquadratic)
band-pass IIR filters

Figure 5.4: Diagram of the model of the cochlea.

136

Guil
lau

me G
arr

ea
u

Figure 5.5: Filter amplitude response requirements.

For each channel nch = 1,...,32 the center frequency f and the attenuation coefficient

Q are calculated as follows:

ωnch = ωnch−1 ∗ δ finc (5.1)

δ finc =
(fapex

fbase

) 1
nch−1

(5.2)

qnch = qnch−1 + δqinc (5.3)

δqinc =
qapex − qbase

nch − 1
(5.4)

The initialization values for the the first channel are:

ω0 = 2 ∗ π ∗ fbase (5.5)

q0 = qbase (5.6)

The next stage of the auditory pathway, after the cochlea, is the thalamocortical

model.

5.2.2 Thalamocortical model

The thalamocortical model used in this work is a simplified version of the auditory

thalamocortical system model developed by Coath et al.. A detailed description of

the simplified version is given in this chapter. However, for more details on the full

model, please refer to [52,53]. The simplified version is the result of discussions with

the original model inventors. The simplified version allows a faster implementation

and gives good results in accordance with the prediction given by the full TC model.

137

Guil
lau

me G
arr

ea
u

The simpler version of the thalamocortical network was developed to target

hardware implementation, it is shown in Fig. 5.7. The network has 3 layers of

neurons, labelled A, B1 and B2. The TC model includes excitatory projections from

B1 to B2 which are plastic and exhibit Spike Timing Dependent Plasticity (STDP), a

spike-based Hebbian learning rule first reported by Caporale et al. [35]. This rule

potentiates the synapses where an apparent cause-effect relationship predominates

over time, in other words it learns the temporal correlations in the time-varying

stimulus. A modified version of the STDP rule is implemented here, it was developed

by Brader et al. [22]. The synaptic update rule adjusts the synaptic weight X upon

arrival of a pre-synaptic spike, depending on the instantaneous membrane potential

and the internal state of the post-synaptic neuron [22, 91]. The internal state C(t) is

identified with the post-synaptic neuron calcium concentration, driven by firing of

the neuron (Shouval et al. [210]). The synaptic efficacy X is altered according to:

X = X + a; if V(t) > θ and θl
up < C(t) < θh

up (5.7)

X = X − b; if V(t) 6 θ and θl
down < C(t) < θh

down (5.8)

with V(t) is the post-synaptic membrane voltage, θ the learning threshold. If

neither of the conditions are satisfied, then X drifts to one of two stable states 0 or 1,

depending on whether X(t) is above or below the threshold, θX:

dX(t)
dt

= α; if X(t) > θX (5.9)

dX(t)
dt

= −β; if X(t) 6 θX (5.10)

The internal state C(t) is driven by firing of the neuron and is governed by:

dC(t)
dt

= −
C(t)
τC

+ JC

∑
i

δ(t − ti) (5.11)

where JC is the amount of calcium contributed by a single spike. The synaptic

dynamics are illustrated in Fig. 5.6.

The network behavior is as follow. For each one of the 32 channels of the cochlea,

the output of the channel is fed into the neuron in layer A. The I&F neurons of

layer A spike depending on their input. The spiking activity results in the synaptic

conductance being modified for synapse A-B1 and synapse A-B2. The synaptic

responses are modelled by an alpha profile. Also note that synapse A-B1 weights

are slightly higher than those of synapse A-B2. This is to allow initial inhibition

138

Guil
lau

me G
arr

ea
u

Pre−synaptic spikes

0

1
Synaptic internal variable X(t)

!X

0 50 100 150
0

1

time (ms)

Post−synaptic depolarization V(t)

!V

Figure 5.6: Synaptic dynamics: time evolution of the simulated internal variable X(t)

describing the synaptic state (center), pre-synaptic spikes (top) and depolarization

V(t) of post-synaptic neuron (bottom, from [92]).

of the B2 neurons, until the delayed projections via the excitatory STDP potentiate

the B2 neurons. The activation of the synapses A-B1 leads to the change in the

B1 neuron membrane potential, which causes them to spike. This leads to the

inhibitory synapse between B1 and B2 to be active thus providing an inhibitory

input to the B2 neuron within the same column, but also excitatory STDP inputs to

other columns, via delayed projection B1-B2. Columns that are close by have their

membrane potential increased since the combination of the input from synapse A-B2

and the excitatory STDP input from B1-B2 makes the B2 neuron membrane potential

increase and spike, hence increasing the excitatory efficacy of the STDP input. Where

no compound activity of the synapse A-B2 was present the STDP input’s inhibitory

efficacy increased. Finally the acoustic stimuli causes adaptation of the synaptic

weights following the Fusi-Brader learning rule [22, 91, 92]. The stimulus-driven

modifications of the network connectivity result from the interaction between the

stimulus itself and the spike-based plasticity (STDP) rule adopted for the delayed

feed-back connections. After learning, the firing patterns of the neurons reflect the

emergent connectivity, which means that neurons will fire more during presentation

of learned stimuli, i.e. the network is tuned to the stimulus properties.

139

Guil
lau

me G
arr

ea
u

Delay

Figure 5.7: The figure shows a simplified Thalamocortical Neural Network that

is fed with voltage spikes coming from a cochlea model. Each “A” neuron gets

stimulated by tonotopic inputs. Only 3 columns are shown, however the targeted

final implementation has 32 columns.

5.3 Data collection

The cochlea and the TC model of Coath et al. have already been fully implemented

in software (in C with an interface to Matlab R©) by the developers, the idea here is

to extend this implementation to the field of the FPGAs. For this, it is needed to

bridge the gap between the behavior of the mathematical models in the auditory

periphery system and the limitations in hardware. To be more specific, mathematical

models allow one to describe the behavior of the real world at different levels of

realism. However, such realism implies a high complexity in the design of hardware

architectures. For this reason the perfect balance between the models that will be

used and the specific hardware (i.e. FPGAs) needs to be found.

The first step towards the full implementation on FPGA was to use Handel-

C, a high level programming language which targets low-level hardware, such

as FPGAs. Handel-C allows to write code in a language very close to C and then

compile it into VHDL (to be later implemented on FPGA, however it is not an optimal

implementation). It can be used as well to simulate the hardware implementation

and thus accelerate the development of an FPGA-based full implementation of the

cochlea and simplified TC model.

140

Guil
lau

me G
arr

ea
u

This section will give the details of the latest progress towards the full hardware

implementation.1 Firstly, the results of the hardware simulation of the full imple-

mentation of the cochlea and the simplified TC model using Handel-C are presented.

Secondly, the cochlea hardware implementation will be compared with the software

version of the model and the hardware simulation. Thirdly, the latest progress to-

wards the full hardware implementation of the simplified TC model will be shown.

Finally, the partial FPGA implementation will be compared with the analog VLSI

implementation reported by Sheik et al. in [207] and Coath et al. in [54].

5.3.1 Hardware simulation of full implementation with Handel-C

For the hardware simulation of the full auditory pathway model the number of

channels for the cochlea and the number of columns for the simplified TC model is

30. The scripts used are given in Appendix F. The following cochleagram and plots

illustrate the simulation with Handel-C of an FPGA based implementation of the full

simplified auditory pathway (cochlea and simplified TC model). The simplified TC

model neural network is initialised with transmission/propagation delays between

each neuron B1 and the neurons B2 of every other column using the delay matrix

shown in Fig. 5.8, where 0ms correspond to the case of no connection between B1

and B2 (i.e. neurons in the same column). The assumption is that it takes more

time to travel further away. Also, the STDP synapse weights are all initialised to

the same value (Fig. 5.9). The aim here is to show the modification of the weights

of the STDP synapses after presentation of a particular stimulus in order to validate

that the simplified TC model neural network is working as expected and can be

implemented in hardware.

The cochlea, presented in the previous section, is stimulated with two different

mixtures of frequencies, which are non-overlapping in time. The resulting cochlea-

gram is shown in Fig. 5.10. This is fed into the simplified TC model, presented in

the previous section, through the layer A, whose membrane potential is modified

as shown in Fig. 5.11. This layer contains I&F neurons which are driven by the

acoustic power in each frequency band from the cochlea and spike depending on

their input to produce a raster plot as shown in Fig. 5.12. The spiking activity results

1The work presented here was done at UCY in collaboration with Adrian Romiński (cochlea) and

Horacio Rostro-Gonzalez (cochlea and TC model).

141

Guil
lau

me G
arr

ea
u

in the synaptic conductance being modified for synapse A-B1 and synapse A-B2 as

shown in Fig. 5.13. The activation of the synapses A-B1 leads to the change in the B1

neuron membrane potential Fig. 5.14. The incoming inputs from A are integrated

by the integrate-and-fire (I&F) neuron equation, which causes the B1 neuron to spike

as shown on the raster plot of Fig. 5.15. The spikes are projected through inhibitory

synapses to the post-synaptic layer B2. The spikes are also projected to B2 in other

locations through plastic synapses with transmission/propagation delays (Fig. 5.8).

This leads to the inhibitory synapse between B1 and B2 to be active (Fig. 5.16) thus

providing an inhibitory input to the B2 neuron within the same column, but also

excitatory STDP inputs to other columns. Columns that are close by have their

membrane potential increased since the combination of the input from synapse A-B2

and the excitatory STDP input from B1-B2 makes the B2 neuron membrane potential

increase (Fig. 5.17) and spike (Fig. 5.18), hence increasing the excitatory efficacy of

the STDP input. Where no compound activity of the synapse A-B2 was present the

STDP input’s inhibitory efficacy increased as shown in Fig. 5.19. Finally in Fig. 5.20

one can see how the two acoustic stimuli caused adaptation of the synaptic weights

following the Fusi-Brader learning rule.

142

Guil
lau

me G
arr

ea
u

Neuron B
1

N
e

u
ro

n
 B

2

Delays Matrix

5 10 15 20 25 30

5

10

15

20

25

30

10

20

30

40

50

60

Figure 5.8: This figure shows the delayed projections from neurons in layer B1 to

neurons in layer B2. The scale of the delays is represented in milliseconds, where 0ms

(dark blue) correspond to the case of no connection between B1 and B2 (i.e. neurons

in the same column).

Neuron B
1

N
e

u
ro

n
 B

2

Connectivity Matrix

5 10 15 20 25 30

5

10

15

20

25

30

10

20

30

40

50

60

Figure 5.9: Connectivity matrix. This figure shows the initial strength of synapses

between B1 and B2. The initial lack of connection within each particular column is

presented in dark blue. All the other connections are assumed to be of same weight.

143

Guil
lau

me G
arr

ea
u

Time (s)

F
ilt

e
r

N
o

Cochleagram (Hardware simulation)

0 0.2

5

10

15

20

25

30 0

2

4

6

8

10

12

Figure 5.10: This figure shows the power output of a 30 channels cochlear model

[156], which is used as a stimulus for the 30 columns of the simplified TC model.

Time (s)

N
e
u
ro

n
 i
n
d
e
x

Membrane Potential (A neurons)

0 0.2

5

10

15

20

25

30 0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

Figure 5.11: Membrane potential in layer A.

144

Guil
lau

me G
arr

ea
u

Time (s)

N
e

u
ro

n
 i
n

d
e

x

Raster Plot (A neurons)

0 0.2

5

10

15

20

25

30

Figure 5.12: Spiking activity in layer A. This figure shows the response (represented

as spikes) of neurons in layer A, which are propagated through excitatory synapses

to layers B1 and B2.

Time (s)

N
e
u
ro

n
 i
n
d
e
x

g
01 syn

 (and g
02 syn

)

0 0.2

5

10

15

20

25

30 0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

Figure 5.13: Synaptic response in A-B1 and A-B2. Here, the synapses are modeled

by an alpha profile.

145

Guil
lau

me G
arr

ea
u

Time (s)

N
e
u
ro

n
 i
n
d
e
x

Membrane Potential (B
1
 neurons)

0 0.2

5

10

15

20

25

30 0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Figure 5.14: Membrane potential in B1.

Time (s)

N
e

u
ro

n
 i
n

d
e

x

Raster Plot (B
1
 neurons)

0 0.2

5

10

15

20

25

30

Figure 5.15: Spiking response in B1.

146

Guil
lau

me G
arr

ea
u

Time (s)

N
e
u
ro

n
 i
n
d
e
x

g
12 syn

0 0.2

5

10

15

20

25

30 0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

0.09

0.1

Figure 5.16: Synaptic response in B1-B2, which shows the response of the synapses

with an alpha profile, which inhibits neurons in layer B2.

Time (s)

N
e
u
ro

n
 i
n
d
e
x

Membrane Potential (B
2
 neurons)

0 0.2

5

10

15

20

25

30

−2

−1.5

−1

−0.5

0

0.5

1

Figure 5.17: Membrane potential in B2, which shows the response of neurons in layer

B2 from the integration of incoming inputs from A, B1 and recurrent connections.

147

Guil
lau

me G
arr

ea
u

Time (s)

N
e
u
ro

n
 i
n
d
e
x

Raster Plot (B
2
 neurons)

0 0.2

5

10

15

20

25

30

Figure 5.18: Spiking response in B2. This figure shows the resulting dynamics of the

30 neurons in the thalamocortical network.

Time (s)

N
e
u
ro

n
 i
n
d
e
x

g
R12 syn

0 0.2

5

10

15

20

25

30 −2.5

−2

−1.5

−1

−0.5

0

0.5

1

1.5

Figure 5.19: Synaptic response among the recurrent connections B1-B2. Here, we

can observe the effects of the transmission delays in the network.

148

Guil
lau

me G
arr

ea
u

Neuron B
1

N
e

u
ro

n
 B

2

Weights Matrix (STDP)

5 10 15 20 25 30

5

10

15

20

25

30

10

20

30

40

50

60

Figure 5.20: Synaptic weights after STDP. The weights are adapted in the network

following the Fusi-Brader learning rule.

It is now proven that the simplified model is able to adapt the STDP synapses to a

particular input stimulus. As a result, differences in the response of the network in-

duced by learning can be used to distinguish similar stimuli that have parametrically

different dynamic properties. The next step is to do the actual hardware implemen-

tation of the simplified model. First the hardware implementation of the cochlea is

given and its correct behavior illustrated, then the latest progress in implementing

the simplified TC model are given.

5.3.2 Hardware implementation of the cochlea filter bank

To implement the cochlea on the FPGA, it is necessary to add additional modules

for the streaming of the data in and out of the FPGA. Two versions were developed.

The first one uses an Opal Kelly R© (OK) board and a laptop running Matlab R© to

send data to the OK board and feed the model output back in to Matlab R©. It will be

later referred to as version 1 (OK alone). The second version uses a DACQ unit with

the OK board plugged onto it. An acoustic sensor or a signal generator is connected

to the DACQ. The data sampled by the acquisition unit is streamed to the OK board

in real-time. Then a laptop running Matlab R© reads out the output of the cochlea. It

will be later referred to as version 2 (DACQ and OK).

149

Guil
lau

me G
arr

ea
u

Figure 5.21: Diagram of the cochlea model.

The modules implemented on the Spartan3 of the OK board are: the input

interface (USB to FPGA) that controls the data stream coming into the OK board, an

input FIFO for slowing down the input data to the cochlea speed, the cochlea itself,

an output FIFO to do the time domain conversion from the ‘slow’ cochlea to the fast

output USB2.0 interface and finally the output interface (FPGA to USB) that controls

the data stream out of the OK board (cochleagram). A block diagram of the different

modules is shown in Fig. 5.21.

Table 5.1 gives the main parameters used to generate the filter bank mimicking

the cochlea. Table 5.2 gives the filter parameter values for the three pre-emphasis

first order IIR filters (S1 to S3 in Fig. 5.4). Table 5.3 gives the filters’ parameter values

for each one of the 32 channels comprising the cochlea. C is the filter coefficient

corresponding to the first order IIR filter (P in Fig. 5.4). C1 and C2 are the coefficients

for the identical cascaded second order IIR filters, noted Q and R in fig. 5.4.

The equations for the first order IIR filters (pre-emphasis and P) are:

tmp = dpcp(0) × dpzp(t) + dp (5.12)

dp = dpcp(1) × (dpzp(t) + tmp) (5.13)

where dpcp are the filter coefficients and dpzp are the values of the signal to be

150

Guil
lau

me G
arr

ea
u

Parameter Description Value

nch Number of channels 32

dt Sampling interval 3.125 × 10−5s

fbase Resonator frequency at the base 16kHz

fapex Resonator frequency at the apex 500Hz

qbase Low-pass filter and resonator tuning at the base 4

qapex Low-pass filter and resonator tuning at the apex 0.5

Table 5.1: Parameters used for the cochlea implementation.

Filter Q Center F (Hz) C

1 4 17892.20 0.569

2 4 20008.96 0.509

3 4 22375.59 0.455

Table 5.2: Frequency and coefficient parameters of the pre-emphasis filters.

filtered at the current and previous time steps. dp is the output of the previous

channel. In the case of the first cochlea channel the previous stage is the last one of

the three S filters. For S1, the input is the audio signal.

The equations for the 2nd order bandpass IIR filters (Q) are:

tmp = dpcq(0) × dpzq(t) + dpcq(1) × dpzq(t − 1) + dp (5.14)

dq = dpcq(3) × dpzq(t − 1) + dpcq(2) × tmp (5.15)

where dpcq are the filter coefficients and dpzq are the values of the signal to be

filtered at the current and previous time steps. dp is the output of the previous stage.

For the R filter, the same equations are used, replacing q indices by r and p indices

by q.

Figure 5.22 gives the block diagram of the generic implementation of second

order band-pass IIR filters.

151

Guil
lau

me G
arr

ea
u

Channel ID Q Center F (Hz) C C1 (×108) C2 (×109)

1 4 .000 16000.00 0.637 16.085 15.811

2 3.887 14307.55 0.712 14.801 13.658

3 3.774 12794.15 0.796 13.632 11.921

4 3.661 11440.85 0.89 12.566 10.52

5 3.548 10230.64 0.996 11.594 9.388

6 3.435 9148.54 1.113 10.708 8.471

7 3.323 8180.88 1.245 9.901 7.728

8 3.210 7315.56 1.392 9.165 7.125

9 3.097 6541.75 1.557 8.495 6.635

10 2.984 5849.74 1.741 7.884 6.235

11 2.87 5232.38 1.947 7.327 5.909

12 2.758 4677.72 2.178 6.82 5.642

13 2.645 4182.91 2.435 6.359 5.423

14 2.532 3740.46 2.435 6.359 5.423

15 2.419 3344.80 3.045 5.559 5.094

16 2.307 2991.00 3.405 5.215 4.971

17 2.194 2674.60 3.808 4.903 4.869

18 2.081 2391.78 4.259 4.623 4.784

19 1.968 2138.72 4.763 4.371 4.714

20 1.855 1912.56 5.326 4.146 4.655

21 1.742 1710.28 5.956 3.948 4.606

22 1.629 1529.32 6.696 3.775 4.566

23 1.516 1367.62 7.448 3.627 4.533

24 1.403 1222.95 8.329 3.505 4.505

25 1.290 1093.55 9.314 3.408 4.484

26 1.177 977.85 10.416 3.34 4.468

27 1.065 874.40 11.648 3.303 4.457

28 0.9516 667.34 13.026 3.304 4.451

29 0.8387 699.17 14.567 3.353 4.451

30 0.7258 625.16 16.29 3.464 4.458

31 0.6129 559.11 18.217 3.669 4.475

32 0.500 500.00 20.372 4.021 4.508

Table 5.3: Frequency and coefficient parameters of the cochlea filter bank.

152

Guil
lau

me G
arr

ea
u

Figure 5.22: Diagram of a second order band-pass IIR filter.

5.3.3 Comparison of hardware and software implementation of the

cochlea filter bank

The cochlea network model presented by Liu et al. in [156] was fully implemented

in software (C language) and simulated in hardware using Handel-C. A VHDL

version of the cochlea was written and implemented on the OK board XEM3010.

The utilisation table of the FPGA by the cochlea is given in Table 5.4 for version 1

(OK alone) and in Table 5.5 for version 2 (DACQ and OK).

Figure 5.23 shows the output of the hardware implementation of the cochlea

model on the OK board and the expected output as given by the software model,

using the same input signal and parameters for the filter bank. The signal used

is a 1s chirp, i.e. a sine wave sweeping from 512Hz to 15.5kHz. The two outputs

are almost identical. The small differences are due to the available precision for the

parameter values in the software and hardware implementations.

The previous plots show the test using version 1 of the model (OK alone). For

version 2, the set-up is equivalent to the whole outer and inner ear, the DACQ unit

is sampling a signal and sending it to the cochlea on the XEM3010 of Opal Kelly

board connected to it. The cochleagram is then display on the laptop. For lack of

anechoic chamber, it was decided to generate a signal equivalent to that output from

a microphone. The signal generator is connected to the DACQ unit. A picture of

the set-up is given in Fig. 5.25. However as audio data has been recorded with

153

Guil
lau

me G
arr

ea
u

Logic Utilization Available Utilization (%)

Number of occupied slices 13,312 8

Number of slice Flip Flops 26,624 2

Number of 4 input LUTs 26,624 6

LUTs as logic - 84.7

LUTs as 32×1 RAMs - 9.1

Number of bonded IOBs 221 17

Number of RAMB16s 32 6

Number of MULT18X18s 32 31

Number of BUFGMUXs 8 25

Number of DCMs 4 25

Table 5.4: Utilisation table of the cochlea implementation on the XEM3010, version

1 (OK alone).

Logic Utilization Available Utilization (%)

Number of occupied slices 13,312 8

Number of slice Flip Flops 26,624 2

Number of 4 input LUTs 26,624 6

LUTs as logic - 84.4

LUTs as 32×1 RAMs - 9.1

Number of bonded IOBs 221 44

Number of RAMB16s 32 6

Number of MULT18X18s 32 31

Number of BUFGMUXs 8 25

Number of DCMs 4 25

Table 5.5: Utilisation table of the cochlea implementation on the XEM3010, version

2 (DACQ and OK).

154

Guil
lau

me G
arr

ea
u

Time (s)

F
il
te

r
N

o

Cochleagram (software)

0 0.2 0.4 0.6 0.8

5

10

15

20

25

30

0

5

10

15

20

25

30

35

(a)

Time (s)

F
il
te

r
N

o

Cochleagram (Hardware − OK only)

0.2 0.4 0.6 0.8 1

5

10

15

20

25

30

0

500

1000

1500

2000

2500

(b)

Figure 5.23: (a) Output of the software implementation of the cochlea model. (b)

Output of the hardware implementation on the Opal Kelly board (version 1). The

input signal is a 1s chirp of increasing frequency sine wave.

155

Guil
lau

me G
arr

ea
u

the DACQ unit, the ‘real’ scenario of a microphone recording an acoustic scene that

is then streamed to the cochlea is possible in the current state of development of

the system. Figure 5.24 shows the cochleagram obtained for a pure sine wave at

2.5kHz. The result confirms what we expected with a linear response over time

around channels 17-18 that correspond to frequency of 2.67 to 2.39kHz.

0 5 · 10−2 0.1 0.15 0.2 0.25 0.3

5

10

15

20

25

30

Time (s)

Fi
lt

er
N

o

Cochleogram (Hardware, DACQ and OK)

0

1,000

2,000

3,000

4,000

Figure 5.24: Output of the hardware implementation on the Opal Kelly board

(version 2). The input signal is a pure sine wave.

5.3.4 Hardware implementation of the TC model

The Handel-C simulation demonstrated that the simplified auditory pathway (cochlea

and simplified TC model) can be implemented on hardware. However the compi-

lation of the VHDL script generated by the Handel-C software did not fit on the

targeted FPGA (a XC3S1500), thus it was decided to optimized the code by doing an

implementation step by step of the different components of the model. For now, the

full implementation of the simplified model is not done yet. The time delay between

B1 and B2 and the STDP synapses responsible for the learning and memory capability

(Fig. 5.7), are not yet implemented. The utilisation table of the FPGA by the cochlea

is given in Table 5.6. Here, the latest progress towards the full implementation are

presented.

156

Guil
lau

me G
arr

ea
u

(a)

(b)

Figure 5.25: (a) Picture of the DACQ board connected to a signal generator, the data

sampled is streamed to the Opal Kelly board, processed by the cochlea and then, the

output cochleagram is sent to a computer. (b) Zoom on the DACQ unit with the OK

board on top of it.

157

Guil
lau

me G
arr

ea
u

In addition to the modules used for the cochlea implementation, several more

modules are implemented on the Spartan3 of the OK board XEM3010. These are: an

intermediate FIFO between the cochlea and the simplified TC model input (neurons

A) and the TC model itself with the different neurons and the connections between

them. The output communication is changed from a FIFO to a bRAM. A block

diagram of the different modules is given in Fig. 5.26.

Figure 5.26: Diagram of the model of the thalamocordical model.

The following cochleagrams and plots illustrate the response of a FPGA based

implementation of various auditory pathway components. The cochlea is stimulated

with two different mixtures of frequencies, which are non-overlapping in time. It is

the same stimulus than the one used in the hardware simulation with Handel-C. The

comparison between hardware simulation and actual hardware implementation is

thus straightforward. The resulting cochleagram is shown in Fig. 5.27. This is fed

into layer A, whose membrane potential is modified as shown in Fig. 5.28a. This

layer contains I&F neurons which are driven by the acoustic power in each frequency

band from the cochlea and spike depending on their input to produce a raster plot as

shown in Fig. 5.28b. The spiking activity results in the synaptic conductance being

modified for synapse A-B1 and synapse A-B2 as shown in Fig. 5.29. The activation

158

Guil
lau

me G
arr

ea
u

Logic Utilization Available Utilization (%)

Number of occupied slices 13,312 66

Number of slice Flip Flops 26,624 36

Number of 4 input LUTs 26,624 32

LUTs as logic - 96.5

LUTs as 32×1 RAMs - 1.8

Number of bonded IOBs 221 17

Number of RAMB16s 32 9

Number of MULT18X18s 32 31

Number of BUFGMUXs 8 25

Number of DCMs 4 25

Table 5.6: Utilisation table of the TC network implementation on the XEM3010.

of the synapses A-B1 leads to the change in the B1 neuron membrane potential Fig.

5.30a. The incoming inputs from A are integrated by the I&F neuron equation, which

causes the B1 neuron to spike as shown on the raster plot of Fig. 5.30b. The spikes

are projected through inhibitory synapses to the post-synaptic layer B2. The spikes

are also projected to B2 in other locations through plastic synapses with transmission

delays. This leads to the inhibitory synapse between B1 and B2 to be active (Fig. 5.31)

thus providing an inhibitory input to the B2 neuron within the same column, but also

excitatory inputs to other columns. Columns that are close by have their membrane

potential increased since the combination of the input from synapse A-B2 and the

excitatory input from B1-B2 makes the B2 neuron membrane potential increase (Fig.

5.32a) and spike (Fig. 5.32b).

Note that the plots obtained with the hardware implementation and the ones

obtained with the hardware simulation (Handel-C) are almost identical for the layer

A and B1 (membrane potential, spike activity and synapses) but different for layer

B2 due to the missing STDP synapses and delays. This confirms that a full imple-

mentation is possible and that it should give the expected output.

159

Guil
lau

me G
arr

ea
u

Time (s)

F
il

te
r

N
o

Cochleagram (software)

0 0.2

5

10

15

20

25

30 1

2

3

4

5

6

7

8

9

10

11

(a)

Time (s)

F
il
te

r
N

o

Cochleagram (Hardware − OK only)

0.05 0.1 0.15 0.2 0.25 0.3

5

10

15

20

25

30

0

200

400

600

800

1000

1200

(b)

Figure 5.27: This figure shows the power output of a 32 channel cochlear model [156],

which is used as a stimulus for the 32 columns of the simplified thalamocortical

model. (a) Output of the software implementation of the cochlea model. (b) Output

of the hardware implementation on the Opal Kelly board (version 1). The input

signal is two different mixtures of frequencies, which are non-overlapping in time.

160

Guil
lau

me G
arr

ea
u

Time (s)

N
e

u
ro

n
 I

n
d

e
x

Membrane Potential in Layer A (Hardware)

0.06 0.12 0.18 0.24 0.3

5

10

15

20

25

30

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

(a)

Time (s)

N
e
u

ro
n

 I
n

d
e
x

Raster Plot in Layer A (Hardware)

0.03 0.06 0.09 0.12 0.15 0.18 0.21 0.24 0.27 0.3

5

10

15

20

25

30

(b)

Figure 5.28: This figure shows the response (represented as spikes) of neurons in

layer A, which are propagated through excitatory synapses to layers B1 and B2. (a)

Membrane potential in layer A. (b) Spiking activity in layer A.

161

Guil
lau

me G
arr

ea
u

Time (s)

N
e
u
ro

n
 I
n
d
e
x

Synapses between Layers A and B (Hardware)

0.02 0.04 0.06 0.08 0.1

5

10

15

20

25

30

0

0.5

1

1.5

2

2.5

3

3.5

4

Figure 5.29: Synaptic response in A-B1 and A-B2. Here, the synapses are modelled

by an alpha profile.

162

Guil
lau

me G
arr

ea
u

Time (s)

N
e

u
ro

n
 I

n
d

e
x

Membrane Potential in Layer B1 (Hardware)

0.06 0.12 0.18 0.24 0.3

5

10

15

20

25

30

0

0.5

1

1.5

2

(a)

Time (s)

N
e
u

ro
n

 I
n

d
e
x

Raster Plot in Layer B1 (Hardware)

0.03 0.06 0.09 0.12 0.15 0.18 0.21 0.24 0.27 0.3

5

10

15

20

25

30

(b)

Figure 5.30: (a) Membrane potential in B1. (b) Spiking response in B1.

163

Guil
lau

me G
arr

ea
u

Time (s)

N
e
u
ro

n
 I
n
d
e
x

Synapses between Layers B
1
 and B

2
 (Hardware)

0.02 0.04 0.06 0.08 0.1

5

10

15

20

25

30

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

Figure 5.31: Synaptic response in B1-B2, which shows the response of the synapses

with an alpha profile, which inhibits neurons in layer B2.

164

Guil
lau

me G
arr

ea
u

Time (s)

N
e

u
ro

n
 I

n
d

e
x

Membrane Potential in Layer B2 (Hardware)

0.06 0.12 0.18 0.24 0.3

5

10

15

20

25

30

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

(a)

Time (s)

N
e
u

ro
n

 I
n

d
e
x

Raster Plot in Layer B2 (Hardware)

0.03 0.06 0.09 0.12 0.15 0.18 0.21 0.24 0.27 0.3

5

10

15

20

25

30

(b)

Figure 5.32: This figure shows the resulting dynamics of the 32 neurons in the

thalamocortical network. (a) Membrane potential in B2, which shows the response

of neurons in layer B2 from the integration of incoming inputs from A, B1 and

recurrent connections. (b) Spiking response in B2.

165

Guil
lau

me G
arr

ea
u

XEM3010 (partial TC) XEM3050 (full TC) XEM6010 (full TC)

Avail. Used (%,meas.) Avail. Used (%,est.) Avail. Used (%,est.)

Flip Flops 26,624 36 55296 80 184304 36

LUTs 26,624 32 55296 41 92152 55

Table 5.7: Estimation of the FPGA utilization ratio. The XEM3050 has a full TC

model using the simplest STDP implementation. The XEM6010 has a full TC model

using the most complex STDP implementation. These estimations are based on the

partial implementation reported here and the work reported in [41].

The utilisation ratio of the FPGA for the partial implementation of the model is

quite low (Tab. 5.6) and confirm that a compact implementation of the full model

on a single FPGA is possible. More particularly only 1/3 of the Flip Flops and of the

4 input Look-Up Tables (LUTs) are used. Cassidy et al. demonstrated very efficient

implementations of various STDP encoding targeting a XC3S1500 [41]. According to

their results, the most efficient implementation for an STDP synapse is 35 slice Flip

Flops and 14 4 input LUTs. Implementing 31 STDP synapses × 32 neurons (each B1

neurons projecting on every B2 neurons not in the same column) would require 34720

Flip Flops and 13888 4 input LUTs. Our current FPGA would have enough LUTs but

would lack of Flip Flops. By upgrading our Opal Kelly board from the XEM3010

(with XC3S1500 FPGA) to a XEM3050 (with XC3S4000), the full implementation of

the TC model using the simplest STDP implementation is possible and upgrading

to the more powerful XEM6010 would allow implementing the full TC model with

the more complex implementation of STDP. Tab. 5.7 gives the utilization estimation

of the partial and full TC model implementation with more or less complex STDP

implementations. Note that the utilization estimation of the most powerful FPGA

encourages the use of FPGA to implement even more complex models with more

columns, more neurons per columns and more connection between neurons.

5.3.5 Comparison of FPGA-based and hybrid analog/digital VLSI-

based hardware implementation of the TC model

During the SCANDLE project, partners at the University of Zurich implemented

the simplified version of the model by Coath et al. [53] using hybrid analog/digital

VLSI chips. The implementation is shown in Fig. 5.33. The set-up comprises 3

166

Guil
lau

me G
arr

ea
u

Sheik et al. Emergent auditory features in neuromorphic VLSI

key task of learning the temporal correlations in the time-varying
stimulus.

When neurons in population A spike, they produce Excita-
tory Post-Synaptic Potential (EPSPs) in the B populations. The
synapses from A to B1 neurons have slightly higher weights than
those that project to the B2 neurons. Therefore, in spite of being
driven by the same A activity, B1 neurons spike slightly before B2
ones. The inhibitory projections are used to ensure that B2 neurons
remain silent as long as the delayed projections are not potenti-
ated. When a stimulus, the (exposure stimulus (ES)), is presented
repeatedly to the network, the B1 neurons fire stereotypically, fol-
lowing the input from A neurons. The delayed feedback reaches
B2 neurons at different times after stimulus onset. The correla-
tion between this delayed feedback and the membrane potential
of B2 neurons causes the plastic synapses to potentiate or depress.
When a pre-synaptic spike reaches the post-synaptic neuron while
its membrane is close to its firing threshold, the synapse is poten-
tiated, otherwise the synapse is depressed. The details of the STDP
update rule are explained in Section 2.4.

Once the network has learned the ES, the output current of the
potentiated STDP synapses overcomes the inhibition reaching B2
neurons and makes them fire; but this is effective only when the
spikes at these synapses arrive before the inhibition takes effect.
This causes the B2 neurons to be active only when the right stimu-
lus ES is presented and therefore, the activity of B2 neurons can be
used as an effective readout. A simple spike count from B2 neurons
is sufficient to discriminate the ES from any other stimuli.

2.2. THE HARDWARE IMPLEMENTATION
The hardware implementation of the network model consists of
a real-time multi-chip setup, as shown in Figure 2. It consists of
three multi-neuron spiking chips and an AER mapper (Fasnacht
and Indiveri, 2011) connected in a serial loop. The multi-neuron

chips were fabricated using a standard AMS 0.35 µm CMOS
process. Two of the three multi-neuron chips (chip–1 and chip–2)
are identical and comprise an array of 128 linear integrate-and-fire
neurons (Indiveri et al., 2006) and 128 × 32 synaptic circuits. Each
neuron in the chip is connected to 2 excitatory, 2 inhibitory, and
28 excitatory plastic synapse circuits.

These chips are also equipped with a synapse multiplexer, which
enables a neuron to redirect synaptic currents from neighboring
rows onto itself. This allows the use of more synapses per neu-
ron, at the cost of using fewer neurons in total. Depending on the
multiplexer configuration it is possible to achieve combinations
of synapse and neuron numbers, ranging from 128 neurons each
with 32 synapses, to 1 neuron with 4096 synapses.

The third multi-neuron chip (chip–3) comprises a two-
dimensional array of 32-by-64 neurons. Each neuron in the chip
is connected to 3 synaptic circuits (2 excitatory, 1 inhibitory).

The excitatory and inhibitory synapse circuits on all three
chips, which implement their temporal dynamics, are based on the
current-mode Differential-Pair Integrator (DPI) circuit proposed
in Bartolozzi and Indiveri (2007). These synapses produce Excita-
tory Post-Synaptic Current (EPSCs) and Inhibitory Post-Synaptic
Current (IPSCs) respectively with realistic temporal dynamics on
the arrival of a pre-synaptic input spike.

The AER mapper allows the implementation of a wide range
of neural network topologies including multi-layer networks and
fully recurrent networks. The topology is defined by programming
a look-up table that the AER mapper reads to route spikes from
source neurons to destination synapses. The network topology of
Figure 1 was obtained by mapping the populations B1 and B2
onto chip–1 and chip–2 respectively. The synapse multiplexers on
chip–1 and chip–2 were configured to have 32 active neurons with
128 input synapses each, 112 of which are plastic. Each neuron in
B1 was connected to a neuron in B2 using three plastic synapses.

FIGURE 2 | Real-time multi-chip setup. The chips are mounted on
custom PCBs (AMDA) which supply bias voltages to the chips. These
biases can be configured via a USB interface connected to the PC
workstation. The AER events are handled by dedicated PCBs equipped

with FPGAs (AEX ; Fasnacht et al., 2008). These events are transmitted
from one board to the other over SATA cables in a serial loop. Events
can also be sent and monitored from a PC workstation via a USB
interface.

www.frontiersin.org February 2012 | Volume 6 | Article 17 | 3

Figure 5.33: The chips are mounted on custom PCBs (AMDA) which supply bias

voltages to the chips. These biases can be configured via a USB interface connected

to the PC workstation. The AER events are handled by dedicated PCBs equipped

with FPGAs (AEX, [86]). These events are transmitted from one board to the other

over SATA cables in a serial loop. Events can also be sent and monitored from a PC

workstation via a USB interface (from [207]).

hybrid analog/digital VLSI chips (each has a XC3E500 FPGA [86]), 1 AER mapper (1

XC3S1500 FPGA, a dedicated Serializer-Deserializer chip and a PC motherboard [85])

and a computer [207].

The cochlea and the neuron layer A are simulated on software on the computer.

Then the A spikes are sent through USB to chips 1 and 2 (implementing neuron layers

B1 and B2). As the current hardware does not directly support propagation delays

between neurons. Every projection in the model that requires a delay is passed

through an additional neuron, referred to as a delay neuron (Fig. 5.34). The third

chip implements the delay neuron layer, labeled C. The AER mapper and the chips

are connected to each other with SATA connections. Chips 1 and 2 are identical and

comprise of an array of 128 linear I&F neurons and 128×32 synaptic circuits. Each

neuron in the chip is connected to 2 excitatory, 2 inhibitory, and 28 excitatory plastic

synapse circuits. The third multi-neuron chip comprises of a two-dimensional array

of 32-by-64 neurons. Each neuron in the chip is connected to 3 synaptic circuits

(2 excitatory, 1 inhibitory). The results presented demonstrate, in hardware, how

an implementation of a recurrently connected spiking network is able to learn and

167

Guil
lau

me G
arr

ea
u

Sheik et al. Emergent auditory features in neuromorphic VLSI

The first problem, that of developing real-time interfaces
between the different AER chips to create complex multi-chip
systems, is currently being addressed by developing both custom
real-time hardware solutions (Gomez-Rodriguez et al., 2006; Fas-
nacht et al., 2008; Hofstaetter et al., 2010; Jin et al., 2010; Fasnacht
and Indiveri, 2011; Scholze et al., 2011), as well as software solu-
tions, and principled systematic methods for configuring network
structures and system parameters (Davison et al., 2008; Neftci et al.,
2011, 2012; Sheik et al., 2011).

The second problem is more fundamental. There is, in general,
agreement that cells in primary sensory areas are typically charac-
terized in terms of tuning to particular spectro-temporal features3.
It is not, however, clear what features are encoded, or what neural
mechanisms underlie those feature selectivities, or what devel-
opmental processes lead to the formation of those mechanisms.
Although pursuing these questions has led to remarkable advances
in understanding visual processing in the brain, a corresponding
understanding of auditory processing is still lacking.

Here we present a multi-chip neuromorphic system in which
silicon neurons (Indiveri et al., 2011) dynamically adapt and learn,
forming feature tuning properties that are derived from spectro-
temporal correlations in their input spike trains. The auditory
domain was chosen as the focus for the experiments, where the
importance of dynamic spectro-temporal patterns in the commu-
nication calls of mammals and birds has motivated the study of
cortical sensitivity to frequency sweeps (Godey et al., 2005; Atencio
et al., 2007; Ye et al., 2010) and dynamic ripple noises (Kowalski
et al., 1996; Calhoun and Schreiner, 1998; Depireux et al., 2001;

3As we are addressing auditory stimuli where the spatial dimension is tonotopic we
use the term“spectro-temporal” throughout. This is equivalent to“spatio-temporal”
in other modalities.

Atencio and Schreiner, 2010) as candidates for constituent features
which are sufficiently simple to be parametrized.

The multi-chip neuromorphic system implements a neural net-
work model of the auditory thalamo-cortical system similar to
that described in Coath et al. (2011). We demonstrate that this
system can learn, when repeatedly presented with a specific stimu-
lus, to exhibit a preferential response to such a stimulus. We argue
that the functional principles of this neural network, and of the
thalamo-cortical model (Coath et al., 2011) it is derived from, can
be used to produce spike-based feature extractors and that these
could form the basis of artificial sensory systems using real-time
analog neuromorphic VLSI.

2. MATERIALS AND METHODS
2.1. NETWORK MODEL
The structure of the neural network implemented in hardware is
shown in Figure 1. It comprises three populations of neurons, one
A population and two B populations (B1 and B2), arranged tono-
topically. The A neurons are implemented in software and provide
spikes that represent the input auditory signals.

Each A neuron projects to a B1 and a B2 neuron via excitatory
synapses, the B1 neurons project to B2 neurons via inhibitory
synapses, and the B1 neurons project, via the intermediate C
population, onto their neighboring B2 neurons. The C neurons
implement the propagation delays as described in Section 2.3
and the C to B2 projections are mediated by excitatory plas-
tic synapses which are the loci of the Spike Timing Dependent
Plasticity (STDP) as described in Section 2.4.

The propagation delays (that is the time it takes for a spike
to travel from B1 to reach B2) are proportional to the tono-
topic distance between pre-synaptic and post-synaptic neurons
(see Figure 4). The plastic synapses from C to B2 perform the

FIGURE 1 | Neural network diagram, with one column highlighted
and two neighboring ones in gray, included to indicate lateral
connections. Circles represent neurons from neuronal populations A, B1,
B1, and C. Auditory input signals are produced by the tonotopically
arranged neurons in populations A (implemented in software). The spikes

produced by A are projected onto both populations B1 and B2. Neurons in
B2 also receive inhibitory inputs from B1 neurons, as well as recurrent
excitation from B1 neurons of neighboring units via delay neurons C, and
STDP synapses. The output of the network is represented by the activity
of population B2.

Frontiers in Neuroscience | Neuromorphic Engineering February 2012 | Volume 6 | Article 17 | 2

Figure 5.34: Neural network diagram, with one column highlighted and two neigh-

boring ones in gray, included to indicate lateral connections. Circles represent neu-

rons from neuronal populations A, B1, B2, and C. The output of the network is

represented by the activity of population B2 (from [207]).

selectively respond to the dynamic spectro-temporal features of stimuli (Fig. 5.35).

The model relies on delays, which might arise from a number of processes including

axonal propagation and spike interaction via intermediate neurons. These results

were published in [54, 207]. It is the first report of hardware implementation of a

model of auditory pathway comprising a cochlea, processing and learning neural

networks.

As a comparison the implementation presented here has, on a single XC3S1500

FPGA, cochlea and neurons layers A, B1 and B2 but lacks of the STDP synapses and

the delays. It is much smaller in size, consumes less power and is more versatile

than the analog solution. Using the DACQ unit to provide data to the input of the

cochlea adds another small XC3S50AN FPGA and mimic the full auditory pathway

starting from the outer ear. Table 5.8 summarize the different characteristics of each

implementation. Note that the hybrid analog/digital hardware solution of Sheik et

al. was implemented with pre-existing hardware and was not a full custom analog

ASIC targeting this TC model implementation. An interesting comparison in the

future could entail the benchmarking between a custom analog ASIC and a custom

digital ASIC of the TC model.

168

Guil
lau

me G
arr

ea
u

Coath et al. Robust neuromorphic sound perception

FIGURE 10 | Representative Receiver Operating curves (ROC) for
the network with exposure stimulus “And.” ROC curves plot the
False Positive Rate (FPR or fall-out) against the True Positive Rate
(TPR–sometimes called recall) for all detection thresholds. For clarity
only four conditions are shown with two representing the best and
worst case. The solid black line represents the best case with no
added noise (σ = 0.00) and with the probe stimuli presented at the
normal rate (Rate = 100%). The broken blue line represents the
worst case across all conditions with the added noise at 45%
(σ = 0.45) and the presentation rate at twice the normal rate
(Rate = 200%).

implementation. A range of simple patterns give comparable
results in hardware and software.

An example of this approach using a recording of a biological
communication call is shown in Figure 13. The example chosen
is a recording of a call from a Weddle Seal; the cochleagraphic
representation of this call can be seen in Figure 12. These results
show the predicted connection patterns that would result from
training a network similar to that used in the hardware and sim-
ulation experiments. However the results require a wider range of
propagation rates between channels than can be achieved with the
current hardware.

Four results are illustrated in Figure 13, each using a differ-
ent value of ν, the time taken for activity to propagate between
adjacent channels. Figure 13A shows the result with the lowest
value for ν; note the emphasis on connections below the diago-
nal indicating down-sweeps and the distance from the diagonal
to the lower left maximum of the connectivity represents the
“chirp” FM rate of the successive downward sweeps in the seal
call. In contrast to A the predicted connectivity in C results from
an apparent up sweep. This apparent “up” activity in fact rep-
resents correlations between successive down-sweeps, that is the
relationship between the maxima of each down-sweep (at low
frequency) and the majority of the succeeding down-sweep at
higher frequency. B contains features visible in A and C and so
best characterizes the stimulus, while the longest value for ν in
Figure 13D captures few, if any, of the dynamic features of the
stimulus.

Table 1 | Combined table showing Area Under Curve (AUC) results for
all noise conditions and all presentation rates for four of the
Exposure Stimuli, “And”,“Of”,“Yes”,“Four.”

Rate

60% 100% 150% 200%

“And”
σ =
0.00% 0.97 0.97 0.95 0.95
0.15% 0.94 0.95 0.96 0.93
0.35% 0.92 0.92 0.92 0.90
0.45% 0.87 0.86 0.85 0.85
“Of”
σ =
0.00% 0.88 0.93 0.86 0.84
0.15% 0.88 0.88 0.87 0.84
0.35% 0.85 0.84 0.85 0.80
0.45% 0.78 0.76 0.81 0.78
“Yes”
σ =
0.00% 0.95 0.98 0.96 0.95
0.15% 0.95 0.95 0.95 0.94
0.35% 0.92 0.92 0.91 0.90
0.45% 0.88 0.85 0.86 0.81
“Four”
σ =
0.00% 0.96 0.97 0.97 0.95
0.15% 0.95 0.96 0.96 0.92
0.35% 0.90 0.94 0.93 0.88
0.45% 0.86 0.87 0.85 0.82

Example ROC curves for the “And” stimulus can be seen in Figure 10. Other
ROC and AUC results are comparable in all seven classes.

A B

C D

FIGURE 11 | Comparison between hardware result using a synthetic
stimulus pattern (A,B) and learning prediction using a real sound file
(C,D). Top row shows raster of synthetic exposure stimulus (A) and
resulting network connectivity after exposure (B) for hardware
network—these figures are taken from Sheik et al. (2011). Bottom row
shows spectrogram of comparable sound file (C) and the analytically
predicted pattern of connectivity (D) based on correlations in the stimulus
representation as described in section 2.1.5.

Frontiers in Neuroscience | Neuromorphic Engineering January 2014 | Volume 7 | Article 278 | 8

Figure 5.35: Comparison between hardware result using a synthetic stimulus pattern

(A,B) and learning prediction using a real sound file (C,D). Top row shows raster of

synthetic exposure stimulus (A) and resulting network connectivity after exposure

(B) for hardware network, these figures are taken from [207]. Bottom row shows

spectrogram of comparable sound file (C) and the analytically predicted pattern of

connectivity (D) based on correlations in the stimulus representation (from [54]).

Parameters Sheik et al., 2012 [207] This work

Technology Hybrid analog/digital VLSI FPGA

Number of FPGAs 4 1

Number of neurons per layers 128 32

Layers implemented in hardware B1, B2 and C cochlea, A, B1 and B2

Missing on hardware cochlea and A STDP synapses & delays

Development time long short

Power consumption high low

Scaling up hard easy

Table 5.8: Main characteristics of the 2 hardware implementations of the thalamo-

cortical model by Coath et al. [53].

169

Guil
lau

me G
arr

ea
u

5.4 Conclusion

In this chapter, a very compact partial hardware implementation of the auditory

pathway is presented, it is inspired from the cochlea of Liu et al. [156] and the model of

Coath et al. [53]. The hardware implementation was also tested on data recorded with

the DACQ unit and streamed in real-time to the Opal Kelly R© board. It was compared

with a hardware implementation on hybrid analog/digital VLSI chips, reported by

Sheik et al. [207] and Coath et al. [54]. The results of the hardware simulation in

Handel-C reported here, added to the work reported by Cassidy et al. in [38, 41] on

optimized STDP FPGA implementations and a 1 million neurons array on a single

FPGA, are a promising way to the compact and full implementation of an auditory

pathway model. The FPGA thalamocortical network has a number of applications,

including the development of more refined auditory pathway models. An FPGA

cochlea is particularly suited as a testbed for algorithms that involve concurrent

processing across multiple neuron processing channels. In addition, our DACQ

unit coupled with an additional FPGA platform (such as the Opal Kelly R© board)

provides an avenue for developing, simulating, and studying auditory processing in

more complicated, but realistic acoustic environments, that involve multiple sound

sources. The signal processing required to simulate such realistic environments is

computationally intensive and some of this preprocessing can be incorporated into

the FPGA platform enabling real-time studies of auditory processing under realistic

acoustic conditions. In future work, the aim is to create a sound surveillance unit that

can be used for surveying an emergency site remotely, e.g. after an earthquake, so

that the emergency response team can localise sources of sound and optimally utilize

available resources or for supplying information to assist medical triage. Another

application is the localization of a speaker during a conference or video conference.

170

Guil
lau

me G
arr

ea
u

171

Guil
lau

me G
arr

ea
u

172

Guil
lau

me G
arr

ea
u

Chapter 6

Multimodal Sensory Fusion

6.1 Introduction

The three previous chapters, describe and demonstrate the opportunities and/or

potential that the three ranges of frequencies (LF, HF and audio) offer when it comes

to localization of individuals, identification of acoustic object or individuals, gender

classification, actions/behavior recognitions and modes of transport classification.

These applications were demonstrated in simple scenarios, with one ‘sense’ used,

but it may happen that in a real-life environment one technique could be more

appropriate for a specific situation, and vice versa. Let us say that a building

requires a security system to keep the entrance safe. By daylight, a video camera

and a security guard may be the best solution; however, in a foggy day the camera

becomes ‘blind’, and an ultrasonic system or seismic sensors are more appropriate

to do the task. Another example is action recognition, where some actions could be

easily recognized using sound recordings and other motion detectors. That is why

a system that uses multimodal fusion of the data collected by one or many sensors

of different type and frequency range is necessary in order to obtain the optimum

solution.

Multimodal fusion is not something new for animals and humans, as one can

easily realise how we use several of our senses (vision, hearing, smell, taste, and

touch) to accomplish tasks such as identification of food, communication, memory

or moving in our environment (Pegna et al. [188], Gelder [61]). It is also quite

interesting to see the interaction between those senses in a way that may seem

strange. For example if you ask someone to identify the perfume or taste of a

liquid in a glass in which a colorant was previously added, the color tricks the

173

Guil
lau

me G
arr

ea
u

mind into thinking it is tasting a flavour that corresponds to the colour and not the

actual flavour of the liquid (Hoegg and Alba [122]). Another example is the famous

McGurk effect [169], where repeated utterances of the syllable [ba] had been dubbed

onto lip movements for [ga], where normal adults reported hearing [da] instead of

[ba]. This indicates an influence of vision upon speech perception. Furthermore,

in case of blindness, it is amazing to observe what the brain is capable of. It has

already been mentioned in Chapter 4 that blind people can use echolocation [67,224]

but blind-sight has also been reported for navigation without echolocation (Gelder

et al. [62]) and emotions recognition (Pegna et al. [189]). The brain imaging studies

showed that the amygdala, the emotional center of the brain, is strongly involved.

Multimodal fusion is a very timely topic, that is of great interest to the military

for the detection, location and identification of enemy vessels in water, underwater,

in the air or on ground (Hall and Llinas [113]). For example, Yang et al. presented

a system for target recognition and tracking based on radar and infrared image

sensors [249]. Another example is a neural model of a Barn Owl created for bimodal

(microphones and camera) orientation of a robotic system (Rucci et al. [197, 198]).

More recently some work has been done for emotion recognition using a bimodal

(faces and speech analysis, Datcu and Rothkrantz [59]) or trimodal (facial, vocal, and

gestural modalities, Wagner Datcu, Dragoş and Rothkrantz [235]) system, as well as

more advanced biometric-based identification process (Manchula and Arumugam

[164]). Finally the work by Hong et al. has similar goals to the work proposed

here [123], where evidential contextual information is represented, analysed and

merged to achieve a consensus in automatically inferring activities of daily living

for inhabitants in Smart Homes. In addition, Ekimov and Sabatier presented a

system where a bimodal system using a sonar and microphones to record footsteps

and show the time synchronization between events recorded by the different acoustic

sensors [74]. Another related field is the one of sensory substitution devices (SSD),

where one sense is used to compensate the loss of another one and a lot of work is

done with visual-to-auditory SSD (e.g. see Haigh et al. [112]).

In this chapter, a new real-time acoustic system for human action and behavior

recognition that integrates passive audio and active micro-Doppler sonar signatures

over multiple time scales is reported. The system uses the hardware presented in

Chapter 2 and its architecture is based on a six-layer convolutional neural network,

trained and evaluated using a dataset of 10 subjects performing seven different

174

Guil
lau

me G
arr

ea
u

behaviors. Probabilistic combination of system output through time for each modal-

ity separately yields 94% (passive audio) and 91% (micro-Doppler sonar) correct

behavior classification; probabilistic multimodal integration increases classification

performance to 98%. This study supports the efficacy of micro-Doppler sonar sys-

tems in characterizing human actions, which can then be efficiently classified using

Convolutional Neural Networks (ConvNets, LeCun et al. [146]). It also demonstrates

that the integration of multiple sources of acoustic information can significantly im-

prove system performance. This work has been published in [69].1

6.2 Bioinspired model literature

The system presented is capable of forming composite representations of behavior

exclusively through the use of information derived from sounds. Firstly, it is able

to identify and classify moving individuals in the environment by active sound

emission and the detection of micro-Doppler frequency shifts in sonar returns (as

shown in Chapter 4). Secondly, it can identify the behavioral consequences of

actions by passive detection and classification of sounds emitted by the individuals

themselves as they interact with their environment (e.g. foot-steps, hand-claps).

6.2.1 ConvNets: overview

The system architecture is based on a six-layer convolutional neural network. Con-

volutional Neural Networks or ConvNets [146] are based on biophysiological prin-

ciples discovered from the study of primary visual cortex and reported by Hubel

and Wiesel [125]. Additional support for a computational model of auditory ob-

ject processing based on spectro-temporal features is found in a study that em-

ployed Dynamic Causal Modeling (DCM) to evaluate the functional connectivity

between three different regions of the auditory system (Kumar et al. [143]). Regard-

ing micro-Doppler sonar processing, evidence suggests that the auditory system

in bats (Suga [220]), and dolphins (Cauwenberghs et al. [46]) is organized hierar-

chically. The ConvNets architecture is flexible and trainable, and the network is

able to learn selective and invariant features for classification. ConvNets have been

1The data collection was done at UCY in collaboration with Salvador Dura-Bernal. The data

processing was conducted in collaboration with Salvador Dura-Bernal.

175

Guil
lau

me G
arr

ea
u

pre-processing
(IFR)

ConvNets classifier
(6 layers)

data in probability
distribution

IFR
spectrogram

Figure 6.1: The ConvNets architecture is composed of 2 main stages: pre-processing

and classifier.

known for many years and have been reported working robustly for different ap-

plications, such as character recognition, time-series prediction and speech (LeCun

and Bengio [145]). This suggests that ConvNets may capture some of the principles

of auditory processing in cortex, such as the use of spectrotemporal features and a

hierarchical organization. Other similar bioinspired architectures have been used

for object (Barshan et al. [10]), movement (Giese and Poggio [105]) and face (Wi et

al. [243]) recognition. In addition the simplicity of the ConvNets architecture makes

it an ideal candidate for custom hardware implementations (Boser et al. [20]) and a

stream processor for ConvNets has also been built (Farabet et al. [84]).

Only a few previous studies have employed ConvNets to model auditory pro-

cessing [65,118,152,221] (a comparison of the results are given in Tab. 6.3) but so far

no study has used ConvNets for micro-Doppler sonar processing. Here, ConvNets

are used to model both passive sound (microphones data) and active sound (micro-

Doppler sonar data) processing systems with application to behavior classification.

6.2.2 ConvNets: stage by stage

The ConvNets architecture is composed of 2 main stages (pre-processing and classi-

fier) that are presented in details below. A block diagram of the ConvNets architec-

ture is given in Fig. 6.1.

6.2.2.1 Pre-processing

The first stage involves pre-processing of the raw data to compute a time-corrected in-

stantaneous frequency reassigned (IFR) spectrogram representation of each recorded

micro-Doppler signature; this is done using the method of Nelson (Fulopa and

Fitz [90]). The first step of the method is to mix the ultrasonic signal such that

176

Guil
lau

me G
arr

ea
u

change carrier
frequency

(40kHz down to 2.5kHz)

remove
initial beep

re-sampling
(time & frequency)

ultrasonic data ultrasonic & audio
data

ultrasonic & audio
data

data in
IFR

spectrogram

Figure 6.2: Pre-processing block diagram, first stage of the ConvNets.

the emitter carrier frequency is reduced from 40kHz to 2.5kHz. Thus, the frequency

range of the IFR for ultrasonic data is set from 1.85kHz to 3.15kHz, in order to capture

the frequency shifts generated by the moving body parts. In addition, the IFR chan-

nels carrying information corresponding to the ultrasonic carrier frequency (2.5kHz

after down-sampling) are set to zero, in order to emphasize the micro-Doppler fre-

quency shifts. For the passive acoustic data the IFR frequency range is set between

100Hz and 12kHz, which is contained in the human audible frequency range. To

eliminate a beep sound that signals the start of the trial, the IFR channels corre-

sponding to this frequency are set to zero. Other parameters of the IFR spectrogram

function are the number of channels, which determines the frequency resolution

(set to 50) and the bandwidth, which determines the number of samples or tempo-

ral resolution (set to 95). These parameter values are derived from the work done

in [70], presented in Chapter 4, and provided a good compromise between reducing

the size of the input and keeping enough information to maximize classification.

However, it was found that varying these values did not have a significant effect on

performance, as long as the rest of the ConvNet parameters were tuned afterwards

(see section 6.3.3). A block diagram of the pre-processing is given in Fig. 6.2.

6.2.2.2 Classifier

Once the calculation of the IFR spectrogram of the data is finished, the second

stage involves feeding these features into the ConvNets classifier. The second stage

is composed of several modules or building blocks that can be arranged in various

configurations according to the task requirements (for example the type of data audio

or ultrasonic). These building blocks are described below and the nomenclature and

definition are similar to the ones proposed by LeCun et al. in [146]. For each building

block the variable x denotes the input 3D array composed of a f 2D feature maps of

size a1 × a2; and y denotes the output 3D array composed of b f 2D feature maps of

177

Guil
lau

me G
arr

ea
u

average pooling
& subsampling

layer 1

filter bank
convolution &
local contrast
normalization

layer 2

average pooling
& subsampling

layer 3

layer 4

average pooling
& subsampling

layer 5

SVM classifier

layer 6

filter bank
convolution &
local contrast
normalization

IFR
spectrogram

probability
distribution

Figure 6.3: Classifier block diagram, second stage of the ConvNets.

size b1× b2. The ith feature map is denoted as xi, and a specific component at location

(j,k) within that feature map is denoted as xi jk. A block diagram of the classifier is

given in Fig. 6.3.

Filter Bank Convolution The first block is the Filter Bank Convolution and it is

denoted as n.F f1, f2
CTA where n is the number of filters; f1, f2 define the filter bandwidth;

and CTA represents the use of the convolution (C) operation, the tanh (T) non-

linearity and the absolute (A) value function. This module computes the convolution

of the input signal with a set of pre-learned filters and applies the tanh and absolute

function non-linearities to the output, according to the following equation 6.1:

y j =

∣∣∣∣∣∣ tanh
(∑

i

wi j ∗ xi

)∣∣∣∣∣∣ (6.1)

where tanh is the hyperbolic tangent non-linearity; ∗ is the 2D discrete convolu-

tion operator; wi j is a filter of size f 1× f 2 that connects input feature map xi to output

feature map y j. Taking into account the border effects, the size of the output feature

maps is: b1 = a1 − f1 + 1 and b2 = a2 − f2 + 1.

Local Contrast Normalization The second block is the Local Contrast Normal-

ization and it is denoted as Nr, where r is the radius of a Gaussian window. This

module performs local subtractive and divisive normalization enforcing competition

between the spatially surrounding units in the same feature map and between units

coding different features at the same spatial location. The subtractive normalization

operation for a given location xi jk is implemented as:

vi jk = xi jk −

∑
ipq

gpq ∗ xi, j+p,k+q (6.2)

178

Guil
lau

me G
arr

ea
u

vi jk is the subtractively normalized output and gpq a Gaussian window of radius

r, sum-normalized to 1. Divisive normalization then computes:

yi jk =
vi jk

max(c, σ jk)
, (6.3)

σ2
jk =

(∑
ipq

gpq ∗ v2
i, j+p,k+q

)
(6.4)

where yi jk is the divisively normalized output; c = mean(σ jk); and σ jk is the

weighted standard deviation of all features within the surrounding region of radius

r. The normalization operation is inspired by computational models of primary

visual cortex (Carandini and Heeger [36]).

Average Pooling and Subsampling The third block is the Average Pooling and

Subsampling and it is denoted as P f1, f2
s1,s2

, where f1, f2 are pooling sizes and s1, s2 are

the subsampling step in each dimension:

yi jk =
∑

p=1... f 1,q=1... f 2

xi, j+p,k+q

f1 ∗ f2
(6.5)

Each feature map yi is then spatially subsampled by a factor of s1 and s2 in the

horizontal and vertical dimension, respectively, such that b1 = a1/s1 and b2 = a2/s2.

Classifier The fourth and last block is the Classifier and it is the module that em-

ploys the output of the previous layer to train a classifier using supervised learning

and multinomial logistic regression or a linear support vector machine (SVM). In

the simulations the latter was employed (implemented using the publicly available

‘libsvm’ library, Chang and Lin [48]) and thus this top module is noted as SVM.

The SVM module is trained using labeled data from the layer immediately below,

and generates multi-class probability distributions over the trained classes using

pairwise coupling (Wu et al. [247]).

6.2.3 ConvNets: parameters values

6.2.3.1 Micro-Doppler data

The ConvNet processing the micro-Doppler data consists of six layers, three of which

are pooling layers, two convolution layers and one is the classifier; these are shown in

Fig. 6.4. Only the convolution and pooling modules constitute independent model

179

Guil
lau

me G
arr

ea
u

layers, whereas the normalization module is included within the convolution layer.

The size of the output of each layer, which takes into account the border effect of the

convolution operation (the pooling operation has no border effect), is also shown in

Fig. 6.4.

The configuration and parameters of the ConvNet were chosen as a trade-off

between maximizing classification performance and minimizing simulation time.

The parameters are shown in Tab. 6.1 and section 6.3.3 includes a robustness analysis

for most of them. Following the nomenclature presented above, a network with

selected parameters can be written in short form as:

P1,30
1,20 → 8.F10,6

CTA/N3 → P4,4
1,2 → 64.F4,4

CTA/N0 → P4,8
2,2 → SVM (6.6)

Any size of IFR spectrogram can be used as input to the ConvNets described

above and it will generate a fixed number of output probability distributions corre-

sponding to different time steps. Nevertheless a minimum number of spectrogram

frames of 530 for ultrasonic (mD) data (or 2.57s of input data) is required to gener-

ate an output probability distribution at the top layer given the parameters of the

network.

All receptive field sizes are shown in Tab. 6.1. These have been calculated taking

into account the large overlap in the receptive fields (e.g. 10/30 for Layer 1). The high

overlap in the network leads to a temporal step between top layer events of only 80

spectrogram frames (0.39 s of signal). Thus, for the example shown in Fig. 6.4, with

an input spectrogram of 1025 frames (5s of signal), the number of output probability

distributions at the top classifier layer should be 5/0.39 = 12.8, but the resulting

number of output events is only 11 due to the border effect of the convolution layers.

6.2.3.2 Auditory data

The ConvNet processing the auditory data has exactly the same parameters as the

one for the micro-Doppler data except for the first pooling layer, which is responsible

for the temporal sub-sampling of the IFR spectrogram. This is due to the fact that

the microphone data sampling frequency is higher (48kSps) than the one of the

micro-Doppler data (12,5kSps) and in addition, the recording times of both devices

were not always identical, the spectrograms corresponding to each modality have

different lengths. To synchronize the outputs of the mD and audio data, the ratio

of the length of the respective spectrograms was calculated and an average scaling

180

Guil
lau

me G
arr

ea
u

IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS 5

Fig. 3. Convolutional Neural Network for ultrasonic data classification. The output of each of the 6 layers in the network is shown schematically for an
input signal of 5 seconds. The input is first pre-processed by calculating its IFR spectrogram, which serves as input to the model. Along the left hand side,
the different learning stages and resulting filters are also represented schematically. The output of the model consists of a probability distribution over the
classes for each top layer time step, obtained using an SVM classifier.

filters to obtain the 8 output feature maps of Layer 2. Similarly,
the 64 Layer 4 filters of size f0 = 8 × f1 = 4 × f2 = 4
are learned from the output of Layer 3. In this case f0 = 8
because Layer 3 is composed of 8 feature maps. The output of
Layer 3 is then convolved with each of the 64 learned filters,
as described by Equation (1), yielding the 64 feature maps of
Layer 5.

To learn the linear SVM weights and coefficients of the top
classifier layer (Layer 6) we employ the libsvm library [?]. We
assume the ouput

✿✿✿✿✿
output

✿
of Layer 5, x, has dimensions n1 ×

n2 ×n3, where n1 the number of feature maps, n2 represents

the frequency dimension and n3 the temporal dimension. We
then compute the vector of data points for the SVM, where
each data point corresponds to one time step of x such that
there are n3 data points of length n1×n2. Given that learning
is supervised at this stage, we also feed the SVM training
function with a vector containing the class corresponding to
each of the n3 data points. We use the default cost value,
C = 1, and activate the probability estimate option in order
to allow for multi-class probability outputs during testing.

G. Combining probability distributions over time

Figure 6.4: Convolutional Neural Network for ultrasonic data classification. The

output of each of the six layers in the network is shown schematically for an input

signal of 5s. The input is first pre-processed by calculating its IFR spectrogram,

which serves as input to the model. Along the left-hand side, the different learning

stages and resulting filters are also represented schematically. The output of the

model consists of a probability distribution over the classes for each top layer time

step, obtained using an SVM classifier (from [69]).

181

Guil
lau

me G
arr

ea
u

Parameter Ultrasonic Auditory

Layer 1

Type Average pooling

Pooling size (freq), f1 1 1

Pooling size (time), f2 30 (0.15s) 72 (0.15s)

Step size (freq), s1 1 1

Step size (time), s2 20 (0.10s) 48 (0.10s)

Layer 2

Type Convolution and normalization

Number of filters, n 8

Filter size (freq), f1 10

Filter size (time), f2 6 (0.63s)

Normalization radius, r 3

Layer 3

Type Average pooling

Pooling size (freq), f1 4

Pooling size (time), f2 4 (0.92s)

Step size (freq), s1 1

Step size (time), s2 2 (0.19s)

Layer 4

Type Convolution and normalization

Number of filters, n 64

Filter size (freq), f1 4

Filter size (time), f2 4 (1.21s)

Normalization radius, r 0

Layer 5

Type Average pooling

Pooling size (freq), f1 4

Pooling size (time), f2 8 (2.57s)

Step size (freq), s1 2

Step size (time), s2 2 (0.39s)

Layer 6

Type SVM linear classifier (libsvm)

SVM options t = 0 (linear kernel), c = 1 (cost)

b=1 (probability estimates)

Table 6.1: Parameters of the ConvNet for ultrasonic (middle) and auditory (right)

data processing, [69].
182

Guil
lau

me G
arr

ea
u

factor of 2.4 was obtained. This value is used to modulate the pooling parameters

of the audio ConvNets such that the output of Layer 1 has the same length as for

the mD ConvNets. The resulting architecture and parameters of the ConvNets for

auditory data are described in Tab. 6.1 and indicated below using the short form

notation:

P1,72
1,48 → 8.F10,6

CTA/N3 → P4,4
1,2 → 64.F4,4

CTA/N0 → P4,8
2,2 → SVM (6.7)

6.2.3.3 Learning

Following the processing step, which is specific to each data type set, is the identical

step of learning. The collected dataset is randomly divided into a training set

containing 50% of the subjects and a testing set containing the remaining 50%. Thus,

each set is composed of 175 files of approximately 10s, corresponding to 7 actions

× 5 subjects × 5 trials. The random division into training and test sets is repeated

50 times and the results are averaged (cross-validation). K-means clustering (see

section 4.3.2.2) is used to calculate the filters of the convolution layers. First all 3D

patches of size f0 × f1 × f2 are computed from the previous layer output, where f0

is the number of features maps in the previous layer, f1 is the frequency dimension

of the spectrogram and f2 the time dimension of the spectrogram. These patches

are fed into the k-means clustering algorithm to obtain n cluster centres, which are

used as filters after having sum-normalized them to one. Given the sensitivity of the

k-means to initial starting conditions, a procedure for computing a refined starting

condition was implemented for improved solutions (Bradley and Fayyad [23]). The

learning process, similar to the one used in section 4.3.2.2 is illustrated in Fig. 6.4,

which includes examples of the filters learned by the mD processing ConvNets. In

this case, the eight Layer 2 filters of size f0 = 1 × f1 = 10 × f2 = 6 are learned from

the output of Layer 1. Note that f0 = 1 as the number of features maps in Layer 1

is just one, i.e. the pooled IFR spectrogram. The eight filters learned show similar

characteristics to the spectro-temporal receptive fields found in the primary auditory

cortex (Mesgarani et al. [170]). The output of Layer 1 is then convolved with each

of these filters to obtain the eight output feature maps of Layer 2. Similarly, the 64

Layer 4 filters of size f0 = 8 × f1 = 4 × f2 = 4 are learned from the output of Layer 3.

In this case f0 = 8 because Layer 3 is composed of eight feature maps. The output of

Layer 3 is then convolved with each of the 64 learned filters, as described by Eq. 6.1,

yielding the 64 feature maps of Layer 5.

183

Guil
lau

me G
arr

ea
u

The linear SVM coefficients of the Layer 6 classifier were learned using the ‘libsvm’

library. The output of Layer 5, x, has dimensions a f × a1 × a2, where a f is the

number of features maps, a1 represents the frequency dimension, and a2 the temporal

dimension. Then the vector of data points for the SVM are computed. Each data

point corresponds to one time step of x such that there are a2 data points of size a f ×a1.

As learning is supervised at this stage, a vector containing the class corresponding

to each of the a2 data points is fed to the SVM training function. The default cost

value, C = 1, is used and the probability estimate option is switched on to allow for

multi-class probability outputs during testing.

The previous steps are performed at every time step, therefore it is necessary

to combine the probability distributions over several time steps in order to have a

better estimation of the output probability distributions of the ConvNet. P(C|Xt)

is the class probability given Xt, the input feature vector to Layer 6 at time step

t. Assuming conditional independence of the input feature vectors given the class,

i.e. P(Xt,Xt−1|C) = P(Xt|C) ∗ P(Xt−1|C), and a uniform prior distribution, P(C) can be

written as:

P(C|Xt−nwin , ...,Xt) = α ∗
∏

d=1...nwin

P(C|Xt−d) (6.8)

where α is a normalizing constant that ensures
∑

k P(Ck|Xt−nwin , ...,Xt) = 1; nwin is

the window size and represents the number of probability distributions combined

over time (in Layer 6 time steps); and P(C|Xt−nwin , ...,Xt) represents the posterior

distribution over classes given the input feature vectors between time steps t − nwin

and t.

6.2.3.4 Multimodal integration

Now that P(C) is known for each one of the two modalities (audio and ultrasonic),

it is possible to use multimodal integration to test whether combining information

from both modalities improves the final results. The indices u and a are used to

specify ultrasonic or audio modality, respectively. Let Xt,u and Xt,a be the input

feature vectors to Layer 6 at time step t for the ConvNets.

Importantly, these outputs, P(C|Xt,u) and P(C|Xt,a), are aligned in time thanks to the

adaptation of the Layer 1 pooling parameters. Assuming conditional independence

of Xt,u and Xt,a given the class, and a flat prior probability, P(C), both sources of

184

Guil
lau

me G
arr

ea
u

information can be combined:

P(C|Xt,u,Xt,a) = α ∗ P(C|Xt,u) ∗ P(C|Xt,a) (6.9)

whereα is a normalizing constant that ensures
∑

k P(Ck|Xt,u,Xt,a) = 1. P(C|Xt,u,Xt,a)

represents the posterior probability over classes given the input feature vectors at

time step t for both modalities.

6.2.4 ConvNets: real-time

The final stage of the work is to implement the real-time processing. It is done by

employing a C application that was developed to continuously read data blocks of

fixed size from the mD DACQ unit and feed them to Matlab R©. In order not to

suffer any data loss while other operations are carried out in real time, a pipe is

used for the transmission. For each incoming block of data, the IFR spectrogram

is calculated first and then passed through the six-layer ConvNet that outputs a

probability distribution over the classes. An efficient implementation of the model

using Matlab’s Image Processing toolbox, ensures that the ConvNet requires just

40ms of computation time for each second of data. Additionally, the receptive field

size in the top layer was reduced from 8 to 4 such that the system only requires 1.8s

of data to provide the first output probability distribution, which is then updated

every 400ms. The real-time demo can be run in three different modes: (1) learning,

to record the IFR spectrogram of a micro-Doppler signal, (2) training, to use stored

IFR spectrograms for each action class to train the ConvNet model, and (3) testing, to

compute the output probability distribution over different action classes for a given

real-time input signal. A graphical user interface was developed to visualize the

input IFR spectrogram, the output of the model layers, and the output probability

distribution. The GUI allows the user to record new classes and train the model

parameters to newly recorded data. Training is done offline very quickly. This

allows users to experiment with different sets of actions. For example, training the

six-layer model with 60s recordings of four different actions takes approximately

three seconds. Figure 6.5 shows the GUI developed. The top-left panel allows the

user to choose whether to learn new categories, train the network with the current

data files or just test the model. The bottom-left panel indicates the labels of the

categories and the training files currently stored for each one. The middle panel

shows the output of Layers 1 to 5 of the ConvNet model. The right panel shows

185

Guil
lau

me G
arr

ea
u

the probability distribution over categories for the last 10 events (top), the current

probability distribution over categories (middle) and the input IFR spectrogram

(bottom). All panels were updated approximately every 500 ms.

6.3 Data collection

The model described in the previous section was tested on the dataset 2. The

dataset was preprocessed and then fed to the ConvNet architecture, the classification

performance and multimodal integration results are presented below.

6.3.1 Performance

The classification performance of the ConvNets for micro-Doppler and auditory data

as well as their combined performance after integration, are shown in Fig. 6.6.

Results are shown for each class individually and as an average over all classes.

The error bars indicate the standard deviation over 50 cross-validation repetitions.

Results are averaged over all classes and plotted as a function of the temporal

integration window, nwin, where a window of one time step corresponds to approx-

imately 2.57s and a window of 13 time steps corresponds to approximately 7.25s.

The average classification accuracy for mD data ranges between 83.4% (nwin = 1) and

91.6% (nwin = 13); for auditory data between 88.2% (nwin = 1) and 92.2% (nwin = 13);

and for multimodal integration between 95.3% (nwin = 1) and 97.6% (nwin = 13).

With respect to individual classes, assuming nwin = 13, the classification accuracy for

mD data is lowest for the “come here” condition (83.0%) and highest for the “fast

run” condition (97.4%); for auditory data the lowest accuracy is also for the “come

here” condition (78.2%) and the highest for the “slow walk” (97.1%) condition. The

multimodal integration results, for nwin = 13, show an accuracy above 90% for all

conditions, reaching almost perfect categorization for the “fast run” (99.1%), “fast

walk” (99.3%) and “slow walk” (100.0%) conditions. After a quick look at the plots,

it is interesting to note that the “come here” condition, which is the condition with

the lowest recognition accuracy, is greatly improved by multimodal integration and

the multimodal integration always improves the recognition performance.

186

Guil
lau

me G
arr

ea
u

Fi
gu

re
6.

5:
Th

e
to

p-
le

ft
pa

ne
li

s
fo

r
th

e
m

od
e

se
le

ct
io

n:
le

ar
n

ne
w

ca
te

go
ri

es
,t

ra
in

th
e

ne
tw

or
k

w
it

h
th

e
cu

rr
en

td
at

a
fil

es
or

te
st

th
e

m
od

el
.

Th
e

bo
tt

om
-l

ef
t

pa
ne

lg
iv

es
th

e
la

be
ls

of
th

e
ca

te
go

ri
es

an
d

th
e

tr
ai

ni
ng

fil
es

cu
rr

en
tl

y
st

or
ed

fo
r

ea
ch

on
e.

T
he

m
id

dl
e

pa
ne

ls
ho

w
s

th
e

ou
tp

ut
of

La
ye

rs
1

to
5

of
th

e
C

on
vN

et
m

od
el

.T
he

ri
gh

tp
an

el
sh

ow
s

th
e

pr
ob

ab
ili

ty
di

st
ri

bu
ti

on
ov

er
ca

te
go

ri
es

fo
r

th
e

la
st

10
ev

en
ts

(t
op

),

th
e

cu
rr

en
tp

ro
ba

bi
lit

y
di

st
ri

bu
ti

on
ov

er
ca

te
go

ri
es

(m
id

dl
e)

an
d

th
e

in
pu

tI
FR

sp
ec

tr
og

ra
m

(b
ot

to
m

).

187

Guil
lau

me G
arr

ea
u

Figure 6.6: Classification results for the ConvNet models of ultrasonic and auditory

processing, as well as for multimodal integration. Results are shown for the overall

average over classes and for all individual classes. The error bars indicate the

standard deviation over 50 cross-validation repetitions. The first top layer time step

represents 2.57s of data and each additional time step adds 0.39s of new data, such

that 13 time steps represent 7.25s.

188

Guil
lau

me G
arr

ea
u

6.3.2 Discussion of results

A more detailed study shows that the classification accuracy of the ConvNet models

always increases with the size of the cumulative probability window. For the ultra-

sonic data it ranges from 84% to 91%; for the auditory data, from 88% to 94%; and

for multimodal integration from 95% to 98%. This outperforms previous models

on the same (Chapter 4 and [70, 96]) and similar (Chapter 4 and [97, 135]) ultrasonic

data, and constitutes a novel benchmark for auditory and multimodal data. Further-

more, the fact that multimodal integration improves the results for all of the classes

suggests that the information contained in the ultrasonic and auditory modalities

complement each other. For example, for the classes with a great variability in the

sounds, i.e. the “come here” and “help me” classes, the ultrasonic data provides

strong cues that compensate the decreased performance of the auditory model. Sim-

ilarly, for classes such as “slow walking” where the ultrasonic performance is not

high, the auditory model can recognize the clear step sounds to compensate for this

and achieve an overall high multimodal performance. It is also possible that the high

classification results are partly due to the regularity in the step sounds and move-

ments of the conditions that were performed using the fixed speeds of the treadmill.

However, this does not seem to be the main contributing factor given that for the

“clapping” condition the rate and intervals of the claps were highly heterogeneous

amongst subjects and the classification performance is still very high. Interestingly,

the model copes well with actions with short periodic cycles, such as “fast running”,

and those with longer periodic cycles, such as “help me”. The hierarchical nature

of the model implies that features learned at different layers will have different time

scales. This suggests that for composite actions like the ultrasonic signature of “slow

walking”, lower level features may encode short components of the action, e.g. the

forward movement of the right leg, whereas the higher level features may encode

longer periods of the action, such as a complete walking cycle. Similar composite ac-

tions in the auditory domain include the “come here” and “help me” classes, which

can be hierarchically organized into phonemes and words, for example. Notably,

the ConvNet is also able to categorize actions with very short cycles, such as “clap-

ping” or the walking and running conditions in the auditory domain, suggesting

that the higher level features can also be composed of several periodic cycles of the

same action. The model results have been averaged over 50 different trials with

189

Guil
lau

me G
arr

ea
u

randomized subject subsets for cross-validation. This prevents model over-fitting

and allows the model to generalize well to new subjects. The error bars also indicate

that there is high variability across trials, particularly for the “come here” and “help

me” conditions. This is consistent with the experimental design, given that during

these two conditions the subjects were free to decide the frequency and duration of

the gestures performed and the accompanying utterances. Part of the variability is

also due to initialization of k-means clusters. By running 50 trials with the same

subject subset the average standard deviation due to k-means initialization was es-

timated as 1.2% for the ultrasonic modality and 3.3% for the auditory modality. For

the combination of probability distributions over time and the integration of both

modalities it is possible to use different methods as proposed here. For example,

the method of averaging the probability distributions was also investigated, which

yielded only slightly worse classification results than the introduced joint probabil-

ity distribution method: an average of 0.1% less for the combination of probability

distributions over time and 0.9% less for multimodal integration.

6.3.3 Robustness

To assess the robustness of the ConvNets model to variations in parameters the

classification accuracy was computed, with nwin = 1, for different values of these

parameters. The analysis was performed only on the mD data as this was the most

challenging modality and, thus, the ConvNets parameters were mainly tuned to

optimize its performance. The results reflect the average accuracy over 10 repetitions

of random subsets of subjects, 50% for training and 50% testing. The number of

repetitions was 10 instead of 50 in order to reduce the simulation time required to

test the 16 different parameters analysed. These parameters were: temporal and

frequency pooling size of Layers 1, 3 and 5; temporal and frequency step size of

Layers 1, 3 and 5; filter size (time and frequency) of Layers 2 and 4; and the number

of filters in Layers 2 and 4. Figure 6.7 shows the filled 2D contour plots of the

categorization accuracy as a function of the following parameters: temporal pooling

size of Layers 1, 3 and 5; temporal step size of Layers 1, 3 and 5; frequency pooling

size of Layers 1, 3 and 5; frequency step size of Layers 1, 3 and 5; filter size of Layers 2

and 4; and number of filters in Layers 2 and 4. The range of values for each parameter

was selected in order to provide a reasonable model output based on preliminary

190

Guil
lau

me G
arr

ea
u

results. Thus, the X and Y axes do not necessarily have a linear scale. The scale bar of

each graph indicates the minimum and maximum correct classification percentage,

which measures the model robustness to variations of those parameters. Out of the

16 parameters analyzed, 14 exhibit a maximum classification accuracy variation of

10–15% (typically between 70% and 80%), for the range of values tested. The two

exceptions are the Layer 3 frequency step size, s1, reaching an accuracy below 20%

for values above 4; and the Layer 3 step size, s2, reaching an accuracy below 60% for

values above 6.

The results shown in Fig. 6.7 provide an indication of the robustness of the model

to variations in the networks parameters. However, these are not intended to provide

an exhaustive robustness analysis, as they are limited in a number of ways. First, the

analysis was only performed for the ultrasonic model and not for the auditory model

or the multimodal integration. Second, the results only take into account a single top

layer time step, whereas the classification performance after integrating several time

steps is likely to yield improved robustness patterns. Finally, the parameter space

was analyzed by varying the values of two parameters at a time, while keeping the

rest of parameters fixed. Despite these constraints, the results suggest that the model

is robust to moderate variations of most of the architecture parameters (pooling size,

step size and number of features). Two exceptions are the temporal and frequency

step sizes in Layer 3 (subsampling), where higher values drastically reduce the

model performance. This is reasonable given that increasing the subsampling step

is directly proportional to the amount of information lost, such that doubling the

step size means losing 50% of the information. This can represent a considerable loss

given that the input to the model has already been significantly subsampled in the

frequency domain by the IFR spectrogram computation and in the temporal domain

by the Layer 1 operations.

6.3.4 Comparison with other classification algorithms

For comparison purposes, the same set of data was processed using a standard audi-

tory classification method: computing a set of features based on the Mel-frequency

cepstral coefficients (MFCC) of the signal, building a Gaussian Mixture Model

(GMM) for each class and using a Bayesian classifier. This methodology has proven

to be effective for sound-based speaker identification (Reynolds and Rose [193]) and

191

Guil
lau

me G
arr

ea
u

IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS 14

 C
orrect categorization (%

)!

 C
orrect categorization (%

)!

 C
orrect categorization (%

)!

 C
orrect categorization (%

)!

 C
orrect categorization (%

)!

 C
orrect categorization (%

)!

 C
orrect categorization (%

)!

 C
orrect categorization (%

)!

Fig. 5. Classification performance of the micro-Doppler model as a function of the ConvNet architecture parameters. The Figure contains 8 filled 2D contour
plots of the correct classification percentage as a function of the following parameters: pooling size of Layers 1, 3 and 5; step size of Layers 3 and 5; filter
size of Layers 2 and 4; and number of filters in Layers 2 and 4. The colour bar of each graph indicates the minimum and maximum correct classification
percentage, providing a measure of the model robustness to variations of those specific parameters.

Figure 6.7: Classification performance of the micro-Doppler model as a function

of the ConvNet architecture parameters. The scale bar of each graph indicates the

minimum and maximum correct classification percentage, providing a measure of

the model robustness to variations of those specific parameters.
192

Guil
lau

me G
arr

ea
u

Classification (%) Micro-Doppler Auditory

MFCC + GMM 68.9±2.9 86.0±1.8

IFR + ConvNet 83.4±3.1 88.2±3.1

Table 6.2: Classification performance of GMM versus ConvNet, [69].

walker identification (Kalgaonkar and Raf [133], Zhang and Andreou [255]) from

micro-Doppler signatures.

The parameters of the model were based on these previous studies, but were

optimized for this dataset by tuning them independently for each modality. The

frequency range of the MFCC was set to 1.5–3.5kHz (ultrasonic) and 0–15kHz (au-

ditory), and the number of filters in the MFCC filter-bank was set to 128 filters

(ultrasonic) and 512 filters (auditory). The remaining parameters, i.e. number of

dimensions in the MFCC feature vector (20, 40, 80 or 120), number of frames per

10s file (10, 20 or 30) and the number of mixtures in the GMM (5, 10 or 20) were

also tuned independently for each modality but resulted in the same optimum val-

ues for both, i.e. 80, 20 and 10, respectively. The 80-dimensional feature vector

was composed of the first 40 MFCC and the 40 first-order differential MFCC, in

order to include temporal information. Reducing the number of dimensions to 20

or 40 reduced the performance, but increasing it to 120, did not show significant im-

provements; this was consistent with previous studies [255]. The feature vector was

computed for each frame of the signal, where each 10s file had 20 frames, similar to

the Layer 5 output of the ConvNet. The parameters of the Gaussian mixture models

were initialized using the k-means clustering algorithm (with initial clusters from

centroids and variances of random partitions of the dataset) and learned using the

expectation-maximization (EM) algorithm. A simple Bayesian classifier was used

to compute the probability that the input frames from the test dataset belonged to

each of the seven classes. The training and testing datasets and the random subsets

of subjects were kept the same as for the ConvNet experiments. The classification

results are summarized in Tab. 6.2.

The classification performance was significantly lower for the ultrasonic data

(69%) and slightly lower for the auditory data (86%) as compared to the ConvNet

model. In both cases the same training and testing data subsets were employed and

the 10s files were segmented into the same number of frames or events before the

193

Guil
lau

me G
arr

ea
u

classification stage. This suggests the hierarchical structure of the ConvNet might

have advantages over the GMM in coping with the variability and generalizing to

the new data.

6.3.5 Comparison with other work

Despite the recent resurgence and success of ConvNets for object recognition, only

a few studies have applied this methodology to the auditory domain. Here, four of

these models were analyzed by comparing their input, architecture parameters and

learning methods as shown in Tab. 6.3. The model proposed in this work can be

applied to the classification of any sound, whereas previous models focus on speech

detection [221] or music classification [65,118,152]. All models employ some kind of

spectro-temporal representation of the sound signal, applied over frames of a fixed

length and typically with some overlap.

With respect to architecture, previous models have either two [118, 152, 221] or

three [65] feature convolution layers, and only one of them has separate pooling/sub-

sampling layers [65]. The rest of the models include a temporal subsampling step

within the feature convolution layer [118, 152, 221]. This means more information is

lost in the temporal dimension as compared to models, such as the one proposed

here, which average over neighboring units before subsampling and thus preserve

some of the contextual information. Additionally, average pooling and subsampling

of the frequency domain was performed in order to increase invariance to transfor-

mations and distortions in that domain. Previous learning algorithms include un-

supervised methods that learn features useful for classification, such as Predictive

Sparse Decomposition (PSD) [118] or Contrastive Divergence (CD) using an equiv-

alent Convolutional Deep Belief Network (CDBN) [65], and supervised methods,

such as Stochastic Gradient Descent (SGD [65, 152, 221]), that learn to associate the

top layer output to the different classes and refine the intermediate layer features.

In this work, k-means clustering was employed to learn the intermediate layer fea-

tures in an unsupervised manner, and supervised learning was subsequently used

to train a linear SVM that can assign the Layer 5 output to different classes. Regard-

ing ultrasonic processing, this is the first model, to the best of my knowledge, that

applies ConvNets to the classification of micro-Doppler signatures obtained using

an ultrasonic device.

194

Guil
lau

me G
arr

ea
u

M
od

el
In

pu
t

A
rc

hi
te

ct
ur

e
pa

ra
m

et
er

s
Le

ar
ni

ng

Sp
ee

ch
de

te
ct

io
n

[2
21

]
20

fe
at

ur
es

(l
og

SN
R

of
m

el
-f

re
qu

en
cy

ba
nd

s
pe

r
16

m
s-

fr
am

e
25
.F

20
,1
→

25
.F

1,
3
→

cl
as

si
fie

r
St

oc
ha

st
ic

G
ra

di
en

tD
es

ce
nt

M
us

ic
cl

as
si

fic
at

io
n

[1
52

]
13

fe
at

ur
es

(M
FC

C
s)

pe
r

19
0

fr
am

es
of

27
m

s
(5

0%
ov

er
la

p)
3.

F10
,1

3
1,

4
→

15
.F

10
,1

1,
4
→

65
.F

10
,1

1,
4
→

cl
as

si
fie

r
St

oc
ha

st
ic

G
ra

di
en

tD
es

ce
nt

M
us

ic
cl

as
si

fic
at

io
n

[1
18

]
96

fe
at

ur
es

(c
on

st
an

t-
Q

tr
an

sf
or

m
)

pe
r

46
m

s-
fr

am
e

(5
0%

ov
er

la
p)

N
r
→

51
2.

F96
,1

fr
am

e
or

4
×

12
8.

F24
,1

oc
ta

ve
→

SV
M

Pr
ed

ic
ti

ve
Sp

ar
se

D
ec

om
po

si
ti

on

M
us

ic
cl

as
si

fic
at

io
n

[6
5]

2
pa

ra
lle

ls
tr

ea
m

s:
12

ch
ro

m
a

fe
at

ur
es

(p
it

ch
)a

nd
12

ti
m

br
e

fe
at

ur
es

pe
r

be
at

2
×

10
0.

F12
,8

be
at

s
→

P1,
4

be
at

s
→

10
0.

F20
0,

8
ba

rs
→

P1,
4

ba
rs
→

lo
gi

st
ic

re
gr

es
si

on

U
ns

up
er

vi
se

d
fe

at
ur

e
le

ar
ni

ng
w

it
h

C
D

BN
an

d
St

oc
ha

st
ic

G
ra

di
en

tD
es

ce
nt

Ta
bl

e
6.

3:
C

om
pa

ri
so

n
of

ex
is

ti
ng

au
di

to
ry

m
od

el
s

ba
se

d
on

C
on

vN
et

s,
[6

9]
.

195

Guil
lau

me G
arr

ea
u

6.4 Conclusion

In this chapter, a mD sonar system, a data collection experiment and a ConvNet

model that processes mD and auditory data for human action and behavior classifi-

cation were presented. The biologically-inspired ConvNets model can use the mD

data for classification of human actions with high efficiency (91%) and can be cou-

pled with a parallel ConvNet architecture for passive sound recognition to further

improve its performance (98%). The model shows robustness to parameter varia-

tions and runs in real time, as demonstrated by the demo already implemented (Fig.

6.5). This is partly thanks to homogeneity of the network (weight sharing), which

also enhances the generalization ability of the model, even with limited training

data. These properties make the system suitable for a wide range of applications

in the context of security, surveillance and human behavior monitoring. The main

novelties of the proposed integrated system are, first, performing action classifica-

tion using mD sonar signals derived from a custom made compact hardware system

of low power consumption and cost. Second, the use of ConvNets to process mD

ultrasonic data based on an efficient computational implementation that can be run

in real time. And third, the probabilistic integration of two complementary sources

of acoustic information, ultrasonic and auditory, that significantly improves system

performance.

Future lines of research are intended to explore the applicability of the sensor to

real-life scenarios. In this sense, experiments will be developed to evaluate aspects

such as the distance limits of the system, particularly in outdoor conditions, and the

effects on accuracy of the angle of incidence between the ultrasonic module and the

target object. One key aspect here is the potential active control of the mD sonar

for interrogating the scene: unlike audio, which comes from all directions without

control, the sonar device can be activated intermittently and directed towards the

desired targets. Another interesting extension would be the implementation of the

whole model on a FPGA, in order to obtain a compact and fast system that can be

run in real time. A recent study demonstrates the feasibility of running ConvNets

on FPGAs and the excellent performance that can be achieved [84]. Although this

approach has been typically limited to vision systems, preliminary results from work

still in progress shows the successful implementation on FPGA of the proposed

ConvNet for ultrasonic and auditory action classification.

196

Guil
lau

me G
arr

ea
u

197

Guil
lau

me G
arr

ea
u

198

Guil
lau

me G
arr

ea
u

Chapter 7

Conclusions

7.1 Summary

Acoustic scene analysis is a vast field that traditionally focuses on sound recognition

in the audible range and on how the brain segregates and classifies the different

sound sources into meaningful objects. Previous research has mainly focused on the

audible range, since this is the most familiar one to humans.

In this thesis, a system that can collect data from three different frequency ranges

(defined as LF or seismic range, audible range and HF or ultrasonic range) was

developed.

The first step towards the development of this new system was to recognize

and solve the issue of the synchronization of the different data sources. A unique

solution was designed and implemented. The proposed solution (FM SYNC unit)

relies on VHF radio operated in the 72.5MHz band to achieve < 1µs resolution in

synchronization, as well as functionality over distances exceeding 100m. The system

is capable of synchronized signal sampling with an accuracy of 1µs, whilst correcting

the sampling clock frequency every 2µs.

Furthermore, a flexible bioinspired data acquisition unit (DACQ unit) is pre-

sented. The hardware platform is a custom distributed wireless data acquisition

system for passive and active multimodal sensing. In addition, it is achieved with a

low-cost, low-power compact solution, encouraging a full hardware implementation

targeting real-time application of bioinspired models.

A network of FM SYNC unit and DACQ unit or units have been used to im-

plement a sand scorpion-based neural network model for person localization using

seismic waves. The system was used also to classify individuals, gender, actions or

199

Guil
lau

me G
arr

ea
u

mode of transport using the reflected ultrasonic (with the UFTRX unit) wave and

time-frequency representations of mD signatures. Thanks to an additional FPGA

on the DACQ system, a model of the auditory pathway (basilar membrane and

thalamocortical network) was partially implemented. The compact implementation

processes in real-time the data collected by the DACQ unit and streamed to the

second FPGA before displaying the results on a laptop screen. Finally, it was shown

by using the acoustic data collection hardware and multimodal sensors (audio and

ultrasonic), multimodal sensory fusion can be performed, in order to increase the

performance in recognition and classification tasks. This was demonstrated using

another bioinspired model: the ConvNet. The model shows robustness to parameter

variations and runs in real time. This is partly thanks to homogeneity of the network

(weight sharing), which also enhances the generalization ability of the model, even

with limited training data.

Overall, the highly synchronized multimodal acoustic data acquisition hardware

system is unique and has the potential to support a wide range of applications

in the context of robotics, security, surveillance, human behavior monitoring and

even gaming. Some examples of potential applications include: systems that can

transparently and non-invasively provide situation awareness (warning signals),

for example at busy road crossings or policing bicycle lanes; smart motion detec-

tion for buildings (PIR substitute for light control or bell ring); detecting movement

in a smoke-filled room where cameras are unsuitable (firemen and rescue teams);

surveillance unit for surveying an emergency site; recognition of normal/abnormal

behavior in a crowd (for example panic on a platform train or stadium); monitor-

ing of elderly at home; human-computer interface for simulator/video games; or

autonomous video conference system. The proposed system allows compact and

full hardware implementation of bioinspired models, which can be used for the de-

velopment of more refined bioinspired models and increasing our knowledge and

understanding of the brain. Last, it is a custom made compact hardware system

characterized by low power consumption and cost.

200

Guil
lau

me G
arr

ea
u

7.2 Future work

As an extension of the work presented here, the acoustic data acquisition system

developed seems an excellent base to study our auditory sense and implement

bioinspired models. This will allow a better understanding of how the auditory

pathway in the human brain works and will permit the creation of more precise

models. Some examples of applications that can be envisioned, in the next years,

based on the developed auditory pathway hardware implementation are: identi-

fication of the number sound sources, multiple source localization, acoustic object

or soundscape recognition, and speech recognition. This would be possible with a

low cost and energy efficient system. On a longer time scale, a chip implanted in

the brain could contribute towards ‘fixing’ brain areas by replacing damaged ones

with an electronic implementation of their functions. Furthermore, other kind of

models can be implemented on the hardware developed, such as those simulating

sand scorpion localization ability or bats and dolphins with the use of ultrasonic

waves. With a shift of the ‘useful’ frequency span of the ultrasonic return into the

audible frequency window, we expect that the auditory pathway model can process

the ultrasonic data with the same performance than the regular audible sounds. An-

other way of improving recognition is the creation of a skeleton model of the human

body in order to generate artificial mD signatures and match artificial data with real

data.

7.3 Contributions

1. The design of a unique multimodal data acquisition hardware system with

high synchronization under the µs was presented and its performance demon-

strated. It is composed of 2 type of units: the FM SYNC unit that provides

the FM synchronization reference and the DACQ units that collect data. A

network of 1 FM SYNC unit and multiple DACQ units was used in various

experiments.

2. The demonstration of various bioinspired methods of sound processing for

analysing the environment, i.e. acoustic object detection, location of a person

walking, action or mode of transport recognition, gender classification and

individuals identification. Those methods where inspired from sand scorpions

201

Guil
lau

me G
arr

ea
u

(low frequency domain), bats and dolphins (ultrasonic frequency domain) and

the human auditory pathway (audio frequency domain).

3. The sensory fusion of active and passive acoustic data for action recognition in

realtime using convolutional networks (ConvNets).

4. The implementation in realtime using FPGA and digital hardware of a partial

model of the auditory pathway starting from the outer ear with a cochlea and

partial thalamocortical network.

202

Guil
lau

me G
arr

ea
u

203

Guil
lau

me G
arr

ea
u

204

Guil
lau

me G
arr

ea
u

Bibliography

[1] S. Adams, T. Wennekers, G. Bugmann, S. Denham, and P. Culverhouse, “Appli-
cation of arachnid prey localisation theory for a robot sensorimotor controller,”
Neurocomputing, vol. 74, no. 17, pp. 3335–3342, October 2011.

[2] AGIGATECH, “Non-volatile RAM,” AGIGA TECH company, March 2014.
[Online]. Available: http://www.agigatech.com/nvram.php

[3] T. W. Anderson, “Estimation for autoregressive moving average models in the
time and frequency domains,” The Annals of Statistics, vol. 5, no. 5, pp. 842–865,
September 1977.

[4] A. G. Andreou, R. C. Meitzler, K. Strohbehn, and K. A. Boahen, “Analog
VLSI neuromorphic image acquisition and pre-processing systems,” Neural
Networks, vol. 8, no. 7-8, pp. 1323–1347, July 1995.

[5] A. Andreou, “Energy and information processing in biological and silicon
sensory systems,” in Proceedings of the 7th International Conference on Microelec-
tronics for Neural, Fuzzy and Bio-Inspired Systems (MicroNeuro), July 1999, pp.
21–25.

[6] T. C. Andringa and M. E. Niessen, “Real-world sound recognition: A recipe,”
Proceedings of 1st Workshop on Learning Semantics in Audio Signals (LSAS), pp.
106–118, 2006.

[7] A. auf der Maur, “Limits of exposure to airborne ultrasound,” Annual American
Conference Industrial Hygiene, vol. 12, pp. 177–181, 1985.

[8] A. Balleri, K. Chetty, and K. Woodbridge, “Classification of personnel tar-
gets by acoustic micro-Doppler signatures,” The Institution of Engineering and
Technology (IET) Radar, Sonar Navigation, vol. 5, no. 9, pp. 943–951, December
2011.

[9] A. Balleri, K. Woodbridge, and K. Chetty, “Frequency-agile non-coherent ul-
trasound radar for collection of micro-Doppler signatures,” in Proceedings of
the IEEE Radar Conference (RADAR), 2011, pp. 45–48.

[10] B. Barshan, B. Ayrulu, and S. Utete, “Neural network-based target differenti-
ation using sonar for robotics applications,” IEEE Transactions on Robotics and
Automation, vol. 16, no. 4, pp. 435–442, August 2000.

[11] K. Behrendt and K. Fodero, “The perfect time: An examination of time synchro-
nization techniques,” in Proceedings of DistribuTECH, Schweitzer Engineering
Laboratories, Inc. PennWell, February 2006.

205

Guil
lau

me G
arr

ea
u

[12] E. Benetos, M. Lagrange, and S. Dixon, “Characterisation of acoustic scenes
using a temporally-constrained shift-invariant model,” in Proceedings of the
International Conference on Digital Audio Effects, September 2012.

[13] V. Benichoux and R. Brette, “A functional spiking model of the ITD processing
pathway of the barn owl,” BioMed Central (BMC) Neuroscience, vol. 12, no.
Suppl 1, p. 20, 2011.

[14] V. Benichoux, M. Stimberg, B. Fontaine, and R. Brette, “A unifying theory of
ITD-based sound azimuth localization at the behavioral and neural levels,”
BioMed Central (BMC) Neuroscience, vol. 14, no. Suppl 1, pp. 39–40, 2013.

[15] L. Bi, O. Tsimhoni, and Y. Liu, “Using image-based metrics to model pedes-
trian detection performance with night-vision systems,” IEEE Transactions on
Intelligent Transportation Systems, vol. 10, no. 1, pp. 155–164, March 2009.

[16] Z. Bian, F. Chudak, W. G. Macready, L. Clark, and F. Gaitan, “Experimental
determination of ramsey numbers with quantum annealing,” arXiv, Quantum
Physics, vol. 1842, no. 2, p. 6, January 2012.

[17] B. Boashash, Time Frequency Signal Analysis and Processing, B. Boashash, Ed.
Elsevier, 2003.

[18] T. M. Böhm, L. Shestopalova, A. Bendixen, A. G. Andreou, J. Georgiou, G. Gar-
reau, P. Pouliquen, A. Cassidy, S. L. Denham, and I. Winkler, “The role of
perceived source location in auditory stream segregation: Separation affects
sound organization, common fate does not,” Learning & Perception, vol. 5, no. 2,
pp. 55–72, June 2013.

[19] T.-L. Books, Speed and Power (Understanding Computers), 2nd ed., ser. Under-
standing Computers. Time Life Education, February 1990.

[20] B. Boser, E. Sackinger, J. Bromley, Y. Le Cun, and L. Jackel, “An analog neural
network processor with programmable topology,” IEEE Journal of Solid State
Circuits, vol. 26, no. 12, pp. 2017–2025, 1991.

[21] M. Bousbia-Salah, A. Redjati, M. Fezari, and M. Bettayeb, “An ultrasonic
navigation system for blind people,” in Proceedings of the IEEE International
Conference on Signal Processing and Communications (ICSPC), November 2007,
pp. 1003–1006.

[22] J. M. Brader, W. Senn, and S. Fusi, “Learning real-world stimuli in a neural
network with spike-driven synaptic dynamics,” Neural Computation, vol. 19,
no. 11, pp. 2881–2912, November 2007.

[23] P. S. Bradley and U. M. Fayyad, “Refining initial points for k-means clustering,”
in Proceedings of the 15th International Conference on Machine Learning (ICML).
Morgan Kaufmann Publishers Inc., 1998, pp. 91–99.

[24] A. S. Bregman, Auditory Scene Analysis: The Perceptual Organization of Sound.
MIT Press, 1990.

[25] R. Brette and D. Goodman, “Brian: a simple and flexible simulator for spiking
neural networks,” The Neuromorphic Engineer, July 2009.

206

Guil
lau

me G
arr

ea
u

[26] R. Brette, M. Rudolph, T. Carnevale, M. Hines, D. Beeman, J. M. Bower,
M. Diesmann, A. Morrison, P. H. Goodman, A. P. Davison, S. El Boustani,
and A. Destexhe, “Simulation of networks of spiking neurons: A review of
tools and strategies,” Journal of Computational Neuroscience, vol. 23, no. 3, pp.
349–398, November 2007.

[27] G. J. Brown and D. Wang, “Separation of speech by computational auditory
scene analysis,” in Speech Enhancement, ser. Signals and communication Tech-
nology, S. M. J. Benesty and J. Chen, Eds. Springer Berlin Heidelberg, 2005,
ch. 16, pp. 371–402.

[28] P. Brownell and R. D. Farley, “Detection of vibrations in sand by tarsal sense
organs of the nocturnal scorpion Paruroctonus Mesaensis,” Journal of Compar-
ative Physiology A: Neuroethology, Sensory, Neural, and Behavioral Physiology, vol.
131, no. 1, pp. 23–30, 1979.

[29] ——, “Orientation to vibrations in sand by the nocturnal scorpion Paruroc-
tonus Mesaensis: Mechanism of target localization,” Journal of Comparative
Physiology A: Neuroethology, Sensory, Neural, and Behavioral Physiology, vol. 131,
no. 1, pp. 31–38, 1979.

[30] ——, “Prey-localizing behaviour of the nocturnal desert scorpion Paruroc-
tonus Mesaensis: Orientation to substrate vibrations,” Animal Behaviour,
vol. 27, pp. 185–193, February 1979.

[31] P. H. Brownell and J. L. van Hemmen, “Vibration sensitivity and a computa-
tional theory for prey-localizing behavior in sand scorpions,” American Zoolo-
gist, vol. 41, no. 5, pp. 1229–1240, 2001.

[32] J. Bryan and Y. Kim, “Classification of human activities on UWB radar using
a support vector machine,” in Proceedings of the IEEE Antennas and Propagation
Society International Symposium (APSURSI), July 2010, pp. 1–4.

[33] C. Cai, W. Liu, J. Fu, and L. Lu, “Empirical mode decomposition of micro-
Doppler signature,” in Proceedings of the IEEE International Radar Conference,
May 2005, pp. 895–899.

[34] C. Cai, W. Liu, J. Fu, and Y. Lu, “Radar micro-Doppler signature analysis with
hht,” in IEEE Transactions on Aerospace and Electronic Systems, vol. 46, no. 2,
April 2010, pp. 929–938.

[35] N. Caporale and Y. Dan, “Spike timing-dependent plasticity: A hebbian learn-
ing rule,” Annual Review of Neuroscience, vol. 31, no. 1, pp. 25–46, February
2008.

[36] M. Carandini and D. J. Heeger, “Normalization as a canonical neural compu-
tation,” Nature Reviews Neuroscience, vol. 13, no. 1, pp. 51–62, January 2012.

[37] A. Cassidy and A. Andreou, “Dynamical digital silicon neurons,” in Proceed-
ings of the IEEE Biomedical Circuits and Systems Conference (BioCAS), November
2008, pp. 289–292.

[38] A. Cassidy, A. Andreou, and J. Georgiou, “Design of a one million neuron
single fpga neuromorphic system for real-time multimodal scene analysis,” in

207

Guil
lau

me G
arr

ea
u

45th Annual Conference on Information Sciences and Systems (CISS), March 2011,
pp. 1–6.

[39] A. Cassidy, S. Denham, P. Kanold, and A. Andreou, “Fpga based silicon spik-
ing neural array,” in Proceedings of the IEEE Biomedical Circuits and Systems
Conference (BIOCAS), November 2007, pp. 75–78.

[40] A. Cassidy, Z. Zhang, and A. Andreou, “Neuromorphic interconnects using
ultra wideband radio,” in Proceedings of the IEEE Biomedical Circuits and Systems
Conference (BioCAS), November 2008, pp. 297–300.

[41] A. Cassidy, A. G. Andreou, and J. Georgiou, “A combinational digital logic
approach to stdp.” in Proceedings of the IEEE International Symposium on Circuits
and Systems (ISCAS), May 2011, pp. 673–676.

[42] A. Cassidy, T. Murray, A. G. Andreou, and J. Georgiou, “Evaluating on-chip
interconnects for low operating frequency silicon neuron arrays.” in Proceed-
ings of the IEEE International Symposium on Circuits and Systems (ISCAS), May
2011, pp. 2437–2440.

[43] A. S. Cassidy, J. Georgiou, and A. G. Andreou, “Design of silicon brains in the
nano-CMOS era: Spiking neurons, learning synapses and neural architecture
optimization,” Neural Networks, vol. 45, pp. 4–26, April 2013.

[44] G. Cauwenberghs, M. Stanacevic, and G. Zweig, “Blind broadband source
localization and separation in miniature sensor arrays,” in Proceedings of the
IEEE International Symposium on Circuits and Systems (ISCAS), vol. 3, May 2001,
pp. 193–196.

[45] G. Cauwenberghs, A. Andreou, J. West, M. Stanacevic, A. Celik, P. Julian,
T. Teixeira, C. Diehl, and L. Riddle, “A miniature low-power intelligent sensor
node for persistent acoustic surveillance,” Proceedings of SPIE 5796, Unattended
Ground Sensor Technologies and Applications, vol. 7, pp. 294–305, June 2005.

[46] G. Cauwenberghs, R. T. Edwards, Y. Deng, R. Genov, and D. Lemonds, “Neu-
romorphic processor for real-time biosonar object detection,” in Proceedings
of the IEEE International Conference on Acoustics, Speech, and Signal Processing
(ICASSP), vol. 4, May 2002, pp. 3984–3987.

[47] V. Chan, S.-C. Liu, and A. van Schaik, “AER EAR: A matched silicon cochlea
pair with address event representation interface,” IEEE Transactions on Circuits
and Systems I: Regular Papers, vol. 54, no. 1, pp. 48–59, 2007.

[48] C.-C. Chang and C.-J. Lin, “LIBSVM: A library for support vector machines,”
ACM Transactions on Intelligent Systems and Technology, vol. 2, pp. 27:1–27:27,
2011.

[49] M. Chen, X. Wang, and X. Li, “Coordinating processor and main memory for
efficient server power control,” in Proceedings of the International Conference on
Supercomputing (ICS), 2011, pp. 130–140.

[50] L. Chittka and A. Brockmann, “Perception space - the final frontier,” PLoS
Biology, vol. 3, no. 4, pp. 0564–0568, April 2005.

208

Guil
lau

me G
arr

ea
u

[51] C. T. Clarke, L. Qiang, H. Peremans, and A. Hernandez, “FPGA implementa-
tion of a neuromimetic cochlea for a bionic bat head,” in Proceedings of the 14th
International Conference on Field Programmable Logic and Application (FPL), ser.
Lecture Notes in Computer Science. Springer, 2004, vol. 3203, pp. 1073–1075.

[52] M. Coath, E. Balaguer-Ballester, S. Denham, and M. Denham, “The linearity
of emergent spectro-temporal receptive fields in a model of auditory cortex,”
Biosystems, vol. 94, no. 1–2, pp. 60–67, October 2008.

[53] M. Coath, R. Mill, S. Denham, and T. Wennekers, “Emergent feature sensitivity
in a model of the auditory thalamocortical system,” in From Brains to Systems,
ser. Advances in Experimental Medicine and Biology, C. Hernández, R. Sanz,
J. Gómez-Ramirez, L. S. Smith, A. Hussain, A. Chella, and I. Aleksander, Eds.
Springer New York, 2011, vol. 718, pp. 7–17.

[54] M. Coath, S. Sheik, E. Chicca, G. Indiveri, S. Denham, and T. Wennekers, “A
robust sound perception model suitable for neuromorphic implementation,”
Frontiers in Neuroscience, vol. 7, no. 278, January 2014.

[55] L. Cochrane, “Mark products 4.5 hz 3-component l15b sensor,” Data sheet,
March 2014. [Online]. Available: http://seismicnet.com/geophone/index.html\
#L15B

[56] J. Colgate and N. Hogan, “Robust control of dynamically interacting systems.”
International Journal of Control, vol. 48, no. 1, pp. 65–88, 1988.

[57] F. C. Commission, “Radio spectrum allocations 101,” Federal Communications
Commission, April 2013.

[58] W. C. Cummings and P. O. Thompson, “Underwater sounds from the blue
whale, Balaenoptera Musculus,” Journal of the Acoustical Society of America,
vol. 50, no. 4b, pp. 1193–1198, May 1971.

[59] D. Datcu and L. J. M. Rothkrantz, “Emotion recognition using bimodal data
fusion,” in Proceedings of the 12th International Conference on Computer Systems
and Technologies, ser. CompSysTech ’11. New York, NY, USA: ACM, 2011, pp.
122–128.

[60] K. David and A. Flach, “CAR-2-X and pedestrian safety,” IEEE Vehicular Tech-
nology Magazine, vol. 5, no. 1, pp. 70–76, March 2010.

[61] B. de Gelder, “Uncanny sight in the blind,” Scientific American, vol. 302, pp.
60–65, May 2010.

[62] B. de Gelder, M. Tamietto, G. van Boxtel, R. Goebel, A. Sahraie, J. van den
Stock, B. M. Stienen, L. Weiskrantz, and A. Pegna, “Intact navigation skills
after bilateral loss of striate cortex,” Current Biology, vol. 18, no. 24, pp. 1128–
1129, December 2008.

[63] R. Dennard, F. Gaensslen, V. Rideout, E. Bassous, and A. LeBlanc, “Design of
ion-implanted MOSFET’s with very small physical dimensions,” IEEE Journal
of Solid-State Circuits, vol. 9, no. 5, pp. 256–268, 1974.

209

Guil
lau

me G
arr

ea
u

[64] A. Dibazar, A. Bangalore, H. ook Park, S. George, W. Yamada, and T. Berger,
“Hardware implementation of dynamic synapse neural networks for acoustic
sound recognition,” in Proceedings of the International Joint Conference on Neural
Networks (IJCNN), 2006, pp. 2015–2022.

[65] S. Dieleman, P. Brakel, and B. Schrauwen, “Audio-based music classification
with a pretrained convolutional network,” in Proceedings of the International
Symposium on Music Information Retrieval (ISMIR), A. Klapuri and C. Leider,
Eds. University of Miami, 2011, pp. 669–674.

[66] C. J. Doppler, “Ueber das farbige licht der doppelsterne und einiger anderer
gestirne des himmels [on the coloured light of the binary stars and some other
stars of the heavens],” in Proceedings of the Royal Bohemian Society of Sciences,
vol. 2, no. 5, 1842, pp. 465–482.

[67] G. Downey, “Getting around by sound: Human echolocation,” Plos, June
2011. [Online]. Available: http://blogs.plos.org/neuroanthropology/2011/06/
14/getting-around-by-sound-human-echolocation/

[68] I. E. Dror, F. L. Florer, D. Rios, and M. Zagaeski, “Using artificial bat sonar
neural networks for complex pattern recognition: Recognizing faces and the
speed of a moving target.” Biological Cybernetics, vol. 74, pp. 331–338, April
1996.

[69] S. Dura-Bernal, G. Garreau, A. G. Andreou, J. Georgiou, S. Denham, and
T. Wennekers, “Multimodal integration of micro-Doppler sonar and auditory
signals for behavior classification with convolutional networks,” International
Journal of Neural Systems, vol. 23, no. 5, October 2013.

[70] S. Dura-Bernal, G. Garreau, C. Andreou, A. Andreou, J. Georgiou, T. Wennek-
ers, and S. Denham, “Human action categorization using ultrasound micro-
Doppler signatures,” in Proceedings of the Second international conference on Hu-
man Behavior Unterstanding, ser. HBU’11. Berlin, Heidelberg: Springer-Verlag,
September 2011, pp. 18–28.

[71] D. Eadline, “Preparing for the revolution : Dual-core technology
for HPC clusters,” SYS-CON Media, March 2006. [Online]. Available:
http://linux.sys-con.com/node/193382

[72] T. Economist, “Rambo Rambus (Intel and Rambus develop new faster dynamic
random-access memory computer chip).” The Economist (US), February 1997.
[Online]. Available: http://www.highbeam.com/doc/1G1-19104133.html

[73] A. Ekimov and J. M. Sabatier, “Vibration and sound signatures of human
footsteps in buildings,” Journal of the Acoustical Society of America, vol. 120,
no. 2, pp. 762–768, June 2006.

[74] ——, “Human motion analyses using footstep ultrasound and Doppler ultra-
sound,” Journal of the Acoustical Society of America, vol. 123, no. 6, pp. 149–154,
May 2008.

[75] T. Ellis, “Multi-camera video surveillance,” in Proceedings of the 36th Annual
International Carnahan Conference on Security Technology, 2002, pp. 228–233.

210

Guil
lau

me G
arr

ea
u

[76] J. Elson, “Time synchronization in wireless sensor networks,” Ph.D. disserta-
tion, University of California, Los Angeles, May 2003.

[77] J. Elson, L. Girod, and D. Estrin, “Fine-grained network time synchronization
using reference broadcasts,” ACM Special Interest Group on Operating Systems
(SIGOPS) Operating Systems Review (OSR), vol. 36, no. SI, pp. 147–163, Decem-
ber 2002.

[78] P. Emma and E. Kursun, “Opportunities and challenges for 3D systems and
their design,” IEEE Design & Test of Computers, vol. 26, no. 5, pp. 6–14, October
2009.

[79] P. C. Engelbrecht, T. Makany, K. Meadmore, R. Dudley, and I. E. Dror, “It is not
worth learning if it is not remembered: designing e-learning to increase mem-
ory,” in Proceedings of the International Technology, Education and Development
Conference (INTED), March 2007.

[80] H. Esmaeilzadeh, E. Blem, R. St. Amant, K. Sankaralingam, and D. Burger,
“Power challenges may end the multicore era,” Communications of the Asso-
ciation for Computing Machinery (ACM), vol. 56, no. 2, pp. 93–102, February
2013.

[81] F. Fahy and J. Walker, Fundamentals of Noise and Vibration, E. . F. Spon, Ed.
Routledge, 1998.

[82] D. P. Fairchild and R. M. Narayanan, “Micro-Doppler radar classification of
human motions under various training scenarios,” in Proceedings of Society of
Photo-Optical Instrumentation Engineers (SPIE), Active and Passive Signatures IV,
vol. 8734, May 2013.

[83] Y. Fang, K. Yamada, Y. Ninomiya, B. Horn, and I. Masaki, “A shape-
independent method for pedestrian detection with far-infrared images,” IEEE
Transactions on Vehicular Technology, vol. 53, no. 6, pp. 1679–1697, November
2004.

[84] C. Farabet, Y. LeCun, K. Kavukcuoglu, E. Culurciello, B. Martini, P. Aksel-
rod, and S. Talay, “Large-scale FPGA-based convolutional networks,” in Scal-
ing up Machine Learning: Parallel and Distributed Approaches, R. Bekkerman,
M. Bilenko, and J. Langford, Eds. Cambridge University Press, 2011, pp.
399–419.

[85] D. Fasnacht and G. Indiveri, “A PCI based high-fanout AER mapper with 2
GiB RAM look-up table, 0.8µs latency and 66MHz output event-rate,” in 45th
Annual Conference on Information Sciences and Systems (CISS), Johns Hopkins
University, March 2011, pp. 1–6.

[86] D. Fasnacht, A. Whatley, and G. Indiveri, “A serial communication infrastruc-
ture for multi-chip address event systems,” in Proceedings of the IEEE Interna-
tional Symposium on Circuits and Systems (ISCAS), 2008, pp. 648–651.

[87] R. Fish, “The future of computers - part 1: Multicore and the
memory wall,” EDN Network, November 2011. [Online]. Avail-
able: http://www.edn.com/design/systems-design/4368705/The-future-of-
computers--Part-1-Multicore-and-the-Memory-Wall

211

Guil
lau

me G
arr

ea
u

[88] ——, “Future of computing - part 3: The ilp wall
and pipelines,” EDN Network, February 2012. [Online].
Available: http://www.edn.com/design/systems-design/4368983/Future-of-
computing--Part-3-The-ILP-Wall-and-pipelines

[89] W. Fox, “Computers and the internet,” June 2011. [Online]. Available:
http://www.futuretimeline.net/subject/computers-internet.htm

[90] S. A. Fulopa and K. Fitz, “Algorithms for computing the time-corrected in-
stantaneous frequency (reassigned) spectrogram, with applications,” Journal
of The Acoustical Society of America, vol. 119, pp. 360–71, 2006.

[91] S. Fusi, “Spike-driven synaptic plasticity for learning correlated patterns of
mean firing rates,” Reviews in the Neurosciences, vol. 14, no. 1-2, pp. 73–84,
January 2003.

[92] S. Fusi, M. Annunziato, D. Badoni, A. Salamon, and D. J. Amit, “Spike-driven
synaptic plasticity: Theory, simulation, VLSI implementation,” Neural Compu-
tation, vol. 12, no. 10, pp. 2227–2258, October 2000.

[93] I. Gambin, I. Grech, O. Casha, E. Gatt, and J. Micallef, “Digital cochlea model
implementation using Xilinx XC3S500E Spartan-3E FPGA,” in Proceedings of the
17th IEEE International Conference on Electronics, Circuits, and Systems (ICECS),
2010, pp. 946–949.

[94] T. Gandhi and M. Trivedi, “Pedestrian protection systems: Issues, survey, and
challenges,” IEEE Transactions on Intelligent Transportation Systems, vol. 8, no. 3,
pp. 413–430, September 2007.

[95] J. Ganssle, “Will Moore’s Law doom multicore?” March 2013. [Online]. Avail-
able: http://www.embedded.com/electrical-engineer-community/industry-
blog/4409679/1/Multicore-challenges

[96] G. Garreau, C. Andreou, A. Andreou, J. Georgiou, S. Dura-Bernal, T. Wen-
nekers, and S. Denham, “Gait-based person and gender recognition using
micro-Doppler signatures,” in IEEE Biomedical Circuits and Systems Conference
(BioCAS), November 2011, pp. 444–447.

[97] G. Garreau, N. Nicolaou, C. Andreou, C. D’Urbal, G. Stuarts, and J. Georgiou,
“Computationally efficient classification of human computationally efficient
classification of human transport mode using micro-Doppler signatures,” in
45th Annual Conference on Information Sciences and Systems (CISS), March 2011,
pp. 1–4.

[98] G. Garreau, N. Nicolaou, and J. Georgiou, “Individual classification through
autoregressive modelling of micro-Doppler signatures,” in IEEE Biomedical
Circuits and Systems Conference (BioCAS), November 2012, pp. 312–315.

[99] P. Garrett, “descripwords,” August 2013. [Online]. Available: http:
//www.msgarrettonline.com/Descriptive Words.html

[100] C. Gearhart, A. Herold, B. Self, C. Birdsong, and L. Slivovsky, “Use of ultra-
sonic sensors in the development of an electronic travel aid,” in IEEE Sensors
Applications Symposium (SAS), February 2009, pp. 275–280.

212

Guil
lau

me G
arr

ea
u

[101] J. Geisheimer, W. Marshall, and E. Greneker, “A continuous-wave (CW) radar
for gait analysis,” in Proceedings of the Conference Record of the 35th Asilomar
Conference on Signals, Systems and Computers, vol. 1, November 2001, pp. 834–
838.

[102] J. Georgiou and C. Toumazou, “A 126 µW cochlear chip for a totally im-
plantable system,” IEEE Journal of Solid-State Circuits, vol. 40, no. 2, pp. 430–443,
February 2005.

[103] J. Georgiou, P. Pouliquen, A. Cassidy, G. Garreau, C. Andreou, G. Stuarts,
C. d’Urbal, A. G. Andreou, S. Denham, T. Wennekers, R. Mill, I. Winkler,
T. Bohm, O. Szalardy, G. M. Klump, S. Jones, and A. Bendixen, “A multimodal-
corpus data collection system for cognitive acoustic scene analysis,” in 45th
Annual Conference on Information Sciences and Systems (CISS), March 2011, pp.
1–6.

[104] D. Giannoulis, E. Benetos, D. Stowell, M. Rossignol, M. Lagrange, and
M. Plumbley, “Detection and classification of acoustic scenes and events,”
IEEE AASP Challenges, 2012.

[105] M. A. Giese and T. Poggio, “Neural mechanisms for the recognition of bio-
logical movements,” Nature Reviews Neuroscience, vol. 4, no. 3, pp. 179–192,
2003.

[106] D. H. Goldberg, A. P. Sripati, and A. G. Andreou, “Energy efficiency in a
channel model for the spiking axon,” Neurocomputing, vol. 52-54, pp. 39–44,
2003.

[107] D. F. Goodman and R. Brette, “The Brian simulator,” Frontiers in Neuroscience,
vol. 3, no. 2, pp. 192–197, July 2009.

[108] D. F. M. Goodman and R. Brette, “Brian: a simulator for spiking neural net-
works in python,” Frontiers in Neuroinformatics, vol. 2, pp. 1–10, November
2008.

[109] C. Goutte, “Lag space estimation in time series modelling,” in Proceedings
of the IEEE International Conference on Acoustics, Speech, and Signal Processing
(ICASSP), vol. 4, April 1997, pp. 3313–3316.

[110] L. Grossman, “2045: The year man becomes immortal,” TIME Magazine,
February 2011. [Online]. Available: http://content.time.com/time/magazine/
article/0,9171,2048299-1,00.html

[111] G. Grubb, A. Zelinsky, L. Nilsson, and M. Rilbe, “3D vision sensing for im-
proved pedestrian safety,” in Proceedings of the IEEE Intelligent Vehicles Sympo-
sium, june 2004, pp. 19–24.

[112] A. Haigh, D. J. Brown, P. Meijer, and M. J. Proulx, “How well do you see what
you hear? the acuity of visual-to-auditory sensory substitution,” Frontiers in
Psychology, vol. 4, no. 330, June 2013.

[113] D. Hall and J. Llinas, “An introduction to multisensor data fusion,” Proceedings
of the IEEE, vol. 85, no. 1, pp. 6–23, 1997.

213

Guil
lau

me G
arr

ea
u

[114] Q. Hardy, “Google buys a quantum computer,” The New York Times, May
2013. [Online]. Available: http://bits.blogs.nytimes.com/2013/05/16/google-
buys-a-quantum-computer/? r=0

[115] S. Harput and A. Bozkurt, “Ultrasonic phased array device for acoustic imag-
ing in air,” IEEE Sensors Journal, vol. 8, no. 11, pp. 1755–1762, November 2008.

[116] B. Hatheway, “The doppler effect,” June 2011. [Online]. Available: http://
www.windows2universe.org/earth/Atmosphere/tornado/doppler effect.html

[117] M. Hazas and A. Ward, “A novel broadband ultrasonic location system,” in
Proceedings of the ACM International Joint Conference on Pervasive and Ubiquitous
Computing (UbiComp), vol. 2498, September 2002, pp. 264–280.

[118] M. Henaff, K. Jarrett, K. Kavukcuoglu, and Y. LeCun, “Unsupervised learn-
ing of sparse features for scalable audio classification,” in Proceedings of In-
ternational Symposium on Music Information Retrieval (ISMIR), A. Klapuri and
C. Leider, Eds. University of Miami, 2011, pp. 681–686.

[119] M. Herman, C. Komanoff, J. Orcutt, and D. Perry, The Electronic Bicycle
Blueprint, 2nd ed., C. Komanoff, Ed. Bicycling Magazine, January 1999.

[120] M. N. Hill, The Sea, Volume 1: Physical Oceanography, ser. The Sea: Ideas and
Observations on Progress in the Study of the Seas. M. N. Hill, January 1962.

[121] S. A. Hiroshi Sawada, Ryo Mukai and S. Makino, “Estimating the number of
sources using independent component analysis,” in Proceedings of the Acoustical
Science and Technology, vol. 26, no. 5, May 2005, pp. 450–452.

[122] J. Hoegg and J. W. Alba, “Taste perception: More than meets the tongue,”
Journal of Consumer Research, vol. 33, no. 4, pp. 490–498, March 2007.

[123] X. Hong, C. Nugent, M. Mulvenna, S. McClean, B. Scotney, and S. Devlin,
“Evidential fusion of sensor data for activity recognition in smart homes,”
Pervasive and Mobile Computing, vol. 5, no. 3, pp. 236 – 252, 2009.

[124] W. Huang, M. R. Stant, K. Sankaranarayanan, R. J. Ribando, and K. Skadron,
“Many-core design from a thermal perspective,” in Proceedings of the 45th
Annual Design Automation Conference (DAC), June 2008, pp. 746–749.

[125] D. H. Hubel and T. N. Wiesel, “Receptive fields and functional architecture in
two nonstriate visual areas (18 and 19) of the cat,” Journal of Neurophysiology,
vol. 28, pp. 229–289, 1965.

[126] B. Hughes, “Active artificial echolocation and the nonvisual perception of
aperture passability,” Human Movement Science, vol. 20, no. 4-5, pp. 371–400,
2001.

[127] R. Hughes and M. Boshier, “Quantum computation roadmap,” Los
Alamos National Security, LLC, April 2004. [Online]. Available: http:
//qist.lanl.gov/qcomp map.shtml

[128] A. J. Ijspeert, “Central pattern generators for locomotion control in animals
and robots: a review,” Neural Networks, vol. 21, no. 4, pp. 642–653, March 2008.

214

Guil
lau

me G
arr

ea
u

[129] N. Instrument, NI PXI-6682 Series User Manual, National Instrument, March
2009.

[130] Intel, “Intel,” Intel press release. [Online]. Available: http://www.intel.com/
content/www/us/en/homepage.html

[131] A. Iqbal, U. Farooq, H. Mahmood, and M. Asad, “A low cost artificial vision
system for visually impaired people,” in Proceedings of the 2nd International
Conference on Computer and Electrical Engineering (ICCEE), vol. 2, December
2009, pp. 474–479.

[132] P. Julian, A. Andreou, L. Riddle, S. Shamma, D. Goldberg, and G. Cauwen-
berghs, “A comparative study of sound localization algorithms for energy
aware sensor network nodes,” IEEE Transactions on Circuits and Systems I: Reg-
ular Papers, vol. 51, no. 4, pp. 640–648, April 2004.

[133] K. Kalgaonkar and B. Raj, “Acoustic Doppler sonar for gait recognition,” in
Proceedings of the IEEE Conference on Advanced Video and Signal Based Surveillance
(AVSS), September 2007, pp. 27–32.

[134] ——, “Recognizing talking faces from acoustic Doppler reflections,” in Proceed-
ings of the 8th IEEE International Conference on Automatic Face Gesture Recognition,
September 2008, pp. 1–6.

[135] ——, “One-handed gesture recognition using ultrasonic Doppler sonar,” in
Proceedings of the IEEE International Conference on Acoustics, Speech and Signal
Processing (ICASSP), April 2009, pp. 1889–1892.

[136] E. R. Kandel, J. H. Schwartz, and T. M. Jessell, Principles of Neural Science,
4th ed. McGraw-Hill Medical, Jul. 2000.

[137] D. Kim, “Neural network mechanism for the orientation behavior of sand
scorpions towards prey,” IEEE Transactions on Neural Networks, vol. 17, no. 4,
pp. 1070–1076, July 2006.

[138] ——, “Tactile information processing for the orientation behaviour of sand
scorpions,” in Sensors: Focus on Tactile Force and Stress Sensors, J. G. Rocha and
S. Lanceros-Mendez, Eds. InTech, December 2008, ch. 24, pp. 431–444.

[139] Y. Kim and H. Ling, “Human activity classification based on micro-Doppler
signatures using an artificial neural network,” in Proceedings of the IEEE Anten-
nas and Propagation Society International Symposium, July 2008, pp. 1–4.

[140] ——, “Human activity classification based on micro-Doppler signatures us-
ing a support vector machine,” in IEEE Transactions on Geoscience and Remote
Sensing, vol. 47, no. 5, May 2009, pp. 1328–1337.

[141] H. Kiragi and A. Ersak, “Object recognition and localization with ultrasonic
scanning,” in Proceedings of the 7th Mediterranean Electrotechnical Conference,
vol. 3, April 1994, pp. 1185–1188.

[142] R. Krishnamurthy, “High-performance energy-efficient reconfigurable
accelerators/co-processors for tera-scale multi-core microprocessors,” in Pro-
ceedings of the 6th international conference on Reconfigurable Computing: Architec-
tures, Tools and Applications (ARC), ser. Lecture Notes in Computer Science, vol.
5992, 2010, p. 1.

215

Guil
lau

me G
arr

ea
u

[143] S. Kumar, K. E. Stephan, J. D. Warren, K. J. Friston, and T. D. Griffiths, “Hierar-
chical processing of auditory objects in humans,” PLoS Computational Biology,
vol. 3, no. 6, 2007.

[144] P. Leather, D. Beale, and L. Sullivan, “Noise, psychosocial stress and their
interaction in the workplace,” Journal of Environmental Psychology, vol. 23, pp.
213–222, 2003.

[145] Y. LeCun and Y. Bengio, “Convolutional networks for images, speech and
time-series,” in The Handbook of Brain Theory and Neural Networks, M. A. Arbib,
Ed. MIT Press, 1995, pp. 255–258.

[146] Y. LeCun, K. Kavukcuoglu, and C. Farabet, “Convolutional networks and
applications in vision,” in Proceedings of the IEEE International Symposium on
Circuits and Systems (ISCAS). IEEE, 2010, pp. 253–256.

[147] H. Lee, J. W. Park, and A. Helal, “Estimation of indoor physical activity level
based on footstep vibration signal measured by MEMS accelerometer in smart
home environments,” in Proceedings of the 2nd international conference on Mobile
entity localization and tracking in GPS-less environments, ser. MELT’09, June 2009,
pp. 148–162.

[148] P. Lennie, “The cost of cortical computation,” Current Biology, vol. 13, no. 6,
pp. 493–497, March 2003.

[149] M. Leong, C. T. Jin, and P. H. Leong, “An FPGA-based electronic cochlea,”
EURASIP Journal on Advances in Signal Processing, vol. 2003, no. 7, pp. 629–638,
2003.

[150] J. Lewis, “Microphone specifications explained,” Analog Devices, Application
Note 1112, 2011.

[151] ——, “Microphone specifications explained,” Analog Devices, Analog Dia-
logue 46, May 2012.

[152] T. L. H. Li, A. B. Chan, and A. H. W. Chun, “Automatic musical pattern feature
extraction using convolutional neural network,” in Proceedings of the Interna-
tional MultiConference of Engineers and Computer Scientists, S. I. Ao, O. Castillo,
C. Douglas, D. D. Feng, and J.-A. Lee, Eds., vol. I. Newswood Limited, 2010,
pp. 546–550.

[153] L. Liang, P. Mihail, R. Marylin, S. Marjorie, C. Paul, and Y. Tarik, “Automatic
fall detection based on Doppler radar motion signature,” in 5th International
Conference on Pervasive Computing Technologies for Healthcare, February 2011.

[154] S.-C. Liu and T. Delbruck, “Neuromorphic sensory systems,” Current Opinion
in Neurobiology, vol. 20, no. 3, pp. 288–295, June 2010.

[155] S.-C. Liu, A. Van Schaik, B. Minch, and T. Delbruck, “Event-based 64-channel
binaural silicon cochlea with Q enhancement mechanisms,” in Proceedings of
the IEEE International Symposium on Circuits and Systems (ISCAS), 2010, pp.
2027–2030.

216

Guil
lau

me G
arr

ea
u

[156] W. Liu, A. Andreou, and J. Goldstein, M.H., “Voiced-speech representation by
an analog silicon model of the auditory periphery,” IEEE Transactions on Neural
Networks, vol. 3, no. 3, pp. 477–487, 1992.

[157] M. Lombardi, “Microsecond accuracy at multiple sites: is it possible without
GPS?” IEEE Instrumentation Measurement Magazine, vol. 15, no. 5, pp. 14–21,
October 2012.

[158] V. T. Ltd., “TomiTM technology implementations,” Venray Technology Ltd.
press release, 2014. [Online]. Available: http://www.venraytechnology.com

[159] R. Lyon and C. Mead, “An analog electronic cochlea,” IEEE Transactions on
Acoustics, Speech and Signal Processing, vol. 36, no. 7, pp. 1119–1134, 1988.

[160] ——, “A CMOS VLSI cochlea,” in Proceedings of the International Conference on
Acoustics, Speech, and Signal Processing (ICASSP), vol. 4, 1988, pp. 2172–2175.

[161] B. Lyonnet, C. Ioana, and M. Amin, “Human gait classification using micro-
Doppler time-frequency signal representations,” in Proceedings of the IEEE
Radar Conference, November 2010, pp. 915–919.

[162] G. Ma, S.-B. Park, A. Ioffe, S. Müller-Schneiders, and A. Kummert, “A real-
time detection algorithm for vision-based pedestrian protection.” International
Journal of Information Acquisition, vol. 5, no. 1, pp. 11 –30, March 2008.

[163] J. B. MacQueen, “Some methods for classification and analysis of multivariate
observations,” in Proceedings of the 5th Berkeley Symposium on Mathematical
Statistics and Probability, vol. 1. University of California Press, 1967, pp.
281–297.

[164] A. Manchula and S. Arumugam, “Robust facial data recognition using multi-
modal fusion features in multi-variant face acquisition,” International Journal
of Computer Applications, vol. 64, no. 11, pp. 8–11, February 2013, published by
Foundation of Computer Science, New York, USA.

[165] R. H. Mannell, “The brainstem auditory nuclei and centrifugal pathways,”
SPH307 Lectures Note - Auditory Physiology and Psychoacoustics,
Macquerie University, Sidney, Australia, 2002. [Online]. Available:
http://www.zainea.com/The Brainstem Auditory Nuclei.htm

[166] J. Marpaung, Y. Zhang, and L. Johnson, “An implementation of an ultrasonic
device for the visually impaired,” in Proceedings of the IEEE Region 5 Conference,
April 2006, pp. 287–290.

[167] M. Marwick and A. Andreou, “Retinomorphic system design in three dimen-
sional SOI-CMOS,” in Proceedings of the IEEE International Symposium on Circuits
and Systems (ISCAS), 2006, pp. 1655–1658.

[168] F. Masson, D. Puschini, P. Julian, P. Crocce, L. Arlenghi, P. Mandolesi, and
A. Andreou, “Hybrid sensor network and fusion algorithm for sound source
localization,” in Proceedings of the IEEE International Symposium on Circuits and
Systems (ISCAS), vol. 3, May 2005, pp. 2763–2766.

[169] H. McGurk and J. MacDonald, “Hearing lips and seeing voices,” Nature, vol.
264, pp. 746–748, December 1976.

217

Guil
lau

me G
arr

ea
u

[170] N. Mesgarani, S. V. David, J. B. Fritz, and S. A. Shamma, “Phoneme representa-
tion and classification in primary auditory cortex,” The Journal of the Acoustical
Society of America, vol. 123, no. 2, pp. 899–909, 2008.

[171] H. Meuer, E. Strohmaier, J. Dongarra, and H. Simon, “Top 500
supercomputers,” Top500, November 2013. [Online]. Available: http:
//www.top500.org/lists/2013/11/

[172] Z. Miao, W. Ji, Y. Xu, and J. Yang, “A novel ultrasonic sensing based human face
recognition,” in Proceedings of the IEEE Ultrasonics Symposium (IUS), November
2008, pp. 1873–1876.

[173] D. Mills, A. Thyagarajan, and B. Huffman, “Internet timekeeping around the
globe,” in Proceedings of the Precision Time and Time Interval (PTTI) Applications
and Planning Meeting, December 1997, pp. 365–371.

[174] N. Minar, “A survey of the ntp network,” MIT, December 1999. [Online].
Available: http://www.media.mit.edu/∼nelson/research/ntp-survey99/html/

[175] J. Misra and I. Saha, “Artificial neural networks in hardware: A survey of two
decades of progress,” Neurocomputing, vol. 74, no. 1-3, pp. 239–255, December
2010.

[176] K. Moller, F. Toth, L. Wang, J. Moller, K. Arras, M. Bach, S. Schumann, and
J. Guttmann, “Enhanced perception for visually impaired people,” in Proceed-
ings of the 3rd International Conference on Bioinformatics and Biomedical Engineer-
ing (ICBBE), June 2009, pp. 1–4.

[177] G. E. Moore, “Cramming more components onto integrated circuits,” Electron-
ics, vol. 38, no. 8, pp. 114–117, April 1965.

[178] C. F. Moss and A. Surlykke, “Probing the natural scene by echolocation in
bats,” Frontiers in Behavioral Neuroscience, vol. 4, no. 33, 2010.

[179] C. Mugliette, I. Grech, O. Casha, E. Gatt, and J. Micallef, “FPGA active dig-
ital cochlea model,” in Proceedings of the 18th IEEE International Conference on
Electronics, Circuits and Systems (ICECS), 2011, pp. 699–702.

[180] R. Murphy and S. N. Laboratories, “More chip cores can
mean slower supercomputing, sandia simulation shows,” San-
dia Labs News Releases, January 2009. [Online]. Avail-
able: https://share.sandia.gov/news/resources/news releases/more-chip-
cores-can-mean-slower-supercomputing-sandia-simulation-shows/

[181] C. E. O’Connell-Rodwell, “Keeping an ’ear’ to the ground: Seismic communi-
cation in elephants,” Physiology, vol. 22, no. 4, pp. 287–294, August 2007.

[182] R. of Cyprus, “Radio frequency plan of the Republic of Cyprus,” Ministry
of Communications and Works, Departement of Electronic Communications,
February 2013.

[183] P. Orponen, “Computational complexity of neural networks: a survey,” Nordic
Journal of Computing, vol. 1, no. 1, pp. 94–110, March 1994.

218

Guil
lau

me G
arr

ea
u

[184] M. Otero, “Application of a continuous wave radar for human gait recogni-
tion,” in Proceedings of Society of Photo-Optical Instrumentation Engineers (SPIE),
vol. 5809, May 2005, pp. 538–548.

[185] K. Pastra and Y. Aloimonos, “The minimalist grammar of action,” Philosophical
Transactions of the Royal Society B: Biological Sciences, vol. 367, no. 1585, pp. 103–
117, January 2012.

[186] D. Patterson, K. Asanovı́c, and K. Keutzer, “Computer architecture is back
- the berkeley view on the parallel computing landscape,” ee380, Lecture,
Stanford University, Stanford, California, January 2007. [Online]. Available:
http://www.stanford.edu/class/ee380/Abstracts/070131-BerkeleyView1.7.pdf

[187] M. Peden, E. Krug, D. Mohan, A. Hyder, and R. Norton, The world report on
road traffic injury prevention, M. Peden, R. Scurfield, D. Sleet, D. Mohan, A. A.
Hyder, E. Jarawan, and C. Mathers, Eds. World Health Organization, 2004.

[188] A. J. Pegna, A.-S. Caldara-Schnetzer, S. H. Perrig, F. Lazeyras, A. Khateb,
E. Mayer, T. Landis, and M. Seeck, “Is the right amygdala involved in visuospa-
tial memory? evidence from MRI volumetric measures,” European Neurology,
vol. 47, no. 3, pp. 148–155, March 2002.

[189] A. J. Pegna, A. Khateb, F. Lazeyras, and M. L. Seghier, “Discriminating emo-
tional faces without primary visual cortices involves the right amygdala,”
Nature Neuroscience, vol. 8, no. 1, pp. 24–25, January 2005.

[190] J. M. Rabaey, A. Chandrakasan, and B. Nikolic, Digital integrated circuits - A
design perspective, 2nd ed. Prentice Hall, 2004.

[191] S. S. Ram, Y. Li, A. Lin, and H. Ling, “Doppler-based detection and tracking
of humans in indoor environments,” Journal of the Franklin Institute, vol. 345,
no. 6, pp. 679–699, April 2008.

[192] T. Ren, W. He, and E. Porsov, “Localization of the cochlear amplifier in living
sensitive ears,” PLoS ONE, vol. 6, no. 5, May 2011.

[193] D. A. Reynolds and R. C. Rose, “Robust text-independent speaker identifica-
tion using gaussian mixture speaker models,” IEEE Transactions on Speech and
Audio Processing, vol. 3, no. 1, pp. 72–83, 1995.

[194] D. Robert, R. N. Miles, and R. R. Hoy, “Tympanal mechanics in the parasitoid
fly ormia ochracea: intertympanal coupling during mechanical vibration,”
Journal of Comparative Physiology A, vol. 183, no. 4, pp. 443–452, 1998.

[195] D. Robert, R. Miles, and R. Hoy, “Tympanal hearing in the sarcophagid para-
sitoid fly emblemasoma sp.: the biomechanics of directional hearing,” Journal
of Experimental Biology, vol. 202, no. 14, pp. 1865–1876, 1999.

[196] D. Rotman, “Molecular computing,” MIT Technological Review Magazine,
pp. 1–6, May 2000. [Online]. Available: http://www.technologyreview.com/
featuredstory/400728/molecular-computing/

[197] M. Rucci, G. Edelman, and J. Wray, “Adaptation of orienting behavior: from
the barn owl to a robotic system,” IEEE Transactions on Robotics and Automation,
vol. 15, no. 1, pp. 96–110, February 1999.

219

Guil
lau

me G
arr

ea
u

[198] M. Rucci, G. Tononi, and G. M. Edelman, “Registration of neural maps through
value-dependent learning: Modeling the alignment of auditory and visual
maps in the barn owl’s optic tectum,” Journal of Neuroscience, vol. 17, pp.
334–352, 1997.

[199] M. Ryoo and J. Aggarwal, “Recognition of composite human activities through
context-free grammar based representation,” in Proceedings of IEEE Computer
Society Conference on Computer Vision and Pattern Recognition, vol. 2, October
2006, pp. 1709–1718.

[200] A. M. Sabatini and V. Colla, “A method for sonar based recognition of walking
people,” Robotics and Autonomous Systems, vol. 25, no. 1-2, pp. 117–126, 1998.

[201] E. Salinas, “Noisy neurons can certainly compute,” Nature Neuroscience : News
and Views, vol. 9, no. 11, pp. 1349–1350, November 2006.

[202] F. Savorani, G. Tomasi, and S. B. Engelsen, “icoshift: A versatile tool for the
rapid alignment of 1D NMR spectra.” Journal of Magnetic Resonance, vol. 202,
no. 2, pp. 190–202, 2010.

[203] H. Sawada, R. Mukai, S. Araki, and S. Malcino, “Multiple source localization
using independent component analysis,” in Proceedings of the IEEE Antennas
and Propagation Society International Symposium, vol. 4B, 2005, pp. 81–84.

[204] H. Sawada, R. Mukai, and S. Makino, “Direction of arrival estimation for
multiple source signals using independent component analysis,” in Proceedings
of the 7th International Symposium on Signal Processing and Its Applications, vol. 2,
2003, pp. 411–414.

[205] S. Schraml, A. Belbachir, N. Milosevic, and P. Schö andn, “Dynamic stereo
vision system for real-time tracking,” in Proceedings of IEEE International Sym-
posium on Circuits and Systems (ISCAS), june 2010, pp. 1409–1412.

[206] C. Shah, M. Bouzit, M. Youssef, and L. Vasquez, “Evaluation of RU-Netra -
tactile feedback navigation system for the visually impaired,” in Proceedings of
the International Workshop on Virtual Rehabilitation, July 2006, pp. 72–77.

[207] S. Sheik, M. Coath, G. Indiveri, S. L. Denham, T. Wennekers, and E. Chicca,
“Emergent auditory feature tuning in a real-time neuromorphic VLSI system,”
Frontiers in Neuroscience, vol. 6, no. 17, February 2012.

[208] L. Shestopalova, T. M. Böhm, A. Bendixen, A. G. Andreou, J. Georgiou, G. Gar-
reau, B. Hajdu, S. L. Denham, and I. Winkler, “Do audio-visual motion cues
promote segregation of auditory streams?” Frontiers in Neuroscience, Auditory
Cognitive Neuroscience, 2014.

[209] B. G. Shinn-Cunningham, “Object-based auditory and visual attention,” Trends
in Cognitive Sciences, vol. 12, no. 5, pp. 182–186, April 2008.

[210] H. Z. Shouval, M. F. Bear, and L. N. Cooper, “A unified model of NMDA
receptor-dependent bidirectional synaptic plasticity,” Proceedings of the Na-
tional Academy of Sciences, vol. 99, no. 16, pp. 10 831–10 836, June 2002.

220

Guil
lau

me G
arr

ea
u

[211] M. M. Shulaker, G. Hills, N. Patil, H. Wei, H.-Y. Chen, H.-S. P. Wong, and S. Mi-
tra, “Carbon nanotube computer,” Nature, vol. 501, pp. 526–530, September
2013.

[212] R. A. Silver, “Neuronal arithmetic,” Nature Reviews Neuroscience, vol. 11, pp.
474–489, July 2010.

[213] D. Simon, “On the power of quantum computation,” in Proceedings of the 35th
Annual Symposium on Foundations of Computer Science, 1994, pp. 116–123.

[214] A. Širović, J. A. Hildebrand, and S. M. Wiggins, “Blue and fin whale call source
levels and propagation range in the southern ocean,” Journal of the Acoustical
Society of America, vol. 122, no. 2, pp. 1208–1215, May 2007.

[215] T. Söderström and P. Stoica, System Identification. Prentice Hall International,
1989.

[216] M. Stanacevic and G. Cauwenberghs, “Gradient flow broadband beamforming
and source separation,” in Proceedings of the 3rd International Conference on
Independent Component Analysis and Signal Separation (ICA), December 2001,
pp. 49–52.

[217] M. Stanacevic, G. Cauwenberghs, and G. Zweig, “Gradient flow adaptive
beamforming and signal separation in a miniature microphone array,” in Pro-
ceedings of the IEEE International Conference on Acoustics, Speech, and Signal
Processing (ICASSP), vol. 4, May 2002, pp. 4016–4019.

[218] W. Stürzl, R. Kempter, and J. L. van Hemmen, “Theory of arachnid prey
localization,” Physical Review Letters, vol. 84, no. 24, pp. 5668–5671, June 2000.

[219] K. Sudo, J. Yamato, A. Tomono, and K.-i. Ishii, “Gender recognition method
based on silhouette, footstep, and foot pressure measurements for counting
customers,” Electronics and Communications in Japan (Part II: Electronics), vol. 85,
no. 8, pp. 54–64, 2002.

[220] N. Suga, “Principles of auditory information-processing derived from neu-
roethology,” Journal of Experimental Biologie, no. 146, pp. 277–86, 1989.

[221] S. Sukittanon, A. C. Surendran, J. C. Platt, and C. J. C. Burges, “Convolutional
networks for speech detection,” in Proceedings of 8th International Conference on
Spoken Language Processing (Interspeech’04, ICSLP), 2004, pp. 433–445.

[222] H. Sutter, “The free lunch is over : A fundamental turn toward
concurrency in software,” August 2009. [Online]. Available: http:
//www.gotw.ca/publications/concurrency-ddj.htm

[223] T. Teixeira, G. Dublon, and A. Savvides, “A survey of human-sensing: Methods
for detecting presence, count, location, track, and identity,” Association for
Computing Machinery (ACM) Computing Surveys, vol. 5, pp. 1–35, 2010.

[224] L. Thaler, S. R. Arnott, and M. A. Goodale, “Neural correlates of natural human
echolocation in early and late blind echolocation experts,” PLoS ONE, vol. 6,
no. 5, May 2011.

221

Guil
lau

me G
arr

ea
u

[225] T. Theocharides, “Embedded and real-time systems,” ece653, Lecture, Univer-
sity of Cyprus, Nicosia, Cyprus, January 2010.

[226] G. Tomasi, F. Savorani, and S. B. Engelsen, “icoshift: An effective tool for the
alignment of chromatographic data,” Journal of Chromatography A, vol. 1218,
no. 43, pp. 7832–7840, August 2011.

[227] E. Toolbox, “Speed of sound in some common solids,” Engineering
Toolbox, August 2013. [Online]. Available: http://www.engineeringtoolbox.
com/sound-speed-solids-d 713.html

[228] P. W. J. Van Hengel and T. Andringa, “Verbal aggression detection in complex
social environments,” in Proceedings of the IEEE Conference on Advanced Video
and Signal Based Surveillance (AVSS), 2007, pp. 15–20.

[229] A. Van Schaik and E. Fragniere, “Pseudo-voltage domain implementation
of a 2-dimensional silicon cochlea,” in Proceedings of the IEEE International
Symposium onCircuits and Systems (ISCAS), vol. 3, no. 2, 2001, pp. 185–188.

[230] A. Van Schaik and S.-C. Liu, “AER EAR: a matched silicon cochlea pair with
address event representation interface,” in IEEE International Symposium on
Circuits and Systems (ISCAS), vol. 5, 2005, pp. 4213–4216.

[231] A. van Schaik and S. Shamma, “A neuromorphic sound localizer for a smart
MEMS system,” in Proceedings of the IEEE International Symposium on Circuits
and Systems (ISCAS), vol. 4, 2003, pp. 864–867.

[232] A. Van Schaik, E. Fragnière, E. Vittoz et al., “Improved silicon cochlea using
compatible lateral bipolar transistors,” Advances in Neural Information Process-
ing Systems (NIPS), vol. 8, pp. 671–677, May 1996.

[233] A. Van Schaik and S. Shamma, “A neuromorphic sound localizer for a smart
MEMS system,” Analog Integrated Circuits Signal Processing, vol. 39, no. 3, pp.
267–273, June 2004.

[234] C. Vu, “Made in IBM labs: Researchers demonstrate initial steps
toward commercial fabrication of carbon nanotubes as a successor
to silicon,” IBM press release, October 2012. [Online]. Available:
http://www-03.ibm.com/press/us/en/pressrelease/39250.wss

[235] J. Wagner, E. Andre, F. Lingenfelser, and J. Kim, “Exploring fusion methods
for multimodal emotion recognition with missing data,” IEEE Transactions on
Affective Computing, vol. 2, no. 4, pp. 206–218, 2011.

[236] A. Wallander, R. Russell, and K. Hyyppa, “A robot scorpion using ground
vibrations for navigation,” in Proceedings of the Australian Conference on Robotics
and Automation, vol. 2, August 2000, pp. 75–79.

[237] C. Wallraven, M. Schultze, B. Mohler, A. Vatakis, and K. Pastra, “The POET-
ICON enacted scenario corpus a tool for human and computational experi-
ments on action understanding,” in IEEE International Conference on Automatic
Face Gesture Recognition and Workshops, March 2011, pp. 484–491.

[238] D. Wang, “Visual scene segmentation,” in The Handbook of Brain Theory and
Neural Networks, 2nd ed. MIT Press, January 2003, pp. 1215–1219.

222

Guil
lau

me G
arr

ea
u

[239] ——, “Computational scene analysis,” in Challenges for Computational Intelli-
gence, ser. Studies in Computational Intelligence, W. Duch and J. Mandziuk,
Eds. Springer, 2007, vol. 63, pp. 163–191.

[240] D. Wang and G. J. Brown, Computational Auditory Scene Analysis: Principles,
Algorithms, and Applications. Wiley-IEEE Press, 2006.

[241] W. A. Watkins, P. Tyack, K. E. Moore, and J. E. Bird, “The 20hz signals of
finback whales (Balaenoptera Physalus),” Journal of the Acoustical Society of
America, vol. 82, no. 6, pp. 1901–1912, September 1987.

[242] A. Wegener, “Multicore, the memory wall, and numerical compression,” in
IEEE Computer Society of Silicon Valley, April 2012.

[243] N. T. N. Wi, C. K. Loo, and L. Chockalingam, “Biologically inspired face
recognition: Toward pose-invariance,” International Journal of Neural Systems,
vol. 22, no. 06, 2012.

[244] Wikipedia, “Auditory system,” March 2014. [Online]. Available: http:
//en.wikipedia.org/wiki/Auditory system

[245] ——, “List of animal sounds,” March 2014. [Online]. Available:
http://en.wikipedia.org/wiki/Listofanimalsounds

[246] D. E. Wilson, The Smithsonian Book of North American Mammals, smithsonian
institution press ed., D. E. Wilson and S. Ruff, Eds. Smithsonian Books,
October 1999.

[247] T.-F. Wu, C.-J. Lin, and R. C. Weng, “Probability estimates for multi-class
classification by pairwise coupling,” Journal of Machine Learning Research, vol. 5,
pp. 975–1005, December 2004.

[248] Y. Xu, X. Cao, and T. Li, “Extended kalman filter based pedestrian localiza-
tion for collision avoidance,” in International Conference on Mechatronics and
Automation (ICMA), aug. 2009, pp. 4366–4370.

[249] J. Yang, Y. Hu, and G. Li, “Target recognition and tracking based on data
fusion and data mining,” in Proceedings of the International Society for Optical
Engineering (SPIE), vol. 4556, October 2001, pp. 7–14.

[250] T. Yardibi, P. Cuddihy, S. Genc, C. Bufi, M. Skubic, M. Rantz, L. Liu, and
C. Phillips, “Gait characterization via pulse-Doppler radar,” in IEEE Interna-
tional Conference on Pervasive Computing and Communications Workshops (PER-
COM Workshops), March 2011, pp. 662–667.

[251] S.-Y. Yeh, C.-I. Wu, K.-H. Chang, H.-H. Chu, and J. Y.-J. Hsu, “GETA san-
dals: A footstep location tracking system,” Association for Computing Machinery
(ACM)/Springer Journal of Personal and Ubiquitous Computing (PUC): special issue
on location and context awareness, vol. 11, no. 6, pp. 451–463, August 2007.

[252] M. Yguel, O. Aycard, D. Raulo, and C. Laugier, “Grid based fusion of off-board
cameras,” in Proceedings of the IEEE Intelligent Vehicles Symposium, june 2006,
pp. 276–281.

223

Guil
lau

me G
arr

ea
u

[253] L. Yim, “Microsoft admits they lost the console war with xbox one,” Press
release, May 2013. [Online]. Available: http://semiaccurate.com/2013/05/22/
microsoft-subtly-admits-losing-with-xbox-one/

[254] Z. Zhang and A. Andreou, “Close range bearing estimation and tracking of
slow moving vehicles using the microphone arrays in the Hopkins acoustic
surveillance unit,” in Proceedings of the Argentine School of Micro-Nanoelectronics,
Technology and Applications (EAMTA), September 2008, pp. 140–143.

[255] ——, “Human identification experiments using acoustic micro-Doppler signa-
tures,” in Proceedings of the Argentine School of Micro-Nanoelectronics, Technology
and Applications (EAMTA), September 2008, pp. 81–86.

[256] Z. Zhang, P. Pouliquen, A. Waxman, and A. Andreou, “Acoustic micro-
Doppler gait signatures of humans and animals,” in 41st Annual Conference
on Information Sciences and Systems (CISS), March 2007, pp. 627–630.

[257] Z. Zhang, P. O. Pouliquen, A. Waxman, and A. Andreou, “Acoustic micro-
Doppler radar for human gait imaging,” Journal of the Acoustical Society of
America Express Letters, vol. 121, no. 3, pp. 110–113, March 2007.

224

Guil
lau

me G
arr

ea
u

225

Guil
lau

me G
arr

ea
u

226

Guil
lau

me G
arr

ea
u

Appendix A

VHDL and UCF Scripts

In this appendix are given the VHDL and UCF sources used to program the FM
SYNC and DACQ units.

The first VHDL script given is used to program the FM SYNC unit.
After declaration and initialization of all signals and variables, the first component
instantiated is the DCM to create the necessary clocks from the main crystal fre-
quency. There is a counter to get a 1µs period for the main processes and also a 20µs
period to control the phase shift encoding the raw bits of the timestamps. Then,
there is a 9.6ms counter that sets the beginning of new timestamp generation and a
process that increments of the timestamp value and controls when it reach the end
and has to roll-over. Then, there is the actual process controlling the phase-shift used
to encode the timestamp value. Finally, several processes to control the communi-
cation between the FPGA and the computer.

--

-- Design Name: fm_sync

-- Module Name: fm_sync

-- File Name: fm_sync.vhd

--

-- Last updated: 2012-11-23

--

-- ISE Project Settings:

--

-- Family: Spartan3A and Spartan3AN

-- Device: XC3S50AN

-- Package: TQG144

-- Speed: -5

--

--

-- FM syncronization transmitter

--

--

--

-- Carrier frequency and phase modulation information:

--

-- The transmitter uses the US radio control airplane band of 72 to 73

-- MHz, because this is the largest band available for civilian use.

-- However, the FM modulation is much greater than that used for R/C

-- models, so the carrier is chosen to be in the middle at 72.5 MHz.

--

-- To generate the carrier, a clock multiplier module (DCM) is used to

-- generate a 4x system clock (290 MHz) from an external high

-- precision oscillator. Given the oscillator availability, a 20 MHz

-- external oscillator was selected.

--

-- The 4x system clock was chosen so that the 72.5 MHz carrier can be

-- easily produced (the output is high for two cycles high and low for

-- two clock cyles), and the phase can be easily altered by stretching

-- the period to 5 clock cycles or shortening the period to 3 clock

-- cycles.

227

Guil
lau

me G
arr

ea
u

--

-- Shortening the period to 3 clock cycles is equivalent to advancing

-- the signal by 90 degrees. Matlab simulations indicate that this

-- causes the main spur in the DFT to shift to 72.525MHz and a second

-- spur to appear at 72.425MHz.

--

-- Lengthening the period to 5 clock cycles is equivalent to retarding

-- the signal by 90 degrees. Matlab simulations indicate that this

-- causes the main spur in the DFT to shift to 72.475MHz and a second

-- spur to appear at 72.575MHz.

--

-- The receiver topology requires a local oscillator of a frequency

-- 10.7 MHz lower than the carrier, or about 61.8 MHz. The closest

-- that can be achieved with available oscillators is 61.765 MHz

-- (using a 75 MHz oscillator and a 14/17 ratio clock multiplier).

-- Since this is slightly less than 61.8 MHz, the carrier should be

-- modulated by lengthening the period (or retarding the phase).

--

--

--

-- Serial port information:

--

-- Commands are composed of single bytes. The upper nibble indicates

-- the command, and the lower nibble is the data payload if needed.

-- Valid commands are:

--

-- 0000: set bits 3-0 of timestamp

-- 0001: set bits 7-4 of timestamp

-- 0010: set bits 11-8 of timestamp

-- 0011: set bits 15-12 of timestamp

-- 0100: set bits 19-16 of timestamp

-- 0101: set bits 23-20 of timestamp

-- 0110: set bits 27-24 of timestamp

-- 0111: set bits 31-28 of timestamp

-- 1000: set bits 35-32 of timestamp

-- 1001: set bits 39-36 of timestamp

-- 1010: set bits 43-40 of timestamp

-- 1011: set bits 47-44 of timestamp

-- 1100: set bits 51-48 of timestamp

-- 1101: set bits 55-52 of timestamp

-- 1110: set bits 59-56 of timestamp

-- 1111: return timestamp

--

--

library IEEE;
use IEEE.std_logic_1164.all;
use IEEE.numeric_std.all;
library UNISIM;-- For Xilinx primitives
use UNISIM.VComponents.all;

entity fm_sync is
port (

-- FT232R serial port signals

txd: in std_logic;--
rxd: out std_logic;--
rts: in std_logic;--
cts: out std_logic;--
dtr: in std_logic;--
dsr: out std_logic;--
dcd: out std_logic;--
ri: out std_logic;--

-- FT232R auxilliary port signals

cbus0: in std_logic;--
cbus1: in std_logic;--
cbus2: in std_logic;--
cbus3: in std_logic;--

-- FM synchronizer debug pins

dbg0: out std_logic;-- Upper debug pin
dbg1: out std_logic;-- Middle debug pin
dbg2: out std_logic;-- Lower debug pin

-- Modulated carrier output

fm_out: out std_logic;-- FM output

228

Guil
lau

me G
arr

ea
u

-- External oscillator input

xtal: in std_logic -- 20MHz oscillator
);

end fm_sync;

architecture arch of fm_sync is
--

-- Local signals for DCM

--

signal gclk: std_logic;-- Intermediate clock signal
signal gclk0: std_logic;-- DCM 0 degree output clock
signal gclk_fb: std_logic;-- DCM feedback clock
signal clkfx: std_logic;-- DCM synthesized output clock
signal clk: std_logic;-- System clock
--

-- Local signals for microsecond counter

--

signal c290_c: std_logic_vector(8 downto 0);-- LFSR cntr
constant c290_e: std_logic_vector(8 downto 0):=

b"1_1010_0000";--TC

signal c290_t: std_logic_vector(3 downto 0);-- Decode
signal tc: std_logic;-- TC detect
--

-- Local signals for bit counter

--

signal c20_c: std_logic_vector(4 downto 0);-- LFSR cntr
signal c20_pr: std_logic;-- Primary shift
signal c20_se: std_logic;-- Secondary shift
signal c20_cl: std_logic;-- Debug clear
signal c20_tc: std_logic;-- TC detect
signal c20_msb: std_logic_vector(3 downto 0);-- MSB decode
signal c20_lsb: std_logic_vector(3 downto 0);-- LSB decode
--

-- Local signals for frame counter

--

signal c480_c: std_logic_vector(8 downto 0);-- LFSR cntr
signal c480_t: std_logic_vector(3 downto 0);-- TC detect
--

-- Local signals for timestamp

--

signal time_s: std_logic_vector(59 downto 0);-- 60 bits
signal time_c: std_logic_vector(59 downto 1);
signal time_0: std_logic_vector(59 downto 1);
signal time_1: std_logic_vector(59 downto 1);
signal time_pr0: std_logic;-- Override en_pr normal val of 0
signal time_pr1: std_logic;-- Override en_pr normal val of 1
signal time_se0: std_logic;-- Override en_se normal val of 0
signal time_se1: std_logic;-- Override en_se normal val of 1
signal time_t: std_logic;-- Update precursor
signal time_u: std_logic;-- Timestamp update
signal time_i: std_logic;-- Timestamp increment amount
signal wr_ack: std_logic;-- Handshaking
--

-- Local signals for shift control

--

signal data: std_logic_vector(59 downto 0);-- 60 bits
signal en_pr: std_logic;
signal en_se: std_logic;
signal pr: std_logic;
signal se: std_logic;
--

-- Local signals for FM modulator

--

signal fm: unsigned(1 downto 0);-- 2 bits
--

-- Local signals for serial port counters (3.020833 MegaBAUD)

--

signal c12_c: std_logic_vector(3 downto 0);-- FSM cntr
signal c12_t: std_logic;-- Every 12 cycles (approx 24MHz)
signal c96_c: std_logic_vector(2 downto 0);-- FSM cntr
signal c96_t: std_logic;-- Every 96 cycles (approx 3MHz)
signal c24_t: std_logic;-- Every 24 cycles (approx 12MHz)
--

-- Local signals for serial port input shift register

--

signal ser_cmd: std_logic_vector(8 downto 0);
signal ser_in: std_logic_vector(36 downto 0);

229

Guil
lau

me G
arr

ea
u

--

-- Local signals for command decoding

--

signal ser_dec: std_logic_vector(15 downto 0);-- 16 cmds
--

-- Local signals for command processing

--

signal wr_req_p: std_logic;-- Handshake precursor
signal wr_req: std_logic;-- Handshaking
signal rd_req_p: std_logic;-- Handshake precursor
signal rd_req: std_logic;-- Handshaking
signal new_ts: std_logic_vector(59 downto 0);-- 60 bits
--

-- Local signals for serial port output shift register

--

signal rd_ack: std_logic;-- Handshaking
signal ser_out: std_logic_vector(79 downto 0);
--

-- Initial registered internal signal values

--

attribute INIT: string;
attribute INIT of c290_c: signal is b"0_0000_0000";
attribute INIT of c290_t: signal is b"0000";
attribute INIT of tc: signal is b"0";
attribute INIT of c20_c: signal is b"00000";
attribute INIT of c20_pr: signal is b"0";
attribute INIT of c20_se: signal is b"0";
attribute INIT of c20_cl: signal is b"0";
attribute INIT of c20_tc: signal is b"0";
attribute INIT of c20_msb: signal is b"0000";
attribute INIT of c20_lsb: signal is b"0000";
attribute INIT of c480_c: signal is b"0_0000_0000";
attribute INIT of c480_t: signal is b"0000";
attribute INIT of time_s: signal is b"0000_0000_0000_0000_0000_0000_0000_0000_0000_0000_0000_0000_0000_0000_0001";
attribute INIT of time_c: signal is b"0000_0000_0000_0000_0000_0000_0000_0000_0000_0000_0000_0000_0000_0000_000";
attribute INIT of time_0: signal is b"1111_1111_1111_1111_1111_1111_1111_1111_1111_1111_1111_1111_1111_1111_111";
attribute INIT of time_1: signal is b"0000_0000_0000_0000_0000_0000_0000_0000_0000_0000_0000_0000_0000_0000_000";
attribute INIT of time_pr0: signal is b"0";
attribute INIT of time_pr1: signal is b"1";
attribute INIT of time_se0: signal is b"0";
attribute INIT of time_se1: signal is b"1";
attribute INIT of time_t: signal is b"0";
attribute INIT of time_u: signal is b"0";
attribute INIT of time_i: signal is b"1";
attribute INIT of wr_ack: signal is b"0";
attribute INIT of data: signal is b"0000_0000_0000_0000_0000_0000_0000_0000_0000_0000_0000_0000_0000_0000_0000";
attribute INIT of en_pr: signal is b"0";
attribute INIT of en_se: signal is b"0";
attribute INIT of pr: signal is b"0";
attribute INIT of se: signal is b"0";
attribute INIT of fm: signal is b"00";
attribute INIT of c12_c: signal is b"0000";
attribute INIT of c12_t: signal is b"0";
attribute INIT of c96_c: signal is b"000";
attribute INIT of c96_t: signal is b"0";
attribute INIT of c24_t: signal is b"0";
attribute INIT of ser_cmd: signal is b"0_0000_0000";
attribute INIT of ser_in: signal is b"1111_1111_1111_1111_1111_1111_1111_1111_1111_1";
attribute INIT of ser_dec: signal is b"0000000000000000";
attribute INIT of wr_req_p: signal is b"0";
attribute INIT of wr_req: signal is b"0";
attribute INIT of rd_req_p: signal is b"0";
attribute INIT of rd_req: signal is b"0";
attribute INIT of new_ts: signal is b"0000_0000_0000_0000_0000_0000_0000_0000_0000_0000_0000_0000_0000_0000_0001";
attribute INIT of rd_ack: signal is b"0";
attribute INIT of ser_out: signal is b"1111111111_1111111111_1111111111_1111111111_1111111111_1111111111_1111111111_1111111111";
--

-- Initial registered external signal values

--

attribute INIT of rxd: signal is b"1";
attribute INIT of dbg0: signal is b"0";
attribute INIT of dbg1: signal is b"0";
attribute INIT of dbg2: signal is b"0";

begin
--

-- DCM:

--

230

Guil
lau

me G
arr

ea
u

-- DCM related signal path:

-- Clock input: xtal -> IBUFG -> gclk -> DCM

-- Feedback: DCM -> gclk0 -> BUFG -> gclk_fb

-- FM local oscillator: DCM -> clkfx -> BUFG -> clk

--

u_ibufg: IBUFG

generic map (
IOSTANDARD=>"LVCMOS33"

)

port map (
O=>gclk,-- Clock buffer output

I=>xtal-- Clock buffer input

);

u_dcm: DCM_SP

generic map (
CLKDV_DIVIDE=>2.0,-- CLKDV output divider

CLKFX_DIVIDE=>2,-- CLKFX output divider

CLKFX_MULTIPLY=>29,-- CLKFX output multiplier

CLKIN_DIVIDE_BY_2=>false,

CLKIN_PERIOD=>50.0,-- Input clock period in nanoseconds

CLKOUT_PHASE_SHIFT=>"NONE",

CLK_FEEDBACK=>"1X",-- Use CLK0 as feedback (not CLK2X)

DESKEW_ADJUST=>"SYSTEM_SYNCHRONOUS",

DFS_FREQUENCY_MODE=>"LOW",

DLL_FREQUENCY_MODE=>"LOW",

DSS_MODE=>"NONE",

DUTY_CYCLE_CORRECTION=>true,-- Correct CLK0 to CLK270 duty cycle

FACTORY_JF=>X"c080",

PHASE_SHIFT=>0,

STARTUP_WAIT=>false

)

port map (
CLK0=>gclk0,

CLK180=>open,
CLK270=>open,
CLK2X=>open,
CLK2X180=>open,
CLK90=>open,
CLKDV=>open,
CLKFX=>clkfx,

CLKFX180=>open,
LOCKED=>open,
PSDONE=>open,
STATUS=>open,
CLKFB=>gclk_fb,

CLKIN=>gclk,

DSSEN=>’0’,

PSCLK=>’0’,

PSEN=>’0’,

PSINCDEC=>’0’,

RST=>’0’

);

u_fb: BUFG

port map (
O=>gclk_fb,

I=>gclk0

);

u_bufg: BUFG

port map (
O=>clk,

I=>clkfx

);

--

-- Divide by 290 microsecond counter

--

-- This counter produces a pulse every microsecond. The taps

-- are at bits 8 and 4, and the sequence looks like:

--

-- cycle 0 0_0000_0000

-- cycle 1 0_0000_0001

-- cycle 2 0_0000_0011

-- cycle 3 0_0000_0111

-- ...

-- cycle 286 1_1010_0000 **

-- cycle 287 1_0100_0000 c290_t(2 downto 0)=111

-- cycle 288 0_1000_0000 c290_t(3)=1

231

Guil
lau

me G
arr

ea
u

-- cycle 289 1_0000_0001 tc=1

--

-- Because the terminal count detection is pipelined but the

-- LFSR is updated every clock cycles, the terminal count

-- needs to be detected at least 2 cycles earlier. This has

-- been increased to 3 cycles to give the synthesizer more

-- opportunity to buffer the termincal count.

--

process(clk)
begin

if rising_edge(clk) then
if (tc=’1’) then

c290_c<=b"0_0000_0000";

else
c290_c<=c290_c(7 downto 0)&(c290_c(8)

xnor c290_c(4));
end if;

tc<=c290_t(3);

if (c290_t(2 downto 0)="111") then
c290_t(3)<=’1’;

else
c290_t(3)<=’0’;

end if;

if (c290_c(8 downto 6)=c290_e(8 downto 6))
then
c290_t(2)<=’1’;

else
c290_t(2)<=’0’;

end if;
if (c290_c(5 downto 3)=c290_e(5 downto 3))

then
c290_t(1)<=’1’;

else
c290_t(1)<=’0’;

end if;
if (c290_c(2 downto 0)=c290_e(2 downto 0))

then
c290_t(0)<=’1’;

else
c290_t(0)<=’0’;

end if;
end if;

end process;

--

-- Divide by 20 bit counter

--

-- This counter counts microseconds and produces several

-- pulses for controlling when the phase shifts should occur.

-- The taps are at bits 4 and 2, and the sequence looks like:

--

-- microsecond 0 00000 Primary phase shift 1

-- microsecond 1 00001 Primary phase shift 2

-- microsecond 2 00011

-- microsecond 3 00111

-- microsecond 4 01110

-- microsecond 5 11100 Debug clear 1

-- microsecond 6 11001

-- microsecond 7 10010

-- microsecond 8 00100

-- microsecond 9 01000

-- microsecond 10 10001 Secondary phase shift 1

-- microsecond 11 00010 Secondary phase shift 2

-- microsecond 12 00101

-- microsecond 13 01010

-- microsecond 14 10101

-- microsecond 15 01011 Debug clear 2

-- microsecond 16 10111

-- microsecond 17 01111

-- microsecond 18 11110

-- microsecond 19 11101 Terminal count

--

-- Bit patterns to check:

-- MSB: 0 000 Primary phase shift 1,

-- Primary phase shift 2

232

Guil
lau

me G
arr

ea
u

-- Secondary phase shift 2

-- 1 010 Debug clear 2

-- 2 100 Secondary phase shift 1

-- 3 111 Debug clear 1

-- Terminal count

-- LSB: 0 00 Primary phase shift 1

-- Debug clear 1

-- 1 01 Primary phase shift 2

-- Secondary phase shift 1

-- Terminal count

-- 2 10 Secondary phase shift 2

-- 3 11 Debug clear 2

--

-- Because the terminal count detection is pipelined but the

-- LFSR is not updated every clock cycle, the terminal count

-- does not need to be detected any cycles earlier.

--

-- c20_c is updated on cycle 0.

-- c20_msb and c20_lsb are updated on cycle 1.

-- c20_pr, c20_se, c20_cl and c20_tc are updated on cycle 2.

--

process(clk)
begin

if rising_edge(clk) then
if (tc=’1’) then

if (c20_tc=’1’) then
c20_c<=b"00000";

else
c20_c<=c20_c(3 downto 0)&

(c20_c(4) xnor
c20_c(2));

end if;
end if;

-- Primary phase shift

if ((c20_msb(0)=’1’) and
(c20_lsb(0)=’1’)) or
((c20_msb(0)=’1’) and
(c20_lsb(1)=’1’)) then
c20_pr<=’1’;

else
c20_pr<=’0’;

end if;

-- Secondary phase shift

if ((c20_msb(2)=’1’) and
(c20_lsb(1)=’1’)) or
((c20_msb(0)=’1’) and
(c20_lsb(2)=’1’)) then
c20_se<=’1’;

else
c20_se<=’0’;

end if;

-- Debug clear

if ((c20_msb(3)=’1’) and
(c20_lsb(0)=’1’)) or
((c20_msb(1)=’1’) and
(c20_lsb(3)=’1’)) then
c20_cl<=’1’;

else
c20_cl<=’0’;

end if;

-- Terminal count

if (c20_msb(3)=’1’) and (c20_lsb(1)=’1’) then
c20_tc<=’1’;

else
c20_tc<=’0’;

end if;

-- MSB decode

case c20_c(4 downto 2) is
when b"000" =>

c20_msb<=b"0001";

when b"010" =>
c20_msb<=b"0010";

233

Guil
lau

me G
arr

ea
u

when b"100" =>
c20_msb<=b"0100";

when b"111" =>
c20_msb<=b"1000";

when others =>
c20_msb<=b"0000";

end case;

-- LSB decode

case c20_c(1 downto 0) is
when b"00" =>

c20_lsb<=b"0001";

when b"01" =>
c20_lsb<=b"0010";

when b"10" =>
c20_lsb<=b"0100";

when others =>
c20_lsb<=b"1000";

end case;
end if;

end process;

--

-- Divide by 480 frame counter

--

-- This counter counts the data bits in a frame. The taps are

-- at bits 8 and 4, and the sequence looks like:

--

-- data bit 0 0_0000_0000

-- data bit 1 0_0000_0001

-- data bit 2 0_0000_0011

-- data bit 3 0_0000_0111

-- ...

-- data bit 476 1_0100_0010

-- data bit 477 0_1000_0100

-- data bit 478 1_0000_1001

-- data bit 479 0_0001_0010

--

-- Because the terminal count detection is pipelined but the

-- LFSR is not updated every clock cycle, the terminal count

-- does not need to be detected any cycles earlier.

--

-- c480_c is updated on cycle 0.

-- c480_t(2 downto 0) are updated on cycle 1.

-- c480_t(3) is updated on cycle 2.

--

process(clk)
begin

if rising_edge(clk) then
if (tc=’1’) and (c20_tc=’1’) then

if (c480_t(3)=’1’) then
c480_c<=b"0_0000_0000";

else
c480_c<=c480_c(7 downto 0)&

(c480_c(8) xnor
c480_c(4));

end if;
end if;

if (c480_t(2 downto 0)="111") then
c480_t(3)<=’1’;

else
c480_t(3)<=’0’;

end if;

if (c480_c(8 downto 6)=b"000") then
c480_t(2)<=’1’;

else
c480_t(2)<=’0’;

end if;
if (c480_c(5 downto 3)=b"010") then

c480_t(1)<=’1’;

else
c480_t(1)<=’0’;

end if;
if (c480_c(2 downto 0)=b"010") then

c480_t(0)<=’1’;

234

Guil
lau

me G
arr

ea
u

else
c480_t(0)<=’0’;

end if;
end if;

end process;

--

-- Timestamp carry-save counter

--

-- The timestamp must behave like a normal binary counter

-- which increments by 1 every frame (9.6ms). Therefore, it

-- cannot be implemented using a LFSR.

--

-- Hence, the timestamp counter is implemented as a carry-save

-- counter. This means that the carry propagates one bit at a

-- time every clock cycle. Since the timestamp is 60 bits, it

-- will take 60 clock cycles to compute the new value.

--

-- The signal that controls the incrementing of the timestamp

-- must drive each data latch of the carry save adder, which

-- is too big a load for a single signal. The signal is

-- therefore copied/delayed once to give the synthesizer more

-- opportunity to buffer the it.

--

-- The process communicate with the serial input process via

-- the handshaking signal wr_req and wr_ack.

--

-- time_t updates on cycle 0.

-- time_u updates on cycle 1.

-- time_s(0) and time_c(0) update on cycle 2.

-- ...

-- time_s(58) and time_c(58) update on cycle 60.

-- time_s(59) updates on cycle 61.

-- time_0(1) updates on cycle 62

-- ...

-- time_0(59) updates on cycle 120

--

process(clk)
begin

if rising_edge(clk) then
-- Set flag if it’s time to update/increment

-- the timestamp

if (tc=’1’) and (c20_tc=’1’) and
(c480_t(3)=’1’) then
time_t<=’1’;

else
time_t<=’0’;

end if;
time_u<=time_t;

-- Timestamp carry-save counter

if (time_u=’1’) then
if (wr_req=’1’) then

-- Update timestamp with new

-- value

time_s<=new_ts;

time_c<=b"0000_0000_0000_0000_0000_0000_0000_0000_0000_0000_0000_0000_0000_0000_000";

else
-- Increment timestamp

time_s<=time_s(59 downto 0) xor
(time_c(59 downto 1)&time_i);

time_c<=time_s(58 downto 0) and
(time_c(58 downto 1)&time_i);

end if;
else

-- Propagate carry

time_s<=time_s(59 downto 0) xor
(time_c(59 downto 1)&’0’);

time_c<=time_s(58 downto 0) and
(time_c(58 downto 1)&’0’);

end if;

-- Timestamp all-zeros and all-ones detection

time_0<=time_s(59 downto 1) or
(time_0(58 downto 1)&time_s(0));

time_1<=time_s(59 downto 1) and
(time_1(58 downto 1)&time_s(0));

235

Guil
lau

me G
arr

ea
u

-- Timestamp increment value

if (time_0(59)=’0’) or (time_1(59)=’1’) then
time_i<=’0’;

else
time_i<=’1’;

end if;

-- Phase shift enable override

if (time_0(59)=’0’) then
time_pr0<=’1’;

time_pr1<=’1’;

time_se0<=’0’;

time_se1<=’0’;

elsif (time_1(59)=’1’) then
time_pr0<=’1’;

time_pr1<=’1’;

time_se0<=’1’;

time_se1<=’1’;

else
time_pr0<=’0’;

time_pr1<=’1’;

time_se0<=’0’;

time_se1<=’1’;

end if;

-- Timestamp update handshaking

if (time_u=’1’) and (wr_req=’1’) then
wr_ack<=’1’;

elsif (wr_req=’0’) then
wr_ack<=’0’;

end if;
end if;

end process;

--

-- Shift enable control

--

-- The timestamps bits are encoded using a primary and a

-- secondary phase shift in the FM carrier. Whether or not

-- the pahse shifts occur indicate if the data is a 0, a 1 or

-- a start bit:

--

-- | start | bit 0 | bit 1 |

-- ----------+-------+-------+-------+

-- primary | no | yes | yes |

-- secondary | yes | no | yes |

-- ----------+-------+-------+-------+

--

-- The 0 bit is the most common, because a total of 480 bits

-- are actually transmitted, of which only 60 encode the

-- timestamp and one encodes the start bit.

--

-- The timestamp is sent LSB first so that future increases in

-- the number of timestamp bits will remain compatible with

-- this implementation.

--

-- en_pr, en_se and data are updated on cycle 0.

-- pr and se are also updated on cycle 0.

--

process(clk)
begin

if rising_edge(clk) then
if (tc=’1’) and (c20_tc=’1’) then

if (c480_t(3)=’1’) then
en_pr<=time_pr0;

en_se<=time_se1;

data<=time_s;

else
if (data(0)=’1’) then

en_pr<=time_pr1;

en_se<=time_se1;

else
en_pr<=time_pr1;

en_se<=time_se0;

end if;
data<="0"&data(59 downto 1);

236

Guil
lau

me G
arr

ea
u

end if;
end if;

if ((tc=’1’) and (c20_pr=’1’)) and
(en_pr=’1’) then
pr<=’1’;

else
pr<=’0’;

end if;
if ((tc=’1’) and (c20_se=’1’)) and

(en_se=’1’) then
se<=’1’;

else
se<=’0’;

end if;
end if;

end process;

--

-- FM output

--

-- The fm counter is a 2 bit counter which depends only on two

-- other inputs (pr and se). The logic for each bit can

-- therefore be implemented with a single LUT (which in the

-- Spartan 3 have a maximum of 4 inputs). Hence, no LFSR or

-- carry save counter is required.

--

-- fm normally counts each clock cycle, but will hold its

-- state if either pr or se is active.

--

-- The actual output to the RF amplifier is the MSB of fm.

--

process(clk)
begin

if rising_edge(clk) then
if (pr=’1’) or (se=’1’) then

null;
else

fm<=fm+1;

end if;
end if;

end process;
fm_out<=fm(1);

--

-- Serial port FSM counters (3.020833 MegaBAUD)

--

process(clk)
begin

if rising_edge(clk) then
case c12_c is

when b"0000" =>
c12_c<=b"0001";

c12_t<=’1’;

when b"0001" =>
c12_c<=b"0011";

c12_t<=’0’;

when b"0011" =>
c12_c<=b"0010";

c12_t<=’0’;

when b"0010" =>
c12_c<=b"0110";

c12_t<=’0’;

when b"0110" =>
c12_c<=b"0111";

c12_t<=’0’;

when b"0111" =>
c12_c<=b"0101";

c12_t<=’0’;

when b"0101" =>
c12_c<=b"0100";

c12_t<=’0’;

when b"0100" =>
c12_c<=b"1100";

c12_t<=’0’;

when b"1100" =>
c12_c<=b"1101";

237

Guil
lau

me G
arr

ea
u

c12_t<=’0’;

when b"1101" =>
c12_c<=b"1001";

c12_t<=’0’;

when b"1001" =>
c12_c<=b"1000";

c12_t<=’0’;

when others =>
c12_c<=b"0000";

c12_t<=’0’;

end case;
end if;

end process;

process(clk)
begin

if rising_edge(clk) then
if (c12_t=’1’) then

case c96_c is
when b"000" =>

c96_c<=b"001";

c96_t<=’1’;

c24_t<=’1’;

when b"001" =>
c96_c<=b"011";

c96_t<=’0’;

c24_t<=’0’;

when b"011" =>
c96_c<=b"010";

c96_t<=’0’;

c24_t<=’1’;

when b"010" =>
c96_c<=b"110";

c96_t<=’0’;

c24_t<=’0’;

when b"110" =>
c96_c<=b"111";

c96_t<=’0’;

c24_t<=’1’;

when b"111" =>
c96_c<=b"101";

c96_t<=’0’;

c24_t<=’0’;

when b"101" =>
c96_c<=b"100";

c96_t<=’0’;

c24_t<=’1’;

when others =>
c96_c<=b"000";

c96_t<=’0’;

c24_t<=’0’;

end case;
else

c96_t<=’0’;

c24_t<=’0’;

end if;
end if;

end process;

--

-- Serial port input shift register

--

process(clk)
begin

if rising_edge(clk) then
if (c24_t=’1’) then

if (ser_in(36 downto 34)="000") then
ser_cmd(8)<=’1’;

ser_cmd(7)<=ser_in(3);

ser_cmd(6)<=ser_in(7);

ser_cmd(5)<=ser_in(11);

ser_cmd(4)<=ser_in(15);

ser_cmd(3)<=ser_in(19);

ser_cmd(2)<=ser_in(23);

ser_cmd(1)<=ser_in(27);

ser_cmd(0)<=ser_in(31);

ser_in<=b"1111_1111_1111_1111_1111_1111_1111_1111_1111"&txd;

238

Guil
lau

me G
arr

ea
u

else
ser_cmd(8)<=’0’;

ser_in<=ser_in(35 downto 0)&
txd;

end if;
else

ser_cmd(8)<=’0’;

end if;
end if;

end process;

--

-- Serial port command decoding

--

process(clk)
begin

if rising_edge(clk) then
case (ser_cmd(8 downto 4)) is

when "10000" =>
ser_dec<="0000000000000001";

when "10001" =>
ser_dec<="0000000000000010";

when "10010" =>
ser_dec<="0000000000000100";

when "10011" =>
ser_dec<="0000000000001000";

when "10100" =>
ser_dec<="0000000000010000";

when "10101" =>
ser_dec<="0000000000100000";

when "10110" =>
ser_dec<="0000000001000000";

when "10111" =>
ser_dec<="0000000010000000";

when "11000" =>
ser_dec<="0000000100000000";

when "11001" =>
ser_dec<="0000001000000000";

when "11010" =>
ser_dec<="0000010000000000";

when "11011" =>
ser_dec<="0000100000000000";

when "11100" =>
ser_dec<="0001000000000000";

when "11101" =>
ser_dec<="0010000000000000";

when "11110" =>
ser_dec<="0100000000000000";

when "11111" =>
ser_dec<="1000000000000000";

when others =>
ser_dec<="0000000000000000";

end case;
end if;

end process;

--

-- Serial port command processing

--

process(clk)
begin

if rising_edge(clk) then
-- CMD 0 to 14: load a nibble of new timestamp

if (ser_dec(0)=’1’) then
wr_req_p<=’1’;

new_ts(3 downto 0)<=
ser_cmd(3 downto 0);

elsif (wr_ack=’1’) then
wr_req_p<=’0’;

end if;
if (ser_dec(1)=’1’) then

new_ts(7 downto 4)<=
ser_cmd(3 downto 0);

end if;
if (ser_dec(2)=’1’) then

new_ts(11 downto 8)<=
ser_cmd(3 downto 0);

239

Guil
lau

me G
arr

ea
u

end if;
if (ser_dec(3)=’1’) then

new_ts(15 downto 12)<=
ser_cmd(3 downto 0);

end if;
if (ser_dec(4)=’1’) then

new_ts(19 downto 16)<=
ser_cmd(3 downto 0);

end if;
if (ser_dec(5)=’1’) then

new_ts(23 downto 20)<=
ser_cmd(3 downto 0);

end if;
if (ser_dec(6)=’1’) then

new_ts(27 downto 24)<=
ser_cmd(3 downto 0);

end if;
if (ser_dec(7)=’1’) then

new_ts(31 downto 28)<=
ser_cmd(3 downto 0);

end if;
if (ser_dec(8)=’1’) then

new_ts(35 downto 32)<=
ser_cmd(3 downto 0);

end if;
if (ser_dec(9)=’1’) then

new_ts(39 downto 36)<=
ser_cmd(3 downto 0);

end if;
if (ser_dec(10)=’1’) then

new_ts(43 downto 40)<=
ser_cmd(3 downto 0);

end if;
if (ser_dec(11)=’1’) then

new_ts(47 downto 44)<=
ser_cmd(3 downto 0);

end if;
if (ser_dec(12)=’1’) then

new_ts(51 downto 48)<=
ser_cmd(3 downto 0);

end if;
if (ser_dec(13)=’1’) then

new_ts(55 downto 52)<=
ser_cmd(3 downto 0);

end if;
if (ser_dec(14)=’1’) then

new_ts(59 downto 56)<=
ser_cmd(3 downto 0);

end if;
-- CMD 15: read back time stamp

if (ser_dec(15)=’1’) then
rd_req_p<=’1’;

elsif (rd_ack=’1’) then
rd_req_p<=’0’;

end if;

wr_req<=wr_req_p;

rd_req<=rd_req_p;

end if;
end process;

--

-- Serial port output shift register

--

process(clk)
begin

if rising_edge(clk) then
rxd<=ser_out(0);

if (rd_req=’1’) and (time_u=’1’) then
ser_out(0)<=’1’;

ser_out(1)<=’0’;

ser_out(2)<=time_s(0);

ser_out(3)<=time_s(1);

ser_out(4)<=time_s(2);

ser_out(5)<=time_s(3);

ser_out(6)<=time_s(4);

240

Guil
lau

me G
arr

ea
u

ser_out(7)<=time_s(5);

ser_out(8)<=time_s(6);

ser_out(9)<=time_s(7);

ser_out(10)<=’1’;

ser_out(11)<=’0’;

ser_out(12)<=time_s(8);

ser_out(13)<=time_s(9);

ser_out(14)<=time_s(10);

ser_out(15)<=time_s(11);

ser_out(16)<=time_s(12);

ser_out(17)<=time_s(13);

ser_out(18)<=time_s(14);

ser_out(19)<=time_s(15);

ser_out(20)<=’1’;

ser_out(21)<=’0’;

ser_out(22)<=time_s(16);

ser_out(23)<=time_s(17);

ser_out(24)<=time_s(18);

ser_out(25)<=time_s(19);

ser_out(26)<=time_s(20);

ser_out(27)<=time_s(21);

ser_out(28)<=time_s(22);

ser_out(29)<=time_s(23);

ser_out(30)<=’1’;

ser_out(31)<=’0’;

ser_out(32)<=time_s(24);

ser_out(33)<=time_s(25);

ser_out(34)<=time_s(26);

ser_out(35)<=time_s(27);

ser_out(36)<=time_s(28);

ser_out(37)<=time_s(29);

ser_out(38)<=time_s(30);

ser_out(39)<=time_s(31);

ser_out(40)<=’1’;

ser_out(41)<=’0’;

ser_out(42)<=time_s(32);

ser_out(43)<=time_s(33);

ser_out(44)<=time_s(34);

ser_out(45)<=time_s(35);

ser_out(46)<=time_s(36);

ser_out(47)<=time_s(37);

ser_out(48)<=time_s(38);

ser_out(49)<=time_s(39);

ser_out(50)<=’1’;

ser_out(51)<=’0’;

ser_out(52)<=time_s(40);

ser_out(53)<=time_s(41);

ser_out(54)<=time_s(42);

ser_out(55)<=time_s(43);

ser_out(56)<=time_s(44);

ser_out(57)<=time_s(45);

ser_out(58)<=time_s(46);

ser_out(59)<=time_s(47);

ser_out(60)<=’1’;

ser_out(61)<=’0’;

ser_out(62)<=time_s(48);

ser_out(63)<=time_s(49);

ser_out(64)<=time_s(50);

ser_out(65)<=time_s(51);

ser_out(66)<=time_s(52);

ser_out(67)<=time_s(53);

ser_out(68)<=time_s(54);

ser_out(69)<=time_s(55);

ser_out(70)<=’1’;

ser_out(71)<=’0’;

ser_out(72)<=time_s(56);

ser_out(73)<=time_s(57);

ser_out(74)<=time_s(58);

ser_out(75)<=time_s(59);

ser_out(76)<=’0’;

ser_out(77)<=’0’;

ser_out(78)<=’0’;

ser_out(79)<=’0’;

rd_ack<=’1’;

elsif (c96_t=’1’) then
ser_out<=’1’&ser_out(79 downto 1);

end if;

241

Guil
lau

me G
arr

ea
u

if (rd_req=’0’) then
rd_ack<=’0’;

end if;
end if;

end process;

--

-- Serial port signal loopback

--

cts<=rts;

dsr<=dtr;

dcd<=dtr;

ri<=’1’;

--

-- Debug

--

process(clk)
begin

if rising_edge(clk) then
-- DBG0 triggers on the start of a frame

if (time_u=’1’) then
dbg0<=’1’;

elsif (tc=’1’) and (c20_cl=’1’) then
dbg0<=’0’;

end if;

-- DBG1 triggers on any phase shift

if (pr=’1’) or (se=’1’) then
dbg1<=’1’;

elsif (tc=’1’) and (c20_cl=’1’) then
dbg1<=’0’;

end if;

-- DBG2 displays the timestamp

dbg2<=data(0);

end if;
end process;

end arch;

The second script given is the UCF file for FM SYNC unit.
It is the physical mapping between the pins of the FPGA and the signals used in the
previous VHDL script.

###

#

XC3S50ATQ144 Spartan3AN with 3 blocks of 18kbits RAM

#

###

Last updated: 2012-11-23

Timing constraints for 20MHz oscillator

NET xtal PERIOD=50ns;
Timing constraints for 290MHz system clock

NET clk PERIOD=3ns;# Max is 3.448

Pin assignements

#NET TMS LOC=P1; #TMS,JTAG,VCCAUX

#NET TDI LOC=P2; #TDI,JTAG,VCCAUX

#NET NC LOC=P3; #IO_L02P_3,IO,BANK3

#NET NC LOC=P4; #IO_L01P_3,IO,BANK3

#NET NC LOC=P5; #IO_L02N_3,IO,BANK3

#NET NC LOC=P6; #IO_L01N_3,IO,BANK3

#NET NC LOC=P7; #IO_L03P_3,IO,BANK3

#NET NC LOC=P8; #IO_L03N_3,IO,BANK3

#NET GND LOC=P9; #GND,GND,GND

#NET NC LOC=P10; #IO_L04P_3,IO,BANK3

#NET NC LOC=P11; #IO_L04N_3/VREF_3,IO,BANK3

#NET NC LOC=P12; #IO_L05P_3/LHCLK0,LHCLK,BANK3

#NET NC LOC=P13; #IO_L05N_3/LHCLK1,LHCLK,BANK3

#NET 3V3 LOC=P14; #VCCO_3,VCCO,BANK3

#NET NC LOC=P15; #IO_L06P_3/LHCLK2,LHCLK,BANK3

#NET NC LOC=P16; #IO_L06N_3/IRDY2/LHCLK3,LHCLK,BANK3

#NET GND LOC=P17; #GND,GND,GND

242

Guil
lau

me G
arr

ea
u

#NET NC LOC=P18; #IO_L07P_3/LHCLK4,LHCLK,BANK3

NET dbg2 LOC=P19; #IO_L08P_3/TRDY2/LHCLK6,LHCLK,BANK3

#NET NC LOC=P20; #IO_L07N_3/LHCLK5,LHCLK,BANK3

#NET 3V3 LOC=P21; #IO_L08N_3/LHCLK7,LHCLK,BANK3

#NET 1V2 LOC=P22; #VCCINT,VCCINT,VCCINT

#NET 3V3 LOC=P23; #VCCO_3,VCCO,BANK3

NET dbg1 LOC=P24; #IO_L09P_3,IO,BANK3

#NET NC LOC=P25; #IO_L09N_3,IO,BANK3

#NET GND LOC=P26; #GND,GND,GND

#NET NC LOC=P27; #IO_L10P_3,IO,BANK3

#NET NC LOC=P28; #IO_L11P_3,IO,BANK3

NET dbg0 LOC=P29; #IO_L10N_3,IO,BANK3

#NET NC LOC=P30; #IO_L11N_3,IO,BANK3

#NET NC LOC=P31; #IO_L12P_3,IO,BANK3

#NET NC LOC=P32; #IO_L12N_3,IO,BANK3

#NET NC LOC=P33; #IP_L13P_3,INPUT,BANK3

#NET GND LOC=P34; #GND,GND,GND

#NET 3V3 LOC=P35; #IP_L13N_3/VREF_3,INPUT,BANK3

#NET 3V3 LOC=P36; #VCCAUX,VCCAUX,VCCAUX

#NET 3V3 LOC=P37; #IO_L01P_2/M1,DUAL,BANK2

#NET 3V3 LOC=P38; #IO_L01N_2/M0,DUAL,BANK2

#NET GND LOC=P39; #IO_L02P_2/M2,DUAL,BANK2

#NET 3V3 LOC=P40; #VCCO_2,VCCO,BANK2

#NET NC LOC=P41; #IO_L02N_2/CSO_B,DUAL,BANK2

#NET NC LOC=P42; #IO_L03P_2/RDWR_B,DUAL,BANK2

#NET 3V3 LOC=P43; #IO_L04P_2/VS2,DUAL,BANK2

#NET 3V3 LOC=P44; #IO_L03N_2/VS1,DUAL,BANK2

#NET 3V3 LOC=P45; #IO_L04N_2/VS0,DUAL,BANK2

#NET NC LOC=P46; #IO_L05P_2,IO,BANK2

#NET NC LOC=P47; #IO_L06P_2,IO,BANK2

#NET NC LOC=P48; #IO_L05N_2/D7,DUAL,BANK2

#NET NC LOC=P49; #IO_L06N_2/D6,DUAL,BANK2

#NET NC LOC=P50; #IO_L07P_2/D5,DUAL,BANK2

#NET 3V3 LOC=P51; #IO_L07N_2/D4,DUAL,BANK2

#NET 1V2 LOC=P52; #VCCINT,VCCINT,VCCINT

#NET 3V3 LOC=P53; #IP_2/VREF_2,INPUT,BANK2

#NET NC LOC=P54; #IO_L08P_2/GCLK14,GCLK,BANK2

#NET NC LOC=P55; #IO_L08N_2/GCLK15,GCLK,BANK2

#NET GND LOC=P56; #GND,GND,GND

#NET NC LOC=P57; #IO_L09P_2/GCLK0,GCLK,BANK2

#NET NC LOC=P58; #IO_L10P_2/GCLK2,GCLK,BANK2

#NET NC LOC=P59; #IO_L09N_2/GCLK1,GCLK,BANK2

#NET NC LOC=P60; #IO_L10N_2/GCLK3,GCLK,BANK2

#NET 3V3 LOC=P61; #VCCO_2,VCCO,BANK2

#NET NC LOC=P62; #IO_2/MOSI/CSI_B,DUAL,BANK2

#NET NC LOC=P63; #IO_L11P_2/AWAKE,PWRMGMT,BANK2

#NET NC LOC=P64; #IO_L11N_2/DOUT,DUAL,BANK2

#NET GND LOC=P65; #GND,GND,GND

#NET 3V3 LOC=P66; #VCCAUX,VCCAUX,VCCAUX

#NET NC LOC=P67; #IO_L12P_2/INIT_B,DUAL,BANK2

#NET NC LOC=P68; #IO_L12N_2/D3,DUAL,BANK2

#NET NC LOC=P69; #IO_L13P_2/D2,DUAL,BANK2

#NET NC LOC=P70; #IO_L14P_2/D1,DUAL,BANK2

#NET NC LOC=P71; #IO_L13N_2/D0/DIN/MISO,DUAL,BANK2

#NET NC LOC=P72; #IO_L14N_2/CCLK,DUAL,BANK2

#NET NC LOC=P73; #DONE,CONFIG,VCCAUX

#NET GND LOC=P74; #SUSPEND,PWRMGMT,VCCAUX

#NET NC LOC=P75; #IO_L02P_1/LDC1,DUAL,BANK1

#NET NC LOC=P76; #IO_L01P_1/HDC,DUAL,BANK1

#NET NC LOC=P77; #IO_L02N_1/LDC0,DUAL,BANK1

#NET NC LOC=P78; #IO_L01N_1/LDC2,DUAL,BANK1

#NET NC LOC=P79; #IO_1,IO,BANK1

#NET 3V3 LOC=P80; #IP_1/VREF_1,INPUT,BANK1

#NET GND LOC=P81; #GND,GND,GND

#NET NC LOC=P82; #IO_L03P_1,IO,BANK1

#NET NC LOC=P83; #IO_L04P_1/RHCLK0,RHCLK,BANK1

#NET NC LOC=P84; #IO_L03N_1,IO,BANK1

#NET NC LOC=P85; #IO_L04N_1/RHCLK1,RHCLK,BANK1

#NET 3V3 LOC=P86; #VCCO_1,VCCO,BANK1

NET fm_out LOC=P87; #IO_L05P_1/RHCLK2,RHCLK,BANK1

#NET NC LOC=P88; #IO_L05N_1/TRDY1/RHCLK3,RHCLK,BANK1

#NET GND LOC=P89; #GND,GND,GND

#NET NC LOC=P90; #IO_L06P_1/RHCLK4,RHCLK,BANK1

#NET NC LOC=P91; #IO_L07P_1/IRDY1/RHCLK6,RHCLK,BANK1

#NET NC LOC=P92; #IO_L06N_1/RHCLK5,RHCLK,BANK1

#NET 3V3 LOC=P93; #IO_L07N_1/RHCLK7,RHCLK,BANK1

#NET 1V2 LOC=P94; #VCCINT,VCCINT,VCCINT

243

Guil
lau

me G
arr

ea
u

#NET 3V3 LOC=P95; #VCCO_1,VCCO,BANK1

#NET NC LOC=P96; #IO_L08P_1,IO,BANK1

#NET 3V3 LOC=P97; #IP_1/VREF_1,INPUT,BANK1

#NET NC LOC=P98; #IO_L08N_1,IO,BANK1

#NET NC LOC=P99; #IO_L09P_1,IO,BANK1

#NET GND LOC=P100; #GND,GND,GND

#NET NC LOC=P101; #IO_L09N_1,IO,BANK1

#NET NC LOC=P102; #IO_L10P_1,IO,BANK1

#NET NC LOC=P103; #IO_L11P_1,IO,BANK1

#NET NC LOC=P104; #IO_L10N_1,IO,BANK1

#NET NC LOC=P105; #IO_L11N_1,IO,BANK1

#NET GND LOC=P106; #GND,GND,GND

#NET TDO LOC=P107; #TDO,JTAG,VCCAUX

#NET 3V3 LOC=P108; #VCCAUX,VCCAUX,VCCAUX

#NET TCK LOC=P109; #TCK,JTAG,VCCAUX

#NET NC LOC=P110; #IO_L01P_0,IO,BANK0

#NET NC LOC=P111; #IO_L01N_0,IO,BANK0

#NET NC LOC=P112; #IO_L02P_0/VREF_0,IO,BANK0

#NET NC LOC=P113; #IO_L02N_0,IO,BANK0

#NET NC LOC=P114; #IO_L04P_0,IO,BANK0

#NET NC LOC=P115; #IO_L03P_0,IO,BANK0

#NET NC LOC=P116; #IO_L04N_0,IO,BANK0

#NET NC LOC=P117; #IO_L03N_0,IO,BANK0

#NET GND LOC=P118; #GND,GND,GND

#NET 3V3 LOC=P119; #VCCO_0,VCCO,BANK0

#NET NC LOC=P120; #IO_L05P_0,IO,BANK0

#NET NC LOC=P121; #IO_L05N_0,IO,BANK0

#NET 1V2 LOC=P122; #VCCINT,VCCINT,VCCINT

#NET 3V3 LOC=P123; #IP_0/VREF_0,INPUT,BANK0

NET xtal LOC=P124; #IO_L06P_0/GCLK4,GCLK,BANK0

NET cbus3 LOC=P125; #IO_L07P_0/GCLK6,GCLK,BANK0

NET cbus2 LOC=P126; #IO_L06N_0/GCLK5,GCLK,BANK0

NET cts LOC=P127; #IO_L07N_0/GCLK7,GCLK,BANK0

#NET GND LOC=P128; #GND,GND,GND

NET dcd LOC=P129; #IO_L08P_0/GCLK8,GCLK,BANK0

NET dsr LOC=P130; #IO_L09P_0/GCLK10,GCLK,BANK0

NET ri LOC=P131; #IO_L08N_0/GCLK9,GCLK,BANK0

NET rxd LOC=P132; #IO_L09N_0/GCLK11,GCLK,BANK0

#NET 3V3 LOC=P133; #VCCAUX,VCCAUX,VCCAUX

#NET NC LOC=P134; #IO_L10P_0,IO,BANK0

NET rts LOC=P135; #IO_L10N_0,IO,BANK0

#NET 3V3 LOC=P136; #VCCO_0,VCCO,BANK0

#NET GND LOC=P137; #GND,GND,GND

NET dtr LOC=P138; #IO_L11P_0,IO,BANK0

NET txd LOC=P139; #IO_L11N_0,IO,BANK0

#NET 3V3 LOC=P140; #IP_0,INPUT,BANK0

NET cbus1 LOC=P141; #IO_L12P_0/VREF_0,IO,BANK0

NET cbus0 LOC=P142; #IO_0,IO,BANK0

#NET GND LOC=P143; #IO_L12N_0/PUDC_B,DUAL,BANK0

#NET 3V3 LOC=P144; #PROG_B,CONFIG,VCCAUX

The third VHDL script given is used to program the DACQ units.
After declaration and initialization of all signals and variables, the first component
instantiated is the DCM to create the necessary clocks from the main crystal fre-
quency. Then, there are the instantiations of the RAM block where the data will be
temporally stored, before being sent to the computer. Next, follows the FM receiver
process, which is used to detect the raw bit of the timestamp (5µs period) and adjust
the clock period if local clock is too fast or too slow. Then, there is the process to
decode start of reception of new timestamp and storing new data bits. Then, the
processes that implement the synchronization is instantiated with the update of local
clock every 2µs of 1 clock cycle (11ns). First the counters and then the comparison
between the 2 sync references (one sent from FM SYNC unit and one generated
from the local oscillator). Next, follows the process to decode the RSSI signal. Then,
follows the control of the DACs, which is instantiated only if ultrasonic emission
is needed (3 instantiations for 3 different ultrasonic frequencies). Then, follows the
control of the ADCs, which controls the sampling of the signal coming from the
connected sensors, here again, we have different instantiations for different type of
sensors. The data sampled is sent to the FPGA or in case of daughter board used to

244

Guil
lau

me G
arr

ea
u

the Opal Kelly as well. Then, we have a process that controls the pre-processing of
the data (filtering). The parameters of the filter depends on the sensors used. Next,
follows the control of storing the data into the temporary storing location (RAM
blocks). Finally, several processes to control the communication between the FPGA
and the computer.

--

-- Design Name: dacq

-- Module Name: dacq

-- File Name: dacq.vhd

--

-- Last updated: 2012-11-23

--

-- ISE Project Settings:

--

-- Family: Spartan3A and Spartan3AN

-- Device: XC3S50AN

-- Package: TQG144

-- Speed: -4

--

library IEEE;
use IEEE.STD_LOGIC_1164.ALL;
use IEEE.NUMERIC_STD.ALL;
library UNISIM;-- For Xilinx primitives
use UNISIM.VComponents.all;

entity dacq is
port(

-- serial interface

ft_txd: in std_logic;
ft_rxd: out std_logic;
ft_rts: in std_logic;
ft_cts: out std_logic;
ft_dtr: in std_logic;
ft_dsr: out std_logic;
ft_dcd: out std_logic;
ft_ri: out std_logic;
ft_cbus0: in std_logic;
ft_cbus1: in std_logic;
ft_cbus2: in std_logic;
ft_cbus3: in std_logic;

-- DAC interface

ndac_ncs: out std_logic;
ndac_clk: out std_logic;
ndac_din: out std_logic;
ndac_ncl: out std_logic;

pdac_ncs: out std_logic;
pdac_clk: out std_logic;
pdac_din: out std_logic;
pdac_ncl: out std_logic;

-- ADC interface

pga0_ncs: out std_logic;
pga0_dio: out std_logic;
pga0_clk: out std_logic;
adc0_sdi: out std_logic;
adc0_sck: out std_logic;
adc0_cnv: out std_logic;
adc0_sdo: in std_logic;

pga1_ncs: out std_logic;
pga1_dio: out std_logic;
pga1_clk: out std_logic;
adc1_sdi: out std_logic;
adc1_sck: out std_logic;
adc1_cnv: out std_logic;
adc1_sdo: in std_logic;

pga2_ncs: out std_logic;
pga2_dio: out std_logic;
pga2_clk: out std_logic;

245

Guil
lau

me G
arr

ea
u

adc2_sdi: out std_logic;
adc2_sck: out std_logic;
adc2_cnv: out std_logic;
adc2_sdo: in std_logic;

pga3_ncs: out std_logic;
pga3_dio: out std_logic;
pga3_clk: out std_logic;
adc3_sdi: out std_logic;
adc3_sck: out std_logic;
adc3_cnv: out std_logic;
adc3_sdo: in std_logic;

-- FM receiver

fm_ncs: out std_logic;
fm_clk: out std_logic;
fm_cmp: in std_logic;
fm_dat: in std_logic;
fm_lo: out std_logic;-- (14/17)*75MHz = 61.765MHz

-- Opal Kelly interface

ok_fm: out std_logic;
ok_adc: out std_logic_vector(15 downto 0);
ok_state: out std_logic_vector(1 downto 0);
ok_dac: in std_logic_vector(15 downto 0);
ok_ctrl: in std_logic_vector(8 downto 0);

-- Clock input

xtal: in std_logic-- 75MHz oscillator
);

end dacq;

architecture arch of dacq is
--

-- Module selection

--

subtype md is unsigned(31 downto 0);
subtype gn is unsigned(1 downto 0);
-- Standard module types:

constant ASU1: md:=b"0100_0001_0101_0011_0101_0101_0011_0001";
constant ASU2: md:=b"0100_0001_0101_0011_0101_0101_0011_0010";
constant GEO1: md:=b"0100_0111_0100_0101_0100_1111_0011_0001";
constant GEO2: md:=b"0100_0111_0100_0101_0100_1111_0011_0010";
constant GEO3: md:=b"0100_0111_0100_0101_0100_1111_0011_0011";
constant ICP1: md:=b"0100_1001_0100_0011_0101_0000_0011_0001";
constant US25: md:=b"0101_0101_0101_0011_0011_0010_0011_0101";
constant US33: md:=b"0101_0101_0101_0011_0011_0011_0011_0011";
constant US40: md:=b"0101_0101_0101_0011_0011_0100_0011_0000";
constant VBM1: md:=b"0101_0110_0100_0010_0100_1101_0011_0001";
-- Records raw FM bits:

constant DBUG: md:=b"0100_0100_0100_0010_0101_0101_0100_0111";
-- Mono version of VBM1:

constant MONO: md:=b"0100_1101_0100_1111_0100_1110_0100_1111";
-- Non transmitting version of USxx:

constant MON1: md:=b"0100_1101_0100_1111_0100_1110_0011_0001";
constant MON2: md:=b"0100_1101_0100_1111_0100_1110_0011_0010";
constant MON3: md:=b"0100_1101_0100_1111_0100_1110_0011_0011";
-- Module generation specifiers:

constant dacq_gen1: gn:=b"01";-- First gen
constant dacq_gen2: gn:=b"10";-- Second gen with Opal Kelly
-- Place module selection here:

constant module_id: md:=ASU1;
constant dacq_gen: gn:=dacq_gen1;-- Must use dacq_gen1.ucf

-- constant dacq_gen: gn:=dacq_gen2;-- Must use dacq_gen2.ucf

--

-- Helper function to compute next buffer (increment mod 3)

--

function nxt_buf(current: in std_logic_vector(1 downto 0))
return std_logic_vector is

begin
case (current) is

when b"00" => return b"01";
when b"01" => return b"10";
when b"10" => return b"00";
when others => return b"11";

end case;
end function nxt_buf;

246

Guil
lau

me G
arr

ea
u

--

-- Helper function to compute prev buffer (decrement mod 3)

--

function prv_buf(current: std_logic_vector(1 downto 0))
return std_logic_vector is

begin
case (current) is

when b"00" => return b"10";
when b"01" => return b"00";
when b"10" => return b"01";
when others => return b"11";

end case;
end function prv_buf;
--

-- Helper function to return number of ADC channels

--

function get_num_adc(module_id: unsigned(31 downto 0))
return unsigned is

begin
case (module_id) is

when ASU1 => return b"100";
when ASU2 => return b"100";
when DBUG => return b"000";
when GEO1 => return b"011";
when GEO2 => return b"011";
when GEO3 => return b"011";
when ICP1 => return b"010";
when MONO => return b"001";
when MON1 => return b"001";
when MON2 => return b"001";
when MON3 => return b"001";
when US25 => return b"001";
when US33 => return b"001";
when US40 => return b"001";
when VBM1 => return b"010";
when others => return b"000";

end case;
end function get_num_adc;
--

-- Helper function to return number of DAC channels

--

function get_num_dac(module_id: unsigned(31 downto 0))
return unsigned is

begin
case (module_id) is

when ASU1 => return b"00";
when ASU2 => return b"00";
when DBUG => return b"00";
when GEO1 => return b"00";
when GEO2 => return b"00";
when GEO3 => return b"00";
when ICP1 => return b"00";
when MONO => return b"00";
when MON1 => return b"00";
when MON2 => return b"00";
when MON3 => return b"00";
when US25 => return b"10";
when US33 => return b"10";
when US40 => return b"10";
when VBM1 => return b"00";
when others => return b"00";

end case;
end function get_num_dac;
--

-- Helper function to return filter coefficient

--

function get_coef(module_id: unsigned(31 downto 0))
return unsigned is

begin
case (module_id) is

when ASU1 =>
-- 0.145364, for 12.500kHz

return b"0_0010_0101_0011_0110_1";
when ASU2 =>

-- 0.145364, for 12.500kHz

return b"0_0010_0101_0011_0110_1";
when DBUG =>

247

Guil
lau

me G
arr

ea
u

-- 1.00000, for no filter

return b"1_0000_0000_0000_0000_0";
when GEO1 =>

-- 0.188961, for 16.667kHz

return b"0_0011_0000_0110_0000_0";
when GEO2 =>

-- 0.188961, for 16.667kHz

return b"0_0011_0000_0110_0000_0";
when GEO3 =>

-- 0.188961, for 16.667kHz

return b"0_0011_0000_0110_0000_0";
when ICP1 =>

-- 0.269597, for 25.000kHz

return b"0_0100_0101_0000_0100_1";
when MONO =>

-- 0.466512, for 50.000kHz

return b"0_0111_0111_0110_1101_1";
when MON1 =>

-- 0.466512, for 50.000kHz

return b"0_0111_0111_0110_1101_1";
when MON2 =>

-- 0.466512, for 50.000kHz

return b"0_0111_0111_0110_1101_1";
when MON3 =>

-- 0.466512, for 50.000kHz

return b"0_0111_0111_0110_1101_1";
when US25 =>

-- 0.466512, for 50.000kHz

return b"0_0111_0111_0110_1101_1";
when US33 =>

-- 0.466512, for 50.000kHz

return b"0_0111_0111_0110_1101_1";
when US40 =>

-- 0.466512, for 50.000kHz

return b"0_0111_0111_0110_1101_1";
when VBM1 =>

-- 0.269597, for 25.000kHz

return b"0_0100_0101_0000_0100_1";
when others =>

-- 1.00000, for no filter

return b"1_0000_0000_0000_0000_0";
end case;

end function get_coef;
--

-- Constants

--

constant num_adc: unsigned(1 downto 0):=
get_num_adc(module_id);

constant num_dac: unsigned(1 downto 0):=
get_num_dac(module_id);

constant coef: unsigned(17 downto 0):=
get_coef(module_id);

--

-- Local signals for DCM

--

signal gclk: std_logic;
signal gclk0: std_logic;
signal clk: std_logic;
signal clkfx: std_logic;
signal clki0: std_logic;
signal clkifb: std_logic;
signal clkifx: std_logic;
signal clki: std_logic;
--

-- Local signals for FM receiver

--

signal fm_smp: std_logic;
signal cnt_5us: unsigned(8 downto 0);
signal cnt_ones: unsigned(8 downto 0);
signal fm_sr: std_logic_vector(11 downto 0);
signal fm_bits: unsigned(15 downto 0);
--

-- Local signals for pattern detector

--

signal fm_sync: std_logic_vector(0 downto 0);
signal fm_cnt: unsigned(7 downto 0);
signal timestamp: unsigned(59 downto 0);

248

Guil
lau

me G
arr

ea
u

--

-- Local signals for sequencer

--

signal seq_cnt: unsigned(36 downto 0);
signal seq_acc: unsigned(19 downto 0);
signal seq_sync: std_logic_vector(0 downto 0);
--

-- Local signals for phase detector

--

signal phs_cur: unsigned(1 downto 0);
signal phs_prv: unsigned(1 downto 0);
signal phs_vld: unsigned(5 downto 0);
signal phs_cnt: unsigned(19 downto 0);
signal phs_lst: unsigned(19 downto 0);
signal phs_inc: unsigned(18 downto 0);
--

-- Local signals for RSSI ADC

--

signal fm_dat_d: std_logic;
signal rssi: unsigned(7 downto 0);
--

-- Local signals for DAC table lookup

--

signal dac_cnt: unsigned(5 downto 0);
signal dac_phs: unsigned(4 downto 0);
signal dac_dat: unsigned(15 downto 0);
signal dac_ndat: unsigned(15 downto 0);
signal dac_pdat: unsigned(15 downto 0);
--

-- Local signals for DAC control

--

signal dac_ncs: std_logic;
signal dac_clk: std_logic;
signal dac_ndin: std_logic;
signal dac_pdin: std_logic;
--

-- Local signals for PGA control

--

signal pga_ncs: std_logic;
signal pga_clk: std_logic;
signal pga_dio: std_logic;
signal pga_act: std_logic;
signal pga_lst: unsigned(7 downto 0);
--

-- Local signals for ADC control

--

signal adc_sck: std_logic;
signal adc_cnv: std_logic;
signal adc0_sdo_d: std_logic;
signal adc1_sdo_d: std_logic;
signal adc2_sdo_d: std_logic;
signal adc3_sdo_d: std_logic;
signal adc0_in: unsigned(15 downto 0);
signal adc1_in: unsigned(15 downto 0);
signal adc2_in: unsigned(15 downto 0);
signal adc3_in: unsigned(15 downto 0);
--

-- Local signals for ADC filtering

--

signal prod: std_logic_vector(35 downto 0);-- No reg
signal mult: unsigned(17 downto 0);-- No reg
signal round: unsigned(16 downto 0);-- No reg
signal filt0: unsigned(15 downto 0);
signal filt1: unsigned(15 downto 0);
signal filt2: unsigned(15 downto 0);
signal filt3: unsigned(15 downto 0);
--

-- Local signals for RAM data storage

--

signal ram_cnt: unsigned(2 downto 0);
signal ram_addr: unsigned(9 downto 0);
signal ram_data: unsigned(15 downto 0);
signal ram_wea: std_logic_vector(1 downto 0);
signal ram_nnb: std_logic;
signal ram_min: unsigned(15 downto 0);
signal ram_max: unsigned(15 downto 0);
signal ram_wen: std_logic_vector(2 downto 0);-- No reg

249

Guil
lau

me G
arr

ea
u

--

-- Local signals for serial transmit

--

signal dtr_d: std_logic;
signal rts_d: std_logic;
signal ser_rst: std_logic;
signal ser_cyc: unsigned(4 downto 0);
signal ser_bit: unsigned(3 downto 0);
signal ser_addr: unsigned(10 downto 0);
signal ser_out: std_logic_vector(7 downto 0);
signal ser_nnb: std_logic_vector(0 downto 0);
--

-- Local signals for buffer controller

--

signal ctrl_gen: std_logic_vector(1 downto 0);
signal ctrl_ser: std_logic_vector(1 downto 0);
signal ctrl_spr: std_logic;
signal ctrl_data: std_logic_vector(23 downto 0);-- No reg
signal ctrl_out: std_logic_vector(7 downto 0);-- No reg
--

-- Local signals for serial receive

--

signal ser_cnt: unsigned(8 downto 0);
signal ser_in: unsigned(6 downto 0);
signal pga: unsigned(15 downto 0);
signal txd_d: std_logic;
--

-- Initial registered internal signal values

--

attribute INIT: string;
attribute INIT of fm_smp: signal is b"0";
attribute INIT of cnt_5us: signal is b"0_0011_1110";
attribute INIT of cnt_ones: signal is b"0_0001_1111";
attribute INIT of fm_sr: signal is b"1000_1000_1000";
attribute INIT of fm_bits: signal is b"1111_1111_1111_1111";
attribute INIT of fm_sync: signal is b"0";
attribute INIT of fm_cnt: signal is b"000000_00";
attribute INIT of timestamp: signal is b"0000_0000_0000_0000_0000_0000_0000_0000_0000_0000_0000_0000_0000_0000_0000";
attribute INIT of seq_cnt: signal is b"0000_0000_0000_0000_00_0000_0000_000_0_000_0000";
attribute INIT of seq_acc: signal is b"00_0000_0000_0000_0000_00";
attribute INIT of seq_sync: signal is b"0";
attribute INIT of phs_cur: signal is b"01";
attribute INIT of phs_prv: signal is b"01";
attribute INIT of phs_vld: signal is b"00_0000";
attribute INIT of phs_cnt: signal is b"00_0000_0000_0000_0000_00";
attribute INIT of phs_lst: signal is b"00_0000_0000_0000_0000_00";
attribute INIT of phs_inc: signal is b"1_0000_0000_0000_0000_00";
attribute INIT of fm_dat_d: signal is b"0";
attribute INIT of rssi: signal is b"0000_0001";
attribute INIT of dac_cnt: signal is b"000000";
attribute INIT of dac_phs: signal is b"00000";
attribute INIT of dac_dat: signal is b"1000_0000_0000_0000";
attribute INIT of dac_ndat: signal is b"1000_0000_0000_0000";
attribute INIT of dac_pdat: signal is b"1000_0000_0000_0000";
attribute INIT of dac_ncs: signal is b"1";
attribute INIT of dac_clk: signal is b"0";
attribute INIT of dac_ndin: signal is b"0";
attribute INIT of dac_pdin: signal is b"0";
attribute INIT of pga_ncs: signal is b"1";
attribute INIT of pga_clk: signal is b"0";
attribute INIT of pga_dio: signal is b"0";
attribute INIT of pga_act: signal is b"0";
attribute INIT of pga_lst: signal is b"0000_0000";
attribute INIT of adc_sck: signal is b"0";
attribute INIT of adc_cnv: signal is b"1";
attribute INIT of adc0_sdo_d: signal is b"1";
attribute INIT of adc1_sdo_d: signal is b"1";
attribute INIT of adc2_sdo_d: signal is b"1";
attribute INIT of adc3_sdo_d: signal is b"1";
attribute INIT of adc0_in: signal is b"1111_1111_1111_1111";
attribute INIT of adc1_in: signal is b"1111_1111_1111_1111";
attribute INIT of adc2_in: signal is b"1111_1111_1111_1111";
attribute INIT of adc3_in: signal is b"1111_1111_1111_1111";
attribute INIT of filt0: signal is b"1000_0000_0000_0000";
attribute INIT of filt1: signal is b"1000_0000_0000_0000";
attribute INIT of filt2: signal is b"1000_0000_0000_0000";
attribute INIT of filt3: signal is b"1000_0000_0000_0000";

250

Guil
lau

me G
arr

ea
u

attribute INIT of ram_cnt: signal is b"000";
attribute INIT of ram_addr: signal is b"00_0000_0000";
attribute INIT of ram_data: signal is b"1111_1111_1111_1111";
attribute INIT of ram_wea: signal is b"00";
attribute INIT of ram_nnb: signal is b"0";
attribute INIT of ram_min: signal is b"1111_1111_1111_1111";
attribute INIT of ram_max: signal is b"0000_0000_0000_0000";
attribute INIT of dtr_d: signal is b"1";
attribute INIT of rts_d: signal is b"1";
attribute INIT of ser_rst: signal is b"1";
attribute INIT of ser_cyc: signal is b"11101";
attribute INIT of ser_bit: signal is b"1001";
attribute INIT of ser_addr: signal is b"000_0000_0000";
attribute INIT of ser_out: signal is b"11111111";
attribute INIT of ser_nnb: signal is b"0";
attribute INIT of ctrl_gen: signal is b"00";
attribute INIT of ctrl_ser: signal is b"11";
attribute INIT of ctrl_spr: signal is b"0";
attribute INIT of ser_cnt: signal is b"1001_01110";
attribute INIT of ser_in: signal is b"000_0000";
attribute INIT of pga: signal is b"0010_1010_0000_0001";
attribute INIT of txd_d: signal is b"1";
--

-- Initial registered external signal values

--

attribute INIT of fm_clk: signal is b"0";
attribute INIT of fm_ncs: signal is b"0";
attribute INIT of ft_rxd: signal is b"1";
attribute INIT of ok_fm: signal is b"0";
attribute INIT of ok_adc: signal is b"1111_1111_1111_1111";
attribute INIT of ok_state: signal is b"11";

begin
--

-- DCM:

-- Clock input: xtal -> IBUFG -> gclk -> DCM

-- Feedback: DCM -> gclk0 -> BUFG -> clk

-- FM local oscillator: DCM -> clkfx -> BUFG -> fm_lo

--

-- Feedback: DCM -> clki0 -> BUFG -> clkifb

-- Internal clock: DCM -> clkifx -> BUFG -> clki

--

u_ibufg: IBUFG

generic map (
IOSTANDARD=>"LVCMOS33"

)

port map (
O=>gclk,

I=>xtal

);

u_dcm: DCM_SP

generic map (
CLKDV_DIVIDE=>2.0,

CLKFX_DIVIDE=>17,

CLKFX_MULTIPLY=>14,

CLKIN_DIVIDE_BY_2=>false,

CLKIN_PERIOD=>13.0,

CLKOUT_PHASE_SHIFT=>"NONE",

CLK_FEEDBACK=>"1X",

DESKEW_ADJUST=>"SYSTEM_SYNCHRONOUS",

DFS_FREQUENCY_MODE=>"LOW",

DLL_FREQUENCY_MODE=>"LOW",

DSS_MODE=>"NONE",

DUTY_CYCLE_CORRECTION=>true,

FACTORY_JF=>X"c080",

PHASE_SHIFT=>0,

STARTUP_WAIT=>false

)

port map (
CLK0=>gclk0,

CLK180=>open,
CLK270=>open,
CLK2X=>open,
CLK2X180=>open,
CLK90=>open,
CLKDV=>open,
CLKFX=>clkfx,

CLKFX180=>open,

251

Guil
lau

me G
arr

ea
u

LOCKED=>open,
PSDONE=>open,
STATUS=>open,
CLKFB=>clk,

CLKIN=>gclk,

DSSEN=>’0’,

PSCLK=>’0’,

PSEN=>’0’,

PSINCDEC=>’0’,

RST=>’0’

);

u_fb: BUFG

port map (
O=>clk,

I=>gclk0

);

u_bufg: BUFG

port map (
O=>fm_lo,

I=>clkfx

);

u_dcmi: DCM_SP

generic map (
CLKDV_DIVIDE=>2.0,

CLKFX_DIVIDE=>5,

CLKFX_MULTIPLY=>6,

CLKIN_DIVIDE_BY_2=>false,

CLKIN_PERIOD=>13.0,

CLKOUT_PHASE_SHIFT=>"NONE",

CLK_FEEDBACK=>"1X",

DESKEW_ADJUST=>"SYSTEM_SYNCHRONOUS",

DFS_FREQUENCY_MODE=>"LOW",

DLL_FREQUENCY_MODE=>"LOW",

DSS_MODE=>"NONE",

DUTY_CYCLE_CORRECTION=>true,

FACTORY_JF=>X"c080",

PHASE_SHIFT=>0,

STARTUP_WAIT=>false

)

port map (
CLK0=>clki0,

CLK180=>open,
CLK270=>open,
CLK2X=>open,
CLK2X180=>open,
CLK90=>open,
CLKDV=>open,
CLKFX=>clkifx,

CLKFX180=>open,
LOCKED=>open,
PSDONE=>open,
STATUS=>open,
CLKFB=>clkifb,

CLKIN=>gclk,

DSSEN=>’0’,

PSCLK=>’0’,

PSEN=>’0’,

PSINCDEC=>’0’,

RST=>’0’

);

u_fbi: BUFG

port map (
O=>clkifb,

I=>clki0

);

u_bufgi: BUFG

port map (
O=>clki,

I=>clkifx

);

--

-- RAM block instantiation

--

blk_0: RAMB16BWE_S18_S9

generic map (

252

Guil
lau

me G
arr

ea
u

INIT_A=>X"00000",

INIT_B=>X"000",

SIM_COLLISION_CHECK=>"ALL",

SRVAL_A=>X"00000",

SRVAL_B=>X"000",

WRITE_MODE_A=>"WRITE_FIRST",

WRITE_MODE_B=>"WRITE_FIRST"

)

port map (
DOA=>open,
DOB=>ctrl_data(7 downto 0),
DOPA=>open,
DOPB=>open,
ADDRA=>std_logic_vector(ram_addr),
ADDRB=>std_logic_vector(ser_addr),
CLKA=>clki,

CLKB=>clki,

DIA=>std_logic_vector(ram_data),
DIB=>b"00000000",

DIPA=>b"00",

DIPB=>b"0",

ENA=>ram_wen(0),

ENB=>’1’,

SSRA=>’0’,

SSRB=>’0’,

WEA=>ram_wea,

WEB=>’0’

);

blk_1: RAMB16BWE_S18_S9

generic map (
INIT_A=>X"00000",

INIT_B=>X"000",

SIM_COLLISION_CHECK=>"ALL",

SRVAL_A=>X"00000",

SRVAL_B=>X"000",

WRITE_MODE_A=>"WRITE_FIRST",

WRITE_MODE_B=>"WRITE_FIRST"

)

port map (
DOA=>open,
DOB=>ctrl_data(15 downto 8),
DOPA=>open,
DOPB=>open,
ADDRA=>std_logic_vector(ram_addr),
ADDRB=>std_logic_vector(ser_addr),
CLKA=>clki,

CLKB=>clki,

DIA=>std_logic_vector(ram_data),
DIB=>b"00000000",

DIPA=>b"00",

DIPB=>b"0",

ENA=>ram_wen(1),

ENB=>’1’,

SSRA=>’0’,

SSRB=>’0’,

WEA=>ram_wea,

WEB=>’0’

);

blk_2: RAMB16BWE_S18_S9

generic map (
INIT_A=>X"00000",

INIT_B=>X"000",

SIM_COLLISION_CHECK=>"ALL",

SRVAL_A=>X"00000",

SRVAL_B=>X"000",

WRITE_MODE_A=>"WRITE_FIRST",

WRITE_MODE_B=>"WRITE_FIRST"

)

port map (
DOA=>open,
DOB=>ctrl_data(23 downto 16),
DOPA=>open,
DOPB=>open,
ADDRA=>std_logic_vector(ram_addr),
ADDRB=>std_logic_vector(ser_addr),
CLKA=>clki,

CLKB=>clki,

253

Guil
lau

me G
arr

ea
u

DIA=>std_logic_vector(ram_data),
DIB=>b"00000000",

DIPA=>b"00",

DIPB=>b"0",

ENA=>ram_wen(2),

ENB=>’1’,

SSRA=>’0’,

SSRB=>’0’,

WEA=>ram_wea,

WEB=>’0’

);

--

-- 18x18 multiplier block instantiation

--

mult_0: MULT18X18SIO

generic map (
AREG=>0,

BREG=>0,

B_INPUT=>"DIRECT",

PREG=>1

)

port map (
BCOUT=>open,
P=>prod,

A=>std_logic_vector(mult),
B=>std_logic_vector(coef),
BCIN=>b"00_0000_0000_0000_0000",

CEA=>’1’,

CEB=>’1’,

CEP=>’1’,

CLK=>clki,

RSTA=>’0’,

RSTB=>’0’,

RSTP=>’0’

);

--

-- FM receiver

--

-- The signal from the FM receiver section is sampled into

-- fm_smp.

--

-- cnt_5us nominally counts from 62 (b"0_0011_1110") to 511

-- (450 clock cycles). The count is started at 61

-- (b"0_0011_1101") if the interval needs to be lengthened, or

-- at 63 (b"0_0011_1111") if it needs to be shortened.

--

-- cnt_ones counts the number of times the comparator output

-- is high. If the number exceeds 225, the bit for that

-- interval is considered to be a one, otherwise it is

-- considered to be a zero. To make the detection easier, the

-- counter is started from 31 (b"0_0001_1111"), so that the

-- MSB is set when the number of ones reaches 226.

--

-- The pulse width from the comparator is expected to be

-- shorter than 5us, so if the interval ends with the

-- comparator output high, it is assumed that the intervals

-- are straddling bit boundaries, and that the interval phase

-- needs to be adjusted. The direction of the adjustment is

-- based on whether the interval had a majority of ones

-- (cnt_ones(8)=’1’), in which case the interval is stretched,

-- or a majority of zeros (cnt_ones(8)=’0’), in which case the

-- interval is shrunk.

--

-- Ideal:

-- : 1 : 0 : 1 : 0 :

-- : _________ : : _________ : :

-- :/ \:___________:/ \:___________:

--

-- Interval ending late, shrink needed:

-- : 1 : 0 : 1 : 0 :

-- :_______ : _:_______ : _:

-- : ___:_________/ : ___:_________/ :

--

-- Interval ending early, stretch needed:

-- : 1 : 0 : 1 : 0 :

254

Guil
lau

me G
arr

ea
u

-- : _______:_ : _______:_ :

-- :___/ : _________:___/ : _________:

--

-- The raw bits (cnt_ones(8)) are stored in shift register

-- fm_sr.

--

process(clki)
begin

if (rising_edge(clki)) then
-- Sample comparator output

fm_smp<=fm_cmp;

-- Interval counter

if (cnt_5us=b"1_1111_1111") then
if (fm_smp=’1’) and

(cnt_ones(8)=’1’) then
-- Lengthen interval

cnt_5us<=b"0_0011_1101";

elsif (fm_smp=’1’) and
(cnt_ones(8)=’0’) then
-- Shorten interval

cnt_5us<=b"0_0011_1111";

else
-- Maintain interval

cnt_5us<=b"0_0011_1110";

end if;
else

cnt_5us<=cnt_5us+1;

end if;

-- Ones counter

if (cnt_5us=b"1_1111_1111") then
if (fm_smp=’1’) then

-- Start at 32

cnt_ones<=b"0_0010_0000";

else
-- Start at 31

cnt_ones<=b"0_0001_1111";

end if;
else

if (fm_smp=’1’) then
cnt_ones<=cnt_ones+1;

end if;
end if;

-- Raw bits shift register

if (cnt_5us=b"1_1111_1111") then
if (cnt_ones(8)=’1’) then

fm_sr<=fm_sr(10 downto 0)&’1’;
ok_fm<=’1’;

else
fm_sr<=fm_sr(10 downto 0)&’0’;
ok_fm<=’0’;

end if;
end if;

-- Sample the fm comparator output every 2/3us

-- (1.5MHz)

if (num_adc=b"000") then
if (seq_cnt(7 downto 0)=b"0_010_1001") or

(seq_cnt(7 downto 0)=b"0_110_0101") or
(seq_cnt(7 downto 0)=b"1_100_0111") then
fm_bits<=fm_bits(14 downto 0)&

fm_smp;

end if;
else

fm_bits<=b"1111_1111_1111_1111";

end if;
end if;

end process;

--

-- Pattern detector

--

-- A one data bit is encoded as 1010. A zero data bit is

-- encoded as 1000. A frame sync data bit is encoded as 0010.

-- The frame sync data bit is always preceeded by at least two

255

Guil
lau

me G
arr

ea
u

-- zero data bits, so the pattern to look for is 1000 1000

-- 0010.

--

process(clki)
begin

if (rising_edge(clki)) then
-- Detect frame sync

if (cnt_5us=b"1_1111_1111") and
(fm_sr=b"1000_1000_0010") then
fm_sync<=b"1";

else
fm_sync<=b"0";

end if;

-- Raw bit counter

if (cnt_5us=b"1_1111_1111") then
if (fm_sr=b"1000_1000_0010") then

fm_cnt(1 downto 0)<=b"00";
fm_cnt(7 downto 2)<=b"000000";

else
fm_cnt(1 downto 0)<=

fm_cnt(1 downto 0)+1;
if (fm_cnt(1 downto 0)=b"11") and

(fm_cnt(7 downto 2)/=b"111100") then
fm_cnt(7 downto 2)<=

fm_cnt(7 downto 2)+1;
end if;

end if;
end if;

-- Data bit shift register

if (cnt_5us=b"1_1111_1111") and
(fm_cnt(1 downto 0)=b"11") and
(fm_cnt(7 downto 2)/=b"111100") then
if (fm_sr(3 downto 0)=b"1010") then

timestamp<=’1’&

timestamp(59 downto 1);
else

timestamp<=’0’&

timestamp(59 downto 1);
end if;

end if;
end if;

end process;

--

-- Sequencer counter

--

-- The sequence counter is divided into four parts:

--

-- seq_cnt(6 downto 0): Starts at 38 and counts to 127 when

-- seq_cnt(7) is 1, starts at 37, 38 or

-- 39 when seq_cnt(7) is 0.

-- seq_cnt(7): Starts at 0 and counts to 1.

-- seq_cnt(10 downto 8): Starts at 0 and counts to 4.

-- seq_cnt(20 downto 11): Starts at 0 and counts to 959.

-- seq_cnt(36 downto 21): Starts at 1 and counts to 65535

--

-- Note that seq(10 downto 7) effectively starts at 0 and

-- counts to 9. But because seq_cnt(7) is used to control the

-- range of the lower seven bits, it is grouped seperately.

--

-- The lower 8 bits may start at one of three possible values,

-- according to whether the next 2 microsecond interval needs

-- to be stretched, maintained, or shrunk. But the sequence

-- will always cover the following pattern:

--

-- 0_37 0_010_0101 (optional -- stretch)

-- 0_38 0_010_0110 (optional -- maintain)

-- 0_39 0_010_0111

-- ...

-- 0_127 0_111_1111

-- 1_38 1_010_0110

-- ...

-- 1_127 1_111_1111

--

-- This permits the values from x_39 to x_127 to be reliably

256

Guil
lau

me G
arr

ea
u

-- used by the DACs (which run a 1MHz), and the values 0_39 to

-- 1_127 to be reliably used by the ADCs (which run at

-- 500kHz). The values 0_37 and 0_38 should be designed to

-- occur during the stretchable portion of the ADC sequence.

--

-- The cycle length is dependent on the value of phs_inc,

-- which is a fixed-point number, with a single integer bit.

-- It is added to seq_acc 4800 times before being updated (on

-- seq_sync).

--

-- Examples:

--

-- phs_inc=0.0000: 4800*181.0=868800 cycles -> 9653.33us

-- phs_inc=0.5000: 4800*180.5=866400 cycles -> 9626.67us

-- phs_inc=1.0000: 4800*180.0=864000 cycles -> 9600.00us

-- phs_inc=1.5000: 4800*179.5=861600 cycles -> 9573.33us

-- phs_inc=2.0000: 4800*179.0=859200 cycles -> 9546.67us

--

process(clki)
begin

if (rising_edge(clki)) then
-- Bits 7 downto 0

if (seq_cnt(7 downto 0)=b"1_111_1111") then
case (seq_acc(19 downto 18)) is

when b"00" =>
-- Start at 37

seq_cnt(7 downto 0)<=
b"0_010_0101";

when b"01" =>
-- Start at 38

seq_cnt(7 downto 0)<=
b"0_010_0110";

when others =>
-- Start at 39

seq_cnt(7 downto 0)<=
b"0_010_0111";

end case;
seq_acc<=(b"00"&seq_acc(17 downto 0))+

(b"0"&phs_inc);

elsif (seq_cnt(7 downto 0)=b"0_111_1111") then
-- Start at 38

seq_cnt(7 downto 0)<=
b"1_010_0110";

else
-- Increment

seq_cnt(6 downto 0)<=
seq_cnt(6 downto 0)+1;

end if;

-- Bits 10 downto 8

if (seq_cnt(7 downto 0)=b"1_111_1111") then
if (seq_cnt(10 downto 8)=b"100") then

seq_cnt(10 downto 8)<=b"000";
else

seq_cnt(10 downto 8)<=
seq_cnt(10 downto 8)+1;

end if;
end if;

-- Bits 20 downto 11

if (seq_cnt(7 downto 0)=b"1_111_1111") and
(seq_cnt(10 downto 8)=b"100") then
if (seq_cnt(20 downto 11)=b"11_1011_1111") then

seq_cnt(20 downto 11)<=
b"00_0000_0000";

else
seq_cnt(20 downto 11)<=

seq_cnt(20 downto 11)+1;
end if;

end if;

-- Bits 36 downto 21

if (seq_cnt(7 downto 0)=b"1_111_1111") and
(seq_cnt(10 downto 8)=b"100") and
(seq_cnt(20 downto 11)=b"11_1011_1111") then
if (seq_cnt(36 downto 21)=b"1111_1111_1111_1111") then

seq_cnt(36 downto 21)<=

257

Guil
lau

me G
arr

ea
u

b"0000_0000_0000_0001";

else
seq_cnt(36 downto 21)<=

seq_cnt(36 downto 21)+1;
end if;

end if;

-- Sequencer sync

if (seq_cnt(7 downto 0)=b"1_111_1111") and
(seq_cnt(10 downto 8)=b"100") and
(seq_cnt(20 downto 11)=b"11_1011_1111") then
seq_sync<=b"1";

else
seq_sync<=b"0";

end if;
end if;

end process;

--

-- Phase detector

--

-- The phase detector measures the number of clock cycles

-- between seq_sync and fm_sync, and sets the increment

-- accordingly.

--

-- phs_cnt is reset whenever either seq_sync or fm_sync is

-- seen. phs_lst records the last value of phs_cnt.

--

-- phs_inc is a fixed-point number with a one bit integer

-- portion. It is set to 1-phase_error, where phase_error is

-- the phs_lst (when phs_lst<=phs_cnt) or -phs_cnt (when

-- phs_lst>phs_cnt). In the special case where the two syncs

-- occur simultaneously, phase_error is zero by definition, so

-- phs_inc is set to 1.

--

-- This algorithm works fine if the sync pulses alternates,

-- which is what happens when we are locked in to the

-- transmitter. But if the transmitter is not on, we get a

-- lot of spurious fm_sync.

--

-- To handle this, we keep track in phs_cur of the number of

-- fm_sync seen in each seq_sync interval. This number should

-- be nominally 1, but can occasionally be 0 or 2. It should

-- never be 3, nor should there be consecutive intervals of

-- non-one values. If an error is detected, phs_vld is

-- incremented. If a normal interval count occurs, phs_vld is

-- decremented. The phase increment is only set to a

-- non-unity value if phs_vld is zero.

--

process(clki)
begin

if (rising_edge(clki)) then
-- Count number of fm_sync pulses between

-- seq_sync

case (seq_sync&fm_sync) is
when b"01" =>

if (phs_cur/=b"11") then
phs_cur<=phs_cur+1;

end if;
when b"10" =>

phs_cur<=b"00";

when b"11" =>

phs_cur<=b"01";

when others =>
null;

end case;

-- Error checking

if (seq_sync=b"1") then
if ((phs_cur=b"01") and

(phs_prv/=b"11")) or
((phs_prv=b"01") and
(phs_cur/=b"11")) then
if (phs_vld/=b"00_0000") then

phs_vld<=phs_vld-1;

end if;
else

258

Guil
lau

me G
arr

ea
u

if (phs_vld/=b"11_1111") then
phs_vld<=phs_vld+1;

end if;
end if;
phs_prv<=phs_cur;

end if;

-- Interval count

if (seq_sync=b"1") or (fm_sync=b"1") then
phs_lst<=phs_cnt;

phs_cnt<=b"00_0000_0000_0000_0000_00";

else
phs_cnt<=phs_cnt+1;

end if;

-- Increment adjust

if (seq_sync=b"1") then
if (fm_sync/=b"1") and

(phs_vld=b"00_0000") then
if (phs_lst>phs_cnt) then

if (phs_cnt>b"00_1111_1111_1111_1111_11") then
phs_inc<=

b"1_1111_1111_1111_1111_11";

else
phs_inc<=

b"1_0000_0000_0000_0000_00"+phs_cnt(18 downto 0);
end if;

else
if (phs_lst>b"00_1111_1111_1111_1111_11") then

phs_inc<=

b"0_0000_0000_0000_0000_01";

else
phs_inc<=

b"1_0000_0000_0000_0000_00"-phs_lst(18 downto 0);
end if;

end if;
else

phs_inc<=

b"1_0000_0000_0000_0000_00";

end if;
end if;

end if;
end process;

--

-- RSSI ADC control

--

-- The code keeps fm_ncs low so that the ADC will output zeros

-- indefinetely. Otherwise, when fm_ncs goes high, the output

-- becomes high-Z, and the line will float.

--

-- The maximum clock rate is 14.4Mhz, but there is no

-- convenient sequencer bits to achieve this. The best we can

-- do is 9 or 10 MHz. Since speed is not required, the chosen

-- clock rate is 1 MHz to keep the code simple.

--

-- Because seq_cnt(10 downto 7) only goes from 0 to 9, but we

-- need 12 cycles, the conversion must be initiated at the end

-- of the previous frame. Fortunately, the null bits make

-- this easy to do.

--

-- 11_1011_1111__100__0__101_0010: fm_clk<=0, fm_ncs<=1

-- 11_1011_1111__100__0__111_1111: fm_clk<=1

--

-- 11_1011_1111__100__1__101_0010: fm_clk<=0, fm_ncs<=0

-- 11_1011_1111__100__1__111_1111: fm_clk<=1, fm_dat is null

--

-- 00_0000_0000__000__0__101_0010: fm_clk<=0

-- 00_0000_0000__000__0__111_1111: fm_clk<=1, fm_dat is null

--

-- 00_0000_0000__000__1__101_0010: fm_clk<=0

-- 00_0000_0000__000__1__111_1111: fm_clk<=1, fm_dat is null

--

-- 00_0000_0000__001__0__101_0010: fm_clk<=0

-- 00_0000_0000__001__0__111_1111: fm_clk<=1, rssi(7)<=fm_dat

--

-- 00_0000_0000__001__1__101_0010: fm_clk<=0

259

Guil
lau

me G
arr

ea
u

-- 00_0000_0000__001__1__111_1111: fm_clk<=1, rssi(6)<=fm_dat

--

-- 00_0000_0000__010__0__101_0010: fm_clk<=0

-- 00_0000_0000__010__0__111_1111: fm_clk<=1, rssi(5)<=fm_dat

--

-- 00_0000_0000__010__1__101_0010: fm_clk<=0

-- 00_0000_0000__010__1__111_1111: fm_clk<=1, rssi(4)<=fm_dat

--

-- 00_0000_0000__011__0__101_0010: fm_clk<=0

-- 00_0000_0000__011__0__111_1111: fm_clk<=1, rssi(3)<=fm_dat

--

-- 00_0000_0000__011__1__101_0010: fm_clk<=0

-- 00_0000_0000__011__1__111_1111: fm_clk<=1, rssi(2)<=fm_dat

--

-- 00_0000_0000__100__0__101_0010: fm_clk<=0

-- 00_0000_0000__100__0__111_1111: fm_clk<=1, rssi(1)<=fm_dat

--

-- 00_0000_0000__100__1__101_0010: fm_clk<=0

-- 00_0000_0000__100__1__111_1111: fm_clk<=1, rssi(0)<=fm_dat

--

process(clki)
begin

if (rising_edge(clki)) then-- Maximum is 14.4MHz
-- Update input latch

fm_dat_d<=fm_dat;

-- RSSI ADC clock

if (seq_cnt(6 downto 0)=b"101_0010") then
fm_clk<=’0’;

elsif (seq_cnt(6 downto 0)=b"111_1111") then
fm_clk<=’1’;

end if;

-- RSSI ADC chip select

if (seq_cnt(6 downto 0)=b"101_0010") and
(seq_cnt(10 downto 8)=b"100") and
(seq_cnt(20 downto 11)=b"11_1011_1111") then
if (seq_cnt(7)=’0’) then

fm_ncs<=’1’;

else
fm_ncs<=’0’;

end if;
end if;

-- RSSI ADC data

if (seq_cnt(6 downto 0)=b"111_1111") and
(seq_cnt(20 downto 11)=b"00_0000_0000") then
case (seq_cnt(10 downto 7)) is

when b"0010" =>
rssi(7)<=fm_dat_d;

when b"0011" =>
rssi(6)<=fm_dat_d;

when b"0100" =>
rssi(5)<=fm_dat_d;

when b"0101" =>
rssi(4)<=fm_dat_d;

when b"0110" =>
rssi(3)<=fm_dat_d;

when b"0111" =>
rssi(2)<=fm_dat_d;

when b"1000" =>
rssi(1)<=fm_dat_d;

when b"1001" =>
if (rssi(7 downto 1)=b"0000_000") then

rssi(0)<=

’1’;

else
rssi(0)<=

fm_dat_d;

end if;
when others =>

null;
end case;

end if;
end if;

end process;

260

Guil
lau

me G
arr

ea
u

DAC_LOOKUP_40_GEN: if (module_id=US40) generate
--

-- DAC table lookup

--

-- 40.000kHz differential sine output requires 25

-- sample points, of which only 13 are unique.

--

-- dac_cnt dac_phs

-- 00_0000 0_0000

-- 00_0001 0_0001

-- 00_0010 0_0010

-- 00_0011 0_0011

-- 00_0100 0_0100

-- 00_0101 0_0101

-- 00_0110 0_0110

-- 00_0111 0_0111

-- 00_1000 0_1000

-- 00_1001 0_1001

-- 00_1010 0_1010

-- 00_1011 0_1011

-- 00_1100 0_1100

-- 00_1101 1_1100

-- 00_1110 1_1011

-- 00_1111 1_1010

-- 01_0000 1_1001

-- 01_0001 1_1000

-- 01_0010 1_0111

-- 01_0011 1_0110

-- 01_0100 1_0101

-- 01_0101 1_0100

-- 01_0110 1_0011

-- 01_0111 1_0010

-- 01_1000 1_0001

--

process(clki)
begin

if (rising_edge(clki)) then
-- Sequence counter

if (seq_cnt(6 downto 0)=b"111_1100") then
if (dac_cnt(4 downto 0)=b"11000") or

(seq_cnt(20 downto 7)=b"11_1011_1111_100_1") then
dac_cnt(4 downto 0)<=b"00000";

else
dac_cnt(4 downto 0)<=dac_cnt(4 downto 0)+1;

end if;
end if;

-- Table reduction phase adjustement

if (seq_cnt(6 downto 0)=b"111_1101") then
if (dac_cnt(4 downto 0)<b"01101") then

dac_phs(3 downto 0)<=dac_cnt(3 downto 0);
dac_phs(4)<=’0’;

else
dac_phs(3 downto 0)<=b"1001"-dac_cnt(3 downto 0);
dac_phs(4)<=’1’;

end if;
end if;

-- Sine lookup

if (seq_cnt(6 downto 0)=b"111_1110") then
case (dac_phs(3 downto 0)) is

when b"0000" =>
dac_dat<=b"1000_0000_0000_0000";

when b"0001" =>
dac_dat<=b"1001_1111_1101_0101";

when b"0010" =>
dac_dat<=b"1011_1101_1010_1010";

when b"0011" =>
dac_dat<=b"1101_0111_1001_1111";

when b"0100" =>
dac_dat<=b"1110_1100_0001_0010";

when b"0101" =>
dac_dat<=b"1111_1001_1011_1011";

when b"0110" =>
dac_dat<=b"1111_1111_1011_1110";

when b"0111" =>
dac_dat<=b"1111_1101_1011_1011";

261

Guil
lau

me G
arr

ea
u

when b"1000" =>
dac_dat<=b"1111_0011_1101_0000";

when b"1001" =>
dac_dat<=b"1110_0010_1001_1111";

when b"1010" =>
dac_dat<=b"1100_1011_0011_1100";

when b"1011" =>
dac_dat<=b"1010_1111_0001_1110";

when others =>

dac_dat<=b"1001_0000_0000_1011";

end case;
end if;

-- Output assignment

if (seq_cnt(6 downto 0)=b"111_1111") then
if (dac_phs(4)=’0’) then

dac_ndat<=b"0000_0000_0000_0000"-dac_dat;

dac_pdat<=dac_dat;

else
dac_ndat<=dac_dat;

dac_pdat<=b"0000_0000_0000_0000"-dac_dat;

end if;
end if;

end if;
end process;

end generate;

DAC_LOOKUP_33_GEN: if (module_id=US33) generate
--

-- DAC table lookup

--

-- 33.333kHz differential sine output requires 30

-- sample points, of which only 8 are unique.

--

-- dac_cnt dac_phs

-- 00_0000 0_000

-- 00_0001 0_001

-- 00_0010 0_010

-- 00_0011 0_011

-- 00_0100 0_100

-- 00_0101 0_101

-- 00_0110 0_110

-- 00_0111 0_111

-- 00_1000 0_111

-- 00_1001 0_110

-- 00_1010 0_101

-- 00_1011 0_100

-- 00_1100 0_011

-- 00_1101 0_010

-- 00_1110 0_001

-- 01_0000 1_000

-- 01_0001 1_001

-- 01_0010 1_010

-- 01_0011 1_011

-- 01_0100 1_100

-- 01_0101 1_101

-- 01_0110 1_110

-- 01_0111 1_111

-- 01_1000 1_111

-- 01_1001 1_110

-- 01_1010 1_101

-- 01_1011 1_100

-- 01_1100 1_011

-- 01_1101 1_010

-- 01_1110 1_001

--

process(clki)
begin

if (rising_edge(clki)) then
-- Sequence counter

if (seq_cnt(6 downto 0)=b"111_1100") then
if (seq_cnt(20 downto 7)=b"11_1011_1111_100_1") then

dac_cnt(4 downto 0)<=b"00000";
elsif (dac_cnt(3 downto 0)=b"1110") then

dac_cnt(3 downto 0)<=b"0000";
dac_cnt(4 downto 4)<=dac_cnt(4 downto 4)+1;

else

262

Guil
lau

me G
arr

ea
u

dac_cnt(3 downto 0)<=dac_cnt(3 downto 0)+1;
end if;

end if;

-- Table reduction phase adjustement

if (seq_cnt(6 downto 0)=b"111_1101") then
dac_phs(3)<=dac_cnt(4);

if (dac_cnt(3 downto 0)<b"1000") then
dac_phs(2 downto 0)<=dac_cnt(2 downto 0);

else
dac_phs(2 downto 0)<=b"111"-dac_cnt(2 downto 0);

end if;
end if;

-- Sine lookup

if (seq_cnt(6 downto 0)=b"111_1110") then
case (dac_phs(2 downto 0)) is

when b"000" =>
dac_dat<=b"1000_0000_0000_0000";

when b"001" =>
dac_dat<=b"1001_1010_1001_1101";

when b"010" =>
dac_dat<=b"1011_0100_0001_0000";

when b"011" =>
dac_dat<=b"1100_1011_0011_1100";

when b"100" =>
dac_dat<=b"1101_1111_0001_1111";

when b"101" =>
dac_dat<=b"1110_1110_1101_1001";

when b"110" =>
dac_dat<=b"1111_1001_1011_1011";

when others =>
dac_dat<=b"1111_1111_0100_1011";

end case;
end if;

-- Output assignment

if (seq_cnt(6 downto 0)=b"111_1111") then
if (dac_phs(3)=’0’) then

dac_ndat<=b"0000_0000_0000_0000"-dac_dat;

dac_pdat<=dac_dat;

else
dac_ndat<=dac_dat;

dac_pdat<=b"0000_0000_0000_0000"-dac_dat;

end if;
end if;

end if;
end process;

end generate;

DAC_LOOKUP_25_GEN: if (module_id=US25) generate
--

-- DAC table lookup

--

-- 25.000kHz differential sine output requires 40

-- sample points, of which only 11 are unique.

--

-- dac_cnt dac_phs

-- 00_0000 0_0000

-- 00_0001 0_0001

-- 00_0010 0_0010

-- 00_0011 0_0011

-- 00_0100 0_0100

-- 00_0101 0_0101

-- 00_0110 0_0110

-- 00_0111 0_0111

-- 00_1000 0_1000

-- 00_1001 0_1001

-- 01_0000 0_1010

-- 01_0001 0_1001

-- 01_0010 0_1000

-- 01_0011 0_0111

-- 01_0100 0_0110

-- 01_0101 0_0101

-- 01_0110 0_0100

-- 01_0111 0_0011

-- 01_1000 0_0010

263

Guil
lau

me G
arr

ea
u

-- 01_1001 0_0001

-- 10_0000 1_0000

-- 10_0001 1_0001

-- 10_0010 1_0010

-- 10_0011 1_0011

-- 10_0100 1_0100

-- 10_0101 1_0101

-- 10_0110 1_0110

-- 10_0111 1_0111

-- 10_1000 1_1000

-- 10_1001 1_1001

-- 11_0000 1_1010

-- 11_0001 1_1001

-- 11_0010 1_1000

-- 11_0011 1_0111

-- 11_0100 1_0110

-- 11_0101 1_0101

-- 11_0110 1_0100

-- 11_0111 1_0011

-- 11_1000 1_0010

-- 11_1001 1_0001

--

process(clki)
begin

if (rising_edge(clki)) then
-- Sequence counter

if (seq_cnt(6 downto 0)=b"111_1100") then
if (seq_cnt(20 downto 7)=b"11_1011_1111_100_1") then

dac_cnt(5 downto 0)<=b"000000";
elsif (dac_cnt(3 downto 0)=b"1001") then

dac_cnt(3 downto 0)<=b"0000";
dac_cnt(5 downto 4)<=dac_cnt(5 downto 4)+1;

else
dac_cnt(3 downto 0)<=dac_cnt(3 downto 0)+1;

end if;
end if;

-- Table reduction phase adjustement

if (seq_cnt(6 downto 0)=b"111_1101") then
dac_phs(4)<=dac_cnt(5);

if (dac_cnt(4)=’0’) then
dac_phs(3 downto 0)<=dac_cnt(3 downto 0);

else
dac_phs(3 downto 0)<=b"1010"-dac_cnt(3 downto 0);

end if;
end if;

-- Sine lookup

if (seq_cnt(6 downto 0)=b"111_1110") then
case (dac_phs(3 downto 0)) is

when b"0000" =>
dac_dat<=b"1000_0000_0000_0000";

when b"0001" =>
dac_dat<=b"1001_0100_0000_0110";

when b"0010" =>
dac_dat<=b"1010_0111_1000_1110";

when b"0011" =>
dac_dat<=b"1011_1010_0001_1100";

when b"0100" =>
dac_dat<=b"1100_1011_0011_1100";

when b"0101" =>
dac_dat<=b"1101_1010_1000_0010";

when b"0110" =>
dac_dat<=b"1110_0111_1000_1101";

when b"0111" =>
dac_dat<=b"1111_0010_0000_1100";

when b"1000" =>
dac_dat<=b"1111_1001_1011_1011";

when b"1001" =>
dac_dat<=b"1111_1110_0110_1100";

when others =>

dac_dat<=b"1111_1111_1111_1111";

end case;
end if;

-- Output assignment

if (seq_cnt(6 downto 0)=b"111_1111") then

264

Guil
lau

me G
arr

ea
u

if (dac_phs(4)=’0’) then
dac_ndat<=b"0000_0000_0000_0000"-dac_dat;

dac_pdat<=dac_dat;

else
dac_ndat<=dac_dat;

dac_pdat<=b"0000_0000_0000_0000"-dac_dat;

end if;
end if;

end if;
end process;

end generate;

DAC_LOOKUP_NO_DAC: if (num_dac=b"00") generate
dac_ndat<=b"1000_0000_0000_0000";

dac_pdat<=b"1000_0000_0000_0000";

end generate;

--

-- DAC control

--

ndac_ncs<=dac_ncs when (num_dac/=b"00") else ’1’;
ndac_clk<=dac_clk when (num_dac/=b"00") else ’0’;
ndac_din<=dac_ndin when (num_dac/=b"00") else ’0’;
ndac_ncl<=’1’;

pdac_ncs<=dac_ncs when (num_dac/=b"00") else ’1’;
pdac_clk<=dac_clk when (num_dac/=b"00") else ’0’;
pdac_din<=dac_pdin when (num_dac/=b"00") else ’0’;
pdac_ncl<=’1’;

process(clki)
begin

if (rising_edge(clki)) then
case (seq_cnt(6 downto 0)) is

when b"101_1111" =>
dac_ncs<=’0’;

dac_ndin<=dac_ndat(15);

dac_pdin<=dac_pdat(15);

when b"110_0000" =>
dac_clk<=’1’;

when b"110_0001" =>
dac_clk<=’0’;

dac_ndin<=dac_ndat(14);

dac_pdin<=dac_pdat(14);

when b"110_0010" =>
dac_clk<=’1’;

when b"110_0011" =>
dac_clk<=’0’;

dac_ndin<=dac_ndat(13);

dac_pdin<=dac_pdat(13);

when b"110_0100" =>
dac_clk<=’1’;

when b"110_0101" =>
dac_clk<=’0’;

dac_ndin<=dac_ndat(12);

dac_pdin<=dac_pdat(12);

when b"110_0110" =>
dac_clk<=’1’;

when b"110_0111" =>
dac_clk<=’0’;

dac_ndin<=dac_ndat(11);

dac_pdin<=dac_pdat(11);

when b"110_1000" =>
dac_clk<=’1’;

when b"110_1001" =>
dac_clk<=’0’;

dac_ndin<=dac_ndat(10);

dac_pdin<=dac_pdat(10);

when b"110_1010" =>
dac_clk<=’1’;

when b"110_1011" =>
dac_clk<=’0’;

dac_ndin<=dac_ndat(9);

dac_pdin<=dac_pdat(9);

when b"110_1100" =>
dac_clk<=’1’;

when b"110_1101" =>
dac_clk<=’0’;

dac_ndin<=dac_ndat(8);

265

Guil
lau

me G
arr

ea
u

dac_pdin<=dac_pdat(8);

when b"110_1110" =>
dac_clk<=’1’;

when b"110_1111" =>
dac_clk<=’0’;

dac_ndin<=dac_ndat(7);

dac_pdin<=dac_pdat(7);

when b"111_0000" =>
dac_clk<=’1’;

when b"111_0001" =>
dac_clk<=’0’;

dac_ndin<=dac_ndat(6);

dac_pdin<=dac_pdat(6);

when b"111_0010" =>
dac_clk<=’1’;

when b"111_0011" =>
dac_clk<=’0’;

dac_ndin<=dac_ndat(5);

dac_pdin<=dac_pdat(5);

when b"111_0100" =>
dac_clk<=’1’;

when b"111_0101" =>
dac_clk<=’0’;

dac_ndin<=dac_ndat(4);

dac_pdin<=dac_pdat(4);

when b"111_0110" =>
dac_clk<=’1’;

when b"111_0111" =>
dac_clk<=’0’;

dac_ndin<=dac_ndat(3);

dac_pdin<=dac_pdat(3);

when b"111_1000" =>
dac_clk<=’1’;

when b"111_1001" =>
dac_clk<=’0’;

dac_ndin<=dac_ndat(2);

dac_pdin<=dac_pdat(2);

when b"111_1010" =>
dac_clk<=’1’;

when b"111_1011" =>
dac_clk<=’0’;

dac_ndin<=dac_ndat(1);

dac_pdin<=dac_pdat(1);

when b"111_1100" =>
dac_clk<=’1’;

when b"111_1101" =>
dac_clk<=’0’;

dac_ndin<=dac_ndat(0);

dac_pdin<=dac_pdat(0);

when b"111_1110" =>
dac_clk<=’1’;

when b"111_1111" =>
dac_ncs<=’1’;

dac_clk<=’0’;

when others =>
null;

end case;
end if;

end process;

--

-- PGA control

--

pga0_ncs<=pga_ncs when (num_adc>b"000") else ’1’;
pga0_dio<=pga_dio when (num_adc>b"000") else ’0’;
pga0_clk<=pga_clk when (num_adc>b"000") else ’0’;
pga1_ncs<=pga_ncs when (num_adc>b"001") else ’1’;
pga1_dio<=pga_dio when (num_adc>b"001") else ’0’;
pga1_clk<=pga_clk when (num_adc>b"001") else ’0’;
pga2_ncs<=pga_ncs when (num_adc>b"010") else ’1’;
pga2_dio<=pga_dio when (num_adc>b"010") else ’0’;
pga2_clk<=pga_clk when (num_adc>b"010") else ’0’;
pga3_ncs<=pga_ncs when (num_adc>b"011") else ’1’;
pga3_dio<=pga_dio when (num_adc>b"011") else ’0’;
pga3_clk<=pga_clk when (num_adc>b"011") else ’0’;
process(clki)
begin

266

Guil
lau

me G
arr

ea
u

if (rising_edge(clki)) then
if (seq_cnt(7 downto 0)=b"0_010_1010") and

(pga_lst/=pga(7 downto 0)) then
pga_act<=’1’;

elsif (seq_cnt(7 downto 0)=b"1_111_1111") and
(pga_lst=pga(7 downto 0)) then
pga_act<=’0’;

end if;

if (pga_act=’1’) then
case (seq_cnt(7 downto 0)) is

when b"0_010_1111" =>
pga_ncs<=’0’;

pga_dio<=pga(15);

when b"0_011_0100" =>
pga_clk<=’1’;

when b"0_011_1001" =>
pga_clk<=’0’;

pga_dio<=pga(14);

when b"0_011_1110" =>
pga_clk<=’1’;

when b"0_100_0011" =>
pga_clk<=’0’;

pga_dio<=pga(13);

when b"0_100_1000" =>
pga_clk<=’1’;

when b"0_100_1101" =>
pga_clk<=’0’;

pga_dio<=pga(12);

when b"0_101_0010" =>
pga_clk<=’1’;

when b"0_101_0111" =>
pga_clk<=’0’;

pga_dio<=pga(11);

when b"0_101_1100" =>
pga_clk<=’1’;

when b"0_110_0001" =>
pga_clk<=’0’;

pga_dio<=pga(10);

when b"0_110_0110" =>
pga_clk<=’1’;

when b"0_110_1011" =>
pga_clk<=’0’;

pga_dio<=pga(9);

when b"0_111_0000" =>
pga_clk<=’1’;

when b"0_111_0101" =>
pga_clk<=’0’;

pga_dio<=pga(8);

when b"0_111_1010" =>
pga_clk<=’1’;

when b"0_111_1111" =>
pga_clk<=’0’;

pga_dio<=pga(7);

when b"1_010_1010" =>
pga_clk<=’1’;

when b"1_010_1111" =>
pga_clk<=’0’;

pga_dio<=pga(6);

when b"1_011_0100" =>
pga_clk<=’1’;

when b"1_011_1001" =>
pga_clk<=’0’;

pga_dio<=pga(5);

when b"1_011_1110" =>
pga_clk<=’1’;

when b"1_100_0011" =>
pga_clk<=’0’;

pga_dio<=pga(4);

when b"1_100_1000" =>
pga_clk<=’1’;

when b"1_100_1101" =>
pga_clk<=’0’;

pga_dio<=pga(3);

when b"1_101_0010" =>
pga_clk<=’1’;

when b"1_101_0111" =>

267

Guil
lau

me G
arr

ea
u

pga_clk<=’0’;

pga_dio<=pga(2);

when b"1_101_1100" =>
pga_clk<=’1’;

when b"1_110_0001" =>
pga_clk<=’0’;

pga_dio<=pga(1);

when b"1_110_0110" =>
pga_clk<=’1’;

when b"1_110_1011" =>
pga_clk<=’0’;

pga_dio<=pga(0);

when b"1_111_0000" =>
pga_clk<=’1’;

when b"1_111_0101" =>
pga_clk<=’0’;

when b"1_111_1010" =>
pga_ncs<=’1’;

pga_lst<=pga(7 downto 0);
when others =>

null;
end case;

end if;
end if;

end process;

--

-- ADC control

--

-- ADC values of 0000_0000_0000_0000 are mapped to

-- 0000_0000_0000_0001 to prevent all-zeros in the data

-- stream. The all-zeros is reserved for encoding the frame

-- sync.

--

-- ADC control signals on the following seq_cnt(7 downto 0):

--

-- 1_101_1110 (1_94): adc_sck high

-- 1_101_1111 (1_95): adc_sck low

-- 1_110_0000 (1_96): adc_sck high, adc bit 15

-- 1_110_0001 (1_97): adc_sck low

-- 1_110_0010 (1_98): adc_sck high, adc bit 14

-- 1_110_0011 (1_99): adc_sck low

-- 1_110_0100 (1_100): adc_sck high, adc bit 13

-- 1_110_0101 (1_101): adc_sck low

-- 1_110_0110 (1_102): adc_sck high, adc bit 12

-- 1_110_0111 (1_103): adc_sck low

-- 1_110_1000 (1_104): adc_sck high, adc bit 11

-- 1_110_1001 (1_105): adc_sck low

-- 1_110_1010 (1_106): adc_sck high, adc bit 10

-- 1_110_1011 (1_107): adc_sck low

-- 1_110_1100 (1_108): adc_sck high, adc bit 9

-- 1_110_1101 (1_109): adc_sck low

-- 1_110_1110 (1_110): adc_sck high, adc bit 8

-- 1_110_1111 (1_111): adc_sck low

-- 1_111_0000 (1_112): adc_sck high, adc bit 7

-- 1_111_0001 (1_113): adc_sck low

-- 1_111_0010 (1_114): adc_sck high, adc bit 6

-- 1_111_0011 (1_115): adc_sck low

-- 1_111_0100 (1_116): adc_sck high, adc bit 5

-- 1_111_0101 (1_117): adc_sck low

-- 1_111_0110 (1_118): adc_sck high, adc bit 4

-- 1_111_0111 (1_119): adc_sck low

-- 1_111_1000 (1_120): adc_sck high, adc bit 3

-- 1_111_1001 (1_121): adc_sck low

-- 1_111_1010 (1_122): adc_sck high, adc bit 2

-- 1_111_1011 (1_123): adc_sck low

-- 1_111_1100 (1_124): adc_sck high, adc bit 1

-- 1_111_1101 (1_125): adc_sck low, adc_cnv low

-- 1_111_1110 (1_126): adc_sck high, adc bit 0

-- 1_111_1111 (1_127): adc_cnv high

--

adc0_sdi<=’0’;

adc0_sck<=adc_sck when (num_adc>b"000") else ’1’;
adc0_cnv<=adc_cnv when (num_adc>b"000") else ’1’;
adc1_sdi<=’0’;

adc1_sck<=adc_sck when (num_adc>b"001") else ’1’;
adc1_cnv<=adc_cnv when (num_adc>b"001") else ’1’;

268

Guil
lau

me G
arr

ea
u

adc2_sdi<=’0’;

adc2_sck<=adc_sck when (num_adc>b"010") else ’1’;
adc2_cnv<=adc_cnv when (num_adc>b"010") else ’1’;
adc3_sdi<=’0’;

adc3_sck<=adc_sck when (num_adc>b"011") else ’1’;
adc3_cnv<=adc_cnv when (num_adc>b"011") else ’1’;
process(clki)
begin

if (rising_edge(clki)) then
-- Update input latches

if (num_adc>b"000") then
adc0_sdo_d<=adc0_sdo;

else
adc0_sdo_d<=’1’;

end if;
if (num_adc>b"001") then

adc1_sdo_d<=adc1_sdo;

else
adc1_sdo_d<=’1’;

end if;
if (num_adc>b"010") then

adc2_sdo_d<=adc2_sdo;

else
adc2_sdo_d<=’1’;

end if;
if (num_adc>b"011") then

adc3_sdo_d<=adc3_sdo;

else
adc3_sdo_d<=’1’;

end if;

case (seq_cnt(7 downto 0)) is
when b"1_101_1110" =>

adc_sck<=’1’;

when b"1_101_1111" =>
adc_sck<=’0’;

when b"1_110_0000" =>
adc_sck<=’1’;

adc0_in(15)<=adc0_sdo_d;

adc1_in(15)<=adc1_sdo_d;

adc2_in(15)<=adc2_sdo_d;

adc3_in(15)<=adc3_sdo_d;

when b"1_110_0001" =>
adc_sck<=’0’;

when b"1_110_0010" =>
adc_sck<=’1’;

adc0_in(14)<=adc0_sdo_d;

adc1_in(14)<=adc1_sdo_d;

adc2_in(14)<=adc2_sdo_d;

adc3_in(14)<=adc3_sdo_d;

when b"1_110_0011" =>
adc_sck<=’0’;

when b"1_110_0100" =>
adc_sck<=’1’;

adc0_in(13)<=adc0_sdo_d;

adc1_in(13)<=adc1_sdo_d;

adc2_in(13)<=adc2_sdo_d;

adc3_in(13)<=adc3_sdo_d;

when b"1_110_0101" =>
adc_sck<=’0’;

when b"1_110_0110" =>
adc_sck<=’1’;

adc0_in(12)<=adc0_sdo_d;

adc1_in(12)<=adc1_sdo_d;

adc2_in(12)<=adc2_sdo_d;

adc3_in(12)<=adc3_sdo_d;

when b"1_110_0111" =>
adc_sck<=’0’;

when b"1_110_1000" =>
adc_sck<=’1’;

adc0_in(11)<=adc0_sdo_d;

adc1_in(11)<=adc1_sdo_d;

adc2_in(11)<=adc2_sdo_d;

adc3_in(11)<=adc3_sdo_d;

when b"1_110_1001" =>
adc_sck<=’0’;

when b"1_110_1010" =>

269

Guil
lau

me G
arr

ea
u

adc_sck<=’1’;

adc0_in(10)<=adc0_sdo_d;

adc1_in(10)<=adc1_sdo_d;

adc2_in(10)<=adc2_sdo_d;

adc3_in(10)<=adc3_sdo_d;

when b"1_110_1011" =>
adc_sck<=’0’;

when b"1_110_1100" =>
adc_sck<=’1’;

adc0_in(9)<=adc0_sdo_d;

adc1_in(9)<=adc1_sdo_d;

adc2_in(9)<=adc2_sdo_d;

adc3_in(9)<=adc3_sdo_d;

when b"1_110_1101" =>
adc_sck<=’0’;

when b"1_110_1110" =>
adc_sck<=’1’;

adc0_in(8)<=adc0_sdo_d;

adc1_in(8)<=adc1_sdo_d;

adc2_in(8)<=adc2_sdo_d;

adc3_in(8)<=adc3_sdo_d;

when b"1_110_1111" =>
adc_sck<=’0’;

when b"1_111_0000" =>
adc_sck<=’1’;

adc0_in(7)<=adc0_sdo_d;

adc1_in(7)<=adc1_sdo_d;

adc2_in(7)<=adc2_sdo_d;

adc3_in(7)<=adc3_sdo_d;

when b"1_111_0001" =>
adc_sck<=’0’;

when b"1_111_0010" =>
adc_sck<=’1’;

adc0_in(6)<=adc0_sdo_d;

adc1_in(6)<=adc1_sdo_d;

adc2_in(6)<=adc2_sdo_d;

adc3_in(6)<=adc3_sdo_d;

when b"1_111_0011" =>
adc_sck<=’0’;

when b"1_111_0100" =>
adc_sck<=’1’;

adc0_in(5)<=adc0_sdo_d;

adc1_in(5)<=adc1_sdo_d;

adc2_in(5)<=adc2_sdo_d;

adc3_in(5)<=adc3_sdo_d;

when b"1_111_0101" =>
adc_sck<=’0’;

when b"1_111_0110" =>
adc_sck<=’1’;

adc0_in(4)<=adc0_sdo_d;

adc1_in(4)<=adc1_sdo_d;

adc2_in(4)<=adc2_sdo_d;

adc3_in(4)<=adc3_sdo_d;

when b"1_111_0111" =>
adc_sck<=’0’;

when b"1_111_1000" =>
adc_sck<=’1’;

adc0_in(3)<=adc0_sdo_d;

adc1_in(3)<=adc1_sdo_d;

adc2_in(3)<=adc2_sdo_d;

adc3_in(3)<=adc3_sdo_d;

when b"1_111_1001" =>
adc_sck<=’0’;

when b"1_111_1010" =>
adc_sck<=’1’;

adc0_in(2)<=adc0_sdo_d;

adc1_in(2)<=adc1_sdo_d;

adc2_in(2)<=adc2_sdo_d;

adc3_in(2)<=adc3_sdo_d;

when b"1_111_1011" =>
adc_sck<=’0’;

when b"1_111_1100" =>
adc_sck<=’1’;

adc0_in(1)<=adc0_sdo_d;

adc1_in(1)<=adc1_sdo_d;

adc2_in(1)<=adc2_sdo_d;

adc3_in(1)<=adc3_sdo_d;

270

Guil
lau

me G
arr

ea
u

when b"1_111_1101" =>
adc_sck<=’0’;

adc_cnv<=’0’;

when b"1_111_1110" =>
if (adc0_in(15 downto 1)/=b"0000_0000_0000_000") then

adc0_in(0)<=

adc0_sdo_d;

else
adc0_in(0)<=

’1’;

end if;
if (adc1_in(15 downto 1)/=b"0000_0000_0000_000") then

adc1_in(0)<=

adc1_sdo_d;

else
adc1_in(0)<=

’1’;

end if;
if (adc2_in(15 downto 1)/=b"0000_0000_0000_000") then

adc2_in(0)<=

adc2_sdo_d;

else
adc2_in(0)<=

’1’;

end if;
if (adc3_in(15 downto 1)/=b"0000_0000_0000_000") then

adc3_in(0)<=

adc3_sdo_d;

else
adc3_in(0)<=

’1’;

end if;
when b"1_111_1111" =>

adc_cnv<=’1’;

when others =>
null;

end case;
end if;

end process;

--

-- ADC output to Opal Kelly

--

-- The raw ADC output is sent to the Opal Kelly via dedicated

-- pins. Since the four ADCs are sampled at 500ksps, the

-- output to the Opal Kelly must be updated at 2Msps. The

-- state pins indicate which ADC value is being outputted

-- (gray code):

--

-- State 00: ADC 0

-- State 01: ADC 1

-- State 11: ADC 2

-- State 10: ADC 3

--

-- The ADC data registers are being updated from seq_cnt

-- 1_110_0000 (1_96) to 1_111_1110 (1_126), so the registers

-- must be read at other times, spaced 45 clock cycles apart.

-- The chosen times are:

--

-- 0_010_0111 (0_39)

-- 0_101_0100 (0_84)

-- 1_010_0111 (1_39)

-- 1_101_0100 (1_84)

--

process(clki)
begin

if (rising_edge(clki)) then
if (dacq_gen=dacq_gen2) then

case (seq_cnt(7 downto 0)) is
when b"0_010_0111" =>

ok_adc<=

std_logic_vector(adc0_in);
ok_state<=b"00";

when b"0_101_0100" =>
ok_adc<=

std_logic_vector(adc1_in);
ok_state<=b"01";

271

Guil
lau

me G
arr

ea
u

when b"1_010_0111" =>
ok_adc<=

std_logic_vector(adc2_in);
ok_state<=b"11";

when b"1_101_0100" =>
ok_adc<=

std_logic_vector(adc3_in);
ok_state<=b"10";

when others =>
null;

end case;
else

ok_adc<=b"1111_1111_1111_1111";

ok_state<=b"11";

end if;
end if;

end process;

--

-- ADC filtering

--

-- The filter output is:

--

-- y[n+1] = alpha * y[n] + (1-alpha) * x[n]

--

-- or equivalently:

--

-- y[n+1] = y[n] + (1-alpha) * (x[n]-y[n])

--

-- where alpha = exp(-2*pi*Fc/Fs).

--

-- Fs=500kHz, and Fc=12.5kHz, 16.667kHz, 25kHz or 50kHz.

--

-- The difference (x[n]-y[n]) goes from -65534 to +65534 (17

-- bits). (1-alpha) is encoded as a fixed point number, with

-- one sign bit, no integer bit and 17 fractional bits.

--

-- The product (1-alpha) * (x[n]-y[n]) therefore also has 17

-- fractional bits. Before truncating, a 1 followed by 16

-- zeros must be added to achieve rounding of the

-- result. Alternately, we can truncate the lower 16 bits, add

-- 1 (effectively 0.5), and truncate one more bit.

--

-- The computation is pipelined over the five clock cycles of

-- the two microsecond intervals.

--

-- The ADC data is available on seq_cnt(7 downto 0) = 1_127,

-- but we wait one extra cycle to start with seq_cnt(7) = 0.

-- Data is processed on the following seq_cnt(7 downto 0):

--

-- 0_010_0111 (0_39): Channel 0 data enters multiplier

-- 0_010_1000 (0_40): Channel 1 data enters multiplier

-- 0_010_1001 (0_41): Channel 0 data exits multiplier

-- Channel 2 data enters multiplier

-- 0_010_1010 (0_42): Channel 1 data exits multiplier

-- Channel 3 data enters multiplier

-- 0_010_1011 (0_43): Channel 2 data exits multiplier

-- 0_010_1100 (0_44): Channel 3 data exits multiplier

--

round<=unsigned(prod(32 downto 16))+1;
process(clki)
begin

if (rising_edge(clki)) then
case (seq_cnt(7 downto 0)) is

-- Filter with 2 clock cycle

-- propagation

when b"0_010_0111" =>
mult<=(b"00"&adc0_in)-(b"00"&filt0);

when b"0_010_1000" =>
mult<=(b"00"&adc1_in)-(b"00"&filt1);

when b"0_010_1001" =>
filt0<=filt0+round(16 downto 1);
mult<=(b"00"&adc2_in)-(b"00"&filt2);

when b"0_010_1010" =>
filt1<=filt1+round(16 downto 1);
mult<=(b"00"&adc3_in)-(b"00"&filt3);

when b"0_010_1011" =>

272

Guil
lau

me G
arr

ea
u

filt2<=filt2+round(16 downto 1);
when b"0_010_1100" =>

filt3<=filt3+round(16 downto 1);
when others =>

null;
end case;

end if;
end process;

--

-- RAM storage

--

-- Depending on the number of channels, we do one of the

-- following:

--

-- Store 1 sample every 10 microseconds

-- Store 2 samples every 20 microseconds

-- Store 3 samples every 30 microseconds

-- Store 4 samples every 40 microseconds

--

-- The storage sequence starts on seq_cnt(10 downto 0) =

-- 0_0_39, because values 0_0_0 to 0_0_36 are not used, and

-- 0_0_37 and 0_0_38 are not always used.

--

-- Data is stored in RAM on the following seq_cnt(10 downto

-- 0):

--

-- 000_0_010_0111 (0_0_39): Need new buffer

-- 000_0_010_1000 (0_0_40): Address 0: Sync

-- (0000_0000_1111_1111)

-- 000_0_010_1001 (0_0_41): Address 1: Sync

-- (0000_0000_0000_0000)

-- 000_0_010_1010 (0_0_42): Address 2: Module ID

-- 000_0_010_1011 (0_0_43): Address 3: Module ID

-- 000_0_010_1100 (0_0_44): Address 4: Frame index

-- 000_0_010_1101 (0_0_45): Address 5: Timestamp

-- 000_0_010_1110 (0_0_46): Address 6: Timestamp

-- 000_0_010_1111 (0_0_47): Address 7: Timestamp

-- 000_0_011_0000 (0_0_48): Address 8: Timestamp

-- 000_0_011_0001 (0_0_49): Address 9: PGA/RSSI

-- 000_0_011_0010 (0_0_50): Address seq_cnt(20 downto 11)+12:

-- Channel 0 data

-- 000_0_011_0011 (0_0_51): Address seq_cnt(20 downto 11)+13:

-- Channel 1 data

-- 000_0_011_0100 (0_0_52): Address seq_cnt(20 downto 11)+14:

-- Channel 2 data

-- 000_0_011_0101 (0_0_53): Address seq_cnt(20 downto 11)+15:

-- Channel 3 data

-- 000_0_011_0110 (0_0_54): Address 10: Minimum channel value

-- 000_0_011_0111 (0_0_55): Address 11: Maximum channel value

-- 000_0_011_1000 (0_0_56): RAM write ends

--

process(clki)
begin

if (rising_edge(clki)) then
-- Sequence counter

if (seq_cnt(10 downto 0)=b"100_1_111_1111") then
if (num_adc=b"000") or

(ram_cnt=(num_adc-1)) or
(seq_cnt(20 downto 11)=b"11_1011_1111") then
ram_cnt<=b"000";

else
ram_cnt<=ram_cnt+1;

end if;
end if;

-- Store data

if (ram_cnt=b"000") then
case (seq_cnt(10 downto 0)) is

when b"000_0_010_0111" =>
-- Need new buffer

if (seq_cnt(20 downto 11)=b"00_0000_0000") then
ram_nnb<=’1’;

ram_min<=b"1111_1111_1111_1111";

ram_max<=b"0000_0000_0000_0000";

end if;
when b"000_0_010_1000" =>

273

Guil
lau

me G
arr

ea
u

-- Sync

ram_nnb<=’0’;

ram_wea<=b"11";

ram_addr<=b"00_0000_0000";

ram_data<=b"0000_0000_1111_1111";

when b"000_0_010_1001" =>
-- Sync

ram_addr<=b"00_0000_0001";

ram_data<=b"0000_0000_0000_0000";

when b"000_0_010_1010" =>
-- Module ID characters 2 and 1

ram_addr<=b"00_0000_0010";

ram_data<=module_id(23 downto 16)&module_id(31 downto 24);
when b"000_0_010_1011" =>

-- Module ID characters 4 and 3

ram_addr<=b"00_0000_0011";

ram_data<=module_id(7 downto 0)&module_id(15 downto 8);
when b"000_0_010_1100" =>

-- Frame index

ram_addr<=b"00_0000_0100";

ram_data<=seq_cnt(36 downto 21);
when b"000_0_010_1101" =>

-- Timestamp

ram_addr<=b"00_0000_0101";

ram_data<=b"1"×tamp(14 downto 0);
when b"000_0_010_1110" =>

-- Timestamp

ram_addr<=b"00_0000_0110";

ram_data<=b"1"×tamp(29 downto 15);
when b"000_0_010_1111" =>

-- Timestamp

ram_addr<=b"00_0000_0111";

ram_data<=b"1"×tamp(44 downto 30);
when b"000_0_011_0000" =>

-- Timestamp

ram_addr<=b"00_0000_1000";

ram_data<=b"1"×tamp(59 downto 45);
when b"000_0_011_0001" =>

-- PGA/RSSI

ram_addr<=b"00_0000_1001";

ram_data<=pga_lst&rssi;

when b"000_0_011_0010" =>
-- Channel 0 data

if (num_adc>b"000") then
ram_addr<=seq_cnt(20 downto 11)+12;
ram_data<=filt0;

if (ram_min>filt0) then
ram_min<=filt0;

end if;
if (ram_max<filt0) then

ram_max<=filt0;

end if;
else

ram_addr<=seq_cnt(20 downto 11)+12;
ram_data<=fm_bits;

if (ram_min>fm_bits) then
ram_min<=fm_bits;

end if;
if (ram_max<fm_bits) then

ram_max<=fm_bits;

end if;
end if;

when b"000_0_011_0011" =>
-- Channel 1 data

if (num_adc>b"001") then
ram_addr<=seq_cnt(20 downto 11)+13;
ram_data<=filt1;

if (ram_min>filt1) then
ram_min<=filt1;

end if;
if (ram_max<filt1) then

ram_max<=filt1;

end if;
end if;

when b"000_0_011_0100" =>
-- Channel 2 data

if (num_adc>b"010") then

274

Guil
lau

me G
arr

ea
u

ram_addr<=seq_cnt(20 downto 11)+14;
ram_data<=filt2;

if (ram_min>filt2) then
ram_min<=filt2;

end if;
if (ram_max<filt2) then

ram_max<=filt2;

end if;
end if;

when b"000_0_011_0101" =>
-- Channel 3 data

if (num_adc>b"011") then
ram_addr<=seq_cnt(20 downto 11)+15;
ram_data<=filt3;

if (ram_min>filt3) then
ram_min<=filt3;

end if;
if (ram_max<filt3) then

ram_max<=filt3;

end if;
end if;

when b"000_0_011_0110" =>
-- Channel minimum value

ram_addr<=b"00_0000_1010";

ram_data<=ram_min;

when b"000_0_011_0111" =>
-- Channel maximum value

ram_addr<=b"00_0000_1011";

ram_data<=ram_max;

when b"000_0_011_1000" =>
ram_wea<=b"00";

when others =>
null;

end case;
end if;

end if;
end process;

--

-- Transmit serial data

--

process(clki)
begin

if (rising_edge(clki)) then
--

-- Sample input signals

--

dtr_d<=ft_dtr;

rts_d<=ft_rts;

--

-- Serial reset is asserted when DTR goes

-- high, and deasserted when both DTR and RTS

-- are low.

--

if (dtr_d=’0’) and (rts_d=’0’) then
ser_rst<=’0’;

elsif (dtr_d=’1’) then
ser_rst<=’1’;

end if;

--

-- ser_cyc counts from 0 to 29.

-- ser_bit counts from 0 to 9.

-- ser_cyc and ser_bit hold at 29 and 9,

-- respectively.

--

if (ser_cyc/=b"11101") then
ser_cyc<=ser_cyc+1;

elsif (ser_bit/=b"1001") then
ser_cyc<=b"00000";

ser_bit<=ser_bit+1;

elsif (ser_rst=’0’) and
(ctrl_ser/=b"11") and
(rts_d=’0’) and
(dtr_d=’0’) then
ser_cyc<=b"00000";

275

Guil
lau

me G
arr

ea
u

ser_bit<=b"0000";

end if;

--

-- ser_addr counts from 0 to 1943,

-- incrementing every time ser_cyc and ser_bit

-- reach 27 and 9 (respectively).

--

-- It takes one clock cycle for the memory

-- output to update, and one more clock cycle

-- for ser_out to update. So ser_addr is

-- updated 2 clock cycles before ser_cyc and

-- ser_bit roll over.

--

if (ser_cyc=b"11101") and
(ser_bit=b"1001") and
(ser_rst=’1’) then
ser_addr<=b"000_0000_0000";

elsif (ser_cyc=b"11011") and
(ser_bit=b"1001") then
if (ser_addr=b"111_1001_0111") then

ser_addr<=b"000_0000_0000";

else
ser_addr<=ser_addr+1;

end if;
end if;

--

-- ser_out gets the data from the memory one

-- clock at the beginning of the serial cycle.

--

if (ser_cyc=b"00000") and
(ser_bit=b"0000") then
ser_out<=ctrl_out;

end if;

--

-- ser_nnb activates for one clock cycle and

-- one clock cycle before the first read from

-- the memory buffer. ser_nnb also activates

-- on the falling edge of ser_rst.

--

if ((dtr_d=’0’) and
(rts_d=’0’) and
(ser_rst=’1’)) or
((ser_cyc=b"11011") and
(ser_bit=b"1001") and
(ser_addr=b"111_1001_0111")) then
ser_nnb<="1";

else
ser_nnb<="0";

end if;

--

-- ft_rxd is the RS-232 serial output

--

case (ser_bit) is
when b"0000" => ft_rxd<=’0’;
when b"0001" => ft_rxd<=ser_out(0);
when b"0010" => ft_rxd<=ser_out(1);
when b"0011" => ft_rxd<=ser_out(2);
when b"0100" => ft_rxd<=ser_out(3);
when b"0101" => ft_rxd<=ser_out(4);
when b"0110" => ft_rxd<=ser_out(5);
when b"0111" => ft_rxd<=ser_out(6);
when b"1000" => ft_rxd<=ser_out(7);
when others => ft_rxd<=’1’;

end case;
end if;

end process;

--

-- Buffer control

--

-- ctrl_ser encodes the buffer being used by the serial port

-- process:

--

276

Guil
lau

me G
arr

ea
u

-- 00: buf 0

-- 01: buf 1

-- 10: buf 2

-- 11: starved

--

-- ctrl_gen encodes the buffer being used by the data

-- generator process:

--

-- 00: buf 0

-- 01: buf 1

-- 10: buf 2

--

-- ctrl_spr encodes whether or not the spare buffer is full:

--

-- 0: spare is empty

-- 1: spare is full

--

-- If the data generator needs a new buffer:

-- give it the next buffer (mod 3) unless it is being used

-- by the serial port,

-- if the serial port is starving, give it the buffer just

-- filled, otherwise set the full flag.

--

-- If the serial port needs a new buffer:

-- if the spare buffer is emtpy, set the starved state

-- otherwise give it the buffer not being used by the

-- data generator.

--

ctrl_out<=ctrl_data(7 downto 0) when (ctrl_ser=b"00") else
ctrl_data(15 downto 8) when (ctrl_ser=b"01") else
ctrl_data(23 downto 16) when (ctrl_ser=b"10") else
b"0000_0000";

with ctrl_gen select
ram_wen<="001" when b"00",

"010" when b"01",

"100" when b"10",

"000" when others;

process(clki)
begin

if (rising_edge(clki)) then
case (ser_nnb&ram_nnb) is

when b"01" => -- Data generator needs a new buffer
if (ctrl_gen/=b"11") then

if (ctrl_ser/=nxt_buf(ctrl_gen)) then
ctrl_gen<=nxt_buf(ctrl_gen);

else
ctrl_gen<=prv_buf(ctrl_gen);

end if;
if (ctrl_ser=b"11") then

ctrl_ser<=ctrl_gen;

ctrl_spr<=’0’;

else
ctrl_spr<=’1’;

end if;
else -- Something went wrong so reset to sensible values

if (ctrl_ser/=b"00") then
ctrl_gen<=b"00";

else
ctrl_gen<=b"01";

end if;
ctrl_spr<=’0’;

end if;
when b"10" => -- Serial port needs a new buffer

if (ctrl_ser/=b"11") then
if (ctrl_spr=’0’) then

ctrl_ser<=b"11";

else
if (ctrl_gen/=nxt_buf(ctrl_ser)) then

ctrl_ser<=nxt_buf(ctrl_ser);

else
ctrl_ser<=prv_buf(ctrl_ser);

end if;
end if;

end if;
ctrl_spr<=’0’;

when b"11" => -- Data generator and serial port need new buffers

277

Guil
lau

me G
arr

ea
u

if (ctrl_gen/=b"11") then
if (ctrl_ser/=b"11") then

if (ctrl_spr=’0’) then
ctrl_gen<=ctrl_ser;

ctrl_ser<=ctrl_gen;

else
ctrl_gen<=ctrl_ser;

if (ctrl_gen/=nxt_buf(ctrl_ser)) then
ctrl_ser<=nxt_buf(ctrl_ser);

else
ctrl_ser<=prv_buf(ctrl_ser);

end if;
end if;

else
ctrl_gen<=nxt_buf(ctrl_gen);

ctrl_ser<=ctrl_gen;

ctrl_spr<=’0’;

end if;
else -- Something went wrong so reset to sensible values

ctrl_gen<=b"00";

ctrl_ser<=b"11";

ctrl_spr<=’0’;

end if;
when others =>

null;
end case;

end if;
end process;

--

-- Receive serial data

--

ft_cts<=’0’;

ft_dsr<=’0’;

ft_dcd<=’0’;

ft_ri<=’1’;

process(clki)
begin

if (rising_edge(clki)) then
-- Update counter

if (ser_cnt/=b"1001_01110") then
if (ser_cnt(4 downto 0)=b"11101") then

ser_cnt(4 downto 0)<=
b"00000";

ser_cnt(8 downto 5)<=
ser_cnt(8 downto 5)+1;

else
ser_cnt(4 downto 0)<=

ser_cnt(4 downto 0)+1;
end if;

elsif (txd_d=’0’) then
ser_cnt<=b"0000_00000";

end if;

-- Collect serial data

if (ser_cnt(4 downto 0)=b"01110") then
case (ser_cnt(8 downto 5)) is

when b"0001" =>
ser_in(0)<=txd_d;

when b"0010" =>
ser_in(1)<=txd_d;

when b"0011" =>
ser_in(2)<=txd_d;

when b"0100" =>
ser_in(3)<=txd_d;

when b"0101" =>
ser_in(4)<=txd_d;

when b"0110" =>
ser_in(5)<=txd_d;

when b"0111" =>
ser_in(6)<=txd_d;

when b"1000" =>
pga<=b"0010_1010"&

txd_d&ser_in;

when others =>
null;

end case;

278

Guil
lau

me G
arr

ea
u

end if;

-- Update latch

txd_d<=ft_txd;

end if;
end process;

end arch;

The fourth script given is the UCF file for DACQ units.
It is the physical mapping between the pins of the FPGA and the signals used in the
previous VHDL script.

###

#

XC3S50ATQ144 Spartan3AN with 3 blocks of 18kbits RAM

#

###

Last updated: 2012-11-23

Timing constraints for 75MHz oscillator

NET xtal CLOCK_DEDICATED_ROUTE=FALSE;
NET xtal PERIOD=12.5ns;#13.3ns maximum

Timing constraints for internal 90MHz clock

NET clki PERIOD=10.5ns;#11.1ns maximum

Pin assignements

#NET TMS LOC=P1; #TMS

#NET TDI LOC=P2; #TDI

NET fm_cmp LOC=P3; #IO_3,XBUS-6

NET fm_dat LOC=P4; #IO_4,XBUS-8

NET pdac_ncs LOC=P5; #IO_5,XBUS-10

NET ok_adc<0> LOC=P6; #IO_6,XBUS-1

NET ok_adc<1> LOC=P7; #IO_7,XBUS-3

NET ok_adc<2> LOC=P8; #IO_8,XBUS-5

#NET GND LOC=P9; #GND

NET ok_adc<3> LOC=P10; #IO_10,XBUS-7

NET ok_adc<4> LOC=P11; #IO_11,XBUS-9

NET ok_adc<5> LOC=P12; #IO_12,XBUS-11

NET ok_adc<6> LOC=P13; #IO_13,XBUS-12,XBUS-13

#NET 3V3 LOC=P14; #3V3

NET ok_adc<7> LOC=P15; #IO_15,XBUS-14,XBUS-15

NET ok_adc<8> LOC=P16; #IO_16,XBUS-16,XBUS-17

#NET GND LOC=P17; #GND

NET ok_adc<9> LOC=P18; #IO_18,XBUS-18,XBUS-19

NET pdac_clk LOC=P19; #IO_19,XBUS-20,XBUS-21

NET pdac_din LOC=P20; #IO_20,XBUS-22,XBUS-23

NET pdac_ncl LOC=P21; #IO_21,XBUS-24,XBUS-25

#NET 1V2 LOC=P22; #1V2

#NET 3V3 LOC=P23; #3V3

NET ndac_ncs LOC=P24; #IO_24,XBUS-26,XBUS-27

NET ndac_clk LOC=P25; #IO_25,XBUS-28,XBUS-29

#NET GND LOC=P26; #GND

NET ndac_din LOC=P27; #IO_27,XBUS-30,XBUS-31

NET ndac_ncl LOC=P28; #IO_28,XBUS-32,XBUS-33

NET pga3_ncs LOC=P29; #IO_29,XBUS-34,XBUS-35

NET pga3_dio LOC=P30; #IO_30,XBUS-36,XBUS-37

NET ok_adc<10> LOC=P31; #IO_31,XBUS-38,XBUS-39

NET ok_adc<11> LOC=P32; #IO_32,XBUS-40,XBUS-41

NET ok_ctrl<1> LOC=P33; #IP_33,XBUS-42,XBUS-43

#NET GND LOC=P34; #GND

NET ok_ctrl<2> LOC=P35; #IP_35,XBUS-45

#NET 3V3 LOC=P36; #3V3

#NET 3V3 LOC=P37; #M1

#NET 3V3 LOC=P38; #M0

#NET GND LOC=P39; #M2

#NET 3V3 LOC=P40; #3V3

NET ok_adc<12> LOC=P41; #IO_41,XBUS-47

NET ok_adc<13> LOC=P42; #IO_42,XBUS-49

#NET 3V3 LOC=P43; #VS2

#NET 3V3 LOC=P44; #VS1

#NET 3V3 LOC=P45; #VS0

NET ok_adc<14> LOC=P46; #IO_46,XBUS-51

NET ok_adc<15> LOC=P47; #IO_47,XBUS-53

279

Guil
lau

me G
arr

ea
u

NET ok_state<0> LOC=P48; #IO_48,XBUS-55

NET ok_state<1> LOC=P49; #IO_49,XBUS-57

NET pga3_clk LOC=P50; #IO_50,XBUS-44

NET adc3_sdi LOC=P51; #IO_51,XBUS-46

#NET 1V2 LOC=P52; #1V2

NET ok_ctrl<3> LOC=P53; #IP_53,XBUS-48

NET adc3_sck LOC=P54; #IO_GCLK_54,XBUS-50

NET adc3_cnv LOC=P55; #IO_GCLK_55,XBUS-52

#NET GND LOC=P56; #GND

NET adc3_sdo LOC=P57; #IO_GCLK_57,XBUS-54

NET pga2_ncs LOC=P58; #IO_GCLK_58,XBUS-56

NET pga2_dio LOC=P59; #IO_GCLK_59,YBUS-57

NET xtal LOC=P60; #IO_GCLK_60,XTAL

#NET 3V3 LOC=P61; #3V3

NET pga2_clk LOC=P62; #IO_62,YBUS-55

NET adc2_sdi LOC=P63; #IO_63,YBUS-53

NET adc2_sck LOC=P64; #IO_64,YBUS-51

#NET GND LOC=P65; #GND

#NET 3V3 LOC=P66; #3V3

#NET NC LOC=P67; #INIT_B

NET ok_ctrl<8> LOC=P68; #IO_68,YBUS-49

NET adc2_cnv LOC=P69; #IO_69,YBUS-47

NET adc2_sdo LOC=P70; #IO_70,YBUS-45

NET ok_ctrl<7> LOC=P71; #IO_71,YBUS-56

NET ok_ctrl<6> LOC=P72; #IO_72,YBUS-54

#NET NC LOC=P73; #DONE

#NET GND LOC=P74; #SUSPEND

NET ok_fm LOC=P75; #IO_75,YBUS-52

NET ok_dac<15> LOC=P76; #IO_76,YBUS-50

NET ok_dac<14> LOC=P77; #IO_77,YBUS-48

NET ok_dac<13> LOC=P78; #IO_78,YBUS-46

NET ok_dac<12> LOC=P79; #IO_79,YBUS-44

NET ok_ctrl<5> LOC=P80; #IP_80,YBUS-42,YBUS-43

#NET GND LOC=P81; #GND

NET ok_dac<11> LOC=P82; #IO_82,YBUS-40,YBUS-41

NET ok_dac<10> LOC=P83; #IO_83,YBUS-38,YBUS-39

NET pga1_ncs LOC=P84; #IO_84,YBUS-36,YBUS-37

NET pga1_dio LOC=P85; #IO_85,YBUS-34,YBUS-35

#NET 3V3 LOC=P86; #3V3

NET pga1_clk LOC=P87; #IO_87,YBUS-32,YBUS-33

NET adc1_sdi LOC=P88; #IO_88,YBUS-30,YBUS-31

#NET GND LOC=P89; #GND

NET adc1_sck LOC=P90; #IO_90,YBUS-28,YBUS-29

NET adc1_cnv LOC=P91; #IO_91,YBUS-26,YBUS-27

NET adc1_sdo LOC=P92; #IO_92,YBUS-24,YBUS-25

NET pga0_ncs LOC=P93; #IO_93,YBUS-22,YBUS-23

#NET 1V2 LOC=P94; #1V2

#NET 3V3 LOC=P95; #3V3

NET pga0_dio LOC=P96; #IO_96,YBUS-20,YBUS-21

NET ok_ctrl<4> LOC=P97; #IP_97,YBUS-18,YBUS-19

NET ok_dac<9> LOC=P98; #IO_98,YBUS-16,YBUS-17

NET ok_dac<8> LOC=P99; #IO_99,YBUS-14,YBUS-15

#NET GND LOC=P100; #GND

NET ok_dac<7> LOC=P101; #IO_101,YBUS-12,YBUS-13

NET ok_dac<6> LOC=P102; #IO_102,YBUS-10

NET ok_dac<5> LOC=P103; #IO_103,YBUS-8

NET ok_dac<4> LOC=P104; #IO_104,YBUS-6

NET ok_dac<3> LOC=P105; #IO_105,YBUS-4

#NET GND LOC=P106; #GND

#NET TDO LOC=P107; #TDO

#NET 3V3 LOC=P108; #3V3

#NET TCK LOC=P109; #TCK

NET ok_dac<2> LOC=P110; #IO_110,YBUS-2

NET ok_dac<0> LOC=P111; #IO_111,YBUS-0

NET pga0_clk LOC=P112; #IO_112,YBUS-11

NET adc0_sdi LOC=P113; #IO_113,YBUS-9

NET adc0_sck LOC=P114; #IO_114,YBUS-7

NET adc0_cnv LOC=P115; #IO_115,YBUS-5

NET adc0_sdo LOC=P116; #IO_116,YBUS-3

NET ok_dac<1> LOC=P117; #IO_117,YBUS-1

#NET GND LOC=P118; #GND

#NET 3V3 LOC=P119; #3V3

#NET NC LOC=P120; #IO_120

#NET NC LOC=P121; #IO_121

#NET 1V2 LOC=P122; #1V2

NET ft_cbus3 LOC=P123; #IP_123,CBUS3

NET ft_cbus2 LOC=P124; #IO_GCLK_124,CBUS2

280

Guil
lau

me G
arr

ea
u

NET ft_cts LOC=P125; #IO_GCLK_125,

NET ft_dcd LOC=P126; #IO_GCLK_126,

NET ft_dsr LOC=P127; #IO_GCLK_127,

#NET GND LOC=P128; #GND

NET ft_ri LOC=P129; #IO_GCLK_129,

NET ft_rts LOC=P130; #IO_GCLK_130,

NET ft_dtr LOC=P131; #IO_GCLK_131,

NET ft_txd LOC=P132; #IO_GCLK_132,TXD

#NET 3V3 LOC=P133; #3V3

NET ft_rxd LOC=P134; #IO_134,RXD

NET ft_cbus1 LOC=P135; #IO_135,CBUS1

#NET 3V3 LOC=P136; #3V3

#NET GND LOC=P137; #GND

NET ft_cbus0 LOC=P138; #IO_138,CBUS0

NET fm_lo LOC=P139; #IO_139

NET ok_ctrl<0> LOC=P140; #IP_140,XBUS-0

NET fm_ncs LOC=P141; #IO_141,XBUS-2

NET fm_clk LOC=P142; #IO_142,XBUS-4

#NET GND LOC=P143; #PUDC_B

#NET 3V3 LOC=P144; #PROG_B

The fifth VHDL script given is used to tune the FM receiver of the the DACQ
units.
After declaration and initialization of all signals and variables, the first component
instantiated is the DCM to create the necessary clocks from the main crystal fre-
quency. Next, follows the FM receiver process, which is used to detect the raw bit of
the timestamp (5µs period) and adjust the clock period if local clock is too fast or too
slow. Then, there is a process called statistics gathering that used to evaluate how
often the 5µs period is out of sync (too fast or too slow). Then, a process sends those
statistics to the computer.

--

-- Design Name: fm_tune

-- Module Name: fm_tune (top level for implementation)

-- File name: fm_tune.vhd

--

library IEEE;
use IEEE.STD_LOGIC_1164.ALL;
use IEEE.NUMERIC_STD.ALL;
library UNISIM;-- For Xilinx primitives
use UNISIM.VComponents.all;

entity fm_tune is
port(

-- serial interface

txd: in std_logic;
rxd: out std_logic;
rts: in std_logic;
cts: out std_logic;
dtr: in std_logic;
dsr: out std_logic;
dcd: out std_logic;
ri: out std_logic;
cbus0: in std_logic;
cbus1: in std_logic;
cbus2: in std_logic;
cbus3: in std_logic;

-- cbus4: in std_logic;-- rcvr.ucf only

-- DAC interface

ndac_ncs: out std_logic;-- dacq.ucf only
ndac_clk: out std_logic;-- dacq.ucf only
ndac_din: out std_logic;-- dacq.ucf only
ndac_ncl: out std_logic;-- dacq.ucf only

pdac_ncs: out std_logic;-- dacq.ucf only
pdac_clk: out std_logic;-- dacq.ucf only
pdac_din: out std_logic;-- dacq.ucf only
pdac_ncl: out std_logic;-- dacq.ucf only

-- ADC interface

281

Guil
lau

me G
arr

ea
u

pga0_ncs: out std_logic;-- dacq.ucf only
pga0_dio: out std_logic;-- dacq.ucf only
pga0_clk: out std_logic;-- dacq.ucf only
adc0_sdi: out std_logic;-- dacq.ucf only
adc0_sck: out std_logic;-- dacq.ucf only
adc0_cnv: out std_logic;-- dacq.ucf only
adc0_sdo: in std_logic;-- dacq.ucf only

pga1_ncs: out std_logic;-- dacq.ucf only
pga1_dio: out std_logic;-- dacq.ucf only
pga1_clk: out std_logic;-- dacq.ucf only
adc1_sdi: out std_logic;-- dacq.ucf only
adc1_sck: out std_logic;-- dacq.ucf only
adc1_cnv: out std_logic;-- dacq.ucf only
adc1_sdo: in std_logic;-- dacq.ucf only

pga2_ncs: out std_logic;-- dacq.ucf only
pga2_dio: out std_logic;-- dacq.ucf only
pga2_clk: out std_logic;-- dacq.ucf only
adc2_sdi: out std_logic;-- dacq.ucf only
adc2_sck: out std_logic;-- dacq.ucf only
adc2_cnv: out std_logic;-- dacq.ucf only
adc2_sdo: in std_logic;-- dacq.ucf only

pga3_ncs: out std_logic;-- dacq.ucf only
pga3_dio: out std_logic;-- dacq.ucf only
pga3_clk: out std_logic;-- dacq.ucf only
adc3_sdi: out std_logic;-- dacq.ucf only
adc3_sck: out std_logic;-- dacq.ucf only
adc3_cnv: out std_logic;-- dacq.ucf only
adc3_sdo: in std_logic;-- dacq.ucf only

-- FM receiver

fm_ncs: out std_logic;
fm_clk: out std_logic;
fm_cmp: in std_logic;
fm_dat: in std_logic;
fm_lo: out std_logic;

-- Digital I/O

-- rng1: out std_logic;-- rcvr.ucf only

-- rng2: out std_logic;-- rcvr.ucf only

-- Clock input

-- xtlen: out std_logic;-- rcvr.ucf only

xtal: in std_logic
);

end fm_tune;

architecture arch of fm_tune is
--

-- Local signals for DCM

--

signal gclk: std_logic;
signal gclk0: std_logic;
signal clk: std_logic;
signal clkfx: std_logic;
signal clki0: std_logic;
signal clkifb: std_logic;
signal clkifx: std_logic;
signal clki: std_logic;
--

-- Local signals for FM receiver

--

signal fm_smp: std_logic;
signal cnt_5us: unsigned(8 downto 0);
signal cnt_ones: unsigned(8 downto 0);
--

-- Local signals for statistics gathering

--

signal ones_cnt: unsigned(7 downto 0);
signal ones_avg: unsigned(8 downto 0);
signal ones_tmp: unsigned(16 downto 0);
signal zero_cnt: unsigned(7 downto 0);
signal zero_avg: unsigned(8 downto 0);
signal zero_tmp: unsigned(16 downto 0);
signal perc_cnt: unsigned(6 downto 0);

282

Guil
lau

me G
arr

ea
u

signal perc_tmp: unsigned(6 downto 0);
signal perc_avg: unsigned(6 downto 0);
--

-- Serial port state machine

--

signal ser_state: unsigned(9 downto 0);
alias ser_cnt: unsigned(4 downto 0) is ser_state(4 downto 0);
alias ser_bit: unsigned(4 downto 0) is ser_state(9 downto 5);
signal ser_out: unsigned(15 downto 0);
signal txd_d: std_logic;
--

-- Initial registered signal values

--

attribute INIT: string;
attribute INIT of fm_smp: signal is b"0";
attribute INIT of cnt_5us: signal is b"0_0011_1110";
attribute INIT of cnt_ones: signal is b"0_0000_0000";
attribute INIT of ones_cnt: signal is b"0000_0000";
attribute INIT of ones_avg: signal is b"1_1110_0000";
attribute INIT of ones_tmp: signal is b"1_1110_0000_0000_0000";
attribute INIT of zero_cnt: signal is b"0000_0000";
attribute INIT of zero_avg: signal is b"0_0001_1111";
attribute INIT of zero_tmp: signal is b"0_0001_1111_0000_0000";
attribute INIT of ser_state: signal is b"10100_00000";
attribute INIT of ser_out: signal is b"0000_0000_0000_0000";
attribute INIT of txd_d: signal is b"1";

begin
-- xtlen<=’1’;-- rcvr.ucf only

--

-- DCM:

-- Clock input: xtal -> IBUFG -> gclk -> DCM

-- Feedback: DCM -> gclk0 -> BUFG -> clk

-- FM local oscillator: DCM -> clkfx -> BUFG -> fm_lo

--

-- Feedback: DCM -> clki0 -> BUFG -> clkifb

-- Internal clock: DCM -> clkifx -> BUFG -> clki

--

u_ibufg: IBUFG

generic map (
IOSTANDARD=>"LVCMOS33"

)

port map (
O=>gclk,

I=>xtal

);

u_dcm: DCM_SP

generic map (
CLKDV_DIVIDE=>2.0,

CLKFX_DIVIDE=>17,

CLKFX_MULTIPLY=>14,

CLKIN_DIVIDE_BY_2=>false,

CLKIN_PERIOD=>13.0,

CLKOUT_PHASE_SHIFT=>"NONE",

CLK_FEEDBACK=>"1X",

DESKEW_ADJUST=>"SYSTEM_SYNCHRONOUS",

DFS_FREQUENCY_MODE=>"LOW",

DLL_FREQUENCY_MODE=>"LOW",

DSS_MODE=>"NONE",

DUTY_CYCLE_CORRECTION=>true,

FACTORY_JF=>X"c080",

PHASE_SHIFT=>0,

STARTUP_WAIT=>false

)

port map (
CLK0=>gclk0,

CLK180=>open,
CLK270=>open,
CLK2X=>open,
CLK2X180=>open,
CLK90=>open,
CLKDV=>open,
CLKFX=>clkfx,

CLKFX180=>open,
LOCKED=>open,
PSDONE=>open,
STATUS=>open,
CLKFB=>clk,

283

Guil
lau

me G
arr

ea
u

CLKIN=>gclk,

DSSEN=>’0’,

PSCLK=>’0’,

PSEN=>’0’,

PSINCDEC=>’0’,

RST=>’0’

);

u_fb: BUFG

port map (
O=>clk,

I=>gclk0

);

u_bufg: BUFG

port map (
O=>fm_lo,

I=>clkfx

);

u_dcmi: DCM_SP

generic map (
CLKDV_DIVIDE=>2.0,

CLKFX_DIVIDE=>5,

CLKFX_MULTIPLY=>6,

CLKIN_DIVIDE_BY_2=>false,

CLKIN_PERIOD=>13.0,

CLKOUT_PHASE_SHIFT=>"NONE",

CLK_FEEDBACK=>"1X",

DESKEW_ADJUST=>"SYSTEM_SYNCHRONOUS",

DFS_FREQUENCY_MODE=>"LOW",

DLL_FREQUENCY_MODE=>"LOW",

DSS_MODE=>"NONE",

DUTY_CYCLE_CORRECTION=>true,

FACTORY_JF=>X"c080",

PHASE_SHIFT=>0,

STARTUP_WAIT=>false

)

port map (
CLK0=>clki0,

CLK180=>open,
CLK270=>open,
CLK2X=>open,
CLK2X180=>open,
CLK90=>open,
CLKDV=>open,
CLKFX=>clkifx,

CLKFX180=>open,
LOCKED=>open,
PSDONE=>open,
STATUS=>open,
CLKFB=>clkifb,

CLKIN=>gclk,

DSSEN=>’0’,

PSCLK=>’0’,

PSEN=>’0’,

PSINCDEC=>’0’,

RST=>’0’

);

u_fbi: BUFG

port map (
O=>clkifb,

I=>clki0

);

u_bufgi: BUFG

port map (
O=>clki,

I=>clkifx

);

--

-- FM receiver

--

process(clki)
begin

if (rising_edge(clki)) then
-- Sample comparator output

fm_smp<=fm_cmp;

284

Guil
lau

me G
arr

ea
u

-- Interval counter

if (cnt_5us=b"1_1111_1111") then
if (fm_smp=’1’) and (cnt_ones(8)=’1’) then

cnt_5us<=b"0_0011_1101";-- Lengthen interval

elsif (fm_smp=’1’) and (cnt_ones(8)=’0’) then
cnt_5us<=b"0_0011_1111";-- Shorten interval

else
cnt_5us<=b"0_0011_1110";

end if;
else

cnt_5us<=cnt_5us+1;

end if;

-- Ones counter

if (cnt_5us=b"1_1111_1111") then
if (fm_smp=’1’) then

cnt_ones<=b"0_0010_0000";-- Start at 32

else
cnt_ones<=b"0_0001_1111";-- Start at 31

end if;
else

if (fm_smp=’1’) then
cnt_ones<=cnt_ones+1;

end if;
end if;

end if;
end process;

--

-- Statistics gathering

--

process(clki)
begin

if (rising_edge(clki)) then
if (cnt_5us=b"1_1111_1111") then

if (cnt_ones(8)=’1’) then
if (ones_cnt=b"1111_1111") then

ones_avg<=ones_tmp(16 downto 8);
ones_tmp<=(b"0000_0000"&cnt_ones);

else
ones_tmp<=ones_tmp+(b"0000_0000"&cnt_ones);

end if;
ones_cnt<=ones_cnt+1;

if (perc_cnt=b"110_0011") then
perc_avg<=perc_tmp;

perc_tmp<=b"000_0001";

perc_cnt<=b"000_0000";

else
perc_tmp<=perc_tmp+1;

perc_cnt<=perc_cnt+1;

end if;
else

if (zero_cnt=b"1111_1111") then
zero_avg<=zero_tmp(16 downto 8);
zero_tmp<=(b"0000_0000"&cnt_ones);

else
zero_tmp<=zero_tmp+(b"0000_0000"&cnt_ones);

end if;
zero_cnt<=zero_cnt+1;

if (perc_cnt=b"110_0011") then
perc_avg<=perc_tmp;

perc_tmp<=b"000_0000";

perc_cnt<=b"000_0000";

else
perc_cnt<=perc_cnt+1;

end if;
end if;

end if;
end if;

end process;

--

-- Serial port state machine

--

-- Detect that a byte is being sent, and transmit statistics.

285

Guil
lau

me G
arr

ea
u

--

-- State uses two nested counters:

-- ser_cnt counts 30 clock cyles (90MHz/3MegaBAUD)

-- ser_bit counts 10 bit periods

--

-- Serial port loopback

cts<=rts;

dsr<=dtr;

dcd<=dtr;

ri<=’1’;

process(clki)
begin

if (rising_edge(clki)) then
case ser_state is

when b"00000_00000" =>
rxd<=’0’;

when b"00001_00000" =>
rxd<=ser_out(0);

when b"00010_00000" =>
rxd<=ser_out(1);

when b"00011_00000" =>
rxd<=ser_out(2);

when b"00100_00000" =>
rxd<=ser_out(3);

when b"00101_00000" =>
rxd<=ser_out(4);

when b"00110_00000" =>
rxd<=ser_out(5);

when b"00111_00000" =>
rxd<=ser_out(6);

when b"01000_00000" =>
rxd<=ser_out(7);

when b"01001_00000" =>
rxd<=’1’;

when b"01010_00000" =>
rxd<=’0’;

when b"01011_00000" =>
rxd<=ser_out(8);

when b"01100_00000" =>
rxd<=ser_out(9);

when b"01101_00000" =>
rxd<=ser_out(10);

when b"01110_00000" =>
rxd<=ser_out(11);

when b"01111_00000" =>
rxd<=ser_out(12);

when b"10000_00000" =>
rxd<=ser_out(13);

when b"10001_00000" =>
rxd<=ser_out(14);

when b"10010_00000" =>
rxd<=ser_out(15);

when b"10011_00000" =>
rxd<=’1’;

when b"10100_00000" =>
if (txd_d=’0’) then

ser_state<=b"00000_00000";

ser_out(8 downto 0)<=ones_avg-zero_avg;
ser_out(15 downto 9)<=perc_avg;

end if;
when others =>

null;
end case;

-- Increment state counter

if (ser_bit=b"10100") then
null;

elsif (ser_cnt=b"11101") then
ser_cnt<=b"00000";

ser_bit<=ser_bit+1;

else
ser_cnt<=ser_cnt+1;

end if;

-- Update input latch

txd_d<=txd;

end if;

286

Guil
lau

me G
arr

ea
u

end process;

--

-- DAC control signals

--

ndac_ncs<=’0’;-- dacq.ucf only

ndac_clk<=’0’;-- dacq.ucf only

ndac_din<=’0’;-- dacq.ucf only

ndac_ncl<=’0’;-- dacq.ucf only

pdac_ncs<=’0’;-- dacq.ucf only

pdac_clk<=’0’;-- dacq.ucf only

pdac_din<=’0’;-- dacq.ucf only

pdac_ncl<=’0’;-- dacq.ucf only

--

-- ADC control signals

--

pga0_ncs<=’0’;-- dacq.ucf only

pga0_dio<=’0’;-- dacq.ucf only

pga0_clk<=’0’;-- dacq.ucf only

adc0_sdi<=’0’;-- dacq.ucf only

adc0_sck<=’0’;-- dacq.ucf only

adc0_cnv<=’0’;-- dacq.ucf only

pga1_ncs<=’0’;-- dacq.ucf only

pga1_dio<=’0’;-- dacq.ucf only

pga1_clk<=’0’;-- dacq.ucf only

adc1_sdi<=’0’;-- dacq.ucf only

adc1_sck<=’0’;-- dacq.ucf only

adc1_cnv<=’0’;-- dacq.ucf only

pga2_ncs<=’0’;-- dacq.ucf only

pga2_dio<=’0’;-- dacq.ucf only

pga2_clk<=’0’;-- dacq.ucf only

adc2_sdi<=’0’;-- dacq.ucf only

adc2_sck<=’0’;-- dacq.ucf only

adc2_cnv<=’0’;-- dacq.ucf only

pga3_ncs<=’0’;-- dacq.ucf only

pga3_dio<=’0’;-- dacq.ucf only

pga3_clk<=’0’;-- dacq.ucf only

adc3_sdi<=’0’;-- dacq.ucf only

adc3_sck<=’0’;-- dacq.ucf only

adc3_cnv<=’0’;-- dacq.ucf only

--

-- FM receiver

--

fm_ncs<=’0’;

fm_clk<=’0’;

--

-- Digital I/O

--

-- rng1<=’0’;-- rcvr.ucf only

-- rng2<=’0’;-- rcvr.ucf only

end arch;

The sixth script given is the UCF file used to tune the FM receiver of the the
DACQ units.
It is the physical mapping between the pins of the FPGA and the signals used in the
previous VHDL script.

###

#

XC3S50ATQ144 Spartan3AN with 3 blocks of 18kbits RAM

#

###

Timing constraints for 75MHz oscillator

NET xtal CLOCK_DEDICATED_ROUTE=FALSE;
NET xtal PERIOD=12.5ns;

287

Guil
lau

me G
arr

ea
u

Timing constraints for internal 90MHz clock

NET clki PERIOD=11ns;

Pin assignements

#NET TMS LOC=P1; #TMS,JTAG,VCCAUX

#NET TDI LOC=P2; #TDI,JTAG,VCCAUX

#NET NC LOC=P3; #IO_L02P_3,IO,BANK3

#NET NC LOC=P4; #IO_L01P_3,IO,BANK3

#NET NC LOC=P5; #IO_L02N_3,IO,BANK3

#NET NC LOC=P6; #IO_L01N_3,IO,BANK3

#NET NC LOC=P7; #IO_L03P_3,IO,BANK3

#NET NC LOC=P8; #IO_L03N_3,IO,BANK3

#NET GND LOC=P9; #GND,GND,GND

#NET NC LOC=P10; #IO_L04P_3,IO,BANK3

#NET NC LOC=P11; #IO_L04N_3/VREF_3,IO,BANK3

#NET NC LOC=P12; #IO_L05P_3/LHCLK0,LHCLK,BANK3

#NET NC LOC=P13; #IO_L05N_3/LHCLK1,LHCLK,BANK3

#NET 3V3 LOC=P14; #VCCO_3,VCCO,BANK3

#NET NC LOC=P15; #IO_L06P_3/LHCLK2,LHCLK,BANK3

#NET NC LOC=P16; #IO_L06N_3/IRDY2/LHCLK3,LHCLK,BANK3

#NET GND LOC=P17; #GND,GND,GND

#NET NC LOC=P18; #IO_L07P_3/LHCLK4,LHCLK,BANK3

#NET NC LOC=P19; #IO_L08P_3/TRDY2/LHCLK6,LHCLK,BANK3

NET fm_lo LOC=P20; #IO_L07N_3/LHCLK5,LHCLK,BANK3

#NET 3V3 LOC=P21; #IO_L08N_3/LHCLK7,LHCLK,BANK3

#NET 1V2 LOC=P22; #VCCINT,VCCINT,VCCINT

#NET 3V3 LOC=P23; #VCCO_3,VCCO,BANK3

NET fm_ncs LOC=P24; #IO_L09P_3,IO,BANK3

NET fm_clk LOC=P25; #IO_L09N_3,IO,BANK3

#NET GND LOC=P26; #GND,GND,GND

NET fm_cmp LOC=P27; #IO_L10P_3,IO,BANK3

NET fm_dat LOC=P28; #IO_L11P_3,IO,BANK3

NET ndac_ncs LOC=P29; #IO_L10N_3,IO,BANK3

NET ndac_clk LOC=P30; #IO_L11N_3,IO,BANK3

NET ndac_din LOC=P31; #IO_L12P_3,IO,BANK3

NET ndac_ncl LOC=P32; #IO_L12N_3,IO,BANK3

#NET 3V3 LOC=P33; #IP_L13P_3,INPUT,BANK3

#NET GND LOC=P34; #GND,GND,GND

#NET 3V3 LOC=P35; #IP_L13N_3/VREF_3,INPUT,BANK3

#NET 3V3 LOC=P36; #VCCAUX,VCCAUX,VCCAUX

#NET 3V3 LOC=P37; #IO_L01P_2/M1,DUAL,BANK2

#NET 3V3 LOC=P38; #IO_L01N_2/M0,DUAL,BANK2

#NET GND LOC=P39; #IO_L02P_2/M2,DUAL,BANK2

#NET 3V3 LOC=P40; #VCCO_2,VCCO,BANK2

NET pdac_ncs LOC=P41; #IO_L02N_2/CSO_B,DUAL,BANK2

NET pdac_clk LOC=P42; #IO_L03P_2/RDWR_B,DUAL,BANK2

#NET 3V3 LOC=P43; #IO_L04P_2/VS2,DUAL,BANK2

#NET 3V3 LOC=P44; #IO_L03N_2/VS1,DUAL,BANK2

#NET 3V3 LOC=P45; #IO_L04N_2/VS0,DUAL,BANK2

NET pdac_din LOC=P46; #IO_L05P_2,IO,BANK2

NET pdac_ncl LOC=P47; #IO_L06P_2,IO,BANK2

#NET NC LOC=P48; #IO_L05N_2/D7,DUAL,BANK2

NET pga3_ncs LOC=P49; #IO_L06N_2/D6,DUAL,BANK2

NET pga3_dio LOC=P50; #IO_L07P_2/D5,DUAL,BANK2

#NET 3V3 LOC=P51; #IO_L07N_2/D4,DUAL,BANK2

#NET 1V2 LOC=P52; #VCCINT,VCCINT,VCCINT

#NET 3V3 LOC=P53; #IP_2/VREF_2,INPUT,BANK2

#NET NC LOC=P54; #IO_L08P_2/GCLK14,GCLK,BANK2

NET pga3_clk LOC=P55; #IO_L08N_2/GCLK15,GCLK,BANK2

#NET GND LOC=P56; #GND,GND,GND

NET adc3_sdi LOC=P57; #IO_L09P_2/GCLK0,GCLK,BANK2

#NET NC LOC=P58; #IO_L10P_2/GCLK2,GCLK,BANK2

#NET NC LOC=P59; #IO_L09N_2/GCLK1,GCLK,BANK2

#NET NC LOC=P60; #IO_L10N_2/GCLK3,GCLK,BANK2

#NET 3V3 LOC=P61; #VCCO_2,VCCO,BANK2

NET adc3_sck LOC=P62; #IO_2/MOSI/CSI_B,DUAL,BANK2

NET adc3_cnv LOC=P63; #IO_L11P_2/AWAKE,PWRMGMT,BANK2

#NET NC LOC=P64; #IO_L11N_2/DOUT,DUAL,BANK2

#NET GND LOC=P65; #GND,GND,GND

#NET 3V3 LOC=P66; #VCCAUX,VCCAUX,VCCAUX

#NET NC LOC=P67; #IO_L12P_2/INIT_B,DUAL,BANK2

#NET NC LOC=P68; #IO_L12N_2/D3,DUAL,BANK2

NET adc3_sdo LOC=P69; #IO_L13P_2/D2,DUAL,BANK2

#NET NC LOC=P70; #IO_L14P_2/D1,DUAL,BANK2

NET pga2_ncs LOC=P71; #IO_L13N_2/D0/DIN/MISO,DUAL,BANK2

NET pga2_dio LOC=P72; #IO_L14N_2/CCLK,DUAL,BANK2

#NET NC LOC=P73; #DONE,CONFIG,VCCAUX

288

Guil
lau

me G
arr

ea
u

#NET GND LOC=P74; #SUSPEND,PWRMGMT,VCCAUX

NET pga2_clk LOC=P75; #IO_L02P_1/LDC1,DUAL,BANK1

NET adc2_sdi LOC=P76; #IO_L01P_1/HDC,DUAL,BANK1

NET adc2_sck LOC=P77; #IO_L02N_1/LDC0,DUAL,BANK1

NET adc2_cnv LOC=P78; #IO_L01N_1/LDC2,DUAL,BANK1

NET adc2_sdo LOC=P79; #IO_1,IO,BANK1

#NET 3V3 LOC=P80; #IP_1/VREF_1,INPUT,BANK1

#NET GND LOC=P81; #GND,GND,GND

NET pga1_ncs LOC=P82; #IO_L03P_1,IO,BANK1

NET pga1_dio LOC=P83; #IO_L04P_1/RHCLK0,RHCLK,BANK1

NET pga1_clk LOC=P84; #IO_L03N_1,IO,BANK1

NET adc1_sdi LOC=P85; #IO_L04N_1/RHCLK1,RHCLK,BANK1

#NET 3V3 LOC=P86; #VCCO_1,VCCO,BANK1

NET adc1_sck LOC=P87; #IO_L05P_1/RHCLK2,RHCLK,BANK1

NET adc1_cnv LOC=P88; #IO_L05N_1/TRDY1/RHCLK3,RHCLK,BANK1

#NET GND LOC=P89; #GND,GND,GND

NET adc1_sdo LOC=P90; #IO_L06P_1/RHCLK4,RHCLK,BANK1

NET pga0_ncs LOC=P91; #IO_L07P_1/IRDY1/RHCLK6,RHCLK,BANK1

NET pga0_dio LOC=P92; #IO_L06N_1/RHCLK5,RHCLK,BANK1

#NET 3V3 LOC=P93; #IO_L07N_1/RHCLK7,RHCLK,BANK1

#NET 1V2 LOC=P94; #VCCINT,VCCINT,VCCINT

#NET 3V3 LOC=P95; #VCCO_1,VCCO,BANK1

NET pga0_clk LOC=P96; #IO_L08P_1,IO,BANK1

#NET 3V3 LOC=P97; #IP_1/VREF_1,INPUT,BANK1

NET adc0_sdi LOC=P98; #IO_L08N_1,IO,BANK1

NET adc0_sck LOC=P99; #IO_L09P_1,IO,BANK1

#NET GND LOC=P100; #GND,GND,GND

NET adc0_cnv LOC=P101; #IO_L09N_1,IO,BANK1

NET adc0_sdo LOC=P102; #IO_L10P_1,IO,BANK1

#NET NC LOC=P103; #IO_L11P_1,IO,BANK1

#NET NC LOC=P104; #IO_L10N_1,IO,BANK1

#NET NC LOC=P105; #IO_L11N_1,IO,BANK1

#NET GND LOC=P106; #GND,GND,GND

#NET TDO LOC=P107; #TDO,JTAG,VCCAUX

#NET 3V3 LOC=P108; #VCCAUX,VCCAUX,VCCAUX

#NET TCK LOC=P109; #TCK,JTAG,VCCAUX

#NET NC LOC=P110; #IO_L01P_0,IO,BANK0

#NET NC LOC=P111; #IO_L01N_0,IO,BANK0

#NET NC LOC=P112; #IO_L02P_0/VREF_0,IO,BANK0

#NET NC LOC=P113; #IO_L02N_0,IO,BANK0

#NET NC LOC=P114; #IO_L04P_0,IO,BANK0

#NET NC LOC=P115; #IO_L03P_0,IO,BANK0

#NET NC LOC=P116; #IO_L04N_0,IO,BANK0

#NET NC LOC=P117; #IO_L03N_0,IO,BANK0

#NET GND LOC=P118; #GND,GND,GND

#NET 3V3 LOC=P119; #VCCO_0,VCCO,BANK0

#NET NC LOC=P120; #IO_L05P_0,IO,BANK0

#NET NC LOC=P121; #IO_L05N_0,IO,BANK0

#NET 1V2 LOC=P122; #VCCINT,VCCINT,VCCINT

#NET 3V3 LOC=P123; #IP_0/VREF_0,INPUT,BANK0

NET xtal LOC=P124; #IO_L06P_0/GCLK4,GCLK,BANK0

NET cbus3 LOC=P125; #IO_L07P_0/GCLK6,GCLK,BANK0

NET cbus2 LOC=P126; #IO_L06N_0/GCLK5,GCLK,BANK0

NET cts LOC=P127; #IO_L07N_0/GCLK7,GCLK,BANK0

#NET GND LOC=P128; #GND,GND,GND

NET dcd LOC=P129; #IO_L08P_0/GCLK8,GCLK,BANK0

NET dsr LOC=P130; #IO_L09P_0/GCLK10,GCLK,BANK0

NET ri LOC=P131; #IO_L08N_0/GCLK9,GCLK,BANK0

NET rxd LOC=P132; #IO_L09N_0/GCLK11,GCLK,BANK0

#NET 3V3 LOC=P133; #VCCAUX,VCCAUX,VCCAUX

#NET NC LOC=P134; #IO_L10P_0,IO,BANK0

NET rts LOC=P135; #IO_L10N_0,IO,BANK0

#NET 3V3 LOC=P136; #VCCO_0,VCCO,BANK0

#NET GND LOC=P137; #GND,GND,GND

NET dtr LOC=P138; #IO_L11P_0,IO,BANK0

NET txd LOC=P139; #IO_L11N_0,IO,BANK0

#NET 3V3 LOC=P140; #IP_0,INPUT,BANK0

NET cbus1 LOC=P141; #IO_L12P_0/VREF_0,IO,BANK0

NET cbus0 LOC=P142; #IO_0,IO,BANK0

#NET GND LOC=P143; #IO_L12N_0/PUDC_B,DUAL,BANK0

#NET 3V3 LOC=P144; #PROG_B,CONFIG,VCCAUX

289

Guil
lau

me G
arr

ea
u

290

Guil
lau

me G
arr

ea
u

291

Guil
lau

me G
arr

ea
u

292

Guil
lau

me G
arr

ea
u

Appendix B

Matlab R© Scripts

In this appendix are given the Matlab R© scripts used to interact with the FM SYNC
and DACQ units.

The first Matlab R© script given is used to set a new initial timestamp value for
FM SYNC unit.

function set_timestamp(timestamp)
% set_timestamp(timestamp)

% Write timestamp to FM transmitter. If no argument is given,

% set_timestampt uses the current (UNIX style) time.

% Last updated: 2012-11-23

% Use the current time if no argument is given.

if nargin<1
unix_time=etime(clock,[1970 1 1 0 0 0]);

timestamp=round(unix_time/9.6e-3);

end

if ˜isscalar(timestamp)
error(’The timestamp must be a scalar.’);

end
if isa(timestamp,’char’)||...

isa(timestamp,’int8’)||isa(timestamp,’uint8’)||...

isa(timestamp,’int16’)||isa(timestamp,’uint16’)||...

isa(timestamp,’int32’)||isa(timestamp,’uint32’)

% char range is 0 to 65535

% int8 range is -128 to 127

% uint8 range is 0 to 255

% int16 range is -32768 to 32767

% uint16 range is 0 to 65535

% int32 range is -2147483648 to 2147483647

% uint32 range is 0 to 4294967295

%

% In each case, the type can be safely promoted to int64, then

% typecast to uint64.

timestamp=typecast(int64(timestamp),’uint64’);

elseif isa(timestamp,’int64’)
% For an int64, do just the typecast.

timestamp=typecast(timestamp,’uint64’);

elseif isa(timestamp,’single’)||isa(timestamp,’double’)
% These are signed types, so we must go through int64. But

% check the conversion for accuracy.

if double(int64(timestamp))˜=timestamp
fprintf(’[Warning: Conversion from floating point ’...

’to integer resulted in some loss of ’...

’precision.’);

end
timestamp=typecast(int64(timestamp),’uint64’);

elseif ˜isa(timestamp,’uint64’)
error(’Don’’t know how to convert timestamp to uint64.’);

end

data=char(zeros(1,15));

data(1)=bitshift(timestamp,-56,4)+224;

293

Guil
lau

me G
arr

ea
u

data(2)=bitshift(timestamp,-52,4)+208;

data(3)=bitshift(timestamp,-48,4)+192;

data(4)=bitshift(timestamp,-44,4)+176;

data(5)=bitshift(timestamp,-40,4)+160;

data(6)=bitshift(timestamp,-36,4)+144;

data(7)=bitshift(timestamp,-32,4)+128;

data(8)=bitshift(timestamp,-28,4)+112;

data(9)=bitshift(timestamp,-24,4)+96;

data(10)=bitshift(timestamp,-20,4)+80;

data(11)=bitshift(timestamp,-16,4)+64;

data(12)=bitshift(timestamp,-12,4)+48;

data(13)=bitshift(timestamp,-8,4)+32;

data(14)=bitshift(timestamp,-4,4)+16;

data(15)=bitshift(timestamp,0,4)+0;

fm=sio_open(’COM5’);

sio_baud(fm,3000000);

sio_write(fm,data);

sio_close(fm);

The second Matlab R© script given is used to read out the current timestamp value
of FM SYNC unit.

function timestamp=get_timestamp
% timestamp = get_timestamp

% Read timestamp from FM transmitter.

% Last updated: 2012-11-23

fm=sio_open(’COM5’);

sio_baud(fm,3000000);

sio_write(fm,char(255));

data=uint64(abs(sio_read(fm,8)));

sio_close(fm);

timestamp=...

bitshift(data(1),0,8)+bitshift(data(2),8,16)+...

bitshift(data(3),16,24)+bitshift(data(4),24,32)+...

bitshift(data(5),32,40)+bitshift(data(6),40,48)+...

bitshift(data(7),48,56)+bitshift(data(8),56,60);

unix_time=round(double(timestamp)*9.6e-3);

fprintf(’%s\n’,datestr(addtodate(datenum([1970 1 1 0 0 0]),...

unix_time,’second’)));

The third Matlab R© script given is used to help tuning the FM receiver of a DACQ
unit.

dacq=sio_open(’COM3’);

%dacq=sio_open(’COM4’);

%dacq=sio_open(’COM5’);

%dacq=sio_open(’COM6’);

sio_baud(dacq,3000000);

%sio_handshake(dacq,21);

for i=1:1000
sio_write(dacq,char(0));

x=double(sio_read(dacq,2));

d=x(1)+bitshift(bitand(x(2),1),8);

p=bitshift(x(2),-1,7);

if p<10
fprintf(’Difference is %d, turn clockwise\n’,d);

elseif p>90
fprintf(’Difference is %d, turn counter-clockwise\n’,d);

else
fprintf(’Difference is %d, percent is %d\n’,d,p);

end
pause(0.1);

end
sio_close(dacq);

294

Guil
lau

me G
arr

ea
u

295

Guil
lau

me G
arr

ea
u

296

Guil
lau

me G
arr

ea
u

Appendix C

Python R© Scripts

In this appendix are given the Python R© scripts used to implement the sand-scorpion
spiking neural network model.

The first Python R© script given is the one created by Brette et al. in [25, 107].
First, parameters are initialized to the desired values to take into account the char-
acteristics of the simulated sonic wave. Then, the sonic wave is generated. Then,
the 2 neural processes (one for the leg and one for the command neurons) are im-
plemented, each one with its own differential equation. Finally, the azimuth of the
sonic source is calculated.

’’’

Adapted from

Theory of Arachnid Prey Localization

W. Sturzl, R. Kempter, and J. L. van Hemmen

PRL 2000

Poisson inputs are replaced by integrate-and-fire neurons

Romain Brette

’’’

from brian import *

Parameters

degree=2*pi/360.

duration=500*ms

R=2.5*cm # radius of scorpion

vr=50*meter/second # Rayleigh wave speed

phi=144*degree # angle of prey

A=250*Hz

deltaI=.7*ms # inhibitory delay

gamma=(22.5+45*arange(8))*degree # leg angle

delay=R/vr*(1-cos(phi-gamma)) # wave delay

Wave (vector w)

t=arange(int(duration/defaultclock.dt)+1)*defaultclock.dt

Dtot=0.

w=0.

for f in range(150,451):
D=exp(-(f-300)**2/(2*(50**2)))

xi=2*pi*rand()

w+=100*D*cos(2*pi*f*t+xi)

Dtot+=D

w=.01*w/Dtot

Rates from the wave

def rates(t):
return w[array(t/defaultclock.dt,dtype=int)]

Leg mechanical receptors

tau_legs=1*ms

sigma=.01

eqs_legs="""

297

Guil
lau

me G
arr

ea
u

dv/dt=(1+rates(t-d)waist-v)/tau_legs+sigma*(2./tau_legs)**.5*xi:1

d : second

"""

legs=NeuronGroup(8,model=eqs_legs,threshold=1,reset=0,refractory=1*ms,unit_checking=False)

legs.d=delay

spikes_legs=SpikeCounter(legs)

Command neurons

tau=1*ms

taus=1*ms

wex=7

winh=-2

eqs_neuron=’’’

dv/dt=(x-v)/tau : 1

dx/dt=(y-x)/taus : 1 # alpha currents

dy/dt=-y/taus : 1

’’’

neurons=NeuronGroup(8,model=eqs_neuron,threshold=1,reset=0)

synapses_ex=IdentityConnection(legs,neurons,’y’,weight=wex)

synapses_inh=Connection(legs,neurons,’y’,delay=deltaI)

for i in range(8):
synapses_inh[i,(4+i-1)%8]=winh

synapses_inh[i,(4+i)%8]=winh

synapses_inh[i,(4+i+1)%8]=winh

spikes=SpikeCounter(neurons)

run(duration)

nspikes=spikes.count

x=sum(nspikes*exp(gamma*1j))

print "Angle (deg):",arctan(imag(x)/real(x))/degree
polar(concatenate((gamma,[gamma[0]+2*pi])),concatenate((nspikes,[nspikes[0]]))/duration)

show()

The second Python R© script given is our modified version of the previous imple-
mentation.
First, some functions are define to handle the reading of the source file containing the
data from the seismic sensors. Then, parameters are initialized to the desired values
to take into account the characteristics of the experimental environment. Then, the
2 neural processes (one for the leg and one for the command neurons) are imple-
mented, each one with its own differential equation. Finally, the azimuth of the sonic
source is calculated. finally, the results are displayed.

’’’

Adapted from

Theory of Arachnid Prey Localization

W. Sturzl, R. Kempter, and J. L. van Hemmen

PRL 2000

Poisson inputs are replaced by integrate-and-fire neurons

Romain Brette

modify: monday 13th march 2013

G.Garreau

reason: vmware crash

v6.0-clean/final version with real data, moving target, 5 legs

’’’

from brian import *
import os, time, numpy
from matplotlib import pyplot

functions definition

def ensure_file(f):
""" ensures that file f exists """

if not os.path.isfile(f):
print ’The file ’ + str(f) + ’ does not exist.’
print ’End.’
exit(1)

def get_experimental_data(filename):
"""

298

Guil
lau

me G
arr

ea
u

Read the experimental data from the binary files

Return three vectors, one for each of the axis (x,y,z)

"""

print

’’’get data file information’’’

try:
st = os.stat(filename)

except IOError:
print "Failed to get information about", filename

else:
print ’Data file name: ’ + filename
#print "Data file size:", st[ST_SIZE]

#print "Data file modified:", time.asctime(time.localtime(st[ST_MTIME]))

z_vector = numpy.loadtxt(fname = filename, dtype = numpy.float64, delimiter=’\n’, unpack=True)

z_vector = z_vector[0:-1:n2]

’’’ plot z vector’’’

plot(z_vector,color=’red’) #red

show()

print "length(z)", len(z_vector)
print "min of z_vector:", z_vector.min()
print "mean of z_vector:", z_vector.mean()
print "max of z_vector:", z_vector.max()

return (z_vector*gain)

Rates from the wave

rates is for multi sources

def rates(t):
"""

return the output of the seismic sensors at time t

"""

if(np.size(t)<5):
return 0.

print "t", t

global z1_vector
global z2_vector
global z3_vector
global z4_vector
global z5_vector

#delay[4]=0.1e-3*second

#delay[1]=0.1e-3*second

#delay[0]=0.2e-3*second

#delay[3]=0.0e-3*second

#delay[2]=0.2e-3*second

global t_index

temp_array = array(t/defaultclock.dt,dtype=int)

data_array=zeros(shape=(5),dtype= numpy.float64, order=’C’)

data_array[0]=z1_vector[array(t[0]/defaultclock.dt,dtype=int)]

data_array[1]=z2_vector[array(t[1]/defaultclock.dt,dtype=int)]

data_array[2]=z3_vector[array(t[2]/defaultclock.dt,dtype=int)]

data_array[3]=z4_vector[array(t[3]/defaultclock.dt,dtype=int)]

data_array[4]=z5_vector[array(t[4]/defaultclock.dt,dtype=int)]

t_index=array(t/defaultclock.dt,dtype=int)

print "t_index_rates", t_index

return data_array

#filenames of the input data files

multiple sources

circs file is 3.3e6 samples -> 99sec of data

tune / circs / randcircs / randradius // nofilt / filt

seismic2_filename = ’F:\SCORPION_v2\data_set\ucy4guillaume1_seismic2_circ3_norm_std.txt’ #data for seismic sensor 1

seismic3_filename = ’F:\SCORPION_v2\data_set\ucy4guillaume1_seismic3_circ3_norm_std.txt’ #data for seismic sensor 1

seismic4_filename = ’F:\SCORPION_v2\data_set\ucy4guillaume1_seismic4_circ3_norm_std.txt’ #data for seismic sensor 1

seismic5_filename = ’F:\SCORPION_v2\data_set\ucy4guillaume1_seismic5_circ3_norm_std.txt’ #data for seismic sensor 1

seismic6_filename = ’F:\SCORPION_v2\data_set\ucy4guillaume1_seismic6_circ3_norm_std.txt’ #data for seismic sensor 1

#name results files 43562 for ucy2 // 52463 for parking2

299

Guil
lau

me G
arr

ea
u

fname = ’6.0_Angles_5legs_ucy4guillaume1_circ3_norm_std_1000ms_88sim_thleg1_vr335ms_gain02_52463’

Parameters

n =1 # sampling rate reduction producing txt file

n2 = 10 # sampling rate reduction in reading txt file

duration=1000*ms

R=15*cm # radius of scorpion (initial value 2.5cm)

vr=335.0*meter/second # Rayleigh wave speed (initial value 50m/s)

mdt = 2*R/vr # max delta t, max inter-leg delay

mdt2=1.0*mdt

mdt3=(1/1.0)*mdt

print "Max delay", mdt
degree=2*pi/360. # degree to rad conversion

phi=10*degree # angle of prey in rad

print "Expected angle", phi/degree
#A=250*Hz

deltaI=.7*mdt # inhibitory delay initial value, 0.7ms

gamma=(0+72*arange(5))*degree # leg angle for 6 legs

#delay=R/vr*(1-cos(phi-gamma)) # wave delay

delay multiple sources

delay = zeros(shape=(5),dtype= numpy.float64, order=’C’) # delay as we have internal delay of each sensor

tdelay 2-3-4-5-6: [0.1,0.1,0.2,0.2,0.0]e-3*second - trigo order 4-3-5-6-2

print "Delay matrix", delay
loop = 88 # nber of time to repeat the simulation so to have average performances

print "Nber of run to execute:", loop
print "total simulation time is:", loop*duration
angle_array = numpy.zeros(loop) #numpy array of estimated angles

sampling_freq = (int(1e5/(3*n*n2))+1)*Hz # sampling frequency data, original code 10kHz

defaultclock.dt = (1/sampling_freq) # default value is 0.1ms

gain = 0.2 # normalization coefficient for data

’’’

Ensure that data files exist

’’’

ensure_file(seismic2_filename)

ensure_file(seismic3_filename)

ensure_file(seismic4_filename)

ensure_file(seismic5_filename)

ensure_file(seismic6_filename)

’’’

Get the experimental data from the binary files

The data represent the output of the three seismic sensors

’’’

multiple sources

(z2_vector) = get_experimental_data(seismic2_filename)

(z5_vector) = get_experimental_data(seismic3_filename)

(z3_vector) = get_experimental_data(seismic4_filename)

(z1_vector) = get_experimental_data(seismic5_filename)

(z4_vector) = get_experimental_data(seismic6_filename)

1 source

#(z1_vector) = get_experimental_data(seismic1_filename)

print "Max simulation time allowed (s):", int(len(z1_vector)/sampling_freq)

Wave (vector w)

t=arange(int(loop*duration/defaultclock.dt)+1)*defaultclock.dt

#t=arange(len(z1_vector))*defaultclock.dt

Leg mechanical receptors

tau_legs=mdt3

sigma=.01 # +sigma*(2./tau_legs)**.5*xi

eqs_legs="""

dv/dt=(1+rates(t-d)-v)/tau_legs:1

d : second

"""

legs=NeuronGroup(5,model=eqs_legs,threshold=1,reset=0,refractory=mdt2,unit_checking=False)

legs.d=delay

spikes_legs=SpikeCounter(legs)

Command neurons

tau=mdt2

taus=mdt2

wex=7

winh=-2

eqs_neuron=’’’

300

Guil
lau

me G
arr

ea
u

dv/dt=(x-v)/tau : 1

dx/dt=(y-x)/taus : 1 # alpha currents

dy/dt=-y/taus : 1

’’’

neurons=NeuronGroup(5,model=eqs_neuron,threshold=1,reset=0)

synapses_ex=IdentityConnection(legs,neurons,’y’,weight=wex)

synapses_inh=Connection(legs,neurons,’y’,delay=deltaI)

for i in range(5):
synapses_inh[i,(2+i)%5]=winh

synapses_inh[i,(2+i+1)%5]=winh

spikes=SpikeCounter(neurons)

for i in range(loop):
print "i", i
run(duration)

nspikes=spikes.count

print "Nspikes:", nspikes
x=sum(nspikes*exp(gamma*1j))

if real(x) > 0:
angle = (arctan(imag(x)/real(x))/degree)%360

else:
angle = ((arctan(imag(x)/real(x))/degree)+180)%360

print "Angle:", angle
angle_array[i] = angle

legs.reset()

spikes_legs.reinit()

neurons.reset()

spikes.reinit()

print "t_end", t_index*defaultclock.dt

#print "Min", angle_array.min()

#print "Mean", angle_array.mean()

#print "Max", angle_array.max()

#print "Std", angle_array.std()

fig = pyplot.figure()

fig.canvas.set_window_title(’Subject angle plot’)

pyplot.suptitle(’Subject angle with parameters: \n mdt= ’+str(mdt)+’ simulation duration = ’+str(duration)+’ and repetition = ’+str(loop)+’.’,
color = ’black’, style=’normal’,fontsize=’12’,bbox=dict(facecolor=’white’,ec=’none’,alpha=1.0,boxstyle=’round’,fc=’0.8’))

plot(duration*arange(loop),angle_array,color=’blue’)

#show()

pyplot.savefig(’Plot_’+fname+’.png’,format=’png’)

numpy.savetxt(fname+’.txt’, angle_array, fmt=’%2.1f’, delimiter=’\n’)

#polar(concatenate((gamma,[gamma[0]+2*pi])),concatenate((nspikes,[nspikes[0]]))/duration)

#show()

#numpy.savetxt(’signalseismic4_310degree.txt’, w, fmt=’%2.6f’, delimiter=’\n’)

#numpy.savetxt(’delay_310degree.txt’, delay, fmt=’%2.6f’, delimiter=’\n’)

print "END"
raw_input(’’)

301

Guil
lau

me G
arr

ea
u

302

Guil
lau

me G
arr

ea
u

303

Guil
lau

me G
arr

ea
u

304

Guil
lau

me G
arr

ea
u

Appendix D

Synchronization & Phase-Lock

Digital counting circuits

Let’s consider the following two problems: 1- Given a 20MHz system clock, write
VHDL code (for an FPGA) that generates a 1MHz square wave. Trivial! 2- Given a
20MHz system clock, write VHDL code (for an FPGA) that generates a 3MHz square
wave. Not so trivial...

For the first problem, all it needs is to make a counter that counts 10 clock cycles
(e.g. 0-9) and toggle the output when it rolls over.

If the same solution is tried for the second problem, the counter would count to
3 or 4, and the frequency obtained is 3.333MHz or 2.500MHz. How to get 3MHz?

The idea is that it is possible to get“on average” 3MHz if the counter counts to 3
twice and counts to 4 once. However, it is best to evenly spread the two values, so
that if one needs (for example) 3 seven times and 4 five times, it should not be all 3
× 7 first and 4 × 5 next, but rather disperse the 3 and 4 periods among each other.

Another way to do is to add 6
20 to a counter every clock cycle. Also, the counter

rolls over when it reaches 6. It would go as follows (the best places to toggle the
3MHz output are marked with x):

305

Guil
lau

me G
arr

ea
u

Clock Cycle Counter Toggle

0 0.000 x
1 0.300
2 0.600
3 0.900
4 1.200 x
5 1.500
6 1.800
7 2.100 x
8 2.400
9 2.700

10 3.000 x
11 3.300
12 3.600
13 3.900
14 4.200 x
15 4.500
16 4.800
17 5.100 x
18 5.400
19 5.700
0 0.000 x

That is, it toggles when the integer portion of the counter increments.
Going further, it may have been noticed that it does not need the integer part at

all, i.e. as soon as the count value equals or exceeds 1, we can subtract 1:

Clock Cycle Counter Shift

0 0.000
1 0.300
2 0.600
3 0.900
4 1.200 –> 0.200
5 0.500
6 0.800
7 1.100 –> 0.100
8 0.400
9 0.700

10 1.000
11 1.300 –> 0.300
12 0.600
13 0.900
14 1.200 –> 0.200
15 0.500
16 0.800
17 1.100 –> 0.100
18 0.400
19 0.700
20 1.000 –> 0.000

306

Guil
lau

me G
arr

ea
u

This is essentially how DACQ unit clock (seq acc signal in VHDL code) comes to
approximate the FM transmitter.

In case fractional numbers are not desired, it is just a matter to multiply everything
by an integer (here 5), and subtract it when the count equals or exceeds the value
selected:

Clock Cycle Counter Shift

0 0.000
1 1.500
2 3.000
3 4.500
4 6.000 –> 1.000
5 2.500
6 4.000
7 5.500 –> 0.500
8 2.000
9 3.500

10 5.000
11 6.500 –> 1.500
12 3.000
13 4.500
14 6.000 –> 1.000
15 2.500
16 4.000
17 5.500 –> 0.500
18 2.000
19 3.500
20 5.000 –> 0.000

Since the original ratio (6/20) was based on the two integers, it is always possible
to do this. With the DACQ units, the ratio may be irrational (ratio of the true oscillator
frequencies), so it was decided to stick with the fixed-point approximation.

Additional explanation for VHDL script

FM receiver

The fm cmp becomes fm smp to get around meta-stability in the FPGA latches.
The counter cnt 5us counts from 62 (nominally) to 511 (450 clock cycles at 90MHz

is 5µs), it is reinitialised with 61 or 63 if needed to be lengthened or shortened.
The counter cnt ones is used to decode the raw bits. It counts the number of

clock cycles the comparator output is high. If fm smp is high more than half the 5µs
period (cnt ones > 225) then it is considered to be a ‘1’, otherwise it is considered to
be a ‘0’. It is reset to 31 or 32 according to fm smp still at 1 or 0, at the end of the 5µs,
to stay in tune with cnt 5us that could have been stretched of 1 cycle. To make the
detection easier, the counter is started from 31 (b“0 0001 1111”), so that the MSB is
set when the number of ones reaches 226.

The resets are every 5µs that correspond to one raw bit of info (1 data bit is 4 raw
bits).

Every 5µs, fm sr and ok fm are updated with 1 or 0 according to the value of raw
bit (cnt ones(8) is 1 so cnt ones > 225, which means fm smp is 1).

307

Guil
lau

me G
arr

ea
u

Pattern detector

When fm sr is 00SYNC, fm sync is set to 1, i.e. every new timestamp and thus frame.
This means that fm sync is 1 for 1 clock cycle very 9.6ms roughly.

This case is also used to reinitialize fm cnt, fm cnt is actually 2 counters one from
0 to 3, it is for the 4 raw bits of 1 data bit, and the other one from 0 to 60 for the data
bits of the timestamp.

While decoding, every 4 raw bits and before the end of the 60 cycles if the last 4
bits of fm sr are 1010 the timestamp is shifted with a 1 at the MSB else a 0.

fm cnt(1 to 0) is 4*5µs or 20µs period, fm cnt(7 to 2) is 20µs ×60 = 1.2ms period.
In the actual implementation only 60 data bits are used for the timestamp but it is
possible to use up to 479 data bits if desired. Once a valid timestamp is decoded a
copy of it is done, as gradually the timestamp is erased with the zeros coming (the
shift register keeps operating).

Sequencer counter

The sequencer (sequence counter) controls all the peripheral functions of the FPGA,
i.e. DACs, ADCs, PGAs, etc. The DACs require that it have a 1µs period, the ADCs
need a 2µs period, the sampler needs a 10µs period, the frames need a 9.6ms period.
The counter period needs to be adjustable so that the DACQ can phase-lock to the
FM transmitter. It is adjusted using 1 clock cycle per 2µs, or 1 part in 180 (the receiver
crystal accuracy is supposedly in the 1 part per 20,000 range). The other consequence
is that it needs a counter that can count 89, 90 or 91 clock cycles. The hardware is a
comparator and a resettable accumulator. The comparator is slow because it has to
compare all the bits in parallel and then AND the bitwise results together. The reset
is fast because it’s all parallel. So, if it is necessary to add logic, it’s best to do it to
the reset path, not the comparator. That is why the counters always count up to the
same value (all ones) and just reset to different values according to whether a stretch
or shrink is needed.

seq cnt(10 to 8): 0 to 4 is 10µs (5 × seq cnt(7)). seq cnt(20 to 11): 0 to 959 is 9.6ms
(960 × seq cnt(10 downto 8). seq cnt(36 to 21): 1 to 65535 is about 10.5 minutes. The
upper 16 bits (36 downto 21) are just the frame counter. The 0 value is skipped to
avoid ambiguity in the frame data.

Finally, every 9,6ms seq sync is high for 1 clock cycle.

Phase detector

The counter phs cnt is incremented by 1 every clock cycle and is reset when fm sync
or seq sync goes high. Its purpose is to measure the phase error between the FM
transmitter and the FPGA’s counters.

When phs cnt is reset phs lst contains the value of delay between seq sync and
fm sync so our basic synchronization period is 9.6ms. Reminder: seq sync is the
local sync pulse and fm sync is the one decoded from the wireless signal. Several
cases may appear: if there is no seq sync pulse between 2 fm sync, it means the local
crystal is too slow; if there is 1 pulse it is fine (expected behavior); and if there are 2,
it means the local crystal is running too fast.

Another counter is also used: phs cur, updated every clock cycle, counts the
number of fm sync since the last seq sync.

In order to detect error in the sync pulses detection an error checking process is
implemented. When seq sync is 1, the values of phs cur and phs prv are compared

308

Guil
lau

me G
arr

ea
u

and then phs vld is updated. phs vld is decremented when seq sync is 1 and phs cur
is ‘01’ (i.e. fm sync is 1 too) and sync prv is not ‘11’ (i.e. the 2 sync pulsed in the
same time, with fm sync pulse started just before) or when phs curr is not ‘11’ and
phs prv is ‘01’ (both pulses high previous clock cycle and seq sync not 0 now), else
the phs vls incremented.

The main phase locking is done with seq acc and phs inc. That is where the
phase detection, error integration (low-pass filtering) and frequency control (via the
value of phs inc) are found.

The increment adjustment of phs inc (1 integer bit, 18 fractional bits) is done by
integrating the error signal. phs inc is updated with the delay between the sync
pulses in number of clock cycles when seq sync is 1 and fm sync is 0. The code
limits the value of phs inc to be between 0 and 2 (non-inclusive), nomally 1. The
value is computed from checking if phs lst>phs cnt, i.e. we are currently closer to
the last sync pulse than the previous inter pulse delay) then if the phs cnt is higher
than ‘111 111 111 111 11’ (or 2.88ms) then phs inc is set to 1, else to ‘1&phs cnt’.
phs inc is changed only when seq sync high so every 9.6ms, then the increment is
reported at every seq cnt(7 to 0) = ’1’ or 2mus. Thus phs inc is reported 4800 times
and the seq sync is usually 9.6ms but varies from 9.54667 to 9.6533ms.

The counter seq acc attempts to track the frame sync period. It is always in-
cremented 4800 times per frame period (i.e. every nominal 2µs). This counter is
adjusted by changing the increment value instead of the starting or ending value (as
it is done for the sequencer, and following the technique explain in section D) and
its two most significant bits are reset to zero every 2µs also. seq acc is not usable as
a sequencer because it does not cycle through all integers. The increment amount is
phs inc, which represents a value between 0 and 2 (nominally 1) in fixed-point. It is
adjusted based on the phase error. seq cnt is slaved to seq acc. At the end of 2µs, it
can’t be more than one clock cycle ahead or behind seq acc, so adjusting the starting
value between 37, 38 or 39 is enough to stay slaved.

In other words, seq cnt goes for another 1µs and then a 1µs ± 1 clock cycle, then
1µs, then 1µs ± 1 clock cycle until seq sync pulses again and the phs inc is updated,
meanwhile the seq acc is incremented of the phs inc.

309

Guil
lau

me G
arr

ea
u

310

Guil
lau

me G
arr

ea
u

311

Guil
lau

me G
arr

ea
u

312

Guil
lau

me G
arr

ea
u

Appendix E

DACQ frames data format

Additional details for the frames data format are given in this appendix.

Sync

The sync pattern is designed to identify the beginning of a frame and the least
versus most significant bytes of each word. By design, a series of three zero bytes
can only ever occur at the beginning of a frame, and nowhere else in the data. This
characteristic allows the host computer to re-synchronize to the data stream in case
of dropped bytes.

Module ID

The module ID is a four character ASCII code uniquely identifying the data acquisi-
tion module. The module IDs currently in use are as follows.

Unit type Module ID(s)

Ultrasound
US40 (40.0kHz)
US33 (33.3kHz)
US25 (25.0kHz)

ASU ASU1
ASU2

Seismometer
GEO1
GEO2
GEO3

Mannequin ICP1
Gerbil VBM1

Note that the three ultrasonic units differ in the ultrasound operating frequency
(as indicated in the above table), whereas the two ASU units and the three seis-
mometer units are functionally identical.

Frame index

The frame index is a 16 bit integer between 1 and 65535 that increments by one every
frame. It is used to detect missing or dropped frames.

313

Guil
lau

me G
arr

ea
u

Timestamp

The timestamp is a 60 bit integer that is provided by the FM transmitter and also
increments by one every frame. However, because of the possibility of bit errors
in the radio reception, the timestamp should not be used to detect dropped frames.
Note that bit 7 in the most significant byte of each timestamp word is high to prevent
confusion with the sync pattern.

PGA and RSSI

The RSSI is the relative signal strength indication from the FM receiver circuit. It is
an 8 bit integer between 1 and 255. The PGA is a copy of the programmable gain
amplifier setting (see Section E).

Frame minimum

The frame mimimum is a 16 bit integer between 1 and 65535 that is the smallest
sample value in the current frame. It is used to quickly adjust the PGA.

Frame maximum

The frame maximum is a 16 bit integer between 1 and 65535 that is the largest sample
value in the current frame. It is used to quickly adjust the PGA.

Samples

The samples are 16 bit integers between 1 and 65535. These numbers should be
interpreted as signed integers, so that a sample value of 32768 corresponds to 0 Volts,
and sample values of 65535 and 1 are the maximum and minimum (respectively) of
the channel’s dynamic range.

PGA settings

The programmable gain amplifiers can be programmed by sending a single com-
mand byte to the data acquisition unit. The format of the command byte is as
follows.

G3 G2 G1 G0 CH3 CH2 CH1 CH0

The gain setting bits operate as follows.

G3 G2 G1 G0 Gain

0 0 0 0 1
0 0 0 1 2
0 0 1 0 4
0 0 1 1 8
0 1 0 0 16
0 1 0 1 32
0 1 1 0 64
0 1 1 1 128

314

Guil
lau

me G
arr

ea
u

The channel setting bits operate as follows. Note that settings other than 0001
are only used for testing and calibration. For these settings, the PGA output (before
applying the gain) represent the percentage of the ADC’s full scale.

CH3 CH2 CH1 CH0 Channel

0 0 0 0 100%
0 0 0 1 normal
1 1 0 0 0%
1 1 0 1 90%
1 1 1 0 10%
1 1 1 1 50%

315

Guil
lau

me G
arr

ea
u

316

Guil
lau

me G
arr

ea
u

317

Guil
lau

me G
arr

ea
u

318

Guil
lau

me G
arr

ea
u

Appendix F

Handel-C Scripts of Auditory Pathway
Implementation

In this appendix are given the Handel-C scripts used for the full implementation of
the cochlea and the simplified TC model.

The first Handel-C script given is the main.
The script starts with variable definitions, and the initialization of the coefficients of
the cochlea and the thalamo-cortical modules that depends on the frequency span
selected, the number of channels and the number of neurons selected. Then, the
cochlea is implemented, i.e. the different filters stages (first and second order IIR).
The cochlea output is encoding into spike activity (using an integrate and fire model),
which are used as input to the neuron layer A of the TC model. Then, the different
layers are implemented (namely B1 and B2) and finally, the Fusi& Brader learning
rule.

#include "Libraries.hch"

void main(void){

unsigned count_coef i_coef;

unsigned count_NL0 i;

unsigned count_NL1 j, ii, jj, i_from, j_to;

unsigned count_T step_num;

unsigned count_z k;

unsigned 3 times, position;

unsigned FP Aux_dt;

signed FP dp_cp[max_CP];

signed FP dp_cq[max_CQ];

signed FP dp_cs[max_CS];

signed FP dp_zs[max_ZS];

signed FP dp_zp[max_ZP];

signed FP dp_zq[max_ZQ];

signed FP dp_zr[max_ZR];

signed FP d_s, d_p, d_r, d_q;

signed FP tmp, tmp0, tmp1;

signed FP V_L0[N_L0], I_ext[n_ch], I;

unsigned 1 Z_L0[N_L0];

signed FP V_L1[N_L1];

unsigned 1 Z_L1[N_L1], z_current;

signed FP V_L2[N_L2];

unsigned 1 Z_L2[N_L2];

signed FP a1_01[N_L1], a2_01[N_L1], W_01[N_L1], g_01[N_L1];

signed FP a1_12[N_L2], a2_12[N_L2], W_12[N_L2], g_12[N_L2];

319

Guil
lau

me G
arr

ea
u

signed FP a1_R12[N_L1][N_L2], a2_R12[N_L1][N_L2], W_R12[N_L1][N_L2], g_R12[N_L2];

unsigned count_MD D_R12[N_L1][N_L1], i_MD;

unsigned count_CHMD temp_delays;

unsigned 1 Z_buff[n_ch][MAX_DELAY];

unsigned count_MD Z_idx, Z_idx2;

//---------------------- Cochlea coefficients initizalization--------------------

//-- BM coefficients

i_coef = 0;

do{

par{

i_coef++;

if(i_coef < max_CP){

input1 ? dp_cp[i_coef[(count_CP - 1):0]];

}

else if ((i_coef >= max_CP) && (i_coef < (max_CP + max_CQ))){

input1 ? dp_cq[(i_coef - max_CP)[(count_CQ - 1):0]];

}

else if (i_coef >= (max_CP + max_CQ)){

input1 ? dp_cs[(i_coef - (max_CP + max_CQ))[(count_CS - 1):0]];

}

else{

delay;

}

}

}while(i_coef < n_coef);

//---

//---------------------------- TC initizalization -------------------------------

i = 0;

do{

//-- initialise the membrane potentials in layer0 between 0 and 1.

//-- initialise the raster in layer0

//V_L0[i] = multiply(i, dt);

Z_L0[i] = 0;

I_ext[i] = 0;

i++;

}while(i < N_L0);

j = 0;

do{

//-- initialise the membrane potentials in layer1 between 0 and 1.

//-- initialise the raster in layer1

//-- initialise synapses in layer1

//-- initialise synaptic weights in connection layer0 - layer1

//V_L1[j] = multiply(j, dt);

Z_L1[j] = 0;

g_01[j] = 0;

g_R12[j] = 0;

W_01[j] = (tau << 4);

W_12[j] = (tau << 2);

j++;

}while(j < N_L1);

//-- initialise delays

ii = 0;

do{

jj = 0;

do{

i_MD = (ii < jj ? 0@(jj - ii) : 0@(ii - jj));

temp_delays = 0@i_MD;

temp_delays *= MAX_DELAY;

temp_delays /= N_L1;

i_MD = temp_delays[(count_MD - 1):0];

D_R12[ii][jj] = i_MD;

output1 ! D_R12[ii][jj];

jj++;

}while(jj < N_L2);

ii++;

}while(ii < N_L1);

ii = 0;

do{

jj = 0;

320

Guil
lau

me G
arr

ea
u

do{

a1_R12[ii][jj] = 0;

a2_R12[ii][jj] = 0;

W_R12[ii][jj] = (ii != jj ? (tau >> 2) : 0);

output2 ! W_R12[ii][jj];

jj++;

}while(jj < N_L2);

Z_idx = 0;

do{

Z_buff[ii][Z_idx] = 0;

Z_idx++;

}while(Z_idx < MAX_DELAY);

ii++;

}while(ii < N_L1);

step_num = 0; Z_idx2 = 0;

do{

times = 0;

do{

input2 ? d_s;

k = 0;

do{

tmp0 = MULT2(dp_cs[(k[(count_CS - 1):0]) * N_CS], dp_zs[(k[(count_ZS - 1):0]) * N_ZS]);

tmp0 += d_s;

tmp1 = dp_zs[(k[(count_ZS - 1):0]) * N_ZS] + tmp0;

d_s = MULT2(tmp1, dp_cs[1 + (k[(count_CS - 1):0]) * N_CS]);

dp_zs[(k[(count_ZS - 1):0]) * N_ZS] = tmp0;

k++;

}while(k < max_ZS);

d_p = d_s;

// Process each channel:

i = 0;

do{

d_r = 0;

// First-order IIR filter section

tmp0 = MULT2(dp_cp[(0@i)* N_CP], dp_zp[(i[(count_ZP - 1):0]) * N_ZP]) + d_p;

tmp1 = dp_zp[(i[(count_ZP - 1):0]) * N_ZP] + tmp0;

d_p = MULT2(tmp1, dp_cp[1 + (0@i) * N_CP]);

dp_zp[(i[(count_ZP - 1):0]) * N_ZP] = tmp0;

// A cascade of two 2nd-order IIR filter sections

// (First IIR:)

tmp0 = MULT2(dp_cq[(0@i) * N_CQ], dp_zq[(0@i) * N_ZQ]);

tmp = tmp0 + MULT2(dp_cq[1 + (0@i) * N_CQ], dp_zq[1 + (0@i) * N_ZQ]) + d_p;

tmp0 = MULT2(dp_cq[3 + (0@i) * N_CQ], dp_zq[1 + (0@i) * N_ZQ]);

d_q = tmp0 + MULT2(dp_cq[2 + (0@i) * N_CQ], tmp);

dp_zq[1 + (0@i) * N_ZQ] = dp_zq[(0@i) * N_ZQ];

dp_zq[(0@i) * N_ZQ] = tmp;

// (Second IIR:)

tmp0 = MULT2(dp_cq[(0@i) * N_CQ], dp_zr[(0@i) * N_ZQ]);

tmp = tmp0 + MULT2(dp_cq[1 + (0@i) * N_CQ], dp_zr[1 + (0@i) * N_ZQ]) + d_q;

tmp0 = MULT2(dp_cq[3 + (0@i) * N_CQ], dp_zr[1 + (0@i) * N_ZQ]);

d_r = tmp0 + MULT2(dp_cq[2 + (0@i) * N_CQ], tmp);

dp_zr[1 + (0@i) * N_ZQ] = dp_zr[(0@i) * N_ZQ];

dp_zr[(0@i) * N_ZQ] = tmp;

//tmp0 = MULT2(d_r, scale_factor); // the output is scaled

tmp0 = d_r >> 3; // scaled by a factor of 0.125

tmp0 *= (tmp0 < 0 ? -1 : 1); // Full wave rectification

output3 ! tmp0; // save the Cochlea output

I_ext[i] += tmp0;

i++;

}while(i < n_ch); // -- end of the channel loop

times++;

}while(times < 3); //-- end of the BM loop

321

Guil
lau

me G
arr

ea
u

//-- Here is where the TC model starts

i = 0;

do{

//--- From a cochleagram to a spiking activity

I = I_ext[i]/3;

I_ext[i] = 0;

tmp = UNO - dt;

tmp0 = MULT2(V_L0[i], tmp);

tmp1 = MULT2(I, dt);

V_L0[i] = tmp0 + tmp1;

output4 ! V_L0[i];

Z_L0[i] = (V_L0[i] < firing_threshold ? 0 : 1);

output5 ! Z_L0[i];

V_L0[i] = (Z_L0[i] ? 0 : V_L0[i]);

//--//

//- Synaptic activity (layer 0 - layer 1)

tmp = UNO - dtaur;

tmp0 = MULT2(tmp, a1_01[i]); // --- checar porque el indice de a1 era 1

tmp1 = (Z_L0[i] ? MULT2(W_01[i], dtaur) : 0);

a1_01[i] = tmp0 + tmp1;

tmp = UNO - dtauf;

tmp0 = MULT2(tmp, a2_01[i]);

tmp1 = MULT2(a1_01[i], dtauf);

a2_01[i] = tmp0 + tmp1;

g_01[i] = a2_01[i];

output6 ! g_01[i];

//--//

//- Layer 1

tmp = UNO - dt;

tmp0 = MULT2(tmp, V_L1[i]);

tmp = g_01[i];

tmp1 = MULT2(tmp, dt);

V_L1[i] = tmp0 + tmp1;

output7 ! V_L1[i];

Z_L1[i] = (V_L1[i] < firing_threshold ? 0 : 1);

output8 ! Z_L1[i];

V_L1[i] = (Z_L1[i] ? 0 : V_L1[i]);

tmp = UNO - dtaur;

tmp0 = MULT2(tmp, a1_12[i]);// --- checar porque el indice era 1

tmp1 = (Z_L1[i] ? MULT2(W_12[i], dtaur) : 0);

a1_12[i] = tmp0 + tmp1;

tmp = UNO - dtauf;

tmp0 = MULT2(tmp, a2_12[i]);

tmp1 = MULT2(a1_12[i], dtauf);

a2_12[i] = tmp0 + tmp1;

g_12[i] = a2_12[i];

output9 ! g_12[i];

Z_buff[i][Z_idx2] = Z_L1[i];

//--//

//- Layer 2

tmp = UNO - dt;

tmp0 = MULT2(tmp, V_L2[i]);

tmp = g_01[i] - g_12[i] + g_R12[i];

tmp1 = MULT2(tmp, dt);

V_L2[i] = tmp0 + tmp1;

output10 ! V_L2[i];

Z_L2[i] = (V_L2[i] < firing_threshold ? 0 : 1);

output11 ! Z_L2[i];

V_L2[i] = (Z_L2[i] ? 0 : V_L2[i]);

i++;

322

Guil
lau

me G
arr

ea
u

}while(i < N_L0); //end of the neuron loop

//----------------- Learning Rule -------------------------

i_from = 0;

do{

j_to = 0;

do{

if(step_num > 0@D_R12[i_from][j_to]){

z_current = Z_buff[i_from][Z_idx2 - D_R12[i_from][j_to]];

if(z_current){

if(V_L2[j_to] > THETA_V){

W_R12[i_from][j_to] += UP_STEP;

}

else{

W_R12[i_from][j_to] -= DOWN_STEP;

}

}

tmp = UNO - dtaur;

tmp0 = MULT2(tmp, a1_R12[i_from][j_to]);

tmp1 = (z_current ? MULT2(W_R12[i_from][j_to], dtaur) : 0);

a1_R12[i_from][j_to] = tmp0 + tmp1;

tmp = UNO - dtauf;

tmp0 = MULT2(tmp, a2_R12[i_from][j_to]);

tmp1 = MULT2(a1_R12[i_from][j_to], dtauf);

a2_R12[i_from][j_to] = tmp0 + tmp1;

}

if(W_R12[i_from][j_to] > THETA_W){

W_R12[i_from][j_to] += MULT2(dt, DRIFT_UP_RATE);

}

else{

W_R12[i_from][j_to] -= MULT2(dt, DRIFT_DOWN_RATE);

}

j_to++;

}while(j_to < N_L2);

i_from++;

}while(i_from < N_L1);

//---

/*i_from = 0;

do{

j_to = 0;

do{

if(step_num > 0@D_R12[i_from][j_to]){

z_current = Z_buff[i_from][Z_idx2 - D_R12[i_from][j_to]];

tmp = UNO - dtaur;

tmp0 = MULT2(tmp, a1_R12[i_from][j_to]);

tmp1 = (z_current ? MULT2(W_R12[i_from][j_to], dtaur) : 0);

a1_R12[i_from][j_to] = tmp0 + tmp1;

tmp = UNO - dtauf;

tmp0 = MULT2(tmp, a2_R12[i_from][j_to]);

tmp1 = MULT2(a1_R12[i_from][j_to], dtauf);

a2_R12[i_from][j_to] = tmp0 + tmp1;

}

j_to++;

}while(j_to < N_L2);

i_from++;

}while(i_from < N_L1);*/

ii = 0;

do{

g_R12[ii] = 0;

jj = 0;

do{

g_R12[ii] += a2_R12[jj][ii];

323

Guil
lau

me G
arr

ea
u

jj++;

}while(jj < N_L1);

output12 ! g_R12[ii];

ii++;

}while(ii < N_L1);

//- ring buffer

if(step_num >= (MAX_DELAY - 1)){

j = 0;

do{

Z_idx = 1;

do{

Z_buff[j][Z_idx - 1] = Z_buff[j][Z_idx];

Z_idx++;

}while(Z_idx < MAX_DELAY);

j++;

}while(j < N_L2);

}

step_num++;

Z_idx2 += (step_num < MAX_DELAY ? 1 : 0);

}while(step_num < SIM_LENGTH); // -- end of the simulation loop

ii = 0;

do{

jj = 0;

do{

output13 ! W_R12[ii][jj];

jj++;

}while(jj < N_L2);

ii++;

}while(ii < N_L1);

}

The second Handel-C script given is the library definition file.
It contains the definition and initialization values of all the variables used in the
previous scripts.

//__

//--General parameters

set clock = external "P1"; // - clock signal

macro expr LOG2_FRAC = 16; // - Number of bits in the fractional part

macro expr LOG2_INT = 16; // - Number of bits in the integer part

macro expr FP = (LOG2_INT + LOG2_FRAC); // - Word size

macro expr LSB = (LOG2_FRAC); // - Less Significant Bit

macro expr MSB = (LOG2_INT + 2 * LOG2_FRAC - 1); // - More significant Bit

macro expr UNO = 1 << LOG2_FRAC;

//__

//-- Cochlea parameters

// - Filters coeficients

macro expr N_CS = 2;

macro expr N_ZS = 1;

macro expr N_CP = 2;

macro expr N_ZP = 1;

macro expr N_CQ = 4;

macro expr N_ZQ = 2;

macro expr n_ch = 30; // - number of channels

macro expr count_nch = 5; // - counter for n_ch

macro expr fs = 32000; // - number of inputs

macro expr count_fs = 15; // - counter for n_in

macro expr ts = 10240; // - number of inputs

macro expr count_ts = 14; // - counter for n_in

324

Guil
lau

me G
arr

ea
u

macro expr SIM_LENGTH = (ts * 10000)/fs;

macro expr count_T = 12;

macro expr DT_RATIO = 209715;

macro expr scale_factor = 1 << LOG2_FRAC;

macro expr n_coef = ((N_CP + N_CQ) * n_ch + N_CS * 3); // - number of coefficients

macro expr count_coef = 8; // - counter for n_coef

macro expr n_z = ((N_ZP + N_ZQ) * n_ch + N_ZS * 3); // - total number of variables

macro expr count_z = 7; // - counter for variables

// - counters for coefficients

macro expr count_CS = 3;

macro expr count_ZS = 2;

macro expr count_CP = 6;

macro expr count_ZP = 5;

macro expr count_CQ = 7;

macro expr count_ZQ = 6;

// - maximum number of values per coefficients vector

macro expr max_CS = N_CS * 3;

macro expr max_ZS = N_ZS * 3;

macro expr max_CP = N_CP * n_ch;

macro expr max_ZP = N_ZP * n_ch;

macro expr max_CQ = N_CQ * n_ch;

macro expr max_ZQ = N_ZQ * n_ch;

macro expr max_ZR = N_ZQ * n_ch;

chanin input1 with {infile = "C:/Implementations/MATLAB/HC_sim_interface/BM_coefficients.dat"};

chanin input2 with {infile = "C:/Implementations/MATLAB/HC_sim_interface/Acoustic_stimulus.dat"};

//__

//-- IFN parameters

macro expr N_L0 = 30; // - number of neurons in layer 0

macro expr count_NL0 = 5; // - counter for n_neurons in layer 0

macro expr N_L1 = 30; // - number of neurons in layer 1

macro expr count_NL1 = 5; // - counter for n_neurons in layer 1

macro expr N_L2 = 30; // - number of neurons in layer 1

macro expr count_NL2 = 5; // - counter for n_neurons in layer 1

macro expr MAX_DELAY = 200;

macro expr count_MD = 8;

macro expr MAX_DELAY_STEPS = MAX_DELAY * 10;

macro expr nch_MD = n_ch * MAX_DELAY;

macro expr count_CHMD = 13;

macro expr tau = 1 << LOG2_FRAC;

macro expr firing_threshold = 1 << LOG2_FRAC;

//macro expr dt = (tau >> 4) + (tau >> 5) + (tau >> 7);

macro expr dt = 6554;

macro expr taur = (tau >> 1);

macro expr tauf = (tau << 1);

macro expr dtaur = (tau >> 3) + (tau >> 4);

macro expr dtauf = (tau >> 4);

//__

//-STDP Parameters

macro expr THETA_V = 26214; // = 0.4

macro expr UP_STEP = 13107; // = 0.2

macro expr DOWN_STEP = 16384; // = 0.25

macro expr THETA_W = 19661; // = 0.30

macro expr DRIFT_UP_RATE = 3277; // = 0.05

macro expr DRIFT_DOWN_RATE = 66; // = 0.001

325

Guil
lau

me G
arr

ea
u

//macro expr DRIFT_UP_RATE = 328; // = 0.005

//macro expr DRIFT_DOWN_RATE = 7; // = 0.0001

//__

chanout output1 with {outfile = "Delays.dat"};

chanout output2 with {outfile = "Weights.dat"};

chanout output3 with {outfile = "BMoutput.dat"};

chanout output4 with {outfile = "IFNoutput.dat"};

chanout output5 with {outfile = "IFNZoutput.dat"};

chanout output6 with {outfile = "alpha.dat"};

chanout output7 with {outfile = "IFNL1output.dat"};

chanout output8 with {outfile = "IFNZL1output.dat"};

chanout output9 with {outfile = "alpha1.dat"};

chanout output10 with {outfile = "IFNL2output.dat"};

chanout output11 with {outfile = "IFNZL2output.dat"};

chanout output12 with {outfile = "alpha2.dat"};

chanout output13 with {outfile = "Weights_after_STDP.dat"};

//__

//-- General functions

// - Multiplication function

signed MULT2(signed a, signed b){

unsigned 1 sign;

signed (FP + FP) Aux;

signed FP c;

sign = (a < 0 ? 1 : 0);

sign ˆ= (b < 0 ? 1 : 0);

a *= (a < 0 ? -1 : 1);

b *= (b < 0 ? -1 : 1);

Aux = (0@a) * (0@b);

c = Aux[MSB:LSB];

c *= (sign ? -1 : 1);

return c;

}

macro expr multiply(x, y) = select(width(x) == 0, 0, multiply(x \\ 1, y << 1) + (x[0] == 1 ? y : 0));

//__

326

Guil
lau

me G
arr

ea
u

327

Guil
lau

me G
arr

ea
u

328

Guil
lau

me G
arr

ea
u

