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Abstract

Consider the problem of estimating and comparing several spectral densities, say G, and

assume that the �rst G−1 of them are related with the last one by an exponential model.

Based on the asymptotic properties of periodogram ordinates, we develop parametric

likelihood inference for this model. More speci�cally, we study in detail the asymptotic

behavior of the maximum likelihood estimator under the semiparametric model. The

results can be applied in a variety of situations including linear processes. Simulations

and data analysis support further the theoretical �ndings.

The new methodology is applied to time series clustering. Methods for clustering

are based on the calculation of suitable similarity measures which identi�es the distance

between two or more time series. New measures of distance are proposed and they are

based on the so{called cepstral coe�cients which carry information about the log spectrum

of a stationary time series. These coe�cients are estimated by means of the semiparametric

model which was discussed earlier. After estimation, the estimated cepstral distance

measures are given as an input to a clustering method to produce the disjoint groups

of data. Simulated examples show that the method yields good results, even when the

processes are not necessarily linear.
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Ðåñßëçøç

Èåùñïýìå ôï ðñüâëçìá åêôßìçóçò êáé óýãêñéóçò ðïëëþí öáóìáôéêþí óõíáñôÞóåùí ðõ-

êíïôÞôùí ðéèáíïôÞôáò, Ýóôù G. ÕðïèÝôïõìå üôé ïé G − 1 áðü áõôÝò óõíäÝïíôáé ìå ôçí

ôåëåõôáßá ìÝóù åíüò êáôÜëëçëïõ çìéðáñáìåôñéêïý åêèåôéêïý ìïíôÝëïõ. Áðü ôéò áóõìðôù-

ôéêÝò éäéüôçôåò ôïõ ðåñéïäïãñÜììáôïò, áíáðôýóóïõìå ðáñáìåôñéêÞ óõìðåñáóìáôïëïãßá ìå

âÜóç ôçí ó÷åôéêÞ ðéèáíïöÜíåéá ãéá Ýíá çìéðáñáìåôñéêü ìïíôÝëï. Ôá áðïôåëÝóìáôá ìðï-

ñïýí íá åöáñìïóôïýí óå ìéá ðëçèþñá êáôáóôÜóåùí óõìðåñéëáìâáíïìÝíïõ ôùí ãñáììéêþí

äéáäéêáóéþí. Ðñïóïìïéþóåéò êáé áíÜëõóç äåäïìÝíùí õðïóôçñßæïõí ðåñáéôÝñù ôá èåùñçôéêÜ

áðïôåëÝóìáôá.

Ç íÝá ìåèïäïëïãßá åöáñìüæåôáé óå ÷ñïíïóåéñÝò ãéá áíÜëõóç êáôÜ óõóôÜäåò. ÃåíéêÝò

ìåèüäïé ãéá ôçí áíÜëõóç êáôÜ óõóôÜäåò óôçñßæïíôáé óôïí õðïëïãéóìü ìéáò áðüóôáóçò ìå-

ôáîý äýï Þ ðåñéóóüôåñùí ÷ñïíïóåéñþí. ÍÝåò áðïóôÜóåéò ðñïôåßíïíôáé êáé ï õðïëïãéóìüò

ôïõò âáóßæåôáé óôïõò óõíôåëåóôÝò Fourier ôçò ëïãáñéèìéêÞò öáóìáôéêÞò óõíÜñôçóçò ðõêíü-

ôçôáò ðéèáíüôçôáò. Ïé óõíôåëåóôÝò åêôéìþíôáé ìå âÜóç ôï ðñïáíáöåñèÝí çìéðáñáìåôñéêü

ìïíôÝëï. Ïé êáéíïýñãéåò ìåôñéêÝò ðñïóäéïñßæïõí ôï äéá÷ùñéóìü ôùí äåäïìÝíùí êáëýôåñá

óå ó÷Ýóç ìå ôéò Þäç õðÜñ÷ïõóåò.
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Chapter 1

Introduction

A time series is a collection of random variables, say {Yt}, t = 1; : : : ; N , ordered in time.

The seminal texts by Priestley (1981), Brockwell and Davis (1991) and Shumway and

Sto�er (2006) to name a few, provide an introduction to the subject while discussing

statistical analysis and forecasting. The assumptions of stationarity, Gaussianity and

linearity dominate the results in this area. In particular, stationarity implies the existence

of the so called spectral density function under some assumptions{an important tool for

time series data analysis.

The main goal of this thesis is to show how to compare several independent spectral

density functions. This problem occurs frequently in diverse applications. Consider for

instance Figure 1.1 which depicts the �rst 150 photometric measurements{out of 1000{

that have been obtained under some certain chemical conditions, for determining the

absorbance of a Cu(II) solution at three di�erent wavelengths during a time period of 100

seconds. We denote by Yit the three observed time series where i = 1; 2; 3 corresponds

to the three distinct wavelengths, that is 465nm, 665nm and 865nm, respectively. The

scienti�c question that is posed is whether or not there exists stability of the emission

intensity of the source at di�erent wavelengths. Equivalently, the problem can be posed as

whether or not the dynamics of the three observed processes share certain characteristics.

More details for these data are available in Section 3.7.2 but it is pointed out that similar

questions arise naturally in many other di�erent disciplines.

These data motivate this part of research, namely whether or not certain second order

properties of several independent processes can be identi�ed and shown to be similar. It is

customary, in time series analysis, that second order properties of a stationary process to

be studied by means of the spectral density function. However, to explore how second order

1
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2

properties of several processes can be compared, we propose a model which connects the

"spectral density ratio" of the last spectral density to the rest. To be more speci�c, consider

the previous photometry data example and suppose that �i(!), ! ∈ (−�; �), stands for

the corresponding spectral density function of the process Yit, i = 1; 2; 3. Setting as

reference the spectral density �3(!) we consider the ratios �1(!)=�3(!) and �2(!)=�3(!),

for modeling, estimation and inference through a �nite dimensional parameter. Notice that

within the proposed framework, it is not important what denominator will be used to form

these ratios; it is rather a matter of convenience since the inferential results are not altered.

The approach is quite general and it will be shown that processes like the well-known

ARMA processes fall within this framework. In addition, the assumption of normality

does not a�ect the results. Based on this method, the data reveals processes with similar

second order structure by using standard estimation and testing theory. Additionally, the

problem of testing whether two or more spectral densities are equal reduces to a parametric

problem whose solution is given by the asymptotic properties of periodogram ordinates

and related theory, see also (Taniguchi and Kakizawa, 2000, Ch. 6).

The use of spectral ratio modeling has been initiated by Coates and Diggle (1986) and

discussed further in the text by Diggle (1990), see also Brillinger (1981, Sec. 7.9) who

has a good discussion on several series arising from designs of experiments. In addition,

Diggle and Fisher (1991) proposed a graphical procedure for the comparison of two peri-

odograms and they suggested a non parametric test for the equality of two spectra. Some

related work can be found in Cameron and Turner (1987) and Beran (1993) who show

the problem of spectral density estimation can be reformulated in terms of a generalized

linear model. Likelihood ratio modeling of two or more probability density functions has

been also considered by Fokianos (2004) in the context of biased sampling models. Some

other related works to the comparison of spectral densities are given by Timmer et al.

(1999) who concentrate on spectral peaks, by Maharaj (2002) who compares evolutionary

spectra of non-stationary processes using randomization tests and by Dette and Paparo-

ditis (2007) who propose a test based on an appropriate L2-distance measure between the

nonparametrically estimated individual spectral densities and an overall pooled spectral

density estimator. Also Biau et al. (2005) develops a procedure for classifying curves based
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Figure 1.1: Time series plots of the �rst 150 photometric measurements of the absorbance
of Cu (II) solution at three di�erent wavelengths. (a) Y1t, (b) Y2t, (c) Y3t.

on their Fourier transforms. They show that when used in conjunction with the k-nearest-

neighbors approach their classi�cation procedure is consistent. Finally Choi et al. (2008)

uses the log ratio of periodograms (symmetrized) for testing changes in adjacent blocks

of time series. This approach is based on a frequency-by-frequency comparison approach.

In contrast, the proposed approach is based on the direct comparison of the spectral den-

sities. The approach which is based on a frequency-by-frequency comparison leads to the

identi�cation of frequencies which contribute the most to any foreseen di�erences between

the spectral densities. However, the approach which is based on comparing the spectral

densities directly o�ers an overall dissimilarity measure between several time series.

This work extends the research of Coates and Diggle (1986) and Diggle (1990) to the

case of multiple time series in several directions. The proposed method does not rely

to any speci�c parametric forms and it only assumes that the log{likelihood ratio of the

spectral densities is linear in a sense that will be described in the next sections. In addition

thorough asymptotic theory is developed along the lines of (Taniguchi and Kakizawa, 2000,
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4

Ch. 6).

Parametric testing and the spectral density ratio model allows for clustering of time

series. Classi�cation and clustering are data reduction methods for massive data sets

that so frequently occur in applications. The purpose of clustering, which is the main

interest of the second part of the thesis, is to obtain an assignment rule which divides the

data set into homogeneous groups. Here, the notion of homogeneity means that objects

within the group are similar while objects between groups are not that similar with respect

to second order properties. In the context of independent data these concepts have been

studied extensively, see Johnson and Wichern (1992) and Hastie et al. (2001), for instance.

However, for massive time series data sets, which appear very often in applications, there

does not seem to be such an extensive literature. The aim of this work is to contribute

towards this research by introducing similarity (or dissimilarity) measures based on the

so called cepstral coe�cients. These coe�cients are simply the Fourier coe�cients of

the log spectrum of a stationary process. Hence, the methodology is developed in the

frequency domain which simpli�es calculations because of the asymptotic independence of

periodogram ordinates. In addition, focusing on spectral domain yields clustering of time

series with similar second order structure{that is a feature based approach. This is one

aspect of our work. The additional feature, which can be called as model based approach,

is the employment of the semi parametric model that was discussed before. Using this

model, we estimate a distance between two or more time series and then apply a speci�c

clustering algorithm. Some di�erent approaches have been suggested in the literature but

a detailed review of the topic will be given later. We only mention here that the closest

approach to ours is that taken by Kalpakis et al. (2001) who have studied the euclidian

distance between cepstral coe�cients of two or more time series in the context of ARIMA

modeling. However there are fundamental di�erences between their approach and the

method that is suggested in this work. More details and further references will be given

later but the interested reader should see Liao (2005) and Shumway and Sto�er (2006) for

a comprehensive review on the topic of clustering time series.

Motivation for studying this problem comes from the need of identifying similar physic-

ochemical properties{such as hydrophobicity{of amino acid sequences, as proclaimed in

the spectral domain. Identifying similar structures is useful for successful discrimination
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5

among protein sequences which belong into distinct biologically relevant classes. Con-

sider for instance, bacterial pathogenicity. It is well known that this physiological process,

requires the export of certain proteins. These proteins are initially synthesized at the ri-

bosomes which are located in the bacterial cytoplasm, and transported to the periplasmic

space or the surrounding medium. This functionality is mediated by specialized transport

molecules that help selected proteins to cross the otherwise impermeable to them lipid

bilayer of the bacterial plasma membrane. Although several secretion pathways exist,

it has been shown that{at least in the vast majority of known cases{all the information

required for the initial export of bacterial proteins from the plasma membrane resides in

short sequence segments. These segments are termed as signal peptides and are of variable

length. They are located in the N-terminal region of the nascent polypeptide chain, see

Emanuelsson et al. (2000). More speci�cally, these N-terminal signals are recognized by

special protein molecules that assist their translocation through dedicated transmembrane

protein channels located on the bacterial plasma membrane. The best characterized se-

cretion pathway so far is the so{called Sec-dependent pathway. A general feature of signal

peptides is a tripartite sequential structure consisting of a positively charged n-region,

followed by a hydrophobic h-region and a polar uncharged c-region of variable respec-

tive lengths, see Emanuelsson et al. (2000). A novel pathway, namely the Tat (Twin

arginine translocation) pathway, has been recently discovered in bacteria, Berks (1996);

Berks et al. (2005). Although there seems to exist signi�cant di�erences in the molecular

mechanism of protein export via those two pathways, proteins entering the Tat pathway

have signal peptides with a tripartite structure resembling the one of proteins exported

by the Sec molecular machinery. Nevertheless, they often possess two (initially thought

invariant) consecutive arginine amino acid residues at the border between the n- and h-

regions (Bendtsen et al. (2005)). Aiming to reveal hidden protein sequence features, we

have performed an analysis of �xed-length N-terminal amino acid sequences (50 residues

long) from di�erent bacterial proteins with experimental evidence for the presence of a

secretory N-terminal signal peptide, either of the classical or of the Tat form. To carry out

the identi�cation of similar hidden features in amino acid sequences of well characterized

proteins bearing either Tat- or Sec-machinery speci�c secretory signal peptides we con-

sider standard spectral domain clustering techniques together with the cepstral distance
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which was discussed earlier. It is not aimed to develop a prediction method neither to

benchmark di�erent clustering techniques, but rather to illustrate the power of novel cep-

stral coe�cient{based spectral analysis tools in biological sequence analysis. As a general

remark, spectral analysis tools have been extensively used in biological and biomedical

research for more than two decades. In particular, there have been many successful appli-

cations in Computational Biology in diverge areas such as gene �nding (Issac et al. (2002)),

periodicity analysis (Pasquier et al. (2001)), proteomics (Yates (2004)), study of �brous

proteins (McLachlan and Stewart (1976)) and protein functional classi�cation (Pasquier

et al. (1998)). Very recently, cepstral{based measures have been used in an application of

protein classi�cation, in a proof{of{principle demonstration (Pham (2006)).

In summary, this thesis suggests a new model for the comparison of several independent

spectral density functions. Estimation and testing are discussed in detail while the new

method points out to new cepstral based clustering techniques.
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Chapter 2

The Exponential Model for the
Spectrum of a Stationary Process

2.1 Introduction

In this section we set up the basic notation and model assumptions. We de�ne stationarity,

the spectral density function of a stationary process and the periodogram, an essential

tool for the sequel. The basic model we refer to is the so called exponential model for

the spectrum of a stationary process which was introduced by Bloom�eld (1973). Also we

have some examples from the exponential model and we discuss a way to generate data

from this class, of models following Pourahmadi (1983), Pourahmadi (1984) and Holan

(2004). Finally note that the monograph Britton (1983) is also relevant to the exponential

spectrum theory.

2.2 Notation and Model Assumptions

Most of following material is based on the texts of Priestley (1981) and Brockwell and

Davis (1991).

De�nition 2.2.1. (The Autocovariance Function) If {Xt; t ∈ Z}, Z = {0;±1;±2; · · ·}, is

a process such that V ar(Xt) < ∞ for each t ∈ Z, where Z = {0;±1;±2; · · ·}, then the

autocovariance function is de�ned by


x(r; s) = Cov(Xr; Xs) = E[(Xr − EXr)(Xs − EXs)] ; r; s ∈ Z

The concept of stationarity is of central importance to the �eld of time series. Basically,

the main notion is that the second order properties of the process do not depend on time

but rather on the lag separation between two di�erent time points.

7
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De�nition 2.2.2. (Stationarity) A time series {Xt; t ∈ Z} is said to be stationary if:

(i) E|Xt|2 <∞ for all t ∈ Z,

(ii) EXt = m for all t ∈ Z,

(iii) 
x(r; s) = 
x(r + t; s+ t) for all r; s; t ∈ Z.

In particular, property (iii) from above shows that 
x(r; s) = 
x(r− s) which is a function

of one variable.

Every stationary stochastic process with absolutely summable autocovariance function

possess its spectral density function which is simply the inverse Fourier transform of the

autocovariance function, see Brockwell and Davis (1991, Ch. 4.3).

De�nition 2.2.3. (Spectral density function) Suppose that {Xt; t ∈ Z} is a stationary

process with E(Xt) = 0 and autocovariance function 
x(:) satisfying

+∞∑

h=−∞
|
x(h)| <∞:

Then, the spectral density of {Xt} is de�ned by

�x(!) =
1

2�

∞∑

h=−∞

x(h) exp(−ih!); − � ≤ ! ≤ �:

Non parametric estimation of the spectral density function, is based on the following

quantity which is called the periodogram, see Brockwell and Davis (1991, Ch. 10.1).

De�nition 2.2.4. (Periodogram) Consider X := (X1; · · · ; XN), where X1; · · · ; XN is an

arbitrary set of observations made at times 1; : : : ; N . The value I(!i) of the periodogram

of X at frequency !i = 2�i=N , i = 1; : : : ; [(N − 1)=2] is de�ned by:

IX(!i) =
1

2�N

∣∣∣∣∣
N∑
t=1

Xt exp(−it!i)
∣∣∣∣∣

2

;

where [y] denotes the integer part of y.
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De�nition 2.2.5. (Extension of the Periodogram) For any ! ∈ [−�; �] the periodogram

is de�ned as follows:

IX(!) =

{
IX(!k); if !k − �

N < ! ≤ !k + �
N and 0 ≤ ! ≤ �

IX(−!); if ! ∈ [−�; 0]

Proposition 2.2.1. (Brockwell and Davis (1991, Ch.10.3)). If {Xt} is stationary with

mean � and absolutely summable autocovariance function 
x(:), then the following hold:

i) EIX(0)− n
2��

2 → �(0);

ii) EIX(!) → �(!) if ! 6= 0:

In particular, when � = 0, then EIX(!) converges uniformly to �(!) on [−�; �]:

It turns out that the periodogram ordinates are asymptotically independent. More

precisely, the following is true:

Proposition 2.2.2. (Brockwell and Davis (1991, Ch.10.3)). Suppose that {Xt} ∼ IID(0; �2)

and let IX(!), −� ≤ ! ≤ �, denote the periodogram of {X1; · · · ; XN} as given by De�ni-

tion 2.2.5. Then the following hold:

i) If 0 < !1 < · · · < !m < � then the random vector (IX(!1); · · · ; IX(!m))
′ converges in

distribution as N →∞ to a vector of independent and exponentially distributed random

variable, each with mean �2:

ii) If EX4
1 = ��4 <∞ and !j = 2�j=n ∈ [0; �], then

V ar(IX(!j)) =

{
1

4�2 (N−1(� − 3)�4 + 2�4); if !j = 0 or �
1

4�2 (N−1(� − 3)�4 + �4); if 0 < !j < �

and

Cov(IX(!j); IX(!k)) =
1

4�2
(N−1(� − 3)�4) if !j 6= !k
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In particular, if Xt is a Gaussian time series, then �−3 = 0 so that IX(!j) and IX(!k)

are uncorrelated for j 6= k:

Theorem 2.2.1. (Priestley (1981, Ch. 6.1.3)). If {Xt} is a Gaussian random process

with zero mean and variance �2 then the IX(!k); k = 1; : : : ; [(N−1)=2]; are independently

distributed, and for each k,

IX(!k) =

{
1
4��

2�2
2; k 6= 0; N

2
(N even)

1
2��

2�2
1; k = 0; N

2

In what follows, we will focus on processes which possess absolutely continuous spec-

trum. In particular, we will be concerned with the general linear process of the form

Xt =
∞∑

u=−∞
gu�t−u (2.1)

where {�t} is a sequence of independent and identically distributed random variables with

E[�t] = 0 and variance V ar[�t] = �2
� <∞: In addition, assume that

∞∑
u=−∞

|gu| <∞

Then according to Priestley (1981)[Ch. 10.1.1], the autocovariance function 
x(:) of

Xt satis�es
∞∑

h=−∞
|
x(h)| <∞:

The last condition implies the existence of the spectral density function of Xt; see Def-

inition 2.2.3. A useful fact that holds for linear process of the general form (2.1) and

will be utilized in the sequel is that the periodogram ordinates IX(!j) and IX(!k) are

asymptotically independent for all j 6= k such that

IX(!) ∼ �x(!)X 2
2

2
; 0 < ! < �;

where X 2
d is the chi{square distribution with d degrees of freedom, see Brockwell and Davis

(1991) and Proposition 2.2.2. Notice that for the above distributional results and when

N is even, the value ! = � is excluded since in this case the distribution is proportional

to the X 2
1 . The following are true.
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Theorem 2.2.2. (Brockwell and Davis (1991, Ch. 10.3)). Let {Xt} be a general linear

process of the form 2.1 in which the {�t} are independent with E(�t) = 0; V ar(�t) = �2;

E(�4t ) <∞; and
∑∞

u=−∞ |gu||u|1=2 <∞: Then,

IN;X(!k) = 2��(!k)
1

�2
IN;�(!k) +RN(!k);

where,

max
!k∈[0;�]

E |RN(!k)|2 → O
(

1

N

)
;

Theorem 2.2.2, is of special importance since it allows us to obtain asymptotic expres-

sion for the sampling properties of IN;X(!) directly from the known results on IN;�(!).

Thus if {�t} are normal and the {gu} satisfy the required conditions we may deduce

from Theorem 2.2.1 that, asymptotically, the set of random variables {IN;X=f(!k)}; k =

0; 1; · · · ; [(N−1)=2] are independently distributed, and for k 6= 0; N=2 (N even),we have

that

IN;X(!k) ∼
{

1
2
�(!k)�2

2; k 6= 0; N
2

(N even),

�(!k)�2
1 k = 0; N

2

: (2.2)

A well known example of a linear process (2.1) that has been studied extensively in

the literature is the zero mean ARMA(p; q) process.

De�nition 2.2.6. The process {Xt; t = 0;±1;±2; · · ·} is said to be an ARMA(p; q) pro-

cess if {Xt} is stationary and if for every t,

Xt =

p∑
r=1

�rXt−r + �t −
q∑
r=1

 r�t−r (2.3)

where {�t} ∼ WN(0; �2). We say that {Xt} is an ARMA(p; q) process with mean � if

{Xt − �} is an ARMA(p; q) process.

2.3 The Exponential Model

The exponential model for the spectrum of a stationary process was introduced by Bloom-

�eld (1973). It is based on the observation that the logarithm of an estimated spectral
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density is a fairly well behaved function and therefore can be well approximated by a trun-

cated Fourier series. More speci�cally, suppose that, the spectral density can be expressed

as

�(!) =
� 2

2�
exp

(
2

p∑
r=1

�r cos(r!)

)
; 0 < ! < �; (2.4)

=
� 2

2�
h(!; �)

where � 2 and � = (�1; · · · ; �p) are unknown parameters. Notice that since the exponent

consists of cosine functions, we have that �(!) = �(−!). Model (2.4) is de�ned as the

exponential model of order p and it will be denoted as EXP(p).

An equivalent de�nition is given by Holan (2004) and is based on the following argu-

ment. Suppose that �(!) is the true spectral density function and assume further that is

de�ned on the unit interval 0 ≤ ! < 1. Also �(!) = �(1−!): To approximate the spectral

density �(!) consider the exponential spectral models of order p which can be de�ned by:

log ��;p(!) = �0 + 2

p∑

k=1

�k cos(2�k!) (2.5)

where,

�0 =

∫ 1

0

log ��;p(!)d!:

When log �(!) is absolutely integrable on (0; 1), the Fourier coe�cients of log �(!) are

de�ned by:

�k =

∫ 1

0

log �(!) cos(2�k!)d!; k = 0; 1; : : : ;

and are referred as cepstral correlation coe�cients. Because the system

C = {1; cos(2�!); cos(2�2!); · · ·} of cosine functions is complete for C[0; 1], the class

of continuous functions on [0; 1], we have that log ��;p(!) converges to log �(!) in mean

square as p → ∞, see Hart (1997). In addition, the system C forms an orthogonal basis

for C[0; 1], which implies that any continuous function on the interval [0; 1], can be well

approximated by a �nite linear combination of the elements of C. Often in practice, when

�tting the EXP model to short memory spectra the �k decay to 0 quickly implying that

there exist a small value of p such that

log ��;p(!) ≈ log �(!); ∀ ! ∈ [0; 1]:
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An alternative modeling approach can be based on the use of Legendre polynomials and

Hermite polynomials functions of the standard normal quantile function{see Parzen (1993)

who suggests (2.4) for testing goodness of �t of a spectral density model. Walker (1964)

discusses estimation of the general model

�(!; �) =
� 2

2�
h(!; �):

One way to estimate � is by using a Newton-Raphson minimization procedure, for more

details see Bloom�eld (1973). However, we will resort to the theory of generalized linear

models.

2.4 GLM Inference for the Exponential Model

Estimation of the exponential model EXP(p) is based on the methodology of generalized

linear models as it was described by McCullagh and Nelder (1989) and Cameron and

Turner (1987).

In a generalized model we observe a random variable y with mean � and distribution

F , see McCullagh and Nelder (1989). The mean � depends on explanatory variables

u1; · · · ; uk through a link function v such that

v(�) = �0 + �1u1 + · · ·+ �kuk:

We assume that Iy(!j) can be approximated by �(!j; �)�j; where !j have been de�ned in

De�nition 2.2.4 and from Thm. 2.2.2, �j are independent exponential random variables

with mean 1. Therefore, set yj = Iy(!j) to obtain that E(yj) = � = �(!j; �). Suppose now

that there exists a link function v such that v(�) is linear in the parameters �1; · · · ; �M .

Thus, assume that

v(�) = �1u1(!) + �2u2(!) + · · ·+ �MuM(!)

for suitably chosen functions u1; u2; · · · ; uM . We are then in the situation of generalized

linear models with y equal to the periodogram, exponential distribution F , explanatory

variables u1(!); u2(!); · · · ; uM(!); and link function v. A natural choice of the link function

is given by

v(�) = log(�)
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Hence, inference regarding the exponential model of order p is carried out by numerous

statistical languages that include GLM �tting. A more general de�nition of the EXP(p)

has been given by Beran (1994).

De�nition 2.4.1. (Fractional EXP process) Let g : [−�; �] → R+ be a positive function

such that

lim
!→0

g(!)

!
= 1

and g(!) = g(−!). De�ne �0 ≡ 1, and let �1; �2; · · · ; �p be functions that are smooth

in the whole interval [−�; �]. Also, assume that �k(!) = �k(−!) and for any n, the

n∗×(p+1) matrix H with column vectors {fk(2�=n); fk(2�2=n); fk(2�3=n); hf (2�n∗=n)}T ,

(k = 0; 1; · · · ; p) is nonsingular. Furthermore, let � = (�0; H; �1; · · · ; �p) be a real vector

with 1=2 ≤ H < 1. We call {Xt} a fractional EXP process (or an FEXP process) with

short-memory components �1; · · · ; �p and long-memory component g, if its spectral density

is given by

�(!; �) = g(!)1−2H exp

( p∑
j=0

�j�j(!)

)

Two classes of FEXP models are especially useful.

1) g(!) = |1 − ei!|, �k(!) = cos k! (k = 0; 1; · · · ; p) and H = 1
2
, we obtain the model

class proposed by Bloom�eld (1973). The spectral density is a product of factors

of the form exp(bj cos k!). The logarithm of the spectral density is assumed to be

decomposable into a �nite number of cosines:

log �(!) = �0 + �1 cos(!) + �2 cos(2!) + · · ·+ �p cos p!:

Therefore, in its generality, Bloom�eld's class is comparable to ARMA models: any

smooth spectral density can be approximated with arbitrary accuracy, when p is

large enough.

2) g(!) = |1− ei!|; hk(!) = !k (k = 0; 1; · · · ; p). The logarithm of the spectral density

is the sum of the long-memory component (1− 2H) log! and a polynomial in !. A

data example with H = 1=2, where a second-order polynomial (p = 2) makes sense

intuitively, is given in Diggle (1990). In addition , Diggle multiplied the spectrum

by an AR(1) spectrum of the form 1=(1− 2� cos! + �2).
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2.5 Examples

Here we will show that any ARMA process can be approximated by an exponential model

by choosing its order arbitrarily large. Recall De�nition 2.3. For these processes, if

Ψ(z) = 1−∑q
i=1  iz

i and Φ(z) = 1−∑p
i=1 �iz

i have no common zeroes and Φ(z) has no

zeroes on the unit circle, then their spectral density function is given by, (Brockwell and

Davis (1991, Ch.4.4))

�x(!) =
�2

2�

∣∣∣∣
1−∑q

r=1  re
ir!

1−∑p
r=1 �reir!

∣∣∣∣
2

: (2.6)

Lemma 2.5.1. Suppose that {Xt} is a stationary ARMA(p; q) time series and let �x(!)

denote its spectral density. Then

log �x(!) = log �2 − log 2� + 2
∞∑
r=1

( p∑

k=1

brk −
q∑

l=1

crl

)
cos r!
r

;

where cl (respectively bk) are the reciprocals of the roots of the polynomial Ψ(z) (respec-

tively Φ(z)).

Proof: To show the result consider

1−
q∑

l=1

 leil! = (1− c1z) · · · (1− cqz);

where z = ei!.

Then,

log(1−
q∑

l=1

 leil!) =

q∑

l=1

log(1− clz)

= −
q∑

l=1

∞∑
r=1

crl zr

r

= −
q∑

l=1

∞∑
r=1

crl eir!

r
:

Similarly,

log(1−
q∑

l=1

 le−il!) = −
q∑

l=1

∞∑
r=1

crl e−ir!

r
:

Working along the previous lines we obtain that

1−
p∑

k=1

�keik! = (1− b1z) · · · (1− bpz):
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Then,

log(1−
p∑

k=1

�keik!) =

p∑

k=1

log(1− bkz)

= −
p∑

k=1

∞∑
r=1

brkzr

r

= −
p∑

k=1

∞∑
r=1

brkeir!

r

and

log(1−
p∑

k=1

�ke−ik!) = −
p∑

k=1

∞∑
r=1

brke−ir!

r
:

Thus,

log �x(!) = log �2 − log 2�

+ log(1−
q∑

l=1

 leil!) + log(1−
q∑

l=1

 le−il!)

− log(1−
p∑

k=1

�keik!)− log(1−
p∑

k=1

�ke−ik!)

= log �2 − log 2� + 2
∞∑
r=1

( p∑

k=1

brk −
q∑

l=1

crl

)
cos r!
r

:

Some examples illustrate the results of Lemma 2.5.1.

Example 2.5.1. Suppose that {Xt} is an AR(1) process, that is

Xt = �Xt−1 + �t

with |�| < 1 and {�t} a white noise sequence with variance �2
� . Lemma 2.5.1 shows that

log �x(!) = log �2
� − log 2� + 2

∞∑
r=1

�r

r
cos(r!)

since bk = �; cl = 0. Hence, according to (2.5), the spectral density of an AR(1) process can

be approximated by an EXP(p) model with �r = �r=r. Table 2.1 below shows the values

of the parameters for selected values of �. If we set v = !=2� in the above representation

we will have only changes in scale. Thus

log �x(2�v) = log �2
� + 2

∞∑
r=1

�r

r
cos(2�rv);
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that is �0 = log �2
� . If the errors are standard Gaussian random variables, then �0 = 0.

Table 2.1: Coe�cients of the EXP(7) model (2.5) for AR(1) process for di�erent parameter
values

�0 �1 �2 �3 �4 �5 �6 �7

� = −0:8 0 -0.8 0.32 -0.17 0.102 -0.065 0.043 -0.029
� = −0:5 0 -0.5 0.125 -0.041 0.015 -0.006 0.002 -0.001
� = −0:3 0 -0.3 0.045 -0.009 0.002 -4E-04 1E-04 -3E-05
� = −0:1 0 -0.1 0.005 -3E-04 2E-05 -2E-06 1E-07 -1E-08
� = +0:1 0 0.1 0.005 3E-04 2E-05 2E-06 1E-07 1E-08
� = +0:3 0 0.3 0.045 0.009 0.002 4E-04 1E-04 3E-05
� = +0:5 0 0.5 0.125 0.041 0.015 0.006 0.002 0.001
� = +0:8 0 0.8 0.32 0.17 0.102 0.065 0.043 0.029

Example 2.5.2. Suppose that {Xt} is an AR(2) process, that is

Xt = �1Xt−1 + �2Xt−2 + �t

with �1 + �2 < 1; |�2| < 1 and �1− �2 < 1 and {�t} a white noise sequence with variance

�2
� . Lemma 2.5.1 shows that:

log �x(!) = log �2
� − log 2� + 2

∞∑
r=1

(�1 +
√
�2

1 + 4�2)
r + (�1 −

√
�2

1 + 4�2)
r

r2r
cos(r!)

since

cl = 0

b1 = − 2�2

�1 +
√
�2

1 − 4�2

;

b2 = − 2�2

�1 −
√
�2

1 − 4�2

:

Hence, according to (2.5), the spectral density of an AR(2) process can be approximated

by an EXP(p) model with �r =
(�1+

√
�2

1+4�2)r+(�1−
√
�2

1+4�2)r

r2r : Table 2.2 below shows the

values of the parameters for selected values of �1 and �2. Setting v = !=2�, yields the

same observation as in Example 2.5.1.

Example 2.5.3. Suppose that {Xt} is an ARMA(1; 1) process, that is

Xt = �Xt−1 −  �t−1 + �t

Alex
ios

 Sav
vid

es



18

Table 2.2: Coe�cients of the EXP(7) model (2.5) for AR(2) process with di�erent param-
eter values

�0 �1 �2 �3 �4 �5 �6 �7

(�1; �2) = (−0:3; 0:5) 0 -0.3 0.545 -0.159 0.172 -0.088 0.079 -0.052
(�1; �2) = (−0:8; 0:3) 0 -0.8 0.62 -0.41 0.339 -0.291 0.261 -0.242
(�1; �2) = (−0:1; 0:8) 0 -0.1 0.8 -0.08 0.328 -0.064 0.18 -0.05
(�1; �2) = (0:3; 0:6) 0 0.3 0.645 0.189 0.236 0.124 0.125 0.085
(�1; �2) = (0:4; 0:4) 0 0.4 0.48 0.181 0.15 0.091 0.07 0.05

Table 2.3: Coe�cients of the EXP(7) model (2.5) for ARMA(1,1) process and di�erent
parameter values

�0 �1 �2 �3 �4 �5 �6 �7

(�;  ) = (−0:3; 0:5) 0 -0.8 -0.08 -0.05 -0.013 -0.006 -0.002 -0.001
(�;  ) = (−0:8; 0:3) 0 -1.1 0.275 -0.179 0.1 -0.066 0.043 -0.029
(�;  ) = (−0:1; 0:8) 0 -0.9 -0.315 -0.171 -0.102 -0.065 -0.043 -0.029
(�;  ) = (0:3; 0:6) 0 -0.3 -0.135 -0.063 -0.03 -0.015 -0.007 -0.003
(�;  ) = (0:4; 0:4) 0 0 0 0 0 0 0 0

with |�| < 1 and | | < 1 and {�t} a white noise sequence with variance �2
� . Lemma

2.5.1 shows that:

log �x(!) = log �2
� − log 2� + 2

∞∑
r=1

(�r −  r)
r

cos(r!)

since cl =  ; bk = �: Hence, according to (2.5), the spectral density of an ARMA(1; 1)

process can be approximated by an EXP(p) model with �r = (�r− r)=r. Table 2.3 below

shows the values of the parameters for selected values of � and  .

2.6 Generating Data from the Exponential Model

There are several methods to generate data from the exponential model. Davies and Harte

(1987) proposed an exact frequency domain method, Percival (1992) describes an exact

time domain method. Holan (2004) proposes to make use of Pourhamadi's formula, see

Pourahmadi (1983). The main essence is to use the MA(∞) representation for the EXP(p)

process. Let

log ��;p(!) = �0 + 2

p∑

k=1

�k cos(k2�!)
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be the logarithmic EXP(p) representation associated with the process {Yt} and let

Yt =  0Y v(t) +  1Y v(t− 1) +  2Y v(t− 2) + · · ·

be its associated MA(∞) representation ( 0 ≡ 1). Here Y v(t), for all t, is the innova-

tion process which is Gaussian. Pourahmadi's formula enables direct computation of the

coe�cients  h from �k by employing the following recursions:

 0 = 1

 h =
1

h

h∑

k=1

k�k h−k; h = 1; 2; · · ·

The following algorithm details how to simulate samples {Yt} from the EXP(p) model:

1. Given the EXP(p) model calculate  0;  1; · · · ;  q for q su�ciently large, for instance

q ≥ 1000), using Pourahmadi's formula.

2. For k = 0; 1; · · · ; q compute

SSsim(k) =
SS(k)
SS(q)

=

∑k
h=0  

2
h∑q

h=0  2
h
:

3. Find the largest value of k such that SSsim(k) < 1 − � for example SSsim(k) =

0:9999999):

4. Form the process

Y (t) =  0Y v(t) +  1Y v(t− 1) + · · ·+  kY v(t− k):

Then

log ��;p(!) = �0 + 2

p∑

k=1

�k cos(k2�!)

≈ log


�2

∣∣∣∣∣
k∑

h=0

 h exp(2�ih!)

∣∣∣∣∣

2

 ;

where �2 = exp(�0) and  0 ≡ 1:

5. Simulate the process {Xt} from its kth order truncated MA(∞) representation using

N (0; �2 = exp(�0)) innovations.

Figure 2.1 shows a plot of two realizations from the EXP(2) model (2.4), using 150 obser-

vations. In particular for plot (a) we choose parameter � = (−0:5;−0:90; 0:40) and for

plot (b) � = (0:5; 0:30; 0:15):
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(a)

Time

0 50 100 150

−
3

0
2

(b)

Time

0 50 100 150

−
4

−
1

1
3

Figure 2.1: 150 observations from EXP(2) model (2.4) with (a) � = (−0:5;−0:90; 0:40)
and (b) � = (0:5; 0:30; 0:15):
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Chapter 3

Inference for two or more independent
time series

3.1 Introduction

In this section we will develop methodology of comparing several independent time series.

In addition we state some results that show how to proceed with likelihood inference

and we develop large sample theory about testing the equality of spectral densities. The

proposed method will be illustrated empirically by means of a simulated study which

includes several examples. An analysis of photometric data that was presented in the

Introduction integrates the presentation.

3.2 The case of two time series

The following lemma is of special importance in the sequel (see Johnson and Kotz (1970)).

Lemma 3.2.1. Suppose that X ∼ �1X 2
2 =2; and Y ∼ �2X 2

2 =2 and X;Y are independent.

Then

W := log
X
Y
∼ Logistic

(
log

�1

�2

; 1
)
;

where Logistic(�; 1) denotes the logistic random variable with distribution function

F (x) = {1 + e−(x−�)}−1; −∞ < x <∞:

Notice that for X ∼ Logistic(�; 1), we have that E(X) = � and V ar(X) = �2=3.

Consider two independent stationary time series {Xt; t = 1; : : : ; n} and {Yt; t = 1; : : : ; n}

21
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generated by a linear process (2.1) with spectral densities �x and �y respectively given

by De�nition 2.2.3. Now let Ix(!) and Iy(!) be the periodograms of {Xt} and {Yt}
respectively, given by De�nition 2.2.4. Then, according to Theorem 2.2.2

Ix(!) converges assymtotically to �x(!)�2
2=2 (0 < ! < �);

Iy(!) converges assymtotically to �y(!)�2
2=2 (0 < ! < �):

Writing J(!) = Ix(!)=Iy(!) and �(!) = �x(!)=�y(!), it follows from Lemma 3.2.1

that

log J(!) converges assymtotically to Logistic(log �(!); 1); (3.1)

asymptotically. Hence, log J(!) is an asymptotically unbiased but inconsistent estimator

for the log spectral ratio log �(!) and that its asymptotic variance is independent of !:

On the basis of the above observation, Coates and Diggle (1986) and (Diggle, 1990,

Ch.4.8) discuss tests of the following hypotheses

H1 : �x(!) = �y(!); 0 < ! < �;

H2 : �x(!) = ��y(!); 0 < ! < �:

A generalized likelihood ratio test is constructed within the framework of the logistic

distribution (3.1) by adapting the quadratic model

log �(!) = � + �! + 
!2: (3.2)

The quadratic model is a improvement over the linear model obtained by setting 
 = 0.

A further advantage of using the parametric approach is that H1 and H2 are nested

hypotheses, corresponding to � = � = 
 = 0 and � = 
 = 0 respectively. This means

that standard likelihood inference can be carried out within this framework. Indeed,

let Ti := log J(!i); i = 1; · · · ;m: Then (3.1) and (3.2) together give the log-likelihood

function

log likelihood =
m∑
i=1

(−ti + �+ i� + i2

)− 2

m∑
i=1

log
{
1 + exp(−ti + �+ i� + i2
)

}
;

on which inference can be based. Statistical tests for H1 and H2 are computed by the

standard asymptotic chi{square distribution of the likelihood ratio test.
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3.3 The case of multiple time series

We extend the above results to the case of multiple time series. First, we generalize Lemma

3.2.1.

Lemma 3.3.1. Suppose that Xj, j = 1; 2; : : : ; G are independent random variables which

are distributed as �jX 2
2 =2, �j > 0. Then, the random variables

Tj = log
Xj

XG
; j = 1; 2; : : : ; G− 1

are distributed according to the following multivariate density function

fT1;:::;TG−1
(t1; : : : ; tG−1) =

(G− 1)! exp
(∑G−1

i=1 (ti − log �i)
)

(
1 +

∑G−1
i=1 exp(ti − log �i)

)G ; t1; : : : ; tG−1 ∈ R;

where �i = �i=�G, i = 1; 2; : : : ; G− 1.

Proof: The joint distribution of (X1; : : : ; XG)
′ is given by

f(x1; x2; · · · ; xG) =
1

�1�2 · · ·�G exp

[
−

(
x1

�1

+
x2

�2

+ · · ·+ xG
�G

)]
; x1; : : : ; xG > 0:

Now let,

Ti = log
Xi

XG
and �i =

�i
�G

for i = 1; : : : ; G− 1:

Then, by introducing the variable W = XG , the inverse transformation is given by

Xi = WeTi and XG = W for i = 1; : : : ; G− 1:

The Jacobean of the transformation equals to
∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

WeT1 0 ::: 0 eT1

0 weT2 ::: 0 eT2

: 0 0 :

: : ::: : :

0 0 ::: WeTG−1 eTG−1

0 0 ::: 0 1

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

= WG−1eT1+T2+···+TG−1 :

It follows that the joint distribution of (T1; T2; : : : ; TG−1;W )
′ is computed as

f(t1; t2; · · · ; tG−1; w) =
1

�1�2 · · ·�G e
−

(
wet1
�1

+···+wetG−1

�G−1
+ w
�G

)

× wG−1et1+t2+···+tG−1 ; w > 0; t1; : : : ; tG−1 ∈ R:
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Therefore, the marginal of (T1; T2; : : : ; TG−1)
′ is computed by integrating out W :

f(t1; t2; · · · ; tG−1) =

∫ ∞

0

1

�1�2 · · ·�G e
−w

(
et1
�1

+···+ etG−1

�G−1
+ 1
�G

)

wG−1et1+t2+···+tG−1dw

=
et1+t2+···+tG−1

�1�2 · · ·�G

∫ ∞

0

e
−w

(
et1
�1

+···+ etG−1

�G−1
+ 1
�G

)

wG−1dw

=
Γ(G)et1+t2+···+tG−1

�1�2 · · ·�G
(
et1
�1

+ · · ·+ etG−1

�G−1
+ 1

�G

)G

=
(G− 1)!et1+t2+···+tG−1

�1�2 · · ·�G−1
1

�G−1
G

(
et1
�1
�G

+ · · ·+ etG−1

�G−1
�G

+ 1

)G

=
(G− 1)!e[(t1−log�1)+(t2−log �2)+···+(tG−1−log�G−1)]

(et1−log�1 + · · ·+ etG−1−log�G−1 + 1)G
; t1 : : : ; tG−1 ∈ R:

The above Lemma in connection with the asymptotic distribution of periodogram

shows that a reasonable way to model the spectral densities of several independent sta-

tionary stochastic processes can be based on their logarithmic ratio. Suppose that

{Yjt; t = 1; 2; : : : ; N} are independent stationary time series and let �j(!) be their corre-

sponding spectral density function, for j = 1; 2; : : : ; G. Suppose that the following model

holds,

log �j(!) ≡ log
�j(!)

�G(!)
= �Tj Z(!);−� < ! < �; (3.3)

for j = 1; 2; : : : ; G − 1 where, �j = (aj0; aj1; · · · ; ajp)T is an (p + 1){dimensional vector of

unknown parameters to be estimated by the data and

Z(!) = (1; 2 cos!; 2 cos 2!; · · · ; 2 cos p!)T . The form of the vector Z(!) is motivated by

the fact that we will be working with real valued spectral densities and by the represen-

tation of the exponential model. Furthermore, the order p is chosen in advance but in

Section 3.7.2 we will see that real data can give us a guidance about its value by employing

the so called AIC model selection criterion, see Akaike (1974). We argue that estimation

and inference can be carried out within the framework of model (3.3).

It is worth considering some concrete examples. For instance, consider the hypotheses

�j = 0 for all j = 1; 2; : : : ; G−1 which imply that all the spectral densities are equal to the

spectral density �G(!), that is all the processes {Yjt; t = 1; 2; : : : ; N} ; j = 1; 2 : : : ; G− 1

share the same second order structure to that of the process {YGt; t = 1; 2; : : : ; N}. An-

other hypotheses of interest would be aj1 = : : : = ajp = 0 for j = 1; 2; : : : ; G − 1 which
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imply that the functions �j(!) are proportional to �G(!). Several other examples can be

casted within this framework which is based on the system of cosine functions{a natural

basis for time series analysis data. An alternative modeling approach can be based on the

use of polynomials{see Coates and Diggle (1986){ or employment of Legendre and Hermite

polynomial functions of the standard normal quantile function{see Parzen (1993). Using

Lemma 3.3.1, we obtain the following result.

Lemma 3.3.2. Suppose that {Yjt; t = 1; · · · ; N}, j = 1; · · · ; G; are independent stationary

time series with absolutely continuous spectral densities, �j(!); which are de�ned by

De�nition 2.2.3, where j = 1; · · · ; G and G denotes the number of di�erent time series.

Suppose further that the condition of Theorem 2.2.2 are ful�lled. Let Xji ≡ Ij(!i) be the

value of the periodograms of each time series at the Fourier frequencies, !i = 2�i=N; i =

1; 2; : : : ;m which are de�ned by De�nition 2.2.4. Now let,

Tji = log
Xji

XGi

log �ji ≡ log
�j(!i)
�G(!i)

= �Tj Z(!i)

(3.4)

for j = 1; 2; : : : ; G − 1, i = 1; 2; : : : ;m where the notation follows equation (3.3). For a

�xed i, Lemma 3.3.1 shows that the joint distribution of Tji, j = 1; 2; : : : ; G − 1 is given

by

f(t1i; : : : ; t(G−1)i) =
(G− 1)! exp

(∑G−1
j=1 (tji − log �ji)

)

(
1 +

∑G−1
j=1 exp(tji − log �ji)

)G

3.3.1 Estimation

The above result shows how to proceed with likelihood inference in the case of multiple

time series. Speci�cally, recall the notation of Lemma 3.3.2 and de�ne the following

vectors. Notice that these are the observed data

Ti =
(
T1i; T2i; : : : ; T(G−1)i

)T ;

for i = 1; 2; : : : ;m. Then, the likelihood function of T1; : : : ;Tm is

L(�) =
m∏
i=1

f(ti)
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=
m∏
i=1

f(t1i; : : : ; t(G−1)i)

=
m∏
i=1

(G− 1)! exp
(∑G−1

j=1 (tji − �Tj Zi)
)

(
1 +

∑G−1
j=1 exp(tji − �Tj Zi)

)G ;

where � = (�T1 ; : : : ; �TG−1)
T is a (G− 1)× (p+ 1){ dimensional vector and Zi = Z(!i){see

(3.3). Hence, the log{likelihood function is given up to a constant by

l(�) =
m∑
i=1

G−1∑
j=1

(tji − �Tj Zi)−G
m∑
i=1

log

(
1 +

G−1∑
j=1

exp(tji − �Tj Zi)

)
: (3.5)

The value of � that maximizes l(�), say �̂ is the maximum likelihood estimator of �.

With this notation, the score function is given by

S(�) ≡ @l(�)
@�

=
(
ST1 (�); : : : ; STG−1(�)

)T (3.6)

where

Sj(�) =
@l(�)
@�j

=

(
@l(�)
@aj0

; : : : ;
@l(�)
@ajp

)T

for j = 1; 2; : : : ; G−1. Di�erentiation shows that the l'th element of the (p+1){dimensional

vector Sj(�) is given by

@l
@ajl

= −M(l)

m∑
i=1

cos l!i +GM(l)

m∑
i=1

etji−�
T
j Zi cos l!i(

1 +
∑G−1

j=1 exp(tji − �Tj Zi)
)

= −M(l)

m∑
i=1

cos l!i +GM(l)

m∑
i=1

etji−�
T
j Zi cos l!i
Ai

:

where

M(l) =

{
1; l = 0

2; otherwise.

and

Ai =

(
1 +

G−1∑
j=1

exp(tji − �Tj Zi

)
;

for j = 1; 2; : : : ; G− 1 and l = 0; 1; 2; : : : ; p: Furthermore,

@2l
@ajl@ajr

= −GM(l;r)

m∑
i=1

Aietji−�
T
j Zi cos l!i cos r!i −

(
etji−�

T
j Zi

)2

cos l!i cos r!i
A2
i

= −GM(l;r)

m∑
i=1

cos l!i cos r!i
Aietji−�

T
j Zi −

(
etji−�

T
j Zi

)2

A2
i
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and

@2l
@ajl@akr

= GM(l;r)

m∑
i=1

cos l!i cos r!i

(
etji−�

T
j Zi

)(
etki−�Tk Zi

)

A2
i

for j; k = 1; 2; : : : ; G− 1 with j 6= k and l; r = 0; 1; : : : ; p; where,

M(l;r) = M(l)M(r) =





1; l = r = 0

2; l = 0 and r 6= 0,or r = 0 and l 6= 0

4; l 6= 0 and r 6= 0

In addition

@3l
@ajl@ajr@aju

= GM(l;r;u)

m∑
i=1

Ki

Ai
(
etji−�

T
j Zi

)2

+ A2
i

(
etji−�

T
j Zi

)
− 4Ai

(
etji−�

T
j Zi

)2

+ 2
(
etji−�

T
j Zi

)3

A3
i

;

where,

M(l;r;u) = M(l)M(r)M(u) =





1; l = r = u = 0

2; l = 0 and r; u 6= 0,or r = 0 and l; u 6= 0, or u = 0 and l; r 6= 0

4; l = r = 0 and u 6= 0 or l = u = 0 and r 6= 0 or u = r = 0 and l 6= 0

8; l; r; u 6= 0

and

Ki = cos l!i cos r!i cosu!i l; r; u = 0; 1; : : : ; p:

Thus,

@3l
@ajl@akr@aju

= GM(l;r;u)

m∑
i=1

Ki

2
(
etji−�

T
j Zi

)2 (
etki−�Tk Zi

)
− Ai

(
etji−�

T
j Zi

) (
etki−�Tk Zi

)

A3
i

; (3.7)

for j; k = 1; 2; : : : ; G − 1 with j 6= k and l; r; u = 0; 1; : : : ; p: Note that these two

expressions above, of third derivatives, are su�cient because of the symmetry. It will be

shown that the above expressions are uniformly bounded, see assumption (K.5) of Section

3.4.
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3.4 Large Sample Theory

The asymptotic properties of the maximum likelihood estimator �̂ are studied by appeal-

ing to the asymptotic theory for the statistical analysis regarding functionals of spectra,

see Taniguchi and Kakizawa (2000, Ch. 6.2). More speci�cally, suppose that F is the

set of all G×G diagonal matrix valued functions W(!), ! ∈ [�; �] with W(:) hermitian

and symmetric. Suppose that L denotes the set of all diagonal spectral density matri-

ces, that is �(!) = diag(�1(!); : : : ; �G(!)), a G × G diagonal matrix, whose elements

satisfy the property that there exist constants ci1; ci2 > 0 for i = 1; 2; : : : ; G such that

ci1 ≤ �i(!) ≤ ci2 for i = 1; 2 : : : ; G.

In addition we de�neN =
{
�(!) such that (3:3) holds, for some � ∈ Θ ⊂ R(G−1)(p+1)

}
.

Motivated by the preceding analysis and in particular by the log{likelihood equations

(3.5), consider the following function

D(�; �) =
1

4�

∫ �

−�
K(�; �(!); !)d!; (3.8)

where

K(�;W(!); !) = −
G−1∑
j=1

(
log

Wj(!)

WG(!)
− �Tj Z(!)

)

+ G log

(
1 +

G−1∑
j=1

Wj(!)

WG(!)
exp(−�Tj Z(!))

)
; (3.9)

with Z(!) = (1; 2 cos(!); : : : ; 2 cos(p!))T . In addition, denote by

IN(!) = diag(I1(!); : : : ; IG(!)); (3.10)

the G × G diagonal matrix whose entry at position j is the corresponding periodogram

of the j'th series. Then, observe that the log{likelihood function (3.5) multiplied by

−1=m, is the discrete approximation of (3.8) at the Fourier frequencies evaluated at IN(!).

However it is well known that inference based on periodogram might not lead to consistent

estimates especially for non linear contrast functions such as (3.8). Therefore, consider �̂,

a nonparametric kernel spectral density estimator of the form

�̂(!) =

∫ �

−�
Wn(! − !1)IN(!1)d!1: (3.11)

The asymptotic properties of the maximum likelihood estimator of � will be studied by

means of (3.8) evaluated at �̂. However simulations results show that the use of the raw

periodogram estimator yield similar conclusions{see Section 3.7.
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De�ne a functional T by the requirement that for every � ∈ L

D(T (�); �) = min
�∈Θ

D(�; �) (3.12)

To study the asymptotic properties of the maximum likelihood estimator, consider the

following set of assumptions:

Assumption A

A.1 The function K(�;W; !) is de�ned on Θ×D× [−�; �] where Θ is a compact subset

of R(G−1)(p+1) and D is an open set of CG2{the set of all square matrices of dimension

G with complex elements{which contains the whole range of L.

A.2 There exists a positive constant r which does not depend upon � and ! such that

the ball

C! =
{
W = (Wj)

G
j=1 : |Wj − �j(!)| ≤ r

}
is contained in D, for all ! ∈ [−�; �].

A.3 The matrix D� de�ned by (3.13) below is nonsingular.

A.4
∑

h h
2|
j(h)| <∞, where 
j(h) the autocovariance function of the process Ytj;

j = 1; : : : ; G:

A.5 The spectral window Wn(�) is of the form

Wn(�) = M
∞∑

�=−∞
W (M(� + 2��));

where W and M satisfy the following:

1. W (�) is real, bounded nonnegative even probability density function with �nite

second moment.

2. The function w(x) =
∫∞
−∞W (�) exp(i�x)d� is bounded by an even, integrable

and monotonically decreasing function on [0;∞).

3. The bandwidth M depends on N in such a way that M=N1=2 +N1=4=M → 0,

as N →∞.

Assumption B

B.1 If � 6= �′ then �(!) 6= �′(!) where �(!) (respectively �′(!)) refers to model (3.3)

under � (respectively under �′).
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B.2 The parameter space Θ is a compact subset of R(G−1)(p+1).

B.3 The spectral density matrix �(!) belongs to L ∩N .

B.4 Every component of the spectral density matrix �(!) is three times continuously

di�erentiable with respect to � and these derivatives are continuous in [−�; �].

B.5 The true spectral density matrix belong to N and � belongs to the interior of Θ.

We �rst prove the existence of a minimum such that (3.12) holds.

Lemma 3.4.1. Suppose that (A.1) is true. For every � ∈ L, there exists a value T (�)

such that (3.12) is true.

Proof: It is enough to verify Condition (K1) of Taniguchi and Kakizawa (2000, pp.

401) which is immediate consequence of (3.9) and assumption (A.1).

K.1 (i) The function K(�;W; !) is de�ned on Θ×D × [−�; �] where Θ is a compact

subset of R(G−1)(p+1) and D is an open set of CG2{the set of all square matrices

of dimension G with complex elements{which contains the whole range of L.

(ii) for � ∈ L; K(:; �(!); :) is real valued and satis�es |K(�;�(!); !)| ≤ k(�) where
∫ �
−� k(�) <∞:

|K(�; �(!); !)| ≤
G−1∑
j=1

∣∣∣∣
(

log
�j(!)

�G(!)
− �Tj Z(!)

)∣∣∣∣

+ G

∣∣∣∣∣log

(
1 +

G−1∑
j=1

�j(!)

�G(!)
exp(−�Tj Z(!))

)∣∣∣∣∣

≤
G−1∑
j=1

∣∣∣∣log
�j(!)

�G(!)

∣∣∣∣ +
G−1∑
j=1

∣∣�Tj Z(!)
∣∣

+ G

∣∣∣∣∣log

(
1 +

G−1∑
j=1

�j(!)

�G(!)
exp(−�Tj Z(!))

)∣∣∣∣∣
≤ C

where, C is a constant, because �j(!) are bounded above and below by a

constant and �j belongs to a compact set, from the de�nition of the space L.

(iii) K(�; :; :) is continuous with respect to �: This assertion is veri�ed by the

form of (3.9).
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Hence Lemma 3.4.1 is true.

De�ne the following (G− 1)(p+ 1)× (G− 1)(p+ 1) matrix

D� =

∫ �

−�

@2

@�@�T
K(�;�(!);!)d!

∣∣∣
�=T (�)

:

=

∫ �

−�
C(�; �; !)⊗ (Z(!)ZT (!))�=T (�)d(!) (3.13)

with

C(�; �; !)j;k =
1

(�G(!) +
∑G−1

l=1 �l(!) exp(−�Tl Z(!)))2

×




G
(
�j(!) exp(−�Tj Z(!))

(
�G(!) +

∑G−1
l=1;l 6=j �l(!) exp(−�Tl Z(!))

))
; j = k;

−G�j(!)�k(!) exp(−(�j + �k)TZ(!)) j 6= k,

where ⊗ denotes the Kronecker product.

Suppose that U� is a (G − 1)(p + 1) × (G − 1)(p + 1) where the (i; j) block, i; j =

1; 2; : : : ; G− 1 has (s; l) element given by

[Uij]sl = 4�
∫ �

−�
tr

{
K(1)
is (�(!);!)T�(!)K(1)

jl (�(!);!)T�(!)
}
d!; s; l = 0; : : : ; p (3.14)

where

K(1)
is (W; ) = diag

(
@Kis

@W1

;
@Kis

@W2

; : : : ;
@Kis

@WG

)
;

Ki(�; W;!) =
@K(�; W;!)

@�i
|�=T (�)

=

(
Z(!)−G

Wi(!) exp(−�Ti Z(!))Z(!)

WG(!)−∑G−1
j=1 Wj exp(−�Tj Z(!))

)

�=T (�)

for i = 1; 2; : : : ; G − 1 and Kis denotes the s'th element of the vector Ki. Then, the

following theorem holds true.

Theorem 3.4.1. Suppose that Assumption A holds true. In addition, for the true spectral

density matrix � ∈ L suppose that T (�) exists uniquely and lies in the interior of the

parameter space Θ; then

√
N

(
T (�̂)− T (�)

)
⇒ N(G−1)(p+1)

(
0; D−1

� U�D−1
�

)
;

in distribution as N →∞.

To show the validity of the theorem it is enough to verify assumption (K1){K(7) of

Taniguchi and Kakizawa (2000, pp. 402{403). Assumption (K1) has been already veri�ed

by proving Lemma 3.4.1.

We state and prove the following.
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K.2 (i) K(:;W; :) is holomorphic in D:

It is enough to show that it is di�erentiable, but this holds true, because of the

de�nition of K; see (3.9)

(ii) There exists a positive constant r (independent of � and !) such that for

every w ∈ [−�; �]; the ball

C! = {W = (Wj) : |Wj − �j(!)| ≤ r} ⊆ D

and

sup
�∈Θ

sup
W∈@C!

|K(�; W;!)| ≤ k(!)

where,

@C! = {W = (Wab(!)) : Wab(!) = �ab(!) + rei�ab ; − � ≤ �ab ≤ �}

and
∫ �
� k(!)d! <∞ and r has been de�ned by assumption A.2.

The result follows because we notice that

|K(�; W;!)| ≤
G−1∑
j=1

∣∣∣∣log
�j(!) + rei�ab
�G(!) + rei�ab

∣∣∣∣ +
G−1∑
j=1

∣∣�Tj Z(!)
∣∣

+ G

∣∣∣∣∣log

(
1 +

G−1∑
j=1

�j(!) + rei�ab
�G(!) + rei�ab

e−�
T
j Z(!)

)∣∣∣∣∣ :

Taking the sup for W ∈ @C! we obtain that,

sup
W∈@C!

|K(�; W;!)| ≤ (G− 1)M +
G−1∑
j=1

|�Tj Z(!)|+G

∣∣∣∣∣log

(
1 +

G−1∑
j=1

Me−�
T
j Z(!)

)∣∣∣∣∣ ;

where M is some constant.

Now taking the supremum over Θ, we have the result,since

|�j(!)Z(!)| ≤ ‖�j‖‖Z(!‖ ≤M1‖Z(!)‖

Therefore, de�ne

k(!) = (G− 1)M + (G− 1)M1‖Z(!)‖+G log(1 + (G− 1)M)

which is clearly integrable in [−�; �]:

K.3 K(�; :; :) is three times continuously di�erentiable. This assertion is veri�ed by the

form of (3.7)
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K.4 (i) The �rst and second derivatives

Kj(W; :; :) =
@
@�j

K(�;W; )|�=T (f); j = 1; : : : ; G− 1

and

Kij(W) =
@2

@�i@�Tj |�=T (f)

; i; j = 1; : : : ; G− 1:

are holomorphic in D.

(ii) There exists a positive constant r′ (independent of ! such that for every

! ∈ [−�; �]; the ball

C ′
! = {W = (Wab) : |Wab − �ab(!)| ≤ r′} ⊆ D

and

sup
W∈@C′!

|Kj(W; !)| ≤ mj(!) and sup
w∈@CW

|Kij(W; !)| ≤ mij(!)

with

@C ′
! =

{
W = (Wab) : Wab = �ab(!) + r′ei�ab ; − � ≤ �ab ≤ �

}

where mj(!) and mij(!) are integrable with respect to ! ∈ [−�; �]

The �rst derivative is given by

Kj(W ; :; :) =
@
@�j

K(�;W )|�=T (f); j = 1; : : : ; G− 1

are p+ 1 dimensional vectors. These are given by

Kj(W ; ) = Z(!)−G
wj(!)

wG(!)
e−�

T
j Z(!)

1 +
∑G−1

j=1
wj(!)

wG(!)
e−�jZ(!)

Z(!) j = 1; : : : ; G

=

(
1− Ge−�

T
j Z(!)wj(!)

wG(!) +
∑G−1

j=1 wj(!)e−�
T
j Z(!)

)
Z(!)|�=T (f)

We need to show that these are holomorphic in D, but this follows since, the deriva-

tive exists, because of the boundedness from below and above. Take r′ as r, following

the veri�cation of (K.2). Then component-wise and M being a constant

sup
W∈@C!

|Kj(W; !)| = sup
W∈@C!

∣∣∣∣∣

(
1−G

M(�j + r′)
(�j + r′) +

∑G−1
j=1 (�j + r′)× (M)

)
Z(!)

∣∣∣∣∣
≤ (1 +G)Z(!);
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which is bounded and therefore integrable in [−�; �]: We consider now the second

derivative.

Kij(W) =
@2

@�i@�Tj |�=T (f)

; i; j = 1; : : : ; G− 1:

Kii(W) =
@2K
@�i@�Ti

= G
Wi
WG

exp[−�Ti Z(!)]
(
1 +

∑G−1
m=1;m6=i

Wm
WG

exp[−�mZ(!)]
)

(
1 +

∑G−1
m=1

Wm
WG

exp[−�mZ(!)]
)2 Z(!)ZT (!);

i = 1; : : : ; G− 1:

And for i 6= j

Kij(W) =
@2K
@�i@�Tj

= −G
Wi
WG

exp[−�Ti Z(!)]
Wj
WG

exp[−�Tj Z(!)]
(
1 +

∑G−1
i=1

Wi
WG

exp[−�iZ(!)]
)2 Z(!)ZT (!);

i; j = 1; : : : ; G− 1:

These are clearly holomorphic functions, again because of the assumptions. At the

boundary of C ′
!

sup |Kii| ≤ −G(�j + r)(�k + r)(
(�G + r) +

∑G−1
l=1 (�l + r)

)2Z(!)ZT (!)

sup |Kij| ≤
−G(�j + r)(1 +

∑G−1
l=1;l 6=j(�l + r))

(
(�G + r) +

∑G−1
l=1 (�l + r)

)2 Z(!)ZT (!)

Choose mjk(!) as the jk element of Z(!)ZT (!) multiplied by G: Clearly this is

integrable on [−�; �]:

K.5 for every � ∈ R; there exists a function

Kjkl(!) with
∣∣∣∣
@3K(�;�;!)

@�j�k�l

∣∣∣∣ ≤ kjkl(!);

for � in a neighborhood of T (f) such that
∫ �
−� kjkl(!)d! < ∞: Recall (3.7) we

observe that |Kjkl(!)| ≤ 3GmM(l; r; u) ≤ 24Gm

K.6 The �rst derivative of Ki(W; );

K(1)
i (W; );= {K(1)

i;ab(W; )} =

{
@

@Wab
Ki(W; )

}
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satis�es

K(1)
i (�(!); !) = K(1)

i (�(!); !)∗

and

K(1)
i (�(−!);−!) = K(1)

i (�(!); !)
′ :

Furthermore, K(1)
i;ab(f(!);!) is a piecewise continuous function. Recall that, the �rst

derivatives evaluated at � = T (f) are given by

Kj(W) =

(
1− Ge−�

T
j Z(!)wj(!)

wG(!) +
∑G−1

j=1 wj(!)e−�
T
j Z(!)

)
Z(!)|�=T (f) ; j = 1; : : : ; G− 1

In the sequel we will calculate K(1)
is (W ; ) for i = 1; : : : ; G− 1 and s = 1; : : : ; p+1

@Kis

@Wi
= −G

1
WG

exp[−�Ti Z(!)]
(
1 +

∑G−1
m=1;m6=i

Wm
WG

exp[−�mZ(!)]
)

(
1 +

∑G−1
m=1

Wm
WG

exp[−�mZ(!)]
)2 Ws(!);

i = 1; : : : ; G− 1; s = 1; : : : ; p+ 1:

Now for j 6= i; G

@Kis

@Wj
= G

Wi
WG

exp[−�Ti Z(!)] 1
WG

exp[−�jZ(!)]
(
1 +

∑G−1
m=1

Wm
WG

exp[−�mZ(!)]
)2 Ws(!);

i = 1; : : : ; G− 1; s = 1; : : : ; p+ 1:

and

@Kis

@WG
= G

Wi
(WG)2

exp[−�Ti Z(!)]
(
1 +

∑G−1
m=1

Wm
WG

exp[−�mZ(!)]
)2Ws(!);

i = 1; : : : ; G− 1; s = 1; : : : ; p+ 1:

Now concluding from the above we have that

K(1)
is (W ; ) = diag

(
@Kis

@W1

;
@Kis

@W2

; : : : ;
@Kis

@WG

)

Thus, K(1)
i;ab(�(!);!) is a piecewise continuous function. Also satis�es

K(1)
i (�(!); !) = K(1)

i (�(!); !)∗

and

K(1)
i (�(−!);−!) = K(1)

i (�(!); !)
′ :
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K.7 The (G− 1)(p+ 1)× (G− 1)(p+ 1) matrix

D� =

∫ �

−�

@2

@�@�T
K(�;�(!);!)|�=T (�)d!:

de�ned by (3.13) is nonsingular, which holds by assumption. Notice that the matrix

D� is hermitian and symmetric. Having veri�ed the assumptions (K1)-(K7) the

Theorem holds true.

Remark 3.4.1. Theorem 3.4.1 states the asymptotic distribution of the functional T (�̂)

when model (3.3) does not necessarily hold but inference is based on the contrast func-

tion (3.8) in general. Therefore, the result is quite general and quanti�es the e�ect of

misspeci�cation of model (3.3) to inference.

We will study the asymptotic properties of the maximum likelihood estimator �̂ under

the correct model (3.3). In addition, notice that when model (3.3) holds true, we obtain

that

K(�;W(!); !) = −
G−1∑
j=1

log

(
Wj(!)=�j(!)

WG(!)=�G(!)

)
+G log

(
1 +

G−1∑
j=1

Wj(!)=�j(!)

WG(!)=�G(!)

)

= H(W�−1(!))

where H(:) is a function that is de�ned on the set of all G×G diagonal matrices F , by

H(W̃) = −
G−1∑
j=1

log
W̃j

W̃G
+G log

(
1 +

G−1∑
j=1

W̃j

W̃G

)
(3.15)

Since we are considering positive spectral densities which are bounded above and below{

recall the de�nition of L{assumption (A.1) and (B.3), we obtain that the restriction of

H(:) to the diagonal matrices with real elements has a unique minimum at IG{the identity

matrix of dimension G.

Lemma 3.4.2. Recall (3.15). Then for all G × G diagonal matrices W̃ with positive

diagonal elements, H(W̃) ≥ H(IG):

Proof: We know that for any x1; : : : ; xn ≥ 0

x1 + : : :+ xn
n

≥
(

n∏
i=1

xi

) 1
n
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In our case de�ne xi =  i
 G
; for i = 1; : : : ; G− 1 and xG = 1:

Thus,
1 +

∑G−1
j=1 xj
G

≥
(
G−1∏
i=1

xi

) 1
G

⇒ log

(
1 +

G−1∑
j=1

xj

)
− logG ≥ 1

G

G−1∑
j=1

log xj

⇒ G log

(
1 +

G−1∑
j=1

 i
 G

)
−

G−1∑
j=1

log
 j
 G

≥ G logG; ∀  1; : : : ;  G

⇒ H(W̃) ≥ H(IG):

Therefore, we obtain the following theorem, regarding the asymptotic behavior of the max-

imum likelihood estimator under a correctly speci�ed model, see Taniguchi and Kakizawa

(2000, Cor. 6.2.5)

Theorem 3.4.2. Suppose that Assumption B holds true. Then

√
N

(
�̂ − �

)
⇒ N(G−1)(p+1)

(
0; 4�D−1

0

)

in distribution as N →∞, where the matrix D0 is de�ned by

D0 =

∫ �

−�

1

G
((G− 1)IG−1 + (JG−1 − IG−1))⊗ (Z(!)ZT (!))d(!) (3.16)

where IG−1 is the unit matrix of dimension G − 1, JG−1 is the (G − 1) × (G − 1) matrix

of ones. The above representation shows that the limiting variance matrix is not singular

since both matrices forming the Kronecker product are not singular.

Proof: De�ne,

K(�; �1(!); : : : ; �G(!); !)) = −
G−1∑
j=1

(
log

�j(!)

�G(!)
− �Tj (!)Z(!)

)

+ G log

(
1 +

G−1∑
j=1

�j(!)

�G(!)
e−�

T
j Z(!)

)

Now consider all the matrices of the form W = diag(W1;W2; : : : ;WG)

K(�; W;!) = −
G−1∑
j=1

(
log

Wj(!)

WG(!)
− �Tj (!)Z(!)

)

+ G log

(
1 +

G−1∑
j=1

Wj(!)

WG(!)
e−�

T
j Z(!)

)
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Recall (3.14) we calculate the following quantities:

K(1)
is (W; ) =

@
@W

Ki(�; W;!) i = 1; : : : ; G− 1 and s = 1; : : : ; p+ 1

and

Ki(�; W;!) =
@K(�; W;!)

@�i
|�=T (�); T (�) = min

�
D(�;�) i = 1; : : : ; G− 1

and

D� =

∫ 1=2

−1=2

@2

@�@�T
K(�;�(!);!)d! |�=T (�)

Now we will calculate the D� matrix,

@K
@�i

= Z(!)−G
Wi
WG

exp[−�Ti Z(!)]Z(!)

1 +
∑G−1

m=1
Wm
WG

exp[−�mZ(!)]
; i = 1; : : : ; G− 1:

@2K
@�i@�Ti

= G
Wi
WG

exp[−�Ti Z(!)]
(
1 +

∑G−1
m=1;m6=i

Wm
WG

exp[−�mZ(!)]
)

(
1 +

∑G−1
m=1

Wm
WG

exp[−�mZ(!)]
)2 Z(!)ZT (!);

= CiiZ(!)ZT (!); i = 1; : : : ; G− 1:

And for i 6= j

@2K
@�i@�Tj

= −G
Wi
WG

exp[−�Ti Z(!)]
Wj
WG

exp[−�Tj Z(!)]
(
1 +

∑G−1
i=1

Wi
WG

exp[−�iZ(!)]
)2 Z(!)ZT (!)

= CijZ(!)ZT (!); i; j = 1; : : : ; G− 1:

Now when the true model holds, then

Cii|�=�0 =
G− 1

G

and for i 6= j

Cij|�=�0 = − 1

G
:

Thus D� = C
⊗

Z(!)ZT (!); where C is a matrix with elements Cii = G−1
G and Cij = − 1

G ;

for j 6= i. Now recall the vector Ki = (Ki1; Ki2; : : : ; Ki;p+1); i = 1; : : : ; G− 1

Then Kis = @K
@�i
Ws(!): In the sequel we will calculate K(1)

is (W; ) for i = 1; : : : ; G− 1
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and s = 1; : : : ; p+ 1

@Kis

@Wi
= −G

1
WG

exp[−�Ti Z(!)]
(
1 +

∑G−1
m=1;m6=i

Wm
WG

exp[−�mZ(!)]
)

(
1 +

∑G−1
m=1

Wm
WG

exp[−�mZ(!)]
)2 Ws(!);

i = 1; : : : ; G− 1; s = 1; : : : ; p+ 1:

Now for j 6=; i; G

@Kis

@Wj
= G

Wi
WG

exp[−�Ti Z(!)] 1
WG

exp[−�jZ(!)]
(
1 +

∑G−1
m=1

Wm
WG

exp[−�mZ(!)]
)2 Ws(!);

i = 1; : : : ; G− 1; s = 1; : : : ; p+ 1:

and

@Kis

@WG
= G

Wi
(WG)2

exp[−�Ti Z(!)]
(
1 +

∑G−1
m=1

Wm
WG

exp[−�mZ(!)]
)2Ws(!);

i = 1; : : : ; G− 1; s = 1; : : : ; p+ 1:

Now concluding from the above we have that

K(1)
is (W; ) = diag

(
@Kis

@W1

;
@Kis

@W2

; : : : ;
@Kis

@WG

)

Substituting the above into (3.14),

K(1)
is (�(!);!)T�(!)K(1)

jl (�(!);!)T�(!) = diag
(
@Kis

@W1

W1;
@Kis

@W2

W2; : : : ;
@Kis

@WG
WG

)

× diag
(
@Kjl

@W1

W1;
@Kjl

@W2

W2; : : : ;
@Kjl

@WG
WG

)

The result is a diagonal matrix :

diag
(
@Kis

@W1

@Kjl

@W1

(W1)
2;
@Kis

@W2

@Kjl

@W2

(W2)
2; : : : ;

@Kis

@WG

@Kjl

@WG
(WG)2

)
;

and this implies that

tr
[
K(1)
is (�(!);!)T�(!)K(1)

jl (�(!);!)T�(!)
]

=
G∑
t=1

@Kis

@Wt

@Kjl

@Wt
(Wt)

2
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Let Ai = exp[−�Ti Z(!)]; i = 1; : : : ; G− 1

If we rewrite the following expressions we have,

@Kis

@Wi
= −G

Ai
WG

(
1 +

∑G−1
m=1;m6=i

WmAm
WG

)

(
1 +

∑G−1
m=1

WmAm
WG

)2 Ws(!);

i = 1; : : : ; G− 1; s = 1; : : : ; p+ 1:

for j 6=; i; G
@Kis

@Wj
= G

WiAiAj
WG(

1 +
∑G−1

m=1
WmAm
WG

)2Ws(!);

i = 1; : : : ; G− 1; s = 1; : : : ; p+ 1:

and

@Kis

@WG
= G

WiAi
(WG)2(

1 +
∑G−1

m=1
WmAm
WG

)2Ws(!);

i = 1; : : : ; G− 1; s = 1; : : : ; p+ 1:

Now,

G∑
t=1

@Kis

@Wt

@Kil

@Wt
(Wt)

2 =


−G

Ai
WG

(
1 +

∑G−1
m=1;m6=i

WmAm
WG

)

(
1 +

∑G−1
m=1

WmAm
WG

)2




2

Ws(!)Wl(!)W 2
i

+
G−1∑

t=1;t6=i






G

WiAiAt
WG(

1 +
∑G−1

m=1
WmAm
WG

)2




2

Ws(!)Wl(!)W 2
t





+


G

WiAi
(WG)2(

1 +
∑G−1

m=1
WmAm
WG

)2




2

Ws(!)Wl(!)W 2
G

Now under the true model
G∑
t=1

@Kis

@Wt

@Kil

@Wt
(Wt)

2 =
G− 1

G
;

G∑
t=1

@Kis

@Wt

@Kjl

@Wt
(Wt)

2 = − 1

G

And for i 6= j

G∑
t=1

@Kis

@Wt

@Kjl

@Wt
(Wt)

2 = −G2

Ai
WG

(
1 +

∑G−1
m=1;m6=i

WmAm
WG

)
WjAjAt
WG(

1 +
∑G−1

m=1
WmAm
WG

)4 Ws(!)Wl(!)W 2
i

Alex
ios

 Sav
vid

es



41

− G2

Aj
WG

(
1 +

∑G−1
m=1;m6=i

WmAm
WG

)
WiAiAt
WG(

1 +
∑G−1

m=1
WmAm
WG

)4 Ws(!)Wl(!)W 2
j

+
G−1∑

t=1;t6=i;j




G2

WiAiAt
WG

WjAjAt
WG(

1 +
∑G−1

m=1
WmAm
WG

)4Ws(!)Wl(!)W 2
t





+ G2

WiAi
(WG)2

WjAj
(WG)2(

1 +
∑G−1

m=1
WmAm
WG

)4Ws(!)Wl(!)W 2
G

Now when the true model holds,

G∑
t=1

@Kis

@Wt

@Kil

@Wt
(Wt)

2 =
G− 1

G
and

G∑
t=1

@Kis

@Wt

@Kjl

@Wt
(Wt)

2 = − 1

G

Thus U = ∆⊗Z(!)ZT (!); where ∆ is a matrix with elements ∆ii = G−1
G and ∆ij = − 1

G ;

for j 6= i: Comparing the matrices U and D�; we can see that they are the same.

3.5 Testing

In this section we will be concerned with the composite hypothesis

H0 : A� = 0 against H1 : A� 6= 0;

for model (3.3), where A is a matrix of dimension d× (G− 1)(p+ 1), d ≤ (G− 1)(p+ 1),

and assumed to be of full rank. To test the null hypothesis consider the likelihood ratio

test

LR = 2n
(
D(�̃; �̂)−D(�̂; �̂)

)
(3.17)

where D(:; :) has been de�ned by (3.8) and �̃ denotes the maximum likelihood estimator of

� under the null hypothesis. Theorem 6.2.7 of Taniguchi and Kakizawa (2000) shows that

the asymptotic distribution of the quantity LR is a chi{square distribution with degrees of

freedom equal to d. In the same spirit, testing equality of several spectral density functions

can be carried out by means of the score and Wald tests. To be more speci�c,

W = n
{
A′T (�̂)

}′ [
A′D−1

0 A
] {
A′T (�̂)

}
(3.18)
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and

LM = n
[
@
@�
D(�̃; �̂)

]′
D−1

0

[
@
@�
D(�̃; �̂)

]
(3.19)

where D(:; :) has been de�ned above, D0 has been de�ned by (3.16),

T (�̂) = arg min
�
D(�̃; �̂) T0(�̂) = arg min

�:A′�=0
D(�̃; �̂):

All these test statistics are the same, the asymptotic distribution of these quantities are a

chi{square distribution with degrees of freedom equal to d. More speci�cally,

Lemma 3.5.1. (Taniguchi and Kakizawa, 2000, Thm.6.2.7). Under assumption B and

under A� = 0, the tests LR;W and LM tend to a chi{square distribution with degrees of

freedom equal to d.

Proof: The proof follows from Theorem 6.2.7 of Taniguchi and Kakizawa (2000).

A natural question that arises after rejecting the equality of all spectral densities is

that of multiple comparisons among the time series under consideration for identi�cation

of similar groups. In this section of the thesis we take a simple approach by suggesting

a Bonferroni correction to adjust the p{values of all the
(G

2

)
sets of hypotheses �i = �j,

i; j = 1; 2; : : : ; G, i 6= j and �G ≡ 0. For the data examples that is considered next, see

subsection 3.7.2, it is straightforward to carry out the adjustment of the p{values, since

G = 3. However, when G is large other methods might be preferable, see Miller (1981),

but also subsection 4.3.2.

3.5.1 A Note on Computation

To carry out the numerical calculations involved, recall the notation of (3.4). In addition,

de�ne

T̃ji = log
X̃ji

X̃Gi
; (3.20)

where X̃ji = �̂j(!i), that is the smoothed periodogram ordinate. Then �t the spectral

density ratio model (3.3) by maximizing (3.5) with either Tji or T̃ji. Although Theorem

3.4.2 states that the smoothed periodogram based estimator is asymptotically normal,

several simulation experiments reported below are indicating that normality holds for the

raw periodogram based estimator. Details about the smooth spectral density estimator

are given in Section 3.7. Maximization of the log{likelihood function (3.5) is carried out by
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using the statistical language R{see R Development Core Team (2004) and in particular it

is implemented by using the function optim() after choosing the option "BFGS"' which

corresponds to a quasi-Newton method. The score function that is employed with this

option is given by

@l(�)
@�

=

(
@l(�)
@�1

; : : : ;
@l(�)
@�G−1

)T

where

@l(�)
@�j

= −
m∑
i=1

Zi +G
m∑
i=1

exp(Tji − �Tj Zi)Zi(
1 +

∑G−1
j=1 exp(Tji − �Tj Zi)

) ; j = 1; 2; : : : ; G− 1

following the notation of (3.5). The above score equations are employed with either Tji or

T̃ji.

Similar calculations show that for testing the following hypotheses

H0 : �1 = : : : = �G−1 = 0

which points to the equality of all spectral distributions to the reference , the likelihood

ratio test is equal to

LR = −2
m∑
i=1

G−1∑
j=1

�̂Tj Zi + 2G
m∑
i=1

log

(
1 +

∑G−1
j=1 exp(Tji)

1 +
∑G−1

j=1 exp(Tji − �̂Tj Zi)
;

)
(3.21)

and its distribution is a chi{square random variable with (G−1)(p+1) degrees of freedom.

Formula (3.21) is used with either Tji or T̃ji.

In summary we have studied the asymptotic inference for the regression parameters

under model (3.3). Theorem 3.4.1 shows that the maximum likelihood estimator converges

to a normal distribution with a covariance matrix that can be calculated and estimated

consistently. The asymptotic normality holds true regardless the validity of model (3.3)

when using the contrast function (3.8). However, when (3.3) holds true, the asymptotic

covariance matrix has a much simpler form, see Theorem 3.4.2 and (3.16). Both results

are true for independent linear processes, but not necessarily Gaussian. This implies

that a vast collection of examples falls within this framework and therefore the proposed

methodology is quite general. The asymptotic results are based on the data (3.20), that is

the smoothed periodogram ordinates are employed for inference. But it is demonstrated

next that the raw periodogram based estimator, see (3.4) has almost identical behavior to

that of the smoothed periodogram.
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3.6 Goodness of Fit test

For examining the adequacy of the model de�ned by (3.3) we use the idea of smooth

goodness of �t tests. To be speci�c, we can embed this model into a larger parametric

family, according to Rayner and Best (1989)

log �j(!) = log
�j(!)

�G(!)
= �Tj Z + 
Tj Z

∗ for j = 1; · · · ; G− 1

where,

�j = (aj0; aj1; : : : ; ajp)T ;

Z = (1; 2 cos!; 2 cos 2!; : : : ; 2 cos p!)T ;


j = (
j1; 
j2; : : : ; 
jq)T

and

Z∗ = (2 cos(p+ 1)!; 2 cos(p+ 2)!; : : : ; 2 cos(p+ q)!)T

For testing the adequacy of the model de�ned by (3.3) is equivalent to testing the hypoth-

esis H0 : 
j = 0.

3.7 Examples and Data Analysis

3.7.1 Simulations

The proposed method is illustrated empirically by means of a simulated study which

includes several examples. The �rst two examples deal with the case that all observed

time series are generated with the same second order structure. The third example shows

estimation results when the data are generated by an exponential model. The fourth

example examines the power of the likelihood ratio test (3.21) when the data have di�erent

second order properties while the last example{which studies ARCH processes{is included

to show the robustness of the methodology to non standard situations. The data �tting

process is applied by rescaling the frequencies to the interval (0, 1/2). All simulations are

based on 1000 runs. To calculate the values of T̃ji, see (3.20), we use the Daniel window

with a 5 point discrete spectral average estimator.
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Example 3.7.1. Suppose that three time series data sequences are generated by the

AR(1) model, see (2.3),

Yit = 0:50Yi(t−1) + �it

for i = 1; 2; 3 and �it are independent and identically distributed standard normal variables.

In other words, all three time series share the same second order structure. Model (3.3) is

applied for various values of p. For estimation purposes, consider the spectral density of the

third sequence as the reference function in (3.3) but notice that any other sequence would

have yielded the same results since in this case representation (3.3) is identical to zero for

all !. Table 3.1 shows estimation results when p = 2 and for di�erent length sequences.

Notice that when p = 2 and G = 3, then the total number of parameters that needs

to be estimated equals to six. More speci�cally, following the notation of (3.3), notice

that �j = (aj0; aj1; aj2)
′ for j = 1; 2. The estimation method performs reasonably well

for both the raw and smoothed periodogram based maximum likelihood estimators. The

approximate standard errors reported in the last column of Table 3.1 are approximated by

means of (3.16) evaluated at the Fourier frequencies. Evidentally the true standard errors

are better approximated when the sample size tends to larger values. Further evidence

of the asymptotic validity of the proposed methodology is illustrated by means of Table

3.2 which reports achieved signi�cance levels of the likelihood ratio test statistic (3.21)

for testing equality of the three corresponding spectral density functions. The table has

been constructed for di�erent sample sizes and by varying the value of p in (3.3) for either

the raw periodogram based procedure or the smooth periodogram based method. The

reference distribution is the chi{square with degrees of freedom equal to 2(p+ 1). Notice

that for the case of the raw periodogram and when N is large, the achieved signi�cance

levels are close to the nominal. However for the smoothed periodogram estimator the

approximation is better when N is large and p ≤ 5. This is a consequence of smoothing,

that is a much smoother estimator will perform reasonably better.
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Raw Periodogram
N Signi�cance Levels p = 2 p = 3 p = 4 p = 5 p = 6

0.01 0.008 0.007 0.013 0.012 0.018
50 0.05 0.053 0.070 0.058 0.061 0.066

0.10 0.106 0.140 0.127 0.121 0.129
0.01 0.010 0.008 0.008 0.007 0.010

100 0.05 0.060 0.039 0.056 0.065 0.053
0.10 0.118 0.082 0.099 0.111 0.106
0.01 0.014 0.009 0.013 0.013 0.012

500 0.05 0.051 0.040 0.051 0.058 0.046
0.10 0.097 0.095 0.106 0.095 0.096

Smoothed Periodogram
0.01 0.007 0.004 0.007 0.001 0.001

50 0.05 0.042 0.029 0.030 0.011 0.004
0.10 0.091 0.068 0.057 0.039 0.018
0.01 0.013 0.003 0.009 0.012 0.010

100 0.05 0.058 0.040 0.045 0.046 0.045
0.10 0.110 0.082 0.088 0.086 0.074
0.01 0.011 0.011 0.007 0.090 0.004

500 0.05 0.043 0.050 0.053 0.040 0.030
0.10 0.091 0.096 0.099 0.102 0.090

Table 3.2: Achieved signi�cance levels of the likelihood ratio test statistic (3.21) for testing
equality of three spectral density functions. The data are generated by the same three
independent AR(1) process with �1 = 0:5 for di�erent N and model (3.3) is �tted for
di�erent p. Results are based on 1000 simulations.

Alex
ios

 Sav
vid

es



48

Example 3.7.2. Suppose now that there are four sequences of observations from the

ARMA(1,1) model

Yit = 0:50Yi(t−1) + �it + 0:10�i(t−1)

for i = 1; 2; 3; 4 and �it are independent and identically distributed standard normal vari-

ables. For this example, notice that G = 4 and therefore the total number of unknown

parameters equals to 3(p+ 1) which is determined by the choice of p. For instance, when

p = 2, then the total number of parameters is nine. Figure 3.1 demonstrates this situation

in the case of N = 100 by depicting qq-plots of the maximum likelihood estimators of �j,

j = 1; 2; 3 for the raw periodogram based estimators while Figure 3.2 illustrates the same

information for the smooth periodogram based estimator. In all cases, the asymptotic

normality seems an adequate approximation to the asymptotic distribution of the max-

imum likelihood estimators. Furthermore, Figures 3.3 and 3.4 show qq{plots of the test

statistic (3.21) for N = 100 for di�erent values of p. So the left plot of Figure 3.3 illus-

trates qq-plots against the chi{square distribution with degrees of freedom equal to nine.

Similarly for all the other graphs. We recon�rm the observation that was made before,

that is the asymptotic approximation seems quite satisfactory in all cases considered.
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Figure 3.1: QQ{plots of �̂1 (upper level), �̂2 (middle level) and �̂3 (lower level) for four
time series from the same ARMA(1,1) processes with N = 100. Model (3.3) in connection
with (3.4) is �tted for p = 2 and results are based on 1000 simulations.
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Figure 3.2: QQ{plots of �̂1 (upper level), �̂2 (middle level) and �̂3 (lower level) for four
time series from the same ARMA(1,1) processes with N = 100. Model (3.3) in connection
with (3.20) is �tted for p = 2 and results are based on 1000 simulations.
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Figure 3.3: QQ{plots of the test statistic (3.21) for testing the equality of spectral den-
sity functions for four time series from the same ARMA(1,1) processes with N = 100.
Model (3.3) in connection with (3.4) is �tted for di�erent p and results are based on 1000
simulations. (a) p = 2, (b) p = 4, (c) p = 6.
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Example 3.7.3. Two sequences of the EXP (2) model with parameters � = (−0:5;−0:9; 0:4)

and one sequence of the EXP (2) model with parameters � = (0:5; 0:3; 0:15) were either

drown. Evidentally model (3.3) holds true. Table 3.3 reports the estimation results for

both smoothed and unsmoothed periodogram based estimators. As we can see we have

better results as N increases.
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Example 3.7.4. We now study the estimation problem, when the observed data does not

share the same second order structure. In particular, for this example, consider four time

series according to the following speci�cation

Yit = 0:50Yi(t−1) + �it; i = 1; 2

Y3t = 0:20Y3(t−1) + 0:60Y3(t−2) + �3t; (3.22)

Y4t = 0:40Y4(t−1) + �4t − 0:10�4(t−1)

and �it are independent and identically distributed standard normal variables. Without

repeating any estimation arguments, notice that Table 3.4 shows close agreement between

the true parameter values and the estimated parameters. Recall that the approximate

standard errors reported in the last column of Table 3.4 are approximated by means of

(3.16) evaluated at the Fourier frequencies.

For this example, the spectral density of Y4t is employed as reference for �tting model

(3.3). That is we use the ratios �i(!)=�4(!), i = 1; 2; 3, to �t model (3.3) using the

representation (2.4). Therefore the true parameter values are calculated according to

Lemma 2.5.1. Larger values of N indicate more adequate approximation, as it should be

expected. In addition, Table 3.5 shows simulated power of the test statistic (3.21) for

testing the hypotheses that all four spectral densities are equal. Note that both raw and

smooth periodogram based tests share a large power as N increases but the likelihood ratio

test based on (3.20) has larger power than that based on (3.4). The raw periodogram based

test does not show any great variation among the simulated power values when p varies.

In contrast the smooth periodogram test's power reduces as p assumes larger values{this

is consequence of smoothing. For larger N , say N = 500, the power was identical to one

for both tests and therefore it is not reported in the table.
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Raw Periodogram
N � p = 2 p = 3 p = 4 p = 5 p = 6

0.01 0.296 0.227 0.230 0.230 0.205
50 0.05 0.504 0.453 0.464 0.435 0.434

0.10 0.636 0.585 0.615 0.595 0.571
0.01 0.734 0.683 0.727 0.663 0.618

100 0.05 0.889 0.853 0.879 0.854 0.814
0.10 0.949 0.913 0.934 0.920 0.881

Smoothed Periodogram
0.01 0.561 0.529 0.499 0.410 0.337

50 0.05 0.811 0.767 0.739 0.658 0.575
0.10 0.884 0.860 0.852 0.756 0.728
0.01 0.956 0.940 0.943 0.934 0.920

100 0.05 0.988 0.988 0.988 0.983 0.987
0.10 0.997 0.996 0.996 0.995 0.993

Table 3.5: Power of the likelihood ratio test statistic (3.21) when data are generated
according to (3.22). Model (3.3) is �tted for di�erent p and results are based on 1000
simulations.
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Example 3.7.5. The last example refers to the estimation method when the data are

generated by three independent autoregressive conditional heteroscedastic (ARCH) models

Yit = �it�it;

�2
it = 0:20 + 0:50Y 2

i(t−1);

for i = 1; 2; 3 and �it independent draws from the standard normal distribution. The

ARCH models have been introduced by Engle (1982) in order to account for dependency

of the second moment on past values of the processes. Further treatment of ARCH{ and

more general GARCH models{is given by Taniguchi and Kakizawa (2000), for instance.

In particular periodogram based inference has been discussed in the recent contribution

of Giraitis and Robinson (2001). Here, we apply the proposed method to examine the

robustness of the proposed approach to estimation. To �t model (3.3), notice that G = 3

and set the spectral density of Y3t as the reference. Table 3.6 (respectively, 3.7) shows the

estimated coe�cients obtained by maximization of the log likelihood function (3.5) for

di�erent N and di�erent order p by using the data in the form (3.4) (respectively, (3.20)).

In all cases the estimated parameters are close to zero and their simulated standard error

decreases as N increases. The proposed method therefore discovers these time series with

the same second order characteristics including the case of ARCH models.
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3.7.2 Data Analysis

Photometry is an analytical technique, which is often used for determination of chemical

species. The mathematical equation that describes the relationship between the instru-

mental signal (e.g. absorbance, A) and the amount of chemical species in the system under

investigation (e.g. concentration C in mol/L) is given by Lambert-Beer Law: A = �C�,

where � is the molar extinction coe�cient (in Lcm/mol) and � the length of the cell

(in cm). In order to control the stability and sensitivity of the photometer at di�erent

wavelengths and secure precision and repeatability of the data, statistical analysis of ab-

sorbance data obtained under certain conditions is required. The absorbance of a Cu(II)

solution has been determined at three di�erent wavelengths, namely, 465 nm (Á=0.14),

665 nm (Á=0.538) and 865 nm (Á=1.14). The photometric measurements have been

performed under standard conditions (spectroscopic parameters, temperature, etc.) as a

function of time, after warming-up the spectrophotometer for an hour. The time span of

each measurement was set at 100 seconds and the recording of the absorbance every 0.1

second, which corresponds to 1000 data points at each of the three di�erent wavelengths.

Observations were taken at di�erent times and therefore can be considered as independent

time series. Evaluation of the stability of the photometric system as a function of time at

the three di�erent wavelengths is tested by means of model (3.3).

Let Y1t; Y2t; Y3t be the three time series of length 1000, as described above and recall

that Figure 1.1 shows a plot of the �rst 150 observations from each time series. First we

investigate whether or not a usual autoregressive model, see (2.3), can be �tted to the data.

Table 3.8 shows the results of maximum likelihood estimation after �tting autoregressive

modes for each of the three time series separately together with the associated standard

errors.

Response �1 �2 �3 �4 �5 �6 �7 �8 �9 �10 �11 �12

Y1t 0.031 0.155 0.028 0.131 0.003 0.11 0.027 0.147 0.061 0.092 0.018 0.076
(0.031) (0.031) (0.032) (0.032) (0.032) (0.032) (0.032) (0.032) (0.032) (0.032) (0.031) (0.031)

Y2t 0.096 0.005 0.01 0.052 -0.026 0.094 -0.042 0.079 -0.02 0.139
(0.031) (0.031) (0.031) (0.031) (0.031) (0.031) (0.031) (0.031) (0.031) ( 0.031)

Y3t 0

Table 3.8: AR representations of photometric time series measurements of the absorbance
of Cu (II) solution at three di�erent wavelengths.
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Table 3.8 shows that an AR process with di�erent orders is sensible model for the �rst

two time series. In fact Y1t (respectively Y2t) �ts an autoregressive process of order 12

(10, respectively). The last process is a white noise sequence and therefore the coe�cients

are all 0. The results are obtained by employing the function ar.mle of R directly to

each time series. The AR models seem to �t the data and further support is provided

by the estimated autocorrelation function of the residuals{see plot 3.5. Hence, model

(3.3) is applicable for testing whether the three processes posses the same second order

structure. To �t the model, we use the spectral density of Y3t as the reference. To apply

our inferential procedure, we need to choose the order p. A reasonable way is to choose

the parameter p by using the AIC criterion:

AIC(p) = −2l(�̂) + 2(G− 1)(p+ 1)

where, l(:) denotes the log{likelihood function de�ned by (3.5). The results of the param-

eter selection are depicted in Figure 3.6 which shows the plot of AIC(p) against p when

all three time series are under consideration for di�erent estimation methods. Based on

Figure 3.6, the selected order is p = 2 and in this case the corresponding estimators are

reported in the �rst six lines of Table 3.9. In addition, Table 3.9 reports p{values for test-

ing the hypotheses that all spectral densities are equal by employing the likelihood ratio

test (3.21). The p{values are computed by the chi-square approximation. The hypothesis

that all spectral densities are equal is rejected at any given level of signi�cance{p{value

equals to 0.

In order to identify di�erences among the three groups, we perform multiple compar-

isons as shown in the last 3 entries of Table 3.9. The p{values are again computed by

the chi{square approximation and it is seen that their size is relatively small. After a

simple Bonferroni adjustment, we conclude that all three time series posses di�erent spec-

tral density functions. These di�erences are explained as follows; either there are some

instabilities in source intensity across time or the sensitivity of the measurement detector

is disturbed.
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Estimation
�̂ Raw Periodogram Five PDSAE Seven PDSAE
â10 -5.161 -5.152 -5.151
â11 -0.024 -0.014 -0.011
â12 0.029 0.047 0.047
â20 -4.996 -4.982 -4.979
â21 0.100 0.085 0.090
â12 -0.142 -0.082 -0.077

Testing
�1(!) = �2(!) = �3(!) 0 0 0

�1(!) = �2(!) 0.000673 0.000616 0.000446
�1(!) = �3(!) 0 0 0
�2(!) = �3(!) 0 0 0

Table 3.9: Results of model (3.3) applied to photometry data.
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Figure 3.5: Sample autocorrelation function of the residuals after �tting the AR processes
to the data according to Table 3.8.
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Chapter 4

Cepstral Based Clustering of

Stationary Time Series

4.1 Introduction

In this section, we employ model (3.3) for clustering of several independent stationary

time series. We propose three distinct methods for clustering independent stationary time

series and examine their performance by simulations. The results are applied to clustering

of biological time series.

4.2 Techniques for Time Series Clustering

In what follows, suppose that {Yjt; t = 1; · · · ; N} are G independent stationary time

series with absolutely continuous spectral densities, �j(!) for j = 1; · · · ; G. Time series

clustering methodology is based on the identi�cation of a distance (or similarity) metric

between two time series which can be used as a raw input into the well known clustering

procedures, see Johnson and Wichern (1992), for instance. In principle, the value of the

distances implies whether two time processes share some common features. Then the idea

is to cluster time series data according to these particular features. These methods can

be divided into two classes, generally speaking. In the �rst class, there are the methods

which are based on time domain characteristics while the second class of methods consists

of spectral domain distances, for more see the comprehensive article by Liao (2005) and

the text by Shumway and Sto�er (2006, Ch.7). In the following, we brie
y review time

and spectral domain distance measures.

63
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4.2.1 Time Domain Distances

An initial attack to the problem of obtaining a distance measure between two stationary

time series in the time domain among others was suggested by Piccolo (1990) who considers

the case of invertible ARMA process. According, if Yjt follows the ARMA process (2.3)

and it is invertible, then it can be represented as an AR(∞) process. Thus, the coe�cients

of the expansion of �j(B) = Ψ−1
j (B)Φj(B), j = 1; 2; : : : ; G can be used to de�ne a distance.

It is pointed out that this distance is based on modeling the data by means of (2.3), for

more see Piccolo (1990). Without resorting to any parametric speci�cation, Galeano and

Pe~na (2000) suggest the use of the estimated autocorrelation function. More speci�cally

if �j(h) denotes the autocorrelation function of the j'th series{that is �j(h) = 
j(h)=
j(0),

and �̂j(h) stands for the respective estimated autocorrelation function, for h = 0; 1; : : : ;m

then the distance between the i and j sequence is given by

dACF (i; j) =
√

(�̂i − �̂j)′W (�̂i − �̂j): (4.1)

Here m is a truncation point, �̂i = (�̂(1); : : : ; �̂(m))
′ and W is some weight matrix. In

particular, choosing W = I, the identity matrix, yields the Euclidean distance.

4.2.2 Spectral Domain Distances

Spectral domain distances are based on the periodogram ordinates. Their statistical prop-

erties are studied by means of the asymptotic independence of the periodogram ordi-

nates, see Section 2.2. Recall the De�nition 2.2.4 of the periodogram and denote by

I∗j (!i) = Ij(!i)=
̂j(0) the normalized periodogram of the j'th series. Then a distance

between two time series is de�ned by

dNP (i; j) =

√√√√
[N=2]∑

k=1

(
I∗i (!k)− I∗j (!k)

)2; (4.2)

following Caiado et al. (2006). Notice that the use of such a distance is useful when interest

is focused only on the correlation structure between the two processes. In addition, the fact

that the variance of the periodogram ordinates is proportional to the spectrum value at

the corresponding frequencies. yields the consideration, of the logarithm of the normalized

periodogram, that is
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dLNP (i; j) =

√√√√
[N=2]∑

k=1

[
log I∗i (!k)− log I∗j (!k)

]2 (4.3)

Evidentally, both (4.2) and (4.3) are distances. In fact, it can be shown that, see Caiado

et al. (2006)

dNP (i; j) = (2
√
N)

√√√√
N−1∑

k=1

(�̂i(k)− �̂j(k))2

= (2
√
N)dACF (i; j);

by using expression (4.1) with W equal to the identity matrix. Hence measures (4.2) and

(4.1) are equivalent with the choice W = I but their application yields di�erent inferential

results when varying the truncation point m in (4.1). Furthermore, distance measures

based on absolute values can be de�ned analogously to (4.2) and (4.3) by

dABSNP (i; j) =

[N=2]∑

k=1

∣∣I∗i (!k)− I∗j (!k)
∣∣ ; (4.4)

and

dABSLNP (i; j) =

[N=2]∑

k=1

∣∣log I∗i (!k)− log I∗j (!k)
∣∣ : (4.5)

A comparison of all the above distances plus the measure introduced by (4.6) and discussed

next, is carried out in Section 4.4. An important measure of similarity between two

stationary time series is given by the Kullback-Leibler information distance, see Kakizawa

et al. (1998) who prove that its time domain form is given by

dKLTD(i; j) =
1

2N

(
tr

(
ΓiΓ

−1
j

)− log
|Γi|
|Γj| − 1

)
:

Here the matrix Γi (respectively Γj) is the autocovariance matrix of the i'th series (respec-

tively j'th series). In addition Kakizawa et al. (1998) suggest the use of the more general

Cherno� information measure but this will not be the focus of the presentation since these

measures depend upon an additional parameter. The previous equation has been derived

in time domain and its application to real data results in several computational di�cul-

ties, including inversion of large dimensional matrices. It can be shown that the spectral

domain analogue of the above formulae reduces to, (see Shumway and Sto�er (2006))

dKLFD(i; j) =
1

N

[N=2]∑

k=1

[
Ii(!k)
Ij(!k)

− log
Ii(!k)
Ij(!k)

− 1

]
:
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The above quantity is greater or equal to zero, with equality if and only if Ii(!k) = Ij(!k),

for all k, almost everywhere. However it is not symmetric and therefore for the purpose

of clustering we introduce the so called J{divergence which is de�ned as

J(i; j) = dKLFD(i; j) + dKLFD(j; i)

=
1

N

[N=2]∑

k=1

[
Ii(!k)
Ij(!k)

+
Ij(!k)
Ii(!k)

− 2

]
: (4.6)

4.3 Clustering Methodology Based on Cepstral Coe�-

cients

4.3.1 Distance Measures Based on Cepstral Coe�cients

Recall (2.5) and let �jk denote the k'th cepstral coe�cient of the j'th time series. It is

natural to de�ne a spectral distance measure between two or more time series by the

following.

De�nition 4.3.1. Let {Yjt; t = 1; 2; : : : ; N}, j = 1; 2; : : : ; G be G independent stationary

times series of length N from the linear process (2.1) with
∑∞

u=−∞ |gu| <∞. In addition

suppose that �jr are the cepstral coe�cients of the j'th series for r = 0; 1; 2; :::: de�ned by

(2.5). De�ne the euclidian distance among the cepstral coe�cients as

d2(i; j) =

√√√√
∞∑
r=0

(�ir − �jr)2;

for i; j = 1; 2; : : : ; G.

The above de�nition introduces a distance between the log spectral densities of the

(i; j) pair in the L2 space, with the usual convention that we identify functions which di�er

only on a set of measure zero. It can be generalized further by introducing a suitable weight

matrix. We focus however on the above de�nition to understand what are the properties

of this particular distance. Consider the following two simple examples.

Example 4.3.1. Suppose that G = 2 and assume that Yjt = �jYj(t−1) + �jt are two AR(1)

processes with | �j |< 1 and �jt are independent iid sequences with zero mean and variance

�2
j , j = 1; 2. Then

d2
2(1; 2) = (log �2

1 − log �2
2)

2 +
∞∑
r=1

(�r1 − �r2)2

r2
;
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by means of Lemma 2.5.1. Hence, when �1 and �2
1 are close to �2 and �2

2, respectively,

then the cepstral based distance of these process will be close to zero. Notice that the

term (�r1−�r2)2=r2 tends to zero su�ciently fast and therefore De�nition 4.3.1 is applicable

to real data by truncating the in�nite sum at some index value. Observations along these

lines can be made for the case G > 2.

Example 4.3.2. Suppose that G = 2 again and assume that Yjt = �jYj(t−1)+�jt− j�j(t−1)

are two ARMA(1; 1) processes with | �j |< 1, |  j |< 1 and �jt are independent iid

sequences with zero mean and variance �2
j , j = 1; 2. Then

d2
2(1; 2) = (log �2

1 − log �2
2)

2 +
∞∑
r=1

((�r1 − �r2)− ( r1 −  r2))
2

r2
;

using again (2.5.1). Similar remarks as in the case of the AR(1) example can be made.

Both of the above examples make the point that the quantity d2(i; j) can be approxi-

mated by

d̃2(i; j) =

√√√√
p∑
r=0

(�ir − �jr)2; (4.7)

where p is a �xed number chosen by the data analyst. When considering the log spectrum

estimation a small value of p usually su�ces since the corresponding cepstrum coe�cients

tend to zero exponentially fast. For �xed p, expression (4.7) introduces a distance. Instead

of using a di�erent analysis of each given time series we resort to the proposed model (3.3)

which yields the following result:

d̃2
2(i; j) =

p∑
r=0

(�ir − �jr)2

=

p∑
r=0

(∫ 1

0

log �i(!) cos(2�r!)d! −
∫ 1

0

log �j(!) cos(2�r!)d!
)2

=

p∑
r=0

(air − ajr)2

for i; j = 1; · · · ; G− 1, i 6= j, and

d̃2
2(i; G) =

p∑
r=0

(�ir − �Gr)2

=

p∑
r=0

(∫ 1

0

log �i(!) cos(2�r!)d! −
∫ 1

0

log �G(!) cos(2�r!)d!
)2

=

p∑
r=0

a2
ir
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when j = G. The above two expressions can be written compactly as

d̃2
2(i; j) =

p∑
r=0

(air − ajr)2; (4.8)

for i; j = 1; 2; : : : ; G, i 6= j and aGr = 0 for all r. To carry out the above computation, it

is not necessary to have the same value of p for all time series. It is implicitly assumed

that for applying model (3.3) we choose the same value p for all time series. Furthermore,

the de�nition of model (3.3) implies that the ratio of the i'th and j'th spectral densities

remains the same, irrespective of the total number of spectral densities, that is

log
�i(!)

�j(!)
= (ai − aj)TZ(!):

This shows that distance de�ned by (4.7) is not a�ected by the reference density since it

is a sum of the squared contrasts. In all the examples we use the spectral density of the

last simulated time series as reference for �tting the proposed model.

In a related approach Kalpakis et al. (2001) have studied the euclidian distance between

cepstral coe�cients of two or more time series in the context of ARMA processes. However

their approach is based on identifying the estimators of cepstral coe�cients by means of

Lemma 2.5.1 for each time series separately and then form an estimate for (4.7). In

other words, they assume that each observed time series follows an ARMA model of

the form (2.3) and then they estimate the unknown coe�cients �i; i = 1; 2; : : : ; p and

 j; j = 1; 2; : : : ; q. The estimated model is employed to produce estimates of the cepstral

coe�cients which in turn are used for obtaining the euclidian distance between them.

A natural question that arises is whether each time series follows an ARMA model. If

not, then the inferential results obtained by Kalpakis et al. (2001) will not be in general

reliable. Our approach is quite di�erent since we do include more general process than

ARMA models and when estimation is performed{a topic that is going to be discussed

next{model (3.3) is employed which is semiparametric in the sense that the ratio of two or

more spectral density functions is related by a parametric form. In addition, we introduce

the following dissimilarity measure which is based on the absolute value of the di�erence

between the cepstral coe�cients. It is de�ned by the following:

De�nition 4.3.2. Let {Yjt; t = 1; 2; : : : ; N}, j = 1; 2; : : : ; G be G independent stationary

times series of length N and suppose that the assumptions of De�nition 4.3.1 hold true. In
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addition suppose that �jr are the cepstral coe�cients of the j'th series for r = 0; 1; 2; ::::.

De�ne the absolute value distance among the cepstral coe�cients as

d2
1(i; j) =

∞∑
r=0

| �ir − �jr |

for i; j = 1; 2; : : : ; G.

Under the spectral density ratio model (3.3) and given a truncation point p, the above

quantity is estimated by

d̃2
1(i; j) =

p∑
r=0

| air − ajr |; (4.9)

Both (4.8) and (4.9) are employed after estimation in what follows and their performance is

examined in both real and simulated data. More speci�cally, given the maximum likelihood

estimator vector �̂ for model (3.3) we estimate (4.8) by plugging in the corresponding

estimators, that is

d2
EUCLCEP (i; j) =

p∑
r=0

(âir − âjr)2: (4.10)

Similarly for (4.9) we use

d2
ABSCEP (i; j) =

p∑
r=0

| âir − âjr | : (4.11)

These distances will be used in the sequel. In addition, we describe another distance

measure which is based on the p-value of the test statistic for the hypothesis Ho : d̃2
2(i; j) =

0, for i; j = 1; 2; : : : ; G, see Alonso and Maharaj (2006).

4.3.2 Distance measures based on p-values

Consider testing of the hypotheses Ho : d̃2
2(i; j) = 0, for i; j = 1; 2; : : : ; G−1. Equivalently

the hypotheses state that all process have identical cepstral coe�cients up to order p: We

approximate the asymptotic distribution of (4.10) to compute a p-value for testing the

above hypotheses. Recall Theorem 3.4.2 and use the notation

F 1=2
(
�̂ − �

)
⇒ N(G−1)(p+1) (0; I) ; (4.12)

where F = ND0=4�: As a �rst step we will �nd the distribution of �i − �j for i; j =

1; : : : ; G−1: Let K be a diagonal matrix of dimensions (p+1)× (G−1)(p+1) of the form

K = [Op+1 everywhere; Ip+1 at the i-place;−Ip+1 at the j-place]
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where Ip+1, Op+1 are the identity and the zero matrix of dimension (p + 1) respectively.

It is K� = �i − �j:

Proposition 4.3.1.

(
KF−1KT )−1=2K

(
�̂ − �

)
D⇒ N(p+1)(0; I) (4.13)

Proof: Let W = F 1=2
(
�̂ − �

)
and X =

(
KF−1KT

)−1=2KF−1=2;. From (4.12) we

have that W D⇒ N(G−1)(p+1)(0; I) Therefore

(
KF−1KT )−1=2K

(
�̂ − �

)
=

(
KF−1KT )−1=2KF−1=2F 1=2

(
�̂ − �

)

=
(
KF−1KT )−1=2KF−1=2W

= XW;

and

V ar(XW ) = XXT =
(
KF−1KT )−1=2KF−1=2F−1=2KT (

KF−1KT )−1=2
= I(p+1)

De�ne now Σ0 = KF−1KT and � = Σ
−1=2
0 K�̂. Then

d2
EUCLCEP = �TΣ0�:

From Proposition 4.3.1 and under the hypotheses H0 since K� = 0, we have that � D⇒
Np+1(0; I) As result, the asymptotic distribution of d2

EUCLCEP is derived applying known

results on quadratic forms in standard Normal random variables, since

d2
EUCLCEP = �TΣ0� =

∑
j

�j�2
gj ;

where �j; j ≤ p + 1 are the non zero eigenvalues of Σ0 and �2
gj are independent chi

-square random variables with gj degrees of freedom given by the multiplicity of each

eigenvalue (usually, gj ≡ 1; ∀j). To facilitate the use of the distance an approximation

of the distribution of a linear combination of chi-squared random variables is needed, see

Corduas and Piccolo (2008)). In particular, we consider the approximation:

d2
EUCLCEP ∼ a�2

v + b

where a; b; v are determined by the method of moments:

a = t3=t3; b = t1 − (t22=t3); v = t32=t
2
3;
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with tk =
∑

j �
k
j = tr(Σk

0); k = 1; 2; 3: The distance measure that is introduced is de�ned

by the following, see also Alonso and Maharaj (2006).

De�nition 4.3.3. Let {Yjt; t = 1; 2; : : : ; N}, j = 1; 2; : : : ; G be G independent stationary

times series of length N and suppose that representation (2.5) holds true, with �jk being

the cepstral coe�cients of the j'th series for k = 0; 1; 2; :::. Let p(i; j) be the p-values for

testing the hypotheses Ho : d̃2
2(i; j) = 0, for i; j = 1; 2; : : : ; G− 1 based on the asymptotic

approximation of the quantity (4.10). De�ne the dPV AL distance as

dPV AL(i; j) = 1− p(i; j); i; j = 1; 2; : : : ; G; (4.14)

after suitable adjustment for taking into account multiple comparisons.

Remark 4.3.1. In the above de�nition the vector of the p-values is adjusted for taking

into account multiple comparisons by using either a bonferroni correction method when

the number of hypotheses to be tested is small. When the number of comparisons is large

we can employ the method of Benjamini and Hochberg (1995).

4.3.3 Applying the cepstral distance measure for clustering

To apply the cepstral distance measure to real data an estimator of (4.7) is needed. The

method which is going to be used is based on maximum likelihood estimation of the vector

of coe�cients �j for j = 1; 2; : : : ; G−1. We use (4.10), (4.11) and (4.14) as described above.

Based on the above distances, clustering of the time series is carried out by the method

diana which yields a computing a divisive hierarchy, whereas most other procedures for hi-

erarchical clustering is agglomerative. The complete algorithm consists of G−2 successive

splits. In each step, we select the cluster C with the largest diameter, where

diam(C) := max
i;j∈C

d(i; j) (4.15)

Assuming diam(C) > 0 we then split up C into two clusters A and B , according to a

variant of the method Macnaughton Smith et al. (1965). Below we describe in pseudocode

how such a split is performed. At �rst A := C and B := Ø, and then

1) Move one object from A to B. For each object i ∈ A we calculate a(i), the average

dissimilarity of i to all other objects of A.

a(i) :=
1

|A| − 1

∑

j∈A;j 6=i
d(i; j) (4.16)
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The object m of A for which a(m) is the largest, is moved to B:

A := A \ {m}; B := {m}: (4.17)

2) Move other object from A to B, which is called the "splinter group". if |A| = 1,

stop. Otherwise calculate a(i) for all i ∈ A, and the average dissimilarity of i to all

objects of B, denoted as d(i; B)

d(i; B) :=
1

|B|
∑
j∈B

d(i; j) (4.18)

Select the object h ∈ A for which a(h)− d(h;B) = maxi∈A(a(i)− d(i; B)): If a(h)−
d(h;B) > 0 ⇒ move h from A to B, and go to step 2.

If a(h)− d(h;B) ≤ 0 ⇒ the process stops. Keep A and B as they are now.

In brief the diana-algorithm constructs a hierarchy of clusterings, starting with one

large cluster containing all G − 1 observations. Clusters are divided until each cluster

contains only a single observation. At each stage, the cluster with the largest diameter

is selected. (The diameter of a cluster is the largest dissimilarity between any two of its

observations.) To divide the selected cluster, the algorithm �rst looks for its most disparate

observation (i.e., which has the largest average dissimilarity to the other observations of

the selected cluster). This observation initiates the "splinter group". In subsequent steps,

the algorithm reassigns observations that are closer to the "splinter group" than to the

"old party". The result is a division of the selected cluster into two new clusters.

The function diana also provides the divisive coe�cient which measures the clustering

structure of the data set. This coe�cient is obtained as follows: for each object i, denote

by d(i) the diameter of the last cluster to which it belongs (before being split o� as a single

object), divided by the diameter of the whole data set. The divisive coe�cient (DC) is

then de�ned as the average of all d(i):

In summary, we have the following algorithm for cepstral based clustering of time

series:

1. Given G independent stationary time series, �t model (3.3) to obtain an estimator

of the parameter � based on the maximum likelihood method that was described

above.

Alex
ios

 Sav
vid

es



73

2. Based on the estimated coe�cients �̂ compute (4.10), (4.11) and (4.14) as described

above.

3. Form a distance matrix with the (i; j) element be given by (4.10), (4.11) and (4.14)

and use the diana clustering method to classify the data.

Other clustering methods can be used as well but our focus will be on the method described

above, for more see Hastie et al. (2001).

4.4 Simulations

We apply the proposed method to simulated data. In particular, comparison of spectral

domain clustering is implemented by means of all the metrics that were discussed in

Sections 4.2 and 4.3. We consider examples that are non standard including simulated

data that arises from non linear processes. All the calculations are carried out by the

statistical language R, R Development Core Team (2004), and a program is given in the

Appendix.

To compare the performance of the various clustering methods a cluster similarity

measure is computed throughout the simulations. It is based on known ground truth,

that is it can be de�ned when the total number of clusters is known. More speci�cally,

following Liao (2005) suppose that F = F1; F2; : : : ; Fk are the sets of k ground truth

clusters and let C = C1; C2; : : : ; Ck be those sets which are obtained by a clustering

method under evaluation. The cluster similarity measure is de�ned as

Sim(F;C) =
1

k

k∑
i=1

max
1≤j≤k

Sim(Fi; Cj);

where

Sim(Fi; Cj) =
2 | Fi

⋂
Cj |

| Fi | + | Cj | ;

where | : | denotes the cardinality of a set. Obviously the quantity Sim takes values

between 0 and 1, where 0 corresponds to the case that F and G are exhaustively disjoint

and 1 corresponds to the case of perfect clustering. The simulations are carried out one

thousands times. In each run, we evaluate the distances introduced by the J{divergence

(4.6), the squared distances (4.2), (4.3) and (4.10), and the absolute distance (4.4), (4.5)

and (4.11). In addition clustering based on the distance (4.14) is calculated.
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For each distance a dissimilarity matrix is calculated and is given as input to diana.

Then the similarity index is calculated and the results are averaged out for the whole

process. We simulate one thousand time series replications. The sample sizes were taken

equal to 50,100 and 500. For �tting model (3.3) the very last spectral density{that is

the spectral density which corresponds to the last simulated time series{was kept as ref-

erence, see Section 3.3. We give two ways of estimating all distances, namely maximum

likelihood estimation based at the raw periodogram and on smoothed periodogram, see

Hitchcock et al. (2006). The smoothed periodogram is obtained by smoothing the result

with a series of modi�ed Daniell smoothers (moving averages giving half weight to the end

values). Each time, a di�erent order p is used to �t the model and consequently compute

(4.10), (4.11) and (4.14). When changing the order all the other distances are recalculated

again and therefore the resulting output is reported for all these runs. However we will see

that there is no much variation of the results as it should be expected. When simulating

from a time series model, the coe�cients are chosen away from the boundary of stationar-

ity/invertibility region of ARMA models and they are drawn from a uniform distribution

with small variance instead of leaving the true parameters as �xed constants. This is

a more realistic scenario in many applications and we use the notation X ∼ U(a; b) to

denote that the random variable X follows the uniform distribution in the interval (a; b).

Note that if we want to check the performance of the proposed clustering method using

ARMA models 'randomly' or their coe�cients near the boundary, we can use the method

of Jones (1987).

Example 4.4.1. Consider three clusters of a total of thirteen time series according to the

following speci�cation

Yit = �i1Yi(t−1) + �it

where �i1 ∼ U(−0:61;−0:59) for i = 1; 2; 3; 4,

Yit = �i1Yi(t−1) + �i2Yi(t−2) + �it;

where �i1 ∼ U(−0:61;−0:59), �i2 ∼ U(0:29; 0:31) for i = 5; 6; 7; 8, and

Yit = �i1Yi(t−1) + �it −  i1�i(t−1)
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where �i1 ∼ U(−0:51;−0:49) and  i1 ∼ U(−0:18;−0:16) for i = 9; 10; : : : ; 13. The error

sequences are independent and identically distributed normal random variables with stan-

dard deviation equal to 1 for i = 1; 2; 3; 4, 2 for i = 5; 6; 7; 8 and 0.5 for i = 9; 10; 11; 12; 13:

In this case, we have four AR(1) processes, four AR(2) processes and 5 ARMA(1,1) pro-

cess. Table 4.1 shows the cluster similarity index together with its standard deviation (in

parentheses) for di�erent metrics. The results clearly illustrate that clustering based on

cepstral coe�cients by means of the proposed model outperform all the other methods,

even for relatively small sample sizes. In addition the order of the model �tted to the data

does not in
uence the �nal results. Distances based on the logarithm of periodogram, that

is (4.3) and (4.5), appear to give better results when compared to the other distances. The

same results appear in Table 4.2 for the smoothed estimator. We notice that the proposed

distance is not a�ected a lot by smoothing. However the other distances are improving.

Example 4.4.2. Consider two clusters of a total of thirteen time series according to the

following speci�cation

Yit = cos(!it) + sin(!it) + �it i = 1; 2; : : : ; 6

Yit = �it i = 7; 8; : : : ; 13

where !i ∼ U(0:97; 1:03). Here the error sequences are generated again by the normal

distribution with standard deviation equal to 1.3 for i = 1; 2; : : : ; 6; and 0.7 for the rest.

This is a case where the data are divided into two groups, namely one group is periodic

and the other group has a 
at spectrum. This simulation shows that model (3.3) is robust

even when the spectral density is not continuous. Tables 4.3 and 4.4 report similar results

to those discussed earlier.

Example 4.4.3. Consider twelve time series according to the following speci�cation

Yit = �it�it

�2
it = !i + �iY 2

i(t−1)

where �i ∼ U(0:69; 0:71) for i = 1; 2; 3; 4,

Yit = �it�it;

�2
it = !i + �iY 2

i(t−1) + �i�2
i(t−1);
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where �i ∼ U(0:39; 0:41), �i ∼ U(0:49; 0:51) for i = 5; 6; 7; 8,

Yit = �i1Yi(t−1) + �it;

where �i1 ∼ U(−0:61;−0:59) for i = 9; 10; : : : ; 13. The noise sequence �it is generated

from the standard normal distribution and !i = 1e − 6. For this example, we have four

ARCH(1) processes, four GARCH(1,1) processes and 5 AR(1) process. Tables 4.5 and 4.6

show that our method perform well even when the data contain non linear time series.

Example 4.4.4. The �nal example is about a more complicated situation where there

are six clusters and the number of observed time series is twenty six. These data have

been generated according to the following:

Yit = cos(!it) + sin(!it) + �it i = 1; 2; 3; 4

where !i ∼ U(0:19; 0:21), for i = 1; 2; 3; 4,

Yit = �i1Yi(t−1) + �it −  i1�i(t−1);

where �i1 ∼ U(0:07; 0:09),  i1 ∼ U(−0:01; 0:01) for i = 5; 6; 7; 8,

Yit ∼ EXP(2);

for i = 9; 10; 11; 12, where the above notation mean that the data follow model (2.5) with

�i0 ∼ U(0:09; 0:11), �i1 ∼ U(−0:20;−0:18) and �i2 ∼ U(0:17; 0:19),

Yit = �i1Yi(t−1) + �i2Yi(t−2) + �it −  i1�i(t−1);

where �i1 ∼ U(−0:71;−0:69), �i2 ∼ U(0:19; 0:21),  i1 ∼ U(0:16; 0:18) for i = 13; 14; 15; 16,

Yit = �it

for i = 17; 18; 19; 20 and

Yit = �i1Yi(t−1) + �i2Yi(t−2) + �it −  i1�i(t−1);

with �i1 ∼ U(0:29; 0:31) �i2 ∼ U(0:19; 0:21), and  i1 ∼ U(−0:01; 0:01) for i = 21; 22; : : : ; 26.

The noise sequence are independent and identically distributed normal variables with stan-

dard deviation equal to 2 for i = 1; 2; 3; 4; 1.5 for i = 5; 6; 7; 8, 0.7 for i = 13; 14; 15; 16; 1.1

for i = 17; 18; 19; 20 and 1.3 for i = 21; 22; : : : ; 26: Tables 4.7 and 4.8 show again that our

method is more reliable even in this case where there are various types of processes under

consideration.
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Table 4.1: Simulation results for the cluster similarity measure of Example 4.4.1.

N p J{divergence dNP dLNP dEUCLCEP dABSNP dABSLNP dABSCEP dPV AL
2 0.616 0.620 0.642 0.976 0.645 0.664 0.981 0.994

(0.097) (0.076) (0.096) (0.054) (0.085) (0.097) (0.05) (0.034)
50 3 0.617 0.625 0.641 0.975 0.646 0.664 0.977 0.993

(0.094) (0.076) (0.093) (0.058) (0.084) (0.089) (0.057) (0.033)
4 0.621 0.624 0.649 0.974 0.646 0.671 0.978 0.992

(0.092) (0.074) (0.095) (0.057) (0.085) (0.09) (0.053) (0.035)
5 0.615 0.625 0.643 0.973 0.647 0.665 0.971 0.987

(0.094) (0.076) (0.092) (0.06) (0.085) (0.092) (0.066) (0.041)
2 0.650 0.634 0.703 0.995 0.685 0.726 0.997 0.990

(0.1) (0.075) (0.091) (0.023) (0.075) (0.082) (0.019) (0.052)
100 3 0.648 0.637 0.702 0.996 0.686 0.723 0.997 0.989

(0.093) (0.075) (0.088) (0.023) (0.075) (0.084) (0.022) (0.054)
4 0.648 0.637 0.703 0.995 0.686 0.726 0.997 0.991

(0.101) (0.075) (0.091) (0.024) (0.074) (0.089) (0.018) (0.048)
5 0.647 0.634 0.700 0.995 0.684 0.723 0.996 0.993

(0.095) (0.075) (0.091) (0.023) (0.081) (0.088) (0.02) (0.044)
2 0.706 0.616 0.807 1 0.744 0.840 1 0.815

(0.098) (0.077) (0.094) (0) (0.083) (0.11) (0) (0.110)
500 3 0.708 0.616 0.810 1 0.745 0.838 1 0.790

(0.095) (0.079) (0.098) (0) (0.083) (0.11) (0) (0.114)
4 0.710 0.614 0.809 1 0.744 0.840 1 0.780

(0.095) (0.078) (0.095) (0) (0.083) (0.108) (0) (0.111)
5 0.710 0.616 0.805 1 0.747 0.839 1 0.770

(0.092) (0.077) (0.094) (0) (0.085) (0.106) (0) (0.113)
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Table 4.2: Simulation results for the cluster similarity measure of Example 4.4.1, based
on �ve point discrete spectral estimator.

N p J{divergence dNP dLNP dEUCLCEP dABSNP dABSLNP dABSCEP dPV AL
2 0.724 0.717 0.72 0.983 0.733 0.721 0.988 0.992

(0.099) (0.09) (0.098) (0.047) (0.097) (0.097) (0.042) (0.045)
50 3 0.721 0.713 0.721 0.983 0.729 0.72 0.987 0.994

(0.101) (0.092) (0.1) (0.047) (0.095) (0.099) (0.041) (0.035)
4 0.723 0.714 0.719 0.983 0.73 0.723 0.986 0.996

(0.103) (0.09) (0.099) (0.047) (0.098) (0.099 ) (0.048) (0.032)
5 0.719 0.714 0.717 0.984 0.729 0.722 0.988 0.998

(0.102) (0.092) (0.102) (0.047) (0.097) (0.101 ) (0.041 ) (0.021)
2 0.793 0.722 0.79 0.996 0.779 0.792 0.997 0.957

(0.109) (0.073) (0.108) (0.021) (0.1) (0.109) (0.018) (0.095)
100 3 0.789 0.722 0.787 0.996 0.779 0.786 0.998 0.96

(0.107) (0.08) (0.106) (0.021) (0.098) (0.108) (0.017) (0.091)
4 0.789 0.724 0.786 0.996 0.782 0.788 0.998 0.967

(0.111) (0.078) (0.11) (0.021) (0.102) (0.109) (0.014) (0.084)
5 0.793 0.725 0.79 0.996 0.782 0.79 0.997 0.964

(0.113) (0.078) (0.113) (0.018) (0.101) (0.112) (0.018) (0.086)
2 0.953 0.703 0.952 1 0.861 0.948 1 0.759

(0.101) (0.04) (0.103) (0) (0.132) (0.107) (0) (0.103)
500 3 0.948 0.704 0.946 1 0.856 0.941 1 0.746

(0.105) (0.04) (0.108) (0) (0.135) (0.112) (0) (0.103)
4 0.949 0.704 0.949 1 0.857 0.946 1 0.737

(0.103) (0.038) (0.105) (0) (0.136) (0.107) (0) (0.102)
5 0.955 0.704 0.954 1 0.861 0.951 1 0.735

(0.097) (0.038) (0.1) (0) (0.134) (0.103) (0) (0.1)
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Table 4.3: Simulation results for the cluster similarity measure of Example 4.4.2.

N p J{divergence dNP dLNP dEUCLCEP dABSNP dABSLNP dABSCEP dPV AL
2 0.653 0.875 0.670 0.999 0.878 0.695 0.996 0.999

(0.066) (0.106) (0.083) (0.011) (0.114) (0.105) (0.031) (0.010)
50 3 0.657 0.875 0.668 0.999 0.882 0.695 0.996 0.997

(0.077) (0.105) (0.079) (0.015) (0.114) (0.107) (0.029) (0.022)
4 0.653 0.88 0.664 0.998 0.881 0.693 0.990 0.998

(0.076) (0.106) (0.076) (0.012) (0.115) (0.107) (0.052) (0.014)
5 0.656 0.884 0.668 0.998 0.883 0.695 0.985 0.997

(0.075) (0.105) (0.08) (0.02) (0.117) (0.108) (0.065) (0.017)
2 0.660 0.809 0.686 1 0.876 0.707 1 0.997

(0.075) (0.108) (0.097) (0) (0.102) (0.112) (0) (0.029)
100 3 0.656 0.804 0.674 1 0.87 0.704 1 0.993

(0.074) (0.112) (0.085) (0) (0.108) (0.109) (0.011) (0.047)
4 0.656 0.805 0.679 1 0.874 0.705 0.999 0.996

(0.073) (0.109) (0.091) (0) (0.104) (0.112) (0.012) (0.034)
5 0.658 0.815 0.679 1 0.875 0.706 1 0.997

(0.076) (0.108) (0.092) (0) (0.108) (0.112) (0.003) (0.028)
2 0.669 0.667 0.765 1 0.795 0.823 1 0.849

(0.088) (0.062) (0.147) (0) (0.135) (0.148) (0) (0.138)
500 3 0.667 0.668 0.763 1 0.798 0.819 1 0.799

(0.084) (0.059) (0.144) (0) (0.133) (0.151) (0) (0.137)
4 0.669 0.664 0.76 1 0.79 0.815 1 0.781

(0.088) (0.057) (0.146) (0) (0.134) (0.15) (0) (0.137)
5 0.670 0.670 0.767 1 0.792 0.825 1 0.767

(0.086) (0.062) (0.148) (0) (0.133) (0.147) (0) (0.131)
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Table 4.4: Simulation results for the cluster similarity measure of Example 4.4.2, based
on �ve point discrete spectral estimator.

N p J{divergence dNP dLNP dEUCLCEP dABSNP dABSLNP dABSCEP dPV AL
2 0.803 0.872 0.805 1 0.87 0.821 0.999 0.997

(0.126) (0.106) (0.128) (0.005) (0.11) (0.126) (0.017) (0.03)
50 3 0.804 0.868 0.804 0.999 0.864 0.819 0.999 0.998

(0.126) (0.104) (0.126) (0.007) (0.108 ) (0.125) (0.009) (0.019)
4 0.812 0.874 0.812 0.999 0.869 0.83 0.998 0.999

(0.132) (0.111) (0.132) (0.008) (0.116 ) (0.128) (0.016) (0.014)
5 0.797 0.869 0.8 0.999 0.864 0.818 0.999 0.999

(0.13) (0.11) (0.13) (0.007) (0.111) (0.126) (0.014) (0.014)
2 0.86 0.862 0.858 1 0.888 0.855 1 0.971

(0.117) (0.106) (0.118) (0.003) (0.103) (0.117) (0.003) (0.09)
100 3 0.854 0.859 0.851 1 0.883 0.85 1 0.965

(0.118) (0.106) (0.12) (0) (0.105) (0.118) (0.011) (0.097)
4 0.859 0.862 0.856 1 0.885 0.852 1 0.964

(0.117) (0.107) (0.118) (0) (0.102) (0.118) (0) (0.101)
5 0.865 0.865 0.862 1 0.891 0.864 1 0.972

(0.116) (0.106) (0.118) (0) (0.101) (0.115) (0) (0.09)
2 0.976 0.889 0.976 1 0.968 0.97 1 0.774

(0.057) (0.134) (0.052) (0) (0.069) (0.055) (0) (0.129)
500 3 0.973 0.893 0.972 1 0.964 0.967 1 0.745

(0.058) (0.128) (0.053) (0) (0.072) (0.058) (0) (0.123)
4 0.975 0.889 0.974 1 0.967 0.968 1 0.734

(0.054) (0.132) (0.054) (0) (0.068) (0.06) (0) (0.121)
5 0.973 0.885 0.97 1 0.965 0.967 1 0.732

(0.059) (0.132) (0.062) (0) (0.07) (0.06) (0) (0.123)
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Table 4.5: Simulation results for the cluster similarity measure of Example 4.4.3.

N p J{divergence dNP dLNP dEUCLCEP dABSNP dABSLNP dABSCEP dPV AL
2 0.587 0.624 0.616 0.846 0.664 0.651 0.837 0.844

(0.092) (0.08) (0.097) (0.088) (0.078) (0.091) (0.085) (0.088)
50 3 0.595 0.630 0.618 0.844 0.667 0.651 0.835 0.848

(0.091) (0.078) (0.096) (0.087) (0.077) (0.09) (0.087) (0.088)
4 0.593 0.628 0.627 0.845 0.666 0.655 0.832 0.846

(0.094) (0.08) (0.096) (0.085) (0.077) (0.092) (0.083) (0.087)
5 0.597 0.628 0.622 0.843 0.669 0.656 0.831 0.853

(0.093) (0.08) (0.095) (0.082) (0.079) (0.092) (0.08) (0.090)
2 0.615 0.634 0.678 0.866 0.710 0.708 0.858 0.831

(0.1) (0.078) (0.096) (0.088) (0.066) (0.079) (0.088) (0.113)
100 3 0.611 0.635 0.674 0.869 0.710 0.709 0.858 0.834

(0.102) (0.078) (0.097) (0.091) (0.062) (0.08) (0.093) (0.111)
4 0.615 0.639 0.677 0.873 0.709 0.707 0.861 0.837

(0.095) (0.077) (0.095) (0.09) (0.062) (0.075) (0.091) (0.107)
5 0.61 0.636 0.677 0.868 0.706 0.704 0.856 0.846

(0.094) (0.08) (0.094) (0.089) (0.066) (0.078) (0.089) (0.108)
2 0.655 0.634 0.747 0.934 0.735 0.746 0.924 0.702

(0.097) (0.081) (0.038) (0.088) (0.052) (0.044) (0.093) (0.099)
500 3 0.654 0.635 0.751 0.937 0.737 0.751 0.922 0.702

(0.1) (0.082) (0.041) (0.085) (0.057) (0.049) (0.094) (0.093)
4 0.658 0.628 0.747 0.942 0.737 0.749 0.926 0.702

(0.097) (0.082) (0.041) (0.084) (0.058) (0.048) (0.095) (0.093)
5 0.657 0.631 0.748 0.940 0.734 0.747 0.922 0.705

(0.097) (0.083) (0.042) (0.084) (0.052) (0.046) (0.095) (0.099)
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Table 4.6: Simulation results for the cluster similarity measure of Example 4.4.3, based
on �ve point discrete spectral estimator.

N p J{divergence dNP dLNP dEUCLCEP dABSNP dABSLNP dABSCEP dPV AL
2 0.715 0.695 0.713 0.85 0.71 0.713 0.843 0.851

(0.07) (0.069) (0.071) (0.087) (0.07) (0.072) (0.086) (0.092)
50 3 0.708 0.695 0.709 0.841 0.708 0.71 0.833 0.847

(0.074) (0.068) (0.072) (0.083) (0.074) (0.072) (0.081) (0.086)
4 0.71 0.694 0.708 0.845 0.706 0.709 0.835 0.846

(0.071) (0.066) (0.07) (0.086) (0.073) (0.071) (0.086) (0.088)
5 0.709 0.692 0.707 0.842 0.707 0.71 0.836 0.845

(0.074) (0.067) (0.073) (0.085) (0.073) (0.074) (0.085) (0.089)
2 0.743 0.712 0.744 0.87 0.737 0.744 0.858 0.833

(0.058) (0.054) (0.054) (0.09) (0.059) (0.053) (0.089) (0.111)
100 3 0.743 0.714 0.743 0.873 0.736 0.744 0.863 0.845

(0.054) (0.053) (0.053) (0.091) (0.059) (0.056) (0.092) (0.108)
4 0.74 0.71 0.742 0.871 0.734 0.743 0.858 0.841

(0.058) (0.054) (0.055) (0.088) (0.06) (0.057) (0.089) (0.108)
5 0.742 0.711 0.743 0.871 0.736 0.743 0.858 0.847

(0.058) (0.055) (0.056) (0.09) (0.061) (0.055) (0.09) (0.108)
2 0.758 0.717 0.757 0.937 0.753 0.757 0.928 0.698

(0.041) (0.033) (0.039) (0.084) (0.043) (0.04) (0.09) (0.094)
500 3 0.762 0.715 0.762 0.944 0.756 0.761 0.928 0.705

(0.047) (0.032) (0.046) (0.082) (0.052) (0.049) (0.094) (0.095)
4 0.76 0.715 0.761 0.944 0.753 0.759 0.929 0.708

(0.047) (0.032) (0.046) (0.081) (0.048) (0.046) (0.092) (0.098)
5 0.758 0.715 0.758 0.944 0.755 0.76 0.927 0.709

(0.045) (0.032) (0.042) (0.083) (0.048) (0.046) (0.093) (0.097)
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Table 4.7: Simulation results for the cluster similarity measure of Example 4.4.4.

N p J{divergence dNP dLNP dEUCLCEP dABSNP dABSLNP dABSCEP dPV AL
2 0.501 0.493 0.516 0.726 0.545 0.526 0.726 0.590

(0.052) (0.064) (0.053) (0.068) (0.062) (0.053) (0.07) (0.055)
50 3 0.498 0.491 0.512 0.724 0.543 0.523 0.720 0.582

(0.055) (0.065) (0.053) (0.066) (0.059) (0.055) (0.07) (0.053)
4 0.499 0.491 0.515 0.722 0.544 0.525 0.715 0.575

(0.051) (0.064) (0.054) (0.066) (0.062) (0.054) (0.07) (0.055)
5 0.501 0.493 0.511 0.714 0.545 0.526 0.707 0.573

(0.052) (0.063) (0.052) (0.068) (0.062) (0.056) (0.07) (0.055)
2 0.515 0.509 0.536 0.817 0.614 0.550 0.825 0.811

(0.055) (0.076) (0.057) (0.067) (0.069) (0.061) (0.072) (0.064)
100 3 0.515 0.514 0.536 0.817 0.62 0.554 0.822 0.807

(0.055) (0.073) (0.059) (0.068) (0.072) (0.061) (0.069) (0.062)
4 0.516 0.514 0.536 0.814 0.616 0.555 0.816 0.803

(0.056) (0.077) (0.06) (0.065) (0.071) (0.06) (0.068) (0.061)
5 0.513 0.512 0.534 0.810 0.611 0.550 0.809 0.796

(0.056) (0.076) (0.056) (0.066) (0.071) (0.062) (0.067) (0.056)
2 0.529 0.435 0.627 0.978 0.745 0.66 0.993 0.846

(0.057) (0.049) (0.069) (0.049) (0.077) (0.067) (0.027) (0.089)
500 3 0.532 0.435 0.625 0.981 0.738 0.658 0.990 0.808

(0.055) (0.049) (0.067) (0.045) (0.079) (0.067) (0.031) (0.092)
4 0.532 0.435 0.629 0.979 0.737 0.659 0.988 0.783

(0.058) (0.048) (0.069) (0.047) (0.076) (0.069) (0.034) (0.092)
5 0.533 0.433 0.628 0.979 0.743 0.658 0.986 0.755

(0.056) (0.05) (0.067) (0.048) (0.078) (0.067) (0.037) (0.094)
Alex

ios
 Sav

vid
es



84

Table 4.8: Simulation results for the cluster similarity measure of Example 4.4.4, based
on �ve point discrete spectral estimator.

N p J{divergence dNP dLNP dEUCLCEP dABSNP dABSLNP dABSCEP dPV AL
2 0.573 0.588 0.573 0.731 0.611 0.576 0.729 0.591

(0.065) (0.063) (0.064) (0.069) (0.062) (0.063) (0.071) (0.056)
50 3 0.568 0.586 0.57 0.733 0.606 0.575 0.727 0.576

(0.061) (0.063) (0.061) (0.066) (0.062) (0.061) (0.069) (0.055)
4 0.572 0.591 0.573 0.73 0.61 0.577 0.725 0.572

(0.062) (0.062) (0.061) (0.067) (0.062) (0.062) (0.065) (0.055)
5 0.571 0.585 0.572 0.729 0.608 0.577 0.718 0.566

(0.061) (0.061) (0.06) (0.064) (0.061) (0.06) (0.066) (0.057)
2 0.631 0.622 0.635 0.825 0.677 0.639 0.833 0.814

(0.068) (0.072) (0.069) (0.069) (0.066) (0.07) (0.068) (0.062)
100 3 0.636 0.621 0.639 0.825 0.675 0.643 0.83 0.814

(0.071) (0.073) (0.071) (0.068) (0.068) (0.071) (0.069) (0.061)
4 0.632 0.622 0.634 0.826 0.678 0.635 0.83 0.807

(0.068) (0.07) (0.068) (0.069) (0.071) (0.067) (0.068) (0.056)
5 0.629 0.622 0.633 0.817 0.676 0.638 0.818 0.797

(0.069) (0.073) (0.071) (0.067) (0.072) (0.068) (0.069) (0.059)
2 0.817 0.611 0.819 0.982 0.834 0.808 0.991 0.841

(0.059) (0.09) (0.058) (0.045) (0.047) (0.062) (0.032) (0.09)
500 3 0.819 0.607 0.82 0.983 0.83 0.807 0.991 0.813

(0.058) (0.089) (0.056) (0.043) (0.05) (0.058) (0.031) (0.093)
4 0.816 0.612 0.819 0.983 0.831 0.81 0.987 0.786

(0.059) (0.09) (0.058) (0.044) (0.05) (0.061) (0.037) (0.093)
5 0.817 0.609 0.819 0.982 0.831 0.806 0.986 0.76

(0.059) (0.091) (0.058) (0.045) (0.052) (0.061) (0.037) (0.093)
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4.5 Clustering of Biological Time Series

We turn now back to the biological example from the Introduction. As it was mentioned,

the goal is to reveal hidden protein sequence features. Towards this direction, we perform

an analysis of �xed-length N-terminal amino acid sequences{that is 50 residues long{from

di�erent bacterial proteins with experimental evidence for the presence of a secretory N-

terminal signal peptide, either of the classical or of the Tat form. More speci�cally, we

collect 454 such sequences (104 Tat and 350 Sec signal peptides after �ltering for sequence

length) based on previous works to develop relevant classi�ers (see Nielsen and Krogh

(1998); Bendtsen et al. (2005)). It is worth mentioning that those sequences have been

selected in a way that no pair exhibits signi�cant sequence similarity. We have choose 104

sequences from each set. In order to apply the proposed cepstral coe�cient-based metrics,

we transformed those N-terminal fragments to time series data by replacing each amino

acid residue with its hydrophobicity value according to one of three di�erent experimen-

tally derived scales (octanol, Wimley et al. (1996); interface Wimley and White (1996);

Kyte-Doolittle Kyte and Doolittle (1982)). In addition consider the average hydrophobic-

ity scale, where the hydrophobicity value for each amino acid residue was computed as the

mean of the respective values of the aforementioned experimentally derived scales. For

each sequence encoding we followed the methodology described above, with the last time

series (N-terminal protein sequence) serving as a reference. Even though several numeri-

cal scales exist for representing di�erent physicochemical properties of amino acid residues

(Wilkins et al. (1999)), the choice of one of the hydrophobicity scales is based on the tri-

partite structure of signal peptides. Nevertheless, we have performed the protein sequence

to time series transform using other scales (such as bulkiness, Zimmerman et al. (1968))

and the results were clearly inferior to the hydrophobicity scales. The cluster similarity

index is computed for both cepstral coe�cient{based clustering and for the rest of the

metrics presented in 4.2.2. The results are displayed in Tables 4.9 and 4.10. Model (3.3) is

�tted to the data for values of p from 1 up to 9. These results show that in general there

is no any uniform better criterion but the J{divergence seems robust for these data. The

cepstral based distances perform equally well with the rest of the distances. For instance,

for the Kyte{Doolittle scale and when p = 5, we obtain that the cluster similarity index is

0.650 (0.652, respectively) after applying the distances (4.10) ((4.11), respectively). These
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number are in direct comparison with the corresponding entries of Table 4.10 and in some

instances they are better. In addition, we de�ne binary hydrophobicity scales by clipping

the original data according to their sign. In other words original hydrophobicity values

are transformed to 1 if they are positive and 0 otherwise. The analysis was rerun and

the �nal results regarding the cluster similarity index are summarized in both Tables 4.11

and 4.12. Even though the information content of the 'protein time series' is reduced by

this transformation, the results do illustrate that this representation seems to preserve

some useful second order features, leading to better clustering compared to the ground

truth clusters. For example when p = 7 and the scale is binary Octanol, we note that

our method performs better than the rest. The results show that our method performs

equally well with other spectral domain clustering methods. The computation can be

carried out by standard statistical software and we plan to post a webpage with programs

and results of the data analysis. The analysis was now rerun using a �ve point discrete

spectral estimator and results are displayed as above in both Tables 4.13 and 4.14 and for

the binary data they are summarized in both Tables 4.15 and 4.16. As a general remark,

the method here does depend on the value of p. A practical guide to real applications

for choosing its value is to use a model selection criterion, like AIC, BIC or some other

variants.

Table 4.9: Clustering similarity index for signal peptide data, based on raw scales and
cepstral{based distances.

scale or metric p
Octanol 1 2 3 4 5 6 7 8 9
dEUCLCEP 0.550 0.584 0.591 0.590 0.595 0.585 0.573 0.574 0.578
dABSCEP 0.555 0.589 0.579 0.577 0.590 0.596 0.576 0.574 0.579
dPV AL 0.557 0.583 0.581 0.594 0.605 0.582 0.575 0.566 0.598

Interface 1 2 3 4 5 6 7 8 9
dEUCLCEP 0.525 0.518 0.540 0.558 0.569 0.559 0.579 0.568 0.566
dABSCEP 0.523 0.528 0.547 0.568 0.571 0.568 0.570 0.566 0.555
dPV AL 0.521 0.521 0.545 0.555 0.565 0.567 0.595 0.596 0.598

Kyte-Doolittle 1 2 3 4 5 6 7 8 9
dEUCLCEP 0.583 0.605 0.587 0.613 0.650 0.633 0.622 0.589 0.580
dABSCEP 0.584 0.615 0.602 0.613 0.652 0.629 0.622 0.622 0.622
dPV AL 0.567 0.605 0.615 0.607 0.603 0.618 0.622 0.622 0.622

Bulkiness 1 2 3 4 5 6 7 8 9
dEUCLCEP 0.478 0.478 0.507 0.537 0.532 0.547 0.556 0.588 0.606
dABSCEP 0.487 0.566 0.552 0.550 0.541 0.542 0.550 0.493 0.535
dPV AL 0.586 0.582 0.596 0.608 0.599 0.613 0.566 0.593 0.611
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Table 4.10: Clustering similarity index for signal peptide data (raw scales).

scale J{divergence dNP dLNP dABSNP dABSLNP
Octanol 0.581 0.571 0.533 0.559 0.540
Interface 0.545 0.552 0.534 0.551 0.509

Kyte-Doolittle 0.622 0.516 0.622 0.535 0.622
Bulkinnes 0.621 0.510 0.586 0.543 0.582

Table 4.11: Clustering similarity index for signal peptide data, based on binary scales and
cepstral{based distances.

scale or metric p
Octanol 1 2 3 4 5 6 7 8 9
dEUCLCEP 0.519 0.608 0.497 0.581 0.645 0.581 0.560 0.642 0.643
dABSCEP 0.521 0.595 0.521 0.674 0.665 0.579 0.642 0.634 0.643
dPV AL 0.578 0.599 0.594 0.608 0.616 0.614 0.617 0.611 0.619

Interface 1 2 3 4 5 6 7 8 9
dEUCLCEP 0.596 0.564 0.592 0.640 0.560 0.593 0.601 0.602 0.597
dABSCEP 0.584 0.625 0.586 0.662 0.602 0.601 0.586 0.607 0.608
dPV AL 0.618 0.617 0.611 0.603 0.602 0.612 0.615 0.604 0.610

Kyte-Doolittle 1 2 3 4 5 6 7 8 9
dEUCLCEP 0.498 0.576 0.545 0.581 0.593 0.574 0.562 0.583 0.555
dABSCEP 0.499 0.584 0.581 0.593 0.583 0.564 0.543 0.582 0.561
dPV AL 0.549 0.604 0.598 0.604 0.608 0.606 0.608 0.601 0.615

Table 4.12: Clustering similarity index for signal peptide data (binary scales).

scale J{divergence dNP dLNP dABSNP dABSLNP
Octanol 0.594 0.596 0.594 0.565 0.594
Interface 0.622 0.578 0.622 0.554 0.622

Kyte-Doolittle 0.595 0.575 0.595 0.482 0.595
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Table 4.13: Clustering similarity index for signal peptide data, based on raw scales and
cepstral{based distances, using �ve point discrete spectral estimator

scale or metric p
Octanol 1 2 3 4 5 6 7 8 9
dEUCLCEP 0.540 0.549 0.551 0.555 0.551 0.545 0.557 0.554 0.556
dABSCEP 0.536 0.545 0.545 0.549 0.549 0.549 0.555 0.559 0.559
dPV AL 0.546 0.593 0.559 0.586 0.587 0.610 0.611 0.613 0.615

Interface 1 2 3 4 5 6 7 8 9
dEUCLCEP 0.515 0.525 0.503 0.511 0.514 0.518 0.519 0.522 0.520
dABSCEP 0.510 0.525 0.522 0.506 0.545 0.520 0.519 0.539 0.538
dPV AL 0.510 0.518 0.513 0.521 0.507 0.520 0.508 0.510 0.567

Kyte-Doolittle 1 2 3 4 5 6 7 8 9
dEUCLCEP 0.557 0.557 0.556 0.609 0.529 0.596 0.528 0.535 0.610
dABSCEP 0.448 0.544 0.560 0.614 0.632 0.604 0.599 0.609 0.608
dPV AL 0.571 0.587 0.606 0.618 0.618 0.616 0.618 0.616 0.614

Bulkiness 1 2 3 4 5 6 7 8 9
dEUCLCEP 0.494 0.498 0.490 0.500 0.517 0.526 0.526 0.531 0.528
dABSCEP 0.506 0.475 0.506 0.495 0.505 0.525 0.527 0.524 0.524
dPV AL 0.598 0.609 0.600 0.618 0.613 0.614 0.607 0.615 0.619

Table 4.14: Clustering similarity index for signal peptide data (raw scales).

scale J{divergence dNP dLNP dABSNP dABSLNP
Octanol 0.502 0.553 0.510 0.564 0.509
Interface 0.543 0.537 0.529 0.507 0.555

Kyte-Doolittle 0.598 0.540 0.576 0.559 0.550
Bulkinnes 0.507 0.489 0.500 0.485 0.490
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Table 4.15: Clustering similarity index for signal peptide data, based on binary scales and
cepstral{based distances, using �ve point discrete spectral estimator

scale or metric p
Octanol 1 2 3 4 5 6 7 8 9
dEUCLCEP 0.584 0.605 0.512 0.614 0.610 0.615 0.624 0.618 0.618
dABSCEP 0.586 0.544 0.538 0.617 0.606 0.628 0.627 0.600 0.600
dPV AL 0.605 0.606 0.603 0.616 0.610 0.616 0.617 0.618 0.618

Interface 1 2 3 4 5 6 7 8 9
dEUCLCEP 0.570 0.585 0.583 0.584 0.586 0.587 0.587 0.588 0.600
dABSCEP 0.563 0.568 0.572 0.584 0.586 0.598 0.591 0.586 0.592
dPV AL 0.614 0.619 0.616 0.618 0.617 0.619 0.619 0.618 0.620

Kyte-Doolittle 1 2 3 4 5 6 7 8 9
dEUCLCEP 0.486 0.526 0.515 0.521 0.493 0.500 0.525 0.525 0.504
dABSCEP 0.488 0.494 0.494 0.492 0.501 0.525 0.521 0.522 0.508
dPV AL 0.518 0.591 0.605 0.609 0.613 0.616 0.616 0.616 0.619

Table 4.16: Clustering similarity index for signal peptide data (binary scales).

scale J{divergence dNP dLNP dABSNP dABSLNP
Octanol 0.512 0.516 0.506 0.546 0.511
Interface 0.529 0.506 0.527 0.520 0.531

Kyte-Doolittle 0.520 0.513 0.524 0.522 0.525
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Chapter 5

Conclusions and Further Research

The �rst part of the thesis suggests a method for testing the similarity of G spectral

density functions from independent stationary processes. The main assumption is model

(3.3) which connects the last spectral density to the remaining ones by a linear function.

The methodology is based on the asymptotic independence of periodogram ordinates. The

analysis was illustrated by means of real data. An advantage of the present approach is

that it provides di�erent tests of similarity of G spectral distributions by using di�erent

covariate con�gurations. As it was suggested earlier, an alternative modeling approach

can be based on the use of Legendre polynomials and Hermite polynomials functions of

the standard normal quantile function{see Parzen (1993). Furthermore, the choice of the

covariate vectors Zi can be approached in several ways. One possibility is to use non

parametric methods, like spline regression{see Kooperberg et al. (1995), for instance. In

principle, it does not matter which spectral density is taken as the reference density since

the di�erence in the parameter values remains constant. The methodology is promising in

the framework of non-linear stationary time series models, in particular the ARCH example

shows that the estimated parameters of model (3.3) 
uctuate around zero, or in other

words pointing to the similarities among the processes. Some further comparisons with the

approach suggested by Dette and Paparoditis (2007) will be also worthwhile considering

to understand the advantages and disadvantages of each method. The exponential model-

class described in Chapter 2 , can be viewed under two di�erent perspectives, namely

as a parametric model class for the spectral density leading to a representation of its

logarithmic transformation as a �nite linear combination of cosine functions and as an

approximation of a class of continuous log-spectral densities satisfying certain smoothness
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conditions by linear combinations of the cosine basis functions. One main theoretical

question for possible future research is the following. Since the approach proposed in

the thesis is based on the exponential model with a �xed and �nite number of unknown

parameters, the asymptotic results obtained are
√
N -consistent. However, the approach

needs further study under the alternative perspective. In this case, asymptotic valid

statistical inference will require for the order p of the exponential-type approximation of

the log-spectral density to increase to in�nity with the sample size.

The second part of this work put forward several distance measures based on cepstral

coe�cients for time series data clustering. The main instrument for carrying out this task

is again the semiparametric model (3.3) which assumes that the log ratio of two spectral

densities is linear in some parameters. Based on this speci�c model and the asymptotic

independence of periodogram ordinates, we show that robust clustering procedures can be

developed for time series data mining. The approach is quite robust even when the data

do not necessarily follow a linear process.

Several extensions of this work can be considered. The methodology can be extended

in the multivariate time series setting by appealing to the properties of the multivariate

periodogram based estimator. Accordingly, the periodogram ordinates of a multivariate

linear process have asymptotically the complex Wishart distribution, see Brockwell and

Davis (1991, Prop. 11.7.4). Hence, in principle, the methodology can be extended towards

this direction but the calculations will be more elaborate. Furthermore, the simulations

give evidence of good behavior of the algorithm when the number of clusters is known.

However in applications the number of groups are usually unknown and should be esti-

mated. We anticipate that an E-M type algorithm should give some reasonable results

provided that the proportion of data that belongs to each cluster can be well approxi-

mated. Although the method was applied to a set of long stationary time series with

the same length some other extensions can be highlighted. For instance, to cope with

series of unequal length an averaging scheme of blocks of periodogram ordinates has been

suggested by Coates and Diggle (1986). The issue of non stationarity might be addressed

by the recent progress which has been made in this area, see Shumway (2003) and Huang

et al. (2004).
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The exponential model-class described in Chapter 2 , can be viewed under two dif-

ferent perspectives: (a) As a parametric model class for the spectral density leading to

a representation of its logarithmic transformation as a �nite linear combination of cosine

functions. (b) As an approximation of a class of continuous log-spectral densities satis-

fying certain smoothness conditions by linear combinations of the cosine basis functions.

One main question that arises and which is worth discussing is the following. Since the

approach proposed in the thesis is based on perspective (a) of the exponential model with

a �xed and �nite number of unknown parameters, the asymptotic results obtained are
√
N -consistent (N is the sample size), and, therefore, statistical inference and testing pro-

cedures based on these estimators seem to o�er some advantages compared to alternative

methods based on direct (non-parametric) frequency domain comparisons of spectral den-

sities. However, the approach needs further study under perspective (b). In this case,

asymptotic valid statistical inference will require for the order p of the exponential-type

approximation of the log-spectral density to increase to in�nity with the sample size (at

some appropriate rate). This will lead to a loss of the
√
N -consistency of the asymptotic

results obtained since p will act in this case as a smoothing-type parameter.
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Chapter 6

Appendix

Below we include the program we have used to perform the simulations at example 4.4.1,

using the statistical language R.

library(GeneCycle)

library(cluster)

#######################################################

correct4zeros<-function(mat)

{

min2<-0

smat<-sort(mat)

if( max(mat) == 0)

{

print ("ERROR ... Maximum value equals to zero")

return(mat)

}

for(i in 1:length(smat))

{

if( smat[i]>0 )

{

min2=smat[i]

break
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}

}

for(i in 1:length(mat))

{

if(mat[i]==0) mat[i] = min2

}

return(mat)

}

#######################################################

The Fisher Information Matrix.

#######################################################

Fishinfmatr<-function(G,N,p)

{

A<-rep(NA,(p+1)*(p+1))

dim(A)<-c((p+1),(p+1))

B<-rep(NA,(p+1)*(p+1))

dim(B)<-c((p+1),(p+1))

d<-floor(N/2)

x<-rep(NA,(p+1)*d)

dim(x)<-c(p+1,d)

for(j in 0:p)

{

x[j+1,]<-cos(j*2*pi*(1:d)/N)

}

a<-(G-1)/(G)

b<--1/(G)

A[1,1]<-a*sum(x[1,]*x[1,])

B[1,1]<-b*sum(x[1,]*x[1,])

for(m in 2:(p+1))
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{

A[1,m]<-2*a*sum(x[1,]*x[m,])

A[m,1]<-2*a*sum(x[m,]*x[1,])

B[1,m]<-2*b*sum(x[1,]*x[m,])

B[m,1]<-2*b*sum(x[m,]*x[1,])

}

for(l in 2:(p+1))

{

for(k in 2:(p+1))

{

A[l,k]<-4*a*sum(x[l,]*x[k,])

B[l,k]<-4*b*sum(x[l,]*x[k,])

}

}

return(list(x,A,B))

}

# G: the number of timeseries to be analysed

# N: the length of each timeseries

# p+1: the number of coefficients (a0, a1, ..., ap)

Fishinfmatr(G,N,p)->k;

k[[2]]->A;

k[[3]]->B;

J=matrix(1, nrow=G-1, ncol=G-1)

FISH<-kronecker(diag(1,G-1), A)+kronecker(J-diag(1,G-1), B)

############################################################

# This is the main simulation function

# G: the number of timeseries to be analysed

# N: the length of each timeseries
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# p+1: the number of coefficients (a0, a1, ..., ap)

# ss: the number of simulations (repetitions)

############################################################

generalsim<-function(G,N,p,ss,K1,K2,K3)

{

############################################################

Dmatrix<-function(i,j)

{

x<-rep(0,G-1)

x[i]<-1

x[j]<--1

kronecker(t(x),diag(1,(p+1)))

}

####Dmatrix calculates the matrix Dij of the theory chapter5

############################################################

Fishinfmatr(G,N,p)->k;

k[[2]]->A;

k[[3]]->B;

J=matrix(1, nrow=G-1, ncol=G-1)

FISH<-kronecker(diag(1,G-1), A)+kronecker(J-diag(1,G-1), B)

K<-Dmatrix(1,2)%*%(solve(FISH))%*%t(Dmatrix(1,2))

EIGEN<-eigen(K)$values

tk<-rep(NA,3)

for(k in 1:3)

{

tk[k]<-sum(EIGEN^k)

}

degfreed<-((tk[2])^3)/((tk[3])^2)
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acoef<-((tk[3]))/((tk[2]))

bcoef<-tk[1]-((tk[2])^2)/((tk[3]))

# lik3 functions calculate likelihood estimators

# der.lik3 calculate derivatives of the above likelihood

# samples VS samplesnocov: only a0 VS all coefficients

lik3.samplesnocov<-function(theta, data)

{

s<-rep(NA,G-1)

u<-matrix(NA, nrow=floor(N/2)-1, ncol=G-1)

a<-rep(NA,floor(N/2)-1)

linear<-matrix(NA, nrow=floor(N/2)-1, ncol=G-1)

for (i in 1:(G-1))

{

linear[,i] <- data[,i]

s[i]<--sum(linear[,i])

u[,i]<- exp(linear[,i])

}

for (j in 1:(floor(N/2)-1))

{

a[j]<-sum(u[j,])

}

ll <- sum(s)+G*sum(log(1+a))

}

der.lik3.samplesnocov <- function(theta, data)

{

s<-rep(NA,G-1)

u<-matrix(NA, nrow=floor(N/2)-1, ncol=G-1)
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a<-rep(NA,floor(N/2)-1)

linear<-matrix(NA, nrow=floor(N/2)-1, ncol=G-1)

for (i in 1:(G-1))

{

linear[,i] <- data[,i]

s[i]<--sum(linear[,i])

u[,i]<- exp(linear[,i])

}

for (j in 1:(floor(N/2)-1))

{

a[j]<-sum(u[j,])

}

b<-rep(NA,G-1)

for (i in 1:(G-1))

b[i]<-dim(data)[1] -G*sum( exp(linear[,i])/(1+a))

{

c( b )

}

}

lik3.samples<-function(theta, data)

{

s<-rep(NA,G-1)

u<-matrix(NA, nrow=floor(N/2)-1, ncol=G-1)

a<-rep(NA,floor(N/2)-1)

linear<-matrix(NA, nrow=floor(N/2)-1, ncol=G-1)

for (i in 1:(G-1))

{
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d<-matrix(NA, nrow=floor(N/2)-1, ncol=p)

for (m in 1:p){

d[,m]<- theta[(i-1)*p+i+m]*data[,(G-1)+m]

}

l<-rep(NA,floor(N/2)-1)

for(k in 1:floor(N/2)-1)

{

l[k]<- sum(d[k,])

}

linear[,i]<- data[,i]-theta[(i-1)*p+i]-l

s[i]<--sum(linear[,i])

u[,i]<- exp(linear[,i])

}

for (j in 1:(floor(N/2)-1))

{

a[j]<-sum(u[j,])

}

ll <- sum(s)+G*sum(log(1+a))

}

der.lik3.samples <- function(theta, data)

{s<-rep(NA,G-1)

u<-matrix(NA, nrow=floor(N/2)-1, ncol=G-1)

a<-rep(NA,floor(N/2)-1)

linear<-matrix(NA, nrow=floor(N/2)-1, ncol=G-1)
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for (i in 1:(G-1))

{

d<-matrix(NA, nrow=floor(N/2)-1, ncol=p)

for (m in 1:p){

d[,m]<- theta[(i-1)*p+i+m]*data[,(G-1)+m]

}

l<-rep(NA,floor(N/2)-1)

for(k in 1:floor(N/2)-1)

{

l[k]<- sum(d[k,])

}

linear[,i]<- data[,i]-theta[(i-1)*p+i]-l

s[i]<--sum(linear[,i])

u[,i]<- exp(linear[,i])

}

for (j in 1:(floor(N/2)-1))

{

a[j]<-sum(u[j,])

}

b<-rep(NA,G-1)

v<-matrix(NA, nrow=G-1, ncol=p)

for (i in 1:(G-1))

{
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b[i]<-dim(data)[1] -G*sum( exp(linear[,i])/(1+a))

for(h in 1:p)

{

v[i,h]<-sum(data[,G-1+h])-G*sum(exp(linear[,i])*data[,G-1+h]/(1+a))

}

}

w<-matrix(NA, nrow=G-1, ncol=p+1)

for(m in 1:(G-1))

{

w[m,]<-c(b[m],v[m,])

}

A<-t(w)

{

c(as.vector(A))

}

}

coef <- matrix(NA, nrow=ss, ncol=(G-1)*(p+1))

coefnew <- matrix(NA, nrow=ss, ncol=(G-1)*(p+1))

dev <- rep(NA,ss)

dev.new <- rep(NA,ss)

message <- rep(NA, ss)

SIM<-matrix(NA, nrow=ss, ncol=8)

####################################################################

#This is the core of the simulation!

####################################################################

for(m in 1:ss)
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{

Y<-matrix(NA, nrow=G, ncol=N)

for (i in 1:4){

Y[i,]<-arima.sim(list(ar=runif(1,-0.61,-0.59),ma=0), N,sd=1)

}

for (i in 5:8){

Y[i,]<-arima.sim(list(ar=c(runif(1,-0.61,-0.59),runif(1,0.29,0.31)), ma=0),

N, sd=2)

}

for (i in 9:13){

Y[i,]<-arima.sim(list(ar=c(runif(1,-0.51,-0.49)),

ma=runif(1,0.16,0.18)), N, sd=0.5)

}

ffts<-matrix(NA, nrow=G, ncol=floor(N/2)-1)

nperiodogram<-matrix(NA, nrow=G, ncol=floor(N/2))

periodogramma<-matrix(NA, nrow=G, ncol=floor(N/2))

for(i in 1:G)

{

#periodogramma[i,]<-periodogram(Y[i,])$spec

#periodogramma[i,]<-spectrum(Y[i,],plot=F,taper=0)$spec

periodogramma[i,]<-spectrum(Y[i,],spans=5,taper=0,plot=F)$spec

periodogramma[i,]<-correct4zeros(periodogramma[i,])

nperiodogram[i,]<-( periodogramma[i,] )/var(Y[i,])

ffts[i,]<- (periodogramma[i,])[-floor(N/2)]

}

############################################################
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DNPSIM<-matrix(NA, nrow=G-1, ncol=G-1)

DABSNPSIM<-matrix(NA, nrow=G-1, ncol=G-1)

DLNPSIM<-matrix(NA, nrow=G-1, ncol=G-1)

DABSLNPSIM<-matrix(NA, nrow=G-1, ncol=G-1)

DKLFDSIM<-matrix(NA, nrow=G-1, ncol=G-1)

for(i in 1:(G-1))

{

for (j in 1:(G-1))

{

DNPSIM[i,j]<-sqrt(sum((nperiodogram[i,]-nperiodogram[j,])^2))

DABSNPSIM[i,j]<-sqrt(sum(abs(nperiodogram[i,]-nperiodogram[j,])))

DLNPSIM[i,j]<-sqrt(sum((log(nperiodogram[i,])-log(nperiodogram[j,]))^2))

DABSLNPSIM[i,j]<-sqrt(sum(abs(log(nperiodogram[i,])-log(nperiodogram[j,]))))

DKLFDSIM[i,j]<-(1/N)*sum((nperiodogram[i,]/nperiodogram[j,])+

(nperiodogram[j,]/nperiodogram[i,])-2)

}

}

dimnames(DNPSIM) <- list(c(1:(G-1)),c(1:(G-1)))

dimnames(DABSNPSIM) <- list(c(1:(G-1)),c(1:(G-1)))

dimnames(DLNPSIM) <- list(c(1:(G-1)),c(1:(G-1)))

dimnames(DABSLNPSIM) <- list(c(1:(G-1)),c(1:(G-1)))

dimnames(DKLFDSIM) <- list(c(1:(G-1)),c(1:(G-1)))
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X<-matrix(NA, nrow=p, ncol=floor(N/2)-1)

for (i in 1:p){

X[i,]<-2*cos((2*i)*pi*spectrum(Y[1,], plot=F)$freq[-floor(N/2)])

}

stuff<-matrix(NA, nrow=floor(N/2)-1, ncol=G-1+p)

for (j in 1:G-1)

{

stuff[,j]<-log(ffts[j,]/ffts[G,])

}

for(k in G:(G-1+p))

{

stuff[,k]<-X[k-G+1,]

}

a<-rep(1,(G-1)*(p+1))

b<-rep(0,G-1)

outputs <- optim(lik3.samples, p=c(a), data=stuff,

der.lik3.samples, method="BFGS" )

outputsnew <- lik3.samples(rep(0, (G-1)*(p+1)), stuff)

coef[m,] <- outputs$par

message[m] <- outputs$convergence

dev.new[m] <- 2*(outputsnew-outputs$value)
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summarycoefsim<-matrix(NA, nrow=G-1, ncol=p+1)

for(i in 1:G-1)

{

summarycoefsim[i,]<-coef[m,((i-1)*p+i):(i*p+i)]

}

DABSCEPSIM<-matrix(NA, nrow=G-1, ncol=G-1)

for(i in 1:G-1)

{

for (j in 1:G-1)

{

DABSCEPSIM[i,j]<-sqrt(sum(abs(summarycoefsim[i,]-summarycoefsim[j,])))

}

}

dimnames(DABSCEPSIM) <- list(c(1:(G-1)),c(1:(G-1)))

DEUCLCEPSIM<-matrix(NA, nrow=G-1, ncol=G-1)

for(i in 1:G-1)

{

for (j in 1:G-1)

{

DEUCLCEPSIM[i,j]<-sqrt(sum((summarycoefsim[i,]-summarycoefsim[j,])^2))

}

}

dimnames(DEUCLCEPSIM) <- list(c(1:(G-1)),c(1:(G-1)))

##############################################################

DEUCLPVALBCSIM<-matrix(NA, nrow=G-1, ncol=G-1)
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for(i in 1:G-1)

{

for (j in 1:G-1)

{

DEUCLPVALBCSIM[i,j]<-1-pchisq((DEUCLCEPSIM[i,j]-bcoef)/acoef,df=degfreed)

}

}

mm<-DEUCLPVALBCSIM[1,2]

for(i in 1:(G-2))

{

for(j in (i+1):(G-1))

{mm<-c(mm,DEUCLPVALBCSIM[i,j])

}

}

mm<-mm[-1]

PADJUST<-p.adjust(mm,method ="bonferroni",n = length(mm))

DEUCLPVALSIM<-matrix(NA, nrow=G-1, ncol=G-1)

DEUCLPVALSIM[G-1,G-1]<-1

ui<-0

ki<-2

for(i in 1:(G-2))

{

ui<-ui-(i+1)

ki<-ki-i

DEUCLPVALSIM[i,(i+1):(G-1)]<-PADJUST[((i-1)*G+ki):(i*G+ui)]

for(j in 1:G-1)

{

DEUCLPVALSIM[j,i]<-DEUCLPVALSIM[i,j]
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}

DEUCLPVALSIM[i,i]<-1

}

DEUCLPVALSIM<-1-DEUCLPVALSIM

dimnames(DEUCLPVALSIM) <- list(c(1:(G-1)),c(1:(G-1)))

#######DEUCLPVALSIM calculates the 1-pvalue distances of the deuclecep

dianasim1<-diana(DABSNPSIM,diss=T)

dianasim2<-diana(DNPSIM,diss=T)

dianasim3<-diana(DLNPSIM,diss=T)

dianasim7<-diana(DABSLNPSIM,diss=T)

dianasim8<-diana(DEUCLPVALSIM,diss=T)

dianasim4<-diana(DKLFDSIM,diss=T)

dianasim5<-diana(DEUCLCEPSIM,diss=T)

dianasim6<-diana(DABSCEPSIM,diss=T)

dv1 <- cutree(as.hclust(dianasim1), k = 3)

dv2 <- cutree(as.hclust(dianasim2), k = 3)

dv3 <- cutree(as.hclust(dianasim3), k = 3)

dv4 <- cutree(as.hclust(dianasim4), k = 3)

dv5 <- cutree(as.hclust(dianasim5), k = 3)
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dv6 <- cutree(as.hclust(dianasim6), k = 3)

dv7 <- cutree(as.hclust(dianasim7), k = 3)

dv8 <- cutree(as.hclust(dianasim8), k = 3)

C1<-rownames(DABSNPSIM)[dv1 == 1]

D1<-rownames(DABSNPSIM)[dv1 == 2]

E1<-rownames(DABSNPSIM)[dv1 == 3]

C2<-rownames(DNPSIM)[dv2 == 1]

D2<-rownames(DNPSIM)[dv2 == 2]

E2<-rownames(DNPSIM)[dv2 == 3]

C3<-rownames(DLNPSIM)[dv3 == 1]

D3<-rownames(DLNPSIM)[dv3 == 2]

E3<-rownames(DLNPSIM)[dv3 == 3]

C7<-rownames(DABSLNPSIM)[dv7 == 1]

D7<-rownames(DABSLNPSIM)[dv7 == 2]

E7<-rownames(DABSLNPSIM)[dv7 == 3]

C8<-rownames(DEUCLPVALSIM)[dv8 == 1]

D8<-rownames(DEUCLPVALSIM)[dv8 == 2]

E8<-rownames(DEUCLPVALSIM)[dv8 == 3]

C4<-rownames(DKLFDSIM)[dv4 == 1]

D4<-rownames(DKLFDSIM)[dv4 == 2]

E4<-rownames(DKLFDSIM)[dv4 == 3]

C5<-rownames(DEUCLCEPSIM)[dv5 == 1]

D5<-rownames(DEUCLCEPSIM)[dv5 == 2]

E5<-rownames(DEUCLCEPSIM)[dv5 == 3]

Alex
ios

 Sav
vid

es



109

C6<-rownames(DABSCEPSIM)[dv6 == 1]

D6<-rownames(DABSCEPSIM)[dv6 == 2]

E6<-rownames(DABSCEPSIM)[dv6 == 3]

#############################################

SIMI1<-rep(NA,3)

SIMILA1<-rep(NA,3)

SIMILB1<-rep(NA,3)

SIMILC1<-rep(NA,3)

SIMILA1[1]<-(2*(length(intersect(K1,C1))))/(length(K1)+length(C1))

SIMILA1[2]<-(2*(length(intersect(K1,D1))))/(length(K1)+length(D1))

SIMILA1[3]<-(2*(length(intersect(K1,E1))))/(length(K1)+length(E1))

SIMILB1[1]<-(2*(length(intersect(K2,C1))))/(length(K2)+length(C1))

SIMILB1[2]<-(2*(length(intersect(K2,D1))))/(length(K2)+length(D1))

SIMILB1[3]<-(2*(length(intersect(K2,E1))))/(length(K2)+length(E1))

SIMILC1[1]<-(2*(length(intersect(K3,C1))))/(length(K3)+length(C1))

SIMILC1[2]<-(2*(length(intersect(K3,D1))))/(length(K3)+length(D1))

SIMILC1[3]<-(2*(length(intersect(K3,E1))))/(length(K3)+length(E1))

SIMI1[1]<-max(SIMILA1)

SIMI1[2]<-max(SIMILB1)

SIMI1[3]<-max(SIMILC1)

SIM1<-mean(SIMI1)

#######################################################################

SIMI2<-rep(NA,3)
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SIMILA2<-rep(NA,3)

SIMILB2<-rep(NA,3)

SIMILC2<-rep(NA,3)

SIMILA2[1]<-(2*(length(intersect(K1,C2))))/(length(K1)+length(C2))

SIMILA2[2]<-(2*(length(intersect(K1,D2))))/(length(K1)+length(D2))

SIMILA2[3]<-(2*(length(intersect(K1,E2))))/(length(K1)+length(E2))

SIMILB2[1]<-(2*(length(intersect(K2,C2))))/(length(K2)+length(C2))

SIMILB2[2]<-(2*(length(intersect(K2,D2))))/(length(K2)+length(D2))

SIMILB2[3]<-(2*(length(intersect(K2,E2))))/(length(K2)+length(E2))

SIMILC2[1]<-(2*(length(intersect(K3,C2))))/(length(K3)+length(C2))

SIMILC2[2]<-(2*(length(intersect(K3,D2))))/(length(K3)+length(D2))

SIMILC2[3]<-(2*(length(intersect(K3,E2))))/(length(K3)+length(E2))

SIMI2[1]<-max(SIMILA2)

SIMI2[2]<-max(SIMILB2)

SIMI2[3]<-max(SIMILC2)

SIM2<-mean(SIMI2)

##############################################################

SIMI3<-rep(NA,3)

SIMILA3<-rep(NA,3)

SIMILB3<-rep(NA,3)

SIMILC3<-rep(NA,3)

SIMILA3[1]<-(2*(length(intersect(K1,C3))))/(length(K1)+length(C3))

SIMILA3[2]<-(2*(length(intersect(K1,D3))))/(length(K1)+length(D3))
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SIMILA3[3]<-(2*(length(intersect(K1,E3))))/(length(K1)+length(E3))

SIMILB3[1]<-(2*(length(intersect(K2,C3))))/(length(K2)+length(C3))

SIMILB3[2]<-(2*(length(intersect(K2,D3))))/(length(K2)+length(D3))

SIMILB3[3]<-(2*(length(intersect(K2,E3))))/(length(K2)+length(E3))

SIMILC3[1]<-(2*(length(intersect(K3,C3))))/(length(K3)+length(C3))

SIMILC3[2]<-(2*(length(intersect(K3,D3))))/(length(K3)+length(D3))

SIMILC3[3]<-(2*(length(intersect(K3,E3))))/(length(K3)+length(E3))

SIMI3[1]<-max(SIMILA3)

SIMI3[2]<-max(SIMILB3)

SIMI3[3]<-max(SIMILC3)

SIM3<-mean(SIMI3)

#########################################################

SIMI4<-rep(NA,3)

SIMILA4<-rep(NA,3)

SIMILB4<-rep(NA,3)

SIMILC4<-rep(NA,3)

SIMILA4[1]<-(2*(length(intersect(K1,C4))))/(length(K1)+length(C4))

SIMILA4[2]<-(2*(length(intersect(K1,D4))))/(length(K1)+length(D4))

SIMILA4[3]<-(2*(length(intersect(K1,E4))))/(length(K1)+length(E4))

SIMILB4[1]<-(2*(length(intersect(K2,C4))))/(length(K2)+length(C4))

SIMILB4[2]<-(2*(length(intersect(K2,D4))))/(length(K2)+length(D4))

SIMILB4[3]<-(2*(length(intersect(K2,E4))))/(length(K2)+length(E4))
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SIMILC4[1]<-(2*(length(intersect(K3,C4))))/(length(K3)+length(C4))

SIMILC4[2]<-(2*(length(intersect(K3,D4))))/(length(K3)+length(D4))

SIMILC4[3]<-(2*(length(intersect(K3,E4))))/(length(K3)+length(E4))

SIMI4[1]<-max(SIMILA4)

SIMI4[2]<-max(SIMILB4)

SIMI4[3]<-max(SIMILC4)

SIM4<-mean(SIMI4)

#################################################################

SIMI5<-rep(NA,3)

SIMILA5<-rep(NA,3)

SIMILB5<-rep(NA,3)

SIMILC5<-rep(NA,3)

SIMILA5[1]<-(2*(length(intersect(K1,C5))))/(length(K1)+length(C5))

SIMILA5[2]<-(2*(length(intersect(K1,D5))))/(length(K1)+length(D5))

SIMILA5[3]<-(2*(length(intersect(K1,E5))))/(length(K1)+length(E5))

SIMILB5[1]<-(2*(length(intersect(K2,C5))))/(length(K2)+length(C5))

SIMILB5[2]<-(2*(length(intersect(K2,D5))))/(length(K2)+length(D5))

SIMILB5[3]<-(2*(length(intersect(K2,E5))))/(length(K2)+length(E5))

SIMILC5[1]<-(2*(length(intersect(K3,C5))))/(length(K3)+length(C5))

SIMILC5[2]<-(2*(length(intersect(K3,D5))))/(length(K3)+length(D5))

SIMILC5[3]<-(2*(length(intersect(K3,E5))))/(length(K3)+length(E5))

SIMI5[1]<-max(SIMILA5)
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SIMI5[2]<-max(SIMILB5)

SIMI5[3]<-max(SIMILC5)

SIM5<-mean(SIMI5)

#######################################################################

SIMI6<-rep(NA,3)

SIMILA6<-rep(NA,3)

SIMILB6<-rep(NA,3)

SIMILC6<-rep(NA,3)

SIMILA6[1]<-(2*(length(intersect(K1,C6))))/(length(K1)+length(C6))

SIMILA6[2]<-(2*(length(intersect(K1,D6))))/(length(K1)+length(D6))

SIMILA6[3]<-(2*(length(intersect(K1,E6))))/(length(K1)+length(E6))

SIMILB6[1]<-(2*(length(intersect(K2,C6))))/(length(K2)+length(C6))

SIMILB6[2]<-(2*(length(intersect(K2,D6))))/(length(K2)+length(D6))

SIMILB6[3]<-(2*(length(intersect(K2,E6))))/(length(K2)+length(E6))

SIMILC6[1]<-(2*(length(intersect(K3,C6))))/(length(K3)+length(C6))

SIMILC6[2]<-(2*(length(intersect(K3,D6))))/(length(K3)+length(D6))

SIMILC6[3]<-(2*(length(intersect(K3,E6))))/(length(K3)+length(E6))

SIMI6[1]<-max(SIMILA6)

SIMI6[2]<-max(SIMILB6)

SIMI6[3]<-max(SIMILC6)

SIM6<-mean(SIMI6)

################################################################

SIMI7<-rep(NA,3)
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SIMILA7<-rep(NA,3)

SIMILB7<-rep(NA,3)

SIMILC7<-rep(NA,3)

SIMILA7[1]<-(2*(length(intersect(K1,C7))))/(length(K1)+length(C7))

SIMILA7[2]<-(2*(length(intersect(K1,D7))))/(length(K1)+length(D7))

SIMILA7[3]<-(2*(length(intersect(K1,E7))))/(length(K1)+length(E7))

SIMILB7[1]<-(2*(length(intersect(K2,C7))))/(length(K2)+length(C7))

SIMILB7[2]<-(2*(length(intersect(K2,D7))))/(length(K2)+length(D7))

SIMILB7[3]<-(2*(length(intersect(K2,E7))))/(length(K2)+length(E7))

SIMILC7[1]<-(2*(length(intersect(K3,C7))))/(length(K3)+length(C7))

SIMILC7[2]<-(2*(length(intersect(K3,D7))))/(length(K3)+length(D7))

SIMILC7[3]<-(2*(length(intersect(K3,E7))))/(length(K3)+length(E7))

SIMI7[1]<-max(SIMILA7)

SIMI7[2]<-max(SIMILB7)

SIMI7[3]<-max(SIMILC7)

SIM7<-mean(SIMI7)

########################################################################

SIMI8<-rep(NA,3)

SIMILA8<-rep(NA,3)

SIMILB8<-rep(NA,3)

SIMILC8<-rep(NA,3)

SIMILA8[1]<-(2*(length(intersect(K1,C8))))/(length(K1)+length(C8))

SIMILA8[2]<-(2*(length(intersect(K1,D8))))/(length(K1)+length(D8))
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SIMILA8[3]<-(2*(length(intersect(K1,E8))))/(length(K1)+length(E8))

SIMILB8[1]<-(2*(length(intersect(K2,C8))))/(length(K2)+length(C8))

SIMILB8[2]<-(2*(length(intersect(K2,D8))))/(length(K2)+length(D8))

SIMILB8[3]<-(2*(length(intersect(K2,E8))))/(length(K2)+length(E8))

SIMILC8[1]<-(2*(length(intersect(K3,C8))))/(length(K3)+length(C8))

SIMILC8[2]<-(2*(length(intersect(K3,D8))))/(length(K3)+length(D8))

SIMILC8[3]<-(2*(length(intersect(K3,E8))))/(length(K3)+length(E8))

SIMI8[1]<-max(SIMILA8)

SIMI8[2]<-max(SIMILB8)

SIMI8[3]<-max(SIMILC8)

SIM8<-mean(SIMI8)

########################################################################

SIM[m,]<-c(SIM4,SIM2,SIM3,SIM5,SIM1,SIM7,SIM6,SIM8)

dimnames(SIM) <- list(1:ss,c("DKLFD","DNP","DLNP","DEUCLECEP","DABSNP",

"DABSLNP","DABSCEP", "DEUCLPVAL") )

}

######################################################################

SIMILAR<-matrix(NA, nrow=1, ncol=8)

SIMILAR[1,]<-apply(SIM,2,mean)

dimnames(SIMILAR) <- list("1",c("DKLFD","DNP","DLNP","DEUCLECEP","DABSNP",

"DABSLNP","DABSCEP","DEUCLPVAL"))

SDOFSIMILAR<-sqrt(diag(var(SIM)))
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COEF<-apply(coef,2,mean)

COEFNEW<-apply(coefnew,2,mean)

summary(dev.new)

summarycoef<-matrix(NA, nrow=G-1, ncol=p+1)

for(i in 1:G-1)

{

summarycoef[i,]<-COEF[((i-1)*p+i):(i*p+i)]

}

summarycoef

sqrt(diag(var(coef)))

DABSCEP<-matrix(NA, nrow=G-1, ncol=G-1)

for(i in 1:G-1)

{

for (j in 1:G-1)

{

DABSCEP[i,j]<-sqrt(sum(abs(summarycoef[i,]-summarycoef[j,])))

}

}

dimnames(DABSCEP) <- list(c(1:(G-1)),c(1:(G-1)))

DEUCLCEP<-matrix(NA, nrow=G-1, ncol=G-1)

for(i in 1:G-1)

{
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for (j in 1:G-1)

{

DEUCLCEP[i,j]<-sqrt(sum((summarycoef[i,]-summarycoef[j,])^2))

}

}

dimnames(DEUCLCEP) <- list(c(1:(G-1)),c(1:(G-1)))

return(list(SIM=SIM,SIMILAR=SIMILAR,SDOFSIMILAR=SDOFSIMILAR,

DABSCEP=DABSCEP, DEUCLCEP=DEUCLCEP ,G=G,N=N,p=p,ss=ss,

coef=coef,summarycoef=summarycoef,sdcoef=sqrt(diag(var(coef))),

dev=dev.new,message=message))

}
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