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Abstract

Extremum problems with total variation distance metric on the space of probability measures
are of fundamental importance in stochastic optimal control, information theory and com-
munication, mathematical finance, decision theory and in statistics and probability. Among
others, the investigation of such problems utilizes concepts from measure and probability
theory and function space optimization, and has applications in minimax stochastic control
via dynamic programming, approximation of high-dimensional probability distributions by
lower-dimensional, model reduction, etc. In this thesis, the formulation of extremum prob-
lems involving total variation distance metric, their extremum solutions, their discussion in
terms of applications, and their application to the areas of minimax stochastic control and
Markov process approximation, are investigated.

The first part of the thesis deals with the formulation of extremum problems, in which
systems are represented by probability distributions on abstract spaces, and pay-offs are
represented by total variation distance metric defined on the space of probability measures,
subject to linear functional constraints on the space of probability measures, and vice-versa;
that is with the roles of total variation metric and linear functional interchanged. By utilizing
concepts from signed measures, the extremum solutions of such problems are obtained in
closed form, and an associated emerging water-filling property of the partitioning of the
alphabet spaces of the extremum solutions is elaborated. The results are derived for abstract
spaces, while the high level ideas are also discussed for denumerable spaces endowed with
the discrete topology.

The second part of the thesis addresses optimality of stochastic control strategies on a
finite and on an infinite horizon, via dynamic programming subject to total variation distance
ambiguity on the conditional distribution of the controlled process. The stochastic control
problem is formulated using minimax theory, in which the control minimizes the pay-off
while the conditional distribution, from the total variation set, maximizes it. By employing
certain results of the first part, new dynamic programming recursions are derived which, in
addition to the standard terms, include the oscillator semi-norm of the value function that
codify the level of ambiguity with respect to total variation distance ball. In addition, for the

infinite horizon case new policy iteration algorithms are presented to compute the optimal
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strategies.

The third part of the thesis deals with the problem of approximating a finite state Markov
process with a large number of states by a lower-dimensional process, with respect to cer-
tain measures of discriminating or approximating the distribution of the high-dimensional
Markov process by a reduced one. By drawing upon the results of the first part, the approx-
imation problem of finite state Markov process by another non-necessarily Markov process
with reduced state space, is formulated as an optimization problem, with respect to a cer-
tain pay-off subject to a fidelity criterion defined by the total variation distance metric. The
water-filling behaviour of the transition probabilities of the approximated process and the
proposed recursive algorithms are new, and applicable to a variety of approximation prob-

lems spanning from optimal state reduction to optimal state aggregation.



[pohoyoc

H Behtiotonolnon mpoBAfuatoy Ue axpdTato TOU ¥ENOLLOTOL0UY KOG UETPLXY| ATOOTAOTC
v oy x0uover 6To YGeo Tov Uétpev mbavothitwy elval Oeusiiddoug oruaoctog
o0TOY OTOYAoTXO €heyyo, oTn fewpla mAnpogoplac xal Tng emxowvoviag, ot
uabnuotixy yenuatoowxovoula, ot fewpla anopdoewny xat oTaTIoTIXAC XaL 6Ty Hewpla
mhavothtwy. Metalld dAwv, 1 épeuva TETOLWY TROBANUATOY YENOULOTOLEL €VVOLEC aTo
v Oewplo uétpou xou mhavothtwy, ano v Oewpla BeAtioTonolnong cuVAPTAGE®WY,
XoL EYEL EQUPUOYEC OTO OTOYUOTIXO EAEYYO EAMAYLOTOUEYIOTWY MECK SuvaULXoy
TEOYPAUUATIONOU, GTNV TEOGEYYLOT) XATAVOUDY TLHAVOTHTWY UEYIA®Y DLUoTACEWY ATO
XATAVOUES TOOVOTATWY UXpdTepwY BlaoTdoewy, XAT.  XTnv mopovca Stateld], 7
dtatunwon xor 1 enthuon TEOBANUATOVY PeATioToTOolnoNG UE UETELXY| ATOGTAONG TNV
ohuxry wouovon, 1 oulhtnon mhavdy epapuoy®dy toug, xabde xoL 1 eQupuoYr Toug
OTOY OTOYUOTIXG EAEYYO ENAYLOTOUEYIOTOY %ol OTNY Tpoceyylon dadixaotdy Markov,
EPELVOVTAL.

To mpdto uépog g dlatplBrc aoyoieiton pe TNy Statinwon xal enthucy TEOBANUATWY
ME axEOTATA, OTH OTOl TO GUOTAUATO EAEYYOU EXTPOOKOTOUYTAUL OO XATAVOUES
THovVOTATOY O agnENUEVOUC YOPOUS, XAl To XELTHELL XOOTOUS EXTPOCWROUVTAL ATO
TNV UETPXT TNS OAXNAC XUUOVONS OTO YOPO TV UETpwv ThavoTATaC Xal UTdxeLvTaL
o€ YpouuxoUc oLVIPTNOLAXOUS TEPLOPLOUOUC 0TO YMPo TwV UETPWY TLOUVOTHTAC XAl
avtioteoga, dnAady, UE TOUG POAOUC TNG UETEXNC OMXHAC XOUAYONS XL TWV YRUUULXOY
CUVOETNOLAXGY Vo eVaAANdCoOoVTOL.  XpNOLUOTOLOVTUS EVVOLEC TWVY TEOCTUACUEV®Y
UETEWY, oL BEATioTeg AUoelg TETOWWY TEOPANUATWY AauBdvovtal o XAELoTh| Uop@h
xal ot WoTNTeS Toug epeuvdvtal xal oulntotvtal.  Ta anoteréouoto mEoxUTTOUY
YENOLLOTOLOVTAS APNENUEVOUS YOPoUS, evdd ol éeg Toug oulntouvtal emiong Yo
apliurioluoug ydpoug egodlacuévous ue TNy Slaxetty) Totoloyid.

To dedtepo uepog tng dwatpPrhc aoyokrelton ue v PBeitiotonolnoyn otoyaoTIXGY
OTPATNYLXOVY EAEYYOU OE TEREPACUEVO XL OE ATELRO YEoVIXd opllovTa, UEcw SuVaULXOY
TEOYPAUUATIONOU YENOWOTOLOVTAC ©¢ andoTtaon afeBadtntac TNy olxy| xOuavor
TNe deoueLUEVNS XaTavourc tne ereyyouevne dwdixactac. To otoyaotixd npdPinua

ehéyyou dlaTundveTtol ypnowonoldvTac Ty fewpla ehaylotoueyiotwy, xatd TV onola

vii
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7 ddixacia eAéyyou ehaylotonolel To xpLTHPLO XOOTOUS EVE 1) DEGUEVUEVT] XAUTAVOUN
amo TO 6UVOAO NS OAXAS XUUAVOTNS, TO UEYLOTOTOLEL. XETOLUIOTOLOVTUS GUYXEXPLUEVA
ATOTEAEOUATA TOU TE®OTOU UEpoug, Véeg €lloGOELC SUVOULXOU TEOYEAUUATILOUOU
e€dyovtal, oL omolec extdHC Amo TOUC XAaoxolc dpouc cuunepthaUfdvouy enlong ot
TOV TAAAVTOTY NUL-vopua Tou xwdixonolel To exinedo tne afefatdtnrac. Emnpdobeta,
600V 0Qopd T OoTOYAOTIXA TPOoAfuaTe ue dmelpo Ypovixd opllovta, véol alydplbuol
ToEoUGLALOVTOL YId TOV UROAOYLOUS TV PEATIOTOV OTRUTNYLXGOY EAEYYOU.

To tplto uépoc g SwtpBric aoyoheltal ue To TEOBANUA TEOGEYYLONG WULAC
nenepaouévne Stadicaotog Markov ue éva ueydro aplbud xatactdoswy amo ula
Stadixaoior younhOTEP®Y BLUCTACEWY, WS TEOC OPLOMEVO UETEO TEOCEYYLONS TNC
xatavourc tng Owdixactag Markov oamd  xatavouec yaunidTtepwy  SLAOTAGEWV.
Avtidvtog anoteAéouata amo 1o Te®dTo UEpog, To TEOPBANUA TEOGEYYLONC ULAC
nenepaouévne dadixaoioc Markov aro uta dhhn Stadixaoia (un-anapattnta Markov) ue
MYOTERES ®UTAOTIOELS SLATUTOVETAL WS Eva TEABATUa BeATioTonoinang, UE TO XpLTrplo
%(O6TOUC Vo UTOXELTAL OE XELTAPLY aXEBELUC OPLOUEVA ATO TO WETEO ANOCTACNS TNC
ohxfic xbuavone. H ovurmepipopd twv mbavotAtov petdfoaone tne mpoceyyllouevng
dtadixaolag %ol oL TEOTELVOUEVOL aVadpouLXol ahyopLduoL ELVaL XaLVoURYLOL, XAl UTOPOUY
VoL EQOPUOCTOVY OE ULl GELRd TROPANUAT®Y ToU EXTELVOVTAL a0 TNV BEATLOTY avaYwYTN

XATAOTACEWY Ewg %ol TNY BEATLOTY GUVADPOLOT) XATACTACEWY.
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Introduction

Extremum problems with total variation distance metric on the space of probability measures
are of fundamental importance in stochastic optimal control, information theory and com-
munication, mathematical finance, decision theory and in statistics and probability. Among
others, the investigation of such problems utilizes concepts from measure and probability
theory and function space optimization, and has applications in minimax stochastic control
via dynamic programming, approximation of high-dimensional probability distributions by
lower-dimensional, model reduction, etc. In this thesis, the formulation of extremum prob-
lems involving total variation distance metric, their extremum solutions, their discussion in
terms of applications, and their application to the areas of minimax stochastic control and
Markov process approximation, are investigated.

In the first part of the thesis (Chapter 3), our aim is to investigate extremum problems with
pay-off being the total variation distance metric defined on the space of probability measures,
subject to linear functional constraints on the space of probability measures, and vice-versa;
that is, with the roles of total variation metric and linear functional interchanged. Utilizing
concepts from signed measures, the extremum probability measures of such problems are
obtained in closed form, by identifying the partition of the support set and the mass of these
extremum measures on the partition. The results are derived for abstract spaces (specifically,
complete separable metric spaces known as Polish spaces), while the high level ideas are
also discussed for denumerable spaces endowed with the discrete topology. The main results

of this part include:



2 Introduction

(i) characterization of the properties of the extremum problems under investigation;

(i1) characterization of extremum measures on abstract spaces, and closed form solutions

of the extremum measures for finite alphabet spaces;
(i11) convexity and concavity properties of extremum solutions.

In the second part of the thesis (Chapters 4 and 5), our aim is to address optimality of
stochastic control strategies on a finite and on an infinite horizon, via dynamic programming
subject to total variation distance ambiguity on the conditional distribution of the controlled
process. We formulate the stochastic control problem using minimax theory, in which the
minimizer-controller chooses its policy from some admissible set to minimize the pay-off,
while the maximizer-conditional distribution chooses its distribution from a set described
by the total variation distance to maximize the pay-off. First, we employ certain results
from the first part, in particular, the maximization of a linear functional on the space of
probability measures on abstract spaces, among those probability measures which are within
a total variation distance from a nominal probability measure. Then we utilize the solution of
the maximization to solve minimax stochastic control with deterministic control strategies,
under a Markovian and a non-Markovian assumption, on the conditional distributions of the

controlled process. The main results of this part include:
(1) minimax optimization subject to total variation distance ambiguity constraint;

(i1) new dynamic programming recursions, which involve the oscillator seminorm of the

value function, in addition to the standard terms;

(iii)) new infinite horizon discounted dynamic programming equation, the associated con-

tractive property, and a new policy iteration algorithm;

(iv) new infinite horizon average dynamic programming equations, and new policy itera-

tion algorithms.

Our aim in the third part of the thesis (Chapters 6), is to approximate a finite-state Markov
process by another process with fewer states, called the approximating process. The ap-
proximation problem is formulated using two different methods. The first method, utilizes
the total variation distance to discriminate the transition probabilities of a high-dimensional
Markov process and a reduced order Markov process. The approximation is obtained by
maximizing a linear functional defined in terms of transition probabilities of the reduced or-
der Markov process over a total variation distance constraint. The transition probabilities of

the approximated Markov process are given by a water-filling solution. The second method,
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utilizes total variation distance as a measure of discriminating the invariant probability of a
Markov process by the approximating process. The approximation is obtained via two al-
ternative formulations: (a) maximizing a linear functional of the occupancy distribution of
the Markov process, and (b) maximizing the entropy of the approximating process invariant
probability. For both formulations, once the reduced invariant probability is obtained, which
does not necessarily correspond to a Markov process, a further approximation by a Markov
process 1s proposed which minimizes the Kullback-Leibler divergence. The approximation
is given by a water-filling like solution. Finally, the theoretical results of both methods are
applied to specific examples to illustrate the methodology, and the water-filling behavior of

the approximations. The main results of this part, based on the first method, include:

(i) a direct method for Markov by Markov approximation based on the transition prob-
abilities of the original FSM process and the reduced one, exhibiting a water-filling

behavior,
and, based on the second method:

(i) extremum measures which exhibit a water-filling behavior, and solve the approxima-

tion problems;

(i1) optimal partition functions which aggregate the original finite-state Markov process to

form the reduced order finite-state Markov process;
(ii1) iterative algorithms to compute the invariant distribution of the approximating process.

Next, we give an outline of the thesis motivation and objectives, and details which will

follow in later chapters.

1.1. Extremum Problems with Total Variation Distance

Total variation distance metric on the space of probability measures is a fundamental quan-
tity in statistics and probability, which over the years appeared in many diverse applications.
In information theory it is used to define strong typicality and asymptotic equipartition of se-
quences generated by sampling from a given distribution [17]. In decision problems, it arises
naturally when discriminating the results of observation of two statistical hypotheses [17].
In studying the ergodicity of Markov Chains, it is used to define the Dobrushin coefficient
and establish the contraction property of transition probability distributions [41]. Moreover,
distance in total variation of probability measures is related via upper and lower bounds to an

anthology of distances and distance metrics [30]. The measure of distance in total variation
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of probability measures is a strong form of closeness of probability measures, and, conver-
gence with respect to total variation of probability measures implies their convergence with
respect to other distances and distance metrics.

In Chapter 3, we formulate and solve several extremum problems involving the total varia-
tion distance metric and we discuss their applications in the areas of control, communication

and statistics. The main problems investigated are the following.

(a) Extremum problems of linear functionals on the space of measures subject to a total

variation distance metric constraint defined on the space of measures.

(b) Extremum problems of total variation distance metric on the space of measures subject

to linear functionals on the space of measures.

(c) Applications of these extremum problems, and their relations to other problems.

The formulation of these extremum problems, and their discussion in terms of applications
are developed at the abstract level, in which systems are represented by probability distribu-
tions on abstract spaces (complete separable metric space, known as Polish spaces [23]),
pay-offs are represented by linear functionals on the space of probability measures or by dis-
tance in variation of probability measures, and constraints by linear functionals or distance in
variation of probability measures. We consider Polish spaces since they are general enough
to handle various models of practical interest, such as stochastic control problems on Borel
spaces.

Utilizing concepts from signed measures, closed form expressions of the probability mea-
sures are derived which achieve the extremum of these problems. The construction of the
extremum measures involves the identification of the partition of their support set, and their
mass defined on these partitions. Throughout the derivations we make extensive use of lower
and upper bounds of pay-offs which are achievable, and convexity and concavity properties
(1.e., these are convex optimization problems on the space of probability measures). Several
simulations are carried out to illustrate the different features of the extremum solution of the
various problems. An interesting observation concerning one of the extremum problems is
its equivalent formulation as an extremum problem involving the oscillator semi-norm of the
pay-off functional. The formulation and results obtained for these problems at the abstract
level are discussed throughout the chapter in the context of various applications, often as-
suming denumerable spaces endowed with the discrete topology. Some specific applications

discussed are listed below.

(i) Dynamic Programming Under Uncertainty in Distribution of the Controlled Process:

To deal with uncertainty of transition probability distributions, via minimax theory,
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with total variation distance metric uncertainty constraints to codify the impact of in-
correct distribution models on performance of the optimal strategies [16]. This formu-
lation is applicable to Markov and non-Markov decision problems subject to uncer-

tainty in distribution of the controlled process.

(i) Approximation of Probability Distributions with Total Variation Distance Metric: To
approximate a given high-dimensional probability distribution ;+ on a measurable
space (2, B(X)) by another lower-dimensional distribution v on (3, B(Y)), ¥ C %,
via minimization of the total variation distance metric between them subject to linear
functional constraints. Model and graph reduction can be handled via such approxi-
mations. Graphs, for example, constitute the foundation of many real-world datasets.
However, the size of the graph can become prohibitive to understand essential infor-
mation that they contain. The reduction of graph-based models is significant in a wide
variety of applications, such as placement of autonomous sensors, modeling Central
Processing Unit (CPU) and database demands in web-based software engineering, and
identifying the evolution in clusters within massive dynamic datasets in database re-

search.

(111) Maximization or Minimization of Entropy Subject to Total Variation Distance Metric
Constraints: To invoke insufficient reasoning based on maximizing the entropy H (v)
of an unknown probability distribution v on denumerable space X subject to a con-
straint on the total variation distance metric. This problem can be also associated with
limited-length code word design that is useful in communication between distributed

systems that aim at minimizing communication delays.

1.2. Dynamic Programming on Finite and Infinite Horizon

Dynamic programming recursions are often employed in optimal control and decision the-
ory to establish existence of optimal strategies, to derive necessary and sufficient optimal-
ity conditions, and to compute the optimal strategies either in closed form or via algo-
rithms [13, 39, 54]. The cost-to-go and the corresponding dynamic programming recursion,
in their general form, are functionals of the conditional distribution of the underlying con-
trolled process given the past and present values of the control and controlled processes [13].
Thus, any ambiguity of the controlled process conditional distribution will affect the opti-
mality of the strategies. The term “ambiguity” is used to differentiate from the term “un-
certainty” often used in control nomenclature to account for situations in which the true

and nominal distribution (induced by models) are absolutely continuous, and hence they are
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defined on the same state space. This distinction is often omitted from various robust de-
terministic and stochastic control/filtering approaches, including minimax and risk-sensitive
formulations [1,3,6,8,14,15,24,33,38,44,48,56,59]. The class of models is described by
a ball with respect to the total variation distance between the nominal distribution and the
true distribution, hence it admits distributions which are singular with respect to the nominal
distribution.

The main objective in Chapters 4 and 5, is to investigate the effect on the cost-to-go and
dynamic programming recursion of the ambiguity in the controlled process conditional dis-
tribution, and hence on the optimal decision strategies. Specifically, we quantify the con-
ditional distribution ambiguity of the controlled process by a ball with respect to the total
variation distance metric, centered at a nominal conditional distribution, and then we derive
a new dynamic programming using minimax theory, with two players: player I the control
process and player II the conditional distribution (controlled process), opposing each others
actions. In this minimax game formulation, player’s I objective is to minimize the cost-to-
go, while player’s II objective is to maximize it. The maximization over the total variation
distance ball of player II is addressed by employing certain results of Chapter 3, related to
the maximization of linear functionals on a subset of the space of signed measures. Utilizing
these results, a new dynamic programming recursion is presented which, in addition to the
standard terms, includes additional terms that codify the level of ambiguity allowed by player
IT with respect to the total variation distance ball. Thus, the effect of player I, the control pro-
cess, is to minimize, in addition to the classical terms, the difference between the maximum
and minimum values of the cost-to-go, scaled by the radius of the total variation distance
ambiguity set. We treat in a unified way the finite horizon case, under both the Marko-
vian and non-Markovian nominal controlled processes, and the infinite horizon case. For
the infinite horizon case we consider both discounted and average pay-offs. For the infinite
horizon case with discounted pay-off we show that the operator associated with the resulting
dynamic programming equation under total variation distance ambiguity is contractive, and
consequently, we derive a new policy iteration algorithm to compute the optimal strategies.
For the infinite horizon with average pay off we derive new dynamic programming equa-
tions under certain irreducibility/reducibility conditions, and we present new policy iteration
algorithms. Finally, we provide examples for the finite and for the infinite horizon cases.

Previous related work on optimization of stochastic systems subject to total variation dis-
tance ambiguity is found in [S0] for continuous time controlled diffusion processes described
by It6 differential equations. However, the solution method employed in [50] is fundamen-
tally different; it approaches the maximization problem indirectly, by employing Large De-

viations concepts to derive the maximizing measure as a convex combination of a tilted
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probability measure and the nominal measure, under restrictions on the class of measures
considered. The dynamic programming equation derived in [50] is limited by the assumption
that the maximizing measure is absolutely continuous with respect to the nominal measure.
In Chapters 4 and 5, our focus is to understand the effect of total variation distance am-
biguity of the conditional distribution on dynamic programming, from a different point of
view, utilizing concepts from signed measures. Consequently, we derive new dynamic pro-
gramming recursions which depends explicitly on the radius of the total variation distance,
the closed form expression of the maximizing measure, or the oscillator seminorm of the
value function. One of the fundamental properties of the maximizing conditional distri-
bution is that, as the ambiguity radius increases, the maximizing conditional distribution
becomes singular with respect to the nominal distribution. The point to be made here is that
the total variation distance ambiguity set admits controlled process distributions which are
not necessarily defined on the same state space as the nominal controlled process distribu-
tion. In terms of robustness of the optimal policies, this additional feature is very attractive
compared to minimax techniques based on relative entropy uncertainty or risk-sensitive pay-
offs [1,3,6,8,14,15,24,33,38,44,48,56,59], because often the true controlled distribution lies

on a higher-dimensional state space compared to the nominal controlled process distribution.

1.3. Approximation of Markov Processes by Lower

Dimensional Processes

Finite-State Markov (FSM) processes are often employed to model physical phenomena in
many diverse areas, such as machine learning, information theory (lossy compression), net-
worked control systems, telecommunications, speech processing, systems biology, etc. In
many of these applications the state-space of the Markov process is prohibitively large, in
performing simulations. One approach often pursue to overcome the large number of states is
to approximate the Markov process by a lower-dimensional Markov process, with respect to
certain measures of discriminating or approximating the distribution of the high-dimensional
Markov process by a reduced one. Such methods are described using relative entropy as a
measure of approximation in [19, 55,58, 61] (and references therein). Further discussion of
model reduction methods for Markov chains can be found in [7]. In general, approximating
a Markov process by another process subject to a fidelity of reproduction is not necessarily
Markov, but a hidden Markov process. This is a well known result of Information The-
ory [17], dealing with lossy compression of Markov sources. Model reduction of hidden

Markov models via aggregation can be found in [18,20, 58]. Specifically, in [20] the aggre-
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gated hidden Markov model is expressed as a function of a partition function and a recursive
learning algorithm is proposed, which solves the optimal partition problem.

In this chapter, the approximation problem of a FSM process by another process (FSM
or not) with reduced state-space is formulated as an optimization problem, with respect to a
certain pay-off subject to a fidelity constraint defined by the total variation distance metric,
using two different methods which are described below.

Method 1: Approximate the transition probabilities of a FSM process by another FSM
process with reduced transition probabilities. This approximation problem is formulated
as a maximization of a linear functional of the transition probabilities of the reduced FSM
process, subject to a fidelity criterion defined by the total variation distance between the
transition probabilities of the high and low FSM process.

Method 2: Approximate a FSM process by another process with lower-dimensional state-
space, without imposing the assumption that the approximating process is also a Markov

process. The following two formulations are investigated.

(a) Maximize an average pay-off, described in terms of the occupation measure of the
high-dimensional Markov process, subject to a fidelity criterion defined by the total
variation distance metric, between the invariant distribution of the higher-dimensional

Markov process and the invariant distribution of the lower-dimensional process.

(b) Maximize the entropy (Jayne’s maximum entropy [34]) of the invariant distribution
of the lower-dimensional process, subject to a fidelity criterion defined by the total
variation distance metric, between the invariant distribution of the higher-dimensional

Markov process and the invariant distribution of the lower-dimensional process.

For both formulations, the resulting approximated process is not necessarily Markov. The
crux of the approach considered lies in finding an optimal partition function which aggre-
gates states of the original FSM process to form the reduced order process. A Markov pro-
cess approximation is obtained by minimizing the Kullback-Leibler divergence between the

transition probability matrices of the high and low-dimensional FSM process.

1.4. Organization of Thesis

We now briefly indicate the content of the remaining of the thesis.
In Chapter 2 we briefly summarize mathematical theory that will be used in this thesis.
Thus, in Section 2.1, we review basic concepts of probability theory following a measure-

theoretic approach, and we summarize results from signed measures which are particularly
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relevant for the characterization of the extremum measures. In Section 2.2, we introduce
total variation distance metric and we review some of its basic properties. In Section 2.3, we
briefly state relations of the total variation distance to other distance metrics, and we give
some of its applications.

In Chapter 3 we investigate extremum problems with pay-off being the total variation dis-
tance metric defined on the space of probability measures, subject to linear functional con-
straints on the space of probability measures, and vice-versa. In Section 3.1, we introduce
the precise definitions of the extremum problems under investigation, while several related
problems are discussed together with their applications. In Section 3.2, some of the prop-
erties of the extremum problems are discussed, and signed measures are utilized to convert
the extremum problems into equivalent ones, and to characterize the extremum measures on
abstract spaces. In Section 3.3, closed form expressions of the extremum measures are de-
rived for finite alphabet spaces, by identifying the support sets and the extremum measures
on these sets. The results are also extended to the countable alphabet case. In Section 3.4,
several examples illustrate how the optimal distribution of the extremum problems behaves,
for different scenarios of the support set of the distribution, and an application to the area
of information theory is presented. Finally, Section 3.5 concludes by discussing the most
important results obtained in this chapter.

In Chapter 4, we address optimality of stochastic control strategies on a finite horizon,
via dynamic programming subject to total variation distance ambiguity on the conditional
distribution of the controlled process. Thus, in Section 4.1, first we introduce the definition
of finite horizon discounted Markov control model with deterministic strategies, and then
we describe the abstract formulation of the minimax problem under total variation distance
ambiguity. In Section 4.2, we introduce the general definition of finite horizon discounted
feedback control model with randomized and deterministic control policies, under total vari-
ation distance uncertainty, and then we apply the characterization of the maximizing distri-
bution to the dynamic programming recursion. In Section 4.3, we apply the abstract setup to
both the feedback control model and to the Markov control model, and we derive new dy-
namic programming recursions which characterize the optimality of minimax strategies. In
Section 4.4, we illustrate the new dynamic programming recursions through the well-known
inventory control and machine replacement examples. Finally, Section 4.5 concludes by
discussing the most important results obtained in this chapter.

In Chapter 5, we introduce the dynamic programming subject to total variation dis-
tance ambiguity on the conditional distribution of the controlled process for infinite horizon
Markov Control Models (MCM), with optimality criterion, the expected discounted reward

and the average pay-off per unit time. In Section 5.2, we consider the infinite horizon Markov
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control model with the expected discounted reward as an optimality criterion, and we show
that the operator associated with the dynamic programming equation is contractive, and we
introduce a new policy iteration algorithm. In Section 5.3, we study the infinite horizon
Markov Control Model with the average pay-off per unit time as an optimality criterion.
We derive the new dynamic programming equations under total variation distance ambiguity
with and without imposing the irreducibility condition. In addition, we introduce the cor-
responding policy iteration algorithms for average cost dynamic programming. In Section
5.4, we illustrate an application of the infinite horizon minimax problem for both discounted
and average pay-off. Moreover, we present an additional example for average optimality
criterion, without imposing the irreducibility assumption. Finally, Section 5.5 concludes by
discussing the most important results obtained in this chapter.

In Chapter 6, we approximate a finite state Markov process with a large number of states
by a lower-dimensional process, called the approximating process. In Section 6.1, we in-
troduce the approximation problem using two different methods. The first method, utilizes
the total variation distance to discriminate the transition probabilities of a high-dimensional
Markov process and a reduced order Markov process. The second method, utilizes total vari-
ation distance as a measure of discriminating the invariant probability of a Markov process
by the approximating process, and the approximation is obtained via two alternative for-
mulations: (a) maximizing a linear functional of the occupancy distribution of the Markov
process, and (b) maximizing the entropy of the approximating process invariant probability.
For both formulations, once the reduced invariant probability is obtained, a further approxi-
mation by a Markov process is proposed which minimizes the Kullback-Leibler divergence.
In Section 6.2, a direct method for Markov by Markov approximation based on Method 1
is derived. In Section 6.3, the solution of the approximation problem based on Method 2
is given for both formulations, and the corresponding recursive algorithms and the optimal
partition functions are presented. In Section 6.4, several examples are presented to illustrate
the approximation methods. Finally, Section 6.5 concludes by discussing the most important
results obtained in this chapter.

Chapter 7, is the concluding chapter, where in Section 7.1, we give a brief summary of
our work and indicate its main contributions, and in Section 7.2 we mention some topics for

further research.



Background Material

In this chapter, we briefly summarize background material. In particular, in Section 2.1,
basic mathematical concepts of probability theory and certain results from signed measures
are reviewed. In Section 2.2, total variation distance metric is introduced and some of its
properties are discussed. Moreover, in Section 2.3 the relations of total variation distance to

other distance metrics are briefly stated and some of its applications are discussed.

2.1. Mathematical Preliminaries

In this section, we review the basic concepts of probability theory following a measure-
theoretic approach. We also summarize certain results from signed measures which are

particularly relevant to the characterization of the extremum measures.

2.1.1. Elements of Functional Analysis

The following definitions can be found in [5,37,53].
A set X which is furnished with a measure of distance between any two elements of the
set is called a metric space. A functiond : X x X — R is called a metric if it satisfies the

following properties.

(i) d(z,y) >0, Vx,y € X, and d(z,y) = 0if and only if z = y;

11
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(i) d(z,y) = d(y,z), Y,y € X;
(i) d(z,2) <d(z,y) +d(y,z), Vx,y,z € X.

Definition 2.1. (Continuous Function) Let (X,dy) and (Y, dy) be two metric spaces. A
function f : X — Y is continuous at vy € X if for every ¢ > 0 there is a 6 > 0 such
that dx(x,x¢) < ¢ implies dy(f(x), f(zo)) < €. The function f is continuous on X if it is

continuous at every point in X.

Let (X, d) be a metric space. The open ball B,.(«), with radius » > 0 and center @ € X is
the set
B, (a) ={z € X|d(z,a) <1}.

The closed ball, B,(«), is the set
B.(a) ={z € X|d(z,a) < r}.

Definition 2.2. (Open and Closed Sets) A subset G of a metric space X is open if for every
x € G there is an r > 0 such that B,.(z) is contained in G. A subset F' of X is closed if its
complement F© = X \ F is open.

For example, an open ball is an open set, and a closed ball is a closed set.

Definition 2.3. (Vector Space) Let X denote an arbitrary set and let F' = R or C denote
the field of real or complex numbers. A vector space X over a field F is a structure (X, F')
consisting of two operations + : X X X — X, X : F' X X — X, called respectively vector

addition and scalar multiplication such that the following conditions hold:
(i) Additive commutativity. v +y =y +z, Vr,y € &.
(ii) Additive associativity. (x +y)+z =z + (y + 2), Vx,y,z € X.

(iii) Additive identity. There exists an element in X, denoted by 0, such that x + 0 = «,
Vo e X.

(iv) Additive inverse. For all x € X there exists an unique element in X, denoted —x, such

that x + (—x) = 0.
(v) Multiplicative associativity. (a x b) x x =a x (b x x),Va,b € F, x € X.
(vi) Distributivity.

ax (r+y)=axz+axy, Vr,yeX,ackF,
(a+b)xrz=axzx+bxx, VreXabelF.
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(vii) If 1 € F is the multiplicative identity of F' then 1 X x = z, Vx € X.

Definition 2.4. (Normed Space) A Normed Space is a vector space (X, F') furnished with
a norm || - ||x and denoted by (X, F,| - ||x). The norm || - |

x . X — F must satisfy the

following properties.
(i) |z|| >0, Vo e X;
(ii) ||z|| = 0, if and only if x = 0;
(iii) |lazx| = |a||z]], Ve € X, a € F;
(v) [l +yll < [lzll + llyll, v,y € X

Definition 2.5. (Cauchy sequence) Let (X, F, || - ||x) be a normed space. A sequence {x,, :
n € N} € X is said to be a Cauchy sequence if

lim ||z,4p — x| =0 forevery p > 1.

n—00

Definition 2.6. (Banach Space) A normed space (X, F, || - ||x) is said to be complete if every

Cauchy sequence of X has a limit in X. A complete normed space is called a Banach space.

Definition 2.7. (Topological Space) Let Z be a set and Bz a collection of subsets of Z. Then
Bz is called a topology in Z if the following properties hold [36].

(i) 0 € Bz and Z € Bz;
(ii) If Z, € Bz,i =1,2,...,n, then N}, Z; € Bz,

(iii) If{Z;} is an arbitrary collection of elements of Z (finite, countable, or uncountable),
then J; Z; € Bz.

The pair (Z, Bz) is called a topological space and the members of Bz are called open sets
inZ. If f: (Z,Bz) = (V,By), then f is continuous provided f~*();) C Z is an open
set for every open set J; C ). Moreover, f is continuous at the point x, € Z if for every
neighborhood A of f(x) there exists a neighborhood B of x( such that f(B) C A.

Definition 2.8. (Convex Set) A set S in a vector space (X, F') is called a convex set if the line
segment joining any pair of points of S lies entirely in S. The former statement is equivalent

to saying that for any pair of vectors u € S, v € S, the vector (1 —t)u+tv € S, Vt € [0, 1].
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Definition 2.9. (Convex Function) Let (X, R, || - || x) be any Banach space and f a (possibly
extended) real valued function defined on X, f : X — R U {400, —oc}. The function f is
said to be convex if X is a convex set and if for any x,y € X, x # vy, and o € [0, 1]

f((1=a)z+ay) < (1 —a)f(z) +af(y).

Similarly, if X is replaced by a closed convex subset I' C X, and f satisfies the above
inequality for all x,y € T, we say that f is convex on I'. The function f is said to be concave

if —f is convex.

Definition 2.10. Let (X R, || - ||x) be any Banach space and f a real-valued function f :
X +— R. The function f is said to be lower semi-continuous at x € X if for every sequence

{x, : n € Z,} converging to x

f(z) < lim inf f(2,) = Sup Inf f(x)

and it is said to be upper semi-continuous at x if

f(x) = lim sup f(zn) = nf sup f ()

n—00 >1 k>n

and it is said to be lower or upper semi-continuous on set I' C X, if the corresponding

statements hold for all v € T'.

2.1.2. Measurable Space and Probability Space

Probability theory deals with random experiments associated with elementary outcomes (2

and the set of all events of interest F.

Definition 2.11. (Algebra) Let () be a set of elementary outcomes and F be a non-empty
collection of subsets of (). Then F is called an Algebra on () if the following properties hold.

(i) Q) € F (The Sample Space is an element of F);

(ii) If A € F then A° = Q) — A € F, where A° is the complementation of A relative to )
(if a subset of () belongs to F, then so is its complement);

(iii) If A; € F,i=1,2,....n, then U, A; € F (if a finite number of subsets belong to F,

then so is their union).

Clearly, an algebra is a collection of subsets of a set {2, which a) contains {2 and b) is closed
under complementation and finite unions. The members of F are called F-measurable sets

or measurable sets.
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Definition 2.12. (o-Algebra) An algebra F on 2 is called a o-Algebra on () if it is closed

under countable unions, that is, if the following properties hold.
(i) Qe F;
(ii) If A € F then A € F;
(iii) If A, € F,i=1,2,... thenU;2, A; € F.

If F is a field the pair (2, F) is called a measurable space and the elements of F are called
events and are said to be measurable sets in (2. Fields and o-fields are convenient mathemat-

ical objects which express how much we know about the outcome of the experiment.

Probability Space. In order to grade the possibility of occurrences of events associated with
a random experiment we need to define a function (set function) which attaches a numerical

value to events A € F. A function
p F i [0,00], wp(A) €[0,00], VAEF
is called a finite-additive set function, if x4 satisfies the following two conditions.

i) u® =0
(i) (AU B) = u(A) + u(B), if A,B € Fand ANB = 0.

I

A finite-additive set function p on a o-algebra is called a measure, if it is countably-additive,
and a probability measure if it is countably-additive and 1(£2) = 1, hence the following

definition.
Definition 2.13. (Probability Measure) Let (), F) be a measurable space. The function
P:F—10,1], P(A) € [0,1], VA€ F
is called a probability measure on (X2, F) if it satisfies the following properties.
(i) P(0) = 0;
(ii) P(Q2) = 1;

(iii) P(UZ, Ai) = X2, P(Ay), if As € F,Viand {A;}52, are disjoint,

The triple (2, F,P) is called a probability space.
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A probability Space (2, F,P) is called complete if whenever B € F and P(B) = 0 then
A € Fforall A C B. The subsets A of an event B of zero probability is called a null set,
therefore (2, F,P) is complete if F includes all events of zero probability. If F;, F» are
two o-algebras on (2 then the o-algebra generated by JF;, F; is denoted by F; \/ F,. Any
probability space (€2, F,P) which is not complete can be uniquely extended to the o-algebra
F = FV{null sets}.

Since the intersection of arbitrary o-algebras of a subset of {2 is a o-algebra of subsets of

2, then for an arbitrary family A of subsets of {2 there is a smallest o-algebra F in €) such
that A C F.

Theorem 2.1. (Smallest o-algebra) Let ) be a sample space and A be a collection of subsets

of ). There exists a smallest o-algebra F(A) on Q) containing A, which is constructed by

F(A) = {M : N, is a o-algebra on ), A C M}

7

This is called the o-algebra generated by A, and it is often denoted by F(A) = o(A).

Borel Set. Let X be a topological space (e.g., X = R": the collection of all n-tuples
{z = (21, 29,...,2,) : 2; € R, 1 < i < n}). Then there exists a smallest o-algebra F on
A such that every open set A C X belongs to F. The elements A € F are called Borel sets
and the o-algebra F = F(X) is called a Borel o-algebra. For example, if X = R", and A
is the collection of all open sets of R™, the Borel o-algebra denoted by B(R™), contains all
open sets, their complements (closed sets), all the countable unions of open sets, and all the
countable unions of closed sets. In fact, B(R") is the smallest o-algebra of subsets of R"™
containing all sets of the form {z = (z1,29,....,2,) : x1 € Ay, 29 € Ay, ...z, € A},
where A;,j = 1,...,n are intervals in R, which are closed, open, semi-open, points, etc.
Clearly, A = {Collection of all open intervals of R} is not a o-algebra, but there exists many
o-algebra containing 4 as a subset. The smallest o-algebra containing A is the o-algebra
generated by A. The pair (R”, B (R”)) is a measurable space, called, the Borel measurable

space, and probability measures defined on it are called Borel probability measures.

2.1.3. Measurable Functions and Random Variables

Let (21, F1) and (€25, F3) be two measurable spaces, and let f : (€, F7) — (€22, F2). Then,
the function f is called F; /F; or F; measurable if

FUA) E{w: fw) € Ay € Fi, VA € Fo.
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The set f~'(A) is called the inverse image of A € F,. If f : Q — Y where (Q, F) is
a measurable space, ) is a topological space (e.g., R™), then f is F/B(R™)-measurable
provided (V') € F for every open set V C B(R™).

The o-algebra F(f) generated by f is the smallest o-algebra on €2 containing all the sets
{f7Y(V):V C Yisopen}and f will be F(f)/Y. Moreover, if Y = R" then

F(f)={f7(V):VeBR"}

Clearly, if (€2, B) is a Borel measurable space and f : 2 — ), where ) is a topological

space and f is a continuous function, then from the definition of continuous function
Y (V)e B, V opensetV C ). (2.1)

Hence, every continuous function is Borel measurable, called Borel function, e.g., f
(R™, B(R™)) — (R™, B(R™)) is a Borel function.

If a probability measure P on (2, F) is defined, where X : (Q, F) — (R", B(R™)), is
a measurable function then X is called a Random Variable (RV) defined on the probability
space (2, F,P).

Definition 2.14. (Random Variable) Let X : (), F) — (R™, B(R")) be a function defined
on a probability space (Q, F,P). Then X is called an n-dimensional random variable RV

(measurable function)

X (Q,F) — (R", B(R"))
if for every A € B(R") the set
XA 2 {w: X(w) e A} € F.

Clearly, the o — algebra F (X)) generated by X is the smallest o — algebra on €2 containing
all the sets
X7'(A) : AC R"is open

under which X is measurable. Equivalently,
F(X)=X"(B[R") = {X"(B): B €BR")}

is the smallest o-algebra on 2 under which X is measurable. However, B(R") is generated

by products of open sets of the form
{z=(21,29,....0p): —00 <21 < @1,...,—00 <z, < ap},a; ER, 1 <j<n. (22)
Therefore, for X to be a RV it is sufficient for every set of the form

{fw: Xi(w) <oao,...,. Xpw) <o}, €eR, 1< <n
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to be an event. This is because B(R") is the family of subsets obtained by starting with
(2.2) and taking repeatedly all complements, countable unions, intersections. Also, if
{X; : 0 <t < T} is a family of random variables ]:(*fT 2 oXy 0 <t<T) =
Vier F(Xi) = o(Uier F(X})) is the smallest o-algebra on Q2 under which { X, : 0 <t < T}

are measurable.

2.1.4. Probability Distribution Function

Let (Q,.F, IP’) be a probability space and let X : (2, F) — (1, F1) be an F/F;- mea-
surable RV. From the point of view of computations, it is often convenient to work with an
induced measure on ;. This amounts to defining the probability measure induced by the
RV on its range space rather than treat points with respect to the measure [P and work with a
probability measure on F; with w € €25 as its sample values.

The RV, X : (2, F) — (£, F1) induces a probability measure Px on (€2, F;) by

Py(A)) EPoX 1 (A) =P({w: X(w) € A}) = P(X € A)), A € Fi.

If (1, F1) = (R, B(R)) then we can work with a probability measure on B(R) with z € R

as its sample points.

Definition 2.15. (Probability Distribution) Let (), F,IP) be a Probability Space and X
(Q,F) — (R, B(R)) a RV. The function Fx(-) defined as

Fx(z) 2P({w: X(w) < 2}) = Px(X < 2)
is called the (cumulative) probability distribution of the RV X.

Thus, the relationship
Px(A) =P({w: X(w) € A})

defines a probability measure Px on (R, B(R)). Note that F'x () is a probability distribution
defined on R, e.g., it corresponds to the probability measure corresponding to IP induced by
X(-)onR.

Suppose X1, X, ..., X,, are n real-valued RV’s and X = (X1, X, ..., X,,), then

X (Q,F) — (R", B(R"))
is a measurable function. The function

Fx(x) = Fx(x1,x9,..7,) = P{w : ﬁl{Xz(w) <xit}), z e R"
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is called the joint probability distribution function of X. Similarly as above, the relationship
Px(A) =P{w: X(w) € A}), A€ B(R")

defines a Borel probability measure.
A real-valued RV X is said to be discrete if there exists a countable set > = {x; : 1 € Z, }

such that

Y P{w: X(w) =;}) = 1.

T, EX
If X is discrete, then the distribution function F'x is a function which is constant except for
jumps at z;, ¢ = 1,2, ..., the size of the jump at z; being P({w : X(w) = a;}). For an
arbitrary Borel set A, we have
Px(A)= > PHw:X(w)=ux}).
€A S

Let P be a probability measure on (R™, B(R™)). It is said to be singular (with respect to the
Lebesgue measure) if there exist a set S € B(R") such that P(S) = 1 and the Lebesgue
measure of S is zero. On the other hand, P is said to be absolutely continuous (w.r.t. the
Lebesgue measure) if for every measurable set A the Lebesgue measure of A equals zero
implies P(A) = 0. Clearly, if X, Xy, ..., X,, are discrete RV’s, then Py is singular. If
Xq, Xo, ..., X,, are such that Px is absolutely continuous, then there exists a non-negative

Borel function px(z), = € R” such that
Py(A) = /A px(x)de, A€ B(RY).
The function py is called the probability density function for X. In terms of the distribution

x1 Tn
Fx(x1, 29, ..2,) = /_ . /_ px (21, .oy p)dzy ... dxy,

which implies

A O

= —F
0xy...0x, X
Let (2, ) be a measurable space, and Q and [P are two probability measures defined on

(Q, F). Then Q is called absolutely continuous with respect to P (denoted by Q < P) if

Q(A) = 0 whenever A € FandP = 0. If P <« Q and Q < PP then P and Q are called

equivalent probability measures and this is denoted by P ~ Q.

px(x1,...2p) Ty, Ty .y Ty).

Theorem 2.2. (Radon-Nikodym) Let (X2, F,IP) be a probability space, and let () be another
measure defined also on F such that () < P. Then there exists an F-measurable function

¢ : Q — [0, 00|, such that ¢ € L*(Q), F,P) and,

Q(B) = /qu(w)dP(w),VB e F.
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The function ¢ is unique except on a subset of P-measure zero. This function ¢ is often

written as ¢ = % and is called Radon-Nikodym derivative (RND) since it satisfies
f

Q(B):/BdQ:/Bd)dP, VB e F.

Definition 2.16. (Regular Conditional Probability Measure) Let (2, F,P) be a probability
space and G be a sub-o-algebra of F. A regular conditional probability measure P(-|G)(+)
on (2, F) is a function P(A|G)(w), A € F, w € Q having the following properties [12].

(a) For each A € F, the function mapping w € Q) — P(A|G)(w) is measurable with
respectto G.

(b) Foreachw € Q, P(-|G)(w) is a probability measure on F.

(c) Foreach A € F, P(A|G)(w) is a version of the conditional probability of A given G.

Moreover,
P(ANB) = /B P(AIG)(w)Ps(dw), YA € G
where Pg is the restriction of P to G.

Statements (a) and (c) state that P(A|G)(w) is a version of the conditional probability of
A given G (and it is a function of w). If such a version P(-|G)(-) exists then it is unique
in the sense that, if P(-|G)(-) is another function with these properties, then there exists
a Pg—null set N such that P(A|G)(w) = P(A|G)(w), VA € F and w € N° (e.g.,
P(-|G)(w) = P(-|G)(w), Pg — a.s.). Thus, a regular conditional probability measure ex-
ists if it can be shown that a version of the conditional probability measure can be chosen
to be a probability measure on F for each w € (). Although in general, a regular condi-
tional probability measure may not exist, for the case when G is generated by a countable
partition of {2, a regular conditional probability measure given G always exists. Moreover,
if (€2, d) is a metric space which is complete and separable (Polish space), and F is a Borel
o—algebra, then for any probability measure P on (2, F) and any sub-c-algebra G C F, a

regular conditional probability measure of P given G always exists.
Lemma 2.1. (Absolute Continuity of Probability Measures)
a) Suppose Qg < Pg. If Q(-|G)(w) < P(:|G)(w), Qg — a.s., then ) K P.

b) Conversely, if Q < P, then Q(-|G)(w) < P(-|G)(w), P(-|G)(w) — a.s.
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Note that if Y : (Q,F) — (), .A) is a RV on (€, F) into a measurable space (), .A)
and ) is a Polish space, then a regular conditional distribution for Y given the sub-o-algebra
G of F denoted by P(dy|G)(w) is defined according to Definition 2.16, and this always
exists. Additionally, if X : (2, F) — (X, B) is a RV on (2, F) into a measurable space
(X,B), and G is the sub-c-algebra of F generated by X, then P(dy|X)(w) is called the
regular conditional distribution of Y given X. One can go one step further to define a regular
conditional distribution for Y given X = z as a quantity P(dy|X = x), and introduce an

equivalent definition called stochastic kernel.

Definition 2.17. (Stochastic Kernel) Given a measurable space (§), F) on which the RVs, X
and Y are defined, via X : (1, F) — (X,Xx), and Y : (Q,F) — (Y, Xy), respectively,
then the relation between the RV X and the RV'Y is defined via a probabilistic mapping. The
mapping [ : Xy x X — [0, 1] satisfies the following two conditions.

(i) Forevery x € X, the set function u(-|z) is a probability measure on .y (possibly finite
additive);

(ii) For every I’ € Yy, the function p(F|-) is X-measurable.

The mapping yu(+; -) is called a stochastic kernel or transition probability. The set of all such
stochastic kernels is denoted by Q(); X).

Definition 2.18. Let (2, F) denote a measurable space and . a positive measure on ). Let
f:(QF) = (R,B(R)) be a measurable function. Define

171, 2 { [1P@dne) ] 1<p < oo

L,(Q, F, ) is the set of all measurable functions f on (S, F) for which ||f||, < oo (often
denoted by L,(Q2, F, ) = L,(n)), and || f||, denotes the Ly-norm of f.

2.1.5. Signed Measures

This section summarizes results for signed measures that are particularly relevant to the char-
acterization of the extremum measures. Additional details and the proofs of the following

theorems can be found in [31].
Definition 2.19. Let (3, B(X)) be a measurable space. A set function & : B(X) — R 2

R U {—o00, 00} is called a signed measure on (X, B(X)) if

(i) £(0) = 0.
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(ii) £(A) assumes at most one of the values +00 for all A € B(X).
(iii) £(US 1 Ay) = 00 E(Ay) for all pairwise disjoint sets Ay, As, ... € B(X).

A signed measure € on (3, B(Y)) is called a non-negative signed measure,' if and only if
¢ is a measure. If 1, o are two measures on (3, B(X)), at least one of which is finite, then
& = 1 — po is well defined and it is a signed measure on (X, B(X)). Note that a signed
measure is not, in general, monotone?.

The next theorem describes sequentially continuity for signed measures.
Theorem 2.3. Let £ be a signed measure on (X, B(X)).

(i) Let A, B € B(X)and A C B. If |£(B)| < +o0, then

1€E(A)| < +oo.

(ii) If Ay, As, ... € B(X) and A,, C A, 11 for all n, then

§(Unti4n) = lim £(Ay).

n—-+oo

(iii) If Ay, Ag, ... € B(X) and A,, O A, 11 for all n, then

E(NX,A,) = lim &(A,).

n—-+o0o

The concepts of positive and negative sets are introduced next, since these are important

in representing signed measures via its Jordan decomposition.

Definition 2.20. Let & be a signed measure on (3, B(X)). A set P € B(X) is called positive
for EifE(A) > 0 forevery A € B(X) and A C P. Aset N € B(X) is called negative for &
if €(A) < 0forevery A € B(X) and A C N. A set which is both positive and negative for £

is a null set for &.

The next theorem known as Hahn decomposition establishes existence of positive and

negative sets partitioning the space X..

Theorem 2.4. (Hahn Decomposition Theorem) If £ is a signed measure on (X, B(X)) then
there exist a positive set P € B(X) and a negative set N € B(X) for & so that PUN =%
and PN N = ().

Note that, the sets P and N are not unique.

If ¢(A) > 0 forevery A € B(X)
2If A,B € B(X) and A C B, then £(B) = £(A) +&(B\ A) < £(A) whenever (B \ 4) <0.
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Definition 2.21. Ler &,&, be two signed measures on (X,B(X)). We say that they are

mutually singular or that & is singular with respect to & or vice versa if there exists
Ay, Ay € B(X) so that Ay U Ay = X, Ay N Ay = () such that A, is null for & and A,
is null for &. We use the symbol £, 1.&, to denote that £, &o are mutually singular.

The next theorem is the Jordan decomposition of a signed measure into its positive and

negative parts which are mutually singular.

Theorem 2.5. (Jordan Decomposition Theorem) Let & be a signed measure on (3, B(X)).

There exist two non-negative measures £+, &7, at least one of which is finite, such that
{=¢"-&, L
Consider any Hahn decomposition of X for . For every A € (X)), define the set functions
§7,6: B(X) — [0, +00] by
1(A)=¢ANP),  &(A)==(ANN).

We say that the non-negative signed measures £, £~ constitute the Jordan decomposition of
&. £ is called the positive variation of £ and £~ the negative variation of £&. The measure
|€] = &1 + & is called the absolute variation of &, while |£](2) is called the total variation

of £ and is equal to
E1(2) = €7(2) + £ (2) = &(P) — &(N)
where the sets P, N constitute a Hahn decomposition of X for £. Hence, the total variation

of ¢ is equal to the difference between the largest and the smallest values of .

Theorem 2.6. Let & be a signed measure on (X, B(X))and A € B(X). If Ay, ..., A, € B(X)
are pairwise disjoint and A = \Ji_, Ay, then for every A € B(X),

£4(4) = sup{3_€7(A)) s €N)
£(4) = {36 (A n W)

[€(A) = sup{>_ |£(Ax)| : n € N}
k=1
where sup is over all measurable partitions of the set ..

Definition 2.22. (Total Variation of a Signed Measure) Let & be a signed measure of the

measurable space (3, B(X)). The total variation norm of € is

[y = &7(%) + £ (%)

where (£1,£7) is the Hahn-Jordan decomposition of &.
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If 3 is finite or countable and ¢ is a signed measure, then

[€lrv = >_ 1€(2)].

TEN

If £ has a density f with respect to A (a measure on (X, B(X))), then
de(-
ey = [ 1@, f0) 2 G5 @)

2.2. Total Variation Distance Metric

In this section, we introduce the total variation distance metric and we review some of its

properties.

Definition 2.23. (7Total Variation Distance) Let &, & be two measures on the measurable
space (3, B(X)). The total variation distance between & and &5 is the total variation norm

of a signed measure &, — &s.

Let

sm(2) = set of finite signed measures on B(X)

M
M (X)) = set of probability measures on 5(3)
M, (X) = set of finite signed measures on (X, B(X)) satisfying £(X) = 0.

Let BM (X)) denote the space of measurable real valued functions, and || f | = sup{|f|(z) :
r € ¥}, and BM*(X) 2 {f € BM(X): f > 0}. Note that, BM (X) endowed with the sup
norm is a Banach space. For any { € M(X) and f € BM(X) define

&) = [ rag

Any signed measure £ € M, (%) defines a linear function on the Banach space (BM (X), |-

loc)-

Lemma 2.2.

(i) Forany § € Mg, (X) and f € BM(Y)
[ 1de] < lrv
(ii) Forany £ € My, (%)

[€lrv = sup{&(f) : f € BM(X), | flo = 1}.
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(iii) For any f € BM (%)
£l = sup{€(f) : € € M(Z), Iélav = 1},
Proof. See Appendix A.1. ]
Let & € My(X), f € BM(X). Since £(X) = 0 for any ¢ € R then
&) = [ F@)ds(a) = [ (F(z) = e)ds(a)
and, hence

£ < Kelrvlf — clee
£ < lelrv it [ — el

For f € BM(Y), inf.cr | f — ¢|o is related to the oscillation semi-norm of f, called the

global modulus of continuity, by

ose(f) £ sup |f(wn) = f(2) =210k |f = el 23)

(z1,22)€EXXT
For f € BM*(X)

osc(f) = sup |f(z)| - inf [ f(z)].
Lemma 2.3. Forany { € M(X) and f € BM(X)

ENI< sup  [E(E)f (1) = & (2)f(22)]

(z1,22)EXXD
where (§T,£7) is the Hahn-Jordan decomposition of &. In particular, for any £ € My(2)
and f € BM(X)

1 , 1
6] < SI€brv2int 1F — cloe = S 1€lrvosc(s).
Proof. See Appendix A.2. |

Hence, for £ € M,(2),
space BM (X) equipped with oscillation semi-norm. As an application take &, & € M (X)
and define & — & € M(X). Then, for any f € BM (X)

60 - &) < 516 — Elrvosc(f)
This is tighter than [£4(/) — &2(/)| < 165 — &l vl since ose() < 2]

Lemma 2.4. For any &1,& € My(X)

5161 = Gl = sup[61(4) = &(4) 2

&|l7v is the operator norm of £ considered as an operator over the

where the supremum is taken over all measurable subsets of ..

Proof. See Appendix A.3. |
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2.3. Relation of Total Variation Distance to Other Metrics

In this section, we briefly state relations of the total variation distance to other distance
metrics, and we discuss some of its applications.
L, Distance.

Given (X, B(X)), let 0 € M;(X) be a fixed measure (as well as p € M;(X)). Define

o A A . o .
the Radon-Nykodym derivatives 1) = j—f;, @ = 4 je. densities with respect to a fixed

o € M;(X). Then, v
v = ulev = [ lp(a) = v(@)lo(dr).
This can be used to model uncertainty as follows. Define
Br(n) 2 {v € Mi(D) : |v — pllrv < R}
and, consider a subset of Bg(11) defined by
Bro(1) = {v € Br(p) 1 v << 0,4 << o} C Bg(p).

Then,

Br.(n) = {90 € Li(0),p > 0,0 —a.s.: /2 lp(x) — (x)|o(dr) < R} :

Thus, under the absolute continuity of measures the total variation distance reduces to L
distance. Robustness via L; distance uncertainty on the space of spectral densities is investi-
gated in the context of Wiener-Kolmogorov theory in an estimation and decision framework
in [47,57].

Relative Entropy.

The relative entropy of v € M;(X) with respect to € M;(X) is a mapping H(-|-) :
M;(2) x M1(X) — [0, oo] defined by [23]

H )A leog(g—;)dy, if v<<pu and log(g—;) € Li(v)
U =
a 400, otherwise.

It is well known that H(v|u) > 0,Vv,u € My(X), while H(v|u) = 0 < v = p. Total

variation distance is bounded above by relative entropy via Pinsker’s inequality [45], giving

lv — plrv < 2H(v|p), v,pe Mi(S). (2.5)
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This can be used to model uncertainty as follows. Given a known or nominal probability

measure 1 € M (X)) the uncertainty set based on relative entropy is defined by
A ~ ~
Ap(p) = {v e My(D): H(v|u) < R}, R€0,00).

Clearly, the uncertainty set determined by the total variation distance dry, is larger than that
determined by the relative entropy. In other words, in view of Pinsker’s inequality (2.5), for

any r € [0, 00)

2

{1/ eM(E),v<<p:H(p) < %

beBat={ve M)yl <}
Hence, even for those measures which satisfy v << p, the uncertainty set described by rela-
tive entropy is a subset of the much larger total variation distance uncertainty set. Moreover,
by Pinsker’s inequality, distance in total variation of probability measures is a lower bound
on their relative entropy or Kullback-Leibler distance.

Over the last few years, relative entropy uncertainty model has received particular atten-
tion due to various properties (convexity, compact level sets), its simplicity and its connection
to risk sensitive pay-off, minimax games, and large deviations [2, 15, 44,48, 56]. Recently,
an uncertainty model along the spirit of Radon-Nikodym derivative is employed in [42] for
portfolio optimization under uncertainty. Unfortunately, relative entropy uncertainty mod-
eling has two disadvantages: 1) it does not define a true metric on the space of measures;
2) relative entropy between two measures is not defined if the measures are not absolutely
continuous. The latter rules out the possibility of measures v € M;(X) and 1 € M1 (%),
>} C ¥ to be defined on different spaces’. It is one of the main disadvantages in employing
relative entropy in the context of uncertainty modelling for stochastic controlled diffusions
(or SDE’s) [46]. Specifically, by invoking a change of measure it can be shown that rel-
ative entropy modelling allows uncertainty in the drift coefficient of stochastic controlled
diffusions, but not in the diffusion coefficient, because the latter kind of uncertainty leads to

measures which are not absolutely continuous with respect to the nominal measure [48].

Kakutani-Hellinger Distance.

Another measure of distance of two probability measures which relates to their distance in

variation is the Kakutani-Hellinger distance [30]. Consider v € M;(X), p € M;(X) and a

fixed measure ¢ € M;(X) such that v << o, u << o and define ¢ 2 g—g, Y = j—g. The

3This corresponds to the case in which the nominal system is a simplified version of the true system and is

defined on a lower dimension space.
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Kakutani-Hellinger distance is a mapping dxpy : L1(0) X Li(0) — [0, 00) defined by

d3c (v, 1) (\/ap \/w(:c)>2da(x). (2.6)

Indeed, the function dxy given by (2.6) is a metric on the set of probability measures. A

related quantity is the Hellinger integral of measures v € M;(X) and p € M;(X) defined
by

Hwp) £ [ \e@(@)o(), @)

which is related to the Kakutani-Hellinger distance via d% (v, i) = 1 — H(v, j1). The rela-
tions between distance in variation and Kakutani-Hellinger distance (and Hellinger integral)

are given by the following inequalities:

21~ Hw, ) <l — plrv < [8(1— H(w, ). (2.8)
lv = plrv < 2y1 = H?(v, ), (2.9)
25y (v, 1) <|v — plrv < V8din(v, p). (2.10)

The above inequalities imply that these distances define the same topology on the space of
probability measure on (X, B(X)). Specifically, convergence in total variation of probability
measures defined on a metric space (X, B(3), d), implies their weak convergence with re-
spect to the Kakutani-Hellinger distance metric, [30]. In [27], the Hellinger distance on the
space of spectral densities is used to define a pay-off subject to constraints in the context of

approximation theory.

Levy-Prohorov Distance.

Given a metric space (3,B(X),d), and a family of probability measures M;(¥) on
(3, My(X)) it is possible to "metrize” weak convergence of probability measure, denoted
by B, = P, where {P, : n € N} € M;(X), P € M;(X) via the so called Levy-Prohorov
metric denoted by dp(v, 1) [23]. Thus, this metric is also a candidate for a measure of prox-
imity between two probability measures. The Levi-Prohorov metric is related to distance in

variation via the upper bound [30],
dep(v,p) <min{||lv — pl||lrv, 1}, ¥V v e My(2), p € My(2).

The function defined by L(v, 1) = max {dpp(v, 1), drp(1, v)}, is actually a distance metric

(it satisfies the properties of distance).
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In view of the relations between different metrics, such as relative entropy, Levy-Prohorov
metric, Kakutani-Hellinger metric, etc, it is clear that the extremum problems under investi-
gation will give sub-optimal solution to the same extremum problems with distance in varia-
tion replaced by these metrics. An anthology of other distances and distance metrics related

to total variation distance can be found in [23].






Extremum Problems

In this chapter, we investigate extremum problems with pay-off being the total variation
distance metric defined on the space of probability measures, subject to linear functional
constraints on the space of probability measures, and vice-versa; that is, with the roles of
total variation metric and linear functional interchanged. Utilizing concepts from signed
measures, the extremum probability measures of such problems are obtained in closed form,
by identifying the partition of the support set and the mass of these extremum measures on
the partition. Throughout the derivations we make extensive use of lower and upper bounds
of pay-offs which are achievable. The results are derived for abstract spaces; specifically,
complete separable metric spaces known as Polish spaces, while the high level ideas are also
discussed for denumerable spaces endowed with the discrete topology. The results of this

part include:
e characterization of the properties of the extremum problems under investigation;

e characterization of extremum measures on abstract spaces, and closed form solutions

of the extremum measures for finite alphabet spaces;
e convexity and concavity properties of the extremum solutions;

e simulations which illustrate the different scenarios of the extremum solution of the

various problems, and an application to the area of information theory.

31
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3.1. Problem Formulation

In this section, we will introduce the extremum problems we investigate in this chapter.
Let (X, dyx) denote a complete, separable metric space and (X, 53(3)) the corresponding
measurable space, where B(X) is the o-algebra generated by open sets in X. Let M;(X)
denote the set of probability measures on B(X). The total variation distance' is a metric [22]
dry : M1(2) x M;(3) — [0, 00) defined by

drv(a, B) = | — Blrv = sup Y |a(F) — B(F)] (3.1)

PeP(X) Fep

where o, € M;(X) and P(X) denotes the collection of all finite partitions of ¥. With
respect to this metric, (M (X), dry) is a complete metric space. The total variation distance
is a true metric, hence it is a measure of difference between two distributions, v, u € M;(X).
By the properties of the distance metric then |v— |7y < |v|7v+|plrv = 2, hence |- |7y is
further restricted to the interval [0, 2]. The two extreme cases are |- |7y = 0 implying v = y,
and || - |rv = 2 implying that the support sets of v and p denoted by supp(v) and supp(u),
respectively, are non-overlapping, that is, supp(~) N supp(x) = 0. In minimax problems
one can introduce an uncertainty set based on distance in variation as follows. Suppose the
probability measure ¥ € M;(X) is unknown, while modeling techniques give access to
a nominal probability measure ;1 € M;(3). Having constructed the nominal probability
measure, one may construct from empirical data, the distance of the two measures with
respect to the total variation distance | — pf7y. This will provide an estimate of the radius
R, such that |[v — u|ry < R, and hence characterize the set of all possible true measures
v € M;y(X), centered at the nominal distribution 1 € M;(X), and lying within the ball of
radius R, with respect to the total variation distance | - |7v. Such a procedure is used in
information theory to define strong typicality of sequences. Unlike other distances used in
the past such as relative entropy [2,15,44,48,56], quantifying uncertainty via the metric || |7

does not require absolute continuity of measures>

, 1.e., singular measures are admissible, and
hence v and i need not be defined on the same space. Thus, the support set of ; may be
> C ¥, hence (X \¥) = 0 but (X\X) # 0 is allowed. For measures induced by stochastic
differential equations (SDE’s), variation distance uncertainty set models situations in which

both the drift and diffusion coefficient of SDE’s are unknown.

I'The definition of total variation distance can be extended to signed measures (see Chapter 2).
2y € M, () is absolutely continuous with respect to 1 € M (X), denoted by v << p, if u(A) = 0 for

some A € B(X) then v(A) = 0.
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Define the spaces
BC(%) = {Bounded continuous functions ¢ : ¥ — R : ||{|| 2 sgg [U(z)| < oo}
BCH(T) £ {t e BO(): £ >0}
BM(Y) 2 {Bounded measurable functions ¢ : ¥ — R : ||/|| < oo}
BM*™(Z) 2 {t € BM(X): (>0}
C (%) = {Continuous functions £ : ¥ — R : ||{|| < oo}
CH(S)2{teC(x): >0}
Note that, BC'(X), BM (X) and C'(3) endowed with the sup norm || 2 SUp,ey, |[(2)], are
Banach spaces [22]. We derive the maximizing measure for { € BC™(X) or BM*(X).

However, the results can be generalized to real-valued functions ¢ € L (3, B(X),v),

the set of all B(X)-measurable, non-negative essentially bounded functions defined v

> |

a.e. endowed with the essential supremum norm ||{||, = v-ess sup,cy{(x)
infaen;, Supgeac [[€(x)|], where N, = {A € B(X) : v(A) = 0}.

Before we proceed with the formulation of the extremum problems, we introduce first two

main definitions.

Definition 3.1. Given a fixed nominal distribution ;1 € My (X) and a parameter R € [0, 2],
define the class of true distributions by

B(n) 2 {v € Mi(9) s Iv ~ plrv < R} (32)
and the average pay-off with respect to any v € Br(u) by
L,(v) & / Uz)v(dz), €€ BCHE) or BM*(D). (3.3)
)

Definition 3.2. Given a fixed nominal distribution p € M, (X) and a parameter D € [0, c0),
define the class of true distributions by

o(D) 2 {u € M(T) : / z)w(de) < D} . (€ BCYE) or BMT(Z) (34
by
and the total variation pay-off with respect to the true probability measure v € Q(D) by

Lo(v) £ v — plrv-. (3.5)

3.1.1. Maximization Problems

In this section we introduce the maximization problems under investigation®.

3In all these optimization problems we assume that the solution exists.
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Problem 3.1. Find the solution of the extremum problem
DHR) 2 sup Li(v) = sup / ((z)v(dx), VR €][0,2]. (3.6)
vEBR(1) veMy(D):lv—plrv <R 72
Problem 3.1 is a convex optimization problem on the space of probability measures. In
the context of minimax theory, Problem 3.1 is important in minimax stochastic control, es-
timation, and decision. Such formulations are found in [2, 15, 44,48, 56] utilizing relative
entropy to describe a class of models, and in [47,57] utilizing L, distance to describe a class

of power spectral densities.

Problem 3.2. Find the solution of the extremum problem

R*(D) = sup Ly(v) = sup [v—ulrv, YD e€0,00).  (3.7)
veQ(D) vEML(D): [, (x)v(dz) <D

Problem 3.2, i.e., R (D), is the inverse mapping of Problem 3.1, i.e., D*(R), and hence
the solution of D" (R) gives the solution of RT(D). D*(R) is investigated in [50] in the
context of minimax stochastic control, following an alternative approach which utilizes large
deviation theory to express the extremum measure by a convex combination of a tilted and the
nominal probability measures. The two disadvantages of the method pursued in [2,15,44,56]
are the following. 1) No explicit closed form expression for the extremum measure is given,
and as a consequence, 2) its application to dynamic programming is restricted to a class of
uncertain probability measures which are absolutely continuous with respect to the nominal

measure ((3) € My (X).

3.1.2. Minimization Problems

In this section we introduce the minimization problems under investigation.

Problem 3.3. Find the solution of the extremum problem
A

D (R)E inf Li(v)= inf /
veEBR (1) veMy(Z):|lv—p|rv<R JS

(z)v(dr), VR E€I0,00). (3.8)

Problem 3.3 is important in approximating a class of probability distributions or spectral
measures by reduced ones. In fact, the solution of (3.8) is obtained precisely as that of
Problem 3.1, with a reverse computation of the partition of the space Y and the mass of the

extremum measure on the partition moving in the opposite direction.
Problem 3.4. Find the solution of the extremum problem

R (D)2 inf Ly(v)= inf lv— plry, VD eE[0,00)  (3.9)
veQ(D) vEMi(D): [, £(z)v(dw)<D

whenever [s ((z)u(dz) > D. If [xl(x)u(dx) < D then v* = p is the trivial extremum
measure of (3.9).
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Problem 3.4 is important in the context of approximation theory, since distance in variation
is a measure of proximity of two probability distributions subject to constraints. It is also
important in spectral measure or density approximation as follows. Recall that a function
{R(1): — 00 < 7 < oo} is the covariance function of a quadratic mean continuous and

wide-sense stationary process if and only if it is of the form [60]

R(7) = /o:o e*™ T F(dv),

where F'(-) is a finite Borel measure on R, called spectral measure. Thus, by proper nor-
malization of F'(-) via Fy(dv) 2 %F(du), then Fx(dv) is a probability measure on
B(R), and hence Problem 3.2 can be used to approximate the class of spectral measures
with moment estimates belonging to the class described by inequality constraints. Spectral
estimation problems are discussed extensively in [26-29,43], utilizing relative entropy and
Hellinger distances, under moment estimates involving equality constraints. However, in
these references, the approximated spectral density is absolutely continuous with respect to
the nominal spectral density; hence, it can not deal with reduced order approximation. In

this respect, distance in total variation between spectral measures is very attractive.

3.1.3. Related Extremum Problems

Problems 3.1-3.4 are related to additional extremum problems which are introduced below.

1. Let v and i be absolutely continuous with respect to the Lebesgue measure so that
o(x) = L (z), Y(x) 2 9 (1) (e.g., ¢(-), ¥(-) are the probability density functions of
v(-) and p(-), respectively). Then, ||v — u||rv = [ |¢(x) — ¢ (x)|dz and hence, (3.6)
and (3.7) reduce to

D*(R) = sup /ﬁ(x)cp(x)dx
)

peLy: [, lp(@)—t(a)|de<R

D)= s [ fp(e) - v(@)lds.
peLr: [ Uz)p(x)du<D

2. Let X be a non-empty denumerable set endowed with the discrete topology including
finite cardinality ||, with M (X)) identified with the standard probability simplex in
RI>I, that is, the set of all |Y|-dimensional vectors which are probability vectors, and
U(z) & —logv(z),z € T, where {v(z) : 2 € S} € My(Z), {u(z) : v € T} €
M (¥). Then, (3.6) is equivalent to maximizing the entropy of {v(z) : x € X}
subject to total variational distance metric constraint defined by

DY (R)= sup H(v), Hv)==>_log(v(z))v(z). (3.10)
VEMI(E):Y s Iv(z)—p(z)|<R zED



36 Extremum Problems

Problem (3.10) is of interest when the concept of insufficient reasoning (e.g., Jayne’s
maximum entropy principle [34,35]) is applied to construct a model for v € M (%),
subject to information quantified via the total variational distance metric between v and
an empirical distribution p. In the context of stochastic uncertain control systems and
its relation to robustness, Problem (3.10) with the total variational distance constraint

replaced by relative entropy distance constraint is investigated in [3,51].

3.2. Characterization of Measures on Abstract Spaces

This section utilizes signed measures and some of their properties to convert Problems 3.1-
3.4 into equivalent extremum problems, and to characterize the extremum measures on ab-
stract spaces. We describe the results using abstract spaces to avoid excluding measures
defined on Borel spaces.

Let My,,(2) denote the set of finite signed measures. Then, any n € M, (X) has a
Jordan decomposition {77+7 77*} such that » = n* —n~, and the total variation of 7 is defined

by [n]zv 2 n™(X) + n~(X). Define the following subset

For £ € MY, (2), then £(X) = 0, which implies that £7(X) = £7(X), and hence £1(X) =
(X)) = "5“% For any v, i € M;(X) then & 2y- p e M2, (3) and hence

E=w—pwr—Ww-—p = -¢.

3.2.1. Equivalent Formulation of Maximization Problems

In this section we investigate maximization Problems 3.1 and 3.2.

Equivalent Formulation of D (R)

Before we proceed with the equivalent formulation of Problem 3.1, we discuss first some of

its properties.

Lemma 3.1. Consider Problem 3.1. Then
1) D*(R) is a non-decreasing concave function of R.
2) If R < Ruax,

D*(R)= sup /E 0(2)v(dz) G.11)

lv—plrv=R



3.2 Characterization of Measures on Abstract Spaces 37

where Ry, is the smallest non-negative number belonging to [0, 2] such that D" (R)

is constant in [Rpax, 2].

Proof. 1) Suppose 0 < Ry < Ry, then forevery v € By, (1) we have |v—pu|7y < Ry < Ra,
and therefore v € B, (1), hence

sup l(x)v(de) < sup ((x)v(de)

VEBRl (:u‘) z VEBRQ(:LL) z

which is equivalent to D™ (R;) < DT(Ry). So D™(R) is a non-decreasing function of R.
Now consider two points (Ry, DY (R;)) and (R, D*(R2)) on the linear functional curve,
such that vy € Bpg, (1) achieves the supremum of (3.6) for Ry, and 15 € Bpg, (1) achieves
the supremum of (3.6) for Ry. Then, |, — p|ry < R; and |vo — pf7v < Ry. For any
A € (0,1), we have

[Avr+ (1= Mo = plrv < Mpr = pllrv + (1= Az = plov < AR+ (1= AR, = R.

Define v* 2 vy + (1= Nwa, R 2 AR, + (1 — A)Ry. The previous equation implies that
v* € Br(p), hence DT (ARy + (1 — A\)Rg) >[5, {(x)v*(dz). Therefore,
D*(R)= sup | [ twyw(da) > / ()" (d) = / U(z) O (dz) + (1 — Nia(dz))
s s

vEBR(1)

_ )\/ 2)vi(de) + (1 — )\)/Ef(x)l/g(dx) — AD*(Ry) + (1 — \)D*(Rs).

So, D*(R) is a concave function of R.
2) The right side of (3.11), say D*(R), is a concave function of R. But D*(R) =
Sup p< g D (R') which completes the derivation of (3.11). |

Consider the pay-off of Problem 3.1, for / € BC™(X). The solution is based on finding

an upper bound which is achievable. The following inequalities hold.

A

L.(v) 2 /E (z)v(dx) = /E () (v(de) - p(dz)) + /E () p(dz)
D [ ta) (¢H(dr) =€ (dn)) + [ t@)n(da)

- / 2)eH(dr) / (2)e (dx) + / 0(z)p(dz)

<sup€( EH () — 1nf€ —|—/

zeX

Ewm>@wammﬁﬁ+éawm

TEN TeEX

- {supe(x) - iggax)} ”%TV + /Z 0(x)p(dz) (3.12)

TEX
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where (a) follows from the Jordan decomposition of (v — ), (b) follows due to ¢ € BC* (%),
(c) follows because any { € MY, (3) satisfies (2) = £ (2) = 3[¢|rv. For a given
p € M;(X) and v € Bg(p) define the set

Br(p) = {€ € M0, () 1 € = v — v € My(2), [€]rv < RY.
The upper bound in the right hand side of (3.12) is achieved by £* € By (1) as follows. Let
Lext2 {x eX:l(x) =sup{l(y):y e X} = Emax}
o € Do 2 {x €Y :l(z)=inf{l(y) :yeX} = Emin} :
where ¥ denotes the closure* of Y. Take
€ (dx) = v*(dr) — p(de) = 5 (8o(dr) — ., (d)) G.13)

where J,(dx) denotes the Dirac measure concentrated at y € 3. This is indeed a signed
measure with total variation |{*[ry = [|v* — plry = R, and [y l(z)(v* — p)(dz) =
% (Lmax — min)- Hence, by using (3.13) as a candidate of the maximizing distribution then
the extremum Problem 3.1 is equivalent to

/Eé(m)u*(dm) = ]; {sup l(x) — ;Ielg E(m)} +/E€(x)u(dx) (3.14)

TEL

where v* satisfies the constraint |£*| 7y = |v* — p|7v = R, it is normalized v*(X) = 1, and
0 <v*(A) < lonany A € B(X). Alternatively, the pay-off [, ¢(x)v*(dx) can be written as

D*(R) = /E (@) (dz)

_ / bt (d) + | () + / (D)uldr).  (3.15)
30 o S\Z0UZg
Hence, the optimal distribution v* € Br(11) satisfies
/ZO v (dz) = p(2°) + ]; € [0,1] (3.16a)
R
/E v*(dr) = j(¥o) — 5 € [0,1] (3.16b)
v (A) = p(4), VAC X\ XU X,. (3.16¢)

For any R € [0,2] such that v*(X%) < 1 and v*(3y) > 0, then (3.16) is the maximizing
distribution while the resulting pay-off is (3.15). When these conditions are violated the
measure v* on the sets X%, ¥ and X \ X% U 3 remains to be identified so the maximizing
measure * is characterized for all R € [0, 2]. The complete characterization of the extremum

measure v* will be given in the Section 3.3.1 building on the discussion of this section.

4Closure of a set X consists of all points in 3 plus the limit points of X.
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Remark 3.1.

(i) For u € M(X) which do not include point mass, and for f € BCH(X), if ¥° and
o are countable, then (3.16) is n(3°) = (o) = 0, v*(%) = 0, v*(X°) = £,
V(E\ZOUD) = p(E\ 20U, — &

(ii) The first right side term in (3.14) is related to the oscillator semi-norm of f € BM (X)
called global modulus of continuity defined by (2.3). Clearly, for f € BM™(X) then

osel ) = sup | ()| = inf | /(a) = sup f(a) — inf f (o).

Corollary 3.1. The value of Ry,.x described in Lemma 3.1 is given by
Ruax = 2 (1 —u (20)) : (3.17)

Proof. We know that Dt (R) < sup,cy, {(z), VR > 0, hence D" (Rpax) can be at most

SUp,es, {(x). Since DT (R) is non-decreasing then

DY (Rmax) < DT(R) < supl(z), forany R > Rp.y. (3.18)

TEX

Consider a v that achieves the supremum in (3.18). Let u(3°) and v(X°) to denote the
nominal and true probability measures on -°, respectively. If v(X°) = 1 then v(3\ X°) = 0.

Therefore,

lv = plrv = 3 v(z) —p(@)+ > [v(z) — p)|

2EX0 TeX\X0
@ S v(@) —pl)|+ D |- p@)
zEX0 zET\XO0
2 v - Y p)+ Y u@)
€0 £€EXN0 zeT\X0
=1— Z wu(x) + Z p(z)
X0 zeX\X0
=2 (1 -3 M(@) =2 (1 - ("))

where (a) follows due to v(X \ 3°) = 0 which implies v(z) = 0 forany x € ¥\ X°, and (b)
follows because v(z) > u(x) for all z € X°. Therefore, Ryax = 2(1 — p(X°)) implies that
D (Ryax) = Supgey, (). Hence, DY (R) = sup,cy, {(x), for any R > Rpax. |
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Equivalent Formulation of R+ (D)

Before we proceed with the equivalent formulation of Problem 3.2, we discuss first some of

its properties.

Lemma 3.2. Consider Problem 3.2. Then
1) R*(D) is a non-decreasing convex function of D.
2) If D < Diax,

R*Y(D) = sup v — plrv (3.19)
fz: {(x)v(dz)=D
where D,y is the smallest non-negative number belonging to [0, 00) such that R~ (D)

is constant in [Dyax o0 )-

Proof. 1) Suppose 0 < Dy < Dy, then Q(D:) C Q(Ds), and sup,eqp) [V — plrv <
SUD,.cq(p,) |V — #lrv which is equivalent to R*(D;) < R*(D;). Hence, R*(D) is a non-
decreasing function of D. Convexity is obtained by using the fact that R* (D) is the inverse
mapping of DT (R). So, R (D) is a convex function of D.

2) The right side of (3.19), say R*(D), is convex function of D. But, R*(D) =
sup < p R (D') which completes the derivation of (3.19). [

Consider the constraint of Problem 3.2, for / € BCt(X). By following the same proce-
dure as in Section 3.2.1, we obtain (3.14), that is

/Zé(x)u*(dx) = ]2%{ sup £(z) — ;Ielgf(x)} + /Ef(x)u(dx). (3.20)

ISP

Solving the above equation with respect to R = R, the extremum Problem 3.2 is equivalent

to

2(D - Jy tw)pld))
R*(D) = (3.21)

{supf(m) — inf K(x)}

=23 TEL

where v* in (3.20) satisfies the constraint [y, {(z)v*(dx) = D, it is normalized v*(X) = 1,

and 0 < v(A) < 1onany A € B(X). We can now identify D, described in Lemma 3.2.

Corollary 3.2. The value of D,.y described in Lemma 3.2 is given by

Dmax = Emax . (3 22)
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Proof. We know that R (D) < 2 forall D > 0, hence R* (D) can be at most equal to 2.
For the extreme case R (D) = 2, we have that v and . are disjoint in the sense that > can
be partitioned into two disjoint subsets ¥:° and 3 \ X° such that v puts all of its probability
mass in 2%, that is, (X°) = 1 and hence v(X \ X°) = 0, and p puts all of its in 3\ X9, that
is, u(X\ X°) = 1 and hence p(X°) = 0.

Without loss of generality, assume that 4 puts all of its probability mass in ¥\ X°. Let
Dinax = liax, then it is obvious that v(3°) = 1, and hence R (Dp.y) = 2. Since R (D) is
non-decreasing then R (D) < RT(D) < 2 forany D > Dy.x. Hence, RT(D) = 2 for
any D > Dpax. [ |

3.2.2. Equivalent Formulation of Minimization Problems

In this section we investigate minimization Problems 3.3 and 3.4.

Equivalent Formulation of D~ (R)

Before we proceed with the equivalent formulation of Problem 3.3, we discuss first some of

its properties.

Lemma 3.3. Consider Problem 3.3. Then
1) D~ (R) is a non-increasing convex function of R.
2) If R < Ruyax,

DI(R)= nf /E 0(z)v(dx) (3.23)

where R,y is the smallest non-negative number belonging to |0, 2| such that D~ (R)

is constant in [Rpax, 2].
Proof. 1) Suppose 0 < R; < Ry, then forevery v € Bg, (1) we have |v—p| v < Ry < Ra,
and therefore v € By, (1), hence

inf /Eé(x)y(dx) > inf /Eﬁ(x)y(dx)

vE€BR, (1) vEBR, (1)

which is equivalent to D~ (R;) > D~ (Ry). So D~ (R) is a non-increasing function of R.
Now consider two points (R;, D(R;)) and (R, D*(R3)) on the linear functional curve,
such that v; € Bpg, (1) achieves the infimum of (3.8) for Ry, and v, € Bp, (1) achieves the
infimum of (3.8) for R,. Then,

we have

v1 — plrv < Ry and |vs — plry < Rs. Forany A € (0, 1),

[Avr+ (1= Mo = plrv < Mpr = pllrv + (1= Az = plov < AR+ (1= AR, = R.
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Define v* 2 Avy 4+ (1 — Nwe, R 2 ARy + (1 — \)Rs. The previous equation implies that
v* € Br(p), hence D~ (AR; + (1 — A\)Ry) < [5, (x)v*(dz). Therefore,
D(R)= inf v(dz) < / / () O (d) + (1 — N(dz))
>

VEBR

— A/ 2y (de) + (1 — /\)/Zﬁ(x)yg(dzr) —AD~(R)) + (1 — YD (R»).

So, D~ (R) is a convex function of R.
2) The right side of (3.23), say D~ (R), is convex function of R. But D~ (R) =
inf < g D*(R') which completes the derivation of (3.23). [ |

Consider the pay-off of Problem 3.3, for ¢ € BC™(X). The solution is based on finding a

lower bound which is achievable. The following inequalities hold.

Li(v) £ [ t@w(de) = | () (v(dr) = p(d >) / {(w)u(d)
@ [ t@) (£ (dn) = € (dn) + [ t(a)n
= [ ta)* (dw) - /<> <dw>+/ (w)u(dz)
giggf(x)f*( )—i}elgf +/
9 g 1) g ) €11 /
_ {gf( )—igge } |5”TV +/ (3.24)

where (a) follows from the Jordan decomposition of (v — ), (b) follows due to ¢ € BC*(Y),
(c) follows because any { € MY (X) satisfies {7(2) = £ (X) = $]¢|rv. For a given
€ My () and v € Bg(u) define the set

Br(n) 2 {€ € M0,(2): € =v — v € Mi(D), [élrv < R}
The lower bound in the right hand side of (3.24) is achieved by £* € B r(p) as follows. Let
L el {az eX:l(x)=sup{l(y):y €T} = Emax}
zo € o 2 {x €Y l(z)=inf{l(y):y €L} = émin} :
Take

& (dw) = v*(dx) — p(dr) =

o (0ag () — B0 () (3.25)

where J,(dx) denotes the Dirac measure concentrated at y € 3. This is indeed a signed

measure with total variation |{*[ry = v — plry = R, and [y l(z)(v* — p)(dz) =
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% (min — Imax ). Hence, by using (3.25) as a candidate of the minimizing distribution then

the extremum Problem 3.2 is equivalent to

/Eé(x)y*(dx) = ];){ ;relgﬁ(x) — sup E(x)} + /Eﬁ(w)u(dx) (3.26)

TEX

where v* satisfies the constraint [§* |7y = |v* — p|rv = R, itis normalized v*(X) = 1, and

0 <v*(A) < lonany A € B(X). Alternatively, the pay-off [5, ¢(z)v*(dx) can be written as

D (R) = /2 0(z)v* (dz)

— / bt (dz) + | ot (d) + / () uldz).  (3.27)
30 Y\20US,

Yo

Hence, the optimal distribution v* € Br(11) satisfies

/E v (dz) = u(X°) + ? € [0,1] (3.28a)
/E v*(dx) = (o) - ]; e 0,1] (3.28b)
V(A) = p(A), YAC T\ XU, (3.28¢)

For any R € [0,2] such that v*(3y) < 1 and v*(X°) > 0, then (3.28) is the minimizing
distribution while the resulting pay-off is (3.27). When these conditions are violated the
measure v* on the sets X°, ¥y and ¥ \ X% U ¥ remains to be identified so the minimizing
measure * is characterized for all R € [0, 2]. The complete characterization of the extremum
measure v* will be given in the Section 3.3.4 building on the discussion of this section. Next,

we identify R, described in Lemma 3.3.

Corollary 3.3. The value of R,,.x described in Lemma 3.3 is given by

Rmax = 2(1 - M(EO)) (329)

Proof. We know that D~ (R) > inf,ex ¢(x), VR > 0, hence D~ (Ry.x) can be at least
inf,ex £(x). Since D~ (R) is non-increasing then inf,cx (z) < D™ (R) < D™ (Rpax), for
any R > Rp.x. Consider a v that achieves this infimum. Let 11(%g) and v(X) to denote the

nominal and true probability measures on X, respectively. If v(3) = 1 then v(X\ Xy) = 0.
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Therefore,

lv = plry = > (@) —p@)l+ 3 |v(@) = p()

€0 zeX\Xo
(@) ZE: lv(x) — p(x)| + z\: | — u(z)
® Zz v(z) — ZE () + Z\ ()
=1-> wx)+ > plx)

€Y zeX\Xo
_2<1—ZM ) (1 —u(>))

where (a) follows due to v(X \ 3y) = 0 which implies v(z) = 0 for any x € ¥ \ g, and (b)
follows because v(z) > p(z) for all z € Xg. Therefore, Ryax = 2(1 — (X)) implies that
D™ (Rpax) = inf,ex £(z). Hence, D~ (R) = inf,ex ¢(x), for any R > Rpax. |

Equivalent Formulation of R~ (D)

Before we proceed with the equivalent formulation of Problem 3.4, we discuss first some of

its properties.

Lemma 3.4. Consider Problem 3.4. Then
1) R~ (D) is a non-increasing convex function of D.
2) If D < Diax,

R (D)= inf  |v—p|rv (3.30)
fzé(mu x)=D

where Doy is the smallest non-negative number belonging to [0,00) such that
R~ (D) =0 forany D € [Dpax, ).

Proof. 1) Suppose 0 < D; < D,, then Q(D;) C Q(D;), and inf,cqp,) [v — plrv >
inf,cqQ(p,) |V — p|rv which is equivalent to R™(D;) > R~ (D). Hence, R~ (D) is a non-
increasing function of D. Now consider two points (D, R~ (D;)) and (D3, R~ (D)) on
the total variation curve. Let D = AD; + (1 — \)Dy, v* = vy + (1 — Mg and vy €
Q(Dy), v2 € Q(Dy) such that |y — pf|ry = R™(Dy) and |va — pfry = R™(D3). Then,
Js l(x)v1(dx) < Dy and [, {(z)va(dz) < D,. Taking convex combination leads to

A/ 2y (de) + (1 — /\)/Zf(x)yg(dx) <ADi+(1-ANDy=D
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and hence v* € Q(D). So,
RO(D)= inf |v—plrv < v —plrv = [Avn + (1= ANve — pfrv
veQ(D)
< AMyr = pllrv + (1= AN)|ve = plry = AR™(Dy) + (1 = A)R™(Dy).

This shows that R~ (D) is convex function of D.
2) The right side of (3.30), say R~ (D), is convex function of D. But, R~ (D) =
inf p<p R~(D') which completes the derivation of (3.30). [ |

Consider the constraint of Problem 3.4, for / € BC*(X). By following the same proce-
dure as in Section 3.2.2, we obtain (3.26), that is

/Ef(:)s)l/*(dx) = ]; {éggé(as) — ilelgf(:v)} + /2 (x)p(dx). (3.31)

Solving the above equation with respect to R the extremum Problem 3.4 (for D <

Js £(x)u(dx)) is equivalent to
{:};relg {(x) — sup f(sc)}

TEN

(3.32)

where v* satisfies the constraint [y, ¢(z)v*(dz) = D, it is normalized v*(3) = 1, and 0 <
v(A) <1lonany A € B(X). We can now identify D,,,, described in Lemma 3.4.

Corollary 3.4. The value of D.,., described in Lemma 3.4 is given by

Dunas = [ £w)p(d).

Proof. We know that R~ (D) > 0 for all D > 0 hence R~ (Dyax) can be at least zero.
Let Dpax = s {(z)u(dz), then it is obvious that R~ (Dpay) = 0. Since R~ (D) in non-
increasing, then 0 < R~ (D) < R~ (Dyax), for any D > D,... Hence, R~ (D) = 0, for any
D > Dipax. |

3.3. Characterization of Measures for Finite Alphabets

This section uses the results of Section 3.2 to compute closed form expressions for the ex-
tremum measures v* for any R € [0, 2], when 3 is a finite alphabet space to give the intuition
into the solution procedure. This is done by identifying the sets 3%, ¥, ¥\ 3° U X, and the
measure v* on these sets for any R € [0, 2]. Although this can be done for probability mea-

sures on complete separable metric spaces (Polish spaces) (X, dx), and for £ € BM™*(X),
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¢ € BCH(X), LT (X2, B(X),v), we prefer to discuss the finite alphabet case to gain addi-
tional insight into these problems. At section 3.3.7 we shall use the finite alphabet case to
discuss the extensions to countable alphabet and to ¢ € LT (3, B(X), v).

Consider the finite alphabet case (3, M), where card(X) = |X| is finite, M = 2*I. Thus,

v and p are point mass distributions on .. Define the set of probability vectors on X by

A ,
PS) 2 {p=(preopm) ipe 2 00 =0 LS. S p= 1] (333)
i€s
Thus, p € P(X) is a probability vector in ]RE'. Also let ¢ 2 {ly,..., lx|} so that ¢ €
]R'E‘ (e.g., set of non-negative vectors of dimension |X|). Next, we introduce some basic

definitions which will be used for the solution of the extremum problems.

Define the maximum and minimum values of the sequence {/1,. .., ¢z} by
A A
lrnax = max l;, lpin = min ¢;
€Y i€x

and its corresponding support sets by
SOL €N b= b}, S0 2 {i €514 = by}

For any remaining sequence, {/; : 1 € X\ X°U X}, and for 1 < r < |\ X0 U X define

recursively the set of indices for which ¢ achieves its (k + 1) smallest value by

k

U zj_l)}}, ke{l,2,....,r} (3.34)

J=1

Zké{iEZ:&—min{Ea:QEE\EOU(

and the set of indices for which ¢ achieves its (k + 1) largest value by

k

U zjl)}}, ke{l,2,....r} (3.35)

Jj=1

Zké{Z’EZ:&:maX{ﬁa:OzGZ\ZOU(

till all the elements of 3 are exhausted (i.e., k is at most |X \ X% U 3y|). Define the corre-

sponding values of the sequence of sets in (3.34) by

e(zk) 2 min G ke{l2,.. ..} (3.36)
iE€X\Z0U (Uf:1 Ej_1>

and the corresponding values of the sequence of sets in (3.35) by

2

max Gy, ked{l,2,...,r} (3.37)

ie2\20u<uj:1 2]’—1)

¢ (%)

where 7 is the number of the support sets which is at most | \ 3% U 3|; for example, when

k = 1, £(21> = miniez\zouzo & and 6(21) = maXiez\Eouzo éi, when k = 2, 6(22> =
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min;esysousyus, i and £ (X?) = max;essous,ust 4, etc. Furthermore, if £; < fp < --- <
Oy then X0 = {|X]}, 8p = {1} and 5y = {k + 1}, BF = {|Z| — k} fork = 1,2,...,|3| -
2. Note that, (3.34) and (3.36) will be used exclusively for the solution of maximization
Problems 3.1 and 3.2, while (3.35) and (3.37) will be used exclusively for the solution of

minimization Problems 3.3 and 3.4.

3.3.1. DT (R): The Finite Alphabet Case

Suppose v € P(X) is the true probability vector and p € P(X) is the nominal fixed probabil-

ity vector. The extremum problem reduces to

D(R) 2 max 3l = max S . (3.38)

1
VGBR(:“) iex VG]P E) ZzeE ‘Vl MZ‘SR fT=>

Next, we apply the results of Section 3.2 to characterize the optimal v* for any R € [0, 2].
By defining, &; 2yi— pii=1,... %] and £ € M?_(3), Problem 3.1 can be reformulated

as follows.
max ZE v; — Z&Mz + max ZE &. (3.39)

vEBR (k) €Y i€y feBR(M) €Y

Note that ¢ € B(p) is described by the constraints

a2V G <R, Y6=0, 0<&+m <1, Vies. (3.40)

i€X €Y

The positive and negative variation of the signed measure £ = v — u € MY _(X) are defined
by {7 = max{¢{,0} and £~ = max{—¢&, 0}. Therefore,

Y&=2 & =386, Ylal=Y&+> & (3.41)

= iex = = = iex
and hence
= 2 2

e — —Yien & + Yies & _

o
—. 343
5 5 (3.43)

1€X

In addition,

Mg =Y 08" => g (3.44)

1€ 1€ 1€

The following theorem characterizes the solution of Problem 3.1.
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Theorem 3.1. The solution of the finite alphabet version of Problem 3.1 is given by

D+(R) = gmaxl/*(20> + éminV*<EO) + i €<Ek)y* (Ek) (345)

k=1

where the optimal probabilities are given by

VENEY =S o (3.46a)
iex0 iex0 2

V() 2 Y v = ( S i — 2) (3.46b)
€Yo 1€Xg

i A . o k +\ +

I/(Zk)—ZVZ-—(Zm—(z—Z Z,ul)) (3.46¢)
1€X PEX 7j=1 7:62]‘_1

o =min (R, Rua);  Ruax 2201 = 3 ) (3.46d)

1ex0
with k = 1,2,...,r and r is the number of ¥y, sets which is at most |2\ 3° U S|

The solution of Problem 3.1 is obtained by identifying the partition of Y into disjoint sets
{3° %,%1,...,%} and the measures on this partition. The main idea is to express the
total variation distance constraint as a summation of the positive and negative variation of
a signed measure, and then to find upper and lower bounds on the probabilities of X° and
¥\ X0, which are achievable. Utilizing the fact that the positive and negative variation parts of
the total variation distance have equal mass concentrated on them, closed form expressions
of the probability measures, on these sets, which achieve the upper and lower bounds are
derived (i.e., using (3.41), then (3.42) holds).

In the following Lemma upper and lower bounds which are achievable are obtained. These

they will be used for the derivation of Theorem 3.1.

Lemma 3.5. Consider Problem 3.1.
(a) Upper Bound.

S < b (5) (3.47)

1€X

The bound holds with equality if

S m+s<1 (3.48)
€20 2
S =2 (3.48b)
1€X0 2

& =0 for iex\ X" (3.48¢)
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(b) Lower Bound.
Case 1. If Yiex, i — 5 = 0 then
Z£§ > Lrmin () . (3.49)
i€X
The bound holds with equality if
S -5 >0 (3.50a)
i€X0 2
S =12 (3.50b)
i€X0 2
& =0 for i€ X\ . (3.50c)
Case 2. Ifo:l Yien,_, Wi — 5 < 0foranyk € {1,2,...,r} then
ST 0Em > (k) (—Z > uz>+Z > b (3.51)
€D Jj=1li€¥; 1 Jj=1ie¥; 1
Moreover, equality holds if
Z & = Z Wi, forall j=1,2,... k (3.52a)
7;623'—1 7:62]'_1
k
Se=(5-2 % w) (3.52b)
1€X 7j=1 i62j71
i o
S>> -5 =0 (3.52¢)
j=0i€x; 2
& =0 forall i€ ¥\ SoUXU...UXy. (3.52d)

Proof. Part (a) and Part (b), case 1, follows from Section 3.2.1 (equivalent formulation of

DT (R)). For Part (b), case 2, we proceed as follows. Consider any k € {1,2, ...

we show that inequality holds. From Part (b), case 1, we have that

> L& = min ¢ > &

) k
1€X\ U?:lzj—l JEX\ szlzjfl 1€X\ U?:lzj—l

,7}. First,

SNONEEEY f[zﬁﬂ)(fo—i 2 §;>.

€ =132, _
€D\ U;‘?:lzj_l e J et

Hence
k

Ses -5 ¥ e 235 T w)

iex j=liex; 4
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which implies

S e > (s (2—2 ) M)+z S b

IEX Jj=liex;_ Jj=1li€¥; 1

Next, we show under the stated conditions that equality holds.

k
UL = L&+ Y s+ Y LE

€X j=lieX; 1 1€X ) . k )

Moo HUS) Y&

I
[~

=
—~

j=1 €31 €Ty,
k
jzliGZ], j 1162] 1

Proof of Theorem 3.1. From Lemma 3.1, and Corollary 3.1, we know that for R < R,
where Rpax = 2(1 — u(X?)), the total variation constraint holds with equality, that is,
l€]|rv = R. Let o = ||||7y. From (3.39) and (3.40), Problem 3.1 is given by

=Yl + max > (& (3.53)

=) £€BR(1) jex

where & € By(p) is described by the constraints

a2Y G =R Y &=0, 0<&+m<1, Viex. (3.54)
€N €Y
To maximize (3.53) we employ (3.44). It is obvious that an upper and a lower bound must
be obtained for 3¢5, ;4 and 3¢, (i€, respectively.
From Lemma 3.5, Part (a), the upper bound (3.47), holds with equality if conditions given
by (3.48) are satisfied. Note that, }";c50 p; + 5 < 1 is always satisfied and from (3.48b) we
have that 3=,c50 13 = 3,50 p1; + 5 and hence the optimal probability on > is given by

ENY =Y mte (3.55)

iexo iex0

From Lemma 3.5, Part (b), case 1, the lower bound (3.49), holds with equality if conditions
given by (3.50) are satisfied. Furthermore, from (3.50b) we have that },cs, v = > s i —
5 and condition (3.50a) must be satisfied, hence the optimal probability on . is given by

E@é§:ﬁ:<§:m yf (3.56)

SN 1€30
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The extremum solution for any R < R.x, under equality conditions (3.48) and (3.50) is
given by
D+<R) = {gmax - mln} + Zéll’bl (357)

€N

Lemma 3.5, Part (b), case 1, characterize the extremum solution for > ;s ft; — % > 0.
Next, the characterization of extremum solution when this condition is violated, that is, when
Zle Yiex, , Mi — 5 < Oforany k € {1,2,...,7}, is discussed.

From Lemma 3.5, Part (b), case 2, the lower bound (3.51), holds with equality if conditions
given by (3.52) are satisfied. Furthermore, from (3.52b) we have that

Su=Y (5 Yy i) (3.58)

1€ 1€ j= 11627 1

and conditions § — Z;?:l Zz’ezj_l w; > 0 and (3.52c) must be satisfied, hence the optimal
probability on X, is given by

Ek>éi622kv:= <iezzk“i_(_;@ezz i) )+. (3.59)

The extremum solution for any R < R.., under equality conditions (3.48) and (3.52) is

given by

= Z&fj - Z&‘fi— + Z@Mz‘

€Y 1€X €Y
:gmax<2) Ek <_Z Z /’L’L>+Z Z gzﬂz‘i‘zgluz
J=lieX; Jj=lie¥; 1 i€X

For R € [Ruax, 2], Lemma 3.1, states that D (R) is constant. Indeed for a = ||¢||ry =
Ruax = 2(1 — p(3°)) equality conditions of Lemma 3.5, Part (a), become

St =l Y& =75, & =0frien\" (3.60)
iexo i€exo
and hence
3 ui—%:o, S & =2 & =0forie X (3.61)
1eX\X0 ieX\X0

Therefore, 3 ;cxns0 & = Y iemxo i4; and hence § = p; forall @ € X \ XY, The extremum
solution for any R € [Ryax, 2| is given by

=S4 -+ L Y ng = Y e+ b

i€n i€ (N 1ex0 1€X\X0 i€
(%
- Emax <2> - Z Ez,uz + Zéz,uz = gmax (1 - Z Mz) + Z gzll’z - gmax
1€X\X0 €D IS 1€x0

where (a) follows from (3.60) and (3.61). [
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3.3.2. RT(D): The Finite Alphabet Case

Consider the finite alphabet version of Problem 3.2, that is

A
RY(D) = max ||y — = max V; — ;. 3.62
(D)2 s =l = xS (3.62)

The solution of (3.62) is obtained from the solution of Problem 3.1, by finding the inverse
mapping or by following a similar procedure to the one utilized to derive Theorem 3.1.

Below, we give the main theorem.

Theorem 3.2. The solution of the finite alphabet version of (3.62) is given by

=3 — i, (3.63)

1€

where the value of R™ (D) is calculated as follows.

(1) If
k r
> Cax (Z Z ity Mi) 3N i (3.64a)
=lieyd;_ iex0 j=ki€x;
and
k r
D < lpax (Z e Nz‘) + 3N b (3.64b)
j=04ex; iexo j=k+1iex;
then
k T
2 (D—fmax Z Mi—f(zk)z Z Mi—z Z fz’,uz')
+ o iex0 J=1li€%; 1 j=ki€x;
RY(D) = TN (3.65)
(2) If
D S max mln Z ,uz + Z gz,uz (366)
SN 1EX
then

RT(D) = e (3.67)

gmax - gmin
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The optimal probabilities are given by

(20 2 Z v = Z i + « (3.68a)
iex0 iex?
+
V) ESY v =Y m—a (3.68b)
SN i€X0
k \ F
* A *
V(Ek):ZVz':(ZMi—(Oé—Z > Mz') ) (3.68¢)
€T €Ty, j=14ie¥;_1
o = min (R*(D), 21— Y m)) | (3.68d)
iex0
where k =1,2,... 1 and r is the number of 3y, sets which is at most |2\ X% U Xg|.
Proof. For the derivation of the Theorem see Appendix B.1. |

3.3.3. Example

This example demonstrates the inverse mapping relation of maximization Problems 3.1 and
3.2. The optimal solution is found by implementing Theorem 3.1 and 3.2 for a fixed value
of R and D, respectively.

Let ¥ = {1,2,3} and for simplicity consider an ascending sequence of non-negative
lengths ¢ : ¥ —— [0,00), with corresponding nominal probability vector u € M;(%).
Specifically, let ¢ = {{(1),4(2),£(3) : ¢(1) = 4,4(2) = 6,£(3) = 8} and p =
{n(1), 1(2), 1(3) = (1) = 2, u(2) = 2, u(3) = 2}. The sets which correspond to the maxi-
mum, minimum and the remaining length are equal to X% = {3}, ¥y = {1} and 3, = {2},

respectively. We proceed first with the solution of Problem 3.1.

Let R = 1. By implementing (3.46) we have that, & = min (%,1 - ,u(3)> =
min (%, 1— %) = &, and the optimal probabilities are given by
2 1 3 2 I\t 1
* 0\ __ _ = - - — _ +_ (2 _ - — _
s () =u@ ta=cti=2  rE) =@l - =(3-7) =

)=o) = (5 (5-5)) =5

Hence, for R = %, the maximum pay-off (3.45), is given by
+ % (¥0 « . 3 1 2 40
DH(R) = L3)(50) + €(1)* (o) + £2)v*(51) = 8 <6> +4 <6> 16 <6) ==
Next, we proceed with the solution of Problem 3.2. Let D = %0. By implementing (3.66)

we get that,
(b — Coin) D pi+ > Ligi=(0(3) — €(1))pu(1) + (1) (1) +£(2) pu(2) +€(3),u(3):464>D

SN €D
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and hence, from (3.67)

40 _ 36
Ry~ AP Tistan) 208 -%) 1
Emax - gmin 8§—4 3

It is clear that the optimal probabilities given by (3.68) are equal to the ones already calcu-

lated for Problem 3.1.

3.3.4. D~ (R): The Finite Alphabet Case

Consider the finite alphabet version of Problem 3.3, that is
D™ (R)2 min liv; = min ;. (3.69)
( veEBR(u) g VEP(Z):ZieE \Vi—;ngiez;
The solution of (3.69) is obtained from that of Problem 3.1, but with a reverse computation
on the partition of ¥ and the mass of the extremum measure on the partition moving in the

opposite direction. Problem 3.3 can be reformulated as follows.

min Y liv; — Y L+ min > L& (3.70)

vEBR (1) €Y i€ 56BR( ) iex

Note that ¢ € By(p) is described by the constraints

aéZEiISR, > &=0 0<&+p <1, Viel. (3.71)

1€EX 1€X

Below, we give the main theorem.

Theorem 3.3. The solution of the finite alphabet version of (3.69) is given by

D™ (R) = linax?* (%) + Lnin* (X0) + Z (R (2F) (3.72)
k=1

where the optimal probabilities are given by

EY =% wmta (3.73a)
1€ 1€
+
Y02 3= (Z i — a) (3.73b)
=>4 =Y
k Tt
A .
:ZVi:(Zm—(a—z Z ,uz) ) (3.73¢)
ek iEXk j=1liexi-1
o = min(R, Rmax),  Rumax =200 = 3 p12) (3.73d)
i€X0

with k = 1,2,...,7 and r is the number of ¥-* sets which is at most |¥ \ X° U |

Proof. For the derivation of the Theorem see Appendix B.2. |
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3.3.5. R~ (D): The Finite Alphabet Case

In this subsection we provide the solution of Problem 3.4, by following the procedure utilized

to derive the solution of Problem 3.2. The extremum problem is defined by

A
R (D)= min ||lv— = min Vi — lil. 3.74
(D) = min |l — pllzy VGP(E)ZZ@MSDg\ pual (3.74)

The main theorem which characterizes the extremum solution of Problem 3.4 is given below.

Theorem 3.4. The solution of the finite alphabet version of Problem 3.4 is given by
R™(D) = _|v} — il (3.75)
i€x

where the value of R~ (D) is calculated as follows.

(1) 1f
k r
D> €mm(z domit Y Mi) + > > b (3.762)
Jj=0iexi i€X30 j=k+1icxi
and
k r
Dl Y X pit X))+ XS b (3.76b)
j=1icxi-1 €% j=kiexi
then
k T
IR SR 0D SID STED 99 oy
_ o €30 Jj=1liexi—1 Jj=kiexJ
R~ (D) = AT . 3.77)
(2) If
D Z (gmin — gmax) Z 9% + 261/1% (378)
1€x0 €Y
then

R~ (D) = 2<D _ EZE Mi) . (3.79)

émin - Emax

The optimal probabilities are given by

VENES =Y it (3.80a)

1€X0 i€Xg 2
N a\*t

VEN =Y = ( > i — ) (3.80b)

iex0 iex0 2
o A o k +\ +

V*(E):ZV;":(ZM—<2—Z Z,ul)) (3.80c)
iexk iexk Jj=liexi-1

o = min <R—(D), 21— Y m)) (3.80d)

i€X0

where k = 1,2,...,7 and r is the number of ¥ sets which is at most |\ 3° U 3|
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Before we proceed with the proof of Theorem 3.4, we give the following Lemma in which
lower and upper bounds, which are achievable, are obtained

Lemma 3.6. Consider Problem 3.4.

(a) Lower Bound.

> 6E" > b (5)-

(3.81)
The bound holds with equality if

> it

1€

> &=

1€X0

(3.82a)

M‘Q w\@

(3.82b)
§Z+ =0 for i€ ¥\ X. (3.82¢)
(b) Upper Bound.

Case 1. If 3 ies0 i — 5 2> 0 then

S

S 06T < L <)

(3.83)
The bound holds with equality if
S -2 >0 (3.84a)
i€x0 2
Y& == (3.84b)
1ex0 2
& =0 for iex\ X (3.84¢)
Case 2. IfZ;?:1 Yiesi-i i — § < 0forany k € {1,2,...,r} then:
S < o(=h (—Z 3 uz>+Z S b (3.85)
i€y J=liexi—1 Jj=liexi—t
Moreover, equality holds if
Z & = Z Wi forall j =12, ...k, (3.86a)
iexi—1 €xi—1
S =(5- Yy i) (3.86b)
iexk Jj=liexi-t
k
DD Hi—5 =0 (3.86¢)
J=04e37 2

& =0 forall ie2\Y'US,U...UXR (3.86d)
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Proof. Part (a) and Part (b), case 1, follows from Section 3.2.2 (equivalent formulation of
R~ (D)). The proof of Part (b), case 2, is similar to the proof given for Lemma 3.5, Part (b),

case 2, with appropriate changes on X* sets. |

Proof of Theorem 3.4. From Lemma 3.4, and Corollary 3.4, we know that for D < D,
where Dy = D ey Cilti, the average constraint holds with equality, that is
Dlivi=Y L& =Y &+ i =D
i€x i€x i€x €T
From Lemma 3.6, Part (a) and from Part (b), case 1, when equality conditions (3.82) and
(3.84) are satisfied we have that
o
o (£) b (3) 0
Solving the above equation with respect to o we get that
2(D = Yiex gi/ﬁi)‘
Crmin — Limax
Since (3.82a) is always satisfied, it remains to ensure that (3.84a) is also satisfied. By
substituting (3.87) into (3.84a) and solving with respect to D we get that if D >
(Limin — Cmax) Diexo i + Yies Lip; then R~ (D) is given by (3.79). Moreover, the optimal
probabilities given by (3.80a) and (3.80b) are obtained from (3.82b) and (3.84b), respec-
tively.

(3.87)

Lemma 3.6, Part (b), case 1, characterize the extremum solution for > ;cvo ft; — % > 0.
Next, the characterization of extremum solution when this condition is violated, that is, when
25:1 Siewi-1 i — 5 < O0forany k € {1,2,...,r}, is discussed.

From Lemma 3.6, Part (b), case 2, the upper bound (3.85), holds with equality if conditions
given by (3.86) are satisfied. Hence,

b (5 ) = 1= <—Z ) Mz>+2 Sl =D

Jj=liexi-1 Jj=1liexi-1

Solving the above equation with respect to o we get that

2(D — lnin Xies, i — C(5F) Sh_y Siesimn i — Yoy Yiew &ui) (3.88)
a= . .
Crnin — L(XF)
Substituting (3.88) into Z;‘?:l Yiesi-1 i — 5 < 0 and into (3.86¢) and solving with respect

to D we get that if

<Z Mi+Z#i>+ ZT: Z@Mi

k
j=0iexi 1€X0 j=k+1iexi
k

(Z MH‘ZM)#‘XT:Z&/M

j=1liexi-1 IS j=kiexi

- mm
— mln
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then R~ (D) is given by (3.77). Moreover, the optimal probability on ©* given by (3.80c) is
obtained from (3.86b).

For D € [Dyyax, 00), is straightforward that, the extremum measure is given by v* = p and
hence R~ (D) = 0. [

3.3.6. Example

This example demonstrates the inverse mapping relation of minimization Problems 3.3 and
3.4. The optimal solution is found by implementing Theorem 3.3 and 3.4 for a fixed value
of ? and D, respectively.

Let ¥ = {1,2,3} and for simplicity consider an ascending sequence of non-negative
lengths ¢ : ¥ —— [0,00), with corresponding nominal probability vector p € M;(%).
Specifically, let ¢ = {¢(1),4(2),4(3) : ¢(1) = 4,¢(2) = 6,((3) = 8} and u =
{n(1), 1(2), 1(3) = (1) = 2, u(2) = 2, u(3) = 2}. The sets which correspond to the maxi-
mum, minimum and the remaining length are equal to X% = {3}, ¥y = {1} and X! = {2},
respectively. We proceed first with the solution of Problem 3.3.

Let R = i By implementing (3.73) we have that, @ = min (g, 1— ,u(l)) =

3
min (l 1— %) = &, and the optimal probabilities are given by

3
67
+
« (w1 S A
V(Z)—(M(z)—(a—ﬂ(3))> _<6_(6_6> =5
Hence, for R = % the maximum pay-off (3.72), is given by

D(R) = ((3)* (Z°) + £(1)* (Zo) + £(2)* (=) = 8 (é) 4 (2) +6 (2) _ 362

Next, we proceed with the solution of Problem 3.3. Let D = %. By implementing (3.78)
we get that,

(i =) 3 11+ 3 Citi=(6(3) — £1)(3) + €)a(1) + UD)p(2) + L) pu(3) == <D

i€X0 iex 6

and hence, from (3.79)

20D = Yies i) 205 — %) 1
RU(D) = (f- R S S

It is clear that the optimal probabilities given by (3.80) are equal to the ones already calcu-
lated for Problem 3.3.
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3.3.7. Extension to Countable Alphabets

The statements of Theorems 3.1, 3.2, 3.3 and 3.4 are also valid for the countable alphabet
case, because their derivations are not restricted to > being finite alphabet.
It also holds for any ¢ € BC'*(X) as seen in Section 3.2.

The extensions of Theorems 3.1-3.4 to ¢ € L°" (3, B(X), v) can be shown as well; for
example, D (R) is given by

DY (R) = linaxV* (Z°) + Lunint (Z0) + > U(Ep)v*(Zk) (3.89)
k=1
where the optimal probabilities are given by

a+

V) = aE) +5, V() = (u(Eo) _ 2)
Vi (Sy) = (u(zk) - (f; _ iﬂ(ﬁj_l))+)+
a = min (R, Ruayx) Row 2 2(1 — u(2))

k is at most countable. We outline the main steps of the derivation. Forany n € N, ¢ €
BC* (X)) define ¢, 2 ¢ An (i.e., the minimum between ¢ and ), then £, € BC*(Y), and
for any v € Br(u) we have

sup Co(x)v(de) = ]; {Sup lp(x) — mf ln( } / lo(

vEBR(p) /X TEX

For any v € Bg(u), we obtain the following

/Zé(x)l/(dx) =sup [ {,(z)v(dx)

neN JX
< sup sup E (x)v(dx)
neEN veBg(p
= sup{ <sup€ — inf En(x)> +/ En(:p),u(dx)}
neN zED S z
< sup { (supé — inf fn($)>} +sup [ l,(z)p(dx)
neN (2 \zex z€X neN /%
R :
— ilelll\l) {2 (xléqz)ﬁ ;Ielg En(x)> } + /Ef(x)u(da:).

Hence,

sup (x)v(de) < };sup {sup lo(z) — ;Ielg En(x)} + /Eﬁ(x)u(dx).

vEBR(p) /X neN (zex
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Next, we show the reverse inequality. For any v € B (1), we have that

/E (z)v(dz) > /E On(@)(dz)
and therefore

sup ((x)v(dx) > sup lo(x)v(de)

vEBR(p) /2 vEBR(p) /2
R .
-2 {i‘ég af) — inf enm} n /E On(@)u(dr).

Since the above inequality holds for all n € N, then

i) > g mptate) ~ o) + g L e
= gilég {ilelg lp(x) — ;Ielg €n(:c)} + /2 l(x)p(dx).
Hence,
R .
Ves}:{rgﬂ) Eﬁ(m)u(daz‘) =— ilég {ilelg lp(x) — ;Ielg fn(x)} + /2 l(x)p(dx).

Utilizing the fact that sup,, .y Sup,es; £n = sup,|[fnllcor C||€)]oory = Infaen supyeac £(2),
N2 {A € B(Y) : v(A) = 0}, and similarly for the infimum) we obtain the results.

Remark 3.2. Consider the maximization sup,cp, ) Js{(v)v(dz), £ € BCT(X). Let
MIES (X)) denote the set of probability measures on Y with finite support. Since the set of
probability measures MY5(X) are dense in My(X) ( [11, Theorem 4] , see also Appendix
B.3), there exists a probability measure ;¥ with finite support {x, . . .,z } which approxi-
mates i € M1(X) and since { € BCT(X) then
. R : FS
/Eﬁ(a:)y (dx) = 3 sup l(x) — inf o Uz) p 4+ > )™ (Ay).

xe{A;:i=1,...,k} ze{Aii=1,...,

3.4. Examples

In this section, we illustrate through examples how the optimal solution of the different
extremum problems behaves, and in addition, we present an application to the area of infor-
mation theory. In particular, we present calculations through Example 3.4.1 for D*(R) and
R™(D), and calculations through Example 3.4.2 for R~(D) and D~ (R) when the sequence
(={l; Ly ... l,} € R% consists of a number of ¢;’s which are equal. We further present
calculations through Example 3.4.3 for D*(R), RT(D) and D~ (R), R~ (D) using a large
number of ¢;’s which are not equal. In Example 3.4.4, the results are applied to universal

lossless coding for a class of source distributions maximizing the entropy.
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3.4.1. Maximization Problems with a Number of Equal Lengths

LetY = {i:i=1,2,...,8} and for simplicity consider a descending sequence of lengths
(={0eR} :l =1l > ;=1L >Ul;5>lsg=1L; > (g} with corresponding nominal
probability vector p € Py (X). Specifically, let £ = [1,1,0.8,0.8,0.6,0.4,0.4,0.2], and p =
[%, B =3, %} . Note that, the sets which correspond to the maximum, minimum
and all the remaining lengths are equal to X° = {1,2}, %, = {8},%; = {7,6},2, =
{5},%25 = {4, 3}.

Fig.3.1a depicts the maximum linear functional pay-off subject to total variational con-
straint, D" (R), given by Theorem 3.1. Fig.3.1b depicts the maximum total variational pay-
off subject to linear functional constraint, R* (D), given by Theorem 3.2. Recall Lemma 3.1
and Corollary 3.1. Fig.3.1a shows that, D" (R) is a non-decreasing concave function of R
and also that is constant in [Ryax, 2], where Ryax = 2 (1 — p(XY)) = 1. Also, from Lemma
3.2 and Corollary 3.2, Fig.3.1b shows that, R" (D) is a non-decreasing convex function of
D and is constant in [ Dy, 00) Where Dyax = lmax = 1. Fig.3.1c depicts the optimal prob-
abilities as a function of the total variation parameter R. Note that, the optimal probabilities

are the same for both problems.

3.4.2. Minimization Problems with a Number of Equal Lengths

Let> = {i:7=1,2,...,8} and for simplicity consider a descending sequence of lengths
0 ={eR} :l =10 >0l =10 >l >Lls = l; > (3} with corresponding nom-
inal probability vector u € P;(X). Specifically, let ¢ = [1,1,0.8,0.8,0.6,0.4,0.4,0.2]
and p = {%, %, %, %, %, %, %, %} Note that, the sets which correspond to the maxi-
mum, minimum and all the remaining lengths are equal to X0 = {1,2},3, = {8}, X! =
{3,4},322 = {5},23 = {6, 7}.

Fig.3.2a depicts the minimum linear functional pay-off subject to total variational con-
straint, D~ (R), given by Theorem 3.3. Fig.3.2b depicts the minimum total variational pay-
off subject to linear functional constraint, R~ (D), given by Theorem 3.4. Recall Lemma 3.3
and Corollary 3.3. Fig.3.2b shows that D~ (R) is non-increasing convex function of R and
also that is constant in [Ryax, 2], where Ry = 2 (1 — u(Xg)) = 1.33. Also, from Lemma
3.4 and Corollary 3.4, Fig.3.2b shows that, R~ (D) is a non-increasing convex function of D,
D € [liin, > iex ijt;)- Note that for D < /.5, = 0.2 no solution exists and R~ (D) is zero in
[Dinax, 00) Where Doy = S5 £ip; = 0.73. Fig.3.2c depicts the optimal probabilities as a
function of the total variation parameter R. Note that, the optimal probabilities are the same

for both problems.
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Figure 3.1.: Optimal Solution of Maximization Problems with a Number of Equal Lengths:
(a) Linear functional pay-off subject to total variational constraint, D™ (R); (b)
Total variational pay-off subject to linear functional constraint, R*(D); and, (c)

Optimal probabilities.
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Figure 3.2.: Optimal Solution of Minimization Problems with a Number of Equal Lengths:
(a) Linear functional pay-off subject to total variational constraint, D~ (R); (b)
Total variational pay-off subject to linear functional constraint, R~ (D); and, (c)

Optimal probabilities.
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3.4.3. Extremum Problems with a Large Number of Not Equal Lengths

Let> = {i:i=1,2,...,50} and consider a descending sequence of lengths ¢ = {¢ € R’}
with corresponding nominal probability vector i € P;(X). For display purposes the support
sets are denoted by XY where z,y = {1,2,...,16}, though of course the subscript symbol
x corresponds to the support sets of Problem D*(R), RT(D) and the superscript symbol y
corresponds to the support sets of Problem D~ (R) and R~ (D). Let

(= [20 20 20 20 19 19 19 18 17 17 16 14 14 13 13 13 13 12 10 10 10 10

10999888888877654333333222211],

and

u:{%1532191614134654132522151612510157122312

5116821785121047169652018911168}/500.

Note that, the sets which correspond to the maximum, minimum and all the remaining
lengths are equal to X0 = {1—4}, 3 = {50,49}, %16 = {48 —45},%2° = {44—39}, 1 =
{38},,3% = {37}, %12 = {36}, 24 = {35,34}, 210 = {33 — 27}, 20 = {26 — 24}, 38 =
{23 — 19}, 37, = {18}, %8, = {17 — 14}, 3%, = {13,12},%1; = {11},%3, = {10 —
9}, 2%5 = {8}, 2%6 ={7-5}.

Fig.3.3a-b depicts the maximum linear functional pay-off subject to total variational con-
straint, D*(R), and the maximum total variational pay-off subject to linear functional con-
straint, R* (D), given by Theorem 3.1, 3.2, respectively. Fig.3.3c-d depicts the minimum
linear functional pay-off subject to total variational constraint, D~ (R), and the minimum
total variational pay-off subject to linear functional constraint, R~ (D), given by Theorem

3.3, 3.4 respectively.

3.4.4. Variable Length Lossless Coding for a Variation Distance Class

In this section we illustrate an application of Problem 3.1 to the well-known lossless com-
pression problem of finding uniquely decodable codes, which minimize the average code-
word length, knowing as Shannon codes [17]. However, instead of designing codes for a
simple probability distribution, we design codes for a class of probability distributions, also
known as universal codes [4].

Given a fixed nominal distribution @ € P(X) and distance parameter R € [0, 2], define

the average codeword length pay-off with respect to the true source probability distribution
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Figure 3.3.: Optimal Solution of Maximization and Minimization Problems with a Number

of Not Equal Lengths: (a) Linear functional pay-off subject to total variational

constraint, D (R); (b) Total variational pay-off subject to linear functional con-

straint, R (D); (c) Linear functional pay-off subject to total variational con-

straint, D~ (R); and, (d) Total variational pay-off subject to linear functional

constraint, R~ (D).

v € Br(p) C P(X) by

Ll(f, l/) é ZEZVZ

1EX

(3.90)

The objective is to find a prefix code length vector ¢* &€ Rm, satisfying Kraft inequality,

;e D%, where D corresponds to a D-ary code alphabet [17], which minimizes the max-

imum average codeword length pay-off defined by

A
Li(/,v") = max liv;
i ) vEBR(u) zezz

(3.91)
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for all R € [0,2]. By Theorem 3.1, (3.91) is equivalent to
Ly(¢ *)—E{ 14 'E}JrZé ;
i\ v) = 2 r?eaix 7 IZ%IXI]] ) P ili-
Moreover, by introducing Lagrange multipliers, the problem can be expressed as follows.

o AR
max min min {a(t —s)+ > &-ui}, =3 (3.92)

i€x
subject to the Kraft inequality and the constraints ¢; < t Vi € ¥ and ¢; > s, Vi € ¥. By
introducing the real-valued Lagrange multipliers \; associated with the constraint ¢; < {,
Vi € X, o; associated with the constraint /; > s, Vi € 3, and a real-valued Lagrange
multiplier 7 associate with the Kraft inequality, the augmented pay-oft is defined by
L4, p, N, 0, 7) = alt —s)+ > lipy —|—T(ZD‘€Z' - 1) Y Nl =)+ oi(s— ) .

€S €S €3 €T

The augmented pay-off is a convex and differentiable function with respect to ¢, ¢t and s.
Denote the real-valued minimization over ¢,t,s, A\, o, 7 by £*,t* s* \*, 0* and 7*. By the

Karush-Kuhn-Tucker theorem, the following conditions are necessary and sufficient for op-

timality.
BYi La(£7:u7t787)‘7 UaT)’EZZ*,)x:)\*,t:t*,s:s*,g:o*,T:T* = 0, Vi € Z,
@La(& 22 ta S, )\a g, 7_) ’fzé*,)\:)\*,t:t*,s:s*,a:a*,7':7'* = 07
L Ea 7t787)\a 3 =0* A=X* =*s:s*o’:a*7’:7’*:0>
Js (M UT)’K@,)\)\,tt, , ,
YD —1<0,
1€
T <ZD£§‘ — 1) =0, 7>0,
)
<o,
A —=t7)=0, A >0, Viey,
st =07 <0,

of (s =0)=0, o0f>0, VieX.

Differentiating with respect to ¢, the following equation is obtained:

0 .
ol La(& 22 )\7 T)’fZE*,)\Z/\*,t:t*,T:T* = Wi — T*D_Zi loge D + )\:< - O';k = O, VieXx (393)
which after manipulation, it becomes
ptoMTATO oy (3.94)

7*log, D
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Differentiating with respect to ¢ and s, the following equations are obtained:

0 * *
al"a(& My >\7 T)‘Zzé*,)\z)\*,t:t*,‘r:‘r* =0 — Z )\7, =0= Z )\1 = Q. (395)
€D 1EX
0
aﬁLa(& 2 )‘a T)|€:Z*,)\:)\*,t:t*,7':7'* =—a+ Z O-;( =0= Z 0';( = Q. (396)
s €D 1EX

When 7% = 0, (3.93) gives y; = 07 —\,Vi € X. Since o} = \f =0,Vi € ¥\ X0 U X, then
it is concluded that p; = 0. However, p; > 0, Vi € 3\ ¥ U X, and therefore, necessarily
7* > 0. Next, 7" 1s found by substituting (3.94) and (3.95) into the Kraft equality to deduce

7*log, D T7*log, D * t*log, D 71*log,D  71*log, D

S D = pi + AT =07 et | Yies N Xiex0; 1

€Y €Y

Therefore, 7" = logle - Substituting 7" into (3.94) yields

DY =+ X —of, i€X (3.97)

Let w; £ D%, ie., the probabilities that correspond to the codeword lengths ¢7; also, let
w= D" andw £ D~*". From the Karush-Kuhn-Tucker conditions \} - (¢} — t*) = 0 and
Af >0, Vi € ¥ we deduce the following. Forall i € X\ YOUYX, ¢ < tand ¢; > s; hence
A =0and o = 0. Forall i € ¥, ¢; < tand ¢; = s; hence A} = 0 and o] > 0. For all
i€ X% (; =tand(; > s; hence A} > 0 and o} = 0. Therefore, we can distinguish (3.97) in

the following cases:

D% =, i€ X\ XU, (3.98)
D™ =y —of, ie X, (3.99)
D% =pi+ A, e’ (3.100)

Substituting A} into (3.95) we have ;. (D_ff — ,ui) = q, and substituting w} = D% we
get

> (w) — ) =a. (3.101)

i€x
We know that A\ # 0 only when ¢; = t*; otherwise, w; = y,. Hence, we can see that

wf — p; = (w— ;)" and it is positive only when ¢ = t*. Hence, equation (3.101) becomes

Z (w — ui)+ = q, (3.102)

1€

where (f)* = max(0, f). This is the classical waterfilling equation [17, Section 9.4] and w

is the water-level chosen, as shown in Figure 3.4.
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If we also substitute the previously obtained expression of o into (3.96) we have >, s (ui —
D=4 ) — o, and substituting w} £ D% we get
> (i —wf) = a. (3.103)
i€x
Hence, substituting @w £ D~*, equation (3.103) becomes
S (-w) = (3.104)
i€x

In this example, the solution to a minimax average codeword length lossless coding prob-

weight

M1 M2 M3 Ha M5 He 7 symbol

Figure 3.4.: Example demonstrating the solution of the coding problem using a watefilling-

like fashion, where v* = {w, w, w, pu4, 15, w, w}.

lem for the class of sources described by the total variational ball is transformed into an
optimization one by finding the expression of the maximization over the total variational

ball. Subsequently, a solution is given in terms of a waterfilling with two distinct levels.

Remark 3.3. Note that the above solution can be used to approximate a high-dimensional
alphabet probability distribution i € P(X), by another lower-dimensional alphabet proba-
bility distribution v € P(X), ¥ C X by invoking Jayne’s maximum entropy principle [34,35],
subject to information quantified via the total variation distance between v € P(X) and
p € P(X), because of the following fact. Since all conditions of the Von-Neumann minimax
theorem [25] hold, then we have

min max E l;v; = max min E iy,
P 0. > 0.
(erPy, D1 vERRG) (T veBRG) RS Dot (G
(a)
= max E Civiler=—1050;, = max H(v). (3.105)

vEBR (1) = vEBR (1)
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where equality in (a) follows from the classical solution of Shannon codes [17]. Hence, the
solution of lossless coding for a variation class is equivalent to Jayne’s maximum entropy
Jormulation subject to total variation distance constraint. Thus, the approximated distribu-

tion is obtained by a waterfilling-like solution, as shown in Figure 3.4.

3.5. Summary

This chapter is concerned with extremum problems involving total variation distance metric
as a pay-off subject to linear functional constraints, and vice-versa; that is, with the roles
of total variation metric and linear functional interchanged. These problems are formulated
using concepts from signed measures while the theory is developed on abstract spaces. Cer-
tain properties and applications of the extremum problems are discussed, while closed form
expressions of the extremum measures are derived for finite alphabet spaces. The funda-
mental water-filling property and the partitioning of the extremum problems are also elabo-
rated. Finally, it is shown through examples how the extremum solution of the various prob-
lems behaves, and an application to the well-known lossless compression problem of finding

uniquely decodable codes, which minimize the average codeword length is presented.






Dynamic Programming with TV Distance

Ambiguity on a Finite Horizon

In this chapter we address optimality of stochastic control strategies on a finite horizon,
via dynamic programming subject to total variation distance ambiguity on the conditional
distribution of the controlled process. We formulate the stochastic control problem using
minimax theory, in which the control minimizes the pay-off while the controlled process,
maximizes it. By employing certain results of Chapter 3, the maximization of a linear func-
tional on the space of probability measures, among those probability measures which are
within a total variation distance from a nominal probability measure, we solve the minimax
stochastic control problem with deterministic control strategies, under a Markovian and a
non-Markovian assumption, on the conditional distributions of the controlled process. The

results of this part include:

e minimax optimization subject to total variation distance ambiguity constraint;

e new dynamic programming recursions, which involve the oscillator seminorm of the

value function, in addition to the standard terms;

e examples which illustrate the applications of our results.

71
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4.1. Problem Formulation

In this section, we describe the abstract formulation of the minimax problem under total

variation distance ambiguity.

4.1.1. Dynamic Programming of Finite Horizon Discounted-Markov
Control Model

A finite horizon Discounted-Markov Control Model (D-MCM) with deterministic strategies

is a septuple

=

D-MCM : <{Xi}:‘b:07 {U Yo {Ui(x) = i € 30 {Qi(das| iy, wimq) -
(Tic1,uio1) € Xy X U1}y, {fi}?—_ol,hma) (4.1)
consisting of the following.

(a) State Space. A sequence of Polish spaces (complete separable metric spaces) {X; :
i = 0,...,n}, which model the state space of the controlled random process {z; €
Xj ij,,n}

(b) Control or Action Space. A sequence of Polish spaces {U; : i = 0,...,n — 1},
which model the control or action set of the control random process {u; € U; : j =
0,...,n—1}

(c) Feasible Controls or Actions. A family {U;(z;) : x; € X} of non-empty measurable
subsets U; (x;) C U;, where U;(z;) denotes the set of feasible controls or actions, when
the controlled process is in state x; € A&, and the feasible state-actions pairs defined
by K; £ {(xl,u,) cx; € X, u; € L{,(zl)} are measurable subsets of X; x U;,7 =
0,...,n—1.

(d) Controlled Process Distribution. A collection of conditional distributions or stochas-
tic kernels Q;(dx;|x;—1,u;—1) on X; given (x;_1,u;—1) € K;o1 C Xy X U1, =
0, ...,n. The controlled process distribution is described by the sequence of transition
probability distributions {Q;(dx;|z;—1,u;—1) : (i1, ui—1) € Kj_1,0 =0,...,n}.

(e) Cost-Per-Stage. A collection of non-negative measurable functions f; : K; — [0, oo],
called the cost-per-stage, such that f;(x,-) does not take the value oo for each = €
X;,j =0,...,n— 1. The running pay-off functional is defined in terms of {f; : j =

0,...,n—1}
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(f) Terminal Cost. A bounded measurable non-negative function h,, : &X,, — [0, 00) called

the terminal cost. The pay-off functional at the last stage is defined in terms of /.
(g) Discounting Factor. A real number o € (0, 1) called the discounting factor.

The definition of D-MCM envisions applications of systems described by discrete-time
dynamical state space models, which include random external inputs, since such models give
rise to a collection of controlled processes distributions {Q;(dx;|x;_1,u;1):(x;_1,u;—1) €
K;_1,7=0,...,n}. For any integer j > 0, define the product spaces by Aj ; = foOXi and
Uop,j—1 = >< Z/{Z, and the discounted sample pay-off by

n—1

Fg (0, Uo, 1, U1,y - oy T, U1, Tp) £ fi(mg, ug) + o hy (). 4.2)
=0

The goal in feedback controlled optimization with deterministic strategies is to choose a

control strategy or policy g = {g; : 7 = 0,1,...,n — 1}, g; : Xoj x Upj—1 — U;(z;),

uf = gj(xd, 2, ... xf,ug,ui, ... uf_y),j =0,1,...,n —1so as to minimize the pay-off
functional
o’ )+ a"hy, (2 }:/
{jz_: fj J’ ] ( n> XoX X1 X...XXp,
F (ajO;uO('rO) xlaul(anxl) 7xn—17ungl(x07'rla'"axn—l)axn) (43)

Qo(deo)Ql(d$1|$o, ug(x0)) - Quldrn|Tn—1,up_1(T0, 71, . ., Tp1)).

Clearly, pay-off (4.3) is a functional of the collection of conditional distributions {Q;(-|) :
i =0,1,...,n}. Moreover, if this collection of distribution has countable support for each
(xi—1,ui—1),7 =0, ...,n, then each integral in (4.3) is reduced to a countable summation.

A Markov property on the controlled process distributions, i.e.,

Qi(d$i|xi_17 ui_1>:Qi(d'Zvi’l‘i—lv ui—1)7 v(l'i_lv ui_l) S X;;%)Kj7 1= 07 1a R L
under admissible non-Markov strategies, implies that Markov control strategies are optimal
[39]. Therefore, g; : X; — U;(x;). For (i,z) € {0,1...,n} x X, let V°(x) € R represent
the minimal cost-to-go or value function on the time horizon {7,i+1, ..., n} if the controlled

process starts at state x; = x at time ¢, defined by

VOx) &  inf { Z o f(x 9, uf) hn(xZ)} 4.4)

9k €U ()
k=

where E/ {-} denotes expectation conditioned on z{ = x. Consequently, it can be shown

that the value function (4.4) satisfies the following dynamic programming recursion relating
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the value functions V,°(-) and V£ (-) [39],

V(@) = a"hy(z), z€X, 4.5)
VO(z) = uelblllﬁx) {o/fi(x,u) + /Xm Vi(jrl(z)Q,;H(dz\x,u)}, r € X, (4.6)

Since the value function V°(z) defined by (4.4) and the dynamic programming recursion
(4.5), (4.6) depend on the complete knowledge of the collection of conditional distributions
{Qi(:]") i = 0,...,n}, any mismatch of the collection {Q;(:|-) : i = 0,...,n} from the
true collection of conditional distributions, will affect the optimality of the control strategies.
Our objective is to address the impact of any ambiguity measured by the total variation
distance between the true conditional distribution and a given nominal distribution on the

cost-to-go (4.4), and dynamic programming recursion (4.5), (4.6).

4.1.2. Dynamic Programming with Total Variation Distance Ambiguity

The objective of this chapter is to investigate dynamic programming under ambiguity of the

conditional distributions of the controlled processes

{Qz‘(d%'m—l, wi—1) t (Tio1,u-1) € Ki—1}> t=0,...,n.

The ambiguity of the conditional distributions of the controlled process is modeled by the
total variation distance. Specifically, given a collection of nominal controlled process dis-
tributions {Q¢(dx;|x;—1,u;—1) : (xri1,u;—1) € K;_1}, 4 = 0,...,n, the corresponding col-
lection of true controlled process distributions {Q;(dx;|z;—1,u;—1) : (z;-1,u;i—1) € Ki_1},
© = 0,...,n, 1s modeled by a set described by the total variation distance centered at the

nominal conditional distribution having radius R; € [0,2],7 =0, ..., n, defined by

BRi(Q?)(xi—la Ui—l)é{Qi(‘|$i—la Ui—l):|’Qi('|xi—17 Uz‘—l)—Qf('|$i—1, Ui—l)HTVSRi}-

The total variation distance model of ambiguity is quite general, and it includes linear, non-
linear, finite and/or countable state space models, etc, since no assumptions are impossed on
the structure of the stochastic control dynamical system model, which induces the collec-
tion of conditional distributions {Q;(-|-) : i = 0,...,n}, {Q¢(:|") : ¢ = 0,...,n}. Given
the above description of ambiguity in distribution, we re-formulate the value function and
dynamic programming recursion via minimax theory as follows.

For (i,z) € {0,1...,n} x A}, let V;(x) € R represent the minimal cost-to-go on the time

horizon {i,i + 1,...,n} if the state of the controlled process starts at state x; = x at time 1,
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defined by'

n—1
4 ; g j 9 9 n
Vi(z) = e1LI{1€ ) sup ]Ew{ > ol fi(@d,ud) + o hn(mz)}
x . .
hi 1 Q’““("I’“’“’:e%ky (?Z-&-l)(zk’uk) j=i
=..,M—

where [E{ , denotes conditional expectation with respect to the true collection of conditional
distribution {Qx(-|-) : kK = ¢,...,n}. Even in the above minimax setting the Markov prop-
erty of the controlled process distribution under an admissible non-Markov (i.e., feedback)
strategy implies that Markov control strategies are optimal. Moreover, the value function
satisfies the following dynamic programming recursion relating the value function V;(-) and
Viga(+), foralli =0,1,...,n — 1.

Vo(z) = a"h,(z), x€X,

Vi(z) = inf sup {aifi(:v,u)+ /X‘/iﬂ(z)QiH(dzm,u)}, r € X,

u€l;(z) Qit1(-lz,w)€BR, | (Q%,,)(x,u) i1

Based on this formulation, if V;, () is bounded continuous non-negative, we show that the
new dynamic programming equation involves the oscillator seminorm of the value function,
in addition to the standard terms.

In addition to the D-MCM, we will also discuss the general discounted feedback control
model (i.e., we relax the Markovian assumption). In summary, the issues discussed and

results obtained in this chapter are the following:

1. formulation of finite horizon discounted stochastic optimal control subject to condi-
tional distribution ambiguity described by total variation distance via minimax theory;
2. dynamic programming recursions for
a) discounted-feedback control model
b) nominal discounted-Markov control model
under total variation distance ambiguity on the conditional distribution of the con-

trolled process;

3. characterization of the maximizing conditional distribution belonging to the total vari-

ation distance set, and the corresponding new dynamic programming recursions;

4. applications of the finite horizon minimax problem to the well-known inventory con-
trol and machine replacement examples. Comparisons are included for the case for

which the total variation constraint is replaced by the relative entropy constraint.

! Assuming the inf sup solution exists. However, for finite alphabet spaces such solution exists.
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4.2. Minimax Stochastic Control

In this section, we first introduce the general definition of finite horizon Discounted-
Feedback Control Model (D-FCM) with randomized and deterministic control policies,
under total variation distance uncertainty (which includes the D-MCM introduced in Sec-
tion 4.1), and then we apply the characterization of the maximizing distribution of Section
3.2.1 and 3.3.1 to the dynamic programming recursion.

Define N 2 {0,1,2,...,n},n € N. The state space and the control space are sequences
of Polish spaces {X; : j = 0,1,...,n}and {U4; : j =0,1,...,n — 1}, respectively. These
spaces are associated with their corresponding measurable spaces (X;, B(X;)),V; € N7,
U;,B(U;)), Vj € N""L. Define the product spaces by X, 2 X"y Xi, Upn 1= XI5 U,
and introduce their product measurable spaces, (X, B(Xo.)), (Uo n—1, B(Uon—1)), respec-
tively, for n € N™. The state process is denoted by 2" = {z; : 5 =0,1,...,n}, and the
control process is denoted by u"~! £ {u; : j =0,1,...,n — 1}.

Given (Xy,,, B(Xo.)), (Uon—1,B(Uy,—1)) the Borel state and control or action spaces,
respectively, and the initial state distribution v(dx), we introduce the space Hy,, of admis-

sible observable histories by
H()’n = K() X Kl X ... X Kn—l X X, = X;L:_OIKZ' X Xn, n e N, HO,O = XO

where K; = {(x;, ;) : x; € X;,u; € U;(z;)}, denote the feasible state-action pairs, for i =

0,1,...,n — 1. A typical element hy,, € Hy,, is a sequence of the form
hon = (o, Ug, - -+ s Tty Un—1,Tn), (T5u) €Ky, i=0,...,n—1, =z, € AX,.
Similarly, introduce
Gomn = Xo XUy X .. X Xy XUy 1 X Xy = x10(X xUy) X X, n€EN
Goo = Hoo = Xb.

Thus, H,, is a sequence of Gy, for each n = 0,1,.... The spaces Gy, and H,
are equipped with the natural o-algebra B(Gy ) and B(H,,), respectively (and by Kol-
mogorov’s extension theorem they can be extended to B(G ) and B(Hy )). We shall use
the Borel space (H.., B(Hx)) as the main measurable space (€2, F). Next, we formulate the

definition of discounted feedback control model.

Definition 4.1. A finite horizon D-FCM is a septuple
D-FCM : (XO,naUO,n—la {Us(s) = i € X}y {Qu(dwy|a™ u' ™)

(I’i—17ui_1) € Xp,i—1 X Upi—1}i—o» {fi}?:_ol’ fin, Oé) 7
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consisting of the items (a)-(c), (e)-(g) of finite horizon D-MCM (4.1), while the controlled
process distribution in (d) is replaced by the non-Markov collection {Q;(dx;|z*=* ui™1) :
(le Zl)EX] OK}n

Next, we give the definitions of randomized, deterministic, and stationary control strate-

gies or policies.

Definition 4.2. A randomized control strategy is a sequence ™ = {m, ... To_1} of stochas-
tic kernels 7;(+|-) on (U;, B(U;)) conditioned on (Hy ;, B(Ho;)) (e.g., mi(du;|z*, u'™1) ) satis-
Jying

m(Us(xy) |2, u™) =1 forevery (2',u'™') € Hy;, i=0,1,...,n—1.

The set of all such policies is denoted by 11 ,,_,. A strategy 2m:i=0,...,n—1} €
11y, is called

(a) randomized Markov strategy if there exists a sequence { M)y i=0,...,n— 1} of
stochastic kernels 7w (-|) on (U;, B(U;)) conditioned on (X;, B(X;)) such that

mi (ot ) =7 (o), V(2 ut) € Hosy i=0,1,...,n— 1.
The set of randomized Markov strategies is denoted by HO e 1s

(b) randomized stationary Markov strategy if there exists a stochastic kernel 7°(-|-) on
(U, B(U)) conditioned on (X, B(X)) such that

(ot u ) = 70 wy), V(2w € Hyy i=0,1,...,n— 1.
The set of randomized stationary Markov strategies is denoted by TIS 15

(c) deterministic feedback strategy if there exists a sequence g = {9;:7=0,1,...,n—1}
of measurable functions g; : Xg;SKi X X; — U, such that for all (27, uw/~1) € Hy
j € N1 gi(wo, ug, 1,1, - . ., Tj_1,uj—1, ;) € Uj(z;), and ; (-|27,u!~1) assigns

mass 1 to some point in U;, that is,
T (Ai|xi,ui’1) = 14, (gi <xi,ui’1)) , VA, eBU;), i1=0,1,...,n—1,

where I 4,(-) is the indicator function of A; € B(U;).
The set of deterministic feedback strategies is denoted by l_I0 .15

(d) deterministic Markov strategy if there exists a sequence g = { gi:j=0,1,...,n—1}
of measurable functions g; : X; — U; satisfying g;(x;) € Z/Ij(xj)for all v; € X,
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j € N"' and 7;(-|2? ,w?~1) is concentrated at g;(x;) € U;(x;) for all (27, u’~') €

Ho;, j € N"1, that is,
i (Aila’ u' ™) = In, (g (), VA; € BU), i=0,1,...,n—1,
The set of deterministic Markov strategies is denoted by HOD’% n

(e) deterministic stationary Markov strategy if there exists a measurable function g :
X +—— U such that g(x;) € U(xy), Vo, € X, and (|27, u/™") assigns mass to

some point uj, V(z?,u/~') € Hyj, e.g.,
(A’ u ) = I, (g(y)), VA € BU), i=0,...,n—1.
The set of deterministic stationary Markov strategies is denoted by Hg;f_l.
Let H{fn,l denote the set of all deterministic policies, so that HOD’H,1 C Iy 1.

The relationship between the classes of control strategies or policies is as follows: Hg;f_l C
0fs ., c I, C Moy, OS5, € TPM, < O, C Hyuoy, and IIP5 |, C
nP)t, < nPF., C Mou-1. Thus, randomized feedback strategies or policies IIg,—1
contain all other classes of policies, and hence, are most general. On the other hand, sta-
tionary deterministic strategies or policies are contained in all other classes. According to
Definition 4.2, the set of control policies is non-empty, since we have assumed existence
of measurable functions g; : Ko ;1 x X; — U; such that Va7, v/~ € Ko; 1 x X},
g; (27, w1t € U;(X;),V5 € N1, Sufficient conditions for this to hold are in general ob-
tained via measurable selection theorems [32]. For denumerable set (countable alphabet) X’
endowed with the discrete topology any function is measurable.

Given a controlled process {Q; (-|z* !, w'™') : ("1, u'™') € Ko;_1};_, and a randomized
control process {m;(-|2z*, u' ") : (z',u'"') € Ko;_1 X X;}_, € I, and the initial proba-
bility vy(-) € M;(X,), then by Tonescu-Tulceu theorem [10] there exists a unique probability
measure Q7 on (€2, F) defined by

QZ(‘TO € AO;“’O € BOJ sy Tp—1 € An—17un—1 € Bn—laxn € An) =
Qo(d]?g)ﬂ'o(d’do’l'o) (%9 Ql(dfljl‘.’ﬁo, UQ>7T1<dU1’{El, Uo) X ...
® Qn_1(dry_1|2" 2 u" ) Ty (dtt_1 |21 u"?) @ Qp(day |z u™™h)  (4.8)

such that

QZ(.CEO - Ao) = I/(A()), AO - B(Xo)
Q7 (u; € Bjlho ;) = mi(Bjlhoj), Bj € BU;)
Q) (711 € Cjipalhoj,uj) = Qji1(Chralhoy, us),  Ciyr € B(Xjp).
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Given the sample pay-off

n—1

F§ (o, o, 1, U1, - ooy T, U1, Tp) 23 al fi(wguy) + () (4.9)
=0

its expectation is

Je! ¢!
EQ'{S {Fom(IOa UQs -+ Tp—1, Un—1, mn)} = /F07n(x07 UQs -+ Tp—1, Un—1, xn)

Qo(dl‘o)ﬂ‘o(dUOlfL‘Q) & Ql(dl'1|$(), Uo)ﬂl(dU1|l‘1, Uo) &R ...
® Qnr(drp_1|2" 2, u" D w1 (A1 ]2 u"?) @ Qp(day|z" 1 u™h).  (4.10)

Note that the class of randomized strategies II;,_; embeds deterministic feedback and

Markov strategies.

4.2.1. Variation Distance Ambiguity

Next, we introduce the definitions of nominal controlled process distributions (for finite hori-
zon D-FCM and D-MCM), and their corresponding ambiguous controlled process distribu-
tions.

For each m € IIPf |, # € I}, and = € 11’7, the nominal controlled process is

described by a sequence of conditional distributions as follows.

Definition 4.3. (Nominal Controlled Process Distributions). A nominal controlled state pro-
cesses {x9 =z, 2f,... a8 - e IPF |, 7 e PN, or m € IIf; |} corresponds to a

sequence of stochastic kernels as follows:

(a) Feedback Controlled Process. For every A € B(X}),
Prob(x; € A7 ) = Q?(A[xjfl,ujfl)
where Q2(Alx~", u/ ™) € Q(&;|Ko;-1),Vj € N7
(b) Markov Controlled Process. For every A € B(X}),
Prob(z; € Ala’~ /™) = Q5(Alxj_1,uj-1)
where Q3(Alzj_1,u;1) € Q(X;|K;1),Vj € NI
(c) Stationary Markov Controlled Process. For every A € B(X)
Prob(z; € Alz? ' w1 = Q°(Alxj_1,uj1)

where Q°(A|z;_1,uj_1) € Q(X|K).
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The class of controlled processes is described by the sequence of stochastic kernels,
{Qj(de|[L’j_1, Uj_1> € Q(Xj|KO,j—1 :7=0,... ,n}
belonging to a total variation distance set as follows.

Definition 4.4. (Class of Controlled Process Distribution) Given a nominal controlled pro-
cess stochastic kernel of Definition 4.3, and R; € [0,2],0 < i < n the class of controlled

process stochastic kernels is defined as follows:

(a) Class with respect to Feedback Nominal Controlled Process. Given a fixed Q5(-|-) €
Q(X;|Koj-1), 3 =0,1,...,n the class of stochastic kernels is defined by

B, (Q7) (@ u' ™) £ {Qi(d:vﬁmi_l,ui_l) :

Qi (™) — QI(aH w ||y < Ri}, i=0,1,...,n.

(b) Class with respect to Markov Nominal Controlled Process. Given a fixed Q5(-|-) €
Q(X;|K 1), j =0,1,...,nthe class of stochastic kernels is defined by

BRi(QZQ>($i_17Ui_1) = {Qi(dxi|$i_l,ui_1) g

Qi u' ™) — QY |wiy, i) || < Ri}; 1=0,1,...,n.

(c) Class with respect to Stationary Markov Nominal Controlled Process. Given a fixed
Q°(-|-) € Q(X|K) the class of stochastic kernels is defined by

Br(@")(x,u) £ {Q(dsl.w) ¢ Q| w) = Q"Cla, v < Bf.

Note that in Definition 4.4 (a), (b), although we use the same notation By, (Q?)(z"~!, u'~1)
these sets are different because the nominal distribution Q¢(-|-) can be of Feedback or
Markov form. The above model is motivated by the fact that dynamic programming involves
conditional expectation with respect to the collection of conditional distributions {Q;(:|)
€ Q(X|Kp;-1) : i = 0,...,n}. Therefore, any ambiguity in these distributions will affect
the optimality of the strategies.

4.2.2. Pay-Off Functional

For each m € TP}, or m € TIP}" | the discounted average pay-off is defined by

n—1

Jon(m,Qi i =0,...,n) = EQE{ > ol fiwg,uy) + a”hn(wn)} 4.11)

Jj=0
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where Eq;{-} denotes expectation with respect to the true joint measure Q7 (dz", du™")
defined by (4.8) such that Q;(-|z*~!, ™) € Bg,(Q9),7=0,1,...,n (e.g., it belongs to the
total variation distance ball of Definition 4.4).

Next, we introduce assumptions so that the maximization over the class of ambiguous

measures is well-defined.

Assumption 4.1. The nominal system family satisfies the following assumption: The maps
{fi : X xUj—R:j=0,1,...,n—1}, h, : X, — R are bounded, continuous and

non-negative.

Note that it is possible to relax Assumption 4.1 to lower semi-continuous non-negative
functions bounded from below. Next, for illustration purposes we introduce an example

based on discrete-time recursion dynamics and deterministic strategies.

Example 4.1. (Nominal Model) The nominal controlled processes is {x9 = x{,x{,... 29 :
u € H(Jff_l}, and corresponds to a sequence of stochastic kernels {szj‘xj o (dwla? ul)

j=0,1,...,n — 1}, functions {b; : X; xU; x W; — Xj41 : 5 =0,1,...,n— 1}, and
noise processes {w; : j = 0,1,...,n — 1} adapted to a filtration {Fy,; : i =0,...,n — 1}
such that the following hold.

1. Foreachj € N"71 w; is Fy j— measurable and {z{,z{, ... %} are generated by the
recursion
a9 =bj(zd,ud wy), af =0 (4.12)

which implies that if x is Foo—measurable then x? is Fo,j—1—measurable.

2. Forevery A € B(W;),j € N*!

Prob(w; € Alz?,w’) = Qu, (Alz],uj),  a.s. (4.13)

3. Prob(zf =x0) =1, VuelIll .

Notice that (4.13) assumes that the noise {w; : j € N""'} is correlated with the state and

control processes. It can be further simplified to an independent and identically distributed

9 49) —

sequence {w; : j € N""'} independent of x9, which then implies quj(dwﬂ%, 1) =

Q3 (dw;) for almost all (x],uj) € X; xU;, j=0,...,n— 1.
The ambiguous model is constructed as follows.
(Uncertainty Stochastic Model) Suppose {Go ; : j = 0,1,...,n — 1} is the true filtration

which is generated by some processes and that Fo; C Go, Vi € N"™1. We can model the
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class of true conditional distributions by, Qu,|g, ,(dw;|Go;) € Mi(W;), 0 < j < n —1,

such that they belong to variation distance class

B, (Q7,)(Go.) = {Qwi(dwi’go,i) Qu, (11Go) — Qu, (lxf, uf) |7y < Rz}7
R €02, i=0,1,....,n— 1.

The above model is motivated by the fact that the value function often involves con-
ditional expectation with respect to Q,(dw;|Gy;), and that the true noise in (4.12)
can be correlated with past information, such as, the information defined by Go; =

O{xkaukaxk-i-lauk-i-la s 7xi7ui}’ 0 < k < .

4.3. Minimax Dynamic Programming

In this section we shall apply the results of Chapter 3 to formulate and solve the minimax
stochastic control under finite horizon D-FCM and D-MCM ambiguities.

4.3.1. Discounted Feedback Control Model

Utilizing the above formulation, we define the minimax stochastic control problem, where
the maximization is over a total variation distance ball, centered at the nominal conditional
distribution Q¢(dz;|z* ', u'~') € Q(X;|Ko,_1) having radius R; € [0,2], fori =0,1,...,n.

Problem 4.1. Given a nominal feedback controlled process of Definition 4.3 (a), an admis-
sible policy set IIPT_ | and an ambiguity class Bg, (Q})(«* ', u"~"), k=0, ..., n of Defini-
tion 4.4 (a), find a 7 €IIf}_| and a sequence of stochastic kernels Qj(dxy|z" ', uF~") €
Br, (Q2)(z* 1 w1, k = 0,1, ..., n which solve the following minimax optimization prob-

lem.

Jon(m,Qr:k=0,...,n) = inf {

weIlIPF

O,n—1
n—1
k
sup EQg{ Z o fr(xd,ul) + a”hn(x%)}}. (4.14)
Qp(lzk=luk=l)eBpg, (Q)) (k=1 uk=1) k=0

k=0,1,....,n

Next, we apply dynamic programming to characterize the solution of (4.14), by first ad-

dressing the maximization. Define the pay-off associated with the maximization problem

L A A e —
Jon(m,Qr:k=0,...,n) = sup Jon(m, Qr : k=0,...,n).
Qu(lak—1 uk—1)eB R, (@) (k1 uk=1)
k=0,1,...,n
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For a given 7 € IIj))_,, which defines {g; : j = 0,...,n — 1}, and 7] = uf), 0,
denoting the restriction of policies in [k, m]|, 0 < k < m < n — 1, define the conditional
expectation taken over the events Gy ; = o{zf, ... ,xf,up, ..., ul} maximized over the class

Br, (Q9)(z* Y w1, k=3 +1,...,n,as follows [13,39]:

n—1
g A k g ,,9
Vi(u; uoqp Go3) = sup EQ,’J{ > " fi(zf, uf)
Qp(lzF=1 uk~1)eBp, (Q))(xk—1,uk=1) k=j
k=j+1,....,n

+ a”hn(a;gngw} (4.15)

where Eq-{:|Go;} denotes conditional expectation with respect to G ; calculated on the
probability measure Q7. Then, Vj(u[gjm_l], Go;) satisfies the following dynamic program-

ming equation [39],
Vi(uf 1> Goj) = sup {

Qj+1 ("xjvuj)eBR]'Jrl (Q?+1)($jvuj)

Ba,.ioran {00 i@ ) HVia (01 gsGog) )| @)

where Eq | (.j4,45)1} denotes expectation with respect to Q11(dz;41[Ko ;).

Next, we present the dynamic programming recursion for the minimax problem. Let
V;(Go,;) represent the minimax pay-off on the future time horizon {j,j + 1,...,n} at time
J € N} defined by

A .
Vi(Go,) = inf sup {
7r€I'Ij7R71 Qk(‘|zk717uk71)€BRk (QZ)(zkil,ukfl)
k=j+1,....,n

n—1
Eqp{ 3 a*felafuf) +a"h @IGos )| = int Vilut,, . G0y). (418)

k=j mTelin—1

Then by reconditioning we obtain

Vi(Goi) & inf su {
]( 07]) ueuad[j’nfl} Qk('mk_lv“k_l)eB}SC(QZ)(«Tk_lvuk_l)
k=j+1,....n
n—1
Eap{a/fy(ad,ul) + Bar{ 3 o filalul) + a"hn(a)lGoe1 {1Gos b (419)
k=j+1

Hence, we deduce the following dynamic programming recursion
Va(Gon) = a"hn(]) (4.20)
Vi(Go,) = inf sup {

wj €U (2) Qa1 (|9 wi)EBrr ., | (Q0 ) (w9 ud)

EQ, 41 (123w {a fi(x] Zj, g)‘f’v}ﬂ(go,gﬂ)}} 4.21)
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By applying the results of Section 3.2.1 and 3.3.1 to (4.20), (4.21) we obtain the following

theorem.

Theorem 4.1. Suppose there exist an optimal policy for Problem 4.1, and assume

Vig1(+): X j41 XUy j+—[0, 00) in (4.18) is bounded continuous in t€X; .y, j =0,...,n—1.

1) The dynamic programming recursion is given by

Vi(Gon) = a"hn(7) (4.22)
Vi(Go,y) = wanf {EQ§?+1 (Oéjfj(flf?> uj) + V}'+1(go,j+1)|go,j>
R; .
+ J( sup  Vit1(Goj,zj41) — inf - Via(Goy, %’H)) } (4.23)
Tj+1€Xj41 Tj41€X 41
Moreover,
Vi(Goj) = uéll/l{f(:c) EQ;H{O‘jJCj (@, uf) + Vj41(Go $j+1)|go,j} (4.24)
where, the optimal conditional distributions {Q} : j = 0,1,...,n — 1} are given by

Q;Jrl (‘)(j—:l|xj7 uj) = 5+1 (Xj—:l’x]a uj) + ]?H S [07 1]7 (J‘Jv UJ)EKOJ (425)
. o o . . . R o
Q41 (Al2?,w7) =Q91 (Ala?,w/), VACK; 1\ X} ,UX;, (a7, w))eKy,;  (4.27)

and ?

A J—
Xy = {ijrl € Xj11:Viu1(Goj, Tj1)=sup {Vjﬂ(go,j,yj+1)2yj+1€Xj+1}} (4.28)

N = :
X = {Ij+1 € Xj11:Vir1(Gos wj1)=inf {Vj—i-l(go,jvyj—i—l):yj—l-lexj—i-l}} (4.29)

2) The total pay-off is given by

Jon(m,QF :i=0,....,n—1)= sup EQO{VO(QO,O)}- (4.30)
Qo()€BR,(Q°)

Proof. 1) Consider (4.21) expressed in integral form

Vi(Go;) = inf {O‘jfj(ffjvuj)

u; €U; (x)

+ sup )/V;H(g&j, 20,41 (dz]a?, uj)}. (4.31)

Q]'+1('|mj7uj)€BRj+1 (Q;?le)(xjvuj
By applying (3.46) we obtain (4.22), (4.23), while (4.25)-(4.29) follow as well.
2) By evaluating (4.18) at ;7 = 0 we obtain (4.30). This completes the derivation. |

ZNote the notation X0 and ¥ in Chapter 3 is identical to the notation X’ jtrl and X, respectively.
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By Theorem 4.1, the maximizing measure is given by (4.25)-(4.27), and it is a functional of
the nominal measure. At this stage we cannot claim that the maximizing measure is Marko-
vian, and hence the optimal strategy is not necessarily Markov. Therefore, the computation
of optimal strategies using non-Markov nominal controlled processes is computationally in-

tensive. Next, we restrict the minimax formulation to Markov controlled nominal processes.

4.3.2. Discounted Markov Control Model

In this section we shall apply the results of Chapter 3 to formulate and solve minimax
stochastic control under finite horizon D-MCM ambiguity. The derivations of the results are
based on the classical results (without ambiguity on the controlled process) found in [54].

We define the minimax stochastic control problem as follows.

Problem 4.2. Given a nominal Markov controlled process of Definition 4.3 (b), an admis-
sible policy set Hé?f_l and an ambiguity class B, (Q%) ("1, u*~1), k=0, ...,n of Defini-
tion 4.4 (b), find a W*Eﬂgf_l and a sequence of stochastic kernels Q(dxy|z* 1, uk=1) €
Br, (Q2)(z*1 w1, k = 0,1, ..., n which solve the following minimax optimization prob-

lem.

Joalw AQiYizg) = _int

O,n—1
n—1
k
sup ]EQg{ Z o fr(zl,ul) + a”hn(x%)}}. (4.32)
QpCleh=1uk—1)eBR, (QQ)(zk—1,uk=1) k=0
k=0,1,....n

In view of Section 3.2.1, specifically, the relation between the maximizing distribution and
the nominal distribution (3.14)-(3.16), which also apply to conditional distributions, we de-
duce that the maximization conditional distribution Q; (dz;|z*~!, u'~!) is Markovian, hence
Qi (dz;|x, u' ™) = Qi (dwy|zi—1,ui—1), V(21 u'™1) € Ko,;_1. Hence, the minimax opti-
mization problem (4.32) is reformulated as follows.

Jon(T* Qi }isy) = inf {

TeIIPr

0,n—1
n—1
k
sup ]EQ;;{ Z o fr(zl,ui) + a"hn(:p%)}}. (4.33)
Qr(leg_1,up—1)€BR, (Q7) (@ _1,uk—1) k=0
k=0,1,....,n

Next, we apply dynamic programming to characterize the solution of (4.33), by first ad-
dressing the maximization. Define the pay-off associated with the maximization problem

JOJL(W) {QZ}Z:O) = sup JO,n(ﬂ-7 {Qk’}Z:O) (434)

Qi Clzg_1,up_1)EBR, (QP) (@) _1,uk_1)
k=0,1,....,n
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Fora given w € I} |, which defines {g; : j = 0,1,...,n—1}, and 7 ) = uf, ) denoting

the restriction of policies in [k,m], 0 < k < m < n — 1, define the conditional cost-to-go

. A .
or value function taken over the events Gy ; = o{x{, ..., z},uf, ..., u]} maximized over the

class Bg, (Q%)(xk—1,ur-1), k =j+1,...,n, as follows.

A
i g N\ =
V}(“[j,n—uv Go,j) = sup {
Qp(leg_1,up_1)EBR, (QP)(wf_1,uk_1)
k=j+1,...,n

n—1
EQ;T{ S o (el ul) + o (24 )ygod-}} (4.35)
k=j

where Eq-{:|Go;} denotes conditional expectation with respect to G, ; calculated on the

%7n_1], Go,;) depends on g only through g;, g1, - - -, Gn-1-

Hence, for j = n, Vj(uf;,, 1}, Go,j) = Va(Go,n). Note further that

probability measure Q7. Here V; (u

Jon(m{Qkti=0) = Eqp {Vo(UfO,n_l]? Qo,o)} : (4.36)
Lemma 4.1. Let m € 11§} |, and define recursively the functions

Vi(z) = a"h,(z) (4.37)

Vi(a) = sup Eqtea{ 00, 01()) + Via(afan }. - (438)

Qy1(lzu)EBR, ,, (Q%,,) ()

Then the random variable V (x7) satisfies

Vi (x]) = Vi(ul .1y, Go)- (4.39)

J J J

Proof. For the derivation of Lemma 4.1 see Appendix C.1. |

Lemma 4.2. (The Comparison Principle) Let V;(x), 0 < j < n, be any functions such that

Va(z) < a”hy(2) (4.40)

Vi) < sup Equthn{ 000, 0) + V(o) | (44D)

Q1 (zw)€BR, Q%) (x)

forall v € X; and for all u € U;(z). Let T € HODJL_1 be an arbitrary policy. Then w.p.1

Vi(z]) < Vi(uf .1y, Goj)- (4.42)

9) is a

The interpretation of (4.42) is that, under an arbitrary deterministic policy, V;(z7

lower bound of the conditional value function.

Proof. For the derivation of Lemma 4.2 see Appendix C.2. |



4.3 Minimax Dynamic Programming 87

Corollary 4.1. Let V;(xz) be functions satisfying (4.40) and (4.41). Then
Jon(m {Q5 ) > E{Vo(xo)}. Hence, if 7 € TP is arbitrary and is such that
Vo(u[g&n_”, Goo) = Vo(x), then 7 is optimal.

Proof. For any arbitrary 7 € IIf, ;, we have that Vo(ufy, 1> Goo) > Volxo) by (4.42).
Taking expectations and using (4.36), Jo (7, {@x }r—o) = E{Vio(z0)} and since 7 was arbi-
trary this yields

Jon (7", { Q1 tizo) = E{Vo(0)}.

Finally, if Vo(u[go,n_l], Goo) = Vo(zo) then
Jon(m, { @k }iz0) = E{Vo(0)} < Jon(7", {Q}i=0)
so that 7 must be optimal and Jy ,, (7, { Q5 }i—o) = Jon (7", { Q5 0)- |
Theorem 4.2. Define recursively the functions
Vo(z)=a"h,(x) (4.43)

Vi(z)=inf sup EQj+1(.|x7u){ajfj (z,u) + Vj+1(xj+1)}. (4.44)

uelt;j(x) Q]-+1(~|m,u)€BRj+l (QF11)(zw)

1) Let m € 1I{),, | be arbitrary. Then Vj(z§) < Vi(uf; ,_1)» Go,j) wp-1, in particular
Jon (T {Q}i=0) = E{Vo(20)}-

2) A Markov policy m € IIPM | which defines {g; : j = 0,1,...,n — 1} is optimal if the

infimum in (4.44) is achieved at g;(x), and then Vi(«%) = Vj(uf;,,_1). Go;) w.p.1 and
Jon (T {Q 3 iz0) = E{Vo(20)}-

3) A Markov policy ™ € Hg%_l which defines {g; : 7 = 0,1,...,n — 1} is optimal only
if for each j, the infimum at v in (4.44) is achieved by g;(x), i.e.,

Vi) = sup Eq,uuctean{ 00112, 95(a)) + Via(adi)
Qj+1('|.1},u)€BRj+1 (Q;+1)(x7u)
w.p.1.
4) Assume Vi 1(-) : Xj11 — [0, 00) is bounded continuousinx € X1, j =0,...,n—1,

then the dynamic programming recursion is given by

Vo(z) = a"h,(z), =€ X, (4.45)
Vi) = it {ol e+ [ V@)@ el )
+ RJ( sup Vjp1(z) — inf Vj+1(2)>}, r € A (4.46)
2 ZEXj+1 Zer"v’l
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Moreover,

Vi(z) = uelbrllf( )EQ* {oﬂfj( xf, J) + Via(zj)|z; = x} (4.47)

where the optimal conditional distribution {Q}(-|-,-) : j = 0,1,...,n— 1} is given by

. 0 Rjia

Qe (Xl ) =Q0 (X |2y, uy) + J; €[0,1], (zj,u) € K;  (4.48)
* - o - R; 1

Qj+1 (Xj+1’$ja uj) :Qj—i-l(‘)(j—i-lujvuj) - j; €[0,1], (zj,u5) € K (4.49)

Qfr (Alzj, wy) =QF 1 (Alwj, ug), VACK \XHUX, (2, u5) €K (4.50)

and
X]tq = {ijrl € ')(jJrl:VjJrl(ijrl)_SUP{VJ‘+1($j+1>:xj+16‘)€j+1}} (4.51)
Xy = {xj+1 € Xj+15Vj+1($j+1):inf{vj+1($j+1)1xj+1€)(j+l}}- (4.52)

Proof. 1) The functions V;(x) defined by (4.43) and (4.44) clearly satisfy (4.40) and (4.41)
and hence part 1) follows from Lemma 4.2.

2) To prove the sufficiency in part 2), let g = {g;} be a Markov policy that achieves the
infimum in (4.44), so

Vi) = sup Bauntan {00 1i(0,0,(0)) + Vialog) | @53)
Qj+1(lzu)€BR,  (QF,)(xu)

By Lemma 4.1 it follows that V/(z}) = Vj(u;, j,Go,) for all j and in particular
Vo(ufy,,_1900) = V§'(2f). By Corollary 4.1, g is optimal and Jo, (7% {Q}}i—) =
E{V{ (23)}.

3) To prove the necessity in part 3) suppose the Markovian policy 7 € H{?n , 1s optimal.
We prove by induction that g;(zf) achieves the infimum in (4.44) at ¢ with probability 1.
Consider j = n — 1. Suppose the assertion is false. Then there exists another function ¢/,

such that

sup EQnCImnq,un 1) { lfn 1( Tp—1,9n— 1( ))+V(xg)}

Qn("fnflyunfl)

> sup EQn('\wn—hun 1{ fn 1( Tn— 17gn 1( )) +v( >} Wpl

Qn('lmnfhunfl)
and note the abuse of notation. Moreover the inequality is strict with positive probability.
Using (4.43), we get

Sup EQ”(.L’ETL*I”U"R 1{ " 1fn 1( n 17gTL 1( ))"‘@nhn(mg)}

Qn("wn—laun—l)

> sup EQn(-\an,unﬂ){O‘ fn 1( Tn—1, gn 1( 1)) + " ha (7, )} (4.54)

Qn("znfla“nfl
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Consider the Markov policy g" = {go, .., gn-2, 9,1} Evidently, 2 = x?l forall0 < j <
n — 1 and so uf = ufl, 0<j<n-—1landu! , =g, (2 ). Hence
sup EQ]HIJ 1,U5-1) {O‘ij( Ty, ])}
Qi (lzj—1,uj—1

= sup  Eqpyiu n{dfi@lud)}, 0<j<n-—2 (455)
Qj(lwj—1uj—1)

Adding (4.54) and (4.55) gives

n—2
sup  Eqp{d_ o fi(af, uf) + o fua(@h 1, g (251)) + a"hn(29)}
Qr(lmg_1ugp_1) k=0
k=0,1,...,n
n—2 ,
> osup Eqp{d o fu(af,ud) + o fua (@1, g (251)) + aha(2)}
QkZE67117Uk71> k=0

and so g cannot be optimal contrary to the hypothesis. Thus g,,_1(z5_;) does achieve the infi-

g
mum in (4.44) for n — 1, and so Vn*1<ufn—1,n—l}’ Gon-1) = Va_1(x?_,). Now suppose by in-
duction that g;1(z7,) achieves the infimum and that Vj1(uf;, , ,, 1}, Go,j+1) = Vi1 (z11)-

We prove this for j. Indeed, otherwise there is a function g} such that

sup B, e,y 0 107 fi(2F, g5(29)) + Vi (2541)}

Qi (leg—1,ug—1)
k=j,j7+1,...m—1

> s Egue w0 fi@h gi(eD) + Vi (@)}, wpl. (4.56)
Qpllzg_1,up—1)
k=j,j+1,...,n—1
This inequality is strict with positive probability. Consider the policy ¢ =
{90, .-, 9j-1, g}, Gj+1s - - -» gn—1}- Then certainly
sup E{o” fi(z],ul)} = sup ]E{akfk(mi,,ui/)}, 0<k<j—1 (457
Qr(-lzp—1,u5-1) Qr(|zr—1,u8-1)

Also, by the induction hypothesis g;;1, ..., g,—1 achieve the infimum in (4.56) and so by

Lemma 4.1
s BVl Goe)b = sup B{VI,G5)) (459
Qj+1(|wj,uy) Qj+1(-|zj,u;)
sup  E{V] +1(U[J+1n 1]vgo,j+l)} = sup  E{VY,(27,1)} (4.59)
Qj+1(|wj,uy) Qj41(-|zju;)

From (4.56), (4.57), (4.58) and (4.59) it follows that

j—1

D Byl 3 0 (o) + £ (a0 + Vi (29,0))
Qrplzg_1,up_1) k=0
k=j3,j+1,....,n—1

Jj—1 . ’ ’
> sup EQj(‘|CCj717Uj71){Z Oékfk(l‘i, ui) + Oéjfj(]}?7 ui ) + ‘/j-‘rl ($§+1>}7 Wpl
Qi leg_1,uk_1) k=0
k=j,j+1,..n—1
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and so g cannot be optimal contrary to hypothesis. Thus, g;(x%) must achieve the infimum
and the result follows by induction.

4) By definition, (4.44) is also equivalent to

Vi(z) = inf {ajfj(:c, u) + sup / Vit1(2)Qj41(dz|z, u)}
)(@u) S X1

u€U(z) Qj+1("m7u)€BRj+1(Q?+1

Hence, by applying the results of Section 3.2.1 we obtain (4.45)-(4.50). |

Remark 4.1. In many applications the nominal controlled process is described by
x?—i-l = bj(%ng?’fj)» 338 =y, JE Nt

where {&; : j = 0,1,...,n — 1} taking values in some metric space, &; € (Z;,d), is a

deterministic exogenous input which belongs, for example to the space
n—1
2= A = 2
l(\:07n,1): ij:j,j:O,...,n—lzZ|£j]5j<oo .
J=0

In this case the nominal conditional distribution becomes

(Al u) = 14(bj(x,u,€)), Aed;, €=, j=0,...,n—1L

j+1

Remark 4.2. We make the following observations regarding Theorem 4.2.
(a) The dynamic programming equation (4.45), (4.46) has the interpretation of minimiz-
ing the future ambiguity. It involves in its right hand side the oscillator seminorm of

Vii1(+), called the global modulus of continuity of Vj41(-), which measures the differ-

ence between the maximum and the minimum values of Vi1 (-).

(b) For finite and countable alphabet spaces X;, X, the integrals in the right hand side of

(4.46) are replaced by summations.

(c) The dynamic programming recursion (4.45), (4.46) can be applied to a controlled
process with continuous alphabets and to a controlled process with finite or countable

alphabets, such as Markov Decision models.

Next, we show that for any j € N"~!, the minimax pay-off

n—1
Vi(z) = inf sup { ok fr(af, ul) + oz”hn(xfl)\x} (4.60)
men P, Qrlleg_1,uk_1)EBR, (f_1,up_1) N k=j

k=j+1,....,n

as a function of R; is non-decreasing and concave.
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Lemma 4.3. Suppose the conditions of Theorem 4.2 hold and in addition R; = R, j =
L,...,n. The minimax pay-off V" (x) = V;(x) defined by (4.60) is a non-decreasing concave
function of R.

Proof. Consider two values for B!, R? € R* such that 0 < R' < R?. Since

B (Q7)(@k-1,u6-1) € Bro (QF) (k-1 us-1)
then for every Qi(-,xx-1,ur-1) € Bri(QF)(vs-1,ur-1) we have Qp(-, zp-1,ur-1) €
Bre(Q2) (-1, up—1), k = j +1,...,n — 1. Hence, V¥ () < V' (z) and thus, VR (z) is
a non-decreasing function of R € R*.
Next, for a fixed 7 € IIDM, consider two points (Rl,Vj”’Rl), (RZ,Vj”’RQ) such that
{Qi(lxp—1,ur—1) : kK = j + 1,...,n} achieves the supremum in (4.35) for R', and
{Q%(‘|zp_1,ur_1) : k=7 +1,...,n} achieves the supremum in (4.35) for R%. Then

HQllg("xkflaukfl) - Q%H@c—l,uk—l)HTV < Rl, k=j5+1,...,n—-1
||Qz('|xk—17uk—l) _QZ('|$k—1>uk—l)||TV S RQa k:J+177n_ 1.

For any A € (0,1) we have

H)\Qllc<"37k717uk71) + (1 - A)Qi(-\xm, qu) - Qi("mkfbukfl)HTV
< MIQLClzk—1, wk—1) — Q(|zk—1, w—1)|l7v + (1 — M| Q7 (| zr—1, up—1)
— Qv |mp—t, up)| |7y K AR'+ (1= NR*, k=j+1,...,n. (4.61)

Define Qi (+|xx—1, ur—1) £ ANQp(-|xr—1, up—1) + (1 = NQR(-|xp—1, up—1), R = AR' + (1 —
A R?. By (4.61), Q; € Br(Q%)(xx_1,ur_1), k = j+1,...,n. Define the unique probability

measure

Qj 1 o (da"|[u™) 2N @711 Qpldaglzn—y, up1)+(1=X) @iy QF(dwp|zg 1, up—1).

Then,

n—1

Vi) 2 [ (3 fulons ) + ha(ea) ) Qe (e ).

k=j

Hence,

VR (x;) = RHS of (4.35)

J

n—1
> /\/ ( Z fk(CUk, uk) + hn(*’”n)) ®Z:j+1 Qi(dl’ﬂxk_l, Uk—l)
k=j
n—1
+(1-A) / ( Z Sr(@r, we) + hn(%)) Ql—jt1 Qr(dwy|ze—1, up—1)
k=j

= AT (@) + (=N (@), §=0,.n- 1.

J
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R . . ..
Hence, for any m € IIDM |, V™" (z;) is a concave function of R, and thus it is also concave

for the 7 € ITI7Y |, which achieve the infimum in (4.60). |

This concavity property of the pay-off is also verified in the examples presented in Section
4.4.

Remark 4.3. The previous results apply to randomized strategies as well.

Relative Entropy and Exponential Functions

Related work on modeling uncertainty in probability distribution utilizes relative entropy
[3,15,33,44,56] defined by (see also Chapter 2.3)

H(o||) 2 { Jslog(5%)a(dx),  ifa() << A(), and log § € L'(a)

400, otherwise.

(4.62)

However, by Pinsker’s inequality (2.5), distance in total variation of probability measures
is a lower bound on relative entropy or Kullback-Leibler distance. Hence, for any fixed

p € My(X) then

7’2

{a e M) 5 Hllp) < T} < Ba(d) = {o € M)+ lla = llov < 1},
Moreover, by the definition of relative entropy (4.62), for any finite r € [0, 00|, and fixed 5 €
M (X)), any ambiguity set described by relative entropy consists of only those measures o €
M (X)) which are absolutely continuous with 3 € M;(X). The relative entropy constraint
set is defined by

A (Q7) (-1, Ui—l)é{Qi('lﬂfi—l, wi—1) H(Qs||Q7) (-1, Ui—l)ﬁr(ﬂfi—l)}, 1=0,1,...,n

where r : X +— [0,00). The minimax optimization problem subject to relative entropy

constraint on the conditional distribution of the controlled process is formulated as follows.

Jon(m,Qr:k=0,...,n) = inf sup
RS | Qo —y g DEAN@D a1 k)
T k=0,1,....,n
k
EQ’J{ Z o fr(xd,ul) + oz"hn(xﬁ)}. (4.63)
k=0

We formulate the stochastic control problem in alignment with the dynamic programming
equation of total variation distance constraint. For (7,x) € {0,1,...,n} x A, let V;(x) € R
represent the minimal cost-to-go defined by

Vi(r) = inf sup { Z o (a9, uf) hn(x‘ﬂl)}

Zkeeuk(zk) Qpp1(log up) EAR(QY | ) (wg,uy)
Tl k=i,...n—1
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The dynamic programming equations are given by
V() = a"h,(z), ze€ ki,

Viz) = inf sup {aifie )+ [ Via()@ualdele 0},
uCUi (%) Qs (+|ar,u) €A QY ) (2 u) Xit1

By Lagrange duality theorem [40], then

Vi(r) = inf inf sup

u€l;(z) s(x)>0 Qit1(z,u): H(Qiy1]1Q2, 1) (x,u)<oo

{ai filw,u) + /Xxﬁl(z)@“(dz\x,u) — 5(2) (H(Qi]|Q241) (w, u) —r(x))} (4.64)

where s(x) is the Lagrange multiplier. By [48] (Proposition 2.3), the supremum over

Qit+1(+|w, u) with H(Q;41||Q%, ) (%, u) < oo is attained at

exp (555 Vir1(2)) Q2 (A2, w)

Qip1(dz|z, u) = : (4.65)
fXHl €xp (S(lx) Vi (Z)>Q§+1(dz|x, U)
Substituting (4.65) into (4.64) yields
Vo(z) = a"hy(x), x€ X, (4.66)

Vi(r) = inf inf

weU; (z) s(x)>0

Lot it u)s@) o foxp (Vi () ) Qs el ) fs@r(e). @)

X1 \s(x)
The Lagrange multipliers inf,(;)>0{-} can be found by the relative entropy constraint which
holds with equality, i.e.,
H(Q;‘HHQ;’H)(Lu)‘s(x)zs*(x) = r(z), for i=0,1,...,N 1.

A further elaboration on the connections between stochastic optimal control with risk-
sensitive pay-off and minimax stochastic control in which the maximization is with respect
to relative entropy ambiguity is found in [3, 15, 33, 44, 48, 56] (where all duality relations
require that relative entropy is finite). A specific example which illustrates the differences
between relative entropy and the total variation distance ambiguity, is presented analytically
in Section 4.4.1.

In the next section, we illustrate through examples how the theoretical results obtained in

preceding sections are applied.

4.4. Examples

In Section 4.4.1 we illustrate an application of the finite horizon minimax problem to the

well-known inventory control example. Comparisons are included for the case for which the
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total variation constraint is replaced by the relative entropy between the nominal and true
probability distributions. In Section 4.4.2 we illustrate an application of the finite horizon

minimax problem to the well-known machine replacement example.

4.4.1. Inventory Control Example

Consider an inventory control example inspired by [9]. Specifically, an optimal inventory
ordering policy of a quantity of a certain item at each of the NV periods must be found so as

to meet a stochastic demand. Let us denote

e 1y, stock available at the beginning of the kth period;

ug, stock ordered at the beginning of the kth period;

wy, demand during kth period with given probability distribution;

h, holding cost per unit item remaining unsold at the end of the kth period;

¢, cost per unit stock ordered;
e p, shortage cost per unit demand unfilled.

The random disturbance at time k, wy, may depend on values of z; and u;, but not on values of
prior disturbances wy, ..., wy_1. Excess demand is backlogged and filled as soon as additional
inventory becomes available. Inventory and demand are non-negative integers variables.

Thus, we assume a nominal system given by
Tpr1 = max (0, g + ux — wy). (4.68)

and a total sample pay-off over N periods given by
N—1
Z (cug + hmax(0, xy + ux, — wy) + pmax(0, wy — x — ug)) -
k=0

We further assume that wy, is independent and identically distributed according to /i, (-) =

L (). We formulate the problem as a minimax optimization of the expected cost as follows.

N-1

min max IE{ Z (cuk

ukGUk(l‘k) Vwy (‘)iHVwk ) —pwH)Ilry <R k=0
k=0,...,N—1 -

+ hmax(0, z + ux — wy) + pmax(0, wy — xp — uk)> } (4.69)

Assume the following:
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e the nominal and the true distribution of {wy, : k =0,1,..., N — 1} s iy, (-) = fu(+)s
and v, (+), respectively, k = 0,1,..., N — 1;

e the maximum capacity (x + uy) for stock is 2 units;
e the planning horizon N = 3 periods;
e the holding cost h and the ordering cost c are both 1 unit;
e the shortage cost p is 3 units;
e the demand wy has a nominal probability distribution given by, p,,(w, = 0) = 0.2,
pw(wy = 1) = 0.7, and gy (wy =2) =0.1, k=0,1,...,N — 1.
Dynamic Programming Subject to Total Variation Distance Constraint

The dynamic programming algorithm for the minimax problem subject to total variation

distance uncertainty is given by

Vi(zy) =0, (4.70a)

Vi(zr) = min H%ax
Nt

0Sup 2= vy ()] [Py, ( Ollrv<R

E{uk—i— max (0, xp+ur—wy)+3 max (0, wy—zr—uy)+ Vi1 (max(0, a:k—l—uk—wk))}

= min max E{€ Lo, Ujp, W }
0Sup 2=k vy, ():|[Vwy, () —pw (llTv <R k( ko Tk k>
= 1 + _ B
=, nin D (xp,ux, R), k=0,1,...,N—1, (4.70b)

where

U (g, Ug, wg) = ug + max(0, x + ux — wy,)
+ 3max(0, wy, — x — ug) + Vi1 (max(0, z + up — wg)).
To address the maximization problem in (4.70b), foreach k£ = 0,1,..., N—1,z; € {0,1,2}
and 0 < uy < 2 — x4, define the maximum and minimum values of ¢(xy, uy, wy) by

A A )
= max {(zg, ug, W), Cin (g, ug) = min O(xg, ug, wy)

12 T, Uk
mave (T i) wre{0,1,2} wre{0,1,2}

and its corresponding support sets by
ZO = {wk‘ € {07 17 2} : E(xlmuk)wk) = gmax(xkauk)}7

20 = {wk € {O, 1,2} . ﬁ(wk,uk,wk) = ﬁmin(a:k,uk)}.
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For all remaining sequence {{(zy,ug, wy,) : wy, € {0,1,2}\ 20U 2o} and for 1 < r <
1{0,1,2} \ X% U | define recursively the set of indices for which £(zy, uy, uy) achieves its

(7 + 1)*" smallest value by
Zj é {wk - {07 1, 2} . €<x/€7uk7wk‘) = min {€<xk‘7uk‘7ak‘) :

ar, € {0,1,2} \ 2° U (QE_l)}} je{1,2,...,r},

till all the elements of {0, 1,2} are exhausted. Further, define

=S min E(xk,uk,wk).

we€{0,1,27\S0U(J)_, =i—1)

s (1, ug)

where j € {1,2,...,r}. Once we identify the support sets and the corresponding values of
the sequence ¢(xzy, ux, wy) on these sets, we employ (3.45), (3.46) to calculate the maximiz-
ing distribution v, (-) and the extremum solution of D (2, ux, R). Finally, by employing
(4.70) the optimal cost-to-go and hence the optimal ordering policy are obtained. Alterna-
tively, from the definition of the oscillator seminorm (Remark 3.1, second part), (4.70) can

be expressed as follows.

VN(Z'N> = O, (4713)

0<up<2—xg

Vi(ry) = min {Euw{uk + max (0, xp + up — wy) + 3max (0, wy — T — ug)

R
+ Vi1 (max(0, zp, + ug — wk))}—i-;(n}l%x {uk—i- max (0, xp+up—wy)

+ 3max(0, wy—xk—ug)+ Vi1 (max (0, xk+uk—wk))}— ITIIU%CH {uk—i— max (0, zg+ur—wy)
+3 max (0, wy—zr—ug )+ Vi1 (max(0, xk+uk—wk))}> }, (4.71b)

where R, = R € [0, 2]. The problem is solved for two possible values of R for each period
resulting in optimal ordering policies as shown in Table 4.1.

By setting & = 0, we choose to calculate the optimal control policy, when the true prob-
ability distribution v, (-) = pw(-), k = 0,1,2. This corresponds to the classical dynamic
programming algorithm. From Table 4.1, the resulting optimal ordering policy for each pe-
riod is to order one unit if the current stock is zero and order nothing otherwise.

By setting the total variation distance R = 1, we choose to calculate the optimal control
policy, when the true probability distribution is v, (-) # ftw(+), k£ = 0,1, 2. The maximizing
distribution v}, (-) and its corresponding support sets for each stock available, and the result-

ing optimal ordering policies at each stage are given in Table 4.2. Taking into consideration
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the maximization (that is, by setting R > 0) the dynamic programming algorithm results
in optimal control policies which are more robust with respect to uncertainty, but with the
sacrifice of low present and future costs. In cases where the planner needs to balance the de-
sire for low costs with the undesirability of scenarios with high uncertainty, he must choose
values of R between 0 and 1. From Table 4.1, the resulting optimal ordering policy for the
first two periods is to order two, one and zero units if the current stock is zero, one and two,
respectively. For the last period the optimal ordering policy is to order one unit if the current
stock is zero and order nothing otherwise. The optimal cost-to-go and the optimal control
policy, for each period and for each possible state, as a function of R € [0, 2], are illustrated
in Fig 4.1. Clearly, Fig.4.1a depicts that the optimal cost-to-go is a non-decreasing concave

function of R as shown in Lemma 3.1.

Dynamic Programming Subject to Relative Entropy Constraint

The dynamic programming algorithm for the minimax problem subject to relative entropy

constraint is given by

VN(IN) =0
Vi(zg) = min  min {s(xk)log]Eﬂw{eXp(

0<u <2—a 5(z5) >0

1

s(w)

(ug + max (0, xpt+up—wy)
+3 max (0, wy—x g —ug )+ Vis1 (max (0, xk+uk—wk)))) }+s(a:k)r(xk) }

The above dynamic programming equations are obtained by slightly modifying dynamic pro-
gramming equations (4.66)-(4.67), since the cost of the inventory control example is also a
function of the demand wy. The problem with relative entropy is a convex optimization prob-
lem, and the maximization of the cost over the relative entropy is a concave non-decreasing
function of () € [0, 7max) Where r.x can be computed. In addition, since the ambiguity
set described by relative entropy is a subset of the much larger total variation ambiguity set’,
lower values of the optimal cost-to-go are obtained compared to the ones obtained under
total variation ambiguity.

Fig 4.2, depicts the optimal cost-to-go and the optimal control policy, for each period and
for each possible state, as a function of the relative entropy constraint. Fig 4.3, depicts a
realization of the inventory control example, under the resulting optimal control policy for
three possible scenarios, (i) without ambiguity*, (i) with ambiguity based on total variation

distance and, (iii) with ambiguity based on relative entropy. In particular, the comparison

3See Pinsker’s inequality (2.5).
4This scenario corresponds to the classical dynamic programming, see Fig 4.1 and/or Fig 4.2, for R = 0 and

r = 0, respectively
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is performed by first choosing the maximizing distribution v* = [0.1 0.3 0.6] and by cal-
culating the total variation and the relative entropy parameters. The resulting total variation
parameter 2 is equal to one, while the resulting relative entropy parameter 7 is equal to 0.75.
Then by extracting the optimal control policies from Fig 4.1b and 4.2b (for the corresponding
value of total variation and relative entropy parameter), and by selecting the stock available
xk, and the demand wy, for each period as shown in Fig 4.3, it is clear that, optimal control
policy under total variation distance ambiguity is more robust with respect to optimal control
policies with no ambiguity and with relative entropy ambiguity in which excess demand is
lost. In conclusion, the dynamic programming based on relative entropy is not as general as
the dynamic programming based on total variation, and in addition it has the disadvantage
that it does not admit distributions which are singular with respect to the nominal distribu-
tion, and this rules out the cases in which the nominal systems are simplified versions of

the true systems. This is in contrast to the dynamic programming based on total variation

distance.
R=1 R=0
Stage 0 Stage 0 Stage 0 Stage 0
Stock | Cost-to-go | Optimal Stock || Stock | Cost-to-go | Optimal Stock
to Purchase to Purchase
0 7.49 2 0 4.1 1
6.49 1 1 3.1 0
2 5.49 0 2 3 0
Stage 1 Stage 1 Stage 1 Stage 1
Stock | Cost-to-go | Optimal Stock || Stock | Cost-to-go | Optimal Stock
to Purchase to Purchase
0 5.49 2 0 2.8 1
4.49 1 1 1.8 0
2 3.49 0 2 1.82 0
Stage 2 Stage 2 Stage 2 Stage 2
Stock | Cost-to-go | Optimal Stock || Stock | Cost-to-go | Optimal Stock
to Purchase to Purchase
0 3 1 0 1.5 1
2 0 1 0.5 0
2 1.7 0 2 1.1 0

Table 4.1.: Dynamic Programming Algorithm Results for Inventory Control Example



4.4 Examples 99

Optimal Cost-to—go Vs. R, (Stage 0)
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Figure 4.1.: Inventory Control Cxample with Total Variation as a Constraint: Plot (a) depicts

the optimal cost-to-go. Plot (b) depicts the optimal control policy.
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Optimal Cost-to—go Vs. r, (Stage 0)
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Figure 4.2.: Inventory Control Example with Relative Entropy as a Constraint: Plot (a) de-
picts the optimal cost-to-go. Plot (b) depicts the optimal control policy.
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Stock Optimal Support Sets Maximizing Distribution

Ordering| X" o | B v (X0 v, (Xo) v, (31)
= o 2 012y - |- 1 i i
9 1 (o121 - - 1 i i
) 0o {012} - |- 1 ] )
~l o 2 o a2 -] 07 | o3 i
9 I oy {12} - | 07 | 03 i
) 0 o {12y - | 07 | 03 i
~| 0 1 2 T o] o6 [ o2 | o2
9 0 2y o] os | 02 | 02
) 0 oy | {2y [{1}] 07 0 0.3

Table 4.2.: Maximizing Distribution and Support Sets, when R=1, for Inventory Control

Example

4.4.2. Machine Replacement Example

Consider a machine replacement example inspired by [9]. Specifically, we have a machine
that is either running or is broken down. If it runs throughout one week, it makes a profit of
€ 100 for that week. If it fails during the week, the profit is zero for that week. If it is running
at the beginning of the week and we perform preventive maintenance, the probability that it
will fail during the week is 0.4. If we do not perform such maintenance, the probability of
failure is 0.7. The maintenance cost is set to € 20. When the machine is broken down at the
start of the week, it may either be repaired at a cost of €40, in which case it will fail during
the week with a probability of 0.4, or it may be replaced at a cost of € 150 by a new machine
that is guaranteed to run through its first week of operation. Assume that after N >1 weeks
the machine, irrespective of its state, is scrapped with no cost.

The system dynamics is of the form
xk+1:fk(xk,uk,wk), kIO,l,...,N—l

where the state xj is an element of a space S, = {R,B}, R = machine running, B =
machine broken down, the control uy is an element of a space Uy (xy), Ux(R) = {m,nm},
m = maintenance, nm = no maintenance, Uy (B) = {r, s}, r = repair, s = replace. The
random disturbance has a nominal conditional distribution wy, ~ pu(-|xy, u).

Such a system can be described in terms of the discrete-time system equation

Le+1 = Wk, k:O,l,...,N—l
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Realization without Ambiguity
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Realization with Ambiguity based on Total Variation
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Realization with Ambiguity based on Relative Entropy
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Stages

Realization of the Inventory Control Example Under the Resulting Optimal Pol-

icy.

where the nominal probability distribution of wy, is given by

p(w, = Rlzg = Ryup, = m) = 0.6, p(wy =
p(wy = Rlzg = R, up = nm) = 0.3, p(wy =
p(wy = Rlzg =B, up, =r) = 0.6, plwy, =
p(wg = Rlzg =B ug =) =1, (

m) = 0.4,
0.7,

nm)

and the input costs C), are given by: if u = m then C,,, = €20, if u = nm then C,,,,, = €0, if

u = r then C, = €40, and if u = s then C; = € 150. The cost per stage is gx (v, ux, wWi) =

Ch, if wi, = R, and gy (zg, ug, wy) = Cy, + 100 if w, = B. Since it is assumed that after

N weeks the machine, irrespective of its state, is scrapped without incurring any cost the

terminal cost is gy (R) = gn(B) = 0. The dynamic programming algorithm for the minimax
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problem subject to total variation distance uncertainty is given by

Vn(zy) = 0 (4.72)
Vi(zr) =  min max {
u €U (w1) v(dw |z up): | [V (|2 g uk) —p(|ze,u) lTv <R
B{ g e, we) + Vi (f s un, ) || 473)
= min max E{E Ty Ug, W }
up €Uy (z1) v(dwi |z, uk):||v(-|eg,uk) —p(|ze,ue) | 7y <R k< ko Tk k)

where Kk(xk,uk,wk) = gk(xk,uk,wk) + Vk+1(wk), k = 0, 1, e ,N — 1. To address the
maximization problem in (4.73), for each & = 0,1,...,N — 1, x € {R,B} and u; €

{m,nm,r, s}, define the maximum and minimum values of ¢(zy,, ux, wy) by

£ max l(xpup,we),  lmin(Tr,up) = min g, ug, wy)

Emax )
($k Uk> wi€{R,B} wr€{R,B}

and its corresponding support sets by Y0={w,€{R,B}:{(zy, up, w)=lmax(Tx, uz)}, and
Yo={wre{R, B}:l(zk, ug, wg)=lmin (T, ug) }. By employing (3.46), the maximizing con-

ditional probability distribution of the random parameter wy, is given by
(R .
a = min (2, 1—pu(X |a:k,uk)> (4.74a)
+
V(S0 2, ug) = u(X0) 2, up) o, v (So|wk, up) = (u(20|xk,uk) - a) . (4.74b)
Based on this formulation, the dynamic programming equation is given by

Vn(zn) =0 (4.75)

Vi(zg) = min Eu*(~-,~){gk($k, Wk, W) + Vi1 (f (2, wg, wk))} (4.76)

up €U (T1)

We assume that the planning horizon is N = 3. The optimal cost-to-go and the optimal
control policy, for each week and each possible state, as a function of R € [0, 2] are illustrated
in Fig.4.4. Clearly, Fig.4.4a depicts that the optimal cost-to-go is a non-decreasing concave
function of R as stated in Lemma 4.3.

In addition, the optimum solution for two possible values of R and for each week re-
sults in optimal control policies as depicted in Table 4.3. By setting R=0, we choose to
calculate the optimal control policy when the true conditional probability v(-|xy, ux) =
p(|zk, ug), k=0,1,2. This corresponds to the classical dynamic programming algorithm.
By setting =0.85, we choose to calculate the optimal control policy when the true condi-
tional distribution v(-|xy, ur) # p(-|zk, ur), k=0,1,2. Taking into consideration the max-
imization (that is, by setting R>0) the dynamic programming algorithm results in optimal

control policies which are more robust with respect to uncertainty, but with the sacrifice of
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low present and future costs. In cases in which we need to balance the desire for low costs
with the undesirability of scenarios with high uncertainty, we must choose the appropriate

value of R by using Fig.4.4b.

Week 0 Week 1 Week 2
State || Cost-to-go | Optimal || Cost-to-go | Optimal || Cost-to-go | Optimal
Policy Policy Policy
R 196 m 128 m 60 m
R=0
B 216 r 148 r 80 r
R 340 m 221 m 100 nm
R =0.85
B 360 r 241 r 122 r

Table 4.3.: Dynamic Programming Algorithm Results for Machine Replacement Example

4.5. Summary

In this chapter, we examined the optimality of stochastic control strategies via dynamic pro-
gramming, when the ambiguity class is described by the total variation distance between
the conditional distribution of the controlled process and the nominal conditional distribu-
tion. The problem is formulated using minimax strategies in which the control process seeks
to minimize the pay-off while the controlled process seeks to maximize it over the total
variation ambiguity class. By employing certain results of Section 3, in particular, the maxi-
mization of a linear functional on the space of probability measures, among those probability
measures which are within a total variation distance from a nominal probability measure, we
solve the minimax stochastic control problem with deterministic control strategies, under a
Markovian and a non-Markovian assumption, on the conditional distributions of the con-
trolled process. The new dynamic programming recursion, in addition to the standard terms,
it also includes the oscillator seminorm of the value function which codify the level of am-
biguity with respect to total variation distance ball. Hence, the new dynamic programming
recursions result in optimal control policies which are more robust with respect to uncer-
tainty, but with the sacrifice of low present and future costs. Finally, we apply our results to

the inventory control example and to the machine replacement example.
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Optimal Cost-to—go Vs. R, (Week 0)
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Figure 4.4.: Optimal Solution of Machine Replacement Example: Plot (a) depicts the opti-
mal cost-to-go. Plot (b) depicts the optimal control policy (“m”= maintenance,

9% ¢ 9% G¢

“nm= no maintenace”, “r=repair”, ‘“s=replace”)






Dynamic Programming with TV Distance

Ambiguity on an Infinite Horizon

In this chapter we address optimality of stochastic control strategies on an infinite horizon via
dynamic programming subject to total variation distance ambiguity on the conditional dis-
tribution of the controlled process. For optimality criterion, we consider both the expected
discounted reward and the average pay-off per unit time. Throughout this chapter, we pay
particular attention to policy iteration algorithms for computing the optimal policies, which
in contrast to the classical case, the policy improvement and policy evaluation steps are per-
formed using the maximizing conditional distribution obtained under total variation distance
ambiguity constraint. The new policy iterations algorithms are expected to converge to a
stationary policy in a finite number of iterations, and that at each iteration a better stationary

policy will be obtained. The results of this part include:

e minimax optimization subject to total variation distance ambiguity constraint;

e new infinite horizon discounted and average dynamic programming equations;

e new policy iteration algorithms;

e examples which illustrate the use of our recommended policy iteration algorithms.

107
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5.1. Problem Formulation

In this section, we describe the abstract formulation of the minimax problem under total
variation distance ambiguity, with optimality criterions being the expected discounted reward

and the average pay-off per unit time.

5.1.1. Dynamic Programming of Infinite Horizon MCM

The infinite horizon D-MCM with deterministic strategies is a special case of the finite hori-

zon D-MCM (see Definition 4.1), specified by a sextuple
<X,U, U(z): v € X}, {Qz|z,u) : (2,u) € X x U, |, a> 5.1)
consisting of the following.

(a) State Space. A Polish space X', which model the state space of the controlled random
process {x, € X : k € N}.

(b) Control or Action Space. A Polish space U/, which model the control or action set of

the control random process {u, € U : k € N}.

(c) Feasible Controls or Actions. A family {U(x) : x € X'} of non-empty measurable
subsets U (x) of U, where U(x) denotes the set of feasible controls or actions, when
the controlled process is in state x € X, and the feasible state-actions pairs defined by
K = {(x,u) rx € X, u€ Z/l(x)} are measurable subsets of X' x U.

(d) Controlled Process Distribution. A conditional distribution or stochastic kernel
Q(dz|z,u) on X given (x,u) € K C X x U. The controlled process distribution
is described by the transition probability distribution {Q(dz|z,u) : (z,u) € K}.

(e) One-Stage-Cost. A non-negative measurable function f : K — [0, oc], called the

one-stage-cost, such that f(x,-) does not take the value oo for each x € X'.
(f) Discounting Factor. A real number o € (0, 1) called the discounting factor.

The dynamic programming equation of the infinite horizon D-MCM as given by [54] is a
function v?, : X — R satisfying

v? () = inf : {f(x,u) + a[vv&(z)@(dz\x,u)}, reX. (5.2)

u€lU (z
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This equation is also obtained from (4.4), and (4.5), (4.6), by assuming V?(x) = 0, f; = f,
X=X, U =U, Qi) = Q(:]), Vi, as follows. Define

v (2) = o'V Li(2)

(3

and subsequently find the equation for v?(x) from (4.5), (4.6), and then take the limit as

n — oo to obtain v?_ () satisfying (5.2), which implies

0 .

()=, Inf | E&{Zoﬂf 98) 53)
k=0,1,....,n—1

0

vm($)=gkég£k)E8m{Zajf o). 54
k=0,1,...

Similarly to the finite horizon D-MCM, the dynamic programming equation (5.2) depends
on the conditional distribution Q)(dz|x, u). Hence, any ambiguity or mismatch of Q(dz|z, u)
from the true distribution affects optimality of the strategies.

In this chapter, we will also study the dynamic programming of infinite horizon MCM
with an average pay-off per unit time. First, recall the definition of infinite horizon D-MCM
specified by (5.1), with discounting factor & = 1, and consider the problem of minimizing

the average pay-off per unit time
1 =
J(m) = limsup{,]EQg{ Zf(xk,uk)}} (5.5)
jmoo L] k=0

In [54], it is shown that under the assumption that for every stationary Markov control law
the transition probability matrix Q)(g) is irreducible, then there exists a solution V' : X — R

and J* € R to the dynamic programming equation

T+ V()= inf {f(a:,u)+/XQ(dzyx,u)V(z)}. (5.6)

ueU(x)

By the same reasoning as before, the above dynamic programming equation depends on the
conditional distribution Q)(dz|x, u), hence any ambiguity or mismatch from the true distri-

bution affects the optimality of the strategies.

5.1.2. Dynamic Programming with Total Variation Distance Ambiguity

The objective of this chapter is to investigate dynamic programming under ambiguity of the

conditional distributions of the controlled process

{Q(dz|x,u) : (x,u) € K}. (5.7)
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Specifically, given a collection of nominal controlled process distributions {Q°(dz|z,u) :
(x,u) € K} the corresponding collection of true controlled process distributions
{Q(dz|z,u) : (z,u) € K} is modeled by a set described by the total variation distance

centered at the nominal conditional distribution having radius R € [0, 2] defined by

Br(Q7)(e.w) 2 { Q| £ |QClr.w) ~ Q@ Clrwllry S B 68)

Given the above description the dynamic programming equation of the infinite horizon D-
MCM is given by

Voo(x) = inf sup {f(x,u) + oz/Xvoo(z)Q(dz|x,u)}, reX (5.9)

uEU(T) Q(-|z,u) B R(Q°)(z,u)

and, the dynamic programming equation of the infinite horizon MCM with an average pay-

off is given by

J*+V(r)= inf sup {f(x,u)—i—/ V(Z)Q(dz|m,u)} (5.10)
ueU(®) Q(-J,u)€BR(Q°) (w,u) Y

In summary, the contributions of this chapter are the following:

(a) formulation of the infinite horizon MCM and dynamic programming equation under
conditional distribution ambiguity described by total variation distance via minimax

theory;

(b) characterization of the maximizing conditional distribution belonging to the total vari-

ation distance set, and the corresponding new dynamic programming recursions;
(c) contraction property of the infinite horizon D-MCM dynamic programming;

(d) discussion of the limitations of the infinite horizon MCM with an average pay-off,

under irreducibility assumption, and new general dynamic programming recursions;
(e) new policy iteration algorithms;

(f) examples for the infinite horizon case.

5.2. Minimax Stochastic Control - Discounted Cost

In this section, we consider the infinite horizon version of the finite horizon D-MCM, and
we derive similar results. In addition, we show that the operator associated with the dynamic

programming equation is contractive, and we introduce a new policy iteration algorithm.
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Consider the problem of minimizing the finite horizon cost

n—1

sup EQg{Za]f( rd, ])} (5.11)

Q(|z,u)eBR(Q?)(z,u) j=0

with 0 < o < 1. By Theorem 4.2 the value function of (5.11), denoted by V;(x), j
0,...,n, x € Xj satisfies the dynamic programming equations (4.45), (4.46) with h,, = 0,
fi=1f R =R X = X, Uy = U, U(r) = U(r) and Q}(-|) = Q°(:|") . Define
vi(x) = &V, _;(x), where 0 < i < n is the time to go, (see [54]). Then,

vo(x) =0 (5.12)
R
@) = g, (e +a [ i@t +ag (apeaa) - i)
(5.13)

which is obtained as follows:

vo(z) = a™ "V, (z) =0, (since h, = 0)
and

vi(z) = " "V, _i(7)

= inf {oﬁ""lf:cu Z”/anﬂ °(dz|x,u)

wel (z)

z—nR :
+a 5 (SUP Vieivi(z) — ZIge Vn—i-‘rl(z)) }

zeX

= inf {f(x, u) + a/X vi—1(2)Q°%(dz|x, u) + oz];(sup vi—1(z) — Zlg)f( vi_l(z))}.

u€lU () 2€X

In contrast with finite horizon case, the one given by (5.12)-(5.13) proceeds from lower to

higher values of indices . The dynamic programming for the discounted cost

sup EQw{Zoﬂf rf, ])} (5.14)

Q(|z,u)€EBR(Q?)(z,u)

is given by

Voo () = inf {f(x,u) + oz//goo(z)Qo(dz]x, u) + a];(sup Voo(2) — Zlg)f( UOO(Z)) } (5.15)

u€eU(z) ZEX

The maximizing conditional distribution is
R
Q" (XF |z u) = QX |, u) + 5 €01, (z,u) €K (5.16)

Q" (X7 |z, u) = QX |, u) — ]; €0,1], (z,u)ekK (5.17)
Q" (Alz,u) = Q°(Alz,u), VACX\XTUX", (z,u)eK  (5.18)
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where
Xt 2 {:UEX :V(z) = sup{V(x) : :UEX}} (5.19)
P {xeX :V(z) = inf{V(z) : xe.)(}}. (5.20)

Next, we recall the following theorem from [54], which we invoke to show that the oper-

ator in the right hand side of (5.15) is contractive.

Theorem 5.1. Let (L.|| - ||) be a complete normed space and let T : L — L satisfy the
following inequality for some 0 < a < 1,

|TVL =TVa|| < a|Vi = V2|, forall Vi,V € L. (5.21)

A mapping T’ satisfying (5.21) is called a contraction mapping.
The following hold.

1) There exists a unique w € L satisfying Tw = w, called the fixed point of T
2) ForV € L, define {T"V :n €Z,}byTV =V, TV =T"(TV) then
lim || T"V —w|| =0, forall V €L, (5.22)
where w is the fixpoint defined in 1).

Lemma 5.1. Let L be the class of all measurable functions V : X — R, with finite norm
I|IV|| £ max,ex |V ()], and T : L — L defined by

(TV)(xz) = inf : {f(a:,u)%—oz/x V(z)QO(dz]a:,u)—i—a];(sup V(z)—zlgg V(z))} (5.23)

weU(z zZEX

IfV € BCT(X) and sup,cy V (2), inf,cx V(2) are finite, then T is a contraction.

Proof. For Vi, V; € L,

(TVi)(w) — (V) () =
inf {f(x, W)+ /X Vi(2)Q°(dz|, u) + oz];(sup Vi(2) — inf %(z))}

ueU(z) ZEX

— it LS+ a [ V(@@ @slr ) + oy (supVa(s) — nf Va(=) ) |

u€lU () 2€X

Let

v = arg inf {f(x,u) + oz/X Vo(2)Q°(dz|z, u) + a];(sup Va(z) — ;g}f{%(z))}

u€U (x) ZE€X
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Then,
(TVi)(x) — (TV2)(2)
=it [ o / V@l + ok (supe) — 1) )

u€U (z) zEX

{ fla | Va(2)Q°(dze,v) + af(supVM - 32;%%(2))}

zEX

_{ T, +a/V1 )Q°(dz|z, U)+a§<sup%(z)—;££%(z)>}

X zEX

flz,v) + Vg(z)Qo(dz|x,v) + 045 sup Va(z) — zlg/gvg(z)
2

zeX

@ { /V1 (2)Q"* (dz|z,v } { /VQ )Q°(dz|z, v) +a§(§gﬁ;v2(z) —;g)f(%(z))}
%{ /V1 QY (dz|x, v)} {a/ Vg(z)Qvl(dzM,v)}

_O‘/ (Vi(2) = Va(2)) Q" (dz|z[v) < asup|Va(z) = Va(z)] = of|Vi = Vo]

where (a) is obtained by applying (3.14), with £ = aVy, v*(-) = Q"' (-]"), u(-) = Q°(-|"),
and (b) is obtained by first applying (3.14) as in (a) with Q"2(-|-) and then replace Q"2(:|")
by QV1(-|-) which is suboptimal hence, the upper bound. By reversing the roles of V; and V5
we get (T'V2)(x) — (TV1)(z) < af|[Va = Vi||. Hence, [(TV1)(z) — (TV2)(z)| < af[Vi = V4|
forall z € X, and

ITV2 = TVa|| = max |(TVA)(z) — (TVa) ()] < of|[Vi = Vo]
which implies that the operator 7" : L — L is a contraction. ]

Utilizing Lemma 5.1 we obtain the following theorem which is analogous to the classical

result given in [54].

Theorem 5.2. Assume v, € BCT(X) and sup,¢y Voo(2), inf.cx Voo (2) are finite.

(1) The dynamic programming equation

Vo(z)=inf {f(x, u) + a/Xvoo(z)Qo(dz]:c, u) + a};(sup Vso(z) — inf voo(z)>}

u€U(x) 2eX zeX

has a unique solution.

(2) Moreover,

Uoo(x) = inf Eg- {iajf(xj,uj)]xo = m}
=0

gEU(z)
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(3) The mapping T defined by

(TV)(xz)= inf {f(:t,u)—i—oz/XV(Z)Qo(dz|x,u)+oz};(supV(Z)— inf V(z))}

u€eU(x) 2EX zEX

is a contraction mapping with respect to the norm ||V|| = max,cx |V (x)|.
(4) Forany V, lim,_,o. ||T"V — vs|| = 0 and so

lim (T"V)(z) = vo(z), forall v € X.

n—-~o0

Proof. (1) Follows from [54] (Theorem 6.3.6, part (a)).
(2) We need to show that v, () is the minimum value of E¢- {E;‘;O o f(x;, uj)} starting
in state o = z. Recall that 0 < f(z,u) < M forall z € X, u € U(x). Clearly, with zy = x

and for all n,

g€U(z) gEU()

inf EQ*{ iajf(xj,uj)} > inf ]EQ*{nz:lozjf(xj,uj)} = v, (2).
j=0 Jj=0

Hence, inf EQ*{ >0 flxy, u])} > lim v,(z) = ve(x). Conversely, for all n
gel () n=oo

n—1

o0 ) i 0 . Oan
inf Eg- I f(xj,u;) p< inf Eg- (g, uy T M=un,
BEy Ba A\ oSy w)}< ol Borg 32 e flagyui) b+ 30 o/ M=ua(e) g
and so
_ o ) a M
it o { Loy < Ji [unte) + 7] = 0e(0)
Hence, 121;1(f )EQ*{ > %0 o f(z, u])} = Voo ().
geU(x
(3) This follows from Lemma 5.1.
(4) Follows from [54] (Theorem 6.3.6, part (b)). |

5.2.1. Policy Iteration Algorithm

Next, we present a modified version of the classical policy iteration algorithm [39,54]. From
part 4 of Theorem 4.2, the policy improvement and policy evaluation steps of a policy iter-
ation algorithm must be performed using the maximizing conditional distribution obtained
under total variation distance ambiguity constraint. Hence, in addition to the classical case,
in which the policy improvement and evaluation steps are performed using the nominal con-
ditional distribution, here, under the assumption that f(-) is bounded and non-negative, by

invoking the results developed in earlier sections we propose a modified algorithm which is
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expected to converge to a stationary policy in a finite number of iterations, since both state
space X and control space U are finite sets, and that at each iteration a better stationary
policy will be obtained.

First, we introduce some notation. Since the state space X is a finite set, with say, n

elements, any function V' : X — R" may be represented by vector in R" defined by
T
V(@) 2 (V(m) - V(z,) ) €R"

Write z < y, if 2(i) < y(i), for Vi € Z" = {1,2,...,n};and z < y if 2 < y and 2 # y. For

a stationary control law g, let

1) = flarg@) - Fmgln) )

and define each entry of the transition matrix Q°(g)€R™" by Q%;(g) = Q°(x;]x;, (7)) =
Q9°(x;|x;). Rewrite (5.23) (with sup,.y V(2) denoting componentwise supremum, and

similarly for the infimum) as

TV = min {f(g) +aQ(g)V + 04];{ sup V() — inf V(z)}}

geR? zeX

which by Theorem 4.2 is equivalent to

TV = min {f(g) + aQ*(g)V}

geRn

where Q*(g) € R™ "™ and is given by (5.16)-(5.18). Note that, the minimization is taken
componentwise, i.e., g(z1) is the minimum of the first component of f(g) + a@Q*(g)V and

so on. For each stationary policy g, define 7'(g) : R* — R" by

T(g)V = f(g) +aQ"(g)V.

Then, T'(g) is a contraction mapping on the space of bounded continuous functions to itself,

and from Theorem 5.2 it follows that

V(g) =T(9)V = f(g) +aQ"(g9)V

has a unique solution V' (g) € R". Next, we give the policy iteration algorithm.

Algorithm 5.3 (Policy Iteration). Consider the notation above.
Initialization. Let m = 0 and select gy : X —— U be an arbitrary stationary control law.

Solve the equation

f(g90) +aQ°(g0)Voe(g90) = Vige(go) for Vigo(go) € R™. (5.24)
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Identify the support sets using (5.19)-(5.20) and the analogue of ;. of Section 3.3.1, and
construct the matrix Q*(go) using (5.16)-(5.18). Solve the equation

f(g0) + aQ*(90) V- (90) = Vi (90) for Vig-(g0) € R™. (5.25)

1. For m = m + 1 while

min { £(9) + 0 Q" (9)Var (9m-1) } < Var(gm-1) (5.26)

geR”

do:

(a) (Policy Improvement) Let g,, € R" be such that

f(gm) + aQ*(9n) Ve (gn-1) = min {f(g> + aQ(g)Vo+ (gm1)}- (5.27)

geR™

(b) (Policy Evaluation) Solve the following equation for Vo (gn,) € R™

f(gm) + aQO(gm)VQO (gm) = VQO (gm) (528)

Identify the support sets using (5.19)-(5.20), and construct the matrix Q*(g,,) using
(5.16)-(5.18). Solve the equation

f(gm) + aQ*(gm)VQ* (gm) - VQ* (gm) fOl’ VQ* (gm) e R". (529)

2. Set g* = G-

5.3. Minimax Stochastic Control - Average Cost

In this section, we study the infinite horizon Markov Control Model with the average pay-off
per unit time as an optimality criterion. We derive the new dynamic programming equations
under total variation distance ambiguity with and without imposing the irreducibility con-
dition. In addition, we introduce the corresponding policy iteration algorithms for average
cost dynamic programming. The derivations of our results are based on the classical results
found in [32,54].

Recall the definition of the infinite horizon D-MCM specified by (5.1), with discounting

factor a = 1, and consider the problem of minimizing the average pay-off per unit time

1 =

J(m) = limsup { sup ,EQg{ > fas, uk)}} (5.30)
J—o0 Q(|x,u)€BR(Q)(zu) J k=0

For the finite-horizon optimal stochastic control problem with pay-off

n—1
sup EQL’{ > f(xk,uk)} (5.31)
Q(|z,u)eBR(Q°)(z,u) k=0
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the value function satisfies the dynamic programming equation (see Chapter 4, Theorem 4.2,
with discounted factor @ = 1, finite state-space XX’ and finite input set (/)
Vi(z) = inf sup {f(x, u) + / Vit (2)Q(dz|z, u)} (5.32)
uEU(®) Q(-[2,u) B R(Q°) (w,u) X

which is equivalent to (since (Q* exists and is given by (3.46))

Vi(z)=inf {f(a:,u)+/XV]-+1(Z)Q*(dz]a:,u)} (5.33)

ueU(z)

= inf {f(x,u)—i—/XV}H(z)QO(dzM,u)—I—];(EEEX/]H(Z)—;Q)f(V}H(z))}

u€U(x)

Define V;(x) = V,,_;(z). Then V satisfies the equation

Vj(z) = inf sup {f(:c,u) +/ le(z)Q(dz]:c,u)}. (5.34)
uEU(@) Q(-|z,u)€BR(Q?) (1) X

Rewrite this as

— 1—
Vi(z)+ =V;(z) = inf Sup {f(x7 w
J j J w€U(T) Q(-|z,u) EBR(Q°)(zw)

+ [, Qel (V1) + <Vita)) | 639

Assume that there exists a V' and a J* € R such that

Jim (Vi(z) = 4J7) =V(z), Vzex (5.36)

Then -
lim -V;(z) = J*, VredlX (5.37)

j—00 j

which limit does not depend on z € X'. In addition, taking supremum with respect to z € X
on both sides of (5.36), and by the finite cardinality of X’
lim sup (V (x) — jJ*) = sup V(). (5.38)

J7o0 zex reX
Then, by (5.36) and (5.37)
1— —
T Vi) = lim (V) + (V(2) = 57))
(a)

= lim inf sup {f(x,u)+/XQ(dz|x,u) (Vj_l(z) + ;V](:p)> —jj*}

J—=roouel(x) Q(.|z,u)EBR(Q0)(z,u)

—~
(S
=

lim inf {f(x,u) —i—/ Qo(dzlx,u)(vj_l(z) + jVj(x))

J—ro0 uel (x)
# 5 (p (Tae 4 570 = g (Fiato) + 5750) — i)
(g]lggouég(fz { x,u)+/ Q°(dzlz, “)( i1(z) =G = 1)J +;V](:c) —J*)
* 5(525 ()= 3J) = int (Va(2) = 37) )}



118 Dynamic Programming with TV Distance Ambiguity on an Infinite Horizon

where (a) is obtained by (5.35), (b) is obtained by equivalent formulation (5.33), and (c) by
adding and subtracting J*(1 + j%). By assuming that / and X" are finite and by definition
of V, interchange of the limit and the minimization and maximization operations is allowed,
and hence, the dynamic programming equation for the average pay-off is given by

J+V(r) = ulgbl(ri) {f(x, u) + /X Q°(dz|z,u)V(2) + ];(EEE Vi(z) — Zlg)f(V(z))} (5.39)
which is equivalent to

J* 4+ V(z)= min

max T,u +/ dz|z,u)V(z } 540
uell(x) @<~|x7u>eBR(Q0><x7u>{f (z,u)+ | QUdzlr )V (z) (5.40)

Next, we show that J* satisfying (5.40) is the minimal average pay-off, and further that
if 7* is a stationary policy such that g*(x) achieves the minimum on the right-hand side of

(5.40) for every x € X, then 7* is optimal.

Theorem 5.4. Suppose there exists a solution (V, J*) of the dynamic programming equation
(5.39). Let ©* be a stationary policy such that g*(x) attains the minimum in the right-hand

side of (5.39) for every x. Then 7* is an optimal policy and J* is the minimum average cost.

Proof. Let w € IIP be any policy, possibly non-stationary, and u € U(x). Then

ax {f(x,u)%—/XQ(dzu,u)V(z)}

m
Q(|z,u)EBR(Q°)(z,u)

2 Q("m’“)é%?%}((Q")(m,u) {f([[',g*(l')) + /X Q(dZ’.’If,g*(.Z'))V(Z)} =J" + V(x) (541)

since (V) J*) satisfy the dynamic programming equation and by definition of 7*. Hence, by
(5.41)

EY,. (f(xj,uj)) > J* 1 B, (V(xj)) ~E, (/XQ*(dz]mj,uj)V(zO
— 4 ED, (V(xj)) R, (V(:cm)). (5.42)
Then

J(7) > lim inf <1 ]2_:1 Ed- (f(ka, Uk:)))

j—o00 7 =0
(@ I g
> hjrr_1>é£1f (J + j<]EQ* (V(%)) — Eq- (V(%))))
O g

where (a) is obtained by (5.42), and (b) because the last term vanishes as j — oo.
Thus, J* < inf o J(7). However, when 7* replaces 7 equality holds throughout and as a
result 7* is optimal, that is, J* = J(7*) = inf.cp J(7), 7* € [T is an optimal control law

and J* is the value. |
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5.3.1. Existence

Dynamic programming equation (5.39) is valid under the assumption that (5.36) and (5.38)
are satisfied. Here, we derive more general conditions under which (5.39) is valid. First, we
introduce some notation similar to Section 5.2.1.

Let the state space X be a finite set, with say, n elements. Then, any function V' : X —
R"™ may be represented by a vector in R”. Any stationary control law 7 € II”° defines
g : X — R which may also be identified with a ¢ € R". For any g let Q(j) € R"*" and

flg) = ( flz1,9(x1)) -+ flzn, g(x,)) )T e R".

Let gy € R" be defined by
A
q0(2) = Q({zo = 1})

and

e=(1,---,1)T eR™

Maximizing the expected cost on a finite horizon is then

7j—1
max E 71'{ T, U } { }
) ,;Of( B U [ = e O o)) Zq

a
Q(-\x,u)GBR(QO)(:ﬁ,u

max qo{ZQ } ). (543)

" Q(lrw)eBy

Let Q*(+|z, u) denote the maximizing conditional distribution of (5.43). Then (5.43) is equiv-

alent -
i S o —d{ S oo s
Maximizing the average cost per unit time is then
1 =
T = WSID T oSt o) EQE{ ,;0 few, u’“)}

—hmsuquO{ZQ } (9).

J—00

Since ¢y € R™ and f(g) € R™ are independent of j, we only need to investigate the condi-

tions under which the limit of
141

lim - ZQ

]—>oojk0

exists. The following results are stated without proof.
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Lemma 5.2. [54] If Q* € R" is a stochastic matrix, then the Cesaro limit

. k
lim — Z (@) = Q] (5.45)
always exist. The matrix Q5 € R*™ is a stochastic matrix and is the solution of the equation

QIQ" = Q7. (5.46)

Thus, the maximization of the average cost of a stationary Markov control law is given by

J(m) = 45 Q1(9) f(9) (5.47)
where ()7 (g) and Q*(g) are related by (5.46).
Definition 5.1. [54] A stochastic matrix P € R'*" is said to be reducible if by row and

column permutations it can be placed into block upper-triangular form

P B ,
P = 0 p ) where Py, P, are square matrices.
3

A stochastic matrix that is not reducible is said to be irreducible.

Lemma 5.3. [54] Let Q* € R*" be an irreducible stochastic matrix. Then, there exists a

unique vector q such that
Qq=q, e'q=1, q(i)>0 forall i€ Z,.
Moreover, the matrix () associated with Q* in (5.46) has all rows equal to q.

Note that, (5.47) depends on the probability distribution g of the initial state. However, if

()7 is assumed to be an irreducible stochastic matrix, then by Lemma 5.3

J(m) =q5Qi(9)f(9) = a(9)" f(g) (5.48)

where ¢(g) is the unique invariant probability distribution, that is, Q*¢(g) = ¢(g). From
(5.48), the average cost J(g) is independent of the initial distribution. Hence, for the remain-
der of this section, we will assume that for every stationary Markov control law the stochastic

matrix Q* is irreducible. The next proposition summarizes the above results.

Proposition 5.1. [54] Let 7 be a stationary Markov control law which defines g : X —— U.
Assume that Q*(g) € R is irreducible.

(a) There exists a unique q(g) € R, such that

Q*(9)a(9) = q(g), e'g=1, e=(1,...,1)". (5.49)
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(b) The average cost associated with the control law 7 € T1P% is
J(m) = a9)" (9). (5.50)
(c) There exists a V(g) € R™ such that
J(me+V(g) = flg) + Q" (9)V(9). (5.51)
Proof. Part (a) and (b) follows from Lemma (5.3) and the discussion above. For part (c)
see [54]. [ |
Lemma 5.4. Assume that:

1. For any stationary control law 7 € TIP%, Q*(g) € R'.*" is irreducible.

2. There exists a stationary Markov control law 7 € 11P% such that

J(r) = inf J(r)

rellPs

Then there exists (V (g*,-), J(7*)), V(¢g*,:) : X — Rand J(7) € R that is a solution to
the dynamic programming equation
J(W>+V<g’x>:glelg}{ T, u +;Q z|z, u) (g,z)}. (5.52)

Proof. See Appendix D.1. |

Theorem 5.5. Assume that for all stationary Markov control laws 7 € 11P%, and for a given

total variation parameter R, the maximizing transition matrix Q*(g) is irreducible.

(a) There exists a solution V : X —— R and J* € R to the dynamic programming

equation
J*+V(x):r£g{1{ T, u +;Q z|z, ) (z)} (5.53)
The maximizing conditional distribution is

Q" (X" |z, u) = Q°(X T |z, u) + }; € [0,1] (5.54)
Q" (X7 |z, u) = QX |z, u) +§L € [0,1] (5.55)
Q*(Alz,u) = Q°(Alz,u), YACX\XTUX™ (5.56)
where
Xt & {re X :V(z)=sup{V(x):z € X}} (5.57)

X 2{rex: Vi) =mf{V(z):z e} (5.58)
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Moreover,
. : 0 R :
T+ V() = mi {f(x, ) + ;{ Q (el )V (z) + 5 (supV () - inf V(=) }
(5.59)
(b) If g*(x) attains the minimum in (5.53) for every x, then g* is an optimal policy.
(¢) The minimum cost is J*.

Proof. Theorem 5.5 is obtained by combining Lemmas 5.4 and 5.4 and by applying the
results of Section 4.3.2. |

5.3.2. Policy Iteration Algorithm

In this section, we provide a modified version of the classical policy iteration algorithm for
average cost dynamic programming [39,54]. From part (a) of Theorem 5.5, policy evaluation
and policy improvement steps of a policy iteration algorithm must be performed using the
maximizing conditional distribution obtained under total variation distance ambiguity con-
straint. Moreover, one needs to guarantee that for the given total variation parameter R the
resulting matrix (Q* is irreducible, otherwise, Algorithm 5.6 may not be sufficient to give the

optimal policy and the minimum cost.
Algorithm 5.6 (Policy iteration for average-cost dynamic programming).

1. Let m = 0 and select an arbitrary stationary Markov control law gy : X — U.
2. (Policy Evaluation) Solve the equation

Jao(gm)e + Voo (gm) = f(gm) + Q%(gm) Voo (gm), e=(1,...,1)"  (5.60)

for Jgo(gm) € Rand Vo(g,,) € R™. Identify the support sets of (5.60) using (5.57)-
(5.58), and construct the matrix QQ*(g,,) using (5.54)-(5.56). Solve the equation

Jo-(gm)e + Vo (gm) = [(gm) + Q7 (9m) Vo (9m), e=(1,..., 1)T (5.61)
for Jo+(gm) € R and V+(gm) € R™
3. (Policy Improvement) Let

g1 = argmin { £(9) + Q(9)Var (gm) |- (5.62)

4. If gmi1 = Gm, let g* = g, else let m = m + 1 and return to step 2.

In Section 5.4.2, we illustrate how policy iteration algorithm for infinite horizon average

cost dynamic programming is implemented through an inventory control example.
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5.3.3. Limitations

Part (a) of Theorem 5.5, showed that for a stationary Markov control policy = € IT1”% and
for an irreducible stochastic matrix (Q* there exists a solution to the dynamic programming
equation (5.53). Moreover, the maximizing stochastic matrix (Q* which is given by (5.54)-
(5.56), is calculated based on the support sets (5.57)-(5.58), the nominal stochastic matrix
(2°, and the value of the total variation parameter . Hence, in order to apply policy itera-
tion algorithm for average-cost dynamic programming one needs to know in advance that,
for a given total variation parameter R € [0, 2] and an irreducible nominal stochastic ma-
trix ()¢, the maximizing stochastic matrix ()* is also irreducible. Otherwise, policy iteration
algorithm may not be sufficient to give the optimal policy and the minimum cost. In partic-
ular, as we show in the next example, if irreducibility condition is not satisfied then policy

iteration algorithm need not have a solution.

Example 5.1. Consider the stochastic control system shown in Fig.5.1, with state-space

X = {1,2,3} and control set U = {uy,us}. Let the nominal transition probability under

q71 (uz)

g1 (uz2)

q52(u1) C@ @D a33(u1) 32 (uz)

(a) (b)

¢33 (u2)

Figure 5.1.: Transition Probability Graph of ()° under controls u; and us. Plot (a) depicts

matrix ()° under control u;. Plot (b) depicts matrix ()° under control us.

controls uy and us to be given by

. 0 5 4 . 2 70
Q=509 0|, Qu)=g5|360
009 8 0 1

and the cost function under each state and action is

f(l’ul) = 27 f(27u1) = 17 f(37u1> = 3’ f(l»UQ) = 057 f(27u2) = 37 f(?’vu?) - O

Clearly, for this control system the nominal transition probability matrix, under both con-
trols, is reducible, since the system under controls u, and uy contains more than one re-

current class. Using policy iteration Algorithm 5.6 with initial policies go(1) = go(2) =
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90(3) = g, the optimality equation (5.60) for this system may be written as

1 2 . 5 4
Joo | 1 [ +Voelgo) =] 1 [+ 9 9 0 | Voelg)
1 3 09

and hence
5 4
JQO + VQO(Q(), 1) = 2 -+ §VQo(g0, 2) -+ §VQo<g0, 3)
Jgo + Vigo(g0,2) = 1+ Vige(90,2)

Jgo + Vigo(90,3) = 3 + Vigo (90, 3).

The second and third equations show that the system is inconsistent, and hence, the policy

iteration algorithm fails to give the optimal policy and the minimum cost.

Moreover, even if ()° is an irreducible stochastic matrix, it turns out that, as the value
of total variation parameter increases, the maximizing stochastic matrix *, eventually, will
be transformed into a reducible stochastic matrix. Hence, our proposed method for solving
minimax stochastic control problem with average cost is valid only for a specific range of
values of total variation parameter. In particular, if ()° is an irreducible stochastic matrix
then, for any given partition of the state-space, there exists an R,;, € [0,2) for which we

distinguish the following two cases:

(a) for 0 < R < Ryn, @ is an irreducible stochastic matrix. Theorem 5.5 is valid and

policy iteration algorithm gives the optimal policy and the minimum cost.

(b) for R > Ry, Q" is a reducible stochastic matrix. Theorem 5.5 is not valid and policy

iteration algorithm need not have a solution.

Remark 5.1. An extended solution through a reduced dimensional state-space may be ob-
tained as follows. Consider the case for which R > Ry.i,. Due to the water-filling behavior
of maximizing conditional distribution (5.54)-(5.56), columns of QQ* which correspond to
states belonging to X \ X°, become columns with all zero’s as total variation parameter R
increases. Whenever an all zero column appears, one can augment the corresponding state
of that column, and hence QQ* will be transformed back into an irreducible stochastic matrix

of reduced order.

5.3.4. General Dynamic Programming

In this section, we propose an alternative method, the so-called, general dynamic program-

ming for average cost which overcomes the limitations discussed in section 5.3.3. Despite
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the fact that it is more complex, it completely solves the minimax stochastic control problem
with average cost. In particular, we introduce a general dynamic programming for average
cost, without imposing the assumption that for all stationary Markov control laws, and for
a given total variation parameter R, the maximizing stochastic matrix Q* € R}*" is irre-
ducible.

As we have already discussed, when considering control systems with more than one re-
current class, policy iteration algorithm may not be sufficient to give the optimal policy and
the minimum cost. In addition, due to the water-filling behavior of the maximizing con-
ditional distribution, eventually, ()* will be transformed into a reducible stochastic matrix.
Hence, the proposed methodology of previous sections and policy iteration Algorithm 5.6,
solve the minimax stochastic control with average cost only for a specific range of values of
total variation parameter. The general dynamic programming equations which completely

solves minimax stochastic control problem with average cost are introduced next.

General Dynamic Programming Equations

Example 5.1 in Section 5.3.3, showed that a unique dynamic programming equation may
not be sufficient to give the optimal policy and the minimum cost when there is more than
one recurrent class. A general solution is obtained by introducing an additional dynamic
programming equation. We refer to the pair of dynamic programming equations as general
dynamic programming equations, since they completely solve the minimax stochastic control

problem with average cost, and they are given by

F@)= g s /X Q(dz|, u) J* (=) (5.63a)
= nf /X O*(dz|x, u) J* () (5.63b)
- it { | /X Q°(dz|, u)J* (=) + ];(33}? J() ~ inf J*(z))} (5.63¢)

and
F@V@zn { Fl u)+ [QUdzle, u)V(z)} (5.642)
Téﬁf@{ Flx,u) + /X Q*(dz]x,u)V(z)} (5.64b)
~inf { Fl,u)+ /XQO(dz|x, u)V(z)+§(§g§V(z)— inf V(2)) } (5.64¢)

We refer to (5.63) as the first general dynamic programming equation and to (5.64) as the

second general dynamic programming equation. The maximizing conditional distribution of
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(5.63b) is given by (5.54)-(5.56), where

X*é{xeX: J*(x) = sup{J*(z) :a;e)(}} (5.65)
X &2{rex:r(a)=int{J(x): v eX}} (5.66)

Similarly, the maximizing conditional distribution of (5.64b) is given by (5.54)-(5.56), where

Xt £ {x eX :V(x)=sup{V(z):z € X}} (5.67)
X 2{zex V() =mf{V(z):z e x}}. (5.68)

Definition 5.2. [32] Let p and h be real-valued measurable functions on X and p* a given
stationary selector. Then (p, h, ¢*) is said to be a canonical triplet if, for every x € X and
j=0,1,...

j—1
Ba(@) )EQf*{ 2 S (@) + h(xj)}

Q(|z,u)eBr k=0

j—1
— inf sup EQE{ S fla ) + h(a:j)} — jp(z) + h(z). (5.69)
k=0

m€lPS Q( |z,u)eBR(Q)(x,u)

If a stationary selector ¢* is an element of a canonical triplet, then it is called canonical.

Theorem 5.7. [32] (p, h, ") is a canonical triplet if and only if, for every x € X,

p(x) = inf sup /Xp(z)Q(dz\x,u)

weU() Q(-|z,u)EB (Q°)(z,u)

= sup / p(2)Q(dz|x, ¢*(x)) (5.70)
Q(|z,u)€BR(Q%)(z,u) /X

and
plw) + h(z) = inf swp )+ [ r()Qw )
u€U (x) Q(-|z,u)eBR(Q)(z,u) X

= s e @) [ bR @)} 67D
Q(|z,u)eBR(Q°)(z,u) A

Note that, if (p, h, ¢*) solve (5.70) and (5.71), then so does (p, h + N, ¢*) for any constant
N.

Proof. (=) Suppose that (p, h, ©*) is a canonical triplet, i.e., (5.69) holds Yz € X and
j > 0. From dynamic programming equation (5.32) we have that

Vi(z) = min max
uel(z) Q(-|z,u)EBRr(Q°)(z,u)

{ Fl,u) + /X V}H(z)Q(dz]x,u)}. (5.72)
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Define V;(z) = V,,_;(z), (j =0,...,n). Then (5.72) may be written in the “forward” form

Vji(xz) = min max {f(x,u) —l—/XVj(z)Q(dz]x,u)}. (5.73)

uel(z) Q(|z,u)eBr(Q?)(z,u)

Thus, from (5.69)

G+ Dolh@)= min e {fa )+ [ (o) +h() Q)|

uel(z) Q(|z,u)eBRr(Q°)(z,u)

which yields the first equality in (5.70) when j = 0 and multiplying by 1/j and letting
J — oo it also gives the first equality in (5.71). Finally, for any deterministic stationary
policy ¢* € II1P¥ which satisfies (5.69), we have that

G+ Do) +h@ = max i)+ [ () + () Qe o)}

which, as before, gives the second equality in (5.70) and (5.71).

(«<=) Conversely, suppose now that (p, h, ¢*) satisfy (5.70) and (5.71). Then iteration of
(5.71) using (5.70) implies, Vx € X and 7 > 0

jp(x) + h(x)
j—1
= Sup K w*{Zf(@mWa)}"‘ sup E w*{h(x)}
QUlrw)eBr(Q)@u) ¥ i Q(z)eBR(Q7) () ’
-1

j
= sup Eqw* { Z f (g, ug) + h(xj)} (5.74)
Q(|z,u)€EBR(Q°)(z,u) N

Thus to complete the proof of (5.69) it only remains to show that

sup EQw { Jf [, ug) + h(:z:])}

v

Q("$1U)EBR(QO)(I7U) k=0
j—1
= inf sup EQE{ f(zg, ug) + h(z )} (5.75)
TIPS Q(|z,u)EBR(Q°) (w,u) ];) ’

Proceeding by induction, we note first that (5.75) is obvious when n = (0. Suppose now
that (5.75) holds for some j > 0. Then, from (5.72) and (5.74), together with the induction
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hypothesis
V,(z) = min max {a:u+/V dzxu}
J( ) uel(z) Q(-|lz,u)EBR(Q°)(z,u) f | )
= min max T,u +/ )+ h dz:v,u}
ueU(z) Q(|z,u)EBR(Q°)(x,u) {f jp ( ))Q( | )
> min { dz|z,u }
- uel(z) Q(:|z, u)eBR (Q°)(z,u) flz ( )Q(dz |z, u)

+ 7 min max {/Xp(z)Q(dz\:U?u)}

uel(z) Q(-|z,u)eBRr(Q°)(z,u)
= (J+ Dp(x) + h(x)

= ap B S fla ) + h(z;)}

Q("xm“)EBR(QO)(xvu) v k=0

Hence, since the reverse inequality trivially holds, then (5.75) holds for n + 1, and the proof

is complete. u

Theorem 5.8. Suppose the cost function f is bounded below, and (p, h, p*) be a canonical
triplet.

(a) If forany 7 € 1P and any v € X

hz;) } —0 (5.76)

J

lim { sup Eqr {
( )(@,u)

770 LQ(-|z,u)eBR(Q°
then ©* is an optimal strategy and p is the average cost value function

V(z) = p(x) = limsup 1[ sup Eqse { Zéf(xk, uk)H

j=oo ] LQ(|z,u)€BR(Q)(xu)

= lim 1[ sup EQf*{Zif(xk,uk)H. (5.77)
=0

7790 ) LQ(|z,u)eBR(Q°)(z,u)

(b) If forany x € X

NGy
lim sup sup EQ’J{ (%) H =0 (5.78)
179 ren? L Q(|eu)€BR(Q)(xu) J
then for all m and x € X
1 >
lim sup — sup E o+ { f(zx, uk)}]
j=oo ] LQ(|zu)eBR(Q°)(x,u) @’ k=0
1 )3
< lim inf { sup EQg{ Iz, uk)}] (5.79)
Jroo j Q('|$7U)EBR(QD)(1’U)

k=0
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and
7j—1
lim sup E w{Zf(a:k,uk)}
=% Lo(emeBr@)@w ¥ i
j—1
— inf sup qu{ > f(SUk,Uk)H/j =0. (5.80)
T€P Q([o,u)EBR(Q) (z,u) k=0
Proof. (a) From (5.69)
j—1
jp(z) + h(z) = inf sup EQg{ > flwe, we) + h(a:j)}
€M™ Q(-|2,u)€EBR(Q) (u) k=0
J—1
< sup qu{ > fa, uk)} + sup EQg{h(xj)}
Q( |z, u)€BR(Q°)(x,u) k=0 Q(|z,u)eBR(Q°)(z,u)
V7 € 1Y and x € X. Hence, multiplying by 1/5 and taking the lim sup as j — oo
1 =
p(x) < limsup — sup EQg{ Z f(zx, uk)H, vV, x
j=oo ] LQ(|z,u)€BR(Q)(xu) k=0
which implies
1 >
p(x) < inf limsup - sup EQg{ f(xk,uk)}], V. (5.81)
m€lP jooo ] LQ(|wu)eBR(Q)(w.u) k=0
Furthermore, from (5.69) again
j—1
Q('|$VU)EBR(QO)(Z‘7U) v k=0
7j—1
= s B s+ sw B ()]
Q(-\x,u)GBR(QO)(I,u) Qf k=0 Q(-|x,u)€BR(Q°)(x,u) v !

= jp(z) + h(z).

Finally, multiplying by 1/n and then taking both lim sup and liminf as j — oo we obtain

the last two equalities in (5.77), which in turn, together with (5.81), yield the first one since

1
z) < inf limsu [
p( ) ~ menb ]-}oop J

j—1
sup EQ;}{ > fla, Uk)H
Q(-|z,u)eBR(Q°)(z,u) k=0

) 1
< limsup —

7j—1
' { sup EQ{;{ > [, Uk:)H = p(x).
j—=oo ] LQ(|zu)eBR(Q0)(z,u) k=0
(b) From (5.69)

j—1
inf sup qu{ f(g, ug) + h(x)}
melP Q(-\x,u)eBR(QO)(z,u) kz:%] ’
j—1

= sup Eqe { > fa, uk)} + sup Eqe {h(xj)}
Q(lzu)eBR(Q%)(zu) 7 L= Q(|z,u)eBR(Q)(z,u)
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and, on the other hand,

j—1
inf sup EQE{ (g, u) + h(z )}
WGHD Q(~\x,u)€BR(Q°)(:c,u) ];] ’
j—1
= inf sup E «:*{ Zf(xk,uk)} + sup E So{h(:c)}
Tell? LQ(lru)eBr(@)@w) ¥ L[z Q(l2u)eBR(Q) () ’
7j—1
< inf sup E w*{Zf(xk,uk)} + sup sup E w{h(m)}
Tell” Q(au)eBa(Q) @) ¥ iy rellD Q(lau)eBr(Q7)(wu) ’

Hence, if h satisfies (5.78) then (5.80) is obtained. To prove (5.79), we use (5.82) to obtain

j—1
sup ]EQ@*{ f(xy, uk)} + sup Eqe {h(:cj)}
Q(lzw)€BR(Q) (xu) " L2 Q(|zu)€BR(Q?)(zu)
j—1
< sup EQL’{ > f(xk,uk)} + sup Eqp {h(xj)}, vV, x,j
Q("IVU)EBR(QD)(:EJ'L) k=0 Q(-|m,u)EBR(QO)(a:,u) v
so that, from (5.78)
1 3
lim inf — sup E ¢*{ f(xk,uk)}
7% J QlrweBr@)@w ¥ (D
1 g,
< liminf = sup EQg{ > f(xk,uk)}.
7790 ] Q(|z,u)€BR(Q?)(xu) k=0
From part (a) of Theorem 5.8, the left-hand side equals
1 =
lim sup — sup Eqp { > fla, uk)}
j=oo ] Q(lzw)eBRr(QO)(zu) Y Lo
and hence (5.79) is obtained and the proof is complete. |

5.3.5. General Policy Iteration Algorithm

In this section, we provide a policy iteration algorithm for average cost dynamic program-
ming, which solves general dynamic programming equations (5.63) and (5.64). Because
policy evaluation and policy improvement steps must be performed using the maximizing
conditional distribution obtained under total variation distance ambiguity constraint for a
pair of equations, the proposed algorithm is considerably more complex compared to Algo-
rithm 5.6. However, as we mentioned earlier, it solves minimax stochastic control problem
with average cost for all range of values of total variation parameter R € [0, 2], and without

imposing the irreducibility condition.

Algorithm 5.9 (General policy iteration for average-cost dynamic programming).
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1. Let m = 0 and select an arbitrary stationary Markov control law gy : X — U.

2. (Policy Evaluation) Solve the equations

Jgo(gm) = Q°(gm)Jge (gm) (5.83)
Jgo(gm) + Voo (gm) = f(gm) + Q°(9m) Ve (gm) (5.84)

for Jgo(gm) and Vgo(gnm,). Identify the support sets based on the values of Vo using
(5.67)-(5.68), and construct the matrix Q*(g,,) using (5.54)-(5.56). Solve the equa-

tions
Jo-(gm) = Q" (9m) Jo+ (gm) (5.85)
J@-(9m) + Vo (9m) = [(9m) + Q" (9m) Vo~ (9m) (5.86)

for Jo-(gm) and V- (gum)-

3. (Policy Improvement) Let
gmsr = argmin {£(g) + Q"(9)Va- (9m) }- (5.87)

4. If g1 = gm let g* = g, else let m = m + 1 and return to step 2.

In Section 5.4.3, we illustrate through an example how Algorithm 5.9 is applied.

5.4. Examples

In this Section we illustrate the new dynamic programming equations and the corresponding
policy iteration algorithms through examples. In particular, in Section 5.4.1 we present an
application of the infinite horizon minimax problem for discounted cost by employing the
policy iteration algorithm 5.3. In Section 5.4.2, the example under consideration is identical
to the previous one, except that an average cost is considered and policy iteration algorithm
5.6 is employed. In Section 5.4.3, we illustrate an application of the infinite horizon minimax
problem for average cost, however, now the stochastic control system under consideration
is described by a transition probability graph which is reducible, and hence general policy

iteration algorithm 5.9 is applied.

5.4.1. Infinite Horizon D-MCM

Here, we illustrate an application of the infinite horizon minimax problem for discounted
cost, by considering the stochastic control system shown in Fig.5.2a, with state space X' =
{1,2,3} and control set U = {uy, us}.
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q71(u)

(a)

11

Value Functions

0 0.‘5 1‘ 115 2
R € [0,2]

(b)

Figure 5.2.: Optimal Solution of Infinite Horizon D-MCM Example: Plot (a) depicts the
transition probability graph. Plot (b) depicts the optimal value as a function of

total variation parameter.

Assume the nominal transition probabilities are given under controls u; and us by

1

5
Q) =3 3|, Qw) =
2

2 6
5.88
5 2 3 (5.88)
1 4

— s W
D N =
[ N

the discount factor is o = 0.9, the total variation distance radius is R = g, and the cost
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function under each state and action is

f(17ul) = 27 f(zaul) = 17 f(3au1) = 37 f(17u2) = 057 f(27u2) = 37 f(37u2) = O

Using policy iteration algorithm 5.3, with initial policies go(1) = u1, go(2) = ua, go(3) =

ug, the algorithm converge to the following optimal policy and value after two iterations.

92(1) Uy Vo-(1) 6.79
=020 |=u]|, Vol(s")=Velsp) = V- (2)| =743
92(3) U Vo-(3) 6.32

Fig.5.2b depicts the optimal value functions for all possible values of 2, and shows that, the
value functions are non-decreasing and concave functions of 1. For the analytic solution of

this example, refer to Appendix D.2.

5.4.2. Infinite Horizon Average MCM - Policy Iteration Algorithm 5.6

This example is identical to the previous one Example 5.4.1, except that an average cost
function is considered. The stochastic control system is as shown in Fig.5.2a, with state
space X = {1,2,3} and U = {uy, us}. Assume that the nominal transition probabilities are

given by (5.88). The average cost function under each state and action is

f(17u1) = 27 f(27u1) = 17 f<37u1> y— 37 f(17u2) = 057 f(27u2) = 37 f(37u2) = 07

and the total variation distance radius is R = g. To obtain an optimal stationary policy of the
infinite horizon minimax problem for average cost, policy iteration algorithm 5.6 is applied.
A.Letm = 0.

1. Select the initial policies as follows
g0(1) =u1, 90(2) =u2, 9o(3) = ua. (5.89)

2. Solve the equation Jo(go)e + Vo (go) = f(g0) + Q°(g0) Ve (g0), for Jgo(go) € R and
Vo (90) € R?, or,

1 VQ“(go,l)
Joo(go) | 1 |+ | Violgo,2) | =
1 Vo (90, 3)
f(1,90(1)) 491(90(1))  af5(90(1))  afs(g0(1)) Vo (90, 1)

f(2,90(2)) | T ¢31(90(2)) a52(90(2)) ¢53(g0(2)) Vo (90, 2)
f(3,90(3)) 451(90(3))  45:(90(3)) 433(90(3)) Vo (90, 3)
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which is given by
1 VQO(QO) ]_) 2 1 3 1 5 VQO(907 1)
JQo (go) 1 + VQo (go, 2) = 3 + § 4 2 3 VQo <90> 2)
1 VQO (go, 3) 4 1 4 VQO (go, 3)

Since Vo (go) is uniquely determined up to an additive constant, let Viyo(go,3) = 0. The

solution is

VQo<g0,1) 18
Vao(90,2) | =1 3375 |, Jge(go) = 1.175. (5.90)
VQO(QO,?’) 0

Note that, Vo = {Vgo(1), Ve (2), Vige(3)}, | X| = 3, and hence X+ = {2}, X~ = {3} and
X1 = {1}. Since the nominal transition probabilities are given by (5.88), the total variation
distance is equal to R = 6/9 and the resulting partition is the same as in the initialization step
of Example 5.4.1 (see Appendix D.2) then Q*(u;) and Q*(us) are given by (D.3) and (D.4),
respectively. The transition probability graph of (Q*, under controls u; and ws, is depicted in
Fig.5.3. Note that, under both controls, matrix Q*(«) remains irreducible.

Next, we proceed to solve the equation Jg-(go)e + V- (90) = f(g0) + Q" (90) V- (go), for
Jo+(g0) € Rand Vi« (go) € R3, or,

1 Vio+(90,1)
Jo-(g0) | 1 |+ | Vor(90,2) | =
1 VQ*(9073)
f(1,90(1)) qi1(90(1)) afa(90(1)) ais(go(1)) V- (90, 1)
f(2,90(2)) |+ 61(90(2) ¢32(90(2)) ¢53(g0(2)) Vo (90,2)
f(3,90(3)) 41(90(3)) @32(90(3))  @53(g0(3)) V- (90,3)
which is given by
1 Vo- (g0, 1) 2 ) 3 4 2 V- (90, 1)
Jo(go) | 1 |+ Voe(90,2) | =1 3 tgl 450 V- (90,2)
1 V- (90, 3) 4 41 V- (90, 3)

Since V+(go) is uniquely determined up to an additive constant, let Vi-(go,3) = 0. The
solution is
Vo-(90, 1) 1.8
Vo-(90,2) | =1 3375 |, Jo-(90) =23. (5.91)
V(90 3) 0
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a1 (ul)

(152(161)

032 (U1>

(a)
qi1(u2)

qi‘z(uz)
@51 (u2) qis(uz)

@32 (u2) q33(u2)

432 (UZ)

(b)

Figure 5.3.: Transition Probability Graph of @)* under controls u; and uy. Plot (a) depicts

matrix (* under control u;. Plot (b) depicts matrix ()* under control u,.

3. Let g; = argmingegs{ f(g) + Q*(9)V-(90)}, that is,
g1(1)=argmin {f(l, ur) + 911 (u1) V- (90, 1) + 912 (u1) Vi (g0, 2) + g13(u1) V- (g0, 3)
S (1, ug) + g1y (u2) Vo= (g0, 1) + gia(u2) V- (90, 2) + g73(u2) V- (go, 3)}

= argmin {4.099, 2.573} = {2}. Hence, ¢1(1) = us.

g1(2)= argmin {f (2,u1) + 931 (w1) Vg (9o, 1) + gao(u1) Vi (90, 2) + 933(u1) Vig- (9o, 3)
J(2,u2) + g5, (u2) V- (g0, 1) + ga9(u2) V- (90, 2) + ga3(u2) V- (9o, 3)}

= argmin {3.673, 5.673} = {1}. Hence, ¢1(2) = .
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g1(3)=argmin {f (3,u1) + g31(u1) V- (9o, 1) + g39(u1) Vig- (9o, 2) + ga3(u1) V- (90, 3)
f(3,u2) + g3 (u2) Vi (g0, 1) + g39(u2) Vg (g0, 2) + g33(u2) V- (9o, 3)}
= argmin {6.375, 2.3} = {2}. Hence, ¢1(3) = us.

Since, g1 # go, let m = 1 and return to step 2.

B.Letm = 1.
2. Solve the equation Jgo(g1)e + Vo (g1) = f(91) + Q°(91)Vige (1), for Jgo(g1) € R and
Vao(g1) € R?, or,

1 Vo(g1, 1)
Jae(g) | 1|+ | Vielgr,2) | =
1 Vo(g1,3)
f(1,0:(1)) at1(91(1))  af2(g1(1))  qf5(g1(1)) Ve (90, 1)
f(2,01(2)) |+ 65:(91(2) 45:(91(2)) 455(91(2)) Ve (90, 2)
f(3,91(3)) 351(91(3))  452(91(3))  a33(91(3)) Ve (90, 3)
which is given by
1 Vo (g1,1) 0.5 , 1 26 Ve (91,1)
Joo(gr) | 1 [+ | Vigolg1,2) | =] 1 +t5l 423 Vae(91,2)
1 Ve (91,3) 0 4 1 4 Ve (91,3)
Let Vo (g1, 3) = 0. The solution is
Vo (g1,1) 0.468
Voo(91,2) | =] 1125 |, Joo(go) = 0.333. (5.92)
Vo (91,3) 0

Therefore, X+ = {2}, X~ = {3} and X} = {1}. Since the partition is the same as inm = 0
then Q*(uy) and Q*(us) are given by (D.3) and (D.4), respectively.

Solve the equation Jg«(g1)e + Vo« (g1) = f(g1) + Q*(91) Vo~ (1), for Jo+(g1) € R and
Vo-(g1) € R%, o,

1 VQ*(Ql,l)
Jo(g) | 1 [+ Vor(g1,2) | =
1 V- (91,3)
f(1,91(1)) ¢(91(1))  gia(g1(1))  ai5(g1(1)) Vo (91, 1)

f(2,01(2) |+ 61(91(2) @32(91(2)) 33(91(2)) Vo (91,2)
f(3,91(3)) 41(91(3)  @52(91(3))  33(91(3)) V- (91,3)



5.4 Examples 137

which is given by

1 vQ*(ghS) 0 4 4 1 VQ*<9173)
Let Vi« (g1, 3) = 0. The solution is
Vo(91,2) | =] 1125 |, Jg(gn) = 0.708. (5.93)
<g173) 0

3. Let g, = argmingers{ f(g) + Q@*(9)Vo- (1)}, that is,
g2(1)=argmin {f(L uy) + 911 (w1) V- (91, 1) + g12(u1) Vg (91, 2) + gr3(u1) V- (91, 3)
(1 uz) + g7y (u2) Vi (g1, 1) + gio(u2) V- (g1, 2) + gi5(u2) V- (g1, 3)}

= argmin {2.656, 1.177} = {2}. Hence, g2(1) = us.

92(2)= argmin {f (2,u1) + 931 (1) Vg (91, 1) + gao (1) V- (91, 2) + 933 (u1) Vg (91, 3)
F(2,u2) + g5, (u2) V- (91, 1) + gao(u2) Vg« (91, 2) + g23(u2) V- (91, 3)}

= argmin {1.831, 3.831} = {1}. Hence, ¢2(2) = uy.

92(3)= argmin {f (3, u1) + 931 (u1) V- (91, 1) + g39(u1) Vg (91, 2) + ga3(ur) Vi (91, 3)
J(3,u2) + g31(u2) V- (91, 1) + g39(u2) V= (91, 2) + g33(u2) V- (g1, 3)}
= argmin {4.125,0.708} = {2}. Hence, ¢2(3) = uo.

4. Because, g2 = g1, then g* = ¢; is an optimal control law with Jo- = 0.708, Vi« (1) =
0.468, V+(2) = 1.125 and Vjy-(3) = 0.

5.4.3. Infinite Horizon Average MCM - General Policy Iteration
Algorithm 5.9

In this example, we illustrate an application of the infinite horizon minimax problem for av-
erage cost, by considering the stochastic control system shown in Fig.5.4, with X = {1, 2, 3}
and control set i/ = {uy,us}. The essential difference between this example and the pre-

vious one, is that here, the stochastic control system under consideration is described by a
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q72(u1) q73(u1)

q32(u1) C@ @D q33(u1)

(a) Matrix (Q° under control uq

q11 (uz)

51 (u2)

q52(u2) q33(u2)

(b) Matrix Q° under control us

Figure 5.4.: Transition Probability Graph of ()° under controls u; and us

transition probability graph which is reducible, and hence general policy iteration algorithm

5.9 1s applied.

Assume the nominal transition probabilities are given under controls u; and us by

4 X 270
01, Q°(uQ):§ 36 0 (5.94)
9 8 0 1

the total variation distance radius is R = 14/9, and the cost function under each state and

action is
f(luul) = 27 f(27u1) = 17 f(?’aul) = 37 f(17u2> = 057 f(27u2) = 37 f(?’vu?) = 0.

A.Let m = 0.

1. Select the initial policies as follows

go(1) =u1, 9o(2) =u1, go(3) = us. (5.95)
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2. Solve the equation Jo(go) = Q°(g0)Jg-(g0), or,
Jqo (g0, 1) q71(90(1))  qfa(90(1)) ¢f5(g0(1)) Jqo (g0, 1)
Jo(90,2) | = | @51(90(2)) 52(90(2)) 53(90(2)) Jqo(90,2)
Jqo(90,3) 451(90(3))  452(90(3))  @55(90(3)) Jqo(90,3)
(00 A ([ el )
=5 090 Joo(90,2)
009 Joo(9o,3)
The optimality equations (5.83) are
5 4
JQo(go, 1) = §JQO<907 2) + §JQO(QO, 3)7 (5963)
JQO (907 2) = JQO (907 2), (5.96b)
JQo (g(), 3) = JQO (g(), 3) (596C)

Next, solve the equation Jgo(go) + Vo (g0) = f(g0) + Q°(90) Vige (g0), for Jgo(go) € R? and
Ve (g0) € R?, or,

Jqo (90, 1) Ve (g0, 1)
JQ"(gOv 2) + VQO(QOJ 2) -
Jqo (90, 3) Q0 (go, 3)
f(1,g0(1 471(90(1))  af2(90(1))  f5(g0(1)) Vo (g0, 1)
f(2,90(2 351(90(2))  432(90(2))  455(90(2)) Vo (90,2)
f(3,90(3 451(90(3))  q32(90(3 53(90(3)) VQ0<90,3)
which is given by
JQo(go, ].) VQ"(gO; ].) 2 1 0 5 4 VQ"(QO? 1)
JQO(9072) + VQO(QO,Q) - ]_ + § 0 9 0 VQ0(9072)
JQ0(9073) VQo(go,g) 3 0 0 9 VQ0(90,3)
The optimality equations (5.84) are given by
5 4
JQo(go, ].) + VQO(QO, 1) =2 + §VQO(go, 2) + §VQO(9[}, 3) (5973)
JQo(go, 2) + VQ0(907 2) = 1 + ‘/Qo(go7 2) (597b)
JQo(go, 3) + VQo(go, 3) =3+ VQo(gO, 3) (5.97¢)
The solution of (5.96) and (5.97) has
1 5 4
VQ"(907 1) = 5 + §Oz + §B, VQo(g(), 2) = Q, VQo(go, 3) = ﬁ,

JQ”(gOa 1) = 1888, JQo(go,Q) = 1, JQo(gg,3) = 3
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Setting « = 1 and # = 0 yields
Ve (90, 1) = 0.666, Ve (90,2) =1, Ve (90,3) = 0.

Note that, Vigo = {Vigo(1), Vo (2), Vigo(3) }, and hence the support sets based on the values
of Vgo are X = {2}, X~ = {3} and &} = {1}. Once the partition is been identified,
(5.54)-(5.56) is applied to obtain

(qn ~gta()”) min (L () + 5) (o) - 5)”
= | (it q;’g(ul))*) min (1, g3 (u) + 2) (q85(u) — £)°
(ql —q§3<u1>)+) min (1, g () + £) (ggslw) = £)°

0
0
0

N\t p +
(af002) = (5 = @ta(w2) ) mmim (1, ) + 5) (a(uz) —
0 R o +\* : o R o R\ T
Q) = | (a8 () ~ (% = aga(w)) ") min (L a(uz) + 5)  (aa(0) — &)
Nt R o +
(d0(0) = (8 = agaw)) ") min (1L ggala) + %) (agal) — )
. 090
=3 09 ol. (5.99)
270
Next, solve the equation Jg-(go) = Q*(g0) Jo+(g0), or
Jo+ (90, 1) qi1(90(1))  aia(90(1)) ais(90(1)) \ [ Jo+ (90, 1)
Jo+(90,2) | = | ¢1(90(2) ¢52(90(2) 55(90(2)) | | J(90,2)
Jo+(90,3) %1(90(3))  @32(90(3))  a33(90(3)) Jo+ (90, 3)
1 0 9 0 JQ* (go, 1)
07 2 JQ* (907 3)
The optimality equations (5.85) are
Jo+(90,1) = Jo+ (g0, 2), (5.100a)
Jo+(90,2) = Jo+ (g0, 2), (5.100b)
7 2
Jo+(90,3) = §JQ*(g0, 2) + §JQ* (g0, 3) (5.100c¢)
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and hence, Jg- (g0, 1) = Jo+ (90, 2) = Jo (g0, 3)-
Next, solve the equation Jo-(g0) + Vo-(90) = f(90) + Q" (90)Va-(90), for Jo-(g0) € R?
and Vi« (go) € R3, or,

JQ* (90,1) V- (g0, 1)
Jo(90,2) |+ | Vor(90,2) | =
(907 3) VQ (907 3)
f(1,90(1)) q11(90(1)) afa(90(1)) ais(go(1)) V- (90, 1)
f(2,90(2)) |+ | @1(90(2)) @32(90(2)) @33(90(2)) V- (90, 2)
f(3,90(3)) 451(90(3)) qu(go(i%)) @3(90(3)) Vo (90,3)
which is given by
JQ*(Q(),l) VQ*(g(],l) 2 1 0 9 0 VQ*(g()’l)
JQ*(9073) VQ*(QQ,?)) 3 0 7 2 VQ*(g0,3)
The optimality equations (5.86) are given by
Jo+(90, 1) + Vig= (g0, 1) = 2 + Vip=(90, 2) (5.101a)
Jo+(90,2) + Vo (90, 2) = 1 + Vig«(g0, 2) (5.101b)
7 2
Jo+(90,3) + Vo+(90,3) =3+ §VQ*(gO, 2) + §VQ*(gO, 3) (5.101¢)
The solution of (5.100) and (5.101) has
18
VQ* (go7 1) = 1 + a, VQ* (go, 2) == Oé, VQ* (go, 3) == 7 + Oé,
JQ* (907 1) = 17 JQ* (90,2) = 1, JQ* (9073) = 1

Setting o = 1 yields
Vor(90,1) =2,  Vo(90,2) =1,  Vig(g0,3) = 3.57.
3. Let g1 = argmingegs{f(g) + Q*(9)Vo-(g0)}, that is,
g1(1) = argmin{
F( ) + 911 (un) Vo (90, 1) + g12(w1) Vo (90, 2) + gis(ur) Vo= (9o, 3),
£(L12) + g7, (1) Ve (90, 1) + g7a(12) V- (90 2) + (12 V- (90, 3) |

= argmin {3, 1.5} = {2}. Hence, ¢1(1) = us.
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91(2) = argmin {
F(2,u1) + 931 (u1)Vo+ (90, 1) + 925(ua) Vo= (90, 2) + 923(u1) Vg (90, 3),
(2,103) + g5 () Vo (g0 1) + 3 (z) Ve (901 2) + 33 (0) Vi (90:3)

= argmin {2,4} ={1}. Hence, ¢1(2) = u;.

91(3) = argmin {
F(3,u1) + g3, (u1) V- (90, 1) + g3 (u1) Vig= (9o, 2) + g33(u1) Vip= (90, 3),
f(3,u2) + g31(u2) Vg (go, 1) + g39(u2) Vig= (90, 2) + g33(u2) Vg~ (9o, 3)}

= argmin {4.577 1.222} = {2}. Hence, ¢1(3) = us.
Since g; # go, let m = 1 and return to step 2.

B.Let m = 1.

2. Solve the equation Jo(g1) = Q°(g1)Jg-(91), or,

Joo(g1,1) q91(91(1)) a%2(g1(1)) ats(g1(1)) Joo(g1,1)
Joo(91,2) | = | @1(91(2) ¢5:(91(2)) 435(91(2)) Joo(91,2)
Jao(91,3) 431(91(3)) 45:(91(3)) 483(91(3)) Joo(91,3)
. 270 Jgo(g1,1)
=9 090 Joo(91,2)
8 0 1 Jgo(g1,3)
The optimality equations (5.83) are
2 7
JQa (91, ].) = §JQO(917 1) + §JQ0(91, 2), (51023)
Joo(91,2) = Jgo(91,2), (5.102b)
8 1
JQO(gl, 3) = §JQo<g1, 1) + §JQO(Q1, 3) (5102C)

and hence, Jgo(g1,1) = Jgo(g1,2) = Jgo (91, 3).
Next, solve the equation Jgo(g1) + Ve (g1) = f(g1) + Q°(91)Vige(g1), for Jgo(g1) € R?
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and Vo (g1) € R3, or,

Joeo(91,1) Voo (g1, 1)
Joo(91,2) [+ Voelg1,2) | =
JQO 9173) 0(9173)
fa(1 1(91(1)) af2(01(1))  afs(g1(1)) Voo (91,1)
f(2,91(2 31(91(2)) 455(91(2))  ¢85(91(2)) Ve (91,2)
f3,01(3 351(91(3))  452(91(3))  ¢35(91(3)) Vo (g1,3)
which is given by
JQO(917 ].) VQo(gl, ].) 05 1 2 7 O VQo(gl, 1)
Joo(91,2) | + | Vogelg1,2) | = 1 +§ 0 90 Ve (91,2)
Jgo(g1,3) Ve (91,3) 0 8 0 1 Vo (g1,3)
The optimality equations (5.84) are given by
2 7
JQo(gl, 1) + VQo (gl, 1) =05+ §VQo(gl, 1) + §VQo<gl7 2) (51033)
8 1
JQO(gl, 3) -+ VQO (917 3) = §VQ°(917 1) -+ §VQO(91, 3) (51030)
The solution of (5.102) and (5.103) has
9 99
VQO(glal):a+§7 VQ°<9172):O‘+%7 VQO(glv?’) =,
JQO(gl, 1) = 1, JQo(gl,2> = 1, JQo(g1,3) = 1.

Setting o = 1 yields
Voe(g1,1) = 2.125, Voo (g1,2) = 2.76, Voo(g1,3) = 1.

Hence, we proceed with the identification of the support sets, which are XY+ = {2}, X~ =
{3} and &} = {1}. Since the partition is the same as in m = 0 then Q*(u;) and Q*(us) are
equal to (5.98) and (5.99), respectively.

Next, solve the equation Jg-(g1) = Q*(g1)Jo+(g1), or,

Jo-(91,1) gi(91(1))  qia(1(1))  aqiz(gi(1)) Jo+(91,1)
Jo(91:2) | = | ©1(91(2)) ¢32(91(2)) @33(91(2)) Jo+(91,2)
Jq+(91,3) 331(91(3))  @a(91(3))  a33(91(3)) Jo-(91,3)

X 090 Jq+(90, 1)

=5 090 Jo(90,2)

2 70 Jo+( )
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The optimality equations (5.85) are

Jo+(91,1) = Jo-(91,2), (5.104a)

Jo+(91,2) = Jo+(91,2), (5.104b)
2 7

Jo-(91:3) = §Ja- (91, 1) + g Jo+(91,2) (5.104c¢)

and hence, Jg-(g1,1) = Jo+(91,2) = Jg- (g1, 3).
Next, solve the equation Jo-(g1) + V- (g1) = f(g1) + Q*(91) V- (91), for Jg-(g1) € R?
and Vi« (g1) € R3, or,

Jo(g1,1) V- (91, 1)
JQ* (g1,2) + VQ*(g1, 2) -
JQ* (9173) VQ* (917 3)
f(1,91(1)) gi1(91(1))  qia(g1(1))  aqi3(ga(1)) Vo (91, 1)
f(2,01(2) |+ @1(91(2) 62(91(2) 33(91(2)) Vo (91,2)
f(3,91(3)) 41(91(3))  @52(91(3))  a33(91(3)) Vo (91,3)
which is given by
JQ* (917 1) VQ* (91, 1) 05 1 0 9 0 VQ* (917 1)
JQ* (gl, 2) + VQ* (gl, 2) S ]_ + § 0 9 0 VQ* (917 2)
The optimality equations (5.86) are given by
Jo(g1,1) + Vo-(g1,1) = 0.5 4 Vg« (1, 2) (5.105a)
Jo(91,2) + Vo(91,2) = 1+ Vg (91, 2) (5.105b)
2 7
The solution of (5.104) and (5.105) has
11 10
VQ*(91,1):OZ+E, VQ*(gl,Q):a‘i_g, VQ*(91,3):OZ,
JQ* (gh 1) =1, ‘]Q* (9172) =1, JQ*(glu?)) -

Setting o = 1 yields

VQ*(gla 1) - 161]-7 VQ*(91,2> - 21].17 VQ*(9173) = 1
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3. Let go = argmingeps{ f(g9) + Q*(9)Vo-(¢1)}, that is,

g2(1) = argmin {
Fun) + g1 (un) V- (91, 1) + 915 (1) Vo (91, 2) + g13(wa) V- (91, 3),
(0, 1) i 02)Va (01, 1) + gia02) Ve (91,2) + gia(02) Ve (00, ) )

= argmin {4.111, 2.611} = {2}. Hence, g2(1) = uo.

92(2) = argmin {
F(2,u1) + g51(u1) V= (91, 1) + ga9(u1)Vig= (91, 2) + 933 (u1) Vig= (g1, 3),
F(2,u2) + g5, (u2) V- (g1, 1) + ga9(u2) Vg (91, 2) + 923 (u2) V- (91, 3)}

= argmin {3.111, 5.111} = {1}. Hence, ¢2(2) = u.

g2(3) = argmin {
F(3un) + g31(u1) V= (91, 1) + g39(u1) Vig= (91, 2) + g33(u1) Vig- (g1, 3),
J(3,u2) + g31(u2) Vg« (91, 1) + g39(u2) Vig= (91, 2) + g33(u2) Vip- (g1, 3)}

= argmin {4.864, 1.999} ={2}. Hence, ¢2(3) = us.

4. Because, g» = ¢, then g* = ¢; is an optimal control law with Jo«(1) = Jo«(2) =
Jo-(3) =1, Vo- (1) = 1.611, Vpp-(2) = 2.111 and V- (3) = 1.

5.5. Summary

In this chapter, we examined the optimality of stochastic control strategies via dynamic pro-
gramming on an infinite horizon, when the ambiguity class is described by the total variation
distance between the conditional distribution of the controlled process and the nominal con-
ditional distribution. For optimality criteria we considered both the expected discounted
reward and the average pay-off per unit time. For the infinite horizon case with a discounted
pay-off we showed that the operator associated with the resulting dynamic programming
equation under total variation distance ambiguity is contractive, and we introduced a new
policy iteration algorithm. For the infinite horizon case with an average pay-off, under the
assumption that for every stationary Markov control law the maximizing stochastic matrix

is irreducible, we derived a new dynamic programming equation and a new policy iteration
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algorithm. However, due to the water-filling behavior of the maximizing conditional distri-
bution, it turns out that our proposed method of solution is limited only to a specific range
of values of total variation distance, and hence, we derived a general dynamic programming
equation by introducing a pair of dynamic programming equations, and, consequently a new
policy iteration algorithm, which despite the fact that it is more complex it completely solves
the minimax stochastic control problem. Finally, the application of our recommended policy

iteration algorithms is shown via illustrative examples.



Approximation of Markov Processes by

Lower Dimensional Processes

In this chapter, we approximate a finite-state Markov process by another process with fewer
states, called herein the approximating process. The approximation problem is formulated
using two different methods. The first method, utilizes the total variation distance to dis-
criminate the transition probabilities of a high-dimensional Markov process and a reduced
order Markov process. The second method, utilizes total variation distance as a measure
of discriminating the invariant probability of a Markov process by the approximating pro-
cess. Once the reduced invariant probability is obtained, which does not correspond to a
Markov process, a further approximation by a Markov process is proposed which minimizes

the Kullback-Leibler divergence. The results of this part include:
e based on the first method, a direct procedure for Markov by Markov approximation;

e and, based on the second method, extremum measures which exhibit a water-filling

behavior and solve the approximation problems;

e optimal partition functions and new iterative approximation algorithms which compute

the invariant distribution of the approximating process;

e examples which illustrate the methodology and the behavior of the approximations.

147
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6.1. Problem Formulation

In this section, the approximation problems under investigation are introduced.

6.1.1. Preliminaries and discrepancy measures

We consider a discrete-time homogeneous Markov process {X; : ¢t = 0, 1, ... }, with state-
space X of finite cardinality card(X) = |X|, and transition probability matrix P with ele-
ments {p;; : 4,7 =1,...,|X|} defined by

IID

pij =P( X1 =j| Xy =1), 4,jeX, t=0,1,....

The Markov process is assumed to be irreducible, aperiodic having a unique invariant distri-

bution = [y pto . . . puyx|] satisfying
p= pbp.

For the rest of the chapter we adopt the notation (u, P, X') to denote a stationary FSM process
P with stationary distribution y and state-space X'.

The distance metrics we will use to define the discrepancy between two probability dis-
tributions (and conditional probability distributions) are the Total Variation distance, and the

Kullback-Leibler divergence. The latter is introduced below (see also Section 2.3).

Relative Entropy distance

The relative entropy of v € P(X) with respect to . € P(X') is a mapping D(-||-) : P(X) X
P(X) — [0, oo] defined by

D(v||u) = Zl/zlog—

1€EX

It is well known that D(v||p) > 0, Vv, p € Py (X)), while D(v||p) =0 < v = p.
Let (u, P, X) and (v, ®, X') be two stationary FSM processes. A version of the KL diver-
gence used in [17,49], is defined by

Pi'
Du(PI®) 2 X piPylog (52 ), 6.1)
ij

i,jEX

where P, is assumed to be absolutely continuous with respect to ®;,, that is, for any 7 € X,
®;; = 0 for some 7 € & then Pj; = 0. Note that (6.1) is used to compare stationary

Markov processes which are defined on the same state-space. For Markov processes which
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are defined on different state-spaces, (6.1) is modified by introducing a lifted version of the
lower-dimensional Markov process (see [19]), defined by

= %% .o
b=t ijEX, 6.2)
J Zkew(J) m (1)p(5)

where 1(j) denotes the set of states belonging to the same group as the jth state, and ¢
denotes a partition function from X onto ). For the rest of the chapter we will use the
notation D) (P||®) = D, (P||®) to denote the KL divergence distance between two Markov

processes defined on different state-spaces.

6.1.2. Approximation problems

The two different methods proposed to approximate FSM processes by lower-dimensional

processes, are the following.

Method 1

This method is based on comparing two FSM processes (u, P, X') and (v,®,)), Y C X,
by working directly on their transition probability matrices P and ®. The approximation
problem is formulated as a maximization of a linear functional, defined on the transition
probabilities of the reduced order FSM process (v, ®, )), subject to a TV constraint distance
between the transition probabilities of the high and low-dimensional FSM processes. The

precise problem formulation is given below.

Problem 6.1. Given a FSM process (u, P, X), find a transition probability matrix ® which
solves the maximization problem defined by

max Z Z qu)ijﬂiv (e lefl

Piu€P(V)VIEY [ I

subject to DD 1P — Pyl < R, YR e(0,2].
iEX jEX
The optimal transition probability matrix & which solves optimization Problem 6.1 is
obtained for all values of TV parameter R € [0, 2], and exhibits a water-filling solution.
In addition, as the TV parameter increases, it turns out that the dimension of the transition

matrix P is reduced, and hence, a reduced order FSM process is obtained.

Method 2

Given a FSM process (1, P, X'), an invariant distribution ;1 € P(X), and a parameter R €
[0, 2], define the average pay-off with respect to the stationary distribution v € Bg(u) C
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P(X) by
L(v) =Y lw;, (eRY (6.3)
iex
The objective is to approximate y € P(X) by v € Bg(u), by solving the maximization
problem defined by

L(v*) = ngeu(c)]L(u), VR € [0, 2], (6.4)
p=iiP

for two alternative choices of the parameters ¢ € Rm, as follows.
Formulation (a) (Approximation Based on Occupancy Distribution)

Let ¢; = y;, Vi € X, which implies (6.4) is equivalent to maximizing the stationary distri-
bution {v; : i € X'} € P(X) subject to the approximation constraint. This formulation leads
to an approximation algorithm described via reduction of the states (i.e., by deleting certain
states of the original Markov process) to obtain the approximating reduced state process.
Intuitively, the optimal solution has the property of maintaining and strengthening the states
with the highest invariant probability, while removing the states with the smallest invariant

probability, as shown in Fig. 6.1.

Figure 6.1.: Water-filling behavior of invariant distribution based on occupancy distribution

Formulation (b) (Approximation Based on Maximum Entropy Principle)
Let ¢; = —logv;, Vi € X, which implies that (6.4) equivalent to the problem of finding the
approximating distribution corresponding to the minimum description codeword length [4].
This formulation leads to an optimal approximation algorithm described via aggregation of
the states (i.e., by grouping certain states of the original Markov process) to obtain the ap-

proximated reduced state process, as shown in Fig. 6.2, which is a Hidden Markov process.
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This formulation is equivalent to finding the minimum description length of the approximat-
ing process, and it is related to minimizing the average codeword length of the approximated

Markov process, subject to a fidelity set.

Figure 6.2.: Water-filling like behavior of invariant distribution based on maximum entropy

principle

The approximated probability vector is based on the following concept. Given a FSM pro-
cess (u, P, X), the optimal probabilities of the reduced process are defined on X', which is
partitioned into disjoint sets X = UX | X;, K < |X|. The solution of the optimization prob-
lems based on Method 2(a) and 2(b), give the maximizing probability v*(X;),i =1,..., K,
on this partition.

*

For Method 2(a), as R increases the maximizing probability vector, v*, is given by a
water-filling solution, having the property that states of the initial probability vector u €
P(X) are deleted to form a new partition of X, denoted by X = UM, );, M < K < |X|.

The approximated probability vector is defined as follows.

Definition 6.1. (Approximated Probability Vector based on Occupancy Distribution)
Define the restriction of v* on only those elements of the partition {1, . .., Y } which have

non-zero probability by
V*|supp(1/*)7é0 . {yila yig: cee ayzk} — [07 1]7 (65)

where {Yi,, Viyy - Vi } CTH{1, ..., Yu} and iy, ia, ... i € {1,2,..., M}. The approx-

imated probability vector based on occupancy distribution is defined by

V= V*lsupp(u*);zéO: (6.6)
having states which are in one-to-one correspondence with {1,2, ... k}, via the mapping
Vi, — L Vi, — 2,..., Vi, — k, with corresponding process {Y; : t =0, 1, ...} having

state-space Y = {1,2,... k}.
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For Method 2(b), as R increases the maximizing probability vector v*, exhibits a water-
filling like solution, with the property that states of u € P(X) are aggregated together to

form a new partition of X'. The approximated probability vector is defined as follows.

Definition 6.2. (Approximated Probability Vector based on Maximum Entropy Principle)

Define v = v* if all elements of v*(X}) are not equal and the state-space of v is Y =
{1,...,K}. If any of the v*(Xy), k € {1,..., K} become equal then a new probability
vector v is defined by adding together those v* € P(X) which are equal, and v 2 v ()
for the v*(X},) whose elements are not equal. The resulting approximated probability vector
based on maximum entropy principle v € P(Y), with corresponding process {Y; : t =

0,1,...}, is defined on a state-space Y, whose cardinality is less or equal to | X|.

Remark 6.1. The reduction based on Method 2(a), (b), in general does not produce a

Markov chain though in specific cases it may be a Markov chain.

Once the approximating process' {Y; : ¢ = 0,1,...} is obtained, we move one step
further to investigate the problem of approximating a FSM process by another FSM process
(v,®,Y), Y C X. Here, the objective is to find an optimal partition function ¢ and a

transition matrix ¢ which minimizes the KL divergence rate [19] defined by

]Di'
DP(P||®) = > w;Pylog <J> (6.7)
ijex ®i;

where @ is given by (6.2), and denotes the lifted version of the lower-dimensional Markov
chain ® by using an optimal partition function ¢. By employing certain results from [19],
the transition matrix ¢ which solves (6.7) is obtained. What remains, is to find an optimal
partition function ¢, for the approximation problems of Method 2(a) and 2(b). This Markov
by Markov approximation is found by working only with values of TV parameter for which
Y| < |X|.

Given a FSM process (u, P, X'), an algorithm is presented, which describes how to con-

a reduction of the states occurs, that is,

struct the transition probability matrix @, from the maximizing distribution v* of problem
(6.4) for Method 2(a) and 2(b). Then, using Definitions 6.1 and 6.2, a lower probability
distribution v € P(}) is obtained. Under the restriction that the lower-dimensional process
is also a FSM process (v, ®,)), Y C X, an optimal partition function ¢ and a transition
probability matrix @, are found which minimize the KL divergence rate between P and ®.
The approximation procedure for Method 2(a) and 2(b), is shown in Fig.6.3.

The precise problem definition of approximation Method 2 based on occupancy distribu-

tion is given below.

'The reduced approximating process is obtained without a priori imposing the assumption that it is also a

Markov process.
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Markov pro- Construct a Maximizing
cess, (u, P, X) % Q' matrix % distribution, v*

\

Approximated
distribution,

v e P)

\

Transition % Partition % Under a Marko-

matrix, ¢ function, ¢ vian assumption

Figure 6.3.: Procedure of Method 2.

Problem 6.2. (Approximation Based on Occupancy Distribution)
Let {{; : i € X} € R'f | denote the occupancy distribution of a FSM process (i1, P, X)
defined by (; = ji;, Vi € X. Find {v; : i € X} € P(X) which solves

max Z WiV; . (6.8)
veEBR (1) CX
p=p

Given the optimal solution of (6.8), let v of Definition 6.1 denote the invariant distribution
of a lower-dimensional FSM process (v, ®,Y), Y C X.
Find an optimal partition function ¢, and calculate the transition probability matrix ®, which

satisfies v = vP®, and minimizes the KL divergence rate defined by

min D (P||®). (6.9)
2o
Other reasonable choices, are possible by letting ¢ € R‘f‘ correspond to a reward or a

profit, a cost or a loss, etc., whenever a node is visited.
Next, the precise problem definition of approximation Method 2 based on maximum en-

tropy principle is given.

Problem 6.3. (Approximation Based on Maximum Entropy Principle)
Maximize the entropy of {v; : i € X} € P(X) subject to total variation fidelity set, defined
by

max H(v), H(v) 2_ > log(vi)v;. (6.10)

veBR(p) .
p=pP 1EX
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Given the optimal solution of (6.10), let v of Definition 6.2 denote the invariant distribution
of a lower-dimensional Markov process (v, ®,)), Y C X.
Find an optimal partition function ¢, and calculate the transition probability matrix ®, which
satisfies v = v®, and minimizes the KL divergence rate defined by

min D (P||®). (6.11)

@, P
v=vd

Problem (6.10) is of interest when the concept of insufficient reasoning (e.g., Jayne’s
maximum entropy principle? [34]) is applied to construct a model for v € P(X), subject
to information quantified via the fidelity set defined by the variation distance between v and
L.

It is not difficult to show that the maximum entropy approximation defined by (6.10) is
precisely equivalent to the problem of finding the approximating distribution corresponding
to the minimum description codeword length, also known as the universal coding problem [4,
52], as follows. Let {¢; : i € X'} € R'f' denote the positive codeword lengths corresponding
to each symbol of the approximated distribution, which satisfy the Kraft inequality of lossless
Shannon codes ;. D~% < 1, where the codeword alphabet is D-ary (unless specified
otherwise log(-) 2 logp(+)). Then, by the Von-Neumann’s theorem, which holds due to

compactness and convexity of the constraints, it follows that

x min max g l;v; = max - min E l;v; = max H(u)
X1, —l; <1 VEBR(W) | veEBR (1) X, —¢; : veEBR (1)
eRT: ) D <1 R R LeRT: . D <1 R

eRy ZZGX > p=pP 1€eX u=pP eRy Zzex tSlieX u=pP

Hence, for ¢; 2 _ log v;, Vi € X, the optimization (6.4) is equivalent to optimization (6.10).

6.2. Method 1: Solution of Approximation Problem

In this section, we give the main theorem which characterizes the solution of Problem 6.1.

Similar to Chapter 3, define the maximum and minimum values of the sequence
X
{tr,... .t} € R by
gmax é I?E%(X &-7 gmin é Izrél)? &

and its corresponding support sets by

X2 i€ Xl = lyax ), X2 i€ Xl = by}

>The maximum entropy principle states that, subject to precisely stated prior data, the probability distribution

which best represents the current state of knowledge is the one with largest entropy.
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For all remaining elements of the sequence, {/; : i € X\ X°U X} }, define recursively the set
of indices for which ¢ achieves its (k + 1)th smallest value by X}, where k € {1,2,...,]|X"\
X9 U Xy}, till all the elements of X" are exhausted (i.e., k is at most [\ X° U X)), and the

corresponding values of the sequence on the A}, sets by £(X}).

For a fixed « € X, define the total variation of a signed measure
- A .
':ij:(Dij_-Pij7 Vj e X
to be equal to the summation of its positive and its negative part, that is,
126 |7v = Z =" VieX. (6.12)
jeX JeEX
By utilizing the fact that 3=,y =;; = 0, Vi € X then

Yo=Y 5= Eallry e x. (6.13)

JEX JjEX 2

A e : . : .
Let o; = ||Zie||7v, Vi € X, then the constraint of Problem 6.1 is equivalent to

S i < R. (6.14)

1€EX

and the pay-off can be reformulated as follows.

max Z S Ui =0 UPyp 4+ max Y Y 4. (6.15)

Lie€P() 1EX jJEX 1EX jEX “Ep()zex jeEX

In addition,

DD U= Y LG =) Y G (6.16)

IEX jEX iIEX jEX IEX jEX
The solution of Problem 6.1 is obtained by identifying the partition of X" into disjoint sets
{X° X, X, ..., X} and the transitions on this partition. The main idea is to express Z;, as
the difference of its positive and negative part and then find upper and lower bounds on the
transition probabilities of X° and X'\ X’° which are achievable. Closed form expressions of
the transition probability measures, on these sets, which achieve the bounds are derived.

The following Theorem characterizes the solution of Problem 6.1.

Theorem 6.1. The solution of Problem 6.1 is given by

PIDCLITEL D DD IULIE LD DD UL +Zf CODIP I

i€EX jEX 1€X0 jEX 1€Xp jEX 1€EX jJEX
(6.17)
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where for any i € X,

o}, = P e x° 6.18
J + 2|X0| vj e Y ( a)
ij_<ij_2|)(0|>7 J € o, (6.18b)
+\ +
D} = (Bj - ( Z > R-z> ) V)€ X (6.18¢)
2| | j=1z€X; 1
;= Hlil’l(R, Rmax,i)y Rmax,z' = 2<1 - Z Pl'j)7 (618d)

JEXO

k=1,2,...,7 and r is the number of Xy, sets which is at most | X \ X° U X,|. Once the ®1
matrix is constructed as a function of TV parameter R, then the transition matrix ® which
solves Problem 6.1 is given by removing all zero columns and the respective rows of ®T

matrix.

Proof. See Appendix E. [ |

Clearly, the optimal transition matrix ¢ is obtained via a water-filling solution.

Remark 6.2. Note that, if we replace the maximization of Problem 6.1 with minimization,
then the solution of the new problem is obtained precisely as that of Problem 6.1, but with a
reverse computation of the partition of the space X and the mass of the transition probability

on the partition moving in the opposite direction.

6.3. Method 2: Solution of Approximation Problems

In this section, we recall some results from Chapter 3, which are vital in providing the so-
lution of Problem (6.4), and consequently the solution of approximation Problems (6.2) and
(6.3).

First recall, from Section 6.2, the definitions of the support sets X 0 X, X} and the def-
initions of the corresponding values of the sequence on these sets given by /.y, {min and
0(X). Given ( € R‘f', € P(X), it is shown in Chapter 3, that the solution of optimization
(6.4) is given by?

T

L(v*) = lonaxt™ (X?) + linint* (X)) + D (X )™ (Xo), (6.19)

k=1

3Note the notation X0, ¥y and X5, in Chapter 3, is identical to the notation X%, X, and X}, respectively.
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and the optimal probabilities are obtained via water-filling, as follows

VXDE S =S i+ o (6.20a)
1€X0 1€X0 2
A a\ ™"
fM@:Zu#(Zyr->, (6.20b)
1€Xp 1€Xy 2
. a & +\ +
v@E Y vi=( S u-(5-X X w) ) (6.200)
i€X), iEX), j=lieX;_,
o =min (R, Ruax),  Ruax = 2(1— 3 paa), (6.20d)
i€ X0

where, k = 1,2,...,r and r is the number of X}, sets which is at most | X \ X° U Xp|. The

optimal probabilities given by (6.20a)-(6.20c), can be expressed in matrix form as follows
v = uQ" = nPQ". (6.21)

In Sections 6.3.1 and 6.3.2, we provide algorithms for constructing the desired Q" matrix for

the optimizations (6.8) and (6.10), respectively.

Remark 6.3. The identification of the support sets X°, Xy and X, k = 1,2, ..., is based
on the values of U;’s, Vi € X. If the cardinality of any of the support sets is greater than one,

ie, |X° > 1L, and l; =iy = ..., Viyi+1,--- € X then by (6.20a)
* V*(‘){O) . 0
i = T Wie X" (6.222)

and similarly for the rest, that is, if | Xy| > 1 then

(X,
ﬁ:”(ﬂ Vi€ X, (6.22b)
| Xo]
and if | X| > 1, fork =1,...,r, then
(X
ﬁ:”(ﬁ Vi € X, (6.22¢)
| X |

The resulting optimal probability v* is a (2 + r) row vector and hence, by (6.21) Q' is an
|X| X (2 + r) matrix. Then by employing (6.22) we extract the optimal probabilities v} for
all v € X, which are then used in definition of the optimal partition functions (see Definition
6.3 and 6.4).

For the approximation based on occupancy distribution, we let the matrix Q' to be an
|X| x |X| matrix, instead of an |X| x (2 + r) matrix. The reason for doing so, is that we
want to take into account the cases for which (;’s, Vi € X, might be defined to represent

a cost or profit etc., whenever a node is visited. In such cases, (6.22) is not valid anymore,
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since {; = {; does not necessarily imply 1, = p;, Vi,j € X. As we will show in Section
6.3.1, Algorithm 6.2 constructs a Q' matrix which in addition to occupancy distribution,

considers those alternative cases as well.

By Definition 6.1 and 6.2, the approximated probability vector v € P()) is readily avail-

able and satisfies

v=pQ = pPQ, (6.23)

where () matrix is modified accordingly.

Once the reduced state process is obtained, we utilize its solution to solve the optimizations
(6.9) and (6.11). The relation between (), u(t + 1) € P(X) and v(t),v(t + 1) € P(Y) is
shown in Fig.6.4.

p(t+1)

=

—~
<~

~—
\4

Y @
D) (P||2)

v(t+1)

]
/N
S~
N——"
\ 4

Figure 6.4.: Method 2. Diagram that shows the relationship of the initial and the lower prob-
ability distributions.

6.3.1. Solution of Approximation Problem based on Occupancy

Distribution

In this section, we first give an algorithm to construct the Q7 matrix which solves (6.8). Then,
under an additional assumption that the reduced process is also Markov, we give the solution
of (6.9).

Letk =0,1,...,r — 1, where r denotes the number of X}, sets, thatis, 1 <r < |X\ X7|
(note that, X set is included). For all j = 1,2,..., ||, Xk, £ {jth element of &}, set},
(note that, if |X),| = 1 then X} ; = AX},). Similarly, X% £ {jth element of X° set}, (note
that, if |X°| = 1 then X%/ = X°).
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Algorithm 6.2.

1. Initialization step:
a) Arrange l;, i € X, in a descending order.

b) Identify the support sets X°, Xy and X, for all k € {1,2,...,|X \ X° U X|}.

c) Calculate the value of r.

Forany R € [0, 2]:

2) Step.l (Indicator functions):

a) Let
R
pHA%) 2 it bR
iex0
Define
1, if pf (X% >1
IXOé 9 lfﬂ ( )— ) (624)
0, otherwise.
b) Fork=0,1,...,r —1let
R 8 R
H (Xk>zzzuz_§
j=0ieX;
Define
IXk A 17 lf :uR (Xk) Z 07
0, otherwise.
ok & 1, if u(X) <0, Vi=0,1,...,k—1
0, otherwise,
and
IYeMok—1 = Y% [Xow-1], (6.25)
c) Fork=0,1,...,r =1, if |X| > 1, then for all j=1... |X,]|, let
(R/2 - Z-eukflxv ,uz-)
R A e —o Yy
X)) = — £ :
% ( k,J) Hx ; |Xk|
Define

1, if pf (X)) >0,
X & if p't () > (6.26)
0, otherwise,
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3) Step.2 (The Q' matrix):
Let Qf be an |X| x |X| matrix and i = 1,2,...,|X| to denote the ith column of QT

matrix.

a) Foralli € X°, the elements of the ith column are given as follows.

i) Let the (Q1);; element be equal to

E 'EX\XO Hj
R/2 o (ftvoi + =255
X ) X | X0
ZI or X0,k — ](1 + |X0|) iy oo (6.27)
ii) Let all the remaining elements of the ith column be equal to
r—1 R/2
kz:o IXk [0,k—1] 4| ‘X(()| . (628)

b) Foralli € X, k = 0,1,...,r — 1, and j € {1/1 € {1,2,...,| X} i €

X}, is in the Yth position on X}, set}, the elements of the ith column are as fol-

lows.

i) Let the (Q");; element be equal to

k—1
Z ]Xj,X[O,j—u + IXk,j]Xk,X[o,k-—u (1 _ l)gDL'/Q) (6_29)
j=0 S I

ii) If | Xx| > 1, then for all z € X, \ Xy, let the (QV),; element be equal to

[ X% “R/2 R/2 | X%
IX’W'IX’“’XW—H{ II 7 (w/x) + (1 - X/}f) (1 -] IXW) } (6.30)
j=1 Dj=1 L Djoy I j=1

iii) Forall z € X\ X°U X}, and only if z > i let the (QV).; element be equal to

| | | X% |
]Xk,j[kaX[o,k—ll{ ﬁ [X’W( L 5/2 )—i—(l—/f/?) (1— ﬁ IX’W'>}. (6.31)
j=1 |l Z‘j:kl‘ I%% Z|j:kl| 1%k j=1
iv) Let all the remaining elements of the ith column be equal to
J X5 [ Xk X]0,k—1] (:{Rﬂ) (6.32)
S s

Once the QT matrix is constructed, as a function of the TV parameter R, then by (6.21) the
resulting optimal probability, *, is an 1 x |X’| row vector. However, recall from Remark 6.3
that by definition v* is just an 1 X (2 + r) row vector. By using all the information that the
support sets provide to us we can easily transform the 1 x |X'| row vector to an 1 X (2+1) row

vector, by simply adding together the optimal probabilities, v/, Vi € X, which belong to the
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same support sets. Given the optimal solution of optimization (6.8), then by Definition 6.1
the lower-dimensional process {Y; : t = 0,1...} with invariant distribution v is obtained,
either by removing all zero elements of v* € P(X), or by defining a () matrix to be equal to

QT after the deletion of all zero columns, and hence

v=pQ = pPaQ, (6.33)

where the dimensions of () matrix are based on the value of the TV parameter R € [0, 2].
Before we proceed with the solution of (6.9), we provide a simple, yet useful example in

order to explain each step of Algorithm 6.2.

Example 6.1. Let { = [{1 {5 {5 L), where {1 > ly > (3 > {4, and |X| = 4. For simplicity
it is assumed that the optimum probabilities v}, i € X, as a function of R are known, as
presented in Fig.6.5.

Initialization step. The support sets are equal to X° = {1}, Xy = {4}, X1 = {3} and
Xy = {2}. The number of X, sets is equal to r = 3.

Step.1 From (6.24), the indicator function I *is given by

]’XOA 17 l:f‘ul—i_%z]‘?
0, otherwise.

From (6.25), the indicator functions I, [*v¥0.0 gnd [*2X0.1 gre given by

[Xoé 17 l.f,u4_§207
0, otherwise.

J*1:%0,0]

a ) L ifpstp—5=0andp,—5 <0,
0, otherwise.

L if po+ps+pa—5>0
[ £ and p3+p4—§ <0 and m—% <0,

0, otherwise.

>

The values of the indicator functions for R € [0, 2] are given below.

0<R<R Ri < R< R, Ry < R < Ry Ry <R<?2
¥ =0 ¥ =0 ¥ =0 ¥ =1
I =1 I =0 I =0 I =0
JXX00 — X000 — J¥Xo0 — J¥Xo0 —
X001 — %200 — [¥2X00 — 1 X0 —
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For 0 < R < Ry, all indicator functions are equal to one, except the one which corresponds
to Xy set, that is, I = 1. As soon as u®(X,) = 0, then I becomes equal to zero and
I*Y0.01 equal to one. This procedure is repeated until the value of R = Rp.x = Rs, see
Fig.6.5, in which I* * becomes equal to one, and all other indicator functions equal to zero,
and I*° remains active forall R > Ry.x = Rs.

Step.2 Let Q1 be an 4 x 4 matrix. For 0 < R < Ry,

1+R/2 0 0 —R/2
0 = R/2 1 0 —R/2 |
R/2 0 1 —R/2
R/2 0 0 1—-R/2
and since no zero column exist then QT = Q. For Ry < R < Ry,
1+R/2 0 —R/2 0
O = R/2 1 —=R/2 0 |
R/2 0 1-R/2 0
R/2 0 1-R/2 0
and hence
1+ R/2 0 —R/2
B R/2 1 —R/2
©= R/2 0 1-R/2 |
R/2 0 1-R/2
For Ry < R < R3,
1+R/2 —R/2 0 0
Q= R/2 1-R/2 0 0 J’
R/2 1-R/2 0 0
R/2 1-R/2 0 0
and hence
1+R/2 —R/2
B R/2 1-R/2
0= R/2 1-R/2
R/2 1-R/2
For R > Rs,
1 1
1 1
e —q-|

o O O O
o O O O
o O O O
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Note that, the number of columns of () matrix is based on the value of total variation

0.9

0.8

Optimal Probabilities
o o ©
a1 (o] ~

o
I

0.3+ :
0.2 .
0.1& V3 \)2 _
0 | | | | | | | | | |
0 R 0.4 06 Ry 08 1 1.2 Rs314 1.6 1.8 2

Figure 6.5.: Optimal probabilities as a function of R.

parameter R. For 0 < R < Ry, its dimension is equal to (|X|) x (1 + r). Whenever
an indicator function becomes equal to zero, all elements of the respective column become
equal to zero, and hence the column is deleted, until R > Rs3, where the () matrix will be

transformed into a column vector of dimension (|X|) x (1).

Next, we proceed with the solution of (6.9), by letting v € P())) to denote the invariant
distribution of a lower-dimensional Markov process (7, ®). As mentioned in [19], the main
difficulty in solving (6.9) is in finding an optimal partition function ¢. However, once an
optimal partition is given then the solution of ® can be easily obtained. Toward this end, next
we define an optimal partition function for the approximation problem based on occupancy
distribution at values of TV parameter I? for which a reduction of the states occurs (i.e., see
Example 6.1, Fig.6.5, for values of R = R;, Ry and R3).

Definition 6.3. (Partition function) Let X and ) be two finite dimensional state-spaces with
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|V| < |X|. Define a surjective (partition) function ¢ : X — Y as follows.
Vie X', o(i)=1¢€),

Vie X\ XY, w(i):{l’ v =0
kel, ifv:>N0.

Note that, once the optimal probabilities v, Vi € X" are obtained, we can easily identify
the values of R for which a reduction of the states occurs. In addition, since the solution
behavior of (6.8) is to remove probability mass from states with the smallest invariant prob-
ability and strengthening the states with the highest invariant probability, this property of the
partition function ¢ is intuitive and expected.

Next, we reproduce the main theorem of [21], which gives the solution of ® that solves
(6.9).

Theorem 6.3. Let (p1, P, X) be a given FSM process and ¢ be the partition function of

Definition 6.3. For optimization (6.9), the solution of ® is given by

uMTI Py’
Vk

kl —

, kte), (6.34)

where 11 = diag(p), u®)" is the transpose of u'®), and u'® is a 1 x |X| row vector defined by

; (6.35)
0, otherwise.

RO { L ifeli) =k
Proof. See [19]. [ |

6.3.2. Solution of Approximation Problem based on Maximum Entropy

Principle

In this subsection, we first give an algorithm to construct the () matrix which solves (6.10).
Then, under the assumption that the reduced process is also Markov, we give the solution of
(6.11). Before giving the algorithm, we introduce some notation.

Let  denote the number of X}, sets, thatis, 1 < r < |[X \ X% U Xy| (note that, X} set is

excluded, in contrast with the definition of r in Section 6.3.1). Furthermore, let r™ and r~

1

ik respectively. In addition,

denote the number of y;, i € X, such that p; > ﬁ and p; <
;i 7 (; should also be satisfied for all 7 # j, 7,5 € X.

Remark 6.4. The initialization step of the following algorithm is performed by letting R = 0.
In this case, v; = p;, Vi € X, and hence, {; £ _logy; = —log L.
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Algorithm 6.4.
1. Initialization step:
a) Arrange |u;, 1 € X, in a descending order and let R = (.
b) Identify the support sets X°, Xy and Xy, forall k € {1,2,...,|X \ X°U X}
c¢) Calculate the value of r, v~ and r™.
Forany R € [0, 2]:
2) Step.l (Indicator functions):
a) Fork=1,2....r——1let
R A Zleuk7&Xj MZ R/2
P (X)) = E—1
Define
. Zz Hi
e ] LI pR() < =R (6.36)
0, otherwise.
For k =1r~ let
pi(x,-) 2 Ziesta i~ B2
Sizo 1Al
Define
1, if pB(X-) < =,
el b Pl <y (6.37)
0, otherwise.
b) Fork=1,2...,rt—1let
R & v bt B2
S AT = R
Define
. > Ky porq M
s ) b i) > SR (6.38)

0, otherwise.
Fork =" let
4 R
Zz‘ex\u;;—lxr_j i 15

R Xr é
Hel) = N

Define
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. R 1
[fr+ é{ 17 lf,u-t,-(Xr+) > Eik (639)

0, otherwise.
3) Step.2 (The QT matrix):
Let QT be an (|X|) x (2 + r) matrix.
a) The elements of the first column are given as follows.

i) Foralli € X, let the (QV); 1 be equal to

X

L= R/j2 ([”‘r—)c S (6.40)
|Xo| + S5 I\ T | X] '

i) Foralli € Xy, k=1,2,...,77—1, let the (Q"); 1 be equal to

% — R/2 (Ixr)c L (6.41)

rv— X - ’
|Xo| + 05 171 ¥
iii) Let all the remaining elements be equal to

X

—R/2 < I
Ti_/l ¥ (IX’”‘) + : (6.42)
| Xo| + X055 127 |

b) The elements of the last column are given by
i) Foralli € X°, let the (Q1); .12 be equal to

1+ R/2
X0+ S5 I X

Jj=1

(I e (6.43)

i) Foralli € X, .1, k=1,2,...,77 — 1let the (Q"); 12 be equal to

I+ R/2
X0+ ST I X

J=1

(I e (6.44)

iii) Let all the remaining elements be equal to

R/2
rl— Xj
|XO| + Zszll I ‘Xr—j+1|

(I e (6.45)

c) The elements of all remaining columns are given by

i) Foralli € X, k=1,2,...,r——1let

I?(k c
(@M. = (Wj : (6.46)
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where z = 1 + k denotes the zth column. Let all the remaining elements
of the zth column be equal to zero. However, if I"* = 1, then let all the
elements of the zth column be equal with the corresponding elements of the

first column, that is,

@1z = (Q@N11, QN2 = (@N21, - (@N)r: = (@)1 (6.47)
ii) Foralli € X,_j 1, k=1,2,...,r7—1 let

]’Xk c
Q). = (‘}J (6.48)

where z = r + 2 — k denotes the zth column. Let all the remaining elements
of the zth column be equal to zero. However, if]f’“ = 1, then let all the
elements of the zth column be equal with the corresponding elements of the

last column, that is,

@)1= (@D)1jap QN2 = (QNayx;, - (@M = (QF) a1 (6.49)

Once the QT matrix is constructed, as a function of the TV parameter R, then by (6.21) the
solution of optimization (6.10) is readily available, and hence, by Definition 6.2, the lower-
dimensional process {Y; : t = 0,1...} with invariant distribution v is obtained, either by
adding all equal elements of v* € P(X), or by defining a () matrix to be equal to Q, after

the merging of all equal columns (by adding them). Hence

b= pQ = pPQ, (6.50)

where the dimensions of () matrix are based on the value of the TV parameter R € [0, 2].
Before we proceed with the solution of (6.11), we provide a simple example in order to

explain each step of Algorithm 6.4.

Example 6.2. Let ;1 = [y j1o p3 fia], where g > po > pg > 4, and also assume that
1 > pe > ﬁ and 1y < pz < ﬁ where |X| = 4. For simplicity of presentation it
is assumed that the optimum probabilities v}, 1 € X, as a function of R are as shown in
Fig.6.6.

Initialization step. For R = 0, and from Remark 6.4, we conclude that {1 < {5 < {3 < U4,
and therefore the support sets are equal to X° = {4}, Xy = {1}, X, = {2} and X, = {3}.
The number of the X, sets is equal to r = 2. The number of 1;, © € X, which are greater (or
ﬁ = 0.25 (and also 1; # pj, i,5 € X)isr~ = 2. Similarly, the number of i,
which are strictly smaller than ﬁ = 0.25 (and also not equal to each other) is also r™ = 2.

equal) than



168 Approximation of Markov Processes by Lower Dimensional Processes

Step.1 From (6.36)-(6.37), the indicator functions I and 1™ are given by

Iflé{ ].; l‘f M1_§§u2a I_XQé{ 17 l‘f %_I%/QS()Q&[B,

0, otherwise, 0, otherwise,

and from (6.38)-(6.39), the indicator functions ]fl and IfQ are given by

paa ] L gz s [ 1 i 025,
- * 0, otherwise.

0, otherwise,

The values of the indicator functions for R € [0, 2] are shown in Fig.6.6. For 0 < R < Ry,
that is, before a merge occurs, all indicator functions are equal to zero. If a merge occurs
the respective indicator functions become equal to one, until for some R > R3, where all
indicator functions are equal to one.

Step.2 Let Q' be an 4 x 4 matrix. For 0 < R < Ry,

1-R/2 0 0 R/2

o — —R/2 1 0 R/2
—R/2 01 R/2 |
—~R/2 0 0 1+R/2

and since no equal columns exist then QT = Q. For R < R < Ry,

1-R/2 1-R/2
Bp IER g Ry2
1-R/2 1-R/2
ot — R LEE o R)2
—R/4 —R/4 1 R/2 |’
—R/4 —R/4 0 1+ R/2
and hence
1-R/2 0 R/2
0 1-R/2 0 R/2
~R/2 1 R/2
—R/2 0 1+ R/2

For Ry < R < Rs,

2 2
| e e m
—R/4 —R/4 1+§/2 1-‘1-5/2

1+R/2 1+R/2
~R/4 —R/4 WEZ 1HER
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and hence

1—R/2 R/2
1—-R/2 R/2
—-R/2 1+ R/2
—-R/2 1+ R/2

For R > R3,

0.25 0.25 0.25 0.25
0.25 0.25 0.25 0.25
0.25 0.25 0.25 0.25
0.25 0.25 0.25 0.25

—_ = =

0.45

0.4

0.35

0.3

0.25

0.2

Optimal Probabilities

0.15

0.1 8
X1__ X1__ X1
) I+— I7'=1 I+_1,
= IP=0 IP=1
| L L L L L | L | L
% R 0.1 0.15 0.2 025 Ro R3 o035 0.4

Figure 6.6.: Optimal Probabilities as a function of R.

Note that, the dimension of matrix () is based on the value of total variation distance
parameter R. For 0 < R < Ry its dimension is equal to (|X]) x (2 + r). Whenever two
columns become equal (that is, an indicator function is activated) they are merged, until for

some R > Ry, where matrix Q) is transformed into column vector of dimension (|X|) x (1).
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Next, we proceed with the solution of (6.11), by letting v to denote the invariant distribu-
tion of a lower-dimensional Markov process (7, ®). To this end, we next define an optimal
partition function for the approximation problem, based on maximum entropy principle at
values of TV parameter I?, for which an aggregation of the states occurs (i.e., see Example
6.2, Fig.6.6, for values of R = R;, Ry and R3.).

Definition 6.4. (partition function) Let X and ) be two finite dimensional state-spaces with
|V| < |X|. Define a surjective (partition) function ¢ : X — Y as follows

Vi,jeX, w(i)=¢()=keY if vi=uv] (6.51)

Note that, once the optimal probabilities v/, Vi € X" are obtained, we can easily identify
the values of R for which an aggregation of the states occurs. Next, we reproduce the main

theorem of [21], which gives the solution of ® that solves (6.11).

Theorem 6.5. Let (i, P, X') be a FSM process and @ be the partition function of Definition
6.4. For optimization (6.11), the solution of ® is given by

1 Pu®’
By =L T p ey (6.52)

Vg

where 11 = diag(v*), u™)" is the transpose of u™), and u™® is a 1 x |X| row vector defined
by

f (6.53)

(k):{l ifoli) =k

0 otherwise

Proof. See [19]. |

6.4. Examples

In this section, the theoretical results of both methods are applied to specific examples to

illustrate the methodology, and the water-filling behavior of the approximations.

6.4.1. Markov Chain Approximation with a Small Number of States

In this example we employ the theoretical results obtained in preceding sections to approxi-

mate a 4-state FSM process (u, P, X') with transition probability matrix given by

04 02 0.3 0.1
03 05 0.1 0.1
02 03 04 0.1
0.6 0.2 0.1 0.1

, (6.54)
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and steady state nominal probability vector equal to
w=1[0.34 0.32 0.24 0.1]. (6.55)

In particular, in Section 6.4.1, we solve approximation problem based on Method 1. In
Section 6.4.1 we solve the approximation problem based on occupancy distribution, and in

Section 6.4.1 based on entropy principle of Method 2.

Solution of Problem 6.1

Let ¢ = {¢{ € R} : {; > {3 > {3 > {4}, then the support sets are given by X° = {1}, X, =
{4}, X = {3} and X, = {2}, and by (6.18d), Riax1 = 1.2, Ripax2 = 1.4, Ryaxs = 1.6
and Ryax4 = 0.8. By employing Theorem 6.1, the optimal ®' and ® matrices are obtained
as a function of TV parameter R, as shown in Table 6.1. Note that, in contrast with Problems
6.2-6.3, where the approximation is performed only for values of R for which a reduction

of the states occurs, the solution of Problem 6.1 is obtained for all values of total variation

parameter.

R PT d
4231 4231

0 35.1.1 35.1.1
2341 2341
6.2.1.1 6.2.1.1
5230

523

4510

0.2 451
3340

334

7.2.10
9.100

| 8.200 9.1
7300 8.2
1000
1000
1000

1.4 1]
1000
1000

Table 6.1.: Optimal results obtained by the Approximation based on Method 1.
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Solution of Problem 6.2

By employing Algorithm 6.2, with /; 2 ti, i = 1,...,4, and support sets given by X% =
{1}, & = {4}, X1 = {3} and X, = {2} the maximizing distribution of (6.8) exhibits a
water-filling behavior as depicted in Fig.6.5. For values of TV parameter 0 < R < Ry = 0.2,
all maximizing probabilities v/, i = 1, ..., 4, are greater than zero and hence || = 4 = |X|
and v; = vf, i =1,...,4. However, for Ry < R < Ry = 0.68, || = 3 < |X| = 4 since v}
becomes equal to zero and hence v; = v}, @ = 1, 2, 3. The procedure follows until for some
R > R3 = 1.32in which |Y| =1 and i, = vf = 1.

From the above discussion, it is clear that, the solution of approximation problem based
on occupancy distribution is described via a water-filling deletion of states with the smallest
invariant probability and maintaining and strengthening the states with the highest invariant
probability, and hence a lower-dimensional distribution  is obtained which is then applied
to the problem of Markov by Markov approximation. For the solution of (6.9), first we find
an optimal partition function ¢ and then we calculate a transition probability matrix ¢ which
best approximates transition matrix P only for values of R for which a reduction of states

occurs, that is, for R = 0, 0.2, 0.68 and 1.32. The optimal results are depicted in Table 6.2.

Solution of Problem 6.3

By employing Algorithm 6.4, with /; S logv;,© = 1,...,4, the support sets are calculated
for R = 0, where v/} = p; and hence ¢; = — log p;, and are equal to X° = {4}, X, = {1},
X = {2} and &, = {3}. The maximizing distribution of (6.10) exhibits a water-filling like
behavior as depicted in Fig.6.6. For values of 0 < R < Ry = 0.04, |[Y| = 4 = |X] since
vi #vjfori# j,i,j=1,...,4and hence v; = vj, i =1,...,4. For By < R < Ry =
0.28, | V| = 3 < |X| = 4 since v/ becomes equal to v and hence v; = v + v and v; = v,

i = 3,4. The procedure follows until for some R > R3 = 0.32 in which |Y| = 1 and

= 4 x* __ 1
vy = v = 1

In summary, the solution of approximation problem based on entropy principle is de-
scribed via aggregation of states, that is, by grouping certain states of the original Markov
chain to obtain the approximating reduced state process.Then the lower-dimensional distribu-
tion v is applied to problem (6.11). The optimal partition function ¢ and the transition prob-
ability matrix ® which minimizes the KL divergence rate for values of R = 0, 0.04, 0.28
and 0.32 are as shown in Table 6.3.
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The P matrix of the original Markov Process The ® matrix of the approximated Markov Process
0.1

0.08

0.06

0.04 19

0.02

(a) (b)

The ® matrix of the approximated Markov Process

0.8
05a
()
)
2 4 6 8

1

© (d)
The lifted matrix & The lifted matrix &
‘ | 0.1 ‘ ! ‘ :
0.09
5
| 0.08 0.08
0.07
107 0.06%° 0.06
0.05
15¢ 0.04%° 0.04
0.03
201 0.02207 0.02
0.01
25t 25t ‘ ‘ ‘ ‘
5 10 15 20 25 5 10 15 20 25
(e ()

Figure 6.7.: Approximation results based on occupancy distribution: Plot (a) depicts the P
matrix of the original Markov process. Plot (b) depicts a 15-state approximation.
Plot (c) depicts an 8-state approximation. Plot (d) depicts the KL divergence
rate. Plot (e) depicts the lifted ® matrix for the 15-state approximation. Plot (f)

depicts the lifted & matrix for the 8-state approximation.
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The P matrix of the original Markov Process The ® matrix of the approximated Markov Process
0.4
0.09 2r
0.35
0.08 al
0.3
0.07
0.06 6 0.25
0.05 8 0.2
0.04 10r 0.15
0.03
L 0.1
0.02 12
0.01 14r 0.05

0.5
0.45
0.25-
0.4
2o
0.35 jé .
0.3 3
=
025 g 0.1
©
02 2' 0.05
0.15 i TT
0.1
0.05
Number of States o TV distance
(c) (d)
The lifted matrix The lifted matrix ®
, i 0.09
0.09
0.08
5r 0.08 5r
0.07
0.07
107 0.06 107 0-06
0.05 0.05
15; 0.04 157 0.04
0.03 0.03
20r 0.02 20r 0.02
0.01 0.01
25t . ! , 25t , . . '
5 10 15 20 25 5 10 15 20 25
(e) ()

Figure 6.8.: Approximation results based on maximum entropy: Plot (a) depicts the P matrix
of the original Markov process. Plot (b) depicts a 15-state approximation. Plot
(c) depicts an 8-state approximation. Plot (d) depicts the KL divergence rate.
Plot (e) depicts the lifted & matrix for the 15-state approximation. Plot (f) depicts

the lifted & matrix for the 8-state approximation.
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R v Q © P
1000] [p(1)=1] [4223.1
0100 =2l [35.1.1
0 [.34 .32 .24 1] 90( )
0010 [o3)=3] |234.1
0001 [pa)=4| |62.1.1
110-111o(1) =1
#(l) 5455 2 2545
111 @) =2
0.2 | (44 32 24 4 5 1
109|]e@) =3
3 3 4
109|]e@=1
134 -34 ][ p(1) = 1
34 66 || o) =2| [.7647 2353
0.68] [0.68 0.32]
34 66 || o3) =1 5 5
34 66 || pa) =1
2041 [p(1)=1
0 9) =1
1.32 1] #(2) 1]
0 p(3) =1
0 e4) =1

Table 6.2.: Optimal results obtained by the Approximation based on occupancy distribution.

6.4.2. Markov Chain Approximation based on Occupancy Distribution

with a Large Number of States

In this example we approximate a 25-state Markov process based on occupancy distribution.
The transition matrix P of the original Markov process is as shown in Fig.6.7a, in which the
color of the it/ row and jth column represents the P;; element as indicated by the color bar.
Then, based on the resulting values of u;, V2 € X, the state space X is partitioned into 16

disjoint sets, where

X0 = {1}, X = {25}, X = {24,23}, X, = {22}, A = {21}, X, = {20,19},
X5 = {18,16), X = {15}, &y ={14,13}, X = {12}, &, = {11, 10},
XlO - {9}7 Xll = {8a 7}a XlQ = {67 5}7 Xl?) = {47 3}7 X14 = {2}

Fig.6.7d depicts the KL divergence rate as a function of the number of the states of the
approximated Markov process and also as a function of the TV parameter R for values where
a reduction of the states occurs, due to the water-filling behaviour of the solution. Fig.6.7b-

e depict the ® matrix and the corresponding lifted matrix d of the approximated Markov
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R % Q © o
1000 e(1)=1([4223.1
0100 e2)=2[13.5.1.1
0 |[[.34 .32 .24 .1]
0010 e(3)=3[123.4.
0001 ed)=4|]6.2.1.1
98 0 .02 1) =1
e(l) 721
98 0 .02 |[|p(2)=1
0.04 [.64 .24 .12] 5.4.1
2021 .02 |||e(3)=2 1
-0201.02 ||| o(4) =3 R
86 14 | (1) =1
86 .14 | |p(2)=1 73
0.28]| [0.52 0.48]
14 114 | | o3)=2] |.65.35
14 114 | || p(4) =2
1 p(l)=1
1 2) =1
0.32 [1] #(2) 1]
1 p(3) =1
1 e4) =1

Table 6.3.: Optimal results obtained by the Approximation based on entropy principle.

process, when the 25-state Markov process is approximated by a 15-state Markov process.
Similarly, Fig.6.7c-f depict ® and & when the 25-state Markov process is approximated by

an 8-state Markov process.

6.4.3. Markov Chain Approximation based on Maximum Entropy with

a Large Number of States

In this example we approximate a 25-state Markov process based on maximum entropy. The
transition matrix P of the original Markov process is as shown in Fig.6.8a. By Remark
6.4, the state-space X is partitioned into 25 disjoint sets, where X° = {25}, X, = {1}
and X, = {k + 1} for k = 1,...,23. Similarly to example 6.4.2, Fig.6.8d depicts the KL
divergence rate as a function of the number of the states of the approximated Markov process
and as a function of TV parameter for values where an aggregation of the states occurs. It is
worth noting, that the approximation based on maximum entropy principle is much faster, in
terms of TV parameter, compared to the approximation based on occupancy and this is due

to the water-filling like behavior of the solution. Fig.6.8b-e and 6.8c-f depict the ® matrix
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and the corresponding lifted matrix & when the original Markov process is approximated by

a 15-state and an 8-state Markov process, respectively.

6.5. Summary

In this chapter, we present two methods of approximating a FSM process by another pro-
cess with fewer states. The first method, utilizes the total variation distance to discriminate
the transition probabilities of a high-dimensional FSM process by a reduced order Markov
process, and hence, a direct method for a Markov by Markov approximation is obtained.
The second method, utilizes total variation distance as a new discrepancy measure, and the
problem is formulated using: (a) maximization of an average pay-off functional with re-
spect to the approximated invariant probability, and, (b) maximization of the entropy of the
approximated invariant probability, both subject to a constraint on the total variation dis-
tance metric between the invariant probability of the original Markov process and that of the
approximated process. Then, by utilizing the obtained solution, we studied the problem of
approximating a FSM process with another FSM process of reduced order with respect to the
Kullback-Leibler divergence rate. Examples are included to demonstrate the approximation

approach for each of the two methods.






Conclusion

In this chapter, a summary of the main findings of the thesis is presented, and suggestions

for future research are discussed.

7.1. Summary and Main Contributions

Extremum problems with total variation distance metric on the space of probability mea-
sures are of fundamental importance; they have applications in stochastic optimal control,
decision theory, information theory, mathematical finance, etc. In this thesis, such extremum
problems are introduced and analyzed. Subsequently, the results are applied to minimax
stochastic optimal control via dynamic programming on a finite and on an infinite horizon,
and to approximate high-dimensional Markov processes by lower-dimensional processes.

Below, we give a brief summary followed by the main contributions of the thesis.

Extremum Problems

In this chapter, we investigated extremum problems with pay-off being the total variation
distance metric defined on the space of probability measures, subject to linear functional
constraints on the space of probability measures and vice-versa; that is with the roles of total
variation metric and linear functional interchanged. First, we introduced the precise defini-
tions of the extremum problems under investigation, and then we studied some of their most

important properties. Next, by utilizing concepts from signed measures we characterized the
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extremum measures, which exhibit a water-filling behavior, on abstract and on finite alphabet
spaces. In particular, the construction of the extremum measures involves the identification
of the partition of their support set, and their mass defined on these partitions. Due to the
convexity of these extremum problems, the optimal solution of all problems is obtained ex-
plicitly, by finding upper and lower bounds which are achievable. The main contributions of

this part are the following.
e Characterization of the properties of the extremum problems;
e characterization of extremum measures on abstract spaces;
e closed form expressions of the extremum measures for finite alphabets.

Dynamic Programming on a Finite Horizon

In this chapter, we addressed optimality of stochastic optimal control strategies on a finite
horizon, via dynamic programming subject to total variation distance ambiguity on the con-
ditional distribution of the controlled process. The solution of the minimax stochastic control
with deterministic strategies, is obtained under a Markovian and a non-Markovian assump-
tion, on the conditional distribution of the controlled process. Although, optimality of the
control strategies subject to uncertainty have been addressed previously by several authors
using relative entropy constraints, our approach is novel in the sense that the class of models
is described by total variation distance between the nominal and the true distributions. The
essence of our approach lies in the fact that total variation is more general than relative en-
tropy, and in addition, it has the advantage of admitting distributions which are singular with
respect to the nominal distribution. Hence, stochastic control under total variation results in
optimal policies which are more robust with respect to uncertainty. The main contributions

of this part are the following.
e Minimax optimization subject to total variation distance ambiguity constraint;

e new dynamic programming recursions, which includes in addition to the classical

terms, the oscillator semi-norm of the future cost-to-go.

Dynamic Programming on an Infinite Horizon

In this chapter, we addressed optimality of stochastic control strategies on an infinite hori-
zon, via dynamic programming subject to total variation distance ambiguity on the condi-
tional distribution of the controlled process, by considering as optimality criterion both the
expected discounted reward and the average pay-off per unit time. New policy iteration

algorithms, with convergence properties, are developed for computing the optimal policies
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which in contrast to the classical ones, policy improvement and policy evaluation steps are
performed using the maximizing conditional distribution obtained under total variation dis-

tance ambiguity constraints. The main contributions of this part are the following.

e New infinite horizon discounted dynamic programming equation, associated contrac-

tive property, and a new policy iteration algorithm;

e new infinite horizon average dynamic programming equations, and new policy itera-

tion algorithms.

Approximation of Markov Processes by Lower Dimensional Processes

In this chapter, we investigated the problem of approximating a finite-state Markov process
by another process with fewer states, called the approximating process. The approximation
problem is formulated as an optimization problem with respect to a certain pay-off subject to
a fidelity criterion defined by the total variation distance, using two different methods. In the
first method, we approximated the transition probabilities of a Markov process by another
Markov process with reduced transition probability matrix, while in the second method we
approximated a Markov process by another process which is non-necessarily Markov, but
with lower-dimensional state-space. For both methods, the resulting approximating pro-
cesses are given by water-filling solutions, and new recursive algorithms are developed to
compute the invariant distribution of the approximating processes. The main contributions

of this part are the following.

e A direct method for Markov by Markov approximation based on the transition proba-

bilities of the original FSM process and the reduced one;

e optimal partition functions which aggregate the original finite-state Markov process to

form the reduced order finite-state Markov process;

e iterative algorithms to compute the invariant distribution of the approximating process.

7.2. Topics for Further Research

Extremum problems with total variation distance metric on the space of probability measures

can be further generalized as follows.

1. In this thesis, extremum problems with total variation distance metric on the space of
probability measures have been formulated and solved, and their solutions are applied

to the areas of minimax stochastic control and Markov process approximation. It will
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be interesting to consider applications of extremum problems on Information Theory
such as capacity of channel for a class of channel distributions, and lossy compression
with fidelity criterion for a class of sources via the Rate Distortion Function. More-
over, it will be interesting to extend the example on lossless coding of section 3.4.4
to universal coding and modeling for the purpose of introducing lossless codes for a
class of source distributions described by total variation distance metric via minimax

theory.

. In chapters 4 and 5 we have been exclusively concerned with Markov controlled op-

timization using deterministic control strategies. It would be desirable to solve mini-
max stochastic optimal control problems with randomized control strategies, under a
Markovian and a non-Markovian assumption. In addition, it would be very interesting
to develop new dynamic programming algorithms by employing performance criteria

of different types, i.e., of exponential type.

. In the literature several authors investigate optimality of stochastic control on problems

with complete observations and on problems with partial observations. The extension
of our work and results to the partially observed case it would be a very interesting and

challenging problem.

. Recall the discussion of chapter 5.3.3, where policy iteration algorithm may not be

sufficient to give the optimal policy and the minimum cost, if irreducibility condition is
not satisfied. It would be challenging, to investigate the problem of approximating the
reducible maximizing stochastic matrix, by employing certain results and techniques
presented in chapter 6, by an irreducible stochastic matrix of lower dimension, and then
to compare the resulting policies with the corresponding optimal policies obtained by

solving the general dynamic programming equations.

. In chapter 6 we have been exclusively concerned with the problem of approximating

a finite-state Markov process by another process (non-necessarily Markov) with fewer
states. A natural extension of the proposed Markov process approximations is to con-
sider the problem of approximating a hidden Markov process, instead. Furthermore, it
would be interesting to investigate the problem of approximating joint distributions by

lower-dimensional joint distributions.



Total Variation Distance

A.1. Proof of Lemma 2.2

(i) Let H be a Hahn-Jordan set of £&. Then (T (H) = &(H) and £ (H¢) = —£(H°). For
feBM(X)

1f<f>\=/f e () — [ Flade
Mo \
= df*

[ s
gufuoo( ) +ED)
— 1 flslélrv:

(i1) From part (i),
sup{{(f) : f € BM(X), [ floc =1} <[]y
and

sup{¢(f) - € € M(X), [€lrv = 1} < |fle-

Note that!, |1y — Lye|o = 1 and €(Ly — 1ye) = E(H) — £(H) = |€|zv. Taking
f = 1g — 1ge, establishes equality in (ii).

17 iy denotes the indicator function of H.
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(iii) Let f € BM(X) and let {z,} be a sequence in ¥ such that lim, . |f(z,)| =
Ifloo- Then, |floc = lim,—oo|dz, (f)| proving (iii), (e.g., & = lim, o d,, such that
iy, o0 [ £(20)] = [flo0)-

A.2. Proof of Lemma 2.3

Let§ € M(X)and f € BM(X). Then

&) = [ @) ) = [ fla) (da)
Iy

fla)€¥(dx))e™ (da’)  [([ f(a)€" (dz))E" (da')

=5 £ (%)
Hence,
ni= [ 155 - L e @
f<x> B f<x’> .
L O oy =) SO

which proves the first part. If (X) = 0, then £7(X) = £ () = 1[&|7v, which proves the

second part.

A.3. Proof of Lemma 2.4

For any &1, &, € My (2), write
§1(A) = &(A) = (&1 — &) 1a

e.g., f = 14 and note that

osc(ly) = 1.
Thus, by [€,(f) — &(f)] < 3161 — Eolrvose(f). letting f = 14 then
6(4) — &) < =SV
Hence,
sup|€1(4) - &(A)] < "f“fQ"TV (A.1)

Next, consider reverse inequality. Let / be a Jordan set of the signed measure &; — &. Then

§i(H) = &(H) = (& — ) — (& — &) (H)
= (& — — (=(& — &)(H))
= (6= &) (X)) = (=(& — &)(©0))

1
- 5”&1 — &y

—
™M I
) )
S~—"
+  +
—~
T =
S~—
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Hence 1
Sljlp &(H) — &(H)| = S 16— &frv

and the proof is complete.






Extremum Measures

B.1. Proof of Theorem 3.2

For the following proof we employ lemma 3.5, which is also valid for Problem 3.2.
From Lemma 3.2, and Corollary 3.2, we know that for D < D, where Dy« = {nax, the
average constraint holds with equality, that is

S livi =Y & =D &+ b = D.

i€ i€x i€x €T
From Lemma 3.5, Part (a) and from Part (b), case 1, when equality conditions (3.48) and
(3.50) are satisfied we have that

max <(;) — Lmin <(;) +> lipi=D.
i€y

Solving the above equation with respect to o we get that

o — 2 (D — Diex &Mz‘)

gmax - gmin

. (B.1)

Since (3.48a) is always satisfied, it remains to ensure that (3.50a) is also satisfied. By
substituting (B.1) into (3.50a) and solving with respect to D we get that if D >
(Cmax — min) Yies, Hi + Xies Lijt; then R (D) is given by (3.67). Moreover, the optimal
probabilities given by (3.68a) and (3.68b) are obtained from (3.48b) and (3.50b), respec-
tively.
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Lemma 3.5, Part (b), case 1, characterize the extremum solution for > ey i — 5 > 0.
Next, the characterization of extremum solution when this condition is violated, that is, when
>k Yies, i — 5 < Oforany k € {1,2,...,r}, is discussed.

From Lemma 3.5, Part (b), case 2, the lower bound (3.51), holds with equality if conditions

given by (3.52) are satisfied. Hence,
o o K k
b (5) =020 (5 -2 X w)+X X law=D.
Jj=lie¥; 1 J=liex;_

Solving the above equation with respect to o we get that

2(D — max Yiexo i — £(Zg) Z§:1 Ziezj,l Hi — Z;:k Ziezj ﬁmi)
o = y (B.2)
Emax - E(Ek)

Substituting (B.2) into Zle Yiex,; , i — 5 < 0 and into (3.52¢) and solving with respect
to D we get that if

Dzﬁmax(zk: > m+2ui)+i2&-m

Jj=lie¥; iex0 j=ki€X;
k r
D<loax | DD it Do |+ D D b
j=0i€ex; i€0 j=k+1i€%;

then R*(D) is given by (3.65). Moreover, the optimal probability on X, given by (3.68c) is
obtained from (3.52b).

For D € [Dppax, 00), is straightforward that, the extremum measure v*(X°) = 1 and v*(2 '\
%) = 0, and hence R (D) = 2(1 — pu(XY)).

B.2. Proof of Theorem 3.3

From Lemma 3.3, and Corollary 3.3, we know that for R < Ry.x, where Ry, = 2(1 —
1(2p)), the total variation constraint holds with equality, that is, ||{||ry = R. Let a =
||€||7v. From (3.70) and (3.71), Problem 3.3 is given by

DY(R)=> lip; + min > & (B.3)

ies EEBR(1) jex

where & € Bg(y) is described by the constraints
a2 lGl=R Y 6=0 0<& <1, Viex. (B.4)
€Y €Y
To minimize (B.3) we employ (3.44). It is obvious that a lower and an upper bound must be

obtained for 3,5, ;&7 and 3,5, £:&;, Tespectively.
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From Lemma 3.6, Part (a), the lower bound (3.81), holds with equality if conditions given
by (3.84) are satisfied. Note that, (3.82a) is always satisfied and from (3.82b) we have that
Yiexo Vi = 2iex, Mi T 5 and hence the optimal probability on X is given by
V(S0 2 v = g (B.5)
i€ i€%o
From Lemma 3.6, Part (b), case 1, the upper bound (3.83), holds with equality if conditions
given by (3.84) are satisfied. Furthermore, from (3.84b) we have that > ,cs0 v; = > iex0 i —

5 and condition (3.84a) must be satisfied, hence the optimal probability on ».0 is given by

OVED ( S - ;‘>+ (B.6)

IS 1€30

The extremum solution for any R < R.., under equality conditions (3.82) and (3.84) is
given by

D~ (R) = {émin - gmax}a + Z gzluz (B7)

2 s

Lemma 3.6, Part (b), case 1, characterize the extremum solution for 3 ,cy0 p; — 5 = 0.
Next, the characterization of extremum solution when this condition is violated, that is, when
Z§:1 Yiesi-1 i — 5 < Oforany k € {1,2,...,7},is discussed.
From Lemma 3.6, Part (b), case 2, the upper bound (3.85), holds with equality if conditions
given by (3.86) are satisfied. Furthermore, from (3.86b) we have that

k
Q
Su=Yu-(3-X X ), (B3)
iexk iexk Jj=liexi-1
and conditions § — Z"le Yiesi—1 (i > 0 and (3.86¢) must be satisfied, hence the optimal
probability on ¥* is given by

k

y*(z}k) 2 Z vl = < Z i — (g — Z Z ﬂi>+)+' (B.9)

iexk iexk j=liexi-1

The extremum solution for any R < R.x, under equality conditions (3.82) and (3.86) is

given by
D™(R) =Y b&" =Y &+ b
i€x i€x i€s
a o & k
~tan(5) -0 (5-2 X )+ X bt X
Jj=liexi—1 j=liexi-t i€x

For R € [Ruax, 2], Lemma 3.3, states that D~ (R) is constant. Indeed for a = ||¢||ry =
Riax = 2(1 — p(X0)) equality conditions of Lemma 3.6, Part (a), become

Su+s=1 Y& =3 & =0frieT\T, (B.10)

IS i€X0
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and hence

S m-2=0, S & =2, & =0fori€ X (B.11)
iEE\EO 2 iEE\EO 2

Therefore >;cs & = Lies\x, #é and hence ;- = p; for all i € ¥\ . The extremum
solution for any R € [Ryax, 2] is given by

Df(R> = Z&ff - Z&'f? + Z@Mi @ Z Eiéj - Z ng; + Z&‘M

1EN 1EN IEX IS 1€X\Xo IEX
(0%
i€x\50 = i€ i€

where (a) follows from (B.10) and (B.11).

B.3. Weak Convergence of Probability Measures

Below, we give a brief description of concepts of weak convergence of probability measures
which are relevant to our work.
1) Let (X, ds) be a metric space with B(X) its Borel sets. Recall that a sequence {P, :

n =1,2,...} of probability measures on ¥ converges weakly to a probability P on X if

n—aoo

lim / (o) P (dx) = / f(x)P(dz), Vfe BC(D).

This convergence is denoted by P* — P. Weak convergence defines a topology 7 on the
set of probability measures M (¥), that is, P* — P if and only if for each neighborhood
N(P) € 7 of P then P" € N(P) for n sufficiently large. Moreover, if the metric space
(33, dy,) is separable, the topology 7 is metrizable, and hence there exist a metric d : M (%) x
M;(X) — R which generates this topology. The Prohorov metric is such a metric on
My (2).

In order to introduce it, we define for A C &, ¢ > 0, A© £ {z € ¥ : d(z, A) < €}. Then
dp : M1(2) x M;(X) — R defined by

dp(Q, P) = inf{e > 0: Q(F) < P(F9)4¢, V closed subset F C X.

Moreover, if dp(P", P) —» 0 then P" — P.

An important property of the topology 7 is that for (X, dyx) a separable metric space the
set of probability measures with finite support denoted by M (X) is dense in M, (), that
is, the closure of MI(X) = M, (2) [11, Appendix III, Theorem 4]. Therefore, for each
P € M;(X) there exists a sequence { P" : n = 1,2, ...} of probability measures with finite
support from M5 (3) converging (i.e., to P € M;(X)).
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2) Consider a neighborhood N (P) £ {Qe M(2): Q(F,) < P(F,)+ei=1,....n},
where F;,i = 1,...,n are closed subset of X, ¢ > 0. Consider, a partition { Ay, Ao, ..., A}
generated by {F}, ..., F,,}. Then foreachi = 1, ... k there exists an x; € A; such that

flz)P(A;) < / f(x;)P(dx) holds, fora measurable function f:¥ +— R.
On the points {z;,..., 2} put mass {P(A4;) : @ = 1,...,k} and denote this probability
measure by Q7% € MI9(X). Then

k

[ F@Q" () = 3 flay) P(A,).

i=1






Finite Horizon Dynamic Programming

C.1. Proof of Lemma 4.1

Let 7 € IIYM,, which defines {g; : j = 0,1,...,n — 1}. It follows that {9 : j =

0,1,...,n} is a Markov process. Then

VIi(xd) = a"hy,(29)
= Eqz{a"hn(22)|Gon}

— sup Eqr{a"hn(29)|Gon}
Qn(|Tn—1,un—1)EBR, (Q9)(Tn—1,Un—1)

= Vn(QO,n)

so that it is true for 7 = n.
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Suppose that (4.39) holds for j + 1,5 4+ 2,...,n. Then

‘/;g('rg) - sup ]EQ].H($],u7){ajf](x?7gj(x§)) =+ ‘/jg—l-l(xg-l-l)}
Qj+1(lxf u)EBR, (QF, ) (=] u))
- sup Eqp {0 (a5, 9,()) + Vi (a911)1G0, |
Qj+1(.|z?7u?)€BRj+l (Q(;Jrl)(l‘?,ug)
- sup Eq {af;(af, 5(a9)
Qj+1(|xf u)EBR,, (QF, ) (=] u))
n—1
+ sup Bar{ 2 a*fulel,gula) +a"hu(at)|Goi1 100,
Qp(leg_1,uk—1)EBR, (Q7) (T —_1,up—1) k=j+1
k=j+2,...,n
= sup {EQ’J{ajfj@?agj(:”?)”gﬂ,j}
Qpleg_1,uk—1)€BR, (Q7)(@p_1,uk—1)
k=j+1,...,n
n—1
+Eqp{Bqr{ 3 atfulat geaD)) + o"halw) o o
k=j+1
n—1
- sup Eqz{ 3 a*fulafs gu(at)) + a”hu(a2)]Go, }
Qp(leg_1,uk_1)EBR, (QF)(w)_1,uk—1) k=j
k=j+1,....,n
= V;(ufj,nflp gOJ)
n—1
- sup Eqp{ 37 a*fulaf, ge(al) + a"ha(a)la; |
Qp(leg—1,ukp—1)EBR, (QP) (@)1 uk—1) k=j
k=j+1,...,n
because {7 : j =0,1,...,n} is a Markov process.

C.2. Proof of Lemma 4.2

Let w € II), _, be arbitrary. Then

VI(29) < o hy(29)
— sup Eqz {a"hn(29)[Go,n }

Qn(-|Tn—1,un—1)€BR,, (Q9)(Tn—1,un—1)

= Vn (g()m)
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so that it is true for 7 = n.
Suppose that (4.42) holds for j + 1,5 4+ 2,...,n. Then

ng<x§> < Sup EQHl('wjvuj){O‘jfj(xg’ uf) + Vﬁkl@gﬂ)}
Qi1 (et u)€Bn, ,, (Q%4 ) (@lu?)
- sup Eap { o ad, uf) + Vi (a5:) 100, }
Qi+1(lzfu))EBR;, , (Q, ) (@] u])
< sup EQ«{aij( rd, uf)
Qi1 (et u)€Bn, ,, (Q%4 ) (@)
n—1
+ sup Eqr{ 3 afilaluf) +a"hu(a2)|Gosu |16,
Qp(leg_1,up—1)EBR, (@) (wp_1,up_1) k=j+1

k=j74+2,....,n

= sup {EQg{ajfj( Ty, j)|gOJ}

Qi Clzg_1,up_1)EBR, (QY) (@) _1,uk_1)

k=j+1,...,n
n—1
+Eos{Ear{ X a*fulal uf) +a"ha(e)IGo,01 } 160,

k=j+1

n—1

- sup Eap{ 3 a*fulaf u) + o"ha(e?) G0, }

QrClzg_1,up—1)EBR, (QY) (@) _1,up—1) k=j

k=j+1,....,n

= VJ’(“[gj,nq]v Go,j)-






Infinite Horizon Dynamic Programming

D.1. Proof of Lemma 5.4

By Proposition 5.1 (c), there exists a V(¢*,:) : X — R and J(7*) such that for all x € X

J(m)+V(g*,x) = f(z )+ > Q (z|z, g% (2)V (g, 2). (D.1)

zeX

Then, forallz € X

J(n*)+V(g*,x)2rJ1€i19{ z,u) + Y QF(z|lz,u) (g,z)}.

zEX

Define g, : X — U as

1(x) = argmin { f(a,0) + 3 Q" Gle. )V (g7, 2) )

zeX

Suppose that for some x5 € X strict inequality holds in (D.1), then

J(m*) +V(g*, x) > Igleln{ To,u) + Z Q" (z|x2,u)V (g ,z)} (D.2)

zeX
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Then multiplying (D.2) by ¢(g1)(zo) > 0 and summing over z, € X yields

() + > alg)V (9", o)

rgEX
> min {32 glo) (@) f(o,u) + X algn)(w0) Y- @ Glao, )V (g}
roEX roEX zeX
= Z q(g1)($0) I0791 $0 Z q 91 $0 Z Q |900,g1 xo))V(g*aZ>
ToEX ToEX zeX
=J(g1) + Z q(¢1)V(g*,z), by Proposition 5.1 (a)
zeX

which gives J(7*) > J(g1), contradicting assumption 2. Hence, equality holds in (D.1), for
every r € X.

D.2. Analytic Solution of Example 5.4.1

To obtain an optimal stationary policy of the infinite horizon minimax problem for dis-

counted cost, policy iteration algorithm 5.3 is applied.

1. Initialization. Solve the equation f(go)+aQ°(g0)Vge(g0)=Vige(go), for Vgo(go) € R?,

of,
f(1,90(1)) 471(90(1))  af2(90(1)) q75(g0(1)) Ve (1) Ve (1)
f(2,90(2)) |+ ¢51(90(2) 655(90(2)) @33(90(2)) Ve (2) | = | Vge(2)
f(3.90(3)) 451(90(3))  432(90(3))  a55(90(3)) Ve (3) Ve (3)
which is given by
2 315 Vo (1) 12.42
3|+ [4 2 3 Voo (g0) = Vo (go) == Vigo(go) = | Voo (2) | = | 13.93
0 41 4 Voo (3) 10.60

Note that, Voo = {Vigo(1), Voo (2), Vigo(3)}, |X| = 3, and hence

XTE{zeX: Vg(r) =max{Vg(z) :x € X}} ={x € X : Vgo(x) = Vo (2)} ={2},
T2 {r e X Vgo(r) =min{Vye(r) 1 x € X}} = {x € X : Vigo(z) = Vigo(3) } ={3},
X 2 {x € X : Vgo(x) = min{Vgo(a) : a0 € X\ XT U X‘}} ={1}.
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Once the partition is been identified, (5.16)-(5.18) is applied to obtain

<qi)1(ul) - (% - qi’g(ul))+>+ min (17qi)2(u1) + %) (qtng(ul) . §>+
Q" (w) = <q§’1(m) - (% - q§3(u1))+> min (1,q§2(u1) + %) (q‘2’3(u1) _ %)Jr
() — (5~ () i (L) + %) (o) ~ £)"
3 4 2
= ; 4 5 0 (D.3)
090

Solve the equation f(go) + aQ*(g0) Vo (g0) = Vig+ (go), for Vig= (go) € R3, or,

f(1,90(1)) ai1(g I I V(1) V(1)
f(2,902)) |+ ¢1(90(2) 52(90(2)) a53(90(2)) Ve (2) | = | Vo (2)
f(3,90(3)) 31(90(3))  @52(90(3))  33(90(3)) Vo (3)

which is given by

2 S, 3 4 2 V(1) 22.42
3 +? 4 5 0| Vi(go) = Vo (90) = Vigr(90) £ | Ve (2) | = | 23.93 | -
0 4 4 1 Vo (3) 20.60

2. Let m = 1. (a) Determine ¢g; € R? such that

(=)
—~
—_
~—
~—
o)
—_
no
—~
s
(=)
—~
—_
~—
~—
o)
—_
w
~~
N
=)
—~
—_
~—
~—

J(g1) +aQ™(9) Vo (90) = min {f(g) + aQ(9)Ve- (90)}

min {22.42, 20.88} 20.88
= [ min{21.93,23.93} | = [ 21.93 | .
min {24.53,20.60} 20.60

Hence, g1(1) = u, g1(2) = uy and g1(3) = ua.
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(b) Solve the equation f(g1) + aQ°(g1)Voo(91) = Ve (1), for Voo (g1) € R?, or,

f(1,0:(1)) q1(g1(1)) afa(g1(1)) qfs(gr(1)) Ve (1) Ve (1)
f(2,01(2)) |+ ¢31(01(2) @5(91(2)) a55(91(2)) Ve(2) | = | Vige(2)
f(3,91(3)) Q§1(91(3)) Q§2(91(3)) Q§3(91(3))

which is given by

0.5 0 126 Vo (1) 3.46
1 +? 4 2 3| Voolg1)=Vae(g1)=Voe(g1) = | Vo(2) |=] 4.10 |.
0 41 4 Vo (3) 2.99

Therefore, X+ = {2}, X~ = {3} and X; = {1}. Since the partition is the same as in m = 0
then Q*(uy), Q*(uz) are the same as (D.3) and (D.4), respectively.
Solve the equation b(g;) + aQ*(g1)Vo+(91) = Vig+(g1), for Vg« (g1) € R3, or,

f(1, (1)) ai(91(1)) aia(91(1)) ais(ga(1)) ) [ V(1) V(1)
f2,012) | to| 61(0(2) 6:(01(2) 63(0(2) || Vo (2) | = Vo (2)

f(3,91(3)) ¢1(913) a32(91(3))  a53(91(3)) Vo (3) Vo (3)
which is given by
0.5 0.9 1 5 3 V- (1) 6.79
Ll+5 45 0|V (1) = Ve (g1) = Ve (1) & | Vip-(2) | = [ 743
0 4 41 Vi (3) 6.32
Note that

20.88 22.42
min{f(g) +aQ*(9)Vo-(9o)} = | 21.93 | < | 23.93 | = V- (90). (D.5)
20.60 20.60
3. Let m = 2. (a) Determine g, € R? such that
F(g2) + aQ(92)Vo-(91) = min{ f(g) + aQ™(9)Vo- (91)}
min {8.27,6.79} 6.79
= | min{7.43,9.43} | = | 7.43 | .
min {9.69, 6.32} 6.32

Hence, g2(1) = ug, g2(2) = uy and g2(3) = uy. Note that, go = g;.
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(b) Note that the solution of (5.28) is such that V. (g2) = Vigo(¢1), and hence the solution
of (5.29) is such that V- (g2) = Vg (g1). Furthermore, condition (5.26) is satisfied since

6.79
min {f(g) +aQ"(9)Vo:(9)} = | 743 | = Vo (90).
6.32

Hence, policy iteration algorithm has converged and the optimal policy and value are

92(1) (5 V- (1) 6.79
@2) [ =wu|, Volg)=Vol(g) = |Ve(2) | =|743
92(3) Uy Vo-(3) 6.32






Markov Process Approximation

Before we proceed with the proof of Theorem 6.1, we give the following Lemma in which

lower and upper bounds, which are achievable, are obtained.

E.1. Upper and Lower Bounds

Lemma E.1. (a) Upper Bound.

—_ Qi [l
S 6 < e (57 (E.1)
jeX
The bound holds with equality if
Zﬂﬁ%gl, Ejj:%, =5=0, VjeX\X". (E.2)
jexo jexo
(b) Lower Bound. Case 1. If 3 ;cx, Pij — 5 > 0 then
—_ QG [
> 60 > i (U5 (E3)
jex
The bound holds with equality if
Q; _ O — .
Zﬂj—gzo, Z:U:? =;,;=0, VjeEX\X,. (E.4)

Jj€Xo JjE€EXo
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Case 2. If Y0, Siex. , Pij— % <0forany k € {1,2,...,r} then

S 4 = () (10 > Y Pwuz)+z S Py (ES)

JEX s=1jeXs1 s=1jeXs—1

Moreover, equality holds if

Z By = Z Py, forall s=1,2,... k, (E.6a)

jeXsfl jeXsfl
(67 k

> == (2 -Y ¥ R (E.6)
jEXk s=1j€Xs 1
S Y P %0 (E.60)
s=0 jeX;
.:i_j:OforalljEX\XOUXlLJ...UXk. (E.6d)

Proof. Part (a): First, we show that inequality (E.1) holds.

_ Qg
Z g:a:;ﬂz S gmax,ui jj_ - Emax < a > .

jex jex 2

Next, we show that under the stated conditions (E.2) equality holds.

Z t;= ‘—‘ZJMZ - Z ;= ‘—‘ZJIM’L + Z g]‘—‘zjlul

JjeX jexo jeX\x0

QG [
4 gmaxﬂli Z + Z g]_,lj/lz = lmax ( 2/”L ) .

jeX0 JEX\XO

Part (b), case 1: First, we show that inequality (E.3) holds.

D UiEGH > bintts Y i = luin <O‘2“> .

jeX JEX

Next, we show that under the stated conditions (E.4) equality holds.
S GEGm = > LS+ Y. S
jex JE€Xo JEX\Xo
7727
= gminﬂi Z + Z g‘]‘—“]/“LZ - mln (2> .
JEXD JEX\Xo

Part (b), case 2: First, we show that inequality (E.5) holds. Consider any k£ € {1,2,...,7r}.

From Part (b), case 1, we have that

) ex\Uk_ X, _ )
JEX\UF_, Xy JENNI -1 SO v,y

=0 X) D Emi = 5(/&)( > S — Z > ngz)

FEX\UF_ Xs 1 jex s=1j€Xs1
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Hence,

pSUI=TID i ST ENTEA] (L S SR

jeEX s=1jeXs_1 s=1jeXs_1

which implies

> 4E = () (40 Yy Pwuz)+z > 4P

JEX s=1jeXs1 s=1jeXs—1

Next, we show under the stated conditions (E.6) that equality holds.

k
S =Y Y GELut Y GESu Y S

Jjex s=1jeXs1 JE€X FEX\UF_ X,
k

_ ZE(XH) > Egms+UX) D E

JEXs 1 jEXk

Yy P+ () (12 D> Pt

s=1jeXs_1 s=1jeXs_1

E.2. Proof of Theorem 6.1

We provide the main steps for the derivation of Theorem 6.1, since the methodology fol-
lowed for solving Problem 6.1 is similar to the one followed in Chapter 3, Theorem 3.1. In
particular, for a fixed « € A, the solution of Problem 6.1 is given by (6.19) and (6.20), with
proper substitution of v* — ®' and y — P.
From (6.15), the pay-off of Problem 6.1 is given by
> P+ max Y Y . (E.7)
i€EX jEX TYodeX jex
To maximize (E.7) we employ the fact that = is a signed measure satisfying (6.16). It is ob-
vious that for each i € X" an upper and a lower bound must be obtained for 3~ v ¢ Efj 1 and
> jex UjE; i, respectively. Before proceeding with the derivation of the optimal transition
probabilities ® based on upper and lower bounds, we discuss first the solution behavior in
terms of the TV constraint given by (6.14), thatis >,cy a1 < R.

Let o;, Vi € X, to be given by (6.18d) (see Chapter 3, Lemma 3.1 and Corollary 3.1); then,
it can be verified that for R < Ry, Vi € &, the TV constraint holds with equality, and
also that as [? increases (i.e., Rmax; < 1 < Rpaxit1, V2,1+1 € X), the TV constraint holds
with inequality. However, the solution of Problem 6.1 with respect to the specific ¢« € X for

which R > R,y 1s constant and hence the overall solution of Problem 6.1 is not affected.
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Finally, for values of R > Ry, Vi € & the overall solution of Problem 6.1 is constant, in
particular, is equal to ¢,,,x. The relation of TV constraint >,y cv;pt; with the TV parameter

R, 1s depicted in Fig.E.1. Next we proceed with the derivation of (6.18).

18- Total Variation Parameter, R '/

1.6 R _

1.2+

0.6

0.4~

0.2~

e e e T T T R ) T

R
max,1 max,2 Rmax,3 max,4

Figure E.1.: Total Variation Constraint vs. Total Variation Parameter

From Lemma E.1, Part (a), the upper bound (E.1), holds with equality if conditions given
by (E.2) are satisfied. Note that, the first condition of (E.2) is always satisfied and from the
second condition we have that 3~ yo ®;; = >=;cyo P + 5 and hence the optimal transition

probability of each j € XY is given by

ol = P+ Vi e x°.

Q;
2| X0
From Lemma E.1, Part (b), case 1, the lower bound (E.3), holds with equality if conditions
given by (E.4) are satisfied. Furthermore, from the second condition of (E.4) we have that

>iex, Pij = Xjex, Pij — % and also the first condition must be satisfied, hence the optimal
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transition probability of each j € A& is given by

+
o @ :

Lemma E.1, Part (b), case 1, characterize the solution for > ;cy, P;; + % > 0. Next, the
characterization of solution when this condition is violated, that is, when Zle djex,  Pii—
% <Oforany k € {1,2,...,7} is discussed.

From Lemma E.1, Part (b), case 2, the lower bound (E.5), holds with equality if conditions
given by (E.6) are satisfied. Furthermore, from (E.6b) we have that

k

> Py = Z%‘(O;—Z > Rj>,

JEX JEX, s=1jeXs_1

and conditions ' — Z’;zl > jex, . Pij > 0 and (E.6¢) must be satisfied, hence the optimal
transition probability of each j € X, is given by

, k +
o= (P (g2 X A7)

7=1 ZGXj_1

For additional details concerning the steps for the solution of Problem 6.1, see the proof of

Theorem 3.1.
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