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ABSTRACT

ABSTRACT

One of the most common signal processing tasks arising in various applications is
the estimation of a signal from a noisy measurement. Most of the time imprecise
a priori knowledge of input characteristics results in degradation of performance.
This thesis presents a minimax approach to the design of robust estimation. Mini-
max methods are useful because they lead to constructive procedures for designing
robust schemes. The main goal of the thesis is to derive robust least-square esti-
mators for situation when the statistics or internal dynamics describing the signal
and observations are not exactly known. Even though the primal focus is on ro-
bust minimax estimation, some aspect of other well-known estimation techniques,
like the Maximum A Posteriori, the Maximum Likelihood estimation techniques, are
also investigated. There are three main contributions in this thesis: 1) Modeling
of uncertainty of a system using stochastic kernels, and joint distributions, and
derivation of robust least-square estimators for various uncertainty sets, through a
minimax approach. These uncertainty sets are defined by a Kullback-Leibler dis-
tance constraint. The results include existence of the optimal measures, and prop-
erties associated with the estimate of the true measure. Various examples, which
also include MIMO communication models, are used to illustrate how the results
apply to practical problems; 2) Applications of minimax theory developed to finite-
dimensional autoregressive channel models in order to derive robust least-square
estimators for a class of uncertain models. The methodology presented invokes a
change of probability measure technique to derive recursive equations for the con-
ditional distribution of nonlinear filtering problem. The conditional mean equation
is solved explicitly to derive envelope and phase estimates for specific models such
as the linear gaussian model and the non-coherent multipath model. For the non-
coherent multipath model a connection with the classical lest-square estimation is
also presented; 3) Derivation of a generalized Maximum A Posteriori estimator, and
a generalized Maximum Likelihood estimator are derived. The methodology used

involves the introduction of an exponential function in the cost definition and the
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likelihood function of the the Maximum A Posteriori estimation and the Maximum
Likelihood estimation technique, respectively. A connection with the minimax ap-

proach is also presented and some examples are solved to illustrate the application

of the results to theoretical problems.
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I[MEPIAHWH

IIEPIAHWH

Mia amod TG Io KOWEG £pyaoieg Otnv eredepyaoia Onpatog, 1 oroia IMPOKUITIEL O
dragopeg epappoyég, eival n eKTiPNOnN £vog OHPATOG ATTO Pld PEIPN O ITOU UTTOKELTAL
oe 9opubo. Tig TEPLOCOTEPES POPESG AVAKPIBNG YVAOO! TOV €K TV TIPOTEP®V XAPAK-
IPLOTIKQV £10ayRyHg odnyel otnv avakpiBr] eKTipnon evog ONpatog Kat ot Hei®on
NG arodoong g OXETIKNG epappoyng. Autn n Statpibr) Tapouctddel pia mPOoEyylon
elayiotoroinong -peylotoroinong (minimax) oto oxedlaopo evpwotng extipnong. Ot
p€Bodot minimax sivatl moAu xproipeg KaBwmg 0dnyouv oe emoikodountikeg Siadikaoieg
yla 10 0Xed1aopo eUpot®v maveyv. O KUplog otdxog tng diatpiBrg sival n e§aywyn
EUPWOTEV EKTIPNTOV EAAXIOTOV-TETPAYOV®V TTOU Sa HUIopouv va Xpnotporolnfouv oe
TIEPUTTOOEIS OTIOU TA OTATIOTIKA 1] Ol €0RTEPIKEG SUVAMIKEG TTOU Yapaktnpidouv €va
ofpa kabwg kat o1 mapatnpnoeilg dev eival akplBwg YyVvooTteg. Av KAl O TIPOTAPXIKOG
0T0X0G €otTladetal oV eUp®OTn eKTipnon minimax, n dwatpiBr] epeuvd KAl KATOEG
MTUXEG AAA®V YVROTOV TEXVIKOV EKTIPNONG On®g eivatl ot texvikég MEylotng ek TV
Yotépav (MAP) extipnong kat ektipnong Méyiotng ITiBavopaveiag (ML). Yapyouv
TPEIG KUPLEG OUVEIOPOPEG o autr 1 Swatpdry: 1) Moviedonoinon tng aBeBaidtntag
€VOG OUOTIIIATOG XPNOTHOIIOI)VIAS OTOXAOTIKOUG TTuprjveg (stochastic kernels) kat anoé-
KOWOU 81avopég Kat e§aymyr] eUPROTOV EKTIPUNTOV AAXI0T@V-TEIpayovav yia Sidpopa
ouvola aBeBailotntag PEo® plag mpoogyylong minimax. Autd ta ouvola aBeBaidtntag
kaBopidovratl amno tov meploptopo g anootaong Kullback-Leibler. Ta amoteAéopata
nepldapBdavouv v Urnapén PEAtotov PEpev, KabBmOg Kat 1810tnteg mou ouvdéovrat
He Vv exkTipnon tou aAnbwou pétpou. Emmumpoobeta, mapouoiadoviatr Siadpopa ma-
padetypata, ta omnoia rneptdapBavouv kat povieda MIMO, omou smdeikvistal n epap-
HOYN T®V anoteAeopdtov oe mpaktika npoBAnpata. 2) Epappoyn ng dewpiag mini-
max oe nenepaocpéva-draotatka (finite-dimensional) autoavadpopa (autoregressive)
HOVIEAd KAVAAl®V yla TV e§aymyn eUP®WOTOV EKTIHNTOV EAAXIOTOV-TEIPAYOVEV yid pia
1aén aBéBaiwv poviedov. H peboboloyia rmou rnapouotddetal Xpnotpornotel i teXVIKY)
aAAayrg Tou PETPOU TOavoTTag yia v e§ay®yr) avadpopiKeV e§1000E®V Y1a TV UITO

opoug Siavoun evog Pn ypappikou nipoBAnuatog eidtpapiopatog. H umo opoug péon
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eClomon Auvetal pnud yua va egaxbouv ekuproelg mg nepiBdAdlovoag Kat g @aong
Yla OUYKEKPIHEVA POVIEAA OTIOG TO YPAPHIKO poviedo Gaussian KAt 10 PI)-CUVEKTIKO
(non-coherent) poviédo moAdarAav dadpoucv. Emiong, mapouctddetal n oXEon tou
HIN-OUVEKTIKOU HOVIEAOU TIOAAATIA®V S1a8poPmV e TNV KAAOO1KI] EKTIINOT eAaxiot®v-
terpayoveyv. 3) ESaywyn yevikeupévov exkupntov MAP kat ML. H pebodoAoyia mou
Xpnotpornoteitat meplAapBavel TNy €10ay®yr] Hlag eKOETIKNG oUVAPTNONG OTOV OPloHRo
10U KOOTOUG Kal TNG ouvdaptnong rmbavotintag tov ekupntov MAP kat ML avtictoiya.
TéAlog, mapouotadetal n oxEon HeE IV MPOOEyylon minimax kat emAvovial emniong
pepkd mapadeltypata mou ermdelkvUuouv IV £PAPHOYI] TOV AIOTEAEOUNATOV 0f Jew-

pnukda rpoBAnuara.
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CHAPTER 1

INTRODUCTION

Signal processing is an area of electrical engineering, systems engineering, and ap-
plied mathematics that deals with operations on or analysis of signals, in either
discrete or continuous time to perform useful operations on those signals. Signals
of interest can include sound, images, time-varying measurement values and sensor
data, for example, biological data such as, electrocardiograms, control system sig-
nals, telecommunication transmission signals, such as radio signals, and many oth-
ers. Signals are analog or digital representations of time-varying or spatial-varying

physical quantities.

One of the most common signal processing tasks arising in applications is that
of estimating (e.g., filtering, predicting, or smoothing) a signal waveform from a
noisy measurement. Signal estimation is the area of study that deals with the
processing of signals that contain information in order to extract this information
from them. Applications of the theory of estimation is found in many areas such
as communications, controls, and signal processing. This task arises, for example,
in radar and sonar tracking systems, in observers for automatic control systems, in

demodulators for analog communication systems, and in medical imaging systems.

In communications applications such as data transmission or radar, estimation
provides the theoretical and analytical basis for the design of effective communication
transmitters and receivers. Most of the time estimation applications involves taking
decisions based on observations that are distorted or corrupted by noise. Moreover,
the information that one wishes to extract from such observations is unknown to
the observer. In such problems it is useful to formulate estimation problems in a
probabilistic framework in which the unknown behavior is modeled by probability

distributions.



CHAPTER 1. INTRODUCTION

Basic to the study of signal estimation theory is the concept of a random observation
Y : (QF) — (Y, Xy), where (2, F) and (Y, Yy) are measurable spaces. Here )
maybe a set of vectors, real numbers, or any other set. From the observation of
Y one wishes to extract information for some phenomenon related to Y, and in the
case of estimation problems one wishes to estimate the value of a quantity that is not
observed directly. This relation between the observation and the desired information
is probabilistic in the sense that the statistical behavior of Y is influenced by the
value of the quantity to be estimated. This is why a model for this situation must
involve a family of probability distributions on )/, the members of which correspond
to statistical conditions present under the various values of the quantities to be
estimated. Under this model the estimation problem is to find an optimum way
of processing the observation Y in order to extract the desired information. The
basic features that distinguish such problem from each other are the nature of the
desired information (discrete or continuous), the amount of ¢ priori knowledge that
is available about their desired quantities and the performance criteria by which
various estimation procedures are graded. If the information we want to extract are
some static parameters that do not change with time, then the problem is defined
as parameter estimation. If the parameters need to be estimated are dynamic or

time-varying then the problem is defined as signal estimation.

Conventional design procedures for optimum signal estimation algorithms often re-
quire an exact knowledge of the statistical behavior both of the signal of interest and
of the noise corrupting the observations. For example, in the design of optimum
linear estimation algorithms someone must know the spectral or autocorrelation
properties of the signal and noise in order to specify the optimum procedures, and
procedures designed to be optimum for a given model can be undesirably sensitive

to inaccuracies or uncertainties in the model.

The two basic sources of uncertainty are noisy data and imprecise knowledge of the
model of the underlying physical system. Often, ¢ priori knowledge is available to
describe, in a probabilistic sense, the two aforementioned sources of uncertainty,
e.g., bounds, moments, mixed moments, distribution, stationarity, dependence, and
spectral properties. Of course, the application of such information in the estimation

procedure should yield more reliable solutions

Because the signals and noise in signal processing applications are usually modeled

as random processes, performance measures usually involve probabilistic quanti-



ties (such as mean squared error or probability of error). The theory of statistics
has played a fundamental role in the development of optimum signal processing

techniques.

Suppose a parameter estimator for a signal with known waveform in additive noise,
is designed to give optimum performance for noise possessing a specific statistical
description. For example, one widespread model for noise is the Gaussian process.
An important question that arises is, how sensitive is the performance of such an
optimum scheme to deviations in the signal and noise characteristics from those for
which the scheme is designed? This is an important question because in practice
one rarely has perfect knowledge of, say, the noise characteristics; the Gaussian
or any other specific model is usually a nominal assumption which may at best be
approximately valid most of the time. Unfortunately, it turns out that in many cases
nominally optimum signal processing schemes can suffer a drastic degradation in
performance even for apparently small deviations from nominal assumptions. It is
this basic observation that motivates the search for robust signal processing tech-
niques; that is, techniques with good performance under any nominal conditions
and acceptable performance for signal and noise conditions other than the nomi-
nal, which can range over the whole of allowable classes of possible characteristics.
Thus, in seeking robust methods it is recognized at the outset that a single, pre-
cise characterization of signal and noise conditions is unrealistic, and so classes of

possible signal and noise characterizations are constructed and considered.

Often a class of allowable characteristics, say for a noise power density function, is
constructed by starting with a nominal characteristic and then including in the class
all other characteristics that are “close,” in some well-defined sense, to this nominal
one. Then a signal processing scheme that is robust may have performance at the
nominal which is not quite as good as the scheme that is optimum for the nominal
case, but its overall performance with respect to the defined class of characteristics
will be good or acceptable. This loose definition of robustness is perfectly reasonable,
but it does not provide a systematic approach to obtaining robust schemes. In order
for this to be achieved first a measure of “overall” performance of a scheme with
respect to a class of allowable conditions at the input is specified. One such measure
that has been widely used and which leads to interesting and useful results in many
situations is the worst case performance of a scheme over a class of input conditions.
Clearly, if its worst case performance is good, then it maybe concluded that a given

scheme is robust. On the other hand, such a robust scheme can be found by looking
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for the scheme that optimizes worst case performance. This approach leads to what
are known as minimax robust schemes. A scheme that minimizes the maximum
possible value of a loss function is called minimax; if performance is measured by a
gain function then a maximin scheme would be sought. The term minimax is used
as a general description for such schemes in all cases. Implicit in the association
of minimax schemes with robust schemes is the expectation that the worst case
performance of a minimax scheme will be acceptably good, being the best that can
be achieved. Another expectation one has in defining robust schemes in this way
is that at any nominal operating point, the performance of the minimax scheme will
not be very far below that of the nominally optimum scheme, which on the other

hand will have much poorer performance away from the nominal point.

The rest of the chapter is organized as follows. In Section 1.1, the review of related
literature is given. In Section 1.2, the thesis goals are introduced and motivated. In
Section 1.3, the statement of the problems are presented. In Section 1.4, the main

contributions of the thesis are outlined.

1.1 Survey of Related Research

This section summarizes the models and results on classical estimation methods

and robust minimax estimation techniques which are relevant to this thesis.

1.1.1 Classical Estimation Methods

In many situations arising in practice one is interested in making a choice among
a continuum of possible states of nature. In particular, given a family of distribu-
tions on the observation space indexed by a parameter or set of parameters, the true
value of the parameter has to be determined as precisely as possible from the obser-
vations. Such problems are known as parameter estimation problems. In this thesis
two basic approaches to parameter estimation are presented, first the Bayesian, in
which the parameter is assumed to be a random quantity related statistically to the
observation, and a second, the Maximum Likelihood estimation, in which the param-

eter is assumed to be unknown but without being characterized with a probabilistic



1.1. SURVEY OF RELATED RESEARCH
structure.

Bayesian Estimation

In estimation theory and decision theory, a Bayes estimator or a Bayes rule is an
estimator or decision rule that minimizes the posterior expected value of a cost
function. Suppose an unknown Random Variable (RV) X : (Q,F) — (X, Xy) is
known to have a prior distribution Pyx. Let ®(Y) be an estimator of X (based on
the measurements of a RV, Y), and let C(X, ®(Y)) be a cost function. The Bayes
risk of ®(Y) is defined as E[C(X,®(Y))], where the expectation is taken over the
probability distribution of X: this defines the risk function as a function of (Y). An
estimator ®(Y) is said to be a Bayes estimator if it minimizes the Bayes risk among

all estimators.

One of the most popular Bayesian estimation techniques is the Least-Square estima-
tion, also known as Minimum-Mean-Squared-Error estimation. In classical Least-
Square estimation of RV’s one is interested in finding the best estimate, ®*(Y'), of
aRVX: (QF)— (X Xy) from the measurements of a RV Y, by minimizing the
expected value of the least-square cost function C(X, ®) 2 | X — ®(Y)||% over all
functions ® : Y — X,Y — ®(Y), which is a function of Y (||z||% denotes the norm
on X). By the orthogonal projection theorem, the solution is given by the conditional

expectation:
o*(Y) = FIX|Y] = / x dPxy (x|y) (1.1)
X
where Px|y is the conditional distribution of X given Y [1], [2], [3].

The solution to this estimation problem is stated in terms of the @ posteriori distribu-
tion function Pyy. This distribution contains all information available to estimate
X or any nonlinear function of it. The objective is thus to find, recursively in time,
the evaluation equation of the d posteriori distribution and to solve it (for the case of
random processes). However, it is only in a few special cases that this distribution
can be solved explicitly by parameterizing it using a finite number of statistics. A
well known example is the case with linear dynamics and observations in additive
Gaussian noise. In this case all densities involved are Gaussian, and hence the
conditional distribution can be parameterized using the corresponding mean and
covariance. The equations of the finite statistics are given by the Kalman Filter [1],

[4], which are going to be explained in more details in the following paragraphs.

5
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For the case of nonlinear systems, there are difficulties in obtaining the solution
of the & posteriori distribution recursion in closed form. Often, approximations
have to be made to find sub-optimal nonlinear estimators. The standard method
is to use the Taylor series expansion and apply linear filtering theory, giving rise
to the so-called Extended Kalman Filter [5], [6], [7]. Other more sophisticated sub-
optimal estimation techniques are available, e.g. reiteration, higher order filters, and
statistical methods [5].

Another cost function that is sometimes applied is the absolute error, given by
C(X,2(Y)) =|X—-d(Y)|, (X,®(Y)) € R?2. The Bayes risk here is E[|®(Y) — X

quantity known as the mean-absolute-error, so the corresponding Bayes estimate is

], a

known as the Minimum-Mean-Absolute-Error (MMAE) estimate. The Bayes estimate

in this case, denoted by ® 455(y), is any point such that

PX <tlY =y) S P(X > 1Y =y), t < Paps(y)
PX <ty =y) > P(X >t|]Y =vy), t> DPaps(y) (1.2)

Note that a point ¢ 4 Bs(y) satisfying (1.2) is a median of the conditional distribution
of X given Y = y. Thus the MMAE estimate is a conditional median estimate. This
estimate coincides with the Least-Square (LS) estimate only when the distribution of

X given Y = y has the same value for the mean and median.

Moreover, another estimation method that, although not properly a Bayes estimate,
fits within the Bayesian framework is Maximum A Posteriori (MAP) probability esti-
mation. In Bayesian statistics, a MAP estimate is a mode of the posterior distribu-
tion. The MAP can be used to obtain a point estimate of an unobserved quantity on
the basis of empirical data. It is closely related to Maximum Likelihood estimation,
which is presented in the following paragraphs, but employs an augmented optimiza-
tion objective which incorporates a prior distribution over the quantity one wants
to estimate. MAP estimation can therefore be seen as a regularization of Maximum
Likelihood (ML) estimation.

It is assumed that an unobserved RV X has to be estimated on the basis of observa-
tions Y. Applying a uniform cost criterion, leads to a procedure for estimating X as
that value which maximizes the d posteriori (discrete or continuous) density 7(y, dx)

(also referred in this dissertation as stochastic kernel). Therefore,
Curap(y) = argmaxn(y, dz) (1.3)

6
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In modeling a given statistical situation usually someone starts with the family
of conditional distributions (or stochastic kernels) of Y given X = x, and for the
Bayesian formulation with a prior distribution for X also. The conditional distribu-
tion of X given Y (or the stochastic kernel n(y, dx)] is obtained from the prior and
the conditional of Y given X (or the stochastic kernel) u(z, dy)) by applying Bayes’

formula.

_ @, dy)dPx(z)  p(x,dy)dPx(x)
M) = e dy)dP(@) R () 4

The MAP estimator can be obtained using (1.4) but without the computation of the
denominator of the posterior distribution (dPy (y)) since this term does not depend

on z and therefore plays no role in the optimization. That is,

Carap(y) = argmax u(z, dy)dPx (x) (1.5)

The above MAP estimate of = coincides with the ML estimate when the prior dPx (z)
is uniform (that is, a constant function). The MAP estimate is a limit of Bayes
estimators under a sequence of 0 — 1 cost functions, but not a Bayes estimator per

SeE.

Maximum Likelihood Estimation

For many observation models arising in practice, it is not possible to apply the
above results either because of intractability of the required analysis or because
of the lack of useful complete sufficient statistic. For such models, an alternative
method for seeking good estimators is needed. One very commonly used method of
designing estimators is the Maximum Likelihood (ML) method. Maximum Likelihood
estimation is a popular statistical method used for fitting a statistical model to data,

and providing estimates for the model’s parameters.

The ML estimator it is one of the most fundamental estimators in statistics. For a
fixed set of data and underlying probability model, ML picks the values of the model
parameters that make the data “more likely" than any other value of the parameters
would make them. ML estimation gives a unique and easy way to determine the
solution in the case of the normal distribution and many other problems, although
in very complex problems this may not be the case. If a uniform prior distribution
is assumed over the parameters, the ML estimate coincides with the most probable

values thereof.
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Consider a family of probability distributions parameterized by an unknown param-
eter z (which could be vector-valued), associated with either a known probability
density function (continuous distribution) or a known probability mass function
(discrete distribution), denoted as u(z,-). A sample {yi,vs,...,y,} of n values is
drawn from this distribution, and then pu(z, ) is used for computing the (multivari-
ate) probability density associated with the observed data, p(z,dy). As a function of
x with v, . .., y, fixed, this is the likelihood function

L(z) = p(z,dy).

The method of maximum likelihood estimates x by finding the value of x that maxi-

mizes L£(z). This is the Maximum Likelihood estimator of x:

Ty (y) = arg max L(x). (1.6)
x
Kalman Filtering

All the estimation methods discussed so far are used for designing estimators for
static parameters, that is, for parameters that are not changing with time, although
these methods are applied to sequences. In many applications the related problems
of estimating dynamic or time-varying parameters is of interest. In the traditional
terminology, a dynamic parameter is usually called a signal, so the above problem
is known as signal estimation. The dynamic nature of the parameter in signal esti-
mation problems adds a new dimension to the statistical modeling of the problems
where the dynamic properties of the signal must be modeled statistically in order to
obtain meaningful signal estimation procedures. Unlike the static case, an estima-
tor of a signal is not expected to be perfect as the number of observations becomes

infinite because of the time variation in the signal.

Kalman filtering provides a very useful algorithm for estimating signals that are
generated by finite-dimensional linear dynamically models. The Kalman filter is an
algorithm in control theory introduced by Kalman (1960) and refined by Kalman and
Bucy (1961). It is a minimum-mean-square-error estimator and it is an algorithm
which makes optimal use of imprecise data on a linear (or nearly linear) system with
Gaussian errors, and continuously update the best estimate of the system’s current

state.

Kalman filter theory is based on a state-space approach in which a state equation

models the dynamics of the signal generation process and an observation equation

8
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models the noisy and distorted observation signal. For a signal x; and noisy obser-
vation ¥, equations describing the state process model and the observation model

are defined as

xp = Azp_1+wp_1, xo~ N(Ezg;cov(zy))

ye = Hzp +nyg, (1.7)

where, x; is the p-dimensional signal vector, or the state parameter, at time k£, A
is a p X p dimensional state transition matrix that relates the states of the process
at times k — 1 and k, w, (process noise) is the p-dimensional uncorrelated input
excitation vector of the state equation. wj is assumed to be a normal (Gaussian)
process p(wy) ~ N(0,Q), @ being the p X p covariance matrix of wy, or process noise
covariance. y; is the M dimensional noisy observation vector, H is a M X p dimen-
sional matrix n, is the M -dimensional noise vector, also known as measurement
noise, ny is assumed to have a normal distribution p(n;) ~ N(0, R) and R is the
M x covariance matrix of n; (measurement noise covariance). Often, (ny, wy, zo) are

assumed independent.

Here, 2),—1 is defined as the ¢ priori estimate (prediction) at step & from the previous
trajectory of x given measurements v, ..., yrx_1, and fck‘k as the @ posteriori state
estimate at step k given measurements o, ..., y;. Note that @k|k:—1 is a prediction
of the value of x; which is based on the previous values and not on the current
observation at time k. 7, on the other hand, uses the information in the current

observation and previous g, . . . , Yg—1-

The Kalman filter is often derived by beginning with the goal of finding an equation
that computes an ¢ posteriori state estimate as a linear combination of an ¢ priori
estimate (prediction) and a weighted difference between an actual measurement and
a measurement prediction (innovation). Hence, each estimate consists of a fraction
which is predictable from the previous values and does not contain new information

and a fraction that contains the new information extracted from the observation.

The = Trip—1 + Ki (yk - ka|k—1)- (1.8)

The difference y; — Hyp—1 in (1.8) is called the measurement innovation. The
innovation reflects the discrepancy between the predicted value and the actual mea-
surement. The P x M matrix, K}, in (1.8) is chosen to be the gain or blending factor

that minimizes the & posteriori error covariance. One form of the resulting K} is

9
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given by
-1
Ky = Sy H' (HSu 1 H' + R) (1.9
where Y x_; is the covariance of the prediction error, x; — Zyx—1, conditioned on
k—1
Yo -

The Kalman filter estimates a process by using a form of feedback control: the
filter estimates the process state at some time and then obtains feedback in the
form of (noisy) measurements. As such, the equations for the Kalman filter fall into
two groups: time update equations (prediction) and measurement update equations
(correction). The time update equations are responsible for projecting forward (in
time) the current state and error covariance estimates to obtain the ¢ priori estimates
for the next time step. The measurement update equations are responsible for the
feedback i.e. for incorporating a new measurement into the & priori estimate to

obtain an improved d posteriori estimate.

The time update equations can also be thought of as predictor equations, while the
measurement update equations can be thought of as corrector equations. Indeed
the final estimation algorithm resembles that of a predictor-corrector algorithm for

solving numerical problems as shown below.
Time update (predict)
Tph—1 = AZp—1jh—1,  Dgp—1 = AEk—Hk—lAT +Q, Xo-1 = cov(xy), (1.10)
where iy = Sis 1 — St HY (HSp 1 HY + R) T HS
Measurement update (correct)

-1
Ki = S iH"(HSy 1 H" + R)

T = Tpp— + Ki (yk — Hi’k\k—1>, Zo—1 = Exy. (1.11)

1.1.2 Unceriainty Models

In practical applications one of the important issues in estimation problems is the
choice of an appropriate system or channel model. When the channel is uncer-

tain, this is not a trivial problem. The uncertainty models can be divided into two

10
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categories, the parametric uncertainty models and the nonparametric uncertainty
model. In the following paragraphs some typical examples from the two categories

are presented.

Parametric Uncertainty Models

In the estimation theory literature a basic model, which is often used to describe a
parametric uncertainty in the channel is the one depicted in Fig. 1.1 [8]. A variable 6,
which belongs to a certain set ©, parameterizes a conditional distribution Q(y|z, ).
Hence, instead of dealing with a fixed known system, one considers the estimation
for the class of systems {Q(y|x,0) : 0 € ©}. Generally speaking, there are two classes
of uncertainty models; the class of compound systems, and the class of arbitrarily
varying systems. Compound and Arbitrarily Varying Channels are further classified

into discrete memoryless and finite-state systems [8].

v

Qly[x,9)

4

Figure 1.1: Probabilistic representation of a communication channel

A family of discrete memoryless systems
{Qylx,0) 1z e X", ye V", 0 € O}, (1.12)

where

n

Qyle,0) = [ Quilar, 61), (1.13)

t=1
and {Q(y|z:,0:) : @ € X, y; € Y, 6 € O} is a suitable subset of the set of all
stochastic matrices X x © — )/, is called a discrete memoryless compound system.
Thus, compound systems assume that the true system Qq.(y|z, ) is unknown,
though, it is assumed that Q...(y|z, ) belongs to the family of systems (1.12) and

remains unchanged during the course of a transmission.

Arbitrarily Varying Channels (AVCs) are a generalization of (1.12) to include time

variations in which the system changes during subsequent transmitted letters xy.

11
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Assume that Y. is a finite set of system states and § = ¥*°. Then an AVC is determined
by

n

Qylz, s) = HQ(yt|$taSt)> (1.14)

t=1
where s = (s1,...,8,), and {Q(y|zs, s¢) : @ € X, y € YV, s, € ¥} is a suitable
subset of the set of all stochastic matrices X X ¥ — ). Hence, at each moment ¢,
the transmission matrix Q(y;|z;, s;) is unknown, and it is determined by the system

state s; € 2.

Continuous alphabet uncertainty systems received much less attention in the liter-
ature than the discrete counterparts. Most of the results are related to Gaussian

uncertainty systems, which are briefly described below.

A Gaussian compound channel is defined by
Y=HX+W, (1.15)

The uncertainty is introduced by assuming that a linear transformation H in un-
known, although it is known to belong to some pre-specified class of linear transfor-
mations, e.g. |H| <, or H= H + §H,||6H|| < p and H is known. X and Y are
in general continuous signals, and IV is an additive Gaussian noise. These models
can also be used when H is known and there is uncertainty in X, which can be
described with a constraint on the weighted norm || X || < L or a constraint on the

covariance of X, Cx < S.

A generalized parametric uncertainty model is being used in [9] which accounts
for uncertainties in the data {A,b}. The uncertainties in these data, expressed as
{0A, b}, are assumed to lie within certain balls of radii {7, 7,}, i.e., they are known
to be bounded and satisfy ||0A] < 7, |

where the perturbations {0 A, 0b} are assumed to satisfy a model of the form

db|| < mp. A special case is also given in [9]

[0A 0b] = HS[E, E), (1.16)

S|| <1, and {H, E,, E}} are known quantities

of appropriate dimensions. As a brief motivation, one application of state-space

where S is an arbitrary contraction,

estimation is succinctly described in [9], with full details provided in [10]. For this

case the following uncertainty model is considered

Y, = H,+V; (1.17)

12
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where the perturbations in {F}, G;} are modeled as

for some known matrices {1;, Ey;, E,,;} and for an arbitrary contraction A;,
1.

Al <

Of special interest are Multiple-Input Multiple-Output (MIMO) channel models, due
to the applications of multiple-antenna systems for wireless communication. Ini-
tially, multiple-antenna systems promised considerable gain for fading channels as
compared to single-antenna systems. However, at a later stage, it has been shown
that this gain depends on the level of knowledge that the transmitter and the receiver

have about the channel. The received signal of a flat fading channel is given by
y=HX+W (1.19)

where 7 is a transmitted vector in C", w and y are random variables in C?, and H
is a channel matrix in C?*", The additive noise w and channel matrix H are ergodic
and stationary, and their entries are i.i.d., zero mean, circularly symmetric complex
Gaussian random variables. If the channel matrix H is not perfectly known to the

transmitter and /or receiver, the uncertainty is modeled as additive.
H=H+E. (1.20)
Here, H represents the estimation of H, while F is an estimation error.

An example of a flat-fading MIMO uncertainty model is given in [11]. Given a channel
matrix H, the noisy observation can be expressed as (1.19) where for this problem z
is the nr-dimensional symbol vector transmitted during a signaling period and de-
motes a zero-mean complex circular Gaussian noise vector with covariance matrix
R. Tt is assumed that R is positive definite so that the noise affects all observation
components, and x has zero-mean and normalized covariance matrix [, and is in-
dependent of w. This paper considers a robust Mean-Square-Error (MSE) equalizer
design for MIMO communication systems with imperfect channel and noise infor-
mation at the receiver. When the estimated channel H and the noise covariance
matrix R are different from the actual channel H and noise covariance matrix R,
respectively, the MSE objective function is expressed as a function of H,, which
represents the difference between the actual channel H and the estimated channel
H ,ie. Hyx=H — H. It is also assumed that the estimated covariance matrix & is

invertible. It also uses the Kullback-Leibler (KL) divergence to measure the distance

13
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between the actual model (H, R) and the estimated model (I:I , ]:2) Conditioned on
the knowledge of z, the KL divergence between the actual model y ~ N(Hz, R) and
the estimated model y ~ N (ﬁ x, R) takes the form

fylz)

D(fle), Fl X)) = [ [ f(ym}ﬂyrx)dy (1.21)

In this respect, it is worth noting that the KL divergence has been used also in [12]
to develop a minimax formulation of robust detection. The use of the KL diver-
gence is rather natural as a metric for model mismatch since it is commonly used
by statisticians [13] for fitting statistical models, and by using a differential geomet-
ric viewpoint it is argued in [14] that the KL divergence is the natural geometric

“distance” between systems.

Nonparametric Uncertainty Models

It should be emphasized that the classes of allowable characteristics one deals with
in robust signal processing are generally nonparametric function classes, such as
the class of all power spectral density functions with specified total power (area under
the function), which lie between specified upper and lower bounding functions. The
uncertainty class for nonparametric uncertainty models can be specified in a variety
of ways [15]. It can be based on an € — contamination model of the type originally
proposed by Huber, a total variational model, a spectral band model wherein the
power spectral densities specifying the signal and observations are required to stay
within a band centered on the nominal Power Spectral Density (PSD) or even, with
a probability density model, where the probability density specifying the channel is
also required to stay within a constraint set with reference to the nominal Probability
Density Function (PDF).

Consider the model
Y., =5, + Ny. (1.22)

The processes {S;} and {N,} represent signal and noise, respectively and fs and
fn are the power spectral densities of the signal and the noise. The spectral chosen
for designing the estimator may differ from the true signal and noise spectral. This
spectral uncertainty is modeled by choosing appropriate classes of PSD’s, G and

N, respectively fg € G and fy € N. Next, some specific forms for the uncertainty
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classes G and N\ are presented. These forms have been widely used to model uncer-
tainty in both the engineering and statistics literature. These forms will be presented

for the class G but, they could easily be used to model noise spectral uncertainty.

The most commonly used uncertainty class is the € — contaminated model, which is
also known as the € — mizture or gross-error model. This uncertainty class has the

following form

| >

Ge st fs(0) = (1 —€)f5(0) + f5(0), VO € [—m,m],

/ o) = [ 3o} (129

where f2 is a nominal PSD and € (0 < ¢ < 1) is the contamination parameter. This
class is probably the most popular for representing uncertainty because it models
the idea that there is a fraction € of completely general uncertainty about the choice
of the PSD f3.

Another common model is the total variational model which has the form

Grv 2 {fs:5 [ 1536) — fs0INan) < e, [ fst0)@0) = [ p3(encap

(1.24)
where, again, fJ is a nominal PSD and ¢ an uncertainty parameter.
A third model is the band model which has the form
2 . 4L U(p
QB— foS(Q)SfS( )<f , VQ fs —27rw (1.25]

where ["_ fEN(d0) < 2mw < [T f§(0)A(dF) and w is the known power of the signal.
The name band model comes from the interpretation that f§ and fg are the lower

and upper bounds of a confidence band around a spectral estimate.

A fourth model of interest is the p-point model which has the form
Gp 2 {fS : / Fs(ON(dO) = 2mws, i =1, ... n} (1.26)
A;

where the A;’s are a partition of [—7, 7] and > | w; = w, the power of the signals. A
p-point class is an appropriate model of uncertainty in situations where, for example,
the power w; in each interval A; = [0;-1,0;] (where —m = 0y < 0; < ... < 0, = 7)
can be accurately measured using a nested bank of low-pass filters or a bank of

bandpass filters.
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Note that for each of these classes it is assumed that the power is known. Often it
is a reasonable assumption that the power can be accurately estimated even though

the shape of the PSD is uncertain.

Nonparametric uncertainty models can also be formulated through probability den-
sity functions [8]. Let X and ) be finite sets denoting the channel input and output
alphabets, respectively. The probability law of a (known) channel is specified by a

sequence of conditional probability density functions

{Qylz) :z e X", y e Y"}2, (1.27)

where ()(-|-) denotes the conditional pdf governing channel used through n units of
time, i.e., “n uses of the channel." If the known channel is a discrete memoryless
channel, then the law is characterized in terms of a stochastic matrix () : X +— Y

according to

Qylz) = [[ Qwilzy). (1.28)
t=1

where © = (z1,...,2,) € X" and y = (y1,...,y,) € V™. This kind of uncertainty
models assume that the true channel Q...(y|r) is unknown, though, it is assumed
that Q4.(y|x) belongs to a family of channels (1.27), and remains unchanged during
the course of a transmission. In [16] a nonparametric uncertainty model is formu-
lated through a joint probability density function. A nominal statistical model is
given together with a neighborhood formed by the perturbed models whose KL di-
vergence with respect to the nominal model is bounded by a fixed constant. A static
estimation problem is formulated, where the estimate of a random vector X € R”
needs to be found given an observation model Y € R”. It is assumed that the joint

nominal density of X and Y is Gaussian, so that

7 —

X
v NN(mz,Kz)

where my and K, denote, respectively, the mean vector and covariance matrix of Z.
Accordingly the nominal probability density of Z takes the form

1 1 )
12(2) = Grywang, e &P (56— ma) Kz (= = m2)). (1.29)

The mean vector and covariance matrices of Z can be partitioned in terms of the

mean vectors and covariances of X and Y as

mx Kx Kxy
mgz = ) KZ = .
my Kyx Ky
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f 7(z) denotes the true probability density of Z. The KL divergence or relative entropy
of f, with respect to f is given by
H(fz|fz) :/ In (E)fzdz (1.30)
poxye  \Jz

The KL divergence is not symmetric and does not obey the triangle inequality, but it
satisfies H(fz|f) > 0 with equality if and only if f, = f.

1.1.3 Robust Minimax Estimation

One of the major techniques for designing systems that are robust with respect to
modeling uncertainties is the minimax approach, in which the goal is the optimiza-
tion of worst-case performance. Early applications of game theoretic concepts to
communications problems can be found, for example, in the classical estimation
studies of Yovits and Jackson [17], and Carlton and Follin [18]. However, the sta-
tistical works of Huber in estimation [19] and hypothesis testing [20] are generally
regarded as the starting point of the area of minimax robustness, which has been

applied successfully to a long sequel of problems in detection and estimation.

There are useful formulations of robustness other than the minimax one, most no-
tably the stability or qualitative robustness ideas introduced by Root [21] in the
context of signal detection and by Hampel [22] in the context of parameter estima-
tion. These formulations utilize the idea of robustness as a continuity property of
some performance measure as a function of the underlying model. However, from
the viewpoint of design, the minimax approach has had the most impact on robust

signal processing schemes.

Adaptive procedures, may also be used as robust schemes, when input conditions
are not precisely known and may be time-varying. Adaptive procedures, which at-
tempt to learn about input conditions and adjust their specific signal processing
structure accordingly to maintain good performance, are generally more complex
than fixed minimax schemes. Adaptive schemes are more desirable when the ¢ pri-
ori uncertainty is so large that the guaranteed level of performance of a minimax
scheme would be too poor to be acceptable, and when adequate time and data for
adapting are available. Conversely, minimax procedures would be more desirable

under more constrained uncertainty classes, and especially as robust procedures
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to guard against excessive performance degradation of nominally optimum schemes

for deviations from nominal assumptions.

As was remarked, minimax robustness of estimation and hypothesis testing schemes
are considered by Huber in [19] and [20], and since then a large number of re-
sults on minimax and alternative formulations of robustness have been generated
in the statistics literature. In [23] the linear regression problem of estimating an
unknown, deterministic parameter vector based on measurements corrupted by col-
ored Gaussian noise is being investigated. Blind minimax estimators are presented
and analysed, which consist of a bounded parameter set minimax estimator, whose

parameter set is itself estimated from measurements.
The measurements
Y=HX+W (1.31)

are linear combinations of the parameter vector X, to which Gaussian noise W
is added. The transformation matrix / and the noise covariance are assumed to
be known. The paper seeks an estimate X which approximates X in the sense of
minimal mean-square error. The parameter to be estimated X is assumed to lie
within a compact parameter set S. In this case, a linear minimax estimator over the
set S maybe constructed [24], [25]. This is the linear estimator X v = GY minimizing

the worst case MSE among all possible values of X in S

Xy = arg min max E{||X — X|*}. (1.32)
X=Gy Xe€§

The authors argue that a closed-form solution of (1.32) has been previously derived
for many cases of interest and that it has been shown that any linear minimax
estimator achieves lower MSE than that of the LS method, for all values of X in S
[24], [26].

The Blind Minimax Estimators (BMEs) presented in this paper utilize minimax es-
timators when no parameter set is known. This is done in a two-stage process: 1)
A parameter set S is estimated from the measurements. 2) A minimax estimator

designed for S is used to estimate the parameter vector X.

The paper investigates two distinct cases. In the first one the authors investigate a

spherical blind minimax estimator based on a parameter set of the form S = {X :
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| X]|> < L?}. For a given value of L the linear minimax estimator was derived in [25]

R L2 .
= X 1.33
M= Ta s (1.33)

where X s is the classical LS estimator and ¢, is the MSE. Now when the bound L?
is estimated as L2 = || X, g2, the Spherical BME (SBME) is given by

| X s %

~ (1.34)
[ XLs|[? + €

TSBME =

The authors also argue that the BMEs may be constructed around any constant
center point X,. Furthermore, the paper investigate a second case, the ellipsoidal
blind minimax estimator based on a parameter set of the form S = {X : || X Héb <
LQ}, for some constant b < 0. Here Q! is the covariance of X s and the bound L?
is estimated as L? = ||#15||%,. The above cases are being examined in the setting of
a linear system of measurements with colored Gaussian noise, and it is shown that
the proposed BMEs dominate the LS method, i.e., they achieve lower mean-squared
error for any value of the parameter vector. Finally, in [23] the relations of blind
minimax techniques to Stein type estimators [27] and least-square regularization is

also discussed.

The James-Stein estimator is a nonlinear estimator which can be shown to dominate,
or outperform, the “ordinary" (least squares) technique. As such, it is the best-
known example of Stein’s phenomenon. In 1961, James and Stein discovered a
remarkable estimator that dominates the maximum-likelihood estimate of the mean
of a p-variate normal distribution, provided the dimension p is greater than two.
Various “extended” James-Stein methods were later constructed for the general non-
i.i.d. case. However, none of these approaches has become a standard alternative
to the LS estimator, and they are rarely used in practice in engineering applications
[27].

The problem of estimating an unknown parameter vector X in a linear model that
may be subject to uncertainties, where the vector X is known to satisfy a weighted
norm constraint is also investigated in [25]. This paper addresses two different
estimation problems. In the fist one, which is similar with the general problem in
[23], it is assumed that the model matrix H is known exactly and the linear estimator
that minimizes the worst-case mean-squared error across all possible values of X

is derived. The difference with [23] is that [25] assumes that the parameter set S is
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known, i.e., it is assumed that X is known to satisfy the weighted norm constraint
| X ||z < L for some positive definite matrix 7" and scalar L > 0. The robust estimator
for this problem is given by (1.33). The second problem, considers the case in which
the model matrix H is subject to uncertainties and seeks the robust linear estimator
that minimizes the worst-case MSE across all possible values of X and all possible
values of the model matrix. In many engineering applications, the model matrix H
is subject to uncertainties, for example, it may have been estimated from noisy data,
in which case, H is an approximation to some nominal underlying matrix. If the
true data matrix is H + ¢ H for some unknown perturbation matrix 0 H, then the
actual performance of an estimator designed based on / alone may perform poorly.
In this case, robust estimators are considered that explicitly take uncertainties into
account. Specifically, in [25] the matrix model / is not known exactly but is rather
given by H + §H, where ||0H| < p and the minimax problem is formulated as

min  max  E{||X — X|]*}. (1.35)
X=Gy | XI7<L,||6H| <p

A similar minimax approach, and model is being used in [28]. Here two problems
are being considered. In the first one the uncertainty lies in the covariance of X,
Cyx = Cx + 0Cx, where Cx is known and |0Cx|| < e. Thus, the minimax MSE

problem is formulated as

min  max E(||X — X|?). (1.36)
X=@Y |l6Cx||<e

In the second problem the covariance matrix C'y and the model matrix H are subject
to uncertainty. In this case the model matrix H is given by H = H+6H, ||6H| < p,
where H is known. The minimax problem is formulated as

min max E(|X = X|?). (1.37)
X=ay |I6Cx||<¢||6H||<p

In order to improve the performance over the minimax MSE approach, a competitive
approach is also considered in [28]. This approach assumes that H is completely
known, and seeks a linear estimator X that minimizes the worst case regret in order
to partially compensate for the conservative character of the minimax approach. The
regret R(Cx, () is defined as the difference between the MSE using an estimator
X = GY and the smallest possible MSE attainable with an estimator of the form

~

X = G(Cx)Y when the covariance Cx in known, which is denoted as M SE°. The
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minimax problem is formulated as

min max R(Cx, Q) (1.38)

G [6Cx||<e
where R(Cx,G) = E(||X — X||?) — MSE°. The linear minimax regret estimator
is shown to be equal to a Minimum-Mean-Squared-Error (MMSE) estimator corre-
sponding to a certain choice of signal covariance, that depends explicitly on the

uncertainty region.

A different approach is introduced in [16], where given a nominal statistical model,
the minimax estimation problem consisting of finding the best least-squares esti-
mator for the least favorable statistical model within a neighborhood of the nominal
model is being considered. The uncertainty model for this problem has already been
described in Section 1.1.2. The neighborhood is formed by placing a bound on the

KL divergence between the actual and nominal models described by the uncertainty
set B={fze€ F:H(fz]fz) <c}.

The authors seek to estimate a random vector X € R" given an observation vector
Y € R such that the joint nominal density of Z = [X7,Y7T]|T is Gaussian with
the parameterization (1.29). They need to find an estimator X = g(Y) and a least

favorable density f 7 which solve the minimax problem

min max J(fz,g) (1.39)
9€9 f,eB
where
_ 1 1 _
Iz = SERIX =g = 5 [ e = o))z (1.40)

For the above minimax problem it is shown that J( f 7,g) admits a saddle point and

that the estimator takes the form
g(Y) =mx + Go(Y —my) (1.41)

with G = K Xngl. This estimator is linear and yields the usual least-squares
estimate of X given Y for both the nominal density f; and the perturbed density fo.
In [16] is shown that for a Gaussian nominal model and a finite observations interval,
or for a stationary Gaussian process over an infinite interval, the usual non-causal
Wiener filter remains optimal. However, it also shows that in the causal case, the

usual least-squares estimator or the causal Wiener filter are no longer optimal, and
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a characterization is given for the structure of an optimal robust estimator and the
matching of least favorable statistical model. The optimal causal filter derived is a
risk-sensitive filter, where the risk-sensitivity parameter was selected to match the

maximum allowable relative entropy for the perturbed model.

The same minimax approach used in [16] is also applied in [11], the difference is in
the uncertainty model used. As described on Section 1.1.2, [11] uses a parametric
uncertainty model, where the uncertainty is placed in the channel // and noise I
information. Similar with [16], the KL divergence is used to measure the “distance"
between the actual and the estimated model, and the uncertainty set is defined as
B ={(Hx,R): D(H,R; H,R) < ¢}. Then the MMSE equilizer problem is formulated
by finding as

min max J(F,Ha, R) (1.42)
F (Ha,R)EB

where F'is an MMSE equalizer matrix, and (F, Ha, R) is the MSE pay-off function. By
using Lagrangian duality, the minimax problem is transformed into an equivalent
min-min problem over a convex domain, where the standard convex optimization
methods apply. Then, it is shown that the robust MSE equalizer can be obtained by

solving numerically a scalar convex minimization problem.

Although robustness issues do not appear explicitly in [29], and the minimax ap-
proach is not really implemented per say, it presents some interesting results for
filtering problems when there is uncertainty in the exact value of the probability
model. In the problems described above the minimax approach first maximizes the
MSE in order to derive the worst case measure given a specific uncertainty set. In
[29] given a measurable space ({2, F) and random variables X, Y, a function of X,
¢ = ¢(X) needs to be estimated by random variable qg € ), where Y represents the
observations or measurements. The true distribution F, is assumed to belong to a
family of probability measures {P,},c4. The minimum cost estimator is defined as
the estimator which minimizes the error cost function E,,[p,(¢ — gg] where p, is a
strictly convex function and F,, is assumed as the true model. Instead of maximiz-
ing the above error cost function, it chooses an exponential cost function. As stated
in [29], it is known from control theory that if a controller is designed to minimize

an average-of-exponential criterion then this controller implies certain robustness

*
rs’

properties. Therefore, a minimum risk-sensitive estimator, denoted @7, is defined as

the minimum cost estimator obtained by selecting p,(e) = exp(up(e)), where p > 0
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is a parameter determining the degree of “risk",
&7, = argmin / exp(up(¢ — 1)) Ta,(dz) (1.43)
PER

where 7,, is the conditional distribution of X given Y under F,,.

Furthermore, it is shown that the risk-sensitive estimators enjoy an error bound
which is the sum of two terms, the first of which coincides with an upper bound
on the error one would obtain if one knew exactly the underlying probability model,
while the second term is a measure of the distance between the true and design
probability models. The first term quantifies “good performance” under nominal
conditions, and the second term quantifies the “acceptable performance” under non-
nominal conditions. Also, the second term plays a major role in determining the class

of permissible variations from nominal.

Next, [30] deals with the problem of designing robust linear causal estimators of
linear functions of discrete-time wide-sense stationary signals, when the knowledge
of the signal and/or noise spectral is inexact. The spectral uncertainty is modeled
by choosing appropriate classes of PSD’s, G and N, and assuming that the signal
PSD fs € G and the noise PSD fy € N. The paper seeks to find the transfer function
Hj, with the smallest possible upper bound on the MSE, ep(fs, fy; Hgr) over all fg
in G and fy in N, that is the solution to the following minimax formulation

inf  sup  ep(fs, fn; H) (1.44)
HEH? (f5,fn)eGxN

The solution is given under mild regularity conditions in the terms of the least fa-
vorable pair of spectra, ( f§  f ]%,) thus reducing the minimax problem to a direct
maximization problem which in many cases can be solved easily. The solution is
based on the fact that a pair of PSD’s (f&, f%) € G x A and its optimal causal trans-
fer function H;, under specific conditions, form a saddle-point solution to (1.44) if
and only if (&, f&) is least favorable for causal estimation. Furthermore, solutions
are given explicitly for the problem of robust causal filtering of an uncertain signal

in white noise.

1.1.4 Relation of Mutual Information and MMSE

As was mentioned in Section 1.1.1 one of the most popular Bayesian estimation

techniques is the Least-Square estimation, also known as Minimum-Mean-Squared-
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Error (MMSE) estimation. Recently, extensive work has been done which connects
the mutual information between the input and the output of a channel, and the
MMSE in estimating the input given the output. In a wider context, the mutual
information and mean-square error are at the core of information theory and esti-
mation theory, respectively. The input-output mutual information is an indicator of
how much coded information can be pumped through a channel reliably given a cer-
tain input signaling, whereas the MMSE measures how accurately each individual

input sample can be recovered using the channel output.

The relation between the mutual estimation and MMSE is presented in [31], which
deals with arbitrarily distributed finite power input signals observed through an
additive Gaussian noise channel. A new formula is presented that connects the
input-output mutual information and the minimum mean-square error achievable
by optimal estimation of the input given the output. Given that the input-output
mutual information and the MMSE are monotone functions of the signal-to-noise
ratio (SNR), denoted by I (snr) and mmse(snr), respectively, the mutual information
in nats and the MMSE satisfy the following relationship regardless of the input

statistics:

I(snr) = %mmse(snr) (1.45)

dsnr

That is, the derivative of the mutual information (nats) with respect to the signal-to-
noise ratio (SNR) is equal to half the MMSE, regardless of the input statistics. This

relationship holds for both scalar and vector signals.

For the scalar signal, [31] considers a pair or real-valued random variables related
by

Y =+vsnrX + N (1.46)

where snr > 0and N ~ N(0, 1) is a standard Gaussian random variable independent
of X. Then X and Y can be regarded as the input and output, respectively, of a

single use of a scalar Gaussian channel with an SNR of snr.

On the other hand, the multiple-input multiple-output (MIMO) system is described

in [31] by the vector Gaussian channel

Y =+vsnrHX + N (1.47)
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where H is a deterministic L X K matrix and the noise /N consists of independent
standard Gaussian entries. The input X (with distribution Pyx) and the output Y

are column vectors of appropriate dimensions.

Various applications of the above relationship are identified in [31], e.g. in relating
code-division multiple-access (CDMA) channel spectral efficiencies (mutual informa-
tion per dimension) under joint and separate decoding in the large-system limit.
Also the fact that the mutual information and the MMSE determine each other by
a simple formula provides new means to calculate or bound one quantity using the
other. An upper bound for the mutual information is immediate by bounding the
MMSE for all SNRs using a suboptimal estimator. Lower bounds on the MMSE lead

to new lower bounds on the mutual information.

The low-SNR asymptotics of mmse(X; snr) is also studied extensively in [31], mainly
for the scalar Gaussian channel. The Taylor expansion of mmse(X; snr) at snr = 0
is obtained and the coefficients turn out to depend only on the moments of X. Based
on the above work [32] deals with the high-SNR asymptotics of MMSE in Gaussian
channels and defines a new information measure called MMSE dimension. The
MMSE dimension of X for the scalar channel (1.46) is defined as the limit as snr —
oo of the product of snr and the MMSE. For discrete, absolutely continuous or mixed
X [32] shows that the MMSE dimension equals Rényi’s information dimension. For
singular X, it shows that the product of snr and MMSE oscillates around information

dimension periodically in snr (dB).

Finally, based on the relationship (1.45), [33] presents some new results on mutual
information and various regularity properties of the MMSE functional are explored

together with its connections to Shannon theory.

1.2 Thesis Motivation

Robust estimation is not a new subject of study, as was already seen, and it is a
major problem in statistics and signal processing. The minimax approach, in which
the goal is to optimize the worst case performance, is one of the major techniques
for designing robust systems with respect to modeling uncertainties and has been

applied to many problems in detection and estimation, as has already presented in
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Section 1.1.3. This thesis will focus, mainly, on least-square estimation problems
when the statistics or internal dynamics describing the signal and observations are
not known exactly. A robust estimation approach is being proposed in this thesis

which employs a minimax formulation.

A measurable space ({2, F) is given on which the unobserved Random Variable,
X and the observed RV Y are defined, via X : (1, F) — (X, X%), Y : (,F) —
(Y, Xy). The objective is to estimate X by a function of the random variable Y. As
mentioned in Section 1.1.1, the classical least square estimation problem deals with

minimization of the average pay-off which can be expressed in the following ways

J(®*) = q:ier}\ffd/x yﬁ(m,@(y))d}’xy(:ﬂ,y) (1.48)
= @ierzl\ft;d /Xxyé(x,@(y))p(m,dy)dPX(x) (1.49)
= inf 0z, ®(y))n(y,dx)dPy(y). (1.50)

deX,y XxY

Clearly if /(2, ®(y)) = ||z — ®(y)||nn. then the estimate of X denoted as X = ®(Y) is
given by ®*(Y) = E[X|Y]. As was already mentioned, and shown from the literature
the signal statistics Px y or p,n are not always known. In this thesis the uncertainty
description of the system, and the nominal description of the system are modeled
by probability distributions, or general measures, defined on measurable spaces.

Moreover, two type of uncertainty models are being considered.

1. Uncertainty Models on Conditional Distributions or otherwise known Stochas-

tic Kernels;

i) When the conditional probability distribution of the measurement Y given

the signal to be estimated X, or channel kernel, is unknown;

ii) When the ¢ posteriori distribution of X given Y is unknown;

2. Uncertainty Models on Joint Distributions.

The goal is to derive new robust estimators for the above uncertainty models (this
is described explicitly in Chapter 3). Notice that (1.48) will be used when the un-
certainty is on the joint distribution, while (1.49), (1.50) will be used when the

uncertainty is on the channel kernel, ¢ posteriori distribution, respectively.
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Stochastic kernel uncertainty models are appropriate for communication system
design, in which the input message has a known distribution, while the channel
is unknown but belongs to a certain class of channels. These are nonparametric
uncertainty models which so far have not been taken into consideration. Joint
distribution uncertainty models are usually employed when both the unobserved
and observed random variables are uncertain. Joint uncertainty models are used
in [16] and [29], but [29] does not implement a minimax approach and it shows
mainly that the mean-square error for the true model is bounded by the sum of
two terms, with the first term representing the performance of the risk-sensitive
filter with respect to the nominal model, and the second term corresponding to the
relative entropy between the actual and nominal models. On the other hand [16]
employs a minimax viewpoint but uses the additional assumption that the system

considered is Gaussian and it uses a parametric approach to derive its results.

The uncertainty description of the above systems is characterized by the class of
uncertain measures which satisfy a relative entropy constraint with respect to a
nominal measure. The use of the relative entropy, also known as the KL divergence,
is rather natural as a metric for model mismatch since it is commonly used by statis-
ticians for fitting statistical models, and by using a differential geometric viewpoint
it is argued that the KL divergence is the natural geometric “distance” between sys-
tems. The KL distance constraint has been also used in robust estimation problems
in [11], [16] and [29].

By using the KL divergence various constraint sets are defined for each uncertainty
model, and for each the minimax estimation problem is solved and the worst case
measure of the true model and also the robust estimator are derived. This is done
in a generalized framework, while the estimators derived can be used accordingly to

various estimation applications.

One particular application which is investigated is the robust nonlinear estimation
for finite-dimensional autoregressive channel models found in [34], [35] subject to
an uncertainty set. Autoregressive channel models have been used with success to
predict fading channel dynamics for the purposes of Kalman filter based channel
estimation and for long-range channel forecasting. They have also been used by
several authors to simulate correlated Rayleigh fading. A specific example is the non-
coherent estimation problem, where there is an attenuated sinusoid in a multipath

environment which is subject to an additive Gaussian noise. Here an uncertainty
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model on the joint distribution is used and as before, the uncertainty set is being

described by a KL constraint.

The above problem, which is a nonlinear problem, will be addressed through a min-
imax approach. The minimax approach has not been used so far for this specific
problem and the difficulty lies in the minimization, and the way of obtaining the
solution of the @ posteriori distribution recursion in closed form. In general when
dealing with nonlinear estimation problems, approximations have to be made to find
sub-optimal nonlinear estimators. The standard method is to use the Taylor se-
ries expansion and apply linear filtering theory, giving rise to the so-called extended
Kalman filter (EKF) [5, 6, 7]. Other more sophisticated sub-optimal estimation tech-
niques are available, e.g. reiteration, higher order filters, and statistical linearization
[5]. The scope of the thesis is not to investigate general nonlinear estimation tech-
niques but to find a way to tackle the minimization in the minimax formulation.
Here the maximization is addressed using variational methods, while the minimiza-
tion is addressed using a change of probability measure technique [36]. The change
of probability measure techniques introduced is being used in order to derive recur-
sive equations for the conditional distribution of nonlinear filtering problems, which
helps us to compute the worst-case pay-off functional. Minimizing this worst-case
pay-off function gives the desired robust minimax estimators. Special emphasis is
given also to the connection between the robust minimax estimation problem and

the classical non-coherent estimation.

Even though the primal focus of this thesis is robust least square estimation some
other well-known estimation techniques, like the MAP and the ML estimation tech-
niques, are also investigated. As was described in Section 1.1.1, in the classical MAP
problem, by applying a uniform cost criterion, the estimator of x is derived through
the maximization of the ¢ posteriori (discrete or continuous) density 7(y, dz). In this
thesis instead of a uniform cost criterion, an exponential one is being used. As its
been mentioned in [29], it is known in control theory that if a controller is designed to
minimize an average-of-exponential (or risk-sensitive) criterion, then this controller
might have certain robustness properties. Hence, it is natural to consider the use of
such exponential criteria in filter design. The objective here is to derive a general-
ized MAP estimator using an exponential cost criterion and also show a connection
with the minimax approach used in the least-square estimation problem. A similar
approach is also used for the derivation of generalized ML estimator. The ML esti-

mation technique, which is not a Bayesian approach, is an alternative method for
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deriving estimators, when the parameter x is assumed to be unknown but without
being characterized by a probabilistic structure. The classical method of maximum
likelihood estimates x by finding the value of x that maximizes the likelihood func-
tion £(z) = p(z,dy). The goal is to derive a generalized ML estimator when this
likelihood function includes also an exponential function and show the connection

with the generalized MAP estimator.

1.3 Thesis Objective

The main objective of this thesis is to derive robust estimators for least-square esti-
mation problems in the presence of model uncertainties. Additional to this objective
is the investigation of a generalized MAP and ML estimation technique. These three
estimation techniques are well known and often used in signal estimation and in

signal processing.

Firstly, least-square estimation problems are investigated when the real description
of the system is unknown and the only knowledge is that it belongs to an uncer-
tainty set, or a class of systems. The real description of the system, the uncertainty
description of the system, and the nominal description of the system are modeled by
probability distributions, or general measures, defined on measurable spaces. The
uncertainty is described by a KL constraint between the unknown distribution and

a fixed nominal distribution.

Secondly, the behavior of the Maximum A Posteriori estimation and the Maximum
Likelihood estimation technique is investigated, when introducing new elements in
the derivation of the classical estimators. Generalized estimators for both techniques
are derived by altering the cost function for the MAP case and the likelihood function
for the ML case.

Chapter 2 presents background material and explains the main techniques used
throughout this thesis, which are change of probability theory and the minimax
theory.

Chapter 3 considers least-square estimation problems for classes of models and

introduces the concept of uncertainty. The uncertainty is described by a KL distance
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constraint between the unknown distribution and a fixed nominal distribution. The
theory and contribution of this chapter are developed at two levels of generality; the
abstract level and the application level. At the abstract level the uncertainly models

used are Stochastic Kernels and Joint Distributions.

Starting with the first uncertainty model, the relation between the unobserved RV X
and the observed RV Y is defined via a probabilistic mapping, 1 : X x 3y — [0, 1],

which satisfies the following two conditions:

1. Forevery z € X, the set function x(z, -) is a probability measure on Xy, (possibly
finite additive);

2. For every F' € ¥y, the function y(-, F') is X'-measurable.

The mapping p is called a stochastic kernel or transition probability and represents
the nominal system model or mapping, which is fixed. The true kernel denoted by
v:X x Xy — [0, 1] is assumed unknown. Envisioned scenarios are communication
channels whose nominal behavior is known, while its true conditional distribution is
unknown. The KL distance is used as a measure of distance between the true model
and uncertainty model, hence the true kernel is assumed to belong to the pointwise

uncertainty set,
A7) 2 {u e P H(vlp)(x) < R(x)} (1.51)

where R : X — [0,00) and H(-|-)(z) : X — [0, 0] is the KL distance between two
kernels. Additionally, the following uncertainty set is defined

Alp) & {y P /){H(ﬂ@(@dpﬂ@ < /XR(x)dPX(x) Zrl}. (1.52)

For the second uncertainty model, uncertainty on the @ posteriori distribution, the

mapping 7 : Y X Xy — [0, 1] is considered, that satisfies the following two conditions:

1. For every y € ), the set function 7(y, -) is a probability measure on X y;

2. For every I’ € ¥y, the function 7(-, F') is J-measurable.

This probabilistic kernel 7(y, dx) represents the nominal system model or mapping

(G posteriori information) and the true kernel v(y, dx), denoted by v : ) X ¥ — [0, 1]
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belongs to an uncertainty set. The following two uncertainty sets are considered.

B/(n) = {veP:Huny) <R} (1.53)

{yepz/yH(ym)(y)dpy(y)g/yR(y)dPy(y)Zrz} (1.54)

=
=
I

where R : Y — [0,00) and H(:|-)(y) : Y — [0, 0] is the KL distance between two
kernels. Additionally, the next case is investigated, where the true kernel v(y, dx)

belongs to a new uncertainty set described by

BR(n) £ {V eP: /)}H(Vln)(y)dPy(y) < /X R(z,y)vly,dz)dPy(y) + B < r3}

(1.55)

xY

where R : X x Y — [0,00), R € BC(X x Y) and H(-|-) is the KL distance between

two kernels.

Finally, uncertainty is modeled via the joint distribution of X and Y. This model is
appropriate when one wishes to model ¢ priori uncertainty. It is assumed that the
joint distribution Px y (z,y) represents the nominal system model and the true joint
distribution denoted by () € M;(X x ), is assumed to belong to an uncertainty set
described by

A
C(Px’y) = {QX,Y € ./\/ll(X X y) : H(QX,Y’PX,Y) < R}
where R € [0, 00) and H(+|-) is the KL distance between the two joint distributions.

For all the above uncertainty sets the goal is to formulate the minimax problem and
derive first the worst-case measure for the true stochastic kernel v* or true joint
distribution Q*, and then to derive the robust estimator for each case. The minimax

estimation problem can be formulated as

1(@,0) 2 /X o By, dy)aPy()

Ji(@*,v*) = inf sup Ji(P,v). (1.56)

PEXad veA(p)

This represents one of the uncertainty models. Similar formulation will be used for

all the other cases.

First, the appropriate space of measures is introduced and then the maximizing

kernel and joint measure are computed explicitly using Lagrangian functionals, and
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variational methods. Moreover, important monotonicity properties satisfied by the
optimal strategies are presented, which can be used to develop numerical algorithms
for computation of the optimal solution, and upper and lower bounds on the optimal
solution. Furthermore, in Chapter 3, several problems of estimation theory are
formulated, and solutions are sought when the models (conditional distributions,
joint distributions) are uncertain, and they belong to specific subsets of the set
of conditional or joint distributions.These examples include MIMO communication

systems.

Chapter 4 applies the theory developed in Chapter 3 to finite-dimensional autoregres-
sive channel models, and derives robust estimators for a class of uncertain models.
Similar to Chapter 3, the uncertainty is described by a relative KL distance between
the unknown joint distribution and a fixed nominal joint distribution. The abstract

channel model is given by

Tpy1 = f(k+1,24) + Brprwpgr, x9 € 1"
Y = h(k’,l‘k) + Dkvk, Yo € §Rd. (1.57)

Here x( : ) — R” is the initial state and w : Q x Ny — R, v: Q x Ny — R¢, are

random noises, all mutually independent.

The uncertainty model being used here is the joint distribution, where Pym ,» de-
notes the nominal (in the absence of modeling uncertainties) joint distribution of
the sequences (z™,y™), which corresponds to the one induced by model (1.57) and
(),m ,m denotes the true joint distribution of the sequences (z™,y™), which is un-
known. The only available information is that ()= ,~ belongs to a class of possible

distributions. This class is modelled by the information theoretic KL distance set
A
C(me’ym> = {me’ym . H(me7ym|me7ym) S R}

The minimax estimation problem is defined as

J(:i*,Q;‘:mwm) = inf sup EQZ {i@ (Tk, T } (1.58)

Tm€Xaq Qum ym €C(Pym ym) =0
where {((z, Tr) is a measure of distance between the state z;, and its estimate 7y.

In the abstract setting, the maximization is addressed using variational methods,

while the minimization is addressed using a change of probability measure technique
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[36]. Through this technique conditional expectations are related via

E [@(a:m)Am exp (% Yoo g(xk, Zf?k)) D}m:|
E| AV

E[ Tpm) €XP (%ig (g, Ty, )(ym] =
k=0
(1.59)

where A is the likelihood function of the complete data and F, E denotes expectation
under the probability distribution P, P, respectively. The change of probability
measure techniques introduced is being used in order to derive recursive equations

for the conditional density of nonlinear filtering problems.

Next, the theory developed is applied to two specific applications. Firstly to a linear
Gaussian model and secondly to an attenuated sinusoid in a multipath environment

which is subject to an additive Gaussian noise given by

y(tk) = Z Az(tk)’l“z cos(wc(tk — Tz(tk)) + QZ)S(tk - Tl(tk)) + D(tk)v(tk) (160]

i=1

Various estimators are being derived for both applications. Furthermore, for the at-
tenuated sinusoid model a connection to least-squares estimation found in [1], [4] for
single channel is established by reducing the uncertainty to zero, while generalizing

existing results.

Chapter 5 considers the classical Maximum A Posteriori estimation and Maximum
Likelihood estimation problems. The classical MAP estimator is derived by mini-
mizing a specific uniform cost function. The theory behind maximum & posteriori
estimation is being investigated when this uniform cost function is modified. An

exponential cost function is introduced defined by

ee(sz), if | X —®(y)| > A

C(X, 2(y)) =
0, if|X—d(y) <A

where / : X X X — [0,00) is an ¥y X Yy-measurable function and A > (0. By
minimizing the average cost function a generalized MAP estimator is derived. Fur-
thermore, a connection to the theory of minimax least-square estimation derived in

Chapter 3 is presented.

The classical ML estimator is derived by maximizing the maximum likelihood func-

tion. The theory behind ML estimation is investigated, when a modified likelihood
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function is being used, defined as e p(x,dy), and a generalized ML estimator is
derived. A relation with the MAP estimation is also presented. Finally, the theory

developed is applied to several examples.

Chapter 6 contains the main points of the thesis and suggests directions for future

research.

1.4 Contributions

The main contributions of Chapter 3 are the following.

1. New uncertainty models based on stochastic kernels and joint distributions

are presented for robust minimax least-square estimation problems;

2. For each uncertainty model, various uncertainty sets are defined using the KL

distance constraint;

3. The maximization problem is addressed using variational methods and for each

uncertainty model the worst case measure is derived;

4. The worst case pay-off is derived, for each uncertainty model, and by minimiz-

ing this pay-off the robust estimators are derived;

5. The derived worst case measures and worst case pay-offs are employed to
compute robust estimators for linear problems, which also include examples

from MIMO communication systems.
The main contributions of Chapter 4 are the following:

1. Aminimax least-square estimation problem is formulated for finite-dimensional
autoregressive channel models, when the uncertainty inserted is on the joint

distribution, and the uncertainty set is described by the KL distance;

2. The minimization is addressed using a change of probability measure tech-
nique, and a recursive equation for the conditional distribution is derived.
Using this unnormalized ¢ posteriori distribution, the worst case pay-off is

derived;
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3. The derived unnormalized & posteriori distribution is employed to compute the

estimator for a linear gaussian autoregressive channel;

4. The derived unnormalized ¢ posteriori distribution is employed to compute ro-
bust phase and envelope estimators for an attenuated sinusoid in a multipath

environment, which is subject to an additive Gaussian noise;

5. A connection between the derived robust results and the classical non-coherent

estimation problem is presented.

The main contributions of Chapter 5 are the following:

1. The cost function used in the MAP estimation method is defined by an expo-

nential function;
2. A generalized MAP estimator is derived using the exponential cost function;

3. A generalized ML estimator is derived by inserting an exponential function in

the maximum likelihood function;

4. The derived generalized estimators are used in several examples.
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CHAPTER 2

BACKGROUND MATERIAL

In this chapter, background material is presented and the main techniques used
throughout this dissertation are explained. In Section 2.1 the basic mathematical
concepts of vector spaces, probability theory, are reviewed following a measure-
theoretic approach and the theory behind minimax estimation techniques is de-
scribed. In Section 2.2, the theory of change of probability measure technique is

presented.

2.1 Basic Mathematical Background

In the study of systems, functional analysis plays a fundamental role. The concepts

and mathematical tools developed in this section are used in subsequent chapters.

2.1.1 Functional Analysis

Here, the basic elements of mathematics that are needed to understand systems
that can be modeled by linear or nonlinear differential equations are presented. To
fully describe the state of the process of a system at any point of time a number of
variables have to be quantified which are called a vector. Moreover, some important
results from functional analysis are presented, which will be frequently used in the

following chapters.

Definition 2.1.1. (Vector Space) A vector space over a field F' is a set of vectors Z

together with the operations of
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e additionin Z: x +vy, x,y € Z,

e multiplication by Scalar: -z, o € F, x € Z,
satisfying the following properties:

1. Associativity: (v +y) +z=x+ (y+ 2), Vz,y € Z.

2. Commutativity: x +y =y +x, Vx,y € Z.

3. Additive identity: There exists () € Z such that() + © = z,Vx € Z.

4. Additive inverse: Vx € Z there exist —x € Z, such that x + (—z) = 0, Vz € Z.
5. Ass. Scalar: a(f-z) = (a- Bz, Ve € Z, o, € F.

6. Multiplicative identity: 1 -z =z, 0-x = (), Vo € Z.

7. Scalar Mult. Distributive w.r.t. vector addition: a(x + y) = ax + Py, Vx,y € Z.

8. Scalar Mult. is Distr. w.r.t. scalar addition: (« + )x = ax + abetay, Vo, 3 € F.

Usually, a vector space over F' = R is called a real vector space and a vector space

over F' = C is called a complex vector space.
Definition 2.1.2. (Normed Space) A Normed Space is a vector space Z furnished with
anorm| - ||z and denoted by (Z,|| - ||z). The norm | - ||z : Z — R is a real valued
Jfunction defined on Z which must satisfy the following properties [37]:

) [lz]| >0V e Z:

ii) ||z|| =0 ifand only ifz = 0;

i) [zl = |all|lz]], V2 € Z, a € F;

w) |z +yl <zl +[lyl, Vz,y € 2.

Definition 2.1.3. (Cauchy sequence) Let (Z,]| - || z) be a normed space. A sequence

{z,} € Z is said to be a Cauchy sequence if [37]

lim ||zp4p — 2| =0 foreveryp > 1.
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Definition 2.1.4. (Banach Space) A normed space Z is said to be complete if every
Cauchy sequence of Z has a limit on Z. A complete normed space is called a Banach

space [37].

Definition 2.1.5. (Hilbert Space) A Hilbert space H, is a Banach space with special

structure. It is furnished with an inner (or scalar) product (, ) as defined below [37].

For any two elements f, g € H, the scalar product (f, g) is a real or complex number.
Let C denote the field of complex numbers. The map {f,g} — (f, g) has the following

properties:

H1) (af,g9) = a(f,q9) (f,ag) = a*(f,g9), « € C, f,g € H where o* is the complex

conjugate of a;
(HZ) (f791 +92) = (fagl) + (f792)7 vf:.gl:.QZ € H;
(H3) (f.9) = (9. f)", ¥V f.g € H;

HY) |[fl}=(f.f), VfeNR.

Definition 2.1.6. Let Z be any Banach space and ¢ a real valued function on Z. The
function ¢ is said to be [37]:

i) lower semi continuous at x € Z if, for every sequence {xn} converging to x,

o(z) < lim inf ¢(z,,),

n—0o0

ii) upper semi continuous at x if

¢(x) > lim sup ¢(z,),

n—o0

iii) lower or upper semi continuous on a set I' C Z, if the corresponding statements
hold forall x € T".

Let X be a Banach space with the first and second duals denoted by X* and X**

respectively. A sequence z;, € X* is said to converge weakly to z*, denoted by

*
T, — T,

if, for every 2™ € X**,

*
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and it is said to converge in the weak star topology to x*, denoted by

*
* W *
T,—T,

if, for every z € X,

Since every element of X induces a continuous linear functional on X* through the
relation Z(z*) = 2*(x), the canonical embedding X — X** exists. Hence the weak

star topology is weaker than the weak topology [37].

For simplicity let (3, dyx) denote a complete separable metric space (a Polish space),
and (X, B(X)) the corresponding measurable space, in which B(X) is the o-algebra
generated by open sets in Y. The material presented below regarding different spaces

and their duals can be generalized to locally compact separable metric spaces (3, dy).

Let &) 2 Co(X) denote the Banach space of continuous functions on 3 that vanish
at infinity, A} 2 e (X)) the Banach space of bounded continuous functions on ¥,
and X, 2 BM (X)) the Banach space of bounded measurable functions on X, all

equipped with the sup-norm. Clearly, Xy C X} C As.

It is known that the dual space Aj is isometrically isomorphic to M, (X), the
Banach space of finite signed Borel measures on (X, B(X)) (also known as Radon
measures), the dual space X is isometrically isomorphic to M., (%), the Banach
space of finitely additive finite regular signed measures on (3, B(X)), and the dual
space X5 is isometrically isomorphic to M,,(X), the Banach space of finitely addi-
tive signed measures on (X, B(X)). Note that when ¥ is compact then A7 is iso-

metrically isomorphic, the Banach space of countably additive signed measures on
(33, B(X))[38].

Definition 2.1.7. A Banach space X is said to be reflexive, if X** = X [37].

For 1 < p < oo, the L, spaces are reflexive Banach spaces. Indeed, for (1/p)+(1/q) =

1, (L,)* = Ly and (L,)* = L,. Hence (L,)** = L, and so these spaces are reflexive.

It is well known that a closed bounded subset of a finite dimensional space is com-
pact. Through this is false in infinite dimensional spaces, there is a similar result

with respect to weak topologies. This is presented in the next theorem.

Theorem 2.1.8. A closed bounded subset of a reflexive Banach space is weakly

compact [37].
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Theorem 2.1.9. Suppose f : R¢ — R is lower semi continuous satisfying the following

conditions:

— 00 < f(z) # 400, Vo € R?, and lim f(r) = +o0. (2.1)

[[z]|—o0

Then f attains its minimum [37].

In a finite dimensional space the closed unit ball is compact. An analogous result in

infinite dimensional setting is Alaoglu’s theorem.

Theorem 2.1.10. (Alaoglu’s Theorem) The unit ball B(X*) of the dual X* of the

Banach space X is weak star compact [37].

Definition 2.1.11. (Convex Set) A set S in a vector space X is called a convex set if the
line segment joining any pair of points of S lies entirely in S. The former statement is
equivalent to saying that for any pair of vectors u € S, v € S, the vector (1 —t)u+tv €
S, vt € [0, 1].

Definition 2.1.12. (Convex Function) Let E be any Banach space and f a (possibly
extended) real valued function defined on E. The function f is said to be convex if for

everyz,y € E and a € [0, 1]
(I =a)z +ay) < (1 —a)f(z) + af(y).

Similarly, if E is replaced by a closed convex subset I on E' and f satisfies the above

inequality for all x,y € T', then f is convexonT'.

Definition 2.1.13. (Gateaux differential sub differential) A real valued functional f
defined on F is said to be Gateaux differentiable at the point xy € FE if, for everyy € E,
the limit

lim(1/8){f (z0 + sy) — f(x0)} = df (0, )

exists. Further, ify — df (zo,y) is continuous and linear, then there exists an e¢* € E*

in the dual space of E, dependent on x, such that

df(x07y) = (6*, y)

The element e¢* € E* satisfying the preceding identity, is called Gateaux gradient of f
at ry € E. The function f is said to be Gateux differentiable if it is so at every point
x9 € E [37].

Theorem 2.1.14. A real valued function f defined on a Banach space E is weakly

lower semi continuous if it is convex and continuously (linearly) Gateux differentiable.
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2.1.2 Minimax Theory

Minimax techniques are often used in decision theory, game theory, statistics, based
on the philosophy of minimizing the maximum possible loss. It started from two-
player zero-sum game theory, covering both the cases where players take alternate
moves and those where they make simultaneous moves. It has also been extended

to general decision making in the presence of uncertainty.

Below the main minsup theorem is stated, which is used in this thesis; it is based

on a generalization of the von Neumann’s minimax theorem.

Theorem 2.1.15. Let X be a compact Hausdorff space and Y an arbitrary set (not
topologized). Let [ be a real-valued function on X x Y such that, for every y € Y,
f (x, y) is lower semicontinuous on X. If f is convex on X and concave on Y, then
there exists an z* € X such that

minsup f(x,y) = sup f(z*,y) = supmin f(z,y). (2.2)
2€X yey yey yey T€X

If in addition Y is a compact Hausdor{f space for every x € X, f(x,y) is upper

semicontinuous on Y, then there exists an (z*,y*) € X x Y saddle point, and

i = f(z*, ) = i . 2.3
minmax f(z,y) = f(2%,y") = maxmin f(z,y) (2.3)

Proof. See [39]. O

The following theorem will be invoked to prove the equivalence between constrained

and unconstrained optimization problems.

Theorem 2.1.16. (Lagrange Duality) [40] (page 224-225). Let f be a real-valued
convex functional defined on a convex subset ) of a vector space X and let G be a
convex mapping from X into a normed space Z. Suppose there exists an x, € X such
that G(z1) < 0 (here < is used for the ordered vector space (Z,<)) and inf{f(x) :
G(z) =20,z € Q} is finite, then

inf{f(z) : G(z) <0,z € Q}
— max ( inf {f(x) + (G(x), z*)}) (2.4)

z*>0

and the maximum on the right is achieved by some z; = 0, z; € Z.
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2.1.3 Measurable Space and Probability Space

The mathematical model for a random experiment is the probability space. Before
it is introduced, the class of measurable functions which play a fundamental role in
integration theory, and hence in measure theory are reviewed. There is an analogy
between the concepts of topological space, open set, and continuous function and

measurable space, measurable set, and measurable function.

Definition 2.1.17. (Topological Space) Let Z be a set and Bz a collection of subsets
of Z. Then Bz is called a topology in Z if the following properties hold [41].

i) © € Bzand Z € Bz;
i) If Z, € Bz,i=1,2,...,n, then 0?21 Z, € Bz

iti) If{ Z;}is an arbitrary collection of elements of Z (finite, countable, or uncountable),
then Uz Zz S Bz

The pair (Z, Bz) is called a topological space and the members of 3z are called open
setsin Z. If f : (Z,Bz) — (Y,By), then f is continuous provided f~}(Y;) C Z
is an open set for every open set Y; C Y. Moreover, f is continuous at the point
xro € Z if for every neighborhood (nbh) A of f(z() there exists a nbh B of z, such
that f(B) C A.

A topological space (Z, Bz) is said to be T5 (or is said to satisfy the T5 axiom) if given
distinct x,y € Z, there exist disjoint open set U,V € Bz (that is, U NV = ©) such
that x € U and y € V. AT, space is also known as a Hausdorff space. A Hausdorff
topology for a set Z is a topology Bz such that (Z,Bz) is a Hausdorff space.

Definition 2.1.18. (Algebra) Let ) be a set of elementary outcomes and F be a non-
empty collection of subsets of ). Then F is called an Algebra on () if the following
properties hold [41].

i) 2 € F (The Sample Space is an element of F);

ii) If A € F then A° = Q — A € F, where A¢ is the complementation of A relative to
Q (if a subset of §2 belongs to F, then so is its complement);

i) IfA; € F,i=1,2,...,n, thenJ!_| A; € F (if a finite number of subsets belong to

JF, then so is their union).
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Clearly, an algebra is a collection of subsets of a set (), which a) contains () and b)
is closed under complementation and finite unions. The members of F are called

JF-measurable sets or measurable sets.

The collection of finite unions of half open intervals (a,b],—0c0 < a < b < oo in
R is considered. This collection is a field. However, the open interval (0,1) =

Un2,(0,1 — 4] is not in the collection although it contains each interval (0,1 — 2].
1

n?

(o9
n=1

Similarly, it does not contain the singletons {z}, although {z} = [, (z — =, z].
Therefore, in order to consider sequences of events and convergence of sequence of
events, it is necessary to extend the operations on events to countable set operations.

This gives rise to a o-algebra which is closed under countable unions.

Definition 2.1.19. (0-Algebra) An algebra F on ) is called a o-Algebra on §) if it is

closed under countable unions, that is if the following properties hold [41].

i) Qe F;

ii) IfA € F then A° € F;

i) IfA; € Fi=1,2,... then|J2, A, € F.
If F is a field the pair (2, F) is called a measurable space and the elements of
F are called Events and are said to be measurable sets in ). Fields and o-fields

are convenient mathematical objects which express how much is known about the

outcome of the experiment.

Remark 2.1.20. If f : X — Y, X is measurable Space, Y is topological Space, then f

is said to be measurable if {~}(V) is a measurable set in X for every opensetV inY.

Since the intersection of arbitrary o-algebras of subset of () is a o-algebra of subsets
of ), then for an arbitrary family A of subsets of ¢) there is a smallest o-algebra F
in  such that A C F.

Theorem 2.1.21. (Smallest o-algebra) Let () be a sample space and A be a collection
of subsets of (). There exists a smallest o-algebra F(A) on ) containing A, which is

constructed by

F(A) = ﬂ {N;; N; is a o-algebra on 2, A C N;}.
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This is called the o-algebra generated by A, and it is often denoted by F(A) = o(A).

Borel Set. Let X be a topological space (e.g., X = R"; the collection of all n-tuples
{z = (21,29, ...,2,) : & € RN, 1 < i < n}. Then there exists a smallest o-algebra
F on X such that every open set A C X belongs to . The elements A € F
called Borel sets and the o-algebra F = F(X) is called a Borel o-algebra. For
example, if X = R”, and A is the collection of all open sets of R", the Borel o-
algebra denoted by B(R"), contains all open sets, their complements (closed sets),
all the countable unions of open sets, and all the countable unions of closed sets. In
fact, B(R") =the smallest o-algebra of subsets of R" containing all sets of the form
{z 121 € Aj,29 € Ay, ...z, € A, }, where A, are intervals on R which are closed,
open, semi-open, points, etc. Clearly, A =Collection of all open intervals of R”" is not
a o-algebra, but there exists many o-algebra containing .4 as a subset. The smallest
o-algebra containing A is the o-algebra generated by A. The pair (R", B(R")) is a

measurable space, called, the Borel measurable space.

Probability Space. In order to grade the possibility of occurrences of events associ-
ated with a random experiment a function (a map) has to be defined which attaches a
numerical value to events A € F. A function i : F — [0, 0] is called a finite-additive

set function, if y satisfies the following two conditions.

(FA1) p(e) = 0;
(FA2) w(A| JB) = u(A)+ u(B), if A,B € F and AN\ B = 0.

A finite-additive set function p on an algebra F (or a o-algebra ) is called a measure,
if it is countably-additive and a probability measure if it is countably-additive and

1(2) = 1, hence the following definition.
Definition 2.1.22. (Probability Measure) Let (), F) be a measurable space. The map
P:F 0,1, P(A)€[0,1], VA e F

is called a probability measure on (€1, F') if it satisfies the following properties.

i) P(¢)=0;
i) P(Q) = 1;

i) P(Ui2, Ai) = Y oy P(A:), if A; € F, Vi and {A;}52, are disjoint,
e.g., AiA; =@,Vi#j.
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The triple (2, F, P) is called a probability space [41].

Completeness of Probability Space. A probability Space ({2, F, P) is said to be
Complete if whenever B € F and P(B) = 0then A € F for all A C B. The subsets A
of an event B of zero probability is called a null set, therefore ({2, F, P) is complete
if 7 includes all events of zero probability. Any probability space ({2, F, P) which is
not complete can be uniquely extended to the o-algebra F = F \/{Null Sets}.

Definition 2.1.23. Let ({2, F) denote a measurable space and P a positive measure
ponf. Let f be a measurable function on (), F). Define

11,2 { [ 1P @)}’ 1<p <o

LP(Q, F, P) is the set of all measurable functions f on (£, F) for which ||f|, < oo.
| f]l, denotes the LP-norm of f.

Definition 2.1.24. (Mutually Independence) The events {A;}"_, are said to be mutu-
ally independent if

Jor all non-empty subsets {iy, iz, -, ix} of {1,2,---,n} [41].

Remark 2.1.25. Pairwise independence between events does not imply mutual inde-
pendence of all events. Disjoint events are not independent since if A, B are disjoint
and independent events then 0 = P(A(\B) = P(A)P(B) = P(A) and/or P(B) are

zero.

2.1.4 Random Variables

Let (21, F1) and (€29, F2) be two measurable spaces, and let f : (21, F;) — (Qq, F2).
Then the function f is called F;/F; or F; measurable if

FUA) E{w: fw) € A} € Fy, VA € F.

The set f~!(A) is called the inverse image of A € F,. If f : Q@ — Y where (Q, F) is a
measurable space, Y is a topological space (e.g., R"), then f is F/B(R")-measurable
provided f~(V) € F for every open set V C Y.
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The o-algebra F(f) generated by [ is the smallest 0 — algebra on {Q containing all
the sets {f~!(V) : V C Y is open} and f will be F(f)/B(R"). Moreover, if Y = R"
then

F(f)y={f(V): vV eB®R"}
Clearly, if (2, B) is a Borel measurable space and f : {2 — Y, where Y is a topological
space and f is a continuous function, then from the definition of continuous function
fH(V)eB, V opensetV CY. (2.5)

Hence, every continuous function is Borel measurable, called Borel function, e.g.,

f: (R, B(R")) — (R™, B(R™)) is a Borel function.

If a probability measure P on (Q, F) is defined, where X : (Q,F) — (R, B(R")),
is a measurable function then X is called a Random Variable (RV) defined on the
probability space (2, F, P).

Definition 2.1.26. (Random Variable) Let X : 2 — R" be a function defined on
a probability space (2, F, P). Then X is called an n-dimensional Random Variable

(measurable function)
X:(Q,F)— R",BR"))
if for every A € B(R") the set
XA 2 {w: X(w)e A} e F.

Clearly, the o — algebra F* (or F(X)) generated by X is the smallest o — algebra on

(2 containing all the sets
X1 (A) : AC R"is open
under which X is measurable. Equivalently,
FX = XTUBR) = {X1(B) : B e BR")}

is the smallest o-algebra on () under which X is measurable. However, B(R") is

generated by products of open sets of the form
{r:—co<m <a,...,—c0o<z,<a,},a; €R,1<j<n (2.6)
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therefore for X to be a RV it is sufficient for every set of the form
{w:Xiw)<o,...,. Xpw) <o}, o eR1<5<n

to be an event. This is because B(R") is the family of subsets obtained by starting
with (2.6) and taking repeatedly all complements, countable unions, intersections.
Also, if {X; : 0 <t < T} is a family of random variables F;* = o(X;:0<t<
T) = Vyer F(Xy) = 0(Uper F(Xy)) is the smallest o-algebra on {2 under which
{X;:0 <t <T} are measurable.

Complex Random Variables. A complex square matrix () is called Hermitian if () =

Q' (where 1 denotes complex conjugate transpose), and has the following properties
[42]:

i) The eigenvalues of a Hermitian matrix are real.

ii) The diagonal elements of a Hermitian matrix are real.
iii) The complex conjugate of a Hermitian matrix is a Hermitian matrix.

iv) If () is a Hermitian matrix, and B is a complex matrix of same order as (¢ , then

B@B is a Hermitian matrix.
v) A matrix is symmetric if and only if it is real and Hermitian.

vi) Hermitian matrices are a vector subspace of the vector space of complex matri-

ces. The real symmetric matrices are a subspace of the Hermitian matrices.

vii) Hermitian matrices are also called self-adjoint since if () is Hermitian, then in

the usual inner product of C" , we have (uQv) = (Quv) for all u,v € C".

A complex Random Variable (RV) Z € C" is simply a pair of real RVs of " such that
Z =X+7jY. (2.7)

It is therefore always possible to treat all the problems concerning complex RVs by

using a real RV of %*" dimension.

A complex random vector Z € C" is said to be Gaussian if the real random vector
R(Z)

Z € R?" consisting of its real and imaginary parts, Z =
3(2)

is Gaussian. Thus,
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to specify the distribution of a complex Gaussian random vector 7, it is necessary

to specify the expectation and covariance of Z, namely

E[Z) € " and E|[(Z — E[Z])(Z — E[Z])T] € R22,

A complex Gaussian random vector Z is circularly symmetric if the covariance of the

corresponding Z has the structure
(2.8)

for some Hermitian non-negative definite () € C"*". Note that the real part of an
Hermitian matrix is symmetric and the imaginary part of an Hermitian matrix is anti-
symmetric and thus the matrix appearing in (2.8) is real and symmetric. In this case
E((Z — E|Z))(Z — E[Z])T] = Q, and thus, a circularly symmetric complex Gaussian
random vector 7 is specified by prescribing E[Z] and E[(Z — E[Z])(Z — E[Z])1].

2.1.5 Distribution Function

Let (Q,f, P) be a probability space and let X : (2, F) — (€, F1) be an F/F;-
measurable RV. From the point of view of computations, it is often convenient to
work with an induced measure on F;. This amounts to defining the probability
measure induced by the RV on its range rather than treat points with respect to the
measure P, and work with a probability measure on F; with w € (); as its sample

values.

For the specific case, the RV, X : (2, F) — (£, F}) induces a probability measure
Px on (44, F1) by

Px(A) 2 PoXY(A) = Plw:X(w) € A}
= P(XGAl), Alefl.

If (21, F1) = (R, B(RN)) then someone can work with a probability measure on B(R)

with x € R as its sample points.

Definition 2.1.27. (Probability Distribution) Let ({2, F, P) be a Probability Space and
X (Q,F) — (R, B(R) a RV. The function Fx(-) defined as

Fx(z) 2 Pw: X(w) < 2}) = Px(X < 2)
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is called the (cumulative) probability distribution of X .

Thus, the relationship
Px(A) = P{w: X(w) € A})

defines a probability measure Py on (R, B(R)). Note that Fx(z) is a probability dis-
tribution defined on R, e.g., it corresponds to the probability measure corresponding
to P induced by X (-) on R.

Suppose X, Xo, ..., X,, are n real-valued RV’s and X = (X1, X5, ..., X,,) , then
X (Q,F) — (R, B(R"))
is a measurable function. The function
Fx(z) = Fx(x1,29,..x,) = P{w: Xij(w) < zj,i=1,..n}),z € R"

is called the joint probability distribution function of X. Similarly as above, the

relationship
Px(A)=P{w: X(w) € A}), A€ B(R")
defines a Borel probability measure.

A real-valued RV X is said to be discrete if there exists a countable set S = {x;}
such that

Z PHw: X(w)=a;}) = 1.

z; €S
If X is discrete, then the distribution function F'yx is a function which is constant
except for jumps at z;, i = 1,2, ..., the size of the jump at x; being P({w : X (w) = x;}).
For an arbitrary Borel set A,

Px(A)= >  PHw: X(w)=u}).

xiEAﬂ S

Let P be a probability measure on (R", B(")). It is said to be singular (with respect
to the Lebesgue measure) if there exist a set S € B(R") such that P(S) = 1 and

the Lebesgue measure of S is zero. On the other hand, P is said to be absolutely
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continuous (w.r.t. the Lebesgue measure) if Lebesgue measure of (A) implies P(A) =
0. Clearly, if X, Xs, ..., X,, are discrete RV’s, then Py is singular. If X, X5,...., X,
are such that Py is absolutely continuous, then there exists a non-negative Borel

function px(z), x € R" such that

Py(A) = /A px(2)dz, A € B(R™).

The function px is called the probability density function for X. In terms of the
distribution
T Ty
Fx(x1,z9,...2,) = / / px (1, .oy p)day..dxy,

which implies
A o
=—)F

8x18$n X(
Definition 2.1.28. (Stochastic Kernel) Given a measurable space (€2, F) on which the
RVs, X and Y are defined, via X : (0, F) — (X, Xx), andY : (Q,F) — (I, Xy),
respectively, then the relation between the RV X and the RV Y is defined via a

px(T1,...25) L1, T,y ey L),

probabilistic mapping. The mapping i1 : X x ¥y — [0, 1] satisfies the following two

conditions:

(i) For every z € X, the set function u(z,-) is a probability measure on ¥y, (possibly
finite additive);

(i) For every I € ¥y, the function p(-, F') is X-measurable.

The mapping 1 is called a stochastic kernel or transition probability.

2.1.6 Duadlity Relation Between KL Distance and Free Energy

Next the basic definitions and duality relations are introduced between Kullback-

Leibler (KL) distance, free energy, and cumulant moment generating function.

Definition 2.1.29. Let v, u € M (X) (the set of probability measures) and { : ¥ — R

a measurable function.

1) The moment generating function of ¢ with respect to 1 is defined by

M, (s) 2 E, (e“) = /Ee‘%d,u € (0,0, s € R. (2.9)
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2) The cumulant generating function of { with respect to 1. is defined by

U,(s) 2 log M,,(s) = 1og/zeszdu, s€eN. (2.10)

3) The free energy of { with respect to y is defined by E(¢, 1) 2 U,(1) € (—o0, 0.
4) The KL distance of v € M (%) with respect to u € M;(X) is defined by

H(v|p) 2 fz 10%(3—;)d1/, ifrv<p
+OO, otherwise.

It can be shown that £(¢, 1) as a function of ¢ is convex, H(v|u) as a function of
p,v € M(X) is convex in both arguments, M,(s), V,(s) are convex functions of
s € R, and H(v|p) > 0, and H(v|p) = 0, if and only if 4 = v. Moreover, H(v|u) is

often used as a measure of discrepancy between two probability measures.

The moment generating function (2.9) and cumulant general function (2.10) are often
employed as pay-off functions in nonlinear stochastic control problems to achieve

robustness. Such pay-off’s are called risk-sensitive [43],[44].

2.2 Change of Probability Measure

A basic technique used throughout this dissertation is a change of probability mea-
sure starting with probability P. A new probability P is defined such that under
P the observations are independent and identically distributed random variables.
Calculations take place in the mathematically ideal world of P which allows inter-
change of expectations and summations. They are then related to the real world by
an inverse change of measure. The measure change concept is the key to many of

the results in the following Chapters.

Change of measure is a fundamental theorem in measure theory known as Radon-
Nikodym Theorem. A version of Radon-Nikodym Theorem suitable for probability

measures, is stated here.

Theorem 2.2.1. (Radon-Nikodym Theorem)

Let (2, F, P) be a probability space, and let P be another measure defined also on F
such that P is absolutely continuous with respect to P (P < P), namely,

52



2.2. CHANGE OF PROBABILITY MEASURE

P(B)=0= P(B)=0, VB € F. (2.11)

Then there exists an F-measurable function ¢ : Q — R, such that ¢ € L'(Q,F, P)

and,

P(B) :/qu(w)dP(w), VB e F. (2.12)

The function ¢ is unique except on a subset of P-measure zero.

This_function ¢ is often written as ¢ = 4P| and is called the Radon-Ni ilkodym derivative

P | »
(RND) since it satisfies

P(B) :/df:/gde, VB e F. (2.13)
B B

Lemma 2.2.2. Let (2, F) be a measurable space, and let P, and P two measures
defined on (2, F) such that P is absolutely continuous with respect to P and vice

versa (mutually absolutely continues), namely,

P(B)=0= P(B)=0, VB € F,
P(B)=0= P(B)=0, VB c F. (2.14)
Then, given ¢(w) 2 Z—? the two measures can be expressed as
].'

P(B) = / 6(w)dP,

P(B) = /qu—l(w)dﬁ (2.15)

Equivalently, for any random variable X : ) — R, the following holds

FIx] = Bipx] = B[S X].
dP }

E[X] = E[¢p~'X] = E[d—ﬁx (2.16)
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where E and E denote expectations under P and P, respectively.

Plo) = [ o)) =1,
P(w) = /qﬁ_l(w)dﬁ(w) = 1. (2.17)
Theorem 2.2.3. (Conditional Bayes Theorem)

Suppose (€2, F) be a measurable space and G C F is a sub-o-field. Suppose P, and P
are two measures defined on (), F) such that P is absolutely continuous with respect
to P and vice versa, with RND % = A and % = A~'. Then if X is any integrable

F-measurable random variable,

— EAX|G] —
EX|G] = ﬁ, P —a.s.
EAN'X
Proof. See [41]. [l

2.2.1 Change of Probability Measure for Random Processes
Definition 2.2.4. A Random Process (RP) {®r}, k € N 2 {0,1,2,3,...} is said to
be { Fi. } k>0 adapted if Oy, is Fj-measurable for every k € Nj.

Lemma 2.2.5. Let (), F, P) be a complete probability space and let {F;.}, {F)}, k €
Ny be complete sub-sigma fields of F such that .7:,3/ CF.CF, V ke N.

Let @ : Q x Ny — R, a RP such that {®,} is {F,} adapted, and ® € L' (2, F, P).

Then

B[\ @4 | 7]

i : (2.19)
E[AL|FY]

B[] 7] =

A 1A 4P -
where A, = €| A =49B) P_qas, E[A =1
dP |z, k dP 7 k
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2.2.2 Change of Probability Measure for Linear Systems

Let (2, F, P) be a complete probability space on which {z}, {yx}, k € Ny are
defined by

Thr1 = Ap1Zp + Brpwegr, o € R (2.20)
Yo = Ciprp+ Dyvg, yo € R (2.21)

Assume the following conditions hold:

i) w: Q2 x Ny — R™ is an independent and identically distributed (iid) sequence

with density

1 7'LUT'U.)
W@ 2, wkNN(O,[m>,

Doy (w) =

(ii) v:Q x Ny — R?is an iid sequence with density

1 —’UTU

G € e VO

(I)Uk (U) =

(iii) zo : 2 — R" is a Random Variable (RV);
(iv) {xo, {wi},{vy}} are mutually independent;

W) Dy >0, Vke N,.

Next, the o-algebras are defined

Gy
f£7y

0—{3307:1717 oy Ty Yo, Y1y - - - 7yk}a vk € NO
O{Z/anla <. 7yk}7 vk € NO-

> I

{G}, {F}, Vk € N, are the complete filtrations generated by
{To, 21, Tk, Yo, Y1, - - - Uk} {Y0, Y1, - - -, Ur }» respectively, Vi € No.

A. Measure Change of the Observation Process

The RV on ({Gx}, P), is considered, defined by

(I)Uk (yk)
q)vk (Uk) ’
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setting also
AGETT A (2.23)

Then A;' > 0, a.s. and in particular E[A;'] =1, Vk € Ny, which can be shown as

follows
P () o P ()
EAY] = E{ |D,| =2 ]:E[E{ |Dy| =2 QHH
k g D, (vs) g D, (vs)
k—1
P, (yS) { ®, (yk)
_ E{ 1D,|=29) gl D, | ‘gk_l .
g D, (vs) Dy, (vx)
But given
k—1
v (3/8) -1
H|Ds‘ - =N
s=0 (bvs(vs)
and
P, (Yx) Dy, (yr) L
B(1Dd g G ] = [ 1D, (v0)don = [ D40y ()l Ds] e = 1
@, (ve) 17 wi Py (vr) " R ’
(here change of variables is being used, vy = D; '(yr — Crzy), dvp = |Di| ‘dyy).
Therefore

ENY =EANY ] =...=EAY] =1

Hence, A, ' can be used to define a new probability measure P on (€2, {G,}) through
the RND

ar =A,' or dP(A) = / AN (w)dP(w), YA € Gy (2.24)
dP Gk A

Next it is shown that under the new measure P, the observation process {y;}, Vk €
Ny is a sequence of iid RVs with density {®,, (-)}, Vk € Np.

Lemma 2.2.6. Let (2, F, P) be a probability space on which (2.20), (2.21) are defined.

Next, define

= k

dP B D, (ys)
— | =At =] 1Dz
dPlg, k | S|<I>US(US)’

where v, = D;1(yk — Cyx1,). Then under measure P the sequence {y;)}, k € Ny is iid
with density

s=0

e_yTy/2
P, (y) = W =&, (y), Yk € No.
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A
Proof. For s € R4, the event {y; < s} = {y} < s',...,y¢ < s} is considered

P({m < SHG1) = Bllumrss
B[ A o=
]
B AL D5 Lzl
17
G |

G|
G|

G|

Dy, (
[ k— 1|Dk| kyk

Dy, (
E ID | s ’“y’“ S (@)<s}

[|Dk| (I)%(yk) G- 1]

But given

B[1pg

‘Qk 1 / !Dk\

(using change of variables, dy, = |Dk|dvk). Therefore

By, (04) oy = / Doy () dye = 1
Rod

51 Sd
?<{yk < 5}|Qk_1> :/%d Tty @) <53 Poy (Ur ) dyie =/ / Q, (yr)dyr, q.e.d.

Remark 2.2.7. The above result shows the following.

I. Start with a complete probability space (Q, F,PAGY{FY }) on which (2.20),
(2.21) are defined.

Define A" = [T, |Ds|32

Then A,;l defines a new measure P < P under which:

1. The distribution of {x},} is the same under P and P.
2. The sequence {y,.} is an ({G,}, P) Gaussian sequence with density

e—vy/2
P, (y) = @n? =, (y), Vk e No.

3. The inverse of A,;l can be used to define a new measure P < P by setting

k

dpP 1Dy (vs)
e - A - Ds I—U.s u .
dP G g H | | q)vs(ys)
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II. Start with a complete probability space (Q,]—" , P, {G:}, {.7-",3} }> on which {x},
{yr}, k € Ny are defined by

n
Tpt1 = Ap1Tk + Brr1Wir1, o € R

e~ /2
{yr} is an iid sequence with density ®,, (y) = i
Let
k
P, (D7 (ys — Csy))
Ak — (Afl)fl — ‘DS|—1 s S )
g g Dy, (ys)
Then j—g = A, defines a new measure P < P under which:

Ok
1. The distribution of {x;,} is the same under P and P.
2. The sequence {v..} is an ({Gyx}, P) Gaussian sequence with density

—v v

e

P, (v) = W = ®,,(v),

A _
where v, = Dk 1<yk — kak) = yr = Crxy + Dyuvy.

B. Measure Change of the State and Observation Process

Start with a complete probability space (2, F, P, {G,.}, {F)'}) onwhich {z}, {yx}, k €
Ny are defined by

Tpp1 = AppTp + Brpiwgyr, 20 € R, (2.25)

Yo = Crprp+ Dyvg, yo € RY (2.26)
where

(i) w: Q2 x Ny — R" is an iid sequence with density

1 —wlw

G ¢ e N

(I)wk ("LU) =

(i) v:Qx Ny — R4 is an iid sequence with density

1 7’UT’U

omiz ¢ " vk ~ N0, La);

cbvk (U> =
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(iii) zo: 2 — R™ a RV;
(iv) {zo, {wk},{vr}} mutually independent;
(v) Dy >0, Vk € Ny;

(vi) BkBg > 0, Vk € No.

Next, define
dP| & i
Dl 2 A—l — /\—1’
dP Gk k g
-1 _ Do, (y&) dP | 14 .
where A\~ = | Dy @U:(Uk) and set 5 o A, ". Then, a new probability measure is
introduced

Thp1 = App1Tp + Brp1Wiia
<Q,]:,P, {gk}v{fg}> :
{yx} is an iid seq. with density ®,, (y) = @, (y).

Next, start with ({G;}, P) and define a new measure P under which

( {x;} is an iid seq. with density

_ o (1) = Py (w) = (2m) /2 e/

(Q’f,P, {gk}v{fg}> :
{yx} is an iid seq. with density

[ Py (y) = P, (y) = (2m) /2 V"0

To this end, the ({G;}, P) RV is considered, the following is defined

(Pwk (xk)
q)wk (wk) 7

1 A

py, = |Bil k€ No

and set
i Pu ()
Mt =1 |Bs| 22
k g | | q)ws (ws) )

then E[M, '] =1, P —a.s., Vk € N,.

59



CHAPTER 2. BACKGROUND MATERIAL

Hence, M, ' can be used to define a new probability measure on (2, {G;}) through
the RND

dP — _
PN Mt or dP(A) = / M 'dP(w), VA € Gy,
dP G A
Notice that
5] -1 —1dﬁ —1x-1
dP = M, "dP = M, d_PdP:Mk A, dP
and hence
dP dP dP
- = e — — M_IA_I
dP dP (7% dP Gk K k

defines a change of measure from P to P.

Next it is shown that under the probability space (Q,]: P, (G}, {FY }) {zx} is
an iid seq. with density ¢, (z) = ®,,(w), and {y;} is an iid seq. with density
(I)yk (y) = q)vk (y)

Lemma 2.2.8. Let (Q, F, 1_3) be a probability space on which

T = Ap1Tp + Brp1Weyr, 20 € RN

{yx} is aniid seq. with density ®,, (y) = @, (y).
Define

dP i (z,)

®
—| =M= |]|B]"%.
dP g, b 81_[1 | |<I)ws (ws)

Then under measure P the seq. {z}} is iid with density

e—xTx/Q

CIDIk(x) = (I)wk(l') = W’ vk € No.

Proof. For s € R" the event {z;, < s} is considered

ﬁ({iﬂk < 3}‘gk—1> = E[[{w:xk(w)gs} gk—1:|
E[[{w:xk(w)gs}Mj;llgkfl}

]
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Enl Doy, (2k)
E[ k I‘Bk‘ . wZ)I{W g (w)<s} gk*l

E| M, | By %’“((xk)) Or-1
= D, (x 1
E [’Bk| %Zgwi)) I{w'xk(w)<s} Gr—1

E |B |¢‘wk(xk) gk 1

But given
D, (x
Bllag o] = [ 1BIG uwdu = [ (B, o,

Rn Dy, (W) R"

(using the change of variables, w;, = B,;l(xk — Apwp_1) = dwy, = |Bg|'dry), which

implies the desire result. O

Remark 2.2.9. The above results show the following

1. Starting with

Tpt1 = Ap1Zk + Brr1Wi
(Qaf7 P7 {gk}a {-7'—13;}>
{yx} is aniid seq. with density ®,, (y) ~ N(0; 1,).

Let

= [t

s=1 w.s (ws)

Then ]\/[,;1 defines a new measure P <P (e g., : Pl = M,;l) under which:
k

1. The distribution of {yx} is invariant.
2. {zx} isan (gk,?) Gaussian seq. with density N(0; I,,).

3. The inverse of M, ! can be used to define a new probability measure P <P

by setting

o 1 P (B (s — A )
=M= H Py, (24)

where wy, = B,;l(:ck — Agzy_1) is aniid seq. with density N(0; I,,).

61



CHAPTER 2. BACKGROUND MATERIAL

II. Start with

_ {zx} isan ~ N(0;1,) iid seq.
(2.7 PAGHAF)
{yr} isan ~ N(0;1;) iid seq.

k
®, (B! — Az,
M, = H ws ( s (s sLs 1))

Dy, (25)

s=1

Then M), defines an new probability measure by setting % ; = M), under which:

k

1. The distribution of {yx} is invariant.

2. {wy} is an (Qk,ﬁ> iid seq. with density N(0; I,,) where

A |
wy = By (v — AkTi—1) = Tpp1 = Ak 2k + Brpi Wiy

C. Change of Measure from iid Sequences
Here it is shown how the dynamics

Tpp1 = A1k + BrpWiyr, 19 € RN°
<Q,f,P’ {gk}a{fg}) :
yr = Cry, + Dyvy yo € R4

of (2.20), (2.21) can be introduced starting with an initial probability space

e—;sz/Q
T ~ N(O, In) = (I)wk (LL’) = (2m)n/2

(Q,f,?, (G}, {fg}) :
e—uTy/2

gk ~ N(0; 1a) = @, (y) = G-

Define the sigma fields

(o
7

U{$0>---7Ika?/0a-~->yk}

O—{y[)) s 7yk}7

> >

where Gy, F are complete and the complete filtrations {G.}, {F'}.

Let

@,y (Dy ' (y0 — Cozo))

Ao =
" | Do| Py (y0)
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and
Dy (D (g — Cr)) | W (By (2 — A1)
Ay = k>
| Dk | P, (yr) | Bie| Vo, (1)
Set
k
Ay = H As. (2.28)
s=0

Then define a new measure P on <Q, {Qk}> by setting
dP
bl — (2.29)
dP '%k

It will be shown that under P,

Vg

> e

D;l(yk — Ckxk), k’ € Ng
Wk Bil<$k = Akl'k,l), k € Ny
are iid seq with density N(0; I,), (0; ), respectively.
Lemma 2.2.10. On <Q, F | and under measure P the seq. defined by

A
v = Di'yw — Cry), k€ Ny
A

Wi, Bgl(ﬂﬁk—Akl’kq), k= 1,...,K
are iid and
—vTwv/2 —wTw/2
e e
Dy, (v) = (@m)i’ Wy, = ISR

Proof. f:R? — R, ¢g:RN" — N are supposed to be bounded and Borel measurable.
It is sufficient to show

E[Q(wk)f(ﬂk)‘gk—l] :/

md

D, (v)f(v)dv x / Uy, (w)g(w)dw.

T

Starting with,

gl

9@ fOAGea] B[ Nuglwn) f(00)| Gt ]
f[Ak‘gk,l} N E[Ak‘gkfl]

E[Q(wk)f(vk)‘gk—l] =
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(The fact that A;,_; is G,_; measurable is used above).

Also,
= =[o,,( yk—Ckak)) Wy, (B 1(37k—AkiUk 1
E[A‘Q_} :E[ At x sk ‘g
R |Dk|¢vk (ue) | Be| Wa, (1) !
= | = Q) —
_ E{E[ Yyp — Cray))
|Dk|‘1>vk (Y)
Vo (mk_Akxk 1 ‘
k
|Bk~|‘1’wk($k Gi—1, Tk | |Gk—1
_ f{ W, (By ' (2x — Apry_r)) z
|Bk|‘1’wk($k)
X{ \Dk@vk o) ’gk 1, Tk | |Gr-1
Furthermore,
=[P (Dy ' (g — Cry)) 1 @y, (Dy (g — Ciry))
F| "k ‘g_,a: = Yed Tk D, (yp)dyr =1
| Do) 1 T D S ) ()
Therefore,
= 1 \I/w (Bil(ilik —Akl’kfl))
E[)\k‘gk—} B Wy, () dy,
S A ) A e «{
1
= — \I[wk(Bk_l(xk‘ - Ak:vk_l))dxk =1.
| Bi| Jgn
Consequently,

gl

Blg(w) f)|Gii] = B gwn) f(oe)|Gii]

|:\ijk(Bk_1(xk - Akxk—l)) (ka(Dlzl(yk - Ckxk))
| By |V, (1) | Die| o, (yr)

< g(By (ox — A ) F(Dy (e — Cr) gm}

I ‘Ilwk (B,;l(xk — Akxkfl)) (ka (Dlzl(yk - Ckxk))
- E{E[ By U, (13) Dyl ()
g}

xg(By, (2x — Agn—1)) (D (g — Craxy))
gkl}'

I
Sl

Gr—1, xk]

U, (B (xr, — Apy—1))

=[®, (D, (yr — C, _
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Isolating
=[®u, (D (ys — Chr)) -
F| "k Dy, — _
{ |Dk|q)vk(yk) f( Lk (yk Ckﬂfk)) Gr—1, T
1 D, (D; " (yr — Crr)) —1
= D - C d, d
1
=t | @) £w) dulDul [dn = Dilde]
| Die| Jpa
which is independent of xg, 1, ..., 2x_1,Y0,- - -, Yr_1 €.8., it is Gx_; independent.
Therefore,
E[g(wk)f(vk)‘gk,l] = /W D, (v)f(v)dv x / Uy, (w)g(w)dw.

D. Change of Drift and Signal

The following two systems are considered
T = Ap1Tp + BrpiWigr, 79 € N”

(Q,f, P, {G:}, {f,i’}) : (2.30)
yr = Crxg + Dyvp, yo € R?

Thi1 = App1og + Brpiwis, 0 € R”
(Q,f, P.{G}, {Eﬁ’}) : 2.31)
Ye = Crxr + Dyvg, Yo € RY.

Next, it will be shown how to define system (2.30) from (2.31), which is equivalent to
determining 42| .
g ip G
Clearly,
dP B dP dP
dp Gk dP d]s gk’

where P is a measure under which {x;}, {5} are iid and normal.

Thus,

ar
dP

k
. =Ak=sf:[oAs,
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where
Ao = Py (Dy " (40 — Coo))
‘DO‘(I)UO (?JO)
and
N — P, (Dy (v = Cirr)) | W (B '(w = Aprn))
| Die| o, (Y1) | By |V, (1) LT
Also,
= k
dP ~ ~
— - A - )\5,
dP 6 b g
where
N — |~D0|(I)vo (yo~)
(I)v()(DO_l(yO - COJ:O))
and
5. = | Di| P (1) y 1By W (1) '
Dy, (D (g — Crw)) - W (B (e — Ape1))
Therefore,
4P| _ T 1Del e (D2 e = Cu)) 1Bl B (B = Arraci))
dPlo. 34 [D| @, (D7 (ys — Cuy)) 1Bsl Wy, (B (ws — Aswsy)) '

This is the complete data likelihood function between models (2.30) and (2.31); it is

conplete because it is a function of G, = {xo, ..., Tk, Yo, - -, Yk }-

2.2.3 Change of Probability Measure for Nonlinear Systems

A complete probability space (2, F, P), is considered, on which {z;}, {yx}, k€ Ny
are defined by

Trp1 = [T, Wey1) o €N

y = h(xg, ), yo € N (2.33)

where the following conditions hold:
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G 7:Qx Ng— R, y:Qx Ny — R

(i) w: Q x Ny — R" is an indep. seq. of random variables with density V., (w);
(i) v:Q x Ny — R is an indep. seq. of random variables with density ®,, (v) > 0;
(iv) zo: Q@ — R" has a density [1y(z);

@ fR"X R = R, bR x R4 — R? are Borel measurable;
(vi) 3 an inverse D : R" x R" — R” such that w1 = D(xps1, Tk)

(vii) 3 an inverse G : R? x R* — RN" such that v, = G(yx, 71);

(viii) the derivatives %G(y, Te) - 2 h(ze,v) __are continuous and nonsingular.
Let
N
gk = J{anxlw -y Tk Yo, - - - 7yk}
N
7:;3) = o{yo,--- Yu}

be complete o-algebras.

Define

Then

-1

Py, (yr) ‘ 9

q)vk (Uk) a_yG(yv xk)

G|

el = e[l ) - o

Y=Yk

But

E[vak(yk)‘ 0

(I)vk (Uk) a_yG(ya l’k)

-1

G| =

Y=Yk

= E[A,;l} - E[A,;ll], Vk € N

= pn] = ] = d_gzzggg;)%(y,m
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Therefore, the new measure can be defined by letting

Pl

d_ng_ B

Such that under measure P, the seq. {y;} is independent with density ¢,, (yx).

Also, starting with P, P can be constructed by setting

Py, (vs)
A, = 2 —h(zy,
K Uévs(ys) 81} (37 U) V=g
s=0
v 2 Glys, )
and defining

dP N
d? Gk B

Lemma 2.2.11. The following system is considered,

Tt = f(Tg, Wet1), To € RN"
(Q)f)P) {gk}v{‘,’r}g}}> :
{yx} is an indep. seq. with density ¥, (yx).

Then under measure P, the seq. {v;} is independent having densities {®,, (-)} and

1>

G(ykvmk)
=yr = h(zg, ).

Vg

Proof. Starting with

P(n<5(Gi1) = B[lwuwen|Gn]
E [I{w:xk(w)gs}Ak ‘ gk—1i|
E|Ae| 1]

[Akl{w:mk(w)gs} gk—l]
I (I)vk (Uk> 8h
. {w:zg (w)<s} (I)yk (y,&) ov

(e < 5)

= under P, {v;} is an indep. seq. with density ®,,, vy = G Yk, Tk)-

-1

(I)'Uk (yk)dy

Il
—.

Il
s
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A. Relation Between RND’s and Sample Densities of RP’s

The following system is considered

Trr1 = f(ox) + g(Tp)Wkr1, 0 € R"
(2.7, PAGH AR}
Yr = h(zx) + Dyvg, yo € R

with the assumptions that {wy}, {v;} are iid seq. with densities

wy, \(W = € 2,
@ ( ) 1 _’UT’U
v v = (& 2
' (27)
If someone is interested in the density of the sample path {yo, ...,y } given the data
{zo,..., 2}
Then
P(?Jo < y‘:m) = P<h 7o) + Dovg < y‘%)
= P(v Yy — h(azo)’:co)
= P(vo < Dy'(y — h(zo))
Dy ' (y—h(z0))
= D, (vg)dv
d d [Po'—h(zo))
dyp(yo =< y‘%) = ay | b, (vo)dv
=y, (D5 (y = h(a0)) ) 1D
e.g.,

p(Yo|zo) = iP(Qo 96’0) = \Do‘fl‘puo <D61(yo - h(%)))-

dyo

Similarly,

p(yOa"wyk)wa--axk)
p(y(]a"wyk‘xm”'axk) -
p(xo,...,.]:k>

k
H5:0p<ys|y07 ey Ys—15 X0y - - - ,I5>p<l'3|1'0, cey Ts—1, Y0, - - - 7?]5—1)

Hizop(%‘xo, s ,CC3,1)
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Given that z, is independent of {yo, ..., ys 1} and {x,...,zs 2} given z,_1, and y; is

independent of {y,...,ys_1} and {x,...,zs_1} given x,, then

H];:op(ys‘ﬂfs)p(xs‘xs_l)
p(yOa"'7yk;‘x[),-..,l'k> = .
[1 (xs|xs_1>

s=0 p

k

= TI7(vle.)

s=0

i) = TP (D0 - e,

:>p(y07"'>yk

Therefore,

p<y07 s Ykl To, - 7xk)

P
dPle. " pv<y0>--'aykz>
LD,y (D) (ys - b))
-1 Dy, (ys)

defines a measure P, starting with measure P under which {y,} is an iid seq. with

density ®,, (v).

Similarly, suppose the sample path data {yo,. .., yx, Zo, - - ., T} are given. Then its

sample path density is

p(yOa"'ayk7$07"'axk> :p<?/0a---ayk’l“oy---,$k>P($0,~-->$k)-

But

P(ﬁo,---,$k> = p(m‘wo,--.,fk—1>p<$o,~--7$k;—1>
k
= p($0)Hp<ms x371>7
s=1

P(xk < I‘xk—l) = P(f(sz) + g(xp—1)wy < x‘xk_l)

— P(we < g7 ()@~ flan)|ae )

9 (zk—1)(@—f(zr-1))
= / ®,, (w)dw.

—0o0
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Let %P(wk < x’xk,1> = p(zg|rp—1), then

p(xk‘xk_1>

:>p<x0,...,xk>

9@l 7w, (97 (@) (& = i)

pleo) [T lg(we )| @0, (97 (5o ) s = fl2i1))-

Therefore,

ﬁ _ Mk: p(:l:o,...,xk>

dP 7 P <g;0, o xk)
g )l (07 @) @ — flaea)
- =1 W, (25)

defines measure P, starting with measure P under which {z}} is an iid seq with

density {®,, (zx)}.

Finally, the sample density of G given by

p(vor oy mor ) g, (97 @) (@ — fa)
B 0 Wy, (25)

Pwy, (m(],-":'rk)pvk <y07"'7yk> s

D@, (D7 (0, — h(x.))

X
@'U.s (ys)

defines a change of measure from P under which {yr}, {x1} are iid with densities

®,, (), ¥y, (), respectively, to measure P.

2.2.4 Nonlinear Filtering Prediction and Smoothing

Here, the nonlinear filtering, smoothing and prediction are presented. It is assumed
that there is a signal {z;}, called the state of the system which is not directly ob-
servable. Rather only some noisy function {y;} of {z;} are observed, called the
observation process. The objective is to obtain an expression for the “best esti-
mate" of z; (or ®(z;) for ® in a certain class of functions), given the history of the

observations {y, : 0 < 7 < k}, that is, given the observable o-field.
Ve =0{y,: 0 <7 <k}
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Depending of the relation between the times ”s” and "k” the following situations

exist:

1. The filtering problem. Given the observation ) find the best estimate %, of the

state x; from these observations.

2. The smoothing problem. Given the observation ), find the best estimate Z; of

the state x,, s < k from these observations.

3. The prediction problem. Given the observation ) find the best estimate Z, of

the state z,, s > k from these observations.

The computations should be done recursively, in terms of a static {m;} which can

be updated using only new observations
Torr = (S, T, Mo, {Ypsw : 0 <u < 7} (2.34)

in which s = k corresponds to the filtering problem, s > k corresponds to the
prediction problem, and s < k corresponds to the smoothing problem. The statistic
{71} is then used to calculate, pointwise estimates ®(z,) of functionals ®(z,) from

the observations V,.:

A

(I)(.I'S) = ﬁ(k7s7q)7yk77rs)‘ (235)

Suppose the processes {7}, {yx} are defined on a fixed probability space (Q, F, P>

with filtration {¥;} and finite time k € NJ" 2 {0,1,...,m}. The specification of
the best estimate z; of zy from ) is usually done by minimizing a functional of
the distance of z, from the closed subspace generated by ) 2 {ys : 0 < s < k}.
From the general theory of Hilbert spaces it is known that Z4());) is the orthogonal

projection onto the subspace generated by ).

Theorem 2.2.12. Let (Q, F, P) be a probability space with filtration {F}, a sub-
sigma algebra {F'} of {Fi} and X € L? (Q, F, P) .

Define

1>

My, ={y(j,") : Q@ — R y(j,-) € L? (Q,f, P) and y; isij — measurable, j € N¥},

k

,PMyk. 2L2<Q,]:7P> - Myk'
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Then

Puy, (z5) = E [xs

Myk} - E[w

7|
is P-a.s. unique, e.g.,

[ Pa@)@)ip) = [ awdpo). vae 7.
A A

Remark 2.2.13. The minimum variance estimate Py, (z) is unbiased, that is,
E[Pu,, (z5)] = Elzg], Vk € Ny.

Theorem 2.2.14. (The minimum variance estimation) Given the observations )., the

minimum variance estimate of the state x; defined by
inf {E[Hxs —my||? my € Myk} (2.36)

is given by Zs(yx) = E[x5|.7:,3}]

Proof. Since
B[z, = mil] = B[z, — #,0%) + &%) — mi ] 2.37
= Bl = 3.V 2] + B|lles = D0)IF] + 2B (2 = 2.00), (%) =) |.

(2.38)

Reconditioning on F, Y the last term in (2.38) vanishes; since the second right-side
term of (2.38) is fixed the left-side is minimized by setting m; = Z5()k). Therefore,

the conditional expectation E[z,|F?Y] gives the least minimum variance estimate. []

Definition 2.2.15. (The risk-sensitive estimation) Given the observations )}, the min-

imum risk-sensitive estimate 7:;()y) of the state z, is defined by

inf {E[exp (ez s — me || g, € Migyq,0 € afe}
=0
— {E[exp (eco,k(xg,mg))} L € Mgy, 0 € éR} (2.39)
where

Moy = {y P NEx Q— R y(k,w) € L2((0,k) x Q,F, P), for almost all k

y(k,.) € L*(Q,F, P) and yy is Yy — measurable}. (2.40)

73



CHAPTER 2. BACKGROUND MATERIAL

The parameter 6 is the so-called sensitive parameter which renders the optimizer
optimistic if # < 0 and pessimistic if § > 0. In addition, for § > 0 the sample
cost exp(fC) is a convex increase function of C. In the former case the optimizer is
concerned with designing under worst scenario, hence the name risk-averse, while
in the latter case is concerned with designing under favorable conditions, hence the
name risk-seeking. The case f = 0 lies between the risk-averse and the risk-seeking

optimalities.
The following expansion is considered

E[expw@] —1+0F [C} + %QQEM +O(6%). (2.41)
Then

GlogE[exp(GC)] =F [C} + %GV(M* (C) + O(6%). (2.42)

Consequently, in the limit, as # — 0, the risk-sensitive estimation problem includes

as a special case the risk-neutral case.

Definition 2.2.16. Let (Q, F,PAGAFY }> is a complete probability space on which
the state process {z;}, k € Ny and the observation process {y;}, k € Ny, are defined
by the following recursions.
Ty = flk+1,xk) + gk + 1, 2)wgr1, o € R,
Yp = h(l{?, l’k) + Dyvr 4o € %d, (2.43)

in which the condition of (2.33) hold, and additionally

A 1 oI
(I)k(v) = o, (U) = (27T)d/2 e /27
A 1 wlw
‘Ilk(w) = Uy, (w) = (27‘(‘)”/2 e /27
P(zg<zx) = / 1., (2)dz.

Clearly, the minimum variance estimate of any Borel bounded function ¢ : " — &

is given by
I1,(®) = E [@(xk)’fﬂ . (2.44)

Thus, a program will be introduced which will enable the computation of the condi-

tional distribution of z;, given F?, namely

Pzy € A|FY), VA e B®R"). (2.45)
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Definition 2.2.17. For any given Borel measurable function which is bounded, P :
Ny x R" — R, the measure-value process I (®) is related to another measure-valued

process through

E[@(k,xk)/\k‘fg} I, (®) »
o) | a.s.

v

I (®) =

E[ A 7Y
where

dpP
dP

Gk_

k-

Let BC(R") 2 {® : " — R : & is bounded and continuous}, equipped with the
norm topology ||®| 2 sup{|®| : x € R, ® € BC(R")}. Let M (R") 2 { denotes
the set of positive measures on (R", B(R")}, equipped with the norm topology

|ull = Varap = sup4,caepmn) 2oie1 #(Ai), when the upper bound is taken over all
finite collections of pairwise disjoint sets {A;}!" ; € B(R") which are contained in A.
It is noted that Varap = p™(A) + u=(A), VA € B(R"). Consequently, Varapu is a
measure with respect to A, which is denoted by |u|(A) = Varap.

If i is a countably additive function on the o-field B(R"), then p is finite if and only

if:

a. u*, u” are finite,
b. |u(4)] < oo,

c. Varap < oo.

From this, it follows that if ||(A) < oo for every B(R") measurable function ¢ which

is bounded on A, and is y-measurable on A, e.g.,

| #@uta) = [ @@ - [ e @)

A

| /A¢<w>du<x>1 < sup [@(x)] [l (A).

Thus, for any u € M, (R"),® € BC(R") the inner product is defined by

@) = [ @@)du(o).
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Remark 2.2.18. The Bayes formula of Definition (2.2.17) is the starting point of non-

linear minimum variance filtering. The process

m(®) £ B [0 () An| 7Y

is the unnormalized measure-valued process of I1;,(®) since

(@) = ™) _ Jpn 22)dmi(2) _ (2,m)

(1) Sy Ldmi(2) (1,7)"

Further if the measure m(.) is absolutely continues with respect to the Lebeggue

measure, then L, (z) exist and

d 7Tk($)

%Hk(x) - Jyon Te(2)de”

Next a recursive equation for 7 (z) is derived.

The system of Definition 2.2.16, is considered, starting with measure P under which

{zx}, {yx} are white noise sequences.

Let

gk: = U{wa"?xkayO)"'vyk’}v k:GNO
Fg = U{yo,...,yk}, kENO

where {G,}, {F)}, k € N, are their corresponding filtrations.

Let

.l O (D" (vo — (0. 0))) |

[ Do| P, (Y0)
.. ( D7 (ys — h(s, s w97 (s, e_1)(ws — f(8, 251
o (D2 s = s, 200)) W, (97 (501 (s = S >>)’ -
| Ds| Py, (ys) 19(s, 1) [V, ()

Next, a new probability measure P is defined on <Q, F, {gk}) by introducing the
RND

dP
dP

k
%ZM:H@
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Define

g s, ws 1) (s — f(s,25-1)), 5=1,2,...
DYy — h(s,xs)), s=0,1,...

Ws

> >

Us

Then under measure P, the sequences {v; }, {wy } are independent, N(0; I;), N(0; I,,),

respectively.

Theorem 2.2.19. (Recursive Equation) Consider (Q,}" ,PAGLYAFY }) a complete
probability space on which {xy,yr}, k € Ny are defined by Definition 2.2.16.

Then for any ® € BC(R"™) the measure valued process {m;(®)}, k € Ny satisfies the

following recursion

(D7 (e = hlk) (g7 (k) — F(k)
R R s ”( 90 )dw (249
with initial condition
@o( D5 (9o — h(0,7)))
7o(®) = /n O(x) Dol®alu0) 1, (z)dx. (2.47)

Further, if 7,(®) has a density

() = /n O(x)dmy(z) = . o(x)mp(x)dx

then {m,(x)}, k € Ny satisfies the recursion

m_1(2)dz  (2.48)

T(x) =

(D7 = bk, ) (g7 (k) — £k, 2))
| Dy | @5 (yr) /n lg(k, 2)]|

with initial condition

1

™) = Byl ()

o, (Do_l(yo — (0, @))HIO (2). (2.49)

Proof. By definition

= O (z)dmy(x). (2.50)
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Further,

m(®) = B |®(x) e |77 =E[f[<1><xs>As

f,ﬂ — g9 [ﬁ@(xs)/\s}

s=0

where () is the measure induced by the independent sequence {z,} (e.g., {zs} and

{ys} are independent.

Define

m(®) = EC [Ak—l)\kq)(xk)]

(D (g — h(k,2x)) Wilg™ (k, mp—1) (@ — f(k, 2e1)))
| Di| @ (yx) lg(k, 2—1)| Wi (z)

Joc. {Ak_lcpk(p,;l(yk — h(k, 1))

E° [A,H

P (z)

1
| Dy.| P (yr)
V(g (b, wp1)(x — f(R, 221)))
lg(k, 2p—1)| Wi (zk)
1 Q Ak—l
el Lg(k,xk_m
x E@ {%(D; (yx — h(k, Jfk)))‘l’flj(f(;()k? wr1)(xp — f(k, 2p-1)))

P (z,)

P (zy,)

}—13}_17 'Tk—l:|:|

1 Q Ak—l
Dulou(o) Lg(k,xk_m
e {%(Dkl(yk k) Walg™ (b ) — £k, 20)))

Uy (2)
]

1 Q Ak—l

Dulou(o) Lg(k,xm

< DDy (g — Mk, €)U(g~ (b, 20 ) (€ — S (k. 730))
n UL (€)

@(@%(@dﬁ}

| Die|Pr(y) lg(t, 2p—1)]

g(k,%’kq,yk) .

1>

g(k7 Th—1, yk)

. Cr(Dy, (e — 1k, ))) W (97 (K, 21-1) (€ — f(k, @-1))) D(E)dE.
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Then
. 1 g(kazayk) T 2Vdz
) = 1D, () /% (k.2
Hence
. 1 g(k7zayk) T 2Vdz
[ oem - Del o (01) /% ok, 2)] )
1
B ’Dk‘q)vk yk
// P4(Dy (yx — Wk, 2))) Vo (g~ (K, 2) (x — f(k,2)))
o S 9(k, 2)|

x)dr mp_q1(2)dz

(D e — bk 1))
[ o {”’“(@ Del B )

Vi~ (K, 2)(x — f(k, 2))) _
X /n Tr—1(2) 2] dz| dx = 0.

Since ¢ € BC(R") is arbitrary, the only solution for this equation is

D e b)) [ Wl M) f2)
) = e s (k. ) i)t
Atk =0
mi®) = E )R] =5 | M2 Mg
1 ~1 — x x x
T e, P05 0 = 0.2 o).
Hence,

®o(Dy* (yo — h(0,2)))
Dol®ol)

mo(z) = 2(7).
O

Example 2.2.20. (Linear Gaussian filter) It is assumed that the state and observations

are given by

Tp1 = Ap1%p + BrpWigr, o, € RN
(Q,f, {Qk},P> : (2.51)
yr = Cray + Dyvy, yr € RY
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in which the noises are Gaussian distributed as follows, w, ~ N(0,1,), v, ~
N(0, I;) while sequences {wy}, {v;} are mutually independent and independent of

xg ~ N(Zo, Vo), Vo > 0. The Linearity and Gaussianity implies that

[onmi(@)dz [ a(x)dx

I () =
is Gaussian with mean Ty, = E[Ik‘fg] and Variance Vi, = E|(x) — Tpp)(2r —
)| 7]

Recursive equations for Iy, Vi, using the unnormalized conditional density, will be

obtained.

According to Theorem 2.2.19, {ay(x)} 2 {mr(z)} satisfies the following recursion

where
Wy, () = ﬁ exp <_3;Tx>, (2.53)
B (y) = (271)5 exp ( - y%) (2.54)
A solution to (2.52) having the following form, is assumed
ay(z) = m exp ( — (z = Zp)" (ngg)_l (x — Zg) + ﬁk\k> (2.55)

when {Vk|k, Thk, ﬁk|k} will be identified shortly. Substituting (2.55) into the recursion

(2.52) deduces the following recursive relations for {Vk‘ ks Thik ﬁk| K}

Tre = Vk|k[ckT(Dle:cF)_1yk+(Vklk—l)_ljk\k—1}7 (2.56)
Tpp—1 = ApZp_1pp—1, (2.57)
Vi = (C;?(DkaT)‘leJr(Vkm)‘l)1, (2.58)
Vijk—1 = BkBg+Aka—1|k—1A£ (2.59)

= (BkBkT) + Aka—1|k—2A£
— A Viajp—2CL 1 (D1 DIy + Crt Vi 1i2Cl_ ) T Cret Vi1 jp—2 Al
(2.60)
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k k
_ 1 . T T Ty -1 . yiTyi
Bk = — ; 5(% — CiZiji—1)" (CiVijim1 Cf + Dy D)™ (yi — Citgji—1) + ; 5
1
i=1
(2.61)
with initial conditions
Zop = Vo |C3 (DoDF) o). (2.62)
~1
Voo = (COT (DyDT )*10()) , (2.63)
1 —\T T T -1 - yoTyO
Boo = —5(90 — Coo)" (CoVoCy + Dy Do)~ (yo — CoTo) +
1
—5 log |CoVoCF 4 DE Dy, (2.64)

thus it is concluded that (2.55) is indeed a solution of the recursion (2.52).
Furthermore, Iy, can be written as
-1
Ty = Tgg— + Vk|k7101? [Ckzvlqk—leT + (DkaT)] (yr — Crrp—1). (2.65)
Also

-1
Fi1 = Az + AVioip2Cl | CoaViap2CLy + (Dea D)
X (Yr—1 — Cr—1Tp—1jk—2)- (2.66)

This is the solution of the Kalman Filter [1]. See Appendix B _for the derivation.
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CHAPTER 3

ROBUST LEAST-SQUARE ESTIMATION FOR A CLASS OF

SYSTEMS

This chapter considers least-square estimation problems for classes of systems. In
Section 3.2 the estimation problem for a class of systems is formulated. A general
framework is put forward in which the basic ideas and theory are explained and the
fundamental results are derived. In Section 3.3 various examples of estimation the-
ory are introduced, when the models (conditional distributions, joint distributions)
are uncertain and they belong to specific subsets of the set of conditional or joint
distributions, in order to illustrate the results derived. Finally, in Section 3.4 an
overview on MIMO communication systems is presented and the theory developed

in previous sections is applied to MIMO systems.

3.1 Introduction

In classical Least-Square estimation of Random Variables one is interested in finding
the best estimate, ®*(Y"), of a RV X from the measurements of a RV Y, by minimizing
the expected value of the least-square error e(X, ®) 2 [| X —@(Y)]
tions ® : R? — R™Y — ®(Y), which is a function of Y (||z||%. denotes Euclidean

norm of x € R"). By the orthogonal projection theorem, the solution is given by the

ge" over all func-

conditional expectation:

(V) = FIX|Y] :/ xdPxy (x|y) (3.1)

n

where Px|y is the conditional distribution of X given Y [1, 2].
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The solution to this estimation problem is stated in terms of the d posteriori distribu-
tion function Py|y. This distribution contains all information available to estimate
X or any nonlinear function of it. The objective is thus to find, recursively in time,
the evaluation equation of the ¢ posteriori distribution and to solve it. The classical
result assumes that Pxy and hence Px|y are completely known. In many real appli-
cations of estimation theory, knowledge of Px y and/or Px|y is not available; the only
knowledge available to the designer is whether PX7y, (resp. Px‘y) belong to specific

classes which are subsets of the set of all joint (resp. conditional) distributions.

This chapter is concerned with estimation techniques, in which the uncertainty
description of the system, and the nominal description of the system are modeled by
probability distributions, or general measures, defined on measurable spaces. The
uncertainty description of these systems is characterized by the class of uncertain
measures which satisfy a Kullback-Leibler (KL) distance constraint with respect to
a nominal measure. The problem of robust estimation is formulated by minimizing
over the set of estimators, the maximum of a linear functional of the uncertain

measure over the constraint set. Two type of uncertainty models are considered.

1. Uncertainty Models on Conditional Distributions or otherwise known Stochas-

tic Kernels;

i) When the conditional probability distribution of the measurement Y given

the signal to be estimated X, or channel kernel, is unknown;

ii) When the ¢ posteriori distribution of X given Y is unknown;

2. Uncertainty Models on Joint Distributions.

Stochastic kernel uncertainty models are appropriate for communication system
design, in which the input message has a known distribution, while the channel
is unknown but belongs to a certain class of channels. These are nonparametric
uncertainty models which so far have not been taken into consideration. Joint
distribution uncertainty models are usually employed when both the unobserved

and observed random variables are uncertain.

The minimax technique considered here leads to strategies in which the worst case
estimate of the uncertain measure subject to the uncertainty description is sought.
The theory and contribution of this chapter are developed at two levels of generality;

the abstract level and the application level. At the abstract level a general framework
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is put forward in which the basic ideas are explained and the fundamental results
are derived. Specifically, the estimation problem is described on abstract Polish
spaces, while the uncertain model considered is described by stochastic kernels and
joint distributions. First, the appropriate space of measures is introduced and then
the maximizing kernel and joint measure are computed explicitly using Lagrangian
functionals and variational methods. Moreover, important monotonicity properties
satisfied by the optimal strategies are presented, which can be used to developed
numerical algorithms for computation of the optimal solution, and upper and lower
bounds on the optimal solution. At the application level, the results obtained at the

abstract level are applied to simple examples.

As was already discussed in Chapter 1 previous related work in which uncertainty
is described by relative entropy can be found in [11], [16] and [29]. However, [29]
deals only with systems when the uncertainty is defined on joint distributions. On
the other hand, [16] similar to [29] deals only with joint distributions, but employs a
minimax viewpoint and uses the additional assumption that the system considered
is Gaussian. Even though [16] starts with a nonparametric uncertainty models it
uses a parametric approach to derive its results. The least-squares error estima-
tor (conditional mean) is considered in [16] and shown to yield a saddle point. A
parametric uncertainty model is implemented in [11] which deals with robust least-
square error equalization design for multiple-input multiple-output communication
channels, when the channel and noise are uncertain. In [11] the Lagrangian dual-
ity is used to transform the min-max problem into an equivalent convex min-min
problem over a convex domain, to which standard convex optimization methods ap-
ply. This way the problem presented in [11] becomes a scalar minimization problem
which can be solved numerically. Minimax estimation techniques for uncertain wide
sense stationary processes are also considered in [15] and [30], but uncertainty is
defined with respect to power spectrum densities. It is worth mentioning that related

work in the context of nonlinear stochastic optimal control is also found in [43].

3.2 Nonlinear Optimization

This section, formulates and seeks solution to the estimation problem for a class

of systems as follows. First, appropriate models for conditional distributions are
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introduced. Then appropriate spaces are identified and existence of maximizing
measure is shown. Then the theory of Lagrangian functional is invoked to find the
maximizing measure. In addition, specific properties of the Lagrangian functional

are identified.

3.2.1 Formulation on Abstract Spaces

Suppose a measurable space (Q,]—“) is given on which the unobserved Random
Variable (RV), X and the observed RV Y are defined, via X : (2, F) — (X,3x),
Y (QF) — (), 2y).

Thus X is the space of the unobserved RV, and ) is the space of the observed RV.
The relation between the unobserved RV X and the observed RV Y is defined via a
probabilistic mapping. The mapping i : X x ¥y — [0, 1] satisfies the following two

conditions:

1. Forevery z € X, the set function y(z, -) is a probability measure on ¥y, (possibly
finite additive);

2. For every F' € ¥y, the function u(-, F') is X'-measurable.

The mapping u is called a stochastic kernel or transition probability. Let P denote
the class of all stochastic kernels, M;(X’) denote the space of probability measures
(possibly finite additive) on X', and let the measure induced by X, Px € M;(X) be
fixed. For the given pair { i, Px}, 1 € P, Px € M;(X), two probability measures may

be introduced as follows.

1. The joint probability measure Pyxy € M;(X x )) defined by

PX’y(G) = (PX ®M)(G> é / /J(x,Gx)Px(dCU), VGe EX X Zy

X

where ® denotes convolution, G, is the z-section of G defined by G, = {y €
Y:(z,y) € G}.

2. The marginal probability measure Py € M;())) corresponding to i1 € P is given
by

Py(F) = Pxy(X x F) 2 / p(z, F)Py(dz), ¥ F € %y
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The objective is to estimate X by a function of the random variable Y. Let X = oY)
denote the estimate of X. The estimation is done by introducing a pay-off, and then
minimizing the pay-off over the class of estimators ® in the admissible set denoted
by X,4. It is assumed that all admissible estimators ¢ : }V — X are Yy measurable
and continuous. Let ¢/ : X x ) — [0,00) be an ¥y X Xy-measurable function,
which corresponds to the sample pay-off. The classical estimation problem deals

with minimization of the average pay-off given by

J(@*) = @ieI}ffd/X yﬁ(:p,q)(y))dPX,y(x,y) (3.2)
- q)ie]%(fad Xxyﬁ(x,@(y)),u(x,dy)dPX(x) (3.3)
- e Ry, de)dPy (), 84

Clearly if {(z, ®(y)) = ||[z—P(y)||gn., then ©*(Y') = E[X]Y]. On the other hand, if Px y
or i, n are unknown, then new estimators should be sought (this is done in Sections
3.2.2, 3.2.3 and 3.2.4). It is noted that (3.2) will be used when the uncertainty is on
the joint distribution, while (3.3), (3.4) will be used when the uncertainty is on the

channel kernel, ¢ posteriori distribution, respectively.

Next the appropriate topologies and function spaces used in this paper are intro-
duced. Throughout the rest of this chapter it is assumed that both X and ) are
Polish spaces (complete separable metric spaces) and therefore normal topological
spaces [45]. Let BC' (J}) denote the vector space of bounded continuous real valued
functions defined on the Polish space ). Furnished with the sup norm topology,
this is a Banach space. Let (BC’ (y)>* denote its topological dual. It is known

[45, pg. 262] that (BC ())))* is isometrically isomorphic to the Banach space of
finitely additive regular bounded signed measures on Yy. Denote this by M,,,())
and let I1,4,()) C M,4,()) denote the set of regular bounded finitely additive proba-
bility measures on ). Clearly if ) is compact, then (BC (y)) ’ will be the space of
countably additive signed measures. Let L;(Px, BC())) denote the space of all Px

integrable functions defined on X with values in BC'()). In other words, for each

¢ € Ly(Px, BC(Y))

|6 llpe= /X 16(2)() | e Px (da) < oo.

With respect to this norm topology this is a Banach space. Since the Banach spaces
BC(Y) and its dual M,;,()) do not satisfy the Radon Nikodym property, the dual
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of Li(Px,BC(Y)) is not Lo.(Px, M,())). However, it follows from the theory of
“lifting" [46, Theorem 7, pg. 94;Theorem 9, pg. 97] that the dual of L, (Px, BC())) is
LY (Px, M.4q(Y)), i.e., the space of all M,,()) valued functions {x} which are weak
star measurable, in the sense that for each ¢ € BC(Y), z — p.(¢) = fy o(2)p(x,dz)
is Px measurable and Px-essentially bounded. Now define the admissible set as

follows

P = Ly (Px, 14a(Y)) C L (Px, My (Y))-

In other words, P is the unit sphere in the space LY (Px, M,4,(Y)). It is assumed
throughout this chapter that ¢ : X x Y — [0, 0] is ¥y X 3y measurable (sample
pay-off) function from the class L,(Px, BC())).

3.2.2 Uncertainty on the Channel Kernel and Minimax Pay-off

It is assumed that the probabilistic kernel ;1 € P introduced earlier represents the
nominal system model or mapping, which is fixed. The true kernel denoted by
v:X x Xy — [0, 1] is assumed unknown. Envisioned scenarios are communication
channels whose nominal behavior in known, while its true conditional distribution
is unknown. The KL distance will be used as a measure of distance between the
true model and uncertainty model, hence the true kernel is assumed to belong to

the pointwise uncertainty set defined by
NN
A7() 2 {1/ e P H(vlp)(z) < R(m)} (3.5)
where R : X — [0,00) and H(:|-)(z) : X — [0, 0] is the KL distance between two
kernels defined by

v(x,d .
Jylog ng,dzg’/(xv dy), ifv(z, ) < p(z,-), Px —a.s.

H(v|p)(z) =
00, otherwise.
It is also assumed that R € BC(X). Moreover, i : X X Xy — [0,1] is the nominal
fixed kernel.

Remark 3.2.1. The value of R(z) can be evaluated by statistical methods as follows.
Using experimental data and counting techniques the different possible conditional
distributions v(z, dy) can be found. On the other hand, if the true distribution v(z, dy)
is parameterized then by using counting techniques in finding relative entropy, the

function R(z) is determined.
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Additionally, the following uncertainty set is defined

A 2 {vep: /X H(u|u)(2)dPy (z) < /X R(z)dPx(x) L r,}. 3.6)

It is assumed that A (p) is non-empty. Since, the true kernel v € A(u), is unknown,

then the estimation problem can be formulated as a minimax problem defined by

n@n 2 [t e dy)apy),
XxY
Ji(®*,v*) = inf sup Ji(P,v). (3.7

PeX, 4 vEA(u)

Next the issue of the existence of a solution to the above problem is discussed. Let ¢ :

X' xY — [0, 0] be any ¥y X ¥y measurable function from the class L;(Py, BC(})).

The set P is w*-compact. This follows from the Alaoglu’s theorem [45, Theorem
V.4.2, pg. 424]. Also using the lower semi continuity property of relative entropy
[47, Lemma 1.4.3, pg. 36 |', it follows that the set A(u) is a w*-compact (as a
w*-closed subset of the w*-compact set P). The next lemma establishes the upper

semi-continuity of the cost function.

Lemma 3.2.2. Let X', ) be two Polish spaces and { : X x Y — [0, ], a measurable,
nonnegative, extended real valued function, and y — {(z,y) be continuous, for Px-
almost all x € X. Also assume ¢ : V — X is Xy measurable and continuous.
Then the mapping v — [, [, £(x, ®(y))v(z, dy) Px(dx) is upper semi-continuous in the

w*-sense.

Proof. Let {v,} € A(u) be a net, where o € (D, <) (a directed set). Since A(u) is
weak star compact, there exists a subnet of the net {v,}, relabeled as the original

net, and an element v € A(u) such that v, M2

hma// 2,®(y)) Am va(w, dy)Pyx(dz) // 2, ®(y)) Am v(z,dy)Px(dz)

/ /e 2, () ), dy) Py (dz)

IExamining the proof in [47] one can easily verify that the same procedure holds true not only for

countably additive measures but also for finitely additive ones.

2That is,
//gbxyuaa“dnydr //qﬁa“y (z,dy)Px(dz)| =0

for any ¢ € L1(Px; BC())).
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where m € N (/N denotes non-negative integers) is arbitrary. Then there exists
ag € D such that

sup // z,®(y)) Am vu(x,dy)Px(dz) // z, ®(y))v(x,dy)Px(dz). (3.8)

a>ap

On the other hand, the following holds

11ma// 2, () )z, dy) Py (d) = Tim, Sup// 2,0() Am vz, dy) Py (dz)

meN

< sup sup//ﬁ(x,fb(y))/\m Vo (z, dy)Px(dx)

a>ag meN

// (2, B(y) ), dy) Py (d)

where the last inequality follows from (3.8) and the fact that two supremums can be

interchanged.

Thus, since A(u) is w*-compact, and

y—>// z, ®(y))v(z, dy) Px (d)

is upper semicontinuous, from the Weierstrass theorem, existence of solution to the

supremum problem in (3.7) is established. O
Remark 3.2.3. Note that by a generalization of von Neumann’s minimax theorem, the
problem (3.7) with X4 convex, {(x,®) = ||x — ®||pn, satisfies (see Theorem 2.1.15)
inf  max / 0z, (), dy)dPx (x)
XxY

(Dexad VEA(M)

= max min/ Uz, ®(y))v(z,dy)dPx(z) (3.9)
XxY

veA(u) PEX,q

since

1) A(p) is compact,
2) J1(®,v) as a function on X, x A(u) is convex-concave, and

3) Ji(®,v) as a function on X4 x A(u) is upper-semicontinuous inv for each ® € X,,.

Clearly, for the case of this chapter A(11) is convex (because of the convexity of relative
entropy [47]), A(p) is weak™ compact (see statement above Lemma 3.2.2 ), J1(®,v)
is convex in X, and concave in A(u), and J,(®,v) is upper-semicontinuous in v for
each ® € X,; (by Lemma 3.2.2). Therefore, the only additional assumption needed _for
existence of saddle point (hence inf becomes min) is that A1) X, is compact and convex,

A2) Ji(,v) is continuous in ¢ for each v € A(p) and hence lower-semicontinuous.

90



3.2. NONLINEAR OPTIMIZATION

Define

L6 2 sup / 0, $(y))v(x, dy)dPy (z).
veA(p) J X XY

The solution of the supremum over 4 () is resolved by introducing a pair of Lagrange

multipliers {\(x), s}, s € R, A € L1(Px) and defining the Lagrangian functional

Li(v ) 5) 2 /X o By, dy) P () s /X (H(v|u)(x) — R(x))dPx(x)

—/X)\(x)(/yu(x,dy)—l)dPX(x) (3.10)

and the dual functional

Li(v*,\",s*) = inf inf sup Li(v, A, s). (3.11)
s20{\eL1(Px), A>0} ycp

Alternatively, if the uncertainty set A”(u) is considered, the supremum problem is
defined as

Ji(®,0") = sup /X /y U, b)), dy)dPx (z).

vEAT (1)

In this case the solution of the supremum over A”(u) is resolved using lagrange

multiplier {\(x), 5}, A € L1(Px), § € L1(Px), and defining the Lagrangian functional

Liw 52 /X o @), dy)dPx() - / 5(2) (H (v]n) () — R(x))dPx(z)

X

4 /X )\(m)( /y u(x,dy)—l)dPX($) (3.12)

The dual functional is given by

Li(v*,\",§") = inf inf sup Ly (v, \, 3) (3.13)
{8€L1(Px),520} {AeL1(Px), A=0} pep

Now, if the infimum over the functions § € L;(Pyx) is taken over the real numbers,
then the following inequality holds

Li(v*, A%, §8") < inf inf sup Ly (v, A, 3) = Li(v*, \, 8) (3.14)
$20{AeL1(Px), A>0} pcp

Hence, uncertainty modeling using .4 (u) yields higher pay-off than uncertainty mod-
eling using A”*(u).

Next, the equivalence between the constrained problem .J;(®,7*) and the uncon-

strained problem L;(v*, \*, s*) is established.
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Theorem 3.2.4. Suppose { : X x X — Ry = [0, 00] is continuous in the second
argument, and ® : Y — X is continuous. If for a given ® € X4, Sup,c 4(,) J1(P,v)
is finite, then the constrained problem (inner supremum) in (3.7), is equivalent to an

unconstrained problem as stated below:

sup Ji(®,v) =infinf sup Li(v, A, s).
veA(p) 520 M) pe A(u)

Further the infimum occurs on the boundary of the set A(u), that is

/)(H(z/*\u)(x)dpx(x) = r.

Proof. The proof is based on Lagrange Duality theorem [40, Theorem 1, pg. 224]. X
is chosen as X = LY (Px, M,;,())) which is clearly a vector space. For the set () the
natural choice is the set Q = LY (Px, I1,4,()) C X. Clearly,

Jrewy U@, ®(y))v (2, dy)dPx(x) is a linear functional of v. Theorem 1, in [40, pg,
224] deals with minimization of a convex functional. Multiplying the equation (4) of
[40, pg. 224] by a minus sign, converts the problem to maximization of a concave
functional over the set (. This can be applied to maximization of J;(®,r) over
the constrained set, since [, 5, ¢(z, ®(y))v(x,dy)dPx(z) is a linear functional of v
(hence concave). Also, it follows that €2 is a convex set. Take G f Py 1/| u
R(x)dPx(z), wherev € X. ThenG : X — R, is a convex mapping from X into the
ordered vector space (R, <) with natural ordering. If v = y is chosen, then G(v) =
— [y R(z)dPx(z) < 0 °. Hence there exists a measure v € X such that G(v) < 0.
So when SUP,e () J1(P, ) is finite, conditions of the theorem are satisfied, and the
constrained and unconstramed problems are equivalent. Also according to the same

duality theorem, if the supremum is achieved by some v* € LY (Px, M,4,())), then

s( /X (H( |p)(x) — R(z))dPx (x)) = 0,

In other words, for non-zero s € (0, 00), the solution occurs on the boundary. O

The solution of the maximization over v € A(u) of (3.10) is presented in the next

Theorem.

3The inequality is strict if R is non-zero on a set of non-zero measure, i.e., if there exists F € Yy,
such that Px(E) # 0, and R(x) # 0 for € E. If such a set does not exist, then R would be zero Py

almost everywhere, and the problem becomes trivial.

92



3.2. NONLINEAR OPTIMIZATION

Theorem 3.2.5. Suppose the condition of Theorem 2.1.16 holds. The supremum of
(3.11) over v € A(p) is given by

ef(ac,d’(y»u(x dy)
vz, dy) = —may (3.15)
fy € ° ,LL(SL’, dy)
where s > 0 is_found by the constraint
/ H(v*|p)(x)dPx(z) =r. (3.16)
X s§=8*
Moreover,
Li(v*, \%, s") = inf/ slog/ eé(xf(y»u(x, dy)dPx(x) + s/ R(x)dPx(z).
520 J x Y X
(3.17)

Proof. The Gateaux derivative of L, (-, A, s) at any v* in the direction v — v*. is derived

by computing the following expression

2 0Ly (v v —v"). (3.18)
e=0

d
%Ll(zj* +e(v—r"),\s)

After some calculations it is deduced to

Sy — 1) = /X U)o, dy) — v, )P )

- /X( /y log %w,dw - u*(x,dy»)de(x)

- [ 3@ [ o) — i

[ (o (I
v (x, dy))d Py (x)). (3.19)

Since L;(v, A, s) is concave in v, then from basic principles of calculus of variation
a necessary and sufficient condition for v* to be the maximizer measure is that
0L (v55v —v*) = 0, YV v € P. Since the inequality holds for all v the Gateaux

gradient must vanish, hence
(y* (z,dy) ) o o U 2(w) M)
p(, dy)
Moreover,

vi(z,dy)  teew)-a@
p(z, dy) '
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Since v*(x, dy) is a probability measure on )/, then using the constraint fy vi(x,dy) =

1, the following function is obtained

M=) 1

(.2(y)) '
fye <l dy)

e

Thus,

U )
£(z,®(y)) )
Jye T plx, dy)

Substituting v* into (3.10) yields

v (z,dy) = VreX. (3.20)

S
X

Li(v*, A, ) :/ slog/eaw’f(y))u(:p,dy)dPX(x)—I—/ R(x)dPx(z). (3.21)
X Yy

O

3.2.3 Uncertainty on the A Posteriori Distribution and Minimax Pay-off

In this section an uncertainty model on the ¢ posteriori distribution is considered.
For this case, one may consider the mapping 1 : J X ¥y — [0, 1] that satisfies the

following two conditions:

1. Foreveryy € ), the set function 7)(y, -) is a probability measure on Xy (possibly
finite additive);

2. For every F' € Xy, the function 7(-, F') is J-measurable.

This probabilistic kernel 7(y, dz) represents the nominal system model or mapping
(G posteriori information). The true kernel v(y, dx), denoted by v : J) x Yy — [0, 1]

belongs to an uncertainty set described by

B/(n) = {veP: Huln)y) < Ry) |

where R : ) — [0,00) and H(-|-)(y) : Y — [0,00] is the KL distance between two

kernels defined, in a similar way as before, by

v(y,dx .
fX 10g ngz,dzgy<ya dl’), lfy(ya ) < n(y, '), Py — a.s.

H(v|n)(z) =

00, otherwise.
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It is assumed that R € BC()). Moreover, 7 : Y X ¥y — [0, 1] is the nominal fixed
kernel. The value of R(y) can be evaluated by statistical methods as explained in
Remark 3.2.1.

It is also assumed that BY(n) is non-empty. Since, the true kernel v € BY(n), is
unknown, then the estimation problem can be formulated as a minimax problem
defined by

Jo(®*,v*) = inf sup /E(m,@(y))y(y,daz). (3.22)
x

PeX, 4 veBY(n)

Existence and equivalence of constrained and unconstrained problem is shown sim-

ilarly using Theorem 2.1.16 following the same procedure as in Section 3.2.2.

The solution of the supremum over BY(7) is resolved by introducing a pair of Lagrange

multipliers {\(y),5(y)}, A, § € L1(Py) and defining the Lagrangian

LA 2 [ i 0ty ) - 50) (H(Vln)(y) - R<y>>

SA®W) ( /X Wy, dz) — 1) (3.23)

and the dual functional

Ly(v*, \*,8) = sup La(v, A, 3). (3.24)

inf inf
{3€L1(Py), 520} {\cL1(Py), A>0} pecp

The solution of the maximization over BY(n) of (3.23) is presented in the next Theo-

rem.

Theorem 3.2.6. Suppose the condition of Theorem 2.1.16 holds. The supremum of
(3.24) over BY(n) is given by

U=, 2(y))

" e s 7 y’dx
v (y,dx) = e(z@(y))( ) (3.25)
Xe W) n(yvdx)
where § € L,(Py) is_found by the constraint
HW n))| = R(y). (3.26)
3(y)=5*(y)
Moreouver,
Ly(v", X, 87) inf 3(y)l / S0y, de) ) + 3()R(y).  B.27)
V5N 5T = in 5(y) lo e ,dx 5 ) .
2 {§€L1(Py), 520} y g X T] y y y
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Proof. The proof is similar with the one in section 3.2.2. The Gateaux derivative
of Ly(-, A, §) at any v* in the direction v — v* is derived by computing the following

expression

250y —v). (3.28)
e=0

d
d—ng(V* +e(v—v"),\,3)

After some calculations the following expression is deduced

OLy(vsv —v') = [ Uz, () (v(y, dv) — v (y, dx))

X

~s)( [ 108 22 0ty o) v (3.0 )

W) /X (v(y. dz) — v* (y, dz)

og el (y—,dx)) h y)) (v(y,dz) — v*(y, dz)).

n(y, dx)
(3.29)

Since Ls(v, A, 5) is concave in v, then from basic principles of calculus of variation
a necessary and sufficient condition for v* to be the maximizer measure is that
0Ly(v*;v —v*) = 0, Vv € P. Since the inequality holds for all v the Gateaux

gradient must vanish, hence

(V*<I, dy))S(y) _ eie(xyib(y))+>‘(y).
f1(z, dy)

Moreover,
vz, dy) U2 2 w)
n(z, dy) '
Since v*(y, dx) is a probability measure on X, then using the constraint f vV *(y,dx) =
1, the following function is optained

{\(y) 1
£(z,2(y))

f e s y’dl‘)

Thus,

ZEXIeh) (v, 1)
* e v y,ax
v (y,dx) = Z(z@(yzz , Vyel. (3.30)

Jye @ n(y,dx)

Substituting v* into (3.23) yields

Ly(v*,\,5) = inf o) 5(y) log (/ ee(xéz()y))n(y,dxo +5(y)R(y).  (3.31)
&2 x

{3€L1(Py),
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Alternatively, one may consider the constraint

s 2 {ver: [ Hummarw < [

R(y)dPy(y) < rg}.
y

This estimation problem can be formulated as a minimax problem defined by

J3(®*,v*) = inf sup/ Uz, (y))v(y,dz)dPy(y). (3.32)
) JXXY

PeX,q veB(n

Defining the Lagrangian as before (with the Lagrange multiplier s replaced by a real

number); then its supremum over v € P is given by

(. B(y))
. e s 1y, dr
vi(y,dx) = e (Ny))( ) (3.33)
Jve = nly,dx)
where s > 0 is found by the constraint
/H(V*In)(y)dPy(y) = (3.34)
y S=sS
Moreover,
Ls(v*, N\, s") II>1£/ slog/ N & n(y, dz)dPy (y) + / sR(y)dPy(y). (3.35)

Remark 3.2.7. Next, a new case is investigated, when the true kernel v(y, dx), de-

noted by v : Y x Yy — [0, 1] belongs to a new uncertainty set described by

5) £ v e [ Hom@anw) < [ Rt dnar ) + B},

X XY

where R : X xY — [0,00), R € BC(X x)). The estimation problem can be formulated

using the uncertainty set B*(n) as follows.

JE(@* v*) = inf sup/ Uz, D(y))v(y, dx)dPy (y). (3.36)
X XY

PeX,y Z/GBR( )

Defining the Lagrangian as before, then its supremum over v € P is given by

ei(zis(y))fR(fE,y)n(y, dl’)

v*(y,dx) = TexIen) (3.37)
Jpe = TREn(y, dr)

where s > 0 is found by the constraint

[ #Hom@irw|_ = 5.59
y S=sS
Moreover,
Riox s ) f(w W) _R(zy)

L3 (v, N, 1% slog n(y, dz)dPy (y) + sR. (3.39)
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3.2.4 Uncertainty on the Joint Distribution and Minimax Pay-off

In this section, the uncertainty is modeled via the joint distribution of X and Y.
This model is appropriate when one wishes to model & priori uncertainty. The pay-
off function (3.2) is considered
H(@.Qxx) = [ 0w, 0)dQxr(z.y)
Xx)Y
in which @) x y is the uncertain joint measure. Assume the joint distribution Px y (x, y)
represents the nominal system model. The true joint distribution denoted by @) €

M, (X x ), is assumed to belong to an uncertainty set described by

C(Pxy) 2 {Qxy € My(X xY): HQxy|Pxy) < R}

where R € [0,00) and H(+|) is the KL distance between the two joint distributions
defined by

Jrewylog %((:i—((gjg))@x,y(% dy) if Qxy < Pxy

H(Qxy|Pxy) =

00, otherwise.

The value of R can be evaluated by statistical methods as explained in Remark 3.2.1.

Since the true probability measure Q)x y € C (ny), then the estimation problem can

be formulated as a minimax problem defined by

Ji (@, Q% y) = inf sup / Uz, ®(y))dQx vy (x,y). (3.40)
XxY

PEXaa Qx,y€C(Pxy)

This type of problem is similar to the one pursued in [16] and [29], although the
method and results presented here are different. The system considered here is an
abstract nonparametric system which can be used for various problems, where as
in [16] a specific gaussian system is considered and the results presented are base
on a parametric uncertainty model. In [29], even though a nonparametric model
is used, the method described does not include a minimax approach and it is only

shown that risk-sensitive estimators enjoy an error bound.

Existence and equivalence of constrained and unconstrained problem is shown sim-
ilarly using Theorem 2.1.16. The supremum in (3.40) is resolved by defining the
Lagrangian

2

L@y Xos) 2 infint swp {0 0()dQxy (o
XxY

52020 Qx,vyeC(Px,y)
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dQxy(z,y) — 1> }
(3.41)

—S(H(Qx,ﬂpxy) — R) — /\(/

XxY

The main results which are derived following the abstract formulation in [43] are

provided in the next theorem.

Theorem 3.2.8. Let 2. 2 X x ). For every f : 2 — R measurable function, bounded
below and for s > 0

L4(Q§(,Y7 >\*7 S) - sup { / g(l’, (I)(y))dQX,Y<x7 y) - SH(QX,Y|PX,Y)} +sR
Qx,y<C(Px)y) b))
0(z.2(y))
= slog (/ e s dPX,y(x,y)> + sR. (3.42)
s
Moreover, if {(x, @(y))el(zf(y)) € Li(Pxy). then the supremum in (3.42) is attained by

the tilted probability measure Q}Y given by

L(z,2(y))
* e s  dPxy(7,y)
dQX,Y (ZL’, y) = (z,9(y)) (343)
fZe s dPX7Y(I>y)
Proof. The derivation is similar to the one presented under Theorem 3.2.5. O

Next, several properties associated with the maximization over the set C(Pyxy) are

presented.

Lemma 3.2.9. Suppose for a given ¢ € X,

sup ‘]4((I)7 QX,Y) < 0,
Qx,y€C(Px,y)

seR, f a measurable function bounded from below, the following statements hold.

1) The dual functional L4(Q% y, A", s) is related to the cumulant generating function
of {(z, ®(y)) with respect to Pxy € My(X x Y) via

L4(Q;(,Y7>\*78) = S sSup
{Q@x,yeEM1(2);H(Qx v |Px,y)<oo}

1
{g / Uz, ®(y)dQxy (v,y) — H(QX,Y|PX,Y)} +sR
>
= slog/ eam’f(y))dPX,y(x, y) + sR
>
1
= sV pXYY(;) + sR. (3.44)
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Moreover, if les € Ly(Px,y) the supremum in (3.44) is attained at Q% € M(X x
V) and it is given by

L(z,2(y))

e s dPxy(z,y)
(z,2(y)) ’
Jse Py (.y)
In addition, “The average energy of the system” = “The Helmoltz Free Energy”

dQ% y(z,y) = (3.45)

+sXx “The Relative Entropy of the system”, that is,

[ e 2)d@x (w0

%

= slog / " dPyy (x,y) + sH(Qxy|Pxy), s€(0,00)  (3.46)
P

2) The dual functional L4(Q% y, A", s) is convex in s > 0.

3) The function I'p, , (s) 2 sUp, (1) is a non-increasing function of s € (0,00), that
is,

U=, 2(y)) =, 2(y))

FPXJ,(S) = s log EpX’Y{e 51 } < s9log EpX’Y{e 52 } = FPX’Y(SQ),
0< S9 S S1 (347]

4) The infimum of the dual functional L4(Q% y, \*, s) over s > 0 defined by

1
Ly(Qxy, A", 87) = inf {S\prx,y (5)+ sR} (3.48)
is a concave functional of R > 0.

5) Assume 3 > 0 such that (e"" € Ly(Pxy). Then Ly(Q%y,\*, s*) evaluated at at
R = 0 is given by

R=0 5—00

* P . Lz, 2(y))
L4<QX,Y7>‘ S ) = lim SlOg/ e = dPX,Y(xvy) = EPXY{€<x7CI)(y))}
P
(3.49)

6) Under the assumptions of 5), the supremum of the dual functional L4(Q§(7y, A*)s)

over s > () is bounded above and from below as follows.

By { Uz, 01) } < La(Qiy, X', 5") < R+ log By, {521 (3.50)

Moreover if {(x, ®(y) is Qx y-essentially bounded for all Qxy € C, then the above

bounds become
Epeo {0, 0()} < L@y, X' ")

< min { R+ log By, {((x, () 1, | 1€z, (1) | }.
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7) If forany n > 0, (e € Li(Pxy) and (£)%e" € Li(Pxy) then the infimum of the

Junctional Ly(Q% y, A", s) over s > 0 is uniquely attained at
H(Qxy|Pxy)ls=s = R (3.51)

where () y is given by (3.45).
That is, a necessary condition for the infinum of the dual functional L, (Q}y, A*s)
over s > ( is that s* occurs on the boundary of the relative entropy constraint.

Moreover,

d Uz, 2(y)) £z, 2 (1)) 1
Eslog/ze s dPxy = log/ze s dPxy — EEQ},Y{K(x,CID(y)}
= —H(QxylPxy). (3.52)

8) Under the assumptions of 7), the relative entropy H(Q% y|Px,y) is a non-increasing

function of s > 0, that is,

0< H(Q},Yle,Y)’s:w < H(Q},Y|PX,Y)|SZS1 < H<Q§(,Y‘PX,Y)|SZS* =R,
0<s* < 51 < 89. (3.53)

Proof. The derivations are similar to those in [43] hence they are omitted. O

It is pointed out that 4) indicates the concavity of dual function with respect to the
uncertainty radius, while 5) shows that as s — oo the estimation problem for a class
of distribution will converge to an estimation problem for a single distribution. 6)
provides lower and upper bounds on the optimal pay-off as a function of the nominal
measure. 8) illustrates the non-increasing property of relative entropy as a function
of s, hence this together with (3.51) gives an algorithm for finding the Lagrange

multiplier s*.

3.3 Examples from Estimation Theory

Next, some examples from estimation theory are presented to illustrate how the

results of this chapter apply to practical problems.
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3.3.1 Estimation of Random Variables

Suppose X and Y are RVs defined on (Q, F, P), which are related via the nominal

model
Y=HX+W. (3.54)

Hence Y : (Q,f) — (%d,B(éﬁd)> the observed RV, X : <Q,}"> — <§R”,B(3‘E")> the

unobserved RV, and W : (Q, F > — (%d, B (§Rd)> the noise RV. Assume W and X are
independent Gaussian Random Variables, N (0,2 ), Xy > 0, N(0,Xx), X¥x > 0.

Moreover, assume (3.54) denotes the nominal model. Then

1 o
— —(y—Hz)" —§~(y—Hz)
wr,dy) = ——— e 2 dy, (8.55)
() (2m) S 2
1 X
(2m) 2 |Ex |2
Let
Uz, P(y)) = (x — d(y)) Uz — B(y)), U=U">0. (3.57)

Using the above model four different estimation scenarios are investigated. Complete

derivations of the results presented below can be found in Appendix C.

Application 1

Suppose the uncertainty is described by 5Y(7) £ {veP:Hn)(y) <R(y)}. Then
the worst case measure v*(y, dx) is given by (3.25). Using (3.55), (3.56) and (3.57)

this worst case measure is given as

Vi de) = —— L e~ lemm @) ot (9) g (3.58)
(2m)z2 |2 (5)|2

where ¥¥(3) = (HTZ;[}H e ﬂ) and m¥(3) = X¥(3) (Hngvly - ﬁ@(y)).

3y 5(y)

Moreover, using (3.27) together with Bayes’ formula 7(y, dz) = % the
X )

pay-off function is given as

¥ -

2%” ) ) )
—<r — t5Wy(s @,y) + S(y)R(y)} (3.59)

1
Lo(v*, A", §") = infinf § — =5(y) lo
o7 38 = ntint { = S3)log
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where ¥ = HTY ) H + X3! and

(% — 207!
9(5,®,y) = (HTEﬁ}y — ;—;fﬁ(y)) % (HTEEVIy — ;—Z)‘P(y))
+<I>(y)T%)<I>(y) - yTEEleET_lHTEEJy-

Ly(v*, A*, §) is a convex function of ¢ for all 5(-) > 0 and a convex function of § for

all d(+).

In order to calculate the best estimate ®*(y) of X, the above pay-off function has to

be differentiated and the derivative set to zero as shown below.

d * O\ ko~
d—q)LQ(V ,)\ ,8)‘4):4)* = O, VS() (360)

By executing the above differentiation and after some manipulations the best esti-

mate is given by

-1

-1
O (y) = (HTZ;;H + 2;3) HTS3ly = Sy HT <HZXHT + ZW> y.  (3.61)

If it is assumed that the nominal model is the true model, the Least-Square estimate

of X is given by [3]
~1
o) = BXY =] = [ onlpde) = (H'SyH+37) HSyly
~1

= NyHT (HEXHT + ZW) y. (3.62)
This shows that the best estimate ®*(y) of X is equal with the expected value of X
given Y. The reason for this result is the fact that random variables are being used.
Note that when Yy is very large compare to HY. x H”, then ®*(y) = E[X] = 0.

For this problem the minimax problem is equal to the maximin problem therefore,
one can perform the minimization of (3.22) with respect to ® to obtain ®*(y) =
[ xdv(y, dx), while the maximization is given by v*(y, dz) given by (3.25) in which ®
is replaced by ®*. Performing the calculation ®*(y) = [ xzdv*(y,dz) in which both
left and right side terms involve the term ®* and solving for this estimator yields
(3.61).
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Application 2

It is assumed that the uncertainty is described by

Alp) 2 {u eP: /XH(VW)(x)dPX(x) < /XR(x)dPX(x) Zrl}.

Then the worst case measure v*(z, dy) is given by (3.15), where u(x, dy) is given by
(3.55). This case can be applied to estimation problems when the received signal is
affected by a class of uncertain channels. Next the connection of relative entropy
uncertainty to parametric uncertainty is described. Assume I/ and X are indepen-
dent Gaussian Random Variables, N (0, Xy ), Xy > 0, N(0,Xx), ¥x > 0. Suppose

the uncertain measure v(x, dy) is induced by the following system.
Y=H+AH)X+W, W~ NO;Zw + AXy) (3.63)

where AH denotes the uncertainty matrix to be defined shortly, and AXy > 0
denotes the noise uncertainty. Suppose (z, dy) corresponds to the nominal system
(3.54) (AH =0, AXy = 0) and v(z, dy) corresponds to the uncertain system (AH #
0, AXy # 0). Then the relative entropy between pu(x, dy) and v(z, dy) is given by the

following expression:

a0 = [ o (D2 vie.dy)

w(z, dy)

1 |§J | -1 -1
= dlog M 4 tr((Sw + ASw)(Sh! — (Sw + ASy
2{ B TSy 4 Any] B AR (B~ (2w Axw) )

+xT(AH)TE;V1(AH)x}. (3.64)

Taking the average with respect to z,

/X H{vp) ()dPx(x) = %{bg%

+r(Sw 4+ ASw) (S — (Sw + AZy) ™)

i (zX(AH)Tz;VlAH> } (3.65)

Now, in the special case when Ay, = 0 the previous expression is equivalent to the

weighted norm

1 1 1
|AH|% = Str <E§<(AH)TE;V1AH2§(>. (3.66)
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The conclusion by using the above expression is that the norm uncertainty defined
by (3.66) is a special case of the relative entropy uncertainty. This can be seen if the

following uncertainty set of channels is defined:
N = {Z is a channel characterized by H + AH, W ~ N(0; Xy ) :
V2l AH|y < Vi .

Then the output distribution of every channel in A belongs to A(u), and in order to
solve the estimation problem over the whole class of channels V' (given the observa-
tions Y), one can solve the original problem as posed in Section 3.2.2. Notice that
N C A(pn) because relative entropy uncertainty allows more general models than
(8.63) with AY;y = 0. For example, the uncertain measure noise I/ can be different

from the noise of the nominal channel in (3.54).

Application 3

Suppose the uncertainty is described by

C(Pxy) 2 {Qxy € M(X xY) : HQxy|Pxy) < R}.

The worst case measure dQ}Y(x, y) is given by (3.43). Then using (3.55), (3.56) and
(3.57) this worst case measure is given by

1 -1 0(s,@,y)
dQx y(z,y) = —F——= o~ (@=r¥ ()T 2 — (a—rv(s) __©

n 1 d dZL‘ (3.67]
CmE=(s) Jyy ety

where

1
z@):<HT2;%{+2;P—2g)
S

and

X(s)! U Sy
0o, 0.9) = w(5)" 2 (s) + B(y)T L bly) — By,
The average pay-off is given by (3.42). Notice that L,(Q*, \*, s) is a convex function
of ® for all s > 0 and a convex function of s for all ®(-). So in order to calculate the
best estimate ®*(Y) of X the average pay-off (3.42) has to be differentiated and the

derivative set to zero as follows:

d *
d—q)L4(Q*,)\ ,S) o 0, Vs. (3.68)
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Performing the above differentiation, and using Bayes’ formula

dPxy(z,y) = n(y,dz)dPy(y) = u(x,dy)dPx(z) the best estimate is given by
£(z.9* (1))

Jywe 5 nly, d)
é(z,@j"(y

) :
Jee = nly, dx)

After some manipulations the best estimate ®*(Y') of X is given by

D% (y) = (3.69)

-1

-1
o (y) = (HTE;VIH + 2;(1) HTS:ly = Sy HT (HZXHT + ZW> y.  (3.70)

Notice that the ®*(Y) is the same as (3.61) which is the expected value of X given
Y.

Application 4

Suppose the uncertainty is described by

BR(n) = {V eP: /yH(Vln)(y)dPy(y) < R(z,y)v(y, dz)dPy(y) + R < r3}

XxY

and assume that
R(z,y) = (y—Hm)Tﬁ(y—ﬁx), U=0">o. (3.71)

Then the worst case measure v*(y, dx) is given by (3.37). Using (3.55), (3.56), (3.57)
and (3.71) this worst case measure is given by

1
(2m) % [3(s)]

o~ (@ ()T D (@i (5)) g, (3.72)

V' (y,dr) =

=

where
- Ty—1 ~1 i 2UNT!
$(s) = (H SUH + 95+ 20 UH——) ,
5

mi(s) = S(s) (HTE;Vly +2H Ty — %@@)).

The average pay-off function is given by (3.39). Like the previous application this
pay-off function, LE(v*, \*,s), is a convex function of ® for all s > 0 and a convex

function of s for all ¢(+).

Next, by differentiating the average pay-off (3.39) and setting the derivative to zero
the best estimate ®*(Y') of X is given by

He2" W) p

d x,y) .d
— L5, 0%, s) =0 = & (y) = Jx n(y, dz)

a fi e Ry d)

(3.73)
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Finally, after some manipulations the best estimate ®*(Y) of X is given by
o~ =\ 1 o~
O (y) = (HTEQ}H I St 2HTUH) (HTE;[} + 2HTU>y. (3.74)

Remark 3.3.1. The best estimate ®*(Y') of X is given by (3.74). Then,

i. ifit is assumed that H = H,
~ -1 4
O'(y) = (H'SytH+ S 20 0H)  (H'Sy 4+ 2070 )y
~ -1 ~
— (HT(Z;; +20)H + 2;}) HT (S5 + 20)y: (3.75)
ii. ifitis assumed that H = I,

() = (TS H + 55! +20) - (Zt +20)y. (3.76)

3.3.2 Estimation of a Sequence of Random Variables

Suppose X is a RV and Y™ = {Yy,Y3,...,Y,,} is a sequence of RVs defined on
(Q, F, P), which are related via the nominal model

Y,=HX+W,, i=0,....m (3.77)

Hence Y™ : (Q,f) — <§R(m+1)d,l’>’(§)‘ﬁ(m+1)d)) the observed sequence of RVs, X :
(Q,f) — <%”,B(§Rn)> the unobserved RV, and W™ : (Q,]—") — (%(mﬂ)d,[s(%(mﬂ)d))

the noise sequence of RVs. Assume W, and X are independent Gaussian Random
Variables, N(0,Xw), ¥w > 0, N(0,Xx), ¥x > 0. Moreover, assume (3.77) denotes

the nominal model. Then

m 1 E_l
pla,dy™) = [ [ g0 e gy,

(3.78)
1 rTx
Px(dz) = ——— ™% 2 %z (3.79)
¥ (2m)5[Sx|?
Let
Uz, @(y™) = > (2= (y") Uz —2;(y") + (x — @ (y™) Uz — Pr(y™))
1=0
U=U">0 (3.80)
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Suppose the uncertainty is described by 5Y(n) 2 {veP:H(vn)(y) < R(y)}. Then
the worst case measure /* (ym, dx) is given by (3.25). Using (3.78), (3.79) and (3.80)

this worst case measure can be expressed as

1 mY (s 2v(3)~! Y(s

V", ) = e e T TR e @) g (3.81)
(2m)2 |Zv(s)[2
where
R 2 AN
SY(3) = <(m + 1)HTE‘7V1H + E;(l — M) )
5(y)
m m—1
o ~ 3 2 » 209, (y™)
mY(3) = 2Y(3) | H X3! Yi — —— @;‘yz——fn )
©) ( )( v ; 5(y) = ) 5(y)

Note that iy(é) is a valid covariance provided it is positive semidefinite. Hence,

S9(5) = <(m + 1D)H'S H + 25 — W)_ > 0

U-t U-1 I\ !

2 W(—H'S H+ —— '

:><(m+ )U( 5 W +2(m+1) X §(y)>> >0
I\ N U-!

2 NU(A—- — 0, A= —H'Y g+ —— !

j((m+ ) ( §(y))> e 2 W )X
I

=A-———>0. (3.82)

5(y)

Given that A is a square matrix (so it can be written in the form A = VAV 1), then

(3.82) can be formulated as

1 1
VAV — gvv—l >0 = V(A- g)v—1 > 0.

Therefore, s > ——, where \,,;, is the smallest eigenvalue of A.

A'mi'n

The average pay-off function Ly(v*, \*,s) given by (3.27) is a convex function of
®,,(y™) for all 5(-) > 0 and a convex function of § for all ®(-). Similar with previous
applications presented, the best estimate ¢ (y™) of X is calculated by differentiating
the average pay-off (3.27) and setting the derivative to zero

U225 (™)

d * * o~ * m f ze ° n(ym’ d.ﬁU)
dcp—mLz(V ;A% 3) =0 = Pp(y") = XS ACD) '
(Y™ B (y) =0, (™) Lee 5 nly™, da)

(3.83)
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By further manipulating the above expression, the best estimate is given by

omU\ u oW &=
* M\ __ Ts—1 -1 Ts—1 L * (0
o) = (m s s ) (Y - 2 S eiw)

Clearly, (3.84) is a nonlinear estimator because | (m + 1)H TE;[}H + E;{l = %) is

a function of the observed sequence of RVs Y. When 3§(y) — oo, then

71 m
P*(y™) = ((m +1)HTS H + 2;}) H'Sy! S g = EIX[Y™ =y™].  (3.85)
1=0

Note that, complete derivations of the above results can be found in Appendix C.

3.4 Examples from MIMO Communication Systems

In this section the theory developed is applied to Multiple-Input Multiple-Output
communication systems. A short overview of the MIMO technology is introduced,
and then examples are presented in order to illustrate the applicability of the results

to MIMO communication systems.

3.4.1 Overview of MIMO Communication Systems

In radio communication, Multiple-Input and Multiple-Output (MIMO) systems em-
ploy multiple antennas at both the transmitter and receiver to improve communi-
cation performance. It is one of several forms of smart antenna technology. MIMO
technology has attracted attention in wireless communications, since it offers sig-
nificant increases in data throughput and link range without additional bandwidth
or transmit power. They achieve higher spectral efficiency and link reliability or

diversity.

Wireless MIMO systems are capable of delivering large increases in capacity through
utilization of parallel communication channels [48], [49], [42]. Appearing first in

a series of information theory articles published by members of Bell Labs, MIMO
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systems now constitute a major research area in telecommunications. It is also con-
sidered to be one of the technologies that have a chance to resolve the bottlenecks
of traffic capacity in the forthcoming broadband wireless Internet access networks.
Multiple antennas, both at the transmitter and the receiver, create a matrix chan-
nel. The key advantage is the possibility of transmitting over several spatial modes
of the channel matrix within the same time-frequency slot at no additional power
expenditure. In addition, if the channel matrix is known both at the transmitter (TX)
and the receiver (RX), certain spatial modes (singular modes) of the matrix channel
can be used to maximize the SNR for every realization of the channel. The singular
modes can be used to transport independent data streams (to increase data rate), or
one may choose to exploit the top mode (associated with the largest singular value)

in order to maximize the spatial diversity advantage.

As mentioned above, Multiple-Input Multiple-Output technology has emerged re-
cently as one of the most significant technologies in modern communication. By
using MIMO technology an increase in the system capacity and/or an improvement
in the quality of service can be achieved. The key to fully utilize the MIMO capacity
relies heavily on the requirement of accurate channel estimation. MIMO channel
estimation methods can be classified into three categories: training-based methods,
blind methods and semi-blind methods. For pure training-based schemes, a long
training is necessary in order to obtain a reliable MIMO channel estimate which
reduces the system bandwidth efficiency considerably. Blind methods which do
not require any training symbols achieve high system throughput at the expense
of high computational complexity. Semi-blind schemes on the other hand require
less computational complexity than blind methods and fewer training symbols than

training-based methods, making them attractive for practical implementation.

In this section the theory developed in previous sections of this chapter is imple-

mented in order to solve some simple examples for MIMO communication systems.

3.4.2 Estimation from MIMO communication Systems

A complex representation of a MIMO communication channel with n transmitting

and d receiving antennas, is considered

Y=HX+W (3.86)
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where Y € C? is the received signal, X € C" is the transmitted signal, H € C%*" is
the channel matrix, and W is the zero-mean circularly-symmetric Gaussian noise
independent of the transmitted signal X. The covariance matrices of X and W are

denoted by Y x and Yy, respectively.

Furthermore, it is assumed that the following are known

w(z, dy) = 7~ Sy | e~ v Ho) Sy y—Hw) g, (3.87)
Px(dz) = 77"|Sx| ™! e SN gy, (3.88)

Let
Uz, ®(y)) = (z — &) U(z — ®(y)), U=U'>0. (3.89)

 denotes complex conjugate transpose, Yy € C>4 Yy, = E;V >0,Yx e C" Yy =
»h >0,

Using the above model two different estimation scenarios are being investigated.

Complete derivations of the results presented below can be found in Appendix C.

Application 1

Suppose the uncertainty is described by

5°0) £ {v e s [ Humwir o) < [ Ry dnar )+ RE )

xY

and assume that
R(z,y) = (y—f[x)TU(y—ﬁ:c), U=U">0. (3.90)

Then the worst case measure v* (y, dx) is given by (3.37). Using (3.87), (3.88), (3.89)

and (3.90) this worst case measure can be expressed as

y*(y7 dx) = 71-_”|§]M(3)|—1 6—(75—7:’11»4(5))T§M(8)71(I—ﬁlM(S))dx (3.91)
where
- . Un-t
Swls) = HE$H+E;+HWH——>
S

mM@)—-i@KH5%@+JﬁUy—%®@D.
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Notice that the pay-off function L¥(v*, \*, s), given by (3.39), is a convex function of
® for all s > 0 and a convex function of s for all ®(-). Therefore, by differentiating
the average pay-off (3.39) and setting the derivative to zero the best estimate ¢*(Y)
of X is given by

(e W) _p

d @9y (y. d
—L:)},%(V*,A*,S)‘ -0 = @*(y):fxm n(y x).

d@ =P fX eé(m,q;*(y))_R(I’y)TI(’y’ dq;)

(3.92)

Finally, after some manipulations of the above expression, the best estimate is given
by

_ .~ -\"1 o~
O(y) = (H'Sy B+ S5+ AIOH) - (HSy! + 210 )y, (3.93)

Remark 3.4.1. The best estimate ®*(Y') of X is given by (3.93). Then,

i. ifitis assumed that H = H,
o\l -
o (y) = (Hfz;;H I St HTUH) (HTE;[} + HTU)y
- -1 -
= <HT(2;V1 +U)H + Z}1> HIY (S5 + 0)y; (3.94)
ii. ifitis assumed that H =1,

() = (HISyHH + 55+ D) B (Hsyt +0)y. (3.95)

Application 2

Suppose the uncertainty is described by

C(Pxy) 2 {Qxy € M(X x ) : HQxy|Pxy) < R}.

The worst case measure Q}Y(Q:, y) is given by (3.43). Then using (3.87), (3.88) and

(3.89) this worst case measure is given by

_ e@(s,@,y)
dQ},Y(Q;,y) = (277)7n|2M(5>|71 ef(acf/flj‘u(S))TEM(S) 1(xfnﬁf(5))é(s—c}w)ddydx (3.96)
fye ray
where
U\ -1

W1y(s) = Suls) (1Sl = S o())
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and

s, ) = 3y (9) Sar(s) w3y () + 0(0)' - Bly) — 'Syl

Given that the average pay-off L,(v*, \*,s), given by (3.42) is a convex function of
® for all s > 0 and a convex function of s for all ®(-), in order to calculate the best
estimate ®*(Y') of X, one just has to differentiate the average pay-off (3.42) and set
the derivative to zero as follows

oz, 2" ()

d ., . ve + n(y,dz)
d_<I>L4(V,>\,3)’ =0 = (I)(?J):fX W )

Then, after some calculations and manipulations the best estimate ®*(Y) of X is

\ (3.97)

given by

-1 —1
O (y) = (HTZ;VlH n z:;g) HiSTly = S H! (HEXHT n EW> y. (3.98)

3.5 Summary

This chapter considers the problem of least-square estimation for a class of systems
which are subject to uncertainty, and employs the KL distance to describe the uncer-
tainty classes. Stochastic kernels, and joint distributions are used to described the
uncertainty models and a minimax approach is implemented. Three problems are
formulated and their solutions are sought, highlighting some properties associated
with the estimate of the true distribution. Classical examples are chosen to illus-
trate the applicability of the results. The theory developed is also applied to simple

examples for MIMO communication systems.
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CHAPTER 4

APPLICATIONS OF ROBUST ESTIMATION

In this chapter, the theory developed in Chapter 3 is applied to a nonlinear recursive
model in order to derive robust estimators. The methodology presented invokes
a change of probability measure technique to derive recursive equations for the
conditional density of nonlinear filtering problems. In section 4.2, the mathematical
theory is presented by extending the theory of Chapter 3. In Section 4.3, the theory
developed in Section 4.2 is applied to a linear Gaussian example. While in Section
4.4, the theory is applied to an attenuated sinusoid in a multipath environment,
where various estimators are derived by solving the recursive equation satisfied by

the unnormalized version of the a posteriori density.

4.1 Introduction

Chapter 4 deals with estimation techniques, for estimating signals which are gener-
ated by finite-dimensional autoregressive channel models found in [34], [35], sub-
ject to uncertainty. Autoregressive channel models have been used with success to
predict fading channel dynamics for the purposes of Kalman filter based channel
estimation and for long-range channel forecasting. They have also been used by
several authors to simulate correlated Rayleigh fading. The uncertainty description
of these systems is characterized by the class of uncertain measures which satisfy
a Kullback-Leibler (KL) distance constraint with respect to a nominal measure. The
uncertainty description of the system, and the nominal description of the system are

modeled by joint probability distributions.
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A minimax approach is implemented here in order to address the above problem. The
difficulty with this approach lies in the minimization. Because this is a nonlinear
problem it is not easy to obtain the solution of the ¢ posteriori distribution recursion
in closed form. Very often, when dealing with nonlinear estimation problems, ap-
proximations have to be made to find sub-optimal nonlinear estimators. A common
method is to use the so-called extended Kalman filter [5, 6, 7]. Other more so-
phisticated sub-optimal estimation techniques are available, e.g., reiteration, higher
order filters, and statistical linearization [5]. The chapter deals specifically with the
problem of finding a solution to the minimax formulation and does not take into

consideration other nonlinear estimation techniques.

In general, minimax estimation techniques lead to strategies, which are robust with
respect to variations in the models as long as these belong to the uncertainty class.
As was already described in Chapter 1 Minimax Wiener filtering techniques are given
in [30], while blind minimax linear regression problems of estimating deterministic
parameters are given in [23]. Relations of blind minimax techniques to Stein type
estimators [27] and least-square regularization [9] is discussed in [23]. Related work
in which uncertainty is described by relative entropy can be found in [16], [29], [50].
The examples provided in [16], [23], [29] and [50] are linear Gaussian.

In this chapter, in the abstract setting, the maximization is addressed using varia-
tional methods, while the minimization is addressed using a change of probability
measure technique [36]. The change of probability measure techniques introduced
is being used in order to derive a recursive equation for the unnormalized & pos-
teriori distribution of nonlinear filtering problems. The theory developed is applied
first to a linear Gaussian model and then to an attenuated sinusoid in a multipath
environment, which is subject to an additive Gaussian noise. The multipath model
employed for non-coherent estimation and detection compliments the work found in
the literature [4], [51], in the sense that the classical problem assumes no multipath
scenario, while the attenuation of the sinusoidal is assumed to be a known deter-
ministic function. Note that, unlike the classical non-coherent estimation problem
[1], [4], which is concerned with a fixed model, this chapter deals with a class of
models while the estimation is formulated using minimax techniques. The connec-
tion to least-squares estimation found in [1], [4] for single channel, is established by

reducing the uncertainty to zero, while generalizing existing results.
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4.2 The Minimax Filtering

In this section, the nonlinear model is described. The minimax problem is defined
and a change of probability measure technique is introduced, which reformulates
the problem under a new fictitious probability measure, where the signal to be es-
timated and the observations are independent. Finally, a linear recursion for an

unnormalized conditional density related to the minimax filtering is derived.

42.1 State and Observation Models

Let <Q, F, P) be complete probability space on which the nominal state or unob-

served process {z;},k € Ny 2 {0,1,2,3,...} and the observation process {y;},k €

Ny, are defined by the following recursions:

Tpy1 = f(E+1,24) + Brpiwpgr, 19 € 1"
Y = h(/{i, l‘k) + Dkvk, Yo € é}%d. (4.1]

Here zy : 0 — R" is the initial state and w : Q@ x Ny — R, v : Q x Ny — R, are

random noises.

Also {wy}, {v}, k € Ny are independent noise sequences of Random Variables (RVs)

wow 'UT7J
with densities W, (w) = ﬁ ez ,5,(v) = 5 1)@ e~ 2 , respectively, xy has density
s )2
T (T) = dHZ—;(m, which is also independent of {wy}, {vy}.

It is assumed throughout this chapter that f : Ny x ®* — R" and h : Ny x R¢ — R,

By, Dy, are Borel measurable functions, and (BB} )™, (D, DI)™! exist.

4.2.2 Definition of Minimax Problem

Let {G° } be the o-field generated by the complete data {xg, T1, .. ., T, Yo, Y1s - - - » Ym }
and let {G,,},m € N, denote its complete filtration [36]. Let {F°7} define the o-
field generated by the incomplete data {yo, y1, - - ., ¥n} and let {FY}, m € N, denote
its complete filtration. Let y™ denote the sequence {yo,...,¥,} and similarly for
other sequences. i, denotes the estimate of the state z,, given {FY} m € Ny;

it is assumed recursive estimates which update z,, from knowledge of z,,_; and
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past and present data {yo, ..., ¥n}, m € Ny. Throughout the chapter Ey|[.| denotes
expectation with respect to probability distribution Q).

In the next definition the class of admissible estimators, which are functions of the

observation sequences are introduced.
Definition 4.2.1. The set of admissible estimators X,4 are defined as follows.

X 2 {;i : QO x Ng — X CRY;, {%}, is adapted to {F}}, k € NO} (e.g., adapted

means that at each k € Ny, 7}, is a causal function of the data {F}'}).

Let P,m ,~ denote the nominal (in the absence of modelling uncertainties) joint dis-
tribution of the sequences (2™, y™), which corresponds to the one induced by model
(4.1). Let Q,m ,m denote the true joint distribution of the sequences (z™,y™), which
is unknown. The only available information is that (), ,~ belongs to a class of
possible distributions. This class is modelled by the information theoretic relative

entropy set

C(Pyr yn) = {Qum gy = H(Quon gy Pymy) < R} 4.2)

where R > 0 and H(+|-) is the KL distance between the two joint distributions defined

in Section 3.2.4. Note that this is the same uncertainty set used in Section 3.2.4.

The pay-off is the average of a function of the error over the time horizon [0, m/,
Eq

tion Qum ym € C(Pym  m). Here {(xy,7;) is a measure of distance between the state

m { S U, T } in which the average is taken with the unknown distribu-

z,y

zr and its estimate Ty (e.g. ||zx — Tk||5m)-

Next, the minimax estimation problem is defined.

Problem 4.2.1. Given the nominal probability distribution Pym ,n induced by system
(4.1), find a probability distribution ()} ,» and an estimator ¥, € X,q which solve

Tm E€Xad Qum y mEC(P m ym)

J(T*, Qym ym) = _inf sup EQ,m, {ijg (Tk, T } (4.3)
k=0

when R € (0,00), and £ : R" x R" — [0, 00), is continuous in (z, %) € R* x R" and

bounded from bellow.

The assumptions on / are sufficient for the existence of estimates of the maximizing
distribution Q;m,ym [43].
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4.2.3 Minimax Optimization

Define the sample pay-off {(z, T) 2 o {(x},, @1,). For a given Z,, € X,q, and a fixed
nominal probability distribution P, ,~ induced by the nominal system (4.1), let

»m ,m denote the distribution which achieves the supremum of the average energy

pay-off functional subject to the relative entropy uncertainty as defined by

(T, Qpm ym) = sup / (2™, ™) dQgm ym (2, y). (4.4)
R(m+1)n y p(m+1)d

The solution to this optimization problem returns the worst case probability dis-
tribution among those which satisfy the constraint, as a function of the nominal

distribution FPym ,m.

Thus, the estimation problem for the class of models C(P,m ), is to find an estimator

zy, € X,q which solves

J@ ) = inf J(Fs Qo ). (4.5)

~ ™™ ym
Tm€Xad Y

Since (4.4) is a constraint optimization, to find the supremum over Q,m ym € C(Pym ym)
the Lagrangian has to be defined [40]

>

L(Q g, By ¥, 57)

inf inf sup {

520220 Qrm ym EC(PZ.m Ly )

/ 0(x™, 2™)dQym ym (2, y)
F(m+1)n  p(m+1)d ’

=5 (H(Qumyn|Pom ) = R)

—A(/ AQum ym (1,7) — 1)} (4.6)
R(m+1)n  p(m+1)d

where s > 0 is the Lagrange multiplier associated with the constant C(FP,m ,m) and
A > 0 is the Lagrange multiplier associated with the constraint

fw,nﬂ)nXéR(mH)d dQum ym(z,y) = 1 (e.g., Qum m is a joint distribution and hence it
should integrate to 1).

From Section 3.2.4 the worst case measure, Q;m’ym, is given by

VRS
e s dPpmym(z,y)
! . 4.7)

f%(m-kl)nxm(m-!—l)d € s dme,ym (l‘, y)

dQ;myym (I, y) -
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Then (4.7) is substituted into (4.6) to deduce

* ~ *
L(Qm yms Ty A7, 8) = slog
%(m+1)nX§R(m+l)d

Z(xm im)

dPym ym(x,y) + sR. 4.8)

Hence, Problem 4.2.1 is equivalent to the dual problem of finding the optimal esti-

mator I, € X,q via

inf £ L(Qum ym, Ty A", ). 4.

inf inf L(Qmyms Tm; A", 5) (4.9)
Thus, the rest of this chapter deals with the problem of finding the minimum over
Ty € Xyq of (4.8).

This is achieved by expressing the minimization over z,, € X, in terms of the solu-
tion of a recursive equation satisfied by a conditional unnormalized distribution. The
next theorem presents intermediate steps using the change of probability measure

discussed extensively in Section 2.2.

Theorem 4.2.2. Let ® be a bounded continuous function on R" taking values in R.

The likelihood function of the complete data {zq, . .., Tm, Yo, - - -, Ym} is defined by

ﬁ r =k, 7)) Yoo (By (= f(k,2p1)))] _ dP@™,y™) (4.10)
|Dk’~v(yk) | Bi |V () dP(x™, ym)
where under probability distribution P, {x}} is i.i.d. N(0,1,) and {y.} isi.i.d. N(0, I )
with density functions V., () = B 1)% exp(_mgx’“) and Z,(yx) = 5 1)4 exp(_ygyk), ke
T ) 2

Ny, respectively. Then the following relations hold.

1) Conditional expectations are related via

% E|®(wp) A exp ( § 50 Lan, 3) )| 73
o on (] - ol )2

(4.11)

where E, E denotes expectation under the probability distribution P, P, respec-
tively.

Moreover, the numerator of (4.11) can be written in terms of unnormalized proba-
bility distribution o2 (.) via
_ 1 < -
05, (®) 2 B[ @) A exp (- D lan, 1) )17 = / B(2)dos,(z)  (4.12)
S n

k=0
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where the probability distribution o, (.) satisfies the following recursion

@)= [ oo (Siean) Ev@%ig(;g, 7))

(HelBalle = 1))

S

(4.13)

with initial condition

= Dyt yo — h(0, 20)
as(®) = / (o) exp <1€~(x0,§:0)) ( <y >) dlL,, (z0). (4.14)

n S | Dol = (yo)

2) If a5, (®) has a density, that is Lo, (z) = @, (z), then

as (P) = /n O(z)das (x) = /n O(x)a) (x)dx (4.15)

and the density {@:,(z) }m>o satisfies the recursion

—S _ EU(Dgll(ym_h(mux))) 1" ~
a, (x) = IRERTS exp ( ﬁ(m,xm)>
1 .
X/ \I/w(Bm (ZL‘ f(m,z))) afnil(’z)d’z (416]
n | Bin|
with initial condition
o 2D = hOm)) 1
ag(x) = DB 0] exp (Sﬁ(xo,xo)> Tz (T0)- (4.17)

Proof. The derivation is a variant of the one found in Theorem 2.2.19 in Section
2.2.4.

1) This follows from the relation of conditional expectation under different probability
distribution [43]. (4.12) follows from Theorem 2.2.19 in Section 2.2.4 by absorbing
the exponential term exp (% ST U ik)> into the likelihood function A,,.

2) Follows from Theorem 2.2.19 in Section 2.2.4 and the above discussion.

Notice that {@’, (z);m € Ny} is a sufficient statistic for the robust (e.g., minimax)

estimation problem because the initial optimization Problem 4.2.1 is now expressed
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in terms of this quantity. Using Theorem 4.2.2, the dual functional (4.8) is now given
by

L(Qym yms Tm, A", 8) = slog E[el(zms’hm‘)] + sR = slog F[eg(zms@m)Am] + sR
(4.18)
— [—. £(=",z™) Yy
= slogE[E[e = An|Fl| + sR (4.19)

(™, ™)

= slog/ Ele™ =  An|FYldPm(y) + sR  (4.20)
R(m+1)d

= slog/ as (1)dPym(y) + sR. (4.21)
R(m+1)d

The chain of equalities in (4.18)-(4.21) are obtained as follows. Clearly, (4.18) follows
(=™, ™)

by substituting into f e = dPym,m the density dP = A, dP. Also, (4.19) is a

property of conditional expectation. In addition, (4.20) follows from (4.19) since
(™ ™

Ele™ )Am|.7:,3,fb] = f(y™). Finally, (4.21) follows from (4.12) by letting & = 1.

Further, to find the optimal estimator 2* one needs to solve the recursive equation
(4.13), then substitute into (4.21) and perform the minimization over z,, € X,4. The
point to be made in this section is that the minimax estimation yields the estimation
problem (4.8) with an exponential cost, while (4.8) is further expressed in terms of

the unnormalized conditional distribution {a? () : m € Ny}.

Remark 4.2.3. In decision applications, there will be one distribution o, () for each

hypothesis, e.g., in binary hypothesis the decision rule takes the form

. H,
infz cx, f . dasl(z)
€T d JR m Z ~

infi’mexad fm’ﬂ daz%? (.I) Hy

where 7 is the threshold. Clearly, o2 () is a sufficient statistic for estimation and deci-
sion problems, since both the least-square estimation and decision rule are contructed

Jrom this quantity.

In the next sections the results obtained in this section are applied to different

problems where model (4.1) has a specific form.
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4.3 Minimax Estimation for Linear Gaussian Models

The partially observed Gaussian version of (4.1) given by the following recursions, is

being considered in this section.

Tpp1 = Ap1%p + BrpiWigr, xp € R”
(Q,F, {gk}7P> ; (4.22)
yr = Cray + Dyvy, yr € R

The noises are Gaussian distributed as follows, w, ~ N (0, I,,), v, ~ N(0,1;), while

sequences {wy}, {vx} are mutually independent and independent of xy ~ N (T, Vo)

According to Theorem 4.2.2 equation (4.16), {a?, (x)} satisfies the following recursion

m ) = 2Pl 2 Cnt)) o) (L 3,.)

" |DM|Ev(ym)
—1(,
></ Vul(By (& Amz»@m,l(z)dz (4.23)
. | Bin|
where
V(@) = e (- F) (4.24)
w\T) = (27")% exXp B 5 .
=y L 'y
=W = 5o exp (- 57), (4.25)
o, 5) = (z — @m)T%(x _an). (4.26)

A solution of (4.23) is assumed to have the following form

—s 1 T(V;am)_1 ~8 s
a’ (r) = ——————exp ( (x — xmlm) —(x — Im‘m) + ﬁm‘m> (4.27)
(2m) 2 |Vl 2 2
where {V?* lm Eoafm ﬁm|m} will be identified shortly. By substituting (4.27) into the

recursion (4.23) and using (4.24), (4.25), (4.26) the following recursive relations for

v m|m’ m|m,ﬁm‘m} are deduced.
A8 T T S —1-s Wm~
I [C (D Dyy) ™ Y+ (Vi) rcm|m_1—7:cm} (4.28)
W
mim = <C£(DmDT) 'Ot (Vi)™ —Tm) (4.29)
s ~g (Vnslm)il ~8 ~8 ( nslmfl)il ~S ~ I/Vm~
mlm (xm\m)T‘T‘rm\m ( m\m 1)T |2 xm|m71 +l’% T
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1 _
3108 |1V spa 1AL (B BEY M A (Vi) (Vi)™

10| D Bl) + 50 (1 = (D D5 ) + 5 (.30

where
:%fn|m71 = Amxm 1jm—1 (4.31)
mim—1 = BmBp, + AnVo AL (4.32)

with initial conditions

. ) B W,
Tojg = %\O[Og(DgDO) o—?oonrVo xo} (4.33)
W -1
Vio = (CEDED) Gy - =2+ ) .34
s s ( 080)_1 W Voo !
Boo = (xo\o)TlT o0 T (?2 950—1‘07960
1.V
+ log [ ‘3'0] log | Do|| Bo| + - v <Id—(D Do)~ ) (4.35)
0

thus it is concluded that (4.27) is indeed a solution of the recursion (4.23).

Theorem 4.3.1. The optimal estimate Z,,° of x,, is given by the following expression

-1
f:;f - Ami’*ms 1 + |:( rfz\m—l)_l + CZ@(Dngz)_ICm Cfrjw;(DmDZl)_l

(ym—C A, ) (4.36)

Note that the above estimator can also be re-written by applying the PosDef Identity
(see Appendix A) as

B = Andts Vi aCn [ CoVinaCh + (DD (v — CnAnity).
(4.37)

This form is the same as the Kalman-Filter solution [1], [4]. The difference can be_found

in the covariance of the predictor error, V? mfm—1 which for this case it is a _function of s.

Let

A N
Tnjm = leIgo mm|m7 Vm‘m = hm Ve mjm Trnjm—1 = lim xm|m 15

R ~%,8
Vinjm—1 = hm Vinjm—1s xm— lim z°.
S§—00
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Then, when s — 00,

B = mm[OT(D DIy +(me_1)—1zﬁm|m_1] (4.38)
-1
Viim = (Cg(DmDﬁ)lcm+(Vm|m_1)1> (4.39)
where
:%m|m—1 = Ami'm—1|m—1 (4.40)
Vm|m—1 = BmBZL—i_Ame—Hm—IAZ; (4.41)

the estimator (4.37) converges to the classical Kalman-Filter solution, given by (1.11).

B = A+ Vi 1O GV 1O+ (DD (9 = Con Ao ).
(4.42)

Proof. As was mentioned in Section 4.2.2 in order to find the optimal estimator 7**
one needs to solve the recursive equation (4.13), then substitute into (4.21) and
perform the minimization over z,, € X,4;. By applying the theory to this specific
problem, then
¢ = arg minslog/ as (1)dPym(y) + sR

R(m+1)d

Tm

= argn}in/ @, (x)dx, Pm —a.s.

= arg min/ N exp ( — (v — 1 | )T —(V;”m)_ (x — 2, | )+ G5 | )daj
P n s 1 m|m m|m m|m
Py (2m)2 |V 2 2

- asgin oo ()

Tm

Z_l
= argmin exp ((Fn = N)" =2(Fm = M) + K Gy Bt 1))
(4.43)
where

Wi Wo Wi

2777,1 = 'ni\m + )
S S S
W T 1 s —1zs

Ny = ZmT m|m C (D ) Ym + (Vm\mfl) Lnm—1 |-

Continuing from (4.43) and by performing the minimization
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Wi o Wa Wi\~ W AN
( m|m + ) s m|m[OT(D DT) +(Vm|m—1) 1mm|m—1]

S S S

s — Wm - - s —14xs
—1

= (™ + CEDWDEC ) [CEDWDEY o+ (Vi) ]

(4.44)
-1
= s+ (Vi) + CE(DWDE) ' C ) ChDuDE) ™ [ = Conis |
(4.45)
By using (4.28) and solving for :i:fn|m (4.45) can be transformed into
o) s - Wm ~ %
Tmm = m|m [CT (D DT) m + (Vm|m71) lxm\m 1= Txmi|
T T s —12s s Wm ~ %
= m|m [C (D D ) m + ( m|m—1) xm\m—ljl - m\m?xm (4.46)
Next, (4.44) can be expressed as
(V)™ o+ CEDADE) 1 Co )5 = [CEDDE) s+ (Vi)
(4.47)
and when it is substituted into (4.46) it transforms it to
~S s ~* ,S s Wm ~%,8
s s -1 T T\—1 Wm ~ %
Finally, (4.36) is derived by substituting (4.31) and (4.48) into (4.45).
O

4.4 Non-Coherent Estimation in Multipath

In this section the theory derived in Section 4.2 is applied to an attenuated sinusoid

in a multipath environment which is subject to an additive Gaussian noise. Various
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estimators are derived by solving the recursive equation for {@’ () : m € Ny}.
Further, as a special case, the estimation problem when there is no uncertainty is

derived, by taking the limit as s — oo.

4.4.1 Channel Model

A multipath version of the classical non-coherent model, given by the following equa-
tion, is considered in this section.

y(te) = D Ailti)ricos(we(ts — Talt)) + 0:)S (8 — a(tr)) + D(ty)o(tr)

=1
N

= > hiltr, 0:,7) + D(t)v(t) (4.49)
=1

where w, is the carrier frequency, {7;(t;)} denotes the propagation delay, A;(ty)
denotes a deterministic known signal envelope, {r;}, {#;} are Random Variables
denoting the attenuation and phase, respectively, of the signal received associated
with ith path, and v(t;) ~ N(0,1). Furthermore, the following function is defined
h(N,0,r) 2 Zfil hi(tx, 0;,7;), where 0 2 (01,...,0N)" is the phase vector, and r 2

(r1,...,ry) is the attenuation vector.

The delays {7;(.)}}Y, are assumed to be fixed and known, while the phases 0; : ) —
[0, 27] are independent and identically distributed RVs with d priori density my, (6;),
6; € [0,2x], while the attenuations r; :  — [0, 00) are independent and identically
distributed (iid) RVs with ¢ priori density 7,,(r;), for 1 < i < N. In addition it is
assumed {r;})¥, and {#;}), are independent, and also independent of the noise
process {v(t;); k € No}. A special case of (4.49) in which N =1, i =0andr =1

is the model used for non-coherent detection (see [4], [51]).

Further, it is assumed that the estimation error for @ and r is additive given by
06, 0™(tr,),r, 7" (t) = (1(0,0™ () + lo(r, F" (1))

where £1(8, 6™ (1)) = X0 XiLy C1a(0h, 0i(ta). o, T (1)) = 35500 05, o (te)
and 6(t;), T(tx) are the estimates of 0, r, respectively at time ¢, k¥ € Ny. Note that

{1, ls; are functions of estimation error.

The relation of model (4.49) with model (4.1) is the following. Clearly, sampling time

k of previous section is now represented by t;, and the state vector of (4.49) which
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0

r r

variables then xj1 = z, Vk € N,.

needs to be estimated is z = € R2N. However, since ( ) are random

Next, the theory of Section 4.2 is applied to the above problem.

4.4.2 Minimax Estimation of Phase and Envelope

The density (4.16) is specialized to model (4.49). This is done by replacing the
integrand VU, (B, (z,, — f(t,2))), v € R, 2 € R* in (4.16) with the delta measure

0 1
d(r—2")x6(0—2) = [T, 8(ri—2})x0(fi—27), where v = ( >,z: ( ° ) € RN,
r

z

f(t,z)= ( ; ) to get

T (0.r) = 1o (0) T [Eo(D () (y(te) = S0t hilte, 0i,m3)))
m(6.x) = e (6)7o H[ D(t)IE (1)

X exp( ZEIZ 01,0 (tx)) Zﬁgl (ri, 7 (tx) >} (4.50)

where 7g,(0) = [, 74, (6:) is the d priori joint density of (6, ...,6x), and m, (r) =

Hij\il T, (1i) is the ¢ priori joint density of (r1,...,7x).

Furthermore, the error functions are assumed to have the form gl,i(ﬁi, éz(tk)) =
—(ei_ei(tk;)2Ri(tk), and 5271-(7"1-,72(75;6)) —(”_”(t’“)) Qilte) \where Ri(.), Q;(.) are weighting

coefficients on the specific errors, which are positive for each 7.

The following quantities are needed when presenting the robust estimator.

Definition 4.4.1. Foreach 1 <i,j < N,i # j, define the following quantities.

Vi(y™) £ Do Ai(ti) D72 (tr) cos(we(te — 7i(tr)))S (tk — Taltr) )y (tr).
(y™) 2 S0 Aulte) D72(t) sin(wo(te — 7:(t4)))S(tx — 7ilte) )y (ts).

Vi) = VU VG ) = -t ()

Wim £ LS A (1) D72(t) cos(2welty — (1)) S (tx — Ti(tx)).

Wim £ LS A () D () sin( 2wt — 7i(t))) S (b — ().

W = \/(Vchm)2 + (Wa™2, g = —tan~! (&:)
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gim & _1 z;j o Ai(te) D72 (1) cos(we(2ty — Tilt) — 75 (t1))) S (t — i (t)) S (tx — 75 (t1)).-
Uiim £ LS AL (1) D72(t) sin(we(2tx — 7i(tk) — 75 (8))) S (ks — 73 (t)) S (b — 75(14)).
U = /U - U, 6 = — tan! (Uﬁf”")

—3 > io Ailtr) D72 (tk) cos(we(T (tk) — 7i(tr)))S (b — Tiltr)) S (ke — 75(tr))-
— 5 Yoo Ai(t) D72 () sin(we (75 (tk) — 7i(tr))) S (tr — 7i(tr)) St — 75 (tk)).-
T = \/ (TE™)2 4 (T2, o = — tan™! (Téﬂ.’m).

17,m
Tc

ij,m
Ts

||I> 1>

J ™
From Definition 4.4.1 and (4.50) the unnormalized conditional density is given by

(0.1) = 7o, O)meo(r)exp (— 3 3D 20D (1) (1 — (1))

i=1 k=0

X exp Z riVi(y™) cos(0; — %(ym))> exp (i W™ cos(20; — @m))

1 i=1

N N
X exp ZZr Uit cos(b; + 0 — )
i=1 j=it1
N N
Z Z ririT;i cos(6; )
i=1 j=it1

X exp Zi (6; — 0,(t1,))’R + - — T tk: Qi(tk))

i=1 k=0 28 =1 k=0
1 & -
xexp (530 At — D2 ()] = 3 log |D<tk>\). (4.51)
k=0 k=0

Note that (4.51) should be substituted into (4.21) and then minimized over the
class of estimators. Since the exponential term is a quadratic function of (6, r) and
(ém, '), the minimization in (4.51) over {ém, ™} can be found explicitly provided
7o, () Tro(.) are Gaussian. However, for this problem this is not the case. Nev-
ertheless, closed form expressions for the optimal estimators when 6 is uniformly

distributed over [0, 27| and r is arbitrary distributed are going to be derived.

Remark 4.4.2. Below realistic scenarios that lead to a simplified version of (4.51) are

discussed.

1. Minimax Estimation Subject to Resolvable Paths.
Supposed the received paths are resolvable, where path resolvability for wide-

band signals is defined as having inter-path delays which are larger than the
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reciprocal of the bandwidth of the transmitted signals. Under the resolvability
assumption, expressions containing cross terms in Definition 4.4. 1 are negligible.

This implies that the following terms are zero.
gam = gum =0, THm=T0m =0, 1<1,7<N,i#j.

Taking this into consideration, expression (4.51) reduces to

@,(0,1) = 70,(8) 7wy (r) exp ( - iz > r2 A1) DA (1) S — Tilt))

=1 k=0

xexp(Zn J(y™) cos(0; — vi(y™ )))

X exp (Z r2 W™ cos(20; — ﬁzm))

exp (% St — D (1) — Z log |D(11)]). (4.52)

2. Minimax Estimation Subject to Negligible Double Frequency Terms.
Here a “Narrow-band” assumption is employed, which implies 2w, terms (“double-
Jrequency” terms) are negligible since the receiver will remove them in the process

of reconstructing the transmitted signal.

Taking this into consideration, expression (4.51) reduces to

T(0,1) = 7o, O)meg(r)exp ( — 3 3 D" P2 A0) D05 (1 — (1))

i=1 k=0

< exp (30 raVily™) cos(6, — (™))

1 j=i+1

X
D
5
WE
NE
=
-
a@
+
M-
Ms
¥
=
;?
i@
=
—

i=1 k=0 k=0
1 m m
xexp ( 5 D> )= D2 (t)] — D log |D(tk)|> (4.53)
k=0 k=0
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If cases (1), (2) above are combined together the density & (0,r) is given by (4.53)
with cross terms U™ U™ Tim Tim peing zero. This is treated in the following

paragraphs.

Supposed the received paths are resolvable, and double frequency terms 2w. are

negligible. Then (4.51) reduces to

N m
50 . . 1 —
r):{Ham(Gz,n)}xexp(QZ (tr)[1 Zlog[D tr) )
(4.54)
where a%'(0;,7;), 1 <14 < N is given by
Wi(0i) = o (03) () exp ((— —Z“ (1) (1 — ()

X exp (nVi(y ) cos(6; — 7i(y™)) >

((Hi—éi(t +Z (6; — 6i( tk Ri<tk)>

,_A

X exp

Sw
,_.o

2s + 2s

o (T QUn) | SR (= RODPRUY 5

i
o

Note that path resolvability implies that each path component (6;,7;) can be esti-
mated independently of the rest.

Theorem 4.4.3. Assuming negligible double frequency terms, and resolvable paths,
then the optimal robust estimates {0:°(t,,)}Y, and {7*(t,,)}Y, are given by the

Jollowing expressions

é*vS(tm) -

7

S S By () exp (2K exp (raVily™) cos(Bs — 2u(y™) ) exp (G + E7)dbidr,

Kk%mmmm#%mm%wmwm@—wwmwmww@wwn
(4.56)

7% (tn) =
I fo% riTry (13) exp (—r2K[™) exp (nVi(ym) cos(f; — %-(ym))) exp (¢ + &£ dfidr;

fo 7r,a0 ;) exp (—rZK™) exp (Tﬂ/;(ym) cos(6; — %(ym))> exp (¢ + €M) db,dr;
(4.57)
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where

%S m— 1 N* s
k=0
~* S m—1 ~>«< ,8
e _ () PO | (1) @:-(tk)? 459
2s 25
k=0
K" = -ZA2 ti) D72 () S? (), — Ti(ty). (4.60)

Proof. Substituting (4.54) into (4.21) and using the fact that P (y) is a positive
density function, which is independent of §; and 7;, then 97‘ * and 7, are found from

the expression

[ () 7 ()}, =g min 10H{ / / 5305, 73)dOclr

{(0;(tm),7i(tm))

= arg min {log/ / st 50, 1;)db; drz} ) (4.61)
{(9 (tm) ”'z(tM)

112]_

Hence

27
(075 (bn), 7 (t0)) = arg  min  log / / T (0, 1) d0drs, 1< i < N. (4.62)
(05 (tm), 7 (tm)) 0

Differentiating the pay-off function (4.62) with respect to éz(tm) and 7;(t,,), evaluating
at (0;(tm), 7i(tm)) = (07 (tn), 7°(tm)), setting it to zero and then solving for
(07°(tn), 77 (tm)) yields expressions (4.56), (4.57).

K3 )

Notice that the minimax estimators of the phase 6,"*(t,,) and envelope 7 (t,,) are
computed from (4.56) and (4.57). Clearly, the estimators derived in (4.56) and (4.57)
are given implicitly because 6;"*(t,,,) and 7"*(t,,,) appear on both left and right side of
these expressions. In calculating these quantities, one should start with an initial
guess 01° = 0° and 77° = 7°, put them into the right side of (4.56) and (4.57)

2

compute 0? ?, 7" and repeat this step until the estimators converge. O
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4.4.3 Classical Estimation of Phase and Envelope

Here the problem of jointly estimating the channel parameters, namely phase, 8 and
envelope, r for an attenuated sinusoid signal in a multipath environment which is
subjected to additive Gaussian noise, when there is no uncertainty, is considered.
The case of no uncertainty corresponds to having an uncertainty radius £ = 0. From
Theorem 4.2.2, this is equivalent to taking the limit, as s — oo [43]. Thus, the limit
ax(o,r) 2 lim, . @ (0,r) corresponds to the unnormalized conditional density of

(0,r) given F2. The mean-square error estimation of (6, r) is then computed via

[ 6a2(0,r)d0dr
[@ax(0,r)dodr ’

0" (1) = E[6|F)] =

and similarly for 7*(¢,,).

From (4.54), since it is assumed negligible double frequency terms and resolvable
paths, and by reducing the uncertainty to zero (by letting s — 00), the unnormalized
conditional density of (0,r) given F? is given by

N

ay(0,r) = H {7@0(9 Vo (1) exp (=12 K™) exp (nVZ ™) cos(0; — vi(y™ )))}

=1
X eXp( Zy tk 1 - ilog|D tk > (4.63)
k=

where K" = iZZLo A2(tp) D72 (1) S% (t — 7i(tr)).

Note that path resolvability implies that each path component (¢;,7;) can be esti-

mated independently of the rest. Below various optimal estimator are derived.

Theorem 4.4.4. Assuming the phases 0, are iid RVs with G priori density 7y, (0;) =
2i, ; € [0,27] and the attenuations r; are iid RVs with 4 priori density m,,(r;) =
r; € [0,00) (Rayleigh distributed), then the following estimators are ob-

[ 2
2 7
0-2 eXp _20-2 ’

tained.

(a) The incomplete data likelihood ratio defined by A(t,,) = E[A(t,,)|F>] is given by

Altn) = / / (0, 1)d0dr (4.64)
[0,00) 0 27r]”

= 11 {m o (%)]

=1
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m

xexp (5 31— D20 — D log | (1))

k=0
(4.65)

(b) The normalized conditional density of (6, r) given F2, i.e., py(tm, 0, 1| F>), is given
by

_ N
o am(0,r) B Y 4
pn(tm, 0,1|FY) = ”am(&r)dedr_gpN(tm,el,mfm) (4.66)

N {n(l + 202 KM r2(1 4 202K™)
I1 exp ( _ )

- 2o 202
Z:

X exp (rﬂ/;(ym) cos(f; — %(?Jm))>

V2(y™)o®

(c) The conditional least-square estimate of the noiseless received signal h;(t,, 0;,7;)

given FY, defined by izi(tm, O;,7;) 2 E[hi(tm, 0:,7:)|F>] is given by

ﬁi(tm,ei,rz / / ’L m79Zarz pN( m’017TZ|F )de drl (468]
f m 2
= Sty — 7i(tm)) cos(we(tm — 7i(tm)) + %(ym))%'
(4.69)

(d) The minimum least-square estimator of ; given .7-"% is given by

[e'e] 2T
i) = B[R] = [ [ tonttn bl Binar @70

(1+20°K7") ( Vi(y™)o® )
A <p [ —
202 2 +402K]"

[e) 21 2 2
(1 + 20°K™
></ / Hiriexp<—r1( 2o, )>
o Jo 202

X exp (ri\/;(ym) cos(6; — %(ym))>d9idri. (4.71)

(e) The minimum least-square estimator of r; given }?,f is given by

2 o)
(] VRO (3 VAo
= ”/2)< 1+ 202K;n) P ( "9 +4a2K;n>1F1<§’ L3 +4a2K;n)
(4.73)

134



4.4. NON-COHERENT ESTIMATION IN MULTIPATH

where | I} <a, 0; :L‘) is the confluent hypergeometric function [52].

Proof. See Appendix D. O

Remark 4.4.5. The results of Theorem 4.4.4 can be used in decision problems and in

nonlinear estimation problems.

The detection problem associated with (4.49) is described by the following binary

hypothesis problem.
Hy o oy(ty) = Z[Ai(tk)ricos(wc(tk—Ti(tk))—l—Gi)S(tk—Ti(tk)) + D(t)v(ty)
Hy: y(ty) = D(tx)v(te).

The incomplete data likelihood ratio A(tm) can be used in minimum risk Bayes’ decision
applications, where there will be one distribution «,,(z) for each hypothesis. That is,

in binary hypothesis testing the decision rule takes the form

1 Al H

Jon do2,(x) — A2(t,,) S

m H2

where 7 is the threshold. Clearly, o, () is a sufficient statistic for estimation and deci-
sion problems, since both the least-square estimation and decision rule are constructed

Jrom this quantity.

The normalized conditional density py (t,,, x| F2) can be used to compute various least-
square estimates as was shown in (4.71) and (4.73). Hence, the general expression
for the least-square estimate can by written as

E[(D(:Bm)|.7-?,i]:/ O(20) N (tm, 7| F2)da. (4.75)

n

Notice that from (4.69) the following least-squares estimate can also be derived
Vi(y™)o?
1+ 202K™
(4.76)

E|r;cos(we(ty — 7(tr)) + 90”‘?4 = cos(we(tm — Ti(tm)) + 7 (y™))

Both estimators, (4.69) and (4.76), can be used in RAKE receiver applications. In a
RAKE receiver, one RAKE finger is assigned to each multipath, thus maximizing the

amount of received signal energy. Each of these different paths are combined to_form
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a composite signal which has substantially better characteristics for the purpose of
demodulation, when compared to a single path. In previous work [52] in order to
combine the different paths meaningfully, the RAKE receiver needs the knowledge
of the channel parameters. However, using (4.69), (4.76) a RAKE receiver can be

constructed without knowledge of the channel parameters.

444 Numerical Results and Discussion

Here the performance of the estimators derived in Sections 4.4.2 and 4.4.3 is eval-
uated. Their performance is evaluated thought the Mean Square Error function of
each estimator for each arriving path as a function of time for N = 100 realizations.

The general expression of the MSE is given by
1 N
MSEz = > 12— Zi,P, (4.77)
j=1

where N is the number of realizations, Z; is the real value of the parameter that
would be estimated for path ¢ and Z;‘j is the estimated value of that parameter for

path .

The experiments presented here are for evaluation purposes and do not represent
real life scenarios. A set of observations y is created for each case based on the
non-coherent model given by (4.49). This model represents the baseband signal and
all the various parameters, except the phase ¢ and attenuation 7, are assumed to
be known. Therefore, a relatively small carrier frequency, f. = 1K Hz, will be used
thought this section together with a transmitted signal S(t;) = 1 and a Gaussian
noise v(t;) ~ N(0,02). Finally, the Signal to Noise Ratio is defined as SNR = £,

n

were P is the power of the transmitted signal.

For all the experiments presented below Wolfram Mathematica is being used.

Minimax Non-Coherent Model

Firstly, the robust phase and envelope estimators derived in Section 4.4.2 are eval-

uated, that is the derived phase estimator (4.56) and attenuation estimator (4.57).

A single path version of the non-coherent model given by (4.49) is used and a set

of observations y is created with reference to this model. The true phase # and
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attenuation r parameters are random variables, rayleigh distributed, with 4 priori
densities my(0) = U%exp ( - %) 6 € [0,27] and 7, (r) = 57 CXP ( - %) r € [0, 00),
respectively. The attenuation parameters of the above rayleigh distributions are
taken as 0y = 1.5 and o, = \/Li respectively. The true distributions of the phase and
the attenuation are unknown to the observer and the estimators use the nominal
distributions which are assumed to be a uniform distribution for the phase, with 4
priori density 7, (6;) = 5=. 6; € [0, 27], and a rayleigh distribution for the attenuation,
with an attenuation parameter of o, = \% As was mentioned above, the performance
of the derived estimators will be evaluated using the Mean Square Error (4.77) of
each estimator over a period of time of 10msec, for SNR = 20dB, and N = 100

realizations.

_sf \\
-10

M SE(dB)

-20 \\
-25

-30

\

0 2 4 6 8 10
Time(msec)

Figure 4.1: MSE of robust minimax phase estimator for a reference SNR=20 dB

Starting with the robust phase estimation, Figure 4.1 displays the performance of
the phase estimator (4.56) over time for a reference SN R = 20dB. Clearly the MSE
decreases with time, as time increases and this shows that the estimated phase

converges in mean square sense to the real phase.

Next, the performance of the robust envelope estimator (4.57) is evaluated. Figure
4.2 displays the performance of the attenuation estimator over time for a reference
SNR = 20dB. The observations are similar with the ones experienced for the ro-
bust phase MSE and show that the MSE decreases as time increases and that the

estimated attenuation converges in mean square sense to its real value.

Therefore, even though the nominal distributions that were chosen for both the phase
and the attenuation were different from the true ones the estimated parameters

converges in mean square sense to their real values.
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Figure 4.2: MSE of robust minimax attenuation estimator for a reference SNR=20
dB

Classical Non-Coherent Model

Next the phase, envelope and noiseless received signal estimators derived in Section
4.4.3 are evaluated. A multipath version of the classical non-coherent model, given
by (4.49) with three resolvable paths, is considered here. It is assumed that the
phases 6; are iid random variables with ¢ priori density my,(6;) = % 0; € [0,2n]
and the attenuations r; are iid random variables with ¢ priori density 7, (r;) =
U’é exp ( — %) r; € [0,00) (Rayleigh distributed). It is also assumed that the

attenuation parameter o,, and the time delays 7;(;) for each path, are constant over

time and known.

The performance of the derived estimators of Section 4.4.3 is evaluated using the
Mean Square Error (4.77) of each estimator for each path over a period of time of
30msec, for N = 100 realizations. The Signal to Noise ratio for the first receiving path
is assumed to be 10dB. A smaller SNR is used compared to the previous experiments
since here the real distributions of the parameters are known. This is the reference
SNR for the system. The SNR of the second and third receiving paths is 9dB and
8dB respectively.

Starting with the phase estimation, Figure 4.3(a) displays the performance of the
phase estimator (4.71) over time for each arriving path for a reference SN R = 10dB.
The MSE decreases with time for all three paths, as time increases. This shows
that the estimated phase converges in mean square sense to the real phase, as time

increases, for all three paths.
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Figure 4.3: MSE of the phase estimator

Similarly, the performance of the channel attenuation estimates is evaluated. Figure
4.4 displays the performance of the attenuation estimator (4.73) over time for each
arriving path for a reference SNR = 10dB. The observations, are similar with the

ones experienced for the phase MSE. Clearly, the MSE decreases as time increases.
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Figure 4.4: MSE of the attenuation estimator, for a reference SNR=10 dB

Next, the conditional least-square estimate of the noiseless received signal for every
path, defined by h;(t,,, 0;,7;) 2E [hi(tm, 0:,7;)|FY] is considered. Figure 4.5 displays
the performance of the estimator (4.69) over time for each arriving path for a reference
SNR = 10dB. The estimator converges to the real value, in mean square sense, as
time increases for all three paths. This is verified by the fact that the MSE decrease

to a very small value as time increases.

Finally, when comparing the results of the derived estimators it is obvious that the
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Time(msec)

Figure 4.5: MSE of the noiseless received signal estimator, for a reference SNR=10
dB

attenuation estimator and the noiseless received signal estimator perform better
than the phase estimator. Since a 10d B SNR can be considered as a low to medium
system, the reference SNR is increased to 20d B and the phase estimator is once again
evaluated. Figure 4.3(b) displays the performance of the phase estimator (4.71) over
time for each arriving path for a reference SNR = 20dB. Notice that the estimator
produces better results, in MSE sense, than the previous evaluation. Clearly, SNR

influences the performance of the estimator.

4.5 Summary

This chapter considers robust estimation for autoregressive channel models, and
employs the KL distance to describe the uncertainty. The methodology presented
addresses the maximization problem using variational methods, while for the mini-
mization problem it invokes a change of probability measure technique. The change
of probability measure technique introduced is being used in order to derive a re-
cursive equation for the unnormalized & posteriori distribution of nonlinear filtering
problems. The theory developed is applied to two specific models, the linear Gaus-
sian model and the non-coherent multipath model. The results derived include new
robust least-square estimators for both estimation problems. Moreover, the robust
minimax estimators for the non-coherent model are linked with classical estimators

(e.g., by reducing the model uncertainty to zero).
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CHAPTER 5

GENERALIZED MAP AND ML ESTIMATION

In this chapter two well-known estimation techniques, the Maximum A Posteriori
(MAP) technique and the Maximum Likelihood (ML) technique are being investigated.
First, in Section 5.2 the MAP estimation technique is presented and a new gener-
alized estimator is derived. Then, in Section 5.3 a different approach in deriving a
ML estimator is presented. These generalized estimators deal with situations when
the true distribution is unknown but belongs to a specific set described by relative
entropy constraint. They are also obtained by modifying the uniform cost function

of the classical MAP technique. The chapter ends with specific examples.

5.1 Introduction

In Bayesian statistics, the maximum d posteriori estimate is defined as the mode of
the posterior distribution, if posterior is unimodal. The MAP can be used to obtain
a point estimate of an unobserved quantity on the basis of empirical data. It is
closely related to Fisher’s method of maximum likelihood, but employs an augmented
optimization objective which incorporates a prior distribution over the quantity one
wants to estimate. MAP estimation can therefore be seen as a regularization of ML

estimation.

MAP estimates can be computed in several ways [53].

1. Analytically, when the mode(s) of the posterior distribution can be given in

closed form. This is the case when conjugate priors are used.
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2. Via numerical optimization such as the conjugate gradient method or Newton’s
method. This usually requires first or second derivatives, which have to be

evaluated analytically or numerically.

3. Via a modification of an expectation-maximization algorithm. This does not

require derivatives of the posterior density.

4. Via a Monte Carlo method using simulated annealing.

While MAP estimation is a limit of Bayes estimators (under the 0 — 1 cost function),
it is not very representative of Bayesian methods in general. This is because MAP
estimates are point estimates, whereas Bayesian methods are characterized by the
use of distributions to summarize data and draw inferences: thus, Bayesian methods
tend to report the posterior mean or median instead, together with credible intervals

[1].

The classical maximum ¢ posteriori estimation theory is developed by using a uni-
form cost function of 0 — 1. In this chapter a new technique is developed, using the
principles of the MAP estimation theory, with the only difference lying in the way
that the cost function, is defined. In this chapter instead of a uniform cost function
an exponential one is being used. The goal is to derive a generalized MAP estimator
which includes as a special case the classical estimator, when the cost function is

uniform.

For many observation models arising in practise it is not possible to apply the above
technique, either because of intractability of the required analysis or because of the
lack of a useful complete statistic. For such models, an alternative non Bayesian
method is the maximum likelihood estimation technique. The idea behind maxi-
mum likelihood parameter estimation is to determine the parameters that maximize
the probability (likelihood) of the sample data. From the statistical point of view,
maximum likelihood estimation is regarded to be robust while it yields estimators
with good statistical and convergence properties. In other words, ML estimation
methods are versatile and apply to most models and to different types of data. In
addition, they provide efficient methods for quantifying uncertainty through con-
fidence bounds. Although the methodology for maximum likelihood estimation is

simple, the implementation is mathematically intense.

For “large" samples, several results from central limit theorem are applicable yielding

ML estimators which have the following properties [53]:
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1. ML estimators are asymptotically normally distributed.
2. ML estimators are asymptotically “minimum variance."

3. ML estimators are asymptotically unbiased (ML estimators are often biased,

but the bias — 0 as n — 00).

Maximum likelihood estimation represents the backbone of statistical estimation.
It is based on deep theory, originally developed by R. A. Fisher. While beginning
classes often focus on least squares estimation (“regression”); likelihood theory is the
omnibus approach across the sciences, engineering and medicine. This chapter deal
with the methodology used to derive a ML estimator and applies a new approach. The
goal is to derive a generalized ML estimator using, like the MAP case, an exponential

function.

5.2 Generadlized Maximum A Posteriori Estimation

In this section the Maximum A Posteriori method is being investigated. First the
problem is defined by introducing the appropriate spaces and the general concept.
Then the generalized estimator is derived by using the theory behind the classical

estimator but by applying an exponential cost function.

5.2.1 Abstract Formulation

Suppose a measurable space (Q,f ) is given on which the unobserved Random
Variable (RV), X and the observed RV Y are defined, via X : (Q,F) — (X, Xy),
Y (QF)— (Y, 2y).

Thus X is the space of the unobserved RV, and ) is the space of the observed RV.
The relation between the unobserved RV X and the observed RV Y is defined via a
probabilistic mapping. In the Chapter 3 two different probabilistic mappings were
used, the mapping p : X' X 3y — [0, 1] and the mapping 7 : ) X ¥y — [0, 1]. These
two mapping, as defined in Sections 3.2.1 and 3.2.3 are also going to be used in this

chapter.
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The objective is to estimate X by a function of the random variable Y. Let X = oY)
denote the estimate of X. The previous chapters deal with the problem of Least-
Square estimation. Here, a different estimation is investigated, which also belongs

to the Bayesian group, the Maximum A Posteriori estimation method.

The general theory is based on introducing a pay-off, and then minimizing the pay-off
over € X. As mentioned in previous paragraph, both Least-Square estimation and
MAP estimation belong to the same set of estimation methods, the Bayesian Esti-
mation. What distinguishes the different estimation methods is the determination

of the appropriate pay-off function.

5.2.2 Derivation of Generalized Estimator

Let /: X x X — [0,00) be an Xy X Yy-measurable function, and let s € R. Then a

new cost function is introduced defined by

£(x)

es , ifjlz—P(y) > A
C(z, ®(y)) = (5.1)
0, iffz—-2(y|<A

where A > (0. As shown in Fig. 5.1, the cost function C(z, ®(y)) for |z — ®(y)| > A
is a convex increasing function of the error. The classical MAP estimation assumes
a uniform cost function C(z, ®(y)) = 1 for |z — ®(y)| > A and 0 for |z — P(y)| < A.
Here it is assumed that the cost function is not uniform but an exponential function
of . Note that the classical case is included in this cost function, since s — oo,
implies C(z, ®(y)) = 1 for | X — ®(y)| > A (red graph in Fig. 5.1).

For the above cost function the average pay-off is given by

£(x)
ECCLOM] = [ el apay@)dPrr(s.y)
XxY

()
— /dPy(y)/ e s Iipjs—ag)>a)(@)n(y, dx) (5.2)
v X

where [ is an index function defined by

1, fwe{z:|z—o(y)| > A}

Iioja—a(y)|>a) (W) =
0, ifwé{zx:|z—>(y)| > A}
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Clx, o(y))

(x-0(y))

Figure 5.1: MAP Cost Function

Note that for a given Y = y, the space X of the unobserved RV, is partitioned into
X={x:|z—oy)|> A Jz: |z —2(y) <A} (5.3)
and the index function /y of the space the unobserved RV is given by
Ix(2) = lzia-a)1>0}(7) + Lza-a@)l<a)(z) = 1. (5.4)
Therefore, the index function I{,_s(y)>a} () is given by
Haje-aw)>a} (1) = 1 = Haje-ap)<a)(2)- (5.5)

Using (5.5) with (5.2) the average pay-off is given by

(x)

ECE A0 = [ drv() [ o1 Dearzn )] i do

£(x)

(=)
= /dPy(y)U e n(y,d:v)—/ e Iao—aw)<at(@)n(y, dr)|.
y X X

(5.6)

Then, as mention before, the estimation is done by minimizing the average pay-off
(5.6) over x € X. But, since dPy(y) is nonnegative and not a function of ®(y), the

estimation is done by minimizing the inner integral, which is given by

£(x)

PIC. 0N =) = [ e lpeaa@nly. do)

2(z) £(z)

= /esn(y,dx)—/ e Iuja—a)<ay(@)n(y, dz).
X X

(5.7)
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The first part of (5.7) given by f e ez%)n(y, dx) is a nonnegative number that can be
estimated and which is also independent of z, so the minimization of the average
pay-off (5.2) can be done by maximizing the second part of (5.7) given by

£(x)

£(x)
Eles I{x:\xw(y)\»}(ﬂ?)] = /Xe s inja—a(y)<a)(@)n(y, dz)

eW+A
= e s n(y,dx). (5.8)
o(y)—-A

If n(y, dx) is a smooth function of x and if A = dx/2 is sufficiently small, then

O(y)+dz/2 o(z) t(z)
/ e s n(y,dz) ~e s n(y,dr) (5.9)
B(y)—dz/2

and the right-hand side is maximized by choosing ®(y) to be the value of + maximiz-

. Uz)
ing e n(y,dz), over x € X.

Therefore,
()
Carap(y) = argmaxe s n(y, dz). (5.10)
However, if f,(z|y) 2 % exists then
A Uz)
Prrap(y) = arggle%?{e = fa(yl@). (5.11)

In modeling a given statistical situation the family of conditional distributions (or

stochastic kernels) of Y given X = x are needed, and for the Bayesian formulation

the prior distribution for X is also needed. The conditional distribution of X given Y

(or the stochastic kernel 7(y, dz)) can be obtained from the prior and the conditional

of Y given X (or the stochastic kernel u(z, dy)) by applying Bayes’ formula.
0y, dz) = plr,dy)dPx(z)  p(x,dy)dPx(z)

 Jyule,dy)dPx(zx) — dPy(y) (5.12)

The MAP estimator in (5.10) can be obtained using (5.12) but without the computa-

tion of dPy (y) since this term will not affect the maximization over x. That is,

£(x)

Pprap(y) = argmaxe s p(x,dy)dPx(z). (5.13)

rzeX

Since the logarithm is an increasing function, ®,,4p(y) can be obtained by maximiz-

ing the following function

w0 o dy) AP () _ H)

dPX (.’K)
log [e ) dy dx

d
+log MB M) o 4Px(@) (5.14)
S dy dx

146



5.3. GENERALIZED MAXIMUM LIKELIHOOD ESTIMATION

5.2.3 Connection with Minimax Approach

In the classical MAP estimation method, the MAP estimator ®,,4p(y) is obtained by
choosing ®(y) to be the value of + maximizing the ¢ posteriori distribution 7(y, dz),
over x € X. The connection of the new MAP estimate to robustness is described

below.

It is assumed that this probabilistic kernel, 7(y, dx), represents the nominal system
model or mapping (¢ posteriori information) and that true kernel v(y, dz), denoted

by v: )Y x ¥y — [0, 1] belongs to an uncertainty set described by

B = {vep: /Hu\n )dPy (y /R )JdPy(y) L 13},

similar with Section 3.2.3 of Chapter 3. The sample pay-off /(z, ®(y)) used there is
replaced by the pay-off /(x), then the worst case measure of the true kernel is given
by

£(z)
e s n(y,dz)
£(x)

f € s U(yadl’)

and the MAP estimator ®,,4p(y) is obtained by choosing ®(y) to be the value of z

v*(y,dx) = (5.15)

maximizing v*(y, dz), over x € X. This is the same as maximizing only the numera-

tor.

That is,

L(z)

Sprap(y) = argmax e n(y,dx), (5.16)

which is the same result as obtained in Section 5.2.2 above.

5.3 Generalized Maximum Likelihood Estimation

In this section, the Maximum Likelihood estimation method is investigated. First the
appropriate spaces are introduced and the problem is set up. Then the generalized
estimator is derived by using the theory behind the classical estimator in combi-
nation with the theory of the generalized MAP estimator described in the previous

section.
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5.3.1 Abstract Formulation

For many observation models arising in practice, it is not possible to apply the
Bayesian Estimation methods like Least-Square Estimation and Maximum A Poste-
riori Estimation, mainly due to the lack of a useful complete sufficient statistic. For
such models a very commonly used method of designing estimators is the Maximum
Likelihood method.

Suppose that a measurable space (Q, F ) is given on which the unobserved RV, X
and the observed RV Y are defined, via X : (2, F) — (X, Xx), Y : (O, F) — (), Zy).

Thus X is the space of the unobserved RV, and ) is the space of the observed RV.
The relation between the unobserved RV X and the observed RV Y is defined via the

same probabilistic mapping as the previous section.

The classical Maximum Likelihood estimation technique can be derived from the
Maximum A Posteriori method. In the absence of any prior information about the
RV X which has to be estimated, it is assumed that is uniformly distributed in its
range since this represents more or less a worst-case prior. The same assumption

is used in the generalized ML estimation technique described in this section.

5.3.2 Derivation of Generalized Estimator

The generalized MAP estimator derived in Section 5.2 is considered here, which is
given by (5.13)

oz)
®yap(y) = argmaxe s p(x,dy)dPx(x).

reX

In the absence of any prior information about the parameter, it is assumed that it
is uniformly distributed in its range since this represents more or less a worst-case
prior. Applying the assumption above, the MAP estimate for a given y € ) is any
value of = that maximizes e = wu(x,dy) over z € X. Since u(z, dy) as a function of x is
sometimes called the likelihood function, the classical estimate is called maximum
likelihood estimate. Here the same name is used for the derived estimate, which is

denoted by ®(y),s., and is given by

@ d
@)1 (y) = argmax e —M(:[’ y)

may % dy. (5.17)
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o Yz)
Maximizing e s

u(zx, dy) is equivalent to maximizing
log [ o (fl’;y)} = (x) +log £ (I dy) , and assuming sufficient smoothness of this func-

tion, a necessary condltlon for the maximum likelihood estimate is

9 [@ 4 log u(x,dy)}

o iy =0. (5.18)

z=Pprr(y)

Note that when s — oo then the generalized estimator converges to the classical ML

estimator.

5.4 Examples

Next, some examples are presented to illustrate applicability of the theoretical re-

sults.

Given X isaRVand Y™ = {Y7,Y5,...,Y,,} is a sequence of RVs defined on (Q, F, P),

which are related via the model
Y,=HX+W,;,, 1=0,...,m (5.19)

Hence Y™ : (Q,f) — (?]‘E(m“)d,b’(?}ﬁ(m“)d)) the observed sequence of RVs, X :
(Q,f) — (?R”,B(?R”)) the unobserved RV, and W™ : (Q,]—") — (%(mﬂ)d,g(g}g(%l)d))

the noise sequence of RVs. It is assumed W; and X are independent Gaussian Ran-
dom Variables, N (0, %y ), Yy > 0, N(0,Xx), Xx > 0. Assuming (5.19) denotes the

system model, then

m 271
p(z, dy™) H 6_(yi_H$)TTW(yi_Hx)dyi’ (5.20)

1=

Poldr) = — 1 e ey 5.21
x (d) (27)%\%!%6 . (5.21)

Also the following function is defined

((z) =2"Uz, U=U">0. (5.22)
Complete derivations of the results presented below can be found in Appendix E.
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5.4.1 Generalized MAP Estimator

In this first example the generalized MAP estimator for the model (5.19) is computed

together with the mean square error for this MAP estimator.

First the MAP estimator ®,,4p(y) is given by

14 d dP
®prap(y) = argmax ( ) + log ——— e, dy) + log ﬂ . (5.23)
reX dy dx

Using (5.20), (5.21) and (5.22) the MAP estimator is given by

Oprap(y) = arg max L(x,y™) (5.24)
z ad
where
— 2TUx 1 m - pIpme;
Lo = S0 oy ( SRS SR LTIV
(2m)% S |2 ;

The MAP estimator ®,;4p(y™) of X is computed by differentiating the above pay-off

function and setting the derivative to zero as shown below.

0 — m
528V oy =0 (5.26)

So, by differentiating (5.25) the final generalized MAP estimator is derived

2U -
Dpraply™) = ((m +DHTSHH + 537 — ?> H'SWHS s (5.27)

Next the mean square error for ®,;4p(y™) is computed. The MSE is given by

B[(X = Barap(Y™)7 (X = @arar(y™)| =

tr (E[(X — Pprap(Y™) (X — @MAPWM»T} ) (5.28)

The mean square error can also be written as
B|(X = @aap(Y") (X = @prap(Y"™)| =

/ . /mmﬂ)d z = Parap(y™))(@ — Parar(y™))" ule, dy)dPx(z).  (5.29)
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After some manipulation the above function can be expressed as

E[<X - q)MAP(Ym))T(X - (I)MAP(Ym))} =
tr <2X —m+ DHTSL Sy 4+ (m+1)2HTSL v, HYy

Prrap Srrap

+(m + 1)2£MAPZ¢MAPZW) (5.30)

1
where Yg,,,., = ((m+ DHTS H + 33 - 2) TS,

5.4.2 Generalized ML Estimator

In the second example the generalized ML estimator for the model (5.19) is com-
puted together with the mean square error for this ML estimator. The Cramér —
Rao lower bound is also investigated. For this example it is assumed that X = z is

a parameter.

The ML estimator @, (y) is given by

&,y (y) = arg max {@ + log M} (5.31)
EX, 4 S dy

Using (5.20) and (5.22) the ML estimator is given by

Pyrr(y) = arg r;lea)}fz(:v, y™) (5.32)
where
o $TU£L‘ 1 (m—+1) m 2_1
Lo(x,y™) = + log <—1) — y; — Ho)" =2 (y; — Hax).
N ¢ (2m)% 2w} 2 g i)

(5.33)

The generalized ML estimator @, (y) of X is computed by differentiating the above

pay-off function and setting the derivative to zero as shown below.

0 —
—L2<Z’, ym)|

B =0. (5.34)

=P
Therefore, by differentiating (5.33) the final generalized ML estimator is derived
m Ty—1 20\ Tyl N
Parr(y™) = ((m+ DH S H — = | HTSy > i (5.35)
i=0
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Next, the mean square error for ®,,;(y™) is computed. The MSE is given by
El(z = @ (Y™ (@ — @y (Y™)]
— tr(E[(x B (Y™ (2 — @ML(W))T] ) (5.36)

Given the assumption that in ML estimation X is deterministic, after some manipu-

lation the above function is expressed as

E [(:E — Oy (Y™) (2 — chL(Ym))} =

tr (:UxT —2(m+ 1)H"S,,  za” + (m+1)°H'SS, Yo, Hra"
+(m+ 1), Sy, S ) (5.37)

1

where Xg,,, = <(m +1)HTS, H — %> HTY

Finally, it is going to be investigated if this new generalized ML estimator satisfies

the Cramér — Rao lower bound.

First, it is determined wether the estimator is biased, so the expectation of the

estimator @7, (y") is computed.

E[@y,(Y™)] = Yay, > EYil=Se,, Y Hr=3Y¢,,(m+1)Hr #z. (5.38)
=0

=0

This shows that the estimator is biased.

The Cramér — Rao Inequality for biased estimator is given by

Var[®yL(Y™)] > Vx I Vi (5.39)
where
A O m .
Vxliy = a_EX[CI)ML(?/ )i, 1 <id,5<n (5.40)
Lj
A 0 pulz, dy™)
[]X]z] = —Fx |:8I18{L’] log dym . (5.41)
Next the LHS of (5.39) is computed
T
Var@ur(v™)] = E|(@we(y™) = Bl (y™)]) (@ae(y™) = Bl@a(y™)]) |
= (m+1)Se,,XwXs,, - (5.42)
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Then the RHS of (5.39) is computed. Given (5.40),
Vx =(m+1)2e,,, H (5.43)
and given (5.41),
I3 = ((m+ 1)HTE;U1H>1 (5.44)
provided that H is a square and invertible matrix.
Then

—1
Vi IZVT = (m + 1)Eq>MLH<(m + 1)HT2;1H> (m+1)HTSE . (5.45)

Pprr

Therefore, assuming that H has size d X d and is invertible, then

-1
Vilz VI = (m+ 1)zq>MLH<(m + 1)HT2;1H) (m+1)HTSE

= (m+ 1), HH 'S, (H ) H'SE, = (m+ 1)2e,, Sw¥i,,, -
(5.46)

Given the above, the Cramér — Rao lower bound is satisfied with equality

Var[®y(Y™)] = VxI'Vy. (5.47)

5.5 Summary

This chapter considers a generalized approach to the classical MAP and ML estima-
tion. A new cost function is used for the case of MAP estimation and a generalized
estimator is derived. Furthermore, a new approach is used, closely related to the
MAP theory developed, in order to derive a generalized estimator for the ML estima-
tion problem. The theory developed is applied to examples in order to illustrate the

applicability of the results.
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CHAPTER 6

CONCLUSION

In this chapter a summary of the main results of the thesis is presented alongside

with some suggestions for future work plans.

6.1 Synopsis

This thesis deals with the subject of signal estimation from noisy measurements
under uncertainty. The work presented is focused mainly on the problem of ro-
bust least-square estimation for uncertain systems. In addition, it also investigates
the methodology behind two well-known and used estimation techniques, the Max-
imum A Posteriori estimation technique and the Maximum Likelihood estimation

technique.

Robust estimation is a common problem appearing frequently in statistics and signal
processing and its been under study for many years. Usually the performance of a
system depends on the ¢ priori knowledge of its input characteristics and even small
deviations from the assumed conditions can affect it drastically. One of the most
widely used ways on dealing with modeling uncertainties is the minimax approach.
This approach has been applied to many detection and estimation problems and has
been used for designing robust schemes by optimizing the worst case performance.
This thesis uses probability distributions, or general measures, defined on measur-
able spaces to model the the uncertainty description and the nominal description
of the system. Specifically, two type of uncertainty models are being considered:

1) Uncertainty Models on Conditional Distributions or otherwise known Stochastic
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Kernels; 2) Uncertainty Models on Joint Distributions.

Stochastic kernel uncertainty models are being implemented in the design of com-
munication systems, where the input message has a known distribution, while the
channel is unknown but belongs to a certain class of channels. Here two types
of uncertain stochastic models are being considered: i) when the conditional prob-
ability distribution of the measurement Y given the signal to be estimated X, or
channel kernel, is unknown; ii) when the & posteriori distribution of X given Y is
unknown. Joint distribution uncertainty models, on the other hand, are usually
employed when both the unobserved and observed random variables are uncertain.
The uncertainty description of these models is characterized by the class of uncer-
tain measures which satisfy a relative entropy constraint with respect to a nominal
measure. The problem of robust estimation is formulated by minimizing over the set
of estimators, the maximum of a linear functional of the uncertain measure over the
Kullback-Leibler (KL) distance constraint set.

In this thesis a general framework is presented where the basic ideas are explained
and the fundamental results are derived. Abstract Polish spaces are being used to
describe the least-square estimation problem, while,as was mentioned above, the un-
certain model considered is described by stochastic kernels and joint distributions.
Once the appropriate space of measures are introduced the maximizing kernels and
joint measure are computed explicitly using Lagrangian functionals and variational
methods. Furthermore, certain properties of the optimal solution are presented,
including performance bounds, which are important for the numerical computa-
tion of the optimal solution. The theoretical results obtained are applied to various
examples. The theory developed is also applied to Multiple-Input Multiple-Output
(MIMO) communication systems, and to finite-dimensional autoregressive channel
models, in order to derive robust estimators for a class of uncertain models. The
methodology is presented, where the maximization is addressed using variational
methods, while the minimization is addressed using a change of probability mea-
sure technique. The change of probability measure technique introduced is being
used in order to derive recursive equations for the conditional distribution of non-
linear filtering problem. The theory is then applied first to a linear Gaussian model
and then to an attenuated sinusoid in a multipath environment, which is subject to
an additive Gaussian noise, i.e., to a non-coherent multipath model. For the linear
Gaussian model a robust estimator is derived, which resembles the Kalman filter.

For the non-coherent multipath model robust phase and enveloped estimators are
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derived, and a connection with the classical least-square estimation is presented.

Finally, in addition to the robust least-square estimation, this thesis takes a closer
look into the derivation of estimators for the Maximum A Posteriori estimation
method and the Maximum Likelihood estimation method. The MAP estimation tech-
nique is based on the minimization of a specific uniform cost function. In this thesis,
the classical cost function is replaced by an exponential cost function, and a gener-
alized MAP estimator is derived. A connection with the minimax approach used in
the least-square problem is also presented. This generalized estimator includes as a
special case the classical MAP estimator. A similar approach is also implemented for
the case of the ML estimation technique. The methodology used for ML estimation
involves the maximization of a likelihood function. Starting with the MAP estimation
method and assuming that the parameter to be estimated is uniformly distributed
in its range, the new likelihood function is derived. Through the above approach
a generalized likelihood function is introduced, which also includes an exponen-
tial function. Examples are presented that illustrate the application of the derived

results to various problems.

6.2 Directions for Future Research

The robust least-square estimation method together with the new generalized MAP

and ML estimators presented in this thesis raise a few issues related to

1. Robust signal detection;
2. Power Spectral Density uncertainty models;
3. Total variation distance constraint between measures;

4. Application of the models to real-time applications, which involve also MIMO

applications;
5. Information theory applications;

6. Relation of Mutual Information and MMSE.
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This thesis deals with the subject of signal estimation. Besides signal estimation,
one of the most pervasive of functions that signal processing schemes are required to
carry out is that of detecting a signal of a generally known type in noisy observations.
Most signal detection problems can be cast in the framework of M — ary hypothesis
testing, in which there is an observation, usually a vector or function, on the basis of
which a decision has to be made among M possible statistical situations describing
the observation [1]. Obvious examples of applications in which signal detection is
required are provided by radar (detection of echo pulses) and sonar (detection of a
random signal present in an array of hydrophones). Numerous other applications
may be listed; for example, detection of specified two-level pulse-code sequences
in communication systems, and detection of abnormal patterns in medical imag-
ing. The subject of signal detection and estimation deals with the processing of
information-bearing signals in order to make inferences about the information that

they contain.

The most fundamental problem of signal detection is the determination of the likeli-
hood ratio for detecting signals against a noise background. This is a problem with
a rich history in both electrical engineering and mathematics, and its solution has
involved, over the years, a wide variety of mathematical tools and flashes of intuition.
For one thing, mathematical models are often significant simplifications/ idealiza-
tions of complex physical problems. Secondly, even if the model is reasonably good,
the knowledge of the parameters in it, e.g., covariance functions, time constants,
etc., may not be enough to justify a direct numerical evaluation of formulas derived
from the model. The major engineering goal is to obtain structural insights into the
mathematical solutions of classes of special problems, with the hope that these in-
sights can then be used to intelligently modify and adapt the mathematical solution
to the particular physical problem at hand [4]. The work presented in this thesis can
be used in detection problems in order to obtain robust detection scheme. The un-
certainty models can be implemented to describe the systems. Also, as was shown in
Section 4.2.3 a change of probability measure can be used to obtain the conditional
distribution. In decision applications, there will be one distribution o (x) for each

hypothesis, e.g., in binary hypothesis the decision rule takes the form

. Hy
inf; ex,, [pn dos!(z)
€z d JR m Z '7

infs,,ex,0 Jpn o () o)

where v is the threshold.
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Moreover, another area for future research, which is related to signal detection prob-

lems, is to device decision rules for a class of probability distribution.

In statistical signal processing and physics, the spectral density, power spectral
density is a positive real function of a frequency variable associated with a stationary
stochastic process, or a deterministic function of time, which has dimensions of
power per Hz. It is often called simply the spectrum of the signal. Intuitively, the
spectral density captures the frequency content of a stochastic process and helps

identify periodicities.

The concept and use of the power spectrum of a signal is fundamental in electronic
engineering, especially in electronic communication systems (radio & microwave
communications, radars, and related systems). As was mention in Chapter 1, the
classes of allowable characteristics one deals with in robust signal processing are
generally nonparametric function classes, such as the class of all power spectral
density functions with specified total power (area under the function) and which lie
between specified upper and lower bounding functions. Uncertainty models using
the concept of PSD for robust estimation problems can be found in [15] and [30]. It
will be interesting to combine the minimax approach presented in this thesis with
the concept of power spectrum density and also use the concept of KL distance to
define the constraint sets. The KL distance has been introduced between spectral

density functions of stationary stochastic processes in [54].

In this thesis the uncertainty description of the system, and the nominal description
of the system are modeled by probability distributions, or general measures, defined
on measurable spaces. The uncertainty description of these models is characterized
by the class of uncertain measures which satisfy a KL distance constraint with re-
spect to a nominal measure. Over the last few years, the KL distance uncertainty
model has received particular attention due to various properties (convexity, com-
pact level sets), its simplicity and its connection to risk sensitive pay-off, minimax
games, and large deviations. Unfortunately, KL distance uncertainty modeling has
two disadvantages: 1) it does not define a true metric on the space of measures; 2)
relative entropy between two measures is not defined if the measures are not abso-
lutely continuous. The latter rules out the possibility of measures v € M;(X) and

p € Mi(X) to be defined on different spaces'. It is one of the main disadvantages

IThis corresponds to the case in which the nominal system is a simplified version of the true

system and is defined on a lower dimension space.

159



CHAPTER 6. CONCLUSION

of employing relative entropy in the context of uncertainty modeling for stochastic
controlled diffusions (or stochastic differential equations). Motivated by the above
issues, the KL distance constrain can be replaced by an uncertainty model based on
the total variation distance defined on the space measures. This uncertainty set is
described by a ball with respect to the total variation norm, centered at the nominal

measure having positive radius.

Given a known or nominal probability measure ;1 € M;(X) the uncertainty set based

on total variation distance is defined by

Ba(u) = {v € My(Z) : [lv — ul| < R}

where R € [0, 00). The total variation distance? on M;(X) x M;(X) is defined by

la =Bl £ sup D7 Ja(F) = BE),  a,f €M)
PEP(S) pep
where P(X) denotes the collection of all finite partitions of ¥. The above distance
satisfies the properties of a metric, and does not require absolute continuity of mea-
sures when defining the uncertainty ball, i.e., singular measures are admissible and
the measures need not be defined on the same space. It can very well be the case that
i€ Mi(X) and v € M;(X) where & C X. Since M;(X) are probability measures
then it follows that the radius of uncertainty belongs to the restricted set R € [0, 2].

Clearly, the total variation distance uncertainty set is larger than the KL distance

uncertainty set. This can be concluded from Pinsker’s inequality [55] as follows.

dv
llv —pl|? <2H(v|p), v,p € My(X), if v<<p, log@ € Li(v).
Hence, even for those measures which satisfy v << p and log j—; € Li(v) the uncer-
tainty set described by relative entropy is a subset of the much larger total variation
distance uncertainty set, that is, A2 () C Br(r). In the parlance of stochastic dif-
2
ferential equations the total variation distance covers the case when both drift and

diffusion coefficients of the stochastic differential equations are uncertain.

This thesis presents mostly theoretical. A natural extension will be to apply the
results to real-time applications and evaluate their performance. Special emphasis

could be given to MIMO communication systems as they are vastly used in real time.

2The definition of total variation distance applies to signed measures as well.
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6.2. DIRECTIONS FOR FUTURE RESEARCH

Finally, it is noted that aside from minimax estimation, the tools developed in this
thesis can also be used in Information theory. For example, in computing maxmin

capacity for a class of channels, and minimax rate distortion for a class of sources.

The mutual information, which is at the core of information theory, is an indicator
of how much coded information can be pumped through a channel reliably given a
certain input signaling. As was already presented in Section 1.1.4, [31] presents a
new formula that connects the input-output mutual information and the minimum
mean-square error achievable by optimal estimation of the input given the output.
That is, given that the input-output mutual information and the MMSE are mono-
tone functions of the signal-to-noise ratio (SNR), denoted by I (snr) and mmse(snr),
respectively, the mutual information in nats and the MMSE satisfy the following

relationship regardless of the input statistics:

I(snr) = %mmse(sm’). (6.1)

dsnr

This relationship holds for both scalar and vector signals. Also based on this rela-
tionship various other properties of MMSE are investigated in [32] and [33], like the
MMSE dimension. All the above results assume that there is no uncertainty in the
model being used. The work presented in this thesis, can be used to developed a new
relationship between mutual information and MMSE for a class of models which are

subject to uncertainty.
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APPENDIX A

BAsic MATRIX IDENTITIES

In this thesis the following Matrix identities are being used [56].

1. Basic Identity. Given matrices A and B (both size n x n and invertible), then

(AB) ' =B1tA™% A.1)

2. Woodbury Identity. Given invertible matrix A (size n x n), matrix C' (size n X d),

and invertible matrix B (size d X d), then

(A+CBCTY ' =A'—A'oB 4+ CcTA )y toTATL A.2)

3. PosDef Identity. If matrices P and R are assumed to be positive definite and

invertible, then

(P'+B"R'B)'B"R' = PBT(BPB" + R) . (A.3)
Moreover, the following identities for Determinants are being used in this thesis.

I. Given square matrices A and B, then

|AT| = |4, (A.4)
|AB| = |A|| B, (A.5)
|A"] = | A" (A.6)

II. Given a square and invertible matrix A, then

1
A7t = —. (A.7)
|A]
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III. Given matrix A with size n X m and matrix B with size m X n, then
|I, + AB| = |I,, + BA] (A.8)

where matrix I,, has size n X n and matrix [, has size m x m.
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APPENDIX B

PROOF OF REMARK 2.2.20

According to Theorem 2.2.19, {ay(z)} 2 {mp(x)} satisfies the following recursion

where n
2, (D Yy — Crz)) = (271r)§ exp ( N C’“I)T(D’“é)@l(y’“ — Ckx)), (B.2)
S (yr) = (2;)5 exp ( - @) (B.3)
U, (B (x — Apz)) = (2;)3 exp (_<x — A’“Z)T<B’“QB'€T U Akz)). (B.4)

The solution of (B.1) is assumed to have the following form.

_ 1 o (Vi) ™! .
agp(x) =———vexp| —(z—2 ———(r—=x + 3 . (B.5)
o) = g e (= @ = ) (e = ) + )
Then,
1
ak_1(2> = n 1
(27) 2 [Vio1je—1]2
T(qu\kq)_l

(2 = &) + ﬁk—uk_l)-
(B.6)

X exp ( — (2 = Tp—1jp—1) 5

The derivation starts with the integral part of (B.1). Then using (B.4) and (B.6) this
can be expressed as
/ W, (B (v — Avz))_ 1

/?Rn (2m)% | By| (27) % |Vioajpa |2

ap_1(2)dz =
B
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—(z — Ap2)T(BLBE) (2 — Ag2)
— 2
Vi 11 -1
—(z — 9§“k1k1)T%(z — Th-1je-1)
+ﬁk71|k71)- (B.7)

Next, the exponential term of B.7 is expanded as shown below.

—(z — Ap2) (BB (. — Az . Vie11k—1) " .
exp < ( 12) { 1; )" 1) —(z— xkfllkfl)T—( : 1'; ) (2 = Th-1jk-1)
+ﬁk71|k71>
BBT—I BBT—I V_ \ -1
= —xT—( k 2]“) :)s—zTAf—( £By) Akz%—zTAZ(BkB,f)_lx—zT—( & 1'; ) z
5 Vi)' s
T 1k %xk—ukq + 2" (Victke1) ™ -1kt + Be—1jk-1
1
= —§ZT<(V;<—1|k—1)71 + Ag(BkBkT)*lAk)Z
+ZT (Ag(BkB,f)’lx -+ (Vk_l‘k_l)ili‘k_uk_l)
B BT -1 . Vi 110 -1 .
Now, the above equation can be written as a quadratic function of z
E_l 2—1 B BT -1
= —(z- Nl)TTl(z — Ny + NlTTlNl — xT—( b 2’“) T
. Vice—1) "
—x;}lukq—( - 1'; ) Th—1p—1 + Be—1jk—1
where
it = (Viepor) '+ AL (BRBE) T Ay, (B.8)
YNy = Al(ByBf) 'z + (Vk71|k71)_15%k71|k71
-1
=N = (Vi)™ + AL(BB]) 4y
X [Af(BkB,{)_lx + (‘/;c—l|k—1)_lj:k—1\k—1] . (B.9)

Using the fact that 7 = %, (B, B{)! = (B,B}') and (Vk,”k,l)T = (Vi—1jk—1), then

urt )y
NT=-No =l (BB A AL (BB e
R D) “1a
a1 (Veo1jk—1) 171(‘/1:—1\19—1) Y1t
2" (ByBL) 7 AkS (Ve i) ™ St (B.10)
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Since

1 T
/Sﬁzn (2m)/2| 5, |12 P ( —(z=M) T(z a N1)>dz =1

the integral term of (B.1) can be written as

U, (B Y (x— A . [1/2
/ ) kZ))akﬂ@)dZ: n/z = 172
n |Bk‘ (27T) ‘BkHV;c—1|k—1|
¥ 7 (Bp B )™ T (Ve—1pp—1) " .

X exp <N1T%N1 - Tﬂﬁ - J7k_1|k_1#mk—1\k—l + ﬁk—l\k—l)

1 Yt
<, e (- NS )
|§31|1/2
(2m)"/2| By || Vi—1jk—1| 1/

271 B.BT)-1 R Vk— e -1 .
X exp <NF%N1 — $T%l‘ - $£_1|k_1%$k—1k—1 + ﬁk—l\k—l)-

(B.11)

Next (B.11) is substituted into (B.1), using also (B.2) and (B.3), resulting in

_ 13|12 ( (D D)™
= — - C 5 (yp—C
(@) (27)™/2| Dy| | Bi| Vi1 jp—1 |12 b (g = Cew) 2 (g = Chez)
T -1 T\-1
+ k2 + NT ; Ny — xT—Zk x
. Vi—1pe—1)"" .
—1?571\1%1—( : 1‘; ) Tk—1lk—1 T ﬁk—1|k_1> (B.12)

The above expression can be simplified even more. First the exponential of (B.12) is

simplified as shown below.

r(De DY)
2

?J;‘I Yk

»rt r(BpBF)™!
— X
2

+NI=-N, -z

(Yx — Cr) + 5 5

exp ( — (yx, — Cyx)

_ffg—lk—1(vk+mikl|k1 + ﬁk71|k71>

= —y;f—(Dng)_lyk — xTC,f—(Dkg’z)_l Crx + 2" CL (D D}}) 'yn + @
+$T(BkBkT)_1Ak%Af(BkBZ)_ll’ + jg—w@—l(‘/}c1|k1)_1%(‘/1@—1%—1)_1@—1%—1
+a" (BB ) T Akt (Vierje—1) ™ Ee1jp—1 — ITM@"

2

-1
AT (Vk—l\k—1> ~
B L S e S + Be—1jk—1
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1 x

= —5a" [CH(DDE) = (BeBD) " A AL (BB ™ + (BeBD) o
+at [Og(DkaT)_lyk + (BkBg)_lAkzl(Vk—1|k—1)_1jkz—1\k—1}
(Vk1|k1)_1] .

. P> _
+x£71\k71 [(Vk—1|k—1) 1%(%-1%_1) - 5 Tro1fk—1
NCiR

Y 5t 5 ]yk+ﬂk—1|k—1-

Next, the above equation can be written as a quadratic function of x

= — (2 — Zgp)” (ng)l (x — T)

_Hi“ak%jkm + fﬁZ_1|k—1 [(‘/kukl)_l%(‘/kukl)_l - M Tp_1|k—1

+yp [%Id - %} Yk + Br—1jk—1 (B.13)
where

(Vi) ™! = i (DaDy) ™' Cp — (Be By )~ ApSi AL (B By, ) ™! + (B By )™
(B.14)

(Vi) ™" @ = CL(DiDE) My + (BiBL) 7 At (Vieje—1) ™ Ere1jp—1

= e = (Vigk) [CJCT(Dk:D;}F)_lyk + (BkBg)_lAkle(Vk71|k71)_1§7k71|k71 .
(B.15)

Using (B.8) with (B.14) then

1
(Vip)™" = Cr(DyD{)7'Cy — (BkB,Z’)‘lAk((m_1|k_1)‘1 + Af(BkBkT)_lAk)
x AL (BB ™' + (B BY) ™. (B.16)

Applying the Woodbury Identity (A.2), the above transforms to

(Vi)™ = Ci (DkDZ)‘IOH((BkBifHAka_lk_lAf)1 (B.17)
V) = (CTODD O vL,) (B.18)
where
Vik—1 = (BeBy) + AViiwe 1 AL (B.19)

-1
= (BB + A (CLA(DL Dyt) "Gt + Vi) AL
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= (ByBl)+ A (Vk71|k72 — Vich—2C1— 1 (D{_1Dg—1 + C 1 Vig_1p—2Ci—y) 7"

Ch1Vitj2) AL
= (BiBl) + AVi-1jp—2A; — AVio1i—2Cy_ 1 (D{_ Dy—1
+Cho1 Vi 1h—2C 1) T O Vi1 p—2 Ay (B.20)

Using (B.8) with (B.15), then

Ty = (Vk|kz)[CkT(DkDg)_lyk

-1
+(ByBi) ' Ay ((Vk—l\k—1>71 + Ag(BkBkT)flAO (Vk—1|k—1)71i’k—1\k—1 .
(B.21)

Applying the PosDef Identity (A.3)
Fe = (Vi) |CF (DDY) ™y
1
+<(BkB]?) + Aka—uk—lAf) Aka—uk—l(Vk—l\k—l)_lik—1|k—1]

- -1
= (Vi) CH(DyD)  yr + ((BkB;f) + Aka—nk—lAf) Akik—uk—l}

= (Vi) |CL(DeDE)  yr + (Vk|k—1)_1~%k\k—1}
(B.22)

where

k=1 = ApTp—1jp—1- (B.23)

The above equation can be manipulated a bit more in order to get the following
Bk = Vi |CF(DDE) i+ (Vi) e
= |(BuB{ + AVie1i1 AL) T+ CL(De DY) ' Cy,

x |CH(De D) 'y + (BuBy, + Akvk—1|k—1)71A£k—l|k—l]

- 1-1
= |(BiBl + AVicap1 AL) "+ CH(DLDE) ' Cy | CF (D D) 'y

] -1
+|(BrB + Aka—uk—lA;‘g)_l + Cf(DkDf)‘le} (BeBj, + Aka—1|k—1)_1
XAi‘k:—l\k—l‘ (B.24)
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By applying the PosDef Identity (A.3) the following holds.

—1
[(BkB;f + AV AN 4+ I(Dy DY) L0y (DR DT =

(Be Bl + ApVi1g1 AL CL | Cr(Br B + AgVie1ip—1AL)CL + (Dy DY)
(B.25)

Then, by applying the Woodbury Identity (A.2) the following holds.
~1
(BeBl + AViape 1 A5) ™+ CkT(DkD/f)ACk] = (BiB; + AVia1Af)

—1
—(BiBj, + AVio1p—1 AL CF [Ck(BkB;f + AV 1 ARGy + (Dszf)]
X Cy(BrBE 4+ ApVi1jp—14}). (B.26)

Finally, (B.25) and (B.26) are substitute into (B.24) to obtain

-1

Tri = (BeBp + AVie1i—1AL)CF |Cr(BrB + AVi 11 AL CYE + (DD | e
+AZp 11 — (BrLBF + Akafuk—lAg)CkT
X [C’k(BkBg + AVice—1 A7) CF + (DkDI;F)] _lckAi"kfllkf1
= A&y_apor + (BeBF + AVi iy ADCE

-1
X [(Jk(BkB,’{ + AV ADYCT + (DkaT)] (g — CrAdp_ypoy)  (B.27)
1

= Tpp—1 + Vk|k71013 Okv;qk—lcg + (DkD;;F)] Uk — CrZip—1)- (B.28)

Substituting (B.28) into (B.23) yields

-1

Trp—1 = Aplr—1jp—2 + AVio1p—2Cr_y [Ck—1Vk—1\k—ng_1 + (D{_{Dy_1)
X (Yr—1 — Cr—1Tp—1]k—2)- (B.29)

This is the solution of the Kalman Filter.

Next, the term of equation (B.12) which is outside the integral is expanded.

|, [1/2 B |51 |12 Vg /2
(27)"/2| Dy| | Bi| [V 11|/ (27)™2| Dy || Bi||Vie—1 -1 "2 | Vo | 1/?
1 (1 |51 M2 Vi /2 )
= exp ( log .
(27)™ 2| Vi |12 | Di|| Bl V1112

(B.30)
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Substituting (B.30) and (B.13) into (B.12) yields

1 o (Vi) ™! )
5(@) = Gy e (- = o) = )

o (Vi)™ . B -
—Hcg\k( |2 xk\k+ngl|k—l|:(vk—l|k—1) "= (Vieagp—1) ™

2
Vi—ipk—1) 17 1 D, D)1
_( k 1|§ 1) ]xk_1|k_1+yﬂ§fd—( k2k)
|12 Vg /2 )

| Di|| Bil|Vi- 11|12

]Z/k + Br—1jk—1

+ log

1 - (Vae) ™! .
— (277)n/2|vkz|k|1/2 exp < - (.T — xk|k) 9 (.CL’ — xk|k) + ﬁk“g) [B.Sl)
where
. Vi) ™t R R > -
Pl = xf‘k( k—|§) Tk + xilukfl [(Vk—1|k—1) 171(Vk_1|k_1) 1
(Vk—1|k—1)_1

R 1 D, D1
e g - G,

|El|1/2|Vk|k|1/2

+1lo
S DRI Bel Vi 11|

7z T Br—1k—1- (B.32)

Now, [, will be reshaped in a better form, starting from the expression below,

. Y _ Vie_1le—1) 51 .
Tl [(Vk—llk—l) 171(‘/1«—1|k—1) b %]m—um
—1
. (i) + AT (BBT) Ay y
= Tk—1]k—1 [(Vk—llk—l) B (Vk—1\k—1)
(Vk—l|k—l)71 A
_T]xk—uk—l-

Next, the Woodbury Identity (A.2) is applied in order to get

1
T 1

= Tk1k13 [(kaukfl)_l (‘/kfl|k71 - Vk71|k71A£<(BkB]Z1) - Aka,”k,lA;f)

Ak‘/kfukfl) X (Vicip—1)"' — (qu\kq)_l}fckq\kq

. 1 _ -1
= iﬂz—uk—@ [(kallkfl) b AZ((BkBkT) + Aka71|k71Ag> Ay

_(Vk71|k71)_1} Tp_1|k—1
o [AZ(Vkm—ﬂlAk] .

= ~Tp—1k—1 5 Th—1|k—1
- Py _ Vicg—1)"17.
= T [(Vk—uk—l) 171(‘@—1%—1) 1 %]xk_”k_l -
. Vie—1) 17 .
—il [%} Brfh1- (B.33)
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. 7 (Vi) ™!
Next the expression Tpp—e —

Woodbury Identity (A.2) and the PosDef Identity (A.3).

o (Vie) ™ Ir. -1
x}fk%xkk =5 [$k|k71 + Vk|k71013 (CkamflC;f + (DkaT)> Yk

Iy, is reshaped into a better form, by applying the

-1 T
~Vip—1Cy (Cka|k—1Cg + (DkaT)> Oki'k;\k;—li| [OZ(DkaT)_ICk - Vkal_l}
-1
[ii“kucq + Vk|k71Cg (Ckvkw—log + (DkaT)> Yk — Vk|kf1Cg (Ckvldk—lcg

+(DkDg>)_1Ck§5k|k—1}

1 _ 1 -1
2mk|k WVnoa@rs-1 — y£<Cka|k_1CkT+ (DkaT)) Yk +

1 -1
2$k\k e <Cka\k 1CF + (DkDZ;)> Crpjk—1

1
§y§(DkDf)flyk

-1

Finally,
(Vk k) R 1 L 1 _
k|k|Tl’k|k; = 21’5\1@ 1Lk|kl—1xk\k—1 + §yg(DkDg) "

1 . _ N
—= (Y — Cr@irgp1) " (CrVip—1CL + DD (ys — Crgpp—1)-

2
(B.34)

Next, the logarithmic term of (B.32) will be reshaped into a better form
|22 Vi

| Dil| Bel Va1 jp—1 /2
Vil + AL (BB~ Awl ™2V, + CE(D D) il 712

log

e Dl Bel V- pe 17
:log|Vk_1|k V(L + Vi AL (BeBE) P AR [TV Vi, + CE(DRDE) T Gy 2
|Dk!|BkHVk -1/
~log T+ Vi1 AL (BeBE) T A T2 Vil + CF (DR D) 71 Gy 17?2
| Dy || By|
_log [T+ (B BE) 7 AVieap AL P Vi + CF (DR D) 71 Gy 12
| Dy|| Br|
:log|(BkBkT)_l((BkB §) + AV ADITR Vg + CH(DR DY) il 712
| Dy|| By
~log (BiBi) ™ V-1 (Vie_y + CL(DRDE) ' Cy) 712
| Dy || Br|
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|(BiBE) ™' (I + Vige1 O (D DE) 1 C )| 12

s DAl
~log |(BxBL)|'?|(I + (D D)~ CiVigg 1 CF )|~/
| Dy|| By
= log |(BiBi)|"2|(Di D)~ (Ci Vi1 Ok + D D) ~Y/2
| Di|| Br|
~og |(B BOI'2I(Dk D)2 |(Cr Vi1 OF + Dy DE)[ 1/
| Dy|| Byl

= log |(Cy Vi1 CF + Dy.DY)| 71/

|52 Vi
| Die|| Bi||Vie—1jo—1 /2

1
= log = —§1og|okm|k,1OZ+DkaT|.

When all the above, (B.33), (B.34) and (B.35), are put together into (B.32) this trans-

forms to

1
- n 1 4 N 1 A
Bk = _§xk|k—lvk|kflxk|k*1 + §l‘k|k—lv;c|kflxk|k*1

D DT -1 1 . _
y{%yk - §(yk — Crinp-1)" (CiVige-1Cy + DiDy) ™!
X (yr — Crrp—1)

T[Id (DyDf)™!

1
+Y 5 T]yk —3 log |CkVik—1CF + DD | + Br_ijp1
_ 1 . T T T\—1 . ?ngk
= _§<yk — Cr@pip—1)" (CiVip-1Cy + DiDy)™ (Y — Crgj—1) +
1
—5 log ]Cka‘k_leT + DkD£| + Bk—1|k—1- (B.35)

The above expression, (B.35), can also be written as

k

k
1 ) - ) yi i
Bk = — Z é(yz - Cixiﬁfl)T(Ci‘/ﬂiflCiT + D/ D;) "M y; — CiZiji—1) + Z 5
i=1 =1
1k
i=1
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APPENDIX C

DERIVATIONS OF EXAMPLES OF CHAPTER 3

This Appendix presents the derivations of the solutions of the Examples of Chapter
3.

Derivations of Examples of Section 3.3.1 - Estimation of Random

Variables

Here, the derivations of the solutions of the examples of Section 3.3.1, are presented.

Application 1

The worst case measure, v*(y, dr), is given by (3.25). By substituting Bayes’ formula

n(y,dx) = % into (3.25) the worst case measure becomes

£(z,®(y))
e O p(x,dy)dPx(z)

£(z,2(y)) ’

Jree F0 (. dy)dPy ()

v (y,dx) = (C.1)

The computation begins from the numerator of (C.1). By substituting (3.55), (3.56)
and (3.57) into (C.1) the numerator is given by

(2,2 (1)) d
2

e & p(x,dy)dPx(z) = (2m)” (27T)7%|EW‘7%|ZX’7%

271
X eXp{ —(y— Ha)' = (y — Hu)
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Yt U
TS5 (o = B() 5 (- @) fdedy
-1 —1
- oo (- B ),
—l—xT( — 2~L<I>(y) + HTZ‘}}y
5(y)
U e
+O(y) ——d(y) — y" =
(v) W) W)~y =y
+log [(2w)—%|zw|—%|zx|—%] }dg;dy. (C.2)

The function (C.2), is equivalent to

ryFexp{ — (0= m/ )2 (3) + (5, 2.0)
+log|2y(§)]’%}da:dy (C.3)
where
V(3 — Ty—1 -1 ﬂ ~1
mi(5) = TG HSRy - j(—[y])wy)),

The denominator of (C.1) is equivalent to

_n = zv(s)~ S S
/X(Qﬂ') 2 exp{ —(z— my(S))T%(m —m¥(3)) + g1(5, 2, y)
+log [(3)|* Jdady. .
Now, given that
/ L e 2 o) gy . .5)
(2m)2 [2v(3)[2

Then, the worst case measure, v*(y, dr) equals to

( )n‘l — o= (@=m () (0m (3) 101 (5.29)

. _ (2m)2|Zv@3)|2

V'(y,dr) = T, (C.6)
_ e Y e ) gy C.7)

2m)3[zv(3)]}
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Next, using Bayes’ formula the pay-off function (3.27) can be written as

Uz, 2(y))

Jye W (x dy) Px (dx)
fX,LL 7 PX(dx>

Lo(v*, \*,§%) =

fin {5(y) log +WRW ). €8

in
o(:

£(z,2(y))
The function [, e S p(x, dy) Px(dx) has already been derived and it is equal to

e915®) dy. Next, the following function is derived

/X ul, dy) Py (dz) = /X (2m) % (2m) % S|4 2]

X exp { C(y— Hx)TET_l(y — Ha) — xTET;(lx}dxdy
(C.9)
which is equivalent to
[t en{ - - mt() 2 - mt(9) + (s
+ log |Z§’(§)\_% }dxdy — 26V dy (C.10)
where
S4(5) = (H'Sy H+2)™
mi(5) = X5(5)(H' Syy),

i 2. 10) I Yot 1
p5y) = w2 @) - yT Iy 4 og [(2m) Dl Sl Pa)].

Therefore,
e(:csa()y» I Pe(d 0 (5.0)
f ¢ (z, dy) Px (dz) _ € 17 dy — e91(5:2)—g2(5y) (C.11)
S 1(z, dy) Px (dx) e92(59) dy

Next, the exponent of the above function is isolated and further manipulated,

06 0.0) ~ 05) = TS (5) + 00—y Ay
+1og [(2m) Hmwl HEx )] 4 Ty
-7 2 nt(3) — to [fom) e By(9)2]
= (H'Syly —f(—(;)¢( )" [(HTZ21H+E;1 —gg))—lr

177



APPENDIX C. DERIVATIONS OF EXAMPLES OF CHAPTER 3

Trs—1T TZITV1 E)_(l -1 T Ty —1
—y (S H | (= H + 2257 (H Sy

9
U 1 |HTSy H + 53 — 25
+0(y)" ——P(y) — 5 log A )
5(y) 2 ]HTZWH—l— X% |
1. 24
— (5@ ] 5
g(87 Jy) 2 O |E|
where
-1
o (- 25%) 2
5.0.y) = (HIYly— L o(y)T—W2 (gTy-l, 2 ¢
q(5,2,y) ( WY~ 50 () 5 ( w50 ()

U >t
() ——o(y) —y S H——HT'S,}
+o(y) W () —y By H—; wY,
Y = H'SH+ Y.

Next, the derived pay-off function has to be differentiated and the derivative set to
zero, as shown below

d £\ ko~
d—(I)Lg(l/ A 8) | pege =0, Vs()

d _ 3
=g dﬁ{ﬁ(y)g(s, P,9)|pg- = 0.

Performing the above differentiation results to

_2U<z - 82(—[;)) N\ (HTZ;VIy - g%@*(y)) +2UD (y) = 0
= O*(y) = (E - ;T[y]))l(HTEEvly — ;(—[y])¢*(y)>

2U 2U
= (8- =)0 (y) =H'Sply — —
(B 59) 0 = H7Zww - o5

= %% (y) = H 'S,y

—1
= O*(y) =X THTSly = (HTE;;H + E;}) a3 y. (C.12)

D" (y)

Finally, applying the PosDef Identity

-1
d*(y) =SxH" (HEXHT + Ew) y. (C.13)
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Application 2

Assuming that the nominal distribution u(x,dy) is given by (3.55), then the true
distribution v(x, dy) is given by

V(s dy) = ——— (ARt BB (AT gy (14
(2m)2|Ew + AXw |2

The derivation of (3.64) is presented here. The relative entropy between x(z, dy) and

v(z,dy) is given by the following expression:

Hlp)(z) = /Qlog (:Ej:jzi)u<x,dy>

= /y(x,dy)logu(x,dy)—/V(%dy)logﬂ(%dy)
h% Yy

d 1
= / y(q;,dy){ — —log(2m) — = log |Zw + AXw|
Yy

2 2
-1
_<y_<H+AH)x)T(EW+2AZW) (v~ (H + AH))}
/VI dy) ——log(27r)——log|EW| (y— Hzx) —;V( —H:E)}
Y 2
= —10g|EW|—§log|EW+AEW|
-1
/z/xdy (y— (H + AH)z)T (EW+2AEW) (y— (H + AH)z)
Yy 271
/ (z,dy)(y — Hz)" 5 W (y — Hz). (C.15)

Next, each term of the above function is treated separately, starting from the term

1
Jyv(z, dy)(y — Hx)TZTW(y — Hz) which can be expanded as followes

(y — Hz) =

w‘t?

| vy~ Hoy"
/yl/(x,dy)<(y—(H+AH)Q:)—(Hx—(H—i—AH)x))TEZ ((y—(H+AH) )

—(Hz — (H + AH)Q;))

= / V(x,dy){(y —(H + AH)JJ)TET;V@ — (H + AH)z)
y

+(Hx — (H + AH):B)TTV[}(H:E — (H+ AH)zx)
y-1

—~2(Hx — (H + AH)a)" =3 (y — (H + AH)x)}
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= /yu(m,dy)(y —(H+ AH)CL’)TET;V(?J — (H + AH)z)

—|—/yu(x,dy)(Ha: —(H + AH):U)TET(HZU — (H + AH)z)
—Q/yV(x,dy)(Hx — (H + AH)x)TZT;V?J
+2/ v(z,dy)(Hx — (H + AH)x)TETWl(H + AH)z.

Y

Note that
1.
/y v, dy)(y — (H + AH)x)TETWl(y — (H+ AH)x)
- tr{(ZW + Azw)%@l}.
2.
/y v, dy) (Hz — (H + AH)x)TETWl(Hx —(H + AH)a)
= (Hz — (H + AH)x)TZT;Vl(Hx — (H + AH)x)
= (AH;U)TETWl(AHx).
3.
9 /y v, dy) (H — (H + AH)x)TZT;VIy
= —2(Hz — (H + AH)x)TETWl /yyy(x, dy)
= —2(Hz — (H + AH)I)TET;VI(H:E — (H + AH)x).
4.

Sw

Q/yV(a:,dy)(H:v —(H + AH):U)TT(H + AH)z

-1

— 9(Ha— (H + AH)x)TZTW(H + AH)z.
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Therefore, by putting all the above together, (C.16) equals to
e, pyme,
tr{(ZW + AZw)TW} + (AHa) = (AHz). (C.21)
Similarly,

Yw + Azw>71
2

_/yy(x,dy)(y_(HJrAH)x)T( (y— (H+ AH)x)

(Zw + QAZW) }

= —tr{(Zw + A%,) (C.22)

Finally, putting all the above together results to (3.64),

Heln@ = [ 1og(Z§§:jz§)u<x,dy>

1 Zw| 1 1
= 5 { log S 1 AT +ir((Ew + AZw) Sy — Cw + AZw) 7))

4aﬂ(AfﬁT2;%A£nx}.

Application 3

The worst case measure, dQ}yY(a:,y), is given by (3.43). By substituting Bayes’

formula dPyx y (y, x) = p(z, dy)dPx(x) into (3.43) the worst case measure becomes
Uz, 2(y))

. e+ p(z,dy)Px(dz)
dQX,Y (.fL', y) = 0(z,2(y)) . [023)

fXXye s M(J:?dy)PX(dx)

Then the procedure is the same as the one used in Application 1 above, for deriving
(3.58), the only difference is that the integration is performed with respect to X x )
and that s is not a function of y. So, the denominator of (C.23) is given by C.2 (5(y)

is replaced by s) and is equivalent to

"1 . 6—($—ﬁy(s))T2(s2)_1(w—ny(s))-i-ﬁl(s,q),y)dydl_ (024)
(2m)2[%(s)[2
where
Ty —1 —1 U —1
S(s) = (H'S;'H+ 33 —22)7"
S
I}

KU(s) = Z(s)(H'Sy'y — ——2(y)),
¥(s)7! U Iy
his.0y) = (") 4 a)" D aly) Ty

+1og |(2m) [T |2 zx] H]
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The denominator of (C.23) is given by

/ _ 1 i ef(zfny(s))T 2(52)*1 (z—rY(s))+61 (s,@,y)dydx — / 691 (s,@,y)dy. (C.25)
wxy (2m)7 [X(s)]2 y
Therefore, the worst case measure, dQ% y(7,y), is given by
m (o= ()T G (o () +01 (5 80) fy
d * 7 _ )2 s)|2
QX,Y(:E y) fy 691(5,<I>,y)dy
_ 6(s,P,
_ B R 0 i
(2m)3|Z(s)}

——dydzx (C.26
fy 69(s,¢»y)dy yde ( )
where

05, @.9) = W) 2 (5) 1 0(0)" L aly) Ay

Next, the average pay-off is given by (3.42). Using another form of Bayes’ formula,
dPxy(y,x) =n(y,dz)dPy(y) , results to,

* * £(z,2(y))
L@y X9 =stog ([ [ 5 qty. dojdPy(w) + sk
yJx

The average pay-off (C.27) has to be differentiated and the derivative set to zero. The
inner integral will be differentiated as follows

d oz, 9(y))
A : d ]
dq)[ /X e n(y, dx)

(C.27)

=0. (C.28)
d=0*
First, the differentiation is performed and then the integration, therefore,
d [ wwew)
. s dz) = 0. C.29
[l e 29
Given (3.57), the above function results to
20U _, 2U £(2,2* (y))
/ (—CD (y) — —x)e < n(y,dx) =0
X S S
(2.2% () (2. 2% ()
) Jywe 5y da)  [ywe o p(z,dy)dPx(x)
= *(y) = (@ () = (@ () - (C.30)
f)(e s n(y7d$) f){e N u(xady)dPX(aj)

. oz, 3*(y))
The function e

s

p(z, dy)dPx(x) has already derived and is equivalent to (C.24)
(note that ®(y) = ®*(y)), therefore

py ML) POy
@ (y) == 601(s7¢*7y)dy
) N/, 2U
(H7Sy H o+ o5 - ?) (H7syty - —o () (€31
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The above function can be further manipulated, before it reaches its final form. That
is,
2U 2U
= (HTSHH + 33 = =2 )0 (y) = HTSyly — =207 (y)
S S
= (BT H + 500 (y) = HTSyly

~1
= ¢*(y) = (HTE;VIH + 2}1) H'SGy. (C.32)

Finally, applying the PosDef Identity
~1
**(y) = EXHT<HEXHT + Ew) Y. (C.33)

Application 4

The worst case measure, v*(y, dz), is given by (3.37). By substituting Bayes’ formula

n(y, d;v) = m% into (3.37) the worst case measure becomes

GMZ&_R(LM“(Q;’ dy)dPx(z)
() |
fX JRzex: R(:c,y),u(g;7 dy)dpx(l’)

v (y,dz) = (C.34)

Then the procedure is the same as the one in Application 1 above. Starting with the

numerator, which is given by
£(x,P (1 d
L) gy _d

2 (x, dy)dPx(z) = (2m)7%(27m) "% |Sw | 3|2x| 2

X exp{ —(y Hx)TZTW(y — Hr) — 2" =X g
Ho = 0(9)" (o — ()

= (2m) 2exp{—xT<HTUH——+HTTWH
s
+E—)_f1 x4+ a7 _29(1)() 2H Uy + HTS
9 S Y Y wY

U N PO
+‘1>(y)T;<I’(y) —y"Uy — yTTWy

+log [(2W)‘%|Ew|‘%|zx|‘%] }dxdy. (C.35)

The above function (C.35) is equivalent with the following function

om) Fexp { = (o — ()" 2

9 (x_my<5)> —|—gl<S,(I)7y)
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+1log |S(s)| 2 }dxdy (C.36)

where
2U

S(s) = (HTE;VlH + Y+ 2ATUH — —) ,
S

m¥(s) = 3(s) <HTEI},1y +2HTUy — %@(y))

The denominator of (C.34) is equivalent to

[emr s e { - - ) 2 (s + (s, 220

+log \i‘(s)\’% }dxdy N (C.37)

Therefore, the worst case measure, (C.34), is finally given by

S o~ (@=m ()T 2 (amii () 491 (s,0.) dady
Vy,dr) = G0
Y edg1 (s, ¢7y)dy
_ b e @) R () gy (C.38)

(2m)3|5(s)|2

Next, the average pay-off, LI(v*, \*, s*) is given by (3.39)

LE(W*, N, s%) 1nf/slog/ detl-Ry) n(y,dz)dPy(y) + sR.

s>0

The average pay-off (3.39) has to be differentiated and the derivative set to zero.

Similar to Application 3 above, the inner integral will be differentiated as follows

d Z(I@(y))fR( v)
— s = ,d ] ‘ =0. C.39
dd [/X ¢ 0y, dz) P=p* ( )

First, the differentiation is performed and then the integration, therefore,

d [ teew) g y)”
— s w dz) = 0. C.40
/X dd [6 @:@*n(y’ ?) ( )

Given (3.57), the above function results in

/ (S0 = =) ey, da) = 0
X S S
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Jpwe™ T Ry (y, da)

(@2 W) _por
Jpe T TRy, da)

22,2 (W) _pa
_ Jywe o OV (a, dy)dPx () a1

W) p,
[pe 5 T Bew u(a, dy)d Py (x)

o2 W) g
S

The function e =) 1i(x, dy)dPx () is derived and is equivalent to (C.36) (note

that ®(y) = ®*(y)). Therefore

m*Y(s) en(&® W) dy

ed1 (Sv@*vy)dy

P(y) =

— (mrs g s om0 - 2 (Bt +om Ty - e
= wi+ 2y + wy+ ) S (?J) .

s
(C.42)

The above function can be further manipulated, before it reaches its final form. That
is,
Ty—1 -1 a1 20 g Twe-1 = 20 _,
- (H SUH 4 R 420 UH——)cb (y) = HTS y + 2070y — “=3*(y)
S S
= (HTE;[}H N St QHTUH) O (y) = HTS5ly + 207Uy

i~ -\ 1 o~
= $*(y) = (HTZ;[}H S 2HTUH> (HTZ;; + 2HTU>y. (C.43)

Derivation of Example of Section 3.3.2 - Estimation of a Sequence

of Random Variables

Just like in Application 1 of Section 3.3.1, the worst case measure, v*(y,dz), is
given by (C.1). Similarly, the computation begins from the numerator of (C.1). By
substituting (3.78), (3.79) and (3.80) into (C.1) the numerator is given by

o2, 2(y™)) _d _1\mtl n 1
e e, dy™)dPx(e) = (@r) HSwl )" (2m) F [Ty
xexp{ —i(y —Hx)TE(y — Hz) :UT—;(lm
Z:O KA 2 1 2
m—1
*( a\\T U * (1
+ > (2 —=2/(y") =~z — i (v"))
— 5(y)
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U
+(x — D, (Y™ )N) ——(x — D, (y™)) pdzdy™
(= @y 55— Buly™) plady
n e, DI
= (2m)72 exp{ — 2" ((m+1)H" 2V g =X
2 2
(m—1)
U U
—(m4+1)— )z +z7( —2— O (y'
(m+ D)+ (25 2 )
20D (y™) Ty—1 S - T2171/1
- H'SHS Ju) =D ul =y,
S(y) v 1=0 > =1 2

_ d(m+1) m+1

+ log [(27T) 2 |EW\7T\2X|7%}}da:dym. (C.44)

The above function (C.44) is equivalent with the following function

. S (3) !
(27 exp { — (2~ AT (2~ V() + (5, 2.0)
+log [S¥(5)| 3 }dxdy (C.45)
where
- 2 DU\ !
S (3) = (NHTE;[}H Ly AmiD) ) ,
5(y)
m m—1
A 4 2U L 22U, (y™)
a9 = £ (175 S - s Y ait) - 22,
% ; 5(y) ; 3(y)
The denominator of (C.1) is equivalent to
4 _ )t
[enten{ - - = - a@) +n e
X
+ log |§y(§)|_%}dxdym = G2 gym. (C.46)
Therefore, the worst case measure, (C.1), is finally given by
L @) G e (5) 0 52 iy
vy, de) = CAEGI
y, egl(qu)uy)dy
_ ! o~z ()T (o (3) (C.47)

ol

(2m)3|2v(3)|-

Next, the average pay-off function Ly (v*, \*, s) given by (3.27) has to be differentiated

and the derivative set to zero. The inner integral will be differentiated as follows

d / oz 2(y™)
_— e W y", dx ] ‘ = 0. (C.48)
dq)m(ym)[ X il )

O (y™) =25, (y™)
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First, the differentiation is performed and then the integration, therefore,
/ d L 2@™)
—_— |:@ 5(y) }
X dq)m (ym)

Given (3.80), the above function results to

2 2 z,&* (y™
/ (—U o (y™") — —U x)eg( H0) ))n(ym,da:) =0
X

™ dr) = 0. (C.49)
<I>m(ym):‘1>i‘n(ym)n(y )

5(y) 5(y)
0(z,2* (y™)) 0(z,2* (y™))
. m fX ze Zo) n(y™, dx) fX ze W) p(x, dy™)dPx(x)
= @, (y") = (@ ™) = @ (g™) :
Lee @ Ty de)  [pe @ p(x, dy™)dPx(x)

(C.50)

(2.2 (™)
The function e 5@ w(x,dy™)dPx(xz) has already derived and is equivalent to

(C.45) (note that ®,,(y™) = % (y™)), therefore

m*Y(5) e (s ®"v) gym

egl (Sv(b*vy)dym

oL(y™) =

_ m Ty —1 _1_2(m+1)U -
= (( +1)H Y, H+ Xy —§(y) )

x (HTEWl ; vi — % 20 @i (y') — %%(ym))-

VAN

(C.51)

The above function can be further manipulated, before it reaches its final form. That
is,
2(m+ 1)U

= ((m+1)HTEW1H+ZX1— W)

Jom)

— Sy) ™
% Tx—1 1 2mU - Ts—1 -
=& (y") = ((m+1)H'SHH 4+ 2 - W) H ZWZyZ
=0
2 m—1
2N gy ) (C.52)
) 2 B
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Derivations of Examples of Section 3.4.2 - Estimation from MIMO

communication Systems

Here, the derivation of the results of the examples of Section 3.4.2, are presented.

Application 1

The procedure followed here is very similar to the one applied in Application 4 of
Section 3.3.1. The worst case measure, v*(y, dx), is given by (C.34). By substituting
(3.87), (3.88), (3.89) and (3.90) into (C.1) the numerator is given by

(@.2W) _ py _ n _ -
e o (e, dy)dPx(z) = (2m)2m) " S| Ex|
X exp { —(y— H2)'Sy (y — Ha) — oS3
1Y

o= o(y)i=

(z — 2(y))
—(y— Hx)'U(y — I:Ix)}dxdy
= (2m)™ exp{ — ol <I:[TUI:I - g +H'S H
+Z)_(1>x + xT< - 213*%@@) + o0y + QHTZ;;y)
+<I>(y)Tg<I>(y) —y' Uy —y'Syty

+log [(QW)_d|ZW|_1|Ex|_1} }dxdy. (C.53)

The above function (C.53) is equivalent to the following function

) " exp { — (2 = () Sar(s) @ = 1o (5)) + a(s, @, )
+log |Xa(s)| ™ }dxdy (C.54)
where

. Uyl
Su(s) = HTZ;;H+2;(1+HTUH—;) ,

~ _ L~ U
iails) = S(s)(HSyly + 10y — —a(y)).
s
The denominator of (C.34) is equivalent to

J e e { = = inn(s) Suls) @ = (9) + als. 8.0)
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+log |Xas(s)| ™ }dxdy = (52 dy (C.55)

Therefore, the worst case measure, (C.34), is finally given by

(27]')7”’ | iM (S) ’71 ef(xfmkf(s))fiM(s)il(Ifmkf(s))‘i’q(sv(bvy)dxdy

vi(y,dr) = Ty

= (27) " Sp(s)| 7t e @) Earle) T @ () g (C.56)

Next, the average pay-off, L¥(v*, \*, s*) is given by (3.39)

LE(* N s%) = inf/ slog/ ee(zf<y>>_R(“”’y)77(y,dx)dPy(y) + sR.
v X

s>0

The average pay-off (3.39) has to be differentiated and the derivative set to zero.
Similar to Application 4 of Section 3.3.1, the inner integral will be differentiated as
follows

d Ue W) Ry )
a SR -R@E () d ” ~0. C.57
1/ ay.do)]|,_, =0 (c57)

First, the differentiation is performed and then the integration, therefore,

d YUe.2@W) _ p( y)] ’
_ s x, d = ) C'58
/X dd [e @zé*n(% = | |

Given (3.89), the above function is

2U 2U 2, @ (y
/ (50" w) = =)y, ey = 0
X S S

[ we ST RED (g dy)
@ W) gy
Jpe = TREvn(y, dr)

Uz W) _ R(yy) dy)dP
re s > -
) pu(z, dy)dPx (z) . (C.59)

(@2 W) _piy
Jee eV (e, dy)dPx ()

= ¢ (y) =

The function e 5 2 —R(xy) p(x, dy)dPx(x) has already derived and is equivalent to

(C.54) (note that ®(y) = ®*(y)), therefore

m’]"w(s) 6‘1(87(1)*73/) dy

QQ(&@* 7y) dy

d*(y) =

N VA g U
_ (HTE;VlH +3¢ + HIUH - —) <HTE;V1y +H'Uy - —q’*(y))-
S S
(C.60)
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The above function can be further manipulated, before it reaches its final form. That
is,
fy—1 1, mgira U\ ax P T U _.
= (H SOH Y+ H UH——)(I) (y) = H'Sply + HiUy — =@ (y)
S S
N (HTE;;H 3 s FﬁUH) o (y) = H'SGly + AUy

_,~ _\—1 L~
= O*(y) = (HTE;;H +y 4 HTUH) (H’fz:;; + HTU)y_ (C.61)

Application 2

The procedure followed here is very similar to the one applied in Application 3 of Sec-
tion 3.3.1. The worst case measure, dQ% y (z,y), is given by (C.23). By substituting
(3.87), (3.88), (3.89) and (3.90) into (C.23) the numerator is given by

U2 () _ Cnpe (- _
e+ plrdy)dPx(z) = (2m)7(2m) 7" Sw |8k
X exp{ —(y— Ho)'S (y — Hr) — 2'85
TU
(@ = 0(y))' < (x — @(y)) | dedy
R - 4 U
= (2m) exp{ - J;T<HTZW1H—|— Sx — ;).73

U
taf ( —2%0(y) + 2HTE;V1y>
S

U B
+@(y)T;¢(y) —y'Sty

+log [(QW)_d|2w|_1|EX|‘1] }dxdy. (C.62)

The above function (C.62) is equivalent with the following function
(27) " exp { — (2 — w3y (5)) S () (& — wly () + 01 (5, 8.9)
+log [Za(s)| }dxdy (C.63)
where
Sa(s) = (HTE;[}H Lud ;) o
W) = D) (1St - o),
Bis. @) = ()1 Ear(s) W (s) + B)T b(y) — 'Sy
+1og [ (2m)~|Zw| ! [=x| 7).
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The denominator of (C.23) is equivalent to
-n -1 f(xfn%/j(s))TEM(s)_l(a:fn?]’w(s))Jrél(s,@,y)
(2m) ™ Xm(s)| " e dxdy
XxY
_ / D (s00) gy, (C.64)
y

Therefore, the worst case measure, dQ% y (7, ), is given by

(27) " Sas ()71 e~ @ Rh D Sl 7 wrb () +01(5:20) g gy
fy eél (sr(bvy)dy

dQ},Y ($7 y) =

e0(s,®,y)

= (2m)7"[X 1 (@i ) Eu()Ha—rfy () _C T
(2m) "2 (s)| e R

dydzx
(C.65)

where

s, ) = K3y ()1 S ()l (5) + B() 10 (y) — 15y,

Next, the average pay-off, given by (C.27) has to be differentiated and the derivative

set to zero. The inner integral will be differentiated as follows.

d oz,9(y))
< /X Sy an]| =0 (C.66)

P=P*

First, the differentiation is performed and then the integration, therefore,

d [ teew)
e dz) = 0. C.67
/X 4o [e ] ’q>:q>*’7(y’ z) (.67

Given (3.89), the above function results to

20 _, 2U £(2,9* (1))
/ (—‘P (y) — —93)6 < n(y,de) =0
X

S S
2z, 2" (1) £z, 2" (1)
\ Jyze v Ty, dz)  [yxe v p(x, dy)dPx(x)
=0 (y) ==& 0(z,9* (1)) ==& . (C.68)

=z, 2" (y))

Jve = nly,dr)  [pe o p(x, dy)dPx(x)

Yz, 2" (1)

The function e- s u(x,dy)dPx(z) has already derived and is equivalent to (C.63)
(note that ®(y) = ®*(y)). Therefore

Kyl (s) e dy

651 (s,2*,y) dy

= (mtmE sy - ) (miny - Cay) (C.69)

P*(y) =
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The above function can be further manipulated, before it reaches its final form. That
is,
U U
= (H'SH + 37 = 2)0'(y) = BISgly - —'(y)
S S
= (HSHH 4+ 350 ) 0" (y) = HISyly

-1
= O*(y) = (HTE;VIH + E;}) HIS . (C.70)

Finally, applying the PosDef Identity

-1
O (y) = Sx H' (HEXHT + zw) y (C.71)
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APPENDIX D

PROOF OF THEOREM 4.4.4

First the following parameters are defined, 7°™" = 5% and €™ = Vi(y™)g>"

which are used throughout the derivation.

(a) When (4.63) is substituted into (4.64), the following is obtained.

~ N o0 . 2
Altm) = H{/O %exp( 2T2>exp( K
i=1

X % 0% exp (riVi(ym) cos(0; — %(ym))>d«9idri}
X exp (%iy (te)[1 = D Zlong tr) )
= g {/O %exp (— —Q(Hz—;@»h (nVi(ym)>dm}
X exp (% Zm: Y (te)[1 — D2 ()] — Xm: log \D(tk)!) (D.1)

where / 0( ) is the modified bessel function of the first kind and zeroth order defined

by I(x ) 5= |7 _exp (z cos a)dov.

2
Next, using 7>™ and €™ the integral fooo 75 exp ( - #) Iy <7’iVi(ym)>dri is
14202 K"

computed as follows

* r2 oy r2 re™
Do (= n (Vi) = [ Zexo (- i | (S
[ e (g i) = [ S (= g )G

1+202K]"

EQ,m ( 62,m > 00 i (Tz2 + 62,m> s (Tiem)d 62,771 E2,m
= €Xp | 7= S Xp | — — o\= Ti = —=5 XD\ 5=%m
o2 252m) J, @™ 2G2m gom o2 2G2m
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1 ( Vi (y™)o® )
=————exp | ———— ).
1+ 202K CP\2 ¢ 402K

7,2 2,m m
Note that in (D.2) the fact that =% exp < _ ! E;S,m ) Io(ggfm) is a Rice probability
distribution function which integrates to 1, is being used. By Substituting (D.2) into

(D.1), equation (4.65) is obtained.

(b) The normalized conditional density py (¢, 0,r|),,) is derived by substituting
(4.63) and (4.65) into (4.66).

(c) Using the definition of h;(t,,, 0;,;), and defining K_Z” £ (207K

(4.67) in (4.68), the following is obtained

, by substituting

2mo?

00 27
ﬁi(tm, 0;,1;) = / / [cos(wc(tm —7i(tm)) + 6;)S(tm — Ti(tm))riK_{” exp ( — er_Zm>
o Jo
V2 m 0_2
X exp (Tin‘(ym) cos(f; — %(?Jm))> exp ( - %)} do;dr;.
(D.3)

Now, by writing cos(w.(t,, — 7i(tm)) + 0;) = cos(we(ty — 7i(tm)) + 7 (y™) + 0; — v (y™))
and using the trigonometric identity cos(A+ B) = cos(A) cos(B) —sin(A) sin(B), after

some algebra, (D.3) transforms into

~

hi(tm, 0i,m3) = St — Ti(tm)) cos(wWe(tm — 7i(tm)) + %‘(ym))Qﬂ-K_zm

2(,,m\ ~2 fo'e)
X exp ( = %) /0 7"12 exp < — 27?7’?[(_}”) I (m%(ym))dri
(D.4)

where [ (.) is the modified first order Bessel function of the first order defined by

I(x) 2 o= |7 _cos(a) exp (x cos ar)de.

Next, by substituting >™ and €™ into (D.4), the following is obtained

R 1 62,m
hi(tm, 0i,m1) = Sty — Ti(tm)) cos(we(tm — 75 (tm)) + %(ym>)52_m exp ( — 252”)

o~ g2 ()
X riexp | — 1 dr;
/0 i p( 25> )\ G2

= S(tm — Ti(tm)) cos(We(tm — Ti(tm)) + 7 (y™))e™
* 2 (r? + e>™) riem™
X /0 o exp ( T oEm )]1 (527m>dri. (D.5)
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E2,m€m 252,777, EZ,m

tral chi-square distribution with 2 degrees of freedom and noncentrality parameter

Note that in (D.5) the fact that r? exp ( _ e ) I (”Gm ) is the pdf of a noncen-

€2™, is being used, thus it integrates to 1. By taking this into consideration equation

(4.69) is derived.

(d) The minimum least-square estimator 0~;‘ (t,,) is derived by substituting (4.67) into
(4.70).

(e) Substituting (4.67) in (4.72), the following function is obtained

[e's) 2 2 1om 2 21m
(1 + 20K} (1 + 20° K’
F(t) / / rirl( o’ K )exp< r( K] ))
0 0

2mo? 202
V2 m 2
X exp (riVi(ym) cos(f; — 7,(ym))> exp ( — %)d@dm
( V2(y™)o? ) /°° ri(1+ 202K™)
= exp| — —-— r;
2+402K") Jy o?
2(1 4+ 202 K™
X exp < - ri(l+20°K; )>Io <ri\/i(ym)>dri. (D.6)
202
By substituting >™ and €™ into (D.6), then
Vi (ym)o? e
) = e (- ) e (g
Filtn) = o\ = 5 ) P g5Em
* (r? + ™) €™
[T e (- ST ey
/0 lizzm XP < 252 ) \z2m )
‘/7;2<ym)0_2 62,m
= o (- m) b ( 5z ) Bl ©.7)
Note that —%; exp ( - (T?Q;i;m) Io(%fznn) is the pdf of a Ricean distribution random

g

2 m
variable, hence the integral fooo Ti =z €XP ( — 2%) Iy (”jm > dr; is its fist moment. Us-
ing the expression of the moments of a Rice distribution which are given by
2,m

252,771

k

)ru+§hﬂ<

24k e2m )

E[rk] = (252,m)k/2 exp ( — 5 1 5=2m

1

where | F} (a, G, x) is the confluent hypergeometric function equation (4.73) is ob-

tained.
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APPENDIX E

DERIVATIONS OF EXAMPLES OF CHAPTER §

This Appendix presents the derivations of the solutions of the Examples of Chapter

5.

Derivations of Example of Section 5.4.1 - Generalized MAP Esti-

mator

First the Generalized MAP estimator ®,;4p, which is given by (5.27), is derived.
Using (5.20), (5.21) and (5.22) the function L(z,y™) is given by

Lz, y™)

1>

14 dy™ dP,
(@) |, 1o Ms™) o dP(a)
s dym d
TU ( 1 >m+1
+ log 3 T
5 2m)2 | Bw|>

m 1

1 !
+log (T) — ot =
(2m)3 |Sx |3 2

2TUx d(m+1) n
tlog  (2n) % (2r) H1Zw |45
m 271 2—1
— Zy?—wyz — N2THT" =W [y
: 2 2
=0
T TZ;Vl - Tz)}l
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Next, the MAP estimator is computed by differentiating the above pay-off function

and setting the derivative to zero as shown in (5.26). That is

8 T m
8_$L(x7y >|I:<I>A/IAP(ym) =0 (E.2)

2(m+1 m - " 2
= (—)(I)MAP(y ) = (m+ DH Sy Heuap(y™) + H' Sy Zyi

=0
—Sx' ®rap(y™) =0

2 1 "
= (@ —(m+V)H"S H — 2;}) Pprap(y™) + HYSH Zyi -0
1=0

2U =
= Pyap(y™) = ((m FO)HTSH + 95 - ?) H'S S . (E.3)

Secondly, the mean square error, given by (5.30), is derived. The mean square error

is given by (5.28), and can be written as
E [(X — Ppap(Y™)T(X - <I>MAP(Ym))] =
tr /( ) (z — @prap(y™)) (@ — Parar(y™))" p(z, dy™)dPx () (E.4)
R m+1)d

tr

/ /%( . x:v T @yap(y™ @ 4p(y™) — 2207, 4p(y ))#(lﬂ, dy™)d Py (z)
tT/ / zx p(z, dy™)dPx (z)
n J R(m+1)d
cr [l dy )P )
n JR(m+1)d

i / / Batar(y™)BL, 4 p(y™ i, dy™)dPx (2). (E.5)
R J Rim+1)d

Next, given (5.27) Carap(Y") = Loy ap O ieo Yi» Where Yo, ,, = ((m + 1)HTS, H +

~1
Sy — %) HTY,}, (E.5) can also be written as

n Jp(m+1)d n JR(m+1)d P
o / /§R< +1)d Z(I)MAP Z Yi Z yngMAP T dy )dPX (33')

1=0 =0

=tr(Xx) —tr QZG{CMAP/ /w +1)dxz (Hx +w;y) " p(z, dy™)dPx (z ))

=0
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(S Zew [ [ S g utedy)iPi()
Rn §R(m+l)d i—0 jZO

=tr(Xx) —tr <QZ£MAP /W /ﬂ%(mﬁ)d(m + Dax" H p(, dym)dPX(x)>

+tr <E:‘£MAPZ¢MAP / / Z Z(HJS +w;) (Hz + w;) " (e, dym)dpx(x)>
pn Jpim+1)d “

i=0 j=0

=tr(Sx) —tr2(m+ 1)H'S] | Sx)

r <E:£MAP2¢)MAP /§Rn /éR(m+1)d Z Z(meTHT + me;F +wia HY + wiwjr)
i=0 j=0

xple, dy™)dPx(z))
=tr(Sx —2(m+1)H"S}, ,, Sx)

+ir (EgﬂfAPE(I’JWAP / /§R< +1)d<(m + 1)2HxxTHT>N<I7 dym)dPX(I))

(SB[ et Dl o dy)aPs())

= tr(Sx — 2(m+ DHTYL i)+ tr((m +F12HTSE S HSx
+<m + 1>EgA{APEq>I\/IAPEW>
= tr (ZX —2(m+ 1)HTSE S+ (m+1)2H'SE S HSx

+(m + 1>EgMApE¢A4APEW)'

given by

m

- 21Uz 4 L\ -1
=0
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Derivations of Example of Section 5.4.2 - Generalized ML Estima-

First the Generalized ML estimator ®,,;, which is given by (5.35), is derived. The
MAP estimator is computed by differentiating the pay-off function, Ly(z,y™), and
setting the derivative to zero as shown in (5.34). By expanding (5.33), ZQ (:1:, ym) is
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I -
—(m + 1)ZZZTHTTWHx +a " H'SE "y (E.7)
i=0
Next, the differentiation is performed.

0 — m
%Lg(x;y )|x:<b]uL(ym) - 0

= ?<1>ML( y") = (m+ DH'S H® )y (y™) + H'SEH Y g =0
=0
& _ Ty—1 T _
= (m 4+ 1)HTS H ) @y (y™) + H EWZyl 0

S

= Oy (y™) = (( + 1) HTSH — %) HTS;)! Zy (E.8)

S

Secondly the mean square error, given by (5.37), is derived. The mean square error

is given by (5.36), and can be written as (for X = = deterministic)
Elo = @up(Y™) (z = o (v™)| =
o[ = ) = ™) e dy”) ®9
= tr /3(E - (mT + Carr(y™) Py (y™) — 2x@ﬂL(ym))u(w, dy™)
—tr [ sty o [ 200 (e dy”)
R(m+1)d R(m+1)d

+tr / Drr (Y™ (Y™ (s, dy™). (E.10)
R(m+1)d

1
Given (5.35) @11 (™) = Sy, Yty i where S, = ((m+1)HISy H-2 ) HTS;),

(E.10) can also be written as

tr o’ p(x, dy™ —tr/ 20y yl ¥y ul(z,d
/éR(m+1)d pl, dy™) R(m+1)d Zy Par P y")
—|—Zf7“/( 1) E‘PML ZyzZyngML x, dy™ )

Flm

= tr(za’) —tr (22%“ /%( . x Z(Hm + w;) " pu(z, dym)>
" i=0

+ir(2, Sos [ H)dzzyzy] (e dy™)

=0 j=0
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= tr(za’) —tr <2§]£ML / (m + Doz H u(x, dym)>
%( +1)d

—|—tr< Fo. @A[L/( ) ZZ Hz + w;)(Hx + w;)" p(z, dy™ ))
RmHDL 5o j=0
= tr(za”) —tr(2(m + 1)HTEgMLm:T)

+itr zgmz%/ ZZ Hxa"H' + 2Hw! + wiz" H' + ww] )p (:p,dym)>
§R(m+1)d

=0 j=0
= tr(za’ —2(m + 1)HTET ra’)

Pprr

(S P [ (e ) e e, dy™))

+tr (Egmzqm / (m 4+ Dwsw] p(z, dym)>
R(m+1)d

=tr(za” —2(m+ 1)H"S}, xa’) + tr(( +1)°H"SS, Yo, Hra"
+(m + 1)23}:A{LE¢’]WLEW)
= tr (m; —2m+ V)H'SE a4 (m+1)2HTSE S, Hra”

+(m + 1)E£MLE(DJWLZW)'
(E.11)

Finally, the derivation of the Cramér — Rao lower bound is presented. First, equation
(5.42) is derived.

Varfoyp(Y™)] = E [(@ML(W) _ E[chL(Y’”)J) (chL(Y’") —~ E[<1>ML(Y’“)]>T]
= [&DML(Z% ZE%)(iyz iE[%])ngm]

= Yo, Z Varly; E<I>ML

=0
= (m+ 1), Sw>s,,, - (E.12)

3

Now, given E[® ., (y")] = X¢,,, (m + 1)Hzx, then

0 0
Vx = %EX[@ML(ym)] - %E%u (m + 1)Hm - E‘1>ML (m + 1)H‘ (E.13)
Furthermore,
x, dy™ (m - rZw
log “EBE) gl (2m)t 317 = Y (0 — Ha) Ry~ Ha)

=0
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Z_l

d 1 (m, =
= log[(2m)3[Sy |70 — 32
=0

s =
—(m + 1)xTHTTWHx +a"H'SEH
=0

Next, the first derivative of (E.14) is given by

Qlog pu(z, dy™)

_ Ty —1 Ty —1
o P —(m+ 1)H"S He + H'S3H) s,

i=0
and the second derivative is given by

0 | M dy™)
0g
0x? dy™

=—(m+1)H'S'H.

Finally,

0? w(z, dy™)
]X = —EX 02 IOg dy

=(m+1VH'S'H
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LisT OF ACRONYMS

1.

2.

3.

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

a.s. - almost surely
AVC - Arbitrarily Varying Channel
BME - Blind Minimax Estimator

EKF - Extended Kalman Filter

. iid - independent and identically distributed

KL - Kullback-Leibler

LS - Least-Square

MAP - Maximum A Posteriori

MIMO - Multiple-Input Multiple-Output

ML - Maximum Likelihood

MSE - Mean-Square-Error

MMAE - Minimum-Mean-Absolute-Error
MMSE - Minimum-Mean-Squared-Error
PDF - Probability Density Function

PSD - Power Spectral Density

RND -Radon Nikodym Derivative

RP - Random Process

RV - Random Variable

SNR - Signal-to-Noise Ratio
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NOTATION AND LIST OF SYMBOLS

NOTATION AND LIST OF SYMBOLS

1. N2{1,2,..}.
2. No 2 {0,1,2,...}.
3. N £1{0,1,2,... m).
4. C: set of complex numbers.
5. R: set of real numbers.
6. Z: set.
7. BT: transpose of a matrix B.
8. |B|: determinant of a square matrix B.
9. (2: elementary outcomes of a random experiment.
10. F: o-algebra (or algebra) associated with a random experiment.
11. X': Polish space.
12. ): Polish space.
13. Yy and Yy: o-algebras generated by & and ), respectively.
14. M;(X): space of probability measures on X.
15. ¢: sample pay-off.
16. E[-|: expectation.

17. E[X]|Y]: conditional expectation of X given Y.
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NOTATION AND LIST OF SYMBOLS

18.

19.

20.

21.

22.

23.

24.

25.

26.

27.

28.

29.

30.

31.

32.

33.

34.

35.

36.

BC(Y): vector space of bounded continuous real valued functions defined on

the Polish space )/

(BC(y)>*: topological dual of BC'()).

Px y: nominal joint distribution of X and Y.
Px|y: conditional distribution of X given Y.

()x y: true joint distribution of X and Y.

()x|y: true conditional distribution of X given Y.

Px: marginal probability distribution of X associated with joint probability of
X, Y Pxy.

w,n, v,: stochastic kernels.
P: class of all stochastic kernel.

M,,()): Banach space of finitely additive regular bounded signed measures

on Xy.
I1,44()): set of regular bounded finitely additive probability measures on ).

Ly(Px, BC())): space of all Py integrable functions defined on X with values
in BC(Y).

H(P|Q): relative entropy between the probability measures P with respect to
Q.

X = &(Y): estimate of X from the measurements of Y.

®*(Y'): best estimate of X from the measurements of Y.

||.||x: norm associated with elements in X

{G° }: o-field generated by the complete data {zo, 1, ..., ZTm, Yo, Y1s- - Ym }-

{Gm}: complete filtration of {G?,}.

{)° }: o-field generated by the incomplete data {yo, y1,-- -, Ym}-
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37.

38.

39.

40.

41].

42.

43.

44,

45.

46.

NOTATION AND LIST OF SYMBOLS

{Ym}: complete filtration of {)° }.

" sequence {yo, ..., Ym} and similarly for other sequences.

Yy
T, estimate of the state z,, given {)),,}.

a(+): unnormalized conditional probability distribution function.
@(+): unnormalized conditional probability density function.

w,: carrier frequency.

{7 (tx)}: propagation delay.

{r;}, {6;}: attenuation and phase, respectively, of the signal received associated

with ith path.

7r(73): @ priori probability density function of {r;}, and similarly for other
processes.

~

A(t,,): incomplete data likelihood ratio.
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