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ABSTRACT

of the dissertation of
Michalis P. Michaelides,
for the Doctor of Philosophy degree in Electrical Engineering
Title: Distributed Event Detection and Localization in Wireless Sensor Networks
Supervisor: Dr. Christos G. Panayiotou

This dissertation focuses on distributed event detection and localization in Wireless Sensor
Networks (WSNs). Sensor nodes are usually small, simple and cheap devices, each equipped
with a processor, radio transceiver and sensing probe, and powered by a battery. A WSN
consists of a large number of such nodes that form an ad-hoc network in order to deliver
the sensed data to the user. One of the common applications envisioned for WSNs is that of
monitoring a large region for the presence of an event source that releases a certain signal or
substance in the environment. The main objective of this dissertation is to detect and localize
the event from the spatially distributed information provided by the sensor nodes in a simple,
localized and fault tolerant manner. For the problem of distributed detection this dissertation
proposes and analyzes two novel detection algorithms: the Covariance Detector (CD) and
the Enhanced Covariance Detector (ECD) that exploit the spatial correlation between the
measurements of sensor nodes in close proximity in order to improve the overall coverage of
the sensor network. For the problem of distributed localization this dissertation proposes and
analyzes two new algorithms: the SNAP (Subtract on Negative Add on Positive) algorithm
and the Fault Tolerant Maximum Likelihood (FTML) algorithm. Both algorithms feature
accuracy and robustness with respect to faults in the sensor network. In addition, SNAP has
desirable properties such as low computational complexity and distributed implementation
capability.
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ΠΕΡΙΛΗΨΗ 
 
Αυτή η διατριβή επικεντρώνεται στην κατανεμημένη ανίχνευση και εντοπισμό της 

εστίας ενός συμβάντος σε Ασύρματα Δίκτυα Αισθητήρων (ΑΔΑ).  Οι κόμβοι 

αισθητήρες είναι συνήθως μικρές σε μέγεθος, απλές και φτηνές συσκευές, η κάθε μια 

εφοδιασμένη με επεξεργαστή, πομποδέκτη ραδιοκυμάτων, αισθητήρες, και αντλεί 

ενέργεια από μια μπαταρία. Ένα ΑΔΑ αποτελείται από ένα μεγάλο αριθμό τέτοιων 

κόμβων που σχηματίζουν ένα ad-hoc δίκτυο για την μετάδοση των μετρήσεων των 

αισθητήρων στο χρήστη. Μια από τις πιο διαδεδομένες εφαρμογές για ΑΔΑ είναι η 

παρακολούθηση μιας μεγάλης περιοχής για την ανίχνευση της εστίας ενός συμβάντος 

που απελευθερώνει κάποιας μορφής σήματος ή ουσίας στο περιβάλλον. Ο κύριος 

στόχος αυτής της διατριβής είναι να ανιχνεύσει και να εντοπίσει την εστία από τις 

κατανεμημένες στο χώρο πληροφορίες που συλλέγονται από τους κόμβους 

αισθητήρες με ένα τρόπο απλό, τοπικό και ανεκτικό σε σφάλματα.  Για το πρόβλημα 

της κατανεμημένης ανίχνευσης αυτή η διατριβή προτείνει και αναλύει δύο 

καινούργιους αλγόριθμους: τον Covariance Detector (CD) και τον Enhanced 

Covariance Detector (ECD) οι οποίοι εκμεταλλεύονται τη συσχέτιση στο χώρο 

μεταξύ των μετρήσεων γειτονικών κόμβων αισθητήρων για να βελτιώσουν την 

συνολική κάλυψη του χώρου από το δίκτυο.  Για το πρόβλημα του κατανεμημένου 

εντοπισμού αυτή η διατριβή προτείνει και αναλύει δύο καινούργιους αλγόριθμους: 

τον SNAP (Subtract on Negative Add on Positive) και τον Fault Tolerant Maximum 

Likelihood (FTML).  Και οι δύο αλγόριθμοι παρουσιάζουν ακρίβεια και ευρωστία σε 

σφάλματα μέσα στο δίκτυο αισθητήρων. Επιπρόσθετα, ο SNAP παρουσιάζει  

επιθυμητά χαρακτηριστικά όπως χαμηλή υπολογιστική πολυπλοκότητα και 

δυνατότητα κατανεμημένης εφαρμογής. 

iv 

Mich
ali

s P
. M

ich
ae

lid
es



ACKNOWLEDGMENTS

The road to academic excellence is not an easy road paved with rose petals, it is more of
a roller coaster ride with ups and downs, unexpected turns and obstacles, that hopefully
in the end reaches a higher level of learning, self-awareness and personal fulfilment. This
dissertation is the result of such a five year journey and this section provides me with an
opportunity to acknowledge all the people that have made it possible.

First and foremost, I would like to thank my academic advisor Dr Christos Panayiotou, for his
guidance and support throughout these years, for always believing in me even at times when
I found it hard to believe in myself, for influencing my decision (and making it possible) to
pursue my dreams in academia, for being a good friend!

Furthermore, I would like to extend my gratitude to the members of my PhD committee,
Professor Marios Polycarpou, Professor Christoforos Hadjicostis, Professor Andreas Pitsil-
lides and Professor Cesare Alippi (Politechnico di Milano, Italy) for their time and effort and
their valuable comments for improving this dissertation. Also, I would like to thank all the
faculty, administrative staff, fellow colleagues and friends at the University of Cyprus.

Special thanks go to my family for their unconditional love, for showing patience during
those days that research seemed like my only priority, for keeping me focused on my goals
and what is truly important in life.

Michalis Michaelides

I gratefully acknowledge the grants that supported my research at UCY. This work is partly
supported by the Cyprus Research Promotion Foundation under contracts ΠΛHPO/1104/10
and EPY∆I/0105/01.

v

Mich
ali

s P
. M

ich
ae

lid
es



Mich
ali

s P
. M

ich
ae

lid
es



CONTENTS

Abstract . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . iii

Acknowledgments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . v

1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.1 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

1.2 Main Contributions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

1.3 Organization of the Dissertation . . . . . . . . . . . . . . . . . . . . . . . 5

2 Literature Review . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

2.1 Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

2.2 Distributed Detection . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

2.3 Coverage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

2.4 Spatial Correlation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

2.5 Distributed Localization . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

2.6 Binary Estimators . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

2.7 Fault Tolerance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

2.8 Target Tracking . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

2.9 Plume Tracking . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

3 Event Source Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

vii

Mich
ali

s P
. M

ich
ae

lid
es



3.1 Basic signal propagation model . . . . . . . . . . . . . . . . . . . . . . . 22

3.2 Stochastic signal model with spatial correlation . . . . . . . . . . . . . . 23

3.3 Directed signal propagation model . . . . . . . . . . . . . . . . . . . . . 25

4 Threshold Optimization for Event Detection . . . . . . . . . . . . . . . . . 27

4.1 Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

4.2 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

4.3 Problem Formulation . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

4.4 Analytical Evaluation of Threshold . . . . . . . . . . . . . . . . . . . . . 30

4.5 Simulation Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

4.6 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

5 Improved Coverage by Exploiting Spatial Correlation
Part I: The Two Sensor Case . . . . . . . . . . . . . . . . . . . . . . . . . . 39

5.1 Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

5.2 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

5.3 Collaborative Pairwise Detection Schemes . . . . . . . . . . . . . . . . . 41

5.4 Coverage Area Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . 46

5.5 Simulation Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50

5.6 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54

6 Improved Coverage by Exploiting Spatial Correlation
Part II: The Network Case . . . . . . . . . . . . . . . . . . . . . . . . . . . 57

6.1 Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57

6.2 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58

6.3 Detection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59

viii

Mich
ali

s P
. M

ich
ae

lid
es



6.4 Simulation Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65

6.5 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71

A Proof of Lemma 6.3.2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73

B Proof of Lemma 6.3.3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74

C Proof of Lemma 6.3.4 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74

7 Event Localization using Nonlinear Least Squares . . . . . . . . . . . . . . 77

7.1 Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77

7.2 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77

7.3 Nonlinear Least Squares Optimization . . . . . . . . . . . . . . . . . . . 78

7.4 Uniform Propagation Simulation Results . . . . . . . . . . . . . . . . . . 80

7.5 Directed Propagation Simulation Results . . . . . . . . . . . . . . . . . . 84

7.6 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89

A Proof of Lemma 7.3.1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89

8 The SNAP Algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91

8.1 Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91

8.2 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91

8.3 Definitions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93

8.4 SNAP (Subtract on Negative Add on Positive) Algorithm . . . . . . . . . 95

8.5 SNAP: A Maximum Likelihood Estimator . . . . . . . . . . . . . . . . . 97

8.6 SNAP Variants . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101

8.7 Distributed Subtract on Negative Add on Positive Algorithm (dSNAP) . . 103

8.8 Simulation Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 106

ix

Mich
ali

s P
. M

ich
ae

lid
es



8.9 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 113

A Proof of Lemma 8.4.1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 113

9 Fault Tolerant Maximum Likelihood Event Localization . . . . . . . . . . . 117

9.1 Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 117

9.2 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 118

9.3 Fault Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 119

9.4 Fault Tolerance of Binary Estimators . . . . . . . . . . . . . . . . . . . . 120

9.5 Simulation Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 125

9.6 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 132

10 Localization using SNAP of Sources with Non-Circular Footprint . . . . . 133

10.1 Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 133

10.2 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 133

10.3 SNAP using Covariance Detector . . . . . . . . . . . . . . . . . . . . . . 135

10.4 Plume Source Localization using SNAP . . . . . . . . . . . . . . . . . . 137

10.5 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 140

11 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 141

Bibliography . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 143

Curriculum Vitae . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 149

x

Mich
ali

s P
. M

ich
ae

lid
es



LIST OF FIGURES

3.1 A field with 100 randomly placed sensor nodes. . . . . . . . . . . . . . . . 24

3.2 Gaussian plume event source. . . . . . . . . . . . . . . . . . . . . . . . . . 25

4.1 A field with 100 randomly placed sensor nodes and 5 sources. . . . . . . . 29

4.2 Graphical interpretation of probability of no detection. . . . . . . . . . . . 32

4.3 Probability of false alarm vs. threshold. . . . . . . . . . . . . . . . . . . . 35

4.4 Probability of no detection vs. threshold. . . . . . . . . . . . . . . . . . . . 36

5.1 Probability of detection vs. distance from the source r for a single sensor
using the ED for different values of the threshold γe. . . . . . . . . . . . . 47

5.2 Graphical representation (not drawn to scale) of the coverage area of 2 sensor
nodes separated by a distance d when using the Energy Detector (ED) with
different fusion rules. Using the OR(∨) fusion rule the coverage area is the
union of the two smaller circles (indicated with shaded region) while using
the AND(∧) the coverage area becomes the intersection of the two larger
circles (indicated with a grid). . . . . . . . . . . . . . . . . . . . . . . . . 48

5.3 CD coverage area. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49

5.4 Probability of detection vs. separation distance d between the 2 sensor nodes
for different detectors given PF = 0.01. . . . . . . . . . . . . . . . . . . . 51

5.5 Probability of detection vs. probability of false alarm for different detectors
given the 2 sensor nodes are separated by distance d. . . . . . . . . . . . . 52

xi

Mich
ali

s P
. M

ich
ae

lid
es



5.6 Detection snapshots between 2 sensor nodes separated by d=1m. . . . . . . 52

5.7 Detection snapshots between 2 sensor nodes separated by d=61m. . . . . . 53

5.8 Detection snapshots between 2 sensor nodes separated by d=121m. . . . . . 53

5.9 Detection snapshots between 2 sensor nodes separated by d=181m. . . . . . 53

5.10 ROC plots for different detectors for 100 randomly deployed sensor nodes. . 54

6.1 Performance evaluation for CD using N choose K fusion rule. We use c =

1000, λ = 150, σ2
S = 20 and σ2

W = 10. . . . . . . . . . . . . . . . . . . . . 66

6.2 Probability of miss for different detectors. . . . . . . . . . . . . . . . . . . 67

6.3 Probability of miss vs. threshold for HD. . . . . . . . . . . . . . . . . . . . 69

6.4 Distance threshold optimization for HD. . . . . . . . . . . . . . . . . . . . 70

6.5 Grid vs. random topology. . . . . . . . . . . . . . . . . . . . . . . . . . . 71

6.6 Probability of miss for CD using grid of sensor node pairs. . . . . . . . . . 72

7.1 Error vs number of sensor nodes for different conditions of noise variance. . 81

7.2 Error vs noise variance for different numbers of sensor nodes. . . . . . . . 83

7.3 Error vs number of measurements. . . . . . . . . . . . . . . . . . . . . . . 84

7.4 Target Area in a field with 100 randomly placed sensor nodes. . . . . . . . 86

7.5 Percentage of times that E has a specific number of sensor nodes given a
field with N = 100 nodes. . . . . . . . . . . . . . . . . . . . . . . . . . . 87

7.6 Performance of the proposed Least Squares optimization techniques as we
vary different parameters in the field. . . . . . . . . . . . . . . . . . . . . . 88

8.1 Different regions used for SNAP: Region of Influence (ROI), Region of Cov-
erage (ROCn) and Region of Subscription (ROSn). . . . . . . . . . . . . . 94

8.2 Region of Coverage (ROC). . . . . . . . . . . . . . . . . . . . . . . . . . . 98

xii

Mich
ali

s P
. M

ich
ae

lid
es



8.3 L resulting from SNAP with 8 sensor nodes, 3 of which are alarmed and are
shown in solid color. The event is correctly localized in the grid cell with the
maximum value +3. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99

8.4 Algorithm used by node l to calculate the values of Ll using binary beliefs
bn (±1) from the nodes inside its ROSl, with position indices (Xn, Yn). . . 104

8.5 dSNAP test case scenario. . . . . . . . . . . . . . . . . . . . . . . . . . . 105

8.6 Experimental ROC calculation . . . . . . . . . . . . . . . . . . . . . . . . 107

8.7 Effect of varying ROS radius for dSNAP. . . . . . . . . . . . . . . . . . . 109

8.8 Estimator performance evaluation for different varying parameters. . . . . . 110

8.9 SNAP performance for various M,σ2
w. . . . . . . . . . . . . . . . . . . . . 111

8.10 SNAPe performance for various grid resolutions g. . . . . . . . . . . . . . 112

8.11 SNAP performance for various σ2
p . . . . . . . . . . . . . . . . . . . . . . . 113

8.12 SNAP likelihood matrix along the line between the source and the n + 1-th
sensor. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 114

9.1 A field with 200 randomly deployed sensor nodes and a source placed at
position (25,25). Alarmed sensors are indicated on the plot with red circles
inside the disc around the source (ROI). 50 of the sensor nodes exhibit faulty
behavior and are indicated on the plot as false positives (red squares outside
the ROI) and false negatives (black squares inside the ROI). . . . . . . . . . 119

9.2 1-D example with 5 sensor nodes, one of which is faulty (n5). . . . . . . . 123

9.3 Estimator performance for different percentages of alarmed sensor nodes as
we vary the number of faulty sensor nodes in the field. . . . . . . . . . . . 126

9.4 Estimator performance vs. probability of dropped packets Pd. . . . . . . . . 127

9.5 Estimator performance vs. probability of overheating Po. . . . . . . . . . . 128

9.6 FTML performance vs. fault probability. . . . . . . . . . . . . . . . . . . . 129

xiii

Mich
ali

s P
. M

ich
ae

lid
es



9.7 SNAPe performance for different percentages of alarmed sensor nodes as we
vary the number of faulty sensor nodes in the field. . . . . . . . . . . . . . 130

9.8 Fault Tolerance of dSNAP as we vary the ROS size. . . . . . . . . . . . . . 131

10.1 SNAP with elliptic ROC localization example using covariance information
from 25 randomly deployed sensor nodes. Alarmed nodes create a “pos-
itive” ROC (filled with +1) with contour indicated with red color while
non-alarmed nodes create a “negative” ROC (filled with −1) with contour
indicated with blue color. . . . . . . . . . . . . . . . . . . . . . . . . . . . 136

10.2 SNAP using elliptic ROC performance evaluation: a) RMS error vs. thresh-
old b) Likelihood matrix contour snapshot for T = 3. . . . . . . . . . . . . 137

10.3 Directed event propagation model with Active Area A defined by direction
of propagation and spread angle φs. For this case the ROC becomes the
“mirror” shape of the source ROI as indicated on the figure. . . . . . . . . . 138

10.4 SNAP with plume ROC localization example using 25 randomly deployed
sensor nodes. Alarmed nodes create a “positive” ROC (filled with +1) with
contour indicated with red color while non-alarmed nodes create a “negative”
ROC (filled with −1) with contour indicated with blue color. . . . . . . . . 139

10.5 SNAP using plume ROC performance evaluation: a) RMS error vs. thresh-
old b) Likelihood matrix contour snapshot for T = 3. . . . . . . . . . . . . 140

xiv

Mich
ali

s P
. M

ich
ae

lid
es



LIST OF TABLES

6.1 Optimal Dh for different λ . . . . . . . . . . . . . . . . . . . . . . . . . . 68

8.1 Default parameter values . . . . . . . . . . . . . . . . . . . . . . . . . . . 106

8.2 Optimal ROC calculation for different percentages of alarmed sensor nodes 108

8.3 Complexity analysis in elapsed time (sec) . . . . . . . . . . . . . . . . . . 111

xv

Mich
ali

s P
. M

ich
ae

lid
es



Mich
ali

s P
. M

ich
ae

lid
es



CHAPTER 1

INTRODUCTION

Wireless Sensor Networks (WSNs) are a fairly new technology that can potentially provide
an interface between the physical world and computers allowing the later to vanish into the
background [1]. Recent advances in wireless communications and electronics have enabled
the development of low-cost, low-power, multi-functional sensor nodes that are small in size
and communicate untethered in short distances. These tiny sensor nodes which consist of
sensing, data processing, and communicating components, leverage the idea of sensor net-
works. A sensor network is often composed of a large number of sensor nodes that are
densely deployed either inside the phenomenon or very close to it. They have a wide variety
of applications including military sensing, infrastructure security, environment and habitat
monitoring, industrial sensing, building and structure monitoring, and traffic control. This
new promising technology however, also comes with unique challenges because of the vast
number of sensor nodes, the limitations in terms of energy and bandwidth and the harsh con-
ditions of operation. There are open research issues involving all layers of the protocol stack.
Each layer needs to be modified or even rebuilt to combine power and routing awareness, in-
tegrate data with networking protocols, communicate power efficiently through the wireless
medium and promote cooperative efforts of sensor nodes [2].

One of the common applications envisioned for WSNs is that of monitoring a large region
for the presence of an event. The proposed sensor network can deal with a number of envi-
ronmental monitoring and tracking applications including acoustic source localization, toxic
source identification, and early detection of fire [2, 3, 4]. In this context, the sensor nodes
are expected to infer useful information about the event under investigation like the position
of the event source and the magnitude of the signal at the source location.

A sensor node is assumed to be a simple, cheap device with limited capabilities in terms of
processing and communication. Moreover, it has limited energy resources and is expected
to fail often or exhibit unpredictable behavior. For a sensor node alone it would be incon-
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ceivable to perform the complex tasks of detection and estimation. The power of the sensor
nodes lies in the collective efforts of the group. When a large number of these simple nodes
collaborate together, they can achieve complex tasks that seemed impossible at first. Con-
sider what happens when a sensor node becomes alarmed by measuring the signal intensity
at its location and comparing it to a threshold. With its limited view, the sensor node cannot
infer with certainty whether a target is really present, or this was just a false alarm due to
noise. Moreover, it can say very little about the target position; at best, if the target signal
propagation characteristics are completely known, it can place the target on a ring around
its position. Without any information exchange with the other nodes, all it can do is report
this information to the user. However, considering the energy cost of communication, this
information would have very low utility.

Consider now the same scenario but with data fusion. After a sensor node becomes alarmed,
it first contacts its neighbors so they can collectively detect and localize the event, and then
report this information to the user. This approach is preferable in the context of sensor net-
works because it avoids redundant, and possibly false information, flowing end-to-end in the
network, consuming valuable bandwidth and energy. There are a lot of questions, however,
that have to be answered before we can implement this approach. How many neighbors
does the alarmed sensor node need to contact? What type of information does it have to
exchange? Do they have to be synchronized? How does it combine the information received
from its neighbors with its own information in order to collectively decide detection? What
algorithm does it implement based on the exchanged information in order to estimate the
event location? These are just some of the important questions that this dissertation seeks
to find answers to. In the same context, CSIP (Collaborative Signal Information Processing)
[5] is a new research area that aims to determine the parameters of this energy constrained
sensor collaboration i.e. who should sense, what needs to be sensed, whom the information
should be passed on to.

This dissertation concentrates on developing distributed algorithms for detection and local-
ization of an event in a WSN with the following main characteristics:

1. Simple - Due to the limited capabilities of the sensor nodes they cannot perform any
complex computations. The algorithm should only perform simple operations.

2. Localized - Communication is considered to be the most expensive operation in terms
of energy so the algorithm should only allow local information exchanges between the
sensor nodes.

3. Fault tolerant - Sensor nodes can fail and exhibit unpredictable behavior at any time.
The algorithm should retain its performance when a number of sensor nodes report
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erroneous observations.

The performance of the detection algorithms is measured with respect to coverage, defined
as the area where an event is detected with high probability (at least 0.5) subject to a fixed
false alarm probability. The performance of the localization algorithms is measured in terms
of the mean positioning error (in general, unless otherwise specified, the distance units are
always assumed to be meters). Energy considerations and system lifetime are also of primal
importance for the development of the algorithms.

1.1 Summary

The work done for this dissertation can be divided in two phases outlined below:

Phase I (Detection): For the problem of distributed detection we first use the Mean Detector
(MD), the most common local detection scheme proposed in literature for WSNs. In this
context, each sensor node decides its alarm status alone by comparing its calculated mean
to a predefined threshold. To find this threshold, in Chapter 4, we solve an optimization
problem that minimizes the error in detection (false alarms and misses) in a sensor network.
When using the MD, the general intuition becomes to place sensor nodes apart to improve
coverage. Consider though what happens if we have two sensor nodes that happen to fall next
to each other. In the presence of an event, their measurements should look quite similar. This
similarity, or spatial correlation between sensor nodes in proximity, can provide a powerful
complementary detection scheme for WSNs to improve the overall coverage of the sensor
network. We start by examining collaborative pairwise detection schemes for the case where
we have just two sensor nodes in Chapter 5. We show that in order to increase their collective
coverage area, the detection strategy becomes a function of the distance between the two
sensors. For closely spaced sensor nodes, we propose the use of a Covariance Detector (CD)
at the local detection level that exploits this similarity by calculating the sample covariance
between them. Furthermore, we propose the Enhanced Covariance Detector (ECD) that
combines the energy and the covariance information from two sensor nodes utilizing two
different thresholds (one for the energy test statistic and another for the covariance). Next,
we extend these results to the general case where we have a field with N randomly deployed
sensor nodes in Chapter 6. The overall detection is decided at the base station using a fusion
rule of the general form “event is detected if at least K out of N detection reports from
alarmed sensors are received.” We propose a Hybrid Detector (HD) where each sensor node
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independently chooses between the MD and the CD based on the distance from its closest
neighbor. This detector combines the benefits of the other two detectors: it uses the CD in
situations where sensor nodes are close to each other to take advantage of possible spatial
correlation between their measurements; in other situations where sensor nodes are far away
from their neighbors they rely on their own measurements for detection and use the MD.
Depending on the event distribution, the sensor node can decide which detector to use by
solving an optimization problem involving the coverage of each detector. In many situations
of interest though, the event characteristics are completely unknown. For those cases, we
show how we can still evaluate a distance threshold from the “expected distance” between a
sensor node and its closest neighbor. Finally, we derive analytical expressions for the system
probability of false alarm for all proposed detectors and compare their performance in terms
of coverage.

Phase II (Localization):

For the problem of distributed localization we first employ nonlinear least squares optimiza-
tion techniques in Chapter 7 to estimate the event location. As already mentioned, a WSN
consists of low-cost devices which have limited resources (processing capabilities, memory,
and power), calibration mismatches (varying sensor sensitivities) and may fail frequently.
With this in mind, we departed from least squares with the objective to develop a simple, ef-
ficient, fault tolerant algorithm that can quickly identify the event location using only binary
data from the sensor nodes. SNAP (Subtract on Negative Add on Positive), is the algorithm
developed in Chapter 8 and one of the main contributions of this dissertation. The main idea
behind SNAP is to use the observations of all sensors to efficiently construct a likelihood
matrix by summing contributions of ±1. By bounding the contribution of each sensor, we
do not allow any sensor measurement to dominate the overall estimation result which consti-
tutes the basic reason for the algorithm’s fault tolerant behavior. Furthermore, we show how
the SNAP algorithm can be implemented in a distributed fashion (dSNAP). In this context,
any alarmed node in the vicinity of the event can be elected as leader and perform the local-
ization of the event by utilizing data from only the sensor nodes inside its neighborhood. The
SNAP algorithm can be actually cast in a maximum likelihood (ML) estimator with respect
to the binary data. Compared to ML, however, SNAP requires only simple operations and
can retain its accuracy when a large percentage of the sensor nodes report erroneous obser-
vations. Next, in Chapter 9, we show how ML can be modified in order to accommodate
erroneous observations coming from faulty sensor nodes. Specifically, by incorporating the
fault probability when calculating the likelihood function we develop a fault tolerant maxi-
mum likelihood (FTML) estimator appropriate for sensor networks applications. Compared
to the SNAP algorithm in the presence of faults, the two can achieve similar performance;
FTML is slightly more accurate while SNAP is computationally less demanding and re-
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quires fewer parameters. In Chapter 10, we study two different applications for the SNAP
algorithm. First, we modify the SNAP algorithm to incorporate covariance information for
performing the localization. Then, we apply the SNAP algorithm to the inverse localization
problem of a plume source.

1.2 Main Contributions

The main contributions of this dissertation are summarized below:

Detection: For the problem of distributed detection this dissertation proposes and analyzes
two novel detection algorithms: the Covariance Detector (CD) and the Enhanced Co-
variance Detector (ECD) that exploit the spatial correlation between the measurements of
sensor nodes in close proximity in order to improve the overall coverage of the sensor net-
work.

Estimation: For the problem of distributed localization this dissertation proposes and ana-
lyzes two new algorithms: the SNAP (Subtract on Negative Add on Positive) algorithm
and the Fault Tolerant Maximum Likelihood (FTML) algorithm. Both algorithms feature
accuracy and robustness with respect to faults in the sensor network. In addition, SNAP has
desirable properties such as low computational complexity and distributed implementation
capability.

1.3 Organization of the Dissertation

The first two chapters provide more details for the problem under investigation. Chapter 2
presents an extensive literature review of what is considered to be state of the art in event
detection and localization using WSNs. Chapter 3 provides the assumptions and explains the
different models used throughout this dissertation.

The next three chapters deal with distributed detection. In Chapter 4, we solve an optimiza-
tion problem for the Mean Detector to obtain the optimal detection threshold at the sensor
level. Chapter 5 examines collaborative pairwise detection schemes for the two sensor case
and proposes the Enhanced Covariance Detector (ECD). In Chapter 6, we extend these re-
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sults to the general case sensor network and propose the Hybrid Detector (HD).

The following four chapters deal with distributed localization. In Chapter 7, we investigate
the use of nonlinear Least Squares techniques for estimating the event location. In Chap-
ter 8, we introduce the SNAP algorithm and show how it can be implemented in a distributed
fashion. Chapter 9 shows that SNAP can achieve fault tolerant localization and proposes the
Fault Tolerant Maximum Likelihood (FTML) estimator. In Chapter 10, we further investi-
gate applying the SNAP algorithm using covariance information and for the localization of
plume sources.

Finally, this dissertation concludes with Chapter 11, where we also present our plans for
future work.
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CHAPTER 2

LITERATURE REVIEW

2.1 Overview

This chapter presents an extensive literature review of what is considered to be state of the art
in the problem of distributed event detection and localization in Wireless Sensor Networks.
Special attention is given to the problems of coverage, spatial correlation, binary estima-
tors, and fault tolerance since they are directly related to the issues addressed by this thesis.
Finally, representative work is presented in the areas of target tracking and plume tracking
because both of these areas are tightly coupled with the distributed localization algorithms
developed as part of this dissertation.

2.2 Distributed Detection

Distributed detection using multiple sensors has been extensively investigated for radar and
sonar applications (see [6, 7] and references therein). Interest in decentralized detection and
estimation has re-surfaced with anticipated applications using multiple sensors which may
be geographically dispersed. In classical multi-sensor detection and estimation, it is assumed
that all the local sensors (such as radar, sonar, infrared) communicate all their data to a cen-
tral processor that performs optimal detection and tracking of targets based on conventional
statistical techniques. In decentralized processing, some preliminary processing of data (of-
ten lossy compression) is carried out at each sensor and condensed information is sent from
each sensor to other sensors and ultimately the central processor which is often known as
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the fusion center. In the terminology of sensor networks we say that the network has intelli-
gence at each node. Unlike the central processor in centralized systems, the fusion center of
a decentralized system has only partial information as communicated by the sensors. This
results in a loss of performance in decentralized systems as compared to centralized systems.
However, the performance loss can be made small by optimally processing the information at
the sensors. The objective in most studies is to develop computationally efficient algorithms
at the sensors and at the fusion center.

Optimality is usually studied under the Neyman-Pearson and Bayesian detection criteria
[8, 9]. In general, the Neyman-Pearson formulation finds (optimum) local and global de-
cision rules that minimize the global probability of miss (PM) for a prescribed bound on
the global probability of false alarm (PF ). On the other hand, the Bayesian formulation
assigns costs to each error (miss and false alarm) and tries to minimize the overall proba-
bility of error. Both of these formulations however, require complete or partial knowledge
of the joint densities (pdf) of the observations at the sensor nodes given the hypothesis Hl

for l = 0, 11. For conditionally independent observations, optimum fusion rules have been
derived in [10, 11]. Conditional independence of sensor observations implies that the joint
density of the observations obeys

p(y1, ..., yN |Hl) =
N∏

i=1

p(yi|Hl), for l = 0, 1. (2.1)

For conditionally independent observations, the optimal tests at the sensors as well as the
decision rules at the fusion center are threshold rules based on the appropriate likelihood
ratios.

In large-scale wireless sensor networks, however, the signal generated by the event to be
detected has unknown strength and varies spatially making sensor observations location-
dependent and not identically distributed. The observations at the sensors are conditionally
dependent when the joint density of the observations given the hypothesis, cannot be written
as the product of the marginal densities as in (2.1). Such situations would arise if one de-
tects a random signal in noise or if the sensor noise samples are correlated when detecting
a deterministic signal in noise. It is shown in [12] that for the conditionally dependent case,
the optimal tests at the sensors are no longer of the threshold type based solely on the likeli-
hood ratio of the observations at the individual sensors. In general, without the conditional
independence assumption, the optimal solution becomes mathematically intractable because
it would require an exhaustive search of all possible decision rules. For example, even for

1In statistical hypothesis testing, H1 refers to the signal present hypothesis while H0 refers to the signal

absent (noise only) hypothesis.
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the simple case of 2 binary sensors with finite sets of observations Yi for i = 1, 2, a solu-
tion by exhaustive enumeration could require the examination of us many as 2N1+N2 pairs of
decision rules (where Ni denotes the cardinality of Yi for i = 1, 2). It is shown in [13] that
when the observations are discrete and conditionally dependent, the optimal solution is non-
polynomial complete (NP-complete). When the joint distributions of the observations at the
sensor have a certain structure, the performance of certain distributed decision rules can be
determined. The authors in [14] design the optimum combining scheme at the fusion center
when the local decision rules and the correlations between the local decisions are given. In
[15], the optimal data fusion rule is developed for correlated local binary decisions in terms
of the conditional correlation of all orders. In [16], the authors study Bayes-optimal binary
quantization for the detection of a shift in mean in a pair of dependent Gaussian random
variables.

In most previous work using correlated observations, the local sensor performances (in terms
of the probability of detection and the probability of false alarm) and the correlation between
their local decisions are assumed given. For the WSN under investigation, however, both the
local sensor performance and the correlation between their measurements are unknown and
can change dynamically with the location of the event, making it infeasible in most cases to
obtain this information at the fusion center. Consequently, one needs to resort to suboptimal
schemes and heuristics to achieve the desired objectives and the optimal decision rule for
detection should be determined at the sensor node level sometimes even before deployment
[17]. Such heuristics, are the detectors presented and analyzed in this dissertation. The
Covariance Detector (CD) and the Enhanced Covariance Detector (ECD) aim to exploit the
spatial correlation between the measurements of sensor nodes in close proximity in order to
improve the overall coverage of the sensor network.

2.3 Coverage

One of the fundamental issues in sensor networks is the coverage problem, which reflects
how well an area is monitored by sensors. In general, coverage can be considered as the
measure of quality of service of a sensor network [18]. For example, consider a sensor
network deployed in a forest for providing early warnings against the presence of a fire.
In this context, one may ask how well the network can observe a given area and what the
chances are that a fire starting in a specific location will be detected in a given time frame.
Furthermore, coverage formulations can try to find weak points in a sensor field and suggest
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future deployment or reconfiguration schemes for improving the overall quality of service.

Coverage is perhaps more well known in the literature from a computational geometry stand-
point. A famous example is the Art Gallery Problem [19] that deals with determining the
number of observers necessary to cover an art gallery room such that every point is seen by at
least one observer. This problem has found many applications in many domains such as the
optimal antenna placement problems for wireless communication. The Art Gallery Problem
has a linear time solution in 2D and was shown to be NP-hard in the 3D case. A polynomial
time approximation solution for the 3D version of the Art Gallery Problem is presented in
[19]. Coverage has been extensively studied for sensor networks in the last few years us-
ing mostly computational geometry techniques for developing algorithms for worst / best
case coverage [18]. In worst / best case coverage, attempts are made to quantify the quality
of service by finding areas of lower / higher observability from sensor nodes and detecting
breach / support regions. The key idea is to combine computational geometry, specifically
the Voronoi diagram and the Delaunay triangulation, together with graph search algorithms
for establishing optimal polynomial time worst and average case algorithm for coverage cal-
culation. In 2D, the Voronoi diagram of a set of discrete sites partitions the plane into a set
of convex polygons such that all points inside the polygon are closest to only one site. This
construction effectively produces polygons with edges that are equidistant from neighboring
sites. The Delaunay triangulation can be obtained by connecting the sites in the Voronoi
diagram whose polygons share a common edge. It has been shown that among all possible
triangulations, the Delaunay triangulation maximizes the smallest angle in each triangle. In
fact, since sites that are close together are connected, the Delaunay triangulation can be used
to find the two closest sites by considering the shortest edge in the triangulation. The prob-
lem of coverage has also been formulated in various other ways. For example, in [20], the
authors deal with exposure, which is directly related to coverage in that it is a measure of
how well an object, moving on an arbitrary path, can be observed by the sensor network over
a period of time. An algorithm is developed for determining a path with the least exposure.
In [21], the authors present polynomial time algorithms for determining whether an area is
sufficiently k-covered, in the sense that every point in the monitored area is covered by at
least k sensors. In addition to developing algorithms for calculating coverage, scheduling
schemes have also been investigated in the literature for turning off some redundant nodes
while still preserving a complete coverage of the monitored area [22].

Most of the aforementioned work assumes that the sensing coverage of a sensor node can
be represented by a disc inside which an event is always detected. In other words, an event
that occurs within the sensing radius of a node is always assumed detected with probability
1 while any event outside the sensing disk is assumed not detected. This idealized model
might be convenient for developing algorithms that calculate coverage in polynomial time
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but it fails to capture several important characteristics of sensor nodes in the real world. In
fact, sensor node measurements are expected to be noisy so we need to probabilistically
account for the noise in the sensor readings. This means that there is always a nonzero
probability of incorrectly detecting a target when there is actually no target in the field (i.e.,
false alarm) and therefore a tradeoff we need to consider between the probability of false
alarm and the probability of detection. For the purposes of this dissertation, we directly
associate coverage to the probability of detection. There have been a few other attempts in
the literature to deal with coverage in a probabilistic way. In [23], the authors propose a
probabilistic coverage algorithm based on a computational geometry approach that evaluates
the degree of confidence in coverage provided by a randomly deployed sensor network. The
vulnerability of sensor networks to unauthorized traversal and monitoring is analyzed in
[24] by considering the tradeoff between a target passing undetected through the field and
the false alarm probability. In [25], the authors address the problem of finding the critical
density of sensors for complete coverage. Assuming the presence of a threshold for dealing
with noise, they concentrate on finding the number of sensors for detecting a moving target.

Coverage area, however, is not only influenced by noise. Note that even when we proba-
bilistically account for the presence of noise, the coverage area of a sensor node remains
a disc around the node inside which the target will be detected above a certain probability.
A main contribution of this dissertation is to show that the coverage area of a sensor node
also depends on the detection strategy (fusion rule). For example, we will be showing that
a Covariance Detector for a pair of sensor nodes produces an ellipse-shaped coverage area
whose size depends on the separating distance between the two nodes. Therefore, in order
to maximize the coverage area of a sensor network, it becomes imperative to investigate
collaborative detection schemes between the sensor nodes. This is further investigated in
Chapters 5.

2.4 Spatial Correlation

The physical phenomena monitored by sensor networks, e.g. forest temperature, water con-
tamination, usually yield sensed data that are strongly correlated in space [26]. With this in
mind, researchers have designed a large number of sensor network protocols and algorithms
that attempt to exploit such correlations. Spatial correlation has been used in data aggrega-
tion and routing algorithms, data storage and querying, MAC protocol design, localization,
data compression and encoding, and calibration. In [26], the authors present a simple and

11

Mich
ali

s P
. M

ich
ae

lid
es



accurate model of spatially correlated sensor network data. The model can capture corre-
lation in data irrespective of the node density, the number of source nodes or the topology.
In [27] the authors develop a theoretical framework to model the spatial and temporal cor-
relations in a WSN and use it for designing efficient communication protocols. The authors
of [28] develop a decision fusion Bayesian framework for detecting and correcting sensor
measurement faults in the event region by exploiting the fact that measurement errors are
uncorrelated while environmental conditions are spatially correlated.

Typical WSN applications require spatially dense sensor deployment in order to achieve sat-
isfactory coverage. As a result, multiple sensors record information about a single event
in the sensor field. Due to high density in the network topology, spatially proximal sensor
observations are highly correlated with the degree of correlation increasing with decreasing
internode separation. For the purpose of this dissertation, we model the spatial correlation
in the actual measurements that the sensor nodes get based on the distance from the event
source and the distance from each other. In other words, measurements of sensors that are
close to each other and close to the source are correlated. On the other hand, sensor nodes
that are located far away from the source do not receive any signal information; so even if
they happen to fall next to each other their signal measurements become uncorrelated. For the
development of efficient communication protocols, intuitively, due to the spatial correlation,
data from spatially separated sensors is more useful to the sink than highly correlated data
from nodes in proximity [27]. For distributed event detection, however, counter-intuitively,
spatially correlated sensor data from nodes in proximity can become quite useful in increas-
ing the coverage of the sensor network through a covariance detector scheme, as the one
proposed in Chapter 5.

2.5 Distributed Localization

Localization of the event position has been extensively studied in the last 20 years using ar-
rays of sensors for radar, sonar and acoustic target tracking applications (see [29, 30, 31] and
references therein) and in the context of wireless cellular networks to support location-based
services (see [32]). A variety of techniques have been proposed to solve the localization
problem that can be classified into 3 main categories: 1. DOA (Direction of Arrival) 2.
TDOA (Time Difference of Arrival) 3. Energy-based. DOA can be estimated by exploit-
ing the phase difference measured at the receiving sensors and is applicable in the case of
a coherent, narrow band source. In practice, DOA measurements typically require a costly
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antenna array on each node. TDOA is more suitable for broadband sources but typically re-
quire accurate measurement or estimation of time delay. In contrast, energy-based methods
are based on received sensor signal strength which is much easier, requires simpler hardware,
and is less costly to obtain from the time series recordings from each sensor. Furthermore,
they do not require any synchronization between the sensor nodes. On the other hand, they
do require the communication of the energy readings from the sensor nodes to a central pro-
cessing unit with enough processing power to solve this non-linear optimization problem
using iterative search techniques. For an estimation algorithm to be implementable in the
context of WSNs, it has to be simple enough so it can be performed by any sensor node
in a distributed fashion, energy-efficient and fault-tolerant. Classical estimation techniques
like least squares and maximum likelihood usually give accurate results but at the expense
of heavy message exchanges and computations. Therefore, it is not clear how any of these
methods could be implemented in a distributed fashion by a sensor node. Moreover, the fault
tolerance of these schemes has not been demonstrated.

2.6 Binary Estimators

More recently, the use of binary data for localization has been proposed in the literature.
Sensor nodes are expected to be low-cost, simple devices with limited resources (processing
capabilities, memory, and power). Binary decisions are simple problems a sensor node can
solve by just comparing its measurements to a predefined threshold. Binary decisions are
also less sensitive to calibration mismatches and varying sensor sensitivities. Moreover,
using binary observations limits the bandwidth usage and conserves energy; only single-bit
information needs to be transmitted from the sensor nodes to the fusion center (sink) or, in the
case of decentralized implementation, to the leader node that will perform the localization.

For event localization in WSNs using binary data two different methods have been proposed:
The Centroid Estimator (CE) [33] and the Maximum Likelihood (ML) [34] estimator. Since
both of these estimators are used for the performance evaluation of the algorithms developed
in this dissertation, we provide their details below.

13

Mich
ali

s P
. M

ich
ae

lid
es



2.6.1 Centroid Estimator (CE)

The centroid of a finite set of points can be computed as the arithmetic mean of each coordi-
nate of the points. Let (xn, yn), n = 1, · · · , P (P ≤ N ) denote the positions of all alarmed
sensor nodes. Then, the event location estimated by CE is the centroid of these positions:

θ̂CE = [x̂s, ŷs] =

[
1

P

P∑
n=1

xn,
1

P

P∑
n=1

yn

]
.

This simple technique works well under conditions of dense uniform sensor deployments
and when the events are not located close to the field boundaries.

2.6.2 Maximum Likelihood (ML)

Maximum Likelihood is overwhelmingly the most popular approach to obtaining practical
estimators. It has the distinct advantage of being a “turn-the-crank” procedure, allowing
it to be implemented for complicated estimation problems. Additionally, in most cases of
practical interest its performance is optimal for large enough data records. Specifically, it
is approximately a minimum variance unbiased estimator due to its approximate efficiency
[35].

For the problem under investigation, the Maximum Likelihood estimator finds the most
likely source location based on the binary data received from the sensor nodes. It essen-
tially evaluates a likelihood function for every possible source location in the field and then
the maximum of this likelihood function points to the estimated source location. First, let us
formulate the problem by defining the indicator function for sensor node n = 1, · · · , N at
time t = 1, · · · , M :

In,t =

{
0, if zn,t < T

1, if zn,t ≥ T
(2.2)

where zn,t is the measurement of sensor node n at time t and T is a prescribed threshold.
Thus, the sensor data can be represented as I = {In,t : n = 1, · · · , N, t = 1, · · · ,M}. The
goal is to estimate the source location θ = [xs, ys] using the collected data I.

The Maximum Likelihood Estimator has the form

θ̂ML = max
θ

log p(I | θ) (2.3)
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where the log-likelihood function, as derived in [34], is given by

log p(I | θ) =
N∑

n=1

M∑
t=1

In,t × log

[
Q

(
T − sn(θ)

σw

)]

+(1− In,t)× log

[
1−Q

(
T − sn(θ)

σw

)]
. (2.4)

In this expression, Q(x) = 1√
2π

∫∞
x

e−
t2

2 dt is the complementary distribution function of the
standard Gaussian distribution. Also, sn(θ) is the signal that would have been measured by
sensor n if the source was at location θ and there was no noise. The ML estimator is shown
to be optimal (achieves the Cramer-Rao bound) in [34] when enough sensor measurements
are used.

For the purposes of this dissertation we implement a discrete version of the algorithm de-
scribed above. Specifically, we divide the area in G × G equal size grid-cells and evaluate
the log-likelihood function G2 times using (2.4) assuming the source is located at the center
of each cell. The maximum of the resulting matrix points to the event location. For the
rest of this dissertation we will refer to this discrete version of the algorithm as simply ML
(Maximum Likelihood).

SNAP (Subtract on Negative Add on Positive), one of the main contributions of this disser-
tation, can be actually cast in a ML estimator with respect to the binary data. Compared to
ML, the SNAP algorithm can achieve similar accuracy using less computations and making
fewer assumptions. For more information see Chapter 8.

2.7 Fault Tolerance

Sensor nodes are often envisioned to operate unattended for long periods of time in hostile
environments, e.g. airdropped inside an area for tracking potential targets and intruders. In
terms of security, this means that there is an increased probability that the sensor readings
are altered by a malicious attacker. For example, an intruder that would like to move in-
side the area without being tracked, may try to “fool” the system by compromising some of
the sensors and modifying their readings to divert the attention of the monitoring personnel.
A possible attacker strategy would be to tamper with sensors away from the attacker’s true
position to become falsely alarmed and prevent sensors close to the attacker from reporting
detection. For instance in [36], the authors present a scenario with malicious actuator nodes
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deployed to perturb or distort the readings of neighboring sensor nodes within their actua-
tion radius. Another possible attacker strategy would be to deploy various decoys inside the
monitored area to cause confusion through a series of false alarms. In applications such as
environmental monitoring of large areas, false alarms may incur a significant cost because
a response crew may have to travel to the suspected area. Also, in many cases, frequent
false alarms may make the users simply ignore all alarms and as a result even important
detected events may go unnoticed. For example, in 1980 the rebels in Afghanistan threw
rabbits over base fences that caused the motion detectors to generate a series of false alarms
[37]. As a result the base turned off completely the monitoring system allowing surreptitious
attacks! In addition to the case of malicious intervene, sensor nodes can provide erroneous
observations for a variety of other reasons: noise, energy depletion, environmental harsh
conditions of operation and software problems. For example, in [38] the authors report real
experiments where a node would constantly report false detections when its program board
was overheated, or scenarios in which nodes were programmed in an incorrect manner that
yielded unpredictable (Byzantine type) behavior. Another source of faults is the network un-
reliability that can result in a high percentage of dropped packets. These can be attributed to
the uncertain nature of the communication medium (mainly due to radio frequency interfer-
ence and obstacle presence), as well as collisions due to the dense deployment of the sensor
networks.

Fault tolerant event detection in WSNs has received considerable attention over the last few
years. Specifically, the problem of fault tolerant event region detection using binary sen-
sors was first considered in [28]. Event region refers to a region of the environment with
a distinguishable characteristic, for example a region having a chemical concentration of
some chemical agent that exceeds a certain threshold. The proposed solution, in the form of
Bayesian fault recognition algorithms, exploits the notion that the measurement errors due
to the faulty equipment are likely to be uncorrelated, while environmental conditions are
spatially correlated. The work in [28] has been followed by three other publications dealing
with the same problem of fault tolerant event region detection. In [39], the authors provide
comments on the original paper and correct some of the mistakes in the theoretical analysis
section. In [40], the authors extend the model to account for the fact that the sensor errors
can have two different sources; an error could be noise-related or coming from a sensor
fault. The model is further extended in [41] by considering the case where nodes can have
different failure probability levels. The authors also propose two error models that are par-
ticularly suitable for applications where the event is highly localized. The first model takes
into account the fact that nodes that are closer to each other have a higher spatial correlation
than nodes that are further apart, while the second model accounts for the relative geograph-
ical distributions of the two voting quorums (the two subsets of neighbors determining the
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presence or absence of the event).

Fault tolerant event localization in WSNs has received limited attention so far from the re-
search community. In [33], the authors propose a median detector to filter out extreme mea-
surements followed by a Centroid Estimator (defined in Section 2.6) to achieve fault-tolerant
localization. The binary estimators proposed in the literature, however, can yield significant
estimation errors when the sensor nodes start failing; the CE is sensitive to false positives,
i.e., sensor nodes far away from the source becoming falsely alarmed. On the other hand, the
Maximum Likelihood (defined in Section 2.6) is extremely sensitive to false negatives, i.e.,
when a node located close to the event does not become alarmed. The SNAP algorithm is
one of the first attempts to provide a simple, fault tolerant localization algorithm suitable for
WSNs. It is essentially a maximum likelihood estimator that can achieve similar accuracy in
a much simpler way. Furthermore, in Chapter 9, by incorporating the fault probability when
calculating the likelihood function we develop FTML, a fault tolerant maximum likelihood
estimator also appropriate for sensor networks applications. Compared to FTML, the SNAP
algorithm can achieve similar accuracy and fault tolerance but it is computationally more
efficient and makes fewer parameter assumptions.

2.8 Target Tracking

Mobile object tracking is one of the most fundamental collaborative information processing
problems in WSNs. In this section we also review representative work on target tracking
because it is tightly coupled with the distributed localization algorithms developed in this
dissertation. Tracking techniques, combine the localization techniques with a target mobility
model and assume a probability distribution for the sensor measurement errors to achieve
superior performance. They rely on Bayesian filtering variants [42], such as Kalman Filter
or Particle Filter, to mitigate the effect of measurement noise and alleviate high positioning
errors that do not reflect the target’s mobility pattern.

Most of the work on target tracking uses a decentralized approach. When a target is detected,
a cluster is formed and all the alarmed sensors in the vicinity of the target forward their
measurements to the cluster head (leader). The cluster head estimates the target location,
based on the queried sensor measurements and predicts the next location according to the
filtering scheme. Then it multicasts wake-up information to the predicted (forwarding) area,
in order to initiate the next cluster head election and propagate tracking information and
filter specific parameters. In [43], the cluster head performs the target position estimation by
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triangulating the distances from three closest nodes. Subsequently, a simple filtering scheme
that uses only the previous two locations to calculate the target’s speed and moving direction,
is employed to linearly predict the next location. A combination of a geometric algorithm
and Particle Filter is proposed in [44] to track the trajectory, estimate the velocity of the target
and yield economical path descriptions. In [45], a dynamic clustering scheme is proposed for
accurate tracking, while localization is based on non-linear optimization methods. Authors
assume a hierarchical topology and utilize a Voronoi diagram together with back-off timers to
elect the cluster-head closest to the target with high probability. In [46], the authors suggest a
distributed group management algorithm for electing a single leader and resolving contention
via message exchange. They use a time stamp to elect the leader that first witnessed the
event. In [47], the sensor nodes are aggregated into collaborative groups for a target counting
task. For each distinct target a single leader is elected via one hop information exchange by
identifying the sensor node that received the highest signal power. In [48, 49], the authors
have addressed the problem of dynamically querying sensors and routing data in the network
so information gain is maximized while latency and bandwidth consumption is minimized.
They concentrate on selecting the next best sensor for a vehicle tracking application and
updating the belief state in order to maximize information content. Authors in [50], propose
a distributed approach where each node exchanges messages only with its neighbors in the
network and runs the tracking algorithm locally by using available measurements from all
neighboring nodes. In this fashion, the tracking information is duplicated and distributed
among all nodes in the vicinity of the target. The position estimates are given by the known
node positions disturbed by additive noise while the estimated target positions are processed
by a Kalman Filter algorithm.

2.9 Plume Tracking

Tracing contaminant transport to source can be used against terrorist attacks to rapidly re-
spond to a chemical, biological or radiological event and provide the proper authorities the
necessary information to deal with such events [51, 52]. Such a sensor network can also be
used to provide early warning against accidental spillage of toxic waste by ships, factories
etc. Other examples include early detection of fires and other environmental monitoring.
Underwater environmental monitoring programs are under way both in USA [53, 54, 55]
and in Europe [56, 57]. A lot of research has been done in the area of plume tracking using
underwater autonomous unmanned vehicles trying to locate a chemical source. They use
bio-mimetic robotic plume-tracing algorithms based on olfactory sensing. Usually a single
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sensor on the robot is capable of sensing the chemical and sensing or estimating fluid veloc-
ity. Subsequently, this information is used to determine the speed and heading direction of
the vehicle such that the motion of the vehicle is likely to locate the odor source. Farrell [58]
has done significant work in locating a chemical source underwater using an autonomous
vehicle operating in a fluid flow.

Locating an event source using autonomous vehicles works fine when we know that an event
exists. However, in many instances, for example in environmental monitoring, an event
occurs very rarely. In this case, it would be very expensive to have an autonomous vehicle
continuously searching until it finds an event. A more preferable alternative is to deploy
a stationary, low cost, low power sensor network that would continuously monitor for the
existence of the event source. Once the network detects the existence of an event, it generates
an initial estimate of the position of the event source. Subsequently, this initial estimate can
be used by a group of mobile robots which will then move closer to the source in order to
accurately determine its position.

As part of this dissertation, we first investigate using least square methods and then applying
the SNAP algorithm for determining an initial estimate of the event source position using
binary measurements from stationary sensors. In [59] the author also proposes the use of
binary sensors for a plume tracking application. He tracks the correlation between the sensor
nodes that have detected the target and constructs a likelihood function whose maximum
points to the event location. The main difference between SNAP and this work is that we
also consider the sensors that did not detect the event when forming the likelihood function.
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CHAPTER 3

EVENT SOURCE MODEL

This chapter presents the details of the event source model used throughout this disserta-
tion. We start by making the following assumptions for the sensor network that detects and
estimates the position of an event:

1. A set of N sensor nodes is randomly spread (in a uniform manner) over a square field
of area A. The nodes are static. Their position is denoted by (xn, yn), n = 1, · · · , N

and it is assumed that it is known (e.g., a small fraction of the sensor nodes uses GPS,
while the rest estimate their location using localization algorithms).

2. A single source of the event is located at a position (xs, ys) which is also a random
location generated by a uniform distribution inside A. The source emits a continuous
signal that attenuates inside A.

3. The network is connected in the sense that each node has at least one path to the fusion
center (sink). The sensors that “detect” the event (i.e., they are alarmed) send a packet
to the sink or the leader node; otherwise they remain silent.

All assumptions are quite common and reasonable for sensor networks. Assumption 1 is
primarily needed for the localization algorithms and it is a rather weak assumption. In fact,
as we will be further demonstrating in Chapter 8, the SNAP algorithm only requires approx-
imate sensor node positions in order to accurately estimate the event location. Regarding
Assumption 2, the results of this thesis can be readily extended to situations where we have
multiple sources; this is a subject of on-going research. Finally, Assumption 3 is rather tech-
nical; it is only used to ensure that the sensor network is fully connected. We should point out
that the localization algorithms developed in this thesis are fault tolerant, so the performance
of the WSN does not deteriorate even when a significant number of packets do not arrive at
the sink.
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In general, the t-th sample measurement of any sensor n located at (xn, yn) is composed of
a signal component Sn,t and a noise component Wn,t and is given by

Zn,t = min {Vmax, γSn,t + Wn,t} , (3.1)

for n = 1, · · · , N , t = 1, · · · ,M . In this model Vmax and γ are sensor specific parameters:
the first reflects the maximum measurement that a sensor can register while the second is a
scaling factor corresponding to the sensor gain. In order to facilitate the theoretical analysis
of the proposed algorithms and without any loss of generality, for the remaining of this dis-
sertation we assume γ = 1 and take Vmax to be the signal amplitude that would be measured
one meter away from the source location.

Sn,t is the realization of a space-time process s(t, x, y) that describes the signal propagation
dynamics. Specifically, we restrict ourselves to the xy-plane and assume a general model of
the form

s(t, x, y) = f(t, x, y, xs, ys), (3.2)

where s(t, x, y) is the signal measurement at any location (x, y) and time t while (xs, ys) is
the source location. The function f(·) describes the signal propagation dynamics and can
be chosen according to the application. For this dissertation, we use three different signal
propagation models explained in detail in the subsequent sections: 1. A uniform signal
propagation model that is appropriate for acoustical or electromagnetic sources where the
signal attenuates uniformly around the source location, 2. A stochastic model that applies
to environmental monitoring conditions where sensor node measurements are expected to
be highly correlated in the space domain and 3. A directed propagation model that is more
suitable for smoke or plume sources where the wind can push the substance released from
the source in a certain direction.

Finally, unless otherwise specified, Wn,t is assumed to be additive white Gaussian noise,
i.e. Wn,t is a sequence of iid (independent and identically distributed) Gaussian random
variables Wn,t ∼ N (0, σ2

W ) for n = 1, · · · , N and t = 1, · · · ,M .

3.1 Basic signal propagation model

First, we present a deterministic model where the source signal attenuates uniformly in all
directions. Similar models have been extensively used in the literature (see [30, 31, 33, 34])
for acoustic source localization using sensor networks.
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Specifically, we assume that the measured intensity at the source is c and as we move away
from the source, the measured intensity is inversely proportional to the distance from the
source raised to some power α ⊂ R+ which depends on the environment. As a result, the
t-th signal measurement of any sensor n located at (xn, yn) is given by

Sn,t =
c

rα
n

, (3.3)

for i = 1, · · · , N , t = 1, · · · ,M . In addition, rn is the radial distance from the source, i.e.,

rn =
√

(xn − xs)2 + (yn − ys)2. (3.4)

For the purposes of this dissertation, unless otherwise specified, we use α = 2.

3.2 Stochastic signal model with spatial correlation

This section describes a stochastic signal model that incorporates spatial correlation between
the signal measured at the sensor nodes locations. This signal energy model is appropriate
for a variety of problems where we use a WSN to monitor the environment, since sensor
observations are expected to be highly correlated in the space domain [27].

The signal is generated at the source location according to a normal distribution N (c, σ2
S).

The signal attenuates uniformly in all directions from the source and is modeled by a Gaus-
sian space-time-varying process s(x, y, t). Sn,t becomes the realization of a space-time-
varying process s(x, y, t), i.e., it is the sample at sensor n located at a position (xn, yn) at
time t. Since only spatial correlation is considered, the samples received at each sensor
node location are temporally independent (since they are only influenced by Gaussian white
noise). Specifically, we assume that

E [Sn,t] =
c

r2
n

(3.5)

E
[
S2

n,t

]
= σ2

SC2(λv, rn) (3.6)

E [Sn,tSm,t] = σ2
SC(λv, rn)C(λv, rm)C(λc, dnm) (3.7)

for n,m = 1, · · · , N and t = 1, · · · , M . In the above equations, dnm is the Euclidean
distance between the sensor nodes n and m and rn is the distance of node n from the source,
i.e., rn =

√
(xn − xs)2 + (yn − ys)2. Furthermore, |C(λ, r)| is a decreasing function of the

distance r such that limr→∞ C(λ, r) = 0. For the purposes of this thesis we assume that

C(λ, r) = e−
r
λ (3.8)
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λ > 0, however we point out that other functions are also possible, e.g., see [27]. The con-
stants λv and λc in (3.6), (3.7) can be chosen according to the physical event propagation
model. The first, reflects the rate at which the signal energy (variance) attenuates as a func-
tion of the radial distance from the source r. The second, reflects the expected correlation
between the signals received (excluding noise) by two sensor nodes n and m based on the
separation distance between them dnm.

The signal propagation model used in this section is chosen to reflect the expected “simi-
larity” between measurements of sensor nodes in proximity. In other words, measurements
of sensors that are close to each other and close to the source are correlated. On the other
hand, sensor nodes that are located far away from the source do not receive any signal infor-
mation; so even if they happen to fall next to each other their signal measurements become
uncorrelated.
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Figure 3.1: A field with 100 randomly placed sensor nodes.

24

Mich
ali

s P
. M

ich
ae

lid
es



3.3 Directed signal propagation model

Uniform propagation models may be accurate for sources that emit sound or electromagnetic
waves, but they are not very accurate for problems where an actual substance is released in
the environment (for example in problems of environmental pollution). In this section, we
introduce a simplified signal/substance propagation model which takes into consideration
environmental conditions like wind or current flow.

Specifically, we assume that there is a draft in a constant direction φw. As a result, the sub-
stance is spread in a limited angle φs as shown in Fig. 3.1. We assume no environmental
changes throughout the propagation, therefore these angles are fixed throughout the experi-
ment.

Figure 3.2: Gaussian plume event source.

Definition 3.3.1. A sensor is said to be in the Active AreaA if it is located in the area defined
by the source position, the wind direction and the angles φw and φs (see Fig. 3.1).
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Only the sensor nodes located inside A can receive signal information. Specifically,

Sn,t =

{
Sn,t, if n ∈ A
0 otherwise

(3.9)

for n = 1, · · · , N , t = 1, · · · ,M . Sn,t can be chosen according to the signal propagation
characteristics; for acoustical sources we can use the model of Section 3.1, for environmental
monitoring applications we could use the stochastic model described in Section 3.2. Alter-
natively, for creating a plume signal we can use the Gaussian Plume Model [60]. As an
example, for one-dimensional spreading, assuming a steady wind direction along the x-axis
(i.e., φw = 0) and φs = π, the signal propagation equation becomes

Sn,t =
c√

2πσyn

exp

[
−1

2

(
yn − ys

σyn

)2
]

, (3.10)

where σyn = b(xn− xs) for n = 1, · · · , N , t = 1, · · · ,M . The resulting drop-shaped plume
spreading is depicted in Fig 3.2.
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CHAPTER 4

THRESHOLD OPTIMIZATION FOR EVENT

DETECTION

4.1 Overview

This chapter investigates the use of a sensor network for detecting the presence of an event.
The sensors monitor the signal emitted from the source and report the existence of the event
when the received signal strength is above a certain threshold. In this chapter we derive
analytical expressions for the probability of false alarm and the probability of no detection
as functions of the threshold. Subsequently, we determine the optimal threshold that trades
off the probability of false alarm and the probability of no detection.

4.2 Introduction

This chapter investigates the use of a Wireless Sensor Network (WSN) for detecting the pres-
ence of an event source that releases a certain signal or substance in the environment which is
then propagated over a large area. The concentration of the substance at the source location
is assumed unknown. The sensor nodes are able to measure the substance concentration at
their own locations but the measurements are noisy. Based on these concentration readings
the sensor nodes use a threshold to decide whether they have detected the event or not.

The question that naturally arises is what threshold to use. Choosing the “right” threshold is
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an optimization problem involving the probability of false alarm and the probability of miss.
The sensor nodes are continuously monitoring the environment and their measurements are
highly uncertain so there will be situations where they will be triggered by just noise. To
avoid these highly undesirable situations of false alarms the threshold has to be large enough
to minimize their probability of occurrence. Note that in a real time detection system a series
of false alarms can be as bad if not worse than no detection. For example, in applications such
as environmental monitoring of large areas, false alarms may incur a significant cost because
a response crew may have to travel to the suspected area. Also, in many cases, frequent false
alarms may make the users simply ignore all alarms and as a result even important detected
events may go unnoticed. On the other hand we do not want to compromise the possibility of
an event going completely undetected so the threshold needs to be small enough to maximize
the detection probability of our sensor nodes.

Another motivation for having a threshold stems from the general problem of estimating the
location of an event given the various sensor measurements. In source location estimation
we are not interested in the noise so it is often beneficial to simply ignore measurements that
are below a certain threshold. As we will be showing in Chapter 7, applying a threshold
significantly improves the accuracy of the location estimate. Furthermore, in the context of
wireless sensor networks it conserves energy since only a fraction of the sensors will report
to the sink.

The main contribution of this chapter is the analytical evaluation of the probability of false
alarm and the probability of no detection (event miss) in a wireless sensor network in terms of
the local detection threshold used by each sensor node. The determination of this threshold is
then solved as an optimization problem that minimizes a cost function involving the overall
probability of error (either due to missed events or false alarms).

The chapter is organized as follows. First, in Section 4.3, we present the model we have
adopted. Then, in Section 4.4, we present the cost function we seek to minimize and the
analytical evaluation of the probability of false alarm and the probability of missed detection.
In Section 4.5, we present several simulation results. We conclude with a summary of the
main results of this chapter in Section 4.6.
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4.3 Problem Formulation

For the sensor network that detects an event we use the uniform propagation model de-
scribed in Section 3.1 of Chapter 3. For deriving the analytical results, we only consider
non-boundary sources. In other words, the event source is assumed to be located at a posi-
tion inside the smaller area B ⊂ A as shown in Figure 4.1. We point out that for large areas
the probability of having a source on the boundary is very small and thus the effect of this
assumption is negligible.
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Figure 4.1: A field with 100 randomly placed sensor nodes and 5 sources.

The sensor nodes are assumed to be in an energy-conserve state until triggered by the pres-
ence of the signal. When a sensor node i detects something, i.e., it receives a measurement
zi,t > T , where i = 1, · · · , N , t = 1, · · · , M and T is a threshold, it wakes up and takes
a number of discrete measurements M over a time interval and takes the mean of these
measurements

zi =
1

M

M∑
t=1

zi,t. (4.1)

Then, it compares this value to the threshold T to decide whether to communicate this infor-
mation to the sink and continue measuring or go back to sleep.
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Definition 4.3.1. Let the Mean Detector (MD) denote the distributed detection scheme in
which each sensor node independently computes the mean test statistic in (4.1) and compares
this to a threshold T in order to determine its alarm status.

This threshold will be the same for all sensor nodes in the field and will work in a distributed
fashion in that each sensor node will use this threshold to decide whether it has detected the
event or not. The mean is a sufficient statistic of the sensor data and is the uniformly most
powerful test (UMP) in the Neyman-Pearson formulation for a single sensor in composite
hypothesis one-sided detection [8].

Taking the mean before communicating the information to the sink is also justified as a way
of reducing the amount of data flowing in the sensor network and saving both bandwidth
and energy and therefore prolonging the lifetime of the network. Moreover, it is shown in
Chapter 7 that there is no loss in accuracy when it is used to estimate the source position
compared to the case that every sensor measurement is used instead. Finally, we assume
a centralized approach where sensor readings from the alarmed sensors are gathered at the
sink using a communication paradigm like directed diffusion [61]. The overall detection of
the event will then be decided at the sink if at least one sensor node reports detection.

4.4 Analytical Evaluation of Threshold

To solve for the optimal threshold we seek to minimize the following cost function J repre-
senting the overall error in detection as a function of the threshold T :

J(T ) = w × Pfa(T ) + (1− w)× Pnd(T ) (4.2)

where Pfa is the probability of false alarm, Pnd is the probability of no detection and 0 ≤
w ≤ 1 is a user specified weight that should be chosen with care according to the appli-
cation. A small w implies that the application can tolerate more false alarms but it cannot
tolerate any missed events. For example, in networks that monitor for toxic terrorist attacks
in crowded areas, w could be set close to zero. On the other hand, larger values of w imply
that some missed events may be tolerated to reduce the cost of false alarms. For example,
in applications such as environmental monitoring of large areas, false alarms may incur a
significant cost because a response crew may have to travel to the suspected area. Also, in
many cases, frequent false alarms may make the users simply ignore all alarms and as a
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result important events may go undetected. Finally we point out that alternatively one could
also formulate the problem as a constrained optimization problem. For example, minimize
the probability of false alarm subject to the probability of no detection being less than some
value.

Definition 4.4.1. Let H0 represent the noise-only hypothesis and H1 represent the signal-
present detection hypothesis using the statistical hypothesis testing formulation [8].

Below we go into the details of evaluating the probability of false alarm and the probability
of no detection as a function of the threshold T .

4.4.1 Probability of false alarm

In the absence of a source the sensors are measuring just noise which is Gaussian with
distribution N (0, σ2

W ). Therefore, the sample mean at each sensor node (4.1) also has a
Gaussian distribution, zi ∼ N (0,

σ2
W

M
). The probability of false alarm is the probability that

at least one of the sensors mistakenly reports the presence of a source and is given by the
following equation:

Pfa(T ) = 1− ΦN

(
T ×√M

σW

)
(4.3)

where Φ(x) = 1√
2π

∫ x

−∞ exp (−y2

2
)dy is the probability the Standard Normal Gaussian ran-

dom variable N (0, 1) is less than x and can be calculated from tables or using Matlab.

The derivation is outlined below:

Pfa(T ) = Pr{H1|H0}
= Pr{(zi ≥ T ) for at least one sensor i}
= 1− Pr{(zi < T )∀ sensors i = 1, ..., N}

= 1−
N∏

i=1

Pr{zi < T}

= 1− ΦN

(
T ×√M

σW

)
.

In the above derivation we use independence between the probabilities that the sensor nodes’
measurements jointly remain below a certain threshold T . This follows from the fact that
noise samples are assumed to be uncorrelated between the sensor nodes [62].
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4.4.2 Probability of no detection

In Fig. 4.2 we see a graphical interpretation of the probability of no detection in a randomly
created field of 100 sensor nodes. Each circle denotes the detection area of each sensor
node as defined by the threshold in the absence of noise and the shaded area represents the
locations where an event would go completely undetected. The sensor measurements have a
Gaussian distribution zi ∼ N ( c

rα
i
,

σ2
W

M
) and they are spatially correlated based on the sensor

positions and the distance from the source.
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Figure 4.2: Graphical interpretation of probability of no detection.

Definition 4.4.2. Let Rs(T ) denote the radius of a disk centered at the source inside which
a sensor node will be alarmed with high probability, at least 0.51 (see Fig. 4.1).

Note that Rs is a function of the prescribed threshold T and the source attenuation model.
For the uniform propagation model of Section 3.1, Rs is given by

Rs(T ) = α

√
c

T
. (4.4)

1Using 0.5 is a convenient way to define Rs(T ) when dealing with noise that has symmetric pdf (e.g.

Gaussian) because its size becomes independent of the noise variance.
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Definition 4.4.3. Let Si denote the event that sensor node i falls inside the disk of radius
Rs(T ) centered at the source (see Fig. 4.1).

Using independence, the probability of no detection is given by

Pnd(T ) =
N∏

i=1

(1− PDi
) (4.5)

where PDi
is the probability of detection by sensor i and is computed by conditioning on the

event Si:
PDi

= Pr{H1|Si} × Pr{Si}+ Pr{H1|Si} × Pr{Si} (4.6)

where Pr{Si} = 1− Pr{Si}. Now,

Pr{Si} =
πR2

s

A
(4.7)

since the sensor nodes are uniformly distributed so all points in area A are equally probable
[62] (note that by assumption no sources are located on the boundaries). Pr{H1|Si} is the
probability that sensor i detects the source given that the source is outside its coverage area.
For values of α that are large enough, the signal measurement

(
c

rα

)
away from the source be-

comes zero and thus, this probability can be approximated with the probability of false alarm
for sensor node i which is given by (4.3). Finally, we can derive Pr{H1|Si} by conditioning
on the radial distance from the source. In the derivation below R ∈ [0, Rs(T )] is a random
variable representing the radial distance from the source with pdf fR|Si

(r|Si) = 2r
R2

s
. This

choice of pdf makes all points in the disk around the source equally probable.

Pr{H1|Si} =

∫ Rs(T )

0

Pr{H1|Si, R = r}fR|Si
(r|Si)dr

=

∫ Rs(T )

0

[
1− Φ

((
T − c

rα

) √M

σW

)]
2r

R2
s

dr (4.8)

Substituting (4.8),(4.7),(4.3) and (4.4) in (4.6) yields PDi
. Then by substituting this in (4.5)

we get the probability of no detection as a function of the threshold T . It is worth pointing
out that in high SNR situations Pr{H1|Si} = 1 so the probability of detection PDi

is given
by the following equation:

PDi
= Pr{Si}+ (1− Pr{Si}) Pfai

(4.9)
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The Pnd(T ) requires knowledge of c the amplitude at the source which is usually unknown.
Since this parameter is needed in advance to determine the optimal threshold for detection
we decided to use the smallest value that would cause an alarm for the specific substance we
aim to detect. This ensures that our optimal threshold Topt will be small enough to detect
concentrations equal or greater than c. This is also justified in composite hypothesis testing
where it is shown that the probability of detection is proportional to the magnitude of the
unknown parameter (c) we aim to detect [8].

4.5 Simulation Results

For all subsequent experiments we used a square sensor field of 1km×1km and assume that
the sensor measurements were given by:

zi,t = min

{
106,

106

r2
i

}
+ wi,t (4.10)

where i = 1, · · · , N , t = 1, · · · ,M , r2
i = (xs−xi)

2+(ys−yi)
2 and wi,t = N (0, σ2

W ), ∀i, ∀t.
The experimental results reported were obtained by taking the average over 100 randomly
created sensor fields. For obtaining the experimental probability of false alarm (Pfa) the
sensor nodes were simply exposed to noise and we counted the times that at least one sensor
node reported the presence of an event source. For obtaining the probability of no detection
(Pnd) we randomly placed a source in each sensor field 100 times and counted the number
of times that no sensor node reported the presence of the source. For all the experiments we
used Matlab.

4.5.1 Probability of false alarm

In the first set of experiments we investigated the validity of (4.3) derived in Section 4.4.
In Fig. 4.3(a) we plot the analytical and experimental Pfa vs. the threshold T for different
numbers of sensor fields- N = 1, 10 and 100. In Fig. 4.3(b) we do the same but this time
we use a fixed sensor field with 100 sensor nodes and investigate the effect of changing the
noise variance- σ2

W =1,10,100. It is evident from the 2 plots that our experimental results are
very well in agreement with the analytical ones for all situations tested proving the validity
of (4.3).
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Figure 4.3: Probability of false alarm vs. threshold.

As it can be observed from Fig. 4.3(a), Pfa increases with the number of sensors involved.
This is expected because the more sensors we have the more likely it becomes for one of the
sensors to mistakenly report the presence of an event. Also from Fig. 4.3(b), it is evident
that Pfa increases with noise variance. This is also expected because noise is what causes
the false alarms in the first place. In both of the above situations we would need to increase
the threshold to minimize the probability of false alarm. Another way to compensate for
the effects of noise would be to increase the number of measurements M before averaging
because as it can be seen from (4.3) this acts as a counterweight to noise variance σ2

W .

4.5.2 Probability of no detection

In the second set of experiments we investigated the validity of (4.5) derived in Section 4.4.
In Fig. 4.4(a) we plot the analytical and experimental Pnd vs. the threshold T for different
numbers of sensor fields- N = 1, 10 and 100. In Fig. 4.4(b) we do the same but this time we
use a fixed sensor field with 100 sensor nodes and investigate the effect of changing the initial
concentration at the source c. It is evident from the 2 plots that our experimental results are
very well in agreement with the analytical ones for all situations tested proving the validity
of (4.5). The small deviation in the order of 2% observed in the plots can be attributed to not
having enough samples in the experiments to achieve truly uniform distribution of the sensor
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Figure 4.4: Probability of no detection vs. threshold.

As it can be observed from Fig. 4.4(a), the probability of no detection depends largely on the
number of sensor nodes in the sensor field. This is expected because the more sensor nodes
we have the better coverage we achieve. Noise variance on the other hand does not affect the
Pnd. Even under very noisy conditions our sensor nodes have a big probability of detecting
a source if they are located in the source neighborhood. Increasing the threshold T increases
the Pnd in all cases.

In Section 4.4 we made the claim that even if we do not know the initial concentration c

we can use the minimum concentration we wish to detect in our optimization problem. In
Fig. 4.4(b) it is evident that by doing so we will pick a threshold that will allow us to detect
all larger concentrations as well. For example let’s say that we wanted to detect a minimum
c = 500, 000 with a Pnd ' 0.1. From the plot we would choose T = 40 for this problem.
This threshold value allows us to detect c = 1, 000, 000 with Pnd ' 0.01 and anything above
c = 2, 000, 000 with Pnd ' 0.

2Note that Fig. 4.4(a) and Fig. 4.4(b) use different scales for the y-axis. So the deviation results are consis-

tent between the two plots.
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4.6 Summary

In this chapter, we investigate a sensor network that monitors for the presence of an event.
The network uses a threshold at the sensor level to decide for the existence of the event.
We obtain the optimal threshold that minimizes the error involving the probability of false
alarm and the probability of no detection. The correctness of the derived equations is shown
through simulations of different test case scenarios.
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CHAPTER 5

IMPROVED COVERAGE BY EXPLOITING SPATIAL

CORRELATION

PART I: THE TWO SENSOR CASE

5.1 Overview

One of the main applications of Wireless Sensor Networks (WSNs) is area monitoring (e.g.,
environmental monitoring). In such problems, it is desirable to maximize the area cover-
age which can be achieved by appropriately positioning the sensors (if possible) and/or by
increasing the detection range of the sensors. This chapter considers the latter. The em-
phasis is on pairs of closely spaced sensors that can collaborate in order to increase their
collective area coverage. The main contribution of this work is the Enhanced Covariance
Detector (ECD) that combines the energy and the covariance information from two sensor
nodes utilizing two different thresholds (one for the energy test statistic and another for the
covariance). This distributed detector can significantly improve the collective coverage when
the two sensors are situated close to each other while maintaining a constant probability of
false alarm.
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5.2 Introduction

The main objective of this chapter is to investigate collaborative detection schemes at the
local sensor level for increasing the area coverage of each sensor and thus increasing the
coverage of the entire network. Instead of having each sensor node separately decide its
alarm status and report it to the fusion center, in this chapter we focus on pairs of nodes that
are closely spaced and can exchange information to decide their collective alarm status in a
decentralized manner, and report that to the fusion center. The aim is for the pair to achieve
a larger area coverage than the two individual sensors acting alone.

In this chapter, we consider various collaboration schemes that can be employed by a pair of
nodes. A straightforward solution would be for each sensor node to use the energy detector
(ED) so that each individual node would determine its alarm status and then the pair would
determine its collective decision using an AND or an OR rule. Another possibility is for
the pair to exchange all of their measurements and decide its alarmed status based on the
sample covariance. This is referred to as the covariance detector (CD). In this chapter, we
also propose a hybrid detection scheme (the Enhanced Covariance Detector (ECD)) that
combines the strengths of the Energy Detector (ED) and the Covariance Detector (CD) for
closely spaced sensor nodes. By utilizing two different thresholds, one for each detector
used, the ECD can improve the overall coverage while attaining the same probability of false
alarm as any individual detector.

An important outcome of this work is that it shows that the area coverage achieved by each
collaborative detection scheme depends on the distance between the two sensors. When the
two sensors are located relatively close to each other, ECD achieves better coverage whereas
when the two sensors are spaced further apart, the ED with an OR fusion rule can achieve
better results. Therefore, for monitoring applications one can organize the sensors of the
field into pairs (e.g., closest neighbors) and each pair will decide its alarm status using the
best detection algorithm given their relative distance. The cornerstone of this approach is that
closely spaced sensors can take advantage of the possible correlation in their measurements
to reduce the false alarm probability and extend their coverage.

In summary, the contribution of this chapter is to propose a hybrid detection scheme (the
Enhanced Covariance Detector (ECD)) that combines the strengths of the Energy Detector
(ED) and the Covariance Detector (CD) for closely spaced sensor nodes. Furthermore, it
investigates collaborative detection schemes between pairs of closely spaced sensor nodes
and shows that the scheme to be used depends on the distance between the nodes. Finally,
the performance of each detector is analyzed.
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The chapter is organized as follows. First, in Section 5.3, we present the details of the Op-
timal Detector (OD), the Energy Detector (ED), the Covariance Detector (CD) and the En-
hanced Covariance Detector (ECD) as they apply to a pair of sensor nodes. Then, Section 5.4
analyzes the area coverage for each of the detectors. Section 5.5 presents several simulation
results. We conclude with a summary of the main results of this chapter in Section 5.6.

5.3 Collaborative Pairwise Detection Schemes

For this chapter we use the stochastic propagation model described in Section 3.2 of Chap-
ter 3 with c = 0. We concentrate on a single pair of sensor nodes that without loss of gen-
erality are assumed to be located on the horizontal axis in the middle of the field A and are
placed at a distance d apart (at points (−d

2
, 0) and (d

2
, 0)). Under the modeling assumptions

used in this chapter, the detection problem can be mathematically described as,

H0 : z = w

H1 : z = s + w

where s ∼ N (0,Cs), w ∼ N (0, σ2
W I), and s and w are independent. The signal covariance

matrix Cs can be calculated using (3.5)-(3.8) as,

Cs = σ2
Se−

r1+r2
λv

(
e−

r1−r2
λv e−

d
λc

e−
d

λc e−
r2−r1

λv

)
. (5.1)

For detecting the presence of an event in the field using the pair of sensors, we investigate
the following collaborative detection schemes: Optimal Detector (OD), Energy Detector
(ED) with either the AND or the OR fusion rules, Covariance Detector (CD) and Enhanced
Covariance Detector (ECD). For each detector, one of the two sensors (referred to as the
leader) collects the required information and computes the test statistic.

Definition 5.3.1. A sensor is “alarmed” if the value of the test statistic T (depending on the
detection algorithm) exceeds a pre-determined threshold.

Next, we present the specifics of each detector below and derive analytical expressions that
approximate their performance (in terms of probability of false alarm and detection).
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5.3.1 Optimal Detector (OD)

Assuming the two nodes are synchronized and all signal measurements are available at the
leader, the modeling assumptions of this chapter lead to the general Gaussian detection
problem. The test statistic for the Optimal Detector (OD) for this problem is given in [8] as:

TOD =
1

M

M∑
t=1

z[t]TCs(Cs + σ2
W I)−1z[t] ≥ γo (5.2)

where z[t]T = [Z1,t, Z2,t] are the sensor measurements and γo is the threshold calculated in a
Neyman-Pearson formulation to achieve a pre-specified probability of false alarm constrain.
The detection performance of the optimal detector (also known in the literature as estimator-
correlator or Wiener filter) is in general difficult to obtain analytically [8]. However, for a
large number of samples M , using the Central Limit Theorem (CLT), the test statistic in
(5.2) has a Gaussian distribution that depends on the underlying hypothesis. Under the H0

hypothesis, the probability of false alarm is given by

Pf |OD = Pr {TOD ≥ γo|H0} = Q

(
γo − µ0|OD

σ0|OD

)
(5.3)

where

µ0|OD = σ2
W (b11 + b22) (5.4)

σ2
0|OD =

2

M
σ4

W

(
b2
11 + b2

22 +
1

2
(b12 + b21)

2

)
(5.5)

are the mean and the variance of the OD test statistic under H0 and [bij] for i, j = 1, 2 are the
entries of the B = Cs(Cs+σ2

W I)−1 matrix in (5.2). Using the above equations, the threshold
γo can be calculated such that the pair’s probability of false alarm constrain Pf |OD = α for a
specific source location and distribution as,

γo = σ0|ODQ−1(α) + µ0|OD (5.6)

The probability of detection can then be obtained numerically using this threshold.

The drawback of the optimal detector is that it requires complete knowledge of the signal
distribution (through the matrix Cs) and it is thus impractical for the problem under investi-
gation. Even if we use a grid based exhaustive search method to detect a source at all possible
source locations on the grid, we still have to assume knowledge of the signal variance σ2

S and
calculate a different threshold for each possible source location. Nevertheless, we still con-
sider the OD since its performance can be used to obtain an upper bound on the probability
of detection of any other detection scheme.
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5.3.2 Energy Detector (ED)

For the Energy Detector (ED) each sensor independently decides first its alarm status based
on its own measurements. Then, the 1-bit decisions are gathered at the leader where the
detection decision of the pair is decided using an AND or an OR fusion strategy. Using the
AND fusion rule, the pair decides that it has detected the event if both sensors are alarmed,
while using the OR strategy detection is decided if at least one of the sensor nodes becomes
alarmed.

The test statistic used by each sensor is the sample variance1 of the measurements compared
to a constant threshold γe,

TED =
1

M

M∑
t=1

Z2
i,t ≥ γe (5.7)

In the sequel, we will be showing that a different threshold γe applies for each fusion rule.
Strictly speaking, the test statistic is χ-distributed [8], however, for large enough M , the CLT
applies and so the distribution of the test statistic is approximated by a normal distribution
which can simplify the computation of the appropriate threshold γe such that the false alarm
requirement is satisfied. Using the CLT, the probabilities of false alarm pf |ED and detection
pd|ED of the ED for a single node are given by

pf |ED = Q

(
γe −Mσ2

0|ED√
2Mσ2

0|ED

)
(5.8)

pd|ED = Q

(
γe −M(σ2

0|ED + σ2
1|ED)√

2M(σ2
0|ED + σ2

1|ED)

)
(5.9)

where

σ2
0|ED =

σ2
W

M
(5.10)

σ2
1|ED =

σ2
Se−

2r
λv

M
(5.11)

and Q(x) = 1√
2π

∫∞
x

exp (−y2

2
)dy is the right-tail probability of the normalized Gaussian

random variable N (0, 1) [8].

1Note that the unbiased estimator of the variance is given by 1
M−1

∑M
t=1 Z2

i,t but for large M the difference

between the two becomes insignificant.
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Fusion Rules for the ED

Next, we consider the case where the decisions of the two sensor nodes are combined. Under
H0 the decisions of the two sensor nodes are independent and the pair’s probability of false
alarm for the two fusion rules AND(∧) and OR(∨) are:

P∧
f |ED = p2

f |ED (5.12)

P∨
f |ED = 1− (1− pf |ED)2 (5.13)

Using a Neyman-Pearson formulation we set P
(.)
f |ED = α and using (5.8) we can derive the

threshold that each node in the pair should use depending on the fusion rule.

γ∧e =

√
2σ4

W

M
Q−1

(√
α
)

+ σ2
W (5.14)

γ∨e =

√
2σ4

W

M
Q−1

(
1−√1− α

)
+ σ2

W (5.15)

Note that
√

α ≥ 1 − √1− α for all 0 ≤ α ≤ 1 and since Q−1(y) is a decreasing function
of y, to achieve a probability of false alarm α, we need to have γ∧e < γ∨e . In other words,
the AND rule requires a smaller threshold than the OR rule. This observation will become
significant when we study the coverage of the detectors in Section 5.4.

Under H1, the test statistics of the two sensor nodes 1 and 2 for large M become 2 correlated
Gaussian random variables TED|1 and TED|2. To derive the system probability of detection
for the energy detector for the two fusion rules we first make the following observation. The
OR fusion rule can be thought of as max

{TED|1, TED|2
} ≥ γ∨e while the AND fusion rule

is min
{TED|1, TED|2

} ≥ γ∧e . The exact distribution of the Max and Min of two correlated
Gaussian random variables is given in [63] which can be used to obtain the probability of
detection for the pair of nodes under the different fusion rules.

5.3.3 Covariance Detector (CD)

For the Covariance Detector (CD), we assume that the two sensor nodes can synchronize
their measurements over the next time interval. For the synchronization we are assuming
a lightweight scheme like the one proposed in [64] where a pair-wise synchronization is
achieved with only three messages. Then, the leader node receives the measurements of the
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other sensor and computes the following test statistic:

TCV =
1

M

M∑
t=1

{
(Z1,t − Z1)× (Z2,t − Z2)

} ≥ γc (5.16)

where Zi = 1
M

∑M
t=1 Zi,t. The test statistic used is the sample covariance of the measure-

ments between the two sensor nodes compared to a constant threshold γc. Note that (5.16)
exploits the correlation between the measurements of two sensors that are located close to
each other.

For large M , again using the CLT, the test statistic in (5.16) has a Gaussian distribution that
depends on the underlying hypothesis:

TCV ∼

{
N (0, σ2

0|CD), under H0

N (µ1|CD, σ2
1|CD), under H1

For the model under investigation,

σ2
0|CD =

σ4
W

M
(5.17)

µ1|CD = σ2
Se−(

r1+r2
λv

+ d
λc

) (5.18)

while σ2
1|CD is obtained numerically.

Under the H0 hypothesis, the probability of false alarm for the pair of sensor nodes 1 and 2,
is given by

Pf |CD = Pr{TCV ≥ γc|H0} = Q

(
γc

σ0|CD

)
(5.19)

where σ0|CD is given by (5.17). Using the above equation, the threshold γc can be calculated
to attain a probability of false alarm constrain Pf |CD = α,

γc =

√
σ4

W

M
Q−1

(√
α
)

(5.20)

It is worth pointing out that the threshold obtained by the CD may be much lower (depending
on the noise variance σ2

W ) than the one obtained for the ED in the previous section to attain
the same Pf - compare the above equation with (5.14) and (5.15). Under H1, again using
the CLT, the probability of detection for the pair of sensor nodes is given as a function of the
threshold γc by

Pd|CD = Pr{TCV ≥ γc|H1} ≈ Q

(
γc − µ1|CD

σ1|CD

)
(5.21)

where µ1|CD is given by (5.18) and σ1|CD is obtained numerically.
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5.3.4 Enhanced Covariance Detector (ECD)

The proposed ECD uses two test statistics; the ED test statistic (5.7) and the CD test statistic
(5.16) using the following fusion rule.

{TCD ≥ γc2} ∧ {(TED|1 ≥ γ∨e2
) ∨ (TED|2 ≥ γ∨e2

)}. (5.22)

In other words, a pair of sensors will become alarmed only if the sample covariance measured
by the pair exceeds a threshold γc2 (different than the threshold used by the CD alone) and
if either of the sensors becomes alarmed using the ED (i.e., if the recorded sample variance
exceeds γ∨e2

, different from the corresponding ED threshold). The test statistic is computed
by anyone of the two sensor nodes. The two thresholds, γc2 and γ∨e2

are computed using
P∨

f |ED =
√

α and Pf |CD =
√

α for the individual detectors ED and CD respectively using
(5.15) and (5.20). This ensures that the pair’s probability of false alarm for the ECD will be
Pf |ECD =

√
α×√α = α and we can directly compare its performance with the other detec-

tors in a Neyman-Pearson formulation. The performance of the ECD in terms of probability
of detection can be approximated assuming that the two decisions are independent or can be
obtained through simulation.

5.4 Coverage Area Analysis

In this section we formally define the coverage area of the pair of sensors in terms of the Pf

and the Pd. We show that the coverage area shape and size depends on the underlying fusion
rule.

Definition 5.4.1. Given the acceptable false alarm probability for each pair is Pf = α,
“Coverage Area” denotes the area around the sensor locations where if a source is present
it will be detected by the pair with probability Pd ≥ 0.5.

This area is a function of the detection algorithm and the threshold used. Using 0.5 is a
convenient way to define the Coverage Area when dealing with test statistics that have sym-
metric distributions (e.g. Gaussian) because its size becomes independent of the variance of
the test statistic. Specifically, when the test statistic has a Gaussian distribution ∼ N (µ1, σ

2
1)

under the H1 hypothesis, the coverage area can also be represented by

Pd = Q

(
µ1 − γ

σ1

)
≥ 1

2
⇒ µ1 ≥ γ (5.23)
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where γ is the appropriate detection threshold. Next we investigate the coverage area for
each detector.

5.4.1 ED
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Figure 5.1: Probability of detection vs. distance from the source r for a single sensor using
the ED for different values of the threshold γe.

From (5.23) and using (5.9), we can calculate the coverage area of a single sensor using the
ED which becomes a disc around the sensor node location with radius Re given by

pd|ED =
1

2
⇒ σ2

Se−
2Re
λv + σ2

W = γe ⇒ Re =
λv

2
ln

(
σ2

S

γe − σ2
W

)
. (5.24)

Note that Re is a function of the detection threshold γe. Fig. 5.1 displays pd|ED versus
the distance from the source r for different values of the threshold γe. From the figure, it
becomes evident that as the threshold γe is increased, the pd|ED curve can be approximated
by a step function; pd|ED is close to one when the source falls inside the sensor coverage
disc while it sharply falls to zero as the source moves outside. Choosing a large threshold
is desirable in the context of monitoring applications in order to achieve a fairly small false
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Ae (OR)

1 2

Ae (AND)

d

Figure 5.2: Graphical representation (not drawn to scale) of the coverage area of 2 sensor
nodes separated by a distance d when using the Energy Detector (ED) with different fusion
rules. Using the OR(∨) fusion rule the coverage area is the union of the two smaller circles
(indicated with shaded region) while using the AND(∧) the coverage area becomes the
intersection of the two larger circles (indicated with a grid).

alarm probability. Assuming that pd|ED takes the form of the step function (see Fig. 5.1),
then the coverage area of the pair depends on the fusion rule used. The coverage area is
given by the union and intersection between two circles for the AND(∧) and OR(∨) fusion
rules respectively (see Fig. 5.22). Note from the figure that the discs for the AND(∧) have
a larger radius than the ones for the OR(∨) fusion rule. The reason comes from (5.14) and
(5.15) where we clearly see that given Pf = α we get γ∧e < γ∨e .

Next we argue that the fusion rule to be used by a pair depends on the distance d between
the two sensors. Let Ae = πR2

e denote the coverage area of a single sensor node where Re

is given by (5.24). Also, let A∧
e denote the combined coverage area of 2 sensor nodes using

the AND fusion rule and A∨
e the coverage area of 2 sensor nodes using the OR fusion rule.

As argued above, A∧
e > A∨

e . When the distance between the two sensors is zero, both the

2Note that due to the difference of the actual pd|ED from the step function during the transition from one

to zero (see Fig. 5.1) the coverage area approximation in Fig. 5.2 is less accurate near the areas where the two

discs intersect. For those situations, the result obtained from the intersection of the two circles (AND) over-

estimates the true coverage while the result obtained from the union (OR) underestimates the actual coverage

area. Nevertheless, for the calculation of the total coverage area this graphical representation method provides

a reasonably accurate approximation.
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union and intersection of the circles are the circles themselves, thus the coverage area of the
AND rule (A∧

e ) is larger. On the other hand, as the distance is increased, there is a distance
where the two circles become disjoint and coverage area of the pair becomes zero, while the
coverage area of the pair that uses the OR rule achieves its maximum equal to 2A∨

e . In fact,
there exists a distance d̄ where the two fusion rules have identical performance. For d < d̄

the AND rule achieves better coverage whereas for d > d̄ the OR rule becomes superior.

5.4.2 CD

Figure 5.3: CD coverage area.

According to (5.23) and (5.18) and given the threshold γc, the perimeter of the coverage area
by the two sensors is given by

σ2
Se−( r

λv
+ d

λc
) = γc.

where r = r1 + r2. Note that it is necessary that σ2
S > γc since e−( r

λv
+ d

λc
) ≤ 1 for any

r, d ≥ 0, λv, λc > 0. Taking logarithms on both sides and rearranging terms,

r = λv

(
ln

σ2
S

γc

− d

λc

)
= 2a (5.25)

Eq. (5.25) is an ellipse with general equation

x2

a2
+

y2

a2 − d2

4

= 1. (5.26)

and therefore the area covered by a sensor that uses the CD is given by

Ac = πa

√
a2 − d2

4
. (5.27)

Note that for (5.27) it is necessary that d < 2a. If d = 0, i.e., the two sensors are located at
the same point, then the coverage area is a circle with radius a. Also note that the maximum
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coverage area is achieved when d = 0. In other words two sensors that use the CD can
achieve their maximum coverage when they are located at exactly the same point.

5.4.3 ECD

The ECD essentially takes the intersection of the coverage areas of two detectors: the CD
(ellipse shown in Fig. 5.3) and the ED using the OR fusion rule (union of 2 circles shown
in Fig. 5.2). This intersection operation allows the threshold of each detector to decrease
and the individual coverage area to increase without affecting the system probability of false
alarm. Since the coverage areas of the 2 detectors have similar shape for closely spaced
sensor nodes, taking the intersection of the increased individual coverage areas of the two
detectors can improve the coverage area when using the ECD.

5.5 Simulation Results

For all subsequent experiments, we use a square field of 500 × 500 with 2 sensors placed
in the middle of the field separated by a horizontal distance d. We assume that the sensor
measurements are given by the propagation model in Section 3.2 of Chapter 3, with λv =

λc = 200, σ2
W = σ2

S = 10 and M = 100. The thresholds for all detectors are calculated
using the equations derived in Section 5.3, to obtain a probability of false alarm Pf = α in a
Neyman-Pearson formulation. To obtain the experimental probability of detection (Pd), we
take the average over a grid of possible source locations that cover the entire field. For each
source location we use 500 Monte-Carlo simulations. For all experiments we use Matlab.

Fig. 5.4 shows the performance of the different detectors for Pf = 0.01 as we vary the hor-
izontal separation distance d between the 2 sensor nodes. From the plot it is evident that
for all detectors, the analytical approximations for the probability of detection -derived in
Section 5.3- are very close to the experimental results obtained. The Enhanced Covariance
Detector (ECD) outperforms the other distributed schemes for d < 120 while for greater
separation distances d the Energy Detector (ED) with the OR fusion rule becomes the best
option. The Optimal Detector (OD) is also shown on the same plot for comparison purposes.
To calculate the performance of the OD, we first used (5.3-5.5) to calculate the threshold for
each different source location. Then, the probability of detection was obtained numerically
using these thresholds. It is interesting to note that the hybrid detection scheme ECD pro-
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Figure 5.4: Probability of detection vs. separation distance d between the 2 sensor nodes for
different detectors given PF = 0.01.

posed in this chapter outperforms the OD for d < 40. Remember that the optimal detector
refers to a single test statistic compared to a single threshold but assumes full knowledge of
the event location and distribution while ECD uses two thresholds.

Next, Fig. 5.5 displays the ROC curves for the different pair detectors for two different
separation distances d between the 2 sensor nodes. For small d, the ECD achieves the better
results while for large d the ED with the OR fusion rule is the best option.

Finally, Figs. 5.6-5.9 show snapshots of the coverage of the different detectors for the speci-
fied values of d for the test scenario displayed in Fig. 5.4. There are several things to notice
from these plots that are consistent with the analysis in Section 5.4: 1. When the sensor
nodes are very close to each other (see Fig. 5.6), the coverage area for all detectors is a
circle around the location of the sensor nodes. For this case the hybrid detector ECD has
the best coverage followed by CD that essentially achieves the optimal performance (OD).
It is also interesting to note that for this case, ED(AND) achieves slightly better coverage
than ED(OR). 2. As the separation distance between the two sensor nodes is increased (see
Fig. 5.7-5.8), the coverage area of the CD becomes an ellipse around the sensor nodes’ loca-
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Figure 5.5: Probability of detection vs. probability of false alarm for different detectors
given the 2 sensor nodes are separated by distance d.

tions and looks very similar to the one of ED(OR)- this explains the motivation behind using
the ECD. Please note that while the coverage area of the OD and the ED(OR) increases, the
coverage area of all other detectors decreases since they depend on either covariance infor-
mation -CD, ECD-, or simultaneous detection by the two sensor nodes- ED(AND). 3. When
the sensor nodes are sufficiently apart (see Fig. 5.9) the optimal coverage area becomes two
circles around the individual sensor nodes’ positions. This is closely resembled by ED(OR)
which achieves the best coverage out of the distributed detectors. The other detectors do not
perform well for this case- this is expected because their performance is based on closely
spaced sensor nodes.
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Figure 5.6: Detection snapshots between 2 sensor nodes separated by d=1m.
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Figure 5.7: Detection snapshots between 2 sensor nodes separated by d=61m.
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Figure 5.8: Detection snapshots between 2 sensor nodes separated by d=121m.

5.5.1 Preliminary Field Results

In this section we present some preliminary results for the case where we have 100 randomly
deployed sensor nodes to cover a 1000 × 1000 area. Other than that we use the simulation
parameters of the previous section. Furthermore, we assume that the fusion center uses a
counting rule, thus it decides detection if at least K sensors/pairs become alarmed. Fig. 5.10
displays the ROC curves for the different detectors. s1 − ED refers to the case where each
sensor node uses the ED and reports its alarm status to the fusion center which decides
detection if at least K = 1 nodes become alarmed. s2 − ED is similar to s1 − ED but the
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Figure 5.9: Detection snapshots between 2 sensor nodes separated by d=181m.
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fusion center decide detection if at least K = 2 nodes are alarmed. For p1 − CD and p1 −
ECD, each sensor node utilizes information from its closest neighbor for computing the test
statistics (TCD and TECD respectively) and the fusion center decides detection if at least K =

1 pairs become alarmed. From the plot it becomes evident, that utilizing collaborative local
detection schemes (ECD) can significantly improve the coverage of the WSN especially for
small system probabilities of false alarm PF by exploiting sensor nodes that happen to fall
close to each other. Reducing the false alarm rate can preserve valuable energy and extend
the lifetime of our WSN while achieving the required coverage performance. We plan to
investigate this further as part of our future work.
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Figure 5.10: ROC plots for different detectors for 100 randomly deployed sensor nodes.

5.6 Summary

In this chapter we investigate distributed detection strategies for improving the coverage
(detection performance) of two sensor nodes as we vary the separation distance between
them. For closely spaced sensor nodes the proposed Enhanced Covariance Detector (ECD)

54

Mich
ali

s P
. M

ich
ae

lid
es



can significantly improve the coverage while attaining the same probability of false alarm as
any other single distributed detection scheme. For sensor nodes that are further apart using
the Energy Detector (with an OR fusion rule between the 2 sensor nodes) achieves the best
coverage out of the distributed detector schemes tested. As part of our future work, we will
be investigating distributed detection strategies for the case where we have three or more
sensor nodes collaborating for improving their coverage.
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CHAPTER 6

IMPROVED COVERAGE BY EXPLOITING SPATIAL

CORRELATION

PART II: THE NETWORK CASE

6.1 Overview

This chapter continues to investigate the problem of event detection using a Wireless Sensor
Network (WSN). In Chapter 5, we studied the case with two sensor nodes. In this chapter,
we extend these results to the general case with N randomly deployed sensors where the
overall detection is decided at the base station using a fusion rule of the general form “event
is detected if at least K out of N detection reports from alarmed sensors are received”. In
Chapter 5, we proposed a Covariance Detector (CD) where a pair of sensor nodes would col-
lectively decide detection by evaluating the sample covariance between their measurements.
In this chapter, we compare the CD’s performance to the Mean Detector (MD) where the test
statistic is the sample mean of each sensor node by itself. We show that under certain condi-
tions the CD can exploit the measurement correlation between neighboring sensor nodes to
achieve significantly better coverage. The main contribution of this chapter is to propose a
Hybrid Detector (HD) for improving the overall coverage of a sensor network. This detector
combines the benefits of both the MD and the CD by allowing each sensor to choose which
detector to use based on the distance from its closest neighbor. Finally, we show that the
results of this chapter have implications on the network topology.
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6.2 Introduction

This chapter continues to investigate a Wireless Sensor Network for detecting the presence of
an event source that releases a certain signal or substance in the environment which is then
propagated over a large area. In Chapter 5, we examined collaborative pairwise detection
schemes for the two sensor case. We showed that in order to increase their collective cover-
age area, the detection strategy became a function of the distance between the two sensors.
For closely spaced sensor nodes, we showed that using covariance information as the detec-
tion criterion can significantly improve their coverage area. In this chapter, we extend these
results to the more general case where we have a field with N randomly deployed sensor
nodes. The overall detection is decided at the base station using a fusion rule of the general
form “event is detected if at least K out of N detection reports from alarmed sensors are
received.”

The main objective of this chapter is to investigate detection schemes for increasing the
overall coverage of the sensor network. Traditionally, the sensing coverage of a sensor node
has been represented by a uniform disc around the sensor node location inside which an
event was detected with high probability- this is equivalent to the Mean Detector (MD) - see
Chapter 4. Therefore, the intuition has been to have sensor nodes as far apart as possible
in order to limit the overlap between their coverage areas. In many detection scenarios
that require random deployment however, it is often the case that some sensor nodes fall
close to each other. For those situations, in Chapter 5, we provided the sensor node with
an alternative local detection strategy: to compute the measurement covariance with another
sensor node located nearby and use this as the deciding factor for detection- we called this
the Covariance Detector (CD). In this case, the sensing coverage of a sensor node becomes
an ellipse whose area depends on the degree of correlation present and the distance from the
node’s neighbor. Thus, in situations of high correlation for closely spaced sensor nodes the
CD can achieve a better coverage than the MD. The two thresholds for the detectors MD and
CD, can be readily calculated from the false alarm constraint assuming a Neyman-Pearson
formulation. Each sensor node in the field can then be programmed with two thresholds
and decide which detector to use based on the distance from its closest neighbor- we call
this the Hybrid Detector (HD). When the problem parameters are known, a sensor node can
solve an optimization problem to find the optimal distance threshold for choosing between
the MD and the CD. On the other hand, in situations where the event distribution is completely
unknown, we can still evaluate a distance threshold from the “expected distance” between
a sensor node and its closest neighbor. Note, that in this context the sensor nodes have no
information about the signal monitored and they simply decide which detector to use based
on the distance from their closest neighbor. This is a great advantage for sensor networks
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because they are often envisioned to monitor areas for the presence of a variety of sources of
different strengths and variances.

The main contribution of this chapter is to propose a Hybrid Detector (HD) for improving the
overall coverage of a sensor network. This detector combines the benefits of both the MD and
the CD by allowing each sensor to choose which detector to use based on the distance from
its closest neighbor. Another contribution is to show how the CD has direct implications on
the network topology. Specifically, our results indicate that for the CD the best placement
would be pairs of sensor nodes placed on a grid configuration. Finally, for all the detectors
considered we derive the system probability of false alarm in terms of the detection threshold.
This allows a direct comparison of their performance in a Neyman-Pearson formulation.

The chapter is organized as follows. First, in Section 6.3, we present the details of the
Mean Detector (MD), the Covariance Detector (CD) and the Hybrid Detector (HD). Then, in
Section 6.4, we present several simulation results. We conclude with a summary of the main
results of this chapter in Section 6.5.

6.3 Detection

For this chapter we use the stochastic propagation model described in Section 3.2 of Chap-
ter 3 with λv = λc = λ (for symmetry). Assuming that all signal measurements from
the sensor nodes are available centrally at the fusion center, the modeling assumptions of
this chapter lead to the general Gaussian detection problem which can be mathematically
described as

H0 : z = w
H1 : z = s + w

where s ∼ N(µs, Cs), w ∼ N (0, σ2
W I), and s and w are independent. The signal mean µs

is an N × 1 vector whose entries can be calculated using (3.5) and Cs is an N × N signal
covariance matrix whose entries can be calculated using (3.6) and (3.7). Since the optimal
detector for this problem requires complete knowledge of the signal distribution (see [8])
it cannot be applied to the problem under investigation. So we investigate three heuristic
distributed detectors for detecting the presence of an event in the field at the local sensor
level:

1. Mean Detector (MD): each sensor independently uses its computed mean to decide
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whether it has detected the event or not.

2. Covariance Detector (CD): covariance information between the closest neighbors is the
deciding factor for detecting the event.

3. Hybrid Detector (HD): each sensor decides independently between the MD and the CD
based on the distance from its closest neighbor.

The overall detection is decided at the base station using a fusion rule of the general form
“event is detected if at least K out of N detection reports from alarmed sensors are received.”
Next, we present the specifics of each detector below and then compare their performance
(in terms of probability of miss event) in Section 6.4.

6.3.1 Mean Detector (MD)

The test statistic used is the sample mean of the measurements compared to the constant
threshold Tm,

Zn =
1

M

M∑
t=1

Zn,t ≥ Tm (6.1)

for n = 1, · · · , N , t = 1, · · · ,M . The sensor nodes are assumed to be in an energy-
conserve state until triggered by the presence of the signal. When a sensor node detects
something, i.e., it receives a measurement Zn,t > Tm, it wakes up and takes a number of
discrete measurements M over a time interval. Then it makes a decision whether it has
detected the event or not using the mean test statistic shown in (6.1). An alarmed node sends
a message to the sink which decides that an event is present if at least K such messages are
received.

The performance of the MD using an N choose K fusion rule has been analyzed in [65] for
the case with σ2

S = 0, σ2
W = 1 and M = 1. From the analysis presented, one can obtain the

probability of false alarm (PF ) as shown below for the general case MD:

For N randomly deployed sensors using the MD, the system probability of false alarm is given
by

PF =
N∑

i=K

(
N

i

)
pi

fMD [1− pfMD ]
N−i (6.2)

where,

pfMD = Q

(
Tm

σ0MD

)
(6.3)
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In the above equation, σ2
0MD =

σ2
W

M
is the variance of the test statistic (6.1) under the H0

hypothesis.

6.3.2 Covariance Detector (CD)

Definition 6.3.1. Let d(n,m) define the Euclidean distance between two sensor nodes n and
m for n,m = 1...N . Sensor node m is defined to be the “closest neighbor” of sensor node
n if no other sensor node can be found located inside a disc of radius d(n,m) centered at
the location of sensor n.

The test statistic used is the sample covariance of the measurements between two sensor
nodes that are closest neighbors compared to a constant threshold Tc,

CV n,m =
1

M

M∑
t=1

{(Zn,t − Zn)× (Zm,t − Zm)} ≥ Tc (6.4)

for n,m = 1, · · · , N , t = 1, · · · ,M . The test statistic is computed by sensor node n and
sensor node m is its closest neighbor.

When sensor node n is alarmed by the presence of the event, it also wakes up its closest
neighbor m if it is still asleep and they synchronize their measurements over the next time
interval. For the synchronization we are assuming a lightweight scheme like the one pro-
posed in [64] where a pair-wise synchronization is achieved with only 3 messages. Then
sensor node n receives all of m’s measurements and computes the test statistic in (6.4) to
determine whether to become alarmed and send a signal to the sink. The overall detection
of the event will then be decided at the sink if it receives at least K independent detection
reports from any of the sensor nodes. Note that if two sensors are the closest neighbors of
each other, then the test statistic evaluated by the two sensors will be identical. In this case,
the fusion center will consider the reports from such a pair as a single report.

This is also a distributed detector since each node only needs local information (its own mea-
surements and measurements of its closest neighbor). Note that (6.4) exploits the correlation
between the measurements of two sensors that are located close to each other.

Definition 6.3.2. We define N2 as the set of pairs of sensor nodes that are closest neighbors
of each other. In other words,
{pair (n,m) ∈ N2} ⇔ {n closest neighbor of m AND m closest neighbor of n}.
We define N1 as the set of all remaining sensor nodes.
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Note that |N1| + 2|N2| = N1 + 2N2 = N . For pairs of sensor nodes in N2 the test statistic
(6.4) is exactly the same for both involved sensor nodes, so we have to account for this when
we derive the PF for the CD. In other words, there are only N1 +N2 “unique pairs” of sensor
nodes that we need to consider.

Lemma 6.3.1. For N randomly deployed sensors using the CD, the system probability of
false alarm is given by

PF = 1−
K−1∑
i=0

(
N1 + N2

i

)
pi

fCD [1− pfCD ]
N1+N2−i =

N1+N2∑
i=K

(
N1 + N2

i

)
pi

fCD [1− pfCD ]
N1+N2−i

(6.5)
where pfCD is the probability of false alarm for a single pair of sensors derived in Chapter 5
as

pfCD = Q

(
Tc

σ0CD

)
(6.6)

In the above equation, σ2
0CD =

σ4
W

M
is the variance of the test statistic (6.4) under the H0

hypothesis.

Proof: Under the H0 hypothesis the sensor nodes are measuring noise, so their measurements
are uncorrelated and therefore independent. PF is the probability that at least K sensor nodes
report the presence of the event. The proof follows if we only consider the unique pairs of
closest neighbors in the derivation (see Def. 6.3.2).

Using (6.5) and given a maximum false alarm constraint (PF ≤ q), the threshold Tc can be
derived. This threshold will be the same for all sensor nodes in the field and will work in a
distributed fashion in that each unique pair of sensor nodes will use this threshold to decide
whether to become alarmed or not.

6.3.3 Hybrid Detector (HD)

From the simulation results presented in Chapter 5, it is evident that the CD performs well
if two sensors are located close to each other. On the other hand, if a sensor is “isolated”,
i.e., its closest neighbor is located at a distance that is greater than a threshold Dh, then the
MD becomes a better option1. The Hybrid Detector (HD) attempts to combine the strengths
of these two detectors in a way such that the false alarms are not adversely affected. Thus,

1Isolated from a detection perspective. Assumption 4 in Chapter 3 still holds, i.e., the node is within the

communication range of at least one of its neighbors.
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it uses the CD only when the sensor nodes are close to each other to take advantage of the
possible spatial correlation between sensor measurements. In situations where a sensor node
is isolated from its neighbors, it relies on its own measurements for detection so it uses the
MD. For the HD, we only consider the N1+N2 “unique pairs” of sensor nodes as per definition
6.3.2. This choice, facilitates the comparison between the different detectors. Each sensor
node i, n = 1, ..., N1 + N2, compares the distance to its closest neighbor dn, to Dh to decide
which detector to use. If dn ≤ Dh the sensor node uses the CD, otherwise it uses the MD.

Lemma 6.3.2. For the HD the probability of false alarms PF is given by:

PF = 1−
K−1∑
i=0

i∑
x=0

(
Nm

x

)(
Nc

i− x

)
px

fMDp
i−x
fCD

[1− pfMD ]
Nm−x[1− pfCD ]

Nc−i+x (6.7)

where Nm is the number of sensor nodes using the MD, Nc is the number of sensor nodes
using the CD. pfMD is given by (6.3) and pfCD is given by (6.6).

The proof is included in the appendix.

Corollary 6.3.1. Using Tc = σW × Tm keeps the probability of false alarm the same for all
three detectors: MD ,CD and HD.

Proof: We equate pfMD and pfCD given by (6.3) and (6.6) respectively and the result follows.
This choice of thresholds keeps the probability of false alarm the same for all 3 detectors and
facilitates the comparison between them.

Finally the distance threshold for the Hybrid Detector (Dh) is what essentially determines
Nm and Nc and its value is an optimization problem.

Lemma 6.3.3. To maximize the area covered by itself, a sensor node will use the CD if the
distance from its closest neighbor is less than Dh or the MD otherwise. The optimal distance
threshold Dh is determined by solving the following equation,

d3 − 5Λd2 + 8Λ2d− 4Λ3 +
4c2

ΛT 2
m

= 0, (6.8)

where Λ = λ
2
ln

σ2
S

Tc
.

The proof is included in the appendix.

Thus, if a single sensor has estimates of the parameters Tm, Tc, c, σS and λ it can solve equa-
tion (6.8) to determine the distance threshold Dh. For a variety of monitoring applications,
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however, the event distribution is completely unknown - in terms of c, σS and λ. For those
situations, our results indicate that the optimal Dh can be approximated as the “expected”
distance from the closest neighbor given by the following equation,

D̂h = E [D] =

∫ √
A
π

0

ufD(u)du (6.9)

where fD(.) is given by the following Lemma:

Lemma 6.3.4. In a randomly deployed sensor network with N sensors over an area A the
distance of a sensor node from its closest neighbor can be described by a random variable
D with:

cdf : FD(u) = 1−
(

1− πu2

A

)N−1

(6.10)

pdf : fD(u) =
2π(N − 1)u

A

(
1− πu2

A

)N−2

(6.11)

The proof is included in the appendix. We know that on average, the CD is expected to have a
better performance when sensor nodes are close to each other and the MD when a sensor node
is more “isolated” from its neighbors. Since the event distribution is completely unknown,
we can only base our decision of which detector to use on the distance from the closest
neighbor the distribution of which is given by Lemma 6.3.4 for a randomly deployed sensor
field. So on average, we should use the MD when the distance from the closest neighbor is
larger than the mean distance and the CD otherwise.

Using Dh a sensor node can essentially maximize the area covered by itself. However, we
point out that the above solution provides only a local maximum (i.e., the coverage area of a
single sensor) and it does not mean that it can achieve the maximum coverage of the entire
field which is also a function of the topology since there may be overlap between the areas
of neighboring sensors and the amount of overlap differs based on the detection algorithm
used (in MD the coverage area of every sensor is always a circle whereas for CD it is an
ellipse). In principle, one can identify various scenarios and derive the optimal Dh based
on them. However, the simulation results indicate that the solution of (6.8) provides a fairly
good lower bound to the global optimal threshold.
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6.4 Simulation Results

For all subsequent experiments, we use a square sensor field of 1km×1km with N randomly
deployed sensors and assume that the sensor measurements were given by the propagation
model in Section 3.2. Also, it is assumed unless otherwise specified, that c = 1000, λ = 100,
σ2

W = σ2
S = 10 and M = 100. To obtain the experimental probability of false alarm (PF ) the

sensor nodes were simply exposed to noise and we counted the times that at least K sensor
nodes reported the presence of an event source. For obtaining the experimental probability
of miss (PM ) we counted the number of times that fewer than K sensor nodes reported the
presence of the source. We took the average over a grid of possible source locations that
covered the entire field and for each source location we used 500 Monte-Carlo simulations.
For all the experiments we used Matlab.

6.4.1 CD Performance Evaluation

In the first set of experiments we investigate the validity of Lemma 6.3.1 for the performance
evaluation of the Covariance Detector. In Fig. 6.1(a) we plot the analytical and experimental
PF vs. the detection threshold Tc for different fusion rules- K = 1− 5. It is evident from the
plots that the experimental results match the analytical. Fig. 6.1(b) displays the experimental
PM vs. the detection threshold Tc for different fusion rules- K = 1 − 5. In Fig. 6.1(c), we
plot the experimental PM vs. the PF for the same test scenario. From the plot it is evident
that the fusion rule K = 1 achieves the best coverage. Similar results were obtained when
varying the different problem parameters. For this reason, from now on for the remaining
simulations we decided to use the OR fusion rule (K = 1).

6.4.2 CD vs. MD

In this section we attempt to give better insight on why the CD outperforms the MD in situ-
ations of High Correlation with a specific test case study of a randomly deployed field with
100 sensors displayed in Fig. 6.2. We set the false alarm constraint to PF = 0.001 and use
equations (6.2) and (6.5) to calculate the thresholds of the 2 detectors (we use Tm = 1.35 and
Tc = 4.19). We use the correlation model (3.8) in Section 3.2 with λ = 200. We then run
a series of experiments where each possible source location is chosen from a grid of points
that covers the entire area (i.e., there is a grid point every 10m). For each different source
location we run 100 simulations and calculate the experimental PM at that location.
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Figure 6.1: Performance evaluation for CD using N choose K fusion rule. We use c = 1000,
λ = 150, σ2

S = 20 and σ2
W = 10.

The resulting contour plot for the PM of the MD is displayed over the sensor field in Fig. 6.2(a)
while for the CD is displayed in Fig. 6.2(b). The red color on the first 2 contour plots corre-
sponds to the value 1 and the blue color to the value 0. The blue crosses are the sensor nodes.
From Fig. 6.2(a) we see that using the MD the strict PF constraint only allows detection in
the immediate neighborhood of the sensor nodes and if the source is placed anywhere else
we have a miss event with probability 1. On the other hand from Fig. 6.2(b) it is evident that
CD has significantly better detection in places with high sensor density and allows the sensor
nodes to exploit the close distances to their neighbors for better detection results. The reason
is that highly correlated data from nodes in proximity is very useful in reducing PF . The
average probability of miss for the mean detector is PMMD = 0.789 while for the covariance
detector PMCD = 0.349 so the probability of miss was reduced by almost 50%!. Finally the
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difference of the two (PMMD−PMCD) is displayed in Fig. 6.2(c). On the difference contour plot
red color means positive values and blue negative. From the plot it is evident that while for
densely deployed sensor nodes CD achieves significantly better results, for isolated sensors
the MD is better. This explains the motivation behind the hybrid detector HD which is further
investigated in the next section.
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Figure 6.2: Probability of miss for different detectors.

6.4.3 Hybrid Detector

This section investigates the use for the Hybrid Detector HD as a way to improve the per-
formance of the MD and the CD in terms of the probability of miss for the test case given in
the previous Section 6.4.2. Fig. 6.3 shows the probability of miss vs the threshold Dh for
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different values of parameter constant λ. Based on the algorithm described in Section 6.3.3
the distance threshold Dh is what determines the number of sensor nodes that use the MD and
the number that use the CD. So Dh = 0 means that all sensor nodes use the MD and Dh = 150

essentially means that all sensor nodes use the CD- (this was found experimentally for the
particular sensor field under investigation).

Table 6.1: Optimal Dh for different λ

λ = 50 λ = 100 λ = 150 λ = 200

Solution of (6.8) -12 29 59 84

Experimental 0 35 65 100

From Fig. 6.3 one can determine the optimal Dh threshold for the different λ parameters. As
seen from the figure, for λ = 50, the MD (i.e., Dh = 0) achieves the minimum probability of
miss. For the remaining values of λ, the optimal Dh is summarized in Table 6.1. The table
also shows the real solution of (6.8) (the other two roots are complex numbers). For λ = 50

the optimal distance is negative which indicates that there is no valid solution to (6.8) and
thus, Dh = 0 should be used which is equivalent to saying that the MD should always be
preferred in low correlation conditions. For all other cases tested, it is evident from the table
that the analytical results are close to the experimental. So when the event distribution is
known we can solve the optimization problem given by Lemma 6.3.3 to derive the optimal
Dh.

Next, let’s consider what happens when the event distribution is completely unknown. To
simulate this, we assume that both c and λ are uniform random variables and find the average
probability of miss for 1,000 instances of the variables in 100 different randomly deployed
fields. Note, that by changing c we only affect the performance of MD, the same way λ

only affects the CD. The distributions where chosen to cover the entire range of PM for both
detectors from 0 to 1. We used c ∼ U [500− 8, 500] and λ ∼ U [100− 250]. Fig. 6.4 shows
the results of this test. From the plot it is evident that the optimal experimental Dh = 50.
Note that if we use (6.9) we get D̂h = 50.1 which is in agreement with the result obtained
experimentally.
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Figure 6.3: Probability of miss vs. threshold for HD.

6.4.4 Topology Implications

In this section we investigate the performance of the CD with respect to the sensor node
topology. In papers in the literature that do not consider spatial correlation, one can usu-
ally find a grid deployment that outperforms any random deployment. The intuition is that
random deployment may have significant overlap between the coverage areas of two neigh-
boring sensors which in general does not provide any new information. On the other hand a
grid deployment tries to minimize the overlap.

In this experiment we consider a 1000 × 1000 field with a grid in the middle. This grid
consists of 10 rows and 10 columns spaced at a distance of g meters apart, where g is the
grid size. At every intersection of a row with a column we place a sensor, i.e., there are
100 sensors. In other words, every sensor -except the ones on the perimeter of the grid-
has four neighboring sensors at a distance g (north, south, east, west). Fig. 6.5 shows the
probability of miss of the MD and CD for a fixed probability of false alarm as a function
of the grid side. In this figure, the black dots indicate the performance of the MD for grid
deployments of various g; the black semi-dotted horizontal line indicates the performance
of the MD when the sensors are randomly deployed (average of 100 deployments). From
these two plots it is evident that a grid deployment with a grid side g ≥ 50 outperforms
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Figure 6.4: Distance threshold optimization for HD.

the random deployment. Similar experiments are performed for the CD for different values
of λ. For λ = 50 (blue crosses and blue horizontal line) the minimum probability of miss
is achieved when the grid side g = 40m. Increasing the grid side beyond 40m deteriorates
the detector’s performance since the correlation between neighboring sensors decreases. The
blue horizontal line corresponds to the probability of miss for random sensor deployment and
we see the if the grid side 25 ≤ g ≤ 55, then the grid deployment outperforms the random
deployment. Similar results are recorded for λ = 100 (green circles and horizontal line) and
we also see that the grid deployment outperforms the random deployment if 45 ≤ g ≤ 60.
The results for high correlation, λ = 150 (red stars and horizontal line) and λ = 200 (cyan
squares and line) are different. The grid deployment achieves a minimum probability of
miss at g ' 70 for λ = 150 and at g ' 85 for λ = 200. In both cases however, note that
a random deployment can also achieve the minimum probability of miss. In other words,
for high correlation scenarios, there is no need to place the sensors on a grid since a random
deployment can perform as good or better than any grid deployment.

Next, motivated by (6.14) where it is indicated that the maximum area coverage of a sensor
is achieved when its closest neighbor is located at a distance d = 0 (i.e., the two sensors are
located at exactly the same point) we experiment with topologies that involve two sensors at
exactly the same point. So, for this experiment we place a 7 × 7 grid in the middle of the
field and place 2 sensors at each grid point (i.e., a total of 98 sensors). The grid side was
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selected such that the entire field was covered. Fig. 6.6 shows the contour plot for the PM of
the CD over the sensor field with the sensor node pair positions indicated with blue crosses
for different values of correlation constant λ. For all cases tested, for the CD, placing pairs of
sensor nodes in a grid configuration outperforms random and regular grid deployments (see
Fig. 6.5). The most significant improvement was observed for the λ = 150 scenario, where
the average PM = 0.28, which translates to about 50% improvement when compared to the
random deployment case.
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Figure 6.5: Grid vs. random topology.

6.5 Summary

In this chapter we evaluate the performance of three algorithms for event detection in a WSN
when the fusion rule at the base station is of the general form “event is detected if at least
K detection reports from alarmed sensors are received”. Firstly, the Mean Detector (MD)
where the test statistic is the sample mean of each sensor node by itself. Secondly, the Co-
variance Detector (CD) that evaluates the sample covariance between pairs of neighboring
sensor nodes. If the estimated sample covariance is above a threshold, then the CD reports
that an event is present. Finally, the Hybrid Detector (HD) where each sensor decides in-
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Figure 6.6: Probability of miss for CD using grid of sensor node pairs.

dependently between the MD and the CD based on the distance from its closest neighbor.
Our results indicate that in situations of densely deployed sensor networks with high spatial
correlation the CD can drastically improve the coverage (detection performance) of the sen-
sor network compared to the MD. Furthermore the HD can always achieve the best detection
results when using an optimal distance threshold to choose between the MD and the CD. In
situations where the event distribution is completely unknown, the optimal distance thresh-
old can be derived based on the density of sensor nodes in the field. Finally, our results have
implications on the topology of the network as well.
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A Proof of Lemma 6.3.2

We can think of a sensor node being alarmed as a red ball and a sensor being non-alarmed as
a blue ball. Then, this problem becomes equivalent to the problem of having two containers
of red and blue balls and we want the probability of picking a number of red balls from
both containers. Suppose that in the first container C1 we have N1 balls and in the second
container C2 we have N2 balls. The probability of a ball being red in the first container is
PR1 and in the second PR2 . The probability of choosing i red balls from both containers is
given by the following equation:

Pr{i red balls} =
i∑

x=0

(
N1

x

)
P x

R1
[1− PR1 ]

N1−x

(
N2

i− x

)
P i−x

R2
[1− PR2 ]

N2−i+x (6.12)

To find the total probability of choosing i red balls from both containers we condition on
the event of choosing x red balls from C1 and i − x red balls from C2 for x = 0, ..., i.
The probability of choosing x red balls from the first container is given by

(
N1

x

)
P x

R1
[1 −

PR1 ]
N1−x and similarly the probability of choosing i− x red balls from the second container

by
(

N2

i−x

)
P i−x

R2
[1 − PR2 ]

N2−i+x. Since the two events are independent, we multiply them
together to get the joint probability of choosing x red balls from the first container and i− x

red balls from the second container.

Pr{i red balls} =
i∑

x=0

Pr{x red balls from C1 AND i− x red balls from C2}

=
i∑

x=0

Pr{x red balls from C1}Pr{i− x red balls from C2}

=
i∑

x=0

(
N1

x

)
P x

R1
[1− PR1 ]

N1−x

(
N2

i− x

)
P i−x

R2
[1− PR2 ]

N2−i+x

This completes the proof.
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B Proof of Lemma 6.3.3

For the MD, the test statistic (6.1) under the H1 hypothesis has a Gaussian distribution with
mean µ1MD(r) = c

r2 . So using Def. 5.4.1 from Chapter 5, the coverage area becomes a disc
around the sensor node location whose radius depends on the event amplitude and detection
threshold and is given by

Rc =

√
c

Tm

(6.13)

where c À Tm.

For the CD, the test statistic (6.4) has a Gaussian distribution with mean µ1CD(r, d) = σ2
Se−

r+d
λ .

Using the analysis of Chapter 5, the perimeter of the coverage area by the two sensors is an
ellipse with the sensor node and its closest neighbor located at the ellipse’s foci. Therefore
the area covered by a sensor that uses the CD can be described by,

Ac(Λ, d) = π

(
Λ− d

2

) √
Λ(Λ− d). (6.14)

where Λ = λ
2
ln

σ2
S

Tc
.

A sensor will use the CD as long as the coverage area of the ellipse (6.14) is greater than the
coverage area of the MD -a circle with radius given by (6.13) , i.e.,

Ac(Λ, d) = π

(
Λ− d

2

) √
Λ(Λ− d) ≥ πR2

c =
πc

Tm

.

The proof follows by rearranging terms.

C Proof of Lemma 6.3.4

We start by deriving the cdf of D, FD(u) as a function of the radial distance u from a given
sensor node position.

FD(u) = Pr{D ≤ u} = 1− Pr{D > u}
= 1− Pr{no sensor within disc of radius u around sensor node location}
= 1− Pr{N − 1 remaining sensor nodes fall outside disc}

= 1−
(

1− πu2

A

)N−1
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Note that for 1 − FD(u) > 0 we have to have πu2 ≤ A ⇒ u ≤
√

A
π

. The pdf of D, fD(u),
is given by

fD(u) =
dF

du
=

2π(N − 1)u

A

(
1− πu2

A

)N−2

. (6.15)
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CHAPTER 7

EVENT LOCALIZATION USING NONLINEAR

LEAST SQUARES

7.1 Overview

In this chapter, we begin our investigation of using a Wireless Sensor Network (WSN) for
estimating the location of an event source. More specifically, we use nonlinear Least Squares
(LS) optimization to estimate the source position based on the concentration readings at the
sensor nodes. Our simulation results indicate that the LS method performs significantly
better than the Closest Point Approach (CPA) where the source location is assumed to be
the sensor node with the highest measurement. Furthermore, our results indicate that in the
presence of a draft that pushes the substance in certain direction, a threshold is necessary for
the LS method to yield accurate results. Finally, the use of unconstrained optimization or the
existing knowledge of the wind direction can further improve the location estimate.

7.2 Introduction

This chapter proposes the use of a sensor network for estimating the location of a source
that releases a certain substance in the environment which is then propagated over a large
area. The concentration of the substance at the source location is assumed unknown. The
sensor nodes are able to measure the substance concentration at their own locations but their
measurements are noisy. Based on these concentration readings we use nonlinear Least
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Squares (LS) optimization [66] to estimate the event source position.

We first present a simulation study for determining the event source location when the sub-
stance spreads uniformly in all directions around the source. In our simulations, we vary the
number of sensors in the sensor field and the variance of the noise at each measurement. We
show that in high uncertainty environments it pays off to use a large number of sensors in the
estimation whereas in low uncertainty scenarios a few sensors achieve satisfactory results.
We also show the importance of choosing the appropriate parameters for the least squares
optimization especially the start position for our algorithm. We compare our results to the
Closest Point Approach (CPA) where the source location is assumed to be the sensor node
with the highest measurement.

Next, we use the directed propagation model that pushes the substance to a specific direction.
Under this scenario, we show that for the Least Squares (LS) approach to yield accurate re-
sults, it is necessary to introduce a threshold, such that only measurements that are above this
threshold are used for the event source location estimation. Moreover, our results indicate
that using unconstrained optimization or our knowledge of the wind direction in constraining
the search area of the LS optimization can further improve our estimation results.

The chapter is organized as follows. First, in Section 7.3, we provide the details of the non-
linear least squares approach. Then, in Section 7.4, we analyze the results of the simulation
study using the uniform propagation model. Section 7.5 presents the results of the simula-
tion study using the directed propagation model. We conclude with a summary of the main
results of this chapter in Section 7.6.

7.3 Nonlinear Least Squares Optimization

The sensor nodes are assumed to be in an energy-conserve state until triggered by the pres-
ence of the substance released by the event source. When a sensor node detects the event, i.e.,
it receives a measurement zi,t > T , where T is a threshold, it wakes up and takes a number
of discrete measurements M over a time interval and takes the mean of these measurements
z̄i = 1

M

∑M
t=1 zi,t. Then, it compares this value to a predefined threshold T to decide whether

to communicate this information to the sink and continue measuring or go back to sleep.

Definition 7.3.1. A sensor i is said to be in the Energized Sensor Set E if z̄i > T .

E = {i : z̄i > T}
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After the sink receives the information from the sensor nodes ∈ E , it employs the nonlinear
least squares method [66] using the received information. It computes an estimate of the
source location (x̂s, ŷs) by minimizing the following function:

J =
∑
i∈E

(
ĉ

[(x̂s − xi)2 + (ŷs − yi)2]
α
2

− z̄i

)2

(7.1)

where ĉ is an estimate of the substance concentration at the event source.

Since the initial plume concentration c is also assumed unknown, we first use separable
least squares [35] techniques to minimize J with respect to c in terms of the other unknown
parameters. This can be accomplished in closed form because J is a quadratic function of c.
After taking the partial derivative ∂J

∂c
of (7.1) and set it to zero we obtain:

ĉ =

∑
i∈E

z̄i

rα
i∑

i∈E
1

r2α
i

(7.2)

where ri is the radial distance from the source, i.e.,

ri =
√

(xi − xs)2 + (yi − ys)2 (7.3)

for i = 1, · · · , N . Using the expression for ĉ in (7.1) we go back to the usual nonlinear
minimization problem with two unknowns, x̂s and ŷs.

By taking the mean before communicating this information to the sink, we reduce the amount
of data flowing in the sensor network and save both bandwidth and energy and therefore pro-
long the lifetime of the network. Furthermore, as shown in the following lemma, minimizing
(7.1) gives exactly the same results as minimizing an objective function that includes all
sensor measurements, in other words there is no loss of accuracy in sending only z̄i.

Lemma 7.3.1.

arg min
x,y

∑
i∈E

(
ĉ

[(x̂s − xi)2 + (ŷs − yi)2]
α
2

− z̄i

)2

= arg min
x,y

∑
i∈E

M∑
t=1

(
ĉ

[(x̂s − xi)2 + (ŷs − yi)2]
α
2

− zi,t

)2

where z̄i = 1
M

∑M
t=1 zi,t.

The proof is included in the appendix.
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7.4 Uniform Propagation Simulation Results

For the initial implementation of our sensor network that traces the contaminant transport
to source we use the uniform propagation model described in Section 3.1 of Chapter 3 - i.e.
the propagation of the contaminant transport is uniform in all directions and there are no
environmental changes throughout the propagation.

For all subsequent experiments we used a square sensor field of 1km×1km and assume that
the sensor measurements were given by:

zi,t = min

{
106,

106

r2
i

}
+ wi,t (7.4)

where i = 1, · · · , N , t = 1, · · · , M , r2
i = (xs − xi)

2 + (ys − yi)
2 and wi,t = N(0, σ2), ∀i,

∀t. The error reported is the average over K experiments where we assume that the plume
source is randomly placed at points (xs,k, ys,k) and we solve the problem (7.1) K-times to
obtain (x̂s,k, ŷs,k), k = 1, · · · , K. In other words, the error shown in our results is given by

Error =
1

K

K∑

k=1

√
(xs,k − x̂s,k)2 + (ys,k − ŷs,k)2 (7.5)

At the beginning of these K experiments we randomly initialize the sensor field but it re-
mains fixed for all K experiments. For the following experiments we used Matlab and
K = 100.

7.4.1 Effect of varying the number of sensors

In the first set of experiments we investigated the effect of the number of sensors N used in
the calculation and compared the results against the CPA. We varied the number of sensor
nodes in the sensor field from 2 to 100 and used three different approaches for evaluating the
start point of the least squares algorithm. In the first approach, for the starting point, we used
a point close to the sensor node with the highest measurement. This plot is denoted as LS
max start. In the second approach, the initial point is randomly selected. Specifically,
we randomly picked 10 different starting positions and chose the one that minimized the
squared 2-norm of the residual (resnorm) in the least square results. This plot is denoted
as LS random start. In the third approach we took the better of the two approaches
as the one that minimized the overall resnorm and we denoted this by LS combo. The
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Figure 7.1: Error vs number of sensor nodes for different conditions of noise variance.

results are shown in Figures 7.1(a)-7.1(c) for noise variance 1, 10 and 100 respectively. There
are several things to observe from these plots:

1. The LS random start performs quite well for small numbers of sensor nodes
whereas for sensor numbers greater than 50 the LS max start performs better.
This is expected because the success of the least squares algorithm depends greatly
on the starting point of the algorithm and having a starting point close to the actual
plume source position enhances the probability of correctly converging to the correct
minimum. When there are only a few sensors in the field using the LS max start

often results in starting points that are far away from the source and so it is a better
approach to randomly search for the start position. When the number of sensor nodes
increases above a certain threshold this guarantees good coverage of the whole sensor
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field and starting at the sensor node with the highest measurement results in starting
the optimization in the local neighborhood of the source. In situations like these, LS
random start performs even worse than the CPA approach. This is due to the
large number of sensor nodes which allows several starting positions that are far away
from the neighborhood of the source and as a result, the optimization algorithm ends in
some local minimum other than the global one. The LS combo approach combines
the best of both worlds and performs very well for all numbers of sensor nodes so
we decided to adopt it for all subsequent experiments and discussions and will simply
refer to it as LS.

2. Increasing the number of sensor nodes does not always produce better results. For
low variance conditions the error decreases until we reach the number of 10 sensor
nodes to a value of less than 10m and from there on it follows steady state behavior
with unpredictable fluctuations. These are very encouraging results because we want
to use as few sensors as possible in the computations to save energy. This way the
sensors that are not involved in the sensing or communication process can go to sleep
to conserve energy. In higher variance conditions we need more sensor nodes to obtain
similar results. For variance 10 we need 25 sensor nodes and for variance 100 we need
all 100 sensors.

3. The least squares approach performs better than the CPA for all numbers of sensor
nodes. The benefits are more obvious for a few sensor nodes where there is as much
as 1500 percent more error in using the CPA. The difference between CPA and LS
gradually decreases with increasing numbers of sensor nodes This is expected because
increasing the number of sensors allows for a better coverage of the sensor field.

7.4.2 Effect of varying the noise variance

In the second set of experiments we investigated the effect of variance for six different sensor
networks with 3, 5, 10, 20, 50 and 100 sensor nodes. The results are shown in Figure 7.2(a)
for the least squares approach and Figure 7.2(b) for the closest point approach. From these
results we make the following observations:

• The 100 sensor network is the only one that is robust to the noise variance. For the
rest of the sensor networks the error increases with variance increase and for high
variances it asymptotically approaches the CPA curves. The least squares approach
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Figure 7.2: Error vs noise variance for different numbers of sensor nodes.

performs better than the CPA for all variance conditions. The benefits are more obvi-
ous for low noise variance conditions but seem to diminish for variance 100. At this
point, it is worth pointing out that variance 100, implies that for a significant portion
of the sensors, the measurements are dominated by noise, which explains the poor
performance of the least squares approach.

• The rate of increase of error with variance increase is dependent on the number of
sensor nodes. The 3 sensor node network exhibits the highest rate of increase with the
error reaching 50 m for noise variance of just 1. The 5 sensor node network reaches the
same error for variance 5, the 10 sensor network for variance 10, the 20 sensor network
for variance 30 and the 50 sensor network for variance 75. The 100 sensor network has
an error of about 10m for all variance conditions. Based on these results we conclude
that for correctly determining the number of sensor nodes to use in the calculation to
achieve certain accuracy in the results we need to take this decision based on the noise
variance of the propagation model.

7.4.3 Effect of varying the number measurement samples

For all the previous experiments the number of measurements was fixed to M = 10. In
this set of experiments we investigated the effect of the number of measurements M for six
different sensor fields of fixed variance and number of sensor nodes. These were chosen
from the previous sets of experiments as the threshold values for which the error was around
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Figure 7.3: Error vs number of measurements.

50m. This time the number of measurements was varied from 1 to 100 and part of the
results are displayed in Figure 7.3. From the plot we see that all six of the sensor networks
follow a similar behavior. The error decreases exponentially as the number of measurements
increases until a certain threshold value of measurements. After this threshold there is no
real benefit for taking more measurements as the plots reach a steady state behavior. For the
100 sensor network this threshold is 5 measurements and for the rest of the sensor networks
it is around 25 measurements. It is worthwhile to observe the sudden increase in error if we
decide to take fewer than 10 measurements.

7.5 Directed Propagation Simulation Results

For this section we assume the simplified signal/substance propagation model which takes
into consideration environmental conditions like wind or current flow described in Sec-
tion 3.3 of Chapter 3.

The solution to the LS problem (7.1) greatly depends on the initial point as well as the search
area constraints. In Section 7.4, to obtain the solution of the LS method, we used gradient

84

Mich
ali

s P
. M

ich
ae

lid
es



based techniques and solved the problem eleven times using eleven different initial points.
Specifically, we obtained a solution starting from the location of the sensor with the highest
measurement as the initial point as well as ten solutions from 10 random initial points in
A. At the end, we simply picked the solution with the minimum residual cost. Furthermore,
during any iteration, we constrained the solution in the sensor field area A. In this section, we
show that further improvements of the estimation accuracy can be obtained with 2 different
methods:

1. Unconstrained Optimization which means that we allow the solution to go outside the
sensor field area A. This approach helps especially for sources that are located close
to the boundaries because allowing the search to temporarily step outside the sensor
field may lead to a more accurate estimate. Since the most difficult sources to estimate
are the ones close to the boundaries (since there may not be enough sensors close by
to record high enough measurements) the benefits can be significant.

2. Constrained optimization based on wind direction which means that we restrict the
solution to be in the target area T . Assuming that each node is also equipped with
a wind direction sensor, we can further reduce the search for the event source in the
upwind direction based on the location of the sensor with the highest concentration
measurement. For this reason we define the Target Area T (see below). This improves
our estimator performance since we are now performing minimization over a smaller
area, (see Fig. 7.4).

Definition 7.5.1. A sensor is said to be in the Target Area T if it is located in the area defined
by the location of the sensor with the highest measurement, φw and φu (see Fig. 7.4).

For all subsequent experiments we used a square sensor field of 1km×1km and assume that
the sensor measurements were given by:

zi,t = min

{
106,

106

r2
i

}
+ wi,t (7.6)

where i = 1, · · · , N , t = 1, · · · ,M , r2
i = (xs − xi)

2 + (ys − yi)
2. Furthermore, we assume

wi,t to be white Gaussian noise N(0, σ2
i ). For all sensors in the active area A we assumed a

constant signal to noise ratio (SNR), thus

σ2
i =

c2

SNR× r4
i

and for all other sensors σ2
i = 1

SNR
. The error reported is the average over K experiments

where we assume that the plume source is randomly placed at points (xs,k, ys,k) ∈ A and we
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Figure 7.4: Target Area in a field with 100 randomly placed sensor nodes.

solve the problem (7.1) K-times to obtain (x̂s,k, ŷs,k), k = 1, · · · , K. In other words, the
error shown in our results is given by

Error =
1

K

K∑

k=1

√
(xs,k − x̂s,k)2 + (ys,k − ŷs,k)2 (7.7)

At the beginning of these K experiments we randomly initialize the sensor field but it re-
mains fixed for all K experiments. A typical 1km × 1km sensor field with 100 sensors is
shown in Fig. 7.4. For the following experiments we use the Matlab package and assume
K = 1000. We also use M = 10 (number of measurements before averaging). Finally
we assume a constant north-eastern draft (φw = 45◦) and a spread angle φs = 90◦ (see
Section 3.3).

For a sensor field with N = 100 sensors Fig. 7.5 shows the number of energized sensors
(i.e., cardinality |E|) for different values of the SNR. An important observation is that for
this fairly dense field (100 nodes per square km) there are about 3.5% of event sources that
remain undetected i.e., |E| = 0. Furthermore, there are additional 7% where |E| < 3 which
means that the LS localization will not work (it needs at least 3 measurements). For these
cases one needs to resort to the Closest Point Approach (CPA).

Fig. 7.6(a) shows the effect of varying the number of samples M that each sensor collects

86

Mich
ali

s P
. M

ich
ae

lid
es



0 5 10 15 20 25
0  

1

2

3

4

5 

6 

7 

8 

9 

10

Cardinality of E

%

SNR 0.1
SNR 1
SNR 10

Figure 7.5: Percentage of times that E has a specific number of sensor nodes given a field
with N = 100 nodes.

before evaluating the average measurement. As expected, more measurements imply better
results particularly for low SNR. Of course, the trade off is that more energy will be needed
to collect more data and more delay.

Fig. 7.6(b) shows that it is necessary to apply a threshold on the average measurements
of each sensor before using the LS estimation approach. As indicated in the figure, if no
threshold is applied (i.e., all sensor measurements are used), then the error is of the order of
370m. Using a threshold of zero improves the error to about 250m but it is still worse than
the CPA. Applying a threshold of 1, reduces the error below 5m.

Fig. 7.6(c) compares the estimation accuracy when the event source position is constrained
into different regions. LSc refers to a scenario where c is unknown and the source is con-
strained in the entire sensor field with area A. LSu refers to the same scenario but no con-
straints are used when the LS problem is solved. LSw refers to the same scenario but now
the source position is constrained in the target area T . Finally, the last curve LS refers to the
case where c is known. The figure shows that knowledge of the wind direction can improve
the estimator accuracy.

Finally, Fig. 7.6(d) compares the LS and CPA approaches when the propagation model is not
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Figure 7.6: Performance of the proposed Least Squares optimization techniques as we vary
different parameters in the field.

known exactly, i.e., when the constant α is not known. For all LS approaches shown in the
figure, the source in constrained in A. LS refers to the case where both c and α are known.
LSc refers to the case where c is unknown but α is known. LSa refers to the case where both
c and 1 ≤ α ≤ 3 are unknown. Note that in all cases, the LS gives much better results than
the CPA.
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7.6 Summary

In this chapter we propose sensor network that estimates the event source location in a con-
strained sensor field using nonlinear LS optimization techniques. First, we use a uniform
propagation model in order to investigate the different parameters involved. Our results in-
dicate that in situations with high noise variance it is necessary to increase the number of
sensors or the number of measurements at each sensor node to achieve satisfactory results.
Next, we use a directed propagation model that pushes the signal to a certain direction. The
proposed LS algorithm performs better than the CPA (Closest Point Approach). Further-
more, we show that unlike the uniform propagation model, the performance of the LS now
depends on the threshold T . On the other hand, T increases the probability that a source
remains undetected. Determining an appropriate threshold is an optimization problem inves-
tigated in Chapter 4.

A Proof of Lemma 7.3.1

Let
gi(xs, ys) =

ĉ

[xi − xs
2 + yi − ys2]

α
2

for all i = 1, · · · , N , where ĉ is given by (7.2). Then, the objective function in the left hand
side can be written as

J1 =
∑
i∈E

(gi(x, y)− z̄i)
2

Similarly the objective function in the right hand side can be written as

J2 =
∑
i∈E

M∑
t=1

(gi(x, y)− zi,t)
2

To find the extrema of the two functions we simply differentiate with respect to either x or y

and set the result equal to zero. Differentiating J1 with respect to x and setting the derivative
equal to zero we get

∂J1

∂x
=

∑
i∈E

2∂gi(x, y)

∂x
(gi(x, y)− z̄i) = 0 (7.8)
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Differentiating J2 with respect to x and setting the result to zero we get

∂J2

∂x
=

∑
i∈E

M∑
t=1

2∂gi(x, y)

∂x
(gi(x, y)− zi,t)

=
∑
i∈E

2∂gi(x, y)

∂x

M∑
t=1

(gi(x, y)− zi,t)

=
∑
i∈E

2∂gi(x, y)

∂x
(Mgi(x, y)−Mz̄i)

= M
∑
i∈E

2∂gi(x, y)

∂x
(gi(x, y)− z̄i) = 0

Note that the last equation has precisely the same solution as (7.8). Similar equations are
obtained when differentiating with respect to y, thus the lemma is proved.
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CHAPTER 8

THE SNAP ALGORITHM

8.1 Overview

This chapter continues to investigate the use of Wireless Sensor Networks (WSNs) for es-
timating the location of an event. In this context, we assume that the sensors make binary
observations and report the event (positive observations) if the measured signal at their lo-
cation is above a threshold; otherwise they remain silent (negative observations). Based on
the sensor binary beliefs, a likelihood matrix is constructed whose maximum value points
to the event location. The main contribution of this chapter is SNAP (Subtract on Nega-
tive Add on Positive), an estimation algorithm that provides an efficient way of constructing
the likelihood matrix by simply adding ±1 contributions from the sensor nodes depending
on their observation state (positive or negative). Furthermore, we demonstrate how SNAP
can be cast in a maximum likelihood estimator with respect to the binary data and can be
implemented in a fully distributed fashion (dSNAP). In Chapter 9, we will be showing that
SNAP achieves fault tolerant localization when a large percentage of the sensor nodes report
erroneous observations.

8.2 Introduction

As already mentioned, a WSN consists of low-cost devices which have limited resources
(processing capabilities, memory, and power) and may fail frequently. Note that in this con-
text, it makes sense to use only binary observations; binary decisions are “easier” problems
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for the sensors to solve and they also limit the communication cost (single bit transmissions).
Moreover, binary decisions are less sensitive to calibration mismatches and varying sensor
sensitivities1. With this in mind, the objective of this work is to develop a simple, fault tol-
erant algorithm that can quickly identify the event location using only binary data from the
sensor nodes.

SNAP (Subtract on Negative Add on Positive), is one such algorithm and the main contri-
bution of this chapter. The main idea behind SNAP is to use the observations of all sensors
(positive or negative) to construct a likelihood matrix by summing contributions of ±1. In
other words, sensors with positive observations add their contributions to the cells of the
likelihood matrix that correspond to their Region of Coverage (to be defined in the sequel),
while sensors with negative observations subtract their contributions. By bounding the con-
tribution of each sensor to ±1, we do not allow any sensor measurement to dominate the
overall estimation result which constitutes the basic reason for the algorithm’s fault tolerant
behavior (we will be demonstrating the fault tolerance of SNAP in Chapter 9). SNAP is
designed to address some of the major challenges outlined in [5] in the new research area of
Collaborative Signal Information Processing (CSIP): it promotes the collaborative efforts of
the sensor nodes and provides a simple, fault-tolerant way to combine their binary data to
estimate the event location.

Another contribution of this chapter is the implementation of SNAP in a distributed fashion
(dSNAP). In this context, any alarmed node in the vicinity of the event can be elected as
leader and perform the localization of the event by utilizing data from only the sensor nodes
inside its neighborhood. The complexity of communications and computations grows rapidly
with the number of sensors which makes centralized estimation algorithms impractical and
distributed algorithms a more appropriate choice in the context of sensor networks. For
an estimation algorithm to be truly distributed it has to have two important characteristics.
First, an accurate enough estimate of the event characteristics should be obtained without
contacting all the sensor nodes in the field. This is essential in terms of both energy efficiency
and scalability and it allows sensor nodes irrelevant to the estimation to perform other tasks.
Second, the algorithm needs to be simple enough so it can be performed by any sensor node.
This way, there is no need to communicate measurements first to a central unit with enough
power to carry on complex computations. In this chapter, we show that dSNAP is a truly
distributed algorithm and explain how to set the neighborhood size in order to achieve the
performance of the centralized algorithm.

1If a sensor has an offset x > 0, then all of its measurements include this error. On the other hand, if the

sensor decision is binary, i.e., it has to decide whether its measurement z is less than a threshold Y , then its

decision is correct for most measurements except only for the measurements in the range Y − x < z < Y .
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The chapter is organized as follows. First, in Section 8.3, we present some definitions. Then,
Section 8.4 describes the details of the proposed SNAP algorithm. Section 8.5 shows that
SNAP can be cast in a maximum likelihood estimator with respect to the binary data. In
Section 8.6, we introduce three variants of the SNAP algorithm. Section 8.7 explains the
distributed implementation of SNAP. Section 8.8 presents several simulation results. Finally,
this chapter concludes with a summary of the main results of this chapter in Section 8.9.

8.3 Definitions

For the sensor network that localizes an event we use the uniform propagation model de-
scribed in Section 3.1 of Chapter 3. As previously stated, this propagation model may be
accurate for sources that emit sound or electromagnetic waves, but it may not be very accu-
rate for problems where an actual substance is released in the environment (for example in
problems where the wind pushes the substance towards some direction). Nevertheless, we
point out that extensions of SNAP to other signal propagation models are possible as we will
be demonstrating in Chapter 10. Furthermore, we assume that the sensor nodes have been
programmed with a common threshold T . Given T for any t, we define,

• Alarmed Sensor: Any sensor with zn,t ≥ T .

• Non-Alarmed Sensor: Any sensor with zn,t < T .

The threshold T is chosen large enough such that the probability of the sensor being falsely
alarmed is small, e.g., less than 0.01. This implies that with high probability the sensor nodes
that become alarmed do so as a result of the event signal and not because of noise alone.
Finally, we assume the fusion center (sink) has correctly detected the event. Regarding this
assumption, readers are referred to Chapter 4, where the detection problem in the context of
WSN is addressed.

Next, we make the following definition with respect to the footprint of the event.

Definition 8.3.1. Region of Influence (ROI) of a source, is the area around the source loca-
tion inside which a sensor node will be alarmed with high probability, at least 0.52.

2Using 0.5 is a convenient way to define the ROI when dealing with noise that has symmetric pdf (e.g.

Gaussian) because the ROI size becomes independent of the noise variance.
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Figure 8.1: Different regions used for SNAP: Region of Influence (ROI), Region of Cover-
age (ROCn) and Region of Subscription (ROSn).

For the uniform propagation model used in this chapter, the ROI becomes a disc centered at
the source location as shown in Fig. 8.1 with radius

RI = α

√
c

T
,

derived from (3.3). Since the threshold T is chosen to make the probability of falsely alarmed
sensors very small, the ROI can also be interpreted as the area around the event location
containing mostly “correctly alarmed” sensors with high probability.

From the sensor node perspective we define two more regions also depicted in Fig. 8.1.

Definition 8.3.2. Region of Coverage of sensor node n (ROCn), is the area around a sensor
node location inside which if a source is present, then it will be detected with high probability
(at least 0.5).

For the uniform propagation model of Section 3.1 by symmetry, ROCn becomes a disc
centered at the alarmed sensor node location with area equal to that of the ROI.
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Definition 8.3.3. Region of Subscription of sensor node n (ROSn), is the area around the
sensor node n location inside which the sensor node needs to subscribe for information from
all other sensor nodes which are relevant to the estimation problem. We also refer to this
region as the neighborhood of sensor node n.

This is the same region used in [46] to define the area where a node should notify possible
competitors during the leader election process.

8.4 SNAP (Subtract on Negative Add on Positive) Al-

gorithm

The SNAP algorithm consists of four main components:

1. Grid Formation: The entire area is divided into a grid G.

2. Region of Coverage (ROC): This is the area covered (monitored) by each sensor as per
Def. 8.3.2. Given G, the ROC of a sensor is a neighborhood of grid cells around the
sensor node location.

3. Likelihood Matrix Construction: Associated with G is a likelihood matrix L. Inside
the matrix cells that correspond to the sensors ROC, each sensor adds a value based on
its binary observation (+1 on positive observation and -1 on negative). We calculate
the likelihood of a source found in each grid cell, by summing the corresponding
contributions from all sensor nodes.

4. Maximization: The maximum of this likelihood matrix points to the estimated event
location.

Next, we describe the algorithm in more detail.

8.4.1 Grid Formation

The area is divided in a grid G with G × G cells and grid resolution g (e.g., a 100 × 100

field with G = 20 would have a grid resolution of g = 5). Let C(i, j) for i, j = 1, · · · , G,
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denote the centers of these cells in a matrix form. The number of cells is a tradeoff between
estimation accuracy and complexity that is further investigated in Section 8.8. Each sensor
node is associated with a cell (i, j) based on its position (depending on the resolution a cell
may contain multiple sensors or no sensors at all). The position index of each node is denoted
by (Xn, Yn), n = 1, · · · , N , where Xn, Yn ∈ {1, 2, ..., G}. Given G we also define a G×G

likelihood matrix L.

8.4.2 Region of Coverage (ROC)

For the uniform propagation model considered in this chapter we can determine the ROC of
a sensor using the following result the proof of which is included in the appendix.

Lemma 8.4.1. Under conditions of no noise and no faults, assuming (i) a uniform propaga-
tion model (as in Section 3.1), and, (ii) the presence of at least one sensor node inside the
source ROI, then, the maximum of the likelihood matrix constructed by SNAP is Lmax > 0

and the set of cells of the matrix that attain this value, denoted by Amax, always includes the
true source location iff ROC ≡ ROI .

Lemma assumption (ii) is rather technical and is only used to exclude cases of events that
could not have been detected. The interpretation of Lemma 8.4.1 is that for the uniform
propagation model used, SNAP can achieve the highest accuracy when one sets the ROC of
the sensor equal to the ROI of the source. Note that for non-uniform propagation models,
as in the case of environmental pollution where the wind may push the pollutant in some
direction, this result does not hold. In fact, the ROC used in SNAP should be the “mirror
image” of the source ROI. This is further investigated in Chapter 10.

8.4.3 Likelihood Matrix L

Each alarmed sensor adds a positive one (+1) contribution to the elements of L that cor-
respond to the cells inside its ROC. On the other hand, every non-alarmed sensor adds a
negative one (-1) contribution to all elements of L that correspond to its ROC. Thus, the
elements of the likelihood matrix are obtained by

L(i, j) =
N∑

n=1

M∑
t=1

bn,t(i, j), for i, j = 1, · · · , G, (8.1)
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where,

bn,t(i, j) =





+1, if zn,t ≥ T AND (i, j) ∈ ROCn

−1, if zn,t < T AND (i, j) ∈ ROCn

0, otherwise

(8.2)

and ROCn represents the region of coverage of sensor node n.

8.4.4 Maximization

Let (i∗, j∗) be the element of L with the maximum value, i.e.,

L(i∗, j∗) ≥ L(i, j) ∀i, j = 1, · · · , G

then the estimated event location is C(i∗, j∗), i.e., the center of the corresponding cell in the
grid G. In cases where more than one elements of the L matrix have the same maximum
value, the estimated event position is the centroid of the corresponding cell centers.

8.4.5 SNAP example

To illustrate the SNAP algorithm we provide a simple example using a square ROC. In this
example, the ROC of sensor node n is the set of cells that fall in a square of 5 × 5 cells
around cell (i, j) where sensor n is located as shown in Fig. 8.2. For the construction of
the likelihood matrix L, each alarmed sensor adds a positive one (+1) contribution to the
elements of L that correspond to the cells inside its ROC as shown in Fig. 8.2. On the other
hand, every non-alarmed sensor adds a negative one (-1) contribution to all elements of L
that correspond to its ROC. The resulting likelihood matrix after adding and subtracting the
contributions of 8 such sensors using SNAP is shown in Fig. 8.3. The event in this example
is correctly localized in the grid cell with the maximum value +3.

8.5 SNAP: A Maximum Likelihood Estimator

In this section we show that SNAP can be cast in a maximum likelihood estimator with
respect to the binary data. First, let us define the indicator function for n = 1, · · · , N and
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-1-1-1-1-1

-1-1-1-1-1

Alarmed Sensor n Non-alarmed Sensor n

Figure 8.2: Region of Coverage (ROC).

t = 1, · · · ,M :

In,t =

{
0, if zn,t < T

1, if zn,t ≥ T
(8.3)

thus, the sensor data can be represented as I = {In,t : n = 1, · · · , N, t = 1, · · · ,M}. The
goal is to estimate the source location θ = [xs, ys] using the collected data I.

8.5.1 Maximum Likelihood

The Maximum Likelihood Estimator has the form:

θ̂ML = max
θ

log p(I | θ) (8.4)

where the log-likelihood function is given by:

log p(I | θ) =
N∑

n=1

M∑
t=1

In,t × log

[
Q

(
T − sn(θ)

σw

)]

+(1− In,t)× log

[
1−Q

(
T − sn(θ)

σw

)]
(8.5)

where Q(x) = 1√
2π

∫∞
x

e−
t2

2 dt is the complementary distribution function of the standard
Gaussian distribution. Also, sn(θ) is the signal that would have been measured by sensor n

if the source was at location θ and there was no noise (given in Section 3.1). The derivation
details for the case where σ2

w = 1, ∀n,∀t can be found in [34].
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-1000+1+3+2+1+10-1-1

-10-1-10+2+1+1+10-1-1

-10-1-1-1+1-1-1-1-1-2-1

-10-1-1-1+1-1000-1

+10000-2-1-1-1-1

-1-1-1-1-1

-1-1-1-1-1

-10000+1

-1000-10-1-1-1

-1-1-1-2-1+1+10+10-1-1

-1000+1+3+2+1+10-1-1

-10-1-10+2+1+1+10-1-1

-10-1-1-1+1-1-1-1-1-2-1

-10-1-1-1+1-1000-1

+10000-2-1-1-1-1

Event

Figure 8.3: L resulting from SNAP with 8 sensor nodes, 3 of which are alarmed and are
shown in solid color. The event is correctly localized in the grid cell with the maximum
value +3.

8.5.2 q-ML

In this section we define a particular class of maximum likelihood estimators (q-ML). Given
there is a source at a position θ, let us only consider the data from the sensors that fall
inside the source neighborhood and let’s assume that 0 < K ≤ N such sensors exist. The
data from these sensors can be represented as IK ⊆ I = {Ik,t : rk ≤ Rc} where rk is the
Euclidean distance between the sensor node k = 1, · · · , K and the source position θ. The
joint likelihood function is given by:

p(IK | θ) =
K∏

k=1

M∏
t=1

[
Q

(
T − sk(θ)

σw

)]Ik,t

×
[
1−Q

(
T − sk(θ)

σw

)](1−Ik,t)

The only difference from (8.5) is that we only use the sensors inside the source neighborhood
to construct this likelihood function. For the selected sensors, we propose the following
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“arbitrary” probability assignment for their indicator function Ik,t:

Pr{Ik,t = 1 | θ} = Q

(
T − sk(θ)

σw

)
= q

Pr{Ik,t = 0 | θ} = 1−Q

(
T − sk(θ)

σw

)
= 1− q.

8.5.3 SNAP

Lemma 8.5.1. SNAP belongs to the class q-ML of maximum likelihood estimators defined
in Section 8.5.2 using q = 0.99.

Proof: For SNAP, the source neighborhood becomes the source ROI (defined in Section 8.3).
Given there is a source at a position θ, we only consider the data from the sensors that fall
inside the ROI to construct this likelihood function. For the selected sensors, it is expected
that most will be alarmed, thus we use q = 0.99. Next, consider the modified likelihood
function p′(IK | θ) = 102KMp(IK | θ). Taking the logarithm of the modified likelihood
function we get:

log p′(IK | θ) =
K∑

k=1

M∑
t=1

Ik,t × log(9.9)

+(1− Ik,t)× log(0.1)

≈
K∑

k=1

M∑
t=1

Ik,t × (+1)

+(1− Ik,t)× (−1)

Therefore, in order to find the likelihood of each source location θ, we simply add one
from all alarmed sensor nodes and subtract one from all non-alarmed sensor nodes that are
sufficiently close to θ (i.e., inside the source ROI). This completes the proof.

So the SNAP estimator can be cast in a maximum likelihood estimator with respect to the
binary data. Compared to the traditional ML estimator presented in Section 8.5.1, it has
two major differences. First, to construct the likelihood function at a location θ it uses only
“local” information in the sense that it uses only the data from the sensors that are inside the
ROI. Second, and most important, the way the likelihood function is created is very simple
and it turns out to be extremely fault tolerant as it will be shown in Chapter 9.
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8.6 SNAP Variants

In this section we introduce three variants of the SNAP algorithm. In the first, SNAPm, we
attempt to conserve energy by first calculating the mean of M measurements locally at each
sensor node before sending the information to the fusion center (sink). In the second, SNAPe,
we provide a heuristic for estimating the ROC using only the fraction of alarmed sensor nodes
in the field. Finally, AP is a variant of SNAP that does not consider the non-alarmed sensor
nodes in estimating the source location.

8.6.1 SNAPm

Each sensor node n, first computes the mean of M measurements and compares the result
to the threshold T to decide whether to become alarmed and communicate its observation to
the sink i.e.

• Alarmed Sensor: Any sensor with zn ≥ T .

• Non-Alarmed Sensor: Any sensor with zn < T .

where zn = 1
M

∑M
t=1 zn,t. At the sink, the elements of the likelihood matrix are obtained as

before by using (8.1) and (8.2) and dropping the time index t:

L(i, j) =
N∑

n=1

bn(i, j), for i, j = 1, · · · , G, (8.6)

where,

bn(i, j) =





+1, if zn ≥ T AND (i, j) ∈ ROCn

−1, if zn < T AND (i, j) ∈ ROCn

0, otherwise

(8.7)

SNAPm results in further energy savings compared to SNAP since it requires a single mes-
sage from each sensor node that is alarmed on the “average”. In this way, it avoids congesting
the network with repeated messages from sensor nodes that have correctly detected the target
and eliminates occasional messages from sensor nodes that were having a false alarm. Since
communication is the most expensive operation in terms of energy, SNAPm does not only
improve the bandwidth utilization but it also prolongs the lifetime of the sensor network.
As indicated in Section 8.8, SNAPm achieves similar estimation accuracy as SNAP. On the
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other hand, depending on the sampling rate, SNAPm may increase the estimation delay since
the sink will have to wait until all M samples are collected.

8.6.2 SNAPe

By Lemma 8.4.1, estimating the ROC is equivalent to estimating the ROI. To calculate the
ROI we need to have information about the signal amplitude at the event location c, and the
local detection threshold T , which is a function of the noise conditions in the field. In many
real-time target tracking scenarios however, the target strength and/or the noise variance may
be unknown. Under those circumstances, it is still important to estimate the ROI of a source
in order to perform the event localization using SNAP. Thus, in this section we present a
possible heuristic that one can use for this estimation, even though it is worth pointing out
that other heuristics are also possible. Neglecting boundary conditions, for densely deployed
sensor networks, the fraction of the ROI compared to the overall area of the field A should
be approximately equal to the fraction of alarmed sensors, in other words we can write

πR̂c
2

A
=

Nalarmed

N
(8.8)

This result follows from the assumption that the source is uniformly distributed, making all
points in area A equally probable [62]. From this equation Rc can be estimated from knowing
only the fraction of alarmed sensor nodes in the field. The advantage of SNAPe is that the
sink is not required to know a-priory the signal strength c. We point out that this is just a
simple heuristic. Another possibility is to obtain an estimate of the diameter of the ROC from
the maximum distance Rmax between any two alarmed sensors, e.g., set 2 · Rc = λ · Rmax,
where λ is an appropriate scaling factor that will depend on the density of the network.

8.6.3 Add Positive (AP)

The Add Positive algorithm is similar to SNAP in the sense that it defines a “likelihood ma-
trix” similar to SNAP but in this matrix only positive contributions (+1) from the alarmed
sensors inside the ROI of the source are added. The purpose of this algorithm is to demon-
strate the value of using the negative information from non-alarmed sensors.
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8.7 Distributed Subtract on Negative Add on Positive

Algorithm (dSNAP)

In this section, we demonstrate how SNAP can be implemented in a fully distributed fashion
(dSNAP). First, a single sensor node is elected leader among the alarmed sensor nodes using
one of the leader election algorithms proposed in literature (e.g., [46]). For estimating the
event location the elected leader (sensor node l) performs the following steps:

1. Collects information from all relevant sensor nodes inside its Region of Subscription
(ROSl).

2. Constructs a likelihood matrix over a grid Gl around its location, whose maximum
points to the estimated event location.

Next, we provide more details for each of these steps.

8.7.1 Region of Subscription (ROS)

Before estimating the event location the leader node l needs to collect information from
sensor nodes located inside its neighborhood (ROSl). Since energy efficiency is the major
consideration in sensor networks and communication is the most expensive operation in
terms of energy, we would like to find the smallest ROSl that achieves the desired objectives
in terms of estimation accuracy. Since the leader node l is not aware of the exact location
of the event, it needs to make its subscription region big enough to include the event ROI
completely. Under conditions of low noise and faults for the uniform propagation model
given in Section 3.1, ROSl becomes a disc centered at the location of sensor node l with
radius twice that of its ROCl. This is illustrated in Fig. 8.1 for l = n. This way, any correctly
alarmed sensor node inside the event ROI, will have in its neighborhood all other correctly
alarmed sensor nodes relevant to the estimation problem. This result, is independent of the
underlying leader election scheme. However, in scenarios with excessive noise or many
sensor faults we run into situations where sensor nodes become alarmed outside the event
ROI. In this case, it is better to increase the ROS so that more sensors are involved in the
estimation in order to compensate for the effects of noise and faults. We investigate this
further in Chapter 9.
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Algorithm 1: Likelihood Matrix Construction

Input: [Xn, Yn, bn] for sensor nodes n = 1, ..., Nl ∈ ROSl

Output: Likelihood matrix Ll

1: Ll ← 0

2: for all cells M−1(i, j) ∈ Gl do
3: for all sensor nodes n that have cell M−1(i, j) ∈ ROCn do
4: Ll(i, j) ← Ll(i, j) + bn

5: end for
6: end for

Figure 8.4: Algorithm used by node l to calculate the values of Ll using binary beliefs
bn (±1) from the nodes inside its ROSl, with position indices (Xn, Yn).

8.7.2 Likelihood Matrix L

The elected leader node l, l ∈ {1, · · · , N} is associated with Gl, a sub-grid of G with Gl×Gl

cells, centered around its location (Xl, Yl). The size of the sub-grid Gl =
⌊

Rs

g

⌋
+ 1 depends

on the size of the ROSl and the grid resolution g. Furthermore, node l defines a Gl × Gl

Likelihood Matrix Ll where each element (i, j) of Ll corresponds to a cell (u, v) of Gl. This
relation is given by a mapping M : Gl → Ll, thus

M (
[u, v]T

)
=

[
u−Xl +

⌈
Gl

2

⌉
, v − Yl +

⌈
Gl

2

⌉]T

where u, v ∈ {1, · · · , G} and i, j ∈ {1, · · · , Gl}. For every element of Ll, the leader adds the
contribution of each sensor that has the corresponding cell in its ROC. The contributions can
be±1 depending on the sensor’s state: +1 on alarmed (positive observation) and−1 on non-
alarmed (negative observation). In other words, the leader subtracts on negative observations
and adds on positive (SNAP). More specifically, the leader updates every element (i, j) of Ll

using
Ll(i, j) =

∑
m∈ROSl

bm(i, j), i, j ∈ {1, · · · , Gl}
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where

bm(i, j)=





+1 if m alarmed AND M−1(i, j) ∈ ROCm

−1 if m non-alarmed AND M−1(i, j) ∈ ROCm

0 otherwise

and ROCm is the set of all grid cells that are covered by the ROC of sensor m. The maxi-
mum of the likelihood matrix points to the estimated position of the source which is taken
to be the center of the corresponding cell of G. Let Ll(i

∗, j∗) = maxi,j Ll(i, j), then the es-
timated source position is the center of M−1(i∗, j∗). If two or more elements have the same
maximum value, the estimated position is the centroid of the corresponding cell centers.

Fig. 8.4 demonstrates the algorithm used by the leader node for constructing the likelihood
matrix. Fig. 8.5 presents the same test case scenario as in Section 8.4.5 for demonstrating
the dSNAP algorithm. For the construction, six other nodes inside the ROSl are contacted
by the leader, two of which are alarmed (depicted with solid color). Nodes inside the gray-
shaded area outside the ROSl are irrelevant to the particular estimation. As in the centralized
case, the event is once more correctly in the grid cell with the Lmax = +3 after employing
Algorithm 1 at the leader node as shown in Fig. 8.5.

0000+1

000-10

-1+1+10+1

+1+3+2+1+1

0+2+1+1+1

0000+1

000-10

-1+1+10+1

+1+3+2+1+1

0+2+1+1+1

Event

Leader node lROCl

ROSl

ROI

Figure 8.5: dSNAP test case scenario.
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8.8 Simulation Results

For all subsequent experiments we use a square 100 × 100 sensor field where the sensor
readings are given by:

zn,t = min

{
Vmax,

c

r2
n

}
+ wn,t (8.9)

for n = 1, · · · , N , t = 1, · · · ,M . Also for the parameters used in the experiments, we use
the default values shown in Table 8.1, unless otherwise stated in the experiment.

Table 8.1: Default parameter values

Parameter Symbol Default Value

Number of sensor nodes N 200

Number of measurements M 1

Saturation voltage Vmax 3000

Source amplitude c 3000

Noise variance σ2
w 1

Threshold T 5

Grid resolution g 1

The RMS Error reported, is the average over B experiments where we assume that the source
is randomly placed at points (xs,b, ys,b) ∈ A and we solve the problem B times to obtain
(x̂s,b, ŷs,b), b = 1, · · · , B for each estimator considered. In other words, the RMS Error
shown in our results is given by,

RMS Error =
1

B

B∑

k=1

√
(xs,k − x̂s,k)2 + (ys,k − ŷs,k)2

At the beginning of these B experiments we randomly initialize the sensor field but it remains
fixed for all B experiments. For the following experiments we used Matlab and assumed
B = 500. For the performance evaluation of the SNAP algorithm, we also implement the
following two algorithms: Centroid Estimator (CE) and Maximum Likelihood (ML), the
details of which can be found in Section 2.6 of Chapter 2.
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Figure 8.6: Experimental ROC calculation

8.8.1 ROC (Region of Coverage)

In the first set of experiments we investigate the Region of Coverage, which is a main ingre-
dient of the SNAP algorithm. As mentioned earlier, given that wn,t is white noise and using
(8.9), the ROC of a sensor is a circular disc with radius

Rc =

√
c

T
. (8.10)

Thus, we investigate the validity of equation (8.10) when calculating the optimal ROC. In
Fig. 8.6 we plot the RMS error vs. Rc. CE performance is also indicated on the same plot
for comparison purposes. For the scenario investigated, the optimal value for Rc is 24.5.

Table 8.2, shows the optimal Rc results for different percentages of alarmed sensor nodes.
For obtaining the analytical results we used (8.10) and for obtaining the experimental results
we varied Rc as in the first experiment and recorded the value that minimized the RMS Error.
As seen from the table, for all cases tested, the experimental results for Rc are very much in
agreement with the analytical ones.
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Table 8.2: Optimal ROC calculation for different percentages of alarmed sensor nodes

c %Nal Rc R̂c Rc(exp)

1000 7 14.1 14.9 14.5

2000 14 20.0 21.1 20.5

3000 21 24.5 25.8 24.5

4000 28 28.3 29.8 28.5

5000 35 31.6 33.4 31.5
(%Nal denotes the percentage of alarmed sensors, Rc and R̂c are calculated using (8.10) and (8.8)

respectively while Rc(exp) is obtained experimentally).

8.8.2 Region of Subscription for dSNAP

In the next set of experiments, we investigate the ROS size for dSNAP. Remember that the
ROS defines the neighborhood that the leader node needs to obtain information relevant to
the estimation problem. In Section 8.7, we made the claim that in the absence of noise
and faults the ROS radius should be set at least twice the ROC radius to obtain accurate
estimation results independent of the underlying leader election scheme involved. Fig. 8.7
demonstrates this result with a test case in which the radius of ROC is Rc = 20 and we vary
the ROS radius Rs from 20 to 60. It is evident that for values Rs ≥ 40 (i.e. Rs ≥ 2Rc)
dSNAP approximates the performance of the centralized algorithm. Of course with respect
to energy efficiency we would like to keep the communication cost low, by keeping the ROS
as small as possible while achieving the desired accuracy. Thus, for the case without faults
it seems that Rs = 2Rc is a good choice.

8.8.3 Performance Evaluation

In this section, we test the performance of SNAP against the other estimators in terms of
accuracy and time complexity. First, Fig. 8.8(a) shows the results for various grid resolutions
(g = 1, 2, 5, 10, 20). Then, Fig. 8.8(b) shows the results as a function of the threshold T -
we varied threshold T from 1 (80% of sensors alarmed) to 20 (5% of the sensors alarmed).
Finally, Fig. 8.8(c) shows the results as we decrease the number of alive sensor nodes in the
field from 200 to 50 (e.g., due to node failures). In all plots, it is evident that SNAP and ML
exhibit a similar performance with the ML being the most accurate. This is attributed partly
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Figure 8.7: Effect of varying ROS radius for dSNAP.

to the fact that ML uses the exact sensor positions while for SNAP the sensor positions are
quantized. Also, ML calculates the exact probabilities while SNAP has “arbitrarily” assigned
some values. AP has worse performance than SNAP for all grid resolutions and thresholds
tested; this is a direct result of not including the non-alarmed sensor nodes in the estimation
procedure.

Furthermore, there is a tradeoff between accuracy and complexity of the different algorithms
that we need to consider. Some typical results are shown in Table 8.3. The algorithms are
run on a regular PC (with Intel Pentium 4 CPU, 3.6GHz, 2GB of RAM). CE completes
essentially in zero time and is not shown on the table. SNAP (or AP) only require simple
additions to estimate the event position and they complete relatively fast even for the smallest
grid resolution tested (g = 1). ML on the other hand, requires numerical integration and the
time for completion is considerably larger. From Fig. 8.8(a) and Table 8.3 it is evident that
one should use the smallest g allowed by the available computational budget.

8.8.4 SNAPm

In this section, we investigate SNAPm, the version of SNAP where each sensor node first
computes the mean of the M measurements to decide whether to become alarmed. Fig. 8.9
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Figure 8.8: Estimator performance evaluation for different varying parameters.

shows the results for both algorithms as we vary the noise variance for different values of
M . Please note that in the period of getting the M observations, it is assumed that the event
source is static and has a fixed amplitude. From the plot, it is evident that both algorithms ex-
hibit a similar performance, with SNAP performing slightly better than SNAPm for smaller
noise variance conditions. SNAPm however, is more energy efficient since it requires a sin-
gle transmission from each sensor node and this benefit increases as we increase M . On the
other hand, SNAPm is not expected to be as robust as SNAP when faults occur (e.g., dropped
packets) since the sink will have less information to counteract such errors. Thus, when a
sensor has a large number of measurements M , a possibility is to group them into h groups
with M/h measurements in each group and send up to h packets that will correspond to the
event that the sensor is alarmed or not “on the average”.

110

Mich
ali

s P
. M

ich
ae

lid
es



Table 8.3: Complexity analysis in elapsed time (sec)

Algorithm g = 1 g = 2 g = 5 g = 10

SNAP / AP 0.07 0.03 0.02 0.02

ML 2.55 0.66 0.13 0.05

10 20 30 40 50 60 70 80 90 100
2

3

4

5

6

7

8

9

Noise variance

R
M

S
 E

rr
or

M=1 

M=3 

M=10 

M=100 

SNAP   −−− + −−−
SNAPm −−− x −−− 

Figure 8.9: SNAP performance for various M,σ2
w.

8.8.5 SNAPe

Next, we investigate SNAPe, the version of SNAP that does not require knowledge of the
source amplitude c or the threshold T . Remember that for SNAPe, Rc is estimated using
(8.8) based on the fraction of alarmed sensor nodes.

First, we investigate the validity of (8.8) for computing the optimal Rc for SNAPe. Ta-
ble 8.2 shows the results for different percentages of alarmed sensor nodes. The percentage
of alarmed sensors (%Nal) shown in the table, is the average obtained by varying the event
amplitude c and using only non-boundary sources in the simulations. Rc shows an almost
linear relationship to the % of alarmed sensor nodes in the field. For all cases tested, (8.8) is
very good at estimating the analytical values of Rc obtained by (8.10). The same experiment
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was also performed with N = 100 with almost identical results. This shows that Rc is not
very sensitive to the total number of sensors deployed.

Next, in Fig. 8.10, we investigate the performance of SNAPe. There is an evident loss in
performance compared to SNAP - the case when we use the analytical Rc calculated from
(8.10). This is due mainly to sources on the boundaries, where the number of alarmed sensor
nodes does not produce the correct ROC for estimating Rc. The performance of SNAPe is
still better than CE for g = 1, 2, 5.
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Figure 8.10: SNAPe performance for various grid resolutions g.

8.8.6 Uncertainty in the Position of the Sensor Nodes

In the final set of experiments, we relax Assumption 1 of Chapter 3 by assuming that the
position of each sensor node is not known exactly but it is estimated imprecisely. We model
the errors in the estimated sensor node positions with normal Gaussian noise N(0, σ2

p).
Fig. 8.11 shows the results as we vary σ2

p for 4 different values of the source amplitude
(c = 1000, 2000, 3000, 4000). From the plot, it is evident that SNAP looses very little in
accuracy when we have errors in the estimated sensor node positions. This robust behav-
ior to sensor position errors is extremely important for sensor networks, since it is usually
impossible to obtain accurate positions for hundreds of nodes using localization algorithms.
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Figure 8.11: SNAP performance for various σ2
p .

8.9 Summary

SNAP (Subtract on Negative Add on Positive), is a simple and efficient algorithm, that can be
applied in time-critical applications for estimating the position of an event given only binary
data from the sensor nodes. Compared to maximum likelihood estimation, SNAP is slightly
less accurate but is computationally less demanding. Moreover, for the construction of the
likelihood matrix we only need “local” information, which is something that was exploited
in order to derive a distributed version of SNAP.

A Proof of Lemma 8.4.1

For the forward direction of the proof we use induction over the number of sensors n. With-
out loss of generality, assume that the source is placed at point (0, 0) and its ROI is a cir-
cle with radius rROI . For n = 1, (single sensor case) by assumption (ii), this has to be
placed inside the ROI of the source, and given the ideal conditions, it will be alarmed. Thus,
Lmax = 1 > 0 and Amax is the ROC of the sensor. Thus, a circular ROC with radius
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Figure 8.12: SNAP likelihood matrix along the line between the source and the n + 1-th
sensor.

rROC ≥ rROI guarantees that (0, 0) ∈ Amax and the forward statement of the lemma holds
for n = 1. Next, let’s assume that the lemma statement holds for any sensor field with n

sensors. We need to show that is also holds for a field with n + 1 sensors.

Fig. 8.12(a) shows a typical likelihood function due to n sensors along the line that connects
the source with the n + 1-th sensor. According to the lemma statement, the source position
is included in Amax(n) (the set of cells with maximum value when n sensors are used). If
this sensor is placed inside the ROI of the source, it will be alarmed, and it will add +1 to all
cells of the likelihood matrix that fall inside its ROC. If rROC ≥ rROI , the ROC of the sensor
will also include the true source position and it is guaranteed that the source will remain in
the Amax(n + 1). If the sensor is placed outside the source ROI, then it will be non-alarmed
and thus it will add a −1 contribution to all cells in its ROC. Thus, if rROC ≤ rROI , the
−1 will not affect the cell with the true source position, thus it is guaranteed that the source
will remain in Amax(n + 1). Thus, to guarantee that the source will always remain in the
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Amax(n + 1) we need rROC = rROI .

If rROC 6= rROI , one can easily construct examples where Amax(n + 1) does not include
the true source position. If rROC < rROI , one can place the n + 1-th sensor just inside the
ROI so it will be alarmed but its ROC will not include (0, 0). Thus, it may add +1 to some
of the cells in Amax(n) which may constitute an Amax(n + 1) that does not include the true
source position (see Fig. 8.12(b)). If rROC > rROI , one can place the n + 1-th sensor just
outside the ROI so it will be non-alarmed but its ROC will include (0, 0). By subtracting one
from the cell with the true source position, it is possible that some other cells in Amax(n) but
further away from the n + 1-th sensor are not affected. As a result, they may constitute an
Amax(n+1) that once more does not include (0, 0), the true source position (see Fig. 8.12(c)).
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CHAPTER 9

FAULT TOLERANT MAXIMUM LIKELIHOOD

EVENT LOCALIZATION

9.1 Overview

This chapter investigates Wireless Sensor Networks (WSNs) for achieving fault tolerant lo-
calization of an event using only binary information from the sensor nodes. In this con-
text, faults occur due to various reasons and are manifested when a node outputs a wrong
decision. The main contribution of this chapter is to show that the SNAP algorithm (de-
veloped in Chapter 8) retains its accuracy even when a large percentage of the sensor nodes
report erroneous observations. SNAP is compared against the Centroid (CE) and the classical
Maximum Likelihood (ML) estimators and is shown to be significantly more fault tolerant.
Moreover, in this chapter we show how ML can be modified in order to accommodate erro-
neous observations coming from faulty sensor nodes. Specifically, by incorporating the fault
probability when calculating the likelihood function we develop a fault tolerant maximum
likelihood (FTML) estimator appropriate for sensor networks applications. Compared to the
SNAP algorithm in the presence of faults, the two can achieve similar performance; FTML
is slightly more accurate while SNAP is computationally less demanding and requires fewer
parameters.
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9.2 Introduction

This chapter investigates Wireless Sensor Networks (WSNs) for achieving fault tolerant lo-
calization of an event using only binary information from the sensor nodes. The simple
nature of sensor nodes makes them extremely vulnerable to faults. These faults can occur for
a variety of reasons: noise, energy depletion, environmental harsh conditions of operation,
attacks, software problems. These have been reported in real experiments and can result in
erroneous, unexpected behavior (Byzantine faults).

For event localization in WSNs using binary data, two different methods have been pro-
posed. The Centroid Estimator (CE) [33] which simply takes the centroid of the positions of
all alarmed sensor nodes as the estimated event location. Although sub-optimal this simple
method works quite well under conditions of dense sensor deployment and when events are
not located close to the field boundaries. The other approach is based on the classical max-
imum likelihood (ML) estimator which is shown to be optimal in [34] when enough sensor
measurements are used. Both of these methods however, can yield significant estimation
errors when the sensor nodes start failing; CE is sensitive to false positives, i.e., sensor nodes
far away from the source becoming falsely alarmed. On the other hand, ML is extremely
sensitive to false negatives, i.e., when a node located close to the event does not become
alarmed.

The main contribution of this work is to show that the SNAP algorithm, a special form of the
maximum likelihood estimator developed in Chapter 8, can achieve similar accuracy but is
significantly more fault tolerant. Furthermore, we demonstrate how classical maximum like-
lihood estimation can be modified in order to accommodate erroneous observations coming
from faulty sensor nodes. Specifically, by incorporating the fault probability when calculat-
ing the likelihood function we develop a fault tolerant maximum likelihood (FTML) estima-
tor appropriate for sensor networks applications. SNAP can achieve similar accuracy and
fault tolerance to FTML but it is computationally more efficient and makes fewer parameter
assumptions.

The chapter is organized as follows. First, we present the fault model in Section 9.3. Then, in
Section 9.4, we test the fault tolerance of SNAP, CE and ML binary estimators and propose
the FTML estimator. Section 9.5 presents several simulation results. We conclude with a
summary of the main results of this chapter in Section 9.6.
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9.3 Fault Model

In this chapter, we use the uniform propagation model described in Section 3.1 of Chapter 3.
For the fault tolerance analysis, we use a Fault Model where each sensor node can exhibit
erroneous behavior with probability Pf and in this case its original belief is simply reversed
as shown in the example of Fig. 9.1. When applying the fault model, some sensor nodes
that fall outside the ROI (defined in Chapter 8) of the source become alarmed as a result of
a fault and are shown as false positives. Similarly, sensors that fall inside the ROI become
non-alarmed as a result of a fault and are shown as false negatives.

ROI RI

S

Figure 9.1: A field with 200 randomly deployed sensor nodes and a source placed at position
(25,25). Alarmed sensors are indicated on the plot with red circles inside the disc around the
source (ROI). 50 of the sensor nodes exhibit faulty behavior and are indicated on the plot
as false positives (red squares outside the ROI) and false negatives (black squares inside the
ROI).
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9.4 Fault Tolerance of Binary Estimators

In this section we investigate three different estimators for localizing the event using only
binary data: CE, ML and SNAP. First, we provide the details and analyze the fault tolerance
of each of these estimators. Then, in order to gain some further insight into their behavior
we present a simple example. Finally, we propose a Fault Tolerant Maximum Likelihood
(FTML) estimator and compare its performance with SNAP.

9.4.1 Centroid Estimator (CE)

Recall from Section 2.6 in Chapter 2 that the event location estimated by the Centroid Esti-
mator (CE) is the centroid of the positions of the alarmed sensor nodes given by

θ̂CE = [x̂s, ŷs] =

[
1

P

P∑
n=1

xn,
1

P

P∑
n=1

yn

]
(9.1)

CE treats all alarmed sensor nodes with equal weight when calculating the centroid of the
position of the alarmed sensor node (see (9.1)). This fact, makes the algorithm fairly sensitive
to the presence of false positives, especially the ones that occur far away from the true event
location. Such faults distort the estimated source position towards the location of the faulty
sensor. On the other hand, CE is robust to a large percentage of false negatives. Since it does
not consider information from non-alarmed sensor nodes, it can estimate the event location
even with a single alarmed sensor node following a “closest point approach”.

9.4.2 Maximum Likelihood (ML)

Recall from Section 2.6 in Chapter 2 that the Maximum Likelihood (ML) estimator has the
form:

θ̂ML = max
θ

L(θ)

where the log-likelihood function is given by

L(θ) = log p(I | θ)

=
N∑

n=1

M∑
t=1

{In,t log [Pn,t] + (1− In,t) log [1− Pn,t]} (9.2)
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where

Pn,t = Pr{zn,t ≥ T} = Q

(
T − sn(θ)

σw

)
.

The weakness of ML is that it is extremely sensitive to false negatives. Even a single faulty
sensor node inside the ROI of the source can completely throw off the estimation results. This
is a direct result of the construction of the likelihood matrix of ML using (9.2). Note that for
source positions θ close to the sensor, the term Pn,t → 1 and as a result log [1− Pn,t] → −∞.
If for some reason (e.g., due to a fault), a sensor fails to detect an event that is very close to it
(false negative), then (1 − In,t) = 1 and as result the faulty sensor has a very large negative
contribution to the likelihood function at all points near itself which (by assumption) is also
the point where the source is located. On the other hand, a healthy sensor near the source
contributes only In,t log [Pn,t] → 0 which is not sufficiently large to counteract the negative
contribution of the faulty sensor. In fact, since the negative contribution of the faulty sensor
is unbounded, even several well behaving sensors cannot correct the error.

9.4.3 SNAP (Subtract on Negative Add on Positive)

The SNAP algorithm (see Chapter 8 for more details) can be briefly described in 4 steps:

1. Grid Formation: The entire area is divided into a grid.

2. Region of Coverage (ROC): For each sensor node we define a neighborhood of cells
around the sensor node location that we call the Region of Coverage. Inside the cells
of its ROC, each sensor node outputs a value based on its binary status: +1 on alarmed
(positive observation) and -1 on non-alarmed (negative observation).

3. Likelihood Matrix Construction: For each cell of the area grid we calculate the likeli-
hood of a source occurring in the particular cell by spatially superimposing and sum-
ming the ROC of the respective sensor nodes. In other words, we add on positive
observations and subtract on negative.

4. Maximization: The maximum of the likelihood matrix points to the estimated event
location. If more than one elements of the likelihood matrix have the same maximum
value, the estimated event position is the centroid of the corresponding cell centers.

Definition 9.4.1. Let Lmax denote the maximum of the likelihood matrix constructed by
SNAP and Amax the set of cells of the matrix that attain this value. Also, let Ak

max denote the
cells of the matrix that attain the values L(i, j) ≥ Lmax − k for k = 1...Lmax.

121

Mich
ali

s P
. M

ich
ae

lid
es



Note that Amax ⊆ A1
max ⊆ A2

max....

Definition 9.4.2. Let the diameter of a set of cells denote the maximum pairwise distance
between any two cells in the set.

Lemma 9.4.1. Assuming the maximum of the likelihood matrix constructed by SNAP is
Lmax > 1 and Amax includes the true source location, then the estimation error caused
by a faulty sensor node, independent of its position, is upper bounded by d1/2 where d1 is
the diameter of A1

max.

Proof: According to the SNAP algorithm, a faulty sensor node can only change the likelihood
matrix by at most ±1. Since the true event location is included in Amax, we only need to
consider what happens to cells inside A1

max since they are the only possible candidates for
achieving the Lmax. A faulty sensor can be a fault positive or a fault negative so have to
investigate two separate cases: 1. A fault negative can only influence the SNAP estimation
results if there are common cells between its ROC and Amax. Since it can subtract at most
one from cells of Amax, the true source location is guaranteed to be included in A1

max and
the estimation error cannot be larger than half the diameter d1. 2. A fault positive can only
influence the SNAP estimation results by adding at most one and causing some cells of
A1

max to attain the value Lmax. The true source location is still guaranteed to be included in
A1

max and the estimation error cannot be larger than half the diameter d1. This completes the
proof.

Corollary 9.4.1. Assuming the maximum of the likelihood matrix constructed by SNAP is
Lmax > 1, Amax is a single cell that includes the true source location and A1

max−Amax = ∅
then the estimation error caused by a faulty sensor node, independent of its position, is 0.

Proof: Since A1
max−Amax = ∅, no cells attain the value Lmax−1. Therefore, a single faulty

sensor with a ±1 contribution cannot alter Amax. This completes the proof.

The fault tolerant behavior of SNAP results from 2 main characteristics: First, to construct
the likelihood function at a source location θ it uses only local information in the sense that
it uses only the data from the sensors that are inside the ROI of θ. Therefore, false positives
away from the source location have no influence on the estimation results. Second, and
most important, it bounds the error that a faulty sensor can cause to the likelihood function
by allowing a sensor to subtract at most one from the corresponding cells in the likelihood
matrix. So a single healthy sensor close to the source can correct the error in the likelihood
function caused by the faulty sensor.
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9.4.4 Test Case
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Figure 9.2: 1-D example with 5 sensor nodes, one of which is faulty (n5).

Consider the 1-D scenario displayed in Fig. 9.2 where the line is divided into 20 equal cells.
The event is located at position (xs = 9.5) and we try to estimate its position using 4 sensor
nodes which are located as shown in the figure. Two of the sensor nodes fall inside the
source ROI and are alarmed (x1 = 13.5, x2 = 5.5), the other two fall outside and are non-
alarmed (x3 = 14.5, x4 = 4.5). According to the SNAP algorithm described above, the
alarmed sensor nodes provide +1 contribution in the cells inside their ROC, while the non-
alarmed sensors provide -1 contribution. The sum of the contributions in each cell i gives the
likelihood L(i) of the source occurring in that cell and is plotted over the corresponding cells
in Fig. 9.2(a) above the sensor locations. The maximum of this likelihood plot corresponds
to the correctly estimated event location using SNAP. In fact, in the absence of faults all 3
estimation algorithms correctly estimate the event position.

Now consider a fifth sensor node which is faulty and is non-alarmed when positioned inside
the source ROI and alarmed when positioned outside. Fig. 9.2(b) shows the estimated source
location using the 3 different algorithms, as we vary the position of the faulty sensor node.
From the plot, it is evident that only SNAP displays a fault tolerant behavior for all positions
of the faulty sensor node; from Fig. 9.2(a) it is clear that the maximum of L(i) cannot change
no matter where we place the faulty sensor node. This result is expected from Corollary 9.4.1.
ML fails to estimate the source location when the faulty sensor node is close to the event
(false negative), while CE fails to estimate the event location when the faulty sensor node is
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far away (false positive).

9.4.5 Fault Tolerant Maximum Likelihood (FTML)

The problem with ML is that it does not take into account the fact that any sensor may be
faulty with some probability. This can be addressed by incorporating the probability of faults
Pf when constructing the likelihood function. When we do this the log-likelihood function
in (9.2) becomes:

L
′
(θ) =

N∑
n=1

M∑
t=1

{In,t log [Pn,t(1− Pf ) + (1− Pn,t)Pf ]

+(1− In,t) log [(1− Pn,t)(1− Pf ) + Pn,tPf ]} . (9.3)

In other words, when the indicator function takes the value 1, a sensor node can be correctly
alarmed with probability 1 − Pf , or it can be falsely alarmed and produce an erroneous
observation with probability Pf . Similar reasoning can be applied to the case where the
indicator function takes the value 0. The modified likelihood function in (9.3) gives the
desired fault tolerance to the maximum likelihood estimator because the functions in the
log(·) are always lower bounded by a small positive number. This way, the contribution of
a faulty sensor never becomes unbounded. We refer to the estimator that uses this modified
log-likelihood function as Fault Tolerant Maximum Likelihood (FTML) estimator.

FTML and SNAP can achieve similar accuracy but SNAP is computationally less demanding
and makes fewer parameter assumptions. Recall that FTML requires numerical integration
and utilizes the exact propagation model (see Section 3.1) together with information about
the noise variance σ2

w and the fault probability Pf . SNAP on the other hand, only requires the
estimation of the source ROI which can be obtained using various heuristics, e.g., from the
percentage of alarmed sensor nodes in the neighborhood of the source. Finally, it is worth
pointing that both FTML and SNAP can be implemented in a distributed fashion where any
leader node can run the algorithms using only information from its neighbors (see dSNAP in
Chapter 8).
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9.5 Simulation Results

For all subsequent experiments (unless otherwise specified) we use a square 100×100 sensor
field with 200 randomly deployed sensor nodes where the sensor readings are given by:

zn,t = min

{
3000,

3000

r2
n

+ wn,t

}
(9.4)

for n = 1, · · · , N , t = 1, · · · ,M . Furthermore, we assume wn,t to be Gaussian N (0, 1),
M = 1, and T = 5. For SNAP we use grid resolution g = 1 and ROC radius Rc = 24.5.
For the fault tolerance analysis, we use the fault model of Section 9.3. Finally, the RMS
error reported is the average over 500 Monte-Carlo simulations. For all experiments we use
Matlab.

9.5.1 SNAP

In the first set of experiments, we investigate the fault tolerance of SNAP against CE, ML and
AP. Remember from Chapter 8, that the AP (Add Positive) algorithm is a variant of SNAP
that uses only the positive contributions from the alarmed sensors inside the ROI. For the
fault tolerance analysis, we vary c to obtain different percentages of alarmed sensor nodes in
the field.

Fig. 9.3 displays the results for the fault tolerance analysis of the different estimators. Al-
though in the absence of faults the performance of ML and SNAP was very similar, the same
cannot be stated here. In fact both CE and ML are very sensitive to sensor faults and loose
accuracy continuously as the number of faults increase. This is especially evident for ML in
situations with higher percentages of alarmed sensor nodes (see Fig. 9.3(c),9.3(d)). SNAP
however, as it can be observed from these plots, displays a fault tolerant behavior and looses
very little in accuracy even when 50 out of the 200 sensor nodes exhibit erroneous behav-
ior. In fact, its fault tolerance improves when we increase the percentage of alarmed sensor
nodes in the field. The intelligent construction of the likelihood function makes individual
sensor faults unimportant in estimating the correct result. Finally, AP displays a similar fault
tolerant behavior with SNAP though the estimation error is larger than SNAP. Note however,
that for a range of faulty sensors from 10 to 80, AP exhibits better performance than both
ML and CE.
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Figure 9.3: Estimator performance for different percentages of alarmed sensor nodes as we
vary the number of faulty sensor nodes in the field.

Dropped Packets

In this section, we investigate the performance of the four algorithms if packets are dropped
by the network. Recall from Assumption 3 in Chapter 3 that for the network we investigate,
alarmed sensors send a packet to the sink while non-alarmed sensors remain silent. Thus, if
the sink does not receive a packet from a node, it assumes that the node is in the non-alarmed
state. Therefore, to investigate the effect of dropped packets we change the fault model to
allow only alarmed sensors to randomly flip their state (false negatives) with probability Pd
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which corresponds to the probability of dropping a packet1.
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Figure 9.4: Estimator performance vs. probability of dropped packets Pd.

In Fig. 9.4 we investigate the performance of the estimators in the presence of false nega-
tives. ML, as expected from the analysis in Section 9.4, looses accuracy immediately in the
presence of false negatives. SNAP is the best estimator for values of Pd ≤ 0.3. For higher
percentages of dropped packets, CE becomes the better option. This is due to the increasing
number of false negatives that counteract the small number of correctly alarmed sensor nodes
left in the field when using SNAP. AP does not have this problem, so it displays a similar
robust behavior to false negatives as CE. For the CE and AP, even one correctly alarmed
sensor can localize the source at its own location since both algorithms completely neglect
the non-alarmed sensor nodes in computing the event location.

Board Overheating

For symmetry, this section investigates the effect of the board overheating which, as reported
in [38], caused the nodes to report false events. In Fig. 9.5 we investigate the performance of

1For simplicity we assume that each packet has equal probability of being dropped irrespective of the

number of hops that it has to travel before it reaches the sink. This assumption is not expected to affect the fault

tolerance analysis however.
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Figure 9.5: Estimator performance vs. probability of overheating Po.

the estimators in the presence of false positives. We simulate the presence of false positives
by varying the probability Po that a non-alarmed sensor node produces a positive observation.
CE displays the worst performance in the presence of false positives; this is expected from
the analysis in Section 9.4. SNAP on the other hand, displays the most robust behavior
against these overheating faults. The importance of the non-alarmed sensor nodes for SNAP
in correcting false positives, is also evident by looking at the large difference in performance
between SNAP and AP. ML steadily looses performance, and for values of Po ≥ 0.4 it
becomes even worse than AP.

9.5.2 FTML

Next, we investigate the proposed Fault Tolerant Maximum Likelihood Estimator. Fig. 9.6
displays the estimation error as a function of the fault probability Pf . In the absence of faults
(Pf = 0), ML and FTML display the same performance (as expected) which is slightly
better than SNAP and significantly better than CE. As Pf increases, the performance of both
CE and ML drops quickly (their RMS error increases). On the other hand, FTML and SNAP
as it can be observed from the figure, display a similar fault tolerant behavior and loose very
little in accuracy even when Pf = 0.25- this would be equivalent to 50 out of the 200 sensor
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nodes exhibiting erroneous behavior!
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Figure 9.6: FTML performance vs. fault probability.

9.5.3 SNAPe

In this section, we investigate the fault tolerance of SNAPe (see Chapter 8), the version of
SNAP that does not require knowledge of the source amplitude c or the threshold T . Re-
member that for SNAPe, Rc is estimated using the fraction of alarmed sensor nodes. Fig. 9.7
displays the fault tolerance results for SNAPe. CE and SNAP are also shown on the same
plot for comparison purposes. For low percentages of alarmed sensor nodes (see Fig. 9.7(a))
SNAPe is very sensitive to sensor faults. As we increase the percentage of alarmed sensor
nodes in the field however, SNAPe continuously improves in performance, and for higher
percentages of alarmed sensor nodes (see Fig. 9.7(d)), it approximates the same fault toler-
ant behavior as SNAP! This result shows the robustness of SNAP for applications where we
have a large number of alarmed sensor nodes. Using only information about the fraction of
alarmed sensors in the field and binary information from the sensor nodes, it can localize the
event position even when as many as 25% of the sensor nodes are faulty.
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Figure 9.7: SNAPe performance for different percentages of alarmed sensor nodes as we
vary the number of faulty sensor nodes in the field.

9.5.4 dSNAP

The final set of experiments investigates the fault tolerance of dSNAP which is the distributed
implementation of SNAP proposed in Chapter 8. For all subsequent experiments we use a
sensor field with 100 randomly deployed nodes. We investigate the ROS size as we increase
the number of faults in the field according to the fault model. Remember that the ROS defines
the neighborhood that the leader node needs to obtain information relevant to the estimation
problem. We test the performance of dSNAP against the distributed versions of the two other
binary algorithms considered, CE and ML (see Section 2.6 of Chapter 2). For the CE, the
event location is estimated as the centroid of the locations of all alarmed sensor nodes inside
the leader’s ROSl. For the ML, the leader only contacts the sensor nodes inside its ROSl for
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evaluating the likelihood function. Finally, for reference, we also present the performance of
the centralized algorithm, labeled as SNAP.
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Figure 9.8: Fault Tolerance of dSNAP as we vary the ROS size.

The results are displayed in Fig. 9.8. From the plots it is evident that dSNAP outperforms
the other estimators (CE and ML). For dSNAP, we see that the choice of ROS is important
in achieving the desired fault tolerance. In the absence of faults dSNAP achieves the perfor-
mance of the centralized algorithm as expected, so it would make sense to use Rs = 2Rc for
this case. As we increase the faults however, we need to increase the ROS size to achieve the
performance of the centralized algorithm. This can be attributed to the increased probability
of sensor nodes becoming alarmed outside the event ROI. For CE and ML, increasing the
ROS actually makes their performance worse; the reason is that CE is especially sensitive to
false positives and ML to false negatives.
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9.6 Summary

This chapter investigates the fault tolerance of different estimators that can be applied for lo-
calizing an event in a sensor network given only binary data from the sensor nodes: Centroid
Estimator (CE), Maximum Likelihood (ML), and SNAP (developed in Chapter 8). We show
that the SNAP algorithm retains its accuracy even when a large percentage of the sensor
nodes report erroneous observations. Our results indicate that SNAP is significantly more
fault tolerant than both CE and ML. Furthermore, we develop a fault tolerant version of the
maximum likelihood estimator (FTML). Our results indicate that SNAP can achieve similar
accuracy and fault tolerance to FTML by making simpler calculations and fewer assump-
tions.
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CHAPTER 10

LOCALIZATION USING SNAP OF SOURCES WITH

NON-CIRCULAR FOOTPRINT

10.1 Overview

This chapter further investigates the use of the SNAP algorithm for applications of event
localization in Wireless Sensor Networks (WSNs). In our work so far and the overwhelming
majority of the papers that deal with event detection and localization, it is assumed that the
source has a circular footprint in the sense that the event generates a signal that propagates
uniformly in all directions, thus it can be detected by any sensor that is located in a circular
disc around the source. The contribution of this chapter is that it deals with events with non-
circular footprint. Specifically, we consider a covariance detection algorithm and a plume
propagation model where the event footprint is not the usual circular disc.

10.2 Introduction

In Chapter 8, we proposed SNAP (Subtract on Negative Add on Positive), a very simple
and fairly accurate algorithm for localizing events in WSNs using only binary data from the
sensor nodes. In this context, the sensors make binary observations and become alarmed
(positive observations) if the calculated test statistic at their location is above a threshold;
otherwise they remain silent (negative observations). Based on the binary beliefs of all sensor
nodes, SNAP can estimate the location of the event by building a likelihood matrix whose
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maximum points to the event location. The main ingredient of the algorithm for constructing
the likelihood matrix is the Region of Coverage (ROC), an area in the vicinity of each sensor
node where it can infer information relevant to the estimation problem. For events with
circular footprint the ROC becomes a disc centered at the sensor node location; this case has
been investigated in Chapter 8. Uniform propagation models and circular footprints may be
accurate for sources that emit sound or electromagnetic waves, but they are not appropriate
for several other problems. An important feature of SNAP, is that it can be applied for
localizing event sources with non-circular footprint by appropriately adapting the shape,
size and orientation of the ROC based on the underlying detection algorithm and the event
propagation characteristics.

The main contribution of this chapter is to investigate event localization using SNAP for two
specific cases where the source has a non-circular footprint. First, we investigate the case
where pairs of sensors collaborate in order to decide their alarm status. In some applications,
two sensors that are located close to each other are expected to record similar measurements.
Moreover, the two sensors may be able to exploit this similarity to improve coverage using
a Covariance Detection (CD) as in Chapter 5. The appropriate ROC to be used in this case,
is not a circular disc but an ellipse. These ellipses between pairs of sensor nodes can be
effectively used by the SNAP algorithm to estimate the event location. To the best of our
knowledge, SNAP with an elliptic ROC is one of the first algorithms that can exploit the cor-
relation between the measurements of pairs of sensors for localization purposes. The second
problem we investigate involves a scenario where the signal or substance does not propagate
uniformly in all directions. Rather, we assume that there exists a draft that pushes the signal
in one direction. Such scenario may arise in environmental monitoring applications when
trying to localize the position of a plume source. In this context, the source emits a signal
(e.g., smoke) which is then pushed in one direction by the wind. For such scenarios the ROC
used by SNAP is actually the “mirror” image of the source footprint.

The chapter is organized as follows. First, in Section 10.3, we show how the SNAP algorithm
can exploit covariance information for localization. Then, Section 10.4 investigates plume
source localization. Finally, we conclude with a summary of the main results of this chapter
in Section 10.5.
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10.3 SNAP using Covariance Detector

In this section, we investigate how the ROC needs to adapt based on the underlying detec-
tion algorithm used for determining the alarm state of each sensor. The circular shaped ROC
investigated in Chapter 8, would be appropriate for detection algorithms like the Mean De-
tector (MD) proposed in Chapter 4, or the Energy Detector (ED) proposed in Chapter 5. In
this section, we investigate the Covariance Detector (CD) proposed in Chapter 5, that results
in an elliptic shaped ROC.

10.3.1 Elliptic ROC

For the Covariance Detector (CD) covariance information between two closest neighbors is
the deciding factor for detecting the event. The test statistic used is the sample covariance of
the measurements between two closest neighbors compared to a constant threshold T . For
a pair of sensor nodes using the CD, as shown in Chapter 5, the ROC becomes an ellipse
with the two sensor nodes located at the foci. Note that the size of the ROC depends on the
separating distance d between the two sensor nodes. For d = 0, the two sensors are located
at the same point, and the coverage area attains its maximum possible value (a circle). At
this point it is worth pointing out that for SNAP only “unique pairs” of sensor nodes are used
for the construction of the likelihood matrix L. For example, if node i is closest neighbor of
j and j is the closest neighbor of i, then only one of the two updates L. Fig. 10.1 shows an
example of the ROC ellipse contour plots created by SNAP for 25 randomly deployed sensor
nodes with the source located in the middle of the field.

10.3.2 Elliptic ROC Simulation Results

In this section, we show how covariance information can be also used to accurately local-
ize the event using SNAP. We compare the performance of SNAP against 2 other binary
estimators that have been previously defined1: the Centroid Estimator (CE) and Add Posi-
tive (AP). For all subsequent experiments, we use a square sensor field of 100 × 100 with
200 randomly deployed sensors and assume that the sensor measurements were given by the
stochastic propagation model described in Section 3.2 of Chapter 3. Also, it is assumed that
c = 1000, λv = λc = 50, σ2

W = 1, σ2
S = 10 and M = 1000. The sensor nodes utilize

1For CE see Section 2.6 of Chapter 2 and for AP see Section 8.6.3 of Chapter 8.
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Figure 10.1: SNAP with elliptic ROC localization example using covariance information
from 25 randomly deployed sensor nodes. Alarmed nodes create a “positive” ROC (filled
with +1) with contour indicated with red color while non-alarmed nodes create a “negative”
ROC (filled with −1) with contour indicated with blue color.

the covariance test statistic for the CD to determine their alarm status. For all experiments,
the sensor field is initialized at the beginning and remains fixed throughout the experiments.
Finally, the RMS error reported is the average over 500 randomly deployed sources. For all
experiments we use Matlab.

The results are displayed in Fig. 10.2. Fig. 10.2(a) shows the SNAP performance using the
elliptic shaped ROC as we vary the detection threshold T , while Fig. 10.2(b) demonstrates a
snapshot of the contour plot of the likelihood matrix constructed using SNAP for T = 3. For
all experiments, SNAP achieved a fairly robust behavior to a large range of thresholds. The
robust behavior of SNAP is especially evident for smaller threshold values where we have a
larger number of alarmed sensor nodes. This is especially important in estimation because
smaller thresholds allow the detection of weaker signals and also increase the system fault
tolerance. Note that the performance of all algorithms deteriorates for thresholds above 6

mainly because the ROC of each sensor becomes very small and we run into some situations
with no alarmed sensor nodes that cause large estimation errors (in those situations, since
we cannot employ the localization algorithms, we assume that the event is located at the
center of the field). Also, it is worth pointing out that the comparison between SNAP and AP
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demonstrates once more the value of utilizing the non-alarmed sensor nodes in localizing the
event.
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Figure 10.2: SNAP using elliptic ROC performance evaluation: a) RMS error vs. threshold
b) Likelihood matrix contour snapshot for T = 3.

10.4 Plume Source Localization using SNAP

In this section we will investigate how the ROC needs to adapt based on the event propagation
characteristics. Specifically, we first show that for the case of a directed propagation model
the ROC becomes the “mirror” shape of the source ROI. Next, we extend these results for
localization of pollutant sources with Gaussian concentration distribution using SNAP.

10.4.1 Directed Propagation Model

For this section we assume the simplified signal/substance propagation model described in
Section 3.3 of Chapter 3 which takes into account environmental conditions like wind or cur-
rent flow. Specifically, we assume that there is a draft in a constant direction. As a result, the
substance is spread in a limited angle φs as shown in Fig. 10.3. For this propagation model,
the Region of Influence (ROI) is illustrated with a triangle in Fig. 10.3. In this example, we
assume that the direction of propagation is along the x-axis and thus the signal spreading
is constrained within two rays that pass from the point of the event with angles −φs/2 to
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Figure 10.3: Directed event propagation model with Active Area A defined by direction of
propagation and spread angle φs. For this case the ROC becomes the “mirror” shape of the
source ROI as indicated on the figure.

φs/2. Given this constrain, a sensor will receive some signal information only if the source
is located within the two rays that pass from the sensor and with angles π ± φs/2. So for
the directed propagation model the ROC becomes the “mirror” shape of the source ROI (see
Fig. 10.3). In other words, the ROC of the alarmed sensor node contains all the possible
source locations from where the event could have originated in order for the particular sen-
sor node to become alarmed. On the other hand, the ROC of the non-alarmed sensor node
contains all the “impossible” source locations where the event could not have originated.

10.4.2 Plume ROC Simulation Results

In this section we present results on SNAP localization for the Gaussian Plume Model [60]
with one-dimensional spreading and a steady wind direction along the x-axis. This creates a
“drop” shaped ROI that depends on the source parameters and the threshold. For constructing
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the plume ROC we use the “mirror” shape of the source ROI as explained in the previous
section (see also [59] where a similar ROC has been used). Fig. 10.4 shows an example of
the plume ROC contour plots created by SNAP using 25 randomly deployed sensor nodes.
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Figure 10.4: SNAP with plume ROC localization example using 25 randomly deployed
sensor nodes. Alarmed nodes create a “positive” ROC (filled with +1) with contour indi-
cated with red color while non-alarmed nodes create a “negative” ROC (filled with −1) with
contour indicated with blue color.

For the simulation results we use the model in Section 3.3 with W ∼ N (0, 1), φs = π2 and
Sn,t given by (3.10). Furthermore, we use c = 200, b = 0.25 and a 100× 100 field with 200
randomly deployed nodes. Also, we assume the event source is placed at position (20, 50)

and take the average over 500 randomly deployed fields to calculate the RMS error.

The results are displayed in Fig. 10.5. Fig. 10.5(a) shows the SNAP performance using the
plume shaped ROC as we vary the detection threshold T , while Fig. 10.5(b) demonstrates
a snapshot of the contour plot of the likelihood matrix constructed using SNAP for T = 3.
From these results, we see that SNAP can be also effectively applied for the localization of

2The Gaussian plume model with one-dimensional spreading in Section 3.3 is only defined in the positive-x

direction.
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certain plume sources when its ROC is properly configured.
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Figure 10.5: SNAP using plume ROC performance evaluation: a) RMS error vs. threshold
b) Likelihood matrix contour snapshot for T = 3.

10.5 Summary

This chapter investigates the SNAP algorithm, proposed in Chapter 8, for event sources
with non-circular footprint. We show how the ROC can be adapted, in terms of size, shape
and orientation in order to achieve accurate localization results when using SNAP for two
different event conditions. First, our results indicate that covariance information between
measurements of sensor nodes in proximity can be used by SNAP to achieve accurate event
localization. Second, we show how SNAP can be applied for localizing events with directed
propagation (for example in problems of environmental pollution).
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CHAPTER 11

CONCLUSION

This dissertation focuses on distributed event detection and localization in Wireless Sensor
Networks (WSNs). The proposed sensor network can deal with a number of environmental
monitoring applications. The main objective of this dissertation is to detect and localize the
event from the spatially distributed information provided by the sensor nodes in a simple,
localized and fault tolerant manner. For the problem of distributed detection this dissertation
proposes and analyzes two novel detection algorithms: the Covariance Detector (CD) and
the Enhanced Covariance Detector (ECD) that exploit the spatial correlation between the
measurements of sensor nodes in close proximity in order to improve the overall coverage of
the sensor network. For the problem of distributed localization this dissertation proposes and
analyzes two new algorithms: the SNAP (Subtract on Negative Add on Positive) algorithm
and the Fault Tolerant Maximum Likelihood (FTML) algorithm. Both algorithms feature
accuracy and robustness with respect to faults in the sensor network. In addition, SNAP has
desirable properties such as low computational complexity and distributed implementation
capability.

For our future work we plan to investigate other propagations models and noise distributions.
For detection, we plan to investigate optimal fusion rules. For localization, we plan to apply
the SNAP algorithm for sensor node localization, target tracking applications and situations
where we have multiple sources. Below we provide some more details for each of these
items:

Propagation Models: In the real world, events do not have uniform distributions because of
varying environmental conditions. For our future work, we plan to investigate other propaga-
tions models, both static and dynamic. For static models, we will assume noise with different
distribution characteristics.

Optimal Fusion Rules: At the local sensor level we will be investigating distributed detection
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strategies for the case where we have three or more sensor nodes collaborating for improving
their coverage. At the network level, from our work on event detection, we conjecture that
the OR fusion rule at the base station (at least one sensor node reports detection) is actually
the optimal fusion rule that achieves maximum coverage when energy constrains are taken
into consideration (by constraining the number of sensors reporting to the base station to be
relatively small) - this is based on extensive simulation results.

Sensor Node Localization: Most applications envisioned for WSNs, require the sensor nodes
to know or estimate their locations. One of the common assumptions made for WSNs, is
that a fraction of the sensor nodes uses GPS, while the rest estimate their location using
distributed localization algorithms. An interesting research direction would be to use SNAP
for localizing the remaining sensor nodes using received signal strength indication (RSSI)
measurements.

Target Tracking: Mobile target tracking is one of the most fundamental collaborative infor-
mation processing problems in WSNs. Tracking techniques, as opposed to the localization
techniques discussed in this dissertation, usually incorporate a target mobility model and
assume a probability distribution for the sensor measurement errors to achieve superior per-
formance. They rely on Bayesian filtering variants, such as Kalman Filter or Particle Filter,
to mitigate the effect of measurement noise and alleviate high positioning errors that do not
reflect the target’s mobility pattern. The SNAP algorithm provides high quality position
estimates that reflect the active region of a moving target. However, under certain condi-
tions, such as low node density and/or high probability of faulty nodes, higher positioning
errors may be observed. Our approach will be to combine SNAP with a position filtering
scheme (e.g., Kalman Filter) to smooth out the position estimates that do not correspond to
the moving target’s dynamics.

Multiple Sources: Having multiple sources makes the localization problem considerably
more challenging. The way we plan to attack this problem is in two distinct phases. First,
the number of sources need to be identified with a leader node elected for each distinct
source. Then, each source can be localized by the respective leader node using SNAP.

Finally, we plan implement the proposed algorithms in a real-time application using WSNs.
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