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Abstract

Extremum problems with total variation distance metric on the space of probability measures

are of fundamental importance in stochastic optimal control, information theory and com-

munication, mathematical finance, decision theory and in statistics and probability. Among

others, the investigation of such problems utilizes concepts from measure and probability

theory and function space optimization, and has applications in minimax stochastic control

via dynamic programming, approximation of high-dimensional probability distributions by

lower-dimensional, model reduction, etc. In this thesis, the formulation of extremum prob-

lems involving total variation distance metric, their extremum solutions, their discussion in

terms of applications, and their application to the areas of minimax stochastic control and

Markov process approximation, are investigated.

The first part of the thesis deals with the formulation of extremum problems, in which

systems are represented by probability distributions on abstract spaces, and pay-offs are

represented by total variation distance metric defined on the space of probability measures,

subject to linear functional constraints on the space of probability measures, and vice-versa;

that is with the roles of total variation metric and linear functional interchanged. By utilizing

concepts from signed measures, the extremum solutions of such problems are obtained in

closed form, and an associated emerging water-filling property of the partitioning of the

alphabet spaces of the extremum solutions is elaborated. The results are derived for abstract

spaces, while the high level ideas are also discussed for denumerable spaces endowed with

the discrete topology.

The second part of the thesis addresses optimality of stochastic control strategies on a

finite and on an infinite horizon, via dynamic programming subject to total variation distance

ambiguity on the conditional distribution of the controlled process. The stochastic control

problem is formulated using minimax theory, in which the control minimizes the pay-off

while the conditional distribution, from the total variation set, maximizes it. By employing

certain results of the first part, new dynamic programming recursions are derived which, in

addition to the standard terms, include the oscillator semi-norm of the value function that

codify the level of ambiguity with respect to total variation distance ball. In addition, for the

infinite horizon case new policy iteration algorithms are presented to compute the optimal
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strategies.

The third part of the thesis deals with the problem of approximating a finite state Markov

process with a large number of states by a lower-dimensional process, with respect to cer-

tain measures of discriminating or approximating the distribution of the high-dimensional

Markov process by a reduced one. By drawing upon the results of the first part, the approx-

imation problem of finite state Markov process by another non-necessarily Markov process

with reduced state space, is formulated as an optimization problem, with respect to a cer-

tain pay-off subject to a fidelity criterion defined by the total variation distance metric. The

water-filling behaviour of the transition probabilities of the approximated process and the

proposed recursive algorithms are new, and applicable to a variety of approximation prob-

lems spanning from optimal state reduction to optimal state aggregation.
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Ðñüëïãïò

Ç âåëôéóôïðïßçóç ðñïâëÞìáôùí ìå áêñüôáôá ðïõ ÷ñçóéìïðïéïýí ùò ìåôñéêÞ áðüóôáóçò

ôçí ïëéêÞ êýìáíóç óôï ÷þñï ôùí ìÝôñùí ðéèáíïôÞôùí åßíáé èåìåëéþäïõò óçìáóßáò

óôïí óôï÷áóôéêü Ýëåã÷ï, óôç èåùñßá ðëçñïöïñßáò êáé ôçò åðéêïéíùíßáò, óôç

ìáèçìáôéêÞ ÷ñçìáôïïéêïíïìßá, óôç èåùñßá áðïöÜóåùí êáé óôáôéóôéêÞò êáé óôçí èåùñßá

ðéèáíïôÞôùí. Ìåôáîý Üëëùí, ç Ýñåõíá ôÝôïéùí ðñïâëçìÜôùí ÷ñçóéìïðïéåß Ýííïéåò áðï

ôçí èåùñßá ìÝôñïõ êáé ðéèáíïôÞôùí, áðï ôçí èåùñßá âåëôéóôïðïßçóçò óõíáñôÞóåùí,

êáé Ý÷åé åöáñìïãÝò óôï óôï÷áóôéêü Ýëåã÷ï åëá÷éóôïìåãßóôùí ìÝóù äõíáìéêïý

ðñïãñáììáôéóìïý, óôçí ðñïóÝããéóç êáôáíïìþí ðéèáíïôÞôùí ìåãÜëùí äéáóôÜóåùí áðï

êáôáíïìÝò ðéèáíïôÞôùí ìéêñüôåñùí äéáóôÜóåùí, êëð. Óôçí ðáñïýóá äéáôñéâÞ, ç

äéáôýðùóç êáé ç åðßëõóç ðñïâëçìÜôùí âåëôéóôïðïßçóçò ìå ìåôñéêÞ áðüóôáóçò ôçí

ïëéêÞ êýìáíóç, ç óõæÞôçóç ðéèáíþí åöáñìïãþí ôïõò, êáèþò êáé ç åöáñìïãÞ ôïõò

óôïí óôï÷áóôéêü Ýëåã÷ï åëá÷éóôïìåãßóôùí êáé óôçí ðñïóÝããéóç äéáäéêáóéþí Markov,

åñåõíþíôáé.

Ôï ðñþôï ìÝñïò ôçò äéáôñéâÞò áó÷ïëåßôáé ìå ôçí äéáôýðùóç êáé åðßëõóç ðñïâëçìÜôùí

ìå áêñüôáôá, óôá ïðïßá ôá óõóôÞìáôá åëÝã÷ïõ åêðñïóùðïýíôáé áðï êáôáíïìÝò

ðéèáíïôÞôùí óå áöçñçìÝíïõò ÷þñïõò, êáé ôá êñéôÞñéá êüóôïõò åêðñïóùðïýíôáé áðï

ôçí ìåôñéêÞ ôçò ïëéêÞò êýìáíóçò óôï ÷þñï ôùí ìÝôñùí ðéèáíïôÞôáò êáé õðüêåéíôáé

óå ãñáììéêïýò óõíáñôçóéáêïýò ðåñéïñéóìïýò óôï ÷þñï ôùí ìÝôñùí ðéèáíïôÞôáò êáé

áíôßóôñïöá, äçëáäÞ, ìå ôïõò ñüëïõò ôçò ìåôñéêÞò ïëéêÞò êýìáíóçò êáé ôùí ãñáììéêþí

óõíáñôçóéáêþí íá åíáëëÜóóïíôáé. ×ñçóéìïðïéþíôáò Ýííïéåò ôùí ðñïóçìáóìÝíùí

ìÝôñùí, ïé âÝëôéóôåò ëýóåéò ôÝôïéùí ðñïâëçìÜôùí ëáìâÜíïíôáé óå êëåéóôÞ ìïñöÞ

êáé ïé éäéüôçôåò ôïõò åñåõíþíôáé êáé óõæçôïýíôáé. Ôá áðïôåëÝóìáôá ðñïêýðôïõí

÷ñçóéìïðïéþíôáò áöçñçìÝíïõò ÷þñïõò, åíþ ïé éäÝåò ôïõò óõæçôïýíôáé åðßóçò ãéá

áñéèìÞóéìïõò ÷þñïõò åöïäéáóìÝíïõò ìå ôçí äéáêñéôÞ ôïðïëïãßá.

Ôï äåýôåñï ìÝñïò ôçò äéáôñéâÞò áó÷ïëåßôáé ìå ôçí âåëôéóôïðïßçóç óôï÷áóôéêþí

óôñáôçãéêþí åëÝã÷ïõ óå ðåðåñáóìÝíï êáé óå Üðåéñï ÷ñïíéêü ïñßæïíôá, ìÝóù äõíáìéêïý

ðñïãñáììáôéóìïý ÷ñçóéìïðïéþíôáò ùò áðüóôáóç áâåâáéüôçôáò ôçí ïëéêÞ êýìáíóç

ôçò äåóìåõìÝíçò êáôáíïìÞò ôçò åëåã÷üìåíçò äéáäéêáóßáò. Ôï óôï÷áóôéêü ðñüâëçìá

åëÝã÷ïõ äéáôõðþíåôáé ÷ñçóéìïðïéþíôáò ôçí èåùñßá åëá÷éóôïìåãßóôùí, êáôÜ ôçí ïðïßá
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viii

ç äéáäéêáóßá åëÝã÷ïõ åëá÷éóôïðïéåß ôï êñéôÞñéï êüóôïõò åíþ ç äåóìåõìÝíç êáôáíïìÞ

áðï ôï óýíïëï ôçò ïëéêÞò êýìáíóçò, ôï ìåãéóôïðïéåß. ×ñçóéìïðïéþíôáò óõãêåêñéìÝíá

áðïôåëÝóìáôá ôïõ ðñþôïõ ìÝñïõò, íÝåò åîéóþóåéò äõíáìéêïý ðñïãñáììáôéóìïý

åîÜãïíôáé, ïé ïðïßåò åêôüò áðï ôïõò êëáóéêïýò üñïõò óõìðåñéëáìâÜíïõí åðßóçò êáé

ôïí ôáëáíôùôÞ çìé-íüñìá ðïõ êùäéêïðïéåß ôï åðßðåäï ôçò áâåâáéüôçôáò. Åðéðñüóèåôá,

üóïí áöïñÜ ôá óôï÷áóôéêÜ ðñïâëÞìáôá ìå Üðåéñï ÷ñïíéêü ïñßæïíôá, íÝïé áëãüñéèìïé

ðáñïõóéÜæïíôáé ãéá ôïí õðïëïãéóìü ôùí âÝëôéóôùí óôñáôçãéêþí åëÝã÷ïõ.

Ôï ôñßôï ìÝñïò ôçò äéáôñéâÞò áó÷ïëåßôáé ìå ôï ðñüâëçìá ðñïóÝããéóçò ìéáò

ðåðåñáóìÝíçò äéáäéêáóßáò Markov ìå Ýíá ìåãÜëï áñéèìü êáôáóôÜóåùí áðï ìßá

äéáäéêáóßá ÷áìçëüôåñùí äéáóôÜóåùí, ùò ðñïò ïñéóìÝíá ìÝôñá ðñïóÝããéóçò ôçò

êáôáíïìÞò ôçò äéáäéêáóßáò Markov áðü êáôáíïìÝò ÷áìçëüôåñùí äéáóôÜóåùí.

Áíôëþíôáò áðïôåëÝóìáôá áðï ôï ðñþôï ìÝñïò, ôï ðñüâëçìá ðñïóÝããéóçò ìéáò

ðåðåñáóìÝíçò äéáäéêáóßáò Markov áðï ìéá Üëëç äéáäéêáóßá (ìç-áðáñáßôçôá Markov) ìå

ëéãüôåñåò êáôáóôÜóåéò äéáôõðþíåôáé ùò Ýíá ðñüâëçìá âåëôéóôïðïßçóçò, ìå ôï êñéôÞñéï

êüóôïõò íá õðüêåéôáé óå êñéôÞñéá áêñßâåéáò ïñéóìÝíá áðï ôï ìÝôñï áðüóôáóçò ôçò

ïëéêÞò êýìáíóçò. Ç óõìðåñéöïñÜ ôùí ðéèáíïôÞôùí ìåôÜâáóçò ôçò ðñïóåããéæüìåíçò

äéáäéêáóßáò êáé ïé ðñïôåéíüìåíïé áíáäñïìéêïß áëãüñéèìïé Ýéíáé êáéíïýñãéïé, êáé ìðüñïõí

íá åöáñìïóôïýí óå ìéá óåéñÜ ðñïâëçìÜôùí ðïõ åêôåßíïíôáé áðï ôçí âÝëôéóôç áíáãùãÞ

êáôáóôÜóåùí Ýùò êáé ôçí âÝëôéóôç óõíÜèñïéóç êáôáóôÜóåùí.
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1
Introduction

Extremum problems with total variation distance metric on the space of probability measures

are of fundamental importance in stochastic optimal control, information theory and com-

munication, mathematical finance, decision theory and in statistics and probability. Among

others, the investigation of such problems utilizes concepts from measure and probability

theory and function space optimization, and has applications in minimax stochastic control

via dynamic programming, approximation of high-dimensional probability distributions by

lower-dimensional, model reduction, etc. In this thesis, the formulation of extremum prob-

lems involving total variation distance metric, their extremum solutions, their discussion in

terms of applications, and their application to the areas of minimax stochastic control and

Markov process approximation, are investigated.

In the first part of the thesis (Chapter 3), our aim is to investigate extremum problems with

pay-off being the total variation distance metric defined on the space of probability measures,

subject to linear functional constraints on the space of probability measures, and vice-versa;

that is, with the roles of total variation metric and linear functional interchanged. Utilizing

concepts from signed measures, the extremum probability measures of such problems are

obtained in closed form, by identifying the partition of the support set and the mass of these

extremum measures on the partition. The results are derived for abstract spaces (specifically,

complete separable metric spaces known as Polish spaces), while the high level ideas are

also discussed for denumerable spaces endowed with the discrete topology. The main results

of this part include:

1
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2 Introduction

(i) characterization of the properties of the extremum problems under investigation;

(ii) characterization of extremum measures on abstract spaces, and closed form solutions

of the extremum measures for finite alphabet spaces;

(iii) convexity and concavity properties of extremum solutions.

In the second part of the thesis (Chapters 4 and 5), our aim is to address optimality of

stochastic control strategies on a finite and on an infinite horizon, via dynamic programming

subject to total variation distance ambiguity on the conditional distribution of the controlled

process. We formulate the stochastic control problem using minimax theory, in which the

minimizer-controller chooses its policy from some admissible set to minimize the pay-off,

while the maximizer-conditional distribution chooses its distribution from a set described

by the total variation distance to maximize the pay-off. First, we employ certain results

from the first part, in particular, the maximization of a linear functional on the space of

probability measures on abstract spaces, among those probability measures which are within

a total variation distance from a nominal probability measure. Then we utilize the solution of

the maximization to solve minimax stochastic control with deterministic control strategies,

under a Markovian and a non-Markovian assumption, on the conditional distributions of the

controlled process. The main results of this part include:

(i) minimax optimization subject to total variation distance ambiguity constraint;

(ii) new dynamic programming recursions, which involve the oscillator seminorm of the

value function, in addition to the standard terms;

(iii) new infinite horizon discounted dynamic programming equation, the associated con-

tractive property, and a new policy iteration algorithm;

(iv) new infinite horizon average dynamic programming equations, and new policy itera-

tion algorithms.

Our aim in the third part of the thesis (Chapters 6), is to approximate a finite-state Markov

process by another process with fewer states, called the approximating process. The ap-

proximation problem is formulated using two different methods. The first method, utilizes

the total variation distance to discriminate the transition probabilities of a high-dimensional

Markov process and a reduced order Markov process. The approximation is obtained by

maximizing a linear functional defined in terms of transition probabilities of the reduced or-

der Markov process over a total variation distance constraint. The transition probabilities of

the approximated Markov process are given by a water-filling solution. The second method,
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1.1 Extremum Problems with Total Variation Distance 3

utilizes total variation distance as a measure of discriminating the invariant probability of a

Markov process by the approximating process. The approximation is obtained via two al-

ternative formulations: (a) maximizing a linear functional of the occupancy distribution of

the Markov process, and (b) maximizing the entropy of the approximating process invariant

probability. For both formulations, once the reduced invariant probability is obtained, which

does not necessarily correspond to a Markov process, a further approximation by a Markov

process is proposed which minimizes the Kullback-Leibler divergence. The approximation

is given by a water-filling like solution. Finally, the theoretical results of both methods are

applied to specific examples to illustrate the methodology, and the water-filling behavior of

the approximations. The main results of this part, based on the first method, include:

(i) a direct method for Markov by Markov approximation based on the transition prob-

abilities of the original FSM process and the reduced one, exhibiting a water-filling

behavior,

and, based on the second method:

(i) extremum measures which exhibit a water-filling behavior, and solve the approxima-

tion problems;

(ii) optimal partition functions which aggregate the original finite-state Markov process to

form the reduced order finite-state Markov process;

(iii) iterative algorithms to compute the invariant distribution of the approximating process.

Next, we give an outline of the thesis motivation and objectives, and details which will

follow in later chapters.

1.1. Extremum Problems with Total Variation Distance

Total variation distance metric on the space of probability measures is a fundamental quan-

tity in statistics and probability, which over the years appeared in many diverse applications.

In information theory it is used to define strong typicality and asymptotic equipartition of se-

quences generated by sampling from a given distribution [17]. In decision problems, it arises

naturally when discriminating the results of observation of two statistical hypotheses [17].

In studying the ergodicity of Markov Chains, it is used to define the Dobrushin coefficient

and establish the contraction property of transition probability distributions [41]. Moreover,

distance in total variation of probability measures is related via upper and lower bounds to an

anthology of distances and distance metrics [30]. The measure of distance in total variation
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4 Introduction

of probability measures is a strong form of closeness of probability measures, and, conver-

gence with respect to total variation of probability measures implies their convergence with

respect to other distances and distance metrics.

In Chapter 3, we formulate and solve several extremum problems involving the total varia-

tion distance metric and we discuss their applications in the areas of control, communication

and statistics. The main problems investigated are the following.

(a) Extremum problems of linear functionals on the space of measures subject to a total

variation distance metric constraint defined on the space of measures.

(b) Extremum problems of total variation distance metric on the space of measures subject

to linear functionals on the space of measures.

(c) Applications of these extremum problems, and their relations to other problems.

The formulation of these extremum problems, and their discussion in terms of applications

are developed at the abstract level, in which systems are represented by probability distribu-

tions on abstract spaces (complete separable metric space, known as Polish spaces [23]),

pay-offs are represented by linear functionals on the space of probability measures or by dis-

tance in variation of probability measures, and constraints by linear functionals or distance in

variation of probability measures. We consider Polish spaces since they are general enough

to handle various models of practical interest, such as stochastic control problems on Borel

spaces.

Utilizing concepts from signed measures, closed form expressions of the probability mea-

sures are derived which achieve the extremum of these problems. The construction of the

extremum measures involves the identification of the partition of their support set, and their

mass defined on these partitions. Throughout the derivations we make extensive use of lower

and upper bounds of pay-offs which are achievable, and convexity and concavity properties

(i.e., these are convex optimization problems on the space of probability measures). Several

simulations are carried out to illustrate the different features of the extremum solution of the

various problems. An interesting observation concerning one of the extremum problems is

its equivalent formulation as an extremum problem involving the oscillator semi-norm of the

pay-off functional. The formulation and results obtained for these problems at the abstract

level are discussed throughout the chapter in the context of various applications, often as-

suming denumerable spaces endowed with the discrete topology. Some specific applications

discussed are listed below.

(i) Dynamic Programming Under Uncertainty in Distribution of the Controlled Process:

To deal with uncertainty of transition probability distributions, via minimax theory,
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1.2 Dynamic Programming on Finite and Infinite Horizon 5

with total variation distance metric uncertainty constraints to codify the impact of in-

correct distribution models on performance of the optimal strategies [16]. This formu-

lation is applicable to Markov and non-Markov decision problems subject to uncer-

tainty in distribution of the controlled process.

(ii) Approximation of Probability Distributions with Total Variation Distance Metric: To

approximate a given high-dimensional probability distribution µ on a measurable

space (Σ,B(Σ)) by another lower-dimensional distribution ν on (Σ,B(Σ)), Σ ⊆ Σ,

via minimization of the total variation distance metric between them subject to linear

functional constraints. Model and graph reduction can be handled via such approxi-

mations. Graphs, for example, constitute the foundation of many real-world datasets.

However, the size of the graph can become prohibitive to understand essential infor-

mation that they contain. The reduction of graph-based models is significant in a wide

variety of applications, such as placement of autonomous sensors, modeling Central

Processing Unit (CPU) and database demands in web-based software engineering, and

identifying the evolution in clusters within massive dynamic datasets in database re-

search.

(iii) Maximization or Minimization of Entropy Subject to Total Variation Distance Metric

Constraints: To invoke insufficient reasoning based on maximizing the entropy H(ν)
of an unknown probability distribution ν on denumerable space Σ subject to a con-

straint on the total variation distance metric. This problem can be also associated with

limited-length code word design that is useful in communication between distributed

systems that aim at minimizing communication delays.

1.2. Dynamic Programming on Finite and Infinite Horizon

Dynamic programming recursions are often employed in optimal control and decision the-

ory to establish existence of optimal strategies, to derive necessary and sufficient optimal-

ity conditions, and to compute the optimal strategies either in closed form or via algo-

rithms [13, 39, 54]. The cost-to-go and the corresponding dynamic programming recursion,

in their general form, are functionals of the conditional distribution of the underlying con-

trolled process given the past and present values of the control and controlled processes [13].

Thus, any ambiguity of the controlled process conditional distribution will affect the opti-

mality of the strategies. The term “ambiguity” is used to differentiate from the term “un-

certainty” often used in control nomenclature to account for situations in which the true

and nominal distribution (induced by models) are absolutely continuous, and hence they are
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6 Introduction

defined on the same state space. This distinction is often omitted from various robust de-

terministic and stochastic control/filtering approaches, including minimax and risk-sensitive

formulations [1, 3, 6, 8, 14, 15, 24, 33, 38, 44, 48, 56, 59]. The class of models is described by

a ball with respect to the total variation distance between the nominal distribution and the

true distribution, hence it admits distributions which are singular with respect to the nominal

distribution.

The main objective in Chapters 4 and 5, is to investigate the effect on the cost-to-go and

dynamic programming recursion of the ambiguity in the controlled process conditional dis-

tribution, and hence on the optimal decision strategies. Specifically, we quantify the con-

ditional distribution ambiguity of the controlled process by a ball with respect to the total

variation distance metric, centered at a nominal conditional distribution, and then we derive

a new dynamic programming using minimax theory, with two players: player I the control

process and player II the conditional distribution (controlled process), opposing each others

actions. In this minimax game formulation, player’s I objective is to minimize the cost-to-

go, while player’s II objective is to maximize it. The maximization over the total variation

distance ball of player II is addressed by employing certain results of Chapter 3, related to

the maximization of linear functionals on a subset of the space of signed measures. Utilizing

these results, a new dynamic programming recursion is presented which, in addition to the

standard terms, includes additional terms that codify the level of ambiguity allowed by player

II with respect to the total variation distance ball. Thus, the effect of player I, the control pro-

cess, is to minimize, in addition to the classical terms, the difference between the maximum

and minimum values of the cost-to-go, scaled by the radius of the total variation distance

ambiguity set. We treat in a unified way the finite horizon case, under both the Marko-

vian and non-Markovian nominal controlled processes, and the infinite horizon case. For

the infinite horizon case we consider both discounted and average pay-offs. For the infinite

horizon case with discounted pay-off we show that the operator associated with the resulting

dynamic programming equation under total variation distance ambiguity is contractive, and

consequently, we derive a new policy iteration algorithm to compute the optimal strategies.

For the infinite horizon with average pay off we derive new dynamic programming equa-

tions under certain irreducibility/reducibility conditions, and we present new policy iteration

algorithms. Finally, we provide examples for the finite and for the infinite horizon cases.

Previous related work on optimization of stochastic systems subject to total variation dis-

tance ambiguity is found in [50] for continuous time controlled diffusion processes described

by Itô differential equations. However, the solution method employed in [50] is fundamen-

tally different; it approaches the maximization problem indirectly, by employing Large De-

viations concepts to derive the maximizing measure as a convex combination of a tilted
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1.3 Approximation of Markov Processes by Lower Dimensional Processes 7

probability measure and the nominal measure, under restrictions on the class of measures

considered. The dynamic programming equation derived in [50] is limited by the assumption

that the maximizing measure is absolutely continuous with respect to the nominal measure.

In Chapters 4 and 5, our focus is to understand the effect of total variation distance am-

biguity of the conditional distribution on dynamic programming, from a different point of

view, utilizing concepts from signed measures. Consequently, we derive new dynamic pro-

gramming recursions which depends explicitly on the radius of the total variation distance,

the closed form expression of the maximizing measure, or the oscillator seminorm of the

value function. One of the fundamental properties of the maximizing conditional distri-

bution is that, as the ambiguity radius increases, the maximizing conditional distribution

becomes singular with respect to the nominal distribution. The point to be made here is that

the total variation distance ambiguity set admits controlled process distributions which are

not necessarily defined on the same state space as the nominal controlled process distribu-

tion. In terms of robustness of the optimal policies, this additional feature is very attractive

compared to minimax techniques based on relative entropy uncertainty or risk-sensitive pay-

offs [1,3,6,8,14,15,24,33,38,44,48,56,59], because often the true controlled distribution lies

on a higher-dimensional state space compared to the nominal controlled process distribution.

1.3. Approximation of Markov Processes by Lower

Dimensional Processes

Finite-State Markov (FSM) processes are often employed to model physical phenomena in

many diverse areas, such as machine learning, information theory (lossy compression), net-

worked control systems, telecommunications, speech processing, systems biology, etc. In

many of these applications the state-space of the Markov process is prohibitively large, in

performing simulations. One approach often pursue to overcome the large number of states is

to approximate the Markov process by a lower-dimensional Markov process, with respect to

certain measures of discriminating or approximating the distribution of the high-dimensional

Markov process by a reduced one. Such methods are described using relative entropy as a

measure of approximation in [19, 55, 58, 61] (and references therein). Further discussion of

model reduction methods for Markov chains can be found in [7]. In general, approximating

a Markov process by another process subject to a fidelity of reproduction is not necessarily

Markov, but a hidden Markov process. This is a well known result of Information The-

ory [17], dealing with lossy compression of Markov sources. Model reduction of hidden

Markov models via aggregation can be found in [18, 20, 58]. Specifically, in [20] the aggre-
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8 Introduction

gated hidden Markov model is expressed as a function of a partition function and a recursive

learning algorithm is proposed, which solves the optimal partition problem.

In this chapter, the approximation problem of a FSM process by another process (FSM

or not) with reduced state-space is formulated as an optimization problem, with respect to a

certain pay-off subject to a fidelity constraint defined by the total variation distance metric,

using two different methods which are described below.

Method 1: Approximate the transition probabilities of a FSM process by another FSM

process with reduced transition probabilities. This approximation problem is formulated

as a maximization of a linear functional of the transition probabilities of the reduced FSM

process, subject to a fidelity criterion defined by the total variation distance between the

transition probabilities of the high and low FSM process.

Method 2: Approximate a FSM process by another process with lower-dimensional state-

space, without imposing the assumption that the approximating process is also a Markov

process. The following two formulations are investigated.

(a) Maximize an average pay-off, described in terms of the occupation measure of the

high-dimensional Markov process, subject to a fidelity criterion defined by the total

variation distance metric, between the invariant distribution of the higher-dimensional

Markov process and the invariant distribution of the lower-dimensional process.

(b) Maximize the entropy (Jayne’s maximum entropy [34]) of the invariant distribution

of the lower-dimensional process, subject to a fidelity criterion defined by the total

variation distance metric, between the invariant distribution of the higher-dimensional

Markov process and the invariant distribution of the lower-dimensional process.

For both formulations, the resulting approximated process is not necessarily Markov. The

crux of the approach considered lies in finding an optimal partition function which aggre-

gates states of the original FSM process to form the reduced order process. A Markov pro-

cess approximation is obtained by minimizing the Kullback-Leibler divergence between the

transition probability matrices of the high and low-dimensional FSM process.

1.4. Organization of Thesis

We now briefly indicate the content of the remaining of the thesis.

In Chapter 2 we briefly summarize mathematical theory that will be used in this thesis.

Thus, in Section 2.1, we review basic concepts of probability theory following a measure-

theoretic approach, and we summarize results from signed measures which are particularly
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1.4 Organization of Thesis 9

relevant for the characterization of the extremum measures. In Section 2.2, we introduce

total variation distance metric and we review some of its basic properties. In Section 2.3, we

briefly state relations of the total variation distance to other distance metrics, and we give

some of its applications.

In Chapter 3 we investigate extremum problems with pay-off being the total variation dis-

tance metric defined on the space of probability measures, subject to linear functional con-

straints on the space of probability measures, and vice-versa. In Section 3.1, we introduce

the precise definitions of the extremum problems under investigation, while several related

problems are discussed together with their applications. In Section 3.2, some of the prop-

erties of the extremum problems are discussed, and signed measures are utilized to convert

the extremum problems into equivalent ones, and to characterize the extremum measures on

abstract spaces. In Section 3.3, closed form expressions of the extremum measures are de-

rived for finite alphabet spaces, by identifying the support sets and the extremum measures

on these sets. The results are also extended to the countable alphabet case. In Section 3.4,

several examples illustrate how the optimal distribution of the extremum problems behaves,

for different scenarios of the support set of the distribution, and an application to the area

of information theory is presented. Finally, Section 3.5 concludes by discussing the most

important results obtained in this chapter.

In Chapter 4, we address optimality of stochastic control strategies on a finite horizon,

via dynamic programming subject to total variation distance ambiguity on the conditional

distribution of the controlled process. Thus, in Section 4.1, first we introduce the definition

of finite horizon discounted Markov control model with deterministic strategies, and then

we describe the abstract formulation of the minimax problem under total variation distance

ambiguity. In Section 4.2, we introduce the general definition of finite horizon discounted

feedback control model with randomized and deterministic control policies, under total vari-

ation distance uncertainty, and then we apply the characterization of the maximizing distri-

bution to the dynamic programming recursion. In Section 4.3, we apply the abstract setup to

both the feedback control model and to the Markov control model, and we derive new dy-

namic programming recursions which characterize the optimality of minimax strategies. In

Section 4.4, we illustrate the new dynamic programming recursions through the well-known

inventory control and machine replacement examples. Finally, Section 4.5 concludes by

discussing the most important results obtained in this chapter.

In Chapter 5, we introduce the dynamic programming subject to total variation dis-

tance ambiguity on the conditional distribution of the controlled process for infinite horizon

Markov Control Models (MCM), with optimality criterion, the expected discounted reward

and the average pay-off per unit time. In Section 5.2, we consider the infinite horizon Markov
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10 Introduction

control model with the expected discounted reward as an optimality criterion, and we show

that the operator associated with the dynamic programming equation is contractive, and we

introduce a new policy iteration algorithm. In Section 5.3, we study the infinite horizon

Markov Control Model with the average pay-off per unit time as an optimality criterion.

We derive the new dynamic programming equations under total variation distance ambiguity

with and without imposing the irreducibility condition. In addition, we introduce the cor-

responding policy iteration algorithms for average cost dynamic programming. In Section

5.4, we illustrate an application of the infinite horizon minimax problem for both discounted

and average pay-off. Moreover, we present an additional example for average optimality

criterion, without imposing the irreducibility assumption. Finally, Section 5.5 concludes by

discussing the most important results obtained in this chapter.

In Chapter 6, we approximate a finite state Markov process with a large number of states

by a lower-dimensional process, called the approximating process. In Section 6.1, we in-

troduce the approximation problem using two different methods. The first method, utilizes

the total variation distance to discriminate the transition probabilities of a high-dimensional

Markov process and a reduced order Markov process. The second method, utilizes total vari-

ation distance as a measure of discriminating the invariant probability of a Markov process

by the approximating process, and the approximation is obtained via two alternative for-

mulations: (a) maximizing a linear functional of the occupancy distribution of the Markov

process, and (b) maximizing the entropy of the approximating process invariant probability.

For both formulations, once the reduced invariant probability is obtained, a further approxi-

mation by a Markov process is proposed which minimizes the Kullback-Leibler divergence.

In Section 6.2, a direct method for Markov by Markov approximation based on Method 1

is derived. In Section 6.3, the solution of the approximation problem based on Method 2

is given for both formulations, and the corresponding recursive algorithms and the optimal

partition functions are presented. In Section 6.4, several examples are presented to illustrate

the approximation methods. Finally, Section 6.5 concludes by discussing the most important

results obtained in this chapter.

Chapter 7, is the concluding chapter, where in Section 7.1, we give a brief summary of

our work and indicate its main contributions, and in Section 7.2 we mention some topics for

further research.
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2
Background Material

In this chapter, we briefly summarize background material. In particular, in Section 2.1,

basic mathematical concepts of probability theory and certain results from signed measures

are reviewed. In Section 2.2, total variation distance metric is introduced and some of its

properties are discussed. Moreover, in Section 2.3 the relations of total variation distance to

other distance metrics are briefly stated and some of its applications are discussed.

2.1. Mathematical Preliminaries

In this section, we review the basic concepts of probability theory following a measure-

theoretic approach. We also summarize certain results from signed measures which are

particularly relevant to the characterization of the extremum measures.

2.1.1. Elements of Functional Analysis

The following definitions can be found in [5, 37, 53].

A set X which is furnished with a measure of distance between any two elements of the

set is called a metric space. A function d : X × X → R is called a metric if it satisfies the

following properties.

(i) d(x, y) ≥ 0, ∀x, y ∈ X , and d(x, y) = 0 if and only if x = y;

11
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12 Background Material

(ii) d(x, y) = d(y, x), ∀x, y ∈ X ;

(iii) d(x, z) ≤ d(x, y) + d(y, z), ∀x, y, z ∈ X .

Definition 2.1. (Continuous Function) Let (X , dX ) and (Y , dY) be two metric spaces. A

function f : X 7→ Y is continuous at x0 ∈ X if for every ε > 0 there is a δ > 0 such

that dX (x, x0) < δ implies dY(f(x), f(x0)) < ε. The function f is continuous on X if it is

continuous at every point in X .

Let (X , d) be a metric space. The open ball Br(α), with radius r > 0 and center α ∈ X is

the set

Br(α) = {x ∈ X |d(x, α) < r}.

The closed ball, Br(α), is the set

Br(α) = {x ∈ X |d(x, α) ≤ r}.

Definition 2.2. (Open and Closed Sets) A subset G of a metric space X is open if for every

x ∈ G there is an r > 0 such that Br(x) is contained in G. A subset F of X is closed if its

complement F c = X \ F is open.

For example, an open ball is an open set, and a closed ball is a closed set.

Definition 2.3. (Vector Space) Let X denote an arbitrary set and let F = R or C denote

the field of real or complex numbers. A vector space X over a field F is a structure (X , F )
consisting of two operations + : X × X 7→ X , × : F × X 7→ X , called respectively vector

addition and scalar multiplication such that the following conditions hold:

(i) Additive commutativity. x+ y = y + x, ∀x, y ∈ X .

(ii) Additive associativity. (x+ y) + z = x+ (y + z), ∀x, y, z ∈ X .

(iii) Additive identity. There exists an element in X , denoted by 0, such that x + 0 = x,

∀x ∈ X .

(iv) Additive inverse. For all x ∈ X there exists an unique element in X , denoted−x, such

that x+ (−x) = 0.

(v) Multiplicative associativity. (a× b)× x = a× (b× x), ∀a, b ∈ F , x ∈ X .

(vi) Distributivity.

a× (x+ y) = a× x+ a× y, ∀x, y ∈ X , a ∈ F ;

(a+ b)× x = a× x+ b× x, ∀x ∈ X , a, b ∈ F.

Ioa
nn

is 
Tzo

rtz
is



2.1 Mathematical Preliminaries 13

(vii) If 1 ∈ F is the multiplicative identity of F then 1× x = x, ∀x ∈ X .

Definition 2.4. (Normed Space) A Normed Space is a vector space (X , F ) furnished with

a norm ‖ · ‖X and denoted by (X , F, ‖ · ‖X ). The norm ‖ · ‖X : X → F must satisfy the

following properties.

(i) ‖x‖ ≥ 0, ∀x ∈ X ;

(ii) ‖x‖ = 0, if and only if x = 0;

(iii) ‖ax‖ = |α|‖x‖, ∀x ∈ X , α ∈ F ;

(iv) ‖x+ y‖ ≤ ‖x‖+ ‖y‖, ∀x, y ∈ X .

Definition 2.5. (Cauchy sequence) Let (X , F, ‖ · ‖X ) be a normed space. A sequence {xn :
n ∈ N} ∈ X is said to be a Cauchy sequence if

lim
n→∞

‖xn+p − xn‖ = 0 for every p ≥ 1.

Definition 2.6. (Banach Space) A normed space (X , F, ‖ ·‖X ) is said to be complete if every

Cauchy sequence of X has a limit in X . A complete normed space is called a Banach space.

Definition 2.7. (Topological Space) LetZ be a set and BZ a collection of subsets ofZ . Then

BZ is called a topology in Z if the following properties hold [36].

(i) ∅ ∈ BZ and Z ∈ BZ;

(ii) If Zi ∈ BZ , i = 1, 2, ..., n, then
⋂n
i=1Zi ∈ BZ;

(iii) If {Zi} is an arbitrary collection of elements of Z (finite, countable, or uncountable),

then
⋃
iZi ∈ BZ .

The pair (Z,BZ) is called a topological space and the members of BZ are called open sets

in Z . If f : (Z,BZ) → (Y ,BY), then f is continuous provided f−1(Yi) ⊂ Z is an open

set for every open set Yi ⊂ Y . Moreover, f is continuous at the point x0 ∈ Z if for every

neighborhood A of f(x0) there exists a neighborhood B of x0 such that f(B) ⊂ A.

Definition 2.8. (Convex Set) A set S in a vector space (X , F ) is called a convex set if the line

segment joining any pair of points of S lies entirely in S. The former statement is equivalent

to saying that for any pair of vectors u ∈ S, v ∈ S, the vector (1− t)u+ tv ∈ S, ∀t ∈ [0, 1].
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14 Background Material

Definition 2.9. (Convex Function) Let (X ,R, ‖ · ‖X ) be any Banach space and f a (possibly

extended) real valued function defined on X , f : X 7→ R ∪ {+∞,−∞}. The function f is

said to be convex if X is a convex set and if for any x, y ∈ X , x 6= y, and α ∈ [0, 1]

f((1− α)x+ ay) ≤ (1− α)f(x) + αf(y).

Similarly, if X is replaced by a closed convex subset Γ ⊆ X , and f satisfies the above

inequality for all x, y ∈ Γ, we say that f is convex on Γ. The function f is said to be concave

if −f is convex.

Definition 2.10. Let (X ,R, ‖ · ‖X ) be any Banach space and f a real-valued function f :
X 7→ R. The function f is said to be lower semi-continuous at x ∈ X if for every sequence

{xn : n ∈ Z+} converging to x

f(x) ≤ lim
n→∞

inf f(xn) = sup
n≥1

inf
k≥n

f(xk)

and it is said to be upper semi-continuous at x if

f(x) ≥ lim
n→∞

sup f(xn) = inf
n≥1

sup
k≥n

f(xk)

and it is said to be lower or upper semi-continuous on set Γ ⊂ X , if the corresponding

statements hold for all x ∈ Γ.

2.1.2. Measurable Space and Probability Space

Probability theory deals with random experiments associated with elementary outcomes Ω
and the set of all events of interest F .

Definition 2.11. (Algebra) Let Ω be a set of elementary outcomes and F be a non-empty

collection of subsets of Ω. Then F is called an Algebra on Ω if the following properties hold.

(i) Ω ∈ F (The Sample Space is an element of F);

(ii) If A ∈ F then Ac = Ω − A ∈ F , where Ac is the complementation of A relative to Ω
(if a subset of Ω belongs to F , then so is its complement);

(iii) If Ai ∈ F , i = 1, 2, ..., n, then
⋃n
i=1Ai ∈ F (if a finite number of subsets belong to F ,

then so is their union).

Clearly, an algebra is a collection of subsets of a set Ω, which a) contains Ω and b) is closed

under complementation and finite unions. The members of F are called F-measurable sets

or measurable sets.

Ioa
nn

is 
Tzo

rtz
is



2.1 Mathematical Preliminaries 15

Definition 2.12. (σ-Algebra) An algebra F on Ω is called a σ-Algebra on Ω if it is closed

under countable unions, that is, if the following properties hold.

(i) Ω ∈ F ;

(ii) If A ∈ F then Ac ∈ F;

(iii) If Ai ∈ F , i = 1, 2, ... then
⋃∞
i=1Ai ∈ F .

If F is a field the pair (Ω,F) is called a measurable space and the elements of F are called

events and are said to be measurable sets in Ω. Fields and σ-fields are convenient mathemat-

ical objects which express how much we know about the outcome of the experiment.

Probability Space. In order to grade the possibility of occurrences of events associated with

a random experiment we need to define a function (set function) which attaches a numerical

value to events A ∈ F . A function

µ : F 7→ [0,∞], µ(A) ∈ [0,∞], ∀A ∈ F

is called a finite-additive set function, if µ satisfies the following two conditions.

(i) µ(∅) = 0;

(ii) µ(A ∪B) = µ(A) + µ(B), if A,B ∈ F and A
⋂
B = ∅.

A finite-additive set function µ on a σ-algebra is called a measure, if it is countably-additive,

and a probability measure if it is countably-additive and µ(Ω) = 1, hence the following

definition.

Definition 2.13. (Probability Measure) Let (Ω,F) be a measurable space. The function

P : F → [0, 1], P(A) ∈ [0, 1], ∀A ∈ F

is called a probability measure on (Ω,F) if it satisfies the following properties.

(i) P(∅) = 0;

(ii) P(Ω) = 1;

(iii) P(⋃∞i=1Ai) = ∑∞
i=1 P(Ai), if Ai ∈ F ,∀i and {Aj}∞j=1 are disjoint,

e.g., Ai
⋂
Aj = ∅, ∀i 6= j.

The triple (Ω,F ,P) is called a probability space.
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16 Background Material

A probability Space (Ω,F ,P) is called complete if whenever B ∈ F and P(B) = 0 then

A ∈ F for all A ⊂ B. The subsets A of an event B of zero probability is called a null set,

therefore (Ω,F ,P) is complete if F includes all events of zero probability. If F1, F2 are

two σ-algebras on Ω then the σ-algebra generated by F1, F2 is denoted by F1
∨F2. Any

probability space (Ω,F ,P) which is not complete can be uniquely extended to the σ-algebra

F = F ∨{null sets}.
Since the intersection of arbitrary σ-algebras of a subset of Ω is a σ-algebra of subsets of

Ω, then for an arbitrary family A of subsets of Ω there is a smallest σ-algebra F in Ω such

that A ⊂ F .

Theorem 2.1. (Smallest σ-algebra) Let Ω be a sample space andA be a collection of subsets

of Ω. There exists a smallest σ-algebra F(A) on Ω containing A, which is constructed by

F(A) =
⋂
i

{
Ni : Ni is a σ-algebra on Ω,A ⊂ Ni

}
.

This is called the σ-algebra generated by A, and it is often denoted by F(A) = σ(A).

Borel Set. Let X be a topological space (e.g., X = Rn: the collection of all n-tuples

{x = (x1, x2, ..., xn) : xi ∈ R, 1 ≤ i ≤ n}). Then there exists a smallest σ-algebra F on

X such that every open set A ⊂ X belongs to F . The elements A ∈ F are called Borel sets

and the σ-algebra F = F(X ) is called a Borel σ-algebra. For example, if X = Rn, and A
is the collection of all open sets of Rn, the Borel σ-algebra denoted by B(Rn), contains all

open sets, their complements (closed sets), all the countable unions of open sets, and all the

countable unions of closed sets. In fact, B(Rn) is the smallest σ-algebra of subsets of Rn

containing all sets of the form {x = (x1, x2, ..., xn) : x1 ∈ A1, x2 ∈ A2, ..., xn ∈ An},
where Aj, j = 1, ..., n are intervals in R, which are closed, open, semi-open, points, etc.

Clearly,A = {Collection of all open intervals of Rn} is not a σ-algebra, but there exists many

σ-algebra containing A as a subset. The smallest σ-algebra containing A is the σ-algebra

generated by A. The pair
(
Rn,B(Rn)

)
is a measurable space, called, the Borel measurable

space, and probability measures defined on it are called Borel probability measures.

2.1.3. Measurable Functions and Random Variables

Let (Ω1,F1) and (Ω2,F2) be two measurable spaces, and let f : (Ω1,F1)→ (Ω2,F2). Then,

the function f is called F1/F2 or F1 measurable if

f−1(A) 4= {ω : f(ω) ∈ A} ∈ F1, ∀A ∈ F2.
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2.1 Mathematical Preliminaries 17

The set f−1(A) is called the inverse image of A ∈ F2. If f : Ω → Y where (Ω,F) is

a measurable space, Y is a topological space (e.g., Rn), then f is F/B(Rn)-measurable

provided f−1(V ) ∈ F for every open set V ⊂ B(Rn).
The σ-algebra F(f) generated by f is the smallest σ-algebra on Ω containing all the sets

{f−1(V ) : V ⊂ Y is open} and f will be F(f)/Y . Moreover, if Y = Rn then

F(f) = {f−1(V ) : V ∈ B(Rn)}.

Clearly, if (Ω,B) is a Borel measurable space and f : Ω → Y , where Y is a topological

space and f is a continuous function, then from the definition of continuous function

f−1(V ) ∈ B, ∀ open set V ⊂ Y . (2.1)

Hence, every continuous function is Borel measurable, called Borel function, e.g., f :
(Rn,B(Rn))→ (Rm,B(Rm)) is a Borel function.

If a probability measure P on (Ω,F) is defined, where X : (Ω,F) → (Rn,B(Rn)), is

a measurable function then X is called a Random Variable (RV) defined on the probability

space (Ω,F ,P).

Definition 2.14. (Random Variable) Let X : (Ω,F) → (Rn,B(Rn)) be a function defined

on a probability space (Ω,F ,P). Then X is called an n-dimensional random variable RV

(measurable function)

X : (Ω,F)→ (Rn,B(Rn))

if for every A ∈ B(Rn) the set

X−1(A) 4= {ω : X(ω) ∈ A} ∈ F .

Clearly, the σ−algebraF(X) generated by X is the smallest σ−algebra on Ω containing

all the sets

X−1(A) : A ⊂ Rn is open

under which X is measurable. Equivalently,

F(X) = X−1
(
B(Rn)

)
= {X−1(B) : B ∈ B(Rn)}

is the smallest σ-algebra on Ω under which X is measurable. However, B(Rn) is generated

by products of open sets of the form

{x=(x1, x2, ..., xn):−∞ < x1 ≤ α1, . . . ,−∞ < xn ≤ αn}, αj ∈ R, 1 ≤ j ≤ n. (2.2)

Therefore, for X to be a RV it is sufficient for every set of the form

{ω : X1(ω) ≤ α1, . . . , Xn(ω) ≤ αn}, αj ∈ R, 1 ≤ j ≤ n
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18 Background Material

to be an event. This is because B(Rn) is the family of subsets obtained by starting with

(2.2) and taking repeatedly all complements, countable unions, intersections. Also, if

{Xt : 0 ≤ t ≤ T} is a family of random variables FX0,T
4= σ(Xt : 0 ≤ t ≤ T ) =∨

t∈T F(Xt) = σ(⋃t∈T F(Xt)) is the smallest σ-algebra on Ω under which {Xt : 0 ≤ t ≤ T}
are measurable.

2.1.4. Probability Distribution Function

Let
(

Ω,F ,P
)

be a probability space and let X : (Ω,F) → (Ω1,F1) be an F/F1- mea-

surable RV. From the point of view of computations, it is often convenient to work with an

induced measure on F1. This amounts to defining the probability measure induced by the

RV on its range space rather than treat points with respect to the measure P and work with a

probability measure on F1 with ω ∈ Ω1 as its sample values.

The RV, X : (Ω,F)→ (Ω1,F1) induces a probability measure PX on (Ω1,F1) by

PX(A1) 4= P ◦X−1(A1) = P
(
{ω : X(ω) ∈ A1}

)
= P (X ∈ A1), A1 ∈ F1.

If (Ω1,F1) = (R,B(R)) then we can work with a probability measure on B(R) with x ∈ R
as its sample points.

Definition 2.15. (Probability Distribution) Let (Ω,F ,P) be a Probability Space and X :
(Ω,F)→ (R,B(R)) a RV. The function FX(·) defined as

FX(x) 4= P({ω : X(ω) ≤ x}) = PX(X ≤ x)

is called the (cumulative) probability distribution of the RV X .

Thus, the relationship

PX(A) = P({ω : X(ω) ∈ A})

defines a probability measure PX on (R,B(R)). Note that FX(x) is a probability distribution

defined on R, e.g., it corresponds to the probability measure corresponding to P induced by

X(·) on R.

Suppose X1, X2, ..., Xn are n real-valued RV’s and X 4= (X1, X2, ..., Xn), then

X : (Ω,F)→ (Rn,B(Rn))

is a measurable function. The function

FX(x) = FX(x1, x2, ...xn) = P({ω :
n⋂
i=1
{Xi(ω) ≤ xi}}), x ∈ Rn
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2.1 Mathematical Preliminaries 19

is called the joint probability distribution function of X. Similarly as above, the relationship

PX(A) = P({ω : X(ω) ∈ A}), A ∈ B(Rn)

defines a Borel probability measure.

A real-valued RV X is said to be discrete if there exists a countable set Σ = {xi : i ∈ Z+}
such that ∑

xi∈Σ
P({ω : X(ω) = xi}) = 1.

If X is discrete, then the distribution function FX is a function which is constant except for

jumps at xi, i = 1, 2, ..., the size of the jump at xi being P({ω : X(ω) = xi}). For an

arbitrary Borel set A, we have

PX(A) =
∑

xi∈A
⋂

Σ
P({ω : X(ω) = xi}).

Let P be a probability measure on (Rn,B(Rn)). It is said to be singular (with respect to the

Lebesgue measure) if there exist a set S ∈ B(Rn) such that P (S) = 1 and the Lebesgue

measure of S is zero. On the other hand, P is said to be absolutely continuous (w.r.t. the

Lebesgue measure) if for every measurable set A the Lebesgue measure of A equals zero

implies P (A) = 0. Clearly, if X1, X2, ..., Xn are discrete RV’s, then PX is singular. If

X1, X2, ..., Xn are such that PX is absolutely continuous, then there exists a non-negative

Borel function pX(x), x ∈ Rn such that

PX(A) =
∫
A
pX(x)dx, A ∈ B(Rn).

The function pX is called the probability density function for X. In terms of the distribution

FX(x1, x2, ...xn) =
∫ x1

−∞
· · ·

∫ xn

−∞
pX(x1, ..., xn)dx1...dxn

which implies

pX(x1, ...xn) 4= ∂n

∂x1...∂xn
FX(x1, x2, ..., xn).

Let (Ω,F) be a measurable space, and Q and P are two probability measures defined on

(Ω,F). Then Q is called absolutely continuous with respect to P (denoted by Q � P) if

Q(A) = 0 whenever A ∈ F and P = 0. If P � Q and Q � P then P and Q are called

equivalent probability measures and this is denoted by P ∼ Q.

Theorem 2.2. (Radon-Nikodym) Let (Ω,F ,P) be a probability space, and let Q be another

measure defined also on F such that Q � P . Then there exists an F-measurable function

φ : Ω→ [0,∞], such that φ ∈ L1(Ω,F ,P) and,

Q(B) =
∫
B
φ(ω)dP (ω), ∀B ∈ F .
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20 Background Material

The function φ is unique except on a subset of P -measure zero. This function φ is often

written as φ = dQ
dP

∣∣∣∣
F

and is called Radon-Nikodym derivative (RND) since it satisfies

Q(B) =
∫
B
dQ =

∫
B
φdP, ∀B ∈ F .

Definition 2.16. (Regular Conditional Probability Measure) Let (Ω,F ,P) be a probability

space and G be a sub-σ-algebra of F . A regular conditional probability measure P (·|G)(·)
on (Ω,F) is a function P (A|G)(ω), A ∈ F , ω ∈ Ω having the following properties [12].

(a) For each A ∈ F , the function mapping ω ∈ Ω 7−→ P (A|G)(ω) is measurable with

respect to G.

(b) For each ω ∈ Ω, P (·|G)(ω) is a probability measure on F .

(c) For each A ∈ F , P (A|G)(ω) is a version of the conditional probability of A given G.
Moreover,

P (A ∩B) =
∫
B
P (A|G)(ω)PG(dω), ∀A ∈ G

where PG is the restriction of P to G.

Statements (a) and (c) state that P (A|G)(ω) is a version of the conditional probability of

A given G (and it is a function of ω). If such a version P (·|G)(·) exists then it is unique

in the sense that, if P̄ (·|G)(·) is another function with these properties, then there exists

a PG−null set N such that P (A|G)(ω) = P̄ (A|G)(ω), ∀A ∈ F and ω ∈ N c (e.g.,

P (·|G)(ω) = P̄ (·|G)(ω), PG − a.s.). Thus, a regular conditional probability measure ex-

ists if it can be shown that a version of the conditional probability measure can be chosen

to be a probability measure on F for each ω ∈ Ω. Although in general, a regular condi-

tional probability measure may not exist, for the case when G is generated by a countable

partition of Ω, a regular conditional probability measure given G always exists. Moreover,

if (Ω, d) is a metric space which is complete and separable (Polish space), and F is a Borel

σ−algebra, then for any probability measure P on (Ω,F) and any sub-σ-algebra G ⊆ F , a

regular conditional probability measure of P given G always exists.

Lemma 2.1. (Absolute Continuity of Probability Measures)

a) Suppose QG � PG. If Q(·|G)(ω)� P (·|G)(ω), QG − a.s., then Q� P.

b) Conversely, if Q� P, then Q(·|G)(ω)� P (·|G)(ω), P (·|G)(ω)− a.s.
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Note that if Y : (Ω,F) 7−→ (Y ,A) is a RV on (Ω,F) into a measurable space (Y ,A)
and Y is a Polish space, then a regular conditional distribution for Y given the sub-σ-algebra

G of F denoted by P (dy|G)(ω) is defined according to Definition 2.16, and this always

exists. Additionally, if X : (Ω,F) 7−→ (X ,B) is a RV on (Ω,F) into a measurable space

(X ,B), and G is the sub-σ-algebra of F generated by X, then P (dy|X)(ω) is called the

regular conditional distribution of Y givenX.One can go one step further to define a regular

conditional distribution for Y given X = x as a quantity P (dy|X = x), and introduce an

equivalent definition called stochastic kernel.

Definition 2.17. (Stochastic Kernel) Given a measurable space (Ω,F) on which the RVs, X

and Y are defined, via X : (Ω,F) → (X ,ΣX ), and Y : (Ω,F) → (Y ,ΣY), respectively,

then the relation between the RVX and the RV Y is defined via a probabilistic mapping. The

mapping µ : ΣY ×X → [0, 1] satisfies the following two conditions.

(i) For every x ∈ X , the set function µ(·|x) is a probability measure on ΣY (possibly finite

additive);

(ii) For every F ∈ ΣY , the function µ(F |·) is X -measurable.

The mapping µ(·; ·) is called a stochastic kernel or transition probability. The set of all such

stochastic kernels is denoted by Q(Y ;X ).

Definition 2.18. Let (Ω,F) denote a measurable space and µ a positive measure on Ω. Let

f : (Ω,F)→ (R,B(R)) be a measurable function. Define

‖f‖p
4=
{ ∫

Ω
|f |p(ω)dµ(ω)

}p
, 1 ≤ p <∞.

Lp(Ω,F , µ) is the set of all measurable functions f on (Ω,F) for which ‖f‖p < ∞ (often

denoted by Lp(Ω,F , µ) ≡ Lp(µ)), and ‖f‖p denotes the Lp-norm of f .

2.1.5. Signed Measures

This section summarizes results for signed measures that are particularly relevant to the char-

acterization of the extremum measures. Additional details and the proofs of the following

theorems can be found in [31].

Definition 2.19. Let (Σ,B(Σ)) be a measurable space. A set function ξ : B(Σ) 7→ R 4=
R ∪ {−∞,∞} is called a signed measure on (Σ,B(Σ)) if

(i) ξ(∅) = 0.
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(ii) ξ(A) assumes at most one of the values ±∞ for all A ∈ B(Σ).

(iii) ξ(∪∞n=1An) = ∑∞
n=1 ξ(An) for all pairwise disjoint sets A1, A2, . . . ∈ B(Σ).

A signed measure ξ on (Σ,B(Σ)) is called a non-negative signed measure,1 if and only if

ξ is a measure. If µ1, µ2 are two measures on (Σ,B(Σ)), at least one of which is finite, then

ξ = µ1 − µ2 is well defined and it is a signed measure on (Σ,B(Σ)). Note that a signed

measure is not, in general, monotone2.

The next theorem describes sequentially continuity for signed measures.

Theorem 2.3. Let ξ be a signed measure on (Σ,B(Σ)).

(i) Let A,B ∈ B(Σ) and A ⊆ B. If |ξ(B)| < +∞, then

|ξ(A)| < +∞.

(ii) If A1, A2, . . . ∈ B(Σ) and An ⊆ An+1 for all n, then

ξ(∪∞n=1An) = lim
n→+∞

ξ(An).

(iii) If A1, A2, . . . ∈ B(Σ) and An ⊇ An+1 for all n, then

ξ(∩∞n=1An) = lim
n→+∞

ξ(An).

The concepts of positive and negative sets are introduced next, since these are important

in representing signed measures via its Jordan decomposition.

Definition 2.20. Let ξ be a signed measure on (Σ,B(Σ)). A set P ∈ B(Σ) is called positive

for ξ if ξ(A) ≥ 0 for every A ∈ B(Σ) and A ⊆ P . A set N ∈ B(Σ) is called negative for ξ

if ξ(A) ≤ 0 for every A ∈ B(Σ) and A ⊆ N . A set which is both positive and negative for ξ

is a null set for ξ.

The next theorem known as Hahn decomposition establishes existence of positive and

negative sets partitioning the space Σ.

Theorem 2.4. (Hahn Decomposition Theorem) If ξ is a signed measure on (Σ,B(Σ)) then

there exist a positive set P ∈ B(Σ) and a negative set N ∈ B(Σ) for ξ so that P ∪ N = Σ
and P ∩N = ∅.

Note that, the sets P and N are not unique.
1If ξ(A) ≥ 0 for every A ∈ B(Σ)
2If A,B ∈ B(Σ) and A ⊆ B, then ξ(B) = ξ(A) + ξ(B \A) ≤ ξ(A) whenever ξ(B \A) ≤ 0.
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Definition 2.21. Let ξ1, ξ2 be two signed measures on (Σ,B(Σ)). We say that they are

mutually singular or that ξ1 is singular with respect to ξ2 or vice versa if there exists

A1, A2 ∈ B(Σ) so that A1 ∪ A2 = Σ, A1 ∩ A2 = ∅ such that A1 is null for ξ2 and A2

is null for ξ1. We use the symbol ξ1⊥ξ2 to denote that ξ1, ξ2 are mutually singular.

The next theorem is the Jordan decomposition of a signed measure into its positive and

negative parts which are mutually singular.

Theorem 2.5. (Jordan Decomposition Theorem) Let ξ be a signed measure on (Σ,B(Σ)).

There exist two non-negative measures ξ+, ξ−, at least one of which is finite, such that

ξ = ξ+ − ξ−, ξ+⊥ξ−.

Consider any Hahn decomposition of Σ for ξ. For everyA ∈ B(Σ), define the set functions

ξ+, ξ− : B(Σ) 7−→ [0,+∞] by

ξ+(A) = ξ(A ∩ P ), ξ−(A) = −ξ(A ∩N).

We say that the non-negative signed measures ξ+, ξ− constitute the Jordan decomposition of

ξ. ξ+ is called the positive variation of ξ and ξ− the negative variation of ξ. The measure

|ξ| = ξ+ + ξ− is called the absolute variation of ξ, while |ξ|(Σ) is called the total variation

of ξ and is equal to

|ξ|(Σ) = ξ+(Σ) + ξ−(Σ) = ξ(P )− ξ(N)

where the sets P , N constitute a Hahn decomposition of Σ for ξ. Hence, the total variation

of ξ is equal to the difference between the largest and the smallest values of ξ.

Theorem 2.6. Let ξ be a signed measure on (Σ,B(Σ)) andA ∈ B(Σ). IfA1, . . . , An ∈ B(Σ)
are pairwise disjoint and A = ⋃n

k=1Ak, then for every A ∈ B(Σ),

ξ+(A) = sup{
n∑
k=1

ξ+(Ak) : n ∈ N}

ξ−(A) = sup{
n∑
k=1

ξ−(Ak) : n ∈ N}

|ξ|(A) = sup{
n∑
k=1
|ξ(Ak)| : n ∈ N}.

where sup is over all measurable partitions of the set Σ.

Definition 2.22. (Total Variation of a Signed Measure) Let ξ be a signed measure of the

measurable space (Σ,B(Σ)). The total variation norm of ξ is

||ξ||TV = ξ+(Σ) + ξ−(Σ)

where (ξ+, ξ−) is the Hahn-Jordan decomposition of ξ.
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If Σ is finite or countable and ξ is a signed measure, then

||ξ||TV =
∑
x∈Σ
|ξ(x)|.

If ξ has a density f with respect to λ (a measure on (Σ,B(Σ))), then

||ξ||TV =
∫
|f(x)|λ(dx), f(x) 4= dξ(·)

dλ(·)(x)

2.2. Total Variation Distance Metric

In this section, we introduce the total variation distance metric and we review some of its

properties.

Definition 2.23. (Total Variation Distance) Let ξ1, ξ2 be two measures on the measurable

space (Σ,B(Σ)). The total variation distance between ξ1 and ξ2 is the total variation norm

of a signed measure ξ1 − ξ2.

Let

Msm(Σ) = set of finite signed measures on B(Σ)

M1(Σ) = set of probability measures on B(Σ)

M0(Σ) = set of finite signed measures on (Σ,B(Σ)) satisfying ξ(Σ) = 0.

Let BM(Σ) denote the space of measurable real valued functions, and ||f ||∞ = sup{|f |(x) :
x ∈ Σ}, and BM+(Σ) 4= {f ∈ BM(Σ) : f ≥ 0}. Note that, BM(Σ) endowed with the sup

norm is a Banach space. For any ξ ∈M(Σ) and f ∈ BM(Σ) define

ξ(f) =
∫
fdξ

Any signed measure ξ ∈Msm(Σ) defines a linear function on the Banach space (BM(Σ), ||·
||∞).

Lemma 2.2.

(i) For any ξ ∈Msm(Σ) and f ∈ BM(Σ)∣∣∣∣∫ fdξ
∣∣∣∣ ≤ ||ξ||TV ||f ||∞.

(ii) For any ξ ∈Msm(Σ)

||ξ||TV = sup{ξ(f) : f ∈ BM(Σ), ||f ||∞ = 1}.
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2.2 Total Variation Distance Metric 25

(iii) For any f ∈ BM(Σ)

||f ||∞ = sup{ξ(f) : ξ ∈M(Σ), ||ξ||TV = 1}.

Proof. See Appendix A.1. �

Let ξ ∈M0(Σ), f ∈ BM(Σ). Since ξ(Σ) = 0 for any c ∈ R then

ξ(f) =
∫

Σ
f(x)dξ(x) =

∫
Σ

(f(x)− c)dξ(x)

and, hence

|ξ(f)| ≤ ||ξ||TV ||f − c||∞
|ξ(f)| ≤ ||ξ||TV inf

c∈R
||f − c||∞.

For f ∈ BM(Σ), infc∈R ||f − c||∞ is related to the oscillation semi-norm of f , called the

global modulus of continuity, by

osc(f) 4= sup
(x1,x2)∈Σ×Σ

|f(x1)− f(x2)| = 2 inf
c∈R
||f − c||∞. (2.3)

For f ∈ BM+(Σ)
osc(f) = sup

x∈Σ
|f(x)| − inf

x∈Σ
|f(x)|.

Lemma 2.3. For any ξ ∈M(Σ) and f ∈ BM(Σ)

|ξ(f)| ≤ sup
(x1,x2)∈Σ×Σ

|ξ+(Σ)f(x1)− ξ−(Σ)f(x2)|

where (ξ+, ξ−) is the Hahn-Jordan decomposition of ξ. In particular, for any ξ ∈ M0(Σ)
and f ∈ BM(Σ)

|ξ(f)| ≤ 1
2 ||ξ||TV 2 inf

c∈R
||f − c||∞ = 1

2 ||ξ||TV osc(f).

Proof. See Appendix A.2. �

Hence, for ξ ∈ M0(Σ), ||ξ||TV is the operator norm of ξ considered as an operator over the

space BM(Σ) equipped with oscillation semi-norm. As an application take ξ1, ξ2 ∈M1(Σ)
and define ξ1 − ξ2 ∈M0(Σ). Then, for any f ∈ BM(Σ)

|ξ1(f)− ξ2(f)| ≤ 1
2 ||ξ1 − ξ2||TV osc(f)

This is tighter than |ξ1(f)− ξ2(f)| ≤ ||ξ1 − ξ2||TV ||f ||∞, since osc(f) ≤ 2||f ||∞.

Lemma 2.4. For any ξ1, ξ2 ∈M1(Σ)
1
2 ||ξ1 − ξ2||TV = sup

A
|ξ1(A)− ξ2(A)| (2.4)

where the supremum is taken over all measurable subsets of Σ.

Proof. See Appendix A.3. �
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2.3. Relation of Total Variation Distance to Other Metrics

In this section, we briefly state relations of the total variation distance to other distance

metrics, and we discuss some of its applications.

L1 Distance.

Given (Σ,B(Σ)), let σ ∈ M1(Σ) be a fixed measure (as well as µ ∈ M1(Σ)). Define

the Radon-Nykodym derivatives ψ 4= dµ
dσ

, ϕ 4= dν
dσ

, i.e., densities with respect to a fixed

σ ∈M1(Σ). Then,

||ν − µ||TV =
∫
|ϕ(x)− ψ(x)|σ(dx).

This can be used to model uncertainty as follows. Define

BR(µ) 4= {ν ∈M1(Σ) : ||ν − µ||TV ≤ R}

and, consider a subset of BR(µ) defined by

BR,σ(µ) 4= {ν ∈ BR(µ) : ν << σ, µ << σ} ⊆ BR(µ).

Then,

BR,σ(µ) =
{
ϕ ∈ L1(σ), ϕ ≥ 0, σ − a.s. :

∫
Σ
|ϕ(x)− ψ(x)|σ(dx) ≤ R

}
.

Thus, under the absolute continuity of measures the total variation distance reduces to L1

distance. Robustness via L1 distance uncertainty on the space of spectral densities is investi-

gated in the context of Wiener-Kolmogorov theory in an estimation and decision framework

in [47, 57].

Relative Entropy.

The relative entropy of ν ∈ M1(Σ) with respect to µ ∈ M1(Σ) is a mapping H(·|·) :
M1(Σ)×M1(Σ) 7−→ [0,∞] defined by [23]

H(ν|µ) 4=


∫
Σ log( dν

dµ
)dν, if ν << µ and log( dν

dµ
) ∈ L1(ν)

+∞, otherwise.

It is well known that H(ν|µ) ≥ 0,∀ν, µ ∈ M1(Σ), while H(ν|µ) = 0 ⇔ ν = µ. Total

variation distance is bounded above by relative entropy via Pinsker’s inequality [45], giving

||ν − µ||TV ≤
√

2H(ν|µ), ν, µ ∈M1(Σ). (2.5)
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2.3 Relation of Total Variation Distance to Other Metrics 27

This can be used to model uncertainty as follows. Given a known or nominal probability

measure µ ∈M1(Σ) the uncertainty set based on relative entropy is defined by

AR̃(µ) 4=
{
ν ∈M1(Σ) : H(ν|µ) ≤ R̃

}
, R̃ ∈ [0,∞).

Clearly, the uncertainty set determined by the total variation distance dTV , is larger than that

determined by the relative entropy. In other words, in view of Pinsker’s inequality (2.5), for

any r ∈ [0,∞){
ν ∈M1(Σ), ν << µ : H(ν|µ) ≤ r2

2

}
⊆ BR(µ) ≡

{
ν ∈M1(Σ) : ||ν − µ||TV ≤ r

}
.

Hence, even for those measures which satisfy ν << µ, the uncertainty set described by rela-

tive entropy is a subset of the much larger total variation distance uncertainty set. Moreover,

by Pinsker’s inequality, distance in total variation of probability measures is a lower bound

on their relative entropy or Kullback-Leibler distance.

Over the last few years, relative entropy uncertainty model has received particular atten-

tion due to various properties (convexity, compact level sets), its simplicity and its connection

to risk sensitive pay-off, minimax games, and large deviations [2, 15, 44, 48, 56]. Recently,

an uncertainty model along the spirit of Radon-Nikodym derivative is employed in [42] for

portfolio optimization under uncertainty. Unfortunately, relative entropy uncertainty mod-

eling has two disadvantages: 1) it does not define a true metric on the space of measures;

2) relative entropy between two measures is not defined if the measures are not absolutely

continuous. The latter rules out the possibility of measures ν ∈ M1(Σ) and µ ∈ M1(Σ̃),

Σ̃ ⊂ Σ to be defined on different spaces3. It is one of the main disadvantages in employing

relative entropy in the context of uncertainty modelling for stochastic controlled diffusions

(or SDE’s) [46]. Specifically, by invoking a change of measure it can be shown that rel-

ative entropy modelling allows uncertainty in the drift coefficient of stochastic controlled

diffusions, but not in the diffusion coefficient, because the latter kind of uncertainty leads to

measures which are not absolutely continuous with respect to the nominal measure [48].

Kakutani-Hellinger Distance.

Another measure of distance of two probability measures which relates to their distance in

variation is the Kakutani-Hellinger distance [30]. Consider ν ∈ M1(Σ), µ ∈ M1(Σ) and a

fixed measure σ ∈ M1(Σ) such that ν << σ, µ << σ and define ϕ 4= dν
dσ

, ψ 4= dµ
dσ

. The

3This corresponds to the case in which the nominal system is a simplified version of the true system and is

defined on a lower dimension space.
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Kakutani-Hellinger distance is a mapping dKH : L1(σ)× L1(σ) 7→ [0,∞) defined by

d2
KH(ν, µ) 4= 1

2

∫ (√
ϕ(x)−

√
ψ(x)

)2
dσ(x). (2.6)

Indeed, the function dKH given by (2.6) is a metric on the set of probability measures. A

related quantity is the Hellinger integral of measures ν ∈ M1(Σ) and µ ∈ M1(Σ) defined

by

H(ν, µ) 4=
∫ √

ϕ(x)ψ(x)dσ(x), (2.7)

which is related to the Kakutani-Hellinger distance via d2
KH(ν, µ) = 1−H(ν, µ). The rela-

tions between distance in variation and Kakutani-Hellinger distance (and Hellinger integral)

are given by the following inequalities:

2
(
1−H(ν, µ)

)
≤||ν − µ||TV ≤

√
8
(
1−H(ν, µ)

)
, (2.8)

||ν − µ||TV ≤ 2
√

1−H2(ν, µ), (2.9)

2d2
KH(ν, µ) ≤||ν − µ||TV ≤

√
8dKH(ν, µ). (2.10)

The above inequalities imply that these distances define the same topology on the space of

probability measure on (Σ,B(Σ)). Specifically, convergence in total variation of probability

measures defined on a metric space (Σ,B(Σ), d), implies their weak convergence with re-

spect to the Kakutani-Hellinger distance metric, [30]. In [27], the Hellinger distance on the

space of spectral densities is used to define a pay-off subject to constraints in the context of

approximation theory.

Levy-Prohorov Distance.

Given a metric space (Σ,B(Σ), d), and a family of probability measures M1(Σ) on

(Σ,M1(Σ)) it is possible to ”metrize” weak convergence of probability measure, denoted

by Pn
w→ P , where {Pn : n ∈ N} ⊂ M1(Σ), P ∈ M1(Σ) via the so called Levy-Prohorov

metric denoted by dLP (ν, µ) [23]. Thus, this metric is also a candidate for a measure of prox-

imity between two probability measures. The Levi-Prohorov metric is related to distance in

variation via the upper bound [30],

dLP (ν, µ) ≤ min {||ν − µ||TV , 1} , ∀ ν ∈M1(Σ), µ ∈M1(Σ).

The function defined by L(ν, µ) = max {dLP (ν, µ), dLP (µ, ν)}, is actually a distance metric

(it satisfies the properties of distance).
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2.3 Relation of Total Variation Distance to Other Metrics 29

In view of the relations between different metrics, such as relative entropy, Levy-Prohorov

metric, Kakutani-Hellinger metric, etc, it is clear that the extremum problems under investi-

gation will give sub-optimal solution to the same extremum problems with distance in varia-

tion replaced by these metrics. An anthology of other distances and distance metrics related

to total variation distance can be found in [23].
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3
Extremum Problems

In this chapter, we investigate extremum problems with pay-off being the total variation

distance metric defined on the space of probability measures, subject to linear functional

constraints on the space of probability measures, and vice-versa; that is, with the roles of

total variation metric and linear functional interchanged. Utilizing concepts from signed

measures, the extremum probability measures of such problems are obtained in closed form,

by identifying the partition of the support set and the mass of these extremum measures on

the partition. Throughout the derivations we make extensive use of lower and upper bounds

of pay-offs which are achievable. The results are derived for abstract spaces; specifically,

complete separable metric spaces known as Polish spaces, while the high level ideas are also

discussed for denumerable spaces endowed with the discrete topology. The results of this

part include:

• characterization of the properties of the extremum problems under investigation;

• characterization of extremum measures on abstract spaces, and closed form solutions

of the extremum measures for finite alphabet spaces;

• convexity and concavity properties of the extremum solutions;

• simulations which illustrate the different scenarios of the extremum solution of the

various problems, and an application to the area of information theory.

31
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32 Extremum Problems

3.1. Problem Formulation

In this section, we will introduce the extremum problems we investigate in this chapter.

Let (Σ, dΣ) denote a complete, separable metric space and (Σ,B(Σ)) the corresponding

measurable space, where B(Σ) is the σ-algebra generated by open sets in Σ. Let M1(Σ)
denote the set of probability measures on B(Σ). The total variation distance1 is a metric [22]

dTV :M1(Σ)×M1(Σ)→ [0,∞) defined by

dTV (α, β) ≡ ||α− β||TV
4= sup

P∈P(Σ)

∑
Fi∈P
|α(Fi)− β(Fi)| (3.1)

where α, β ∈ M1(Σ) and P(Σ) denotes the collection of all finite partitions of Σ. With

respect to this metric, (M1(Σ), dTV ) is a complete metric space. The total variation distance

is a true metric, hence it is a measure of difference between two distributions, ν, µ ∈M1(Σ).

By the properties of the distance metric then ||ν−µ||TV ≤ ||ν||TV +||µ||TV = 2, hence ||·||TV is

further restricted to the interval [0, 2]. The two extreme cases are || · ||TV = 0 implying ν = µ,

and || · ||TV = 2 implying that the support sets of ν and µ denoted by supp(ν) and supp(µ),

respectively, are non-overlapping, that is, supp(ν) ∩ supp(µ) = ∅. In minimax problems

one can introduce an uncertainty set based on distance in variation as follows. Suppose the

probability measure ν ∈ M1(Σ) is unknown, while modeling techniques give access to

a nominal probability measure µ ∈ M1(Σ). Having constructed the nominal probability

measure, one may construct from empirical data, the distance of the two measures with

respect to the total variation distance ||ν − µ||TV . This will provide an estimate of the radius

R, such that ||ν − µ||TV ≤ R, and hence characterize the set of all possible true measures

ν ∈ M1(Σ), centered at the nominal distribution µ ∈ M1(Σ), and lying within the ball of

radius R, with respect to the total variation distance || · ||TV . Such a procedure is used in

information theory to define strong typicality of sequences. Unlike other distances used in

the past such as relative entropy [2,15,44,48,56], quantifying uncertainty via the metric ||·||TV
does not require absolute continuity of measures2, i.e., singular measures are admissible, and

hence ν and µ need not be defined on the same space. Thus, the support set of µ may be

Σ̃ ⊂ Σ, hence µ(Σ\Σ̃) = 0 but ν(Σ\Σ̃) 6= 0 is allowed. For measures induced by stochastic

differential equations (SDE’s), variation distance uncertainty set models situations in which

both the drift and diffusion coefficient of SDE’s are unknown.

1The definition of total variation distance can be extended to signed measures (see Chapter 2).
2ν ∈ M1(Σ) is absolutely continuous with respect to µ ∈ M1(Σ), denoted by ν << µ, if µ(A) = 0 for

some A ∈ B(Σ) then ν(A) = 0.
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Define the spaces

BC(Σ) 4=
{

Bounded continuous functions ` : Σ −→ R : ||`|| 4= sup
x∈Σ
|`(x)| <∞

}
BC+(Σ) 4= {` ∈ BC(Σ) : ` ≥ 0}

BM(Σ) 4=
{

Bounded measurable functions ` : Σ −→ R : ||`|| <∞
}

BM+(Σ) 4= {` ∈ BM(Σ) : ` ≥ 0}

C(Σ) 4=
{

Continuous functions ` : Σ −→ R : ||`|| <∞
}

C+(Σ) 4= {` ∈ C(Σ) : ` ≥ 0}.

Note that, BC(Σ), BM(Σ) and C(Σ) endowed with the sup norm ||`|| 4= supx∈Σ |`(x)|, are

Banach spaces [22]. We derive the maximizing measure for ` ∈ BC+(Σ) or BM+(Σ).

However, the results can be generalized to real-valued functions ` ∈ L∞,+(Σ,B(Σ), ν),

the set of all B(Σ)-measurable, non-negative essentially bounded functions defined ν −
a.e. endowed with the essential supremum norm ||`||∞,ν = ν-ess supx∈Σ `(x) 4=
inf∆∈Nη supx∈∆c ‖`(x)‖, where Nν = {A ∈ B(Σ) : ν(A) = 0}.

Before we proceed with the formulation of the extremum problems, we introduce first two

main definitions.

Definition 3.1. Given a fixed nominal distribution µ ∈ M1(Σ) and a parameter R ∈ [0, 2],
define the class of true distributions by

BR(µ) 4=
{
ν ∈M1(Σ) : ||ν − µ||TV ≤ R

}
(3.2)

and the average pay-off with respect to any ν ∈ BR(µ) by

L1(ν) 4=
∫

Σ
`(x)ν(dx), ` ∈ BC+(Σ) or BM+(Σ). (3.3)

Definition 3.2. Given a fixed nominal distribution µ ∈M1(Σ) and a parameterD ∈ [0,∞),

define the class of true distributions by

Q(D) 4=
{
ν ∈M1(Σ) :

∫
Σ
`(x)ν(dx) ≤ D

}
, ` ∈ BC+(Σ) or BM+(Σ) (3.4)

and the total variation pay-off with respect to the true probability measure ν ∈ Q(D) by

L2(ν) 4= ||ν − µ||TV . (3.5)

3.1.1. Maximization Problems

In this section we introduce the maximization problems under investigation3.
3In all these optimization problems we assume that the solution exists.
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Problem 3.1. Find the solution of the extremum problem

D+(R) 4= sup
ν∈BR(µ)

L1(ν) = sup
ν∈M1(Σ):||ν−µ||TV ≤R

∫
Σ
`(x)ν(dx), ∀R ∈ [0, 2]. (3.6)

Problem 3.1 is a convex optimization problem on the space of probability measures. In

the context of minimax theory, Problem 3.1 is important in minimax stochastic control, es-

timation, and decision. Such formulations are found in [2, 15, 44, 48, 56] utilizing relative

entropy to describe a class of models, and in [47,57] utilizing L1 distance to describe a class

of power spectral densities.

Problem 3.2. Find the solution of the extremum problem

R+(D) 4= sup
ν∈Q(D)

L2(ν) = sup
ν∈M1(Σ):

∫
Σ `(x)ν(dx)≤D

||ν − µ||TV , ∀D ∈ [0,∞). (3.7)

Problem 3.2, i.e., R+(D), is the inverse mapping of Problem 3.1, i.e., D+(R), and hence

the solution of D+(R) gives the solution of R+(D). D+(R) is investigated in [50] in the

context of minimax stochastic control, following an alternative approach which utilizes large

deviation theory to express the extremum measure by a convex combination of a tilted and the

nominal probability measures. The two disadvantages of the method pursued in [2,15,44,56]

are the following. 1) No explicit closed form expression for the extremum measure is given,

and as a consequence, 2) its application to dynamic programming is restricted to a class of

uncertain probability measures which are absolutely continuous with respect to the nominal

measure µ(Σ) ∈M1(Σ).

3.1.2. Minimization Problems

In this section we introduce the minimization problems under investigation.

Problem 3.3. Find the solution of the extremum problem

D−(R) 4= inf
ν∈BR(µ)

L1(ν) = inf
ν∈M1(Σ):||ν−µ||TV ≤R

∫
Σ
`(x)ν(dx), ∀R ∈ [0,∞). (3.8)

Problem 3.3 is important in approximating a class of probability distributions or spectral

measures by reduced ones. In fact, the solution of (3.8) is obtained precisely as that of

Problem 3.1, with a reverse computation of the partition of the space Σ and the mass of the

extremum measure on the partition moving in the opposite direction.

Problem 3.4. Find the solution of the extremum problem

R−(D) 4= inf
ν∈Q(D)

L2(ν) = inf
ν∈M1(Σ):

∫
Σ `(x)ν(dx)≤D

||ν − µ||TV , ∀D ∈ [0,∞) (3.9)

whenever
∫

Σ `(x)µ(dx) > D. If
∫

Σ `(x)µ(dx) ≤ D then ν∗ = µ is the trivial extremum

measure of (3.9).
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3.1 Problem Formulation 35

Problem 3.4 is important in the context of approximation theory, since distance in variation

is a measure of proximity of two probability distributions subject to constraints. It is also

important in spectral measure or density approximation as follows. Recall that a function

{R(τ): − ∞ ≤ τ ≤ ∞} is the covariance function of a quadratic mean continuous and

wide-sense stationary process if and only if it is of the form [60]

R(τ) =
∫ ∞
−∞

e2πντF (dν),

where F (·) is a finite Borel measure on R, called spectral measure. Thus, by proper nor-

malization of F (·) via FN(dν) 4= 1
R(0)F (dν), then FN(dν) is a probability measure on

B(R), and hence Problem 3.2 can be used to approximate the class of spectral measures

with moment estimates belonging to the class described by inequality constraints. Spectral

estimation problems are discussed extensively in [26–29, 43], utilizing relative entropy and

Hellinger distances, under moment estimates involving equality constraints. However, in

these references, the approximated spectral density is absolutely continuous with respect to

the nominal spectral density; hence, it can not deal with reduced order approximation. In

this respect, distance in total variation between spectral measures is very attractive.

3.1.3. Related Extremum Problems

Problems 3.1-3.4 are related to additional extremum problems which are introduced below.

1. Let ν and µ be absolutely continuous with respect to the Lebesgue measure so that

ϕ(x) 4= dν
dx

(x), ψ(x) 4= dµ
dx

(x) (e.g., ϕ(·), ψ(·) are the probability density functions of

ν(·) and µ(·), respectively). Then, ||ν − µ||TV =
∫

Σ |ϕ(x)− ψ(x)|dx and hence, (3.6)

and (3.7) reduce to

D+(R) = sup
ϕ∈L1:

∫
Σ |ϕ(x)−ψ(x)|dx≤R

∫
Σ
`(x)ϕ(x)dx

R+(D) = sup
ϕ∈L1:

∫
Σ `(x)ϕ(x)dx≤D

∫
Σ
|ϕ(x)− ψ(x)|dx.

2. Let Σ be a non-empty denumerable set endowed with the discrete topology including

finite cardinality |Σ|, withM1(Σ) identified with the standard probability simplex in

R|Σ|, that is, the set of all |Σ|-dimensional vectors which are probability vectors, and

`(x) 4= − log ν(x), x ∈ Σ, where {ν(x) : x ∈ Σ} ∈ M1(Σ), {µ(x) : x ∈ Σ} ∈
M1(Σ). Then, (3.6) is equivalent to maximizing the entropy of {ν(x) : x ∈ Σ}
subject to total variational distance metric constraint defined by

D+(R)= sup
ν∈M1(Σ):

∑
x∈Σ |ν(x)−µ(x)|≤R

H(ν), H(ν)=−
∑
x∈Σ

log(ν(x))ν(x). (3.10)
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36 Extremum Problems

Problem (3.10) is of interest when the concept of insufficient reasoning (e.g., Jayne’s

maximum entropy principle [34, 35]) is applied to construct a model for ν ∈ M1(Σ),

subject to information quantified via the total variational distance metric between ν and

an empirical distribution µ. In the context of stochastic uncertain control systems and

its relation to robustness, Problem (3.10) with the total variational distance constraint

replaced by relative entropy distance constraint is investigated in [3, 51].

3.2. Characterization of Measures on Abstract Spaces

This section utilizes signed measures and some of their properties to convert Problems 3.1-

3.4 into equivalent extremum problems, and to characterize the extremum measures on ab-

stract spaces. We describe the results using abstract spaces to avoid excluding measures

defined on Borel spaces.

Let Msm(Σ) denote the set of finite signed measures. Then, any η ∈ Msm(Σ) has a

Jordan decomposition
{
η+, η−

}
such that η = η+−η−, and the total variation of η is defined

by ||η||TV
4= η+(Σ) + η−(Σ). Define the following subset

M0
sm(Σ) 4=

{
η ∈Msm(Σ) : η(Σ) = 0

}
.

For ξ ∈ M0
sm(Σ), then ξ(Σ) = 0, which implies that ξ+(Σ) = ξ−(Σ), and hence ξ+(Σ) =

ξ−(Σ) = ||ξ||TV
2 . For any ν, µ ∈M1(Σ) then ξ 4= ν − µ ∈M0

sm(Σ) and hence

ξ = (ν − µ)+ − (ν − µ)− ≡ ξ+ − ξ−.

3.2.1. Equivalent Formulation of Maximization Problems

In this section we investigate maximization Problems 3.1 and 3.2.

Equivalent Formulation of D+(R)

Before we proceed with the equivalent formulation of Problem 3.1, we discuss first some of

its properties.

Lemma 3.1. Consider Problem 3.1. Then

1) D+(R) is a non-decreasing concave function of R.

2) If R ≤ Rmax,

D+(R) = sup
||ν−µ||TV =R

∫
Σ
`(x)ν(dx) (3.11)
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3.2 Characterization of Measures on Abstract Spaces 37

where Rmax is the smallest non-negative number belonging to [0, 2] such that D+(R)
is constant in [Rmax, 2].

Proof. 1) Suppose 0 ≤ R1 ≤ R2, then for every ν ∈ BR1(µ) we have ||ν−µ||TV ≤ R1 ≤ R2,

and therefore ν ∈ BR2(µ), hence

sup
ν∈BR1 (µ)

∫
Σ
`(x)ν(dx) ≤ sup

ν∈BR2 (µ)

∫
Σ
`(x)ν(dx)

which is equivalent to D+(R1) ≤ D+(R2). So D+(R) is a non-decreasing function of R.

Now consider two points (R1, D
+(R1)) and (R2, D

+(R2)) on the linear functional curve,

such that ν1 ∈ BR1(µ) achieves the supremum of (3.6) for R1, and ν2 ∈ BR2(µ) achieves

the supremum of (3.6) for R2. Then, ||ν1 − µ||TV ≤ R1 and ||ν2 − µ||TV ≤ R2. For any

λ ∈ (0, 1), we have

||λν1 + (1− λ)ν2 − µ||TV ≤ λ||ν1 − µ||TV + (1− λ)||ν2 − µ||TV ≤ λR1 + (1− λ)R2 = R.

Define ν∗ 4= λν1 + (1 − λ)ν2, R 4= λR1 + (1 − λ)R2. The previous equation implies that

ν∗ ∈ BR(µ), hence D+(λR1 + (1− λ)R2) ≥
∫

Σ `(x)ν∗(dx). Therefore,

D+(R) = sup
ν∈BR(µ)

∫
Σ
`(x)ν(dx) ≥

∫
Σ
`(x)ν∗(dx) =

∫
Σ
`(x) (λν1(dx) + (1− λ)ν2(dx))

= λ
∫

Σ
`(x)ν1(dx) + (1− λ)

∫
Σ
`(x)ν2(dx) = λD+(R1) + (1− λ)D+(R2).

So, D+(R) is a concave function of R.

2) The right side of (3.11), say D̄+(R), is a concave function of R. But D+(R) =
supR′≤R D̄+(R′) which completes the derivation of (3.11). �

Consider the pay-off of Problem 3.1, for ` ∈ BC+(Σ). The solution is based on finding

an upper bound which is achievable. The following inequalities hold.

L1(ν) 4=
∫

Σ
`(x)ν(dx) =

∫
Σ
`(x)

(
ν(dx)− µ(dx)

)
+
∫

Σ
`(x)µ(dx)

(a)=
∫

Σ
`(x)

(
ξ+(dx)− ξ−(dx)

)
+
∫

Σ
`(x)µ(dx)

=
∫

Σ
`(x)ξ+(dx)−

∫
Σ
`(x)ξ−(dx) +

∫
Σ
`(x)µ(dx)

(b)
≤ sup

x∈Σ
`(x)ξ+(Σ)− inf

x∈Σ
`(x)ξ−(Σ) +

∫
Σ
`(x)µ(dx)

(c)= sup
x∈Σ

`(x) ||ξ||TV2 − inf
x∈Σ

`(x) ||ξ||TV2 +
∫

Σ
`(x)µ(dx)

=
{

sup
x∈Σ

`(x)− inf
x∈Σ

`(x)
}
||ξ||TV

2 +
∫

Σ
`(x)µ(dx) (3.12)
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38 Extremum Problems

where (a) follows from the Jordan decomposition of (ν−µ), (b) follows due to ` ∈ BC+(Σ),

(c) follows because any ξ ∈ M0
sm(Σ) satisfies ξ+(Σ) = ξ−(Σ) = 1

2 ||ξ||TV . For a given

µ ∈M1(Σ) and ν ∈ BR(µ) define the set

B̃R(µ) 4=
{
ξ ∈M0

sm(Σ) : ξ = ν − µ, ν ∈M1(Σ), ||ξ||TV ≤ R
}
.

The upper bound in the right hand side of (3.12) is achieved by ξ∗ ∈ B̃R(µ) as follows. Let

x0 ∈ Σ0 4=
{
x ∈ Σ : `(x) = sup{`(y) : y ∈ Σ} ≡ `max

}
x0 ∈ Σ0

4=
{
x ∈ Σ : `(x) = inf{`(y) : y ∈ Σ} ≡ `min

}
.

where Σ denotes the closure4 of Σ. Take

ξ∗(dx) = ν∗(dx)− µ(dx) = R

2 (δx0(dx)− δx0(dx)) (3.13)

where δy(dx) denotes the Dirac measure concentrated at y ∈ Σ. This is indeed a signed

measure with total variation ||ξ∗||TV = ||ν∗ − µ||TV = R, and
∫

Σ `(x)(ν∗ − µ)(dx) =
R
2 (`max − `min). Hence, by using (3.13) as a candidate of the maximizing distribution then

the extremum Problem 3.1 is equivalent to∫
Σ
`(x)ν∗(dx) = R

2

{
sup
x∈Σ

`(x)− inf
x∈Σ

`(x)
}

+
∫

Σ
`(x)µ(dx) (3.14)

where ν∗ satisfies the constraint ||ξ∗||TV = ||ν∗− µ||TV = R, it is normalized ν∗(Σ) = 1, and

0 ≤ ν∗(A) ≤ 1 on any A ∈ B(Σ). Alternatively, the pay-off
∫

Σ `(x)ν∗(dx) can be written as

D+(R) =
∫

Σ
`(x)ν∗(dx)

=
∫

Σ0
`maxν

∗(dx) +
∫

Σ0
`minν

∗(dx) +
∫

Σ\Σ0∪Σ0
`(x)µ(dx). (3.15)

Hence, the optimal distribution ν∗ ∈ BR(µ) satisfies∫
Σ0
ν∗(dx) = µ(Σ0) + R

2 ∈ [0, 1] (3.16a)∫
Σ0
ν∗(dx) = µ(Σ0)− R

2 ∈ [0, 1] (3.16b)

ν∗(A) = µ(A), ∀A ⊆ Σ \ Σ0 ∪ Σ0. (3.16c)

For any R ∈ [0, 2] such that ν∗(Σ0) < 1 and ν∗(Σ0) > 0, then (3.16) is the maximizing

distribution while the resulting pay-off is (3.15). When these conditions are violated the

measure ν∗ on the sets Σ0, Σ0 and Σ \ Σ0 ∪ Σ0 remains to be identified so the maximizing

measure ν∗ is characterized for allR ∈ [0, 2]. The complete characterization of the extremum

measure ν∗ will be given in the Section 3.3.1 building on the discussion of this section.
4Closure of a set Σ consists of all points in Σ plus the limit points of Σ.
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3.2 Characterization of Measures on Abstract Spaces 39

Remark 3.1.

(i) For µ ∈ M1(Σ) which do not include point mass, and for f ∈ BC+(Σ), if Σ0 and

Σ0 are countable, then (3.16) is µ(Σ0) = µ(Σ0) = 0, ν∗(Σ0) = 0, ν∗(Σ0) = R
2 ,

ν∗(Σ \ Σ0 ∪ Σ0) = µ(Σ \ Σ0 ∪ Σ0)− R
2 .

(ii) The first right side term in (3.14) is related to the oscillator semi-norm of f ∈ BM(Σ)
called global modulus of continuity defined by (2.3). Clearly, for f ∈ BM+(Σ) then

osc(f) = sup
x∈Σ
|f(x) | − inf

x∈Σ
|f(x) |= sup

x∈Σ
f(x)− inf

x∈Σ
f(x).

Corollary 3.1. The value of Rmax described in Lemma 3.1 is given by

Rmax = 2
(
1− µ

(
Σ0
))
. (3.17)

Proof. We know that D+(R) ≤ supx∈Σ `(x), ∀R ≥ 0, hence D+(Rmax) can be at most

supx∈Σ `(x). Since D+(R) is non-decreasing then

D+(Rmax) ≤ D+(R) ≤ sup
x∈Σ

`(x), for any R ≥ Rmax. (3.18)

Consider a ν that achieves the supremum in (3.18). Let µ(Σ0) and ν(Σ0) to denote the

nominal and true probability measures on Σ0, respectively. If ν(Σ0) = 1 then ν(Σ\Σ0) = 0.

Therefore,

||ν − µ||TV =
∑
x∈Σ0

|ν(x)− µ(x)|+
∑

x∈Σ\Σ0

|ν(x)− µ(x)|

(a)=
∑
x∈Σ0

|ν(x)− µ(x)|+
∑

x∈Σ\Σ0

| − µ(x)|

(b)=
∑
x∈Σ0

ν(x)−
∑
x∈Σ0

µ(x) +
∑

x∈Σ\Σ0

µ(x)

= 1−
∑
x∈Σ0

µ(x) +
∑

x∈Σ\Σ0

µ(x)

= 2
1−

∑
x∈Σ0

µ(x)
 = 2

(
1− µ(Σ0)

)

where (a) follows due to ν(Σ \Σ0) = 0 which implies ν(x) = 0 for any x ∈ Σ \Σ0, and (b)

follows because ν(x) ≥ µ(x) for all x ∈ Σ0. Therefore, Rmax = 2(1 − µ(Σ0)) implies that

D+(Rmax) = supx∈Σ `(x). Hence, D+(R) = supx∈Σ `(x), for any R ≥ Rmax. �
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40 Extremum Problems

Equivalent Formulation of R+(D)

Before we proceed with the equivalent formulation of Problem 3.2, we discuss first some of

its properties.

Lemma 3.2. Consider Problem 3.2. Then

1) R+(D) is a non-decreasing convex function of D.

2) If D ≤ Dmax,

R+(D) = sup∫
Σ `(x)ν(dx)=D

||ν − µ||TV (3.19)

whereDmax is the smallest non-negative number belonging to [0,∞) such thatR−(D)
is constant in [Dmax,∞).

Proof. 1) Suppose 0 ≤ D1 ≤ D2, then Q(D1) ⊂ Q(D2), and supν∈Q(D1) ||ν − µ||TV ≤
supν∈Q(D2) ||ν − µ||TV which is equivalent to R+(D1) ≤ R+(D2). Hence, R+(D) is a non-

decreasing function of D. Convexity is obtained by using the fact that R+(D) is the inverse

mapping of D+(R). So, R+(D) is a convex function of D.

2) The right side of (3.19), say R̄+(D), is convex function of D. But, R+(D) =
supD′≤D R̄+(D′) which completes the derivation of (3.19). �

Consider the constraint of Problem 3.2, for ` ∈ BC+(Σ). By following the same proce-

dure as in Section 3.2.1, we obtain (3.14), that is∫
Σ
`(x)ν∗(dx) = R

2

{
sup
x∈Σ

`(x)− inf
x∈Σ

`(x)
}

+
∫

Σ
`(x)µ(dx). (3.20)

Solving the above equation with respect toR ≡ R+, the extremum Problem 3.2 is equivalent

to

R+(D) =
2
(
D −

∫
Σ `(x)µ(dx)

)
{

sup
x∈Σ

`(x)− inf
x∈Σ

`(x)
} (3.21)

where ν∗ in (3.20) satisfies the constraint
∫

Σ `(x)ν∗(dx) = D, it is normalized ν∗(Σ) = 1,

and 0 ≤ ν(A) ≤ 1 on any A ∈ B(Σ). We can now identify Dmax described in Lemma 3.2.

Corollary 3.2. The value of Dmax described in Lemma 3.2 is given by

Dmax = `max. (3.22)
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3.2 Characterization of Measures on Abstract Spaces 41

Proof. We know that R+(D) ≤ 2 for all D ≥ 0, hence R+(Dmax) can be at most equal to 2.

For the extreme case R+(D) = 2, we have that ν and µ are disjoint in the sense that Σ can

be partitioned into two disjoint subsets Σ0 and Σ \ Σ0 such that ν puts all of its probability

mass in Σ0, that is, ν(Σ0) = 1 and hence ν(Σ \ Σ0) = 0, and µ puts all of its in Σ \ Σ0, that

is, µ(Σ \ Σ0) = 1 and hence µ(Σ0) = 0.

Without loss of generality, assume that µ puts all of its probability mass in Σ \ Σ0. Let

Dmax = `max, then it is obvious that ν(Σ0) = 1, and hence R+(Dmax) = 2. Since R+(D) is

non-decreasing then R+(Dmax) ≤ R+(D) ≤ 2 for any D ≥ Dmax. Hence, R+(D) = 2 for

any D ≥ Dmax. �

3.2.2. Equivalent Formulation of Minimization Problems

In this section we investigate minimization Problems 3.3 and 3.4.

Equivalent Formulation of D−(R)

Before we proceed with the equivalent formulation of Problem 3.3, we discuss first some of

its properties.

Lemma 3.3. Consider Problem 3.3. Then

1) D−(R) is a non-increasing convex function of R.

2) If R ≤ Rmax,

D−(R) = inf
||ν−µ||TV =R

∫
Σ
`(x)ν(dx) (3.23)

where Rmax is the smallest non-negative number belonging to [0, 2] such that D−(R)
is constant in [Rmax, 2].

Proof. 1) Suppose 0 ≤ R1 ≤ R2, then for every ν ∈ BR1(µ) we have ||ν−µ||TV ≤ R1 ≤ R2,

and therefore ν ∈ BR2(µ), hence

inf
ν∈BR1 (µ)

∫
Σ
`(x)ν(dx) ≥ inf

ν∈BR2 (µ)

∫
Σ
`(x)ν(dx)

which is equivalent to D−(R1) ≥ D−(R2). So D−(R) is a non-increasing function of R.

Now consider two points (R1, D
+(R1)) and (R2, D

+(R2)) on the linear functional curve,

such that ν1 ∈ BR1(µ) achieves the infimum of (3.8) for R1, and ν2 ∈ BR2(µ) achieves the

infimum of (3.8) for R2. Then, ||ν1 − µ||TV ≤ R1 and ||ν2 − µ||TV ≤ R2. For any λ ∈ (0, 1),

we have

||λν1 + (1− λ)ν2 − µ||TV ≤ λ||ν1 − µ||TV + (1− λ)||ν2 − µ||TV ≤ λR1 + (1− λ)R2 = R.
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Define ν∗ 4= λν1 + (1 − λ)ν2, R 4= λR1 + (1 − λ)R2. The previous equation implies that

ν∗ ∈ BR(µ), hence D−(λR1 + (1− λ)R2) ≤
∫

Σ `(x)ν∗(dx). Therefore,

D−(R) = inf
ν∈BR(µ)

∫
Σ
`(x)ν(dx) ≤

∫
Σ
`(x)ν∗(dx) =

∫
Σ
`(x) (λν1(dx) + (1− λ)ν2(dx))

= λ
∫

Σ
`(x)ν1(dx) + (1− λ)

∫
Σ
`(x)ν2(dx) = λD−(R1) + (1− λ)D−(R2).

So, D−(R) is a convex function of R.

2) The right side of (3.23), say D̄−(R), is convex function of R. But D−(R) =
infR′≤R D̄+(R′) which completes the derivation of (3.23). �

Consider the pay-off of Problem 3.3, for ` ∈ BC+(Σ). The solution is based on finding a

lower bound which is achievable. The following inequalities hold.

L1(ν) 4=
∫

Σ
`(x)ν(dx) =

∫
Σ
`(x)

(
ν(dx)− µ(dx)

)
+
∫

Σ
`(x)µ(dx)

(a)=
∫

Σ
`(x)

(
ξ+(dx)− ξ−(dx)

)
+
∫

Σ
`(x)µ(dx)

=
∫

Σ
`(x)ξ+(dx)−

∫
Σ
`(x)ξ−(dx) +

∫
Σ
`(x)µ(dx)

(b)
≥ inf

x∈Σ
`(x)ξ+(Σ)− sup

x∈Σ
`(x)ξ−(Σ) +

∫
Σ
`(x)µ(dx)

(c)= inf
x∈Σ

`(x) ||ξ||TV2 − sup
x∈Σ

`(x) ||ξ||TV2 +
∫

Σ
`(x)µ(dx)

=
{

inf
x∈Σ

`(x)− sup
x∈Σ

`(x)
}
||ξ||TV

2 +
∫

Σ
`(x)µ(dx) (3.24)

where (a) follows from the Jordan decomposition of (ν−µ), (b) follows due to ` ∈ BC+(Σ),

(c) follows because any ξ ∈ M0
sm(Σ) satisfies ξ+(Σ) = ξ−(Σ) = 1

2 ||ξ||TV . For a given

µ ∈M1(Σ) and ν ∈ BR(µ) define the set

B̃R(µ) 4=
{
ξ ∈M0

sm(Σ) : ξ = ν − µ, ν ∈M1(Σ), ||ξ||TV ≤ R
}
.

The lower bound in the right hand side of (3.24) is achieved by ξ∗ ∈ B̃R(µ) as follows. Let

x0 ∈ Σ0 4=
{
x ∈ Σ : `(x) = sup{`(y) : y ∈ Σ} ≡ `max

}
x0 ∈ Σ0

4=
{
x ∈ Σ : `(x) = inf{`(y) : y ∈ Σ} ≡ `min

}
.

Take

ξ∗(dx) = ν∗(dx)− µ(dx) = R

2 (δx0(dx)− δx0(dx)) (3.25)

where δy(dx) denotes the Dirac measure concentrated at y ∈ Σ. This is indeed a signed

measure with total variation ||ξ∗||TV = ||ν∗ − µ||TV = R, and
∫

Σ `(x)(ν∗ − µ)(dx) =
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R
2 (`min − `max). Hence, by using (3.25) as a candidate of the minimizing distribution then

the extremum Problem 3.2 is equivalent to

∫
Σ
`(x)ν∗(dx) = R

2

{
inf
x∈Σ

`(x)− sup
x∈Σ

`(x)
}

+
∫

Σ
`(x)µ(dx) (3.26)

where ν∗ satisfies the constraint ||ξ∗||TV = ||ν∗− µ||TV = R, it is normalized ν∗(Σ) = 1, and

0 ≤ ν∗(A) ≤ 1 on any A ∈ B(Σ). Alternatively, the pay-off
∫

Σ `(x)ν∗(dx) can be written as

D−(R) =
∫

Σ
`(x)ν∗(dx)

=
∫

Σ0
`maxν

∗(dx) +
∫

Σ0
`minν

∗(dx) +
∫

Σ\Σ0∪Σ0
`(x)µ(dx). (3.27)

Hence, the optimal distribution ν∗ ∈ BR(µ) satisfies

∫
Σ0
ν∗(dx) = µ(Σ0) + R

2 ∈ [0, 1] (3.28a)∫
Σ0
ν∗(dx) = µ(Σ0)− R

2 ∈ [0, 1] (3.28b)

ν∗(A) = µ(A), ∀A ⊆ Σ \ Σ0 ∪ Σ0. (3.28c)

For any R ∈ [0, 2] such that ν∗(Σ0) < 1 and ν∗(Σ0) > 0, then (3.28) is the minimizing

distribution while the resulting pay-off is (3.27). When these conditions are violated the

measure ν∗ on the sets Σ0, Σ0 and Σ \ Σ0 ∪ Σ0 remains to be identified so the minimizing

measure ν∗ is characterized for allR ∈ [0, 2]. The complete characterization of the extremum

measure ν∗ will be given in the Section 3.3.4 building on the discussion of this section. Next,

we identify Rmax described in Lemma 3.3.

Corollary 3.3. The value of Rmax described in Lemma 3.3 is given by

Rmax = 2(1− µ(Σ0)). (3.29)

Proof. We know that D−(R) ≥ infx∈Σ `(x), ∀R ≥ 0, hence D−(Rmax) can be at least

infx∈Σ `(x). Since D−(R) is non-increasing then infx∈Σ `(x) ≤ D−(R) ≤ D−(Rmax), for

any R ≥ Rmax. Consider a ν that achieves this infimum. Let µ(Σ0) and ν(Σ0) to denote the

nominal and true probability measures on Σ0, respectively. If ν(Σ0) = 1 then ν(Σ\Σ0) = 0.
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44 Extremum Problems

Therefore,

||ν − µ||TV =
∑
x∈Σ0

|ν(x)− µ(x)|+
∑

x∈Σ\Σ0

|ν(x)− µ(x)|

(a)=
∑
x∈Σ0

|ν(x)− µ(x)|+
∑

x∈Σ\Σ0

| − µ(x)|

(b)=
∑
x∈Σ0

ν(x)−
∑
x∈Σ0

µ(x) +
∑

x∈Σ\Σ0

µ(x)

= 1−
∑
x∈Σ0

µ(x) +
∑

x∈Σ\Σ0

µ(x)

= 2
1−

∑
x∈Σ0

µ(x)
 = 2 (1− µ(Σ0))

where (a) follows due to ν(Σ \Σ0) = 0 which implies ν(x) = 0 for any x ∈ Σ \Σ0, and (b)

follows because ν(x) ≥ µ(x) for all x ∈ Σ0. Therefore, Rmax = 2(1 − µ(Σ0)) implies that

D−(Rmax) = infx∈Σ `(x). Hence, D−(R) = infx∈Σ `(x), for any R ≥ Rmax. �

Equivalent Formulation of R−(D)

Before we proceed with the equivalent formulation of Problem 3.4, we discuss first some of

its properties.

Lemma 3.4. Consider Problem 3.4. Then

1) R−(D) is a non-increasing convex function of D.

2) If D ≤ Dmax,

R−(D) = inf∫
Σ `(x)ν(dx)=D

||ν − µ||TV (3.30)

where Dmax is the smallest non-negative number belonging to [0,∞) such that

R−(D) = 0 for any D ∈ [Dmax,∞).

Proof. 1) Suppose 0 ≤ D1 ≤ D2, then Q(D1) ⊂ Q(D2), and infν∈Q(D1) ||ν − µ||TV ≥
infν∈Q(D2) ||ν − µ||TV which is equivalent to R−(D1) ≥ R−(D2). Hence, R−(D) is a non-

increasing function of D. Now consider two points (D1, R
−(D1)) and (D2, R

−(D2)) on

the total variation curve. Let D 4= λD1 + (1 − λ)D2, ν∗ 4= λν1 + (1 − λ)ν2 and ν1 ∈
Q(D1), ν2 ∈ Q(D2) such that ||ν1 − µ||TV = R−(D1) and ||ν2 − µ||TV = R−(D2). Then,∫

Σ `(x)ν1(dx) ≤ D1 and
∫
Σ `(x)ν2(dx) ≤ D2. Taking convex combination leads to

λ
∫

Σ
`(x)ν1(dx) + (1− λ)

∫
Σ
`(x)ν2(dx) ≤ λD1 + (1− λ)D2 = D
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3.3 Characterization of Measures for Finite Alphabets 45

and hence ν∗ ∈ Q(D). So,

R−(D) = inf
ν∈Q(D)

||ν − µ||TV ≤ ||ν∗ − µ||TV = ||λν1 + (1− λ)ν2 − µ||TV

≤ λ||ν1 − µ||TV + (1− λ)||ν2 − µ||TV = λR−(D1) + (1− λ)R−(D2).

This shows that R−(D) is convex function of D.

2) The right side of (3.30), say R̄−(D), is convex function of D. But, R−(D) =
infD′≤D R̄−(D′) which completes the derivation of (3.30). �

Consider the constraint of Problem 3.4, for ` ∈ BC+(Σ). By following the same proce-

dure as in Section 3.2.2, we obtain (3.26), that is

∫
Σ
`(x)ν∗(dx) = R

2

{
inf
x∈Σ

`(x)− sup
x∈Σ

`(x)
}

+
∫

Σ
`(x)µ(dx). (3.31)

Solving the above equation with respect to R the extremum Problem 3.4 (for D <∫
Σ `(x)µ(dx)) is equivalent to

R−(D) = 2(D −
∫

Σ `(x)µ(dx)){
inf
x∈Σ

`(x)− sup
x∈Σ

`(x)
} (3.32)

where ν∗ satisfies the constraint
∫

Σ `(x)ν∗(dx) = D, it is normalized ν∗(Σ) = 1, and 0 ≤
ν(A) ≤ 1 on any A ∈ B(Σ). We can now identify Dmax described in Lemma 3.4.

Corollary 3.4. The value of Dmax described in Lemma 3.4 is given by

Dmax =
∫

Σ
`(x)µ(dx).

Proof. We know that R−(D) ≥ 0 for all D ≥ 0 hence R−(Dmax) can be at least zero.

Let Dmax =
∫
Σ `(x)µ(dx), then it is obvious that R−(Dmax) = 0. Since R−(D) in non-

increasing, then 0 ≤ R−(D) ≤ R−(Dmax), for any D ≥ Dmax. Hence, R−(D) = 0, for any

D ≥ Dmax. �

3.3. Characterization of Measures for Finite Alphabets

This section uses the results of Section 3.2 to compute closed form expressions for the ex-

tremum measures ν∗ for anyR ∈ [0, 2], when Σ is a finite alphabet space to give the intuition

into the solution procedure. This is done by identifying the sets Σ0, Σ0, Σ \Σ0 ∪Σ0, and the

measure ν∗ on these sets for any R ∈ [0, 2]. Although this can be done for probability mea-

sures on complete separable metric spaces (Polish spaces) (Σ, dΣ), and for ` ∈ BM+(Σ),
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46 Extremum Problems

` ∈ BC+(Σ), L∞,+(Σ,B(Σ), ν), we prefer to discuss the finite alphabet case to gain addi-

tional insight into these problems. At section 3.3.7 we shall use the finite alphabet case to

discuss the extensions to countable alphabet and to ` ∈ L∞,+(Σ,B(Σ), ν).

Consider the finite alphabet case (Σ,M), where card(Σ) = |Σ| is finite,M = 2|Σ|. Thus,

ν and µ are point mass distributions on Σ. Define the set of probability vectors on Σ by

P(Σ) 4=
{
p = (p1, . . . , p|Σ|) : pi ≥ 0, i = 0, . . . , |Σ|,

∑
i∈Σ

pi = 1
}
. (3.33)

Thus, p ∈ P(Σ) is a probability vector in R|Σ|+ . Also let ` 4= {`1, . . . , `|Σ|} so that ` ∈
R|Σ|+ (e.g., set of non-negative vectors of dimension |Σ|). Next, we introduce some basic

definitions which will be used for the solution of the extremum problems.

Define the maximum and minimum values of the sequence {`1, . . . , `|Σ|} by

`max
4= max

i∈Σ
`i, `min

4= min
i∈Σ

`i

and its corresponding support sets by

Σ0 4= {i ∈ Σ : `i = `max}, Σ0
4= {i ∈ Σ : `i = `min}.

For any remaining sequence, {`i : i ∈ Σ \ Σ0 ∪ Σ0}, and for 1 ≤ r ≤ |Σ \ Σ0 ∪ Σ0| define

recursively the set of indices for which ` achieves its (k + 1)th smallest value by

Σk
4=

i ∈ Σ : `i = min
{
`α : α ∈ Σ \ Σ0 ∪

( k⋃
j=1

Σj−1
)} , k ∈ {1, 2, . . . , r} (3.34)

and the set of indices for which ` achieves its (k + 1)th largest value by

Σk 4=

i ∈ Σ : `i = max
{
`α : α ∈ Σ \ Σ0 ∪

( k⋃
j=1

Σj−1
)} , k ∈ {1, 2, . . . , r} (3.35)

till all the elements of Σ are exhausted (i.e., k is at most |Σ \ Σ0 ∪ Σ0|). Define the corre-

sponding values of the sequence of sets in (3.34) by

`
(

Σk

)
4= min

i∈Σ\Σ0∪
(⋃k

j=1 Σj−1

) `i, k ∈ {1, 2, . . . , r} (3.36)

and the corresponding values of the sequence of sets in (3.35) by

`
(
Σk
) 4= max

i∈Σ\Σ0∪
(⋃k

j=1 Σj−1
) `i, k ∈ {1, 2, . . . , r} (3.37)

where r is the number of the support sets which is at most |Σ \Σ0 ∪Σ0|; for example, when

k = 1, ` (Σ1) = mini∈Σ\Σ0∪Σ0 `i and ` (Σ1) = maxi∈Σ\Σ0∪Σ0 `i, when k = 2, ` (Σ2) =
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3.3 Characterization of Measures for Finite Alphabets 47

mini∈Σ\Σ0∪Σ0∪Σ1 `i and ` (Σ2) = maxi∈Σ\Σ0∪Σ0∪Σ1 `i, etc. Furthermore, if `1 < `2 < · · · <
`|Σ| then Σ0 = {|Σ|}, Σ0 = {1} and Σk = {k + 1}, Σk = {|Σ| − k} for k = 1, 2, . . . , |Σ| −
2. Note that, (3.34) and (3.36) will be used exclusively for the solution of maximization

Problems 3.1 and 3.2, while (3.35) and (3.37) will be used exclusively for the solution of

minimization Problems 3.3 and 3.4.

3.3.1. D+(R): The Finite Alphabet Case

Suppose ν ∈ P(Σ) is the true probability vector and µ ∈ P(Σ) is the nominal fixed probabil-

ity vector. The extremum problem reduces to

D+(R) 4= max
ν∈BR(µ)

∑
i∈Σ

`iνi = max
ν∈P(Σ):

∑
i∈Σ |νi−µi|≤R

∑
i∈Σ

`iνi. (3.38)

Next, we apply the results of Section 3.2 to characterize the optimal ν∗ for any R ∈ [0, 2].
By defining, ξi

4= νi−µi, i = 1, . . . , |Σ| and ξ ∈M0
sm(Σ), Problem 3.1 can be reformulated

as follows.

max
ν∈BR(µ)

∑
i∈Σ

`iνi −→
∑
i∈Σ

`iµi + max
ξ∈B̃R(µ)

∑
i∈Σ

`iξi. (3.39)

Note that ξ ∈ B̃R(µ) is described by the constraints

α
4=
∑
i∈Σ
|ξi| ≤ R,

∑
i∈Σ

ξi = 0, 0 ≤ ξi + µi ≤ 1, ∀i ∈ Σ. (3.40)

The positive and negative variation of the signed measure ξ = ν − µ ∈M0
sm(Σ) are defined

by ξ+ = max{ξ, 0} and ξ− = max{−ξ, 0}. Therefore,

∑
i∈Σ

ξi =
∑
i∈Σ

ξ+
i −

∑
i∈Σ

ξ−i ,
∑
i∈Σ
|ξi| =

∑
i∈Σ

ξ+
i +

∑
i∈Σ

ξ−i (3.41)

and hence

∑
i∈Σ

ξ+
i =

∑
i∈Σ ξi +∑

i∈Σ |ξi|
2 ≡ α

2 (3.42)

∑
i∈Σ

ξ−i = −
∑
i∈Σ ξi +∑

i∈Σ |ξi|
2 ≡ α

2 . (3.43)

In addition,

∑
i∈Σ

`iξi =
∑
i∈Σ

`iξ
+
i −

∑
i∈Σ

`iξ
−
i . (3.44)

The following theorem characterizes the solution of Problem 3.1.
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48 Extremum Problems

Theorem 3.1. The solution of the finite alphabet version of Problem 3.1 is given by

D+(R) = `maxν
∗(Σ0) + `minν

∗(Σ0) +
r∑

k=1
`(Σk)ν∗(Σk) (3.45)

where the optimal probabilities are given by

ν∗(Σ0) 4=
∑
i∈Σ0

ν∗i =
∑
i∈Σ0

µi + α

2 (3.46a)

ν∗(Σ0) 4=
∑
i∈Σ0

ν∗i =
( ∑
i∈Σ0

µi −
α

2

)+
(3.46b)

ν∗(Σk)
4=
∑
i∈Σk

ν∗i =
( ∑
i∈Σk

µi −
(
α

2 −
k∑
j=1

∑
i∈Σj−1

µi

)+)+
(3.46c)

α = min (R,Rmax) , Rmax
4= 2(1−

∑
i∈Σ0

µi) (3.46d)

with k = 1, 2, . . . , r and r is the number of Σk sets which is at most |Σ \ Σ0 ∪ Σ0|.

The solution of Problem 3.1 is obtained by identifying the partition of Σ into disjoint sets

{Σ0,Σ0,Σ1, . . . ,Σk} and the measures on this partition. The main idea is to express the

total variation distance constraint as a summation of the positive and negative variation of

a signed measure, and then to find upper and lower bounds on the probabilities of Σ0 and

Σ\Σ0, which are achievable. Utilizing the fact that the positive and negative variation parts of

the total variation distance have equal mass concentrated on them, closed form expressions

of the probability measures, on these sets, which achieve the upper and lower bounds are

derived (i.e., using (3.41), then (3.42) holds).

In the following Lemma upper and lower bounds which are achievable are obtained. These

they will be used for the derivation of Theorem 3.1.

Lemma 3.5. Consider Problem 3.1.

(a) Upper Bound. ∑
i∈Σ

`iξ
+
i ≤ `max

(
α

2

)
. (3.47)

The bound holds with equality if

∑
i∈Σ0

µi + α

2 ≤ 1 (3.48a)

∑
i∈Σ0

ξ+
i = α

2 (3.48b)

ξ+
i = 0 for i ∈ Σ \ Σ0. (3.48c)
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3.3 Characterization of Measures for Finite Alphabets 49

(b) Lower Bound.

Case 1. If
∑
i∈Σ0 µi −

α
2 ≥ 0 then

∑
i∈Σ

`iξ
−
i ≥ `min

(
α

2

)
. (3.49)

The bound holds with equality if

∑
i∈Σ0

µi −
α

2 ≥ 0 (3.50a)

∑
i∈Σ0

ξ−i = α

2 (3.50b)

ξ−i = 0 for i ∈ Σ \ Σ0. (3.50c)

Case 2. If
∑k
j=1

∑
i∈Σj−1 µi −

α
2 ≤ 0 for any k ∈ {1, 2, . . . , r} then

∑
i∈Σ

`iξ
−
i ≥ `(Σk)

(
α

2 −
k∑
j=1

∑
i∈Σj−1

µi

)
+

k∑
j=1

∑
i∈Σj−1

`iµi. (3.51)

Moreover, equality holds if

∑
i∈Σj−1

ξ−i =
∑

i∈Σj−1

µi, for all j = 1, 2, . . . , k (3.52a)

∑
i∈Σk

ξ−i =
(
α

2 −
k∑
j=1

∑
i∈Σj−1

µi

)
(3.52b)

k∑
j=0

∑
i∈Σj

µi −
α

2 ≥ 0 (3.52c)

ξ−i = 0 for all i ∈ Σ \ Σ0 ∪ Σ1 ∪ . . . ∪ Σk. (3.52d)

Proof. Part (a) and Part (b), case 1, follows from Section 3.2.1 (equivalent formulation of

D+(R)). For Part (b), case 2, we proceed as follows. Consider any k ∈ {1, 2, . . . , r}. First,

we show that inequality holds. From Part (b), case 1, we have that

∑
i∈Σ\ ∪kj=1Σj−1

`iξ
−
i ≥ min

j∈Σ\ ∪kj=1Σj−1

`j
∑

i∈Σ\ ∪kj=1Σj−1

ξ−i

= `(Σk)
∑

i∈Σ\ ∪kj=1Σj−1

ξ−i = `(Σk)
(∑
i∈Σ

ξ−i −
k∑
j=1

∑
i∈Σj−1

ξ−i

)
.

Hence ∑
i∈Σ

`iξ
−
i −

k∑
j=1

∑
i∈Σj−1

`iξ
−
i ≥ `(Σk)

(
α

2 −
k∑
j=1

∑
i∈Σj−1

µi

)
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50 Extremum Problems

which implies

∑
i∈Σ

`iξ
−
i ≥ `(Σk)

(
α

2 −
k∑
j=1

∑
i∈Σj−1

µi

)
+

k∑
j=1

∑
i∈Σj−1

`iµi.

Next, we show under the stated conditions that equality holds.

∑
i∈Σ

`iξ
−
i =

k∑
j=1

∑
i∈Σj−1

`iξ
−
i +

∑
i∈Σk

`iξ
−
i +

∑
i∈Σ\ ∪kj=0Σj

`iξ
−
i

=
k∑
j=1

`(Σj−1)
∑

i∈Σj−1

ξ−i + `(Σk)
∑
i∈Σk

ξ−i

=
k∑
j=1

∑
i∈Σj−1

`iµi + `(Σk)
(
α

2 −
k∑
j=1

∑
i∈Σj−1

µi

)
.

�

Proof of Theorem 3.1. From Lemma 3.1, and Corollary 3.1, we know that for R ≤ Rmax,

where Rmax = 2(1 − µ(Σ0)), the total variation constraint holds with equality, that is,

||ξ||TV = R. Let α = ||ξ||TV . From (3.39) and (3.40), Problem 3.1 is given by

D+(R) =
∑
i∈Σ

`iµi + max
ξ∈B̃R(µ)

∑
i∈Σ

`iξi. (3.53)

where ξ ∈ B̃R(µ) is described by the constraints

α
4=
∑
i∈Σ
|ξi| = R,

∑
i∈Σ

ξi = 0, 0 ≤ ξi + µi ≤ 1, ∀i ∈ Σ. (3.54)

To maximize (3.53) we employ (3.44). It is obvious that an upper and a lower bound must

be obtained for
∑
i∈Σ `iξ

+
i and

∑
i∈Σ `iξ

−
i , respectively.

From Lemma 3.5, Part (a), the upper bound (3.47), holds with equality if conditions given

by (3.48) are satisfied. Note that,
∑
i∈Σ0 µi + α

2 ≤ 1 is always satisfied and from (3.48b) we

have that
∑
i∈Σ0 νi = ∑

i∈Σ0 µi + α
2 and hence the optimal probability on Σ0 is given by

ν∗(Σ0) 4=
∑
i∈Σ0

ν∗i =
∑
i∈Σ0

µi + α

2 . (3.55)

From Lemma 3.5, Part (b), case 1, the lower bound (3.49), holds with equality if conditions

given by (3.50) are satisfied. Furthermore, from (3.50b) we have that
∑
i∈Σ0 νi = ∑

i∈Σ0 µi−
α
2 and condition (3.50a) must be satisfied, hence the optimal probability on Σ0 is given by

ν∗(Σ0) 4=
∑
i∈Σ0

ν∗i =
( ∑
i∈Σ0

µi −
α

2

)+
. (3.56)
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The extremum solution for any R ≤ Rmax, under equality conditions (3.48) and (3.50) is

given by

D+(R) =
{
`max − `min

}
α

2 +
∑
i∈Σ

`iµi. (3.57)

Lemma 3.5, Part (b), case 1, characterize the extremum solution for
∑
i∈Σ0 µi −

α
2 ≥ 0.

Next, the characterization of extremum solution when this condition is violated, that is, when∑k
j=1

∑
i∈Σj−1 µi −

α
2 ≤ 0 for any k ∈ {1, 2, . . . , r}, is discussed.

From Lemma 3.5, Part (b), case 2, the lower bound (3.51), holds with equality if conditions

given by (3.52) are satisfied. Furthermore, from (3.52b) we have that

∑
i∈Σk

νi =
∑
i∈Σk

µi −
(
α

2 −
k∑
j=1

∑
i∈Σj−1

µi

)
, (3.58)

and conditions α
2 −

∑k
j=1

∑
i∈Σj−1 µi ≥ 0 and (3.52c) must be satisfied, hence the optimal

probability on Σk is given by

ν∗(Σk)
4=
∑
i∈Σk

ν∗i =
( ∑
i∈Σk

µi −
(
α

2 −
k∑
j=1

∑
i∈Σj−1

µi

)+)+
. (3.59)

The extremum solution for any R ≤ Rmax, under equality conditions (3.48) and (3.52) is

given by

D+(R) =
∑
i∈Σ

`iξ
+
i −

∑
i∈Σ

`iξ
−
i +

∑
i∈Σ

`iµi

=`max
(α

2
)
−`(Σk)

(
α

2−
k∑
j=1

∑
i∈Σj−1

µi

)
+

k∑
j=1

∑
i∈Σj−1

`iµi+
∑
i∈Σ

`iµi.

For R ∈ [Rmax, 2], Lemma 3.1, states that D+(R) is constant. Indeed for α = ||ξ||TV =
Rmax = 2(1− µ(Σ0)) equality conditions of Lemma 3.5, Part (a), become∑

i∈Σ0

µi + α

2 = 1,
∑
i∈Σ0

ξ+
i = α

2 , ξ+
i = 0 for i ∈ Σ \ Σ0. (3.60)

and hence ∑
i∈Σ\Σ0

µi −
α

2 = 0,
∑

i∈Σ\Σ0

ξ−i = α

2 , ξ−i = 0 for i ∈ Σ0. (3.61)

Therefore,
∑
i∈Σ\Σ0 ξ−i = ∑

i∈Σ\Σ0 µi and hence ξ−i = µi for all i ∈ Σ \ Σ0. The extremum

solution for any R ∈ [Rmax, 2] is given by

D+(R) =
∑
i∈Σ

`iξ
+
i −

∑
i∈Σ

`iξ
−
i +

∑
i∈Σ

`iµi
(a)=

∑
i∈Σ0

`iξ
+
i −

∑
i∈Σ\Σ0

`iξ
−
i +

∑
i∈Σ

`iµi

= `max

(
α

2

)
−

∑
i∈Σ\Σ0

`iµi +
∑
i∈Σ

`iµi = `max

(
1−

∑
i∈Σ0

µi

)
+
∑
i∈Σ0

`iµi = `max

where (a) follows from (3.60) and (3.61). �
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3.3.2. R+(D): The Finite Alphabet Case

Consider the finite alphabet version of Problem 3.2, that is

R+(D) 4= max
ν∈Q(D)

||ν − µ||TV = max
ν∈P(Σ):

∑
i∈Σ `iνi≤D

∑
i∈Σ
|νi − µi|. (3.62)

The solution of (3.62) is obtained from the solution of Problem 3.1, by finding the inverse

mapping or by following a similar procedure to the one utilized to derive Theorem 3.1.

Below, we give the main theorem.

Theorem 3.2. The solution of the finite alphabet version of (3.62) is given by

R+(D) =
∑
i∈Σ
|ν∗i − µi|, (3.63)

where the value of R+(D) is calculated as follows.

(1) If

D ≥ `max

 k∑
j=1

∑
i∈Σj−1

µi +
∑
i∈Σ0

µi

+
r∑
j=k

∑
i∈Σj

`iµi (3.64a)

and

D ≤ `max

 k∑
j=0

∑
i∈Σj

µi +
∑
i∈Σ0

µi

+
r∑

j=k+1

∑
i∈Σj

`iµi (3.64b)

then

R+(D) =
2
D − `max

∑
i∈Σ0

µi − ` (Σk)
k∑
j=1

∑
i∈Σj−1

µi −
r∑
j=k

∑
i∈Σj

`iµi


`max − ` (Σk)

. (3.65)

(2) If

D ≤ (`max − `min)
∑
i∈Σ0

µi +
∑
i∈Σ

`iµi (3.66)

then

R+(D) =
2
D −∑

i∈Σ
`iµi


`max − `min

(3.67)
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The optimal probabilities are given by

ν∗(Σ0) 4=
∑
i∈Σ0

ν∗i =
∑
i∈Σ0

µi + α (3.68a)

ν∗(Σ0) 4=
∑
i∈Σ0

ν∗i =
∑
i∈Σ0

µi − α

+

(3.68b)

ν∗(Σk)
4=
∑
i∈Σk

ν∗i =
∑
i∈Σk

µi −

α− k∑
j=1

∑
i∈Σj−1

µi

++

(3.68c)

α = min
R+(D), 2(1−

∑
i∈Σ0

µi)
 . (3.68d)

where k = 1, 2, . . . , r and r is the number of Σk sets which is at most |Σ \ Σ0 ∪ Σ0|.

Proof. For the derivation of the Theorem see Appendix B.1. �

3.3.3. Example

This example demonstrates the inverse mapping relation of maximization Problems 3.1 and

3.2. The optimal solution is found by implementing Theorem 3.1 and 3.2 for a fixed value

of R and D, respectively.

Let Σ = {1, 2, 3} and for simplicity consider an ascending sequence of non-negative

lengths ` : Σ 7−→ [0,∞), with corresponding nominal probability vector µ ∈ M1(Σ).

Specifically, let ` = {`(1), `(2), `(3) : `(1) = 4, `(2) = 6, `(3) = 8} and µ =
{µ(1), µ(2), µ(3) : µ(1) = 2

6 , µ(2) = 2
6 , µ(3) = 2

6}. The sets which correspond to the maxi-

mum, minimum and the remaining length are equal to Σ0 = {3}, Σ0 = {1} and Σ1 = {2},
respectively. We proceed first with the solution of Problem 3.1.

Let R = 1
3 . By implementing (3.46) we have that, α = min

(
R
2 , 1− µ(3)

)
=

min
(

1
6 , 1−

2
6

)
= 1

6 , and the optimal probabilities are given by

ν∗
(
Σ0
)

= µ(3) + α = 2
6 + 1

6 = 3
6 , ν∗ (Σ0) = (µ(1)− α)+ =

(2
6 −

1
6

)+
= 1

6

ν∗ (Σ1) =
(
µ(2)− (α− µ(1))+

)+
=
(

2
6 −

(1
6 −

2
6

)+)+

= 2
6 .

Hence, for R = 1
3 , the maximum pay-off (3.45), is given by

D+(R) = `(3)ν∗(Σ0) + `(1)ν∗(Σ0) + `(2)ν∗(Σ1) = 8
(3

6

)
+ 4

(1
6

)
+ 6

(2
6

)
= 40

6 .

Next, we proceed with the solution of Problem 3.2. Let D = 40
6 . By implementing (3.66)

we get that,

(`max− `min)
∑
i∈Σ0

µi+
∑
i∈Σ

`iµi=(`(3)− `(1))µ(1)+ `(1)µ(1)+ `(2)µ(2)+ `(3)µ(3)=44
6 >D
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and hence, from (3.67)

R+(D) = 2(D −∑i∈Σ `iµi)
`max − `min

=
2(40

6 −
36
6 )

8− 4 = 1
3 .

It is clear that the optimal probabilities given by (3.68) are equal to the ones already calcu-

lated for Problem 3.1.

3.3.4. D−(R): The Finite Alphabet Case

Consider the finite alphabet version of Problem 3.3, that is

D−(R) 4= min
ν∈BR(µ)

∑
i∈Σ

`iνi = min
ν∈P(Σ):

∑
i∈Σ |νi−µi|≤R

∑
i∈Σ

`iνi. (3.69)

The solution of (3.69) is obtained from that of Problem 3.1, but with a reverse computation

on the partition of Σ and the mass of the extremum measure on the partition moving in the

opposite direction. Problem 3.3 can be reformulated as follows.

min
ν∈BR(µ)

∑
i∈Σ

`iνi −→
∑
i∈Σ

`iµi + min
ξ∈B̃R(µ)

∑
i∈Σ

`iξi. (3.70)

Note that ξ ∈ B̃R(µ) is described by the constraints

α
4=
∑
i∈Σ
|ξi| ≤ R,

∑
i∈Σ

ξi = 0, 0 ≤ ξi + µi ≤ 1, ∀i ∈ Σ. (3.71)

Below, we give the main theorem.

Theorem 3.3. The solution of the finite alphabet version of (3.69) is given by

D−(R) = `maxν
∗(Σ0) + `minν

∗(Σ0) +
r∑

k=1
`(Σk)ν∗(Σk) (3.72)

where the optimal probabilities are given by

ν∗(Σ0) 4=
∑
i∈Σ0

ν∗i =
∑
i∈Σ0

µi + α (3.73a)

ν∗(Σ0) 4=
∑
i∈Σ0

ν∗i =
∑
i∈Σ0

µi − α

+

(3.73b)

ν∗(Σk) 4=
∑
i∈Σk

ν∗i =
∑
i∈Σk

µi −

α− k∑
j=1

∑
i∈Σj−1

µi

++

(3.73c)

α = min(R,Rmax), Rmax
4= 2(1−

∑
i∈Σ0

µi) (3.73d)

with k = 1, 2, . . . , r and r is the number of Σk sets which is at most |Σ \ Σ0 ∪ Σ0|.

Proof. For the derivation of the Theorem see Appendix B.2. �
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3.3.5. R−(D): The Finite Alphabet Case

In this subsection we provide the solution of Problem 3.4, by following the procedure utilized

to derive the solution of Problem 3.2. The extremum problem is defined by

R−(D) 4= min
ν∈Q(D)

||ν − µ||TV = min
ν∈P(Σ):

∑
i∈Σ `iνi≤D

∑
i∈Σ
|νi − µi|. (3.74)

The main theorem which characterizes the extremum solution of Problem 3.4 is given below.

Theorem 3.4. The solution of the finite alphabet version of Problem 3.4 is given by

R−(D) =
∑
i∈Σ
|ν∗i − µi| (3.75)

where the value of R−(D) is calculated as follows.

(1) If

D ≥ `min

( k∑
j=0

∑
i∈Σj

µi +
∑
i∈Σ0

µi

)
+

r∑
j=k+1

∑
i∈Σj

`iµi (3.76a)

and

D ≤ `min

( k∑
j=1

∑
i∈Σj−1

µi +
∑
i∈Σ0

µi

)
+

r∑
j=k

∑
i∈Σj

`iµi (3.76b)

then

R−(D) =
2
(
D − `min

∑
i∈Σ0

µi − `(Σk)
k∑
j=1

∑
i∈Σj−1

µi −
r∑
j=k

∑
i∈Σj

`iµi

)
`min − `(Σk) . (3.77)

(2) If

D ≥ (`min − `max)
∑
i∈Σ0

µi +
∑
i∈Σ

`iµi (3.78)

then

R−(D) =
2
(
D −

∑
i∈Σ

`iµi

)
`min − `max

. (3.79)

The optimal probabilities are given by

ν∗(Σ0) 4=
∑
i∈Σ0

ν∗i =
∑
i∈Σ0

µi + α

2 (3.80a)

ν∗(Σ0) 4=
∑
i∈Σ0

ν∗i =
( ∑
i∈Σ0

µi −
α

2

)+
(3.80b)

ν∗(Σk) 4=
∑
i∈Σk

ν∗i =
( ∑
i∈Σk

µi −
(
α

2 −
k∑
j=1

∑
i∈Σj−1

µi

)+)+
(3.80c)

α = min
(
R−(D), 2(1−

∑
i∈Σ0

µi)
)

(3.80d)

where k = 1, 2, . . . , r and r is the number of Σk sets which is at most |Σ \ Σ0 ∪ Σ0|.
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Before we proceed with the proof of Theorem 3.4, we give the following Lemma in which

lower and upper bounds, which are achievable, are obtained.

Lemma 3.6. Consider Problem 3.4.

(a) Lower Bound.

∑
i∈Σ

`iξ
+
i ≥ `min

(
α

2

)
. (3.81)

The bound holds with equality if

∑
i∈Σ0

µi + α

2 ≤ 1 (3.82a)

∑
i∈Σ0

ξ+
i = α

2 (3.82b)

ξ+
i = 0 for i ∈ Σ \ Σ0. (3.82c)

(b) Upper Bound.

Case 1. If
∑
i∈Σ0 µi − α

2 ≥ 0 then

∑
i∈Σ

`iξ
−
i ≤ `max

(
α

2

)
. (3.83)

The bound holds with equality if

∑
i∈Σ0

µi −
α

2 ≥ 0 (3.84a)

∑
i∈Σ0

ξ−i = α

2 (3.84b)

ξ−i = 0 for i ∈ Σ \ Σ0. (3.84c)

Case 2. If
∑k
j=1

∑
i∈Σj−1 µi − α

2 ≤ 0 for any k ∈ {1, 2, . . . , r} then:

∑
i∈Σ

`iξ
−
i ≤ `(Σk)

(
α

2 −
k∑
j=1

∑
i∈Σj−1

µi

)
+

k∑
j=1

∑
i∈Σj−1

`iµi. (3.85)

Moreover, equality holds if

∑
i∈Σj−1

ξ−i =
∑

i∈Σj−1

µi for all j = 1, 2, . . . , k, (3.86a)

∑
i∈Σk

ξ−i =
(
α

2 −
k∑
j=1

∑
i∈Σj−1

µi

)
(3.86b)

k∑
j=0

∑
i∈Σj

µi −
α

2 ≥ 0 (3.86c)

ξ−i = 0 for all i ∈ Σ \ Σ0 ∪ Σ1 ∪ . . . ∪ Σk. (3.86d)
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Proof. Part (a) and Part (b), case 1, follows from Section 3.2.2 (equivalent formulation of

R−(D)). The proof of Part (b), case 2, is similar to the proof given for Lemma 3.5, Part (b),

case 2, with appropriate changes on Σk sets. �

Proof of Theorem 3.4. From Lemma 3.4, and Corollary 3.4, we know that for D ≤ Dmax,

where Dmax = ∑
i∈Σ `iµi, the average constraint holds with equality, that is∑

i∈Σ
`iνi =

∑
i∈Σ

`iξ
+
i −

∑
i∈Σ

`iξ
−
i +

∑
i∈Σ

`iµi = D.

From Lemma 3.6, Part (a) and from Part (b), case 1, when equality conditions (3.82) and

(3.84) are satisfied we have that

`min

(
α

2

)
− `max

(
α

2

)
+
∑
i∈Σ

`iµi = D.

Solving the above equation with respect to α we get that

α = 2 (D −∑i∈Σ `iµi)
`min − `max

. (3.87)

Since (3.82a) is always satisfied, it remains to ensure that (3.84a) is also satisfied. By

substituting (3.87) into (3.84a) and solving with respect to D we get that if D ≥
(`min − `max)∑i∈Σ0 µi + ∑

i∈Σ `iµi then R−(D) is given by (3.79). Moreover, the optimal

probabilities given by (3.80a) and (3.80b) are obtained from (3.82b) and (3.84b), respec-

tively.

Lemma 3.6, Part (b), case 1, characterize the extremum solution for
∑
i∈Σ0 µi − α

2 ≥ 0.

Next, the characterization of extremum solution when this condition is violated, that is, when∑k
j=1

∑
i∈Σj−1 µi − α

2 ≤ 0 for any k ∈ {1, 2, . . . , r}, is discussed.

From Lemma 3.6, Part (b), case 2, the upper bound (3.85), holds with equality if conditions

given by (3.86) are satisfied. Hence,

`min

(
α

2

)
− `(Σk)

(
α

2 −
k∑
j=1

∑
i∈Σj−1

µi

)
+

k∑
j=1

∑
i∈Σj−1

`iµi = D.

Solving the above equation with respect to α we get that

α =
2
(
D − `min

∑
i∈Σ0 µi − `(Σk)∑k

j=1
∑
i∈Σj−1 µi −

∑r
j=k

∑
i∈Σj `iµi

)
`min − `(Σk) . (3.88)

Substituting (3.88) into
∑k
j=1

∑
i∈Σj−1 µi − α

2 ≤ 0 and into (3.86c) and solving with respect

to D we get that if

D ≥ `min

( k∑
j=0

∑
i∈Σj

µi +
∑
i∈Σ0

µi

)
+

r∑
j=k+1

∑
i∈Σj

`iµi

D ≤ `min

( k∑
j=1

∑
i∈Σj−1

µi +
∑
i∈Σ0

µi

)
+

r∑
j=k

∑
i∈Σj

`iµi
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then R−(D) is given by (3.77). Moreover, the optimal probability on Σk given by (3.80c) is

obtained from (3.86b).

For D ∈ [Dmax,∞), is straightforward that, the extremum measure is given by ν∗ = µ and

hence R−(D) = 0. �

3.3.6. Example

This example demonstrates the inverse mapping relation of minimization Problems 3.3 and

3.4. The optimal solution is found by implementing Theorem 3.3 and 3.4 for a fixed value

of R and D, respectively.

Let Σ = {1, 2, 3} and for simplicity consider an ascending sequence of non-negative

lengths ` : Σ 7−→ [0,∞), with corresponding nominal probability vector µ ∈ M1(Σ).

Specifically, let ` = {`(1), `(2), `(3) : `(1) = 4, `(2) = 6, `(3) = 8} and µ =
{µ(1), µ(2), µ(3) : µ(1) = 2

6 , µ(2) = 2
6 , µ(3) = 2

6}. The sets which correspond to the maxi-

mum, minimum and the remaining length are equal to Σ0 = {3}, Σ0 = {1} and Σ1 = {2},
respectively. We proceed first with the solution of Problem 3.3.

Let R = 1
3 . By implementing (3.73) we have that, α = min

(
R
2 , 1− µ(1)

)
=

min
(

1
6 , 1−

2
6

)
= 1

6 , and the optimal probabilities are given by

ν∗ (Σ0) = µ(1) + α = 2
6 + 1

6 = 3
6 , ν∗

(
Σ0
)

= (µ(3)− α)+ =
(2

6 −
1
6

)+
= 1

6

ν∗
(
Σ1
)

=
(
µ(2)− (α− µ(3))+

)+
=
(

2
6 −

(1
6 −

2
6

)+)+

= 2
6 .

Hence, for R = 1
3 , the maximum pay-off (3.72), is given by

D−(R) = `(3)ν∗(Σ0) + `(1)ν∗(Σ0) + `(2)ν∗(Σ1) = 8
(1

6

)
+ 4

(3
6

)
+ 6

(2
6

)
= 32

6 .

Next, we proceed with the solution of Problem 3.3. Let D = 32
6 . By implementing (3.78)

we get that,

(`min− `max)
∑
i∈Σ0

µi+
∑
i∈Σ

`iµi=(`(3)− `(1))µ(3)+ `(1)µ(1)+ `(2)µ(2)+ `(3)µ(3)=28
6 <D

and hence, from (3.79)

R+(D) = 2(D −∑i∈Σ `iµi)
`min − `max

=
2(32

6 −
36
6 )

4− 8 = 1
3 .

It is clear that the optimal probabilities given by (3.80) are equal to the ones already calcu-

lated for Problem 3.3.
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3.3.7. Extension to Countable Alphabets

The statements of Theorems 3.1, 3.2, 3.3 and 3.4 are also valid for the countable alphabet

case, because their derivations are not restricted to Σ being finite alphabet.

It also holds for any ` ∈ BC+(Σ) as seen in Section 3.2.

The extensions of Theorems 3.1-3.4 to ` ∈ L∞,+(Σ,B(Σ), ν) can be shown as well; for

example, D+(R) is given by

D+(R) = `maxν
∗(Σ0) + `minν

∗(Σ0) +
r∑

k=1
`(Σk)ν∗(Σk) (3.89)

where the optimal probabilities are given by

ν∗(Σ0) = µ(Σ0) + α

2 , ν∗(Σ0) =
(
µ(Σ0)− α

2

)+

ν∗(Σk) =
(
µ(Σk)−

(
α

2 −
k∑
j=1

µ(Σj−1)
)+)+

α = min (R,Rmax) , Rmax
4= 2(1− µ(Σ0))

k is at most countable. We outline the main steps of the derivation. For any n ∈ N, ` ∈
BC+(Σ) define `n

4= `
∧
n (i.e., the minimum between ` and n), then `n ∈ BC+(Σ), and

for any ν ∈ BR(µ) we have

sup
ν∈BR(µ)

∫
Σ
`n(x)ν(dx) = R

2

{
sup
x∈Σ

`n(x)− inf
x∈Σ

`n(x)
}

+
∫

Σ
`n(x)µ(dx).

For any ν ∈ BR(µ), we obtain the following∫
Σ
`(x)ν(dx) = sup

n∈N

∫
Σ
`n(x)ν(dx)

≤ sup
n∈N

sup
ν∈BR(µ)

∫
Σ
`n(x)ν(dx)

= sup
n∈N

{
R

2

(
sup
x∈Σ

`n(x)− inf
x∈Σ

`n(x)
)

+
∫

Σ
`n(x)µ(dx)

}

≤ sup
n∈N

{
R

2

(
sup
x∈Σ

`n(x)− inf
x∈Σ

`n(x)
)}

+ sup
n∈N

∫
Σ
`n(x)µ(dx)

= sup
n∈N

{
R

2

(
sup
x∈Σ

`n(x)− inf
x∈Σ

`n(x)
)}

+
∫

Σ
`(x)µ(dx).

Hence,

sup
ν∈BR(µ)

∫
Σ
`(x)ν(dx) ≤ R

2 sup
n∈N

{
sup
x∈Σ

`n(x)− inf
x∈Σ

`n(x)
}

+
∫

Σ
`(x)µ(dx).
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Next, we show the reverse inequality. For any ν ∈ BR(µ), we have that∫
Σ
`(x)ν(dx) ≥

∫
Σ
`n(x)ν(dx)

and therefore

sup
ν∈BR(µ)

∫
Σ
`(x)ν(dx) ≥ sup

ν∈BR(µ)

∫
Σ
`n(x)ν(dx)

= R

2

{
sup
x∈Σ

`n(x)− inf
x∈Σ

`n(x)
}

+
∫

Σ
`n(x)µ(dx).

Since the above inequality holds for all n ∈ N, then

sup
ν∈BR(µ)

∫
Σ
`(x)ν(dx) ≥ R

2 sup
n∈N

{
sup
x∈Σ

`n(x)− inf
x∈Σ

`n(x)
}

+ sup
n∈N

∫
Σ
`n(x)µ(dx)

= R

2 sup
n∈N

{
sup
x∈Σ

`n(x)− inf
x∈Σ

`n(x)
}

+
∫

Σ
`(x)µ(dx).

Hence,

sup
ν∈BR(µ)

∫
Σ
`(x)ν(dx) = R

2 sup
n∈N

{
sup
x∈Σ

`n(x)− inf
x∈Σ

`n(x)
}

+
∫

Σ
`(x)µ(dx).

Utilizing the fact that supn∈N supx∈Σ `n = supn||`n||∞,ν ( ||`||∞,ν = inf∆∈N supx∈∆c `(x),

N 4= {A ∈ B(Σ) : ν(A) = 0}, and similarly for the infimum) we obtain the results.

Remark 3.2. Consider the maximization supν∈BR(µ)
∫

Σ `(x)ν(dx), ` ∈ BC+(Σ). Let

MFS
1 (Σ) denote the set of probability measures on Σ with finite support. Since the set of

probability measuresMFS
1 (Σ) are dense inM1(Σ) ( [11, Theorem 4] , see also Appendix

B.3), there exists a probability measure µFS with finite support {x1, . . . , xk} which approxi-

mates µ ∈M1(Σ) and since ` ∈ BC+(Σ) then∫
Σ
`(x)ν∗(dx) = R

2

{
sup

x∈{Ai:i=1,...,k}
`(x)− inf

x∈{Ai:i=1,...,k}
`(x)

}
+

k∑
j=1

`(xj)µFS(Aj).

3.4. Examples

In this section, we illustrate through examples how the optimal solution of the different

extremum problems behaves, and in addition, we present an application to the area of infor-

mation theory. In particular, we present calculations through Example 3.4.1 for D+(R) and

R+(D), and calculations through Example 3.4.2 for R−(D) and D−(R) when the sequence

` = {`1 `2 . . . `n} ∈ Rn
+ consists of a number of `i’s which are equal. We further present

calculations through Example 3.4.3 for D+(R), R+(D) and D−(R), R−(D) using a large

number of `i’s which are not equal. In Example 3.4.4, the results are applied to universal

lossless coding for a class of source distributions maximizing the entropy.
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3.4 Examples 61

3.4.1. Maximization Problems with a Number of Equal Lengths

Let Σ = {i : i = 1, 2, . . . , 8} and for simplicity consider a descending sequence of lengths

` = {` ∈ R8
+ : `1 = `2 > `3 = `4 > `5 > `6 = `7 > `8} with corresponding nominal

probability vector µ ∈ P1(Σ). Specifically, let ` = [1, 1, 0.8, 0.8, 0.6, 0.4, 0.4, 0.2], and µ =[
23
72 ,

13
72 ,

10
72

9
72 ,

8
72 ,

4
72 ,

3
72 ,

2
72

]
. Note that, the sets which correspond to the maximum, minimum

and all the remaining lengths are equal to Σ0 = {1, 2},Σ0 = {8},Σ1 = {7, 6},Σ2 =
{5},Σ3 = {4, 3}.

Fig.3.1a depicts the maximum linear functional pay-off subject to total variational con-

straint, D+(R), given by Theorem 3.1. Fig.3.1b depicts the maximum total variational pay-

off subject to linear functional constraint, R+(D), given by Theorem 3.2. Recall Lemma 3.1

and Corollary 3.1. Fig.3.1a shows that, D+(R) is a non-decreasing concave function of R

and also that is constant in [Rmax, 2], where Rmax = 2 (1− µ(Σ0)) = 1. Also, from Lemma

3.2 and Corollary 3.2, Fig.3.1b shows that, R+(D) is a non-decreasing convex function of

D and is constant in [Dmax,∞) where Dmax = `max = 1. Fig.3.1c depicts the optimal prob-

abilities as a function of the total variation parameter R. Note that, the optimal probabilities

are the same for both problems.

3.4.2. Minimization Problems with a Number of Equal Lengths

Let Σ = {i : i = 1, 2, . . . , 8} and for simplicity consider a descending sequence of lengths

` = {` ∈ R8
+ : `1 = `2 > `3 = `4 > `5 > `6 = `7 > `8} with corresponding nom-

inal probability vector µ ∈ P1(Σ). Specifically, let ` = [1, 1, 0.8, 0.8, 0.6, 0.4, 0.4, 0.2]
and µ =

[
2
72 ,

3
72 ,

4
72 ,

8
72 ,

9
72 ,

10
72 ,

12
72 ,

24
72

]
. Note that, the sets which correspond to the maxi-

mum, minimum and all the remaining lengths are equal to Σ0 = {1, 2},Σ0 = {8},Σ1 =
{3, 4},Σ2 = {5},Σ3 = {6, 7}.

Fig.3.2a depicts the minimum linear functional pay-off subject to total variational con-

straint, D−(R), given by Theorem 3.3. Fig.3.2b depicts the minimum total variational pay-

off subject to linear functional constraint, R−(D), given by Theorem 3.4. Recall Lemma 3.3

and Corollary 3.3. Fig.3.2b shows that D−(R) is non-increasing convex function of R and

also that is constant in [Rmax, 2], where Rmax = 2 (1− µ(Σ0)) = 1.33. Also, from Lemma

3.4 and Corollary 3.4, Fig.3.2b shows that, R−(D) is a non-increasing convex function ofD,

D ∈ [`min,
∑
i∈Σ `iµi). Note that for D < `min = 0.2 no solution exists and R−(D) is zero in

[Dmax,∞) where Dmax = ∑8
i=1 `iµi = 0.73. Fig.3.2c depicts the optimal probabilities as a

function of the total variation parameter R. Note that, the optimal probabilities are the same

for both problems.

Ioa
nn

is 
Tzo

rtz
is



62 Extremum Problems

0 0.5 1 1.5 2
0.82

0.84

0.86

0.88

0.9

0.92

0.94

0.96

0.98

1

R ∈ [0, 2]

M
ax

im
um

 A
ve

ra
ge

 L
en

gt
h 

P
ay

−
O

ff

(a)

0.84 0.86 0.88 0.9 0.92 0.94 0.96 0.98 1 1.02
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

D ∈ [
∑

i∈Σ
ℓ iµ i, ℓmax]

M
a
x
im

u
m

 T
o
ta

l 
V

a
ri
a
ti
o
n
 P

a
y
−

o
ff

(b)

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

R ∈ [0, 2]

O
p

ti
m

a
l 
P

ro
b

a
b

ili
ti
e

s

 

 
ν

1

*
+ν

2

*

ν
3

*
+ν

4

*

ν
5

*

ν
6

*
+ν

7

*

ν
8

*

(c)

Figure 3.1.: Optimal Solution of Maximization Problems with a Number of Equal Lengths:

(a) Linear functional pay-off subject to total variational constraint, D+(R); (b)

Total variational pay-off subject to linear functional constraint, R+(D); and, (c)

Optimal probabilities.
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Figure 3.2.: Optimal Solution of Minimization Problems with a Number of Equal Lengths:

(a) Linear functional pay-off subject to total variational constraint, D−(R); (b)

Total variational pay-off subject to linear functional constraint, R−(D); and, (c)

Optimal probabilities.
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3.4.3. Extremum Problems with a Large Number of Not Equal Lengths

Let Σ = {i : i = 1, 2, . . . , 50} and consider a descending sequence of lengths ` = {` ∈ R50
+ }

with corresponding nominal probability vector µ ∈ P1(Σ). For display purposes the support

sets are denoted by Σy
x where x, y = {1, 2, . . . , 16}, though of course the subscript symbol

x corresponds to the support sets of Problem D+(R), R+(D) and the superscript symbol y

corresponds to the support sets of Problem D−(R) and R−(D). Let

` =
[
20 20 20 20 19 19 19 18 17 17 16 14 14 13 13 13 13 12 10 10 10 10

10 9 9 9 8 8 8 8 8 8 8 7 7 6 5 4 3 3 3 3 3 3 2 2 2 2 1 1
]
,

and

µ =
[
26 1 5 3 2 19 16 14 13 4 6 5 4 13 25 22 15 16 12 5 10 15 7 12 2 3 12

5 11 6 8 21 7 8 5 12 10 4 7 16 9 6 5 20 18 9 1 11 6 8
]
/500.

Note that, the sets which correspond to the maximum, minimum and all the remaining

lengths are equal to Σ0 = {1−4},Σ0 = {50, 49},Σ16
1 = {48−45},Σ15

2 = {44−39},Σ14
3 =

{38}, ,Σ13
4 = {37},Σ12

5 = {36},Σ11
6 = {35, 34},Σ10

7 = {33− 27},Σ9
8 = {26− 24},Σ8

9 =
{23 − 19},Σ7

10 = {18},Σ6
11 = {17 − 14},Σ5

12 = {13, 12},Σ4
13 = {11},Σ3

14 = {10 −
9},Σ2

15 = {8},Σ1
16 = {7− 5}.

Fig.3.3a-b depicts the maximum linear functional pay-off subject to total variational con-

straint, D+(R), and the maximum total variational pay-off subject to linear functional con-

straint, R+(D), given by Theorem 3.1, 3.2, respectively. Fig.3.3c-d depicts the minimum

linear functional pay-off subject to total variational constraint, D−(R), and the minimum

total variational pay-off subject to linear functional constraint, R−(D), given by Theorem

3.3, 3.4 respectively.

3.4.4. Variable Length Lossless Coding for a Variation Distance Class

In this section we illustrate an application of Problem 3.1 to the well-known lossless com-

pression problem of finding uniquely decodable codes, which minimize the average code-

word length, knowing as Shannon codes [17]. However, instead of designing codes for a

simple probability distribution, we design codes for a class of probability distributions, also

known as universal codes [4].

Given a fixed nominal distribution µ ∈ P(Σ) and distance parameter R ∈ [0, 2], define

the average codeword length pay-off with respect to the true source probability distribution
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Figure 3.3.: Optimal Solution of Maximization and Minimization Problems with a Number

of Not Equal Lengths: (a) Linear functional pay-off subject to total variational

constraint, D+(R); (b) Total variational pay-off subject to linear functional con-

straint, R+(D); (c) Linear functional pay-off subject to total variational con-

straint, D−(R); and, (d) Total variational pay-off subject to linear functional

constraint, R−(D).

ν ∈ BR(µ) ⊂ P(Σ) by

L1(`, ν) 4=
∑
i∈Σ

`iνi. (3.90)

The objective is to find a prefix code length vector `∗ ∈ R|Σ|+ , satisfying Kraft inequality,∑
i∈Σ D

−`i , where D corresponds to a D-ary code alphabet [17], which minimizes the max-

imum average codeword length pay-off defined by

L1(`, ν∗) 4= max
ν∈BR(µ)

∑
i∈Σ

`iνi (3.91)
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66 Extremum Problems

for all R ∈ [0, 2]. By Theorem 3.1, (3.91) is equivalent to

L1(`, ν∗) = R

2 {max
i∈Σ

`i −min
i∈Σ

`i}+
∑
i∈Σ

`iµi.

Moreover, by introducing Lagrange multipliers, the problem can be expressed as follows.

max
s

min
t

min
l

{
α(t− s) +

∑
i∈Σ

`iµi

}
, α

4= R

2 (3.92)

subject to the Kraft inequality and the constraints `i ≤ t ∀i ∈ Σ and `i ≥ s, ∀i ∈ Σ. By

introducing the real-valued Lagrange multipliers λi associated with the constraint `i ≤ t,

∀i ∈ Σ, σi associated with the constraint `i ≥ s, ∀i ∈ Σ, and a real-valued Lagrange

multiplier τ associate with the Kraft inequality, the augmented pay-off is defined by

Lα(`, µ, λ, σ, τ) 4= α(t− s) +
∑
i∈Σ

`iµi + τ
(∑
i∈Σ

D−`i − 1
)

+
∑
i∈Σ

λi(`i − t) +
∑
i∈Σ

σi(s− `i) .

The augmented pay-off is a convex and differentiable function with respect to `, t and s.

Denote the real-valued minimization over `, t, s, λ, σ, τ by `∗, t∗, s∗, λ∗, σ∗ and τ ∗. By the

Karush-Kuhn-Tucker theorem, the following conditions are necessary and sufficient for op-

timality.

∂

∂`i
Lα(`,µ,t,s,λ, σ,τ)|`=`∗,λ=λ∗,t=t∗,s=s∗,σ=σ∗,τ=τ∗ = 0, ∀i ∈ Σ,

∂

∂t
Lα(`, µ, t, s, λ, σ, τ)|`=`∗,λ=λ∗,t=t∗,s=s∗,σ=σ∗,τ=τ∗ = 0,

∂

∂s
Lα(`, µ, t, s, λ, σ, τ)|`=`∗,λ=λ∗,t=t∗,s=s∗,σ=σ∗,τ=τ∗ = 0,∑

i∈Σ
D−`

∗
i − 1 ≤ 0,

τ ∗ ·
(∑
i∈Σ

D−`
∗
i − 1

)
= 0, τ ∗ ≥ 0,

`∗i − t∗ ≤ 0,

λ∗i · (`∗i − t∗) = 0, λ∗i ≥ 0, ∀i ∈ Σ,

s∗ − `∗i ≤ 0,

σ∗i · (s∗ − `∗i ) = 0, σ∗i ≥ 0, ∀i ∈ Σ.

Differentiating with respect to `, the following equation is obtained:

∂

∂`i
Lα(`, µ, λ, τ)|`=`∗,λ=λ∗,t=t∗,τ=τ∗ = µi − τ ∗D−`

∗
i logeD + λ∗i − σ∗i = 0, ∀i ∈ Σ (3.93)

which after manipulation, it becomes

D−`
∗
i = µi + λ∗i − σ∗i

τ ∗ logeD
, i ∈ Σ. (3.94)
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Differentiating with respect to t and s, the following equations are obtained:

∂

∂t
Lα(`, µ, λ, τ)|`=`∗,λ=λ∗,t=t∗,τ=τ∗ =α−

∑
i∈Σ

λ∗i = 0 =⇒
∑
i∈Σ

λ∗i = α. (3.95)

∂

∂s
Lα(`, µ, λ, τ)|`=`∗,λ=λ∗,t=t∗,τ=τ∗ =− α +

∑
i∈Σ

σ∗i = 0 =⇒
∑
i∈Σ

σ∗i = α. (3.96)

When τ ∗ = 0, (3.93) gives µi = σ∗i −λ∗i ,∀i ∈ Σ. Since σ∗i = λ∗i = 0, ∀i ∈ Σ \ Σ0 ∪ Σ0, then

it is concluded that µi = 0. However, µi > 0, ∀i ∈ Σ \ Σ0 ∪ Σ0, and therefore, necessarily

τ ∗ > 0. Next, τ ∗ is found by substituting (3.94) and (3.95) into the Kraft equality to deduce

∑
i∈Σ

D−`
∗
i =

∑
i∈Σ

µi + λ∗i − σ∗i
τ ∗ logeD

=
∑
i∈Σ µi

τ ∗ logeD
+
∑
i∈Σ λ

∗
i

τ ∗ logeD
−

∑
i∈Σ σ

∗
i

τ ∗ logeD
= 1
τ ∗ logeD

= 1.

Therefore, τ ∗ = 1
logeD

. Substituting τ ∗ into (3.94) yields

D−`
∗
i = µi + λ∗i − σ∗i , i ∈ Σ. (3.97)

Let w∗i , D−`
∗
i , i.e., the probabilities that correspond to the codeword lengths `∗i ; also, let

w , D−t
∗ and w , D−s

∗ . From the Karush-Kuhn-Tucker conditions λ∗i · (`∗i − t∗) = 0 and

λ∗i ≥ 0, ∀i ∈ Σ we deduce the following. For all i ∈ Σ \ Σ0 ∪ Σ0, `i < t and `i > s; hence

λ∗i = 0 and σ∗i = 0. For all i ∈ Σ0, `i < t and `i = s; hence λ∗i = 0 and σ∗i > 0. For all

i ∈ Σ0, `i = t and `i > s; hence λ∗i > 0 and σ∗i = 0. Therefore, we can distinguish (3.97) in

the following cases:

D−`
∗
i = µi, i ∈ Σ \ Σ0 ∪ Σ0, (3.98)

D−`
∗
i = µi − σ∗i , i ∈ Σ0, (3.99)

D−`
∗
i = µi + λ∗i , i ∈ Σ0. (3.100)

Substituting λ∗i into (3.95) we have
∑
i∈Σ

(
D−`

∗
i − µi

)
= α, and substituting w∗i , D−`

∗
i we

get ∑
i∈Σ

(
w∗i − µi

)
= α. (3.101)

We know that λ∗i 6= 0 only when `∗i = t∗; otherwise, w∗i = µi. Hence, we can see that

w∗i − µi = (w− µi)+ and it is positive only when `∗i = t∗. Hence, equation (3.101) becomes

∑
i∈Σ

(
w − µi

)+
= α, (3.102)

where (f)+ = max(0, f). This is the classical waterfilling equation [17, Section 9.4] and w

is the water-level chosen, as shown in Figure 3.4.
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68 Extremum Problems

If we also substitute the previously obtained expression of σ∗i into (3.96) we have
∑
i∈Σ

(
µi−

D−`
∗
i

)
= α, and substituting w‡i , D−`

∗
i we get∑

i∈Σ

(
µi − w‡i

)
= α. (3.103)

Hence, substituting w , D−s, equation (3.103) becomes∑
i∈Σ

(
µi − w

)+
= α. (3.104)

In this example, the solution to a minimax average codeword length lossless coding prob-

symbol

weight

w

w

µ1 µ2 µ3 µ4 µ5 µ6 µ7

Figure 3.4.: Example demonstrating the solution of the coding problem using a watefilling-

like fashion, where ν∗ = {w,w,w, µ4, µ5, w, w}.

lem for the class of sources described by the total variational ball is transformed into an

optimization one by finding the expression of the maximization over the total variational

ball. Subsequently, a solution is given in terms of a waterfilling with two distinct levels.

Remark 3.3. Note that the above solution can be used to approximate a high-dimensional

alphabet probability distribution µ ∈ P(Σ), by another lower-dimensional alphabet proba-

bility distribution ν ∈ P(Σ), Σ ⊆ Σ by invoking Jayne’s maximum entropy principle [34,35],

subject to information quantified via the total variation distance between ν ∈ P(Σ) and

µ ∈ P(Σ), because of the following fact. Since all conditions of the Von-Neumann minimax

theorem [25] hold, then we have

min
`∈R|Σ|+ :

∑
i∈Σ D

−`i≤1
max

ν∈BR(µ)

∑
i∈Σ

`iνi = max
ν∈BR(µ)

min
`∈R|Σ|+ :

∑
i∈ΣD

−`i≤1

∑
i∈Σ

`iνi

(a)= max
ν∈BR(µ)

∑
i∈Σ

`∗i νi|`∗i=− log νi = max
ν∈BR(µ)

H(ν). (3.105)
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where equality in (a) follows from the classical solution of Shannon codes [17]. Hence, the

solution of lossless coding for a variation class is equivalent to Jayne’s maximum entropy

formulation subject to total variation distance constraint. Thus, the approximated distribu-

tion is obtained by a waterfilling-like solution, as shown in Figure 3.4.

3.5. Summary

This chapter is concerned with extremum problems involving total variation distance metric

as a pay-off subject to linear functional constraints, and vice-versa; that is, with the roles

of total variation metric and linear functional interchanged. These problems are formulated

using concepts from signed measures while the theory is developed on abstract spaces. Cer-

tain properties and applications of the extremum problems are discussed, while closed form

expressions of the extremum measures are derived for finite alphabet spaces. The funda-

mental water-filling property and the partitioning of the extremum problems are also elabo-

rated. Finally, it is shown through examples how the extremum solution of the various prob-

lems behaves, and an application to the well-known lossless compression problem of finding

uniquely decodable codes, which minimize the average codeword length is presented.
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4
Dynamic Programming with TV Distance

Ambiguity on a Finite Horizon

In this chapter we address optimality of stochastic control strategies on a finite horizon,

via dynamic programming subject to total variation distance ambiguity on the conditional

distribution of the controlled process. We formulate the stochastic control problem using

minimax theory, in which the control minimizes the pay-off while the controlled process,

maximizes it. By employing certain results of Chapter 3, the maximization of a linear func-

tional on the space of probability measures, among those probability measures which are

within a total variation distance from a nominal probability measure, we solve the minimax

stochastic control problem with deterministic control strategies, under a Markovian and a

non-Markovian assumption, on the conditional distributions of the controlled process. The

results of this part include:

• minimax optimization subject to total variation distance ambiguity constraint;

• new dynamic programming recursions, which involve the oscillator seminorm of the

value function, in addition to the standard terms;

• examples which illustrate the applications of our results.

71
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72 Dynamic Programming with TV Distance Ambiguity on a Finite Horizon

4.1. Problem Formulation

In this section, we describe the abstract formulation of the minimax problem under total

variation distance ambiguity.

4.1.1. Dynamic Programming of Finite Horizon Discounted-Markov
Control Model

A finite horizon Discounted-Markov Control Model (D-MCM) with deterministic strategies

is a septuple

D-MCM :
(
{Xi}ni=0, {Ui}n−1

i=0 , {Ui(xi) : xi ∈ Xi}n−1
i=0 , {Qi(dxi|xi−1, ui−1) :

(xi−1, ui−1) ∈ Xi−1 × Ui−1}ni=0, {fi}n−1
i=0 , hn, α

)
(4.1)

consisting of the following.

(a) State Space. A sequence of Polish spaces (complete separable metric spaces) {Xi :
i = 0, . . . , n}, which model the state space of the controlled random process {xj ∈
Xj : j = 0, . . . , n}.

(b) Control or Action Space. A sequence of Polish spaces {Ui : i = 0, . . . , n − 1},
which model the control or action set of the control random process {uj ∈ Uj : j =
0, . . . , n− 1}.

(c) Feasible Controls or Actions. A family {Ui(xi) : xi ∈ Xi} of non-empty measurable

subsets Ui(xi) ⊆ Ui, where Ui(xi) denotes the set of feasible controls or actions, when

the controlled process is in state xi ∈ Xi, and the feasible state-actions pairs defined

by Ki ,
{

(xi, ui) : xi ∈ Xi, ui ∈ Ui(xi)
}

are measurable subsets of Xi × Ui, i =
0, . . . , n− 1.

(d) Controlled Process Distribution. A collection of conditional distributions or stochas-

tic kernels Qi(dxi|xi−1, ui−1) on Xi given (xi−1, ui−1) ∈ Ki−1 ⊆ Xi−1 × Ui−1, i =
0, . . . , n. The controlled process distribution is described by the sequence of transition

probability distributions {Qi(dxi|xi−1, ui−1) : (xi−1, ui−1) ∈ Ki−1, i = 0, . . . , n}.

(e) Cost-Per-Stage. A collection of non-negative measurable functions fj : Kj → [0,∞],
called the cost-per-stage, such that fj(x, ·) does not take the value +∞ for each x ∈
Xj, j = 0, . . . , n − 1. The running pay-off functional is defined in terms of {fj : j =
0, . . . , n− 1}.
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(f) Terminal Cost. A bounded measurable non-negative function hn : Xn → [0,∞) called

the terminal cost. The pay-off functional at the last stage is defined in terms of hn.

(g) Discounting Factor. A real number α ∈ (0, 1) called the discounting factor.

The definition of D-MCM envisions applications of systems described by discrete-time

dynamical state space models, which include random external inputs, since such models give

rise to a collection of controlled processes distributions {Qi(dxi|xi−1, ui−1):(xi−1, ui−1) ∈
Ki−1, i = 0, . . . , n}. For any integer j ≥ 0, define the product spaces by X0,j , ×ji=0Xi and

U0,j−1 , ×j−1
i=0Ui, and the discounted sample pay-off by

Fα
0,n(x0, u0, x1, u1, . . . , xn−1, un−1, xn) ,

n−1∑
j=0

αjfj(xj, uj) + αnhn(xn). (4.2)

The goal in feedback controlled optimization with deterministic strategies is to choose a

control strategy or policy g , {gj : j = 0, 1, . . . , n − 1}, gj : X0,j × U0,j−1 −→ Uj(xj),

ugj = gj(xg0, xg1, . . . , xgj , u
g
0, u

g
1, . . . , u

g
j−1), j = 0, 1, . . . , n − 1 so as to minimize the pay-off

functional

E
{ n−1∑
j=0

αjfj(xgj , u
g
j ) + αnhn(xgn)

}
=
∫
X0×X1×...×Xn

Fα
0,n(x0, u

g
0(x0), x1, u

g
1(x0, x1), . . . , xn−1, u

g
n−1(x0, x1, . . . , xn−1), xn) (4.3)

Q0(dx0)Q1(dx1|x0, u
g
0(x0)) . . . Qn(dxn|xn−1, u

g
n−1(x0, x1, . . . , xn−1)).

Clearly, pay-off (4.3) is a functional of the collection of conditional distributions {Qi(·|·) :
i = 0, 1, . . . , n}. Moreover, if this collection of distribution has countable support for each

(xi−1, ui−1), i = 0, . . . , n, then each integral in (4.3) is reduced to a countable summation.

A Markov property on the controlled process distributions, i.e.,

Qi(dxi|xi−1, ui−1)=Qi(dxi|xi−1, ui−1), ∀(xi−1, ui−1) ∈ ×i−1
j=0Kj, i = 0, 1, . . . , n

under admissible non-Markov strategies, implies that Markov control strategies are optimal

[39]. Therefore, gj : Xj −→ Uj(xj). For (i, x) ∈ {0, 1 . . . , n}×Xi, let V 0
i (x) ∈ R represent

the minimal cost-to-go or value function on the time horizon {i, i+1, . . . , n} if the controlled

process starts at state xi = x at time i, defined by

V 0
i (x) , inf

gk∈Uk(xk)
k=i,...,n−1

Egi,x
{ n−1∑
j=i

αjfj(xgj , u
g
j ) + αnhn(xgn)

}
(4.4)

where Egi,x{·} denotes expectation conditioned on xgi = x. Consequently, it can be shown

that the value function (4.4) satisfies the following dynamic programming recursion relating
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74 Dynamic Programming with TV Distance Ambiguity on a Finite Horizon

the value functions V 0
i (·) and V 0

i+1(·) [39],

V 0
n (x) = αnhn(x), x ∈ Xn (4.5)

V 0
i (x) = inf

u∈Ui(x)

{
αifi(x, u) +

∫
Xi+1

V 0
i+1(z)Qi+1(dz|x, u)

}
, x ∈ Xi. (4.6)

Since the value function V 0
i (x) defined by (4.4) and the dynamic programming recursion

(4.5), (4.6) depend on the complete knowledge of the collection of conditional distributions

{Qi(·|·) : i = 0, . . . , n}, any mismatch of the collection {Qi(·|·) : i = 0, . . . , n} from the

true collection of conditional distributions, will affect the optimality of the control strategies.

Our objective is to address the impact of any ambiguity measured by the total variation

distance between the true conditional distribution and a given nominal distribution on the

cost-to-go (4.4), and dynamic programming recursion (4.5), (4.6).

4.1.2. Dynamic Programming with Total Variation Distance Ambiguity

The objective of this chapter is to investigate dynamic programming under ambiguity of the

conditional distributions of the controlled processes

{
Qi(dxi|xi−1, ui−1) : (xi−1, ui−1) ∈ Ki−1

}
, i = 0, . . . , n.

The ambiguity of the conditional distributions of the controlled process is modeled by the

total variation distance. Specifically, given a collection of nominal controlled process dis-

tributions {Qo
i (dxi|xi−1, ui−1) : (xi−1, ui−1) ∈ Ki−1}, i = 0, . . . , n, the corresponding col-

lection of true controlled process distributions {Qi(dxi|xi−1, ui−1) : (xi−1, ui−1) ∈ Ki−1},
i = 0, . . . , n, is modeled by a set described by the total variation distance centered at the

nominal conditional distribution having radius Ri ∈ [0, 2], i = 0, . . . , n, defined by

BRi(Qo
i )(xi−1, ui−1),

{
Qi(·|xi−1, ui−1):||Qi(·|xi−1, ui−1)−Qo

i (·|xi−1, ui−1)||TV≤Ri

}
.

The total variation distance model of ambiguity is quite general, and it includes linear, non-

linear, finite and/or countable state space models, etc, since no assumptions are impossed on

the structure of the stochastic control dynamical system model, which induces the collec-

tion of conditional distributions {Qi(·|·) : i = 0, . . . , n}, {Qo
i (·|·) : i = 0, . . . , n}. Given

the above description of ambiguity in distribution, we re-formulate the value function and

dynamic programming recursion via minimax theory as follows.

For (i, x) ∈ {0, 1 . . . , n}×Xi, let Vi(x) ∈ R represent the minimal cost-to-go on the time

horizon {i, i+ 1, . . . , n} if the state of the controlled process starts at state xi = x at time i,
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defined by1

Vi(x) , inf
gk∈Uk(xk)
k=i,...,n−1

sup
Qk+1(·|xk,uk)∈BRk+1(Qo

k+1)(xk,uk)

k=i,...,n−1

Egi,x
{ n−1∑
j=i

αjfj(xgj , u
g
j ) + αnhn(xgn)

}

where Egi,x denotes conditional expectation with respect to the true collection of conditional

distribution {Qk(·|·) : k = i, . . . , n}. Even in the above minimax setting the Markov prop-

erty of the controlled process distribution under an admissible non-Markov (i.e., feedback)

strategy implies that Markov control strategies are optimal. Moreover, the value function

satisfies the following dynamic programming recursion relating the value function Vi(·) and

Vi+1(·), for all i = 0, 1, . . . , n− 1.

Vn(x) = αnhn(x), x ∈ Xn

Vi(x) = inf
u∈Ui(x)

sup
Qi+1(·|x,u)∈BRi+1 (Qoi+1)(x,u)

{
αifi(x, u)+

∫
Xi+1
Vi+1(z)Qi+1(dz|x, u)

}
, x ∈ Xi.

Based on this formulation, if Vi+1(·) is bounded continuous non-negative, we show that the

new dynamic programming equation involves the oscillator seminorm of the value function,

in addition to the standard terms.

In addition to the D-MCM, we will also discuss the general discounted feedback control

model (i.e., we relax the Markovian assumption). In summary, the issues discussed and

results obtained in this chapter are the following:

1. formulation of finite horizon discounted stochastic optimal control subject to condi-

tional distribution ambiguity described by total variation distance via minimax theory;

2. dynamic programming recursions for

a) discounted-feedback control model

b) nominal discounted-Markov control model

under total variation distance ambiguity on the conditional distribution of the con-

trolled process;

3. characterization of the maximizing conditional distribution belonging to the total vari-

ation distance set, and the corresponding new dynamic programming recursions;

4. applications of the finite horizon minimax problem to the well-known inventory con-

trol and machine replacement examples. Comparisons are included for the case for

which the total variation constraint is replaced by the relative entropy constraint.
1Assuming the inf sup solution exists. However, for finite alphabet spaces such solution exists.
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76 Dynamic Programming with TV Distance Ambiguity on a Finite Horizon

4.2. Minimax Stochastic Control

In this section, we first introduce the general definition of finite horizon Discounted-

Feedback Control Model (D-FCM) with randomized and deterministic control policies,

under total variation distance uncertainty (which includes the D-MCM introduced in Sec-

tion 4.1), and then we apply the characterization of the maximizing distribution of Section

3.2.1 and 3.3.1 to the dynamic programming recursion.

Define Nn , {0, 1, 2, . . . , n}, n ∈ N. The state space and the control space are sequences

of Polish spaces {Xj : j = 0, 1, . . . , n} and {Uj : j = 0, 1, . . . , n − 1}, respectively. These

spaces are associated with their corresponding measurable spaces (Xj,B(Xj)),∀j ∈ Nn,

(Uj,B(Uj)), ∀j ∈ Nn−1. Define the product spaces by X0,n, ×ni=0 Xi, U0,n−1, ×n−1
i=0 Ui,

and introduce their product measurable spaces, (X0,n,B(X0,n)), (U0,n−1,B(U0,n−1)), respec-

tively, for n ∈ Nn. The state process is denoted by xn , {xj : j = 0, 1, . . . , n}, and the

control process is denoted by un−1 , {uj : j = 0, 1, . . . , n− 1}.
Given (X0,n,B(X0,n)), (U0,n−1,B(U0,n−1)) the Borel state and control or action spaces,

respectively, and the initial state distribution ν0(dx0), we introduce the space H0,n of admis-

sible observable histories by

H0,n , K0 ×K1 × . . .×Kn−1 ×Xn ≡ ×n−1
i=0 Ki ×Xn, n ∈ N, H0,0 = X0

where Ki , {(xi, ui) : xi ∈ Xi, ui ∈ Ui(xi)}, denote the feasible state-action pairs, for i =
0, 1, . . . , n− 1. A typical element h0,n ∈ H0,n is a sequence of the form

h0,n = (x0, u0, . . . , xn−1, un−1, xn), (xi, ui) ∈ Ki, i = 0, . . . , n− 1, xn ∈ Xn.

Similarly, introduce

G0,n = X0 × U0 × . . .×Xn−1 × Un−1 ×Xn ≡ ×n−1
i=0 (Xi × Ui)×Xn, n ∈ N

G0,0 = H0,0 = X0.

Thus, H0,n is a sequence of G0,n for each n = 0, 1, . . . . The spaces G0,n and H0,n

are equipped with the natural σ-algebra B(G0,n) and B(H0,n), respectively (and by Kol-

mogorov’s extension theorem they can be extended to B(G0,∞) and B(H0,∞)). We shall use

the Borel space (H∞,B(H∞)) as the main measurable space (Ω,F). Next, we formulate the

definition of discounted feedback control model.

Definition 4.1. A finite horizon D-FCM is a septuple

D-FCM :
(
X0,n,U0,n−1, {Ui(xi) : xi ∈ Xi}n−1

i=0 , {Qi(dxi|xi−1, ui−1) :

(xi−1, ui−1) ∈ X0,i−1 × U0,i−1}ni=0, {fi}n−1
i=0 , hn, α

)
(4.7)
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consisting of the items (a)-(c), (e)-(g) of finite horizon D-MCM (4.1), while the controlled

process distribution in (d) is replaced by the non-Markov collection {Qi(dxi|xi−1, ui−1) :
(xi−1, ui−1) ∈ ×i−1

j=0Kj}ni=0.

Next, we give the definitions of randomized, deterministic, and stationary control strate-

gies or policies.

Definition 4.2. A randomized control strategy is a sequence π , {π0, . . . , πn−1} of stochas-

tic kernels πi(·|·) on (Ui,B(Ui)) conditioned on (H0,i,B(H0,i)) (e.g., πi(dui|xi, ui−1) ) satis-

fying

πi(Ui(xi)|xi, ui−1) = 1 for every (xi, ui−1) ∈ H0,i, i = 0, 1, . . . , n− 1.

The set of all such policies is denoted by Π0,n−1. A strategy π , {πi : i = 0, . . . , n − 1} ∈
Π0,n−1 is called

(a) randomized Markov strategy if there exists a sequence
{
πMi (·|·) : i = 0, . . . , n− 1

}
of

stochastic kernels πMi (·|·) on (Ui,B(Ui)) conditioned on (Xi,B(Xi)) such that

πi
(
·|xi, ui−1

)
= πMi (·|xi) , ∀

(
xi, ui−1

)
∈ H0,i, i = 0, 1, . . . , n− 1.

The set of randomized Markov strategies is denoted by ΠRM
0,n−1;

(b) randomized stationary Markov strategy if there exists a stochastic kernel πS(·|·) on

(U ,B(U)) conditioned on (X ,B(X )) such that

πi(·|xi, ui−1) = πS(·|xi), ∀(xi, ui−1) ∈ H0,i, i = 0, 1, . . . , n− 1.

The set of randomized stationary Markov strategies is denoted by ΠRS
0,n−1;

(c) deterministic feedback strategy if there exists a sequence g , {gj : j = 0, 1, . . . , n−1}
of measurable functions gj : ×j−1

i=0Ki ×Xj 7−→ Uj , such that for all (xj, uj−1) ∈ H0,j ,

j ∈ Nn−1, gj(x0, u0, x1, u1, . . . , xj−1, uj−1, xj) ∈ Uj(xj), and πj (·|xj, uj−1) assigns

mass 1 to some point in Uj , that is,

πi
(
Ai|xi, ui−1

)
= IAi

(
gi
(
xi, ui−1

))
, ∀Ai ∈ B(Ui), i = 0, 1, . . . , n− 1,

where IAi(·) is the indicator function of Ai ∈ B(Ui).

The set of deterministic feedback strategies is denoted by ΠDF
0,n−1;

(d) deterministic Markov strategy if there exists a sequence g , {gj : j = 0, 1, . . . , n− 1}
of measurable functions gj : Xj 7−→ Uj satisfying gj(xj) ∈ Uj(xj) for all xj ∈ Xj ,
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78 Dynamic Programming with TV Distance Ambiguity on a Finite Horizon

j ∈ Nn−1, and πj(·|xj, uj−1) is concentrated at gj(xj) ∈ Uj(xj) for all (xj, uj−1) ∈
H0,j , j ∈ Nn−1, that is,

πi
(
Ai|xi, ui−1

)
= IAi (gi (xi)) , ∀Ai ∈ B(Ui), i = 0, 1, . . . , n− 1,

The set of deterministic Markov strategies is denoted by ΠDM
0,n−1;

(e) deterministic stationary Markov strategy if there exists a measurable function g :
X 7−→ U such that g(xt) ∈ U(xt), ∀xt ∈ X , and πj(·|xj, uj−1) assigns mass to

some point uj , ∀(xj, uj−1) ∈ H0,j , e.g.,

πi(Ai|xi, ui−1) = IAi(g(xi)), ∀Ai ∈ B(Ui), i = 0, . . . , n− 1.

The set of deterministic stationary Markov strategies is denoted by ΠDS
0,n−1.

Let ΠD
0,n−1 denote the set of all deterministic policies, so that ΠD

0,n−1 ⊂ Π0,n−1.

The relationship between the classes of control strategies or policies is as follows: ΠDS
0,n−1 ⊂

ΠRS
0,n−1 ⊂ ΠRM

0,n−1 ⊂ Π0,n−1, ΠDS
0,n−1 ⊂ ΠDM

0,n−1 ⊂ ΠRM
0,n−1 ⊂ Π0,n−1, and ΠDS

0,n−1 ⊂
ΠDM

0,n−1 ⊂ ΠDF
0,n−1 ⊂ Π0,n−1. Thus, randomized feedback strategies or policies Π0,n−1

contain all other classes of policies, and hence, are most general. On the other hand, sta-

tionary deterministic strategies or policies are contained in all other classes. According to

Definition 4.2, the set of control policies is non-empty, since we have assumed existence

of measurable functions gj : K0,j−1 × Xj −→ Uj such that ∀xj, uj−1 ∈ K0,j−1 × Xj ,
gj(xj, uj−1) ∈ Uj(Xj),∀j ∈ Nn−1. Sufficient conditions for this to hold are in general ob-

tained via measurable selection theorems [32]. For denumerable set (countable alphabet) Xj
endowed with the discrete topology any function is measurable.

Given a controlled process {Qi(·|xi−1, ui−1) : (xi−1, ui−1) ∈ K0,i−1}
n

i=0 and a randomized

control process {πi(·|xi, ui−1) : (xi, ui−1) ∈ K0,i−1 ×Xi}
n

i=0 ∈ Π0,n−1 and the initial proba-

bility ν0(·) ∈M1(X0), then by Ionescu-Tulceu theorem [10] there exists a unique probability

measure Qπ
ν on (Ω,F) defined by

Qπ
ν (x0 ∈ A0, u0 ∈ B0, . . . , xn−1 ∈ An−1, un−1 ∈ Bn−1, xn ∈ An) =

Q0(dx0)π0(du0|x0)⊗Q1(dx1|x0, u0)π1(du1|x1, u0)⊗ . . .

⊗Qn−1(dxn−1|xn−2, un−2)πn−1(dun−1|xn−1, un−2)⊗Qn(dxn|xn−1, un−1) (4.8)

such that

Qπ
ν (x0 ∈ A0) = ν(A0), A0 ∈ B(X0)

Qπ
ν (uj ∈ Bj|h0,j) = πj(Bj|h0,j), Bj ∈ B(Uj)

Qπ
ν (xj+1 ∈ Cj+1|h0,j, uj) = Qj+1(Cj+1|h0,j, uj), Cj+1 ∈ B(Xj+1).
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Given the sample pay-off

Fα
0,n(x0, u0, x1, u1, . . . , xn−1, un−1, xn) ,

n−1∑
j=0

αjfj(xj, uj) + αnhn(xn) (4.9)

its expectation is

EQπ
ν

{
Fα

0,n(x0, u0, . . . , xn−1, un−1, xn)
}

=
∫
Fα

0,n(x0, u0, . . . , xn−1, un−1, xn)

Q0(dx0)π0(du0|x0)⊗Q1(dx1|x0, u0)π1(du1|x1, u0)⊗ . . .

⊗Qn−1(dxn−1|xn−2, un−2)πn−1(dun−1|xn−1, un−2)⊗Qn(dxn|xn−1, un−1). (4.10)

Note that the class of randomized strategies Π0,n−1 embeds deterministic feedback and

Markov strategies.

4.2.1. Variation Distance Ambiguity

Next, we introduce the definitions of nominal controlled process distributions (for finite hori-

zon D-FCM and D-MCM), and their corresponding ambiguous controlled process distribu-

tions.

For each π ∈ ΠDF
0,n−1, π ∈ ΠDM

0,n−1 and π ∈ ΠDS
0,n−1 the nominal controlled process is

described by a sequence of conditional distributions as follows.

Definition 4.3. (Nominal Controlled Process Distributions). A nominal controlled state pro-

cesses {xg = xg0, x
g
1, . . . , x

g
n : π ∈ ΠDF

0,n−1, π ∈ ΠDM
0,n−1, or π ∈ ΠDS

0,n−1} corresponds to a

sequence of stochastic kernels as follows:

(a) Feedback Controlled Process. For every A ∈ B(Xj),

Prob(xj ∈ A|xj−1, uj−1) = Qo
j(A|xj−1, uj−1)

where Qo
j(A|xj−1, uj−1) ∈ Q(Xj|K0,j−1),∀j ∈ Nn

+.

(b) Markov Controlled Process. For every A ∈ B(Xj),

Prob(xj ∈ A|xj−1, uj−1) = Qo
j(A|xj−1, uj−1)

where Qo
j(A|xj−1, uj−1) ∈ Q(Xj|Kj−1),∀j ∈ Nn

+.

(c) Stationary Markov Controlled Process. For every A ∈ B(X )

Prob(xj ∈ A|xj−1, uj−1) = Qo(A|xj−1, uj−1)

where Qo(A|xj−1, uj−1) ∈ Q(X|K).
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80 Dynamic Programming with TV Distance Ambiguity on a Finite Horizon

The class of controlled processes is described by the sequence of stochastic kernels,

{Qj(dxj|xj−1, uj−1) ∈ Q(Xj|K0,j−1 : j = 0, . . . , n}

belonging to a total variation distance set as follows.

Definition 4.4. (Class of Controlled Process Distribution) Given a nominal controlled pro-

cess stochastic kernel of Definition 4.3, and Ri ∈ [0, 2], 0 ≤ i ≤ n the class of controlled

process stochastic kernels is defined as follows:

(a) Class with respect to Feedback Nominal Controlled Process. Given a fixed Qo
j(·|·) ∈

Q(Xj|K0,j−1), j = 0, 1, . . . , n the class of stochastic kernels is defined by

BRi(Qo
i )(xi−1, ui−1) ,

{
Qi(dxi|xi−1, ui−1) :

||Qi(·|xi−1, ui−1)−Qo
i (·|xi−1, ui−1)||TV ≤ Ri

}
, i = 0, 1, . . . , n.

(b) Class with respect to Markov Nominal Controlled Process. Given a fixed Qo
j(·|·) ∈

Q(Xj|Kj−1), j = 0, 1, . . . , n the class of stochastic kernels is defined by

BRi(Qo
i )(xi−1, ui−1) ,

{
Qi(dxi|xi−1, ui−1) :

||Qi(·|xi−1, ui−1)−Qo
i (·|xi−1, ui−1)||TV ≤ Ri

}
, i = 0, 1, . . . , n.

(c) Class with respect to Stationary Markov Nominal Controlled Process. Given a fixed

Qo(·|·) ∈ Q(X|K) the class of stochastic kernels is defined by

BR(Qo)(x, u) ,
{
Q(dz|x, u) : ||Q(·|x, u)−Qo(·|x, u)||TV ≤ R

}
.

Note that in Definition 4.4 (a), (b), although we use the same notation BRi(Qo
i )(xi−1, ui−1)

these sets are different because the nominal distribution Qo
i (·|·) can be of Feedback or

Markov form. The above model is motivated by the fact that dynamic programming involves

conditional expectation with respect to the collection of conditional distributions {Qi(·|·)
∈ Q(Xi|K0,i−1) : i = 0, . . . , n}. Therefore, any ambiguity in these distributions will affect

the optimality of the strategies.

4.2.2. Pay-Off Functional

For each π ∈ ΠDF
0,n−1 or π ∈ ΠDM

0,n−1 the discounted average pay-off is defined by

J0,n(π,Qi : i = 0, . . . , n) , EQπ
ν

{ n−1∑
j=0

αjfj(xj, uj) + αnhn(xn)
}

(4.11)
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where EQπ
ν
{·} denotes expectation with respect to the true joint measure Qπ

ν (dxn, dun−1)
defined by (4.8) such that Qi(·|xi−1, ui−1) ∈ BRi(Qo

i ), i = 0, 1, . . . , n (e.g., it belongs to the

total variation distance ball of Definition 4.4).

Next, we introduce assumptions so that the maximization over the class of ambiguous

measures is well-defined.

Assumption 4.1. The nominal system family satisfies the following assumption: The maps

{fj : Xj × Uj 7−→ R : j = 0, 1, . . . , n − 1}, hn : Xn 7−→ R are bounded, continuous and

non-negative.

Note that it is possible to relax Assumption 4.1 to lower semi-continuous non-negative

functions bounded from below. Next, for illustration purposes we introduce an example

based on discrete-time recursion dynamics and deterministic strategies.

Example 4.1. (Nominal Model) The nominal controlled processes is {xg = xg0, x
g
1, . . . , x

g
n :

u ∈ ΠDF
0,n−1}, and corresponds to a sequence of stochastic kernels {Qo

wj |xj ,uj(dw|x
j, uj) :

j = 0, 1, . . . , n − 1}, functions {bj : Xj × Uj ×Wj 7−→ Xj+1 : j = 0, 1, . . . , n − 1}, and

noise processes {wj : j = 0, 1, . . . , n − 1} adapted to a filtration {F0,i : i = 0, . . . , n − 1}
such that the following hold.

1. For each j ∈ Nn−1, wj is F0,j− measurable and {xg0, x
g
1, . . . , x

g
n} are generated by the

recursion

xgj+1 = bj(xgj , u
g
j , wj), xg0 = x0 (4.12)

which implies that if x0 is F0,0−measurable then xgj is F0,j−1−measurable.

2. For every A ∈ B(Wj), j ∈ Nn−1

Prob(wj ∈ A|xj, uj) = Qo
wj

(A|xgj , u
g
j ), a.s. (4.13)

3. Prob(xg0 = x0) = 1, ∀u ∈ ΠDF
0,n−1.

Notice that (4.13) assumes that the noise {wj : j ∈ Nn−1} is correlated with the state and

control processes. It can be further simplified to an independent and identically distributed

sequence {wj : j ∈ Nn−1}, independent of xgj , which then implies Qo
wj

(dwj|xgj , u
g
j ) =

Qo
wj

(dwj) for almost all (xgj , u
g
j ) ∈ Xj × Uj , j = 0, . . . , n− 1.

The ambiguous model is constructed as follows.

(Uncertainty Stochastic Model) Suppose {G0,j : j = 0, 1, . . . , n − 1} is the true filtration

which is generated by some processes and that F0,i ⊂ G0,i, ∀i ∈ Nn−1. We can model the
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class of true conditional distributions by, Qwj |G0,j(dwj|G0,j) ∈ M1(Wj), 0 ≤ j ≤ n − 1,

such that they belong to variation distance class

BRi(Qo
wi

)(G0,i) ,
{
Qwi(dwi|G0,i) : ||Qwi(·|G0,i)−Qo

wi
(·|xgi , u

g
i )||TV ≤ Ri

}
,

Ri ∈ [0, 2], i = 0, 1, . . . , n− 1.

The above model is motivated by the fact that the value function often involves con-

ditional expectation with respect to Qwi(dwi|G0,i), and that the true noise in (4.12)

can be correlated with past information, such as, the information defined by G0,i ,

σ{xk, uk, xk+1, uk+1, . . . , xi, ui}, 0 ≤ k ≤ i.

4.3. Minimax Dynamic Programming

In this section we shall apply the results of Chapter 3 to formulate and solve the minimax

stochastic control under finite horizon D-FCM and D-MCM ambiguities.

4.3.1. Discounted Feedback Control Model

Utilizing the above formulation, we define the minimax stochastic control problem, where

the maximization is over a total variation distance ball, centered at the nominal conditional

distributionQo
i (dxi|xi−1, ui−1) ∈ Q(Xi|K0,i−1) having radiusRi ∈ [0, 2], for i = 0, 1, . . . , n.

Problem 4.1. Given a nominal feedback controlled process of Definition 4.3 (a), an admis-

sible policy set ΠDF
0,n−1 and an ambiguity class BRk(Qo

k)(xk−1, uk−1), k=0, ..., n of Defini-

tion 4.4 (a), find a π∗∈ΠDF
0,n−1 and a sequence of stochastic kernels Q∗k(dxk|xk−1, uk−1) ∈

BRk(Qo
k)(xk−1, uk−1), k = 0, 1, ..., n which solve the following minimax optimization prob-

lem.

J0,n(π∗, Q∗k : k = 0, . . . , n) = inf
π∈ΠDF

0,n−1

{

sup
Qk(·|xk−1,uk−1)∈BRk

(Qo
k

)(xk−1,uk−1)

k=0,1,...,n

EQπ
ν

{ n−1∑
k=0

αkfk(xgk, u
g
k) + αnhn(xgn)

}}
. (4.14)

Next, we apply dynamic programming to characterize the solution of (4.14), by first ad-

dressing the maximization. Define the pay-off associated with the maximization problem

J0,n(π,Q∗k : k = 0, . . . , n) , sup
Qk(·|xk−1,uk−1)∈BRk

(Qo
k

)(xk−1,uk−1)

k=0,1,...,n

J0,n(π,Qk : k = 0, . . . , n).
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For a given π ∈ ΠDF
0,n−1, which defines {gj : j = 0, . . . , n − 1}, and π[k,m] ≡ ug[k,m],

denoting the restriction of policies in [k,m], 0 ≤ k ≤ m ≤ n − 1, define the conditional

expectation taken over the events G0,j , σ{xg0, . . . , x
g
j , u

g
0, . . . , u

g
j}maximized over the class

BRk(Qo
k)(xk−1, uk−1), k = j + 1, . . . , n, as follows [13, 39]:

Vj(ug[j,n−1],G0,j) , sup
Qk(·|xk−1,uk−1)∈BRk

(Qo
k

)(xk−1,uk−1)

k=j+1,...,n

EQπ
ν

{ n−1∑
k=j

αkfk(xgk, u
g
k)

+ αnhn(xgn)|G0,j

}
(4.15)

where EQπ
ν
{·|G0,j} denotes conditional expectation with respect to G0,j calculated on the

probability measure Qπ
ν . Then, Vj(ug[j,n−1],G0,j) satisfies the following dynamic program-

ming equation [39],

Vn(G0,n) = αnhn(xgn) (4.16)

Vj(ug[j,n−1],G0,j) = sup
Qj+1(·|xj ,uj)∈BRj+1 (Qoj+1)(xj ,uj)

{

EQj+1(·|xj ,uj)

{
αjfj(xgj , u

g
j )+Vj+1(ug[j+1,n−1],G0,j+1)

}}
(4.17)

where EQj+1(·|xj ,uj){·} denotes expectation with respect to Qj+1(dxj+1|K0,j).

Next, we present the dynamic programming recursion for the minimax problem. Let

Vj(G0,j) represent the minimax pay-off on the future time horizon {j, j + 1, ..., n} at time

j ∈ Nn
+ defined by

Vj(G0,j) , inf
π∈ΠDF

j,n−1

sup
Qk(·|xk−1,uk−1)∈BRk

(Qo
k

)(xk−1,uk−1)

k=j+1,...,n

{

EQπ
ν

{ n−1∑
k=j

αkfk(xgk, u
g
k) + αnhn(xgn)|G0,j

}}
= inf

π∈ΠDF
j,n−1

Vj(ug[j,n−1],G0,j). (4.18)

Then by reconditioning we obtain

Vj(G0,j) , inf
u∈Uad[j,n−1]

sup
Qk(·|xk−1,uk−1)∈BRk

(Qo
k

)(xk−1,uk−1)

k=j+1,...,n

{

EQπ
ν

{
αjfj(xgj , u

g
j ) + EQπ

ν

{ n−1∑
k=j+1

αkfk(xgk, u
g
k) + αnhn(xgn)|G0,j+1

}
|G0,j

}}
. (4.19)

Hence, we deduce the following dynamic programming recursion

Vn(G0,n) = αnhn(xgn) (4.20)

Vj(G0,j) , inf
uj∈Uj(x)

sup
Qj+1(·|xj ,uj)∈BRj+1 (Qoj+1)(xj ,uj)

{

EQj+1(·|xj ,uj)

{
αjfj(xgj , u

g
j ) + Vj+1(G0,j+1)

}}
. (4.21)
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By applying the results of Section 3.2.1 and 3.3.1 to (4.20), (4.21) we obtain the following

theorem.

Theorem 4.1. Suppose there exist an optimal policy for Problem 4.1, and assume

Vj+1(·):X0,j+1×U0,j 7−→[0,∞) in (4.18) is bounded continuous in x∈Xj+1, j = 0, . . . , n−1.

1) The dynamic programming recursion is given by

Vn(G0,n) = αnhn(xgn) (4.22)

Vj(G0,j) = inf
uj∈Uj(x)

{
EQoj+1

(
αjfj(xgj , u

g
j ) + Vj+1(G0,j+1)|G0,j

)
+ Rj

2

(
sup

xj+1∈Xj+1

Vj+1(G0,j, xj+1)− inf
xj+1∈Xj+1

Vj+1(G0,j, xj+1)
)}
. (4.23)

Moreover,

Vj(G0,j) = inf
uj∈Uj(x)

EQ∗j+1

{
αjfj(xgj , u

g
j ) + Vj+1(G0,j, xj+1)|G0,j

}
(4.24)

where, the optimal conditional distributions {Q∗j : j = 0, 1, . . . , n− 1} are given by

Q∗j+1

(
X+
j+1|xj, uj

)
=Qo

j+1(X+
j+1|xj, uj) + Rj+1

2 ∈ [0, 1], (xj, uj)∈K0,j (4.25)

Q∗j+1

(
X−j+1|xj, uj

)
=Qo

j+1(X−j+1|xj, uj)−
Rj+1

2 ∈ [0, 1], (xj, uj)∈K0,j (4.26)

Q∗j+1

(
A|xj, uj

)
=Qo

j+1(A|xj, uj), ∀A⊆Xj+1\X+
j+1∪X−j+1, (xj, uj)∈K0,j (4.27)

and 2

X+
j+1

4=
{
xj+1 ∈ X j+1:Vj+1(G0,j, xj+1)= sup

{
Vj+1(G0,j, yj+1):yj+1∈Xj+1

}}
(4.28)

X−j+1
4=
{
xj+1 ∈ X j+1:Vj+1(G0,j, xj+1)= inf

{
Vj+1(G0,j, yj+1):yj+1∈Xj+1

}}
. (4.29)

2) The total pay-off is given by

J0,n(π∗, Q∗i : i = 0, . . . , n− 1) = sup
Q0(·)∈BR0 (Qo)

EQ0

{
V0(G0,0)

}
. (4.30)

Proof. 1) Consider (4.21) expressed in integral form

Vj(G0,j) = inf
uj∈Uj(x)

{
αjfj(xj, uj)

+ sup
Qj+1(·|xj ,uj)∈BRj+1 (Qoj+1)(xj ,uj)

∫
Vj+1(G0,j, z)Qj+1(dz|xj, uj)

}
. (4.31)

By applying (3.46) we obtain (4.22), (4.23), while (4.25)-(4.29) follow as well.

2) By evaluating (4.18) at j = 0 we obtain (4.30). This completes the derivation. �

2Note the notation Σ0 and Σ0 in Chapter 3 is identical to the notation X+
j+1 and X−

j+1, respectively.
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By Theorem 4.1, the maximizing measure is given by (4.25)-(4.27), and it is a functional of

the nominal measure. At this stage we cannot claim that the maximizing measure is Marko-

vian, and hence the optimal strategy is not necessarily Markov. Therefore, the computation

of optimal strategies using non-Markov nominal controlled processes is computationally in-

tensive. Next, we restrict the minimax formulation to Markov controlled nominal processes.

4.3.2. Discounted Markov Control Model

In this section we shall apply the results of Chapter 3 to formulate and solve minimax

stochastic control under finite horizon D-MCM ambiguity. The derivations of the results are

based on the classical results (without ambiguity on the controlled process) found in [54].

We define the minimax stochastic control problem as follows.

Problem 4.2. Given a nominal Markov controlled process of Definition 4.3 (b), an admis-

sible policy set ΠDF
0,n−1 and an ambiguity class BRk(Qo

k)(xk−1, uk−1), k=0, ..., n of Defini-

tion 4.4 (b), find a π∗∈ΠDF
0,n−1 and a sequence of stochastic kernels Q∗k(dxk|xk−1, uk−1) ∈

BRk(Qo
k)(xk−1, uk−1), k = 0, 1, ..., n which solve the following minimax optimization prob-

lem.

J0,n(π∗, {Q∗k}nk=0) = inf
π∈ΠDF

0,n−1

{

sup
Qk(·|xk−1,uk−1)∈BRk

(Qo
k

)(xk−1,uk−1)

k=0,1,...,n

EQπ
ν

{ n−1∑
k=0

αkfk(xgk, u
g
k) + αnhn(xgn)

}}
. (4.32)

In view of Section 3.2.1, specifically, the relation between the maximizing distribution and

the nominal distribution (3.14)-(3.16), which also apply to conditional distributions, we de-

duce that the maximization conditional distribution Q∗i (dxi|xi−1, ui−1) is Markovian, hence

Q∗i (dxi|xi−1, ui−1) = Q∗i (dxi|xi−1, ui−1), ∀(xi−1, ui−1) ∈ K0,i−1. Hence, the minimax opti-

mization problem (4.32) is reformulated as follows.

J0,n(π∗, {Q∗k}nk=0) = inf
π∈ΠDF

0,n−1

{

sup
Qk(·|xk−1,uk−1)∈BRk

(Qo
k

)(xk−1,uk−1)

k=0,1,...,n

EQπ
ν

{ n−1∑
k=0

αkfk(xgk, u
g
k) + αnhn(xgn)

}}
. (4.33)

Next, we apply dynamic programming to characterize the solution of (4.33), by first ad-

dressing the maximization. Define the pay-off associated with the maximization problem

J0,n(π, {Q∗k}nk=0) = sup
Qk(·|xk−1,uk−1)∈BRk

(Qo
k

)(xk−1,uk−1)

k=0,1,...,n

J0,n(π, {Qk}nk=0). (4.34)
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For a given π ∈ ΠDF
0,n−1, which defines {gj : j = 0, 1, . . . , n−1}, and π[k,m] ≡ ug[k,m] denoting

the restriction of policies in [k,m], 0 ≤ k ≤ m ≤ n − 1, define the conditional cost-to-go

or value function taken over the events G0,j
4= σ{xg0, . . . , x

g
j , u

g
0, . . . , u

g
j}maximized over the

class BRk(Qo
k)(xk−1, uk−1), k = j + 1, . . . , n, as follows.

Vj(ug[j,n−1],G0,j)
4= sup

Qk(·|xk−1,uk−1)∈BRk
(Qo
k

)(xk−1,uk−1)

k=j+1,...,n

{

EQπ
ν

{ n−1∑
k=j

αkfk(xgk, u
g
k) + αnhn(xgn)|G0,j

}}
(4.35)

where EQπ
ν
{·|G0,j} denotes conditional expectation with respect to G0,j calculated on the

probability measure Qπ
ν . Here Vj(ug[j,n−1],G0,j) depends on g only through gj, gj+1, . . . , gn−1.

Hence, for j = n, Vj(ug[j,n−1],G0,j) ≡ Vn(G0,n). Note further that

J0,n(π, {Q∗k}nk=0) = EQπ
ν

[
V0(ug[0,n−1],G0,0)

]
. (4.36)

Lemma 4.1. Let π ∈ ΠDM
0,n−1, and define recursively the functions

V g
n (x) = αnhn(x) (4.37)

V g
j (x) = sup

Qj+1(·|x,u)∈BRj+1 (Qoj+1)(x,u)
EQj+1(·|x,u)

{
αjfj(x, gj(x)) + V g

j+1(xgj+1)
}
. (4.38)

Then the random variable V g
j (xgj ) satisfies

V g
j (xgj ) = Vj(ug[j,n−1],G0,j). (4.39)

Proof. For the derivation of Lemma 4.1 see Appendix C.1. �

Lemma 4.2. (The Comparison Principle) Let Vj(x), 0 ≤ j ≤ n, be any functions such that

Vn(x) ≤ αnhn(x) (4.40)

Vj(x) ≤ sup
Qj+1(·|x,u)∈BRj+1 (Qoj+1)(x,u)

EQj+1(·|x,u)

{
αjfj(x, u) + Vj+1(xj+1)

}
(4.41)

for all x ∈ Xj and for all u ∈ Uj(x). Let π ∈ ΠD
0,n−1 be an arbitrary policy. Then w.p.1

Vj(xgj ) ≤ Vj(ug[j,n−1],G0,j). (4.42)

The interpretation of (4.42) is that, under an arbitrary deterministic policy, Vj(xgj ) is a

lower bound of the conditional value function.

Proof. For the derivation of Lemma 4.2 see Appendix C.2. �
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Corollary 4.1. Let Vj(x) be functions satisfying (4.40) and (4.41). Then

J0,n(π∗, {Q∗k}nk=0) ≥ E{V0(x0)}. Hence, if π ∈ ΠD is arbitrary and is such that

V0(ug[0,n−1], G0,0) = V0(x0), then π is optimal.

Proof. For any arbitrary π ∈ ΠD
0,n−1, we have that V0(ug[0,n−1], G0,0) ≥ V0(x0) by (4.42).

Taking expectations and using (4.36), J0,n(π, {Q∗k}nk=0) ≥ E{V0(x0)} and since π was arbi-

trary this yields

J0,n(π∗, {Q∗k}nk=0) ≥ E{V0(x0)}.

Finally, if V0(ug[0,n−1], G0,0) = V0(x0) then

J0,n(π, {Q∗k}nk=0) = E{V0(x0)} ≤ J0,n(π∗, {Q∗k}nk=0)

so that π must be optimal and J0,n(π, {Q∗k}nk=0) = J0,n(π∗, {Q∗k}nk=0). �

Theorem 4.2. Define recursively the functions

Vn(x)=αnhn(x) (4.43)

Vj(x)= inf
u∈Uj(x)

sup
Qj+1(·|x,u)∈BRj+1 (Qoj+1)(x,u)

EQj+1(·|x,u)

{
αjfj(x, u) + Vj+1(xj+1)

}
. (4.44)

1) Let π ∈ ΠD
0,n−1 be arbitrary. Then Vj(xgj ) ≤ Vj(ug[j,n−1],G0,j) w.p.1, in particular

J0,n(π, {Q∗k}nk=0) ≥ E{V0(x0)}.

2) A Markov policy π ∈ ΠDM
0,n−1 which defines {gj : j = 0, 1, . . . , n− 1} is optimal if the

infimum in (4.44) is achieved at gj(x), and then Vj(xgj ) = Vj(ug[j,n−1],G0,j) w.p.1 and

J0,n(π∗, {Q∗k}nk=0) = E{V0(x0)}.

3) A Markov policy π ∈ ΠDM
0,n−1 which defines {gj : j = 0, 1, . . . , n − 1} is optimal only

if for each j, the infimum at xgj in (4.44) is achieved by gj(xgj ), i.e.,

V g
j (xgj ) = sup

Qj+1(·|x,u)∈BRj+1 (Qoj+1)(x,u)
EQj+1(·|x,u)

{
αjfj(xgj , gj(x

g
j )) + V g

j+1(xgj+1)
}

w.p.1.

4) Assume Vj+1(·) : Xj+1 → [0,∞) is bounded continuous in x ∈ Xj+1, j = 0, . . . , n−1,

then the dynamic programming recursion is given by

Vn(x) = αnhn(x), x ∈ Xn (4.45)

Vj(x) = inf
u∈Uj(x)

{
αjfj(x, u) +

∫
Xj+1

Vj+1(z)Qo
j+1(dz|x, u)

+ Rj

2

(
sup

z∈Xj+1

Vj+1(z)− inf
z∈Xj+1

Vj+1(z)
)}
, x ∈ Xj. (4.46)
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Moreover,

Vj(x) = inf
u∈Uj(x)

EQ∗j+1

{
αjfj(xgj , u

g
j ) + Vj+1(xj+1)|xj = x

}
(4.47)

where the optimal conditional distribution {Q∗j(·|·, ·) : j = 0, 1, . . . , n−1} is given by

Q∗j+1

(
X+
j+1|xj, uj

)
=Qo

j+1(X+
j+1|xj, uj) + Rj+1

2 ∈ [0, 1], (xj, uj) ∈ Kj (4.48)

Q∗j+1

(
X−j+1|xj, uj

)
=Qo

j+1(X−j+1|xj, uj)−
Rj+1

2 ∈ [0, 1], (xj, uj) ∈ Kj (4.49)

Q∗j+1 (A|xj, uj) =Qo
j+1(A|xj, uj), ∀A⊆Xj+1\X+

j+1∪X−j+1, (xj, uj) ∈ Kj (4.50)

and

X+
j+1 ,

{
xj+1 ∈ Xj+1:Vj+1(xj+1)= sup{Vj+1(xj+1):xj+1∈Xj+1}

}
(4.51)

X−j+1 ,
{
xj+1 ∈ Xj+1:Vj+1(xj+1)= inf{Vj+1(xj+1):xj+1∈Xj+1}

}
. (4.52)

Proof. 1) The functions Vj(x) defined by (4.43) and (4.44) clearly satisfy (4.40) and (4.41)

and hence part 1) follows from Lemma 4.2.

2) To prove the sufficiency in part 2), let g = {gj} be a Markov policy that achieves the

infimum in (4.44), so

Vj(x) = sup
Qj+1(·|x,u)∈BRj+1 (Qoj+1)(x,u)

EQj+1(·|x,u)

{
αjfj(x, gj(x)) + Vj+1(xj+1)

}
. (4.53)

By Lemma 4.1 it follows that V g
j (xgj ) = Vj(ug[j,n−1],G0,j) for all j and in particular

V0(ug[0,n−1],G0,0) = V g
0 (xg0). By Corollary 4.1, g is optimal and J0,n(π∗, {Q∗k}nk=0) =

E{V g
0 (xg0)}.

3) To prove the necessity in part 3) suppose the Markovian policy π ∈ ΠDM
0,n−1 is optimal.

We prove by induction that gj(xgj ) achieves the infimum in (4.44) at xgj with probability 1.

Consider j = n− 1. Suppose the assertion is false. Then there exists another function g′n−1

such that

sup
Qn(·|xn−1,un−1)

EQn(·|xn−1,un−1){αn−1fn−1(xgn−1, gn−1(xgn−1)) + Vn(xgn)}

≥ sup
Qn(·|xn−1,un−1)

EQn(·|xn−1,un−1){αn−1fn−1(xgn−1, g
′
n−1(xgn−1)) + Vn(xg′n )}, w.p.1

and note the abuse of notation. Moreover the inequality is strict with positive probability.

Using (4.43), we get

sup
Qn(·|xn−1,un−1)

EQn(·|xn−1,un−1){αn−1fn−1(xgn−1, gn−1(xgn−1)) + αnhn(xgn)}

> sup
Qn(·|xn−1,un−1)

EQn(·|xn−1,un−1){αn−1fn−1(xgn−1, g
′
n−1(xgn−1)) + αnhn(xg′n )} (4.54)
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Consider the Markov policy g′ = {g0, . . . , gn−2, g
′
n−1}. Evidently, xgj = xg

′

j for all 0 ≤ j ≤
n− 1 and so ugj = ug

′

j , 0 ≤ j ≤ n− 1 and ug
′

n−1 = g′n−1(xgn−1). Hence

sup
Qj(·|xj−1,uj−1)

EQj(·|xj−1,uj−1){αjfj(xgj , u
g
j )}

= sup
Qj(·|xj−1,uj−1)

EQj(·|xj−1,uj−1){αjfj(xgj , u
g′

j )}, 0 ≤ j ≤ n− 2 (4.55)

Adding (4.54) and (4.55) gives

sup
Qk(·|xk−1,uk−1)
k=0,1,...,n

EQπ
ν
{
n−2∑
k=0

αkfk(xgk, u
g
k) + αn−1fn−1(xgn−1, gn−1(xgn−1)) + αnhn(xgn)}

> sup
Qk(·|xk−1,uk−1)
k=0,1,...,n

EQπ
ν
{
n−2∑
k=0

αkfk(xgk, u
g
k) + αn−1fn−1(xgn−1, g

′
n−1(xgn−1)) + αnhn(xg′n )}

and so g cannot be optimal contrary to the hypothesis. Thus gn−1(xgn−1) does achieve the infi-

mum in (4.44) for n− 1, and so Vn−1(ug[n−1,n−1],G0,n−1) = Vn−1(xgn−1). Now suppose by in-

duction that gj+1(xgj+1) achieves the infimum and that Vj+1(ug[j+1,n−1],G0,j+1) = Vj+1(xgj+1).

We prove this for j. Indeed, otherwise there is a function g′j such that

sup
Qk(·|xk−1,uk−1)
k=j,j+1,...,n−1

EQj(·|xj−1,uj−1){αjfj(xgj , gj(x
g
j )) + Vj+1(xgj+1)}

≥ sup
Qk(·|xk−1,uk−1)
k=j,j+1,...,n−1

EQj(·|xj−1,uj−1){αjfj(xgj , g′j(x
g
j )) + Vj+1(xg

′

j+1)}, w.p.1. (4.56)

This inequality is strict with positive probability. Consider the policy g′ =
{g0, . . . , gj−1, g

′
j, gj+1, . . . , gn−1}. Then certainly

sup
Qk(·|xk−1,uk−1)

E{αkfk(xgk, u
g
k)} = sup

Qk(·|xk−1,uk−1)
E{αkfk(xg

′

k , u
g′

k )}, 0 ≤ k ≤ j−1 (4.57)

Also, by the induction hypothesis gj+1, . . . , gn−1 achieve the infimum in (4.56) and so by

Lemma 4.1

sup
Qj+1(·|xj ,uj)

E{V g
j+1(ug[j+1,n−1],G0,j+1)} = sup

Qj+1(·|xj ,uj)
E{V g

j+1(xgj+1)} (4.58)

sup
Qj+1(·|xj ,uj)

E{V g′

j+1(ug
′

[j+1,n−1],G0,j+1)} = sup
Qj+1(·|xj ,uj)

E{V g′

j+1(xg
′

j+1)} (4.59)

From (4.56), (4.57), (4.58) and (4.59) it follows that

sup
Qk(·|xk−1,uk−1)
k=j,j+1,...,n−1

EQj(·|xj−1,uj−1){
j−1∑
k=0

αkfk(xgk, u
g
k) + αjfj(xgj , u

g
k) + Vj+1(xgj+1)}

> sup
Qk(·|xk−1,uk−1)
k=j,j+1,...,n−1

EQj(·|xj−1,uj−1){
j−1∑
k=0

αkfk(xgk, u
g
k) + αjfj(xgj , u

g′

k ) + Vj+1(xg
′

j+1)}, w.p.1.
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90 Dynamic Programming with TV Distance Ambiguity on a Finite Horizon

and so g cannot be optimal contrary to hypothesis. Thus, gj(xgj ) must achieve the infimum

and the result follows by induction.

4) By definition, (4.44) is also equivalent to

Vj(x) = inf
u∈U(x)

{
αjfj(x, u) + sup

Qj+1(·|x,u)∈BRj+1 (Qoj+1)(x,u)

∫
Xj+1

Vj+1(z)Qj+1(dz|x, u)
}
.

Hence, by applying the results of Section 3.2.1 we obtain (4.45)-(4.50). �

Remark 4.1. In many applications the nominal controlled process is described by

xgj+1 = bj(xgj , u
g
j , ξj), xg0 = x0, j ∈ Nn−1

where {ξj : j = 0, 1, . . . , n − 1} taking values in some metric space, ξj ∈ (Ξj, d), is a

deterministic exogenous input which belongs, for example to the space

l2(Ξ0,n−1) ,

ξj ∈ Ξj, j = 0, . . . , n− 1 :
n−1∑
j=0
|ξj|2Ξj <∞

 .
In this case the nominal conditional distribution becomes

Qo
j+1(A|x, u) = IA(bj(x, u, ξ)), A ∈ Xj, ξ ∈ Ξj, j = 0, . . . , n− 1.

Remark 4.2. We make the following observations regarding Theorem 4.2.

(a) The dynamic programming equation (4.45), (4.46) has the interpretation of minimiz-

ing the future ambiguity. It involves in its right hand side the oscillator seminorm of

Vj+1(·), called the global modulus of continuity of Vj+1(·), which measures the differ-

ence between the maximum and the minimum values of Vj+1(·).

(b) For finite and countable alphabet spaces Xj , X , the integrals in the right hand side of

(4.46) are replaced by summations.

(c) The dynamic programming recursion (4.45), (4.46) can be applied to a controlled

process with continuous alphabets and to a controlled process with finite or countable

alphabets, such as Markov Decision models.

Next, we show that for any j ∈ Nn−1, the minimax pay-off

Vj(x) = inf
π∈ΠDMj,n−1

sup
Qk(·|xk−1,uk−1)∈BRk

(xk−1,uk−1)

k=j+1,...,n

{ n−1∑
k=j

αkfk(xgk, u
g
k) + αnhn(xgn)|x

}
(4.60)

as a function of Rj is non-decreasing and concave.
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Lemma 4.3. Suppose the conditions of Theorem 4.2 hold and in addition Rj = R, j =
1, . . . , n. The minimax pay-off V R

j (x) ≡ Vj(x) defined by (4.60) is a non-decreasing concave

function of R.

Proof. Consider two values for R1, R2 ∈ R+ such that 0 ≤ R1 ≤ R2. Since

BR1(Qo
k)(xk−1, uk−1) ⊆ BR2(Qo

k)(xk−1, uk−1)

then for every Qk(·, xk−1, uk−1) ∈ BR1(Qo
k)(xk−1, uk−1) we have Qk(·, xk−1, uk−1) ∈

BR2(Qo
k)(xk−1, uk−1), k = j + 1, . . . , n − 1. Hence, V R1

j (x) ≤ V R2
j (x) and thus, V R

j (x) is

a non-decreasing function of R ∈ R+.

Next, for a fixed π ∈ ΠDM
j,n−1 consider two points (R1, V π,R1

j ), (R2, V π,R2

j ) such that

{Q1
k(·|xk−1, uk−1) : k = j + 1, . . . , n} achieves the supremum in (4.35) for R1, and

{Q2
k(·|xk−1, uk−1) : k = j + 1, . . . , n} achieves the supremum in (4.35) for R2. Then

||Q1
k(·|xk−1, uk−1)−Qo

k(·|xk−1, uk−1)||TV ≤ R1, k = j + 1, . . . , n− 1

||Q2
k(·|xk−1, uk−1)−Qo

k(·|xk−1, uk−1)||TV ≤ R2, k = j + 1, . . . , n− 1.

For any λ ∈ (0, 1) we have

||λQ1
k(·|xk−1, uk−1) + (1− λ)Q2

k(·|xk−1, uk−1)−Qo
k(·|xk−1, uk−1)||TV

≤ λ||Q1
k(·|xk−1, uk−1)−Qo

k(·|xk−1, uk−1)||TV + (1− λ)||Q2
k(·|xk−1, uk−1)

−Qo
k(·|xk−1, uk−1)||TV ≤ λR1 + (1− λ)R2, k = j + 1, . . . , n. (4.61)

Define Q∗k(·|xk−1, uk−1) , λQ1
k(·|xk−1, uk−1) + (1− λ)Q2

k(·|xk−1, uk−1), R = λR1 + (1−
λ)R2. By (4.61),Q∗k ∈ BR(Qo

k)(xk−1, uk−1), k = j+1, . . . , n. Define the unique probability

measure

Q∗j+1,n(dxn||un),λ⊗nk=j+1 Q
1
k(dxk|xk−1, uk−1)+(1−λ)⊗nk=j+1 Q

2
k(dxk|xk−1, uk−1).

Then,

V π,R
j (x) ≥

∫ ( n−1∑
k=j

fk(xk, uk) + hn(xn)
)
Q∗j+1,n(dxn||un)).

Hence,

V π,R
j (xj) = RHS of (4.35)

≥ λ
∫ ( n−1∑

k=j
fk(xk, uk) + hn(xn)

)
⊗nk=j+1 Q

1
k(dxk|xk−1, uk−1)

+(1− λ)
∫ ( n−1∑

k=j
fk(xk, uk) + hn(xn)

)
⊗nk=j+1 Q

2
k(dxk|xk−1, uk−1)

= λV π,R1

j (xj) + (1− λ)V π,R2

j (xj), j = 0, . . . , n− 1.
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92 Dynamic Programming with TV Distance Ambiguity on a Finite Horizon

Hence, for any π ∈ ΠDM
j,n−1, V π,R

j (xj) is a concave function of R, and thus it is also concave

for the π ∈ ΠDM
j,n−1, which achieve the infimum in (4.60). �

This concavity property of the pay-off is also verified in the examples presented in Section

4.4.

Remark 4.3. The previous results apply to randomized strategies as well.

Relative Entropy and Exponential Functions

Related work on modeling uncertainty in probability distribution utilizes relative entropy

[3, 15, 33, 44, 56] defined by (see also Chapter 2.3)

H(α||β) ,


∫
Σ log(α(dx)

β(dx))α(dx), if α(·) << β(·), and log α
β
∈ L1(α)

+∞, otherwise.
(4.62)

However, by Pinsker’s inequality (2.5), distance in total variation of probability measures

is a lower bound on relative entropy or Kullback-Leibler distance. Hence, for any fixed

β ∈M1(Σ) then{
α ∈ M1(Σ) : H(α||β) ≤ r2

2

}
⊆ BR(β) ≡

{
α ∈ M1(Σ) : ||α − β||TV ≤ r

}
.

Moreover, by the definition of relative entropy (4.62), for any finite r ∈ [0,∞], and fixed β ∈
M1(Σ), any ambiguity set described by relative entropy consists of only those measures α ∈
M1(Σ) which are absolutely continuous with β ∈ M1(Σ). The relative entropy constraint

set is defined by

Ar(Qo
i )(xi−1, ui−1),

{
Qi(·|xi−1, ui−1):H(Qi||Qo

i )(xi−1, ui−1)≤r(xi−1)
}
, i=0, 1, . . . , n

where r : X 7→ [0,∞). The minimax optimization problem subject to relative entropy

constraint on the conditional distribution of the controlled process is formulated as follows.

J0,n(π∗, Q∗k : k = 0, . . . , n) = inf
uk∈Uk(xk)

k=0,1,...,n−1

sup
Qk(·|xk−1,uk−1)∈Ar(Qo

k
)(xk−1,uk−1)

k=0,1,...,n

EQπ
ν

{ n−1∑
k=0

αkfk(xgk, u
g
k) + αnhn(xgn)

}
. (4.63)

We formulate the stochastic control problem in alignment with the dynamic programming

equation of total variation distance constraint. For (i, x) ∈ {0, 1, . . . , n} × Xi, let Vi(x) ∈ R
represent the minimal cost-to-go defined by

Vi(x) = inf
uk∈∈Uk(xk)
k=i,...,n−1

sup
Qk+1(·|xk,uk)∈Ar(Qo

k+1)(xk,uk)

k=i,...,n−1

Egi,x
{ n−1∑
j=i

αjfj(xgj , u
g
j ) + αnhn(xgn)

}
.
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The dynamic programming equations are given by

Vn(x) = αnhn(x), x ∈ Xn
Vi(x) = inf

u∈Ui(x)
sup

Qi+1(·|x,u)∈Ar(Qoi+1)(x,u)

{
αifi(x, u) +

∫
Xi+1

Vi+1(z)Qi+1(dz|x, u)
}
.

By Lagrange duality theorem [40], then

Vi(x) = inf
u∈Ui(x)

inf
s(x)≥0

sup
Qi+1(·|x,u):H(Qi+1||Qoi+1)(x,u)<∞{

αifi(x, u) +
∫
Xi+1
Vi+1(z)Qi+1(dz|x, u)− s(x)

(
H(Qi+1||Qo

i+1)(x, u)− r(x)
)}

(4.64)

where s(x) is the Lagrange multiplier. By [48] (Proposition 2.3), the supremum over

Qi+1(·|x, u) with H(Qi+1||Qo
i+1)(x, u) <∞ is attained at

Q∗i+1(dz|x, u) =
exp

(
1
s(x)Vi+1(z)

)
Qo
i+1(dz|x, u)∫

Xi+1
exp

(
1
s(x)Vi+1(z)

)
Qo
i+1(dz|x, u)

. (4.65)

Substituting (4.65) into (4.64) yields

Vn(x) = αnhn(x), x ∈ Xn (4.66)

Vi(x) = inf
u∈Ui(x)

inf
s(x)≥0{

αifi(x, u)+s(x) log
∫
Xi+1
exp

( 1
s(x)Vi+1(z)

)
Qo
i+1(dz|x, u)

}
+s(x)r(x). (4.67)

The Lagrange multipliers infs(x)≥0{·} can be found by the relative entropy constraint which

holds with equality, i.e.,

H
(
Q∗i+1||Qo

i+1

)
(x, u)

∣∣∣
s(x)=s∗(x)

= r(x), for i = 0, 1, . . . , N − 1.

A further elaboration on the connections between stochastic optimal control with risk-

sensitive pay-off and minimax stochastic control in which the maximization is with respect

to relative entropy ambiguity is found in [3, 15, 33, 44, 48, 56] (where all duality relations

require that relative entropy is finite). A specific example which illustrates the differences

between relative entropy and the total variation distance ambiguity, is presented analytically

in Section 4.4.1.

In the next section, we illustrate through examples how the theoretical results obtained in

preceding sections are applied.

4.4. Examples

In Section 4.4.1 we illustrate an application of the finite horizon minimax problem to the

well-known inventory control example. Comparisons are included for the case for which the
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94 Dynamic Programming with TV Distance Ambiguity on a Finite Horizon

total variation constraint is replaced by the relative entropy between the nominal and true

probability distributions. In Section 4.4.2 we illustrate an application of the finite horizon

minimax problem to the well-known machine replacement example.

4.4.1. Inventory Control Example

Consider an inventory control example inspired by [9]. Specifically, an optimal inventory

ordering policy of a quantity of a certain item at each of the N periods must be found so as

to meet a stochastic demand. Let us denote

• xk, stock available at the beginning of the kth period;

• uk, stock ordered at the beginning of the kth period;

• wk, demand during kth period with given probability distribution;

• h, holding cost per unit item remaining unsold at the end of the kth period;

• c, cost per unit stock ordered;

• p, shortage cost per unit demand unfilled.

The random disturbance at time k, wk may depend on values of xk and uk but not on values of

prior disturbancesw0, ..., wk−1. Excess demand is backlogged and filled as soon as additional

inventory becomes available. Inventory and demand are non-negative integers variables.

Thus, we assume a nominal system given by

xk+1 = max(0, xk + uk − wk). (4.68)

and a total sample pay-off over N periods given by

N−1∑
k=0

(cuk + hmax(0, xk + uk − wk) + pmax(0, wk − xk − uk)) .

We further assume that wk is independent and identically distributed according to µwk(·) =
µw(·). We formulate the problem as a minimax optimization of the expected cost as follows.

min
uk∈Uk(xk)

max
νwk

(·):||νwk (·)−µw(·)||TV ≤R
k=0,...,N−1

E
{N−1∑
k=0

(
cuk

+ hmax(0, xk + uk − wk) + pmax(0, wk − xk − uk)
)}
. (4.69)

Assume the following:
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• the nominal and the true distribution of {wk : k = 0, 1, . . . , N − 1} is µwk(·) = µw(·),

and νwk(·), respectively, k = 0, 1, . . . , N − 1;

• the maximum capacity (xk + uk) for stock is 2 units;

• the planning horizon N = 3 periods;

• the holding cost h and the ordering cost c are both 1 unit;

• the shortage cost p is 3 units;

• the demand wk has a nominal probability distribution given by, µw(wk = 0) = 0.2,

µw(wk = 1) = 0.7, and µw(wk = 2) = 0.1, k = 0, 1, . . . , N − 1.

Dynamic Programming Subject to Total Variation Distance Constraint

The dynamic programming algorithm for the minimax problem subject to total variation

distance uncertainty is given by

VN(xN) = 0, (4.70a)

Vk(xk) = min
0≤uk≤2−xk

max
νwk (·):||νwk (·)−µw(·)||TV ≤R

E
{
uk+ max(0, xk+uk−wk)+3 max(0, wk−xk−uk)+Vk+1(max(0, xk+uk−wk))

}
= min

0≤uk≤2−xk
max

νwk (·):||νwk (·)−µw(·)||TV ≤R
E
{
`k(xk, uk, wk)

}
≡ min

0≤uk≤2−xk
D+(xk, uk, R), k = 0, 1, . . . , N − 1, (4.70b)

where

`k(xk, uk, wk) = uk + max(0, xk + uk − wk)

+ 3 max(0, wk − xk − uk) + Vk+1(max(0, xk + uk − wk)).

To address the maximization problem in (4.70b), for each k = 0, 1, . . . , N−1, xk ∈ {0, 1, 2}
and 0 ≤ uk ≤ 2− xk, define the maximum and minimum values of `(xk, uk, wk) by

`max(xk, uk)
4= max

wk∈{0,1,2}
`(xk, uk, wk), `min(xk, uk)

4= min
wk∈{0,1,2}

`(xk, uk, wk)

and its corresponding support sets by

Σ0 =
{
wk ∈ {0, 1, 2} : `(xk, uk, wk) = `max(xk, uk)

}
,

Σ0 =
{
wk ∈ {0, 1, 2} : `(xk, uk, wk) = `min(xk, uk)

}
.
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96 Dynamic Programming with TV Distance Ambiguity on a Finite Horizon

For all remaining sequence {`(xk, uk, wk) : wk ∈ {0, 1, 2} \ Σ0 ∪ Σ0} and for 1 ≤ r ≤
|{0, 1, 2} \ Σ0 ∪ Σ0| define recursively the set of indices for which `(xk, uk, uk) achieves its

(j + 1)th smallest value by

Σj ,
{
wk ∈ {0, 1, 2} : `(xk, uk, wk) = min

{
`(xk, uk, αk) :

αk ∈ {0, 1, 2} \ Σ0 ∪
( j⋃
i=1

Σi−1

)}}
, j ∈ {1, 2, . . . , r},

till all the elements of {0, 1, 2} are exhausted. Further, define

`Σj(xk, uk) , min
wk∈{0,1,2}\Σ0∪(

⋃j

i=1 Σi−1)
`(xk, uk, wk).

where j ∈ {1, 2, . . . , r}. Once we identify the support sets and the corresponding values of

the sequence `(xk, uk, wk) on these sets, we employ (3.45), (3.46) to calculate the maximiz-

ing distribution ν∗wk(·) and the extremum solution of D+(xk, uk, R). Finally, by employing

(4.70) the optimal cost-to-go and hence the optimal ordering policy are obtained. Alterna-

tively, from the definition of the oscillator seminorm (Remark 3.1, second part), (4.70) can

be expressed as follows.

VN(xN) = 0, (4.71a)

Vk(xk) = min
0≤uk≤2−xk

Eµw{uk + max(0, xk + uk − wk) + 3 max(0, wk − xk − uk)

+ Vk+1(max(0, xk + uk − wk))
}

+Rk

2

(
max
wk

{
uk+ max(0, xk+uk−wk)

+ 3 max(0, wk−xk−uk)+Vk+1(max(0, xk+uk−wk))
}
−min

wk

{
uk+ max(0, xk+uk−wk)

+3 max(0, wk−xk−uk)+Vk+1(max(0, xk+uk−wk))
}), (4.71b)

where Rk = R ∈ [0, 2]. The problem is solved for two possible values of R for each period

resulting in optimal ordering policies as shown in Table 4.1.

By setting R = 0, we choose to calculate the optimal control policy, when the true prob-

ability distribution νwk(·) = µw(·), k = 0, 1, 2. This corresponds to the classical dynamic

programming algorithm. From Table 4.1, the resulting optimal ordering policy for each pe-

riod is to order one unit if the current stock is zero and order nothing otherwise.

By setting the total variation distance R = 1, we choose to calculate the optimal control

policy, when the true probability distribution is νwk(·) 6= µw(·), k = 0, 1, 2. The maximizing

distribution ν∗wk(·) and its corresponding support sets for each stock available, and the result-

ing optimal ordering policies at each stage are given in Table 4.2. Taking into consideration
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the maximization (that is, by setting R > 0) the dynamic programming algorithm results

in optimal control policies which are more robust with respect to uncertainty, but with the

sacrifice of low present and future costs. In cases where the planner needs to balance the de-

sire for low costs with the undesirability of scenarios with high uncertainty, he must choose

values of R between 0 and 1. From Table 4.1, the resulting optimal ordering policy for the

first two periods is to order two, one and zero units if the current stock is zero, one and two,

respectively. For the last period the optimal ordering policy is to order one unit if the current

stock is zero and order nothing otherwise. The optimal cost-to-go and the optimal control

policy, for each period and for each possible state, as a function of R ∈ [0, 2], are illustrated

in Fig 4.1. Clearly, Fig.4.1a depicts that the optimal cost-to-go is a non-decreasing concave

function of R as shown in Lemma 3.1.

Dynamic Programming Subject to Relative Entropy Constraint

The dynamic programming algorithm for the minimax problem subject to relative entropy

constraint is given by

VN(xN) = 0

Vk(xk) = min
0≤uk≤2−xk

min
s(xk)≥0

{
s(xk) logEµw

{
exp

( 1
s(xk)

(uk + max(0, xk+uk−wk)

+3 max(0, wk−xk−uk)+Vk+1(max(0, xk+uk−wk)))
)}

+s(xk)r(xk)
}
.

The above dynamic programming equations are obtained by slightly modifying dynamic pro-

gramming equations (4.66)-(4.67), since the cost of the inventory control example is also a

function of the demandwk. The problem with relative entropy is a convex optimization prob-

lem, and the maximization of the cost over the relative entropy is a concave non-decreasing

function of r(x) ∈ [0, rmax) where rmax can be computed. In addition, since the ambiguity

set described by relative entropy is a subset of the much larger total variation ambiguity set3,

lower values of the optimal cost-to-go are obtained compared to the ones obtained under

total variation ambiguity.

Fig 4.2, depicts the optimal cost-to-go and the optimal control policy, for each period and

for each possible state, as a function of the relative entropy constraint. Fig 4.3, depicts a

realization of the inventory control example, under the resulting optimal control policy for

three possible scenarios, (i) without ambiguity4, (ii) with ambiguity based on total variation

distance and, (iii) with ambiguity based on relative entropy. In particular, the comparison

3See Pinsker’s inequality (2.5).
4This scenario corresponds to the classical dynamic programming, see Fig 4.1 and/or Fig 4.2, for R = 0 and

r = 0, respectively
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98 Dynamic Programming with TV Distance Ambiguity on a Finite Horizon

is performed by first choosing the maximizing distribution ν∗ = [0.1 0.3 0.6] and by cal-

culating the total variation and the relative entropy parameters. The resulting total variation

parameter R is equal to one, while the resulting relative entropy parameter r is equal to 0.75.

Then by extracting the optimal control policies from Fig 4.1b and 4.2b (for the corresponding

value of total variation and relative entropy parameter), and by selecting the stock available

xk, and the demand wk, for each period as shown in Fig 4.3, it is clear that, optimal control

policy under total variation distance ambiguity is more robust with respect to optimal control

policies with no ambiguity and with relative entropy ambiguity in which excess demand is

lost. In conclusion, the dynamic programming based on relative entropy is not as general as

the dynamic programming based on total variation, and in addition it has the disadvantage

that it does not admit distributions which are singular with respect to the nominal distribu-

tion, and this rules out the cases in which the nominal systems are simplified versions of

the true systems. This is in contrast to the dynamic programming based on total variation

distance.

R = 1 R = 0
Stage 0 Stage 0 Stage 0 Stage 0

Stock Cost-to-go Optimal Stock Stock Cost-to-go Optimal Stock

to Purchase to Purchase

0 7.49 2 0 4.1 1

1 6.49 1 1 3.1 0

2 5.49 0 2 3 0

Stage 1 Stage 1 Stage 1 Stage 1
Stock Cost-to-go Optimal Stock Stock Cost-to-go Optimal Stock

to Purchase to Purchase

0 5.49 2 0 2.8 1

1 4.49 1 1 1.8 0

2 3.49 0 2 1.82 0

Stage 2 Stage 2 Stage 2 Stage 2
Stock Cost-to-go Optimal Stock Stock Cost-to-go Optimal Stock

to Purchase to Purchase

0 3 1 0 1.5 1

1 2 0 1 0.5 0

2 1.7 0 2 1.1 0

Table 4.1.: Dynamic Programming Algorithm Results for Inventory Control Example
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Figure 4.1.: Inventory Control Cxample with Total Variation as a Constraint: Plot (a) depicts

the optimal cost-to-go. Plot (b) depicts the optimal control policy.
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Figure 4.2.: Inventory Control Example with Relative Entropy as a Constraint: Plot (a) de-

picts the optimal cost-to-go. Plot (b) depicts the optimal control policy.
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Stock
Optimal Support Sets Maximizing Distribution

Ordering Σ0 Σ0 Σ1 ν∗wk(Σ
0) ν∗wk(Σ0) ν∗wk(Σ1)

St
ag

e
0 0 2 {0,1,2} - - 1 - -

1 1 {0,1,2} - - 1 - -

2 0 {0,1,2} - - 1 - -
St

ag
e

1 0 2 {0} {1,2} - 0.7 0.3 -

1 1 {0} {1,2} - 0.7 0.3 -

2 0 {0} {1,2} - 0.7 0.3 -

St
ag

e
2 0 1 {2} {1} {0} 0.6 0.2 0.2

1 0 {2} {1} {0} 0.6 0.2 0.2

2 0 {0} {2} {1} 0.7 0 0.3

Table 4.2.: Maximizing Distribution and Support Sets, when R=1, for Inventory Control

Example

4.4.2. Machine Replacement Example

Consider a machine replacement example inspired by [9]. Specifically, we have a machine

that is either running or is broken down. If it runs throughout one week, it makes a profit of

e 100 for that week. If it fails during the week, the profit is zero for that week. If it is running

at the beginning of the week and we perform preventive maintenance, the probability that it

will fail during the week is 0.4. If we do not perform such maintenance, the probability of

failure is 0.7. The maintenance cost is set to e 20. When the machine is broken down at the

start of the week, it may either be repaired at a cost of e 40, in which case it will fail during

the week with a probability of 0.4, or it may be replaced at a cost of e 150 by a new machine

that is guaranteed to run through its first week of operation. Assume that after N>1 weeks

the machine, irrespective of its state, is scrapped with no cost.

The system dynamics is of the form

xk+1 = fk(xk, uk, wk), k = 0, 1, . . . , N − 1

where the state xk is an element of a space Sk = {R,B}, R = machine running, B =
machine broken down, the control uk is an element of a space Uk(xk), Uk(R) = {m,nm},
m = maintenance, nm = no maintenance, Uk(B) = {r, s}, r = repair, s = replace. The

random disturbance has a nominal conditional distribution wk ∼ µ(·|xk, uk).

Such a system can be described in terms of the discrete-time system equation

xk+1 = wk, k = 0, 1, . . . , N − 1
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Figure 4.3.: Realization of the Inventory Control Example Under the Resulting Optimal Pol-

icy.

where the nominal probability distribution of wk is given by

µ(wk = R|xk = R, uk = m) = 0.6, µ(wk = B|xk = R, uk = m) = 0.4,

µ(wk = R|xk = R, uk = nm) = 0.3, µ(wk = B|xk = R, uk = nm) = 0.7,

µ(wk = R|xk = B, uk = r) = 0.6, µ(wk = B|xk = B, uk = r) = 0.4,

µ(wk = R|xk = B, uk = s) = 1, µ(wk = B|xk = B, uk = s) = 0

and the input costsCu are given by: if u = m thenCm = e 20, if u = nm thenCnm = e 0, if

u = r then Cr = e 40, and if u = s then Cs = e 150. The cost per stage is gk(xk, uk, wk) =
Cuk if wk = R, and gk(xk, uk, wk) = Cuk + 100 if wk = B. Since it is assumed that after

N weeks the machine, irrespective of its state, is scrapped without incurring any cost the

terminal cost is gN(R) = gN(B) = 0. The dynamic programming algorithm for the minimax
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problem subject to total variation distance uncertainty is given by

VN(xN) = 0 (4.72)

Vk(xk) = min
uk∈Uk(xk)

max
ν(dwk|xk,uk):||ν(·|xk,uk)−µ(·|xk,uk)||TV ≤R

{
E
{
gk(xk, uk, wk) + Vk+1(f(xk, uk, wk))

}}
(4.73)

= min
uk∈Uk(xk)

max
ν(dwk|xk,uk):||ν(·|xk,uk)−µ(·|xk,uk)||TV ≤R

E
{
`k(xk, uk, wk)

}
where `k(xk, uk, wk) = gk(xk, uk, wk) + Vk+1(wk), k = 0, 1, . . . , N − 1. To address the

maximization problem in (4.73), for each k = 0, 1, . . . , N − 1, xk ∈ {R,B} and uk ∈
{m,nm, r, s}, define the maximum and minimum values of `(xk, uk, wk) by

`max(xk, uk) , max
wk∈{R,B}

`(xk, uk, wk), `min(xk, uk) , min
wk∈{R,B}

`(xk, uk, wk)

and its corresponding support sets by Σ0={wk∈{R,B}:`(xk, uk, wk)=`max(xk, uk)}, and

Σ0={wk∈{R,B}:`(xk, uk, wk)=`min(xk, uk)}. By employing (3.46), the maximizing con-

ditional probability distribution of the random parameter wk is given by

α = min
(
R

2 , 1− µ(Σ0|xk, uk)
)

(4.74a)

ν∗(Σ0|xk, uk) = µ(Σ0|xk, uk) + α, ν∗(Σ0|xk, uk) =
(
µ(Σ0|xk, uk)− α

)+
. (4.74b)

Based on this formulation, the dynamic programming equation is given by

VN(xN) = 0 (4.75)

Vk(xk) = min
uk∈Uk(xk)

Eν∗(·|·,·)
{
gk(xk, uk, wk) + Vk+1(f(xk, uk, wk))

}
. (4.76)

We assume that the planning horizon is N = 3. The optimal cost-to-go and the optimal

control policy, for each week and each possible state, as a function ofR ∈ [0, 2] are illustrated

in Fig.4.4. Clearly, Fig.4.4a depicts that the optimal cost-to-go is a non-decreasing concave

function of R as stated in Lemma 4.3.

In addition, the optimum solution for two possible values of R and for each week re-

sults in optimal control policies as depicted in Table 4.3. By setting R=0, we choose to

calculate the optimal control policy when the true conditional probability ν(·|xk, uk) =
µ(·|xk, uk), k=0, 1, 2. This corresponds to the classical dynamic programming algorithm.

By setting R=0.85, we choose to calculate the optimal control policy when the true condi-

tional distribution ν(·|xk, uk) 6= µ(·|xk, uk), k=0, 1, 2. Taking into consideration the max-

imization (that is, by setting R>0) the dynamic programming algorithm results in optimal

control policies which are more robust with respect to uncertainty, but with the sacrifice of
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104 Dynamic Programming with TV Distance Ambiguity on a Finite Horizon

low present and future costs. In cases in which we need to balance the desire for low costs

with the undesirability of scenarios with high uncertainty, we must choose the appropriate

value of R by using Fig.4.4b.

State

Week 0 Week 1 Week 2
Cost-to-go Optimal Cost-to-go Optimal Cost-to-go Optimal

Policy Policy Policy

R = 0
R 196 m 128 m 60 m

B 216 r 148 r 80 r

R = 0.85
R 340 m 221 m 100 nm

B 360 r 241 r 122 r

Table 4.3.: Dynamic Programming Algorithm Results for Machine Replacement Example

4.5. Summary

In this chapter, we examined the optimality of stochastic control strategies via dynamic pro-

gramming, when the ambiguity class is described by the total variation distance between

the conditional distribution of the controlled process and the nominal conditional distribu-

tion. The problem is formulated using minimax strategies in which the control process seeks

to minimize the pay-off while the controlled process seeks to maximize it over the total

variation ambiguity class. By employing certain results of Section 3, in particular, the maxi-

mization of a linear functional on the space of probability measures, among those probability

measures which are within a total variation distance from a nominal probability measure, we

solve the minimax stochastic control problem with deterministic control strategies, under a

Markovian and a non-Markovian assumption, on the conditional distributions of the con-

trolled process. The new dynamic programming recursion, in addition to the standard terms,

it also includes the oscillator seminorm of the value function which codify the level of am-

biguity with respect to total variation distance ball. Hence, the new dynamic programming

recursions result in optimal control policies which are more robust with respect to uncer-

tainty, but with the sacrifice of low present and future costs. Finally, we apply our results to

the inventory control example and to the machine replacement example.
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Figure 4.4.: Optimal Solution of Machine Replacement Example: Plot (a) depicts the opti-

mal cost-to-go. Plot (b) depicts the optimal control policy (“m”= maintenance,

“nm= no maintenace”, “r=repair”, “s=replace”)
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5
Dynamic Programming with TV Distance

Ambiguity on an Infinite Horizon

In this chapter we address optimality of stochastic control strategies on an infinite horizon via

dynamic programming subject to total variation distance ambiguity on the conditional dis-

tribution of the controlled process. For optimality criterion, we consider both the expected

discounted reward and the average pay-off per unit time. Throughout this chapter, we pay

particular attention to policy iteration algorithms for computing the optimal policies, which

in contrast to the classical case, the policy improvement and policy evaluation steps are per-

formed using the maximizing conditional distribution obtained under total variation distance

ambiguity constraint. The new policy iterations algorithms are expected to converge to a

stationary policy in a finite number of iterations, and that at each iteration a better stationary

policy will be obtained. The results of this part include:

• minimax optimization subject to total variation distance ambiguity constraint;

• new infinite horizon discounted and average dynamic programming equations;

• new policy iteration algorithms;

• examples which illustrate the use of our recommended policy iteration algorithms.
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108 Dynamic Programming with TV Distance Ambiguity on an Infinite Horizon

5.1. Problem Formulation

In this section, we describe the abstract formulation of the minimax problem under total

variation distance ambiguity, with optimality criterions being the expected discounted reward

and the average pay-off per unit time.

5.1.1. Dynamic Programming of Infinite Horizon MCM

The infinite horizon D-MCM with deterministic strategies is a special case of the finite hori-

zon D-MCM (see Definition 4.1), specified by a sextuple(
X ,U , {U(x) : x ∈ X}, {Q(dz|x, u) : (x, u) ∈ X × U}, f, α

)
(5.1)

consisting of the following.

(a) State Space. A Polish space X , which model the state space of the controlled random

process {xk ∈ X : k ∈ N}.

(b) Control or Action Space. A Polish space U , which model the control or action set of

the control random process {uk ∈ U : k ∈ N}.

(c) Feasible Controls or Actions. A family {U(x) : x ∈ X} of non-empty measurable

subsets U(x) of U , where U(x) denotes the set of feasible controls or actions, when

the controlled process is in state x ∈ X , and the feasible state-actions pairs defined by

K ,
{

(x, u) : x ∈ X , u ∈ U(x)
}

are measurable subsets of X × U .

(d) Controlled Process Distribution. A conditional distribution or stochastic kernel

Q(dx|x, u) on X given (x, u) ∈ K ⊆ X × U . The controlled process distribution

is described by the transition probability distribution {Q(dx|x, u) : (x, u) ∈ K}.

(e) One-Stage-Cost. A non-negative measurable function f : K → [0,∞], called the

one-stage-cost, such that f(x, ·) does not take the value +∞ for each x ∈ X .

(f) Discounting Factor. A real number α ∈ (0, 1) called the discounting factor.

The dynamic programming equation of the infinite horizon D-MCM as given by [54] is a

function v0
∞ : X −→ R satisfying

v0
∞(x) = inf

u∈U(x)

{
f(x, u) + α

∫
X
v0
∞(z)Q(dz|x, u)

}
, x ∈ X . (5.2)
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5.1 Problem Formulation 109

This equation is also obtained from (4.4), and (4.5), (4.6), by assuming V 0
n (x) = 0, fi = f ,

Xi = X , Ui = U , Qi(·|·) = Q(·|·), ∀i, as follows. Define

v0
i (x) , αi−nV 0

n−i(x)

and subsequently find the equation for v0
i (x) from (4.5), (4.6), and then take the limit as

n −→∞ to obtain v0
∞(x) satisfying (5.2), which implies

v0
n(x) = inf

gk∈U(xk)
k=0,1,...,n−1

Eg0,x
{ n−1∑
j=0

αjf(xgj , u
g
j )
}

(5.3)

v0
∞(x) = inf

gk∈U(xk)
k=0,1,...

Eg0,x
{ ∞∑
j=0

αjf(xgj , u
g
j )
}
. (5.4)

Similarly to the finite horizon D-MCM, the dynamic programming equation (5.2) depends

on the conditional distribution Q(dz|x, u). Hence, any ambiguity or mismatch of Q(dz|x, u)
from the true distribution affects optimality of the strategies.

In this chapter, we will also study the dynamic programming of infinite horizon MCM

with an average pay-off per unit time. First, recall the definition of infinite horizon D-MCM

specified by (5.1), with discounting factor α = 1, and consider the problem of minimizing

the average pay-off per unit time

J(π) = lim sup
j→∞

{1
j
EQπ

ν

{ j−1∑
k=0

f(xk, uk)
}}
. (5.5)

In [54], it is shown that under the assumption that for every stationary Markov control law

the transition probability matrixQ(g) is irreducible, then there exists a solution V : X 7−→ R
and J∗ ∈ R to the dynamic programming equation

J∗ + V (x)= inf
u∈U(x)

{
f(x, u)+

∫
X
Q(dz|x, u)V (z)

}
. (5.6)

By the same reasoning as before, the above dynamic programming equation depends on the

conditional distribution Q(dz|x, u), hence any ambiguity or mismatch from the true distri-

bution affects the optimality of the strategies.

5.1.2. Dynamic Programming with Total Variation Distance Ambiguity

The objective of this chapter is to investigate dynamic programming under ambiguity of the

conditional distributions of the controlled process

{Q(dz|x, u) : (x, u) ∈ K}. (5.7)
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110 Dynamic Programming with TV Distance Ambiguity on an Infinite Horizon

Specifically, given a collection of nominal controlled process distributions {Qo(dz|x, u) :
(x, u) ∈ K} the corresponding collection of true controlled process distributions

{Q(dz|x, u) : (x, u) ∈ K} is modeled by a set described by the total variation distance

centered at the nominal conditional distribution having radius R ∈ [0, 2] defined by

BR(Qo)(x, u) ,
{
Q(·|x, u) : ||Q(·|x, u)−Qo(·|x, u)||TV ≤ R

}
. (5.8)

Given the above description the dynamic programming equation of the infinite horizon D-

MCM is given by

v∞(x) = inf
u∈U(x)

sup
Q(·|x,u)∈BR(Qo)(x,u)

{
f(x, u) + α

∫
X
v∞(z)Q(dz|x, u)

}
, x ∈ X (5.9)

and, the dynamic programming equation of the infinite horizon MCM with an average pay-

off is given by

J∗ + V (x)= inf
u∈U(x)

sup
Q(·|x,u)∈BR(Qo)(x,u)

{
f(x, u)+

∫
X
V (z)Q(dz|x, u)

}
. (5.10)

In summary, the contributions of this chapter are the following:

(a) formulation of the infinite horizon MCM and dynamic programming equation under

conditional distribution ambiguity described by total variation distance via minimax

theory;

(b) characterization of the maximizing conditional distribution belonging to the total vari-

ation distance set, and the corresponding new dynamic programming recursions;

(c) contraction property of the infinite horizon D-MCM dynamic programming;

(d) discussion of the limitations of the infinite horizon MCM with an average pay-off,

under irreducibility assumption, and new general dynamic programming recursions;

(e) new policy iteration algorithms;

(f) examples for the infinite horizon case.

5.2. Minimax Stochastic Control - Discounted Cost

In this section, we consider the infinite horizon version of the finite horizon D-MCM, and

we derive similar results. In addition, we show that the operator associated with the dynamic

programming equation is contractive, and we introduce a new policy iteration algorithm.
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Consider the problem of minimizing the finite horizon cost

sup
Q(·|x,u)∈BR(Qo)(x,u)

EQπ
ν

{ n−1∑
j=0

αjf(xgj , u
g
j )
}

(5.11)

with 0 < α < 1. By Theorem 4.2 the value function of (5.11), denoted by Vj(x), j =
0, . . . , n, x ∈ Xj satisfies the dynamic programming equations (4.45), (4.46) with hn = 0,

fj = f , Rj = R, Xj = X , Uj = U , Uj(x) = U(x) and Qo
j(·|·) = Qo(·|·) . Define

vi(x) = αi−nVn−i(x), where 0 ≤ i ≤ n is the time to go, (see [54]). Then,

v0(x) = 0 (5.12)

vi(x) = inf
u∈U(x)

{
f(x, u) + α

∫
X
vi−1(z)Qo(dz|x, u) + α

R

2
(

sup
z∈X

vi−1(z)− inf
z∈X

vi−1(z)
)}

(5.13)

which is obtained as follows:

v0(x) = α−nVn(x) = 0, (since hn = 0)

and

vi(x) = αi−nVn−i(x)

= inf
u∈U(x)

{
αi−nαn−if(x, u) + αi−n

∫
X
Vn−i+1(z)Qo(dz|x, u)

+ αi−n
R

2
(

sup
z∈X

Vn−i+1(z)− inf
z∈X

Vn−i+1(z)
)}

= inf
u∈U(x)

{
f(x, u) + α

∫
X
vi−1(z)Qo(dz|x, u) + α

R

2
(

sup
z∈X

vi−1(z)− inf
z∈X

vi−1(z)
)}
.

In contrast with finite horizon case, the one given by (5.12)-(5.13) proceeds from lower to

higher values of indices i. The dynamic programming for the discounted cost

sup
Q(·|x,u)∈BR(Qo)(x,u)

EQπ
ν

{ ∞∑
j=0

αjf(xgj , u
g
j )
}

(5.14)

is given by

v∞(x) = inf
u∈U(x)

{
f(x, u) + α

∫
X
v∞(z)Qo(dz|x, u) + α

R

2

(
sup
z∈X

v∞(z)− inf
z∈X

v∞(z)
)}
. (5.15)

The maximizing conditional distribution is

Q∗
(
X+|x, u

)
= Qo(X+|x, u) + R

2 ∈ [0, 1], (x, u) ∈ K (5.16)

Q∗
(
X−|x, u

)
= Qo(X−|x, u)− R

2 ∈ [0, 1], (x, u) ∈ K (5.17)

Q∗ (A|x, u) = Qo(A|x, u), ∀A ⊆ X \ X+ ∪ X−, (x, u) ∈ K (5.18)
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where

X+ ,
{
x∈X : V (x) = sup{V (x) : x∈X}

}
(5.19)

X− ,
{
x∈X : V (x) = inf{V (x) : x∈X}

}
. (5.20)

Next, we recall the following theorem from [54], which we invoke to show that the oper-

ator in the right hand side of (5.15) is contractive.

Theorem 5.1. Let (L, || · ||) be a complete normed space and let T : L −→ L satisfy the

following inequality for some 0 < α < 1,

||TV1 − TV2|| ≤ α||V1 − V2||, for all V1, V2 ∈ L. (5.21)

A mapping T satisfying (5.21) is called a contraction mapping.

The following hold.

1) There exists a unique w ∈ L satisfying Tw = w, called the fixed point of T .

2) For V ∈ L, define {T nV : n ∈ Z+} by TV = V , T n+1V = T n(TV ) then

lim
n−→∞

||T nV − w|| = 0, for all V ∈ L, (5.22)

where w is the fixpoint defined in 1).

Lemma 5.1. Let L be the class of all measurable functions V : X −→ R, with finite norm

||V || , maxx∈X |V (x)|, and T : L 7−→ L defined by

(TV )(x) = inf
u∈U(x)

{
f(x, u)+α

∫
X
V (z)Qo(dz|x, u)+αR2

(
sup
z∈X

V (z)− inf
z∈X

V (z)
)}
. (5.23)

If V ∈ BC+(X ) and supz∈X V (z), infz∈X V (z) are finite, then T is a contraction.

Proof. For V1, V2 ∈ L,

(TV1)(x)− (TV2)(x) =

inf
u∈U(x)

{
f(x, u) + α

∫
X
V1(z)Qo(dz|x, u) + α

R

2

(
sup
z∈X

V1(z)− inf
z∈X

V1(z)
)}

− inf
u∈U(x)

{
f(x, u) + α

∫
X
V2(z)Qo(dz|x, u) + α

R

2

(
sup
z∈X

V2(z)− inf
z∈X

V2(z)
)}
.

Let

v , arg inf
u∈U(x)

{
f(x, u) + α

∫
X
V2(z)Qo(dz|x, u) + α

R

2

(
sup
z∈X

V2(z)− inf
z∈X

V2(z)
)}
.
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Then,

(TV1)(x)− (TV2)(x)

= inf
u∈U(x)

{
f(x, u) + α

∫
X
V1(z)Qo(dz|x, u) + α

R

2

(
sup
z∈X

V1(z)− inf
z∈X

V1(z)
)}

−
{
f(x, v) + α

∫
X
V2(z)Qo(dz|x, v) + α

R

2

(
sup
z∈X

V2(z)− inf
z∈X

V2(z)
)}

≤
{
f(x, v) + α

∫
X
V1(z)Qo(dz|x, v) + α

R

2

(
sup
z∈X

V1(z)− inf
z∈X

V1(z)
)}

−
{
f(x, v) + α

∫
X
V2(z)Qo(dz|x, v) + α

R

2

(
sup
z∈X

V2(z)− inf
z∈X

V2(z)
)}

(a)=
{
α
∫
X
V1(z)QV1(dz|x, v)

}
−
{
α
∫
X
V2(z)Qo(dz|x, v) + α

R

2

(
sup
z∈X

V2(z)− inf
z∈X

V2(z)
)}

(b)
≤
{
α
∫
X
V1(z)QV1(dz|x, v)

}
−
{
α
∫
X
V2(z)QV1(dz|x, v)

}
= α

∫
X

(V1(z)− V2(z))QV1(dz|x|v) ≤ α sup
z∈X
|V1(z)− V2(z)| = α||V1 − V2||

where (a) is obtained by applying (3.14), with ` ≡ αV1, ν∗(·) ≡ QV1(·|·), µ(·) ≡ Qo(·|·),

and (b) is obtained by first applying (3.14) as in (a) with QV2(·|·) and then replace QV2(·|·)
by QV1(·|·) which is suboptimal hence, the upper bound. By reversing the roles of V1 and V2

we get (TV2)(x)− (TV1)(x) ≤ α||V2 − V1||. Hence, |(TV1)(x)− (TV2)(x)| ≤ α||V1 − V2||
for all x ∈ X , and

||TV1 − TV2|| , max
x∈X
|(TV1)(x)− (TV2)(x)| ≤ α||V1 − V2||

which implies that the operator T : L 7−→ L is a contraction. �

Utilizing Lemma 5.1 we obtain the following theorem which is analogous to the classical

result given in [54].

Theorem 5.2. Assume v∞ ∈ BC+(X ) and supz∈X v∞(z), infz∈X v∞(z) are finite.

(1) The dynamic programming equation

v∞(x)= inf
u∈U(x)

{
f(x, u) + α

∫
X
v∞(z)Qo(dz|x, u) + α

R

2

(
sup
z∈X

v∞(z)− inf
z∈X

v∞(z)
)}

has a unique solution.

(2) Moreover,

v∞(x) = inf
g∈U(x)

EQ∗
{ ∞∑
j=0

αjf(xj, uj)|x0 = x
}
.

Ioa
nn

is 
Tzo

rtz
is



114 Dynamic Programming with TV Distance Ambiguity on an Infinite Horizon

(3) The mapping T defined by

(TV )(x)= inf
u∈U(x)

{
f(x, u)+α

∫
X
V (z)Qo(dz|x, u)+αR2

(
sup
z∈X

V (z)− inf
z∈X

V (z)
)}

is a contraction mapping with respect to the norm ||V || = maxx∈X |V (x)|.

(4) For any V , limn→∞ ||T nV − v∞|| = 0 and so

lim
n−→∞

(T nV )(x) = v∞(x), for all x ∈ X .

Proof. (1) Follows from [54] (Theorem 6.3.6, part (a)).

(2) We need to show that v∞(x) is the minimum value of EQ∗
{∑∞

j=0 α
jf(xj, uj)

}
starting

in state x0 = x. Recall that 0 ≤ f(x, u) ≤M for all x ∈ X , u ∈ U(x). Clearly, with x0 = x

and for all n,

inf
g∈U(x)

EQ∗
{ ∞∑
j=0

αjf(xj, uj)
}
≥ inf

g∈U(x)
EQ∗

{ n−1∑
j=0

αjf(xj, uj)
}

= vn(x).

Hence, inf
g∈U(x)

EQ∗
{∑∞

j=0 α
jf(xj, uj)

}
≥ lim

n→∞
vn(x) = v∞(x). Conversely, for all n

inf
g∈U(x)

EQ∗
{ ∞∑
j=0

αjf(xj, uj)
}
≤ inf

g∈U(x)
EQ∗

{ n−1∑
j=0

αjf(xj, uj)
}

+
∞∑
j=n

αjM=vn(x)+ αnM

1− α

and so

inf
g∈U(x)

EQ∗
{ ∞∑
j=0

αjf(xj, uj)
}
≤ lim

n→∞

[
vn(x) + αnM

1− α

]
= v∞(x).

Hence, inf
g∈U(x)

EQ∗
{∑∞

j=0 α
jf(xj, uj)

}
= v∞(x).

(3) This follows from Lemma 5.1.

(4) Follows from [54] (Theorem 6.3.6, part (b)). �

5.2.1. Policy Iteration Algorithm

Next, we present a modified version of the classical policy iteration algorithm [39,54]. From

part 4 of Theorem 4.2, the policy improvement and policy evaluation steps of a policy iter-

ation algorithm must be performed using the maximizing conditional distribution obtained

under total variation distance ambiguity constraint. Hence, in addition to the classical case,

in which the policy improvement and evaluation steps are performed using the nominal con-

ditional distribution, here, under the assumption that f(·) is bounded and non-negative, by

invoking the results developed in earlier sections we propose a modified algorithm which is
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5.2 Minimax Stochastic Control - Discounted Cost 115

expected to converge to a stationary policy in a finite number of iterations, since both state

space X and control space U are finite sets, and that at each iteration a better stationary

policy will be obtained.

First, we introduce some notation. Since the state space X is a finite set, with say, n

elements, any function V : X −→ Rn may be represented by vector in Rn defined by

V (x) ,
(
V (x1) · · · V (xn)

)T
∈ Rn.

Write z ≤ y, if z(i) ≤ y(i), for ∀i ∈ Zn , {1, 2, . . . , n}; and z < y if z ≤ y and z 6= y. For

a stationary control law g, let

f(g) =
(
f(x1, g(x1)) · · · f(xn, g(xn))

)T
and define each entry of the transition matrix Qo(g)∈Rn×n by Qo

ij(g) = Qo(xj|xi, g(xi)) ≡
Qg,o(xi|xj). Rewrite (5.23) (with supz∈X V (z) denoting componentwise supremum, and

similarly for the infimum) as

TV = min
g∈Rn

{
f(g) + αQo(g)V + α

R

2

{
sup
z∈X

V (z)− inf
z∈X

V (z)
}}

which by Theorem 4.2 is equivalent to

TV = min
g∈Rn

{
f(g) + αQ∗(g)V

}
where Q∗(g) ∈ Rn×n and is given by (5.16)-(5.18). Note that, the minimization is taken

componentwise, i.e., g(x1) is the minimum of the first component of f(g) + αQ∗(g)V and

so on. For each stationary policy g, define T (g) : Rn −→ Rn by

T (g)V = f(g) + αQ∗(g)V.

Then, T (g) is a contraction mapping on the space of bounded continuous functions to itself,

and from Theorem 5.2 it follows that

V (g) = T (g)V = f(g) + αQ∗(g)V

has a unique solution V (g) ∈ Rn. Next, we give the policy iteration algorithm.

Algorithm 5.3 (Policy Iteration). Consider the notation above.

Initialization. Let m = 0 and select g0 : X 7−→ U be an arbitrary stationary control law.

Solve the equation

f(g0) + αQo(g0)VQo(g0) = VQo(g0) for VQo(g0) ∈ Rn. (5.24)
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116 Dynamic Programming with TV Distance Ambiguity on an Infinite Horizon

Identify the support sets using (5.19)-(5.20) and the analogue of Σk of Section 3.3.1, and

construct the matrix Q∗(g0) using (5.16)-(5.18). Solve the equation

f(g0) + αQ∗(g0)VQ∗(g0) = VQ∗(g0) for VQ∗(g0) ∈ Rn. (5.25)

1. For m = m+ 1 while

min
g∈Rn

{
f(g) + αQ∗(g)VQ∗(gm−1)

}
< VQ∗(gm−1) (5.26)

do:

(a) (Policy Improvement) Let gm ∈ Rn be such that

f(gm) + αQ∗(gm)VQ∗(gm−1) = min
g∈Rn

{
f(g) + αQ∗(g)VQ∗(gm−1)

}
. (5.27)

(b) (Policy Evaluation) Solve the following equation for VQo(gm) ∈ Rn

f(gm) + αQo(gm)VQo(gm) = VQo(gm). (5.28)

Identify the support sets using (5.19)-(5.20), and construct the matrix Q∗(gm) using

(5.16)-(5.18). Solve the equation

f(gm) + αQ∗(gm)VQ∗(gm) = VQ∗(gm) for VQ∗(gm) ∈ Rn. (5.29)

2. Set g∗ = gm.

5.3. Minimax Stochastic Control - Average Cost

In this section, we study the infinite horizon Markov Control Model with the average pay-off

per unit time as an optimality criterion. We derive the new dynamic programming equations

under total variation distance ambiguity with and without imposing the irreducibility con-

dition. In addition, we introduce the corresponding policy iteration algorithms for average

cost dynamic programming. The derivations of our results are based on the classical results

found in [32, 54].

Recall the definition of the infinite horizon D-MCM specified by (5.1), with discounting

factor α = 1, and consider the problem of minimizing the average pay-off per unit time

J(π) = lim sup
j→∞

{
sup

Q(·|x,u)∈BR(Qo)(x,u)

1
j
EQπ

ν

{ j−1∑
k=0

f(xk, uk)
}}
. (5.30)

For the finite-horizon optimal stochastic control problem with pay-off

sup
Q(·|x,u)∈BR(Qo)(x,u)

EQπ
ν

{ n−1∑
k=0

f(xk, uk)
}

(5.31)
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the value function satisfies the dynamic programming equation (see Chapter 4, Theorem 4.2,

with discounted factor α = 1, finite state-space X and finite input set U)

Vj(x) = inf
u∈U(x)

sup
Q(·|x,u)∈BR(Qo)(x,u)

{
f(x, u) +

∫
X
Vj+1(z)Q(dz|x, u)

}
(5.32)

which is equivalent to (since Q∗ exists and is given by (3.46))

Vj(x)= inf
u∈U(x)

{
f(x, u) +

∫
X
Vj+1(z)Q∗(dz|x, u)

}
(5.33)

= inf
u∈U(x)

{
f(x, u)+

∫
X
Vj+1(z)Qo(dz|x, u)+R2

(
sup
z∈X

Vj+1(z)− inf
z∈X

Vj+1(z)
)}
.

Define V j(x) = Vn−j(x). Then V satisfies the equation

V j(x) = inf
u∈U(x)

sup
Q(·|x,u)∈BR(Qo)(x,u)

{
f(x, u) +

∫
X
V j−1(z)Q(dz|x, u)

}
. (5.34)

Rewrite this as

V j(x) + 1
j
V j(x) = inf

u∈U(x)
sup

Q(·|x,u)∈BR(Qo)(x,u)

{
f(x, u)

+
∫
X
Q(dz|x, u)

(
V j−1(z) + 1

j
V j(x)

)}
. (5.35)

Assume that there exists a V and a J∗ ∈ R such that

lim
j→∞

(
V j(x)− jJ∗

)
= V (x), ∀x ∈ X . (5.36)

Then

lim
j→∞

1
j
V j(x) = J∗, ∀x ∈ X (5.37)

which limit does not depend on x ∈ X . In addition, taking supremum with respect to x ∈ X
on both sides of (5.36), and by the finite cardinality of X

lim
j→∞

sup
x∈X

(
V j(x)− jJ∗

)
= sup

x∈X
V (x). (5.38)

Then, by (5.36) and (5.37)

J∗ + V (x) = lim
j→∞

(1
j
V j(x) + (V j(x)− jJ∗)

)
(a)= lim

j→∞
inf

u∈U(x)
sup

Q(·|x,u)∈BR(Qo)(x,u)

{
f(x, u)+

∫
X
Q(dz|x, u)

(
V j−1(z) + 1

j
V j(x)

)
− jJ∗

}
(b)= lim

j→∞
inf

u∈U(x)

{
f(x, u) +

∫
X
Qo(dz|x, u)

(
V j−1(z) + 1

j
V j(x)

)
+ R

2

(
sup
z∈X

(
V j−1(z) + 1

j
V j(x)

)
− inf

z∈X

(
V j−1(z) + 1

j
V j(x)

))
− jJ∗

}
(c)= lim

j→∞
inf

u∈U(x)

{
f(x, u) +

∫
X
Qo(dz|x, u)

(
V j−1(z)− (j − 1)J∗ + 1

j
V j(x)− J∗

)
+ R

2

(
sup
z∈X

(
V j−1(z)− jJ∗

)
− inf

z∈X

(
V j−1(z)− jJ∗

))}
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where (a) is obtained by (5.35), (b) is obtained by equivalent formulation (5.33), and (c) by

adding and subtracting J∗(1 + jR2 ). By assuming that U and X are finite and by definition

of V , interchange of the limit and the minimization and maximization operations is allowed,

and hence, the dynamic programming equation for the average pay-off is given by

J∗ + V (x) = min
u∈U(x)

{
f(x, u) +

∫
X
Qo(dz|x, u)V (z) + R

2
(

sup
z∈X

V (z)− inf
z∈X

V (z)
)}

(5.39)

which is equivalent to

J∗ + V (x)= min
u∈U(x)

max
Q(·|x,u)∈BR(Qo)(x,u)

{
f(x, u)+

∫
X
Q(dz|x, u)V (z)

}
. (5.40)

Next, we show that J∗ satisfying (5.40) is the minimal average pay-off, and further that

if π∗ is a stationary policy such that g∗(x) achieves the minimum on the right-hand side of

(5.40) for every x ∈ X , then π∗ is optimal.

Theorem 5.4. Suppose there exists a solution (V, J∗) of the dynamic programming equation

(5.39). Let π∗ be a stationary policy such that g∗(x) attains the minimum in the right-hand

side of (5.39) for every x. Then π∗ is an optimal policy and J∗ is the minimum average cost.

Proof. Let π ∈ ΠD be any policy, possibly non-stationary, and u ∈ U(x). Then

max
Q(·|x,u)∈BR(Qo)(x,u)

{
f(x, u) +

∫
X
Q(dz|x, u)V (z)

}
≥ max

Q(·|x,u)∈BR(Qo)(x,u)

{
f(x, g∗(x)) +

∫
X
Q(dz|x, g∗(x))V (z)

}
= J∗ + V (x) (5.41)

since (V, J∗) satisfy the dynamic programming equation and by definition of π∗. Hence, by

(5.41)

EgQ∗
(
f(xj, uj)

)
≥ J∗ + EgQ∗

(
V (xj)

)
− EgQ∗

( ∫
X
Q∗(dz|xj, uj)V (z)

)
= J∗ + EgQ∗

(
V (xj)

)
− EgQ∗

(
V (xj+1)

)
. (5.42)

Then

J(π) ≥ lim inf
j→∞

(1
j

j−1∑
k=0

EgQ∗
(
f(xk, uk)

))
(a)
≥ lim inf

j→∞

(
J∗ + 1

j

(
EgQ∗

(
V (x0)

)
− EgQ∗

(
V (xj)

)))
(b)= J∗

where (a) is obtained by (5.42), and (b) because the last term vanishes as j →∞.

Thus, J∗ ≤ infπ∈ΠD J(π). However, when π∗ replaces π equality holds throughout and as a

result π∗ is optimal, that is, J∗ = J(π∗) = infπ∈ΠD J(π), π∗ ∈ ΠD is an optimal control law

and J∗ is the value. �
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5.3.1. Existence

Dynamic programming equation (5.39) is valid under the assumption that (5.36) and (5.38)

are satisfied. Here, we derive more general conditions under which (5.39) is valid. First, we

introduce some notation similar to Section 5.2.1.

Let the state space X be a finite set, with say, n elements. Then, any function V : X −→
Rn may be represented by a vector in Rn. Any stationary control law π ∈ ΠDS defines

g : X 7−→ R which may also be identified with a g ∈ Rn. For any g let Q(j) ∈ Rn×n and

f(g) =
(
f(x1, g(x1)) · · · f(xn, g(xn))

)T
∈ Rn.

Let q0 ∈ Rn be defined by

q0(i) 4= Q({x0 = i})

and

e
4= (1, · · · , 1)T ∈ Rn.

Maximizing the expected cost on a finite horizon is then

max
Q(·|x,u)∈BR(Qo)(x,u)

EQπ
ν

{ j−1∑
k=0

f(xk, uk)
}

= max
Q(·|x,u)∈BR(Qo)(x,u)

{ j−1∑
k=0

qT0 Q(g)kf(g)
}

= max
Q(·|x,u)∈BR(Qo)(x,u)

qT0

{ j−1∑
k=0

Q(g)k
}
f(g). (5.43)

LetQ∗(·|x, u) denote the maximizing conditional distribution of (5.43). Then (5.43) is equiv-

alent

max
Q(·|x,u)∈BR(Qo)(x,u)

qT0

{ j−1∑
k=0

Q(g)k
}
f(g) = qT0

{ j−1∑
k=0

Q∗(g)k
}
f(g). (5.44)

Maximizing the average cost per unit time is then

J(π) = lim sup
j→∞

1
j

max
Q(·|x,u)∈BR(Qo)(x,u)

EQπ
ν

{ j−1∑
k=0

f(xk, uk)
}

= lim sup
j→∞

1
j
qT0

{ j−1∑
k=0

Q∗(g)k
}
f(g).

Since q0 ∈ Rn and f(g) ∈ Rn are independent of j, we only need to investigate the condi-

tions under which the limit of

lim
j→∞

1
j

j−1∑
k=0

Q∗(g)k

exists. The following results are stated without proof.
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Lemma 5.2. [54] If Q∗ ∈ Rn×n
+ is a stochastic matrix, then the Cesaro limit

lim
j→∞

1
j

j−1∑
k=0

(Q∗)k = Q∗1 (5.45)

always exist. The matrixQ∗1 ∈ Rn×n
+ is a stochastic matrix and is the solution of the equation

Q∗1Q
∗ = Q∗1. (5.46)

Thus, the maximization of the average cost of a stationary Markov control law is given by

J(π) = qT0 Q
∗
1(g)f(g) (5.47)

where Q∗1(g) and Q∗(g) are related by (5.46).

Definition 5.1. [54] A stochastic matrix P ∈ Rn×n
+ is said to be reducible if by row and

column permutations it can be placed into block upper-triangular form

P =
 P1 P2

0 P3

 , where P1, P2 are square matrices.

A stochastic matrix that is not reducible is said to be irreducible.

Lemma 5.3. [54] Let Q∗ ∈ Rn×n
+ be an irreducible stochastic matrix. Then, there exists a

unique vector q such that

Q∗q = q, eT q = 1, q(i) > 0 for all i ∈ Zn.

Moreover, the matrix Q∗1 associated with Q∗ in (5.46) has all rows equal to q.

Note that, (5.47) depends on the probability distribution q0 of the initial state. However, if

Q∗1 is assumed to be an irreducible stochastic matrix, then by Lemma 5.3

J(π) = qT0 Q
∗
1(g)f(g) = q(g)Tf(g) (5.48)

where q(g) is the unique invariant probability distribution, that is, Q∗q(g) = q(g). From

(5.48), the average cost J(g) is independent of the initial distribution. Hence, for the remain-

der of this section, we will assume that for every stationary Markov control law the stochastic

matrix Q∗ is irreducible. The next proposition summarizes the above results.

Proposition 5.1. [54] Let π be a stationary Markov control law which defines g : X 7−→ U .

Assume that Q∗(g) ∈ Rn×n
+ is irreducible.

(a) There exists a unique q(g) ∈ Rn
+ such that

Q∗(g)q(g) = q(g), eTg = 1, e = (1, . . . , 1)T . (5.49)
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(b) The average cost associated with the control law π ∈ ΠDS is

J(π) = q(g)Tf(g). (5.50)

(c) There exists a V (g) ∈ Rn such that

J(π)e+ V (g) = f(g) +Q∗(g)V (g). (5.51)

Proof. Part (a) and (b) follows from Lemma (5.3) and the discussion above. For part (c)

see [54]. �

Lemma 5.4. Assume that:

1. For any stationary control law π ∈ ΠDS , Q∗(g) ∈ Rn×n
+ is irreducible.

2. There exists a stationary Markov control law π ∈ ΠDS such that

J(π∗) = inf
π∈ΠDS

J(π)

Then there exists (V (g∗, ·), J(π∗)), V (g∗, ·) : X 7−→ R and J(π) ∈ R that is a solution to

the dynamic programming equation

J(π∗) + V (g∗, x) = min
u∈U

{
f(x, u) +

∑
z∈X

Q∗(z|x, u)V (g∗, z)
}
. (5.52)

Proof. See Appendix D.1. �

Theorem 5.5. Assume that for all stationary Markov control laws π ∈ ΠDS , and for a given

total variation parameter R, the maximizing transition matrix Q∗(g) is irreducible.

(a) There exists a solution V : X 7−→ R and J∗ ∈ R to the dynamic programming

equation

J∗ + V (x) = min
u∈U

{
f(x, u) +

∑
z∈X

Q∗(z|x, u)V (z)
}
. (5.53)

The maximizing conditional distribution is

Q∗(X+|x, u) = Qo(X+|x, u) + R

2 ∈ [0, 1] (5.54)

Q∗(X−|x, u) = Qo(X−|x, u) + R

2 ∈ [0, 1] (5.55)

Q∗(A|x, u) = Qo(A|x, u), ∀A ⊆ X \ X+ ∪ X− (5.56)

where

X+ ,
{
x ∈ X : V (x) = sup{V (x) : x ∈ X}

}
(5.57)

X− ,
{
x ∈ X : V (x) = inf{V (x) : x ∈ X}

}
. (5.58)

Ioa
nn

is 
Tzo

rtz
is



122 Dynamic Programming with TV Distance Ambiguity on an Infinite Horizon

Moreover,

J∗ + V (x) = min
u∈U

{
f(x, u) +

∑
z∈X

Qo(z|x, u)V (z) + R

2
(

sup
z∈X

V (z)− inf
z∈X

V (z)
)}
.

(5.59)

(b) If g∗(x) attains the minimum in (5.53) for every x, then g∗ is an optimal policy.

(c) The minimum cost is J∗.

Proof. Theorem 5.5 is obtained by combining Lemmas 5.4 and 5.4 and by applying the

results of Section 4.3.2. �

5.3.2. Policy Iteration Algorithm

In this section, we provide a modified version of the classical policy iteration algorithm for

average cost dynamic programming [39,54]. From part (a) of Theorem 5.5, policy evaluation

and policy improvement steps of a policy iteration algorithm must be performed using the

maximizing conditional distribution obtained under total variation distance ambiguity con-

straint. Moreover, one needs to guarantee that for the given total variation parameter R the

resulting matrix Q∗ is irreducible, otherwise, Algorithm 5.6 may not be sufficient to give the

optimal policy and the minimum cost.

Algorithm 5.6 (Policy iteration for average-cost dynamic programming).

1. Let m = 0 and select an arbitrary stationary Markov control law g0 : X 7−→ U .

2. (Policy Evaluation) Solve the equation

JQo(gm)e+ VQo(gm) = f(gm) +Qo(gm)VQo(gm), e = (1, . . . , 1)T (5.60)

for JQo(gm) ∈ R and VQo(gm) ∈ Rn. Identify the support sets of (5.60) using (5.57)-

(5.58), and construct the matrix Q∗(gm) using (5.54)-(5.56). Solve the equation

JQ∗(gm)e+ VQ∗(gm) = f(gm) +Q∗(gm)VQ∗(gm), e = (1, . . . , 1)T (5.61)

for JQ∗(gm) ∈ R and VQ∗(gm) ∈ Rn.

3. (Policy Improvement) Let

gm+1 = argmin
g∈Rn

{
f(g) +Q∗(g)VQ∗(gm)

}
. (5.62)

4. If gm+1 = gm, let g∗ = gm; else let m = m+ 1 and return to step 2.

In Section 5.4.2, we illustrate how policy iteration algorithm for infinite horizon average

cost dynamic programming is implemented through an inventory control example.
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5.3.3. Limitations

Part (a) of Theorem 5.5, showed that for a stationary Markov control policy π ∈ ΠDS and

for an irreducible stochastic matrix Q∗ there exists a solution to the dynamic programming

equation (5.53). Moreover, the maximizing stochastic matrix Q∗ which is given by (5.54)-

(5.56), is calculated based on the support sets (5.57)-(5.58), the nominal stochastic matrix

Qo, and the value of the total variation parameter R. Hence, in order to apply policy itera-

tion algorithm for average-cost dynamic programming one needs to know in advance that,

for a given total variation parameter R ∈ [0, 2] and an irreducible nominal stochastic ma-

trix Qo, the maximizing stochastic matrix Q∗ is also irreducible. Otherwise, policy iteration

algorithm may not be sufficient to give the optimal policy and the minimum cost. In partic-

ular, as we show in the next example, if irreducibility condition is not satisfied then policy

iteration algorithm need not have a solution.

Example 5.1. Consider the stochastic control system shown in Fig.5.1, with state-space

X = {1, 2, 3} and control set U = {u1, u2}. Let the nominal transition probability under

1

2 3

qo13(u1)qo12(u1)

qo22(u1) qo33(u1)

1

(a)

1

2 3

qo12(u2)

qo11(u2)

qo21(u2)

qo22(u2) qo33(u2)

qo31(u2)

1

(b)

Figure 5.1.: Transition Probability Graph of Qo under controls u1 and u2. Plot (a) depicts

matrix Qo under control u1. Plot (b) depicts matrix Qo under control u2.

controls u1 and u2 to be given by

Qo(u1) = 1
9


0 5 4
0 9 0
0 0 9

 , Qo(u2) = 1
9


2 7 0
3 6 0
8 0 1


and the cost function under each state and action is

f(1, u1) = 2, f(2, u1) = 1, f(3, u1) = 3, f(1, u2) = 0.5, f(2, u2) = 3, f(3, u2) = 0.

Clearly, for this control system the nominal transition probability matrix, under both con-

trols, is reducible, since the system under controls u1 and u2 contains more than one re-

current class. Using policy iteration Algorithm 5.6 with initial policies g0(1) = g0(2) =
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g0(3) = u1, the optimality equation (5.60) for this system may be written as

JQo


1
1
1

+ VQo(g0) =


2
1
3

+ 1
9


0 5 4
0 9 0
0 0 9

VQo(g0)

and hence

JQo + VQo(g0, 1) = 2 + 5
9VQ

o(g0, 2) + 4
9VQ

o(g0, 3)

JQo + VQo(g0, 2) = 1 + VQo(g0, 2)

JQo + VQo(g0, 3) = 3 + VQo(g0, 3).

The second and third equations show that the system is inconsistent, and hence, the policy

iteration algorithm fails to give the optimal policy and the minimum cost.

Moreover, even if Qo is an irreducible stochastic matrix, it turns out that, as the value

of total variation parameter increases, the maximizing stochastic matrix Q∗, eventually, will

be transformed into a reducible stochastic matrix. Hence, our proposed method for solving

minimax stochastic control problem with average cost is valid only for a specific range of

values of total variation parameter. In particular, if Qo is an irreducible stochastic matrix

then, for any given partition of the state-space, there exists an Rmin ∈ [0, 2) for which we

distinguish the following two cases:

(a) for 0 ≤ R < Rmin, Q∗ is an irreducible stochastic matrix. Theorem 5.5 is valid and

policy iteration algorithm gives the optimal policy and the minimum cost.

(b) for R ≥ Rmin, Q∗ is a reducible stochastic matrix. Theorem 5.5 is not valid and policy

iteration algorithm need not have a solution.

Remark 5.1. An extended solution through a reduced dimensional state-space may be ob-

tained as follows. Consider the case for which R ≥ Rmin. Due to the water-filling behavior

of maximizing conditional distribution (5.54)-(5.56), columns of Q∗ which correspond to

states belonging to X \ X 0, become columns with all zero’s as total variation parameter R

increases. Whenever an all zero column appears, one can augment the corresponding state

of that column, and hence Q∗ will be transformed back into an irreducible stochastic matrix

of reduced order.

5.3.4. General Dynamic Programming

In this section, we propose an alternative method, the so-called, general dynamic program-

ming for average cost which overcomes the limitations discussed in section 5.3.3. Despite
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the fact that it is more complex, it completely solves the minimax stochastic control problem

with average cost. In particular, we introduce a general dynamic programming for average

cost, without imposing the assumption that for all stationary Markov control laws, and for

a given total variation parameter R, the maximizing stochastic matrix Q∗ ∈ Rn×n
+ is irre-

ducible.

As we have already discussed, when considering control systems with more than one re-

current class, policy iteration algorithm may not be sufficient to give the optimal policy and

the minimum cost. In addition, due to the water-filling behavior of the maximizing con-

ditional distribution, eventually, Q∗ will be transformed into a reducible stochastic matrix.

Hence, the proposed methodology of previous sections and policy iteration Algorithm 5.6,

solve the minimax stochastic control with average cost only for a specific range of values of

total variation parameter. The general dynamic programming equations which completely

solves minimax stochastic control problem with average cost are introduced next.

General Dynamic Programming Equations

Example 5.1 in Section 5.3.3, showed that a unique dynamic programming equation may

not be sufficient to give the optimal policy and the minimum cost when there is more than

one recurrent class. A general solution is obtained by introducing an additional dynamic

programming equation. We refer to the pair of dynamic programming equations as general

dynamic programming equations, since they completely solve the minimax stochastic control

problem with average cost, and they are given by

J∗(x) = inf
u∈U(x)

sup
Q(·|x,u)∈BR(Qo)(x,u)

∫
X
Q(dz|x, u)J∗(z) (5.63a)

= inf
u∈U(x)

∫
X
Q∗(dz|x, u)J∗(z) (5.63b)

= inf
u∈U(x)

{ ∫
X
Qo(dz|x, u)J∗(z) + R

2
(

sup
z∈X

J∗(z)− inf
z∈X

J∗(z)
)}

(5.63c)

and

J∗(x)+V (x)=inf
u∈U(x)

sup
Q(·|x,u)∈BR(Qo)(x,u)

{
f(x, u)+

∫
X
Q(dz|x, u)V (z)

}
(5.64a)

=inf
u∈U(x)

{
f(x, u) +

∫
X
Q∗(dz|x, u)V (z)

}
(5.64b)

=inf
u∈U(x)

{
f(x, u)+

∫
X
Qo(dz|x, u)V (z)+R2

(
sup
z∈X

V (z)− inf
z∈X

V (z)
)}
. (5.64c)

We refer to (5.63) as the first general dynamic programming equation and to (5.64) as the

second general dynamic programming equation. The maximizing conditional distribution of
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(5.63b) is given by (5.54)-(5.56), where

X+ ,
{
x ∈ X : J∗(x) = sup{J∗(x) : x ∈ X}

}
(5.65)

X− ,
{
x ∈ X : J∗(x) = inf{J∗(x) : x ∈ X}

}
. (5.66)

Similarly, the maximizing conditional distribution of (5.64b) is given by (5.54)-(5.56), where

X+ ,
{
x ∈ X : V (x) = sup{V (x) : x ∈ X}

}
(5.67)

X− ,
{
x ∈ X : V (x) = inf{V (x) : x ∈ X}

}
. (5.68)

Definition 5.2. [32] Let ρ and h be real-valued measurable functions on X and ϕ∗ a given

stationary selector. Then (ρ, h, ϕ∗) is said to be a canonical triplet if, for every x ∈ X and

j = 0, 1, . . .

sup
Q(·|x,u)∈BR(Qo)(x,u)

EQϕ∗
ν

{ j−1∑
k=0

f(xk, uk) + h(xj)
}

= inf
π∈ΠDS

sup
Q(·|x,u)∈BR(Qo)(x,u)

EQπ
ν

{ j−1∑
k=0

f(xk, uk) + h(xj)
}

= jρ(x) + h(x). (5.69)

If a stationary selector ϕ∗ is an element of a canonical triplet, then it is called canonical.

Theorem 5.7. [32] (ρ, h, ϕ∗) is a canonical triplet if and only if, for every x ∈ X ,

ρ(x) = inf
u∈U(x)

sup
Q(·|x,u)∈BR(Qo)(x,u)

∫
X
ρ(z)Q(dz|x, u)

= sup
Q(·|x,u)∈BR(Qo)(x,u)

∫
X
ρ(z)Q(dz|x, ϕ∗(x)) (5.70)

and

ρ(x) + h(x) = inf
u∈U(x)

sup
Q(·|x,u)∈BR(Qo)(x,u)

{
f(x, u) +

∫
X
h(z)Q(dz|x, u)

}
= sup

Q(·|x,u)∈BR(Qo)(x,u)

{
f(x, ϕ∗(x))+

∫
X
h(z)Q(dz|x, ϕ∗(x))

}
. (5.71)

Note that, if (ρ, h, ϕ∗) solve (5.70) and (5.71), then so does (ρ, h + N,ϕ∗) for any constant

N .

Proof. (=⇒) Suppose that (ρ, h, ϕ∗) is a canonical triplet, i.e., (5.69) holds ∀x ∈ X and

j ≥ 0. From dynamic programming equation (5.32) we have that

Vj(x) = min
u∈U(x)

max
Q(·|x,u)∈BR(Qo)(x,u)

{
f(x, u) +

∫
X
Vj+1(z)Q(dz|x, u)

}
. (5.72)
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Define V j(x) = Vn−j(x), (j = 0, . . . , n). Then (5.72) may be written in the “forward” form

V j+1(x) = min
u∈U(x)

max
Q(·|x,u)∈BR(Qo)(x,u)

{
f(x, u) +

∫
X
V j(z)Q(dz|x, u)

}
. (5.73)

Thus, from (5.69)

(j + 1)ρ(x)+h(x)= min
u∈U(x)

max
Q(·|x,u)∈BR(Qo)(x,u)

{
f(x, u)+

∫
X

(
jρ(z)+h(z)

)
Q(dz|x, u)

}

which yields the first equality in (5.70) when j = 0 and multiplying by 1/j and letting

j → ∞ it also gives the first equality in (5.71). Finally, for any deterministic stationary

policy ϕ∗ ∈ ΠDS which satisfies (5.69), we have that

(j + 1)ρ(x) + h(x) = max
Q(·|x,u)∈BR(Qo)(x,u)

{
f(x, ϕ∗) +

∫
X

(
jρ(z) + h(z)

)
Q(dz|x, ϕ∗)

}

which, as before, gives the second equality in (5.70) and (5.71).

(⇐=) Conversely, suppose now that (ρ, h, ϕ∗) satisfy (5.70) and (5.71). Then iteration of

(5.71) using (5.70) implies, ∀x ∈ X and j ≥ 0

jρ(x) + h(x)

= sup
Q(·|x,u)∈BR(Qo)(x,u)

EQϕ∗
ν

{ j−1∑
k=0

f(xk, uk)
}

+ sup
Q(·|x,u)∈BR(Qo)(x,u)

EQϕ∗
ν

{
h(xj)

}

= sup
Q(·|x,u)∈BR(Qo)(x,u)

EQϕ∗
ν

{ j−1∑
k=0

f(xk, uk) + h(xj)
}
. (5.74)

Thus to complete the proof of (5.69) it only remains to show that

sup
Q(·|x,u)∈BR(Qo)(x,u)

EQϕ∗
ν

{ j−1∑
k=0

f(xk, uk) + h(xj)
}

= inf
π∈ΠDS

sup
Q(·|x,u)∈BR(Qo)(x,u)

EQπ
ν

{ j−1∑
k=0

f(xk, uk) + h(xj)
}
. (5.75)

Proceeding by induction, we note first that (5.75) is obvious when n = 0. Suppose now

that (5.75) holds for some j ≥ 0. Then, from (5.72) and (5.74), together with the induction
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hypothesis

V j(x) = min
u∈U(x)

max
Q(·|x,u)∈BR(Qo)(x,u)

{
f(x, u) +

∫
X
V j(z)Q(dz|x, u)

}
= min

u∈U(x)
max

Q(·|x,u)∈BR(Qo)(x,u)

{
f(x, u) +

∫
X

(
jρ(z) + h(z)

)
Q(dz|x, u)

}
≥ min

u∈U(x)
max

Q(·|x,u)∈BR(Qo)(x,u)

{
f(x, u) +

∫
X
h(z)Q(dz|x, u)

}
+ j min

u∈U(x)
max

Q(·|x,u)∈BR(Qo)(x,u)

{ ∫
X
ρ(z)Q(dz|x, u)

}
= (j + 1)ρ(x) + h(x)

= sup
Q(·|x,u)∈BR(Qo)(x,u)

EQϕ∗
ν

{ j−1∑
k=0

f(xk, uk) + h(xj)
}
.

Hence, since the reverse inequality trivially holds, then (5.75) holds for n+ 1, and the proof

is complete. �

Theorem 5.8. Suppose the cost function f is bounded below, and (ρ, h, ϕ∗) be a canonical

triplet.

(a) If for any π ∈ ΠD and any x ∈ X

lim
j→∞

[
sup

Q(·|x,u)∈BR(Qo)(x,u)
EQπ

ν

{
h(xj)
j

}]
= 0 (5.76)

then ϕ∗ is an optimal strategy and ρ is the average cost value function

V (x) = ρ(x) = lim sup
j→∞

1
j

[
sup

Q(·|x,u)∈BR(Qo)(x,u)
EQϕ∗

ν

{ j−1∑
k=0

f(xk, uk)
}]

= lim
j→∞

1
j

[
sup

Q(·|x,u)∈BR(Qo)(x,u)
EQϕ∗

ν

{ j−1∑
k=0

f(xk, uk)
}]
. (5.77)

(b) If for any x ∈ X

lim
j→∞

sup
π∈ΠD

[
sup

Q(·|x,u)∈BR(Qo)(x,u)
EQπ

ν

{
h(xj)
j

}]
= 0 (5.78)

then for all π and x ∈ X

lim sup
j→∞

1
j

[
sup

Q(·|x,u)∈BR(Qo)(x,u)
EQϕ∗

ν

{ j−1∑
k=0

f(xk, uk)
}]

≤ lim inf
j→∞

1
j

[
sup

Q(·|x,u)∈BR(Qo)(x,u)
EQπ

ν

{ j−1∑
k=0

f(xk, uk)
}]

(5.79)
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and

lim
j→∞

[
sup

Q(·|x,u)∈BR(Qo)(x,u)
EQϕ∗

ν

{ j−1∑
k=0

f(xk, uk)
}

− inf
π∈ΠD

sup
Q(·|x,u)∈BR(Qo)(x,u)

EQπ
ν

{ j−1∑
k=0

f(xk, uk)
}]
/j = 0. (5.80)

Proof. (a) From (5.69)

jρ(x) + h(x) = inf
π∈ΠD

sup
Q(·|x,u)∈BR(Qo)(x,u)

EQπ
ν

{ j−1∑
k=0

f(xk, uk) + h(xj)
}

≤ sup
Q(·|x,u)∈BR(Qo)(x,u)

EQπ
ν

{ j−1∑
k=0

f(xk, uk)
}

+ sup
Q(·|x,u)∈BR(Qo)(x,u)

EQπ
ν

{
h(xj)

}

∀π ∈ ΠD and x ∈ X . Hence, multiplying by 1/j and taking the lim sup as j →∞

ρ(x) ≤ lim sup
j→∞

1
j

[
sup

Q(·|x,u)∈BR(Qo)(x,u)
EQπ

ν

{ j−1∑
k=0

f(xk, uk)
}]
, ∀π, x

which implies

ρ(x) ≤ inf
π∈ΠD

lim sup
j→∞

1
j

[
sup

Q(·|x,u)∈BR(Qo)(x,u)
EQπ

ν

{ j−1∑
k=0

f(xk, uk)
}]
, ∀x. (5.81)

Furthermore, from (5.69) again

sup
Q(·|x,u)∈BR(Qo)(x,u)

EQϕ∗
ν

{ j−1∑
k=0

f(xk, uk) + h(xj)
}

= sup
Q(·|x,u)∈BR(Qo)(x,u)

EQϕ∗
ν

{ j−1∑
k=0

f(xk, uk)
}

+ sup
Q(·|x,u)∈BR(Qo)(x,u)

EQϕ∗
ν

{
h(xj)

}
= jρ(x) + h(x).

Finally, multiplying by 1/n and then taking both lim sup and lim inf as j → ∞ we obtain

the last two equalities in (5.77), which in turn, together with (5.81), yield the first one since

ρ(x) ≤ inf
π∈ΠD

lim sup
j→∞

1
j

[
sup

Q(·|x,u)∈BR(Qo)(x,u)
EQπ

ν

{ j−1∑
k=0

f(xk, uk)
}]

≤ lim sup
j→∞

1
j

[
sup

Q(·|x,u)∈BR(Qo)(x,u)
EQπ

ν

{ j−1∑
k=0

f(xk, uk)
}]

= ρ(x).

(b) From (5.69)

inf
π∈ΠD

sup
Q(·|x,u)∈BR(Qo)(x,u)

EQπ
ν

{ j−1∑
k=0

f(xk, uk) + h(xj)
}

(5.82)

= sup
Q(·|x,u)∈BR(Qo)(x,u)

EQϕ∗
ν

{ j−1∑
k=0

f(xk, uk)
}

+ sup
Q(·|x,u)∈BR(Qo)(x,u)

EQϕ∗
ν

{
h(xj)

}
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and, on the other hand,

inf
π∈ΠD

sup
Q(·|x,u)∈BR(Qo)(x,u)

EQπ
ν

{ j−1∑
k=0

f(xk, uk) + h(xj)
}

= inf
π∈ΠD

[
sup

Q(·|x,u)∈BR(Qo)(x,u)
EQϕ∗

ν

{ j−1∑
k=0

f(xk, uk)
}

+ sup
Q(·|x,u)∈BR(Qo)(x,u)

EQϕ∗
ν

{
h(xj)

}]

≤ inf
π∈ΠD

sup
Q(·|x,u)∈BR(Qo)(x,u)

EQϕ∗
ν

{ j−1∑
k=0

f(xk, uk)
}

+ sup
π∈ΠD

sup
Q(·|x,u)∈BR(Qo)(x,u)

EQϕ∗
ν

{
h(xj)

}

Hence, if h satisfies (5.78) then (5.80) is obtained. To prove (5.79), we use (5.82) to obtain

sup
Q(·|x,u)∈BR(Qo)(x,u)

EQϕ∗
ν

{ j−1∑
k=0

f(xk, uk)
}

+ sup
Q(·|x,u)∈BR(Qo)(x,u)

EQϕ∗
ν

{
h(xj)

}

≤ sup
Q(·|x,u)∈BR(Qo)(x,u)

EQπ
ν

{ j−1∑
k=0

f(xk, uk)
}

+ sup
Q(·|x,u)∈BR(Qo)(x,u)

EQϕ∗
ν

{
h(xj)

}
, ∀π, x, j

so that, from (5.78)

lim inf
j→∞

1
j

sup
Q(·|x,u)∈BR(Qo)(x,u)

EQϕ∗
ν

{ j−1∑
k=0

f(xk, uk)
}

≤ lim inf
j→∞

1
j

sup
Q(·|x,u)∈BR(Qo)(x,u)

EQπ
ν

{ j−1∑
k=0

f(xk, uk)
}
.

From part (a) of Theorem 5.8, the left-hand side equals

lim sup
j→∞

1
j

sup
Q(·|x,u)∈BR(Qo)(x,u)

EQϕ∗
ν

{ j−1∑
k=0

f(xk, uk)
}

and hence (5.79) is obtained and the proof is complete. �

5.3.5. General Policy Iteration Algorithm

In this section, we provide a policy iteration algorithm for average cost dynamic program-

ming, which solves general dynamic programming equations (5.63) and (5.64). Because

policy evaluation and policy improvement steps must be performed using the maximizing

conditional distribution obtained under total variation distance ambiguity constraint for a

pair of equations, the proposed algorithm is considerably more complex compared to Algo-

rithm 5.6. However, as we mentioned earlier, it solves minimax stochastic control problem

with average cost for all range of values of total variation parameter R ∈ [0, 2], and without

imposing the irreducibility condition.

Algorithm 5.9 (General policy iteration for average-cost dynamic programming).
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1. Let m = 0 and select an arbitrary stationary Markov control law g0 : X 7−→ U .

2. (Policy Evaluation) Solve the equations

JQo(gm) = Qo(gm)JQo(gm) (5.83)

JQo(gm) + VQo(gm) = f(gm) +Qo(gm)VQo(gm) (5.84)

for JQo(gm) and VQo(gm). Identify the support sets based on the values of VQo using

(5.67)-(5.68), and construct the matrix Q∗(gm) using (5.54)-(5.56). Solve the equa-

tions

JQ∗(gm) = Q∗(gm)JQ∗(gm) (5.85)

JQ∗(gm) + VQ∗(gm) = f(gm) +Q∗(gm)VQ∗(gm) (5.86)

for JQ∗(gm) and VQ∗(gm).

3. (Policy Improvement) Let

gm+1 = argmin
g∈Rn

{
f(g) +Q∗(g)VQ∗(gm)

}
. (5.87)

4. If gm+1 = gm let g∗ = gm; else let m = m+ 1 and return to step 2.

In Section 5.4.3, we illustrate through an example how Algorithm 5.9 is applied.

5.4. Examples

In this Section we illustrate the new dynamic programming equations and the corresponding

policy iteration algorithms through examples. In particular, in Section 5.4.1 we present an

application of the infinite horizon minimax problem for discounted cost by employing the

policy iteration algorithm 5.3. In Section 5.4.2, the example under consideration is identical

to the previous one, except that an average cost is considered and policy iteration algorithm

5.6 is employed. In Section 5.4.3, we illustrate an application of the infinite horizon minimax

problem for average cost, however, now the stochastic control system under consideration

is described by a transition probability graph which is reducible, and hence general policy

iteration algorithm 5.9 is applied.

5.4.1. Infinite Horizon D-MCM

Here, we illustrate an application of the infinite horizon minimax problem for discounted

cost, by considering the stochastic control system shown in Fig.5.2a, with state space X =
{1, 2, 3} and control set U = {u1, u2}.
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Figure 5.2.: Optimal Solution of Infinite Horizon D-MCM Example: Plot (a) depicts the

transition probability graph. Plot (b) depicts the optimal value as a function of

total variation parameter.

Assume the nominal transition probabilities are given under controls u1 and u2 by

Qo(u1) = 1
9


3 1 5
4 2 3
1 6 2

 , Qo(u2) = 1
9


1 2 6
4 2 3
4 1 4

 (5.88)

the discount factor is α = 0.9, the total variation distance radius is R = 6
9 , and the cost
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function under each state and action is

f(1, u1) = 2, f(2, u1) = 1, f(3, u1) = 3, f(1, u2) = 0.5, f(2, u2) = 3, f(3, u2) = 0.

Using policy iteration algorithm 5.3, with initial policies g0(1) = u1, g0(2) = u2, g0(3) =
u2, the algorithm converge to the following optimal policy and value after two iterations.

g∗ = g2 ,


g2(1)
g2(2)
g2(3)

 =


u2

u1

u2

 , VQ∗(g∗) = VQ∗(g2) ,


VQ∗(1)
VQ∗(2)
VQ∗(3)

 =


6.79
7.43
6.32

 .
Fig.5.2b depicts the optimal value functions for all possible values of R, and shows that, the

value functions are non-decreasing and concave functions of R. For the analytic solution of

this example, refer to Appendix D.2.

5.4.2. Infinite Horizon Average MCM - Policy Iteration Algorithm 5.6

This example is identical to the previous one Example 5.4.1, except that an average cost

function is considered. The stochastic control system is as shown in Fig.5.2a, with state

space X = {1, 2, 3} and U = {u1, u2}. Assume that the nominal transition probabilities are

given by (5.88). The average cost function under each state and action is

f(1, u1) = 2, f(2, u1) = 1, f(3, u1) = 3, f(1, u2) = 0.5, f(2, u2) = 3, f(3, u2) = 0,

and the total variation distance radius is R = 6
9 . To obtain an optimal stationary policy of the

infinite horizon minimax problem for average cost, policy iteration algorithm 5.6 is applied.

A. Let m = 0.
1. Select the initial policies as follows

g0(1) = u1, g0(2) = u2, g0(3) = u2. (5.89)

2. Solve the equation JQo(g0)e+ VQo(g0) = f(g0) +Qo(g0)VQo(g0), for JQo(g0) ∈ R and

VQo(g0) ∈ R3, or,

JQo(g0)


1
1
1

+


VQo(g0, 1)
VQo(g0, 2)
VQo(g0, 3)

 =


f(1, g0(1))
f(2, g0(2))
f(3, g0(3))

+


qo11(g0(1)) qo12(g0(1)) qo13(g0(1))
qo21(g0(2)) qo22(g0(2)) qo23(g0(2))
qo31(g0(3)) qo32(g0(3)) qo33(g0(3))



VQo(g0, 1)
VQo(g0, 2)
VQo(g0, 3)


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which is given by

JQo(g0)


1
1
1

+


VQo(g0, 1)
VQo(g0, 2)
VQo(g0, 3)

 =


2
3
0

+ 1
9


3 1 5
4 2 3
4 1 4



VQo(g0, 1)
VQo(g0, 2)
VQo(g0, 3)

 .

Since VQo(g0) is uniquely determined up to an additive constant, let VQo(g0, 3) = 0. The

solution is 
VQo(g0, 1)
VQo(g0, 2)
VQo(g0, 3)

 =


1.8

3.375
0

 , JQo(go) = 1.175. (5.90)

Note that, VQo , {VQo(1), VQo(2), VQo(3)}, |X | = 3, and hence X+ = {2}, X− = {3} and

X1 = {1}. Since the nominal transition probabilities are given by (5.88), the total variation

distance is equal toR = 6/9 and the resulting partition is the same as in the initialization step

of Example 5.4.1 (see Appendix D.2) then Q∗(u1) and Q∗(u2) are given by (D.3) and (D.4),

respectively. The transition probability graph of Q∗, under controls u1 and u2, is depicted in

Fig.5.3. Note that, under both controls, matrix Q∗(u) remains irreducible.

Next, we proceed to solve the equation JQ∗(g0)e+VQ∗(g0) = f(g0) +Q∗(g0)VQ∗(g0), for

JQ∗(g0) ∈ R and VQ∗(g0) ∈ R3, or,

JQ∗(g0)


1
1
1

+


VQ∗(g0, 1)
VQ∗(g0, 2)
VQ∗(g0, 3)

 =


f(1, g0(1))
f(2, g0(2))
f(3, g0(3))

+


q∗11(g0(1)) q∗12(g0(1)) q∗13(g0(1))
q∗21(g0(2)) q∗22(g0(2)) q∗23(g0(2))
q∗31(g0(3)) q∗32(g0(3)) q∗33(g0(3))



VQ∗(g0, 1)
VQ∗(g0, 2)
VQ∗(g0, 3)


which is given by

JQ∗(g0)


1
1
1

+


VQ∗(g0, 1)
VQ∗(g0, 2)
VQ∗(g0, 3)

 =


2
3
0

+ 1
9


3 4 2
4 5 0
4 4 1



VQ∗(g0, 1)
VQ∗(g0, 2)
VQ∗(g0, 3)

 .

Since VQ∗(g0) is uniquely determined up to an additive constant, let VQ∗(g0, 3) = 0. The

solution is 
VQ∗(g0, 1)
VQ∗(g0, 2)
VQ∗(g0, 3)

 =


1.8

3.375
0

 , JQ∗(g0) = 2.3. (5.91)
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Figure 5.3.: Transition Probability Graph of Q∗ under controls u1 and u2. Plot (a) depicts

matrix Q∗ under control u1. Plot (b) depicts matrix Q∗ under control u2.

3. Let g1 = argming∈R3{f(g) +Q∗(g)VQ∗(g0)}, that is,

g1(1)= argmin
{
f(1, u1) + g∗11(u1)VQ∗(g0, 1) + g∗12(u1)VQ∗(g0, 2) + g∗13(u1)VQ∗(g0, 3)

f(1, u2) + g∗11(u2)VQ∗(g0, 1) + g∗12(u2)VQ∗(g0, 2) + g∗13(u2)VQ∗(g0, 3)
}

= argmin
{

4.099, 2.573
}

= {2}. Hence, g1(1) = u2.

g1(2)= argmin
{
f(2, u1) + g∗21(u1)VQ∗(g0, 1) + g∗22(u1)VQ∗(g0, 2) + g∗23(u1)VQ∗(g0, 3)

f(2, u2) + g∗21(u2)VQ∗(g0, 1) + g∗22(u2)VQ∗(g0, 2) + g∗23(u2)VQ∗(g0, 3)
}

= argmin
{

3.673, 5.673
}

= {1}. Hence, g1(2) = u1.
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g1(3)= argmin
{
f(3, u1) + g∗31(u1)VQ∗(g0, 1) + g∗32(u1)VQ∗(g0, 2) + g∗33(u1)VQ∗(g0, 3)

f(3, u2) + g∗31(u2)VQ∗(g0, 1) + g∗32(u2)VQ∗(g0, 2) + g∗33(u2)VQ∗(g0, 3)
}

= argmin
{

6.375, 2.3
}

= {2}. Hence, g1(3) = u2.

Since, g1 6= g0, let m = 1 and return to step 2.

B. Let m = 1.
2. Solve the equation JQo(g1)e+ VQo(g1) = f(g1) +Qo(g1)VQo(g1), for JQo(g1) ∈ R and

VQo(g1) ∈ R3, or,

JQo(g1)


1
1
1

+


VQo(g1, 1)
VQo(g1, 2)
VQo(g1, 3)

 =


f(1, g1(1))
f(2, g1(2))
f(3, g1(3))

+


qo11(g1(1)) qo12(g1(1)) qo13(g1(1))
qo21(g1(2)) qo22(g1(2)) qo23(g1(2))
qo31(g1(3)) qo32(g1(3)) qo33(g1(3))



VQo(g0, 1)
VQo(g0, 2)
VQo(g0, 3)


which is given by

JQo(g1)


1
1
1

+


VQo(g1, 1)
VQo(g1, 2)
VQo(g1, 3)

 =


0.5
1
0

+ 1
9


1 2 6
4 2 3
4 1 4



VQo(g1, 1)
VQo(g1, 2)
VQo(g1, 3)

 .
Let VQo(g1, 3) = 0. The solution is

VQo(g1, 1)
VQo(g1, 2)
VQo(g1, 3)

 =


0.468
1.125

0

 , JQo(go) = 0.333. (5.92)

Therefore, X+ = {2}, X− = {3} and X1 = {1}. Since the partition is the same as in m = 0
then Q∗(u1) and Q∗(u2) are given by (D.3) and (D.4), respectively.

Solve the equation JQ∗(g1)e + VQ∗(g1) = f(g1) + Q∗(g1)VQ∗(g1), for JQ∗(g1) ∈ R and

VQ∗(g1) ∈ R3, or,

JQ∗(g1)


1
1
1

+


VQ∗(g1, 1)
VQ∗(g1, 2)
VQ∗(g1, 3)

 =


f(1, g1(1))
f(2, g1(2))
f(3, g1(3))

+


q∗11(g1(1)) q∗12(g1(1)) q∗13(g1(1))
q∗21(g1(2)) q∗22(g1(2)) q∗23(g1(2))
q∗31(g1(3)) q∗32(g1(3)) q∗33(g1(3))



VQ∗(g1, 1)
VQ∗(g1, 2)
VQ∗(g1, 3)


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which is given by

JQ∗(g1)


1
1
1

+


VQ∗(g1, 1)
VQ∗(g1, 2)
VQ∗(g1, 3)

 =


0.5
1
0

+ 1
9


1 5 3
4 5 0
4 4 1



VQ∗(g1, 1)
VQ∗(g1, 2)
VQ∗(g1, 3)

 .
Let VQ∗(g1, 3) = 0. The solution is

VQ∗(g1, 1)
VQ∗(g1, 2)
VQ∗(g1, 3)

 =


0.468
1.125

0

 , JQ∗(g1) = 0.708. (5.93)

3. Let g2 = argming∈R3{f(g) +Q∗(g)VQ∗(g1)}, that is,

g2(1)= argmin
{
f(1, u1) + g∗11(u1)VQ∗(g1, 1) + g∗12(u1)VQ∗(g1, 2) + g∗13(u1)VQ∗(g1, 3)

f(1, u2) + g∗11(u2)VQ∗(g1, 1) + g∗12(u2)VQ∗(g1, 2) + g∗13(u2)VQ∗(g1, 3)
}

= argmin
{

2.656, 1.177
}

= {2}. Hence, g2(1) = u2.

g2(2)= argmin
{
f(2, u1) + g∗21(u1)VQ∗(g1, 1) + g∗22(u1)VQ∗(g1, 2) + g∗23(u1)VQ∗(g1, 3)

f(2, u2) + g∗21(u2)VQ∗(g1, 1) + g∗22(u2)VQ∗(g1, 2) + g∗23(u2)VQ∗(g1, 3)
}

= argmin
{

1.831, 3.831
}

= {1}. Hence, g2(2) = u1.

g2(3)= argmin
{
f(3, u1) + g∗31(u1)VQ∗(g1, 1) + g∗32(u1)VQ∗(g1, 2) + g∗33(u1)VQ∗(g1, 3)

f(3, u2) + g∗31(u2)VQ∗(g1, 1) + g∗32(u2)VQ∗(g1, 2) + g∗33(u2)VQ∗(g1, 3)
}

= argmin
{

4.125, 0.708
}

= {2}. Hence, g2(3) = u2.

4. Because, g2 = g1, then g∗ = g1 is an optimal control law with JQ∗ = 0.708, VQ∗(1) =
0.468, VQ∗(2) = 1.125 and VQ∗(3) = 0.

5.4.3. Infinite Horizon Average MCM - General Policy Iteration
Algorithm 5.9

In this example, we illustrate an application of the infinite horizon minimax problem for av-

erage cost, by considering the stochastic control system shown in Fig.5.4, withX = {1, 2, 3}
and control set U = {u1, u2}. The essential difference between this example and the pre-

vious one, is that here, the stochastic control system under consideration is described by a
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1

2 3

qo13(u1)qo12(u1)

qo22(u1) qo33(u1)

1

(a) Matrix Qo under control u1

1

2 3

qo12(u2)

qo11(u2)

qo21(u2)

qo22(u2) qo33(u2)

qo31(u2)

1

(b) Matrix Qo under control u2

Figure 5.4.: Transition Probability Graph of Qo under controls u1 and u2

transition probability graph which is reducible, and hence general policy iteration algorithm

5.9 is applied.

Assume the nominal transition probabilities are given under controls u1 and u2 by

Qo(u1) = 1
9


0 5 4
0 9 0
0 0 9

 , Qo(u2) = 1
9


2 7 0
3 6 0
8 0 1

 (5.94)

the total variation distance radius is R = 14/9, and the cost function under each state and

action is

f(1, u1) = 2, f(2, u1) = 1, f(3, u1) = 3, f(1, u2) = 0.5, f(2, u2) = 3, f(3, u2) = 0.

A. Let m = 0.

1. Select the initial policies as follows

g0(1) = u1, g0(2) = u1, g0(3) = u1. (5.95)
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2. Solve the equation JQo(g0) = Qo(g0)JQo(g0), or,
JQo(g0, 1)
JQo(g0, 2)
JQo(g0, 3)

 =


qo11(g0(1)) qo12(g0(1)) qo13(g0(1))
qo21(g0(2)) qo22(g0(2)) qo23(g0(2))
qo31(g0(3)) qo32(g0(3)) qo33(g0(3))



JQo(g0, 1)
JQo(g0, 2)
JQo(g0, 3)



= 1
9


0 5 4
0 9 0
0 0 9



JQo(g0, 1)
JQo(g0, 2)
JQo(g0, 3)

 .
The optimality equations (5.83) are

JQo(g0, 1) = 5
9JQ

o(g0, 2) + 4
9JQ

o(g0, 3), (5.96a)

JQo(g0, 2) = JQo(g0, 2), (5.96b)

JQo(g0, 3) = JQo(g0, 3). (5.96c)

Next, solve the equation JQo(g0) +VQo(g0) = f(g0) +Qo(g0)VQo(g0), for JQo(g0) ∈ R3 and

VQo(g0) ∈ R3, or,
JQo(g0, 1)
JQo(g0, 2)
JQo(g0, 3)

+


VQo(g0, 1)
VQo(g0, 2)
VQo(g0, 3)

 =


f(1, g0(1))
f(2, g0(2))
f(3, g0(3))

+


qo11(g0(1)) qo12(g0(1)) qo13(g0(1))
qo21(g0(2)) qo22(g0(2)) qo23(g0(2))
qo31(g0(3)) qo32(g0(3)) qo33(g0(3))



VQo(g0, 1)
VQo(g0, 2)
VQo(g0, 3)


which is given by

JQo(g0, 1)
JQo(g0, 2)
JQo(g0, 3)

+


VQo(g0, 1)
VQo(g0, 2)
VQo(g0, 3)

 =


2
1
3

+ 1
9


0 5 4
0 9 0
0 0 9



VQo(g0, 1)
VQo(g0, 2)
VQo(g0, 3)


The optimality equations (5.84) are given by

JQo(g0, 1) + VQo(g0, 1) = 2 + 5
9VQ

o(g0, 2) + 4
9VQ

o(g0, 3) (5.97a)

JQo(g0, 2) + VQo(g0, 2) = 1 + VQo(g0, 2) (5.97b)

JQo(g0, 3) + VQo(g0, 3) = 3 + VQo(g0, 3) (5.97c)

The solution of (5.96) and (5.97) has

VQo(g0, 1) = 1
9 + 5

9α + 4
9β, VQo(g0, 2) = α, VQo(g0, 3) = β,

JQo(g0, 1) = 1.888, JQo(g0, 2) = 1, JQo(g0, 3) = 3.

Ioa
nn

is 
Tzo

rtz
is



140 Dynamic Programming with TV Distance Ambiguity on an Infinite Horizon

Setting α = 1 and β = 0 yields

VQo(g0, 1) = 0.666, VQo(g0, 2) = 1, VQo(g0, 3) = 0.

Note that, VQo = {VQo(1), VQo(2), VQo(3)}, and hence the support sets based on the values

of VQo are X+ = {2}, X− = {3} and X1 = {1}. Once the partition is been identified,

(5.54)-(5.56) is applied to obtain

Q∗(u1) =



(
qo11(u1)−

(
R
2 − q

o
13(u1)

)+
)+

min
(
1, qo12(u1) + R

2

) (
qo13(u1)− R

2

)+

(
qo21(u1)−

(
R
2 − q

o
23(u1)

)+
)+

min
(
1, qo22(u1) + R

2

) (
qo23(u1)− R

2

)+

(
qo31(u1)−

(
R
2 − q

o
33(u1)

)+
)+

min
(
1, qo32(u1) + R

2

) (
qo33(u1)− R

2

)+



= 1
9


0 9 0
0 9 0
0 7 2

 (5.98)

and

Q∗(u2) =



(
qo11(u2)−

(
R
2 − q

o
13(u2)

)+
)+

min
(
1, qo12(u2) + R

2

) (
qo13(u2)− R

2

)+

(
qo21(u2)−

(
R
2 − q

o
23(u2)

)+
)+

min
(
1, qo22(u2) + R

2

) (
qo23(u2)− R

2

)+

(
qo31(u2)−

(
R
2 − q

o
33(u2)

)+
)+

min
(
1, qo32(u2) + R

2

) (
qo33(u2)− R

2

)+



= 1
9


0 9 0
0 9 0
2 7 0

 . (5.99)

Next, solve the equation JQ∗(g0) = Q∗(g0)JQ∗(g0), or,
JQ∗(g0, 1)
JQ∗(g0, 2)
JQ∗(g0, 3)

 =


q∗11(g0(1)) q∗12(g0(1)) q∗13(g0(1))
q∗21(g0(2)) q∗22(g0(2)) q∗23(g0(2))
q∗31(g0(3)) q∗32(g0(3)) q∗33(g0(3))



JQ∗(g0, 1)
JQ∗(g0, 2)
JQ∗(g0, 3)



= 1
9


0 9 0
0 9 0
0 7 2



JQ∗(g0, 1)
JQ∗(g0, 2)
JQ∗(g0, 3)

 .
The optimality equations (5.85) are

JQ∗(g0, 1) = JQ∗(g0, 2), (5.100a)

JQ∗(g0, 2) = JQ∗(g0, 2), (5.100b)

JQ∗(g0, 3) = 7
9JQ

∗(g0, 2) + 2
9JQ

∗(g0, 3) (5.100c)
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and hence, JQ∗(g0, 1) = JQ∗(g0, 2) = JQ∗(g0, 3).

Next, solve the equation JQ∗(g0) + VQ∗(g0) = f(g0) + Q∗(g0)VQ∗(g0), for JQ∗(g0) ∈ R3

and VQ∗(g0) ∈ R3, or,


JQ∗(g0, 1)
JQ∗(g0, 2)
JQ∗(g0, 3)

+


VQ∗(g0, 1)
VQ∗(g0, 2)
VQ∗(g0, 3)

 =


f(1, g0(1))
f(2, g0(2))
f(3, g0(3))

+


q∗11(g0(1)) q∗12(g0(1)) q∗13(g0(1))
q∗21(g0(2)) q∗22(g0(2)) q∗23(g0(2))
q∗31(g0(3)) q∗32(g0(3)) q∗33(g0(3))



VQ∗(g0, 1)
VQ∗(g0, 2)
VQ∗(g0, 3)


which is given by

JQ∗(g0, 1)
JQ∗(g0, 2)
JQ∗(g0, 3)

+


VQ∗(g0, 1)
VQ∗(g0, 2)
VQ∗(g0, 3)

 =


2
1
3

+ 1
9


0 9 0
0 9 0
0 7 2



VQ∗(g0, 1)
VQ∗(g0, 2)
VQ∗(g0, 3)


The optimality equations (5.86) are given by

JQ∗(g0, 1) + VQ∗(g0, 1) = 2 + VQ∗(g0, 2) (5.101a)

JQ∗(g0, 2) + VQ∗(g0, 2) = 1 + VQ∗(g0, 2) (5.101b)

JQ∗(g0, 3) + VQ∗(g0, 3) = 3 + 7
9VQ

∗(g0, 2) + 2
9VQ

∗(g0, 3) (5.101c)

The solution of (5.100) and (5.101) has

VQ∗(g0, 1) = 1 + α, VQ∗(g0, 2) = α, VQ∗(g0, 3) = 18
7 + α,

JQ∗(g0, 1) = 1, JQ∗(g0, 2) = 1, JQ∗(g0, 3) = 1.

Setting α = 1 yields

VQ∗(g0, 1) = 2, VQ∗(g0, 2) = 1, VQ∗(g0, 3) = 3.57.

3. Let g1 = argming∈R3{f(g) +Q∗(g)VQ∗(g0)}, that is,

g1(1) = argmin
{

f(1, u1) + g∗11(u1)VQ∗(g0, 1) + g∗12(u1)VQ∗(g0, 2) + g∗13(u1)VQ∗(g0, 3),

f(1, u2) + g∗11(u2)VQ∗(g0, 1) + g∗12(u2)VQ∗(g0, 2) + g∗13(u2)VQ∗(g0, 3)
}

= argmin
{

3, 1.5
}

= {2}. Hence, g1(1) = u2.
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g1(2) = argmin
{

f(2, u1) + g∗21(u1)VQ∗(g0, 1) + g∗22(u1)VQ∗(g0, 2) + g∗23(u1)VQ∗(g0, 3),

f(2, u2) + g∗21(u2)VQ∗(g0, 1) + g∗22(u2)VQ∗(g0, 2) + g∗23(u2)VQ∗(g0, 3)
}

= argmin
{

2, 4
}

= {1}. Hence, g1(2) = u1.

g1(3) = argmin
{

f(3, u1) + g∗31(u1)VQ∗(g0, 1) + g∗32(u1)VQ∗(g0, 2) + g∗33(u1)VQ∗(g0, 3),

f(3, u2) + g∗31(u2)VQ∗(g0, 1) + g∗32(u2)VQ∗(g0, 2) + g∗33(u2)VQ∗(g0, 3)
}

= argmin
{

4.57, 1.222
}

= {2}. Hence, g1(3) = u2.

Since g1 6= g0, let m = 1 and return to step 2.

B. Let m = 1.

2. Solve the equation JQo(g1) = Qo(g1)JQo(g1), or,


JQo(g1, 1)
JQo(g1, 2)
JQo(g1, 3)

 =


qo11(g1(1)) qo12(g1(1)) qo13(g1(1))
qo21(g1(2)) qo22(g1(2)) qo23(g1(2))
qo31(g1(3)) qo32(g1(3)) qo33(g1(3))



JQo(g1, 1)
JQo(g1, 2)
JQo(g1, 3)



= 1
9


2 7 0
0 9 0
8 0 1



JQo(g1, 1)
JQo(g1, 2)
JQo(g1, 3)

 .

The optimality equations (5.83) are

JQo(g1, 1) = 2
9JQ

o(g1, 1) + 7
9JQ

o(g1, 2), (5.102a)

JQo(g1, 2) = JQo(g1, 2), (5.102b)

JQo(g1, 3) = 8
9JQ

o(g1, 1) + 1
9JQ

o(g1, 3). (5.102c)

and hence, JQo(g1, 1) = JQo(g1, 2) = JQo(g1, 3).

Next, solve the equation JQo(g1) + VQo(g1) = f(g1) + Qo(g1)VQo(g1), for JQo(g1) ∈ R3
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and VQo(g1) ∈ R3, or,
JQo(g1, 1)
JQo(g1, 2)
JQo(g1, 3)

+


VQo(g1, 1)
VQo(g1, 2)
VQo(g1, 3)

 =


f(1, g1(1))
f(2, g1(2))
f(3, g1(3))

+


qo11(g1(1)) qo12(g1(1)) qo13(g1(1))
qo21(g1(2)) qo22(g1(2)) qo23(g1(2))
qo31(g1(3)) qo32(g1(3)) qo33(g1(3))



VQo(g1, 1)
VQo(g1, 2)
VQo(g1, 3)


which is given by

JQo(g1, 1)
JQo(g1, 2)
JQo(g1, 3)

+


VQo(g1, 1)
VQo(g1, 2)
VQo(g1, 3)

 =


0.5
1
0

+ 1
9


2 7 0
0 9 0
8 0 1



VQo(g1, 1)
VQo(g1, 2)
VQo(g1, 3)


The optimality equations (5.84) are given by

JQo(g1, 1) + VQo(g1, 1) = 0.5 + 2
9VQ

o(g1, 1) + 7
9VQ

o(g1, 2) (5.103a)

JQo(g1, 2) + VQo(g1, 2) = 1 + VQo(g1, 2) (5.103b)

JQo(g1, 3) + VQo(g1, 3) = 8
9VQ

o(g1, 1) + 1
9VQ

o(g1, 3) (5.103c)

The solution of (5.102) and (5.103) has

VQo(g1, 1) = α + 9
8 , VQo(g1, 2) = α + 99

56 , VQo(g1, 3) = α,

JQo(g1, 1) = 1, JQo(g1, 2) = 1, JQo(g1, 3) = 1.

Setting α = 1 yields

VQo(g1, 1) = 2.125, VQo(g1, 2) = 2.76, VQo(g1, 3) = 1.

Hence, we proceed with the identification of the support sets, which are X+ = {2}, X− =
{3} and X1 = {1}. Since the partition is the same as in m = 0 then Q∗(u1) and Q∗(u2) are

equal to (5.98) and (5.99), respectively.

Next, solve the equation JQ∗(g1) = Q∗(g1)JQ∗(g1), or,
JQ∗(g1, 1)
JQ∗(g1, 2)
JQ∗(g1, 3)

 =


q∗11(g1(1)) q∗12(g1(1)) q∗13(g1(1))
q∗21(g1(2)) q∗22(g1(2)) q∗23(g1(2))
q∗31(g1(3)) q∗32(g1(3)) q∗33(g1(3))



JQ∗(g1, 1)
JQ∗(g1, 2)
JQ∗(g1, 3)



= 1
9


0 9 0
0 9 0
2 7 0



JQ∗(g0, 1)
JQ∗(g0, 2)
JQ∗(g0, 3)

 .

Ioa
nn

is 
Tzo

rtz
is



144 Dynamic Programming with TV Distance Ambiguity on an Infinite Horizon

The optimality equations (5.85) are

JQ∗(g1, 1) = JQ∗(g1, 2), (5.104a)

JQ∗(g1, 2) = JQ∗(g1, 2), (5.104b)

JQ∗(g1, 3) = 2
9JQ

∗(g1, 1) + 7
9JQ

∗(g1, 2) (5.104c)

and hence, JQ∗(g1, 1) = JQ∗(g1, 2) = JQ∗(g1, 3).

Next, solve the equation JQ∗(g1) + VQ∗(g1) = f(g1) + Q∗(g1)VQ∗(g1), for JQ∗(g1) ∈ R3

and VQ∗(g1) ∈ R3, or,


JQ∗(g1, 1)
JQ∗(g1, 2)
JQ∗(g1, 3)

+


VQ∗(g1, 1)
VQ∗(g1, 2)
VQ∗(g1, 3)

 =


f(1, g1(1))
f(2, g1(2))
f(3, g1(3))

+


q∗11(g1(1)) q∗12(g1(1)) q∗13(g1(1))
q∗21(g1(2)) q∗22(g1(2)) q∗23(g1(2))
q∗31(g1(3)) q∗32(g1(3)) q∗33(g1(3))



VQ∗(g1, 1)
VQ∗(g1, 2)
VQ∗(g1, 3)


which is given by


JQ∗(g1, 1)
JQ∗(g1, 2)
JQ∗(g1, 3)

+


VQ∗(g1, 1)
VQ∗(g1, 2)
VQ∗(g1, 3)

 =


0.5
1
0

+ 1
9


0 9 0
0 9 0
2 7 0



VQ∗(g1, 1)
VQ∗(g1, 2)
VQ∗(g1, 3)


The optimality equations (5.86) are given by

JQ∗(g1, 1) + VQ∗(g1, 1) = 0.5 + VQ∗(g1, 2) (5.105a)

JQ∗(g1, 2) + VQ∗(g1, 2) = 1 + VQ∗(g1, 2) (5.105b)

JQ∗(g1, 3) + VQ∗(g1, 3) = 2
9VQ

∗(g1, 1) + 7
9VQ

∗(g1, 2) (5.105c)

The solution of (5.104) and (5.105) has

VQ∗(g1, 1) = α + 11
18 , VQ∗(g1, 2) = α + 10

9 , VQ∗(g1, 3) = α,

JQ∗(g1, 1) = 1, JQ∗(g1, 2) = 1, JQ∗(g1, 3) = 1.

Setting α = 1 yields

VQ∗(g1, 1) = 1.611, VQ∗(g1, 2) = 2.111, VQ∗(g1, 3) = 1.
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3. Let g2 = argming∈R3{f(g) +Q∗(g)VQ∗(g1)}, that is,

g2(1) = argmin
{

f(1, u1) + g∗11(u1)VQ∗(g1, 1) + g∗12(u1)VQ∗(g1, 2) + g∗13(u1)VQ∗(g1, 3),

f(1, u2) + g∗11(u2)VQ∗(g1, 1) + g∗12(u2)VQ∗(g1, 2) + g∗13(u2)VQ∗(g1, 3)
}

= argmin
{

4.111, 2.611
}

= {2}. Hence, g2(1) = u2.

g2(2) = argmin
{

f(2, u1) + g∗21(u1)VQ∗(g1, 1) + g∗22(u1)VQ∗(g1, 2) + g∗23(u1)VQ∗(g1, 3),

f(2, u2) + g∗21(u2)VQ∗(g1, 1) + g∗22(u2)VQ∗(g1, 2) + g∗23(u2)VQ∗(g1, 3)
}

= argmin
{

3.111, 5.111
}

= {1}. Hence, g2(2) = u1.

g2(3) = argmin
{

f(3, u1) + g∗31(u1)VQ∗(g1, 1) + g∗32(u1)VQ∗(g1, 2) + g∗33(u1)VQ∗(g1, 3),

f(3, u2) + g∗31(u2)VQ∗(g1, 1) + g∗32(u2)VQ∗(g1, 2) + g∗33(u2)VQ∗(g1, 3)
}

= argmin
{

4.864, 1.999
}

= {2}. Hence, g2(3) = u2.

4. Because, g2 = g1, then g∗ = g1 is an optimal control law with JQ∗(1) = JQ∗(2) =
JQ∗(3) = 1, VQ∗(1) = 1.611, VQ∗(2) = 2.111 and VQ∗(3) = 1.

5.5. Summary

In this chapter, we examined the optimality of stochastic control strategies via dynamic pro-

gramming on an infinite horizon, when the ambiguity class is described by the total variation

distance between the conditional distribution of the controlled process and the nominal con-

ditional distribution. For optimality criteria we considered both the expected discounted

reward and the average pay-off per unit time. For the infinite horizon case with a discounted

pay-off we showed that the operator associated with the resulting dynamic programming

equation under total variation distance ambiguity is contractive, and we introduced a new

policy iteration algorithm. For the infinite horizon case with an average pay-off, under the

assumption that for every stationary Markov control law the maximizing stochastic matrix

is irreducible, we derived a new dynamic programming equation and a new policy iteration
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146 Dynamic Programming with TV Distance Ambiguity on an Infinite Horizon

algorithm. However, due to the water-filling behavior of the maximizing conditional distri-

bution, it turns out that our proposed method of solution is limited only to a specific range

of values of total variation distance, and hence, we derived a general dynamic programming

equation by introducing a pair of dynamic programming equations, and, consequently a new

policy iteration algorithm, which despite the fact that it is more complex it completely solves

the minimax stochastic control problem. Finally, the application of our recommended policy

iteration algorithms is shown via illustrative examples.
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6
Approximation of Markov Processes by

Lower Dimensional Processes

In this chapter, we approximate a finite-state Markov process by another process with fewer

states, called herein the approximating process. The approximation problem is formulated

using two different methods. The first method, utilizes the total variation distance to dis-

criminate the transition probabilities of a high-dimensional Markov process and a reduced

order Markov process. The second method, utilizes total variation distance as a measure

of discriminating the invariant probability of a Markov process by the approximating pro-

cess. Once the reduced invariant probability is obtained, which does not correspond to a

Markov process, a further approximation by a Markov process is proposed which minimizes

the Kullback-Leibler divergence. The results of this part include:

• based on the first method, a direct procedure for Markov by Markov approximation;

• and, based on the second method, extremum measures which exhibit a water-filling

behavior and solve the approximation problems;

• optimal partition functions and new iterative approximation algorithms which compute

the invariant distribution of the approximating process;

• examples which illustrate the methodology and the behavior of the approximations.

147

Ioa
nn

is 
Tzo

rtz
is



148 Approximation of Markov Processes by Lower Dimensional Processes

6.1. Problem Formulation

In this section, the approximation problems under investigation are introduced.

6.1.1. Preliminaries and discrepancy measures

We consider a discrete-time homogeneous Markov process {Xt : t = 0, 1, . . . }, with state-

space X of finite cardinality card(X ) = |X |, and transition probability matrix P with ele-

ments {pij : i, j = 1, . . . , |X |} defined by

pij
4= P(Xt+1 = j|Xt = i), i, j ∈ X , t = 0, 1, . . . .

The Markov process is assumed to be irreducible, aperiodic having a unique invariant distri-

bution µ = [µ1 µ2 . . . µ|X |] satisfying

µ = µP.

For the rest of the chapter we adopt the notation (µ, P,X ) to denote a stationary FSM process

P with stationary distribution µ and state-space X .

The distance metrics we will use to define the discrepancy between two probability dis-

tributions (and conditional probability distributions) are the Total Variation distance, and the

Kullback-Leibler divergence. The latter is introduced below (see also Section 2.3).

Relative Entropy distance

The relative entropy of ν ∈ P(X ) with respect to µ ∈ P(X ) is a mapping D(·||·) : P(X ) ×
P(X ) −→ [0,∞] defined by

D(ν||µ) 4=
∑
i∈X

νi log νi
µi

It is well known that D(ν||µ) ≥ 0,∀ν, µ ∈ P1(X ), while D(ν||µ) = 0⇔ ν = µ.

Let (µ, P,X ) and (ν,Φ,X ) be two stationary FSM processes. A version of the KL diver-

gence used in [17, 49], is defined by

Dµ(P ||Φ) 4=
∑
i,j∈X

µiPij log
(
Pij
Φij

)
, (6.1)

where Pi• is assumed to be absolutely continuous with respect to Φi•, that is, for any i ∈ X ,

Φij = 0 for some j ∈ X then Pij = 0. Note that (6.1) is used to compare stationary

Markov processes which are defined on the same state-space. For Markov processes which
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6.1 Problem Formulation 149

are defined on different state-spaces, (6.1) is modified by introducing a lifted version of the

lower-dimensional Markov process (see [19]), defined by

Φ̂ij = µj∑
k∈ψ(j) µk

Φϕ(i)ϕ(j), i, j ∈ X , (6.2)

where ψ(j) denotes the set of states belonging to the same group as the jth state, and ϕ

denotes a partition function from X onto Y . For the rest of the chapter we will use the

notation D(ϕ)(P ||Φ) = Dµ(P ||Φ̂) to denote the KL divergence distance between two Markov

processes defined on different state-spaces.

6.1.2. Approximation problems

The two different methods proposed to approximate FSM processes by lower-dimensional

processes, are the following.

Method 1

This method is based on comparing two FSM processes (µ, P,X ) and (ν,Φ,Y), Y ⊂ X ,

by working directly on their transition probability matrices P and Φ. The approximation

problem is formulated as a maximization of a linear functional, defined on the transition

probabilities of the reduced order FSM process (ν,Φ,Y), subject to a TV constraint distance

between the transition probabilities of the high and low-dimensional FSM processes. The

precise problem formulation is given below.

Problem 6.1. Given a FSM process (µ, P,X ), find a transition probability matrix Φ which

solves the maximization problem defined by

max
Φi•∈P(Y),∀i∈Y

∑
i∈X

∑
j∈X

`jΦijµi, ` ∈ R|X |+

subject to
∑
i∈X

∑
j∈X
|Φij − Pij|µi ≤ R, ∀R ∈ [0, 2].

The optimal transition probability matrix Φ which solves optimization Problem 6.1 is

obtained for all values of TV parameter R ∈ [0, 2], and exhibits a water-filling solution.

In addition, as the TV parameter increases, it turns out that the dimension of the transition

matrix Φ is reduced, and hence, a reduced order FSM process is obtained.

Method 2

Given a FSM process (µ, P,X ), an invariant distribution µ ∈ P(X ), and a parameter R ∈
[0, 2], define the average pay-off with respect to the stationary distribution ν ∈ BR(µ) ⊂
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150 Approximation of Markov Processes by Lower Dimensional Processes

P(X ) by

L(ν) =
∑
i∈X

`iνi, ` ∈ R|X |+ (6.3)

The objective is to approximate µ ∈ P(X ) by ν ∈ BR(µ), by solving the maximization

problem defined by

L(ν∗) = max
ν∈BR(µ)
µ=µP

L(ν), ∀R ∈ [0, 2], (6.4)

for two alternative choices of the parameters ` ∈ R|X |+ , as follows.

Formulation (a) (Approximation Based on Occupancy Distribution)

Let `i , µi, ∀i ∈ X , which implies (6.4) is equivalent to maximizing the stationary distri-

bution {νi : i ∈ X} ∈ P(X ) subject to the approximation constraint. This formulation leads

to an approximation algorithm described via reduction of the states (i.e., by deleting certain

states of the original Markov process) to obtain the approximating reduced state process.

Intuitively, the optimal solution has the property of maintaining and strengthening the states

with the highest invariant probability, while removing the states with the smallest invariant

probability, as shown in Fig. 6.1.

Figure 6.1.: Water-filling behavior of invariant distribution based on occupancy distribution

Formulation (b) (Approximation Based on Maximum Entropy Principle)

Let `i , − log νi, ∀i ∈ X , which implies that (6.4) equivalent to the problem of finding the

approximating distribution corresponding to the minimum description codeword length [4].

This formulation leads to an optimal approximation algorithm described via aggregation of

the states (i.e., by grouping certain states of the original Markov process) to obtain the ap-

proximated reduced state process, as shown in Fig. 6.2, which is a Hidden Markov process.
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6.1 Problem Formulation 151

This formulation is equivalent to finding the minimum description length of the approximat-

ing process, and it is related to minimizing the average codeword length of the approximated

Markov process, subject to a fidelity set.

µ(x1) µ(x2) µ(x3) µ(x4) µ(x5) µ(x6) µ(x7) symbol

weight

w

w

Figure 6.2.: Water-filling like behavior of invariant distribution based on maximum entropy

principle

The approximated probability vector is based on the following concept. Given a FSM pro-

cess (µ, P,X ), the optimal probabilities of the reduced process are defined on X , which is

partitioned into disjoint sets X = ∪Ki=1Xi, K ≤ |X |. The solution of the optimization prob-

lems based on Method 2(a) and 2(b), give the maximizing probability ν∗(Xi), i = 1, . . . , K,

on this partition.

For Method 2(a), as R increases the maximizing probability vector, ν∗, is given by a

water-filling solution, having the property that states of the initial probability vector µ ∈
P(X ) are deleted to form a new partition of X , denoted by X = ∪Mi=1Yi, M ≤ K ≤ |X |.
The approximated probability vector is defined as follows.

Definition 6.1. (Approximated Probability Vector based on Occupancy Distribution)

Define the restriction of ν∗ on only those elements of the partition {Y1, . . . ,YM} which have

non-zero probability by

ν∗|supp(ν∗)6=0 : {Yi1 ,Yi2 , . . . ,Yik} 7−→ [0, 1], (6.5)

where {Yi1 ,Yi2 , . . . ,Yik} ⊆ {Y1, . . . ,YM}, and i1, i2, . . . , ik ∈ {1, 2, . . . ,M}. The approx-

imated probability vector based on occupancy distribution is defined by

ν̄ = ν∗|supp(ν∗)6=0, (6.6)

having states which are in one-to-one correspondence with {1, 2, . . . , k}, via the mapping

Yi1 7−→ 1, Yi2 7−→ 2, . . . , Yik 7−→ k, with corresponding process {Yt : t = 0, 1, . . . } having

state-space Y = {1, 2, . . . , k}.
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152 Approximation of Markov Processes by Lower Dimensional Processes

For Method 2(b), as R increases the maximizing probability vector ν∗, exhibits a water-

filling like solution, with the property that states of µ ∈ P(X ) are aggregated together to

form a new partition of X . The approximated probability vector is defined as follows.

Definition 6.2. (Approximated Probability Vector based on Maximum Entropy Principle)

Define ν̄ = ν∗ if all elements of ν∗(Xk) are not equal and the state-space of ν̄ is Y =
{1, . . . , K}. If any of the ν∗(Xk), k ∈ {1, . . . , K} become equal then a new probability

vector ν̄ is defined by adding together those ν∗ ∈ P(X ) which are equal, and ν̄
4= ν∗(Xk)

for the ν∗(Xk) whose elements are not equal. The resulting approximated probability vector

based on maximum entropy principle ν̄ ∈ P(Y), with corresponding process {Yt : t =
0, 1, . . . }, is defined on a state-space Y , whose cardinality is less or equal to |X |.

Remark 6.1. The reduction based on Method 2(a), (b), in general does not produce a

Markov chain though in specific cases it may be a Markov chain.

Once the approximating process1 {Yt : t = 0, 1, . . . } is obtained, we move one step

further to investigate the problem of approximating a FSM process by another FSM process

(ν̄,Φ,Y), Y ⊂ X . Here, the objective is to find an optimal partition function ϕ and a

transition matrix Φ which minimizes the KL divergence rate [19] defined by

D(ϕ)(P ||Φ) =
∑
i,j∈X

µiPij log
(
Pij

Φ̂ij

)
, (6.7)

where Φ̂ is given by (6.2), and denotes the lifted version of the lower-dimensional Markov

chain Φ by using an optimal partition function ϕ. By employing certain results from [19],

the transition matrix Φ which solves (6.7) is obtained. What remains, is to find an optimal

partition function ϕ, for the approximation problems of Method 2(a) and 2(b). This Markov

by Markov approximation is found by working only with values of TV parameter for which

a reduction of the states occurs, that is, |Y| < |X |.
Given a FSM process (µ, P,X ), an algorithm is presented, which describes how to con-

struct the transition probability matrix Q†, from the maximizing distribution ν∗ of problem

(6.4) for Method 2(a) and 2(b). Then, using Definitions 6.1 and 6.2, a lower probability

distribution ν̄ ∈ P(Y) is obtained. Under the restriction that the lower-dimensional process

is also a FSM process (ν̄,Φ,Y), Y ⊂ X , an optimal partition function ϕ and a transition

probability matrix Φ, are found which minimize the KL divergence rate between P and Φ̂.

The approximation procedure for Method 2(a) and 2(b), is shown in Fig.6.3.

The precise problem definition of approximation Method 2 based on occupancy distribu-

tion is given below.
1The reduced approximating process is obtained without a priori imposing the assumption that it is also a

Markov process.
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Markov pro-
cess, (µ, P,X )

Construct a
Q† matrix

Maximizing
distribution, ν∗

Approximated
distribution,
ν̄ ∈ P(Y)

Under a Marko-
vian assumption

Partition
function, ϕ

Transition
matrix, Φ

Figure 6.3.: Procedure of Method 2.

Problem 6.2. (Approximation Based on Occupancy Distribution)

Let {`i : i ∈ X} ∈ R|X |+ denote the occupancy distribution of a FSM process (µ, P,X )
defined by `i , µi, ∀i ∈ X . Find {νi : i ∈ X} ∈ P(X ) which solves

max
ν∈BR(µ)
µ=µP

∑
i∈X

µiνi. (6.8)

Given the optimal solution of (6.8), let ν̄ of Definition 6.1 denote the invariant distribution

of a lower-dimensional FSM process (ν̄,Φ,Y), Y ⊂ X .

Find an optimal partition function ϕ, and calculate the transition probability matrix Φ, which

satisfies ν̄ = ν̄Φ, and minimizes the KL divergence rate defined by

min
ϕ,Φ
ν̄=ν̄Φ

D(ϕ)(P ||Φ). (6.9)

Other reasonable choices, are possible by letting ` ∈ R|X |+ correspond to a reward or a

profit, a cost or a loss, etc., whenever a node is visited.

Next, the precise problem definition of approximation Method 2 based on maximum en-

tropy principle is given.

Problem 6.3. (Approximation Based on Maximum Entropy Principle)

Maximize the entropy of {νi : i ∈ X} ∈ P(X ) subject to total variation fidelity set, defined

by

max
ν∈BR(µ)
µ=µP

H(ν), H(ν) 4= −
∑
i∈X

log(νi)νi. (6.10)
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154 Approximation of Markov Processes by Lower Dimensional Processes

Given the optimal solution of (6.10), let ν̄ of Definition 6.2 denote the invariant distribution

of a lower-dimensional Markov process (ν̄,Φ,Y), Y ⊂ X .

Find an optimal partition function ϕ, and calculate the transition probability matrix Φ, which

satisfies ν̄ = ν̄Φ, and minimizes the KL divergence rate defined by

min
ϕ,Φ
ν̄=ν̄Φ

D(ϕ)(P ||Φ). (6.11)

Problem (6.10) is of interest when the concept of insufficient reasoning (e.g., Jayne’s

maximum entropy principle2 [34]) is applied to construct a model for ν ∈ P(X ), subject

to information quantified via the fidelity set defined by the variation distance between ν and

µ.

It is not difficult to show that the maximum entropy approximation defined by (6.10) is

precisely equivalent to the problem of finding the approximating distribution corresponding

to the minimum description codeword length, also known as the universal coding problem [4,

52], as follows. Let {`i : i ∈ X} ∈ R|X |+ denote the positive codeword lengths corresponding

to each symbol of the approximated distribution, which satisfy the Kraft inequality of lossless

Shannon codes
∑
i∈X D

−`i ≤ 1, where the codeword alphabet is D-ary (unless specified

otherwise log(·) 4= logD(·)). Then, by the Von-Neumann’s theorem, which holds due to

compactness and convexity of the constraints, it follows that

min
`∈R|X|+ :

∑
i∈X D

−`i≤1
max
ν∈BR(µ)
µ=µP

∑
i∈X

`iνi = max
ν∈BR(µ)
µ=µP

min
`∈R|X|+ :

∑
i∈X D

−`i≤1

∑
i∈X

`iνi = max
ν∈BR(µ)
µ=µP

H(ν).

Hence, for `i
4= − log νi, ∀i ∈ X , the optimization (6.4) is equivalent to optimization (6.10).

6.2. Method 1: Solution of Approximation Problem

In this section, we give the main theorem which characterizes the solution of Problem 6.1.

Similar to Chapter 3, define the maximum and minimum values of the sequence

{`1, . . . , `|X |} ∈ R|X |+ by

`max , max
i∈X

`i, `min , min
i∈X

`i

and its corresponding support sets by

X 0 , {i ∈ X : `i = `max}, X0 , {i ∈ X : `i = `min}.
2The maximum entropy principle states that, subject to precisely stated prior data, the probability distribution

which best represents the current state of knowledge is the one with largest entropy.
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6.2 Method 1: Solution of Approximation Problem 155

For all remaining elements of the sequence, {`i : i ∈ X \X 0∪X0}, define recursively the set

of indices for which ` achieves its (k+ 1)th smallest value by Xk, where k ∈ {1, 2, . . . , |X \
X 0 ∪X0|}, till all the elements of X are exhausted (i.e., k is at most |X \ X 0 ∪X0|), and the

corresponding values of the sequence on the Xk sets by `(Xk).

For a fixed i ∈ X , define the total variation of a signed measure

Ξij
4= Φij − Pij, ∀j ∈ X

to be equal to the summation of its positive and its negative part, that is,

||Ξi•||TV
4=
∑
j∈X

Ξ+
ij +

∑
j∈X

Ξ−ij, ∀i ∈ X . (6.12)

By utilizing the fact that
∑
j∈X Ξij = 0, ∀i ∈ X then

∑
j∈X

Ξ+
ij =

∑
j∈X

Ξ−ij = ||Ξi•||TV
2 , ∀i ∈ X . (6.13)

Let αi
4= ||Ξi•||TV , ∀i ∈ X , then the constraint of Problem 6.1 is equivalent to

∑
i∈X

αiµi ≤ R. (6.14)

and the pay-off can be reformulated as follows.

max
Φi•∈P(·)

∑
i∈X

∑
j∈X

`jΦijµi ≡
∑
i∈X

∑
j∈X

`jPijµi + max
Φi•∈P(·)

∑
i∈X

∑
j∈X

`jΞijµi. (6.15)

In addition, ∑
i∈X

∑
j∈X

`jΞijµi =
∑
i∈X

∑
j∈X

`jΞ+
ijµi −

∑
i∈X

∑
j∈X

`jΞ−ijµi. (6.16)

The solution of Problem 6.1 is obtained by identifying the partition of X into disjoint sets

{X 0,X0,X1, . . . ,Xk} and the transitions on this partition. The main idea is to express Ξi• as

the difference of its positive and negative part and then find upper and lower bounds on the

transition probabilities of X 0 and X \ X 0 which are achievable. Closed form expressions of

the transition probability measures, on these sets, which achieve the bounds are derived.

The following Theorem characterizes the solution of Problem 6.1.

Theorem 6.1. The solution of Problem 6.1 is given by

∑
i∈X

∑
j∈X

`jΦ†ijµi = `max
∑
i∈X 0

∑
j∈X

µjΦ†ji + `min
∑
i∈X0

∑
j∈X

µjΦ†ji +
r∑

k=1
`(Xk)

∑
i∈Xk

∑
j∈X

µjΦ†ji,

(6.17)
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156 Approximation of Markov Processes by Lower Dimensional Processes

where for any i ∈ X ,

Φ†ij = Pij + αi
2|X 0|

, ∀j ∈ X 0, (6.18a)

Φ†ij =
(
Pij −

αi
2|X0|

)+
, ∀j ∈ X0, (6.18b)

Φ†ij =
(
Pij −

(
αi

2|Xk|
−

k∑
j=1

∑
z∈Xj−1

Piz

)+)+
, ∀j ∈ Xk (6.18c)

αi = min(R,Rmax,i), Rmax,i = 2(1−
∑
j∈X 0

Pij), (6.18d)

k = 1, 2, . . . , r and r is the number of Xk sets which is at most |X \ X 0 ∪ X0|. Once the Φ†

matrix is constructed as a function of TV parameter R, then the transition matrix Φ which

solves Problem 6.1 is given by removing all zero columns and the respective rows of Φ†

matrix.

Proof. See Appendix E. �

Clearly, the optimal transition matrix Φ is obtained via a water-filling solution.

Remark 6.2. Note that, if we replace the maximization of Problem 6.1 with minimization,

then the solution of the new problem is obtained precisely as that of Problem 6.1, but with a

reverse computation of the partition of the space X and the mass of the transition probability

on the partition moving in the opposite direction.

6.3. Method 2: Solution of Approximation Problems

In this section, we recall some results from Chapter 3, which are vital in providing the so-

lution of Problem (6.4), and consequently the solution of approximation Problems (6.2) and

(6.3).

First recall, from Section 6.2, the definitions of the support sets X 0, X0, Xk and the def-

initions of the corresponding values of the sequence on these sets given by `max, `min and

`(Xk). Given ` ∈ R|X |+ , µ ∈ P(X ), it is shown in Chapter 3, that the solution of optimization

(6.4) is given by3

L(ν∗) = `maxν
∗(X 0) + `minν

∗(X0) +
r∑

k=1
`(Xk)ν∗(Xk), (6.19)

3Note the notation Σ0, Σ0 and Σk in Chapter 3, is identical to the notation X 0, X0 and Xk, respectively.
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6.3 Method 2: Solution of Approximation Problems 157

and the optimal probabilities are obtained via water-filling, as follows

ν∗(X 0),
∑
i∈X 0

ν∗i =
∑
i∈X 0

µi + α

2 , (6.20a)

ν∗(X0),
∑
i∈X0

ν∗i =
( ∑
i∈X0

µi −
α

2

)+
, (6.20b)

ν∗(Xk),
∑
i∈Xk

ν∗i =
( ∑
i∈Xk

µi−
(
α

2−
k∑
j=1

∑
i∈Xj−1

µi

)+)+
, (6.20c)

α = min (R,Rmax) , Rmax
4= 2(1−

∑
i∈X 0

µi), (6.20d)

where, k = 1, 2, . . . , r and r is the number of Xk sets which is at most |X \ X 0 ∪ X0|. The

optimal probabilities given by (6.20a)-(6.20c), can be expressed in matrix form as follows

ν∗ = µQ† = µPQ†. (6.21)

In Sections 6.3.1 and 6.3.2, we provide algorithms for constructing the desired Q† matrix for

the optimizations (6.8) and (6.10), respectively.

Remark 6.3. The identification of the support sets X 0, X0 and Xk, k = 1, 2, . . . , r, is based

on the values of `i’s, ∀i ∈ X . If the cardinality of any of the support sets is greater than one,

i.e., |X 0| > 1, and `i = `i+1 = . . . , ∀i, i+ 1, · · · ∈ X 0 then by (6.20a)

ν∗i = ν∗(X 0)
|X 0|

, ∀i ∈ X 0, (6.22a)

and similarly for the rest, that is, if |X0| > 1 then

ν∗i = ν∗(X0)
|X0|

, ∀i ∈ X0, (6.22b)

and if |Xk| > 1, for k = 1, . . . , r, then

ν∗i = ν∗(Xk)
|Xk|

, ∀i ∈ Xk. (6.22c)

The resulting optimal probability ν∗ is a (2 + r) row vector and hence, by (6.21) Q† is an

|X | × (2 + r) matrix. Then by employing (6.22) we extract the optimal probabilities ν∗i for

all i ∈ X , which are then used in definition of the optimal partition functions (see Definition

6.3 and 6.4).

For the approximation based on occupancy distribution, we let the matrix Q† to be an

|X | × |X | matrix, instead of an |X | × (2 + r) matrix. The reason for doing so, is that we

want to take into account the cases for which `i’s, ∀i ∈ X , might be defined to represent

a cost or profit etc., whenever a node is visited. In such cases, (6.22) is not valid anymore,
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158 Approximation of Markov Processes by Lower Dimensional Processes

since `i = `j does not necessarily imply µi = µj , ∀i, j ∈ X . As we will show in Section

6.3.1, Algorithm 6.2 constructs a Q† matrix which in addition to occupancy distribution,

considers those alternative cases as well.

By Definition 6.1 and 6.2, the approximated probability vector ν̄ ∈ P(Y) is readily avail-

able and satisfies

ν̄ = µQ = µPQ, (6.23)

where Q matrix is modified accordingly.

Once the reduced state process is obtained, we utilize its solution to solve the optimizations

(6.9) and (6.11). The relation between µ(t), µ(t + 1) ∈ P(X ) and ν̄(t), ν̄(t + 1) ∈ P(Y) is

shown in Fig.6.4.

µ(t) µ(t+ 1)

ν̄(t) ν̄(t+ 1)

PQ||ν − µ||TV

P

D(ϕ)(P ||Φ)

Φ

Figure 6.4.: Method 2. Diagram that shows the relationship of the initial and the lower prob-

ability distributions.

6.3.1. Solution of Approximation Problem based on Occupancy
Distribution

In this section, we first give an algorithm to construct theQ† matrix which solves (6.8). Then,

under an additional assumption that the reduced process is also Markov, we give the solution

of (6.9).

Let k = 0, 1, . . . , r − 1, where r denotes the number of Xk sets, that is, 1 ≤ r ≤ |X \ X 0|
(note that, X0 set is included). For all j = 1, 2, . . . , |Xk|, Xk,j , {jth element of Xk set},
(note that, if |Xk| = 1 then Xk,j = Xk). Similarly, X 0,j , {jth element of X 0 set}, (note

that, if |X 0| = 1 then X 0,j = X 0).
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6.3 Method 2: Solution of Approximation Problems 159

Algorithm 6.2.

1. Initialization step:

a) Arrange `i, i ∈ X , in a descending order.

b) Identify the support sets X 0, X0 and Xk for all k ∈ {1, 2, . . . , |X \ X 0 ∪ X0|}.

c) Calculate the value of r.

For any R ∈ [0, 2]:

2) Step.1 (Indicator functions):

a) Let

µR(X 0) ,
∑
i∈X 0

µi + R

2 .

Define

IX
0
,

 1, if µR (X 0) ≥ 1,
0, otherwise.

(6.24)

b) For k = 0, 1, . . . , r − 1 let

µR(Xk) ,
k∑
j=0

∑
i∈Xj

µi −
R

2 .

Define

IXk ,

 1, if µR (Xk) ≥ 0,
0, otherwise.

IX[0,k−1] ,

 1, if µR (Xi) < 0, ∀i = 0, 1, . . . , k − 1
0, otherwise,

and

IXk,X[0,k−1] = IXkIX[0,k−1] . (6.25)

c) For k = 0, 1, . . . , r − 1, if |Xk| > 1, then for all j=1 . . . , |Xk|, let

µR(Xk,j) , µXk,j −
(R/2−∑i∈∪k−1

j=0Xj
µi)

|Xk|
.

Define

IXk,j ,

 1, if µR (Xk,j) ≥ 0,
0, otherwise,

(6.26)
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160 Approximation of Markov Processes by Lower Dimensional Processes

3) Step.2 (The Q† matrix):

Let Q† be an |X | × |X | matrix and i = 1, 2, . . . , |X | to denote the ith column of Q†

matrix.

a) For all i ∈ X 0, the elements of the ith column are given as follows.

i) Let the (Q†)i,i element be equal to

r−1∑
k=0

IXk,X[0,k−1]

(
1 + R/2
|X 0|

)
+ IX

0 (µX 0,i +
∑

j∈X\X0 µj

|X 0| )
µX 0,i

. (6.27)

ii) Let all the remaining elements of the ith column be equal to

r−1∑
k=0

IXk,X[0,k−1]
R/2
|X 0|

. (6.28)

b) For all i ∈ Xk, k = 0, 1, . . . , r − 1, and j ∈
{
ψ ∈ {1, 2, . . . , |Xk|} : i ∈

Xk is in the ψth position on Xk set
}

, the elements of the ith column are as fol-

lows.

i) Let the (Q†)i,i element be equal to

k−1∑
j=0

IXj ,X[0,j−1] + IXk,jIXk,X[0,k−1]

(
1− R/2∑|Xk|

j=1 I
Xk,j

)
. (6.29)

ii) If |Xk| > 1, then for all z ∈ Xk \ Xk,j , let the (Q†)z,i element be equal to

IXk,jIXk,X[0,k−1]

{ |Xk|∏
j=1

IXk,j
( −R/2∑|Xk|

j=1 I
Xk,j

)
+
(

1− R/2∑|Xk|
j=1 I

Xk,j

)(
1−

|Xk|∏
j=1

IXk,j
)}
. (6.30)

iii) For all z ∈ X \X 0 ∪Xk and only if z > i let the (Q†)z,i element be equal to

IXk,jIXk,X[0,k−1]

{ |Xk|∏
j=1

IXk,j
( 1
|Xk|
− R/2∑|Xk|

j=1 I
Xk,j

)
+
(

1− R/2∑|Xk|
j=1 I

Xk,j

)(
1−

|Xk|∏
j=1

IXk,j
)}
. (6.31)

iv) Let all the remaining elements of the ith column be equal to

IXk,jIXk,X[0,k−1]

( −R/2∑|Xk|
j=1 I

Xk,j

)
. (6.32)

Once the Q† matrix is constructed, as a function of the TV parameter R, then by (6.21) the

resulting optimal probability, ν∗, is an 1× |X | row vector. However, recall from Remark 6.3

that by definition ν∗ is just an 1 × (2 + r) row vector. By using all the information that the

support sets provide to us we can easily transform the 1×|X | row vector to an 1×(2+r) row

vector, by simply adding together the optimal probabilities, ν∗i , ∀i ∈ X , which belong to the
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6.3 Method 2: Solution of Approximation Problems 161

same support sets. Given the optimal solution of optimization (6.8), then by Definition 6.1

the lower-dimensional process {Yt : t = 0, 1 . . . } with invariant distribution ν̄ is obtained,

either by removing all zero elements of ν∗ ∈ P(X ), or by defining a Q matrix to be equal to

Q† after the deletion of all zero columns, and hence

ν̄ = µQ = µPQ, (6.33)

where the dimensions of Q matrix are based on the value of the TV parameter R ∈ [0, 2].
Before we proceed with the solution of (6.9), we provide a simple, yet useful example in

order to explain each step of Algorithm 6.2.

Example 6.1. Let ` = [`1 `2 `3 `4], where `1 > `2 > `3 > `4, and |X | = 4. For simplicity

it is assumed that the optimum probabilities ν∗i , i ∈ X , as a function of R are known, as

presented in Fig.6.5.

Initialization step. The support sets are equal to X 0 = {1}, X0 = {4}, X1 = {3} and

X2 = {2}. The number of Xk sets is equal to r = 3.

Step.1 From (6.24), the indicator function IX
0

is given by

IX
0
,

 1, if µ1 + R
2 ≥ 1,

0, otherwise.

From (6.25), the indicator functions IX0 , IX1,X[0,0] and IX2,X[0,1] are given by

IX0 ,

 1, if µ4 − R
2 ≥ 0,

0, otherwise.

IX1,X[0,0] ,

 1, if µ3 + µ4 − R
2 ≥ 0 and µ4 − R

2 ≤ 0,
0, otherwise.

IX2,X[0,1] ,


1, if µ2 + µ3 + µ4 − R

2 ≥ 0
and µ3+µ4−R

2 ≤ 0 and µ4−R
2 ≤ 0,

0, otherwise.

The values of the indicator functions for R ∈ [0, 2] are given below.

0 ≤ R < R1

IX
0 = 0

IX0 = 1

IX1,X[0,0] = 0

IX2,X[0,1] = 0

R1 ≤ R < R2

IX
0 = 0

IX0 = 0

IX1,X[0,0] = 1

IX2,X[0,1] = 0

R2 ≤ R < R3

IX
0 = 0

IX0 = 0

IX1,X[0,0] = 0

IX2,X[0,1] = 1

R3 ≤ R ≤ 2

IX
0 = 1

IX0 = 0

IX1,X[0,0] = 0

IX2,X[0,1] = 0
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For 0 ≤ R < R1, all indicator functions are equal to one, except the one which corresponds

to X0 set, that is, IX0 = 1. As soon as µR(X0) = 0, then IX0 becomes equal to zero and

IX1,X[0,0] equal to one. This procedure is repeated until the value of R = Rmax = R3, see

Fig.6.5, in which IX
0

becomes equal to one, and all other indicator functions equal to zero,

and IX
0

remains active for all R ≥ Rmax = R3.

Step.2 Let Q† be an 4× 4 matrix. For 0 ≤ R < R1,

Q† =


1 +R/2 0 0 −R/2
R/2 1 0 −R/2
R/2 0 1 −R/2
R/2 0 0 1−R/2

 ,

and since no zero column exist then Q† = Q. For R1 ≤ R < R2,

Q† =


1 +R/2 0 −R/2 0
R/2 1 −R/2 0
R/2 0 1−R/2 0
R/2 0 1−R/2 0

 ,

and hence

Q =


1 +R/2 0 −R/2
R/2 1 −R/2
R/2 0 1−R/2
R/2 0 1−R/2

 .

For R2 ≤ R < R3,

Q†=


1+R/2 −R/2 0 0
R/2 1−R/2 0 0
R/2 1−R/2 0 0
R/2 1−R/2 0 0

 ,

and hence

Q=


1+R/2 −R/2
R/2 1−R/2
R/2 1−R/2
R/2 1−R/2

 .

For R ≥ R3,

Q† =



1
µ1

0 0 0
0 0 0 0
0 0 0 0
0 0 0 0

 =⇒ Q =



1
µ1

0
0
0

 .
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Note that, the number of columns of Q matrix is based on the value of total variation
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Figure 6.5.: Optimal probabilities as a function of R.

parameter R. For 0 ≤ R < R1, its dimension is equal to (|X |) × (1 + r). Whenever

an indicator function becomes equal to zero, all elements of the respective column become

equal to zero, and hence the column is deleted, until R ≥ R3, where the Q matrix will be

transformed into a column vector of dimension (|X |)× (1).

Next, we proceed with the solution of (6.9), by letting ν̄ ∈ P(Y) to denote the invariant

distribution of a lower-dimensional Markov process (ν̄,Φ). As mentioned in [19], the main

difficulty in solving (6.9) is in finding an optimal partition function ϕ. However, once an

optimal partition is given then the solution of Φ can be easily obtained. Toward this end, next

we define an optimal partition function for the approximation problem based on occupancy

distribution at values of TV parameter R for which a reduction of the states occurs (i.e., see

Example 6.1, Fig.6.5, for values of R = R1, R2 and R3).

Definition 6.3. (Partition function) Let X and Y be two finite dimensional state-spaces with
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164 Approximation of Markov Processes by Lower Dimensional Processes

|Y| < |X |. Define a surjective (partition) function ϕ : X 7−→ Y as follows.

∀i ∈ X 0, ϕ(i) = 1 ∈ Y ,

∀i ∈ X \ X 0, ϕ(i) =

 1, if ν∗i = 0,

k ∈ Y , if ν∗i > 0.

Note that, once the optimal probabilities ν∗i , ∀i ∈ X are obtained, we can easily identify

the values of R for which a reduction of the states occurs. In addition, since the solution

behavior of (6.8) is to remove probability mass from states with the smallest invariant prob-

ability and strengthening the states with the highest invariant probability, this property of the

partition function ϕ is intuitive and expected.

Next, we reproduce the main theorem of [21], which gives the solution of Φ that solves

(6.9).

Theorem 6.3. Let (µ, P,X ) be a given FSM process and ϕ be the partition function of

Definition 6.3. For optimization (6.9), the solution of Φ is given by

Φkl = u(k)ΠPu(`)′

ν̄k
, k, ` ∈ Y , (6.34)

where Π = diag(µ), u(k)′ is the transpose of u(k), and u(k) is a 1×|X | row vector defined by

u
(k)
i =

 1, if ϕ(i) = k,

0, otherwise.
(6.35)

Proof. See [19]. �

6.3.2. Solution of Approximation Problem based on Maximum Entropy
Principle

In this subsection, we first give an algorithm to construct the Q matrix which solves (6.10).

Then, under the assumption that the reduced process is also Markov, we give the solution of

(6.11). Before giving the algorithm, we introduce some notation.

Let r denote the number of Xk sets, that is, 1 ≤ r ≤ |X \ X 0 ∪ X0| (note that, X0 set is

excluded, in contrast with the definition of r in Section 6.3.1). Furthermore, let r+ and r−

denote the number of µi, i ∈ X , such that µi ≥ 1
|X | and µi < 1

|X | , respectively. In addition,

µi 6= µj should also be satisfied for all i 6= j, i, j ∈ X .

Remark 6.4. The initialization step of the following algorithm is performed by lettingR = 0.

In this case, νi = µi, ∀i ∈ X , and hence, `i , − log νi = − log µi.
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Algorithm 6.4.

1. Initialization step:

a) Arrange µi, i ∈ X , in a descending order and let R = 0.

b) Identify the support sets X 0, X0 and Xk for all k ∈ {1, 2, . . . , |X \ X 0 ∪ X0|}.

c) Calculate the value of r, r− and r+.

For any R ∈ [0, 2]:

2) Step.1 (Indicator functions):

a) For k = 1, 2 . . . , r−−1 let

µR−(Xk) ,
∑
i∈∪k−1

j=0Xj
µi −R/2∑k−1

j=0 |Xj|
.

Define

IXk− ,

 1, if µR−(Xk) ≤
∑

i∈Xk
µi

|Xk|
,

0, otherwise.
(6.36)

For k = r− let

µR−(Xr−) ,

∑
i∈∪r−−1

j=0 Xj
µi −R/2∑r−−1

j=0 |Xj|
.

Define

I
Xr−
− ,

 1, if µR−(Xr−) ≤ 1
|X | ,

0, otherwise.
(6.37)

b) For k = 1, 2 . . . , r+−1 let

µR+(Xk) ,
∑
i∈X\∪k−1

j=rXr−j
µi +R/2

|X \ ∪k−1
j=rXr−j|

.

Define

IXk+ ,

 1, if µR+(Xk) ≥
∑

i∈Xr−k+1
µi

|Xr−k+1|
,

0, otherwise.
(6.38)

For k = r+ let

µR+(Xr+) ,

∑
i∈X\∪r+−1

j=r Xr−j
µi + R

2

|X \ ∪r+−1
j=r Xr−j|

.

Define
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166 Approximation of Markov Processes by Lower Dimensional Processes

I
Xr+
+ ,

 1, if µR+(Xr+) ≥ 1
|X | ,

0, otherwise.
(6.39)

3) Step.2 (The Q† matrix):

Let Q† be an (|X |)× (2 + r) matrix.

a) The elements of the first column are given as follows.

i) For all i ∈ X0, let the (Q†)i,1 be equal to

1−R/2
|X0|+

∑r↓−1
j=1 I

Xj
− |Xj|

(
I
Xr−
−

)c
+ I

Xr−
−

|X |
. (6.40)

ii) For all i ∈ Xk, k = 1, 2, . . . , r−−1, let the (Q†)i,1 be equal to

IXk− −R/2
|X0|+

∑r↓−1
j=1 I

Xj
− |Xj|

(
I
Xr−
−

)c
+ I

Xr−
−

|X |
. (6.41)

iii) Let all the remaining elements be equal to

−R/2
|X0|+

∑r↓−1
j=1 I

Xj
− |Xj|

(
I
Xr−
−

)c
+ I

Xr−
−

|X |
. (6.42)

b) The elements of the last column are given by

i) For all i ∈ X 0, let the (Q†)i,r+2 be equal to

1 +R/2
|X 0|+∑r↑−1

j=1 I
Xj
+ |Xr−j+1|

(IXr++ )c. (6.43)

ii) For all i ∈ Xr−k+1, k = 1, 2, . . . , r↑ − 1 let the (Q†)i,r+2 be equal to

IXk+ +R/2
|X 0|+∑r↑−1

j=1 I
Xj
+ |Xr−j+1|

(IXr++ )c. (6.44)

iii) Let all the remaining elements be equal to

R/2
|X 0|+∑r↑−1

j=1 I
Xj
+ |Xr−j+1|

(IXr++ )c. (6.45)

c) The elements of all remaining columns are given by

i) For all i ∈ Xk, k = 1, 2, . . . , r−−1 let

(Q†)i,z = (IXk− )c

|Xk|
, (6.46)
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6.3 Method 2: Solution of Approximation Problems 167

where z = 1 + k denotes the zth column. Let all the remaining elements

of the zth column be equal to zero. However, if IXk− = 1, then let all the

elements of the zth column be equal with the corresponding elements of the

first column, that is,

(Q†)1,z = (Q†)1,1, (Q†)2,z = (Q†)2,1, . . . (Q†)|X |,z = (Q†)|X |,1. (6.47)

ii) For all i ∈ Xr−k+1, k = 1, 2, . . . , r+−1 let

(Q†)i,z = (IXk+ )c

|Xk|
, (6.48)

where z = r+ 2− k denotes the zth column. Let all the remaining elements

of the zth column be equal to zero. However, if IXk+ = 1, then let all the

elements of the zth column be equal with the corresponding elements of the

last column, that is,

(Q†)1,z = (Q†)1,|X |, (Q†)2,z = (Q†)2,|X |, . . . (Q†)|X |,z = (Q†)|X |,|X |. (6.49)

Once the Q† matrix is constructed, as a function of the TV parameter R, then by (6.21) the

solution of optimization (6.10) is readily available, and hence, by Definition 6.2, the lower-

dimensional process {Yt : t = 0, 1 . . . } with invariant distribution ν̄ is obtained, either by

adding all equal elements of ν∗ ∈ P(X ), or by defining a Q matrix to be equal to Q†, after

the merging of all equal columns (by adding them). Hence

ν̄ = µQ = µPQ, (6.50)

where the dimensions of Q matrix are based on the value of the TV parameter R ∈ [0, 2].
Before we proceed with the solution of (6.11), we provide a simple example in order to

explain each step of Algorithm 6.4.

Example 6.2. Let µ = [µ1 µ2 µ3 µ4], where µ1 > µ2 > µ3 > µ4, and also assume that

µ1 > µ2 > 1
|X | and µ4 < µ3 < 1

|X | , where |X | = 4. For simplicity of presentation it

is assumed that the optimum probabilities ν∗i , i ∈ X , as a function of R are as shown in

Fig.6.6.

Initialization step. For R = 0, and from Remark 6.4, we conclude that `1 < `2 < `3 < `4,

and therefore the support sets are equal to X 0 = {4}, X0 = {1}, X1 = {2} and X2 = {3}.
The number of the Xk sets is equal to r = 2. The number of µi, i ∈ X , which are greater (or

equal) than 1
|X | = 0.25 (and also µi 6= µj , i, j ∈ X ) is r− = 2. Similarly, the number of µi

which are strictly smaller than 1
|X | = 0.25 (and also not equal to each other) is also r+ = 2.
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168 Approximation of Markov Processes by Lower Dimensional Processes

Step.1 From (6.36)-(6.37), the indicator functions IX1
− and IX2

− are given by

IX1
− ,

 1, if µ1−R
2≤µ2,

0, otherwise,
IX2
− ,

 1, if µ1+µ2−R/2
2 ≤0.25,

0, otherwise,

and from (6.38)-(6.39), the indicator functions IX1
+ and IX2

+ are given by

IX1
+ ,

 1, if µ4+R
2≥µ3,

0, otherwise,
IX2

+ ,

 1, if µ3+µ4+R/2
2 ≥0.25,

0, otherwise.

The values of the indicator functions for R ∈ [0, 2] are shown in Fig.6.6. For 0 ≤ R < R1,

that is, before a merge occurs, all indicator functions are equal to zero. If a merge occurs

the respective indicator functions become equal to one, until for some R ≥ R3, where all

indicator functions are equal to one.

Step.2 Let Q† be an 4× 4 matrix. For 0 ≤ R < R1,

Q† =


1−R/2 0 0 R/2
−R/2 1 0 R/2
−R/2 0 1 R/2
−R/2 0 0 1 +R/2

 ,

and since no equal columns exist then Q† = Q. For R1 ≤ R < R2,

Q† =



1−R/2
2

1−R/2
2 0 R/2

1−R/2
2

1−R/2
2 0 R/2

−R/4 −R/4 1 R/2
−R/4 −R/4 0 1 +R/2

 ,

and hence

Q =


1−R/2 0 R/2
1−R/2 0 R/2
−R/2 1 R/2
−R/2 0 1 +R/2

 .

For R2 ≤ R < R3,

Q† =



1−R/2
2

1−R/2
2 R/4 R/4

1−R/2
2

1−R/2
2 R/4 R/4

−R/4 −R/4 1+R/2
2

1+R/2
2

−R/4 −R/4 1+R/2
2

1+R/2
2

 ,
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and hence

Q =


1−R/2 R/2
1−R/2 R/2
−R/2 1 +R/2
−R/2 1 +R/2

 .

For R ≥ R3,

Q† =


0.25 0.25 0.25 0.25
0.25 0.25 0.25 0.25
0.25 0.25 0.25 0.25
0.25 0.25 0.25 0.25

 =⇒ Q =


1
1
1
1

 .
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Figure 6.6.: Optimal Probabilities as a function of R.

Note that, the dimension of matrix Q is based on the value of total variation distance

parameter R. For 0 < R ≤ R1 its dimension is equal to (|X |) × (2 + r). Whenever two

columns become equal (that is, an indicator function is activated) they are merged, until for

some R ≥ R2, where matrix Q is transformed into column vector of dimension (|X |)× (1).
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170 Approximation of Markov Processes by Lower Dimensional Processes

Next, we proceed with the solution of (6.11), by letting ν̄ to denote the invariant distribu-

tion of a lower-dimensional Markov process (ν̄,Φ). To this end, we next define an optimal

partition function for the approximation problem, based on maximum entropy principle at

values of TV parameter R, for which an aggregation of the states occurs (i.e., see Example

6.2, Fig.6.6, for values of R = R1, R2 and R3.).

Definition 6.4. (partition function) Let X and Y be two finite dimensional state-spaces with

|Y| < |X |. Define a surjective (partition) function ϕ : X 7−→ Y as follows

∀i, j ∈ X , ϕ(i) = ϕ(j) = k ∈ Y if ν∗i = ν∗j . (6.51)

Note that, once the optimal probabilities ν∗i , ∀i ∈ X are obtained, we can easily identify

the values of R for which an aggregation of the states occurs. Next, we reproduce the main

theorem of [21], which gives the solution of Φ that solves (6.11).

Theorem 6.5. Let (µ, P,X ) be a FSM process and ϕ be the partition function of Definition

6.4. For optimization (6.11), the solution of Φ is given by

Φkl = u(k)ΠPu(`)′

ν̄k
, k, ` ∈ Y (6.52)

where Π = diag(ν∗), u(k)′ is the transpose of u(k), and u(k) is a 1 × |X | row vector defined

by

u
(k)
i =

 1 if ϕ(i) = k

0 otherwise
(6.53)

Proof. See [19]. �

6.4. Examples

In this section, the theoretical results of both methods are applied to specific examples to

illustrate the methodology, and the water-filling behavior of the approximations.

6.4.1. Markov Chain Approximation with a Small Number of States

In this example we employ the theoretical results obtained in preceding sections to approxi-

mate a 4-state FSM process (µ, P,X ) with transition probability matrix given by

P =


0.4 0.2 0.3 0.1
0.3 0.5 0.1 0.1
0.2 0.3 0.4 0.1
0.6 0.2 0.1 0.1

 , (6.54)
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and steady state nominal probability vector equal to

µ = [0.34 0.32 0.24 0.1]. (6.55)

In particular, in Section 6.4.1, we solve approximation problem based on Method 1. In

Section 6.4.1 we solve the approximation problem based on occupancy distribution, and in

Section 6.4.1 based on entropy principle of Method 2.

Solution of Problem 6.1

Let ` = {` ∈ R4
+ : `1 > `2 > `3 > `4}, then the support sets are given by X 0 = {1}, X0 =

{4}, X1 = {3} and X2 = {2}, and by (6.18d), Rmax,1 = 1.2, Rmax,2 = 1.4, Rmax,3 = 1.6
and Rmax,4 = 0.8. By employing Theorem 6.1, the optimal Φ† and Φ matrices are obtained

as a function of TV parameter R, as shown in Table 6.1. Note that, in contrast with Problems

6.2-6.3, where the approximation is performed only for values of R for which a reduction

of the states occurs, the solution of Problem 6.1 is obtained for all values of total variation

parameter.

R Φ† Φ

0


.4 .2 .3 .1

.3 .5 .1 .1

.2 .3 .4 .1

.6 .2 .1 .1




.4 .2 .3 .1

.3 .5 .1 .1

.2 .3 .4 .1

.6 .2 .1 .1



0.2


.5 .2 .3 0

.4 .5 .1 0

.3 .3 .4 0

.7 .2 .1 0




.5 .2 .3

.4 .5 .1

.3 .3 .4



1


.9 .1 0 0

.8 .2 0 0

.7 .3 0 0

1 0 0 0


 .9 .1

.8 .2



1.4


1 0 0 0

1 0 0 0

1 0 0 0

1 0 0 0


[

1
]

Table 6.1.: Optimal results obtained by the Approximation based on Method 1.
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172 Approximation of Markov Processes by Lower Dimensional Processes

Solution of Problem 6.2

By employing Algorithm 6.2, with `i
4= µi, i = 1, . . . , 4, and support sets given by X 0 =

{1}, X0 = {4}, X1 = {3} and X2 = {2} the maximizing distribution of (6.8) exhibits a

water-filling behavior as depicted in Fig.6.5. For values of TV parameter 0 ≤ R ≤ R1 = 0.2,

all maximizing probabilities ν∗i , i = 1, . . . , 4, are greater than zero and hence |Y| = 4 = |X |
and ν̄i = ν∗i , i = 1, . . . , 4. However, for R1 ≤ R < R2 = 0.68, |Y| = 3 < |X | = 4 since ν∗4
becomes equal to zero and hence ν̄i = ν∗i , i = 1, 2, 3. The procedure follows until for some

R ≥ R3 = 1.32 in which |Y| = 1 and ν̄1 = ν∗1 = 1.

From the above discussion, it is clear that, the solution of approximation problem based

on occupancy distribution is described via a water-filling deletion of states with the smallest

invariant probability and maintaining and strengthening the states with the highest invariant

probability, and hence a lower-dimensional distribution ν̄ is obtained which is then applied

to the problem of Markov by Markov approximation. For the solution of (6.9), first we find

an optimal partition function ϕ and then we calculate a transition probability matrix Φ which

best approximates transition matrix P only for values of R for which a reduction of states

occurs, that is, for R = 0, 0.2, 0.68 and 1.32. The optimal results are depicted in Table 6.2.

Solution of Problem 6.3

By employing Algorithm 6.4, with `i
4= − log νi, i = 1, . . . , 4, the support sets are calculated

for R = 0, where ν∗i = µi and hence `i = − log µi, and are equal to X 0 = {4}, X0 = {1},
X1 = {2} and X2 = {3}. The maximizing distribution of (6.10) exhibits a water-filling like

behavior as depicted in Fig.6.6. For values of 0 ≤ R < R1 = 0.04, |Y| = 4 = |X | since

ν∗i 6= ν∗j for i 6= j, i, j = 1, . . . , 4 and hence ν̄i = ν∗i , i = 1, . . . , 4. For R1 ≤ R < R2 =
0.28, |Y| = 3 < |X | = 4 since ν∗1 becomes equal to ν∗2 and hence ν̄1 = ν∗1 + ν∗2 and ν̄i = ν∗i ,

i = 3, 4. The procedure follows until for some R ≥ R3 = 0.32 in which |Y| = 1 and

ν̄1 = ∑4
i=1 ν

∗
i = 1

4 .

In summary, the solution of approximation problem based on entropy principle is de-

scribed via aggregation of states, that is, by grouping certain states of the original Markov

chain to obtain the approximating reduced state process.Then the lower-dimensional distribu-

tion ν̄ is applied to problem (6.11). The optimal partition function ϕ and the transition prob-

ability matrix Φ which minimizes the KL divergence rate for values of R = 0, 0.04, 0.28
and 0.32 are as shown in Table 6.3.
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The P matrix of the original Markov Process
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The Φ matrix of the approximated Markov Process
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The lifted matrix Φ̂
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Figure 6.7.: Approximation results based on occupancy distribution: Plot (a) depicts the P

matrix of the original Markov process. Plot (b) depicts a 15-state approximation.

Plot (c) depicts an 8-state approximation. Plot (d) depicts the KL divergence

rate. Plot (e) depicts the lifted Φ̂ matrix for the 15-state approximation. Plot (f)

depicts the lifted Φ̂ matrix for the 8-state approximation.
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The P matrix of the original Markov Process
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The lifted matrix Φ̂

 

 

5 10 15 20 25

5

10

15

20

25
0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

0.09

(f)

Figure 6.8.: Approximation results based on maximum entropy: Plot (a) depicts the P matrix

of the original Markov process. Plot (b) depicts a 15-state approximation. Plot

(c) depicts an 8-state approximation. Plot (d) depicts the KL divergence rate.

Plot (e) depicts the lifted Φ̂ matrix for the 15-state approximation. Plot (f) depicts

the lifted Φ̂ matrix for the 8-state approximation.
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R ν̄ Q ϕ Φ

0 [.34 .32 .24 .1]


1 0 0 0

0 1 0 0

0 0 1 0

0 0 0 1


ϕ(1) = 1
ϕ(2) = 2
ϕ(3) = 3
ϕ(4) = 4


.4 .2 .3 .1

.3 .5 .1 .1

.2 .3 .4 .1

.6 .2 .1 .1



0.2 [.44 .32 .24]


1.1 0 -.1

.1 1 -.1

.1 0 .9

.1 0 .9


ϕ(1) = 1
ϕ(2) = 2
ϕ(3) = 3
ϕ(4) = 1


.5455 .2 .2545

.4 .5 .1

.3 .3 .4



0.68 [0.68 0.32]


1.34 -.34

.34 .66

.34 .66

.34 .66


ϕ(1) = 1
ϕ(2) = 2
ϕ(3) = 1
ϕ(4) = 1

 .7647 .2353

.5 .5



1.32 [1]


2.94

0

0

0


ϕ(1) = 1
ϕ(2) = 1
ϕ(3) = 1
ϕ(4) = 1

[
1
]

Table 6.2.: Optimal results obtained by the Approximation based on occupancy distribution.

6.4.2. Markov Chain Approximation based on Occupancy Distribution
with a Large Number of States

In this example we approximate a 25-state Markov process based on occupancy distribution.

The transition matrix P of the original Markov process is as shown in Fig.6.7a, in which the

color of the ith row and jth column represents the Pij element as indicated by the color bar.

Then, based on the resulting values of µi, ∀i ∈ X , the state space X is partitioned into 16
disjoint sets, where

X 0 = {1}, X0 = {25}, X1 = {24, 23}, X2 = {22}, X3 = {21}, X4 = {20, 19},

X5 = {18, 16}, X6 = {15}, X7 ={14, 13}, X8 = {12}, X9 = {11, 10},

X10 = {9}, X11 = {8, 7}, X12 = {6, 5}, X13 = {4, 3}, X14 = {2}.

Fig.6.7d depicts the KL divergence rate as a function of the number of the states of the

approximated Markov process and also as a function of the TV parameter R for values where

a reduction of the states occurs, due to the water-filling behaviour of the solution. Fig.6.7b-

e depict the Φ matrix and the corresponding lifted matrix Φ̂ of the approximated Markov
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176 Approximation of Markov Processes by Lower Dimensional Processes

R ν̄ Q ϕ Φ

0 [.34 .32 .24 .1]


1 0 0 0

0 1 0 0

0 0 1 0

0 0 0 1


ϕ(1) = 1
ϕ(2) = 2
ϕ(3) = 3
ϕ(4) = 4


.4 .2 .3 .1

.3 .5 .1 .1

.2 .3 .4 .1

.6 .2 .1 .1



0.04 [.64 .24 .12]


.98 0 .02

.98 0 .02

-.02 1 .02

-.02 0 1.02


ϕ(1) = 1
ϕ(2) = 1
ϕ(3) = 2
ϕ(4) = 3


.7 .2 .1

.5 .4 .1

.8 .1 .1



0.28 [0.52 0.48]


.86 .14

.86 .14

-.14 1.14

-.14 1.14


ϕ(1) = 1
ϕ(2) = 1
ϕ(3) = 2
ϕ(4) = 2

 .7 .3

.65 .35



0.32 [1]


1

1

1

1


ϕ(1) = 1
ϕ(2) = 1
ϕ(3) = 1
ϕ(4) = 1

[
1
]

Table 6.3.: Optimal results obtained by the Approximation based on entropy principle.

process, when the 25-state Markov process is approximated by a 15-state Markov process.

Similarly, Fig.6.7c-f depict Φ and Φ̂ when the 25-state Markov process is approximated by

an 8-state Markov process.

6.4.3. Markov Chain Approximation based on Maximum Entropy with
a Large Number of States

In this example we approximate a 25-state Markov process based on maximum entropy. The

transition matrix P of the original Markov process is as shown in Fig.6.8a. By Remark

6.4, the state-space X is partitioned into 25 disjoint sets, where X 0 = {25}, X0 = {1}
and Xk = {k + 1} for k = 1, . . . , 23. Similarly to example 6.4.2, Fig.6.8d depicts the KL

divergence rate as a function of the number of the states of the approximated Markov process

and as a function of TV parameter for values where an aggregation of the states occurs. It is

worth noting, that the approximation based on maximum entropy principle is much faster, in

terms of TV parameter, compared to the approximation based on occupancy and this is due

to the water-filling like behavior of the solution. Fig.6.8b-e and 6.8c-f depict the Φ matrix
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6.5 Summary 177

and the corresponding lifted matrix Φ̂ when the original Markov process is approximated by

a 15-state and an 8-state Markov process, respectively.

6.5. Summary

In this chapter, we present two methods of approximating a FSM process by another pro-

cess with fewer states. The first method, utilizes the total variation distance to discriminate

the transition probabilities of a high-dimensional FSM process by a reduced order Markov

process, and hence, a direct method for a Markov by Markov approximation is obtained.

The second method, utilizes total variation distance as a new discrepancy measure, and the

problem is formulated using: (a) maximization of an average pay-off functional with re-

spect to the approximated invariant probability, and, (b) maximization of the entropy of the

approximated invariant probability, both subject to a constraint on the total variation dis-

tance metric between the invariant probability of the original Markov process and that of the

approximated process. Then, by utilizing the obtained solution, we studied the problem of

approximating a FSM process with another FSM process of reduced order with respect to the

Kullback-Leibler divergence rate. Examples are included to demonstrate the approximation

approach for each of the two methods.
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7
Conclusion

In this chapter, a summary of the main findings of the thesis is presented, and suggestions

for future research are discussed.

7.1. Summary and Main Contributions

Extremum problems with total variation distance metric on the space of probability mea-

sures are of fundamental importance; they have applications in stochastic optimal control,

decision theory, information theory, mathematical finance, etc. In this thesis, such extremum

problems are introduced and analyzed. Subsequently, the results are applied to minimax

stochastic optimal control via dynamic programming on a finite and on an infinite horizon,

and to approximate high-dimensional Markov processes by lower-dimensional processes.

Below, we give a brief summary followed by the main contributions of the thesis.

Extremum Problems
In this chapter, we investigated extremum problems with pay-off being the total variation

distance metric defined on the space of probability measures, subject to linear functional

constraints on the space of probability measures and vice-versa; that is with the roles of total

variation metric and linear functional interchanged. First, we introduced the precise defini-

tions of the extremum problems under investigation, and then we studied some of their most

important properties. Next, by utilizing concepts from signed measures we characterized the
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180 Conclusion

extremum measures, which exhibit a water-filling behavior, on abstract and on finite alphabet

spaces. In particular, the construction of the extremum measures involves the identification

of the partition of their support set, and their mass defined on these partitions. Due to the

convexity of these extremum problems, the optimal solution of all problems is obtained ex-

plicitly, by finding upper and lower bounds which are achievable. The main contributions of

this part are the following.

• Characterization of the properties of the extremum problems;

• characterization of extremum measures on abstract spaces;

• closed form expressions of the extremum measures for finite alphabets.

Dynamic Programming on a Finite Horizon
In this chapter, we addressed optimality of stochastic optimal control strategies on a finite

horizon, via dynamic programming subject to total variation distance ambiguity on the con-

ditional distribution of the controlled process. The solution of the minimax stochastic control

with deterministic strategies, is obtained under a Markovian and a non-Markovian assump-

tion, on the conditional distribution of the controlled process. Although, optimality of the

control strategies subject to uncertainty have been addressed previously by several authors

using relative entropy constraints, our approach is novel in the sense that the class of models

is described by total variation distance between the nominal and the true distributions. The

essence of our approach lies in the fact that total variation is more general than relative en-

tropy, and in addition, it has the advantage of admitting distributions which are singular with

respect to the nominal distribution. Hence, stochastic control under total variation results in

optimal policies which are more robust with respect to uncertainty. The main contributions

of this part are the following.

• Minimax optimization subject to total variation distance ambiguity constraint;

• new dynamic programming recursions, which includes in addition to the classical

terms, the oscillator semi-norm of the future cost-to-go.

Dynamic Programming on an Infinite Horizon
In this chapter, we addressed optimality of stochastic control strategies on an infinite hori-

zon, via dynamic programming subject to total variation distance ambiguity on the condi-

tional distribution of the controlled process, by considering as optimality criterion both the

expected discounted reward and the average pay-off per unit time. New policy iteration

algorithms, with convergence properties, are developed for computing the optimal policies
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7.2 Topics for Further Research 181

which in contrast to the classical ones, policy improvement and policy evaluation steps are

performed using the maximizing conditional distribution obtained under total variation dis-

tance ambiguity constraints. The main contributions of this part are the following.

• New infinite horizon discounted dynamic programming equation, associated contrac-

tive property, and a new policy iteration algorithm;

• new infinite horizon average dynamic programming equations, and new policy itera-

tion algorithms.

Approximation of Markov Processes by Lower Dimensional Processes
In this chapter, we investigated the problem of approximating a finite-state Markov process

by another process with fewer states, called the approximating process. The approximation

problem is formulated as an optimization problem with respect to a certain pay-off subject to

a fidelity criterion defined by the total variation distance, using two different methods. In the

first method, we approximated the transition probabilities of a Markov process by another

Markov process with reduced transition probability matrix, while in the second method we

approximated a Markov process by another process which is non-necessarily Markov, but

with lower-dimensional state-space. For both methods, the resulting approximating pro-

cesses are given by water-filling solutions, and new recursive algorithms are developed to

compute the invariant distribution of the approximating processes. The main contributions

of this part are the following.

• A direct method for Markov by Markov approximation based on the transition proba-

bilities of the original FSM process and the reduced one;

• optimal partition functions which aggregate the original finite-state Markov process to

form the reduced order finite-state Markov process;

• iterative algorithms to compute the invariant distribution of the approximating process.

7.2. Topics for Further Research

Extremum problems with total variation distance metric on the space of probability measures

can be further generalized as follows.

1. In this thesis, extremum problems with total variation distance metric on the space of

probability measures have been formulated and solved, and their solutions are applied

to the areas of minimax stochastic control and Markov process approximation. It will
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be interesting to consider applications of extremum problems on Information Theory

such as capacity of channel for a class of channel distributions, and lossy compression

with fidelity criterion for a class of sources via the Rate Distortion Function. More-

over, it will be interesting to extend the example on lossless coding of section 3.4.4

to universal coding and modeling for the purpose of introducing lossless codes for a

class of source distributions described by total variation distance metric via minimax

theory.

2. In chapters 4 and 5 we have been exclusively concerned with Markov controlled op-

timization using deterministic control strategies. It would be desirable to solve mini-

max stochastic optimal control problems with randomized control strategies, under a

Markovian and a non-Markovian assumption. In addition, it would be very interesting

to develop new dynamic programming algorithms by employing performance criteria

of different types, i.e., of exponential type.

3. In the literature several authors investigate optimality of stochastic control on problems

with complete observations and on problems with partial observations. The extension

of our work and results to the partially observed case it would be a very interesting and

challenging problem.

4. Recall the discussion of chapter 5.3.3, where policy iteration algorithm may not be

sufficient to give the optimal policy and the minimum cost, if irreducibility condition is

not satisfied. It would be challenging, to investigate the problem of approximating the

reducible maximizing stochastic matrix, by employing certain results and techniques

presented in chapter 6, by an irreducible stochastic matrix of lower dimension, and then

to compare the resulting policies with the corresponding optimal policies obtained by

solving the general dynamic programming equations.

5. In chapter 6 we have been exclusively concerned with the problem of approximating

a finite-state Markov process by another process (non-necessarily Markov) with fewer

states. A natural extension of the proposed Markov process approximations is to con-

sider the problem of approximating a hidden Markov process, instead. Furthermore, it

would be interesting to investigate the problem of approximating joint distributions by

lower-dimensional joint distributions.
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A
Total Variation Distance

A.1. Proof of Lemma 2.2

(i) Let H be a Hahn-Jordan set of ξ. Then ξ+(H) = ξ(H) and ξ−(Hc) = −ξ(Hc). For

f ∈ BM(Σ) ∣∣∣∣ξ(f)
∣∣∣∣ =

∣∣∣∣ ∫ f(x)dξ+(x)−
∫
f(x)dξ−(x)

∣∣∣∣
≤
∣∣∣∣ξ+(f)

∣∣∣∣+ ∣∣∣∣ξ−(f)
∣∣∣∣

=
∣∣∣∣ ∫ f(x)dξ+(x)

∣∣∣∣+ ∣∣∣∣ ∫ f(x)dξ−(x)
∣∣∣∣

≤ ||f ||∞
(
ξ+(Σ) + ξ−(Σ)

)
= ||f ||∞||ξ||TV .

(ii) From part (i),

sup{ξ(f) : f ∈ BM(Σ), ||f ||∞ = 1} ≤ ||ξ||TV

and

sup{ξ(f) : ξ ∈M(Σ), ||ξ||TV = 1} ≤ ||f ||∞.

Note that1, ||1H − 1Hc ||∞ = 1 and ξ(1H − 1Hc) = ξ(H) − ξ(Hc) = ||ξ||TV . Taking

f = 1H − 1Hc , establishes equality in (ii).
1
1H denotes the indicator function of H .
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184 Total Variation Distance

(iii) Let f ∈ BM(Σ) and let {xn} be a sequence in Σ such that limn→∞ |f(xn)| =
||f ||∞. Then, ||f ||∞ = limn→∞ |δxn(f)| proving (iii), (e.g., ξ = limn→∞ δxn such that

limn→∞ |f(xn)| = ||f ||∞).

A.2. Proof of Lemma 2.3

Let ξ ∈M(Σ) and f ∈ BM(Σ). Then

ξ(f) =
∫
f(x)ξ+(dx)−

∫
f(x)ξ−(dx)

=
∫

(
∫
f(x)ξ+(dx))ξ−(dx′)

ξ−(Σ) −
∫

(
∫
f(x′)ξ+(dx))ξ−(dx′)

ξ+(Σ) .

Hence,

|ξ(f)| ≤
∫ ∫ ∣∣∣∣ f(x)

ξ−(Σ) −
f(x′)
ξ+(Σ)

∣∣∣∣ξ+(dx)ξ−(dx′)

≤ sup
(x,x′)∈Σ×Σ

∣∣∣∣ f(x)
ξ−(Σ) −

f(x′)
ξ+(Σ)

∣∣∣∣ξ+(Σ)ξ−(Σ)

which proves the first part. If ξ(Σ) = 0, then ξ+(Σ) = ξ−(Σ) = 1
2 ||ξ||TV , which proves the

second part.

A.3. Proof of Lemma 2.4

For any ξ1, ξ2 ∈M1(Σ), write

ξ1(A)− ξ2(A) = (ξ1 − ξ2)1A

e.g., f = 1A and note that

osc(1A) = 1.

Thus, by |ξ1(f)− ξ2(f)| ≤ 1
2 ||ξ1 − ξ2||TV osc(f), letting f = 1A then

|ξ1(A)− ξ2(A)| ≤ ||ξ1 − ξ2||TV
2 .

Hence,

sup
A
|ξ1(A)− ξ2(A)| ≤ ||ξ1 − ξ2||TV

2 . (A.1)

Next, consider reverse inequality. Let H be a Jordan set of the signed measure ξ1− ξ2. Then

ξ1(H)− ξ2(H) = (ξ1 − ξ2)+(H)− (ξ1 − ξ2)−(H)

= (ξ1 − ξ2)+(H)− (−(ξ1 − ξ2)(Hc))

= (ξ1 − ξ2)+(Σ)− (−(ξ1 − ξ2)(∅))

= 1
2 ||ξ1 − ξ2||TV .
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Hence

sup
A
|ξ1(H)− ξ2(H)| ≥ 1

2 ||ξ1 − ξ2||TV

and the proof is complete.
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B
Extremum Measures

B.1. Proof of Theorem 3.2

For the following proof we employ lemma 3.5, which is also valid for Problem 3.2.

From Lemma 3.2, and Corollary 3.2, we know that for D ≤ Dmax, where Dmax = `max, the

average constraint holds with equality, that is

∑
i∈Σ

`iνi =
∑
i∈Σ

`iξ
+
i −

∑
i∈Σ

`iξ
−
i +

∑
i∈Σ

`iµi = D.

From Lemma 3.5, Part (a) and from Part (b), case 1, when equality conditions (3.48) and

(3.50) are satisfied we have that

`max

(
α

2

)
− `min

(
α

2

)
+
∑
i∈Σ

`iµi = D.

Solving the above equation with respect to α we get that

α = 2 (D −∑i∈Σ `iµi)
`max − `min

. (B.1)

Since (3.48a) is always satisfied, it remains to ensure that (3.50a) is also satisfied. By

substituting (B.1) into (3.50a) and solving with respect to D we get that if D ≥
(`max − `min)∑i∈Σ0 µi + ∑

i∈Σ `iµi then R+(D) is given by (3.67). Moreover, the optimal

probabilities given by (3.68a) and (3.68b) are obtained from (3.48b) and (3.50b), respec-

tively.
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188 Extremum Measures

Lemma 3.5, Part (b), case 1, characterize the extremum solution for
∑
i∈Σ0 µi −

α
2 ≥ 0.

Next, the characterization of extremum solution when this condition is violated, that is, when∑k
j=1

∑
i∈Σj−1 µi −

α
2 ≤ 0 for any k ∈ {1, 2, . . . , r}, is discussed.

From Lemma 3.5, Part (b), case 2, the lower bound (3.51), holds with equality if conditions

given by (3.52) are satisfied. Hence,

`max

(
α

2

)
− `(Σk)

(
α

2 −
k∑
j=1

∑
i∈Σj−1

µi

)
+

k∑
j=1

∑
i∈Σj−1

`iµi = D.

Solving the above equation with respect to α we get that

α =
2
(
D − `max

∑
i∈Σ0 µi − `(Σk)

∑k
j=1

∑
i∈Σj−1 µi −

∑r
j=k

∑
i∈Σj `iµi

)
`max − `(Σk)

. (B.2)

Substituting (B.2) into
∑k
j=1

∑
i∈Σj−1 µi −

α
2 ≤ 0 and into (3.52c) and solving with respect

to D we get that if

D ≥ `max

 k∑
j=1

∑
i∈Σj−1

µi +
∑
i∈Σ0

µi

+
r∑
j=k

∑
i∈Σj

`iµi

D ≤ `max

 k∑
j=0

∑
i∈Σj

µi +
∑
i∈Σ0

µi

+
r∑

j=k+1

∑
i∈Σj

`iµi

then R+(D) is given by (3.65). Moreover, the optimal probability on Σk given by (3.68c) is

obtained from (3.52b).

For D ∈ [Dmax,∞), is straightforward that, the extremum measure ν∗(Σ0) = 1 and ν∗(Σ \
Σ0) = 0, and hence R+(D) = 2(1− µ(Σ0)).

B.2. Proof of Theorem 3.3

From Lemma 3.3, and Corollary 3.3, we know that for R ≤ Rmax, where Rmax = 2(1 −
µ(Σ0)), the total variation constraint holds with equality, that is, ||ξ||TV = R. Let α =
||ξ||TV . From (3.70) and (3.71), Problem 3.3 is given by

D+(R) =
∑
i∈Σ

`iµi + min
ξ∈B̃R(µ)

∑
i∈Σ

`iξi (B.3)

where ξ ∈ B̃R(µ) is described by the constraints

α
4=
∑
i∈Σ
|ξi| = R,

∑
i∈Σ

ξi = 0, 0 ≤ ξi + µi ≤ 1, ∀i ∈ Σ. (B.4)

To minimize (B.3) we employ (3.44). It is obvious that a lower and an upper bound must be

obtained for
∑
i∈Σ `iξ

+
i and

∑
i∈Σ `iξ

−
i , respectively.
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B.2 Proof of Theorem 3.3 189

From Lemma 3.6, Part (a), the lower bound (3.81), holds with equality if conditions given

by (3.84) are satisfied. Note that, (3.82a) is always satisfied and from (3.82b) we have that∑
i∈Σ0 νi = ∑

i∈Σ0 µi + α
2 and hence the optimal probability on Σ0 is given by

ν∗(Σ0) 4=
∑
i∈Σ0

ν∗i =
∑
i∈Σ0

µi + α

2 . (B.5)

From Lemma 3.6, Part (b), case 1, the upper bound (3.83), holds with equality if conditions

given by (3.84) are satisfied. Furthermore, from (3.84b) we have that
∑
i∈Σ0 νi = ∑

i∈Σ0 µi−
α
2 and condition (3.84a) must be satisfied, hence the optimal probability on Σ0 is given by

ν∗(Σ0) 4=
∑
i∈Σ0

ν∗i =
( ∑
i∈Σ0

µi −
α

2

)+
. (B.6)

The extremum solution for any R ≤ Rmax, under equality conditions (3.82) and (3.84) is

given by

D−(R) =
{
`min − `max

}
α

2 +
∑
i∈Σ

`iµi. (B.7)

Lemma 3.6, Part (b), case 1, characterize the extremum solution for
∑
i∈Σ0 µi − α

2 ≥ 0.

Next, the characterization of extremum solution when this condition is violated, that is, when∑k
j=1

∑
i∈Σj−1 µi − α

2 ≤ 0 for any k ∈ {1, 2, . . . , r}, is discussed.

From Lemma 3.6, Part (b), case 2, the upper bound (3.85), holds with equality if conditions

given by (3.86) are satisfied. Furthermore, from (3.86b) we have that

∑
i∈Σk

νi =
∑
i∈Σk

µi −
(
α

2 −
k∑
j=1

∑
i∈Σj−1

µi

)
, (B.8)

and conditions α
2 −

∑k
j=1

∑
i∈Σj−1 µi ≥ 0 and (3.86c) must be satisfied, hence the optimal

probability on Σk is given by

ν∗(Σk) 4=
∑
i∈Σk

ν∗i =
( ∑
i∈Σk

µi −
(
α

2 −
k∑
j=1

∑
i∈Σj−1

µi

)+)+
. (B.9)

The extremum solution for any R ≤ Rmax, under equality conditions (3.82) and (3.86) is

given by

D−(R) =
∑
i∈Σ

`iξ
+
i −

∑
i∈Σ

`iξ
−
i +

∑
i∈Σ

`iµi

=`min
(α

2
)
−`(Σk)

(
α

2−
k∑
j=1

∑
i∈Σj−1

µi

)
+

k∑
j=1

∑
i∈Σj−1

`iµi+
∑
i∈Σ

`iµi.

For R ∈ [Rmax, 2], Lemma 3.3, states that D−(R) is constant. Indeed for α = ||ξ||TV =
Rmax = 2(1− µ(Σ0)) equality conditions of Lemma 3.6, Part (a), become∑

i∈Σ0

µi + α

2 = 1,
∑
i∈Σ0

ξ+
i = α

2 , ξ+
i = 0 for i ∈ Σ \ Σ0 (B.10)
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190 Extremum Measures

and hence

∑
i∈Σ\Σ0

µi −
α

2 = 0,
∑

i∈Σ\Σ0

ξ−i = α

2 , ξ−i = 0 for i ∈ Σ0. (B.11)

Therefore
∑
i∈Σ\Σ0 ξ

−
i = ∑

i∈Σ\Σ0 µi and hence ξ−i = µi for all i ∈ Σ \ Σ0. The extremum

solution for any R ∈ [Rmax, 2] is given by

D−(R) =
∑
i∈Σ

`iξ
+
i −

∑
i∈Σ

`iξ
−
i +

∑
i∈Σ

`iµi
(a)=

∑
i∈Σ0

`iξ
+
i −

∑
i∈Σ\Σ0

`iξ
−
i +

∑
i∈Σ

`iµi

= `min

(
α

2

)
−

∑
i∈Σ\Σ0

`iµi +
∑
i∈Σ

`iµi = `min

(
1−

∑
i∈Σ0

µi

)
+
∑
i∈Σ0

`iµi = `min.

where (a) follows from (B.10) and (B.11).

B.3. Weak Convergence of Probability Measures

Below, we give a brief description of concepts of weak convergence of probability measures

which are relevant to our work.

1) Let (Σ, dΣ) be a metric space with B(Σ) its Borel sets. Recall that a sequence {Pn :
n = 1, 2, . . .} of probability measures on Σ converges weakly to a probability P on Σ if

lim
n−→∞

∫
f(x)P n(dx) =

∫
f(x)P (dx), ∀f ∈ BC(Σ).

This convergence is denoted by P n w−→ P . Weak convergence defines a topology τ on the

set of probability measuresM1(Σ), that is, P n w−→ P if and only if for each neighborhood

N(P ) ∈ τ of P then P n ∈ N(P ) for n sufficiently large. Moreover, if the metric space

(Σ, dΣ) is separable, the topology τ is metrizable, and hence there exist a metric d :M1(Σ)×
M1(Σ) 7−→ R which generates this topology. The Prohorov metric is such a metric on

M1(Σ).

In order to introduce it, we define for A ⊂ Σ, ε > 0, A(ε) 4= {x ∈ Σ : d(x,A) < ε}. Then

dP :M1(Σ)×M1(Σ) 7−→ R defined by

dP (Q,P ) 4= inf{ε > 0 : Q(F ) ≤ P (F (ε)) + ε, ∀ closed subset F ⊂ Σ.

Moreover, if dP (P n, P ) −→ 0 then P n w−→ P .

An important property of the topology τ is that for (Σ, dΣ) a separable metric space the

set of probability measures with finite support denoted byMFS
1 (Σ) is dense inM1(Σ), that

is, the closure ofMFS
1 (Σ) = M1(Σ) [11, Appendix III, Theorem 4]. Therefore, for each

P ∈ M1(Σ) there exists a sequence {P n : n = 1, 2, . . .} of probability measures with finite

support fromMFS
1 (Σ) converging (i.e., to P ∈M1(Σ)).
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B.3 Weak Convergence of Probability Measures 191

2) Consider a neighborhood N(P ) 4= {Q ∈ M1(Σ) : Q(Fi) < P (Fi) + ε, i = 1, . . . , n},
where Fi, i = 1, . . . , n are closed subset of Σ, ε > 0. Consider, a partition {A1, A2, . . . , Ak}
generated by {F1, . . . , Fn}. Then for each i = 1, . . . , k there exists an xi ∈ Ai such that

f(xi)P (Ai) ≤
∫
Ai
f(xi)P (dx) holds, for a measurable function f : Σ 7−→ R.

On the points {xi, . . . , xk} put mass {P (Ai) : i = 1, . . . , k} and denote this probability

measure by QFS ∈MFS
1 (Σ). Then

∫
f(x)QFS(dx) =

k∑
j=1

f(xj)P (Aj).
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C
Finite Horizon Dynamic Programming

C.1. Proof of Lemma 4.1

Let π ∈ ΠDM
0,n−1, which defines {gj : j = 0, 1, . . . , n − 1}. It follows that {xgj : j =

0, 1, . . . , n} is a Markov process. Then

V g
n (xgn) = αnhn(xgn)

= EQπ
ν
{αnhn(xgn)|G0,n}

= sup
Qn(·|xn−1,un−1)∈BRn (Qon)(xn−1,un−1)

EQπ
ν
{αnhn(xgn)|G0,n}

= Vn(G0,n)

so that it is true for j = n.

193

Ioa
nn

is 
Tzo

rtz
is



194 Finite Horizon Dynamic Programming

Suppose that (4.39) holds for j + 1, j + 2, . . . , n. Then

V g
j (xgj ) = sup

Qj+1(·|xgj ,u
g
j )∈BRj+1 (Qoj+1)(xgj ,u

g
j )
EQj+1(·|xj ,uj)

{
αjfj(xgj , gj(x

g
j )) + V g

j+1(xgj+1)
}

= sup
Qj+1(·|xgj ,u

g
j )∈BRj+1 (Qoj+1)(xgj ,u

g
j )
EQπ

ν

{
αjfj(xgj , gj(x

g
j )) + V g

j+1(xgj+1)|G0,j

}

= sup
Qj+1(·|xgj ,u

g
j )∈BRj+1 (Qoj+1)(xgj ,u

g
j )
EQπ

ν

{
αjfj(xgj , gj(x

g
j ))

+ sup
Qk(·|xk−1,uk−1)∈BRk

(Qo
k

)(xk−1,uk−1)

k=j+2,...,n

EQπ
ν

{ n−1∑
k=j+1

αkfk(xgk, gk(x
g
k)) + αnhn(xgn)|G0,j+1

}
|G0,j

}

= sup
Qk(·|xk−1,uk−1)∈BRk

(Qo
k

)(xk−1,uk−1)

k=j+1,...,n

EQπ
ν

{
αjfj(xgj , gj(x

g
j ))|G0,j

}

+ EQπ
ν

{
EQπ

ν

{ n−1∑
k=j+1

αkfk(xgk, gk(x
g
k)) + αnhn(xgn)|G0,j+1

}
|G0,j

}
= sup

Qk(·|xk−1,uk−1)∈BRk
(Qo
k

)(xk−1,uk−1)

k=j+1,...,n

EQπ
ν

{ n−1∑
k=j

αkfk(xgk, gk(x
g
k)) + αnhn(xgn)|G0,j

}

= Vj(ug[j,n−1],G0,j)

= sup
Qk(·|xk−1,uk−1)∈BRk

(Qo
k

)(xk−1,uk−1)

k=j+1,...,n

EQπ
ν

{ n−1∑
k=j

αkfk(xgk, gk(x
g
k)) + αnhn(xgn)|xj

}

because {xgj : j = 0, 1, . . . , n} is a Markov process.

C.2. Proof of Lemma 4.2

Let π ∈ ΠD
0,n−1 be arbitrary. Then

V g
n (xgn) ≤ αnhn(xgn)

= EQπ
ν
{αnhn(xgn)|G0,n}

= sup
Qn(·|xn−1,un−1)∈BRn (Qon)(xn−1,un−1)

EQπ
ν
{αnhn(xgn)|G0,n}

= Vn(G0,n)
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so that it is true for j = n.

Suppose that (4.42) holds for j + 1, j + 2, . . . , n. Then

V g
j (xgj ) ≤ sup

Qj+1(·|xgj ,u
g
j )∈BRj+1 (Qoj+1)(xgj ,u

g
j )
EQj+1(·|xj ,uj)

{
αjfj(xgj , u

g
j ) + V g

j+1(xgj+1)
}

= sup
Qj+1(·|xgj ,u

g
j )∈BRj+1 (Qoj+1)(xgj ,u

g
j )
EQπ

ν

{
αjfj(xgj , u

g
j ) + V g

j+1(xgj+1)|G0,j

}

≤ sup
Qj+1(·|xgj ,u

g
j )∈BRj+1 (Qoj+1)(xgj ,u

g
j )
EQπ

ν

{
αjfj(xgj , u

g
j )

+ sup
Qk(·|xk−1,uk−1)∈BRk

(Qo
k

)(xk−1,uk−1)

k=j+2,...,n

EQπ
ν

{ n−1∑
k=j+1

αkfk(xgk, u
g
k) + αnhn(xgn)|G0,j+1

}
|G0,j

}

= sup
Qk(·|xk−1,uk−1)∈BRk

(Qo
k

)(xk−1,uk−1)

k=j+1,...,n

EQπ
ν

{
αjfj(xgj , u

g
j )|G0,j

}

+ EQπ
ν

{
EQπ

ν

{ n−1∑
k=j+1

αkfk(xgk, u
g
k) + αnhn(xgn)|G0,j+1

}
|G0,j

}
= sup

Qk(·|xk−1,uk−1)∈BRk
(Qo
k

)(xk−1,uk−1)

k=j+1,...,n

EQπ
ν

{ n−1∑
k=j

αkfk(xgk, u
g
k) + αnhn(xgn)|G0,j

}

= Vj(ug[j,n−1],G0,j).
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D
Infinite Horizon Dynamic Programming

D.1. Proof of Lemma 5.4

By Proposition 5.1 (c), there exists a V (g∗, ·) : X 7−→ R and J(π∗) such that for all x ∈ X

J(π∗) + V (g∗, x) = f(x, g∗(x)) +
∑
z∈X

Q∗(z|x, g∗(x))V (g∗, z). (D.1)

Then, for all x ∈ X

J(π∗) + V (g∗, x) ≥ min
u∈U

{
f(x, u) +

∑
z∈X

Q∗(z|x, u)V (g∗, z)
}
.

Define g1 : X 7−→ U as

g1(x) = argmin
u∈U

{
f(x, u) +

∑
z∈X

Q∗(z|x, u)V (g∗, z)
}
.

Suppose that for some x2 ∈ X strict inequality holds in (D.1), then

J(π∗) + V (g∗, x) > min
u∈U

{
f(x2, u) +

∑
z∈X

Q∗(z|x2, u)V (g∗, z)
}
. (D.2)
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198 Infinite Horizon Dynamic Programming

Then multiplying (D.2) by q(g1)(x0) > 0 and summing over x0 ∈ X yields

J(π∗) +
∑
x0∈X

q(g1)V (g∗, x0)

> min
{ ∑
x0∈X

q(g1)(x0)f(x0, u) +
∑
x0∈X

q(g1)(x0)
∑
z∈X

Q∗(z|x0, u)V (g∗, z)
}

=
∑
x0∈X

q(g1)(x0)f(x0, g1(x0)) +
∑
x0∈X

q(g1)(x0)
∑
z∈X

Q∗(z|x0, g1(x0))V (g∗, z)

= J(g1) +
∑
z∈X

q(g1)V (g∗, z), by Proposition 5.1 (a)

which gives J(π∗) > J(g1), contradicting assumption 2. Hence, equality holds in (D.1), for

every x ∈ X .

D.2. Analytic Solution of Example 5.4.1

To obtain an optimal stationary policy of the infinite horizon minimax problem for dis-

counted cost, policy iteration algorithm 5.3 is applied.

1. Initialization. Solve the equation f(g0)+αQo(g0)VQo(g0)=VQo(g0), for VQo(g0) ∈ R3,

or,


f(1, g0(1))
f(2, g0(2))
f(3, g0(3))

+ α


qo11(g0(1)) qo12(g0(1)) qo13(g0(1))
qo21(g0(2)) qo22(g0(2)) qo23(g0(2))
qo31(g0(3)) qo32(g0(3)) qo33(g0(3))



VQo(1)
VQo(2)
VQo(3)

 =


VQo(1)
VQo(2)
VQo(3)



which is given by


2
3
0

+ 0.9
9


3 1 5
4 2 3
4 1 4

VQo(g0) = VQo(g0) =⇒ VQo(g0) ,


VQo(1)
VQo(2)
VQo(3)

 =


12.42
13.93
10.60

 .

Note that, VQo , {VQo(1), VQo(2), VQo(3)}, |X | = 3, and hence

X+ , {x ∈ X : VQo(x) = max{VQo(x) : x ∈ X}} = {x ∈ X : VQo(x) = VQo(2)}={2},

X− , {x ∈ X : VQo(x) = min{VQo(x) : x ∈ X}} = {x ∈ X : VQo(x) = VQo(3)}={3},

X1 ,
{
x ∈ X : VQo(x) = min{VQo(α) : α ∈ X \ X+ ∪ X−}

}
={1}.

Ioa
nn

is 
Tzo

rtz
is



D.2 Analytic Solution of Example 5.4.1 199

Once the partition is been identified, (5.16)-(5.18) is applied to obtain

Q∗(u1) =



(
qo11(u1)−

(
R
2 − q

o
13(u1)

)+
)+

min
(
1, qo12(u1) + R

2

) (
qo13(u1)− R

2

)+

(
qo21(u1)−

(
R
2 − q

o
23(u1)

)+
)+

min
(
1, qo22(u1) + R

2

) (
qo23(u1)− R

2

)+

(
qo31(u1)−

(
R
2 − q

o
33(u1)

)+
)+

min
(
1, qo32(u1) + R

2

) (
qo33(u1)− R

2

)+



= 1
9


3 4 2
4 5 0
0 9 0

 (D.3)

and

Q∗(u2) =



(
qo11(u2)−

(
R
2 − q

o
13(u2)

)+
)+

min
(
1, qo12(u2) + R

2

) (
qo13(u2)− R

2

)+

(
qo21(u2)−

(
R
2 − q

o
23(u2)

)+
)+

min
(
1, qo22(u2) + R

2

) (
qo23(u2)− R

2

)+

(
qo31(u2)−

(
R
2 − q

o
33(u2)

)+
)+

min
(
1, qo32(u2) + R

2

) (
qo33(u2)− R

2

)+



= 1
9


1 5 3
4 5 0
4 4 1

 . (D.4)

Solve the equation f(g0) + αQ∗(g0)VQ∗(g0) = VQ∗(g0), for VQ∗(g0) ∈ R3, or,
f(1, g0(1))
f(2, g0(2))
f(3, g0(3))

+ α


q∗11(g0(1)) q∗12(g0(1)) q∗13(g0(1))
q∗21(g0(2)) q∗22(g0(2)) q∗23(g0(2))
q∗31(g0(3)) q∗32(g0(3)) q∗33(g0(3))



VQ∗(1)
VQ∗(2)
VQ∗(3)

 =


VQ∗(1)
VQ∗(2)
VQ∗(3)


which is given by

2
3
0

+ 0.9
9


3 4 2
4 5 0
4 4 1

VQ∗(g0) = VQ∗(g0) =⇒ VQ∗(g0) ,


VQ∗(1)
VQ∗(2)
VQ∗(3)

 =


22.42
23.93
20.60

 .

2. Let m = 1. (a) Determine g1 ∈ R3 such that

f(g1) + αQ∗(g1)VQ∗(g0) = min
g∈R3
{f(g) + αQ∗(g)VQ∗(g0)}

=


min {22.42, 20.88}
min {21.93, 23.93}
min {24.53, 20.60}

 =


20.88
21.93
20.60

 .

Hence, g1(1) = u2, g1(2) = u1 and g1(3) = u2.
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200 Infinite Horizon Dynamic Programming

(b) Solve the equation f(g1) + αQo(g1)VQo(g1) = VQo(g1), for VQo(g1) ∈ R3, or,


f(1, g1(1))
f(2, g1(2))
f(3, g1(3))

+ α


qo11(g1(1)) qo12(g1(1)) qo13(g1(1))
qo21(g1(2)) qo22(g1(2)) qo23(g1(2))
qo31(g1(3)) qo32(g1(3)) qo33(g1(3))



VQo(1)
VQo(2)
VQo(3)

 =


VQo(1)
VQo(2)
VQo(3)


which is given by

0.5
1
0

+0.9
9


1 2 6
4 2 3
4 1 4

VQo(g1)=VQo(g1)=⇒VQo(g1) ,


VQo(1)
VQo(2)
VQo(3)

=


3.46
4.10
2.99

 .

Therefore, X+ = {2}, X− = {3} and X1 = {1}. Since the partition is the same as in m = 0
then Q∗(u1), Q∗(u2) are the same as (D.3) and (D.4), respectively.

Solve the equation b(g1) + αQ∗(g1)VQ∗(g1) = VQ∗(g1), for VQ∗(g1) ∈ R3, or,


f(1, g1(1))
f(2, g1(2))
f(3, g1(3))

+ α


q∗11(g1(1)) q∗12(g1(1)) q∗13(g1(1))
q∗21(g1(2)) q∗22(g1(2)) q∗23(g1(2))
q∗31(g1(3)) q∗32(g1(3)) q∗33(g1(3))



VQ∗(1)
VQ∗(2)
VQ∗(3)

 =


VQ∗(1)
VQ∗(2)
VQ∗(3)


which is given by

0.5
1
0

+ 0.9
9


1 5 3
4 5 0
4 4 1

VQ∗(g1) = VQ∗(g1) =⇒ VQ∗(g1) ,


VQ∗(1)
VQ∗(2)
VQ∗(3)

 =


6.79
7.43
6.32

 .

Note that

min
g∈R3
{f(g) + αQ∗(g)VQ∗(g0)} =


20.88
21.93
20.60

 <


22.42
23.93
20.60

 = VQ∗(g0). (D.5)

3. Let m = 2. (a) Determine g2 ∈ R3 such that

f(g2) + αQ∗(g2)VQ∗(g1) = min
g∈R3
{f(g) + αQ∗(g)VQ∗(g1)}

=


min {8.27, 6.79}
min {7.43, 9.43}
min {9.69, 6.32}

 =


6.79
7.43
6.32

 .

Hence, g2(1) = u2, g2(2) = u1 and g2(3) = u2. Note that, g2 = g1.
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D.2 Analytic Solution of Example 5.4.1 201

(b) Note that the solution of (5.28) is such that VQo(g2) = VQo(g1), and hence the solution

of (5.29) is such that VQ∗(g2) = VQ∗(g1). Furthermore, condition (5.26) is satisfied since

min
g∈R3
{f(g) + αQ∗(g)VQ∗(g1)} =


6.79
7.43
6.32

 = VQ∗(g1).

Hence, policy iteration algorithm has converged and the optimal policy and value are

g∗ = g2 ,


g2(1)
g2(2)
g2(3)

 =


u2

u1

u2

 , VQ∗(g∗) = VQ∗(g2) ,


VQ∗(1)
VQ∗(2)
VQ∗(3)

 =


6.79
7.43
6.32

 .
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E
Markov Process Approximation

Before we proceed with the proof of Theorem 6.1, we give the following Lemma in which

lower and upper bounds, which are achievable, are obtained.

E.1. Upper and Lower Bounds

Lemma E.1. (a) Upper Bound.

∑
j∈X

`jΞ+
ijµi ≤ `max

(
αiµi

2

)
. (E.1)

The bound holds with equality if

∑
j∈X 0

Pij+
αi
2 ≤1,

∑
j∈X 0

Ξ+
ij=

αi
2 , Ξ+

ij=0, ∀j∈X\X 0. (E.2)

(b) Lower Bound. Case 1. If
∑
j∈X0 Pij −

αi
2 ≥ 0 then

∑
j∈X

`jΞ−ijµi ≥ `min

(
αiµi

2

)
. (E.3)

The bound holds with equality if

∑
j∈X0

Pij−
αi
2 ≥0,

∑
j∈X0

Ξ−ij=
αi
2 , Ξ−ij=0, ∀j∈X\X0. (E.4)
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Case 2. If
∑k
s=1

∑
j∈Xs−1 Pij −

αi
2 ≤ 0 for any k ∈ {1, 2, . . . , r} then

∑
j∈X

`jΞ−ijµi ≥ `(Xk)
(
αiµi

2 −
k∑
s=1

∑
j∈Xs−1

Pijµi

)
+

k∑
s=1

∑
j∈Xs−1

`jPijµi. (E.5)

Moreover, equality holds if∑
j∈Xs−1

Ξ−ij =
∑

j∈Xs−1

Pij, for all s = 1, 2, . . . , k, (E.6a)

∑
j∈Xk

Ξ−ij =
(
αi
2 −

k∑
s=1

∑
j∈Xs−1

Pij

)
, (E.6b)

k∑
s=0

∑
j∈Xs

Pij −
αi
2 ≥ 0, (E.6c)

Ξ−ij = 0 for all j ∈ X \ X0 ∪ X1 ∪ . . . ∪ Xk. (E.6d)

Proof. Part (a): First, we show that inequality (E.1) holds.∑
j∈X

`jΞ+
ijµi ≤ `maxµi

∑
j∈X

Ξ+
ij = `max

(
αiµi

2

)
.

Next, we show that under the stated conditions (E.2) equality holds.

∑
j∈X

`jΞ+
ijµi =

∑
j∈X 0

`jΞ+
ijµi +

∑
j∈X\X 0

`jΞ+
ijµi

= `maxµi
∑
j∈X 0

Ξ+
ij +

∑
j∈X\X 0

`jΞ+
ijµi = `max

(
αiµi

2

)
.

Part (b), case 1: First, we show that inequality (E.3) holds.∑
j∈X

`jΞ−ijµi ≥ `minµi
∑
j∈X

Ξ−ij = `min

(
αiµi

2

)
.

Next, we show that under the stated conditions (E.4) equality holds.

∑
j∈X

`jΞ−ijµi =
∑
j∈X0

`jΞ−ijµi +
∑

j∈X\X0

`jΞ−ijµi

= `minµi
∑
j∈X0

Ξ−ij +
∑

j∈X\X0

`jΞ+
ijµi = `min

(
αiµi

2

)
.

Part (b), case 2: First, we show that inequality (E.5) holds. Consider any k ∈ {1, 2, . . . , r}.
From Part (b), case 1, we have that∑

j∈X\∪ks=1Xs−1

`jΞ−ijµi ≥ min
j∈X\∪ks=1Xs−1

`j
∑

j∈X\∪ks=1Xs−1

Ξ−ijµi

= `(Xk)
∑

j∈X\∪ks=1Xs−1

Ξ−ijµi = `(Xk)
(∑
j∈X

Ξ−ijµi −
k∑
s=1

∑
j∈Xs−1

Ξ−ijµi
)
.
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E.2 Proof of Theorem 6.1 205

Hence, ∑
j∈X

`jΞ−ijµi −
k∑
s=1

∑
j∈Xs−1

`jΞ−ijµi ≥ `(Xk)
(
αiµi

2 −
k∑
s=1

∑
j∈Xs−1

Pijµi

)
,

which implies

∑
j∈X

`jΞ−ijµi ≥ `(Xk)
(
αiµi

2 −
k∑
s=1

∑
j∈Xs−1

Pijµi

)
+

k∑
s=1

∑
j∈Xs−1

`jPijµi.

Next, we show under the stated conditions (E.6) that equality holds.

∑
j∈X

`jΞ−ijµi =
k∑
s=1

∑
j∈Xs−1

`jΞ−ijµi+
∑
j∈Xk

`jΞ−ijµi+
∑

j∈X\∪ks=0Xs

`jΞ−ijµi

=
k∑
s=1

`(Xs−1)
∑

j∈Xs−1

Ξ−ijµi + `(Xk)
∑
j∈Xk

Ξ−ijµi

=
k∑
s=1

∑
j∈Xs−1

`jPijµi + `(Xk)
(
αiµi

2 −
k∑
s=1

∑
j∈Xs−1

Pijµi

)
.

�

E.2. Proof of Theorem 6.1

We provide the main steps for the derivation of Theorem 6.1, since the methodology fol-

lowed for solving Problem 6.1 is similar to the one followed in Chapter 3, Theorem 3.1. In

particular, for a fixed i ∈ X , the solution of Problem 6.1 is given by (6.19) and (6.20), with

proper substitution of ν∗ → Φ† and µ→ P .

From (6.15), the pay-off of Problem 6.1 is given by

∑
i∈X

∑
j∈X

`jPijµi + max
Ξij

∑
i∈X

∑
j∈X

`jΞijµi. (E.7)

To maximize (E.7) we employ the fact that Ξ is a signed measure satisfying (6.16). It is ob-

vious that for each i ∈ X an upper and a lower bound must be obtained for
∑
j∈X `jΞ+

ijµi and∑
j∈X `jΞ−ijµi, respectively. Before proceeding with the derivation of the optimal transition

probabilities Φ† based on upper and lower bounds, we discuss first the solution behavior in

terms of the TV constraint given by (6.14), that is
∑
i∈X αiµi ≤ R.

Let αi, ∀i ∈ X , to be given by (6.18d) (see Chapter 3, Lemma 3.1 and Corollary 3.1); then,

it can be verified that for R ≤ Rmax,i, ∀i ∈ X , the TV constraint holds with equality, and

also that asR increases (i.e., Rmax,i ≤ R ≤ Rmax,i+1, ∀i, i+1 ∈ X ), the TV constraint holds

with inequality. However, the solution of Problem 6.1 with respect to the specific i ∈ X for

which R ≥ Rmax,i is constant and hence the overall solution of Problem 6.1 is not affected.
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206 Markov Process Approximation

Finally, for values of R ≥ Rmax,i, ∀i ∈ X the overall solution of Problem 6.1 is constant, in

particular, is equal to `max. The relation of TV constraint
∑
i∈X αiµi with the TV parameter

R, is depicted in Fig.E.1. Next we proceed with the derivation of (6.18).

0 2
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

max,2max,1 max,3 max,4

Total Variation Parameter, R

RRR R

∑
i∈X αiµi

1

Figure E.1.: Total Variation Constraint vs. Total Variation Parameter

From Lemma E.1, Part (a), the upper bound (E.1), holds with equality if conditions given

by (E.2) are satisfied. Note that, the first condition of (E.2) is always satisfied and from the

second condition we have that
∑
j∈X 0 Φij = ∑

j∈X 0 Pij + αi
2 and hence the optimal transition

probability of each j ∈ X 0 is given by

Φ†ij = Pij + αi
2|X 0|

, ∀j ∈ X 0.

From Lemma E.1, Part (b), case 1, the lower bound (E.3), holds with equality if conditions

given by (E.4) are satisfied. Furthermore, from the second condition of (E.4) we have that∑
j∈X0 Φij = ∑

j∈X0 Pij−
αi
2 , and also the first condition must be satisfied, hence the optimal
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E.2 Proof of Theorem 6.1 207

transition probability of each j ∈ X0 is given by

Φ†ij =
(
Pij −

αi
2|X0|

)+

, ∀j ∈ X0.

Lemma E.1, Part (b), case 1, characterize the solution for
∑
j∈X0 Pij + αi

2 ≥ 0. Next, the

characterization of solution when this condition is violated, that is, when
∑k
s=1

∑
j∈Xs−1 Pij−

αi
2 ≤ 0 for any k ∈ {1, 2, . . . , r} is discussed.

From Lemma E.1, Part (b), case 2, the lower bound (E.5), holds with equality if conditions

given by (E.6) are satisfied. Furthermore, from (E.6b) we have that

∑
j∈Xk

Φij =
∑
j∈Xk

Pij −
(
αi
2 −

k∑
s=1

∑
j∈Xs−1

Pij

)
,

and conditions αi
2 −

∑k
s=1

∑
j∈Xs−1 Pij ≥ 0 and (E.6c) must be satisfied, hence the optimal

transition probability of each j ∈ Xk is given by

Φ†ij =
(
Pij −

( αi
2|Xk|

−
k∑
j=1

∑
z∈Xj−1

Piz
)+
)+
.

For additional details concerning the steps for the solution of Problem 6.1, see the proof of

Theorem 3.1.
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