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Abstract

Traditional information theoretic measures used for evaluating channel capacity and
lossy compression are defined via mutual information. For memoryless communica-
tion channels and sources this measure has been successfully applied to compute the
operation capacity of channels and lossy compression of sources, respectively. For chan-
nels with memory and feedback, and nonanticipative lossy compression of sources with
memory the valid information measure is the directed information defined via nonan-
ticipative conditional distributions. Directed information is also extensively utilized in
networks, communication for real-time stochastic control applications, and in biologi-
cal system analysis.
This thesis investigates the functional and topological properties of directed informa-
tion and two extremum problems arising from this information theoretic measure. The
first, is the extremum problem of nonanticipative rate distortion function of sources
with memory and the second, is the extremum problem of feedback capacity of channels
with memory and feedback. For these two extremum problems, existence of an optimal
solution is shown using the topology of weak convergence of probability distributions.
For the extremum problem of nonanticipative rate distortion function, applications in
zero-delay Joint Source-Channel Coding (JSCC) design based on average and excess
distortion probability, in bounding the Optimal Performance Theoretically Attainable
(OPTA) by noncausal and causal codes, and computing the Rate Loss (RL) of zero-
delay and causal codes with respect to noncausal codes are derived. For the extremum
problem of feedback capacity, sequential necessary and sufficient conditions are derived
and applied to time-varying channels with memory to establish recursive closed form ex-
pressions of the optimal distributions, which maximize the finite-time horizon directed
information. In addition, the feedback capacity of several time-invariant channels with
memory is derived using the asymptotic properties of the optimal distributions of the
finite-time horizon directed information.
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Πρόλογος

Τα κλασσικά μέτρα θεωρίας της πληροφορίας που χρησιμοποιούνται για τον υπολογισμό

της χωρητικότητας του καναλιού και της συμπίεσης της πληροφορίας με απώλειες, ορίζον-

ται μέσω της αμοιβαίας πληροφορίας. Για επικοινωνιακά κανάλια και πηγές πληροφορίας

χωρίς μνήμη, το μέτρο της αμοιβαία πληροφορίας έχει εφαρμοστεί με επιτυχία για να υ-

πολογίσει τη λειτουργική χωρητικότητα των καναλιών και την λειτουργική συμπίεση με

απώλειες πηγών πληροφορίας αντίστοιχα. Για κανάλια με μνήμη και αιτιατή ανάδραση, και

για μη προβλέψιμη συμπίεση με απώλειες πηγών πληροφορίας με μνήμη, το σωστό μέτρο

πληροφορίας είναι η κατευθυνόμενη πληροφορία που ορίζεται μέσω των αιτιατών υπό συν-

θήκη πιθανοτικών κατανομών. Η κατευθυνόμενη πληροφορία χρησιμοποιείται επίσης σε

επικοινωνιακά δίκτυα, για να χαρακτηρίσει την πληροφορία σε τυχαία συστήματα ελέγχου

που λειτουργούν σε πραγματικό χρόνο και στην ανάλυση βιολογικών συστημάτων.

Η παρούσα διδακτορική διατριβή αποσκοπεί στο να ερευνήσει τις συναρτησιακές και το-

πολογικές ιδιότητες του μέτρου της κατευθυνόμενης πληροφορίας καθώς και τα δύο βα-

σικά προβλήματα ακροτάτων που απορρέουν από αυτό το μέτρο της θεωρίας πληροφορί-

ας. Το πρώτο πρόβλημα ακρότατου είναι αυτό της μη προβλέψιμης συνάρτησης ρυθμού-

παραμόρφωσης για πηγές πληροφορίας με μνήμη και το δεύτερο, αφορά την χωρητικό-

τητα με ανάδραση για κανάλια πληροφορίας με μνήμη και ανάδραση. Για αυτά τα δύο

προβλήματα ακροτάτων, αποδεικνύεται η ύπαρξη βέλτιστης λύσης κάνοντας χρήση της

τοπολογίας ως προς την ασθενή σύγκλιση για κατανομές πιθανοτήτων. Για το ακρότατο

της μη προβλέψιμης συνάρτησης ρυθμού-παραμόρφωσης, περιγράφονται εφαρμογές στο

σχεδιασμό από κοινού κωδικοποίησης πηγής - καναλιού βασιζόμενοι στη πιθανότητα μέ-

σης παραμόρφωσης και στην πιθανότητα υπερβολικής παραμόρφωσης, στην οριοθέτηση

της βέλτιστης απόδοσης που θεωρητικά διέπει το σύστημα για μη αιτιατούς και αιτιατούς

κώδικες πληροφορίας, και στον υπολογισμού της απώλειας ρυθμού ως προς κώδικες μη-

δενικής καθυστέρησης και αιτιατούς κώδικες. Για το ακρότατο της χωρητικότητας με

ανάδραση περιγράφονται διαδοχικές ικανές και αναγκαίες συνθήκες που εφαρμόζονται σε

χρονικά μεταβαλλόμενα κανάλια πληροφορίας με μνήμη για να επιτευχθούν κλειστές α-

ναδρομικές εκφράσεις των βέλτιστων κατανομών που περιγράφουν τη μέγιστη τιμή της
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κατευθυνόμενης πληροφορίας σε πεπερασμένο χρόνο. Επιπρόσθετα, επιτυγχάνεται η ε-

ξεύρεση κλειστών εκφράσεων που χαρακτηρίζουν τη χωρητικότητα με ανάδραση διαφόρων

χρονικά αμετάβλητων καναλιών πληροφορίας με μνήμη κάνοντας χρήση των ασυμπτωτι-

κών ιδιοτήτων των κλειστών αναδρομικών εκφράσεων των βέλτιστων κατανομών που

περιγράφουν τη μέγιστη τιμή της κατευθυνόμενης πληροφορίας σε πεπερασμένο χρόνο.

Pho
tio

s S
tav

rou



Acknowledgements

First of all, I wish to express my sincere gratitude to my advisor Professor Charalambos
D. Charalambous, who worked with me closely and who supported me during every
stage of my Ph.D. studies, both technically and personally. I am very grateful for the
endless time and effort he spent teaching me how to present my work in public, how
to write papers, and most of all how to do research.

Special thanks to my thesis defense committee, Professor Jan H. van Schuppen,
Professor Christoforos Hadjicostis, Professor Ioannis Krikidis and Dr. Themistoklis
Charalambous, for their support, guidance and helpful suggestions. Their guidance
has served me well and I owe them my heartfelt appreciation.

During my Ph.D. studies, I have been very fortunate to collaborate with researchers
outside University of Cyprus, including Professor Nasir U. Ahmed and Dr Themistok-
lis Charalambous. I thank both of them for the stimulating discussions and fruitful
collaborations. A special thanks goes to Themistoklis for his constant support during
my Ph.D studies. Every time I discussed problems with him, I learned new things.

I want to thank all my colleagues in our research group who were always more than
willing to discuss various problems in technical, social or personal issues and provide
fruitful suggestions helping me this way to improve my skills. In particular, I thank my
colleague Dr Christos Kourtellaris for being an inspired and cooperative colleague. Our
conversations were always intrinsic and stimulated. I also want to thank Dr Ioannis
Tzortzis for the constant cooperation and for all interesting discussions. Thank you,
Dr Ioanna Ioannou for helping me at the beginning of my Ph.D. studies.

Moreover, I want to thank my dearest friends Telis, Antonis, Marina and Andreas
for being supportive to me especially during the hard times. You have my deepest
gratitude guys.

Finally, I would not have become a Ph.D. student if I did not have a family that
supports me and encourages me in every decision I make. Therefore, I would like to
thank my parents and my brother for their constant support, motivation, and above
all their endless love.

ix

Pho
tio

s S
tav

rou



Pho
tio

s S
tav

rou



Dedication

To Rea, Andreas and Kleitos for their endless love and support.

xi

Pho
tio

s S
tav

rou



Pho
tio

s S
tav

rou



Contents

1. Introduction 1
1.1. The Problem of Directed Information on Abstract Spaces . . . . . . . . 1

1.1.1. Literature Review . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.1.2. Main Contributions . . . . . . . . . . . . . . . . . . . . . . . . . 3
1.1.3. List of Publications . . . . . . . . . . . . . . . . . . . . . . . . . 4

1.2. Sequential Variational Equalities of Directed Information . . . . . . . . 5
1.2.1. Literature Review . . . . . . . . . . . . . . . . . . . . . . . . . . 5
1.2.2. Main Contributions . . . . . . . . . . . . . . . . . . . . . . . . . 6
1.2.3. List of Publications . . . . . . . . . . . . . . . . . . . . . . . . . 6

1.3. The Extremum Problem of Feedback Capacity for Channels with Memory 7
1.3.1. Literature Review . . . . . . . . . . . . . . . . . . . . . . . . . . 7
1.3.2. Main Contributions . . . . . . . . . . . . . . . . . . . . . . . . . 9

1.4. Sequential Necessary and Sufficient Conditions for Capacity Achieving
Distributions of Channels with Memory and Feedback . . . . . . . . . . 11
1.4.1. Literature Review . . . . . . . . . . . . . . . . . . . . . . . . . . 11
1.4.2. Main Contributions . . . . . . . . . . . . . . . . . . . . . . . . . 13
1.4.3. List of Publications . . . . . . . . . . . . . . . . . . . . . . . . . 14

1.5. The Extremum Problem of Information Nonanticipative Rate Distortion
Function and Applications . . . . . . . . . . . . . . . . . . . . . . . . . 14
1.5.1. Literature Review . . . . . . . . . . . . . . . . . . . . . . . . . . 15
1.5.2. Main Contributions . . . . . . . . . . . . . . . . . . . . . . . . . 17
1.5.3. List of Publications . . . . . . . . . . . . . . . . . . . . . . . . . 18

2. Directed Information on Abstract Spaces: Properties and Applica-
tions 21
2.1. Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
2.2. Equivalent Nonanticipative Channels on Abstract Spaces . . . . . . . . 27

xiii

Pho
tio

s S
tav

rou



xiv Contents

2.3. Properties of Directed Information . . . . . . . . . . . . . . . . . . . . 36
2.3.1. Directed Information Functional of Consistent Conditional Dis-

tributions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40
2.3.2. Convexity and Concavity of Directed Information . . . . . . . . 42
2.3.3. Weak Convergence and Compactness of Conditional Distributions 45
2.3.4. Applications of Theorem 2.3 . . . . . . . . . . . . . . . . . . . . 50
2.3.5. Lower Semicontinuity of Directed Information . . . . . . . . . . 53
2.3.6. Continuity of Directed Information . . . . . . . . . . . . . . . . 54
2.3.7. Extension of Directed Information to Arbitrary sequences of RV’s 57

2.4. Additional Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58
2.4.1. Directed Information as a Functional of Sequences of Conditional

Distributions . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58
2.4.2. Directed Information as the Supremum over Finite Partitions . 58

2.5. Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59

3. Sequential Variational Equalities of Directed Information 61
3.1. Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61

3.1.1. Literature Review and Main Results . . . . . . . . . . . . . . . 62
3.2. Formulation of Nonanticipative Channels and Directed Information

Functional . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64
3.3. Variational Equalities of Directed Information . . . . . . . . . . . . . . 68

3.3.1. Applications of Sequential Variational Equalities to Feedback Ca-
pacity Computations . . . . . . . . . . . . . . . . . . . . . . . . 74

3.4. Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80

4. The Extremum Problem of Feedback Capacity 81
4.1. Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81

4.1.1. Problem Statement and Results . . . . . . . . . . . . . . . . . . 84
4.2. Channel Capacity with Memory and Feedback on Abstract Spaces . . . 85

4.2.1. Equivalent Definitions of Causally Conditioned Probability Dis-
tributions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86

4.2.2. Feedback Channel Capacity . . . . . . . . . . . . . . . . . . . . 89
4.3. Existence of Solution and Stationarity Conditions . . . . . . . . . . . . 93

4.3.1. Finite Horizon . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94
4.3.2. Infinite Horizon . . . . . . . . . . . . . . . . . . . . . . . . . . . 96

4.4. Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 102

Pho
tio

s S
tav

rou



Contents xv

5. Sequential Necessary and Sufficient Conditions for Capacity Achiev-
ing Distributions of Channels with Memory and Feedback 103
5.1. Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103

5.1.1. Main Problem . . . . . . . . . . . . . . . . . . . . . . . . . . . . 104
5.1.2. Contributions and Main Results . . . . . . . . . . . . . . . . . . 106

5.2. Extremum Problems of Feedback Capacity and Preliminaries . . . . . . 115
5.2.1. Basic Notation . . . . . . . . . . . . . . . . . . . . . . . . . . . 115
5.2.2. FTFI Capacity and Convexity of Feedback Capacity . . . . . . 116
5.2.3. Variational Equality . . . . . . . . . . . . . . . . . . . . . . . . 120

5.3. Necessary and Sufficient Conditions for Channels of Class A with Trans-
mission Cost of Class A . . . . . . . . . . . . . . . . . . . . . . . . . . 121
5.3.1. Sequential Necessary and Sufficient Conditions . . . . . . . . . . 122

5.4. Application Examples . . . . . . . . . . . . . . . . . . . . . . . . . . . 130
5.4.1. The FTFI Capacity of Time-Varying BUMCO Channel and

Feedback Capacity . . . . . . . . . . . . . . . . . . . . . . . . . 131
5.4.2. The FTFI Capacity of Time-Varying BUMCO Channel with

Transmission Cost and Feedback Capacity . . . . . . . . . . . . 140
5.4.3. The FTFI Capacity of Time-Varying BEUMCO . . . . . . . . . 145
5.4.4. The FTFI Capacity of Time-Varying BSTMCO . . . . . . . . . 151

5.5. Generalizations to Abstract Alphabet Spaces . . . . . . . . . . . . . . . 153
5.5.1. Channels of Class A and Transmission Cost of Class A . . . . . 154
5.5.2. Necessary and Sufficient Conditions for Channels of Class B with

Transmission Cost of Classes A or B . . . . . . . . . . . . . . . 155
5.6. Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 156

6. Information NRDF and Applications 159
6.1. Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 159

6.1.1. Motivation for NRDF . . . . . . . . . . . . . . . . . . . . . . . . 164
6.1.2. Summary of Main Results and Related Literature . . . . . . . . 164

6.2. Information NRDF on Abstract Spaces . . . . . . . . . . . . . . . . . . 171
6.2.1. Equivalent Causal Conditioning Distributions . . . . . . . . . . 172
6.2.2. Information NRDF . . . . . . . . . . . . . . . . . . . . . . . . . 175

6.3. Existence of Information NRDF and Relations to Nonanticipatory ε-
Entropy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 178
6.3.1. Finite Horizon . . . . . . . . . . . . . . . . . . . . . . . . . . . . 178
6.3.2. Equivalence of NRDF and Nonanticipatory ε−Entropy . . . . . 181

Pho
tio

s S
tav

rou



xvi Contents

6.3.3. Infinite Horizon . . . . . . . . . . . . . . . . . . . . . . . . . . . 183
6.4. Optimal Reproduction of NRDF, Properties, and Example . . . . . . . 186

6.4.1. Stationary optimal reproduction distribution . . . . . . . . . . . 186
6.4.2. Properties of NRDF . . . . . . . . . . . . . . . . . . . . . . . . 189
6.4.3. Example : Multidimensional Partially Observed Gaussian Process 191

6.5. JSCC Design Based on Symbol-by-Symbol Transmission of Stationary
Gaussian Sources with Memory . . . . . . . . . . . . . . . . . . . . . . 196

6.6. Bounds on OPTA by Noncausal and Causal Codes . . . . . . . . . . . 202
6.7. Coding Theorem for JSCC Design Using Nonanticipative Codes . . . . 204

6.7.1. Nonanticipative JSCC Design . . . . . . . . . . . . . . . . . . . 205
6.7.2. Noiseless Coding Theorem . . . . . . . . . . . . . . . . . . . . . 211

6.8. Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 214

7. Conclusions and Future Directions 215
7.1. Summary and Main Results . . . . . . . . . . . . . . . . . . . . . . . . 215
7.2. Future Directions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 218

7.2.1. Control over Communication Constraints . . . . . . . . . . . . . 218
7.2.2. Feedback Capacity of Channels with Memory . . . . . . . . . . 218
7.2.3. Filtering Based on Nonanticipative RDF . . . . . . . . . . . . . 219
7.2.4. Symbol-by-symbol Joint Source Channel Coding . . . . . . . . . 219
7.2.5. Sequential Algorithms for Maximizing Directed Information . . 219

8. Background Material 221

A. A. Proofs of Chapter 2 231
A.1. Proof of Theorem 2.2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 231
A.2. Proof of Theorem 2.3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 236
A.3. Proof of Lemma 2.1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 241
A.4. Proof of Lemma 2.2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 244
A.5. Proof of Theorem 2.4 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 246
A.6. Proof of Theorem 2.6 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 247

B. B. Proofs of Chapter 4 251
B.1. Proof of Theorem 4.1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 251

C. C. Proofs of Chapter 5 255
C.1. Feedback Codes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 255

Pho
tio

s S
tav

rou



Contents xvii

C.2. Proofs of Section 5.3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 257
C.2.1. Proof of Theorem 5.5 . . . . . . . . . . . . . . . . . . . . . . . . 257
C.2.2. Proof of Theorem 5.6 . . . . . . . . . . . . . . . . . . . . . . . . 258
C.2.3. Alternative proof of Theorem 5.6 . . . . . . . . . . . . . . . . . 260

D. D. Proofs of Chapter 6 263
D.1. Proof of Lemma 6.2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 263
D.2. Proof of Theorem 6.8 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 264
D.3. Proof of Theorem 6.7 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 266
D.4. Proof of Theorem 6.9 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 267
D.5. Proof of Theorem 6.10 . . . . . . . . . . . . . . . . . . . . . . . . . . . 268

Bibliography 275

Pho
tio

s S
tav

rou



Pho
tio

s S
tav

rou



List of Figures

2.1. Equivalent Representations of Feedback/Feedforward Channels. . . . . 28

4.1. Equivalent Representations of Input/Channel Distributions. . . . . . . 88

5.1. Optimal distributions of BUMCO(0.9, 0.1, 0.2, 0.4) for time horizon
{0, 1, . . . , 1000}. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 138

5.2. 1
n+1C

FB,A.1
Xn→Y n of BUMCO (0.9, 0.1, 0.2, 0.4) for time horizon

{0, 1, . . . , 1000} with a choice of the initial distribution PY−1(y−1 = 0) =
0 with its complement PY−1(y−1 = 1) = 1. . . . . . . . . . . . . . . . . 139

5.3. Optimal transition probability distributions of
BUMCO(0.9, 0.1, 0.2, 0.4) with transmission cost function given
by (5.113), s = 0.05, for time horizon t ∈ {0, 1, . . . , 1000}. . . . . . . . . 144

5.4. 1
n+1C

FB,A.1
Xn→Y n(κ) of BUMCO (0.9, 0.1, 0.2, 0.4), s = 0.05, κ = 0.5992,

for time horizon {0, 1, . . . , 1000} with a choice of the initial distribution
PY−1(y−1 = 0) = 0 with its complement PY−1(y−1 = 1) = 1. . . . . . . . 145

5.5. Optimal transition probability distributions of BEUMCO(0.95, 0.6, 0.8)
for time horizon {0, 1, . . . , 1000}. . . . . . . . . . . . . . . . . . . . . . 149

5.6. 1
n+1C

FB,A.1
Xn→Y n of BEUMCO (0.95, 0.6, 0.8) for time horizon

{0, 1, . . . , 1000} with a choice of the initial distribution PY−1(y−1 = 0) =
1 with its complements PY−1(y−1 = e) = 0 PY−1(y−1 = 1) = 0. . . . . . 150

6.1. Probabilistic matching based on nonanticipative transmission. . . . . . 165
6.2. JSCC design system of partially observed multidimensional Gauss-

Markov source. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 167
6.3. Realization of the optimal reproduction distribution: Kt = Xt −

E{Xt|Y t−1}, K̃t = Yt − E{Xt|Y t−1}, {E∞, Etr
∞}=unitary transforma-

tions, {A∞,B∞}=scaling matrices, {Γt, Γ̃t}= scaling matrices. . . . . . 168

xix

Pho
tio

s S
tav

rou



xx List of Figures

6.4. Reduction of Fig. 6.3 to p = 1, C = 1, N = 0, A = α, |α| < 1, B = σW ,
which corresponds to the JSCC design system of a scalar Gauss-Markov
Source given by (6.73) over a memoryless AWGN channel with feedback,
Kt = Xt − E{Xt|Bt−1}. . . . . . . . . . . . . . . . . . . . . . . . . . . . 169

6.5. Reduction of Fig. 6.3 to p = 1, C = 1, N = 0, A = α, |α| < 1, B = σW ,
which corresponds the to JSCC design system of a scalar Gauss-Markov
source given by (6.73) over a memoryless AWGN channel without feedback.169

6.6. JSCC design based on nonanticipative transmission for sources with
memory. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 205

Pho
tio

s S
tav

rou



Abbreviations

A

AWGN Additive White Gaussian Noise

B

BAA Blahut Arimoto Algorithm
BSMS Binary Symmetric Markov Source
BSSC Binary State Symmetric Channel
BEUMCO Binary Erasure Unit Memory Channel Output
BUMCO Binary Unit Memory Channel Output
BSTMCO Binary Symmetric Two Memory Channel Output

D

DMC Discrete Memoryless Channel

F

FTFI Finite Transmissions Feedback Information

I

IID Independent Identically Distributed
ISI Intersymbol Interference

J

JSCC Joint Source-Channel Coding
JSCM Joint Source-Channel Matching

xxi

Pho
tio

s S
tav

rou



xxii Abbreviations

K

KKT Karush-Kuhn-Tucker

L

LbL Letter-by-Letter
LHS Left Hand Side

M

MC Markov Chain

O

OPTA Optimal Performance Theoretically Attainable

P

POST Previous Output is the STate

R

RD Rate Distortion
RDF Rate Distortion Function
RL Rate Loss
RV Random Variable(s)
RHS Right Hand Side

S

SLB Shannon Lower Bound
SRDF Sequential Rate Distortion Function
SbS Symbol-by-Symbol

U

Pho
tio

s S
tav

rou



Abbreviations xxiii

UMCO Unit Memory Channel Output

N

NRDF Nonanticipative Rate Distortion Function
NDRF Nonanticipative Distortion Rate Function

Pho
tio

s S
tav

rou



Pho
tio

s S
tav

rou



Notation

N0 , {0, 1, 2, . . .}

N1 , {1, 2, . . .}

Nn
0 , {0, 1, 2, . . . , n}

Z , The set of integer numbers

R , Set of real numbers

L1 , Space of Lebesgue integrable functions

|| · ||2 , Euclidean norm

|| · ||∞ , Uniform (or sup) norm

Xn {X0, X1, . . . , Xn}

Xn
i {Xi, Xi+1, . . . , Xn}

E{.} Expected value

⊗ Convolution

(Ω,F,P) Probability space

Ω Sample space of the probability space

F σ-algebra of events

P Probability measure

B(Xn) Borel σ−algebras of subsets of Xn
σ{X} σ-algebra generated by RV X

X Alphabet space

D( · || · ) Kullback-Leibler Divergence

I( · ; · ) Average mutual information

I· ; ·(· , ·) Mutual information functional

I(· → ·) Forward directed information

I· → ·(· , ·) Forward directed information functional

xxv

Pho
tio

s S
tav

rou



xxvi Notation

M(X ) Set of probability measures on space X

R(D) Rate distortion function

BC(X ) Set of bounded continuous real-valued functions on space
X

Q(D) Fidelity set of reproduction conditional distributions

Rna(D) Information nonanticipative rate distortion function

H(X) Binary entropy

C Channel capacity

C(κ) Constrained channel capacity

P(κ) Transmission cost constraint

CFB Feedback channel capacity

CFB(κ) Constrained feedback channel capacity

Pho
tio

s S
tav

rou



1
Introduction

1.1. The Problem of Directed Information on
Abstract Spaces

In Chapter 2, we derive several functional and topological properties of directed in-
formation for general abstract alphabets (complete separable metric spaces) using the
topology of weak convergence of probability measures.

1.1.1. Literature Review

Directed information is an information theoretic measure initially introduced by Marko
in [1], and further developed by Massey in [2], to generalize the mathematical concept
of multiletter mutual information I(Xn;Y n) [3] to the multiletter expression of the
so-called directed information, I(Xn → Y n), by considering the notion of causality
in the already standard definition of mutual information. Formally speaking, given
two sequences of Random Variables (RV) Xn 4= {X0, X1, . . . , Xn} ∈ X n 4= ×ni=0Xi,
Y n 4= {Y0, Y1, . . . , Yn} ∈ Yn

4= ×ni=0Yi, where Xi and Yi are the input and output
alphabets of a channel, respectively, directed information from Xn to Y n is defined as

1
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2 Introduction

follows [2]

I(Xn → Y n) 4=
n∑
i=0

I(X i;Yi|Y i−1) (1.1)

=
n∑
i=0

∫
X i×Yi

log
(
PYi|Y i−1,Xi(dyi|yi−1, xi)
PYi|Y i−1(dyi|yi−1)

)
PXi,Y i(dxi, dyi) (1.2)

≡ IXn→Y n(PXi|Xi−1,Y i−1 , PYi|Y i−1,Xi : i = 1, . . . , n). (1.3)

where PXi,Y i(dxi, dyi) = ⊗ij=0PXj |Xj−1,Y j−1 ⊗ PYj |Y j−1,Xj and for i = 0, PX0|X−1,Y −1 ≡
PX0 and PY0|Y −1,X0 ≡ PY0|X0 . By adopting the notation of directed information func-
tional (1.3) we mean that directed information is a functional of two collections of causal
conditional distributions, the feedforward distribution {PYi|Y i−1,Xi(·|·, ·) : i = 1, . . . , n},
and the feedback distribution {PXi|Xi−1,Y i−1(·|·, ·) : i = 0, 1, . . . , n}.

Directed information (1.1) or its variants are utilized to characterize capacity of chan-
nels with memory and feedback [4–11], lossy data compression of sequential codes [4],
lossy data compression with feedforward information at the decoder [12], lossy data
compression of block codes, and capacity of networks, such as, the two-way channel,
the multiple access channel [13, 14] and so on. Moreover, directed information is also
utilized in a variety of problems subject to causality constraints, such as, gambling,
portfolio theory, data compression and hypothesis testing [15], and in biology as an
alternative to Granger’s measure of causality [16–18].

Some of the above references derive coding theorems under any of the assumptions:
(a) stationary ergodic processes {(Xi, Yi) : i = 0, 1, . . .} [3], (b) Dobrushin’s stability of
the information density [19], or (c) its generalization using the information spectrum
methods [20]. Obviously, relations between directed information and the Optimal
Performance Theoretically Attainable (OPTA) are established in various of problems
in information theory.

Although directed information is obtained from mutual information, its functional
and topological properties are not well understood [13], compared to those of mu-
tual information. Specific functional properties of mutual information expressed as a
functional I(Xn;Y n) ≡ IXn;Y n(PXn , PY n|Xn), of the two distributions {PXn , PY n|Xn},
such as, convexity, concavity, and topological properties such as lower semicontinu-
ity (with respect to the topology of weak convergence of probability measures), at
first glance, do not extended naturally into analogous properties for directed infor-
mation I(Xn → Y n) ≡ IXn→Y n(PXi|Xi−1,Y i−1 , PYi|Y i−1,Xi : i = 0, 1, . . . , n), as a func-
tional of the two distributions {PXi|Xi−1,Y i−1 , PYi|Y i−1,Xi : i = 0, 1, . . . , n}. Similarly,
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1.1 The Problem of Directed Information on Abstract Spaces 3

it is not obvious whether the well-known variational equalities of single letter mu-
tual information utilized in the Blahut-Arimoto Algorithm (BAA) [21, 22], can be ex-
tended to directed information. These properties together with compactness of subsets
of the sets of the conditional distributions {PXi|Xi−1,Y i−1(·|·, ·) : i = 0, 1, . . . , n} and
{PYi|Y i−1,Xi(·|·, ·) : i = 0, 1, . . . , n}, are fundamental in addressing extremum problems
of directed information related to channel capacity and nonanticipative RD theory,
along with their generalizations to networks, for abstract (e.g., continuous) alphabets.

1.1.2. Main Contributions

The main problem here is to determine whether the functional and topological prop-
erties of mutual information can be extended to corresponding properties of directed
information defined on abstract Polish spaces (complete separable metric spaces), and
to provide appropriate conditions for these extensions to hold. Next, we summarize
the results regarding this problem:

(1) we introduce an equivalent directed information definition expressed via infor-
mation divergence D(·||·), as a functional of two consistent families of condi-
tional distributions P(·|y) on X N0 for y ∈ YN0 , and Q(·|x) on YN0 for x ∈ X N0 ,
which uniquely define {PXi|Xi−1,Y i−1(·|·, ·) : i = 0, 1, . . .} and {PYi|Y i−1,Xi(·|·, ·) :
i = 0, 1, . . .}, respectively, and vice-versa, and their (n + 1)-fold convo-
lutional measures ←−P 0,n(dxn|yn−1) , ⊗ni=0PXi|Xi−1,Y i−1(·|·, ·), −→Q 0,n(dyn|xn) ,
⊗ni=0PYi|Y i−1,Xi(·|·, ·);

(2) we show convexity of the consistent families of the conditional distributions
P(·|y), Q(·|x) as subsets of the set of regular conditional distributions;

(3) Show convexity and concavity of directed information as a functional with re-
spect to the consistent families of conditional distributions Q(·|x) and P(·|y),
respectively;

(4) we show weak compactness of the consistent families of conditional distributions
P(·|x) and Q(·|y), and of their marginals and joint distribution;

(5) we show lower semicontinuity of directed information as a functional of the con-
sistent families of the conditional distributions P(·|y) and Q(·|x), and continuity
of directed information as a functional of the family P(·|y);

(6) we illustrate that the functional and topological properties obtained in (1)–(5)
extend naturally to three sequences of RVs Xn ∈ X n, Y n ∈ Yn, Zn ∈ Zn, or
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4 Introduction

more, which cover directed information measures for networks, and problems with
side information.

Practically, there are many possible applications in information theory directly re-
lated to the functional and topological properties of directed information on abstract
spaces. Functional properties, such as, concavity and convexity are important in de-
riving tight bounds for converse coding theorems, and in identifying properties of ex-
tremum problems involving feedback capacity [8, 13] (see also Chapter 3), sequential
and nonanticipative lossy data compression for point-to-point (see Chapters 4,5), and
network communication [23, 24]. The semicontinuity and continuity of directed in-
formation, and the compactness of the consistent families of distributions P(·|y) and
Q(·|x) are fundamental when one addresses questions of existence of extremum solu-
tions to problems involving feedback capacity, sequential and nonanticipative lossy data
compression, computations of extremum solutions and their properties, and derivations
of coding theorems on abstract alphabets. The point to be made is that (1)–(5) are
fundamental properties in any extremum problem involving directed information.

1.1.3. List of Publications

The results of Chapter 2 are published in a peer-reviewed book chapter, submitted for
publication in a peer-reviewed journal, and published in a peer-reviewed conference.
The detailed list of publications is the following.

1. C. D. Charalambous and P. A. Stavrou, “Directed information on abstract
spaces: Properties and extremum problems”in IEEE International Symposium
on Information Theory (ISIT), Cambridge, MA, USA, 1–6 July 2012, pp. 518-
522.

2. C. D. Charalambous, P. A. Stavrou, and C. K. Kourtellaris, “Directed in-
formation on abstract spaces: Properties and extremum Problems,”in Coor-
dination Control of Distributed Systems (Edited by Jan H. van Schuppen and
Tiziano Villa), ser. Lecture Notes in Control and Information Sciences, chapter
36, vol. 456, pp. 307-315, Springer, 2015.

3. C. D. Charalambous and P. A. Stavrou, “Directed information on abstract
spaces: Properties and variational equalities,”submitted to IEEE Transactions
on Information Theory, Dec. 2015 (under review).
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1.2 Sequential Variational Equalities of Directed Information 5

1.2. Sequential Variational Equalities of Directed
Information

In Chapter 3, we derive two variational equalities of information theory involving di-
rected information along with their sequential versions.

1.2.1. Literature Review

The variational equalities of directed information may be viewed as generaliza-
tions of the well-known variational equalities of mutual information I(Xn;Y n) ≡
IXn;Y n(PXn , PY n|Xn), expressed as minimizations or maximizations of relative entropy
functionals, as follows [22].

Min: Given a channel distribution PY n|Xn(dyn|xn), a source distribution PXn , and any
arbitrary distribution VY n(dyn) on Yn then

IXn;Y n(PXn , PY n|Xn)

= inf
VY n (dyn)∈M(Yn)

∫
Xn×Yn

log
(
dPY n|Xn(·|xn)

dVY n(·) (yn)
)
PY n|Xn(dyn|xn)⊗ PXn(dxn) (1.4)

and the infimum is achieved at VY n(dyn) ≡ PY n(dyn) given by

PY n(dyn) =
∫
Xn
PY n|Xn(dyn|xn)⊗ PXn(dxn). (1.5)

Max: Given a channel distribution PY n|Xn(dyn|xn), a source distribution PXn(dxn),
and any arbitrary conditional distribution VXn|Y n(dxn|yn) on X n parametrized by yn ∈
Yn then

IXn;Y n(PXn , PY n|Xn)

= sup
VXn|Y n (dxn|yn)∈M(Xn)

∫
Xn×Yn

log
(
dVXn|Y n(·|yn)
dPXn(·) (xn)

)
PY n|Xn(dyn|xn)⊗ PXn(dxn)

(1.6)

and the supremum is achieved at VXn|Y n(dxn|yn) ≡ PXn|Y n(dxn|yn) given by

PXn|Y n(dxn|yn) = PY n|Xn(dyn|xn)⊗ PXn(dxn)∫
Xn PY n|Xn(dyn|xn)⊗ PXn(dxn) . (1.7)
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6 Introduction

Both variational equalities are used in the Blahut-Arimoto algorithm (BAA) [21,22] to
derive iterative computational schemes for channel capacity of memoryless channels, via
max-max operations, and for Rate Distortion Function (RDF) of memoryless sources
via mini-min operations. Variants of the results derived in Chapter 3 can be found
in [25,26].

1.2.2. Main Contributions

The main contributions of the variational equalities of directed information are the
following.

(1) They are needful in generalizing Blahut-Arimoto computation schemes of single
letter mutual information expressions [21] to sequential Blahut-Arimoto schemes,
involving extremum problems of directed information, such as, in problems of
evaluating feedback capacity (see [27]);

(2) They serve as a tool to find structural properties of the probability distributions
related to problems involving directed information (and mutual information) by
providing upper or lower bounds which are achievable over specific sets of dis-
tributions, such as, in entropy maximization with and without constraints. In
particular, for the extremum problem of capacity of feedback channels with mem-
ory with or without transmission cost, these achievable bounds depend on the
structural properties of the channel conditional distributions and the transmis-
sion cost functions.

1.2.3. List of Publications

The results of Chapter 3 are submitted for publication in a peer-reviewed journal
and published in a peer-reviewed conference. The detailed list of publications is the
following.

1. P. A. Stavrou and C. D. Charalambous, “Variational equalities of directed
information and applications,”in IEEE International Symposium on Information
Theory (ISIT), Istanbul, Turkey, 7-12 July 2013, pp. 2577-2581.

2. C. D. Charalambous and P. A. Stavrou, “Directed information on abstract
spaces: Properties and variational equalities,”submitted to IEEE Transactions
on Information Theory, Dec. 2015 (under review).
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1.3 The Extremum Problem of Feedback Capacity for Channels with
Memory 7

1.3. The Extremum Problem of Feedback Capacity
for Channels with Memory

In Chapter 4, we revisit the general characterization of the extremum problem of feed-
back capacity for channels with memory, we establish existence of an optimal solution
on abstract spaces, and under certain conditions, we show that the capacity achieving
input distribution is realizable by a joint stationary input-output process.

1.3.1. Literature Review

We revisit the general extremum problem of the feedback capacity for single-user chan-
nels with memory as follows.

CFB = lim
n−→∞

sup
←−
P An|Bn−1 (dan|bn−1)

1
n+ 1I(An → Bn) (1.8)

where I(An → Bn) is the directed information between the input sequence An

and the output sequence Bn in the sense of (1.1), while the supremum is taken
over all causally conditioned input distributions expressed as ←−P An|Bn−1(·|bn−1) 4=
⊗ni=0PAi|Ai−1,Bi−1(dai|ai−1, bi−1).
Although, the expression (1.8) is extensively used in the literature, little is known when
it comes to the optimization problem of existence of an input distribution that achieves
an asymptotically optimal solution (stationary or nonstationary) for the sequence of
maximizations in (1.8). Hence, the general problem of feedback capacity for channels
with memory from an optimization point of view is still intact.
The extremum problem of feedback capacity for discrete memoryless networks utilizing
the concept of directed information [2] is introduced by Kramer [13,14] who derived ca-
pacity theorems for discrete memoryless two-way channels and discrete multiple access
channels. A few years later, Tatikonda and Mitter [4,8] proved a capacity theorem for
single-user channels with memory by generalizing the concept of (mutual) information
stability initially introduced by Verdú and Han [28] who derived a channel coding the-
orem for channels with arbitrary memory and no feedback. Among others, Tatikonda
and Mitter [8], examined coding results for finite state (Markov) channels with Inter-
symbolic Interference (ISI) and feedback. In general, the literature is numerous when it
comes to the validity of the feedback capacity formula in the sense of (1.8) for channels
with certain structures. Next, we discuss some indicative works on this area.

Cover and Pombra [29] gave a multiletter characterization of feedback capacity al-
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8 Introduction

though they indirectly gave characterization of directed information (see [29, Equation
52]). Specifically, Cover and Pombra gave a capacity theorem for arbitrary nonwhite
Gaussian channel with or without feedback, using the asymptotic equipartition theo-
rem for general nonstationary, nonergodic Gaussian processes. They also showed two
inequalities, relating feedback capacity and nonfeedback capacity, first, that feedback at
most doubles capacity, and second, that capacity can increase the nonfeedback capacity
at most by half a bit. Ihara [30] derived a channel coding theorem for continuous-time
Gaussian channels with feedback. Chen and Berger [5] studied a special case of channel
with finite memory, called unit memory channel, by providing a coding theorem and
by giving conditions based on which the optimal stationary and nonstationary input
processes maximize the long-term directed information. Permuter et al. [10] investi-
gated the general finite state channel with feedback when the feedback is time invariant
deterministic function of the output symbols. They derived coding theorems for any
finite state channel with feedback, and for stationary, indecomposable channels with
no ISI. Kim [31] derived a feedback capacity coding theorem for a class of stationary
channels with feedback, which is derived based on Gallager’s source coding theorem
for stationary ergodic sources [32, Chapter 9]. The same author in [33] examined the
feedback capacity of stationary additive Gaussian noise channels by specializing the
problem to first-order autoregressive moving-average noise spectrum and providing a
closed form expression for the feedback capacity. Finally, Permuter et al. in [34] and
Kourtellaris and Charalambous in [35] examined two special classes of unit memory
channels, the Previous Output is the STate (POST) channel and Binary State Sym-
metric Channel (BSSC), respectively. Specifically, Permuter et al. in [34] showed that
feedback does not increase the capacity of a binary input-output POST channel de-
scribed by a channel matrix which possess a certain symmetry. This work is motivated
by the investigation of the effect of controlled feedback in the setting of “to feed or not
to feed back” studied in [36]. In the same work, the authors also provided a closed form
expression of the unconstrained feedback capacity for the POST channel. Kourtellaris
in [35] (see also [37]) examined BSSC and derived the constrained and unconstrained
expression of the feedback capacity with the corresponding optimal channel input dis-
tributions that achieve the feedback capacity of such channels. In this work it is also
shown that feedback does not increase the capacity of BSSC.

Historically, the extremum problem of channel coding is introduced by Shannon in
seminal paper [38] that initiated the research interest to the field of the so-called in-
formation theory. Specifically, Shannon in [38] showed that the operational definition
of (information) capacity of a memoryless channel PB|A(db|a) with input values A ∈ A
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and output values B ∈ B, is defined as the supremum of all achievable rates [3, Chapter
7], and it is characterized by the following expression.

C
4= sup

PA(da)
I(A;B) (1.9)

where the supremum is taken over all input probability distributions PA(da) and the
joint probability distribution is PA,B(da, db) = PA(da)× PB|A(db|a).
The multiletter expression of the capacity of a channel with memory but without
feedback, i.e., PAi|Ai−1,Bi−1(dai|ai−1, bi−1) = PAi|Ai−1(dai|ai−1) possessing certain ergodic
properties, is expressed as

C
4= lim

n→∞
sup

PAn (dan)

1
n+ 1I(An;Bn). (1.10)

The utility of multiletter expression of mutual information (1.10) in the literature is
vast, especially when it comes to the investigation and derivation of channel coding
theorems under various conditions. Important contributions on deriving channel cod-
ing theorems regarding this problem are, (a) the derivation of a coding theorem under
Independent and Identically Distributed (IID) stationary ergodic processes by Cover
and Thomas in [3], (b) the derivation of a coding theorem by Dobrushin in [19] under
information stability of the channel (see also Pinsker in [39]) and, (c) the derivation
of a general coding theorem for arbitrary nonstationary channels without feedback by
Verdú and Han in [28] based on the concept of information spectrum methods.
The channel coding problem with feedback is also introduced by Shannon in [40].
Specifically, the fundamental result therein, is that for memoryless channels with feed-
back, the expression of channel capacity is still given by (1.9), that is, the expression
of capacity of memoryless channels without feedback. An important work that com-
plements the work of Shannon in [40] is done by Dobrushin in [41] who investigated
a memoryless channel with feedback and derived similar properties with the latter.
Finally, Wolfowitz in [42] examined various cases of finite state channels with state
information both at the transmitter and the receiver.

1.3.2. Main Contributions

The main problem here is to investigate the general optimization problem of the capac-
ity of channels with memory and feedback, with or without transmission constraints
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10 Introduction

on abstract Polish spaces, given by the following two expressions.

CFB
0,n = sup

←−
P An|Bn−1 (·|bn−1)

I(An → Bn) (1.11)

CFB
0,n (κ) = sup

←−
P An|Bn−1 (·|bn−1)∈P0,n(κ)

I(An → Bn) (1.12)

where for a nonnegative and measurable cost function c0,n(an, bn−1) : An × Bn−1 7−→
[0,∞], c0,n(an, bn−1) = ∑n

i=0 gi(ai, bi−1), the transmission constraint set is defined as

P0,n(κ) 4=
{←−
P An|Bn−1(dan|bn−1) : E

{
c0,n(an, bn−1)

}
≤ κ

}
, κ ≥ 0. (1.13)

Toward this end, we summarize the results regarding this problem.

(1) Give general conditions to establish existence of optimal input conditional distri-
butions achieving the supremum of CFB

0,n and CFB
0,n (κ), respectively, by utilizing

the topology of weak convergence of probability measures and Prohorov’s theo-
rem [43,44].

(2) Show that for general stationary channels the limit exists, and the limit and supre-
mum operations can be interchanged, that is,

CFB,−(κ) 4= sup
PA∞|B∞ (·|b∞)∈P0,n(κ)

lim
n−→∞

1
n+ 1I(An → Bn)

= lim
n−→∞

sup
PAn|Bn−1 (·|bn−1)∈P0,n(κ)

1
n+ 1I(An → Bn) 4= CFB(κ) <∞

where PA∞|B∞(·|b∞) = ⊗∞i=0PAi|Ai−1,Bi−1(dai|ai−1, bi−1).

(3) Consider consistent stationary channels, and invoke certain results to show that
the optimal input conditional distribution for CFB

0,n (κ) is realizable by a joint
stationary source-channel pair {(Ai, Bi) : i = 0, 1, . . .}.

The results derived in Chapter 4 complements the results of Chapter 5.
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1.4. Sequential Necessary and Sufficient Conditions
for Capacity Achieving Distributions of
Channels with Memory and Feedback

In Chapter 5, we derive necessary and sufficient conditions for any channel input con-
ditional distribution to achieve the maximum of the extremum problem of feedback
capacity in both finite and infinite time horizons. By means of sequential necessary
and sufficient conditions we illustrate the importance of our results by presenting sev-
eral applications examples.

1.4.1. Literature Review

Computing feedback capacity for any class of channel distributions with memory, with
or without transmission cost constraints, and computing the optimal channel input
conditional distribution, which achieves feedback capacity, and determining whether
feedback increases capacity, are fundamental and challenging problems in information
theory, which remained open for half a century.
Notable exceptions are the Cover and Pombra [29] characterization of feedback capac-
ity of nonstationary and nonergodic, Additive Gaussian Noise (AGN) channels with
memory and feedback. However, despite the progress in obtaining the characteriza-
tion of feedback capacity for AGN channels, the problem of optimizing this expression
over channel input conditional distributions without any assumptions of stationarity
or ergodicity, remains to this date a challenging task. Nevertheless, the characteriza-
tion of feedback capacity derived in [29], initiated several investigations for variants
of the AGN channel with memory, such as, the finite alphabet channel with memory
investigated by Alajaji in [45], the stationary ergodic version of Cover and Pombra [29]
AGN channel, in which the channel noise is of limited memory, investigated by Kim
in [33], and several generalizations investigated via dynamic programming by Yang et
al. in [46]. For certain channels with memory defined on finite alphabets, feedback
capacity expressions are derived in [34, 47, 48], and in [35], when transmission cost
constraints are imposed on the channel input distributions. However, the progress
in determining the feedback capacity, and understanding the properties of the opti-
mal channel input distributions for general channels, has been limited. Specifically,
in [34, 47, 48], the closed form expressions of feedback capacity are obtained using the
symmetry of the channels considered, while the capacity achieving distributions are
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12 Introduction

not determined.
The lack of progress is attributed to the absence of a general methodology to solve
extremum problems of feedback capacity, for general channel distributions. In this
chapter, we utilize recent work found in Chapters 2, 3, and in [49], to develop such a
methodology. Specifically, we derive sequential necessary and sufficient conditions for
channel input distributions to maximize the finite horizon directed information. Then
we apply the necessary and sufficient conditions to specific application examples, and
we compute expressions for feedback capacity and corresponding expressions for the
optimal distributions which achieve it.

Consider any channel model
({
Xt : t = 0, . . . , n

}
,
{
Yt : t = 0, . . . , n

}
, C0,n ,

{
PYt|Y t−1,Xt : t = 0, . . . , n

}
,

P0,n ,
{
PXt|Xt−1,Y t−1 : t = 0, . . . , n

})

where X t , {X0, X1, . . . , Xt} and Y t , {Y0, Y1, . . . , Yt} are the channel input and
output Random Variables (RVs), taking values in X t = ×nt=0Xt, C0,n is the set of
channel distributions, and P0,n is the set of channel conditional distributions.
Our objective is to derive necessary and sufficient conditions for any channel input
conditional distribution from the set P0,n, to maximize the finite-time horizon directed
information from Xn to Y n, defined by

CFB
Xn→Y n , sup

P0,n

I(Xn → Y n) (1.14)

where I(Xn → Y n) is the directed information from Xn → Y n, defined by [1, 2]

I(Xn → Y n) ,
n∑
t=0

I(X t;Yt|Y t−1) =
n∑
t=0

E
{

log
(
dPYt|Y t−1,Xt(·|Y t−1, X t)

dPYt|Y t−1(·|Y t−1) (Yt)
)}
(1.15)

These necessary and sufficient conditions for extremum problem (1.14) translate into
the corresponding necessary and sufficient conditions for any channel input distribution
to maximize its per unit time limiting version, defined by

CFB
X∞→Y∞ , lim inf

n−→∞

1
n+ 1C

FB
Xn→Y n . (1.16)

while additional insight is gained on the asymptotic properties of optimal channel
input conditional distributions. Under certain conditions, CFB

X∞→Y∞ is the supremum
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1.4 Sequential Necessary and Sufficient Conditions for Capacity Achieving
Distributions of Channels with Memory and Feedback 13

of all achievable rates of the sequence of feedback codes (see [8] for definition). For
the reader’s convenience the definition of feedback codes and the sufficient conditions
for CFB

X∞→Y∞ to correspond to feedback capacity are also stated in Appendix C.1.
Coding theorems for channels with memory with and without feedback are developed
extensively over the years, in an anthology of papers, such as, [3,8,10,13,14,19,22,24,
28, 30–32, 39, 50]. The point to be made here is that the information definition of the
extremum problem of feedback capacity defined in (1.16) has an operational meaning.
We also derive necessary and sufficient conditions for channel input conditional distri-
butions, which satisfies transmission cost constraint of the form

P0,n(κ) ,
{
PXt|Xt−1,Y t−1 , t = 0, . . . , n : 1

n+ 1E
{
c0,n(Xn, Y n−1)

}
≤ κ

}
, κ ∈ [0,∞)

(1.17)

and maximize the finite-time horizon directed information defined by

CFB
Xn→Y n(κ) , sup

P0,n(κ)
I(Xn → Y n). (1.18)

We illustrate via application examples, that feedback capacity and capacity achieving
distributions can be obtained from the asymptotic properties of the solution of the
finite-time horizon extremum problem of directed information. To the best of our
knowledge, this is the first result which gives necessary and sufficient conditions for any
channel input conditional distribution to maximize the finite-time horizon optimization
problems CFB

Xn→Y n , CFB
Xn→Y n(κ).

1.4.2. Main Contributions

In this chapter, we apply the sequential necessary and sufficient conditions to derive
recursive closed form expressions of optimal channel input conditional distributions,
which achieve the characterizations of FTFI capacity of the following channels.

(1) The time-varying Binary Unit Memory Channel Output (BUMCO) channel.

(2) The time-varying Binary Erasure Unit Memory Channel Output (BEUMCO)
channel.

(3) The time-varying Binary Symmetric Two Memory Channel Output (BSTMCO)
channel.
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14 Introduction

Further, we consider the time-invariant or homogeneous versions of the BUMCO and
BEUMCO channels, and we investigate the asymptotic properties of optimal channel
input conditional distributions, by analyzing the per unit time limit of the characteriza-
tions of FTFI capacity, specifically, CFB

X∞→Y∞ . Via this analysis, the ergodic properties
of optimal channel input conditional distributions, which achieve feedback capacity are
revealed, without imposing any á priori assumptions, such as, stationarity, ergodicity,
or information stability. Rather, it is shown that the optimal channel input conditional
distributions, induce ergodicity of the joint process {(Xt, Yt) : t = 0, 1, . . .}.

1.4.3. List of Publications

The results of Chapter 5 are submitted for publication in a peer-reviewed journal
and published in a peer-reviewed conference. The detailed list of publications is the
following.

1. P. A. Stavrou, C. D. Charalambous and C. K. Kourtellaris, “Sequential neces-
sary and sufficient conditions for capacity achieving distributions of channels with
memory and feedback”submitted to IEEE Transactions on Information Theory,
April 2016 (under review).

2. P. A. Stavrou, C. D. Charalambous and C. K. Kourtellaris, “Sequential neces-
sary and sufficient conditions for optimal channel input distributions of channels
with memory and feedback”in IEEE International Symposium on Information
Theory, Barcelona, Spain, 10 - 15 July 2016 (accepted).

1.5. The Extremum Problem of Information
Nonanticipative Rate Distortion Function and
Applications

In Chapter 6, we develop nonanticipative Rate Distortion (RD) theory on abstract
alphabet spaces and we show its importance in nonanticipative or zero-delay JSCC
design and in evaluating the RDF of sources with memory.
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1.5 The Extremum Problem of Information Nonanticipative Rate
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1.5.1. Literature Review

Classical RDF with respect to the fidelity set of reproduction conditional distributions
is defined by

R(D) 4= lim
n−→∞

1
n+ 1R0,n(D), R0,n(D) 4= inf

PY n|Xn (·|xn)∈Q0,n(D)
I(Xn;Y n). (1.19)

where for a measurable distortion function

d0,n(xn, yn) : X n × Yn 7−→ [0,∞] (1.20)

the average distortion set is defined as

Q0,n(D) 4=
{
PY n|Xn(dyn|xn) : 1

n+ 1

∫
Xn×Yn

d0,n(xn, yn)(PY n|Xn ⊗ PXn)(dxn, dyn) ≤ D

}
.

(1.21)

Under general conditions [50–52], it is already known that if the infimum over Q0,n(D)
exists, then the limit R(D) = limn−→∞

1
n+1R0,n(D) exists, and R(D) is the Optimal

Performance Theoretically Attainable (OPTA) by noncausal codes [51]. Moreover, it
is also known that the optimal conditional distribution achieving the infimum in (1.19)
is given by the implicit expression

P ∗Y n|Xn(dyn|xn) = ⊗ni=0P
∗
Yi|Y i−1,Xn(dyi|yi−1, xn) (1.22)

= esd0,n(xn,yn)P ∗Y n(dyn)∫
Yn e

sd0,n(xn,yn)P ∗Y n(dyn) , s ≤ 0 (1.23)

where s ∈ (−∞, 0] is the Lagrange multiplier associated with the fidelity constraint
Q0,n(D) (see [51]).

The information NRDF is defined as follows. Consider a source distribution PXn(dxn),
a causal sequence of reproduction distributions {PYi|Y i−1,Xi(dyi|yi−1, xi) : i =
0, 1, . . . , n}, a measurable distortion function d0,n(xn, yn), and an average fidelity set

QC1
0,n(D) 4=

{
−→
P Y n|Xn(dyn|xn) 4= ⊗ni=0PYi|Y i−1,Xi(dyi|yi−1, xi) :

1
n+ 1

∫
Xn×Yn

d0,n(xn, yn)(−→P Y n|Xn ⊗ PXn)(dxn, dyn) ≤ D

}
. (1.24)
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16 Introduction

The information NRDF is defined by

Rna
0,n(D) 4= inf−→

P Y n|Xn (·|xn)∈QC1
0,n(D)

∫
Xn×Yn

log
(−→
P Y n|Xn(dyn|xn)

PY n(dyn)

)
(−→P Y n|Xn ⊗ PXn)(dxn, dyn)

= inf−→
P Y n|Xn (·|xn)∈QC1

0,n(D)
IXn→Y n(PXn ,

−→
P Y n|Xn). (1.25)

Here, IXn→Y n(·, ·) is used to denote the functional dependence of Rna
0,n(D) on the two

distributions {PXn ,
−→
P Y n|Xn}. The information NRDF rate is defined by

Rna(D) 4= lim
n−→∞

1
n+ 1R

na
0,n(D) (1.26)

provided the limit exists.

The only difference between the classical RDF and information NDF is that the op-
timal reproduction distribution of the latter is a sequence of conditional distributions
{PYi|Y i−1,Xi(dyi|yi−1, xi) : i = 0, 1, . . . , n}, hence at each time i, it is causal with re-
spect to the past and present source symbols and past reproduction symbols {X i, Y i−1},
i = 0, 1, . . . , n, unlike the former where the optimal reproduction distribution is a se-
quence of conditional distributions {PYi|Y i−1,Xn(dyi|yi−1, xn) : i = 0, 1, . . . , n}, hence
at each time i, it is noncausal (or anticipative) with respect to the past, present, and
future source symbols and past reproduction symbols {X i−1, Xi, Xi+1, . . . , X

n, Y i−1},
i = 0, 1, . . . , n.
Hence, the extremum problem of information NRDF seeks to reduce the computa-
tional complexity that the classical information RDF has innated, in obtaining the
exact expression of R0,n(D) and P ∗Y n|Xn(dyn|xn), for finite n, and that of R(D) 4=
limn−→∞

1
n+1R0,n(D), even for stationary sources with memory. In fact, the exact ex-

pression of R(D) is only known for a small class of sources, which are either memoryless
or Gaussian. Moreover, the anticipation of the optimal reproduction distribution of the
classical RDF (1.22) implies that, in general, it cannot be used in Joint Source Chan-
nel Coding (JSCC) using nonanticipative processing or symbol-by-symbol transmission,
processing each symbol causally, also called probabilistic matching of the source to the
channel [53], unless the source is memoryless, such as, the binary memoryless source
transmitted over a binary symmetric channel [54–56]. Indeed, a necessary condition
for JSCC using nonanticipative processing and probabilistic matching of the source to
the channel is the realization of the optimal reproduction distribution by an encoder-
channel-decoder which process symbols causally. For such realization to be feasible it
is necessary that PYi|Y i−1,Xi(dyi|yi−1, xi) = PYi|Y i−1,Xn(dyi|yi−1, xn), or equivalently, the
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1.5 The Extremum Problem of Information Nonanticipative Rate
Distortion Function and Applications 17

following causality constraint expressed in terms of Markov chains (MC) should hold.

X∞i+1 ↔ (X i, Y i−1)↔ Yi, i = 0, 1, . . . . (1.27)

1.5.2. Main Contributions

The main problem here is to investigate the optimization problem of information NRDF
(1.25) on abstract Polish spaces. Next, we summarize the results derived from our
inspection on this problem.

(1) We show existence of the optimal reproduction conditional distribution achiev-
ing the infimum in Rna

0,n(D) by invoking the topology of weak convergence of
probability measures and Prohorov’s theorems [43,44].

(2) We show that the information NRDF, Rna
0,n(D), and its rate Rna(D), are equivalent

to Gorbunov and Pinsker nonanticipatory ε-entropy and message generation rate
[57], denoted by Rε

0,n(D) and Rε(D), respectively, and defined by

Rε(D) 4= lim
n−→∞

1
n+ 1R

ε
0,n(D) ≡ Rna(D) (1.28)

Rε
0,n(D) 4= inf

PY n|Xn (·|xn)∈Q0,n(D)
Xn
i+1↔X

i↔Y i, i=0,1,...,n−1

I(Xn;Y n), ∀n ≥ 0. (1.29)

(3) We show that for general stationary sources the limit exists, and the limit and
infimum operations can be interchanged, that is,

Rna(D) = lim
n−→∞

inf−→
P Y n|Xn∈QC1

0,n(D)

1
n+ 1IX

n→Y n(PXn ,
−→
P Y n|Xn)

= inf−→
P Y∞|X∞∈QC1

0,∞(D)
lim
n−→∞

1
n+ 1IX

n→Y n(PXn ,
−→
P Y n|Xn) ≡ −⇀Rna(D) <∞.

(1.30)

(4) We consider consistent stationary sources (as defined by Gorbunov and Pinsker
in [57]), and invoke certain results to establish that the optimal reproduction
distribution for Rna(D) is realizable by jointly stationary source-reproduction
pair {(Xi, Yi) : i = 0, 1, . . .}.

(5) We derive several properties of the NRDF, which are the analogues to the prop-
erties of classical RDF [51], although their derivation and presentation is more
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18 Introduction

involved. One of the properties is analogous to the Shannon lower bound of the
classical RDF [51].

(6) Compute the information theoretic NRDF in closed form for the multidimensional
stationary Gaussian-Markov source with square-error distortion. For the station-
ary Gaussian source a noisy coding theorem based on JSCC is provided.

(7) Show that the coding theorem derived in [4, Chapter 5] for two dimensional sources
with per-sample or average distortion function for the sequential RDF (SRDF)
is applicable, giving an alternative operational meaning to Rna(D).

(8) Utilize Rna(D) to derive bounds for the OPTA by causal codes [58], and the OPTA
of noncausal codes, and evaluate the RL due to causality even for sources with
memory.

1.5.3. List of Publications

The results of Chapter 6 are published in peer-reviewed book chapters, submitted for
publication in peer-reviewed journals, and published in peer-reviewed conferences. The
detailed list of publications is the following.

1. P. A. Stavrou, C. K. Kourtellaris, and C. D. Charalambous, “Information
nonanticipative rate distortion function and its applications,” in Coordination
Control of Distributed Systems (Edited by Jan H. van Schuppen and Tiziano
Villa), ser. Lecture Notes in Control and Information Sciences, chapter 37,
vol. 456, pp. 317-324, Springer, 2015.

2. P. A. Stavrou, C. K. Kourtellaris, and C. D. Charalambous, “Information
nonanticipative rate distortion function and its applications,” submitted to IEEE
Transactions on Information Theory, 2016.

3. P. A. Stavrou, C. K. Kourtellaris, and C. D. Charalambous, “Applications
of information nonanticipative rate distortion function,” in IEEE International
Symposium on Information Theory (ISIT), Honolulu, HI, USA, 29-4 July 2014,
pp. 3062-3066.

4. C. D. Charalambous and P. A. Stavrou, “Optimization of directed information
and relations to filtering theory,”in 13th European Control Conference (ECC),
Strasbourg, France, 24-27 June 2014, pp. 1385–1390.
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5. C. D. Charalambous and P. A. Stavrou, “On the relation of nonanticipative
rate distortion function and filtering theory,”in 12th Biannual European Control
Conference (ECC), Zurich, Switzerland, 17-19 June 2013, pp. 1627–1632.

6. P. A. Stavrou and C. D. Charalambous,“Causal rate distortion function and
relations to filtering theory,”in 20th International Symposium on Mathematical
Theory of Networks and Systems (MTNS), Melbourne, Australia, 9–13 July 2012,
pp. 1-4.

Pho
tio

s S
tav

rou



Pho
tio

s S
tav

rou



2
Directed Information on Abstract

Spaces: Properties and Applications

2.1. Introduction

Directed information quantifies the directivity of information defined by a causal se-
quence of feedback and feedforward channel conditional distributions [1, 2]. Specif-
ically, given two sequences of Random Variables (RV’s) Xn 4= {X0, X1, . . . , Xn} ∈
X n 4= ×ni=0Xi, Y n 4= {Y0, Y1, . . . , Yn} ∈ Yn

4= ×ni=0Yi, where Xi and Yi are the input
and output alphabets of a channel, respectively, and B(Xi), B(Yi), the corresponding
measurable spaces, directed information from Xn to Y n is often defined via conditional
mutual information [2, 13] as follows.

I(Xn → Y n) 4=
n∑
i=0

I(X i;Yi|Y i−1) (2.1)

=
n∑
i=0

∫
X i×Yi

log
(
dPYi|Y i−1,Xi(·|yi−1, xi)
dPYi|Y i−1(·|yi−1) (yi)

)
PXi,Y i(dxi, dyi) (2.2)

≡ IXn→Y n(PXi|Xi−1,Y i−1 , PYi|Y i−1,Xi : i = 0, 1, . . . , n) (2.3)

where notion (2.3) indicates that directed information I(Xn → Y n) is a functional
of two collections of causally conditioned distributions, {PYi|Y i−1,Xi : i = 0, . . . , n},

21
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22 Directed Information on Abstract Spaces: Properties and Applications

and {PXi|Xi−1,Y i−1 : i = 0, 1, . . . , n}, the feedforward distribution, and the feedback
distribution, which uniquely define the joint distribution {PXi,Y i : i = 0, 1, . . . , n} and
the conditional distribution {PYi|Y i−1 : i = 0, 1, . . . , n} of the RV’s {(X i, Y i) : i =
0, 1, . . . , n}.

By Bayes’ rule, for any Aj ∈ B(Xj), Bj ∈ B(Yj), j = 0, 1, . . . , i, the joint distribution
decomposes into

PXi,Y i(A0, B0, . . . , Ai, Bi) =
∫
A0
PX0(dx0)

∫
B0
PY0|X0(dy0|x0) . . .

. . .
∫
Ai
PXi|Xi−1,Y i−1(dxi|xi−1, yi−1)

∫
Bi
PYi|Y i−1,Xi(dyi|yi−1, xi), i = 0, 1, . . . , n.

(2.4)

where PX0(dx0) ≡ PX0|X−1,Y −1(dx0|x−1, y−1) and PY0|X0(dy0|x0) ≡
PY0|Y −1,X0(dy0|y−1, x0). Formally, we represent (2.4) by PXi,Y i(dxi, dyi) =
⊗ij=0

(
PXj |Xj−1,Y j−1 ⊗ PYj |Y j−1,Xj

)
, and we call it an (n+ 1)-fold compound probability

distribution.

If the distributions {PXi|Xi−1,Y i−1 , PYi|Y i−1,Xi : i = 0, . . . , n} are defined with respect
to the probability density functions of the RV’s {(Xi, Yi) : i = 0, 1, . . . , n}, denoted
by, {fXi|Xi−1,Y i−1 , fYi|Y i−1,Xi : i = 0, . . . , n} (i.e., continuous-valued RV), then (2.1)
reduces to

I(Xn → Y n) =
n∑
i=0

∫
X i×Yi

log
(
fYi|Y i−1,Xi(yi|yi−1, xi)
fYi|Y i−1(yi|yi−1)

)
fXi,Y i(xi, yi)dxidyi.

If the distributions {PXi|Xi−1,Y i−1 , PYi|Y i−1,Xi : i = 0, . . . , n} are defined with re-
spect to the probability mass functions of countable or finite alphabet valued RV’s
{(Xi, Yi) : i = 0, . . . , n}, denoted by, {pXi|Xi−1,Y i−1 , pYi|Y i−1,Xi : i = 0, . . . , n}, then
(2.1) reduces to

I(Xn → Y n) =
n∑
i=0

∑
(xi,yi)∈X i×Yi

log
(
pYi|Y i−1,Xi(yi|yi−1, xi)
pYi|Y i−1(yi|yi−1)

)
pXi,Y i(xi, yi).

In information theory, directed information (2.1) or its variants are used to charac-
terize capacity of channels with memory and feedback [4–11], lossy data compression
of sequential codes [4,59], lossy data compression with feedforward information at the
decoder [60], and capacity of networks, such as, the two-way channel, the multiple
access channel [13, 14], etc. Some of the above references derive coding theorems for
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2.1 Introduction 23

an anthology of problems of information theory, under any one of the assumptions: (a)
stationary ergodic processes {(Xi, Yi) : i = 0, 1, . . .}, (b) Dobrushin’s stability of the
information density ∑n

i=0 log
(
dPYi|Y i−1,Xi

dPYi|Y i−1

)
, (c) Verdú and Han’s information spectrum

methods, i.e., lim inf in probability of the normalized information density (see [28]).
Moreover, directed information is also utilized in a variety of problems subject to causal-
ity constraints, such as, gambling, portfolio theory, data compression and hypothesis
testing [15], in biology as an alternative to Granger’s measure of causality [16–18], and
in relating Bayesian filtering theory to sequential and nonanticipative RDF [61,62].

Directed information is initially introduced by Marko [1] by decomposing Shannon’s
self-mutual information into two directional parts, and then taking their expectations.
Although, directed information is obtained from conditional mutual information, for
general abstract alphabets (i.e., continuous) or distributions which are not necessar-
ily continuous (i.e., induced by mixture of continuous and finite alphabet RVs) its
functional and topological properties are not well understood [13].

Further, for such alphabet spaces or distributions, specific functional properties of
mutual information expressed as a functional I(Xn;Y n) ≡ IXn;Y n(PXn , PY n|Xn), of
the two distributions {PXn , PY n|Xn}, such as, convexity, concavity, and topologi-
cal properties such as lower semicontinuity (with respect to the topology of weak
convergence of probability measures), at first glance, do not translate into analo-
gous properties for directed information. The reason is that directed information
I(Xn → Y n) ≡ IXn→Y n(PXi|Xi−1,Y i−1 , PYi|Y i−1,Xi : i = 0, 1, . . . , n) is a functional of
two sequences of distributions {PXi|Xi−1,Y i−1 , PYi|Y i−1,Xi : i = 0, 1, . . . , n}, and the joint
and marginal distributions are induced from these sequences of distributions.

These properties together with compactness of subsets of the sets of the conditional
distributions {PXi|Xi−1,Y i−1 : i = 0, 1, . . . , n} and {PYi|Y i−1,Xi : i = 0, 1, . . . , n}, are
fundamental to analyze extremum problems of directed information related to channel
capacity, sequential and nonanticipative RDF, their generalizations to networks, etc,
for countable and abstract alphabets.
Recently, in [63] it is demonstrated via several examples that Shannon information
measures, such as, entropy, relative entropy, mutual information, and conditional mu-
tual information, when defined on countable alphabets, are discontinuous with respect
to strong topologies (i.e., induced by total variational distance metrics on the space
of probability distributions). Since directed information in (2.1) involves a sequence
of conditional mutual informations, the observations in [63] also apply to directed in-
formation. The lack of continuity is attributed to the fact that mutual information
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24 Directed Information on Abstract Spaces: Properties and Applications

and directed information are defined from relative entropy, and relative entropy is
lower semicontinuous with respect to distributions [30]. For such abstract alphabets
problems, it was recognized many years ago (see [64, 65]) that the analysis of capac-
ity formulae based on single letter mutual information formulae requires tools from
the topology of weak convergence of probability measures (or equivalently the weak∗

topology), in order to identify global and local analytical properties of channel input
distributions which maximize mutual information.

The main objective of this chapter is to derive functional and topological properties
for directed information, when the distributions are defined on abstract alphabets, and
to provide appropriate conditions for these to hold. The methodology and the main
results are summarized below.

R1) Introduce an equivalent directed information definition expressed via informa-
tion divergence D(·||·), as a functional of two consistent families of conditional
distributions P(·|y) on X N0 4= ×∞i=0Xi parametrized by y = (y0, y1, . . .) ∈ YN0 4=
×∞i=0Yi, and Q(·|x) on YN0 parametrized by x ∈ X N0 , which uniquely define
{PXi|Xi−1,Y i−1 : i ∈ N0} and {PYi|Y i−1,Xi : i ∈ N0}, respectively, and vice-
versa, and their (n+1)-fold compound probability distributions←−P 0,n(dxn|yn−1) ,
⊗ni=0PXi|Xi−1,Y i−1 (dxi|xi−1, yi−1), −→Q 0,n(dyn|xn) , ⊗ni=0PYi|Y i−1,Xi(dyi|yi−1, xi).

R2) Show convexity of the consistent families of the conditional distributions P(·|y)
for y ∈ YN0 , Q(·|x) for x ∈ X N0 .

R3) Show convexity and concavity of directed information as a functional with respect
to the consistent families of conditional distributions Q(·|x) for x ∈ X N0 , and
P(·|y) for y ∈ YN0 , respectively.

R4) Show under certain conditions, weak compactness of the consistent families of
conditional distributions P(·|x) for x ∈ X N0 , and Q(·|y) for y ∈ YN0 , and of
their marginals and joint distribution.

R5) Show lower semicontinuity of directed information as a functional of the consis-
tent families of the conditional distributions P(·|y) for y ∈ YN0 , and Q(·|x) for
x ∈ X N0 , and under certain conditions, continuity of directed information as a
functional of the family P(·|y) for y ∈ YN0 .

R6) Illustrate that R1)–R5) extend naturally to three sequences of RV’s Xn ∈ X n,
Y n ∈ Yn, Zn ∈ Zn, or more, which cover directed information measures for
networks, and possible problems with side information.
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2.1 Introduction 25

R7) Discuss applications of R1)-R5).

The above functional and topological properties are shown by invoking the topol-
ogy of weak convergence of probability measures on Polish spaces and Prohorov’s
theorems [43, 44]. Some of the results described above are obtained by utilizing
analogies between communication channels with memory and feedback, and stochastic
optimal control problems in which the control element and the controlled element
are the sequences of conditional distributions, {PXi|Xi−1,Y i−1 : i = 0, 1, . . .} and
{PYi|Y i−1,Xi : i = 0, 1, . . .}, respectively, [66,67].

Items R1)-R5) extend various functional and topological properties of mutual infor-
mation I(Xn;Y n) ≡ IXn;Y n(PXn , PY n|Xn) as a functional of {PXn , PY n|Xn} to directed
information.
From the practical point of view, there are many potential applications of R1)-R5).
Below, we briefly discuss some of them.

Applications of Properties of Directed Information. The concavity and convex-
ity properties are important in deriving tight bounds in applications of converse coding
theorems, in identifying properties of extremum problems involving feedback capac-
ity [8,13] and sequential and nonanticipative lossy data compression via the nonantici-
pative RDF [68], in relating Bayesian filtering theory and nonanticipative RDF [61], in
network communication applications [23, 24], etc. The semicontinuity and continuity
of directed information, and the compactness of the consistent families of distributions
P(·|y) for y ∈ YN0 , and Q(·|x) for x ∈ X N0 , are crucial, when addressing questions
of existence of extremum solutions to problems involving feedback capacity, sequential
and nonanticipative lossy data compression, computations of extremum solutions and
their properties, and in extending existing coding theorems to abstract alphabets [69].
For example, the converse part of coding theorem for feedback capacity presupposes
existence of optimal channel input distribution maximizing directed information, and
existence of its per unit time limit.
Throughout the chapter, we illustrate applications of the results to the following ex-
tremum problems.

Capacity of channels with memory and feedback. Consider the extremum prob-
lem of channel capacity with memory and feedback. Under the assumption of stationary
ergodic processes {(Xi, Yi) : i = 0, 1, . . .} or Dobrushin’s directed information stability
and transmission cost stability, the operational definition of capacity is given by the
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26 Directed Information on Abstract Spaces: Properties and Applications

following extremum problem [8].

CFB(κ) 4= lim inf
n→∞

sup
{PXi|Xi−1,Y i−1 : i=0,1,...,n}∈P0,n(κ)

1
n+ 1I(Xn → Y n), (2.5)

where P0,n(κ) is the transmission cost constraint set defined by

P0,n(κ) ,
{
PXi|Xi−1,Y i−1 , i = 0, 1, . . . , n : 1

n+ 1E
{
c0,n(xn, yn−1)

}
≤ κ

}
, κ ≥ 0 (2.6)

and c0,n : X n × Yn−1 7−→ [0,∞), c0,n(xn, yn−1) 4= ∑n
i=0 gi(xi, yi−1) is a measurable

function denoting the cost of transmitting symbols over the channel.

The task of showing existence of a sequence of probability distributions {PXi|Xi−1,Y i−1 :
i = 0, 1, . . . , n} ∈ P0,n(κ) which achieves the supremum in (2.5) for continuous or count-
able alphabet spaces is not easy. The main difficulty arises from the fact that I(Xn →
Y n) is a functional of the two sequences of distributions {PXi|Xi−1,Y i−1 , PYi|Y i−1,Xi : i =
0, 1, . . . , n}, unlike mutual information I(Xn;Y n) ≡ IXn;Y n(PXn , PY n|Xn), which inher-
its most of its properties from those of relative entropy between the two distributions
{PXn , PY n|Xn}. However, by utilizing some of the results described under R1)–R6),
it is possible to show existence of such conditional distribution and identify several
properties of the optimal conditional channel input distribution.

Generalized Information Nonanticipative or Sequential RDF. Consider the
extremum problem of general information nonanticipative RDF, or sequential RDF [4],
which is a variant of classical RDF [51], defined by

Rna(D) 4= lim sup
n→∞

inf{
PYi|Y i−1,Xi , i=0,1,...,n

}
∈Q0,n(D)

1
n+ 1I(Xn → Y n), (2.7)

where Q0,n(D) is the fidelity constraint set defined by

Q0,n(D) 4=
{
QYi|Y i−1,Xi , i = 0, 1, . . . , n : 1

n+ 1E
{
d0,n(xn, yn)

}
≤ D

}
, D ≥ 0 (2.8)

and d0,n : X n × Yn 7−→ [0,∞], d0,n(xn, yn) , ∑n
i=0 ρi(xi, yi) is a measurable function

denoting the distortion function of reconstructing xi by yi, i = 0, 1, . . . , n. Note that
if PXi|Xi−1,Y i−1 = PXi|Xi−1 , a.a. (xi−1, yi−1), i = 0, 1, . . . , n, then it can be shown that
(2.7), (2.8) are degraded to Gorbunov and Pinsker’s nonanticipatory ε-entropy [57].

For both extremum problems (2.5), (2.7), we illustrate applications of R1)–R5) in
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2.2 Equivalent Nonanticipative Channels on Abstract Spaces 27

showing existence of solutions and identifying properties of optimal solutions.

The rest of the chapter is structured as follows. Section 2.2 introduces two equivalent
definitions of nonanticipative channels on abstract spaces (R1). Section 2.3 derives the
functional and topological properties of directed information

(
R2)–R5).

2.2. Equivalent Nonanticipative Channels on
Abstract Spaces

In this section, our aim is to establish two equivalent definitions of the sequence of con-
ditional distributions or basic processes, which define any probabilistic channel with
nonanticipative (causal) feedback, that relate causally the input-output behavior of
the channel. This formulation is utilized extensively to establish the results stated un-
der R1)–R7). The first definition of conditional distributions is the usual one found in
many papers, e.g., [4,7–10,13] for finite alphabets, extended to abstract alphabets. The
aforementioned definition is described via a family of multi-fold compound conditional
distributions (see Fig. 2.1, (a)). The second definition is described via a family of con-
ditional distributions defined on product alphabets, which satisfy a certain consistency
condition (see Fig. 2.1, (b)).

The second definition is often utilized in the stochastic control literature, in which
there is a control process and a controlled process [66,67]. Indeed, the analogy is that
{Xi : i = 0, 1, . . .} is the control process, {Yi : i = 0, 1, . . .} is the controlled process,
{PXi|Xi−1,Y i−1 : i = 0, 1, . . .} is the control element, and {PYi|Y i−1,Xi : i = 0, 1, . . .} is
the controlled element. The second definition is convenient from the point of view of
expressing the directed information density

i(Xn → Y n) , log
(
⊗ni=0

dPYi|Y i−1,Xi

dPYi|Y i−1

)
=

n∑
i=0

log
(
dPYi|Y i−1,Xi

dPYi|Y i−1

)

associated with directed information I(Xn → Y n), in terms of two consistent fam-
ilies of conditional distributions, namely, Q(·|x) on YN0 given x = (x0, x1, . . .) ∈
X N0 , and P(·|y) on X N0 given y = (y0, y1, . . .) ∈ YN0 , which uniquely define
{PYi|Y i−1,Xi : i = 0, 1, . . .} and {PXi|Xi−1,Y i−1 : i = 0, 1, . . .}, respectively, such that
i(Xn → Y n) = log

(
dQ(·|xn)
dνP⊗Q(·)(y

n)
)
− a.s., where νP⊗Q(·) is the marginal distribution1

on ×ni=0Yi obtained from P(·|y) and Q(·|x). Once the conditions on the abstract
1In the rest of the chapter we write ν instead of νP⊗Q omitting its explicit dependence on P(·|y)

and Q(·|x).
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2.2 Equivalent Nonanticipative Channels on Abstract Spaces 29

spaces {(Yi,Xi) : i = 0, 1, . . .} are identified, and the consistency conditions are
introduced, then it can be shown that i(Xn → Y n) has another version given by
i(Xn → Y n) = log

(
d(P(·|·)⊗Q(·|·))
d(P(·|·)⊗νP⊗Q(·))(x

n, yn)
)
− a.s., where ⊗ denotes the compound

probability distribution defined by P(·|·) and Q(·|·), and similarly for the rest of the
measures. Consequently, directed information can be expressed in terms of Kullback-
Leibler distance D

(
P⊗Q||P⊗ νP⊗Q

)
.

Notations and Preliminaries.
Denote the set of nonnegative integers by N0

4= {0, 1, 2, . . .}, and the restriction of N0

to a positive integer by N1
4= {1, 2, . . .}, and to a finite set by Nn

0
4= {0, 1, 2, . . . , n}.

Introduce two sequence of spaces {(Xn,B(Xn)) : n ∈ N0} and {(Yn,B(Yn)) : n ∈ N0},
called basic measurable spaces, where Xn,Yn, n ∈ N0 are topological spaces, and B(Xn)
and B(Yn) are Borel σ−algebras of subsets of Xn and Yn, respectively. The set of prob-
ability measures on any measurable space (Z,B(Z)) is denoted by M(Z).
For each n ∈ N0 define the product spaces2

(X n,B(X n)) 4= (×ni=0Xi,⊗ni=0B(Xi)), (Yn,B(Yn)) 4= (×ni=0Yi,⊗ni=0B(Yi)).

The basic measurable spaces are connected to a random experiment consisting of a
countable chain of trials which may or may not have a time ordering as follows.
For each n ∈ N0, let Xn and Yn be the spaces of all possible outcomes. Given the
data up to and including the nth time, specific (xi, yi) ∈ Xi,Yi, i = 0, 1, . . . , n,
the probability distributions at time (n + 1) are pn+1(An+1|x0, . . . , xn, y0, . . . , yn)
and qn+1(Bn+1|y0, . . . , yn, x0, . . . , xn+1), An+1 ∈ B(Xn+1), Bn+1 ∈ B(Yn+1). Hence,
each possible outcome of the experiment is a sequence ω = (x0, y0, x1, y1, . . .) with
xn ∈ Xn, yn ∈ Yn for each n ∈ N0.
Consequently, define the sample space Ω and the algebra F of all experiments by

(Ω,F) 4=
(
×n∈N0 (Xn × Yn),⊗n∈N0

(
B(Xn)⊗ B(Yn)

))
.

Associated with the basic measurable spaces there are two basic sequences of Random
Variables (RV’s) {Xn : n ∈ N0} and {Yn : n ∈ N0}, such that for each n ∈ N0, they
take values Xn ∈ Xn and Yn ∈ Yn. These are introduced as follows.

2The product σ-algebra ⊗ni=0B(Xi) coincides with B(⊗ni=0Xi) if {Xi, i = 0, . . . , n} are Suslin spaces
[70].

Pho
tio

s S
tav

rou
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Let X0, Y0, X1, Y1, . . . be the coordinate RV’s. For each n ∈ N0

Xn(ω) = xn, Yn(ω) = yn if ω = (x0, y0, x1, y1, . . .).

Clearly, Xn : (Ω,F) 7−→ (Xn,B(Xn)), Yn : (Ω,F) 7−→ (Yn,B(Yn)), and for each out-
come ω ∈ Ω of the experiment, Xn(ω), Yn(ω) are the results of the nth time. Similarly,
Xn 4= {X0, . . . , Xn} and Y n 4= {Y0, . . . , Yn} denote the result of the trials up to and
including the nth time; they are RV taking values in (X n,B(X n)) and (Yn,B(Yn)),
respectively. The objective is to construct a measure P on (Ω,F) consistent with the
data (e.g., measurable spaces and conditional distributions).
For every n ∈ N0, define the σ-algebras generated by {X0, X1, . . . , Xn} and
{Y0, Y1, . . . , Yn} by

F(Xn) 4= σ{X0, X1, . . . , Xn}, F(Y n) 4= σ{Y0, Y1, . . . , Yn}.

Then every event H ∈ F(Xn) has the form

H =
{

(X0, X1, . . . , Xn) ∈ A
}

= A×Xn+1 ×Xn+2 . . . , A ∈ B(X n)

and H is called a cylinder set with base A ∈ B(X n). Similarly, for an event J ∈ F(Y n)

J =
{

(Y0, Y1, . . . , Yn) ∈ B
}

= B × Yn+1 × Yn+2 . . . , B ∈ B(Yn)

and J is a cylinder set with base B ∈ B(Yn).
Points in the Cartesian countable product spaces X N0 4= ×n∈N0Xn, YN0 4= ×n∈N0Yn are
denoted by x 4= {x0, x1, . . .} ∈ X N0 , y 4= {y0, y1, . . .} ∈ YN0 , respectively. Similarly, for
n ∈ N0, points in X n 4= ×ni=0Xi, Yn

4= ×ni=0Yi are denoted by xn
4= {x0, x1, . . . , xn} ∈

X n, yn
4= {y0, y1, . . . , yn} ∈ Yn, respectively.

Let B(X N0) and B(YN0) denote the σ−algebras in X N0 and YN0 , respectively, generated
by cylinder sets (e.g., B(X N0) is the smallest Borel σ−algebra containing all cylinder
sets {x = (x0, x1, . . .) ∈ X N0 : x0 ∈ A0, x1 ∈ A1, . . . , xn ∈ An}, Ai ∈ B(Xi), i ∈ Nn

0 ).
The Borel σ-algebra B(X N0) is denoted by ⊗i∈N0B(Xi). Hence, B(X n) and B(Yn)
denote the σ−algebras of cylinder sets in X N0 and YN0 , respectively, with bases over
Ai ∈ B(Xi), i ∈ Nn

0 , and Bi ∈ B(Yi), i ∈ Nn
0 , respectively.

Backward or Feedback Channel.
Suppose for each n ∈ N0, the conditional distribution of the RV Xn ∈ Xn is determined
provided the values of the basic processes Xn−1 = xn−1 ∈ X n−1 and Y n−1 = yn−1 ∈
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2.2 Equivalent Nonanticipative Channels on Abstract Spaces 31

Yn−1 are known, and let {pn(dxn|xn−1, yn−1) : n ∈ N0} denote the collection of these
distributions. At n = 0, the distribution is p0(dx0|x−1, y−1) where (x−1, y−1) are either
fixed, or p0(dx0|x−1, y−1) = p(dx0), depending on the convention used. Without loss
of generality, we assume p0(dx0|x−1, y−1) 4= p0(x0) (i.e., σ{X−1, Y −1} = {∅,Ω}). For
each n ∈ N0, the functions pn(·|·, ·) : Xn × X n−1 × Yn−1 7−→ [0, 1] are candidates of
distributions of the sequence of RV’s {Xn : n ∈ N0} on {(Xn,B(Xn)) : n ∈ N0} if and
only if the following conditions hold.

i) For every n ∈ N0, and xn−1 ∈ X n−1, yn−1 ∈ Yn−1, pn(·|xn−1, yn−1) is a probability
measure on B(Xn);
ii) For every n ∈ N0, and An ∈ B(Xn), pn(An|·, ·) is an⊗n−1

i=0

(
B(Xi)⊗B(Yi)

)
-measurable

function of xn−1 ∈ X n−1, yn−1 ∈ Yn−1.

For every n ∈ N0, the set of all functions that satisfy i), ii), are called stochastic kernels
on Xn given X n−1 × Yn−1, and these are denoted by

Q(Xn|X n−1 × Yn−1) ,
{
pn(·|xn−1, yn−1) ∈M(Xn) : xn−1 ∈ X n−1, yn−1 ∈ Yn−1

and ii) holds
}
.

Given the collection of functions {pn(·|·, ·) : n ∈ N0} satisfying conditions i), ii), one
can construct a family of measures on the product space (X N0 ,B(X N0)) 4=

(
×i∈N0

Xi,⊗i∈N0B(Xi)
)

as follows.
Let C ∈ B(X n) be a cylinder set of the form

C
4=
{
x ∈ X N0 : x0 ∈ C0, x1 ∈ C1, . . . , xn ∈ Cn

}
, Ci ∈ B(Xi), i ∈ Nn

0 , C0,n = ×ni=0Ci.

Define a family of measures P(·|y) parametrized by y ∈ YN0 on B(X N0) by

P(C|y) 4=
∫
C0
p0(dx0)

∫
C1
p1(dx1|x0, y0) . . .

∫
Cn
pn(dxn|xn−1, yn−1) (2.9)

≡
←−
P 0,n(C0,n|yn−1). (2.10)

The notation ←−P 0,n(·|yn−1) is used to denote the causal conditioning dependence of the
measure P(·|y) defined on cylinder sets C ∈ B(X n), for any n ∈ N0. The right hand
side (RHS) of (2.9) uniquely defines a measure on (X N0 ,B(X N0)). Moreover, for each
n ∈ N0 the family of measures P(·|y) parametrized by y ∈ YN0 , satisfies the following
property (inherited from condition ii)): for E ∈ B(X N0),P(E|·) is B(YN0)−measurable,
and for E ∈ B(X n), P(E|·) is B(Yn−1)−measurable.
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Thus, if conditions i) and ii) hold then for each y ∈ YN0 , the RHS of (2.9) defines
a consistent family of finite-dimensional distribution, and hence there exists a unique
measure on (X N0 ,B(X N0)), for which pn(dxn|xn−1, yn−1) is obtained. This leads to the
first definition of a feedback channel, as a family of functions {pn(·|·, ·) ∈ Q(Xn|X n−1×
Yn−1) : n ∈ N0}, i.e., satisfying conditions i) and ii). This definition is used extensively
by many authors [4, 7–10,13], for finite alphabet spaces.

An alternative, equivalent definition of a feedback channel is established as follows.
Consider a family of measures P(·|y) on (X N0 ,B(X N0)) parametrized by y ∈ YN0

satisfying the following consistency condition.

C1: If E ∈ B(X n) then P(E0,n|·) is B(Yn−1)−measurable function of y ∈ YN0 .

Clearly, if conditions i) and ii) are satisfied, then the family of measures P(·|y) defined
via the RHS of (2.9) satisfies consistency condition C1. The question we address
next is whether for any family of measures P(·|y) on (X N0 ,B(X N0)) parametrized
by y ∈ YN0 , satisfying consistency condition C1, one can construct a collection of
functions {pn(·|·, ·) ∈ Q(Xn|X n−1 × Yn−1) : n ∈ N0}, i.e., satisfying conditions i)
and ii), which are connected to P(·|y) via relation (2.9). To illustrate this point,
let A(n) = {x ∈ X N0 : xn∈A}, A ∈ B(Xn), and let P(A(n)|B(X n−1)|y) denote the
conditional probability of A(n) with respect to B(X n−1) calculated on the probability
space

(
X N0 ,B(X N0),P(·|y)

)
. Then

P(A(n)|B(X n−1)|y) = pn(A|xn−1, yn−1), A(n) ∈ B(X n), (2.11)

for P(·|y)−almost all x ∈ X N0 . Clearly, the function on the RHS of (2.11),
pn(A|xn−1, yn−1) is B(X n−1)−measurable for a fixed A ∈ B(Xn) and yn−1 ∈ Yn−1, but
it cannot be claimed that pn(·|xn−1, yn−1) is a probability measure on Xn. However,
under the general assumption that {(Xn,B(Xn)) : n ∈ N0} are complete separable
metric spaces (Polish spaces), with B(Xn) the σ−algebra of Borel sets, it is shown
in [66] (see also Chapter 8, Theorem 8.8), that the RHS of (2.11) represents a version
of conditional probability (a.s.), i.e., condition i) holds as well. Therefore, to establish
the second equivalent definition of a family of measures defined by (2.9) with elements
{pn(·|·, ·) ∈ Q(Xn|X n−1 × Yn−1) : n ∈ N0}, we introduce the following condition on
the alphabet spaces.

iii) {Xn : n ∈ N0} are complete separable metric spaces and {B(Xn) : n ∈ N0} are the
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2.2 Equivalent Nonanticipative Channels on Abstract Spaces 33

σ−algebras of Borel sets.

By Theorem 8.8, Chapter 8, if condition iii) holds, then for any family of measures
P(·|y) parametrized by y ∈ YN0 satisfying C1 one can construct a collection of ver-
sions of conditional distributions {pn(dxn|xn−1, yn−1) : n ∈ N0} satisfying conditions
i) and ii) which are connected with P(·|y) via relation (2.9), and hence the following
conclusion.
When {Xn : n ∈ N0} are Polish Spaces with {B(Xn) : n ∈ N0} the σ−algebra of Borel
sets, there are two equivalent definitions of a feedback channel. The first definition is the
usual one given by a collection of functions {pn(·|·, ·) ∈ Q(Xn|X n−1×Yn−1) : n ∈ N0},
i.e., satisfying conditions i) and ii). The second definition is given by a family of mea-
sures P(·|y) on (X N0 ,B(X N0)) depending parametrically on y ∈ YN0 and satisfying the
consistency condition C1. Although, the family of measures P(·|y) on (X N0 ,B(X N0))
are finite additive probability measures, by Kolmogorov’s extension theorem [71], the
completeness of {Xn : n ∈ N0} guarantees the existence of countable additive proba-
bility measures P(·|y) on (X N0 ,B(X N0)), whose marginal on each X n is ←−P 0,n(·|yn−1).
The second equivalent definition of a feedback channel, together with an analogous
equivalent similar definition for the forward channel will be used throughout this chap-
ter.

Feedforward Channel.
The above methodology is repeated to obtain two equivalent definitions for the for-
ward channel as well. Suppose for each n ∈ N0, the conditional distribution of the RV
Yn ∈ Yn is determined provided the values of the basic processes Y n−1 ∈ Yn−1 and
Xn = xn ∈ X n are known, and let {qn(dyn|yn−1, xn) : n ∈ N0} denotes this collection
of distributions. At n = 0, q0(dy0|y−1, x0), where y−1 is either fixed or its distribution
is fixed (depending on the convection used). Without loss of generality, we assume
q0(dy0|y−1, x0) 4= q0(dy0|x0). The functions {qn(·|·, ·) : n ∈ N0} satisfy the following
conditions.

iv) For every n ∈ N0, and yn−1 ∈ Yn−1, xn ∈ X n, qn(·|yn−1, xn) is a probability measure
B(Yn);
v) For every n ∈ N0, and Bn ∈ B(Yn), qn(Bn|·, ·) is an ⊗n−1

i=0

(
B(Yi)⊗B(Xi)

)
⊗B(Xn)-

measurable function of xn ∈ X n, yn−1 ∈ Yn−1.

For every n ∈ N0, the set of all functions that satisfy iv), v), are called stochastic

Pho
tio

s S
tav

rou



34 Directed Information on Abstract Spaces: Properties and Applications

kernels on Yn given Yn−1 ×X n, and these are denoted by

Q(Yn|Yn−1 ×X n) = {qn(·|yn−1, xn) ∈M(Yn) : yn−1 ∈ Yn−1, xn ∈ X n and v) holds}.

Similarly as before, using the collection of functions {qn(·|·, ·) ∈ Q(Yn|Yn−1 × X n) :
n ∈ N0} one can construct a family of measures Q(·|x) on (YN0 ,B(YN0)) which depend
parametrically on x ∈ X N0 , as follows.
Consider a cylinder set D ∈ B(Yn) of the form

D
4=
{
y ∈ YN0 : y0∈D0, y1∈D1, . . . , yn∈Dn

}
, Di ∈ B(Yi), n ∈ Nn

0 , D0,n = ×ni=0Di.

Define a family of measures on B(YN0) parametrized by x ∈ X N0 by

Q(D|x) 4=
∫
D0
q0(dy0|x0)

∫
D1
q1(dy1|y0, x

1) . . .
∫
Dn
qn(dyn|yn−1, xn) (2.12)

≡
−→
Q 0,n(D0,n|xn). (2.13)

Since, for each x ∈ X N0 the RHS of (2.12) defines a consistent family of finite-
dimensional distribution, then there exist a unique measure on (YN0 ,B(YN0)) from
which the family of distributions {qn(dyn|yn−1, xn) : n ∈ N0} satisfying iv), v) can be
obtained. Moreover, the family of measures Q(·|x) parametrized by x ∈ X N0 satisfies
the following consistency condition.

C2: If F ∈ B(Yn), then Q(F |·) is a B(X n)−measurable function of x ∈ X N0 .

By Theorem 8.8, Chapter 8, to obtain another equivalent definition for the forward
channel introduce the following condition on the output alphabet.

vi) {Yn : n ∈ N0} are Polish Spaces and {B(Yn) : n ∈ N0} are the σ−algebra of Borel
sets.

If condition vi) holds for any family of measures Q(·|x) on (YN0 ,B(YN0)) parametrized
by x ∈ X N0 satisfying consistency condition C2, one can construct a collection of
functions {qn(·|·, ·) ∈ Q(Yn|Yn−1 × X n) : n ∈ N0}, i.e., satisfying conditions iv) and
v), which are connected with Q(·|x) via relation (2.12). Therefore, we arrive at two
equivalent definitions for the forward channel as well.
We conclude this section by constructing the probability space (Ω,F ,P), as stated
earlier, and the sequence of RV’s {(Xn, Yn) : n ∈ N0} defined on it. Given the basic
measures P(·|y) on X N0 satisfying consistency condition C1 and Q(·|x) on YN0 satisfy-
ing consistency condition C2, one can construct a sequence of RV’s {Xn, Yn : n ∈ N0}
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or conditional distributions as follows.
Suppose iii), iv) hold. Let A(n) = {x : xn∈A}, A ∈ B(Xn) and B(n) = {y : yn∈B}, B ∈
B(Yn). In addition, let P(A(n)|B(X n−1)|y) denote the conditional probability of A(n)

with respect to B(X n−1) calculated on the probability space
(
X N0 ,B(X N0),P(·|y)

)
, and

Q(B(n)|B(Yn−1)|x) denote the conditional probability of B(n) with respect to B(Yn−1)
calculated on the probability space

(
YN0 ,B(YN0),Q(·|x)

)
.

Then for each n ∈ N0, by conditioning it follows that

P
{
Xn∈A|Xn−1 = xn−1, Y n−1 = yn−1

}
= P

(
{x : xn∈A}|B(X n−1)|y

)
, A∈B(Xn)

= pn(A|xn−1, yn−1) (2.14)

P
{
Yn∈B|Y n−1 = yn−1, Xn = xn

}
= Q

(
{y : yn∈B}|B(Yn−1)|x

)
, B∈B(Yn)

= qn(B|yn−1, xn) (2.15)

for almost all x ∈ X N0 in measure P(·|y), and for almost all y ∈ YN0 in mea-
sure Q(·|x). Note that for each n ∈ N0, pn(·|·, ·) ∈ Q(Xn|X n−1 × Yn−1) and
qn(·|·, ·) ∈ Q(Yn|Yn−1 × Xn) are stochastic kernels (see Definition 8.7, Chapter 8)
determined from P(·|·) and Q(·|·), respectively, (e.g., they are related via (2.9) and
(2.12), respectively).
Consequently, the finite-dimensional distributions of the sequence of RV’s
{(Xn, Yn) : n ∈ N0} is defined by

P
{
X0∈A0, Y0 ∈ B0, . . . , Xn∈An, Yn∈Bn

}
=
∫
A0
p0(dx0)

∫
B0
q0(dy0|x0) . . .

∫
An
pn(dxn|xn−1, yn−1)

∫
Bn
qn(dyn|yn−1, xn). (2.16)

Hence, given the two Polish spaces X N0 and YN0 , for any P(·|·) and Q(·|·) satisfying
the consistency conditions C1, C2, respectively, there exist a probability space and a
sequence of RV’s {(Xn, Yn) : n ∈ N0} defined on it, whose joint probability distribution
is uniquely defined by (2.16), via P(·|·) and Q(·|·).

The following remark summarizes the previous discussion on the two equivalent defi-
nitions of forward and feedback channels.

Remark 2.1.
Suppose {Xn : n ∈ N0}, {Yn : n ∈ N0}, are complete, separable metric spaces (Polish
spaces) and {B(Xn) : n ∈ N0}, {B(Yn) : n ∈ N0} are respectively, the σ−algebras of
Borel sets.
Then
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1) The collection of stochastic kernels {pn(·|·, ·) ∈ Q(Xn|X n−1 × Yn−1) : n ∈ N0}
uniquely define a family of probability measures on (X N0 ,B(X N0)) parametrized
by y ∈ YN0 via (2.9).

2) For any family of probability measures P(·|y) on (X N0 ,B(X N0)) parametrized by
y ∈ YN0, satisfying consistency condition C1 there exists a collection of stochastic
kernels {pn(·|·, ·) ∈ Q(Xn|X n−1 × Yn−1) : n ∈ N0} connected to P(·|·) via (2.9).

3) The collection of stochastic kernels {qn(·|·, ·) ∈ Q(Yn|Yn−1 × X n) : n ∈ N0}
uniquely define a family of probability measures on (YN0 ,B(YN0)) parametrized
by x ∈ X N0 via (2.12).

4) For any family of probability measures Q(·|x) on (YN0 ,B(YN0)) parametrized by
x ∈ X N0 satisfying consistency condition C2 there exists a collection of stochastic
kernels {qn(·|·, ·) ∈ Q(Yn|Yn−1 ×X n) : n ∈ N0} connected to Q(·|·) via (2.12).

The point to be made here is that directed information as defined by (2.1)-(2.3) can be
expressed via the equivalent definitions of Remark 2.1, either 2) and 4) or 1) and 3).
We use this equivalent definition of directed information, to derive the functional and
topological properties of directed information on general abstract spaces. Throughout
the rest of the chapter it is assumed that the conditions of Remark 2.1 are satisfied,
i.e., all spaces are Polish spaces.

2.3. Properties of Directed Information

In this section, we define the feedforward information I(Xn → Y n) on abstract spaces
(Polish spaces), via the Kullback-Leibler distance (or relative entropy), using the basic
family of measures P(·|y) on (X N0 ,B(X N0)), and Q(·|x) on (YN0 ,B(YN0)), which satisfy
consistency condition C1 and C2, respectively. Once this is established, then following
Pinsker [39], it will become obvious that directed information permits a representation
as a supremum of relative entropy between two distributions, where the supremum is
taken over all measurable partitions on a given σ− algebra of subsets of a set Z. Fur-
ther, in a subsequent subsection, we use the definition of directed information in terms
of P(·|y) and Q(·|x), to derive several of its properties, such as, convexity, concavity,
lower semicontinuity, with respect to these two families of measures.
To present the precise expression for the directed information, we first introduce the
measures of interest constructed from the basic consistent families of conditional dis-
tributions. Introduce the following notation.
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For fixed y ∈ YN0 , define the probability distributions on X N0 by

MC1(X N0) 4=
{
P(·|y) ∈M(X N0) : consistency condition C1 holds

}
(2.17)

and the set of stochastic kernels by

QC1(X N0|YN0) 4=
{
P(·|y) ∈M(X N0) : y ∈ YN0 and consistency condition C1 holds

}
≡
{
P(·|·) ∈ Q(X N0|YN0) : consistency condition C1 holds

}
. (2.18)

Similarly, for fixed x ∈ X N0 , define the probability distributions on YN0 by

MC2(YN0) 4=
{
Q(·|x) ∈M(YN0) : consistency condition C2 holds

}
(2.19)

and the set of stochastic kernels by

QC2(YN0|X N0) 4=
{
Q(·|x) ∈M(YN0) : x ∈ X N0 and consistency condition C2 holds

}
≡
{
Q(·|·) ∈ Q(YN0|X N0) : consistency condition C2 holds

}
. (2.20)

The projection of MC1(X N0), MC2(YN0), QC1(X N0|YN0), and QC2(YN0|X N0) to fi-
nite number of coordinates3 is denoted by MC1(X n), MC2(Yn) QC1(X n|Yn−1), and
QC2(Yn|X n), respectively. Since the spaces are complete separable metric spaces then
P(·|y) ∈ M(X N0), for fixed y ∈ YN0 , and Q(·|x) ∈ M(YN0), for fixed x ∈ X N0 , are
regular conditional probability distributions.
Next, we define the distributions of interest. Given any P(·|·) ∈ QC1(X N0|YN0) and
Q(·|·) ∈ QC2(YN0 |X N0), utilizing the construction of Section 2.2, we can define uniquely
{pn(·|·, ·) : n ∈ N0} and {qn(·|·, ·) : n ∈ N0},

(
see (2.14), (2.15)

)
and the following dis-

tributions.

P1: The joint distribution on X N0 ×YN0 of the basic sequence {Xn, Yn : n ∈ N0} con-
structed from P(·|·) ∈ QC1(X N0 |YN0) and Q(·|·) ∈ QC2(YN0|X N0), defined uniquely
for Ai ∈ B(Xi), Bi ∈ B(Yi), ∀i ∈ Nn

0 , by

(←−P 0,n ⊗
−→
Q 0,n)(×ni=0(Ai×Bi))

4=P
{
X0∈A0, Y0 ∈ B0, . . . , Xn∈An, Yn∈Bn

}
=
∫
A0
p0(dx0)

∫
B0
q0(dy0|x0) . . .

∫
An
pn(dxn|xn−1, yn−1)

∫
Bn
qn(dyn|yn−1, xn). (2.21)

3The projection to a finite number of coordinates means the projection on the first n coordinates.
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Formally, the (n + 1) fold compound joint distribution defined by (2.21) is written as
(←−P 0,n ⊗

−→
Q 0,n)(dxn, dyn) or ←−P 0,n(dxn|yn−1)⊗−→Q 0,n(dyn|xn).

P2: The marginal distributions on X N0 of the sequence {Xn : n ∈ N0} constructed
from P(·|·) ∈ QC1(X N0 |YN0) and Q(·|·) ∈ QC2(YN0|X N0), defined uniquely by4

µ0,n(×ni=0Ai)
4=P
{
X0 ∈ A0, Y0 ∈ Y0, . . . , Xn ∈ An, Yn ∈ Yn

}
, Ai ∈ B(Xi), ∀i ∈ Nn

0

=(←−P 0,n ⊗
−→
Q 0,n)(×ni=0(Ai × Yi))

=
∫
A0
p0(dx0)

∫
Y0
q0(dy0|x0) . . .

∫
An
pn(dxn|xn−1, yn−1)

∫
Yn
qn(dyn|yn−1, xn). (2.22)

Formally, (2.22) is written as µ0,n(dxn) = (←−P 0,n ⊗
−→
Q 0,n)(dxn,Yn), and by Bayes’ rule

µ0,n(dxn) = ⊗ni=0µi(dxi|xi−1).

P3: The marginal distributions on YN0 of the sequence {Yn : n ∈ N0} constructed
from P(·|·) ∈ QC1(X N0 |YN0) and Q(·|·) ∈ QC2(YN0|X N0), defined uniquely by5

ν0,n(×ni=0Bi)
4=P
{
X0 ∈ X0, Y0 ∈ B0, . . . , Xn ∈ Xn, Yn ∈ Bn

}
, Bi ∈ B(Yi), ∀i ∈ Nn

0

(2.23)

=(←−P 0,n ⊗
−→
Q 0,n)(×ni=0(Xi ×Bi))

=
∫
X0
p0(dx0)

∫
B0
q0(dy0|x0) . . .

∫
Xn
pn(dxn|xn−1, yn−1)

∫
Bn
qn(dyn|yn−1, xn). (2.24)

Formally, (2.24) is written as ν0,n(dyn) = (←−P 0,n ⊗
−→
Q 0,n)(X n, dyn), and by Bayes’ rule

ν0,n(dyn) = ⊗ni=0νi(dyi|yi−1).

P4: The distribution −→Π 0,n : B(X n) ⊗ B(Yn) 7→ [0, 1] constructed from ←−P 0,n(·|·) ∈
QC1(X n|Yn−1) and ν0,n(dyn) = (←−P 0,n ⊗

−→
Q 0,n)(X n, dyn) ∈ M(Yn) of (2.23), defined

uniquely by

−→Π 0,n(×ni=0(Ai×Bi))
4= (←−P 0,n ⊗ ν0,n)(×ni=0(Ai×Bi)), Ai ∈ B(Xi), Bi ∈ B(Yi), ∀i ∈ Nn

0

=
∫
A0
p0(dx0)

∫
B0
ν0(dy0)

∫
A1
p1(dx1|x0, y0)

∫
B1
ν1(dy1|y0) . . .

. . .
∫
An
pn(dxn|xn−1, yn−1)

∫
Bn
νn(dyn|yn−1). (2.25)

4Actually µ ≡ µP⊗Q but we omit the superscript throughout this thesis.
5Similarly, ν ≡ νP⊗Q.
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Formally, (2.25) is written as −→Π 0,n(dxn, dyn) =←−P 0,n(dxn|yn−1)⊗ ν0,n(dyn) ∈M(X n×
Yn).

P5: The distribution ←−Π 0,n : B(Yn) ⊗ B(X n) 7→ [0, 1] constructed from −→Q 0,n(·|·) ∈
QC2(Yn|X n) and µ0,n(dxn) = (←−P 0,n ⊗

−→
Q 0,n)(dxn,Yn) ∈ M(X n) of (2.22), defined

uniquely by

←−Π 0,n(×ni=0(Ai×Bi))
4= (µ0,n ⊗

−→
Q 0,n)(×ni=0(Ai×Bi)), Ai ∈ B(Xi), Bi ∈ B(Yi), ∀i ∈ Nn

0

=
∫
A0
µ0(dx0)

∫
B0
q0(dy0|x0)

∫
A1
µ1(dx1|x0)

∫
B1
q1(dy1|y0, x0) . . .

. . .
∫
An
µn(dxn|xn−1)

∫
Bn
qn(dyn|yn−1, xn). (2.26)

Formally, (2.26) is written as ←−Π 0,n(dxn, dyn) = µ0,n(dxn) ⊗ −→Q 0,n(dyn|xn) ∈ M(X n ×
Yn).

From the above definitions, for each n ∈ N0, an alternative way to construct the
conditional distributions of Yn given Y n−1 = yn−1, νn(·|·) ∈ Q(Yn|Yn−1), and Xn given
Xn−1 = xn−1, µn(·|·) ∈ Q(Xn|X n−1) is as follows. Let A(n) = {x : xn ∈ A}, A ∈ B(Xn),
B(n) = {y : yn ∈ B}, B ∈ B(Yn), and let −→Π 0,n(A(n), B(n)|B(X n−1)⊗ B(Yn−1)) denote
the joint conditional probability of A(n) × B(n) with respect to B(X n−1) ⊗ B(Yn−1)
calculated on the probability space

(
X N0 ⊗YN0 ,B(X N0)⊗B(YN0),−→Π 0,n(·)

)
. Then for

A ∈ B(Xn), B ∈ B(Yn) we obtain

−→Π 0,n(A(n), B(n)|B(X n−1)⊗ B(Yn−1)) = pn(A|xn−1, yn−1)× νn(B|yn−1). (2.27)

Hence, νn(·|·) ∈ Q(Yn|Yn−1) is given by νn(dyn|yn−1) =
∫
Xn
−→Π 0,n(dxn, dyn|xn−1, yn−1),

from which ν0,n(dyn) ∈ M(Yn) is also obtained. Similarly, let
←−Π 0,n(A(n), B(n)|B(Yn−1) ⊗ B(X n−1)) denote the joint conditional probability of
A(n) × B(n) with respect to B(Yn−1) ⊗ B(X n−1) calculated on the probability space(
YN0 ×X N0 ,B(YN0)⊗ B(X N0),←−Π 0,n(·)

)
. Then for B ∈ B(Yn),

←−Π 0,n(A(n), B(n)|B(X n−1)⊗ B(Yn−1)) =
∫
An
qn(B|yn−1, xn)⊗ µn(dxn|xn−1) (2.28)

from which µn(·|·) ∈ Q(Xn|X n−1) and µ0,n(dxn) ∈ M(X n) are obtained. Similarly,
from (2.25) and (2.27) we can obtain any of the individual kernels pn(·|·, ·) and qn(·|·, ·)
appearing in their RHS by proper conditional expectations.

Using the first definition of basic processes, that is, given a collection of stochastic
kernels {pn(·|·, ·) ∈ Q(Xn|X n−1 × Yn−1) : n ∈ N0} and {qn(·|·, ·) ∈ Q(Yn|Yn−1 × X n) :
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40 Directed Information on Abstract Spaces: Properties and Applications

n ∈ N0}, the joint distribution, as well as the conditional distributions are defined
via P1−P5. Consequently, it is well-known that directed information is defined via
relative entropy as follows [8]

I(Xn → Y n) 4=
n∑
i=0

I(X i;Yi|Y i−1)

=
n∑
i=0

∫
Yi−1

∫
X i×Yi

log
 dP0,i(·, ·|yi−1)
d
(
P0,i(·|yi−1)× νi(·|yi−1)

)(xi, yi)
P0,i(dxi, dyi|yi−1)P0,i−1(dyi−1)

(2.29)

=
n∑
i=0

∫
X i×Yi−1

D
(
qi(·|yi−1, xi)||νi(·|yi−1)

)
pi(dxi|xi−1, yi−1)

⊗i−1
j=0

(
qj(dyj|yj−1, xj)⊗ pj(dxj|xj−1, yj−1)

)
(2.30)

≡ IXn→Y n(pi(·|·, ·), qi(·|·, ·) : i = 0, 1, . . . , n). (2.31)

The RHS in (2.29) follows from the definition of conditional mutual information. In
(2.31), we use the notation IXn→Y n(pi(·|·, ·), qi(·|·, ·) : i = 0, 1, . . . , n) to indicate that
I(Xn → Y n) is a functional of {pi(·|·, ·) ∈ Q(Xi|X i−1 × Y i−1), qi(·|·, ·) ∈ Q(Yi|Y i−1 ×
X i) : i = 0, 1, . . . , n}.

2.3.1. Directed Information Functional of Consistent
Conditional Distributions

Now we consider the second definition of basic process introduced in Section 2.2.
Given any P(·|·) ∈ QC1(X N0|YN0) and Q(·|·) ∈ QC2(X N0|YN0) the distributions under
P1−P5 are constructed. Next, we define directed information via relative entropy as
often done for mutual information [64]. By Lemma 8.1, ←−P 0,n ⊗

−→
Q 0,n <<

←−
P 0,n ⊗ ν0,n

if and only if −→Q 0,n(·|xn) << ν0,n(·) for ←−P 0,n−almost all xn ∈ X n. Utilizing the
Radon-Nikodym derivative (RND) d(←−P 0,n⊗

−→
Q0,n)

d(←−P 0,n⊗ν0,n)
(xn, yn), define the relative entropy of

←−
P 0,n ⊗

−→
Q 0,n with respect to −→Π 0,n as follows.

IXn→Y n(←−P 0,n,
−→
Q 0,n) 4= D(←−P 0,n ⊗

−→
Q 0,n||

−→Π 0,n)

=
∫
Xn×Yn

log
d(←−P 0,n ⊗

−→
Q 0,n)

d(←−P 0,n ⊗ ν0,n)
(xn, yn)

 (←−P 0,n ⊗
−→
Q 0,n)(dxn, dyn) (2.32)
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=
∫
Xn×Yn

log
d−→Q 0,n(·|xn)

dν0,n(·) (yn)
 (←−P 0,n ⊗

−→
Q 0,n)(dxn, dyn) (2.33)

≡ IXn→Y n(←−P 0,n,
−→
Q 0,n) (2.34)

Note that (2.33) is obtained by utilizing the fact that if ←−P 0,n ⊗
−→
Q 0,n <<

←−
P 0,n ⊗ ν0,n

then the RND d(←−P 0,n⊗
−→
Q0,n)

d(←−P 0,n⊗ν0,n)
(xn, yn) represents a version of d

−→
Q0,n(·|xn)
dν0,n(·) (yn), ←−P 0,n− a.s for

all xn ∈ X n. On the other hand, using Lemma 8.1, −→Q 0,n(·|xn)� ν0,n(·), ←−P 0,n−almost
xn ∈ X n, and by Radon-Nikodym theorem, there exists a version of the RND
ξ̄0,n(xn, yn) 4= d

−→
Q0,n(·|xn)
dν0,n(·) (yn) which is a non-negative measurable function of (xn, yn) ∈

X n × Yn. Hence another version of ξ̄0,n(·, ·) is ξ̄0,n(xn, yn) = d(←−P 0,n⊗
−→
Q0,n)

d(←−P 0,n⊗ν0,n)
(xn, yn). We

use notation IXn→Y n(←−P 0,n,
−→
Q 0,n) given in (2.34) to illustrate that D(←−P 0,n⊗

−→
Q 0,n||

−→Π 0,n)
is a functional of

{←−
P 0,n(·|·),−→Q 0,n(·|·)

}
∈ QC1(X n|Yn−1) × QC2(Yn|X n). In the next

Remark we summarize the equivalent definitions of directed information based on the
two equivalent definitions of channels, that is, the one based on (2.30), (2.31), and the
one based on (2.32), (2.33).

Remark 2.2.
Let P(·|·) ∈ QC1(X N0|YN0) and Q(·|·) ∈ QC2(YN0|X N0). By repeated application of
Lemma 8.1, and the chain rule of relative entropy [43, Theorem B.2.1., p. 326], directed
information admits the following equivalent definitions.

I(Xn → Y n) 4=
n∑
i=0

I(X i;Yi|Y i−1) (2.35)

=
n∑
i=0

∫
X i×Yi−1

∫
Yi
D(qi(·|yi−1, xi)||νi(·|yi−1))

pi(dxi|xi−1, yi−1)

⊗i−1
j=0

(
qj(dyj|yj−1, xj)⊗ pj(dxj|xj−1, yj−1)

)
(2.36)

=
∫
Xn×Yn

log
d−→Q 0,n(·|xn)

dν0,n(·) (yn)
 (←−P 0,n ⊗

−→
Q 0,n)(dxn, dyn) (2.37)

≡ IXn→Y n(←−P 0,n,
−→
Q 0,n). (2.38)

Clearly, (2.38) is valid even when (←−P 0,n ⊗
−→
Q 0,n)(dxn, dyn) is singular with respect

to (←−P 0,n ⊗ ν0,n)(dxn, dyn), in which case its value is +∞. The point to be made
here is that we will show the convexity, concavity, lower semicontinuity properties of
directed information using the definition I(Xn → Y n) = D(←−P 0,n ⊗

−→
Q 0,n||

−→Π 0,n) ≡
IXn→Y n(←−P 0,n,

−→
Q 0,n), as a functional of ←−P 0,n(·|yn−1) ∈ MC1(X n) and −→Q 0,n(·|xn) ∈

MC2(Yn). We will also use the directed information definition D(←−P 0,n ⊗
−→
Q 0,n||

−→Π 0,n),
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as a functional of {←−P 0,n,
−→
Q 0,n} to show lower semicontinuity, convexity and concavity

properties. Then we will use these functional and topological properties to demonstrate
how to establish existence of optimal solutions to the two extremum problems defined
by (2.5) and (2.8), respectively.

Remark 2.3.
Note that one may investigate directed information IXn→Y n(pi(·|·, ·), qi(·|·, ·) : i =
0, 1, . . . , n) as a functional on the space of vector measures
{p0(dx0), p1(dx1|x0, y0), . . . , pn(dxn|xn−1, yn−1)} ∈ ×ni=0M(Xi) and
{q0(dy0|x0), q1(dy1|y0, x

1), . . . , qn(dyn|yn−1, xn)} ∈ ×ni=0M(Yi). However, it is
not clear to us how to obtain results R2), R3), R5).

We are now ready to investigate the functional properties of directed informa-
tion using the relative entropy definition of directed information, I(Xn → Y n) =
IXn→Y n(←−P 0,n,

−→
Q 0,n), as a function of ←−P 0,n(·|yn−1) ∈ MC1(X n) and −→Q 0,n(·|xn) ∈

MC2(Yn). Recall that for mutual information defined via relative entropy, anal-
ogous properties, such as, convexity, concavity, lower semicontinuity etc, are well
known [30,52,64].

2.3.2. Convexity and Concavity of Directed Information

First, we show that the set of conditional distributions P(·|y) ∈ MC1(X N0) and
Q(·|x) ∈ MC2(YN0), i.e., satisfying consistency conditions C1 and C2, are convex,
and then we show convexity of directed information with respect to Q(·|x) and con-
cavity with respect to P(·|y).
Recall that the set of all distributions P(·|y) ∈ M(X N0) and Q(·|x) ∈ M(YN0)
(i.e., without imposing consistency conditions C1 and C2) are convex, that is, given
{P1(·|y), P2(·|y)} ∈ M(X N0) ×M(X N0), and λ ∈ (0, 1), there exists a probability
measure P̃ on (X N0 × YN0 ,B(X N0)⊗ B(YN0)) whose regular distribution P̃ (·|y) satis-
fies P̃ (·|y) = λP1(·|y) + (1− λ)P2(·|y) ∈M(X N0).
Next, we show convexity of the sets MC1(X N0) and MC2(YN0).

Theorem 2.1. (Convexity of sets MC1(X N0), MC2(YN0))
Let {Xn : n ∈ N0}, {Yn : n ∈ N0} be Polish spaces with B(Xn), B(Yn), respectively,
the σ−algebras of Borel sets. Then the sets of distributions P(·|y) ∈ MC1(X N0) and
Q(·|x) ∈ MC2(YN0) are convex, and similarly, their projection to finite number of
coordinates6, that is, ←−P 0,n(·|yn−1) ∈ MC1(X n) and −→Q 0,n(·|xn) ∈ MC2(Yn), for any

6This means the projection on the first n coordinates
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n ∈ N0, are also convex.

Proof. Since the methodology is similar for both sets, only the derivation forMC1(X N0)
is given. By definition, the set of distributions MC1(X N0) is convex if for a given
{P1(·|y),P2(·|y)} ∈ MC1(X N0) ×MC1(X N0), and a given λ ∈ (0, 1), there exists a
probability measure P̃ on (X N0 × YN0 ,B(X N0) ⊗ B(YN0), whose regular conditional
measure P̃ (·|y) is a convex combination P̃ (·|y) = λP1(·|y) + (1− λ)P2(·|y), a.e. y ∈
YN0 , and consistency condition C1 holds, i.e., λP1(·|y) + (1−λ)P2(·|y) ∈MC1(X N0).
By [72], the set of distributions M(X N0) is convex, and since {P1(·|y),P2(·|y)} ∈
M(X N0)×M(X N0), then there is a probability measure P̃ onM

(
X N0×YN0 ,B(X N0⊗

B(YN0)), whose regular distribution P̃ (·|y), y ∈ YN0 , satisfies

P̃ (·|y) = λP1(·|y) + (1− λ)P2(·|y) ∈M(X N0), ∀λ ∈ (0, 1).

Moreover, if P1(·|y), and P2(·|y) satisfy consistency condition C1, then their con-
vex combination also satisfies consistency condition C1, and consequently λP1(·|y) +
(1− λ)P2(·|y) ∈ MC1(X N0), i.e., the consistency condition C1 holds. The derivation
for Q(·|x) ∈ MC2(YN0) is similar. The derivation for the projection to finite num-
ber of coordinates is done as follows. Let A(n) = {x : xn∈A}, A ∈ B(Xn), and let
P(A(n)|B(X n−1)|y) denote the conditional probability of A(n) with respect to B(X n−1)
calculated on the probability space

(
X N,B(X N),P(·|y)

)
. From the definition of regular

conditional probability measures, it follows that

P̃ (A(n)|B(X n−1)|y) = λP1(A(n)|B(X n−1)|y) + (1− λ)P2(A(n)|B(X n−1)|y)− a.s.

= λp1
n(A|xn−1, yn−1) + (1− λ)p2

n(A|xn−1, yn−1)− a.s.

where p1
n(·|xn−1, yn−1), p2

n(·|xn−1, yn−1) are regular conditional distributions. Since con-
vex combination of regular conditional distributions is also a regular conditional dis-
tribution, by Remark 2.1, the set ←−P 0,n(·|yn−1) ∈ MC1(X n), n ∈ N0, is convex, and
the derivation is complete. �

Since MC1(X n) and MC2(Yn) are convex, then we proceed further to show that
directed information IXn→Y n(←−P 0,n,

−→
Q 0,n), as a functional of ←−P 0,n(·|yn−1) ∈MC1(X n),

for a fixed −→Q 0,n(·|xn) ∈ MC2(Yn), is concave, and as a functional of −→Q 0,n(·|xn) ∈
MC2(Yn), for a fixed ←−P 0,n(·|yn−1) ∈MC1(X n), is convex. These results are shown in
the next theorem.
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Theorem 2.2. (Convexity of conditional distributions)
Let {Xn : n ∈ N0}, {Yn : n ∈ N0} be Polish spaces with B(Xn), B(Yn), respectively, the
σ−algebras of Borel sets. Consider the directed information functional I(Xn → Y n) =
IXn→Y n (←−P 0,n,

−→
Q 0,n), IXn→Y n :MC1(X n)×MC2(Yn) 7→ [0,∞] defined by (2.38).

Then the following hold.

1) IXn→Y n(←−P 0,n,
−→
Q 0,n) is a convex functional of −→Q 0,n(·|xn) ∈ MC2(Yn) for a fixed

←−
P 0,n(·|yn−1) ∈MC1(X n).

2) IXn→Y n(←−P 0,n,
−→
Q 0,n) is a concave functional of ←−P 0,n(·|yn−1) ∈ MC1(X n) for a fixed

−→
Q 0,n(·|xn) ∈MC2(Yn).

3) IXn→Y n(←−P 0,n, ·) is a strictly convex functional on the set
{−→
Q 0,n(·|xn) ∈ MC2(Yn) :

IXn→Y n(←−P 0,n,
−→
Q 0,n) <∞

}
for a fixed ←−P 0,n(·|yn−1) ∈MC1(X n).

Proof. By Theorem 2.1, the sets MC1(X n) and MC2(Yn) are convex. Therefore,
to show parts 1), 2), 3) we utilize the consistency of the two families of conditional
distributions and we apply the log-sum formulae, and the existence of certain Radon-
Nikodym Derivatives (RNDs). The complete derivation is given in Appendix A.1. �

Theorem 2.2 is analogous to mutual information I(Xn;Y n) ≡ IXn;Y n(PXn , PY n|Xn),
expressed as a functional of input distribution PXn(·) ∈ M(X n) and the channel
PY n|Xn(·|xn) ∈M(Yn), which is known to be a convex (respectively concave) functional
of PY n|Xn(·|xn) ∈M(Yn)

(
respectively PXn(·) ∈M(X n)

)
, for a fixed PXn(·) ∈M(X n)(

respectively PY n|Xn(·|xn) ∈M(Yn)
)
. It is important to point out that if one considers

the alternative definition of directed information (2.29), (2.31), as a functional of the
sequence of input channel distributions, I(Xn → Y n) ≡ IXn→Y n(pi(·|·, ·), qi(·|·, ·) : i =
0, 1, . . . , n), then it is not clear to us whether it is possible to establish convexity and
concavity with respect to qi and pi.
For finite alphabet spaces, the convexity of the set of causally conditioned probability
mass functions P (xn||yn−1) 4= ∏n

i=0 p(xi|xi−1, yi−1) and Q(yn||xn) 4= ∏n
i=0 q(yi|yi−1, xi)

is shown in [34, Lemma 1], under the assumption that for each n ∈ N0, the ra-
tios P (xn||yn−1)

P (xn−1||yn−1) and Q(yn||xn)
Q(yn−1||xn−1) exist, and they are given by p(xn|xn−1, yn−1) and

q(yn|yn−1, xn), respectively. The derivation in [34] is based on showing that the set
of all causally conditioned distributions P (xn||yn−1) is a polyhedron. The method
described in [34] does not apply to conditional distributions defined on continuous
alphabets. Theorem 2.1 and Theorem 2.2, hold for general conditional distributions
defined on abstract alphabet spaces, and they do not require existence of probabil-
ity density functions (corresponding to the causally conditioned distributions for each
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2.3 Properties of Directed Information 45

n ∈ N0), hence they compliment the work in [34].

2.3.3. Weak Convergence and Compactness of Conditional
Distributions

In this section we give general sufficient conditions for weak compactness of the set
of probability distributions ←−P 0,n(·|yn−1) ∈MC1(X n) and −→Q 0,n(·|xn) ∈MC2(Yn), and
compactness of the set of joint and marginal measures with respect to the topology of
weak convergence of probability measures. These conditions are sufficient to show lower
semicontinuity of IXn→Y n(←−P 0,n,

−→
Q 0,n) for fixed ←−P 0,n(·|yn−1) ∈MC1(X n)

(
respectively

−→
Q 0,n(·|xn) ∈ MC2(Yn)

)
with respect to −→Q 0,n(·|xn) ∈ MC2(Yn)

(
respectively

←−
P 0,n(·|yn−1) ∈ MC1(X n)

)
. The lower semicontinuity of directed information is the

analogue of the lower semicontinuity of mutual information, extensively utilized in in-
formation theory and statistics (see [52, 64]).

Before we state the main theorem, we introduce the following notation. Let BC(X )
denote the set of bounded, continuous real-valued function f defined on a metric space
(X , d) endowed with the supremum norm ||f || = supx∈X |f(x)|. A sequence of proba-
bility measures {Pα : α = 1, 2, . . .} ⊂ M(X ) is said to converge weakly to a probability
measure P ∈M(X ) if [44]

lim
α→∞

∫
X
f(x)dPα(x) =

∫
X
f(x)dP (x), ∀f ∈ BC(X ).

Weak convergence of {Pα : α = 1, 2, . . .} to P is denoted by Pα
w−→ P . A family of

probability measures M ⊂M(X ) is called relatively compact or weakly compact if every
sequence in M contains a weakly convergent subsequence that converges toM(X ) but
not necessarily to M . Chapter 8 summarizes well-known theorems of weak convergence,
compactness, tightness, and Prohorov’s theorem, which we invoke to derive the results
of this section.
Throughout sequences of points in X N0 and YN0 are denoted by x(α) 4= {x(α)

0 , x
(α)
1 , . . .} ∈

X N0 , y(α) 4= {y(α)
0 , y

(α)
1 , . . .} ∈ YN0 , α = 1, 2, . . . Moreover, a sequence of points x(α) ∈

X N0 , α = 1, 2, . . . is said to converge to x(o) ∈ X N0 as α −→ ∞, if limα−→∞ x
(α)
n =

x(o)
n for every n ∈ N0. Sequences of such points in X n 4= ×ni=0Xi and Yn 4= ×ni=0Yi are

denoted by xn,(α) 4= {x(α)
0 , x

(α)
1 , . . . , x(α)

n } and yn,(α) 4= {y(α)
0 , y

(α)
1 , . . . , y(α)

n }, α = 1, 2, . . ..
The next remark, is introduced to illustrate that in applications of weak convergence of
probability distributions, weak continuity of probability distributions is natural, when
analyzing conditional distributions with discontinuities, such as, distributions induced
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46 Directed Information on Abstract Spaces: Properties and Applications

by mixture of discrete and continuous RV’s.

Remark 2.4. (Weak continuity vs. Strong continuity)
Let q(·|·) ∈ Q(Y|X ) be a conditional distribution, and suppose there is a distribution
µ(dx) ∈ M(X ) such that for every x ∈ X , q(·|x) has a density q̄(·|x) with respect to
µ(·), i.e.,

q(B|x) =
∫
B
q̄(y|x)µ(dx), ∀B ∈ B(Y), ∀x ∈ X .

For example, if X ∈ R then µ(dx) = dx is the Lebesgue measure on R. If p̄(y|·)
is continuous on X for every y ∈ Y, then q(·|·) ∈ Q(Y|X ) is strongly continuous(
i.e., q(B|·) is continuous on X for every B ∈ B(Y)

)
. Strong continuity of channel

models is rather restrictive, because it rules out conditional distributions which have
discontinuities, such as, additive noise channels, in which noise is a mixture of a
continuous RV (i.e., Gaussian distributed RV) and a finite alphabet valued RV.
Consider a channel model with feedback described by the nonlinear recursive equation

Yn = hn(Y n−1, Xn, Vn), Y −1 = y−1, n = 0, 1, . . .

where {hn : Yn−1 × Xn × Vn 7−→ Yn : n = 0, 1, . . . , }, is a sequence of measurable
functions and {Vn : n = 0, 1, . . .} is a sequence of {Vn : n = 0, 1, . . .}-valued RV’s,
representing the channel noise.
Suppose the following condition holds.

PVn|V n−1,Xn,Y n−1(dvn|vn−1, xn, yn−1) = PVn(vn), n = 0, 1, . . . .

Then the channel distribution induced by the above model is

qn(B|yn−1, xn) = P{Yn ∈ B|Y n−1 = yn−1, Xn = xn}, B ∈ B(Y)

= P{hn(Y n−1, Xn, Vn) ∈ B|Y n−1 = yn−1, Xn = xn},

= P({vn ∈ Vn : hn(yn−1, xn, vn) ∈ B}) =
∫
Vn
IB
(
hn(yn−1, xn, vn)

)
PVn(dvn)

≡ qn(B|yn−1, xn)

where IB(·) is the indicator function. If for each n, the function hn(·, ·, vn) is con-
tinuous on Yn−1 × Xn for every vn ∈ Vn, n = 0, 1, . . ., then by bounded convergence
theorem {qn(·|·, ·) ∈ Q(Yn|Yn−1 × Xn) : n = 0, 1, . . .} is weakly continuous (see Def-
inition 8.3), i.e., for each sequence {(yn−1,(α), x(α)

n ) : α = 1, . . .} ⊂ Yn−1 × Xn such
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2.3 Properties of Directed Information 47

that (yn−1,(α), x(α)
n ) −→ (yn−1,(o), x(o)

n ), then limα−→∞
∫
Yn g(yn)qn(dyn|yn−1,(α), x(α)

n ) =∫
Yn g(yn)qn(dyn|yn−1,(o), x(o)

n ), for all bounded continuous functions g(·) ∈ BC(Yn).
Hence, no requirement is imposed on the distribution of {PVn(·) ∈ M(Vn) : n =
0, 1, . . .}.
On the other hand, consider the special case of an additive channel, of the form

Yn = h̄n(Y n−1, Xn) + Vn, n = 0, 1, . . .

where PVn(dvn) is assumed to have a density, p̄(vn), i.e., PVn(dvn) = p̄(vn)dvn, n =
0, 1, . . .. Then {qn(·|·, ·) ∈ Q(Yn|Yn−1 × Xn) : n = 0, 1, . . .} is strongly continuous
if for each n, h̄(·, ·) is continuous on Yn−1 × Xn and p̄(·) is continuous on Vn, for
n = 0, 1, . . ..
Clearly, when proving properties of mutual information or directed information, weak
continuity is more general (less restrictive), compared to strong continuity, which by
definition rules out many interesting application examples.

Next, we state the main theorem which is also used to show lower semicontinuity
of directed information. The theorem consists of two parts depending on whether,
A) Yn is compact and pn(dxn|·, ·) as a function of (xn−1, yn−1) ∈ X n−1 × Yn−1 is
weakly continuous, and B) X n is compact and qn(dyn|·, ·) as a function of (yn−1, xn) ∈
Yn−1 × X n is weakly continuous. In applications of information theory either one of
them or both maybe required, depending on the context of the application considered.

Theorem 2.3.
Part A. For each n ∈ N0, let Yn be a compact Polish space, X n a Polish space, and
assume the collection of conditional distributions {pn(·|·, ·) ∈ Q(Xn|X n−1×Yn−1) : n ∈
N0} satisfy the following condition.

CA: For all g(·)∈BC(X n), the function

(xn−1, yn−1) ∈ X n−1 × Yn−1 7−→
∫
Xn
g(x)pn(dx|xn−1, yn−1) ∈ R (2.39)

is continuous jointly in the variables (xn−1, yn−1) ∈ X n−1 × Yn−1.
Then the following hold.

A1) Let ←−P 0,n(·|yn−1) ∈ MC1(X n) and consider a sequence of forward channels{−→
Q
α

0,n(·|xn) : α = 1, 2, . . .
}
⊂ MC2(Yn). Then the sequence of joint measures

{(←−P 0,n⊗
−→
Qα

0,n) : α = 1, 2, . . .} converges weakly to a joint measure P o(dxn, dyn),
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48 Directed Information on Abstract Spaces: Properties and Applications

that is,

(←−P 0,n ⊗
−→
Qα

0,n)(dxn, dyn) w−→ P o(dxn, dyn) = (←−P 0,n ⊗ Q̄o
0,n)(dxn, dyn) ∈M(X n × Yn)

(2.40)

where the joint measure P o(dxn, dyn) corresponds to the same backward channel
←−
P 0,n(·|yn−1) ∈ MC1(X n) and a forward channel Q̄o

0,n(·|xn) ∈ M(Yn) (i.e., not
necessarily in MC2(Yn)). Equivalently, {(←−P 0,n ⊗

−→
Qα

0,n) : α = 1, 2, . . .} is rela-
tively or weakly compact.
Moreover, the corresponding sequence of marginal measures {να0,n(·) ∈ M(Yn) :
α = 1, 2, . . .} on Yn and {µα0,n(·) ∈ M(X n) : α = 1, 2, . . .} on X n, converges
weakly, that is,

να0,n(dyn) w−→ νo0,n(dyn) and µα0,n(dxn) w−→ µo0,n(dxn)

where νo0,n(·) ∈ M(Yn) and µo0,n(·) ∈ M(X n) are the marginals of the joint
measure in (2.40).

A2) The set of measures ←−P 0,n(·|yn−1) ∈MC1(X n) is uniformly tight.

A3) The set of measures −→Q 0,n(·|xn) ∈MC2(Yn) is weakly compact.

A4) Let ←−P 0,n(·|yn−1) ∈ MC1(X n),
{−→
Q
α

0,n(·|xn) : α = 1, 2, . . .
}
⊂ MC2(Yn), where

{να0,n(·) ∈M(Yn) : α = 1, 2, . . .} are the marginals of
{

(←−P 0,n⊗
−→
Q
α

0,n)(dxn, dyn) ∈
M(X n × Yn) : α = 1, 2, . . .

}
. Then

−→Πα
0,n(dxn, dyn) ≡ ←−P 0,n(dxn|dyn−1)⊗ να0,n(dyn) w−→

←−
P 0,n(dxn|dyn−1)⊗ νo0,n(dyn)

≡
−→Π o

0,n(dxn, dyn)

where νo0,n(·) ∈M(Yn) is the weak limit of the marginal in (2.40).

Part B. For each n ∈ N0, let X n be a compact Polish space, Yn a Polish space, and
assume the collection of conditional distributions {qn(·|·, ·) ∈ Q(Yn|Yn−1 × X n) : n ∈
N0} satisfy the following condition.

CB: For all h(·)∈BC(Yn), the function

(xn, yn−1) ∈ X n × Yn−1 7−→
∫
Yn
h(y)qn(dy|yn−1, xn) ∈ R (2.41)
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is continuous jointly in the variables (xn, yn−1) ∈ X n × Yn−1.
Then the following hold.

B1) Let −→Q 0,n(·|xn) ∈ MC2(Yn) and consider a sequence of backward channels{←−
P
α

0,n(·|yn−1) : α = 1, 2, . . .
}
⊂ MC1(X n). Then, the joint measures {(←−P α

0,n ⊗−→
Q 0,n) : α = 1, 2, . . .} converges weakly to a joint measure P o(dxn, dyn), that is,

(←−P α
0,n ⊗

−→
Q 0,n)(dxn, dyn) w−→ P o(dxn, dyn) = (P̄ o

0,n ⊗
−→
Q 0,n)(dxn, dyn) ∈M(X n × Yn)

(2.42)

where the joint measure P o(dxn, dyn) corresponds to the same forward channel
−→
Q 0,n(·|xn) ∈ MC2(Yn) and a backward channel P̄ o

0,n(·|yn−1) ∈ M(X n) (i.e., not nec-
essarily in MC1(X n)). Equivalently, {(←−P α

0,n ⊗
−→
Q 0,n) : α = 1, 2, . . .} is relatively or

weakly compact.
Moreover, the corresponding sequence of marginal measures {να0,n(·) ∈ M(Yn) : α =
1, 2, . . .} on Yn and {µα0,n(·) ∈ M(X n) : α = 1, 2, . . .} on X n, converges weakly, that
is,

να0,n(dyn) w−→ νo0,n(dyn) and µα0,n(dxn) w−→ µo0,n(dxn)

where νo0,n(·) ∈M(Yn) and µo0,n(·) ∈M(X n) are the marginals of (2.42).

B2) The set of measures −→Q 0,n(·|xn) ∈MC2(Yn) in uniformly tight.

B3) The set of measures ←−P 0,n(·|yn−1) ∈MC1(X n) is weakly compact.

B4) Let −→Q 0,n(·|xn) ∈ MC2(Yn),
{←−
P
α

0,n(·|yn−1) : α = 1, 2, . . .
}
⊂ MC1(X n), where

{µα0,n(·) ∈ M(X n) : α = 1, 2, . . .} are the marginals of
{

(←−P
α

0,n ⊗
−→
Q 0,n)(dxn, dyn) ∈

M(X n × Yn) : α = 1, 2, . . .
}

. Then

←−Πα(dxn, dyn) ≡ −→Q 0,n(dyn|dxn)⊗ µα0,n(dxn) w−→
−→
Q 0,n(dyn|dxn)⊗ µo0,n(dxn) ≡ ←−Π o(dxn, dyn)

where µo0,n(·) ∈M(X n) is the weak limit of the marginal in (2.42).

Proof. See Appendix A.2. �

Note that additional conditions are required to show that the limiting joint distribu-
tion (2.40) (respectively, (2.42)) corresponds to a Q̄o(·|xn) ∈ MC2(Yn) (respectively,
P̄ o(·|yn−1) ∈MC1(X n)). Conditions for this to hold are given in Section 2.3.4.
Below, we illustrate analogies and differences between Theorem 2.3 and currently

Pho
tio

s S
tav

rou



50 Directed Information on Abstract Spaces: Properties and Applications

known results regarding mutual information found in [52, 64]. To this end, consider
Part B., B1). If we use mutual information [64, Lemma 2], then the sequence of
joint measures is defined by Pα

Xn,Y n(dxn, dyn) 4= PY n|Xn(dyn|xn)⊗Pα
Xn(dxn), and show-

ing weak convergence of this family is much simpler compared to the sequence of
joint distributions (←−P α

0,n ⊗
−→
Q 0,n)(dxn, dyn), because PXn(dxn) is not conditioned on

yn ∈ Yn. Clearly, if the mapping xn −→ PY n|Xn(·|xn) is weakly continuous (i.e., spe-
cial case of 2.41), and Pα

Xn(dxn) converges weakly to P o
Xn(xn), then Pα

Xn,Y n(dxn, dyn)
converges weakly to PY n|Xn(dyn|xn) ⊗ P o

Xn(dxn) = P o
Xn,Y n(dxn, dyn), and so does its

marginal on Yn. On the other hand, if we use directed information, then the joint
measure PXn,Y n(dxn, dyn) 4= ⊗ni=0PYi|Y i−1,Xi(dyi|yi−1, xi) ⊗ PXi|Xi−1,Y i−1(dxi|xi−1, yi−1)
involves an (n + 1)-fold compound probability distribution defined by (2.4), and
PXi|Xi−1,Y i−1(·|·, ·) is a function of yn−1 ∈ Yn−1, hence a significant level of additional
complexity incurs, compared to mutual information. Nevertheless, condition CB is
the natural generalization to causally conditioned (n + 1)-fold compound probability
distributions of the weak continuity of the mapping xn −→ PY n|Xn(·|xn), assumed for
the mutual information by Csiszár in [64].

Theorem 2.3 is important for several extremum problems involving directed informa-
tion. In the next section we discuss possible applications of the Theorem 2.3. Never-
theless, the great importance of this theorem is illustrated in the following chapters of
the thesis.

2.3.4. Applications of Theorem 2.3

Theorem 2.3 is important in many extremum problems involving directed information.
In this section, we discuss applications to the extremum problems of feedback capacity
and nonanticipative RDF, defined by (2.5) and (2.7), respectively.

Existence of optimal channel input distribution for channels with memory
and feedback. Consider extremum problems of capacity of channels with memory
and feedback defined by (2.5), without any transmission cost constraint. The aim is
to show existence of a channel input conditional distribution ←−P (·|yn−1) ∈ MC1(X n),
which achieves the supremum of directed information. To show that such a conditional
distribution exists, it is sufficient to show compactness ofMC1(X n), that is, this set is
closed and uniformly tight, in addition, we need to establish upper semicontinuity (or
continuity) of IXn→Y n(←−P 0,n,

−→
Q 0,n) with respect to ←−P (·|yn−1) ∈ MC1(X n) for a fixed

channel −→Q 0,n(·|xn) ∈ MC2(Yn). Since Theorem 2.6, Part A. A2) establishes weak
compactness and hence tightness of←−P (·|yn−1) ∈MC1(X n), it remains to show this set
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is closed. This is shown in the next lemma.

Lemma 2.1. (Compactness of ←−P (·|yn−1) ∈MC1(X n))
Suppose the conditions of Theorem 2.3, Part A. hold, and for each compact subset
K0,i−1 ⊂ X i−1, and each hi(·) ∈ BC(Xi),

lim
α−→∞

sup
xi−1∈K0,i−1

∣∣∣∣∣∣
∫
Xi
hi(x)pαi (dx|xi−1, yi−1)−

∫
Xi
hi(x)pi(dx|xi−1, yi−1)

∣∣∣∣∣∣ = 0, i ∈ Nn
0

(2.43)

Then,

←−
P α

0,n(dxn|yn−1) w−→
←−
P o

0,n(dxn|yn−1) (2.44)

i.e., the setMC1(X n) is closed with respect to the topology of weak convergence. More-
over, MC1(X n) is compact (i.e., closed and tight).

Proof. See Appendix A, Section A.3. �

Remark 2.5. (Compactness of channel input distributions with transmission cost)
In the presence of power constraints ←−P (·|yn−1) ∈ P0,n(P ) ⊂ QC1(X n|Yn−1), by Pro-
horov’s theorem (Chapter 8, Theorem 8.3), to show compactness of P0,n(P ), it is suf-
ficient to show that the latter is closed and uniformly tight. By invoking Lemma 2.1 it
suffices to show P0,n(P ) is a closed subset of the compact set MC1(X n). This case is
treated in Chapter 3.

Existence of optimal reproduction distribution of nonanticipative RDF.
Consider a special case of extremum problems of nonanticipative RDF defined by
(2.7), with distortion constraint defined by (2.8), when the source distribution is
causally independent of past reproduction symbols, that is, pi(dxi|xi−1, yi−1) =
µi(dxi|xi−1),−a.a.(xi−1, yi−1), i = 0, 1, . . . , n. Then, the finite time version of (2.7)
is given by

Rna
0,n(D) = inf−→

Q0,n(dyn|xn)∈Q0,n(D)

∫
Xn×Yn

log
(−→
Q 0,n(dyn|xn)
ν0,n(dyn)

)−→
Q 0,n(dyn|xn)⊗ µ0,n(dxn)

(2.45)

≡ inf−→
Q0,n(dyn|xn)∈Q0,n(D)

IXn→Y n(µ0,n,
−→
Q 0,n) (2.46)

where µ0,n(dxn) = ⊗ni=0µi(dxi|xi−1), ν0,n(dyn) =
∫
Xn
−→
Q 0,n(dyn|xn)⊗ µ0,n(dxn), and the
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fidelity constraint is defined by

Q0,n(D) 4=
{
−→
Q 0,n(dyn|xn) ∈MC2(Yn) :

1
n+ 1

∫
Xn×Yn

d0,n(xn, yn)−→Q 0,n(dyn|xn)⊗ µ0,n(dxn) ≤ D

}
, D ≥ 0

(2.47)

and d0,n : X n × Yn 7→ [0,∞], d0,n(xn, yn) 4= ∑n
i=0 ρi(xi, yi) is a measurable function

denoting the distortion function of reconstructing xi by yi, i = 0, 1, . . . , n.
The information nonanticipative RDF defined by (2.45), (2.47), is equivalent notion to
the nonanticipative epsilon entropy investigated by Gorbunov and Pinsker [57], and it
was first introduced by Charalambous et al. in [61] with respect to relations to filtering
theory.
The aim is to show existence of a conditional distribution −→Q 0,n(·|xn) ∈ MC2(Yn),
which achieves infimum in (2.45). Since Q0,n(D) ⊂ MC2(Yn), to show such a con-
ditional distribution exists, it is sufficient to show compactness of MC2(Yn) (closed
and uniformly tight), the set Q0,n(D) is a closed subset of MC2(Yn), and lower semi-
continuity of IXn→Y n(←−P 0,n,

−→
Q 0,n) with respect to −→Q(·|xn) ∈ MC2(Yn) for a fixed

µ0,n(dxn) ∈ M(X n). This can be done by invoking a combination of the assumptions
of Theorem 2.3 Part A. or Part B., depending on whether Yn is compact and X n is
arbitrary or X n is compact and Yn is arbitrary, respectively. Since in general, Yn ⊆ X n,
it is more appropriate to assume Yn is compact.

Lemma 2.2. (Compactness of −→Q(·|xn) ∈ Q0,n(D))
(1) Suppose X n are Polish spaces, and Yn is compact, the sequence {qn(·|·, ·) ∈
Q(Yn|Yn−1 × X n) : n ∈ N} are weakly continuous, i.e., it satisfies (2.41), and for
each compact subset Φ0,i−1 ⊂ Y i−1, and each hi(·) ∈ BC(Yi),

lim
α−→∞

sup
yi−1∈Φ0,i−1

∣∣∣∣∣∣
∫
Yi
hi(x)qαi (dy|yi−1, xi)−

∫
Yi
hi(y)qi(dy|yi−1, xi)

∣∣∣∣∣∣ = 0, ∀xi ∈ X i, i ∈ Nn
0 .

(2.48)

Then,

−→
Qα

0,n(dyn|xn) w−→
−→
Q o

0,n(dyn|xn)

i.e., the setMC2(Yn) is closed with respect to the topology of weak convergence. More-
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over, MC2(Yn) is compact (closed and tight).
(2) In addition, suppose the distortion function d0,n(xn, ·) : X n×Yn 7−→ [0,∞] is Borel
measurable relative to B(X n)⊗ B(Yn) and continuous on yn ∈ Yn.
Then, the fidelity set Q0,n(D) is compact (it is a closed subset of the set MC2(Yn)).

Proof. See Appendix A, Section A.4. �

Theorem 2.3 gives the flexibility of choosing either X n or Yn to be compact; it has
several applications in other existence problems of reformulating directed information.
In the following remark, we discuss such applications.

Remark 2.6. (1) Consider extremum problems of capacity for a class of channels
with memory and feedback, such as, arbitrary varying channels [64]. Such prob-
lems are defined by the max-min operations of directed information, where the
minimizer is over the class of channels [73]. To investigate such capacity prob-
lems one has to establish coding theorems, and showing compactness over the class
of channel conditional distributions, in addition to channel input distributions,
is critical. Theorem 2.3, Part B., B3) gives conditions of weak compactness of
channels −→Q 0,n(·|xn) ∈MC2(Yn).

(2) Consider extremum problems of sequential or nonanticipative lossy data compres-
sion for a class of sources. Then such problems are defined by min-max operations
of directed information, where the maximizer is over the class of source distribu-
tions [74]. To investigate such data compression problems one has to establish
coding theorems, and to show compactness over the class of source distributions,
in addition to the reproduction distributions, Theorem 2.3, Part A., A3) is cru-
cial.

2.3.5. Lower Semicontinuity of Directed Information

We are now ready to utilize the results of Theorem 2.3, to show lower semiconti-
nuity of directed information I(Xn → Y n) ≡ IXn→Y n(←−P 0,n,

−→
Q 0,n). This may be

viewed as a generalization of lower semicontinuity of mutual information I(Xn;Y n) ≡
IXn;Y n(PXn , QY n|Xn), with respect to PXn for fixed QY n|Xn , and with respect to QY n|Xn

for fixed PXn .

Theorem 2.4. (Lower semicontinuity)
1) Suppose the conditions in Theorem 2.3, Part A., hold.
For fixed ←−P 0,n(·|yn−1) ∈ MC1(X n), if the family MC2(Yn) is closed

(
i.e.,
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{
−→
Qα

0,n(·|xn) : α = 1, 2, . . .} ∈ MC2(Yn) converges weakly to −→Q o
0,n(·|xn) ∈ MC2(Yn)

)
then

IXn→Y n(←−P 0,n,
−→
Q o

0,n) ≤ lim inf
α−→∞

IXn→Y n(←−P 0,n,
−→
Qα

0,n)

i.e., IXn→Y n(·,−→Q 0,n) is lower semicontinuous on −→Q 0,n(·|xn) ∈MC2(Yn).
2) Suppose the conditions in Theorem 2.3, Part B., hold.
For fixed −→

Q 0,n(·|xn) ∈ MC2(Yn), if the family MC1(X n) is closed(
i.e.,{←−P α

0,n(·|yn−1) : α = 1, 2, . . .} ∈ MC1(X n) converges weakly to
←−
P o

0,n(·|yn−1) ∈MC1(X n)
)

then

IXn→Y n(←−P o
0,n,
−→
Q 0,n) ≤ lim inf

α−→∞
IXn→Y n(←−P α

0,n,
−→
Q 0,n)

i.e., IXn→Y n(←−P 0,n, ·) is lower semicontinuous on ←−P 0,n(·|yn−1) ∈MC1(X n).

Proof. See Appendix A, Section A.5. �

Recall that conditions for the sets MC1(X n), MC2(Yn) to be closed are given in
Lemma 2.1 and Lemma 2.2, respectively.
Comparing Theorem 2.4, 1), with the lower semicontinuity of mutual information
I(Xn;Y n) ≡ IXn;Y n (PXn , QY n|Xn), it is clear that directed information requires addi-
tional assumptions for its derivation (e.g., those given in Theorem 2.3).
Theorem 2.3 together with Theorem 2.4 are important to establish existence of the
optimal reproduction distribution for the nonanticipative rate distortion functions de-
fined by (2.7) [61] (by utilizing Weierstrass’ Theorem) and in general extremum prob-
lems of directed information involving minimization over −→Q 0,n(·|xn) in some subset of
MC2(Yn). This is formally stated in the next theorem.

Theorem 2.5. (Existence of information nonanticipative RDF)
Under the conditions of Lemma 2.2 and Theorem 2.4, the infimum over −→Q 0,n(·|xn) ∈
Q0,n(D) in Rna

0,n(D), defined by (2.45), is achieved by some −→Q ∗0,n(·|xn) ∈ Q0,n(D).

2.3.6. Continuity of Directed Information

Many problems in information theory involve extremum problems defined as maximiza-
tions of directed information, with respect to the feedback channels {pi(dxi|xi−1, yi−1) ∈
M(Xi) : i = 0, 1, . . . , n}, such as, the extremum problem of feedback capacity of chan-
nels with memory with transmission cost constraint defined by (2.5). For such prob-
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lems it is desirable to have upper semicontinuity of directed information with respect to
←−
P 0,n(·|yn−1) ∈ MC1(X n). Since by Theorem 2.4, directed information is lower semi-
continuous with respect to ←−P 0,n(·|yn−1) ∈ MC1(X n), to investigate extremum prob-
lems involving feedback capacity (maximization problems), it is sufficient to show con-
tinuity of the functional IXn→Y n(←−P 0,n,

−→
Q 0,n) with respect to ←−P 0,n(·|yn−1) ∈MC1(X n)

for a fixed −→Q 0,n(·|xn) ∈ MC2(Yn). Continuity of mutual information based on single
letter expression is shown in [64, Lemma 7], and in [65, Theorem 3.2] under weaker
conditions. Here, we show continuity of directed information by following the proce-
dure in [65], generalized to the directed information functional IXn→Y n(←−P 0,n,

−→
Q 0,n).

First, we shall need the following Lemma.

Lemma 2.3.
For a given ←−P 0,n(·|·) ∈ QC1(X n|Yn−1) and −→Q 0,n(·|·) ∈ QC2(Yn|X n) define

∣∣∣IXn→Y n
∣∣∣(←−P 0,n,

−→
Q 0,n) 4=

∫
Xn×Yn

∣∣∣∣∣∣ log
(d(←−P 0,n ⊗

−→
Q 0,n)

d(←−P 0,n ⊗ ν0,n)

)∣∣∣∣∣∣d(←−P 0,n ⊗
−→
Q 0,n).

Then the following inequalities hold.

IXn→Y n(←−P 0,n,
−→
Q 0,n) ≤ |IXn→Y n|(

←−
P 0,n,

−→
Q 0,n) ≤ IXn→Y n(←−P 0,n,

−→
Q 0,n) + 2

e ln 2 . (2.49)

Proof. Recall directed information defined in Remark 2.2. Then

IXn→Y n(←−P 0,n,
−→
Q 0,n) =

∫
Xn×Yn

log
d(←−P 0,n ⊗

−→
Q 0,n)

d(←−P 0,n ⊗ ν0,n)

d(←−P 0,n ⊗
−→
Q 0,n)

=
∫
Xn×Yn

log
d(←−P 0,n ⊗

−→
Q 0,n)

d(←−P 0,n ⊗ ν0,n)

d(←−P 0,n ⊗
−→
Q 0,n)

d(←−P 0,n ⊗ ν0,n)

d(←−P 0,n ⊗ ν0,n).

(2.50)

The first inequality in (2.49) is obvious. To show the second inequality in (2.49), recall
the inequality [39, Section 2.3, p. 13] − 1

e ln 2 ≤ x log2 x, x ∈ [0,∞) (0 log 0 is assumed
to be 0). Then,

|x log2 x| ≤ x log2 x+ 2
e ln 2 . (2.51)

Using (2.51) in (2.50), with x =
(
d(←−P 0,n⊗

−→
Q0,n)

d(←−P 0,n⊗ν0,n)

)
, establishes the second inequality in

(2.49). �
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Now, we are ready to state the Theorem which establishes continuity with respect
to weak convergence of IXn→Y n(←−P 0,n,

−→
Q 0,n) for a fixed −→Q 0,n(·|xn) ∈ MC2(Yn), as a

functional of ←−P 0,n(·|yn−1) ∈MC1(X n).

Theorem 2.6. (Continuity)
Consider a forward channel −→Q 0,n(·|xn) ∈ MC2(Yn), and a closed family of feedback
channels ←−P 0,n(·|yn−1) ∈ MC1,cl(X n) ⊆ MC1(X n). Suppose the following conditions
hold.

A) There exists a measure ν̄0,n(dyn) on Yn such that −→Q 0,n(·|xn)� ν̄0,n(dyn) with RND
or density ξν̄0,n(xn, yn) 4= d

−→
Q0,n(·|xn)
dν̄0,n(·) (yn).

B) The RND ξν̄0,n(xn, yn) is continuous on X n×Yn, and ξν̄0,n(xn, yn) log ξν̄0,n(xn, yn) is
uniformly integrable over

{(
ν̄0,n ⊗

←−
P 0,n

)
(dxn, dyn) :←−P 0,n(·|yn−1) ∈MC1,cl(X n)

}
.

C) For a fixed yn ∈ Yn, the RND ξν̄0,n(xn, yn) is uniformly integrable over MC1,cl(X n).
Then, IXn→Y n(←−P 0,n,

−→
Q 0,n) as a functional of ←−P 0,n(·|·) ∈ MC1,cl(X n) is bounded and

weakly continuous over MC1,cl(X n), for fixed −→Q 0,n(·|xn) ∈MC2(Yn).

Proof. The derivation is shown in Appendix A, Section A.6. �

Note that Theorem 2.3 gives conditions for weak compactness of ←−P 0,n(·|yn−1) ∈
MC1(X n), and Lemma 2.1 gives conditions for compactness of ←−P 0,n(·|yn−1) ∈
MC1(X n). In addition, Theorem 2.6 gives conditions of weak continuity of
IXn→Y n(←−P 0,n,

−→
Q 0,n) with respect to ←−P 0,n(·|yn−1) ∈ MC1(X n), for fixed −→Q 0,n(·|xn) ∈

MC2(Yn). Hence, sufficient conditions are identified to address existence of solution
to the extremum problem of feedback capacity. This is stated in the next theorem.

Theorem 2.7. (Existence of information feedback capacity without transmission cost
constraint)
Under the conditions of Lemma 2.1 and Theorem 2.6, the supremum over
←−
P 0,n(·|yn−1) ∈MC1(X n) in the extremum problem of information feedback capacity

CFB
0,n

4= sup
{PXi|Xi−1,Y i−1 : i∈Nn0 }∈MC1(Xn)

1
n+ 1I(Xn → Y n) (2.52)

is achieved by some ←−P ∗0,n(·|yn−1) ∈MC1(X n).
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2.3.7. Extension of Directed Information to Arbitrary
sequences of RV’s

In this section, we demonstrate how the previous results are easily generalized to three,
or more, sequences of RV’s. These extensions have implications in communication
networks, and in communication with side information at either the transmitter or
the receiver [23,24].
To facilitate the demonstration, first consider the following case.

Case 1: The sequence of RV’s Xn ∈ X n is defined by Xn = (X1,n, X2,n) ∈ X 1,n ×
X 2,n ≡ X n, where X1,n = {X1

i : i = 0, 1, . . . , n} and X2,n = {X2
i : i = 0, 1, . . . , n}.

Then, the two sequences of conditional distributions are
{pi(dx1

i , dx
2
i |x1,i−1, x2,i−1, yi−1) : i = 0, 1, . . . , n} and {qi(dy1

i |y1,i−1, x1,i, x2,i) : i =
0, 1, . . . , n}, respectively. Consequently, the constructions of consistent families
of conditional distributions, and the results obtained so far, extend naturally to
directed information I(X1,n,X2,n)→Y n(←−P 0,n,

−→
Q 0,n), where ←−P 0,n(dx1,n, dx2,n|yn−1) =

⊗ni=0pi(dx1
i , dx

2
i |x1,i−1, x2,i−i, yi−1), and −→Q 0,n(dyn|x1,n, x2,n) = ⊗ni=0qi(dyi|yi−1, x1,i, x2,i).

Next, we consider the following case.

Case 2: The sequence of RV’s Y n ∈ Yn is defined by Y n 4= (Y 1,n, Y 2,n) ∈ Y1,n×Y2,n ≡
Yn, where Y 1,n = {Y 1

i : i = 0, 1, . . . , n} and Y 2,n = {Y 2
i : i = 0, 1, . . . , n}.

Then, the two sequences of conditional distributions are {pi(dxi|xi−1, y1,i−1, y2,i−1) :
i = 0, 1, . . . , n} and {qi(dy1

i , dy
2
i |y1,i−1, y2,i−1, xi) : i = 0, 1, . . . , n},

respectively. Consequently, the constructions of consistent fami-
lies of conditional distributions, and the results obtained so far, ex-
tend naturally to directed information IXn→(Y 1,n,Y 2,n)(

←−
P 0,n,

−→
Q 0,n), where

←−
P 0,n(dxn|y1,n−1, y2,n−1) = ⊗ni=0pi(dxi|xi−1, y1,i−i, y2,i−1), and −→Q 0,n(dy1,n, dy2,n|xn) =
⊗ni=0qi(dy1

i , dy
2
i |y1,i−1, y2,i−1, xi).

Clearly, Case 1 and Case 2 can be generalized to an arbitrary number of sequences
of RV’s.
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2.4. Additional Discussion

2.4.1. Directed Information as a Functional of Sequences of
Conditional Distributions

The equivalent representations (2.29)-(2.31) are obtained from the definition of condi-
tional mutual information I(X i;Yi|Y i−1), by invoking the chain rule of relative entropy
and the relation between absolute continuity of measures (Chapter 8, Theorem 8.9 and
Lemma 8.1). These are also discussed formally in [43]. Indeed, if P0,i(·, ·|yi−1) �
P0,i(·|yi−1) × νi(·|yi−1), νi−1−almost all yi−1 ∈ Y i−1 then by the Radon-Nikodym
theorem there exists a version of the RND ξi(xi, yi)

4= dP0,i(·,·|yi−1)
d(P0,i(·|yi−1)×νi(·|yi−1))(x

i, yi)
which is non-negative for all i = 0, 1, . . . , n. Moreover, by Lemma 8.1, Chapter 8,
P0,i(·, ·|yi−1) � P0,i(·|yi−1) × νi(·|yi−1), ν0,i−1−almost all yi−1 ∈ Y i−1 if and only if
qi(·|yi−1, xi) � νi(·|yi−1), P0,i−almost all (xi, yi−1) ∈ X i × Y i−1, i = 0, 1, . . . , n, and
in this case the RND ξi(xi, yi) represents a version of dqi(·|yi−1,xi)

dνi(·|yi−1) (yi), P0,i−almost
all (xi, yi−1) ∈ X i × Y i−1, i = 0, 1, . . . , n (formally obtained via the decomposition
P0,i(dxi, dyi|yi−1) = P0,i(dxi|yi−1)⊗ qi(dyi|yi−1, xi)).
Hence, when the RND ξi(xi, yi) exists, repeated application of chain rule, Theorem 8.9,
Chapter 8, or following the derivation of Theorem in [43, Theorem B.2.1] (this is a very
lengthy procedure), yields that (2.31) is obtained from (2.29). Similarly, starting with
(2.31) one also obtains (2.29). Note that (2.29) and (2.31) are valid even when the
RND do not exist in which case (2.29) and (2.31) take the value +∞.

2.4.2. Directed Information as the Supremum over Finite
Partitions

In this section we illustrate how directed information can be equivalently defined as
a supremum over appropriate partition of measurable spaces with respect to P(·|·) ∈
QC1(X N0 |YN0) and Q(·|·) ∈ QC2(YN0|X N0). Recall that relative entropy or information
divergence of two probability measures P and Q (on a σ-algebra) of subsets of a Polish
space is also defined [43] as

D(P||Q) 4= sup
π∈Π(Z)

∑
A∈π

P(A) log P(A)
Q(A) (2.53)

where Π(Z) denotes the class of all finite measurable partitions of Z. In (2.53), the
summation takes the value 0 if P(A) = 0 and the value +∞ if P(A) > 0 and Q(A) = 0.
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Thus, π 4= {A1, . . . , Am(Π)} ∈ Π(Z) is a partition of Z if Aj, j = 1, . . . ,m(Π), are
measurable and Ai ∩Aj = {∅}, ∀i 6= j, ⋃m(Π)

i=1 = Z. According to Dobrushin’s theorem
[39], under certain conditions mutual information I(X;Y ) = D(PX,Y ||PX ×PY ) of two
arbitrary RV’s X and Y can be represented as a supremum of mutual information of
discrete RV’s corresponding to quantization of Y and X. Next, we utilize Dobrushin’s
theorem to represent directed information.
Recall the following condition from Pinsker [39]. Given any set Z and a σ-algebra of
its subsets, let ∆(Z) be a class of partitions of π 4= {A1, . . . , Am(Π)} of Z such that
1) any π1 ∈ ∆(Z) and π2 ∈ ∆(Z) have a common refinement π ∈ ∆(Z), and 2) the
algebra of all finite unions of atoms of partitions ∆(Z) generates the given σ-algebra.
Then (2.53) is valid with the supremum taken over π ∈ ∆(Z) ⊆ Π(Z).
For product spaces Z 4= X × Y , 1) and 2) hold for the class of product partitions
π
4= A × B with atoms Ai × Bj, i = 1, . . . ,m(A), j = 1, . . . ,m(B), if A and B range

over classes of partitions X and Y , respectively, having properties 1) and 2).
Let Zn 4= X n × Yn and consider the class of product partitions π0,n

4= ×nk=0(Ak × Bk)
with Ak × Bk atoms Ak,i × Bk,j, i = 1, . . . ,m(Ak), j = 1, . . . ,m(Bk), where Ak and
Bk range over the classes of partitions of Xk and Yk, respectively, having properties 1)
and 2), k = 0, 1, . . . , n, denoted by ∆(Zn).
For any P(·|y) ∈ QC1(X N0|YN0) and Q(·|x) ∈ QC2(YN0 |X N0), directed information is
defined by

D(←−P 0,n ⊗
−→
Q 0,n||

−→Π 0,n)

, sup
π0,n∈∆(Zn)

∑
A0,n∈π0,n

log
d(←−P 0,n ⊗

−→
Q 0,n)(A0,n)

d
−→Π 0,n(A0,n)

 (←−P 0,n ⊗
−→
Q 0,n)(A0,n). (2.54)

Similarly, an equivalent definition of directed information as a supremum over partitions
is obtained via (2.37).

2.5. Conclusion

In this chapter we derive functional and topological properties of directed information
defined on abstract Polish spaces. We establish convexity of the sets of (nonanticipa-
tive) causally conditioned convolutional distributions, used to defined directed infor-
mation and we show convexity and concavity of directed information with respect to
these distributions. We provide a novel theorem on weak compactness of causally con-
ditioned convolutional distributions, and weak convergence of joint distributions and
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60 Directed Information on Abstract Spaces: Properties and Applications

marginal distributions associated with directed information. We use these results to
show lower semicontinuity of directed information as a functional of two causally condi-
tioned convolutional distributions, and under certain conditions continuity of directed
information with respect to the causally conditioned convolutional input distributions.
These functional and topological properties may be viewed as generalizations of anal-
ogous functional and topological properties of mutual information. The results of this
chapter can be used to address extremum problems of directed information functional
for point-to-point communications and for network communications.
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3
Sequential Variational Equalities of

Directed Information

3.1. Introduction

In this chapter, we derive two variational equalities of information theory involving
directed information along with their sequential versions. The role of variational equal-
ities in information theory is fundamental and it can be decomposed into two big areas
of both theoretical and practical interest.

(1) They are needful in generalizing Blahut-Arimoto computation schemes of single
letter mutual information expressions [21] to sequential Blahut-Arimoto schemes,
involving extremum problems of directed information, such as, in problems of
evaluating feedback capacity;

(2) They serve as a tool to find structural properties of the probability distributions
related to problems involving directed information (and mutual information) by
providing upper or lower bounds which are achievable over specific sets of dis-
tributions, such as, in entropy maximization with and without constraints. In
particular, for the extremum problem of capacity of feedback channels with mem-
ory with or without transmission cost, these achievable bounds depend on the

61
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62 Sequential Variational Equalities of Directed Information

structural properties of the channel conditional distributions and the transmis-
sion cost functions.

3.1.1. Literature Review and Main Results

The variational equalities of directed information may be viewed as generaliza-
tions of the well-known variational equalities of mutual information I(Xn;Y n) ≡
IXn;Y n(PXn , PY n|Xn), expressed as minimizations or maximizations of relative entropy
functionals, as follows [22].

Min: Given a channel distribution PY n|Xn(dyn|xn), a source distribution PXn , and any
arbitrary distribution VY n(dyn) on Yn then

IXn;Y n(PXn , PY n|Xn)

= inf
VY n (dyn)∈M(Yn)

∫
Xn×Yn

log
(
dPY n|Xn(·|xn)

dVY n(·) (yn)
)
PY n|Xn(dyn|xn)⊗ PXn(dxn) (3.1)

and the infimum is achieved at VY n(dyn) ≡ PY n(dyn) given by

PY n(dyn) =
∫
Xn
PY n|Xn(dyn|xn)⊗ PXn(dxn). (3.2)

Max: Given a channel distribution PY n|Xn(dyn|xn), a source distribution PXn(dxn),
and any arbitrary conditional distribution VXn|Y n(dxn|yn) on X n parametrized by yn ∈
Yn then

IXn;Y n(PXn , PY n|Xn)

= sup
VXn|Y n (dxn|yn)∈M(Xn)

∫
Xn×Yn

log
(
dVXn|Y n(·|yn)
dPXn(·) (xn)

)
PY n|Xn(dyn|xn)⊗ PXn(dxn)

(3.3)

and the supremum is achieved at VXn|Y n(dxn|yn) ≡ PXn|Y n(dxn|yn) given by

PXn|Y n(dxn|yn) = PY n|Xn(dyn|xn)⊗ PXn(dxn)∫
Xn PY n|Xn(dyn|xn)⊗ PXn(dxn) . (3.4)

That is, in (3.1) and (3.3) the optimal distribution is generated by the joint distribution
induced by {PY n|Xn , PXn}. Both variational equalities are used in the Blahut-Arimoto
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3.1 Introduction 63

algorithm (BAA) [21,22] to derive iterative computational schemes for channel capacity
of memoryless channels, via max-max operations, and for RDF of memoryless sources
via mini-min operations.
A version of (3.3) is applied in [25, eq. (9)] to develop a BAA for capacity of channels
with memory and feedback, defined on finite alphabet spaces. Specifically, the authors
in [25] consider causally conditioned probability mass functions (pmf), P (xn||yn−1) 4=
Πn
i=0P (xi|xi−1, yi−1), Q(yn||xn) 4= Πn

i=0Q(yi|yi−1, xi), where P (yn) = Πn
i=0P (yi|yi−1)

is generated by P (xn, yn) 4= P (xn||yn−1) ⊗ Q(yn||xn) = Πn
i=0P (xi|xi−1, yi−1) ⊗

Q(yi|yi−1, xi), and utilize the identity P (xn|yn) = Πn
i=0Q(xi|xi−1, yn), to rewrite

Q(yn||xn)
P (yn) = P (xn|yn)

P (xn||yn−1) , and to express (3.3) as follows.

I(Xn → Y n) = sup
P (xn||yn−1)

∑
(xn,yn)∈Xn×Yn

log
(

P (xn|yn)
P (xn||yn−1)

)
P (xn||yn−1)⊗Q(yn||xn).

(3.5)

Based on (3.5), the authors in [25] developed an algorithm which computes the causally
conditioned product P ∗(xn||yn−1) that maximizes (3.5), similar to the BAA [21,22] but
over the product space X n = ×ni=0Xi.
The same authors utilize a version of (3.1) in [26, eq. (21)] to develop a BAA for RDF
with feedforward for stationary and ergodic sources defined on finite alphabet spaces.
Specifically, they consider causally conditioned pmf, P (xn||yn) 4= Πn

i=0P (xi|xi−1, yi),
Q(yn||xn−1) 4= Πn

i=0Q(yi|yi−1, xi−1), where P (xn) = Πn
i=0P (xi|xi−1) is the source pmf

generated by P (xn, yn) 4= P (xn) ⊗ Q(yn|xn) = Πn
i=0P (xi|xi−1) ⊗ Q(yi|yi−1, xn), and

utilize the identity P (xn||yn)
P (xn) = Q(yn|xn)

Q(yn||yn−1) to express (3.1) as follows.

I(Y n → Xn) = inf
Q(yn|xn)

∑
(xn,yn)∈Xn×Yn

log
(

Q(yn|xn)
Q(yn||xn−1)

)
Q(yn|xn)⊗ P (xn). (3.6)

Based on (3.6), the authors in [25] developed an algorithm which computes the non-
causal conditioned product Q∗(yn|xn) that minimizes (3.6), similar to the BAA [21,22]
but over the product space Yn = ×ni=0Yi.

Recently, in [37] the author point out the importance of variational equalities in iden-
tifying the information structures of capacity achieving channel input conditional dis-
tributions for feedback channels with memory and transmission cost. This issue, is
further elaborate in [49] where a variational equality derived in this chapter plays a
key role as a part of a two-step procedure in order to identify the information structures
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64 Sequential Variational Equalities of Directed Information

of the capacity achieving distributions for feedback channels with limited memory and
certain transmission cost.

Unlike the results in [25, 26], in this chapter we aim into developing sequential vari-
ational equalities of directed information and in illustrating one of their applications
in developing sequential versions of iterative algorithms similar to BAA for comput-
ing feedback capacity of channels with memory. The results discussed in this chapter
serve as a basis for the results derived in Chapter 5 regarding the computation of feed-
back capacity via sequential necessary and sufficient conditions of certain channels with
memory and feedback.

3.2. Formulation of Nonanticipative Channels and
Directed Information Functional

In this section, we adopt the mathematical framework introduced in Chapter 2, Sec-
tion 3.2 to establish two equivalent definitions of the sequence of conditional distribu-
tions, which define any probabilistic channel with nonanticipative (causal) feedback,
that relate causally the input-output behavior of the channel.

Notation. Let N0
4= {0, 1, 2, . . .}, and Nn

0
4= {0, 1, 2, . . . , n}. Introduce two sequence

of measurable spaces {(Xn,B(Xn)) : n ∈ N0} and {(Yn,B(Yn)) : n ∈ N0}, where B(Xn)
and B(Yn) are Borel σ−algebras of subsets of Xn and Yn, respectively. Points in X N0 4=
×n∈N0Xn, YN0 4= ×n∈N0Yn are denoted by x 4= {x0, x1, . . .} ∈ X N0 , y 4= {y0, y1, . . .} ∈
YN0 , and their restrictions to finite coordinates by xn

4= {x0, x1, . . . , xn} ∈ X n, yn
4=

{y0, y1, . . . , yn} ∈ Yn, for n ∈ N0. Let B(X N0) 4= �i∈N0B(Xi), B(YN0) 4= �i∈N0B(Yi)
denote the σ−algebras on X N0 , YN0 , respectively, generated by cylinder sets. Hence,
B(X n) and B(Yn) denote the σ−algebras of cylinder sets in X N0 and YN0 , respec-
tively, with bases over Ai ∈ B(Xi), Bi ∈ B(Yi), i = 0, 1, . . . , n, respectively. The set of
stochastic kernels on Y given X is denoted by Q(Y|X ).
Feedback Channel. Suppose for each n ∈ N0, the distributions {pn(dxn|xn−1, yn−1) :
n ∈ N0} with p0(dx0|x−1, y−1) 4= p0(x0) satisfy the following conditions.
i) For n ∈ N0, pn(·|xn−1, yn−1) is a probability measure on B(Xn);
ii) For every An ∈ B(Xn), n ∈ N0, pn(An|xn−1, yn−1) is a �n−1

i=0

(
B(Xi) � B(Yi)

)
-

measurable function of xn−1 ∈ X n−1, yn−1 ∈ Yn−1.
Let C ∈ B(X n) be a cylinder set of the form C

4=
{
x ∈ X N0 : x0 ∈ C0, x1 ∈ C1, . . . , xn ∈
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Cn
}
, Ci ∈ B(Xi), i ∈ Nn

0 . Define a family of measures P(·|y) on B(X N0) by

P(C|y) 4=
∫
C0
p0(dx0) . . .

∫
Cn
pn(dxn|xn−1, yn−1) (3.7)

≡
←−
P 0,n(C0,n|yn−1), C0,n = ×ni=0Ci. (3.8)

The notation ←−P 0,n(·|yn−1) denotes the restriction of the measure P(·|y) on cylinder
sets C ∈ B(X n), for n ∈ N0.
Thus, if conditions i) and ii) hold then for each y ∈ YN0 , the right hand side of (3.7)
defines a consistent family of finite-dimensional distribution on (X N0 ,B(X N0)), and
hence there exists a unique measure on (X N0 ,B(X N0)), from which pn(dxn|xn−1, yn−1)
is obtained. This is the usual definition of a feedback channel (its input distribution),
as a family of functions pn(dxn|xn−1, yn−1) satisfying conditions i) and ii).
An alternative, equivalent definition of a feedback channel is established as follows.
Consider a family of measures P(·|y) on (X N0 ,B(X N0)) satisfying the following consis-
tency condition.

C1: If E ∈ B(X n), then P(E|y) is B(Yn−1)−measurable function of y ∈ YN0 .
The set of such measures is denoted by QC1(X N0|YN0). For Polish spaces, it can be
shown that for any family of measures P(·|y) satisfying C1 one can construct a collec-
tion of conditional distributions {pn(dxn|xn−1, yn−1) : n ∈ N0} satisfying conditions i)
and ii) which are connected with P(·|y) via relation (3.7).
Feedforward Channel. The previous methodology can be repeated for the collection
of distributions {qn(dyn|yn−1, xn) : n ∈ N0} which satisfy similar conditions to i) and
ii). Similarly as before, define a family of measures Q(·|x) on B(YN0) by

Q(D|x) 4=
∫
D0
q0(dy0|x0) . . .

∫
Dn
qn(dyn|yn−1, xn) ≡ −→Q 0,n(D0,n|xn), D0,n ∈ B(Yn).

(3.9)

Then, (3.9) is a unique measure on (YN0 ,B(YN0)) from which {qn(dyn|yn−1, xn) : n ∈
N0} is obtained.
An equivalent definition of a feedforward channel is a family of measures Q(D|x)
satisfying the following consistency condition.

C2: If F ∈ B(Yn), then Q(F |x) is B(X n)−measurable function of x ∈ X N0 .

The set of such measures is denoted by QC2(YN0|X N0). Then, for any family of mea-
sures Q(·|x) on (YN0 ,B(YN0)) satisfying C2 one can construct a collection of condi-
tional distributions {qn(dyn|yn−1, xn) : n ∈ N0} which are connected with Q(·|x) via
relation (3.9).
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66 Sequential Variational Equalities of Directed Information

In what follows, we define directed information by first introducing the measures of
interest constructed from the basic consistent families of conditional distributions in-
troduced earlier. Introduce the following notation.
For fixed y ∈ YN0 , define the probability distributions on X N0 by

MC1(X N0) 4=
{
P(·|y) ∈M(X N0) : consistency condition C1 holds

}
(3.10)

and the set of stochastic kernels by

QC1(X N0 |YN0) 4=
{
P(·|y) ∈M(X N0) : y ∈ YN0 and consistency condition C1 holds

}
≡
{
P(·|·) ∈ Q(X N0|YN0) : consistency condition C1 holds

}
. (3.11)

Similarly, for fixed x ∈ X N0 , define the probability distributions on YN0 by

MC2(YN0) 4=
{
Q(·|x) ∈M(YN0) : consistency condition C2 holds

}
(3.12)

and the set of stochastic kernels by

QC2(YN0|X N0) 4=
{
Q(·|x) ∈M(YN0) : x ∈ X N0 and consistency condition C2 holds

}
≡
{
Q(·|·) ∈ Q(YN0|X N0) : consistency condition C2 holds

}
. (3.13)

The projection of MC1(X N0), MC2(YN0), QC1(X N0|YN0), and QC2(YN0|X N0) to fi-
nite number of coordinates is denoted by MC1(X n), MC2(Yn) QC1(X n|Yn−1), and
QC2(Yn|X n), respectively.
Next, we define the distributions of interest. Given any P(·|·) ∈ QC1(X N0|YN0) and
Q(·|·) ∈ QC2(YN0|X N0) we define the following measures.

P1: The joint distribution on X N0 ×YN0 defined uniquely for Ai ∈ B(Xi), Bi ∈ B(Yi),
∀i ∈ Nn

0 , by

(←−P 0,n ⊗
−→
Q 0,n)(×ni=0(Ai×Bi))

4=P
{
X0∈A0, Y0 ∈ B0, . . . , Xn∈An, Yn∈Bn

}
=
∫
A0
p0(dx0)

∫
B0
q0(dy0|x0) . . .

∫
An
pn(dxn|xn−1, yn−1)

∫
Bn
qn(dyn|yn−1, xn). (3.14)

Formally, the (n + 1) fold compound joint distribution defined by (2.21) is written as
(←−P 0,n ⊗

−→
Q 0,n)(dxn, dyn) or ←−P 0,n(dxn|yn−1)⊗−→Q 0,n(dyn|xn).

P2: The marginal distributions on X N0 of the sequence {Xn : n ∈ N0} defined uniquely
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by

µ0,n(×ni=0Ai)
4= P

{
X0 ∈ A0, Y0 ∈ Y0, . . . , Xn ∈ An, Yn ∈ Yn

}
, Ai ∈ B(Xi), ∀i ∈ Nn

0

= (←−P 0,n ⊗
−→
Q 0,n)(×ni=0(Ai × Yi))

=
∫
A0
p0(dx0)

∫
Y0
q0(dy0|x0) . . .

∫
An
pn(dxn|xn−1, yn−1)

∫
Yn
qn(dyn|yn−1, xn). (3.15)

Formally, (3.15) is written as µ0,n(dxn) = (←−P 0,n ⊗
−→
Q 0,n)(dxn,Yn), and by Bayes’ rule

µ0,n(dxn) = ⊗ni=0µi(dxi|xi−1).

P3: The marginal distributions on YN0 of the sequence {Yn : n ∈ N0} defined uniquely
by

ν0,n(×ni=0Bi)
4= P

{
X0 ∈ X0, Y0 ∈ B0, . . . , Xn ∈ Xn, Yn ∈ Bn

}
, Bi ∈ B(Yi), ∀i ∈ Nn

0

= (←−P 0,n ⊗
−→
Q 0,n)(×ni=0(Xi ×Bi))

=
∫
X0
p0(dx0)

∫
B0
q0(dy0|x0) . . .

∫
Xn
pn(dxn|xn−1, yn−1)

∫
Bn
qn(dyn|yn−1, xn). (3.16)

Formally, (3.16) is written as ν0,n(dyn) = (←−P 0,n ⊗
−→
Q 0,n)(X n, dyn), and by Bayes’ rule

ν0,n(dyn) = ⊗ni=0νi(dyi|yi−1).

P4: The distribution −→Π 0,n : B(X n)⊗ B(Yn) 7→ [0, 1] defined uniquely by

−→Π 0,n(×ni=0(Ai×Bi))
4= (←−P 0,n ⊗ ν0,n)(×ni=0(Ai×Bi)), Ai ∈ B(Xi), Bi ∈ B(Yi), ∀i ∈ Nn

0

=
∫
A0
p0(dx0)

∫
B0
ν0(dy0)

∫
A1
p1(dx1|x0, y0)

∫
B1
ν1(dy1|y0) . . .

. . .
∫
An
pn(dxn|xn−1, yn−1)

∫
Bn
νn(dyn|yn−1). (3.17)

Formally, (3.17) is written as −→Π 0,n(dxn, dyn) =←−P 0,n(dxn|yn−1)⊗ ν0,n(dyn) ∈M(X n×
Yn).

Using the first definition of basic processes, that is, given a collection of stochastic
kernels {pn(·|·, ·) ∈ Q(Xn|X n−1 × Yn−1) : n ∈ N0} and {qn(·|·, ·) ∈ Q(Yn|Yn−1 × X n) :
n ∈ N0}, the joint distribution, as well as the conditional distributions are defined
via P1−P4. Consequently, it is well-known that directed information is defined via
relative entropy as follows [8]

I(Xn → Y n) 4=
n∑
i=0

I(X i;Yi|Y i−1)
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=
n∑
i=0

∫
Yi−1

∫
X i×Yi

log
 dP0,i(·, ·|yi−1)
d
(
P0,i(·|yi−1)× νi(·|yi−1)

)(xi, yi)
P0,i(dxi, dyi|yi−1)P0,i−1(dyi−1)

(3.18)

=
n∑
i=0

∫
X i×Yi−1

D
(
qi(·|yi−1, xi)||νi(·|yi−1)

)
pi(dxi|xi−1, yi−1)

⊗i−1
j=0

(
qj(dyj|yj−1, xj)⊗ pj(dxj|xj−1, yj−1)

)
(3.19)

≡ IXn→Y n(pi(·|·, ·), qi(·|·, ·) : i = 0, 1, . . . , n). (3.20)

The RHS in (3.18) follows from the definition of conditional mutual information. In
(3.20), we use the notation IXn→Y n(pi(·|·, ·), qi(·|·, ·) : i = 0, 1, . . . , n) to indicate that
I(Xn → Y n) is a functional of {pi(·|·, ·) ∈ Q(Xi|X i−1 × Y i−1), qi(·|·, ·) ∈ Q(Yi|Y i−1 ×
X i) : i = 0, 1, . . . , n}.

Moreover, by invoking the definition of directed information and measures P1-P4,
it can be shown by repeated application of chain rule of relative entropy [43] that

I(Xn → Y n) = D(←−P 0,n ⊗
−→
Q 0,n||

−→Π 0,n) (3.21)

=
∫
Xn×Yn

log
d−→Q 0,n(·|xn)

dν0,n(·) (yn)
 (←−P 0,n ⊗

−→
Q 0,n)(dxn, dyn) (3.22)

≡ IXn→Y n(←−P 0,n,
−→
Q 0,n).

The notation IXn→Y n(·, ·) indicates the functional dependence of I(Xn → Y n) on
{
←−
P 0,n,

−→
Q 0,n}.

3.3. Variational Equalities of Directed Information

In this section, our emphasis is to develop variational equalities of directed information,
and equivalent sequential variational equalities.
The variational equalities of directed information are based on two families of
distributions, similar to P(·|·) ∈ QC1(X N0|YN0) and Q(·|·) ∈ QC2(YN0 |X N0), which
are introduced below.
Let P0,n(dxn, dyn) = ←−P 0,n(dxn|yn−1) ⊗ −→Q 0,n(dyn|xn) be the given distribution con-
structed from the basic feedback channel P(·|y) ∈ MC1(X N0) and forward channel
Q(·|x) ∈MC2(YN0) (by projection onto finite number of coordinates).
Let S(·|x) be any probability measure on (YN0 ,B(YN0)) depending parametrically on
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x ∈ X N0 satisfying the following consistency condition.

C3: If F ∈ B(Yn), then S(F |x) is a B(X n−1)−measurable function.

For fixed x ∈ X N0 , the set of measures on (YN0 ,B(YN0)) satisfying consistency con-
dition C3 is denoted by MC3(YN0) and the corresponding family by QC3(YN0|X N0).
By Remark 2.1, for any family of probability measures S(·|x) on (YN0 ,B(YN0))
parametrized by x ∈ X N0 , satisfying consistency condition C3, there exists a col-
lection of stochastic kernels {sn(·|·, ·) ∈ Q(Yn|Yn−1 × X n−1) : n ∈ N0} connected to
S(·|x) as follows.

S(D|x) =
∫
D0
s0(dy0)

∫
D1
s1(dy1|y0, x0) . . .

∫
Dn
sn(dyn|yn−1, xn−1) (3.23)

≡
←−
S 0,n(×ni=0Di|xn−1) (3.24)

where

D
4= {y ∈ YN0 : y0 ∈ D0, y1 ∈ D1, . . . , yn ∈ Dn}, Di ∈ B(Yi), ∀i ∈ Nn

0 .

Note that ←−S 0,n(·|xn−1) ∈ MC3(Yn) is conditioned on xn−1 ∈ X n−1, unlike
−→
Q 0,n(·|xn) ∈MC2(Yn), which is conditioned on xn ∈ X n.
Let R(·|y) be any family of probability measures on (X N0 ,B(X N0)) depending
parametrically on y ∈ YN0 satisfying the following consistency condition.

C4: If E ∈ B(X n), then R(E|y) is a B(Yn)−measurable function.

For fixed y ∈ YN0 , the set of measures on (YN0 ,B(YN0)) satisfying consistency con-
dition C4 is denoted by MC4(X N0) and the corresponding family by QC4(X N0 |YN0).
Similarly as before, by Remark 2.1, for any family of measures R(·|y) on (X N0 ,B(X N0))
parametrized by y ∈ YN0 satisfying consistency condition C4, there exists a collection
of stochastic kernels {rn(·|·, ·) ∈ Q(Xn|X n−1 × Yn) : n ∈ N0} connected to R(·|y) as
follows.

R(E|y) =
∫
E0
r0(dx0|y0)

∫
E1
r1(dx1|x0, y

1) . . .
∫
En
rn(dxn|xn−1, yn) ≡ −→R 0,n(×ni=0Ei|yn)

(3.25)
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where

E
4= {x ∈ X N0 : x0 ∈ E0, x1 ∈ E1, . . . , xn ∈ En}, Ei ∈ B(Xi), ∀i ∈ Nn

0 .

The joint distribution on
(
X N0 ×YN0 ,⊗n∈N0B(Xn)⊗B(Yn)

)
constructed from S(·|·) ∈

QC3(YN0|X N0) and R(·|·) ∈ QC4(X N0|YN0), is defined uniquely for Di ∈ B(Yi), Ei ∈
B(Xi), ∀i ∈ Nn

0 , by

(←−S 0,n ⊗
−→
R 0,n)(×ni=0(Di × Ei))

=
∫
D0
s0(dy0)

∫
E0
r0(dx0|y0) . . .

∫
Dn
sn(dyn|yn−1, xn−1)

∫
En
rn(dxn|xn−1, yn). (3.26)

Formally, the (n + 1) fold compound joint distribution defined by (3.26) is written as
(←−S 0,n ⊗

−→
R 0,n)(dxn, dyn).

Note the difference between the stochastic kernels {pi(dxi|xi−1, yi−1) : i ∈ N0},
{qi(dyi|yi−1, xi) : i ∈ N0}, which define ←−P 0,n(dxn|yn−1), −→Q 0,n(dyn|xn), respectively,
as well as the joint measure (←−P 0,n ⊗

−→
Q 0,n)(dxn, dyn), and the stochastic kernels

{ri(dxi|xi−1, yi) : i ∈ Nn
0}, {si(dyi|yi−1, yi−1) : i ∈ Nn

0} which define −→R 0,n(dxn|yn),
←−
S 0,n(dyn|xn−1), respectively, and the joint measure (←−S ⊗−→R )(dxn, dyn).

The following theorem gives two variational equalities of directed information, includ-
ing their sequential versions, which are analogous to (3.1), (3.3).

Theorem 3.1. (Variational equalities)
Let {Xn : n ∈ N0} and {Yn : n ∈ N0} be Polish spaces. Let P(·|·) ∈ QC1(X N0 |YN0)
and Q(·|·) ∈ QC2(YN0|X N0), and for any n ∈ N0, construct from them the joint dis-
tribution P0,n(dxn, dyn) = (←−P 0,n ⊗

−→
Q 0,n)(dxn, dyn), and the distributions ν0,n(dyn) =

P0,n(X n, dyn) = ⊗ni=0νi(dyi|yi−1), {νi(dyi|yi−1) ∈ M(Yi) : i ∈ Nn
0},
−→Π(dxn, dyn) =

←−
P 0,n(dxn|yn−1)⊗ ν0,n(dyn), (defined by (2.21), (2.24), (2.25)).
Then the following variational equalities hold.
Part A. (i) For any arbitrary distribution V0,n(dyn) ∈M(Yn) we have

I(Xn → Y n) = IXn→Y n(←−P 0,n,
−→
Q 0,n) 4= D(P0,n||

−→Π 0,n)

= inf
V0,n(dyn)∈M(Yn)

D(←−P 0,n ⊗
−→
Q 0,n||

←−
P 0,n ⊗ V0,n) (3.27)

= inf
V0,n(dyn)∈M(Yn)

∫
Xn×Yn

log
d−→Q 0,n(·|xn)

dV0,n(·) (yn)
 (←−P 0,n ⊗

−→
Q 0,n)(dxn, dyn)

(3.28)
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and the infimum is achieved at V0,n(dyn) ≡ ν0,n(dyn) ∈M(Yn) given by

ν0,n(dyn) =
∫
Xn

(←−P 0,n ⊗
−→
Q 0,n)(dxn, dyn). (3.29)

(ii) For any arbitrary conditional distribution Vi(dyi|yi−1) ∈ M(Yi), i = 0, 1, . . . , n,
we have

I(Xn → Y n) ≡ IXn→Y n(pi, qi : i ∈ Nn
0 )

= inf{
Vi(dyi|yi−1)∈M(Yi):i=0,1,...,n

} n∑
i=0

∫
X i×Yi−1

log
(
dqi(·|yi−1, xi)
dVi(·|yi−1) (yi)

)

pi(dxi|xi−1, yi−1)⊗(←−P 0,i−1 ⊗
−→
Q 0,n−1)(dyi−1, dxi−1) (3.30)

and the infimum is achieved at Vi(dyi|yi−1) = νi(dyi|yi−1) given by

νi(dyi|yi−1)

=
∫
X i
qi(dyi|yi−1, xi)⊗ pi(dxi|xi−1, yi−1)⊗ (←−P 0,i−1 ⊗

−→
Q 0,i−1)(dxi−1, dyi−1), i ∈ Nn

0 .

(3.31)

Part B. (i) For any S(·|·) ∈ QC3(YN0 |X N0) and R(·|·) ∈ QC4(X N0|YN0) then

IXn→Y n(←−P 0,n,
−→
Q 0,n) = D(P0,n||

−→Π 0,n)

= sup
(←−S 0,n⊗

−→
R0,n)(dxn,dyn)∈M(Xn×Yn):

←−
S 0,n(dyn|xn−1)∈MC3(Yn),−→R0,n(dxn|yn)∈MC4(Xn)

∫
Xn×Yn

log
d(←−S 0,n ⊗

−→
R 0,n)

d
−→Π 0,n

(xn, yn)


(←−P 0,n ⊗
−→
Q 0,n)(dxn, dyn) (3.32)

and the supremum is achieved at (←−S 0,n ⊗
−→
R 0,n)(dxn, dyn) = (←−P 0,n ⊗

−→
Q 0,n)(dxn, dyn),

given by the RND

Λ0,n(xn, yn) 4=
d(←−P 0,n ⊗

−→
Q 0,n)

d(←−S 0,n ⊗
−→
R 0,n)

(xn, yn) = 1− a.s., n ∈ N0. (3.33)

Equivalently,

λi(xi, yi)
4= dpi(·|xi−1, yi−1)

dri(·|xi−1, yi) (xi).
dqi(·|yi−1, xi)
dsi(·|yi−1, xi−1)(yi) = 1− a.s., i ∈ Nn

0 . (3.34)

Moreover, if qi(·|yi−1, xi) � si(·|yi−1, xi−1) − a.a.(yi−1, xi) and pi(·|xi−1, yi−1) �
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ri(·|xi−1, yi)− a.a. (xi−1, yi), i ∈ Nn
0 , then

Πn
i=0

dqi(·|yi−1, xi)
dsi(·|yi−1, xi−1)(yi) = Πn

i=0

(
dpi(·|xi−1, yi−1)
dri(·|xi−1, yi) (xi)

)−1

− a.s., n ∈ N0 (3.35)

or equivalently,

dqi(·|yi−1, xi)
dsi(·|yi−1, xi−1)(yi) =

(
dpi(·|xi−1, yi−1)
dri(·|xi−1, yi) (xi)

)−1

− a.s., i ∈ Nn
0 . (3.36)

(ii) For any arbitrary collection of stochastic kernels {ri(·|·, ·) ∈ Q(Xi|X i−1×Y i−1), i ∈
Nn

0}, and {si(·|·, ·) ∈ Q(Yi|Y i−1 ×X i−1), i ∈ Nn
0}, define

I(pi, qi, si, ri : i ∈ Nn
0 ) 4=

n∑
i=0

∫
X i×Yi

log
 dri(·|xi−1, yi)
dpi(·|xi−1, yi−1)(xi).

dsi(·|yi−1, xi−1)
dνi(·|yi−1) (yi)


⊗ik=0

(
pk(dxk|xk−1, yk−1)⊗qk(dyk|yk−1, xk)

)
.

Then

I(Xn → Y n) ≡ IXn→Y n(pi(·|·, ·), qi(·|·, ·) : i ∈ Nn
0 )

= sup{
si(dyi|yi−1,xi−1)⊗ri(dxi|xi−1,yi)∈M(Xi×Yi)

}
, i=0,1,...,n{

si(dyi|yi−1,xi−1)∈M(Yi), ri(dxi|xi−1,yi)∈M(Xi)
}

I(pi, qi, si, ri : i = 0, 1, . . . , n) (3.37)

and the supremum is achieved when (3.34) or (3.36) hold.

Proof. Part A. (i) From Theorem 2.2, then

D(←−P 0,n ⊗
−→
Q 0,n||

←−
P 0,n ⊗ V0,n) =

∫
Xn×Yn

log
d−→Q 0,n(·|xn)

dV0,n(·) (yn)
 (←−P 0,n ⊗

−→
Q 0,n)(dxn, dyn)

(3.38)

=
∫
Xn×Yn

log
d−→Q 0,n(·|xn)

dν0,n(·) (yn)
 (←−P 0,n ⊗

−→
Q 0,n)(dxn, dyn) + D(ν0,n||V0,n) (3.39)

≥ D(←−P 0,n ⊗
−→
Q 0,n||

←−
P 0,n ⊗ ν0,n). (3.40)

Moreover, equality holds in (3.40) when V0,n = ν0,n given by (3.29). Hence,
D(P0,n||

−→Π 0,n) in (3.21) can be expressed via variational equality (3.28).
(ii) The derivation of (3.30) is similar to (3.27), (3.28), but it is done with respect
to each component Vi(dyi|yi−1) ∈ M(Yi), starting at i = n and moving sequentially
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backward to i = 0.
Part B. (i) Consider the difference between I(Xn → Y n) = D(←−P 0,n ⊗

−→
Q 0,n||

−→Π 0,n)
given by (3.21) and the LHS of (3.32) (without the supremum). Then

IXn→Y n(←−P 0,n,
−→
Q 0,n)−

∫
Xn×Yn

log
d(←−S 0,n ⊗

−→
R 0,n)

d(←−P 0,n ⊗ ν0,n)
(xn, yn)

 (←−P 0,n ⊗
−→
Q 0,n)(dxn, dyn)

=
∫
Xn×Yn

log
d(←−P 0,n ⊗

−→
Q 0,n)

d(←−S 0,n ⊗
−→
R 0,n)

(xn, yn)
 (←−P 0,n ⊗

−→
Q 0,n)(dxn, dyn)

≥
∫
Xn×Yn

1− d(←−S 0,n ⊗
−→
R 0,n)

d(←−P 0,n ⊗
−→
Q 0,n)

(xn, yn)
 (←−P 0,n ⊗

−→
Q 0,n)(dxn, dyn) = 0 (3.41)

where (3.41) follows from the inequality log x ≥ 1− 1
x
, x > 0, which holds with equality

if and only if x = 1. Furthermore, equality holds in (3.41), when the RND Λ0,n(xn, yn) 4=
d(←−P 0,n⊗

−→
Q0,n)

d(←−S 0,n⊗
−→
R0,n)

(xn, yn) = 1,←−S 0,n⊗
−→
R 0,n−a.s. in (xn, yn). Since (←−P 0,n⊗

−→
Q 0,n)(X n×Yn) =

(←−S 0,n⊗
−→
R 0,n)(X n×Yn) = 1, this condition is equivalent to←−P 0,n⊗

−→
Q 0,n =←−S 0,n⊗

−→
R 0,n.

By conditioning (3.33) on B(X n−1)⊗B(Yn−1) one obtains (3.34). Furthermore, (3.35)
is obtained from (3.33), while (3.36) is obtained by conditioning.
(ii) The derivation of (3.37) is similar to (3.32) but it is done with respect to each
component si ⊗ ri, starting at i = n and moving backward sequentially to i = 0. �

Note that Theorem 3.1, Part A. (ii), Part B. (ii) are sequential versions of Part A.
(i), Part B. (i), respectively.
Next, we discuss the relation between the variational equality of directed information
(3.32) and the variational equality of mutual information (3.3). Clearly, (3.3) is also
equivalent to

sup
VXn|Y n⊗PY n

∫
Xn×Yn

log
d

(
VXn|Y n(·|yn)⊗ PY n(·)

)
d (PXn(·)× PY n(·)) (xn, yn)

PY n|Xn(dyn|xn)⊗ PXn(dxn)

(3.42)

since the RND in (3.42) is another version of the one in (3.3). Hence, (3.32) is the
analogue of (3.42). Further, to obtain the analogue of the maximizing measure in
(3.3), given by (3.4), suppose qi(·|yi−1, xi) � si(·|yi−1, xi−1) − a.a.(xi, yi−1), i ∈ Nn

0 ,
and {si(·|yi−1, xi−1) : i ∈ Nn

0} is fixed, and generated by←−P 0,n(·|yn−1) ∈MC1(X n) and
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−→
Q 0,n(·|xn) ∈MC2(Yn). Then from (3.34) we obtain

ri(dxi|xi−1, yi) =
(
dqi(·|yi−1, xi)
dsi(·|yi−1, xi−1)(yi)

)
pi(dxi|xi−1, yi−1), i ∈ Nn

0 (3.43)

=
(

qi(dyi|yi−1, xi)∫
Xi qi(dyi|yi−1, xi)⊗ pi(dxi|xi−1, yi−1)

)
pi(dxi|xi−1, yi−1), i ∈ Nn

0 .

(3.44)

Obviously, for a fixed {si(·|yi−1, xi−1) : i ∈ Nn
0}, (3.43), (3.44) are the sequential

versions of maximizing distribution satisfying (3.33), given by

−→
R 0,n(dxn|yn) = ⊗ni=0

(
qi(dyi|yi−1, xi)∫

Xi qi(dyi|yi−1, xi)⊗ pi(dxi|xi−1, yi−1)

)
pi(dxi|xi−1, yi−1), n ∈ N0.

(3.45)

Clearly, (3.45) is the analogue of the maximizing distribution PXn|Y n in (3.3).
Note that the optimization in (3.32) can be done by keeping ←−S 0,n(·|xn−1) fixed, gen-
erated by P(·|·) ∈ QC1(X N0|YN0) and Q(·|·) ∈ QC2(YN0|X N0), and maximizing only
over −→R 0,n(·|yn) ∈M(X n) as demonstrated above.
For extremum problems of directed information, such as, the channel capacity with
memory with and without feedback, it is desirable to invoke a sequential version of
variational equalities, in order to derive sequential algorithms. This point is illustrated
in the next section.

3.3.1. Applications of Sequential Variational Equalities to
Feedback Capacity Computations

Consider the extremum problem of feedback capacity given by (2.5), without trans-
mission cost constraint. Expressed in terms of channel distributions {qi(dyi|yi−1, xi) ∈
M(Yi) : i ∈ Nn

0} and the channel input distributions {pi(dxi|xi−1, yi−1) ∈M(Xi) : i ∈
Nn

0}, then CFB 4= lim infn−→∞ 1
n+1C

FB
0,n where

CFB
0,n

4= sup{
pi(dxi|xi−1,yi−1)∈M(Xi): i=0,1,...,n

} n∑
i=0

I(X i;Yi|Y i−1). (3.46)

Given a specific channel, Theorem 3.1, Part B. (ii) can be used to develop a sequen-
tial alternating double maximization algorithm over appropriate sets of distributions,
which computes CFB via (3.46) (i.e., 1

n+1C
FB
0,n ), for large enough n, starting at n and
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moving sequentially in time to n− 1, n− 2, . . . , 0. This is illustrated next, by consid-
ering a simple example.

Unit Memory Channel. Consider a channel defined by {qi(dyi|yi−1, xi) ∈
M(Yi) : i = 0, 1, . . . , n}, called Unit Memory Channel Output (UMCO). Then, (3.46)
reduces to

CFB,UMCO
0,n

4= sup{
pi(dxi|xi−1,yi−1)∈M(Xi): i=0,1,...,n

} n∑
i=0

E
{

log
(
dqi(·|Yi−1, Xi)
dνi(·|Y i−1) (Yi)

)}
. (3.47)

It is conjectured by Chen and Berger [5] (see also [35, 75]) that the optimal channel
input distribution in (3.47) satisfies the conditional independence pi(dxi|xi−1, yi−1) =
πi(dxi|yi−1) − a.a. (xi−1, yi−1) ∈ X n−1 × Yn−1, which then implies the corresponding
joint process {(Xi, Yi) : i ∈ Nn

0} is first order Markov, the output process {Yi : i ∈ Nn
0}

is first order Markov, and consequently, (3.47) reduces to the following expression1.

CFB,UMCO
0,n

4= sup{
πi(dxi|yi−1)∈M(Xi): i=0,1,...,n

} n∑
i=0

∫
Yii−1×Xi

log
(
dqi(·|yi−1, xi)
dνπi (·|yi−1) (yi)

)

qi(dyi|yi−1, xi)⊗ πi(dxi|yi−1)⊗ νπi (dyi−1) (3.48)

= sup{
πi(dxi|yi−1)∈M(Xi): i=0,1,...,n

} n∑
i=0

I(Xi;Yi|Yi−1) (3.49)

where

νπi (·|yi−1) =
∫
Xi
qi(dyi|yi−1, xi)⊗ πi(dxi|yi−1), i ∈ Nn

0 . (3.50)

The conjecture by Chen and Berger [5] (i.e., (3.48)-(3.50)) is recently proven in [49],
by invoking the variational equality (3.30) in extremum problems of feedback capacity,
to identify information structures of the optimal channel input distribution for general
channels with finite memory.
By Theorem 3.1, Part B. (ii), for a fixed {πi(dxi|yi−1) ∈ M(Xi) : i ∈ Nn

0}, the
expression inside the maximization in (3.48) or (3.49) is expressed as

n∑
i=0

I(Xi;Yi|Yi−1) = sup{
ri(dxi|yi−1,yi)∈M(Xi): i=0,1,...,n

} n∑
i=0

∫
Yii−1×Xi

log
(
dri(·|yi−1, yi)
dπi(·|yi−1) (xi)

)

qi(dyi|yi−1, xi)⊗ πi(dxi|yi−1)⊗ νπi (dyi−1) (3.51)

1superscript π on various distributions indicates their dependence on {πi(dxi|yi−1) : i = 0, 1, . . . , n}.
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where the supremum in (3.51) is achieved at

rπi (dxi|yi−1, yi) =
(
dqi(·|yi−1, xi)
dνπi (·|yi−1) (yi)

)
πi(dxi|yi−1), i ∈ Nn

0 . (3.52)

Next, we convert CFB,UMCO
0,n into a sequential alternating maximization problem over

appropriate sets of distributions, by using dynamic programming.
Let Ct : Yt−1 7−→ [0,∞) represent the maximum expected total pay-off in (3.48) on
the future time horizon {t, t+ 1, . . . , n}, given Yt−1 = yt−1 at time t− 1, defined by2

Ct(yt−1) = sup{
πi(dxi|yi−1)∈M(Xi): i=t,t+1,...,n

}Eπ
{

n∑
i=t

log
(
dqi(·|yi−1, xi)
dνπi (·|yi−1) (yi)

)
qi(dyi|yi−1, xi)

⊗ πi(dxi|yi−1)
∣∣∣∣Yt−1 = yt−1

}
. (3.53)

By standard arguments (see [67]), and in view of the Markov property of {Yi : i ∈ Nn
0},

it follows that (3.53) satisfies the following dynamic programming recursions.

Cn(yn−1)

= sup
πn(dxn|yn−1)∈M(Xn)

∫
Xn×Yn

log
(
dqn(·|yn−1, xn)
dνπn(·|yn−1) (yn)

)
qn(dyn|yn−1, xn)⊗ πn(dxn|yn−1)

(3.54)

Ct(yt−1) = sup
πt(dxt|yt−1)∈M(Xt)

{∫
Xt×Yt

log
(
dqt(·|yt−1, xt)
dνπt (·|yt−1) (yt)

)
qt(dyt|yt−1, xt)⊗ πt(dxt|yt−1)

+
∫
Xt×Yt

Ct+1(yt)qt(dyt|yt−1, xt)⊗ πt(dxt|yt−1)
}
, t ∈ Nn−1

0 . (3.55)

It is well-known that the computation of the optimal channel input distribution in
(3.54), (3.55) suffers from the so-called, curse of dimensionality (i.e., it is often com-
putationally prohibitive, even for finite alphabet spaces). However, by applying Theo-
rem 3.1, Part B. (ii), to the dynamic programming recursions (3.54), (3.55), we can
show that these can be converted to equivalent alternating maximizations over convex
sets. Consequently, (3.48) can be expressed via sequential alternating maximizations,
of concave functionals over convex sets, as stated in the next theorem.

Theorem 3.2. (Sequential double maximization of feedback capacity of UMCO)
Consider the UMCO defined by {qi(dyi|yi−1, xi) ∈ M(Yi) : i ∈ Nn

0}, and CFB,UMCO
0,n

2In the dynamic programming argument we assume that the RND is absolutely continuous, hence
there exist a version of it which is in L1, i.e., the space of Lebesgue integrable functions.
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defined by (3.48), for a fixed Prob{Y−1 ∈ dy−1}
4= ν−1(dyi−1).

Part A. The dynamic programming recursions (3.54), (3.55) are equivalent to the
following sequential double maximization dynamic programming recursions.

Cn(yn−1) = sup
πn(dxn|yn−1)∈M(Xn)

sup
rn(dxn|yn−1,yn)∈M(Xn)

∫
Xn×Yn

log
(
drn(·|yn−1, yn)
dπn(·|yn−1) (xn)

)

qn(dyn|yn−1, xn)⊗ πn(dxn|yn−1) (3.56)

Ct(yt−1) = sup
πt(dxt|yt−1)∈M(Xt)

sup
rt(dxt|yt−1,yt)∈M(Xt)

{∫
Xt×Yt

log
(
drt(·|yt−1, yt)
dπt(·|yt−1) (xt)

)

qt(dyt|yt−1, xt)⊗ πt(dxt|yt−1) +
∫
Xt×Yt

Ct+1(yt)qt(dyt|yt−1, xt)⊗ πt(dxt|yt−1)
}
, t ∈ Nn−1

0 .

(3.57)

and CFB,UMCO
0,n is given by

CFB,UMCO
0,n =

∫
Y−1

C0(y−1)ν−1(dy−1).

Moreover, the following hold.
Maximizations in (3.56).
(i) For a fixed πn(dxn|yn−1) ∈M(Xn), the maximum in (3.56) over rn(dxn|yn−1, yn) ∈
M(Xn) occurs at rn(·|·, ·) = r∗,πn (·|·, ·) given by

r∗,πn (dxn|yn−1, yn) =
(
dqn(·|yn−1, xn)
dνπn(·|yn−1) (yn)

)
πn(dxn|yn−1). (3.58)

(ii) For a fixed rn(dxn|yn−1, yn) ∈M(Xn), the maximum in (3.56) over πn(dxn|yn−1) ∈
M(Xn) occurs at πn(·|·) = π∗,rn (·|·)3 given by

π∗,rn (dxn|yn−1) =
exp

{ ∫
Yn log

(
drn(·|yn−1,yn)
dπn(·|yn−1) (xn)

)
qn(dyn|yn−1, xn)

}
πn(dxn|yn−1)∫

Xn exp
{ ∫
Yn log

(
rπn(·|yn−1,yn)
πn(·|yn−1) (xn)

)
qn(dyn|yn−1, xn)

}
πn(dxn|yn−1)

(3.59)

3superscript r indicates the dependence on the distribution {ri(dxi|yi−1, yi) : i ∈ Nn0}.
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78 Sequential Variational Equalities of Directed Information

Moreover, when (3.59) is evaluated at rn(·|·, ·) = r∗,πn (·|·, ·) given by (3.58) then

π∗,r
∗

n (dxn|yn−1) =
exp

{ ∫
Yn log

(
dqn(·|yn−1,xn)
dνπn(·|yn−1) (yn)

)
qn(dyn|yn−1, xn)

}
πn(dxn|yn−1)∫

Xn exp
{ ∫
Yn log

(
dqn(·|yn−1,xn)
dνπn(·|yn−1) (yn)

)
qn(dyn|yn−1, xn)

}
πn(dxn|yn−1)

.

(3.60)

Maximizations in (3.57).
(iii) For a fixed πt(dxt|yt−1) ∈ M(Xt), the maximum in (3.57) over rt(dxt|yt−1, yt) ∈
M(Xt) occurs at rt(·|·, ·) = r∗,πt (·|·, ·) given by

r∗,πt (dxt|yt−1, yt) =
(
dqt(·|yt−1, xt)
dνπt (·|yt−1) (yt)

)
πt(dxt|yt−1), t = n− 1, n− 2, . . . , 0. (3.61)

(iv) For a fixed rt(dxt|yn−1, yt) ∈ M(Xt), the maximum in (3.57) over πt(dxt|yt−1) ∈
M(Xt), occurs at πt(·|·) = π∗,rt (·|·), t = n− 1, n− 2, . . . , 0, given by

π∗,rt (dxt|yt−1)

=
exp

{∫
Yt

{
log

(
drt(·|yt−1,yt)
dπt(·|yt−1) (xt)

)
+ Ct+1(yt)

}
qt(dyt|yt−1, xt)

}
πt(dxt|yt−1)∫

Xt exp
{∫
Yt

{
log

(
drt(·|yt−1,yt)
dπt(·|yt−1) (xt)

)
+ Ct+1(yt)

}
qt(dyt|yt−1, xt)

}
πt(dxt|yt−1)

. (3.62)

Moreover, when (3.62) is evaluated at rt(·|·, ·) = r∗,πt (·|·, ·), t = n−1, n−2, . . . , 0, given
by (3.61) then

π∗,r
∗

t (dxt|yt−1)

=
exp

{∫
Yt

{
log

(
dqt(·|yt−1,xt)
dνπt (·|yt−1) (yt)

)
+ Ct+1(yt)

}
qt(dyt|yt−1, xt)

}
πt(dxt|yt−1)∫

Xt exp
{∫
Yt

{
log

(
dqt(·|yt−1,xt)
dνπt (·|yt−1) (yt)

)
+ Ct+1(yt)

}
qt(dyt|yt−1, xt)

}
πt(dxt|yt−1)

. (3.63)

Part B. The extremum problem CFB,UMCO
0,n defined by (3.48) is equivalent to the fol-

lowing sequential double maximization problem.

CFB,UMCO
0,n = sup

π0(dx0|y−1)∈M(X0)
sup

rπ0 (dx0|y−1,y0)∈M(X0)
. . . sup

πn(dxn|yn−1)∈M(Xn)
sup

rπn(dxn|yn−1,yn)∈M(Xn){
n∑
i=0

∫
Yi−1,i×Xi

log
(
drπi (·|yi−1, yi)
dπi(·|yi−1) (xi)

)
qi(dyi|yi−1, xi)⊗ πi(dxi|yi−1)⊗ νπi (dyi−1)

}
(3.64)

and statements (i)-(iv) hold.
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3.3 Variational Equalities of Directed Information 79

Proof. Part A. (i) (3.56) and (3.58) follow directly from (3.54). (ii) (3.59) is obtained
as follows. Fix rn(dxn|yn−1, yn) ∈M(Xn), calculate the Gâteaux differential inside the
maximization in (3.56) at π∗,rn (dxn|yn−1) in the direction πrn(dxn|yn−1)−π∗,rn (dxn|yn−1),
i.e., πε,rn (dxn|yn−1) 4= π∗,rn (dxn|yn−1) − ε

{
πrn(dxn|yn−1) − π∗,rn (dxn|yn−1)

}
, ε ∈ [0, 1], by

incorporating the constraint
∫
Xn π

r
n(dxn|yn−1) = 1 via a Lagrange multiplier λn(yn−1).

The Gâteaux differential gives (3.59). Then substitute (3.58) into (3.59) to obtain
(3.60). (iii) For fixed πt(dxt|yt−1) ∈ M(Xt), the second RHS term in (3.55) is a
function of the channel distribution, hence (3.57) and (3.61) follow directly as in (i).
(iv) To show (3.62), (3.63), compute the Gâteux differential as in (ii), by tracking the
additional second RHS term in (3.57).
Part B. Since ν−1(dy−1) ∈ M(Y−1) is fixed, then (3.64) follows directly from Part
A., and the definition of Ct(yt−1) evaluated at t = 0. �

Theorem 3.2, specifically (3.60), (3.63), are the equations, which should be used to
derive a sequential algorithm to compute numerically the optimal channel input dis-
tribution.
Below, we discuss applications of Theorem 3.2, and identify generalizations, and direc-
tions for future research.

Remark 3.1. (Sequential algorithms for feedback capacity)

(1) For the UMCO, Theorem 3.2 provides all necessary ingredients to derive a sequen-
tial algorithm at each time step, t = n, n−1, . . . , 0, similar to the BAA. It remains
to show at each time step, t = n, n−1, . . . , 0, that (3.60), (3.62) have fixed points
corresponding to the optimal channel input distribution, and to derive upper and
lower bounds on Ct(yt−1), t = n, n− 1, . . . , 0, to stop the iterations at each time
step of the algorithm. For finite alphabet spaces {(Xi,Yi) : i = 0, 1, . . . , n}, these
additional steps can be carried out using Theorem 3.2 and the procedure in [21].

(2) For the UMCO, if the alphabet spaces Xi ≡ X , Yi ≡ Y , i ∈ N0, and the joint pro-
cess {(Xi, Yi) : i ∈ N0} is stationary ergodic or directed information stable, then
the per unit time limiting version of dynamic programming recursive equations
(3.54), (3.55) can be derived [76], and these involve only a single stage maximiza-
tion over π(dxi|yi−1) ∈M(X ), ∀i. Hence, a theorem similar to Theorem 3.2 can
be derived.

(3) For general channels, it is possible to derive the analogue of Theorem 3.2,
provided the set of optimal channel input distributions, which maximize∑n
i=0 I(X i;Yi|Y i−1) is identified, as in the case of UMCO (see [49]).
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80 Sequential Variational Equalities of Directed Information

3.4. Conclusion

In this chapter we derive two variational equalities (along with their sequential ver-
sions) of information theory involving directed information. The utility of these varia-
tional equalities is fundamental both in theoretical and practical extremum problems
involving directed information. From a point of view, these variational equalities are
generalizations of the well known variational equalities derived for mutual informa-
tion hence make them appealing when one aims in developing sequential algorithms
to evaluate extremum problems of real-time information theory. On the other hand,
it is recently shown that by invoking a variational equality of directed information (or
mutual information) we can obtain achievable bounds in any extremum problem of
capacity with feedback. In addition, we can identify information structures of capacity
achieving channel input conditional distributions with or without transmission cost.
For those reasons, the results derived in this chapter are fundamental into further un-
derstanding the extremums of information theory when the information measure of
interest is directed information and in providing computational methods to evaluate
the extremum problems in real-time information theory.
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4
The Extremum Problem of

Feedback Capacity

4.1. Introduction

Due to the continuously increasing interest in providing efficient methods of facing
problems in wireless communications, network systems, and distributed network sys-
tems, channel coding with feedback is of great importance. Feedback in systems can
reduce the delay as well as the complexity of the transmitter and the receiver giving
the opportunity to designers to utilize system structures which operate more efficiently.

Historically, Shannon in [38] initiated the interest in the channel coding problem by
giving the operational definition of (information) capacity C1 of a discrete memoryless
channel (DMC), PB|A(db|a), as the supremum over all achievable rates and is formu-
lated as

C1 , sup
PA(da)

I(A;B) = sup
PA(da)

∫
A×B

PA(da)⊗ PB|A(db|a) log PA|B(da|b)
PA(da) (4.1)

where the supremum is taken over all input probability distributions PA(da) and
PA|B(da|b) is induced by the joint probability distribution PA,B(da, db) = PA(da) ⊗

81
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82 The Extremum Problem of Feedback Capacity

PB|A(db|a).
The multiletter expression of capacity for channel with memory but without feedback,
i.e., PAi|Ai−1,Bi−1(dai|ai−1, bi−1) = PAi|Ai−1(dai|ai−1), i = 0, . . . , n, possessing certain
ergodic properties, is expressed as

C
4= lim

n→∞
sup

PAn (dan)

1
n+ 1I(An;Bn). (4.2)

For (4.2) the literature is vast, especially when it comes to the investigation and deriva-
tion of channel coding theorems under various conditions. Three important areas in
which progress has been made on this problem are, (a) the derivation of a coding the-
orem under stationary ergodic processes [3], (b) the derivation of a coding theorem by
Dobrushin [19] under information stability of the channel (see also Pinsker [39]), and,
(c) the derivation of a general coding theorem by Verdú and Han [28] for arbitrary
nonstationary channels without feedback based on information spectrum methods (see
also [50]). Further extensions of (4.2) can be found in [77,78].
For DMC with feedback, Shannon [40] showed that feedback does not increase the
capacity, hence the expression of channel capacity for DMC with or without feedback
coincide and is given by (4.1). Important results related to the channel coding problem
for DMC with feedback are also investigated in [41], while in [42] certain cases of finite
state channels are investigated.

In the 90s, Massey [2] who was inspired by a previous work by Marko [1], generalized
the mathematical concept of multiletter mutual information I(An;Bn) to the multilet-
ter expression of the so-called directed information, I(An → Bn), by considering the
notion of causality (or nonanticipation) in the already standard definition of mutual
information.
Directed information from An

4= {A0, A1, . . . , An} ∈ An
4= ×ni=0Ai to Bn 4=

{B0, B1, . . . , Bn} ∈ Bn
4= ×ni=0Bi where Ai and Bi are input and output alphabets,

respectively, is often defined via conditional mutual information as follows.

I(An → Bn) 4=
n∑
i=0

I(Ai;Bi|Bi−1) (4.3)

=
n∑
i=0

∫
Ai×Bi

log
(
PBi|Bi−1,Ai(dbi|bi−1, ai)
PBi|Bi−1(dbi|bi−1)

)
PAi,Bi(dai, dbi) (4.4)

where the joint distribution of RV’s {Ai, Bi : i = 0, . . . , n} is decomposed as
PAi,Bi(dai, dbi) = ⊗ij=0PAj |Aj−1,Bj−1(·|·, ·)⊗ PBj |Bj−1,Aj(·|·, ·), i = 0, 1, . . . , n.
The extremum problem of feedback capacity for discrete memoryless networks utilizing
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4.1 Introduction 83

the concept of directed information [2] is given by Kramer [13,14] who derived capacity
theorems for discrete memoryless two-way channels and discrete multiple access chan-
nels. A few years later, Tatikonda and Mitter in [4, 8] used the information spectrum
method introduced by Verdú and Han in [28] to give the operational definition of the
feedback capacity of single-user channel with memory as follows.

CFB = lim
n−→∞

sup
←−
P An|Bn−1 (dan|bn−1)

1
n+ 1I(An → Bn) (4.5)

where the supremum is taken over all causally conditioned input distributions expressed
as ←−P An|Bn−1(·|·) 4= ⊗ni=0PAi|Ai−1,Bi−1(dai|ai−1, bi−1). Specifically, Tatikonda and Mitter
[4, 8] proved a capacity theorem for single-user channels with memory by generalizing
the concept of (mutual) information stability initially introduced by Verdú and Han [28]
who derived a channel coding theorem for channels with arbitrary memory and no
feedback. Among others, Tatikonda and Mitter [8], examined coding results for finite
state (Markov) channels with Intersymbol Interference (ISI) and feedback.
Although, the use of expression (4.5) is frequent, little is known when it comes to the
optimization problem of existence of an input distribution that achieves an asymptoti-
cally optimal solution (stationary or nonstationary) for the sequence of maximizations
in (4.5). An earlier work related to this subject is done by Schwarte [79] who pro-
vided sufficient conditions to ensure that channel capacity without feedback can be
approached by discrete input distributions or uniform input distribution with finite
support on general alphabet channels. Nevertheless, the problem of feedback capacity
from an optimization point of view is still intact.
In general, the literature is vast when it comes to the validity of the feedback capacity
formula in the sense of (4.5) for channels with certain structures. Next, we discuss
some indicative works on this area.
Cover and Pombra [29] gave a multiletter characterization of feedback capacity al-
though they indirectly gave characterization of directed information (see [29, Equation
52]). Specifically, Cover and Pombra gave a capacity theorem for arbitrary nonwhite
Gaussian channel with or without feedback, using the asymptotic equipartition theo-
rem for general nonstationary, nonergodic Gaussian processes. They also showed two
inequalities, relating feedback capacity and nonfeedback capacity, first, that feedback at
most doubles capacity, and second, that capacity can increase the nonfeedback capacity
at most by half a bit. Ihara [30] derived a channel coding theorem for continuous-time
Gaussian channels with feedback. Chen and Berger [5] studied a special case of channel
with finite memory, called unit memory channel, by providing a coding theorem and by
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84 The Extremum Problem of Feedback Capacity

giving conditions based on which the optimal stationary and nonstationary input pro-
cesses maximize the long-term directed information. Permuter et al. [10] investigated
the general finite state channel with feedback when the feedback is time invariant de-
terministic function of the output symbols. They derived coding theorems for any finite
state channel with feedback, and for stationary, indecomposable channels with no ISI.
Kim [31] derived a feedback capacity coding theorem for a class of stationary channels
with feedback, which is derived based on Gallager’s source coding theorem for station-
ary ergodic sources [32, Chapter 9]. The same author in [33] examined the feedback
capacity of stationary additive Gaussian noise channels by specializing the problem to
first-order autoregressive moving-average noise spectrum and providing a closed form
expression for the feedback capacity. Finally, Permuter et al. in [34] and Kourtellaris
and Charalambous in [35] examined two special cases of unit memory channels, the
POST channels and Binary State Symmetric Channel (BSSC), respectively. Specifi-
cally, Permuter et al. in [34] showed that feedback does not increase the capacity of
a general binary input-output POST channel although, in general, the feedback may
increase the capacity of a POST channel. They also provided a closed form expression
of the unconstrained feedback capacity for this channel. Kourtellaris and Charalam-
bous in [35] examined BSSC and derived the constrained and unconstrained expression
of channel capacity with and without feedback with the corresponding optimal input
distributions that achieve the capacity of such channels. In this work it is also proven
that feedback does not increase the capacity of BSSC.

4.1.1. Problem Statement and Results

In this chapter, we revisit the general optimization problem of feedback capacity of
single-user channels with arbitrary memory, with or without cost constraint set, on
abstract spaces, given by the following two expressions.

CFB
0,n = sup

←−
P An|Bn−1 (·|bn−1)

I(An → Bn) (4.6)

CFB
0,n (κ) = sup

←−
P An|Bn−1 (·|bn−1)∈P0,n(κ)

I(An → Bn) (4.7)

where for a nonnegative and measurable cost function c0,n(an, bn−1) : An × Bn−1 7−→
[0,∞], c0,n(an, bn−1) = ∑n

i=0 gi(ai, bi−1), the transmission constraint set is defined as

P0,n(κ) 4=
{←−
P An|Bn−1(dan|bn−1) : E

{
c0,n(an, bn−1)

}
≤ κ

}
, κ ≥ 0. (4.8)

Pho
tio

s S
tav

rou



4.2 Channel Capacity with Memory and Feedback on Abstract Spaces 85

Existence of Information Feedback Capacity. In Section 4.3, we give general
conditions to establish existence of the optimal input conditional distribution achieving
the supremum of CFB

0,n and CFB
0,n (κ) by utilizing the topology of weak convergence of

probability measures and Prohorov’s theorem [43, 44]. This result is new and has
not been treated elsewhere. Equipped with this result, in Subsection 4.3.2 we further
show that for general stationary channels the limit exists, and the limit and supremum
operations can be interchanged, that is,

CFB,−(κ) , sup
PA∞|B∞ (·|·)∈P0,n(κ)

lim
n−→∞

1
n+ 1I(An → Bn)

= lim
n−→∞

sup
PAn|Bn−1 (·|·)∈P0,n(κ)

1
n+ 1I(An → Bn) , CFB(κ) <∞ (4.9)

where PA∞|B∞(·|·) = ⊗∞i=0PAi|Ai−1,Bi−1(dai|ai−1, bi−1).
Moreover, using the existence of solution of the information feedback capacity with
cost constraint set, CFB

0,n (κ), we consider consistent stationary channels and we in-
voke certain results which are derived in Chapter 2 to establish that the optimal
input distribution for CFB

0,n (κ) is realizable by jointly stationary input-channel pair
{(Ai, Bi) : i = 0, 1, . . .}. Therefore, we give general sufficient conditions for existence
of solution of the information feedback capacity with cost constraint set, its limit, and
its stationary behaviour.

4.2. Channel Capacity with Memory and Feedback
on Abstract Spaces

In this section, we introduce the definition of information capacity of channels with
memory and feedback, for general input/channel alphabets modelled by Polish spaces.
Past work utilizing Polish spaces and Prohorov’s theorem with respect to the topology
of weak convergence of probability measures for single letter channel capacity is found
in [64]. Our methodology in constructing the various probability distributions is based
on the formulation proposed in Chapter 2, Section 2.2, where we treat arbitrary (n +
1)−fold compound probability measures which uniquely define sequences of causally
conditioned probability distributions. Here, we also utilize some properties of directed
information related to the feedback capacity problem that we take from Chapter 2,
Section 2.3.
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86 The Extremum Problem of Feedback Capacity

4.2.1. Equivalent Definitions of Causally Conditioned
Probability Distributions

Let N0
4= {0, 1, 2, . . .}, and Nn

0
4= {0, 1, 2, . . . , n}. Introduce two sequence of spaces

{(An,B(An)) : n ∈ N0} and {(Bn,B(Bn)) : n ∈ N0}, where An,Bn, n ∈ N0 are
topological spaces, and B(An) and B(Bn) are Borel σ−algebras of subsets of An
and Bn, respectively. Points in AN0 4= ×n∈N0An, BN0 4= ×n∈N0Bn are denoted by
a 4= {a0, a1, . . .} ∈ AN0 , b 4= {b0, b1, . . .} ∈ BN0 , respectively, while their restrictions to
finite coordinates by an 4= {a0, a1, . . . , an} ∈ An, bn

4= {b0, b1, . . . , bn} ∈ Bn, for n ∈ N0.
Let B(AN0) 4= ⊗i∈N0B(Ai) denote the σ−algebra on AN0 generated by cylinder sets
{a = (a0, a1, . . .) ∈ AN0 : a0 ∈ A0, a1 ∈ A1, . . . , an ∈ An}, Ai ∈ B(Ai), 0 ≤ i ≤ n, n ≥ 1,
and similarly for B(BN0) 4= ⊗i∈N0B(Bi). Hence, B(An) and B(Bn) denote the
σ−algebras of cylinder sets in AN0 and BN0 , respectively, with bases over Ai ∈ B(Ai),
and Bi ∈ B(Bi), 0 ≤ i ≤ n, respectively.

Input Distribution. Suppose for each n ∈ N0, the distributions {pn(dan|an−1, bn−1) :
n ∈ N0} satisfy the following conditions.
i) For n ∈ N0 and (an−1, bn−1) ∈ An−1×Bn−1, pn(·|an−1, bn−1) is a probability measure
on B(Xn);
ii) For n ∈ N0, An ∈ B(Xn), pn(An|an−1, bn−1) is ⊗n−1

i=0 B(Xi) ⊗ B(Bi)−measurable in
an−1 ∈ An−1, bn−1 ∈ Bn−1.

Given the collection {pn(dan|an−1, bn−1) : n ∈ N0} satisfying conditions i), ii), one
can construct a family of distributions on (AN0 ,B(AN0)) 4=

(
×i∈N0 Ai,⊗i∈N0B(Ai)

)
as

follows.
Let C ∈ B(An) be a cylinder set of the form C

4=
{
a ∈ AN0 : a0 ∈ C0, a1 ∈ C1, . . . , an ∈

Cn
}
, Ci ∈ B(Ai), 0 ≤ i ≤ n. Define a family of measures P(·|b) on B(AN0) by

P(C|y) 4=
∫
C0
p0(da0) . . .

∫
Cn
pn(dan|an−1, bn−1) ≡ ←−P 0,n(C0,n|bn−1), C0,n = ×ni=0Ci.

(4.10)

The notation ←−P 0,n(·|bn−1) is used to denote the restriction of the measure P(·|b) on
cylinder sets C ∈ B(An), for n ∈ N0.
Thus, if conditions i) and ii) hold then for each b ∈ BN0 , the right hand side
(RHS) of (4.10) defines a consistent family of finite-dimensional distribution on
(AN0 ,B(AN0)), and hence there exists a unique measure on (AN0 ,B(AN0)), from which
pn(dan|an−1, bn−1) is obtained. This leads to the first, usual definition of an input
distribution, as a family of functions pn(dan|an−1, bn−1) satisfying conditions i) and
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4.2 Channel Capacity with Memory and Feedback on Abstract Spaces 87

ii).
An alternative, equivalent definition of an input distribution is established as follows.
Introduce the assumption
iii) {An : n ∈ N0} are complete separable metric spaces (Polish Spaces) and
{B(An) : n ∈ N0} are the σ−algebras of Borel sets.
Consider a family of measures P(·|b) on (AN0 ,B(AN0)) satisfying the following
consistency condition.
C1: If E ∈ B(An), then P(E|b) is B(Bn−1)−measurable function of b ∈ BN0 .
Then, by assumption iii), for any family of measures P(·|b) satisfying C1 one can con-
struct a collection of versions of conditional distributions {pn(dan|an−1, bn−1) : n ∈ N0}
satisfying conditions i) and ii) which are connected with P(·|b) via relation (4.10).
Therefore, for Polish Spaces {An : n ∈ N0} the second equivalent definition is given by
a family of measures P(·|b) on (AN0 ,B(AN0)) depending parametrically on b ∈ BN0

and satisfying the consistency condition C1.
Channel Distribution. The previous methodology is repeated for the collection of
functions {qn(dbn|bn−1, an) : n ∈ N0} which satisfy the following conditions.
iv) For n ∈ N0 and (bn−1, an) ∈ Bn−1 × An, qn(·|bn−1, an) is a probability measure on
B(Bn);
v) For n ∈ N0, Bn ∈ B(Bn), qn(Bn|bn−1, an) is ⊗n−1

i=0

(
B(Bi) ⊗ni=0 B(Ai)

)
−measurable

function of an ∈ An, bn−1 ∈ Bn−1.
Similarly as before, given a cylinder set D

4=
{

b ∈ BN0 :

b0∈D0, b1∈D1, . . . , bn∈Dn

}
, Di ∈ B(Bi), 0 ≤ i ≤ n, define a family of measures on

B(BN0) by

Q(D|a) 4=
∫
D0
q0(db0|a0) . . .

∫
Dn
qn(dbn|bn−1, an) ≡ −→Q 0,n(D0,n|an), D0,n = ×ni=0Di.

(4.11)

Similarly as before, there exists a unique measure on (BN0 ,B(BN0)) for which the family
of distributions {qn(dbn|bn−1, an) : n ∈ N0} is obtained. Introduce the assumption
vi) {Bn : n ∈ N0} are Polish Spaces and {B(Bn) : n ∈ N0} are the σ−algebras of Borel
sets.
Consider a family of measures Q(D|a) satisfying the following consistency condition.
C2: If F ∈ B(Bn), then Q(F |a) is B(An)−measurable function of a ∈ AN0 .

Then, by assumption vi), for any family of measures Q(·|a) on (BN0 ,B(BN0)) satisfying
consistency condition C2 one can construct a collection of functions {qn(dbn|bn−1, an) :
n ∈ N0} satisfying conditions iv) and v) which are connected with Q(·|a) via relation
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88 The Extremum Problem of Feedback Capacity

(4.10). Note that Kolmogorov’s extension theorem [67] guarantees the construction
of countable additive probability measures for both P(·|b) and Q(·|a). The previous
concepts are illustrated in Fig. 4.1.

Given the basic measures P(·|b) on AN0 and Q(·|a) on BN0 satisfying consistency con-

Unit

delay

1 1| ,  i i
iA A B

P ia

0 1 1, , ,
 

 ib b b

1| , i i
iB B A

P
: 0,1,... ib i n

Input Distribution DistributionChannel

(a) Sequence of input and channel distributions
{PAi|Ai−1,Bi−1 , PBi|Bi−1,Ai : i = 0, 1, . . . , n}.

Unit

delay

Input Distribution DistributionChannel

1|n nA BP |n nB A
Q

nA

1nB

0,nB n

(b) Input and channel distributions as a consistent family of measures
{
←−
P An|Bn−1 ,

−→
QBn|An : n ∈ N}.

Figure 4.1.: Equivalent Representations of Input/Channel Distributions.

dition C1 and C2, respectively, construct the collections of conditional distributions
as follows.
Let A(n) = {a : an∈A}, A ∈ B(An) and B(n) = {b : bn∈B}, B ∈ B(Bn). In addi-
tion, let P(A(n)|b|B(An−1)) denote the conditional probability of A(n) with respect to
B(An−1) calculated on the probability space

(
AN0 ,B(AN0),P(·|b)

)
, and similarly for

Q(B(n)|a|B(Bn−1)). Then

P
{
An∈A|An−1 = an−1, Bn−1 = bn−1} = P

(
{a : an∈A}|b|B(An−1)

)
= pn(An|an−1, bn−1)− a.s.

P
{
Bn∈B|bn−1 = bn−1, An = an

}
= Q

(
{b : bn∈B}|a|B(Bn−1)

)
= qn(Bn|bn−1, an)− a.s.

Note that pn(·|·, ·) ∈ Q(An|An−1×Bn−1) and qn(·|·, ·) ∈ Q(Bn|Bn−1×An) are stochastic
kernels [43].
Moreover, the joint distribution of RV’s {(An, Bn) : n ∈ N0} on (AN0 × BN0 ,B(AN0)⊗
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4.2 Channel Capacity with Memory and Feedback on Abstract Spaces 89

B(BN0)) is defined by the convolution of the two measures as follows.

P
{
A0∈A0, B0 ∈ B0, . . . , An∈An, Bn∈Bn

}
4=
∫
A0
p0(da0)

∫
B0
q0(db0|a0) . . .

∫
An
pn(dan|an−1, bn−1)

∫
Bn
qn(dbn|bn−1, an).

Hence, for any P(·|·) and Q(·|·) satisfying consistency conditions there exist a prob-
ability space and a sequence of RV’s {(Ai, Bi) : i ∈ N0} defined on it, whose joint
probability distribution is defined uniquely via P(·|·) and Q(·|·).
In Chapter 2, we have used the equivalent representation of any family of input and
channel conditional distributions satisfying consistency condition C1 and C2, respec-
tively, to show their almost sure (a.s.)-convexity. To begin with, we recall the Defini-
tion 8.8 given in Chapter 7 for a subsequent use throughout the chapter.
From Chapter 2, it is well-known that both the sets of regular conditional distributions
PAn|Bn−1(·|bn−1) ∈ M(An) and PBn|An(·|an) ∈ M(Bn) are convex. Define the sub-
set of Q(AN0|BN0) consisting of all conditional distributions which satisfy consistency
condition C1 and Q(BN0 |AN0) consisting of all conditional distributions which satisfy
consistency condition C2 by

QC1(AN0|BN0) 4=
{
P(·|b) ∈M(AN0) : P(·|b) satisfy consistency condition C1

}
.

QC2(BN0|AN0) 4=
{
Q(·|a) ∈M(BN0) : Q(·|a) satisfy consistency condition C2

}
.

and denote their restriction to finite number of elements by

QC1(An|Bn−1) 4=
{
P0,n(·|bn−1) ∈M(An) : P0,n(·|bn−1) satisfies consistency condition C1

}
QC2(Bn|An) 4=

{
Q0,n(·|an) ∈M(Bn) : Q0,n(·|an) satisfies consistency condition C2

}
.

In the subsequent, we will denote the set of probability measures on An and Bn,
respectively, by ←−P 0,n(·|bn−1) ∈ M(An) and −→Q 0,n(·|an) ∈ M(Bn), or equivalently, by
P0,n(·|bn−1) ∈ QC1(An|Bn−1) and Q0,n(·|an) ∈ QC2(Bn|An), respectively.

4.2.2. Feedback Channel Capacity

In this section, we formally state the definition of the capacity of channels with memory
and feedback on an abstract setting, based on relative entropy. Next, we discuss an
existing coding theorem for the feedback capacity problem derived by [4,8] and we show
how this problem defined on finite alphabets can be generalized on abstract alphabets.
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90 The Extremum Problem of Feedback Capacity

First, we construct the various measures of interest. Given the input distribution
P(·|·) ∈ QC1(AN0|BN0) and channel distribution Q(·|·) ∈ QC2(BN0|AN0) define the
following measures.
P1: The joint distribution on AN0 × BN0 of the basic sequence {An, Bn : n ∈ N0}
constructed from P(·|·) ∈ QC1(AN0|BN0) and Q(·|·) ∈ QC2(BN0 |AN0), defined uniquely
for Ai ∈ B(Ai), Bi ∈ B(Bi), ∀i ∈ Nn

0 , by

(←−P 0,n ⊗
−→
Q 0,n)(×ni=0(Ai×Bi))

4=P
{
A0∈A0, B0 ∈ B0, . . . , An∈An, Bn∈Bn

}
=
∫
A0
p0(da0)

∫
B0
q0(db0|a0) . . .

∫
An
pn(dan|an−1, bn−1)

∫
Bn
qn(dbn|bn−1, an). (4.12)

Formally, (4.12) is written as (←−P 0,n⊗
−→
Q 0,n)(dan, dbn) or←−P 0,n(dan|bn−1)⊗−→Q 0,n(dbn|an).

P2: The marginal distributions on AN0 of the sequence {An : n ∈ N0} constructed
from P(·|·) ∈ QC1(AN0|BN0) and Q(·|·) ∈ QC2(BN0|AN0), defined uniquely by

µ0,n(×ni=0Ai)
4=P
{
A0 ∈ A0, B0 ∈ B0, . . . , An ∈ An, Bn ∈ Bn

}
, Ai ∈ B(Ai), ∀i ∈ Nn

0

=(←−P 0,n ⊗
−→
Q 0,n)(×ni=0(Ai × Bi))

=
∫
A0
p0(da0)

∫
B0
q0(db0|a0) . . .

∫
An
pn(dan|an−1, bn−1)

∫
Bn
qn(dbn|bn−1, an). (4.13)

Formally, (4.13) is written as µ0,n(dan) = (←−P 0,n ⊗
−→
Q 0,n)(dan,Bn), and by Bayes’ rule

µ0,n(dan) = ⊗ni=0µi(dai|ai−1).

P3: The marginal distributions on BN0 of the sequence {Bn : n ∈ N0} constructed
from P(·|·) ∈ QC1(AN0|BN0) and Q(·|·) ∈ QC2(BN0|AN0), defined uniquely by

ν0,n(×ni=0Bi)
4=P
{
A0 ∈ A0, B0 ∈ B0, . . . , An ∈ An, Bn ∈ Bn

}
, Bi ∈ B(Bi), ∀i ∈ Nn

0

=(←−P 0,n ⊗
−→
Q 0,n)(×ni=0(Ai ×Bi))

=
∫
A0
p0(da0)

∫
B0
q0(db0|a0) . . .

∫
An
pn(dan|an−1, bn−1)

∫
Bn
qn(dbn|bn−1, an). (4.14)

Formally, (4.14) is written as ν0,n(dyn) = (←−P 0,n ⊗
−→
Q 0,n)(An, dbn), and by Bayes’ rule

ν0,n(dbn) = ⊗ni=0νi(dbi|bi−1).

P4: The distribution −→Π 0,n : B(An) ⊗ B(Bn) 7→ [0, 1] constructed from ←−P 0,n(·|·) ∈
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4.2 Channel Capacity with Memory and Feedback on Abstract Spaces 91

QC1(An|Bn−1) and ν0,n(dbn) = (←−P 0,n ⊗
−→
Q 0,n)(An, dbn) ∈ M(Bn) of (4.14), defined

uniquely by

−→Π 0,n(×ni=0(Ai×Bi))
4= (←−P 0,n ⊗ ν0,n)(×ni=0(Ai×Bi)), Ai ∈ B(Ai), Bi ∈ B(Bi), i ∈ Nn

0

=
∫
A0
p0(da0)

∫
B0
ν0(db0)

∫
A1
p1(da1|a0, b0)

∫
B1
ν1(db1|b0) . . .

. . .
∫
An
pn(dan|an−1, bn−1)

∫
Bn
νn(dbn|bn−1). (4.15)

Formally, (4.15) is written as −→Π 0,n(dan, dbn) = ←−P 0,n(dan|bn−1) ⊗ ν0,n(dbn) ∈ M(An ×
Bn).
The information theoretic measure associated with feedback capacity [8] is defined via
relative entropy D(·||·) as follows.

I(An → Bn) = D(←−P 0,n ⊗
−→
Q 0,n||

−→Π 0,n) (4.16)

=
∫
An×Bn

log
d−→Q 0,n(·|an)

dν0,n(·) (bn)
 (←−P 0,n ⊗

−→
Q 0,n)(dan, dbn)

≡ IAn→Bn(←−P 0,n,
−→
Q 0,n). (4.17)

The RHS of (4.16) follows from repeated application of chain rule of relative entropy
[43], while (4.17) follows from the fact that ←−P 0,n ⊗

−→
Q 0,n <<

←−
P 0,n ⊗ ν0,n if and only

if −→Q 0,n(·|an) << ν0,n(·) for µ0,n−almost all an ∈ An. Further, if ←−P 0,n ⊗
−→
Q 0,n <<

←−
P 0,n⊗ν0,n then the Radon-Nikodym derivative d(←−P 0,n⊗

−→
Q0,n)

d(←−P 0,n⊗ν0,n)
(an, bn) represents a version

of d
−→
Q0,n(·|an)
dν0,n(·) (bn), µ0,n − a.s for all an ∈ An. The notation IAn→Bn(·, ·) indicates the

functional dependence of I(An → Bn) on {←−P 0,n,
−→
Q 0,n}.

We are now ready to give the formal definition of the capacity of channels with memory
and feedback. Toward this, for each n ∈ N0, introduce the nonnegative and measurable
cost function as follows

c0,n(an, bn−1) : An × Bn−1 7−→ [0,∞], c0,n(an, bn−1) =
n∑
i=0

gi(ai, bi−1). (4.18)Pho
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92 The Extremum Problem of Feedback Capacity

For a given −→Q 0,n(dbn|an) ∈ QC2(Bn|An), the average power constraint set is defined
by the set of conditional distributions

P0,n(κ) 4=
{
P0,n(·|bn−1) ∈ QC1(An|Bn−1) :

1
n+ 1

∫
An×Bn

c0,n(an, bn−1)(P0,n ⊗Q0,n)(dan, dbn) ≤ κ

}
(4.19)

≡
{
←−
P 0,n(·|bn−1) ∈M(An) :

1
n+ 1

∫
An×Bn

c0,n(an, bn−1)(←−P 0,n ⊗
−→
Q 0,n)(dan, dbn) ≤ κ

}

for some κ ≥ 0. Denote by P0,∞(κ) the corresponding set in (4.19) when the power
constraint is replaced by limn−→∞

1
n+1

∫
An×Bn c0,n(an, bn−1)(←−P 0,n⊗

−→
Q 0,n)(dan, dbn) ≤ κ.

The information capacity of channels with memory and feedback is defined as follows.

Definition 4.1. (Information feedback capacity)
Consider the power constraint set of the inputs P0,n(κ) given by (4.19).

(1) The unconstrained finite time information capacity of channels with memory and
feedback is defined by

CFB
0,n , sup

←−
P 0,n(·|bn−1)∈QC1(An|Bn−1)

IAn→Bn(←−P 0,n,
−→
Q 0,n) (4.20)

provided the supremum over QC1(An|Bn−1) in (4.20) exists, i.e., if it is not an
empty set; if not, i.e., if it is an empty set, we set CFB

0,n = −∞.

(2) The constrained finite time information capacity of channels with memory and
feedback is defined by

CFB
0,n (κ) , sup

←−
P 0,n(·|bn−1)∈P0,n(κ)

IAn→Bn(←−P 0,n,
−→
Q 0,n) (4.21)

provided the supremum over P0,n(κ) in (4.21) exists; if not we set CFB
0,n = −∞.

(3) The limiting expression of unconstrained information capacity of channels with
memory and feedback is defined by

CFB 4= lim
n−→∞

1
n+ 1C

FB
0,n (4.22)

provided the limit on the RHS of (4.22) exists.
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4.3 Existence of Solution and Stationarity Conditions 93

(4) The limiting expression of constrained information capacity of channels with
memory and feedback is defined by

CFB(κ) 4= lim
n−→∞

1
n+ 1C

FB
0,n (κ) (4.23)

provided the limit on the RHS of (4.23) exists.

In addition, define

CFB,−(κ) = sup
←−
P 0,∞(·|·)∈P0,∞(κ)

lim
n−→∞

1
n+ 1IA

n→Bn(←−P 0,n,
−→
Q 0,n) ≤ CFB(κ). (4.24)

Since, in general, CFB,−(κ) ≤ CFB(κ), then, CFB(κ) is more natural than
CFB,−(κ). By analogy with the definition of classical channel capacity, one may
assume that {(Ai, Bi) : i = 0, 1, . . .} is jointly stationary and ergodic process or

1
n+1 log

(
d
−→
Q0,n(·|an)
dν0,n(·)

)
(bn) is information stable. However, we do not know á priori

whether the joint process {(Ai, Bi) : i = 0, 1, . . .} is stationary.

4.3. Existence of Solution and Stationarity
Conditions

This section we establish the following results.

(1) We show existence of an optimal channel input distribution←−P ∗0,n(·|bn−1) ∈ P0,n(κ),
which achieves the supremum of CFB

0,n (κ), thus establishing finiteness of CFB
0,n (κ)

for some finite n ∈ N0.

(2) We consider consistent stationary channels to establish equality of the limiting
expressions CFB(κ) = CFB,−

0,n (κ), finiteness of CFB(κ), and that for stationary
channels and shift invariant transmission cost constraint, the supremum over
←−
P 0,n(·|bn−1) ∈ P0,n(κ) is achieved and it is realizable by stationary input-channel
pairs {(An, Bn) : n ∈ N0}.

Since our input and channel alphabets are general Polish spaces, to address the question
of existence of solution to the capacity of channels with memory and feedback we shall
invoke the topology of weak convergence of probability measures and Prohorov’s theo-
rems. Let Z be a Polish space and BC(Z) the set of bounded continuous real-valued
functions h : Z 7−→ R endowed with the uniform norm ||h||BC(Z)

4= supz∈Z |h(z)|. We
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94 The Extremum Problem of Feedback Capacity

say that a sequence of probability measures {Pα(·) : α = 1, 2, . . .} ⊂ M(Z) converges
weakly to P o(·) ∈M(Z) if

lim
α−→∞

∫
Z
f(z)Pα(dz) =

∫
Z
f(z)P o(dz)⇐⇒ Pα w−→ P o, ∀f ∈ BC(Z).

4.3.1. Finite Horizon

First, we investigate the finite horizon case and then, we proceed with the discussion
for the infinite horizon case. Recall that the compactness of ←−P (·|bn−1) ∈ MC1(An) is
shown in Chapter 2, Lemma 2.1 as an application of the fundamental Theorem 2.3.
In what follows, we give conditions to show existence of an optimal input distribution
that achieves the supremum of CFB

0,n (κ).

Assumption 4.1.
For all n ∈ N0,

(A1) Suppose conditions of Theorem 2.3, Part A. hold, i.e.,
(i) Bn is a compact Polish space and An is a Polish space;
(ii) For all h(·)∈BC(An), the function mapping

(an−1, bn−1) ∈ An−1 × Bn−1 7−→
∫
An
h(a)pn(da|an−1, bn−1) ∈ R (4.25)

is continuous jointly in the variables (an−1, bn−1) ∈ An−1 × Bn−1;

(A2) For each compact subset K0,i−1 ⊂ Ai−1, and each hi(·) ∈ BC(Ai),

lim
r−→∞

sup
ai−1∈K0,i−1

∣∣∣∣∣∣
∫
Ai
hi(x)pri (da|ai−1, bi−1)

−
∫
Ai
hi(x)pi(da|ai−1, bi−1)

∣∣∣∣∣∣ = 0, ∀bi−1, i ∈ Nn
0 (4.26)

where {pri (·|·, ·) : r = 1, 2, . . .} denotes a sequence of probability distributions;

(A3) The cost function c0,n(an, bn−1) : An × Bn−1 7−→ [0,∞] is continuous on
(an, bn−1) ∈ An × Bn−1;

(A4) The power level P is such that there exist sequence (an, bn−1) ∈ An × Bn−1

satisfying c0,n(an, bn−1) < P .

Assumption 4.1, (A1), (i) is natural since in general B ⊂ A. Assumption 4.1, (A1),
(ii) is a weak continuity of the mapping defined by (4.25); this is preferable over strong
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4.3 Existence of Solution and Stationarity Conditions 95

continuity of pn(A|an−1, bn−1) as a function of (an−1, bn−1) ∈ An−1 × Bn−1 for every
Borel set A ∈ B(An) in order not to exclude input distribution described by delta
measures. Assumption 4.1, (A3) is important to allow unbounded cost measures.
Moreover, Assumption 4.1, (A4) ensures that the set P0,n(P ) is non-empty, since it
can be shown that there exists ε > 0 such that the set P0,n(κ(1− ε)) is non-empty.
The proof of existence and finiteness of CFB

0,n and CFB
0,n (κ), respectively, (see Defini-

tion 4.1) for finite n ∈ N0, is based on Weierstrass’ theorem, therefore we need to
establish upper semicontinuity (or continuity) of the functional IAn→Bn(←−P 0,n,

−→
Q 0,n)

with respect to ←−P 0,n(·|bn−1) ∈ MC1(An) and ←−P 0,n(·|bn−1) ∈ P0,n(κ), respectively, for
a fixed −→Q 0,n(·|an) ∈ MC2(Bn) using the topology of weak convergence of probability
measures.
First, we show compactness of the set P0,n(κ) ⊆ MC1(An). The compactness of the
set MC1(An) is already shown in Chapter 2, Lemma 2.1.

Theorem 4.1. (Compactness of unconstraint/constraint sets)
Under the Assumptions 4.1 the set←−P 0,n(·|bn−1) ∈ P0,n(κ) is a closed subset of a compact
set MC1(An) (i.e., compact).

Proof. The derivation is given in Appendix B.1. �

By utilizing Theorem 4.1 and Theorem 2.6 in Chapter 2, we show existence of solution
to the extremum problem of the feedback capacity of channels with memory with
transmission cost constraint, CFB

0,n (κ).

Theorem 4.2. (Existence of solution to CFB
0,n (κ))

Suppose the conditions of Theorem 4.1 and Theorem 2.6 in Chapter 2 hold. Then the
supremum over ←−P 0,n(·|bn−1) ∈ P0,n(κ) of

CFB
0,n (κ) , sup

←−
P 0,n(·|bn−1)∈P0,n(κ)

IAn→Bn(←−P 0,n,
−→
Q 0,n) (4.27)

is achieved by some ←−P ∗0,n(·|bn−1) ∈ P0,n(κ).

Proof. By Theorem 2.6, the functional IAn→Bn(←−P 0,n,
−→
Q 0,n) is continuous with respect

to ←−P 0,n(·|bn−1) ∈ MC1(An) for fixed −→Q 0,n(·|an) ∈ MC2(Bn), hence upper semicontin-
uous with respect to←−P 0,n(·|bn−1) ∈MC1(An). In addition, by Theorem 4.1, P0,n(κ) is
a compact set. Therefore, by invoking Weierstrass’ theorem [80], we deduce that the
supremum in (4.27) is achieved by some ←−P ∗0,n(·|bn−1) ∈ P0,n(κ). �
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96 The Extremum Problem of Feedback Capacity

4.3.2. Infinite Horizon

In this section, we first invoke Theorem 4.2 to show existence of the limiting expres-
sion of feedback capacity, and the validity of interchanging the limit and supremum
operations in the definitions of CFB,−

0,n (κ) and CFB
0,n (κ), respectively. One may also

consider the two-sided definition of the finite time expression of feedback capacity
by replacing CFB

0,n (κ) by CFB
n1,n2(κ), n2 > n1, in which case, the limit is defined by

limn2−n1−→∞
1

n2−n1+1C
FB
n1,n2(κ), provided it exists. However, the rate is defined if and

only if the following limit is defined for some n1: limn2−→∞
1

n2−n1
CFB
n1,n2(κ). Hence,

without loss of generality, we let n1 = 0.
First, we prove the following inequality.

Lemma 4.1.
Suppose that An and Bn are Polish spaces. Then

CFB,−(κ) = sup
←−
P 0,∞(·|·)∈P0,∞(κ)

lim
n−→∞

1
n+ 1IA

n→Bn(←−P 0,n,
−→
Q 0,n) ≤ CFB(κ) (4.28)

Proof. If the maximum in (4.27) does not exist there is nothing to prove since CFB(κ) =
−∞. Suppose that the supremum exists (it is finite). By definition we have

CFB
0,n (κ) ≥ IAn→Bn(←−P 0,n,

−→
Q 0,n), ∀←−P 0,n(·|bn−1) ∈ P0,n(κ). (4.29)

By taking the limit in both sides we get

lim
n−→∞

1
n+ 1C

FB
0,n (κ) ≥ lim

n−→∞

1
n+ 1IA

n→Bn(←−P 0,n,
−→
Q 0,n),∀←−P 0,n(·|bn−1) ∈ P0,n(κ).

(4.30)

If we take the supremum over←−P 0,n(·|bn−1) ∈ P0,n(κ) we obtain (4.28). This shows that
CFB,−(κ) ≤ CFB(κ). This completes the derivation. �

Next, we give certain assumptions in order to show that the limit
limn−→∞

1
n+1C

FB
0,n (κ) is finite. The analysis in this section is given for the con-

strained feedback capacity (4.21).

Consider the following class of channels. Let Z , {Zi = z : i = 0, 1, . . .} ∈ A ⊆
AN0 × BN0 denote the sets of points of the random process {Zi : i = 0, 1, . . .} and
define As ⊆ AN0 × BN0 as the set of points Z(s) , {Zi−s : i = 0, 1, . . .} representing
shifts of points in Z, for s = 0, 1, . . .. In addition, assume a real-valued non-negative
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function α(·) : [s1, s2] 7−→ [0,∞) such that ∑s2
t=s1 αt = 1, t ∈ (0,∞). Define the joint

distribution PÃn,Bn on AN0 × BN0 by

PÃn,Bn(A) = (←−P Ãn|Y n−1 ⊗
−→
P Bn|An)(A) 4=

s2∑
s=s1

αs(
←−
P Ãn|Bn−1 ⊗

−→
P Bn|Ãn)(As),∀n = 0, 1, . . . .

Next, we introduce three definitions to characterize nonanticipative channels. These
definitions are important to establish existence of optimal stationary maximizing dis-
tribution corresponding to the limiting expression of information capacity of channels
with memory and feedback. The concepts of “specified” and “consistent” channel are
important in order to show superadditivity of feedback capacity. Moreover, we in-
troduce the term “shift-invariant” for the cost constraint set P0,n(κ), which holds for
single letter cost functions.

Definition 4.2. (Specified, consistent, and stationary channels)
The channel {Bn : n ∈ N0} is called
(1) “specified” if

(a) ←−P Ak|Bk−1 ∈ P0,k(κ) and ←−P An
k+1|B

n−1
k
∈ Pk+1,n(κ), Ank+1

4= {Ak+1, . . . , An}

implies

(b) the joint conditional distribution of the concatenated RVs satisfies

←−
P Ak,An

k+1|Bk−1,Bn−1
k
∈ P0,n(κ), ∀k = 0, 1, . . . , n;

(2) “consistent” if (b) implies (a);
(3) “stationary” if the random process {Bn : n = 0, 1, . . .} is stationary and for any
k = 1, 2, . . ., the sets P0,n(κ) and Pk,n+k(κ) are copies of the same set.
The fidelity set is called
(4) “shift invariant” if given the channel −→P Bn|An(·|·), then for any α(·) defined above
the following holds.

←−
P An|Bn−1 ∈ P0,n(κ) =⇒←−P Ãn|Bn−1 ∈ P0,n(κ),∀n = 0, 1, . . . . (4.31)

Note that in general, Definition 4.2, (2) does not imply (1). Notice that condition
(4.31) holds for the Letter-by-Letter cost function E{g(Ai, Bi)} ≤ κi, κi > 0,
i = 0, 1, . . . , n.
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In what follows, we give in the form of a lemma, the superadditivity of the finite
time (finite horizon) expression of information capacity of channels with memory and
feedback.

Lemma 4.2. (Superadditivity of Feedback Capacity)
If {Bi : i ∈ N0} is a sequence of specified and consistent channel output RV. Then

CFB
0,n (κ) ≥ CFB

0,k (κ) + CFB
k+1,n(κ), k = 1, . . . , n− 1. (4.32)

Proof. By definition of the extremum problem of finite time information feedback ca-
pacity, we obtain

CFB
0,n (κ) = sup

←−
P An|Bn−1∈P0,n(κ)

I(An → Bn)

= sup
←−
P An|Bn−1∈P0,n(κ)

n∑
i=0

I(Ai;Bi|Bi−1)

= sup
←−
P An|Bn−1∈P0,n(κ)

n∑
i=0

I(Ak, Aik+1;Bi|Bk−1, Bi−1
k )

= sup
←−
P An|Bn−1∈P0,n(κ)


k∑
i=0

I(Ak, Aik+1;Bi|Bk−1, Bi−1
k ) +

n∑
i=k+1

I(Ak, Aik+1;Bi|Bk−1, Bi−1
k )


(a)= sup
←−
P
Ak|Bk−1∈P0,k(κ)

sup
←−
P
An
k+1|B

n−1
k

∈Pk+1,n(κ)


k∑
i=0

I(Ak, Aik+1;Bi|Bk−1, Bi−1
k )

+
n∑

i=k+1
I(Ak, Aik+1;Bi|Bk−1, Bi−1

k )

 (4.33)

= sup
←−
P
Ak|Bk−1∈P0,k(κ)

sup
←−
P
An
k+1|B

n−1
k

∈Pk+1,n(κ)

k∑
i=0

I(Ak, Aik+1;Bi|Bk−1, Bi−1
k )

︸ ︷︷ ︸
Term−1

+ sup
←−
P
Ak|Bk−1∈P0,k(κ)

sup
←−
P
An
k+1|B

n−1
k

∈Pk+1,n(κ)

n∑
i=k+1

I(Ak, Aik+1;Bi|Bk−1, Bi−1
k )

︸ ︷︷ ︸
Term−2

(4.34)

where (a) follows from the fact that, by definition, the channel is specified and consis-
tent.
Next, we analyze each term in (4.34).

Pho
tio

s S
tav

rou



4.3 Existence of Solution and Stationarity Conditions 99

Term 1:

sup
←−
P
Ak|Bk−1∈P0,k(κ)

sup
←−
P
An
k+1|B

n−1
k

∈Pk+1,n(κ)

k∑
i=0

I(Ak, Aik+1;Bi|Bk−1, Bi−1
k )

≥ sup
←−
P
Ak|Bk−1∈P0,k(κ)

k∑
i=0

I(Ak, Aik+1;Bi|Bk−1, Bi−1
k )

(b)= sup
←−
P
Ak|Bk−1∈P0,k(κ)

k∑
i=0

{
H(Ak, Aik+1|Bk−1, Bi−1

k )−H(Ak, Aik+1|Bk−1, Bi−1
k , Bi)

}

= sup
←−
P
Ak|Bk−1∈P0,k(κ)

k∑
i=0

{
H(Ai|Bi−1)−H(Ai|Bi−1, Bi)

}

= sup
←−
P
Ak|Bk−1∈P0,k(κ)

k∑
i=0

I(Ai;Bi|Bi−1) = sup
←−
P
Ak|Bk−1∈P0,k(κ)

I(Ak → Bk) = CFB
0,k (κ) (4.35)

where (b) follows from the definition of conditional mutual information, i.e.,
I(X;Y |Z) , H(X|Z)−H(X|Y, Z).
Next, we give the analysis for Term-2.
Term-2:

sup
←−
P
Ak|Bk−1∈P0,k(κ)

sup
←−
P
An
k+1|B

n−1
k

∈Pk+1,n(κ)

n∑
i=k+1

I(Ak, Aik+1;Bi|Bk−1, Bi−1
k )

≥ sup
←−
P
An
k+1|B

n−1
k

∈Pk+1,n(κ)

n∑
i=k+1

I(Ak, Aik+1;Bi|Bk−1, Bi−1
k )

= sup
←−
P
An
k+1|B

n−1
k

∈Pk+1,n(κ)

n∑
i=k+1

{
H(Ak, Aik+1|Bk−1, Bi−1

k )−H(Ak, Aik+1|Bk−1, Bi−1
k , Bi)

}

(c)= sup
←−
P
An
k+1|B

n−1
k

∈Pk+1,n(κ)

n∑
i=k+1

{
H(Ak|Bk−1) +H(Aik+1|Bi−1

k )−H(Ak|Bk−1, Bi−1
k , Bi)

−H(Aik+1|Bk−1, Bi−1
k , Bi, A

k)
}

(d)
≥ sup
←−
P
An
k+1|B

n−1
k

∈Pk+1,n(κ)

n∑
i=k+1

{
H(Ak|Bk−1) +H(Aik+1|Bi−1

k )−H(Ak|Bk−1)

−H(Aik+1|Bi−1
k , Bi)

}
= sup
←−
P
An
k+1|B

n−1
k

∈Pk+1,n(κ)

n∑
i=k+1

{
H(Aik+1|Bi−1

k )−H(Aik+1|Bi−1
k , Bi)

}
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100 The Extremum Problem of Feedback Capacity

= sup
←−
P
An
k+1|B

n−1
k

∈Pk+1,n(κ)

n∑
i=k+1

I(Aik+1;Bi|Bi−1
k )

= sup
←−
P
An
k+1|B

n−1
k

∈Pk+1,n(κ)
I(Ank+1 → Bn

k ) = CFB
k+1,n(κ) (4.36)

where (c) follows from the definition of specified and consistent channels, (d) fol-
lows from the fact that conditioning reduces entropy, i.e., H(Ak|Bk−1, Bi−1

k , Bi) ≤
H(Ak|Bk−1), H(Aik+1|Bk−1, Bi−1

k , Bi, A
k) ≤ H(Aik+1|Bi−1

k , Bi).
Substituting (4.35) and (4.36) in (4.34), we obtain the desired result. This completes
the proof. �

In the next remark, we state a simple but important consequence of Lemma 4.2.

Remark 4.1.
Due to the superadditivity of feedback capacity of channels with memory, we can easily
obtain that

I(An → Bn) ≥ I(Ak → Bk) + I(Ank+1 → Bn
k+1). (4.37)

The next theorem follows directly from Lemma 4.1, Theorem 4.2 and Lemma 4.2.

Theorem 4.3. (Limits)
Suppose Assumption 4.1 holds and the channel is stationary, specified and consistent.

Then the following hold.

(1)

CFB(κ) , lim
n−→∞

sup
←−
P 0,n(·|bn−1)∈P0,n(κ)

1
n+ 1IA

n→Bn(←−P 0,n,
−→
Q 0,n) <∞ (4.38)

i.e., the limit exists and it is finite. Moreover,

(2)

CFB(κ) = CFB,− , sup
←−
P A∞|B∞∈P0,∞(κ)

lim
n−→∞

1
n+ 1IA

n→Bn(←−P 0,n,
−→
Q 0,n). (4.39)

Proof. (1) The derivation utilizes Theorem 4.2 and Lemma 4.2, namely,
CFB

0,n (κ) ≥ CFB
0,k (κ) + CFB

k+1,n(κ), k = 1, . . . , n − 1. Moreover, under the condi-
tions of Theorem 4.2 we know that CFB

0,n (κ) is finite for any finite n ∈ N0. Utilizing
this result and the superadditivity of CFB

0,n (κ), by Fekete’s lemma (see [81]), we deduce
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that the limit in (4.38) exists and it is finite.
(2) Let δ > 0. From the results in (1), the capacity of chan-
nels with feedback CFB(κ) = sup←−

P 0,n(·|bn−1)∈P0,n(κ) I(An → Bn) =
limn−→∞ sup←−

P 0,n(·|bn−1)∈P0,n(κ)
1

n+1I(An → Bn) = limn−→∞
1

n+1I(An → Bn) < ∞.
Hence, the following inequality holds1.

1
n+ 1I(An → Bn) > lim

n−→∞

1
n+ 1I(An → Bn)− δ. (4.40)

Introduce a ∈ Z. By (4.37), we can obtain

I(Aan → Ban) ≥ I(A(a−1)n → B(a−1)n) + I(Aan(a−1)n → Ban
(a−1)n). (4.41)

By applying (4.41) a−times and making use of the stationarity of the pair of the joint
process {(Ai, Bi) : i ∈ N0}, we obtain

I(Aan → Ban) ≥ aI(An → Bn). (4.42)

This result implies, due to (4.40), the inequality

1
a(n+ 1)I(Aan → Ban) ≥ lim

n→∞

1
n+ 1I(An → Bn)− δ. (4.43)

If we assume that s = an, and using the fact that lims−→∞
1
s+aI(As → Bs) exists (due

to superadditivity) we obtain

lim
s−→∞

1
s+ a

I(As → Bs) > lim
n−→∞

1
n+ 1I(An → Bn)− δ. (4.44)

Since δ is arbitrary, picking a = 1, and using the result of (4.44) without loss of
generality we can get

sup
PA∞,B∞ (·,·)

lim
s−→∞

1
s+ 1I(As → Bs) > lim sup

n−→∞

1
n+ 1I(An → Bn) = CFB(κ). (4.45)

Hence, by definition of CFB,−(κ) we obtain

CFB,−(κ) = sup
PA∞,B∞ (·,·)

lim
s−→∞

1
s+ 1I(As → Bs) > CFB(κ). (4.46)

Utilizing the inequality of Theorem 4.1, i.e., CFB,− ≤ CFB(κ), and (4.46) the desired
1This holds because of the following argument. For every δ > 0, there exists a π ∈ Σ such that
π > sup Σ− δ
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result follows.
This completes the derivation. �

Often, in the derivation of the limiting expression of the classical channel capacity is
assumed that the process {(An, Bn) : n ∈ N0} is jointly stationary. This is not a
very natural assumption because one does not know á priori whether the input process
is stationary. The next theorem utilizes Theorem 4.2, Theorem 4.3 to show that the
limiting expression of the supremum of the feedback channel capacity is achieved by
a stationary input distribution, which makes the process {(An, Bn) : n ∈ N0} jointly
stationary.

Theorem 4.4. (Stationarity of input distribution)
Suppose Assumption 4.1 holds, the channel {Bn : n ∈ N0} is stationary and consistent,
and the cost constraint set is shift invariant.
Then, the supremum in (4.39) is achieved by some ←−P ∗0,n(·|bn−1) ∈ P0,n(κ) such that the
input-channel pair {(An, Bn) : n ∈ N0} is jointly stationary.

Proof. By Assumption 4.1, the statement of Theorem 4.2 holds. Also, in addition of
the stationarity of the channel, Theorem 4.3 holds and CFB(κ) = CFB,−(κ). Hence,
we establish the claim of stationarity of the joint process. �

4.4. Conclusions

The extremum problem of feedback capacity with transmission cost constraint is dis-
cussed on abstract alphabet spaces. Certain sufficient conditions for establishing exis-
tence of solution are provided. By considering consistent stationary channels we estab-
lished equality of the limiting expressions CFB(κ) = CFB,−

0,n (κ), finiteness of CFB(κ),
and for stationary channels and shift invariant transmission cost constraint, the supre-
mum over ←−P 0,n(·|bn−1) ∈ P0,n(κ) is achieved and it is realizable by joint stationary
input-channel pairs {(An, Bn) : n ∈ N0}.Pho
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5
Sequential Necessary and Sufficient
Conditions for Capacity Achieving

Distributions of Channels with
Memory and Feedback

5.1. Introduction

Computing feedback capacity for any class of channel distributions with memory, with
or without transmission cost constraints, and computing the optimal channel input
conditional distribution, which achieves feedback capacity, and determining whether
feedback increases capacity, are fundamental and challenging problems in information
theory, which remained open for half a century.
Notable exceptions are the Cover and Pombra [29] characterization of feedback capac-
ity of nonstationary and nonergodic, Additive Gaussian Noise (AGN) channels with
memory and feedback. However, despite the progress in obtaining the characterization
of feedback capacity for AGN channels, the problem of optimizing this expression over
channel input conditional distributions without any assumptions of stationarity or er-
godicity, remains to this date a challenging task. Nevertheless, the characterization
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of feedback capacity derived in [29], initiated several investigations for variants of the
AGN channel with memory, such as, the finite alphabet channel with memory investi-
gated by Alajaji in [45], the stationary ergodic version of Cover and Pombra [29] AGN
channel investigated by Kim in [33] in which the channel noise is of limited memory,
and several generalizations investigated via dynamic programming, such as, the work
by Yang et al. in [46]. For certain channels with memory defined on finite alphabets,
feedback capacity expressions are derived in [34,47,48], and in [35], when transmission
cost constraints are imposed on the channel input distributions. However, the progress
in determining the feedback capacity, and understanding the properties of the opti-
mal channel input distributions for general channels, has been limited. Specifically,
in [34, 47, 48], the closed form expressions of feedback capacity are obtained using the
symmetry of the channels considered, while the capacity achieving distributions are
not determined.
The lack of progress is attributed to the absence of a general methodology to solve
extremum problems of feedback capacity, for general channel distributions. In this
chapter, we utilize recent work found in Chapters 2, 3 and in [49], to develop such a
methodology. Specifically, we derive sequential necessary and sufficient conditions for
channel input distributions to maximize the finite horizon directed information. Then
we apply the necessary and sufficient conditions to specific application examples, and
we compute expressions for feedback capacity and corresponding expressions for the
optimal distributions, which achieve it.

5.1.1. Main Problem

Consider any channel model
({
Xt : t = 0, . . . , n

}
,
{
Yt : t = 0, . . . , n

}
, C0,n ,

{
PYt|Y t−1,Xt : t = 0, . . . , n

}
,

P0,n ,
{
PXt|Xt−1,Y t−1 : t = 0, . . . , n

})

where X t , {X0, X1, . . . , Xt} and Y t , {Y0, Y1, . . . , Yt} are the channel input and
output Random Variables (RVs), taking values in X t = ×nt=0Xt, C0,n is the set of channel
conditional distributions, and P0,n is the set of channel input conditional distributions.
Our objective is to derived necessary and sufficient conditions for any channel input
conditional distribution from the set P0,n, to maximize the finite-time horizon directed
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5.1 Introduction 105

information from Xn to Y n, defined by

CFB
Xn→Y n , sup

P0,n

I(Xn → Y n) (5.1)

where I(Xn → Y n) is the directed information from Xn → Y n, defined by [1,2]

I(Xn → Y n) ,
n∑
t=0

I(X t;Yt|Y t−1) =
n∑
t=0

E
{

log
(
dPYt|Y t−1,Xt(·|Y t−1, X t)

dPYt|Y t−1(·|Y t−1) (Yt)
)}

(5.2)

We prefer to derive necessary and sufficient conditions for extremum problem (5.1),
because these translate into corresponding necessary and sufficient conditions for any
channel input distribution to maximize its per unit time limiting version, defined by

CFB
X∞→Y∞ , lim inf

n−→∞

1
n+ 1C

FB
Xn→Y n . (5.3)

while additional insight is gained on the asymptotic properties of optimal channel
input conditional distributions. Under certain conditions, CFB

X∞→Y∞ is the supre-
mum of all achievable rates of the sequence of feedback codes (see [8] for defini-
tion). For the convenience of the reader the definition of feedback codes and the
sufficient conditions for CFB

X∞→Y∞ to correspond to feedback capacity are given in
Appendix C.1. Coding theorems for channels with memory with and without feed-
back are developed extensively over the years, in an anthology of papers, such as,
[3, 8, 10, 13,14,19,22,24,28,30–32,39,50].
We also derived necessary and sufficient conditions for channel input conditional dis-
tributions, which satisfies transmission cost constraint of the form

P0,n(κ) ,
{
PXt|Xt−1,Y t−1 , t = 0, . . . , n : 1

n+ 1E
{
c0,n(Xn, Y n−1)

}
≤ κ

}
, κ ∈ [0,∞)

(5.4)

and maximize the finite-time horizon directed information defined by

CFB
Xn→Y n(κ) , sup

P0,n(κ)
I(Xn → Y n). (5.5)

Subsequently, we illustrate via application examples, that feedback capacity and ca-
pacity achieving distributions can be obtained from the asymptotic properties of the
solution of the finite-time horizon extremum problem of directed information. To the
best of our knowledge, this is the first work which gives necessary and sufficient condi-
tions for any channel input conditional distribution to maximize the finite-time horizon
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optimization problems 1
n+1C

FB
Xn→Y n , 1

n+1C
FB
Xn→Y n(κ).

5.1.2. Contributions and Main Results

In this chapter, to avoid excessive notation, we derive sequential necessary and suf-
ficient conditions for any channel input distribution {PXt|Xt−1,Y t−1 : t = 0, . . . , n} ∈
{P0,n, P0,n(κ)} to maximize directed information I(Xn → Y n), for the following classes
of channel distributions and transmission cost functions.

Channel Distributions:

Class A. PYt|Y t−1,Xt = PYt|Y t−1
t−M ,Xt

≡ qt(dyt|yt−1
t−M , xt), t = 0, . . . , n, (5.6)

Class B. PYt|Y t−1,Xt = PYt|Y t−1,Xt ≡ qt(dyt|yt−1, xt), t = 0, . . . , n. (5.7)

Transmission Cost Functions:

Class A. cA.N0,n (Xn, Y n−1) ,
n∑
t=0

γt(Xt, Y
t−1
t−N), t = 0, . . . , n, (5.8)

Class B. cB0,n(Xn, Y n−1) ,
n∑
t=0

γt(Xt, Y
t−1), t = 0, . . . , n. (5.9)

Here, {M,N} are nonnegative finite integers. We use the following convention.

If M = 0 then PYt|Y t−1
t−M ,Xt

|M=0 = PYt|Xt , i.e., the channel is memoryless, t = 0, . . . , n.

If N = 0 then γt(xt, yt−1
t−N)|N=0 = γt(xt), t = 0, . . . , n.

Methodology

The starting point of our analysis is based on certain results obtained in [49] and
Chapter 2, 3. We briefly introduce these results for the reader’s convenience, in order
to explain the methodology and to state some of the main contributions of this chapter.
Consider the following channel model
({
Xt : t = 0, . . . , n

}
,
{
Yt : t = 0, . . . , n

}
,
{

PYt|Y t−1,Xt = qt(dyt|yt−1
t−M , xt) : t = 0, . . . , n

}
,{

PXt|Xt−1,Y t−1 : t = 0, . . . , n
})

that is, the channel distribution is of class A.
Information Structures of Optimal Channel Input Distributions Maximizing I(Xn →
Y n). From [49], we use the following results.
(a) For any channel distribution of class A, the optimal channel input conditional
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distribution, which maximizes I(Xn → Y n) satisfies conditional independence
{
PXt|Xt−1,Y t−1 = PXt|Y t−1

t−M
≡ πt(dxt|yt−1

t−M), t = 0, 1, . . . , n
}
⊂ P0,n (5.10)

which implies the corresponding joint process {(Xt, Yt) : t = 0, . . . , n} is M -order
Markov, i.e., P (xt, yt|xt−1, yt−1) = P (xt, yt|xt−1

t−M , y
t−1
t−M), t = 0, . . . , n, and the output

process {Yt : t = 0, . . . , n} is M -order Markov, that is, the joint distribution and
channel output transition probability distribution are given by

Pπ
Y t,Xt(dyt, dxt) =⊗ti=0

(
qi(dyi|yi−1

i−M , xi)⊗ πi(xi|yi−1
i−M)

)
, t = 0, . . . , n, (5.11)

Pπ
Yt|Y t−1(dyt|yt−1) =Pπ

Yt|Y t−1
t−M

(dyt|yt−1
t−M) (5.12)

=
∫
Xt
qt(dyt|yt−1

t−M , xt)⊗ πt(dxt|yt−1
t−M) ≡ νπt (dyt|yt−1

t−M). (5.13)

(b) The characterization of CFB
Xn→Y n called “Finite Transmissions Feedback Informa-

tion” (FTFI) capacity, is given by the following expression,

CFB,A.M
Xn→Y n = sup

PA.M0,n

n∑
t=0

Eπ
{

log
(
dqt(·|Y t−1

t−M , Xt)
dνπt (·|Y t−1

t−M)
(Yt)

)}
(5.14)

where the optimization is over the restricted set of distributions

PA.M0,n =
{
πt(dxt|yt−1

t−M) : t = 0, . . . , n
}
. (5.15)

In view of the Markov property of the channel output process, the characterization of
FTFI capacity (5.14) can be further optimized using dynamic programming to deter-
mine the optimal channel input distribution from the set PA.M0,n .

Convexity of Directed Information. From Chapters 2, 3 we use the following results.
(c) The extremum problem of the characterization of FTFI capacity CFB,A.M

Xn→Y n given by
(5.14) is a convex optimization problem, over the space of channel input distributions
PA.M0,n .
(d) The characterization of FTFI capacity CFB,A.M

Xn→Y n can be reformulated as a dou-
ble maximization problem of a concave functional over appropriate convex subsets of
probability distributions.
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Necessary and Sufficient Conditions of Characterization of FTFI Capacity
for Class A Channels

We derive the sequential necessary and sufficient conditions as follows.

Dynamic Programming Recursions. In view of (a)-(d), we apply dynamic programming
and standard techniques of optimization of convex functionals defined on the set of
probability distributions, to derive necessary and sufficient conditions for any channel
input distribution from the set PA.M0,n to achieve the characterization of FTFI capacity
CFB,A.M
Xn→Y n .

Specifically, let Ct : Y t−1
t−M 7−→ [0,∞) represent the maximum expected total pay-off in

(5.14) on the future time horizon {t, t + 1, . . . , n}, given Y t−1
t−M = yt−1

t−M at time t − 1,
defined by1

Ct(yt−1
t−M) = sup{

πi(dxi|yi−1
i−M ): i=t,t+1,...,n

}Eπ
{

n∑
i=t

log
(
dqi(·|yi−1

i−M , xi)
dνπt (·|yi−1

i−M)
(Yi)

) ∣∣∣∣Y t−1
t−M = yt−1

t−M

}
.

(5.16)

Suppose there exists an optimal solution to (5.16) and assume Ct : Y t−1
t−M 7−→ [0,∞)

in (5.16) is bounded continuous in ytt+1−M ∈ Y tt−1−M , t ∈ Nn−1
0 . Then, the dynamic

programming recursions for (5.16) are the following2.

Cn(yn−1
n−M) = sup

πn(dxn|yn−1
n−M )

∫
Xn×Yn

log
(
dqn(·|yn−1

n−M , xn)
dνπn(·|yn−1

t−M)
(yn)

)
qn(dyn|yn−1

n−M , xn)⊗ πn(dxn|yn−1
n−M),

(5.17)

Ct(yt−1
t−M) = sup

πt(dxt|yt−1
t−M )

∫
Xt×Yt

 log
(
dqt(·|yt−1

t−M , xt)
dνπt (·|yt−1

t−M)
(yt)

)

+ Ct+1(ytt+1−M)
qt(dyt|yt−1

t−M , xt)⊗ π(dxt|yt−1
t−M), t = 0, . . . , n− 1.

(5.18)

Next, we prove sequential necessary and sufficient conditions, corresponding to (5.17)

1We assume that there exists an optimal solution to (5.16) and the Radon-Nikodym Derivative

(RND) log
(
dqi(·|yi−1

i−M ,xi)
dνπt (·|yi−1

i−M ) (Yi)
)

in (5.16) is absolutely continuous, that is, there exist a version

of it which belongs to L1, i.e., the space of Lebesgue integrable functions. Note that sufficient
conditions for existence of an optimal solution to (5.16) are derived in Chapter 4.

2We assume existence of an optimal solution to dynamic programming recursive equations (5.17),
(5.18). However, in this chapter we show that for finite alphabet spaces an optimal solution exists
based on Karush-Kuhn-Tucker conditions (see [82]).
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and (5.18). This result is established since the optimization problem in (5.17) and
(5.18) is done over a convex function, the conditional distribution π, and the set of
such distributions is a convex set.

Theorem 5.1. (Sequential necessary and sufficient conditions for channels of class A)
The necessary and sufficient conditions for any input distribution {πt(dxt|yt−1

t−M) : t =
0, . . . , n} to achieve the supremum in CFB,A.M

Xn→Y n defined by (5.14) (assume it exists) are
the following.
(a) For each yn−1

n−M ∈ Yn−1
n−M , there exist a Cn(yn−1

n−M) such that the following hold.

∫
Yn

log
(
dqn(·|yn−1

n−M , xn)
dνπn(·|yn−1

n−M)
(yn)

)
qn(dyn|yn−1

n−M , xn)

= Cn(yn−1
n−M), ∀xn ∈ Xn, if πn(dxn|yn−1

n−M) 6= 0, (5.19)∫
Yn

log
(
dqn(·|yn−1

n−M , xn)
dνπn(·|yn−1

n−M)
(yn)

)
qn(dyn|yn−1

n−M , xn)

≤ Cn(yn−1
n−M), ∀xn ∈ Xn, if πn(dxn|yn−1

n−M) = 0 (5.20)

and moreover, Cn(yn−1
n−M) is the value function defined by (5.16) at t = n.

(b) For each t, yt−1
t−M ∈ Y t−1

t−M , there exist a Ct(yt−1
t−M) such that the following hold.

∫
Yt

(
log

(
dqt(·|yt−1

t−M , xt)
dνπt (·|yt−1

t−M)
(yt)

)
+ Ct+1(ytt+1−M)

)

qt(dyt|yt−1
t−M , xt) = Ct(yt−1

t−M), ∀xt ∈ Xt, if πt(dxt|yt−1
t−M) 6= 0, (5.21)∫

Yt

(
log

(
dqt(·|yt−1

t−M , xt)
dνπt (·|yt−1

t−M)
(yt)

)
+ Ct+1(ytt+1−M)

)

qt(dyt|yt−1
t−M , xt) ≤ Ct(yt−1

t−M), ∀xt ∈ Xt, if πt(dxt|yt−1
t−M) = 0 (5.22)

for t ∈ {n− 1, . . . , 0}, and moreover, Ct(Y t−1
t−M) is the value function defined by (5.16)

for t ∈ {n− 1, . . . , 0}.

In application examples of time-varying channels with memory, we invoke Theorem 5.1
to derive recursive expressions of the optimal channel input distributions. Moreover,
from these expressions, we derive the optimal channel input distributions for the per
unit time limiting expression CFB

X∞→Y n , and we show it converges to feedback capacity.
Degenerate Versions of Necessary and Sufficient Conditions for Memoryless Channels.
The necessary and sufficient conditions stated in Theorem 5.1, are generalizations of
the ones obtained by Gallager [32] and Jelinek [83], for Discrete Memoryless Channels
(DMCs). Indeed, if the channel is memoryless and time-invariant, i.e., PYt|Y t−1,Xt =
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PYt|Xt = PY |X , with Pπ
Yt|Y t−1 = Pπ

Yt = Pπ
Y =

∫
Y PY |X(dy|x)π(dx), t = 0, . . . , n, then

Ct+1(yt−1
t−M) = Ct+1 = C, t = 0, . . . , n, is simply a constant real number, and (5.19)-

(5.22) reduce to the single stage equations

∫
Y

log
(
dPY |X(·|x)
dPπ

Y (·) (y)
)

PY |X(dy|x) = C, ∀x ∈ X , if π(dx) 6= 0,
∫
Y

log
(
dPY |X(·|x)
dPπ

Y (·) (y)
)

PY |X(dy|x) ≤ C, ∀x ∈ X , if π(dx) = 0.

The main point to be made, is that for channels with memory, we derive the dynamic
versions of Gallager and Jelinek’s necessary and sufficient conditions, and these are
sequential necessary and sufficient conditions. However, to derive Theorem 5.1, we
need to ensure, for a given channel, that the information structures of the optimal
channel input distributions are identified, and the resulting dynamic programming
optimization problem is a convex optimization problem, hence the need for some of the
results in Chapters 2, 3 and in [49].
In Theorem 5.6 we derive similar necessary and sufficient conditions for channel
distributions of Class A and transmission cost functions of Class A. In Section 5.5.2,
we illustrate how to extend the necessary and sufficient conditions of Theorem 5.6 to
channel distributions of Class B and transmission cost functions of Class A or B, and
to channel distributions of Class A with transmission cost functions of Class B.

Applications Examples of Necessary and Sufficient Conditions. In Section 5.4, we ap-
ply the sequential necessary and sufficient conditions to derive recursive closed form
expressions of optimal channel input conditional distributions, which achieve the char-
acterizations of FTFI capacity of the following channels.

(a) The time-varying Binary Unit Memory Channel Output (BUMCO) channel.

(b) The time-varying Binary Erasure Unit Memory Channel Output (BEUMCO)
channel.

(c) The time-varying Binary Symmetric Two Memory Channel Output (BSTMCO)
channel.

Further, we consider the time-invariant or homogeneous versions of the BUMCO and
BEUMCO channels, and we investigate the asymptotic properties of optimal channel
input conditional distributions, by analyzing the per unit time limit of the characteriza-
tions of FTFI capacity, specifically, CFB

X∞→Y∞ . Via this analysis, the ergodic properties
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of optimal channel input conditional distributions, which achieve feedback capacity are
revealed, without imposing any á priori assumptions, such as, stationarity, ergodicity,
or information stability. Rather, it is shown that the optimal channel input conditional
distributions, induce ergodicity of the joint process {(Xt, Yt) : t = 0, 1, . . .}.

Application Example: The Time-Varying Binary Unit Memory Channel
Output (BUMCO) Channel

In Section 5.4.1, we apply Theorem 5.1 to the time-varying BUMCO channel, denoted
by {BUMCO(αt, βt, γt, δt): t = 0, . . . , n}, αt 6= γt, βt 6= δt, and defined by the transition
matrix

qt(dyt|xt, yt−1) =


0, 0 0, 1 1, 0 1, 1

0 αt βt γt δt

1 1− αt 1− βt 1− γt 1− δt

, αt, βt, γt, δt ∈ [0, 1]. (5.23)

In the next theorem, we give the optimal channel input and output distributions which
correspond to the characterization of FTFI capacity CFB,A.1

Xn→Y n , i.e., (5.14) with M = 1,
denoted by

{
π∗t (xt|yt−1) : (xt, yt−1) ∈ {0, 1} × {0, 1}, t = 0, . . . , n

}
,{

νπ
∗

t (yt|yt−1) : (yt, yt−1) ∈ {0, 1} × {0, 1}, t = 0, . . . , n
}

and the ergodic feedback capacity.

Theorem 5.2. (Optimal solution of {BUMCO(αt, βt, γt, δt))
Consider the time-varying BUMCO defined by (5.23). Then the following hold.

(a) The optimal (nonstationary) channel input distribution and the corresponding
channel output transition probability distribution are given by the following ex-
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pressions3.

π∗t (0|0) = 1− γt(1 + 2µ0(t)+∆Ct+1)
(αt − γt)(1 + 2µ0(t)+∆Ct+1) , π

∗
t (0|1) = 1− δt(1 + 2µ1(t)+∆Ct+1)

(βt − δt)(1 + 2µ1(t)+∆Ct+1) ,

(5.24a)

π∗t (1|0) = αt(1 + 2µ0(t)+∆Ct+1)− 1
(αt − γt)(1 + 2µ0(t)+∆Ct+1) , π

∗
t (1|1) = βt(1 + 2µ1(t)+∆Ct+1)− 1

(βt − δt)(1 + 2µ1(t)+∆Ct+1) ,

(5.24b)

νπ
∗

t (0|0) = 1
1 + 2µ0(t)+∆Ct+1

, νπ
∗

t (0|1) = 1
1 + 2µ1(t)+∆Ct+1

, (5.24c)

νπ
∗

t (1|0) = 2µ0(t)+∆Ct+1

1 + 2µ0(t)+∆Ct+1
, νπ

∗

t (1|1) = 2µ1(t)+∆Ct+1

1 + 2µ1(t)+∆Ct+1
(5.24d)

µ0(αt, γt) = H(γt)−H(αt)
γt − αt

≡ µ0(t), µ1(βt, δt) = H(βt)−H(δt)
βt − δt

≡ µ1(t).

(5.24e)

where {∆Ct , Ct(1) − Ct(0) : t = 0, . . . , n + 1}, is the difference of the value
functions at each time, satisfying the following backward recursions.

∆Cn+1 = 0, (5.25a)

∆Ct =
(
µ1(t)(βt − 1)− µ0(t)(αt − 1)

)
+H(αt)−H(βt)

+ log
(1 + 2µ1(t)+∆Ct+1

1 + 2µ0(t)+∆Ct+1

)
, t ∈ {n, . . . , 0}. (5.25b)

(b) The solution of the value functions is given recursively by the following expres-
sions.

Ct(0) = µ0(t)(αt − 1) + Ct+1(0) + log(1 + 2µ0(t)+∆Ct+1)−H(αt), Cn+1(0) = 0,
(5.26)

Ct(1) = µ1(t)(βt − 1) + Ct+1(0) + log(1 + 2µ1(t)+∆Ct+1)

−H(βt), Cn+1(1) = 0, t ∈ {n, . . . , 0}. (5.27)

(c) The characterization of the FTFI capacity is given by

CFB,A.1
Xn→Y n =

∑
y−1∈{0,1}

C0(y−1)PY−1(dy−1), PY−1(dy−1) ≡ µ(dy−1) is fixed. (5.28)

3Define H(x) , −xlog2(x)− (1− x) log2(1− x), x ∈ [0, 1].
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(d) Consider for the time-invariant BUMCO channel denoted by BUMCO(α, β, γ, δ).
The ergodic feedback capacity CFB,A.1

X∞→Y∞ (i.e., the per unit time limiting version
of (5.14) with M = 1) is given by the following expression.

CFB,A.1
X∞→Y∞ =ν0

(
H(ν0|0)−H(γ)

)
+ (1− ν0)

(
H(ν0|1)−H(δ)

)
+ ξ0

(
H(γ)−H(α)

)
+ ξ1

(
H(δ)−H(β)

)
(5.29)

where

ν0 = 1 + 2µ0+∆C∞

1 + 2µ0+µ1+2∆C∞ + 2µ0+1+∆C∞ , ξ0 = 1− γ(1 + 2µ0+∆C∞)
(α− γ)

(
1 + 2µ0+µ1+2∆C∞ + 2µ0+1+∆C∞

) ,
(5.30a)

ξ1 =
2µ0+∆C∞

(
1− δ(1 + 2µ1+∆C∞)

)
(β − δ)

(
1 + 2µ0+µ1+2∆C∞ + 2µ0+1+∆C∞

) , ν0|0 = νπ
∗,∞(0|0), ν0|1 = νπ

∗,∞(0|1)

(5.30b)

and ∆C∞ is the steady-state solution of the following algebraic equation.

∆C∞ =
(
µ1(β − 1)− µ0(α− 1)

)
+H(α)−H(β) + log

(1 + 2µ1+∆C∞

1 + 2µ0+∆C∞

)
. (5.31)

where

µ0(α, γ) = H(γ)−H(α)
γ − α

≡ µ0, µ1(β, δ) = H(β)−H(δ)
β − δ

≡ µ1.

This means the optimal channel input and output transition distributions given
by (5.24), converge asymptotically to the following time-invariant distributions.

π∗,∞(0|0) = 1− γ(1 + 2µ0+∆C∞)
(α− γ)(1 + 2µ0+∆C) , π

∗,∞(0|1) = 1− δ(1 + 2µ1+∆C∞)
(β − δ)(1 + 2µ1+∆C∞) , (5.32a)

π∗,∞(1|0) = α(1 + 2µ0+∆C∞)− 1
(α− γ)(1 + 2µ0+∆C∞) , π

∗,∞(1|1) = β(1 + 2µ1+∆C∞)− 1
(β − δ)(1 + 2µ1+∆C∞) ,

(5.32b)

νπ
∗,∞(0|0) = 1

1 + 2µ0+∆C∞ , νπ
∗,∞(0|1) = 1

1 + 2µ1+∆C∞ , (5.32c)

νπ
∗,∞(1|0) = 2µ0+∆C∞

1 + 2µ0+∆C∞ , νπ
∗,∞(1|1) = 2µ1+∆C∞

1 + 2µ1+∆C∞ . (5.32d)

where {νπ∗,∞(y) : y ∈ {0, 1}} is a unique invariant distribution corresponding to{
νπ
∗,∞(z|y) : (z, y) ∈ {0, 1} × {0, 1}

}
.
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Application Example: The Time-Varying Binary Erasure Unit Memory
Channel Output (BEUMCO) Channel

In Section 5.4.3, we consider the time-varying BEUMCO channel denoted by
{BEUMCO(αt, γt, βt) : t = 0, . . . , n}, and defined by the transition matrix

qt(dyt|yt−1, xt) =



0, 0 e, 0 1, 0 0, 1 e, 1 1, 1

0 αt γt βt 0 0 0

e 1− αt 1− γt 1− βt 1− αt 1− γt 1− βt
1 0 0 0 αt γt βt

, αt, βt, γt ∈ [0, 1]

(5.33)

where Xt
4= {0, 1}, Yt = Yt

4= {0, e, 1}, t = 0, . . . , n, where “e” denotes the erased event
at the output of the channel. We derive the optimal channel input conditional distri-
bution and the corresponding channel output transition probability distribution of the
characterization of FTFI capacity. Further, we investigate the asymptotic properties
of its per unit time limiting version CFB

X∞→Y∞ , the feedback capacity.

Application Example: The Time-Varying Binary Symmetric Two Memory
Channel Output (BSTMCO) Channel

In Section 5.4.4, we consider the time-varying (BSTMCO) channel denoted by
{BSTMCO(αt, βt, γt, δt) : t = 0, . . . , n}, and defined by the transition matrix

qt(dyt|yt−1, yt−2, xt) =


0, 0, 0 0, 0, 1 0, 1, 0 0, 1, 1 1, 0, 0 1, 0, 1 1, 1, 0 1, 1, 1

0 αt βt γt δt 1− δt 1− γt 1− βt 1− αt
1 1− αt 1− βt 1− γt 1− δt δt γt βt αt

,
(5.34)

αt, βt, γt, δt ∈ [0, 1], t = 0, . . . , n.

We derive the optimal channel input conditional distribution and the corresponding
channel output transition probability distribution of the characterization of FTFI
capacity. We also discuss extensions to channels with larger alphabets.

The above applications examples are by no means exhaustive; they are simply in-
troduced and analyzed in order to illustrate the effectiveness of the necessary and
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sufficient conditions of optimal channel input distributions, which maximize the char-
acterizations of FTFI capacity, and their application in computing feedback capacity,
via the asymptotic analysis of the per unit time limit of the characterization of FTFI
capacity.

This chapter is structured as follows. In Section 5.2, we give the background material
utilized throughout the chapter. In Section 5.3, we derive the sequential necessary and
sufficient conditions for channels of class A with transmission cost functions of class A.
In Section 5.4 we use the sequential necessary and sufficient conditions to obtain the
optimal channel input and output conditional distributions for the above three channel
models with memory and feedback, the BUMCO channel, the BEUMCO channel, and
the BSTMCO channel. In Section 5.5, we give sufficient conditions for the results of
the chapter to extend to abstract alphabet spaces (i.e., countable, continuous, mixed,
etc.). In Section 5.5.2, we illustrate that the main theorems of Section 5.3 also extend
to channels of class B with transmission cost functions of class A or B.

5.2. Extremum Problems of Feedback Capacity and
Preliminaries

In this section, we introduce the notation, the definition of extremum problem of
feedback capacity, and we recall a variational equality derived in Chapter 3, Section 3.3.

5.2.1. Basic Notation

We denote the set of nonnegative integers by N0 , {0, 1, . . .}, and for any n ∈ N0,
its restriction to a finite set by Nn

0 , {0, 1, . . . , n}. Given two measurable spaces
(X ,B(X )), (Y ,B(Y)), we denote the Cartesian product of X and Y by X × Y ,
{(x, y) : x ∈ X , y ∈ Y}, and the product measurable space of (X ,B(X )) and (Y ,B(Y))
by (X ×Y ,B(X )⊗B(Y)), where B(X )⊗B(Y) is the product σ−algebra generated by
{A×B : A ∈ B(X ), B ∈ B(Y)}. We denote by H(·) the binary entropy, and by card(·)
the cardinality of the space.
We denote the probability distribution induced by a Random Variable (RV) X defined
on a probability space (Ω,F,P), by the mapping X : (Ω,F) 7−→ (X ,B(X )), as follows4.

P(A) ≡ PX(A) , P
{
ω ∈ Ω : X(ω) ∈ A

}
, ∀A ∈ B(X ). (5.35)

4The subscript X is often omitted.
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We denote the set of all probability distributions on (X ,B(X )) by M(X ). A RV
X is called discrete if there exists a countable set SX , {xi : i ∈ N0} such that∑
xi∈SX P{ω ∈ Ω : X(ω) = xi} = 1. In this case, the probability distribution PX(·) is

concentrated on points in SX , and it is defined by

PX(A) ,
∑

xt∈SX
⋂
A

P
{
ω ∈ Ω : X(ω) = xt

}
, ∀A ∈ B(X ).

If the cardinality of SX is finite then the RV is finite-valued, and we call it a finite
alphabet RV.
Given another RV, Y : (Ω,F) 7−→ (Y ,B(Y)), PY |X(dy|X)(ω) is the conditional distri-
bution of RV Y given RV X. We denote the conditional distribution of RV Y given
X = x (i.e., fixed) by PY |X(dy|X = x) ≡ PY |X(dy|x). Such conditional distribu-
tions are equivalently described by stochastic kernels or transition functions K(·|·) on
B(Y) × X , mapping X into M(Y) (space of distributions), i.e., x ∈ X 7−→ K(·|x) ∈
M(Y), and such that for every A ∈ B(Y), the function K(A|·) is B(X )-measurable.

5.2.2. FTFI Capacity and Convexity of Feedback Capacity

The channel input and channel output alphabets are sequences of measurable spaces
{(Xt,B(Xt)) : t ∈ N0} and {(Yt,B(Yt)) : t ∈ N0}, respectively, with their product
spaces X N0 , ×t∈N0Xt, YN0 , ×t∈N0Yt. These spaces are endowed with their respective
product topologies, and B(ΣN0) , ⊗t∈N0B(Σt), denotes the σ−algebras on ΣN0 , where
Σt ∈

{
Xt,Yt

}
, ΣN0 ∈

{
X N0 ,YN0

}
, and generated by cylinder sets. We denote points

in Σm
k , ×mj=kΣj by zmk , {zk, zk+1, . . . , zm} ∈ Σm

k , (k,m) ∈ N0 × N0.
Below, we introduce the elements of the extremum problem we address in this paper,
and we establish the notation.

Channel Distribution with Memory. A sequence of conditional distributions de-
fined by

C0,n ,
{
PYt|Y t−1,Xt = qt(dyt|yt−1, xt) : t = 0, 1, . . . , n

}
. (5.36)

At each time instant t the conditional distribution of the channel depends on past
channel output symbols yt−1 ∈ Y t−1 and current and past channel input symbols
xt ∈ X t, for t = 0, 1, . . . , n.
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Channel Input Distribution with Feedback. A sequence of conditional distribu-
tions defined by

P0,n ,
{
PXt|Xt−1,Y t−1 = pt(dxt|xt−1, yt−1) : t = 0, 1, . . . , n

}
. (5.37)

At each time instant t the conditional channel input distribution with feedback de-
pends on past channel inputs and output symbols {xt−1, yt−1} ∈ X t−1 × Y t−1, for
t = 0, 1, . . . , n.

Transmission Cost. The set of channel input distributions with feedback and trans-
mission cost is defined by

P0,n(κ) ,
{
pt(dxt|xt−1, yt−1), t = 0, 1, . . . , n : 1

n+ 1E
p
(
c0,n(Xn, Y n−1)

)
≤ κ

}
⊂ P0,n, κ ∈ [0,∞) (5.38)

where the superscript notation Ep{·} denotes the dependence of the joint distribution
on the choice of conditional distribution {pt(dxt|xt−1, yt−1) : t = 0, 1 . . . , n}. The cost
of transmitting channel input symbols xn ∈ X n over a channel, and receiving channel
output symbol yn ∈ Yn, is a measurable function c0,n : X n × Yn−1 7−→ [0,∞).

FTFI Capacity and Feedback Capacity. Given any channel input distribution{
pt(dxt|xt−1, yt−1) : t = 0, 1, . . . , n

}
∈ P0,n and a channel distribution

{
qt(dyt|yt−1, xt) :

t = 0, 1, . . . , n
}
∈ C0,n, then we can uniquely define the induced joint distribution

Pp(dxn, dyn) on the canonical space
(
X n×Yn,B(X n)⊗B(Yn)

)
, and we can construct

a probability space
(

Ω,F ,P
)

carrying the sequence of RVs {(Xt, Yt) : t = 0, 1, . . . , n},
as follows.

P
{
Xn ∈ dxn, Y n ∈ dyn

}
,Pp(dxn, dyn), n ∈ N0

=⊗nt=0

(
P(dyt|yt−1, xt)⊗P(dxt|xt−1, yt−1)

)
(5.39)

=⊗nt=0

(
qt(dyt|yt−1, xt)⊗ pt(dxt|xt−1, yt−1)

)
. (5.40)

From the joint distribution, we can define the Yn−marginal distribution, and its con-
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ditional distribution5 as follows.

P
{
Y n ∈ dyn

}
, Pp(dyn) =

∫
Xn

Pp(dxn, dyn), n ∈ N0, (5.41)

≡ νp0,n(dyn) = ⊗nt=0ν
p
t (dyt|yt−1) (5.42)

νpt (dyt|yt−1) =
∫
X t
qt(dyt|yt−1, xt)⊗ pt(dxt|xt−1, yt−1)⊗Pp(dxt−1|yt−1), t ∈ Nn

0 .

(5.43)

The above distributions are parametrized by either a fixed Y −1 = y−1 ∈ Y−1 or a fixed
distribution PY −1(dy−1) = µ(dy−1).
Directed information pay-off I(Xn → Y n), is defined as follows.

I(Xn → Y n) ,
n∑
t=0

Ep
{

log
(
dqt(·|Y t−1, X t)
dνpt (·|Y t−1) (Yt)

)}
(5.44)

=
n∑
t=0

∫
X t×Yt

log
(
dqt(·|yt−1, xt)
dνpt (·|yt−1) (yt)

)
Pp(dxt, dyt). (5.45)

Our objective is the following. Given a channel distribution
{
qt(dyt|yt−1, xt−1) : t =

0, 1, . . . , n
}
∈ C0,n, determine necessary and sufficient conditions for any channel in-

put distribution
{
pt(dxt|xt−1, yt−1) : t = 0, 1, . . . , n

}
∈ P0,n (assuming it exists) to

correspond to the maximizing element of the following extremum problem.

CFB
Xn→Y n , sup

P0,n

I(Xn → Y n). (5.46)

If a transmission cost constraint is imposed, then we replace (5.46) by

CFB
Xn→Y n(κ) , sup

P0,n(κ)
I(Xn → Y n). (5.47)

Since our objective is to derive necessary and sufficient conditions, we need the following
convexity results from Chapter 2, Theorems 2.1, 2.2.

Lemma 5.1. (Convexity of Directed Information)
(a) Any sequence of channel input conditional distributions {pt(dxt|xt−1, yt−1) : t =
0, 1, . . . , n} ∈ P0,n and channel distributions {qt(dyt|yt−1, xt) : t = 0, 1, . . . , n} ∈ C0,n

uniquely define the following two (n+1)-fold compound causally conditioned probability
distributions.

5Throughout the chapter the superscript notation Pp(·), νp0,n(·), etc., indicates the dependence of the
distributions on the channel input conditional distribution.
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The family of distributions ←−P (·|yn−1) on X n parametrized by yn−1 ∈ Yn−1 defined by

←−
P 0,n(C|yn−1) ,

∫
C0
p0(dx0|x−1, y−1) . . .

∫
Cn
pn(dxn|xn−1, yn−1), C = ×nt=0Ct ∈ B(X0,n)

(5.48)

which is formally represented by

←−
P 0,n(dxn|yn−1) , ⊗nt=0pt(dxt|xt−1, yy−1) ∈M(X n) (5.49)

and similarly, the family of compound causally conditioned distributions on Yn, for-
mally represented by

−→
Q 0,n(dyn|xn) , ⊗nt=0qt(dyt|yt−1, xt) ∈M(Yn) (5.50)

and vice-versa. That is, (5.49), (5.50) uniquely define any sequence of channel input
distributions {qt(dxt|xt−1, yt−1) : t = 0, 1, . . . , n} ∈ P0,n and channel distributions
{qt(dyt|yt−1, xt) : t = 0, 1, . . . , n}, respectively. The joint distribution is equivalently
expressed formally as Pp(xn, yn) = (←−P 0,n ⊗

−→
Q 0,n)(xn, yn).

(b) Directed information is equivalent to the following expression.

I(Xn → Y n) =
∫
Xn×Yn

log
d−→Q 0,n(·|xn)

dν0,n(·) (yn)
 (←−P 0,n ⊗

−→
Q 0,n)(dxn, dyn) (5.51)

≡ IXn→Y n(←−P 0,n,
−→
Q 0,n) (5.52)

where the notation IXn→Y n(←−P 0,n,
−→
Q 0,n) indicates the dependence of I(Xn → Y n) on

{
←−
P 0,n,

−→
Q 0,n} ∈ M(X n)×M(Yn).

(c) The set of conditional distributions ←−P 0,n(·|yn−1) ∈ M(X n) and −→Q 0,n(·|xn) ∈
M(Yn) are convex.
(d) The functional IXn→Y n(←−P 0,n,

−→
Q 0,n) is concave with respect to ←−P 0,n(·|yn−1) ∈

M(X n) for a fixed −→Q 0,n(·|xn) ∈ M(Yn), and convex with respect to −→Q 0,n(·|xn) ∈
M(Yn) for a fixed ←−P 0,n(·|yn−1) ∈M(X n).

In view of the convexity result stated in Lemma 5.1, any extremum problem of feedback
capacity is a convex optimization problem, and the following holds.

Theorem 5.3. (Extremum problem of feedback capacity)
Assume the set P0,n(κ) is nonempty and the supremum in (5.47) is achieved in the set
P0,n(κ).
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Then
(a) CFB

Xn→Y n(κ) is nondecreasing, concave function of κ ∈ [0,∞].
(b) An alternative characterization of CFB

Xn→Y n(κ) is given by

CFB
Xn→Y n(κ) = sup

1
n+1 E

{
c0,n(Xn,Y n−1)

}
=κ

IXn→Y n(←−P 0,n,
−→
Q 0,n), for κ ≤ κmax, (5.53)

where κmax is the smallest number belonging to [0,∞] such that CFB
Xn→Y n(κ) is constant

in [κmax,∞], and E
{
·
}

denotes expectation with respect to (←−P 0,n ⊗
−→
Q 0,n)(dxn, dyn).

Clearly, κmax is the value of κ ∈ [0,∞] for which CFB
Xn→Y n(κ) = CFB

Xn→Y n , i.e., it
corresponds to the maximization of I(Xn → Y n) over P0,n (without transmission cost
constraints).

5.2.3. Variational Equality

Next, we recall a sequential variational equality of directed information, found in Chap-
ter 3, Theorem 3.1, which is applied to derive necessary and sufficient conditions for
extremum problems (5.46), (5.47).

Theorem 5.4. (Sequential variational equality of directed information)
Given a channel input distribution

{
pt(dxt|xt−1, yt−1) : t = 0, . . . , n

}
∈ P0,n and chan-

nel distribution
{
qt(dyt|yt−1, xt) : t = 0, . . . , n

}
∈ C0,n, let Pp(dxn, dyn) ∈M(X n×Yn),

and νp0,n(dyn) = ⊗nt=0ν
p
t (dyt|yt−1) ∈ M(Yn) denote their joint and marginal distribu-

tions defined by (5.39)-(5.43).
Let S0,n ,

{
st(dyt|yt−1, xt−1) ∈ M(Yt) : t ∈ Nn

0

}
and R0,n ,

{
rt(dxt|xt−1, yt) ∈

M(Xt) : t ∈ Nn
0

}
be arbitrary distributions, and formally define the corresponding

joint distribution by

⊗nt=0

(
st(dyt|yt−1, xt−1)⊗ rt(dxt|xt−1, yt)

)
∈M(X n × Yn).

Then, the following variational equality holds.

I(Xn → Y n) =

sup
S0,n⊗R0,n

n∑
t=0

∫
X t×Yt

log
 drt(·|xt−1, yt)
dpt(·|xt−1, yt−1)(xt)

dst(·|yt−1, xt−1)
dqt(·|yt−1, xt) (yt)

Pp(dxt, dyt) (5.54)
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and the supremum in (5.54) is achieved when the following identity holds.

dpt(·|xt−1, yt−1)
drt(·|xt−1, yt) (xt)

dqt(·|yt−1, xt)
dst(·|yt−1, xt−1)(yt) = 1− a.a. (xt, yt), t ∈ Nn

0 . (5.55)

Equivalently, the supremum in (5.54) is achieved at

⊗nt=0

(
st(dyt|yt−1, xt−1)⊗ rt(dxt|xt−1, yt)

)
= Pp(dxn, dyn).

To avoid excessive technical issues, we derive the main results of this paper by re-
stricting our attention to finite alphabet spaces {(Xt,Yt) : t = 0, 1, . . .}. This means
that we replace distributions by probability mass functions, and integrals by sums,
i.e., qt(dyt|yt−1, xt) 7−→ qt(yt|yt−1, xt), pt(dxt|xt−1, yt−1) 7−→ pt(xt|xt−1, yt−1). However,
in Section 5.5, we give sufficient conditions for the results derived for finite alphabet
spaces to extend to abstract alphabet spaces (i.e., countable and continuous).

5.3. Necessary and Sufficient Conditions for
Channels of Class A with Transmission Cost of
Class A

Consider the finite alphabet version of channel distributions of class A given by (5.6),
and a transmission cost function of class A given by (5.8). By [49], the characterization
of FTFI capacity with average transmission cost constraint is given by

CFB,A.J
Xn→Y n(κ) = sup

PA.J0,n (κ)

n∑
t=0

Eπ
{

log
(
qt(Yt|Y t−1

t−M , Xt)
νπt (Yt|Y t−1

t−J )

)}
, J = max{M,N} (5.56)

where

PA.J0,n (κ) ,
{
πt(xt|yt−1

t−J), t = 0, 1, . . . , n : 1
n+ 1E

π
(
cA.N0,n (Xn, Y n−1)

)
≤ κ

}
, κ ∈ [0,∞)

(5.57)

and the joint and transition probabilities are given by

Pπ(yt, xt) =
t∏
i=0

qi(yi|yi−1
i−M , xi)πi(xi|yi−1

i−J), (5.58)

νπt (yt|yt−1
t−J) =

∑
xt∈Xt

qt(yt|yt−1
t−M , xt)πt(xt|yt−1

t−J), t ∈ Nn
0 . (5.59)
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In this section, we utilize the characterization of FTFI given by (5.56), to derive se-
quential necessary and sufficient conditions for any PA.J0,n (κ) to achieve CFB,A.J

Xn→Y n(κ).

Since we have assumed all spaces {(Xt,Yt) : t ∈ Nn
0} have finite cardinality, in the

subsequent analysis we use the preliminary results of Section 5.2, with distributions
replaced by probability mass functions

(
as defined in (5.56)-(5.59)

)
.

5.3.1. Sequential Necessary and Sufficient Conditions

For any {πt(xt|yt−1
t−J) : t ∈ Nn

0}, let Cπ
t : Y t−1

t−J 7−→ [0,∞) represent the expected total
pay-off corresponding to (5.56), without the maximization, on the future time horizon
{t, t+ 1, . . . , n}, given Yt−1 = yt−1 at time t− 1, defined by

Cπ
t (yt−1

t−J) = Eπ


n∑
i=t

log
(
qi(Yi|yi−1

i−M , Xi)
νπi (Yi|yi−1

i−J)

) ∣∣∣∣∣∣Y t−1
t−J = yt−1

t−J

 , t ∈ Nn
0 , ∀yt−1

t−J ∈ Y t−1
t−J .

(5.60)

By invoking Theorem 5.4, we can express (5.60) as follows.

Corollary 5.1.
Consider the cost-to-go Cπ

t (yt−1
t−J), t ∈ Nn

0 , yt−1
t−J ∈ Y t−1

t−J , defined by (5.60).
(a) The cost-to-go Cπ

t (yt−1
t−J), is the solution of the extremum problem

Cπ
t (yt−1

t−J) = sup{
ri(xi|yi−1

i−M ,yi): i=t,t+1,...,n
}Eπ


n∑
i=t

log
(
ri(Xi|yi−1

i−M , Yi)
πi(Xi|yi−1

i−J)

) ∣∣∣∣∣∣Y t−1
t−J = yt−1

t−J

 , t ∈ Nn
0

(5.61)

and moreover, the supremum is achieved at

rπt (xt|yt−1
t−M , yt) =

(
qt(yt|yt−1

t−M , xt)
νπt (yt|yt−1

t−J)

)
πt(xt|yt−1

t−J), t ∈ Nn
0 . (5.62)
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(b) The cost-to-go Cπ
t (yt−1

t−J), satisfies the following dynamic programming recursions6.

Cπ
n (yn−1

n−J)

= sup
rn(xn|yn−1

n−M ,yn)

∑
xn,yn

log
(
rn(xn|yn−1

n−M , yn)
πn(xn|yn−1

n−J)

)
qn(yn|yn−1

n−J , xn)πn(xn|yn−1
n−J), ∀yn−1

n−J ∈ Yn−1
n−J ,

(5.63)

Cπ
t (yt−1

t−J) = sup
rn(xt|yt−1

t−M ,yt)

∑
xt,yt

 log
(
rt(xt|yt−1

t−M , yt)
πt(xt|yt−1

t−J)

)

+ Cπ
t+1(ytt+1−J)

qt(yt|yt−1
t−M , xt)πt(xt|yt−1

t−J), t ∈ Nn−1
0 , ∀yt−1

t−J ∈ Y t−1
t−J (5.64)

and moreover, the supremum in (5.63), (5.64) is achieved at (5.62).

Proof. (a) This follows from Chapter 3, Section 3.3 by repeating the derivation if
necessary. (b) This follows from dynamic programming [67] and (a). �

Corollary 5.1 illustrates that the variational equality of Theorem 5.4, as expected,
also holds for a running pay-off over an interval {t, t + 1, . . . , n} conditioned on
Yt−1 = yt−1 at time t− 1. Moreover, it is obvious that the functional Cπ

t (yt−1
t−J) ≡

Cπ
t (rt, rt+1, . . . , rn; yt−1

t−J) over which the supremum is taken in (5.61), defined by

Cπ
t (rt, rt+1, . . . , rn; yt−1

t−J) , Eπ
{

n∑
i=t

log
(
ri(Xi|yi−1

i−M , Yi)
πi(Xi|Y yi−1

i−J)

)∣∣∣∣Y t−1
t−J = yt−1

t−J

}
, t ∈ Nn

0

is concave in {rt(xt|yt−1
t−M), . . . , rn(xn|yn−1

n−M)} ∈ M(Xt)× . . .×M(Xn).

Next, we introduce the dynamic programming recursions, when (5.60) is maximized
over channel input distributions from the set PA.J0,n (κ).
Throughout this section, we assume existence of an interior point of the constraint
set PA.J0,n (κ) and existence of an optimal channel input distribution which maximizes
CFB,A.J
Xn→Y n(κ). Hence, in view of the convexity of optimization problem (5.56), we

can apply Lagrange Duality Theorem (see [80]) to convert the problem into an
unconstrained optimization problem over the space of probability distributions
{π(xt|yt−1

t−J) ∈M(Xn) : t ∈ Nn
0}.

Let Ct : Y t−1
t−J 7−→ [0,∞) represent the maximum expected total pay-off in (5.56) on

6For the rest of the chapter we use the notation
∑
xt

(·) ≡
∑
xt∈Xt(·)
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the future time horizon {t, t+ 1, . . . , n}, given Y t−1
t−J = yt−1

t−J at time t− 1, defined by7

Ct(yt−1
t−J) = sup{

πi(xi|yi−1
i−J ): i=t,t+1,...,n

}Eπ
{

n∑
i=t

log
(
qi(Yi|yi−1

i−M , Xi)
νπi (Yi|yi−1

i−J)

)

− s
(

n∑
i=t

γi(xi, yi−1
i−N)− (n+ 1)κ

) ∣∣∣∣Y t−1
t−J = yt−1

t−J

}
(5.65)

(∗)
≡ sup{

πi(xi|yi−1
i−J ): i=t,t+1,...,n

}
{
Cπ
t (yt−1

t−J)− s
(
Eπ
{

n∑
i=t

γi(xi, yi−1
i−N)

∣∣∣∣Y t−1
t−J = yt−1

t−J

}
− (n+ 1)κ

)}

(5.66)

where (∗) follows from Corollary 5.1.
By standard dynamic programming arguments [67], it follows that (5.65) satisfies the
following dynamic programming recursions8.

Cn(yn−1
n−J) = sup

πn(xn|yt−1
t−J )

 ∑
xn,yn

log
(
qn(yn|yn−1

n−M , xn)
νπn(yn|yn−1

n−J)

)
qn(yn|yn−1

n−M , xn)πn(xn|yn−1
n−J)

− s
(∑
xn

γn(xn, yn−1
n−N)πn(xn|yn−1

n−J)− (n+ 1)κ
), (5.67)

Ct(yt−1
t−J) = sup

πt(xt|yt−1
t−J )

 ∑
xt,yt

(
log

(
qt(yt|yt−1

t−M , xt)
νπt (yt|yt−1

t−J)

)
+ Ct+1(ytt+1−J)

)

qt(yt|yt−1
t−M , xt)πt(xt|yt−1

t−J)− s
(∑
xt

γt(xt, yt−1
t−N)πt(xt|yt−1

t−J)− (n+ 1)κ
), t ∈ Nn−1

0 .

(5.68)

Next, we apply variational equality (5.54) to show that the supremum in (5.67), (5.68),
can be expressed as an extremum problem involving a double maximization problem
over specific sets of distributions.

Theorem 5.5. (Sequential double maximization with transmission cost)
Consider the sequence of channel distributions CA.M0,n , {qt(yt|yt−1

t−M , xt) : t ∈ Nn
0}, and

CFB,A.J
Xn→Y n(κ) defined by (5.56), for a fixed µ(y−1

−J). Assume there exist interior point to
the constraint set PA.J0,n (κ). Then the following hold.
(a) The dynamic programming recursions (5.67), (5.68) are equivalent to the following

7We assume that the RND log
(
qi(Yi|yi−1

i−M ,Xi)
νπ
i

(Yi|yi−1
i−J )

)
in (5.65) is absolutely continuous, that is, there exist

a version of it which belongs to L1, i.e., the space of Lebesgue integrable functions.
8We have assumed that Ct : Yt−1

t−J 7−→ [0,∞) in (5.65) is bounded continuous in ytt+1−J ∈ Ytt−1−J , t ∈
Nn−1

0 .
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sequential double maximization dynamic programming recursions.

Cn(yn−1
n−J)

= sup
πn(xn|yn−1

n−J )
sup

rn(xn|yn−1
n−M ,yn)

 ∑
xn,yn

log
(
rn(xn|yn−1

n−M , yn)
πn(xn|yn−1

n−J)

)
qn(yn|yn−1

n−M , xn)πn(xn|yn−1
n−J)

− s
(∑
xn

γn(xn, yn−1
n−N)πn(xn|yn−1

n−J)− (n+ 1)κ
), (5.69)

Ct(yt−1
t−J)

= sup
πt(xt|yt−1

t−J )
sup

rt(xt|yt−1
t−M ,yt)

 ∑
xt,yt

(
log

(
rt(xt|yt−1

t−M , yt)
πt(xt|yt−1

t−J)

)
+ Ct+1(ytt+1−J)

)

qt(yt|yt−1
t−M , xt)πt(xt|yt−1

t−J)− s
(∑
xt

γt(xt, yt−1
t−N)πt(xt|yt−1

t−J)− (n+ 1)κ
), t ∈ Nn−1

0

(5.70)

and CFB,A.J
Xn→Y n(κ) is given by

CFB,A.J
Xn→Y n(κ) = inf

s≥0

∑
y−1
−J

C0(y−1
−J)µ(y−1

−J). (5.71)

In addition, the following hold.
(i) For a fixed πn(xn|yn−1

n−J), the maximum in (5.69) over rn(xn|yn−1
n−M , yn) occurs at

r∗,πn (xn|yn−1
n−M , yn) given by

r∗,πn (xn|yn−1
n−M , yn) =

(
qn(yn|yn−1

n−M , xn)
νπn(yn|yn−1

n−J)

)
πn(xn|yn−1

n−J) (5.72)

and for a fixed rn(xn|yn−1
n−M , yn), the maximum in (5.69) over πn(xn|yn−1

n−J) is given by

πn(xn|yn−1
n−J)

=
exp

{∑
yn log

(
rn(xn|yn−1

n−M , yn)
)
qn(yn|yn−1

n−M , xn)− sγn(xn, yn−1
n−N)

}
∑
xn exp

{∑
yn log

(
rn(xn|yn−1

n−M , yn)
)
qn(yn|yn−1

n−M , xn)− sγn(xn, yn−1
n−N)

} , ∀xn ∈ Xn.
(5.73)

(ii) For a fixed πt(xt|yt−1
t−J), the maximum in (5.70) over rt(xt|yt−1

t−M , yt) occurs at
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r∗,πt (xt|yt−1
t−M , yt) given by

r∗,πt (xt|yt−1
t−M , yt) =

(
qt(yt|yt−1

t−M , xt)
νπt (yt|yt−1

t−J)

)
πt(xt|yt−1

t−J), t ∈ Nn−1
0 (5.74)

and for a fixed rt(xt|yt−1
t−M , yt), the maximum in (5.70) over πt(xt|yt−1

t−J) is given by

πt(xt|yt−1
t−J)

=
exp

{∑
yt

(
log

(
rt(xt|yt−1

t−M , yt)
)

+ Ct+1(ytt+1−J)
)
qt(yt|yt−1

t−M , xt)− sγt(xt, yt−1
t−N)

}
∑
xt exp

{∑
yt

(
log

(
rt(xt|yt−1

t−M , yt)
)

+ Ct+1(ytt+1−J)
)
qt(yt|yt−1

t−M , xt)− sγt(xt, yt−1
t−N)

} ,
∀xt ∈ Xt, t ∈ Nn−1

0 . (5.75)

(iii) When (5.73) is evaluated at rn(·|·, ·) = r∗,πn (·|·, ·) given by (5.72) then

πn(xn|yn−1
n−J)

=
exp

{∑
yn log

(
qn(yn|yn−1

n−M ,xn)
νπn(yn|yn−1

n−J )

)
qn(yn|yn−1

n−M , xn)− sγn(xn, yn−1
n−N)

}
πn(xn|yn−1

n−J)
∑
xn exp

{∑
yn log

(
qn(yn|yn−1

n−M ,xn)
νπn(yn|yn−1

n−J )

)
qn(yn|yn−1

n−M , xn)− sγn(xn, yn−1
n−N)

}
πn(xn|yn−1

n−J)
,

∀xn ∈ Xn. (5.76)

When (5.75) is evaluated at r∗,πt (xt|yt−1
t−M , yt) = rt(·|·, ·) given by (5.74) then

πt(xt|yt−1
t−J)

=
exp

{∑
yt

(
log

(
qt(yt|yt−1

t−M ,xt)
νπt (yt|yt−1

t−J )

)
+ Ct+1(ytt+1−J)

)
qt(yt|yt−1

t−M , xt)− sγt(xt, yt−1
t−N)

}
πt(xt|yt−1

t−J)
∑
xt exp

{∑
yt

(
log

(
qt(yt|yt−1

t−M ,xt)
νπt (yt|yt−1

t−J )

)
+ Ct+1(ytt+1−J)

)
qt(yt|yt−1

t−M , xt)− sγt(xt, yt−1
t−N)

}
πt(xt|yt−1

t−J)
,

∀xt ∈ Xt, t ∈ Nn−1
0 . (5.77)

(b) The extremum problem CFB,A.J
Xn→Y n(κ) defined by (5.56) is equivalent to the following

sequential double maximization problem.

CFB,A.J
Xn→Y n(κ) = inf

s≥0
sup

π0(x0|y−1
J )

sup
r0(x0|y−1

M ,y0)
. . . sup

πn(xn|yn−1
n−J )

sup
rn(xn|yn−1

n−M ,yn)

n∑
t=0

{
E
{

log
(
rt(xt|yt−1

t−M , yt)
πt(xt|yt−1

t−J)

)}

− s
(
E
{
γt(xt, yt−1

t−N)
}
− (n+ 1)κ

)}
. (5.78)

Proof. The derivation is given in Appendix C.2.1. �
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In the next remark, we make some observations regarding Theorem 5.5.

Remark 5.1. (Comments on Theorem 5.5)

(a) Theorem 5.5 is a sequential version of the one derived for DMC in [21, Theorem
8], which is crucial for the development of Blahut-Arimoto algorithm, to compute
channel capacity of memoryless channels with transmission cost. That is, if we
degrade the channel to a memoryless channel, and the transmission cost function
to γt(xt, yt−1) ≡ γ̄(xt), t ∈ Nn

0 , then Theorem 5.5 is precisely [21, Theorem 8].
However, unlike [21, Theorem 8], since the channel in our case is not memoryless,
all equations involve the cost-to-go or value function.

(b) The optimal channel input distribution satisfies the implicit nonlinear recursive
equations (5.76), (5.77). These can be used to develop sequential algorithms to
compute feedback capacity of channels with memory, with and without transmis-
sion cost constraint.

Next, we derive necessary and sufficient conditions for any input distribution
{πt(xt|yt−1

t−J) ∈ M(Xt) : t ∈ Nn
0} to achieve the supremum of the characterization

of FTFI capacity with transmission cost given by (5.56). We obtain these conditions
using two different methods. The first method is based on Theorem 5.5, while the
second method is based on maximizing directly (5.67), (5.68). The derivation applies
Karush-Kuhn-Tucker (KKT) theorem (see [82]), in view of the convexity of the opti-
mization problems (5.67), (5.68) over the space of channel input distributions.

Theorem 5.6. (Sequential necessary and sufficient conditions)
The necessary and sufficient conditions for any input distribution {πt(xt|yt−1

t−J) : t ∈
Nn

0}, J = max{M,N}, to achieve the supremum in CFB,A.J
Xn→Y n(κ) given by (5.56) are the

following.
(a) For each yn−1

n−J ∈ Yn−1
n−J , there exist a Ks

n(yn−1
n−J), which depends on s ≥ 0, such that

the following hold.

∑
yn

log
(
qn(yn|yn−1

n−M , xn)
νπt (yn|yn−1

n−J)

)
qn(yn|yn−1

n−M , xn)

− sγn(xn, yn−1
n−N) = Ks

n(yn−1
n−J), ∀xn, if πn(xn|yn−1

n−J) 6= 0, (5.79)∑
yn

(log
(
qn(yn|yn−1

n−M , xn)
νπn(yn|yn−1

n−J)

)
qn(yn|yn−1

n−M , xn)

− sγn(xn, yn−1
n−N) ≤ Ks

n(yn−1
n−J), ∀xn, if πn(xn|yn−1

n−J) = 0. (5.80)
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Moreover, Ct(yt−1
t−J) = Ks

n(yn−1
n−J)+s(n+1)κ corresponds to the value function Ct(yt−1

t−J),
defined by (5.65), evaluated at t = n.
(b) For each t, yt−1

t−J ∈ Y t−1
t−J , there exist a Ks

t (yt−1
t−J), which depends on s ≥ 0, such that

the following hold.

∑
yt

(
log

(
qt(yt|yt−1

t−M , xt)
νπt (yt|yt−1

t−J)

)
+Ks

t+1(ytt+1−J)
)
qt(yt|yt−1

t−M , xt)

− sγt(xt, yt−1
t−N) = Ks

t (yt−1
t−J), ∀xt, if πt(xt|yt−1

t−J) 6= 0,
(5.81)∑

yt

(
log

(
qt(yt|yt−1

t−M , xt)
νπt (yt|yt−1

t−J)

)
+Ks

t+1(ytt+1−J)
)
qt(yt|yt−1

t−M , xt)

− sγt(xt, yt−1
t−N) ≤ Ks

t (yt−1
t−J), ∀xt, if πt(xt|yt−1

t−J) = 0
(5.82)

for t = n − 1, . . . , 0. Moreover, Ct(yt−1
t−J) = Ks

t (yt−1
t−J) + s(n + 1)κ corresponds to the

value function Ct(yt−1
t−J), defined by (5.65), evaluated at t = n− 1, . . . , 0.

Proof. See Appendix C.2.2. �

Before we proceed, we make the following comments about Theorem 5.6.

Remark 5.2. (Comments on Theorem 5.6)

(a) An alternative derivation of Theorem 5.6 based on Theorem 5.5 is given in Ap-
pendix C.2, Remark C.2.3.

(b) Theorem 5.6 gives sequential necessary and sufficient conditions for any input
distribution to achieve the supremum in the characterization of FTFI capacity
given in (5.56). If there is no transmission cost constraint, then Theorem 5.6
degenerates to Theorem 5.1 given in Section 5.1.

(b) The sequential necessary and sufficient conditions derived in Theorem 5.6 are
very important for the following reasons. First, these conditions characterize ex-
plicitly any input distribution that achieves the supremum of the characterization
of FTFI capacity, in extremum problems of feedback capacity of channels with
finite memory with and without transmission cost. Second, they can be used to
develop sequential algorithms to facilitate numerical evaluation of feedback capac-
ity problems [84].
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In [5], the authors gave sufficient conditions for Unit Memory Channel Output (UMCO)
channels9 to obtain the ergodic feedback capacity. We summarize the main one in the
following remark.

Remark 5.3. (Conditions for ergodic feedback capacity of UMCO)
Suppose the channel is time-invariant, i.e., {qt(yt|yt−1, xt) ≡ q(yt|yt−1, xt) : t ∈ Nn

0}.
If the channel is strongly indecomposable and strongly aperiodic, according to Chen and
Berger [5, Definitions 2, 4] the following hold.

(a) The optimal channel input distributions {πt(xt|yt−1) : t ∈ Nn
0} converge asymp-

totically to time-invariant distributions denoted by π∞(x|y), x ∈ X , y ∈ Y,
and the corresponding channel output transition probabilities converges to time-
invariant transition probabilities νπ∞(z|y), z ∈ Y , y ∈ Y. Moreover, there is a
unique invariant distribution νπ

∞(y) corresponding to νπ∞(z|y).

(b) The ergodic feedback capacity is given by

CFB,A.1 = lim
n−→∞

sup
πt(xt|yt−1): t∈Nn0

1
n+ 1E

π

{
n∑
t=0

log
(
q(Yt|Yt−1, Xt)
νπt (Yt|Yt−1)

)}
(5.83a)

= sup
π∞(xt|yt−1): t=0,...,∞

lim
n−→∞

1
n+ 1E

π∞
{

n∑
t=0

log
(
q(Yt|Yt−1, Xt)
νπt (Yt|Yt−1)

)}
(5.83b)

= sup
π∞(x0|y−1)

Eπ∞
{

log
(
q(Y0|Y−1, X0)
νπ∞(Y0|Y−1)

)}
(5.83c)

= sup
π∞(x0|y−1)

∑
y−1

(∑
x0,y0

log
(
q(y0|y−1, x0)
νπ∞(y0|y−1)

)
q(y0|y−1, x0)π∞(x0|y−1)

)
νπ
∞(y−1).

(5.83d)

(c) The previous results extend to the case of feedback capacity with average trans-
mission cost as follows.

CFB,A.1(κ) = lim
n−→∞

sup
PA.10,n (κ)

1
n+ 1E

π

{
n∑
t=0

log
(
q(Yt|Yt−1, Xt)
νπt (Yt|Yt−1)

)}
(5.84a)

= sup
PA.1,∞(κ)

lim
n−→∞

1
n+ 1E

π∞
{

n∑
t=0

log
(
q(Yt|Yt−1, Xt)
νπt (Yt|Yt−1)

)}
(5.84b)

9channels of class A given by (5.6), with M = 1.
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= sup
P̄A.1,∞(κ)

Eπ∞
{

log
(
q(Y0|Y−1, X0)
νπ∞(Y0|Y−1)

)}
(5.84c)

= sup
P̄A.1,∞(κ)

∑
y−1

(∑
x0,y0

log
(
q(y0|y−1, x0)
νπ∞(y0|y−1)

)
q(y0|y−1, x0)π∞(x0|y−1)

)
νπ
∞(y−1)

(5.84d)

where

PA.1,∞(κ) =
{
π∞(xt|yt−1), t ∈ N0 : lim

n−→∞

1
n+ 1E

π∞
{

n∑
t=0

γ(Xt, Yt−1)
}
≤ κ

}

P̄A.1,∞(κ) =
{
π∞(x0|y−1) : Eπ∞ {γ(X0, Y−1)} ≤ κ

}
.

The results derived in [5] can be extended to channels of class A. However, we do
not proceed to do so, because for all application examples presented in this paper, we
can show that 1

n+1C
FB
Xn→Y n

(
or 1

n+1C
FB
Xn→Y n(κ)

)
corresponds to feedback capacity by

investigating the ergodic asymptotic properties of the FTFI capacity.

Remark 5.4. (Generalizations)
The analysis presented in this subsection extends naturally to any combination of chan-
nels of classes A, B and transmission cost constraint of classes A, B. This is shown
in Section 5.5.2.

5.4. Application Examples

In this section, we derive the closed form expressions of the optimal (nonstationary)
channel input conditional distribution and the corresponding channel output transition
probability distribution of the characterization of the FTFI capacity, for the following
channels.

(a) The time-varying Binary Unit Memory Channel Output (BUMCO) channel de-
fined by (5.23) with and without transmission cost constraint.

(b) The time-varying Binary Erasure Unit Memory Channel Output (BEUMCO)
channel defined by (5.33).

(c) The time-varying Binary Symmetric Two Memory Channel Output (BSTMCO)
channel defined by (5.34).
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For the time-invariant BUMCO channel and the BEUMCO channel, we also investigate
the asymptotic properties of the optimal channel input conditional distribution via the
per unit time limit of the characterization of FTFI capacity.

5.4.1. The FTFI Capacity of Time-Varying BUMCO Channel
and Feedback Capacity

In this subsection, we give the derivation of equations (5.24)-(5.27), (5.29)-(5.32) of
Theorem 5.2, and we present numerical evaluations based on the closed form expres-
sions for various scenarios.

Proof of Equations (5.24)-(5.27)

We describe the derivation of the backward recursive equations (5.24)-(5.27).
Denote the optimal distributions as follows.

νπ
∗

t (yt|yt−1) ,


0 1
0 c0(t) 1− c1(t)
1 1− c0(t) c1(t)

, π∗t (xt|yt−1) ,


0 1
0 d0(t) 1− d1(t)
1 1− d0(t) d1(t)

, t ∈ Nn
0 .

(5.85)
We shall derive recursive expressions for {c0(t), c1(t), d0(t), d1(t) : t ∈ Nn

0}.
Define

∆Ct , Ct(1)− Ct(0), t ∈ Nn+1
0 , Cn+1(0) = Cn+1(1) = 0. (5.86)

•Time t=n:
By Theorem 5.1, the necessary and sufficient condition for π∗n(xn|yn−1) 6= 0 to achieve
the supremum of the FTFI capacity of BUMCO channel is the following.

Cn(yn−1) =
∑

yn∈{0,1}
log

(
qn(yn|xn, yn−1)
νπ∗n (yn|yn−1)

)
qn(yn|xn, yn−1), ∀xn. (5.87)
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Next, we evaluate Cn(yn−1) for xn ∈ {0, 1}, for fixed yn−1.
yn−1 = 0, xn = 0:

Cn(0) =
∑

yn∈{0,1}
log

(
qn(yn|0, 0)
νπ∗n (yn|0)

)
qn(yn|0, 0)

= log
(
qn(0|0, 0)
νπ∗n (0|0)

)
qn(0|0, 0) + log

(
qn(1|0, 0)
νπ∗n (1|0)

)
qn(1|0, 0)

= αn log
(

1− c0(n)
c0(n)

)
+ log

(
1

1− c0(n)

)
−H(αn). (5.88)

yn−1 = 0, xn = 1:

Cn(0) =
∑

yn∈{0,1}
log

(
qn(yn|1, 0)
νπ∗n (yn|0)

)
qn(yn|1, 0)

= log
(
qn(0|1, 0)
νπ∗n (0|0)

)
qn(0|1, 0) + log

(
qn(1|1, 0)
νπ∗n (1|0)

)
qn(1|1, 0)

= γn log
(

1− c0(n)
c0(n)

)
+ log

(
1

1− c0(n)

)
−H(γn). (5.89)

Since (5.88) is equal to (5.89), we obtain

νπ
∗

n (0|0) ≡ c0(n) = 1
1 + 2µ0(n) , µ0(n) , H(γn)−H(αn)

γn − αn
. (5.90)

The channel output transition probability at time t = n is given by

νπ
∗

n (yn|yn−1) =
∑

xn∈{0,1}
qn(yn|xn, yn−1)π∗n(xn|yn−1). (5.91)

We use (5.91) to find the values π∗n(0|0) ≡ d0(n).
yn−1 = 0, yn = 0:

νπ
∗

n (0|0) =
∑

xn∈{0,1}
qn(0|xn, 0)π∗n(xn|0) = qn(0|0, 0)π∗n(0|0) + qn(0|1, 0)π∗n(1|0). (5.92)

Substituting (5.90) into (5.92) we obtain

π∗n(0|0) ≡ d0(n) = 1− γn(1 + 2µ0(n))
(αn − γn)(1 + 2µ0(n)) . (5.93)
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We repeat the above procedure to compute the expressions for Cn(1), νπ∗n (0|1), νπ∗n (1|1),
π∗n(0|1) and π∗n(1|1). After some algebra, we obtain

νπ
∗

n (1|1) ≡ c1(n) = 2µ1(n)

1 + 2µ1(n) , π
∗
n(1|1) ≡ d1(n) = βn(1 + 2µ1(n))− 1

(βn − δn)(1 + 2µ1(n)) , (5.94a)

µ1(n) , H(βn)−H(δn)
βn − δn

. (5.94b)

Finally, we substitute (5.90), (5.93) and (5.94), in (5.85) to obtain (5.24) evaluated at
t = n. Next, we evaluate Cn(0), Cn(1), since these are required in the next time step.
After some algebra, we obtain the following expressions.

Cn(0) = µ0(n)(αn − 1) + log(1 + 2µ0(n))−H(αn), (5.95a)

Cn(1) = µ1(n)(βn − 1) + log(1 + 2µ1(n))−H(βn). (5.95b)

Using (5.95) in (5.86) we obtain (5.25) at t = n as follows.

∆Cn = Cn(1)− Cn(0)

= (µ1(n)(βn − 1)− µ0(n)(αn − 1)) +H(αn)−H(βn) + log
(

1 + 2µ1(n)

1 + 2µ0(n)

)
.

(5.96)

We proceed with the computation at the next time step.
•Time t=n-1:
By Theorem 5.1,

Cn−1(yn−2)

=
∑

yn−1∈{0,1}

(
log

(qn−1(yn−1|xn−1, yn−2)
νπ
∗

n−1(yn−1|yn−2)
)

+ Cn(yn−1)
)
qn−1(yn−1|xn−1, yn−2), ∀xn−1.

(5.97)

Next, we evaluate Cn−1(yn−2) for xn−1 ∈ {0, 1}, for fixed yn−2.
yn−2 = 0, xn−1 = 0:

Cn−1(0) =
∑

yn−1∈{0,1}

(
log

(qn−1(yn−1|0, 0)
νπ
∗

n−1(yn−1|0)
)

+ Cn(yn−1)
)
qn−1(yn−1|0, 0)

=
(

log
(qn−1(0|0, 0)
νπ
∗

n−1(0|0)
)

+ Cn(0)
)
qn−1(0|0, 0) +

(
log

(qn−1(1|0, 0)
νπ
∗

n−1(1|0)
)

+ Cn(1)
)
qn−1(1|0, 0)
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= αn−1 log
(

1− c0(n− 1)
c0(n− 1)

)
+ log

(
1

1− c0(n− 1)

)
−H(αn−1)

− αn−1Cn(0) + (1− αn−1)Cn(1). (5.98)

yn−2 = 0, xn−1 = 1:

Cn−1(0) =
∑

yn−1∈{0,1}

(
log

(qn−1(yn−1|1, 0)
νπ
∗

n−1(yn−1|0)
)

+ Cn(yn−1)
)
qn−1(yn−1|1, 0)

=
(

log
(qn−1(0|1, 0)
νπ
∗

n−1(0|0)
)

+ Cn(0)
)
qn−1(0|1, 0) +

(
log

(qn−1(1|1, 0)
νπ
∗

n−1(1|0)
)

+ Cn(1)
)
qn−1(1|1, 0)

= γn−1 log
(

1− c0(n− 1)
c0(n− 1)

)
+ log

(
1

1− c0(n− 1)

)
−H(γn−1)

− γn−1Cn(0) + (1− γn−1)Cn(1). (5.99)

Since (5.98) is equal to (5.99), we obtain

νπ
∗

n−1(0|0) ≡ c0(n− 1) = 1
1 + 2µ0(n−1)+∆Cn

, µ0(n− 1) , H(γn−1)−H(αn−1)
γn−1 − αn−1

. (5.100)

The channel output transition probability at time t = n− 1 is given by

νπ
∗

n−1(yn−1|yn−2) =
∑

xn−1∈{0,1}
qn−1(yn−1|xn−1, yn−2)π∗n−1(xn−1|yn−2). (5.101)

We use (5.101) to find the values of π∗n−1(0|0) and π∗n−1(1|0).
yn−2 = 0, yn−1 = 0:

νπ
∗

n−1(0|0)

=
∑

xn−1∈{0,1}
qn−1(0|xn−1, 0)π∗n−1(xn−1|0) = qn−1(0|0, 0)π∗n−1(0|0) + qn−1(0|1, 0)π∗n−1(1|0)

(5.102)

Substituting (5.100) into (5.102) we obtain

π∗n−1(0|0) ≡ d0(n− 1) = 1− γn−1(1 + 2µ0(n−1)+∆Cn)
(αn−1 − γn−1)(1 + 2µ0(n−1)+∆Cn) . (5.103)
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Repeating the above procedure we obtain the expressions for Cn−1(1), νπ
∗

n−1(0|1),
νπ
∗

n−1(1|1), π∗n(0|1) and π∗n−1(1|1). After some algebra, we obtain

νπ
∗

n−1(1|1) ≡ c1(n− 1) = 2µ1(n−1)

2µ1(n−1)+∆Cn
, (5.104a)

π∗n−1(1|1) ≡ d1(n− 1) = βn−1(1 + 2µ1(n−1)+∆Cn)− 1
(βn−1 − δn−1)(1 + 2µ1(n−1)+∆Cn) (5.104b)

where

µ1(n− 1) , H(βn−1)−H(δn−1)
βn−1 − δn−1

. (5.105)

Finally, we substitute (5.100), (5.103) and (5.104) in (5.85) to obtain (5.24) evaluated
at t = n− 1. Similarly as before, we evaluate Cn−1(0), Cn−1(1), which are required in
the next time step. After some algebra, we obtain the following expressions.

Cn−1(0) = µ0(n− 1)(αn−1 − 1) + Cn(0) + log(1 + 2µ0(n−1)+∆Cn)−H(αn−1),

Cn−1(1) = µ1(n− 1)(βn−1 − 1) + Cn(0) + log(1 + 2µ1(n−1)+∆Cn)−H(βn−1). (5.106)

Finally, using (5.106) in (5.86) we obtain (5.25) at t = n− 1.
To complete the derivation we need to apply induction hypothesis, i.e., to show validity
of the solution for t = n− k, provided it is valid for t = n, n− 1, n− 2, . . . , n− k + 1.
This is done precisely as the derivation of the time step t = n − 1, hence we omit it.
This completes the derivation.

Proof of Equations (5.29)-(5.32)

Next, we address the asymptotic convergence of the optimal channel input conditional
distribution and the corresponding channel output transition probability distribution
given in (5.24), by investigating the convergence properties of the value functions
{Ct(0), Ct(1), t ∈ Nn

0} in terms of their difference {∆Ct : t ∈ Nn
0}. Conditions

for convergence of the sequence {∆Ct : t ∈ Nn
0}, can be expressed in terms of parame-

ters {αt, βt, γt, δt : t ∈ Nn
0}. From (5.25), it follows by contradiction, that the sequence

{∆Ct : t ∈ Nn
0} cannot diverge, i.e., it is bounded.

Consider the time-invariant version of BUMCO {qt(yt|yt−1, xt) = q(yt|yt−1, xt) : t ∈
Nn

0}, denoted by BUMCO(α, β, γ, δ). First, recall that recursion (5.25) is expressed as
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follows

∆Ct =
(
µ1(β − 1)− µ0(α− 1)

)
+H(α)−H(β) + log

(1 + 2µ1+∆Ct+1

1 + 2µ0+∆Ct+1

)
, ∆Cn+1 = 0,

(5.107)

=f(α, β, µ0, µ1,∆Ct+1), t ∈ {n, . . . , 0}

where

µ0(αt, γt) 7−→ µ0(α, γ) = H(γ)−H(α)
γ − α

≡ µ0,

µ1(βt, δt) 7−→ µ1(β, δ) = H(β)−H(δ)
β − δ

≡ µ1, ∀t.

Define {∆C̄t = ∆Cn−t : t ∈ Nn+1
0 }. Then by (5.107) we obtain the following forward

recursions

∆C̄t =
(
µ1(β − 1)− µ0(α− 1)

)
+H(α)−H(β) + log

(1 + 2µ1+∆C̄t−1

1 + 2µ0+∆Ct−1

)
, ∆C̄−1 = 0, t ∈ Nn

0 .

(5.108)

Since
∣∣∣∣ ∂
∂∆C̄t

f(α, β, µ0, µ1,∆C̄t−1)
∣∣∣∣ < 1, then limt−→∞∆C̄t = ∆C̄∞ ≡ ∆C∞, where

∆C∞ satisfies the following algebraic equation.

∆C∞ =
(
µ1(β − 1)− µ0(α− 1)

)
+H(α)−H(β) + log

(1 + 2µ1+∆C∞

1 + 2µ0+∆C∞

)
. (5.109)

The real solution of the nonlinear equation (5.109) is

∆C∞ = log
(

(2`1 − 1) +
√

(1− 2`1)2 + 2`0+2
)
− µ0 − 1 (5.110)

where

`0 ≡ `0(α, β, γ, δ) ,µ1(β − 1)− µ0(α− 2) +H(α)−H(β),

`1 ≡ `1(α, β, γ, δ) ,µ1β − µ0(α− 1) +H(α)−H(β).

Hence, by (5.110), the optimal channel input conditional distribution and the cor-
responding output transition probability distribution converge asymptotically to the
time-invariant transition probabilities given by (5.32). It remains to show that the
channel output transition probability distribution given by (5.32), has a unique invari-
ant distribution {νπ∗,∞(y) : y ∈ {0, 1}}.

Pho
tio

s S
tav

rou



5.4 Application Examples 137

Solving the equation

 νπ∗,∞(0)

νπ
∗,∞(1)

 =

 νπ∗,∞(0|0) νπ
∗,∞(0|1)

νπ
∗,∞(1|0) νπ

∗,∞(1|1)


 νπ∗,∞(0)

νπ
∗,∞(1)

 (5.111)

we obtain the unique solution

νπ
∗,∞(0) = 1 + 2µ0+∆C∞

1 + 2µ0+µ1+2∆C∞ + 2µ0+1+∆C∞ , ν
π∗,∞(1) = 2µ0+∆C∞(1 + 2µ1+∆C∞)

1 + 2µ0+µ1+2∆C∞ + 2µ0+1+∆C∞ .

Since νπ∗,∞ is unique, then the feedback capacity of time-invariant BUMCO(α, β, γ, δ)
is given by the following expression.

CFB,A.1 =
∑

y∈{0,1}

( ∑
x∈{0,1},z∈{0,1}

log
(
q(z|y, x)
ν∗,∞(z|y)

)
q(z|y, x)π∗,∞(x|y)

)
νπ
∗,∞(y). (5.112)

After some algebra, we obtain (5.29).

Numerical evaluations

Fig. 5.1 depicts numerical simulations of the optimal (nonstationary) channel
input conditional distribution and the corresponding channel output tran-
sition probability distribution given by (5.24), for a time-invariant chan-
nel BUMCO(αt, βt, γt, δt) = BUMCO(0.9, 0.1, 0.2, 0.4), for time horizon
t ∈ {0, 1, . . . , 1000}.
Fig. 5.2 depicts the corresponding value of 1

n+1C
FB,A.1
Xn→Y n =

1
n+1E

π∗
{∑n

t=0 log
(
q(yt|yt−1,xt)
νπ∗ (yt|yt−1)

)}
where {π∗t (xt|yt−1) : t = 0, 1, . . . , n} is given by

(5.24), t ∈ {0, 1, . . . , 1000}. From Fig. 5.2, at t ≈ 1000, the characterization of FTFI
capacity is 1

n+1C
FB,A.1
Xn→Y n = 0.2148 bits/channel use, while the actual ergodic feedback

capacity evaluated from (5.29) is CFB,A.1 = 0.215 bits/channel use.
Based on our simulations, it is interesting to point out the fact that the optimal
channel input conditional distribution and the corresponding channel output transition
probability converge to their asymptotic values at t ≈ 12.

Special Cases of Equations (5.24)-(5.25)

Next, we discuss special cases of BUMCO(α, β, γ, δ).
The POST channel investigated in [34] corresponds to the degenerated channel
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Figure 5.1.: Optimal distributions of BUMCO(0.9, 0.1, 0.2, 0.4) for time horizon
{0, 1, . . . , 1000}.
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Figure 5.2.: 1
n+1C

FB,A.1
Xn→Y n of BUMCO (0.9, 0.1, 0.2, 0.4) for time horizon {0, 1, . . . , 1000}

with a choice of the initial distribution PY−1(y−1 = 0) = 0 with its com-
plement PY−1(y−1 = 1) = 1.

BUMCO(α, 1 − β, β, 1 − α). The authors in [34] derived the expression of feedback
capacity CFB,A.1 and the optimal channel output distribution. The BSCC investigated
in [35], corresponds to the degenerated channel BUMCO(α, β, 1−β, 1−α). The authors
in [35] derived the feedback capacity and the corresponding channel input conditional
distribution with and without transmission cost constraint, and they have also shown
that feedback does not increase the capacity. Our general expressions (5.24)-(5.25)
give, as degenerated cases, the expressions obtained in [34,35].

For the special case of BUMCO(α, α, 1−α, 1−α), the channel is memoryless, and the
recursive equations (5.24)-(5.25) degenerate to the well-known results of memoryless
Binary Symmetric Channels (BSC), where the optimal channel input distribution is
uniform [3].
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5.4.2. The FTFI Capacity of Time-Varying BUMCO Channel
with Transmission Cost and Feedback Capacity

In this subsection, we apply Theorem 5.6, for M = 1 and N = 1, to derive closed form
expressions for the optimal channel input and output distributions of BUMCO given
by (5.23).
We consider a transmission cost function cA.1(xn, yn−1) , ∑n

t=0 γt(xt, yt−1), where

γt(xt, yt−1) ,


0 1

0 1 0

1 0 1

, t ∈ N0. (5.113)

The optimal solution of the characterization of FTFI capacity is given in the next
theorem.

Theorem 5.7. (Optimal solution of the characterization of FTFI capacity of time-
varying BUMCO with transmission cost)
Consider the BUMCO(αt,βt,γt,δt) defined in (5.23), when the cost function (5.113) is
imposed.

(a) The optimal channel input distribution and corresponding channel output transi-
tion probability distribution corresponding to CFB,A.1

Xn→Y n(κ), defined by (5.56), when
{π∗t (xt|yt−1) 6= 0, ∀xt ∈ Xt, t ∈ Nn

0} and s ≥ 0, are the following.

π∗t (0|0) = 1− γt(1 + 2µs0(t)+∆Ks
t+1)

(αt − γt)(1 + 2µs0(t)+∆Ks
t+1)

, π∗t (0|1) = 1− δt(1 + 2µs1(t)+∆Ks
t+1)

(βt − δt)(1 + 2µs1(t)+∆Ks
t+1)

,

(5.114a)

π∗t (1|0) = αt(1 + 2µs0(t)+∆Ks
t+1)− 1

(αt − γt)(1 + 2µs0(t)+∆Ks
t+1)

, π∗t (1|1) = βt(1 + 2µs1(t)+∆Ks
t+1)− 1

(βt − δt)(1 + 2µs1(t)+∆Ks
t+1)

,

(5.114b)

νπ
∗

t (0|0) = 1
1 + 2µs0(t)+∆Ks

t+1
, νπ

∗

t (0|1) = 1
1 + 2µs1(t)+∆Ks

t+1
, (5.114c)

νπ
∗

t (1|0) = 2µs0(t)+∆Ks
t+1

1 + 2µs0(t)+∆Ks
t+1
, νπ

∗

t (1|1) = 2µs1(t)+∆Ks
t+1

1 + 2µs1(t)+∆Ks
t+1

(5.114d)

where {∆Ks
t (αt, βt, γt, δt, s) ≡ ∆Ks

t , Ks
t (0) − Ks

t (1) : t ∈ Nn+1
0 } is the dif-

ference of the value functions at each time, satisfying the backward recursions
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∆Ks
n+1 = 0 (5.115a)

∆Ks
t =

(
µs1(t)(βt − 1)− µs0(t)(αt − 1)

)
+H(αt)−H(βt)

+ log
(1 + 2µs1(t)+∆Ks

t+1

1 + 2µs0(t)+∆Ks
t+1

)
+ s, t ∈ {n, . . . , 0}. (5.115b)

and

µ0(αt, γt, s) ,
H(γt)−H(αt)− s

γt − αt
≡ µs0(t), µ1(βt, δt, s) ,

H(βt)−H(δt)− s
βt − δt

≡ µs1(t).

(b) The solution of the value functions is given recursively by the following expres-
sions.

Ks
t (0) = µ0(t)(αt − 1) +Ks

t+1(0) + log(1 + 2µ0(t)+∆Ks
t+1)−H(αt), Ks

n+1(0) = 0,
(5.116)

Ks
t (1) = µ1(t)(βt − 1) +Ks

t+1(0) + log(1 + 2µ1(t)+∆Ks
t+1)

−H(βt), Ks
n+1(1) = 0, t ∈ {n, . . . , 0}. (5.117)

(c) The characterization of the FTFI capacity is given by

CFB,A.1
Xn→Y n(κ) = inf

s≥0

∑
y−1∈{0,1}

(
Ks

0(y−1)µ(y−1) + (n+ 1)κ
)
, µ(y−1) is fixed.

Proof. The derivation is similar to the one of subsubsection 5.4.1, hence we omit it. �

Next, we comment on the time-invariant version of Theorem 5.7.

Time-Invariant BUMCO with Transmission Cost

Consider the steady state version of (5.115), defined by the following algebraic equation.

∆Ks,∞ =
(
µs1(β − 1)− µs0(α− 1)

)
+H(α)−H(β) + s+ log

(1 + 2µs1+∆Ks,∞

1 + 2µs0+∆Ks,∞

)
.

(5.118)
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where

µs0(αt, γt) 7−→ µs0(α, γ) = H(γ)−H(α)
γ − α

≡ µs0, ∀t,

µs1(βt, δt) 7−→ µs1(β, δ) = H(β)−H(δ)
β − δ

≡ µs1, ∀t.

The real solution of the nonlinear equation (5.118) is

∆Ks,∞ = log
(

(2`1 − 1) +
√

(1− 2`1)2 + 2`0+2
)
− µ0 − 1 (5.119)

where

`0 ≡ `0(α, β, γ, δ) ,µ1(β − 1)− µ0(α− 2) +H(α)−H(β) + s,

`1 ≡ `1(α, β, γ, δ) ,µ1β − µ0(α− 1) +H(α)−H(β) + s.

By (5.119), the optimal time-invariant channel input conditional distribution and the
corresponding output transition probability distribution are the following.

π∗,∞(0|0) = 1− γ(1 + 2µs0+∆Ks,∞)
(α− γ)(1 + 2µs0+∆Ks,∞) , π

∗,∞(0|1) = 1− δ(1 + 2µs1+∆Ks,∞)
(β − δ)(1 + 2µs1+∆Ks,∞) , (5.120a)

π∗,∞(1|0) = α(1 + 2µs0+∆Ks,∞)− 1
(α− γ)(1 + 2µs0+∆Ks,∞) , π

∗,∞(1|1) = β(1 + 2µs1+∆Ks,∞)− 1
(β − δ)(1 + 2µs1+∆Ks,∞) , (5.120b)

νπ
∗,∞(0|0) = 1

1 + 2µs0+∆KS,∞ , νπ
∗,∞(0|1) = 1

1 + 2µs1+∆Ks,∞ , (5.120c)

νπ
∗,∞(1|0) = 2µs0+∆Ks,∞

1 + 2µs0+∆Ks,∞ , νπ
∗,∞(1|1) = 2µs1+∆Ks,∞

1 + 2µs1+∆Ks,∞ . (5.120d)

Utilizing the channel output transition probability distribution given by (5.120), we
obtain the following unique invariant distribution {νπ∗,∞(y) : y ∈ {0, 1}} corresponding
to {νπ∗,∞(z|y) : (z, y) ∈ {0, 1} × {0, 1}}.

νπ
∗,∞(0) = 1 + 2µs0+∆Ks,∞

1 + 2µs0+µs1+2∆Ks,∞ + 2µs0+1+∆Ks,∞ , ν
π∗,∞(1) = 2µs0+∆Ks,∞(1 + 2µs1+∆Ks,∞)

1 + 2µs0+µs1+2∆Ks,∞ + 2µs0+1+∆Ks,∞ .
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The feedback capacity of time-invariant BUMCO(α, β, γ, δ) with transmission cost κ,
is given by the following expression (following (5.120) and (5.121)).

CFB,A.1(κ) =ν0

(
H(ν0|0)−H(γ)

)
+ (1− ν0)

(
H(ν0|1)−H(δ)

)
+ ξ0

(
H(γ)−H(α)

)
+ ξ1

(
H(δ)−H(β)

)
(5.122)

where

ν0 = νπ
∗,∞(0), ξ0 = 1− γ(1 + 2µs0+∆Ks,∞)

(α− γ)
(
1 + 2µs0+µs1+2∆Ks,∞ + 2µs0+1+∆Ks,∞

) ,
ξ1 =

2µs0+∆Ks,∞
(
1− δ(1 + 2µs1+∆Ks,∞)

)
(β − δ)

(
1 + 2µs0+µs1+2∆Ks,∞ + 2µs0+1+∆Ks,∞

) , ν0|0 = νπ
∗,∞(0|0), ν0|1 = νπ

∗,∞(0|1).

Note that by Theorem 5.3, at s = 0, κ = κmax, and CFB,A.1(κ) = CFB,A.1. Utilizing
(5.120) and (5.121) we can find (s(κ), κ) from the following expression.

lim
n−→∞

1
n+ 1E

{ n∑
t=0

γ(Xt, Yt−1)
}

= E
{
γ(X0, Y−1)

}
, (x0, y−1) ∈ X × Y

= 1− γ(1 + 2µs0+∆Ks,∞)
(α− γ)

(
1 + 2µs0+µs1+2∆Ks,∞ + 2µs0+1+∆Ks,∞

) +
2µs0+∆Ks,∞

(
β(1 + 2µs1+∆Ks,∞)− 1

)
(β − δ)

(
1 + 2µs0+µs1+2∆Ks,∞ + 2µs0+1+∆Ks,∞

)
= κ, κ ∈ [0, κmax].

Numerical Evaluations

Fig. 5.3 depicts numerical simulations of the optimal (nonstationary) channel
input conditional distribution and the corresponding channel output transition
probability distribution given by (5.114)-(5.115), for a time-invariant channel
BUMCO(αt, βt, γt, δt) = BUMCO(0.9, 0.1, 0.2, 0.4), with transmission cost given by
(5.113), s = 0.05, i.e., κ = 0.5992, for time horizon t ∈ {0, 1, . . . , 1000}.
Fig. 5.4 depicts the corresponding value of 1

n+1C
FB,A.1
Xn→Y n(κ) =

1
n+1E

π∗
{∑n

t=0 log
(
q(yt|yt−1,xt)
νπ∗ (yt|yt−1)

)}
, where {π∗t (xt|yt−1) : t = 0, 1, . . . , n} is given

by (5.114), for time horizon t ∈ {0, 1, . . . , 1000}. From Fig. 5.2, at t ≈ 1000,
the constrained FTFI capacity for s = 0.05, κ = 0.5992 is 1

n+1C
FB,A.1
Xn→Y n(κ) =

0.2135 bits/channel use, while the actual constrained feedback capacity evaluated by
(5.122) for s = 0.05 and κ = 0.5992 is CFB,A.1(κ) = 0.2137 bits/channel use.
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Figure 5.3.: Optimal transition probability distributions of BUMCO(0.9, 0.1, 0.2, 0.4)
with transmission cost function given by (5.113), s = 0.05, for time horizon
t ∈ {0, 1, . . . , 1000}.
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5.4.3. The FTFI Capacity of Time-Varying BEUMCO

In this subsection, we apply Theorem 5.1, for M = 1, to derive closed form expressions
for the optimal channel input conditional distribution and the corresponding output
transition probability distribution of time-varying BEUMCO channel given by (5.33).
The results are given in the next theorem.
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Figure 5.4.: 1
n+1C

FB,A.1
Xn→Y n(κ) of BUMCO (0.9, 0.1, 0.2, 0.4), s = 0.05, κ = 0.5992,

for time horizon {0, 1, . . . , 1000} with a choice of the initial distribution
PY−1(y−1 = 0) = 0 with its complement PY−1(y−1 = 1) = 1.

Theorem 5.8. (Optimal solution of the characterization of FTFI capacity of time-
varying BEMCO)
Consider the {BEUMCO(αt, γt, βt) : t ∈ Nn

0} defined in (5.33).

(a) The optimal channel input conditional distribution and the corresponding out-
put transition probability distribution of the characterization of FTFI capacity
CFB,A.1
Xn→Y n, i.e., (5.14) with M = 1, when {π∗t (xt|yt−1) 6= 0, ∀xt ∈ Xt, t ∈ Nn

0}, are
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given by the following expressions.

π∗t (xt|yt−1) ≡ π∗t (xt) =

0 π∗t (0)

1 π∗t (1)

,∀yt−1 ∈ Yt−1, t ∈ Nn
0 , (5.123a)

νπ
∗

t (yt|yt−1) =



0 e 1

0 νπ
∗

t (0|0) νπ
∗

t (0|e) νπ
∗

t (0|1)

e νπ
∗

t (e|0) νπ
∗

t (e|e) νπ
∗

t (e|1)

1 νπ
∗

t (1|0) νπ
∗

t (1|e) νπ
∗

t (1|1)

, t ∈ Nn
0 (5.123b)

where

π∗t (0) = 2∆C1
t+1

1 + 2∆C1
t+1
, π∗t (1) = 1

1 + 2∆C1
t+1
, (5.124a)

νπ
∗

t (0|0) = αt2∆C1
t+1

1 + 2∆C1
t+1
, νπ

∗

t (0|e) = γt2∆C1
t+1

1 + 2∆C1
t+1
, νπ

∗

t (0|1) = βt2∆C1
t+1

1 + 2∆C1
t+1
, (5.124b)

νπ
∗

t (e|0) = 1− αt, νπ
∗

t (e|e) = 1− γt, νπ
∗

t (e|1) = 1− βt, (5.124c)

νπ
∗

t (1|0) = αt

1 + 2∆C1
t+1
, νπ

∗

t (1|e) = γt

1 + 2∆C1
t+1
, νπ

∗

t (1|1) = βt

1 + 2∆C1
t+1

(5.124d)

and {∆C1
t (αt, γt, βt) ≡ ∆C1

t , Ct(0)− Ct(1) : t ∈ Nn+1
0 } is the difference of the

value functions {Ct(0), Ct(1) : t ∈ Nn+1
0 } at each time, satisfying the following

backward recursions.

∆C1
t = (αt − βt)

(
∆C2

t+1 + log
(
1 + 2∆C1

t+1
))
, ∆C1

n+1 = 0, t ∈ {n, . . . , 0},

(5.125)

with {∆C2
t (αt, γt, βt) ≡ ∆C2

t , Ct(1)−Ct(e) : t ∈ Nn+1
0 } is the difference of the

value functions {Ct(1), Ct(e) : t ∈ Nn+1
0 } at each time, satisfying the following

backward recursions

∆C2
t = (βt − γt)

(
∆C2

t+1 + log
(
1 + 2∆C1

t+1
))
, ∆C2

n+1 = 0, t ∈ {n, . . . , 0}.

(5.126)

(b) The solution of the value functions is given recursively by the following expres-
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sions.

Ct(0) = αtCt+1(1) + (1− αt)Ct+1(e) + αt log(1 + 2∆C1
t+1)−H(αt), Cn+1(0) = 0,

(5.127)

Ct(e) = γtCt+1(1) + (1− γt)Ct+1(e) + γt log(1 + 2∆C1
t+1)−H(αt), Cn+1(e) = 0,

(5.128)

Ct(1) = βtCt+1(1) + (1− βt)Ct+1(e)

+ βt log(1 + 2∆C1
t+1)−H(αt), Cn+1(1) = 0, t ∈ {n, . . . , 0}. (5.129)

(c) The characterization of the FTFI capacity is given by

CFB,A.1
Xn→Y n =

∑
y−1∈{0,e,1}

C0(y−1)µ(y−1), µ(y−1) is fixed.

Proof. The derivation is similar to the one of subsubsection 5.4.1, hence we omit it. �

For Theorem 5.8, (5.123a), it follows that feedback does not increase the character-
ization of FTFI capacity, and consequently feedback capacity.

Time-Invariant BEUMCO

Next, we comment on the time-invariant version of Theorem 5.8.
Consider the time-invariant version of BEUMCO {qt(yt|yt−1, xt) = q(yt|yt−1, xt) : t ∈
Nn

0}, denoted by BEUMCO(α, γ, β) and the steady state versions of (5.125), (5.126),
defined by the following algebraic equations.

∆C1,∞ =(α− β)
(

∆C2,∞ + log
(
1 + 2∆C1,∞)) (5.130)

∆C2,∞ =(β − γ)
(

∆C2,∞ + log
(
1 + 2∆C1,∞))

. (5.131)

Solving (5.131) with respect to ∆C2,∞ and substituting the result in (5.130), yields the
solution of the nonlinear equation (5.130) given by

∆C1,∞ =
(

α− β
1− (β − γ)

)
log(1 + 2∆C1,∞). (5.132)
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Moreover, the time-invariant versions of (5.123a)-(5.123b) denoted by π∗t (xt) ≡
π∗,∞(xt) and νπ

∗
t (yt|yt−1) ≡ νπ

∗,∞(yt|yt−1), are given as follows.

π∗,∞(0) = 2∆C1,∞

1 + 2∆C1,∞ , π∗,∞(1) = 1
1 + 2∆C1,∞ , (5.133a)

νπ
∗,∞(0|0) = α2∆C1,∞

1 + 2∆C1,∞ , ν
π∗,∞(0|e) = γ2∆C1,∞

1 + 2∆C1,∞ , ν
π∗,∞(0|1) = β2∆C1,∞

1 + 2∆C1,∞ ,

(5.133b)

νπ
∗,∞(e|0) = 1− α, νπ

∗,∞(e|e) = 1− γ, νπ
∗,∞(e|1) = 1− β, (5.133c)

νπ
∗,∞(1|0) = α

1 + 2∆C1,∞ , ν
π∗,∞(1|e) = γ

1 + 2∆C1,∞ , ν
π∗,∞(1|1) = β

1 + 2∆C1,∞ .

(5.133d)

It can be shown that the channel output transition probability distribution given by
(5.133b)-(5.133d), has a unique invariant distribution {νπ∗,∞(y) : y ∈ {0, e, 1}} given
by

νπ
∗,∞(0) = γ2∆C1,∞

1− (β − γ) + 2∆C1,∞(1− α + γ) , ν
π∗,∞(e) = 1− β + 2∆C1,∞(1− α)

1− (β − γ) + 2∆C1,∞(1− α + γ) ,

νπ
∗,∞(1) = γ

1− (β − γ) + 2∆C1,∞(1− α + γ) .

Hence, the feedback capacity of time-invariant BEUMCO(α, γ, β) is given by the fol-
lowing expression.

CFB,A.1 =
∑

y∈{0,e,1}

( ∑
x∈{0,1},z∈{0,e,1}

log
(
q(z|y, x)
ν∗,∞(z|y)

)
q(z|y, x)π∗,∞(x|y)

)
νπ
∗,∞(y).

(5.134)

After some algebra, we obtain the following

CFB,A.1 = (1− νe) log(1 + 2∆C1,∞)− ν0∆C1,∞ (5.135)

where

νe = νπ
∗,∞(e), ν0 = νπ

∗,∞(0).
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Figure 5.5.: Optimal transition probability distributions of BEUMCO(0.95, 0.6, 0.8)
for time horizon {0, 1, . . . , 1000}.
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Numerical evaluations

Fig. 5.5 depicts numerical simulations of the optimal (nonstationary) channel
input conditional distribution and the corresponding channel output transition
probability distribution given by (5.133b)-(5.133d), for a time-invariant channel
BEUMCO(α, γ, β) = BEUMCO(0.95, 0.6, 0.8), for time horizon t ∈ {0, 1, . . . , 1000}.
Fig. 5.6 depicts the corresponding value of 1

n+1C
FB,A.1
Xn→Y n =

1
n+1E

π∗
{∑n

t=0 log
(
q(yt|yt−1,xt)
νπ∗ (yt|yt−1)

)}
, where {π∗t (xt|yt−1) ≡ π∗t (xt) : t = 0, 1, . . . , n}

is given by (5.133b)-(5.133d), t ∈ {0, 1, . . . , 1000}. From Fig. 5.6, at t ≈ 1000, the
FTFI capacity is 1

n+1C
FB,A.1
Xn→Y n = 0.8306 bits/channel use, while the actual ergodic

feedback capacity evaluated from (5.135) is CFB,A.1 = 0.8307 bits/channel use.
Based on our simulations, it is interesting to note that the optimal channel input
conditional distribution and the corresponding channel output transition probability
converge to their asymptotic limits at t ≈ 6.
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Figure 5.6.: 1
n+1C

FB,A.1
Xn→Y n of BEUMCO (0.95, 0.6, 0.8) for time horizon {0, 1, . . . , 1000}

with a choice of the initial distribution PY−1(y−1 = 0) = 1 with its com-
plements PY−1(y−1 = e) = 0 PY−1(y−1 = 1) = 0.
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Special Cases of Theorem 5.8

Next, we discuss certain degenerated cases.
For the time-invariant channel BEUMCO(1 − α, γ, 1 − α), by (5.133a) the optimal
channel input conditional distribution is uniform, the corresponding output transition
probability distribution is stationary, and the ergodic feedback capacity is equal to the
corresponding no-feedback capacity given by

CNFB,A.1 = CFB,A.1 = γ

α + γ
. (5.136)

For the channel BEUMCO(1 − α, 1 − α, 1 − α), the channel is memoryless, and it
degenerates to the well-known memoryless Binary Erasure Channel (BEC), where the
optimal channel input distribution is uniform [3]. This follows from (5.136), by setting
γ = 1− α.

5.4.4. The FTFI Capacity of Time-Varying BSTMCO

In this subsection, we apply Theorem 5.1, for M = 2, to derive closed form expressions
for the optimal channel input conditional distribution and the corresponding channel
output transition probability distribution of the time-varying BSTMCO channel given
by (5.34).

Theorem 5.9. (Optimal solution of the characterization of time-varying BSTMCO)
Consider the BSTMCO(αt,βt,γt,δt) defined in (5.34). Then the following hold.

(a) The optimal channel input distribution and the corresponding channel output
transition probability distribution, of the characterization of CFB,A.2

Xn→Y n, i.e., (5.14)
with M = 2, denoted by

{
π∗t (xt|yt−1, yt−2) : (xt, yt−1, yt−2) ∈ {0, 1} × {0, 1} ×

{0, 1}, t ∈ Nn
0

}
,
{
νπ
∗

t (yt|yt−1, yt−2) : (yt, yt−1, yt−2) ∈ {0, 1} × {0, 1} × {0, 1}, t ∈
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Nn
0

}
are the following.

π∗t (0|0, 0) = π∗t (1|1, 1) = 1− βt(1 + 2µ0(t)+∆Ct+1)
(αt − βt)(1 + 2µ0(t)+∆Ct+1) , (5.137a)

π∗t (0|0, 1) = π∗t (1|1, 0) = 1− δt(1 + 2µ1(t)+∆Ct+1)
(γt − δt)(1 + 2µ1(t)+∆Ct+1) , (5.137b)

π∗t (0|1, 0) = π∗t (1|0, 1) = γt(1 + 2µ1(t)+∆Ct+1)− 1
(γt − δt)(1 + 2µ1(t)+∆Ct+1) , (5.137c)

π∗t (0|1, 1) = π∗t (1|0, 0) = αt(1 + 2µ0(t)+∆Ct+1)−1

(αt − βt)(1 + 2µ0(t)+∆Ct+1) , (5.137d)

νπ
∗

t (0|0, 0) = νπ
∗

t (1|1, 1) = 1
1 + 2µ0(t)+∆Ct+1

, νπ
∗

t (0|0, 1) = νπ
∗

t (1|1, 0) = 1
1 + 2µ1(t)+∆Ct+1

,

(5.137e)

νπ
∗

t (1|0, 0) = νπ
∗

t (0|1, 1) = 2µ0(t)+∆Ct+1

1 + 2µ0(t)+∆Ct+1
, νπ

∗

t (1|0, 1) = νπ
∗

t (0|1, 0) = 2µ1(t)+∆Ct+1

1 + 2µ1(t)+∆Ct+1
,

(5.137f)

µ0(αt, βt) = H(βt)−H(αt)
βt − αt

≡ µ0(t), µ1(γt, δt) = H(δt)−H(γt)
δt − γt

≡ µ1(t)

(5.137g)

and {∆Ct(αt, βt, γt, δt) ≡ ∆Ct , Ct(1, 1)−Ct(0, 1) : t ∈ Nn+1
0 } is the difference

of the value functions at each time, satisfying the following backward recursions.

∆Cn+1 =0, (5.138a)

∆Ct =
(
µ1(t)(γt − 1)− µ0(t)(αt − 1)

)
+H(αt)−H(γt)

+ log
(1 + 2µ1(t)+∆Ct+1

1 + 2µ0(t)+∆Ct+1

)
, t ∈ {n, . . . , 0}. (5.138b)

(b) The solution of the value function is given recursively by the following expressions.

Ct(1, 1) = Ct(0, 0) = µ0(t)(αt − 1) + Ct+1(0, 0) + log(1 + 2µ0(t)+∆Ct+1)

−H(αt), Cn+1(1, 1) = Cn+1(0, 0) = 0, (5.139)

Ct(0, 1) = Ct(1, 0) = µ1(t)(βt − 1) + Ct+1(0, 0) + log(1 + 2µ1(t)+∆Ct+1)

−H(βt), Cn+1(0, 1) = Cn+1(1, 0) = 0, t ∈ {n, . . . , 0}.
(5.140)
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(c) The characterization of the FTFI capacity is given by

CFB,A.2
Xn→Y n =

∑
y−1∈{0,1},y−2∈{0,1}

Ct(y−1
−2)µ(y−1

−2), µ(y−1
−2) is fixed.

Proof. The derivation is similar to the one of subsubsection 5.4.1, hence we omit it. �

Discussion on Theorem 5.9

Theorem 5.9 illustrates a pattern, corresponding to the channel symmetry in the form of
the optimal channel input conditional distribution, specifically, the channel symmetry,
when yt−2 = 0 or yt−2 = 1, t ∈ Nn

0 .

Remark 5.5. (Discussion of the results)
Next, we make some observations regarding the results obtained in subsection 5.4.1 and
in subsection 5.4.3.

1. The symmetry of the channel defined by (5.34) causes the following symmetries
on the recursive expressions of the value functions, Ct(1, 1) = Ct(0, 0), Ct(0, 1) =
Ct(1, 0).

2. If card(X ) = T and card(Y) = S, where T, S ≥ 3 then it is almost impossi-
ble to find closed form expressions for the optimal channel input distributions
corresponding to CFB,A.M

Xn→Y n . However, the necessary and sufficient conditions of
Theorem 5.6 are simplified considerably, when the channel distribution has cer-
tain symmetry similar to the one in Theorem 5.9, and for such channels closed
form expressions are expected.

5.5. Generalizations to Abstract Alphabet Spaces

All main theorems of Section 5.3 extend to abstract alphabet spaces (i.e., countable,
continuous alphabets etc.). However, for these extensions to hold, it is necessary to
impose sufficient conditions related to the existence of an optimal channel input con-
ditional distribution, Gâteaux differentiability of directed information functional, and
continuity with respect to channel input conditional distribution.
Below, we state sufficient conditions for Theorem 5.6 to hold on abstract alphabet
spaces.

(C1) {Xt : t ∈ N0}, {Yt : t ∈ N0} are complete separable metric spaces.
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(C2) The directed information functional IXn→Y n(←−P 0,n,
−→
Q 0,n) (see (5.51)) is continuous

on ←−P 0,n(·|yn−1) ∈M(X n) for a fixed ←−Q 0,n(·|xn) ∈M(Yn).

(C3) There exist an optimal input distribution←−P ∗0,n(·|yn−1) ∈M(X n), which achieves
the supremum of directed information.

(C4) The value function {Ct(yt−1
t−J) : t ∈ Nn

0} is Gâteaux differentiable with respect to
{πt(dxt|yt−1

t−J) : t ∈ Nn
0}.

General theorems for the validity of (C2) and (C3) are derived in Chapters 2, 5.

5.5.1. Channels of Class A and Transmission Cost of Class A

Let Ct : Y t−1
t−J 7−→ [0,∞) represent the maximum expected total pay-off in (5.56) on

the future time horizon {t, t+ 1, . . . , n}, given Y t−1
t−J = yt−1

t−J at time t− 1, defined by

Ct(yt−1
t−J) = sup{

πi(dxi|yi−1
i−J ): i=t,t+1,...,n

}Eπ
{

n∑
i=t

log
(
dqi(·|yi−1

i−M , Xi)
dνπi (·|yi−1

i−J)
(Yi)

)

− s
(

n∑
i=t

γi(xi, yi−1
i−N)− (n+ 1)κ

) ∣∣∣∣∣∣Y t−1
t−J = yt−1

t−J

}
(5.141)

By (5.141) we obtain the following dynamic programming recursions.

Cn(yn−1
n−J) = sup

πn(dxn|yt−1
t−J )


∫
Xn×Yn

log
(
dqn(·|yn−1

n−M , xn)
dνπn(·|yn−1

n−J)
(yn)

)
qn(dyn|yn−1

n−M , xn)⊗ πn(dxn|yn−1
n−J)

− s
(∫
Xn
γn(xn, yn−1

n−N)πn(dxn|yn−1
n−J)− (n+ 1)κ

), (5.142)

Ct(yt−1
t−J) = sup

πt(dxt|yt−1
t−J )


∫
Xt×Yt

(
log

(
dqt(·|yt−1

t−M , xt)
dνπt (·|yt−1

t−J)
(yt)

)
+ Ct+1(ytt+1−J)

)

qt(dyt|yt−1
t−M , xt)⊗ πt(dxt|yt−1

t−J)− s
(∫
Xt
γt(xt, yt−1

t−N)πt(dxt|yt−1
t−J)− (n+ 1)κ

), t ∈ Nn−1
0 .

(5.143)

Then, we have the following generalization of Theorem 5.6 on abstract alphabets.

Theorem 5.10. (Sequential necessary and sufficient conditions on abstract spaces)
Suppose conditions (C1)-(C4) hold. The necessary and sufficient conditions for any
input distribution {πt(dxt|yt−1

t−J) : t ∈ Nn
0}, J = max{M,N}, to achieve the supremum

of the characterization of FTFI capacity given by (5.56) are the following.
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(a) For each yn−1
n−J ∈ Yn−1

n−J , there exist a Ks
n(yn−1

n−J), which depends on s ≥ 0, such that
the following hold.

∫
Yn

log
(
dqn(·|yn−1

n−M , xn)
dνπt (·|yn−1

n−J)
(yn)

)
qn(dyn|yn−1

n−M , xn)

− sγn(xn, yn−1
n−N) = Ks

n(yn−1
n−J), ∀xn, if πn(dxn|yn−1

n−J) 6= 0, (5.144)∫
Yn

log
(
dqn(·|yn−1

n−M , xn)
dνπn(·|yn−1

n−J)
(yn)

)
qn(dyn|yn−1

n−M , xn)

− sγn(xn, yn−1
n−N) ≤ Ks

n(yn−1
n−J), ∀xn, if πn(dxn|yn−1

n−J) = 0. (5.145)

Moreover, Ct(yt−1
t−J) = Ks

n(yn−1
n−J)+s(n+1)κ corresponds to the value function Ct(yt−1

t−J),
defined by (5.141), evaluated at t = n.
(b) For each t, yt−1

t−J ∈ Y t−1
t−J , there exist a Ks

t (yt−1
t−J), which depends on s ≥ 0, such that

the following hold.

∫
Yt

(
log

(
dqt(·|yt−1

t−M , xt)
dνπt (·|yt−1

t−J)
(yt)

)
+Ks

t+1(ytt+1−J)
)
qt(dyt|yt−1

t−M , xt)

− sγt(xt, yt−1
t−N) = Ks

t (yt−1
t−J), ∀xt, if πt(dxt|yt−1

t−J) 6= 0, (5.146)∫
Yt

(
log

(
dqt(·|yt−1

t−M , xt)
dνπt (·|yt−1

t−J)
(yt)

)
+Ks

t+1(ytt+1−J)
)
qt(dyt|yt−1

t−M , xt)

− sγt(xt, yt−1
t−N) ≤ Ks

t (yt−1
t−J), ∀xt, if πt(dxt|yt−1

t−J) = 0 (5.147)

for t = n − 1, . . . , 0. Moreover, Ct(yt−1
t−J) = Ks

t (yt−1
t−J) + s(n + 1)κ corresponds to the

value function Ct(yt−1
t−J), defined by (5.141), evaluated at t = n− 1, . . . , 0.

Proof. Since we assume conditions (C1)–(C4), we can repeat the derivation of Theo-
rem 5.6 for abstract alphabets. �

5.5.2. Necessary and Sufficient Conditions for Channels of
Class B with Transmission Cost of Classes A or B

In this subsection, we illustrate how the main results of this paper extend to channels
of class B with transmission cost of classes A or B.

Channels of class A with transmission cost B

Consider the channel distributions of class A given by (5.6), and a transmission cost
function of class B given by (5.9). By [49], the characterization of FTFI capacity with
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average transmission cost constraint is given by

CFB,A.B
Xn→Y n(κ) = sup

PB0,n(κ)

n∑
t=0

Eπ
{

log
(
qt(·|Y t−1

t−M , Xt)
νπt (·|Y t−1) (Yt)

)}
, (5.148)

where

PB0,n(κ) ,
{
πt(xt|yt−1), t = 0, . . . , n : 1

n+ 1E
π
(
cB0,n(Xn, Y n−1)

)
≤ κ

}
, κ ∈ [0,∞)

(5.149)

and the joint and transition probabilities are given by

Pπ(dyt, dxt) =
t∏
i=0

qi(dyi|yi−1
i−M , xi)πi(dxi|yi−1)µi(dyi−1), (5.150)

νπt (dyt|yt−1) =
∫
Xt
qt(dyt|yt−1

t−M , xt)πt(dxt|yt−1), t ∈ Nn
0 . (5.151)

From (5.148) -(5.151), the analogue of Theorem 5.10 is obtained by setting

γt(xt, yt−1
t−N) 7−→ γt(xt, yt−1), πt(dxt|yt−1

t−J) 7−→ πt(dxt|yt−1), νπt (dyt|yt−1
t−J) 7−→ νπt (dyt|yt−1)

Similarly, from [49] it follows than if the channel is of class B and the transmission cost
function is of classes A, or B, the analogue of Theorem 5.10 is obtained by setting

qt(dyt|yt−1
t−M , xt) 7−→qt(dyt|yt−1, xt), πt(dxt|yt−1

t−J) 7−→ πt(dxt|yt−1),

νπt (dyt|yt−1
t−J) 7−→ νπt (dyt|yt−1).

5.6. Conclusion

In this paper, we derived sequential necessary and sufficient conditions for any channel
input conditional distribution to maximize the finite-time horizon directed information
with or without transmission cost constraints. We applied the necessary and sufficient
conditions to several application examples and we derived recursive closed form ex-
pressions for the optimal channel input conditional distributions, which maximize the
finite-time horizon directed information. For the investigated application examples,
we also illustrated how to derive the closed form expressions of feedback capacity and
capacity achieving distributions by investigating the asymptotic properties of the per
unit time limiting version of FTFI capacity. The methodology introduced in this paper
is general and can be applied to a variety of general channels with memory, such as,
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Gaussian channels with memory.
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6
The Extremum Problem of

Information Nonanticipative Rate
Distortion Function and

Applications

6.1. Introduction

In lossy compression source coding with fidelity [50, 51], the sequence of real-valued
symbols X∞ 4= {X0, X1, . . .}, Xj ∈ X , ∀j ≥ 0, generated by a source with distribu-
tion PX∞ , is transformed by the encoder into a sequence of symbols, the compressed
representation Z∞

4= {Z0, Z1, . . .} (taking values in a finite alphabet set), which is
then transmitted over a noiseless channel. The decoder at the channel output upon
observing the compressed representation symbols produces the reproduction sequence
Y ∞

4= {Y0, Y1, . . .}, Yj ∈ Y , ∀j ≥ 0. Such a compression system is called causal [58] if
the reproduction symbol Yn of the source symbol Xn, depends on the present and past
source symbols {X0, . . . , Xn} but not on the future source symbols {Xn+1, Xn+2, . . .}.
The cascade of the encoder-decoder is often called the reproduction coder, and it is a
family of measurable functions such that Yn

4= fn(X0, . . . , Xn), while the compressed
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representation itself may be noncausal and have variable rate [58]. Consequently, the
decoder can generate the reproductions with arbitrary delay. The Optimal Perfor-
mance Theoretically Attainable (OPTA) by noncausal codes is described via the Rate
Distortion Function (RDF) [50,51], while that of causal codes is described via the en-
tropy rate of the reproduction sequence [58].

Zero-delay source coding is a sub-class of causal coding, with the additional con-
straint that the compressed representation symbol Zn, depends on the past and present
source symbols Xn 4= {X0, X1, . . . , Xn}, while the reproduction at the decoder Yn
of the present source symbol Xn, depends only on the compressed representation
Zn 4= {Z0, Z1, . . . , Zn}. Thus, a zero-delay coding system consists of a family of
encoding-decoding measurable functions such that Zi = hi({Xj : j = 0, 1, . . . , i})
and Yi = fi({Zj : j = 0, 1, . . . , i}), ∀i ≥ 0 [4, 85–88]. Joint Source-Channel Coding
(JSCC) based on nonanticipative processing (i.e., the encoder-channel-decoder process
at each time instant symbols causally), is perhaps, the most efficient zero-delay coding
system, in the sense of optimal performance of matching the source characteristics to
the channel characteristics, coded or uncoded [54]. Two such fascinating examples of
matching the RDF of an IID source to the capacity of a memoryless channel are the
following.
Example-IID-BSS: The Independent Identically Distributed (IID) Binary Source (BS)
with Hamming distortion transmitted uncoded over a symmetric memoryless channel
(the distortion and channel parameter are made equal);
Example-IID-GS: The IID Gaussian Source (GS) with average squared-error distor-
tion, transmitted over a memoryless Additive White Gaussian Noise (AWGN) channel
without feedback, with the encoder and decoder scaling their inputs [89].
In both examples, symbol-by-symbol transmission is optimal, that is, the optimal code
rate is “1” in terms of achieving average end-to-end distortion. These examples demon-
strate the simplicity of the JSCC design often called probabilistic matching, in operat-
ing optimally with zero-delay, in complexity, when this is compared to the asymptotic
performance of optimally separating the encoder/decoder to the source and channel en-
coders/decoders which may cause long processing delays. Recently, Example-IID-BSS
and Example-IID-GS are revisited in [90], using symbol-by-symbol (zero-delay) codes.
In general, very little is known about JSCC design or probabilistic matching based on
nonanticipative processing, that of matching the source characteristics to the channel
characteristics, as in Example-IID-BSS and in Example-IID-GS, because the RDF of
sources with memory is generally not known. Moreover, only bounds are known on
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the OPTA by causal and zero-delay codes [53]. For the latter, these bounds are of-
ten introduced to quantify the Rate Loss (RL) due to causality and zero-delay of the
coding systems compared to that of the noncausal coding systems. Such bounds are
elaborated recently in [91], for Gaussian sources with square-error distortion function.
In this chapter, we consider the information Nonanticipative RDF (NRDF) [61, 92], a
variant of the classical information RDF, and we describe its applications in

(a) zero-delay JSCC design or probabilistic matching of the source to the channel, with
respect to nonanticipative processing (zero delay or symbol-by-symbol codes),
based on average and excess distortion probability;

(b) bounding the OPTA by noncausal and causal codes, and computing the RL of
zero-delay and causal codes with respect to noncausal codes.

For (a), the design of encoder and decoder for a given {source, channel} pair with
respect to a given {distortion function, transmission cost function} pair is construc-
tive. Given a source, first we compute the NRDF. Second, we realize the NRDF (see
Fig. 6.1) with respect to the channel by providing an {encoder, decoder} pair, so that
the end-to-end average distortion is achieved, the channel operates at its capacity,
and the NRDF is equal to the channel capacity. For the multidimensional (vector)
stationary Gaussian source with memory and square-error distortion, we show that
the solution of the NRDF is equivalent to JSCC design of a vector AWGN channel
with and without feedback encoding in which the encoder and the decoder are linear.
For the special case of IID Gaussian sequence, our JSCC design reduces to the JSCC
design of Example IID-GS [54, 89]. Moreover, from the solution of the NRDF we
recover the Schalkwijk-Kailath’s coding scheme [93].
For (b), we use the NRDF to compute the RL or gap between the OPTA by causal [58]
and zero-delay codes with respect to the OPTA by noncausal codes, for both finite
alphabet and continuous alphabet valued sources.
Moreover, we show equivalence of the information NRDF and its rate to Gorbunov and
Pinsker nonanticipatory ε−entropy and message generation rates [57, 94, 95], which
corresponds to Shannon information RDF with an additional causality constraint im-
posed on the optimal reproduction distribution. Gorbunov and Pinsker [57] appear to
be the first who recognized the importance of NRDF in real-time applications [57, p.
1, lines 4-5]. Further, to facilitate the application of the information NRDF as
explained above, we establish the following additional results. Show existence of
the optimal reproduction distribution of the information NRDF and its rate, give
the expression of the optimal reproduction for stationary processes and characterize
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several of its properties, and use it to compute the NRDF for the multidimensional
partially observed Gauss-Markov stationary source.

Next, we introduce the NRDF, classical RDF and Gorbunov and Pinsker’s nonantici-
patory ε-entropy to clarify certain relations between them.
NRDF. The information NRDF is defined as follows. Consider a source
distribution PXn(dxn), a causal sequence of reproduction distributions
{PYi|Y i−1,Xi(dyi|yi−1, xi) : i = 0, 1, . . . , n}, a measurable distortion function
d0,n(xn, yn) : X n × Yn 7−→ [0,∞] and an average fidelity set1

−→
Q0,n(D) 4=

{
−→
P Y n|Xn(dyn|xn) 4= ⊗ni=0PYi|Y i−1,Xi(dyi|yi−1, xi) :

1
n+ 1

∫
Xn×Yn

d0,n(xn, yn)(−→P Y n|Xn ⊗ PXn)(dxn, dyn) ≤ D

}
. (6.1)

The information NRDF is defined by

Rna
0,n(D) 4= inf−→

P Y n|Xn (·|xn)∈−→Q0,n(D)

∫
Xn×Yn

log
(−→
P Y n|Xn(dyn|xn)

PY n(dyn)

)
(−→P Y n|Xn ⊗ PXn)(dxn, dyn)

= inf−→
P Y n|Xn (·|xn)∈−→Q0,n(D)

IXn→Y n(PXn ,
−→
P Y n|Xn). (6.2)

Here, IXn→Y n(·, ·) is used to denote the functional dependence of Rna
0,n(D) on the two

distributions {PXn ,
−→
P Y n|Xn}. The information NRDF rate is defined by

Rna(D) 4= lim
n−→∞

1
n+ 1R

na
0,n(D). (6.3)

Classical RDF. The classical information RDF (often called OPTA by noncausal
codes) [50–52] is defined by

R(D) 4= lim
n−→∞

1
n+ 1R0,n(D), R0,n(D) 4= inf

PY n|Xn (·|xn)∈Q0,n(D)
I(Xn;Y n) (6.4)

where the fidelity set of reproduction conditional distributions is defined by

Q0,n(D) 4=
{
PY n|Xn(dyn|xn) : 1

n+ 1

∫
Xn×Yn

d0,n(xn, yn)(PY n|Xn ⊗ PXn)(dxn, dyn) ≤ D

}
.

(6.5)

1⊗ denotes convolution of distributions.
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Goblick in [89] applied the R(D) of an IID Gaussian distributed N(0;σ2
X) sequence

with R(D) = 1
2 log(σ

2
X

D
), 0 ≤ D ≤ σ2

X to provide the JSCC design over a memory-
less AWGN channel without feedback. The extension of Goblick’s JSCC design to
a memoryless AWGN channel with feedback is treated in [30], and makes use of the
Schalkwijk-Kailath’s coding scheme.
Nonanticipatory ε-Entropy. ε-entropy introduced by Kolmogorov in [96] to char-
acterize the notion of classical RDF on abstract probability spaces. The term epsilon

is used in the definition of ε-entropy to characterize the partitions of the originally
transmitted message into measurable sets of diameter less than or equal to an ε > 0.
It is called ε-entropy because it forms a natural extension of entropy.
Gorbunov and Pinsker in [57] introduced the so-called nonanticipatory ε-entropy,
Rε

0,n(D), and message generation rate Rε(D) as follows

Rε(D) 4= lim
n−→∞

1
n+ 1R

ε
0,n(D), (6.6)

Rε
0,n(D) 4= inf

PY n|Xn (·|xn)∈Q0,n(D)
Xn
i+1↔X

i↔Y i, i=0,1,...,n−1

I(Xn;Y n), ∀n ≥ 0. (6.7)

The same authors in [94,95], showed that for scalar stationary Gaussian sources (using
power spectral densities) that Rε(D) tends to Shannon’s RDF R(D), as D −→ 0.

We show in Theorem 6.5 that Rna
0,n(D) = Rε

0,n(D). The fundamental difference be-
tween Rna

0,n(D) or Rε
0,n(D) and R0,n(D) is the following. For sources with memory,

the optimal reproduction distribution of the information NRDF, Rna
0,n(D) at each time

i = 0, . . . , n, is a causal (or nonanticipative) sequence of conditional distributions
P ∗Yi|Y i−1,Xi(dyi|yi−1, xi), that is, it depend only on the past and present source symbols
and past reproduction symbols {xi, yi−1}. On the other hand, the optimal reproduction
distribution of the classical RDF, R0,n(D) at each time i = 0, . . . , n, is a sequence of
noncausal conditional distributions P ∗Yi|Y i−1,Xn(dyi|yi−1, xn), which depends not only on
{xi, yi−1} but also on future source symbols {xi+1, . . . , xn}. For independent sources,
Rna

0,n(D) and R0,n(D) coincide.

Next, we discuss certain limitations of the classical information RDF R(D) with
respect to applications, which motivated our interest to investigate the information
NRDF (6.2).
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6.1.1. Motivation for NRDF

The first limitation of the classical information RDF is the lack of examples of a
source with memory for which the exact expression of R0,n(D) for finite n, and that
of R(D) 4= limn−→∞

1
n+1R0,n(D), are computed, aside from memoryless or Gaussian

sources. For example, the RDF of the BSMS(p) with single letter Hamming distortion
function is currently unknown.

The second limitation of the classical information RDF R0,n(D) is the anticipative (non-
causal) nature of the optimal reproduction distributions {P ∗Yi|Y i−1,Xn(dyi|yi−1, xn) : i =
0, 1, . . . , n}, because they depend on future source symbols even for single letter distor-
tion functions d0,n(xn, yn) 4= ∑n

i=0 ρ(xi, yi). This anticipative structure of the optimal
reproduction distribution corresponding to R0,n(D) implies that, in general, the classi-
cal information RDF cannot be used in JSCC design using nonanticipative processing or
uncoded transmission (i.e., the {encoder, decoder} pair processes at each time instant
source symbol without dependence on future source symbols), also called probabilistic
matching of the source to the channel [53], unless the source is memoryless, such as,
the Example-IID-BS and the Example-IID-GS discussed earlier [54–56,90]. Indeed, to
perform the JSCC design using nonanticipative processing it is necessary that 1) the
exact expression of the RDF of the source is known or computed, and 2) its correspond-
ing optimal reproduction distribution is realizable using nonanticipative processing via
{encoder, channel, decoder} mappings processing symbols without dependence on fu-
ture symbols, as shown in Fig. 6.1. This means that for general sources with memory,
the optimal conditional reproduction distribution of R0,n(D) should satisfy the Markov
Chain (MC) (i.e., conditional independence)

P ∗Yi|Y i−1,Xn(dyi|yi−1, x∞) = P ∗Yi|Y i−1,Xi(dyi|yi−1, xi)⇐⇒ X∞i+1 ↔ (X i, Y i−1)↔ Yi, i = 0, 1, . . . .
(6.8)

Alternatively stated, if (6.8) does not hold, then nonanticipative processing of infor-
mation in the sense of Fig. 6.1 is violated.

6.1.2. Summary of Main Results and Related Literature

Next, we present a summary of the contributions in this chapter and their relations to
existing literature.
Information NRDF. In Section 6.2, we formulate the information NRDF on ab-
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Figure 6.1.: Probabilistic matching based on nonanticipative transmission.

stract spaces (Polish spaces), so that our analysis hold for both finite and continuous
alphabets (because we present examples for both), and then we invoke certain re-
sults from Chapter 2, to define the information measure of the information NRDF,
IXn→Y n(PXn ,

−→
P Y n|Xn), which is a special case of directed information [2], and the in-

formation NRDF (6.2), and its rate (6.3). Since QC1
0,n(D) ⊆ Q0,n(D) we immediately

deduce the bounds

Rna(D) ≥ R(D), Rna
0,n(D) ≥ R0,n(D), ∀n ≥ 0. (6.9)

Note that these bounds hold with equality for memoryless sources with single let-
ter distortion, because the optimal reproduction distribution of R0,n(D) satisfies
PY n|Xn(dyn|xn) = ⊗ni=0PYi|Xi(dyi|xi). This raises question whether Rna(D) is a tight
bound on the OPTA by noncausal codes.

Existence of Information NRDF. In Section 6.3, we first establish existence of
the optimal nonanticipative distribution achieving the infimum in Rna

0,n(D) by invok-
ing the topology of weak convergence of probability measures and Prohorov’s theorem
(see [43, 44]). This material generalizes in a nontrivial manner, the existence theorem
derived in [52] for the classical RDF.
Second, we show that the information NRDF, Rna

0,n(D), and its rate Rna(D), are equiv-
alent to Gorbunov and Pinsker nonanticipatory ε-entropy and message generation
rate [57], denoted by Rε

0,n(D) and Rε(D), respectively, defined by (6.6), (6.7). We
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establish this equivalence by showing that the following MC are equivalent.

Xn
i+1 ↔ X i ↔ Y i ⇐⇒ Xn

i+1 ↔ (X i, Y i−1)↔ Yi, i = 0, . . . , n− 1, n ≥ 0. (6.10)

The fact that the Left Hand Side (LHS) MC in (6.10) implies the Right Hand Side
(RHS) is already known; the equivalence of the two statements is new, although a more
general result which implies (6.10) can be found in [97]. Armed with the existence
result, we further show that for general stationary sources the limit exists, and the
limit and infimum operations can be interchanged, that is,

Rna(D) = lim
n−→∞

inf−→
P Y n|Xn∈QC1

0,n(D)

1
n+ 1IX

n→Y n(PXn ,
−→
P Y n|Xn)

= inf−→
P Y∞|X∞∈QC1

0,∞(D)
lim
n−→∞

1
n+ 1IX

n→Y n(PXn ,
−→
P Y n|Xn) ≡ −⇀Rna(D) <∞. (6.11)

Moreover, using the existence of solution of the NRDF derived in this chapter, we
consider consistent stationary sources (as defined by Gorbunov and Pinsker in [57]),
and we invoke certain results which are derived therein and in Chapter 2 to establish
that the optimal reproduction distribution for Rna(D) is realizable by jointly stationary
source-reproduction pair {(Xi, Yi) : i = 0, 1, . . .}. Therefore, we give general sufficient
conditions for existence of solution of the information NRDF, its limit, and its station-
ary behaviour.

Closed Form Expression of Information NRDF (Stationary Solution), Prop-
erties, and Examples. Section 6.4 consists of three subsections. In Section 6.4.1,
we consider stationary source-reproduction pairs and single letter distortion functions
d0,n

4= ∑n
i=0 ρ(xi, yi), and we recall the expression of the optimal nonanticipative repro-

duction distribution for Rna
0,n(D) [61, Section IV] given by

−→
P ∗Y n|Xn(dyn|xn) = ⊗ni=0P

∗
Yi|Y i−1,Xi(dyi|yi−1, xi) = ⊗ni=0

esρ(xi,yi)P ∗Yi|Y i−1(dyi|yi−1)∫
Yi e

sρ(xi,yi)P ∗Yi|Y i−1(dyi|yi−1)
(6.12)

and the closed-form expression for Rna
0,n(D).

In subsection 6.4.2, we derive several properties of the NRDF, which are the analogues
to the properties of classical RDF [51], although their derivation and presentation is
more involved. Some of these properties are employed in [98] to construct an algo-
rithm for computing Rna(D), which is analogous to Blahut-Arimoto Algorithm (BAA)
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for single letter classical RDF, R(D) [21]. One of the properties is analogous to the
Shannon lower bound of the classical RDF [51].

In subsection 6.4.3, we invoke expression (6.12) together with some properties of the
solution (presented in Section 6.4.2) to compute the information theoretic NRDF in
closed form for the following running example.
Example: Multidimensional Gauss-Markov source with square-error distortion. For the
multidimensional partially observed stationary Gauss-Markov source, described in state
space form (this includes autoregressive models) by

 Zt+1 = AZt +BWt, Z0 ∼ N(0, Σ̄0), t = 0, 1, . . .
Xt = CZt +NVt, t = 0, 1, . . .

(6.13)

where Zt ∈ Rm is the state (unobserved) process driven by a multidimensional Gaus-

Encoder
Noisy 

Channel
Decoder

tA tB
Unobserved

Process

Noise 

Generator
+

tBW

Noise

tNV

tCZ tX tY

Initial RV
0
Z

Information Source

Figure 6.2.: JSCC design system of partially observed multidimensional Gauss-Markov
source.

sian noise process {Wt : t = 0, 1, . . .}, and Xt ∈ Rp is the observed source process
corrupted by a multidimensional additive Gaussian noise process {Vt : t = 0, 1, . . .}
(see2 Fig. 6.2), we utilize the characterization of the solution of Rna

0,n(D) obtained in
Theorem 6.9, to show that for a square error distortion function, the NRDF is given
by

Rna(D) = 1
2

p∑
i=0

log
(λ∞,i
δ∞,i

)
= 1

2 log |Λ∞|
|∆∞|

(6.14)

where

Λ∞
4= lim

n−→∞
Λt,Λt

4= E
{(
Xt − E

(
Xt|Y t−1

))(
Xt − E

(
Xt|Y t−1)

)tr}
, ∆∞ = diag{δ∞,1, . . . , δ∞,p}

2In this application, the objective is to reconstruct {Xt : t = 0, 1, . . .} by {Yt : t = 0, 1 . . .} with
respect to a certain fidelity of reproduction. Under certain assumptions [99] {Xt : t = 0, 1, . . . , n}
is ergodic (although the A matrix of {Zt : t = 0, 1, . . . , n} may have unstable eigenvalues).
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Here, {λ∞,1, . . . , λ∞,p} are the steady state eigenvalues of Λ∞, and

δ∞,i
4=

 ξ∞ if ξ∞ ≤ λ∞,i

λ∞,i if ξ∞ > λ∞,i
, i = 1, . . . , p,

p∑
i=1

δ∞,i = D.

In addition, in subsection 6.4.3, we recover from (6.14), several special cases. These
include the expression of the NRDF for the scalar stationary fully observed Gauss-
Markov source (i.e., corresponding to p = 1, C = 1, N = 0, A = α, B = σW ) also
obtained in [91, Theorem 3] via alternative methods, and for IID Gaussian sources
{Xt : t = 0, 1 . . .} ∼ N(0;σ2

X) the known expression R(D) = 1
2 log σ2

X

D
, σ2

X ≥ D ≥ 0 .
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Figure 6.3.: Realization of the optimal reproduction distribution: Kt = Xt −
E{Xt|Y t−1}, K̃t = Yt − E{Xt|Y t−1}, {E∞, Etr

∞}=unitary transformations,
{A∞,B∞}=scaling matrices, {Γt, Γ̃t}= scaling matrices.

We note that recently in [100] the importance of example (6.13) is elaborated for the
special case of fully observed Gauss-Markov sources, i.e., N = 0, C = I (i.e., Xt = Zt)
in the context of the so-called sequential rate distortion theory [4], which is equivalent
to the NRDF. The authors in [100] provide an approximation solution by utilizing a
semidefinite programming approach, while we give the exact closed form expression
(6.14) for the more general model (6.13).

Joint Source-Channel Coding: Symbol-by-Symbol Transmission. In Sec-
tion 6.5, we show that (6.14) is achievable by the JSCC design system depicted in
Fig. 6.3, where the encoder operates using symbol-by-symbol codes, achieves channel
capacity C(κ) (κ is the power allocated for transmission), while the end-to-end average
distortion is met, and Rna(D) = C(κ).
Moreover, we demonstrate that the general JSCC design system of Fig. 6.3 gives as
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degraded cases (corresponding to p = 1, C = 1, N = 0, A = α, B = σW ), the following
new examples of JSCC designs operating based on symbol-by-symbol codes.

(i) The optimal coding scheme of a scalar Gauss-Markov Source over a memoryless
AWGN with feedback (see Fig. 6.4);

(ii) the optimal coding scheme of a scalar Gauss-Markov Source over a memoryless
AWGN channel without feedback (see Fig. 6.5).
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Figure 6.4.: Reduction of Fig. 6.3 to p = 1, C = 1, N = 0, A = α, |α| < 1, B = σW ,
which corresponds to the JSCC design system of a scalar Gauss-Markov
Source given by (6.73) over a memoryless AWGN channel with feedback,
Kt = Xt − E{Xt|Bt−1}.

Note that Fig. 6.5 with α = 0, reduces to Goblick’s JSCC design system of the scalar
IID Gaussian process transmitted over a memoryless AWGN channel without feedback.
Finally, we demonstrate how the realization scheme of Fig. 6.3 recovers the Schalkwijk-
Kailath’s coding scheme which achieves the capacity of a memoryless AWGN channel
with feedback [93].
When {Xt : t = 0, 1 . . . , n} is a vector with independent components {X1

t : t =

Gauss-

Markov

Source

AWGN ChannelÄ
Å
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s:

a k
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¥
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Figure 6.5.: Reduction of Fig. 6.3 to p = 1, C = 1, N = 0, A = α, |α| < 1, B = σW ,
which corresponds the to JSCC design system of a scalar Gauss-Markov
source given by (6.73) over a memoryless AWGN channel without feedback.
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0, 1 . . . , n}, . . . , {Xn
t : t = 0, 1 . . . , n} then the analogues of Fig. 6.4, Fig. 6.5 are easily

obtained, and involve JSCC design of a vector source over a vector AWGN channel.
Bounds on Noncausal and Causal Codes. In Section 6.6 we use Rna(D) to

derive the following bounds for R(D), and the OPTA by causal codes [58], denoted by
rc,+(D):

rc,+(D) ≥ Rna(D) ≥ R(D), Rna
0,n(D) ≥ R0,n(D), ∀n ≥ 0. (6.15)

Based on these bounds we evaluate the RL due to causality by using Rna(D). This
part compliments previous work by Linder and Zamir [101], who showed using the
results in [58], that at high resolution (small distortion), an optimal causal code for
stationary source with finite differential entropy and square error distortion, consists
of uniform quantizers followed by a sequence of entropy coders, and that the RL due
to causality is given by the so-called space-filling loss of quantizers, which is at most
1
2 ln

(
2πe
12

)
' 0.254 bits/sample.

For arbitrary Gaussian stationary sources with memory defined by (6.13) and square-
error distortion, we use the explicit expression of Rna(D) (i.e., (6.14)) in (6.15) to
evaluate the RL due to causality. Our analysis of vector Gaussian stationary sources
(6.13) compliment Gorbunov and Pinsker computation in [94, 95], where it is shown
(for scalar Gaussian sources), using power spectral densities that Rε(D) tends to Shan-
non’s RDF R(D), as D −→ 0.

Moreover, for stationary Gaussian processes with square-error distortion, our results
compliment recent contributions obtained in [91], on the gap between the OPTA by
causal codes, nonanticipatory ε-entropy, Rε(D), and classical RDF, R(D). Specifically,
in [91] it is shown that for zero-mean Gaussian sources with square-error distortion (and
bounded differential entropy rate), the OPTA by causal codes exceeds Rε(D) by less
than approximately 0.254 bits/sample. The analysis in [91] includes a closed-form ex-
pression for Rε(D) only when the source is first-order Markov with square-error distor-
tion, while for general Gaussian sources it is shown that rc,+(D) ≤ Rε(D)+ 1

2 log2(2πe)
bits/sample, but no expression is given for Rε(D). Since we show Rε(D) = Rna(D),
then we can use this equivalence to evaluate the gap between the OPTA by causal
codes and R(D), for arbitrary multidimensional stationary Gaussian sources (partially
observed), via the bound Rna(D)−R(D) ≤ rc,+(D)−R(D). Note that the RL due to
zero-delay and noncausal codes does not exceed 1

2 log |Λ∞||∆∞| −R(D), where R(D) can be
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computed using power spectral densities [51].

Noisy and Noiseless Coding Theorems. In Section 6.7.1, we show achievability of
NRDF using the JSCC design system (Fig. 6.1) based on nonanticipative transmission,
with respect to the excess distortion probability between the source symbols and their
reproductions. That is, we show achievability based on probabilistic matching of the
source and the channel with respect to excess distortion probability. For the multidi-
mensional stationary Gaussian source, we use the JSCC design of Fig. 6.3, and we apply
Chernoff’s bound to compute the error exponent of the excess distortion probability. In
Section 6.7.2, we show how the classical noiseless coding theorem derived in [4, Chapter
5] for two dimensional sources (such as video coding applications) with per-sample or
average distortion function is applicable, giving an alternative operational meaning to
Rna

0,n(D).

The chapter is structured as follows. In Section 6.2, we define the information
NRDF, while in Section 6.3, we show existence of optimal solution to the information
NRDF and relate this measure to nonanticipatory ε-entropy. In Section 6.4, we pro-
vide the optimal stationary reproduction distribution of NRDF and we derive several
of its properties. Here, we also present an example concerning the multidimensional
partially observed Gauss-Markov source, to illustrate the various applications of in-
formation NRDF in the evaluation of RDF for sources with memory. In Section 6.5
we use the solution of the NRDF Rna(D) of the multidimensional stationary Gaus-
sian source with memory in JSCC design using symbol-by-symbol transmission over
an AWGN channel with or without feedback. In this section, we also derive bounds
on the OPTA by causal codes and we evaluate these bounds for the stationary par-
tially observed multidimensional Gauss-Markov source derived in Section 6.4.3. In
Section 6.7.1, we give an operational meaning to NRDF and rate, by deriving a noisy
coding theorem based on nonanticipative codes, for sources with memory, with respect
to the excess distortion probability, and we then apply this to the stationary partially
observed multidimensional Gauss-Markov source. Finally, in Section 6.7.2 we give an
alternative operational meaning to the NRDF based on the noiseless coding theorem
for two dimensional sources with per-sample or average distortion function.

6.2. Information NRDF on Abstract Spaces

In this section, we first introduce the definition of information NRDF, for general
source/reproduction alphabets modelled by Polish spaces (complete separable metric
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spaces). Past work utilizing Polish spaces and Prohorov’s theorem under the topology
of weak convergence for single letter capacity without feedback and classical RDF anal-
ysis is found in [52, 64]. Our construction of various probability distributions is based
on the methodology presented in Chapter 2, Section 2.2, where we deal with arbitrary
(n + 1)−fold convolution measures. In this section, we also state some properties of
information NRDF which also follow directly from Chapter 2, Section 2.2.

6.2.1. Equivalent Causal Conditioning Distributions

Let N0 , {0, 1, 2, . . .}, and Nn
0 , {0, 1, 2, . . . , n}. Introduce the source spaces

{(Xn,B(Xn)) : n ∈ N0} and the reproduction spaces {(Yn,B(Yn)) : n ∈ N0}, where
Xn,Yn, n ∈ N0 are Polish spaces, and B(Xn) and B(Yn) are Borel σ−algebras of subsets
of Xn and Yn, respectively. Points in X N0 4= ×n∈N0Xn, YN0 4= ×n∈N0Yn are denoted
by x 4= {x0, x1, . . .} ∈ X N, y 4= {y0, y1, . . .} ∈ YN, respectively, while their restric-
tions to finite coordinates for any n ∈ N0 are denoted by xn , {x0, x1, . . . , xn} ∈ X n,

yn
4= {y0, y1, . . . , yn} ∈ Yn. Let B(X N0) 4= ⊗i∈N0B(Xi) denote the σ−algebra on X N0

generated by cylinder sets {x = (x0, x1, . . .) ∈ X N0 : x0 ∈ A0, x1 ∈ A1, . . . , xn ∈
An}, Ai ∈ B(Xi), 0 ≤ i ≤ n, n ≥ 1, and similarly for B(YN0) 4= ⊗i∈N0B(Yi). Thus,
B(X n) and B(Yn) denote the σ−algebras of cylinder sets in X N0 and YN0 , respectively,
with bases over Ai ∈ B(Xi), and Bi ∈ B(Yi), 0 ≤ i ≤ n, respectively.

Source Distribution. The source is specified by the collection of functions
{pn(dxn|xn−1) : n ∈ N0}, which satisfies the following conditions.
i) For n ∈ N0, pn(·|xn−1) is a probability measure on B(Xn);
ii) For n ∈ N0, An ∈ B(Xn), pn(An|xn−1) is ⊗n−1

i=0 B(Xi)−measurable in xn−1 ∈ X n−1.

Thus, for each n ∈ N0, pn(dxn|xn−1) is a stochastic kernel on (Xn,B(Xn)) given
(X n−1,B(X n−1)), denoted by Qn(Xn|X n−1), and hence for B ∈ B(X n) a cylinder set
of the form B

4=
{
x ∈ X N0 : x0 ∈ B0, x1 ∈ B1, . . . , xn ∈ Bn

}
, Bi ∈ B(Xi), 0 ≤ i ≤ n,

we can define the family of measures P(·) on B(X N0) via the (n+ 1)-fold convolution

P(B) 4=
∫
B0
p0(dx0) . . .

∫
Bn
pn(dxn|xn−1) ≡ µ0,n(B0,n), B0,n = ×ni=0Bi. (6.16)

Here, we use the notation µ0,n(·) to denote the restriction of the measure P(·) on the
cylinder set B ∈ B(X n), for n ∈ N0.

Reproduction Distribution. The reproduction channel is specified by a collection
of functions {qn(dyn|yn−1, xn) : n ∈ N0} which satisfies the following conditions.
iii) For n ∈ N0, qn(·|yn−1, xn) is a probability measure on B(Yn);
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6.2 Information NRDF on Abstract Spaces 173

iv) For n ∈ N0, Bn ∈ B(Yn), qn(Bn|yn−1, xn) is ⊗n−1
i=0

(
B(Yi) ⊗ B(Xi)

)
⊗

B(Xn)−measurable function of xn ∈ X n and yn−1 ∈ Yn−1.

By our notation, for each n ∈ N0, qn(dyn|yn−1, xn) ∈ Qn(Yn|Yn−1 × X n) is a stochas-
tic kernel, hence, a version of regular conditional distribution PYn|Y n−1,Xn(dyn|Y n−1 =
yn−1, Xn = xn).

Given a cylinder set C 4=
{
y ∈ YN0 : y0∈C0, y1∈C1, . . . , yn∈Cn

}
, Ci ∈ B(Yi), 0 ≤ i ≤

n, we can define a family of measures on B(YN0) by the (n+ 1)-fold convolution

Q(C|x) 4=
∫
C0
q0(dy0|x0) . . .

∫
Cn
qn(dyn|yn−1, xn) ≡ −→Q 0,n(C0,n|xn), C0,n = ×ni=0Ci.

(6.17)

Consequently, the RHS of (6.17) defines a consistent family of finite-dimensional dis-
tributions, and hence, there exists a unique measure on (YN0 ,B(YN0)) from which the
collection of distributions {qn(dyn|yn−1, xn) : n ∈ N0} is obtained by conditioning on
appropriate events (this will be done shortly).

Moreover, the family of measures Q(·|x) on (YN0 ,B(YN0)) defined by (6.17) satisfies
the following consistency condition.

C1: If D ∈ B(Yn), then Q(D|x) is B(X n)−measurable function of x ∈ X N.

Since {Yn : n ∈ N0} are Polish spaces, it follows that for any family of measures Q(·|x)
on (YN0 ,B(YN0)) satisfying consistency condition C1, we can construct a collection
of functions {qn(dyn|yn−1, xn) : n ∈ N0} satisfying conditions iii) and iv) which are
connected with Q(·|x) via relation (6.17). Thus, we have two equivalent definitions
of causal conditioning distribution of the reproduction channel. The first definition is
described by a family of measures on Q(·|x) on (YN0 ,B(YN0) via (6.17). The second
equivalent definition is described by a family of measures Q(·|x) on (YN0 ,B(YN0)) sat-
isfying the consistency condition C1.
Next, we construct the probability space (Ω,F ,P) and the sequences of RV’s {(Xi, Yi) :
i ∈ N} defined on it. Given the basic measures P(·) on X N0 defined by (6.16) and
Q(·|x) on YN0 defined by (6.17) satisfying consistency condition C1, we can construct
a sequence of RV’s {(Xi, Yi) : i ∈ N0} or the collections of conditional distributions
{pn(dxn|xn−1) : n ∈ N0} and {qn(dyn|yn−1, xn) : n ∈ N0} and a probability space as
follows.
Let A(n) = {x : xn∈A}, A ∈ B(Xn), and let P(A(n)|B(X n−1)) denote the condi-
tional probability of A(n) with respect to B(X n−1) calculated on the probability space
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(
X N0 ,B(X N0),P(·)

)
. Then

P
{
Xn∈A|Xn−1 = xn−1

}
= P

(
{x : xn∈A}|B(X n−1)

)
= pn(An|xn−1)− a.a. xn−1 ∈ X n−1.

(6.18)

Hence, pn(·|·) ∈ Q(Xn|X n−1) (e.g., satisfying i), ii)) are determined from P(·).
Let B(n) = {y : yn∈B}, B ∈ B(Yn), and let Q(B(n)|x|B(Yn−1)) denote the condi-
tional probability of B(n) with respect to B(Yn−1) calculated on the probability space(
YN0 ,B(YN0),Q(·|x)

)
. Then

P
{
Yn∈B|Y n−1 = yn−1, Xn = xn

}
= Q

(
{y : yn∈B}|x|B(Yn−1)

)
= qn(Bn|yn−1, xn)− a.a. (xn, yn−1) ∈ X n × Yn−1.

(6.19)

Hence, qn(·|·, ·) ∈ Q(Yn|Yn−1×X n) are determined from Q(·|·). Note that (6.19) states
that the family of measures Q(·|x) on (YN0 ,B(YN0)) uniquely defines the collection
{qn(dyn|yn−1, xn) : n ∈ N0} of conditional distributions satisfying iii), iv).
Moreover, the joint distribution of RV’s {(Xn, Yn) : n ∈ N0} on (X N0 ×YN0 ,B(X N0)⊗
B(YN0)) is defined by the convolution of the two measures as follows.

P
{
X0∈A0, Y0 ∈ B0, . . . , Xn∈An, Yn∈Bn

}
4=
∫
A0
p0(dx0)

∫
B0
q0(dy0|x0) . . .

∫
An
pn(xn|xn−1)

∫
Bn
qn(dyn|yn−1, xn).

Hence, for any P(·) defined by (6.16) and Q(·|·) satisfying consistency condition C1
there exist a probability space (Ω,F ,P) ≡ (X N0 × YN0 ,B(X N0) ⊗ B(YN0),P) and a
sequence of RV’s {(Xi, Yi) : i ∈ N0} defined on it, whose joint probability distribution
is defined uniquely via P(·) and Q(·|·). Finally, we note that Kolmogorov’s extension
theorem [67] guarantees the construction of countable additive probability measures
for both P(·) and Q(·|x).
In Chapter 2, we have utilized the equivalent definition of any family of reproduction
conditional distributions satisfying consistency condition C1 to show that this family
is convex almost surely (a.s.). First, we recall the definition of a.s.-convexity of regular
conditional distributions given in Chapter 8, Definition 8.8. It is well-known that
the set of regular conditional distributions PY n|Xn(·|xn) ∈ M(Yn) is a convex set.
Define the subset of Q(YN0|X N′) consisting of all conditional distributions which satisfy
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6.2 Information NRDF on Abstract Spaces 175

consistency condition C1 by

QC1(YN0|X N0) 4=
{
Q(·|x) ∈M(YN0) : Q(·|x) satisfies consistency condition C1

}

and denote QC1(Yn|X n) its projection to finite number of coordinates by

QC1(Yn|X n) 4=
{
Q0,n(·|xn) ∈M(Yn) : Q0,n(·|xn) satisfies consistency condition C1

}
.

The following theorem is derived in Chapter 2 but we recall it in this chapter for reasons
of completeness.

Theorem 6.1. (Convexity of the set QC1(YN0 |X N0))
Let {Yn : n ∈ N0} be a Polish spaces with {B(Yn) : i ∈ N0} the σ−algebras of Borel
sets.
Then QC1(Yn|X n) is a convex set.

Theorem 6.1 states that for any λ ∈ [0, 1], and −→Q 1
0,n(·|xn), −→Q 2

0,n(·|xn) two probability
measures on (YN0 ,B(YN0)) of the form (6.17), then λ

−→
Q 1

0,n(·|xn) + (1− λ)−→Q 2
0,n(·|xn) is

also a probability measure on (YN0 ,B(YN0)) of the form (6.17).

6.2.2. Information NRDF

In this section, we formally define the information NRDF.

First, we construct the various measures of interest. Given the source distribution
P(·) ∈ M(X N0) and reproduction distribution Q(·|x) ∈ QC1(YN0|X N0) define the
following measures.
P1: The joint distribution on X N0 × YN0 defined uniquely for Ai ∈ B(Xi), Bi ∈
B(Yi), ∀i ∈ Nn

0 , by

(µ0,n ⊗
−→
Q0,n)

(
×ni=0 (Ai×Bi)

) 4= ∫
A0
p0(dx0)

∫
B0
q0(dy0|x0) . . .

∫
Bn
qn(dyn|yn−1, xn)

≡P
{
X0∈A0, Y0 ∈ B0, . . . , Xn∈An, Yn∈Bn

}
. (6.20)

P2: The marginal distributions on YN0 defined uniquely for Bi ∈ B(Yi), ∀i ∈ Nn
0 , by

ν0,n(×ni=0Bi)
4= (µ0,n ⊗

−→
Q 0,n)

(
×ni=0 (Xi ×Bi)

)
≡ P

{
X0 ∈ X0, Y0 ∈ B0, . . . , Xn ∈ Xn, Yn ∈ Bn

}
. (6.21)
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P3: The product measure −→Π 0,n : B(X n) ⊗ B(Yn) 7−→ [0, 1] defined uniquely for Ai ∈
B(Xi), Bi ∈ B(Yi), ∀i ∈ Nn

0 , by

−→Π 0,n
(
×ni=0 (Ai×Bi)

) 4= (µ0,n × ν0,n)
(
×ni=0 (Ai×Bi)

)
=
∫
A0
p0(dx0)

∫
B0
ν0(dy0) . . .

∫
An
pn(xn|xn−1)

∫
Bn
νn(dyn|yn−1).

The information theoretic measure associated with NRDF is a special case of directed
information3 [4], defined via relative entropy D(·||·) as follows.

Iµ0,n(Xn → Y n) 4= D(µ0,n ⊗
−→
Q 0,n||

−→Π 0,n) (6.22)

=
∫
Xn×Yn

log
(−→Q 0,n(dyn|xn)

ν0,n(dyn)

)
(µ0,n ⊗

−→
Q 0,n)(dxn, dyn) (6.23)

≡ IXn→Y n(µ0,n,
−→
Q 0,n). (6.24)

The RHS of (6.23) is obtained by using the chain rule of relative entropy [43] and the
following observations, µ0,n ⊗

−→
Q 0,n � µ0,n ⊗ ν0,n if and only if −→Q 0,n(·|xn)� ν0,n(·) for

µ0,n−almost all xn ∈ X n. In (6.24) we use the notation IXn→Y n(·, ·) to indicate the
functional dependence of Iµ0,n(Xn → Y n) on {µ0,n,

−→
Q 0,n}.

The following convexity result is derived in Chapter 2, and we recall it for subsequent
use.

Theorem 6.2. (Convexity of information NRDF)
Let {Xn : n ∈ N0} and {Yn : n ∈ N0} be Polish spaces.
Then IXn→Y n(µ0,n,

−→
Q 0,n) is a convex functional of −→Q 0,n(·|xn) ∈ QC1(Yn|X n) for a fixed

µ0,n(·) ∈ M(X n), and a concave function of µ0,n(·) ∈ M(X n) for a fixed −→Q 0,n(·|xn) ∈
QC1(Yn|X n).

We are now ready to introduce the definition of information NRDF. To this end, for
each n ∈ N0, let d0,n : X n × Yn 7−→ [0,∞] be a measurable distortion function. The
fidelity of reproduction of yn ∈ Yn by xn ∈ X n is defined by the set of conditional

3Directed information corresponds to {pn(dxi|xn−1) : n ∈ N0} and µ0,n(·) replaced by
{pn(xn|xn−1, yn−1) : n ∈ N0} and ←−P 0,n(dxn|yn−1) 4= ⊗ni=0pi(dxi|xi−1, yi−1), respectively, in the
construction of measures P1-P3, and (6.22).
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distributions

QC1
0,n(D) 4=

{
Q0,n(·|xn) ∈ QC1(Yn|X n) :

1
n+ 1

∫
Xn×Yn

d0,n(xn, yn)(µ0,n ⊗Q0,n)(dxn, dyn) ≤ D
}

(6.25)

≡
{−→
Q 0,n(·|xn) ∈M(Yn) :

1
n+ 1

∫
Xn×Yn

d0,n(xn, yn)(µ0,n ⊗
−→
Q 0,n)(dxn, dyn) ≤ D

}

for some D ≥ 0. Denote by QC1
0,∞(D) the corresponding set in (6.25) when the fidelity

is replaced by limn−→∞
1

n+1
∫
Xn×Yn d0,n(xn, yn)(µ0,n ⊗

−→
Q 0,n)(dxn, dyn) ≤ D.

The information NRDF is defined as follows.

Definition 6.1. (Information NRDF)
Consider the fidelity of reproduction QC1

0,n(D) given by (6.25).

(1) The information NRDF is defined by

Rna
0,n(D) 4= inf−→

Q0,n(·|xn)∈QC1
0,n(D)

IXn→Y n(µ0,n,
−→
Q 0,n) (6.26)

provided the infimum over QC1
0,n(D) in (6.26) exists; if not we set Rna

0,n(D) = +∞.

(2) The information NRDF rate is defined by

Rna(D) = lim
n−→∞

1
n+ 1R

na
0,n(D) (6.27)

provided the limit on the RHS of (6.27) exists; if the infimum over QC1
0,n(D) in

(6.26) does not exist then we set Rna(D) = +∞.

In addition, define

−⇀
Rna(D) 4= inf−→

Q0,∞(·|x∞)∈QC1
0,∞(D)

lim
n−→∞

1
n+ 1IX

n→Y n(µ0,n,
−→
Q 0,n) ≥ Rna(D). (6.28)

Since, in general, −⇀Rna(D) ≥ Rna(D), then, Rna(D) is more natural than −⇀Rna(D). By
analogy with the definition of classical RDF, one may assume that {(Xi, Yi) : i =
0, 1, . . .} is jointly stationary and ergodic process or 1

n+1 log
(−→
Q0,n(·|xn)
ν0,n(·)

)
(yn) is in-

formation stable. However, we do not know á priori whether the joint process
{(Xi, Yi) : i = 0, 1, . . .} is stationary. We will show that under general conditions
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the inequality in (6.28) holds with equality (i.e., the infimum and the limit are inter-
changeable), the infimum in (6.26) exists, and the limit in (6.27) also exists.

6.3. Existence of Information NRDF and Relations
to Nonanticipatory ε-Entropy

This section consists of three subsections. In the first subsection, we show existence of
an optimal reproduction distribution−→Q 0,n(·|xn) ∈ QC1

0,n(D), which achieves the infimum
of Rna

0,n(D), thus establishing finiteness of Rna
0,n(D) for some finite n ∈ N0, under very

general conditions. In the second subsection, we show equivalence of the information
NRDF (see Definition 6.1) to Gorbunov and Pinsker [57] nonanticipatory ε−entropy. In
the third subsection, we consider consistent stationary sources as defined by Gorbunov
and Pinsker [57], to establish equality of the limiting expressions in (6.11), finiteness
of Rna(D), and that for stationary sources the infimum over −→Q 0,n(·|xn) ∈ QC1

0,n(D) is
achieved and it is realizable by stationary source-reproduction pairs {(Xn, Yn) : n ∈
N0}.
Since our source and reproduction alphabets are general Polish spaces, to address
the question of existence of solution to the information NRDF we shall invoke the
topology of weak convergence of probability measures and Prohorov’s theorems. Let
Z be a Polish space and BC(Z) the set of bounded continuous real-valued functions
h : Z 7−→ R endowed with the uniform norm ||h||BC(Z)

4= supz∈Z |h(z)|. We say that a
sequence of probability measures {Pα(·) : α = 1, 2, . . .} ⊂ M(Z) converges weakly to
P o(·) ∈M(Z) if

lim
α−→∞

∫
Z
f(z)Pα(dz) =

∫
Z
f(z)P o(dz)⇐⇒ Pα w−→ P o, ∀f ∈ BC(Z).

6.3.1. Finite Horizon

First, we investigate the finite time or horizon case and then, in a subsequent section
we proceed with the discussion of the infinite horizon case.

Our main assumptions, which are natural generalizations of those imposed in [52] to
establish existence of solution for the single letter classical information RDF are the
following.

Assumption 6.1. For all n ∈ N0,

(A1) Yn is a compact Polish space and X n is a Polish space;
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(A2) For all h(·)∈BC(Yn), the function mapping

(xn, yn−1) ∈ X n × Yn−1 7−→
∫
Yn
h(y)qn(dy|yn−1, xn) ∈ R (6.29)

is continuous jointly in the variables (xn, yn−1) ∈ X n × Yn−1;

(A3) For each compact subset Φ0,i−1 ⊂ Y i−1, and each hi(·) ∈ BC(Yi),

lim
α−→∞

sup
yi−1∈Φ0,i−1

∣∣∣∣∣∣
∫
Yi
hi(x)qαi (dy|yi−1, xi)

−
∫
Yi
hi(y)qi(dy|yi−1, xi)

∣∣∣∣∣∣ = 0, ∀xi ∈ X i, i ∈ Nn
0 . (6.30)

(A4) The distortion function d0,n(xn, ·) : X n × Yn 7−→ [0,∞] is Borel measurable
relative to B(X n)⊗ B(Yn) and continuous on yn ∈ Yn;

(A5) The distortion level D is such that there exists a sequence (xn, yn) ∈ X n × Yn

satisfying d0,n(xn, yn) < D.

Assumption 6.1, (A1) is also required for the existence of the single letter classical
information RDF. Assumption 6.1, (A2) is a weak continuity of the mapping defined
by (6.29); this is preferable over strong continuity of qn(A|yn−1, xn) as a function of
(yn−1, xn) ∈ Yn−1 × X n for every Borel set A ∈ B(Yn) in order not to exclude repro-
duction distribution described by delta measures. Assumption 6.1, (A3) is a uniform
continuity assumption sufficient to show closedness of the set QC1(Yn|X n). Assump-
tion 6.1, (A4) is preferable over the bounded distortion function in order to allow
unbounded distortion measures, such as square-error distortions for continuous alpha-
bet sources. Assumption 6.1, (A5) ensures that the set QC1

0,n(D) is non-empty, since it
implies existence of some ε > 0 such that the set QC1

0,n(D(1− ε)) is non-empty.
The proof of existence and finiteness of Rna

0,n(D) (see Definition 6.1) for finite n ∈ N0,
is based on Weierstrass’ theorem, therefore we need to establish lower semicontinuity
of the functional IXn→Y n(µ0,n,

−→
Q 0,n) with respect to −→Q 0,n(·|xn) ∈ QC1

0,n(D) for a fixed
µ0,n(·) ∈ M(X n), and compactness of the set QC1

0,n(D), using the topology of weak
convergence of probability measures.
First, we show compactness of the constraint set QC1

0,n(D).

Theorem 6.3. (Compactness of fidelity set)
Under Assumption 6.1 the following hold.
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(1) The set of probability measures QC1(Yn|X n) is closed and tight (i.e., compact);

(2) the set QC1
0,n(D) is a closed subset of QC1(Yn|X n) (i.e., compact).

Proof. This Theorem is a restatement of Chapter 2, Lemma 2.2 hence the proof is
omitted. �

Next, we establish lower semicontinuity of the functional IXn→Y n(µ0,n,
−→
Q 0,n) with re-

spect to −→Q 0,n(·|xn) ∈ QC1(Yn|X n) for a fixed µ0,n(·) ∈M(X n).

Lemma 6.1. (Lower semicontinuity of IXn→Y n(µ0,n,
−→
Q 0,n))

Let Assumption 6.1 (A1), (A2), hold. Then, the functional IXn→Y n(µ0,n,
−→
Q 0,n) is

lower semicontinuous on −→Q 0,n(·|xn) ∈ QC1(Yn|X n) for a fixed µ0,n(·) ∈M(X n).

Proof. The proof is precisely similar to the proof of Chapter 2, Theorem 2.4 hence it
is omitted. �

Utilizing Theorem 6.3 and Lemma 6.1, next, we show existence of a solution of the
information NRDF.

Theorem 6.4. (Existence of information NRDF)
Under Assumption 6.1 the infimum over −→Q 0,n(·|xn) ∈ QC1

0,n(D) of

Rna
0,n(D) 4= inf−→

Q0,n(·|xn)∈QC1
0,n(D)

1
n+ 1IX

n→Y n(µ0,n,
−→
Q 0,n) (6.31)

is achieved by some −→Q ∗0,n(·|xn) ∈ QC1
0,n(D).

Proof. By Lemma 6.1, the functional IXn→Y n(µ0,n,
−→
Q 0,n) is lower semicontinuous with

respect to −→Q 0,n(·|xn) ∈ QC1(Yn|X n) for fixed µ0,n ∈ M(X n), and by Theorem 6.3,
QC1

0,n(D) is compact. Therefore, by invoking Weierstrass’ theorem [80] we deduce that
the infimum in (6.31) is achieved by some −→Q ∗0,n(·|xn) ∈ QC1

0,n(D). This completes the
derivation. �

Therefore, we conclude by stating that under the general conditions of Assumption 6.1,
the information NRDF is finite for any finite n ∈ N0, that is, there exists a K ∈ (0,∞)
such that Rna

0,n(D) < K, for any finite n ∈ N0.
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6.3.2. Equivalence of NRDF and Nonanticipatory ε−Entropy

In this section, we recall Gorbunov and Pinsker’s definition of nonanticipatory ε-
entropy [57], we show equivalence of certain statements regarding conditional inde-
pendence, and we use them to show equivalence of the information NRDF (6.26) (re-
spectively information NRDF rate (6.27)), and Gorbunov and Pinsker’s definition of
nonanticipatory ε-entropy (respectively message generation rates).
For a given a source PXn ∈M(X n) and a reproduction PY n|Xn ∈ Q0,n(D) ⊂ Q(Yn|X n),
Gorbunov and Pinsker restricted the fidelity set of classical RDF, Q0,n(D), to those
reproduction distributions which satisfy the following MC.

X∞n+1 ↔ Xn ↔ Y n ⇐⇒ PY n|X∞(dyn|x∞) = PY n|Xn(dyn|xn)− a.a. x∞ ∈ X N
0 , n = 0, 1, . . . .

(6.32)

Then they introduced the nonanticipatory ε-entropy and nonanticipatory message gen-
eration rate as follows.

Definition 6.2. [57](Nonanticipatory ε-entropy and message generation rate)
Consider the fidelity constraint set Q0,n(D) defined by (6.5).
The nonanticipatory ε-entropy is defined by

Rε
0,n(D) 4= inf

PY n|Xn (·|xn)∈Q0,n(D):
Xn
i+1↔X

i↔Y i, i=0,1,...,n−1

I(Xn;Y n) (6.33)

provided the infimum in (6.33) over Q0,n(D) and Xn
i+1 ↔ X i ↔ Y i, i ∈ Nn−1

0 , exists;
if not then we set Rε

0,n(D) = +∞.
The nonanticipatory message generation rate of the source is defined by

Rε(D) 4= lim
n−→∞

1
n+ 1R

ε
0,n(D) (6.34)

provided the limit in the RHS of (6.34) exists; if the infimum in (6.33) does not exist
we set Rε(D) = +∞.
In addition, define

−⇀
R ε(D) 4= inf

PY∞|X∞ (·|x∞)∈Q0,∞(D):
X∞i+1↔X

i↔Y i, i=0,1,...

lim
n−→∞

1
n+ 1I(Xn;Y n) ≥ Rε(D). (6.35)

The MC constraint (6.32) is a probabilistic version of the deterministic causal repro-
duction coder in [58], defined as the cascade of an encoder-decoder (ED) as follows.
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Definition 6.3. [58](Causal reproduction coder)
A reproduction coder fi : X n 7−→ Yi, ∀i = 0, 1, . . . , n, is called causal if the mapping
xn 7−→ fi(xn) is measurable ∀i ∈ Nn

0 and

fi(xn) = fi(x̂n) whenever xi = x̂i, ∀n ≥ i, n ∈ N0.

Thus, a source code is called causal if the reproduction coder is causal. Since the class
of randomized reproduction coders embeds deterministic coders, then probabilistically,
a reproduction coder is causal if and only if the following MC holds X∞i+1 ↔ X i ↔ Yi,
∀i ∈ N0. Therefore, nonanticipatory ε-entropy, Rε

0,n(D), imposes a probabilistic causal-
ity constraint on the optimal reproduction distribution.

Gorbunov and Pinsker in [94, 95] proceeded further to compute Rε(D) 4=
limn−→∞

1
n+1R

ε
0,n(D), whenever the limit exists, for the class of scalar Gaussian station-

ary ergodic sources by working on the frequency domain using power spectral densities.
Further, in [94, 95] it is also shown that in the limit, as D −→ 0, the nonanticipatory
message generation rate Rε(D) of Gaussian stationary sources converges to the clas-
sical information RDF. Recently, in [91] several bounds for the OPTA by causal and
noncausal codes are derived for Gaussian sources, with quadratic distortion function,
utilizing an upper bound to the nonanticipatory ε-entropy.
Now, we are ready to establish the connection between nonanticipatory ε-entropy (6.33)
(e.g., Rε

0,n(D)) and information NRDF (6.26) (e.g., Rna
0,n(D)), and message generation

rate of the source (6.34) (e.g., Rε(D)) and information NRDF rate (6.27) (e.g., Rna(D)).
First, we show the following equivalent statements of MCs.

Lemma 6.2. (Equivalent nonanticipative statements)
The following statements are equivalent.

MC1: PY n|Xn(dyn|xn) = −→P Y n|Xn(dyn|xn) = ⊗ni=0PYi|Y i−1,Xi(dyi|yi−1, xi), ∀n ∈ N0;

MC2: Yi ↔ (X i, Y i−1)↔ (Xi+1, Xi+2, . . . , Xn) forms a MC, for each i = 0, 1, . . . , n−
1, ∀n ∈ N0;

MC3: Y i ↔ X i ↔ Xi+1 forms a MC, for each i = 0, 1, . . . , n− 1, ∀n ∈ N0;

MC4: Xn
i+1 ↔ X i ↔ Y i forms a MC, for each i = 0, 1, . . . , n− 1, ∀n ∈ N0.

Proof. See Appendix D.1. �

The equivalence of MC1, MC2, MC3 is easily shown, and so is the fact that MC4
implies any of MC1, MC2, MC3. What is new in Lemma 6.2 is the equivalence of
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MC4 with any of MC1, MC2, MC3. We note that MC3 of Lemma 6.2 is precisely
Granger’s definition of temporal causality [16], which is used in econometrics to unravel
complex relations between macroeconomic variables from time series observation. It
is also applied in bioengineering [16, 102], and more recently in neuroimaging to infer
that {Yn : n ∈ N0} does not cause {Xn : n ∈ N0}. We also note that [103] refers to
MC4 as the “weak union” property of conditional independence.
In the next theorem, we utilize Lemma 6.2, and more specifically, the fact that MC4
is equivalent to MC2 and MC1, to show that the extremum of the nonanticipatory
ε-entropy (6.33), Rε

0,n(D), is equivalent to the extremum of NRDF given by (6.26),
Rna

0,n(D).

Theorem 6.5. (Equivalence of Rna
0,n(D) and Rε

0,n(D))
Definition 6.1 and Definition 6.2 are equivalent, i.e., Rna

0,n(D) = Rε
0,n(D), ∀n ∈ Nn

0 .

Proof. The derivation follows directly from Lemma 6.2. �

6.3.3. Infinite Horizon

In this section, we first invoke Theorem 6.4 to investigate existence of the infor-
mation NRDF rate, and the validity of interchanging the limit and infimum op-
erations in (6.11). One may also consider the two-sided definition of NRDF by
replacing Rna

0,n(D) by Rna
n1,n2(D), n2 > n1, in which case, the rate is defined by

limn2−n1−→∞
1

n2−n1+1R
na
n1,n2(D), provided the limit exists. However, the rate is defined if

and only if the following limit is defined for some n1: limn2−→∞
1

n2−n1
Rna
n1,n2(D). Hence,

without loss of generality, we let n1 = 0.
First, we prove the following inequality.

Lemma 6.3.
Suppose that X n and Yn are Polish spaces. Then

Rna(D) ≤ −⇀Rna(D) 4= inf−→
Q0,∞(·|x∞)∈QC1

0,∞(D)
lim
n−→∞

1
n+ 1IX

n→Y n(µ0,n,
−→
Q 0,n). (6.36)

Proof. If the infimum in (6.31) does not exist there is nothing to prove. Hence, suppose
this infimum exists. By definition we have

Rna
0,n(D) ≤ IXn→Y n(µ0,n,

−→
Q 0,n), ∀−→Q 0,n(·|xn) ∈ QC1

0,n(D)
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and hence, by taking the limit on both sides we obtain

lim
n−→∞

1
n+ 1R

na
0,n(D) ≤ lim

n−→∞

1
n+ 1IX

n→Y n(µ0,n,
−→
Q 0,n), ∀−→Q 0,∞(·|x∞) ∈ QC1

0,∞(D).

Taking the infimum over −→Q 0,∞(·|x∞) ∈ QC1
0,∞(D) we obtain (6.36). This shows that

Rna(D) ≤ −⇀Rna(D). �

Since by Theorem 6.5, Rna
0,n(D) = Rε

0,n(D), ∀n ∈ Nn
0 , and since we have shown existence

of solutions to the information NRDF (e.g., Theorem 6.4), all technical results derived
in [57, Theorems 1-4] are directly applicable to Rna

0,n(D) and its rate, Rna(D), without
assuming finiteness of Rna

0,n(D) for some n, as in [57]. Next, we summarize these results
in order to show that the limit limn−→∞

1
n+1R

na(D) is finite by first introducing some
definitions from [57].

Consider the following class of sources [57]. Let Z , {Zi = z : i = 0, 1, . . .} ∈ A ⊆
X N0 × YN0 denote the sets of points of the random process {Zi : i = 0, 1, . . .} and
define As ⊆ X N0 × YN0 as the set of points Z(s) , {Zi−s : i = 0, 1, . . .} representing
shifts of points Zi, for s = 0, 1, . . .. In addition, assume a real-valued non-negative
function α(·) : [s1, s2] 7−→ [0,∞) such that ∑s2

t=s1 αt = 1, t ∈ (0,∞). Define the joint
distribution PXn,Ỹ n on X N0 × YN0 by

PXn,Ỹ n(A) = (PỸ n|Xn ⊗ PXn)(A) 4=
s2∑
s=s1

αs(PY n|Xn ⊗ PXn)(As), ∀n = 0, 1, . . . .

Definition 6.4. [57](Specified, consistent, and stationary sources)
The source {Xn : n ∈ N0} is called
(1) “specified” if

(a) PY k|Xk ∈ Q0,k(D) and PY n
k+1|X

n
k+1
∈ Qk+1,n(D), Y n

k+1
4= {Yk+1, . . . , Yn}

implies

(b) the joint conditional distribution of the concatenated RVs satisfies

PY k,Y n
k+1|Xk,Xn

k+1
∈ Q0,n(D), ∀k = 0, 1, . . . , n− 1;

(2) “consistent” if (b) implies (a);
(3) “stationary” if the random process {Xn : n = 0, 1, . . .} is stationary and for any
k = 1, 2, . . ., the sets Q0,n(D) and Qk,n+k(D) are copies of the same set.
The fidelity set is called
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(4) “shift invariant” if given the source PXn(·), then for any α(·) defined above the
following holds.

PY n|Xn ∈ Q0,n(D) =⇒ PỸ n|Xn ∈ Q0,n(D), ∀n = 0, 1, . . . . (6.37)

Note that in general, Definition 6.4, (2) does not imply (1). This point is further
elaborate in [57]. Notice that condition (6.37) holds for the Letter-by-Letter fidelity
E{ρ(Xi, Yi)} ≤ Di, Di > 0, i = 0, 1, . . . , n (see [59]).
The following theorem is a direct consequence of Lemma 6.3, Theorem 6.4, and
Gorbunov-Pinsker’s [57, Theorem 2].

Theorem 6.6. (Limits)
Suppose Assumption 6.1 holds and the source is stationary.
Then the following hold.

Rna(D) = lim
n−→∞

inf−→
Q0,n(·|xn)∈QC1

0,n(D)

1
n+ 1IX

n→Y n(µ0,n,
−→
Q 0,n) <∞ (6.38)

e.g., the limit exists and it is finite. Moreover,

Rna(D) = −⇀Rna(D) ≡ inf−→
Q0,∞(·|x∞)∈QC1

0,∞(D)
lim
n−→∞

1
n+ 1IX

n→Y n(µ0,n,
−→
Q 0,n). (6.39)

Proof. The derivation utilizes Theorem 6.4, and the subadditivity of Rna
0,n(D), that

is, Rna
0,n(D) ≤ Rna

0,k(D) + Rna
k+1,n(D), 0 < k < n. Since by Theorem 6.5 we have

Rna
0,n(D) = Rε

0,n(D), and by [57, Lemma 1], Rε
0,n(D) is subadditive, then Rna

0,n(D) is also
subadditive. Moreover, under the conditions of Theorem 6.4 we know that Rna

0,n(D) is
finite for any finite n ∈ N0. Utilizing this and the subadditivity of Rna

0,n(D) we deduce
that the limit in (6.38) exist and it is finite. (6.39) follows from [57, Theorem 2], the
stationarity of the source, and Theorem 6.5 which states that Rna

0,n(D) = Rε
0,n(D). �

Often, in the derivation of classical RDF rate it is assumed that the process
{(Xn, Yn) : n ∈ N0} is jointly stationary. This is not very natural because one
does not know á priori whether the reproduction process is stationary. The next theo-
rem utilizes Theorem 6.4 and [57] to show that the infimum of the information NRDF
rate is achieved by a stationary reproduction distribution, which makes the process
{(Xn, Yn) : n ∈ N0} jointly stationary.

Theorem 6.7. (Stationarity of reproduction distribution)
Suppose Assumption 6.1 holds, the source {Xn : n ∈ N0} is stationary and consistent,
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and the fidelity set is shift invariant.
Then, the infimum in (6.39) is achieved by some −→Q ∗0,n(·|xn) ∈ QC1

0,n(D) such that the
source-reproduction pair {(Xn, Yn) : n ∈ N0} is jointly stationary.

Proof. By Assumption 6.1, the statement of Theorem 6.4 holds. Moreover, by Theo-
rem 6.5, we have Rna

0,n(D) = Rε
0,n(D). By invoking [57, Theorem 4] we establish the

claim of stationarity of the joint process. �

Therefore, under Assumption 6.1, by showing existence of solution to the information
NRDF (e.g., Theorem 6.4), we have strengthened the results described in [57, Theorems
1-4] because we have removed the assumption that Rε

0,n(D) is finite for some finite
n ∈ N0.

6.4. Optimal Reproduction of NRDF, Properties,
and Example

In this section, we recall the closed form expression of the optimal reproduction con-
ditional distribution of the information NRDF, Rna(D), under the assumption that
the reproduction distributions {qn(·|yn−1, xn) : n ∈ N0} are stationary derived in [61,
Section IV]. Further, we derive important properties of information NRDF, and we
present two running examples, the BSMS(p) and the multidimensional partially ob-
served Gauss-Markov stationary source.
Conditions for stationarity to hold are given in Theorem 6.7. The main assumption we
impose is the following.

Assumption 6.2.
The (n + 1)-fold convolution of causal conditional distribution −→

Q 0,n(·|xn) =
⊗ni=0qi(·|yi−1, xi) which achieves the infimum of Rna

0,n(D), is a convolution of stationary
conditional distributions.

6.4.1. Stationary optimal reproduction distribution

Theorem 6.7 gives general conditions for Assumption 6.2 to hold. Clearly, (6.26) is
a constrained problem, which is convex due to the convexity of the fidelity set, and
the convexity of IXn→Y n(µ0,n, ·), as a functional of −→Q 0,n(·|xn) ∈ QC1(Yn|X n), (see
Theorem 6.2). Therefore, we apply duality theory [80] to convert the constrained
problem into an unconstrained problem using Lagrange multipliers, and then we ver-
ify the equivalence of the constrained and unconstrained problems. This procedure is
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done in [61, Theorem IV.3] hence, it is omitted. Assumption 6.2 facilitates the com-
putation of the Gâteaux differential of IXn→Y n(µ0,n,

−→
Q 0,n) at the optimal −→Q ∗0,n(·|xn)

in only one direction
(−→
Q 0,n(·|xn) − −→Q ∗0,n(·|xn)

) (
due to stationarity of qi(·|yi−1, xi)

)
,

rather than varying along each direction of {qi(·|yi−1, xi) : i = 0, 1, . . . , n}, according
to qεi (·|yi−1, xi) = q∗i (·|yi−1, xi) + ε

(
qi(·|yi−1, xi) − q∗i (·|yi−1, xi)

)
, i = 0, 1, . . . , n, and

then compute the Gâteaux differential of IXn→Y n(µ0,n,
−→
Q 0,n) ≡ IXn→Y n(µ0,n, qi : i =

0, 1, . . . , n) as a functional of qi(·|yi−1, xi), i = 0, 1, . . . , n in each direction. Clearly,
the nonstationary case is much more involved.

Next, we state the main theorem.

Theorem 6.8. (Optimal stationary reproduction distribution)
Suppose Assumption 6.1 and Assumption 6.2 hold, and d0,n = ∑n

i=0 ρi(xi, yi).
The following hold.

(1) The infimum is attained at −→Q ∗0,n(·|xn) ∈ QC1
0,n(D) given by4

−→
Q ∗0,n(×ni=0Bi|xn) =

∫
B0
q∗0(dy0|x0)

∫
B1
q∗1(dy1|y0, x

1) . . .
∫
Bn
q∗n(dyn|yn−1, xn)

(6.40)

where

q∗i (dyi|yi−1, xi) = esρi(x
i,yi)ν∗i (dyi|yi−1)∫

Yi e
sρi(xi,yi)ν∗i (dyi|yi−1) , i = 0, 1, . . . , n, s ≤ 0 (6.41)

and ν∗i (·|yi−1) ∈ Q(Yi|Y i−1), i = 0, 1, . . . , n.

(2) The information NRDF is given by

Rna
0,n(D) = sD(n+ 1)−

n∑
i=0

∫
X i×Yn−1

log
( ∫
Yi
esρi(x

i,yi)ν∗i (dyi|yi−1)
)

×
−→
Q ∗0,i−1(dyi−1|xi−1)⊗ µ0,i(dxi). (6.42)

Moreover, if Rna
0,n(D) > 0 then s < 0, and

1
n+ 1

n∑
i=0

∫
X i×Yi

ρi(xi, yi)
−→
Q ∗0,i(dyi|xi)⊗ µ0,i(dxi) = D. (6.43)

Proof. The proof is described in [61, Theorem IV.4] but for completeness we give it in
Appendix D.2. �

4Due to stationarity assumption ν∗i (·|yi−1) = ν∗(·|yi−1) and q∗i (·|yi−1, xi) = q∗(·|yi−1, xi).
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For i ≤ n, let B(i) = {yn : yi ∈ B}, B ∈ B(Yi), and let −→Q ∗0,i(B(i)|xi|B(Y i−1))
denote the conditional probability of B(i) with respect to B(Y i−1) calculated on
(Yn,B(Yn),−→Q ∗0,n(·|xn)) then

−→
Q ∗0,i({yn : yi ∈ B}|xi|B(Y i−1)) = q∗(dyi|yi−1, xi)

= esρi(x
i,yi)ν∗(dyi|yi−1)∫

Yi e
sρi(xi,yi)ν∗(dyi|yi−1) , a.a.(x

i, yi−1) ∈ X i × Y i−1.

(6.44)

The RHS term of (6.44) determines, for each i = 0, 1, . . ., the dependence of the
reproduction distribution q∗(·|yi−1, xi) on the past reproduction yi−1 and the past and
present source symbols xi. Below we list a few observations regarding the structure of
(6.44).

Remark 6.1. (Properties of the stationary optimal reproduction distribution)

(1) If {Xn : n ∈ N0} is Gaussian stationary and ρi(xi, yi) = ||xi − yi||2, a quadratic
function of (xn, yn) then for each (yi−1, xi) ∈ Y i−1×X i, q∗(·|yi−1, xi) is Gaussian.
This follows from the fact that the exponent in the RHS of (6.44) is quadratic
in (xi, yi) ∈ Xi × Yi, and thus by assuming ν∗(·|yi−1) is conditionally Gaussian
then the RHS of (6.44) will be of exponential quadratic form in (xi, yi). Hence,
this RHS can be matched by a conditional Gaussian distribution for q∗(·|yi−1, xi).
The procedure is standard and involves completion of squares.

(2) If the distortion function is ρi(xi, yi) = ρi(xi, yi) then

q∗(·|yi−1, xi) = q∗(·|yi−1, xi)− a.a. (xi, yi−1) ∈ X i × Y i−1, i = 0, 1, . . . .

That is, the reconstruction kernel is Markov in {Xn : n ∈ N0}. However, even
if we further restrict the distortion function to single letter ρi(xi, yi), we cannot
deduce how far into the past q∗(·|yi−1, xi) will depend on the reproduction symbols
yi−1. If the distortion function is of the form ρi(xi, xi−1, y

i) then

q∗(·|yi−1, xi) = q∗(·|yi−1, xi, xi−1)− a.a.(xi, yi−1) ∈ X i × Y i−1, i = 0, 1, . . . .

Despite the above observations, for specific stationary sources, it turns out that the
closed form expression for the optimal reproduction distribution, and that of the NRDF
are relatively easy to compute.
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6.4.2. Properties of NRDF

In this section, we derive some properties of information NRDF, Rna(D), under sta-
tionarity of the joint process {(Xi, Yi) : i = 0, 1, . . .}. These are analogous of the
well-known properties of the single letter classical RDF, R(D), given in [51].
In the next Lemma we state the convexity and monotonicity property of Rna

0,n(D) with
respect to a distortion level D.

Lemma 6.4. (Convexity and monotonicity of Rna(D))
Rna

0,n(D) is a convex, nonincreasing function of D ∈ [0,∞).

Proof. By Theorem 6.1 the set QC1
0,n(D) is convex, and by Theorem 6.2,

IXn→Y n(µ0,n,
−→
Q 0,n) is a convex functional of −→Q 0,n(·|xn) ∈ QC1(Yn|X n) for a fixed

µ0,n(dxn) ∈M(X n). Hence, the result follows. �

In the next lemma we provide the exact expression of Dmax.

Lemma 6.5. (Dmax)
Rna

0,n(D) > 0 for all D < Dmax and Rna
0,n(D) = 0 for all D ≥ Dmax, where

Dmax
4= min

yn∈Yn
1

n+ 1

n∑
i=0

∫
X i
ρi(xi, yi)µ0,i(dxi)

provided the minimum exists.

Proof. The derivation is similar to the one for the classical RDF, hence it is omitted. �

Next, we describe a geometrical interpretation of the slope of information NRDF.

Lemma 6.6. (Property of the slope of NRDF)
Assume ρi(xi, yi)eζρi(x

i,yi) ∈ L1(νi(dyi|yi−1)) − a.a. (xi, yi−1) and eζρi(x
i,yi) ∈

L1(νi(dyi|yi−1)) − a.a. (xi, yi−1), ∀i ∈ Nn
0 , for some ζ ∈ R, then the Lagrange mul-

tiplier s in Theorem 6.8 is always non-positive.
Moreover,

d

dD

1
n+ 1R

na
0,n(D) = s, s ≤ 0. (6.45)

Proof. The derivation is similar to the one for the classical RDF, hence it is omitted. �

In the next lemma we give an alternative equivalent characterization of the optimal
reproduction conditional distribution.
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Lemma 6.7. (Equivalent characterization of optimal reproduction)
The solution to the minimization problem of NRDF is such that

∫
X i
esρi(x

i,yi)λi(xi, yi−1)P ∗0,i(dxi|yi−1) = 1, ν∗i (dyi|yi−1)− a.s., ∀i ∈ Nn
0 (6.46)

where

λi(xi, yi−1) =
( ∫
Yi
esρi(x

i,yi)ν∗i (dyi|yi−1)
)−1

, ∀i ∈ Nn
0 (6.47)

and P ∗0,i(dxi|yi−1) ∈ Q(X i|Y i−1).

Proof. See Appendix D.3. �

Note that in Lemma 6.7, we prove the solution to the optimization problem described
in Theorem 6.8 on a set of ν∗i -measure 1. It can be shown, by utilizing measure
theoretic arguments, that a necessary and sufficient condition for existence of a solution
in Theorem 6.8 is the condition

∫
X i
esρi(x

i,yi)λi(xi, yi−1)P ∗0,i(dxi|yi−1) ≤ 1, ∀yi ∈ Y i, i ∈ Nn. (6.48)

Finally, by utilizing the previous results, in the next theorem, we present an alternative
definition of the solution of the information NRDF, as a maximization over a certain
class of functions. By using this property, we can derive a lower bound on Rna

0,n(D),
which is analogous to Shannon’s lower bound. In fact, we use this bound to derive the
information NRDF of the multidimensional Gauss-Markov process given by (6.13).

Theorem 6.9. (Alternative characterization of solution of the information NRDF)
An alternative expression of the information NRDF, Rna

0,n(D), is

Rna
0,n(D) = sup

s≤0
sup
λ∈Ψs

{
sD(n+ 1)

+
n∑
i=0

∫
X i×Yi−1

log
(
λi(xi, yi−1)

)
P0,i−1(dxi−1, dyi−1)⊗ pi(dxi|xi−1)

}
(6.49)

where

Ψs
4=
{
λ
4= {λi(xi, yi−1) ≥ 0 : i = 0, 1, . . . , n} :∫

X i
esρi(x

i,yi)λi(xi, yi−1)P0,i(dxi|yi−1) ≤ 1, ∀yi ∈ Y i, i = 0, 1, . . . , n
}
. (6.50)
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Moreover, for each s ≤ 0, a necessary and sufficient condition for λ to achieve the
supremum in (6.49) is the existence of ν∗i (·|·) related to λi(·, ·) via (6.47) such that
(6.46) holds with equality a.a. yi ∈ Yi, where νi(dyi|yi−1) > 0, i = 0, 1, . . . , n.

Proof. See Appendix D.4. �

6.4.3. Example : Multidimensional Partially Observed
Gaussian Process

Consider the discrete-time multidimensional partially observed linear Gauss-Markov
source described by (6.13). The model in (6.13), is often encountered in applications
where the process {Zt : t ∈ N0} is not directly observed; instead, what is directly
observed is the process {Xt : t ∈ N0} which is a noisy version of it. This is a realistic
model for any sensor which collects information on the underlying process CZt, subject
to additive Gaussian noise. Hence, in this application the objective is to compress the
sensor data {Xt : t = 0, 1, . . . , n}. Next, we introduce certain assumptions concern-
ing (6.13) and the distortion function, which are sufficient for existence of the limit,
Rna(D) 4= limn−→∞

1
n+1R

na
0,n(D).

(G1) (C,A) is detectable and (A,
√
BBtr) is stabilizable, [99];

(G2) The state and observation noise {(Wt, Vt) : t ∈ Nn
0} are Gaussian IID vec-

tors Wt ∈ Rk, Vt ∈ Rd, mutually independent with parameters N(0; Ik×k) and
N(0; Id×d), independent of the Gaussian RV Z0, with parameters N(0; Σ̄0)5.

(G3) The distortion function is single letter defined by d0,n(xn, yn) 4= ∑n
t=0 ||xt− yt||22.

Special cases of model (6.13) are discussed in [104, 105]. Specifically, [104] computes
Rna(D) for the scalar fully observed case corresponding to Xt = Zt ∈ R and [105]
computes Rna(D) for the scalar partially observed case Xt ∈ R via indirect methods.
Next, we invoke the characterization of the NRDF given by Theorem 6.9 to derive the
exact expression of Rna(D) for model (6.13). The corresponding optimal reproduction
conditional distribution is constructed as shown in Fig. 6.3.
According to Theorem 6.8, the optimal stationary reproduction distribution is given

5Alternatively, the stochastic processes {(Wt, Vt) : t ∈ Nn0} can be jointly Gaussian.
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by

Q∗Yt|Y t−1,Xt(dyt|yt−1, xt) =
es||yt−xt||

2
2P ∗Yt|Y t−1(dyt|yt−1)∫

Yt e
s||yt−xt||22P ∗Yt|Y t−1(dyt|yt−1)

, s ≤ 0

≡ Q∗Yt|Y t−1,Xt(dyt|yt−1, xt)− a.a. (yt−1, xt). (6.51)

Hence, from (6.51), it follows that the optimal reproduction is Markov with respect to
the process {Xt : t ∈ N0}. Moreover, since the exponential term ||yt−xt||22 in the RHS
of (6.51) is quadratic in (xt, yt), and {Zt : i ∈ N0} is Gaussian then {(Zt, Xt) : t ∈ N0}
are jointly Gaussian, and it follows that a Gaussian distribution QYt|Y t−1,Xt(·|yt−1, xt)
(for a fixed realization of (yt−1, xt)), and a Gaussian distribution PYt|Y t−1(·|yt−1) can
match the left and right side of (6.51). Therefore, at any time t ∈ N0, the output Yt of
the optimal reconstruction channel depends on Xt and the previous outputs Y t−1, and
its conditional distribution is Gaussian. Hence, the channel connecting {Xt : t ∈ N0}
to {Yt : t ∈ N0} is realized by

Yt = ĀXt + B̄Y t−1 + V c
t , t ∈ N0 (6.52)

where Ā ∈ Rp×p, B̄ ∈ Rp×tp, and {V c
t : t ∈ N0} is an independent sequence of Gaussian

vectors N(0;Qt).
Introduce the error estimate {Kt : t ∈ N0}, and its covariance {Λt : t ∈ N0}, defined
by

Kt , Xt − X̂t|t−1, X̂t|t−1
4= E

{
Xt|σ{Y t−1}

}
, Λt , E{KtK

tr
t }, t ∈ N0 (6.53)

where σ{Y t−1} is the σ-algebra generated by the sequence {Y t−1}. The covariance is
diagonalized by introducing a unitary transformation {Et : t ∈ N0} such that

EtΛtE
tr
t = diag{λt,1, . . . λt,p}, Γt , EtKt, t ∈ N0. (6.54)

Note that although {Γt : t ∈ N0} has independent Gaussian components, each one of
these components has a nonzero multi-step covariance function. Analogously, introduce
to the process {K̃t : t ∈ N0} defined by

K̃t
4= Yt − X̂t|t−1, K̃t = Γ̃tEtr

t and Γ̃t = B∞Bt, t ∈ N0. (6.55)
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where {B∞ : t = 0, 1, . . .} is a scaling matrix to be determined and {Bt : t = 0, 1, . . .}
is the channel output of parallel noisy channels.
Since d0,n(Xn, Y n) = d0,n(Kn, K̃n) = ∑n

t=0 ||K̃t−Kt||22 = ∑n
t=0 ||Γ̃t−Γt||22 = d0,n(Γn, Γ̃n)

the square error fidelity criterion d0,n(·, ·) is not affected by the above preprocessing and
post processing of {(Xt, Yt) : t ∈ N0}. Moreover, using basic properties of conditional
entropy, if necessary, we can show the following expressions are equivalent.

Rna(D) = lim
n−→∞

Rna,Kn,K̃n

0,n (D) 4= lim
n−→∞

inf
−→
P K̃n|Kn : E

{
d0,n(Kn,K̃n)≤D

} 1
n+ 1

n∑
t=0

I(Kt; K̃t|K̃t−1)

= lim
n−→∞

Rna,Γn,Γ̃n
0,n (D) 4= lim

n−→∞
inf

−→
P Γ̃n|Γn : E

{
d0,n(Γn,Γ̃n)≤D

} 1
n+ 1

n∑
t=0

I(Γt; Γ̃t|Γ̃t−1).

(6.56)

Next, we give the expression of Rna(D) by using the specific realization of (6.52) shown
in Fig. 6.3, where {A∞,B∞ : t = 0, 1, . . .} are to be determined.

Theorem 6.10. (Rna(D) of multidimensional stationary partially observed Gauss-
Markov source)
Under Assumptions (G1)-(G3), the information NRDF rate for the multidimensional
stationary partially observed Gaussian source (6.13) is given by

Rna(D) = 1
2

p∑
i=1

log
(
λ∞,i
δ∞,i

)
(6.57)

where diag{λ∞,1, . . . , λ∞,p} = limt−→∞EtΛtE
tr
t = E∞Λ∞Etr

∞,

Λ∞ = lim
t−→∞

E
{(
C
(
Zt − E

{
Zt|σ{Y t−1}

})
+NVt

)(
C
(
Zt − E

{
Zt|σ{Y t−1}

})
+NVt

)tr}
= C lim

t−→∞
ΣtC

tr +NN tr = CΣ∞Ctr +NN tr (6.58)

δ∞,i
4=

 ξ∞ if ξ∞ ≤ λ∞,i

λ∞,i if ξ∞ > λ∞,i
, i = 2, . . . , p (6.59)

and ξ∞ is chosen such that ∑p
i=1 δ∞,i = D. Moreover, Σ∞ is the steady state covariance

of the error Zt − E{Zt|Y t−1} ∼ N(0,Σ∞), Ẑt|t−1
4= E{Zt|Y t−1}, of the Kalman filter
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given by

Ẑt+1|t = AẐt|t−1 + AΣ∞(Etr
∞H∞E∞C)trM−1

∞

(
Yt − CẐt|t−1

)
, (6.60)

Ẑ0|−1 = E{Z0|Y −1}, Z0 − Ẑ0|−1 ∼ N(0,Σ∞), t ∈ N0

Σ∞ = AΣ∞Atr − AΣ∞(Etr
∞H∞E∞C)trM−1

∞ (Etr
∞H∞E∞C)Σ∞Atr +BBtr

∞ (6.61)

M∞ = Etr
∞H∞E∞CΣ∞(Etr

∞H∞E∞C)tr + Etr
∞H∞E∞NN

tr(Etr
∞H∞E∞)tr + Etr

∞B∞QBtr∞E∞
(6.62)

and

Ht
4= diag{ηt,1, . . . , ηt,p}, ηt,i = 1− δt,i

λt,i
, i = 1, . . . , p, t ∈ N0, (6.63)

H∞ = lim
t−→∞

Ht = diag{η∞,1, . . . , η∞,p}, (6.64)

B∞ = lim
t−→∞

Bt =
√
H∞∆∞Q−1, Bt ,

√
Ht∆tQ−1, t ∈ N0 (6.65)

∆∞ = lim
t−→∞

∆t = diag{δ∞,1, . . . , δ∞,p}, ∆t = diag{δt,1, . . . , δt,p}, t ∈ N0 (6.66)

Q = lim
t−→∞

Qt = diag{q∞,1, . . . , q∞,p}, Qt = diag{qt,1, . . . , qt,p}, t ∈ N0. (6.67)

Moreover,

Yt = Etr
∞H∞E∞C(Zt − Ẑt|t−1) + CẐt|t−1 + Etr

∞H∞E∞NVt + Etr
∞B∞V c

t , t ∈ N0.

(6.68)

Proof. See Appendix D.5. �

For scalar stationary Gaussian sources with memory, Rna(D) given in Theorem 6.10
simplifies considerably. We illustrate this via examples.

Degraded cases.

(1) Scalar Stationary Partially Observed Gauss-Markov Source: This corresponds to
(6.13) by setting m = p = 1, C = c, N = σV , A = α, B = σW , i.e., σWWt ∼
N(0;σ2

W ) and σV Vt ∼ N(0;σ2
V ) giving

 Zt+1 = αZt + σWWt, t = 0, 1, . . . , Z0 ∼ N(0;σ2
W (1− α2)−1), |α| < 1,

Xt = cZt + σV Vt, t = 0, 1, . . .
(6.69)
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Then σ2
Zt

4= V ar(Zt) = σ2
W (1 − α2)−1, σ2

Xt = c2σ2
Zt + σ2

V . In this case, by
Theorem 6.10 we have

Λ∞ = λ∞,1 = c2Σ∞ + σ2
V , ∆∞ = δ∞,1 = D, where H∞ = 1− D

c2Σ∞ + σ2
V

and E∞ = 1.

Hence, using (6.62), we obtain

M∞ = c2Σ∞H2
∞ + σ2

VH
2
∞ +H∞D = H2

∞

(
c2Σ∞ + σ2

V ) +H∞D = (c2Σ∞ + σ2
V )H∞.

(6.70)

Also, from (6.61), we obtain

Σ∞ = α2Σ∞ − α2c2Σ2
∞H

2
∞M

−1 + σ2
W

(a)=⇒ c4Σ3
∞ + Σ2

∞(2c2σ2
V − α2c2σ2

V − α2c2D − c4σ2
W )− Σ∞(α2σ4

V + 2c2σ2
V σ

2
W )

− σ4
V σ

2
W = 0 (6.71)

where (a) follows from (6.70). It can be verified that the cubic equation (6.71)
admits a positive solution. From (6.57) we obtain

Rna(D) = 1
2 log λ∞,1

δ∞,1
, λ∞,1 = c2Σ∞ + σ2

V ≥ D. (6.72)

(2) Scalar Stationary Fully Observed Gauss-Markov Source: This corresponds to
(6.69) by setting c = 1, σV = 0 giving

Xt+1 = αXt + σWWt, Wt ∼ N(0; 1), X0 ∼ N(0;σ2
W (1− α2)−1), |α| < 1.

(6.73)

Then σ2
Xt

4= V ar(Xt) = σ2
W (1−α2)−1. Since this is a special case of (1) for c = 1,

σV = 0, we obtain from (6.70)

M∞ = Σ∞H∞. (6.74)

Also, using (6.71), we obtain

λ∞,1 = Σ∞ = α2D + σ2
W (6.75)
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Finally, by substituting (6.75) in the expression of the NRDF (6.57) we obtain

Rna(D) = 1
2 log λ∞,1

δ∞,1

= 1
2 log Σ∞

D
= 1

2 log
(
α2D + σ2

W

D

)
= 1

2 log
(
α2 + σ2

W

D

)
, Σ∞ ≥ D, |α| < 1.

(6.76)

This is precisely the expression derived in [91, Theorem 3] using power spectral
densities.

(3) IID Gaussian Source: This corresponds to (6.73) by setting α = 0, σX = σW ,
which implies {Xt : t = 0, . . .} is N(0;σ2

X). By (6.76), with α = 0, σX = σW

then Rna(D) = R(D) = 1
2 log σ2

X

D
, σ2

X ≥ D.
This is the well known RDF of the IID Gaussian source [51].

(4) Vector Source with Independent Component versions of (1), (2). The vector
versions of (6.69) and (6.73) with independent spacial components, {Z1

t , . . . , Z
m
t },

and {X1
t , . . . , X

p
t } is a straight forward extension of (6.72) and (6.76).

6.5. JSCC Design Based on Symbol-by-Symbol
Transmission of Stationary Gaussian Sources
with Memory

In this section, we use the solution of the NRDF Rna(D) of the multidimensional sta-
tionary Gaussian source with memory in JSCC design using symbol-by-symbol trans-
mission over an AWGN channel with or without feedback. We also illustrate that
Theorem 6.10 and its corresponding realization scheme shown in Fig. 6.3 gives as a
special case the Schalkwijk-Kailath coding scheme.
First, we show that {K̃t : t ∈ N0} is the innovation process of {Yt : t ∈ N0}, and hence
the two processes generate the same σ-algebras (they contain the same information).
This result is well known but stated in the thesis for reasons of completeness.

Lemma 6.8. (Equivalence of information generated by {Yt : t = 0, . . .} and {K̃t : t =
0, . . .})
The following hold.

FY0,t
4= σ{Ys : s = 0, 1, . . . , t} = F K̃0,t

4= σ{K̃s : s = 0, 1, . . . , t}, ∀t ∈ N0.
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that is, FY0,t ⊆ F K̃0,t and F K̃0,t ⊆ FY0,t, ∀t ∈ N0.

Proof. Since K̃s = Ys − E
{
Xs|Y s−1

}
, 0 ≤ s ≤ t, then F K̃0,t ⊆ FY0,t, ∀t ∈ N0. Hence, we

need to show that FY0,t ⊆ F K̃0,t, ∀t ∈ N0. The innovation process of {Yt : t ∈ N0} is by
definition (see Fig. 6.3, (6.55), (D.5))

It = Yt − E
{
Yt|Y t−1

}
= Etr

∞H∞E∞

(
Xt − E

{
Xt|Y t−1

})
+ Etr

∞B∞V c
t + E

{
Xt|Y t−1

}
− E

{
Xt|Y t−1

}
= Etr

∞H∞E∞

(
Xt − E

{
Xt|Y t−1

})
+ Etr

∞B∞V c
t = K̃t. (6.77)

Since the innovation process {Is : s = 0, 1, . . . , t} and the optimal reproduction process
{Ys : s = 0, 1, . . . , t} generates the same σ−algebras, then F I0,t ⊆ FY0,t, FY0,t ⊆ F I0,t, i.e.,
FY0,t = F I0,t, and hence, by (6.77) we also obtain FY0,t ⊆ F K̃0,t, ∀t ∈ N0. �

We now observe the following consequence of Lemma 6.8.

Remark 6.2.
By Lemma 6.8, all conditional expectations with respect to the process {Yt : t = 0, 1, . . .}
can be replaced by conditional expectations with respect to the process {K̃t : t = 0, 1, . . .}
which is an independent sequence with independent components. Hence, the process
{Kt : t = 0, 1, . . .} can be written as Kt = Xt−E

{
Xt|σ{Y t−1}

}
= Xt−E

{
Xt|σ{K̃t−1}

}
,

while its reconstruction is given by

K̃t = Etr
∞H∞E∞

(
Xt − E

{
Xt|K̃t−1

})
+ Etr

∞B∞V c
t = Etr

∞H∞E∞Kt + Etr
∞B∞V c

t , t = 0, 1, . . . .

(6.78)

Furthermore, by Lemma 6.8, Kt and K̃t are independent of Y0, . . . , Yt−1, and
K̃0, . . . , K̃t−1, t = 0, 1, . . .. This property is analogous to the JSCC of a scalar RV
over a scalar additive Gaussian noise channel with feedback [30, Theorem 5.6.1].

The realization of Fig. 6.3 illustrates a “Duality of a Source and a Channel” [106], that
of the multidimensional stationary Gaussian source process and the multidimensional
memoryless AWGN channel. To give an operational meaning to this duality, based
on the realization of Rna(D) of Fig. 6.3, we need to ensure that end-to-end average
distortion is achieved. We do this by using existing results on capacity of memoryless
AWGN channels.
Consider the memoryless AWGN channels which appear in Fig. 6.3, defined by
Bt = At + V c

t , t = 0, . . . , n, with {V c
t

4= V ector{V c
t,1, V

c
t,2, . . . , V

c
t,p} : t =
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0, . . . , n}, N(0;Qt) (Gaussian) with Qt
4= Cov(V c

t ) = diag{qt,1, qt,2, . . . , qt,p}, {At
4=

V ector{At,1, At,2, . . . , At,p} : t = 0, . . . , n}, Pt = Cov(At), t = 0, . . . , n, and power con-
straint 1

n+1
∑n
t=0 E||A2

t ||2 = 1
n+1

∑n
t=0 Trace(Pt) ≤ κ. It is known that the capacity of

such a channel with or without feedback subject to a power constraint is the same, and
it is given by C(κ) , limn−→∞

1
n+1C0,n(κ), where

C0,n(κ) = sup
PAn : 1

n+1E{
∑n

t=0 ||A
2
t ||2}≤P

I(An;Bn) (6.79)

Further, it is known that the channel input distribution corresponding to the max-
imization of the right hand side of (6.79) satisfies PAt|At−1 = PAt , t = 0, . . . , n, and
{At : t = 0, 1, . . . , n} is Gaussian N(0;Pt), Pt

4= E{AtAtrt } = Cov(At). Denote the
eigenvalues of Pt by Pt,1, Pt,2, . . . , Pt,p, for t = 0, 1, . . . , n. Then (6.79) becomes

C0,n(κ) ≡ C0,n(P ∗t,1, . . . , P ∗t,p : t = 0, . . . , n)

= max
1

n+1
∑n

t=0

∑p

i=1 Pt,i≤P

1
2

1
n+ 1

n∑
t=0

p∑
i=0

log(1 + Pt,i
qt,i

). (6.80)

where {P ∗t,1, . . . , P ∗t,p} is the optimal allocation of power. The capacity is given by

C(κ) ≡ C(P ∗∞,1, . . . , P ∗∞,p)

= lim
n−→∞

C0,n(κ) = lim
n−→∞

max
1

n+1
∑n

t=0

∑p

i=1 Pt,i≤κ

1
2

1
n+ 1

n∑
t=0

p∑
i=0

log(1 + Pt,i
qt,i

)

= 1
2

p∑
i=0

log(1 +
P ∗∞,i
q∞,i

),
p∑
i=1

P ∗∞,i = κ. (6.81)

The solution can be found using standard techniques and corresponds to water-filling
of parallel memoryless Gaussian channels.
Next, we ensure R(D) = C(κ), end-to-end average distortion is satisfied, and the
encoder operates at channel capacity. For a given D ∈ [Dmin, Dmax] > 0 there exists a
power κ ∈ [κmin, κmax] such that

Rna(D) = lim
n−→∞

Rna
0,n(D)

= lim
n−→∞

1
2(n+ 1)

n∑
t=0

log |Λt|
|∆t|

= 1
2

p∑
i=1

log
(
λ∞,i
δ∞,i

)

= 1
2

p∑
i=0

log(1 +
P ∗∞,i
q∞,i

) = C(κ)
∣∣∣∣P∗∞,i
q∞,i

=
λ∞,i
δ∞,i

−1, i=1,...,p
. (6.82)

Below we give the JSCC design based on symbol-by-symbol transmission with and
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without feedback encoding.

JSCC Design with Feedback. The AWGN channel with feedback has the following
implementation.

Bt = AFB∞ (Xt, B
t−1) + V c

t = A∞E∞
(
Xt − E{Xt|Bt−1}

)
+ V c

t , A∞
4=
√
Q∆−1

∞H∞, t ∈ N0, i = 1, . . . , p. (6.83)

where A∞ is chosen to ensure the power allocation is satisfied and to guaran-
tee the encoder operates at C(κ). This shows that, for a given distortion level
D ∈ [Dmin, Dmax] > 0, the realization shown in Fig. 6.3 is optimal in the sense that
the end-to-end NRDF, Rna(D) is achieved (with the prescribed average distortion),
the encoder (6.83) achieves the capacity of the channel, and (6.82) is satisfied. Thus,
Rna(D) is achievable over the {encoder, channel, decoder} design shown in Fig. 6.3.

JSCC Design without Feedback. The AWGN channel without feedback fol-
lows from (6.83) with E{Xt|Bt−1} replaced by E{Xt|σ(Rp)} = EXt = 0, that is,
Bt = ANFB∞ (Xt) + V c

t = A∞E∞Xt + V c
t , A∞

4=
√
Q∆−1

∞H∞, t ∈ N0, i = 1, . . . , p.

Note that the JSCC design (shown in Fig. 6.3) is not the only choice. One may consider
JSCC design of the multidimensional Gaussian source with memory over other types
of Gaussian channels.

Next, we show that JSCC design of Multidimensional stationary Gaussian Sources
with Memory presented in Fig. 6.3 includes as degraded special cases several scenarios,
including previously known results.

Degraded cases.

(FB1) JSCC design of transmitting a scalar Gauss-Markov Source over a memoryless
AWGN channel with feedback. Let Xt be a scalar Gauss-Markov source defined by
(6.73), where it is shown that λ∞,1 = α2D+ σ2

W , Rna(D) = 1
2 log(α2 + σ2

W

D
) (see (6.75),

(6.76)). The capacity of a memoryless AWGN channel with or without feedback is
obtained from (6.81) by setting p = 1 and q∞,1 = E{|V c

t |2} = Q = σ2
V c giving

C(κ) = 1
2 log(1 + κ

σ2
V c

). (6.84)
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Suppose that the channel is used once per source symbol. For this realization, the
smallest achievable distortion is

Dmin = σ2
Wσ

2
V c

(1− α2)σ2
V c + κ

. (6.85)

Using Theorem 6.10 and (6.83) we obtain

Bt =
√

κ

λ∞,1
Kt + V c

t =

√√√√κ
(
(1− α2)σ2

V c + κ
)

σ2
W (σ2

V c + κ) Kt + V c
t , Kt = Xt − E{Xt|Bt−1}.

(6.86)

From Remark 6.2 (by setting p = 1), the decoder expression (6.78) becomes

K̃t = H∞Kt + B∞V c
t = B∞

(
A∞Kt + V c

t

) (a)= B∞Bt (6.87)

where (a) follows from (6.83). By using the fact that q∞,1 = σ2
V c , δ∞,1 = D the scaling

factor B∞ (6.65) (for the scalar case p = 1), which guarantees the minimum end-to-end
distortion error is

B∞ =

√√√√(1− δ∞,1
λ∞,1

)δ∞,1
q∞,1

=
√√√√ σ2

Wκ(
(1− α2)σ2

V c + κ
)(
σ2
V c + κ

) . (6.88)

By substituting (6.88) into (6.87) we get

K̃t =
√√√√ σ2

Wκ(
(1− α2)σ2

V c + κ
)(
σ2
V c + κ

)Bt. (6.89)

Finally, the average end-to-end distortion is computed by evaluating the expectation

D = E{|Xt − Yt|2} = E{|Kt − K̃t|2}

= σ2
Wσ

4
V c + σ2

Wσ
2
V cκ(

(1− α2)σ2
V c + κ

)
(κ+ σ2

V c)
= σ2

Wσ
2
V c

(1− α2)σ2
V c + κ

= Dmin.

This JSCC design is the one illustrated in Fig. 6.4.

Special case: Realization Without Feedback. When there is no feedback, all statements
presented in (FB1) holds, with E{Xt|Bt−1} replaced by E{Xt|σ{R}} = E{Xt} = 0
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(i.e., only á priori information is used), and the encoder has the following structure.

Bt =
√

κ

λ∞,1
Xt + V c

t , λ∞,1 = V ar(Xt) = σ2
W (1− |α|2)−1, |α| < 1. (6.90)

Toward this, we inspect (FB1) without feedback.

(NFB1) JSCC design of transmitting a scalar Gauss-Markov source over a memoryless
AWGN channel without feedback. Let {Xt : t = 0, 1, . . .} be the scalar stationary Gauss-
Markov source defined by (6.73). In contrary to the case (FB1), here the encoder has
the form of (6.90), where λ∞,1 = σ2

Xt = σ2
W

1−α2 , and Rna(D) = 1
2 log σ2

W

(1−α2)D ,
σ2
W

1−α2 ≥
D, |α| < 1. Consider the realization of Rna(D) over a memoryless AWGN channel
without feedback whose channel capacity is defined by (6.84). Suppose that the channel
is used once per source symbol. For this realization, the smallest achievable distortion
is

Dmin = σ2
Wσ

2
V c

(1− α2)(κ+ σ2
V c)

. (6.91)

Then (6.90) is expressed as

Bt =
√

κ

λ∞,1
Kt + V c

t =

√√√√(1− α2)κ
σ2
W

Xt + V c
t . (6.92)

By using the fact that q∞,1 = σ2
V c , δ∞,1 = D the scaling factor B∞ (6.65) for the scalar

case p = 1, which guarantees the minimum end-to-end distortion error is

B∞ =

√√√√(1− δ∞,1
λ∞,1

)δ∞,1
q∞,1

=
√
λ∞,1
P

κ

κ+ σ2
V c

=

√√√√ σ2
W

(1− α2)κ
κ

κ+ σ2
V c
. (6.93)

By substituting (6.93) into (6.87) we get

K̃t =

√√√√ σ2
W

(1− α2)κ
κ

κ+ σ2
V c
Bt. (6.94)

Finally, the end-to-end distortion is computed by evaluating the expectation

D = E{|Xt − Yt|2} = E{|Kt − K̃t|2} = σ2
Wσ

4
V c

(1− α2)(κ+ σ2
V c)2 + σ2

Wσ
2
V cκ

(1− α2)(κ+ σ2
V c)2

= σ2
Wσ

2
V c

(1− α2)(κ+ σ2
V c)

= Dmin.
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This JSCC design is the one illustrated in Fig. 6.5.
(NFB2) JSCC design of transmitting a scalar IID Gaussian source over a memoryless
AWGN channel without feedback. By setting α = 0 and σX = σW in case (NFB1),
the encoder has the form of (6.90) where λ∞,1 = σ2

X .
This is the case discussed in [89] (see also [107, Example 2.2]).

Next, we show how to recover from the realization scheme depicted in Fig. 6.3, the
Schalkwijk-Kailath coding scheme which achieves the feedback capacity of memoryless
Gaussian channels [93].
Feedback Realization: The Schalkwijk-Kailath coding scheme. Consider a scalar Gaus-
sian RV X ∼ N(0;σ2

X). By letting p = 1 in (6.82)-(6.83), we have A∞ ≡
√
Q∆−1

∞H∞ =√
q∞,1

1
δ∞,1

(
1− δ∞,1

λ∞,1

)
,
P ∗∞,1
q∞,1

= λ∞,1
δ∞,1
− 1 which implies A∞ =

√
P ∗∞,1
λ∞,1

, λ∞,1 = V ar(X −

E{X|Bt−1}) = V ar(Kt), Kt = X − E{X|Bt−1} and Bt =
√

P ∗∞,1
λ∞,1

Kt + V c
t , t ∈ N0.

Substituting into the encoder (6.83) the limiting values, P ∗∞,1 = κ then

Bt =
√

κ

λ∞,1

(
X − E{X|Bt−1}

)
+ V c

t , t = 0, 1, . . . . (6.95)

This is the Schalkwijk-Kailath coding scheme [93] of a scalar Gaussian RV X in which
an encoder is designed to achieve the capacity of memoryless AWGN channel with
feedback.

Remark 6.3.
The above JSCC designs based on symbol-by-symbol transmission of scalar sources over
AWGN channels, can be generalized to vector sources over vector AWGN channels.

6.6. Bounds on OPTA by Noncausal and Causal
Codes

In this section, we show that the NRDF is a lower bound on the OPTA by causal codes
developed in [58].
Consider a causal source code [58] and define the average fidelity by

d+(x, y) 4= lim sup
n−→∞

1
n+ 1E

{
d0,n(xn, yn)

}
, d0,n(xn, yn) 4=

n∑
i=0

ρ(xi, yi).

Let ln(x∞) denote the total number of bits received at the decoder at the time it
reproduces the output sequence {Yn : n ∈ N0}, when the source is {Xn : n ∈ N0}.
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In [58] the average rate of the encoder-decoder pairs using causal reproduction coders
is measured by lim supn−→∞ 1

n+1E
{
ln(X∞)

}
.

Moreover, given a source {Xn : n = 0, 1, . . .} the OPTA by causal codes subject to
fidelity is given by [58]

rc,+(D) 4= inf
yi: yi=fi(xi),∀i∈N0

fi is causal, ∀i∈N0, d+(x,y)≤D

lim sup
n−→∞

1
n+ 1E

{
ln(X∞)

}
. (6.96)

Causal codes based on [58] are analyzed and further generalized in [108] for station-
ary ergodic sources, under a variety of side information available at the encoder and
decoder. Although expression (6.96) is very attractive, its computation for general
sources is very difficult.
Next, we show that the OPTA by causal codes is bounded below by the expression of
information NRDF rate. Consider the joint distribution defined by PXn(dxn), and a
reproduction distribution −→QY n|Xn(·|xn), so that the randomized coders are consistent
with Definition 6.3. Then, by data processing inequality we have the following bounds.

E
{
ln(X∞)

}
≥ H(Y n) ≥

n∑
i=0

{
H(Yi|Y i−1)−H(Yi|Y i−1, X i)

}
(b)= IXn→Y n(PXn ,

−→
QY n|Xn)

(6.97)

where (b) follows from the fact that the joint distribution is defined by PXn(dxn) and the
conditional reproduction distribution −→QY n|Xn(·|xn). Therefore, by taking the infimum
of the RHS of (6.97) over −→QY n|Xn(·|xn) ∈ −→Q0,n(D) and its left side of reproduction
codes as in (6.96) we obtain

rc0,n(D) 4= inf
{yi: yi=fi(xi), fi is causal, i∈Nn0 }

1
n+1E{d0,n(xn,yn)}≤D

1
n+ 1E

{
ln(X∞)

}
≥ 1
n+ 1R

na
0,n(D)

(c)
≥ 1
n+ 1R0,n(D)

where (c) follows from the fact that Rna
0,n(D) ≥ R0,n(D).

In the previous bounds we can first take lim supn−→∞ and then the infimum giving

rc,+(D) ≥ Rna,+(D) 4= inf−→
QY∞|X∞ (·|x∞)
∈
−→
Q0,∞(D)

lim sup
n−→∞

1
n+ 1R

na
0,n(D)

≥ R+(D) 4= inf−→
QY∞|X∞ (·|x∞)
∈
−→
Q0,∞(D)

lim sup
n−→∞

1
n+ 1R(D).
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Therefore, the information NRDF, Rna(D), and rate Rna,+(D), are lower bounds on
rc,+(D), the OPTA by causal codes, and upper bounds to the classical RDF and rate
R+(D).
Bounds on multidimensional partially observed Gaussian source. For the multidimen-
sional partially observable stationary Gauss-Markov source given in (6.13), the RL
of causal codes with respect to R(D) is at most Rna(D) − R(D) bits/sample, where
Rna(D) is given in Theorem 6.10, while the expression for R(D) is found in [51]. On
the other hand, Rna(D)−R(D) is the RL of zero-delay codes with respect to the values
of R(D). To facilitate the computation of RL of zero delay codes with respect to those
of R(D), one can work in frequency domain, by deriving the equivalent expression
of Rna(D) using the solution given in Theorem 6.10 and Szegö formulae. For scalar
Gaussian stationary processes such an expression is given in [94,95].
Next, we evaluate the RL of causal codes with respect R(D) by considering the first-
order (scalar) Gauss-Markov autoregressive source given by (6.73). For this model we
take α = 1 which is the model with a parametric expression for specific distortion
region, discussed in [51, Example 6.3.2.1]. Specifically, for this model, the parametric
expression of R(D) is R(D) = 1

2 log σ2
W

D
, 0 ≤ D ≤ Dc = σ2

W

4 . For the NRDF, this model
can be explicitly computed by (6.76) by setting α = 1 as follows.

Rna(D) = 1
2 log

(
1 + σ2

W

D

)
, 0 ≤ D ≤ ∞.

Hence, the RL due to causal codes for the first order Gauss-Markov autoregressive
source given by (6.73) for α = 1 cannot exceed

RL = Rna(D)−R(D) = 1
2 log

(
1 + D

σ2
W

)
, 0 ≤ D ≤ Dc = σ2

W

4 .

Note for D >
σ2
W

4 , no explicit closed form expression of R(D) for the first order Gaussian
autoregressive source is found in the literature. Instead, only approximation solutions
are given [51, Chapter 6].

6.7. Coding Theorem for JSCC Design Using
Nonanticipative Codes

In this section, we describe a general constructive procedure for JSCC design based
on nonanticipative transmission, for sources with memory and channels with memory
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Figure 6.6.: JSCC design based on nonanticipative transmission for sources with
memory.

with and without feedback, with respect to average end-to-end distortion or excess
distortion probability, operating optimally, that is,

(1) the end-to-end average or excess distortion probability is achieved;

(2) the encoder achieves the channel capacity;

(3) Rna(D) = C(κ), where C(κ) is the capacity of the channel with power κ.

The constructive procedure is a generalization of the JSCC design of multidimensional
stationary Gauss-Markov source transmitted over the vector memoryless AWGN chan-
nel presented in Section 6.4.3. For memoryless sources and memoryless channels a
similar method is described in [90], and evaluated for Example-IID-BSS and Example-
IID-GS.

6.7.1. Nonanticipative JSCC Design

The elements of the JSCC design are illustrated in Fig. 6.6. We focus on JSCC design
systems which are nonanticipative, that is, the encoder, channel, and decoder at each
time instant i process samples causally, with memory on past symbols, and without
anticipation with respect to symbols occurring at times j > i. Since by data processing
inequality, information NRDF is lower than the capacity of the channel, we impose a
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cost for transmitting symbols over the channel, which is a measurable function

c0,n :A0,n×B0,n−1 7−→[0,∞), c0,n(an, bn−1)4=
n∑
i=0

γ(T ian, T ibn−1) (6.98)

where T ian ⊂ {a0, . . . , a
i} and T ibn−1 ⊂ {b0, . . . , b

i−1}.
We use the following definition of a nonanticipative code.

Definition 6.5. (Nonanticipative code)
An (n, d, ε, P ) nonanticipative code is a tuple

(
X n,A0,n,B0,n,Yn, PXn ,

−→
P An|Bn−1,Xn ,

−→
P Bn|An ,

−→
P Y n|Bn , d0,n, c0,n

)

where −→P An|Bn−1,Xn ∼ {PAi|Ai−1,Bi−1,Xi(·|·, ·, ·) : i ∈ Nn
0},
−→
P Y n|Bn ∼ {PYi|Y i−1,Bi (·|·, ·) :

i ∈ Nn
0}, is the code (i.e., {encoder, decoder}), −→P Bn|An ∼ {PBi|Bi−1,Ai(·|·, ·) : i ∈ Nn

0} is
the channel, with excess distortion probability

P
{
d0,n(Xn, Y n) > (n+ 1)d

}
≤ ε, ε ∈ (0, 1), d > 0

and transmission cost

1
n+ 1E

{
c0,n(An, Bn−1)

}
≤ κ, κ > 0

where P{·} and E{·} are taken with respect to the joint distribution
PXn,An,Bn,Y n(dxn, dan, dbn, dyn) induced by {source, encoder, channel, decoder}
.
An uncoded nonanticipative code, denoted by (n, d, ε), is a subset of an (n, d, ε, κ)
nonanticipative code in which an encoder and decoder are identity maps, PAi|Ai−1,Bi−1,Xi

(dai|ai−1, bi−1, xi) = δXi(dai), PYi|Y i−1,Bi(dyi|yi−1, bi) = δBi(dyi), that is, Ai = Xi,
Yi = Bi, i = 0, 1, . . . , n.

The well-known Example-IID-BSS of JSCC design utilizes an uncoded nonanticipative
code, while Example-IID-GS utilizes an {encoder, decoder} pair, which scale their input
(see [90]).
Next, we define the minimum excess distortion as follows.

Definition 6.6. (Minimum excess distortion)
The minimum excess distortion achievable by a nonanticipative code (n, d, ε, κ) is de-
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fined by

Do(n, ε, κ) 4= inf
{
d : ∃(n, d, ε, κ) nonanticipative code

}
. (6.99)

For uncoded nonanticipative code (6.99) is replaced by

D̄o(n, ε) 4= inf
{
d : ∃(n, d, ε) nonanticipative code

}
. (6.100)

Note that in our definition of nonanticipative code (n, d, ε, κ) we have assumed indi-
rectly that the channel capacity is defined by

C(κ) 4= lim
n−→∞

1
n+ 1C0,n(κ) (6.101)

where

C0,n(κ) 4= sup
{PAi|Ai−1,Bi−1 (dai|ai−1,bi−1): i=0,1,...,n}∈P0,n(κ)

I(An → Bn) (6.102)

and the average power constraint is

P0,n(κ) 4=
{
{PAi|Ai−1,Bi−1(dai|ai−1, bi−1) : i = 0, 1, . . . , n} : 1

n+ 1E{c0,n(an, bn−1)} ≤ κ
}
.

Here I(An → Bn) is the directed information from An to Bn defined by

I(An → Bn) 4=
n∑
i=0

I(Ai;Bi|Bi−1). (6.103)

Since we consider nonanticipative transmission based on Definition 6.5, we also define
the notion of probabilistic realization of the optimal nonanticipative reproduction dis-
tribution corresponding to Rna(D) based on nonanticipative processing of information
by the encoder, channel, decoder, that is, processing symbols causally, as follows (see
Fig. 6.6).

Definition 6.7. (Probabilistic Realization)
Given a source {PXi|Xi−1 (dxi|xi−1) : i ∈ Nn}, then a channel {PBi|Bi−1,Ai

(dbi|bi−1, ai) : i ∈ Nn} is a realization of the optimal reproduction distribution
{Q∗Yi|Y i−1,Xi(dyi|yi−1, xi) : i ∈ Nn} corresponding to Rna

0,n(D), if there exists a pre-
channel encoder {PAi|Ai−1,Bi−1,Xi (dai|ai−1, bi−1, xi) : i ∈ Nn} and a post-channel de-
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coder {PYi|Y i−1,Bi (dyi|yi−1, bi) : i ∈ Nn} such that

−→
Q
∗
Y n|Xn(dyn|xn) = ⊗ni=0Q

∗
Yi|Y i−1,Xi(dyi|yi−1, xi) = ⊗ni=0QYi|Y i−1,Xi(dyi|yi−1, xi)

(6.104)

where the joint distribution from which the RHS of (6.104) is obtained is precisely

PXn,An,Bn,Y n(dxn, dan, dbn, dyn) = ⊗ni=0PYi|Y i−1,Bi(dyi|yi−1, bi)⊗ PBi|Bi−1,Ai(dbi|bi−1, ai)

⊗ PAi|Ai−1,Bi−1,Xi(dai|ai−1, bi−1, xi)⊗ PXi|Xi−1(dxi|xi−1).

Moreover, Rna(D) is realizable if in addition the realization operates with average dis-
tortion D and limn−→∞

1
n+1IXn→Y n(PXn ,

−→
Q ∗Y n|Xn) = Rna(D) 4= limn−→∞

1
n+1R

na
0,n(D).

The above definition of probabilistic realization is precisely the one utilized in Sec-
tion 6.5 for JSCC design with respect to achieving average end-to-end distortion; it
is also the one utilized to obtain the solution of the NRDF for the multidimensional
stationary Gaussian source, depicted in Fig. 6.3.
Using the above definition of probabilistic realization we now prove achievability of
the nonanticipative code with respect to excess distortion probability for sources with
memory.

Theorem 6.11. (Achievability of nonanticipative code)
Part A. (Coded transmission)
Suppose the following conditions hold.

(1) Rna
0,n(D) has a solution and the optimal reproduction distribution is stationary.

(2) C0,n(κ) has a solution and the maximizing distribution is stationary.

(3) The optimal stationary reproduction distribution −→Q ∗Y n|Xn(dyn|xn) given by The-
orem 6.8 is realizable, and Rna(D) = limn−→∞

1
n+1R

na
0,n(D) is also realizable.

(4) For a given D ∈ [Dmin, Dmax] there exists a κ such that Rna(D) = C(κ).

If

P
{
d0,n(Xn, Y n) > (n+ 1)d

}
≤ ε, d > D (6.105)

where P{·} is taken with respect to PY n,Xn(dyn, dxn) = PXn(dxn) ⊗ −→Q
∗
Y n|Xn(dyn|xn),

then there exists an (n, d, ε, κ) nonanticipative code.
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Part B. (Uncoded transmission)
Suppose the following conditions hold.

(1) Condition Part A. (1) holds.

(2) The encoder and the decoder are identity maps (uncoded), and the channel
PBi|Bi−1,Ai corresponds to QYi|Y i−1,Xi (i.e., Ai = Xi, Yi = Bi), i = 0, 1, . . . , n.

(3) For a given D ∈ [Dmin, Dmax], the expression limn→∞
1

n+1I(An → Bn) corre-
sponding to the optimal reproduction distribution of Rna(D) is finite.

If

P
{
d0,n(Xn, Y n) > (n+ 1)d

}
≤ ε, d > D (6.106)

where P{·} is taken with respect to PY n,Xn(dyn, dxn) = PXn(dxn) ⊗ −→Q
∗
Y n|Xn(dyn|xn),

then there exists an uncoded (n, d, ε) nonanticipative code.

Proof. Part A. If conditions (1)-(3) hold then the optimal reproduction distribution is
stationary, it is realizable, and this realization achieves Rna(D). By (4) Rna(D) = C(κ).
If (6.105) is satisfied then a nonanticipative code exists. Part B. This is a special
case of Part A.; by the data processing and condition Part B., (3), we know that
Rna(D) ≤ limn→∞

1
n+1I(An → Bn) < ∞. Hence, if (6.106) holds, there exists an

uncoded (n, d, ε) nonanticipative code. �

The method described in Theorem 6.11, Part A., ensures JSCC so that the chan-
nel operates at C(κ), and hence Rna(D) is the minimum rate of reproducing source
messages at the decoder, i.e., Rna(D) = C(κ). This noisy coding theorem is the one ap-
plied to the multidimensional Gaussian example, with respect to the average distortion
instead of the excess distortion probability. The method described in Theorem 6.11,
Part B., is simpler; find the optimal reproduction distribution of Rna(D), then use this
distribution as the channel and ensure that (6.106) holds, which implies achievability
of the uncoded nonanticipative code. The only disadvantage is the loss of resources,
because in general, the channel corresponding to the optimal reproduction distribution
of Rna(D) will have higher capacity than the value of Rna(D). With respect to the
terminology in [107], this means that the source is not probabilistically matched to the
channel.
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Below, we apply Theorem 6.11, Part A. to multidimensional Gaussian process (6.13).

Example : Excess Distortion Probability of Multidimensional Gaussian Process. Con-
sider the multidimensional stationary Gaussian source and its nonanticipative rate
Rna(D) computed in Theorem 6.10. For a given D > 0, using coded transmission
as in Theorem 6.11, Part A. the calculation of the excess distortion probability
P
{
d0,n−1(Xn−1, Y n−1) > nd

}
≤ ε, ε ∈ (0, 1), d > D, can be done using Cramer’s

theorem [109] as follows. First note that all conditions of Theorem 6.11 are satisfied.
It remains to state how to compute the excess distortion probability. By Chernoff
bound we have the following.

P
{ n−1∑
i=0

ρ(Xi, Yi) > nd
}

= P
{ n−1∑
i=0

ρ(Ki, K̃i) > nd
}
≤ e−λndE

{
eλ
∑n−1

i=0 ρ(Ki,K̃i)
}
, λ > 0, d > D.

Optimizing over all λ > 0 then

1
n

logP
{ n−1∑
i=0

d0,n−1(Xn−1, Y n−1) > nd
}
≤ − sup

λ>0

{
λd− 1

n
E
{
eλ
∑n−1

i=0 ρ(Ki,K̃i)
}}
, d > D.

Clearly, the rate function is defined by

I0,n−1(d) = sup
λ>0

{
λd− 1

n
E
{
eλ
∑n−1

i=0 ρ(Ki,K̃i)
}} (a)
≥ 0, d > D

where (a) follows from the properties of the rate function (see [109, Lemma 1.2.3, p.
3]). That is, the bound for d > D is nontrivial. Indeed, for fixed n−1, it can be shown
that I0,n−1(d) is convex, non-decreasing function of d ∈ [D,∞]. Next, we show how to
compute E

{
eλ
∑n−1

i=1 ρ(Ki,K̃i)
}

, when ρ(Ki, K̃i) = ||Ki − K̃i||2. By (6.78), then

ei = K̃i −Ki = Etr
∞H∞E∞Ki + Etr

∞B∞V c
i −Ki =

(
Etr
∞H∞E∞ − I

)
Ki + Etr

∞B∞V c
i , i = 0, 1, . . . .

(6.107)

By (6.53), then

Ki = Xi − X̂i|i−1 = CZi +NVi − CẐi|i−1 = C
(
Zi − Ẑi|i−1

)
+NVi. (6.108)
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Define the error

ēi+1
4= Zi+1 − Ẑi+1|i = AZi +BWi − AẐi|i−1 − AΣ∞

(
Etr
∞H∞E∞C

)tr
M−1
∞

(
Yi − CẐi|i−1

)
(b)= Aēi +BWi

− AΣ∞
(
Etr
∞H∞E∞C

)tr
M−1
∞

(
Etr
∞H∞E∞Cēi + Etr

∞H∞E∞NVi + Etr
∞B∞V c

i

)
=
(
A− AΣ∞

(
Etr
∞H∞E∞C

)tr
M−1
∞ Etr

∞H∞E∞C
)
ēi +BWi

− AΣ∞
(
Etr
∞H∞E∞C

)tr
M−1
∞ Etr

∞B∞
(
A∞E∞NVi + V c

i

)
≡ Ãēi + B̃1Wi + B̃2Vi + B̃3V

c
i , ē0 = Z0 − Ẑ0|−1 (6.109)

where (b) follows from (6.68) and

B̃2 = AΣ∞
(
Etr
∞H∞E∞C

)tr
M−1
∞ Etr

∞H∞E∞N

B̃3 = AΣ∞
(
Etr
∞H∞E∞C

)tr
M−1
∞ Etr

∞B∞V c
i , B̃1 = B

Ã = A− AΣ∞
(
Etr
∞H∞E∞C

)tr
M−1
∞ Etr

∞H∞E∞C

Clearly, {ēi : i = 0, 1, . . .} is a Gauss-Markov process. Finally, the computation of
E
{
eλ
∑n−1

i=0 ρ(Ki,K̃i)
}

is as follows.

E
{
eλ
∑n−1

i=0 ρ(Ki,K̃i)
} (c)= E

{
e
λ
∑n−1

i=0 ||
(
Etr∞H∞E∞−I

)
Ki+Etr∞B∞V ci ||

2
2
}

(d)= E
{
e
λ
∑n−1

i=0 ||
(
Etr∞H∞E∞−I

)
(Cēi+NVi)+Etr∞B∞V ci ||

2
2
}

(6.110)

where (c) follows due to (6.107), (d) follows by (6.108), and ēi+1 is given by (6.109).
The expectation in (6.110) can be computed explicitly due to Gaussianity of {ēi : i =
0, 1, . . .} and its independence of the Gaussian processes {Vi : i = 0, 1, . . .}, {V c

i : i =
0, 1, . . .}. A simple procedure to compute the continuous time analogue of (6.110) is
given in [110, Section III.B]. For any of the JSCC design of scalar sources, the above
calculation can be easily carried out.

6.7.2. Noiseless Coding Theorem

It is straight forward to verify by invoking Lemma 6.2 and Theorem 6.5, that the the
coding theorem derived in [4, Chapter 5] for two dimensional sources Xn,s 4= {Xi,j : i =
0, . . . , n, j = 0, . . . , s} ∈ ×ni=0 ×sj=0 Xi,j, where i represents time index and j represents
spatial index, gives an operational meaning to Rna

0,n(D) (even for finite n, when the
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process is IID in the spatial component).
We introduce the following additional notation. For each i ∈ {0, 1, . . . , n}, let X s

i

4=
×sj=0Xi,j, for each j ∈ {0, 1, . . . , s}, let X n

j

4= ×ni=0Xi,j, hence X n,s 4= ×ni=0 ×sj=0 Xi,j.
Thus, for a fixed i ∈ {0, 1, . . . , n}, xsi ∈ X s

i and for a fixed j ∈ {0, 1, . . . , s}, xnj ∈ X n
j .

Similarly, denote its reproduction by Y n,s 4= {Yi,j : i = 0, . . . , n, j = 0, . . . , s} ∈
×ni=0 ×sj=0 Yi,j. Such two-dimensional sources are utilized recently in video coding
applications [59], where the authors derived a coding theorem giving an operational
meaning to Rna

0,n(D). Here, we establish an operational meaning for Rna
0,n(D) by invoking

the coding theorem derived in [4] which is based on the following definition of sequential
quantizer.

Definition 6.8. (Sequential quantizer)
A sequential quantizer is a sequence of measurable functions fn,s = {f si : i =
0, 1, . . . , n} defined by f si : X i,s × Y i−1,s 7−→ Ysi , ysi = f si (xi,s, yi−1,s), i = 0, 1, . . . , n.
The set of all such quantizers is denoted by Fn,s.

Thus, a sequential quantizer is nonanticipative with respect to its time index. The
operational meaning of the sequential RDF is defined as follows.

Definition 6.9. (Operational meaning of sequential RDF)
Let QSRD,o0,n,s (D) denote the fidelity set

QSRD,o0,n,s
4=
{
fn,s ∈ Fn,s : 1

n+ 1

n∑
i=0

EP
Xi,s

{
ρs(Xs

i , Y
s
i )
}
≤ D

}
(6.111)

where ρs : X s
i ×Ysi 7→ [0,∞] : i = 0, 1, . . . , n is measurable. The operational sequential

RDF is defined by

RSRD,o
0,n,s (D) 4= inf

fn,s∈QSRD,o0,n,s (D)

1
(s+ 1)H(Y s

0 , . . . , Y
s
n ) (6.112)

provided the infimum exists and it is set to +∞ if it does not.
The operational sequential RDF rate is defined by

RSRD,o
0,n (D) 4= lim

s−→∞
RSRD,o

0,n,s (D).

provided the limit exists and it is set to +∞ if the infimum in the RHS of (6.112) does
not exist.

The information sequential RDF for which a coding theorem is derived in [4] is the fol-
lowing. Given the two dimensional source PXn,s(dxn,s), and a reproduction distribution
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PY n,s|Xn,s(dyn,s|xn,s), the fidelity set is defined by

QSRD0,n,s (D) 4=
{
PY n,s|Xn,s(dyn,s|xn,s) : 1

n+ 1

n∑
i=0

EPXs
i
,Y s
i

(
ρs(Xs

i , Y
s
i )
)
≤ D

}
. (6.113)

The information sequential RDF is defined as follows.

Definition 6.10. (Information sequential RDF)
Consider fidelity set QSRD0,n,s (D) given by (6.113).
The information sequential RDF is defined by

RSRD
0,n,s (D) = inf

PY n,s|Xn,s∈QSRD0,n,s(D)
(Xs

i+1,...,X
s
n)↔(Xi,s,Y i−1,s)↔Y si ,i=0,1,...,n−1

1
(s+ 1)I(Xn,s;Y n,s). (6.114)

provided the infimum exists and it is set to +∞ otherwise.

The first part of the following sequential source coding theorem is derived in [4].

Theorem 6.12. [4](Sequential source coding theorem)
Suppose {Xi,j : i = 0, 1, . . . , n, j = 0, 1, . . . , s} are finite alphabets spaces,
PXn,s(dxn,s) = ⊗sj=0P (dxnj ), and {Xn

j : j = 0, 1, . . . , s} are identically distributed
(with respect to the spatial index), and there exists an x0 and Dmax > 0 such that
EPXi,j ρs(Xi,j, x0) < Dmax, for all i = 0, 1, . . . , n, j = 0, 1, . . . , s.

(1) For any ε > 0 and finite n ∈ N0, there exists an integer s(ε, n) such that for all
s ≥ s(ε, n) we have

RSRD,o
0,n,s (D + ε) ≤ RSRD

0,n (D) + ε (6.115)

where

RSRD
0,n (D) 4= inf

PY n|Xn : 1
n+1EPXn,Y n

{∑n

i=0 ρ(Xi,Yi)≤D
}

Xn
i+1↔(Xi,Y i−1)↔Yi: i=0,1,...,n

I(Xn;Y n). (6.116)

(2) The following hold.

RSRD
0,n (D) = Rna

0,n(D), ∀n ∈ Nn
0 (6.117)

and

lim
n−→∞

1
n+ 1R

SRD(D) = Rna(D) 4= lim
n−→∞

1
n+ 1R

na
0,n(D). (6.118)
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Proof. (1) The derivation of the coding theorem is found in [4, Chapter 5].
(2) Next, we show (6.117). Notice that RSRD

0,n (D) given by (6.116) is precisely
Gorbunov-Pinsker’s nonanticipatory ε-entropy Rε

0,n(D). Therefore, by Theorem 6.5
we have

RSRD
0,n (D) = Rε

0,n(D) = Rna
0,n(D), n ∈ Nn

0 . (6.119)

Dividing by (n + 1) and taking the limit as n −→ ∞ in both sides of (6.119) yields
(6.118). �

We conclude this section by stating that Theorem 6.12 is derived for finite time index
n, and that no assumption is imposed regarding the process {Xi,j : i = 0, 1, . . . , n} for
fixed j ∈ {0, 1, . . . , s} such as, stationarity, ergodicity, etc.

6.8. Conclusion

A variant of the classical RDF, that is, the OPTA by noncausal codes, called infor-
mation NRDF, which imposes a nonanticipative or causality constraint on the optimal
reproduction conditional distribution is investigated in the context of its applications
in JSCC design using nonanticipative transmission schemes with respect to average
and excess distortion probability, and in evaluating the RL of the OPTA by zero-delay
and causal codes with respect to noncausal codes. These applications are employed
to a working example, the multidimensional partially observed Gauss-Markov source.
It is our belief that the results derived in this paper provide a crucial step towards
the complete investigation of two fundamental problems in information theory, the
evaluation of NRDF in systems where sources with memory are considered, and in
nonanticipative JSCC system design.
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7
Conclusions and Future Directions

7.1. Summary and Main Results

Directed Information

We formulated the directed information on abstract spaces utilizing the topology of
weak convergence of probability measures. We derived functional and topological prop-
erties of directed information and we briefly discussed their importance in the two ex-
tremum problems of information theory, the channel capacity and rate distortion. The
main contributions of this work are the following.

• Formulation of directed information on abstract spaces by means of weak con-
vergence of probability measures;

• Derivation of functional and topological properties of directed information on
abstract spaces;

• Application examples to the extremum problems of nonanticipative information
theory.

Variational Equalities of Directed Information

215
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We derived two variational equalities of information theory involving directed informa-
tion along with their sequential versions. We demonstrated one of their applications in
developing sequential versions of iterative algorithms similar to Blahut-Arimoto algo-
rithms for computing the capacity of channels with memory and feedback. The main
contributions of this work are the following.

• Derivation of variational equalities of directed information along with their se-
quential versions;

• A double maximization theorem which serves as the main ingredient to develop
sequential algorithms for maximizing directed information of channels with mem-
ory and feedback.

Extremum Problem of Feedback Capacity

We revisited the extremum problem of feedback capacity with transmission cost and
under certain conditions, and we showed existence of an optimal solution. In addition,
we identified certain conditions to guarantee stationarity of the optimal joint process
that characterizes the extremum problem of feedback capacity with transmission cost.
The main contributions of this work are the following.

• Existence of an optimal solution to the extremum problem of feedback capacity
with transmission cost on abstract spaces;

• Sufficient conditions to ensure the stationary behaviour of the optimal joint pro-
cess to this problem.

Sequential Necessary and Sufficient Conditions for Capacity
Achieving Distributions of Channels with Memory and Feed-
back
We derived sequential necessary and sufficient conditions for any channel input con-
ditional distribution to maximize finite-time horizon directed information for channels
with memory and feedback. We applied the necessary and sufficient conditions to
application examples of time-varying channels with memory and we derived recursive
closed form expressions of the optimal distributions, which maximize the finite-time
horizon directed information. Further, we obtained the feedback capacity from the
asymptotic properties of the optimal distributions without any á priori assumptions,
such as, stationarity, ergodicity or irreducibility of the channel distribution. In this
work, the main contributions are the following.
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• Derivation of sequential necessary and sufficient conditions for any channel input
conditional distributions to maximize finite-time horizon directed information on
finite alphabet spaces;

• Application examples to several finite alphabet time-varying channels with mem-
ory and feedback;

• Ergodic feedback capacity of finite alphabet time-invariant channels of the opti-
mal distributions, which maximize the finite-time horizon directed information;

• Extension of sequential necessary and sufficient conditions to abstract alphabet
spaces.

Nonanticipative Rate Distortion Theory

We formulated nonanticipative RDF on abstract spaces, by imposing a Markov chain
constraint on the extremum problem of classical RDF, which does not allow cur-
rent reproduction symbols to depend on future source symbols (it is causal). We
showed existence of an optimal solution, we derived the optimal stationary repro-
duction distribution, properties of nonanticipative RDF and an application example
where we find the closed form expression of a Gaussian system governed by time-
invariant multidimensional partially observable Gaussian Processes. In addition, we
established an operational meaning based on a Joint Source Channel Coding (JSCC)
scheme where we provided a communication system by constructing a pair of an op-
timal {encoder,decoder} processing information with zero-delay over additive vector
Gaussian channel, and the rate loss of causal and zero-delay codes with respect to non-
causal codes. Finally, we elaborated on the relation of nonanticipative rate distortion
theory to other data compression schemes. In this work, the main contributions are
the following.

• Development of nonanticipative rate distortion theory on abstract spaces. Deriva-
tion of existence of an optimal solution;

• Equivalence of nonanticipative rate distortion function to other existing lossy
compression schemes;

• A closed form expression of the optimal stationary reproduction distribution cor-
responding to the extremum problem of nonanticipative rate distortion function;

• Properties of nonanticipative rate distortion function on abstract spaces;
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• Application example to a Gaussian communication system governed by time-
invariant multidimensional partially observable Gaussian processes. Derivation
of its closed form expression under stationary processes;

• An operational meaning for Gauss-Markov processes based on a noisy coding
theorem with respect to the average distortion function; Additional operational
meaning with respect to the excess distortion and a direct connection to an
existing noiseless coding theorem;

• The Rate Loss of nonanticipation characterizes the excess amount of the informa-
tion, with respect to noncausal codes, which happens due to the nonanticipation
of the processing of information.

7.2. Future Directions

7.2.1. Control over Communication Constraints

The general framework of Chapter 5, where the source may depend on previous chan-
nel outputs, is suitable in communication for control applications. One can apply the
framework to address analysis and synthesis questions, related to stochastic optimal
control over finite rate noisy channels, under general conditions on the channel and
the controller. The main problem is to optimize a control pay-off subject to rate con-
straints on the feedback link, between the controlled system outputs or/and the input
to the controller. The feedback link is often subject to limited rate, and the inter-
est is to design encoders, decoders and controllers for general channels with memory
and feedback, for reliable communication. It would be interesting to design optimal
encoders, decoders and controllers, which minimize a control pay-off (LQG control the-
ory), subject to a rate constraint, and understand the trade-off between control and
communication performance (see, for example, [105]).

7.2.2. Feedback Capacity of Channels with Memory

The general framework in Chapter 5 can be applied to a variety of channels with mem-
ory and feedback (both finite alphabet and continuous alphabet channels) to compute
explicitly the ergodic feedback capacity.
The problem of characterizing explicitly the closed form expression of feedback capac-
ity has been an open problem for over half a century. The sequential necessary and
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sufficient conditions of Chapter 5 can be a cornerstone towards the complete character-
ization of the extremum problem of capacity for channels with memory and feedback.
In addition, the framework established in Chapter 5 can be also applied to channels of
different information structures, such as, channels of the form {PYt|Y t−1

t−M ,X
t−1
t−L

: t ∈ Nn
0},

for {M,L} are nonnegative finite integers (see, for example, [49]).

7.2.3. Filtering Based on Nonanticipative RDF

The general framework of Chapter 6 can be utilized in Bayesian estimation theory
(see [61]) to derive recursive filters for time-varying multidimensional Gauss-Markov
processes, which satisfy a mean square error fidelity. Applications include information
processing of sensor networks and control over limited capacity communication channels
as, for example, in [62].

7.2.4. Symbol-by-symbol Joint Source Channel Coding

In Chapter 6, we discussed the NRDF subject to a JSCC scheme under stationary
and ergodic processes, i.e., by constructing an encoder, and decoder with an AWGN
channel. Provided that one knows the rate distortion of a source with memory or the
channel capacity of a channel with memory with or without feedback, then it is feasible
to perform JSCC and construct the encoders and decoders processing information
causally with zero-delay, like, for example, in [75]. A barely investigated area is the
symbol-by-symbol JSCC scheme in finite time. The difficult of this problem lies on
the fact that the classical arguments of asymptotic information theory does not apply,
instead, tools from non-asymptotic information theory are needed.

7.2.5. Sequential Algorithms for Maximizing Directed
Information

In Chapter 5, Theorem 5.5, can be used to develop sequential algorithms to compute
feedback capacity of channels with memory, with and without transmission cost con-
straint.
This is very important since in some cases, i.e., when the input-output alphabet is large
or the channel matrix is time-varying, non-symmetric or singular (non-invertible), it is
difficult to find analytical expressions of capacity of channels with memory and feed-
back. An efficient way to overcome these difficulties is to create dynamical algorithms
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to numerically evaluate the capacity achieving input distributions over time in the
sense of the classical BAA (see [21]).
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8
Background Material

In this section, we introduce the basic analytical concepts which are used throughout
the chapter.

Weak Convergence and Compactness.
The main notions discussed are weak convergence of probability measures, the relation
to convergence with respect to Prohorov metric, tightness of a family of probability
measures, relative compactness, weak compactness, and compactness.
Let (X , d) be a metric space, B(X ) the σ−algebra of Borel subsets of X , and M(X )
is the family of probability measures on X . Let BC(X ) denote the set of bounded,
continuous real-valued function f on (X , d) endowed with the supremum norm ||f || =
supx∈X |f(x)|. From [44] it is known that each P ∈ M(X ) is uniquely determined by
the integrals {

∫
X f(x)dP (x) : f ∈ BC(X )}. A sequence {Pn : n ≥ 1} ⊂ M(X ) is said

to converge weakly to P ∈M(X ) if

lim
n→∞

∫
X
f(x)dPn(x) =

∫
X
f(x)dP (x), ∀f ∈ BC(X ).

Weak convergence of {Pn : n ≥ 1} to P is denoted by Pn w−→ P.

The space M(X ) can be made into a Hausdorff topological space by taking as basic
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neighbourhoods of P ∈M(X ) all sets the form
Q ∈M(X ) :

∣∣∣∣ ∫
X
fi(x)dQ(x)−

∫
X
fi(x)dP (x)

∣∣∣∣ < ε, i = 1, . . . , k


where ε > 0 and f1, f2, . . . , fk ∈ BC(X ), k = 1, 2, . . .. The resulting topology is called
the topology of weak convergence or weak topology. Hence, a sequence {Pn : n ≥ 1}
converges to P in this topology if and only if Pn w−→ P . The spaceM(X ) is metrizable
with respect to the Prohorov metric [43], denoted by L(·, ·), and with respect to this
metric M(X ) is a Hausdorff topological space.
The following theorem gives fundamental results regarding (M(X ),L).

Theorem 8.1. [70, pp. 43–46]
Let (X , d) be a metric space.

1) If X is separable, then M(X ) is separable.

2) If (X , d) is complete and separable, then (M(X ),L) is a complete separable metric
space (with respect to the Prohorov metric L).

3) If (X , d) is compact metric space, then (M(X ),L) is a compact metric space.

Thus, separability is a topological property while completeness is a property of the
metric. Statement Theorem 8.1, 3) (due to Prohorov) states that for (X , d) a metric
space and X compact, then any sequence {Pn : n ≥ 1} of probability measures of X
possess a convergent subsequence (with respect to the Prohorov metric).
A crucial result for the characterization of compact subsets ofM(X ) is the next theo-
rem due to Prohorov, which relates compactness and tightness of a set of measures.

Definition 8.1. (Tight Measures) [43, p. 308]
A probability measure P ∈ M(X ) is said to be tight if for every ε > 0 there exists a
compact set K ⊂ X such that P (K) ≥ 1− ε or P (Kc) < ε. Moreover, a family of
probability measures M ⊂M(X ) is said to be tight or uniformly tight if for every ε > 0
there exists a compact set K ⊂ X such that infP∈M P (K) ≥ 1− ε.

Thus, M 4= {Pn : n ≥ 1} is uniformly tight if for every ε > 0 there exist a compact
set K ⊂ X such that Pn(K) ≥ 1− ε, n = 1, 2, . . .. The definition of relative and weak
compactness is defined below.

Definition 8.2. (Relative and Weak Compactness)
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1) [44, Ch. 1, p. 57] A family of probability measures M ⊂M(X ) is said to be relatively
compact (with respect to Prohorov metric) if each sequence {Pn : n ≥ 1} of elements in
M contains some subsequence {Pni : i ∈ {1, 2, . . .}} converging (as i −→ ∞) to some
probability measure P ∈ M(X ) with respect to the Prohorov metric L(·, ·). Here, the
limit P is not required to belong to M, but it is required to belong to M(X ).

2) [44, Ch. 1, Corollary, p. 59] A family of probability measures M ⊂M(X ) is said to
be weakly compact or relatively compact (with respect to weak convergence) if 1) holds
with convergence tested with respect to weak convergence.

The following theorem due to Prohorov, relates weak convergence and tightness of a
family of probability measures.

Theorem 8.2. [43, Theorem A.3.15, p. 309](Prohorov’s Theorem)
Let (X , d) be complete and separable metric space and let a family of probability mea-
sures M such that M ⊂M(X ). Then, the family of probability measures M is relatively
compact with respect to weak convergence if and only if it is tight.

Note that if (X , d) is an arbitrary metric space and M ⊂M(X ) a family of probability
measures, then tightness of M implies relative compactness of M, but the reverse is
not valid. However, when (X , d) is complete separable metric space, then relative
compactness and weak compactness are equivalent notions. Therefore, a family of
probability measures M ⊂ M(X ) on a complete separable metric space (X , d) is
weakly compact or relatively compact with respect to weak convergence if and only if
it is tight. Moreover, if Pn w−→ P , then the family {Pn : n ≥ 1} is tight.
Finally, we give another version due to Prohorov for a set of measures M ⊂M(X ) to
be compact.

Theorem 8.3. (Corollary of Prohorov’s Theorem)
Let (X , d) be a separable metric and M ⊂ M(X ) a set of measures. The following
hold.

(a) If M is closed and tight, then M is compact.

(b) Suppose X is complete. If M is compact then M is closed and tight.

That is, for (X , d) a separable metric space a sufficient condition for compactness of
M ⊂ M(X ) is that M is closed and tight. If X is also complete, then this condition
is also necessary.
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In what follows, we give the definition of weak continuity of conditional distributions,
which is often associated with proving results using weak convergence of probability
distributions, and we distinguish it from strong continuity.

Definition 8.3. (Strong and weak continuity)
Let (X , d), (Y , d′) be metric spaces, Q(·|·) ∈ Q(Y|X ) a conditional distribution, and
define by BM(Y) the set of bounded measurable functions on Y. Then Q(·|·) ∈ Q(Y|X )
is said to be
1) strongly continuous if the function mapping

x 7−→
∫
Y
f(y)Q(dy|x) ∈ BC(Y)

whenever f(·) ∈ BM(Y),
2) weakly continuous if the function mapping

x 7−→
∫
Y
f(y)Q(dy|x) ∈ BC(Y)

whenever f(·) ∈ BC(Y).

It can be shown that strong continuity is equivalent to Q(B|·) being continuous on
Y for every set B ∈ B(Y) (i.e., its conditional distribution is continuous), and this is
much stronger than weak continuity of Q(·|·) ∈ Q(Y|X ).

Lebesgue’s Dominated Convergence Theorems (LDCT).
In this chapter we often need to establish convergence of a sequence of integrals. Suffi-
cient conditions are given by LDCT, which allow one to interchange the limit and the
integral. We state these Lebesgue’s theorems below.

Theorem 8.4. [111, Theorem 3, p. 187](Lebesgue’s Dominated Convergence Theorem
(LDCT))
Let (Ω,F ,P) be a probability space and Y,X,X1, X2, . . . be RV’s such that |Xn| ≤ Y ,
for all n ≥ 1, EY <∞ and Xn

a.s.=⇒ X.
Then E|X| <∞,

a) limn→∞ EXn = EX;

b) limn→∞ E|Xn −X| = 0.

The previous theorem can be generalized as follows.
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Corollary 8.1. [111, Corollary, p. 188](LDCT in Lp-Spaces)
Let (Ω,F ,P) be a probability space and Y,X,X1, X2, . . . be RV’s such that |Xn| ≤ Y ,
Xn

a.s.=⇒ X and EY p <∞ for some p > 0. Then E|X|p <∞ and limn→∞ E|X−Xn|p =
0.

Theorem 8.5. [112, Exercise 20, p. 59](Generalized LDCT)
Let {fn : n ≥ 1}, {gn : n ≥ 1}, f, g ∈ L1, fn a.s.=⇒ f , gn a.s.=⇒ g, |fn| ≤ gn for all n ≥ 1,
and limn→∞

∫
gndP =

∫
gdP. Then limn→∞

∫
fndP =

∫
fdP.

Uniform Integrability.
In this chapter we shall also need stronger sufficient conditions to verify convergence of
a sequence of integrals using the concept of uniform integrability. We state this next.

Definition 8.4. [111, Definition 4, p. 188](Uniform Integrability of RV’s)
Let (Ω,F ,P) be a probability space. A sequence of RV’s {Xn : n ≥ 1} is said to be
uniformly P-integrable if

lim
c→∞

sup
n≥1

∫
{ω:|Xn(ω)|≥c}

|Xn(ω)|dP(ω) = 0.

Equivalently,

sup
n≥1

E
{
|Xn|I{|Xn)|>c}

}
−→ 0, as c→∞.

Note that if {Xn : n ≥ 1} satisfy |Xn| ≤ Y and E{Y } < ∞, then the sequence
{Xn : n ≥ 1} is uniformly integrable. Also, for the space Lp(Ω,F ,P), p ≥ 1, (the
space of RV’s with finite absolute p−th moments, E

{
|X|p

}
< ∞), if L ⊂ Lp(Ω,F ,P)

is bounded for some p > 1 then L is uniformly integrable.
The following theorem gives some properties for a family of uniformly integrable RV’s.

Theorem 8.6. [111, Theorem 4, pp. 188-189](Uniform Integrability of RV’s)
Let (Ω,F ,P) be a probability space and {Xn : n ≥ 1} a uniformly P-integrable family
of RV’s. Then

(a) E lim infnXn ≤ lim infn EXn ≤ lim supn EXn ≤ E lim supnXn.

(b) If in addition Xn
a.s.=⇒ X, then E|X| < ∞, limn→∞ E|Xn| = E|X| and

limn→∞ E
{
|Xn −X|

}
= 0.

Definition 8.4 describes uniform integrability when the integrand is a sequence and
the probability measure is fixed. In the next definition of uniform integrability the
integrand is fixed but the probability measure is a sequence.
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Definition 8.5. [65, Appendix, Definition A.2, p. 3084](Uniform Integrability for a
family of probability measures)
Let M ⊂ M(X ) be a family of probability measures on

(
X ,B(X )

)
. A measurable

function f is said to be uniformly integrable over M if

lim
c→∞

sup
P∈M

∫
{x∈X :|f(x)|>c}

|f(x)|dP (x) −→ 0.

A sufficient condition for the convergence of a sequence of integrals of a function with
respect to a weakly convergent sequence of measures is the following.

Theorem 8.7. [65, Appendix, Theorem A.2, p. 3084]
Let M ⊂ M(X ) be a closed family of probability measures on

(
X ,B(X )

)
, and let

{Pn : n ≥ 1} ⊂M be a weakly convergent sequence in M . If f is a continuous function
and uniformly integrable over {Pn : n ≥ 1} then limn→∞

∫
fdPn =

∫
fdP .

Regular Conditional Probability Measures and their Properties.
In this chapter we extensively utilized conditional distribution and expectation. Hence
we shall need their precise definitions, given in terms of the Radon-Nikodym Derivative.
For any two measurable spaces (E, E) and (F,F), denote by E � F , the σ-algebra on
E × F generated by the collection of all measurable rectangles A × B

4= {(x, y) :
x ∈ A, y ∈ B}, A ⊂ E , B ⊂ F , called the product σ-algebra; the measurable space
(E × F, E � F) is called the product space of (E, E) and (F,F).
Let (Ω,F) be a measurable space. Given two probability measures P,Q on (Ω,F), Q
is said to be absolutely continuous with respect to P (denoted P � Q) if for every
A ∈ F such that P (A) = 0 then Q(A) = 0. If Q� P, by Radon-Nikodym Derivative
theorem, there exists a P−integrable and F−measurable function f such that for every
A ∈ F , Q(A) =

∫
A f(ω)dP (ω). The function f is unique P − a.e. (almost everywhere)

and is called the Radon-Nikodym Derivative (RND) density of Q with respect to P,

denoted by f(ω) = dQ
dP
|F(ω). That is, if f̄ is another function satisfying these properties,

there exists a P−null set N such that f(ω) = f̄(ω), ∀ω ∈ N c 4= (Ω \N).This relation
is denoted by f(ω) = f̄(ω), P − a.s., and we say that the RND f is unique P − a.s. If
in addition to Q� P, also P � Q holds, then P and Q are called equivalent denoted
by Q ∼ P.

Next, we state the definition of a regular conditional probability measure, from which
the regular conditional distribution of one RV given another RV can be defined.

Definition 8.6. [43, A.4, pp. 312-313](Regular Conditional Probability Measure)
Let (Ω,F ,P) be a probability space and G be a sub-σ-algebra of F . A regular conditional
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probability measure P (·|G)(·) on (Ω,F) is a function P (A|G)(ω), A ∈ F , ω ∈ Ω having
the following properties.

(a) For each A ∈ F , the function mapping ω ∈ Ω 7−→ P (A|G)(ω) is measurable with
respect to G.

(b) For each ω ∈ Ω, P (·|G)(ω) is a probability measure on F .

(c) For each A ∈ F , P (A|G)(ω) is a version of the conditional probability of A given G.
Moreover,

P (A ∩B) =
∫
B
P (A|G)(ω)PG(dω), ∀A ∈ G

where PG is the restriction of P to G.

Statements (a) and (c) state that P (A|G)(ω) is a version of the conditional probability
of A given G (and it is a function of ω). If such a version P (·|G)(·) exists then it is
unique in the sense that, if P̄ (·|G)(·) is another function with these properties, then
there exists a PG−null set N such that P (A|G)(ω) = P̄ (A|G)(ω), ∀A ∈ F and ω ∈ N c

(e.g., P (·|G)(ω) = P̄ (·|G)(ω), PG − a.s.). Thus, a regular conditional probability mea-
sure exists if it can be shown that a version of the conditional probability measure can
be chosen to be a probability measure on F for each ω ∈ Ω. Although in general, a
regular conditional probability measure may not exist, for the case when G is generated
by a countable partition of Ω, a regular conditional probability measure given G always
exists. Moreover, if (Ω, d) is a metric space which is complete and separable (Polish
space), and F is a Borel σ−algebra, then for any probability measure P on (Ω,F)
and any sub-σ-algebra G ⊆ F , a regular conditional probability measure of P given G
always exists.
The next lemma summarizes the relationship between the absolute continuity of prob-
ability measures and the absolute continuity of the corresponding regular probability
measures. This result is found in [113, Lemma 2].

Lemma 8.1. (Absolute Continuity of Probability Measures and regular conditional
probability measures)

a) Suppose QG � PG. If Q(·|G)(ω)� P (·|G)(ω), QG − a.s., then Q� P.

b) Conversely, if Q� P, then Q(·|G)(ω)� P (·|G)(ω), QG − a.s.

Note that if Y : (Ω,F) 7−→ (Y ,A) is a RV on (Ω,F) into a measurable space (Y ,A)
and Y is a Polish space, then a regular conditional distribution for Y given the sub-σ-
algebra G of F denoted by P (dy|G)(ω) is defined according to Definition 8.6, and this
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always exists.
Additionally, if X : (Ω,F) 7−→ (X ,B) is a RV on (Ω,F) into a measurable space
(X ,B), and G is the sub-σ-algebra of F generated by X, then P (dy|X)(ω) is called the
regular conditional distribution of Y given X. One can go one step further to define a
regular conditional distribution for Y given X = x as a quantity P (dy|X = x), and
introduce an equivalent definition called stochastic kernel.

Definition 8.7. [43, p. 28 and Theorem A.5.2, pp. 316-317](Stochastic Kernel)
Consider the measurable spaces (X ,B), (Y ,A).
A stochastic Kernels is a mapping q : A × X → [0, 1] satisfying the following two
properties:

1) For every x ∈ X , the set function q(·|x) is a probability measure on A;

2) for every F ∈ A, the function q(F |·) is B-measurable.
The set of stochastic kernels on Y given X is denoted by Q(Y|X ).

The next important result relates a certain measurability called consistency of con-
ditional distributions to the existence of a sequence of stochastic kernels.

Theorem 8.8. [66, Chapter 1, Theorem 1.1, pp. 4-5](Equivalence of Consistent Fam-
ily of Measures and a Sequence of Conditional Distributions)
Let {(Xn,B(Xn)) : n ∈ N0} be complete separable metric spaces (Polish spaces) with
B(Xn) a σ−algebra of Borel sets. For any family of measures P(·|y) on (X N0 ,B(X N0))
satisfying consistency condition
C1: If E ∈ B(X n) then P(E0,n|y) is a B(Yn−1)−measurable function of y ∈ YN0,
and there exists a family of conditional distributions {pn(dxn|xn−1, yn−1) : n ∈ N0}
satisfying the conditions
i) For every n ∈ N0 and any (xn−1, yn−1) ∈ X n×Yn−1, pn(·|xn−1, yn−1) is a probability
measure on B(Xn);
ii) For every n ∈ N0, pn(An|xn−1, yn−1) is �n−1

i=0

(
B(Xi) � B(Yi)

)
-measurable function

of xn−1 ∈ X n−1, yn−1 ∈ Yn−1;
such that

P(C|y) 4=
∫
C0
p0(dx0)

∫
C1
p1(dx1|x0, y0) . . .

∫
Cn
pn(dxn|xn−1, yn−1), C = ×ni=0Ci.

Convexity of Regular Conditional Distributions.
Next, we give the definition of the well-known convexity properties of the family of
conditional distributions.
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LetM(Ω,F ,G, P ), G ⊆ F denote the set of all probability measures Q on (Ω,F) such
that Q� P and QG ∼ PG. Here P is a fixed probability measure. LetM(Ω,F , P |G)(ω)
denote the set of all regular conditional probability measures on (Ω,F) conditional on
G defined by M(Ω,F , P |G)(ω) 4= {Q(·|G) : Q ∈ M(Ω,F ,G, P )}. Next, we define the
almost sure-convexity of the set of regular conditional distributions.

Definition 8.8. (Almost Sure Convexity of a Set of Regular Conditional Probability
Measures)
We say that the set M(Ω,F , P |G)(ω) is convex if the following property holds.
Given Q1(·|G)(ω), Q2(·|G)(ω) in M(Ω,F , P |G)(ω) and λ ∈ (0, 1), there exists a prob-
ability measure Q̂ on (Ω,F) whose regular conditional probability measure Q̂(·|G(ω) ∈
M(Ω,F , P |G)(ω) satisfies Q̂(·|G)(ω) = λQ1(·|G)(ω) + (1−λ)Q2(·|G)(ω), PG-a.s. That
is, there exists a PG-null set N such that for such D ∈ F and for all ω ∈ N c,

Q̂(D|G)(ω) = λQ1(D|G)(ω) + (1− λ)Q2(D|G)(ω).

This property is denoted by λQ1(·|G)(ω) + (1− λ)Q2(·|G)(ω) ∈M(Ω,F , P |G)(ω).

Relative Entropy.
Mutual information is often defined via the relative entropy or Kullback-Leibler dis-
tance between two distributions. Next, we give the definition and the chain rule of
relative entropy.

Definition 8.9. [30, Definition 1.4.1, p. 21](Relative Entropy)
Given a measurable space (Z,B(Z)), the relative entropy between two probability mea-
sures P ∈M(Z) and Q ∈M(Z) is defined by

D(P ||Q) 4=


∫
Z log

(
dP
dQ

)
dP =

∫
Z log

(
dP
dQ

)
dP
dQ
dQ if P � Q

+∞ otherwise

where dP
dQ

denotes the RND (density) of P with respect to Q, and P � Q denotes
absolute continuity of Q with respect to P (e.g., Q(A) = 0 for some A ∈ B(Z) then
P (A) = 0).

The previous definition is often used to define mutual information between RV’s X
and Y via I(X;Y ) 4= D(PX,Y ||PX × PY ). However, it is often desirable to express
I(X;Y ) as a functional of distribution PX and conditional distribution PY |X . This is
established via the chain rule of relative entropy given below.
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Theorem 8.9. [43, Theorem B.2.1, p. 326](Chain Rule of Relative Entropy)
Let (X ,B) and (Y ,A) be polish (complete separable metric spaces) spaces and P and
Q be probability measures on X × Y . Let P1 and Q1 the first marginals of P and Q

(e.g., P1(A) = P (A×Y) and Q1(A) = Q(A×Y), ∀A ∈ B) respectively, and by α(dy|x)
and β(dy|x) the stochastic kernels on Y given X for which we have the decomposition,
P (dx, dy) = P1(dx) ⊗ α(dy|x) and Q(dx, dy) = Q1(dx) ⊗ β(dy|x). Then the function
mapping x 7→ H(α(·|x)||β(·|x)) is measurable and

H(P ||Q) = H(P1||Q1) +
∫
X
H(α(·|x)||β(·|x))P1(dx).

By invoking the chain rule of relative entropy with an appropriate choice of P and Q

and Lemma 8.1, it can be shown that I(X;Y ) =
∫
X D

(
PY |X(·|x)||PY (·)

)
× PX(dx).
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Proofs of Chapter 2

A.1. Proof of Theorem 2.2

1) Fix←−P 0,n(·|yn−1) ∈MC1(X n) and let −→Q
1
0,n(·|xn), −→Q

2
0,n(·|xn) ∈MC2(Yn). Then, the

joint distributions corresponding to −→Q
1
0,n(·|xn), −→Q

2
0,n(·|xn) are

(←−P 0,n ⊗
−→
Q

1
0,n)(dxn, dyn) and (←−P 0,n ⊗

−→
Q

2
0,n)(dxn, dyn),

and the marginals are

ν1
0,n(dyn) = (←−P 0,n ⊗

−→
Q

1
0,n)(X n, dyn), ν2

0,n(dyn) = (←−P 0,n ⊗
−→
Q

2
0,n)(X n, dyn).

Since the setMC2(Yn) is convex, given λ ∈ (0, 1) there exists a probability measure P̃
on (X N0×YN0 ,B(X N0)⊗B(YN0)) whose regular conditional measure Q(·|x) ∈M(YN0)
satisfies

−→
Q 0,n(·|xn) = λ

−→
Q

1
0,n(·|xn) + (1− λ)−→Q

2
0,n(·|xn), P̄

∣∣∣
B(Xn)

− a.e. xn

and C1 holds. Define

ν0,n(dyn) = λν1
0,n(dyn) + (1− λ)ν2

0,n(dyn).
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Introduce the RNDs Λi
0,n(xn, yn) = d

−→
Q
i

0,n(·|xn)
dνi0,n(·) (yn), Ψi

0,n(xn, yn) = d
−→
Q
i

0,n(·|xn)
dν0,n(·) (yn),

Ki
0,n(yn) = dνi0,n(·)

dν0,n(·)(y
n) and Λ0,n(xn, yn) = d

−→
Q0,n(·|xn)
dν0,n(·) (yn), i = 1, 2. Then,

λΨ1
0,n(xn, yn) + (1− λ)Ψ2

0,n(xn, yn) = λ
d
−→
Q

1
0,n(·|xn)
dν0,n(·) (yn) + (1− λ)

d
−→
Q

2
0,n(·|xn)
dν0,n(·) (yn)

=
d
(
λ
−→
Q

1
0,n(·|xn) + (1− λ)−→Q

2
0,n(·|xn)

)
d
(
λν1

0,n(·) + (1− λ)ν2
0,n(·)

) (yn)

= Λ0,n(xn, yn)

and

λK1
0,n(yn) + (1− λ)K2

0,n(yn) = λ
dν1

0,n(·)
dν0,n(·)(yn) + (1− λ)

dν2
0,n(·)

dν0,n(·)(yn)

=
d
(
λν1

0,n(·) + (1− λ)ν2
0,n(·)

)
d
(
λν1

0,n(·) + (1− λ)ν2
0,n(·)

)(yn) = 1.

Applying the log-sum formula [3, Theorem 2.7.1, p. 31] yields

λΨ1
0,n(xn, yn) log Λ1

0,n(xn, yn) + (1− λ)Ψ2
0,n(xn, yn) log Λ2

0,n(xn, yn)

= λΨ1
0,n(xn, yn) log

 d
−→
Q

1
0,n(·|xn)
dν0,n(·) (yn)
dν1

0,n(·)
dν0,n(·)(yn)

+ (1− λ)Ψ2
0,n(xn, yn) log

 d
−→
Q

2
0,n(·|xn)
dν0,n(·) (yn)
dν2

0,n(·)
dν0,n(·)(yn)



= λ
d
−→
Q

1
0,n(·|xn)
dν0,n(·) (yn) log

λd
−→
Q

1
0,n(·|xn)
dν0,n(·) (yn)

λ
dν1

0,n(·)
dν0,n(·)(yn)



+ (1− λ)
d
−→
Q

2
0,n(·|xn)
dν0,n(·) (yn) log

(1− λ)d
−→
Q

2
0,n(·|xn)
dν0,n(·) (yn)

(1− λ)dν
2
0,n(·)

dν0,n(·)(yn)



≥

λd−→Q 1
0,n(·|xn)
dν0,n(·) (yn) + (1− λ)

d
−→
Q

2
0,n(·|xn)
dν0,n(·) (yn)



× log
λd

−→
Q

1
0,n(·|xn)
dν0,n(·) (yn) + (1− λ)d

−→
Q

2
0,n(·|xn)
dν0,n(·) (yn)

λ
dν1

0,n(·)
dν0,n(·)(yn) + (1− λ)dν

2
0,n(·)

dν0,n(·)(yn)



=
d
−→
Q 0,n(·|xn)
dν0,n(·) (yn) log

d
−→
Q 0,n(·|xn)
dν0,n(·) (yn).
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Integrating the above with respect to ν0,n(dyn)⊗←−P 0,n(dxn|yn−1) yields:

∫
Xn×Yn

log
(d−→Q 0,n(·|xn)

dν0,n(·) (yn)
)d−→Q 0,n(·|xn)

dν0,n(·) (yn)
(
ν0,n(dyn)⊗←−P 0,n(dxn|yn−1)

)

=
∫
Xn×Yn

log
(d−→Q 0,n(·|xn)

dν0,n(·) (yn)
)

(−→Q 0,n ⊗
←−
P 0,n)(dxn, dyn)

≤ λ
∫
Xn×Yn

log
(d−→Q 1

0,n(·|xn)
dν1

0,n(·) (yn)
)

(−→Q
1
0,n ⊗

←−
P 0,n)(dxn, dyn)

+ (1− λ)
∫
Xn×Yn

log
(d−→Q 2

0,n(·|xn)
dν2

0,n(·) (yn)
)

(−→Q
2
0,n ⊗

←−
P 0,n)(dxn, dyn).

Hence,

IXn→Y n
(←−
P 0,n, λ

−→
Q

1
0,n + (1− λ)−→Q

2
0,n

)
≤ λIXn→Y n

(←−
P 0,n,

−→
Q

1
0,n

)
+ (1− λ)IXn→Y n

(←−
P 0,n,

−→
Q

2
0,n

)
.

This completes the derivation of 1).
2) Fix −→Q 0,n(·|xn) ∈ MC2(Yn) and let ←−P

1
0,n(·|yn−1), ←−P

2
0,n(·|yn−1) ∈ MC1(X n). Then,

the joint distributions corresponding to ←−P
1
0,n(·|yn−1), ←−P

2
0,n(·|yn−1) are

(←−P
1
0,n ⊗

−→
Q 0,n)(dxn, dyn) and (←−P

2
0,n ⊗

−→
Q 0,n)(dxn, dyn).

The marginals corresponding to ←−P
1
0,n(·|yn−1), ←−P

2
0,n(·|yn−1) are

ν1
0,n(dyn) = (←−P

1
0,n ⊗

−→
Q 0,n)(X n, dyn), ν2

0,n(dyn) = (←−P
2
0,n ⊗

−→
Q 0,n)(X n, dyn).

Since the setMC1(X n) is convex, given λ ∈ (0, 1) there exists a probability measure P̃
on (X N0×YN0 ,B(X N0)⊗B(YN0)) whose regular conditional measure P(·|y) ∈M(X N0)
satisfies

←−
P 0,n(·|yn−1) = λ

←−
P

1
0,n(·|yn−1) + (1− λ)←−P

2
0,n(·|yn−1), P̄

∣∣∣
B(Yn−1)

− a.e. yn−1Pho
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and C2 holds. Then, corresponding to ←−P 0,n(·|yn−1) and −→Q 0,n(·|xn) we have

ν0,n(dyn) =
∫
Xn

(
λ
←−
P

1
0,n(dxn|yn−1) + (1− λ)←−P

1
0,n(dxn|yn−1)

)
⊗
−→
Q 0,n(dyn|xn)

= λ(←−P
1
0,n ⊗

−→
Q 0,n)(X n, dyn) + (1− λ)(←−P

2
0,n ⊗

−→
Q 0,n)(X n, dyn)

= λν1
0,n(dyn) + (1− λ)ν2

0,n(dyn).

Pick any measure U0,n(dyn) ∈ M(Yn) with D(ν0,n||U0,n) < ∞, e.g., such that
ν0,n(·)�U0,n(·). Since −→Q(·|xn)�ν0,n(·), for almost all xn ∈ X n, and ν0,n(·)�U0,n(·),
then −→Q 0,n(·|xn)�U0,n(·), for almost all xn ∈ X n. Consider

IXn→Y n
(←−
P 0,n,

−→
Q 0,n

)
=
∫
Xn×Yn

log
(d−→Q 0,n(·|xn)

dν0,n(·) (yn)
)

(−→Q 0,n ⊗
←−
P 0,n)(dxn, dyn)

=
∫
Xn×Yn

log
(d(−→Q 0,n(·|xn)×U0,n(·)

)
d
(
ν0,n(·)× U0,n(·)

) (yn)
)

(−→Q 0,n ⊗
←−
P 0,n)(dxn, dyn)

=
∫
Xn×Yn

log
(d−→Q 0,n(·|xn)

dU0,n(·) (yn)
)

(−→Q 0,n ⊗
←−
P 0,n)(dxn, dyn)

−
∫
Xn×Yn

log
(
dν0,n(·)
dU0,n(·)(yn)

)
(−→Q 0,n ⊗

←−
P 0,n)(dxn, dyn)

=
∫
Xn×Yn

log
(d−→Q 0,n(·|xn)
dU0,n(dyn) (yn)

)
(−→Q 0,n ⊗

←−
P 0,n)(dxn, dyn)

−
∫
Yn

log
(
dν0,n(·)
dU0,n(·)(yn)

)∫
Xn

(−→Q 0,n ⊗
←−
P 0,n)(dxn, dyn)


=
∫
Xn×Yn

log
(d−→Q 0,n(·|xn)

dU0,n(·) (yn)
)

(−→Q 0,n ⊗
←−
P 0,n)(dxn, dyn)−

∫
Yn

log
(
dν0,n(·)
dU0,n(·)(yn)

)
ν0,n(dyn).

Hence,

IXn→Y n
(
λ
←−
P

1
0,n + (1− λ)←−P

2
0,n,
−→
Q 0,n

)
=
∫
Xn×Yn

log
(d−→Q 0,n(·|xn)

dU0,n(·) (yn)
)

×
−→
Q 0,n(dyn|xn)⊗

(
λ
←−
P

1
0,n(dxn|yn−1) + (1− λ)←−P

2
0,n(dxn|yn−1)

)
−
∫
Yn

log
 dν0,n(·)
dU0,n(·)(yn)

ν0,n(dyn).
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Moreover, relative entropy is convex in both arguments
(
e.g., D(·||U0,n) is convex for

fixed U0,n
)
, hence

IXn→Y n
(
λ
←−
P

1
0,n + (1− λ)←−P

2
0,n,
−→
Q 0,n

)
≥ λ

∫
Xn×Yn

log
(d−→Q 0,n(·|xn)

dU0,n(·) (yn)
)

(−→Q 0,n ⊗
←−
P

1
0,n)(dxn, dyn)

− λ
∫
Yn

log
( dν1

0,n(·)
dU0,n(·)(yn)

)
ν1

0,n(dyn)

+ (1− λ)
∫
Xn×Yn

log
(d−→Q 0,n(·|xn)

dU0,n(·) (yn)
)

(−→Q 0,n ⊗
←−
P

2
0,n)(dxn, dyn)

− (1− λ)
∫
Yn

log
( dν2

0,n(·)
dU0,n(·)

)
ν2

0,n(dyn).

Finally, since ν1
0,n(·)�U0,n(·) and ν2

0,n(·)�U0,n(·) by substituting the following versions
d

(
−→
Q0,n(·|xn)×νi0,n(·)

)
d

(
U0,n(·)×νi0,n(·)

) (yn), i = 1, 2, of the RND for d
−→
Q0,n(·|xn)
dU0,n(·) (yn) in the first and third

RHS expression in the preceding equations yields

IXn→Y n
(
λ
←−
P

1
0,n + (1− λ)←−P

2
0,n,
−→
Q 0,n

)
≥ λIXn→Y n

(←−
P

1
0,n,
−→
Q 0,n

)
+ (1− λ)IXn→Y n

(←−
P

2
0,n,
−→
Q 0,n

)
.

This completes the derivation of 2).
3) Here, it will be shown that for −→Q

1
0,n(·|xn), −→Q

2
0,n(·|xn) ∈ MC2(Yn) such that

−→
Q

1
0,n(·|xn) 6= −→Q

2
0,n(·|xn), and λ ∈ (0, 1), then IXn→Y n

(←−
P 0,n, λ

−→
Q

1
0,n + (1 − λ)−→Q 0,n

)
<

λIXn→Y n
(←−
P 0,n,

−→
Q

1
0,n

)
+ (1 − λ)IXn→Y n

(←−
P 0,n,

−→
Q

2
0,n

)
, for a fixed ←−P 0,n(·|yn−1) ∈

MC1(X n).
It is already known that IXn→Y n(←−P 0,n,

−→
Q 0,n) is a convex functional on −→Q 0,n(·|xn) ∈

MC2(Yn) for a fixed←−P 0,n(·|yn−1) ∈MC1(X n). All is required to show in order to have
strict convexity is that IXn→Y n(←−P 0,n,

−→
Q 0,n) <∞. This can be easily obtained from part

1) since ←−P 0,n⊗
−→
Q 0,n �

←−
P 0,n⊗ ν0,n if and only if −→Q 0,n(·|xn)� ν0,n(·), for µ0,n−almost

all xn ∈ X n. Hence, from the strict convexity of the function slogs, s ∈ [0,∞), and
the expression of directed information as a functional of {←−P 0,n(·|yn−1),−→Q 0,n(·|xn)} ∈
MC1(X n) ×MC2(Yn), with −→Q 0,n(·|xn) = λ

−→
Q 1

0,n(·|xn) + (1 − λ)−→Q
2
0,n(·|xn) it follows
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that

IXn→Y n(←−P 0,n,
−→
Q 0,n) =

∫
Xn×Yn

log
(d(←−P 0,n ⊗

−→
Q 0,n)(·, ·)

−→Π(·, ·)
(xn, yn)

)
(−→Q 0,n ⊗

←−
P 0,n)(dxn, dyn)

=
∫
Xn×Yn

log
(d−→Q 0,n(·|xn)

dν0,n(·) (yn)
)

(−→Q 0,n ⊗
←−
P 0,n)(dxn, dyn)

≤
∫
Xn×Yn

λ log
(d−→Q 1

0,n(·|xn)
dν0,n(·) (yn)

)
(−→Q

1
0,n ⊗

←−
P 0,n)(dxn, dyn)

+
∫
Xn×Yn

(1− λ) log
(d−→Q 2

0,n(·|xn)
dν0,n(·) (yn)

)
(−→Q

2
0,n ⊗

←−
P 0,n)(dxn, dyn)

= λIXn→Y n
(←−
P 0,n,

−→
Q

1
0,n

)
+ (1− λ)IXn→Y n

(←−
P 0,n,

−→
Q

2
0,n

)
<∞.

This completes the derivation of 3). �

A.2. Proof of Theorem 2.3

Part A. Let −→Qα
0,n(·|·) ∈ QC2(Yn|X n), α = 1, 2, . . ., be a sequence of forward channels

and (Xn,(α), Y n,(α)), α = 1, 2, . . . a sequence of the basic joint process corresponding to
the backward channel←−P 0,n(·|·) ∈ QC1(X n|Yn−1) and the sequence of forward channels
−→
Q
α

0,n(·|·) ∈ QC2(Yn|X n), α = 1, 2, . . .. The important steps for the derivation of A1)
are outlined in [66] for stochastic control problems with randomized controls. Since we
shall use A1) and parts of its derivation to show A2)–A4), we give the details of the
derivation.

A1) First, it is shown that the joint distribution of the basic joint process {(X(α)
i , Y

(α)
i ) :

i ∈ N0} converges as α −→∞ to the joint distribution of a joint process {(X(o)
i , Y

(o)
i ) :

i ∈ N0} and secondly, that this limiting joint process {(X(o)
i , Y

(o)
i ) : i ∈ N0} is also a

basic joint process corresponding to the backward channel ←−P 0,n(·|·) ∈ QC1(X n|Yn−1),
that is, (←−P 0,n ⊗

−→
Q
α

0,n)(dxn, dyn) w−→ (←−P 0,n ⊗ Q̄o
0,n)(dxn, dyn) ∈ M(X n × Yn) and

that (←−P 0,n ⊗ Q̄o
0,n)(dxn, dyn) has backward channel ←−P 0,n(·|·) ∈ QC1(X n|Yn−1), but

Q̄o
0,n(·|xn) ∈M(Yn) is not necessarily an element of MC2(Yn).

For any g(·) ∈ BC(Xn), by condition CA, the function

f : X n−1 × Yn−1 7−→ R, f(xn−1, yn−1) 4=
∫
Xn
g(x)pn(dxn|xn−1, yn−1)

is continuous, and hence for any compact sets Ki ∈ Xi, i = 0, 1, . . . , n− 1, and by the
compactness of Yn−1, the image of f(·, ·) under K0,n−1×Yn−1 4= K0×K1× . . .×Kn−1×
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A.2 Proof of Theorem 2.3 237

Yn−1, f(K0,n−1×Yn−1) = R ⊂ R, andR is compact (since the image of any real-valued
continuous function on a compact set is compact). Thus, by condition CA and the com-
pactness of {Yi : i ∈ Nn

0}, for any compact setsK0 ∈ X0, K1 ∈ X1, . . . , Kn−1 ∈ Xn−1 the
family of distributions {pn(·|xn−1, yn−1) : x0∈K0, x1∈K1, . . . , xn−1∈Kn−1, y

n−1 ∈ Yn−1}
is compact. Indeed, given any sequence {x(α)

0 , . . . , x
(α)
n−1, y

(α)
0 , . . . , y

(α)
n−1}, by selecting a

subsequence αi such that the subsequence {x(αi)
0 , . . . , x

(αi)
n−1, y

(αi)
0 , . . . , y

(αi)
n−1} converges

to {x(o)
0 , . . . , x

(o)
n−1, y

(o)
0 , . . . , y

(o)
n−1}, a weakly convergent subsequence of measures

pn(·|x(αi)
0 , . . . , x

(αi)
n−1, y

(αi)
0 , . . . , y

(αi)
n−1) is obtained. Utilizing Prohorov’s theorem (see

Theorem 8.2), we verify that for any sequence of compact sets K0 ⊂ X0, K1 ⊂
X1, . . . , Kn−1 ⊂ Xn−1, and ε1 > 0 a compact set Kn ⊂ Xn can be constructed such
that pn(Kn|xn−1, yn−1) ≥ 1 − ε1, for any yn−1 ∈ Yn−1. To this end, pick ε1 > 0
and construct the compact sets as follows. Choose compact set K0 ⊂ X0 such that
p0(K0) ≥ 1 − ε1

2 , compact set K1 ⊂ X1 such that p1(K1|x0, y0) ≥ 1 − ε1
22 , for any

x0 ∈ K0, y0 ∈ Y0, compact set K2 ⊂ X2 such that p2(K2|x0, x1, y0, y1) ≥ 1− ε1
23 , for any

x0 ∈ K0, x1 ∈ K1, y0 ∈ Y0, y1 ∈ Y1, and compact set Kn such that

pn(Kn|xn−1, yn−1) ≥ 1− ε1
2n+1 . (A.1)

Utilizing (A.1) then

P
{
X

(α)
0 ∈ K0, . . . , X

(α)
n ∈ Kn

}
= P

{
X

(α)
0 ∈ K0, . . . , X

(α)
n ∈ Kn, Y

(α)
0 ∈ Y0, . . . , Y

(α)
n−1 ∈ Yn−1

}
=
∫
×ni=0Ki

∫
Yn−1

P
{
X(α)
n ∈ Kn|X(α)

0 = x0, . . . , X
(α)
n−1 = xn−1, Y

(α)
0 = y0, . . . , Y

(α)
n−1 = yn−1

}
P
{
X

(α)
0 ∈ dx0, . . . , X

(α)
n−1 ∈ dxn−1, Y

(α)
0 ∈ dy0, . . . , Y

(α)
n−1 ∈ dyn−1

}

≥

1− ε1
2n+1

∫
×n−1
i=0 Ki

P
{
X

(α)
0 ∈ dx0, . . . , X

(α)
n−1 ∈ dxn−1

}

=
1− ε1

2n+1

P{X(α)
0 ∈ K0, . . . , X

(α)
n−1 ∈ Kn−1

}

≥

1− ε1
2n+1

1− ε1
2n

P{X(α)
0 ∈ K0, . . . , X

(α)
n−2 ∈ Kn−2

}

=
1− ε1

2n+1 −
ε1
2n + ε21

22n+1

P{X(α)
0 ∈ K0, . . . , X

(α)
n−2 ∈ Kn−2

}

≥

1− ε1
2n+1 −

ε1
2n

P{X(α)
0 ∈ K0, . . . , X

(α)
n−2 ∈ Kn−2

}
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≥

1− ε1
2n+1 −

ε1
2n

1− ε1
2n−1

P{X(α)
0 ∈ K0, . . . , X

(α)
n−3 ∈ Kn−3

}

=
1− ε1

2n+1 −
ε1
2n −

ε1
2n−1 + ε21

22n + ε21
22n−1

P{X(α)
0 ∈ K0, . . . , X

(α)
n−3 ∈ Kn−3

}

≥

1− ε1
2n+1 −

ε1
2n −

ε1
2n−1

P{X(α)
0 ∈ K0, . . . , X

(α)
n−3 ∈ Kn−3

}
. (A.2)

Iterating the RHS of (A.2) we obtain

P
{
X

(α)
0 ∈ K0, . . . , X

(α)
n ∈ Kn

}
≥ 1− ε1

2n+1 −
ε1
2n −

ε1
2n−1 − . . .−

ε1
21 = 1− ε1

n∑
i=1

1
2i+1

≥ 1− ε1, for all α = 1, 2, . . ., and any n ∈ N0.

(A.3)

By (A.3), the family of marginal distributions of the joint process {(X(α)
i , Y

(α)
i ) :

i ∈ N0}, α = 1, 2, . . . on X n is uniformly tight, and by Prohorov’s theorem [70]
it has a weakly convergent subsequence. On the other hand, since {Yi : i ∈ Nn

0}
are compact metric spaces, the family of marginal distributions of the joint sequence
{(X(α)

i , Y
(α)
i ) : i ∈ N0} on Yn is uniformly tight. Utilizing the uniform tightness

of the marginal distribution of the joint process {(X(α)
i , Y

(α)
i ) : i ∈ N0}, then the

family of joint distributions of the joint process {(X(α)
i , Y

(α)
i ) : i ∈ N0} is uniformly

tight. By Prohorov’s theorem [70], the sequence of joint distribution of the joint pro-
cess {(X(α)

i , Y
(α)
i ) : i ∈ N0} possess a weakly convergent subsequence to a joint process

{(X(o)
i , Y

(o)
i ) : i ∈ N0}. A restatement of Prohorov’s theorem states that, if Z is a sepa-

rable metric space then every uniformly tight sequence of measures {γα : α = 1, 2, . . .}
on Z has a subsubsequence which is weakly convergent. Moreover, by [70], if each
subsequence {γαi : i = 1, 2, . . .} of {γα : α = 1, 2, . . .} contains a further subse-
quence {γαim : m = 1, 2, . . .} such that γαim w−→ γo as m −→ ∞, then γα

w−→ γo

as α −→ ∞. Utilizing these facts, then the joint distribution of the joint process
{(X(α)

i , Y
(α)
i ) : i ∈ N0} converges weakly to a joint process {(X(o)

i , Y
(o)
i ) : i ∈ N0}.

Next, we show that the limiting joint process {(X(o)
i , Y

(o)
i ) : i ∈ N0} is a basic

joint process with the same backward channel ←−P (·|·) ∈ QC1(X n|Yn−1). For any
n ∈ N0, consider bounded and continuous real-valued functions gn(·) ∈ BC(Xn)
and Ψ0,n−1(·, ·) ∈ BC(X n−1 × Yn−1). By the weak convergence of the joint mea-
sures corresponding to {(X(α)

i , Y
(α)
i ) : i ∈ N0} to the joint measures corresponding

to {(X(o)
i , Y

(o)
i ) : i ∈ N0} denoted by (←−P 0,n ⊗

−→
Qα

0,n)(dxn, dyn) w−→ P o
0,n(dxn, dyn),
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the continuity of gn(·) and the continuity of the function mapping (xn−1, yn−1) ∈
X n−1 × Yn−1 7−→

∫
Xn gn(x)pn(dx|xn−1, yn−1) ∈ R, given ε > 0 there exists N ∈ N0

such that for all α ≥ N∣∣∣∣∣∣
∫
Xn−1×Yn−1

∫
Xn
gn(x)pn(dx|xn−1, yn−1)

Ψ0,n−1(xn−1, yn−1)P o
0,n−1(dxn−1, dyn−1)

−
∫
Xn−1×Yn−1

∫
Xn
gn(x)pn(dx|xn−1, yn−1)

Ψ0,n−1(xn−1, yn−1)Pα
0,n−1(dxn−1, dyn−1)

∣∣∣∣∣∣ ≤ ε.

Since ε > 0 is arbitrary, then

lim
α→∞

E
{
gn(X(α)

n )Ψ(X(α)
0 , . . . , X

(α)
n−1, Y

(α)
0 , . . . , Y

(α)
n−1)

}

= E
{
gn(X(o)

n )Ψ(X(o)
0 , . . . , X

(o)
n−1, Y

(o)
0 , . . . , Y

(o)
n−1)

}
. (A.4)

Moreover, for all α = 1, 2, . . ., then

E
{
gn(X(α)

n )Ψ(X(α)
0 , . . . , X

(α)
n−1, Y

(α)
0 , . . . , Y

(α)
n−1)

}

= E
{

Ψ(X(α)
0 , . . . , X

(α)
n−1, Y

(α)
0 , . . . , Y

(α)
n−1)E

{
gn(X(α)

n )|X(α)
0 , . . . , X

(α)
n−1, Y

(α)
0 , . . . , Y

(α)
n−1)

}}

= E
{(∫

Xn
gn(x)pn(dx|X(α)

0 , . . . , X
(α)
n−1, Y

(α)
0 , . . . , Y

(α)
n−1)

)
Ψ(X(α)

0 , . . . , X
(α)
n−1, Y

(α)
0 , . . . , Y

(α)
n−1)

}
.

Hence, (A.4) is equivalent to

lim
α→∞

E
{∫
Xn
gn(x)pn(dx|X(α)

0 , . . . , X
(α)
n−1, Y

(α)
0 , . . . , Y

(α)
n−1)Ψ(X(α)

0 , . . . , X
(α)
n−1, Y

(α)
0 , . . . , Y

(α)
n−1)

}

= E
{∫
Xn
gn(x)pn(dx|X(o)

0 , . . . , X
(o)
n−1, Y

(o)
0 , . . . , Y 0

n−1)Ψ(X(o)
0 , . . . , X

(o)
n−1, Y

(o)
0 , . . . , Y

(o)
n−1)

}
.

From the previous equality, the following identity is obtained.

E
{
gn(X(o)

n )|X(o)
0 , . . . , X

(o)
n−1, Y

(o)
0 , . . . , Y

(o)
n−1)

}

=
∫
Xn
gn(x)pn(dx|X(o)

0 , . . . , X
(o)
n−1, Y

(o)
0 , . . . , Y

(o)
n−1)− a.s. (A.5)

Since for any indicator function IE, E ∈ B(Xn) there exists a sequence {gn,j : j =
1, 2, . . .} ⊂ BC(Xn) which is nondecreasing such that gn,j ↑ IE, by utilizing such a
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sequence in (A.5), and by invoking Lebesgue’s monotone convergence theorem then

P
{
X(o)
n ∈ E|X

(o)
0 , . . . , X

(o)
n−1, Y

(o)
0 , . . . , Y

(o)
n−1

}
= pn(E|X(o)

0 , . . . , X
(o)
n−1, Y

(o)
0 , . . . , Y

(o)
n−1).

This shows that the limiting joint process {(X(o)
i , Y

(o)
i ) : i ∈ N0} is a basic pro-

cess corresponding to the backward channel ←−P 0,n(·|yn−1) ∈ MC1(X n) and a for-
ward channel Q̄o

0,n(·|xn) ∈ M(Yn). Moreover, the marginal distributions of the ba-
sic joint process {(X(α)

i , Y
(α)
i ) : i ∈ N0} converge to the marginal distributions of

the basic joint process {(X(o)
i , Y

(o)
i ) : i ∈ N0} corresponding to the backward channel

←−
P 0,n(·|yn−1) ∈ MC1(X n) and a forward channel Q̄o

0,n(·|xn) ∈ M(Yn). This completes
the derivation of A1).

A2) By consistency condition C1, any ←−P 0,n(·|·) ∈ QC1(X n|Yn−1) uniquely defines a
family {pi(·|·, ·) ∈ Q(Xi|X i−1 × Y i−1), i ∈ Nn

0} via (2.9). Hence, (2.9) can be used to
relate tightness of pi(·|xi−1, yi−1) ∈ M(Xi), (xi−1, yi−1) ∈ X i−1 × Y i−1, i ∈ Nn

0 , to
tightness of ←−P 0,n(·|yn−1) ∈MC1(X n), yn−1 ∈ Yn−1.
By recalling the derivation A1), condition (A.1), for K0,n = ×ni=0Ki, Ki ∈ B(Xi) com-
pact sets, i ∈ Nn

0 , then

P(K0,n|y) 4=
∫
K0
p0(dx0)

∫
K1
p1(dx1|x0, y0) . . .

∫
Kn
pn(dxn|xn−1, yn−1)

≥
(

1− ε1
2n+1

)∫
K0
p0(dx0)

∫
K1
p1(dx1|x0, y0) . . .

∫
Kn−1

pn−1(dxn−1|xn−2, yn−2)

≥
(

1− ε1
2n+1

)(
1− ε1

2n

)∫
K0
p0(dx0)

∫
K1
p1(dx1|x0, y0) . . .

∫
Kn−2

pn−2(dxn−2|xn−3, yn−3)

=
1− ε1

2n+1 −
ε1
2n + ε21

22n+1

∫
K0
p0(dx0)

∫
K1
p1(dx1|x0, y0) . . .

∫
Kn−2

pn−2(dxn−2|xn−3, yn−3)

≥

1− ε1
2n+1 −

ε1
2n

∫
K0
p0(dx0)

∫
K1
p1(dx1|x0, y0) . . .

∫
Kn−2

pn−2(dxn−2|xn−3, yn−3).

By repeating the above procedure the following bound is obtained.

P(K0,n|y) ≥ 1− ε1
2n+1 −

ε1
2n −

ε1
2n−1 − . . .−

ε1
21 = 1− ε1

n∑
i=1

1
2i+1

≥ 1− ε1, for any n ∈ N0 and for every y ∈ YN0 .

Since {Ki : i = 0, 1, . . . , n} are compact, from the last inequality it follows that the
family of measures ←−P 0,n(·|yn−1) ∈ MC1(X n), yn−1 ∈ Yn−1 is uniformly tight. This
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A.3 Proof of Lemma 2.1 241

completes the derivation of A2).

A3) Weak compactness of the family of measures −→Q 0,n(·|xn) ∈ MC2(Yn) for fixed
xn ∈ X n follows from the fact that Yn is a compact Polish space.

A4) Utilizing the weak convergence να0,n
w−→ νo0,n

(
shown in A2)

)
, we shall show

weak convergence of the convolution of measures −→Πα
0,n(dxn, dyn) ≡ ←−P 0,n(dxn|yn−1) ⊗

να0,n(dyn) w−→
←−
P 0,n(dxn|yn−1) ⊗ νo0,n(dyn) ≡ −→Π o

0,n(dxn, dyn), when ←−P 0,n(·|yn−1) ∈
MC1(X n) is fixed. We show weak convergence by considering integrals with respect
to g0,n(xn)h0,n(yn), where g0,n(·) ∈ BC(X n) and h0,n(·) ∈ BC(Yn). Let ε > 0 be given.
Condition CA implies that the function mapping

yn−1 ∈ Yn−1 7−→
∫
Xn
g(xn)←−P 0,n(dxn|yn−1) ∈ R (A.6)

is continuous. Hence, by the weak convergence να0,n
w−→ νo0,n and the continuity of the

function mapping (A.6) then there exists N ∈ N0 such that for all α ≥ N

∣∣∣∣∣∣
∫
Yn

∫
Xn
g(xn)←−P 0,n(dxn|yn−1)

h(yn)νo0,n(dyn)

−
∫
Yn

∫
Xn
g(xn)←−P 0,n(dxn|yn−1)

h(yn)να0,n(dyn)

∣∣∣∣∣∣ ≤ ε.

Since ε > 0 is arbitrary, then the derivation of A5) is complete.

Part B. The methodology is similar to that of Part A., hence it is omitted. �

A.3. Proof of Lemma 2.1

By Theorem 2.3, Part A., A2), the family of measures ←−P 0,n(·|yn−1) ∈ MC1(X n) is
tight, and by Appendix A, Section A.2, (A.1), {pi(·|xi−1, yi−1) ∈ MC1(Xi) : i =
0, 1, . . . , n} are tight. Since pi(·|xi−1, yi−1) are probability measures on MC1(Xi),
i = 0, 1, . . . , n, for any sequence ←−P α

0,n(·|yn−1) ∈ MC1(X n), α = 1, 2, . . . , there is a
collection {pαi (·|xi−1, yi−1) : i = 0, 1, . . . , n}, α = 1, 2, . . ., such that

pαi (·|xi−1, yi−1) w−→ poi (·|xi−1, yi−1), i = 0, 1, . . . , n.

Hence, to show closedness of MC1(X n) it suffices to show that

⊗ni=0p
α
i (·|xi−1, yi−1) w−→ ⊗ni=0p

o
i (·|xi−1, yi−1)
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242 A. Proofs of Chapter 2

whenever pαi (·|xi−1, yi−1) w−→ poi (·|xi−1, yi−1), i = 0, 1, . . . , n. This will be shown by
induction.
Consider n = 0. For any h0(·) ∈ BC(X0), by definition of weak convergence we have

lim
α−→∞

∫
X0
h0(x)pα0 (dx0) =

∫
X0
h0(x)po0(dx0).

Consider n = 1. For any h0(·) ∈ BC(X0), h1(·) ∈ BC(X1), we need to show ∀ε > 0,
there exists an N ∈ N+

4= {1, 2, . . .} such that for α > N

∣∣∣∣∣∣
∫
X0
h0(x0)pα0 (dx0)

∫
X1
h1(x1)pα1 (dx1|x0, y0)

−
∫
X0
h0(x0)po0(dx0)

∫
X1
h1(x1)po1(dx1|x0, y0)

∣∣∣∣∣∣ ≤ ε. (A.7)

From the left hand side (LHS) of (A.7), by adding and subtracting terms, we have the
following upper bound, as follows.

A0,1
4=

∣∣∣∣∣∣
∫
X0×X1

h0(x0)h1(x1)pα1 (dx1|x0, y0)pα0 (dx0)−
∫
X0×X1

h0(x0)h1(x1)po1(dx1|x0, y0)po0(dx0)

∣∣∣∣∣∣
≤

∣∣∣∣∣∣
∫
X0×X1

h0(x0)h1(x1)po1(dx1|x0, y0)pα0 (dx0)−
∫
X0×X1

h0(x0)h1(x1)po1(dx1|x0, y0)po0(dx0)

∣∣∣∣∣∣︸ ︷︷ ︸
Term−1

+

∣∣∣∣∣∣
∫
X0×X1

h0(x0)h1(x1)pα1 (dx1|x0, y0)pα0 (dx0)−
∫
X0×X1

h0(x0)h1(x1)po1(dx1|x0, y0)pα0 (dx0)

∣∣∣∣∣∣︸ ︷︷ ︸
Term−2

.

(A.8)

Term-1: Let ε0 > 0 be given, and consider Term-1. By the continuity of the function
mapping (x0, y0) ∈ X0 × Y0 7−→

∫
X1
h(x1)p1(dx1|x0, y0) and the weak convergence

pα1 (·|x0, y0) w−→ po1(·|x0, y0), for each (x0, y0) ∈ X0 × Y0, there exists an N1 ∈ N+ such
that for all α ≥ N1∣∣∣∣∣∣

∫
X0
h0(x0)

(∫
X1
h1(x1)po1(dx1|x0, y0)

)(
pα0 (dx0)− po0(dx0)

)∣∣∣∣∣∣ ≤ ε0. (A.9)

Term-2: Consider Term-2. By the weak convergence, pα0 (dx0) w−→ po0(dx0),
pα1 (dx1|x0, y0) w−→ po1(dx1|x0, y0), for each (x0, y0) ∈ X0 × Y0. According to Prohorov’s
theorem there exist compact subset K0 ⊂ X0 such that pα0 (Kc

0) ≤ ε1, α = 1, 2, . . .,
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and compact subset K1 ⊂ X1 such that pα1 (Kc
1|x0, y0) ≤ ε2, α = 1, 2, . . ., for each

(x0, y0) ∈ X0 × Y0.
Hence, Term-2 is written as follows.

∣∣∣∣∣∣
∫
K0∪Kc

0

h0(x0)
( ∫
X1
h1(x1)pα1 (dx1|x0, y0)

)
pα0 (dx0)

−
∫
K0∪Kc

0

h0(x0)
( ∫
X1
h1(x1)po1(dx1|x0, y0)

)
pα0 (dx0)

∣∣∣∣∣∣
=

∣∣∣∣∣∣
∫
Kc

0

h0(x0)
( ∫
X1
h1(x1)pα1 (dx1|x0, y0)

)
pα0 (dx0)

−
∫
Kc

0

h0(x0)
( ∫
X1
h1(x1)po1(dx1|x0, y0)

)
pα0 (dx0) (A.10)

+
∫
K0
h0(x0)

( ∫
X1
h1(x1)pα1 (dx1|x0, y0)

)
pα0 (dx0)

−
∫
K0
h0(x0)

( ∫
X1
h1(x1)po1(dx1|x0, y0)

)
pα0 (dx0)

∣∣∣∣∣∣
≤
∫
Kc

0

||h0(·)||∞||h1(·)||∞pα0 (dx0) +
∫
Kc

0

||h0(·)||∞||h1(·)||∞pα0 (dx0)

+

∣∣∣∣∣∣
∫
K0
h0(x0)

( ∫
X1
h1(x1)pα1 (dx1|x0, y0)−

∫
X1
h1(x1)po1(dx1|x0, y0)

)
pα0 (dx0)

∣∣∣∣∣∣
≤ 2.||h0(·)||∞||h1(·)||∞pα0 (Kc

0)

+

∣∣∣∣∣∣
∫
K0
h0(x0)

( ∫
X1
h1(x1)pα1 (dx1|x0, y0)−

∫
X1
h1(x1)po1(dx1|x0, y0)

)
pα0 (dx0)

∣∣∣∣∣∣.
≤ 2.||h0(·)||∞||h1(·)||∞.ε1

+ ||h0(·)||∞ sup
x0∈K0

∣∣∣∣∣∣
∫
X1
h1(x1)pα1 (dx1|x0, y0)−

∫
X1
h1(x1)po1(dx1|x0, y0)

∣∣∣∣∣∣. (A.11)

By utilizing condition (2.43), ∀ε2 > 0 there exists N2 ∈ N1 such that for all α ≥ N2

sup
x0∈K0

∣∣∣∣∣∣
∫
X1
h1(x1)pα1 (dx1|x0, y0)−

∫
X1
h1(x1)po1(dx1|x0, y0)

∣∣∣∣∣∣ < ε2, ∀y0 ∈ Y0 (A.12)

Hence, (A.9), (A.11), (A.12), there exists an N ∈ N1 large enough such that for all
α ≥ N2,

A0,1 ≤ ε0 + 2.||h0(·)||∞||h1(·)||∞.ε1 + ||h0(·)||∞.ε.
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Since ε0, ε1, ε2 > 0 are arbitrary, the claim holds for n = 1, as well.
Suppose that for n = k, and for each hi(·) ∈ BC(Xi), i = 0, 1, . . . , k, and ∀ ε > 0, there
exists Nk ∈ N1 such that for each α ≥ Nk∣∣∣∣∣∣

∫
X0,k
⊗ki=0hi(xi)pαi (dxi|xi−1, yi−1)−

∫
X0,k
⊗ki=0hi(xi)poi (dxi|xi−1, yi−1)

∣∣∣∣∣∣ ≤ ε. (A.13)

We need to show that (A.13) holds for n = k + 1, i.e.,

⊗k+1
i=0 p

α
i (·|xi−1, yi−1) w−→ ⊗k+1

i=0 p
o
i (·|xi−1, yi−1)

whenever pαi (·|xi−1, yi−1) w−→ poi (·|xi−1, yi−1), i = 0, 1, . . . , k + 1, and
⊗ki=0p

α
i (·|xi−1, yi−1) w−→ ⊗ki=0p

o
i (·|xi−1, yi−1). The derivation is similar to showing (A.7),

hence it is omitted.
This shows (2.44), hence the set ←−P 0,n(·|yn−1) ∈ MC1(X n) is closed. By Theorem 2.3,
Part A. A2), this set is also tight, hence by Prohorov’s theorem (Chapter 7, Theo-
rem 8.3) it is compact.
This completes the derivation. �

A.4. Proof of Lemma 2.2

(1) Since every probability measure on a compact metric space is weakly compact,
then MC2(Yn) is weakly compact. This means that any sequence {−→Qα

0,n(·|xn) : α =
1, 2, . . .}, possesses a weakly convergent subsequence −→Qαi

0,n(dyn|xn) w−→ Q̄o
0,n(dyn|xn),

for each xn ∈ X n, and hence tight (by Prohorov’s theorem, see Chapter 8, Theo-
rem 8.2), but Q̄o

0,n(dyn|xn) may not be an element of MC2(Yn) (i.e., it may fail to
satisfy consistency condition C2). By Prohorov’s theorem, to show compactness of
MC2(Yn), we need to show Qo

0,n(·|xn) = Q̄o
0,n(·|xn) 4= ⊗ni=0q

o
i (dyi|yi−1, xi), whenever

qαi (dyi|yi−1, xi) w−→ qoi (dyi|yi−1, xi), i = 0, 1, . . . , n (since Yi, i = 0, 1, . . . , n are com-
pact Polish spaces). The method is precisely the same as in Lemma 2.1, hence it is
omitted. Therefore, the set of probability measuresMC2(Yn) is closed, and since it is
also tight, it is compact.
(2) Next, we show that the fidelity set Q0,n(D) is a closed subset of the compact set
MC2(Yn), hence compact itself, that is, for each sequence {−→Qα

0,n(·|xn) : α = 1, 2, . . .} ∈
Q0,n(D) there is a subsequence such that −→Qα

0,n(·|xn) w−→ Qo
0,n(·|xn) ∈ Q0,n(D). Let

{
−→
Qα

0,n(·|xn) : α = 1, 2, . . .} ∈ Q0,n(D) ⊂ MC2(Yn). Since MC2(Yn) is closed and
uniformly tight, and hence compact, there exists a subsequence {−→Qαi

0,n(·|xn) : i =
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1, 2, . . .} ∈ MC2(Yn) and a measure −→Q o
0,n(·|xn) ∈ MC2(Yn) such that −→Qαi

0,n(·|xn) w−→
−→
Q o

0,n(·|xn) for each xn ∈ X n. Recall that d0,n : X n × Yn 7−→ [0,∞] is a Borel mea-
surable, non-negative, and continuous function on yn ∈ Yn. Consider the sequence
{d(k)

0,n
4= d0,n ∧ k : k ∈ N0} which is bounded, and continuous function in the second

argument yn ∈ Yn. By Lebesgue’s monotone convergence theorem, we have

lim
i−→∞

∫
Xn×Yn

d0,n(xn, yn)(µ0,n ⊗
−→
Q
αi

0,n)(dxn, dyn)

= lim
i−→∞

lim
k−→∞

∫
Xn×Yn

d
(k)
0,n(xn, yn)(µ0,n ⊗

−→
Q
αi

0,n)(dxn, dyn)

= lim
i−→∞

sup
k∈N0

∫
Xn×Yn

d
(k)
0,n(xn, yn)(µ0,n ⊗

−→
Q
αi

0,n)(dxn, dyn).

(A.14)

Given ε > 0, there exists k0 ∈ N0 such that

sup
k∈N0

∫
Xn×Yn

d
(k)
0,n(xn, yn)(µ0,n ⊗

−→
Q
αi

0,n)(dxn, dyn)− ε

≤
∫
Xn×Yn

d
(k0)
0,n (xn, yn)(µ0,n ⊗

−→
Q
αi

0,n)(dxn, dyn). (A.15)

Substituting (A.15) in (A.14) and using the fact that d(k0)
0,n is bounded, and continuous

in yn ∈ Yn we obtain the following

lim
i−→∞

∫
Xn×Yn

d0,n(xn, yn)(µ0,n ⊗
−→
Q
αi

0,n)(dxn, dyn)

≤ lim
i−→∞

∫
Xn×Yn

d
(k0)
0,n (xn, yn)(µ0,n ⊗

−→
Q
αi

0,n)(dxn, dyn) + ε

=
∫
Xn×Yn

d
(k0)
0,n (xn, yn)(µ0,n ⊗

−→
Q o

0,n)(dxn, dyn) + ε

≤
∫
Xn×Yn

d0,n(xn, yn)(µ0,n ⊗
−→
Q o

0,n)(dxn, dyn) + ε. (A.16)

On the other hand, for every k ∈ N0, we have

lim
i−→∞

∫
Xn×Yn

d0,n(xn, yn)(µ0,n ⊗
−→
Q
αi

0,n)(dxn, dyn)

≥ lim
i−→∞

∫
Xn×Yn

d
(k)
0,n(xn, yn)(µ0,n ⊗

−→
Q
αi

0,n)(dxn, dyn)

=
∫
Xn×Yn

d
(k)
0,n(xn, yn)(µ0,n ⊗

−→
Q o

0,n)(dxn, dyn).
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Letting k −→∞ we get

lim
i−→∞

∫
Xn×Yn

d0,n(xn, yn)(µ0,n ⊗
−→
Q
αi

0,n)(dxn, dyn)

≥
∫
Xn×Yn

d0,n(xn, yn)(µ0,n ⊗
−→
Q o

0,n)(dxn, dyn). (A.17)

By combining (A.16) and (A.17) and letting ε −→ 0 we get the following equality.

lim
i−→∞

∫
Xn×Yn

d0,n(xn, yn)(µ0,n ⊗
−→
Q
αi

0,n)(dxn, dyn)

=
∫
Xn×Yn

d0,n(xn, yn)(µ0,n ⊗
−→
Q o

0,n)(dxn, dyn).

Next, we show that −→Q o
0,n(·|xn) ∈ Q0,n(D). By non-negativity of d0,n, (A.17) and

Fatou’s lemma we have the following result
∫
Xn×Yn

d0,n(xn, yn)(µ0,n ⊗
−→
Q o

0,n)(dxn, dyn)

=
∫
Xn×Yn

lim
i−→∞

d0,n(xn, yn)(µ0,n ⊗
−→
Q
αi

0,n)(dxn, dyn)

=
∫
Xn×Yn

lim inf
i−→∞

d0,n(xn, yn)(µ0,n ⊗
−→
Q
αi

0,n)(dxn, dyn)

≤ lim inf
i−→∞

∫
Xn×Yn

d0,n(xn, yn)(µ0,n ⊗
−→
Q
αi

0,n)(dxn, dyn) ≤ D

where the last inequality follows from the fact that −→Qαi
0,n(·|xn) ∈ Q0,n(D). Hence,

Q0,n(D) is closed with respect to the topology of weak convergence. Since a closed
subset of a compact set is compact, then Q0,n(D) is compact.
This completes the derivation. �

A.5. Proof of Theorem 2.4

1) We need to show that for any sequence {−→Qα
0,n(·|xn) ∈ MC2(Yn) : α = 1, 2, . . .},

such that −→Qα
0,n(·|xn) w−→

−→
Q o

0,n(·|xn) for each xn ∈ X n then

IXn→Y n(←−P 0,n,
−→
Q o

0,n) ≤ lim inf
α→∞

IXn→Y n(←−P 0,n,
−→
Qα

0,n).

Define the sequence of joint distribution Pα
0,n(dxn, dyn) 4= (←−P 0,n⊗

−→
Qα

0,n)(dxn, dyn), α =
1, 2, . . .. Weak convergence Pα

0,n(dxn, dyn) w−→ (←−P 0,n⊗
−→
Q
o

0,n)(dxn, dyn) ≡ P o
0,n(dxn, dyn)

is shown by considering integrals with respect to a test function φ0,n(·, ·)∈BC(X n×Yn)
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via
∫
Xn×Yn

φ0,n(xn, yn)Pα
0,n(dxn, dyn) =

∫
Xn×Yn

φ0,n(xn, yn)(←−P 0,n ⊗
−→
Q
α

0,n)(dxn, dyn).

By Theorem 2.3, Part A., A1), Pα
0,n(dxn, dyn) w−→ P o

0,n(dxn, dyn). Similarly, consider
−→Π

α

0,n
4= ←−P 0,n ⊗ να0,n α = 1, 2, . . ., where {να0,n : α = 1, 2, . . .} are the marginals of

{Pα
0,n : α = 1, 2, . . .}. Then by Theorem 2.3, Part A., A4) we have

−→Πα
0,n =←−P 0,n ⊗ να0,n

w−→
−→Π o

0,n =←−P 0,n ⊗ νo0,n.

Recall the definition of directed information via relative entropy given by

D(P0,n||
−→Π 0,n) = D(←−P 0,n ⊗

−→
Q 0,n||

←−
P 0,n ⊗ ν0,n) = IXn→Y n(←−P 0,n,

−→
Q 0,n). (A.18)

It is well known that relative entropy is lower semicontinuous, hence

D(P o
0,n||
−→Π o

0,n) = D(←−P 0,n ⊗
−→
Q o

0,n||
−→Π o

0,n) ≤ lim inf
α→∞

D(Pα
0,n||
−→Πα

0,n). (A.19)

By (A.18) it follows that (A.19) is also equivalent to

IXn→Y n(←−P 0,n,
−→
Q o

0,n) ≤ lim inf
α→∞

IXn→Y n(←−P 0,n,
−→
Qα

0,n)

Hence, directed information is lower semicontinuous as a functional of −→Q 0,n(·|xn) ∈
MC2(Yn) for a fixed ←−P 0,n(·|yn−1) ∈MC1(X n). This completes the derivation of 1).
2) The derivation is similar to 1) hence it is omitted.

A.6. Proof of Theorem 2.6

To show continuity of IXn→Y n(·,−→Q 0,n) we need to show that for every sequence
{
←−
P α

0,n(·|yn−1) : α = 1, 2, . . .} such that ←−P α
0,n

w−→
←−
P o

0,n, we have

IXn→Y n(←−P α
0,n,
−→
Q 0,n) −→ IXn→Y n(←−P o

0,n,
−→
Q 0,n).

The derivation is based on the procedure utilized in [65] to show continuity for single
letter mutual information. First, decompose directed information into two terms as
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follows.

IXn→Y n(←−P 0,n,
−→
Q 0,n) =

∫
Xn×Yn

log
(d−→Q 0,n(·|xn)

dν0,n(·) (yn)
)

(←−P 0,n ⊗
−→
Q 0,n)(dxn, dyn)

=
∫
Xn×Yn

log
(d−→Q 0,n(·|xn)

dν0,n(·) (yn)
)

(←−P 0,n ⊗
−→
Q 0,n)(dxn, dyn)

−
∫
Yn

log
(d−→Q 0,n(·|xn)

dν0,n(·) (yn)
)
ν0,n(dyn)

=
∫
Xn×Yn

(
ξν̄0,n(xn, yn) log ξν̄0,n(xn, yn)

)←−
P 0,n(dxn|yn−1)⊗ ν̄0,n(dyn)

−
∫
Yn

(
ξ
ν̄0,n,

←−
P 0,n

(yn) log ξ
ν̄0,n,

←−
P 0,n

(yn)
)
ν̄0,n(dyn), (A.20)

where ξ
ν̄0,n,

←−
P 0,n

(yn) 4= dν0,n(·)
dν̄0,n(·)(y

n) emphasizes the fact that this RND depends on
←−
P 0,n(·|yn−1) via ν̄(·). For now, assume that both terms in on the RHS of the above
formula are finite; the validity of this assumption will be established at the end. Thus,
we only need to show that both terms are bounded and continuous in the weak sense
over MC1,cl(X n).
Continuity of the first term. Since ←−P α

0,n(·|yn−1) w−→
←−
P o

0,n(·|yn−1), by [43, The-
orem A.5.8, p. 320], utilizing Lebesgue’s dominated convergence theorem, we
have ←−P α

0,n ⊗ ν̄0,n
w−→
←−
P o

0,n ⊗ ν̄0,n. Since ξν̄0,n(xn, yn) is continuous, then so is
ξν̄0,n(xn, yn) log ξν̄0,n(xn, yn). By hypothesis, ξν̄0,n(xn, yn) log ξν̄0,n(xn, yn) is uniformly
integrable over

{
ν̄0,n ⊗

←−
P 0,n : ←−P 0,n(·|yn−1) ∈ MC1,cl(X n)

}
. Therefore, using Theo-

rem 8.7, Chapter 8, we conclude that

lim
α→∞

∫
Xn×Yn

ξν̄0,n(xn, yn) log ξν̄0,n(xn, yn)←−P α
0,n(dxn|yn−1)⊗ ν̄0,n(dyn)

=
∫
Xn×Yn

ξν̄0,n(xn, yn) log ξν̄0,n(xn, yn)P o
0,n(dxn|yn−1)⊗ ν̄0,n(dyn). (A.21)

This proves the continuity of the first term. The finiteness of the first term is obtained
from uniform integrability as follows. For a given ε > 0 and sufficiently large c > 0

sup
←−
P 0,n(·|yn−1)∈MC1,cl(Xn)

{ ∫
Xn×Yn

∣∣∣ξν̄0,n(xn, yn) log ξν̄0,n(xn, yn)
∣∣∣I{|ξν̄0,n (xn,yn) log ξν̄0,n (xn,yn)|≥c}

×
←−
P α

0,n(dxn|yn−1)⊗ ν̄0,n(dyn)

+
∫
Xn×Yn

∣∣∣ξν̄0,n(xn, yn) log ξν̄0,n(xn, yn)
∣∣∣I{|ξν̄0,n (xn,yn) log ξν̄0,n (xn,yn)|<c}

×
←−
P α

0,n(dxn|yn−1)⊗ ν̄0,n(dyn)
}
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≤ sup
←−
P 0,n(·|yn−1)∈MC1,cl(Xn)

{ ∫
{|ξν̄0,n (xn,yn) log ξν̄0,n (xn,yn)|≥c}

∣∣∣ξν̄0,n(xn, yn) log ξν̄0,n(xn, yn)
∣∣∣

×
←−
P α

0,n(dxn|yn−1)⊗ ν̄0,n(dyn)
}

+ sup
←−
P 0,n(·|yn−1)∈MC1,cl(Xn)

{ ∫
{|ξν̄0,n (xn,yn) log ξν̄0,n (xn,yn)|<c}

∣∣∣ξν̄0,n(xn, yn) log ξν̄0,n(xn, yn)
∣∣∣

×
←−
P α

0,n(dxn|yn−1)⊗ ν̄0,n(dyn)
}
≤ ε+ c.

Continuity of the second term. For a fixed yn ∈ Yn, since ξν̄0,n(xn, yn) is uniformly
integrable over MC1,cl(X n), by Theorem 8.6, we obtain that ←−P α

0,n
w−→
←−
P o

0,n, im-
plies pointwise convergence of ξ

ν̄0,n,
←−
P α

0,n
(yn) −→ ξ

ν̄0,n,
←−
P o0,n

(yn). By continuity of the
logarithm, we obtain the pointwise convergence of ξ

ν̄0,n,
←−
P α

0,n
(yn) log ξ

ν̄0,n,
←−
P α0,n

(yn) −→
ξ
ν̄0,n,

←−
P o

0,n
(yn) log ξ

ν̄0,n,
←−
P 0

0,n
(yn). It only remains to show convergence under the integral

with respect to ν̄0,n. By (2.51), then ∀α
∣∣∣∣∣∣ξν̄0,n,

←−
P α

0,n
(yn) log ξ

ν̄0,n,
←−
P α0,n

(yn)

∣∣∣∣∣∣ ≤ 2
e ln 2 + ξ

ν̄0,n,
←−
P α

0,n
(yn) log ξ

ν̄0,n,
←−
P α

0,n
(yn)

= 2
e ln 2 +

∫
Xn
ξ
ν̄0,n,

←−
P α

0,n
(yn) log ξ

ν̄0,n,
←−
P α

0,n
(yn)←−P α

0,n(dxn|yn−1) (A.22)

≤ 2
e ln 2 +

∫
Xn

(
ξν̄0,n(xn, yn) log ξν̄0,n(xn, yn)

)←−
P α

0,n(dxn|yn−1).

where (A.22) follows from (A.20) and the nonnegativity of IXn→Y n(←−P 0,n,
−→
Q 0,n). By

(A.21), the integration of the RHS over ν̄0,n converges. Thus, by the generalized
Lebesgue’s dominated convergence theorem [112, p. 59], we conclude that
∫
Yn
ξ
ν̄0,n,

←−
P α

0,n
(yn) log ξ

ν̄0,n,
←−
P α

0,n
(yn)ν̄0,n(dyn) α→∞−→

∫
Yn
ξ
ν̄0,n,

←−
P 0

0,n
(yn) log ξ

ν̄0,n,
←−
P o

0,n
(yn)ν̄0,n(dyn).

This implies the continuity of the second term. Furthermore, its finiteness follows
as before. Since both terms are finite and continuous we deduce continuity of the
directed information IXn→Y n(·,−→Q 0,n) with respect to ←−P 0,n(·|yn−1), for fixed −→Q(·|xn).
This completes the derivation. �Pho
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B
Proofs of Chapter 4

B.1. Proof of Theorem 4.1

Proof. Here, we will show that for {←−P α
0,n(·|bn−1) : α = 1, 2, . . .} ∈ P0,n(κ) such that

←−
P α

0,n(·|bn−1) w−→
←−
P o

0,n(·|bn−1), that ←−P 0
0,n(·|bn−1) ∈ P0,n(κ). Let {←−P α

0,n(·|bn−1) : α =
1, 2, . . .} ∈ P0,n(κ) ⊂ MC1(An). Since by Lemma 2.1 MC1(An) is closed and tight,
and hence compact, there exists a subsequence relabelled as the original sequence
{
←−
P α

0,n : α = 1, 2, . . .} ∈ MC1(An) and a measure ←−P 0
0,n(·|bn−1) ∈ MC1(An) such that

←−
P α

0,n(·|bn−1) w−→
←−
P 0

0,n(·|bn−1) for each bn−1 ∈ B0,n−1. Recall that by Assumption 4.1,
(A3), c0,n : An×B0,n−1 7−→ [0,∞] is a Borel measurable, nonnegative, and continuous
in both arguments (an, bn−1) ∈ An×B0,n−1. Define the sequence {c(k)

0,n
4= c0,n∧k, k ∈ N0}

which is continuous in both arguments (an, bn−1) ∈ An × B0,n−1 and bounded. Then,
for any k ∈ N0, we have

lim sup
α−→∞

∫
An×Bn

c
(k)
0,n(an, bn−1)(←−P α

0,n ⊗
−→
Q 0,n)(dan, dbn)

=
∫
An×Bn

c
(k)
0,n(an, bn−1)(←−P o

0,n ⊗
−→
Q 0,n)(dan, dbn)

≤
∫
An×Bn

c0,n(an, bn−1)(←−P o
0,n ⊗

−→
Q 0,n)(dan, dbn). (B.1)

251
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The last inequality follows from the fact that {c(k)
0,n : k ∈ N0} is non-decreasing. Hence,

from (B.1) there exists α0 ∈ N0 such that for any k ∈ N0

sup
α≥α0

∫
An×Bn

c
(k)
0,n(an, bn−1)(←−P α

0,n ⊗
−→
Q 0,n)(dan, dbn)

≤
∫
An×Bn

c0,n(an, bn−1)(←−P o
0,n ⊗

−→
Q 0,n)(dan, dbn)

and

sup
k

sup
α≥α0

∫
An×Bn

c
(k)
0,n(an, bn−1)(←−P α

0,n ⊗
−→
Q 0,n)(dan, dbn)

≤
∫
An×Bn

c0,n(an, bn−1)(←−P o
0,n ⊗

−→
Q 0,n)(dan, dbn). (B.2)

Clearly,

lim sup
α−→∞

∫
An×Bn

c0,n(an, bn−1)(←−P α
0,n ⊗

−→
Q 0,n)(dan, dbn)

= lim sup
α−→∞

sup
k∈N

∫
An×Bn

c
(k)
0,n(an, bn−1)(←−P α

0,n ⊗
−→
Q 0,n)(dxn, dyn)

= inf
α0

sup
α≥α0

sup
k

∫
An×Bn

c
(k)
0,n(an, bn−1)(←−P α

0,n ⊗
−→
Q 0,n)(dan, dbn)

= inf
α0

sup
k

sup
α≥α0

∫
An×Bn

c
(k)
0,n(an, bn−1)(←−P α

0,n ⊗
−→
Q 0,n)(dan, dbn)

≤ sup
k

sup
α≥α0

∫
An×Bn

c
(k)
0,n(an, bn−1)(←−P α

0,n ⊗
−→
Q 0,n)(dan, dbn). (B.3)

Combining (B.2) and (B.3) we obtain

lim sup
α−→∞

∫
An×Bn

c0,n(an, bn−1)(←−P α
0,n ⊗

−→
Q 0,n)(dan, dbn)

≤
∫
An×Bn

c0,n(an, bn−1)(←−P o
0,n ⊗

−→
Q 0,n)(dan, dbn). (B.4)

For the reverse inequality, notice that for every k ∈ N we have

lim inf
α−→∞

∫
An×Bn

c0,n(an, bn−1)(←−P α
0,n ⊗

−→
Q 0,n)(dan, dbn)

≥ lim inf
α−→∞

∫
An×Bn

c
(k)
0,n(an, bn−1)(←−P α

0,n ⊗
−→
Q 0,n)(dan, dbn)

=
∫
An×Bn

c
(k)
0,n(an, bn−1)(←−P o

0,n ⊗
−→
Q 0,n)(dan, dbn). (B.5)

The equality in (B.5) holds because of c(k)
0,n is bounded and continuous in both argu-

ments. Letting k −→∞ and noting that c(k)
0,n ↑ g0,n, it follows from Lebesgue monotone

Pho
tio

s S
tav

rou



B.1 Proof of Theorem 4.1 253

convergence theorem that

lim inf
α−→∞

∫
An×Bn

c0,n(an, bn−1)(←−P α
0,n ⊗

−→
Q 0,n)(dan, dbn)

≥
∫
An×Bn

c0,n(an, bn−1)(←−P o
0,n ⊗

−→
Q 0,n)(dan, dbn). (B.6)

By combining (B.4) and (B.6), we have that

lim
α−→∞

∫
An×Bn

c0,n(an, bn−1)(←−P α
0,n ⊗

−→
Q 0,n)(dan, dbn)

=
∫
An×Bn

c0,n(an, bn−1)(−→Q 0,n ⊗
←−
P o

0,n)(dxn, dyn).

Hence, ←−P o
0,n(·|yn−1) ∈ P0,n(κ) and P0,n(κ) are closed. Since P0,n(κ) ⊂ MC1(An),

and MC1(An) is compact, utilizing the fact that a closed subset of a compact set is
compact, the compactness of the set P0,n(κ) follows. �
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C
Proofs of Chapter 5

C.1. Feedback Codes

A sequence of feedback codes {(n,Mn, εn) : n = 0, 1, . . . } is defined by the following
elements.
(a) A set of messagesMn , {1, . . . ,Mn} and a set of encoding maps, mapping source
messages into channel inputs of block length (n+ 1), defined by

EFB[0,n](κ) ,
{
gt :Mn × Y t−1 7−→ Xt, x0 = g0(w, y−1), xt = et(w, yi−1), w ∈Mn, t ∈ Nn

0 :
1

n+ 1E
g
(
c0,n(Xn, Y n−1)

)
≤ κ

}
. (C.1)

The codeword for any w ∈ Mn is uw ∈ X n, uw =
(g0(w, y−1), g1(w, y0), , . . . , gn(w, yn−1)), and Cn = (u1, u2, . . . , uMn) is the code
for the message set Mn. In general, the code depends on the initial data Y −1 = y−1

( unless it can be shown that in the limit, as n −→ ∞, the induced channel output
process has a unique invariant distribution).
(b) Decoder measurable mappings d0,n : Yn 7−→ Mn, Y n = d0,n(Y n), such that the
average probability of decoding error satisfies

P(n)
e ,

1
Mn

∑
w∈Mn

Pg
{
d0,n(Y n) 6= w|W = w

}
≡ Pg

{
d0,n(Y n) 6= W

}
≤ εn

255
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where rn , 1
n+1 logMn is the coding rate or transmission rate (and the messages are

uniformly distributed over Mn).
A rate R is said to be an achievable rate, if there exists a code sequence satisfying
limn−→∞ εn = 0 and lim infn−→∞ 1

n+1 logMn ≥ R. The feedback capacity is defined by
C , sup{R : R is achievable}.

By invoking standard techniques often applied in deriving coding theorems, CFB
X∞→Y∞

is the supremum of all achievable feedback codes, provided the following conditions
hold.
(C1) The messages w ∈ Mn to be encoded and transmitted over the channel satisfy
the following conditional independence.

PYt|Y t−1,Xt,W (dyt|yt−1, xt, w) = PYt|Y t−1,Xt(dyt|yt−1, xt), t ∈ Nn
0 . (C.2)

If (C.2) is violated, then I(Xn → Y n) is no longer a tight bound on any achievable
code rate [2].
(C2) There exists a channel input distribution denoted by {P∗Xt|Xt−1,Y t−1 : t ∈
Nn

0} ∈ P0,n which achieves the supremum in CFB
Xn→Y n , and the per unit time limit

limn−→∞
1

n+1C
FB
Xn→Y n exists and it is finite.

If any one of theses conditions is violated, then the arguments of the converse coding
theorem, which are based on Fano’s inequality do not apply.
(C3) The optimal channel input distribution {P∗Xt|Xt−1,Y t−1 : t ∈ Nn

0} ∈ P0,n, which
achieves the supremum in CFB

Xn→Y n induces stability in the sense of Dobrushin [19], of
the directed information density, that is,

lim
n−→∞

PP∗
Xn,Y n

{
(Xn, Y n) ∈ X n × Yn : 1

n+ 1
∣∣∣EP∗{iP∗(Xn, Y n)} − iP∗(Xn, Y n)

∣∣∣ > ε
}

= 0

where iP∗(Xn, Y n) is the directed information density, defined by

n∑
t=0

log
(
dPYt|Y t−1,Xt(·|yt−1, xt)
dPP∗

Yt|Y t−1(·|yt−1) (Yt)
)
.

and the superscript notation indicates the dependence of the distributions on the op-
timal distribution {P∗Xt|Xt−1,Y t−1 : t ∈ Nn

0} ∈ P0,n.
This condition is sufficient to show achievability.
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C.2. Proofs of Section 5.3

C.2.1. Proof of Theorem 5.5

(a) Expressions (5.69), (5.70) can be easily obtained from (5.65) and (5.61). (i) (5.72)
follows from Corollary 5.1, (5.62). We show (5.73), by performing the maximization in
(5.69), using the fact that the problem is convex. For a fixed rn(xn|yn−1

n−M , yn), we calcu-
late the derivative of the right hand side of (5.69) with respect to each of the elements
of the probability vector {πn(xn|yn−1

n−J) : xn ∈ Xn} for a fixed yn−1
n−J ∈ Yn−1

n−J in (5.69), by
introducing the Lagrange multiplier λn(yn−1

n−J) of the constraint ∑xn πn(xn|yn−1
n−J) = 1,

and imposing another Lagrange multiplier s ≥ 0 for the transmission cost constraint
as follows.

∂

∂πn

{ ∑
xn,yn

log
(
rn(xn|yn, yn−1

n−M)
πn(xn|yn−1

n−J)

)
qn(yn|yn−1

n−M , xn)πn(xn|yn−1
n−J)

− s
∑
xn

γn(xn, yn−1
n−N)πn(xn|yn−1

n−J) + λn(yn−1
n−J)

(∑
xn

πn(xn|yn−1
n−J)− 1

)}
= 0, ∀xn ∈ Xn, yn−1

n−J ∈ Yn−1
n−J is fixed (C.3)

where ∂
∂πn

denotes the derivative with respect to a specific element of
{πn(xn|yn−1

n−J) : xn ∈ Xn}, and yn−1
n−J ∈ Yn−1

n−J is fixed. From (C.3), we obtain

πn(xn|yn−1
n−J)

= exp
{∑

yn

log
(
rn(xn|yn, yn−1

n−M

)
qn(yn|yn−1

n−M , xn)− 1− sγn(xn, yn−1
n−N) + λn(yn−1

n−J)
}
,

(C.4)

∀xn ∈ Xn.

From (C.4), in view of ∑xn πn(xn|yn−1
n−J) = 1, we obtain

λ(yn−1
n−J)

= − log
(∑

xn

exp
{∑

yn

log
(
rn(xn|yn, yn−1

n−M

)
qn(yn|yn−1

n−M , xn)− 1− sγn(xn, yn−1
n−N)

})
.

(C.5)

Substituting (C.5) in (C.4) we obtain (5.73). (ii) (5.74) follows from Corollary 5.1,
(5.62). To show (5.75), we repeat the derivation of (5.73), by tracking the additional
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second RHS term in (5.70), to obtain the following expression.

∂

∂πt

{ ∑
xt,yt

log
(
rt(xt|yt−1

t−M , yt)
πt(xt|yt−1

t−J)

)
+ Ct+1(ytt+1−J)

)
qt(yt|yt−1

t−M , xt)πt(xt|yt−1
t−J)

− s
∑
xt

γt(xt, yt−1
t−N)πt(xt|yt−1

t−J) + λt(yt−1
t−J)

(∑
xt

πrt (xt|yt−1
t−J)− 1

)}
= 0, ∀xt ∈ Xt, t ∈ Nn−1

0 .

(C.6)

From (C.6) we obtain

πt(xt|yt−1
t−J)

= exp
{∑

yt

(
rt(xt|yt−1

t−M , yt)
πt(xt|yt−1

t−J)

)
+ Ct+1(ytt+1−J)

)
qt(yt|yt−1

t−M , xt)− 1− sγt(xt, yt−1
t−N) + λt(yt−1

t−J)
}
,

∀xt ∈ Xt, t ∈ Nn−1
0 . (C.7)

Using ∑xt πt(xt|y
t−1
t−J) = 1, t ∈ Nn−1

0 and (C.7) we obtain

λt(yt−1
t−J)

= − log
(∑

xt

exp
{∑

yt

(
rt(xt|yt−1

t−M , yt)
πt(xt|yt−1

t−J)

)
+ Ct+1(ytt+1−J)

)
qt(yt|yt−1

t−M , xt)− 1− sγt(xt, yt−1
t−N)

})
,

(C.8)

t ∈ Nn−1
0 .

Substituting (C.8) in (C.7) we obtain (5.75). (iii) (5.76) follows by substituting (5.72)
into (5.73). (5.77) follows by substituting (5.74) into (5.75).
(c) Since µ(dy−1

−J) is fixed, then (5.78) follows directly from (a), by evaluating Ct(yt−1
t−J)

given by (5.75) at t = 0, and taking the expectation. �

C.2.2. Proof of Theorem 5.6

(a) Recall that the optimization problem given by (5.67) is convex. Hence, we
can apply Kuhn-Tucker theorem [82] to find necessary and sufficient conditions for
{πn(xn|yt−1

t−J) : xn ∈ Xn}, to maximize Cn(yt−1
t−J) by introducing the Lagrange multi-

Pho
tio

s S
tav

rou



C.2 Proofs of Section 5.3 259

plier λn(yt−1
t−J) as follows.

∂

∂πn

 ∑
xn,yn

(
log

(qn(yn|yn−1
n−M , xn)

νπn(yn|yn−1
n−J)

))
qn(yn|yn−1

n−M , xn)πn(xn|yn−1
n−J)

− s
∑
xn

γn(xn, yn−1
n−N)πn(xn|yn−1

n−J) + λn(yn−1
n−J)

(∑
xn

πn(xn|yn−1
n−J)− 1

) ≤ 0.

By performing the differentiation, we obtain

∑
xn,yn

( 1
qn(yn|yn−1

n−M ,xn)
νπn(yn|yn−1

n−J )

)(−qn(yn|yn−1
n−M , xn) ∂

∂πn

(
νπn(yn|yn−1

n−J)
)

(νπn(dyn|yn−1
n−J)2 )

)
qn(yn|yn−1

n−M , xn)πn(xn|yn−1
n−J)

+
∑
yn

log
(qn(yn|yn−1

n−M , xn)
νπn(yn|yn−1

n−J)
))
qn(yn|yn−1

n−M , xn)− sγn(xn, yn−1
n−N) + λn(yn−1

n−J) ≤ 0.

(C.9)

Further simplification of (C.9) gives

∑
yn

log
(qn(yn|yn−1

n−M , xn)
νπn(yn|yn−1

n−J)
))
qn(yn|yn−1

n−M , xn)− sγn(xn, yn−1
n−N) ≤ 1− λn(yn−1

n−J). (C.10)

Multiplying both sides of (C.10) by πn(xn|yn−1
n−J) and summing over xn, for which

πn(xn|yn−1
n−J) 6= 0, gives the necessary and sufficient conditions for maximizing over

πn(xn|yn−1
n−J) given by (5.79)-(5.80), which then implies that Ks

n(yn−1
n−J) = Cn(yn−1

n−J) −
s(n+ 1)κ given by (5.79).
(b) Consider the time t = n− 1. Then by (5.68), Cn(yn−1

n−J) is a function of πn(xn|yn−1
n−J)

which is not subjected to optimization. Applying the Kuhn-Tucker conditions to (5.68)
we have the following.

∂

∂πn−1

 ∑
xn−1,yn−1

(
log

(qn−1(yn−1|yn−2
n−1−M , xn−1)

νπn−1(yn − 1|yn−2
n−1−J)

)
+ Cn(yn−1

n−J)
)
qn−1(yn−1|yn−2

n−1−M , xn−1)

πn−1(xn−1|yn−2
n−1−J)− s

∑
xn−1

γn−1(xn−1, y
n−2
n−1−N)πn−1(xn−1|yn−2

n−1−J)

+ λn−1(yn−2
n−1−J)

( ∑
xn−1

πn−1(xn−1|yn−2
n−1−J)− 1

) ≤ 0.
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By performing differentiation we obtain

∑
xn−1,yn−1

( 1
qn−1(yn−1|yn−2

n−1−M ,xn−1)
νπn−1(yn−1|yn−2

n−1−J )

)(−qn−1(yn−1|yn−2
n−1−M , xn−1) ∂

∂πn−1

(
νπn−1(yn−1|yn−2

n−1−J)
)

(νπn−1(yn−1|yn−2
n−1−J)2 )

)

qn−1(yn−1|yn−2
n−1−M , xn−1)πn−1(xn−1|yn−2

n−1−J)

+
∑
yn−1

log
(qn−1(yn−1|yn−2

n−1−M , xn−1)
νπn−1(yn−1|yn−2

n−1−J)
))
qn−1(yn−1|yn−2

n−1−M , xn−1)

+
∑
yn−1

Cn(yn−1
n−J)qn−1(yn−1|yn−2

n−1−M , xn−1)− sγn−1(xn−1, y
n−2
n−1−N) + λn−1(yn−2

n−1−J) ≤ 0.

(C.11)

After simplifications, (C.11) gives the following.

∑
yn−1

(
log

(qn−1(yn−1|yn−2
n−1−M , xn−1)

νπn−1(yn−1|yn−2
n−1−J)

)
+ Cn(yn−1

n−J)
)
qn−1(yn−1|yn−2

n−1−M , xn−1)

− sγn−1(xn−1, y
n−2
n−1−N) ≤ 1− λn−1(yn−2

n−1−J). (C.12)

To verify that 1 − λt(yn−2
n−1−J) = Cn−1(yn−2

n−1−J) − s(n + 1)κ ≡ Ks
n−1(yn−2

n−1−J),
we multiply both sides of (C.12) by πn−1(xn−1|yn−2

n−1−J) and sum over xn−1, for
which πn−1(xn−1|yn−2

n−1−J) 6= 0, to obtain the necessary and sufficient conditions for
πn−1(xn−1|yn−2

n−1−J) to maximize Cn−1(yn−2
n−1−J) − s(n + 1)κ ≡ Ks

n−1(yn−2
n−1−J) given

the necessary and sufficient conditions at t = n. Repeating this derivation for
t = n − 2, n − 3, . . . , 0, or by induction, we obtain (5.81), (5.82). This completes
the proof. �

C.2.3. Alternative proof of Theorem 5.6

Here, we give an alternative proof to Theorem 5.6 using Theorem 5.5. Recall that by
Theorem 5.5, (a), we have

Cn(yn−1
n−J)

= sup
πn(xn|yn−1

n−J )
sup

rn(xn|yn−1
n−M ,yn)

 ∑
xn,yn

log
(
rn(xn|yn−1

n−M , yn)
πn(xn|yn−1

n−J)

)
qn(yn|yn−1

n−M , xn)πn(xn|yn−1
n−J)

− s
(∑

xn

γn(xn, yn−1
n−N)πn(xn|yn−1

n−J)− (n+ 1)κ
), ∀yn−1

n−J ∈ Yn−1
n−J . (C.13)
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By (C.13), for a fixed rn(xn|yn−1
n−M , yn), we calculate the derivative with respect to each

of the elements of the probability vector {πn(xn|yn−1
n−J) : xn ∈ Xn}, we incorporate

the pointwise constraint ∑xn πn(xn|yn−1
n−J) = 1, by introducing the Lagrange multiplier

λn(yn−1
n−J), and we also include a second Lagrange multiplier s ≥ 0 to encompass the

transmission cost constraint as follows.

∂

∂πn

{ ∑
xn,yn

log
(
rn(xn|yn−1

n−M , yn)
πn(xn|yn−1

n−J)

)
qn(yn|yn−1

n−M , xn)πn(xn|yn−1
n−J)

− s
∑
xn

γn(xn, yn−1
n−N)πn(xn|yn−1

n−J) + λn(yn−1
n−J)

(∑
xn

πn(xn|yn−1
n−J)− 1

)}
= 0, ∀xn ∈ Xn

(C.14)

where ∂
∂πn

denotes derivative with respect to a specific coordinate of the probability
vectors {πn(xn|yn−1

n−J) : xn ∈ X n}. From (C.14) we obtain

∑
yn

log
(
rn(xn|yn−1

n−M , yn)
πn(xn|yn−1

n−J)

)
qn(yn|yn−1

n−M , xn)− sγn(xn, yn−1
n−N) = 1− λn(yn−1

n−J), ∀xn ∈ Xn.

(C.15)

By (5.72), for a fixed πn(xn|yn−1
n−J), the maximization with respect to rn(xn|yn−1

n−J , yn) is
given by

r∗,πn (xn|yn−1
n−M , yn) =

(
qn(yn|yn−1

n−M , xn)
νπn(yn|yn−1

n−J)

)
πn(xn|yn−1

n−J). (C.16)

Substituting (C.16) in (C.15) we obtain

∑
yn

log
(
qn(yn|yn−1

n−M , xn)
νπn(yn|yn−1

n−J)

)
qn(yn|yn−1

n−M , xn)− sγn(xn, yn−1
n−N) = 1− λn(yn−1

n−J), ∀xn ∈ Xn.

(C.17)

Summing both sides in (C.17) with respect to πn(xn|yn−1
n−J) we obtain (5.79).

Similarly, by Theorem 5.5, (a), we have

Ct(yt−1
t−J)

= sup
πt(xt|yt−1

t−J )
sup

rt(xt|yt−1
t−M ,yt)

 ∑
xt,yt

(
log

(
rt(xt|yt−1

t−M , yt)
πt(xt|yt−1

t−J)

)
+ Ct+1(ytt+1−J)

)
qt(yt|yt−1

t−M , xt)πt(xt|yt−1
t−J)

− s
(∑

xt

γt(xt, yt−1
t−N)πt(xt|yt−1

t−J)− (n+ 1)κ
), ∀yt−1

t−J ∈ Y t−1
t−J , t ∈ Nn−1

0 . (C.18)
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By (C.18), for each t, and a fixed rt(xt|yt−1
t−M , yt), we calculate the derivative with

respect to each of the elements of the probability vector {πt(xt|yt−1
t−J) : xt ∈ Xt}, and

we incorporate the constraints to obtain

∑
yt

(
log

(
rt(xt|yt−1

t−M , yt)
πt(xt|yt−1

t−J)

)
+ Ct+1(ytt+1−J)

)
qt(yt|yt−1

t−M , xt)− sγt(xt, yt−1
t−N)

= 1− λt(yt−1
t−J), ∀xt ∈ Xt. (C.19)

By (5.74), for fixed πt(xt|yt−1
t−J), the maximization with respect to rt(xt|yt−1

t−M , yt) is given
by

r∗,πt (xt|yt−1
t−M , yt) =

(
qt(yt|yt−1

t−M , xt)
νπt (yt|yt−1

t−J)

)
πt(xt|yt−1

t−J), ∀xt ∈ Xt, t ∈ Nn−1
0 . (C.20)

By substituting (C.20) in (C.19) we obtain

∑
yt

(
log

(
qt(yt|yt−1

t−M , xt)
νπt (yt|yt−1

t−J)

)
+ Ct+1(ytt+1−J)

)
qt(yt|yt−1

t−M , xt)− sγt(xt, yt−1
t−N)

= 1− λt(yt−1
t−J), ∀xt ∈ Xt. (C.21)

By summing both sides in (C.21) with respect to πt(xt|yt−1
t−J), we obtain (5.81), for

t = n − 1, n − 2, . . . , 0. Inequalities in (5.80), (5.82) can be obtained similarly from
Kuhn-Tucker conditions. This completes the proof. �
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D
Proofs of Chapter 6

D.1. Proof of Lemma 6.2

The equivalence of MC1, MC2 and MC3 is straightforward hence it is omitted. To
this end, we show equivalence of MC4 to any of MC1, MC2 and MC3. We proceed
with the derivation, by often assuming existence of densities, which are denoted by
lower case letters p̄(·|·), to avoid lengthy measure theoretic arguments.

MC4 =⇒ MC3: Since for i = 0, . . . , n− 1, by MC4 we have

PXn
i+1|Xi,Y i(dxni+1|xi, yi) = PXn

i+1|Xi(dxni+1|xi)

then by integrating over Xi+2,n both sides of the previous identity we obtain MC3.

MC4 ⇐= MC3: Since MC3 ⇐⇒ MC2, we show that if Xn
i+1 ↔ (X i, Y i−1) ↔ Yi

forms a MC for i = 0, 1, . . . , n − 1, then Xn
i+1 ↔ X i ↔ Y i forms a MC for i =

0, 1, . . . , n−1. We show this by induction. First, we show that (Xi+1, Xi+2)↔ X i ↔ Y i

263
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forms a MC, or equivalently, p̄(xi+1, xi+2|xi, yi) = p̄(xi+1, xi+2|xi). Since

p̄(xi+1, xi+2|xi, yi) = p̄(xi, xi+1, xi+2, y
i)

p̄(xi, yi) = p̄(yi|yi−1, xi+2)p̄(yi−1, xi+2)
p̄(xi, yi)

=

p̄(yi|yi−1, xi)︸ ︷︷ ︸
(a)

p̄(xi+2|xi+1, yi−1)p̄(xi+1, yi−1)

p̄(xi, yi)

=

p̄(yi|yi−1, xi) p̄(xi+2|xi+1)︸ ︷︷ ︸
(b)

p̄(xi+1|xi, yi−1)p̄(xi, yi−1)

p̄(yi|yi−1, xi)p̄(xi, yi−1)
= p̄(xi+2|xi+1) p̄(xi+1|xi)︸ ︷︷ ︸

(c)

= p̄(xi+2, xi+1|xi)

where (a) is implied from MC2, while (b), (c) follows from MC3 ⇐⇒ MC2. Hence,
MC4 holds for n = i+ 2.
Suppose Xk

i+1 ↔ X i ↔ Y i forms a MC, for some i + 2 ≤ k < n− 1. We show that it
holds for k −→ k + 1.

p̄(xk+1
i+1 |xi, yi) = p̄(xk+1

i+1 , x
i, yi)

p̄(xi, yi) = p̄(xk+1|xki+1, x
i, yi)p̄(xki+1, x

i, yi)
p̄(xi, yi)

=

p̄(xk+1|xk)︸ ︷︷ ︸
(d)

p̄(xki+1|xi, yi)p̄(xi, yi)

p̄(xi, yi) = p̄(xk+1|xk) p̄(xki+1|xi)︸ ︷︷ ︸
(e)

= p̄(xk+1
i+1 |xi)

where (d), (e) follow from MC3 ⇐⇒ MC2. This completes the derivation. �

D.2. Proof of Theorem 6.8

The constrained problem defined by (6.26) can be reformulate using Lagrange mul-
tipliers. This is done in [61, Theorem IV.3] so we omit it here. Nevertheless, by
using [61, Theorem IV.3] we can write nonanticipative RDF in the following form.

Rna
0,n(D) = sup

s≤0
inf−→
Q0,n

{
IXn→Y n(µ0,n,

−→
Q 0,n)

− s
( ∫
Xn×Yn

d0,n(xn, yn)(µ0,n ⊗
−→
Q 0,n)(dxn, dyn)

)
− (n+ 1)D)

}
. (D.1)

The fully unconstrained problem of (D.1) is obtained by introducing another set of
Lagrange multipliers {λi(·, ·) : i = 0, 1, . . . , n}. Using the pair of Lagrange multipliers
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{s, λ 4= {λi(·, ·) : i = 0, 1, . . . , n}} introduce the extended pay-off functional

Is,λD (µ0,n,
−→
Q 0,n) 4= IXn→Y n(µ0,n,

−→
Q 0,n)

− s(
∫
Xn×Yn

d0,n(xn, yn)
(
µ0,n(dxn)⊗−→Q 0,n

)
(dxn, dyn)

)
− (n+ 1)D)

)
+

n∑
i=0

∫
Xn×Yn

λi(xi, yi−1)
(−→
Q 0,n(dyn|xn)− 1

)
µ0,n(dxn).

This is a fully unconstrained problem. Utilizing the differentiability of directed in-
formation functional derived in [61, Theorem IV.2], the Gateaux derivative of Is,λD on
QC1(Yn|X n) at any point −→Q ∗0,n in the direction −→Q 0,n −

−→
Q ∗0,n is given by

δIs,λD (−→Q 0,n;−→Q 0,n −
−→
Q ∗0,n) =

∫
Xn×Yn

log
−→Q ∗0,n(dyn|xn)

ν∗0,n(dyn)

(−→Q 0,n −
−→
Q ∗0,n)(dyn|xn)⊗ µ0,n(dxn)

− s
∫
Xn×Yn

d0,n(xn, yn)(−→Q 0,n −
−→
Q ∗0,n)(dyn|xn)⊗ µ0,n(dxn)

+
n∑
i=0

∫
λi(xi, yi−1)(−→Q 0,n −

−→
Q ∗0,n)(dyn|xn)⊗ µ0,n(dxn)

=
∫
Xn×Yn

log
e∑n

i=0

(
−sρ(xi,yi)+λi(xi,yi−1)

)−→
Q ∗0,n(dyn|xn)
ν∗0,n(dyn)


× (−→Q 0,n −

−→
Q ∗0,n)(dyn|xn)⊗ µ0,n(dxn), ∀ −→Q 0,n ∈ QC1(Yn|X n).

Since Is,λD (µ0,n,
−→
Q 0,n) is convex in −→Q 0,n, it follows from the calculus of variations

principle that a necessary and sufficient condition for −→Q ∗0,n to be a minimizer is
δIs,λD (−→Q ∗0,n;−→Q 0,n −

−→
Q ∗0,n) = 0, ∀−→Q 0,n ∈ QC1(Yn|X n). Since the Gateaux derivative

must be zero for all −→Q 0,n ∈ QC1(Yn|X n) then

−→
Q ∗0,n(dyn|xn)
ν∗0,n(dyn) = e

∑n

i=0

(
sρ(xi,yi)−λi(xi,yi−1)

)
− a.s.

Equivalently,

⊗ni=0
q∗i (dyi|yi−1, xi)
ν∗i (dyi|yi−1) = ⊗ni=0e

sρ(xi,yi)−λi(xi,yi−1) − a.s.

Since
∫
Yi q
∗
i (dyi|yi−1, xi) = 1, then for i = 0, 1, . . . , n,

λi(xi, yi−1) = log
∫
Yi
esρ(xi,yi)ν∗i (dyi|yi−1).
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Hence,

−→
Q ∗0,n(dyn|xn) = ⊗ni=0q

∗
i (dyi|yi−1, xi)− a.s

= ⊗ni=0
esρ(xi,yi)ν∗i (dyi|yi−1)∫
Yi e

sρ(xi,yi)ν∗i (dyi|yi−1) .

Since s ≤ 0 and λi ≥ 0, i = 0, 1, . . . , n then −→Q ∗0,n(·|xn) ∈ QC1(Yn|X n). Substituting
−→
Q ∗0,n into Is,λD (µ0,n,

−→
Q 0,n) gives (6.42).

Note that for s = 0 then Rna
0,n(D) = 0 and −→Q ∗0,n(dyn|xn) = ν∗0,n(dyn), µ0,n−almost all

xn ∈ X n. This is trivial so we must have s < 0. From [61, Theorem IV.3] the solution
occurs on the boundary of QC1

0,n(D) for s < 0. �

D.3. Proof of Theorem 6.7

Let s be the the Lagrange multiplier which is part of the optimal solution which solves
the information nonanticipative RDF. Then, by Theorem 6.8 the optimal reproduction
distribution is expressed as

q∗i (Fi|yi−1, xi) =
∫
Fi
esρi(x

i,yi)λi(xi, yi−1)ν∗i (dyi|yi−1), ∀Fi ∈ B(Yi), ∀i ∈ Nn
0 . (D.2)

By integrating (D.2) with respect to P ∗0,i(dxi|yi−1) we obtain the expression
∫
X i
q∗i (Fi|yi−1, xi)⊗ P ∗0,i(dxi|yi−1) = P ∗0,i(X i × Fi|yi−1)

=
∫
Fi×X i

esρi(x
i,yi)λi(xi, yi−1)ν∗i (dyi|yi−1)⊗ P ∗0,i(dxi|yi−1), ∀Fi ∈ B(Yi), i ∈ Nn

0 .

Moreover, ∀Fi ∈ B(Yi), i ∈ Nn
0 ,

ν∗i (Fi|yi−1) =
∫
Fi
ν∗i (dyi|yi−1) = P ∗0,i(X i × Fi|yi−1)

=
∫
Fi×X i

esρi(x
i,yi)λi(xi, yi−1)P ∗0,i(dxi|yi−1)⊗ ν∗i (dyi|yi−1). (D.3)

Utilizing (D.3) we finally obtain
∫
X i
esρi(x

i,yi)λi(xi, yi−1)P ∗0,i(dxi|yi−1) = 1, ν∗i − a.s., ∀i ∈ N0.

This completes the derivation. �
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D.4. Proof of Theorem 6.9

Let s ≤ 0, λ ∈ Ψs and −→Q 0,n(·|xn) ∈ QC1
0,n(D) be given. Then, using the fact that

1
n+ 1

n∑
i=0

∫
X i×Yi

ρi(xi, yi)(µ0,i ⊗
−→
Q 0,i)(dxi, dyi) ≤ D

gives

IXn→Y n(µ0,n,
−→
Q 0,n)− sD(n+ 1)−

n∑
i=0

∫
X i×Yi−1

log
(
λi(xi, yi−1)

)
(µ0,i ⊗

−→
Q 0,i−1)(dxi, dyi−1)

≥
n∑
i=0

∫
X i×Yi

log
(
qi(dyi|yi−1, xi)
νi(dyi|yi−1)

)
(µ0,i ⊗

−→
Q 0,i)(dxi, dyi)

− s
n∑
i=0

∫
X i×Yi

ρi(xi, yi)(µ0,i ⊗
−→
Q 0,i)(dxi, dyi)

−
n∑
i=0

∫
X i×Yi

log
(
λi(xi, yi−1)

)
(µ0,i ⊗

−→
Q 0,i)(dxi, dyi)

=
n∑
i=0

∫
X i×Yi

log
(
qi(dyi|yi−1, xi)e−sρi(xi,yi)
νi(dyi|yi−1)λi(xi, yi−1)

)
(µ0,i ⊗

−→
Q 0,i)(dxi, dyi)

=
n∑
i=0

∫
X i−1×Yi−1


∫
Xi×Yi

log
(
qi(dyi|yi−1, xi)e−sρi(xi,yi)
νi(dyi|yi−1)λi(xi, yi−1)

)

qi(dyi|yi−1, xi)⊗ pi(dxi|xi−1)

⊗ P0,i−1(dxi−1, dyi−1)

(a)
≥

n∑
i=0

∫
X i−1×Yi−1


∫
Xi×Yi

(
1− esρi(x

i,yi)νi(dyi|yi−1)λi(xi, yi−1)
qi(dyi|yi−1, xi)

)

qi(dyi|yi−1, xi)⊗ pi(dxi|xi−1)

⊗ P0,i−1(dxi−1, dyi−1)

=
n∑
i=0

1−
∫
X i−1×Yi−1

∫
Xi×Yi

esρi(x
i,yi)λi(xi, yi−1)νi(dyi|yi−1)

⊗ pi(dxi|xi−1)⊗ P0,i−1(dxi−1, dyi−1)


=

n∑
i=0

1−
∫
Yi
νi(dyi|yi−1)

∫
Yi−1

ν0,i−1(dyi−1)
(∫
X i
esρi(x

i,yi)λi(xi, yi−1)⊗ P0,i(dxi|yi−1)
)

(b)
≥

n∑
i=0

(
1−

∫
Yi
ν0,i(dyi)

)
= 0
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where (a) follows from the inequality log x ≥ 1− 1
x
, x > 0, and (b) follows from (6.50).

Hence, we obtain

Rna0,n(D)
(c)
≥ sup

s≤0
sup
λ∈Ψs

{
sD(n+ 1)

+
n∑
i=0

∫
X i×Yi−1

log
(
λi(xi, yi−1)

)
P0,i−1(dxi−1, dyi−1)⊗ pi(dxi|xi−1)

}
. (D.4)

However, equality in (c) holds if

λi(xi, yi−1) 4=
∫
Yi
esρi(x

i,yi)ν∗i (dyi|yi−1)
−1

, i = 0, 1, . . . , n.

This completes the derivation. �

D.5. Proof of Theorem 6.10

The derivation is based on showing that Rna(D) is bounded above and below by the
RHS of (6.57). The lower bound is obtained by using Theorem 6.9, to derive a lower
bound analogous to Shannon’s lower bound.
Define

H∞ = lim
t−→∞

Ht, Ht
4= diag{ηt,1, . . . , ηt,p}, ηt,i = 1− δt,i

λt,i
, i = 1, . . . , p, t ∈ N0.

Consider the additive noisy channel with feedback of the form

K̃t = Etr
t HtEt

(
Xt − E

{
Xt|σ{Y t−1}

})
+ Etr

t BtV c
t = Etr

t HtEtKt + Etr
t BtV c

t , t ∈ Nn
0

(D.5)

where {V c
t : t ∈ N0} is an independent Gaussian zero mean process with covariance

cov(V c
t ) = Q = diag{q1, . . . , qp}, and {Bt : t ∈ N0} is to be determined.

Next, we show that by letting B∞ = limt−→∞ Bt, where Bt =
√
Ht∆tQ−1, and

∆t
4= diag{δt,1, . . . , δt,p}, then Λ∞ = limt−→∞ Λt = limt−→∞ E

{
KtK

tr
t

}
, and also

limn−→∞
1

n+1E
{∑n

t=0 ||Xt−Yt||2Rp
}

= limn−→∞
1

n+1E
{∑n

t=0 ||Kt−K̃t||2Rp
}

= D. Clearly,
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by (6.53), (6.55), (D.5)

lim
t−→∞

E
{

(Xt − Yt)tr(Xt − Yt)
}

= lim
t−→∞

Trace E
{

(Kt − K̃t)(Kt − K̃t)tr
}

= lim
t−→∞

Trace E
{

(Kt − Etr
t HtEtKt − Etr

t BtV c
t )(Kt − Etr

t HtEtKt − Etr
t BtV c

t )tr
}

= lim
t−→∞

Trace E
{(

(I − Etr
t HtEt)Kt − Etr

t BtV c
t

)(
(I − Etr

t HtEt)Kt − Etr
t BtV c

t

)tr}
= lim

t−→∞
Trace

{
(I − Etr

t HtEt)Λt(I − Etr
t HtEt)tr + Etr

t BtQBtrt Et
}

= lim
t−→∞

Trace
{

(I − Etr
t HtEt)Etr

t diag(λt,1, . . . , λt,p)Et(I − Etr
t HtEt)tr + Etr

t BtQBtrt Et
}

= lim
t−→∞

Trace
{
Etr
t

(
(I −Ht)diag(λt,1, . . . , λt,p)(I −Ht)tr + (BtQBtrt )

)
Et

}
(a)= lim

t−→∞
Trace

{
diag(δt,1, . . . , δt,p)

}
= Trace

{
diag(δ∞,1, . . . , δ∞,p)

}
= D

where (a) holds by setting B∞ and Bt as in (6.65).
Also, by (6.56),

lim
n−→∞

1
n+ 1R

na,Kn,K̃n

0,n (D) ≤ lim
n−→∞

1
n+ 1IX

n→Y n(PKn ,
−→
P K̃n|Kn)

= lim
n−→∞

1
n+ 1

n∑
t=0

I(Kt; K̃t|K̃t−1)

= lim
n−→∞

1
n+ 1

n∑
t=0

(
H(K̃t|K̃t−1)−H(K̃t|K̃t−1, Kt)

)
(b)
≤ lim

n−→∞

1
n+ 1

n∑
t=0

(
H(K̃t)−H(K̃t|K̃t−1, Kt)

)
(c)
≤ lim

n−→∞

1
n+ 1

n∑
t=0

(
H(K̃t)−H(K̃t|Kt)

)
(d)
≤ lim

n−→∞

1
n+ 1

n∑
t=0

(
H(K̃t)−H(Etr

t BtV c
t )
)

(D.6)

where (b) follows from the fact that conditioning reduces entropy, (c) follows from the
fact that K̃t = Etr

t HtEtKt+Etr
t BtV c

t is a memoryless Gaussian channel, and (d) follows
from the orthogonality of Kt and V c

t , ∀t ∈ N0. Next, we compute the entropy rates
appearing in (D.6) from the covariances of the corresponding processes. The covariance
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of the Gaussian zero mean, noise process {Etr
t BtV c

t , t ∈ N0} is obtained as follows.

lim
t−→∞

E
{

(Etr
t BtV c

t )(Etr
t BtV c

t )tr
}

= lim
t−→∞

E
{
Etr
t BtV c

t V
c,tr
t Btrt Et

}
= lim

t−→∞
Etr
t BtE{V c

t V
c,tr
t }Btrt Et = lim

t−→∞
Etr
t BtQBtrt Et

= lim
t−→∞

{
Etr
t

√
Ht∆tQ−1Q

√
Ht∆tQ−1Et

}
= lim

t−→∞
Etr
t Ht∆tEt = lim

t−→∞
Etr
t diag{ηt,1δt,1, . . . , ηt,pδt,p}Et

= Etr
∞diag{η∞,1δ∞,1, . . . , η∞,pδ∞,p}E∞. (D.7)

The covariance of the process {K̃t : t ∈ N0} is obtained as follows.

lim
t−→∞

E
{
K̃tK̃

tr
t

}
= lim

t−→∞
E
{

(Etr
t HtEtKt + Etr

t BtV c
t )(Etr

t HtEtKt + Etr
t BtV c

t )tr
}

= lim
t−→∞

E
{
Etr
t HtEtKtK

tr
t E

tr
t HtEt + Etr

t BtV c
t V

c,tr
t Btrt Et

}
= lim

t−→∞

{
Etr
t HtEtE{KtK

tr
t }Etr

t HtEt + Etr
t BtE{V c

t V
c,tr
t }Btrt Et

}
= lim

t−→∞

{
Etr
t HtEtΛtE

tr
t HtEt + Etr

t

√
Ht∆tQ−1Q

√
Ht∆tQ−1Et

}
= lim

t−→∞

{
Etr
t

(
diag{η2

t,1λt,1, . . . , η
2
t,pλt,p}+ diag{ηt,1δt,1, . . . , ηt,pδt,p}

)
Et

}
= lim

t−→∞
Etr
t diag{λt,1 − δt,1, . . . , λt,p − δt,p}Et, λt,i − δt,i ≥ 0,∀t

= Etr
∞diag{λ∞,1 − δ∞,1, . . . , λ∞,p − δ∞,p}E∞. (D.8)

Using (D.8) we obtain the first term of (D.6) as follows

lim
n−→∞

1
n+ 1

n∑
t=0

H(K̃t) = lim
n−→∞

1
2

1
n+ 1

n∑
t=0

log
{(

2πe
)
diag{λt,1 − δt,1, . . . , λt,p − δt,p}

}

= lim
n−→∞

1
2

1
n+ 1

n∑
t=0

log
{(

2πe
)
×pi=1

(
λt,i − δt,i

)+
}

= lim
n−→∞

1
2

1
n+ 1

n∑
t=0

p∑
i=1

log
{(

2πe
)(
λt,i − δt,i

)+
}

= 1
2

p∑
i=1

log
{(

2πe
)(
λ∞,i − δ∞,i

)+
}
. (D.9)Pho
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Also, by (D.7), we obtain the second term in (D.6) as follows.

lim
n−→∞

1
n+ 1

n∑
t=0

H(Etr
t BtV c

t ) = lim
n−→∞

1
2

1
n+ 1

n∑
t=0

log
{(

2πe
)
diag{ηt,1δt,1, . . . , ηt,pδt,p}

}

= 1
2

n∑
t=0

log
{(

2πe
)
×pi=1

(
η∞,iδ∞,i

)}
= 1

2

p∑
i=1

log
{(

2πe
)(
η∞,iδ∞,i

)}
. (D.10)

By using (D.9) and (D.10) in (D.6) we have the following upper bound

lim
n−→∞

Rna,Kn,K̃n

0,n (D) ≤ 1
2

p∑
i=1

log
{(

2πe
)(
λ∞,i − δ∞,i

)+
}
− 1

2

p∑
i=1

log
{(

2πe
)(
η∞,iδ∞,i

)}

= 1
2

p∑
i=1

log
{(λ∞,i − δ∞,i)+

η∞,iδ∞,i

}
= 1

2

p∑
i=1

log λ∞,i
δ∞,i

where δ∞,i = min{ξ∞, λ∞,i} and ∑p
i=1 δ∞,i = D.

Lower Bound (Analogous to Shannon’s Lower Bound). Next, we apply Theorem 6.9 to
obtain a lower bound for the nonanticipative RDF Rna(D) = limn−→∞

1
n+1R

na
0,n(D) =

limn−→∞
1

n+1R
na,Kn,K̃n

0,n (D).
Applying Theorem 6.9 to Rna,Kn,K̃n

0,n (D), the set Ψs is defined by

Ψs
4=
{
{λt(kt, k̃t−1) : t = 0, 1, . . . , n} : λt(kt, k̃t−1) ≥ 0,∫
es||Kt−K̃t||

2
Rpλ(kt, k̃t−1)p̄(kt|k̃t−1)dkt ≤ 1, t = 0, 1, . . . , n

}
(D.11)

where p̄(kt|k̃t−1) denotes the conditional density of kt given k̃t−1. Choose s ≤ 0 and
take λt(kt, k̃t−1) ∈ Ψs such that

λt(kt, k̃t−1) = αt

p̄(kt|k̃t−1)
(D.12)

for some αt not depending on kt. Substituting (D.12) into the reduced integral inequal-
ity in (D.11) we obtain

αt

∫
es||Kt−K̃t||

2
Rpdkt ≤ 1, t = 0, 1, . . . , n.

By changing the variable of integration we also obtain

αt

∫
es||zt||

2
Rpdzt = αt

√
(−π

s
)p = αt(−

π

s
)
p
2 ≤ 1, t = 0, 1, . . . , n. (D.13)
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By setting αt = (− s
π
) p2 , t = 0, 1, . . . , n, the inequality of (D.13) holds with equality.

Then, by Theorem 6.9, we have

lim
n−→∞

1
n+ 1R

na,Kn,K̃n

0,n (D) ≥ sD + lim
n−→∞

1
n+ 1

n∑
t=0

∫
Kt×K̃0,t−1

p̄(kt, k̃t−1) log
(
λt(kt, k̃t−1)

)
dktdk̃

t−1

(e)= sD + lim
n−→∞

1
n+ 1

n∑
t=0

∫
Kt×K̃0,t−1

p̄(kt, k̃t−1) log
( (− s

π )
p
2

p̄(kt|k̃t−1)

)
dktdk̃

t−1

= sD + lim
n−→∞

1
n+ 1

n∑
t=0

log(− s
π

)
p
2 + lim

n−→∞
1

n+ 1

n∑
t=0

H(Kt|K̃t−1)

(f)= sD + lim
n−→∞

1
n+ 1

n∑
t=0

log(− s
π

)
p
2 + lim

n−→∞
1

n+ 1

n∑
t=0

H(Kt)

(D.14)

where (e) follows from (D.12), and (f) follows from the orthogonality of Kt and K̃t−1.
Next, we need to find the Lagrangian multiplier “s” so that the lower bound (D.14)
equals 1

2
∑p
i=1 log λ∞,i

δ∞,i
. To this end, we need to ensure existence of some s < 0 such

that the following identity holds.

sD + lim
n−→∞

1
n+ 1

n∑
t=0

log(− s
π

)
p
2 + lim

n−→∞
1
2

1
n+ 1

n∑
t=0

log 2πe|Λt| = lim
n−→∞

1
2

1
n+ 1

n∑
t=0

p∑
i=1

log λt,i
δt,i

=⇒ sD + lim
n−→∞

1
2

1
n+ 1

n∑
t=0

p∑
i=1

log(− s
π

) + 1
2

p∑
i=1

log 2πe(λ∞,i) = 1
2

p∑
i=1

log λ∞,i
δ∞,i

=⇒ lim
n−→∞

1
2

1
n+ 1 log e2(n+1)s

∑p

i=1 δt,i + lim
n−→∞

1
2

1
n+ 1

n∑
t=0

p∑
i=1

log(− s
π

)

= 1
2

p∑
i=1

log λ∞,i
δ∞,i

− 1
2

p∑
i=1

log 2πe(λ∞,i)

=⇒ lim
n−→∞

1
2

1
n+ 1

n∑
t=0

p∑
i=1

log e2sδt,i + lim
n−→∞

1
2

1
n+ 1

n∑
t=0

p∑
i=1

log(− s
π

) = 1
2

p∑
i=1

log 1
2πeδ∞,i

=⇒ lim
n−→∞

1
2

1
n+ 1

n∑
t=0

p∑
i=1

log e2sδt,i(− s
π

) = 1
2

p∑
i=1

log 1
2πeδ∞,i

=⇒ 1
2

p∑
i=1

log e2sδ∞,i(− s
π

) = 1
2

p∑
i=1

log 1
2πeδ∞,i

=⇒ e2sδ∞,i(− s
π

) = 1
2πeδ∞,i

=⇒ s = − 1
2δ∞,i

where δ∞,i = {ξ∞, λ∞,i}. Now, if δ∞,i = ξ∞ then s = − 1
2δ∞,i and the nonanticipative

RDF is bounded below be the following expression

lim
n−→∞

Rna,Kn,K̃n

0,n (D) ≥ lim
n−→∞

1
2

1
n+ 1

n∑
t=0

p∑
i=1

log λt,i
δt,i

= 1
2

p∑
i=1

log λ∞,i
δ∞,i

(D.15)
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which is the desired lower bound with ∑p
i=1 δ∞,i = D. In the case where δ∞,i = λ∞,i,

then no encoding is performed and there is no sense in proving a lower bound to
Rna,Kn,K̃n

0,n (D). This completes the proof of (6.57).
Next, we determine the expression of Λ∞. By definition, Λ∞ = limt−→∞ Λt, where Λt =
cov

(
Xt−E

{
Xt|σ{Y t−1}

})
. Since Xt−E

{
Xt|σ{Y t−1}

}
= CZt+NVt−CE

{
Zt|σ{Y t−1}

}
then Λt = CΣtC

tr + NN tr. Let Ẑt|t−1 = E
{
Zt|σ{Y t−1}

}
. Clearly, Σt

4= E
{(
Zt −

E{Zt|Y t−1}
)(
Zt −E{Zt|Y t−1}

)tr}
. Moreover, Λ∞ = C limt−→∞ΣtC

tr +NN tr. There-
fore, to determine Σ∞

4= limt−→∞Σt, we need the equation of the error et
4= Zt− Ẑt|t−1,

hence the equation of the least-squares filter of Zt given all the previous outputs Y t−1,
namely Ẑt|t−1. From Fig. 6.3, we deduce that Yt = K̃t+ X̂t|t−1, where {X̂t|t−1 : t ∈ N0}
is obtained from the modified Kalman filter as follows. Recall that

Yt = K̃t + X̂t|t−1 = Etr
∞H∞E∞(Xt − X̂t|t−1) + Etr

∞B∞V c
t + X̂t|t−1

= Etr
∞H∞E∞(CZt +NVt − CẐt|t−1) + Etr

∞B∞V c
t + CẐt|t−1

= Etr
∞H∞E∞C(Zt − Ẑt|t−1) + CẐt|t−1 + Etr

∞H∞E∞NVt + Etr
∞B∞V c

t

where {Vt : t ∈ N0} and {V c
t : t ∈ N0} are independent Gaussian vectors. Then

Ẑt|t−1 is given by the modified Kalman filter [99] (6.60), (6.61). Notice that the filter is
ergodic with initial condition Ẑ0 = E{Z0|Y −1} and Σ0 the covariance of Z0− Ẑ0 which
is Gaussian N(0,Σ∞). �
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