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Περίληψη 
 

 
Η παρούσα διδακτορική διατριβή μελετά τη διαδικασία της εκτίμησης 

κατάστασης (state estimation) σε πολύπλοκα διασυνδεδεμένα συστήματα, 

τα οποία μοντελοποιούνται σαν discrete event systems ή stochastic discrete 

event systems. Ένα από τα σημαντικά κίνητρα για να ασχοληθούμε με τα 

προβλήματα που σχετίζονται με την εκτίμηση κατάστασης, είναι ο 

σημαντικός ρόλος που διαδραματίζουν σε θεωρητικά προβλήματα, όπως 

την κατηγοριοποίηση (classification) και την ανίχνευση σφαλμάτων (fault 

diagnosis). Ιδιαίτερα, η παρούσα διατριβή έχει σκοπό της να εξερευνήσει 

τις έννοιες της ακριβούς εκτίμησης κατάστασης (detectability), της 

ανίχνευσης σφαλμάτων, και της κατηγοριοποίησης, χρησιμοποιώντας 

τεχνικές εκτίμησης κατάστασης, κατάλληλες για  discrete event systems 

και stochastic discrete event systems. Ερευνούμε αυτά τα προβλήματα σε 

μη ντετερμινιστικά και στοχαστικά πεπερασμένα αυτόματα, σε τρεις 

διαφορετικές περιπτώσεις (συγκεκριμένα, μονολιθικά, αποκεντρωμένα 

και κατανεμημένα συστήματα). Ειδικότερα, ερευνούμε την έννοια της 

ανίχνευσης σφαλμάτων σε κατανεμημένα συστήματα, για μη-

ντετερμινιστικά πεπερασμένα αυτόματα, σε συνθήκες περιορισμένης 

επικοινωνίας. Επίσης, εισάγουμε και επαληθεύουμε στοχαστικές έννοιες 

για τα προβλήματα της ακριβούς εκτίμησης κατάστασης και ανίχνευσης 

σφαλμάτων αναλύοντας την ασυμπτωτική συμπεριφορά των συστημάτων. 

Τέλος, προτείνουμε και συζητούμε διάφορες μεθόδους στο πρόβλημα της 

κατηγοριοποίησης σε κρυφά μαρκοβιανά μοντέλα (hidden Markov 

models). Αναπτύσσουμε διάφορες μεθόδους υπολογισμού ανωτάτων 

ορίων για την πιθανότητα λάθους κατηγοριοποίησης, που ασυμπτωτικά 

τείνουν στο μηδέν, κάτω από καθορισμένες ικανές συνθήκες.  
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Abstract

This thesis studies state estimation in complex networked systems that are modeled

as discrete event systems (DES) or stochastic discrete event systems (SDES). One

of the main motivations for looking into state estimation problems is their crucial

role in classification and fault diagnosis applications. Specifically, this thesis aims

to explore the notions of detectability, diagnosability, and classification, using state

estimation methods appropriate for DES and SDES. We pursue investigations of

such problems in nondeterministic and probabilistic finite automata, under three

different observation settings (namely, centralized, decentralized, and distributed).

In particular, we explore diagnosability in distributed settings for nondeterminis-

tic finite automata under communication constraints. Furthermore, we introduce

stochastic notions for the problems of detectability and diagnosability, and analyze

the asymptotic behaviour of the resulting state estimation processes. Finally, we

discuss the classification among two hidden Markov models (HMMs), and develop

various methods for computing asymptotically tight bounds on the probability of

misclassification, under established sufficient conditions.
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Chapter 1

Introduction

1.1 Motivation

This thesis explores state estimation techniques in discrete event systems (DES) that

can be modeled by nondeterministic finite automata (NFAs) or probabilistic finite

automa (PFAs), under particular observation models (that typically inhibit the di-

rect observation of the system state). Early instances of state estimation problems in

discrete event systems appear in [30] and [34], both of which formulate observability

as a system property that requires perfect knowledge of the current state of the sys-

tem. The observability property was generalized to various notions of detectability

in [45].

State estimation is key in many control engineering applications involving com-

plex systems. For example, opacity [7, 40] requires that a given set of states (with

certain properties of interest) remain opaque (non-identifiable) based on the gener-

ated sequence of observations, regardless of the underlying activity in the system.

Enforcing opacity, e.g., by enabling or disabling events at appropriate instances of in-

stances of time, has recently drawn attention in a variety of security applications [53].

Another related application is fault diagnosis [24, 42, 54] which requires discrimina-

tion (within a finite time interval following the occurrence of a fault) between the

set of normal states (states that are possible under normal behaviour) and the set

of faulty states (states that are possible under faulty behaviour), for every possible

trace that can be executed in the system; disambiguation between these two sets of

states requires state estimation techniques. A similar problem in stochastic discrete

event systems (probabilistic finite automata) is the classification between two given
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models (hidden Markov models or probabilistic finite automata) [1]. Though the

properties of detectability, fault diagnosis, classification and opacity can be used in

diverse applications to capture distinct features of the underlying systems, they can

be verified with similar tools, if one applies state estimation techniques.

1.1.1 Fault Diagnosis

Fault diagnosis is important in the monitoring and control of discrete event sys-

tems, with applications ranging from transportation systems to heating/ventilation

systems, and from communication networks to medical diagnostics. In centralized

settings, fault detection and isolation, as well as the verification of diagnosability

(i.e., the ability to diagnose faults after a finite number of observations following

their occurrence) for a given (non-deterministic) finite automaton that models the

system of interest can be performed by a single entity, called observer or diagnoser,

typically designed as a (deterministic) finite automaton that is driven by observable

events [3,29,42]. For fault diagnosis, we consider some specific events that (indicate

faults or abnormal conditions and) need to be detected (more generally, they need

to be classified or identified) after a finite (bounded) delay.

Following [42], many researchers have investigated algorithms for fault diagnosis

and the verification of diagnosability. In particular, language diagnosability as

defined in [42] can be verified with polynomial-time algorithm [54]. The approach

in [54] assumes a deterministic system and constructs, for each fault type, a verifier

i.e., a nondeterministic finite automaton that can be used to check eventual (i.e.,

within a finite number of events or observations) fault detection and/or isolation

of the corresponding failure type. The system is shown to be diagnosable for a

particular failure type if all cycles of the corresponding verifier have identical state

labels. The approach in [54] assumes a nondeterministic system and constructs

a verifier automaton with language specified by the natural projection map. In

contrast to [54], the verifier in [54] also tracks labels of multiple faults. The system

is shown to be diagnosable if the cycles of the verifier consist of states with identical

failure labels.

Diagnosability has also been investigated in decentralized architectures [8,13,33,

36,48,51,52]. In particular, the authors in [13] propose three protocols for coordinated

decentralized diagnosis. Protocols 1 and 2 assume unidirectional communication

2
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from the local diagnosers to a coordinator, whereas Protocol 3 assumes no commu-

nication between them or to any coordinator.

We elaborate on these protocols a bit since they are useful for our analysis later

on.

1. In Protocol 1, the diagnostic information at a local site is generated by an extended

diagnoser, the states of which consist of both the predecessor and successor state

estimates of an observable event along with its failure label. The decision rule of

the coordinator is defined under different intersection operations applied on pairs

of system state estimates and their matching normal/failure conditions.

2. Protocol 2 uses the basic (standard) diagnoser to generate the local diagnostic

information, and system diagnosis is performed under the same communication

and decision rules as in Protocol 1. Although the computational complexity of

Protocol 2 is reduced compared to Protocol 1, the performance of the former is

constrained to traces that adhere to the “well-ordering” property of the coordinator,

also referred to as failure-ambiguous traces in [13].

3. Protocol 3 is directly linked to the so-called property of co-diagnosability. A

system is codiagnosable (or decentralized diagnosable) if any occurrence of a failure

is detected by at least one local diagnoser within a bounded interval of observations.

Polynomial complexity algorithms for the verification of Protocol 3 and varia-

tions of it can be found in [33, 36, 48, 51, 52]. In [52] decentralized diagnosability is

studied under a framework of conditional decisions issued by the local sites, and poly-

nomial tests are proposed for the verification of equivalent language-based notions

of decentralized diagnosability. In [51] the authors propose polynomial algorithms

to transform a problem of co-observability to the problem of co-diagnosability un-

der the assumption of dynamic observations. They also propose a polynomial-time

algorithm for testing co-diagnosability of the system based on cluster automata. The

authors of [48] study co-diagnosability under the condition of state-dependence and

nondeterminism of partial event observation. The algorithm proposed in [36] is

based on constructing a testing automaton that, given a faulty trace, searches for

corresponding indistinguishable non-faulty traces at each local site. Our contribu-

tion is the application of a novel communication protocol, that allows the exchange

of local state estimates between the local sites, under communication constraints.

3
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1.1.2 Detectability

An important task associated with state estimation is that of accurate characterization

of the possible (compatible) current states following a (possibly long) observation

sequence generated by the underlying discrete event system. In deterministic set-

tings, a key concept is the notion of detectability which was introduced in [45]. In

particular, the notion of strong detectability holds if all observation sequences lead

to an accurate estimate of the current state (perfect knowledge of the system state)

after a finite number of observations. Thus, the notion of detectability is primarily

determined by finite observation sequences generated by the underlying discrete

event system. The authors of [45] defined four different notions for detectability in

discrete event systems that can be modeled as nondeterministic automata: strong

detectability, detectability, strong periodic detectability, and periodic detectability.

In stochastic DES (SDES) we can relax the strong notion of perfect state esti-

mation described above, by requiring that perfect state estimation is only achieved

asymptotically. The availability of stochastic information allows us to compute the

probability of any trace of events and determine not only if a state is a possible can-

didate as a current state, but also how probable it is. In other words, the available

probabilistic information can be used by the estimator to determine the posterior

likelihood of a certain state (conditioned on a particular sequence of observations)

and, via the verification process, to determine the likelihood of problematic obser-

vation sequences. Thus, a number of possibilities open up, in terms of utilizing the

probabilistic information to characterize detectability in SDES.

The authors of [46] introduced notions of detectability in PFAs. Whereas in

deterministic settings the problematic system behaviour corresponds to sequences

of observations that do not lead to perfect state estimation, the approach in [46] takes

the viewpoint that the problematic behaviour generates sequences of observations

that do not allow us to estimate the exact state with increasing certainty. Furthermore,

the approach in [46] analyzes all possible observation sequences (infinite sequences),

however improbable (as long as they are feasible), and declares the system not

stochastically detectable, if there is at least one such problematic sequence that is

feasible. Our contribution includes the introduction of the novel stochastic notions

of A-detectability, and AA-detectability, and their verification.
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1.1.3 Classification among HMMs

Classification among systems that can be modeled as hidden Markov models (HMMs

or PFAs) is related to the ability to distinguish the correct HMM based on a sequence

of observations that has been generated by underlying (unknown) activity in one

of two (or more) known HMMs. The ability to distinguish the correct HMM is, of

course, related to the probability of selecting an incorrect HMM model, which is mea-

sured by the probability of misclassification among two HMMs. The performance of

the maximum a posteriori (MAP) classifier, which minimizes the probability of mis-

classification [1], is captured by the a priori probability of error, i.e., the probability of

error before any observations are made. The precise calculation of the probability of

error (for sequences of observations of a given finite length) is a combinatorial task

of high complexity (typically exponential in the length of the sequences).

Classification can find application in many areas where HMMs are used, includ-

ing speech recognition [2,23,37], pattern recognition [19], bioinformatics [15,27], and

failure diagnosis in discrete event systems [1,11,31,49]. Classification is also related

to approaches dealing with the distance or dissimilarity between two HMMs [17,25].

Our contribution involves methods that allow us to obtain an upper bound

on the probability of misclassification with lower complexity than of the precise

computation. Directly related previous work can be found in [1], which studies the

probability of misclassification and obtains bounds that tend to zero under specific

conditions.

1.2 Main Contributions and Thesis Organization

This thesis explores different state estimation problems in DES, such as detectability,

fault diagnosis, and classification. These problems differ in their formulations and

objectives, but share related verification methods. It is known that notions of de-

tectability and diagnosability, in nondeterministic finite automata can be verified by

employing similar constructions, called observers or diagnosers. The complexity of

constructing an observer/diagnoser is exponential in the number of states of the orig-

inal system. Verification methods with polynomial complexity in the number of the

states of the system, have also been presented for detectability/diagnosability respec-

tively. These methods employ finite automata called detectors/verifiers [45], [54].
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This thesis studies state estimation problems in distributed settings and in stochas-

tic settings. In distributed settings, this thesis studies diagnosability using prespec-

ified communication protocols that involve exchanges of state estimates, among

local agents that observe locally available events and can communicate (exchange

information about state estimates). In stochastic settings we combine stochastic

state estimation with classification for hidden Markov models or probabilistic finite

automata. Using hypothesis testing techniques, we provide conditions for asymp-

totically tight bounds on the probability of misclassification among two HMMs. The

explicit description of the contribution of each chapter follows.

1. In Chapter 3 we study diagnosis using a synchronization-driven intersection-

based distributed diagnosis protocol (called Restricted Synchronization In-

tersection Based Diagnosis, or RS-IBDD). The RS-IBDD protocol allows local

diagnostic information (namely, state estimates and associated normal/fault

conditions) to be exchanged and refined among the local sites. The exchange

and refinement of the diagnostic information takes place at synchronization

points, that are predetermined at each observation site, by taking the inter-

section of the state estimates and associated normal/fault conditions provided

by the local diagnosers. The fused information is then communicated back

to the local diagnosers, which subsequently continue operation based on this

refined diagnostic information. In this protocol there is no need for a coordina-

tor, but the diagnostic information is exchanged and refined among the local

sites. Furthermore, communication constraints dictate a general approach,

which, among others, exploits the communication graph that represents the

bidirectional communication capability between local sites. Diagnosability of

the resulting distributed protocol is shown to be verifiable with polynomial

complexity (in the size of the state space of the given nondeterministic finite

automaton) and exponential in the number of observation sites.

2. In Chapter 4 we are interested in exploring state estimation techniques in

stochastic discrete event systems (SDES) that can be modeled by probabilis-

tic finite automata (PFAs) under particular observation models. The authors

of [45] and [46] introduced notions of detectability in nondeterministic and

stochastic settings respectively. When dealing with detectability in nondeter-
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ministic finite automata in [45], the problematic system behaviour as far as

detectability is concerned corresponds to sequences of observations that do

not lead to exact state estimation (i.e., they do not lead to perfect state estima-

tion, with no uncertainty). When dealing with detectability in PFA’s in [46],

the problematic behaviour is associated with sequences of observations that

do not allow us to estimate the exact state with increasing certainty. The major

contribution of this chapter is the introduction and verification of the notions

of A-detectability and AA-detectability. Specifically, we provide necessary

and sufficient conditions for A-detectability and AA-detectability, along with

a proof that A-detectability is a PSPACE-hard problem. A-detectability con-

centrates on highly probable system behaviour and characterizes the given

system’s detectability accordingly. By considering only observation sequences

that belong to the recurrent behavior of the system, A-detectability does not

take into account observation sequences that are treated as problematic in pre-

vious notions of stochastic detectability. In some cases even if the system is not

A-detectable (i.e., there exists a nonzero probability of generating observation

sequences that correspond to possible estimates for more than one state), the

probability of estimating the correct state for these observation sequences goes

to one. These cases lead to the definition of AA-detectability.

3. In Chapter 5 we analyze the problem of classification among Hidden Markov

models (HMMs).

(a) In Section 1 we characterize a class of upper bounds on the a priori proba-

bility of error when classifying among two known HMMs. By introducing

an appropriate deterministic finite automaton (DFA), we systematically

merge different sequences of the same length in a way that allows easy

computation of an upper bound on the probability of misclassification.

Our approach also allows us to use Markov chain theory to obtain an

upper bound for asymptotically large n (in all cases, the approach has

complexity polynomial in the size of the two given HMMs and the size of

the DFA that is used).

(b) In Section 2 we characterize an upper bound on the probability of error,
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when classifying among two HMMs, by constructing a finite automaton

that captures the common behaviour of the two HMMs. We also establish

necessary and sufficient conditions for this bound to tend to zero expo-

nentially with increasing observation steps.

(c) In Section 3 we provide a method for obtaining an upper bound on the

probability of misclassification between two competing HMMs using a

suboptimal rule. We use a suboptimal decision rule which counts the

number of times each output symbol appears, obtains the empirical (mea-

sured) frequency of each output symbol, and compares empirical fre-

quencies against the expected frequencies in each of the two systems. We

establish that the verification of the effectiveness of this rule is polynomial

with respect to the number of states of the two HMMs. Specifically, we

are able to discriminate between the two models using the suboptimal

decision rule based on the empirical frequencies of output symbols, as

long as the two systems are characterized, at steady-state, by different

statistical properties for the occurrence of output symbols, which we re-

fer to as stationary emission probabilities. Furthermore, we apply these

results into a special case of probabilistic system opacity, so as to have a

polynomial complexity verification algorithm.
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Chapter 2

Notation and Background

2.1 Notation on Languages and Automata

Let Σ be an alphabet (set of events) and denote by Σ∗ the set of all finite-length strings

of elements of Σ (sequences of events), including the empty string ε (the length of a

string s is denoted by |s| with |ε| = 0). A language L ⊆ Σ∗ is a subset of finite-length

strings in Σ∗ [10] (i.e., sequences of events with the convention that the first event

appears on the left). Given strings s, t ∈ Σ∗, the string st denotes the concatenation

of s and t, i.e., the sequence of events captured by s followed by the sequence of

events captured by t. For a string s, s denotes the prefix-closure of s, and is defined as

s̄ = {t ∈ Σ∗ | ∃t′ ∈ Σ∗{tt′ = s}}. For two string s and t, we also define t ∈ s, if ∃t1, t2 ∈ Σ∗,

such as t1tt2 = s.

Definition 1. (Nondeterministic Finite Automaton (NFA)). A nondeterministic finite au-

tomaton is captured by G = (X,Σ, δ,X0), where X = {1, 2, . . . ,N} is the set of states, Σ is the

set of events, δ : X × Σ→ 2X is the nondeterministic state transition function, and X0 ⊆ X

is the set of possible initial states.

For a set Q ⊆ X and σ ∈ Σ, we define δ(Q, σ) = ∪q∈Qδ(q, σ); with this notation at

hand, the function δ can be extended from the domain X × Σ to the domain X × Σ∗ in the

routine recursive manner: δ(x, σs) := δ(δ(x, σ), s) for x ∈ X, s ∈ Σ∗ and σ ∈ Σ (note that

δ(x, ε) := {x}). The behavior of G is captured by L(G) := {s ∈ Σ∗ | ∃x0 ∈ X0{δ(x0, s) , ∅}}.

We use L(G, x) to denote the set of all traces that originate from state x of G (so that

L(G) =
⋃

x0∈X0
L(G, x0)).

Definition 2. (Deterministic Finite Automaton (DFA)). A deterministic finite automaton

is captured by D = (X,Σ, δ, x0), where X = {1, 2, . . . ,N} is the set of states, Σ is the set
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of events, δ : X × Σ → X is the (possibly partially defined) deterministic state transition

function, and x0 ∈ X is the initial state.

The function δ can be extended from the domain X × Σ to the domain X × Σ∗ in the

routine recursive manner:

δ(x, σs) =

 δ(δ(x, σ), s), if δ(x, σ) is defined,

undefined, otherwise,

for x ∈ X, s ∈ Σ∗ and σ ∈ Σ (note that in this case δ(x, ε) := x). The behavior of D is captured

by L(D) := {s ∈ Σ∗ | δ(x0, s) is defined}.

In general, only a subset Σo (Σo ⊆ Σ) of the events can be observed, so that Σ is

partitioned into the set of observable events Σo and the set of unobservable events

Σuo = Σ − Σo. The natural projection PΣo : Σ∗ → Σ∗o maps any trace executed in the

system to the sequence of observations associated with it, and is defined recursively

as PΣo(sσ) = PΣo(s)PΣo(σ), σ ∈ Σ, s ∈ Σ∗, with

PΣo(σ) =

 σ, if σ ∈ Σo,

ε, if σ ∈ Σuo ∪ {ε},

where ε represents the empty observation trace [10]. In the sequel, the subscript

Σo in PΣo will be dropped when it is clear from context. The inverse projection of a

string of observable events ω ∈ P(L(G)) is given by

P−1(ω) = {s ∈ L(G) : P(s) = ω}.

Definition 3. (Possible states following a sequence of observations (R : 2|X| × Σ∗o → 2|X|)).

Suppose that a nondeterministic automaton G = (X,Σ, δ,X0) is in a state in the set of

possible states X′ ⊆ X; the set of all possible states after observing ω ∈ Σ∗o is R(X′, ω) = {x ∈

X | (∃x′ ∈ X′)(∃s ∈ Σ∗){P(s) = ω ∧ x ∈ δ(x′, s)}}.

Note that using Definition 3, the unobservable reach of the set X′ ⊆ X [10] can

be expressed as UR(X′) = R(X′, ε) and it denotes the set of states that are reachable

from a state in X′ via zero, one, or more unobservable events.

2.2 Detectability in Nondeterministic Finite Automata

The authors of [45] define four different notions for detectability in discrete event

systems that can be modeled as nondeterministic automata: strong detectability,
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detectability, strong periodic detectability, and periodic detectability. We recall below

the notion of strong detectability, which is of interest for the developments in this

thesis, given that we are able to introduce constructions, such as the Detector, which

are useful for the analysis of the stochastic notions, later in Chapter 4.

Definition 4. (Strong Detectability) [45]. An NFA G = (X,Σ, δ,X0) is strongly detectable

with respect to natural projection map P for a set Σobs ⊆ Σ of observable events if we can

determine the current state and subsequent states of the system, after a finite number of

observations, for all trajectories s, s ∈ L(G), of the system greater than a certain length N,

i.e.,

(∃N ∈N)(∀n ≥ N)

(∀s ∈ L(G)){(|s| = n)⇒ (|R(X0,P(s))| ≤ 1)}.

Remark: For all s ∈ L(G), we have |R(X0,P(s))| ≥ 1, thus in the above definition we

could have said |R(X0,P(s))| = 1.

As motivation for studying the notion of detectability, consider a vehicle capable

of moving on a grid, such as the toy grid in Fig. 2.1(a). If we use the cell number to

denote the state of the vehicle, then the trajectory that the vehicle follows corresponds

to a sequence of states and the origin of the trajectory is captured by the initial state of

the vehicle. The vehicle’s possible movements are available via a kinematic model,

i.e., a finite automaton whose states are associated with the state (cell) of the vehicle

and whose transitions correspond to the movements of the vehicle that are allowed

at each position (up, down, left, right, diagonal, etc. — the allowed movements will

presumably depend on the underlying terrain that the grid is capturing). Fig. 2.1(b)

depicts an example of a kinematic model for the vehicle that moves in the toy grid

of Fig. 2.1(a).

Suppose specific sensors that detect events α and β are deployed in the grid.

Sensor α detects the left and right movements of the vehicle. Sensor for β detects the

up and down movements of the vehicle, along with movement that finalizes at the

same cell. Fig. 2.2 depicts the (non-deterministic) finite automaton G that models

both the kinematic model of the vehicle and the corresponding sensor readings

for a particular set of sensor coverages. Essentially G is a non-deterministic finite

automaton with partial observation on its transitions.

We can extend the above formulation to a probabilistic setting under which each

transition is assigned a specific probability of occurrence as in Fig. 4.1. One of the
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questions that might arise in the above context is that of understanding whether

the sensory information that is available allows us to obtain important information

about the present location (current state) of the vehicle. In a probabilistic setting

this translates to the requirement that the probability of violating strings be under

or above a specific threshold.

Figure 2.1: (a) Grid in which a vehicle can move; (b) Kinematic model for a vehicle

in the grid in (a).

Definition 5. (Observer or Current-state estimator) [9]. Given an NFA G = (X,Σ, δ,X0)

with set of observable events Σobs ⊆ Σ under the natural projection map P, the observer (or

current-state estimator) is a deterministic finite automaton (DFA) Gobs = (Qobs,Σobs, δobs,Q0,obs),

which captures the state estimates (following a sequence of observations ω ∈ Σ∗obs) and can

be constructed as follows.

(1) Each state of Gobs is associated with a unique subset of states of the original NFA G (this

means that Qobs ⊆ 2X has at most 2|X| states).

(2) The initial state Q0,obs of Gobs is the unobservable reach of X0 (Q0,obs = UR(X0) = R(X0, ε)).

(3) From any state Q ∈ Qobs of the current-state estimator, the next state for any σ ∈ Σobs is

captured by δobs(Q, σ) = R(Q, σ) (Definition 3).

Verification of Strong Detectability

Strong detectability for NFA G can be verified easily by constructing its observer Gobs

and checking whether it has loops with certain properties [45].

Theorem 1. (Strong detectability: Necessary and sufficient conditions using observer Gobs)

[45]. A nondeterministic automaton G = (X,Σ, δ,X0) is strongly detectable with respect to
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a set of observable events Σobs iff its observer Gobs = (Qobs,Σobs, δobs,Q0,obs) does not include

loops that contain ambiguous states (i.e., states in Qobs that involve more than one states of

G) .

Example 1. Consider NFA G in Fig. 2.2 (associated to PFA H in Fig. 4.1), and assume

that X0 = {x1, x2, x3}, Σobs = {α, β} and Σuo = ∅. We construct its observer (on the right of

Fig. 2.2) to verify strong detectability (Definition 4).

Figure 2.2: NFA G.

System G is not strongly detectable (Definition 4), because the sequence β∗ does not allow

us to detect the exact state of the system (|R(X0, β∗)| > 1); this is easily seen from the observer

because the sequence of observations β∗ keeps us in state {x1, x2, x3} arbitrarily long.

Apart from verifying detectability using an observer (as captured by the con-

ditions in Theorem 1), strong detectability for NFA G can also be verified with

polynomial complexity using a detector. Next we quickly review the construction

of a detector from [45] and then state necessary and sufficient conditions on the

detector for strong detectability to hold.

Definition 6. (Detector) [45]. Given an NFA G = (X,Σ, δ,X0) under the natural projection

map P with respect to Σobs ⊆ Σ, the detector Gd = (Xd,Σobs, δd,X0d) is a nondeterministic

finite automaton, where

(1) X0d = R(X0, ε) is the set of all possible initial states for NFA G;

(2) Xd = Xp ∪ Xs ∪ {X0d} is the finite set of states, with Xs = {{x j}|x j ∈ X} and Xp ≡

{xd1 , xd2 , ..., xdD}, where D = |X × X| − |X| with xdi = {xl, xm} ∈ Xp, xl , xm, xl, xm ∈ X;

(3) Σobs is the finite set of observable events;

(4) δd : Xd × Σobs → Xd captures the state transitions and is defined as follows:

13

Chri
sto

for
os

 Kero
glo

u



δd(xd, σ) =


{xdi ∈ Xp|xdi ⊆ R(xd, σ)}, if |R(xd, σ)| > 1,

{xl} ∈ Xs, if R(xd, σ) = {xl},

undefined, if R(xd, σ) = ∅.

Theorem 2. [45] (Strong detectability: Necessary and sufficient conditions using detector

Gd). An NFA G is strongly detectable iff its detector Gd does not include any loop that is

reachable from the initial state and contains ambiguous states (i.e., states in Xp).

Remark: The detector Gd (in Definition 6) can be used to verify strong detectability

for NFA G with polynomial complexity (with respect to the size of the given NFA).

The reason is that the number of states of the detector is at most |X|2 + 1; this should

be contrasted with the number of states of the observer which could be as high as

2|X|.

Example 2. The detector Gd for the NFA G in Fig. 2.2 is shown in Fig. 2.3. Its number

of states is polynomial in the size of G and can be used to verify strong detectability with

polynomial complexity. In this case, the existence of the loops β∗ in states {1, 2} and {1, 3}

indicates that system G is not detectable. Note that the observer (shown in Fig. 2.2), also

allows us to verify strong detectability but requires potentially exponential complexity (with

respect to the size of the state space of the corresponding NFA).

Figure 2.3: Detector for NFA G in Fig. 2.2, with initial state {x1, x2, x3}.
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2.3 Fault Diagnosis in Nondeterministic Finite Automata

For ease of presentation, we assume that there is only a single fault class Σ f ⊆ Σ

and assume, without loss of generality, that Σ f ⊆ Σuo (otherwise, since an observable

fault event is immediately visible, the task of fault diagnosis becomes trivial). We

also denote the set of traces s ∈ L(G) that end with the failure event σ f , σ f ∈ Σ f , that

occurs for the first time, by Ψ(σ f ) = {tσ f ∈ L : t ∈ (Σ− σ f )∗, } and the post-language of

L after s as L \ s = {t′ ∈ Σ∗ : st′ ∈ L}.

Definition 7. (Logical diagnosability in discrete event systems) [42]. Suppose we are given

an NFA G = (X,Σ, δ,X0) with a set of observable events Σo, Σo ⊆ Σ. We are also given fault

event σ f , σ f ∈ Σuo (where Σuo ≡ Σ − Σo). For σ f ∈ Σuo, let Ψ(σ f ) = {s = tσ f ∈ L(G) : {t ∈

(Σ − σ f )∗}}. The live1, prefix-closed language L(G) is logically diagnosable with respect to

fault σ f , under the natural projection observation map P (with respect to Σo) if

(∃Ni ∈N)[∀s ∈ Ψ(σ f )](∀t ∈ L/s)[|t| ≥ Ni ⇒ D(st) = 1]

where the diagnosability function D : Σ∗ → {0, 1} is

D(st) =


1, if s′ ∈ P−1[P(st)]⇒ σ f ∈ s′,

0, otherwise.

In other words, a diagnosable system implies that, once fault σ f occurs, it gets

diagnosed within a bounded observation interval (σ f ∈ s′ means that σ f appears in

the string s′ at least once).

Example 3. Consider the NFA G in Fig. 2.4 where X0 = {0}, Σ f = {σ f },Σuo = Σ f and

Σo = {a, b, c, d}. For the given Σo and Σ f , we easily prove that (∃Ni ∈ N)[∀s ∈ Ψ(σ f ) ≡

{σ f }](∀t ∈ L/s ≡ {da(a + b + c)∗})[|t| ≥ Ni ⇒ D(σ f da(a + b + c)∗) = 1]; more specifically, in

this case we can take Ni = 1. Thus, we conclude that G is logically diagnosable with respect

to fault σ f .

For simplicity, below we repeat the diagnoser construction for a single fault.

Definition 8. (Diagnoser) [42]. The Diagnoser Gd = {Qd,Σo, δd,Q0,d} is a deterministic

finite automaton built from G = (X,Σ, δ,X0).

(i). The state space Qd ≡ 2X×∆, where ∆ is the complete set of possible labels: ∆ = {N,F}where

1The notion live language refers to a language without terminating strings.
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Figure 2.4: Automaton G (Up) and its Diagnoser (Down) used in Example 3.

F is the label that corresponds to the faulty behaviour and N is the label that corresponds to

normal behaviour of the system. More specifically, a state qd ∈ Qd is of the form qd ⊆ X ×∆,

i.e., qd can be written as

qd = {(x1, l1), . . . , (xn, ln)},

with xi ∈ X and li ∈ ∆ (repetitions of xi are permitted2).

(ii). We will use the notation URL(X) to denote the set of states (along with any failure labels

that can be reached in G from states in the set X following any sequence of events (Σ − Σo)∗.

The initial state of the diagnoser is given as Q0,d = URL(X0) (the fault has not occurred at

the initial states belong to X0 so these are labeled as {N} states) where (x0,i, l0,i) ∈ URL(X0)

with l0,i = {N}, if ∃s ∈ Σ∗uo s.t. x0,i ∈ R(X0, s) and s does not contain the fault event σ f .

Similarly, (x0,i, l0,i) ∈ Q0,d with l0,i = {F}, if ∃s ∈ Σ∗uo s.t. x0,i ∈ R(X0, s) and s contains the

fault event σ f .

(iii). The transition function δd : 2X×∆
×Σo → 2X×∆ satisfies q′d = δd(qd, σ) and updates both

the possible states and matching normal/failure condition(s) as defined in [42]; the current

state qd of the diagnoser captures the set of estimates of G with their corresponding labels. Let

the next observed event be σ ∈ Σo; the new state of the diagnoser q′d is computed following a

three step process:

1) For every state estimate x, where (x, l) ∈ qd, compute its reach due to σ defined to be R(x, σ)

(where R(x, σ) was defined in Definition 3).

2) Let x′ ∈ R(x, σ) with x′ ∈ δ(x, s1σs2) for some s1, s2 ∈ Σ∗uo. The label l′ associated to x′ with

2For example, state qd could be the set {(x1,N), (x1,F)}.
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x is obtained based on the label l associated with state x (i.e., (x, l) ∈ qd) and the following

rules:

a) If l = F, then the label l′ = F.

b) If l = N, and s1, s2 do not contain the failure event, then the label l′ = N.

c) If l = N, and s1 and/or s2 contain the failure event, then the label l′ = F.

3) Let δd(qd, σ) = q′d be the set of all (x′, l′) pairs computed following steps 1) and 2)

above, for each (x, l) in qd.

Note that, for simplicity of our exposition later on (and unlike common practice),

we allow the diagnoser function δd to be defined everywhere3 (i.e., Qd = 2X×∆) even

if certain states might not be necessary because they may not be reachable from the

initial state Q0,d. Verification of diagnosability using the diagnoser depends on the

presence of F-uncertain states which are defined as follows [42].

Definition 9. (F-uncertain states) [42]. A state qd ∈ Qd of the diagnoser is called F-

uncertain if ∃(x, l), (x′, l′) ∈ qd, such that F ∈ l and F < l′.

System G is diagnosable with respect to failure type F if its diagnoser (for failure

type F) contains no cycles composed exclusively of F-uncertain states. In addition, a

system will generally 4 not be diagnosable if its diagnoser contains cycles composed

exclusively of F-uncertain states.

2.4 Classification among Hidden Markov Models

This section describes the hidden Markov model (HMM) and the methods needed

to compute the probability of misclassification among two HMMs.

As a motivating application of classification we present in Fig. 2.5-a an example

from the context of fault diagnosis of a Discrete Event System, which translates to

classification between two HMMs, capturing normal and faulty behavior. Specifi-

cally, the first HMM describes a system with normal behavior, whereas the second

3This is useful in Chapter 3 when we define the synchronized parallel product of local diagnosers in

the context of distributed state estimation and diagnosis.
4It is possible that cycles with F-uncertain states are not executable after the occurrence of faults;

since such cycles do not violate diagnosability, we also need to check against this possibility when

such cycles are present [42].
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HMM describes the same system but with faulty behavior. The Discrete Event Sys-

tem is shown in Fig. 2.5-a with probabilities attached to each transition. The set of

observable events is Eo = {α, β} and the set of unobservable events is Euo = {σuo, σ f },

where σ f a faulty event (i.e., E f = {σ f }).

We divide the initial system into two subsystems as in Fig. 2.5-b, where S(1)

captures the normal behavior of the system, and S(2) captures the faulty behavior.

Clearly, P1 = P2 = 0.5, because of the equal probability to go to state 2 or state 4, from

initial state 1.

1

2 3

4 5

σuo, 0.5

σf, 0.5

β, 1

α, 0.05

α, 0.95

α, 0.05

α, 0.95

β, 1

1 2
β, 1

α, 0.05

1’ 2’

α, 0.95

β, 1

α, 0.05

α, 0.95

a) b)

Figure 2.5: a) Discrete Event System, b) HMM S(1), capturing normal behavior and

S(2), capturing faulty behavior of Discrete Event System in a).

Definition 10. (HMM Model). An HMM is described by a five-tuple S = (Q,E,∆,Λ, π0),

where Q = {q1, q2, ..., q|Q|} is the finite set of states; E = {σ1, σ2, ..., σ|E|} is the finite set of

outputs; ∆ : Q×Q→ [0 1] captures the state transition probabilities; Λ : Q×E×Q→ [0 1]

captures the output probabilities associated with transitions; and π0 is the initial state

probability distribution vector. Specifically, for q, q′ ∈ Q and σ ∈ E, the output probabilities

associated with transitions are given by

Λ(q, σ, q′) ≡ P(q[t + 1] = q′,E[t + 1] = σ | q[t] = q) ,

and the state transition probabilities are given by

∆(q, q′) ≡ P(q[t + 1] = q′ | q[t] = q) ,

where q[t] (E[t]) is the state (output/observation) of the HMM at time step t. The output

function Λ(q, σ, q′) describes the conditional probability of observing the output σ associated
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with the transition to state q′ from state q. The state transition function needs to satisfy

∆(q, q′) =
∑
σ∈E

Λ(q, σ, q′) (2.1)

and also
|Q|∑
i=1

∆(q, qi) = 1, ∀q ∈ Q.

Given an HMM model S = (Q,E,∆,Λ, π0), we also define for notational convenience

the |Q| × |Q| matrix Aσ, associated with output σ ∈ E, as follows: the (k, j)th entry of Aσ

captures the probability of a transition from state q j to state qk that produces output σ, i.e.,

Aσ(k, j) = Λ(q j, σ, qk). Note that A =
∑
σ∈E Aσ is a column stochastic matrix whose (k, j)th

entry denotes the probability of taking a transition from state q j to state qk, without regard

to the output produced.

Suppose that we are given two HMMs, captured by S(1) = (Q(1),E(1),∆(1),Λ(1), π(1)
0 )

and S(2) = (Q(2),E(2),∆(2),Λ(2), π(2)
0 ), with prior probabilities for each model given by

P1 and P2 = 1 − P1, respectively. Given E( j) = {σ( j)
1 , σ

( j)
2 , ..., σ

( j)
|E( j)|
}, j = {1, 2}, for the two

HMMs, we define for notational convenience E = E(1)
∪ E(2) with E = {σ1, σ2, ..., σ|E|},

and let A( j)
σi

be the transition matrix for S( j), j = {1, 2}, under the output symbol

σi ∈ E. We set A( j)
σi

to zero if σi ∈ E − E( j). If we observe a sequence of n outputs

Yn
1 = y[1], y[2], ..., y[n], with y[t] ∈ E, that is generated by one of the two underlying

HMMs, the classifier that minimizes the probability of error needs to implement

the maximum a posteriori probability (MAP) rule. Specifically, the MAP classifier

compares

P(S(1)
| Yn

1) >
< P(S(2)

| Yn
1)⇒

P(Yn
1 | S

(1))
P(Yn

1 | S
(2))

>
<

P2

P1
,

and decides in favor of S(1) (S(2)) if the left (right) quantity is larger. When we decide

in favor of one or the other model, we incur a probability of error proportional to the

probability of the model that was not selected; with some algebra, it can be shown

that P(error,Yn
1) = min{P1 · P(Yn

1 | S
(1)),P2 · P(Yn

1 | S
(2))}. Clearly, if E(1) , E(2), at least

one symbol σi is unique to S(1) (i.e., σi ∈ E − E(2)) or to S(2) (i.e., σi ∈ E − E(1)), and if

we happen to observe σi (i.e. y[t] = σi, for some t) then we will choose the model

with nonzero probability of error and will make an error with zero probability. More

generally, however, the probability of error will not be zero.

To calculate the a priori probability of error before any sequence of observations

of length n is observed, we need to consider all possible observation sequences of
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length n, so that

P(error at n) =
∑

Yn
1∈E

n

P(error,Yn
1), (2.2)

where En is the set of all sequences of length n with outputs from E. We arbitrarily

index each of the dn (d = |E|) sequences of observations via Y(i), i ∈ {1, 2, ..., dn
}, and

use P( j)
i to denote P( j)

i = P(Y(i)|S( j)), j ∈ {1, 2}. Note that some of these sequences

may have zero probability under one of the two models (or even both models). The

probability of misclassification between the two systems, after n steps, can then be

expressed as

P(error at n) =

dn∑
i=1

P(error,Y(i))

=

dn∑
i=1

min{P1 · P
(1)
i ,P2 · P

(2)
i }. (2.3)

We can calculate P( j)
i = P(Y(i)|S( j)) with an iterative algorithm, a detailed de-

scription of which can be found in [1, 19]. Specifically, given sequence Yn
1 =

y[1], y[2], ..., y[n] we calculate ρ( j)
n = A( j)

y[n]A
( j)
y[n−1]...A

( j)
y[1]π

( j)
0 , which is essentially a vector

whose kth entry captures the probability of reaching state qk ∈ Q( j) while generating

the sequence of outputs Yn
1 (i.e., ρ( j)

n (k) = P(q[n] = qk,Yn
1 |S

( j))). If we sum up the entries

of ρ( j)
n we obtain P( j)

Yn
1

= P(Yn
1 | S

( j)) =
∑
|Q( j)
|

k=1 ρ
( j)
n (k).

Utilizing the above algorithm, we can certainly compute the probability of error

at n by explicitly calculating P j · P
( j)
i for each sequence Y(i). The obvious problem

with this approach is that it has to enumerate all dn sequences.

Example 4. Suppose we are given the two HMMs shown in Fig. 2.6, with E(1) = E(2) = E =

{α, β}, π(1)
0 = π(2)

0 =
[

1 0
]T
, and P1 = P2 = 0.5. The corresponding A(1)

α ,A
(1)
β ,A

(2)
α ,A

(2)
β

are as follows:

A
(1)
α =

 0 0.95

0 0.05

 ,A(1)
β =

 0 0

1 0

 ,
A

(2)
α =

 0 0.05

0 0.95

 ,A(2)
β =

 0 0

1 0

 .
If the sequence Y(`) = βαβα is observed, we have P(1)

` =

|Q(1)
|∑

k=1

ρ(1)
4 (k) = 0.05, where

ρ(1)
4 = A(1)

α A(1)
β A(1)

α A(1)
β π

(1)
0 , and P(2)

` =

|Q(2)
|∑

k=1

ρ(2)
4 (k) = 0.95, where ρ(2)

4 = A(2)
α A(2)

β A(2)
α A(2)

β π
(2)
0 .
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1 2

1’ 2’

β, 1

α, 0.05

α, 0.95

α, 0.05

α, 0.95

β, 1

Figure 2.6: S(1) (up) and S(2) (down) in Example 1.

Thus, the probability of error between the two models if this specific sequence is observed is

P(error, Y(`)) = 0.025.
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Chapter 3

Fault Diagnosis in Decentralized and

Distributed Settings

3.1 Introduction

We explore different state estimation problems in DES in three different settings

(centralized/decentralized/modular). In Fig. 3.1 we can see that in all settings, we

construct, for each problem, specific automata (es) whose function is to perform

state estimation. In the centralized approach, we have a monolithic system G, then

we construct its state estimator (es), based on which we make a decision. In the

decentralized setting, we have several local modules of the system G (OMi), each

assigned with a state estimator (esi), and all state estimators send their local decisions

to a coordinator, which decides for the system (G). The distributed setting lacks a

coordinator, and allows instead communication between the local estimators.

We consider distributed fault diagnosis in a discrete event system, modeled as a

nondeterministic finite automaton and observed at multiple observation sites, each

with distinct observation capabilities. The majority of previous work in this set-

ting has focused on separately implementing local diagnosers at each observation

site, without attempting, at any point, to refine the diagnostic information of these

observation sites by exchanging information among them. Instead, these local diag-

nosers typically rely exclusively on communicating their decision (fault or no fault)

to a coordinator that is responsible for making the ultimate diagnosis decision (e.g.,

co-diagnosability).

Diagnosability has been investigated in decentralized architectures [8, 13, 33, 36,
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Figure 3.1: a) Centralized, b) decentralized, and c) modular) architectures for state

estimation.

48, 51, 52]. In particular, the authors in [13] propose three protocols for coordinated

decentralized diagnosis. Protocols 1 and 2 assume unidirectional communication

from the local diagnosers to a coordinator, whereas Protocol 3 assumes no commu-

nication between them or to any coordinator. Polynomial complexity algorithms for

the verification of Protocol 3 and variations of it can be found in [33, 36, 48, 51, 52].

In [52] decentralized diagnosability is studied under a framework of conditional deci-

sions issued by the local sites, and polynomial tests are proposed for the verification

of equivalent language-based notions of decentralized diagnosability. In [51] the

authors propose polynomial algorithms to transform a problem of co-observability

to the problem of co-diagnosability under the assumption of dynamic observations.

They also propose a polynomial-time algorithm for testing co-diagnosability of the

system based on cluster automata. The authors of [48] study co-diagnosability under

the condition of state-dependence and nondeterminism of partial event observation.

The algorithm proposed in [36] is based on constructing a testing automaton that,

given a faulty trace, searches for corresponding indistinguishable non-faulty traces

at each local site.

In this chapter we study diagnosis using a synchronization-driven intersection-

based distributed diagnosis (called Restricted Synchronization Intersection-Based

Diagnosis, or RS-IBDD). The RS-IBDD protocol allows local diagnostic information

(namely, state estimates and associated normal/fault conditions) to be exchanged

and refined among the local sites. The exchange and refinement of the diagnostic

information takes place at synchronization points, that are predetermined at each
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observation site, by taking the intersection of the state estimates and associated

normal/fault conditions provided by the local diagnosers. The fused information

is then communicated back to the local diagnosers, which subsequently continue

operation based on this refined diagnostic information. In this protocol there is

no need for a coordinator, but the diagnostic information is exchanged and refined

among the local sites. Furthermore, the presence of communication constraints

dictates a more general approach, which, among others, exploits the communication

graph that represents the bidirectional communication capability between local sites.

The diagnosability of the resulting distributed protocol is shown to be verifiable with

polynomial complexity (in the size of the state space of the given nondeterministic

finite automaton) and exponential in the number of observation sites (which is not

foreseen to be a prohibitive factor in practical applications).

Thus, unlike the majority of previous work that does not allow exchange of

diagnostic information among local observation sites, in this chapter, we allow in-

formation flow from one local site to another (which occurs when, at the coordinator,

we take the intersection of the sets of states estimates and associated normal/fault

conditions of all local diagnosers). Among other implications, this means that we

do not have a completely decentralized setup any more, but rather a (special case

of a) distributed one. Other works that have allowed information to flow from one

observation site to another include [16, 47] which focus on modular systems (with

a local observer for each module) and explore iterative strategies that involve ex-

change of diagnostic information and intersection operations for refinement among

neighboring local sites.

3.2 Description of RS-IBDD Protocol in the Presence of

Communication Constraints

We consider a system G = (X,Σ, δ,X0) (modeled as an NFA) that is observed by

multiple observers, each with its own natural projection map with respect to its

set of observable events. More specifically, there are m observation sites, 1, 2, ...,m,

with observation site j having observable events Σo j ⊆ Σ. These m observation

sites are allowed to exchange information according to the communication links

that connect them, which are captured by a communication graph, described by an
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undirected graph C = {V,E}, where V = {1, 2, ...,m} is the set of vertices or nodes

of the graph, that correspond to the local sites, and E ⊆ {{i, j} | i, j ∈ V, i , j} is the

set of bidirectional edges. In particular, edge {i, j} ∈ E if communication is possible

between observation site i and observation site j. In other words, the communication

graph C = {V,E} captures the communication capabilities between different nodes

(observation sites). Notice that communication is possible among all local sites or

E = {{i, j} | i, j ∈ V, i , j} iff the communication graph is a complete undirected graph

(i.e., there exists an edge between any pair of nodes i, j ∈ V).

Algorithm 1 RS-IBDD Protocol
Input: Consider the setting described in Section 3.2. A sequence of events s ∈ Σ∗

generates a sequence of observations ω j = PΣoj
(s) ∈ Σ∗o j

at each observation site j.

Since this is a distributed algorithm, we describe what happens from the perspective

of observation site j.

1) Initialization: Each node j ∈ V sets qd j = URL j(X0) and ω j = ε.

2) Runtime Operation: Following an event σ ∈ Σ, the following actions are taken

by each observation site:

i) qd j = δd, j(q′d j
,PΣoj

(σ)) where q′d j
is the current state and qd j is the next state of the

local diagnoser Qd j at observation site j (notice that if PΣoj
(σ) = ε, then nothing will

change since nothing is observed at the observation site j).

ii) ω j = ω′jPΣoj
(σ) where ω′j is the sequence of observations seen so far and ω j is the

updated version of it (again nothing happens if σ is not observable at observation

site j).

iii) Synchronization: If |ω j| = 0 mod k j (and ω′j did not satisfy |ω′j| = 0 mod k j),

then j initiates a synchronization under communication constraints as described in

Definition 11. If let Js = { j1, j2, ..., js} ⊆ {1, 2, ...,m} be the observation sites that initiate

a synchronization following σ.

3) It waits for the next event σ to occur and repeats (goes back to Step 2).

Now we describe the proposed protocol in Algorithm 1. Having defined the

constraints imposed in communication exchanges, we next describe the proposed

synchronization strategy for exchanging information among observation sites in

Definition 11. We will use the notation URL j(X′) to denote the set of states (along

with any fault labels that can be reached in G from states in the set X′ following any

sequence of events (Σ − Σo j)
∗ that is unobservable at observation site j.
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Definition 11. (Synchronization under communication constraints). Consider a sequence

of events s ∈ Σ∗ that generates the sequence of observationsω j = PΣoj
(s) at the jth observation

site. If there was no exchange of information, the diagnostic information at local site j would

consist of all possible states that could be reached (given ω j) along with their matching

label(s) l ∈ ∆. In other words, the diagnostic information at local site j would be given

by the set qd j = δd j(Q0,d j , ω j) of the diagnoser Qd j associated with local site j. Notice that

diagnoser Gd j = {Qd j ,Σo j , δd j ,Q0,d j} is constructed as in Definition 8 with Σo = Σo j . The

synchronization strategy modifies the diagnostic information at each site as follows:

A priori, a nonnegative integer constant k j is chosen for each site. The constants k1, k2,

..., km govern how synchronization among the observation sites is performed. Specifically,

local site j initiates the exchange of diagnostic information with the observation sites it can

communicate with (i.e., sites in the set N j = {i | {i, j} ∈ E}) when it observes k j events,

since the last synchronization it initiated. In other words, observation site j initiates a

synchronization when |ω j| = |PΣoj
(σ)| ≡ 0 mod k j (i.e., the length of ω j is a multiple

of k j). Let Js = { j1, j2, ..., js} ⊆ {1, 2, ...,m} denote the observation sites that initiate a

synchronization following σ. Each observation site j ∈ Js does the following:

S.i) Downloading phase: Local site j ∈ Js downloads the diagnostic information Si (state

estimates along with associated normal/fault conditions) from all neighboring sites (i ∈ N j).

In other words, local site j obtains {Si | i ∈ N j}.

S.ii) Refining phase: Local site j ∈ Js refines the diagnostic information by intersecting its

local diagnostic estimate with all downloaded diagnostic estimates and taking the unobserv-

able reach of the resulting set of estimates with respect to its own unobservable events; the

resulting diagnostic information at site j ∈ Js is given by

S(r)
j = URL j(∩i∈N∪{ j}Si).

S.iii) Sending phase: Local site j ∈ Js sends the refined diagnostic estimate S(r)
j to all

connected local sites in the setN j.

S.iv) All sites take the intersection of the sets of refined estimates they might receive with

their own set of estimates, as well as the unobservable reach with respect to their own set of

unobservable events. They then continue operation from this refined diagnostic information.

In other words, for all observation sites i

S( f )
i = URLi(S

(r)
i ∩ (∩ j∈(N j∩Js)S

(r)
j )).

27

Chri
sto

for
os

 Kero
glo

u



Note that S(r)
i = Si for nodes in the set i ∈ {1, 2, ...,m} − Js. Moreover, S( f )

i = S(r)
i = Si for

all nodes in the set {1, 2, ...,m} − Js − ∪ j∈JsN j. Also, if there are two or more local sites that

simultaneously initiate synchronization, then these three steps (Downloading, Refining, and

Sending) run simultaneously for the initiating local sites.

Diagnosis decision: When at least one local site j positively verifies the presence of a fault

(or the presence of a specific class of faults) in the system (i.e., S( f )
i contains exclusively states

with label F – or exclusively faults from a specific class of faults), then that fault (or fault

class) is detected (or identified).

Remark: Note that the above synchronization strategy implies that, following a se-

quence of events s, the state of observer j will not necessarily be identical to the

state observer j would be in following the sequence of observations ω j = PΣoj
(s) (i.e.,

q j,i = δd j(Q0,d j , ω j)) because of refinements that might take place due to earlier syn-

chronization exchanges (which could be initiated by either this particular diagnoser

or its neighbors).

Example 5. The overall procedure is graphically illustrated in the example in Figs. 3.2

and 3.3. We have a communication graph C = {V,E} with four local sites O1,O2,O3,O4.

Suppose that at a particular time instant, the diagnostic estimate before initiation of a

synchronization is captured by sets (of state estimates and corresponding normal/failure

conditions) S1,S2,S3,S4, respectively for sites O1,O2,O3,O4 (note that Si necessarily satisfies

Si = URLi(Si)). Suppose the protocol is initiated simultaneously by local sites O1 and

O3 because the latest event was observed at both O1 and O3, and brought their counters

respectively to k1 and k3. First, each local site downloads the diagnostic estimates from all

neighboring local sites. Then, each initiating site refines its diagnostic estimate (e.g., for O3

this refinement results in S(r)
3 = URL3(S2 ∩ S3 ∩ S4)). Finally, each site sends its refined

diagnostic estimate to its neighbors. Note that O2 receives refined diagnostic estimates from

both initiating local sites, which means that overall the diagnostic estimate for that site is

the unobservable reach (with respect to the events that are unobservable at site 3) of the

intersection of the received diagnostic estimate from S(r)
1 and S(r)

3 .

Though there are many motivating examples for distributed diagnosis in discrete

event systems (e.g., from automated manufacturing), we discuss here a setting that

involves joint tasks for vehicles that communicate with each other. Consider, for ex-

ample, the vehicles O1,O2,O3,O4 in Fig. 3.4 and assume that their goal is to perform
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Figure 3.2: Downloading phase and refining phase for the two initiating local sites,

O1 and O3.

Figure 3.3: Sending phase for the two initiating local sites O1 and O3.

a sequence of tasks (events) that is described by the language of a known nondeter-

ministic automaton. We assume that all abnormalities (faults) are also captured in

this NFA. The goal is to use the local diagnosers associated with each vehicle (viewed

as local observation sites), that presumably observe different subsets of the various

events, to diagnose the possible occurrence of faults. In the following example, we

illustrate the synchronization strategy under two different communication graphs.

As a motivating example, we are given NFA G in Fig. 2.4 and four observation

sites, with locally observable event sets Σo1 = {a, b}, Σo2 = {b, c}, Σo3 = {b, d}, and

Σo4 = {c, d}, under local natural projection maps P1, P2, P3, and P4, respectively.

Suppose the sequence of events st = σ f dabn, n ≥ 1 ∈ N, occurs with s = σ f and

t = dabn.

Notice that in case of co-diagnosability, there does not exist a local observer able
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Figure 3.4: The output of the process (dotted lines) is a sequence of events s from

an NFA G. Depending on the set of observable events at each local site, each local

observer sees a different projection of s, denoted by P j(s). A communication graph

captures the constraints in terms of information exchanges allowed between the four

local sites.

to diagnose this fault occurrence on its own. To see this, we can check what happens

at each observation site. Considering the first local site with observable event set

Σo1 ; it observes P1(st) = abn and, for all n, we can find t′ = abn
∈ P−1[abn] ∩ L(G),

such that σ f < t′. Thus, the first local site cannot decide about the fault occurrence.

Using the same reasoning, with all remaining local sites, we see that there does not

exist a single local observer able to diagnose the fault on its own. It follows from the

definition of co-diagnosability that the system is not co-diagnosable.

In the case of the IBDD protocol in [35], the fault will also not be detected. To see

this, we can construct the four local diagnosers (Definition 8) Gd,i = (Qd,i,Σoi , δd,i,Q0,i)

for i ∈ {1, 2, 3, 4} with the corresponding Σoi . The initial states are given by Q0,1 =

{0N, 1F, 2F}, Q0,2 = {0N, 1F, 2F, 3F, 4N}, Q0,3 = {0N, 1F, 4N}, and Q0,4 = {0N, 1F, 4N}. For

st = σ f dabn, we have (for n ≥ 1) that δd,1(Q0,1, ω1) = δd,2(Q0,2, ω2) = δd,3(Q0,3, ω3) =

{3F, 4N}, and δd,4(Q0,2, ω4) = {2F, 3F, 4N}, with ω1 = abn, ω2 = ω3 = bn, and ω4 = dbn

(note thatωi = PΣoi
(st) for i = 1, 2, 3, 4). This means that, ∀n ∈N, after the intersection

of the four sets of diagnostic information (state estimates along with labels), the

coordinator remains confused about the occurrence of the fault. Thus, the system is

not IBDD diagnosable (the intersection between state estimates is {3F, 4N}).

We now consider RS-IBDD under communication graph C1 in Fig. 3.5 with k1 =

k2 = k4 = 10, and k3 = 1, being the numbers of events that govern the synchronization
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protocol at each local site. We illustrate the execution of the protocol for ambiguous

faulty string st = σ f dabn. The third site initiates the synchronization protocol, when it

observes the event d, i.e., after the sequence of events s = σ f d is executed. According

to the synchronization protocol under the constraints of the given communication

graph C1, the local site 3 downloads the diagnostic estimates from local sites 2 and

4. It refines its diagnostic estimate to

URL3(δd,3(Q0,3,P3(s)) ∩ δd,2(Q0,2,P2(s)) ∩ δd,4(Q0,4,P4(s))) =

URL3(δd,3(Q0,3, d) ∩ δd,2(Q0,2, ε) ∩ δd,4(Q0,4, d)) = {2F, 3F, 4N}

(where s = σ f d and P2(s) = ε and P3(s) = P4(s) = d), and sends this refined diagnostic

estimate to local sites 2 and 4. The same procedure is followed for subsequently

observed symbols until the last symbol of the observed sequence. The key difference

from previous works in decentralized settings is that some (but not neccessarily

all) local sites continue their estimation from a refined set of state estimates and

associated normal/fault conditions. Specifically, the synchronization initiated at

local site 3 after observing d will force local site 2 to state {2F, 3F, 4N} (note that local

site 4 actually does not benefit from this synchronization step). In this example, the

synchronization protocol is not able to diagnose the fault, because it can be shown

that after observing st = σ f dabn, for n = 1, the local diagnosers enter a cycle, where

all local estimates remain {3F, 4N}. Therefore, any future initiation of the protocol,

by any local site, will be unsuccesful into further refining the diagnostic estimates;

thus, the approach will be unable to identify the fault.

Figure 3.5: Communication graph (C1), representing communication between local

observation sites in Example 2 (the line between nodes O1 and O2 represents the

edge {1, 2} ∈ E). The initiating local site is 3, and the active links are represented by

the dotted lines.
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Example 6. As in Example 2, suppose we are given NFA G in Fig. 2.4 and four observation

sites, with locally observable event sets Σo1 = {a, b}, Σo2 = {b, c}, Σo3 = {b, d}, and Σo4 = {c, d}

under local projection maps P1, P2, P3, and P4 respectively, and k1 = k2 = k4 = 10, and k3 = 1.

We assume that the communication graph C2 is the graph in Fig. 3.6. We illustrate our

protocol for st = σ f dabn, which is the only problematic string from the set of faulty behaviours

(st = σ f da(b + c)n), because after observing c for the first time. The fault will be diagnosed

locally (by local site 2). When s = σ f d occurs, d is observed at observation sites 3 and 4, whose

local diagnostic information is given by δd,3(Q0,3, d) = δd,4(Q0,4, d) = {2F, 3F, 4N}. The first

and the second diagnoser remain in the initial states δd,1(Q0,1,P1(s)) = Q0,1 = {0N, 1F, 2F},

δd,2(Q0,2,P2(s)) = Q0,2 = {0N, 1F, 2F, 3F, 4N} (d is unobservable at the first and second

observation sites, so we have P1(s) = P2(s) = ε).

Since k3 = 1, the third site initiates a synchronization protocol, immediately after observ-

ing the event d. According to the synchronization protocol and under the constraints of the

communication graph, the following occur: (i) local site 3 downloads the diagnostic infor-

mation (state estimates and matching labels) from local sites 1 and 4; (ii) subsequently, local

sites 1 and 4 obtain refined information from site 3; more specifically, local site 3 refines its

diagnostic information to URL3(δd,3(Q0,3,P3(s))∩δd,1(Q0,1,P1(s))∩δd,4(Q0,4,P4(s))) = {2F},

and sends this refined diagnostic estimate to local sites 1 and 4. The same procedure is fol-

lowed for subsequently observed symbols until the last symbol of the observed sequence. In

this example, we have already detected the fault, because at least one local site unambiguously

diagnoses the fault. More specifically, local sites 1, 3 and 4 are now in position to diagnose the

fault because all of their state estimates are associated with the fault label F. In fact, at later

synchronizations that involve other observation sites, this certainty about the occurrence of a

fault will propagate to other (and eventually to all) observation sites. Also note, that since the

faulty behavior was the only challenging behavior in terms of diagnosis, this discussion has

also verified that the system is RS-IBDD diagnosable (under this particular communication

graph C2 and constants k1, k2, k3 and k4).

From the above, we conclude that our proposed synchronization-driven intersection-based

distributed diagnosis protocol in the presence of communication restrictions (RS-IBDD)

diagnoses the fault, at least when k3 = 1 (i.e., local site 3 initiates a synchronization each

time it observes an event). It can be shown that RS-IBDD is unsuccessful in diagnosing

the fault when k1 = k2 = k4 = 10 and k3 > 1; in such cases, the local diagnosers enter an

Fi-uncertain cycle, and, no further initiation of the protocol can make the system exit from

that cycle.
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Figure 3.6: Communication graph (C2), representing communication between local

observation sites in Example 3 (the line between nodes O1 and O2 represents the

edge {1, 2} ∈ E). The initiating local site is 3, and the active links are represented by

the dotted lines ({1, 3}, {1, 4}).

Now we express formally the notion RS-IBDD diagnosability, which roughly is

the diagnosability for a system on which we apply the RS-IBDD protocol.

Definition 12. (RS-IBDD diagnosability in discrete event systems). Suppose we are given

a system G = (X,Σ, δ,X0) (modeled as an NFA) that is observed by multiple observers,

each with its own natural projection map with respect to its set of observable events. More

specifically, there are m observation sites, 1, 2, ...,m, with observation site j having observable

events Σo j ⊆ Σ. These m observation sites are allowed to exchange information according

to the communication links that connect them, which are captured by a communication

graph, described by an undirected graph C = {V,E}. For a given fault event σ f , σ f ∈ Σuo

(where Σuo ≡ Σ−Σo where Σo = ∪∀iΣoi), let Ψ(σ f ) = {s = tσ f ∈ L(G) : {t ∈ (Σ−σ f )∗}}. The

live, prefix-closed language L(G) is RS-IBDD diagnosable with respect to fault σ f , if after

applying the RS-IBDD protocol, the following holds:

(∃N ∈N)(∀s ∈ Ψ(σ f ))(∀t ∈ L/s : |t| ≥ N)(∃ j ∈ {1, 2, ...,m})[DRS−IBDD
j (st) = 1]

where the diagnosability function DRS−IBDD
j : Σ∗ → {0, 1} is referred to the ability of the local

site j of locally diagnosing (or not) the fault, when all observation sites follow the RS-IBDD

protocol. Applying the RS-IBDD protocol, we define the local state estimate, for a local site

j, following an event sequence1 s, as RS j(s). The formal definition of DRS−IBDD
j follows:

1In the next section, we introduce the constructions of System Diagnoser and System Verifier,

which can be used to reconstruct the RS j(s) for an event sequence s.
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DRS−IBDD
j (st) =


1, if {∀(x, l) ∈ RS j(st)} ⇒ {l = {F}},

0, otherwise.

In other words, RS-IBDD diagnosability needs at least one local site, able to

distinguish the fault for all continuations for the given faulty behaviour of a system

(this local site could be different, for different continuations).

Remark: note that RS j(st) (and thus DRS−IBDD
j (st)) are functions of the sets of observ-

able events at each observation site as well as the constants k1, k2, ..., km that have

govern the synchronization protocol.

3.3 Verification of RS-IBDD Diagnosability using a Syn-

chronized Product of Local Diagnosers

In this section we describe the verification of diagnosability for the RS-IBDD proto-

col. The main steps of the verification process are described below. (i) Build each

enhanced local diagnoser with side information that tracks how many events the

corresponding local site has observed so far since the last synchronization it initi-

ated (Definition 13). (ii) Take the parallel product of all enhanced local diagnosers

(Definition 14). (iii) Enforce diagnostic information refinement (in terms of the down-

loading, intersection and refinement operations) whenever an event is observed that

makes the counter modulo k j at observation site j zero. (iv) Take the product of the

system with the parallel product of all diagnosers to eliminate behavior in the paral-

lel product of diagnosers that is not actually allowed by the system (Definition 15).

(v) Check for interminate cycles in the resulting structure. (In general, the existence

of an Fi indeterminate cycle indicates the presence of behavior that does not allow

the detection of fault Fi.)

We are given an NFA G = (X,Σ, δ,X0) and m local sites, each with set of locally

observable events Σo j , Σo j ⊆ Σ, under a local natural projection map P j, j = 1, 2, . . . ,m.

Furthermore, observation site j is associated with a positive integer k j that is used

to govern its synchronization operation. We are also given a communication graph

C = {V,E} that captures the bidirectional communication capabilities between the

local sitesV = {1, 2, ...,m} via the edges in the set E.
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Definition 13. (Local diagnosers with synchronized events). We construct the local di-

agnoser D j = {Qd, j,Σo j , δd, j,Q0, j} according to Definition 8. The local diagnoser with

synchronized events is given by Dsj = {Qs, j,Σ, δs, j,Q0,sj}. It has states that are pairs of the

form (qd, j, z j) ∈ Qs, j = Qd, j × {0, 1, ..., k j − 1}, where qd, j ∈ Qd, j ≡ 2X×∆ and z j is an integer

in {0, 1, 2, . . . , k j − 1}. The initial state is Q0,sj = {(qd, j, 0) | qd, j ∈ Q0, j}. The state transition

function, for σ ∈ Σ, is defined below

δs, j((qd, j, z j), σ) =

 (δd, j(qd, j, σ), (z j + 1) (mod k j)), σ ∈ Σo j ,

(qd, j, z j), otherwise,

where no change takes place if the event that occurs is unobservable to observation site j.

Definition 14. (Synchronized Parallel Product of Local Diagnosers (D||)). We construct

the local diagnosers Dsj = {Qs, j,Σ, δs, j,Q0,sj} according to Definition 13 and obtain the

synchronized parallel product of diagnosers D|| = {Q||,Σ, δ||,Q0||} as a deterministic finite

automaton, where

(i) The state space Q|| ⊆
∏

j∈{1,...m}Qs, j contains states of the form

q|| = ((qd,1, z1), . . . , (qd,m, zm)) ≡ (q||,d, z||),

where q||,d = (qd,1, . . . , qd,m) and z|| = (z1(mod k1), . . . , zm(mod km)).

(ii) When δs, j((qd, j, z j), σ) = (q′d, j, z
′

j), we define

sync j((qd, j, z j), σ) =


1, if {z′j = 0} ∧ {z′j , z j},

0, otherwise.

(iii) The transition function is defined as

δ||(q||, σ) = (δ∩(q||,d, σ), (z|| + 1) (mod k||))

where

i) z|| + 1(mod k||) = (z1 + f1(σ)(mod k1), . . . , zm + fm(σ)(mod km)), where fi(σ) is 1, when

σ ∈ Σoi , and 0 otherwise.

ii) δ∩(q||,d, σ) = (SE1, · · · ,SEm), where2 SEi = URLi(∩{k∈Ni}∧{synck((qd,k,zk),σ)=1}DRLk ∩ DRLi)

with

DRL j =

 URL j(∩i∈N j∪{ j}(δqd,i , σ)), if sync j((qd, j, z j), σ) = 1,

δd, j(qd, j, σ), otherwise,

2We use the notation URL j for the unobservable reach for observation site j.
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Remark: Note that some of the states of the parallel product of local diagnosers

may have been unreachable from the initial state in the local diagnosers without

synchronized events (then become reachable with the refinement in state estimates

that occurs due to the intersection operation). Also note that after each intersection

operation of local state estimates, we need to take the unobservable reach (URL)

with respect to that observation site.

Definition 15. (RS-IBDD diagnoser (Dp)). We construct the parallel product of local

diagnosers with synchronized events D|| = {Q||,Σ, δ||,Q0||}. The system diagnoser Dp =

{Qp,Σ, δp,Q0,p} is a (generally nondeterministic) finite automaton that has states Qp ≡

X ×Q||, initial states Q0,p ≡ X0 ×Q0|| and transition function δp(qp, σ) for qp = (xi, q||) and

σ ∈ Σ defined as

δp(qp, σ) = {(x, δ||(q||, σ)) | x ∈ δ(xi, σ)}.

Remark: The system diagnoser Dp eliminates from the synchronized parallel prod-

uct of local diagnosers D|| behavior that cannot be possibly generated from the

underlying system G. Note that unobservable events (i.e., events in Σ − ∪m
i=1Σoi that

cannot be observed at any site) are included in D|| but appear as self-loops. Unob-

servable events do not necessarily appear as self loops in Dp because they generally

cause changes in the system state.

Definition 16. State qp = {xi, {(qd,1, ..., qd,m), (z1, ..., zm)}} ∈ Qp ≡ X × Q|| is RS-IBDD

Fi-uncertain if its q|| component includes, for each local diagnoser j, subsets of the form

{(x j, l), (x′j, l
′)} ⊆ qd, j and Fi ∈ l but Fi < l′.

We continue from Example 3. The local diagnosers for the system in Fig. 1 are

illustrated in Fig. 3.7 and a part of the system diagnoser is illustrated in Fig. 3.8.

Suppose that the communication graph describing the allowable communication

exchanges between observation sites is C2. Consider again the sequence σ f dabn. It

should be clear from the four local diagnosers in Fig. 3.7 that none of them is in

position to detect the fault; however, as seen earlier, if the four local diagnosers

follow the RS-IBDD protocol, they will be able to detect the fault. In the construction

of the RS-IBDD diagnoser, when σ f occurs, nothing changes (apart from the system

state) because σ f is unobservable to all observation sites. When d occurs, this is

observable to observation sites 3 and 4, and causes a change in the states of those two

diagnosers. In fact, because k3 = 1, the occurrence of d also causes a synchronization
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to be initiated by observation site 3. Eventually, sites 1, 3, and 4 refine their estimates

following this synchronization operation. Notice that, at this point, the fault has

been diagnosed at observation sites 1, 3, and 4. Also note that the resulting state is

a new state, not previously reachable in any of the local diagnosers at observation

sites 1, 3, and 4.

Figure 3.7: Local diagnosers for the local sites O1,O2,O3,O4 (with Σo1 = {a, b}, Σo2 =

{b, c} Σo3 = {b, d} Σo4 = {c, d}) for the system in Fig. 2.4. For conciseness, the figure

only shows states that are reachable from the initial state of each diagnoser.

We are particularly interested in RS-IBDD Fi-uncertain states that exist within

cycles of the system diagnoser. Such cycles are called RS-IBDD Fi-confused cycles.

Theorem 3. Suppose we are given a system G = (X,Σ, δ,X0) (modeled as an NFA) that

is observed by multiple observers, each with its own natural projection map with respect to

its set of observable events. More specifically, there are m observation sites, 1, 2, ...,m, with

observation site j having observable events Σo j ⊆ Σ. These m observation sites are allowed

to exchange information according to the communication links that connect them, which are

captured by a communication graph, described by an undirected graph C = {V,E}. For

a given fault event σ f , σ f ∈ Σuo (where Σuo ≡ Σ − Σo with Σo = ∪∀iΣoi), let Ψ(σ f ) = {s =

tσ f ∈ L(G) : {t ∈ (Σ− σ f )∗}}. The live, prefix-closed language L(G) is RS-IBDD diagnosable

with respect to fault σ f , iff in the RS-IBDD diagnoser, there are no reachable RS-IBDD

Fi–uncertain states that exist within RS-IBDD Fi–confused cycles.3

3As in the case of centralized diagnosis, we also need to verify that these Fi–confused cycles can

indeed be executed after the occurrence of a fault [42].
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Figure 3.8: Part of the system diagnoser in Example 3. After the execution of s = σ f d,

local site 3 initiates the synchronization protocol, which refines the state estimates

of all local sites, as shown in the figure.

Proof. Let us assume that there does not exist a reachable F||–confused cycle in the

RS-IBDD diagnoser. This means that there does not exist an F||–uncertain state in

any cycle in the Parallel Product of Local Diagnosers. If this is true, then for any

sequence of events s that contains a fault there exists some (at least one) local site

i, such that after executing the RS-IBDD protocol observation site i does not remain

confused and it is able to diagnose the fault. This means that the system is RS-IBDD

diagnosable.

If there exists at least one reachable F||–confused cycle, then there exists at least

one F||–uncertain state in this cycle. Let t be a sequence of events that gets us to

this F-uncertain state after the occurrence of σ f , and let s be a sequence of events

that gets us from this F-uncertain state back to it. Then, of any integer n,n >= 0,

the string tsn, reaches this F-uncertain state, i.e., for an arbitrarily long sequence of

events following the fault, all local diagnosers are kept confused. Thus, the system

is not RS-IBDD diagnosable. �

Remark: The complexity of the proposed verification method requires exponen-

tial complexity in the number of states of the given automaton G and exponential

complexity in the number of observation sites.
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3.4 Verification of RS-IBDD Diagnosability using a Syn-

chronized Product of Local Verifiers

In this section, we provide an alternative verification method that relies on a product

of verifiers. The method proposed in this section has complexity polynomial in the

number of states and exponential in the number of observation sites.

The main steps of the verification process are described below.

(i) Build, for each observation site, a local verifier (Definition 17), and enhance it

with side information that tracks how many events it has observed so far since the

last synchronization it initiated (Definition 18).

(ii) Take the parallel product of all local verifiers (Definition 19).

(iii) Enforce diagnostic information refinement whenever an event is observed that

makes the counter modulo k j at observation site j zero; this is accomplished via ap-

propriate intersection and unobservable reach operations of the available diagnostic

information at the observation sites that are involved in this particular synchroniza-

tion step.

We are given an NFA G = (X,Σ, δ,X0) and m local sites j = 1, 2, . . . ,m. Local site

j has locally observable events Σo j , Σo j ⊆ Σ, under a local natural projection map P j.

We assume that observation site j is associated with a positive integer k j that is used

to govern its synchronization operation. We are also given a communication graph

C = {V,E} that captures the bidirectional communication capabilities between the

local sites V = {1, 2, ...,m} via the edges in the set E. The RS-IBDD protocol is used

to diagnose the occurrence of faults in the set Σ f where (without loss of generality)

Σ f ⊆ ∪
m
i=1Σo,i . Our goal is to verify diagnosability under the RS-IBDD protocol.

Definition 17. (Local Verifier) The local verifier at observation site j, denoted by V j =

(Q j,Σo j , δ j,Q0, j), is a non-deterministic finite automaton constructed from the given non-

deterministic system G as follows:

1. Q j = (X × ∆) × (X × ∆) is the set of states, where ∆ = {N,F};

2. Σo j is the set of observable events at site j;

3. Q0, j is the initial state given by Q0, j = {((x0, l0), (x′0, l
′

0))| (x0, l0), (x′0, l
′

0) ∈ URL j(X0)}where

URL j was defined in Definition 8 (all initial states are labeled as {N} states and the unob-

servable reach with labels is taken with respect to to the set of observable events Σo j at local

site j). Note that (xi, li) for notational convenience is also written as xili; thus, ((xi, li), (x′i , l
′

i))

39

Chri
sto

for
os

 Kero
glo

u



is also written as (xili, x′i l
′

i);

4. δ j is the transition rule defined as δ j((xili, x′i l
′

i), σ) =

= {({xi+1li+1, x′i+1l′i+1)} | ∃s1, s2 ∈ Σ∗,

P j(s1) = P j(s2) = σ, xi+1 ∈ δ(xi, s1), x′i+1 ∈ δ(x′i , s2),

li+1 = f (li, s1), l′i+1 = f (l′i , s2)},

where, for li ∈ ∆ = {N,F} and sh, h = 1, 2, the label function f : ∆ × Σ∗ → ∆ is defined as

f (li, sh) =


F, li = F,

F, li = N and ∃ f ∈ Σ f , σ f ∈ sh,

N, li = N and ∀ f ∈ Σ f , σ f < sh.

Note that V j is a nondeterministic finite automaton and its number of states is at

most (2|X|)2, where |X| is the number of states of the given system G. More generally,

in the case of multiple fault classes it will be (|X| × 2|L|)2 where L is the number of

fault labels (each corresponding to a fault class).

A part of the local verifier for local site 1 with Σo1 = {a, b} for the system in Fig. 1

is illustrated at the top of Fig. 3.9.

Figure 3.9: Part of the local verifier (up) and part of the local verifier with synchro-

nized events (bottom) for the first local site O1 (with Σo1 = {a, b}) for the system in

Fig. 2.4.

Definition 18. (Local verifiers with synchronized events). We construct the local verifier

with synchronized events V j = (Q j,Σo j , δ j,Q0, j) according to Definition 17. The local verifier
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with synchronized events is given by Vsj = {Qs, j,Σ, δs, j,Q0,sj}. It has states that are pairs of

the form (q j, z j) ∈ Qs, j = Q j × {0, 1, ..., k j − 1}, where z j is an integer in {0, 1, 2, . . . , k j − 1}.

The set of initial states is Q0,sj = {(qd, j, 0) | q j ∈ Q0, j}. The state transition function, for

σ ∈ Σ, is defined below

δs, j((q j, z j), σ) =

 (δ j(q j, σ), (z j + 1) (mod k j)), σ ∈ Σo j ,

(q j, z j), otherwise.

Definition 19. (Synchronized Parallel Product of Local Verifiers (V||)). We construct the

local verifiers Vsj = {Qs, j,Σ, δs, j,Q0,sj} according to Definition 18 and obtain the synchronized

parallel product of verifiers V|| = {Q||,Σ, δ||,Q0||} as a nondeterministic finite automaton,

where

(i) The state space Q|| ⊆
∏

j∈{1,...m}Qs, j has states of the form

q|| = ((q1, z1), . . . , (qm, zm)) ≡ (q||,d, z||),

where q||,d = (q1, . . . , qm) and z|| = (z1, . . . , zm).

(ii) When δs, j((q j, z j), σ) = (q′j, z
′

j), we define

sync j((q j, z j), σ) =


1, if {z′j = 0} ∧ {z′j , z j},

0, otherwise.

(iii) The transition function is defined as

δ||(q||, σ) = (δ∩(q||,d, σ), (z|| + 1) (mod k||))

where

i) z|| + 1(mod k||) = (z1 + f1(σ)(mod k1), . . . , zm + fm(σ)(mod km)), where fi(σ) = 1, when

σ ∈ Σoi , and fi(σ) = 0 otherwise.

ii) if we let

DR j =

 δ j(q j, σ), if sync j((q j, z j), σ) = 0,

URL j(∩i∈N j∪{ j}(δi(qi, σ)), otherwise,

we can define the transition function as ii) δ∩(q||,d, σ) = {(q1, ..., qm) | qi = {((x, l), (x′, l′))} ⊆

SEi, where

SEi = URLi((∩{k∈Ni}∧{synck((qk,zk),σ)=1}DRk) ∩DRi)}.

41

Chri
sto

for
os

 Kero
glo

u



This conditional intersection describes mathematically the outcome in terms of pairs of

state/fault estimates that are possible after the completion of the steps from the synchronization

protocol i) downloading, ii) refining (the sets of states DR j), and iii) sending (the sets of states

SE j).

Lemma 1. Suppose we are given a system G = (X,Σ, δ,X0) (modeled as an NFA) that is

observed by multiple observers, each with its own natural projection map with respect to

its set of observable events. More specifically, there are m observation sites, 1, 2, ...,m, with

observation site j having observable events Σo j ⊆ Σ. These m observation sites are allowed

to exchange information according to the communication links that connect them, which

are captured by a communication graph, described by an undirected graph C = {V,E}.

Following the execution of the RS-IBDD protocol, where RSi(s) = Si, we have the following

property: we can reconstruct the state estimation for this sequence (state estimations for all

local sites), in the Synchronized Parallel Product of Local Verifiers

Proof. For simplicity we represent a state as x, which combines the information of the

state, label and synchronization variable (for a local site). The specific actions that

are part of the RS-IBDD protocol and do not prohibit us from using the Synchronized

Parallel Product of Local Verifiers are:

i) the intersection for local state estimations,

ii) the unobservable reach for local state estimations.

i) Consider an observation sequence s in the Synchronized Parallel Product of

Local Verifiers without applying RS-IBDD related actions (intersection and unob-

servable reach), if the set of the local state estimates for s for local site i ∈ {1, 2, ...,m}

is Si = {x1, x2, ..., xk}, then each element of this set is present in the verifier as states

of the form qi = {xi, x j} ⊆ Si. In the case, of RS-IBDD protocol, we need to argue that

the construction is consistent with the downloading, refining, and sending phases of

the protocol that occurs at various points during the execution of s. In downloading

and refining we need to capture the intersection for two or more sets of estimates.

For simplicity let the two sets of state estimates (for two local sites 1 and 2)

be S1 = {x1
1, x

1
2, ..., x

1
k}, S2 = {x2

1, x
2
2, ..., x

2
k}. The verifier of the initiating node (with

state estimate S1) will have states q1 = {x1
m, x1

n} ⊆ S1 and the verifier for the other

local site will have states of the form q2 = {x2
m, x2

n} ⊆ S2. We define the function

f (q1, q2) = {xm, xn} if q1 = q2 = {xm, xn} and ∅, otherwise. It is easy to argue that

S = S1 ∩ S2 = ∪∀q1,q2 f (q1, q2). In this case, following the observation sequence s in the
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Synchronized Parallel Product of Local Verifiers, we are able to reconstruct the local

state estimate for any s, for any local site, after any intersection with any other local

site.

ii) Another operation in the RS-IBDD protocol is the operation of unobservable

reach of a set of local state estimates UR(S) for any observation sequence s. The

unobservable reach will be given again as ∪∀q∈S(UR(q)). This means that we can

reconstruct the total unobservable reach from the unobservable reaches that are

computed into a verifier (Synchronized Parallel Product of Local Verifiers), from all

subsets q = {x1, x2} of the original set S. Finally, we can reconstruct any state estimate

after the execution of the RS-IBDD protocol via the Parallel Product of Local Verifiers,

given that we count also the exact number of event occurrences at each observation

site, which is the case in our construction. The proof is completed.

�

Definition 20. (F||–uncertain states and F||–confused cycles). A state q|| = ((q1, z1), ..., (qm, zm))

∈ Q|| of the synchronized product of local verifiers is called F||-uncertain if {∀qi = ((xi, li), (x′i , l
′

i))}

⇒ {li , l′i}. F||–confused cycle is a cycle in the Parallel Product of Local Verifiers that includes

at least one F||–uncertain state (this is equivalent to saying that all states in the cycle are

F||–uncertain states).

Theorem 4. (RS-IBDD Verification: Necessary and sufficient conditions). We are given

an NFA G = (X,Σ, δ,X0) and m local sites, each with set of locally observable events Σo j ,

Σo j ⊆ Σ, under a local natural projection map PΣoj
, j = 1, 2, . . . ,m. Furthermore, we assume

that each observation site is associated with a positive integer k j that is used to govern its

synchronization operation. We are also given a communication graph C = {V,E} that

captures the bidirectional communication capabilities between the local sitesV = {1, 2, ...,m}

via the edges in the set E. The system is RS-IBDD diagnosable with respect to a set of faults

Σ f ⊆ ∪
m
i=1Σoi iff, in the Synchronized Parallel Product of Local Verifiers, there are no F||–

uncertain states that exist within F||–confused cycles.

Proof. Let us assume that there does not exist an F||–confused cycle. This means

that there does not exist an F||–uncertain state in any cycle in the Parallel Product

of Local Verifiers. If this is true, then for any q||,d = ((q||, z||), with q|| = (q1, q2, ..., qm),

with qi = (xi, li), (x′i , l
′

i), for any local site i, there are no two sequences s1, s2, with

Pi(s1) = Pi(s2), ∀i ∈ {1, ...,m}, such that after executing RS-IBDD observation site is
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confused the fault occurred in exactly one of these sequences. This means that the

system is RS-IBDD diagnosable.

If there exists at least one F||–confused cycle, then there exists at least one

F||–uncertain state in this cycle, q||,d = (q||, z||), with q|| = (q1, q2, ..., qm), with qi =

((x1, li), (x′i , l
′

i)), for any local site i. There are at least two sequences si
1, s

i
2, with

|si
1|, |s

i
2| > |X

2
|, for any local site i, with Pi(si

1) = Pi(si
2) = ωi, that create the uncer-

tainty in ith component of the F||–uncertain state. If we take any repetition of these

sequences for any N0, (si
1)N0 , (si

2)N0 , then the uncertainty will remain. This means that

(∀N0 ∈N), we can find N′ > N0, and sequences of length N′, that cause the presence

of a F||–confused cycle. Thus, all diagnosers are kept confused and we cannot be

certain about the occurrence of the fault if we apply the RS-IBDD protocol. The

system is not RS-IBDD diagnosable.

�

Remark: The complexity of the proposed verification method requires polynomial

complexity in the number of states and exponential complexity in the number of

observation sites.
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Chapter 4

Detectability in Discrete Event

Systems

4.1 Introduction

In this chapter we are interested in exploring state estimation techniques in stochastic

discrete event systems (SDES) that can be modeled by probabilistic finite automata

(PFAs) under particular observation models. The authors of [45] and [46] introduced

notions of detectability in nondeterministic and stochastic settings respectively. In

the approach for detectability in nondeterministic finite automata in [45], the prob-

lematic system behaviour corresponds to sequences of observations that do not lead

to exact state estimation (i.e., they do not lead to perfect state estimation with no

uncertainty). In the approach for detectability in PFA’s in [46], the problematic be-

haviour is associated with sequences of observations that do not allow us to estimate

the exact state with increasing certainty. More specifically, the notion of stochastic

detectability in [46] takes into account all possible observation sequences (infinite

sequences) and declares the system not stochastically detectable when such prob-

lematic sequences are present.

The major contribution of this chapter is the introduction and verification of

the notions of A-detectability and AA-detectability. Specifically, we provide neces-

sary and sufficient conditions for A-detectability, polynomially verifiable necessary

and sufficient conditions for AA-detectability, and a proof that A-detectability is a

PSPACE-hard problem.

The chapter is organized as follows: in Section 2 we revisit notation on proba-
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bilistic finite automata), languages and Markov chains. In Section 3 we repeat the

notion of stochastic detectability intoduced in [46]. In Section 4 we introduce the

notion of A-detectability and its associated necessary and sufficient conditions. In

Section 5 we establish that A-detectability and A-diagnosability are PSPACE-hard.

In Section 6 we introduce the notion of AA-detectability and its associated necessary

and sufficient conditions. During this development of the material we also provide

several examples.

4.2 Notation and Background

Definition 21. (Probabilistic Finite Automaton (PFA)). A stochastic discrete event sys-

tem (SDES) is modeled in this paper as a probabilistic finite automaton (PFA) H =

(X,Σ, p, π0), where X = {x1, x2, . . . , x|X|} is the set of states (also denoted for simplicity

as X = {1, 2, 3, ..., |X|}), Σ is the set of events, π0 is the initial-state probability distribution

vector, and p(i′, σ|i) is the state transition probability defined for i, i′ ∈ X, and σ ∈ Σ, as the

conditional probability that event σ occurs and the system transitions to state i′ given that

the system is in state i.

We can assign a probability to each trace in Σ∗ with the interpretation that this

value determines the probability of occurrence of this trace: if Pr(i′, s) denotes the

probability that s is executed in the system and the end state of the system is state i′,

then we can define for σ ∈ Σ, s ∈ Σ∗,

Pr(i, ε) = π0(i)

Pr(i, sσ) =
∑
i′∈X

p(i, σ|i′) Pr(i′, s)

Pr(sσ) =
∑
i∈X

Pr(i, sσ)


(4.1)

Definition 22. (Probability of an observation sequence ω). Suppose we are given a PFA

H = (X,Σ, p, π0), with Σobs ⊆ Σ being the set of observable events with respect to the natural

projection map P. For any observation sequence ω = ω1ω2...ωn ∈ Σ∗obs, of length n, the state

probability of state i ∈ X is

πω(i) =
∑

s∈Σ∗:(P(s)=ω)∧(@t∈s̄:P(t)=ω)

Pr(i, s),

where πω(i) is the probability of occurrence of observation sequence ω leading to state i ∈ X.
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The probability of sequence ω is

π(ω) =
∑
i∈X

πω(i).

More generallly, for X′ ⊆ X,

πω(X′) =
∑
i∈X′

πω(i).

Note that if one of two strings s and t (with P(s) = P(t) = ω) is a prefix of the other

(say t ∈ s̄), then to obtain the probability πω we only include the probability of the

prefix string.

An example of a PFA can be seen on the left of Fig. 4.1. When p(i′, σ | i) = 0, state

i′ is not reachable from state i via event σ (in the diagram representing the given PFA,

we do not draw such transitions). Clearly, we have
∑

i′∈X
∑
σ∈Σ p(i′, σ | i) = 1,∀i ∈ X.

Definition 23. (Unique NFA from a PFA). Given a PFA H = (X,Σ, p, π0) we can associate

with it a unique NFA G = (X,Σ, δ,X0) where the state transition function δ : X × Σ→ 2X

is defined for i ∈ X, σ ∈ Σ as

δ(i, σ) = { i′| p(i′, σ | i) > 0},

and the set of possible initial states is defined as X0 = {i | π0(i) > 0}. In this way, the behavior

of the PFA H is mapped to the behavior of the associated NFA G, i.e., L(H) = L(G) (where

L(H) = {s ∈ Σ∗ | Pr(s) > 0}).

The following PFA is needed in later sections, where we perform probabilistic

classification.

Definition 24. (Observable PFA associated with a given PFA). We construct PFA Ho =

(X,Σobs, po, π0) by omitting the unobservable events. The transition probability matrix

p0( j, σ | i) for i, j ∈ X and σ ∈ Σobs is obtained by setting π0(i) = 1, and calculating

po( j, σ | i) =
∑
s∈Σ∗uo

Pr( j, sσ).

Now we provide definitions from classification of PFAs, that will become useful

later in the paper.

Definition 25. (Probability of Misclassification among two PFAs using the MAP rule).

Suppose that we are given two PFAs, captured by H1 = (X1,Σ1, p1, π0,1) and H2 =

(X2,Σ2, p2, π0,2), and Σobs ⊆ Σ1 ∪ Σ2 is the set of observable events with respect to a

natural projection map P. We are given prior probabilities for each model given by P1 and
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P2 = 1−P1, respectively. To calculate the a priori probability of error when using the MAP

rule, before any sequence of observations ω of length n is observed, we need to consider the

probability of error for all possible observation sequences of length n, so that

Pr(error at n, H1, H2) =
∑
ω∈Σn

obs

Pr(error, ω) =

=
∑
ω∈Σn

obs

min{Pr(ω,H1),Pr(ω,H2)}.

Definition 26. (Probability of Misclassification when using the MAP rule, among m PFAs).

Suppose we have m different PFAs H j = (X j,Σ j, p j, π0, j), with j ∈ {1, 2, . . . ,m}, and Σobs ⊆

∪ jΣ j is the set of observable events with respect to a natural projection map P. We are given

a prior probability P j for each model H j, such that
∑

j

P j = 1. The a priori probability of

misclassification when using the MAP rule (before any sequence of observations ω of length

n is observed) is given below

Pr(error at n) =
∑
ω∈Σn

obs

Pr(error, ω) =

=
∑
ω∈Σn

obs

(Pr(ω) − max
j∈{1,...,m}

{Pr(ω|H j)P j}),

where Pr(ω) =

m∑
j=1

Pr(ω|H j)P j.

Definition 27. (Markov chain M). Given a PFA H = (X,Σ, p, π0) we can associate with it

a Markov chain M = (X,A, π0), where X is the set of states; A is the state transition matrix

defined so that its ( j, i)th entry captures the probability of a transition from state i to state j

(given by pM( j | i) =
∑
σ∈Σ p( j, σ | i), and π0 is the initial state probability distribution vector,

defined so that its ith entry π0(i) captures the probability that the Markov chain starts from

state i at start up.

Example 7. The following example is used to clarify the notation. Consider the PFA H

depicted on the left of Fig. 4.1 with X = {1, 2, 3}, Σ = {α, β}, δ as defined by the transitions

in the figure (along with their probabilities), and2 π0 = [ 1
3 ,

1
3 ,

1
3 ]′ (i.e., each state is equally

likely at the initialization of the system). Consider also the underlying Markov chain M of

PFA H, at the right of Fig. 4.1. The unique NFA G = (X,Σ, δ,X0) associated with PFA H

has δ as defined by the transitions in Fig. 4.1, and X0 = {1, 2, 3}.

2Note that ′ denotes matrix or vector transposition.
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Figure 4.1: PFA H (left) and its underlying Markov chain M (right).

We now provide results from Markov chain theory that will help us deal with

the problem of detectability in PFAs later in this chapter.

Definition 28. [9, 44] (Irreducible or strongly connected Markov chain). A Markov chain

MC = (Q,A, π0) (where Q = {q1, q2, ..., q|Q|} or Q = {1, 2, ..., |Q|} is the set of states) is

irreducible if for all j, i ∈ Q, there exists some n ∈ N such that An( j, i) > 0, where An( j, i)

captures the transition probability from state i to state j in exactly n steps (given by the

( j, i)th entry of matrix An).

Definition 29. [9, 44] (Aperiodic Markov chain). A state qi ∈ Q of a Markov chain

MC = (Q,A, π0) is said to be periodic if the greatest common divisor d of the set {n > 0 :

Pr(q[n] = qi | q[0] = qi) > 0} is d ≥ 2 (note that q[t] = qi denotes the event that the state of

the Markov chain at step t is qi). If d = 1, state qi is said to be aperiodic. The Markov chain

is said to be aperiodic if all states qi ∈ Q are aperiodic.

Lemma 2. [9] If a Markov chain MC = (Q,A, π0) is irreducible, then all its states have the

same period. It follows that if d = 1 for any state of an irreducible Markov chain, then all

states are aperiodic.

Definition 30. Let π[t] be a |Q|-dimensional vector whose jth entry denotes the probability

of being in state q j after t steps. We have π[0] = π0 and π[t] = Aπ[t − 1] = Atπ0 for

t = 1, 2, ....

Definition 31. [4, 9] (Recurrence Time). Given a Markov chain MC = (Q,A, π0), the

49

Chri
sto

for
os

 Kero
glo

u



recurrence time of state qi ∈ Q is defined as

Ti = inf{n > 0 : q[n] = qi}.

Definition 32. [4, 9] (Recurrent States of a Markov Chain). Given a Markov chain

MC = (Q,A, π0), a state qi is called recurrent (qi ∈ QR, where QR ⊆ Q is the set of recurrent

states) if

Pr(Ti < ∞ | q[0] = qi) = 1.

Thus, recurrence implies that a state is visited infinitely often.

Definition 33. [9] (Stationary distribution of a Markov chain). If the Markov chain

MC = (Q,A, π0) is irreducible and aperiodic, then lim
t→∞

π[t] exists and is called the stationary

distribution of the Markov chain denoted by πs = [πs(q1), πs(q2), ..., πs(q|Q|)]′.

Note that the stationary state probability vector for a PFA H = (X,Σ, p, π0) (as-

suming that one exists) is the same as the stationary state probability vector of its

associated Markov chain MC = (X,A, π0), i.e., it is the unique probability vector that

satisfies π = Aπ.

4.3 Detectability in Stochastic Discrete Event Systems

We first revisit some definitions from [46], which provide relevant background for

our development. Throughout this section, we consider a PFA H = (X,Σ, p, π0) with

set of observable events Σobs ⊆ Σ under the natural projection map P.

Definition 34. (ρω(xi)). Given xi ∈ X, and ω ∈ P(L(H))

ρω(xi) ≡
πω(xi)∑
∀xi

πω(xi)
,

is the conditional probability of occurrence of state xi given that observation sequence ω has

occurred (recall that πω(xi) was defined in Definition 22).

Definition 35. (Convergent sequence). Consider an infinite sequence of observations ω =

ω1ω2...ωi... and let ωn
1 = ω1ω2...ωn be its prefix of length n. Let

ρ(ωn
1) = max(ρωn

1
(x1), ρωn

1
(x2), ..., ρωn

1
(x|X|));

then, ω is convergent if lim
n→∞

ρ(ωn
1) = 1.
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Below we provide the definition of (strong) stochastic detectability introduced

in [46].

Definition 36. (Strong (Stochastic) Detectability) [46]. A stochastic discrete event system

captured by a PFA H = (X,Σ, p, π0) is strongly (stochastic) detectable with respect to a set

of observable events Σobs ⊆ Σ if from equally likely initial states (i.e., π0 = 1
|X|1) all infinite

sequences are convergent (Definition 35). This means

(∀0 < α < 1)(∃N ∈N)(∀n ≥ N)

{(s ∈ Σ∗ : Pr(s) > 0 ∧ |s| = n)→ (ρ(P(s)) ≥ α)}.

4.4 A-Detectability in Stochastic Discrete Event Sys-

tems

In this section we introduce the notion of A-detectability; we also develop a method-

ology to verify it using observer based techniques, and prove that A-detectability is

a PSPACE-hard problem.

Definition 37. (A-Detectability). A stochastic discrete event system captured by PFA

H = (X,Σ, p, π0) is A-detectable from initial probability distribution π0 with respect to a set

of observable events Σobs ⊆ Σ if

(∀ε > 0)(∃N ∈N)

Pr({s ∈ Σ∗ : ||s|| = n ≥ N, |R(X0,P(s))| > 1}) < ε,

where R(X0,P(s)) is taken with respect to the NFA G associated with PFA H.

Remark: A comparison between Strong Detectability and A-detectability shows

that if the NFA associated with a given PFA is strongly detectable then the PFA is

A-detectable. The proof is outlined below. Suppose the nondeterministic automaton

G = (X,Σ, δ,X0), associated with a PFA H = (X,Σ, p, π0), is strongly detectable with

respect to natural projection map P for a set Σobs ⊆ Σ of observable events. Then, the

PFA H can be shown to be A-detectable. From Definition 4, we have

(∃N ∈N)

{(∀s ∈ Σ∗ : ||s|| = n ≥ N)⇒ |R(X0,P(s))| ≤ 1} ⇒
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Pr({s ∈ Σ∗ : ||s|| = n ≥ N, |R(X0,P(s))| > 1}) = 0,

which, according to Definition 37, means that PFA H is A-detectable. Note, however,

that the converse is not necessarily true. A counter example is the PFA in Figure 1,

which is used as a running example in the thesis.

Next we discuss the verification of A-detectability, which relies on the construc-

tion of a stochastic observer.

4.4.1 Verification of A-Detectability

Next we describe a useful extension of observer Gobs from Definition 5, based on the

NFA G that is associated with the given PFA H.

Definition 38. (Gobs with unobservable self-loops (Ĝobs)). Given an NFA G = (X,Σ, δ,X0)

with set of observable events Σobs ⊆ Σ under the natural projection map P, the observer (or

current-state estimator) is a deterministic finite automaton (DFA) Gobs = (Qobs,Σobs, δobs,Q0,obs)

constructed as in Definition 5. Adding a self-loop to each state of DFA Gobs for each label in

the set Σuo = Σ − Σobs, we create the DFA Ĝobs = (Qobs,Σ, δ̂obs,Q0,obs). More specifically δ̂obs

extends δobs, as follows: for Q ∈ Qobs and σ ∈ Σ

δ̂obs(Q, σ) =

 δobs(Q, σ), if σ ∈ Σobs,

Q, if σ ∈ Σuo.

Definition 39. (Stochastic Observer Hobs). Given a PFA H = (X,Σ, p, π0) and a natural

projection map P with respect to the set of observable events Σobs ⊆ Σ, Hobs is constructed as

follows:

(1) We construct the (deterministic) observer Gobs = (Qobs,Σobs, δobs,Q0,obs), and then Ĝobs =

(Qobs,Σ, δ̂obs,Q0,obs) with respect to the NFA G = (X,Σ, δ,X0) associated with H.

(2) We construct the PFA Hobs = H×Ĝobs := (X×Qobs,Σ, pobs, π0,obs), where X×Qobs is the set

of states, pobs(xi′
j′ , σ|x

i
j) is the state transition probability defined for xi

j = (x j,Qi) ∈ X ×Qobs

and xi′
j′ ∈ X × Qobs (i.e., x j ∈ X, Qi ∈ Qobs, x j′ ∈ X and Qi′ ∈ Qobs) and σ ∈ Σ, as

pobs(xi′
j′ , σ|x

i
j) = p(x j′ , σ|x j) if Qi′ = δ̂obs(Qi, σ), and pobs(xi′

j′ , σ|x
i
j) = 0, otherwise; π0,obs is the

initial-state probability distribution vector given by a column vector with π0,obs(xi
j) = π0(x j)

if Qi = Q0,obs and zero otherwise.

Definition 40. (Markov chain MC of stochastic observer Hobs). Given a PFA H =

(X,Σ, p, π0), its associated NFA G = (X,Σ, δ,X0), and its deterministic observer Gobs =
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(Qobs,Σobs, δobs,Q0,obs), we construct the stochastic observer Hobs = H × Ĝobs := (X ×

Qobs,Σ, pobs, π0,obs). The Markov chain MC = (X ×Qobs,Tobs, π0,obs) associated with the PFA

Hobs, is the Markov Chain with state transition probabilities pM(xi′
j′ | x

i
j) =

∑
σ∈Σ pobs(xi′

j′ , σ | x
i
j)

for xi
j, x

i′
j′ ∈ X×Qobs (indexing the states in the order (x1

1, x
1
2, · · · , x

|Qobs|

|X|−1, x
|Qobs|

|X| ), the entries of the

state transition matrix Tobs are given by Tobs(|Qobs|(i′−1)+ j′, |Qobs|(i−1)+ j) = pM(xi′
j′ | x

i
j)).

Example 8. Given PFA H in Fig. 4.1, the corresponding Hobs, with Q1 = {x1, x2, x3},Q2 =

{x2, x3},Q3 = {x3},Q4 = {x2}, is as shown in Fig. 4.2. Ordering the states from left-right,

and top-bottom as (x1
1, x

1
2, x

1
3, x

2
2, x

2
3, x

3
3, x

4
2), the state transition probability matrix of the

underlying Markov chain is

Aobs =



0.5 0 0 0 0 0 0

0.5 0 0 0 0 0 0

0 0 0.5 0 0 0 0

0 0 0.5 0 0.5 0 0

0 1 0 1 0 0 0

0 0 0 0 0.5 0.5 1

0 0 0 0 0 0.5 0



Figure 4.2: Hobs used in Example 8.

We now recall a useful property for a finite state Markov chain (see, for example,

[4, 11]).

Lemma 3. Let X be the finite state space of Markov chain MC = (X,A, π0) and X = XR
⋃̇

XT,

where XR and XT denote the non-intersecting sets of recurrent and transient states. We have

that

(∀ε > 0)(∃N ∈N)(∀n ≥ N)

πT
n ,

∑
x j∈XT

πn(x j) < ε ,

which clearly implies that for any x j ∈ XT, πn(x j) < ε.
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Remark: Lemma 3 implies that as the number of transitions increases, the probabil-

ity of the Markov chain being in a transient state approaches zero. If a state xi ∈ XR

(equivalent to xi < XT), then it is easily proved (Lemma 3) that

(∃ε > 0)(∀N ∈N)(∃n ≥ N)

πn(xi) ≥ ε,

as long as the recurrent states are reachable (with a nonzero probability) from the

set of possible initial states (this can be easily ensured by trimming all states that are

not reachable from possible initial states of the given Markov chain).

Theorem 5. (A-detectability using stochastic observer Hobs: Necessary and sufficient con-

ditions). Given a PFA H = (X,Σ, p, π0), its associated NFA G = (X,Σ, δ,X0), we con-

struct its observer Gobs = (Qobs,Σobs, δobs,Q0,obs), its stochastic observer Hobs = H × Ĝobs :=

(X × Qobs,Σ, pobs, π0,obs), and its associated NFA GHobs = (X × Qobs,Σ, δHobs,Q0,Hobs), and

Markov chain MC = (X ×Qobs,Tobs, π0,obs) as in Definition 39.

Then, PFA H is A-detectable iff the Markov chain MC has the following property:

(∀xi
j ≡ (x j,Qi) ∈ XR ⊆ X ×Qobs)→ (|Qi| = 1) ,

where XR is the set of recurrent states of Markov chain MC as defined in Lemma 3.

Theorem 5 implies that for a PFA to be A-detectable, we need all recurrent states

xi
j ∈ X × Qobs of its underlying Markov chain to be associated with state estimates

that involve a single state (i.e., have |Qi| = 1).

Proof. (→): Suppose that there exists at least one recurrent state xi
j = (x j,Qi),

where Qi ∈ Qobs, with |Qi| > 1.

Clearly, {xi
j ∈ XR} means that (∃ε > 0)(∀N ∈ N)(∃n ≥ N) such that Pr({s ∈ Σ∗ :

||s|| = n ≥ N, |R(X0,P(s))| > 1}) ≥ πn(xi
j) ≥ ε (Remark 4.4.1). Thus, the system is not

A-detectable (Definition 37).

(←): Suppose that all recurrent states xi
j are associated with singleton states Qi,

then all non singleton states xi′
j′ ∈ XT. Clearly, (∀ε > 0)(∃N ∈ N)(∀n ≥ N) such that

Pr(s : ||s|| = n ≥ N, |R(X0,P(s))| > 1) ≤ πT
n < ε, where XT is the set of all transient states

(Lemma 3). Thus the system is A-detectable (Definition 37).

Example 9. According to Definition 37 the system is A-detectable because all recurrent

states in the associated Markov chain of Hobs (shown in Fig. 4.2) are singleton states (namely,

54

Chri
sto

for
os

 Kero
glo

u



states x3
3 and x4

2). Although the PFA H is A-detectable, the associated NFA G, is not strongly

detectable because the observer Gobs has loops which involve nonsingleton states, e.g., {x2, x3}

is involved in self loop a∗ (see the observer in Fig.13).

Remark: In an A-detectable system, following any (long enough) sequence of events

s, such that the set of possible state estimates associated with its projection P(s)

includes at least one recurrent state, then there always exists at least one continuation

t, such that the state estimate of P(st) includes only one state, which is recurrent

(otherwise the system would not be A-detectable). This line of thought connects

the problem of A-detectability to a problem of language equivalence (between the

language associated to the transient behaviour of the system versus the language

capturing its recurrent behaviour).

4.5 Complexity Comparison between Verification of A-

detectability and A-Diagnosability

It is worth discussing a bit differences and similarities between A-detectability and

A-diagnosability [49], which is a similar notion in fault diagnosis. The main idea

in both notions is that the most probable observation sequences allow us to resolve

a specific property of the system with always increasing certainty. The difference

between the two notions is that A-detectability resolves the exact state of the system

(the ambiguity occurs when the state estimate involves at least two different states of

the system), whereas in A-diagnosability the ambiguity for an observation sequence

occurs when the state estimate involves at least one state from two different sets

of states (the normal set of states, which represents the normal behaviour of the

system, and the faulty set of states, which indicate that the fault has occurred).

Another difference is the monotonicity property which is present in fault diagnosis

but not in detectability. More specifically, when the state estimate involves only

states in the set of the faulty states, then for any new observation the state estimate

remains in the set of faulty states, and the fault diagnosis problem is resolved. This

is not true in general for the detectability problem, because even if the state estimate

is a single state at a certain point, it is possible that a new observation may drive

the estimator to a state estimate that involves multiple states; thus, the problem of

exact detection of a state is not resolved. In this section we prove that A-detectability
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and A-diagnosability are PSPACE-hard by introducing a polynomial-time reduction

of each instance of the universality problem for a given NFA to an instance of the

A-detectability and A-diagnosability problems; since the universality problem for

an NFA is PSPACE-complete, these reductions prove that A-detectability and A-

diagnosability problems are PSPACE-hard.

4.5.1 A-Detectability is PSPACE-Hard

Given a nondeterministic finite automaton G over the alphabet Σ, the universality

problem asks if the language of G contains all finite words over Σ, that is, if L(G) = Σ∗

[26].

Definition 41. (Universality problem for NFA with all states initial) [26]. Given an NFA

G = (X,Σ, δ,X) over an alphabet Σ, having the property1 that all states are initial (X0 = X),

do we have L(G) = Σ∗?

The Universality problem with all states initial is shown in [26] to be PSPACE-

complete, when |Σ| ≥ 2. We now establish a reduction of the universality problem

with all states initial to an instance of the A-detectability problem. Suppose that

we are given an instance of the universality problem for GT = (XT,Σo, δT,XT). We

construct the following instance of the A-detectability problem (refer to Fig. 4.3).

PFA H = (X,Σ, p, π0) has X = XT ∪ {xR} where the set of states XT = {x1, x2, ..., x|XT |}

and xR is a new state (not in XT). The set Σ = Σo ∪ {δuo} is the set of events, where Σo

is the set of observable events (events of GT) with |Σo| ≥ 2 and δuo is a new event (not

in Σo) that is unobservable. We assign probabilities as follows:

i) The (|XT|+ 1)× 1 column-vector π0 = 1
|XT |+1 [1, 1, ..., 1]′ is the initial-state probability

distribution vector, where the order of states is taken to be (x1, x2, ..., x|XT |, xR).

ii) The state transition probability p(xi′ , σ | xi) is defined for xi, xi′ ∈ X and σ ∈ Σ as

follows:

a) ∀xi ∈ XT, ∀xi′ ∈ X and ∀σ ∈ Σ, if xi′ ∈ δ(xi, σ), then p(xi′ , σ | xi) = 1∑
σ∈Σ

|δ(xi, σ)|
,

otherwise p(xi′ , σ | xi) = 0;

1In [26], they call G an automaton with all states both initial and final because they consider the

marked language of the automaton with respect to the set of final (marked) states.
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b) ∀σ ∈ Σo, p(xR, σ | xR) = 1
|Σo|

.

Remark: Note that i) the set of states XT is the set of transient states of PFA H and

state xR is the only recurrent state; ii) there exists a transition (via the unobservable

event) from every state xi ∈ XT to state xR.

Figure 4.3: Instance of A-detectability.

The following theorem shows that every instance of the language universality

problem of an NFA (GT = (XT,Σo, δT,XT)) with all states initial, can be reduced to

an instance of A-detectability problem (as it was described in previous paragraphs).

Thus, the A-detectability problem is PSPACE-hard.

Theorem 6. A-detectability is PSPACE-hard.

We argue that language universality of NFA GT is equivalent to PFA H (as in

Fig. 4.3 and as described above) not being A-detectable.

(→) If L(GT) = Σ∗o ⇒ (∀s : |R(X,P(s)| > 1) ⇒ (∀N ∈ N)(||s|| = n ≥ N) Pr(s :

|R(X,P(s)| > 1) = 1. This means that the system H is not A-detectable.

(←) If L(GT) , Σ∗o ⇒ (∃K ∈ N)(∃s s.t. P(s) = ω ∈ ΣK
o : ω < L(GT). Notice that

∀ω1 ∈ Σ∗o : ω1ω < L(GT), because δ(XT, ω1ω) = δ(δ(XT, ω1), ω) ⊆ δ(XT, ω) = ∅.

Let N′ = NK, where N ∈ N. Then, Pr(s : ||P(s)|| = n′ ≥ N′ ∧ |R(X,P(s))| > 1)) ≤

Pr(s : P(s) = ω = ω(1)ω(2)...ω(N) (with ||ω( j)
|| = K and ||ω|| = N′ ) ∧ ω( j) , ωK for j =

1, 2, ...,N)) ≤ (1 − 1
(|Σ|+1)|X|

1
|Σ|K

)N
⇒ (∀ε > 0)(∃N′ = NK ∈ N) Pr(s : ||s|| = n′ ≥ N′ ∧

|R(X,P(s))| > 1) < ε (namely, N′ = NK, with N ≥ d log ε
log (1− 1

(|Σ|+1)|X|
1
|Σ|K

)
e). This means that H

is A-detectable.
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This establishes the reduction and we conclude that the A-detectability problem

is PSPACE-hard.

4.5.2 A-Diagnosability is PSPACE-Hard

Definition 42. [49](A-diagnosability). Suppose we are given a PFA H = (X,Σ, p, π0) with

a set of observable events Σobs, Σobs ⊆ Σ. For Σ f ∈ Σuo ≡ Σ − Σobs, let Ψ(σ f ) = {s = tσ f ∈

L(H) : {t ∈ (Σ−σ f )∗}}. The live, prefix-closed language L(H) is A-diagnosable with respect to

a fault σ f , under the natural projection observation map P (with respect to a set of observable

events Σobs ⊆ Σ) if

(∀ε > 0)(∃N ∈N)(∀s ∈ Ψ(σ f ) ∧ n ≥ N)

Pr({t : D(st) = 0}|t ∈
L
s
∧ ||t|| = n) < ε,

where the diagnosability function D is defined as

D(st) =


1, if ω ∈ P−1[P(st)]⇒ σ f ∈ ω,

0, otherwise.

Given a PFA H, the A-diagnosability problem (Definition 42) is PSPACE-hard.

We prove that A-diagnosability is PSPACE-hard by introducing a polynomial-time

reduction of each instance of the universality problem for a given NFA to an in-

stance of the A-diagnosability problem; since the universality problem for an NFA is

PSPACE-complete, this proves that the A-diagnosability problem is PSPACE-hard.

Given a nondeterministic finite automaton G over the alphabet Σ, the universality

problem asks if the language of G contains all finite words over Σ, that is, if L(G) = Σ∗

[26]. We now establish a reduction of the Universality problem (Definition 41) with

all states initial to an instance of the A-diagnosability problem. Suppose that we

are given an instance of the Universality problem for GN = (XN,Σo, δN,XN). We

construct the following instance of the A-diagnosability problem (refer to Fig. 4.4).

PFA H = (X,Σ, p, π0) has X = {x0} ∪ XN ∪ {x f } where x0 and x f are new states (not in

XN). The set of states XN = {x1, x2, ..., x|XN |} can be seen as the set of states of G that

are consistent with the normal behaviour of H and x f can be seen as the single state

that is consistent with faulty behaviour of H. The set Σ = Σo ∪ {σuo, σ f } is the set

of events, where Σo is the set of observable events (events of GN) with |Σo| ≥ 2 and

σ f , σuo are new events (not in Σo) that are unobservable. We assign probabilities as

follows:
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i) The (|XN| + 2) × 1 column-vector π0 = [1, 0, ..., 0]′ is the initial-state probability

distribution vector, where the order of states is taken to be (x0, x1, x2, ..., x|XN |, x f ).

ii) The state transition probability p(i′, σ|i) is defined for i, i′ ∈ X and σ ∈ Σ as follows:

a) ∀xi′ ∈ XN, p(xi′ , σuo|x0) = 1
|XN |+1 and p(x f , σ f |x0) = 1

|XN |+1 ;

b) ∀σ ∈ Σo, p(x f , σ|x f ) = 1
|Σo|

and ∀σ ∈ Σ, p(x f , σ|xi) = 0 for xi , x f ;

c) ∀xi, xi′ ∈ XN and ∀σ ∈ Σo, if xi′ ∈ δ(xi, σ), then p(xi′ , σ|xi) = 1∑
σ∈Σo |δ(xi,σ)| , otherwise

p(xi′ , σ|xi) = 0.

Remark: Note that i) The NFA G that can be associated to PFA H can be seen as the

union of GN = (XN,Σo, δN,XN) and the single state NFA GF = ({x f },Σo, δ f , {x f }), whose

language L(GF) = Σ∗o; ii) there exists a transition (with unobservable event) from x0

to each state in XN and a transition (with fault event) to x f .

Figure 4.4: Instance of A-diagnosability given NFA GN

The following theorem shows that every instance of the language universality

problem of an NFA (GN = (XN,Σo, δN,XN)) with all states initial, can be reduced to an

instance of A-diagnosability problem (as it was described in previous paragraph).

Thus, the A-diagnosability problem is PSPACE-hard.

Theorem 7. A-diagnosability is PSPACE-hard.

Proof. We argue that language universality of an NFA GN is equivalent to PFA H (as

in Fig.4.4 and as described above) not being A-diagnosable.
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(→) If L(GN) = Σ∗o ⇒ L(GN) = L(GF) ⇒ (∀ω ∈ Σ∗o : D(ω) = 0) ⇒ (∀n ∈ N)(Pr({ω :

D(ω) = 0|ω ∈ L(GF) ∧ ||ω|| = n}) = Pr(ω ∈ Ψ(σ f ) ∧ ||ω|| = n) = 1). This means that the

system G is not A-diagnosable.

(←) If L(GN) , Σ∗o ⇒ (∃k ∈ N)(∃ω ∈ Σk
o : ω < L(GN). Notice that ∀ω1 ∈ Σ∗o : ω1ω <

L(GN), because δ(XN, ω1ω) = δ(δ(XN, ω1), ω) ⊆ δ(XN, ω) = ∅.

Let n′ = nk, where n, k ∈ N. Then, Pr(ω ∈ Ψ(σ f ) : ||ω|| = n′ ∧ D(ω) = 0)) ≤

Pr(ω ∈ Ψ(σ f ) : ω = ω(1)ω(2)...ω(n) (with ||ω( j)
|| = k and ||ω|| = n′ ) ∧ ω( j) , ωk for j =

1, 2, ...,n)) = (1 − 1
|Σo|k

)n
⇒ (∀ε > 0)(∃n′ = nk ∈ N) Pr(ω ∈ Ψ(σ f ) : ||ω|| ≥ n′ ∧ D(ω) =

0) < ε (namely, n′ = nk, with n ≥ d log ε
log (1− 1

|Σo |k
)
e). This means that G is A-diagnosable.

This establishes the reduction and we conclude that the A-diagnosability problem is

PSPACE-hard. �

4.6 AA-Detectability

In some cases even if the system is not A-detectable (i.e., there exists a nonzero prob-

ability of generating observation sequences that correspond to possible estimates

for more than one state), the probability of estimating the correct state for these

observation sequences goes to one (Definition 35). These cases lead to the defini-

tion of AA-detectability, which is similar to the notion of AA-diagnosability in [49].

The differences and similarities between the two notions (AA-diagnosability/AA-

detectability) can be understood in the context of differences and similarities be-

tween the problems of detectability and diagnosability as discussed in previous

Section. Interestingly enough, it is currently unknown whether AA-diagnosability

can be verified with polynomial complexity, whereas AA-detectability is shown in

this section to be polynomially verifiable.

Definition 43. (AA-detectability). A stochastic discrete event system captured by PFA

H = (X,Σ, p, π0) is AA-detectable with respect to a set of observable events Σobs ⊆ Σ if

(∀ε > 0)(∀α > 0)(∃N ∈N)(∀n ≥ N)

{Pr(s ∈ Σ∗ : |s| = n ∧ ρ(P(s)) ≥ α) < ε},

where ρ(P(s)) was defined in Definition 35.

Example 10. The following example is used to clarify the notion of AA-detectability. Con-

sider the PFA H = (X,Σ, p, π0) depicted in Fig. 4.5 with π0 = [1, 0, 0, 0, 0, 0]′, where
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X = {1, 2, 3, 4, 5, 6}, Σ = {α, β}, p is as defined by the transitions in the figure, and Σobs = Σ.

According to Definition 37 the system is not A-detectable because∀s ∈ Σ∗ : |R(X0,P(s))| > 1.

Note also that the infinite sequence s = αβn, where n is arbitrarily large is not convergent

(Definition 35). We have ω = P(s) = P(αβn) and ρ(P(ω)) = ρP(ω)(3) = πω(3)
πω(3)+πω(5) =

1/3
1/3+2/15 < 1, because πω(3) = 2(0.5)n

3 and πω(5) = 2(0.5)n

15 . Although there exists an infinite

sequence which is not convergent, the system in this example is, in fact, AA-detectable,

because AA-detectability is related to the overall probability of non-convergent sequences.

Formal verification of this fact will not be provided until Section 4.

Figure 4.5: PFA used in Example 10.

In this section we establish that the property of AA-Detectability for PFA H can

be verified with polynomial complexity. We first argue that the AA-detectability

problem for a PFA H relies on finding the continuations (t) of any string s, after

we reach the recurrent states of H (since we can decrease the probability that the

underlying Markov chain of the system remains in the set of transient states, by

increasing the number of observations). In other words, we can focus on the recurrent

behavior of H; in fact, by waiting for more observations we can be certain, within

whatever threshold we choose, that we reach a recurrent state or, equivalently, a

closed strongly connected component of the given PFA.

Definition 44. (Closed strongly connected component (CSCC)) [11]. Given a PFA H =

(X,Σ, p, π0) a closed strongly connected component is a PFA Hi = (Xi,Σ, pi, π0,i) with Xi ⊆ X

such that ∀x, x′ ∈ Xi and ∀σ ∈ Σ, pi(x′, σ|x) = p(x′, σ|x), whenever the former is defined

(zero otherwise) and π0,i is an |Xi|-dimensional probability vector that captures the initial

probabilities associated with states in Xi. Hi is a strongly connected component or irreducible

if its associated Markov chain is strongly connected or irreducible.

Remark: Note that Hi = (Xi,Σ, pi, π0,i) being a CSCC implies that
∑
σ∈Σ

∑
x′∈Xi

P(x′, σ | x) =
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1 for x ∈ Xi.

4.6.1 Polynomial Verification of AA-Detectability

The first step of the proposed verification algorithm is the identification of all CSCCs

of PFA H. The CSCCs depend only on the graph structure of the state transition

diagram of the given PFA. Polynomial graph algorithms for the identification of the

strongly connected components and CSCCs of a given strongly connected graph can

be found in [11], [12]. Let H1,H2, · · · ,Hm denote the strongly connected components

of the given PFA H. Furthermore, note that if we have to distinguish between the

different recurrent components, we need to classify between them by choosing the

most probable component (which is also a PFA on its own). Naturally, this leads us

to consider methods of computing the probability that we made the wrong choice

(probability of error) when performing this classification. As discussed in Section 2

the optimal rule to do this is the MAP (maximum a posteriori) rule.

We first explore necessary and sufficient conditions for the probability of error

when classifying among a given set of PFAs to tend to zero eventually (with in-

creasing number of observations, the probability of classification error goes to zero).

Necessary and sufficient conditions are difficult in the general case (see, for example,

Chapter 5), but we will argue that the PFAs have certain properties (namely, they are

associated to NFAs that have an underlying deterministic transition mechanism) that

can be exploited to establish necessary and sufficient conditions for the probability

of classification error to go to zero. If these conditions hold, we are able to correctly

identify the CSCC in which the system state lies with increasing certainty. If, in

addition, we are able to pinpoint, with increasing certainty, the exact state estimate

within the chosen CSCC, then we can establish AA-detectability. We use this two-

stage approach to establish necessary and sufficient conditions for AA-detectability.

In the following theorem we prove a key result for the development of a polynomial

complexity verification algorithm.

Theorem 8. (A necessary condition for AA-detectability). Given a PFA H = (X,Σ, p, π0)

and its associated underlying Markov chain M = (X,A, π0), where X = XR ∪ XT with XR

being the set of recurrent states and XT being the set of transient states, a necessary condition

for AA-detectability is that there do not exist xi, xk, xl ∈ XR and sk, sl
∈ Σ∗uo and σ ∈ Σo, such

that p(xk, skσ | x j) > 0 and p(xl, slσ | x j) > 0.
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Proof. Let us suppose that the given PFA is AA-detectable, and let us assume that

there exists at least one CSCC. For s ∈ L(G), such that it reaches a state x ∈ XR in the

CSCC H, with some nonzero probability and 0 < α < 1. Let event A(N, α) = {s ∈

L(G) : |s| = n ≥ N∧ρ(P(s)) ≥ α)}, AC(N, α) be the complement of A, and for xi ∈ X, let

A(N, α, xi) = {s ∈ L(G) : |s| = n ≥ N ∧ ρP(s)(xi) ≥ α}. The system being AA-detectable

means,

(∀ε > 0)(∀0 < α < 1)(∃N ∈N)(∀n ≥ N)

Pr(A(N, α)) ≥ 1 − ε.

Figure 4.6: Example of non-deterministic transition used in Theorem 8.

The recurrent states are strongly connected, which means that ∀xi, x j ∈ XR, xi , x j

there exists an acyclic path from xi to x j. Let us denote these paths by t(i j), with

length n(i j), where n(i j) ≤ |X|.

The proof is by contradiction. Suppose that the theorem statement does not

hold and that from x j there exists a path skσ (or slσ), with length k + 1 (or l + 1),

where the state estimate of the projection of this string includes the states xk and

xl (refer to Fig. 4.6). Following this path, we split the probability of reaching a

single state, to two states. It turns out that if we choose a large enough α, for all

strings s, then all the continuations st′, will result to a ρ(P(st′)) < α. To see this,

take the worst case, where |t(i j)| = |X|, and p(t(i j)) = p|X|min, for xi, x j ∈ X, where

pmin = minxi,x j,σ{p(x j | xi, σ) | p(x j | xi, σ) , 0}. Then, given ρP(s)(xi) ≥ α, a sufficient

condition for the state x j to be the most probable state after the execution of sequence

st(i j), is that α · p|X|min > 1 − α, or equivalently α > 1
p|X|min+1

.

Now, we try to contradict the fact that the system is AA-detectable, by finding

appropriate N′ > N, such that Pr(AC(N′, α)∧A(N, α)) ≥ ε′ for ε′ to be specified. Note

that Pr(AC(N′, α)∧A(N, α)) = Pr(AC(N′, α) | A(N, α)) Pr(A(N, α)) =
∑
∀x∈XR

Pr(AC(N′, α) |

A(N, α, x)) Pr(A(N, α, x) | A(N, α)) Pr(A(N, α)).
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Clearly, there exists xi ∈ XR, for which Pr(A(N, α, xi) | A(N, α)) ≥ 1
|X| . For the

chosen xi, following the line of thought of the previous paragraph, we can find an

acyclic path t′ = t(i j)skσ, with length |t(i j)| + k + 1, which means that we can choose

N′ = N + |t(i j)|+ k + 1, such that Pr(AC(N′, α) | A(N, α, xi))≥p2|X|
min (2|X| is the maximum

length of a possible t′). Thus, Pr(AC(N′, α)) ≥
p2|X|

min
|X| (1 − ε). Due to the AA-detectability

property, we need to have
p2|X|

min
|X| (1 − ε) ≤ Pr(AC(N′, α)) < ε, this double inequality

holds if and only if ε ≥ ε0, where ε0 =

p2|X|
min

|X|
p2|X|

min

|X|
+ 1

. In particular, for all ε < ε0, the

inequality does not hold, and therefore, for ε < ε0, we cannot find N ∈ N, so that

AA-detectability holds. Thus, we have reached a contradiction, and the proof is

completed.

�

Remark: According to Theorem 8 it is necessary for all CSCCs Hi, i = 1, ...,m of PFA

H, to have associated NFAs, Gi, i = 1, ...,m that are DFAs. This is very important for

the polynomial verification of AA-detectability.

Consider m different PFAs Hi = (Xi,Σi, pi, π0,i), with i ∈ {1, 2, . . . ,m}, and let

Σobs ⊆ ∪iΣi be the set of observable events with respect to a natural projection map

P. We are given a priori probability Pi for each model Hi, such that
∑

i

Pi = 1. Note

that On is an observation sequence of length n, which can be generated by at least

one of the m PFAs, with Pr(On,Hi) be the probability that On has occurred from PFA

Hi. Hmax(On) = arg max
Hi
{Pr(On,Hi)} is the PFA, with the maximum probability of

occurrence for On.

Lemma 4. The probability of misclassification among m PFAs tends to zero iff the probability

of misclassification among all pairs of PFAs (Hi,H j), i, j ∈ {1, 2, · · · ,m} tends to zero.

Proof. Notice that Pr( error at n) =∑
On

∑
Hi,Hmax(On)

Pr(On,Hi).

Notice also that probability of error among the pair Hi and H j is denoted as

Pr( error at n,Hi,H j) =
1

Pi + P j

∑
On

min{Pr(On,Hi),Pr(On,H j)}.
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Let

Pmin = min{P1, ...,Pm,
P1

P1 + P2
, ...,

Pm−1

Pm−1 + Pm
}

and

Pmax = max{P1, ...,Pm,
P1

P1 + P2
, ...,

Pm−1

Pm−1 + Pm
}.

Then we have,

Pmin

Pmax
Pr( error at n) =

Pmin

Pmax

∑
On

∑
Hi,Hmax(On)

Pr(On,Hi) ≤

∑
On

1
Pi + PHmax(On)

∑
Hi,Hmax(On)

Pr( error On,Hi,Hmax)

≤

∑
Hi,H j

Pr( error at n,Hi,H j) ≤ m2 Pmax

Pmin
Pr( error at n).

�

When multiple CSCCs are present, AA-detectability hinges on our ability to

distinguish among different CSCCs of the system that are reachable under sequences

with identical projections. By construction, the CSCCs are irreducible PFAs, thus

the verification of AA-detectability is transformed into a problem of classification

between irreducible PFAs that are simultaneously reachable under each possible

observation sequence (for AA-detectability to hold the probability of error between

these PFAs needs to tend to zero eventually).

It is important to realize that when we know the exact recurrent component, we

know also the exact state (Theorem 8 says that eventually, with high probability,

one state will dominate). Clearly, one could use the observer to resolve all possible

state combinations (and combinations of recurrent components) that are reachable

under different strings but with the same natural projection. From the Lemma 4, we

observe that the probability of error among m PFAs tends to zero iff the probability

of error for any pair (Hi, H j) among these m PFAs also tends to zero. This detail is

crucial because it allows us to use the detector instead of the observer. In order to de-

velop a method for verifying AA-detectability, we establish a polynomial complexity

method for classification between two different PFAs, whose associated NFA’s are

restricted to be DFA’s. Therefore, the second step for a verification algorithm is to

explore, using the detector for the associated NFA G of PFA H, all the pairs of closed

strongly connected components that are reachable, possibly under different strings

but with the same projection (i.e., (Hi,H j)). Next, we construct the associated PFAs,
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without the unobservable events, as in Definition 24 (for simplicity we keep the same

symbols Hi and H j), and perform classification between all pairs of closed strongly

connected components that we found at the second step (the method of classification

is described in detail in the following subsection).

Theorem 9. (Necessary and sufficient conditions for AA-detectability). A PFA H =

(X,Σ, p, π0) with m CSCCs, H1,H2, ...,Hm, m ≥ 1, is AA-detectable iff for all CSCCs

Hi1 ,Hi2 , ...,Hik , k ∈ {1, 2, ...} that are reachable under strings s1, s2, ..., sk, with P(s1) = P(s2) =

... = P(sk), the probability of error when trying to classify between these different PFAs tends

asymptotically to zero.

Proof. Now we describe a method that allows us to find if the probability of error for

two PFAs Hi = (Xi,Σobs, pi, π0,i) and H j = (X j,Σobs, p j, π0, j) tends to zero. This problem

is open at the moment for the general case; however, in our case, the underlying

logical structure involves only deterministic finite automata, and we show that the

problem can be solved with a polynomial complexity algorithm, with respect to the

size of the state–space of the two PFAs.

In our solution, it is important to capture the common behaviour of the two

PFAs which can be done with a detector (defined in Definition 6). The second step

is to assign probabilities to that detector, which is difficult in the general case, but

can be done easily in our case, due to the deterministic nature of the underlying

logical structure of the two PFAs. Finally, we construct two derived Markov chains;

checking whether the probability of error tends to zero when classifying among the

given PFAs is shown to be equivalent to a problem of classification between these

derived Markov chains.

Definition 45. (PFAs Hdi j,i and Hdi j, j with associated detector Gd,i j ). Consider two PFAs

Hi = (Xi,Σobs, pi, π0,i) and H j = (X j,Σobs, p j, π0, j) with associated Markov chains that are

irreducible (note that the PFAs are constructed from the initial PFAs by removing the

unobservable events, as Remark 24).

Suppose that the finite automata associated with these PFAs are DFA’s Di = (Xi,Σobs, δi,

X0,i) and D j = (X j,Σobs, δ j,X0, j).

(1) We construct Di j = (Xi j,Σobs, δi j,X0,i j), with Xi j = Xi ∪ X j (assume, without loss of

generality, that Xi ∩ X j = ∅), δi j(x, σ) = x′ iff {x, x′ ∈ Xi ∧ δi(x, σ) = x′} ∨ {x, x′ ∈

X j ∧ δ j(x, σ) = x′} and X0,i j = X0,i ∪ X0, j.

(2) We construct the detector (Definition 6) Gd,i j = (Xd,i j,Σobs, δd,i j,X0d,i j) of DFA Di j.
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(3) We construct the PFAs Hdi j,i = (Xdi j ,Σobs, pdi j,i, π0,di ji) and Hdi j, j = (Xdi j ,Σobs, pdi j, j, π0,di j j),

by assigning probabilities over the detector DFA Gd,i j. We have pdi j,i((x
′

k, x
′

l), σ|(xk, xl)) =

pi(x′k, σ|xk), where xk, x′k ∈ Di and xl, x′l ∈ D j (we can also have perhaps xk = ∅ as a value, or

the same state for the two components, which in the definition of the detector is equivalent to

a state with a single component). Similarly, we construct PFA Hdi j, j.

Example 11. Consider the PFAs H1 = (X1,Σ, p1, π0,1) and H2 = (X2,Σ, p2, π0,2) depicted in

Fig. 4.5 with π0,1 = [1, 0]′, π0,2 = [1, 0, 0]′ where X1 = {2, 3} and X2 = {4, 5, 6}, Σ = {α, β},

p1 and p2 are defined by the transitions in the figure, and Σobs = Σ. The DFA’s of interest are

D1, D2 and D12 (the latter can be seen as the union of D1 and D2).

Figure 4.7: PFAs used in Example 11 (left) and associated DFA’s (right).

Figure 4.8: Gd,12 (left) and PFA Hd12,1 (right) used in Example 11 .

Definition 46. (One-step transition probability matrix for a Markov chain) [14,28]. Given

an irreducible Markov chain MC = (Q,A, π0), and its stationary distribution2 πs =

[πs(q1), πs(q2), ..., πs(q|Q|)]′, then for qk, ql ∈ Q the corresponding element of the one-step

transition probability matrix is given as P(k, l) = A(k, l) × πs(l).
2In the case of a periodic Markov chain with period d, there exist πs,r = lim

t→∞
Adt+rπ0, r ∈ {0, ..., d−1}.

In that case, we use the average stationary distribution πs = 1
d

r=d−1∑
r=0

πs,r.
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Lemma 5. Given two irreducible PFAs Hdi j,i = (Xdi j,i,Σobs, pdi j,i, π0,i) and Hdi j, j = (Xdi j, j,Σobs, pdi j, j,

π0, j) with the same set of allowed transitions, and thus the same transition diagram, accord-

ing to [28] (Part III, Chapter 12) the probability of misclassification between the two PFAs

(equivalently for two completely observable Markov chains) tends asymptotically to zero iff

the underlying Markov chains (Mdi j,i = (Xdi j,i,Adi j,i, π0,i) and Mdi j, j = (Xdi j, j,Adi j, j, π0, j)) are

irreducible, and the one-step transition probability matrices (P1 and P2) are different.

We create two new PFAs Hdi j,i and Hdi j, j, with associated DFA the detector Gd,i j and

the probabilities are assigned according the definition above. In the general case, the

detector’s associated Markov chains, are reducible. We can easily deal with Markov

chains which are reducible, finding all of their CSCCs and applying Theorem 5 for

all CSCCs: we decide that the PFA is AA-detectable if for all associated Markov

chains of the CSCCs, the one-step transition probability matrices are different.

A special case arises when some irreducible components of the detector Gd,i j,

involve a state xk ∈ Xd,i j, with |xk| = 1 (singleton state), then the state estimation

problem is effectively resolved for these CSCCs, because we reach the singleton state

with increasing certainty. In that case, we do not assign probabilities into these

CSCCs.

Example 12. For the PFAs in Fig. 4.7 we easily construct the associated Markov chains

of PFAs Hd12,1 and Hd12,2 by dropping the label of each transition from PFAs. The Markov

chains Md12,1 and Md12,2 are depicted in Fig. 4.9.

Figure 4.9: Md12,1 (left) and Md12,2 (right) used in Example 11.
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Finally, we decide that H is AA-detectable iff the probability of misclassifica-

tion for all pairs tends asymptotically to zero, which is formally summarized in

Theorem 9. �

We now describe the proposed verification procedure for AA-detectability. The

proposed verification algorithm involves the following steps:

• Identification of all CSCCs H1,H2, ...,Hm of the given PFA H. Note that Theo-

rem 8 implies that the finite automaton associated to each CSCC is a DFA.

• Classification between pairs of CSCCs (that are simultaneously reachable with

sequences of events that have the same projection on the set of observable

events), in order to find the most probable component (see Theorem 38). Note

that if a CSCC is simultaneously entered via different paths and entry points,

then we need to consider classification of a pair of CSCCs that involves the

same CSCC but with different initial conditions.

1. We construct the Detectors (Definition 6) of any pairs of CSCCs that are

simultaneously reachable with strings that have the same projection on

the set of observable events.

2. Again we identify all possible CSCCs that exist in the Detectors.

3. We assign probabilities to all CSCCs of all Detectors, by constructing two

different PFAs for each pair of CSCCs (Definition 45).

4. We compare the one-step transition probability matrices for the two dif-

ferent underlying Markov chains, related to the PFAs we constructed in

the previous step (Definition 46).

Remark: The identification of all CSCCs and the construction of the detectors are

of polynomial complexity regarding the number of the states of the PFA [11], [45].

The comparison for the one-step transition probabilities is also of polynomial com-

plexity, because it is based on the computation of the steady-state probabilities for

two Markov chains. Overall the verification procedure for AA-detectability is of

polynomial complexity with respect to the number of states of the PFA.
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Chapter 5

Classification among Hidden Markov

Models

5.1 Introduction

We consider classification among systems that can be modeled as hidden Markov

models (HMMs), based on a sequence of observation symbols that has been gener-

ated by underlying (unknown) activity in one of two known HMMs. The perfor-

mance of the maximum a posteriori (MAP) classifier, which minimizes the probability

of misclassification [1], is captured by the a priori probability of error, i.e., the prob-

ability of error before any observations are made. The precise calculation of the

probability of error (for sequences of observations of a given finite length) is a

combinatorial task of high complexity (typically exponential in the length of the se-

quences). In this chapter we propose a number of different ways of upper bounding

this probability of error (using methods of much less computational complexity); we

also establish necessary and sufficient conditions under which there exists an upper

bound on the probability of error that tends to zero (at least asymptotically).

Our analysis and bounds can find application in many areas where HMMs are

used, including speech recognition [2,23,37], pattern recognition [19], bioinformatics

[15, 27], and failure diagnosis in discrete event systems [1, 11, 31, 49]. Our analysis

also relates to approaches dealing with the distance or dissimilarity between two

HMMs [17,25]. Directly related previous work can be found in [1], which studies the

probability of misclassification and obtains bounds that tend to zero under specific

conditions.
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5.2 Notation and Background

Theorem 10. [9] (Stationary distribution of a Markov chain). If the Markov chain is

irreducible and aperiodic, then lim
t→∞

π[t] exists and is called the stationary distribution of the

Markov chain denoted by πs = [πs(q1), πs(q2), ..., πs(q|Q|)]′.

Definition 47. (Stationary emission probabilities of HMM). Given an HMM S = (Q,E,∆,

Λ, π0) the stationary emission probability π( j)
e (ei), ∀ei ∈ E, can be expressed as

πe(ei) = R|Q| × (Aei × πs),

where R|Q| is the |Q|-dimensional row vector with ones in all entries (and × denotes matrix-

matrix or matrix-vector multiplication).

We define for notational convenience the |Q| × |Q| matrix Aei , associated with

output ei ∈ E, as follows: the (k, j)th entry of Aei captures the probability of a transition

from state q j to state qk that produces output ei (see also Section 2.4).

Note that the stationary state probability vector for an HMM S is the same as the

stationary state probability vector of its associated Markov chain MC = (Q,A, π0).

5.3 Calculation of Upper Bound via a DFA

We establish a class of upper bounds for the probability of error among two HMMs,

via the construction of a deterministic finite automaton (DFA). The key idea is that

observation sequences of a specific length, that can be generated by at least one

of the two HMMs, are distributed to the states of this DFA. Then one can find an

upper bound of the probability of error, by comparing the probability of the states of

this DFA. The key advantage is that this comparison can be done with polynomial

complexity with respect to the number of states of the DFA.

We prove the following lemma, which will be useful later:

Lemma 6. If we have two sequences Y(1) and Y(2) of length n, that can be generated by

HMMs S(1) and S(2) (see Section 2.4), where the a priori probabilities are P1 and P2, and

P( j)
i = P(Y(i) | S( j)) for j ∈ {1, 2}, then we can obtain an upper bound on the probability of
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error for these sequences as follows:

P(error, {Y(1),Y(2)}) =

2∑
i=1

min{P1 · P
(1)
i ,P2 · P

(2)
i }

≤ min{P1 ·

2∑
i=1

P(1)
i ,P2 ·

2∑
i=1

P(2)
i } . (5.1)

Proof. The above can be shown easily by considering the different cases and observ-

ing that min{a1, a2} + min{b1, b2} ≤ min{a1 + b1, a2 + b2}. We can easily generalize the

above discussion to any number of merged sequences of the same length. The next

step is to find an upper bound for the probability of error at n steps. In particular, if

we take any partition of the index set I = {1, 2, ..., dn
}, into subsets D1,D2, ...,Dm (such

that Di ∩D j = ∅ for i , j and ∪m
i=1Di = I), then we have

P(error at n) =

dn∑
`=1

P(error,Y(`))

=

m∑
k=1

∑
`∈Dk

min{P1 · P
(1)
` ,P2 · P

(2)
` }

≤

m∑
k=1

min{
∑
`∈Dk

P1 · P
(1)
` ,

∑
`∈Dk

P2 · P
(2)
` }.

(5.2)

�

We now discuss how we can obtain a partition of the index set I, via a deter-

ministic finite automaton (DFA) Gd with language E∗. The reason we consider this

particular partitioning of I will become clearer later when we discuss efficient ways

of calculating the quantities
∑
`∈Dk

P1 · P
( j)
` , j = 1, 2.

A DFA Gd is described by a four-tuple (X,E, δ, x0), where X = {x1, x2, ..., x|X|} is the

finite set of states; E = {σ1, σ2, ..., σ|E|} is the finite set of inputs (alphabet); δ : X×E→ X

is the transition function; and x0 ∈ X is the initial state. For a sequence of events s =

s[n]s[n−1]...s[1], s[i] ∈ E, i = 1, 2, ...,n, we define δ(q, s) = δ(...δ(δ(q, s[1]), s[2]), ..., s[n]).

A sufficient condition for the requirement that the language of Gd is E∗ is that δ is

defined for all pairs of states x ∈ X and outputs σ ∈ E. For notational simplicity, we

assume this sufficient condition holds. Consider the following subsets of sequences

of observations of length n: Dk = {s ∈ En
| δ(x0, s) = xk}, k = 1, 2, ..., |X|. It is not hard

to argue that Dk, where k = 1, 2, ..., |X|, form a partition of En.

For each σ ∈ E, we can construct the binary transition matrix Tσ of Gd, following

the rule that if δ(xi, σ) = xi′ , then Tσ(i′, i) = 1, otherwise Tσ(i′, i) = 0. This matrix
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captures all possible transitions from a state to another, under event σ; since Gd is

deterministic, Tσ for σ ∈ E is a binary matrix with exactly a single “1” in each column.

We can also define the binary column vector π′0 to have a single nonzero element

with value “1” at its ith location, if x0 = xi (in other words, π′0 is an indicator vector for

the initial state of Gd). With this notation at hand, δ(x0, s) = xk for s = s[n]s[n−1]...s[1]

is equivalent to π′n = Ts[n]Ts[n−1]...Ts[1]︸             ︷︷             ︸
Ts

π′0 being a vector with all zero entries except a

single “1” at the kth location. This is easy to establish by induction.

More generally, the entries of the matrix Ts = Ts[n]Ts[n−1]...Ts[1] are such that

Ts(k, i) ∈ {0, 1} and Ts(k, i) = 1 if and only if δ(xi, s) = xk. If we let the two vec-

tors c( j) = P j[1...1], of size 1 × |Q( j)
| for j = 1, 2, we can show that the probability of

error in Eq. (5.2) is smaller or equal to

|X|∑
k=1

min{
∑
s∈Dk

c(1)A(1)
s π

(1)
0 ,

∑
s∈Dk

c(2)A(2)
s π

(2)
0 } (5.3)

where for s = s[n]s[n−1]...s[1] we have A( j)
s π

( j)
0 = A( j)

s[n]A
( j)
s[n−1]...A

( j)
s[1]π

( j)
0 . We now discuss

how the above bound can be computed rather efficiently.

We define the matrix A( j) =
∑
σ∈E

Te ⊗ A( j)
σ , j = 1, 2, where Te ⊗ A( j)

σ denotes the

Kronecker product defined as the (|X||Q( j)
|) × (|X||Q( j)

|) matrix



Tσ(1, 1)A( j)
σ Tσ(1, 2)A( j)

σ · · · Tσ(1, |X|)A
( j)
σ

Tσ(2, 1)A( j)
σ Tσ(2, 2)A( j)

σ · · · Tσ(2, |X|)A
( j)
σ

...
...

. . .
...

Tσ(|X|, 1)A( j)
σ Tσ(|X|, 2)A( j)

σ · · · Tσ(|X|, |X|)A
( j)
σ


.

Note that each Tσ(i′, i)A
( j)
σ , xi, xi′ ∈ X, is a matrix of size (|Q( j)

|) × (|Q( j)
|). We

also define the (i′, i) block of A( j) as A( j)(Bi′ ,Bi) = A
( j)(b( j)

i : f ( j)
i , b

( j)
i′ : f ( j)

i′ ), i.e., a

(|Q j
|) × (|Q j

|) submatrix starting from row b( j)
i = (i − 1)Q( j) + 1 to row f ( j)

i = iQ( j), and

from column b( j)
i′ = (i′ − 1)Q( j) to column f ( j)

i′ = i′Q( j). Letting p( j)
0 = π′0 ⊗ π

( j)
0 , we can
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write1 (for s = s[n]s[n − 1]...s[1] ∈ En)

p( j)
n = (A( j))np( j)

0

=

∑
σ∈E

Tσ ⊗ A( j)
σ

n

(π′0 ⊗ π
( j)
0 )

=
∑
s∈En

(Ts[n]...Ts[1])π′0 ⊗ (A( j)
s[n]...A

( j)
s[1])π

( j)
0

=

|X|∑
k=1

∑
s∈Dk

Tsπ
′

0 ⊗ ρ
( j)
n,s

=

|X|∑
k=1

∑
s∈Dk

uk ⊗ ρ
( j)
n,s

=

|X|∑
k=1

uk ⊗

∑
s∈Dk

ρ( j)
n,s ,

where uk is a column vector of size |X| × 1, with zeros on all of its entries except a

single one at its kth entry, and ρ( j)
n,s is the vector ρ( j)

n for the sequence of observations s.

If we focus on the kth block of p( j)
n of size |Q( j)

| × 1 (i.e., entries (k − 1)Q( j) + 1 to

kQ( j)), we see that

p( j)
n (Bk) =

∑
s∈Dk

ρ( j)
n,s =

∑
s∈Dk

A( j)
s π

( j)
0 .

Following Eqs. (5.2) and the bound in (5.3), we can write

P(error at n) ≤
|X|∑
k=1

min{c(1)p(1)
n (Bk), c(2)p(2)

n (Bk)} , (5.4)

which can be used to compute an upper bound on the probability of error between

the two systems (S(1) and S(2)) by taking advantage of how the DFA Gd creates the

partitions Dk, k = 1, 2, ..., |X|.

Example 13. Consider the two HMMs in Fig. 2.6 and the DFA Gd in Fig. 5.1, with X =

{1, 2, 3}, language E∗ = (α + β)∗, and initial state x0 = 1 (which means that π′0 = [1 0 0]T).

Assume that the priors are P1 = 0.6, P2 = 0.4, so that

c(1) =
[

0.6 0.6
]

, c(2) =
[

0.4 0.4
]
,

and also that

π(1)
0 =

[
1 0

]T
, π(2)

0 =
[

0.5 0.5
]T
.

1One of the properties of the Kronecker product is that (A ⊗ B)(C ⊗D) = (AC) ⊗ (BD) for matrices

A, B, C, D of appropriate sizes [38].
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1

2 3

α βα

β

α

β

Figure 5.1: DFA Gd for Example 2.

We create, according to the previous definitions, the matrices Tα, Tβ for Hs as

Tα =


0 0 0

1 1 1

0 0 0

 ,Tβ =


0 0 0

0 0 0

1 1 1


and obtain the matricesA(1),A(2) as

A
(1) =



0 0 0 0 0 0

0 0 0 0 0 0

0 0.05 0 0.05 0 0.05

0 0.95 0 0.95 0 0.95

0 0 0 0 0 0

1 0 1 0 1 0


,

A
(2) =



0 0 0 0 0 0

0 0 0 0 0 0

0 0.95 0 0.95 0 0.95

0 0.05 0 0.05 0 0.05

0 0 0 0 0 0

1 0 1 0 1 0


.

Similarly, we obtain p( j)
0 = π′0 ⊗ π

( j)
0 , for j = 1, 2, as

p(1)
0 =

[
1 0 0 0 0 0

]T
,

p(2)
0 =

[
0.5 0.5 0 0 0 0

]T
.
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For a sequence of observations of length n, we can write

P(error at n) ≤
∑

i∈{1,2,3}

min{c(1)p(1)
n (Bi), c(2)p(2)

n (Bi)} ,

where p( j)
n = (A( j))n

π( j)
0 , j = 1, 2. The plot of the bound as a function of n is provided in Fig.

5.2. As n becomes infinite, this bound stabilizes at 0.2349.

Figure 5.2: Actual probability of error (continuous line) and upper bound (dashed

line) with DFA Hs in Fig. 5.1.
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Figure 5.3: DFA Gd in Example 3.

Example 14. We can extend the construction of the previous example to the larger DFA Gd

in Fig. 5.3 with X = {1, 2, ..., 15}, language E∗ = (α + β)∗, and initial state x0 = 1 (which
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means that π′0 = [1 0 0 . . . 0]T). We omit the details of the construction since the steps are

identical to the steps in Example 2.

The resulting upper bound on the probability of error is plotted in Fig. 5.4 as a function

of the number of observations. As n→∞, we see that this upper bound tends to the constant

value 0.0166. Note that this bound can perhaps be reduced by employing a DFA with more

states and/or different transition functionality (to try and achieve a better partitioning of the

set of possible sequences). In this particular example, in order to find this Gd, we tried all

possible DFAs of 15 states, and presented the one that asymptotically results in the least

upper bound.

Figure 5.4: Actual probability of error (continuous line) and upper bound (dashed

line) with the DFA Gd in Fig. 5.3.

Remark: In the previous examples, the upper bound did not tend to zero eventually.

This happens, because the upper bound, stabilizes as the underlying Markov chain

converges to steady-state. In the general case, there exists at least two recurrent states,

that are reachable by the same observation sequence, with nonzero probability, by

both models. Therefore, in the general case, the upper bound does not tend to zero.

5.3.1 Connections to a Stochastic Diagnoser

We can reduce the number of states or even the size of all transition submatrices

A( j)
e , j = 1, 2, for each model (S(1), S(2)) if we are able to remove all states that are

not reachable under specific conditions (e.g., unreachability from a specific starting
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state). An example of such a deterministic finite automaton was the stochastic

diagnoser introduced in [49], for the purpose of fault diagnosis. We describe this

connection via the following example, where we use an appropriate DFA to create

the stochastic diagnoser for the two models shown in Fig. 2.6.

Example 15. Suppose that the models in Fig. 2.6 capture the Normal (S1) and Faulty (S2)

behaviour of a system. Also we define Q(1) = {1N, 2N}, and Q(2) = {1F, 2F}, with priors

P1 = P2 = 0.5, and initial states, q(1)
0 = {1N}, q(2)

0 = {1F}. We want to find all transition

matrices for the stochastic diagnoser, and relate them to the previous analysis (the original

work in [49] uses the transpose of the matrices we use here). We analyze the system using

the previous method, with the only difference being that the construction of the matrices Ae,

e ∈ E, considers the behavior in each system simultaneously, e.g.,

Ab =

 A(1)
b 0

0 A
(2)
b

 =



1N 2N 1F 2F

1N 0 0 0 0

2N 1 0 0 0

1F 0 0 0 0

2F 0 0 1 0


.

If we only keep elements on nonzero rows and columns, we obtain the reduced matrix

A(s)
b =


1N 1F

2N 1 0

2F 0 1

 .

Following this approach, we can create all possible different states and apply the reduced

transition matrices. The stochastic diagnoser for our example is shown in Fig. 5.5. We can

create the S matrix which includes all submatrices, according to each state {X1,X2,X3} (e.g.,

S(1, 7) captures the transition probability from state X1N
1 to X1F

3 ). If the states are ordered as

follows: state 1→ X1N
1 , state 2→ X1F

1 , state 3→ X1N
2 ,..., state 8→ X2F

3 , the matrix S is given
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1N
1F

2N
2F

b

a

b

1N
2N
1F
2F

a

1      0
0      1

X1 X2

X3

0.95    0
0.05    0
0          0.05
0          0.95

1  0  0  0
0  0  1  0

0     0.95     0       0
0     0.05     0       0
0     0          0        0.05
0     0          0        0.95

reduced matrix

Stochastic Diagnoser

Figure 5.5: Stochastic Diagnoser for S(1) and S(2).

by

S =



0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

1 0 0 0 1 0 0 0

0 1 0 0 0 0 1 0

0 0 0.95 0 0 0.95 0 0

0 0 0.05 0 0 0.05 0 0

0 0 0 0.05 0 0 0 0.05

0 0 0 0.95 0 0 0 0.95



.

Using S we can compute the upper bound of the probability of error as in the previous example

(using, however, blocks of different sizes, due to the fact that entries that are zero in each

block are dropped). Alternatively, we can use the automaton shown in Fig. 5.6 and follow

the approach in the previous section to obtain p( j)
n = (A( j))np( j)

0 . Note that by construction,

a stochastic diagnoser checks if an output symbol is possible or not, so that the underlined

symbols in Fig. 5.6 do not appear in the stochastic diagnoser in Fig. 5.5. For large n, we

find the upper bound to be 0.2802.

A probabilistic finite automaton that is AA-stochastically diagnosable [49] is

essentially an automaton for which the probability of misclassification2 goes to zero

2Strictly speaking AA-stochastic diagnosability is only concerned with faulty behavior that might
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1 2

3

α, β

α, β

α

β

Figure 5.6: Equivalent DFA to Stochastic Diagnoser in Example 4.

as the number of observations becomes asymptotically large. It is evident that our

method can be used to establish whether the probability of misclassification goes to

zero (by determining whether its upper bound goes to zero) using constructions quite

distinct from a stochastic diagnoser. Thus, a sufficient condition for AA-stochastic

diagnosability would be the existence of a DFA that leads to an upper bound on

the probability of misclassification that goes to zero as the number of observations

increases.

Remark: The complexity of computing the exact probability of error is an exponen-

tial function of n (it is of O(n×dn
×(|Q(1)

|
2
+ |Q(2)

|
2))). In obtaining the upper bound, we

only require complexity linear in n (the complexity is of O(n×|X|2× (|Q(1)
|
2 + |Q(2)

|
2))).

In addition, for an arbitrarily large number of observations, we can compute the

asymptotic upper bound with complexity of O(|X|3 × (|Q(1)
|
3 + |Q(2)

|
3)) by employ-

ing eigenvalue decomposition to obtain the steady-state of the Markov chains with

transition matricesA( j), j = 1, 2.

5.4 Establishing an Upper Bound for the Probability of

Error via a Stochastic Verifier

Now we establish an upper bound on the probability of error, which is computed

with polynomial complexity. The verification algorithm is based on the construction

be considered as non-faulty (and whether its probability goes to zero as the number of observations

increases); thus, one should exclude the probability of misclassification that arises from strings

generated by the non-faulty system that are more likely to have been generated by the faulty system.
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of a stochastic verifier. We are also able to give necessary and sufficient conditions

under which the upper bound tends eventually to zero.

Theorem 11. Suppose we have two HMMs (S(1), S(2)), as defined in the previous section,

and let D = |E|, be the number of different output symbols (in either S(1) or S(2)). Arrange all

dn sequences of output symbols in some arbitrary order and call them Y(1), Y(2), ..., Y(dn),

and let P(1)
i = P(Y(i) | S(1)) and P(2)

i = P(Y(i) | S(2)) for i = 1, 2, ..., dn. If we use the optimal

classifier to minimize the probability of error after a sequence of n observations, the a priori

probability of error (after n observations) satisfies:

P(error at n) ≤
√

dn · P1 · P2 ·

√√
dn∑
i=1

P(1)
i · P

(2)
i . (5.5)

Proof. We can obtain the probability of error of the classifier (that minimizes the

probability of error) by calculating and comparing the state distributions of the two

models for all possible sequences of observations of length n. We can represent

the computation in terms of two d-ary trees of depth n, as shown in Fig. 5.7. Each

node represents ρ(n)
j , j ∈ {1, 2}, after a specific sequence of n events has occured (see

previous section). For each node at level L, we create d child-nodes, and we repeat

this procedure until having n levels in the tree.

Once we expand these trees to n levels, each leaf node corresponds to a unique

sequence of outputs of length n, which, in the worst case scenario, can be produced

by both HMMs. We assign to each leaf-node a probability of occurring P( j)
i = P(Yn

1 =

Y(i) | S( j)), where j ∈ {1, 2} represents the model and i ∈ {1, 2, ..., dn
} is the index of

the length-n output sequence.3 We can express the probability of error for the two

systems, after n steps, as

P(error at n) =

dn∑
i=1

P(error,Y(i))

=

dn∑
i=1

min{P1 · P
(1)
i ,P2 · P

(2)
i } (5.6)

Clearly, from Eqs. (4.2) and (5.6) we have that

P(error,Y(i)) ≤ P1 · P
(1)
i (5.7)

P(error,Y(i)) ≤ P2 · P
(2)
i (5.8)

3Note that we use the D- ary tree in our derivation of the exact value of the probability of error,

but we actually do not need it to derive the simple upper bound that we present in the next section.
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L1

L0

Ln

S2
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… … … … … … … …

a) b)

d events
…  … …  …

d events

P1
1

Pdn
1 Pdn

2P1
2

Figure 5.7: Two d-ary trees for S(1) and S(2).

If we combine the two inequalities above, we can conclude that

(P(error,Y(i)))2
≤ (P1 · P2) · (P(1)

i · P
(2)
i ) (5.9)

Summing up all dn of the above inequalities we reach the following inequality

dn∑
i=1

P(error,Y(i))2
≤ (P1 · P2) ·

dn∑
i=1

(P(1)
i · P

(2)
i ) (5.10)

Our goal is to bound the probability of error for n steps; to do this we make use

of the following equation:

(P(error at n))2 =

 dn∑
i=1

P(error,Y(i))


2

=

dn∑
i=1

dn∑
j=1

P(error,Y(i)) · P(error,Y(< i + j − 1 >)), (5.11)

where< k >≡ k mod (dn)+1. The rearrangement inequality [22] states the following:

let α1 ≤ α2 ≤ ... ≤ αn and β1 ≤ β2 ≤ ... ≤ βn be sequences of real numbers and π any

permutation of the set {1, 2, ...,n}. Then,

n∑
i=1

αiβn−i+1 ≤

n∑
i=1

αiβπi ≤

n∑
i=1

αiβi. (5.12)
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Without loss of generality we can assume that

P(error,Y(1)) ≤ P(error,Y(2)) ≤ ... ≤ P(error,Y(dn))

and from Eq. (5.12), we can infer that ∀ j ∈ {2, ..., dn
}, we have

dn∑
i=1

P(error,Y(i)) · P(error,Y(< i + j − 1 >)) ≤

dn∑
i=1

P(error,Y(i)) · P(error,Y(i)). (5.13)

Thus from Eqs. (5.11) and (5.13), we conclude that

(P(error at n))2
≤ dn

· (
dn∑
i=1

P(error,Y(i))2)

≤ dnP1P2

dn∑
i=1

P(1)
i · P

(2)
i , (5.14)

so that

P(error at n) ≤
√

dn · P1 · P2 ·

√√
dn∑
i=1

P(1)
i · P

(2)
i . (5.15)

At this point, the proof is complete. �

Remark: We suppose that we have two HMMs, S(1) and S(2), with languages (i.e.,

sequences of outputs with nonzero probability), L(S(1)) and L(S(2)), respectively. We

define also Ln(S(1)) = {t ∈ L(S(1))| length of t equals n }; similarly, we define Ln(S(2)).

If we can bound the number N of the sequences of observations of length n that

can be produced by both models (N = |Ln(S(1)) ∩ Ln(S(2))|) then, we can refine the

bound in Eq. (5.15) by replacing dn by N. The next section is devoted to the quantity√√
dn∑
i=1

(P(1)
i · P

(2)
i ) in Eq. (5.15).

5.4.1 Construction of a Stochastic Verifier

We can see that

P(identical sequence after n steps) =

dn∑
i=1

(P(1)
i · P

(2)
i ) (5.16)
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is the probability that the two HMMs, when assumed independent produce an

identical sequence after n steps. In order to find an upper bound for this probability,

we follow the method of Massey in [32]. The general idea is to capture the common

behavior of the two HMMs with a new carefully constructed product HMM. Once

we construct this product HMM, an upper bound for the probability in Eq. (5.16)

can be obtained as a function of the eigenvalue with the second largest magnitude

of the transition matrix of the product HMM. In the remainder of this section we

present the construction of the product HMM.

Step 1:In this step of the construction we are interested, within each HMM, to

be able to discriminate the transition to the same state but under a different event.

The easiest way to do this is to create replicas of each state, depending on the event

under which one reaches this state. Thus, for each state q( j)
h ∈ Q( j), we check if

there is at least one state q( j)
h′ ∈ Q( j) such that A( j)

ei
(q( j)

h , q
( j)
h′ ) > 0 for some event ei ∈ E

(actually, we also have ei ∈ E( j)); if this is the case, we create a new state which is

called q( j)
h,ei

and represents state q( j)
h when reached under the output symbol e( j)

i . The

transitions out of this state remain the same as the transitions out of q( j)
h . Clearly, we

need only create at most |E( j)
| replicas for each q( j)

h and we can end up with at most

|Q( j)
| × |E( j)

| states. We use Q′( j), j ∈ {1, 2}, to denote the set of all states (including

newly constructed states) and define the transition matrices for these states by A′( j)
ei

where A′( j)
ei

(q( j)
h,ei
, q( j)

h′,es
) = A( j)

ei
(q( j)

h , q
( j)
h′ ), for ei, es ∈ E. Note that when we expand the

set of states of HMM, we also need to redefine their initial state distribution. The

simplest thing to do is to set the initial probability of state qh,ei for some ei to be equal

to the initial probability for state qh and zero for all qh,e j , e j , ei. Other ways to do this

also exist.

Step 2:Combining all possible pairs of new states from the two HMMs in step 1, we

create a Stochastic Verifier which is a product Markov chain Hp = (QHp ,EHp ,∆Hp , π0),

where QHp = Q′(1)
× Q′(2) is the finite set of states, EHp = E(1)

∪ E(2) is the finite set

of outputs, π0 is the initial probability distribution vector, and ∆Hp is the transition

probability function. The state transition matrix associated with Hp isAHp , where4

AHp((k1, k2), (l1, l2)) =
∑

ei∈EHp

A′(1)
ei

(k1, l1) × A′(2)
ei

(k2, l2) ,

4We are abusing notation a bit by using (k1, k2) and (l1, l2) to index the entries of matrix AHp ; (k1,

k2) and (l1, l2) should be seen as the index that corresponds to a state of the product Markov chain Hp.
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with k1, l1 ∈ Q′(1), k2, l2 ∈ Q′(2), and ei ∈ EHp . The initial probability distribution vector

is chosen so that π0((l1, l2)) = π(1)
0 (l1)π(2)

0 (l2). From each state (`1, `2) of Hp if the sum of

the probabilities of the transitions out of this state is not unity, we add a transition to

state NC so that the sum of the probabilities out of (`1, `2) is unity. The NC-state is the

state that captures the non-consistent behavior, i.e., when two different sequences

are produced by the two HMMs. We also add a return transition with probability

one from NC-state to itself. Note that if the NC-state is the only absorbing state, it

will be reached with probability one. Note that the NC state may not be present (for

example, when we have two identical HMMs with a single transition out of each

state).

Example 16. As an application of our bound we present on the left of Fig. 5.8 an example

in the context of fault diagnosis in discrete event systems (DES). The problem translates to

classification between two HMMs, capturing normal and faulty behavior. Specifically, the

first HMM describes a system under normal behavior, whereas the second HMM describes

the same system but under faulty behavior. The discrete event system is shown on the left

of Fig. 5.8 with probabilities attached to each transition. The set of observable events is

Eo = {α, β} and the set of unobservable events is Euo = {σuo, σ f }, where σ f is a fault event

(i.e., E f = {σ f }).

We divide the initial system into two subsystems as shown on the right of Fig. 5.8, where

S(1) captures the normal behavior of the system, and S(2) captures the faulty behavior. Clearly,

P1 = P2 = 0.5, because of the equal probability to go to state 2 or state 4, from initial state

1. We now illustrate the method we described earlier in this section, creating the product

Markov chain Hp from these two HMMs with the same language.

We have E(1) = E(2) = E = {α, β}, and we define A(1)
α ,A

(1)
β ,A

(2)
α ,A

(2)
β as follows:
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1

2 3

4 5

σuo, 0.5

σf, 0.5

β, 1

α, 0.9

α, 0.1

α, 0.9

α, 0.1

β, 1

1 2
β, 1

α, 0.9

1’ 2’

α, 0.1

β, 1

α, 0.9

α, 0.1S1

S2

a) b)

Figure 5.8: Example of a discrete event system (left) and HMM S(1), capturing normal

behavior, and S(2), capturing faulty behavior of the discrete event system (right).

A
(1)
α =

 0 0.9

0 0.1

 ,

A
(1)
β =

 0 0

1 0

 ,

A
(2)
α =

 0 0.1

0 0.9

 ,

A
(2)
β =

 0 0

1 0

 .
Step 1:We create the Markov chains S′(1), and S′(2) in Fig. 5.9, with matrices A′(1)

α ,A′(1)
β ,A′(2)

α ,A′(2)
β ,

where we have Q′( j) = {q( j)
1,α, q

( j)
2,α, q

( j)
2,β}, as follows:

A
′(1)
α =



(1/α) (2/α) (2/β)

(1/α) 0 0.9 0.9

(2/α) 0 0.1 0.1

(2/β) 0 0 0


,
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1/α

2/α

1
0.9

0.1

2/β

0.1

0.9
1’/α

2’/α
1

0.1

0.9

2’/β

0.9

0.1

Figure 5.9: Markov chains S′1 (left) and S′2 (right).

A
′(1)
β =



(1/α) (2/α) (2/β)

(1/α) 0 0 0

(2/α) 0 0 0

(2/β) 1 0 0


,

A
′(2)
α =



(1/α) (2/α) (2/β)

(1/α) 0 0.1 0.1

(2/α) 0 0.9 0.9

(2/β) 0 0 0


,

A
′(2)
β =



(1/α) (2/α) (2/β)

(1/α) 0 0 0

(2/α) 0 0 0

(2/β) 1 0 0


.

Step 2:We construct the product Markov chain Hp in Fig. 5.10, and the transition prob-

ability matrix of Hp (AHp), combining all possible pairs of states between the two HMMs,

where QHP = {h1, h2}, with h j ∈ Q′( j), where j ∈ {1, 2}. In AHp , the ith column indi-

cates the transitions from state qi, to any other state, where QHp = {q1, q2, ..., q9, q10} =

{(1/α, 1′/α), (1/α, 2′/α), ..., (2/β, 2′/β),NC}. Note that in Fig. 5.10 we have not included

states 3 and 7 (corresponding to (1/α, 2′/β) and (2/β, 1′/α) respectively) because they are not

reachable from states with nonzero initial probability in Hp. We can see from the structure

88

Chri
sto

for
os

 Kero
glo

u



of Hp that from states 2 and 4, we can only move to the NC state (because the underlying

pairs of states do not have a common output).

1

2
8

9

5

4

6NC
10

1

0.09
0.09

0.81

0.01

0.09

0.81

0.01

0.09

0.81

0.09
0.09

0.01

0.81

0.09
0.01

0.09

1

1

1

Figure 5.10: Product Markov chain Hp, with state 1 corresponding to (1/α, 1′/α) and

state 10 corresponding to the NC-state.

AHp =



0 0 0 0 0.09 0.09 0 0.09 0.09 0

0 0 0 0 0.81 0.81 0 0.81 0.81 0

0 0 0 0 0 0 0 0 0 0

0 0 0 0 0.01 0.01 0 0.01 0.01 0

0 0 0 0 0.09 0.09 0 0.09 0.09 0

0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0

1 0 0 0 0 0 0 0 0 0

0 1 0 1 0 0 0 0 0 1


Note that the initial distribution of the product Markov chain Hp is π[0] = [1, 0, 0, ..., 0]′

which indicates that we start in state 1 (corresponding to (1/α, 1′/α)) with probability one.

Note that at the next step, π[1] = [0, 0, ..., 1, 0]′ because we move to state 9 (corresponding

to (2/β, 2′β)) with probability one. Thus, in the next section to simplify notation we assume

(without any loss of generality) that we start in state 9.
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5.4.2 Conditions for the Upper Bound to tend to zero

We can categorize the states of the Markov chain Hp in two main categories, the

absorbing state (NC-state) and the remaining states. We can express the probability

of having the same sequence after n steps, as the probability of staying in states other

than the NC state of the Markov chain. If we denote the probability distribution state

vector of the MC after n steps by πn, we have

πn+1 = AHp · πn

with π0 representing the initial state probability distribution. We also define the

probability of being in the NC state, as cn = C ·πn, where C, is a row indicator vector

with a single ”1” on the entry corresponding to the NC state, and zero’s everywhere

else. Then, we can write the probability of having the same sequence after n steps as

P(same sequence after n steps) = 1 − cn. (5.17)

We now turn our attention to cases where cn → 1 (in fact, exponentially). Suppose

that AHp has unique eigenvalue λ1 = 1 and the remaining eigenvalues λ2, λ3, ..., λn

satisfy 1 > ‖λ2‖ ≥ ‖λ3‖ ≥ ... ≥ ‖λn‖; then, there exist a unique stationary distribution

π on QHp [39]. Moreover, given an initial distribution π0 and state qi ∈ QHp (note

that q|QHp |
= NC), there is a constant Mi > 0, which corresponds to state qi (i ∈

{1, 2, ..., |QHP |}), such that:

πn(i) ≤ π(i) + Mi · nJ−1
· ‖λ2‖

n−J+1 , (5.18)

where J is the size of the largest Jordan block ofAHp .

Finally for MNC (the constant corresponding to state NC) and π (the unique

stationary distribution column vector with π(i) = 0, for qi , qNC, and π(qNC) = 1), we

have P(same sequence after n steps) ≤MNC · nJ−1
· ‖λ2‖

n−J+1.

In the special case thatAHp is diagonalizable, then J = 1, and

P(same sequence after n steps) ≤MNC · ‖λ2‖
n. (5.19)

Incorporating all of this in Eq. (5.15), the upper bound can be written as:

P(error at n) ≤
√

P(1) · P(2) ·MNC · (d · ‖λ2‖)
n/2 (5.20)
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Whenλ2 < 1/d,λ1 = 1 is unique, and the NC state is present, then lim
n→∞

P(error at n) =

0.

Example 17. Using Eq. (5.20), we are able to find an upper bound for Hp in Fig. 5.10 with

λ2 = 0.3484 and D = 2 which means that

P(error at n) ≤ (0.5 ·
√

MNC) · (0.6968)n/2 .

Since λ < 1/D, the upper bound tends to zero exponentially with the number of observations.

The next step is to find MNC, i.e., M10 (as NC = q10). For initial state distribution π0 such

that π0(i) = 0, for qi , q9, and π0(9) = 1, we can express this initial state distribution

as a linear combination of the right eigenvectors (V1, V2, V3), that correspond to the three

nonzero eigenvalues of the matrix (λ1 = 1, λ2 = 0.3484, and λ3 = −0.2584). Then, we can

write the initial probability for the NC state as:

π0(10) = 1 · V1(10) + 2.51 · V2(10) − 1.82 · V3(10). (5.21)

From Eq. (5.21), we obtain the following inequality:

P(same sequence after n steps) = 1 − πn(10)

= 2.07 · (0.3484)n
− 1.07 · (−0.25)n

< ‖2.07 + 1.07‖ · (0.3484)n

so that

P(same sequence after n steps) ≤ 3.14 · (0.3484)n (5.22)

(i.e., MNC = 3.14). Then, from Eq. (5.20), we can write

P(error at n) < (0.5 ·
√

3.14) · (0.6968)n/2

< 0.886 · (0.6968)n/2 . (5.23)

In Fig. 5.11, we plot the upper bound in Eq. (5.23), together with the actual probability

of error (obtained after exhaustive calculation of each possible sequence of observations with

length ranging from 1 to 13). As expected, the upper bound goes to zero eventually. It

is worth pointing out that the given discrete event system does not belong to the class of

logically diagnosable systems. In this case, our approach allows us to conclude that we
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are able to diagnose the error with increasingly smaller probability of error, exponentially

decreasing with the number of observations.

In this example we found an upper bound on the probability of error, when classifying

a sequence of outputs between the two given HMMs. The complexity of computing the

exact probability of error is an exponential function of n (it is of O(dnn(|Q(1)
|
2

+ |Q(2)
|
2))).

Applying our method, we lower this complexity by finding an upper bound for an arbi-

trarily large number of n observations. We can compute the upper bound with complexity

(|Q′(1)
| × |Q′(2)

|)3
= (|Q(1)

| × |E(1)
| × |Q(2)

| × |E(2)
|)3 using eigenvalue-eigenvector decomposi-

tion of the transition matrixAHp to obtain the steady-state of the product Markov chain.

Figure 5.11: Actual probability of error (dashed line) and upper bound (continuous

line).

5.5 Classification Rule Based on Empirical Frequencies

of Event Sequences

In this section we first define a suboptimal rule based on the empirical frequencies of

events and then find an upper bound on the probability of error for this rule. We are

also able to give necessary and sufficient conditions under which, the upper bound

using this rule tends asymptotically to zero.

Definition 48. (Fraction of times event ei appears (mn(ei))). Suppose we are given an

observation sequence of length n (Yn
1 = y[1] · · · y[n]). We define mn(ei) = 1

n

n∑
t=1

gei(y[t]),

where
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gei(y[t]) =

 1, if y[t] = ei,

0, otherwise.

In other words, mn(ei) is the fraction of times event ei appears in observation sequence Yn
1 .

Definition 49. (Distance in variation dV(v, v′) between two probability vectors v, v′). The

distance in variation [14] between two |E|-dimensional probability vectors v, v′ is defined as

dV(v, v′) =
1
2

|E|∑
j=1

|v( j) − v′( j)| ≥ 0 ,

where v( j) (v′( j)) is the jth entry of vector v (v′).

Let the stationary emission probabilities for HMM S(1) (S(2)) be denoted by the |E|-

dimensional vector π(1)
e = [π(1)

e1
, ..., π(1)

e|E|]
′ (respectively by π(2)

e = [π(2)
e1
, ..., π(2)

e|E|]
′). Then,

we have dV(π(1)
e , π

(2)
e ) = 1

2

|E|∑
j=1

|π(1)
e j
− π(2)

e j
|.

Definition 50. (Empirical Rule). Given two irreducible and aperiodic HMMs S(1) and

S(2) and a sequence of observations Yn
1 = y[1]y[2] · · · y[n], we perform classification using

the following suboptimal rule. We first compute mn = [mn(e1),mn(e2), · · · ,mn(e|E|)]′ as in

Definition 48. We then set θ = 1
2dV(π(1)

e , π
(2)
e ), where π( j)

e , j ∈ {1, 2}, is the stationary

emission probability vector for S( j), and compare

dV(mn, π
(1)
e )><θ . (5.24)

We decide in favor of S(1) (S(2)) if the right (left) quantity is larger.

Remark: The empirical rule is a suboptimal rule, which means that even if we

compute exactly the probability of error using the empirical rule, this remains an

upper bound on the probability of error using the optimal rule (in Section 2.4). In

subsequent sections of this paper we obtain a bound on the probability of error using

the empirical rule. This bound generally is not tight.

Remark: Using the empirical rule has some advantages over the optimal rule. In

Section 5.5.2 we provide necessary and sufficient conditions for a bound on the prob-

ability of error using the empirical rule to be asymptotically tight. These conditions

can be verified with low computational complexity (polynomial complexity). An-

other advantage is that the system needs to keep only the number of events that are

observed and not the whole observation sequence. This can lead to lower memory

requirements for the system.
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5.5.1 Upper Bound on the Probability of Misclassification using

the Empirical Rule

The following theorem is discussed thoroughly in the remainder of this chapter.

Theorem 12. (Upper bound on probability of error using the empirical rule). Consider

classification among two HMMs S( j) = (Q( j),E( j),∆( j),Λ( j), π( j)
0 ), j = 1, 2, with corresponding

Markov chains MC( j) = (Q( j),A( j), π( j)
0 ) that are irreducible and aperiodic. If dV(π(1)

e , π
(2)
e ) > 0

(where π( j)
e is the stationary emission probability vector for HMM S( j), see Definition 47),

then we can find a function F(n) (defined in Eqs. (5.26) and (5.27)) that is exponentially

decreasing in the number of steps n such that

P(Error after n observations using the empirical rule) ≤ F(n) . (5.25)

Example 18. We apply the above empirical rule to the two HMM models S(1) and S(2) in

Fig. 2.6. First, we compute θ = 1
2dV(π(1)

e , π
(2)
e ) = 0.2031. Then, we compute the bound on

the probability of error, which is exponentially decreasing and described by F(n) = K × e−an,

with K = 1.4574, a = 0.002347. Notice that in this example the bound is not useful for

n ≤ 1500, because it is greater than one.

Now we discuss and prove Theorem 12. First we define a function of the states

of the underlying Markov chain of the two HMMs S(1) and S(2), that counts the

occurrences of each event ei ∈ E, with which we arrive at that state. This is not

necessarily possible in S( j), j ∈ {1, 2}, because in general we can reach a state via

different events. The reason we need to define a function of the states is so that

we can analyze the empirical rule (Definition 50) and using existing techniques for

Markov chain analysis. Therefore, we introduce new enhanced models S̃(1) and S̃(2)

in which each state can be reached with a single (specific) event. We then prove that

the stationary emission probabilities for S̃( j) and S( j) for j ∈ {1, 2} are equal and we

show how to obtain the upper bound on the probability of error in Theorem 13.

In our analysis we will deal with classification between two competing HMM

models. First, we obtain, for each of the given HMMs, an enhanced construc-

tion that allows us to discriminate the transition to the same state but via different

events. We prove that our enhanced construction inherits the properties of irre-

ducibility and aperiodicity (the two conditions needed to apply Theorem 13) from

the corresponding original HMM. The two enhanced HMM models are denoted by
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S̃( j) = {Q̃( j),E, ∆̃( j), Λ̃( j), π̃0
( j)
}, j = {1, 2}. The enhanced construction creates replicas of

each state, depending on the event via which one reaches this state. Thus, for each

state qh ∈ Q( j), we create states qh,ei
∈ Q̃( j), ei ∈ E, to represent that we reach state

qh ∈ Q( j) under the output symbol ei. Clearly, we end up with at most |Q̃( j)
| = |Q| × |E|

states.

The following discussion applies to each original HMM and its enhanced model

(we drop j, j ∈ {1, 2}, to simplify notation). In the state probability vectors π[k], π̃[t],

where t is the current state epoch, states are indexed in the order shown below

π[t] =



π[t](q1)

π[t](q2)
...

π[t](q|Q|)


, π̃[t] =



π̃[t](q1,e1)

π̃[t](q1,e2)
...

π̃[t](q1,e|E|)

π̃[t](q2,e1)
...

π̃[t](q|Q|,e|E|)



.

The matrix Ãei , ei ∈ E, satisfies Ãei(qh,ei , q
′

h,e′i
) = Aei(qh, q′h), ∀e′i ∈ E and ∀qh, q′h ∈ Q (zero

otherwise). We also have for ei ∈ E and qh,ei , q
′

h,e′i
∈ Q̃, Λ̃(q′h,e′i

, ei, qh,ei) = Ãei(qh,ei , ei, q′h,e′i
)

(zero otherwise). We observe that matrix Ãei is constructed by blocks of matrix Aei .

If we define row-vector R|E| = [11 · · · 1]︸   ︷︷   ︸
|E|−times

and let

Ri,|E| = [0 · · · 0 1 0 · · · 0],︸             ︷︷             ︸
single one at ith position

then the state transition matrix Ã( j)
ei

for the enhanced model S̃( j) can be written as

Ã( j)
ei

= A( j)
ei
⊗ (RT

i,|E| ⊗ R|E|).

Example 19. We create the enhanced HMM models S̃(1) (shown in Fig. 5.12) and S̃(2) for

S(1) and S(2) respectively (shown in Fig. 2.6). We note that the underlying state transition

matrix, for each enhanced model, is irreducible and aperiodic (as we will see S̃( j) will be

irreducible and aperiodic as long as S( j) is irreducible and aperiodic). The corresponding

Ã(1)
α , Ã

(1)
β , Ã

(2)
α , Ã

(2)
β are as follows:
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Ã(1)
α =



0 0 0 0

0 0 0 0

0.50 0.50 0.50 0.50

0 0 0 0


, Ã(1)

β =



0 0 0 0

0.50 0.50 0.25 0.25

0 0 0 0

0 0 0.25 0.25


,

Ã(2)
α =



0 0 0 0

0 0 0 0

0.60 0.60 0.06 0.06

0 0 0 0


, Ã(2)

β =



0 0 0 0

0.40 0.40 0.04 0.04

0 0 0 0

0 0 0.90 0.90


.

Figure 5.12: Enhanced model S̃(1) for HMM model S(1) in Fig. 2.6.

Definition 51. (Hoeffding’s Inequality on Enhanced HMM Model). Consider an enhanced

HMM, S̃( j) = {Q̃( j),E, ∆̃( j), Λ̃( j), π̃0
( j)
}, j ∈ {1, 2}, with an underlying irreducible and aperiodic

finite-state Markov chain with |E| events and transition matrix Ã( j). Assuming the Markov

chains that correspond to the enhanced models S̃( j), j = 1, 2, are irreducible and aperiodic,

we denote their stationary distributions by π̃( j) > 0 and stationary emission distribution for

events ei ∈ E as π̃( j)
e > 0.

Using the enhanced models (S̃(1) and S̃(2)) for each ei ∈ E, we define the indicator functions

fei(qh,e j), ∀qh,e j ∈ Q̃, as

fei(qh,e j) =

 1, if e j = ei,

0, otherwise.

Let mn(ei) = 1
n

n∑
t=1

fei(q[t]), i.e., the |E|-dimensional vector mn = [mn(e1),mn(e2), ...,mn(e|E|)]′

denotes the empirical frequencies with which each event appears in the given observation win-
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dow of length n. Let M j, be the smallest integer such that (Ã( j))
M j
> 0, element-wise, and

λ j = minl,l′{
(Ã( j))

Mj (l,l′)
π̃( j)(l) }, where π̃( j)(l) is the stationary distribution of S̃( j). As long as the

enhanced model S̃( j) is irreducible and aperiodic, it can be shown [20, 21] that the following

is true for n > 2M j

λ jε
, and for each event ei (1 ≤ i ≤ |E|):

Pr(mn(ei) − π̃
( j)
e (ei) ≥ ε) ≤ exp

−λ j
2(nε − 2M j

λ j
)2

2nM j
2

︸                      ︷︷                      ︸
F( j)(n)

. (5.26)

In order to use Eq. (5.26), we need S̃( j) to correspond to an irreducible (Defi-

nition 28) and aperiodic (Definition 29) Markov chain. We now show that S̃( j) is

irreducible and aperiodic iff S( j) is irreducible and aperiodic. Also, we establish that

π̃( j)
e = π( j)

e .

We provide below the proof for one direction (if S( j) is irreducible and aperiodic

then S̃( j) is also irreducible and aperiodic); the other direction can be proved by

similar reasoning).

Lemma 7. If HMM S( j) = (Q( j),E( j),∆( j),Λ( j), π( j)
0 ) is irreducible (Definition 28), then the

enhanced HMM S̃( j) = {Q̃( j),E, ∆̃( j), Λ̃( j), π̃0
( j)
} is also irreducible.

Proof. We prove irreducibility by establishing the property that any state qh,ei ∈ Q̃( j)

that does not belong to the set of strongly connected states (Definition 28), may

exhibit outgoing transitions but will have no incoming transition. Consider in the

enhanced model the set of states

Q̃ss = {qm,e ∈ Q̃|∃qm′ ∈ Q,∃e ∈ E s.t. Λ(qm′ , e, qm) > 0}

Since the set of states Q in the original system is strongly connected, we can easily

show that the states in Q̃ss are strongly connected: given qm,e, qm′,e′ ∈ Q̃ we can find

a path to connect them as follows: Let qm′′ be such that Λ(qm′′ , e′, qm′) > 0. Then, we

can find a path

qm
ei1
−→ qi1

ei2
−→ qi2 →

(because the original HMM is irreducible). Therefore

qm,e
ei1
−→ qi1,e1

ei2
−→ qi2,ei2

→ · · ·
eit
−→ qit = qm′′

e′
−→ qm′,e′

is a path that connects qm,e ∈ Q̃ to qm′,e′ ∈ Q̃. We finally conclude that the states that

do not belong to the set of strongly connected states, have only outgoing transitions.
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Therefore, by choosing an appropriate initial distribution function that excludes all

these transient states,5 we can ensure that all of these transient states will never be

visited. �

Lemma 8. If HMM S( j) = (Q( j),E( j),∆( j),Λ( j), π( j)
0 ) is aperiodic (Definition 29), then the

enhanced HMM S̃( j) = {Q̃( j),E, ∆̃( j), Λ̃( j), π̃0
( j)
} is also aperiodic.

Proof. We now show that if the enhanced model S̃( j) is periodic with period k, this

contradicts the fact that S( j) is aperiodic. Suppose that S̃( j) is periodic with period k

(Definition 29 and Lemma 2). This means we can group all possible states of S̃( j) to k

groups (C̃1, C̃2, · · · , C̃k) such that for a state ql,e ∈ C̃m, there exist one-step transitions

only to states in C̃m′ , where m′ = m + 1 mod k.

Due to the construction of enhanced models, the outgoing behaviour of ql,e states

∀e ∈ E are copies of the outgoing behaviour of ql ∈ Q. We can easily see that if there

exists ql,e ∈ Q̃, that belongs to C̃m, then also ql,e′ ∈ Q̃ belongs to C̃m, for all e, e′ ∈ E (due

to the same outgoing behaviour). Thus, we can also group q ∈ Q into Ci, i ∈ {1, 2, ..., k},

classes. Thus S( j) is periodic, with period k, which is a contradiction. �

We now show that in the enhanced model S̃( j), the stationary emission probabili-

ties of each event are consistent with the original model S( j) for j = 1, 2.

Lemma 9. The computed stationary emission probabilities for symbols in the enhanced

model S̃( j), j = 1, 2 which is denoted respectively by π̃( j)
e is identical to π( j)

e corresponding to

S( j).

Proof. Let π̃( j)
s denote the steady-state distribution vector in the enhanced model j.

Then, we have that under each model

π( j)
s = (In ⊗ R|E|) × π̃

( j)
s , j ∈ {1, 2}.

For S( j) and ∀ei ∈ E, the stationary emission probability π( j)
e (ei) can be expressed as

π( j)
e (ei) = Rn × (A( j)

ei
× π( j)

s ), whereas for the enhanced model S̃( j), we have

5We can always do this since subsequent behavior of the enhanced model does not depend on

whether we start from state qh,e or qh′,e′ .
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π̃
( j)
e (ei) = Rn|E| × Ã( j)

ei
× π̃

( j)
s

= Rn|E| × (A( j)
ei
⊗ (RT

i,|E| ⊗ R|E|)) × π̃
( j)
s

= (Rn ⊗ R|E|) × (A( j)
ei
⊗ (RT

i,|E| ⊗ R|E|)) × π̃
( j)
s

= (Rn × A( j)
ei

) ⊗ (R|E| × (RT
i,|E| ⊗ R|E|)) × π̃

( j)
s

= ((Rn × A( j)
ei

) ⊗ R|E|) × π̃
( j)
s

= (Rn × A( j)
ei

) ⊗ (R1 × R|E|) × π̃
( j)
s

= Rn × (A( j)
ei
⊗ R|E|) × π̃

( j)
s .

Moreover, we have

π( j)
e (ei) = Rn × (A( j)

ei
× π( j)

s )

= Rn × (A( j)
ei
× (In ⊗ R|E|) × π̃

( j)
s )

= Rn × (A( j)
ei
⊗ R1) × (In ⊗ R|E|) × π̃

( j)
s

= Rn × (A( j)
ei
× In) ⊗ (R1 × R|E|) × π̃

( j)
s

= Rn × (A( j)
ei
⊗ R|E|) × π̃

( j)
s

= π̃( j)
e (ei),

which allows us to conclude that π( j)
e (ei) = π̃( j)

e (ei), ∀ei ∈ E. �

Given two HMMs S(1) and S(2) (each irreducible and aperiodic), we construct the

corresponding enhanced HMM models (S̃(1), S̃(2)) with underlying irreducible and

aperiodic Markov chains M̃C
(1)

= (Q̃(1), Ã(1), π̃0
(1)) and M̃C

(2)
= (Q̃(2), Ã(2), π̃0

(2)) (i.e.,

this means that Ã(1) and Ã(2) are primitive matrices). Suppose we have dV(π̃(1)
e , π̃

(2)
e ) >

0 or equivalently dV(π(1)
e , π

(2)
e ) > 0 (Lemma 9). Then, if we apply the empirical rule

and use Hoeffding’s inequality (Definition 51), we obtain the upper bound on the

probability of error using the empirical rule (see Theorem 13) where F(n) is given by

F(n) = max{F(1)(n),F(2)(n)} . (5.27)

Proof

We consider two error cases :
3In the following discussion we use the following well known properties of the Kronecker product:

1. (A ⊗ B)(C ⊗ D) = (AC) ⊗ (BD); 2. (A ⊗ B) ⊗ C = A ⊗ (B ⊗ C) for matrices A, B, C, D of appropriate

dimensions [5].
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Case 1: Decide S(1) when the system is S(2);

Case 2: Decide S(2) when the system is S(1).

Case 1:

The decision of S(1) is equivalent to the event

H(1) : dV(mn, π
(1)
e ) < θ,

which necessarily implies dV(mn, π
(2)
e ) ≥ θ (for θ = 1

2dV(π(1)
e , π

(2)
e )). Otherwise, we

reach a contradiction, because dV(mn, π
(2)
e ) < θ and dV(mn, π

(1)
e ) < θ imply

dV(π(1)
e , π

(2)
e ) < dV(mn, π

(1)
e ) + dV(mn, π

(2)
e )

= 2θ

= dV(π(1)
e , π

(2)
e ) .

Thus, H(1) implies dV(mn, π
(1)
e ) ≥ θ, which requires

H(1)
k : {∃ek ∈ E such that |mn(ek) − π

(2)
e (ek)| >

θ
|E|
} .

Therefore, we have to consider two different subcases:

a) mn(ek) − π
(2)
e (ek) > 0,

b) mn(ek) − π
(2)
e (ek) < 0.

The probability of error for Case 1 and subcase a), after n observations, is

P(error at n, Case 1) = P(H(1)
|S(2))P(S(2))

≤ P(H(1)
k |S

(2))P(S(2))

≤ F(2)(n)P(S(2)) ,

where P(H(1)
k |S

(2)) ≡ Pr(mn(ek) − π
(2)
e (ek) > θ

|E| ) ≤ F(2)
n , for ε = θ

|E| .

In case 1a) we can immediately apply Eq. (5.26), but in case 1b) in order to find a

positive measure we choose to count the number of appearances of all elements in

kc = {e ∈ E | s.t. e , ek}, i.e., all possible events except ek ∈ E. Then mn(ekc)− π(2)
e (ekc) =

(1 − mn(ek)) − (1 − π(2)
e (ek)) > 0, and we can apply Eq. (5.26), which leads us to the

same bound.
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Case 2:

With the same reasoning as in Case 1, we establish the following inequality

P(error at n, Case 2) = P(H(2)
|S(1))P(S(1))

≤ P(H(2)
k′ |S

(1))P(S(1)))

≤ F(1)(n)P(S(1)) ,

where H(2) : dV(mn, π
(1)
e ) > θ, which implies that H(2)

k′ : {There exists at least one ek′

such that |mn(ek′) − π
(1)
e (ek′)| > θ

|E| , where ek′ ∈ E }. The claim follows using similar

arguments as in Case 1.

Finally, we prove that

P(error at n) = P(error at n, Case 1) + P(error at n, Case 2)

= P(H(1)
|S(2))P(S(2)) + P(H(2)

|S(1))P(S(1)))

≤ P(H(1)
k |S

(2))P(S(2)) + P(H(2)
k′ |S

(1))P(S(1)))

≤ F(n)(P(S(1)) + P(S(2))) ≡ F(n)

This concludes the proof of Theorem 13.

5.5.2 Necessary and Sufficient Conditions for Upper Bound to Tend

to Zero

The suboptimal rule provides us with a bound on the probability of error that

decreases exponentially with n iff

dV(π(1)
e , π

(2)
e ) > 0.

This requires at least one (actually two) ei ∈ E, such that

π(1)
e (ei) , π

(2)
e (ei)

and is a condition that can be easily checked.

An interesting extension of the proposed empirical rule is to consider the empiri-

cal frequencies of events in Ek, i.e., all possible sequences of output symbols e j ∈ E, of

length k. The verification of conditions in this case is more complicated, but one can

verify (with polynomial complexity) whether the resulting bound on the probability

of error will tend to zero exponentially with the length of the sequence.
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Consider ek,i = e[1]e[2] · · · e[k] ∈ Ek, where e[ j] ∈ E. We can compute the stationary

probability π( j)
e (ek,i), as

π( j)
e (ek,i) = Rn × (A( j)

e[k] · · · × A( j)
e[2] × A( j)

e[1]) × π
( j)
s .

We need to find a way to easily compare all possible π( j)
e (ek,i) ∈ Ek, for any given k. We

can relate this problem to that of probabilistic equivalence between two probabilistic

automata6 [50]. Suppose (for simplicity) that the initial distribution for the two

HMMs (S(1) and S(2)) is the steady-state distribution. Then, the possible generated

observation sequences are simply all event sequences ek,i ∈ Ek, for the given k.

These sequences are described by a probability which is identical to the stationary

emission probability π( j)
e (ek,i). Thus, we can always apply the proposed empirical

rule iff there exists at least one ek,i ∈ Ek which is generated with different probabilities

from the two HMMs. This can be verified by applying the probabilistic equivalence

algorithm in [50], which runs in polynomial time. Another interesting feature of this

algorithm is that, if the two systems are not probabilistically equivalent, it outputs

a specific event sequence, which is generated with different probability for the two

probabilistic automata (HMMs in our case); the length of this sequence is always

less than Q(1) + Q(2)
− 1.

5.6 Application in Probabilistic System Opacity for Dis-

crete Event Systems

Motivated by the increased reliance of many applications on shared cyber-infrastructures

(ranging from defense and banking to health care and power distribution systems),

various notions of security and privacy have received considerable attention from

researchers. A number of such notions focus on characterizing the information flow

from the system to the intruder [18]. Opacity falls in this category and aims at de-

termining whether a given system’s secret behavior (i.e., a subset of the behavior of

the system that is considered critical and is usually represented by a predicate) is

kept opaque to outsiders [6, 41]. More specifically, this requires that the intruder

6Two probabilistic automata are equivalent if for any string s, the two automata accept s with

equal probability. We can use the probabilistic equivalence algorithm also for two HMMs, which is

our case.
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(modeled as a passive observer7 of the system’s behavior) never be able to establish

the truth of the predicate.

Now we consider an application that combines the notions of classification among

HMMs and opacity. Probabilistic system opacity considers the following setting: we

are given m HMMs, denoted by S(i) for i ∈ {1, 2, ...,m}. The prior probability of S(i) is

Pi, Pi > 0, and the prior probabilities satisfy
m∑

i=1

Pi = 1. A user is supposed to choose

one of these models, say S(i), and would like to keep an observer (eavesdropper)

confused about the chosen HMM, for any sequence that might occur in the chosen

HMM, regardless of the sequence of observations generated by it and regardless

of how long the observer is willing to wait. This means that for any observation

sequence that can be generated by the chosen HMM, the observer must not be able

to take a decision about the chosen HMM, at least not with absolute certainty or with

certainty that tends asymptotically to unity.

The formal definition of probabilistic system opacity follows.

Definition 52. (Probabilistic System Opacity). Consider a set of m HMMs, S(i) =

(Q(i),E(i),∆(i),Λ(i), π(i)
0 ), for i ∈ {1, ...,m}, with corresponding Markov chains MC(i) =

(Q(i),A(i), π(i)
0 ) that are irreducible and aperiodic and with initial probability distribution

π(i)
0 > 0. Probabilistic system opacity holds if there exists an α0 > 0, such that for any chosen

S(i) and for any observation sequence ω that could be generated by S(i), we have

α(ω) =

∑
k,i

PkP
(k)
ω

m∑
k=1

PkP
(k)
ω

≥ α0 .

Remark: Note that in Definition 52, we take as initial probability distribution π(i)
0 a

strictly positive vector. This means that all initial states are possible among all m

HMMs. If this is the case, we will argue that probabilistic system opacity can be

verified with polynomial complexity. The complexity and the verification algorithm

in the more general case, where π(i)
0 is not necessarily strictly positive, remains an

open problem.

7A passive observer is one that does not have any decision-making authority in the system (i.e., it

cannot influence the operation of the system).
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Figure 5.13: We choose one HMM out of m different HMMs, S(1),S(2), ...,S(m). An

Eavesdropper knows the exact structure of these HMMs and also observes the ob-

servation sequence that is generated. The designer’s aim is to keep the Eavesdropper

confused about the true identity of the HMM that generates the observation.

5.6.1 Polynomial Verification of Probabilistic Opacity

Definition 53. Probabilistic Equivalence for HMMs [50]. Two HMMs, S(i) = (Q(i),E(i),∆(i),

Λ(i), π(i)
0 ), with E = E(1) = E(2) for i ∈ {1, 2} are probabilistically equivalent iff for any string

ω ∈ L(S) (L(S) = L(S(1)) ∪ L(S(2))) the two HMMs, accept the string with equal probability.

Remark: Two HMMs can be tested for probabilistic equivalence with an algorithm

of polynomial complexity [50].

Remark: We can say that the two HMMs are probabilistically equivalent from steady–

state iff the two HMMs S(i) = (Q(i),E(i),∆(i),Λ(i), π(i)
s ), for i ∈ {1, 2}, where π(i)

s is the

steady–state probability are probabilistically equivalent.

In the following definition, we simplify the problem of m HMMs to a problem of

two HMMs, which are probabilistically opaque. It will become obvious in the proof

of probabilistic system opacity, that the conditions for m HMMs, to be probabilis-

tically opaque, are based on the conditions for two HMMs, to be probabilistically

opaque.

Definition 54. (Pairwise Probabilistic Opacity). Two HMMs, S(i) = (Q(i),E,∆(i),Λ(i), π(i)
0 )

for i ∈ {1, 2} and prior probabilities8 P1 and P2 are Probabilistically Opaque if (∃0 < α0 < 1/2)
8Usually P1 + P2 = 1, but in our case we keep the priors as the two HMMs, were part of a system

of m HMMs, as it is described in Definition 52. This helps us to avoid notational overhead involving

renormalizations of priors (namely, P′i = Pi/(P1 + P2) for i = 1, 2) when we deal with two, or more

HMMs.
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such that

(∀ω ∈ L(S(1)) ∪ L(S(2))) we have α(ω) ≥ α0 ,

with

α(ω) = min{
P1P(1)

ω

P1P(1)
ω + P2P(2)

ω

,
P2P(2)

ω

P1P(1)
ω + P2P(2)

ω

} .

Recall that P jP
( j)
ω , j = 1, 2, is the probability that observation ω is generated by HMM S( j).

Definition 55. (Probability of Error Among Two HMMs Tends to Zero). Consider two

HMMs, S(i) = (Q(i),E(i),∆(i),Λ(i), π(i)
0 ), for i ∈ {1, 2}, with corresponding Markov chains

MC(i) = (Q(i),A(i), π(i)
0 ) that are irreducible and aperiodic; it is known (see Section 5.5), that

if S(1) and S(2) are not probabilistically equivalent from steady–state, then

(∀ε > 0)(∃n0 ∈N) such that for n ≥ n0 Pr(error at n) < ε,

where Pr(error at n) is the probability of misclassification for the two HMMs.

In other words, if the two HMMs are not probabilistically equivalent9 from

steady–state, then the probability of error among the two HMMs tends, at least

asymptotically, to zero. Behind this result lies the fact that we are able to discriminate

between the two HMM models using a suboptimal decision rule (Definition 50)

based on the empirical frequencies of output symbols, as long as the two systems are

characterized, at steady-state, by different statistical properties for the occurrence of

output symbols or different statistical properties of finite sequences of consecutive

output symbols (this means that the two HMMs are not probabilistically equivalent

from steady–state). The theoretical analysis in Section 5.5 establishes an upper bound

on the misclassification probability, which is described by a function that decreases

exponentially with the length of the observation sequence (as long as the two systems

are characterized, at steady-state, by different statistical properties for the stationary

emission probabilities (Definition 47) or stationary emission probabilities for a finite

number of consecutive output symbols).

In order to establish the conditions for probabilistic system opacity, we need to

establish the conditions for two probabilistically opaque HMMs. In the following

theorem, we explore the necessary and sufficient conditions needed for two HMMs

to be probabilistically opaque.

9Note that probabilistic equivalence can be checked with polynomial complexity [50].
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Theorem 13. (Conditions for Pairwise Probabilistic Opacity (Definition 54)). Con-

sider two HMMs S( j) = (Q( j),E( j),∆( j),Λ( j), π( j)
0 ), j = 1, 2, with corresponding Markov

chains MC( j) = (Q( j),A( j), π( j)
0 ) that are irreducible and aperiodic. These two HMMs are

probabilistically opaque iff they are probabilistically equivalent from steady-state.

Proof. Let us use the following notation:

• ω = ω[1]ω[2]...ω[n], where ω[t] ∈ E for t ∈ {1, ...,n};

• 1T = [1...1] is a row vector with n identical elements equal to 1;

• A(1)
ω = A(1)

ω[n] · · ·A
(1)
ω[1] and A(2)

ω = A(2)
ω[n] · · ·A

(2)
ω[1];

• For a vector π, min{π} is the minimum element of the vector and max{π} is the

maximum element of the vector;

• α(ω) = min{ P1P(1)
ω

P1P(1)
ω +P2P(2)

ω
, P2P(2)

ω

P1P(1)
ω +P2P(2)

ω
}, where P jP

( j)
ω , j = 1, 2, is the probability that

observation ω is generated by HMM S( j).

(→). Suppose that the two HMMs are probabilistically opaque; we need to

show that the two HMMs are probabilistically equivalent from steady-state. We

know that if the probability of error does not tend to zero, then the two HMMs

are probabilistically equivalent from steady–state according to the contraposition of

Definition 55. It remains to prove that if the two HMMs are probabilistically opaque,

then the probability of error among the two HMMs does not tend to zero. If the

two HMMs are probabilistically opaque, we argue that the probability of error when

trying to classify between S(1) and S(2) based on a sequence of observations satisfies

(∃ 0 < α0 < 1 )(∀n ∈N) such that Pr(error at n) ≥ α0 .

This is proved easily because we know that (∃α0)(∀ω ∈ L(S(1)) ∪ L(S(2))), we have

min{ P1P(1)
ω

P1P(1)
ω +P2P(2)

ω
, P2P(2)

ω

P1P(1)
ω +P2P(2)

ω
} ≥ α0. Therefore, for each n ∈N

Pr(error at n) =
∑

∀ω:|ω|=n

(min{P1P(1)
ω ,P2P(2)

ω })

≥

∑
∀ω:|ω|=n

α0(P1P(1)
ω + P2P(2)

ω )

=α0(P1

∑
∀ω:|ω|=n

P(1)
ω + P2

∑
∀ω:|ω|=n

P(2)
ω ) = α0 .
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This proves that the probability of error does not tend to zero; therefore, the two

HMMs are not probabilistically equivalent from steady–state.

(←). Suppose that the two HMMs are probabilistically equivalent from steady–

state; then, for any ω, we have

1TA(1)
ω π

(1)
s = 1TA(2)

ω π
(2)
s =: πω,s .

We next prove that the two HMMs are Probabilistically Opaque. Four useful in-

equalities with i ∈ {1, 2} are the following:

P(i)
ω =1TA(i)

ωπ
(i)
0

≥1TA(i)
ω min{π(i)

0 }1

≥min{π(i)
0 }πω,s ,

P(i)
ω =1TA(i)

ωπ
(i)
0

≤max{π(i)
0 }1

TA(i)
ω 1

≤
max{π(i)

0 }

min{π(i)
s }

1TA(i)
ωπ

(i)
s

≤
max{π(i)

0 }

min{π(i)
s }
πω,s .

In summary, we have

min{π(i)
0 }πω,s ≤ P(i)

ω ≤
max{π(i)

0 }

min{π(i)
s }
πω,s .

From the previous inequalities we can rewrite α(ω) = min{ P1P(1)
ω

P1P(1)
ω +P2P(2)

ω
, P2P(2)

ω

P1P(1)
ω +P2P(2)

ω
} ≥

min{c1, c2}, where c1 < 1 and c2 < 1, with ci =
Pi min{π(i)

0 }

P1
max{π(1)

0 }

min{π(1)
s }

+P2
max{π(2)

0 }

min{π(2)
s }

. Which proves that

for any ω, for any length n, the observer is uncertain with a threshold of at least

α0 = min{c1, c2} threshold. �

Theorem 14. (Necessary and Sufficient conditions for Probabilistic System Opacity). Con-

sider a set of m HMMs, S(i) = (Q(i),E(i),∆(i),Λ(i), π(i)
0 ), for i ∈ {1, ...,m}, with corresponding

Markov chains MC(i) = (Q(i),A(i), π(i)
0 ) that are irreducible and aperiodic and with initial

probability distribution π(i)
0 > 0. The property of probabilistic system opacity as described

in Definition 52 holds iff for any chosen S(i) there exists at least a pairwise probabilistically

opaque (Definition 54) HMM S( j), j , i.
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Proof. (→.) We need to show that for any system S(i) and for any observation sequence

ω that can be generated by S(i), we have

α(ω) =

∑
k,i

PkP
(k)
ω

m∑
k=1

PkP
(k)
ω

≥ α0 .

Suppose S( j) is the HMM that is pairwise probabilistically opaque with S(i). Then,

from Definition 54, there exists an α0, such that min{ PiP
(i)
ω

PiP
(i)
ω +P jP

( j)
ω

,
P jP

( j)
ω

PiP
(i)
ω +P jP

( j)
ω

} ≥ α0. Thus,

for any observation sequence ω that could be generated by S(i), we have

α(ω) =

∑
k,i

PkP
(k)
ω

m∑
k=1

PkP
(k)
ω

= 1 −
PiP

(i)
ω

m∑
k=1

PkP
(k)
ω

≥1 −
PiP

(i)
ω

PiP
(i)
ω + P jP

( j)
ω

=
P jP

( j)
ω

PiP
(i)
ω + P jP

( j)
ω

≥ α0 .

Therefore, probabilistic system holds if, for any chosen S(i), there exists another

system S( j), such that S(i) and S( j) are pairwise probabilistically opaque (Definition 54).

(←.) We want to prove that {If there is at least a chosen S(i) such that there is no

HMM S( j) with j , i such that S(i) and S( j) are a probabilistically opaque pair} ⇒ {The

probability of error when classifying among m HMMs with S(i) as the chosen system

tends to zero} ⇒ {Probabilistic system opacity does not hold}. It is easier to prove

the contrapositive proposition which is: {If probabilistic system opacity holds} ⇒

{The probability of error among m HMMs with S(i) as the chosen system, does not

tend to zero} ⇒ {∀S(i), there is at least one other system S( j) such that S(i) and S( j) are

a probabilistically opaque pair}.

If probabilistic system opacity holds, then (∃α0) such that {(∀S(i))(∀ω ∈ L(S(i))} →

{αω ≥ α0}. The probability of error for m HMMs, with S(i) chosen, satisfies

Pr(error at n , S(i)) =
∑
∀ω:|ω|=n

∑
k,i

PkP
(k)
ω

≥ α0

∑
∀ω:|ω|=n

m∑
k=1

PkP
(k)
ω = α0

due to the property of probabilistic system opacity. This proves that the probability

of error, with S(i) chosen (for any S(i)), does not tend to zero. It remains to prove

that ∀S(i) there exists at least one pair of probabilistically opaque HMMs. If all pairs
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S(i) and S( j) are not probabilistically opaque, then according to the proof of pairwise

probabilistic opacity, we have the following: if we chose (S(i) then∀S( j))(∀α0)(∃n ≥ n0)

Pr(pairwise error at n , S(i)) =
∑
∀ω:|ω|=n

P jP
( j)
ω < α0 .

Now we prove that the probability of error among m HMMs, with S(i) chosen,

tends to zero. We see that (∀α0)(∃n ≥ n0)

Pr(error at n , S(i)) =
∑
∀ω:|ω|=n

∑
k,i

PkP
(k)
ω

≤ α0

∑
k,i

Pk = α0(1 − Pi) ,

i.e., the probability of error tends to zero. This proves that ∀S(i) there exists at least

one other system S( j) such that the pair S(i) and S( j) form probabilistically opaque

HMMs; otherwise, the probability of error would tend to zero eventually. �
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Chapter 6

Conclusions

In this thesis we dealt with state estimation problems using novel state estimation

techniques. Specifically, we verified a variety of discrete event system properties,

relating to fault diagnosis, detectability, opacity and classification. Below, we provide

a summary of the main contributions of the thesis, classified into different categories.

• Contributions to fault diagnosis: We studied distributed fault diagnosis in

DES using synchronization-driven intersection-based distributed diagnosis

(RS-IBDD) strategies in the presence of communication constraints. RS-IBDD

allows the exchange of diagnostic information (namely, state estimates and

associated normal/fault conditions) at predetermined synchronization points

between neighboring sites in a distributed observation setting. We have pro-

vided a verification method for RS-IBDD diagnosability that relies on a parallel

product of the local verifiers along with the synchronization operation. This

approach has complexity that is polynomial in the number of states of the

given system and exponential in the number of observation sites. In the future,

we plan to further study distributed observation settings like the one describe

in this thesis, by allowing the exchange of additional diagnostic information

between observation sites (e.g., the exchange of sequences of observations or

summaries of such sequences of observations) and ways to verify them in an

efficient manner.

• Open problem in fault diagnosis: The development of an adaptive distributed

protocol which minimizes the number of communication exchanges between

the local sites, while still guaranteeing that the system remains diagnosable.

Problems of communication usually require that communication among agents
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be minimized in some way. Studies in minimizing communication are moti-

vated by reducing network bandwidth, for conserving power when only lim-

ited battery power is available or for security purpose [43]. The major open

problem is to develop an algorithm, such as to minimize the communication

between local sites, also establishing the property of fault diagnosis.

• Contributions to detectability: In this thesis we studied detectability in dis-

crete event systems modeled by PFAs. We defined and analyzed two no-

tions of stochastic detectability, namely A-detectability, and AA-detectability

which were inspired by analogous notions in stochastic diagnosability [49]. We

showed that A-detectability is a PSPACE-hard problem and applied observer-

based techniques to verify it. We applied methods closely related to those used

in classification of PFAs to verify AA-detectability with polynomial complexity.

• Open problems in detectability: Possible extensions could be to the cases of

distributed stochastic detectability, and/or periodic stochastic detectability. A

possible future research direction is the computation of bounds on the proba-

bility of error in state estimation problems in stochastic DES.

• Contributions to classification: In this thesis we obtained a bound on the

probability of misclassification between two HMMs based on a sequence of

observations. We developed three methods

– First method: Calculation of Upper bound via a DFA

∗ Contribution: In this method we used a specific class of DFAs to

split the sequences of observations into different partitions and apply

Markov chain theory to efficiently compute an upper bound on the

a priori probability of misclassification among the two HMMs for

sequences in each partition. The choice of DFA affects the partitioning

which in turn affects the tightness of the upper bound.

∗ Open problems: An open problem is the choice of a specific DFA (of

a fixed number of states) that results in the least upper bound.

– Second method: Construction of a Stochastic Verifier

∗ Contribution: In this method we used a technique which captures the

common behavior of the two HMMs and constructs an appropriate
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product Markov chain.

∗ Open problems: Many researchers are intrigued by the problem of

finding a suitable measure for the distance between HMMs. The

relation between this upper bound and the second largest eigenvalue

of the transition probability matrix of the produced Markov chain is

a result that looks promising for further research, particularly as an

approximation of the dissimilarity between two HMMs.

– Third method: Classification Rule Based on Empirical Frequencies of

Event Sequences

∗ Contribution: We developed a decision rule (empirical rule) that relies

on the frequencies with which output symbols are observed. We

established necessary and sufficient conditions under which this rule

provides us with an upper bound that tends to zero exponentially

with the length of the observation sequence.

∗ Open problems: An open problem is to bridge the difference between

the optimal MAP rule and the rule analyzed here. One way to accom-

plish this is to explicitly state the necessary and sufficient conditions

under which the probability of misclassification tends to zero. Many

applications that depend on classification could potentially benefit

from this approach, including decision making and fault diagnosis in

distributed systems. A possible extension of the work is the applica-

tion of the empirical rule in the classification problem for more than

two hidden Markov models.

• We developed algorithms for performing asymptotically optimal classifica-

tion, and we measured their efficiency, by computing an upper bound on the

probability of error, and establishing necessary and sufficient conditions under

which this upper bound asymptotically tends to zero. Finally, we used results

from the classification problem to solve a probabilistic opacity problem with

polynomial complexity.

• Open problems: The characterization of necessary and sufficient conditions

under which the probability of error tends asymptotically to zero and the

computation of more efficient upper bounds.
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