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Περίληψη

Τα κινούμενα ρομπότ, ως η μετέπειτα γενεά των βιομηχανικών ρομπότ που έχουν

εκμοντερνίσει την βιομηχανία, έχουν εισαγάγει τεράστιες ευκαιρίες τεχνολογικής

ανάπτυξης στον σύγχρονο κόσμο. Με εφαρμογές που εκτείνονται από το απλό

νοικοκυριό μέχρι και στην εξερεύνηση του διαστήματος, νέες καινούργιες εφαρμογές

έχουν εισαχθεί. Αυτές οι εφαρμογές χρειάζονται αυξημένη ρομποτική αυτονομία,

λόγω της αδυναμίας των χειριστών να είναι παρόντες ή απλά λόγω της ανάγκης για

βελτιωμένη απόδοση. Όταν τα ρομπότ λειτουργούν πλέον αυτόνομα, ο συντονισμός

μεταξύ τους είναι απαραίτητος ώστε να διασφαλιστεί αποδοτική λειτουργία καθώς

επίσης και η αύξηση της παραγωγικότητας. Στις περιπτώσεις απρόσμενων γεγονότων,

για παράδειγμα όταν ένα από τα ρομπότ δεν ανταποκρίνεται, τα εναπομείναντα

ρομπότ πρέπει να είναι ικανά να συντονιστούν κάτω από νέες συνθήκες έτσι ώστε να

πετύχουν τους στόχους τους. Τα σφάλματα κινητήρων είναι ακόμα μια πρόκληση που

παρουσιάζεται όταν τα ρομπότ λειτουργούν αυτόνομα, για τον λόγο ότι προκαλούν

μειωμένη παραγωγικότητα και δημιουργούν θέματα ασφαλείας. Τα σφάλματα

κινητήρων επηρεάζουν την ομαλή λειτουργία των ρομπότ και προκαλούν αλλαγή στην

πορεία τους, δημιουργώντας συγκρούσεις, ζημίες και ενδεχόμενους τραυματισμούς

Στης διατριβή αυτή προσεγγίζονται οι δυσκολίες συντονισμού μεταξύ των ρομπότ και

στον εντοπισμό σφαλμάτων στους κινητήρες για συγκεκριμένα ρομποτικά συστήματα.

Πρώτα, παρουσιάζεται μια μέθοδος βελτιστοποίησης του συντονισμού μια ομάδας

ρομπότ που λειτουργούν σε μια αποθήκη. Προτείνεται ένας αποδοτικός αλγόριθμος

ώστε να εξευρεθεί λύση στο πρόβλημα της βελτιστοποίησης του συντονισμού σε

πραγματικό χρόνο. Δεύτερο, χρησιμοποιείται μία μέθοδος ανίχνευσης σφαλμάτων η

οποία χρησιμοποιεί οδομετρία για να ανιχνεύσει σφάλμα κινητήρων και τα ταυτοποιεί

σε σχέση με τρεις αντίστοιχους τύπους σφαλμάτων. Τρίτο, παρουσιάζεται μια νέα

μέθοδος η οποία αυξάνει την ευαισθησία εντοπισμού σφάλματος, ενσωματώνοντας

πολλαπλά όρια. Εισάγεται η έννοια του προειδοποιητικού σήματος, του οποίου η
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συμπεριφορά στον χρόνο χρησιμοποιείται για να ανιχνεύσει σφάλματα μικρής έντασης.

Τέταρτο, παρουσιάζουμε μια μονάδα επεξεργασίας η οποία μπορεί να εγκατασταθεί

σε ένα κινούμενο ρομότ και να παρέχει διόρθωση πορείας σε περίπτωση ενδεχόμενου

σφάλματος, χρησιμοποιώντας ανίχνευση σφάλματος, εντοπισμό και ταυτοποίηση. Η

αποδοτικότητα των μεθόδων που προτείνονται αποδεικνύεται δια μέσω προσομοίωσης

και επικυρώνεται με τη χρήση σε πραγματικό ρομπότ, με τη χρήση της πειραματικής

πλατφόρμας που αναπτύχθηκε και παρουσιάζεται σε αυτή την διατριβή.
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Abstract

Mobile robots, as a natural successor of manipulators that revolutionized the industrial

world, have introduced vast possibilities for technological advancements in today’s mod-

ern era. With applications spanning from simple household cleaning to planetary ex-

ploration, new challenging and unpredictable environments are introduced. ese ap-

plications demand for increased robot autonomy, either due to the inability for human

operators to be present or simply due to the need for improved efficiency. When robots

operate autonomously, coordination among them is essential to ensure efficient oper-

ation and increase productivity. In cases of unexpected events, for example when one

of the robots becomes unresponsive, the remaining robots must be able to coordinate

under the new conditions and achieve their tasks. Actuator faults is another challenge

introduced when robots operate autonomously, causing reduced productivity, as well as

raising safety issues. An actuator fault affects the normal operation, causing the robot to

dri away from its path with the risk of colliding with an obstacle, causing damages to its

surroundings and possibly injuring people. is thesis addresses the challenges of coor-

dination and actuator fault detection for certain mobile robot systems. First, a method is

presented for optimizing the coordination of a team of robots operating in a warehouse.

An efficient algorithm is proposed to provide the solution of the coordination optimiza-

tion problem in real-time. Second, a model-based fault detection approach is used that

utilizes odometry to detect actuator faults and identifies them with respect to three pos-

sible fault-types. ird, a new detection method is presented for increasing detection

sensitivity by incorporating multiple thresholds. e concept of warning signal is intro-

duced, whose temporal behavior is used to detect faults of small magnitude. Fourth, we

present a module that can be installed on a mobile robot and provide path correction in

the event of a fault, using fault detection, isolation and identification. e effectiveness

of the proposed methods is demonstrated through simulations and validated on a real

mobile robot, using the experimentation platform developed and presented in the thesis.
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3.4 ere are only 3 possible configurations between two ATWs that satisfy
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4.1 A diagram of the internal operation of the robot and sensor feedback.

Depicted are the three faults considered in this work. PerformanceDegra-

dation fault can occur directly on the motor itself for example due to

debris caught on the axle, or on the electronic motor controller. Stuck-

at-Zero fault occurs due to mechanical malfunction on the motor or the

wheel, which forces the motor to complete stop. Finally theUnresponsive

fault occurs when themotor controller becomes unresponsive to any new

input . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45
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responsive and Stuck-at-Zero are denoted as PD, UR and SZ respectively.

Symbol “|” represents a logical OR operator . . . . . . . . . . . . . . . . 49
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4.4 (a) Estimation error of the observerwhen the robot is instructed to follow
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represent the fault number and the arrows indicate the position where

the faults occurred . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53

4.6 Figure presents data collected when the robot was subjected to consecu-

tive faults of increasing magnitude. (a) shows the estimation error of the
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as it is estimated by the algorithm on-line. Small magnitude faults may

not be detected, as their estimation error is comparable to the estimation
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4.7 Improved fault detection sensitivity using theAlarm2. (a) shows that de-

tection threshold is low enough to be triggered by lowmagnitude fault as

well as noise. However, due to the PreAlarm, false alarms are prevented.

Fault detection is indicated by the diamond marker. (b) is the fault mag-
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Chapter 1

Introduction

1.1 From Industrial to Service Robots

Just few decades ago, industrial robots have revolutionized the manufacturing processes

with their phenomenal performance in repetitive tasks that require extreme accuracy.

In the pursuit for improving the quality of life, there is great demand for robots to be-

come mainstream and assist humans in their everyday life. is requires technological

breakthroughs beyond the industrial robots. Despite their capabilities, industrial robots

require to operate in highly controlled and predictable environments, and in the major-

ity of cases no humans are allowed in their close vicinity to prevent any accidents. eir

lack of mobility means that industrial robots have to operate in a fixed location with lim-

ited range of motion. In order to assist humans in their everyday life, robots needed to

expand their reach and be able to travel where needed. With the emergence of mobile

robots, new applications were introduced spanning from household cleaning robots to

planetary exploration rovers. is expansion meant that mobile robots were required to

operate in new and unfamiliar environments, many of them being of dynamic nature.

Mobility and autonomy became essential in robots, due to the inability for human op-

erators to be present, for example in remote or hazardous environments, and due to the

need for improved efficiency.

A service robot [56] is a robot that performs useful tasks for humans or equipment

excluding industrial automation application. Service robots were created for the pur-

pose of relieving humans from difficult, hazardous and repetitive tasks, both in working

and household environments. Furthermore, service robots are aimed towards assisting

disabled or elderly people in everyday tasks which are difficult to complete due to the per-
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son’s condition [45,54]. Service robots can be semi or fully autonomous robots as well as

mobile, depending on the application. Already, there is a large number of service robots

deployed in the world; the cleaning robot iRobot Roomba is a particularly successful case

study with both domestic [38] and commercial applications. e robot is equipped with

brushes and vacuum chamber, autonomously moving around a building in an intelligent

or even random patterns cleaning the floors. ere are service robots operating in hos-

pitals, office buildings, warehouses, museums and other environments fulfilling services

such as deliveries, transportation, education, entertainment and cleaning. Service robots

have progressed over the years and are able to work extremely close to humans in applica-

tions like rehabilitation where the robot is strapped on person’s body as an exoskeleton,

helping the person regain motor skills which were lost due to an injury.

A service robot is a complex system with various interconnected subsystems; some

of it’s core blocks being the controller, actuator and sensor. A robot uses actuators to

move around and interact with the environment, and sensors provide feedback on these

actions. At the heart of the robot there is a controller which receives information from

sensors and computes the signals sent to the actuators. Given an objective, the controller

decides how the robot will behave given its current state. For example, the controller of a

mobile robot constantly reads the front-facing range sensors and if an obstacle is detected,

it steers the robot away in order to avoid collisions. Multiple robots can be deployed in

the same environment and work as a team to complete a common task. In order to coor-

dinate, robots exchange information wirelessly and decide how each robot should act, in

either centralized or decentralized architecture. Technological advancements driving the

market of service robots, are pushing the boundaries of hardware and soware, leading

to bigger, faster and more complex robots that are more capable than ever.

1.2 Research Challenges and Motivation

e economical benefits associated with increased productivity led to the use of multi-

ple robots co-operating in the same environment [43], thus introducing the challenge of

mobile robot coordination. In a multi-robot application, each robot has to carry out its

own task contributing to the fulfillment of a general objective. When operating in the

same area, robots face the risk of conflict i.e. colliding with each other as well as causing

deadlocks. A deadlock occurs when two robots are positioned in such way that each one

obstructs the movement of the other, halting their operation indefinitely. Another robot
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coordination problem arises when robots try to maximize their own productivity rather

than working as a team. Robots are needed to coordinate their actions in order to maxi-

mize global productivity. Computing a coordination plan fast, is an additional problem

introduced by the dynamic nature of the environments. Since service robots operate in

such environments, an unexpected event may disrupt the normal operation, requiring

the robots to re-coordinate in order to continue.

Another important challenge is fault diagnosis, which is associated with the reliabil-

ity and safety of robots around people. A fault is an unexpected change in the system

causing unacceptable deviation from the normal operation [50]. A robot faces the risk

of having one or more of its components malfunction and thus behave abnormally. e

fault changes the behavior of the robot and as a result the controller may lose the control

of the robot, putting in danger nearby people or causing damages to its surroundings.

With fault diagnosis, a robot will become aware of the fault and can take action in order

to prevent any adverse consequences. erefore, instead of losing control of the robot,

the controller will be able to assess the situation and act accordingly. An extreme mea-

sure would be to stop anymovement to prevent any harmful collisions and raise an alarm

to notify the robot owner about the fault. In other situations, the controller can adapt to

accommodate the fault so that the robot will continue its function.

Motivation of this thesis is to minimize the costs and risks associated with lack of co-

ordination and actuator faults in service robots. We investigate the problem of multiple

robots competing over a set of resources in order to achieve a common objective. ese

robots need to coordinate in order to efficiently share the common resources and maxi-

mize their collective productivity. In specific, we study the problem of transporting a set

of containers from the storage to the loading area of a warehouse using multiple robots.

In addition to deciding the assignment of containers to robots, efficient coordination is

required based on the limitations introduced by the topology of the warehouse. ere is

limited space for the robots to move which they have to share, therefore coordination is

essential to avoid any deadlocks. A way to prevent deadlocks is to make all paths unidi-

rectional, allowing robots to travel in a single way. is requires for the correct design of

the path network, but even in this case, such solution is inefficient in terms of traveling

time because robots have to travel longer distances, delaying the delivery of containers

and use more energy. is motivates us to research for a more efficient solution, where

robots maximize the utilization of available resources by coordinating. Furthermore, to

remain reliable as a team, the coordination needs to be computed fast in order to allow
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fast reconfiguration when an unexpected event occurs.

In the pursuit tominimize the risks associatedwith faults, we investigate actuator fault

detection on differential-drive mobile robots. An approach to detect faults is through

model-based residual method. A model is used to estimate the state of the robot while

sensors provide information about the actual state of the robot. By comparing the esti-

mated andmeasured state, a residual is generated. Uncertainty is a key component in this

process and dictates when the residual is significant in order to indicate the occurrence of

a fault. We investigate actuator fault detection under different fault conditions and using

different sensors. To achieve this, we need to take into account the different sources of

uncertainty, in order to determine a detection threshold, which is adaptive with respect

to the states of the robot. Sometimes, actuator faults of small magnitude are masked by

the uncertainty which makes them difficult to be detected; this motivates us to develop a

different approach to improve detection sensitivity.

Once a fault is detected, a robot can react in order to mitigate the effects of the fault.

We present a path correctionmethod that uses fault detection, isolation and identification

in order to alter actuator signals and allow the robot to continue its operation. In another

effort to react to faults, we consider the scenario when a robot experiences multiple faults

on its sensors, and only one sensor remains operational. In this scenario, we present a

localization approach that is suitable for single sensor robots.

1.3 Contributions

e contributions of this work are:

Coordination of mobile service robots in a warehouse

• Mixed Integer Linear Programming formulation that allows optimal solution of the

problem using appropriate solvers.

• A near-optimal, low-complexity algorithm that allows real-time coordination of a

team of mobile service robots, designed for container transportation.
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Actuator fault diagnosis on a differential drive service robot

• A model-based approach for detecting faults using only odometry sensors and

identification of those faults with respect to three possible fault-types. e pro-

posed method is designed to be practical, using training to obtain the required pa-

rameters.

• A method that uses the temporal behavior of a warning signal in order to detect

faults. e method offers significant improvement in fault detection sensitivity.

• e ‘Fault Detection Isolation and Path Correction’ module which provides actua-

tor fault detection using full-state measurement provided by a camera. emodule

is designed to work as a plug-in device on the robot, and aer detecting, isolating

and identifying the fault, takes corrective measures to allow the robot to continue

its operation if possible.

• An implementation of the Monte Carlo Localization algorithm, suitable for mobile

robots using a single infra-red range sensor.

• Design and implementation of a hardware and soware platform that allows ex-

perimental work to be conducted wireless on the iRobot Roomba robot.

1.4 esis Outline

e outline of this thesis is illustrated in Fig. 1.1. Chapter 2 presents the related work. In

Chapter 3 we investigate a problem associated with transporting a set of containers from

the storage to the loading area of a warehouse using autonomous robots. In addition to

assigning robots to containers, the special topology considered in this work requires co-

ordinated planning of the robots’ movement to avoid conflicts. We formulate the joint

problem of robot assignment andmovement coordination with the objective of minimiz-

ing the time required for all robots to carry their assigned containers to the destination,

subject to conflict-free movement of all robots. In Chapter 4, we address the problem of

fault detection on a differential-drive mobile robot using odometry sensors. Inspired by

theoretical work from the field of Fault Diagnosis, we take a model-based approach for

detecting and identifying faults. Aer detection, the fault is identified against three possi-

ble fault-types. Finally, the chapter also introduces the problem of small faults, i.e. faults

that cannot be detected because the uncertaintymasks the effects of the fault. In the same

5

Dem
etr

is 
Stav

rou



Figure 1.1: esis overview.

work we propose an alternative method that is able to improve the detection under small

faults. Chapter 5 is motivated from the small faults problem identified in Chapter 4. In

this work, we propose a new model-based approach for detecting faults in service robots

that aims towards improving detection sensitivity by incorporating multiple thresholds

for evaluating the residual. Previously, the upper bound of the uncertainty distribution

was used to ultimately determine the detection threshold but in some cases the threshold

becomes conservative since it is determined on a worst-case basis. Chapter 6 presents

a module that when installed on a mobile robot provides path correction by using fault

detection, isolation and identification. In the same chapter, we present a Monte Carlo

Localization based method that is suitable for single sensor robots. Finally, in Chapter 7

we present the concluding remarks and future work.

6

Dem
etr

is 
Stav

rou



Chapter 2

Related work

2.1 Coordination of Mobile Service Robots in a Ware-

house

In the constant pursue for improved efficiency, manufacturing facilities are equipped

with robotic systems for automating procedures [90, 111]. Recently they are extensively

used in other areas, such as warehouses, container terminals and transportation sys-

tems [15, 35]. A facility as such, consists of multiple autonomous mobile robots used as

carriers for transporting containers from storage areas to handling stations by following

predetermined paths, physically or virtually defined. A centralized system is responsible

for designating the containers that have to be transferred and scheduling those opera-

tions. A mobile robot is being assigned to transfer a specific container and then proceeds

to execute its task.

To limit the storage cost, operators have an incentive to increase the number of con-

tainers that are stored in the facility, by trading off the available space le for the robots to

travel into. Also, the number of robots operating simultaneously, increases the through-

put of the facility. However, as the number of robots is increased and the availablemoving

space is decreased, several challenges are introduced. Robots can run into deadlocks and

their aversion or resolution costs valuable resources. For example, a deadlock situation

can occur when two robots travel towards each other in opposite directions, in a path

wide enough to fit only one of them. In this context, we examine a problem requiring the

assignment and movement coordination of multiple robots in a container warehouse to

minimize the maximum time needed to complete individual tasks.

Due to similarities, one may relate this problem to theVehicle Routing Problem (VRP)
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[24] which considers a fleet of vehicles, all with the same capabilities, used to deliver

goods to a set of customers located at different locations and then return back to the

depot. is problemhas received great attention bymany researchers andmany solutions

have been proposed for the VRP [64] as well as its variants, Vehicle Routing Problem

with TimeWindows, CapacitatedVehicle Routing Problem andVehicle Routing Problem

with Pick-Up and Delivery. However, there are significant differences with the problem

considered in this work. e spatial scale of theVRP ismuch broader than the considered

problem, since nodes in the network usually represent locations within a city. is draws

the attention of the problem away from deadlocks or congestion that may occur when

vehicles are operating. In a facility with limited free space such as a warehouse, deadlocks

and congestion have to be explicitly taken into account. Furthermore, in theVRP case the

shortest path normally generates the fastest time but in a facility with multiple vehicles

this is not the case. ese significant characteristics motivate us to treat this problem

differently.

Automating a facility with mobile robots involves solving the scheduling and routing

problems [84]. e purpose of scheduling is to coordinate the available vehicles by desig-

nating which container should be handled by each vehicle, usually under the constraint

of priority and with the objective of minimizing the time. Given successful scheduling,

the purpose of routing is to discover an efficient path with respect to time, between each

vehicle and it’s destination. e algorithms must ensure that the vehicles reach their des-

tination without conflicting with other vehicles.

Oneway to approach this problem is through the design of the path network onwhich

the autonomous robots move between pick-up and delivery stations prior to the setup of

the facility. By focusing on the path network design, more efficient routing solutions can

be obtained at the expense of less flexibility in the configuration of the facility [30,41]. A

second approach decomposes the facility into non-overlapping, single vehicle loops that

operate in tandem, in a way that the exchange of containers is achieved through transfer

stations positioned between adjacent loops [12, 33, 62]. is implies that each container

is handled by more than one vehicles before reaching its destination, introducing signifi-

cant overhead due to the multiple loading/unloading procedures. A third approach is to

segment the path network into logical zones and then impose rules on each zone to pre-

dict and avoid deadlocks, e.g. restricting the number of vehicles allowed within a specific

zone [75, 86] or employing a Petri-net formalism to model and control deadlocks [110].

e main drawback of zone segmenting is the reduced utilization of the available re-
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sources, as zones assigned to specific vehicles cannot be utilized by other vehicles. A

fourth approach jointly considers the design of the facility and the path network, as well

as the routing of the robots to maximize the performance of the overall system [27].

In cases that the movement of the vehicles is not restricted, i.e. they are able to move

anywhere within the facility, vehicle paths can be calculated a-priory or on-line. Con-

flicts can be avoided by extensive planning and utilizing the spatial resources [23] or both

spatial and temporal resources of the path network [60, 74, 95]. Such methods generate

efficient solutions but the solution space expands rapidly as the number of network paths

and the number of vehicles increases, requiring significant computational power, making

them unsuitable for real-time execution. To deal with real-time constraints, a common

practice is to calculate these paths a-priory. However, unexpected events such as delayed

movement, running ahead of schedule or temporary hardware malfunction, may lead to

conflicts which invalidate the precomputed paths, hence requiring a new solution. In an

effort to lower the complexity, researchers describe a conservative myopic strategy i.e.

vehicles are routed one-by-one while all the previous route decisions are respected [61].

Assignment and coordination of vehicles in the context of logistics is a well researched

problem; the most relevant work with our problem was the work that addressed the gen-

eral topology. e solutions proposed in that set of work, are aimed towards environ-

ments with no special or dedicated infrastructure where vehicles can utilize to assist their

coordination. is is also the case in our problem, but the facility under study has impor-

tant differences that requires different approach. e most critical being the extremely

limited moving space for the robots. is constraint restricts the application of exist-

ing methods because there are no alternative paths between two locations in the major-

ity of the facility space. Most of the existing methods rely on alternative paths in order

to efficiently solve this problem using incremental approach. erefore, to address this

problem a different approach was needed.

2.2 Actuator Fault Diagnosis on a Differential-drive Ser-

vice Robot

Many of the service robots applications require increased robot autonomy, either due to

the inability for human operators to be present (remote or hazardous environments) or

simply due to the need for improved efficiency. When a robot operates autonomously,
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an actuator fault can cause significant downtime, reduced productivity as well as raising

safety issues. An actuator fault affects the normal operation and causes the robot to dri

away from its intended path with the risk of colliding with an obstacle, causing damages

to its surroundings and possibly injuring nearby people. Safety is identified as one of

the critical issues that needs to be addressed before the wide acceptance of service robots

in domestic environments [103]. Despite advancements in technology, experience has

shown that a failure will occur at some point [16]. Furthermore, a fault could occur

due to external factors, which where not anticipated during the design of the robot, for

example people’s interactions with the robot could cause damage leading to a fault [13].

e need for a more dependable robot has generated interest for applying fault detection

methodologies in robotics.

A fault can occur on any of the robot’s subsystems, and in the field of wheeled mobile

robotics, the locomotion subsystem has attracted significant research attention. A fault is

defined as an unexpected change in the system that causes unacceptable deviation from

the normal operation [50]. When a fault is present, the actual robot’s movement deviates

from the expected and if le untreated, the robot will collide as some point to an element

of the environment. A fault tolerant mobile robot is able to continue its operation in the

presence of a fault, although it can experience reduced performance. In this thesis focus

on fault detection i.e. the ability of the robot to become aware of a fault occurrence. We

also apply fault identification in order to learn the magnitude of the fault. is capabil-

ity, which can be viewed in the context of self-awareness, improves the autonomy of the

mobile robot and helps to prevent any consequences the fault may cause since the robot

can stop its operation and raise an alarm, preventing any potential collisions. Further-

more, in some cases the robot could reconfigure and accommodate the fault effects on its

movement, allowing it to continue operating.

In the last decades various aspects relevant to mobile robot movement have been in-

vestigated. Mobile robots usually operate in cluttered areas, such as houses, office build-

ings or warehouses, and there has been an ongoing research on path planning and naviga-

tion in such environments [65, 66, 81, 87, 104, 108]. Navigating in dynamic or even static

environments requires obstacle avoidance, which may be stationary or moving, and vari-

ous methods have been proposed for this purpose [6,9,58,112]. Due to modeling errors,

disturbances and other factors, the robot could deviate from its planned path. For this

reason, mobile robot control under uncertainty has been investigated in [7, 9, 20, 82],

along with the trajectory tracking problem [77]. Some applications, for example in ware-
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houses, require the deployment and control of multiple robots [52] in formations [26,78]

or with limited communication [6, 91].

In Systems and Control research, various theoretical results and methodologies on

fault diagnosis have been proposed during the last two decades. ese results aim to

improve system reliability and fault tolerance, specifically by detecting, isolating, iden-

tifying and accommodating faults in linear and non-linear centralized and distributed

systems, utilizing model-free and model-based approaches [10,21,46,49]. Fault diagno-

sis methodologies with learning capabilities have been proposed in the past years, which

combine model-based analytical redundancy and adaptive approximation models, such

as neural networks, to detect system and sensor faults and to learn the unknown fault

dynamics [36, 37, 83, 85, 113]. By learning the unknown fault dynamics, and by isolating

the type of fault and identifying its magnitude, it is possible to change the control input

to accommodate the fault, during operation [113].

Fault detection in the context of mobile robots has attracted significant attention, and

both model-free and model-based methods have also been proposed [71]. An early ap-

proach called gyrodometry, which even though does not directly detect faults, used the

concept of sensor redundancy to maintain correct yaw estimate despite the presence of

anomalies on the floor surface [11]. In another work, sensor redundancy is used to detect

hardware faults as well as modeling errors [92]. Redundancy in the measurements is also

used to detect faults, and alongwith localization, allow a robot to navigate through a forest

area [76]. e method of multiple-model adaptive estimation was used by researchers to

detect and identify sensor failures [89]. It contains a bank of Kalman filters and each one

is based on a different failure model. Additionally, the bank contains a nominal model

estimator. Processing the residual of each estimator, produces a probabilistic interpre-

tation of the system’s state. e lowest residual gives an indication which estimator best

represents the true state, but this is not always the case because of noise. For this reason,

a follow-up work describes a method using an off-line trained neural network to choose

which fault has occurred [42]. Kinematic and dynamic models were developed to detect

faults that change thewheel radius (flat tire, or wheel deformation) [28]. eirmethod al-

lows fault detection despite parametric uncertainties in the model. Researchers have also

utilized localization algorithms to detect faults [102]. Information from different sensors

is fused to provide two or more position estimations, tracked with a Kalman filter. A sta-

tistical change detection test (CUSUM) is applied to detect deviations which indicate a

fault in the system. Also, there are studies for the effects of faults in a formation of robots

11

Dem
etr

is 
Stav

rou



and propose a fault tolerant control design to minimize them [105].

To overcome inaccuracies imposed by mathematical models, some methods take

Bayesian approach for tracking the robot and environment states [106, 114]. ey ap-

proximate the relevant probability distributions using particle filters. Implementations of

such filters require computational power well within the limits of a robot. eir accuracy

can be adjusted on demand through the increase/decrease of the number of particles,

subject of course, to the available computational power. Even though more computa-

tionally demanding, neural networks were also utilized for detecting actuator and sensor

faults [53]. Neural networks are also used to avoid the limitation imposed by uncer-

tainties in analytical models [94]. In another work, researchers presents an experimental

approach on a six degrees-of-freedom robotmanipulator, which uses neural networks for

analyzing the vibration condition on joints [32]. In the context of mobile robots, faults

are detected with a time-delay neural network that is trained to classify faults based on

the control input and sensor measurements [22].

ere is also a survey about faults occurring on autonomous robots, collected from

the teams participating in RoboCup competition [63,100]. e paper presents an adapted

fault taxonomy suitable for autonomous robots and provides detailed information about

the faults. From the perspective of anomaly detection [19,57], an online and data-driven

approach usesMahalanobis distance to detect abnormal operation andwas tested, among

other domains, on a mobile robot [70].

A closely related problem is the detection of wheel slip, occurring in roversmoving on

off-road terrain [44,79]. Slip is the difference between the velocitymeasured by the wheel

and the actual velocity [5]. It is important that the robot can detect slip reliably, otherwise

it will deviate from its intended path. When available, GPS can be utilized to detect slip [4]

andwhen theGPS signal becomes unrealiable slip-detection process switches to amodel-

based method with measurements from IMU and wheel encoders [109]. In this context,

sensor signals are processed by a support vector machine trained a-priory, to distinguish

between “normal” and “immobilized” status [47].

2.3 Localization in Mobile Robots

Localization is a fundamental problem in robotics, actively researched since it was first

defined. It is a problem occurring inmany practical robotic applications, where the robot

is required to navigate within a certain area. While the robot navigates, knowledge of its
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location is essential for executing accurate and efficient movements towards its destina-

tion.

From a theoretical point of view, two localizationmethods stand out which both were

shown to work in practice as well and form the foundations ofmany localizationmethods

to this date [93]. An Extended Kalman Filter (EKF) approach is the first method, which

tracks the robot using Gaussian probability density function for both the pose and sensor

measurement uncertainty. Because it is a parametric approach, it works fast and was

shown to be accurate.

Furthermore, EKF can be usedwith non-linear transitional andmeasurement systems

by linearizing around the working point with Taylor expansion. However, in a situa-

tion where high uncertainty exists, the pose distribution is affected by the non-linearities

of the system and the filter could diverge. Moreover, EKF is a single-hypothesis belief

method. Because of this, using it on a limited sensing robot could lead to divergence

without recovery. EKF works best and more commonly used when distinguishable land-

marks are present in the environment.

On the other hand, a multi-hypothesis belief method tracks multiple potential poses

at the same time. is is useful when there is not enough information to allow the con-

vergence on a single hypothesis. An extension of the EKF localization approach in this

direction is the multi-hypothesis EKF [55]. Monte Carlo Localization (MCL) [25] is also

a multi-hypothesis localization method where the pose belief is approximated using par-

ticle filters. MCL works with raw measurements instead of landmarks making it suitable

for use with range sensors. Because the belief is represented by a multi modal distri-

bution, the robot is aware of all the possible poses and their uncertainties. MCL works

with non-linear models and it is relatively straight forward to implement. However, it is

computationally more intensive than EKF.

ere are successful implementations of both the MCL and EKF using either simu-

lators or real robots. A method uses MCL on a mobile robot, which able to localize and

track its position even aer long trajectories (700m) [25]. e authors compare MCL

against other approaches to localization and show how the robot is able to both globally

and locally localize. In another publication [39], the concept of adaptive sampling was

introduced, which improved the performance during global localization and extreme fail-

ure scenarios. e robots are equipped with laser finders or large arrays of sonar sensors.

Another approach uses beacons, whose precise locations are stored in a map, in order

to localize [68]. e robot tracks its position by using EKF with beacon measurements
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and the kinematic model. It should be noted that acquiring, installing and calibrating the

extra hardware (beacons) requires additional resources.

e performance of two localization implementations was tested in two different en-

vironments, a corridor and a complex office setup [51]. e methods use EKF and Un-

scented Kalman Filter (UKF), which is an extension of EKF. UKF exhibited better results

than EKF at the expense of higher computational complexity. ey also showed how

localization can be improved even further by calibrating the odometry of the robot. A

high-profile robot was used, carrying an array of 8 sonar sensors.

Researchers attempted to replace the dense coverage of an expensive laser range finder

by grouping together sequential sparse scans which allows the extraction of useful fea-

tures [2, 8]. Particle filters are used for filtering the information and estimating the pose.

e robot, equipped with few short range infrared sensors, is able to achieve accurate

Simultaneous Localization And Mapping (SLAM). Similar sensors were used in another

work to study localization abilities in a small static environment, decomposed as a grid

map [3]. Because of the short range of the sensors, the robot has to travel close to the

obstacles to get any useful information for localization. is could lead to a collision

even with a small error. e experiments showed correct localization even though some-

times a large number of particles is used. Similarmethod was also used on a service robot

which navigates in 20m by 20m area, equipped with an array of sonar sensors for obstacle

avoidance and a laser range finder for scanning the environment [18].

rough a more theoretic perspective and with the assumption of perfect map and

sensing, it was shown that the global localization problem can be solved with tactile sen-

sors [80]. In a follow-up publication [69] the authors relax the assumptions of perfect

control and sensing, something also considered probabilistically [31].

All of the aforementioned approaches solve the robot localization problemusingmore

than one (usually large arrays) of sensors. e problem we consider involves a service

robot which is le with only one operational infra-red range sensor. To the best of our

knowledge this was not addressed so far, which encourages us to investigate and explore

this problem.
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Chapter 3

Optimizing Container Loading with
Autonomous Robots

3.1 Introduction

In this work, we consider a problem associated with autonomous robots loading and de-

livering containers located in a warehouse facility. In terms of scheduling, an assign-

ment problem needs to be solved indicating which robot should undertake each task.

In terms of routing, a coordination problem needs to be addressed describing how the

robots should coordinate their movements in order to avoid conflicts and reach their

destination. e topology considered in this work has specific characteristics in terms of

container arrangement, loading/unloading procedures andmovement constraints. ese

characteristics introduce a number of challenges that distinguish the considered prob-

lem from problems addressing assignment and coordination of autonomous robots in

relevant applications. First, the facility topology does not allow alternative paths for the

loading and delivery of each container. In fact, a large percentage of containers may have

conflicting path segments which makes conflict resolution highly complex. is requires

very careful a-priori coordinated planning of the robot paths to avoid conflicts, contrary

tomostmethods that attempt to resolve conflicts on-the-flywith the risk of ultimately not

reaching a conflict-free solution. Second, achieving an efficient solution in this confined

environment poses a significant challenge; online rerouting [59,67,110] in such a highly

confined environment is expected to introduce further rerouting causing serious ineffi-

ciencies to the facility. e same issue extends to the assignment of containers to robots,

as many approaches employ simple algorithms like first-come-first-served [84]. ird,
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solutions provided by high-complexity a-priory approaches are not desirable in our case,

because the dynamic nature of such facilities requires real-time decision making.

e contributions of this work are the following:

• Formulation and optimal solution of the assignment and coordination problem us-

ing Mixed Integer Linear Programming (MILP) tools

• Development of a low time-complexity polynomial algorithm for solving the as-

signment and coordination problem that provides close to optimal results

• eoretical analysis of the computational performance of the heuristic algorithm

with respect to the optimal solution and other conflict resolution strategies

• Reduced time-complexity algorithm for a special container arrangement

3.2 Problem Statement

emotivation of this work emanates from a common problem encountered in container

terminals where containers are stacked into lanes: straddle carriers that handle the con-

tainers cannot move next to each other on adjacent lanes, as the space between lanes is

enough only for one straddle carrier.is space limitation creates the challenge of simul-

taneously loading multiple containers without any movement conflicts between straddle

carriers.

We consider a topology inspired from the one used in container terminals as illus-

trated in Fig. 3.1. e area of the facility is divided in two distinct regions, the storage

region where all containers are stored and the free-moving region which is the shaded

region in the figure. Containers need to be transported from the storage area to the load-

ing area. A robot, similar to the straddle carrier, moves on two sets of wheels, located

along its two sides. In order to load a container the robot needs to be positioned above it.

is is achieved by placing its wheels to the two sides of the container and then moving

into place. Aer liing up the container, the robot starts moving towards its destination.

Note that the robot is tall enough such that when carrying a container there is enough

clearance underneath to move over other containers without hitting them. To save space,

containers are stacked into long lanes, and the limited space between two consecutive

lanes forms the transportation aisles of the warehouse. Initially the robots are located

randomly in the area and aer being assigned a task, they move through the free-moving
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region to reach the entrance of their corresponding container lane. e free-moving re-

gion has no constrained paths therefore a robot can move freely in any direction. In this

region, robots can maneuver and avoid collisions [29, 73].

Figure 3.1: e specific facility topology considered in this work. e limited space be-

tween the container lanes can cause conflict between two opposite moving robots, as

illustrated in this figure with robots 1 and 2.

e facility is equipped with a set R with |R| = N identical robots for transporting

the containers. A task s ∈ S defines a specific container in the facility that needs to be

transported from the storage to the loading area, with S, |S| = N , being the set of tasks

that the operator of the facility requests to be transported and loaded. Notice that for

simplicity we have assumed that the number of robots is equal to the number of contain-

ers. In case the number of containers is larger than the number of robots, a sequence of

problems can be solved by considering subsets of N containers.

In terms of storage space, this topology is efficient. However, due to the extremely

limited space in the container storage region, special constraints exist that distinguish

this problem from other general topology problems. e long container lanes have a

single entry/exit point at the lower end. is means there is only one way to reach any

given container and also it is not possible to switch lanes once a robot enters a lane. In

order for a robot to switch a lane, it has to travel all the way to the exit of the current

lane, move to the entrance of the desired lane and then move up to the desired container.

erefore, even two spatially close containers in different lanes are actually very far in

terms of robot path.

Another constraint that arises due to the limited resources, is the movement of two or

more robots in adjacent lanes. e aisles are wide enough for only one set of robot wheels,
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so it is not possible for two robots to be on adjacent lanes, side-by-side. An example of

this situation is shown in Fig. 3.1. Robot 1 is moving upwards while robot 2 is moving

downwards. When they meet they enter into a conflict because each one opposes the

progress of the other. Later on, robots 3 and 4 which also travel downwards will join the

conflict, and this shows how fast it can escalate in the facility.

3.2.1 Problem Decomposition

Addressing our problem, requires the consideration of two related problems: assignment

and coordination. Even though the two problems could be treated separately, joint con-

sideration of these provides better results.

Regarding the assignment problem, the binary matrix X ∈ {0, 1}n×n denotes the as-

signments of robots to tasks with element xi,s being equal to 1 if task s has been assigned

to robot i and 0 otherwise. In addition, each robot should be assigned only one task and

no two robots should be assigned to the same task, and every task should be assigned to

only one robot i.e.:

N∑
i=1

xi,s = 1, s ∈ S and
N∑
s=1

xi,s = 1, i ∈ R.

Due to the constraints of the problem discussed earlier in this Section, a robot as-

signed to task s in lane ls ∈ Lmay conflict with robots assigned to tasks on the same or

directly adjacent lanes, i.e. ls − 1, ls and ls +1. We define set Ci as the set of robots which

may conflict with robot i, i.e. those located on directly adjacent on the same lane with

robot i. Because it is possible to have many robots moving on each lane, conflicts may

propagate across the entire facility, so that conflict resolution has to be considered simul-

taneously for all lanes. e robots have to coordinate with respect to their entrance/exit

order in different lanes as well as their movement strategy (when to move and when to

stand still). Initially, each robot has to wait for a certain period of time before moving

towards its defined lane in order to respect the decided entrance/exit order. During this

period, the robot will remain within the free-moving area so that other robots are able to

maneuver around it, avoiding a possible collision. It is also possible for a robot to wait

at the location of its designated task for another robot to exit before exiting the specific

lane.
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3.2.2 Objective Function

Aer being assigned a task, each robot starts to move towards the entrance of the lane the

container is positioned into. It proceeds to move and pickup the container, then exits the

lane and finally delivers the container at the loading area. e time required for robot i

to finish its complete movement is defined as:

Ti(xi, we
i , w

x
i ) =

∑
s∈S

T e
i,sxi,s + we

i + T l + 2
∑
s∈S

T v
s xi,s + wx

i + T d, (3.1)

where xi is the assignment vector for robot i, i.e. xi,s = 1 if robot i is assigned to task s

and 0 otherwise, T e
i,s is the travel time to the lane entrance where task s is located, we

i is

the entrance waiting time, i.e., the time before robot i begins its movement from its initial

position in the free-moving area, T v
s is the travel time from the lane entrance to the s-th

container’s position, and wx
i is the exit waiting time, i.e., the waiting time at the location

of the container before the robot travels towards the lane exit. e objective function

is subject to the conflict-free condition which is described in detail in Section 3.3. All

robots require the same time to load a container which is defined as T l. In addition, T d is

the travel time from each lane exit to the loading area. Note that when robots enter and

exit the lanes, they should keep a time-distance apart defined as guard time T g for safety

reasons.

ere are different metrics for performance like maximum throughput, minimum

travel and even distribution of workload [107]. In this work we consider maximum

throughput, equivalent to the minimum completion time of all tasks. e completion

time of all tasks can be otherwise stated as the maximum time any of the robots requires

to complete its task, i.e.:

Λ(X,we,wx) = max
i∈R

Ti(xi, we
i , w

x
i ) (3.2)

wherewe ∈ RN ,wx ∈ RN are vectors representing the entrance and exit waiting times for

each robot respectively. is equation is subject to having no conflicts between any of the

robots. Under certain conditions, robot i may conflict with one or more robots defined

as the set Ci. e objective is to find a set of values {X,we,wx} such that

{X∗,we∗,wx∗} = argmin
{X,we,wx}

Λ(X,we,wx) (3.3)

In order to derive the optimal values for X,we and wx, an optimization problem has to

be solved. Note that times T l and T d are constant for all robots and all tasks, so that their

presence does to affect the objective function; for this reason there are both hereaer

ignored.

19

Dem
etr

is 
Stav

rou



3.2.3 Illustrative Example

(a) (b) (c) (d) (e) (f)

Figure 3.2: Illustrative example of a scenario with 2 robots, 2 containers and 1 container

lane. (a) e initial configuration. (b) Scenario 1: Without any waiting times, the robots

will reach a conflict. (c) Scenario 2: Robot 2 waits for robot 1 to carry its container out of

the lane before entering. e time between robot 1 exiting and robot 2 entering respects

the constraint of T g. e scenario finishes successfully without conflicts (d) Scenario 3:

Robot 2 waits for robot 1 to enter plus additional guard time T g. (e) Both robots reach

their tasks but robot 1 needs towait for robot 2 tomove further so the T g constraint holds.

(f) e scenario finishes successfully without any conflicts

To gain a better insight into the problem, in this paragraph we investigate three differ-

ent cases that can arise in a simple configuration. We assume a small facility composed of

only one lane of containers, two robots and two tasks s1, s2, and assume that each robot

moves 1 grid cell per iteration. e initial configuration at iteration k = 0 is shown in

Fig. 3.2(a). In this example, s1 is assigned to robot 1 and s2 to robot 2. For illustration

purposes, we assume that robots movements are discrete, on grid cell at every iteration.

• First we consider the case where both robots start moving towards their assigned

tasks without any waiting times, i.e. we = [0, 0]⊤ and wx = [0, 0]⊤. At k = 7,

robot 2 reaches its task, loads the container and is ready to start moving towards

the exit. Robot 1 on the other hand is still traveling towards its container, as shown

in Figure 3.2(b). Inevitably, the robots will conflict at k = 9.
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• Let us consider a second case where the waiting times are adjusted as we = [0, 25]⊤

in order to prevent conflicts and have the appropriate guard time T g = 4. Robot 1

starts moving first towards its task while robot 2 waits. Robot 1 reaches its task at

k = 14 and exits the lane at k = 23. Robot 2 will only start moving at k = 25 and

enters the lane at k = 27 as shown in Fig. 3.2(c). e time between robot 1 exiting

and robot 2 entering is enough to satisfy the guard time constraint. Finally, robot 2

will exit at k = 38.

• In the third case, we solve the same problem differently, using we = [0, 8]⊤ and

wx = [2, 0]⊤. Robot 1 starts moving first, while robot 2 waits. At k = 6 robot

1 enters the lane and at k = 9 robot 2 starts moving as well so it enters the lane

at k = 10 so they respect T g. is is shown in Fig. 3.2(d). Aer robot 1 loads its

container, it has to wait until robot 2 reaches its task at k = 16 (shown in Fig. 3.2(e))

and start moving at k = 17. is way robot 2 exits at k = 21, shown in Fig. 3.2(f),

and robot 1 at k = 25 and therefore respect the guard time.

is example demonstrates how the parameters of eq. (3.1) affect the solution of the

problem. Two ways to solve the problem were presented, with Λ1 = 38 and Λ2 = 25,

which means that the second solution is better than the first.

3.3 Abstract Time-Windows

In this section we describe how the time-line of a robot’s movement can be graphically

represented, inspired by the concept ofTimeWindowsused inOperational Research. is

representation is called Abstract Time Windows (ATW) and provides a method to study

the movement of all robots collectively, detect conflicts and resolve them. At this point,

for notational clarity we define tei =
∑

s∈S T
e
i,sxi,s and t̂ei = tei +w

e
i as the time required for

robot i to reach the storage region without/with initial waiting time, respectively. Also

tvi =
∑

s∈S T
v
s xi,s is the travel time that robot i requires to move from the entrance of

the storage region to its assigned container. Finally, we define txi = 2tvi + tei and t̂xi =

txi +we
i +wx

i , which denote the time from the start until the exit from the storage section

without/with waiting.

AnATWrepresents the time-line of themovement of a specific robot and indicates all

traveling and waiting times. An ATW is schematically represented by a line with distinct

start and end parts as depicted in Fig. 3.3. Initially, an ATW describes the best-case
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Figure 3.3: Schematic representation of robot movement in the container lane topol-

ogy. e Abstract Time-Windows (ATW) transformation provides a tool for studying

the problem, detecting conflicts between robots and for resolving conflicts with the al-

lowed ATW operations.

scenario of a robot moving from its starting position to the container location and then

exiting the lane. erefore, given an assignment, an ATW starts at time te then extends

by 2tv depending on the location of the container and finally ends. If required, an ATW

can be modified to include waiting times we and wx. e ATW closes at t̂x.

In a facility where N > 1, ATWs are used to detect conflicts using the following

condition.

Conflict-Free Condition (CFC):Consider any pair of conflicting robots i and k such
that tei ≤ tek and k ∈ Ci. en, these robots can navigate with no conflicts with respect to

each other, if exactly one of the following two cases is true:

1. txi + T g < tek

2. (tei + T g < tek) ∧ (txi − T g > txk)

A solution satisfies the Conflict-Free Condition if all pairwise conflicting robot combi-

nations satisfy the above condition.

is holds because if robot i enters the lane before robot k then there are only two

possible outcomes in order to progress without conflicts. e first is when robot i exits

safely before robot k enters and the second is when robot k safely enters aer robot i and

exits before robot i exits. In general, when having ATWs i and k then there are only 3
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Figure 3.4: ere are only 3 possible configurations between two ATWs that satisfy the

CFC. (a) e two robots enter in parallel i.e. robot 1 enters followed by 2. Aer pick-

ing up their corresponding containers, robot 2 exits followed by robot 1. T g constraint

is respected in both entering and exiting. (b) In this configuration, robot 1 enters and

exits, then robot 2 follows. e time between robot 1 exiting and robot 2 entering should

respect the T g constraint. (c) e same configuration as (b) only this time robot 2 is the

first robot entering and exiting.

possible configurations between them that satisfy theCFCwhich are shown schematically

in Fig. 3.4.

If CFC is violated then one can use the following two operations in order to resolve

the conflict and make the solution CFC viable:

Shi: Shi ATW by increasing its we value.

Extend: Extend ATW by increasing its wx value.

In other words, the ATW can be shied upwards or it can be extended but it cannot

be compressed. A shi upwards implies that the robot needs to wait before starting to

move for we time units, while extension implies that the robot needs to wait at the task

location forwx time units. Fig. 3.5(a) shows an example with three ATWswhere the CFC

is violated in two cases. ATW2 conflicts with ATW3 and also ATW1 conflicts with both

ATW 2 and 3. To resolve the first conflict we can use operation Shi and shi ATW 3 as

shown in Fig. 3.5(b), i.e. robot 3 will need to wait before starting its movement so that it

enters the storage section aer robot 2 has exited. To resolve the second conflict, ATW 1

is extended using operation Extend as shown in Fig. 3.5(c). e solution satisfies CFC.
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Figure 3.5: An example illustrating conflict resolution using ATWs. (a) e three initial

ATWs are generated on the initial robot locations and their corresponding task locations.

ATW2 conflicts withATW3 and alsoATW1 conflicts with bothATW2 and 3. (b)Using

ATW operation Shi, ATW 3 is shied to resolve the conflict with ATW 2. At this point,

ATW 1 still conflicts with the other two ATWs. (c) Using ATW operation Extend, ATW

1 is extended to resolve both conflicts. e solution satisfies CFC.

3.4 MILP Formulation

e optimal solution of the considered problem is achieved by incorporating the derived

CFCs into a Mixed-Integer Linear Programming (MILP) formulation. Towards this di-

rection we first present some Lemmas necessary for the derivation of the problem for-

mulation.

Lemma 1. Let z ∈ {0, 1}. e logical condition “if z = 1 then
∑

i xiai ≤ b” can be

expressed with the MILP constraint:∑
i

xiai − b ≤Mu(1− z) (3.4)

whereMu is an upper bound on
∑

i xiai − b.

Proof: e proof can be found in [72]. ■
Note that in case z = 0, the constraint is always satisfied and thus

∑
i xiai ⋚ b.

Lemma 2. e logical condition “if
∑

i xiai ≤ b then z = 1” can be expressed with the

MILP constraint: ∑
i

xiai − b ≥ (M l − ϵ)z + ϵ, (3.5)

whereM l is a lower bound on
∑

i xiai−b and ϵ is a small tolerance beyond which we regard

the constraint not true.
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Proof: e proof can be found in [72]. ■
In case

∑
i xiai > b, then z can be either 0 or 1.

Lemma 3. e exclusive disjunction condition “if z = 1 then (
∑

i xiai,1 ≤ b1) ⊕

(
∑

i xiai,2 ≤ b2) ” can be expressed with the following MILP constraints:∑
i

xiai,1 − b1 ≤Mu
1 (1− z) +Mu

1 (1− δ), (3.6)

∑
i

xiai,2 − b2 ≤Mu
2 (1− z) +Mu

2 δ, (3.7)

whereMu
k is an upper bound on

∑
i xiai,k − bk and δ ∈ {0, 1} indicates whether the first

(δ = 1) or the second constraint (δ = 0) holds true.

Proof: When z = 0, constraints (3.6) and (3.7) become
∑

i xiai,1−b1 ≤Mu
1+M

u
1 (1−δ)

and
∑

i xiai,2 − b2 ≤ Mu
2 +Mu

2 δ which always hold true by the definition ofMu
k . When

z = 1 it is true that
∑

i xiai,1 − b1 ≤Mu
k (1− δ) and

∑
i xiai,2 − b2 ≤Mu

2 δ. In case δ = 1

then
∑

i xiai,1 − b1 ≤ 0 and
∑

i xiai,2 − b2 ≤Mu
2 , implying that constraint

∑
i xiai,1 ≤ b1

should be satisfied, while similar reasoning yields that the second constraint must hold

true when δ = 0.

e exclusive disjunction condition ensures that when the indicator variable z is

turned on (z = 1) exactly one of the two constraints is satisfied. ■

Lemma 4. e conjunction condition “if z = 1 then (
∑

i xiai,1 ≤ b1) ∧...∧ (
∑

i xiai,k ≤

bk), k = 1, ..., K” can be expressed with the following MILP constraints:∑
i

xiai,k − bk ≤Mu
k (1− z), k = 1, ..., K. (3.8)

Proof: e proof can easily be obtained following similar steps to the proof of Lemma

3. ■
Note that Lemma 4 holds for an arbitrary number of constraintsK.

Lemma 5. e conjunction condition “if (
∑

i xiai,1 ≤ b1) ∧ (
∑

i xiai,2 ≤ b2) then z = 1”

can be expressed with the following MILP constraints:∑
i

xiai,k − bk ≥ (M l
k − ϵ)δk + ϵ, k = 1, 2. (3.9)

z ≥ δ1 + δ2 − 1, z, δ1, δ2 ∈ {0, 1}. (3.10)
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Proof: Notice that the condition is equivalent to “(if
∑

i xiai,1 ≤ b1 then δ1 = 1) ∧

(if
∑

i xiai,2 ≤ b2 then δ2 = 1) ∧ (if (δ1 = 1 ∧ δ2 = 1) then z = 1)”. Following Lemma

2, the first two conditions can be written as (3.9). Because δk ∈ {0, 1}, k = {1, 2}, the

third condition can be expressed as (3.10); this is true because only for δ1 = 1 and δ2 = 1,

variable is forced to take a value z = 1, otherwise z ≥ 0. ■

eMILP formulation of the considered problem is based on the fact that the assign-

ment matrix X, and the waiting vectors we and wx must be optimally selected in order

to minimize the total cost, defined as fT = maxi∈R t̂xi , and at the same time ensure that

there is no conflict between any pair of robots. Note that fT is equivalent to the cost de-

fined in (3.2) with T l and T d ignored, as previously discussed in Sec. 3.2.2. Towards this

direction, the approach taken is to define appropriate MILP constraints based on Lem-

mas 1 - 5 ensuring that whenever two robots are potentially conflicting, i.e. they have

been assigned tasks in the same or neighboring lanes, exactly one of the two CFC cases

holds true. e developed MILP formulation for the optimal solution of the considered

problem is given below:

min
{X, we, wx, ζ, t̂x, t̂e, δ, δ̂, δ̃, ψ, ξ}

ζ (3.11a)

s.t. t̂xi ≤ ζ, i ∈ R, (3.11b)

t̂xi = 2
∑
s∈S

T v
s xi,s + t̂ei + wx

i , i ∈ R, (3.11c)

t̂ei =
∑
s∈S

T e
i,sxi,s + we

i , i ∈ R, (3.11d)

∑
s∈S

xi,s = 1, i ∈ R, (3.11e)

∑
i∈R

xi,s = 1, s ∈ S, (3.11f)

∑
s∈S

xi,sls −
∑
s∈S

xk,sls − (M l
2 − ϵ)δ̂i,k ≥ 1 + ϵ,

i, k ∈ R, k ̸= i, (3.11g)

−
∑
s∈S

xi,sls +
∑
s∈S

xk,sls − (M l
2 − ϵ)δ̃i,k ≥ 1 + ϵ,

i, k ∈ R, k ̸= i, (3.11h)

δi,k ≥ δ̂i,k + δ̃i,k − 1, i, k ∈ R, k ̸= i, (3.11i)

t̂ei − t̂ek ≤Mu
1 (1− ψi,k)− T g, i, k ∈ R, k ̸= i, (3.11j)
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ψi,k + ψk,i = δi,k, i, k ∈ R, k < i, (3.11k)

t̂xi − t̂ek ≤ −T g +Mu
1 (1− ψi,k) +Mu

1 (1− ξi,k),

i, k ∈ R, k ̸= i, (3.11l)∑
s∈S

T v
s xk,s −

∑
s∈S

T v
s xi,s ≤Mu

1 (1− ψi,k) +Mu
1 ξi,k,

i, k ∈ R, k ̸= i, (3.11m)

t̂xk − t̂xi ≤ −T g +Mu
1 (1− ψi,k) +Mu

1 ξi,k,

i, k ∈ R, k ̸= i, (3.11n)

we
i ≥ 0, wx

i ≥ 0, i ∈ R, (3.11o)

δi,k, δ̂i,k, δ̃i,k, ψi,k, ξi,k ∈ {0, 1} , i, k ∈ R, k ̸= i, (3.11p)

xi,s ∈ {0, 1} , i ∈ R, s ∈ S. (3.11q)

In formulation (3.11) constants Mu
1 and M l

2 denote an upper and lower bound of

quantities t̂xk − t̂xi + T g and xi,sls −
∑

s∈S xk,sls − 1, respectively. In particular, Mu
1 is

set equal to the objective value derived from the heuristic algorithm presented in Section

3.5, whileM l
2 = −maxs∈S{ls} − 2. Expressions (3.11a)-(3.11b) are equivalent to the de-

sired objective minmaxi∈R t̂xi , while equalities (3.11c) and (3.11d) define the values for

t̂xi and t̂ei , respectively. Assignment constraints (3.11e) and (3.11f) indicate that only one

task is assigned to each robot and that each task is assigned to exactly one robot, respec-

tively. Constraints (3.11g) - (3.11i) indicate whether robots i and k are in consecutive

lanes which is expressed with the logical constraint, “if |
∑

s∈S xi,sls −
∑

s∈S xk,sls| ≤ 1

then δi,k = 1”. is condition is equivalent to condition “if (
∑

s∈S xi,sls−
∑

s∈S xk,sls ≤ 1)

∧ (−
∑

s∈S xi,sls +
∑

s∈S xk,sls ≤ 1) then δi,k = 1 which can be expressed using (3.11g) -

(3.11i) following Lemma 5. Constraint (3.11j) ensures that if ψi,k = 1 then t̂ek ≥ t̂ei + T g

according to Lemma 1. Constraint (3.11k) establishes the precedence between robots

i and k; if the particular pair of robots is potentially conflicting (δi,k = 1) then either

t̂ek ≥ t̂ei + T g or t̂ei ≥ t̂ek + T g indicating that robot i precedes robot k with the neces-

sary guard time and vice-versa. Constraints (3.11l) - (3.11n) ensure that if ψi,k = 1 then

exactly one of the non-conflict conditions holds (Lemmas 3, 4); CFC case 1 holds when

ξi,k = 1 and CFC case 2 when ξi,k = 0. Finally, constraints (3.11o) - (3.11q) ensure the

non-negativity of the waiting times and the binary nature of the indicator and assignment

variables. e fact that the resulting formulation belongs in the class of MILP problems

indicates that the problem is NP-hard to solve. Hence, theMILP solution approach is not

27

Dem
etr

is 
Stav

rou



suitable for real-time execution; nonetheless, it serves as the baseline for the performance

evaluation of the heuristic approach developed in the next section.

is problem was solved using the Gurobi solver, using the default solver parameters,

with maximum execution time set to half an hour. e value ϵ was chosen to be 10−6

which is the feasibility tolerance of the Gurobi solver. Choosing a smaller ϵ parameter,

the produced solution will have smaller constraint violations. However, this could lead

to larger number of iterations in order to reach a solution, hence larger execution times.

3.5 Low Time-complexity Solution

In this section, we develop a low time-complexity heuristic approach suitable for real-

time solution of the considered problem. e approach taken is to decouple the assign-

ment and coordination problems and solve them sequentially.

To deal with the assignment problem, the objective is to find the best allocation of

robots to tasks that minimizes the assignment cost, defined as fA = maxi∈R txi , which

denotes the time at which all tasks have been completed ignoring potential conflicts; this

issue will be addressed in the coordination problem. A task defines a specific container

that needs to be transported from the storage area to the loading area, hence the objective

of the assignment problem is to minimize the travel time needed to transport all desig-

nated containers to the loading area, with the assumption that all robots have the same

performance abilities, i.e. they can reach the same speeds. Since no conflicts are consid-

ered at this point, we and wx are always zero, therefore the time robot i takes to complete

its task is now reduced to txi = tei + 2tvi i.e. the time it takes robot i to reach the lane

entrance of its assigned container, and the time to reach the container and back. e cost

matrix C has elements

cis = T e
i,s + 2T v

s

which represent the time required by robot i to complete a candidate task s. e assign-

28

Dem
etr

is 
Stav

rou



ment problem is defined as

min
X

max
1≤i,s≤n

cisxis

s.t.
N∑
i=1

xi,s = 1, s ∈ S,

N∑
s=1

xi,s = 1, i ∈ R,

xi,s ∈ {0, 1}, i ∈ R, s ∈ S.

is problem is equivalent to the Linear Bottleneck Assignment Problem (LBAP) [14, 40]

which describes the assignment ofN jobs toN machines such that the latest completion

time is as early as possible. is problem can be solved using a threshold algorithm in

O(n2.5/
√
logn) time [14, eorem 6.4].

To deal with the coordination problem, it is important to find an efficient strategy

that shis and/or extends ATWs in order to complete all tasks with no conflicts, in or-

der to minimize the coordination cost defined as fC = maxi∈R(we
i + wx

i − γi) where

γi = maxj∈R txj − txi , γi ≥ 0, is the waiting time that can be added without increasing

the total cost. Next, we examine the two-robot problem in order to select an appropriate

coordination strategy for the multi-robot problem. To solve the two-robot problem, four

cases need to be considered depending on the relative arrangement of the corresponding

ATWs: (i) (tei < tek) ∧ (tvi > tvk) (ii) (tei > tek) ∧ (tvi > tvk) (iii) (tei > tek) ∧ (tvi < tvk) (iv)

(tei < tek) ∧ (tvi < tvk). Note that we only need to examine cases (i) and (ii), as cases (iii)

and (iv) are their mirror cases which can be addressed by swapping indices i and k. Any

initial configuration of two ATWs has 3 possible solutions with different performance

(solution 1, 2 and 3) presented in Fig. 3.4. Solutions 1-3 are obtained by applying strate-

gies 1-3, respectively:

Strategy 1 shis the ATWwith the smallest tv and extends the ATWwith the largest tv

Strategy 2 only shis the ATW with the smallest tv

Strategy 3 only shis the ATW with the largest tv

An illustration of the strategies is shown in Fig.3.6. Strategies will shi and/or extend the

ATWs only when necessary, in order to achieve the best performance in terms of the ob-

jective value. e following lemmas are used to choose the best strategy for coordination.

Lemma 6. e best case scenario performance of Strategy 2 is better than the worst case

scenario performance of Strategy 1 by T g for case (i) and T g − 2tvi for case (ii).
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Figure 3.6: Illustration of the three strategies used for arranging ATWs

Proof: e proof can be found in Appendix B.1. ■

Lemma 7. e best case scenario performance of Strategy 3 is better than the worst case

scenario performance of Strategy 1 by less than T g − 2tvi for case (i) and smaller than 2T g

for case (ii).

Proof: e proof can be found in Appendix B.2. ■

Lemma 8. e best case scenario performance of Strategy 1 is better than the worst case

scenario performance of Strategy 2 by 2tvk + T g for case (i) and 2tvk + T g for case (ii).

Proof: e proof can be found in Appendix B.3. ■

Lemma 9. e best case scenario performance of Strategy 1 is better than the worst case

scenario performance of Strategy 3 by tek − tei + tvk + T g for case (i) and tek + 2tvk + T g for

case (ii).

Proof: e proof can be found in Appendix B.4. ■
Based on the above analysis, we have chosen Strategy 1 for the solution of the coor-

dination problem. at is because, Lemmas 6 and 7 indicate that when Strategies 2 and

3 are better than Strategy 1, the additional time imposed if Strategy 1 is used instead, is

bounded by 2T g which is very small compared to the other parameters. Lemmas 8 and 9

further indicate that the benefit of using Strategy 1 instead of the other strategies is more

substantial because it depends on the values of tv >> T g. In sum, Strategy 1 provides the

best performance from the three strategies irrespective of the ATW configuration. Fur-

thermore, by solely using Strategy 1 in the algorithm, the time-complexity is simplified

when the problem scales up as |R| increases. Strategy 1 involves the sequential execu-

tion of the Shi and Extend operations; hence, our coordination algorithm also involves

30

Dem
etr

is 
Stav

rou



the sequential execution of these operations as described in Algorithm 1. Note that Al-

gorithm 1 is not expected to always be optimal, as the optimal solution may involve a

mixture of strategies regarding the relative arrangement of different ATWs.

In the ATW context, the first part of the algorithm resolves conflicts at the entering

part of ATWs. e algorithm starts by sorting the robot ATWs with respect to the tv

time, in descending order i.e. the ATW with the larger tv value is placed first. Starting

from the first ATW in the set, the conflicting ATWs are determined and stored in the Cr
set. Depending on which conditions hold, the appropriate waiting time we is calculated

for robot ATW k. Sorting the ATWs in the R←−s reduces the complexity because when

Shi is applied starting from the ATW with the largest tv, ensures that a specific ATW

will not have a conflict later and therefore needs to be checked only once. is applies

because according to lemmas 8 and 9, when two ATWs are conflicting, it is more efficient

to apply Shi (add waiting time we) to the ATW with the smallest tv in order to resolve

the conflict. erefore, starting from the ATW with the largest tv, any arising conflicts

will affect ATWs that have yet to be examined; hence the first part of the algorithm will

terminate in one iteration.

e second part of the algorithm resolves the conflicts on the exiting part of ATWs.

is time, the tv values are sorted in ascending order to obtain set R−→s . e Extend op-

eration is applied starting from the ATW with the smallest tv, ensures that an examined

ATW need not be re-examined. is applies because according to lemmas 8 and 9, when

twoATWs are conflicting, it ismore efficient to apply Extend (addwaiting timewx) to the

ATW with the largest tv in order to resolve the conflict. Depending on what conditions

hold between the two ATWs, waiting time wx is calculated for robot ATW i. When this

operation finishes, all ATWs are conflict free and the solution of the problem is reached.

e algorithm involves the Shi and Extend operations which are of the same time-

complexity. Each operation requires sorting the elements which is of time-complexity

O(n logn) and two nested for-loops each of time-complexity O(n2). Hence, the total

time-complexity of Algorithm 1 is dominated by the nested for-loops resulting in O(n2).

To theoretically examine the performance of Algorithm 1 with respect to the opti-

mal, we define f ∗A, f ∗C and f ∗T = f ∗A + f ∗C as the assignment, coordination and total cost

resulting from the optimal solution, respectively. Also, let fh
A, fh

C and fh
T = fh

A + fh
C de-

note the assignment, coordination and total cost resulting from LBAP and Algorithm 1,

respectively, such that f ∗T ≤ fh
T . Next, we derive theoretical bounds for the assignment,

coordination and total cost of the heuristic algorithm.
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Algorithm 1 Coordination Algorithm
1: /* Operation Shi */

2: R←−s = sort(R, tv, ’descending’)
3: for r ∈ R←−s do
4: for c ∈ Cr do
5: i = argmax {tvz|z ∈ {r, c}};

6: k = argmin {tvz|z ∈ {r, c}};

7: if tei + T g > tek then
8: we

k = tei − tek + T g;

9: else
10: we

k = 0;

11: end if
12: end for
13: end for
14: /* Operation Extend */

15: R−→s = sort(R, tv, ’ascending’)
16: for r ∈ R−→s do
17: for c ∈ Cr do
18: i = argmaxi {tvz|z ∈ {r, c}};

19: k = argmini {tvz|z ∈ {r, c}};

20: if txk + we
k + T g > txi then

21: wx
i = txk + we

k − txi + T g;

22: else
23: wx

i = 0;

24: end if
25: end for
26: end for
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Lemma 10. For the assignment cost, it is true that fh
A ≤ f ∗A.

Proof: e heuristic algorithm solves the assignment problem using LBAP which by

definition provides the minimum assignment cost. In comparison, the MILP algorithm

yields the optimal solution that provides theminimum total cost but not necessarily min-

imum assignment cost. ■

Lemma 11. e solution of Algorithm 1 yields a coordination cost fh
C ≤ 2NT g.

Proof: e proof can be found in Appendix B.5. ■

eorem 1. e solution of the heuristic algorithm yields an additional total cost of at most

2NT g when compared with the optimal i.e. fh
T ≤ f ∗T + 2NT g.

Proof: From Lemma 10 it is true that fh
A ≤ f ∗A; also, from Lemma 11 it is true that

fh
C ≤ 2NT g ≤ 2NT g + f ∗C , as f ∗C ≥ 0. Adding the two inequalities yields fh

A + fh
C ≤

f ∗A + f ∗C + 2NT g which completes the proof. ■

Corollary 1. It is true that fh
T → f ∗T as T g → 0.

e above results provide bounds for the performance of the heuristic algorithmwith

respect to the optimal and indicate that as the guard time tends to zero the performance

tends towards optimality.

Results from the strategy analysis provide useful insight on when the heuristic ap-

proach performs best. From Strategy 1 analysis of two ATWs i and k in conflicting lanes,

we know that waiting times become zero when (tei +T
g < tek)∧ (tek− tei +T g < 2tvi −2tvk).

In order to satisfy those inequalities, task iwhich is the farthest in the storage area should

be assigned to the robot nearest to the entrance, while task k which is the nearest in the

storage area should be assigned to the robot farthest from the entrance. At the same time,

tasks i, k should be chosen such that the second inequality is satisfied. From Lemma 10

we know that fh
A ≤ f ∗A and if both above inequalities are satisfied there will not be any

added cost due to coordination i.e. fh
C = 0, hence the performance would be optimal.

is reverse approach provides guidelines on how to configure containers in the storage

area, such that the heuristic approach will provide close-to or equal-to optimal results.

One could use the above inequalities to design a selection algorithm that would return

the specific containers to be transported based on the robot locations in the warehouse.
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3.5.1 Special Case: One-lane Approach

A special case of the problem is when all tasks are located in a single lane. In this case

the assignment part of the problem is simplified and leads to faster computation [99]. To

solve this problem efficiently we exploit the fact that every robot has to reach the same

lane entrance. erefore, we can derive the relative closeness of robots from the tasks

based only on their distance from the entrance e.g. if i is closer to the entrance than k

then i is closer to any task compared to k.

In this case the robot set is sorted with respect to the distance from the entrance

such that tei < tei+1 defined as Re. e task set is sorted as well such that tvs > tvs+1

defined as Se. When these two vectors have this specific arrangement, the cost matrix

ci =
∑

s∈S T
e
i,sxi,s + T l + 2

∑
s∈S T

v
s xi,s fulfills the bottleneck Monge property. erefore

the assignment matrix X = In provides the optimal solution [14] by assigning the far-

thest task to the closest robot, the second farthest task to the second closest robot and so

on. e complexity of the assignment reduces to O(n logn) dominated by sorting.

e coordination algorithm is similar to the algorithm 1 and the two operations 1 and

2 are executed in sequence: As with assignment, resolving conflicts is also simplified in

the one-lane special case because all robots conflict with each other. Because of this it is

only required to iterate through the robot list only once for each operation. is reduces

the complexity of the coordination algorithm to O(n).

3.6 Simulation Results

In this section we present results for evaluating the performance of the proposedmethod.

Simulations were executed on a Intel Core i7-4790K CPU at 4.0GHz with 16GB of RAM.

e simulated warehouse was designed based on the topology of Fig. 3.1. e length of

the warehouse is 300 m, with the lower 100 m being the free moving space. e width

of each lane is 3 m and they are spaced 5 m apart leaving 1 m for the aisles. e ware-

house width depends on the number of lanes used and because that number varies in our

experiments so does the warehouse width. To compare the performance of the heuristic

algorithm relative to the MILP one we employ the relative optimality gap metric which

is defined as:

Relative Optimality Gap =

(
Heur. Obj. Value
MILP Obj. Value − 1

)
× 100%
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Algorithm 2 Assignment and Coordination Algorithm for the One-lane Case
1: R−→e = sort(R, te, ’ascending’)
2: Se = sort(S, tv, ’descending’)
3: for i = 1 . . . n do
4: xR−→e (i),Se(i) = 1

5: end for
6: for r ∈ R−→e do
7: if ter + T g > ter+1 then
8: we

r+1 = ter − ter+1 + T g

9: else
10: we

r+1 = 0

11: end if
12: end for
13: R←−e = sort(R, te, ’descending’)
14: for r ∈ R←−e do
15: if txr+1 + we

r+1 + T g > txr then
16: wx

r = txr+1 + we
r+1 − txr + T g

17: else
18: wx

r = 0

19: end if
20: end for

Figure 3.7 is the cumulative distribution function of the relative optimality gap be-

tween the optimal and heuristic solution, which is the result of a set of 1200 problems

with N = 20 and 10 lanes. e heuristics algorithm solved 40% of the problems opti-

mally and 95% of them with at most 6% optimality gap.

Figure 3.8(a) demonstrates the relative optimality gap with respect to the number of

robots in the form of a box-plot1. To obtain the results, we simulated 200 problems for

eachN = {5, 10, 15, 20, 25}. e initial conditions of each simulation i.e. the positions of

robots and tasks, were chosen randomly. e number of lanes is 4 and is kept constant for
1ebottomand top of each box indicate the first and third quartiles (25% and 75%) of a ranked data set,

while the horizontal line inside the box indicates the median value (second quartile). e horizontal lines

outside the box indicate the lowest/highest datum still within 1.5 inter-quartile range of the lower/upper

quartile; for normally distributed data this corresponds to approximately 0.35%/99.65%. Red crosses indi-

cate the outliers.
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Figure 3.7: e cumulative distribution function of the relative optimality gap between

the optimal and heuristic solution.

5 10 15 20 25
0

5

10

15

Number of robots/tasks

R
el

at
iv

e 
O

p
ti

m
al

it
y 

G
ap

 [
%

]

(a)

1 2 4 6 8 10
0

5

10

15

Number of lanes

R
el

at
iv

e 
O

p
ti

m
al

it
y 

G
ap

 [
%

]

(b)

Figure 3.8: Relative optimality gap with respect to the number of (a) robots/tasks, and

(b) lanes.

all simulations. In all considered cases themean optimality gap is less than 4%, while 75%

and 100% of the problems in each case have relative optimality gap within 6% and 15%,

respectively. As the number of robots increases the relative optimality gap also increases.

is is because as the number of robot increases, more robots have to move in conflicting

lanes resulting in more conflicts, making the problem harder to solve.

e next experiment demonstrates the relative optimality gap with respect to the

number of lanes while the number of robots is kept constant at N = 15. e results

presented in Fig. 3.8(b), show that 75% of all problems in each case have at most 6% gap,

while the mean value of each group is below 3%. As the number of lanes decreases i.e.

the average number of robots per lane increases (similarly to Fig 3.8(a)), it causes more
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Figure 3.9: Relative optimality gap for varying guard time; the results are averaged over

200 random problems with N = 15 and 10 lanes.
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Figure 3.10: Cumulative distribution function of the execution time of the (a) MILP

solver, and (b) proposed heuristic solution.

conflicts and therefore more gap between the optimal and heuristic solution.

Figure 3.9 depicts relative optimality gap for varying guard time. It can be seen that

the relative optimality gap drops from 5% at T g = 32 to 0.004% at T g = 0.1, about three

orders of magnitude. is behavior is in agreement with the theoretical result that as

the guard time decreases the performance of our heuristic algorithm tends to optimal-

ity (Corollary 1).

Execution time is an important criterion for the ability of an algorithm to perform

in real time. e results presented in Fig. 3.10(a), show that in 70% of problems the

MILP solver required more that 50 s to reach a solution. Also about 10% of problems

took between 200 and 1800 s while 20% of problems did not finish within the time limit
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Figure 3.11: Heuristic algorithm execution time with respect to the number of (a)

robots/tasks, and (b) lanes. Each point on the graph represents a different simulation.

of 30 minutes. From these results we conclude that the MILP solver is not suitable for

real-time application due to the large execution times and unpredictable performance,

evident from the large variability of the execution time of all problems. Figure 3.10(b)

shows the heuristic performance on the same problem set of Fig. 3.10(a). All problems

were solved by the algorithm within 0.25 ms, with fastest solution reached within 0.1

ms. Hence, the developed algorithm is very fast and with small execution time variability

making it suitable for real-time applications. Compared to theMILP solver, the proposed

algorithm is over one million times faster (six-orders of magnitude).

To demonstrate that the implemented algorithm complexity follows the theoretical

complexity analysis, execution times were recorded for 200 simulations of varying N as

shown in Fig 3.11(a). Each point in the figure denotes the execution time for each sim-

ulation, while the solid line depicts the mean values which illustrates the increase trend.

e dashed line shows the nonlinear least-squares fit of the polynomial model a1xa2 +a3.

e fitted value of the exponent a2 = 2.14 indicates that the execution time scales al-

most quadratically to the number of robots/tasks, as expected from the theoretical time-

complexity analysis in Section 3.5. Figure 3.11(b) is the result of the same method but

with varying lanes number. As shown from the characteristics of the fitted model, the

execution time is almost independent from the number of lanes. Finally, Figs. 3.11(a)

and 3.11(b) show that the developed algorithm can solve problemswith a large number of

robots/tasks or lanes very fast (in less than 1.5 ms for 200 robots), illustrating scalability

and potential for real-time deployment.
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3.7 Concluding Remarks

In this work we investigate a problem associated with transporting a set of containers

from the storage to the loading area of a warehouse using autonomous robots. We de-

fine the considered problem incorporating the constraints imposed by the topology. e

problem is formulated and solved optimally using Mixed Integer Linear Programming

tools. Furthermore, a low time-complexity heuristic algorithm is developed and theoreti-

cally investigated. It is shown that its performance relative to optimality is upper bounded

by the product of the number of robots and the guard time, implying that the heuristic

tends to optimality when the guard time tends to zero. Simulation results indicate 40%

of the problems were solved optimally using the heuristic approach, while in general a

problem is solved within 5% relative optimality gap. e added cost of the non-optimal

solutions is small compared with the improvements in execution time. Our results show

that the heuristic approach executes in the order of milliseconds and is six orders of mag-

nitude faster than a state-of-the-art Mixed Integer Linear Programming solver making it

suitable for real-time applications.
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Chapter 4

Fault Diagnosis on a Differential-drive
Mobile Robot

4.1 Introduction

In this chapter, we demonstrate actuator fault detection using an analytical redundancy

approach on an iRobot Roomba-based robotic platform but we point out that our ap-

proach can be applied to any other two-wheeled mobile robot. In the implemented ap-

proach, an observer tracks the velocity error between an estimate made based on sensor

readings, and the nominal robot dynamics. Identifying the uncertainties is a critical task

towards the practical implementation. Realistically, there are several uncertainty sources

which need to be taken into account, so that their bounds are used to generate an adaptive

threshold, which sets the limit of the estimation error. Faults are detected when the esti-

mation error exceeds this threshold. Additionally the magnitude of the fault is identified

online, providing important information about the severity of the fault. Furthermore we

propose an extension to the method that addresses the problem of false negatives (failure

to detect the fault) when fault magnitude is low. e method was designed to work with

simple odometry sensors. Such sensors, have been in use for many years now [11], be-

cause of their low cost and energy requirements and are already installed in many service

robots in use today. is implies that the method can be utilized by existing or future

robots even if they are not specifically designed with fault detection and accommodation

functionality or are not equipped with special hardware.
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4.2 General Formulation

4.2.1 Robot Hardware

Mobile two-wheeled differential-drive robots, such as the iRobot Roomba that was used

in this work, represent a significant portion of the already deployed household service

robots in the world. Such robots are equipped with two main wheels with motors and

one passive wheel for balance. Each of the main wheels carries an encoder sensor for

odometry.

A central microcontroller is responsible for driving the motors and reading the sen-

sors. Signals u = [u1, u2]
⊤ control the le and right motors’ torque respectively. e

signals u comply with the specifications provided by the robot manufacturer, with valid

value range (umin, umax) and carry no units. ese signals are internally converted by the

motor controller to Pulse Width Modulation (PWM) signal. We chose to use PWM sig-

nal to keep the methodology generic and controller-independent. e encoders installed

on the motors provide the revolution count of the motor, which given the diameter of

the wheel, is directly transformed to the distance traveled by the wheel. Furthermore,

assuming fast enough sampling, the difference in the encoder count provides an estimate

of the speed of the motor. In practice, the embedded system loop is designed to meet

this criterion, therefore the speed approximation error is insignificant and not included

in our calculations directly. e speed of the wheels is measured in mm/s by

y(k) = x(k) + n(k) (4.1)

where x ∈ R2 is the speed of the le and right wheel respectively, n ∈ R2 is the noise of

the sensors and y is themeasurement vector. We assume that encoder noise n is a random
value and each element of the vector is bounded by n, independent of the input or state

of the robot

|ni(k)| ≤ n ∀i ∈ {1, 2} (4.2)

and the value of n is known from the sensor manufacturer specifications. Otherwise this

value can be estimated experimentally by analyzing a collection of sensor data during nor-

mal operation. is can take place during the learning period described in Section 4.3.5.

Even though sensor faults are possible and can be detected and isolated [85], it is impor-

tant to note that in this thesis, we focus on actuator faults and therefore we assume that

sensors are not susceptible to faults.
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4.2.2 Robot Model

e sensors are located on the motor level measuring its speed, therefore the states are

the individual speeds of the le and right motors:

x(k + 1) = x(k) +

θ̂1x1(k) + θ̂2u1(k)

θ̂3x2(k) + θ̂4u2(k)

 + η(x(k),u(k), θ̂) + ϕ(k) (4.3)

where η is uncertainty, θ̂ = [θ̂1, θ̂2, θ̂3, θ̂4]
⊤, θ̂i ∈ R are the estimated model parameters

and ϕ is the fault. e value of the model parameters θ̂ may depend on various physical

characteristics of the specific robot, e.g. mass, moment of inertia, wheel span and diam-

eter and motor torque, however, in this work we assume that the functional dependence

is not known. e four parameters are estimated during the learning period described in

Section 4.3.5.

e robot is driven using the inputs u1 and u2, which generate motor torque spin-

ning the wheel creating a force that accelerates the robot. As the robot is moving, rolling

friction affects the acceleration, slowing down the robot. e linear model estimation

requires relatively low processing which is preferable for a small embedded device and

experimental data shows that it is accurate when input signals are smooth.

4.2.3 Uncertainties

ere are two main sources of uncertainty

ηi(x(k),u(k), θ̂) = ηθi (x(k),u(k), θ̂) + ηxi (u(k)) (4.4)

e first, ηθ, is due to inaccuracies in the model parameters, θ̂1, θ̂2, θ̂3 and θ̂4. Factors like

the temperature, battery charge and others, slightly change the performance of the motor

and therefore affect the parameters. During a parameter estimation step, the values are

estimated within a range of the true value θ∗i = θ̂i(1 + bθi (k)), where bθi (k) is the variation

percentage from the true value. We assume that this variation is bounded by

|bθi (k)| ≤ b
θ
, ∀i ∈ {1 . . . 4} (4.5)

When this variation is considered in the dynamics model (4.3), the uncertainty is calcu-

lated by ηθ1(k)
ηθ2(k)

 =

bθ1(k)θ̂1x1(k) + bθ2(k)θ̂2u1(k)

bθ3(k)θ̂3x2(k) + bθ4(k)θ̂4u2(k)

 (4.6)
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However exact value of bθ(k) is unknown, therefore using the known value of bθ the upper

bound of the uncertainty is defined asηθ1(k)
ηθ2(k)

 =

|bθθ̂1x1(k)|+ |bθθ̂2u1(k)|

|bθθ̂3x2(k)|+ |bθθ̂4u2(k)|

 (4.7)

e second uncertainty, ηx is due to the non-linear dynamics of the robot when there

are large changes on the input signal. A service robot controller keeps the changes of

the input signal small between iterations because this produces a smooth, continuous

movement which is the desirable behaviour most of the time. However, when a sud-

den change in robot movement is required, the control signal may generate a spike of

large magnitude in the estimation error. To accommodate this issue, which is caused due

to the discretization of the continuous motor model, we use large-change-threshold uδ

for increasing the uncertainty upper bound. When there are large changes in the input

|ui(k)− ui(k − 1)| > uδ of the i-th motor, then ηxi (k) = ηxi or else ηxi (k) = 0. e value

of uδ is selected during the learning period, see Section 4.3.5.

4.2.4 Faults

It is possible that one or more faults may occur on the mobile robot unexpectedly. A

fault may occur on the actuator attached to a wheel and its corresponding controller.

is work’s focus is on three types of actuator faults as depicted in Fig. 4.1, each one with

different characteristics which depend on the cause of failure. e Performance Degra-

dation(PD) fault is possible to occur due to a malfunction in the electronic driver of the

motor, for example one of the multiple H-bridges providing power, or even the motor

itself, for example debris caught in the axle. As a result the motor’s performance is a

fraction of the nominal one. It is also possible for the electronic driver to become un-

responsive to any new input signal, a fault termed as Unresponsive(UR). When this hap-

pens the motor operates at a constant value, randomly defined at the fault occurrence

time. Also a mechanical failure could completely immobilize a wheel, a fault termed as

Stuck-at-Zero(SZ).

e fault is modeled as an extra term on the robot dynamics, ϕi = β(k − Kf
i )αizi

where β(k −Kf
i ) is the time profile of the fault of the i-th wheel, i ∈ {1, 2} occurring at

timeKf
i , which in the case of abrupt faults, β(k−Kf

i ) = 1 if k ≥ Kf
i and β(k−Kf

i ) = 0

otherwise, α is the percentage of the performance loss and zi is the structure of the fault

which remains constant. e faults considered in this work affect the performance of the
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Figure 4.1: A diagram of the internal operation of the robot and sensor feedback. De-

picted are the three faults considered in this work. Performance Degradation fault can

occur directly on the motor itself for example due to debris caught on the axle, or on

the electronic motor controller. Stuck-at-Zero fault occurs due to mechanical malfunc-

tion on the motor or the wheel, which forces the motor to complete stop. Finally the

Unresponsive fault occurs when the motor controller becomes unresponsive to any new

input

motor, for example a degradation fault will cause the motor performance to degrade de-

pending on themagnitude of the fault. Sincewe don’t have direct access on the electronics

board that drives the motor or the drive sha, we can emulate degradation by altering the

input signal. In other words, the controller assumes that the input is the correct one, but

in practice the input is altered to emulate the faulty behavior. For this reason, the input

signal entering the motor under fault is

ufi (k) = ui(k)(1 + β(k −Kf
i )αi(k)) (4.8)

Under normal operation i.e. k < Kf , the input signal is the same as the controller signal.

erefore, based on (4.8) and (4.3) the faults are modelled as:

ϕ1(k) = β(k −Kf
1 )α1(k)θ̂2u1(k), (4.9)

ϕ2(k) = β(k −Kf
2 )α2(k)θ̂4u2(k). (4.10)

ese equations are the same for all three fault types.
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4.3 Methodology

4.3.1 Fault Detection and Isolation

In the following section the fault detection methodology proposed in [37] is used. A

Luenberger observer is implemented to estimate the states x̂ ∈ R2 of the robot based on

the nominal dynamics and the input signal

x̂(k + 1) = x̂(k) +

θ̂1y1(k)
θ̂3y2(k)

+

θ̂2u1(k)
θ̂4u2(k)

− Λ(x̂(k)− y(k)) (4.11)

assuming that x̂(0) = y(0). e estimation error filter coefficient matrix Λ is a diagonal

matrix of size (2× 2) where 0 < Λ(j,j) < 1 for the j-th state, such that it ensures stability

of the estimation. Estimation error has an upper bound defined by:

e(k + 1) = e(k)(1− Λ) +

|bθθ̂1y1(k)|
|bθθ̂3y2(k)|

+

|bθθ̂2u1(k)|
|bθθ̂4u2(k)|


+

|bθθ̂1n(k)|
|bθθ̂3n(k)|

+

|n(k)(1 + θ̂1)|

|n(k)(1 + θ̂3)|

+ ηx(k) (4.12)

Under normal operation (absence of faults), the estimation error should always be lower

than or equal to the detection threshold i.e. |ei(k)| ≤ ei(k), ∀i. erefore, based on this,

a detection alarm is raised when this condition is violated, as follows

Alarm1:

 Fault if |ei(k)| − ei(k) > 0

No Fault if |ei(k)| − ei(k) ≤ 0
,∀i

Two observers are used, one for each wheel. Because of this, isolation of the fault

location is straightforward. e fault is isolated on the wheel whose observer has raised

the alarm. is also suggests that when both wheels fail, faults are detected on each wheel

separately, in other words the faults do not mask each other.

4.3.2 Learning the Fault Magnitude

Aer detection and isolation, the robot can learn the magnitude of the fault. By learning

we refer to the estimation of the fault function parameters by using an adaptive law [34].

emagnitude of the fault is also linked to the three types of fault considered in this work

(PD, SZ and UR) and depending on the wheel, they all share the same fault structure
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which is added to the observer becoming

x̂(k+1) = x̂(k)+

θ̂1y1(k)
θ̂3y2(k)

+

θ̂2u1(k)
θ̂4u2(k)

−Λ(x̂(k)−y(k))+

θ̂2β(k −Kf )α̂1(k)u1(k)

θ̂4β(k −Kf )α̂2(k)u2(k)


(4.13)

Let α̂(k) be the estimated fault magnitude, which is computed through the adaptive law

α̂i(k + 1) = α̂i(k) + γzi(k) (ei(k + 1)− (1− Λ)ei(k)) (4.14)

for which γ is the adaptive gain which corresponds to the rate of change in the gradient

descent algorithm and z(k) = [θ̂2u1(k), θ̂4u2(k)]
⊤. For stability it is shown [1] that 0 <

γ < 2. Because the fault magnitude represents the percentage of the motor performance

loss, it takes the value -1 when there is complete performance loss and the value of 0

when the motor operates normally. erefore, to guarantee that α̂(k) remains within the

expected fault magnitude is bounded within α̂(k) ∈ [−1, 0]. In specific, the following

rule is considered: if α̂(k) > 0 or α̂(k) ≤ −1, then α̂(k) = α̂(k − 1).

4.3.3 Small Faults Detection

Faults with smaller magnitude generate smaller estimation error and as a result, it is pos-

sible that the error remains below the threshold. erefore, faults with smallermagnitude

may remain undetected. is happens because in terms of estimation error magnitude

a small fault is indistinguishable from uncertainty. It is however, possible to detect such

faults by exploiting the temporal profile of the estimation error.

We propose a modified alarm condition, defined as:

PreAlarm:

Yes if |ei(k)| − ei(k)− h > 0

No if |ei(k)| − ei(k)− h ≤ 0
, ∀i

where h ∈ R+ is a predetermined bias. is modification essentially lowers the thresh-

old, making the detection more sensitive. It is however, inevitably low enough for the

PreAlarm to be triggered by the noise. PreAlarm is an internal alarm and does not directly

imply that a fault has occurred. Instead it initiates an algorithm which counts the dura-

tion tdet that PreAlarm is active i.e. At the i-th occurrence that PreAlarm changed state

fromNo toYes at time kai and fromYes toNo at time kdi , duration is given by tdeti = kdi −kai .

e tdet value depends on the sensor noise and h and has an upper bound tdet which can

be determined experimentally. e proposed method for determining tdet is to first col-

lect experimental data of the robot moving under fault-free state. en construct a set
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of all the tdet values recorded for the q times the PreAlarm triggered and determine the

highest value

t
det

= max{tdet1 , . . . , tdetq } (4.15)

During the operation of the robot, the duration of the PreAlarm is determined by τ(k) =

k − ka. Based on this we define the Alarm2 as

Alarm2:

 Fault if τ(k)− t
det
> 0

No Fault if τ(k)− t
det ≤ 0

e trade-off of this modification however, is the added delay to the fault detection. e

values of h and tdet are calculated in the learning period.

4.3.4 Fault Type Identification

Tracking the fault magnitude can provide insight about the fault type. Essentially, this

improves the isolation accuracy since the robot is aware not only about which wheel is

faulty but also about the type a fault. Considering that effects of some fault types may

be treated, knowledge of the fault type may allow a faulty robot to continue its operation

without affecting its objectives.

e faults considered in this work, are profiled based on three characteristics which

are based on the change of fault magnitude (c1), the change of the input signal (c2) and

the value of the fault magnitude (c3):

c1(k) =
1

w
|

k−1∑
j=k−w

α̂(j + 1)− α̂(j)|, (4.16)

c2(k) =
1

w
|

k−1∑
j=k−w

u(j + 1)− u(j)|, (4.17)

c3(k) = 1− |α̂(k)|. (4.18)

e design parameter w > 0 defines a temporal window of the moving average filter. In

context, the window size is a way to adjust the response of the filter to the changes of the

signals. In our experiments we usedw = 15which corresponds to 1.5 seconds. Fault type

profiling based on the c1, c2 and c3 characteristics, provides the decision tree depicted in

Fig. 4.2.

Parameters pi ∀i ∈ {1, 2, 3} in Fig. 4.2 set a small margin around the value of the

decision. is is required as due to noise, c1 and c3 have some fluctuation and for c2 to

discard small changes in the input. eir values are calculated based on the decision-tree
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Figure 4.2: Decision tree for identifying the fault type based on the change of fault magni-

tude (c1), the change of the input signal (c2) and the value of the fault magnitude (c3). e

three fault-types Performance Degradation, Unresponsive and Stuck-at-Zero are denoted

as PD, UR and SZ respectively. Symbol “|” represents a logical OR operator

analysis, as the values which best classify the fault types. It is possible that the tree reaches

the inconclusive decision “PD|UR”. In such case, if the condition c1 > p1 changes from

False to True i.e., the input signal changes, the decision becomes conclusive.

4.3.5 Learning Period

During the learning period, a short interval at the beginning of the robot’s deployment,

the robot is allowed to estimate different parameters that are used in our methodology.

is enhances the generalization of the proposed method and allows readjustment of

parameters of the same robot during its lifetime. During this period, the system is mon-

itored to ensure fault-free operation. Even though it may be possible to compute these

parameters and program them into the robot prior its deployment, it is not preferable as

the target environment could also affect these parameters (temperature, floor material

etc) increasing the modeling error. e proposed approach is to identify these parame-

ters aer the robot is deployed. A short parameter estimation period allows the robot to

learn these parameters at the target environment. e input signals are of sinusoidal form

with different frequency for each wheel u(k) = umax[sin(ω1k), sin(ω2k)]
⊤, ω1 ̸= ω2 to en-

sure persistency of excitation which is required for learning [34]. During the learning

period the parameters converge to their final value.
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e learning period is also used to calculate the noise upper bound n. is is done by

driving the motor at different known speeds and the fluctuation of the residual between

the sensor measured speed and the expected value is regarded as noise. e upper bound

is defined as the maximum absolute value of noise.

e value of large-change-threshold uδ which is used to determine uncertainty ηx is

also calculated during the learning period. e robot enters an input sequence where

the input signals are changed abruptly. e robot tries different values and monitors the

estimation error. It determines the value of uδ above which the estimation error is large

enough to trigger a false alarm.

Finally, two parameters h and tdet are required for detecting smaller faults. During this

phase the robot randomly moves around the environment monitoring the estimation er-

ror. Next, it lowers the detection threshold by h and monitors whether the estimation

error crosses the detection threshold which leads to PreAlarm and records both h and

the PreAlarm duration tdet. At the end of this step it determines tdet as described in Sec-

tion 4.3.3. edetection threshold is lowered again and the procedure repeats. In the next

step the robot injects different small faults for a short period and determines whether the

fault is detected by triggering Alarm2. At the end of this step it determines and records

the smallest fault magnitude that it was able to detect. e results of this phase consists

of a list of h, tdet and the smallest fault magnitude detectable. e parameters h and tdet

are purely design parameters and the appropriate choice is depended on the application.

4.4 Experimental Results

is section presents the experimental results performed on an iRobot Roomba. e

results represent the data recorded from the physical robot.

4.4.1 Parameter Estimation

e robot is loaded with a predetermined input instructions, generated based on two

sinusoidal signals of different frequency to achieve persistency of excitation. e robot is

le to run for 5 minutes to collect enough data. When the data-collection is completed,

the parameter estimation algorithm provides the estimation of the model parameters,

θ̂1 = −0.4777, θ̂2 = 0.09586, θ̂3 = −0.4352 and θ̂4 = 0.08546. It is worth noting that

the difference between {θ̂1, θ̂3} and {θ̂2, θ̂4} is due to differences between the motors. e
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parameter estimation is evaluated by comparing the open-loop speed estimationxol1 (k + 1)

xol2 (k + 1)

 =

xol1 (k)
xol2 (k)

+

θ̂1xol1 (k) + θ̂2u1(k)

θ̂3x
ol
2 (k) + θ̂4u2(k)

 (4.19)

against the measured speed y(k). Fig. 4.3(a) shows that the estimation tracks the mea-
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Figure 4.3: Open-loop response of the wheel model with a sinusoidal signal as input.

sured speed closely. e rootmean square error is 2.0053mm/s. Some inaccuracies occur

due to the non-linearity of the motor response, particularly in the near zero region.

4.4.2 Fault-free case

is experiment demonstrates the operation of the fault detection observer when there

are no faults present in the system. e robot is instructed to follow a square path while

the data is collected. e observer, uses the parameters which were previously learned

and an arbitrary chosen value for Λ. Figure 4.4(a) shows the observer estimation. For

reference, the input signal is depicted in Fig. 4.4(b). During periods that the input signal

value is constant (for example the period between 1 and just before 5 seconds), we observe

the effects that the sensor noise and parameter estimation error have on the estimation

error. e detection threshold, however, is not crossed at any point.

e figure also depicts the estimation error caused by large changes in the input ex-

perienced when the robot starts and ends turning, previously defined as ηx. Because the

observermonitors the input signal to themotors, it is able to anticipate the error increase,

indicated by the sudden raise of the threshold.

4.4.3 Fault Detection

e following results show the overall ability of the observer to detect a fault occurrence

while the robot is programmed to follow a predetermined path. In this example, the

robot wheel was physically obstructed causing it to lose performance, essentially causing
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Figure 4.4: (a) Estimation error of the observer when the robot is instructed to follow

a square shape. Estimation error remains below the detection threshold throughout the

experiment. Also illustrated, is the adaptive level of the threshold. Because of the model-

ing uncertainty during hard changes of the input, the threshold raises rapidly. (b) is the

input signal

a PD fault. is fault was repeated 6 times during the experiment. Intentionally, the ob-

struction was different each time, causing different fault magnitude and location. Figure

4.5(a)(b) depicts the estimation error of the observer for the le and right wheels respec-

tively. Figure 4.5(c) shows the path followed by the robot as it was recored by its own

sensors. e path information is not used for any calculations and it is shown here just

for reference. e robot initial position is (1, 1). e arrows indicate the approximate

robot positions where the faults occurred. e number over the arrow identifies the fault

so it can be traced back on the estimation error graphs. Faults 1,2,3,5 affect either the

le or right wheel and their effect on the path is visible on the map, depending on their

magnitude. In fault 4, both wheels were obstructed at the same time affecting robot’s

forward speed illustrated by the change of density of the markers on the plot. Finally, in

fault 6 the right wheel was obstructed while the robot was performing a le turn. In the

period when the robot operates normally, the estimation error is well below the detection

threshold. When a fault occurs however, the estimation error crosses the threshold and

the observer raises an alarm. At this point the robot is fully aware that a fault has occurred

as well as which is the faulty wheel, being the le or right or both. e estimation error

remains above the threshold for the whole duration of the fault. As shown in Fig. 4.5 all

faults were correctly detected on both wheels.
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Figure 4.5: e figure presents the data collected when the robot was programmed to

move in a square like pathwhile its wheels were intentionally obstructed at various points,

essentially generating faults. (a) and (b) show the estimation error of the le and right

wheel respectively while (c) illustrates the actual path as it was recorded by the robot’s

sensors. e numbers represent the fault number and the arrows indicate the position

where the faults occurred

4.4.4 Fault Injection

To evaluate the detection accuracy, delay and sensitivity we use soware emulated faults,

which provide accurate information about fault magnitude and time of occurrence. A

soware-emulated fault is a fault which affects the robot inputs, in order to cause the real

robot to behave as if it was experiencing a real fault event. is approach allows us to have

full control over magnitude and time profile of the faults, in order to accurately evaluate

the performance of our algorithm with respect to different fault characteristics. Faults

are programmed a priory to occur at specific time instants and can have specific duration

i.e. the robot returns to normal operation aer the fault ends. When a fault occurs, it

modifies the input signal of the controller which is used to drive the physical robot. With

respect to (4.8), u is the controller signal and uf is the injected signal which is what drives

the physical robot. None of the fault emulation information is known by the detection

algorithm.

In experimental results presented next, the robot experiences six consecutive fault

injections of type PD. e faults have different magnitudes, starting small and increase

with time. All faults have duration of 2 seconds before being removed. e time between

two consecutive faults is 1 second.

Figure 4.6(a) is the estimation error of the observer and the detection threshold. Aer
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Figure 4.6: Figure presents data collected when the robot was subjected to consecutive

faults of increasing magnitude. (a) shows the estimation error of the le wheel observer

and the detection threshold. (b) is the fault magnitude as it is estimated by the algorithm

on-line. Small magnitude faults may not be detected, as their estimation error is compa-

rable to the estimation error caused by noise and uncertainties.

a fault is detected, the algorithm of learning the fault magnitude is also initiated, demon-

strated in Fig. 4.6(b). Table 4.1 displays information about the injected fault magnitude,

detection delay and the estimated fault magnitude. e term ND indicates that the fault

was not detected. e value listed in the magnitude estimation column is the average of

the magnitude estimation values collected during the corresponding fault. Results show

that faults 1 and 2 were not detected by the observer since the estimation error remained

below the detection threshold. Because of their low fault magnitude, the estimation error

is comparable to the error caused by uncertainty and therefore it cannot be distinguished

by the observer. Fault 3 has higher magnitude and the estimation error is large enough to

cross the threshold and be detected within 0.6 seconds. Fault magnitude estimation er-

ror is 3.7%. e performance for fault 4 and 5 is similar, with detection delay 0.4 seconds

and fault magnitudes estimation error of 3.9% and 0.5% respectively. Fault 6 is detected

in 0.3 seconds with increased fault magnitude estimation error of 4.2% compared to the

previous faults. is increase can be attributed to the fact that the uf (k) becomes low,

closing in the non-linear behavior of the motor.
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Table 4.1: Detection and identification results of 6 faults with increasing magnitude. e

detection delay column lists the time between the fault occurring and being detected by

the system. e last column lists the approximated fault magnitude. ND indicates that

the fault was not detected
Fault # a Det. Delay â

1 -5% ND -

2 -15% ND -

3 -25% 0.6 s -28.68%

4 -35% 0.4 s -38.91%

5 -45% 0.4 s -45.54%

6 -55% 0.3 s -59.20%

4.4.5 Small Faults

To demonstrate the improved sensitivity of Alarm2, the same experiment presented in

Fig. 4.6 and Table 4.1 is used with the modified alarm algorithm with h = 3 and tdet =

0.3 s. Figure 4.7(a) depicts the detection threshold at a lower level. In the results, there are

two instances at t = 1.8 s and t = 3.2 s, where the estimation error crosses the threshold

but the alarm is not raised because it does not meet the Alarm2 condition. is exhibits

the tolerance of this detection method against the noisy estimation error. As with the

Alarm1 condition, the first fault is not detected as its effects are completely masked by the

noise as it can be seen in the figure. Estimation error caused by Fault 2, which previously

remained undetected, is enough to cross the threshold and raises the detection alarm. As

results in Table 4.2 show, Fault 2 took 1.8 s to be detected aer it occurred. Detection of

Fault 3 is also successful but with an additional delay inherited by the Alarm2 condition.

Faults 4, 5 and 6 took an additional 0.3 s to be detected. e detection delay does not

however affect the approximation of the fault magnitude. is modified version of the

algorithm is capable of detecting smaller faults, becoming more sensitive at the expense

of detection delay. e delay is caused due to the alarm counter which is necessary to

prevent false alarms. e added delay is expected to be close to tdet, also confirmed by

the experimental results. e desired trade-off between detection sensitivity and delay

is application-dependent. In a case-study example, a supervisor of a robotic warehouse

based on the proposedmethodology, is able to choose the aforementioned trade-offpoint.

Another possibility is to lower tdet, essentially reducing the delay. Such system however,
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is susceptible to false alarms. is gives the supervisor the option to balance between a

fast and sensitive detection and handling of false alarms.
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Figure 4.7: Improved fault detection sensitivity using the Alarm2. (a) shows that de-

tection threshold is low enough to be triggered by low magnitude fault as well as noise.

However, due to the PreAlarm, false alarms are prevented. Fault detection is indicated by

the diamondmarker. (b) is the fault magnitude as it is estimated by the algorithm on-line

Table 4.2: Results of detection and identification using the Alarm2. Fault 2 is now de-

tected successfully even though the estimation error it produces is low and comparable

with that produced by uncertainty
Fault # a Det. Delay â

1 -5% ND -

2 -15% 1.8 s −15.10%

3 -25% 0.7 s −28.66%

4 -35% 0.7 s −38.84%

5 -45% 0.7 s −45.49%

6 -55% 0.6 s −59.26%

Next we present a technique that uses in parallel the two thresholds described in sec-

tions 4.3.1 and 4.3.3. e fault is detected with FuseAlarm defined as

FuseAlarm:

 Fault if Alarm1 = 1 OR Alarm2 = 1

No Fault if Alarm1 = 0 AND Alarm2 = 0

e extended FuseAlarm provides fast fault detection and is also able to detect smaller
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faults. Again, we use the same experiment for comparison and the results are shown in

Fig. 4.8.
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Figure 4.8: A fusion of the previous two techniques provides FuseAlarm with fast fault

detection as well as sensitivity to small faults. Fault 2 which is a small fault is detected

with some delay while the rest of the faults are detected without any delay

4.4.6 Fault Identification

Fault injection is used to emulate the three different types of faults. By tracking the fault

magnitude and the three characteristics c1, c2 and c3 the fault is identified by the algo-

rithm based on the decision tree presented in Section 4.3.4. e fault is injected at t = 2

s. Figure 4.9 depicts the results of the experiments. Aer a fault is detected, a short period

of 4 seconds is required in order for the filters to stabilize before the decision algorithm

starts at t = 6 s, indicated on the figure by the vertical dotted line. In this experiment

we use p1 = p2 = p3 = 0.1, derived from the decision tree analysis. Note that c1, c2 and

c3 are normalized so that they fall within the region [0, 1]. For the PD fault, Fig. 4.9(a)

shows that immediately aer the stabilization period (t = 6 s) the three decision condi-

tions are False-False-True (F-F-T) giving the inconclusive decision of “PD|UR”. Shortly

aer, at time t = 7.8 s, the controller changes the input signal to the wheel, in order

to follow the predetermined path, indicated by the change of the c2 value. In a PD type

fault, the fault magnitude is unaffected by the input signal changes and c1 demonstrates

the correct behavior by staying below p2. is changes the decision conditions to F-T-T

which correctly identifies the fault as PD. In Fig. 4.9(b) the UR fault initially (at t = 6

s) exhibits the decision conditions F-F-T as with the PD fault. However, when the input

changes, the c1 condition also changes to T and therefore the fault is correctly identified

as UR. e SZ fault shown in Fig. 4.9(c), is immediately identified correctly, by giving

the decision conditions F-F-F.
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Figure 4.9: Results of the fault identification. e plots show the normalized values of

the three fault characteristics c1, c2 and c3 and their corresponding threshold parameters

p1, p2 and p3. (a)e PD fault is initially identified as “PD|UR” at t = 6 s and shortly aer

at t = 8 s is identified as PD. (b)is fault is initially identified as “PD|UR” at t = 6 s and

the successfully identified as UR at t = 9 s. (c)e SZ is identified correctly immediately

aer the stabilization period

4.5 Concluding Remarks

ework presented in this chapter is focused on achieving fault detection and identifica-

tion, with particular emphasis on reducing false alarms, using a model-based approach.

Detection and identification of faults is a topic of high importance because it leads to

improved robot safety, a requirement for wide acceptance of service robots in domestic

environments. emethod is evaluated on a real robot with noisy sensors. In an effort to

make this method applicable to other robots, a learning period is proposed during which

the parameters of the fault detection and identification algorithm are calculated. Fur-

thermore, the method does not require any additional sensors except from the standard

odometry sensors found on most service robots.

Experimental results show that the linearmodel produces accurate and fast estimation

of the state with an exception of some special cases. e robot is able to detect faults

occurring on either wheel or both wheels simultaneously. Above a certain magnitude

the faults are detected without any false alarms. Faults were injected in the system for
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evaluating the performance against various fault magnitudes, and they were successfully

detected and their magnitudes accurately estimated. We also demonstrated how faults

can be classified between three fault-types.

It is possible that faults of smallermagnitude are not detected due to the estimation er-

ror magnitude generated by those faults being indistinguishable from that of uncertainty.

Experimental results of the proposed extension for addressing this issue demonstrate in-

creased detection sensitivity, with the trade-off of a small delay in the detection time. A

new alarm condition fuses the two proposed thresholds to eliminate the detection de-

lay whenever is not necessary, therefore providing fast detection as well as sensitivity for

small faults.

ework presented in this chapter has been peer-reviewed and published as a journal

paper [96].

59

Dem
etr

is 
Stav

rou



60

Dem
etr

is 
Stav

rou



Chapter 5

Fault Detection for Mobile Robots Using
Multipleresholds

5.1 Introduction

In a model-based approach, the residual between an observer using the nominal dynam-

ics, and sensor readings, is compared against an adaptive threshold to determine whether

a fault has occurred. An important part of this analytical redundancy approach, are the

uncertainties present in the system and their type. rough learning and hardware speci-

fications, the upper bound of each uncertainty type is identified, and their state dependent

values are calculated at each iteration, which are used to adapt the detection threshold.

Consequently, the detection sensitivity (the ratio of True Positives over the sum of True

Positives and False Negatives) of the method is limited by the uncertainty upper bound.

In this chapter, we present a new detection scheme for increasing detection sensitivity by

incorporating multiple thresholds for evaluating the estimation error, yielding improved

results when compared to a conservative worst-case threshold method. It differentiates

from other residual-based methods because it combines the estimation error magnitude

with the temporal behavior of a warning signal in order to detect faults. e method

gains a better insight on the estimation error using multiple thresholds derived from the

distribution of the uncertainty. Comparing the estimation error using these thresholds

generates the warning signal, based on which faults are detected. We show that fault

detection using the proposed warning signal yields improved performance in detection

sensitivity in comparison to a conservative worst-case threshold. It is important to note

that we do not explicitly use analytical models about the structure of uncertainty, as these
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are not typically precisely known in practice. In contrast, this method is data-driven, re-

lying on training data to derive the distribution of uncertainty with respect to the robot

states.

5.2 Background on Worst-Case reshold Fault Detec-

tion

is section provides the necessary background on model-based fault detection in dis-

crete times, as presented in [34, 37]. e overall idea is to compare the absolute state-

estimation error with an adaptive threshold computed, given an a-priori known upper-

bound of the uncertainty parameters.

5.2.1 Robot Model and Uncertainties

e robot considered in this work is differential-drive, a very common configuration

especially in service robots. Two motorized main wheels are used for motion, while a

castor wheel is used for balance. Each of the two main wheels, is equipped with an en-

coder sensor for odometry. An on-board controller runs a navigation algorithm that

allows the robot to move around a flat surface in order to complete its task, by driving

the motors and reading values of the sensors. e signal u(k) controls the motor speed,

complying with the specifications provided by the robot manufacturer with valid range

u(k) ∈ U = [umin, ..., umax]. e resulting wheel speed is estimated by the model:

x(k + 1) = x(k) + θ∗1x(k) + θ∗2u(k) + ηx(x(k), u(k)) + ϕ(k) (5.1)

where x ∈ R is the speed of the wheel measured in mm/s, ηx is the modeling uncertainty,

ϕ is the fault and θ∗1, θ∗2 ∈ R are the model parameters which depend on various physical

characteristics of the specific robot. e robot is equipped with two wheels therefore

each wheel should be described by its ownmodel (5.1) where the parameters θmatch the

behavior of each wheel. However, for notational clarity we describe the method for one

wheel, even though in practice the same method applies for each wheel of the robot.

Encoders located on thewheels provide the number of revolutions, which is converted

to traveled distance given the diameter of the wheel. Because the encoders are sampled

at high frequency, the difference between two consecutive readings, estimates the speed
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of the wheel which measured in mm/s by:

y(k) = x(k) + n(k) (5.2)

where n ∈ R is the noise of the encoder and y(k) ∈ Y = [ymin, ..., ymax] is the sensor

measurement.

A Luenberger observer is implemented to estimate state x(k) based on the nominal

dynamics and the input signal:

x̂(k + 1) = x̂(k) + θ̂1y(k) + θ̂2u(k)− Λ(x̂(k)− y(k)) (5.3)

assuming x̂(0) = y(0). e value of the estimation error filter coefficient 0 < Λ < 1 is

chosen such that it ensures stability of the estimation. Model parameters θ∗ are estimated

by θ̂1, θ̂2 ∈ R using parameter estimation on training data.

We assume that the i-th parameter θ̂i estimates the unknown parameter θ∗i within a

percentage bθi , such that θ∗i = θ̂i(1 + bθi ). We further assume that bθi is bounded, such that

|bθi | ≤ b
θ
, i ∈ {1, 2} (5.4)

Below we provide intuition on some of the sources of uncertainty in robots consid-

ered in this work: odometry encoder noise causes uncertainty in the system through the

measurement noise. Uncertainty is also introduced from inaccuracies in the model pa-

rameters represented by the terms bθ1 and bθ2. Imperfect estimation, as well as other factors

like battery charge variation, change themotor performance and ultimately themodel pa-

rameters. Another source of uncertainty is is due to the non-linear regions in the motor

performance. Non-linear behavior is exhibited when large changes in the input signal are

observed, usually when the robot is required to do sharp immediate turns. Depending on

the robot controller algorithm, such behavior is not frequent because a smooth motion

path is typically preferred. Nevertheless, such state is possible and therefore is considered

in our method.

5.2.2 Faults

At any given discrete time k, the robot may experience a failure affecting its motorized

wheels. e type of faults considered in this work are persistent performance degradation

i.e. the fault degrades the performance of the motor with respect to the input signal; once

the fault has occurred it persists. e fault term ismodeled as ϕ(k) = β(k−Kf )α(k)z(k),
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where β(k −Kf ) is the time profile of the fault occurring at time Kf , β(k −Kf ) = 1 if

k ≥ Kf and β(k − Kf ) = 0 otherwise, α(k) is the performance loss (fault magnitude)

expressed in percentage and z(k) is the structure of the fault. Such faults can occur due to

malfunction of the motor’s electronic driver or even the motor itself, for example debris

caught in the wheel axle.

5.2.3 Estimation Error

e estimation error e(k), i.e. the difference of the measured state and the estimated state

is:

e(k) = y(k)− x̂(k), (5.5)

and aer substituting the values in the fault-free case (ϕ(k) = 0), we compute the esti-

mation error dynamics as:

e(k + 1) =e(k)(1− Λ) + η(y(k), u(k)) (5.6)

η(y(k), u(k)) =θ̂1b
θ
1y(k)− θ̂1b

θ
1n(k)

+ θ̂2b
θ
2u(k)− n(k)(1 + θ̂1)

+ n(k + 1) + ηx(y(k)− n(k), u(k)). (5.7)

e function η(y(k), u(k)) ∈ H is comprised of all the unknown system uncertainties,

including sensor noise, and it cannot be determined analytically. In the case of model-

based fault detection, the parameter upper bounds could be used if they were known, to

determine the total uncertainty upper bound; this was discussed in Chapter 4. In this

work, we do not consider known uncertainty parameter bounds; instead, we assume that

the bounds of H are acquired through training. e upper bound of the uncertainty is

computed based on the training data, such that |η(y(k), u(k))| ≤ η(y(k), u(k)).

5.2.4 Worst-Casereshold Detection

eWorst-Casemethod is a single threshold (ST) detection, that relies on the uncertainty

upper bound in order to compute the maximum estimation error that can be observed in

the fault-free system i.e. when ϕ(k) = 0. Using uncertainty upper upper bound in (5.6),

the estimation error upper bound is:

e(k + 1) = (1− Λ)e(k) + η(y(k), u(k)) (5.8)
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During normal operation (i.e. in the absence of faults), the absolute value of the esti-

mation error is always smaller or equal to the estimation error upper bound (5.8). e

estimation error upper bound is the detection threshold used in theWorst-Case method,

which leads to the definition of the following fault detection condition:

d(k) =

1 if |e(k)| − e(k) > 0— FaultST

0 if |e(k)| − e(k) ≤ 0—No-Fault
(5.9)

where d(k) is the fault detection signal which can be used to alert an operator or to activate

other fault-diagnosismodules. A fault is detectedwhen the fault detection signal switches

from 0 to 1 but is possible to return back to 0, depending on the robot input. Despite this,

the fault detection alarm remains raised if a fault is detected at any point in time, i.e.

D(k) = 0, ∀k < k0 andD(k) = 1, ∀k ≥ k0, whereD(k) is the fault detection alarm and

k0 is the time instant when d(k)=1 for the first time.

5.2.5 Challenges Arising

Because the detection threshold is based on the upper bound of the uncertainty, the pre-

cision (the ratio of True Positives over the sum of True Positives and False Positives) of

theWorst-Case method is theoretically perfect, since no-false-alarms are possible. How-

ever, in cases where a fault occurs but the estimation error is not large enough to exceed

the detection threshold, it will be classified as No-Fault which is a False Negative. is

issue becomes significant when the uncertainty distribution includes rare events of high

uncertainty. us, determining the detection threshold solely based on the uncertainty

upper bound is a conservative approach, which leads to the reduction of sensitivity in

favor of the no-false-alarm feature of the Worst-Case method.

5.3 Multi-reshold Detection

eWorst-Casemethod produces a binary fault indication signal; when below the thresh-

old, a high estimation error is as likely as a low estimation error and does not indicate a

higher chance abnormal operation. To address the challenge of the limited sensitivity

of the conservative Worst-Case method, one approach is to increase the fault indication

resolution. In this section, we introduce the Multi-reshold (MT) method; we propose

the use of additional thresholds (µ-thresholds) determined from multiple levels of the

uncertainty distribution, which are used to generate a warning signal.

65

Dem
etr

is 
Stav

rou



5.3.1 Methodology

e multiple levels are computed with respect to the distribution of uncertainty in each

state. In a similar way that the Worst-Case method’s detection threshold corresponds to

the upper bound value of uncertainty η(x(k), u(k)) (5.8), the MT method’s µ-thresholds

correspond to specific levels of the uncertainty distribution. In specific, the distribution

of uncertainty is divided into N levels, and then each level is used to generate a thresh-

old µj, j ∈ {1, . . . , N}. At each time step, the estimation error magnitude is compared

against µj to generate a warning signal w(k) ∈ {0, ..., N − 1}. A fault is detected when

the warning signal deviates from its distribution observed during fault-free operation; we

implement this by applying a change-detection method.

e proposed methodology has the following steps:

• Collect training data under normal operation

• Construct uncertainty bins based on the training data

• Select number of levels and determine the corresponding uncertainty of each bin

• Compute the multiple µ-thresholds

• Generate warning signal

• Compute fault-detection signal

e overview of the method is depicted in Fig. 5.1.

5.3.2 Levels From Training Data

emethod depends on the collection and processing of a finite number of training data

collected while the robot is operating normally for the time periodK . e values of y(k)

and u(k) are readily available in the controller for k ∈ K while the value of uncertainty

needs to be calculated using:

η(k) = e(k + 1)− (1− Λ)e(k) (5.10)

and estimation error is calculatedwith (5.6). e training data sample setΨ is represented

as:

Ψ = {(ψ1, ψ2, ψ3)| ψ1 ∈ Y , ψ2 ∈ U , ψ3 ∈ H, k ∈ K}. (5.11)
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Figure 5.1: Diagram of the multi-threshold fault detection method. Training data is used

to select the appropriate h values which are used to determine the µ-thresholds. Each

threshold is compared against the absolute estimation error and their output ultimately

defines thewarning signalw(k). FaultMT condition detects faults by comparing themov-

ing average value against a threshold determined during training. Additionally, faults are

detected with the FaultST condition, using the last threshold µN(k).

A two-dimensional plane of Y and U is defined based on the properties of the robot

i.e. S ∈ {ymin . . . ymax} × {umin . . . umax}. is plane is divided into m regions, such that

S = {S1, . . . , Sm}. Each region i encloses a set of uncertainty values which is defined

as bin bSi . In other words, samples which are close together with respect to y and u are

grouped together into a bin:

bSi = {ψ3 | (ψ1, ψ2) ∈ Si, (ψ1, ψ2, ψ3) ∈ Ψ} (5.12)

In general, the shape of bin regions Si can be arbitrary; in this work we divide each

dimension of the plane S into NS divisions, forming m = (NS)2 rectangular regions

of size ymax−ymin
NS and umax−umin

Ns
. Uncertainty values are located within bins that represent

normal operation states while the rest of the bins are empty because they represent states

that are impossible to reach during normal operation.

e distribution of uncertainty values is used to decide the uncertainty value that

corresponds to each level, for each bin i. e uncertainty values are computed based on

the cumulative distribution function:

hji = F−1i (aj), j ∈ {1, ..., N},∀i (5.13)

where F−1i is the inverse cumulative distribution function which returns the uncertainty

value hji that corresponds to cumulative function probability aj for the bin bSi . e levels
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aj, j ∈ {1, ..., N} are chosen arbitrary and in this work as defined as:

aj =
j

N
, j ∈ {1, ..., N}. (5.14)

erefore, at each time step k, the following signal is computed:

hj(k) = {hji | (y(k), u(k)) ∈ Si ⊂ S}. (5.15)

5.3.3 Fault Detection

With the N uncertainty level signals hj(k) determined at each iteration, we can proceed

and compute the µ-thresholds as follows:

µ(k + 1) = (1− Λ)µ(k) +


h1(k)

h2(k)
...

hN(k)

 . (5.16)

following the way that Worst-Case method computes the estimation upper bound (5.8).

We defineµ0 = 0. e estimation error is compared against everyµ-threshold to generate

the warning signal w(k) ∈ {0, ..., N − 1} as follows:

w(k) = max{i | |e(k)| − µi(k) > 0, i ∈ {1, ..., N − 1}} (5.17)

Under normal operation, the robot passes through various states with different uncer-

tainty. e warning value is tracked with w(k), forming a time-series signal. By defi-

nition, w(k) could fluctuate between values 0 and N − 1 under normal operation. Ir-

respective of the robot state, the value w(k) indicates how critical the estimation error

is, providing a multiple level fault indication, with high values being more critical but

more rare. A fault is detected when the w(k) signal’s distribution deviates, and this can

be detected using a change-detectionmethod. In this work, change-detection is achieved

using a moving average filter with window τ :

b(k) =
1

τ

k∑
i=k−τ

w(i) (5.18)

Training datasets which include cases with and without faults, can be used to evaluate an

upper bound b of the b(k) signal for the time period K , using the above methodology,

which maximizes certain evaluation metrics; this is further discussed in the Section 5.4.
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is upper bound, applied on the moving average signal defines one of the two detection

thresholds for the MT method:

d(k) =


1 if |e(k)| − µN(k) > 0— FaultST

1 if b(k)− b > 0— FaultMT

0 if b(k)− b ≤ 0—No-Fault

(5.19)

e MT method uses two conditions to detect a fault, FaultST which works on the same

principle as in the Worst-Case method i.e. when the absolute estimation error exceeds

the upper µN -threshold, and FaultMT i.e. when the b(k) value exceeds the detection

threshold b. e fault detection alarm is raised when either of the two conditions is met

and the fault detection signal switches from 0 to 1 but is possible to return back to 0.

Despite this, the fault detection alarm remains raised if a fault is detected at any point in

time, i.e. D(k) = 0,∀k < k0 and D(k) = 1, ∀k ≥ k0, where D(k) is the fault detection

alarm and k0 is the time instant when d(k)=1 for the first time.

5.3.4 Implementation

In practice, the fault detection algorithm can be implemented on-board the robot’s mi-

crocontroller, in order to have access to the input signal of the motors and sensor read-

ings. As mentioned earlier, a fault may occur on any of the robot’s motors in the form

of performance degradation i.e. under-perform by a certain percentage. It is also pos-

sible to have the controller notified as well, and this has the advantage of immediately

acting upon a fault, to prevent any consequences or even to correct the behavior by com-

pensating the effects of the faults. Furthermore, we assume that the robot is equipped

with a basic navigation controller that steers the robot towards a pre-planned path using

navigation-points. “Normal operation” is the act of assigning random navigation-points,

forming a path, and letting the robot follow this path. Training data is defined as data

covering as many system states as possible, in other words, a large number of random

paths followed by the robot. Possible states are the states that the controller can lead the

robot in, rather than the states the individual components of the robot can reach. Train-

ing data can be generated by issuing random paths and supervise the execution in order

to ensure fault-free operation.

Faults are emulated in soware and are injected through the control signals of the

robot. is is useful because it allows a controlled way to cause faults to the motors with

69

Dem
etr

is 
Stav

rou



a specific magnitude. is way, we can evaluate the proposed method’s detection perfor-

mance under various fault magnitude.

5.4 Simulations

5.4.1 Experimental Setup

Evaluation of thismethod is performedwith simulations using the V-REP simulator [88].

e algorithms for fault detection, controlling the robot and collecting data, are imple-

mented in MATLAB which runs synchronously with the simulator, at a rate of 10Hz.

e detection algorithm runs at the same rate i.e. the iteration of the algorithm is 100ms.

Uncertainty drawn from a Gaussian distribution is added to the data. During a simu-

lated experiment, the robot follows a path which is formed by a collection of navigational

points, which act as Bezier points forming a series of curves. Figure 5.2 depicts the sim-

ulation environment, including the robot and its corresponding path.

Figure 5.2: e simulation environment includes a differential drive robot moving on a

random path driven by a navigation controller.

Faults of predeterminedmagnitude are injected on the robot through the simulator at

specific times requested by the MATALB script. e fault causes the simulated robot to

behave as if it was experiencing a performance degradation on its motor. is approach

allows us to evaluate the performance of the detection algorithmswith respect to different

fault characteristics.
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5.4.2 Learning from Training Data

Section 5.3.2 describes the procedure for learning the warning level from training data.

In this paragraph we describe how this applies on the training dataset that was acquired

through simulations. Figure 5.3 depicts the uncertainty values calculated from the mea-

surements and projected on the Y ,U plane which is divided into regions. e lines in the

plane define the boundaries of the regions and the values within each region are grouped

into the corresponding bin.
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Figure 5.3: Uncertainty readings are grouped together into bins. e bins’ boundaries are

defined by their corresponding region.

e distribution formed by the set of uncertainty values in each bin determines the h

values of the corresponding bin given the set of levels. Figure 5.4 depicts the uncertainty

cumulative distribution function and the distribution of a single bin, with dashed lines

representing the levels a10, a9, a8 and a7 which determine the values h10, h9, h8 and h7.

e same procedure is repeated for every bin. e experimental results were conducted

with N = 10. Having determined the h values for each bin, the MT µ-thresholds can

now be calculated.

e MT method’s detection threshold b is the next important detection parameter

that needs to be determined from training data. We use two metrics for evaluating the

detection performance, being the F1 score and the detection delay. eF1 score is the first

metric of choice because it considers both the precision and sensitivity of the detection.

F1 = 2
precision× sensitivity
precision+ sensitivity =

2TP

2TP + FP + FN
(5.20)

71

Dem
etr

is 
Stav

rou



0 1 2 3 4 5 6 7
0

200

400

600

800

1000

1200

1400
(b)

Uncertainty (mm/s)

O
cc

ur
an

ce
s

0 1 2 3 4 5 6 7
0

0.2

0.4

0.6

0.8

1

Uncertainty (mm/s)

C
D

F

(a)

Figure 5.4: e (a) cumulative distribution function and (b) distribution of a single bin’s

uncertainty values. Also illustrated are the levels a10, a9, a8 and a7 which determine the

values h10, h9, h8 and h7.

e secondmetric detection delaywhich is measured in algorithm iterations, is defined as

the delay between the fault occurrence and the time the fault is detected by the algorithm.

Depending on whether a fault was detected or not, an experiment is classified by the

detection algorithm as “Fault Occurred” or “No Fault”. Each decision is then evaluated

with respect to the true conditions of the experiment i.e. a “Fault Occurred” decision is

classified as True Positive or False Positive if a fault occurred during the robot operation

or not, respectively. Similarly, a “No Fault” decision is classified as False Negative or True

Negative.

We chose detection delay as a metric because raising the alarm as early as possible

is important, especially in cases where a fault has high cost on the system performance

and could escalate. Even though the lowest possible detection delay is desirable, themaxi-

mum acceptable delay is application dependent. In the same context, we define acceptable

detection delay as the detection delay under which a detection is considered as True Pos-

itive, which is also measured in algorithm iterations. In other words, when a fault occurs

and the algorithm detects it with detection delay lower than or equal to the acceptable

detection delay, then the detection is classified as True Positive, otherwise is classified as

False Negative.

We proceed with evaluating the detection over a range of thresholds and acceptable

detection delay as an overview of how the proposed algorithm performs and demonstrate

how to select the detection threshold for the FaultMT condition. Figure 5.5(a) illustrates

this result of F1 score over a bounded spectrum of the threshold and acceptable detection

delay plane.
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Figure 5.5: (a) F1 score over a wide range of threshold in [0.1, 0.8] and acceptable detec-

tion delay in [0, 200] values. (b) Normalized area under the F1 curve to determine which

is the best performing overall threshold.

For the window value τ = 100 chosen for the moving average filter, the figure shows

that low thresholds (b < 0.46)) have low F1 score irrespective of the acceptable detection

delay because of the high number of False Positives. Higher thresholds (b > 0.55) have

low F1 score when acceptable detection delay is low, due to the high number of False Neg-

atives. is is caused because the b(k) signal requires more time to reach the threshold

therefore on low acceptable detection delays, all cases are classified as ‘Not Faulty’ which

causes False Negatives. To determine which threshold performs best overall the accept-

able detection delay, we use the area under the F1 curve as the metric and the result is

shown in Fig. 5.5(b). e point b = 0.5 provides the maximum normalized area under

F1 curve of 0.771 and therefore is chosen as the threshold.

5.4.3 Fault Detection

e following results demonstrate fault detection using both FaultST and FaultMT fault

detection conditions for comparison. e robot is given a set of navigation points to

follow and in the middle of the experiment Kf = 500, a fault with 35% magnitude is
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(a) Upper Feature Signal Detection (FaultST) − 35% fault
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Figure 5.6: Fault injected atKf = 500. (a) Estimation error and upper µN -threshold used

for FaultST. Fault is detected at k = 506, as indicated by the arrow. (b) Moving average

signal and the corresponding threshold used for FaultMT. Fault detected at k = 541, as

indicated by the arrow.

injected on its le wheel. Injecting the fault at this time, allows enough normal operating

time before the fault occurs, in order to determine whether an alarm corresponds to the

fault or not; if the alarm is raised before Kf this indicates a False Positive. Figure 5.6(a)

shows the estimation error and threshold used by the FaultST condition. During the

healthy period of the experiment (k < 500) the estimation error correctly stays below the

threshold indicating normal operation. However, at k = 506 soon aer the fault occurs,

estimation error exceeds the threshold and the fault is detected.

Next we illustrate the warning-based detection of the MT method i.e. using the

FaultMT condition. Figure 5.6(b) shows the moving average signal against the detection

threshold at b = 0.5. e moving average filter requires an initialization period which

depends on the τ value. During the normal operation, the signal correctly stays below

the threshold. Aer the fault occurs, the signal rises steadily and exceeds the threshold

at k = 541, detecting the fault.

e next experiment demonstrates the detection results for a small fault of 6.9%mag-

nitude. Figure 5.7(a) shows that due to the small fault magnitude, the estimation error

never grows enough, in order to exceed the threshold and therefore the condition FaultST

never detects the fault in this example. On the other hand, Fig. 5.7(b) shows that the

moving average signal exceeds the threshold and therefore FaultMT detects the fault at
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Figure 5.7: Fault injected at Kf = 500. (a) Estimation error and upper µN -threshold

used for FaultST. Fault is not detected. (b) Moving average signal and the corresponding

threshold used for FaultMT. Fault detected at k = 551, as indicated by the arrow.

k = 551.

Due to the fact that the fault is small, the generated estimation error is limited and

as the results show, it is not enough to be significant with respect to uncertainty in order

to trigger the FaultST condition and thus the Worst-Case method fails to detect it. e

FaultMT requires more time but eventually it does detect the fault successfully. is ex-

ample demonstrates the conservative nature of theWorst-Case method that uses FaultST

only and the improved sensitivity of theMTmethod that uses both FaultST and FaultMT

simultaneously.

5.4.4 Performance Evaluation

e data for the evaluation is collected by running 200 experiments of 1,000 iterations

each, where the robot operates normally, without any faults. Paths for these experiments

are generated randomly. Additionally, the exact same paths are used to execute a set

of 200 experiments during which a fault is injected at Kf = 500. In each experiment,

the performance degradation fault has random magnitude. Using these experiments we

compare the FaultST and FaultMT conditions, and demonstrate the differences in detec-

tion performance. e two evaluation metrics used are the F1 score and the detection

delay.

e detection threshold for the FaultMT method used is b = 0.5 which was deter-
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mined from training data, based on the moving average window τ = 100. Figure 5.8

shows the F1 score of each condition over different accepted detection delay values. In

the same figure, we also include the F1 score profile for two additional moving average

windows τ = 10 and τ = 200 for comparison; the corresponding thresholds for those

windows are b = 0.89 and b = 0.45. e FaultST condition exhibits high F1 score even

in low values of accepted detection delay. is is because the FaultST requires only few

iterations before the estimation error crosses the detection threshold. e FaultMT con-

dition has low F1 score on lower values because of the moving average filter which causes

slow rising of the warning signal, taking more time to reach the threshold.
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Figure 5.8: F1 score with respect to the Accepted Detection Delay using the upper µN-

threshold andMoving Average. eWorst-Casemethod uses FaultST only, while theMT

method utilizes both conditions to achieve an overall better detection performance.

As the acceptable detection delay increases, the FaultST F1 score improvement is lim-

ited. e FaultMT catches up and performs equally well to the FaultST when acceptable

detection delay is 51; at this point, the signal from the moving average is given enough

time to exceed the threshold in cases where a fault occurs. For higher values of accept-

able detection delay, the FaultMT outperforms the FaultST, with best F1 score of 0.985

when acceptable detection delay is 200. is happens because when the FaultMT is given

enough time, it is able to detect faults of smaller magnitude which are not detected by

the FaultST condition. is can be seen in Table 5.1 that lists the detection results for a

number of acceptable detection delays. Also listed in the table, is the smallest fault mag-

nitude that was detected. As the acceptable detection delay is increased, the FaultMT is
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able to detect more faults that where previously undetected, and the decreasing value of

the detected fault magnitude, indicates the increasing sensitivity. For 200, the FaultMT

returned only 6 False Negative cases with the smallest fault detected at 0.0137 while the

FaultST, returned 29 and 0.1414 respectively. e MT method proposed in this chapter,

uses both FaultST and FaultMT simultaneously, making it fast to detect faults (FaultST)

but also sensitive enough to detect faults of small magnitude (FaultMT).

Table 5.1: Comparison of detection conditions FaultST and FaultMTwith respect to fault

detection metrics and the Acceptable detection delay.
FaultST detection condition FaultMT detection condition

Acc. TP FP TN FN minimum α TP FP TN FN minimum α

0 0 0 200 200 - 0 0 200 200 -

20 125 0 200 75 0.2480 2 0 200 198 0.3828

40 145 0 200 55 0.1750 52 0 200 148 0.1108

60 154 0 200 46 0.1662 176 0 200 24 0.0937

80 159 0 200 41 0.1662 188 0 200 12 0.0487

100 164 0 200 36 0.1662 191 0 200 9 0.0481

120 168 0 200 32 0.1662 192 0 200 8 0.0481

140 169 0 200 31 0.1662 194 0 200 6 0.0137

160 170 0 200 30 0.1485 194 0 200 6 0.0137

180 170 0 200 30 0.1485 194 0 200 6 0.0137

200 171 0 200 29 0.1414 194 0 200 6 0.0137

e moving average window can be changed to alter the behavior of the FaultMT

condition. A smaller window value, for example τ = 10, will cause the detection to be

faster, as shown by the corresponding line in Fig. 5.8. e threshold for τ = 10 filter

is b = 0.89 which is determined through the training procedure. Because of the higher

threshold when compared to the τ = 100 filter, some of the faults are not detected thus

increasing the False Negatives making the detection less sensitive. On the other hand, a

large window will smooth the warning signal too much, requiring more time to detect

a fault as shown by the corresponding line in Fig 5.8. In this case, the filter requires

more time to detect a fault which sometimes exceeds the acceptable detection delay and

registers as False Negative making the detection again less sensitive.
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5.5 Concluding Remarks

e chapter presents a new detection condition FaultMT that incorporates multiple µ-

thresholds derived from the distribution of the uncertainty in order to produce a warning

signal that if given enough time, detects small magnitude faults. e simulation eval-

uation shows that the FaultST condition is able to detect faults fast, but fails to detect

faults of small magnitude. e FaultMT on the other hand uses the temporal behavior

of the warning signal and it able to detect faults of small magnitude even though it needs

more time to raise the alarm. In fact, FaultMT detection condition detects faults down to

1.37% compared to 14.14% of the FaultST condition and if given enough time, it reaches

the score of 0.985 based on the F1 metric. e presented Multiple resholds method

utilizes both the FaultST and FaultMT conditions making it fast to detect faults and also

able to detect smaller magnitude faults with some delay that would not be detected other-

wise. To make the method generally applicable to mobile robots, the required detection

parameters are determined from training data.
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Chapter 6

Reacting to Faults

6.1 Introduction

With fault detection, the controller of the robot becomes aware of the occurrence of a

fault. Depending on the faultmagnitude, the robot could be able to continue its operation

by reacting to the fault. rough fault isolation and identification, the location, type and

magnitude of the fault are learned by the robot and this information is used to mitigate

the effects of the fault. Since this thesis considers service robots which are mobile, we

investigate faults that affect the navigation of the robot within the environment. In the

first part, we present a module that can be installed on a service robot that provides path

correction through fault detection, isolation and identification. e module uses signals

sent to/from the controller to provide this functionality. Information about the fault is

used by the module to generate new actuator signals that allow the controller to continue

controlling the robot. In the second part, we investigate the localization capabilities of the

robot under sensor faults. Localization is an important part for robot navigation within

an environment since it provides information about the location of the robot within a

frame of reference. A fault on the sensors affects localization resulting in wrong location

estimation. In this case, it is important to continue localization using only the healthy

sensors. In the presented work, we explore the performance of Monte Carlo Localization

when only one of the sensors remains operational.

79

Dem
etr

is 
Stav

rou



6.2 Fault Detection, Isolation and Path Correction Mod-

ule

In this work, a model-based Fault Detection, Isolation and Path Correction Module (FDI-

PC) is presented, suitable for differential drive service robots. e first step of the FDI-PC

is to determine whether an actuator fault has occurred, based on the measured states and

the control inputs. e second step is to determine the type of fault that has occurred,

i.e. whether the fault affects the le or right wheel, and to identify its magnitude using

adaptive estimation. e third step is to modify the control input using a path-correction

algorithm so that the robot maintains its ability to reach its goal.

6.2.1 Robot Model and Fault Dynamics

e floor region is defined as W ⊆ R2. Let O be the union of all regions within W

which are inaccessible for robot movement, due to static objects (e.g. desks and chairs)

that occupy that space. e feasible robot movement region is defined as S = W −

O. e robot’s ability to reach any point in S depends on the connectivity of the areas

and its starting position. Besides static obstacles, robots need to avoid moving obstacles,

including other robots, and this is handled by a path-planning supervisory system.

e configuration state x of the robot is defined by its position in the Cartesian plane

(coordinates x1 and x2) and its orientation (angle x3), denoted by x = [x1, x2, x3]
⊤, x ∈

S × [−π, π] as shown in Fig. 6.1.

e dynamic equations describing the state of the robot are given by

ẋ =


1
2
cos(x3) 1

2
cos(x3)

1
2
sin(x3) 1

2
sin(x3)

−1
d

1
d


v1
v2

+ η(x, v) (6.1)

where d is the distance between the two wheels and v = [v1, v2]
⊤ is the linear velocity of

two motors controlling the le and right wheel respectively. e first term of the state-

space describes the known nominal dynamics. e second term, η(x, v), corresponds to

the unknown modeling uncertainty vector caused by the differences between the nomi-

nal and the actual movement and rotation response of the robot (e.g. caused by inertial

effects). is is assumed unknown to the controller.

We consider that the indoor environment has a robot localization system, e.g. using

cameras. e output vector of the robot states is given by y = x. Each robot has to
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Figure 6.1: A simplified robot movement environment with two robots and two inac-

cessible regions O1 and O2. Each robot has a trajectory to follow within the region

S = W − (O1 ∪ O2) to achieve its goal. A fault on the right-actuator of the first robot

causes the robot to detour and collide onO1.

complete certain tasks (goals) within the environment. Let g ∈ S be the goal of the

robot within a certain period. Given the goal g, the current location of the robot y and

the feasible region for movement S, a higher-level Supervisory System, as in Fig. 6.2,

implements aMotion Planning Module to compute the path r that will guide the robot to

its destination, comprised of all the intermediate points the robot must navigate.

e robot is equipped with a Controller Module which computes the motor control

signal w, and u represents the actual input of the motor. We clarify that u and w are

the same signal during normal operation, but under certain circumstances that will be

presented next, u becomes a modified version of w. For simplicity, we assume here that

the input value represents the required motor velocity, therefore under normal operation

(no faults present) v = u. However, in the special case when a fault has occurred on the

j-th actuator of the robot, at time T f
j , the j-thmotor’s performancemay degrade partially

or completely by some unknown factor αj ∈ [−1, 0], and the faulty robot input is given

by

vj(t) =
(
1 + β(t− T f

j )αj

)
uj(t), (6.2)

where β(t−T f
j ) is the time profile of the fault. In the case of abrupt faults, β(t−T f

j ) = 1

if t ≥ T f
j and β(t− T f

j ) = 0 otherwise.
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Figure 6.2: System architecture, comprised of: a) the supervisory system for the robots

motion path planning, b) the (i)-th mobile robot system, including the controller and c)

the proposed FDI-PC Module.

By substituting (6.2) in (6.1), the additional fault dynamics term appears, such that

ẋ =


1
2
cos(x3) 1

2
cos(x3)

1
2
sin(x3) 1

2
sin(x3)

−1
d

1
d


u1
u2

+ η(x, u) +


1
2
cos(x3) 1

2
cos(x3)

1
2
sin(x3) 1

2
sin(x3)

−1
d

1
d


β(t− T f

1 )α1u1

β(t− T f
2 )α2u2

 ,
(6.3)

where T f
1 and T f

2 are the actuator fault occurrence times on the le and right wheel re-

spectively.

is work considers single-actuator faults that may occur on the robot, thus the set of
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faults Φ is given by

Φ =

α1


1
2
cos(x3)u1

1
2
sin(x3)u1
−u1

d

 , α2


1
2
cos(x3)u2

1
2
sin(x3)u2

u2

d


 .

6.2.2 FDI-PC Design Architecture

In this work, the Fault Detection, Isolation and Path CorrectionModule (FDI-PC) for two-

wheeled non-holonomic mobile robots is proposed, based on the model-based fault de-

tection and isolation scheme presented in [36, 37, 113].

e FDI-PCmodule will be implemented as an embedded system, thus, the following

discrete-time definitions are required: let k be the discrete time instance such that k∆t =

t, where ∆t is the sampling time. Let x(k) be the discrete state vector, and let the state

matrix be denoted as

A(x(k)) = ∆t


1
2
cos(x3(k)) 1

2
cos(x3(k))

1
2
sin(x3(k)) 1

2
sin(x3(k))

−1
d

1
d

 .
Considering the forward Euler discretization, the discrete-time state space mobile robot

dynamics can be given by

x(k + 1) = x(k) + A (x(k))u(k) + η(k) + β(k −K)ϕ(x(k), u(k))

y(k) = x(k)

where u(k) ∈ [umin, umax] is the robot input vector bounded within the feasible control

inputs umin and umax, y(k) is the measurable state vector, η(k) is the unknown modeling

uncertainty term, ϕ(x(k), u(k)) is the actuator fault dynamics.

Both actuators introduce uncertainty η(k) to the model. In general, its magnitude is

unknown during operation. However, through experimentation, an upper bound of the

uncertainty η(k) can be selected, such that

η(k) = |A(x(k))| ·M · |u(k)| ≥ η(k)

where the diagonal matrix M is the maximum actuator uncertainty. Uncertainty can

also be caused due to the dynamics of the robot. As with the rest of the uncertainties

in this work, unmodeled dynamics uncertainty has an upper bound which can be in-

corporated into the estimation error upper bound which ultimately shapes the detection
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threshold. In this work we assume that actuator accelerations are small, well below the

robot’s actuator performancemaking the unmodeled dynamics uncertainty small relative

to the rest of the uncertainties [48]. erefore, we do not explicitly include the dynamics

uncertainty as it is completely covered by other included uncertainties. In cases where

the accelerations assumption is not valid, the dynamics uncertainty can be incorporated

into the detection threshold with an additional uncertainty term on eq. (6.1). One would

need to identify the upper bound and time delay of this uncertainty either through the

specifications of the actuator or through training.

e FDI-PC Module is comprised of three estimators, x̂0 for the states used in the

Detection Module and x̂1, x̂2 for the states used in the Isolation Module.

Fault Detection Module

e fault detection state estimator x̂0 takes into account the mobile robot state at time k,

the nominal dynamics and the filtered estimation error to estimate the state at time k+1,

such that

x̂0(k + 1) = x̂0(k) + A(y(k))u(k)−∆t · Λ(x̂0(k)− y(k)),

where x̂0(0) = y(0), and the filter coefficient matrix Λ is a diagonal matrix of size (3× 3)

and Λ(j,j) > 0 for the j-th state, which can be determined experimentally.

At every iteration the estimation error of the j-th state is calculated using the state

measurement vector yj(k) and the estimated state x̂0j(k), such that e0j(k) = yj(k)− x̂0j(k).
e absolute value of the estimation error e0j(k) for the j-th state has a theoretical upper

bound ϵ0j(k) (detection threshold) which is calculated based on the uncertainty upper

bound η(k), thus

ϵ0j(k + 1) = (1−∆t · Λ(j,j))ϵ
0
j(k) + ηj(k) (6.4)

where ϵ0j(0) = 0. For further details regarding the derivation of the fault detection algo-

rithm and its properties, see [37].

To detect if a fault has occurred, the Fault Detection Module compares the absolute

estimation error of the j-th state, |e0j(k)|whether it is greater than the detection threshold

ϵ0j(k). In practice, due to quantization errors caused due to analog-to-digital conversion

as well as due to continuous-to-discrete time model transformation, an additional error

appears which may cause false positive alarms. rough simulations or analytically it is

possible to calculate the maximum discretization/quantization error δj affecting the j-th
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estimation error. e fault detection logic is therefore

Alarm:

Yes if |e0j(k)| − e0j(k)− δj ≥ 0

No if |e0j(k)| − e0j(k)− δj < 0

Fault Isolation Module

e Fault Isolation Module objective is to determine which type of actuator fault has oc-

curred and to estimate its magnitude, aer it has been activated by the alarm from the

Fault Detection Module. is module is comprised by a set of two estimators and an

isolation logic, each estimator corresponding to an actuator fault type. Aer isolation is

activated, the module continuously checks whether an isolator has crossed the threshold.

e intuition behind fault isolation, is that, in the case of a certain actuator fault type,

the absolute estimation error should be below the isolation threshold computed using the

same fault type and maximum uncertainty.

When the isolation threshold is crossed, the fault represented by that isolator is no

longer considered as a valid candidate. When one fault type remains as valid candidate,

the fault is considered isolated. Specifically in the case of actuator faults in mobile robots,

the following two fault structures are considered,

Φ =
{
α1z1(y(k), u(k)), α2z2(y(k), u(k))

}
where u1(k) and u2(k) are the actuator inputs, and for the l-th fault structure αl is the

fault magnitude and zl(k) the regressor vector, which are given by

z1(y(k), u(k)) =∆t


1
2
cos(y3(k))

1
2
sin(y3(k))

−1/d

u1(k),

z2(y(k), u(k)) =∆t


1
2
cos(y3(k))

1
2
sin(y3(k))

1/d

u2(k),
for le and right-wheel faults, respectively. For notational simplicity, in the following we

consider that zl(k) = zl(y(k), u(k))).

For the l-th isolator, let x̂l(k) be the estimated state and el(k) be the estimation er-

ror, such that el(k) = y(k)− x̂l(k). Let α̂l(k) be the estimated fault magnitude, which is

computed through the adaptive law

α̂l(k) = α̂l(k − 1) + γlzl(k − 1)
(
el(k)− (1−∆t · Λ)el(k − 1)

)
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for which γl is the adaptive gain [1]. To guarantee that α̂l(k) remains within the expected

fault magnitude is bounded within α̂l(k) ∈ [−1, 0]. In specific, the following rule is con-

sidered: if α̂l(k) > 0 or α̂l(k) ≤ −1, then α̂l(k) = α̂l(k − 1).

Finally, the estimated state dynamics of the l-th isolator are given by

x̂l(k + 1) = x̂l(k) + A(y(k))u(k)−∆t · Λ(x̂l(k)− y(k)) + α̂l(k)zl(k). (6.5)

Similar to the Fault DetectionModule, the absolute estimation error of the isolator has

an upper bound that defines the isolation threshold, given by

ϵlj(k + 1) = (1−∆t · Λ)ϵlj(k) + ηj(k) + (|αl
j(k)|+ 1)|zlj(k)|. (6.6)

For further details regarding the derivation of the fault isolation algorithm and its prop-

erties, see [37].

Path Correction Module

Aer isolation, the module is able to make corrections to compensate the effect of the

actuator fault, if possible, by adjusting the robot input vector. At this point is should be

pointed out that the controller of the robot does not require any altering, which is an

important objective of this work, since the FDI-PC Module suggested, is plugged onto

the existing robot hardware.

e Path Correction Module is used to compute the robot input vector u(k), based on

the Controller Module output vector w(k), the isolated fault structure and the approxi-

mated fault magnitude. e objective is to maintain a course as close as possible to the

desired path, taking into account themost updated faultmagnitude estimation α̂l(k) from

the Fault Isolation Module for the l-th fault type. In the case that the corrected control

signal for one actuator is greater than the upper bound umax, then the Module makes an

additional correction by modifying the control signals for both wheels so that the veloc-

ity ratio is maintained. is would allow the robot to follow its desired path in a slower

speed.

e robot input vector u(k) can be computed as follows

u(k) =


[umax, u

′
2(k)− (u′1(k)− umax)]

⊤ if w1(k)
1+α̂1(k)

≥ umax

[u′1(k)− (u′2(k)− umax), umax]
⊤ if w2(k)

1+α̂2(k)
≥ umax

u′(k) otherwise

where

86

Dem
etr

is 
Stav

rou



u′j(k) =


wj(k)

1+α̂j(k)
if Fault Type j ∈ {1, 2} isolated

wj(k) otherwise

6.2.3 Simulation Results

To evaluate the performance of the proposed algorithm, a simulator was developed to

operate a virtual robot and provide the necessary data for fault detection and isolation.

An illustrative example is used to demonstrate the fault effects on the robot and to depict

the operation of the detection and isolation modules. Aerwards, 10,000 random path

scenarios are simulated to evaluate the effectiveness of the fault detection and isolation

modules. Finally, the operation of the FDI-PC module is demonstrated in a case study

where a mobile service robot is moving towards a specific goal in a small office environ-

ment, under an actuator fault.

Illustrative Example

Amobile robot moves within a plane without obstacles, i.e. S = R2, to achieve 3 consec-

utive goals, and is provided with a path r(k) to follow. At timeKf = 1900 a fault occurs.

e fault affects the right wheel, causing a 60% performance loss, i.e. α2 = −0.6, causing

it to slow down and dri to the right. Figure 6.3 shows the absolute estimation error on

the three states. e dashed line represents the detection threshold for each state. e de-

tection threshold changes in each iteration of the algorithm, based on the robot state, the

input and the uncertainty as it was described in (6.4). When the absolute estimation error

crosses this threshold, the fault is detected. As shown in the figure, during the fault-free

operation, the absolute estimation error is always below the dashed line. However, soon

aer the fault occurs, the absolute estimation error in all three states crosses the dashed

line and therefore is detected.

Next, the operation of the two isolator modules is demonstrated. For this simulation

the robot performs a randommovement in the environment. A fault occurs atKf = 1000

on the le wheel with magnitude α1 = −0.6. Figures 6.4 and 6.5 show the absolute es-

timation error of the le and right wheel isolators respectively. e dashed line shows

the isolation threshold as it was described in (6.6). As shown in the figures, each isolator

attempts to approximate the fault aer it receives the detection signal from the the detec-

tion module just aer the fault occurs. With time, the fault magnitude estimation of the
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Figure 6.3: e absolute estimation error (solid blue line) and the detection threshold

(dashed black line) of the three states of the robot. e fault occurs at time Kf = 1900.

e fault is detected the first time the absolute estimation error is greater than the thresh-

old, in any of the three states (in this case x1 at time k = 1903.

le wheel isolator converges to α̂1 = −0.63 while the estimation of the fault magnitude

for the right wheel isolator fluctuates. At k = 1450, the right wheel absolute estimation

error of the isolator crosses the dashed line and therefore the fault is isolated on the le

wheel.

Random Paths Example

Table I shows the fault detection and isolation results analysis aer running 10,000 simu-

lations, where each simulation generates a random path with a random fault magnitude,

random occurrence time, on one of the two wheels.

e results show that detection time drops with respect to the fault magnitude. is

happens because as the fault magnitude increases, the estimation error due to the fault

increases compared to the estimation error due to uncertainty therefore making the fault

easier to be detected. On the other hand, low fault magnitude generates lower estimation

error due to the fault, which sometimes is hidden by the uncertainty, therefore, the fault

is more difficult to be detected.

Small Office Case Study

So far, the performance of the FDI-PC module of the robot was demonstrated in the de-

tection and isolation of motor faults. A common task in mobile robotics, is reaching the
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Figure 6.4: Le-wheel-fault isolator Figure 6.5: Right-wheel-fault isolator

specific point in the environment. e robot equipped with a motion planning, is able

to calculate the intermediate points required to reach its goal. e robot starts moving

towards the next intermediate point. e controller steers the robot in the required di-

rection to ensure that the robot follows the path. In this work, the controller minimizes

the orientation error (bearing) between the robot and the next intermediate point. To

achieve this, the robot is steered in the inverse direction of the error. e next simulation

illustrates this procedure.

In this simulation, one mobile robot is considered, m = 1, moving in a small office

environmentW = [0, 6000]× [0, 3000] (mm). ere are several objects in the office such

as desks, chairs and shelves, which are modeled as obstacles in O. e feasible robot

movement area is S = W − O. e robot has to travel from its current position (lower

le corner), i.e. the state x(0) = [100, 100, π/2]⊤, to the charging station (lower right

corner), i.e the goal g = [5900, 200]⊤. e office is equipped with a small network of

cameras that allow full state measurement of the robot.
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Table 6.1: Fault detection and isolation results analysis aer running 10,000 random sim-

ulations.
Description Small Faults Medium Faults Large Faults

0.05 – 0.35 0.35 – 0.65 0.65 – 0.95

Total Faults 3216 3752 3032

Detected 3216 3752 3032

Average Det. Time (ms) 7.14 2.53 1.85

Correct Isolation 1328 (41.3%) 3553 (94.7%) 3016 (99.5%)

False Isolation 3 (∼0.0%) 16 (0.4%) 14 (0.5%)

No Isolation 1885 (58.7%) 183 (4.9%) 2 (∼0.0%)

Average Iso. Time (ms) 761 434 202

RMSE Fault Est. Error 0.0383 0.0382 0.0383

e Supervisory system calculates the robot path, comprised of five intermediate

points within S, shown as black squares in Fig. 6.6 and this information, r(k) is passed

to the robot. e mobile robot’s wheel-distance is d = 119.5 (mm). e upper and lower

motor velocities are umax = 100 (mm/s) and umin = 0 (mm/s) respectively. e maxi-

mummotor uncertainty is given as

M =

0.05 0

0 0.05

 .
A motor is subject to partial or total performance degradation, of magnitude α1, α2 ∈

[−1, 0]. e robot controller, the camera system and the FDI-PCmodule operate at a rate

of 100Hz i.e. ∆t = 10 (ms).

In Fig. 6.6, the dashed red line shows themovement of the robot without the proposed

FDI-PC Module. Between the first and second intermediate points, a 60% performance

degradation fault occurs on the right wheel, i.e. α = −0.6. is fault causes the robot to

dri to the right. e controller is constantly trying to correct the bearing between the

robot and the destination but fails to do so since the controller does not take into account

the new dynamics. e solid blue line, demonstrates the same scenario when the robot

is equipped with the FDI-PC Module. As illustrated, the fault is detected and isolated

shortly aer occurring. When the fault is isolated, the estimated magnitude of the fault

is utilized by the Path Correction Module. e controller tries to minimize the bearing

error between the robot and the second intermediate point, however, because of the FDI-

PC, the controller regains control over the robot, and makes the necessary corrections to
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Start
Destination

Fault

Detection

Isolation

Figure 6.6: A small office environment with obstacles. e robot moves from the ‘Start’

location (green square) to the ‘Destination’ location (yellow square), passing by the five

intermediate locations (black squares). e red arrow indicates the location where a

right-wheel fault has occurred. e dashed red line corresponds to the robot movement

without the FDI-PC Module. e blue line corresponds to the robot movement with

the FDI-PC Module activated. e green arrow indicates the location where the fault is

detected and the black arrow the location where the fault is correctly isolated and path

correction is activated.

reach the next intermediate point. Even though the actuator fault is persistent, and affects

the right motor performance for the rest of the operation, the robot is able to navigate as

planned and reach its destination.
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6.3 Monte Carlo localization with a single range sensor

6.3.1 Introduction

Mobile robots use localization to establish their own position and orientation (pose)

within the frame of reference. A commonly used approach for localization is to use

on-board sensors to gather information about the environment. Using this information

along with kinematic and dynamic models, the pose of the robot can be estimated. A

fault causes a sensor to return false information to the controller, having negative effects

on localization causing the pose estimation to deviate. In this event, the is high risk of

collision since the controller navigates the robot using the wrong pose. Having an array

of sensors provides redundancy between the sensors, therefore a good pose estimate can

be maintained if few of the sensors become faulty. In order to improve the pose estimate

in the event of a fault, we can apply fault diagnosis to detect and isolate the faulty sen-

sors and disable them. is will make the estimate more accurate since localization is

performed using information only from healthy sensors. In this work, we consider the

scenario where only one sensor remains healthy. In order to react to this event, we as-

sume that faults were detected and all the faulty sensors were disabled. en we switch

to a localization algorithm appropriate for use with a single sensor.

We use theMonte Carlo Localization algorithm and extend it in order to performwell

using only one sensor. e single sensor limitation is a key difference between the pre-

sented method and others. To the best of our knowledge, other robots use arrays of such

sensors positioned at various angles around the robot. Because the environment infor-

mation received by the robot is extremely limited, existing localization methods cannot

be applied directly. e reason is because any robot carrying one sensor receives one-

dimensional information even though the environment is two-dimensional. In contrast,

a robot carrying more than one sensor is able to receive two-dimensional information.

at is why important challenges are introduced when moving from a multiple sensor

robot to a single sensor robot.

6.3.2 Modeling

Map

e environment representation is created using fixed decomposition. e map is a dis-

crete transformation of the real environment which forms a grid. e transformation
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is necessary for computational and memory purposes but decreases the accuracy of the

world representation which ultimately affects the precision of localization. e choice of

the grid resolution is chosen considering the required precision as well as the size of the

map in terms of memory. e map we used was manually prepared a-priory, using an

top-down design of the environment.

Kinematic Model

Roomba is a differential drive robot supported by a castor wheel on the front. e robot

is circular and the wheel axle is in the middle. e robot’s pose at time t is denoted

by xt = (x, y, θ)⊤, which represents the global reference frame where x and y are the

coordinates, θ is the heading.

e control vector which describes the actions of the robot, is strictly derived from the

odometry which is a widely accepted method. Odometry returns the distance traveled

by each wheel since last time retrieved i.e. between xt−1 and xt and is denoted by Yt =

[Y L, Y R]⊤. Y L and Y R represent odometry of the le and right wheel respectively.

Odometry is used to calculate the movement of the robot between consecutive poses.

To demonstrate, let xt and xt+k be the pose of the robot at time t and t + k respectively.

Assuming that xt and Yt are known, there is not enough information to accurately calcu-

late the final pose xt+k. However, if k is small, xt+k is accurately approximated. erefore,

assuming odometry information is sampled fast enough, the control vector u is derived

using

ut =

s
a

 =

1
2

1
2

1
2

−1
2

Y R
t

Y L
t


where s and a are the distances that cause the robot tomove forward/backward and rotate

right/le respectively, both measured in mm. Positive values of s indicate forward move-

ment while negative indicate backward movement. For a, positive means that the robot

rotated to the le while negative means to the right. Because odometry is not perfect, it

is affected by errors which cause it to dri over time. ese are modeled by zero-mean

random variables with finite variance [104]. erefore the actual control vector is

ût =

ŝ
â

 =

s
a

+

ϵα1|s|+α2|a|

ϵα3|s|+α4|a|


where ϵ is a zero-mean random error, and the subscript defines its variance. Subscripts

α{1,2,3,4} are used to describe the errors affecting the translation and rotation of the robot

generated from its movement.
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e noisy control vector ût is used to define the next position of the robot
xt+1

yt+1

θt+1

 =


xt

yt

θt

+


ŝt cos θt
ŝt sin θt

ât
l

 (6.7)

where l is the distance of the wheel from the center pivot point of the robot. x and y are

in mm while θ is in radians.

Perception Model

To sense the environment, our robot uses an infrared light range sensor. e sensor emits

infrared light and measures the distance of the obstacle using the angle of the arrival of

the reflected light. e response of the sensor with respect to the distance is not linear.

To derive the transformation function, the robot was placed at a known distance from

an obstacle and a large set of measurements were taken. Using the sample set, the real

response of the sensor was approximated using a power function. e sensor can detect

an obstacle in the range of 100mm up to 800mm.

Even though the measurements are reliable, they are also subject to noise and inter-

ference from external light sources. To test this, 10,000 measurement samples were taken

with the sensor placed 400mm in front of an obstacle. e results show two kinds of er-

rors. e first is the measurement error around the true distance. is is modeled using a

narrow, zero-mean Gaussian. e results also show a random error occurring at various

moments. is random error is modeled as a uniform distribution over the entire sensor

measurement range. Including the random errors in the perception model is important

as it injects some dynamic behavior to the algorithm. Even though we assume a static

map, the modest dynamic elements of the model increase the tolerance of the algorithm

to unexpected events.

erefore, the perception model is made out of two probability distributions. phit
represents the probability distribution of reading the correct distance with some added

measurement noise and prand which represents the probability distribution of a random

measurement error occurring. To create the two distributions, information from themap

is required. emap used here, is the same one as in kinematic model. Using the raycast-

ing method, the distance between the robot and the obstacle is measured. e measured

distance is used to form the distributions, which are mixed together by weighted average
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parameters

p(zt|xt,m) =
(
zhit zrand

) phit(zt|xt,m)

prand(zt|xt,m)

 (6.8)

where zt is the measurement at time t, m is the map, and zhit, zrand are the weight pa-

rameters of each distribution. To identify these parameters we used the expectation max-

imization algorithm to calculate the maximum likelihood estimates (similar to [104]).

6.3.3 Localization Algorithm

Markov Localization

Our robotic platform localization algorithm is based on MCL algorithm which uses

Markov Localization. e robot’s pose is tracked with a belief state which is represented

with an arbitrary probability density function. Markov Localization is an iterative proce-

dure that uses the Total Probabilityeorem to predict the belief and Bayes rule to update

this prediction. Prediction is made using the current state (Markov Assumption) of the

robot and the control vector u.

bel(xt) =
∫
p(xt|xt−1, ut−1)bel(xt−1)dxt−1

where bel(xt) is the belief prediction for time t and bel(xt−1) is the belief update from the

previous iteration. e prediction is updated using the sensor measurements

bel(xt) = p(zt|xt)bel(xt)

To simplify the computational complexity of representing the belief, MCL applies the

Sampling Importance Re-sampling method using Particle Filters. e particles represent

a specific robot pose hypothesis which is altered according to the kinematic model (6.7)

and their importance weight is derived from the perception model (6.8). Based on that,

the belief is then re-sampled and the filter converges to the (one or more) possible poses

of the robot. e re-sampling step is particularly important for the performance of the

localization. e accuracy can be improved by increasing the number of the particles by

trading off computational power i.e. more particles give better filter accuracy but require

more computational power. Robots that carry fast processors are able to process several

thousand particles in real time. However, since we are investigating the implementation

of this algorithm on low computational-power robots, we aim to operate the filter with

less than 500 particles.
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Limited Information Localization

As already mentioned, the robot uses a single range sensor. e sensor returns informa-

tion for one dimension only, even though the robot is moving into a two-dimensional

environment. Due to this fact, it becomes increasingly difficult to avoid localization di-

vergence. One option is to employ controlmethods in order tomaximize the information

gathered from the environment with the purpose of achieving better estimation [101].

Another option is that, in the event of divergence, the estimation distribution can be

broadened in an effort to re-approximate the true pose. Divergence can be detected

by examining the history of the localization performance of the robot. As suggested

in [104], localization performance can be approximated by the following probability of

sensor measurements p(.) which in particle filters is approximated by the mean value of

the importance weight

p(zt|z1:t−1, u1:t) = wavg ≈
1

M

M∑
m=1

w
[m]
t (6.9)

whereM is the total number of particles and w[m]
t is the importance weight of particlem

at time t. Using two different smoothing factors afast ≫ aslow > 0, the short (wfast) and

long term (wslow) localization performance is tracked.

wfast = wfast + afastwavg

wslow = wslow + aslowwavg

e two values describe the current situation of the localization. Others, for example

[104], use this factors (highwslow value and lowerwfast) to detect reallocation of the robot

by an external factor (the kidnapped robot problem). In such a case, random particles are

injected to the set in an effort to approximate the new and unknown pose.

In our case however having wslow > wfast occurs oen and does not denote realloca-

tion of the robot and therefore cannot be dealt with random particles injection. e lim-

ited perception information combined with the small number of particles is the reason

this happens. While the robot tries to localize it will sometimes end up with a complex

belief distribution that cannot be represented with the small number of particles being

used. In other words, sometimes there are many possible poses for the robot and the lim-

ited sensing fails to reduce them. From our observations, this is likely to happen when

the robot is traveling in a straight corridor, where not obstacles exist. During this time,

the long term confidence of localization performance (wslow) would rise but in reality the
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robot could be positioned nearby. As soon as it reaches an obstacle and takes a measure-

ment, the short term confidence will drop much faster than the long term and therefore

reaching the wslow > wfast situation.

As soon as the localization performance drops, the robot will initiate the new particle

injection. e new particles are drawn from aGaussian probability distribution function,

whose variance is inverse proportional to wslow

xnew ∼ N (xt,
(

β1

wslow

β2

wslow

β3

wslow

)⊤
)

where β1, β2, β3 are the constants set a-priory. We used β1 = 400, β2 = 400, β3 = 10

for our experiments. e intuition of parameterizing the variance of the distribution, is

to adjust the distribution according to the localization performance. As explained, it is

likely that the true pose is close by, therefore the first newly created particles should be

placed near. If the localization continues to fail, it will cause the wslow to keep falling

and therefore push the next particles farther away. Injecting the particles this way, also

increases the tolerance of the algorithm in unexpected events. Using this method, the

robot is able recover from a temporary interference using themethod described as shown

later in the results.

6.3.4 Experimental Results and Discussion

e robot’s environment covers an area of 2700mm×1700mm with obstacles forming

the layout. e grid cell size is 100mm×100mm. e robot is tracked using a camera

through a special marker placed on top of the chassis. is system provides the ground

truth data required for performance evaluation of the localization method under testing.

It is important to note that the camera data is used for post-processing the results and

performance evaluation. Data from the camera is never transmitted to the robot.

Next, a series of two experiments is used to evaluate the performance of the described

localization method. e experiments were conducted using the experimentation plat-

form presented in this thesis.

Point to point Navigation

During this experiment, the robot starts its course from point A. It is then driven to point

B and finally to point C.e initial position at point A is not known exactly, therefore the
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robot is placed at xinitial given by

xinitial ∼ N (xA,
(
100 100 0.1

)⊤
)

where xA is the pose of the robot at when placed at point A with θ = 0.

e initial uncertainty causes the particles to scatter in the state space nearby point A.

Because of the low number of particles used in our approach, the initial particle scattering

could prolong the divergence of the filter if not treated early on. One way to accelerate the

estimation of the initial approximation, is to greatly increase the number of particles thus

the accuracy of the filter, before reducing it again to normal levels. An implementation of

this is shown in [3] and [17] where several thousands particles were used to successfully

approximate the initial pose. is however, is not a suitable solution in our approach,

since the number of particles has to be kept at minimum levels. Alternatively, the robot

is programmed to pivot two complete circles before moving forward in an effort to use

the sensor readings from the obstacles to improve the pose approximation.

To observe the effect of particle number on the localization performance, the same

route was repeated, each time with different number of particles. Figure 6.7 shows the

results using 200 particles. e blue line is the true path the robot followed, while the red

line is the route given by the localization algorithm. e bottom graph shows the error

which is the distance between the true and estimated pose. Figure 6.8 show the results

using 400 particles.

Navigation with interference

Even though we are assuming a static environment we are interested to observe the tol-

erance of our localization method to a short random interference. We introduce this

interference to the sensor measurements by altering the values. In section 6.3.2 we de-

scribed that the perception model covers a small dynamic behavior of the environment.

Furthermore, we improved the dynamic tolerance through adjustment of afast and aslow
as described in section 6.3.3.

Figures 6.9 and 6.10 show the robot driven at the same route as before. At the point

D, the intentional interference is introduced. In the first case (figure 6.9) this interference

is short, lasting about 2 seconds. Such interference can occur when a human walks in

front of the robot unexpectedly. is gives an idea how the robot’s perception of its pose

is affected when it is operating in a static environment, like an office where the furniture
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Figure 6.7: Localization results using 200 particles

layout remains the same, including however, some dynamic elements like the humans

working there and walking around.

In the second case shown in figure 6.10, the interference is introduced at the same

point but it lasts much longer. e purpose of this experiment is to observe the localiza-

tion performance when the robot’s sensor interference is more persistent. In such sce-

nario, its likely that the pose distribution will diverge. As a result, one or more estimated

poses exist which do not correspond to the true pose. erefore, the robot was intention-

ally forced to lose track of its position, in an effort to observe the recovery capabilities of

our algorithm and whether is able to return to its original pose estimation.

Discussion

Comparison of the estimated and true trajectories, shows that localization is accurate

within 15cm in most cases. Results show that our robot works well with as low as 400

particles. e level of accuracy required is, of course, application dependent.

Equally important to the good performance, the results also reveal the weaknesses of

the method. e fact that a conservative sensory equipment is used, makes the robot

prone to localization errors. One major issue is the lack of feedback measurements. is
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Figure 6.8: Localization results using 400 particles

happens when the robot travels along a path, that does not contain any objects within

the range of the sensor. Even though a measurement indicating the absence of an obsta-

cle is useful information, sometimes it is not enough to decrease the pose uncertainty to

desired levels. To describe the same event in terms of MCL terminology, the weight dis-

tribution of particles is uniform therefore the variance of the resulting pose distribution is

not decreased. An even worse scenario is when the particles’ uniformweight distribution

causes the pose distribution variance to increase even more and cause filter divergence.

e described scenario can be witnessed from the exhibited results. e le part

(when the robot leaves the charging station area and travels upwards) of figure 6.7, shows

the true and estimated trajectories being side by side. is was caused by a small heading

error at point A.While the robot is traveling upwards, the top wall is too far to be seen by

the sensor and therefore the reading is absence of obstacles. Even though this information

is correct, is not enough to increase the weight of the correct particles and therefore shi

the estimated pose closer to the true pose. However, we have shown that despite this

issue, the robot is able correct the error and converge on the true pose later on.

Another important outcome, is the level of robustness of the algorithm. Even though

theoretically the robot should operate in a totally static environment, figures 6.9 and 6.10
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Figure 6.9: Short Interference

show that the algorithm can sustain some dynamic interference. Results show that the

short-term interference did not cause any major divergence to the filter. is did not

come as a surprise, as the robot was designed to dampen the significance of sensor mea-

surements have on particles’ weights. is dampening was exceeded in the long-term

interference experiment. e robot was intentionally forced to converge to a false pose,

in an effort to study its ability to re-approximate the correct pose. As shown in figure

6.10 the interference causes the robot to shi the approximation to a pose located around

280mm away from the true pose. Despite this, the robot does not diverge any further

neither jumps to a completely irrelevant pose, something that could have happened if

global localization was initiated. Instead it gradually minimizes the error and manages

to re-approximate the correct pose. It is important to note that the true pose information

from the camera was completely unknown by the robot in all experiments.

6.4 Concluding Remarks

In this chapter we presented two methods that can be applied aer a fault is detected,

in order to allow a robot to remain operational. In the first part we presented the Fault
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Figure 6.10: Long Interference

Detection, Isolation and Path Correction Module for a differential-drive mobile service

robots. e results demonstrate that, in the event of an actuator fault, a robot equipped

with the FDI-PC module is able to continue its operation and even reach its goals before

being physically repaired. e module can be an external device that connects to the ex-

isting robot hardware and does not require any reprogramming of the robot controller.

e simulation results show that the isolation success is lower when the fault magnitude

is small, since the error introduced by the fault is hidden in the uncertainty error. In addi-

tion, analysis of the simulation results has shown that the symmetry of the le and right-

wheel fault structure reduces the correct fault isolation rate. Information from isolation

and identification is used to achieve path correction. Based on the controller signals, the

module is able to generate new actuator signals that allow the controller to remain in con-

trol of the robot. is was demonstrated in simulation where a mobile robot equipped

with the FDI-PC module, suffered a fault and it was able to reach its destination. is

work was published and presented in a peer-reviewed conference [97].

In the second part, we present a Monte Carlo Localization approach that uses a single

infra-red range sensor. We considered the case when due to failure only one range sensor

remains healthy. In order to react to this event, we assumed that faults were detected and
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all the faulty sensorswere disabled. enwe switch to the presented localization approach

which is appropriate for a single sensor. e results show that the robot can maintain

an estimate of its pose within 15cm on average using 400 particles. e estimation is

maintained even with short interferences on the sensor. Longer interferences cause the

estimation to deviate but aer some iterations, the estimation converges back to the true

pose. e work was published and presented in a peer-reviewed conference [98].
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Chapter 7

Conclusions

e vision for service robots is to improve human quality of life by replacing humans in

dangerous, difficult and repetitive tasks. Early generations of service robots have proved

that humans and robots can coexist in the same environment. Technological advance-

ments are pushing the boundaries of hardware and soware leading to bigger, faster and

more complex robots that are more capable than ever. is raises challenges that need to

be addressed before the seamless integration of service robots into diverse environments.

With regards to the challenge of coordination, we have presented a method that al-

lows a group of robots to transport a set of containers from the storage to the loading

area. Coordination is essential in this application to prevent any deadlocks and collisions

between the robots in order to minimize the cost and associated risks. Related methods

in the literature are not applicable for the specific topology of this problem because of

limited space, lack of alternative paths, and unconventional structure of the robots. We

formulated the problem as such to reflect the topology of the warehouse and the problem

was solved optimally. Since service robots are expected to operate in dynamic environ-

ments, an unexpected event may occur that will require re-computation of the solution.

erefore, to ensure the reliability of the robot group, we developed a low-complexity

algorithm that performs in real-time and provides near optimal solution.

With regards to the Fault Diagnosis challenge, we presented fault detection methods

for actuator faults on differential-drive mobile robots. e first method uses odometry

sensors to maintain an estimate of the speed, based on which faults are detected. We

consider this method to be more general, because odometry sensors are a commonly in-

stalled sensor on mobile robots. By considering several uncertainty sources, the adaptive

thresholds are used to detect faults occurring on the le and right wheels of the robot.
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By tracking the control and sensor signals as well as the fault magnitude, the algorithm

classifies the fault between three different fault types. is method was tested on a real

service robot, using the experimentation platform we developed for the specific robot.

Sometimes, faults of small magnitude are not detected because they are indistinguish-

able from the uncertainty. A new detection scheme was introduced, and addresses this

issue by increasing detection sensitivity using multiple thresholds. It differentiates from

other residual-based methods because it combines the estimation error magnitude with

the temporal behavior of a warning signal for detecting faults. It yields improved results

when compared to a conservative worst-case threshold method.

When the robot becomes aware of the occurrence of a fault, it can react in order to

mitigate the effects of the fault and continue its operation if possible. We developed the

‘Fault Detection, Isolation and Path Correction Module’, which is able to detect actuator

faults using an external camera. Aer detection, the module isolates and identifies the

magnitude of the fault. Based on this information and the controller signals, the module

generates new actuator signals that allow the robot to maintain its path. We also con-

sidered the scenario in which a robot detects and disables faulty sensors, in an effort to

maintain localization. Under this scenario, the robot is le with only one healthy sen-

sor and switches to a localization algorithm suitable for this case. We presented a Monte

Carlo Localization based approach, that works with a single infra-red range sensor. Ex-

perimental results on a real system showed that the robot is able to maintain a good pose

estimate given enough particles, even under short sensor interferences.

An experimentation platform was designed and implemented for validating algo-

rithms on a real robot. Accompanied soware was also developed for controlling of the

robot’s actuators and reading the sensors. e platform offers direct, remote or hybrid

control; in direct control the algorithms run directly on the hardware, while in remote

control the robot acts as hardware in the loop, with the main algorithm running on the

workstation.

7.1 Remarks for Applications

e methods presented in this thesis could be applied on real robots assisting towards

the realization of the service robot vision. In the context of coordination, the method

presented could act as mid-level planning tool, in a robot-equipped warehouse that uses

the relevant topology. e operator of the warehouse would request a set of specific con-
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tainers that need to be transported on the loading station. At this point, the algorithm

will use the current positions of the robots to assign containers and issue a coordination

plan, which will be sent to the robots. is requires a navigation controller that will be

able to transform the plan into actuator movement. e plan defines the location and

time the robot needs to be; the navigation controller should be able to move the robot to

that location on time, of course within some margins. ere should also be a monitoring

algorithm that tracks the location of every robot. If the state of the system deviates from

the plan, then the coordination algorithm should issue and transmit an updated plan.

With respect to actuator fault detection, the presented algorithms could serve as a

starting point towards providing fault tolerant service robots. First, the robot manufac-

turer should have a good model for the behavior of the robot. For the methods that

require uncertainty bounds, the manufacturer should identify possible sources of un-

certainty and their bounds, and define their values in the algorithm. For the methods

that require training, the manufacturer should include the necessary interface to allow

the user to initiate the training procedure. To ensure long-term operation of the algo-

rithm, changes in the robot dynamics should be taken into account because with time,

robot components wear out. We identify this as the next important challenge that is
mostly overlooked in literature and needs to be addressed for realizing fault detection on

mainstream service robots. One approach to address this with the presented methods, is

through training, even though it would require running the training procedure oen to

ensure that any changes in the dynamics are included in the model.

7.2 Future Work

With respect to the container loading problem, the heuristic approach was shown to per-

form optimally 40% of the time in random initial conditions. By studying the initial

conditions of the problem scenarios that led to the optimal solution, it could shed light

on container arrangement patterns under which the heuristic algorithm performs best.

Identification of such patternsmay ultimately improve the production of the facility, since

these patterns could be exploited in order to arrange the containers in the first place. One

possible implementation of this, is an algorithm that indicates the storage location of the

containers during the initial arrangement of containers, with respect to their loading pri-

ority; containers with higher priorities would need to be loaded first, while lower priority

containers could be loaded last. Such algorithm could lead to a facility that steadily op-
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erates optimally through the sole use of the the heuristic algorithm.

Part of our work was dedicated to provide robots with fault detection capabilities in

realistic conditions with respect to uncertainties. To accomplish this we used sensor feed-

back tomeasure the robot state, andwe assumed that thosemeasurementswere true (with

added uncertainty of course). It is possible however, that sensors could also experience

faults and this critically affects the fault detection performancewith increased false alarms

and/ormissed alarms. To successfully detect sensor faults, it requires to have redundancy

between the measurements. However, redundant information is not always available. In

this case, it would be interesting to generate information redundancy through the use of

additional robots. Should a robot suffer a failure, it can send a distress signal to other

robots and they could provide their measurements with respect to the robot under ques-

tion and reach a consensus whether a failure has occurred or not. is collaborative

method of fault detection would benefit future applications that involve multiple robots.

In order to detect a fault, the robot requires the knowledge of the nominal behavior

to compare against. In the context of robotics, this nominal behavior is usually described

by a model that was designed based on specifications or was estimated through learning

or a combination of the two. In themajority of existing work, experiments are performed

within a well controlled environment over a short period of time, while in reality a robot

could potentially operate for years. roughout its lifetime, robot’s hardware degrades

and therefore the nominal behavior deviates from the initial one. Due to this, at some

point the robot will detect faults which are actually caused by normal degradation of its

hardware. Even with adaptive models, it will be challenging to distinguish between a

subtle fault and hardware degradation and in such case it would be possible to adapt to a

faulty behavior rather than report it. To the best of our knowledge, such problem has not

been addressed yet.
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Appendix A

Experimentation Platform

A.1 Introduction

When possible, experimental validation is an important part of research because it allows

the researcher to evaluate the performance of the developed methods in realistic condi-

tions. A wide range of robotic research equipment is available and comes in many forms.

For our work, we were particularly interested in investigating algorithms around service

robots and for this reason, the iRobot Roomba was an ideal choice. Roomba is a low

cost differential-drive robot equipped with floor cleaning hardware. It is able to move

and rotate at place, it has an array of short-range distance sensors at the front in order to

detect obstacles and avoid crashing on them. e developers provide a communication

port which is located at the top of the robot which allows full control of the robot. e

communication protocol is well documented and provides the necessary information to

send and receive data to/from the robot.

ere are several reasons why this platform was valuable for our work:

• Experimental validation of the developed methods. Running algorithms on a

real robot, gives a deep insight on the challenges introduced by real life conditions

providing valuable feedback. An algorithm working correctly on the experimental

robot is likely to be suitable for use on a commercial robot.

• Hardware in the loopis feature allows fast testing and debugging of algorithms

on the experimental robot. Developing algorithms in high level languages sup-

ported by a workstation is commonly more fast and efficient that developing for

hardware directly. erefore, algorithms concerning the feedback and control of

the robot are developed and run on a workstation but the control and sensor sig-
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nals are sent and received from the experimental robot. Furthermore, the debug-

ging features offered by the soware environment make it efficient to monitor the

whole operation.

• Telemetry All data available from the communication protocol, can be retrieved

and sent back to the workstation. is data can be processed and visualized, pro-

viding important information about the behavior of the robot and how well the

testing algorithm performs. Furthermore, valuable datasets can be acquired.

• Fault injection Having the controller of the robot running on the workstation, al-

lows the real-time soware manipulation of signals. is is useful when we need to

inject a fault in the system because the signals are altered based on fault model.

• Hardware extension is feature allow the extension of the robot capabilities by

providing a way to interface additional hardware which becomes part of the robot.

By implementing the required drivers, a wide range of sensors and actuators can be

added to the robot.

A.2 Platform Description

e platform is composed of the hardware and soware parts. A hardware module in-

stalled on the robot provides a remote processing unit with a wireless link to a worksta-

tion. e module was designed to use off-the-shelf electronic components of low cost,

in order to make the platform easy to reproduce by other researchers. At the heart of the

hardware module is a dsPIC30F4011 microcontroller by Microchip. e specific micro-

contoller offers up to 30 MIPs, a fast ADC module which is useful for interfacing analog

sensors and a double serial module which is used for communications, among other fea-

tures. e microcontroller is interfaced to the robot through the interface port which is

a 7-pin mini-DIN socket, located on the top of the robot on the right side. e port

provides unregulated 12V power as well as serial input and output. Communication

is established using the serial module of the microcontroller. e platform communi-

cates wirelessly with a workstation through the second serial port of the microcontroller.

Wireless communication is established through a link between two XBee modules pro-

grammed to work in serial mode. In this mode, the XBee pair acts as a bridge between

the computer and the microcontroller; they communicate using the standard serial pro-

tocol and the wireless part (handshake, packet acknowledgement etc.) are handled by the
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XBee modules. e power provided by the robot is passed through a switching regula-

tor to step it down 3.3V which is required for the microcontroller and the XBee module.

Figures A.1 and A.2 show the platform installed on the robot. is configuration is used

to provide two modes of operation:

7-pin mini-DIN

dsPIC30F4011

3.3v switching reg.

PIC programmer

Wireless adapter

Figure A.1: e main components of the hardware module.

Direct Control: In this mode, the robot is fully controlled by the microcontroller.

Necessary firmware is implemented in order to allow driving the actuators of the robot

and read measurements off sensors. Important data can be transmitted back to the com-

puter for monitoring and further processing.

Remote Control: e control algorithm is developed and executed on a workstation.

Control signals are composed on the computer and sent to the platform wirelessly. Af-

ter receiving the data, the microcontrller passes it unaltered to the robot, working as a

repeater. Similarly, data coming from the robot sensors are transmitted from the robot

to the microcontroller which sends them unaltered to the computer. In this mode, the

robot just becomes an extension of the computer programming environment.

In some cases a hybrid mode is also useful, where different algorithms run on the

computer and the microcontroller. More specific, we developed an abstraction layer on

themicrocontroller to handle tasks (for example, driving themotors) which can be called

from the computer soware. is is particularly useful when time-critical tasks (fast

polling of a sensor input) is required.

In order to control and monitor the robot, it was necessary to develop libraries both
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 (a) (b)

Figure A.2: (a) e hardware board layout. (b) e populated board installed on the

robot.

on the workstation and on the hardware module. e main scripting language used to

produce the results presented in thisesis wasMATLAB byMathWorks. We developed

a MATLAB library that provides full control of the robot within the MATLAB environ-

ment based on the ’iRobot Roomba Open Interface Specification’ document provided by

themanufacturers of the robot. e document defines the byte structure necessary to run

specific instructions on the robot. Apart from the low-level commands, the library offers

the ability to implement high-level commands that make more efficient the algorithm

development. We should clarify that the soware part of the platform is not necessary to

exist within MATLAB. We have already ported some of the libraries to Python. In fact, a

Python applicationwith graphical interface was developed that assisted in collecting large

datasets used in this work. Furthermore, the application is used to control and monitor

the robot through graphs.

An overview of the platform’s components and modes of operation are illustrated in

Fig.A.3.
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Figure A.3: High-level diagram of the platform. e robot can be controlled and mon-

itored wirelessly using the developed MATLAB libraries within the development envi-

ronment. In direct mode, algorithms can be loaded and executed directly on the micro-

controller while in remote mode, the robot is fully controlled using the libraries, acting

as hardware in the loop.
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Appendix B

Mathematical Proofs

B.1 Proof of Lemma 6

For case (i), the best case scenario for Strategy 2 occurs when tek > txi + T g requiring

we = [0, 0]⊤ and wx = [0, 0]⊤ leading to the solution for Strategy 2, Λ2 = tek + 2tvk.

For the same conditions, the worst case scenario for Strategy 1 occurs when (tei + T g <

tek) ∧ (txk + T g > txi ) which requires we = [0, 0]⊤ and wx = [txk − txi + T g, 0]⊤, giving the

solution Λ1 = tek + 2tvk + T g. Strategy 2 performs better by Λ1 − Λ2 = T g.

For case (ii), Strategy 2 solution is non-conditional therefore it always requires we =

[0, txi − tek + T g]⊤ and wx = [0, 0]⊤, leading to the solution Λ2 = tei + 2tvi + 2tvk + T g.

Similarly to lemma 6, the worst case scenario for Strategy 1 in case (ii) gives the solution

Λ1 = tei + 2tvk + 2T g. Strategy 2 performs better by Λ1 − Λ2 = T g − 2tvi .

B.2 Proof of Lemma 7

For case (i), Strategy 3 solution is non-conditional therefore it always requireswe = [txk −

tei + T g, 0]⊤ and wx = [0, 0]⊤, leading to the solution Λ3 = tek +2tvk +2tvi + T g. e worst

case scenario for Strategy 1 occurs when (tei + T g > tek) ∧ (txk + T g > txi ) which requires

we = [0, tei − tek +T
g]⊤ andwx = [txk − txi +T

g, 0]⊤ giving the solution Λ1 = tei +2tvk +T
g.

Strategy 3 performs better by Λ1−Λ3 = tei − tek−2tvi +T
g. From the definition of case (i)

we know that tek > tei therefore Λ1 − Λ3 < T g − 2tvi .

For case (ii), best case scenario for Strategy 3 occurs when tei > txk + T g requiring

we = [0, 0]⊤ and wx = [0, 0]⊤ leading to the solution Λ3 = tei + 2tvi . For the same

conditions, worst case scenario for Strategy 1 occurs when txk + we
k + T g > txi which
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requires we = [0, tei − tek + T g]⊤ and wx = [2txk − 2tvi + 2T g]⊤ giving the solution Λ1 =

tei + 2tvk + 2T g. Strategy 3 performs better by Λ1 − Λ3 = 2tvk − 2tvi + 2T g. From the

definition of case (ii) tvi > tvk therefore Λ1 − Λ3 < 2T g.

B.3 Proof of Lemma 8

For case (i), best case scenario for Strategy 1 occurs when (tei + T g < tek)∧ (txk + T g < txi )

requiringwe = [0, 0]⊤ andwx = [0, 0]⊤ leading to the solutionΛ1 = tei+2tvi . For the same

conditions, worst case scenario for Strategy 2 occurs when tek < txi + T g which requires

we = [0, txi − tek + T g]⊤, giving the solution Λ2 = tei +2tvi +2tvk + T g. Strategy 1 performs

better by Λ2 − Λ1 = 2tvk + T g.

For case (ii), best case scenario for Strategy 1 occurs when txk+we
k+T

g < txi requiring

we = [0, tei − tek + T g]⊤ and wx = [0, 0]⊤ leading to the solution Λ1 = tei + 2tvi . Also,

from lemma 6 we know that the solution for Strategy 2 is non-conditional and is Λ2 =

tei + 2tvi + 2tvk + T g. erefore, Strategy 1 solution is better by Λ2 − Λ1 = 2tvk + T g.

B.4 Proof of Lemma 9

For case (i), we know from lemma 8 that best case scenario solution for Strategy 1 is

Λ1 = tei + 2tvi . Also, from lemma 7 we know that the solution for Strategy 3 is non-

conditional and is Λ3 = tek + 2tvk + 2tvi + T g. erefore, Strategy 1 performs better by

Λ3 − Λ1 = tek − tei + 2tvk + T g which is always positive because of the condition tei < tek.

For case (ii) from lemma 8 we know that best case scenario solution for Strategy 1 is

Λ1 = tei + 2tvi . For the same conditions, worst case scenario for Strategy 3 occurs when

tei < txk + T g which requires we = [txk − tei + T g, 0]⊤ and wx = [0, 0]⊤ giving the solution

Λ3 = tek + 2tvk + 2tvi + T g. Strategy 1 performs better by Λ3 − Λ1 = tek − tei + 2tvk + T g

which is a always positive because of the condition tei < txk + T g.

B.5 Proof of Lemma 11

Let us define t̂ei,m = tei +
∑m

τ=1w
e
i,τ and t̂xi,m = t̂ei,m + 2tvi +

∑m
τ=1w

x
i,τ , where we

i,τ and wx
i,τ

are the entrance and exit waiting time of ATW i in step τ of the algorithm, respectively.

Note that them-th external for-loop iteration of the Shi and Extend operations are the

m-th and (N +m)-th step of the algorithm, respectively.
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Algorithm 1 is comprised of the Shi and Extend operations. e Shi operation

examines ATWs in descending tvi value order; assuming that ATW i is examined during

the m-th iteration of the Shi operation, other ATWs belonging to the set j ∈ Ci are

appropriately shied (we
j,m ≥ 0 and wx

j,m = 0) to ensure that t̂ei,m ≤ t̂ej,m − T g, j ∈ Ci and

tvi > tvj . is condition is ensured by appropriately shiing ATW j by

we
j,m = max(0, t̂ei,m−1 − t̂ej,m−1 + T g). (B.1)

To show that the total cost increase for this ATW pair is bounded by T g, it suffices to

prove that

t̂xj,m −max(t̂xi,m−1, t̂xj,m−1) ≤ T g. (B.2)

In the case that t̂xi,m−1 > t̂xj,m−1, condition (B.2) can be written as t̂ej,m + 2tvj − t̂ei,m−1 −

2tvi ≤ T g. Aer substituting t̂ej,m = t̂ej,m−1 + we
j,m the equation is t̂ej,m−1 + 2tvj +

max(0, t̂ei,m−1− t̂ej,m−1+T
g)− t̂ei,m−1− 2tvi ≤ T g which is always true because tvj − tvi < 0.

In the case that t̂xi,m−1 < t̂xj,m−1, condition (B.2) can be written as t̂xj,m − t̂xj,m−1 =

we
j,m ≤ T g. By substituting t̂eκ,m−1 = t̂xκ,m−1 − 2tvκ, κ = {i, j}, into (B.1) yields

max
(
0, t̂xi,m−1 − t̂xj,m−1 + 2(tvj − tvi ) + T g

)
≤ T g, which is true because t̂xi,m−1− t̂xj,m−1 < 0

and 2(tvj − tvi ) < 0.

e Extend operation examines ATWs in ascending tvi value order; assuming that

ATW i is examined during them-th iteration of the Extend operation, i.e. step n = N+m

of the algorithm, other ATWs belonging to the set j ∈ Ci are appropriately extended

(wx
j,n > 0 and we

j,n = 0) to ensure that t̂xi,n ≥ t̂xj,n + T g, j ∈ Ci and tvi > tvj . is condition

is ensured by appropriately shiing ATW j by

wx
i,n = max(0, t̂xi,n−1 − t̂xj,n−1 + T g). (B.3)

To show that the total cost increase for this ATW pair is bounded by T g, it suffices to

prove that

t̂xi,n −max(t̂xi,n−1, t̂xj,n−1) ≤ T g. (B.4)

In the case that t̂xi,n−1 > t̂xj,n−1, condition (B.4) can be written as t̂xi,n − t̂xi,n−1 = wx
i,n ≤ T g;

this is equivalent to max(0, t̂xj,n−1 − t̂xi,n−1 + T g) ≤ T g which is true because t̂xj,n−1 −

t̂xi,n−1 < 0. In the case that t̂xi,n−1 < t̂xj,n−1, condition (B.4) can be written as t̂xi,n−1 − t̂xj,n +

max(0, t̂xj,n−1 − t̂xi,n−1 + T g) ≤ T g which is true because t̂xi,n−1 < t̂xj,n = t̂xj,n−1.

e algorithm needs 2N steps in order to complete. erefore, we proved that fh
C ≤

2NT g.
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