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Abstract

A stochastic process is a sequence of random variables defined on a basic probability space
(Q, F, P), indexed by a parameter ¢, where ¢ varies over an index set M. In this work, we
deal with stochastic processes where ¢ represents the time up to an event (failure, repair,
etc). Consider a process defined on a probability space (2, F, P) with state space E =

{1,2,..., N}. Markov processes represent typical tools for modelling such a system.

In this work we focus on multi state systems that we model by means of continuous time
Markov processes, which generalize typical Markov jump processes by allowing general
distributions (not necessarily Exponential) for sojourn times or residing times or failure
times. For this reason, the semi-Markov processes are more adapted to reliability studies

(and for applications in general).

The main quantity of interest in such settings is the transition probability of moving from
state ¢ to state j. Observe that in the above setting, the time t represents the residing
time or sojourn time in state i before moving to state j. Although in the literature
it is frequently assumed that this time is exponentially distributed, other more general
distributions with heavier tails could be considered. Very frequently, in reliability, in
economics, in physics and in engineering, the interest lies in the occurrence of rather
exceptional or rare events (natural disasters, total power supply failures, global economic
crises, etc) which are associated with the tail part of the distribution. All rare events
and the rate at which they occur are related to the shape and the heaviness of the tail of
the generating mechanism that produces such events. Since failures may be considered as
rare events, distributions with heavier tails may be more appropriate for the description
of sojourn times. In such cases, appropriate models should be used and the relevant

parameter estimators should be determined and analyzed. Then, the problem of transition



probabilities will be addressed together with that of the associated transition rates.

In the first part of this thesis we investigate parameter estimation, transition rates (in-
stantaneous transition probabilities) and transition probabilities using various distribu-
tions like Exponential as well as other, heavier tail distributions like Weibull, Pareto, etc
for sojourn times. The estimating technique used in this part is the standard method of
moments. Note that the distributions considered belong to a general class of distributions.
An application of the proposed methodology is presented for illustrative purposes. The
application deals with a data set of 113 great earthquakes from the South America region

covering the period 1899-2010 with the purpose of making earthquake forecasts.

In the second part of this thesis, we formulate the MLE methodology and provide the
associated estimators for MSS reliability indices. The consistency of the estimators is also
provided. Two statistical settings will be considered: in the first one we dispose of one
sample path of the system; in the second one several sample paths are available. On each
situation we take into account two different cases: in the first case, we observe all the
sojourn times; in the second one, the sojourn time in the last visited state can be right
censored (lost to follow-up, for instance).

The thesis ends with concluding remarks and open problems for future work.

ii



ITepirndm

Mo 6 toy oo T Bradixacior etvor pior axohoudio optopévn ae éva yhpo mavotitwy (2, F, P),
TOL AVTITPOOWTEVETAL amd Lol THEAUETEO ¢, 6Tou To t malpvel TWéC o €va ohvoho M.
X1y mopoloo Slotelfr) aoyohOUUACTE UE CTOYUCTIXES DLUOXAGIEC OTIOLU TO t OVTITPOGH-
TEVEL TO YPOVO péypl Vo oupPel xdmoto yeyovoe (amotuyle, emoxevd, x.h.m). ‘Eotw wo
oToyao Ty dadixacia optopévn ot €va yweo mdavotitwy (Q, F, P) e yhpo xatactdoe-
ov B = {1,2,...,N}. O MopxoPavéc dadixaoies amoteholv tumixd epyoleia yla TV

HovtehomolnoT VoS TETOLOU GUC THUATOG.

H nopotoo doutpiBn Yo emxevtpwiel oe multi state systems (MSS) ta omola povtehonotolye
ue T Bordetar Twv NuLpoexoBlavey Bladactey, ol omoleg yevixebouy Tutixéc Mapxoiavég
OLodixooieg oAUATWY ETTEETOVTNC YEVXES xoTovoués (Oyt amapoitnta Exdetind) yio toug
Yeovoug mopapoviic. I To Adyo autd, ou nuipapxofiaveg dudixaocieg etvor xotahhnhotepeg

o€ PeMETES aElomoTiog (ot Yiol EQUPUOYES YEVIXOTEQRX).

To x0plo avtixelyevo pekétng otny mepintwon auty ebvan 1 mdavotnto YetdBacng amd v
XUTACTUON & OTNV XUTAOTACT], j. MNUEWDVETUL OTL 0TNY O Tve TERINTWOT, 0 Ypovog t
AVTITEOCKTEVEL TO YEOVO TOQUUOVAC OTNY XATACTACT) ¢ TRV omd T1 UETHBuor OTNY XoTd-
otaon j. Hapdho mou o1 BBAoypagio cuyvd o yedvog autde Vewmpeiton 6Tt oxohovdel Tny
Excdetiny| xoatavour|, evioltolg umopoiyv vo Vempnidoly xi SAAES TLO YEVIXEC XATAVOUES UE TULO
Baptéc ougée. TTohh cuyvd, otn Yewpio allomotiog, 0Ty owovouio, oTn QUOLXY| dhAd Xou
O TN UNYAVIXT, TO EVOLUPEQOY EYXELTAL OTNY EUPAVION 1) Oyt ECOUPETIXDVY 1) CTEVILY YEYOVOTWY
(cpuomég XATAC TPOPES, OALXY| BLOUXOTY) TAPOY NS NAEXTEIXOU PEVUUOTOS, TOYXOGULO OLXOVOULXY)
xplon x.A.m.). ‘Olo Tor omdvior yeyovota ahhd xou o pududc pe tov omolo cuyBaivouv Guv-
0oVt TOCO WPE TN HopPT| 000 xou Ue To T6G0o Poptd ebvar 1 ovpd Tng xatovourc. Emeidr

ot anotuylec umopolv va Yewpnioly we omdvia YEYOVOTA, Ol XATUVOUES UE TO Bapléc oupES

il



uTopoLY Vo Vewendoly W xUTAAANAOTERES VLol TNV TEPLYRUPT TV YPOVKY TUQUUOVAG. €
ular TéTota TEPImTWoT), xatdhhnha povtéda Yo TeEnel va yenouylorotntoly, xodog eniong xou o
aVTIo TOLYOL EXTWNTES TWV TUPUUETEMY Vol TEETEL VoL TEOCOLOPLG TOUY Xal VoL ovoAudoly. Xt
CLVEYELY, TO TEOPBANUA TV ThavoTTeY Yetdfaong Yo TEENEL Vo avTETOTLO TEl TopdAANAa

UE TO TEOPBANUA TV avTioTolywY PUIUGOY YeTdBoonC.

Y70 TP®TO PéPog NG dratElPrc auTrS, dlepeuvolUE EXTIUNOT TAUPUUETEWY, PLUUUOUS UETABaoNS
(otrypaieg mdavdTnTee petdBaong) xon miovoTnTES UETABUOTC YENOIOTOIOVTAS SIAPORES
XOUTAVOUES Y10 TOUG YPOVOUC TORopoVAS 0T bvon 1 Exdetind, xododg xon dAAeS xatavopuéc Ue
mo Bopléc oupéc dmwe 1 Weibull, n Pareto, x.A.n. H yédodog extiunonc mou yenowonoteiton
o auTr| TNV nepintwon ebvar 1 uEY0B0E TWV POTWY. LNUEWMVETAUL OTL OL XUTAVOUES TIOU €Y 0UV
Yewpniel avixouv oe pia yevixr xAdor xatavouny. Ev cuveyela, topouctdleTon iot EQapuoy

O€ OEQOUEVO GELOUMY.

Y10 Beltepo Yépog TG BlatpIPhc auTr, eqopudloude T uédodo péytotng miavopdvelag xou
ToEadETOUPE TOUC aVTIOTOLY0US EXTIINTES TwV BETOY adlomiotiog evog MSS, xadog enlong
X0 1) CUVETELL TV EXTNTOY auT®YV. ot 1o oxomd autd e€etdlovtal 5U0 TEPITTMOELS: GTNY
TEOTN TEPITTWOT VeWEOLUE Eva UOVo Belya SLdEOURC TOU CUCTAUNTOS EVEK G T OEUTERY TE-
eimtwon undpyouv dladéoiueg ToAES Sladpoués. Ye xde mepintworn hopfdvoupe unégn 60o
TEQLTTWOELS: apytxd OTL OAOL oL YpbvoL Topopovhg efvar dtardéatuol, xou ot OeUTERT TepimTe-
o1, OTL 0 YPOVOS TUPUUOVAG TNV TEAEUTOLN XAUTAGTACT EiVal AOYOXEWIEVOS (vt ToEAOELY U

éyet yadel and tny mopaxoholino).
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Chapter 1

Introduction

All systems are designed to perform their intended tasks in a given environment. Some
systems can perform their tasks with various distinctive levels of efficiency usually referred
to as performance rates. A system that can have a finite number of performance rates is
called a multi-state system (MSS). Usually a MSS is composed of elements that in their
turn can be multi-state. A binary system is the simplest case of a MSS having two dis-
tinctive states, namely perfect functioning and complete failure. An inherent weakness of
traditional reliability theory is that the system was considered as a binary one and its
components are always described as being in either of the above two distinctive states.
Early attempts to replace this by a theory of multi-state systems with multi-state compo-
nents were made in the late 70s. The basic concepts of MSS reliability were introduced by
Murchland (1975), El-Neveihi et al. (1978), Barlow and Wu (1978), Ross (1979) and Aven
and Jensen (1999). Extensions and generalizations of the above results were obtained by
Natvig (1982), Block and Savits (1982) and Hudson and Kapur (1982). Since that time
MSS reliability began intensive development. Essential achievements that were attained
up to the mid 1980’s are reflected in Natvig (1985) and in El-Neveihi and Prochan (1984)
where one can find the state of the art in the field of MSS reliability at this stage.

For the history of ideas in MSS reliability theory in recent years one is referred to Sahner et
al. (1996), Lisnianski and Levitin (2003), Lisnianski et al. (2010) and Natvig (2011). The
simplest examples of such a situation that are briefly discussed below, are the well-known

l-out-of-n, k-out-of-n, (n — 1)-out-of-n and n-out-of-n systems.



1.1 Basic Concepts

1.1.1 Simple Multi-state Systems

A typical engineering system consists of n units. A binary system is the simplest case
of a MSS. At any given moment of time ¢ each unit of a binary system can be in one
of two distinctive states, namely "failure state” (”off mode” or ”complete failure” or
"total failure”) and ”functioning state” (”on mode” or ”perfect functioning” or ”nominal

performance”).

For describing the state of the i*® binary unit, i = 1,2,...,n, we often use an indicator
function z; taking the values 0 or 1 depending on whether the unit ¢ is in the "failure
state” or the ”functioning state”. The vector of states for all n units of the system is

denoted by x = (1, z2,...,2,).

The state of the entire system depends on the state of the units and it can also be in one
of two distinctive states: the failure state or the functioning state. For describing the state

of the system we use the indicator function ¢(x) that takes on two values, 0 and 1.

Definition 1.1.1 Consider a binary system consisting of n units. The function
¢ :{0,1}" — {0, 1} which for each vector x of states for all units of the system, describes

the state ¢(x) of the system, is called the structure function of the system.

Example 1.1.1 SS - Serial System.

A serial system consisting of n units fails when at least one of the n units fail, or equiv-
alently, it functions when all n units function. A typical serial system can be represented

as follows:

Figure 1.1: Serial system.



Fig. 1.1 shows that for a ”signal” to move from left to right, it will have to go through
all n units. Therefore, the ”signal” passes through and the system functions (i.e. ¢ = 1)
when all n units function so that 1 = 29 = --- = 2, = 1. On the other hand, if even
a single unit fails i.e. x; = 0 for some 4, 2 = 1,2,...,n then the system fails and ¢ = 0.

Thus, the structure function of the serial system can be written as:

(b(l') :Hlin{mlax%-"?mn} - Hxl (11)
i=1
Obviously the above function is equal to 1 if and only if all x;’s are equal to 1.

Example 1.1.2 PS - Parallel system.

A parallel system consisting of n units fails when all n units fail, or equivalently it functions
when at least one unit functions. The graphical representation of a parallel system is given

below:

O

l—] 1o
L
e

Figure 1.2: Parallel system.

A 7signal” passes from top to bottom if at least one of the n units functions. Therefore
¢ = 1 if at least one of the z;’s is equal to 1. Thus, the structure function of the parallel

system can be written as

n

¢(x) = max{xy,z9,..., 2.} =1 —H(l — ;). (1.2)

i=1
Example 1.1.3 S(n,k) : G, k-out-of-n:Good.

An engineering system consisting of n components is said to be a k-out-of-n system if the
system functions if and only if at least k-out-of-n components function with 1 < k < n.

Suppose that all components function independently of each other. Hence, the structure



function of this system is

o(x) = (1.3)

which is equivalent to the function

Qb(l') = T(n—k+1),

where z(,_j41) is the (n — k + 1)t order statistic.

Note that the special case k& = n corresponds to the serial system, whereas & = 1 corre-
sponds to the parallel system.

Another interesting case of practical importance is the (n — 1)-out-of-n system for which
k =n — 1. According to this system, which sometimes is referred to as "fail-safe” struc-
ture, failure of a single component is not sufficient to cause system failure, but the failure

of two components does cause system failure (Barlow and Proschan, 1965, p. 218).

MSS behavior is characterized by its evolution in the space of states. The entire set of
possible system states can be divided into two disjoint subsets corresponding to acceptable
and unacceptable system functioning. The system entrance into the subset of unacceptable
states constitutes a failure. MSS reliability can be defined as the system’s ability to remain
in acceptable states during the operation period or alternatively the system’s ability to

operate without failure for a specified period of time.

1.1.2 MSS Examples

Example 1.1.4 Power Supply Unit.

In a power supply system, each generating unit can function at different levels of capacity.
Generating units are complex assemblies of many parts. The failures of different parts
may lead to situations in which the generating unit continues to operate, but at a reduced
capacity. For example, Billinton and Allan (1996) describe a three-state 50 MW generating

unit. The performance rates (generating capacity) corresponding to these states and

4



probabilities of the states are presented in Table 1.1.

State | Generating Capacity (MW) | Probability
1 50 0.960
2 30 0.033
3 0 0.007

Table 1.1: Capacity distribution of a power supply unit

Example 1.1.5 Refrigeration System.

The most commonly used refrigeration system for supermarkets today is the multiplex
direct expansion system (Baxter, 2002). All display cases and cold storerooms use direct-
expansion air-refrigerant coils that are connected to the system compressors in a remote
machine room located at the back or on the roof of the store. Heat rejection is usu-
ally done with aircooled condensers with simultaneously working axial blowers mounted

outside.

An example of such a refrigeration system consists of 2 subsystems:(a) the 5-level/state
compressor and (b) the condenser with 3-level/state axial blowers (see Figure 1.3). The
performance of the elements is measured by their produced cold capacity (BTU per

year).

The compressor can be in one of five states: a state of total failure corresponding to ca-
pacity 0, states of partial failures corresponding to capacities of 3 - 10°, 6 - 10°, 9 - 10°
BTU per year and a fully operational state with a capacity of 12-10° BTU per year. The
blowers can be in one of three states: a state of total failure corresponding to a capacity
of 0, state of partial failure corresponding to capacity 6 - 10° of BTU per year and a fully
operational state with a capacity of 12 - 10° BTU per year.

Example 1.1.6 Survival Analysis.

Recently, multi-state models have been implemented in (bio)medicine (Giard et al., 2002;
Van den Hout and Matthews, 2008; Marshall and Jones, 2007), etc. For instance, in
Van den Hout and Matthews (2008) a cognitive ability during old age is considered. An

illness-death model is presented for describing the progression of an illness. The model
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Figure 1.3: State-space diagram of the multi-state elements.

considers three states: the health state, an illness state, and the death state and it is used
to derive the probability of transition from one state to another within a specified time

interval.

To numerically characterize MSS behavior from a reliability point of view, one has to
determine the MSS reliability indices. The time to failure T or TTF, the time between
failures TBF, and the number of failures NOF are typical variables of interest. The
reliability function usually denoted by R(-) and the meantime to failure (MTTF'), namely
the mean time up to the instant when the system enters the subset of unacceptable states
(e.g. the failure state in a binary system) for the first time are standard reliability indices.
The expected number of failures and the probability that the number of failures does not
exceed a fixed value are the reliability indices associated with the number of failures. The

definitions for all these concepts are given in Section 2.1.

The MSS could be investigated and analyzed with the use of Markov processes. Markov
processes are widely used for reliability analysis because the number of failures in arbitrary
time intervals in many practical cases can be described as a Poisson process and time T
or TTF up to the failure and repair (and maintenance) time TTR are often Exponentially

distributed.



1.2 Aims of the Thesis

In general a stochastic process is a sequence of random variables defined on a basic prob-
ability space (2, F, P), indexed by a parameter say t continuous, where ¢ varies over an
index set M. In this work, we deal with stochastic processes where ¢ represents the time
up to an event (failure, repair, etc). Consider a process defined on a probability space
(Q, F, P) with state space E = {1,2,..., N}. For example, state “1” is associated with
nominal performance of the system and state “N” is associated with total failure. Markov

processes represent typical tools for modelling such a system.

In this work we focus on multi state systems that we model by means of semi-Markov pro-
cesses, which generalize typical Markov jump processes by allowing general distributions
(not necessarily Exponential) for sojourn times or residing times or failure times (Limnios
and Oprigan (2001)). For this reason, the semi-Markov processes are more adapted to
reliability studies (and for applications in general). Chapter 2 is devoted to the proposed
methodology. For semi-Markov processes in discrete time with application in reliability
one may refer, among others, to Barbu et al. (2004), Barbu and Limnios (2006), Chrys-
saphinou et al. (2010) and McClean et al. (2004).

The main quantity of interest in such settings is the transition probability of moving from
state 7 to state j. Observe that in the above setting, the time t represents the residing
time or sojourn time in state ¢ before moving to state j. Although it is natural to expect
that this time is Exponentially distributed, other more general distributions with heavier
tails could be considered. Very frequently, in reliability, in economics, in physics and in
engineering, the interest lies in the occurrence of rather exceptional or rare events (natural
disasters, total power supply failures, global economic crises, etc) which are associated with
the tail part of the distribution. All rare events and the rate at which they occur are related
to the shape and the heaviness of the tail of the generating mechanism that produces such
events. Since failures may be considered as rare events, distributions with heavier tails
may be more appropriate for the description of sojourn times. In such cases, appropriate
models should be used and the relevant parameter estimators should be determined and
analyzed. Then, the problem of transition probabilities will be addressed together with

that of the associated transition rates. A non parametric approach for the analysis of the



semi-Markov processes can be found in Votsi (PhD, 2013).

In the first part of this work, in Chapter 4, we investigate
(a) Parameter estimation
(b) Transition rates (instantaneous transition probabilities) and
(¢) Transition probabilities

using various distributions like Exponential as well as other, heavier tail distributions like
Weibull, Pareto, etc. for sojourn times. The estimating technique used in this part is the
standard method of moments. Note that the distributions considered belong to a general
class of distributions discussed in Chapter 3. An application of the proposed methodology
is presented in Chapter 6. The application deals with a data set of 113 great earthquakes
from the South America region covering the period 1899-2010 with the purpose of making
earthquake forecasts. Seismic hazard assessment from a parametric as well as a non-
parametric point of view can be found, among others, in Alvarez (2005), Masala (2012)

and Votsi et al. (2014).

In the second part of this work in Chapter 5, we formulate the MLE methodology and
provide the associated estimators for MSS reliability indices. The consistency of the esti-
mators is provided in Subsection 5.6. Two statistical settings will be considered: in the
first one, presented in Subsection 5.1, we dispose of one sample path of the system; in
the second one, described in Subsection 5.2, several sample paths are available. On each
situation we take into account two different cases: in the first case, we observe all the
sojourn times; in the second one, the sojourn time in the last visited state can be right

censored (lost to follow-up, for instance).

The originality of the work lies on new statistical approaches like the use of a general class
of distributions for the sojourn times (closed under minima) for making inferences for
semi-Markov processes, the application of the framework of multistate systems to earth
sciences for the modeling of earthquake occurrence and the use of mean transition rates for
predictive purposes. These approaches result in a novel methodology for the analysis of
the class of semi-Markov processes with the distribution of sojourn times belonging to the

class of generalized Gamma distributions, in a novel setting that allows for self-transitions



of the embedded Markov chain, in a single step/move and finally in good predictive ability
since time-homogeneity allows for predictions to be based on as fresh knowledge as possible

by choosing as the time origin, the time instant of the most recent available event.



Chapter 2

Multi state system methodology and

semi-Markov processes

2.1 Semi-Markov Processes

Consider a discrete-state continuous-time Markov process. We assume that the random
system has finite state space with N states: £ = {1,..., N}, N < co. Assume that its time
evolution is governed by a stochastic process Z = (Z;)icr, . Let us denote by S = (S, )nen
the successive time points when state changes in (Z;)icr, occur and by J = (J,)nen the
successive visited states at these time points. Set also X = (X,,)nen for the successive

sojourn times in the visited states. Thus,
Xn = Sn - Snfla n e N*7

and, by convention, we set Xy = Sy = 0.

Let us recall now the definition of a Markov renewal and semi-Markov process (Limnios

and Oprisan, 2001). If (J,.S) = (Jn, Sy )nen satisfies the relation

]P)(Jn—‘rl = ja Sn—‘rl - Sn S t|<]07 tr Jn;Sla - 7Sn)

— P(Jn+1 — j, Sn+1 - Sn S t|<]n),j E E,t 6 R+7

10



then
e (J,95) is called a Markov renewal process (MRP) ;

o Z = (Z)ier, is called a semi-Markov process (SMP) associated to (J, S), where

= JN(t) s J, = an,

with
N(t) :=max{n e N| S, <t}, t € Ry, (2.1)

is the counting process of the number of jumps in the time interval (0,t¢]. Thus, Z,

gives the state of the system at time ¢.

If (Jn, Sn)nen is @ MRP, it can be immediately checked that (J,),en is a Markov chain,
called the embedded Markov chain.

Throughout this work we assume that the SMP (or equivalently, the MRP) is regular,
that is
Pi(N(t) <oo) =1, forall t >0 and i € E,

where P;(+) is the probability that the process started at state i € E at initial time ¢ = 0.
Under this condition,

Sp < Spy1,n €N

a.s.

S, — o0,

N(t) 22 .

t—o00

We also assume that the SMP (or equivalently, the MRP) is irreducible and positive-
recurrent (see Limnios and Oprisan, 2001, Fox, 1968, Kovalenko et al., 1997 or Levy, 1954).

A particular case of the semi-Markov process is the continuous time Markov jump process

which is defined bellow.

Definition 2.1.1 The stochastic process (Xi)ier . s called a continuous time Markov

process if for all i,7,i1,...,9 € E, all t,s >0, and all sq,...,s, > 0 with s; < s for all

11



[ €1, k],

]:P)(Xt+s:j|Xt:i, X51 :ila"'aXs :Zk):P(Xt+S:]|Xt:Z)

k

For the sake of completeness we close this Section by providing in terms of the stochastic
process Z;, defined above, the definitions of the main reliability measures which will be

fully discussed and investigated at Section 5.5.

Let us assume that the state space F is divided into two subsets, U (containing the
functioning states, the so-called up-states) and D (containing the failure states, the so-
called down-states), such that £ = U U D and U N D = &, where we assume that
U={l,....n}and D={n+1,..., N}

Definition 2.1.2 The reliability or survival function of the system at time t, R(t), is
defined as the probability of being in acceptable states for s <t, i.e.,

R(t) =P(Tp > 1) =P(Z, € U,s < 1),

where Tp :=inf{t | Z; € D} is the lifetime of the system.

Definition 2.1.3 The pointwise or instantaneous availability of the system, A(t), is de-

fined as the probability of being in acceptable state at time instant t,i.e.,

A(t) = P(Z, € U).

Definition 2.1.4 The maintainability of the system, M(t), is the probability that the

system is repaired up to time t, given that it has failed at time t =0, i.e.,

M) =P(Ty <t)=1-P(Z, € D,s < 1),

12



where Ty = inf{t | Z, € U} is the duration of repair.

Definition 2.1.5 The mean time to failure ( MTTF) is defined as the mean lifetime, i.e.,

the expectation of the hitting time to down set D,

MTTF :=E(Tp) .

2.2 Semi-Markov characteristics

A semi-Markov model is characterized by its initial distribution o = (o, ..., ay)

a =P(Jy=17), jEFE,

J

and by the semi-Markov kernel
Qij(t) :=P(J, = 4, Xy, < t[Jp1 =1).

Let us also introduce the transition probabilities of the embedded Markov chain (J,,),en,

pij = P(Jp = jlIno1 = 1) = }g& Qij(1), (2.2)

which can be viewed as the fraction of time the system stays in state ¢ before moving to
j and the conditional sojourn time distribution functions

W”(t) = ]P<Sn - Snfl S t"]nfl = i’ Jn = j)

= P(Xn < t|Jpy =14, J0 = j).

13



Observe that
Qij (t) = pijVVij(t)-

For details the interested readers may see Moore and Pyke (1968).

2.3 The problem setting - Notations

In discrete-state continuous-time Markov process with N possible states the quantity of
interest is the transition probability p;; of an event moving from state 7, 7 = 1,2,..., N
to state 7, j = 1,...,4,...,N. Since there is often a distinction between technical and

nontechnical systems, for practical purposes the following clarification is necessary:

In technical/reliability systems, starting from state i, the system is not allowed (not pos-
sible) to return to the same state in a single step/move so that in such cases the system
Jumps to state j with j € {1,..., N} —{i}). In non technical systems the system is allowed
to return to the same state in a single step/move so that in these cases the system jumps
toj with j € {1,...,4,...,N}.

Note that the double subscript {ij} represents a transition from state i to state j with j

taking the appropriate values according to the situation under investigation.

In order to be precise with our notation, let us denote by T;; the time elapsed between
two consecutive events the first of which is the time when we arrive at/hit the state i and
the second one the time arriving at state j. This time-period can be viewed as the time
the process spends at state i before "moving” (directly) to state j. The time is also called

sojourn time or residing time.

Let F;;(t) be the cumulative distribution function (cdf) of sojourn (residing) time 7;; in
state ¢ when the unit transits from state ¢ to state j and it is assumed to be absolutely
continuous with respect to the Lebesgue measure. Thus the associated probability distri-
bution function (pdf) is well defined and it is denoted by f;;(t). Let also f;(t) be the pdf

of the time till the first transit from state ¢ to any state including the state ¢ itself. In

14



terms of Fj;(t) and f;;(¢) the reliability function R;;(t) is defined by
Ri(t) = 1= Fy(1)

while the intensity rate, \;;(t), from state i to state j in reference to the non-homogeneity

is defined by

i (1) = }J;JJ—% (2.3)

Finally, the MTTF is given by

0 0
Recall that the intensity (transition) rate given in (2.3) is constant and therefore inde-
pendent of time if the underlying distribution is Exponential. In all other cases, like the

Weibull, Pareto etc. it is a polynomial function of time.

2.4 Variable transition rates

Note that the case of constant intensity rates (i.e. Exponential distribution), is associated
with time-homogeneity. Hence, the origin ¢ = 0 of the time coordinate can be located at

any instant, and the equations remain valid for any time ¢ so that
)\U(t) = /\ij,‘v’ t.

On the other hand, if a transition rate is non-constant function of time, the system equation
will be valid only for one particular choice of the origin ¢ = 0, which must be the time
instant when all the components of a system are new, so that the time parameter ¢ can be
identified with the age of the components. We may disallow the use of the time parameter
itself as a state variable, but it is still possible to contrive homogeneous Markov models
that simulate systems with variable transition rates.

Consider a continuous time Markov process where the failure rate is an arbitrary function

15



A(t) of time. Now, we cannot simply represent this model as explained previously, because
state zero will contain a mixture of systems of different ages, depending on how recently
each system exited and returned to this state. The single binary state variable (healthy or
functioning state and failure state) is not sufficient to fully determine the causal state of
the system. To remedy this, suppose we split up the "healthy” or ”functioning” state into
a sequence of several states, and allow the system to transition from one to the next at
rates that ensure uniform progression. From any one of these "healthy” or ”functioning”
states, the system can fail and be replaced or refurbished immediately back to the initial

healthy state (see Figure 2.1).

?-.[El]

—e

etc.

Figure 2.1: Healthy state splitting.

We have assigned a rate of 1/At to each transition rate from one state to the next, so that
the mean time from one state to the next is At. Then we assign a constant failure rate of
A(nAt) to the n' state in this sequence. This arrangement simulates the variation in the
failure rate as a function of the elapsed time since the system was most recently in state

0. The steady-state equation of the n'* state (except for state 0) is

1 1

where P, and P, _; denote the probability of being in state n or n — 1 respectively.

Thus we can define the ratios ¢, of the probabilities of consecutive state

P, 1
P11+ At MnAt)

dn =

Consistent with this, we will define gg = 1. Now we can express the individual probabilities

as
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Po=ql Pi=qquby P=qqupP Ps=qaealy Pr= 0419293945

and so on. The sum of all the probabilities is 1, so we have

1
Qo + Qoq1 + Q0192 + 9001G2G3 + Gq1q2q3qs + - -+

Py =

The system failure rate is

A= MNO)Po + AM1A) Py + MN2At) Py + AN(3A) Py + AN(4AH) Py + - - -

= [AM0)go + AM(1A)goq1 + MN2A)q0q1G2 + AN(BA)q0q1G2q3 + - - - | Po.

Combining these expressions, gives the system failure rate entirely in terms of the indi-

vidual component failure rates for all the "ages” from ¢ = 0 to infinity, that is

AM0)go + AM(1A)qoq1 + M2At)qoq1q2 + AM(3At)qoq142q3 + - - -
qo + G091 + 909192 + 90919293 + G0q19293Gq4 + - - '

A:

Equivalently,

J
0 3" In(g)
S A(jAt)e
7=0

j
X 2. In(g)

Z ei=0
j=0

J

0 — 3 In(1+AtA(GAL))
> A(jAt)e =
j=0

e

In(1+AtA(iAt))

Mg
M-

<
Il
o

In view of the series expansion In(1 + x) = = — 2%/2 + 23/3 — --- we see that, in the
limit as At goes to the infinitesimal dt, the natural logarithms go to dtA(idt). To avoid
confusion we will let 7 denote the time parameter appearing in the inner summation, and
t will denote the time parameter in the outer summation. Then we have 7 = id7r and

t = jdt, so if we multiply the numerator and denominator by dt, the above equation can

17



be written in terms of continuous integrations as,

[2A(®) (e* Iy MT)dT) dt
s (e* s )\(T)dT) dt

0

A:

In order for a function A\(7) to be a rate function, its integral from 0 to ¢ must increase
monotonically to infinity as ¢ increases. In that case, the numerator of the above expression
(which we recognize as simply the integral of the density function corresponding to the

rate \) equals 1, so we have

A= ! . (2.4)

s (e* s )\(T)d7'> dt

0

The last expression implies that the time independent mean recurrence (failure) rate is

equal to the reciprocal of the average of sojourn times and is given by

1
)\i' -
’ E(T3)
1
= : (2.5)
() a
where
E(T;) = / Rij(x)dx
0
= / e~ Jo i@ gy (2.6)
0

Although the above equation is mathematically valid for the case ¢ = j, for the estimation

N
of \i; we use the Markov property that Y \;; =0, Vi so that \;; = — > \jj.

i=1 i
It is noted that all the above functions are assumed to depend on a parameter a;; so

that the sojourn times are independent but not necessarily identically distributed (inid)

random variables.
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2.5 The problem setting - Characteristics

Recall that T;; denotes the time spent in state ¢ before moving (directly) to state j. We de-
note by Fj;(t; 6;;) its cumulative distribution function (cdf), where 6;; is the m-dimensional
parameter involved in the underlying distribution. We assume that the distribution of 7;;

is absolutely continuous with respect to the Lebesgue measure; an associated density is

denoted by f;;(t;6:;).

Note that in this section we are under the semi-Markov setting. The dynamic of the
system under investigation is as follows: the next state to be visited after state ¢ is the
one for which 7} is the minimum. This is the way the next state to be visited, say j, is
“chosen”, namely

J = argmin(Ty).
IcE

From the theoretical point of view we state that Tj;(w) is minimum almost surely for any

w e .

Assume that the MSS is initially in state ¢ at time instant ¢ = 0. Then the probability
Qix(t) that the first transit from state ¢ to a fixed (specific) state k before time ¢ is called

the transition probability from 7 to k£ and is given by
Qik(t) =Pr (Ek = min {El, N ;/TiN} S t) . (27)

In other words, Q;x(t) represents the probability that the first transit from state i will
be in state k before time t conditioning on the fact that the unit is in state ¢ at initial
time instant ¢ = 0. One can obtain the one-step probability Q;x(t), with k fixed, as the
probability that under the condition Tj; < t the random variable T}, is the minimum of
the random variables T;;, j = 1,..., N. In other words, if Tj(,, represents the m™ order

statistic, m = 1,..., N of the N random variables T}, ..., T;y, then

Tiqy = Tig-
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Thus, for our semi-Markov system, the semi-Markov kernel becomes

Qi(t) = P(mlin Ty <t & the min occurs for j|J,,_1 = 7)
= ]P(Hllln El S ta j—;] S T;l;v”Jn—l = Z)
= P(min Ty < tlJuy =i, Jp = j) x P(T; < Ty, VI| Sy = i)

= Dij Wi(t)a
where

bij = ]P(Jn = j’Jn—l = )
= P(Tyy; < Ty, V| Jye1 = 0)

and

Wi(t) = P(Sp— Sy < t|lJuoy =i, J, = j)
= P(Inllll T%l < t|Jn—1 = ia Jn = j)

= ]P’(mlin Ty < t|J,—1 =1i) =: W;(t), independent of 7,

which represents the cdf of the sojourn time in state i (unconditional to the next state to

be visited).

Hence, for each i = 1,..., N, using the cdf Fj;(-) we have

Qi (t) = P{Tu <t,Ty =T}
= P{Ty <t Ty < Ty, VI #k}
= [ Rl = R 0] %
) 1= Fyps ()] [1 — Fo ()] dFip ). 28)

Note that

20



which represents the cdf of the time till the first transit from 7. In other words, while Q1
represents the probability that the minimum of the random variables T35, j = 1,...,4,..., N
is the specific random variable T;;, W; represents the distribution function of the time till
the first transit from state i irrespectively of the state to which the process arrives (in-

cluding transits to state ¢ itself).

Let us assume that W;(¢) is absolutely continuous w.r.t. the Lebesgue measure and has a

density denoted by f;(t).

As we will be dealing in the sequel with parametric inference, whenever a quantity of
interest will depend on a parameter §# € © C R™, we may set this parameter as an
argument. For instance, if );;(t) depends on some parameter § we could denote it by
Qi;(t; ).

Our intention is to provide estimators of p;;, W;(t), and Q;;(t) under a general class of
distributions. This class of distributions is presented and discussed in the next chapter
where we first provide estimators of the parameters involved in the class of distributions
under investigation. The cases of four specific distributions, all of which are members
of the general class, will be thoroughly discussed. These distributions are Exponential,

Weibull, Raleigh and Pareto which are frequently encountered in Reliability theory.
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Chapter 3

The class of generalized Gamma

distributions

The types of distributions considered in this work for the sojourn times are presented
in this chapter. More specifically we concentrate on the generalized or three-parameter
Gamma distribution. The generalized Gamma distribution is a continuous probability
distribution with three parameters and is considered to be a generalization of the typical
two-parameter Gamma distribution. The distribution is also known as Stacy distribution
(Stacy, 1962) and if an extra fourth parameter (a location parameter ¢) is introduced
the distribution becomes the Amoroso distribution introduced by the Italian economist L.
Amoroso (see Amoroso, 1925 and Crooks, 2010):

—(5 ac—1 _5 c
(m ) exp{— (m > } x,0,a;5,¢,c €R, o >0, a;5#0
%7 [£%7]

(3.1)

1
I(a)

c

Amoroso(x|6, a;j,, c) = —
[£27]

with support z > ¢ if a;; > 0 and x < ¢ if a;; < 0. The notation I'(-) denotes the Gamma

function given by

Table 3.1 provides the Amoroso family of distributions.

Many distributions commonly used in reliability theory like the Weibull distribution, the
log-normal distribution, the Gamma distribution, the Rayleigh distribution and the Ex-

ponential distribution are special cases of the generalized Gamma.
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As a flexible skewed distribution, the generalized Gamma is frequently used for life-time
analysis and reliability testing. In addition, it models fading phenomena in wireless com-
munication, has been applied in automatic image retrieval and analysis (Choi and Tong,
2010; de Ves et al, 2010; Schutz et. al, 2013), was used to evaluate dimensionality reduc-
tion techniques (Li et. al, 2006), and also appears to be connected to diffusion processes
in (social) networks (Lienhard and Meyer, 1967; Bauckhage et. al, 2013a; Bauckhage
et. al 2013b). Accordingly, methods for measuring (dis)similarities between generalized
Gamma distributions are of practical interest in data science because they facilitate model

selection and statistical inference.

The cumulative distribution function (cdf) of the generalized Gamma distribution is given

by
v (d/c, (t/aiy)°)
Flﬂ(t> = F(d/c) . d, Qij > 0

where 7(-) is the lower incomplete Gamma function given by (s, ) = fom 2~ le7*dz,
a;j the shape parameter and ¢ and d the scale parameters of the distribution. The proba-

bility density function (pdf) of the generalized Gamma distribution is given by

c/a;
() = ——L d—1,—(z/ai;)°

, x>0, ¢ d, a;; > 0.

Observe that the generalized Gamma is a special case of Amoroso distribution with 6 =0
and ac = d. The most popular special cases of the generalized Gamma distribution

are:
For d = ¢ the generalized Gamma reduces to the Weibull distribution

For d = ¢ = 1 the Exponential distribution is obtained

For d = c=2 and \/iaij instead of a;; the Rayleigh distribution is obtained
For ¢ = 1 the typical 2-parameter Gamma distribution is obtained and

For ¢ — 0 the distribution reduces to the lognormal distribution.

For ¢ negative the generalized Gamma distribution is not defined but the Amoroso dis-
tribution becomes the generalized inverse Gamma which is the parent of various inverse

distributions, including the inverse Gamma, inverse Exponential etc.
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Amoroso

Stacy

gen. Fisher-Tippett
Fisher-Tippett
Fréchet

generalized Fréchet
scaled inverse chi
inverse chi

inverse Rayleigh
Pearson type V
inverse Gamma
scaled inverse chi-square
inverse chi-square
Lévy

inverse Exponential
Pearson type I11
Gamma

Erlang

standard Gamma
scaled chi-square
chi-square

shifted Exponential
Exponential
standard Exponential
Wien

Nakagami

scaled chi

chi

half-normal
Rayleigh

Maxwell
Wilson-Hilferty
generalized Weibull
Weibull
pseudo-Weibull
stretched Exponential
Limits

log-Gamma

power law
log-normal

normal

* where k,n > 0

3 .
*

o
ngw;;g — =

B TSN
N | =D | = .

— o
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Table 3.1: The Amoroso Family of distributions




3.1 INID random variables

We now focus on a special class of distributions within the generalized Gamma distribu-
tion of the previous section paying attention to the shape parameter of the distribution.
In particular we view the distributional quantities of interest as functions of the shape
parameter and assume that the cdf of sojourn times 7;; are of the same functional form
for all 7’s and j’s but with different shape parameters. Within the generalized Gamma
family of distributions we concentrate on a (sub)class of distribution functions with the

following property:

F(tiay) =1— (1— F(t;1)™, (3.2)

where F(t; a;;) is absolutely continuous w.r.t. the Lebesgue measure and the pdf is denoted
by f(t; ai;).

In the previous section we found that the order statistics and their distribution are playing
a key role in the proposed methodology. In general, order statistics of independent but
not necessarily identically distributed (inid) random variables are not easy to deal with.
In order to overcome practical and computational difficulties associated with the order
statistics, we focus on random variables that belong to the above class which is closed
under minima. This property of the above class of distributions results in producing re-
currence relations that reduces the computational burden associated with functions of
order statistics. The Theorem below presents this property by showing that the minimum
order statistic from an inid random sample from the above class has a distribution be-
longing to the same class. In other words, the above class of distributions is closed under

minima.

Theorem 3.1.1 Let X,..., Xy be inid random variables such that X; ~ F(x;a;) where
F(x;a;) belong to the class (3.2). Then the distribution function FY) of the minimum

order statistic X(1y belongs also to the class (3.2).

Proof. The distribution function of the minimum order statistic X(;) can be written
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as

FY (t;a;;i=1,...,N)

:1_H(1—F(t;ai))

1

()

=

—1-Tla - F; 1)

1

)

z

a;

=1-(1-F(1)= ",

<
Il

N
which belongs to class (3.2) with parameter > a;. O
=1

Note that the following result (Balasubramanian et al. (1991) and Balakrishnan (2007))
holds for the distribution function F™ of the r*" order statistic in terms of the distribution

function £ of the minimum order statistic

which by Theorem 3.1.1 takes the final form

FO (tia;i=1,...,N) =

- Z ot (G [1 (- F 1))%]

(2

The above formula can be then used for the calculation of the expectation of functions of
the r'" order statistic. Indeed, let h(X(,) be a function of X(,y. Then, if the continuous

case is assumed, we have
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For the special case of the minimum order statistic the above formula reduces to

E [h(Xw)] = / h(t)dF <t; Zai> | (3.4)

=1

Using h(u) = u* and h(u) = exp (uz), for some z one can obtain the k' order moment

and the moment generating function of the r'* order statistic X,).

The simplest discrete distribution that belongs to the class defined by (3.2) is the Geo-
metric distribution. Continuous distributions include the Pareto distribution, the Weibull
distribution and its special cases like the Exponential, the Rayleigh and the Erlang trun-
cated Exponential. As a general example for demonstrative purposes, we consider first the

Weibull distribution. Finally, we also investigate the case of the Pareto distribution.

Example 3.1.1

Let Xi,..., Xy be inid random variables such that X; ~ F(z;a;) which is a Weibull

distribution with scale parameter a; and common shape parameter ¢, namely,
F(t:a))=1—e W) t>0, ¢>0, a;>0. (3.5)
Let now, X(1) < X < -+ < X(p), then

FO (tagi=1,....N) = P(Xq <1)

—1/c
which is a Weibull distribution function with scale parameter v = ( L) .

=
—_
S

Then, the moment generating function is

E [e¥0] = Z (-1 (NN_ " 1) ( NN_ ) > ().

1=0 n=0

For the calculation of the k** order moment of the 7" order statistic X() we consider in
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(3.3) h(t) =t* k =1,2,... and we obtain

E[X{)] = é(—l)ril (N];: 1) (NN_ Z) YT (é + 1) . (3.7)

2

From (3.4) the mean of the minimum r.v. X is
1
E [X(l)} =l (— + 1) . (38)

Example 3.1.2

Let Xi,..., Xy be inid random variables such that X; ~ F(z;a;) which is a Pareto

distribution with shape parameter a; and scale parameter A and given by,

F(t;a;) =1— (?) , t>\, a;>0. (3.9)

For the calculation of the k"™ order moment of the r* order statistic X,y we consider in

(3.3) h(t) =t* k=1,2,.... Then

N
N o S a N 0 N N
A\ & a; — a;+1
/h(t)dF £y 4] = / ka1 (_) _ ai/ oy (G et
i=1 A t i=1 A
N
Zaﬁ\k N
= —— > a>k (3.10)
a; — k i=1
Therefore,
5>
r—1 . A a; N
izt (N —1—1 N =
E[X(k?“)] = (—1) 1( N —r )<N—Z)N—1’ k<Zai. (3.11)
i=0 Sa—k i=1
i=1
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From (3.4) the mean of the minimum r.v. X is

N
A Z a; N
E[Xy]=—— D ai>1 (3.12)
Z a; — 1 =1
i=1

3.2 General Case

Under the class of distributions given in (3.2), the following result concerning the main
semi-Markov characteristics can be proved. Recall that 7;; represents the sojourn time
with cdf Fj; and pdf f;;. For notational convenience, we set F'(t) := F\(t;1), f(t) .= f(t; 1)
and Q;; (t;aisk=1,...,N) = Q;(1).

Proposition 3.2.1 Under the setup of this section, the following results hold:

i 2. aik
Qi) = w2 [1— (1= F(t)= |, (3.13)
Qi
Pij = 5 ]aik, (3.14)
keE
Wit) =1 —[1— Fip= " (3.15)

and

£i(t) = Z ai; (1 — F(t))a; 110(—1?@) (3.16)

Jj=1

Consequently, the expectation of the minimum is given by
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E (X)) = (Z ) |- reoy" o

Proof. Note that

Qij (1) =

By taking the limit,

Jj=1

/0 [1—F)]*...[1—F(u)]"*x

X [1— F ()] [1 = F ()] d[1 — (1 — F(u))®]

[ it = F =" drw
_ Zaja - [(1 _ py)yE" 1}
Zaja - [1 (- F(t))jeZEa”} .

i O (4) = pr — 3
tlig%)Qw(t)_pw - Zaij'

JEE

We also need the distribution of the minimum which is given by

Wi (t)

= 1—P[Tpun >t]=1-P[T}; > t, Vj]

= 1- H [1-F;t)]=1- H [1— F(t))™
= 1-]1- F(t)]j;a”

30

(3.17)

(3.18)
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So, the associated pdf is given by

O = Sag (- Fa)R"T g
_ Zaij (1- F(t))j;aij - f—@F)(t) (3.20)

Hence the expectation of the minimum follows, i.e.

EXw] = /tdF (t;i%)

i=1

= /t . Zaij (]_ — F(t))ﬂgl aij y % dt. (321)

Jj=1
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Chapter 4

The Moment Estimation Case

In Chapter 2 we have provided the general formulas for the semi-Markov quantities of in-
terest, namely the semi-Markov kernel @);;(-), the transition probabilities of the embedded
Markov chain p;;(-), and the cdf of the sojourn time W;(-). In Chapter 3 these quantities
have been expressed in terms of the unknown parameters involved in the general class of
distributions given in (3.2). In this chapter the case of continuous time Markov process
will be considered and the estimators of the unknown parameters will be given for a num-
ber of specific distributions belonging to the class (3.2). The estimates are provided for
the Weibull, Exponential, Rayleigh and Pareto distributions. Then, the estimators of the

Markov process quantities of interest will follow immediately.
INTENSITY RATE ESTIMATORS

Recall that p;; defined in (2.2) can be viewed as the fraction of time the system stays
in state ¢ before moving to j. Ergodicity property holds, due to the assumptions of
irreducibility and positive recurrence (see page 10), hence the above quantity can be
consistently estimated by the method of moments as a ratio of the corresponding number

of transitions, namely

(4.1)

where

M is the total observation time,
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N

N;(M) = > N;;(M) is the accumulated number of system transits from state ¢ to any
j=1

state during observation time M and

N;;j(M) is the accumulated number of system transitions from state i to state j during

observation time M.

Combining expressions (2.2), (2.9) and (4.1) and solving the resulting system of equations
we obtain the estimates of the parameters a; with i,k = 1,..., N of the distribution
involved. Having available the estimates a;;, the estimate of the time independent mean

intensity rate follows immediately by (2.5):

< 1
>\ik — P (42)
I <e‘ Jo Aik(x)dx) dt
where by expression (2.3)
. Fo(t
Sty = 22
Ry (t)
_d F(t;a.)/dt (4.3)
1-— F(t, dzk) '

is the variable intensity rate and F'(t; a;;) the distribution function F'(t) with a;; in place
of a;;. Note that by taking into consideration the class of distributions (3.2) the above

expression takes the form

5\urg(t) — aif(t;1) (1 — F(t;}))dik_l
(1= F(1)™
1—F(t;1)

Furthermore, note that

;\ii = — ZS\”

J#i
Before proceeding with the parameter estimators we provide below the expressions for

obtaining the transition probabilities from state ¢ to state j for any ¢ and j. Let

A= ()‘ij)i,jzl,..,N
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be the intensity matrix of the multi-state system with eigenvalues denoted by ~; and
eigenvectors by u;, ¢ = 1,..., N. The determination of the required probabilities is based

on the estimator of the above intensity matrix A, given by

A= (A) , 4.4
1) ij=1,.N (44)

with A as in (4.2).
More specifically, the estimators of the eigenvalues 4;, i =1,..., N of A are obtained and
then, the corresponding estimators of the eigenvectors gy, ..., uy are evaluated. If Lis

the N x N matrix of the estimators of the eigenvectors and ﬁ(t) a N x N diagonal matrix

with the (7,7) element equal to

exp(—7; - t)

then the estimates of the transition probabilities are given by the matrix

P(t) = (ﬁij(t))i,jzl,...,N

Recall that for the case of the Exponential distribution for which the intensity rate is time
independent, the origin ¢ = 0 can be located at any time instant and therefore the above
equation remains valid for any time t. On the other hand, due to time dependence of
non-Exponential distributions, homogeneity is contrived to avoid any confusion with the

time origin.

4.1 Weibull Model

We consider the Weibull model for sojourn times 7;; and obtain the estimators for the
parameters of interest. Recall that both the Exponential and Rayleigh distributions are
special cases of the Weibull class. The corresponding cumulative distribution function of
the Weibull distribution is given by

Fyj(t) =1 — e W), (4.6)
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where the scale parameter is denoted by a;; and the shape parameter is represented by c
and it is the same irrespectively of the state ¢ or j. The intensity rate of the sojourn time

for the case of the Weibull distribution associated with (4.6) is given by

Ay(t) = — (i>_1 (4.7)

Note that for the case of the Exponential distribution where ¢ = 1, the intensity rate is
constant and equal to 1/a;;, while in the case of the Rayleigh distribution the intensity
rate is given by (4.7) with ¢ = 2 and v/2a;; instead of a;;. The Rayleigh distribution is
presented here not only for illustrative purposes but also since it is the most commonly

used distribution in reliability and life testing (Lawless, 2003).

4.1.1 The transition from state i to state 7 is allowed

Proposition 3.2.1 will be provided for the Weibull distribution under the assumption that

the transition from state ¢ to state ¢ is allowed.

Using (2.8) we have that

t ¢ ¢ ¢ ¢ ¢
Qi (1) = /exp{——c——c—"'—c——c— ———— c}x
0 A1 Ay Qg1 Qg1 Y
c ¢
X —af 1exp{——c}dx
ik ik
N
! C C 1 C
= —expq —T E — pdx
0o Cl j=1 a'Lj
JZV: 1
_¢c 1
h a
= 1l—e =179 (4.8)
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For the cdf W;(t) we apply (4.8). Then, the expression (2.9) takes the form

Wi(t) =

M= I[]=
O
ol
=

bl
Il
—

S]
=0
=

|

~-
o
-

'MZ
§0|H

<
Il
—
Ly

N 71/6
which represents a Weibull distribution function with parameters ¢ and ( > a%) and

j=1
N —1/c
1 1
we(G) 1)

j=1

with mean given by

where I'(-) denotes the standard Gamma function. For the estimation of the y;’s we take

the standard moment estimator given by

Ni(M)TA(j)
~ j=1
Thus,
N; (M) )
j=1
= — r{1+-
v (2a) ()
j=1 ¥
Equivalently,

N; (M)
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or,

Y1 T+ N
Y — = c . (4.11)
j=1 as; N%) 7

=

Using expression (4.11) one can estimate the summation of the scale parameters for all
transitions that exit from any state 7. To estimate individual scale parameters a;; for each

{i,7}, we consider the probabilities:

Dik = tligloQik (1)

N
1 —t° 3 oo
= hm —|1—e J=1"4
t—o00 N 1
c .
a’ik‘ Z ag

—1 i

<

1
= v (4.12)
af, D o
j=1 M
Equivalently,
1
@ = — (4.13)
Dik Z %
j=1 %
which, with the use of (4.1) , gives
e 1
gy, = —
N; (M) Zl ag;
=
1
- . (4.14)

N (M) F(1+%)N¢(M)
N;(M) N;(M)
Z T.(J>

k3

j=1

The above results are summarized below:
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Theorem 4.1.1 Consider the Weibull model given in (4.6) for the sojourn times in a MS

system. Then, the estimators of the scale parameters a;;, 1,5 = 1,2,..., N are given by:
. 1 o
Q5 = s Z,jzl,...,N. (415)
N (a0 \ Ve | D) N
N;(M) N; (M) )
]; ’

For an estimator of ¢ see Section 4.1.3.

4.1.2 The transition from state : to state ¢ is not allowed

In this section we provide again the expressions of Proposition 3.2.1 in the case that the
transitions from state ¢ to state ¢ are not allowed. Thus, we assume that the process moves
from i to j with j # ¢, i.e, Q;(t) = 0. Then, Ty, <t is the minimum of the N — 1 random

variables T;;, j #4, j = 1,..., N, namely

Ty = min{ T, ..., Ty i1, Tiigr, -, Tin }-

In other words, if T}, represents the m order statistic, m =1,...,N —1 of the N — 1

random variables T3y, ..., 15 -1, T} i1, ..., Tin, then

Tiqy = Tik-

In this case and for the Weibull distribution, the quantity @;x takes the form:

1 N
Q)= ——— |1—expd o5 — V. (4.16)
ac é\[: 1 ; a.j
ik j=1 a’?j J#i
J#i
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Hence,

N
wit) = 3 Qu ()
k=1
ki
—1/c ¢
N
-t/ | X =
j=1 %
= l—e ol (4.17)
—1/c
N
which is a Weibull distribution function with parameters cand | > a% with mean
j=1"
J#
—1/c
Al 1
;= — D1+ -). )
v (S () 19
j=1 "4
J#1
As in the previous section, we have
N 1
1 I (1+21) Ny(M)
Y —= . (4.19)
=1 % MaD 7)

Similarly, as before,

pie = lim Qy (t)
t—o0
1

ag D
j=1 "
j#i

and finally, the following theorem holds true:

Theorem 4.1.2 Consider the Weibull model given in (4.6) for the sojourn times in an

MS' system. Then, the estimators of the scale parameters a;;, 1,5 = 1,2,..., N are given
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aij = 1 . 4,j=1,...,N, i#j. (4.21)
(Nijw))l/c D(1+3) Ne(d)
(M) Niz(jM) 7(m)
m=1

4.1.3 Estimation of the shape parameter c

For the estimation of the shape parameter ¢ we rely on the following regression setting.

Let,

which is equivalent to,

1
1—-F

= —clna;; +clnt.

Y = Inln

If we let X = Int, the following regression model could be considered,

Y, = —clna;; + cX; + ¢, 1=1,2,...,n.

where ¢; follow an appropriately chosen distribution. In the case of inid random variables

T}j, let us assume that

T;; ~ Weibull(a;;, c) i,j=1,2,...,N.

Then, the regression model takes the form,

Yi, = —clnay +clnTy, + €,

Yio, = —clnayp + cInTip, + €49,
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Yinv, = —clnay, + cln Ty, + €in;,
wherei=1,2,...,N, [=1,2... k;.

Following the standard least squares estimating method and substituting In 7;;

estimators become:

k1 k1

> Xa 1 > Ya
g, — =1 L im
na; = .

kl C kl

and

= Xija the

(4.22)

As an alternative the MLE estimator for the shape parameter ¢ of the Weibull distribution

can be obtained as follows (see for example Tableman and Kim, 2004, p. 105):

If T is considered to follow the Weibull distribution with parameters a;; and ¢ then In(7")

follows the standard extreme value distribution so that

1
In(T) = —in(a;j) + —-e=p+o-¢
¢

where € follows the standard extreme value distribution.

The MLE estimator of the shape parameter is then given by ¢ = elrv where ¢ is the MLE of

o. This estimator can be obtained, for instance, via the survReg procedure of SAS.
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4.1.4 Estimation of transition intensities

The estimators for the intensity rate between states ¢ and k is given in the following

Corollary:

Corollary 4.1.1 Consider the Weibull model given in (4.6) for the sojourn times in an

MS system. Then, the estimate of the intensity rate between i and j is given by:

Ai(t) = & (f )1 (4.23)

CLij aij

N
Note that since > A\ix(t) = 0, Vi, then \;(t) = — > \ix(t) and threfore,
k=1 Py

Nii(t) = = Aa(t).
ki

4.1.5 Homogeneous transition intensities

One can contrive homogeneous Markov models with variable transition rates as previously

discussed. The integral of the failure rate is,

t t c . c—1
/ Xig(T)dT = / — (—) dr
0 0 ik \ Qik

So the system failure rate using (2.4) takes the form,

1

I (e Wy dt’

Aik =

Note that in the case of Exponential distribution (where the parameter ¢ = 1), the intensity
rate is constant and equal to 1/a.

In general, for arbitrary values of ¢, using the transformation u = (¢/a;;)° the intensity
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rate is evaluated as,

0o
Qik f e—vyl/e—lduy
c

u=0

Hence, using (4.15) and (4.22) the estimator of the homogeneous transition intensity be-

tween states ¢ and k (i # k) is,

Ak = T8
_ (NaDNYS | NG
N (M(M)) Nﬁmﬂj) - (4.24)

Although the above equation is mathematically valid for the case i = k, for the estima-

. N
tion of \; we use the Markov property that > Az = 0, Vi so that \; = — > A\ and
k=1 ki
therefore
W
ki

4.2 Exponential distribution

If the sojourn (residing) time 7}; is assumed to follow an Exponential distribution then

the cdf is given by
Fj(t)=1— et/ (4.25)

where 1/a;; is the transition intensity from state i to state j.

Following the methodology of Section 3.2 for the case of the Exponential distribution, we
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have that

t T T T T T 1 T
Qik(t) = expy— — — — ot —— — ——— — s — —expy —— pdw
0 41 ;2 Qi—1 Qife+1 ;N ) Qi Ak

t1 1 1 1
= —expq—2| —+—+-+ dx
0o Qik i1 Q2 a;N

l—e =, (4.26)

Hence,

aik —t 1
— k=1 ‘ 1 —e j=1 %iJ
N
Z 1
=1
—t 3 o
= 1l—e =17 (4.27)

N
which is an Exponential distribution function with rate ai and mean
j=1"

1
N 1'
P

Hi = (4.28)

For an estimation of the mean we use the standard moment or maximum likelihood esti-

mator, given by

I (4.29)
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So,

1 _1_ N (4.30)
CLij ﬂz N; (M) . ' '

Tz(J)

Using expression (4.30) one can estimate the summation of the scale parameters for all
transitions that exit from any state i. To estimate individual scale parameters a;; for each

{1, 7}, an additional expression can be obtained in the following way,

Dik = tlggo Qir (1)

N
1 —t Y
= lim 1—e =1Y
t—o0 N 1
ik Y P
g=1"
1
_ N (4.31)
ik Y ,%
g=1"
Hence,
1
Qig, = ~ (4.32)
j=1

Substituting estimators (4.1) and (4.30) into expression (4.32) the following estimators

will be obtained for the transition intensity:

iy = — ——

= 2 ik=1..N (4.33)
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The reciprocal of the scale parameter coincides with the transition rate, namely

§EXP _ 1
ik -

-1

= — (4.34)

N
For a Markov MSS with N states the sum ) \;; = 0, therefore
j=1

Nii = — Z Aij- (4.35)

In conclusion, the following theorem holds:

Theorem 4.2.1 Consider the Ezponential model given in (4.25) for the sojourn times in

an MS system. Then, the estimators of the scale parameters a;., i,k = 1,2,..., N are
given by:
N; (M) )
sz
a; JZ::l i, k=1 N (4.36)
ik — NZ(M)7 R =1,...,1V. .

while the transition rate is given by:

SEXP _ N (M)
kTN (M) '

7)
j; i

(4.37)
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4.3 Rayleigh Model

In this section we assume that Fj;(¢) is the cumulative distribution function of Rayleigh

distribution
Fy(t) = 1— e (/25 (4.38)

with intensity rate given by

M (8) = \/§2aij ( \/§taij>‘ (4.39)

According to the previous section,

t 2 2 2 2
T T T T
i t — ex - ... = — . — X
Qi (1) /0 P { 2‘1@21 2a12k—1 2a§k+1 QG?N }

7=1
N
1 &2 > 1
= ~ l—e "4, (4.40)
aj, > 6%2
=174
Hence,
N
VVz(t) = Z sz (t)
k=1
X
N
B kZ::l ag, ) fﬁj;fgj
= ~ 1 —e
2.
j=1"%
S

N —1/2\ 2
(£4)")
=t (4.41)



which is a Rayleigh distribution function with parameter
50
2
=1 Y
and mean equal to

i = (i %) o r (1 + %) | (4.42)

Jj=1

By using the estimation of the mean (4.42) one can obtain

Ny(M)

j=1

_— = — D1+ =).

o (Do) r(1+d)

j=1 ¥
Equivalently,
N;(M)

(T) -t

— 2a3, I (14 3) Ni(M)
Hence,

N

3 L | P(A+3) V(M) (4.43)

j=1 2@% NZ(Z]W) T(J) . |
=
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To estimate individual transition intensities we have,

Thus,

—_

|

® |
w‘”{o

<.
=

S

(4.44)

(4.45)

(4.46)

Based on the above results, the following theorem holds:

Theorem 4.3.1 Consider the Rayleigh model given in (4.38) for the sojourn times in an

MS system. Then, the estimators of the scale parameters a;., i,k = 1,2,..., N are given
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1
il = , i,k=1,...,N, i#k. (4.47)
<2N k(M)>1/2 D(1+1)Ni(M)
Ni(M) Nig(ém ()
=

4.3.1 Estimation of the transition intensities

In this case with ¢ = 2 and v/2a,;, in place of a;, in (4.7), we have for i,k =1,..., N with

i # j, that the estimator of the intensity rate (4.39) is obtained analogously as in (4.23),

namely
A t
Nin(t) = = (4.48)
A
and
i) == Au(?)
ki

According to the previous section,

o1 2 _\/51
" V20, T(1/2) Vmwaa

which by substituting (4.47) takes the form

\RAL __ 2Nik(M I/QF(1+)
g (Ni(M)) ()Z

4.4 The Pareto Model

The Pareto distribution is also frequently encountered in reliability and engineering ap-

plications. Thus, in this subsection we assume that Fj;(¢) is the cumulative distribution
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function of the Pareto distribution, given by

Fy(t)=1- (%) > (4.49)

where A is the scale parameter and a;; is the shape parameter. Then, the intensity rate

(hazard rate) of the sojourn time is given by

a; ;A"
a;i+1 az
i
where the pdf is given by
_ @i A"

fij(t) - tai+1

Following the same procedure as in all previous cases, we have

t it N\Gik—1  \Gik+1 N\&iN \&ik
Qik (t) — e . A o © Ak dI
\ T x%ik—1  pQik+1 TN ik +1
> ¢
2. aij 1
=y N / ———da
)\ Z aij+1
ri=1
N
2 aij
Qi Ak =t

- : . (4.51)

N N N

o
2oa Yo ay =
=1 =1

Furthermore, we also have

N
Wit) = > Qu(1)
k=1
N N
> ik > 21 @i
_ k=l k=l
N N N
>0 Qi Y i t;:l o
Jj=1 Jj=1

N
which is a Pareto distribution function with scale parameter A and shape parameter ) a;;
j=1
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with mean

)‘Zaw

,ui:— Zaw>1
Zaw

Observe that the distribution of the time till the first transit from state ¢ is a Pareto

distribution when the sojourn time 7;; from state i to j follows a Pareto distribution.

Then, the standard moment estimator for the mean, gives

k; . N
STV A ay
j=1 7j=1
N,

(M) X
( ) Zaij_l
7j=1

Hence,
N N 0
Jj=1 ’
Z Yii = N
7j=1 Z T;(]) )\NZ(M)

For the individual shape parameters, consider (2.2) which in this case is given by

Dik = tlglog Qir (1)

2 aij
T I T S (s
t—00 N N ]XV: @i
.. .. )
DTN ti=1
Qik

Y

N
> Qi
j=1

so that combining (4.52) and (4.53) we obtain the result below:

(4.52)

(4.53)

Theorem 4.4.1 Consider the Pareto model given in (4.49) for the sojourn times in a MS
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system. Then, the estimators of the shape parameters a;., i,k =1,2,..., N are given by:

N; (M)

3 Ti(j)
. Ni(M) j=1

. Ni(M) '
j=1

If the scale parameter, A, is not given then one estimator is given by,

~

A= X (4.54)

Using the above formula for ;. together with (4.50) we obtain the transition rate from i

to k (i # k) for the Pareto distribution:

< a;
MR = =7

with

Ni(t) == Au(t).
ki

4.4.1 Homogeneous transition rates

In the case of the Pareto distribution the integral of the hazard function is,

"ag
/—dT = aj (Int —In))
A

T
t Ak
= It —In A% =In(~] .

n n 1’1(}\)

Hence,

1
)\ik f;o ef(hltaikfln)\aik)dt
B 1
= T[0o0 A%k 3,
A t%ik dt
w—1
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or

Aip =00, if ay <1,

which is unusable.
So, if we are in the case where a;, > 1, the homogeneous transition intensity estimator
is

~

Ak S (4.55)

Remarks 4.4.1

1. In the present thesis we work with models of order 1. This is due to the fact that
the Markov property which is associated with a first order model is very tractable
mathematically and quite easy to present and explain. Of course it is equally inter-
esting to explore models of a higher order. Formally, a suitable testing procedure
could first be applied in order to determine whether the order of the model is equal
to or greater than 1. It should be stated that in addition to classical tests based
on the chi-squared distribution, model selection criteria like Akaike Information Cri-
terion (AIC) and Bayesian Information Criterion (BIC) could also be used. Both
techniques use the likelihood ratio statistics and modify it by a penalty term. The
model with the lowest value is to be preferred. Ideally we would get suggestions
for the same order using both methods which is the case for a significant amount of
datasets. In reality though, the disagreement between the two criteria is common
with some instances providing ambiguous and non-interpretable results.

In the case of an order greater than 1, the researcher may choose one of two directions

for the statistical analysis:

(a) Transform the original model to a model of order 1 by for instance, redefining

the state space and work as we have done in this work or

(b) Perform further analysis to explore and capture the effect of a high order. In-
deed, although in such a case the exponential distribution is not appropriate,

a formal investigation is required to determine, among other issues, the appro-
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priateness of the Weibull distribution.

2. The case of infinite number of performance rates may be considered although some
problems can arise when working with infinite matrices; for instance, the product
of two infinite matrices with arbitrary real entries is not always well defined, the
matrix multiplication is not always associative, the inverse of an invertible infinite
matrix is not uniquely defined. For work with infinite matrices for semi-Markov
chains one may see Barbu and Limnios (2010). For works on infinite matrices for
Markov chains see Kemeny et al. (1976), Seneta (1981) and Baldi et al. (2002) and

for general reference for infinite matrices see Cooke (1955).
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Chapter 5

Maximum Likelihood Estimation

In this chapter we consider two statistical settings: in the first one, presented in Subsec-
tion 5.1, we dispose of one sample path of the system; in the second one, described in
Subsection 5.2, several sample paths are available. On each situation we take into account
two different cases: in the first case, we observe all the sojourn times; in the second one,
the sojourn time in the last visited state can be right censored (lost to follow-up, for
instance). For parameter estimation in this chapter we apply the maximum likelihood

approach. Asymptotic results about the estimators are provided in Subsection 5.6.

5.1 Maximum Likelihood Estimation for one Trajec-

tory

First, for any states i, j € £/ and t € Ry, let us introduce the counting processes (N;(t)),~o,
where V¢ > 0, N;(t) is the number of visits to state i of (.J;,)nen up to time ¢ and (N;;()),,

where Vt > 0, N;;(t) is the number of jumps of (J,,)nen from state i to state j up to time

t:
N(t)—1 (S
N;(t) = L=y = Z L{g,=i, Spia<t}
n=0 n=0
N(t) 00
NZ](t) = :[]-{J7L_1=’L',Jn=j} = Z IL{']n—lziy Jn:j7 Sngt}”
n=1 n=1

56



where N (t) was defined in Equation (2.1).

Recall that M is the total observation time. We consider first a sample path of a

semi-Markov process {jo, T1, J1, X2, - - ,jN(M)} ; the associated likelihood for 1 trajectory
is
L = Qo Do fjo (xl) < Pinan—1dnan ij(M)ﬂ(xN(M))
N;(M)
Ni; (M) 1,k
= a, <H Py’ ) IT I £ ), (5.1)
ijeE i€E k=1
where :cz(»l’k) is the sojourn time in state i during the k' visit, k = 1,..., N;(M).

We wish now to calculate the likelihood in the case of the class of distributions given in
(3.2) and provide the maximum likelihood estimators of the associated parameters. Then,
the corresponding estimates of ), p, W, and f will be easily obtained via expressions

(3.13) — (3.16).

Using the previous results, the likelihood for this uncensored trajectory given in (5.1) takes

the form
(LK)
B > aij f <ZL’Z )
£ = o (TLa) TTL (1 F (o) B )
ijEE ik 1-F (1’51 ))
Therefore,
logL = logay, + Z N;; (M) log a;;
ijEE
Ni(M)
Ly (Z ) 3 tos (1 7 ()
i€E \jeE k=1

o7



By taking the derivatives of the log-likelihood w.r.t. a;j,¢,5 € E, we get

and

=— < 0. (5.4)
aa% a%
Finally, the estimator of a;; is given by
N;:(M

Ni (M) Lk '
> log (1 - F (Xi( ’ )>>
k=1

Let us now provide the general form of the likelihood in the case of censoring at time M.

We consider {jo, Ty, J1, T2, - o N(M), uM} a censored sample path, where
Upr = M — SN(M)

is the last sojourn time that is considered to be censored. Then, the likelihood is given

by

L = O‘jopjohfjo(xl) s ij(M)—1(xN(M)> xP (XjN(M) > uM)

) ajg(H ZJ(M)> H H filz (lk) y

i,j€EE i€l k=1

x (1 _ WjMM)(uM)) . (5.6)

For the class of distributions considered in (3.2), this likelihood takes the form

> ‘lzy
X ((1 — F UM JGE

o8



Hence,

logL = logay, + Z N;;(M)log a;;

i,JEE

- T () (- ()

i€E \jEE

Ni(M) < (Lk))
+ log H H "’Zaz]lOg F(un)) -

i€E k=1 1-F ( ) i,JER

By taking the derivative of the log-likelihood w.r.t. a;j,¢,7 € E, we get

o~ w t kzl log (1- F ("))
+ log(1—F(upy))=0

Since

21 Ni; (M
0 02g£ A\ ](2 ) <0,
Gaij ag;

the maximum likelihood estimator of a;; for the censored case is given by

4 Ni; (M)
(M) = — j
i (M) B,(M) + C(M)’
where we introduced N
Bi(M) = Y log (1 ~F (X“ ’f))>

and
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5.2 Maximum Likelihood Estimation for Several Tra-

jectories

In a similar way we calculate the general form of the likelihood formula for L trajecto-

ries.

First, we consider the no censoring case. Given L sample paths of a semi-Markov process,

{jél), xgl),jil), mg), e ,j](\lf)l(M)} ,l=1,..., L, the associated likelihood is
L
_ (0 ) 0
L = 111 Yo pj(()l)jgl)fjél)(xl ). fjxi(M)_l(xNZ(M)) (5.11)
L) L N ()
NG 2 Nij (M) ’ Lk
i (H> o5 )< (THIL I st ).
icE i,jEE I=1 i€E k=1
where

L
« Ny = z; Loy

° N.(l)(M): the number of visits to state ¢ up to time M of the I'" trajectory, | =

1,...,L,

o NZ-(;)(M): the number of transitions from state ¢ to state j up to time M during the

[ trajectory, [ =1,...,L,

o Ny(L M) =3 N (1),

. xz(l’k): the sojourn time in state ¢ during the k" visit, k = 1,. .. ,Ni(l)(M) of the [*?

trajectory, [ =1,..., L.

Note that for L = 1 the likelihood (5.11) reduces to the likelihood of the 1 trajectory case

given in (5.1).

We give now the likelihood in the case of the class of distributions given in (3.2) and

provide the maximum likelihood estimators of the associated parameters.
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The likelihood for L uncensored trajectories given in (5.11) takes the form

e - I (T )

i€l I=114,j€kE
L,k
> aij f (ZL‘E )>

X (1 - F (ml(.l’k)»jeE S S A
11 1—F (#’“))

Lk

Therefore,

L
logL = ZN%%) log a; + Z Z Ni(j)(M) log a;;

icE I=1 i,jEE
N ()
£l Eer)
I=1 ieE \jE€E k=1

Since

62 10g£ _ Nij(L, M)

— = <0
2 )
(9(1% a;;
we obtain the estimator of a;; given by
R N (L, M)
CLZ'j (L, M) = o J .
L N;” (M)
S5 o (1 ~F (Xfl”“)))
=1

(5.12)

(5.13)

(5.14)

(5.15)

Taking the derivative w.r.t. «;, and taking into account the fact that ) a; = 1, we obtain

i€E
the MLE of the initial distribution given by

LM NZO
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Let us now consider the case of L trajectories with censoring at time M. Given L censored
sample paths of a semi-Markov process,

{jél)’ xgl)’]il)7 xgl), . ,jj(\l,)l( M)’ 5\14)} ,l=1,..., L, the associated likelihood is

L
> NS (M)

i€E ijeE
NO () Niar (L)

x HH H fa) T T (- wawd®)). (5.17)
l=11i€k = i€eE k=1

where

° ug\l} = M — Spyi(ar is the observed censored time of the [ trajectorys;

o Nym(L)=>] Lo s the number of visits of state 4, as last visited state, over
=1 “Ntan”

the L trajectories; note that > N; (L) = L;
i€E

° ugk) is the observed censored sojourn time in state i during the k" visit, k =

1,...,Nia(L).

Note that, if the censoring time M in a certain trajectory [ is a jump time, then for the
corresponding observed censored time we have that ug\l/} = 0. Consequently, the contri-
bution to the likelihood of the associated term will be equal to 1. For this reason, if no
censoring is involved, the uncensored likelihood given in (5.11) is just a particular case of

(5.17). Note also that for L = 1 the above likelihood expression given in (5.17) becomes

the likelihood of the 1 trajectory case with censoring, given in (5.6).

For the class of distributions given in (3.2), the likelihood for the case of L trajectories
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with censoring given in (5.17) takes the form

e () ()
] (1_F<xgak>))é% AGH >> .

Lik - F

1M(L Zau
< TT TI ( JEE (5.18)
icE k=1

Hence,

L
logL = ZNZ%) log v + Z Z NZ-(;)(M) log a;

i€ER =1 i,j€E
L N (M)

S (Z) S s (1 £ (o))
I=1 i€E \jEE k=1

+ Z a;j Z log (1 —F ufk)>> : (5.19)

dlog L Z
Tl Ve
+ ZL: log (1—F(m§l’k))> = 0. (5.20)

and

— T <, (5.21)
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Consequently, we obtain that the estimator of a;; in this case is given by

Ni;(L, M)

where
N ()
BALM) =Y log (1 F (x"))
I=1 k=1
and
N; v (L)
C(LM):= 3 log (1 _F (U}’“)) .
k=1
As for the initial law, the estimator as before is given by
_ Nig
a;(L,M) = L : (5.23)

Among the estimators of a;; given in (5.5), (5.10), (5.15) and (5.22), one should choose,
according to the case under investigation, the appropriate expression for the determination
of the estimators of p;;, W; and @;;. The following result is immediate:

Theorem 5.2.1 For all i,j € E, the estimators Di;(M) of pij, @ij(t, M) of Qi; and

—~

Wi(t, M) are given by

ai; (L, M)  Ny(M)

Pij (M) = IZE@I(L,M) = NQD (5.24)
Wi(t, M) = {1 —(1- F(t))jezfsa”(L’M)l (5.25)
and
A' ' _ aij(L, M) . B k%:Eaik(LaM)
Qij(t, M) —k;Eaik(L’ 0 [1 (1—=F(t)) } : (5.26)
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5.3 Parameter Estimation for Special Distributions
In the case of the Weibull distribution we have
Floiag) =1- %%, Plm1)=1-c, f(z1)=ca"e™,

where c is the shape parameter. The estimator of the scale parameter in the uncensored

case takes the form

N;; (L, M
a;; (L, M) = J( ) (5.27)
J 1
L Ni( )(M) c
>y (xM)
=1 k=1 ’
and in the censored case becomes
N;i(L, M
L N () ¢ Nim(L) c
BT ey g o)
=1 k=1 k=1

For the maximum likelihood estimator of the shape parameter ¢, one should solve the

equation bellow, following the form of likelihood (5.11)

(1.k)
N (M) > <1+clogxi )
dlog L Ny (L, M) | c i
guoer _ E( Ny (L, M) (m(z,k)> log 2 4 Lo 0

In the case of the Ezponential distribution we have

F(zya5) =1—e "% F(x;l)=1—¢€e" f(x;1)=¢€".

The estimator of the scale parameter in the uncensored case becomes

(5.29)
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and in the censored case

. N (L, M

(Zz‘j(L, M) = o ]( ) . (530)
L N¢ (M) (k) Ni,M(L) (k)
ooy () (o)
=1 k=1 k=1

In the Rayleigh distribution case, i.e.,
Flzjay) =1—e V2™ F(z;1) =1—e V2 f(z;1) = 2v/2ze V%,

The estimator of the scale parameter in the uncensored case can be written as

~ N;i (L, M
L NP () 2
V2y (Xfl ’“)
=1 k=1
while in the censored case it takes the form
- N (L, M
L N () Lo\ 2 Niw(L) /2
V2y (x™) +v2 ()
=1 k=1 k=1
In the case of the Pareto distribution we have
C\ %ij c c
Flaa)=1-(5)", Flal)=1-2 fl@l) =,

where c is the shape parameter. The MLE of the scale parameter in the case of no censoring

takes the form

—N;i (L, M
Giy(L, M) = (L M) (5.33)
L N (M)
325 s ()
=1 k=1 i
while the corresponding estimator in the case of censoring is given by
aij(L, M) = O J . (534)
L N;7 (M) Nim (L)

66



Note that the maximum likelihood estimator of the shape parameter ¢ for the case of the

Pareto distribution is obtained through a graphical representation and is given by

5.4 Markov Renewal Function and semi-Markov Tran-

sition Matrix

In this Section, we are interested in two quantities that are important in the study of
the behaviour of a semi-Markov process, namely the Markov renewal function, defined in
(5.35), and the semi-Markov transition function, defined in (5.37). These two quantities
are important either by themselves (see the meaning/interpretation of each one), or by
their role in more complex quantities (cf. Section 5.5 for different reliability indicators,
where these quantities appear). For details see Limnios and Ouhbi (2003), Ouhbi and
Limnios (1999) or Pyke and Schaufele (1964).

An important role in Markov renewal theory is played by the Markov renewal function
U,i(t), 1,7 € E, t > 0, which is defined as the expected value of the number of visits N;(t)
to state j observed up to some time ¢ knowing that the process started at state ¢ at initial
time ¢ = 0. Hence the Markov renewal function is given by (see Limnios and Oprisan,

2001 or Limnios and Ouhbi, 2006)

Wii(t) = Eg[N;(t)]
= Y QW)

- 2% [ Qe V- s 5:3)

n=1 kekE
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which by (3.13) takes the form

ni = 35 [

n=1 keFE LeE

2 a; _
X {1 — (1= F(s))ree k} X Q,(J; Y(t — s)ds, (5.36)
where the n'® convolution QE;L) of @ by itself is given for any 7,7 € E by

Z/Ot Qu(s)QL V(t —s)ds n>2,

keE
Qij(t)a n = 17
6ij]1{t20}7 n=20.

The semi-Markov transition matriz (function) is defined as
P;(t):=P(Z = jlZy=1),i,j € E. (5.37)

It is shown in Limnios and Oprisan (2001) that the semi-Markov transition function sat-

isfies, in matrix notation, the Markov renewal equation (MRE)
P(t) = Iy — diag (Z Qi;(t);i € E) +(Q* P) (t),
J

where P(t) = (Fy;(1))ijer, Q) = (Qij(t)), ;cp, In is the N x N identity matrix and
(Q*P)(t) is the convolution product of ) and P defined by (QxP)(t) = (Q*P);;(t))i ek,
with

@+ Pl) =X [ Quis)Pis(e = s)as.

keE

Let
W(t) := diag (Wi(t);i € E) = diag <Z Qi;(t);1 € E) = diag (Q - 1n) (1)
J
be the diagonal matrix with the (i,7) element equal to W;(t) = > Q;;(t), where 1y =
jeE
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(1,...,1)7, ()7 denoting the transposed of a vector.
N

Then, the unique solution of the above MRE is given by (Limnios and Oprisan, 2001)

P(t) = (v =@« (Ix =) ()
= (Ux(Iy—W))(1), (5.38)

where W(¢) = (V;(t)), ;cp and it is shown that

(Iv — Q)Y (1) = w(t).

Consequently, for any i,j € E and ¢t > 0, the estimators of P;;(¢t) and ¥;;(¢) are given
by:

Py(t, M) = (@] * (1 -3 @jk>) (t, M) (5.39)

and

~

Uy(t, M) = > QY (t, M)
n=1

. ZZ/O @ik(S,M)@,g?_l)(t—s,M)ds,

n=1 keFr

(5.40)

where among the estimators of a;; given in (5.5), (5.10), (5.15) and (5.22), the appropriate

one is chosen for obtaining @ij(t, M).

5.5 Reliability /Survival Analysis Indicators
We recall the division of the state space F into two subsets, U (containing the up-states)

and D (containing the down-states), such that £ = UU D and U N D = @&, where we
assume that U = {1,...,n} and D = {n+1,...,N}. So the matrices can be written
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as
U D U D

p= EUU pUD] v Qt) = [QUU(t) QUD(t)] v
D Qpu(t) Qpp(t)] D

DU PDD

U D
W(t) = [WU(“ 0 ] U, a= [: aD |
0 Wo(®)] o v

where Wy (t) = diag (W;(t);i € U), Wp(t) = diag (Wi(t);i € D), ay = (ou;i € U) and

ap = (a1 € D).

For the matrices W(¢) and P(t) we consider their partitions induced by the corresponding

partitions of the semi-Markov kernel ((¢). For example,

PUU(t) = (\IJUU * ([n N WU)) (t), (541)
Yy (t) = (I — Quu) V(1) (5.42)

and
Quo(t) = | =25 |1 - (1 = Py . (5.43)

Z Qi

keE ijeu
In the rest of this section we are interested in providing estimators for various reliability
indicators: reliability function, availability, maintainability, failure rate, mean time to
failure. These results are stated in the case of a single sample path (cf. Subsection 5.1).

For several sample paths (cf. Subsection 5.2), the estimators are given in the same way but

the contributing estimators of a;; and a; are given by (5.22) and (5.23) respectively.
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5.5.1 Reliability

It is reminded that the reliability or survival function of the system at time ¢, R(t), is

defined as the probability of being in acceptable states for s <, i.e.,

R(t) = P(Tp >1t)
= P(Z;, e U s <t),

where Tp := inf{t | Z; € D} is the lifetime of the system. The following result presents
the estimator of the reliability of a semi-Markov system in terms of estimators of basic

quantities of a semi-Markov process.

Proposition 5.5.1 For a semi-Markov system, the estimator of the reliability at time

t > 0 is given by
R(t, M) = ay (M) Py (t, M)1,, (5.44)

where ay (M) is an estimator of ay and ﬁUU(t, M) is an estimator of Pyy(t).

Proof. From Ouhbi and Limnios (1996) we have that

R(t) = OéUPUU(t)]_n. (545)

For the multi-state system under study in the present thesis, we have

Qg5 2 Qik ..
1—(1— F(t))rer , t,7€U.
s |1 (1= F() J

keE

(Quu)is(t) =

Using the estimators of the parameters a;; as well as those of the initial distribution «;
obtained earlier in this chapter, the result is immediate. According to the available data,
one can use one of the estimators of a;; obtained in (5.5), (5.10), (5.15) or (5.22). As for
the initial distribution, one can take the estimators proposed in (5.16) or (5.23), if several
sample paths are available. Otherwise, depending on the case under study, one can assume

that the initial distribution is known/given, or that it is the stationary distribution of the
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semi-Markov chain. For an estimator of the stationary distribution of a semi-Markov

process, one can see Limnios et al. (2005). O

Remark 5.5.1

Using the estimator of the reliability obtained in (5.44), we immediately have an estimator

of the failure rate of the system, given by

-~

ANt, M) = — , 0> 0.

(t, M)
t

Y

=) &)

5.5.2 Availability

As mentioned in Definition 2.1.3, the pointwise (or instantaneous) availability of the sys-
tem, A(t), is defined as the probability of being in acceptable state at time instant ¢,

ie.,

A(t) = P(Z, € U). (5.46)

Proposition 5.5.2 For a semi-Markov system, the estimator of the availability at time

t >0 1s given by

A(t, M) = &(M)P(t, M)y, (5.47)
where P(t, M) is the estimator of P(t), Iy, = (1,---,1,0,---,0)" and a(M) is the
—— T

estimator of a.

Proof. The result is an immediate consequence of the estimators presented in Sections
5 and 5.4 and of the following expression of the availability given in Ouhbi and Limnios

(1996):

A(t) = aP(t) 1y (5.48)
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For more details concerning the estimators of a;; and o involved in these expressions, see

the proof of Proposition 5.5.1. O

5.5.3 Maintainability

The maintainability of the system, M(t), is the probability that the system is repaired up

to time ¢, given that it has failed at time t = 0, i.e.,

M) = P(Ty <t)

= 1-P(Z,eD,s<t), (5.49)

where Ty := inf{t | Z; € U} is the duration of repair.

The following result gives the estimator of the maintainability of a semi-Markov system,
the proof of which is omitted. For more details concerning the estimators of a;; and
«; involved in the expression of this estimator, see the proof of Proposition 5.5.1. For

the expression of the maintainability of a semi-Markov system, one can see Limnios and

Oprisan (2001).

Proposition 5.5.3 For a semi-Markov system, the estimator of the maintainability at

time t > 0 is given by
M(t, M) =1—ap(M)Ppp(t, M)1x_n, (5.50)

where ap(M) is an estimator of ap and ﬁDD(t, M) is an estimator of Ppp(t).

5.5.4 The Mean Time to Failure

The mean time to failure (MTTF) is defined as the mean lifetime, i.e., the expectation of

the hitting time to the down set D,

MTTF :=E(Tp).
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Before giving the estimator of the MTTF, let us introduce the vector of the mean sojourn

times m := (my,...,my)", where the mean sojourn time in state i is
m; . = E(Sl | J0:Z>
_ / (1= Wi(#) dt
0

N

- / T Py

Note that for a regular and positive recurrent MRP, we have m; < oo,i € F (cf., e.g.,

Limnios and Oprisan, 2001).

We can estimate the mean sojourn time in state ¢ in two different ways, namely using a
plug-in MLE (considering the estimators obtained in Section 5) or the empirical estimator.

Consequently, we propose the following estimators:

A = /oo (1= Wit b)) d

0 2 @i (M)
= / [1— F(t)]= dt
0

and
N; (M)

x XY
k=1 '

T?L(.Q)(M) = —Nz(M) ,

2

where the estimators of a;; are obtained in (5.5), (5.10), (5.15) or (5.22). For the expression

of the MTTF of a semi-Markov system, one can see Limnios and Oprisan (2001).

Proposition 5.5.4 For a semi-Markov system, assuming that the matriz (I, — pyy(M))

is nonsingular, the MTTF can be estimated by one of the following two ways:

VITTF" (M) = Gy (M) (L, — puw (M) (M),

MTTFE? (M) = au (M) (L, — pou (M) "3 (M),

where, pyy(M) is the estimator of pyy, ay(M) is an estimator of ay, ﬁzg)(M) and

ﬁzg)(]\/[) are the restrictions to set U of m™Y (M) and m® (M), respectively.

74



Note that in a similar way one can estimate the mean time to repair (MTTR), defined

as

MTTR :=E(Ty).

5.6 Consistency of the Proposed Estimators

In this section we investigate the consistency of the estimators of a;;,4,j € E, and of
the initial distribution «;,7 € E. This implies the consistency of most of the estimators

proposed in this chapter, a fact that is stated in Corollary 5.6.1.

Theorem 5.6.1 For alli,j € E, the estimators a;;(M) of a;; given in (5.5), a;;(L, M)

of ai; gien in (5.15) and &;(L, M) of a; given in (5.16), are strongly consistent, i.e.,

00 55
Eiij(L, M) % aij,

a;(L, M) 22 .
L—oo

Proof. We give here the proof of the first statement only. The second part is similar; the

third one is straightforward.

The estimator @;;(M) given in (5.5) can be written as

. Ni; (M)
log (1 F(x["))
k=1
N;(M N (M
- (M) o Nis(M) (5.51)
Ni (M) N;(M
(1) i(M)
> —log (1- F(X"))
k=1
For the second factor of (5.51) we have the typical result
Nij(M)  as. Qij
- _ 5.52
N,(M) Moo P97 S ay 552
jEE
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For the first factor of (5.51), let us set
Yip = —log (1= F(X™)).

Since (Y;y)r are iid and N;(M) — o0, as M — +oo (since the MRP is regular, cf.

Section 2), we get that

Some computations yield

and we get the desired result. O

Corollary 5.6.1 Foralli,j € E, and t > 0, we have:

1. Under the setting of Section 5.1, for one sample path of length M of a semi-Markov
process, the estimators of Q;(t), pij, Wi(t), fi(t), Wi;(t), Pi(t), R(t), A(t), A(?),
M(t), MTTF, obtained by considering the estimators a;;(M) of a;; given in (5.5),

are strongly consistent, as M goes to infinity.

2. Under the setting of Section 5.2, for L sample paths of length M of a semi-Markov
process, the estimators of Qi;(t), pij, Wi(t), fi(t), Wi;(t), Pi(t), R(t), A(t), A(?),
M(t), MTTF, obtained by considering the estimators a;;(L, M) of a;; given in (5.15)
and a;(L, M) of a; given in (5.16), are strongly consistent, as L goes to infinity.

Note that, as we already discussed in the proof of Proposition 5.5.1, in the case of a
single sample path, one can assume that the initial distribution is known or that it is the

stationary distribution of the semi-Markov chain.
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Chapter 6

An Application to (Geosciences - The

case of South America region

6.1 Introduction

In this section we are in a continuous time framework under the homogeneous Markov
setting of Section 2.4 and we consider as an application of the multi state methodology
a data set of great earthquakes with the purpose of making earthquake forecasts. The
most common model for earthquake occurrence is the Poisson one which assumes spatial
and temporal independence of all earthquakes including large events. For instance, the
occurrence of one earthquake does not affect the likelihood of a similar earthquake at the
same location in the next time unit. From comparison of various models, it is observed
that while the Poisson model may be applied to seismic regions which show a moderate or
high frequency of earthquakes (Anagnos and Kiremidijan, 1988), other stochastic methods
such as Markov chains and Renewal processes (Pyke, 1961a & 1961b; Andersen et al.,
1993) outline the sequence of seismic events more appropriately in regions with large
earthquakes, like South America. Large earthquakes are usually infrequent and in such
cases simulation methods (e.g. Monte Carlo) are the most common tools in order to
overcome such inconsistencies. The effort made in an earthquake hazard study is to have
long term predictions of earthquakes and commonly this is expressed as probabilities of

exceedance of a specific magnitude of earthquake over a period of time (see for example
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Natvig and Tvete (2007)). One of the important objectives in seismology is the estimation
of the aforementioned quantities. Usually such methods are applied in active faults or very
often the whole examined area is divided in seismic zones (under certain criteria). South
America was examined (see Tsapanos, 2001) in the light of the Markov model, in order to
define large earthquake recurrences. For this purpose Tsapanos considered as states the
seismic zones, pre-defined by other authors (Kelleher, 1972; Beck and Ruff, 1989; Beck and
Nishenko, 1990; Papadimitriou, 1993; Cernadas et al., 1998). It is easy then to inspect the
earthquake occurrence throughout the states and to estimate their genesis in a statistical

way by the transition probabilities.

In Tsapanos (2001, 2011) the number of transitions from one seismic zone to another was
used as the basis for providing transition rates confirmed via Monte Carlo simulations.
In the present study we describe seismic zoning data as data of an MSS system by incor-
porating into the procedure introduced in Tsapanos (2001) the effect, via the underlying
distribution, of sojourn times between transitions. In other words, we assume that the
seismic activity of a region is described as a discrete-state continuous-time Markov pro-
cess with N possible seismic zones (states) and evaluate intensity rates and transition

probabilities between zones.

In what follows we analyze a seismic data set from a region of South America bounded
between latitudes 47°S — 0° and longitudes 85° — 65°W. The data set covers the period
1899-2010, consists of six seismic zones and includes 113 earthquakes of shallow depth, with
magnitude M > 6.5 and 112 sojourn times (see Figure 6.1). The number of transitions
among the 6 seismic zones from state i to state j, forz,7 = 1,2,...,6 are given in Table 6.1.
The data set used is restricted to main shocks only, considering as dependent events the
fore- and aftershocks. These events are removed by the application of a method introduced
by Musson et al. (2002). We choose South America for our application because it is one
of the most seismically active areas of the world. The area often experienced destructive
earthquakes with M > 8.0; The largest event, ever recorded in the world, occurred there
during 1960 with magnitude M = 9.5. For instance, Tsapanos and Burton (1991) ranked
Chile and Peru in the second and third place, respectively, among 50 countries of high

seismicity.
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Table 6.1: Number of Transitions among the 6 states (seismic zones)

i/ 1 2 3 4 5 6 Row total
3 4 2 4 4 4 5 o
4 3 2 8 3 2 5 1
5 1 0 4 6 3 2 16
6 4 4 3 2 4 6 23
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Figure 6.1: Seismic data (M > 6.5) 1899-2010 South America - 6 zones.
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6.2 Preliminary Statistical Analysis

The basic statistical characteristics of the magnitudes of the 113 earthquakes and the 112

sojourn times (in days) are presented in Table 6.2.

Table 6.2: Basic Statistical Characteristics

Variable N Mean SE Std || min Q1 Q2 Q3 max
Magnitude || 113  7.082 0.048 0.051 | 6.5 6.7 7.0 7.3 9.5
Time 112 381.5 37.6 398 3 102 266.5 575.8 2458

The associated boxplots for the two variables of interest are given in Figures 6.2 and

6.3.

2500
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1500

Time
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Boxplot of Time

Figure 6.2: Boxplot of sojourn times 1899-2010 South America - 6 zones.

Figure 6.3: Boxplot of magnitudes of earthquakes 1899-2010 South America - 6 zones.

A reliability analysis has been performed to examine candidate parametric models for the

sojourn times. Among various distributions the most probable ones have been used and
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depicted in Figure 6.4 (for details see Pardo, 2006).
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Figure 6.4: Distribution comparison for sojourn times.

It is clear that according to the Anderson-Darling goodness of fit (gof) tests (see D’ Agostino
and Stephens, 1986, Jaynes, 1957, Mattheou and Karagrigoriou, 2010, Read and Cressie,
1988 or Zografos et al., 1990 ) Exponential and Weibull are the 2 distributions most
likely describing the underlying distribution of the sojourn times. Indeed, according to
the Anderson-Darling(AD) test the best fit to the data is provided by the Weibull dis-
tribution (AD statistic=0.395) which is slightly better than the Exponential distribution
(0.551). The other two models stay (relatively) close behind. The details for the best two

fits are presented in Figures 6.5 and 6.6 with appropriate 95% confidence intervals for the
probability plots.
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Figure 6.5: Fitting of Exponential distribution to sojourn times.

For a further confirmation of the gof test conclusion, we decided to apply to all candi-
date models the model selection (information) criteria AIC (Akaike Information Criterion)

and BIC (Bayesian Information Criterion) that take into consideration not only the log-
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Figure 6.6: Fitting of Weibull distribution to sojourn times.

Table 6.3: Model Selection for Sojourn Times

Distribution Parameters Log-Likelihood AIC BIC
Weibull scale= 371.48 - shape= 0.94 -777.413 1558.826  1564.263
Exponential scale= 381.50 77774 1557.48  1560.198

likelihood but also the complexity of the model:

AIC(p) = —2log(likelihood) + 2p

and

BIC(p) = —2log(likelihood) + log(N)p

The results for the two best fits are presented in Table 6.3.

Clearly the simplicity of the Exponential distribution makes it a better candidate for the
sojourn times. Observe also that an estimate of the shape parameter for the Weibull dis-
tribution was found to be equal to 0.9425 (with a standard error equal to 0.07). Naturally,
the Weibull distribution with parameter equal to 0.9425 is close to the Exponential dis-
tribution. Note that the corresponding 95% confidence interval for the shape parameter
of the Weibull distribution is (0.8148,1.09) making the assumption of unity for the shape
parameter an acceptable one (at least at the standard 5% level). Furthermore, appropri-
ate exponentiality test procedures (see Csiszar, 1963, Forte, 1984, Forte and Hughes, 1988
or Henze and Meintanis, 2005) could verify that the difference observed is not statisti-
cally significant at the usual 5% level. Finally, it is noted that the mean time to failure

(MTTF) is 381.5 (std. error=36.05) for the Exponential and 381.635 (std. error==38.28)
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for the Weibull distribution.

Recall that due to time dependence of the Weibull distribution, the time origin is taken
to be the time origin of the data set so that any value of ¢ > 0 describes the time since

the instant of the occurrence of the first reported event.

6.3 Sojourn times analysis by the proposed method-

ology

In this Section we employ our methodology applying, for comparative purposes, the Ex-

ponential and Weibull distributions.

Tables 6.4 - 6.7 provide the probabilities of occurrence of an event in zone j provided that
in time instant ¢ = 0 an event took place in zone i for the Exponential distribution with

t=1,...,6and j=1,...,7i...,6. Tables 6.8 - 6.11 refer to the Weibull distribution.

Having available data up to 2010 we obtain the results for the two distributions for the
years 2016, 2017, 2018 and 2020 using for the time ¢ the values 2160 for 2016, 2520 for
2017, 2880 for 2018 and 3600 for 2020. Notice though that the transition probabilities
hold for any 6-, 7-, 8- and 10- year periods starting from any time point ¢t = 0. For the
calculations we make use of equation (4.5) where ¢ measures the time period in days from
the day associated with the time instant ¢ = 0 to the day of the event. The values in
Tables 6.4 - 6.7 represent the transition probabilities from state ¢ to state j for 2016, 2017,
2018 and 2020 respectively. For instance, the value 19.30% in the upper right corner of
Table 6.4 represents the probability of occurrence of an event at time ¢ = 2160 (year 2016)
in zone 6 provided that the event at time instant ¢ = 0 (year 2010: time of the last event in
the data set) took place in zone 1. Note that due to time-homogeneity of the Exponential
distribution, the time origin has been chosen to be the time instant of the last event in
the data set. Thus, knowing the zone of the last event one could obtain via the tables,
the zone of an event, for a specific ¢, where it will most likely occur together with the
associated (transition) probability for this event.

In all the above cases the probabilities range from 19.98% (for the transition from zone 2
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to zone 1) to 21.56% (for the transition from zone 1 to zone 1). We also observe that as
time progresses from 2016 to 2020 an event is more likely to occur in zone 1 irrespectively
of the zone of the previous event with probabilities for the year 2020 being between 19.82%
to 21.70%. Zones 4 and 6 follow closely with probabilities for the year 2020 ranging from
18.42% to 21.53%. The results suggest that it is unlikely for an event to take place in zone

2. Indeed, the probabilities of occurrence of an event in zone 2 are around 6.5%.

The results for the distributions examined are quite similar. The most significant difference
for the case of the Weibull distribution, for all 6-, 7-, 8- and 10- year periods, is that lower
probabilities are observed for almost all transitions from zone 4 as compared to those for
the Exponential distribution irrespectively of the state visited by the system. Recall that

the Exponential distribution is a special case of the Weibull distribution with ¢ = 1.

Examining Table 6.8 (Weibull distribution) one observes that for the year 2016 an event

is more likely to occur

(a) in zone 1 if we know that 6 years earlier (i.e. 2160 days earlier) occurred in zones 1

or 2
(b) in zone 4 if 6 years earlier occurred in zone 5 &
(c) in zone 6 if 6 years earlier occurred in zones 3, 4 or 6.

The above comments hold also for any 6-year period starting from any time point ¢ =

0.

Similar results, for both distributions, can be obtained from Tables 6.5 and 6.9 which
correspond to 7- year period and Tables 6.6 and 6.10 which correspond to 8- year pe-

riod.

It should be emphasis that the Markov Processes are not able to describe the stochastic
evolution of the system by taking into account the real time (due to the lack of memory
of the Exponential distribution) and even if the differences between the two models seem

to be slight, these results are dataset-dependent.
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Table 6.4: Exponential Distribution: Transition Probabilities for 2016

State 1 2 3 4 > 6

1 0.216 | 0.068 | 0.153 | 0.204 | 0.154 | 0.194
0.208 | 0.073 | 0.156 | 0.205 | 0.157 | 0.191
0.216 | 0.069 | 0.156 | 0.211 | 0.159 | 0.201
0.209 | 0.068 | 0.157 | 0.210 | 0.157 | 0.199
0.206 | 0.067 | 0.159 | 0.211 | 0.164 | 0.193
0.215 | 0.066 | 0.156 | 0.212 | 0.161 | 0.202

S UL = W N

Table 6.5: Exponential Distribution: Transition Probabilities for 2017

State 1 2 3 4 5 6

1 0.212 | 0.068 | 0.155 | 0.205 | 0.156 | 0.196
0.208 | 0.077 | 0.153 | 0.202 | 0.154 | 0.194
0.214 | 0.065 | 0.161 | 0.211 | 0.161 | 0.199
0.209 | 0.068 | 0.158 | 0.209 | 0.158 | 0.196
0.206 | 0.067 | 0.158 | 0.210 | 0.160 | 0.194
0.214 | 0.066 | 0.159 | 0.212 | 0.162 | 0.198

S O W N

Table 6.6: Exponential Distribution: Transition Probabilities for 2018

State 1 2 3 4 5 6

1 0.211 | 0.069 | 0.156 | 0.206 | 0.157 | 0.193
0.203 | 0.075 | 0.159 | 0.202 | 0.161 | 0.189
0.215 | 0.065 | 0.161 | 0.212 | 0.156 | 0.201
0.210 | 0.068 | 0.158 | 0.208 | 0.159 | 0.196
0.208 | 0.067 | 0.157 | 0.209 | 0.159 | 0.195
0.214 | 0.068 | 0.160 | 0.213 | 0.156 | 0.199

S O = W N

Table 6.7: Exponential Distribution: Transition Probabilities for 2020

State 1 2 3 4 5 6

1 0.209 | 0.068 | 0.156 | 0.207 | 0.156 | 0.194
0.201 | 0.078 | 0.158 | 0.199 | 0.162 | 0.189
0.214 | 0.061 | 0.161 | 0.210 | 0.163 | 0.201
0.210 | 0.067 | 0.157 | 0.208 | 0.158 | 0.196
0.209 | 0.067 | 0.159 | 0.208 | 0.158 | 0.195
0.212 | 0.066 | 0.161 | 0.211 | 0.161 | 0.199

S O = W N
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Table 6.8: Weibull Distribution: Transition Probabilities for 2016

State

1

2

3

4

5

6

1

O UL = W N

0.217
0.202
0.208
0.196
0.196
0.215

0.068
0.071
0.064
0.072
0.064
0.060

0.156
0.164
0.161
0.163
0.165
0.159

0.196
0.194
0.202
0.195
0.212
0.204

0.152
0.161
0.159
0.164
0.162
0.154

0.203
0.199
0.212
0.201
0.208
0.219

Table 6.9: Weibull Distribution: Transition Probabilities for 2017

State

1

2

3

4

5

6

1

S UL = W o

0.211
0.203
0.209
0.193
0.203
0.216

0.069
0.074
0.064
0.073
0.061
0.053

0.155
0.159
0.161
0.171
0.158
0.151

0.193
0.191
0.202
0.191
0.208
0.208

0.157
0.166
0.151
0.169
0.168
0.158

0.205
0.200
0.212
0.198
0.212
0.220

Table 6.10: Weibull Distribut

ion: Transition

Probabilities for 2018

State

1

2

3

4

5

6

1

S U= W N

0.206
0.199
0.209
0.193
0.207
0.218

0.072
0.074
0.064
0.081
0.056

0.053

0.156
0.163
0.162
0.159
0.166
0.158

0.193
0.190
0.202
0.189
0.207
0.210

0.161
0.168
0.157
0.171
0.159
0.151

0.204
0.198
0.212
0.197
0.213
0.221

Table 6.11: Weibull Distribution: Transition Probabilities for 2020

State

1

2

3

4

5

6

1

S O = W N

0.202
0.197
0.208
0.192
0.210
0.216

0.073
0.076
0.065
0.081
0.060
0.051

0.162
0.171
0.160
0.163
0.164
0.155

0.193
0.189
0.202
0.188
0.205
0.209

0.161
0.165
0.158
0.173
0.156
0.160

0.203
0.198
0.212
0.196
0.214
0.220
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Remarks 6.3.1

1. The number of available data plays a crucial role in such type of problems. Recall
that for the South America case under study we focus on events of high magnitude
(M > 6.5) and observed in total 113 such events for a period of more than 110 years.
At the same time we considered 6 zones which in turn requires the evaluation of a 6
x 6 matrix with 36 unknown scale parameters. As expected, the estimations would
have been even more accurate if more data were available. Furthermore, if sufficient
data is available then data validation should be performed to increase overall data
quality and workflow efficiency. Note that data validation is a key issue, mainly used
in settings where the goal is prediction, and one wants to evaluate the accuracy of
the predictive model. Note that due to limited data available for the earthquake
application, a data validation analysis was not possible to be undertaken without

losing significant modelling or testing capability.

2. An important property of the Weibull distribution is the power-law behavior of its
hazard function. Values of the shape parameter equal to 1 indicate that the rate
remains constant over time. At the same time values less than 1 indicate that the
rate decreases over time. On the other hand if the shape parameter is bigger than
1 then the hazard rate increases as a power of the time moment of the last event.
The hazard rate is expected to increase monotonically for a driven system. Note
that major plate boundary faults can be considered to be driven systems due to
the fact that motions of tectonic plates systematically increase the stress of such
faults. As a result a value of the shape parameter larger than 1 as indicated by the
95% confidence interval presented earlier, is legitimate so that thinner tails than the

exponential distribution are likely to occur for the holding times.

3. Observe that on the above matrices the elements on each column appear with similar
values (different for each column). This happens due to the fact that not only the
Exponential but also the Weibull distribution with shape parameter been estimated
close to 1, have fast convergence rate so that the elements on each column tend
quickly towards the same value and the steady-state distribution, namely the limiting

transition matrix is quickly attained (for relatively small values of ¢). Having this
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Table 6.12: Exponential Distribution: Transition Probabilities for 2011

State 1 2 3 4 5 6

1 0.569 | 0.048 | 0.070 | 0.112 | 0.067 | 0.127
0.189 | 0.295 | 0.131 | 0.184 | 0.089 | 0.106
0.137 | 0.055 | 0.401 | 0.139 | 0.124 | 0.152
0.099 | 0.048 | 0.153 | 0.495 | 0.072 | 0.128
0.063 | 0.019 | 0.127 | 0.182 | 0.512 | 0.092
0.131 | 0.080 | 0.095 | 0.095 | 0.115 | 0.493

S O = W N

in mind and for the sake of completeness, we present in Table 6.12 the results for
1-year predictions in the case of the Exponential distribution where the elements on

each column appear significantly different.
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Chapter 7

Conclusions

Markov processes represent typical tools for modelling multi-state systems. In this thesis
we focus on multi state systems that we model by means of semi-Markov processes, which
generalize typical Markov jump processes by allowing general distributions for sojourn
times. For this reason, the semi-Markov processes are more adapted for reliability studies

(and for applications in general).

The proposed methodology provides estimating methods for obtaining transition rates
together with transition probabilities in multi-state systems with sojourn times follow-
ing a number of special distributions belonging to a subclass of the generalized Gamma

distribution.

An application of the proposed methodology was presented in Chapter 6. The application
uses a data set of 113 great earthquakes (with magnitude M over 6.5) from the South
America region covering the period 1899-2010 with the purpose of making earthquake
forecasts. The seismology application shows that if the seismic zones are considered to be
the states of a multi-state system then such a statistical approach can be found useful in
determining the probability of occurrence of a physical phenomenon like the earthquake.
The case of South America reveals that the Exponential assumption for the residing times
is quite satisfactory since the implementation of the Weibull distribution shows that the
shape parameter is sufficiently close to 1 (the case of the Exponential distribution). For

more accurate conclusions one may have to depend on the (2-parameter) Weibull distri-
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bution which includes a flexible positive shape parameter. The analysis presented in this
thesis appears to suggest that the shape parameter should not be expected to exceed the
value of 1 which implies that distributions like the Rayleigh distribution (for which the
shape parameter is equal to 2) may not be useful for the analysis of seismic data although

they could be considered for different types of systems.

We also assume a general class of distributions for the sojourn times and provide the like-
lihood for the censored and uncensored case for one or several trajectories. The maximum
likelihood estimators for the parameters of a general class of distributions together with the
initial law estimators have been furnished. We further obtain estimators of other measures
related to such systems such as the Markov renewal function and the semi-Markov transi-
tion matrix. Finally, reliability indicators like the reliability, availability, maintainability

and mean time to failure (MTTF) are also estimated.

The expressions developed can be easily used for obtaining the corresponding expressions
for particular distributions belonging to the general class of distributions like the Expo-

nential, Weibull, Pareto and Rayleigh.
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Chapter 8

Future work

The results of this thesis can be extended and generalized in different ways.

8.1 Asymptotic Theory

Regarding the estimators proposed in this work, one could investigate their asymptotic
properties. More specifically, we intend to investigate the asymptotic normality of the
estimators of a;;,4,j € E, and of the initial distribution «;,7 € £ that have been studied

in Section 5. The following theorem remains to be established:

Theorem 8.1.1 For alli,j € E and t € [0, M],
VM (Gi;(t, M) — ag;)

converges in law to a zero mean normal random variable with an (asymptotic) variance,

say o;.

Having the above result we will investigate the asymptotic normality of all the other
quantities that have been introduced in Section 5, namely the Markov renewal function,

the semi-Markov transition matrix and the reliability indicators.
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8.2 Class of distributions closed under maxima

Order statistics from non-identically but independently distributed random variables are
not easy to deal with. Despite that if these variables belong to families of random variables
closed under maximum or minimum elegant simplifications are possible. In this thesis we
explored a class of distributions closed under minima and obtain statistical inference for
multi-state systems. Similar analysis can be performed if we consider instead, a class
of distributions closed under maxima. Indeed, we could examine the following class of

distributions given by
FMNz) = [F(z)]*, A>0. (8.1)

Then exact and explicit expressions for expectations of functions of single order statistics
can be obtained. These results will then be used for statistical inference in the same way
as in the present thesis by considering continuous or even discrete distributions belonging

to this class of distributions.

8.3 Time Varying Models

We also intend to deal with time varying models. The basic assumption of such models
is that the parameters of the distribution follow a specific temporal pattern which can be
captured by the time-varying parameters of the underlying distribution. The time-varying
model accounts for parameter uncertainty by maximizing the time-varying likelihood func-
tion, which is to estimate time-trend parameters and the distributional parameters in one

step.

The general model we plan to consider is a Weibull model with constant shape parameter
and time-varying scale parameter, which can be a function of either the system age or the
number of cumulative failures. A number of parametric models for the scale parameter
will be proposed and thoroughly examined. The models are suitable for situations where
the system’s mean time between failures (MTBF) can be monotonic or bathtub-shaped,

and bounded. The proposed model can be viewed as a Weibull process model. Potential
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applications of the models include modeling manufacturing defect occurrence processes

and evaluating the effectiveness of maintenance.

Let T;,i = 1,2, ..., be the successive failure times of a system, 7; < 7.1, and Tj := 0. Let

also

X ::T'i_jjiflai:1727"'7

be the times between two successive failures (TBF). We assume that X;, 7 =1,2,..., are
inid random variables such that

X; ~ F(x;a;),

belonging to the class (3.2) with different scale parameters a; and possible other common

parameters (which are suppressed in the notation below), i.e.:
F(x;a;) =1—(1— F(a;1))". (8.2)
Let also x1, xo, ... 11,1, ... denote a realization of X, Xo,...;T1,T5, ..., with
i
=3 X
j=1
In order to examine a time-varying scale parameter a; for « = 1,2, ... for modeling failure

processes we consider the model presented in the definition below:

Definition 8.3.1 (time varying models) Fori = 1,2,... we consider the following model:

Model 1 defined by
a; = aso (1 — e‘ti/el) (8.3)
where ao, €1 and are nonnegative model parameters.

Two special cases could be considered when the time varying behaviour is associated to

the time index. Thus, if in Definition 8.3.1 we replace:

e i, bys,i=1,2 ..., we obtain the analogous model that we will call Model 2;
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e {; by Z Jj=1i(i+1)/2,i=1,2,... (that is, z; is replaced by its index jin t; = > ),

j=1
we obtaln the analogous model that we will call Model 3 .
Thus, Model 2 is defined by
a; = a0 (1 — 7 (8.4)
whereas Model 3 is defined by
Qi = Qoo (1 — 7 TD/Cen)) (8.5)

Remarks 8.3.1

1. Note that in the above models, the limit of a;, as i goes to 0o, is a; this is the

reason for using this notation.
2. Note that in the above models, the limit of a;, as i goes to 0, is the constant ay.

3. It is clear also that, in Model 1, a; is a strictly increasing function of ¢;, with the

limit being equal to a.
4. The same type of remarks apply to Models 2 and 3.

Consider a sample path x1,xs, ..., x, from the general class of distribution given in (8.2)
under the assumption that the scale parameter follows Model 1 given in (8.3). Then, the

likelihood function can be easily obtained:

Llas, e1) = Hf(xi;aomel) (8.6)
i=1
~ a0 e TT0 - Py~ e
i=1 i=1 i=1

Our intension is to provide the expressions for the maximum likelihood estimators for the
parameters involved in the time-varying models. The asymptotic theory of the proposed
estimators will also be investigated. Finally, model selection techniques could be used for

choosing between the various models.
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