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Abstract

Our main objective in this thesis is the investigation of the application of the Method of

Fundamental Solutions (MF'S) to certain problems in rotationally symmetric domains.

In the Introduction we give a brief review of boundary methods for the solution of certain
elliptic boundary value problems. One such method is the MFS and we subsequently describe
its formulation for several important two and three-dimensional boundary value problems. We

also present some recent developments in the use of the MFS.

In the second chapter, we investigate the application of the MFS to the Dirichlet problem for
Laplace’s equation in annular domains. We examine in detail the properties of the resulting
coefficient matrix and its eigenvalues, and using these we prove the convergence of the method
for analytic boundary data. An efficient matrix decomposition algorithm using Fast Fourier
Tranforms (FFTs) is developed for the computation of the MFS approximation. The algorithm

is tested on several problems confirming the theoretical predictions.

In the third chapter, we develop an efficient matrix decomposition MFS algorithm for the
solution of certain biharmonic problems in annular domains. The circulant structure of the
matrices resulting from the MFS discretization is again exploited by using FFTs. The algorithm

is tested on several examples.

In the fourth chapter, we apply the MFS to three-dimensional problems. In particular, we
consider certain axisymmetric harmonic and biharmonic problems. The coefficient matrices
resulting from the MF'S discretization now have block circulant structures. By exploiting these
structures, we develop efficient matrix decomposition algorithms for the solution of this class

of problems. The algorithms are tested on several examples.

In the fifth chapter, we present the conclusions of the thesis and give suggestions for future

work.
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Chapter 1

Introduction

The method of fundamental solutions (MFS) is a meshless technique for the numerical solu-
tion of certain elliptic boundary value problems which falls in the class of methods generally
called boundary methods. Like the boundary element method (BEM), it is applicable when
a fundamental solution of the differential equation in question is known. It shares the same
advantages of the BEM over domain discretization methods, and also has certain advantages

over the BEM. The MFS has the following key features:
(i) It requires neither domain nor surface discretization.

(ii) It requires no numerical integration and thus the difficulty of singular integration can be

avoided.
(iii) It is easy for practical implementation.

We are primarily interested in the application of the MFS to elliptic boundary value problems

governed by equations of the form
Lu(P)=0, PecQ

where L is a linear elliptic partial differential operator and € is a bounded domain in R? or
R3. By a fundamental solution of the differential operator L, we mean a function k(P, Q) such

that

Lk(-,Q) = dg, (1.1)

3



4 CHAPTER 1. INTRODUCTION

where g denotes the Dirac measure on R? giving unit mass to the point . The equation (1.1)
is satisfied in the sense of distributions. The function k is defined everywhere except when

P = @, where it is singular. Thus Q is called the singularity of the fundamental solution.

Early uses of the MFS were for the solution of various linear potential problems in two and
three space variables. The method has since been applied to a variety of situations such as
plane potential problems involving nonlinear radiation-type boundary conditions, free boundary
problems, biharmonic problems, problems in elastostatics and in the analysis of wave scattering
fluids and solids. A survey of the MFS and related methods for the numerical solution of elliptic

boundary value problems is presented in Ref. [18, [19].

1.1 Boundary Methods for the Dirichlet Problem

The basic idea in the MFS is to approximate the solution of a boundary value problem by a
linear combination of fundamental solutions of the governing equation. To be more specific,

let us consider the following boundary-value problem

Au(P) =0, Peq, (1.2)

u(P) = f(P), P eoQ, (1.3)

where € is a bounded domain in the plane with smooth boundary 02, A denotes the Laplacian

and f is a prescribed function.

1.1.1 Indirect BIEMs

In the traditional boundary integral approach w is represented in the form of a simple-layer

potential [32]

u(P) = /89 o(Q)logr(P,Q)dSg, P e, (1.4)

where r(P, Q) denotes the distance between the points P and @, o is the unknown source

density function which is determined so that (1.3) is satisfied. Thus

/ o(Q)logr(P,Q)dSg = f(P), P e o9,
o0

which is a Fredholm integral equation of the first kind.
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An alternative representation of u is given by the double-layer potential [32]

0 _
u(P) = /aQ M(Q)% logr(P,Q)dSg, P €,

0
where . denotes the outward normal derivative at @) € 9€2. In this case, p is the unknown
nQ

density function defined by the Fredholm second-kind integral equation

—mp(P) + /BQ M(Q)agQ logr(P,Q)dSg = f(P), P €.

These methods are usually referred to as indirect BIEMs.

1.1.2 Direct BIEMs

In many current applications, direct BIEMs are used. Applying Green’s Third Identity in (1.2)
gives [5), 32]

¢(P)u(P) :/ {u(Q)ilogr(P, Q) — Ou (Q)logr (P, Q)}dSQ+/ Au(Q)logr(P,Q) dAg(1.5)
o0 ong Inq Q

where P € ), and

2, if PeQ,
c(P)=4q =n, if Pcon,
0, if P#Q.

Since (1.2) holds in €, equation (1.5) gives

«(PI(P) = [ (u(@) 5108 r(P.Q) ~ S (Q)logr(P.Q)} dse (1.6

o0 nQ

U

Equation (1.6) can be viewed as the combination of a simple-layer potential of density I and
n

a double layer potential of density wu.

0
We determine au such that

on

(Q)ai logr(P,Q)dsqg, P € of. (1.7)

0
| re@logr(P.Q)dsg = ~xf(P) + -

f
o9

This formulation is the basis for direct BIEMs.



6 CHAPTER 1. INTRODUCTION

1.1.3 Collocation

For the numerical solution of (1.7), a set of points Q;, j = 1,..., N, is placed on the boundary
0 with 0); = Qj-1Q;. Also a set of observation points P;, j = 1,..., N with P; € 0Q; is

ou . . .
chosen. We assume that u, I are piecewise constant functions such that
n

ou

(P)=u,, Pe€oQ;, j=1,..N.

We then collocate at the midpoints P; of 0€;, i = 1,..., N. This produces the system of

equations
N

0
Tu; = ” —logr(P;,Q)ds —un./ logr(P;,Q)dsg¢, j=1,...,N. (1.8
;{ ]/aszj ong 8" Q7 [, 08T ) )

)
We thus obtain an N x N linear system for the unknowns w,,, =1,...,N.

The possible complications associated with this method are the following:

(i) There may be difficulties in chosing the {Q;}, the quadrature rules and the method for

approximating 0f2.

(ii) When j = i, the integrals are singular.

1.2 Auxiliary boundary methods

1.2.1 Kupradze’s method

Since the integrands in (1.8) are singular when j = 4, special care must be taken when we apply
a quadrature rule to approximate the corresponding integrals. In Kupradze’s method [17] this
difficulty is avoided by choosing the observation points P; to lie on an auxiliary boundary 951,
enclosing the original region 2. Since each P; lies outside Q then ¢(P) = 0 in (1.6) and we have
the functional equation

0 ou
/| {1(Q)5 1021 (P.Q) — S2(Q) o r(P.Q) b dsg =0

In this method the choice of 9L, is crucial and not easy to make.
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1.2.2 Oliveira’s method

In this approach [17, 62], the solution of the problem is expressed in terms of a simple layer
potential with respect to the auxiliary boundary 0€},. For example, for the solution of the

problem (1.2)-(1.3) we have

u(P):/aQ 74(Q)logr(P,Q) dSg, P € Q. (1.9)

If we approximate the integral in (1.9) by a quadrature rule with nodes {Q); }J 1, then u(P) is

approximated by
N
Z wjoa(Qj)]logr (P, Q;), (1.10)
j=1

where the {aa(Qj)}é\/:l are determined by satisfying the boundary conditions on the bound-
ary 0f) of ). Since the fundamental solution of Laplace’s equation is a constant multiple of
logr(P, @), the MFS can be viewed as a discrete simple layer potential representation method.
This approach is particularly useful in the development of the MF'S formulations for biharmonic

problems.

1.2.3 The Method of Fundamental Solutions

In the MFS [18, 19], we discretize equation (1.9) by a quadrature rule. In particular, the

solution u is approximated by a function of the form
~(e, Q; P) Zc] (P,Q;), PecQ,

where ¢ = (c1,¢2,...,cn)! and Q is a 2N-vector containing the coordinates of the singularities
Qj, 7 = 1,..., N, which lie outside the domain of the problem Q = QUON. The goal is to

determine the coefficients c.

A set of observations points {P;}, is selected on 2. One then applies the boundary condi-
tion at each of this points. The locations of the singularities {Qj}é\’:l are either preassigned
or determined along with the coefficients of the fundamental solutions {cj}é-vzl so that the

approximate solution satisfies the boundary conditions as well as possible.

When the locations of the singularities are fixed and preassigned, this process yields the equa-

tions

Bun(c,Q;P) =0, i=1,2,..., M, (1.11)
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where the boundary condition is of the form Bu = 0. When M = N, equation (1.11) yields
a linear system of N equations in N unknowns, whereas, when M > N, we have an over-

determined system which leads to a linear least-squares problem.

When the locations of the singularities are to be determined along with the coefficients ¢ there
are 3N unknowns, comprising ¢ and the cartesian coordinates of the IV singularities Q; they

are determined by minimizing the functional

N
F(e,Q) =Y |Bun(c,Q; P)[,

j=1

which is nonlinear in the coordinates of the @;. The minimization of this functional is usually
done using readily available software such as the MINPACK routines LMDIF and LMDER
[23], the Harwell subroutine VAO7AD [30], and the NAG routine EO4UPF [61]. The constrained
optimization features of EOAUPF are particularly useful for ensuring that, for instance, the sin-
gularities remain outside the domain of the problem. The initial placement of the singularities
can influence the convergence of a least-squares routine significantly. Usually the singulari-
ties are distributed uniformly around the domain of the problem, at a fixed distance from its
boundary. In this way, they may be viewed as lying on the boundary 02, in (1.9), containing
Q.

When the MFS with an equal number of fixed singularities and boundary points, both of which
are uniformly distributed, is applied to certain problems in circular domains, it leads to linear
systems with coefficient matrices which are circulant or block matrices with circulant blocks
([15]). Ways of exploiting the properties of such systems for the efficient implementation of the
MFS applied to harmonic and biharmonic problems are investigated in Refs. [67, 68] and in

chapters 2 and 3.

1.3 MFS formulations

1.3.1 Harmonic Problems in two dimensions

The MFS with moving singularities was first proposed by Mathon and Johnston [59] for the

solution of potential problems of the form



1.3. MFS FORMULATIONS 9

where A denotes the Laplace operator, u is the dependent variable, and €2 is a bounded domain
in the plane with boundary 9. The operator B specifies the boundary conditions (BCs) and

is usually of the form:

a(P) + u(P), P € 09y (Diriclet BCs)
Bu(P) =<{ «(P)+ %(P) P € 9Qs (Neumann BCs), (1.12)
a(P) + B(P)u(P) + ’y(P)gZ(P) P € 9Q3 (Robin BCs)

where «, 3 and v are prescribed functions, and 92 = 9Q; U 0Q9 U 9€3. The solution w is

approximated by a function of the form

N
un(e, Q;P) =Y ¢k (P,Q;), PeQ,
j=1

where ¢ = (¢, ¢, . .. ,cN)T and Q is a 2N — vector containing the coordinates of the singular-
ities Q)j, 7 = 1,..., N, which lie outside the domain of the problem Q. The function k1 (P, Q)

is a fundamental solution of Laplace’s equation given by

R(P.Q) =~ 5 logr(P,Q), (113)

with (P, Q) denoting the distance between the points P and ). A set of observation points
{P}M, is selected on 99 and the coefficients ¢ and the coordinates of the singularities Q are

determined by minimizing the functional

M

F(c,Q) = |Bun(c,@; P)|%,

i=1
which is nonlinear in the coordinates of the @;. The minimization of this functional is done

using a nonlinear least square algorithm.

In the case when the singularities (); are fixed on the boundary 9 of the domain €2 containing
), the coeflicients ¢ are determined so that the boundary condition is satisfied at the boundary
points { P} :

Buyn(c,Q;P;) =0, i=1,...,N. (1.14)

This yields a linear system of the form

Ge = f, (1.15)
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for the coefficients ¢. In the case of Dirichlet boundary conditions, the elements of the matrix
G are given by

1 o
Gij=—5-log|Pi =@, 4j=1...,N. (1.16)

)

1.3.2 Biharmonic Problems in two dimensions

We consider the biharmonic equation

subject to the boundary conditions

Biu(P) = a(P)+u(P) =0, Bou(P)=p3(P)+ —(P)=0, P e, (1.17)
or

Biu(P) = a(P) +u(P) =0, Byu(P)=p(P)+ Au(P)=0, P €09, (1.18)
where « and 3 are prescribed functions.

A first biharmonic MFS formulation [38] is based on the simple layer potential representation
of biharmonic functions suggested in [18, 56]. In this formulation, the solution is approximated
by a function of the form
N —
(€. Q:P) =3 [cjkl P,Q;) + d;ka(P, Qj)} Peq,
7j=1
where k; is the fundamental solution of Laplace’s equation given by (L.13) and kg is the

fundamental solution of the biharmonic equation given by
1
ko (P, Q) = —877“2(13, Q)logr(P, Q). (1.19)

Following the MF'S approach in the case of Laplace’s equation, the coefficients cj, dj and the

coordinates of the singularities Qj are determined by minimizing the functional

M
Fe,d, Q)= [rBluN(c, d,Q; P)]* + |Boun (e, d, Q; ;)|
i=1
When the singularities are fixed, the vectors of coefficients ¢ and d are determined so that the

boundary conditions are satisfied at the collocation points {P;} | :

Biun(e,d,Q;P) =0,i=1,...,N, (1.20)
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and

Boun(c,d,Q;P) =0, i=1,...,N. (1.21)

This yields a linear system of the form
Ge = f, (1.22)

for the coefficients ¢ and d, where, in the case of boundary conditions (1.17)), the elements of

the matrix

A A
A9y | Ao

are given by

1
(All)i,j = Ton log |P; — Qj|a

1 Tp, —XQ; Ypr, — YQ,
Ay, = —— | —/———Ln, + — 7
R =)
1
(Aaz), = = 5[+ 210g P = Q] (a0, s + (v, ~ 0, )y).

where n, and n, denote the components of the outward normal vector n to 02 in the x and y

directions, respectively.

A second biharmonic MFS formulation [2], is based on the Almansi representation of biharmonic
functions [1, 18, 32]. Almansi showed that the general solution of the biharmonic equation can

be written as
u(P) =r*(P) " (P) + ¢®)(P), PeqQ,

where the functions ¢") and ¢(®) are harmonic in Q, and r(P) denotes the distance of the point

P from the origin, which lies in Q. If we replace both ¢(!) and ¢3 by simple layer potentials,

P = /aQ o(Q)logr(P,Q)dsq, Pe®, i=12,

then

u(P) = r*(P) /an 0(1)(62) logr(P,Q)dsg + /89 0(2)(Q) logr(P,Q)dsqg PeQ.  (1.24)
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This expression provides the motivation for the second biharmonic MFS formulation. In (1.24),
the simple layer potential representation with respect to an auxiliary boundary 02, is used

and, following (1.9)—(1.10), u(P) is approximated by a function of the form

N
v(e, Qi P) = [¢;r*(P) + d;]k(P,Q;), PeQ,
7=1

where k1 is given by (1.13).

Now consider the biharmonic equation subject to the boundary conditions [18]

O Ou

Biu(P) = a(P) + ep (P)=0, Bou(P)=p(P)+ dur (P)=0, Pe€oq. (1.25)

Problems of this type arise, for example, in fluid flow problems, where u denotes the stream
function. They do not have unique solutions, but since the quantities of interest are usually
derivatives of the solution, which give the velocity components, the nonuniqueness is inconse-

quential.

For the biharmonic problem with boundary conditions (1.25), Fichera [22] proposed the simple

layer potential representation

[ o o ol e P
uP)= [ @2 (P uQ AP dso. Pet (1)

where ko (P, Q) is given by (1.19). It follows that

uP) = [ 0(@)(wr ~ 50) + WQ)ur - vo) [mp 0+ } dsg. P et

where P = (zp,yp) and Q = (2¢g,yg). This provides the motivation for the third biharmonic
MF'S formulation [39], in which the approximate solution has the form

N

(@ QiP) = S leslan — a0,) + dilue —0,)) (P Q) + =] . P

47
j=1

where Q; = (zq,,yq,)-

1.3.3 The Helmholtz equation in two dimensions

We consider the exterior Neumann boundary value problem in R?

Au+k*u=0 in Q,
Bu=0 on 0f,

(1.27)
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where the boundary conditions are given by (1.12). The domain €2 is an unbounded domain in
R2. The boundary of € is 9. Further, we must specify the behaviour of u at infinity, namely,

it must satisfy the Sommerfeld radiation condition (two dimensional version),

u _ ik:u) =0, (1.28)

limﬁ(a
r

r—00

where r is the distance of a point P €2 from the origin. This problem is related to the problem
of radiation of time-harmonic sound waves in a compressible fluid, caused by the vibrations of

an immersed obstacle.

In the MFS [41], the solution w is approximated by

N
uN(CanP) = ZCV k3(Pa Ql/)a PGQ, (129)
v=1
where ¢ = (c1,ca,...,cn)T € CV and Q is a N—vector containing the coordinates of the

singularities Q,, v = 1,..., N, which lie outside Q. The function k3(P,Q) is a fundamental

solution of the Helmholtz equation given by
1.3
ks(P.Q) = (Hg" (K|~ Ql). (1.30)

where i = \/—1 and Hél) is the Hankel function of the first kind of order zero, and with |P — Q)|
denoting the distance between the points P and (). The case when the singularities are not
fixed is described as in section (1.2.3). In the case when the singularities @), are fixed on
the boundary 9 of the domain  which contains . Note that the fundamental solution ks
satisfies the Sommerfeld radiation condition as |P — Q| — oo, for a fixed @). In the case of
moving singularities a set of observation points { P}, is selected on 9 and the coefficients

c and the positions of the singularities @ are determined by minimizing the functional

M
F(e,Q) =) |Bun(c,Q; )|,

i=1
which is nonlinear in the coordinates of the @;. The minimization of this functional is done
using a nonlinear least square algorithm. In the case when the singularities ), are fixed on
the boundary 9 of the domain Q containing €, the coefficients ¢ are determined so that the

boundary condition is satisfied at the boundary points {Pu}l]le , namely,

Bun(c,Q;P,) =0, p=1,...,N. (1.31)



14 CHAPTER 1. INTRODUCTION

This yields a linear system of the form
Ge = f, (1.32)

for the coefficients c.

In the case where we have Dirichlet boundary conditions the elements of matrix G are given

by
. 1
Gu,u = iaHé |

- 4 On (k‘Pﬂz_QlI’)y Mﬂ/:l,...,N

Since the Hankel function Hél) = Jo+1Yp, where Jy and Yj are the Bessel functions of the first
and second kind, respectively ([2,[75]), the elements of the matrix G can be expressed in terms
of the Bessel functions J; and Y;. These can be calculated via the NAG routines S17AFF and

S17ADF, respectively.

1.3.4 The Cauchy—Navier equations in two dimensions

We consider the boundary value problem in R? governed by the Cauchy-Navier equations of

elasticity [33]

(A + p)ug ki + puipr =0 in Q,
Bu; =0 on O0f, 1=1,2

(1.33)

Here we are using the indicial tensor notation in terms of the displacements u; and wuo.

In (1.33), A and p are the Lamé elastic constants. These constants can be expressed as

A\ vE q E

= and p = —
A+v)(1—20) " H T o110

ratio. Summation over repeated subscripts is implied and partial derivatives are denoted by

%. The boundary of € is 0f2.
81,‘]'

Note that the Cauchy-Navier equations can also be written as
2 —20\ 9%u 1 0%u 0%u
21 n 2 . 21 _—
1-2v) Oxf 1—-2v /) 0x10x2 0z5

0%us 1 0%uy 2 — 20\ 0%uy
3 + -+ 3 = 0.
Oxy 1—-2v ) 0x10x9 1-2v) Oxs
In the Method of Fundamental Solutions (MFS) the displacements u; and uy are approximated
by [6]

where F is the modulus of elasticity, and v is Poisson’s

u;j =

(1.34)

N N
ury (8,0, Q; P) =Y ajg1(P,Qs) + > bjg12(P, Qy), (1.35)

j=1 j=1
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and
N N
usy (2,0, Q; P) =Y a; gan (P, Q) + > _bjgaa(P,Q;)  PeR, (1.36)
j=1 j=1
respectively. Here a = (ay,as,...,an)T € RY and b = (by,bs,...,bx)T € RY are vectors

of unknown coefficients, Q is a N—vector containing the coordinates of the singularities Q;,
j=1,...,N, which lie outside Q. The functions Gij, 1, = 1,2 are the fundamental solutions

of the system (1.34) and are given by

T, — T1,)>
g1 (P,Q) = _87m(1—1/) [(3 —4v)logrpg — W] 7 (1.37)
gm(P, Q) = ga(P,Q) = 871-”(1 5 [(xlp - CUI?%D(;UQP - CUQQ)] 7 (1.38)
1 (‘7:213 - wQQ)Q
922(P,Q) = —m (3 —4v)logrpg — T ) (1.39)

where rpg = \/(aslp —215)? + (72, — 24)?, and (71, %2,), (¥1,,22,) are the coordinates of

the points () and P, respectively.

In the case of moving singularities a set of points {P;}}, is selected on 92 and the coefficients

a and b and the locations of the singularities @ are determined by minimizing the functional
M
F(a,b,Q) = Z[|Bu1NabQP)| + |Buay (a,b,Q; P;)|?
=1

In the case the singularities {Qj}év:l are fixed on the boundary 9 of the domain Q which
contains 2, the 2N coefficients a, b are determined so that the boundary conditions are satisfied

at the boundary points {P;}¥, , namely,

Bui,(a,b,Q; P;) =0, (1.40)

Busgy(a,b,Q;P) =0, i=1,...,N. (1.41)

This yields a 2N x 2N linear system of the form

ol - (1), (1.42)

b Ja
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where, in the case of Dirichlet boundary conditions

A|B
B|C

G =

with the N x N matrices A = (4;;), B = (B;;), and C = (C; ), where

Aij = gu(Pi,Qy),

Bij = g12(P;, Q) = g21(F;, Q)

and C’L,] ZQQQ(Pi)Qj)7 Z?.]:177N
1.3.5 The Laplace equation in three dimensions

The corresponding three-dimensional boundary value problem in three dimensions is:

Au=0 in £,
Bu=0 on 01,

(1.43)

where the boundary conditions are given by (1.12). The boundary of € is denoted by 9f).

In the MF'S [18, [31] the solution u is approximated by

N
un(c,Q;P) =Y ¢;Ki(P,Q;), PeQ, (1.44)
j=1
where ¢ = (c1,ca,...,cn)! and Q is a 3N —vector containing the coordinates of the singularities

Qj, j = 1,..., N, which lie outside Q. The function K;(P,Q) is a fundamental solution of
Laplace’s equation in R3 given by

1

Ki(P,Q) = ixP—qQ

(1.45)

with |P — Q| denoting the distance between the points P and (. In the case of moving
singularities a set of observation points { P}, is selected on 9 and the coefficients ¢ and the

coordinates of the singularities @ are determined by minimizing the functional

2
3

M
F(e,Q) =) |Bun(c,Q; P)
=1
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which is nonlinear in the coordinates of the ;. The minimization of this functional is done
using a nonlinear least square algorithm. If the singularities (); are fixed, the coefficients ¢ are

determined so that the boundary condition is satisfied at the boundary points {Pj}é\;1
Bun(e,Q;P;)=0, i=1,...,N. (1.46)
This yields an N x N linear system of the form
Ge = f, (1.47)

for the coeflicients ¢, where, in the case of Dirichlet boundary conditions, the elements of the

matrix G are given by
1

G . =
2,] 4W|B—QJ|’

i,j=1,...,N. (1.48)

1.3.6 The biharmonic equations in three dimensions

We now consider the three—dimensional boundary value problem

A2 =0 in 9,

Biu=0 on 09,

Bou=0 on 09,
where the boundary conditions B; and Bs are given by (1.17) or (1.18). The boundary of € is
o0

In the MFS [18, 20], the solution u is approximated by

N N
un(e,d,Q;P)=> ¢;Ki(P,Q;)+ > dj Ky(P,Q;) PeQ,
j=1 j=1
where ¢ = (c1,c2,...,cn)T, d = (di,da,...,dy)T, and Q, is a 3N —vectors containing the

coordinates of the singularities Q;, j = 1,..., N, which lie outside 2. The function K;(P, Q)
is the fundamental solution of Laplace’s equation in R? given by (1.45), and Ks(P,Q) is the

fundamental solution of biharmonic equation in R3 given by
1
Ky (P, Q) = 3x P —Q|. (1.49)

In the case of moving singularities the functional that is minimized to yield ¢, d and Q is

M
Fle,d,Q) =Y [|Bru(c.d.Q; ) + By uy(e.d, @; ).

=1
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When the singularities are fixed, vectors of coefficients ¢ and d are determined so that the

boundary conditions are satisfied at the collocation points {P;} | :
Bl UN(C7 d7 Q7 PZ) = 07
BQUN(C,d,Q;Pi) = O, 1= 1,...,N.

This yields a 2N x 2N linear system of the form

Cc f1
d I2

for the coefficients ¢ and d where, in the case of boundary conditions (1.17), the elements of

the matrix

Ay | Az
Agy | Ago
are given by
1 1
T an|B-Qf

1
(A12)z‘7j = §|P’L - Qj|a

(A11);;

(A ) _ié 1 __i (xpifoj)n —i—(yPiinj)n +(ZP¢72Qj)n

T T dmon [[P-Qjl) T A [[B-QF T T IR-QiF YT IR - QP )
19 1 [(zp, —2q;) (v, — yq,) (2p, — 2q,)

Agg), = — | —|P— Q|| = — | S "%l : J : gl

(s =5 o7 -] = 52 [T et T e o

where n,, n, and n. denote the components of the outward normal vector n to 92 in the x, y
and z directions, respectively.

1.3.7 The Helmholtz equation in three dimensions

We now consider the three-dimensional boundary value problem

Au+ku=0 in Q,
Bu=20 on 0f),

(1.50)

where, as before, B are the boundary conditions given by (1.12). Further, u must satisfy the

Sommerfeld radiation condition in three dimensions,

r—oo  \ Or

lim r <8u - iku) =0, (1.51)
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where r is the distance of a point P € 2 from the origin. As was the case in two dimensions, this
problem is related to the problem of radiation of time—harmonic sound waves in a compressible

fluid, caused by the vibrations of an immersed obstacle.

In the MFS [41], the solution u is approximated by

N
un(e,Q; P) =Y ¢; K3(P,Q;), PeQ, (1.52)
j=1
where ¢ = (c1,ca,...,cn)T € CV and Q is a 3N— vector containing the coordinates of the

singularities (sources) Q;, j = 1,...,N, which lie outside Q. The function K3(P,Q) is a

fundamental solution of the Helmholtz equation in R?® given by

K3(P,Q) = 47r|Pl—Q] elHP=Cl (1.53)

with |P — Q| denoting the distance between the points P and Q). Note that the fundamental
solution K3 satisfies the the Sommerfeld radiation condition as |P — Q| — oo, for a fixed Q.
In the case when the singularities @, are fixed on the boundary 9 of the domain Q which
contains (2. Note that the fundamental solution K3 satisfies the Sommerfeld radiation condition
as |P — Q| — oo, for a fixed . In the case of moving singularities the functional which is

minimized is the

M

F(e,Q) =" |Bun(c.Q; P)|",

i=1
which is nonlinear in the coordinates of the );. When the singularities (), are fixed on the
boundary 99 of a solid  surrounding © the coefficients ¢ are determined so that the boundary

condition is satisfied at the boundary points {P;}¥;:
Bun(e,Q;P)=0, l=1,...,N. (1.54)
This yields an N x N linear system of the form
Ge = f, (1.55)

for the coefficients ¢, where, in the case of Dirichlet boundary conditions, the elements of the

matrix G are given by
1 elklP—=Qjl

Gj=———— l,y=1,...,N. 1.56
l,j 47T|.P1_Qj’, yJ ) ’ ( )
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1.3.8 The Cauchy-Navier equations in three dimensions

We consider the boundary value problem in R?® governed by the Cauchy-Navier equations of

elasticity

(A + p)ug i + puipe =0 in Q,
Bu; =0 on 01, i=1,2,3.

(1.57)

Here we are again using the indicial tensor notation in terms of the displacements u;,us and

us.

The Cauchy-Navier equations can also be written as

2—2v 82U1 + 82u1 62u1
1-2v 8x% ax% 8:6%
1 8QU3
= 1.
+ (1 — 21/) 8x18x2 <1 — 21/) 0x10x3 0, (1.58)
1 0%uy 2 — 2\ Quy
+ —+
1—2v /) 0x10x9 8901 1-—2v 83:2
62’&3
= 1.
* 8333 <1 ) 8x28x3 =9 (1.59)

1 82U1 + (92 'LL3
1—-2v ) 0x10x3 1-— 21/ 8@8&:3 Ox?

9us n 2 — 2w\ %us
Ox3 1-2v) 0x3

+ =0, in Q. (1.60)

In the MFS [64] the displacements are approximated by
N
ulN(aa b7ch;P) = ZanGll(Pv Qn)
n=1
N N
-+ Z bnG12<P7 Qn) + Z CnGl?)(Pa Qn)v (161)
n=1 n=1

N
usy(a,b,c,Q;P) = > anGar(P,Qn)

n=1

N N
- Z bnGQQ(P? Qn) + Z CnGZB(Pv Qn)a (1.62)

n=1 n=1

N
UBN(aa b7C7Q;P) = ZGHGZ‘H(P’ Qn)
n=1

N N
+ Z bnG32(P, Qn) + chGs?)(R Qn) (1.63)
n=1 n=1
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where a = (ay,az,...,an)?, b= (b1,ba,...,bn)T, ¢ = (c1,c0,...,cn)T, and Q is a 3N-vector
containing the coordinates of the singularities Q,, n = 1,..., N, which lie outside .
The functions Gjj,,j = 1,2, 3 are the fundamental solutions of the system (1.60) and are given

by

. 1 (3-— 41/)7"%62 + (71, — $1Q)2
Gu(PQ) = 16mpu(1 —v) [ 30 ;
G12(P,Q) = Gu(PQ)= 167w(11 — [(:L“lp - ﬂler;D(:?p - mQ)] 7
G13(P, Q) = G31(P Q) 167TH(11 - V) [($1p - wli;)(sgp — LESQ)] ’
. 1 (3-— 41/)7”PQ + (w2, — $2Q)2
Gan(P,Q) = 16mpu(1 —v) [ g ;
G3(P,Q) = G3(P,Q)= 167T,u(11 5 !(3721: - xzi%(sw - x3Q)] ’
. 1 (3— 4IJ)T‘PQ + (w3, — £U3Q)2
G33(P,Q) = 16mpu(1 —v) [ 30 ;

where

rpg = \/(xlp —210)? + (22, — w20)? + (w3, — 73)2.

In the case of moving singularities the locations of the singularities @@ are determined by

minimizing the functional
M
F(a,b,c,Q) :Z“Buu\/a b,c,Q; P)|* +|Buan(a,b,c,Q; P)|* + |Busn(a, b, ¢, Q; P)\Q]
=1

When the singularities @, are fixed on the boundary 9 of a solid  surrounding €, the
coefficients a,b and c¢ are determined so that the boundary conditions are satisfied at the
boundary points {P;} ;:

Buiy(a,b,c,Q; F;) =0,

BUQN (av ba C, Q7 R,) = Oa

and

BU3N(a,b,C,Q;Pi):O, izl,...,N.
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In the case of Dirichlet boundary conditions, yields a 3N x 3N linear system of the form

Hyy | Hyg | Hyg a fi
Hyy | Hyy | Hys b | =1 f2 | (1.64)
Hyy | Hzy | Hyy ¢ fs

where the N x N matrices are now given, with the obvious notation, by
eri,j :ka(PZ7Qj)7 ZvJ: 177N7 (165)

for k,0=1,2,3.

1.4 Recent developments

1.4.1 Inhomogeneous problems

The MFS has been extended to problems including nonhomogeneous terms using particular
solutions [24].
In the cases where the nonhomogeneous term is a known function, a particular solution can

often be obtained. For example consider the Poisson equation
Au(z) = f(z), z€Q, (1.66)

where @ C R"™ is bounded. As suggested in [3], a particular solution of (1.66) can be obtained

by constructing the associated Newton potential

up() = /Q Bo(z — )/ (y)dy. (1.67)

Once we have a particular solution up of (1.66) and u is the solution of the boundary value

problem

and set v = u — up then

with the boundary condition
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which may be solved by the MFS [63]. An important task is therefore the determination of a

particular solution of the Poisson equation.

In the cases where the nonhomogeneous term is an unknown function, an approximate par-
ticular solution can be obtained using the Dual Reciprocity Method (DRM). The DRM was
originally developed for taking domain integrals to the boundary in the BEM [60], and is ap-
plied with the MFS in a very similar way. In the DRM the function f in (1.66) is approximated

by a linear combination of basis functions {¢;}7_;,

n

f@) = f@) = cjpi(a)

J=1

where {cj}?zl are undetermined coefficients which can be computed by collocation, i.e.,

3

cjpj(ze) = f(xr), 1<k<mn,
j=1

where {1 }}_, are n collocation points in R". Since the particular solution does not in general
have to satisfy the boundary condition, the collocation points {x}}}_; can be selected inside
and outside the domain 2. Nevertheless, for the traditional DRM, {z}}_, are chosen inside
the domain 2. After the computation of {c; };L:l, we have an approximation of the particular

solution up ginen by

n

ip(z) = ¢; Wi(x)

=1

where
AV, =@, j=1,...,n, (1.68)
because
Aup = f.

In [57] the MFS is used to solve some linear elastic problems, employing the DRM in cases

involving inhomogeneous terms.

The most popular choice of basis functions is the set of Radial Basis Functions (RBFs), in

particular thin plate and higher order radial splines, multiquadrics and Gaussians [10) [13|
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14], 136]. These globally supported basis functions, however, lead to dense systems which can
be highly ill-conditioned and thus compactly supported RBFs (CS-RBF's) have also become
popular [14]. Another choice of basis functions is the set of polynomials and trigonometric
functions [51]. It should be noted that a technique which is simpler than the DRM and has

been used extensively is the so—called Kansa’s method [34, [35].

In [4], Alves and Chen propose a new application of the method of fundamental solutions
for nonhomogeneous elliptic problems. In particular, they present an extension of the MFS
for the direct approximation of Poisson and nonhomogeneous Helmholtz problems. They do
this by using the fundamental solutions of the associated eigenvalue equations as a basis to
approximate the nonhomogeneous term.

In particular, Alves and Chen obtained @ p by considering the ¥; to be the fundamental solu-

tions of the associated eigenvalue equations

AV; =AU, (A#0)
instead of solving (1.68) analytically.

A class of Poisson problems of particular interest is that in which the right hand side f is
harmonic [18]. When f is an elementary harmonic function such as a constant or a polynomial,
it is easy to construct a particular solution @. The general case was addressed in [3], in which
it is assumed that a particular solution is of the form u(z,y) = xH(x,y)/2, with H harmonic.

From the satisfaction of Poisson’s equation, we obtain 0H/dx = f. Integration yields

H@w»=/3ﬂam%+h@» (1.69)

where the point g and the function h(y) are arbitrary. From the fact that H is harmonic, it

follows that

W) =~ 5 (z0.).

Integrating this differential equation gives

) == [ (=05 oty

(0]

from which, together with (1.69), one obtains the desired particular solution. This construction

is considerably easier than the construction of a particular solution via the Newton potential
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as it only involves single integrals. Applications of this technique in combination with the MF'S

can be found in [63] 64].

1.4.2 Nonlinear inhomogeneous problems

In [12], Chen considers the problem

Au(P)+46f(u(P))=0 P e,
uw(P)=0 P €09,

(1.70)

where ¢ is the Frank—Kamenetskii parameter. The idea is to use a Picard-type iteration and

solve the sequence of Poisson problems for n = 1,2, ...,

Atuyi1(P) = =6 f(un(P)), P e,
unt1(P) =0 P € 9.

(1.71)

Each of these problems may be solved using the methods described in section 4.1. In [12], at
each iteration, Chen uses a combination of the dual reciprocity method to evaluate a particular
solution of the inhomogeneous Poisson problem and an MFS-type method for the solution of

the homogeneous problem.

1.4.3 Inverse Problems

In [54] Marin and Lesnic investigate the application of the MFS to boundary value problems
associated with two-dimensional Helmholtz-type equations.

In particular they consider an open bounded domain © C R? and they assume that 2 is bounded
by a smooth boundary I' = 9€2, such that I' = I'y UT'y, where I'1, Ty # ) and 'y N T’y = (). The

function u(x) satisfies the Helmholtz-type equation in the domain €, namely
(A+E)u(z) =0, z€Q (1.72)

where k = a+i € C. Let n(z) be the outward unit normal at 9Q and v(z) = (Vu-n)(z), z €
0Q. The knowledge of v and/or v on the whole boundary I' gives the corresponding Dirichlet,
Neumann, or mixed boundary conditions which enable us to to determine u in the domain €.
If it is possible to have both u and v on a part of the boundary I', say I';, then this leads
to the mathematical formulation of an inverse problem consisting of equation (1.72) and the

boundary conditions
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u(x) = f(x), (1.73)

v(z) = g(z), (1.74)
where x € I'y C I and f and g are prescribed functions.

In the MF'S [41], the solution u is approximated by

N
un(c,Q;P) = > ¢;ks(P,Qy), PeQ, (1.75)
j=1
where ¢ = (c1,c2,...,cn)T € CV and Q is a N—vector containing the coordinates of the

singularities Q;, j = 1,..., N, which lie outside Q. The function k3(P, Q) is a fundamental
solution of the Helmholtz equation given by (2.2). On the boundary 02

N
un(e,Q,m; P) = > ¢ U(P,Qjim), PedQ (1.76)
j=1

where

UP,Qj;n) = Vik3(P,Q) - n(z).

If a set of observation points {Pz}f\i 1 is chosen on I'; and the locations of the singularities
{Q; }é\le are set, then the application of approximations (1.75) and (1.76) to the boundary con-
ditions (1.73) and (1.74) on I'; yield a system of 2M linear algebraic equations in N unknowns

which can be written as
Ac=f, (1.77)
where
Aij =k3(P;,Q;), Anyij=40(P,Q4), 1=1,2,...,M, j=1,2,...,N,
and
fi=u(P), fuyi=v(P), i=1,2,...,M.

It should be noted that in order to uniquely determine the solution ¢ of system (1.77), the

number M of the boundary collocation points and the number N of the singularities must



1.4. RECENT DEVELOPMENTS 27

satisfy the inequality N < 2M. System (1.77) cannot be solved by direct methods, such as the
least—squares method, since such an approach would produce a highly unstable solution due to
the large value of the condition number of the matrix A which increases dramatically as the
number of boundary collocation points and source points increases. Marin and Lesnic used the

Tikhonov regularization method to solve such ill-conditioned systems.

The Tikhonov regularized solution [52, 53, 54, 55] to the system of linear algebraic equations
(1.77) is sought as

C) : T)\(C)\) = min TA(C) (178)
CeRN

where T represents the s order Tikhonov functional given by
Ta(-) : RY = [0,00), Ta(e) = Ac - f[5 + N[RWe]3,

the matrix R(®) € ROV=5*N induces a C*— constraint on the solution ¢ and A > 0 is the
regularization parameter to be chosen. Formally, the Tikhonov regularized solution ¢y of the

problem (1.78)) is given as the solution of the regularized equation
(ATA + N2RERE))e = ATF.

Regularization is necessary when solving ill-conditioned systems of linear equations because the
simple least squares solution, i.e. A = 0, is completely dominated by contributions from data
errors and rounding errors. By adding regularization one is able to dampen out these contri-
butions and maintain the norm |[R®)¢||5 to be of reasonable size. The choice of regularization

parameter \ is based on the L—curve method [52, 53| 54} 55].

In [52] Marin investigate the application of fundamental solutions to the Cauchy problem
associated with the three—dimensional Helmholtz—type equations. The analysis he presents is
analogous to the two-dimensional case we describe above. A similar approach is used in [53]
to investigate the application of the method of fundamental solutions to the Cauchy problem

for steady-state heat conduction in two dimensional functionally graded materials .

In [55] Marin and Lesnic present another application of the method of fundamental solutions
to the Cauchy problem in two—dimensional isotropic linear elasticity. The resulting system of
linear algebraic equations is again ill-conditioned and therefore its solution is regularized by
employing the first—order Tikhonov functional, while the choice of the regularization parameter

is based on the L—curve method.
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1.4.4 Time dependent problems

Traditional boundary element methods have been used for some time for the numerical solution
of transient problems; see, for example, [5, 18, 26]. The time dependence is handled using one of
three methods. Firstly, one may use Laplace transforms to remove the time variable. Secondly,
finite differences in time may be used, or lastly one could use time-dependent fundamental
solutions [76]. This third approach was introduced by Kupradze [48] in the case of the heat
equation.

Chen and Golberg [11] applied an MFS-type method for the solution of a time-dependent
diffusion problem. The time variable is removed by taking Laplace transforms and the problem
is transformed into one governed by the modified Helmholtz equation. In particular, they

considered the diffusion equation

10u

——(P,t) = Au(P. PeQ
k@t( 1) u(P,t), e, t>0,

subject to the boundary conditions

u(P,t) = f1(P,t), Pe€oQ, t>0,

ou

%(‘P’t):fQ(Pat)? PE@QQ, t>0,

where 02 = 91 U 99, and the initial condition
u(P,0) = ug(P), P €.
By taking the Laplace transform
oo
Liu(P, )] = U(P;5) = / w(P,1)e=td,
0

the problem becomes

(A— %) U(P;s) = —UOE{;P), Peq,

U(P;s) = Fi(P;s), Pe€oQy,
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oU
%(P; s) = Fy(P;s), € 0,

where F) and F5 are the Laplace transforms of f; and fs, respectively. This boundary value
problem is subsequently solved by determining a particular solution of the inhomogeneous
problem using the associated Newton potential and then solving the homogeneous problem
using an MFS—type method with the appropriate fundamental solution. The solution in the
real-time space can be obtained by a numerical inverse Laplace transform scheme; see [11] for

details.

1.4.5 Crack Problems

A variety of methods are currently available for computing stress intensity factors (SIFs) for
elastic crack problems. The SIF is a measure of the strength of the stress singularity at a crack
tip, and is useful from a mechanics perspective as it characterizes the displacement, stress and
strain in the near field around the tip. Additionally, the stress intensity concept is important
in terms of the crack extension as critical values of the SIF govern crack initiation.

In [73], Poullikas et al. studied the application of the method of fundamental solutions to the
computation of SIF in linear elastic fracture mechanics. The displacements are approximated by
linear combinations of the fundamental solutions of the Cauchy—Navier equations of elasticity
and the leading terms for the displacement near the crack tip. They propose a linear least-
squares MF'S in which the singularities are fixed and a nonlinear least—squares MF'S in which the
singularities are free. The applicability of the two formulations of the method is demonstrated
on two mode I crack problems. Both the proposed formulations are very easy to implement,
require little data preparation, and, unlike boundary integral equation-type methods, avoid
integrations on the boundary. It is shown that accurate approximations for the SIFs can be
obtained with relatively few degrees of freedom.

In [7], Berger et al. studied mixed mode problems and they solved them using the MFS in
two different formulations. The first formulation follows an idea presented in 73] of appending
the usual MFS displacement field expansions with the elastic crack tip expansions. Numerical
results using this approach indicate some difficulties with deeper cracks. They also develop

a second formulation using a domain decomposition approach similar to that used in [6] for



30 CHAPTER 1. INTRODUCTION

bimaterial problems. Then they used the developed method to calculate SIFs for a variety of

crack lengths under mixed mode loading conditions.



Chapter 2

Numerical Analysis of the MFS
for Harmonic Problems in Annular

Domains

2.1 Method of fundamental solutions formulation

We consider the boundary value problem

Au=0 in £,
u=f; on 0%, (2.1)
u=fy on O0f,

where A denotes the Laplace operator, the domain € is the annulus of radii ¢; and gs, i.e.,
QO ={xecR?: o <|x| < 02}, and f; and fo are given functions. The boundary of € is
09) = 01 U 09 where 0§21 and 0€)y are the circles with radii o1 and g2, respectively. Let the

function k(P, Q) be a fundamental solution of Laplace’s equation given by

K(P,Q) = —-log|P ~ Q) (22)

with | P — Q| denoting the distance between the points P and Q. In the Method of Fundamental

Solutions (MFS), the solution u is approximated by
2N B
un(e,@Q;P) =Y ¢jk(P,Q;), PeQ, (23)
j=1

31



32 CHAPTER 2. NUMERICAL ANALYSIS OF THE MFS IN ANNULAR DOMAINS

where ¢ = (c1, ca,...,can)’ and Q is a 4N-vector containing the coordinates of the singularities
Qj, j = 1,...,2N, which lie outside Q. The singularities @Q; are fixed on the boundary
9 = QU0 of an annulus  concentric to Q and defined by Q = {x € R? : R; < |z| < Ry},
where Ry > 02 > 01 > Rj. A set of collocation points { P; ?ivl is placed on 0. If P; = (zp,, yp,),

then we take

2(0—1 20— 1
Lp; = 01CO8 (ZN )7r7 Yp; 01 8in (ZN >7T7 i=1,...,N, (24)
and
20t — D) 20— D)
Tpy,, = 02C08 N YPwss = 02sin N i=1,...,N. (2.5)
If Qj = (JTQj,ij), then
20— 14+ a)w 20— 14 o)
ij—Rlcos(N), Yq; = Risin ( N ) , j=1,..., N, (2.6)
and
20— 14+ a)m 2 —14+ao)m |
xQN+j:Rgcos(N)7 YQny; = Rosin ( N ) , j=1,...,N. (2.7)

The presence of the angular parameter a€0,1) indicates that the sources are rotated by an
angle 2ra /N from the boundary points (see [67]). In the MFS with boundary collocation, the
coefficients ¢ are determined so that the boundary condition is satisfied at the boundary points
Py

un(e,Q; B) = fi(F), un(e,Q; Pnyi) = fo(Pnyi), 1=1,...,N.

This yields a linear system of the form

A ‘ Aro dy _ i | (2.8)
Aoy ‘ Agy da f2
where
f1=(fi(P), fi(P2), ..., f1(PN)T, f2 =(fo(Pn+1), fo(Pnsa), ., fo(Pan))T,
dy = (c1,¢2,...,cn)T, d2 =(cN+1,cN42, -+ can) T

The elements of the NV x N submatrices A11, A12, Ao1 and Ags are given by

1 1
(All)i,j = _% log |-PZ - Qj’a (A12)l',j - _g log |Pz - QN+j‘7

1 1
(A21); ; = —%log |Pn4i — Q5] (A22);; = —%log |PN+i — QN+l
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respectively, for ¢, = 1,..., N. The matrices A11, A1, Ao1 and Ags are circulant. An extensive
account of the properties of circulant matrices can be found in [15]. Details on the MFS and
its applications can be found in the survey articles [18, 19, 25]. The convergence of the MFS
for harmonic problems in the disk subject to Dirichlet boundary conditions has been studied in
[42,143,168]. The convergence of a modified MFS for annular domains was studied by Katsurada
[42] using Green’s functions instead of the usual fundamental solutions, and considering two
different circular problems. Our approach is different as it uses the standard fundamental
solutions directly in the annulus and is based on the study of the eigenvalues of the coefficient

matrix.

The chapter is structured as follows: In Section 2.2, we formulate the matrix decomposition
algorithm for the solution of the linear system (2.8). In Section 3, we develop the properties of
the eigenvalues of the coefficient matrix and study its invertibility. We also provide an explicit
expression for the MFS approximation. The convergence of the method for analytic boundary
data is proved in Section 4. Numerical experiments which enable us to confirm the theoretical

predictions are given in Section 5. Finally, some conclusions are presented in Section 6.

2.2 Matrix decomposition algorithm

In order to develop a matrix decomposition algorithm, we need the following fact [15]. If a
matrix A is circulant, written as A = circ(aq,...,ay), then it can be diagonalized as A =

U*DU, where U is the unitary N x N Fourier matrix with conjugate

1 1 1 1
1 w w? whN-1
1
* 2 4 2(N-1
U N2 1 w w w2( ) ,
1 WwN-1 L2(v-1) W(N=1)(N-1)

where w = e27ri/N, i=+—1, D=diag()1,...,\n), and
N .
A\ = Zak w001 =1 ... N, (2.9)
k=1

are the eigenvalues of A. The orthogonal eigenvector corresponding to A; is

1 . 4 T
= (3-1) (N=1)(j-1)
£; NiJZ (1,w e, W ) .
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Let (z,w) = Z,i,v:l 230y, be the inner product of z, w € CV. Since {&;}j=1,.. N forms an
orthonormal basis of CV, any vector v € CV can be expressed as v = Zé\;(v,& )&, and

hence Av = SN dp(v,&;.)€; . When A is nonsingular

Al
=) (v, €€, (2.10)

d
=1k

The system (2.8) can therefore be written as

U‘O All‘Alg U*| 0 U‘O d1 U‘O fi
O‘U AQl‘AQQ O‘Uﬂ< O‘U ds O‘U fo
(2.11)
or
U AL U ‘ U AU vdi \ _( Uh o1
UAy U™ ‘ UAyU* Uds U fs
or
Dy ‘ D12 dA1 _ A1 7 (2.13)
Doy ‘ Das d2 2
where
di =Udy, dz =Uda, f1=Uf1, f2=Ufo,
and

Dij = diag(\7, ... N9, i, j=1,2

is the diagonal matrix whose diagonal elements are the eigenvalues of the submatrix A;;, 7,5 =
1,2. The solution of system (2.13) can thus be reduced to the solution of the N independent

2 x 2 systems
Al ‘ A\l12 dl Al
k k Ak _ Jik C k=1,2,---N,
21 | 422 2 2
Ak ‘ Ak di Ix

from which it follows that

22 £1 12 £2
g1 _ )‘lc fk_)‘k fk

AL
dk - )‘11:1)‘%2 — A}f)@“

11422 1221
Ae A~ AR

72
dk: k=1,---,N.

Having obtained cil and ciz, we can determine d; and dg (and hence ¢) from

dy =U*dy, dy=U"dy. (2.14)
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We thus have the following matrix decomposition algorithm for solving (2.8):

Algorithm

Step 1. Compute fi=Uf1 and fo=Ufs.
Step 2. Construct the diagonal matrices D;;, 7,j = 1,2.
Step 3. Evaluate dy and ds.

Step 4. Compute dj = U*cil, dy = U*ds.

Remarks

(i) In Step 1 and Step 4, because of the form of the matrices U and U*, the operations can

be carried out via Fast Fourier Transforms (FFTs) at a cost of O(/Nlog N) operations.
(ii) FFTs can also be used for the evaluation of the diagonal matrices in Step 2.

(iii) The same algorithm is also applicable when, instead of the boundary conditions of (2.1)),

we have
ou
u=f1 on 0Q4, — =go on 0N,
on
or
%:gl on 08, u=fo on 0Qs.
on

2.3 Properties of the eigenvalues

Since our aim is to solve (2.8)), we investigate the properties of the eigenvalues of the matrix

A | A
A9y | Ao

G =

In particular, we are interested in the cases where these eigenvalues vanish. We first consider
the eigenvalues of the submatrices A1, A1, A21, Aso. In the following, we denote by A each

of the matrices A;;, ¢,7 = 1,2, and by A; each of the eigenvalues )\Zj, i,7 = 1,2. Thus we

shall denote by (a1, ...,ay) the vector (a¥,...,a%), which generates the circulant matrix A,
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i,7 = 1,2. Since each of the A;;’s involves the distances between points on two concentric

circles, we shall denote the radii of these circles by R and p.

We divide these eigenvalues into three groups:

(1) the ‘first’ eigenvalue Aj;
(ii) when N is even, the eigenvalue Ay/o1;

(7i7) the remaining eigenvalues.

2.3.1 The first eigenvalue

An exact expression for the first eigenvalue is given in the following theorem.

Theorem 2.3.1. The eigenvalue Ay is given by

1
M = = log (R?N — 2R N cos(2ma) + o). (2.15)

PROOF. Since A is circulant, from (2.9), we have

N
A=) ag (2.16)
k=1
Since
W . 9 27m(k + o —1) 9
ap =~ log (R — 2RQCOS< N ) + 07, (2.17)

it follows that

N
1 ) 21 (k + o — 1) )
Al = I log{kl:Il <R — 2Rpcos (N > + 0 .

From the identity [29, p. 40]

n—1
2k
H {xz — 227 CoSs <a + ﬂ) + yQ} = 22" — 22™y" cosna + y*", (2.18)
k=0 "
(2.15) follows. O

We have the following corollary:

Corollary 2.3.2. For a =0, A\; # 0 (i.e., the matriz A is nonsingular) if and only if RN —
oV #£1. O
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2.3.2 The eigenvalue Ay, when N is even

We next investigate the behaviour of the eigenvalue Ay/51 in the case N is even. We have the

exact expression:

Proposition 2.3.3. If N is even, then

N B —ilo RN —2RN/2pN/2 cog arr + oV (2.19)
N/ = T 08 RN o RN2 N2 cos(a+1)m + oN ‘
ProoOF. From (2.9), we have
N
1 _ 2n(k + o — 1)
)\N/2+1 = _E ;(—1)k 110g (R2 —2RQCOSN+QQ>
1 & 1
B 9 n— %y 9
= 4WTZ:llog (R — 2Rpcos <27r i o M> + 0 >
N/2
1 9 n—1 (a+)7 9
—1—47rnz_:llog<R —2RQCOS(27T i + i )—i—g .
From (2.18)) we obtain
1
ANj241 = — o log (R2M — 2RM oM cos ar + QQM)
1
+ o log (RZM —2RM oM cos(a + 1) + QQM)
1 ) RN — 2RN/2pN/2 cos arr + oV
= — — 10 .
ir S RN 2RN/2oN/2 cos(a+1)m + oV
O

A direct application of this proposition yields the following corollary:

Corollary 2.3.4. For N even, the eigenvalue Ay =0 if and only if o = %

ProOF. Taking a = 3 in (2.19) yields that Anjo41 = 0. For a € [0,2), it is clear that

cosam > 0 whereas cos(a + 1)7 < 0, and (2.19) yields that in this case Ay/o41 # 0. O

2.3.3 The eigenvalues )\;, j # 1, N/2+ 1, when N is even

In this case we have the expression:
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Proposition 2.3.5. For a€(0,3] and j # 1, we have

N 71—(mN+j 1o ;mN+j—1 i27 (m4+1)N—j+1)a (m+1)N—j+1
N=— {e ¢ X ¢ (2.20)

ir 24\ N4 - DRI (it )N —j+ RO

In particular when N is even

N
ANj2+1 = 5 >
m>0

cos ((2m + 1)am) gmNHN/2

(mN—I—N/Z) RmN+N/2 (2'21)

PROOF. We define the function
1
F(R,0,9) = I log(R? — 2Rpcos ¥ + ¢°).
From [29, p. 52], we have that

1 1 o" cosni
F(R,Q,ﬁ) = —%lOgR—‘v—%Zw,
n>1

where R > p. This is true in the cases where R = Rs,0 = ¢1 and R = Rs,0 = 02. When

R < p,ie.,when R= Ri,0= 01 and R = Ry, 0o = 02, in a similar way, we have

1 1 1 R"™ cosni
Fle,R.0) = —7-log(R* —2Rgcos ¥ + %) = —g-logo+ 5= 3 ———.
n>1

Then, from (2.9), for j =2,..., N,

N
2z 2
Aj= Z RUmUEUR <R797]\7;(k—1+04))

2
N 0" cos <7rn(l<: -1+ a))
= IS s (Z-nE-n){ Y N
- 2r NV nR"
k=1 n>1
L& 9 0" cos (%n(kz -1+ a)>
+1% sin <N(] - 1) (k- 1)> Z o
k=1 n>1
N
S 2y — _
= 3 2 g {k:1 cos (N (j—1(k 1)) cos ( (k—1+ a)) }

(2.22)
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For the first sum, we have from [68],

N
kzlcos <3\7;—k(] - 1)> cos <i\7;n(k -1+ a)> = %cos (Nna> {CN j+1 Tt C’nﬂ 1}, (2:23)

N
2 . 2 1
Zsin (jz;k(] — 1)) cos <Jz;n(k -1+ a)) =3 sin ( ) {cN i1 ﬂ 1}, (2.24)
k=1
where
N .
2 N if k=0(modN),
cN = Zcos <7Tlﬁ',j> = ( ) (2.25)
=1 N 0 if xk#0(modN.)
Combining (2.22), (2.23) and (2.24), we obtain
1 o" cos ( ) o" sin ( )
Aj= Ar nR" { i1 1+C +J 1}—52 nR™ { n—j+17" n+] 1}
n>1 n>1
N QmN+j 1 —1 ~ (MmMN+j—1Da ol N I (mN+N— j+1)anN+N j+1
T = (mN +j —1)RmN+i—1 + (mN + N — j + 1)RmN+N=j+1
which proves (2.20). Formula (2.21) is an immediate consequence of (2.20). O
We also have the following two corollaries when o = 0:
Corollary 2.3.6. For a =0 and j # 1, we have
N 1 j—14+mN 1 N—j+1+mN
A= — ‘ S A (2.26)
Am - j—14+mN Ri-1+tm N—j+14+mN RN-Jjtl+m
In particular, for N even and j = N/2 +1,
1 N/2+mN
AN/2+1 = Z « N/2+mN RN/2+mN' (227)
Also, for j = [N/2] +1,...,N, we have \j = An_j12.
Since, the A; are sums of positive numbers, we have:
Corollary 2.3.7. Fora=0and j =2,...,N, we have \; > 0. O

2.3.4 Invertibility of the matrix G

Since

A | A2 Ul o0 D1y ‘ D12 U‘ 0

Aoy | Ago 0 ‘ U Doy ‘ Doy 0 ‘ U
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. . . . D1y | Do . .

it is sufficient to examine the matrix D = . The following lemma can be easily
Doy | Do

proved.

Lemma 2.3.8. If det D denotes the determinant of D, then

M0 0 0 M2 0 o0 0
0 At o 0] 0 A2 0 0
0 0 A! 00 0 A2 0
0 0 0 Mo o0 0 A2 N
det D = det N al = H(A}JA?—)\W?)-
Moo 0 [A2 0 0 0 k=1
0 X' 0 0] 0 M2 0 0
0 0 M 010 0 M 0
0 0 0 Mo 0 o0 A%
Therefore, the matriz D is nonsingular if and only if
MINZZ_NI2X2L £ Kk =1,...,N. O

When « = 0 we have the following proposition.

Proposition 2.3.9. For a =0, the matrix G is singular if and only if

AT = AP = 0.

PRrROOF. Let
wi—1+mN

WwN—j+1+mN
FN?] (w) > *

N
==> (= + =
47 <]—1+mN N—j+1+mN

m>0

Clearly Fy j(w), w € (0,1), is positive and strictly increasing. For j # 1, we have (see Corollary
2.3.6)

A= Fyj(Ri/o1), \j* = Fnj(o1/Re), Ai' = Fyj(Ri/02) and A\® = Fy j(02/Ra).

Since R; < 01 < 02 < Ry, we have

Rl _R
0< =t <—, sothat A <Al
02 21
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and
21 02 12 22
0<R—2<R2 so that  A\;= < AJ™.
Thus,
MIAEZ NNt >0, k=23,...,N.
Therefore, the only case in which G can be singular is when A}1A32 — A12)\2! = 0. O

2.3.5 The approximate solution in terms of eigenvalues and eigenvectors.

Denoting the approximation uy(c, Q; P) in (2.3) by un(P), we have

N N
= dilog|P— Qx|+ _dilog|P — Qnoik| = (d1,l1) + (dp,l2), (2.28)
k=1 k=1

where
Iy = (log|P — Q1],...,log|P — Qn|)¥, lo = (log|P — Qny1l,. .., log |P — Qan|)T
and dy, dy satisfy (2.8). Thus
d; = (AI21A11 - A521A21> h (A7) f1— Ay f2)

dy = (A7 A — Ayl As) (AT — A5 f2)

so that
N N
(da,l2) = <(A1_11A12 Az Ag) 1<A o Z f1. €Kk — Ay <f27£k>£k)’l2>
k= k=
N 1 1 N 1
:Zf f2,&L) lz,fk Z .flagk l27£k>

k=

where A = )\]161)\%2 — )\]162/\%1 , assuming that all matrix inverses indicated exist. Analogously,

(di.la) = ZA (F1.€0) (0. &) ZA (F2,€4) (11, €&5)-

Therefore, we obtain the explicit expression for the MFS approximation,

Z fz,sk (I2, &) ZA (f1, €012, &)

k=
(2.29)

N 1 222

A2 l
-2 A g€ Zz’“ F1.60) {10 &),
k=1

k=1
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Note that the evaluation of the approximate solution via equation (2.29) is equivalent to ap-
plying the matrix decomposition algorithm described in Section 2.2. This form is useful for the

derivation of the theoretical results which follow.

2.4 Convergence of the MFS for analytic boundary data

In this section, we show that the MFS approximation uy converges exponentially with respect
to N to the exact solution u of (2.1) in the || - |[cc—norm, provided the boundary data fi, fo
are analytic, or, equivalently, u can be extended as a harmonic function in an open region V

containing the annulus.
The analyticity of the boundary data yields that there exists a constant 3 > 0, such that

Qs = {zeR? | o1 —B< |z| <02+ B} C V. (2.30)
The analytic solution u, expressed in polar coordinates, is of the form [72]

u(r,v) = Z CprF el 4 Z ne 7 e * g log 7. (2.31)
kez kezr{0}
Thus (2.31) implies that the boundary data can be expressed as

HO) =G+ > mrofe ™ +mgloge;, j=1,2.
kezZ keZr{o}

The analyticity assumption also implies that there exists a positive constant Mg such that

(Gils Ikl < Mg (02 + B)7" for k >0, (2.32)

Gkl Imel - < Mg (1 = )" for k<0, (2:33)
For simplicity, we prove the convergence of the MFS approximation to the exact solution in
the case when a = 0. The proof for « # 0 is analogous but much more tedious.
2.4.1 The discrete Fourier interpolant

We assume that N is even. (The case when N is odd can be treated analogously.) We define

the discrete Fourier interpolant 4y (which interpolates the boundary data), to be

N/2 N/2
iy(r, ) = Z pue 77 P 4 Z ver F e 1y logr, (2.34)
k=—N/2+1 k=—N/24+1

k#£0
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We also define

fin(@) =an(01,9), fon(9)=tan(02,9).
The coefficients py, v, € C, k = —N/2 +1,...,N/2, are chosen so that uy agrees with the
boundary data fi, fo at the points g1 €V, po€¥i, where V;=2m(j—1)/N j=1,...,N. Thus
for k= —N/241,...,N/2 with k # 0, by equating the coefficients of e*, the py, v, satisfy

k —k k+mN —k—mN
HEO1 +VEO T = Z (Ck:+mNQ R A S T )7
meZ

105 + oy " = Z (€k+mNQ]§ + 1 h-mNOy mN)

meZ

9

from which it follows that, with d = g’f 0y k_ ka Qé’ ,

0y Z(<k+mNQk+mN+77 k— mNQlk mN) Q;kZ<Ck+mNQk+mN+n k— mNQQk mN)

[ = meZ 5 . meZ 5 (235)
01 Z <<k+mN Qk+mN + Nk—mnN 0o Sh mN) Z <<k+mN Qk+mN + Nk—mn O o mN)
vy = meZ 5k _ meZ 5k (2.36)

For k = 0, we have

po+vologor =D Cane™ + Y nanei™ +mlogar,
meZ meZr{0}

po+1logor =Y Caned™ + > nmnes™ +mnolog o,
meZ meZr{0}

and therefore

Z CmN ernN + Z ImN QTN

Mo =

log 02/ 01 mez mezr{0}
—logoi | > Canes™+ D naned™| o, (2.37)
meZ meZr{0}

Vg = Z CmNQQ + Z nmNQ

log 92/91 mez mezr{o}

Y Gavet™ + D nane™ | ¢+ o (2.38)

meZ meZr{0}
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Next we bound the coefficients ux, k= —N/2+1,..., N/2. We consider three cases: Case I:
k >0, Case II: k < 0 and Case III: kK = 0.

Case I. k> 0. First, from (2.32) and (2.33) we have

’ D G0 N <D G | TN 4D (G|
meZ m>0 m<0
— k _ k;
< Z Mg (02 + B3) (k+mN) Qllf+mN + Z Mg (o1 — B) (k+mN) .Q]f+mN.
m20 m<0

By taking 71 = max { g;’}rﬂ, glg:ﬁ} < 1, we get

D e e SRR PR Do

meZ m>0 m>0

by observing that k < N — k, since k < N/2, we finally have

X gt | < 2050 3P = 2Mnb 0 o) < Mo,
meZ m>0

where M) = 2M5 . Following an identical argument, we get

‘ > 77k+mNQk+mN' < My

meZ
k0
Similarly, taking ~o = max ij 3 91 ﬁ } <1, and using the fact that 7§ < N~k we obtain
’ > Ck+mNQ§+mN'a k+mN‘ < My A5,
meZ meZ
k0

where My = 2Mg v5(1 — v2) 7L

Cases II - III. Following the arguments used in Case I, we obtain for Case II (k < 0)

k|
> Cermnef T

> 77k+mNQf+mN’ <My F, i=1,2

meZ meZ
and similarly for Case III (k = 0), we obtain
‘ZCmNQ ' N’SMZ-, i=1,2.
meZ meZ

We define 3 such that v1,72 < v3 = max { gfjﬁ, leﬂ} < 1, and we take M3 = max { My, Ms}.

Therefore, for k € Z, we have
Kl [ — _
2M3 ’7% | (ng + 01 k)
|0

lpx| <
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In particular, when k& > 0 we have that

& K\ ! k -1 k
] < 22003 (1 - (91> ) < 2% (1 - Ql) < Mo
03

~1
where My = 2Mj3 ( - ﬂ) .
When k£ < 0,
e < My vz %oy, (2.39)

and, when k = 0, we have that

lto] <10g 02 (2M3 + M3zlog o1) + log 01 (2M3 + M3 log 02)
log (02/01)
< 2Ms (log 02 + log 01 + log 02 log 1)
- log (02/01)

Similarly, for the coefficients vy, k > 0, we have that |v| < Mok, for k < 0, || < M473_kg]§,
M3 (4 + log 02 + log 01)

and for £k =0, || < . If we take
log (02/01)
M — max {M4, 2M3 (log 02 4 log 01 + log o3 log 91)7 M3 (4 + log o2 + log 01) } ’
log (02/01) log (02/01)
then
M~%oy*, k>0, Mrkok, k>0,
x| < Mq/;kgfk, k<0, | < M’y?:kgg, k <0,
M, k=0, M, k= 0.

This leads to the following theorem with a uniform bound (covering all cases)

Theorem 2.4.1. The coefficients uy,vi in (2.34]) are bounded by:

k
el vl < MAY, (2.40)

where 4 = max {'yggl, %} <1. O

2.4.2 The error bound
Let us denote by u(-; h) the solution of the boundary value problem

Au=0 in Q,
u = h1 on 891,
u=nhy on 0o,
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where h = (h1,ho)? and by un(:;h) its MFS approximation. Note that uy depends also
on Ry, Rs. Since both wu(-;h) and un(-;h) depend linearly on h; and hs we have, with

fN = (f1N7f2N)T7 and f = (flan)Ta

Jun (5 ) =u(s Flloo < MJuls F=Fn)llootllun (5 f = F v lloot lun (5 Fn) —uls; Fa)lloo

= [JuC; f = Fn)llootllun (5 Fn) —uls f §)lloos (2.41)

since f and f, agree at the boundary points. In the following, we show, using the maximum

principle, that each term on the right hand side of (2.41) decays exponentially fast as N — oo.

The term |u (-, f — fn)l

From (2.31)) and (2.34), we have

u—iy= Y. (Ckrkeikﬁ+nkae—ik19)+ 3 (Ckrkeikﬁ+nkae—ik19)

k<—N/2 k>N /2
N/2 —1
+ Y G Y (e — ) R (2.42)
k=—N/2+1 k=—N/2+1
N/2

+ ) (e — vi) 15 4 (g — vo) log 7.
k=1
By observing that the term corresponding to m = 0 in (2.35) vanishes, i.e.

05" (Ckp’f + mwf'f) —o7F <Ck0§ + mw;k)
O

_Ck:O7

we have that (2.35) reduces to

1 _ ke
Fie = Gk =5 02 Y <Ck+mNQ]f+mN + 0 k-mnor” mN)
k meZr{0}

—or" Z (Ck+mNQl§+mN + n—k—mNQQ_k_mN)

meZr{0}
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Thus,

| — G| < ‘5 ’ {Z Cermn 1™ + 3 1m0 + 3 (G|
m>0

m>0 m<0
+ Z |77—k—mN\91_k_mN}
m<0
—k
Y
+ |§7| {Z ‘Ck+mN’Qk+mN + Z |77 k— mN|Q2 hmm N + Z |<k+mN|Qk+mN
k m>0 m>0 m<0
+Y |77—k—mN|02kmN}
m<0

k
‘5k’ {Z Mg 02 +6) (k+mN) k+mN + Z Mﬁ 01 — /8)—(k+mN) Q]f+mN
m>0

m<0

m>0

m<0
k
w{zMﬁ o 4 S

ﬁ)—(k—i-mN) Ql2c+mN
m>0 m<0
k+mN —(k+mN
ZMB k+mNQ (k+m )+ZMB Q2+6)k+mN92(+m )}
m>0 m<0
Mg ;" N & N k N—k N
0] DTy g g Y g T Y
m>0 m>0 m>0 m>0
Mg oy k+N —k Nm . N+k —k
M R D A A S A S PR W P R PR W E AR
k m>0 m=>0 m>0 m>0
If k>0, then k+ N > N — k, and
8Mp of 7 8Mpgvy " Ms vy "
ok — Gl < =525 — Z%]avmé : : < 2
m>0 03 ( - g) (1—73) 2
8Mp g% -1
where M5 = o \L— 2 .Ifk<Othen k+ N <N —k, and
2
4M Q_k7k+N 4M Q—k,yk—FN
o — G S22 37 glvm  ZOCL S N N
9% m>0 19%| m>0

k k+N
< 8Mpgo, ", < My A or®
(1-4) -

When k = 0, from (2.37) and by observing that

log 02 Go —log o1 Go =0
log 02/ 01 ’
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we have

to — Go = > Gave™+ > nemver™ +molog oy

log QQ/Ql meZ meZr{0}

—logor | Y Caned™+ > nomno;™ +mologos| p - Co.
meZ meZr{0}

Thus,

o — Co| = logoa Y (CmNQTN + nmeQme)

meZr{0}

log 02/ 01

~logor Y (CmN@’Z"N +n-mnoy ™ ) ‘
meZr{0}

~log 02/ 01

{log 02 [Z (CmNQ’f‘N +-mnor ™ ) + (CmNQTNJrW—mNQImN)]

m>0 m<0

+log 01 [Z (CmNQQ”N +77—mNQEMN> 4 Z (CmNQEnN +77mNQQmN>] }|

m>0 m<0

10 —m m —m m
SM{ZMB(QQ‘i‘ﬂ) NQ1N+ZM5(01—5) NN

log 02/01 m>0 m<0

+ Z Mﬂ (Ql . ﬁ)m —mN Z Mﬁ 09 +B)mN —mN}

m>0 m<0

1 -mN mN —mN mN
+— Mg (02 +6)""" 05" 4+ Y Mg (o1 —B)"™" 03"
e | Mot 7 e+ 3 a9

+ Z Mﬁ (Ql - ﬁ)mN Q;mN + Z Mﬁ (92 + ﬂ)mN QQmN}

m>0 m<0

8Mﬁloggg NZ Nm 8Mglog oo 'yév

= = M6 ’YNa
~loge/on U A log o2/01 173 ’

SMB log 02

here Mg =
WO 6 = T ) log 02/ a1

. Following similar arguments we have that

M57N kgl, k>0

vk —mel < Q My Aok k<0

| M 74 k=0.

If we take M7 = max { M5, Mg} we obtain the lemma
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Lemma 2.4.2. The terms ux — Cx and vy — ng in equation (2.42) are bounded by:

M7 ,YN kQ2k7 k>07 M7 7N k@lv k>07
e — Gl < 4 My Rk k<0, v — el < § Mz AR k<0,
M77évv kZO) \M7’7év7 k=0.
O
We are now in a position to bound the following terms appearing in equation (2.42)
N/2 —1 N/2
Yo Gt > (e — ) R 4 Z e — i) e 4 (10 — o) log 7,
k=—N/2+1 k=—N/2+1

In the case when the error attains its maximum value on the inner circle r = g1, we have, using

Lemma 2.4.2]
N/2 N/2
> (o) 0fe™ + Z Mk — Vi) MJFZ e —vi) 0y “e™ (g —10) log 01
k=—N/2+1 k=—N/2+1
N/2
Z’Mk_ck’91+ Z |t = Cil ot + |10 — ol
k= N/2+1
N/2
+Z!Vk—77kl£?1 + Z v = mklor® + [vo — o/ log 01
k=— N/2+1
N/2 N/2 —k
{0 (£)5 5 gt el e 3 (2) )
k=1 o N/2+1 k=1 fe=— N/2+1 2
N/2 N/2 N/2 N/2
D S S
k=1 k=1 =1 k=1
< 4Ms{7§w2 + vév} < 8Ms 3 ”, (2.43)

where Mg = max {M7,log 01,1og 02}. Similarly, when the maximum is attained on the outer
circle r = 0o, we have

—1 N/2

o (G ) o5e™ + Z (7 — Vi) M+Z e = vi) 03 "™ + (o — o) log 02

k=—N/2+1 k=—N/2+1
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< adg {4} <80 ) (2:44)
The remaining term in (2.42) can be bounded in the following way:

Z (Ckrkeikﬂ_f_nkrkefikﬁ) i Z (Ckrkeikﬂ+nkrkeikﬁ>‘
k>N/2 k<N/2

<G DD Il D> Gl DD Il

k>N/2 k>N/2 k<—N/2 k<—N/2

00 k oo k k
Z T Z T Z T Z T
= ’ ( > o < > 7 < ) R <
k=N/2+1 92 IB k=N/2+1 02 B k<—N/2 o1 ﬂ k<—N/2 o ﬁ
=2 < . )k <Q1 ﬁ)k
o Z o2+ Z r

k=N/2+1 k=N/2

[e%S) k 00 k
r 01— f3
<ory ] 3 < ) .S ( )
honjg 02T B k=N/2 "

_ r \V? r A\ (e =B\ o1 — B\"
=2Ms <92+5> Z(m—i—ﬁ) +< r ) Z( r >

k>0 k>0

_ r\V? r N (=" AN
(o) ) o) )

Therefore, when the maximum is attained on the inner circle r = g1, we have

> (CkQ'feM + nkg’fe_”“”) + ) <Ck9'fe”“9 + nwlfe_ik’g> ‘
k>N/2 k<N/2

-1 -1
§2Mﬁ{<1—gﬁ> +(1—nglﬂ> }vév/QzMwév/zéMsvév/Q- (2.45)

Similarly, when the maximum is obtained on the external circle r = g9, we have

> (Cw'ﬁem + mcglée_“w) + ) (Ckg'éeik’? + nkQ'z“e_M) ’
k>Ny/2 k<N/2

-1 -1
§2M1{<1— 22 ) +<1—M> }véV”:szémngém- (2.46)

02 + (3 02

Therefore, we have the following result:

Lemma 2.4.3.

(o f = Fa) g < 9Mg 72”2 (2.47)

y
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The term |jun(-; fn)—u(; Fa)lloo

To bound this term, we need to investigate how well the MFS approximates problems corre-

sponding to exact solutions of the form zF k = %, ..., N/2, and log|z| which in polar

k

coordinates take the form r*e*? and logr, respectively, r € [01,00], and ¢ € [0,27]. For

simplicity we denote this solution by w(-;7*e¢l*?) and its MFS approximation by wuy(-;7*el*%)

Thus we need to bound
un (-5 7%e® ) — u(; %) || oo, k=—N/2+1,...,N/2,and
[un(;1ogr) = u(-;1og7) | oo-

Without loss of generality, we assume that g; = 1. We shall prove the following lemma:

Lemma 2.4.4. We have the following estimates:
llun (- T,keikga) — Tkeiknp)Hoo < CN4UN—2\k\7 (2.48)

where k = —N/2+1,...,N/2, o0 = maX{Rl,R%,%} < 1 and C is a constant independent
of k and N.

PRrROOF. Since v and uy are harmonic in the annulus, from the maximum principle

lluny — u||oo = max{sup |uy — ul, sup |uy — u|}.
=01 =02

First, we bound the term wupy (-;7%e”%) — u(-;7%e?*%) on the circle r = oy = 1.

CaseI. £k =0.

In this case, the exact solution is u = 1, i.e., f1, fo = 1, and thus f; = f2 = (1,1,...,1), and

(f1.6;) = o (f2.€;) = H

0  otherwise, 0  otherwise.

Thus, from expression (2.29), we have

VN - .
UN('§ 1) = NIH22 _ y\12)21 {(/\%1 - )‘%1)<l27£1> + (A%Q - )‘%2)<l17£1>}7
1 71 171

where

o0

N 1 N [ 1 1\

Allzi _— pmN A12:7 I _1

1 27rmz_:1mNR1 ) 172 | & mN \ R, ogftz 0,
N[ 1 /R \™ N[ 1 [ \™

A2l - L (= 1 A2 = L (£ —log R
27r{mz_:1mN<Q2> Og”}’ or mz_:lmN Ro eef s



52 CHAPTER 2. NUMERICAL ANALYSIS OF THE MFS IN ANNULAR DOMAINS

and

VN & 1 — VN[ 1 o™
<l1,£1> = gm mR COS(mNﬁ) <l2,€1> = %{TnZ_IN (R2) COS(mNﬁ)lOgRQ}.

Therefore,

fun( 1)~ uC s Dlloe = max fux(eosd,sind; 1) 1| = =27

where

A= N (A = a2h ii 13\ (mNVY) —log R
o L mN \Ry) " 0812

m=1

+(\22 — 1% Z —RmN cos mNﬁ)}

and B = AHA22 — A12X\21 . We thus have

<11\ <1 (R\™
+{N10gR2—Zm<R2> }{Nloggg—zm<g2> }ZN2lOgR210gQ2,

and

N o o oo 1 1 mN
|A— B| = o (AT = A7) Zm o cos(mN®) — log Ry

+(AP = AP) Z N cos mNﬂ)} — (AP = APPATY

m=1
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o) mN
1 1 1
- — (=) -NlogR
27T |"r;m <R2> Og ’

o9 1 mN
NlogRy— Y — (;’é) ]

mN
+ 13 {ZRl
m=1 m=1
00 1 1 mN o} 1 Rl mN
NlogRy— Y — (= Nlogos — Y — (=
+ 0g Ito mz—:1m<R2) 0g 02 n;m(92> ‘
00 o) mN o]
N 1 N 1 (R 11
= W{(Z ERl + Nlog 02 — Z - <Q2> ) (Z mNRmN cos(mNﬁ))
m=1 m=1

1 e\ X1\ 1y
+ (Z (R2> - ’mZ:l mRénN) TnZZI mNRl COS(mNﬁ)

1 = 1 mN oo 1 02 mN

*w{z R NlogR2—2m<R2> ]
m=1 m—1

+[NlogRy — 3 — (= Nlogo, — S = (&4
g ft2 mz:1m<R2) l g 02 mz_:lm<@2

1 ~

_m { Z RmN Z RmN cos(mNz?) N log Ro Z ERTN
m=1

1 1
+ N?log 0s E —NWcos(mNﬁ)—NzloggglogRg
m
m=1 2

m=1 m=1 m=1
+N i (e " i LRMN cos(mN)
= m Ry = mN
Ni 1.1 i Loy s(mN)
— m RN = mN 1 cosm
e’} 1 mN
N1 R me'N RmN
LY LA LW ( )
o0
1 /R
+ N?logoalog Ry — Nlog Ry » ~ — <1>
m=1 m 02

[e's) oo mN
1 1 1 1 1 (R
~Nlogo: ) m RyN + 2 m RN 2~ m (92) } ‘
m=1 m
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1
+ N?log 03 Z RmN

m=1 ml

Z mN mz:l RmN

m=1

mN oo
+ Z (Z) Z RlN + Nlog Ry Z (2)

m=1

00 rrLNoo
3 (8) S X e S

m=1

9] mN oo mN
NlogRy > R™ + Z RN Z (19%22) +NlogRy (]:;)
m=1 m=1 m=1 m=1

o . 1 ) Rl mN
+ Nlog 02 Z:IRTN + Z:IRTN Z (92)

2 Ry 2
<2RN —_ 4+ Nlog Ry2RY + N?1 42 Sl
<2R; R§V+ og Ro2Ry + OgngNJr o RY

+ N1 R2<Rl) +4( )NRN+ 2 ogN
o isy 2
* N e Ry) 0 RYTH

+2Nlog RoRY + 4RV | & +2N1 R, (T N+2N1 Loy L (B
o ) — ogoe—v +4—= | —
g 112 R2 g 112 o2 gngé\’ Ré\’ 02

Therefore:

|A— B| <406* 4+2Nlog Ryo™ + 2N?log g0 + 402N 4 2N log Ryo®N + 402N
+ 40N + 2N log Ryo™ + 402N + 2N log Roo™ + 2N log Ry + 462
<40 + 2N log Rao™ + 2N?1og Roo™ + 40™ + 2N log Roo™ + 40 + 46 + 2N log Roo™ + 40

+ 2N log Ryo™ + 2N log Ryo™ + 40 < 240N + 12N?1og Ryo™Y.

Thus if log Ry > 1 we have:

|A — B| 9 240N + 12N2log Ry - 24N?log Ryo™N + 12N?log Ryo™ - 36N?log Ryo™Y
B — NZ2log Rs log 02 - NZ2log Rs log 02 ~ N2log Rs log o2

_ 360N
log 02

If log Ry < 1 we have:

[A—B| _ 240" +12N?log Rpo™ _ 24N0™ + 12NN 360" 360"
|B] NZ2log Ry log 02 = NZ2logRplogos  logRologos  logoslog Ry




2.4. CONVERGENCE OF THE MF'S FOR ANALYTIC BOUNDARY DATA

55

Case II, 0 < k < N/2: From (2.29) we have:

AL N \21
J J TN
uN = Z )\11/\22 )\12)\21 <f2vfj l2,£] Z )\22 )\12)\21 <f1’5j><l2>€j>
N )\12 N 222 __
J
Z/\ll/\22 212)21 <f2’£j l17 Z )\2-2—)\1»2A2~1 <f17£ ><l17€ >7
j=1 J 1 J g 7
where
VN ifj=k+1 VNS ifj=k+1
<.f17£j> = and <.f23£j> =
0 otherwise. 0 otherwise .
Thus,
VE __ I
UN =TT 322 312 2 {(5 M = M) A2, &) + O — 5M3 ) (0, &)}
k+1k+1 k+17k+1
We can therefore write
’é_ ike‘ _ |A_eikeB|
B~ T B
where
A= VN{(e5Aths = M) 2, Eerr) + (031 — NG DT, &)
and
B = NaA% — M
Since 01 = 1, we have
N & 1 1
)\ s k+mN N—k+mN
k1= W%{Rl k—|—mN+R N —k+mN
)\12 \ ﬁ i i k+mN N—k+mN 1
M A £ | \ Ry k+mN mN N —k+mN
)\21 _ E i Rf k+mN Rl —k+mN 1
LT gr =\ e k+mN mN N —k+mN
)\22 _ E i Q k+mN @ N—k+mN 1
P A £ ) \ Ry k~|—mN 2 N —k+mN
and
N i(k+mN)Y i(N—k+mN)d
(L1, €py1) = £ Z leJr ‘ + RN HmNe—
™ = k+mN N —k+mN
\/ﬁ 0 1\ ktmN ci(k+mN)Y 1\ N—-k+mN e~ {(N—k+mN)J
Gy = W[y 1y
T = Ro k+mN Ro N —k+mN
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Next, we obtain a lower bound for |B|.

0 Rllf+mN R{V*k«kmN 0 0 k+mN 1
B= 22 L
DR by Ay ey o DD (RQ> k+mN

m=0 m=0
N—k+mN 1
N —k+mN
1 k+mN 1 N 1 N—k+mN 1
Ry k+mN Rs N —k+mN

k+mN 1 . R N—k+mN 1
k+mN 02 N —k+mN

RN—/C o Rk+mN o0 RN—k-‘rmN
i P UA SE
N —k “k+mN  —~ N—k+mN

+
IS

Mz 5

[

3
I
o

X
(]2
—N—
N
SEE

Il
—N—
I

X
—

k+mN 1 o'} 1 N—k+mN 1
(2 k+mN+m_1(2) N—k+mN}
k

(%) Rl kE+mN 1 [e’e) R1 N—k+mN 1
+Z(@z) k+TTLN+Z<Qg) N—k+mN

m=1 m=1
_ 1 Rfgb 1 Rig) " LB i o\
TR RS RN -k RYF R 2\ R k+mN
Rk oo N—k+mN 1
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Following a similar proof as in case II with the following differences in |A — e//*l9 B
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e The coefficient Q‘Qk‘ in equation (2.50)) is replaced by ﬁ,
Q2

e The angles in (2.51)) have opposite signs,

we obtain
|A — e FOB| _ 194Nk N-2lK]
| B - B

Wherel>ﬁ>1—gi2.

Next, we bound the term wuy(-;7%e™*%) — u(-;r*e™*%) on the circle r = g .
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0  otherwise. 0  otherwise.
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Therefore:

|A— B| <40®N +2Nlog Ryo™ + 2N?log Ryo™ + 402N 4 2N log Roc™ + 402N + 2N log g0
+ 402N 4+ 2N log 020" 4 2N log Rao™ + 406?N + 2N log Roo™ + 4N log Rao™ + 402V
<40 + 2N log Ryo™ + 2N?log Ryo™ + 40 + 2N log Roo™ + 46™ 4 2N log Roo™ + 40v
+ 2N log Roo™ 4 46™ + 2N log Roo™ + 40 + 4N log a0
<240 + 18 N?log Ryo™Y.

Thus if log Ry > 1 we have,
|A — B| <24aN + 18N2log Ryov _ 24Nlog Ryo™N 4+ 18N?log Ry - 42N?log Ry

|Bl  —  NZ2log Rslog 02 - N2log Ry log 02 ~ N2log Ry log 0o

B 420N

a log 02
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[A-B| _ 240N + 18N?log Ryov - 24No™ + 18N2oN _ 420N
|IBl  —  NZlog Rslog 02 —  NZlog Ry log 02 log R log 0o
420N
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Case II, 0 < k < N/2: From (2.29) we have:

)\11 N 21

uny = Z)\n)\m )\12)\21<f2753 l2v£a Z 1>\22 )\12)\21<f1’£j><l2v€j>

N )\12 N 22

; )\}1>\§2i)\]12)\?1 <f2’€J ll’éj Z )\22 ] )\12>\21 <f1’£j><l1’£j>

1

where

VN ifj=k+1 VNok ifj=k+1
(F1.€;) = o and (f2,€;) = e

0  otherwise. 0 otherwise .
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From equation (2.49) we have that

1 R¥
B>WRR

On the other hand we have

|A - o5e™ B

=VN{(5Nhy = MA ) (T2 Er) + (W3 —

N1, €)= o5 (N AR —

A1 AR )
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for sufficiently large N. Therefore
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Case III, —=N/2 < k < 0:

The proof is analogous to the proof of case II in the case when the maximum is obtained on

the external circle go. As in (2.52) we now have:
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Wherel>ﬁ>1—gi2.

We now find a bound for the term wupy(; logr) — u(; logr) :
Lemma 2.4.5. We have the following estimates:

lun (-, logr) — u(-, logr)|eo < %UN

where ¢ is a constant independent of N.

(2.53)

Proof. Case I: When the maximum is obtained on the inner circle r = o1 = 1, from expression

(2.29) we have:
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11 N /\21

N
unN :Z )\11)\22 i A12A21 <f27£]><l27€]> - Z )\11)\22 i )\12)\21 <f1>€]><l2a£j>
j=1"7 " J 7 j=1"7 " J 7

22

N AIQ g -

- E ! (f2,&;)(11,&;) + EN A (f1,€;)(11,&)
11y22 12421 ¥ ’S] 11122 12121 rS] ’S]
TSN A SN A

where

VNlogoy ifj=1

0 otherwise .

<.f17€]> =0 and <.f27€]> =

Thus we have

VN

UN =
1122 12y21
)‘1 )‘1 - )‘1 )\1

{log 02A 1" (I2,&;) — log 02A1* (11, &1) 1,

and therefore
A A
— 1 = | — — = | —
lun — log o1] ’B 0‘ 'B‘

where

=1 <1 1 \™
1 —RTN — (= NY) —1
og 02 {mZ: mNRl <mz:1 —— <R2> cos(mNv) — log RQ)
<1 /1 \™ <1 N
_ <Z_ — <R2> —log R2> Z m—NRl cos(mNﬁ)} ‘

=1 01 /1 \™ > 1
log 02 { > ERTN — () cos(mNVY) —log Ry ) ER{”N

m=1

[\

= 1/ 1\ 1
_;leNCOS(mNﬁ)ZM ) —i—logRgmzlleNcos(mNﬁ)}‘

1 1
<log 03 {4R{V o +2Nlog RoRY + 4RY o 2N log RyRY }
2

2
R N
=log 02 {8 (R1> + 4N log RQR{V}
2

<log 02 {8NRY + 4N log Ry R }
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for sufficiently large N. In the case log Ry > 1, we have

Al logoslog Ry (SNRN +4NRN)  12RN
Linlel g 1 1) _ 1
|B| — N?log 02 log Ry N

whereas in the case log Ry < 1, we have

14] _ log oo (8NRY + ANRY) _ 12RY
|B| — N?2log 02 log Ry N log Ry

Case II: When the maximum is obtained on the external circle r = po we have

|A —log 02B|
| B ’

luny —log 02| = ‘10g92

where

2

|A —log 02 B| =— | log 0oM ' (12, &;) — log 02A1% (11, &;) — log 02 (AT'AT% — APPAT)

2
2 M &) = A &) = AT AT

B N e} 1 O o] 1 0 mN
=log oo— e ’ mz: —NR (7; v (R2> cos(mN®) — log Rg)
00 mN o) mN
1 1 1 Ry
- — (=) - R (it S(mMNY) — 1
(ﬂ; — <R2> ogR2> <mz_:1 — (02) cos(mN9) — log Q2>
e} 1 09 mN
Z TTL.NR1 <Z <R2

m

v (7)
N (g&v(;)”log&)

=log 02

cos(mN¥) — log Rg)
i ! Rl —lo
2 mN g 02
o2 " cos(mNd9) —log R i LRmN
Ry g = mN !

) 1 1 mN oo 1 Rl mN [e%s) 1 1 mN
— — (= — N 1 =
Yox(m) Low @2) cosnav) +iogx 3 15 ()

m=1 m=1
[e%S) mN 00 o) mN
1 Rl 1 m 1 02
Houie Y s (Gr) o) —towon e 30 S S O (22
m=1 m=1 m=1

00 1 00 1 1 mN oo 1 R1 mN oo 1 1 mN
log R —— RN — = S (e —1 -
e 2; mN " +mz::1mN (Rz) mz::lmN <92> Ogg2m2::1 mN (R2>
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m=1

00 1 mN Rl mN N 0
+Nlogggz (R2> +NlogRQZ <Qz> —I—ZR Z (>
m=1 = =
mN oo o)
+N10gRQZRmN+Z<1> Z(Rl) +N10g922(1>

m=1 m=1 02

Ry
—l—NlogRgZ (92) }
oo 1 mN oo mN
:ZIOgQQ{ZRTNZ<J§2> +NlogRQZRmN+Z(R ) ( )
m=1 m=1 2 2 =l

oo 0o mN 0o mN
svun{Z o & (1) owmn S £ ()7L ()
m=1 m=1

m=1 = m
00 1 mN R1 mN
FNloger 3 (3) +NlogRQZ< )
m=1 2 m=1 02

1 (R 1 RN
<2log 0> ¢ 4Ry + 2N log RyRYN +4—— —1 + 2N log oo— + 2N log Ry | —
R2 R2 R 02

<2log g2 {402N + 2N log Roo™ + 46N 4+ 2N log Ry + 2N log RQUN}

<log 02 {160N + 12N log RQUN}

<log oy oV N {16 + 12log Ry}

for sufficient large N.
In the case log R > 1, we have

|A —log 02B| < 281og 02 log RoNo¥ 280N

|B| ~ NZ2loggslogRy, N

whereas when log Ry < 1, we have

|A — log 2 B| < 28log ooNo™ 280
| B ~ N2loggslogRy NlogRy'

We are now in a position to obtain a bound for uy (., fy)—u (., fy) by summing the bounds

we have obtained so far.

N
2

s (o) =l faloe € D il e (7%e™) = (75|
IN oo
2

fX e () ()

k=—4+1k#0

+ [vol luw (-, logr) — u (-, log7)l|



82 CHAPTER 2. NUMERICAL ANALYSIS OF THE MFS IN ANNULAR DOMAINS

Using estimates (2.40)), (2.48) and (2.53) we obtain

N N
2 2
lun (o ) —u (e i)l < Z MyLk|CN4UN_2|k| + Z M,yllk\CNziO_N—z\k\ +M%O_N
k=—% 41 k=—Z +1,k#0

N
4 N Z Y4k 4 NN V4 7
<2cMN'o ;0(02) < 4eMN*oN 1+(§)

N4

=cMN® <0N+74 )
(2.54)

The desired bound is thus obtained as follows. We take v = max {3,714} < 1. From the bounds

on ||[u(; F—Fn)llo and ||un (-5 fn) —u(; Fa)lleo given by (2.47), (2.48), (2.53) and (2.54), we

get the desired bound.

Theorem 2.4.6.

lun (5 f) =w(; )l < CMN® (oN +7N/2) . (2.55)

2.5 Numerical results

We considered the following numerical examples corresponding to the Dirichlet problem (2.1)

in the annulus defined by g1 = 1, g2 = 2.

The maximum relative error in these examples was calculated on a uniform grid of m points
on the boundary (since all the functions involved are harmonic and the maximum principle

applies) defined by

2m(g —1

(01 cosVj, o15inv;), ¥; = W(J?n), j=1,...,m
2m(y — 1

(02 cos¥;, 025inv;), V5 = 7T(]m), j=1,...m

The parameter m is taken to be equal to 500.

Example 1. Problem corresponding to the exact solution u = e” cosy. We varied the angle

of o and examined how this affected the accuracy of the solution for various values of N for
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different € = 91 — Ry = Ry — 02 (Figures 2.1, 2.2). We also varied the radii Ry and Ry of
the inner and external circle and examined how this affected the accuracy of the solution for
various values of N (Figure 2.7). In addition, we varied the radius Ry of the external circle and

examined how this affected the accuracy of the solution for various values of N (Figure 2.10).

x
22 4+ y?
and examined how this affected the accuracy of the solution for various values of N for different

Example 2. Problem corresponding to the exact solution u = We varied the angle «
e =01 — R1 = Ry — 02 (Figures 2.3, 2.4). We also varied the radii Ry and Ry of the inner and
external circle and examined how this affected the accuracy of the solution for various values

of N (Figure 2.8)).

Example 3. Problem corresponding to the exact solution u = 22 — y2. We varied the angle
of a and examined how this affected the accuracy of the solution for various values of N for
different € = 91 — Ry = Ry — 02 (Figures 2.5, 2.6). We also varied the radii Ry and Ry of
the inner and external circle and examined how this affected the accuracy of the solution for

various values of N (Figure 2.9).

The numerical results indicate that for small € the accuracy of the solution is dependent on
the angular parameter «. As ¢ grows this dependence disappears. Further, the accuracy for a
certain range of values of € reaches an optimal value for o« = 0.25 . This phenomenon was also
been observed in [67, [68] and is valid for all the examples considered in this chapter (Figures
2.142.6)). Also, we observed that as € increases for a = 0, the accuracy of the method improves
(Figures 2.7-2.9) according to the theoretical predictions developed in this study. However, for
larger values of € the accuracy deteriorates due to ill-conditioning. This is more evident in
Figure 2.10, when we kept the inner pseudoboundary fixed and equal to 0.5 and increased only

the outer pseudoboundary.

From Figures 2.7, 2.8 and 2.9/ it is evident that as R decreases, Ry increases and N increases
the MFS solution converges exponentially fast to the exact solution for all the test problems.
The same phenomenon can be observed for Figure 2.10, where R; is fixed and Ry increases.
However in all cases, there is a deterioration of accuracy for large values of Ry and N due to

ill-conditioning.
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Note

We have also considered the case when the two pseudoboundaries are rotated independently.
In particular, we take the coordinates of the points Q; = (7¢;,%g,) on the internal pseudo—

boundary to be

2 — 1
,%%:Rﬁm(jﬁﬂnh,j:L”wN

2 —14+an)m

rQ; = R cos N

and the coordinates of the points Qn4; = (g, 40 YQN +j) on the external pseudo—boundary to

be

2(j — 1 2(j — 1
-1t ag)m _ s U Iteam Ly

TQy,; = Racos N v YQnyj N )

The independent rotation produced little difference in the numerical results.

2.6 Conclusions

In this study we examine the application of the MF'S to harmonic problems in annular domains
subject to Dirichlet boundary conditions. The properties of the coefficient matrix are investi-
gated, and an efficient algorithm for the numerical solution of the problem is proposed. It is
shown that, for analytic boundary data, the MFS approximation converges exponentially to
the exact solution. The results of the current investigation can be also applied to other second
order elliptic operators such as the Helmholtz operator for problems in annular domains. Fur-
ther, the application of the algorithm proposed in this chapter to the biharmonic equation in
angular domains is being examined. The extension of the ideas developed in this study to the
solution of harmonic and biharmonic problems in shell type axisymmetric domains (see [70]),

is currently under investigation.
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Figure 2.1: Log-plot of error versus angular parameter o for e = 107#,1072,1072 in Example

1 for different values of N
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Figure 2.2: Log—plot of error versus angular parameter « for e = 0.05,0.1,0.2 in Example 1 for

different values of N
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Figure 2.3: Log-plot of error versus angular parameter o for e = 107#,1072,1072 in Example

2 for different values of N

£=0.05 £=0.1 £€=02
10" ‘ 10° ‘ 10° ‘ ‘
— N=16
- - N=32
10 L ] 1 — N=64
10" ——— | — N=128 [
P - = N=256
10—
E_ b _ _ 10~~~ ==
) . = R —
107k > 1 .
10° b 1
ST~ — ] 10° 1
107k g
_ —
2107 E 1 1w0°¢} g
w
—
-5
10°F E :
10 10 L |
. 10710 L i
10° E
10*12 L |
107F E
-14
B [T B
10°} E :
1079 L L 10715 L L 10716 L L
0 0.2 0.4 0 0.2 0.4 0 0.2 0.4
Angle a Angle a Angle a

Figure 2.4: Log—plot of error versus angular parameter « for e = 0.05,0.1,0.2 in Example 2 for

different values of N
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Figure 2.5: Log-plot of error versus angular parameter o for e = 107#,1073,1072 in Example

3 for different values of N
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Figure 2.6: Log—plot of error versus angular parameter « for e = 0.05,0.1,0.2 in Example 3 for

different values of N
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Figure 2.7: Log-log plot of maximum relative error versus € in Example 1

exact solution: ></(><2 + yz) Ri=p, =&, R,=p, +¢ where € 0 [10e-6 , 0.95]

Error

-16

10

— N=128

10 10 10 10 10"

Figure 2.8: Log-log plot of maximum relative error versus e in Example 2
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Figure 2.9: Log-log plot of maximum relative error versus € in Example 3
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Figure 2.10: Log-log plot of maximum relative error versus € in Example 1
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Chapter 3

A Matrix Decomposition MF'S
Algorithm for Biharmonic Problems

in Annular Domains

3.1 Introduction

The Method of Fundamental Solutions (MFS) is a meshless technique for the numerical solution
of certain elliptic boundary value problems. It is applicable when the fundamental solution of
the elliptic operator in question is known. In the MFS, singularities of the fundamental solution,
are avoided by the introduction of a fictitious boundary exterior to the problem geometry (the
pseudo—boundary). Thus the approximate solution satisfies the underlying partial differential
equation. Since the method was first introduced by Kupradze and Aleksidze [49] in 1964, and
was first proposed as a numerical technique by Mathon and Johnston [59] in 1977, it has been
applied to a wide variety of physical problems. In recent years, this technique has become very
popular because of its simplicity and ease of implementation. Details concerning the various

aspects and applications of the MFS can be found in the recent survey papers [18| 19, 26].

There are two different formulations of the MFS. In one, the singularities are fixed, whereas in
the other they are determined as part of the solution of the discrete problem. The latter, which
results in a nonlinear least—squares problem, was used for the solution of biharmonic problems

in [38, 39, 40]. The MFS with fixed singularities, which results in a linear system, was used for

91



92 CHAPTER 3. MATRIX DECOMPOSITION MFS ALGORITHM

the solution of biharmonic problems in circular domains in [71]. This version of the MFS was
also used for the solution of three—dimensional biharmonic problems in axisymmetric domains
in [20]. In this study, we shall be using the MFS with fixed singularities for the solution of
biharmonic problems in annular domains. We shall be extending the ideas used in [71] as
well as those of chapter 2, where the MFS was used for the solution of harmonic problems in
annular domains. A variant of the MF'S involving Green’s functions was applied to the solution

of harmonic problems in annular domains in [42].

3.2 MFS formulation

We consider the boundary value problem

A%y =0 in
ou
u=fi and e g1 on 0%, (3.1)
u = f2 and @ = g2 On 892 s
\ on

where the domain €2 is the annulus
Q={xecR®: g <|z| <0}, (3.2)

A denotes the Laplace operator and f1, fo, g1 and go are given functions. The boundary of (2

is 02 = 01 U 09y where 0€); and 02y are the circles with radii p; and g9, respectively.

In the MFS, the solution u is approximated by (see [18, 68])

2N
un(p,v, Q5 P) = Y {uiki(P,Q)) +vika(P,Qp)}, PeQ, (3.3)
j=1
where p = (ui,...,pon)!, v = (vi,v9,...,108)" and Q is a 4N —vector containing the

coordinates of the singularities Q;, j = 1,...,2N, which lie outside Q. The function k; (P, Q)

is a fundamental solution of Laplace’s equation given by

k(P,Q) = —5_log|P - Q. (34)
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and the function ko(P, Q) is a fundamental solution of the biharmonic equation given by
1
ka(P.Q) =~ |P - QP log|P - Q] (3.5)

The singularities ); are fixed on the pseudo-boundary o0 = 90, U 8, of an annulus

concentric to € and defined by
Q= {zxecR?: R <|z|< Ry},

where Ry > 02 > 01 > R1. The boundary of Q comprises 9, and 8522, the circles with radii
Ry and Ry, respectively. A set of collocation points {P;}2Y] is placed on 9. If P, = (xp,, yp,),

then we take

TP, Q1 COs N y Yp, = 01 sin N ) (36)
and
2(i — 1 2(i — 1
Tpy,, = 02CO8 ! N )W7 YPyy; = 028N G N )W, (3.7)
where ¢ =1,..., N.
If Qj = (l’Qj,ij), then
2(j—1 2(j—1
J:Qj:RlcosWT, ij:Rlsin(jN—i_a)ﬂ, j=1,...,N, (3.8)
and
2(j—14+a)m . 2(j—14a)T
TQy,, = Racos N Yows = Ry sin N (3.9)
where j = 1,...,N. The presence of the angular parameter « € [—%, %] indicates that the

sources are rotated by an angle %TO‘ with respect to the boundary points. This rotation is

known to improve the accuracy of the approximation significantly when the pseudo—boundary

is very close to the boundary. (See [67, 69]).

The vectors of coefficients p and v are determined so that the boundary conditions are satisfied

at the collocation points {P;}2% :

ou .
uN(uﬂVan-Pl):fl(PZ)a %(M,V,Q,R):gl(a), Z:]-a---aNa (310)
and
oun )
uN(l“'aVaQaPN-H) - f?(PN-i-i)? 7(H7V7Q;PN—H) = gQ(PN+i)7 1= 17 v 7N' (311)

on
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This yields a linear system of the form

A [ Ap | Az | Awg 81 f1
A9y | Ao | Aoz | Aoy S2 fe
= , (3.12)
Az | Agz | Ass | Asa t1 g1
Agr | Ago | Asz | Aag ta g2
where
s1= (1, 2y - i)Y, 82 = (UN41, N2y -+ l2N) T
tl = (1/1, V..., VN)T, t2 = (Z/N+1, VN+2, ey VQN)T.
The elements of the matrices A,,,, m,n =1,---,4 are given by

1
(All)z',j = —ﬂlog [P — Qj,
1
(A12)i,j = Tor log |[P; — QN+l
1
(A13)y; = — 1P = Q;j[*log |P; — Q1
1
(A1a)y; =~ |1Pi = Qn+j*10g [P = Qn 51,
1
(Azl)i,j = T or log [Py i — Qj;
1
(A22); ; = =5 log|Pn+i — @y,
1
(A23);; = —g|PN+i— Qjl*log [Py +i — Qjl,

1
(A24); 5 = =g Prei = Qn+j]*1og |Pn i — Qnjl,

1 [(zp, —zq; Yp, — YQ, )
Ag), = (o S oy T T, )
Wais = =5 <\Pz' QP 1P -QP
1 TP, — QN YP — YQn 4
A32~.:—f (JTL +—JTL y
(As2)ig 2 \|Pi = Q42" [P = Quagl?
1
(A33)i,j = T3 [1+42log|P; — Qy” ((xPz - $Qj)nx + (yp, — ij)ny) )
1
(A34>i,j = _g [1 + 2log ‘Pz - QN-I—]'H ((xPz - wQNJrj)nfE + (yPi - yQN+j)ny) >
L [ TPyyi —ZQ, YPxii — Y0,
A41.._—<“Jn TN 799, )
Aadis =57 |Prnri — Q1% [Py — Q12
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1 TPNii — TQN4s YPnii — YQn+
A42)~——< = S Ng + . : ;
Wiy =~ |Prsi = QP " [Py = Qug? !
1
(A43)i,j = _87 [1 + 2log ‘PN-H - QJH ((xPNJri - ij)nw + (yPN+i - ij)ny) )
1
(A44)i,j = _g [1 +2 log |PN+i - QNJer ((l'PN+i - xQN+j)nx + (yPN+i - yQN+j)ny) ’
fori,j =1,..., N, where n; and n, denote the components of the outward normal vector n

to 0 in the x and y directions, respectively.

The matrices Ay, m,n =1,---,4 are circulant.

3.3 Matrix decomposition algorithm

The system (3.12) can be written as

A [ Ap | Az | Awg 81 fi
A A A A s
(Lov) | 212178 Loy (LheoU) | | =mev) RN (3.14)
Az | A3z | A3z | Aza ty g1
Agr | Ago | Auz | Aaa 123 g2
where
1 0 0 O
01 0 O
L =
0 010
00 01

! A square matrix A is circulant (see [15]) if it has the form

o) 1
a1 a» - aw
ay air -+ AaN-1

A=8 & (3.13)
a a3 - a1

This means that the elements of each row are same as the elements of the previous row but moved one position
to the right. The first element of each row is the same as the the last element of the previous row. The circulant

matrix A in (3.13) is usually denoted by A = circ(ai,az,...,an).
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and ® denotes the matrix tensor product. The above system can be written as

UAHU* UA12U* UA13U* UAmUHk USl Ufl
UAy1U* | UAU™* | UAy3U* | UAu U™ Uss U fa (3.15)
UAq U* | UAsgU* | UAssU* | UAgyU* Uty Ugy '
UA41U>|< UA42U* UA43U* UA44U* Ut2 ng
or
D11 | D12 | D13 | D1a 51 f1
Doy | Dag | Doz | Doy %2 _ fs , (3.16)
D3y | D3g | D33 | D3y t g1
Dy1 | Da2 | Dy3 | Dyy to Jo
where
él = U31, éQ = US27 il = Utla i2 = Ut27
f1=Uf1, f2=Uf2, 91=Ug1, §5="Ugs,
and

Dpn = diag()\T",...,)\%"), mn=1,---.4,

are diagonal matrices whose diagonal elements are the eigenvalues of the matrices A, m,n =

1,---,4, respectively.

The solution of system (3.16) can be decomposed into the solution of the N independent 4 x 4

systems
11 | y12 | 413 | 14 a1 F1
A AT AN 5 i
A21 | 222 | )23 | )24 §2 F2
S T L — | = |, i=1,2,---N. (3.17)
NULAE AP AN ti gi
MR AR A 7 97

Having obtained 31, § and #;, 2, we can find s1, s2 and tq, t2, (and hence p,v) from

81 = U*él, S9 = U*ég, t1 = U*il, ity = U*ig.

We thus have the following matrix decomposition algorithm for solving (3.12):
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Description of the algorithm

Step 1: Compute fi=Uf1, fo=Ufz and g, =Ug1, §, = Uga.
Step 2: Construct the diagonal matrices Dy, m,n=1,...,4.
Step 3: Evaluate 81,8, and t;,f by solving N 4 x 4 complex systems.

Step 4: Compute s3 =U%3;, s2=U%32 and 1 = U*fl, iy = U*ig

Analysis of the cost

(i) In Step 1 and Step 4, because of the form of the matrices U and U*, the operations can

be carried out via Fast Fourier Transforms (FFTs) at a cost of O(N log N) operations.
(ii) FFTs can also be used for the evaluation of the diagonal matrices in Step 2.

(iii) The FFT operations are performed using the NAG ([61]) routines CO6FPF, CO6FQF and
CO6FRF.

(iv) In Step 3, we need to solve N complex linear systems of order 4. This is done at a cost

of O(N) operations using the NAG ([61]) routine FO4ADF.

Note. A similar algorithm can also be applied in the case of different combinations of boundary

conditions associated with the biharmonic equation.

3.4 Numerical results

We considered the following numerical examples corresponding to the Dirichlet problem (3.1)

in the annulus defined by 07 =1 and g2 = 2:
Example 1. Problem corresponding to the exact solution

u =zt -yt
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Example 2. In this case we consider a test example from [50], where in polar coordinates

f(0) = —1 and g() = —3(1 + cosf), which corresponds to the exact solution

1 1
u(r,0) = Z(l —7r2)(1 +7cosh) — T

Example 3. Problem corresponding to the exact solution

T

2 2\ &
= € COS —_—% .
u = (z°+y°) y+x2+y2

Example 4. Problem corresponding to the exact solution
u = (22 + y2){(x +iy)® + (z — z'y)3} +{(z+ iy)® + (z — iy)5}.

The maximum relative error in these examples was calculated on a grid of m? points on the

annulus defined by

. 1—1 2m(j —1
(’I“iCOSQ?j,TiSlIlQ?j), Tizgl—l—m_l(QQ—Ql)’ and 29]' = (Tn),
where ¢, = 1,...,m. The parameter m was taken to be equal to 21.

In Figures 3.143.4, we varied the angular parameter o and examined how this affected the
accuracy of the solution for various values of N for different ¢ = 9y — Ry = Ry — 02. The
numerical results indicate that for small €, the accuracy of the solution is dependent on the
angular parameter o«. As e grows this dependence disappears. Further, for a certain range of
values of €, the approximate solution is most accurate for a ~ %. This phenomenon was also
observed in [67, 68] and is valid for all the examples considered in this chapter. (See Figures

3.1-3.4).

We also varied the radii R; and Re which define the circles of the pseudo—boundary for a = 0
and examined how this affected the accuracy of the solution for various values of N. In this
case, we observed that as € increases, the accuracy of the method improves. See Figures|3.5-3.8.

Similar results were observed for a # 0.

Finally, we varied the radius Ry of the external circle of the pseudo—boundary keeping R
fixed and equal to 1/2. We examined how this affected the accuracy of the approximation

of the solution for various values of V. The results of Figures 3.9-3.12] indicate that as Ro
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increases the accuracy improves. However, for larger values of € the accuracy deteriorates.
This phenomenon is due to ill-conditioning and has been repeatedly reported in the literature
[44, 145,165, 67, 68]. In particular, as the radius Ry of the external circle of the pseudo-boundary
increases, the values of the eigenvalues of the submatrices A, m,n = 1,...,4, range from
O(1) to O((%)N / ?). (See [69].) Such small values cannot be captured numerically and this
leads to ill-conditioning of the submatrices and hence of the global matrix in the linear system
(3.12). The consequences of this ill-conditioning can be observed from Figures3.9-3.12, where
the error increases for large values of R and in some cases it is even impossible to solve the

linear systems.

3.5 Conclusions

In this work, we develop an efficient algorithm for the solution of biharmonic problems in
annular domains. This algorithm is based on a matrix decomposition formulation and exploits
the circulant nature of the matrices involved by employing FFTs. The numerical results indicate
that the accuracy of the solution is affected by the angle by which the singularities are rotated
with respect to the boundary points and by the distance of the pseudo—boundary from the

boundary of the annulus.

The ideas developed in this study could also be applied to different elliptic equations, such as
the Helmholtz equation. Also, this algorithm can be applied to three—-dimensional problems.
In particular, one could extend the ideas of this work to axisymmetric multiply connected

shell-type biharmonic problems, in the spirit of the work of [20, [70].
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Figure 3.1: Log—plot of error versus angular parameter « for € in Example 1 for different values

of N.
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Figure 3.2: Log—plot of error versus angular parameter « for € in Example 2 for different values

of N.
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Figure 3.3: Log—plot of error versus angular parameter « for € in Example 3 for different values

of N.
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Chapter 4

A matrix decomposition MFS
algorithm for problems in hollow

axisymmetric domains

4.1 Introduction

In this chapter, we investigate the application of the Method of Fundamental Solutions (MFS)
to certain axisymmetric harmonic and biharmonic problems. In particular, we consider the
MFS with fixed singularities for harmonic and biharmonic problems in axisymmetric hollow
domains. In this work, we extend the ideas developed in [70], where the MFS is applied to
harmonic problems in axisymmetric simply-connected domains, and [20], where the MFS is
applied to the corresponding biharmonic problems. In the problems examined in this study,
the MFS discretization leads to linear systems the coefficient matrices of which have block
circulant structures. Matrix decomposition algorithms are developed for the efficient solution

of these systems. These algorithms also make use of fast Fourier transforms (FFT).

Comprehensive reviews of the recent developments and applications of the MFS and related
methods may be found in the survey papers [13] 18, 19, 26]. Also, the books [16} 25, 46] provide

useful information concerning various implementational and theoretical aspects of the MFS.

The chapter is organized as follows. In Section 4.2, we present the MFS formulation and

the matrix decomposition algorithm for the harmonic case. The corresponding formulation

107
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and algorithm for the biharmonic case are presented in Section 4.3l In Section 4.4/ we describe
various axisymmetric solids we consider. Numerical results are presented in Section4.5. Finally,

in Section 4.6, we give some concluding remarks.

4.2 The harmonic case

4.2.1 MFS formulation
We consider the three-dimensional boundary value problem

Au =0 in €,
u=f on 00,

w=g¢g on 0N,

where A denotes the Laplace operator and f is a given function. The region Q € R3 is
axisymmetric, which means that it is formed by rotating a region ' € R? about the z—axis.
The boundary of  is 9Q = 901 UISy and the boundary of €’ is defined by the two boundary

segments 0] and 99}, which generate 9Q; and 9, respectively.

In the MF'S [18, [71], the solution u is approximated by

M N M N
UMN(C, d, R,S7P) = Z Zcm,n kl(Pa Rm,n) + Z de,n kl(Pa Sm,n)a Peﬁ,
m=1n=1 m=1n=1
where ¢ = (ci1,¢12,. -+, CIN, - - s CM1, - cun) T, d = (dir, dag, ... din, oo darts - oo dun) T

and R, S are 3M N —vectors containing the coordinates of the singularities (sources) Ry, p,
Smm, m=1,...,M, n=1,...,N, which lie outside Q. The function ki(P, R) is the funda-

mental solution of Laplace’s equation in R? given by

1

k(P R) = A7 |P-R|’

with |P — R| denoting the distance between the points P and R. The singularities Ron, Smn
are fixed on the boundary 99 = 9€Q; U, of a solid Q surrounding . The solid €2 is generated
by the rotation of the planar domain Q' which is similar to €. Clearly 8Q; and 85 are similar
to 9 and 99y, respectively. Also, the boundary of € is defined by the segments 8(2/1 and
0(2/2, which generate 0 and 99, respectively. A set of M N collocation points {P; ; }f\ilezl is

chosen on 09 and a set of M N collocation points {Q; }f\i ’1Nj:1 is chosen on 9€2s in the following
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way: We first choose N points { P; }jvzl on the boundary segment 92} and N points {Qj}évzl on
08Y. These can be described by their polar coordinates (rp;, zp;), (rq;, 2q,;), j=1,...,N,
where 7p;, rq, denotes the vertical distance of the points P;, Q) from the z—axis and zp;, 2q;,

denotes the z—coordinate of the points P;, Q); respectively. The points on 0); are taken to be
Tp,; =Tp; COSQ;, Yp,; =Tp; Sin;, zp,, = 2p;,
and the points on 0, are

in,j = TQJ. COS ©;, yQi,j = TQJ. S @;, zQi,j = ZQj,

where ¢; = 2(i — )n/M, i = 1,...,M . Similarly, we choose a set of M N singularities

M,N
m=1,n=

{Rm,n}n]‘{ﬁ,nzl on 9 and a set of M N singularities {Smn} , on 9, by taking Rym =

(me,TL7 yRm,n’ ZRm,n)’ Smfn = (xsm,n ’ yS’m,n’ ZS’m,n)’ and

TRyn = TR, COS wma YQm.n = TRy sin ¢m, ZRmn = ZRpn»
xSm,n - TSn COS z/}mj ySm’n = TSn Sil’l wm7 Zsm’n e ZSn7
where ¢, = 2(a+1i— 1)n/M, i =1,...,M. The parameter a € [—1/2,1/2] describes the

rotation of the singularities in the azimuthal direction. The N points R; are chosen on 8(2’1

whereas the N points S; are chosen on BQ’Q.

In the MFS, the coefficients ¢ are determined so that the boundary condition is satisfied at the

. M,N M,N
boundary points {Pi’j}i:u:l, {Qi:j}izl,jzl:

’LLMN(C, da Ra S; Pi,j) = fl(‘P’i,j)v UMN(C7 da Rv S; Qi,j) = f2(Pi,j)’
i=1,....,M, 7=1,...,N. This yields an 2M N x 2M N linear system of the form

ABY ()2 (L (4.1)

C|D d g

where the matrices A, B, C' and D are block circulant [15] M N x M N matrices, that is

A= CiI"C(Al,Ag,. . .,AN), B = CirC(Bl,BQ, .. .,BN)7

C = CiI‘C(Cl, 02, PN ,CN), D= CiI‘C(Dl, DQ, c. ,DN).
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The matrices Ay, By, Cy, Dy, 0 =1,..., M, are N x N matrices defined by

1 1

A). = Be)iw="—5—"a

( Z)]’n 47T|P17j o Re’n|7 ( E)Jyn 47T‘P17] — SZ77’L|7
1 1

). = s Dy). = )

( f)mn 47 ’Ql,j — R&nl ( Z)]’n dn ‘QIJ - Sf,n’

¢=1,...,M j,n=1,...,N. The system (4.1) can therefore be written as

M M

(ZPH ®Ag>c+ <ZPH ®Bg>d = f.
/=1 (=1
M M

<ZP"1®Cg>c+ <Z7’“®Dz>d = g,
/=1 (=1

where the matrix P is the M x M permutation matrix P = circ (0, 1,0,...,0) and ® denotes

the matrix tensor product?.

4.2.2 Matrix decomposition algorithm

In the case we are examining, a Matrix Decomposition Algorithm [§] involves the reduction
of the 2MN x2MN system (4.1) to M decoupled 2N x 2N systems. This is achieved by

exploiting the block circulant structure of the matrices A, B, C' and D. Let U be the unitary

!The tensor (or Kronecker) product of the m x n matrix V and the £ x k matrix W is the m ¢ x n k matrix

(@] 1
vuW  veW o v, W
Veaw — var W v W e e, W
Vi W U2 W Umn W

Basic properties:

) VeaWeZ) = (VeW)e Z,
(i) (Vi@ W) (Va®@Wa) = (Vile) ®@ (WiWa),

(iii) VoW+2)=VeW+VeeZ (V4+W)Z=VRZ+VRJZ.

A comprehensive list of properties of the tensor product can be found in [15, pp. 22-23] or [58, pp. 597-598].
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M x M Fourier matrix (i.e., UU* = Z)s) which is the conjugate of the matrix (see [15, 67])

1 1 1 1
1 w w? wM—1
1
U* = A2 1 w? w? w2(M-1) ) (4.2)
1 WwM-1 2M-1) WMD) (M-1)

where w = e2™/M Clearly, pre-multiplication of a vector @ by U (respectively, U*) yields the
Discrete Fourier Transform (DFT) of x (respespectively, Inverse Discrete Fourier Transform

(IDFT) of x).

It is well-known [15] that circulant matrices are diagonalized in the following way. If
C = circ(cl,...,cM),

then C = U*DU, where D = diag(¢1,...,¢n), and

M
& =Y cpw=D6-1),
k=1

In particular, the permutation matrix P = circ(0,1,0,...,0) is diagonalized as P = U*TU,
where

T = diag(l,w,wQ,...,wM_l). (4.3)

Next we simplify system (4.1). Let

U®IN‘ 0 A‘B U*®IN‘ 0
0 ‘U@IN C‘D 0 ‘U*@)IN ’
and
¢ U®IN‘ 0 c f U®IN‘ 0 f
d 0 ‘U@IN d )]’ 5 0 ‘U@IN g

Then, after pre-multiplication by Zo ® U ® Iy, (4.1) becomes

- . (4.4)
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Since
M
A = Z'Pk 1 ® Ak,
k=1
then

M M
A:(U@Im(ZPk-l@Ak) F@Iy) =) (UPUY) ®Ak—ZT’f '@ Ay,
k=1 k=1 k=1

and similarly
~ M ~ M ~ M
=Y T"'@B;, C=>T"'9C and D =) T"'®D.
k=1 k=1 k=1

Thus system (4.4) becomes

M M
ZTk—l ® Ay ZTk—l @ By )

k=1 k=1 c f

i 7 p =|— (4.5)
ZTk—l ® Cy ZTk—l ® Dy g

k=1 k=1

The solution of system (4.5)) can therefore be decomposed into the solution of the M independent

2N x 2N systems

C
Gm | — | = , m=1,...,M, (4.6)

where .fm = (me,lv e 7fm,N)T7 gm = (gm,b s 7§m,N)T7

and
. M A M
Ap = S0 0G0 4, B = S WG )
j=1 j=1
; ; (4.8)
Cp = Y Wm0V P, =3 Wm0 p
7j=1 7j=1

m =1,..., M. We thus have the following efficient algorithm for the solution of system (4.5).
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Algorithm

Step 1. Compute f = (URIN)F, g=U®IN)g.

Step 2. Construct the matrices G,,, m=1,..., M.

Step 3. Solve the M systems (4.6).

Step 4. Compute c= (U*®In)c, d=(U"®1In)d.

Remarks

(i) In Step 1, because of the form of the matrix U, the operation is equivalent to performing

N FFTs of dimension M. This can done at a cost of O(NM log M) operations via

an appropriate FFT algorithm. Similarly, in Step 4, because of the form of the matrix

U*, the operation can be carried out via inverse FFTs at a cost of order O(N M log M)

operations.

(ii) In Step 2 we need to perform an M —dimensional inverse FFT, in order to compute the

entries of the matrices Aj, Bj, C’j, ﬁj, j=1,...,M, from (4.8). This can be done at a

cost of O(N2M log M) operations.

(iii) In Step 3, we need to solve M complex linear systems of order N. This is done using an

LU —factorization with partial pivoting at a cost of O(M N3) operations.

(iv) The FFT and inverse FFT operations are performed using the NAG? routines CO6EAF,

CO6FPF, CO6FQF and CO6FRF.

2 Numerical Algorithms Group Library Mark 20, NAG Ltd, Wilkinson House, Jordan Hill Road, Oxford, UK,

2001.
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4.3 The biharmonic case

4.3.1 MPFS formulation

We now consider the three-dimensional boundary value problem

A%y =0 in
u=f and Ou _ on 0N (4.9)
=N on g1 1, .
u= fo and @ =go on O0fs.
\ on

The region Q € R? is axisymmetric and, as in the harmonic case, formed by rotating a region
' € R? about the z—axis. We keep the same notation as in the harmonic case for the

boundaries of  and V.

In the MF'S [18, 20], the solution u is approximated by

M N
umn(cr, ez, da,d2, R, S;P) = > chy o, ki (P, Ry +

M

>
m=1n=1 m=1n=1

M N M

+ > by ki (P Smn) + Y

m=1n=1 m=1n=1
(4.10)
(1 1 1 1 \T (2 2 2 2 2 \T
where €1 = (€[, €l s CIN -1 Chp1r- -2 CUN) 2 €2 = (C115Cls - s CIN - -2 Chp1r - s CUN) s
1 1 \T 2 \T
dl—(d117d127.. le"“7dM17“"dMN> 7d2 <d117d12"' le,.. dMl"“7dMN) 7al’ld;

R, S are 3M N —vectors containing the coordinates of the singularities R, n, Smn, m =
1,...,M, n = 1,...,N, which lie outside Q. The function ko(P,S) is the fundamental so-

lution of the the biharmonic equation in R? given by
ks(P,R) = ——|P - R|
2 ) - 87 .

The 2M N collocation points {P”}Z 1j=1: {Qi; }Z 1.j—1 and the 2M N singularities { Py, WM

mlnl’

{C)T,”L}m’:1 n—1 are chosen in exactly the same way as in the harmonic case.

The coeflicients ¢1, co, d; and dy are determined so that the boundary conditions are satisfied
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. M,N M,N
at the boundary points {P@'J}Z’:’Lj:l; {Qi,j}i:’u:l:

upn(cr,c2,d1,d2, R, S; P j) = fi(Pij), uun(ci,c2,di,d2, R, S;Qi;) = fo(P; ),
0 0

%UMN(Claczad17d27R7S§Pi,j) = q1(Piy), %UMN(CLC%dI’dZvRvS?Qi,j) = g2(Pj),
(4.11)
i=1,...,M, j=1,...,N. This yields an 4M N x 4M N linear system of the form
All A12 A13 A14 c1 .fl
A21 A22 A23 A24 c
B D L (4.12)
A31 A32 A33 A34 dl g1
A41 A42 A43 A44 d2 g2

where the matrices A™, r,s = 1,2, 3,4 are block circulant M N x M N matrices, that is
A" = circ( 1A ... ,AR‘}), r,s=1,2,3,4.
The matrices A™, r,s =1,2,3,4, can be written as
A" = (IyRAP+PRAF+ PR AL+ +PY 1R A} .

For {=1,...,M the N x N submatrices A}* = ((A}*);n), are defined by

y L 1
in 4 | Py — Sl

1 1
(A}S)jm = 8771_’P17]' — Rypl, (A%)jm = 87‘]31"7 — Senl,
1 1 1 1
A21 e — A22 e
(4 )j’" 4m [Q1,5 — Rl (47 )]’" 4 |Q1,5 — Senl

1 1
(AP), = 5-1Q1s — Real, (43, ,, = 5101 — Seal
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where n,,n, and n, denote the components of the outward normal vector to J2 in the z,y

and z directions, respectively, at the points Py j, Q1 ;.

4.3.2 Matrix decomposition algorithm

In this case, a Matrix Decomposition Algorithm involves the reduction of the 4MN x 4M N
system (4.12)) to M decoupled 4N x 4N systems.

Let us denote by H the 4M N x 4M N matrix

Al 1 A12 A13 A14
A21 A22 A23 A24
A31 A32 A33 A34
A41 A42 A43 A44

fpkfl ®A,1€1 kafl ® A]1€2 fpkfl ®A}£3 fpkfl ® A11€4
M fpk—l ® A%l ka—l ® AiQ ka—l ®A%3 rpk—l ® A%4
kZ:l Pk—l ®Ai1 Pk—l ®Ai2 rpk—l ®Ai3 Pk_l ®A%4
kafl ®Ail fpkfl ® A%Q kafl ®Aé3 fpkfl ®Ai4

Clearly,
(UIn) (P @ AP) (U @ Iy) = (UPF'U*) @ A} =T ! @ A},
fork=1,...,M and r,s = 1,2,3,4. Pre-multiplication of system (4.12) by Z, @ U ® Z yields
(ThRURIN)H(T4hQU*®IN) (Za@UR®IN)s = (Tu QU @IN)t,

(4.13)

where s = [e1]|ez|dy|d2])”, t = [f1]f2]g1]92]”, since (U* @ In)(U @ In) = Iyn-

The system (4.13) can be written alternatively

(4.14)
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where
(U ®ZN) c1 231
URIN)c c
5 = (oU®Iy)s = Uein)e 2
U ®Iy)d d,
(U®Iy)ds d,
(U®IN)f1 fi
R U®T, f
i = (LoU®Iy)t= ( N) fa fo
(U®IN)g g1
(U®IN)gs 9>
and
H = (LoU®Iy)H(TioU*@1Iy)
Pkl @ ALl | Ph-l 412 | Ph-1 g A3 | Ph—1g Al4
M Ph=1 g A2 | Ph-1 @ A2 | Ph-1 g A2 | Ph—1 g A2 )
= Y (Lo UeIy) (7, @ U* @ Iy)
port Pl A3l | Ph-1g A3 | Ph-1 g A3 | Ph-1 g AN
Pl Al | PPl A2 | PP Lo A3 | PR Al
TF1o Al | TF1@ AR | TF1@ AR | TF1 @ A}t
i Th=1 A2 | Th=1 @ A22 | TH=1 @ A2 | Th—1 g A2
| TP AT | TRl AR | TRl AB | TE1 @ AN ’
where T is given by (4.3). Therefore, (4.14) becomes
kal ®A}1€1 kal ®A]1€2 kal ®A,1€3 kal ®A,1€4 &1 fl
i T @ A2V | Th-1@ A2 | Th-1 @ AP | Th1 @ A2 &, fs (415)
1 Tk—1®A%1 Tk—l ®Ai2 Tk—l ®A%3 Tk—l ®Ai4 &1 g~1
Tk—1 ®Ail Tk—1 ®Ai2 Tk—1 ®Ai3 Tk—1 ®Ai4 &2 gz

The solution of system (4.15) can therefore be decomposed into the solution of the M inde-
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pendent 4N x 4N systems

where

and

~ -m
e’ Ji
~ -m
cm
o, | =21 = T2 C om=1,..., M, (4.16)
d" g
1 g1
~m ~
d, g5
A Az Ay | Ay
Hm: N N N N )
AL | j42 | f43 ) fdd
M
Akl — i—1 ke
AR =N "m0 AR (4.17)
j=1

k,0=1,2,3,4, m=1,..., M. We thus have the following efficient algorithm

Algorithm

Step 1.

Compute f1 = (URIN)F1, fo= URIN)Ff2, 61 = (URIN)g1, g2 = (U®
IN)g2-

Step 2. Construct the matrices H,, m=1,..., M.
Step 3. Solve (4.16).
Step 4. Compute ¢; = (U* ® Iy)¢é1, ¢ = (U* @ In)éa, di = (U* @ Iy)dy, dy =
(U* ®IN) d~2 .
Remarks

(i) In Step 1, because of the form of the matrix U, the operation is equivalent to performing

N FFTs of dimension M. This can done at a cost of O(NM log M) operations via
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an appropriate FFT algorithm. Similarly, in Step 4, because of the form of the matrix
U*, the operation can be carried out via inverse FFTs at a cost of order O(NM log M)

operations.

(ii) In Step 2, we need to perform an M —dimensional inverse FFT, in order to compute the
entries of the matrices /1’,;3, r,s=1,2,3,4, k=1,..., M, from (4.17). This can be done
at a cost of O(N2M log M) operations.

(iii) In Step 3, we need to solve M complex linear systems of order N. This is done using an

LU —factorization with partial pivoting at a cost of O(M N3) operations.

(iv) The FFT and inverse FFT operations are performed using the NAG routines CO6EAF,
CO6FPF, CO6FQF and CO6FRF.

4.4 Examples of axisymmetric solids

Case I: Thick spherical shell

We first consider the case where the domain © C R3 is the 3-dimensional domain defined by
Q= {xcR®: o <|z| <02} (4.18)

In this case, the 2M N singularities R,, , and Sy, are fixed on the boundary 90 = 001 U0,
of the 3—dimensional domain defined by Q= {x € R® : Ry < |z| < Ry} where Ry < 01 < 02 <
Rs. A set of M N collocation points {Pi,j}i]\i’ljt]jzl is chosen on the boundary 9€; of Q (i.e. the
surface of a sphere of radius 1) and a set of M N collocation points {Qi,j}i]‘i’f?]jzl is chosen on

the boundary 02 (i.e. the surface of a sphere of radius g2) so that if P, ; = (zp, ,yp,;, 2P, ;)

and Q;; = (:UQi,].,yQi,j, zQi,j), then

Tp,; = 01 8inU; cosp;, yp,; =01 sind;sing;, zp,; = 01 cosVy,

xQ,; = 028inV; cospi, Yq,; = 02 sinv; sing;, 2q,, = 02 cosvy,
where ¢; = 2(i — 1)n/M, i=1,...,.M and ¥; = jn/(N+1), j=1,...,N. Note that we
avoid the points corresponding to ¥; = 0 and 9; = 7 as these remain invariant under rotation

in the p—direction and hence lead to singular matrices.
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Similarly, we choose a set of M N singularities {R; J} L on 9 (i.e., the surface of a

7,1]

sphere of radius R;) and a set of M N singularities {S; J} L on 99 (i.e., the surface of a

= 1]
sphere of radius Ry), by taking R;; = (TR, ;, YR, s 2R ,;)s Sij = (¥s; ;5 Ys;,»28; ), With

TR,; = @I sind; cosvi, yr,; = R sindj sint;, zg, ; = Ry cos vy,
zs;,; = Rasin v cos 1, ys,; = Ra sinv; sin 1/)2',,251,,]. = Ry cos v,
2@+i—1)m

where ; = i1=1,....M ,0<a<1.

i )
Case II: Sphere with interior cylinder removed
We next consider the domain Q C R? defined by

Q={zelR’: |z[]<o}~{(z,9,2) eR®: 2> +y?* <of, —h<z<h}, o1,h<po.

In this case a set of M N collocation points {PJ} ; is chosen on the boundary 9€2; of

1= 1]
(i.e., the surface of a cylinder of radius ¢; and height h) and a set of M N collocation points
{Qi; }Zj‘ilN]:l is chosen on the boundary 0y (i.e., the surface of a sphere of radius g2) so that

if Pz g = ('KL'P1 ¥ yp; T ZP, 7) and Qz,j = (inJ 5 yQi,]' ) ZQi,]')a then

Tp,; = Tp; COSY;, Yp; = Tp, Siny;, 2p,; = zp;,
TQ,;, = 02 8invj cosp;, Yq,; = 02 sinv; sing;, 2q,;, = 02 cosvj,
where ¢; = 2(i — 1)n/M, ¢ =1,...,M and ¥; = jn/(N +1), j=1,...,N. The polar
coordinates (T‘pj,ij), j =1,...,N, represent N points on the boundary of the rectangle

(0, 01) X (—h,h).

Similarly, we choose a set of M N singularities {R; ]} L on 90 (ie., the surface of a

= 1]
cylinder of radius R; and height 2H) and a set of M N singularities {.5; ; }f\ilN]:l on 89 (i.e. the
surface of a sphere of radius Rz), by taking R;; = (TR, ;, YR, ;s 2R, ), Sij = (Ts,;,YS: ;5 25:,)

with
':L'Ri,]' = ij COS¢’£3 yRm- = ij Sind}i? ZRi,j = 2Rja
xs,; = Rg sind; cosv, ys,, = Ra sind; siny, zg, , = Ro cos )y,
where ¢; = 2(a +i—1)7/M, i=1,...,M. The polar coordinates (Fg,,2qg,), j = 1,...,N

describe N points on the boundary of the rectangle (0, Ry) x (—H, H) with Ry < 91 < 02 < Ra
and H < h.
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Case III: Cylinder with interior sphere removed
We next consider the following domain
Q= {(x,y,z) ER?: 224y’ <03, —h<z< h} ~ {a} eR?: |z| < gl}, 01 < h,092. (4.19)

In this case a set of M N collocation points {P; J} 1 is chosen on the boundary 9€; of

i= 1 J=
(i.e. the surface of a sphere of radius p1) and a set of M N collocation points {Q; ; }Z 1j=1 18
chosen on the boundary 9, (i.e. the surface of a cylinder of radius g2 and height h) so that
if P j = (zp,,yp,,2p;) and Q;j = (2qQ, ;,Yq, ;> 2Q, ), then
xp,; = 01 sinv; cosyp;, yp,, =01 sind; sing;, zp,; = 01 cosvy,
TQ,; =TQ; COSYi, Yp,; =TQ; SINWi, 2Q,; = 2Q;»

where ¢; = 2(i — )n/M, i=1,...,M and 9¥; = jn/(N+1), j=1,...,N. The polar
coordinates (TQj,sz), j =1,...,N, represent N points on the boundary of the rectangle
(0, 02) x (=h, h).

Similarly, we choose a set of M N singularities { R; j}%’f\;:l on 9§ (i.e. the surface of a sphere

of radius R;) and a set of M N singularities {S; ]} L on 9y (i.e. the surface of a cylinder

21]

of radius Ry and height 2H ), by taking R; ; = (TR, ;, YR, ;» 2R, ), Sij = (s, ,;,Ys:;» 25, ,), With
TR, ; = Risin 9 cos1;, Yr, ; = R sin 9, sin %‘aZRi,j = Ry cos vy,
JUSM — ij COS¢i, ySi’j = rFSj Sinz/)i, ZSZ"J' = 25]')

where ¢; = 2(a+i — 1)m/M, i=1,...,M. The polar coordinates (7s;,Zs;), j = 1,..., N,
describe N points on the boundary of the rectangle (0, Ry) X (—H, H) with Ry < 01 < 92 < Ra
and H > h.

Case IV: Torus with interior torus removed
We finally consider the case where the domain € C R? is defined by

0= {(1’1,1‘2,1:3) ER®: gl < (Va2 +i2—05)’ + 2% < 03}, (4.20)

01 < p2 < p3, where its boundary 99 = 9Q;|J0Qy can be described by the parametric

equations
X1 = 03 cosp + 01 cos cost, y; = g3 sinp + g1 sinp cosd, z; = g1sind,

To = 03 COS( + P2 cOsp cos, Yz = 93 Sinw + g2 sinp cosV, 29 = g2 sind,
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where 0 < ¢ <27, 0< ¢ <27 with (x1,y1,21) € 01 and (z2,y2, 22) € Ia.

We choose a set of M N collocation points {Pu}f\ilj\;:l on the boundary 9Q; of Q (i.e. the

surface of a torus with radii g1, 03) and a set of M N collocation points {Q”}Zj\i ’1Nj:1 on the

boundary 09 (i.e. the surface of a torus with radii oo, 03) so that if P ; = (zp,,,yp,,;, 2P, ;)

and Qi;j = (2Q, ;»¥Q. ;> 2Q.,), then
Tp,, ., = 03 COSQn + 01 COS Yy cOSUm, Yp, , = 03 Sinpy, + 01 singy, cosVy,, 2p,, = 015NV,

Q. = 03 COS Py + 2 COS Py COS Yan, YQum., = 03 SiN Py + 02 sin g, cos Y, 2Qm.n = 028in Y,

where 9., = 2(m —1)n/N, m=1,...,M and ¢, =2(n—1)r/N, n=1,...,N. Similarly,

M,N

we choose a set of M N singularities {R;;},27;_; on O (i.e. the surface of a torus with radii

R1,03) and a set of M N singularities {S’i,j}f\i’szl on 9y (i.e. the surface of a torus with

radii Ry, Q3)> by taking Rl,j = (xRi,jvyRi,jazRi,j% SZ,] N (fL‘Si,jaySi,j» ZSZ-,]-)a where

TR, = Rz cost, + Ry cosy, cosUm, Yr,,, =Rz singy, + Ry sinyy, costp, 2gr,,, = Risinty,,

xS, = Rz cost, + R cosy, cosVm, ys,,, = Rz siny, + Ry sinyy, cosVp,, zs,,, = Rosinty,

where ¢, =2(a+n—1)7/N, n=1,...,N with 0 <a < 1.

4.5 Numerical results

The algorithms described in Sections|4.2.2 and 4.3.2/ were tested in regions defined by the solids

described in Section 4.4, for harmonic and biharmonic problems, respectively.

4.5.1 Harmonic case

In particular, for harmonic problems we considered two examples with boundary conditions

corresponding to the exact solutions:
Example (a) u = cosh(0.3z) cosh(0.4y) cos(0.5z)

Example (b) u = 22 — 2y% + 22

In the description of the numerical results we shall be referring to, say, Example (b) in the

solid described in Case III, as Example 3b.
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In these examples, the maximum relative error was calculated on a uniform grid on the bound-
ary (since all the functions involved are harmonic and the maximum principle applies). In the
cases of the spherical shell (Case I) and the toroidal domain (Case IV) the maximum relative
error was calculated at 2 x 23 x 23 points on the boundary, whereas in the Cases II and III the

maximum relative error was calculated at 2 x 20 x 20 points on the corresponding boundaries.

Case 1

We considered Examples (a) and (b) in a thick spherical shell with g1 = 1, g2 = 2. We varied the
angular parameter a and examined how this affected the accuracy of the MFS approximation
for various values of N and for different ¢ = 91 — R} = Ry — 02 (Figures 4.1}, 4.2 for Examples
(a) and (b), respectively). Because of the symmetry of the problem about o = 1/2, we
only considered 0 < a < 1/2. We present six cases for ¢ = 0.05,0.1,0.2,0.5,0.8,0.95 for
N(= M) = 8,12,16,24, 32,48 and 64. From these results we see that for the smaller values
of & the error appears to have a minimum value for o« =~ 1/4. This is consistent with the
observations reported in [20, [71]. We also varied the radius Ry of the external sphere when
a = 0, while keeping R; fixed and equal to 0.5, and examined how this affected the accuracy
of the approximation for different values of N (Figures 4.9, 4.10, for Examples (a) and (b),
respectively). As can be seen from the figures, the error decreases exponentially as we increase
Ry up to a certain point, beyond which it starts increasing again. This is due to the ill-
conditioning of the corresponding matrices for large Ry (and large N) and was also reported
in [20, 71]. In addition, we varied both radii R; and Ry (of the inner and external spheres,
respectively) simultaneously and examined how this affected the accuracy of the approximation
for various N (Figures 4.17, [4.18|, for Examples (a) and (b), respectively). The conclusions we
draw from these figures are very similar to the ones drawn from Figures 4.9, [4.10, namely that

the error decreases up to a certain value of €, beyond which it starts increasing.

Case 11

We considered Examples (a) and (b) in a sphere with an interior cylinder removed with h =
2, 01 =1 and g2 = 2. We varied a and examined how this affected the accuracy of the MFS
approximation for different N and for different ¢ = h— H = p; — Ry = Ry — 02 (Figures4.3, 4.4
for Examples (a) and (b), respectively). We present the cases ¢ = 0.05,0.1,0.2,0.5,0.8,0.95 for
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N(= M) = 8,12,16,24,32,48 and 64. In this geometry no minima appear, even for small values
of . In Figures [4.11/ and 4.12, we varied the radius Ry of the external sphere, while keeping
both H and R; fixed and equal to 0.5, for various values of N. The results are consistent with
the results observed in Case I. The same conclusions can be drawn from Figures [4.19, 4.20

where we varied both Ry and H(R;).

Case III

We considered Examples (a) and (b) in a cylinder with an interior sphere removed with
o1 = 1and h = 4, po = 2. When we varied a for ¢ = H —h = Ry — 0o = 01 — R1 =
0.05, 0.1, 0.2, 0.5, 0.8, 0.95, in Figures [4.5/ and 4.6, as in Case I, we observed that, for the
smaller values of e, the error has a minimum for o ~ 1/4. In Figures 4.13, 4.14 we varied
Ry while while keeping both H and R; fixed and equal to 0.5, and in Figures 4.21, [4.22 we
varied both H and Rs. The results are consistent with the previous cases, namely that the

error decreases exponentially up to a certain point after which starts increasing.

Case IV

We considered Examples (a) and (b) in a torus with an interior torus removed with g1 = 1,
02 = 2 and g3 = 5. In Figures 4.7/ and 4.8, we varied a and examined how this affected the
accuracy of the approximation for various values of IV and for different ¢ = o1 — Ry = Rs — 0o.
We present the cases ¢ = 0.05,0.1,0.2,0.5,0.8,0.95 for N(= M) = 8,12, 16,24,32,48 and 64.
As in previous cases, we see that for the smaller values of € the error appears to have a minimum
value for a ~ 1/4. In Figures 4.15 and 4.16/ we varied Ry, while keeping R; fixed and equal
to 0.5 and in Figures4.23 and 4.24/ we varied both R; and Ry. In all these cases we observed

that as € increased the accuracy improved until a certain point beyond which it deteriorated.

4.5.2 Biharmonic case

For biharmonic problems we considered two examples with boundary conditions corresponding

to the exact solutions:
Example (c) u = (2% + y? + 22) cosh(0.3x) cosh(0.4y) cos(0.5z)

Example (d) u = z* — 2y* + 2*
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In the description of the numerical results we shall be referring to, say, Example (c) in the solid

described in Case III, as Example 3c.

In these examples, the maximum relative error was calculated on a uniform grid in the interior
of the domain. In the cases of the spherical shell (Case I) and the toroidal domain (Case IV)
the maximum relative error was calculated at 20 x 23 x 23 interior points, whereas in the Cases

IT and IIT the maximum relative error was calculated at 20 x 20 x 20 interior points.

Case 1

We considered Examples (¢) and (d) in a thick spherical shell with g1 = 1, oo = 2. We
varied o and examined how this affected the accuracy of the MFS approximation for various
values of N and for different &€ = 91 — Ry = Ry — o2 (Figures [4.25, 4.26 for Examples (a)
and (b), respectively). We present six cases ¢ = 0.05,0.1,0.2,0.5,0.8,0.95 for N(= M) =
8,12,16,24,32,48 and 64, and, as in the harmonic case, for certain values of € there appears
to be a minimum at o ~ 1/4. We also varied the radius Ry of the external sphere when
a = 0, while keeping R; fixed and equal to 0.5 (Figures 4.33, 4.34 for Examples (c¢) and (d),
respectively). As in the harmonic case, the error decreases exponentially as we increase R up
to a certain point, beyond which it starts increasing again, due to the ill-conditioning of the
corresponding matrices. We also varied both R; and Ra simultaneously (Figures4.41, 4.42 for
Examples (c) and (d), respectively) and as observed in Figures 4.33) [4.34 the error decreases

up to a certain value of ¢ beyond which it starts increasing.

Case 11

We considered Examples (c) and (d) in a sphere with an interior cylinder removed with h =
2, 01 =1 and g3 = 2. We varied « for various values of N and for different e = h — H =
01 — R1 = Ry — g2 (Figures 4.27, 4.28 for Examples (c) and (d), respectively). We present
the cases ¢ = 0.05,0.1,0.2,0.5,0.8,0.95 for N(= M) = 8,12,16,24,32,48 and 64. As was
observed in the harmonic case, there is no indication of a minimum for this geometry, even for
small values of €. In Figures 4.35 and 4.36, we varied the radius Rs of the external sphere,
while keeping both H and R; fixed and equal to 0.5, for various values of N. The results were
consistent with the results observed in Case I. The same conclusions can be drawn from Figures

4.43,4.44 where we varied both Ry and H(Ry).



4.6. CONCLUSIONS 127

Case III

We considered Examples (¢) and (d) in a cylinder with an interior sphere removed with g1 = 1
and h =4, o0y = 2. In Figures 4.29 and 4.30| we present the variation of a for e = H — h =
Ry — 00 = o1 — R = 0.05,0.1,0.2,0.5,0.8,0.95. Unlike the corresponding geometry in the
harmonic case, no minima were observed for the values of ¢ we considered. In Figures [4.37,
4.38 we varied Ry while while keeping both H and R; fixed and equal to 0.5, and in Figures
4.45,14.46 we varied both H and Ry. The results are consistent with the previous cases, namely

that the error decreases exponentially up to a certain point after which starts increasing.

Case IV

We considered Examples (c¢) and (d) in a torus with an interior torus removed with g1 = 1,
02 = 2 and p3 = 5. In Figures 4.31] and 4.32, we varied a and examined how this affected
the accuracy of the MFS approximation for N(= M) = 8,12, 16, 24, 32,48, 64 and for different
€ =p01— R = Ry — 0o =0.05,0.1,0.2,0.5,0.8,0.95. For certain values of ¢ and N there is a
minimum at o &~ 1/4. In Figures 4.39 and 4.40/ we varied Ro, while keeping R; fixed and equal
to 0.5 and in Figures [4.47 and 4.48 we varied both R, and Ry. In all these cases we observed

that as € increased the accuracy improved until a certain point beyond which it deteriorated.

4.6 Conclusions

In this chapter we propose efficient MFS algorithms for the solution of harmonic and bihar-
monic problems in hollow axisymmetric domains. These algorithms, which rely on matrix
decomposition techniques with the use of FFTs, can also be applied to hollow axisymmet-
ric problems governed by other differential equations such as the Helmholtz equation and the
Cauchy—Navier equations of elasticity. Further, other boundary method discretizations also
lead to the block circulant structures of the matrices arising in the problems examined in this
study. The algorithms proposed in this work could thus be employed in conjunction with other

boundary methods, such as the Boundary Element Method.
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Figure 4.1: Log—plot of error versus angular parameter « for ¢ = 0.05, 0.1, 0.2, 0.5, 0.8, 0.95

in Example 1a for different values of N.
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Figure 4.2: Log—plot of error versus angular parameter « for ¢ = 0.05, 0.1, 0.2, 0.5, 0.8, 0.95

in Example 1b for different values of N.
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Figure 4.3: Log—plot of error versus angular parameter « for ¢ = 0.05, 0.1, 0.2, 0.5, 0.8, 0.95

in Example 2a for different values of N.
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Figure 4.4: Log—plot of error versus angular parameter « for ¢ = 0.05, 0.1, 0.2, 0.5, 0.8, 0.95

in Example 2b for different values of N.
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Figure 4.5: Log—plot of error versus angular parameter « for e = 0.05, 0.1, 0.2, 0.5, 0.8, 0.95
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Figure 4.6: Log—plot of error versus angular parameter « for e = 0.05, 0.1, 0.2, 0.5, 0.8, 0.95

in Example 3b for different values of N.



134 CHAPTER 4. MFS FOR PROBLEMS IN HOLLOW AXISYMMETRIC DOMAINS

) £=0.05 ) €=01 ) €=02
10" —— N=8 10 10
N=12 y
—_ = N:16 // '’ 7 -
= N=24 |~ L P P
— N=32 |, T o] N e == - =
5 N=48 | Fos s = - I -
5 — — N=64 ~ -
10° 10° 10°
0 01 02 03 04 05 0 01 02 03 04 05 0 01 02 03 04 05
Angle a Angle a Angle a
£€=05 £€=0.38 £=0.95
107 J\/ 10° 10°
5 oo sl T sl L S
] ——— —_
10° 10° 10°
0 01 02 03 04 05 0 01 02 03 04 05 0 01 02 03 04 05
Angle o Angle o Angle o

Figure 4.7: Log—plot of error versus angular parameter « for e = 0.05, 0.1, 0.2, 0.5, 0.8, 0.95

in Example 4a for different values of V.
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Figure 4.8: Log—plot of error versus angular parameter « for e = 0.05, 0.1, 0.2, 0.5, 0.8, 0.95

in Example 4b for different values of V.
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f1=f2=cosh(0.3x)cosh(0.4y)cos(0.52) R2:p2 +& where ¢ [0 [10e-1, 50]
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Figure 4.9: Log—log plot of maximum relative error versus ¢ in Example 1la.
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Figure 4.10: Log—log plot of maximum relative error versus ¢ in Example 1b.
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Figure 4.11: Log-log plot of maximum relative error versus € in Example 2a.
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Figure 4.12: Log—log plot of maximum relative error versus ¢ in Example 2b.
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f1=f2=cosh(0.3x)cosh(0.4y)cos(0.52) R,=p, +¢ where € 0 [10e-1, 50]
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Figure 4.13: Log-log plot of maximum relative error versus € in Example 3a.
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Figure 4.14: Log-log plot of maximum relative error versus ¢ in Example 3b.
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Figure 4.15: Log-log plot of maximum relative error versus € in Example 4a.
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Figure 4.16: Log-log plot of maximum relative error versus ¢ in Example 4b.
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Figure 4.17: Log—log plot of maximum relative error versus ¢ in Example 1a.

Figure 4.18: Log-log plot of maximum relative error versus ¢ in Example 1b.
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Figure 4.19: Log—log plot of maximum relative error versus € in Example 2a.
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Figure 4.20: Log-log plot of maximum relative error versus € in Example 2b.
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Figure 4.21: Log—log plot of maximum relative error versus
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Figure 4.22: Log-log plot of maximum relative error versus € in Example 3b.
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Figure 4.23: Log-log plot of maximum relative error versus € in Example 4a.
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Figure 4.24: Log-log plot of maximum relative error versus ¢ in Example 4b.
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Figure 4.25: Log—plot of error versus angular parameter « for e = 0.05, 0.1, 0.2, 0.5, 0.8, 0.95

in Example 1c¢ for different values of N.
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Figure 4.26: Log—plot of error versus angular parameter « for e = 0.05, 0.1, 0.2, 0.5, 0.8, 0.95

in Example 1d for different values of V.
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Figure 4.27: Log—plot of error versus angular parameter « for e = 0.05, 0.1, 0.2, 0.5, 0.8, 0.95

in Example 2¢ for different values of N.
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Figure 4.28: Log—plot of error versus angular parameter a for ¢ = 0.05, 0.1, 0.2, 0.5, 0.8, 0.95

in Example 2d for different values of V.
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Figure 4.31: Log—plot of error versus angular parameter « for ¢ = 0.05, 0.1, 0.2, 0.5, 0.8, 0.95

in Example 4c¢ for different values of N.
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Figure 4.32: Log—plot of error versus angular parameter « for e = 0.05, 0.1, 0.2, 0.5, 0.8, 0.95
in Example 4d for different values of V.
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f1=f2=(x2 +y2 + zz) cosh(0.3x)cosh(0.4y)cos(0.5z) R2:p2 +£ where € [J [10e-1, 50]
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Figure 4.33: Log—log plot of maximum relative error versus ¢ in Example lc.
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Figure 4.34: Log-log plot of maximum relative error versus € in Example 1d.
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Figure 4.36: Log-log plot of maximum relative error versus € in Example 2d.

relative error versus € in Example 2c.



152 CHAPTER 4. MFS FOR PROBLEMS IN HOLLOW AXISYMMETRIC DOMAINS
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Figure 4.37: Log—log plot of maximum relative error versus € in Example 3c.
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Figure 4.38: Log-log plot of maximum relative error versus € in Example 3d.
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Figure 4.39: Log—log plot of maximum relative error versus ¢ in Example 4c.
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Figure 4.40: Log-log plot of maximum relative error versus € in Example 4d.
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Figure 4.41: Log-log plot of maximum relative error versus € in Example 1c.
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Figure 4.42: Log-log plot of maximum relative error versus € in Example 1d.
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Figure 4.45: Log-log plot of maximum relative error versus € in Example 3c.
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Figure 4.46: Log-log plot of maximum relative error versus € in Example 3d.
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Figure 4.47: Log—log plot of maximum relative error versus € in Example 4c.
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Figure 4.48: Log-log plot of maximum relative error versus € in Example 4d.
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Chapter 5

Conclusions

Our main goal in this thesis is to investigate the application of the MFS to certain problems
in rotationally symmetric domains. In particular, we study the application of the MFS to
certain harmonic and biharmonic problems in annular domains (Chapters 2 and 3) and to

hollow axisymmetric domains (Chapter 4).

In the first chapter we apply the MFS to harmonic problems in annular domains subject
to Dirichlet boundary conditions. This application is studied from both a theoretical and an
implementational standpoint. The properties of the coefficient matrix are investigated in detail,
and an efficient algorithm for the numerical solution of the problem is proposed. Subsequently,
it is shown that, for analytic boundary data, the MFS approximation converges exponentially

to the exact solution.

The second chapter is devoted to the development of an efficient algorithm for the solution
of biharmonic problems in annular domains. This algorithm is an extension of the algorithm
developed in the first chapter for harmonic problems and is based on a matrix decomposition
formulation which exploits the circulant nature of the matrices involved by employing FFTs.
The numerical results indicate that, as was the case with harmonic problems, the accuracy of
the solution is affected by (i) the angle by which the singularities are rotated with respect to
the boundary points and (ii) the distance of the pseudo-boundary from the boundary of the

annulus.

In the third chapter we propose efficient MFS algorithms for the solution of harmonic and

biharmonic problems in hollow axisymmetric domains. In particular, we consider the MF'S for
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the solution of harmonic and biharmonic problems in axisymmetric hollow domains. We extend
the ideas developed in [70], where the MFS is applied to harmonic problems in axisymmetric
simply-connected domains, and [20], where the MFS is applied to the corresponding biharmonic
problems. The MF'S discretization leads to linear systems the coefficient matrices of which have
block circulant structures. Matrix decomposition algorithms are developed for the efficient

solution of these systems. These algorithms also make use of FFTs.

In all the examples we considered in this thesis, in both two and three dimansions, we observed
the following phenomenon: When the distance of the pseudo-boundary from the boundary of
the domain under consideration is small, the accuracy of the solution is affected by the angle by
which the singularities are rotated with respect to the boundary points. Further, there appears
to be optimal value for this angle. This has not been explained theoretically yet and could be

an interesting question to investigate.

In the axisymmetric problems we considered, the way in which we distributed the boundary
points and the singularities may not be optimal from a conditioning standpoint. For instance,
in the case of the sphere we have a condensation of points in the north and south poles, while
the distribution is much sparser elsewhere. A systematic way of developing a more uniform
distribution of boundary points and the effect of this on the conditioning of the MFS matrices
could be studied further.

The algorithms developed in this thesis could be extended to the solution of two and three-
dimensional axisymmetric problems governed by the Helmholtz equation and the Cauchy-

Navier equations of elasticity.

The block circulant structure of the coefficient matrices arising in the approximation of func-
tions in two—dimensions using radial basis functions can be exploited in a way analogous to
the methods described in this thesis. This has been the subject of [37] where similar matrix
decomposition algorithms were developed. The (non-trivial) extension of such algorithms to
the approximation of functions in three-dimensions using Radial Basis Functions is yet to be

investigated.

Recently, there has been activity in the application of the MFS to problems in the area of
geometric modelling [74]. This could prove to be an exciting new area of research with many

applications in computer-aided design and computer-aided manufacturing applications.
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In the past, the MFS has been successfully applied to two-dimensional steady-state free surface
problems. The application of the MF'S to three-dimensional steady-state free surface problems,
as well as to two- and three-dimensional time-dependent free surface problems, could be the

subject of future research.

One of the most important open questions regarding the application of the MFS is the optimal
placement of the singularities. This question is to a great extent addressed by the use of
the version of the MFS which uses moving singularities. This approach, however, is often
prohibitively computationally costly. The improvement of the efficiency of the MFS with
moving singularities could be an area of future research. One idea would be to exploit the fact
that the coefficients in the MFS expansions appear linearly. This, to the best of our knowledge
has not yet been exploited. We also need to investigate whether more efficient non-linear least
squares solvers are available. Another open question is to what extent the use of parallelization

would improve the efficiency of the method.

Finally, the ill-conditioning of the MFS matrices should be studied further. This occurs the
pseudoboundary is placed far from the boundary of the domain under consideration. An inter-
esting approach for overcoming this problem could be the use of appropriate pre—conditioning

techniques.
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