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Abstract

e efficient and sustainable management of water resources is a key challenge that is be-

coming more essential year aer year. Water resources management involves the collection

of water from various sources, the disinfection of water at treatment plants and the delivery

of clean water to consumers through water distribution systems. Water distribution systems,

in particular, have a significant role in sustaining vital societal functions; however, when a

system fault occurs, such as a water contamination intrusion or a pipe break, these societal

functions may be negatively affected. In previous years, various aspects of the security mon-

itoring problem in water distribution systems have been examined; in addition, robust fault

diagnosis algorithms have been developed within a system-theoretic framework. is thesis

presents a formulation of a system-theoretic framework suitable for fault diagnosis and se-

curity monitoring in water distribution systems. First, a formulation of the monitoring and

control problem of water distribution networks is presented, in a framework suitable for sen-

sor placement and fault diagnosis. Based on the developed framework, the sensor placement

problem is examined, to find suitable locations in a water distribution network where on-line

quality sensors ought to be installed, for minimizing the risk of a severe damage on popula-

tion, in case that a contaminant enters the network and is distributed with flow. Furthermore,

the manual quality sampling scheduling problem is examined, to find where and when to

take water samples for quality monitoring. Next, a disinfectant concentration regulation al-

gorithm for water distribution networks is designed, using adaptive approximation to learn

water demands. e detection of hydraulic leakage faults in District Metered Areas (DMA)

is examined, by using a fault detection method based on learning the periodic consumption

dynamics. Finally, the impact of a contamination detected in a water distribution system is

evaluated, and its source area is isolated, using a methodology based on decision tree induc-

tion. e effectiveness of the proposed methodologies is illustrated with simulations using

water distribution system models and historical hydraulic data.
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Περίληψη

Η αποτελεσματική και αειφόρος διαχείριση των υδάτινων πόρων αποτελεί μια βασική

πρόκληση η οποία καθίσταται, χρόνο με το χρόνο, ολοένα και πιο ουσιαστική. Η διαχείριση

υδάτινων πόρων περιλαμβάνει τη συγκέντρωση νερού από διάφορες πηγές, την απολύμανση

του νερού σε εργοστάσια επεξεργασίας και την παράδοση του καθαρού νερού στους κατα-

ναλωτές, μέσω των συστημάτων διανομής νερού. Τα συστήματα διανομής νερού διαδραμα-

τίζουν ένα ζωτικής σημασίας ρόλο στην διατήρηση υψηλού βιοτικού επιπέδου. Εντούτοις,

όταν ένα σφάλμα εμφανιστεί στο σύστημα, όπως μόλυνση του νερού ή σπάσιμο κάποιου

αγωγού, αυτό μπορεί να επιφέρει δυσμενείς επιπτώσεις στη λειτουργία της κοινωνίας. Στα

προηγούμενα χρόνια έχουν εξεταστεί ερευνητικά διάφορες πτυχές του προβλήματος ελέγ-

χου ασφάλειας στα συστήματα διανομής νερού, και επιπρόσθετα έχουν αναπτυχθεί εύρωστοι

αλγόριθμοι για διάγνωση σφαλμάτων, μέσα στα πλαίσια της θεωρίας συστημάτων. Στη δια-

τριβή αυτή διατυπώνεται ένα θεωρητικό πλαίσιο κατάλληλο για τη διάγνωση σφαλμάτων και

τον έλεγχο ασφάλειας σε συστήματα διανομής νερού. Κατ’ αρχάς, παρουσιάζεται μια διατύ-

πωση του προβλήματος παρακολούθησης και ελέγχου των δικτύων διανομής νερού, σε ένα

πλαίσιο κατάλληλο για την τοποθέτηση αισθητήρων και τη διάγνωση σφαλμάτων. Με βάση

το προτεινόμενο θεωρητικό πλαίσιο, εξετάζεται το πρόβλημα τοποθέτησης αισθητήρων. Το

πρόβλημα ορίζεται ως εξεύρεση των κατάλληλων σημείων σε ένα δίκτυο διανομής νερού στα

οποία πρέπει να εγκατασταθούν αισθητήρες που να καταγράφουν την ποιότητα του νερού σε

πραγματικό χρόνο. Στόχος είναι η ελαχιστοποίηση του κινδύνου σοβαρού αντίκτυπου στην

κοινωνία, σε περίπτωση που μια μολυσματική ουσία εισέλθει στο δίκτυο διανομής νερού.

Επιπρόσθετα, εξετάζεται το πρόβλημα προγραμματισμού των δειγματοληψιών στο δίκτυο

διανομής, με σκοπό να εξευρεθεί που και πότε να διενεργούνται δειγματοληψίες νερού για

ποιοτικό έλεγχο. Ακολούθως, σχεδιάζεται ένας αλγόριθμος ρύθμισης της συγκέντρωσης της

απολυμαντικής ουσίας σε δίκτυα διανομής νερού, ο οποίος στηρίζεται στη χρήση τεχνικών

προσαρμοστικής προσέγγισης για εκμάθηση της ζήτησης νερού από τους καταναλωτές. Στη

συνέχεια, εξετάζεται το πρόβλημα ανίχνευσης υδραυλικών σφαλμάτων διαρροής σε διακρι-
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τές ζώνες ελέγχου (District Metered Areas), με τη χρήση μεθόδου ανίχνευσης σφαλμάτων

που βασίζεται στην εκμάθηση των περιοδικών δυναμικών κατανάλωσης. Τέλος, αποτιμά-

ται ο βαθμός κινδύνου εξαιτίας μόλυνσης που έχει ανιχνευτεί σε ένα δίκτυο διανομής νε-

ρού, και απομονώνεται η περιοχή στην οποία βρίσκεται η πηγή του σφάλματος, με τη χρήση

μεθοδολογίας βασισμένης στην επαγωγή δέντρων απόφασης. Η αποτελεσματικότητα των

μεθοδολογιών που έχουν προταθεί στα πλαίσια της διατριβής εξετάζεται με τη χρήση προ-

σομοιώσεων που χρησιμοποιούν μοντέλα δικτύων διανομής νερού και ιστορικά υδραυλικά

δεδομένα.
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Chapter 1

Introduction

1.1 Water as a Human Right

Water is essential for life and for human development; it is, however, unfortunate that even

today, approximately 884 million people lack access to safe water. For this reason, the United

Nations General Assembly has proclaimed the years 2005–2015 as the international decade

for action “Water for Life” [165]. In addition, the UN General Assembly adopted in 2010 a

resolution which recognized the right to safe and clean drinking water as a human right that

is essential for the full enjoyment of life and all human rights; it is the responsibility of each

state to ensure that access to safe, clean and affordable drinking water is realized [166].

e supply of water is not only important for the everyday human needs, but in addition,

for sustainable development, for the production of energy and for industrial and agriculture

processes. Nevertheless, the increasing population growth and the improvement in living con-

ditions, as well as economic development lead to new challenges for water resources manage-

ment and water quality research. is thesis addresses some of these challenges.

1.2 Water Systems

e process of collecting, cleaning, disinfecting and delivering water to consumers can

be considered as a water system. A water system can be described as a system comprised of

multiple subsystems, due to its large-scale and decentralized nature, as well as due to the op-

eration and managerial independence of its components. Overall, as seen in Fig. 1.1, within a

water system, water from some reservoirs, wells and rivers is transferred to certain treatment

plants and from there, transferred to some urban water distribution systems. Water can be
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Figure 1.1: In a water system, water is collected, transferred for treatment and then transferred

for distribution and consumption.

collected from various sources, such as from reservoirs, lakes, rivers or may be pumped from

the ground; in the case of reservoirs, some of the water outflow may be used to produce hy-

droelectricity. Collected water is then transferred to the water treatment plants for processing

and disinfection.Water treatment plants are factories which clean and disinfect water, passing

it through a series of chemical processes while moving through different tanks. Aer water

has been disinfected, it is transported to water utilities for distribution.

Water utilities are responsible for distributing drinking water to consumers through their

drinking water distribution systems, which they must monitor and control so that the hy-

draulic and quality parameters of the system are within certain desired limits. Water distribu-

tion networks are large-scale systems, which are comprised of pipe networks and dynamical

elements such as water storage tanks, pumps and valves to control pressures and flows in the

system, as well as sensors measuring various hydraulic and quality water characteristics. Due

to the large-scale nature of water distribution systems, there may be parts in the water dis-

tribution network which are decoupled for better monitoring and control. e present thesis

focuses on water distribution networks and how they are monitored, controlled and secured.

Maintaining water quality within the regulations specified by the World Health Organi-

zation (WHO) [189], the European Commission [67], or the U.S. Environmental Protection

2
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Agency (EPA) [172], is an important challenge faced by water utilities which supply water to

consumers through the drinking water distribution network.

However, maintaining water quality is not an easy task, as faults may occur in the system

affecting quality. For instance, leakages, pipe bursts and malfunctioning pumps and valves

may downgrade water delivery or even cause quality faults. Quality faults, on the other hand,

may be due to certain chemical, biological or radioactive substances which travel along the

flow of water and may exhibit certain dynamics. In practice, disinfectants such as chlorine

are used in prescribed concentrations to maintain the drinking water quality, by preventing

bacteria growth and neutralizing chemical agents [178]. In specific, according to the WHO, a

free chlorine residual concentration must exist in drinking water distribution systems, with

minimum target concentration 0.2 mg
L at the point of delivery and 0.5 mg

L for high-risk cir-

cumstances [189]. In general, it is common practice to supply water with a few tenths of a

milligram per litre of chlorine residual. Water providers are required to control and monitor

the hydraulics and the water quality in the water distribution network which they operate, in

order to deliver adequate disinfected water to all consumers. To satisfy this, water providers

have to collect hydraulic and quality data at various locations in the network (either manually

or by using sensors) and control the system appropriately. rough this, water providers are

able to detect faults related to the hydraulic dynamics (pressures, flows) or quality dynamics

(such as disinfectant and contaminant concentration).

Hydraulic faults, such as leakages, pipe bursts, malfunctioning pumps and valves, may

interrupt water consumption ormay deteriorate water quality, due to contaminant infiltration

in the system. In general, water contamination faults in water distribution systemsmay be due

to natural or accidental events.

One example of an accidental contamination was the widely covered “NokiaWater Crisis”,

a large-scalewater contaminationwhich occurred in the town ofNokia, Finland, inNovember

2007 [154]. At a water treatment plant, a drinking-water pipe was connected to a waste-water

pipe through a valve. A worker had accidentally opened the valve, and as a result, within two

days 400 000 litres of waste-water were injected into the drinking water distribution network.

Figure 1.2 depicts the source and the extent of the contamination, which had affected more

than 12 000 people, as well as some local industries. Hundreds were hospitalized, while au-

thorities were forced to impose a complete ban on all water usage.

e case of the “Nokia Water Crisis” raises a number of questions, from a research point

of view. For instance, in what way could the contamination fault have been detected early

enough in order to minimize the extent of the contamination impact? How could the source

3
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Figure 1.2: Map of Nokia, Finland. e red arrow indicates the starting location of the con-

tamination; the contaminated area is covered with a red layer.
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location of this contamination be isolated, and how could the level of risk be evaluated, as

early as possible? Furthermore, how would the problem be seen from a completely different

perspective, in case the contamination had in fact been a malicious attack on the system?

ose are some of the questions which this thesis elaborates on.

1.3 Critical Water Infrastructures and Security

According to the European Commission, critical infrastructures are those physical facil-

ities and networks, which, if disrupted, would significantly affect the health, safety, security

or economic well-being of citizens [68]. Due to their vital role, water systems are consid-

ered among the critical infrastructures, along with power and telecommunications systems.

Critical infrastructure security has received significant attention within the past few years,

especially due to various terrorist acts around the globe.

Malicious faults in water distribution systems can be part of an informed attack seeking to

cause economic losses and affect dramatically the served population’s health. Contamination

could be performed by some criminals, at the most neuralgic location in the drinking water

distribution network, and at themost critical time instance, as an attempt to cause the greatest

“damage”.

A large number of terrorist and criminal threats or attacks on water infrastructures has

been recorded in the last decades [76]. More specifically, in 1976, a biologist in Germany

threatened to contaminate water supplies with Anthrax, unless he was paid $8.5 million. In

1984, followers of the Indian guru Rajneeshee contaminated water and food supplies with

biological agents in e Dalles, Oregon, USA, to serve their political agenda. e followers

gained access to the town’s water systemmaps, and tried to inject contaminants to water tanks

[32]. In 2000, a cyber-attack on a waste-water management system in Queensland, Australia,

caused the release of millions of sewage to parks and contaminated rivers, while in 2003, the

Al-Qaida called for the poisoning of drinking water in American and Western cities [76].

Protecting the critical infrastructure from malicious acts, natural hazards and accidental

faults requires the development of fault diagnosis and security frameworks; this involves the

synergy of various research fields, such as modeling, control, risk management and optimiza-

tion. In this thesis we address a number of modeling, optimization and security issues related

to the critical water infrastructure.
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Forecasting consumer demands

Real-time system modelling

Risk measures (e.g. public health)

Multi-species chemical reactions

Realistic contamination and
hydraulic faults and scenarios

Modelling

Monitoring

Identify neuralgic locations

Physical security measures

Sensor placement for quality

Sampling scheduling

Contamination detection

Leakage detection

Source location isolation

Substance type and injected
concentration and identification 

Decentralized fault diagnosis

Fault Diagnosis

Quality Control and
Fault Accommodation

Disinfection control

Valve and pump control

Embedded
Systems

Fault detectors

Disinfection controllers

Quality sensors

Multi-species sensors

Critical Infrastructure
Interdependencies

Power System

Telecommunications

Transportation

Water Distribution System 
Management and Security

Figure 1.3: Overview of some of the key issues related to water distribution system manage-

ment and security: system modelling, quality monitoring, hydraulic and quality fault diag-

nosis, quality control and contamination fault accommodation, embedded devices for fault

diagnosis and control, interdependence analysis with other critical infrastructures. In this the-

sis the problems of system modelling, quality monitoring and control and the hydraulic and

quality fault diagnosis are addressed.

1.4 Research Challenges in Water Systems

Due to their complexity and large-scale nature, water systems provide various challenges

that can be addressedwithin a systems and control framework. Figure 1.3 provides an overview

of some of the key issues related to water distribution systemmanagement and security: mod-

elling andmonitoring of water systems are deemed essential for quality control, hydraulic and

quality fault diagnosis and fault accommodation to return the system into normal operation.

Furthermore, embedded systems provide the means for constructing specialized sensors and

controllers based on the developed algorithms. Finally, a key issue is to model the interde-

pendencies between water systems with respect to other types of critical infrastructures, such

as power and telecommunication networks, since control actions and faults occurring at a

certain critical infrastructure may affect dramatically the operation of another. For instance,

telecommunication faultsmay cause loss ofmonitoring and control of some pumps and valves

in the network, and on the other hand, hydraulic faults, such as pipe breaks, may cause power

losses due to power station flooding.
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1.5 esis Motivation

Fault diagnosis describes the process of detecting and isolating a fault, by applying various

techniques to monitor the changes in the states, learn the fault dynamics, and fault accommo-

dation describes the process of adapting the input so that the system returns to safe operation.

In addition, security monitoring describes the supervision of the distribution network, aim-

ing at minimizing the potential economic losses and the damages inflicted on the consumers,

as a result of a fault or amalicious attack. Securitymonitoring and fault diagnosis in water dis-

tribution systems belong to an area of increasing research interest, and require the synergy of

various fields, such as control systems, water engineering, optimization and riskmanagement.

e risk of hydraulic and quality faults in water distribution systems which may cause

water losses or water contamination, with the danger of deteriorating the consumers’ health,

constitutes the motivation of this research.

In the previous years, various aspects of the security monitoring problem in water distri-

bution systems were examined. In addition, robust fault diagnosis algorithms were developed

within a system-theoretic framework. An open research area is the formulation of a system-

theoretic framework suitable for fault diagnosis and security monitoring in water distribution

systems; that is the problem we investigate.

e general thesis contributions are: a) formulates the problem of monitoring and control

in water distribution networks, using amathematical framework which is suitable for the sen-

sor placement and the fault diagnosis problem; b) provides algorithms to find the locations in

a water distribution network where quality sensors should be installed, as well as where and

when to conduct manual quality sampling, in order to monitor the water chemical charac-

teristics; c) to regulate the disinfectant concentration in a water distribution network within

some desired levels; d) designs algorithms to isolate the source area and evaluate the impact of

the contamination; and e) designs algorithms to detect hydraulic faults in a water distribution

network, using measurements from standard monitoring sensors.
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1.6 esis Outline

In the following, we present the outline of each chapter and the most important contribu-

tions, together with any relevant publications.

Chapter 2: Water Systems Modeling

is chapter provides background information on themodeling of the hydraulic dynamics

in water distribution systems, as well as onmodeling the advection-reaction quality dynamics

in distribution networks. In addition, we define the hydraulic and quality control problem,

as well as present models describing the hydraulic faults, the quality faults and the impact

dynamics. e models presented serve as the basis for the development of a mathematical

framework suitable for fault diagnosis and security in water systems.

e contribution of this work is the formulation of the advection-reaction and quality fault

dynamics, coupled with the impact dynamics, into a state-space representation, which is used

as a framework for the optimization and control problems addressed in this thesis.

Part of the work in this chapter has been published and presented in peer-reviewed jour-

nals [58, 61, 66] and conferences [59, 60, 63, 64].

Chapter 3: Quality Fault Monitoring

is chapter provides background information on the quality sensor placement and man-

ual sampling scheduling problem inwater distribution systems.e problem of quality sensor

placement for maximum redundancy, when the steady-state hydraulic dynamics can be ex-

pressed as a graph, is formulated and solved as an integer quadratic optimization program.

is work is extended when the system dynamics are available, for the sensor placement and

manual sampling scheduling problem, as well as for the problem for identifying themost neu-

ralgic locations in a water distribution network. We formulate an optimization problem in

which one or more risk-objective functions are minimized to compute the locations where to

install quality sensors, or, in the case of the manual sampling problem, compute the locations

and time where and when to perform manual sampling. e methodology is demonstrated

on an illustrative network, on a benchmark network, as well as on part of a water distribution

network in Cyprus.

e contributions of this work are the presentation of a rigorous mathematical formula-

tion and the solution of the maximum redundancy sensor placement problem, as well as the

security-oriented sensor placement problem considering risk-objective functions; the formu-

lation is extended for the security-oriented manual sampling scheduling problem.
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e work presented in this chapter has been published and presented in peer-reviewed

journals [58, 61, 66] and conferences [55, 59, 60, 62–64, 123]. In addition, the maximum re-

dundancy formulation has been applied to power transmission networks for Phasor Mea-

surement Units location selection; part of the results have been published in a peer-reviewed

journal and a conference [33, 34].

Chapter 4: Quality Regulation

is chapter addresses the issue of designing algorithms for the regulation of the spatial-

temporal distribution of chlorine residual in drinking water distribution networks, which are

influenced by unknown time-varying water demands. A solution methodology is presented

using model predictive control principles combined with on-line adaptive forecasting of the

system hydraulics as they are driven by consumer demands. e periodic nature of water

demands allows the use of Fourier series with coefficients which change adaptively, for fore-

casting future flows at various nodes in the distribution network. e objective is to regulate

chlorine residuals, which act as a disinfectant for enhanced water quality, within certain lower

and upper concentration bounds. Simulation results on a distribution network are used to il-

lustrate the performance of the proposed chlorine regulation algorithmunder unknownwater

demands and the trade-offs involved in the chlorine regulation methodology.

e contributions of this work is the design and implementation of a quality regulation

algorithmwhich learns the unknown demands, while using existingwater distribution system

models to compute the input signals.

e work presented in this chapter has been published and presented in a peer-reviewed

conference [54].

Chapter 5: Hydraulic Fault Detection

In this chapter, we formulate the problem of leakage detection in a systems engineering

framework, and propose a solution methodology to detect leakages in a class of distribution

systems. In particular, we consider the case when water utilities use flow sensors to monitor

the water inflow in a District Metered Area (DMA). e goal is to design algorithms which

analyze the discrete inflow signal and determine as early as possible whether a leakage has

occurred in the system.

e DMA inflow signal is normalized to remove long-term trends and seasonal effects,

and two different algorithms are presented for leakage detection. e leakage fault detection

algorithm presented in this work is based on learning the unknown, time-varying, weekly
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periodic DMA inflow dynamics, with the use of an adaptive approximation methodology to

update the coefficients of a Fourier series; as detection logic we utilize the CUSUM algorithm.

For reference and comparison, we present a solution methodology based on night-flow anal-

ysis, using the normalized DMA inflow signal. To illustrate the solution methodology, we

present results based on real hydraulic data measured at a DMA in Limassol, Cyprus.

e contribution of this work is the design and implementation of an automated leakage

detection algorithm, which utilizes measurements which are already available in some DMA,

within a adaptive approximation-based framework.

A journal paper on the results presented in this chapter is in preparation [56].

Chapter 6: Contamination Fault Isolation

When a contamination is detected in awater distribution network, expandedmanual sam-

pling can be performed at the nodes of the network, so as to determine the extent of the con-

tamination. Choosing where to perform expended sampling can be a challenging task, due

to the large-scale nature of the distribution network and the partially unknown hydraulic dy-

namics.

In this chapter we propose a computational methodology to select a sequence of nodes

to perform expanded sampling. e goal is to evaluate the water contamination impact, and

isolate the source-area of the contamination, with as few samples as possible. We consider

that the water utility has a number of fixed quality sensors installed in the distribution net-

work, and that manual quality sampling can be conducted by a contamination response team

at any feasible location in the distribution network. Aer the triggering of a contamination

alarm by a quality sensor, and upon its verification as an actual contamination by the utility

operator, a manual sampling scheduling scheme is computed. e scheduling scheme gives

guidelines with regard to which nodes the contamination response team should sample, in

order to isolate the source-area and to evaluate its possible impact, as quickly as possible. e

proposed method is based on decision tree induction; the conditional terms of the decision

tree indicate where expanded manual sampling should be conducted, with a certain order,

aiming at evaluating the possible fault-impact and at isolating the source region. To illustrate

the solution methodology, we present results based on a simplified network and a real water

distribution system benchmark.

e contributions of this work are the mathematical formulation, the design and the im-

plementation of an expanded manual sampling scheduling algorithm; as added benefit, the
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proposed algorithm is in accordance to the guidelines specified by the EPA as part of the con-

sequence management planwhen a contamination is detected in a water distribution network.

A journal paper on the results presented in this chapter is in a peer-review stage [57], and

part of the results have been accepted to appear in a peer-reviewed conference [65].

Chapter 7: Conclusions

In this chapter we present some concluding remarks, as well as directions for future re-

search.
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Chapter 2

Water Systems Modeling

In this chapter we provide background information on the modeling of the hydraulic dy-

namics in water distribution systems, as well as on modeling the advection-reaction quality

dynamics in distribution networks. In addition, we define the hydraulic and quality control

problem, as well as models describing the hydraulic faults, the quality faults and the impact

dynamics. e models presented serve as the basis for the development of a mathematical

framework suitable for fault diagnosis and security in water systems.

2.1 Description of Water Distribution Networks

A water distribution network is the infrastructure responsible for delivering drinking wa-

ter to consumers. Water enters the network aer it has been collected from rivers, lakes, dams

or underground sources and has been cleaned at treatment plants. Water distribution net-

works are comprised of pipes which are connected to storage tanks, reservoirs or other pipes

using junctions, starting from the facilities of the water provider and reaching all the con-

sumers. Water is supplied to consumers through various points in the network, namely the

outflow nodes. Valves are usually installed to some of the pipes to reduce flow or pressure,

or to isolate or close part of the network. Pumps deliver energy to the system by increasing

the pressure at some locations. Both valves and pumps are considered as hydraulic actuators,

which may be controlled through automated or manual feedback signals. Tanks which are

connected to the network, fill or empty according to a time schedule or are regulated through

feedback controllers. Demand is the water outflow due to consumer requests. Although such

requests occur randomly throughout the day, in the macro-level they have some common

characteristics, such as approximate periodicity or consumption patterns, which can be both

learned and predicted.
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In a water distribution network, hydraulic and quality parameters are usually measured

through a Supervisory Control And Data Acquisition (SCADA) system. Hydraulic monitor-

ing is quite common for water utilities, which measure flow and pressure at various points

of the network in order to observe consumption behaviour and detect leaks. Quality moni-

toring, on the other hand, is more recent and involves performing mostly manual sampling

or installing quality sensors at various locations, to determine the chemical concentrations of

various chemical species such as chlorine (used for disinfection) or certain contaminants.

Modelingmethodologies for hydraulic and quality dynamics and their faults have received

significant attention during the last decade [78, 148], and are still an area of active research.

Details regarding hydraulic and quality modeling can be found in [25, 80, 88, 99].

2.2 Modeling Hydraulics

ehydraulic analysis problem inwater distribution networks is defined as the problem of

computing the hydraulic head at each junction and the flows at each pipe. To solve this prob-

lem, the topology of the network and pipe characteristics, the control inputs, as well as the

demand at each node, need to be known. In general, structural information of the network is

available by the water utilities; however, pipe characteristics may require field measurements,

and nodal demands at each discrete can only be estimated using historical data and other hy-

draulicmeasurements available, if no online demand sensors are used by the utility tomonitor

each consumer.

In general, a set of ordinary differential equations can be used to describe the dynamic

relation of water flow in pipes and the differences in the hydraulic heads [99]. However, in

practice, approximation of the actual hydraulic dynamics are considered in discrete time, in

steady state, and by using an iterative optimization algorithm (e.g. gradient descent), the heads

and flows are computed, so that the conservation of mass and energy is satisfied, e.g. [161].

To establish the notation, consider a water distribution network composed of pipes, junc-

tions and water storages. e topology of this network can be represented as a graph with

edges corresponding to pipes, and nodes corresponding to junctions and water storages. At

discrete time k with sampling time ∆t, let di(k) be the consumer demand outflow at the i-th

junction node, and let q j(k) correspond to the flow in the j-th pipe connected to junction i

( j ∈ Ai whereAi is the set of pipe indices which are connected to the i-th node, assuming

that inflows have a positive sign and outflows have a negative sign). In accordance to the prin-

ciple of mass conservation, the sum of all the pipe inflows and pipe outflows must equal to
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the demand (Kirchhoff ’s junction rule),∑
j∈Ai

q j(k) = di(k).

Furthermore, in accordance to the principle of energy conservation, the flow-headloss rela-

tionship across each link in the network must be balanced. Let hi(k) be the hydraulic head,

i.e. a measurement of water pressure expressed in length units, at the i-th node. For water

moving from node j (higher head) to node i (lower head) with flow ql(k) in the l-th pipe, the

flow-headloss relationship is given by

h j(k) − hi(k) = fh(ql(k)) (2.1)

where fh(·) is a nonlinear function, such that fh(ql(k)) = αrql(k)α f +αmql(k)2, which depends

on the pipe resistance coefficient αr, the flow exponent α f and the minor loss coefficient αm.

ese parameters are computed using empirical methods; for example, by considering the

Hazen-Williams headloss relation, the flow exponent is α f = 1.852 and the resistance coeffi-

cient αr is calculated using a nonlinear function which takes as arguments the pipe diameter,

the pipe length and a unitless roughness coefficient which depends on the pipe material and

has been computed empirically. e minor loss coefficient αm is given empirically by the pipe

fitting type [142]. erefore, for a water distribution network, the set of hydraulic equations is

constructed, and at each discrete time, a gradient optimization algorithm is solved using the

current demand flows, control inputs and tank head [161].

Tanks are dynamic elements in the system and can be considered as nodes in the water

distribution network; the head state of the i-th water tank node is given by

hi(k + 1) = hi(k) +

∑
j∈Ai

q j(k)

fTi(hi(k))
∆t,

where the tank head hi(k) corresponds to the relative water level plus the tank elevation, and

function fTi(·) computes the cross-sectional area of the i-th tank at a certain height. Initial

tank heads are typically known.

Currently, a number of off-the-shelf soware are used to perform the hydraulic analy-

sis in water distribution networks, such as the open-source EPANET [142]. To capture the

time-variance of flows and pressure due to consumer water demands, these systems perform

“extended-period simulations”, i.e. at discrete time k, solve the steady-state equations, com-

pute the state of the dynamic elements in the network for k + 1 (i.e. the tanks), apply any

control inputs and at discrete time k + 1, repeat the procedure.
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2.2.1 Conservation Equations Example

To illustrate the conservation equations, consider the network in Fig. 2.1. Each junction i

has a demand flow di(k) at discrete time k. e arrows indicate the flow of water in pipes. e

Figure 2.1: A simple water distribution network with four nodes; water is supplied by a tank.

mass conservation equations are given by

q1(k) − q2(k) − q4(k) = 0

q2(k) − q3(k) = d2(k)

q4(k) − q5(k) = d3(k)

q5(k) + q3(k) = d4(k).

For the conservation of energy, the equations are given by

h0(k) − h1(k) = fh(q1(k))

h1(k) − h2(k) = fh(q2(k))

h2(k) − h4(k) = fh(q3(k))

h1(k) − h3(k) = fh(q4(k))

h3(k) − h4(k) = fh(q5(k)).

To compute the headloss function fh(·), certain parameters are considered known or are com-

puted empirically. In addition, the demand flows at each node di(k), for i ∈ {1, ...4}, are

known, as well as the initial tank head h0(0). In this example we have constructed nine equa-

tions with nine unknowns. At time k, an optimization algorithm is used to compute the un-

known parameters; then the new tank head is recalculated and the problem is solved for the

next discrete time k + 1.
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2.2.2 Challenges in Hydraulic Modeling

From a controls viewpoint, variations in demand flows are considered as time-varying dis-

turbances, which affect flows in pipes and pressures throughout the network. In general, con-

sumer demands are influenced by weather conditions, season, population growth, change of

habits, even changes due to the response actions aer a contamination . In practice, consumer

demands are rarely measured online for each node; this information, however, is necessary to

solve the hydraulic equations. Some information is acquired when water utilities measure the

consumed water volume for a period of some months, for billing purposes. From those data,

an average daily consumption demand could be calculated for each junction. Time varying

consumer demands can be further estimated by using some flow measurements from within

the network, and calculate water demand estimations.

Furthermore, in the hydraulic model discussed, we assume that some information of the

system is known, such as the pipe characteristics, the initial tank levels and the pumpflow/pressure

equation. In addition, demands are assumed to be independent with respect to the pressure

at the point of outflow; thus the hydraulic solver discussed is entirely demand-driven [160].

In some research, extensions to the demand-driven hydraulic model have been proposed, for

pressure-driven analysis [75].

2.3 Modeling Quality Dynamics

Quality dynamics in water systems corresponds to the concentration of various contam-

inant or disinfectant substances, as well as other water chemical parameters, such as pH or

turbidity; in this work, by water quality we refer to the concentration of some chemical sub-

stance in the water distribution system. Contaminants and disinfectants travel along the water

flowwithin the pipe network, according to the advection and reaction dynamics. Advection is

the transport mechanism of a substance in a fluid, which can bemodelled as a hyperbolic par-

tial differential equation and can be solved using various numerical methods [101]. Advection

dynamics describes how a substance concentration propagates in space and time; reaction dy-

namics describes the change in the substance concentration due to decay, growth, or reaction

with other substances. Advection and reaction dynamics are coupled to describe the quality

dynamics. In addition, water quality in storage tanks is computed dynamically, and it depends

on the inflows and their quality, the outflows, the tank volume and its quality.
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2.3.1 Advection Dynamics

When a substance enters a pipe in which water flows, the substance moves along with that

flow. Inside a pipe, and by neglecting axial dispersion and the substance reaction dynamics,

the first-order hyperbolic partial differential equation which describes the change in space

and time of the substance concentration in water, is given by

∂C(z, t)
∂t

+
Q(t)
aP

∂C(z, t)
∂z

= 0, (2.2)

where C(z, t) is the substance concentration in water at continuous time t and at distance z

along a certain pipe, with water flow Q(t) and cross-sectional area of the pipe aP. e bound-

ary conditions are given by C(z, 0) = C0
t (z) and C(0, t) = C0

z(t).

In water distribution system quality modeling, two main methodologies have been con-

sidered for discretizing the set of hyperbolic partial differential equations describing the ad-

vection dynamics within the pipe network, the Eulerian and the Lagrangian approaches [142–

144]. In general, the Eulerian schemes assume that the watermoves between a fixed grid point

(finite differences) or volume segments (finite volumes), with a constant time-step [144]; a fi-

nite volume methodology was used in EPANET version 1.1 [141]. On the other hand, the

Lagrangian method considers variable-sized water segments, with a constant time-step, un-

less an event has occurred; the event-driven method is implemented in EPANET version

2.0 [142, 143].

Nextwe providemore intuition to the formulation of amathematicalmodel describing the

advection in water distribution systems, by presenting the Finite Volume Method [101]. is

numerical method can be employed to approximate the set of hyperbolic partial differential

equations which describe the advection dynamics. is requires to virtually segment all the

pipes in the network, into a number of finite volume cells, while the Courant-Friedrichs-Lewy

(CFL) condition is required for the convergence of the solution [101]. Consider a substance

moving within a pipe which is segmented into a finite number of volume cells; for the i-th

finite volume set, we define xi(k) as the average concentration in that cell, such that

xi(k) =
1

∆z

∫ zi+∆z

zi

C(l, k∆t)dz,

where∆t is the length of a hydraulic discrete time-step, which is a design parameter and may

depend on the available sensors, ∆z is the width of a single cell and zi is the distance of node

vi from the pipe inflow point. Both ∆t and ∆z are assumed to be fixed within a certain pipe.
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Figure 2.2: A pipe segmented into virtual finite volumes

Numerical Approximation Schemes

Various numerical approximation schemes can be used for solving the hyperbolic differ-

ential equation (2.2), such as the leapfrog or the Lax-Wendroff, which is second order accurate

for smooth solutions [101]. Consider a pipe which is segmented into a number of finite vol-

ume cells, and the discrete flow q(k) = Q(k∆t); for the i-th finite volume which is not at the

boundaries of the pipe, as in Fig. 2.2. e leapfrog numerical scheme is given by

xi(k + 1) = xi(k) − λ(k) (xi+1(k) − xi−1(k)) ,

and the Lax-Wendroff scheme is given by

xi(k + 1) =
λ(k)
2

[1 + λ(k)]xi−1(k) + [1 − λ(k)2]xi(k) −
λ(k)
2

[1 − λ(k)]xi+1(k),

where λ(k) = q(k)
aP

∆t
∆z is the Courant number, for aP the cross-sectional area of the pipe; this

must satisfy the CFL condition, i.e. |q(k)|aP

∆t
∆z ≤ 1 for that pipe to guarantee stability in the

solution [101].edirection of the flowdoes not affect these specific approximations; however

in the boundary cells we need to reformulate the equations to capture the network behaviour.

Boundary Conditions

Boundary conditions need special treatment, since, depending on the flow direction and

the numerical method selected, the concentration of a finite volume outside the pipe may be

needed for calculating the state. A technique is to virtually extent the pipe by adding ghost cells

at the ends, with some virtual concentrations [101]. ese cells will be used to compute the

boundary states in the pipe.e choice of what values to place in these ghost cells is not related

to the numerical solution methodology. At each new time-step, we know the internal states

(or initial conditions) and apply a boundary condition procedure to determine the values of

these virtual cells.

In the case of junctions, if the water flows from the last cell into the junction, then we

consider that the ghost cell concentration x+
i (k) has the same concentration as the i-th cell,

i.e. x+
i (k) = xi(k).
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In the opposite case, we need to compute the concentration at the junction node, as a

weighted sum of the concentrations which inflow. Let A+
i be the set of pipe indices which

deliver water to the i-th node; we assume that all inflows have positive values. However, if

the water flows from the junction into the cell, we need to compute the overall concentration

by considering the inflows; thus the overall concentration is given by the inflow-weighted

sum of concentrations. Let x+
(T, j)(k) be the outflow concentration of the pipe j ∈ A+

i . e

concentration at the i-th junction node is given by

xi(k) =

∑
j∈A+

i

q j(k)x+
(T, j)(k)

 ·
∑

j∈A+
i

q j(k)


−1

, (2.3)

as described in [142].

Remark: According to the Finite Volume method, the network must be segmented into a

finite number of volume cells; the number of finite cells as well as the time step considered are

crucial to guarantee stability in the approximation. In general for this method, assuming that

the time step ∆t does not change, it is considered that an optimization algorithm is solved

at each discrete time, in order to compute a new ∆z for each pipe. A different approach is to

solve a nonlinear optimization problem in which a pre-determined number of finite volumes

is distributed at each pipe, so that the minimum time step for which stability is guaranteed, is

computed.

2.3.2 Reaction Dynamics

In this section we provide some background on the reaction dynamics in water distribu-

tion systems. e reaction dynamics characterize how the concentration of one or more sub-

stances changes, when reacting, decaying or growing within a finite volume of water. Single-

species reaction dynamics are widely used in research, to describe the rate of decay or growth

of a substance [142]. Recently, there has been interest in modeling multiple-species reactions,

which involves coupled sets of differential and algebraic equations, such that

dC(t)
dt

= fR(C(t),CA(t))

0 = fA(C(t),CA(t)),

where C(t) = C(t, 0) is the concentration of one or more chemical species, fR(·) is the func-

tion describing the concentration change rate, CA(t) is a vector of algebraic variables and fA(·)
is the algebraic function which describes the mass-balance relation [150].
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Reaction Models in Water Systems

In most of the research, single-species reaction dynamics are considered. Let C(t) corre-

spond to the concentration of a single substance within a finite water volume. Some typical

reaction dynamics are:

• No reactions dC(t)
dt = 0, e.g. for fluoride

• Linear decay dC(t)
dt = −κC(t), κ > 0, e.g. for radioactive materials

• Linear growth dC(t)
dt = κC(t), κ > 0, e.g. for trihalomethanes

Linear decay in specific, is commonly used for modeling chlorine dynamics, even though the

dynamics aremore complex since they are coupled with the concentration of other substances

reacting with chlorine. In the next subsection we present the dynamics of chorine, one of the

most common chemical substances used for disinfection in water distribution systems.

Chlorine Reaction Modeling

Chlorine is commonly used as a water disinfectant, due to its ability to deactivate var-

ious pathogen substances; in addition it has low cost and it is easy to store, transport and

use [175]. roughout the water distribution network, a detectable chlorine residual is re-

quired so that the various mirco-organisms and chemical agents are below certain thresholds

set by the World Health Organization and governments (e.g. at a minimum of 0.2 mg
L ) [189].

When chlorine is injected into water (e.g. as gas), it produces hypochlorous acid (HOCl)

and hypochlorite ion (ClO−), which react with natural organic matter floating in water or

residing on the pipe/tank walls, disinfecting the drinking water [17]. Chlorine reacts with

organic compounds and other substances naturally present in the water flowing within the

distribution networks and at the pipe walls.

e actual chlorine reaction dynamics in most of the cases are not known, and as a result,

empirical models are utilized [85]. A common assumption in water research literature is that

chlorine dynamics are first-order linear, such that dC(t)
dt = −κC(t), where C(t) is the chlorine

concentration within a finite water volume and κ > 0 is the reaction rate coefficient, which

depends on the bulk reaction coefficient (initial water quality), the wall reaction coefficient

(pipe material) and the mass transfer coefficient (chlorine transfer from bulk water to pipe

walls) [142].

In practice, the chlorine reaction rateκ in somewater volume is calculated off-line by using

pipe condition information, and bymeasuring the concentration of a water sample in a bottle,
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at various time instances; since the dynamics are considered to be linear, the slope of the log-

graph of the normalized concentration measured at each time step indicates an appropriate

value forκ. It is important to note that this decay rate can be affected by exogenous parameters,

such as temperature [142].

In order to provide a more accurate mathematical model of the chlorine dynamics in

drinking water, a number of empirical studies have been conducted [21,41,129,175]. Various

chlorine reaction dynamics have been considered in research in addition to the first-order

linear model, such as:

• the i-th power order, dC(t)
dt = −κCi(t),

• the first-orderwith a stable component dC(t)
dt = −κ(C(t)−C), whereC is a concentration

lower bound,

• the parallel first-order model, dC(t)
dt = −κaKC(t) − κ0(1 − aK)C(t), where 0 ≤ aK ≤ 1

is the percentage of the reacting chlorine concentration which decays with rate κ (fast

reaction), whereas the remaining concentration decays with rate κ0 (slow reaction).

In some studies, the parallel first-order model was shown to better capture the chlorine dy-

namics [175], although the first-order linear in some studies adequately described the actual

dynamics [129].

e above dynamics, however, do not consider explicitly the actual chemical reaction dy-

namics of chlorine with organic matter. Following an analytical methodology, the chlorine

dynamics can be expressed as dC(t)
dt = −κC(t)−κ0C2(t), where reaction rates κ, κ0 depend on

the stoichiometry constants and the initial conditions of both chlorine and the reacting sub-

stance; in some studies this model was found to capture the dynamics of chlorine in drinking

water with more accuracy than other models [21, 85].

More comprehensive models have been proposed, based on the chemical characteristics

for the reaction dynamics and the disinfection by-products in [109]. In addition, models

describing chlorine reactions with contaminants (such as sodium arsenite and organophos-

phate) have been proposed [51, 164, 194].

2.3.3 Advection-Reaction Dynamics

In this section we formulate the dynamic advection-reaction equations in pipes and tanks,

which describe a water distribution system.
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Quality Modeling in Pipes

By coupling the advection and reactiondynamics,we formulate a non-homogeneous equa-

tion to describe the concentration change in time and space within a certain pipe, such that

∂C(z, t)
∂t

+
Q(t)
aP

∂C(z, t)
∂z

= fR(C(z, t)), (2.4)

where C(z, t) is the substance concentration in water at continuous time t and at distance z

along a certain pipe, with water flow Q(t) and a cross-sectional area of the pipe aP; fR(·) is the
concentration change rate due to reactions.

To solve the advection-reaction equation numerically, we can use various methods, such

as the single finite-difference unsplit method, or the franctional step method, which solves

separately the advection and the reaction dynamics [101].

To illustrate the unsplit method, let’s assume that the forward Euler method is used for

discretization and that the reaction dynamics are described by linear decay (2.4); therefore

the i-th finite volume state is given by

xi(k + 1) = xi(k) − λ(k) [xi(k) − xi−1(k)] − κxi(k)∆t,

where κ > 0 and 0 < λ(k) < 1.

For the fractional step method, (2.4) is segmented into two parts,

∂C(z, t)
∂t

+
Q(t)
aP

∂C(z, t)
∂z

= 0,

dC(z, t)
dt

= −κC(z, t);

by using the second-order Runge-Kutta method for the standard differential equation and the

Lax-Wendroff scheme for discretizing advection, the i-th finite volume is given by

xi(k + 1) =

[
λ(k)
2

[1 + λ(k)]xi−1(k) + [1 − λ(k)2]xi(k) −

−λ(k)
2

[1 − λ(k)]xi+1(k)
]
(1 − κ∆t +

1

2
κ2∆t2).

In the advection-reaction algorithm implemented in EPANET 2.0, at each discrete time

the reactions are performed to compute the new concentrations within each water segment;

then advection of the segments is performed [142].

Quality Modeling inWater Tanks

At least three types of tank models are considered in tank water quality modeling [142]:
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• the continuous stirred-tank reactor (CSTR)model, at which the chemicals are perfectly

mixed and uniformly spread;

• the plug-flow reactor model, at which there is no mixing of water between the different

water parcels assumed to travel along the flow in the tank;

• the two-compartmentsmixingmodel, at which the tank is segmented into two perfectly

mixed compartments.

e continuous stirred-tank reactor model is considered a reasonable assumption for various

tanks [142, 145].

Let C(t) be the concentration in a water storage tank, which supplies water to a water

distribution network. e water which fills the tank may be supplied from within the water

distribution network, or it may be supplied from the treatment facilities through the transport

system. For the CSTR, the quality concentration dynamics are given by

d
dt
(V(t)C(t)) = Q+

T (t)C
+
T (t) −Q−T(t)C(t) + fR(C(t)),

where V(t) is the tank’s volume, C+
T (t) is the substance concentration of the water which flows

into the tank, Q+
T (t) is the tank inflow, Q−T(t) is the tank outflow, and fR(C(t)) a reaction term,

such that if linear decay with reaction rate κ > 0 is considered, fR(C(t)) = −κC(t).

By using the forward difference scheme, the volume state v(k) = V(k∆t) at discrete time

k is given by

v(k + 1) = v(k) +
(
q+T (k) − q−T(k)

)
∆t,

where q+T (k) = Q+
T (k∆t) and q−T(k) = Q−T(k∆t). Let x(k) = C(k∆t) correspond to the water

quality in the tank and let x+(k) = C+
T (k∆t) be the water quality of the water going into the

tank with inflow q+T (k), as depicted in Fig. 2.3. e tank water quality dynamics are given by

x(k + 1) =

(
q+T (k)x

+(k) − q−T(k)x(k)
)
∆t + v(k)x(k) − κ∆tx(k)

v(k + 1)

=

[
q+T (k)∆t
v(k + 1)

]
x+(k) +

[
v(k) − (q−T(k) − κ)∆t

v(k + 1)

]
x(k)

2.4 Hydraulic and Quality Control

e feedback control problem in water systems can be defined as the problem of comput-

ing at each discrete time k, the input vector u(k), for the pumps, valves as well as the concen-

tration of the injected disinfectant at each booster station, so that the measured hydraulic and
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Figure 2.3: A simple tank schematic; the inflow, outflow, volume and concentrations are given

in discrete time.

quality parameters in the output vector y(k) follow the reference signal vector r(k) specified

for safe operation, computed using the fu(·) controller function.

In practice, due to the complex interdependencies between hydraulic and quality dynam-

ics, the design of the hydraulic controller is typically considered independently from the qual-

ity controller [127, 182]. A schematic of the controllers is depicted in Fig. 2.4; the water dis-

tribution system is driven by unknown consumer demands which exhibit certain periodicity,

and uncertainty; at certain locations within the distribution network, on-line flow and pres-

sure sensors are installed and monitored through SCADA, as well as some quality sensors

measuring various chemical parameters. In addition, manual sampling for laboratory exam-

ination is performed at certain locations. A hydraulic and a quality controller take the mea-

surement outputs into consideration, aswell as the desired hydraulic and quality specifications

and any constraints, and compute an input signal which regulates the flows and pressures at

valves and pumps, as well as concentration at the disinfectant boosters.

2.5 Hydraulic Faults

Hydraulic faults may correspond to leakages within the water distribution network or at

tanks, to pipe bursts, to blocked pipes or tomalfunctioning pumps and valves. In addition, we

may consider as a hydraulic fault the unauthorized back-flow in the network using a pump

for injecting contaminants.

Water loss may be due to a variety of reasons, such as leaks, the or unauthorized use and

faulty water meters. e largest portion of the water lost is due to leaks or breaks [178]. A

break is an abrupt fault needing immediate action, and it is usually easy to isolate the location

of the problem. On the other hand, leaks due to cracks at pipes, tanks or loose fittings can

remain unnoticeable, are difficult to isolate and may cause significant water losses and escap-

ing revenues. Some of these problems are prompted by the deterioration of the infrastructure,
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Figure 2.4: Controller for water distribution networks. Hydraulic and quality control are de-

coupled, but may exchange some information. e control objective is to regulate pressures

and water quality so that they are within the desired bounds specified by the regulations.

mainly due to age, or by high pressures. Water loss imposes an economic burden on the water

utilities while reducing water supplies; furthermore it may cause quality faults. For example a

crack in a pipe under certain circumstances can be the entry location for contaminants (e.g.

organic matter).

Mathematical models which describe the leakage flow with respect to the pressure at the

leakage location have been proposed in various empirical studies [74,75,177]. Let ϕh(k; h(k))

be the hydraulic leakage fault, i.e. the flow due to leakage measured in m3

hr , occurring at a node

with head h(k), at time k. Hydraulic faults can be modelled mathematically as

ϕh(k; h(k)) = aD[ fl(h(k))]aE , (2.5)

where aD > 0 is a discharge coefficient, aE ∈ [0.5, 2.5] is an exponent term which depends

on the leakage type and fl : R 7→ R is an unknown function which maps the measured

hydraulic head to the pressure at the leakage location (the pressure at the location where the

leakage has occurred is usually not measured). In this model, both the discharge coefficient

and the exponent term are unknown.However, empirical studies has shown that the exponent

for small background leaks is aE ≈ 1.5, for larger leaks in plastic pipes is aE ≥ 1.5 and for

larger leaks in metal pipes is aE ≈ 0.5 [98]. In this work we consider the leakage fault model
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in simulating realistic leakage faults.

When a demand-driven hydraulic model is used, the leakage can be assumed as an addi-

tional time-varying demand, proportional to the corresponding nodal pressure/head; for the

j-th node, the demand with a leakage fault is modelled as

d j(k) = d∗j(k) + ϕh(k; h j(k)),

where d∗j(k) is the real consumption demand, and h j(k) the nodal head. For modelling pur-

poses, leakages which occur within a pipe are assigned as outflow from one of the adjusted

nodes, which may be selected randomly.

2.6 Quality Faults

Quality faults may occur due to the contamination of water by certain substances, usually

chemical, biological or radioactive, which travel along the flow, and they may exhibit decay

or growth dynamics. A contaminant substance can be injected into a network at any point

by connecting a pump and forcing the outflow direction to reverse. e contaminant travels

within the network, following the path of the carrier. Digestion of the contaminated water by

consumers may affect the health of the served population; in addition, use of contaminated

water in industrial production may cause economic losses.

Consider a water distribution network composed of pipes, junctions and water storage

tanks. e topology of this network can be represented as a graph with edges corresponding

to pipes, and Nm nodes corresponding to junctions and water storage tanks. For modeling

purposes, each pipe in the network is a priori virtually segmented into a number of finite

volume cells. Let Nn be the total number of all nodes and finite volume cells considered in

the network. Let xi(k) denote the average concentration of a certain contaminant at discrete

time k, for i ∈ {1, ...,Nm, ...,Nn}. e vector x(k) = [x1(k), ..., xNm(k), ..., xNn(k)]⊤ is the state

of the contaminant concentration dynamics. Let V be the set of all node indices, such that

V = {1, 2, ...,Nm}.
e advection-reaction equations [101] describing the propagation of a contaminant in a

water distribution network can be expressed in a state-space formulation:

x(k + 1) = A(k)x(k) + fR(x(k)) + Fϕ(k),

yc(k) = Cx(k) (2.6)

where A(k) is an Nn×Nn matrix which characterizes the advection dynamics and captures the

network topology, and fR : RNn 7→ RNn is a function which describes the reaction dynamics
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of the contaminant. For Nm possible injection locations (i.e., at the nodes), let F be an Nn ×
Nm matrix describing the locations of the injected contaminant. e function ϕ : N+ 7→
RNm describes the change in the contaminant concentration due to a substance injection. e

output vector yc(k) ∈ RMs corresponds to the statemeasurements, which aremonitored using

Ms online sensors. C is a binary output matrix, C ∈ {0, 1}Ms×Nn , such that the element (i, j) is

C(i, j) = 1 when the i-th quality sensor measures the j-th state, and C(i, j) = 0 when there is no

quality sensor installed.

We define a finite set E of fault-location matrices E j, j = {1, ..., 2Nm}, given by

E =




E j
(1,1)

0
. . .

0 E j
(Nm,Nm)

 | E
j
(i,i) ∈ {0, 1}, j = {1, ..., 2Nm}

 , (2.7)

where E(i,i) = 1 corresponds to the case when a contaminant is injected at the i-th node i ∈ V.

For the i-th fault-location matrix Ei ∈ E, we define the injected contaminant location matrix

F given in (2.6) as F = [Ei | 0]⊤, where 0 is an (Nn−Nm)×Nm zero matrix; F is of dimension

Nn ×Nm.

e function ϕ(k) = [ϕ1(k), ..., ϕNm(k)]⊤ corresponds to the signals of the injected con-

taminant concentrations. ese have a certain start time and duration, and are non-negative.

e functionϕ(k) can be represented throughNz linearly parameterized basis functionsζ(k) =

[ζ1(k), ..., ζNz(k)]⊤, such as pulses or radial-basis functions. erefore, ϕ(k) is expressed as

ϕ(k) = Θζ(k), (2.8)

where Θ ∈ RNm×Nz . e (i, j) element of Θ, denoted as Θ(i, j), represents the amplitude of the

basis function ζ j(k) which is added to the state xi(k). Hydraulic dynamics are considered as

approximately periodic (e.g. with a daily or weekly period) due to the periodic nature of con-

sumer water demands. e basis functions are used to break up one hydraulic period into Nz

time segments with possible overlaps, as in the case of radial basis functions. e motivation

behind the use of a linearly parameterized form of the fault function, is that it simplifies the

process of computing a finite set of fault parameter matrices, either through grid sampling

or otherwise. is will be useful during the solution methodology for sensor placement (see

Chapter 3).

From a practical viewpoint, the contaminant injection ismeasured in terms of the injected

contaminant mass per unit time ( mg
min), while the state-space formulation is described in terms

of contaminant concentration (mg
L ). e fault function ϕi(k) affecting the i-th node can be

expressed as a fraction of a contaminantmass injection rate ( mg
min) over the nodal inflows ( L

min).
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2.7 Simulation Examples

2.7.1 Example of Advection Dynamics

To illustrate the construction of the set of discrete dynamic equations describing the ad-

vection dynamics, we consider the simple network in Fig. 2.5.

Figure 2.5: A simplewater distribution networkwith three pipes, three junctions and one tank.

Concentration is controlled at junction (a).

Junction node (a) delivers water to pipe (A); the water arrives at junction node (b), where

it is delivered to pipes (B) and (C). Water from pipe (C) is used to fill the water tank, and

water from pipe (B) is consumed at node (c). At node (a), the concentration signal ua(k) is

controlled. Let qA(k), qB(k) and qC(k) correspond to the flows in pipes (A), (B) and (C) re-

spectively, and let xb(k) correspond to the substance concentration at junction (b).

We segment offline the network into finite volumes, such that pipes (A) and (B) are com-

prised of two volume cells, while pipe (C) with one. Let xi(k) be the substance concentration

within the i-th finite volume cell, at discrete time k, for i ∈ {1, ..., 5}; x6(k) is the concentration

at the tank.

By using the leapfrog scheme, the following set of equations is constructed:

x1(k + 1) = x1(k) − λA(k)(x2(k) − ua(k))

x2(k + 1) = x2(k) − λA(k)(x+
2 (k) − x1(k))

x3(k + 1) = x3(k) − λB(k)(x4(k) − xb(k))

x4(k + 1) = x4(k) − λB(k)(x+
4 (k) − x3(k))

x5(k + 1) = x5(k) − λC(k)(x+
5 (k) − xb(k));
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where λA(k) =
qA(k)

aP
, λB(k) =

qB(k)
aP

and λC(k) =
qC(k)

aP
, and aP is the cross-sectional area of

pipes (A), (B) and (C). e concentration at the ghost cells is given by

x+
2 (k) = x2(k)

x+
4 (k) = x4(k)

x+
5 (k) = x5(k)

and the concentration at junction (b) is xb(k) = x2(k).

e concentration in the tank is given by

x6(k + 1) =
qC(k)∆t

v(k) + qC(k)∆t
x5(k) +

v(k)
v(k) + qC(k)∆t

x6(k)

= a1(k)x5(k) + a2(k)x6(k),

where a1(k) =
qC(k)∆t

v(k)+qC(k)∆t and a2(k) =
v(k)

v(k)+qC(k)∆t . e set of equations can be written in a

state-space formulation

x(k + 1) = A(k)x(k) + B(k)u(k)

where x(k) = [x1(k), ..., x6(k)]⊤ is the state vector of finite volume concentrations, the state

matrix A(k) is given by

A(k) =



1 −λA(k) 0 0 0 0 0

λA(k) 1 − λA(k) 0 0 0 0 0

0 λB(k) 1 −λB(k) 0 0 0

0 0 λB(k) 1 − λB(k) 0 0 0

0 λC(k) 0 0 1 − λC(k) 0 0

0 0 0 0 0 a1(k) a2(k)


,

the input vector is u(k) = ua(k), and the input matrix is B(k) = [λA(k), 0, ..., 0]⊤.

2.7.2 Example of Quality Modeling

To illustrate the quality equations, consider the network depicted in Fig. 2.6; the node

elevations are {800, 710, 700, 700, 695} f t for the reservoir and the 4 junctions; the pipe pa-

rameters are given in Table 2.1. By computing the velocity in each pipe, we are able to com-

pute the travel time and the pipe segmentations, with respect to ∆t = 11 min (the short-

est travel time), as given in Table 2.1. erefore, the lengths of the finite volumes are ∆z =

{1000, 500, 1000, 333.33, 142.86} f t, and λ = {1.00, 0.89, 0.56, 0.93, 094}. In total, 23 states
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Figure 2.6: A simple water distribution network of one reservoir and four nodes.
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Figure 2.7: Comparison of exact solution (blue line) and numerical approximation (circles)

using the forward Euler scheme, at each discrete time step.

Edge Length Diameter Roughness Velocity Travel Time Finite

() () (/s) (min) Volumes

(R,1) 1000 12 100 1.42 11.74 1

(1,2) 2000 14 100 0.63 52.91 4

(1,3) 1000 10 100 0.8 20.83 1

(2,4) 1000 12 100 0.44 37.88 3

(3,4) 2000 10 100 0.19 175.44 14

Table 2.1: Pipe Characteristics
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are constructed. At reservoir, a substance with constant concentration of 1 mg
L is injected into

the network. By using the simple forward Euler discretization scheme, we construct 23 state-

space equations; for the i-th state in the j-th pipe, xi(k + 1) = xi(k) − λ j(xi(k) − xi−1(k)),

and in the case of boundary pipe locations, the junction concentrations are computed using

(2.3). Figure 2.7 illustrates the actual and the approximated concentration at node 4, by solv-

ing the state-space equations. e approximation could be improved by using a numerical

approximation with higher accuracy, or by considering a smaller time-step.

2.8 Sensor and Communication Faults

In addition to hydraulic and quality faults, sensor and communication faults may occur

in a water distribution system. Faults affecting sensors e.g. due to low batteries or calibration

errors, may provide measurements with substantial errors to the utility operator as well as

to the monitoring algorithms, which might cause errors in the calculation of various system

parameters and in extend tomiscalculate the control actions.Moreover, communication faults

caused e.g. by the interruption of service by the telecommunication provider, may cause the

loss or delay in receivingmeasurements from sensors, as well as controlling the actuators, thus

interfering with the control process.

In Section 3.2 we propose a maximum redundancy quality sensor placement scheme, for

increasing fault tolerance due to a possible quality sensor failure.

2.9 Impact Dynamics

When a contamination fault occurs, the contaminant is propagated in the network and

eventually itmay reach the customerswhowill consume the outflowwater. LetW ⊆V be the

set of Nw = |W| node indices corresponding to locations which outflow water to consumers

based on demand requests. For each demand node wi ∈ W, i = 1, ...,Nw, an impact value

can be computed at each time step. e impact due to a contamination fault can be expressed

using epidemiological terms, e.g. how many people are affected; or using economic terms,

such as the cost of productivity loss. Another impact measure which can be considered is the

consumed volume of contaminated water which exceeds a certain concentration threshold

[123].

In general, the impact of a fault depends on the volume and contaminant concentration

of the contaminated water consumed. is can be described by a dynamic equation, as shown
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below. Let ξ(k) ∈ RNw be the impact state vector which describes the “damage” caused at

each demand node, at discrete time k, aer a contaminant has been injected somewhere in

the network. For wi ∈ W, a state-space representation of the impact dynamics is given by

ξi(k + 1) = ξi(k) + fξ(xwi(k), dwi(k)), (2.9)

ψ(k) = fψ(ξ(k)) (2.10)

where dwi(k) is the outflowdemand (in m3

s ) at demandnode wi, and fξ : R×R 7→ R+ is a non-

negative function, which characterizes the impact increase at each time step. Furthermore, let

fψ : RNw 7→ R be a metric of the overall impact, fψ(ξ(k)), which characterizes the total

impact, or “damage”, which has been caused by a certain contamination fault. It is sometimes

useful to compute the impact dynamics of Nξ metrics, in order to optimize sensor placement

with respect to various “damage” types.

To give some insight into the type of impact metrics which can be taken into considera-

tion, we formulate in a state-space representation two metrics, the quantity of polluted water

consumed, and the number of people affected [123]. It is worth noting that the proposed

problem formulation can be easily extended to consider other type of impact metrics.

2.9.1 ContaminatedWater Consumption Volume

Let ξi(k) be the volume of consumed contaminated water at demand node wi ∈ W until

time k. is can be computed at each time-step by using the discrete state-space equation

(2.10), where fξ : R×R 7→ R computes the volume of polluted water which is consumed. In

this example,

fξ(xwi(k), dwi(k)) =


dwi(k)∆t if xwi(k) > Cp

0 if xwi(k) ≤ Cp

(2.11)

where Cp is the concentration threshold above which water is considered as polluted. e

overall impact function fψ is given by the aggregated volume of consumed contaminated wa-

ter, i.e.,

fψ(ξ(k)) =
Nw∑
i=1

ξi(k). (2.12)

2.9.2 Population Infected

More advanced impact metrics use epidemiological models. Let ξi(k) be the mass of con-

taminant ingested by the consumers of demand node wi ∈ W until time k. Following the
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formulation in [120], the increase of the contaminant ingested mass ξi(k) at time-step k, is

given by

fξ(xwi(k), dwi(k)) = aγ xwi(k)
dwi(k)

dwi

∆t, (2.13)

where aγ is a constant characterizing the volumetric rate of water consumption per person,

and dwi is the daily average demand outflow at demand node wi.

For the calculation of the overall impact fψ(·) (in this case, the total number of people

infected), a log-normal dose-response model can be considered [39]. Let aΨ be the median

infective dose, i.e. the average dosage (in mg
kg ) for which there is 50% probability that a person

will become infected or symptomatic. In addition, let aW be the average body mass (in kg).

Moreover the number of consumers served by demand node wi is given by
dwi
aµ

, where aµ is

the average daily consumption per person. From the empirical studies mentioned above, the

number of people affected at a demand node depends on the number of consumers served,

multiplied with the probability of one person ingesting enough contaminant mass so that to

become infected or symptomatic. For Φ(·) ∈ [0, 1] the standard normal cumulative distribu-

tion function and aS the probit (probability unit) slope parameter, the overall impact is given

by

fψ(ξ(k)) =
Nw∑
i=1

dwi

aµ
Φ

(
aS log10

(
ξi(k)
aWaΨ

))
. (2.14)

2.10 Concluding Remarks

In this chapter, background information was presented, regarding the hydraulic and qual-

itymodels which are typically used to describe water distribution networks.e advection dy-

namics were discussed, as well as some numerical approximation schemes to solve the partial

differential equations describing the advection dynamics. Various reaction dynamic models

in water systems were presented as well as the chlorine reaction dynamics, which is injected

into the distribution network for disinfection purposes. e coupled advection and reaction

dynamics were then formulated, for pipes and water tanks, in continuous and discrete time.

Next, the problem of hydraulic and quality control was introduced. Hydraulic, quality and

sensor/communication faults were discussed. Regarding the quality faults, a state-space rep-

resentation was formulated, to capture the advection-reaction dynamics under the influence

of a contamination fault, which can be analyzed using a linearly parameterizedmodel. Finally,
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the general contamination impact dynamics were discussed and a state-space representation

was formulated.

e contribution of this work is formulation of the advection-reaction and quality fault

dynamics, coupled with the impact dynamics, into a state-space representation, which is used

as a mathematical framework for the optimization and control problems addressed in this

thesis. Part of the work in this chapter has been published and presented in peer-reviewed

journals [58, 61, 66] and conferences [59, 60, 63, 64].
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Chapter 3

Quality Fault Monitoring

In this chapter we provide background information on the quality sensor placement and

manual sampling scheduling problem in water distribution systems. e problem of quality

sensor placement formaximumredundancy, when the steady-state hydraulic dynamics can be

expressed as a graph, is formulated and solved as an integer quadratic optimization program.

is work is extended when the system dynamics are available, for the sensor placement and

manual sampling scheduling problem, as well as for the problem for identifying the most

neuralgic locations in a water distribution network.We formulate an optimization problem in

which one or more risk-objective functions are minimized to compute the locations where to

install quality sensors, or, in the case of the manual sampling problem, compute the locations

and time where and when to perform manual sampling. e methodology is demonstrated

on an illustrative network, on a benchmark network, as well as on part of a water distribution

network in Cyprus.

3.1 Background

eproblem of where to place facilities¹ or sensors, in order to keep certain objectives and

constraints satisfied within a network, has been examined in various research disciplines such

as operational research [162] and automatic control [8].

e “Set Covering” method was one of the first mathematical formulations of the prob-

lem and it has since been applied in various fields, such as facility location [162]. According

to this approach, an integer optimization program is formulated in order to determine a set

of nodes from a topological graph to install facilities, so that all the remaining nodes are next

¹In this context, facility can be a public service such as the police or a fire station.
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to at least one facility. A related approach is the “Maximal Covering” formulation described

in [40] for the calculation of a set of nodes which maximize the population served in an area

within a certain distance. A similar formulation was considered in [100], which selected the

locations to install water quality sensors in drinking water distribution systems, so that the

largest volume of water consumed was examined. e authors proposed a scenario-based ap-

proach which segmented a day into time-periods, corresponding to different flow patterns,

and the optimization was solved for all scenarios simultaneously. Following this formulation,

aiming at solving bigger networks, other researchers utilized heuristics [91] and genetic al-

gorithms [2], a mixed-integer problem formulation was presented in [16]. A multi-objective

weighted-sum extension of [100] was presented in [82] which considered certain physical

network characteristics and time-delays.

A mathematical formulation suitable for the security issues related to the location selec-

tion, is the “p-median” [81], with the objective of minimizing the “maximum distance” of

a facility. A similar formulation was examined in [11, 15] for water distribution systems. By

considering a number of contamination scenarios and their impacts, the authors formulated a

mathematical program tominimize the average “contamination impact”.e formulation was

extended to take into consideration imperfect sensors [14]. e “p-median” formulation was

further examined in a stochastic framework [152]. Amulti-objective extension was examined

in [186]; however for solving the mixed-integer optimization program, significant computa-

tional power was required. In [19] the authors proposed a modification of this formulation,

to determine locations for monitoring disinfection byproducts.

Within the water resources management community, the design competition of the Bat-

tle of the Water Sensor Networks (BWSN), in 2006, instigated significant research interest and

discussion on security issues of water distribution systems. e task was to find sets of lo-

cations to install quality sensors using two real benchmark networks, so that a number of

objectives are optimized under various fault scenarios, and most of the participant research

groups formulated a multi-objective integer optimization program [90, 123, 133]. According

to the BWSN instructions, only the average impact of observed faults was considered; further-

more, different fault scenarios could have different solutions. A methodology was proposed

in [187] tomeasure the contamination risk, considering contamination detection failures and

its consequences. Some single and multiple objective methodologies for sensor placement

have recently been proposed [6, 52], and in [83], some of the issues related to sensor place-

ment strategies were reviewed.

When online quality sensors are not available, or do not cover part of the distribution
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network, the standard approach is for the water utility to perform manual water sampling for

quality analysis. Water quality may be checked at a few nodes within a network, and for a few

times during the day. Sampling locations may be selected by water utility personnel in an ar-

bitrary fashion, based on their own experience, which could be subjective; it may be otherwise

chosen using certain regulatory requirements, depending on consumer distributions and his-

torical data. In practice, due to the large-scale nature of water distribution networks, as well

as the partial knowledge of the time-varying, hydraulic and quality dynamics, it is difficult

to optimally identify the best locations and times to conduct manual sampling, or install on-

line quality sensors. In addition, each node in the network has certain characteristics, such as

the outflow water pattern and the number of customers, which makes the selection problem

non-trivial.

e problem of manual sampling was discussed in [12], where the authors examined the

problem of scheduling manual sampling for contaminant detection. ey proposed a mixed

integer program for the calculation of the sampling route; i.e. the location and time to take

samples, while considering certain real conditions such as utility working hours, the time

required for sampling and the traveling time between nodes. Computational difficulties in

solving large-scale problems by using this formulationwere expressed in [11,12] for the sensor

placement and manual sampling scheduling problem respectively.

3.2 Quality Sensor Placement for Maximum Redundancy

As a first step towards security monitoring, we address the problem of selecting locations

in the network for on-line quality monitoring. Although water providers are obliged to mon-

itor the quality in the distribution network which they operate, there exist no guidelines for

deciding where to measure water quality within the network. In [100], a “Maximal Covering”

method was proposed. Water arriving at a node has originated from another node, unless the

node is a water source; the idea is to compute “how much” each node contributes to the other

nodes and to neglect those nodes with small contribution. eir work proposed a framework

for water network-based approaches, which solves the problem of maximizing the monitored

volume of water when the number of on-line sensors is a priori known.

We examine a variation of the problem posed by [100]: find the minimum number of

on-line monitoring sensors required for covering the distribution network, and the locations

at which to install them, while maximizing the coverage redundancy. Redundancy is impor-

tant in the case of a sensor failure, so that the water quality is still monitored with as much
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information as possible.

As a solution to this problem, we formulate an integer quadratic optimization problem,

which uses the binary coverage matrix, as presented in [100] and a theoretical upper bound

of the maximum redundancy possible for that coverage matrix. e formulation and solution

methodology presented are generic, thus they may as well be applied to other application

domains, such as in power systems for placement of Phasor Measurement Units (PMU) [33,

34].

3.2.1 Problem Formulation

e general problem is defined as to find the minimum number of sensors required to

monitor a certain network, and from all the possible sensor placements, find those solutions

which have the biggest redundancy.

Let H ∈ {0, 1}Nh×Nh be the binary coveragematrix of Nh nodes, such that H(i, j) = 1 if a cer-

tain minimum percentage of the water volume arriving at the j-th node was supplied through

the i-th node; otherwise, H(i, j) = 0. Let Rs and Rc be diagonal matrices whose non-zero ele-

ments correspond to the significance metric and installation cost of each node, respectively.

Let r be the vector of the maximum redundancy possible, i.e. the maximum number of

node junctionswhich are able tomeasure a sufficient water quantity originating from a certain

node; this can be computed through r = H · 1, where 1 = [1, 1, ..., 1]⊤.

e optimization objective function J(χ) is formulated as

J(χ) = aR(r −Hχ)⊤Rs(r −Hχ) + χ⊤Rcχ

=
1

2
χ⊤(2aRH⊤RsH + 2Rc)χ+ (−2aRr⊤RsH)χ+ aRr⊤Rsr,

where χ ∈ {0, 1}Nh is a binary vector, indicating the sensor locations, such that χi = 1 if a

sensor is placed and χi = 0 if not, for i = 1, ...,Nh; in addition, aR = (r⊤Rsr)−1 is a normal-

izing factor. In addition to maximizing the coverage redundancy, the formulation takes into

consideration weights corresponding to installation costs, as well as some significance metric

(such as the number of customers), at a certain node. When all nodes are equally significant

and have the same installation costs, Rs and Rc are equivalent to the identity matrix I. e op-

timization problem is to find a binary vector χ, such that it minimizes the objective function

J(χ).

e intuition behind the objective function is that aminimization algorithmwillminimize

the term χ⊤Rcχ, which corresponds to the integer number of sensors used (or the cost), and
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Figure 3.1: Coverage graph from a water distribution network example with seven nodes.

then it will minimize the term aR(r −Hχ)⊤Rs(r −Hχ), a normalized distance metric of the

redundancy given by Hχ to the maximum redundancy possible r (when a sensor is installed

at each node).

e constant term in the optimization function can be neglected, and the optimization

problem can be formulated as an integer quadratic program, such that

min
χ∈{0,1}Nh

1
2
χ⊤(2aRH⊤RsH + 2Rc)χ − 2aRr⊤RsHχ (3.1)

subject to Hχ ≥ r, (3.2)

where r ∈ NNh is the minimum redundancy requirement vector. e optimization can be

solved using standard Mixed Integer Quadratic Programming algorithms. Overall, this for-

mulation will give priority to redundant coverage to nodes with the greater significance.

3.2.2 Example

Figure 3.1 is a undirected graph of a network with seven nodes. A sensor at each node

can monitor its neighboring node, i.e. ‘1’ can monitor ‘1’, ‘4’ and ‘2’. e coverage matrix H

of this graph can be derived from this graph, where each row is the node where a sensor can

be placed and each column corresponds to the nodes monitored by the sensor; H is therefore

given by
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H =



1 1 0 1 0 0 0

1 1 1 1 1 0 0

0 1 1 0 1 0 0

1 1 0 1 1 0 0

0 1 1 1 1 1 1

0 0 0 0 1 1 1

0 0 0 0 1 1 1



.

erefore the maximum redundancy vector is r = [3, 5, 3, 4, 6, 3, 3]⊤. We consider that the

significance and installation-cost matrices, Rs, Rc are equivalent to the identity matrix I. e

redundancy normalization factor is aR = 1
113

, and r = [1, ..., 1]⊤. By using a mixed integer

optimization algorithm, the computed solution is

χ = [0, 1, 0, 0, 1, 0, 0]⊤,

which corresponds to installing quality sensors at nodes ‘2’ and ‘5’. With this solution, all

nodes are monitored at least by one sensor, while at the same time four nodes are monitored

by both sensors. Note that other solutions are feasible, but with lower redundancies (e.g. three

redundant measurements when installing sensors at nodes ‘4’ and ‘5’ or two redundant mea-

surements when installing sensors at nodes ‘1’ and ‘5’).

Remark: e limitation of the maximum redundancy algorithm is that it takes into consid-

eration the average values of the hydraulic dynamics; in practice, hydraulic and quality dy-

namics are time-varying, with long time delays, and in addition, contamination faults have

impact dynamics; these are not considered in the formulation presented in this section. In

the rest of the chapter, we formulate and solve the sensor placement and manual sampling

location selection problem, in a security-oriented framework.

3.3 Sensor Placement Design Methodology

Given a water network topology with certain known hydraulic dynamics (subject to un-

certainties), let Vs ⊆ V be the set of Ns candidate “sensing nodes”, i.e. indices of feasible

locations for placing sensors, such thatVs = {c1, ..., cNs}. e sensor placement problem is

described as finding the set of location indices Y ⊂ Vs (where |Y| = Ms and Ms < Ns

represents the number of available sensors), such that one or more objectives are optimized.

An approach for solving the sensor placement problem is to consider a number of repre-

sentative contamination scenarios within a specific time-period, while the water distribution
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network is assumed to be operating under normal conditions. A scenario is comprised of

two parts, the parameter-fault matrix which characterizes the injection, and the time-delays

in shutting down the system. e simulated impact data for each scenario can then be used

to determine the effectiveness of various sensor placement schemes within an optimization

algorithm.

As defined in (2.7),E represents the set of fault-locationmatrices which describe the loca-

tions of contaminant injection. In the case of fault identification or fault isolation, the objective

is to find the true fault-location matrix among the set E. However, in the case of the sensor

placement problem, where all locations are possible injection nodes of contaminants, we can

assume that E is equivalent to the identity matrix I. is allows a fault to occur at any of the

states corresponding to the index setV.

e fault function ϕ(k) as defined in (2.8), is characterized by the parameter matrix Θ ∈
RNm×Nz , and the Nz-dimensional basis function vector ζ(k). In practice, the parameters in

matrixΘ which describe the fault, are bounded due to various physical constraints. LetQ∗ be
the set of parameter matrices Θ defined as

Q∗ =
{
Θ ∈ RNm×Nz | |Θ(i, j)| ≤ Θ(i, j)

}
, (3.3)

where Θ(i, j) are pre-specified bounds on each element of Θ.

By sampling within Q∗, we can construct a finite set Q ⊂ Q∗ of Nq = |Q| parameter ma-

trices, such that Q = {Θ(1), ...,Θ(Nq)} and Θ(i) ∈ Q. e finite set Q can be obtained through

grid sampling; however, this approach does not guarantee that the selected samples will be the

most representative faults. More advanced optimization techniques can be utilized in order

to choose a finite number of representative fault scenarios, which can take into consideration

the network topology and other a priori information about potential faults.

As shown in the previous chapter, the state-space equation (2.6) describes mathemati-

cally the advection-reaction dynamics of a water distribution network, and (2.10) couples

those dynamics with a fault’s impact dynamics. us, for a certain contamination fault, we

can compute at each time-step its propagation in the network, as well as its impact at each

node and overall in the network.

In order to evaluate the impact of a certain fault, we first need to compute the time it

takes for the fault to propagate up to a certain sensing node. Let xc j(k) be the contaminant

concentration at a candidate sensing node c j ∈ Vs. Let T(ϵc) be the propagation-time matrix

of size Nq×Ns computed for a concentration detection threshold ϵc; its (i, j) element, T(i, j)(ϵc),

corresponds to the time taken for a certain fault with parameter matrix Θ(i) ∈ Q to be first
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detected at node c j ∈ Vs, when it is above a specific concentration ϵc ∈ R+. From a practical

perspective, the detection time T(i, j)(ϵc) is bounded by a finite constant, because even if it is

not detected using sensor technologies, it will eventually be detected, aer some time instance

Tmax, by othermethods, such as water utilitymanual quality sampling, or inmore severe cases,

by customer complaints and hospitalizations.

Let k(i)0 be the discrete time when the i-th contamination fault starts, given by

k(i)0 = min
k∈N+
{k | ∥Θ(i)ζ(k)∥ > 0};

the starting-time vector is k0 = [k(1)0 , ..., k
(Nq)

0 ]⊤. In addition, the discrete time k(i, j)d (ϵc)when a

fault with parametermatrixΘ(i) is first detected at node c j ∈ Vs with concentration threshold

ϵc, is given by

k(i, j)d (ϵc) = min
k∈[k(i)

0 ,k(i)
0 +Tmax]

{k | xc j(k) > ϵc}.

From the above, we define the fault propagation-time as T(i, j)(ϵc) = k(i, j)d (ϵc) − k(i)0 . If the

condition xc j(k) > ϵc is not satisfied for k ≤ k(i)0 + Tmax, then T(i, j)(ϵc) = Tmax.

Aer a fault is detected, some additional time may be required, in order to shut down the

system. Time-delays can be different for each sensing node, i.e. due to distances from water

utility headquarters. Moreover, various time-delay schemes can be examined.

We defineD = {δ(1), ..., δ(Nk)} as a set of the Nk discrete time delays considered, in order

to stop the system aer a contamination fault has been detected. From the set of Nq fault

parameters and the set of Nk time-delays, we define the setH as the finite set of Nv = |H|
fault scenarios, given by

H = {(i, j) | i ∈ Q, j ∈ D},

i.e. for each scenario in setH = {h(1), ..., h(Nv)} corresponds to a 2-tuple, comprised of a fault

parameter matrix and a time-delay.

We define K(ϵc) as the stopping-time matrix of size Nv × Ns, whose element (i, j) is the

discrete time at which the system shuts down, aer a contaminant detection (above the de-

tection threshold ϵc) has occurred at node c j ∈ Vs during fault scenario h(i) ∈ H . For h(i) =

(Θ(i1), δ(i2)), when detection occurs at node c j ∈ Vs, then K(i, j)(ϵc) = k(i1)0 + T(i1, j)(ϵc) + δi2 .

us, the impact vector ξ(K(i, j)(ϵc)) corresponds to the “damage” caused by fault scenario

h(i), until the water system is shut down, as a result of a contaminant detection at node c j. e

overall impact of a fault scenario on the network can be computed by measuring the output
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signal at time K(i, j)(ϵc), i.e.

Ω(i, j) = ψ(K(i, j)(ϵc)). (3.4)

ere can bemore than one overall-impactmatrixΩ, when several overall-impactmetrics

are considered. In general, for Nξ different impactmetrics considered, we compute Nξ overall-

impact matrices Ω(i), i = 1, ...,Nξ, which belong to the setJ = {Ω(1), ..,Ω(Nξ)}.

3.3.1 Securing Neuralgic Locations

e first part of a security scheme in water distribution networks is to determine the loca-

tions in the network which could be considered as “high-risk” for contaminant injection, so

that proper action is taken in order to secure them through physical means, e.g. with closed-

circuit television (CCTV) systems.

We first need to decide on a representative impact metric; from its corresponding overall-

impact matrix Ω ∈ J , we will calculate the maximum scenario impact Ω, given by

Ω = max
i=1,...,Nv

max
j=1,...,Ns

Ω(i, j),

where Ω(i, j) is the (i, j)-th element of Ω. From this, we can compute the set of the worst-case

scenarios; for example, the set of the top 5% fault indices is computed by

Y0 =

{
i | max

j=1,...,Ns
Ω(i, j) ≥ 0.95 Ω, i ∈ {1, ...,Nv}

}
.

In this equation,Y0 is the set of scenario indices with correspond to high-impact faults (i.e.

with impact greater than 95% of the worst-case fault). Each fault scenario corresponds to a

location in the network and a detection time-delay; therefore, the set of all fault scenario lo-

cations corresponding to the fault scenario indices inY0, indicates one or more geographical

regions in the network, where severe contaminations are possible.

ese locations can be considered as neuralgic, and need to be physically secured. How-

ever, due to the nature of the water distribution networks, certain contamination faults may

override physical security measures. Hence, it is imperative to use an extra layer of protection

by installing a number of sensors at different locations in the network.

3.3.2 Solution Methodology

Consider the task of selecting Ms out of Ns node locations to install quality sensors. Let

Ls = {1, ...,Ns} be the set of the candidate sensing node indices. e set of all solution com-
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binationsX is given by

X =
{
X | X ∈ LMs

s

}
.

For the i-th risk objective function Fi : X 7→ R, the single-objective optimization problem

is formulated as

Y = argmin
X∈X

{Fi(X; Ω)}, (3.5)

where Ω ∈ J is the overall-impact matrix defined in (3.4). In the single-objective case, the

solution setY is a set of indices which corresponds to certain locations where sensors can be

installed.

3.3.3 Risk Objective Functions

In order to address the problem of security, it is vital to have an understanding on what

“risk” is and how it can be quantified. Risk has been examined in many fields and especially

in the financial and operational research literature. For instance, in finance, risk is defined

as “...the possibility that an unpredictable future event will result in a financial loss, with the

consequence that [...] the institution will not meet some specified financial criteria.” [140].

In financial practice, themost commonly used risk-objective is the “Value-at-Risk” (VaR),

which represents the maximum loss with a certain confidence level over a time period. is

metric, however, ignores the worst scenarios, which may be crucial in the case of intentional

water contamination. All in all, risk management provides useful tools and insights for the

problem of security in critical infrastructure systems.

e proposed formulation can utilize various types of objective metrics; in this thesis we

consider the following objectives: a) the Average impact, b) the Maximum impact and c) the

Conditional Value-at-Risk. e optimization problem is to minimize one or more of these

objectives.

In computing the risk objective functions, it is useful to define the scenario index set C =

{1, ...,Nv}. In practice, certain scenarios could be neglected in the optimization, depending

on each overall-impact matrix. us, for each overall-impact matrix Ω(i) corresponds to a set

Ci ⊆ C.
Average Impact: e average impact metric is suitable for the optimization of reliabil-

ity, when contaminant injection can occur at any node with equal probability. is metric,

however, has limitations when considering the security framework, since it fails to take into

sufficient consideration rare faults with extreme consequences. For a certain overall-impact
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matrix Ω and for a specific set of location indices X ∈ X, the overall impact across all faults

is given by

F1(X) =
1

|C|
∑
i∈C

min
j∈X

Ω(i, j). (3.6)

Maximum Impact: e maximum impact metric is used to reduce the effect of the most

extreme fault, in terms of causing the most damage. is metric is useful from a security per-

spective; on the other hand, it fails to take into consideration the fault frequency distribution,

and in specific, the frequency of extreme faults. e maximum impact metric is given by

F2(X) = max
i∈C

min
j∈X

Ω(i, j). (3.7)

Conditional Value-at-Risk: e Conditional Value-at-Risk (CVaR) metric, which is fre-

quently used in finance optimization applications, is defined in [167] as the average “loss”

for the worst aC% scenarios. In the present work, “loss” corresponds to the overall impact.

is metric is quite suitable for the water security problem, since it can be used to minimize

extreme contamination faults while at the same time taking into account the frequency of ex-

treme faults. For this metric, a decision maker needs to specify the parameter aC ∈ (0, 100),

so that only fault impacts above (1 − aC
100

)F2(X) are considered. Let C0 ⊂ C be the set of

extreme-fault indices, given by

C0 = {i | min
j∈X

Ω(i, j) ≥ (1 − aC

100
)F2(X), i ∈ C}.

erefore, the average tail-impact metric is given by

F3(X) =
1

|C0|
∑
i∈C0

min
j∈X

Ω(i, j). (3.8)

3.3.4 Multiple Objectives Optimization

e different objectives presented in the previous subsection will in general yield differ-

ent solutions. Oen, it is desirable to compute a set of “good” solutions which satisfy an N f

number of objectives instead of a single one. Minimizing one objective function may result

in maximizing others; it is thus not possible to find one optimal solution which satisfies all

objectives at the same time. It is possible, however, to find a set of solutions, laying on a Pareto

front, where each solution is no worse than the other. e multi-objective optimization prob-

lem can be formulated as follows:

Y = argmin
X∈X

{
F(1)(X), ..., F(N f )(X)

}
, (3.9)

47

Dem
etr

ios
 G

. E
lia

de
s



where F(l)(X) = Fi(X; Ω( j)), for l ∈ {1, ...,N f }, j ∈ {1, ...,Nξ} and i ∈ {1, 2, 3}. e solution

setY is comprised of the sensor location solutions on the Pareto front.

A feasible solutionX is called Pareto optimal, if for a set of objectives {F(1), ..., F(N f )}, there
exists no other feasible solutionX∗ such that F(i)(X∗) ≤ F(i)(X)with F( j)(X∗) < F( j)(X) for at
least one j. erefore, a solution is Pareto optimal, if there is no other feasible solution which

would reduce some objective function, without simultaneously causing an increase in at least

one other objective function [139, p.779].

One of the most popular solution methodologies for multiobjective optimization prob-

lems is to assign a scalar weight for each cost function and calculate their weighted sum, so

that the problem is reduced into a single-objective optimization. However, the computed so-

lution might not belong to the set of Pareto front solutions; in addition, weight assignment is

susceptible to biases by the decision maker.

3.3.5 Proposed Optimization Methods

A trivial solution to the sensor placement problem would be to compute the objective

functions for all possible node combinations and then find the Pareto front. Although this

method is complete and optimal (i.e. it guarantees to find all the desired solutions), it is un-

suitable for large solution spaces, as it has large memory requirements ; therefore, it is impos-

sible to evaluate all possible combinations. For instance, in the problem of where to install

five sensors in a network with 12 500 nodes, there are 2.5× 1018 combinations. It is therefore

inefficient to search for solutions without using any extra information.

In the artificial intelligence literature, searching can be represented as a tree-graph, with its

root being the initial state, onwhich connected are the next choices (nodes), which themselves

have the next choices connected on, and so on. e decision of which state to expand next is

determined by the search strategy. Searching for a solution can be made more efficient by the

use of problem specific knowledge beyond the definition of the problem [146]. e use of

heuristics can reduce the cost of searching.

Members of the algorithmic family that use heuristics are, among others, best-first search

and evolutionary/genetic algorithms [77]. In best-first search, the node that expands is the one

that appears to be closer to the goal according to the evaluation function. is is not an opti-

mal method, though it usually produces sufficiently good results in reasonable time and with

small memory requirements. Genetic algorithms randomly create an initial population; their

“best” individuals (with respect to the optimization function) “reproduce” and “mutate” for
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a number of epochs, until they reach a solution consensus which satisfies certain constraints.

Search Optimization

Instead of searching to find the optimal Pareto solutions, a solution is to reduce the prob-

lem by searching for “good enough” solutions. By referring to “good enough” solutions, we

accept the compromise that there may be better solutions than the ones found, in exchange

for a significant reduction in computational time and space complexity.

A key goal is to develop a design methodology that does not search blindly in the solution

space, but is instead guided iteratively towards the good sets of solutions, and prunes those that

are likely of no interest. In this section we present one such approach, the Iterative Deepening

of Pareto Solutions Search algorithm.

is algorithmwas presented in theBattle of the SensorNetworks competition [123], where

it managed to compute 11 nondominated solutions, which corresponded to the 7-th place out

of the 14 teams which participated.

Consider the single-sensor problem, which can be trivially solved in a complete and op-

timal manner, in the sense that all the points in the Pareto front are identified. If decision

makers were to place only one sensor, they would place it in one of those locations. If another

sensor was to be placed, then we assume that the first sensor would not be removed from its

installed location, therefore another location would be found, which in combination with the

first, is on the “local” Pareto front. e locality of the solution originates from the fact that

the location of the first sensor defines to a certain extent, the Pareto front for the two sensors

optimization problem; if the first sensor is placed elsewhere, the optimization would yield a

different Pareto front.

is procedure can be improved by searching the Pareto-front solutions in parallel. By this,

in the first iteration, all the Pareto front solutions are stored in a list and instead of choosing

one of those solutions, all of them are available and expanded to their next combinations.

is means that all the one-sensor solutions are combined with all the rest of network nodes.

e Pareto solutions are then calculated and the procedure is repeated until all sensors have

been placed. e final solution of the algorithm is a set of Pareto front points, which may not

necessarily be on the global Pareto front.

Anothermethod for reducing the search space is by removing nodes that are obviously not

useful, specifically nodes that have very small network anddemand coverage.Moreover, nodes

that are dead-ends, meaning that they have no consumption and the pipes that are connected
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with them have no flows, may be removed, so that we avoid unnecessary computations. is

can be attained with a threshold value in terms of network coverage, below which nodes are

not considered.

Evolutionary Multi-objective Optimization

We consider utilizing a multi-objective evolutionary algorithm in which each objective is

optimized in such a way that the algorithm computes solutions which are non-dominant to

each other [50].

e procedure for solving the multi-objective placement of Ms sensors by using the algo-

rithm described in [50] is as follows: Randomly select Nx solutions from the set of all feasible

solutions X, where Nx ≪ |X|, and construct a solution “parent” set Yp ⊂ X. e values of

the objective functions for each solution in the parent setYp are then computed. Next, the so-

lutions are sorted according to their non-dominance and are assigned in Pareto ranks, based

on which Pareto front they reside. A subset of the parent set is selected and an “offspring”

population set is computed, by using the genetic operators of mutation and crossover, suit-

ably modified so that only feasible solutions are generated. From the combined set of parent

and offspring solutions, the elements are sorted according to non-dominance. A “crowding

distance” metric is computed for each solution, expressing how close it is with its neighbor-

ing solutions. An Nx number of solutions is selected from the parent-offspring set, which will

comprise the new parent set; this is achieved by selecting solutions with the highest Pareto

rank, as well as by considering the crowding distance for better dispersion of the solutions

on the Pareto front. e algorithm iterates for a certain number of epochs. e set of sensor

placement solutions on the Pareto front computed within the last epoch are the solutions of

the problem.e decision on which is themost suitable sensor placement solution among the

computed solutions, can be made by a human operator.

3.3.6 Summary of Methodology

e proposed methodology for sensor placement by taking multiple objectives into con-

sideration, can be summarized in the following steps:

I. Construct amodel of the real water-distributionnetwork, e.g. by using state-space equa-

tions or specialized soware.

II. Choose suitable basis functions for the calculation of contamination fault functions, e.g.

pulses or radial-basis.
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III. Select one ormore impactmetrics, and the overall impact functions for the formulation

of the state-space equations of the impact dynamics, e.g. number of people infected.

IV. Decide on the different types of faults to be considered.

V. From the set of all faults parameters, construct a subset of representative faults.

VI. Compute the propagation-time matrix T.

VII. For different time-delays, construct the different fault scenarios and compute the overall-

impact matrix Ω.

VII. Specify the objectives considered for each impact metric, e.g. average or maximum of

some impact metric.

IX. Formulate the optimization problem and solve it by using a suitable nonlinear integer

optimization algorithm, e.g. using heuristic ormulti-objective evolutionary algorithms.

is information is used to construct and solve the Sensor Placement problem, by con-

structing amathematical program of some objectivemetrics (e.g. cost, population killed) with

respect to some objective functions (e.g. mean, worst), some response times and with respect

to some constraints. Finally, regret analysis is considered to compute the best sensor place-

ment with respect to a large number of possible contamination scenarios.

In general, the methodology presented in this thesis is relevant to TEVA-SPOT, as it is

based on a mathematical model of the water distribution network, contamination scenarios

are considered and a single or multi-objective optimization problem is formulated. However,

in the work examined in this thesis, we investigate the problem from the system theoretic

point-of-view, and to provide a mathematical framework which is suitable for analysis.

3.3.7 Simulation Examples

In this section, we present two simulation examples to illustrate the formulation and the

solutionmethodology for sensor placement in drinking water distribution networks.e first

example is a rather simple network, which is used to derive valuable intuition on the proposed

methodology, while the second example is a real-world drinking water distribution network

with 129 nodes and time-varying hydraulic dynamics.
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Figure 3.2: Water distribution network with one reservoir and eight demand nodes. Weights

on nodes and arcs correspond to flows measured in gal
min ; for example, for node v1, d1(k) =

150
gal
min .

Illustrative Network

e objective in this example is to find the optimal locations in a simple water distribu-

tion network, depicted in Fig. 3.2, for the installation of Ms water quality sensors, so that the

average and maximum risk-objectives are minimized over a set of representative faults.

As shown in Fig. 3.2, a reservoir supplies water to eight demand nodes, such that V =

{v1, ..., v8}; we consider that Vs ≡ V andW ≡ V. e nodal weights correspond to the

consumption outflow at a junction, and the arc weights correspond to the flow of water in

a pipe connecting two nodes; flows are measured in US-gallons per minute ( gal
min). Demand

flows di(k), i ∈ W, are known from historical data, and pipe flows are computed using the

EPANET hydraulic solver [142]. e structural characteristics such as pipe lengths and diam-

eters, junction elevations and hydraulic coefficients are considered known.

It is assumed that: a) a contamination fault with a non-reactive contaminant can occur

at any demand node; b) quality sensors measuring the contaminant concentration can be

installed at any demand node; c) there is no time-delay for shutting down the network aer a

contaminant with concentration above ϵc = 0.1 mg
L has been detected (i.e.,D = {0 hr}); d)

the hydraulic time-step is ∆t = 20 min.

We consider that the network is segmented into Nn finite volumes; the linear state-space
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model of the contaminant propagation dynamics is

x(k + 1) = Ax(k) + FΘ(i)ζ(k),

where state x(k) is the contaminant concentration (in mg
L ), x(0) = 0; matrix A describes the

advection dynamics, and F = [I | 0]⊤, where I is the 8 × 8 identity matrix and 0 a zero-

matrix of size (n − 8) × 8. State xi(k) is the contaminant concentration for demand node vi,

for i = {1, ..., 8}.
e contamination fault Θ(i)ζ(k) is characterized by the i-th fault parameter matrix Θ(i)

and, in this example, the unit step function ζ(k) for which ζ(k) = 1 for k ≥ 0.

As impact metric, we consider the contaminated-water consumption volume, which can

be expressed in a state-space formulation for the i-th demand node, as

ξi(k + 1) = ξi(k) + fξ(xi(k), di),

where ξ(0) = 0 and, for Cp = 0.5 mg
L , fξ(xi(k), di) = di∆t if xi(k) > 0.5 mg

L , otherwise

fξ(xi(k), di) = 0. e overall impact is computed through

fψ(ξ(k)) = ξ1(k) + ξ2(k)...+ ξ8(k).

Representative faults are considered the ones describing a contaminant injectionwith con-

centration 1
mg
L at a demand node. e finite setQ of the fault parameters considered is com-

prised of eight matrices, such that Q = {Θ(1), ...,Θ(8)}, which have been computed so that

they simulate a contaminant injection with the desired concentration. Note that all faults are

initiated at time k = 0, i.e. fault starting time is k0 = [0, ..., 0]⊤.

A fault propagation-time T(i, j)(ϵc) is the minimum time necessary for a fault that has oc-

curred at the i-th node, to be detected by a sensor (i.e. above concentration ϵc) at the j-th

node. An 8 × 8 propagation-time matrix T(ϵc) is constructed, by simulating each fault. For

example, when a fault occurs at node v4, detection at v7 with concentration above ϵc = 0.1 mg
L

occurs aer T(4,7)(0.1) = 140 min. We can verify this by considering that the pipe connect-

ing v4 with v7 has 14 330 gal of water, and this water flows with 102.3 gal
min . erefore, a

contaminant injected at node v4 will reach node v7 aer 140 min.

Since there are no stopping time-delays in the system, the fault propagation-time matrix

T(ϵc) and the stopping-timematrix K(ϵc) are equivalent, K(ϵc) = T(ϵc).erefore, the overall

impact of fault i until the system stops due to detection at node j, is computed using Ω(i, j) =

ξ1(K(i, j)(ϵc)) + ξ2(K(i, j)(ϵc)) + ... + ξ8(K(i, j)(ϵc)). For example, consider a fault at node v1

that is detected by node v7 at K(1,7)(0.1) = 220 min. Before this time, the fault contaminates
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v1 v2 v3 v4 v5 v6 v7 v8

average 110 73 77 91 61 142 91 86

max 307 171 171 307 166 435 307 201

Table 3.1: Average and maximum volume of contaminated water until it is detected at each

node (in 103 gal).

nodes v2 and v4 at K(1,2)(0.1) = K(1,4)(0.1) = 100 min. e overall impactΩ(1,7) is computed

as

Ω(1,7) = d1K(1,7)(0.1) + d2(K(1,7)(0.1) − K(1,2)(0.1)) + d4(K(1,7)(0.1) − K(1,4)(0.1))

= 150 · 220 + 2 · 150 · (220 − 100)

= 69 000 gal.

Finally, by computing the overall impacts for each fault when detected by each possible sensor

location, the overall-impact matrix Ω is constructed.

In this example we consider two different risk-objectives: the “average” impact F1 and the

“maximum” impact F2. e problem is to find where to install Ms quality sensors from the set

of all possible location combinationsX, so that one objective is minimized. e optimization

program is formulated as in (3.5).

For a single sensor placement (Ms = 1) the problem can be solved by inspection, using

Table 3.1; this table describes the average and maximum impacts (measured in 103 gal) of

each column of the overall-impact matrix Ω. us, from the set of |X| = 8 solutions, the

optimal location for the placement of the sensor is at the fih node, v5, since at that location

both the average impact (61 000 gal) and maximum impact (166 000 gal) of the eight faults

considered are minimized. Due to the topology of the network, and to the small number of

nodes, the optimal node location for both objectives is the same. In practice, for different

solutions may correspond to different objectives.

For more sensors (Ms > 1) the optimization program can be solved using commercially

available integer non-linear optimization soware. We conclude the illustrative example with

the solution for Ms = 3, for each objective: amongst |X| = (8
3
) = 56 solutions, {v3, v5, v7} cor-

responds to the optimal locations for both the average impact (29 000 gal) and themaximum

impact (69 000 gal).
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Figure 3.3: A real water distribution system with 129 nodes

Real Water Distribution Network Example

In this example, we demonstrate the solutionmethodology on a small-scale real water dis-

tribution network.e tasks are a) to examine the improvement inminimizing themaximum

fault-impact by using different numbers of sensors Ms ∈ {1, ..., 10}, and b) to find solutions

by using different numbers of sensors Ms ∈ {5, 10} when two of the objective metrics are op-

timized simultaneously, the average contaminated water consumption volume objective and

the CVaR of the population infected objective.

Figure 3.3 depicts one of the benchmark networks in the “Battle of the Water Sensor

Networks” design competition [123]. is network is composed of 178 pipes connected to

Nm = 129 nodes (126 junctions, two tanks and one reservoir). e structural characteristics

are considered known. Each junction node is assigned with a daily average consumption vol-

ume as well as a discrete signal describing the rate of water consumptionwithin 48 hours, with

a 30-minute time step. ese are assumed to describe the normal operation. e hydraulic

dynamics are computed using the EPANET soware [142]. For simplicity, no reactions were

considered in this example.

emodel of the real water distribution network can be expressed in a discrete state-space

formulation as in (2.6), with a ∆t = 5 min time step. Let the set of node indicesV be given

byV = {1, ...,Nm}.

e fault function is formulated using Nz linear basis functions; in this example we con-

sider these functions to have a rectangular shape and a 5-minute length. Since hydraulic dy-

namics are approximately periodic with period of TH = 24 hr, we consider contamination

faults which are initiated within one period, i.e. one day. We further consider faults with max-

imum duration of 24-hours; by using Nz = 576 basis function we can represent faults which
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start within one period, and can finish at the end of the next period (i.e. the next day). e

maximum contaminant propagation time is set to have a duration of Tmax = 1152 time steps

(i.e. 4 days), aer which the fault is assumed to be detected by other means. e fault function

is formulated using Nz linear basis functions; in this example we consider these functions

to have a rectangular shape and a 5-minute length. Since hydraulic dynamics are approxi-

mately periodic with period of TH = 24 hr, we consider contamination faults which are

initiated within one period, i.e. one day. We further consider faults with maximum duration

of 24-hours; by using Nz = 576 basis function we can represent faults which start within one

period, and can finish at the end of the next period (i.e. the next day). e maximum contam-

inant propagation time is set to have a duration of Tmax = 1152 time steps (i.e. 4 days), aer

which the fault is assumed to be detected by other means.

Two impact metrics are considered: the population infected and the contaminated water

consumption volume. For the impact state equation (2.13) we set the daily average amount

of water consumed per person as aγ = 2 L
day ; for the overall impact (2.14) we assume that

the probit slope is aS = 0.34, the average body mass is aW = 70 kg and the contaminant

dose is aΨ = 41
mg
Kg for a 50% probability of infection. e average per-person daily water

consumption is aµ = 300 L
day . Regarding the contaminatedwater consumption volume (2.11),

we assume that the contamination threshold, abovewhich impact ismeasured, is Cp = 0.3 mg
L .

ree different types of faults are considered: a) one-node contamination faults of 2-hour

duration, b) one-node contamination faults of 10-hour duration, c) contamination faults of 2-

hour duration which occur independently at two different nodes.ese faults can bemodeled

using the rectangular basis functions.

According to the solution methodology, we need to construct a finite subset Q∗ ⊂ Q of

fault-parameter matrices, such that Nq = |Q∗|. For the one-node contaminations, a system-

atic sampling approach was applied, so that all possible starting times and injection locations

were included; for the two-node contaminations, random sampling was used for the selection

of the starting times and injection locations. In addition to constructing the set of representa-

tive faults, we construct the setVs ⊆ V of the feasible sensing locations. In the real network

considered, seven “leaf nodes” from the setV with zero consumer demands could be consid-

ered as unfeasible sensing locations. By removing those nodes, the feasible setVs of sensing

locations has Ns = |Vs| = 122 elements.

To compute the propagation-time matrix, we consider the following fault scenarios: all

types of fault, as described above, with zero time-delay in shutting down the system, δ(1) =

0 hr, and a 3-hour time-delay for the one-node contamination faults of 2-hour duration,
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δ(2) = 3 hr, thusD = {0 hr, 3 hr}. In total, Nv = 130700 scenarios are constructed.

For these scenarios and the Ns candidate sensing locations, the propagation-time matrix

T(ϵc) of size Nq×Ns is computed by simulating the hydraulic and advection dynamics for each

fault separately, and finding theminimum detection time.e sensing threshold is ϵc = 0
mg
L ,

so that any non-zero contaminant concentration triggers a fault detection.

By using the impact dynamics describing the population infected and the contaminated

water consumption volume, and by considering the time-delays according to each scenario,

two overall-impact matrices J = {Ω(1),Ω(2)} are computed, where Ω(1) corresponds to the

population infected and Ω(2) to the contaminated water consumption volume.

Selecting the Number of Sensors

Water quality sensors are quite expensive and require frequent maintenance. As a result, a

water utility would consider installing only a small number of them for monitoring the water

distribution network. It is useful to measure the reduction of a certain impact metric, for

different number of sensor schemes.

We formulate the single objective optimization problem as in (3.5) with the maximum

impact objective (3.7), in order to minimize the maximum number of people infected, using

Ω(1).e problem is solved for 10 different cases, for Ms ∈ {1, ..., 10} sensors.e correspond-

ing solution space, X, can be extremely large; e.g. for Ns = 122 feasible sensing nodes and

Ms = 10 sensors, there can be |X| = (122
10
) ≈ 1.3782 · 1014 solutions. us, evaluating the

objective function for all the possible solutions inX has high computational cost.

We use a single-objective genetic algorithm to compute feasible solutions for this problem.

e normalized maximum impact of the computed solutions for Ms ∈ {1, ..., 10} sensors is

depicted in Fig. 3.4. From these results we observe that four sensors manage to reduce the

maximum impact by approximately 70%; using more sensors causes a small reduction on the

maximum impact.

Multi-Objective Sensor Placement

Before solving the multi-objective sensor placement problem, which can be computa-

tionally expensive, we perform a pre-processing step, aiming at discarding the trivial fault-

scenarios. From each overall-impact matrixΩ(1) andΩ(2), we find themaximum (worst-case)

impact of each fault, and decide whether it is considered trivial or not. In this example, faults

with maximum impact larger than 10% of the maximum overall impact are considered as
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Figure 3.4: Normalized maximum impacts of optimal solutions with Ms ∈ {1, ..., 10} sensors
installed

non-trivial. As a result, we construct the two scenario index sets, C1 and C2, which corre-

spond to the non-trivial scenarios. e histogram in Fig. 3.5a depicts the normalized number

of people affected when no sensors are considered, for all scenarios which belong to the set

C1.

We consider the following two objective functions for themulti-objective case: the average

contaminated water consumption volume, and the CVaR of the population infected (with

αC = 25). e multi-objective optimization problem is given by

Y = argmin
X∈X

{F1(X; Ω(2)),F3(X; Ω(1))}.

e problem is solved for Ms = 5 and Ms = 10 sensors. e solution setY is comprised of a

number of solutions laying on the Pareto front computed.

In order to solve the optimization problem, we use the multi-objective evolutionary algo-

rithm NSGA-II [50] which computes a set of solutions, which are well spread and lay near the

real Pareto front. e algorithm was modified to accept nodal indices as inputs, and to return

valid feasible solutions. For the evolutionary algorithm, 1 000 epochs are iterated for, and

for each epoch a population of 2 000 solutions is built. 90% of these solutions “crossover” by

randomly exchanging node indices, and 10% are “mutated” by randomly changing the index

of a node in the solution.

Figure 3.6 depicts the computed 5-sensor and 10-sensor Pareto fronts. Each point in the

graph corresponds to a solution, i.e. a set of node indices. From these Pareto sets, a decision
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Figure 3.5: Histogram of the normalized number of people affected, for all scenarios in set

C1, (a) when no sensors are considered, and (b) when a Pareto solution with five sensors is

considered.

maker should examine the optimal solutions, and through higher-level reasoning, choose the

most suitable solution. To demonstrate the impact reduction, we arbitrary choose one solu-

tion from the 5-sensor set of Pareto solution that is relatively good on both objectives. e

histogram in Fig. 3.5b illustrates the frequency of the scenarios considered with respect to the

normalized impact. As expected, the impacts have been reduced significantly.

3.4 Manual Sampling Scheduling

eproposed formulation can be extended to take into consideration the problemofman-

ual sampling scheduling. is is different from the problem of finding locations to install per-

manent sensors, because of the extra dimension of sampling time which needs to be taken

into consideration. In this section we present a problem formulation and a solution method-

ology for selecting Mm out of Nb possible sampling locations and times, in order to minimize

certain objectives.

We define Tm as the set of Nt discrete time instances when manual sampling can be per-

formed within one day (e.g. during working hours). In additionVm ⊆ V is the set of indices

corresponding to locations where manual sampling is feasible. We define Bm as the set of
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Figure 3.6: Two Pareto fronts computed for the 10-sensor and 5-sensor schemes. F1 is the

average contaminant water consumption volume and F3 is the CVaR metric of the population

infected.

2-tuples, corresponding to candidate sampling node indices and sampling times, such that

Bm = {(i, j) | i ∈ Vm, j ∈ Tm}.

e set Bm = {b(1), ..., b(Nb)} is comprised of Nb sampling 2-tuples. To compute the overall-

impact matrix Ω we need to modify the algorithm presented in the previous section.

We define a discrete maximum time Tmax, so that for any fault scenario, its impact will not

increase aer that time. We assume that Tmax = aλTH, where aλ ∈ N+ is a period index and

TH is the discrete time duration of a one-day period. It is useful to define T = {1, 2, ...,Tmax}
as the set of time steps for which the system dynamics are simulated, as well as the period

index set Tp = {0, 1, ..., aλ}. e discrete time K(i, j)(ϵc) corresponds to the time when a con-

tamination scenario i is detected and stopped due to detection at the j-th manual sampling

or on-line sensor, at concentration above ϵc. For the i-th scenario with h(i) = (Θ, δ), then

K(i, j)(ϵc) =


min{G1}+ δ if G1 < ∅ (Online Sensor)

min{G2}+ δ if G2 < ∅ (Manual Sampling)

min{G3}+ Tmax + δ if G1 ∈ ∅ or G2 ∈ ∅
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where

G1 = {k | xc j(k; Θ) > ϵc, k ∈ T }

G2 = {lTH + b( j)
2 | xc j(lTH + b( j)

2 ; Θ) > ϵc, l ∈ Tp}

G3 = {k | ∥Θζ(k)∥ > 0, k ∈ T }.

for which c j is the j-th online quality sensor and b( j)
2 is the second element in the sampling

2-tuple b( j), corresponding to the sampling time. Finally, the overall impact matrix can be

computed as in (3.4).

3.4.1 Manual Sampling Scheduling for a Limassol DMA

In this section we illustrate the formulation and the solution methodology for the manual

sampling scheduling problem in a real drinking water distribution network, depicted in Fig.

3.7, operating under realistic conditions. e network is comprised of 321 pipes connected to

Nm = 198 junctions, 100 of which are used for water consumption. e main source of dis-

infected water is a storage tank which is located in the lower part of the figure. e structural

characteristics are assumed to be known, i.e. pipe length, diameters and pipe roughness co-

efficients, node elevations and daily average consumption volume at each node. In addition,

historical flow-data are provided, measured at the supply node, and are assumed to describe

the normal operation over all nodes. We consider the set of nodes V = {1, ...,Nm} and a

∆t = 5 minute time step for computing the hydraulic and quality dynamics; each 24-hour

period is therefore comprised of TH = 288 time steps.

ere are Nw = 100 nodes in the network which outflow water to consumers; the set of

demand nodes is W = {w1, ...,wNw}, andW ⊂ V. We further assume that a contaminant

substance can be detected at any concentration, i.e. ϵc = 0. In this example, we consider

that the set of candidate sampling locations is the same as the demand nodes, i.e.Vs ≡ W.

Regarding the finite set Tm comprised of time steps at which sampling can be conducted, we

assume that sampling can be performed every 30 minutes; thus, there are maximum Nt = 48

time instances for manual sampling within one day. From these, the set Bm of all feasible

sampling locations and times has size Nb = 4 800. erefore, a contamination fault may

occur anywhere and at anytime in the distribution network; this is a common assumption

when considering malicious contamination attacks.

For the construction of the fault parameter set Q, we consider faults which start the con-

tamination at a certain location in the network, and continue to contaminate the water at that
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Water Tank

Figure 3.7: Real water distribution system in Limassol, with 321 pipes and 198 junctions. e

numbered nodes correspond to the location indices computed, as in Table 3.2.
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Table 3.2: Solutions for various sampling schemes and objectives. e smaller the objective

function the smaller the possible impact due to a contamination fault.

Samples Objective Period Solution % Objective

(node,time) Function

1 mean all day (74, 9..) 7,2%

2 mean all day (74, 6..), (74, 2:30..) 4%

3 mean all day (74, 1..), (74, 10..), (74, 4:30..) 2,78%

2 mean 8..-5.. (74, 8..), (74, 4:30..) 4,13%

3 mean 8..-5.. (74, 8..), (77, 12..), (74, 5..) 3,21%

1 max all day (58, 9:30..) 41,91%

2 max all day (58, 9..), (68, 6..) 20,85%

3 max all day (76, 5..), (72, 11:30..), (78, 6..) 15,78%

location until detection. In specific, a fault with a parameter Θ ∈ Q is modeled as a step-

function of 1 mg/L, which starts at a certain time within a certain period k0 ∈ {1, ..., 288}
and is terminated when the contamination is detected through sampling, or aer a certain

number of time-steps has passed, in specific Tmax = 288. We construct the set Q of fault pa-

rameters characterizing faults which occur at one demand node every half hour within one

day; 48 faults are therefore considered for each node; Q has size Nq = 4 800.

For the construction of the overall-impactmatrixΩ, we repetitively simulate the operation

of the system corresponding to duration of 48 hours, applying one fault Θ(i) at a time, for

i ∈ {1, ..., 4 800}. Zero time delays are considered. Within one simulation, we measure the

impacts based on the various sampling schemes b( j), for j ∈ {1, ..., 4 800}. Finally, the overall-

impact matrix Ω of size 4 800 × 4 800 is constructed.

We examine the single-objective optimization problem, for computing a solution with

Mm ∈ {1, 2, 3} sampling events within one period, i.e. a day, in order to minimize the average

(and maximum) volume of polluted water consumed. e optimization problem is solved

using an integer evolutionary optimization algorithm.

In each problem examined, the evolutionary algorithm iterated for 50 epochs, and for

each epoch a population of 10 000 individual solutions was built. e following scenarios

were considered: to optimize the average/maximum consumption of polluted water for vari-

ous numbers of samples, under various sampling periods constraints (e.g. duringwork hours).

e results are summarized in Table 3.2.e smaller the objective function the smaller the
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Figure 3.8: Histogram of the normalized impact for all the faults considered.

possible impact due to a contamination fault. Each element in the solution corresponds to a

node and a time when sampling should be performed. For instance, for the first row, if only

one sampling is to be conducted within a day, by sampling at node “74” at 9.., the average

consumption of polluted water consumed is minimized. Furthermore, for this solution, the

objective function, i.e. the average consumption of polluted water, is 7.20% (with respect to

the maximum impact of the worst contamination fault). When an all-day sampling period is

considered, some solutions may correspond to non-working hours; this however can be ad-

justed by imposing constraints to the optimization algorithm. As expected, the constrained

solutions are equal or worse to the all-day sampling solutions. For the network examined, it

appears that node “74” is quite important from an average impact objective. By minimizing

the maximum polluted water consumption, however, the solutions may be different; for in-

stance, for two-samplings per day, examining node “58” at 9.. and node “68” at 6.. can

reduce the maximum impact by 20.85% (with respect to the maximum impact of the worst

contamination fault).

e three histograms in Fig. 3.8 illustrate the effectiveness of the proposed algorithm for

the selection of manual sampling locations and times, in the volume reduction of polluted

water consumed for each contamination fault-scenario, over the case when no manual sam-

pling is conducted. e first histogram is computed by simulating each contamination fault

scenario from the set of all contamination fault scenarios Q, under a nominal consumption

model, and bymeasuring the volume of polluted water consumed, if no detection ever occurs.

e second histogram depicts the fault-scenario distribution with respect to their maxi-

mum impactwhen anoptimal solution is used fromTable 3.2; in specific, the solutionmethod-

ology was used to compute two samples per day (at node ‘74’), within working hours (at 8..
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and 4:30..) and by minimizing the average impact, i.e. the volume of polluted water con-

sumed. It is assumed that when a contamination is detected, the system stops and no damage

is further caused. What we can observe by comparing the first two histograms is that, for

the 4 800 fault-scenarios considered, the impact, i.e. the volume of contaminated water con-

sumed, is significantly reduced. In fact, the worst-case fault scenarios in the first histogram

can cause less than 40% of their maximum impact, if manual sampling at node ‘74’ at times

8.. and 4:30.. is conducted.

To illustrate the effectiveness of the proposed methodology over other sampling schemes,

the third histogram depicts the frequency distribution of manual sampling at the node ‘166’,

which has been arbitrarily selected based on the fact that it is located in a central location in

the distribution location, as seen in Fig. 3.7. Sampling times have been arbitrarily selected to

be the same as in the computed solution described in the second histogram. By comparing

the second and the third histogram, i.e. the optimally computed and the arbitrarily selected

solution, we confirm that, although both manage to reduce the impact for all fault-scenarios,

the solution computed by using the proposed methodology is significantly better than the

arbitrary one.

In general, the larger the number of nodes in the network and the larger the number

of fault-scenarios considered, the larger the space and time requirements in computing the

overall-impact matrix. By applying expert knowledge, however, it may be possible to suffi-

ciently reduce the size of this matrix, in accordance to the available computational space.

3.5 Concluding Remarks

In this Chapter we have examined the problem of finding the best locations in the net-

work for the installation of sensors which measure contaminant concentrations, as well as the

problem ofmanual sampling scheduling. In specific, a methodology was proposed for the for-

mulation of the problem into a single or a multiple objective optimization problem, utilizing

risk-objectives such as the average andmaximum impact, as well as the Conditional Value-at-

Risk. Simulation examples were presented, which demonstrated the solutionmethodology on

one illustrative network and one real drinking water distribution network. e optimization

problems were solved using single and multi-objective evolutionary algorithms.

Difficulties in computing solutions for the sensor placement problem may arise due to

various factors, such as the number of nodes, fault scenarios, objectives and sensors, as well

as the optimization program parameters. In practice, as the problem is solved off-line, it is
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possible to reduce the size of the problem so that it is tractable with respect to the compu-

tational power available. In specific, the distribution network can be further “skeletonized”

by grouping adjacent nodes with similar hydraulic characteristics and by aggregating their

demand flows; higher level reasoning can be applied for the selection of a finite number of

the most representative fault scenarios. In addition, the optimization program parameters

(such as the solution population number and the number of iterations) can be chosen so that

near-optimal solutions are computed within a desired time.

Furthermore, in this chapter we addressed certain issues with regard to the selection of lo-

cations and times for manual sampling, in order to examine the quality of water, i.e. whether

sufficient quantity of chlorine residual exists, or whether the concentration of a substance

exceeds the pre-specified limits. e selection of location and time for manual sampling in

this work was driven by security-oriented criteria, aiming at minimizing the possible damage

caused due to a contamination event, which may occur accidentally, or even intentionally.

e mathematical formulation which describes the dynamics involved was presented, and

a solution methodology was proposed. e problem was formulated into a single objective

optimization problem, utilizing certain risk-objectives such as the average and maximum im-

pact. A simulation example was presented on a real drinking water distribution network. e

optimization problem was solved using a single-objective evolutionary algorithm.

e contributions of this work are the presentation of a rigorous mathematical formu-

lation and the solution of the maximum redundancy sensor placement problem, as well as

the security-oriented sensor placement problem considering risk-objective functions; the for-

mulation is extended for the security-oriented manual sampling scheduling problem. e

work presented in this chapter has been published and presented in peer-reviewed journals

[58,61,66] and conferences [55,59,60,62–64], as well as by collaborators in [123]. In addition,

the maximum redundancy formulation has been applied to power transmission networks for

Phasor Measurement Units location selection; part of the results have been published in a

peer-reviewed journal and a conference [33, 34] by the collaborative team.
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Chapter 4

Quality Regulation

In this chapter we address the issue of designing algorithms for the regulation of the

spatial-temporal distribution of chlorine residual in drinking water distribution networks,

which are influenced by unknown time-varying water demands. A solution methodology is

presented usingmodel predictive control principles combined with on-line adaptive forecast-

ing of the system hydraulics as they are driven by consumer demands. e periodic nature of

water demands allows the use of Fourier series with coefficients which change adaptively, for

forecasting future flows at various nodes in the distribution network. e objective is to regu-

late chlorine residuals, which act as a disinfectant for enhanced water quality, within certain

lower and upper concentration bounds. Simulation results on a distribution network are used

to illustrate the performance of the proposed chlorine regulation algorithm under unknown

water demands and the trade-offs involved in the chlorine regulation methodology.

4.1 Background

Water can serve as the transportation means for various pathogens, chemical agents, met-

als and bacteria, which may affect human and animal health. In the past, certain outbursts of

cholera or typhus in urban areas were caused by water infected with pathogens. It is therefore

important to deliver safe water to consumers, by disinfecting it through the use of suitable re-

acting agents. e most common disinfectant is chlorine, which neutralizes micro-organisms

and other substances so that they are below safety concentrations, as set by various organiza-

tions. Chlorine is usually added to water in a gas form, through boosting stations located at

treatment points at the beginning or within the network. Under normal conditions, at con-

centration 0.03 − 0.06 mg
L chlorine can inactivate bacteria within 20 minutes [168].

Quality specifications have been set by various organizations, such as the European Com-
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mission [67] and theUSEnvironmental ProtectionAgency [169]. For example, to avoid odour

or taste complaints chlorine concentration in drinking water should be less than 0.6−1.0 mg
L .

An upper limit of 4 mg
L was set by the EPA for safety reasons, and a lower limit of chlorine

concentration is usually considered at 0.2 mg
L , which needs to be detectable throughout the

network to guarantee disinfection. Unfortunately, high chlorine concentrations have nega-

tive effects on human health; research has suggested that there is a positive association with

bladder and rectal cancer in humans consuming water with chlorine by-products, such as

trihalomethanes (THM) [114], whose total concentration should be less than 0.08 − 0.1 mg
L .

Reducing chlorine concentrations across the network corresponds to reduced concentrations

of by-products.

Maintaining a detectable residual of chlorine throughout the network is a control prob-

lem of regulating the spatial-temporal distribution of disinfectant across the water distribu-

tion network at a certain concentration and within bounds. It is a multi-input multi-output

problem, in which we consider as inputs the chlorine mass or concentration added by actua-

tion at the booster stations, and as outputs the measurements from quality sensors installed at

various locations in the network. Some of the challenges for this control problem are the time-

varying consumer demands which affect the hydraulic dynamics and are usually unknown,

as well as the complex chlorine reaction dynamics.

In practice, chlorine injection concentrations as well as the detectable chlorine residual in

the network may vary significantly; in a study of water quality at treatment facilities serving

19Massachusetts communities in the USA, it was found that injected chlorine concentrations

ranged between 1 − 29.7 mg
L and residual levels in the network ranged between 0.2 − 6.0 mg

L

[168].

From a control systems perspective, both hydraulic and the water quality dynamics in

a water distribution network are influenced by disturbances due to unknown variations in

water demands. Large transport time-delays and storage tanks affect the system with respect

to quality control. Other factors such as variations in the temperature or faults may affect the

system. Controlling the level of chlorine residuals has gained attention in recent years [1, 20,

24,26,27,35–37,43,47,53,119,122,126,127,130,135,136,147,181–184]. A number of studies

have examined the problem within an off-line framework for finding an input scheduling

algorithm using optimization techniques such as linear programming [20, 43], least squares

[135], genetic algorithms [47, 119, 130] and goal programming [1]. Optimization of water

pumps operation has also been considered in relation to the quality control problem using

non-linear optimization [147], and genetic algorithms [122].
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A robust model predictive control scheme [26, 35–37] and an adaptive control frame-

work considering periodic variation of demands [127, 182] have also been examined. Both

approaches are based on control systems theory in addressing the on-line quality control

problem.e Model Predictive Control (MPC) framework [30] is specifically suitable for sys-

tems with time-delays and hard constraints. e MPC approach is based on explicitly using

a system’s model to predict the outputs at a future time, and then computing the control se-

quence by minimizing an objective function. In [26], the uncertainties in the time-varying

parameters, errors in model structure, actuator and measurements errors have been mod-

elled within a set-bounded approach. Safety zones are applied that narrow the constraints in

order to deal with uncertainties. From a different approach, the adaptive control framework

presented in [127, 182] uses Fourier series to capture the periodic nature of the system’s dy-

namics. By using this information, the time varying coefficients of the identification model

are replaced with a number of sinusoid terms with constant unknown coefficients that are to

be estimated on-line.

For regulating quality, it is useful to model water consumption, which is important in

computing the hydraulic dynamics. Hydraulic dynamics are driven by consumer demands

and as a result they inherit their periodic property. Various approaches have been examined

in previous research for modelling demands and predicting a number of future steps, using

auto-regressive models, expert systems and others [5, 22, 29, 89, 151, 153, 157, 158].

4.2 Outline of the Quality Regulation Problem

Consider a water distribution network, with a number of chlorine booster actuators in-

stalled at certain locations so that the chlorine concentration at those locations is control-

lable, and a number of chlorine concentration sensors installed at certain locations which

capture the overall water quality. In addition, we consider that the flows and pressures at cer-

tain “representative” locations in the network are monitored. We consider that there exists a

model whose parameters have been calibrated with respect the measurements and informa-

tion from the actual system. In practice, the model is a soware algorithm which takes into

consideration the various discrete and continuous parameters in a water distribution system;

in addition, water providers oen utilize and calibrate a soware model of their distribution

networks, to better monitor its behaviour during normal and faulty operation.

In this chapter, we present a quality regulation methodology based on model predictive

control, the underlying idea of which is to compute a sequence of future control inputs, so that
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an objective function is minimized over a prediction horizon [30]. For solving the optimiza-

tion problem, we need a forecast of the hydraulic dynamics; for this, we utilize an adaptive

approximation methodology to learn the time-varying demand dynamics.

Let u(k) ≡ [uc(k), uh(k)]⊤ be the control input vector, where uc(k) and uh(k) is the qual-

ity and hydraulic control input vector respectively. In addition, let y(k) = [yc(k), yh(k)]⊤ be

the measurable output vector, where yc(k) and yh(k) is the measurable quality and hydraulic

output vector respectively. In addition, let r(k) ≡ [rc(k), rh(k)]⊤ be the reference signal vector

comprised of the reference quality rc(k) and the reference hydraulics rh(k) signal vectors. Fi-

nally, let fuc(·) correspond to the quality controller and fuh(·) to the hydraulic controller. e

control inputs are given by

uc(k) = fuc(y(k), rc(k))

uh(k) = fuh(yh(k), rh(k)),

assuming that the hydraulic controller is decoupled from the quality controller. In this work

we consider that a hydraulic controller fuh(·) has been designed separetly and operates inde-

pendently from the quality controller fuc(·).
In the following we present an overview of the quality regulation algorithm. We assume

that reaction dynamics are linear, and that the principle of superposition holds [20, 127, 149,

184, 197], such that for the single input single output case, the hydraulic output is given by

yh(k) =
Ny∑
i=1

Γ(1,i)(k)uc(k − i)

where Ny is the time window, i.e. a number of time steps before which inputs do not have

significant impact on the output yh(k) at time k, and Γ(k) is an impulse response coeffi-

cient matrix. In a similar way we can formulate the input/output relation in the multi-input

multi-output case, where My nodes are utilized for monitoring chlorine concentration, and

Mc nodes for regulating chlorine concentration.

At each time k, the hydraulic measurements yh(k) are used by a hydraulic calibration algo-

rithm to estimate the normalized demand patterns, using an adaptive algorithm for learning

the Fourier series approximation. e Fourier series approximation is used for the prediction

of a certain number of future demands use those predictions in computing the system’s hy-

draulic dynamics; for this, a model of the hydraulic controller is utilized within the quality

regulation algorithm.

To construct the time-varying impulse responce matrix Γ(k) we compute the impulse re-

sponses using the calibrated soware model, the forecasted demands and the hydraulic con-
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trol model. We further compute Y(k) as the future responses vector, which is due to the past

inputs, i.e. those that have already been injected into the system and which will appear in the

future.

e control algorithm is in fact an optimization program, in which Jc(·) is the objective

function; this function corresponds to the square error between the prediction of chlorine

concentration with a reference signal rc(k), at some locations over a time frame. Constraints

can be included in the optimization program, so that the input and output signal are bounded

within some safety regions. e output of the optimization is a vector of future inputs U(k).

e quality control inputs for the next time step are applied to the system, and the algorithm

iterates. e chlorine regulation algorithm is designed in the following subsections.

4.3 Estimating Hydraulic Dynamics

e driving force behind the hydraulic dynamics is water usage [179], mainly due to con-

sumer demands as well as due to water losses. Consumer demands may be affected by various

parameters, such as time of day, weekends, season, temperature, rainfall and others; in general

consumer demands are considered to be approximately periodic signals.

Demands can only be estimated implicitly, since there is no practical way to measure the

water that exits the network in real time. Instead, flows in certain pipes and water head in cer-

tain junctions are measured. Some information is also gathered through utility billing. Specif-

ically, by considering historical data of water meters at buildings and their billing records,

utilities can determine the average demand for a specific meter over a certain period of time

(e.g. of two months).

In general, the volume of water entering the distribution network should be equal to the

measured volume that is consumed; however, this is typically not the case due to water losses

from leaks which occur at unknown locations of the network and other reasons.

Let flow dwi(k) be the demand at node wi ∈ W, at discrete time k. We define pwi(k) as the

normalized demand pattern at node wi, which is given by

pwi(k) =
dwi(k)

dwi

, (4.1)

where dwi is the base demand, i.e. the average water demand at node wi, which is calculated

using historical data gathered for billing purposes, over a period of a few months. In practice,

however, water demands are notmonitored at every node in the distribution network; instead,
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only for certain consumers (e.g. at factories), water utilities may measure water demands di-

rectly using flow meters. us, the actual water demand dwi(k) can be computed at discrete

time k, by multiplying the demand pattern pwi(k) with the base demand dwi [142]. Since the

normalized demand pattern is in general not known, certain assumptionsmust be taken, such

that consumers of similar type has similar normalized demand patterns, as in schools, office

complexes etc.

Studies have shown that temporal variations ofwater consumption usually follow a diurnal

demand pattern with a 24-hour period [153, 157, 179]. Water usage is usually low during the

night in populated areas, fluctuates during the day and repeats in a similar pattern in the next

days. In practice, there is not a common demand pattern for all nodes, since demands are

heavily based on social characteristics and the types of business that operate within a certain

region.

Since most demand patterns are not explicitly measured they can only be estimated by us-

ing on-line flow and pressure measurements at various locations in the network. In water re-

search, the calibration of water distribution models describes the process of modifying nodal

demands and other parameters so that the difference between the on-line measurements and

the simulated ones is minimized [38]. e general hydraulic calibration model has received

significant attention in the previous decades and it remains an open research area [134, 148].

Flows and pressures in certain pipes and nodes are oen measured using sensors and

the Supervisory Control And Data Acquisition (SCADA) system. Estimating water demands

for all nodes in the network, based on these measurements alone, is not a trivial task. Some

issues and a solution methodology for this problem using predictor-corrector methodology

and extended Kalman filtering, are presented in [151].

As a basic scenario, consider the case where flowmeters are placed only at the pipes which

supply water to the distribution system. According to themass conservation principle, inflows

should be equal to outflows; in this case outflows may correspond to consumer demands,

water loss due to leakages or water exiting to some other part of the network, e.g. a tank.

In current practice, water utilities segment their distribution networks into District Metered

Areas (DMA), whose inflows and outflows are monitored. Each DMA may have a different

overall demand pattern, depending on the consumer types it serves.

For the l-th DMA in a distribution network, we defineWl as the set of demand nodes

which are included in that DMA, and define q(l)in (k) and q(l)out(k) as the sum of its inflows and

outflows respectively. Let fp : R × R 7→ R be a calibration function, which is selected off-

line and is used to compute the total nodal demands at the l-th DMA, at discrete time k. e
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estimated normalized demand pattern, p̂wi(k), for the i-th demand node in a DMA, is given

by

p̂wi(k) =
fp(q

(l)
in (k), q

(l)
out(k))∑

wi∈Wl

dwi

. (4.2)

In general, the estimated normalized demand pattern p̂(k)may not be equal to the actual nor-

malized demand pattern p(k), due to uncertainties; however, we assume that the selection of

the calibration function fp(·) is such that the modelling uncertainty is within certain bounds.

4.4 Adaptive Forecasting of Periodic Time Series

Forecasting the hydraulic dynamics at various nodes in the distribution network is im-

portant in the design of the quality regulation algorithm, since the forecasted demands are

used in the soware model to compute future state of the system under certain control in-

puts. In the case of water distribution networks hydraulic dynamics are driven by unknown

water demands; these demands however are approximately periodic.

Various methods exist in the literature in forecasting time-series, such as autoregressive

moving averagemodels, regressionmodels, Kalman filtering, neural networks and others [23,

93]. In this work we examine the use of Fourier series as the approximation structure in an

adaptive framework. e motivation behind the use of Fourier series, is that they are used

to model periodic signals, as in the case of the hydraulic dynamics, by formulating a sum of

suinosoidal functions. An added benefit in using Fourier series is that they are linear in the

parameters, and can be represented as the multiplications of two vectors, a parameter vector

θ and a regressor vector ζ(k).

Let q̂d(k) ≡ fp(q
(l)
in (k), q

(l)
out(k)) be the water demands at a certain DMA, as computed us-

ing the calibration function. e periodic variation in q̂d(k) can be represented in terms of a

Fourier series, which is given by

q̂d(k) = θ⊤ζ(k) + ϵd, (4.3)

where θ ∈ R2Nz+1 is a vector of unknown parameters representing the first Nz Fourier coef-

ficients. e regressor vector ζ(k) ∈ R2Nz+1 is given by

ζ(k) = [1, sin(ωk), ..., sin(Nzωk), cos(ωk), ..., cos(Nzωk)]⊤, (4.4)

where ω = 2π
TH

and ϵd is the residual error of the Fourier series approximation.
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e unknown parameter vector θ is estimated on-line by computing the estimation error

and updating the adaptive law. Let θ̂(k) be the parameter estimate of the unknown θ at time

k, and let

eq(k) = q̂d(k) − θ̂⊤(k)ζ(k) (4.5)

be the output estimation error. Using the standard gradient approach [180], the adaptive law

for θ̂(k) is given by

θ̂(k + 1) = θ̂(k) + AG
ζ(k)

aF + ζ(k)⊤ζ(k)
eq(k) (4.6)

where aF is a design parameter and AG a gain diagonal matrix, which are selected offline. To

guarantee the learning law stability, aF ≥ 0 and 0 < Ai
G < 2, for the i-th diagonal element of

the gain matrix [7, p.54].

Once we obtain the coefficients of a Fourier series which approximate the actual periodic

total demands, we can compute for a certain horizon, forecasts for the estimated demand

pattern at each demand node.

4.5 Model Predictive Controller

In this section a basicmultivariable and constrainedmodel predictive control formulation

of the water quality control problem will be presented. e underlying idea is to compute a

sequence of future control inputs, so that an objective function over a predicted horizon is

minimized. e controller’s constituting parts are analyzed in the following sections.

4.5.1 Constraints

Drinking water distribution systems are subject to various constraints because of regula-

tions for safe operation and good water quality. Actuators injecting chlorine cannot remove

excess chlorine from water, and in addition, there may be a physical limit on the maximum

quantity of disinfectant that can be injected. erefore, the chlorine concentration control

input at the i-th booster station u(i)
c (k) is bounded within u(i)

c (k) ∈ [u,u], where u = 0
mg
L .

Let yc(k) be the output vector of chlorine concentrations, monitored by on-line sensors.

Depending to the regulations, this output concentration must be constrained to a lower and

upper bound, y and y respectively. For example, in some cases, the lower limit is specified

by regulations and is a hard limit (e.g. y = 0.2 mg
L ), whereas the upper limit y can take any

value below the highest concentration allowable set by regulations (e.g. y = 4.0 mg
L ). It is

important to note that due to the dangerous chlorine by-products, such as trihalomethanes,
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chlorine concentrations must be kept as low as possible, without compromising in the same

time water safety.

4.5.2 Process Model

e process model used by the chlorine regulation algorithm must be able to capture the

quality dynamics of the water distribution system and be used for computing quality output

predictions. We follow a so-computing approach by utilizing the hydraulic and quality sim-

ulation system, EPANET, which, when calibrated, can be used in computing discrete impulse

responses of multiple quality inputs measured at multiple output, utilizing the forecasted es-

timated normalized demand patterns.

To compute the impulse responsematrixΓ(k), we use an algorithm fE(·), such thatΓ(k) =

fE(p̂(k)). e impulse response matrix is constructed for each input/output with this algo-

rithm, through iterative simulations of discrete impulses corresponding to contaminant in-

jections at one discrete time instance.

Let My be the number of output nodes where chlorine concentration is monitored and is

to be regulated, and Mc the number of input nodes where chlorine is injected. In addition, let

Hp and Hc be the prediction and control time horizon respectively. e dynamic matrix Γ(k)

is given by

Γ(k) =


Γ(1,1)(k) ... Γ(1,Mc)(k)

...
. . .

...

Γ(My,1)(k) ... Γ(My,Mc)(k)

 ,
where Γ(i, j)(k) ∈ RHp×Hc for i = {1, ...,My} and j = {1, ...,Mc}, is an impulse response matrix

of one the j-th input with respect to i-th output. e matrix Γ(i, j)(k) given by

Γ(i, j)(k) =


γ(i, j)(k, k) ... γ(i, j)(k, k + Hc − 1)

...
. . .

...

γ(i, j)(k + Hp − 1, k) ... γ(i, j)(k + Hp − 1, k + Hc − 1)

 ,
where γ(i, j)(k1, k2) is the impulse coefficient, which is computed when a discrete impulse is

applied at the j-th input at time k1, and its impact is measured at the i-th output at time k2.

4.5.3 Predicted Outputs

Let Ŷ(k) be the predicted output vector for Hp steps into the future based on information

at time k, Y(k) is the future responses vector which are caused by the past inputs, and U(k)
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the computed future inputs vector, such that

Ŷ(k) = Γ(k)U(k) + Y(k), (4.7)

for which U(k) ∈ RMcHc and

Ŷ(k) = [ŷ(1)
c (k + 1), ..., ŷ(1)

c (k + 1 + Hp), ..., ŷ
(My)
c (k + 1), ..., ŷ(My)

c (k + 1 + Hp)]
⊤

U(k) = [u(1)
c (k), ..., u(1)

c (k + Hc), ..., u
(Mc)
c (k), ..., u(Mc)

c (k + Hc)]
⊤

Y(k) = [Y(1)(k + 1), ...,Y(1)(k + 1 + Hp), ...,Y(My)(k + 1), ...,Y(My)(k + 1 + Hp)]
⊤.

4.5.4 Objective Function

e objective is to compute vector of inputs U(k) which minimizes the difference of Ŷ

with the reference signal rc(k) as well as minimize the overall magnitude of the input signal

U(k).

Let Jc(k) be the quadratic objective function which we will use to compute the control

input signal, such that

Jc(k) ≡
Hp∑
j=1

[ŷc(k + j) − rc(k)]
2
+

Hc∑
j=1

ηc [uc(k + j)]2 , (4.8)

where ηc is a penalizing factor for the input variable variations, and Hp and Hc are the predic-

tion and control horizon time steps. Using (4.7), the objective function given by (4.8) can be

rewritten in a vector form as

Jc(k) = (Ŷ − rc)
⊤(Ŷ(k) − rc) + ηcU(k)⊤U(k) (4.9)

= (Γ(k)U(k) + Y(k) − rc)
⊤(Γ(k)U(k) + Y(k) − rc) + ηcU(k)⊤U(k). (4.10)

By rearranging the terms, the objective function can be written as

Jc(k) =
1

2
U(k)⊤P1(k)U(k) + P2(k)⊤U(k) + P3(k), (4.11)

where P1(k) = 2(Γ(k)⊤Γ(k) + ηcI), P2(k)⊤ = 2(Y(k) − rc)
⊤Γ(k) and P3(k) = (Y(k) −

rc)
⊤(Y(k) − rc).

With this formulation, optimization can be performed using standard off-the-shelf con-

strained optimization algorithms using quadratic programming or least squares, to find the

vector U(k) which minimizes the objective function.

e optimization problem is therefore formulated as

U(k) = argmin
U∈RMcHc

1

2
U⊤P1(k)U + P2(k)⊤U, (4.12)
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subject to 

I

−I

Γ(k)

−Γ(k)


U ≤



1u

−1u

1y − Y(k)

−1y + Y(k)


,

where 1 = [1, 1, ..., 1]⊤.

4.6 Simulation Examples

To illustrate the adaptive forecasting and the model predictive controller, we present a

number of simulation studies using a network topology of a realistic drinking water distri-

bution system, as provided in the EPANET package, namely ‘Network 3’, which is depicted

in Fig. 4.1. e network is comprised of two water supplies as well as three tanks and two

pumps working on a daily schedule. Chlorine booster stations as well as hydraulic and qual-

ity dynamic sensors are installed in the network at the two water sources. We consider that

the network parameters, such as roughness coefficients and pipe lengths, are known.

4.6.1 Forecasting hydraulic dynamics

e adaptive approximation must learn the parameters of an approximation structure,

which describes the demand patterns. e closer the demand forecasts are to the future de-

mands, the better the quality regulation.e ability of the adaptive approximation to learn the

demand pattern is shown in the following example, by computing the unknown coefficients

of a Fourier series, and for comparison, of a radial basis function.

At each time step, q̂d(k) is computed based on the on-line flow measurements, and the

adaptive law updates the parameters so that the approximation structure learns the unknown

demands.

e adaptive approximation updated for demand data corresponding to ten days, with

samples every 5 minutes. e weights are adjusted in each time step in order to capture the

hydraulic dynamics. For the Fourier series, the first Nz = 50 terms are considered with daily

period; for the radial basis function, we selected Nz = 120 centers are spread evenly between

[0, 24] hours, with 0.2 standard variation.

Various scenarios were examined, where the demands at in each node which is not mon-

itored, were affected by random disturbances. e baseline scenario is when the estimated
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Figure 4.1: A drinking water distribution network; flows from the water sources (Lake and

River) and from the storage tanks (T1, T2, and T3) are monitored on-line, as well as the de-

mand flows at certain nodes (‘15’,‘35’,‘123’,‘203’). On-line quality sensors measuring chlorine

concentrations are installed at nodes ‘119’ and ‘203’.

78

Dem
etr

ios
 G

. E
lia

de
s



0 5 10 15 20
0.5

1

1.5

2

time (hours)

N
or

m
al

iz
ed

 F
lo

w
 D

em
an

d

0% demand pattern disturbance

 

 
10−day average
Fourier Series
Radial Basis Function

0 5 10 15 20 25
0.5

1

1.5

2

time (hours)

N
or

m
al

iz
ed

 F
lo

w
 D

em
an

d

40% demand pattern disturbance

 

 
10−day average
Fourier Series
Radial Basis Function

Figure 4.2: Approximated demand patterns using a Fourier series and a Radial Basis Function,

aer a 10-day period of learning with zero and 40% disturbances.

normalized demand pattern is same as the actual normalized demand patterns at each node.

e scenario with disturbances uses white noise with zero mean to change the nominal de-

mand flows.

e result of learning for 10 days are presented in Fig. 4.2. We observe that both approx-

imation structures manage to learn the hydraulic characteristics, even when the nodes are

influenced by some disturbances.

Another issueworth considering is that adaptive approximation does not terminate; there-

fore it is able to respond to changes in the network or consumption behaviour, to capture

seasonal changes etc. Furthermore, by using extra information regarding the nature of con-

sumers, it is possible to compute demand pattern models for groups of nodes that are similar

to the actual patterns.

4.6.2 Multi-Input Multi-Output Quality regulation

In this experiment we demonstrate the ability of the proposed algorithm to regulate the

chlorine concentrations at specific nodes in the network, by adjusting chlorine concentra-

tions at the points of chlorine injection. We consider that the adaptive approximation was
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performed with the Fourier series for a 10-day period. For the first 48 hours, the input at both

locations where chlorine boosters are installed, is the step signal uc(k) = [0.4, 0.4]⊤mg/L.

e quality regulation algorithm is turned on at time 48, with prediction horizon Hp = 48,

control horizon Hc = 48 and ηc = 10.

We consider the case where chlorine booster actuators are installed at the ‘River’ and the

‘Lake’, whereas on-line chlorine concentration sensors are installed at nodes ‘119’ and ‘203’.

Figure 4.3 shows the input and output signals for a period of 90 hours. No disturbances are

considered in this example. e objective is to regulate the output signals to a setpoint rc =

0.25 mg
L , while the input and output signals must be bounded with u = 0

mg
L , u = 4

mg
L ,

y = 0.2 mg
L and y = 0.5 mg

L .

As shown in the figure, for certain periods the lake has zero inflows because the hydraulic

controller shuts down the pumps operating at that location. In addition, the highmagnitude of

concentrations at the lake needed for regulating the concentration at the two nodes, suggests

that another chlorine booster should be placed somewhere, possibly somewhere in the center

of the network.

Note that, because the regulation algorithm is not driven by quality feedback, the opti-

mization could be performed with respect to various nodes in the network, thus achieving

better spatial distribution of chlorine across the network, assuming the hydraulic model is

well-calibrated.

In some situations it is impossible for the quadratic program to find a solution which

does not violate the constraints. When this occurs, the controller can select a predetermined

input signal, or use a different optimization method with relaxed constraints. e controller

switches back to quadratic optimization program, when a feasible solution can be computed.

When the hydraulic dynamics are influenced by disturbances, themeasured chlorine con-

centrations in the output locations are different that those estimated by the model. For exam-

ple, Fig. 4.4 demonstrates the measured and estimated outputs in a node, for a period of time

aer the controller is enabled. e controller is under the constraints used in the previous

example, which are relaxed in case of a not feasible solution. We consider for the simulation

that the demand patterns are influenced by a±30%disturbance, whereas the base demands by

a ±5% disturbance. We observe that in certain time-steps, the measured chlorine concentra-

tion dropped below the 0.2 mg
L limit, because disturbances significantly influenced hydraulic

dynamics.
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Figure 4.3: A step input is applied for 48 hours, and then the constrained quality regulation

algorithm is activated with 48-hour control horizon. e effect of the control action appears

aer 13 hours, at time 51.
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Figure 4.4: e estimated and measured chlorine concentrations at node ‘203’, with ±30%
uncertainty in the total demand and ±5% uncertainty at the base demands.
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4.7 Concluding Remarks

In this chapter we have studied the problem of quality regulations for drinking water dis-

tribution networks, by exploiting the approximately periodic nature of hydraulic dynamics.

e approach presented was based on an online predictive control framework. As the actual

system is significantly time-varying, since it is driven by unknown demands, future states of

the distribution system are unknown; therefore the future hydraulic dynamics, and by pro-

jection the water demands, need to be predicted.

ehydraulic dynamics, which are typically of periodic nature, are represented by a Fourier

series or other similar approximation structures, with an online parameter estimation of the

unknown coefficients. Various approximation structures are suitable for the calculation of

daily demand patterns, as shown in the experiments, even under the influence of disturbances.

e predicted demand patterns can be directly applied to simulation models which solve the

hydraulic and quality equations numerically for the future time steps.

When the adaptive approximation has learned the hydraulics, the controller is activated, in

order to regulate the chlorine concentrations across the drinking water distribution network.

e objective function is in a quadratic form, while the optimization programminimizes both

the difference between the future output concentration and a regulation concentration, and

also the input concentrations.

Certain constraintsmay be applied to guarantee that the input and output are within those

bounds. e optimization algorithms may consider regulating all nodes in the network, even

though only some of them are actually monitored. Better hydraulic forecasting methods as

well as better water demand estimators would provide more accurate models of the drink-

ing water distribution system to be used with the regulation algorithm, which will assist in

achieving better control of the system.

e contributions of this work is the design and implementation of a quality regulation

algorithm which learns adaptively the unknown demands, while using existing water distri-

bution system models to compute the input signals by using a regulation algorithm based on

model predictive control. e work presented in this chapter has been published and pre-

sented in a peer-reviewed conference [54].
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Chapter 5

Hydraulic Fault Detection

In this chapter, we formulate the problem of leakage detection in a systems engineering

framework, and propose a solution methodology to detect leakages in a class of distribution

systems. In specific, we consider the case when water utilities use flow sensors to monitor

the water inflow in a District Metered Area (DMA). e goal is to design algorithms which

analyze the discrete inflow signal and determine as early as possible whether a leakage has

occurred in the system.

e DMA inflow signal is normalized to remove long-term trends and seasonal effects,

and two different algorithms are presented for leakage detection. e leakage fault detection

algorithm presented in this work is based on learning the unknown, time-varying, weekly

periodic DMA inflow dynamics, with the use of an adaptive approximation methodology to

update the coefficients of a Fourier series; as detection logic we utilize the CUSUM algorithm.

For reference and comparison, we present a solution methodology based on night-flow anal-

ysis, using the normalized DMA inflow signal. To illustrate the solution methodology, we

present results based on real hydraulic data measured at a DMA in Limassol, Cyprus.

5.1 Background

e International Water Association (IWA) Task Force on Water Losses has defined a set

of metrics for water utilities to audit how provided water is consumed or lost. In general,

water intended for consumption is segmented into “Authorized Consumption”, which corre-

sponds to the billed or unbilled authorized consumption, and to the “Water Losses”, which

corresponds to the “Apparent Losses” (due to unauthorized use, metering inaccuracies or

calibration issues) and to the “Real Losses” (due to leakages, breaks etc.) [3]. Water losses im-

pose a huge economic burden; hence the reduction of both is an important goal in most water

83

Dem
etr

ios
 G

. E
lia

de
s



utilities.

Leakage is a type of hydraulic fault, which may be caused due to pipe breaks, loose joints

and fittings, as well as to overflowing water storage tanks [69]. Some of these problems are

prompted by the deterioration of the water delivery infrastructure, which is affected by age

and high pressures.

Leakage faults which occur within the water distribution network may correspond to

slowly developing incipient faults, as well as due to abrupt faults, which may require im-

mediate attention. Leakages may cause consumer problems, health risks as well as financial

losses [69], therefore their early detection and repair, if possible, is imperative. Leakages are

classified by water utilities as “background” (small undetectable leaks for which no action to

repair is taken, with single leakage outflow less than 0.25 − 0.5 m3

hr at 50 m water head), “un-

reported” (moderate flow-rates which accumulate gradually and require eventual attention),

and “reported” (high flow-rates which require immediate attention) [97,159].We should note

that in practice, there may be a significant time delay between the time a leakage occurs, to

the time the water utility detects the leakage occurrence and the time the leakage is located

and repaired [159].

From the systems and control viewpoint, we may classify leakages as: a) slowly increasing

incipient faults, to describe breaks which in the beginning are small but may deteriorate fur-

ther while their size increases; b) stepwise abrupt faults, which appear at a certain time step

and whose physical characteristics do not change [87, 195].

In 1980, the UK Water Authorities Association proposed the concept of District Me-

tered Area (DMA) management methodology to monitor leakage in water distribution net-

works [185]. According to [69], the main benefits of using DMA management over standard

centralized monitoring and control are reduced fault detection time, better leakage detection,

leakage location isolation and low pressure regulation. is approach has been adopted by

a large number of water utilities. Each DMA corresponds to a decoupled water distribution

network, with one or more water supply pipes; at each supply pipe, real-time flow sensors,

pressure sensors and pressure reducing valves are installed [69, 115].

A number of water utilities apply the minimum night-flow analysis at each DMA, to es-

timate the quantity of water loss due to leakages [159]. e utilities examine the inflow at a

DMA during the minimum-consumption hours (typically between 2-4 ..), at which times

flow variance is at the lowest and the leakage outflow is high, due to high pressures. rough

observation of the minimum flows during the minimum-consumption hours and by com-

paring them to measurements from previous days or to certain benchmarks, the water util-
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ity operators may be able to detect an unreported leakage fault which has occurred within a

DMA [159]. However, detection by this method may not be straight-forward, due to unpre-

dictable variations in consumer demands andmeasurement noise, as well as long-term trends

and seasonal effects. In addition, it may be difficult to detect incipient leakage faults that may

occur due to slowly increasing leakages.

In a number of studies, leakage detection has been examined as the inverse problem of

computing leakages (magnitudes and locations) based on flow and pressure measurements,

as well as other network parameters (such as pipe lengths), by formulating and solving an

optimization problem. In [137], steady-flows are considered when solving the inverse prob-

lem. In [102], this formulation is extended to take into consideration transients, i.e. changes

in pressures due to the fact that pressure waves travel through the distribution network with

some velocity. e authors formulate an optimization problem to compute the pipe friction

coefficients to calibrate the system model, as well as to compute the orifice area of the leakage

models, based on the available data measurements.

For a review of the solutionmethodologies of the inverse problem using transient analysis,

see [42]. Case studies on physical systems have also been published [44]. According to [148],

however, transient analysis is not widely accepted by the practitioners due to various reasons,

such as cost and lack of expertise.

Somemethodologies consider the use of computational intelligence techniques for leakage

detection, such as neural networks and support vector machines [31, 72, 73, 106, 116–118].

In [176,190,191], they consider the use of genetic algorithms, in order to calibrate the network

model and estimate leakage parameters. Probabilistic and statistical methodologies have also

been proposed in [28, 128, 138]. Recently, results from the Wireless Water Sentinel project

in Singapore (WaterWiSe@SG) were presented [188], in which transient pressure waves are

analyzed using wavelets to detect leakages [156].

In [112, 113], a solution methodology is proposed for the abrupt leakage fault detection

problem within a DMA, when measuring inflows and transient waves; the Cumulative Sum

chart algorithm “CUSUM” [9, 124] is applied to detect changes in the mean of the difference

between filtered estimates of two consecutive time instances.

In practice, some water utilities may not have sensors measuring transient pressure waves,

with high-frequency sampling, installed in their distribution networks, in order to use tran-

sient leakage detection algorithms. Furthermore, somewater utilitiesmaynot havewell-calibrated

models of their water distribution system, as well as representative consumer demand mod-

els, to solve optimization problems for leakage detection and estimation. On the other hand,
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a number of water utilities measure inflows and pressures at DMA, and these measurements

are used for calculating leakages, typically performed using alarm thresholds, or simply by

operator observation.

In this work, we formulate the problem of leakage detection in a fault diagnosis frame-

work, and propose a solution methodology for leakages detection in a class of distribution

systems. In specific, we consider the case when water utilities use flow sensors to monitor

the water inflow in a District Metered Area (DMA). e goal is to design algorithms which

analyze the discrete inflow signal and determine as early as possible whether a leakage has oc-

curred in the system.e inflow signal is normalized to remove long-term trends and seasonal

effects, and two different algorithms are presented for leakage detection. We propose a leak-

age fault detection algorithm which is based on learning the unknown, weekly periodic DMA

inflow dynamics, using an adaptive approximation methodology to update the coefficients of

a Fourier series; as detection logic, we utilize the CUSUMalgorithm, which detects changes in

the average of a signal. e proposed algorithm is able to learn changes in the weekly periodic

dynamics, and detect a leakage fault by monitoring changes in the average value of the off-set

(DC) term of the Fourier series. For reference and comparison, we demonstrate a baseline

algorithm based on night-flow analysis, and the leakage detection logic depends on a leakage

detection threshold. We show that although this algorithm is able to detect leakage faults if

the detection threshold is violated, the algorithm has a short memory and as a result, if the

threshold has not been violated, aer a few days it becomes more difficult to detect a leakage,

since it considers the increased flow measurements as normal.

is chapter is organized as follows: a mathematical model of the DMA inflows and the

leakages is presented, along with key concepts and definitions; next, a solution methodology

based on adaptive DMA inflow approximation is presented and compared to a leakage fault

detection algorithm using night-flow analysis. Finally, simulation results are presented based

on actual data from a water distribution system in Limassol, Cyprus.

5.2 Mathematical Model of DMA Inflows and Leakages

Consider a District Metered Area (DMA) which is connected to the main water supply

network through a single pipe. To reduce the possibility of high pressure at theDMAentrance,

a pressure-reduction valve controller is utilized to regulate the pressure at the point of entry

within certain bounds. Following the pressure-reduction valve, the hydraulic characteristics

of the water are monitored by on-line sensors, with sampling time ∆t. At each discrete time
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instance k ∈ {0, 1, ...}, the water flow q(k) and hydraulic head h(k)measurements are recorded

and stored using a SCADA system.

According to statistical theory, time series can be decomposed into some linear and pe-

riodic signals, which is useful for forecasting [23, 45]. ese techniques have been applied to

hydraulic signals [192, 196]. In our work, we consider that variations in flows q(k) can be de-

composed into two main components: (i) long-term trends and yearly seasonal changes, and

(ii) weekly periodic changes. e long-term trend is typically a monotonic function which

describes the increase of water consumption e.g. due to population increase. e seasonal

changes describe the variation in water consumption as a result of seasonality within a year.

e weekly periodic component describes the fluctuation of the signal throughout one week,

which depends on the various social and economic characteristics of the consumers. In some

studies, the weekly periodic component is simplified to a daily, 24-hour periodic component.

In addition, we may also consider high frequency variations due to unpredictable consumer

demands.

In hydraulic dynamics, the uncertainty variance is typically proportional to the weekly

periodic component, and in addition, the magnitude of the weekly periodic component is

proportional to the seasonal and trend component. erefore, the multiplicative time-series

model is a suitable option for the description of mathematically the hydraulic signals. In the

case of DMA inflow q(k), we define rt(k) as the function which describes both the mono-

tonic trend and the yearly seasonal component of the flow, and s(k) as the function which

describes weekly periodic water demand signal; n(k) corresponds to themultiplicative uncer-

tainty component with zero average and variance σ2n, such that n(k) ∼ N(0, σ2n). erefore,

the mathematical model of the flow signal q(k) is given by

q(k) = rt(k)s(k)(1 + n(k)). (5.1)

Leakage faults increase the flow and decrease the pressure measurements at the DMA en-

trance. Mathematical models which describe the leakage flow with respect to the pressure at

the leakage location have been proposed in various empirical studies [74, 75, 177]. For exam-

ple, the leakage flow ϕh(k) can be modeled mathematically as

ϕh(k) = aD[ fl(h(k))]aE , (5.2)

where h(k) is the hydraulic head measured at the DMA entrance, aD > 0 is a discharge coeffi-

cient, aE ∈ [0.5, 2.5] is an exponent term which depends on the leakage type and fl : R 7→ R
is an unknown function which maps the measured head at the DMA entrance to the pressure
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at the leakage location (the pressure at the location where the leakage has occurred is usually

not available for measurement). In practice, both the discharge coefficient and the exponent

term are unknown; however, empirical studies have demonstrated that the exponent for small

background leaks is aE ≈ 1.5, for larger leaks in plastic pipes aE ≥ 1.5 and for larger leaks in

metal pipes aE ≈ 0.5 [98].

Suppose that a leakage fault starts at some unknown time k0. In the presence of a leakage

fault, the flowmodel described by (5.1) needs to bemodified to account for the leakage.ere-

fore, the term β(k − k0)ϕh(k) is added to the multiplicative model in (5.1), where β(k − k0) is

the time profile of the leakage fault and ϕh(k) the flow due to the leakage. A suitable function

which describes the time-profile of an abrupt fault is given by

β(k − k0) =

0 k < k0

1 k ≥ k0
, (5.3)

whereas in the case of a slowly evolving incipient leakage fault, a suitable function is

β(k − k0) =

 0 k < k0

1 − a−(k−k0)
B k ≥ k0

, (5.4)

where aB > 1 is an unknown fault evolution rate.

e mathematical model of DMA inflow with leakage is given by

q(k) = rt(k)s(k)(1 + n(k)) + β(k − k0)aD[ fl(h(k))]aE . (5.5)

An important consideration to take into account is the fact that the uncertainty term rt(k)s(k)n(k)

in the flow model (5.5) may have a significantly larger variance than the variance correspond-

ing to the leakage fault. On the other hand, the uncertainty term rt(k)s(k)n(k) has a zero av-

erage value, while at the same time, the leakage fault has a positive (non-zero) average value.

is is a key characteristic whichwe exploit in the leakage fault detection algorithms presented

in this work.

e long-term trend and seasonal function rt(k) is in general unknown. To compute the

trend and seasonal signal approximation, we consider a dataset of fault-free historical mea-

surements. LetKh be the set of historical time instances considered. Let r̂t(k;θr) be the esti-

mate of the unknown rt(k), which is computed off-line, where r̂t(·) is a selected structure for

the estimator and θr is a set of parameters that can be adjusted to improve the approximation.

For example, r̂t(·) can be expressed as a polynomial or a Fourier series with fundamental pe-

riod of a year, to capture the population increase and consumption changes due to seasons.

In this case, the parameter θr is the coefficients of the polynomial of the Fourier series.
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Given sufficient recorded hydraulicmeasurements, we can compute an estimation θ̂r ∈ Θr

of the unknown parameter vector θr, whereΘr specifies the parameter bounds, by solving the

least-squares optimization problem

θ̂r = argmin
θr∈Θr

∑
i∈Kh

(q(i) − r̂t(i;θr))
2 . (5.6)

e approximation signal r̂t(k; θ̂r), which is computed off-line, is used in the following sec-

tions to normalize the flow signals used in the presented leakage fault detection algorithms.

By making the assumption that rt(k) = r̂t(k; θ̂r), the normalized DMA inflow is given by

qr(k) = s(k)(1 + n(k)) + β(k − k0)
ϕh(h(k), k)

r̂t(k; θ̂r)
, (5.7)

where qr(k) =
q(k)

r̂t(k;θ̂r)
.

5.3 Leakage Fault Detection Using Adaptive Flow Approxi-

mation

In this section we formulate an on-line leakage fault detection methodology, based on the

idea that we can learn adaptively the periodic signal corresponding to the normalized flow,

and use that information to detect leakage faults.

e unknown weekly periodic demand signal s(k) is approximated in the form s(k) =

θ∗(k)⊤ζ(k), where θ∗(k) is an unknown parameter, and ζ(k) represents the approximation

structure (regressor). In this work, ζ(k) is a vector of Fourier functions, while θ∗(k) are the

ideal coefficients. In general, θ∗(k) is time-varying, representing slowly changing consump-

tion characteristics due to variations in people’s behaviour, as well as due to various external

events such as the daylight savings time changes, festivities, weather conditions etc. We let

θ̂(k) be the estimate of θ∗(k), which is updated at each time step k based on the available

hydraulic measurements.

At discrete time ks the leakage fault detection algorithm is activated; the algorithm is com-

prised of two parts: a) the on-line flow estimator and b) the leakage fault detection logic com-

ponent.

Since the weekly periodic signal s(k) = θ∗(k)⊤ζ(k) is time-varying, it is useful to compute

and update in time the parameter vector θ̂(k), so that ŝ(k) = θ̂(k)⊤ζ(k) is an estimation of

the unknown s(k).
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As approximation structure, we consider a linearly parameterized Fourier series with Nz

terms, where θ̂(k) is the parameter estimation vector of size 2Nz + 1, and, for ωs =
2π
TS

, ζ(k),

and TS the number of samples within a weekly period, the regressor vector is given by

ζ(k) = [1, cos(kωs), ..., cos(Nzkωs), sin(kωs), ..., sin(Nzkωs)]
⊤. (5.8)

e normalized flow estimation error er(k) is given by er(k) = qr(k)− ŝ(k). e error er(k)

is useful in computing the parameter vector estimate for the next time instance, such as

θ̂(k + 1) = θ̂(k) + AG
ζ(k)

aF + ζ(k)⊤ζ(k)
er(k) (5.9)

where aF is a design parameter and AG a gain diagonal matrix, which are selected offline. To

guarantee the learning law stability, aF ≥ 0 and 0 < Ai
G < 2, for the i-th diagonal element of

the gain matrix [7, p.54].

In practice, the parameters in θ̂(k)may dri towards infinity. is effect may be alleviated

by using the projection algorithm, which bounds the parameter updates within a pre-defined

region Θ [70].

e leakage fault detection algorithm is activated at time ks, and the initial conditions of

the estimated parameter vector are θ̂(ks) = θ0.e initial conditions vector can be computed

off-line, by taking into consideration a set of historical measurements. LetKp be the set of the

most-recent time instances set prior to the time the leakage fault begins; by solving a least-

squares optimization problem we compute the initial condition vector estimation

θ̂(ks) = argmin
θ∈Θ

∑
k∈Kp

(qr(k) − θ⊤ζ(k))2 , (5.10)

where qr(k) =
q(k)

r̂t(k;θ̂r)
is the normalized flow. Note that since the flow is normalized with

respect to the estimated trend signal, the average value of the Fourier series approaches the

unit value.

e update law (5.9) can be used to learn the changes in the consumption dynamics. How-

ever, in addition to the consumption, the update law can learn the unknown leakage fault dy-

namics which begin at discrete time k0 the leakage fault begins In specific, the leakage fault

acts as a positive offset to the flow signal and may exhibit periodicity in accordance to the pe-

riodicity of the pressure signal; the update law will change the elements of parameter vector

estimator, to approximate the new flow characteristics and reduce the estimation error, which

corresponds to learning the leakage faults.

Note that when certain known exogenous factors affect the periodic consumption, the

update law can be suitably modified to capture the prior knowledge. For example, in some
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countries the daylight savings time change occurs in spring and ends in autumn, by advancing

the clock time by 60 minutes; as a result, all the social and economic patterns are shied by 60

minutes. Unless this is taken directly into consideration, time change may appear as a large

error and may trigger the leakage fault detection algorithm. e update law (5.9) and the

estimator ŝ(k) can be modified; for example, when the daylight savings time change occurs,

the regressor ζ(k + 60
∆t) is used instead of ζ(k).

5.3.1 Leakage Fault Detection Logic

Detection of a leakage fault is performed by monitoring for change in the mean value of

the parameter θ̂0(k), which corresponds to the offset DC term of the Fourier series. A suitable

sequential analysis algorithm for the detection of changes in the mean value of a signal is the

Cumulative Sum control chart (CUSUM) [10, 18]. e assumption behind using CUSUM is

that the monitored signal has a constant average value during normal operation and that the

magnitude of the change is considered known [9].

Let S(k) be the cumulative sum for the k-th time instance, where S(0) = 0; for k > 1 and

for a positive change in the mean due to leakage faults, the one-sided CUSUM algorithm is

given by

S(k) = max{0, S(k − 1) + θ̂0(k) − θ0 − γ0}, (5.11)

where θ0 = 1 corresponds to the theoretical average of the offset DC term and γ0 > 0 is a

parameter defined by the designer corresponding to the expected change. A detection alarm

is triggered at the time instance kd at which the metric S(k) is greater than the threshold hs,

such that

kd = min{k | S(k) ≥ hs}. (5.12)

An estimation of the leakage fault start time k̂0 can be computed as the latest time instance

before detection when the metric S(k) was less than a small positive number ϵk, such as

k̂0 = max{k | S(k) <, k < kd}. (5.13)

Part of leakage fault diagnosis is to identify the magnitude of the leakage. e large uncer-

tainties in themeasurements, however, impose difficulties in the task. To compute an estimate

of the average leakage outflowϕ(k), when a leakage fault is detected at time kd and the leakage

start time is estimated at k̂0, we use

ϕ(k) =
1

k − k̂0 + 1

k∑
i=k̂0

θ̂0(i), (5.14)
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which is computed iteratively at each discrete time k.

5.4 Leakage Fault Detection Using Night Flow Analysis

In practice, utility operators use night-flow monitoring to determine the presence of leak-

age faults. is is usually done by comparing the average of the minimum night flow with

those of the previous days. However, the trend and seasonal signal are not taken into account,

and the decision may be subjective. Below, we formulate a leakage fault detection algorithm

based on the average night flow normalized with respect to the trend and seasonal signal.is

will also serve as a baseline comparison to the adaptive approximation algorithm developed

in the previous section.

In this section we formulate a leakage fault detection methodology based on the night-

flow analysis methodology, which takes into consideration the DMA water inflow during low

consumption hours. e intuition behind using the night-flows is that since the flows during

the night have smaller variations than during the day, and since the leakage losseswill be larger

because of the higher pressures in the system, it will be easier to detect leakage faults.

Let w(l) be the average night-flow measured for the l-th period, which corresponds to 24-

hours. Let∆t be the sampling time (in minutes) for measuring the flow and let TH = 24·60
∆t be

the number of samples in one day. Let ta and tb be the discrete times at which the night-flow

begins and ends. Considering that the first discrete time k = 0 corresponds to midnight of

period l = 0, we define N f (l) = {ta + lTH, ta + 1 + lTH, ..., tb + lTH} as the set of discrete

times corresponding to night-flows of the l-th day. In general, ta and tb are constant; however,

in some cases (e.g. due to the daylight savings time change) they may need to change.

At the l-th day and aer the night-flow period has finished, we compute the normalized

average night flow w(l) as

w(l) =
1

|N f (l)|
∑

i∈N f (l)

q̂r(i), (5.15)

where q̂r(·) is the normalized flow with respect to the estimated trend signal r̂t(k; θ̂r), such

that q̂r(k) =
q(k)

r̂t(k;θ̂r)
.

We further define δw(l) as the difference of the average night flow w(l)with the minimum

average night flow of the previous Mw ≥ 1 days, such that

δw(l) = w(l) −min{w(l −Mw), ...,w(l − 1)}. (5.16)
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Let ld be the day a leakage fault is detected; a leakage detection alarm is activated at the

l-th day, such that ld = l, when the difference δw(l) has a greater value than the detection

threshold hw, which is selected off-line by using historical measurements. is approach gives

rise to certain issues: setting hw too lowmay cause a large number of false positive leakage fault

alarms, while setting it too highmay cause the detection algorithm tomiss some leakage faults.

In addition, due to the large uncertainties in the flow measurements, e.g. due to festivities or

other events, this threshold could be exceeded even when no leakage fault has occurred in the

system.

We can modify this detection method, to consider a window of difference measurements,

so that detection occurs when, for at least Md days, the difference δw(·) computed for each

day within that period of time is greater than a certain threshold hw. We further consider that

the estimated leakage start day l̂0 is given by l̂0 = ld −Md.

e detection threshold hw can be selected off-line using historical data. We select a mini-

mum detection window M0, such that 1 ≤M0 < Md. From a set of historical measurements,

we compute the differences δw(·) for each day in the dataset using the Mw window, and then,

we compute a value for hw so that there are no more than M0 consecutive measurements, for

which δw(·) is greater than the selected hw.

Apparently, if a leakage fault has not been detected aer Mw days from its day of occur-

rence, the algorithm will consider the previous average night flow measurements as normal,

and may not be able to detect the leakage fault in the future. is is a major drawback in the

proposed leakage fault detection methodology, which will be demonstrated using a simula-

tion example.

5.5 Simulation Examples

In this section we present simulation results by applying the leakage fault detection so-

lution methodology on historical hydraulic data taken from a DMA in Limassol, Cyprus,

corresponding to the period of 426 days between 1/11/2006 and 31/12/2007. e hydraulic

data were collected with a five-minute sampling time ∆t = 5; a daily period is comprised of

TH = 288 samples. A subset of the historical data were considered to compute the trend and

seasonal signal estimation r̂t(k; θ̂r), by solving the least-squares optimization problem (5.6)

for finding the coefficients θ̂r of a two-term Fourier series. In specific, forKh the set of discrete

times corresponding to 241 days, estimated trend and seasonal signal is given by a Fourier se-

ries whose coefficients are estimated as r̂t(k; θ̂r) = 32.12 − 0.79 cos(ωk) + 0.06 cos(2ωk) −
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Figure 5.1: Decomposition of the flow signal for the time span between 1st March 2007 and

7th March 2007.

2.23 sin(ωk) + 0.87 sin(2ωk), where ω = 2π∆t
365·24·60 = 5.9772 × 10−5.

5.5.1 Nominal Flow Signal Decomposition Example

To illustrate the DMA inflow signal decomposition, we consider the historical hydraulic

data of one week without leakage faults, taken from a DMA in Limassol, Cyprus, between

1/3/2007 and 7/3/2007; for ∆t = 5 this period corresponds to 2016 samples. Let Kw be the

set of discrete times corresponding to that week. e original signal is depicted in Fig. 5.1a

and the estimated trend and seasonal signal for that week is depicted in Fig. 5.1b.

eweekly periodic function does not change significantly within the period we examine;

therefore, we compute the coefficient vector θ̂ of the weekly periodic approximation function

θ⊤ζ(k) by solving the following optimization problem

θ̂ = argmin
θ∈Θ

∑
i∈Kw

(
q(i)

r̂t(i;θr)
− θ⊤ζ(k)

)2
. (5.17)

e approximation signal which corresponds to a Fourier series with 100 terms is depicted in

Fig. 5.1c. Finally, we compute the uncertainty estimation, which is given by

n̂(k) =
q(k)

r̂t(k;θr)θ̂⊤ζ(k)
− 1; (5.18)

and is depicted in Fig. 5.1d. e estimated uncertainty follows a normal distribution (as veri-

fied by the Lilliefors normality test [103]) with zero mean and variance σ2n = 0.0019.
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5.5.2 Outlier Handling

Outliers in the data may affect the leakage fault detection procedure; for this reason, it is

useful to apply an on-line low-pass filter to remove thesemeasurements. At each discrete time

k, we compute the DMA inflow median qµ(k) of the last Nµ flow measurements, then we cal-

culate the absolute difference between the median qµ(k) and the measured DMA inflow q(k)

and compare it with an outlier detection threshold δ(k). e measurement q(k) is considered

to be an outlier if the absolute difference |qµ(k) − q(k)| is greater than a detection threshold

δ, such that |qµ(k) − q(k)| > δ; otherwise, it is considered as a healthy measurement. In case

q(k) is considered an outlier measurement, it is replaced by the median value qµ(k). As detec-

tion threshold δ, we can use a constant value which is selected offline using historical data, or

we can use the media absolute deviation (MAD) metric (the median of the last Nµ absolute

differences) multiplied by a constant positive value [111, 125].

5.5.3 Leakage Detection Using Night-Flow Analysis

We consider that the minimum night flow occurs between 2.. and 5.. during the

standard time period, thus ta = 24 and ta = 60 are the discrete times the night-flow period

begins. For the daylight savings time period, however, we consider that ta = 12 and ta = 48.

e set of night-flow discrete times corresponding to the l-th day, during standard time, is

given byN f (l) = {24 + 288l, 25 + 288l, ..., 60 + 288l}.
Figure 5.2a depicts the average night-flows computed using the normalized flows for the

first 242 days of the dataset. Even though the signal is normalized over the trend and sea-

sonal signal, the uncertainty and the extreme values in the signal pose difficulties in detecting

leakages by using simple observation of the time-series from a human operator. Figure 5.2b

illustrates this issue, which depicts the normalized flow with a leakage fault at day l0 = 115,

with average leakage outflow 0.5 m3

hr .

Note that the extreme value w(61) = 0.46 appears to be due to Christmas day festivities.

If a leakage fault occurred in the network at the l0-th day, it would correspond to an increase

in the average night-flow measurements; in this example, a leakage fault with outflow 0.5 m3

hr

would correspond to an average increase of 0.015 in the signal w(l) for l ≥ l0, which is rela-

tively small with respect to the magnitude of the noise.

e difference-based leakage fault detection algorithm is demonstrated; each day we com-

pare the normalized flow to the previous Mw = 7 normalized flow measurements. We con-

sider that a leakage fault is detected if the difference has been greater than a certain threshold
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Figure 5.2: Average night-flow measurements for the first 242 days in the dataset, a) without

leakage faults and b) with a leakage fault of 0.5 m3

hr .
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Figure 5.3: e leakage fault which occurs at l0 = 115 is detected at time ld = 120, when the

difference signal δw(l) is greater than the threshold hw = 0.05 for more than Md = 5 days.

for more than Md = 5 days. We use the first 100 days of recorded data to compute the de-

tection threshold; for M0 = 4 the minimum detection window, we solve an optimization

problem and compute the detection threshold as hw = 0.05. To demonstrate the leakage fault

detection using night-flows, we simulate a leakage fault starting at day l0 = 115with constant

outflow 1.5 m3

hr . e computed differences δw(·) for each day are shown in Fig. 5.3. In this

example, the leakage fault is detected at day ld = 120, and therefore the estimated leakage

fault start day is l̂0 = ld −Md = 115, which coincides with the actual start day l0.

rough simulations and for the parameters chosen, we compute that the smallest leakage

fault detectable corresponds to the outflow 1.3 m3

hr , which is a relatively large value when com-

pared to other leakages with outflow greater than 0.5 m3

hr . In addition, if the leakage detection

algorithm fails to detect the leakage fault within the specified time window, it will eventually
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Figure 5.4: Updates of the Fourier parameters; a leakage fault with average outflow 1.5 m3

hr

starts during the 115-th day, and the Fourier parameters are updated to learn the changes.

consider the flowmeasurement aer the leakage as normal, i.e. below the detection threshold,

as can be seen in Fig. 5.3 for times l ≥ 123. Some of these limitations can be addressed with

the leakage fault detection methodology demonstrated in the following paragraphs.

5.5.4 Leakage Detection using Adaptive Demand Flow Approximation

In this example we demonstrate the adaptive demand flow approximation methodology

for leakage fault detection. We consider the use of a Fourier series with Nz = 100 terms and,

to approximate the weekly periodic signal, ωs = 0.0031 for a weekly period comprised of

TS = 2016 samples. By using 4032 recorded hydraulic measurements (corresponding to the

first twoweeks of the dataset prior the fault detection algorithm start time ks), the least-squares

optimization problem (5.10) is solved to compute the initial conditions for the parameter

vector θ̂(ks).

For the update law (5.9) we consider that aF = 0.01 and AG = diag(0.1, ..., 0.1). Figure 5.4

depicts the evolution of the parameter vector estimate θ̂(k) in time, when a leakage fault with

average outflow 1.5 m3

hr occurs during the 115-th day (k0 = 33 119). e Fourier coefficients

are updated in time to approximate the changes in the consumption patterns.We consider that

the signal is normalized with respect to the trend and seasonal signal, r̂t(k; θ̂r); therefore, we

expect that for leakage faults with average outflows of {0.5, 1.0, 1.5} m3

hr , the expected change

in the average value of offset DC term θ̂0 from the Fourier coefficients will be approximately

{0.015, 0.031, 0.047} respectively. In the case of no leakage faults, the standard deviation of

θ̂0 is σθ0 = 0.031, which is comparable to the magnitude of the leakage faults.
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Figure 5.5: CUSUM metric for three leakage faults with average outflow {0.5, 1.0, 1.5} m3

hr

which occurs during the 115-th day. e dashed line corresponds to the detection threshold

hs = 40.

e CUSUM fault detection logic is applied to detect the existence of a leakage fault.

e selection of the parameter γ0 depends on the expected change in the average value, e.g.

γ0 ∈ [0.01, 0.05]. We select the parameter γ0 = 0.03 for the CUSUM metric. By consider-

ing the historical data from the real data and through simulation, we select the leakage fault

detection threshold as hs = 40. e smallest the threshold, the more sensitive the detection

algorithm is; however itmay trigger false alarms. As a special case we consider the event of fes-

tivity periods, where this thresholdmay be violated due to increased consumption;we propose

considering different detection thresholds for different time periods which may correspond

to known increased water demands.

Figure 5.5 depicts the CUSUM metric for three leakage fault scenarios with average leak-

age outflow {0.5, 1.0, 1.5} m3

hr , which occurs from the 115-th day (k0 = 33 120). Note that the

positive CUSUM signal at times around the 50-th day might be explained due to festivities.

For the leakage with 1.5 m3

hr outflow, detection occurs aer 7 days, whereas for the leakages

with 1.0 m3

hr and 0.5 m3

hr outflows, detection occurs aer 12 and 16 days respectively. For all

scenarios, the estimated leakage start time is during the 117-th day, for ϵk = 0.

In Fig. 5.6 the estimates of the average outflow of the leakage faults are depicted, as com-

puted for each time instance aer the estimated start time k̂0 (the 117-th day).We observe that

the estimation does not immediately converge to values near the actual average outflows, and

is affected by an irregular event for the period within the days 125 and 165, which appears

as increased leakage whereas it is actually increased consumption. In time, the estimations

approach the actual average outflows; in general, this can only be used as a rough estimation
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Figure 5.6: e average leakage outflow estimates for three leakage faults with average leakage

outflow of {0.5, 1.0, 1.5} m3

hr .

of the leakage magnitude.

5.6 Concluding Remarks

In this chapterwe have addressed the problemof leakage detection in aDMAwhosemodel

is not known and for which the inflow flow and pressure are sampled every few minutes. A

mathematical model of the DMA inflow and leakages is presented, which is based on several

components: a linear trend, a yearly seasonal, a weekly periodic and an uncertainty compo-

nent, along with the leakage fault signal. An optimization problem is formulated for com-

puting the trend and seasonal signal over a set of historical flow measurements. To solve the

leakage detection problem, we proposed an adaptive demand flow approximation methodol-

ogy, in which an adaptive law is used to update the parameters of a Fourier series which learns

the changing weekly periodic consumption dynamics, as well as the leakages.

e method proposed was able to detect leakages of various sizes; the time of detection,

however, could vary depending on the leakage fault’s magnitude. In addition to the proposed

methodology, we discussed the use of night-flow analysis for leakage detection. Simulation

results using the two methodologies are presented; the results indicate that the night-flow

analysis is suitable for large leakage faults; however, its ability in leakage detection is reduced

if the leakage fault has not been detected within a certain time.

e contribution of this work is the design and implementation of an automated leakage

detection algorithm, which utilizes measurements which are already available in some DMA,

within a adaptive approximation-based framework. A journal paper based on the results pre-
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sented in this chapter is in preparation [56].

100

Dem
etr

ios
 G

. E
lia

de
s



Chapter 6

Contamination Fault Isolation

In this chapter we propose a computational methodology to select a sequence of nodes

to perform expanded sampling. e goal is to evaluate the water contamination impact, and

isolate the source-area of the contamination, with as few samples as possible. We consider

that the water utility has a number of fixed quality sensors installed in the distribution net-

work, and that manual quality sampling can be conducted by a contamination response team

at any feasible location in the distribution network. Aer the triggering of a contamination

alarm by a quality sensor, and upon its verification as an actual contamination by the utility

operator, a manual sampling scheduling scheme is computed. e scheduling scheme gives

guidelines with regard to which nodes the contamination response team should sample, in

order to isolate the source-area and to evaluate its possible impact, as quickly as possible. e

proposed method is based on decision tree induction; the conditional terms of the decision

tree indicate where expanded manual sampling should be conducted, with a certain order,

aiming at evaluating the possible fault-impact and at isolating the source region. To illustrate

the solution methodology, we present results based on a simplified network and a real water

distribution system benchmark.

6.1 Background

Water security is a challenging task and has become a vital part of the drinking water dis-

tribution operation. To provide a framework for water security, the US Environmental Pro-

tection Agency (EPA) has published guidelines for water utilities describing a contamination

warning system architecture comprised of the standard operational procedures and the con-

sequence management plan. e guidelines provide information on the qualitative and quan-

titative parameters that need to be monitored, as well as on the response actions to be taken
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from the moment a contamination fault alarm has been triggered until the system has been

disinfected and returned to normal operation [170, 171]. ose actions include: a) monitor-

ing and surveillance of the system; b) event detection and determination if the contamination

fault is “Possible” (i.e. if there are no strong indications of a false alarm); c) determination if

the contamination fault is “Credible” (i.e. evaluating field results from the area where the con-

tamination fault has occurred), d) determination if the contamination fault is “Confirmed”

(i.e. evaluating laboratory results from multiple samples); e) implementing remediation and

system recovery [170].

Part of the confirmation operation plan is to develop and implement “Expanded Sam-

pling”, i.e. manual sampling at other parts of the distribution network, so as to determine the

extent of the contamination, which is useful for the response and remediation task [171]. e

EPA recommends the use of hydraulic models of the water distribution system to determine

where to sample and to evaluate the spread of the contamination. e use of hydraulic mod-

els can reduce the time required to plan expanded sampling and assist in understanding the

contaminant propagation path; in addition, operators can issue targeted restriction notices as

necessary [171].

Choosingwhere to perform expended sampling can be a challenging task, due to the large-

scale nature of the distribution network and the partially unknown hydraulic dynamics. In

practice, water utilities may choose beforehand in an ad hoc manner certain locations in the

network, where expanded sampling should be conducted in case of a contamination fault

detection, e.g. at tanks, reservoirs and pumps. Sampling at these locations, however, may not

provide adequate information regarding the possible impact due to a contamination fault,

or the location in the distribution network where the contamination has originated from. In

addition to these predetermined locations, a utility operator may select additional nodes in

the network to conduct manual sampling. To reduce the bias due to subjective decisions when

selectingmanual sampling locations, especially in large-scale networks, it is desirable to utilize

a computational method for finding an optimal sequence of nodes where manual sampling

should be conducted, taking into account the actual quality and hydraulic measurements, as

well as the physical network model of the system. Such a computational method could assist

in reducing the reaction time required to take appropriate response measures, and to make

more informed decisions, especially when there is a shortage of time and personnel.

e general problem of contamination source isolation has received some research at-

tention in the last few years. Analytical problem formulations for the contamination source

isolation problem have been presented in the framework of optimization [71, 79, 84, 94–96,
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110, 163, 173]. A graph-based method was presented in [46], for the calculation of a set of

possible node locations for a certain contamination fault.

e use of the particle backtracking algorithm [149] in isolating the location of a contam-

ination source was examined [48,49]. When a contamination is detected at a certain node by

a quality sensor, the flows are tracked backwards in time, in order to compute all the possible

input locations and injection time, whichwould in turn assist into computing an area of where

the contamination fault may have originated from. In [121] a random contamination scenario

set was considered, aiming at estimating the most probable-for-injection system nodes, the

approximated injection starting time, their duration and the injected mass rate.

Computational and artificial intelligence techniques have been investigated, as well, such

as hybrid model-trees [132] and genetic algorithms [131], which compute near-optimal so-

lutions for the contamination source location, starting time, injection duration and injected

mass rate. In general, various approaches have been considered, such as evolutionary algo-

rithms [92, 104, 105, 155, 174, 193] and probabilistic methodologies [86].

Most of the methodologies presented in previous research require the use of fixed quality

sensor measurements which would solve an optimization problem, and which would com-

pute some possible contaminant injection locations or input time signals, given some known

network structure and approximately knownhydraulic dynamics. Due to the large scale of wa-

ter distribution systems, in practice, many quality measurements are required to accurately

isolate the fault. Some practical difficulties arise, such as the fact that water utilities may have

installed only a limited number of fixed quality sensors, placed at specific locations aer hav-

ing solved the sensor-placement problem [123]. In general, the goal of the sensor-placement

problem is to optimize certain impact-risk objectives; the solution corresponding to this prob-

lem, however, may not be optimal from the fault isolation perspective, since the locations of

the installed sensors are usually such that the network coverage is maximized. erefore, it

is possible that the sensor measurements do not provide adequate information for fault iso-

lation. Moreover, large time delays may exist between contamination detection at different

nodes in the network, thus delaying the contamination source isolation procedure.

In the present work, we examine the problem from a different perspective. We consider

that the water utility has a number of fixed quality sensors installed in the distribution net-

work, aer having solved the sensor placement problem for the minimization of the impact-

risk. In addition, manual quality sampling can be conducted by a contamination response

team at any feasible location in the distribution network. Aer a contamination alarm has

been triggered by a quality sensor, and aer its verification as an actual contamination by the
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utility operator, a manual sampling scheduling scheme is computed. e scheduling scheme

gives guidelines to the utility operator with regard towhich nodes the contamination response

team should deploy, in order to isolate the source-area and to evaluate its possible impact, as

promptly as possible. As added value, this work is in accordance with the EPA guidelines,

within the scope of conducting expanded sampling during the “Confirmed” determination

stage of the contamination warning system [171]. e proposed method is based on decision

tree induction; decision trees are hierarchical data structures which can be expressed using

conditional statements, such as if-then-else rules. In this work, they are utilized to indicate

where expanded manual sampling should be conducted, with a certain order, so as to evalu-

ate the possible fault-impact and to isolate the source region.

is chapter is organized as follows: the problem formulation is described, key concepts

and definitions are introduced and the solution methodology is presented. Simulation results

are demonstrated on an illustrative and a real benchmark network to verify the proposed

algorithm.

6.2 Problem Formulation

6.2.1 Network and Contamination Modeling

e network of water distribution system can be modeled as a directed graph (V,A),

whereV = {1, 2, ...,Nm} is the set of Nm node indices which correspond to pipe junctions

and water storage tanks, andA is the set of pipe edges which connect two nodes.

Typically, hydraulic signals in a water distribution system are measured in discrete time;

in the following, we set k as the discrete time, and∆t the sampling time step. At discrete time

k, di(k) is the consumer demand outflow at the i-th node, and b j(k) is the water velocity in

the j-th pipe. We consider that certain network parameters are available, such as pipe lengths,

diameters and roughness coefficients, as well as node elevations, average daily base demands

and, where available, consumer types.

An algorithm which solves the hydraulic equations of the distribution network may be

used to compute the water velocity vector b(k), considering the demands d(k), the available

network parameters, as well as the hydraulic control laws and the initial water levels in tanks.

is algorithmmay correspond to the hydraulic solver utilized in the EPANET soware [142].

We should note that the EPANET solver in some cases can only compute a solution of the hy-

draulic dynamics by using a fraction of the time step∆t defined; this additional information,
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when available, can be taken into consideration in the solution methodology.

We define Vs ⊂ V to be the subset of node indices where fixed online quality sensors

have been installed, aer having solved the sensor placement problem [123], and letVm ⊆ V
be the node indices subset where manual sampling can be performed. In general, some nodes

may not be available formanual sampling, whereas some nodeswith fixed sensorsmay require

additional sampling.

We assume that contaminants can be injected at certain nodes, and propagate along with

the water flows. Let xi(k) be the average contaminant concentration within the i-th node, at

discrete time k, where i ∈ V. In addition, we define the signal ϕi(k − k0) which describes the

increase in the contaminant concentration, when a contaminant is injected at the i-th node,

starting from discrete time k0. It is possible that multiple contaminations may be initiated,

affecting multiple nodes; in this work we consider single-source contaminations. e time

profile of the contaminant injection fault functionϕi(k−k0), and in specific, the contaminant

injection location, its start time, as well as the structure of signal, are considered, in general,

unknown.

A contamination may occur at any node, at any time, with any rate and time profile. Let

S∗ be the set of all contamination fault functions whichmay affect a certain water distribution

system, such that

S∗ =
{
ϕi(k − j) | (i, j) ∈ J ∗, ϕ ∈ F ∗

}
, (6.1)

where (i, j) corresponds to the i-th node fromV and the j-th discrete time at which a con-

tamination fault occurs, andJ ∗ is the set of all pairs corresponding to node indices and start

times. In addition, F ∗ is the set of all contaminant injection signal structures (such as unit

step functions or rectangular functions).

For example, for (i, k0) ∈ J ∗ the pair corresponding to the i-th node and to the injection

start time k0 , and forϕ(·) ∈ F ∗ a rectangular pulse structure withmagnitude aϕ and duration

τd, the corresponding contamination fault function is given by ϕi(k − k0) = aϕ for k0 ≤ k ≤
k0 + τd, and ϕi(k − k0) = 0 otherwise.

6.2.2 Contamination Impact Modeling

It is equally important to consider the impact dynamics, which characterize the amount

of “damage” caused by a contamination fault function s ∈ S∗ affecting a demand node at each

time step, measured with a certain impact metric (e.g. number of people affected) [61]. Let

ξi(k; s) be a state describing the impact damage caused on the i-th node, at discrete time k due
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to contamination fault function s, assuming zero initial conditions. e state-space equations

describing these dynamics can be formulated, for i ∈ V as

ξi(k + 1; s) = ξi(k; s) + fξ(xi(k), di(k)) (6.2)

ψ(k; s) = fψ(ξ(k; s)), (6.3)

where ξ(k; s) is the nodal impact vector for s ∈ S∗, fξ(·) is the impact function which depends

on the nodal water consumption di(k) and contaminant concentration state xi(k) at the i-th

node, at discrete time k. In addition,ψ(k; s) is a measure of the overall impact at discrete time

k for the contamination fault function s ∈ S∗, and fψ(·) is the overall-impact function which

depends on the nodal impact vector. For example, ξi(k; s) may correspond to the number of

people affected due to water consumption at the i-th node, andψ(k; s) to the total population

affected.

6.2.3 Node Sampling Decision

When a contamination is detected, the general objective is to identify the severity of its

impact, as well as to isolate some area in the network where the contamination may have

originated from. We formulate the problem of iteratively selecting nodes which correspond

to the sampling node set Vm to conduct manual sampling, and to examine whether or not

contaminant traces exist at those nodes. In general, more than one response team may be

available to be deployed for manual sampling at different locations. In this work we formulate

the problem considering the availability of one response team; however, the formulation can

be extended to the multiple response team case.

At the j-th manual sampling iteration, the problem is formulated as

µ j = fµ(µ j−1, ν j−1;S j−1) (6.4)

where µ j ∈ Vm is a node where manual sampling should be conducted, and ν j ∈ {0, 1}
is a contamination flag, such that ν j = 1 if contaminant traces have been detected at node

µ j, ν j = 0 otherwise. Function fµ(·) computes the node where manual sampling should be

conducted in the next manual sampling iteration, and S j ⊂ S∗, for j ≥ 0, is the subset of the

contamination fault functions which could have caused the contamination fault, according to

the sensor measurements and manual sampling results. When a contaminant is first detected

at the i-th node, for j = 0, µ0 = i, ν0 = 1; methods to compute the set S0 are discussed in

the solution methodology section.
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6.3 Solution Methodology

In the next paragraphs we present an algorithm for fµ(·) in (6.4), for the calculation of

nodes at which to performmanual sampling, according to a set of contamination faults which

could have caused the detected contamination fault, and a logic variable whether or not con-

taminant traces have been detected at certain nodes. e solution methodology presented in

this work is based on Decision Trees, a decision support tool, typically used in classification

problems, by using sequential measurements of some variables to assign a class on these data.

e classification problem in this work can be expressed as the problem of determining the

risk-level of a contamination event detected at a certain node, e.g. whether it belongs to a high-

risk class (with severe consequences) or to a low-risk class (with minor or no consequences).

In our work, the selection of the best location for manual sampling is performed with

respect to two objectives: a) the number of contamination fault functions which could have

caused the detected contamination fault, and b) the calculated contamination impact. ese

objectives may be conflicting, and it is possible that no single solution is optimal for both ob-

jectives; instead, a Pareto front of solutions may be computed, and from that, a single solution

is selected.

6.3.1 Possible Contamination Fault Functions

It is not necessary to compute the complete setS∗ of all possible contamination fault func-

tions, as it is extremely large; instead, we may compute a set of possible contamination fault

functions, S0 ⊂ S∗, which is given by

S0 =
{
ϕi(k − j) | (i, j) ∈ J0, ϕ ∈ F

}
, (6.5)

where F ⊂ F ∗ is a finite set of fault structures determined by the utility operators, andJ0 ⊂
J ∗ is a finite set of pairs of node indices and start time where and when contamination could

occur. For instance, rectangular pulse functions of various durations and unit-step functions

may be considered as fault structures in the setF ; the setJ0 maybe computed using a suitable

algorithm, discussed in the following paragraphs.

We should note that in the methodology proposed in this work, we consider that there

are algorithms available for computing a set of possible network nodes and times where the

contamination may have occurred. In this work, we use such results to construct and solve

the manual sampling scheduling problem.

One example of an algorithm which computes the possible contaminant injection nodes
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and times, is the particle backtracking algorithm [149]. In summary, for some concentration

measured at a certain sensor node and time, the algorithm computes the reverse propagation

path of the contaminant, so as to identify the network nodes where the contaminant had

previously appeared, and with what concentration. is method was implemented by [49] for

contamination detection. For the solution methodology discussed in this work, a modified

particle backtracking algorithm can be used to compute the previous nodes and arrival times

at them.

A crucial assumption taken by the particle backtracking algorithm is that the flows in all

pipes, as well as tank water levels of the past few days, are known. In reality, this is difficult to

guarantee, since only some flows and pressures are measured on-line; to compute the flows

which are not measured, a calibrated network model is required, as well as estimations of the

demand flows at each node in the network. An example of how to calibrate a networkmodel of

a real distribution network and how to model its quality dynamics, is presented in [107,108].

Calibrating the hydraulic dynamics of a networkmodel requires field data gathering to collect

hydraulic measurements, such as pressures at various locations in the network. In addition,

field data from tracer studies are used to calibrate the quality dynamics. Furthermore, histor-

ical data of total water demands are analyzed to determine long-term trends throughout the

years, seasonal effects within a year, as well as weekly and daily changes; in practice, such de-

mands may change significantly in time [107, 108]. For the solution methodology presented

in this work, we assume that the water utility has constructed a calibrated hydraulic model

of the water distribution network based on some recent historical and field data. As this cali-

brated hydraulic model may change in time, the model should be updated in time to capture

the new system dynamics.

A lookup algorithm can also be used in the computing of the possible contaminant injec-

tion nodes and time; however this method can only be applied in the case when it is known

that the hydraulic dynamics in the distribution system,which correspond to a certain previous

time duration, are similar to the current hydraulic dynamics. For instance, consider the case

where we can describe the water demands at each node by using a known periodic signal, with

a period of 24 hours. First, we construct the finite setS ⊂ S∗ of contamination fault functions

which start within one day (e.g. midnight to midnight, every 5 minutes), and at every node

possible; we then use a simulation soware to compute, for each contamination fault func-

tion, the time when each contamination fault arrives at every node in the network. As a result,

we can construct the contamination fault arrival matrix, of size |S|×|V|, where |·| is the cardi-

nality of a set, whose (i, j)-th element is the time within the day (between 0 and 24) when the
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contaminant arrives at the j-th node, due to the i-th contamination fault function. erefore,

when a contamination fault is detected, a lookup algorithm is activated, which searches the

contamination fault arrival matrix, in order to find those rows (and in extend those contam-

ination fault functions in S) which correspond to the nodes and times where detection has

occurred, while taking into account some uncertainty, so as to construct S0. e drawback

of this method is that the database has to be recalculated when the dynamics of the system

change, and in addition, it may require large computational power in computing the dataset.

6.3.2 Contamination Impact and Propagation Path

In the following paragraphs, we introduce an algorithm which selects a node to conduct

manual sampling fµ :Vm×{0, 1} 7→ Vm, as used in (6.4).e algorithm initiates when a con-

tamination fault alarm is activated and a quality fault is confirmed at the i-th node. Expanded

sampling nodes are computed iteratively through the function µ j = fµ(µ j−1, ν j−1;S j−1), for

j ≥ 1 the manual sampling iteration and µ j ∈ Vm the sampled node index; ν j ∈ {0, 1} is the

binary contamination flag assigned for the sampled node µ j−1 and S j the set of feasible con-

tamination fault function for the j-th manual sampling iteration, such thatS j ⊆ S0 ⊂ S∗. As

initial conditions, we consider µ0 = i, where i is the confirmed as contaminated node index,

for which ν0 = 1; S0 is computed using a suitable algorithm, as discussed in the previous

section.

In the next paragraphs we introduce three parameters which are computed at the j-th

sampling iteration and are used in the decision tree algorithm: the normalized impact metric

vector W j, the contamination impact label vector L j and the contaminant propagation time

matrix M j.

e damage caused by a contamination fault within a certain time period can bemeasured

using various impact metrics, such as the number of people affected or volume of contami-

nated water consumed. From a set of possible contamination fault functions we can compute

the maximum damage caused by the worst-case contamination fault; we can use this to nor-

malize the impact metrics. In specific, forS j the set of possible contamination fault functions

for the j-th sampling iteration, we define the normalized impact metric vector W j ∈ [0, 1]|S j|

which is computed using a suitable function W j = fw(S j), where fw(·) is a function which

calculates the impact increase between two time instances.

To assist the decision-making process, we may assign a label to each contamination fault

functionwhich characterizes the fault’s impact to describe the severity of a certain contamina-
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tion fault based on the normalized impact damage vector. Labels may be words with semantic

meaning which indicates the severity of a contamination fault. LetΛ be the set of the risk-level

labels considered; a typical example used in the literature is

Λ = {‘Extreme’, ‘High’, ‘Moderate’, ‘Low’, ‘Minimal’}.

For each element in the normalized impactmetric vector W j, we compute the correspond-

ing impact label; we define fλ : [0, 1]|S
j| 7→ Λ|S

j|, as the function which maps the normal-

ized impact damage vector W j, for the j-th sampling iteration, to the impact label vector

L j = fλ(W j). Function fλ(·) and the impact label set Λ can be specified by the utility opera-

tors.

By computing the hydraulic and quality dynamics of the network model under the in-

fluence of each contamination fault function in S j, e.g. by using EPANET, we construct the

contaminant propagation binary matrix M j of size |S j| × |Vm|. In this matrix, M j
(i,l) = 1 if

the arrival time of the contaminant at the l-th node in Vm, due to the i-th contamination

fault in S j, is smaller than a certain time (e.g. the discrete time of most recent hydraulic data

measurements); otherwise, M(i,l) = 0.

6.3.3 Decision Tree Algorithm

A decision tree has a hierarchical structure, comprised of elements which correspond to

some conditional statement, such as, “check the i-th node for contaminant traces”; depending

on the existence, or not, of contaminant traces, the algorithm will continue to other condi-

tional statements, or return an impact label.

Typically in decision trees, the conditional statement is computed at each iteration using

a “splitting algorithm” to select the variable (in this case one network node) which will give

the most information possible, with respect to the actual label [4]. Various metrics have been

utilized in decision trees to measure information; for example, a metric commonly used in

decision trees is the “information gain”, which describes the change in the information entropy

when examining a certain variable.

Below, we demonstrate how to compute the information gain for the impact label set L j

computed in the j-th sampling iteration. It is useful to first define the information entropy

metric, which can be used to measure the homogeneity of a set; we let fe(·) be the function

which computes the information entropy of a set of impact labels. For Λ the set of risk-level

labels considered and L j a set of impact labels computed for each contamination fault function
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in the set S j for the j-th sampling iteration, the entropy of the set L j is given by

fe(L j) = −
|Λ|∑
i=1

|c j
i |
|L j| log2

|c j
i |
|L j| (6.6)

where |c
j
i |
|L j| is the probability mass or the relative frequency of the i-th label (where |c j

i | is the

number of times the i-th label in Λ appears in the set L j).

For example, forΛ = {‘High’, ‘Low’} and L0 = {‘High’, ‘Low’, ‘High’}, |c01| = 2 and |c02| = 1;

the probability mass of the label ‘High’ is |c
0
1 |
|L0| =

2
3
and of the label ‘Low’ is |c

0
2|
|L0| =

1
3
; therefore,

the information entropy of L0 is fe(L0) = −2
3
log2

2
3
− 1

3
log2

1
3
= 0.9183.

Let Z ∈ R|Vm| be the vector of the information gain; for the i-th node in Vm, the i-th

element of the information gain vector Z j
i for the j-th sampling iteration is computed by

Z j
i = fe(L j) −

∑
l∈{0,1}

|zl
i|
|L j| fe(zl

i), (6.7)

where zl
i is the set of impact labels corresponding to those contamination fault functions in

the set S j, for which contaminant traces have arrived (l = 1) or not (l = 0) at the i-th node.

To find this, we utilize the M j binary matrix described in the previous section.

Although the information gain metric alone is useful in many classification problems, to

address the security aspects of the problem, we propose to give greater weight on high-impact

contamination faults, i.e. those which may cause significant damage on the consumers, rather

than low-impact contamination faults. In this work we propose to select a node to conduct

manual sampling such that if it is contaminated, lower-impact faults are to be excluded, rather

than to exclude higher-impact faults if no contamination is detected at those locations.

For this reason, at the j-th manual sampling iteration we compute the maximum impact

metric vector O j of size |Vm|. Its i-th element, O j
i , is equal to the maximum value of all the

impact metrics computed for those contamination fault functions for which the contaminant

has arrived at the i node before a certain time. To compute this we find those rows in the

matrix M j for which the element in the i-th column is equal to one.

us, at the j-th manual sampling iteration, the splitting algorithm which is responsible

for constructing the conditional statement of the decision tree, is based on the information

gain vector Z j and the maximum impact vector O j.

Let fp : R|Vm| × R|Vm| 7→ Vm be the algorithm which computes the node which will

be used in the conditional statement of the decision tree at the j-th sampling iteration, such

that µ j = fp(Z j,O j). At each sampling iteration, a node from the setVm is selected by the
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algorithm, which corresponds to the maximum value in both Z j and O j. It sometimes oc-

curs that a single optimal solution for the two objective metrics cannot be found; therefore

a multi-objective algorithm is required to compute the Pareto front, i.e. the subset of node

attributes which are non-dominant to each other. From the set of Pareto solutions, a single

solution is selected using some heuristic (e.g. the smallest Euclidean distance from elements

with maximum values in Z j and O j).

Aer the conditional statement of the j-thmanual sampling iterationhas been constructed,

the response team is instructed to conductmanual quality sampling at the location selected by

the algorithm. If contaminant traces are detected at that location, then we let ν j = 1, whereas

if no contaminant traces are detected, ν j = 0.

e decision tree algorithm terminates automatically if one of the following occurs: a) the

calculated entropy is zero, fe(L j) = 0, i.e. all the elements in L j have the same label value; b)

the maximum element in the information gain is zero maxi Z j
i = 0, i.e. the solution cannot

be improved any further by sampling at some node in the network.

When the decision tree is terminated, the algorithm returns an evaluation of the water

contamination impact with the worst-case risk-label within the set L j. In addition, the algo-

rithm isolates the possible source areas, by constructing a set of unique node indices which

corresponds to the injection locations of each fault contamination function set S j.

6.4 Simulations

In this section, we present two simulation examples to illustrate the formulation and so-

lution methodology for the water contamination impact evaluation and the source-area iso-

lation problem. e first example is a simple network, which is used to demonstrate how to

construct a decision tree aer a fault has been detected, while the second example is a real-

world drinking water distribution network benchmark.

6.4.1 Illustrative Example

In this example, we demonstrate the solution methodology on a water distribution net-

work with four constant demand nodes, as seen in Fig. 6.1. e directed graph is (V,A),

where the node set is V = {1, 2, 3, 4} and the edge set is A = {(1, 2), (1, 3), (3, 4), (2, 4)}.
Both the consumer outflow demand d(k) at each node and velocity b(k) at each pipe are con-
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Figure 6.1: A trivial water distribution network with four demand nodes, supplied by a tank.

A quality sensor is placed at node ‘4’.

stant at each discrete time, such that

d(k) = [5, 10, 20, 20]⊤
m3

hr

and

b(k) = [0.278, 0.278, 0.278, 0.278]⊤
m
s

respectively; in addition, the pipe lengths are [1, 4, 3, 1]⊤ km. All other parameters in the net-

work are considered known. One quality sensor is installed atVs = {4}, whileVm = {1, 2, 3}
is the subset of nodes which can be used for manual sampling. We consider a time step of one

hour, ∆t = 1 hr; the length of one hydraulic period is 24 hours.

Consider the case where the contaminant concentration at the 4-th node, x4(k), is greater

than a detection concentration threshold for k ≥ 10; thus a contamination fault alert is trig-

gered at k = 10 at the monitored node. is in turn activates the source-area isolation and

impact evaluation algorithm.

In the following paragraphswedemonstrate how to select the first node to performmanual

sampling. To compute the contamination fault functions set S0 ⊂ S, we utilize a simple

backtracking algorithm which follows the inverse in time contaminant propagation path. As

an example, consider the pipe connecting nodes 3 and 4 of length 3 km; since the velocity at

that pipe is b3(k) = 0.278 m
s (or 1 km

hr ), then the propagation time delay within that pipe is

3 hours. erefore, one contamination fault corresponds to a contaminant injection at node

3, at discrete time k = 7. By repeating the reverse propagation, we compute the first set of

contamination fault functions, as

S0 =
{
ϕ1(k − 8), ϕ2(k − 9), ϕ3(k − 7), ϕ4(k − 10)

}
.

For a certain contamination fault function s ∈ S0, we consider that the impact damage

ξi(k; s) at the node i is the volume of contaminated water consumed, and that the overall

impact ψ(k; s) is the volume of contaminated water consumed. To compute the normalized
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impact damage W1, wemeasure the impact increase from the start of the contamination fault,

up until one hour aer the detection time, at k = 11, the time of the most recent hydraulic

sample available. Consider the first contamination fault functionϕ1(k−8), which corresponds

to a continuous contaminant injection at node 1which initiates at discrete time k = 8; within

3 hours (until k = 11) the contaminant has propagated at nodes 2 and 4, but not yet at node

3, which is affected at a later time, since the propagation time delay between nodes 1 and 3 is

4 hours (thus reaching node 3 at k = 12).

For the first contamination fault function, where S0 = {s1, ..., s4} and s1 = ϕ1(k− 8), the
normalized impact damage is calculated using function fw(·) as follows: compute the overall

impact, i.e. the volume of contaminated water consumed in the network up until time k = 11,

such thatψ(11; s1) = d1(k)·(11−8)+d2(k)·(11−9)+d4(k)·(11−10) = 5·3+10·2+20·1 = 55;

compute the maximum contaminated water volume from all contamination fault functions,

in this case W1
3 = 100; calculate the normalized impact damage for s1, W1

1 = 55
100

= 0.55. e

normalized impact damage vector is W1 = [0.55, 0.40, 1.00, 0.20]⊤.

We further define the set of three impact risk-level labels asΛ = {‘High’,‘Moderate’,‘Low’};
for the i-th contamination fault function, we consider that if 0 ≤ W j

i < 0.33, a ‘Low’ impact

label is assigned; for 0.33 ≤ W j
i < 0.66 and 0.66 ≤ W j

i ≤ 1, a ‘Moderate’ and a ‘High’ impact

label are assigned respectively, for j ≥ 1. In the first iteration, the algorithm fλ(·) maps W1

to the impact label set L1, based on the above specification; therefore, the impact label set is

L1 = {‘Moderate’, ‘Moderate’, ‘High’, ‘Low’}.

e fault propagation binary matrix M1 of size 4× 3 is computed. To illustrate on how to

construct this matrix, consider the first contamination fault function s1 ∈ S0, s1 = ϕ1(k−8);
the contaminant propagates in the network and appears for the first time at each node in the

manual sampling node setVm as follows: node 1 at time k = 8, node 2 at time k = 9, node 3

at time k = 12. As in the previous paragraphs, we are interested in examining contamination

faults at k = 11. e algorithm fm(·) computes the elements of the matrix M1 given the

set of possible contamination fault functions; for the first contamination fault function s1,

M1
(1,1)

= 1,M1
(1,2)

= 1 and M1
(1,3)

= 0. Finally, the contamination fault propagation binary

matrix is given by

M1 =



1 1 0

0 1 0

0 0 1

0 0 0


(6.8)
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Node 2 High

ModerateLow

YesNo
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Figure 6.2: e decision tree for the impact evaluation of a contamination detected at node 4.

e entropy of L1 is computed as fe(L1) = 1.50.e information gain for each node inVm

is Z1 = [0.311, 1.00, 0.811]⊤ and themaximumworst-case impact is O1 = [0.55, 0.55, 1.00]⊤.

e i-th element in each vectorZ1 andO1 corresponds to the i-th nodewhere sampling should

be conducted; in this case, nodes 2 and 3 have solutions on the Pareto front, (1.00, 0.55) for

node 2 and (0.811, 1.00) for node 3. A decision can be made by selecting the Pareto solution

with the smallest Euclidean distance from the maximum value of each vector, i.e. from (1, 1);

node 3 is therefore selected as the node to examine for contamination, i.e. µ1 = 3.

For illustrative purposes, the algorithm for computing the next sampling node is solved

for all cases, i.e. in the existence or absence of a contamination fault. e complete decision

tree is constructed for all possible cases.

In Fig. 6.2 the complete decision tree for this example is depicted. In summary, starting

at time k = 11, an inspection team should check for contaminant traces at node 3; if there

is indication of water contamination, then the fault impact is labeled as ‘High’ and the con-

tamination source is at node 3. If there is no indication of water contamination, the fault’s

worst-case impact is labeled as ‘Moderate’, and possible contamination sources are nodes 1,

2 and 4. To further evaluate the water contamination impact and isolate the contamination

source more efficiently, node 2 is examined next. If there is indication of water contamination

at node 2, then the fault impact is labeled as ‘Moderate’ and possible contamination sources

are nodes 1 or 2. If there is no indication of water contamination at 2, then the fault impact is

labeled as ‘Low’ and the contamination source is at node 4.
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Figure 6.3: e real water distribution network benchmark. e indices correspond to the

locations of online quality sensors.

6.4.2 Real Water Distribution Network Benchmark

In this example, we demonstrate the solution methodology on a real water distribution

network benchmark. e task is to examine the performance of the proposed methodology

in computing an expanded sampling scheme for the impact evaluation of a certain contami-

nation fault which has appeared in the system.

Figure 6.3 depicts one of the benchmark networks in the “Battle of the Water Sensor Net-

works” design competition [123]. is network is composed of 178 pipes connected to 129

nodes (126 junctions, two tanks and one reservoir). All the network parameters are consider to

be known. Each junction node is assigned with a daily average consumption volume as well as

a discrete signal describing the rate of water consumption within 48 hours, with a 30-minute

time step. ese are assumed to describe the normal operation. e hydraulic dynamics are

computed using the EPANET solver [142]; a daily period initiates at 8 .. and terminates in

24 hours. We assume that the contamination substance does not react with other substances

flowing in the water distribution network. Five nodes in the network are monitored using

fixed on-line quality sensors, and are indicated in Fig. 6.3 asVs = {‘17’, ‘31’, ‘45’, ‘83’, ‘122’};
this is an optimal solution for the multiple objectives described in [90, 123]. We further con-

sider that the water flows are approximately periodic and known, the time is discretized with

∆t = 5 min, while the daily period is 288.

A lookup algorithm is utilized to construct the set S, which is comprised of 28 076 con-

tamination fault functions, which initiate at each node and at each discrete time in one day.

A constant contaminant injection rate is considered for each fault function.

We simulate each contamination fault in S using a calibrated soware model, and calcu-

late the time the contaminant first arrives at a sensor node inVs, where it is detected. Figure
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Figure 6.4: Detection times for contamination fault functions.

6.4 depicts the frequency of contamination fault detection, with respect to the time. For the

system examined, most of the contamination fault functions are detected at sensor nodes be-

tween 6 .. and 10 .., whereas between midnight and 4 .. the detection frequency is

at the lowest. A large number of faults are detected at the end of the first day and at the begin-

ning of the second day. An important characteristic of the system is that some contamination

faults may be detected a few days aer their occurrence; in fact, some contamination faults

are first detected at the sensor nodes in the fourth day of propagation within the distribution

network.

Let Λ = {‘High’,‘Moderate’,‘Low’} be the set of three impact risk-level labels; for the i-th

contamination fault function, we consider that if 0 ≤ W j
i < 0.33, a ‘Low’ impact label is

assigned; for 0.33 ≤W j
i < 0.66 and 0.66 ≤W j

i ≤ 1, a ‘Moderate’ and a ‘High’ impact label are

assigned respectively, for the j-th manual sampling iteration. As impact metric we consider

the volume of contaminant mass consumed. From the set S, 65% of the contamination faults

have ‘Low’ impact, 21.4% have ‘Moderate’ impact, while 13.6% have ‘High’ impact.

To evaluate the effectiveness of the proposed solution methodology, we conduct an exper-

iment in which we simulate 10 000 contamination fault functions, randomly selected from the

contamination fault function set S. Each contamination fault function is simulated, and the

proposed decision tree algorithm is applied, in order to evaluate the impact damage and iso-

late the contamination source area.

Confusion matrix is a visualization tool which illustrates how well the actual risk-level

labels of each contamination fault were classified; in this case, it summarizes the frequencies

of misclassifications across each label. For example, in Table 6.1, when the actual contamina-

tion fault impact was ‘High’, all 1372 faults were correctly classified as ‘High’; when the actual

contamination fault impact was ‘Moderate’, 2117 faults were correctly classified as ‘Moderate’,
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Table 6.1: Confusion Matrix for 10 000 Contamination Fault Functions

High Moderate Low Classification

1372 36 154 as High

0 2117 275 as Moderate

0 0 6046 as Low

and 36 of them as ‘High’. Finally, when the actual contamination fault impact was ‘Low’, 6046

faults were correctly classified, while 429 were classified with higher impacts. Overall, from

all the simulations, the impact labels were correctly evaluated for 95.35% of all the contam-

ination fault functions considered, 1.90% contamination faults were misclassified as ‘High’

impact faults, and 2.75% as ‘Moderate’ impact faults.

Even though the percentage of misclassificationmay appear significant, for some contam-

ination fault it may not be possible to improve the classification of the risk-label by sampling

in a different location in the network. In addition, it is important to note that the misclas-

sifications never underestimate the contamination fault, and will always assign the highest

impact-label, when there is no other information available, which is important with respect

to the security perspective. In accordance to our solution methodology, it is preferable to

misclassify a lower-impact fault as a higher-impact fault, instead of the opposite.

Detailed accuracy metrics for each label are presented in Table 6.2. We define the metrics

used: a)eTrue Positive Rate for the i-th label is the number of contamination fault functions

which have been correctly classified with the i-th label, over the number of all contamination

fault functions which have been classified with the i-th label; b) e False Positive Rate for

the i-th label, is the number of contamination faults misclassified with the i-th label, over the

number of all contamination fault functions which have not been classified with the i-th label;

c)e Precisionmetric for the i-th label is the number of contamination fault functions which

have been correctly classified with the i-th label, over the number of all contamination fault

functions which have been classified in that label, correctly or not; d) the F-measuremetric for

the i-th label is a statistical measure of the harmonic mean of Precision and the True Positive

Rate for the i-th label, which describes the accuracy of the classifier, taking values from 0 to 1

(with 1 being the best value).

In the results presented in Table 6.2, True Positive Rate of the ‘High’ label has the max-

imum, equal to one. No contamination faults were misclassified with the ‘Low’ label, which

has the minimum False Positive Rate, equal to zero; it also has the highest Precision among

118

Dem
etr

ios
 G

. E
lia

de
s



Table 6.2: Detailed Accuracy by Impact Label

True Positive Rate False Positive Rate Precision F-Measure Label

1.000 0.022 0.878 0.935 High

0.983 0.035 0.885 0.932 Moderate

0.934 0.000 1.000 0.966 Low

all labels. For the network examined, most of the misclassifications were towards ‘Moderate’

and ‘High’ labels. For all labels, the F-measure shows that the classification is better for the

‘Low’ label rather than the ‘Moderate’ and ‘High’ labels; nevertheless, all have relatively high

classification accuracies.

e statistical analysis has shown that the proposed methodology is suitable for the evalu-

ation of the impact risk-level of contamination faults; however, we have not yet examined the

difficulty in achieving so, with respect to the number of manual samplings required. Analy-

sis of the results has shown that on average, 1.84 sampling iterations were necessary for the

evaluation of the impact of a fault using decision trees. e cumulative distribution of the

number of manual samplings with respect to the number of contamination fault functions

evaluated is shown in Fig. 6.5; for 80% of the contamination fault functions considered, no

more than two manual samplings were necessary in evaluating the impact, and for 90%, no

more than four manual samplings. We should note that in practice manual sampling can stop

at any time, provided that the accuracy of the impact evaluation and source-area isolation is

considered adequate by the utility operator.

Source-area isolation is the secondary objective of the proposed methodology. When the

algorithm terminates, it returns a set of contamination fault functions to the utility operator

which confirm the observed quality measurements. From that set, by using a simple lookup

algorithm we can construct a set of unique node locations, corresponding to the nodes where

the contamination could have started. We expect that there may be a large number of nodes

within a large-scale water distribution network, where the contamination fault could have

occurred. For this reason, the nodes in this set may be segmented into groups, depending

on the network connectivity and geographical location of each node; this information can be

used by the utility operator to isolate the possible contamination source to one or more areas

in the distribution network.

Figure 6.6 depicts the histograms of the number of possible source nodes for each contam-

ination fault function, before and aer the expanded sampling methodology is applied. For
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Figure 6.5: Cumulative function of the number of manual samplings required to evaluate the

impact for each contamination fault function.
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Figure 6.6: Histograms of the number of source nodes possible for all contamination fault

functions, before and aer expanded sampling.

this example, the average number of possible source nodes is reduced almost to half, from

29 source nodes to 15, before and aer the expanded sampling respectively. In specific, we

observe that in the first histogram, more than 50% of the contamination fault functions have

more than 30 source node candidates (out of 129). By applying the proposed methodology,

the histogram distribution is skewed towards zero, indicating that the number of possible

source for a large number of contamination fault functions is reduced dramatically.

6.5 Concluding Remarks

In this chapter we have proposed a computational approach for choosing a sequence of

nodes in the distribution network to perform expanded sampling, so that the water contam-
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ination impact is evaluated and the source-area is isolated, with as few quality samples taken

as possible.

Significant attention has been given to water security in the last few years. To provide

a framework for water security, the US Environmental Protection Agency (EPA) has pub-

lished guidelines for water utilities describing a contamination warning system architecture

comprised of the standard operational procedures and the consequence management plan. As

part of the consequence management plan, “Expanded Sampling” is recommended during

the “Confirmed” determination stage, by conductingmanual quality sampling at various loca-

tions in the water distribution network, aiming at evaluating the spread of the contamination,

using a hydraulic model of the system. Selecting where to conduct manual sampling within a

water distribution system is a challenging task, while the use of computational methodologies

may reduce the reaction time and take more informed decisions.

e proposed method is based on constructing a decision tree using multiple objectives.

To illustrate the solution methodology, we presented results based on a simplified and a real

water distribution system benchmark. Future work will examine extending the problem for-

mulation for multiple response teams, and address the computational complexity difficulties

which may arise. In addition, future work will investigate how the demand and model uncer-

tainty affect the impact evaluation and source-area isolation problem.

e contributions of this work is the mathematical formulation, the design and the imple-

mentation of an expanded manual sampling scheduling algorithm, which can serve as a tool

for the decision maker within the scope of a contamination warning system; as added benefit,

the proposed algorithm is in accordance to the guidelines specified by the EPA as part of the

consequence management plan when a contamination is detected in a water distribution net-

work. A journal paper on the results presented in this chapter is in a peer-review stage [57],

and part of the results have been accepted to appear in a peer-reviewed conference [65].
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Chapter 7

Conclusions

Fault tolerance and security issues in drinking water distribution networks are increas-

ingly receiving more attention in the context of monitoring and control of critical infrastruc-

ture systems. In specific, the risk of hydraulic and quality faults in water distribution systems

which may cause water losses or water contamination, with the danger of deteriorating the

consumers’ health, constituted the motivation of this research.

From a system theoretic point of view, monitoring and control of water distribution net-

works present important new challenges due to their large-scale interconnected dynamics,

their structural uncertainties, the complex propagation and reaction dynamics, as well as the

hydraulics uncertainties. Analytical results and algorithmic tools developed in the fault di-

agnosis research community could be employed, extending the mathematical formulation

proposed, and especially on the issues of fault detection, isolation, identification and accom-

modation.

In this thesis we have addressed certain key issues on fault diagnosis and security in drink-

ing water distribution networks, related to water systemsmodeling, quality faults monitoring,

quality regulation, hydraulic faults detection and contamination faults isolation. In specific,

we presented a formulation of a system-theoretic framework suitable for fault diagnosis and

security monitoring in water distribution systems.

7.1 Relevant Approaches and Contribution

Regarding to water systems modeling, previous research has demonstrated how to con-

structmathematicalmodels of hydraulic and quality dynamics, in pressurizedwater networks,

as well as models for measuring the impact due to a contamination. In most of the previ-

ous research, the underlying dynamics are assumed to be described with soware model (e.g.
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through EPANET), and as a result, therewas not an analyticalmathematical frameworkwhich

coupled the advection, reaction and impact dynamics. In the present work, a formulation of

themonitoring and control problem of water distribution networks was presented, in a frame-

work suitable for sensor placement and fault diagnosis.

Regarding to the quality fault monitoring problem, a significant part of previous research

related with solution methodologies and algorithms to compute the sensor placement lo-

cations in a water distribution network. For example, the Battle of the Water Sensor Net-

works [123], which instigated research in quality monitoring through sensor placement, was

an algorithmic competition where researchers developed algorithms for computing Pareto

optimal solutions. In general, a few analytical problem formulations have been presented in

the literature, which are related with a specific solution methodology. With respect to cur-

rently available soware, it is important to mention thereat Ensemble Vulnerability Assess-

ment and Sensor Placement Optimization Tool (TEVA-SPOT), which has been developed by

the U. S. EPA, Sandia National Laboratories, Argonne National Laboratory, and the Univer-

sity of Cincinnati [13]. TEVA-SPOT uses as a mathematical model the EPANET soware,

and its hydraulic and quality solver are used to simulate various contamination faults. e

set of contamination fault scenarios is defined by the user, and aerwards, the health im-

pact is computed based on a set of metrics and the contaminant type. e sensor-placement

problem is formulated as a mathematical program of certain objective metrics (e.g. cost, pop-

ulation killed) with respect to certain objective functions (e.g. mean, worst), certain response

times and with respect to certain constraints. Based on the developed framework, the sensor

placement problem was examined, to find suitable locations in a water distribution network

where on-line quality sensors ought to be installed, in order to minimize the risk of a severe

damage on the population, in the case that a contaminant enters the water distribution net-

work. e methodology for sensor placement proposed in this thesis, may be considered as a

generalized and analytical formulation of the TEVA-SPOTmethodology. Furthermore, in the

present work, the manual quality sampling scheduling problem was examined, to find where

and when to take water samples for quality monitoring.

Regarding to quality regulation, in some of the previous research the problemwas address

in a steady-state formulation,without adapting to changing dynamics. In some research, adap-

tive approximation methodologies have been proposed, which assumed that the hydraulic

dynamics and controls exhibit periodicity, which may not hold in practice. In the present

work, a disinfectant concentration regulation algorithm for water distribution networks was

designed, using adaptive approximation to learn water demands.
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Regarding to hydraulic fault detection, in previous research the problem was addressed

within an optimization framework, as a inverse problem; however, information on the net-

work parameters is required, whichmay not be available. In addition, transient pressures have

been used for leakage detection; however, the use of high-frequency hydraulic pressure sen-

sors may not be available in some water distribution networks. In addition, in previous work

leakages were detected assuming fixed thresholds, which may not be realistic. In the present

work, the detection of hydraulic leakage faults in District Metered Areas was examined, by

using a fault detection method based on learning the periodic consumption dynamics.

Regarding to contamination fault isolation, in most of the previous research it was as-

sumed that quality sensor measurements are considered for finding the source of a contami-

nation; however in practice, quality sensors are installed at locations in the network for max-

imum coverage and for a small number of sensors, the redundancy in the measurements may

be small, or there may be large time-delays between the measurements. Recently, a manual

(grab) sampling approach was proposed, however the contamination impact has not been

directly considered. In the present work, the impact of a contamination detected in a wa-

ter distribution system was evaluated, and its source area was isolated, using a methodology

based on decision tree induction.

e effectiveness of all the methodologies proposed in the present work, was illustrated

with simulations using water distribution system models and historical hydraulic data.

7.2 Methodologies Application Guidelines

e results presented in this thesis could be applied to a real drinking water distribution

network of a water utility. For this, the utility should first construct a model of the network,

and calibrate its parameters using field tests and other techniques, in order to capture the hy-

draulic and quality dynamics are good as possible. What follows, is to construct estimates of

the water consumption at each node; the use of specialized flow sensors at the residence level,

and use real-time consumption monitoring is the optimal solution. When this information is

not available, demand estimation from representative consumers, as well as DMA monitor-

ing can be used. e utility can then compute the locations where quality sensors should be

installed, as well as where to install chlorine booster stations controlled with a regulation algo-

rithm, and in addition, compute where and when to conduct manual quality sampling. With

respect tominimizing the risk due to a contamination fault, in collaboration with the authori-

ties and policymakers, certain objectives should be specified, and based on those, compute the
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optimal locations to install quality sensors. e calibrated model and the demand estimations

can be used to simulate the various contamination fault scenarios, and solve the sensor place-

ment and manual sampling scheduling problem, for a certain network topology and a certain

water demand pattern. Due to changes in the consumption dynamics, these locations of these

contamination/quality sensors may change, by recalculating new positions which minimize

the objectives set by the decisionmakers. For leakage detection at a DMA, embedded soware

may be developed to be installed at the DMA entrance, or process the hydraulic data when

they are received by the utility. Regarding the contamination isolation problem, specialized

decision support soware should be developed, which utilizes the calibrated model and water

demand estimations, to compute the sampling locations when a contamination has been de-

tected. In the future, the algorithms proposed in this work will be implemented in embedded

or soware systems.

7.3 Future Work

In this thesis, it was assumed that sensors are capable of measuring a known contami-

nant substance; water utilities, however, can sometimes afford to install only a small number

of sensors measuring standard quality metrics, such as disinfectant concentrations (chlorine),

pH and turbidity. e formulation proposed in this thesis could be extended by applying fault

detection algorithms which use disinfectant concentration measurements, in order to deduce

contaminant presence. In addition, in this thesis, no prior assumptions were made in relation

to the probability of a contamination fault occurring. In fact, the contamination fault scenario

construction makes no assumptions on the likelihood of a contamination occurring at some

nodes; this is true in the case when considering malicious contamination attacks, which may

occur anywhere and at anytime in the network. In future work we will examine the use of

probabilistic models in the fault-scenario construction. With respect to the leakage detection

problem, the work presented in this thesis can be extended to take into consideration pres-

sure measurements for estimating the magnitude of the leakage fault, as well as to implement

leakage detection algorithms in a plug-and-play embedded system framework, to be used by

water utilities. Furthermore, we will investigate the effect of using “skeletonised” or “aggre-

gated” water distribution models when solving the contamination source-area isolation and

impact evaluation problem, as well as to address the problem of constructing representative

contamination fault scenarios.

An interesting question is whether there can be a unified mathematical model to address
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the different fault diagnosis and security monitoring problems discussed. We believe that it is

possible to view the various problems, as a general problem seen from various viewpoints. For

example, the qualitymonitoring and quality control can be considered as a single optimization

problem; in addition, the sensor placement problem, the manual sampling problem and the

contaminant concentration problems can also be considered within a unified framework as a

general multi-objective optimal selection problem with respect to certain risk metrics. Future

research will address the problem of a unified approach for fault diagnosis and water security,

within a common mathematical framework and problem formulation.

In the end, the problems addressed within this thesis, require, in general, the synergy of

various research fields, such as control and systems engineering, water engineering, hydro-

informatics, optimization and risk management. e multi-disciplinary nature of these prob-

lems is by-itself a challenge, however, it is also a fertile ground for innovation, in an infras-

tructure delivering one of society’s most important human right, water.
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Appendix Αʹ

Algorithms

Iterative Deepening of Pareto Solutions

function IDPS_Search returns pareto_front

M= number of quality sensors

pareto_front= empty_list
network_nodes= all_nodes_in_network

for k= 1 to M
for m= pareto_front

for n= network_nodes
current_node= [m, n]
calculate objective functions for current_node

end
end
if k=1

network_nodes = network_nodes above T threshold
end
sort on demand_coverage
select the first L solutions
calculate pareto_front

end

Evolutionary Multi-Objective Optimization

function EMMO_Search returns pareto_front

Do
parent_set = N random solutions
pareto_ranks= measure non-dominance rank in parent_set
offsprint_set=random selection from parent_set
new_offsping_set = genetic operators on offspring_set
parent_new_offspring= parent_set UNION new_offspring_set
crowding_metric=measure proximity in parent_new_offspring
parent_set= N solutions from parent_new_offspring...

... considering pareto_rank and crowding_metric
Loop for L epochs
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Quality Regulator

function Quality_Regulation returns input_signal

Do
Measure real DMA_demands
Compute estimation_error using DMA_demands
Update adaptive_parameters of Fourier Series using estimation_error
Simulate model using Fourier series with adaptive_parameters
Construct process_model_matrix
Compute next_inputs by solving the optimization problem
input_signal = next_inputs for time k

Loop for each time step k

Leakage Fault Detector

function Leakage_Detection returns alarm

Do
Measure real DMA_input
Remove outliers
Normalize with trend_seasonal signal
Compute estimation_error
Update adaptive_parameters of Fourier Series using estimation_error
Compute CUSUM metric
if CUSUM> threshold

then alarm
end

Loop for each time step k

Contamination Fault Isolation

function decision_tree returns next_sampling_node

Construct contamination_fault set
For each contamination_fault

Compute impact_damage
Compute impact_label

End For
Compute propagation_matrix

Do
Compute entropy_vector
Compute information_gain_vector
Compute worst_impact_vector
Compute pareto_front w.r.t.

information_gain_vector and worst_impact_vector
Select next_node from pareto_front

Loop until information_gain is zero
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