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Abstract

We first consider the problem of estimating the integral of the square of a probability density

function f on the basis of a random sample from a weighted distribution. Specifically, using

model selection via a penalized criterion, an adaptive estimator for
∫

f 2 based on weighted

data is proposed, for probability density functions which are uniformly bounded and belong

to certain Besov bodies. We show that the proposed estimator attains the minimax rate of

convergence that is optimal in the case of direct data. Additionally, we obtain the information

bound for the problem of estimating
∫

f 2 when weighted data are available and compare it

with the information bound for the case of direct data. A small simulation study is conducted

to illustrate the usefulness of the proposed estimator in practical situations.

We then consider the problem of estimating the unknown response function in the

standard Gaussian white noise model. We first utilize the recently developed maximum

a posteriori (MAP) testimation procedure for recovering an unknown high-dimensional

Gaussian mean vector. The existing results for its upper error bounds over various sparse

lp-balls are extended to more general settings and compared with other well-known threshold

estimators. The MAP testimation procedure is then applied in a wavelet context to derive

adaptively optimal global and level-wise MAP wavelet testimators of the unknown response

function in the standard Gaussian white noise model over a wide range of Besov balls.

These results are also extended to the estimation of derivatives of the response function.

Simulated examples are conducted to illustrate the performance of the proposed adaptive

level-wise MAP wavelet testimator, and to compare it with three proposed adaptive empirical

Bayes estimation procedures that attain the optimal convergence rate, and one block wavelet

thresholding estimator that is near optimal (up to a logarithmic factor). An application to

real data is also considered.

Finally, we extend the minimax results obtained in the functional deconvolution model

by Pensky & Sapatinas (2009a) under the L2-risk to the case of Lp-risk, 1 ≤ p < ∞. Lower
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x

bounds are given for an arbitrary estimator of the unknown response function when the

latter is assumed to belong to a Besov ball and under appropriate smoothness assumptions

on the blurring function, including both regular-smooth and super-smooth convolutions.

Furthermore, we investigate the asymptotic minimax properties of an adaptive wavelet

estimator over a wide range of Besov balls. Box-car convolutions in the multichannel

deconvolution model are also considered and the results of Pensky & Sapatinas (2009b)

under the L2-risk are extended to the case of Lp-risk, 1 ≤ p < ∞. A simulation study

is conducted to show that the proposed adaptive wavelet estimator performs well in finite

sample situations.
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Introduction

Chapter 1 is devoted to an overview of the mathematical tools that will be used in the main

Chapters 2-4 of the Thesis.

We first consider the problem of estimation of the integral of the square of a probability

density function (p.d.f) f , i.e.,
∫

f 2, given a sample of weighted data. Laurent (2005) recently

proposed an adaptive and optimal (in the minimax sense) estimator of
∫

f 2 for direct data.

In Chapter 2, we construct an adaptive estimator of
∫

f 2, for p.d.f.’s which are uniformly

bounded and belong to certain Besov bodies. We show that the proposed estimator attains

the minimax rate of convergece that is optimal in the case of direct data. A small simulation

study is conducted in order to assess the performance of the proposed estimator in practice.

Using the theory of Ibramigov & Khasminski (1991), we also derive the information bound

for the problem of estimating
∫

f 2 when weighted data are available. A comparison with the

information bound given for the case of direct data (see, e.g., Pfanzagl, 1982) is presented.

Abramovich, Grinshtein & Pensky (2007) have recently proposed a Bayesian testimation

procedure in order to recover a high-dimensional Gaussian mean µ = (µ1, . . . , µn)
′

with

independent terms and common variance, under the assumption that µ is sparse. Optimality

of the proposed MAP (maximum a posteriori) testimator µ̂∗ for µ belonging to strong lp−balls

and weak mp−balls, 0 ≤ p < 2, was established in Abramovich, Grinshtein & Pensky (2007).

In Chapter 3, we first consider the Gaussian sequence model and generalize the results of

Abramovich, Grinshtein & Pensky (2007) for the MAP testimator in several directions. We

then consider the problem of estimating the unknown function f on the basis of observations

from the standard Gaussian white noise model and show that, under mild conditions on the

prior distribution, the global wavelet MAP testimator is asymptotically nearly-minimax over

the entire range of Besov balls Bs
p,q(C), s > 1

p
, 0 < p, q ≤ ∞ and C > 0. Then, we show that

1
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2

an adaptive level-wise MAP testimator f̂ is asymptotically optimal (in the minimax sense),

as the sample size increases, for the same class of functions. These results are extended to the

estimation of derivatives of f. Moreover, we demonstrate that the discretization of the data

does not affect the order of magnitude of the accuracy of the MAP wavelet testimator, under

the sample data model. A simulation study is conducted in order to assess the performance

of the proposed level-wise wavelet testimator in finite sample situations. Additionally, a real

data set is analyzed using five different methods.

Finally, we consider the estimation problem of an unknown function f based on

observations from the functional deconvolution model proposed by Pensky & Sapatinas

(2009a). In Chapter 4, we extend the results of Pensky & Sapatinas (2009a) to the case of

Lp-risk, 1 ≤ p < ∞. In particular, lower bounds are derived for the Lp-risk, 1 ≤ p < ∞, of an

estimator of f for both the functional deconvolution model and its discrete counterpart, under

appropriate regularity assumptions on both f and the blurring function g(·, ·). Additionally,

an adaptive thresholding estimator of f, which is a generalized version of the estimator

proposed by Pensky & Sapatinas (2009a), is shown to be asymptotically optimal (in the

minimax sense), or near-optimal within a logarithmic factor, as n → ∞, in a wide range of

Besov balls. Minimax lower and upper bounds are also given under the Lp-risk, 1 ≤ p < ∞
for the multichannel deconvolution problem with box-car convolutions under appropriate

assumptions on the number of channels M and the selection points ul, l = 1, 2, . . . , M.

This work is concluded with a Future Research plan.
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PerÐlhyh

Sto pr¸to kef�laio gÐnetai mia anaskìphsh twn basik¸n majhmatik¸n ergaleÐwn pou

qrhsimopoioÔntai sta kurÐwc kef�laia 2-4 thc didaktorik c diatrib c.

To pr¸to jèma thc didaktorik c mou diatrib c eÐnai h ektÐmhsh thc posìthtac
∫

f 2 ìtan

o statistikìc èqei sth di�jesh tou dedomèna me b�roc. To antÐstoiqo prìblhma gia dedomèna

qwrÐc b�roc eÐqe melethjeÐ apo thn Laurent (2005). Mia ektÐmhsh aut c thc posìthtac mporeÐ

na qrhsimopoihjeÐ ìtan statistkèc diadikasÐec pou èqoun melethjeÐ gia dedomèna qwrÐc b�roc

genikeÔontai sthn perÐptwsh dedomènwn me b�roc. Sto deÔtero kef�laio thc didaktorik c mou

diatrib c, tropopoi¸ntac th mèjodo pou eÐqe eisaqjeÐ apì th Laurent (2005) gia dedomèna

qwrÐc b�roc, kataskeu�zoume èna ektimht  tou opoÐou h taqÔthta sÔgklishc eÐnai bèltisth

gia dedomèna qwrÐc b�roc, gia thn kl�sh twn sunart sewn puknìthtac pou eÐnai omoiìmorfa

fragmènec kai an koun se Besov q¸rouc. EpÐshc èqoun gÐnei k�poiec prosomoi¸seic oi

opoÐec deÐqnoun th praktik  shmasÐa thc ektim triac pou proteÐnoume ìtan up�rqoun sth

di�jesh mac dedomèna me b�roc. Qrhsimopoi¸ntac th jewrÐa twn Ibragimov and Khasmiinski

(1991), dÐnoume to plhroforiakì fr�gma gia to prìblhma thc ektÐmhshc thc posìthtac
∫

f 2

ìtan dedomèna me b�roc eÐnai diajèsima kai to sÔgkrinoume me to plhroforiakì fr�gma sthn

perÐptwsh dedomènwn qwrÐc b�roc.

Oi Abramovich, Grinshtein & Pensky (2007) prìteinan th mèjodo thc ek twn ustèrwn

megistopoÐhshc gia thn ektÐmhsh enìc KanonikoÔ (Gaussian) poludi�statou mèsou µ =

(µ1, µ2, . . . , µn)
′ me anex�rthtouc ìrouc kai koin  diaspor�, kai apèdeixan ìti epitugq�nei th

bèltisth taqÔthta sÔgklishc ìtan to di�nusma µ an kei se isqurèc kai asjeneÐc lp-mp�lec,

0 ≤ p < 2. Sto trÐto kef�laio genikeÔoume ta apotelèsmata twn Abramovich, Grinshtein &

Pensky (2007). AkoloÔjwc, jewroÔme to prìblhma thc ektÐmhshc thc �gnwsthc sun�rthshc

f me b�sh tic parathr seic apì to Kanonikì montèlo leukoÔ jorÔbou. MeletoÔme th

3
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4

sumperifor� miac ektim triac thc f h opoÐa basÐzetai sth MAP mèjodo kai den exart�tai apì

tic �gnwstec paramètrouc thc kl�shc. DeÐqnoume ìti h proteinìmenh ektim tria epitugq�nei

asumptwtik� th bèltisth taqÔthta sugklÐshc gia sunart seic f twn opoÐwn oi wavelet

suntelestèc an koun se mia Besov mp�la Bs
p,q(C) me s > 1

p
, 0 < p, q ≤ ∞, C > 0. Ta

apotelèsmata aut� epekteÐnontai kai sthn ektÐmhsh twn parag¸gwn thc f. EpÐshc deÐqnoume

ìti h qr sh diakrit¸n dedomènwn den ephre�zei thn taqÔthta sÔgklishc thc proteinìmenhc

ektim triac k�tw apì to montèlo autì. Mia arijmhtik  melèth qrhsimopoieÐtai gia na deÐxei

thn apìdosh thc proteinìmenhc ektim triac sthn pr�xh. EpÐshc, perilamb�netai h an�lush

enìc sunìlou pragmatik¸n dedomènwn me th qr sh thc proteinìmenhc ektim triac kai �llwn

ektimhtri¸n.

Tèloc, jewroÔme to problhma thc ektÐmhshc thc �gnwsthc sun�rthshc f ìtan oi

parathr seic proèrqontai apì to montèlo sunarthsiak c sunèlixhc pou eÐqe eisaqjeÐ apì

touc Pensky & Sapatinas (2009a). Sto tètarto kef�laio epekteÐnoume ta apotelèsmata twn

Pensky & Sapatinas (2009a) sthn perÐptwsh tou Lp sf�lmatoc, 1 ≤ p < ∞. Sugkekrimmèna,

dÐnoume ta k�tw fr�gmata gia to Lp sf�lma, 1 ≤ p < ∞, miac ektim triac thc f sto montèlo

sunarthsiak c sunèlixhc kai sto antÐstoiqo diakritì montèlo, k�tw apì kat�llhlec sunj kec

p�nw sthn f kai th sun�rthsh sunèlixhc g(·, ·). Sth sunèqeia proteÐnoume mia ektim tria thc

f, h opoÐa eÐnai mia genikeumènh èkdosh thc ektim triac twn Pensky & Sapatinas (2009a),

kai deÐqnoume ìti eÐnai asumptwtik� bèltisth,   sqedìn-bèltisth, ektìc apì èna logarijmikì

par�gonta, gia mia eureÐa kl�sh apì Besov mp�lec.

Tèloc, gÐnontai k�poiec eishg seic gia jèmata sunaf  me th didaktorik  mou diatrib  ta

opoÐa ja mporoÔsan na melethjoÔn sto mèllon.
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Chapter 1

Overview on Wavelets and other
statistical techniques

This chapter is an overview on wavelets and other statistical techniques which are going to be

used in the following three chapters of the Thesis. For a detailed review of wavelets in various

statistical applications and appropriate software see, e.g., Antoniadis (1999), Abramovich,

Bailey & Sapatinas (2000) and Antoniadis, Bigot & Sapatinas (2001).

1.1 Wavelets

Wavelets consist an orthonormal basis with local properties in both frequency and time. For

this reason they are called a local basis. In this section we will briefly discuss multiresolution

analysis (MRA), Haar and Meyer wavelets, the discrete wavelet transformation, the sample

data model and boundary wavelets.

1.1.1 Multiresolution Analysis

A multiresolution analysis (MRA) of L2(R) can be used to define wavelets. A MRA of L2(R)

is a sequence of closed subspaces Vj of L2(R), j ∈ Z with the following properties.

1. Nesting property: Vj ⊂ Vj+1.

2. Density property:
⋃

j∈Z Vj = L2(R).

3. Separation property:
⋂

j∈Z Vj = {0}.

5
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6

4. Scaling relation: f(t) ∈ Vj ⇐⇒ f(2t) ∈ Vj+1.

5. There is a scaling function φ ∈ V0 such that {φ(t− k)}k∈Z is an orthonormal basis for

V0.

Using the nesting property, we can obtain Wj, the orthogonal complement of Vj in Vj+1. The

density property leads to

L2(R) = ⊕j∈ZWj = V0 ⊕j≥0 Wj.

Using properties (4) and (5), it is easy to see that {φj,k(x) = 2
j
2 φ(2jx− k), k ∈ Z} forms an

orthonormal basis for Vj. Since the scaling function φ(x) ∈ V0 ⊂ V1, φ can be written as a

linear combination of bases of V1

φ(x) =
∑

k

α(k)φ(2x− k),

where α(k) = 2
∫

φ(x)φ(2x− k)dx and
∑

k |α(k)|2 = 2. The wavelet space W0 is the

orthogonal complement of V0 in V1 and W0 ⊂ V0. Therefore, the mother wavelet ψ(x) satisfies

the following relation

ψ(x) =
∑

k

b(k)φ(2x− k),

where b(k) = (−1)kα(1 − k), so that ψ(x) is orthogonal to φ(x). It is easy to see that

{ψjk(x) = 2
j
2 ψ(2jx− k), k ∈ Z} is an orthonormal basis for Wj and {ψjk(x), j, k ∈ Z} is an

orthonormal basis, namely ‘wavelets’, of L2(R). L2(R) can then be expressed as follows

L2(R) = ⊕j∈ZWj = V0 ⊕j≥0 Wj = Vj0 ⊕j≥j0 Wj,

where j0 is some integer. Therefore, any function f ∈ L2(R) can be written in the following

ways

f(x) =
∑

j,k∈Z
djkψjk(x) =

∑

k∈Z
c0kφ0k(x) +

∑
j≥0

∑

k∈Z
djkψjk(x)

=
∑

k∈Z
cj0kφj0k(x) +

∑
j≥j0

∑

k∈Z
djkψjk(x),

where cjk =
∫

f(x)φjk(x)dx and djk =
∫

f(x)ψjk(x)dx.
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1.1.2 Different wavelet bases

There are several examples of wavelets. The Haar basis is known since 1910. Strang (1993)

and Vidaković & Müller (1994) start to explain wavelets by the Haar wavelet which is simple.

The Haar wavelet function is defined by

φ(x) =





1, if 0 ≤ x < 1,

0, otherwise,

and is called Haar father wavelet. The Haar mother wavelet is defined by

ψ(x) =





1, if 0 ≤ x < 1
2
,

−1, if 1
2
≤ x < 1,

0, otherwise.

Haar wavelets have good properties such as simplicity, orthogonality and compact support.

However, they are discontinuous and cannot be used to approximate smooth functions. Meyer

(1985) developed orthonormal wavelet bases with infinite support and exponential decay. A

key development was the work of Daubechies (1988, 1992, Chapters 6 and 7) who derived

two families of orthonormal wavelet bases (the so-called extremal phase and least asymmetric

families) which combine compact support with various degrees of smoothness and numbers

of vanishing moments. Coiflets (Daubechies, 1993) and spline wavelets (Chui, 1992) are

other examples of wavelet bases that are used in practice and several additional wavelet

families (orthogonal, biorthogonal and semiorthogonal) have also been developed during the

last decade.

1.1.3 Meyer Wavelets

Let

f̂(ξ) =

∫ 1

0

f(x)e−2πixξdx

for f ∈ L2[0, 1]. We define the ‘mother’ Meyer wavelet ψ, in the frequency domain as

ψ̂(ξ) =





e−iπξ sin(π
2
ν(3|ξ| − 1)), if 1

3
< |ξ| ≤ 2

3
,

e−iπξ cos(π
2
ν(3

2
|ξ| − 1)), if 2

3
< |ξ| ≤ 4

3
,

0, otherwise,
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where ν(·) is a smooth function such that

ν(x) =





0, if x ≤ 0,

1, if x > 1

and ν(x) + ν(1− x) = 1.

We define

ψjk(x) = 2
j
2 ψ(2jx− k), x ∈ R.

We can write

ψ̂(ξ) = ujk(ξ)− ivjk(ξ),

where i2 = −1. Let f be a periodic function in L2[0, 1] and let

ψ0
jk(x) =

∑

l∈Z
ψjk(x + l)

for j ∈ Z+ and k = 0, 1, . . . , 2j − 1 be the periodized Meyer wavelet on [0, 1]. It is easy to see

that

ψ̂o
jk(l) = ψ̂jk(l), l ∈ Z.

Hence,

ψ̂o
jk(l) = ujk(l)− ivjk(l)

and

αo
jk =

∫ 1

0

f(x)ψo
jk(x)dx =

∑

l∈Z
<f̂(l)ujk(l)−

∑

l∈Z
=f̂(l)vjk(l),

where <(x) and =(x) are the real and imaginary parts of x respectively.

The ‘father’ Meyer wavelet φ is written in the frequency domain as

φ̂(ξ) =





1, if |ξ| ≤ 1
3
,

cos

(
π
2
ν(3|ξ| − 1)

)
, if 1

3
< |ξ| ≤ 2

3
,

0, otherwise.

Let

φjk(x) = 2
j
2 φ(2jx− k), x ∈ R

and

φ̂o
jk(x) =

∑

l∈Z
φjk(x + l)
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for j ∈ Z+ and k = 0, . . . , 2j − 1 be the ‘father’ Meyer wavelet on [0, 1]. It is easy to see that

φ̂o
jk(l) = φ̂jk(l), l ∈ Z.

1.1.4 Discrete Wavelet Transformation

The discrete wavelet transform (DWT) (see, e.g., Nason & Silverman (1994) and Edwards

(1992)) is an orthogonal transform applied on discrete data. DWT requires input data

with the sample size of a power of 2, a high-pass filter and a low-pass filter. At each

stage, a sequence of smoothed c and detailed coefficients d is produced. Low-pass filter

returns smoothed data, while high-pass filter returns detailed data. The low-pass filter h is

a convolution followed by dyadic decimation, as in Mallat (1989):

cj−1
k =

∑

n∈Z
h(n− 2k)cj

n =
∑

m∈Z
h(m)cj

m+2k =

Nh−1∑
m=0

h(m)cj
m+2k.

The high-pass filter g acts in the following way in order to return detailed coefficients

dj−1
k =

∑

n∈Z
g(n− 2k)cj

n,

where cM
0 , cM

1 , . . . , cM
N−1 is a set of N = 2M data. The superscript M means that we have the

original data. Wavelet coefficients are obtained by applying two filters and a downsampling

filter. By applying two filters and an upsampling filter on the wavelet coefficients, we obtain

the original data. Computation of the forward and inverse DWT would be expected to

require O(n2) operations. However, due to its construction, it only requires O(n) operations

and it is faster than the fast Fourier transform (FFT) which requires O(n log (n)) operations.

Let N = 2M be the sample size. Donoho & Jonhstone (1995) used the matrix form

of DWT, i.e., w = Wy, where the vector w contains the wavelet coefficients of a vector y

of size N. Due to the orthogonality of the transform matrix W, the input data y can be

reconstructed as follows y = W T w, or equivalently yi =
∑

jk wjkWjk(i). Since
√

NWj,k(i)

approximates 2
j
2 ψ(2j i

N
− k), the data yi, i = 0, 1, . . . , N − 1, can be expressed as

yi =
∑

j,k

djkψjk(
i

N
), (1.1)
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where djk ≈ wjk/
√

N (see, e.g., Vidakovic (1999)).

In Chapter 4, we consider the fast O(n log2
2(n)) forward and inverse discrete, periodized Meyer

wavelet transforms due to Kolaczyk (1994). These algorithms take place in the frequency

domain and associate each level of coefficients with a projection of the signal onto a frequency

band.

1.1.5 Minimax Risk

The minimax risk associated with a statistical model {Pθ, θ ∈ Θ} and with a semi-distance

d is defined by

R∗
n = inf

θ̂n

sup
θ∈Θ

Eθ[d
2(θ̂n, θ)],

where the infimum is taken over all estimators (see, e.g., Tsybakov (2009), p. 78). Consider

the following inequalities.

lim sup
n→∞

ψ−2
n R∗

n ≤ C, (1.2)

lim inf
n→∞

ψ−2
n R∗

n ≥ c, (1.3)

where c, C are positive constants, independent of n. A positive, decreasing sequence {ψn}∞n=1

is called an optimal rate of convergence of estimators on (Θ, d) if (1.2) and (1.3) hold. An

estimator θ∗n satisfying

sup
θ∈Θ

Eθ[d
2(θ∗n, θ)] ≤ C

′
ψ2

n,

where {ψn}∞n=1 is the optimal rate of convergence and C
′
< ∞ is a constant, independent of

n, is called a rate optimal estimator on (Θ, d).

1.1.6 Sampled data model and boundary wavelets

The theory of nonparametric function estimation is usually based on the standard Gaussian

white noise model, i.e.,

dY (t) = f(t)dt +
1√
N

dW (t), t ∈ [0, 1], (1.4)
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where W is the standard Wiener process. Carrying out a wavelet decomposition of the

function f(t)+N− 1
2 dW (t), we obtain independent observations Yjk ∼ N(θjk,

1
N

). In practice,

however, instrumentally acquired data that is digitally processed is typically discrete. Such

settings can be represented by the sampled data model, that is,

Yi = f(
i

N
) + εi, (1.5)

where εi are independent N(0, 1) random variables. The discrete wavelet transform of N− 1
2 Y

yields Ỹjk ∼ N(θ̃jk,
1
N

). In much of the existing literature the difference between Yjk and Ỹjk

is ignored. Estimators are usually motivated, derived and analyzed in the standard Gaussian

white noise model (1.4) and are applied to discrete wavelet transform data, in practice. An

interesting problem is to investigate the risk bounds of an estimator based on observation

Ỹjk from model (1.5). Jonhstone & Silverman (2004) used boundary-modified coiflets to

show that the discrete wavelet transform of finite data from (1.5) asymptotically provides a

close approximation to the wavelet transform of the standard Gaussian white noise model

(1.4). These results were used in Johnstone & Silverman (2005) to prove that discretization

of the data does not affect the asymptotic convergence rates of the upper risk bounds of the

proposed empirical Bayes estimators.

Consider a scaling function φ with vanishing moments of order 1, 2 . . . , R − 1, and R

continuous derivatives, for some integer R and a mother wavelet ψ which is orthogonal to all

polynomials of degree R− 1 or less. Additionally, both φ and ψ should be supported on the

interval [−S + 1, S] for some S > R. Coiflets satisfy these properties (see, e.g. Daubechies,

1992, Section 8.2). Let

φB
k , k = −R,−R + 1, . . . , R− 2, R− 1

and

ψB
k , k = −S + 1,−S + 2, . . . , S − 2, S − 1

be the boundary scaling functions and boundary wavelets, respectively. The support of these

functions is contained in [0, 2S − 2] for k ≥ 0 and in [−(2S − 2), 0] for k < 0. The coarse
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resolution level L should satisfy 6S − 6 < 2L. Let

φjk(x) =





2
j
2 φB

k (2jx), for k ∈ 0 : (R− 1),

2
j
2 φ(2jx− k), for k ∈ (S − 1) : (2j − S),

2
j
2 φB

k−2j(2j(x− 1)), for k ∈ (2j −R) : (2j − 1),

and

ψjk(x) =





2
j
2 ψB

k (2jx), for k ∈ 0 : (S − 2),

2
j
2 ψ(2jx− k), for k ∈ (S − 1) : (2j − S),

2
j
2 ψB

k−2j(2j(x− 1)), for k ∈ (2j − S + 1) : (2j − 1),

be the scaling functions and wavelets, respectively.

1.1.7 Constructing wavelet coefficients from discrete data

Let W be a R×R matrix and U be a S ×R matrix defined by

Wkl =

∫ ∞

0

xlφB
k (x)dx k = 1, 2, . . . , R; l = 0, 1, . . . , R− 1

and

Ujl = jl, j = 1, 2, . . . , S; l = 0, 1, . . . , R− 1.

Since U is of full rank, AL can be constructed to be an R × S matrix satisfying ALU = W.

Similarly, the matrix AR satisfies ARU = W, where

W kl =

∫ 0

−∞
xlφB

−k(x)dx, k = 1, 2, . . . , R; l = 0, 1, . . . , R− 1,

U jl = (−1)ljl, j = 1, 2, . . . , S; l = 0, 1, . . . , R− 1.

For a given sequence Y0, Y1, . . . , YN−1, we define the preconditioned sequence PjY by

(PjY )k =





∑S−2
i=0 AL

kiYi, for k ∈ 0 : (R− 1),

Yk, for k ∈ (S − 1) : (N − S),
∑S−1

i=1 AR
N−k,iYN−i, for k ∈ (N −R) : (N − 1).

Let Ỹ be the boundary corrected discrete wavelet transform of N− 1
2 PJY and cA be the

maximum of the eigenvalues of AL(AL)T and AR(AR)T . Due to the orthogonality of the
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boundary-corrected discrete wavelet transform, the variance of the elements of Ỹ is bounded

by cA

N
. Let Ỹ I (Ỹjk : L ≤ j < J, S − 1 ≤ k ≤ 2j − S) be the array of interior coefficients.

It is an uncorrelated array of variables with variance 1
N

. For a detailed review of sampled

data model and boundary coiflets, see, e.g., Antoniadis (1994) and Johnstone & Silverman

(2004a).

1.1.8 Wavelet Series Estimator

Suppose that we have the data

yi = f(xi) + εi, i = 1, . . . , n (1.6)

where f is a function on [0,1] and ε′is are i.i.d. random variables with mean zero and common

variance σ2. Unlike parametic models, when a nonparametric regression model is considered,

we assume that f belongs to some infinite dimensional collection of functions.

Assume that we have data from model (1.6). By using (1.1) and thresholding small

wavelet coefficients, a smooth curve is obtained. Hence, we can construct a wavelet series

estimator as follows

f̂W (x) =
∑

j,k

δ(d̂jk)ψjk(x),

where δ(d̂jk) is a hard or soft thresholding rule given respectively by

δ(d̂jk) =





0 if |djk| ≤ λ

d̂jk if |djk| > λ,

δ(d̂jk) =





0 if |djk| ≤ λ

d̂jk − λ if |djk| > λ

d̂jk + λ if |djk| < −λ,

where d̂jk = 1
n

∑n
i=1 yiψjk(xi) and λ > 0. Such a wavelet series estimator was proposed by

Donoho & Johnstone (1994a)

1. By applying DWT on the data y = (y1, . . . , yn) with n = 2M (w=Wy), obtain wavelet

coefficients w.
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2. Remove wavelet coefficients smaller than a chosen threshold (λ) and ‘keep’ or ‘shrink’

the other wavelet coefficients in order to construct new wavelet coefficients w∗ from w.

3. Obtain f̂W , by reconstructing f from w∗, using the inverse discrete wavelet

transformation (IDWT) (f̂W = W T w∗).

For a smooth function, wavelet coefficients at the coarsest resolution level should not be

removed. Hence, we have

f̂W (x) =
∑

k

ĉj0kφj0k(x) +
∑
j≥j0

∑

k

δ(d̂jk)ψjk(x),

where ĉj0k = 1
n

∑n
i=1 yiφj0k(xi). Under this scheme we obtain thresholded wavelet coefficients

using either the hard or soft thresholding rule. Thresholding allows the data itself to decide

which wavelet coefficients are significant. Hard thresholding (a discontinuous function) is

a ‘keep’ or ‘kill’ rule, while soft thresholding (a continuous function) is a ‘shrink’ or ‘kill’

rule. Donoho & Jonhstone (1996) showed that this simple nonlinear method using hard

thresholding achieves a risk within the logarithmic factor of the optimal minimax risk for

either global or pointwise estimation. For more details on soft, hard or other types of

thresholding in wavelet estimation see, e.g., Antoniadis, Bigot & Sapatinas (2001).

1.2 Penalized Model Selection

The basic idea of model selection is to assume that the unknown parameter may be well

approximated by some family of models and estimate it under this assumption, although we

know that this might not be the case. Suppose that we have at hand a family of models.

The risk (or risk bound) corresponding to a given model is the sum of two components: a

variance component which is proportional to the dimension of the model and a bias term

that it is equal to the square of the distance between the true parameter and the model and

results from the fact that we use an approximate model. If we knew the parameters, the

optimal model would be the one that minimizes the risk or risk bound. However, in practice,

we should develop a statistical procedure m̂(Y ) or D̂(Yi)i≥1 in order to choose the model
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from the data that has a risk which is close to the optimal risk. Model selection actually

consists of two steps:

1. Choose a family of models Sm with m ∈ M, where M is an appropriate set of indices,

and a collection of estimators ŝm with values in Sm.

2. Choose a value m̂ and set ŝm̂ as the proposed estimator. The goal of model selection

is to choose an estimator with a risk that is as close as possible to the minimal risk of

the estimators ŝm, m ∈ M.

Model selection has various statistical applications in a wide range of models, see, e.g.,

Barron, Birgé & Massart (1999), Birgé & Massart (2001) and Massart (2007).

1.3 lp-balls and Besov spaces

1.3.1 Minimaxity over weak and strong lp-balls

Suppose that µ = (µ1, . . . , µn). Let ‖µ‖0 = ]{i : µi 6= 0, i = 1, . . . , n}. An l0-ball is defined

by

l0(η) = {µ ∈ Rn : ‖µ‖0 ≤ ηn}.

An l0-ball can be described as the set of vectors where the proportion of non-zero entries is

bounded by η. A weak lp-ball, mp(η), 0 < p < ∞, with radius η is given by

mp(η) = {µ ∈ Rn : |µ|(i) ≤ η(
n

i
)

1
p , i = 1, . . . , n},

where |µ|(i) is the i−th largest absolute value of the components of µ. Finally, a strong lp-ball

lp(η), 0 < p ≤ ∞, with radius η is given by

lp(η) =




{µ ∈ Rn : 1

n

∑n
i=1 |µi|p ≤ ηp}, 0 < p < ∞

{µ ∈ Rn : |µi| ≤ nη ∀i = 1, 2, . . . , n}, p = ∞.

The above sets represent different ways to measure sparsity. An important relationship

between weak and strong lp-balls is as follows

lp(η) ⊆ mp(η) * lp′ (η), p
′
> p,
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(see, e.g., Abramovich, Grinshtein & Pensky, 2007).

Let

yi = µi + εi, (1.7)

where εi v N(0, σ2). Define

Rn(lp(η)) = inf
µ̂

sup
µ∈lp(η)

E‖µ̂− µ‖2
2,

where the infimum is taken over all estimators (i.e. measurable functions) µ̂ of µ based on

observations from (1.7). Donoho, Johnstone, Hoch & Stern (1992), Donoho & Johnstone

(1994b, 1996) and Johnstone (1994) gave rates of convergence Rn(F (η)), where

F (η) =





l0,

lp, 0 < p ≤ ∞, or

mp, 0 < p < ∞.

These rates will be used in the main chapters 2-4 of the Thesis.

1.3.2 Besov spaces and Besov balls

We define ∆εf(x) = f(x + ε)− f(x), ∆2
εf(x) = ∆ε(∆εf)(x) and similarly ∆R

ε (x) for positive

integer R. Let

ρR(t, f, π) = sup
|ε|≤t

{∫ 1

0

∣∣∆R
ε f(u)

∣∣π du

} 1
π

.

Then, for R > s, we define

Bs
π,r[0, 1] =

{
f periodic :

[ ∫ 1

0

(
ρR(t, f, π)

ts

)r
dt

t

] 1
r

< ∞
}

,

with the integral replaced by the sum when r = ∞ and/or π = ∞. In particular, for

f ∈ Lp[0, 1],

f =
∑

j,k

βjkΨjk ∈ Bs
π,r[0, 1] ⇐⇒

∑
j≥0

2j(s+1/2−1/π)r
( ∑

0≤k≤2j

|βjk|π
)r/π

< ∞.

The parameter s measures the degree of smoothness of the function, while the integration

parameters π and r indicate the type of norms used to measure smoothness.
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Chapter 2

Adaptive Quadratic Functional
Estimation of a weighted density by
model selection

This chapter of the thesis consists of two main theorems and their proofs. Theorem 2.3.1

shows that the minimax rate of convergence, that is optimal in the case of direct data, can be

also attained by the proposed estimator for θ =
∫

f 2 in the case of weighted data. Theorem

2.5.1 derives the information bound for the problem of estimating θ =
∫

f 2, when weighted

data are available.

2.1 Introduction

Let X1, X2, . . . , Xn be independent and identically distributed (i.i.d.) random variables with

cumulative distribution function (c.d.f.) F and probability density function (p.d.f) f with

respect to the Lebesgue measure on the real line R = (−∞,∞). In practice, it sometimes

happens that such direct data are not available. There are several settings that lead to

weighted data sets. Weighted distributions are used in statistics to model sampling in the

presence of selection bias. Observations which do not have an equal chance of being selected

lead to this sampling scheme which can be described in the following way: let Y1, Y2, . . . , Yn

be i.i.d. random variables from a weighted distribution with p.d.f. gw given by

gw(y) =
w(y)f(y)

µw

, (2.1)

17
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where the weight function w is known, satisfies w(y) > 0 for all y and µw = E(w(X)) < ∞
(see, e.g., Patil, Rao & Zelen, 1988). The restriction w(y) > 0 for all y is necessary for

identifiability reasons. This constraint guarantees that gw is indeed a p.d.f. (see, e.g., Vardi,

1982, 1985).

When the probability that an observation is selected is proportional to its size, i.e.,

when w(y) = y, length-biased data arise. Meta-analysis, the visibility bias in aerial survey

techniques, line transect sampling, and sampling from queues or telephone networks are some

examples of settings where weighted data arise (see, e.g., Cox, 1969; Vardi, 1982).

Cox (1969) proposed an estimator of F given by

F̃ (y) = n−1µ̂w

n∑
i=1

w−1(Yi)I(−∞,y](Yi),

where µ̂w = n (
∑n

i=i w
−1(Yi))

−1
and IA(y) = 1 if y ∈ A and 0 otherwise. Hence, this

estimator can be interpreted as the empirical distribution function for weighted data. Vardi

(1982, 1985) showed that F̃ is the nonparametric maximum likelihood estimator of F for

this case, and that µ̂w is a
√

n-consistent estimator of µw.

Kernel estimators of f for weighted data from model (2.1) were proposed by

Bhattacharyya, Franklin and Richardson (1988) and Jones (1991), while their multivariate

extensions were considered in Ahmad (1995). Asymptotic properties of these estimators

were considered in Wu (1995) and Wu & Mao (1996), for a Hölder class of p.d.f.’s. A

Fourier series estimator of f for weighted data from model (2.1) was proposed by Jones &

Karunamuni (1997), while a transformation-based estimator was suggested by El Barmi &

Simonoff (2000). Efromovich (2004a) suggested a blockwise shrinkage estimator of f for

weighted data from model (2.1) and showed that this estimator is sharp minimax, that is,

the proposed estimator attains the optimal constant and rate of convergence, for a Sobolev

class of p.d.f.’s. Additionally a second-order sharp minimax estimator for F , via a projection

on trigonometric bases, and of f by differentiaton, for an analytic class of c.d.f.’s, was derived

in Efromovich (2004b).

Let X be a random variable with c.d.f. F and p.d.f f with respect to Lebesgue measure

on the real line R, and let f ∈ L2(R) (the space of squared-integrable functions on R). We

consider the problem of estimation of
∫

f 2, assuming f belongs to some smooth class of
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p.d.f.’s. This functional appears, e.g., in the Pitman efficacy of the Wilcoxon signed-rank

statistic, in rank tests based on residuals in the linear model and in the asymptotic variance

of the Hodges-Lehmann estimator (see, e.g., Aubuchon & Hettmansperger, 1984; Draper,

1988; Ritov & Bickel, 1990). Additionally, an estimate of this quantity can be used in test

statistics based on the L2-distance (see, e.g., Fromont & Laurent, 2006; Butucea 2007).

If direct data are available, then optimal solutions to this problem are well known. Bickel

& Ritov (1988) proposed an estimator of
∫ (

f (k)
)2

, where f (k) is the k-th derivative of f ,

for p.d.f.’s satisfying the Hölder condition on f (m) with smoothness parameter α. Although

their estimator is asymptotically efficient when m + α > 2k + 1/4 and rate optimal for

k < m + α ≤ 2k + 1/4, it is non-adaptive since it depends on unknown parameters. Birgé

& Massart (1995) proposed non-adaptive,
√

n-consistent estimators for functionals of the

form
∫

φ(f, f ′, . . . , f (k), ·), for f belonging to some smooth class of p.d.f.’s with smoothness

parameter s satisfying s ≥ 2k + 1
4
, and proved that

∫
φ(f, f ′, . . . , f (k), ·) cannot be estimated

at a rate faster than n−
4(s−k)
4s+1 if s < 2k + 1

4
. Laurent (1996, 1997) extended these results and

built non-adaptive and asymptotically efficient estimators of more general functionals.

Finally, Laurent (2005) constructed an adaptive and asymptotically optimal (in the

minimax sense) estimator of
∫

f 2, for p.d.f’s belonging to some smooth class of densities. We

construct an adaptive estimator of
∫

f 2, when weighted data are available. An estimate of

this functional could be used when statistical procedures developed for direct data (e.g., tests

based on L2-distance) are adapted to weighted data. The proposed estimator is shown to

attain the minimax rate of convergence that is optimal in the case of direct data for the same

class of p.d.f.’s, under the assumption that the biasing function w(y) is bounded away from

0 and ∞. The information bound for the problem of estimating
∫

f 2 when weighted data are

available is also derived and compared with the information bound for the case of direct data

(see, e.g., Pfanzagl, 1982; Bickel & Ritov, 1988; Laurent, 1996). A small simulation study

is conducted in order to illustrate the usefulness of the proposed estimator in finite sample

situations.
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2.2 Estimation of
∫

f 2 using weighted data by model

selection

We consider below the problem of estimating θ =
∫

f 2 based on a weighted sample from

model (2.1), for p.d.f.’s which are uniformly bounded and belong to a certain Besov body.

The approach adapted, modifies the method used by Laurent (2005) for the case of direct

data, borrowing also ideas from Jones (1991), Jones & Karunamuni(1997) and Brunel, Comte

& Guilloux (2007) in order to take into account the selection bias. We project f onto the

space generated by the constant piecewise functions on the intervals
(

k
D

, k+1
D

]
, where k ∈ Z

and D is a natural number. The projection of f onto this space is given by

fD =
∑

k∈Z
αk,D pk,D,

where pk,D =
√

DI( k
D

, k+1
D

] and αk,D =
∫

fpk,D. It is easy to see that

θ̃D =
µw

2

n(n− 1)

∑ ∑
1≤i,j≤n

i6=j

∑

k∈Z

pk,D(Yi)

w(Yi)

pk,D(Yj)

w(Yj)
(2.2)

is an unbiased estimator for θD =
∫

f 2
D. Assumption 1. Let w be a real-valued function

satisfying 0 < w1 ≤ w(y) ≤ w2 < ∞ for all y ∈ R. Under Assumption 1, and for uniformly

bounded densities f , i.e., ‖f‖∞ = supy∈R |f(y)| ≤ M for some finite constant M > 0, it is

easy to check that

E(θ̃D − θ)2 ≤
{

(θD − θ)2 + C(M, w)

(
D

n2
+

1

n

)}
,

where C(M,w) is an absolute constant depending on M , w1 and w2. Under Assumption 1

and for uniformly bounded densities, it is easy to check that

E(θ̃D − θ)2 ≤ {(θD − θ)2 + C(M,w)

(
D

n2
+

1

n

)
},

where C(M, w) is a positive constant depending on M, w1 and w2 only with M > 0 and

‖f‖∞ ≤ M.

According to the ideas presented in Laurent & Massart (2000), the optimal choice of D

should minimize the quantity θ− θD +
√

D
n

or, equivalently, maximize the quantity θD −
√

D
n

.
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Therefore, we consider the following estimator

θ̃ = sup
D∈Dn

(
θ̃D − pen(D)

)
, (2.3)

where pen(D) is given by

pen(D) =
κ

n

√(
θ̃D + 1

)
D log(D + 1), (2.4)

for some constant κ > 0. However, µw is unknown in practice and therefore θ̃D should be

replaced by

θ̂D =
µ̂2

w

n(n− 1)

∑ ∑
1≤i,j≤n

i 6=j

∑

k∈Z

pk,D(Yi)

w(Yi)

pk,D(Yj)

w(Yj)
, (2.5)

where µ̂w is a
√

n-consistent estimator of µw (see Section 4.32). Therefore, a natural adaptive

estimator for θ =
∫

f 2 is given by

θ̂ = sup
D∈Dn

(
θ̂D − penu(D)

)
, (2.6)

where penu(D) is given by

penu(D) =
κ

n

√(
θ̂D + 1

)
D log(D + 1). (2.7)

In the sequel, the notation C is used for absolute constants whose values may vary from

one line to another. The dependency of a constant on some parameter or the bounds of the

weight function is implied in the following way: For example C(α, R, M) denotes an absolute

constant depending on α, R and M, while C(w) denotes a constant depending on w1 and w2.

2.3 Upper risk bounds

Let φ(x) = I(0,1](x) and ψ(x) = I[0, 1
2
](x)− I( 1

2
,1](x), and for any j ∈ N, k ∈ Z, let

φjk(x) = 2j/2I(0,1]

(
2jx− k

)
and ψjk(x) = 2j/2

[
I[0, 1

2
]

(
2jx− k

)− I( 1
2
,1]

(
2jx− k

) ]
.

Then, the functions {φJk, ψjk : j ≥ J, k ∈ Z} forms an orthonormal basis for L2(R), which

is the well-known Haar basis of L2(R). Therefore, any f can be represented (in the L2-sense)

by a Haar series as

f =
∑

k∈Z
αJk(f)φJk +

∞∑
j=J

∑

k∈Z
βjk(f)ψjk,
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where αjk(f) =
∫

fφjk and βjk(f) =
∫

fψjk. Let now F(α,R,M) be the class of p.d.f.’s f

which are uniformly bounded by some finite constant M > 0 and the sequence of coefficients

onto the Haar basis belongs to the following Besov body

Bα,2,∞(R) = {f | β(f) = (βjk)j≥J,k∈Z,
∑

k∈Z
β2

jk ≤ R22−2jα, ∀j ≥ J },

for some finite constants α, R > 0, that is, we consider the class of p.d.f.’s

F(α, R,M) = {f | β(f) ∈ Bα,2,∞(R), ‖f‖∞ ≤ M}. (2.8)

Theorem 2.3.1 below shows that the proposed adaptive estimator of θ =
∫

f 2 based on

weighted data converges at the rate which is optimal in the direct data case, uniformly over

the class of p.d.f.’s F(α,R, M) given by (2.8) for all α, R,M > 0.

Theorem 2.3.1. Let Y1, Y2, . . . , Yn be i.i.d. random variables from a weighted distribution

with p.d.f. gw given by (2.1), with weight function w being continuous and satisfying

Assumption 1. Consider the class of p.d.f.’s F(α, R,M) defined by (2.8) with α > 0, and let

Dn =
{
D | D ∈ N, D ≤ n2/ log3(n)

}
. (2.9)

There exists some constant κ0 > 0 such that if penu(D) is given by (2.7) for all D ∈ Dn with

κ ≥ κ0, then, there exists some n0 := n0(α,R,M, w) such that θ̂, given by (2.6), satisfies the

following inequalities

• For α > 1/4,

sup
f∈F(α,R,M)

E(θ̂ − θ)2 ≤ C(α,R, M, w)

n
,

• for 0 < α ≤ 1
4

sup
f∈F(α,R,M)

E(θ̂ − θ)2 ≤ C(α,R,M, w)

(√
log(nR2)

n

)8α/(1+4α)

.

Remark 2.3.1 Theorem 2.3.1 gives a uniform bound of the mean squared error of θ̂,

leading to the conclusion that θ̂ is an adaptive and
√

n-consistent estimator of θ =
∫

f 2,

uniformly over F(α,R,M) with α > 1
4
, and it also achieves the minimax rate of convergence

(
√

log n
n

)4α/(1+4α) which is optimal (in the minimax sense) in the case of direct data when

0 < α ≤ 1
4
. The fact that the minimax rate of convergence that is optimal in the case of

direct data can be also attained in the presence of selection bias is consistent with analogous
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results for density estimation (see, e.g., Wu, 1995; Wu & Mao, 1996; Efromovich, 2004a) and

distribution estimation (see, e.g., Efromovich, 2004b).

Remark 2.3.2 The estimator θ̂ can be used in tests of the null hypothesis H0 : f = f0,

based on the L2-distance in order to estimate
∫

(f − f0)
2, in the case of weighted data.

More precisely, under the assumptions of Theorem 2.3.1, the L2-distance of f and f0 can be

estimated by θ̂ − ∫
f 2

0 − 2µ̂w

∑n
i=1

f0(Yi)
w(Yi)

at the minimax rate of convergence that is optimal

in the case of direct data.

Remark 2.3.3 If β(f) ∈ Bα,2,∞(R) with α > 1/2, then f is uniformly bounded and the

restriction ‖f‖∞ ≤ M is not needed in the definition of F(α,R,M) (see, e.g., inequality

(8.15) of Proposition 8.3 in Härdle, Kerkyacharian, Picard & Tsybakov, 1998).

Remark 2.3.4 The simple projection estimator θ̂n (i.e, θ̂D given in (2.5) with D = n) can

be shown to be uniformly
√

n-consistent for all f ∈ F(α, R, M) with α ≥ 1
4
. On the other

hand, in addition, the penalized estimator given by (2.6) also attains the minimax rate of

convergence, that is optimal in the case of direct data, for all f ∈ F(α,R, M) with 0 < α ≤ 1
4
.

Furthermore, it performs better in finite sample situations, as it will be illustrated in Section

2.4.

Remark 2.3.5 The assumption 0 < w1 ≤ w(y) ≤ w2 < ∞, y ∈ [0, 1], is very common

in density estimation for weighted data (see, e.g., Efromovich, 2004a; Brunel, Comte &

Guilloux, 2005; Wu & Mao, 1996). The only difference with Assumption 1 considered above

is that we require 0 < w1 ≤ w(y) ≤ w2 < ∞ for all y, in order to cover the case of densities

with non-compact support. Below, we report some examples that arise in practical settings

leading to weighted data with weight function satisfying Assumption 1.

(i) Let 1 − w(y) be a proportion of the frequency of the variable X that is missing (see,

e.g., Efromovich, 2004a). Then, weighted data from model (2.1) arise. Let w(y) = 0.1

for y < 0, w(y) = 0.9y + 0.1 for 0 ≤ y ≤ 1 and w(y) = 1 for y ≥ 1. The missing

proportion is constant for y < 0, decreases in the interval [0, 1] and remains 0 for

y > 1. A generalization of this weight function is w(y) = b for y < 0, w(y) = cy + b,

for 0 < y < 1−b
c

and w(y) = 1 for y > 1−b
c

, 0 < c, b < 1, where the missing proportion

is constant for y < 0, decreases in the interval [0, 1−b
c

] and remains 0 for y > 1−b
c

.
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(ii) Line transect sampling is another example where weighted data arise (see, e.g.,

Efromovich, 2004a). If we are interested to estimate the abundance of plants or

animals of a particular species in a given region, we can use line transects. This

essentially means that an observer moves along fixed paths and includes the sighted

clusters of objects of interest in the sample. It is obvious that larger clusters have a

larger probability to be included in the sample. An appropriate weight function would

be w(y) = cy + b, for 0 < y < 1−b
c

and w(y) = 1 for y > 1−b
c

, 0 < c, b < 1.

(iii) The purpose of a photographic survey described by Patil (2002) was to estimate

the abundance of the deep-sea red crab. The data can be analyzed using the

composite weight function of the form w(y) = (a + by)v(y, θ) for 0 < y < c and

w(y) = (a + bc)v(y, θ), for y > c, where a, b > 0, c is a large positive constant and the

sighting function v(y, θ) represents the sighting-distance bias that is usually bounded

away from zero.

(iv) Meta-analysis studies the publication-selection bias and the heterogeneity that might

exist among different studies. Appropriate weight functions that have been found

include, (a) half-normal model w(y) = exp[−βp2(y)] and (b) negative exponential

model w(y) = exp[−βp(y)], where β > 0 and p(y) is the P -value when the resulting

test statistic takes the value y (see, e.g., Patil & Taillie, 1989).

2.4 Simulations

We present a small simulation study to illustrate the usefulness of the proposed estimator in

finite sample situations. We use the weight function

w(y) =





1.10−40 if y < 1.10−40,

y if 1.10−40 ≤ y ≤ 40,

40 if y > 40,

and five different distributions, i.e., (I) χ2−distribution with 3 degrees of freedom, (II) Beta

distribution with parameters α = 3 and β = 1, (III) Beta distribution with parameters

α = 5 and β = 4, (IV) Beta distribution with parameters α = 5 and β = 2, and (V) Gamma

Atha
na

sia
 Pets

a



25

1 2

0.
0

0.
1

0.
2

0.
3

1 2

0.
0

0.
2

0.
4

0.
6

Figure 2.1: MSE over 50 replications of a weighted sample of size n = 50 generated as in
Cases I and II.

distribution with parameters α = 3 and λ = 1. In each case, M=50 samples of size n = 50

and 100 were used in order to construct the boxplots of the mean squared error in Figures

2.1-2.3. We just present the boxplots of MSE for n = 50. For the proposed estimator we

set κ = 2. In Figures 2.1-2.2, we compare the proposed estimator with a simple projection

estimator θ̂n described in Remark 2.3.4. The boxplot on the right represents the MSE of

the projection estimator, while the boxplot on the left represents the MSE of the proposed

estimator. Obviously, the proposed estimator outperforms the projection estimator in all

cases. Although not reported here, the proposed estimator is still better than the projection

estimator for larger sample sizes. In Figure 2.3, we compare the MSE of pseudoestimator

(2.3) with the MSE of estimator (2.6), in cases (II) and (IV). The boxplot on the right

represents the MSE of the pseudoestimator, while the boxplot on the left represents the

MSE of the proposed estimator. It is evident that the estimation of µw deteriorates the

quality of the estimator.
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Figure 2.2: MSE over 50 replications of a weighted sample of size n = 50 generated as in
Cases III and V.
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Figure 2.3: MSE over 50 replications of a weighted sample of size n = 50 generated as in
Cases II and IV.
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2.5 The information bound for estimating
∫

f 2 using

weighted data

Theorem 2.5.1 below provides the information bound for the problem of estimating θ =
∫

f 2,

when weighted data are available. For some finite M > 0 let H be a class of p.d.f’s defined

by

H = {f |f ∈ L2(R), ‖f‖∞ ≤ M}.
Theorem 2.5.1. Let f be a member of H. Then, the information bound, Iw(f), for

the estimation of θ =
∫

f 2, using a weighted sample with weight function w satisfying

Assumption 1, is given by

Iw(f) = 4 µw

∫
f 3

w
− 4

(∫
f 2

)2

.

Remark 2.5.1 The information bound, Id(f), for the estimation of θ =
∫

f 2 based on a

direct sample (see, e.g., Pfanzagl, 1982; Bickel & Ritov, 1988; Laurent, 1996), equals

Id(f) = 4

∫
f 3 − 4

(∫
f 2

)2

.

It is easy to see that for any uniform distribution U(a, b), with a < b, Iw(f) is no smaller

than Id(f) since

µw

∫
f 3

w
=

1

(b− a)2
d(f, w) = d(f, w)

∫
f 3 ≥

∫
f 3,

where d(f, w) = µw

∫
f
w
≥ 1, by Jensen’s inequality, with equality if and only if w ≡ 1

(see, e.g., Efromovich, 2004b). However, there are cases where Iw(f) is (strictly) smaller

than Id(f). For example, let w(x) = 1 − 0.9x for all x ∈ (0, 1). Let f be the p.d.f of a

Beta distribution with parameters α = 1 and β = 3. Then, using numerical integration

(performed in R, version 2.4.0), or by direct calculations, we can compute

µw

∫
f 3

w
= 3.4209404 and

∫
f 3 =

27

7
,

thus concluding that Iw(f) is smaller than Id(f). The above observations lead to the

conclusion that model sampling in the presence of selection bias can either improve or

worsen the information bound in the problem of estimating θ =
∫

f 2. Analogous conclusions

regarding density estimation based on weighted data can be found in Cox (1969) and
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Efromovich (2004b).

Remark 2.5.2 Theorem 2.5.1 has the following implication. If an estimator, say Tn, of θ

based on a weighted sample given by (2.1), with w satisfying Assumption 1 and f belonging

to H, satisfies

√
n(Tn − θ) −→ N

(
0, Iw(f)

)
, in distribution,

and

lim
n−→∞

nE(Tn − θ)2 = Iw(f),

then Tn is asymptotically efficient (see, e.g., Laurent, 1996).

2.6 Appendix: Proofs

2.6.1 Proof of Theorem 2.3.1

The proof of Theorem 2.3.1 is broken into several parts. We first prove a lemma and three

propositions which are used in the proof of Theorem 2.3.1.

Let

Un(HD) =
µw

2

n(n− 1)

∑ ∑
1≤i,j≤n

i 6=j

HD(Yi, Yj)

w(Yi)w(Yj)
(2.10)

and

HD(x, y) =
∑

k∈Z

(
pk,D(x)− αk,Dw(x)

µw

)(
pk,D(y)− αk,Dw(y)

µw

)
. (2.11)

Lemma 2.6.1. Let Y1, Y2, . . . , Yn be i.i.d. random variables from a weighted distribution with

p.d.f. gw given by (2.1), where f belongs to L2(R) and the weight function w is continuous

and satisfies Assumption 1. There exist some positive constants κ1, κ2 and κ3 for which the

following inequality holds

P
{∣∣Un(HD)

∣∣ >
1

n− 1

[
κ1

√
DθDt + κ2‖f‖∞t +

κ3Dt2

n

]}
≤ 5.6 exp (−t).

Proof of Lemma 2.6.1. Let

g(x, y) =
HD(x, y)µ2

w

w(x)w(y)
,
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and

A2
1 = n(n− 1)E(g(Y1, Y2)

2),

A2 = sup

{∣∣∣∣∣E(
n∑

i=2

i−1∑
j=1

g(Yi, Yj)αi(Yi)bj(Yj))

∣∣∣∣∣ :
n∑

i=2

E(α2
i (Yi)) ≤ 1,

n−1∑
j=1

E(b2
j(Yj)) ≤ 1

}
,

A2
3 = n sup

x

[
E{g2(Y, x)}] ,

A4 = sup
x,y
|g(x, y)|.

Consider now the quantities B,C and ∆, defined in Theorem 3.4 of Houdré & Reynaud

(2003). It is easy to see that the following inequalities hold

B2 = max

{
sup
x,i

[
i−1∑
j=1

E(g2(x, Y1))

]
, sup

x,j

[
n∑

i=j+1

E(g2(Y1, x))

]}
≤ n sup

x
[E(g2(Y, x))] = A2

3,

C2 ≤ n(n− 1)E(g2(Y1, Y2)) = A2
1,

∆ ≤ sup

{∣∣∣∣∣E(
n∑

i=2

i−1∑
j=1

g(Yi, Yj)αi(Yi)bj(Yj))

∣∣∣∣∣ :
n∑

i=2

E
(
α2

i (Yi)
) ≤ 1,

n−1∑
j=1

E
(
b2
j(Yj)

) ≤ 1

}

= A2.

Evaluation of A1

Note that

g2(Y1, Y2) =
µw

4

w2(Y1)w2(Y2)

[ ∑

k∈Z

(
pk,D(Y1)− αk,Dw(Y1)

µw

)2 (
pk,D(Y2)− αk,Dw(Y2)

µw

)2

+
∑ ∑

k∈Z
k
′ 6=k

(
pk,D(Y1)− αk,Dw(Y1)

µw

)(
pk,D(Y2)− αk,Dw(Y2)

µw

)

×
(

pk
′
,D(Y1)−

αk′ ,Dw(Y1)

µw

)(
pk

′
,D(Y2)−

αk′ ,Dw(Y2)

µw

) ]
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Hence, it is easy to see that

E
{
g2(Y1, Y2)

}
=

=

[∑

k∈Z
E

(
µ2

w

w2(Y1)

(
pk,D(Y1)− αk,Dw(Y1)

µw

)2
)

× E

(
µ2

w

w2(Y2)

(
pk,D(Y2)− αk,Dw(Y2)

µw

)2
)

+
∑ ∑

k∈Z
k
′ 6=k

E
(

µ2
w

w2(Y1)

(
pk,D(Y1)− αk,Dw(Y1)

µw

)(
pk′ ,D(Y1)−

αk′ ,Dw(Y1)

µw

))

× E
(

µ2
w

w2(Y2)

(
pk,D(Y2)− αk,Dw(Y2)

µw

)(
pk′ ,D(Y2)−

αk′ ,Dw(Y2)

µw

))]

=
∑

k∈Z

[∫
(pk,D − αk,Dw

µw

)2fµw

w

]2

+
∑ ∑

k∈Z
k
′ 6=k

[∫ (
pk,D − αk,Dw

µw

)(
pk

′
,D −

αk′ ,Dw

µw

)
fµw

w

]2

=
∑

k∈Z

[∫
fµwp2

k,D

w
− α2

k,D

]2

+
∑ ∑

k∈Z
k
′ 6=k

[−αk,Dαk
′
,D

]2
.

Additionally, one can see that

∑

k∈Z

[∫
fµwp2

k,D

w
− α2

k,D

]2

≤ 2
∑

k∈Z

[∫
fµwp2

k,D

w

]2

+ 2

[∑

k∈Z
α4

k,D

]
.

Using the above inequality and
∑

k∈Z αk,D
2 ≤ D, one arrives at

E
(
g2(Y1, Y2)

) ≤ 2
∑

k∈Z

(∫
fµwp2

k,D

w

)2

+ 2

(∑

k∈Z
αk,D

2

)2

≤ 2DθD + 2
w2

2

w1
2
D

(∑

k∈Z
αk,D

2

)
= C1(w)DθD.

Therefore, we get

A1 ≤ C1(w)
√

n(n− 1)DθD, (2.12)

where

C1(w) =

√
2(1 +

w2
2

w2
1

).
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Evaluation of A2

It is easy to check that the following inequality holds

A2 ≤
n∑

i=2

i−1∑
j=1

∑

k∈Z

{
E

[
µw

2|αi(Yi)||bj(Yj)|
w(Yi)w(Yj)

pk,D(Yi)pk,D(Yj)

]
+ α2

k,DE (|αi(Yi)||bj(Yj)|)

+ E
[
µwαk,Dpk,D(Yi)|αi(Yi)||bj(Yj)|

w(Yi)

]
+ E

[
µwαk,Dpk,D(Yj)|αi(Yi)||bj(Yj)|

w(Yj)

] }
.

Evaluation of the first term of A2

Using repeatedly the Cauchy-Schwartz inequality, one arrives at

∑

k∈Z
E

(
µ2

w|αi(Yi)||bj(Yj)|
w(Yi)w(Yj)

pk,D(Yi)pk,D(Yj)

)
≤

≤
[∑

k∈Z
E2

(
µwpk,D(Yi)|αi(Yi)|

w(Yi)

)] 1
2
[∑

k∈Z
E2

(
µwpk,D(Yj)|bi(Yj)|

w(Yj)

)] 1
2

≤ ‖f‖∞w2
2

w2
1

[
E

(
b2
j(Yj)

)] 1
2
[
E

(
α2

i (Yi)
)] 1

2 .

Since

n∑
i=2

i−1∑
j=1

{[
E

(
α2

i (Yi)
)
E

(
b2
j(Yj)

)]} 1
2 ≤ n

[
n∑

i=2

n−1∑
j=1

E
(
α2

i (Yi)
)
E

(
b2
j(Yj)

)
] 1

2

,

one obtains

n∑
i=2

i−1∑
j=1

∑

k∈Z
E

(
µ2

wpk,D(Yi)pk,D(Yj)|αi(Yi)||bj(Yj)|
w(Yi)w(Yj)

)
≤

≤ ‖f‖∞w2
2

w2
1

n∑
i=2

i−1∑
j=1

[
E

(
α2

i (Yi)
)
E

(
b2
j(Yj)

)] 1
2 ≤ ‖f‖∞nw2

2

w2
1

.

Evaluation of the second term of A2

The following inequalities hold

n∑
i=2

i−1∑
j=1

∑

k∈Z
α2

k,DE(|αi(Yi)||bj(Yj)|) ≤
n∑

i=2

i−1∑
j=1

∑

k∈Z
α2

k,D

[
E(α2

i (Yi))E(b2
j(Yj))

] 1
2

≤ nθD

≤ n‖f‖∞.
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Evaluation of the third term of A2

Using the Cauchy-Schwartz inequality, we get

n∑
i=2

i−1∑
j=1

∑

k∈Z
E

(
µwαk,Dpk,D(Yi)|αi(Yi)||bj(Yj)|

w(Yi)

)

≤
n∑

i=2

i−1∑
j=1

E
(

fD(Yi)µw|αi(Yi)||bj(Yj)|
w(Yi)

)

≤ w2‖fD‖∞
w1

n∑
i=2

i−1∑
j=1

E
1
2 (α2

i (Yi))E
1
2 (b2

j(Yj))

≤ n
w2

w1

‖f‖∞.

Similarly, we can see that

n∑
i=2

i−1∑
j=1

∑

k∈Z
E

(
µwαk,Dpk,D(Yj)|αi(Yi)||bj(Yj)|

w(Yj)

)
≤ nw2‖f‖∞

w1

.

Hence, we get

A2 ≤ C2(w)‖f‖∞n, (2.13)

where

C2(w) =
w2

2

w2
1

+ 1 + 2
w2

w1

.
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Evaluation of the term A3

It is easy to check that

E
(
g2(x, Y 2)

)
=

=
∑

k∈Z

µ2
w

w2(x)

(
pk,D(x)− αk,Dw(x)

µw

)2

E

((
pk,D(Y )− αk,Dw(Y )

µw

)2
µ2

w

w2(Y )

)

+
∑ ∑

k∈Z
k
′ 6=k∈Z

µ2
w

w2(x)

(
pk,D(x)− αk,Dw(x)

µw

)(
pk

′
,D(x)− αk′ ,Dw(x)

µw

)

× E

(
µ2

w

w2(Y )

(
pk,D(Y )− αk,Dw(Y )

µw

)(
pk′ ,D(Y )− αk′ ,Dw(Y )

µw

) )

=
∑

k∈Z

µ2
w

w2(x)

(
pk,D(x)− αk,Dw(x)

µw

)2
(∫ (

pk,D − αk,Dw

µw

)2
µ2

w

w2

fw

µw

)

+
∑ ∑

k∈Z
k
′ 6=k∈Z

µ2
w

w2(x)

(
pk,D(x)− αk,Dw(x)

µw

)(
pk′ ,D(x)− αk′ ,Dw(x)

µw

)

×
(∫

fµw

w

(
pk,D − αk,Dw

µw

)(
pk

′
,D −

αk′ ,Dw

µw

))

=
∑

k∈Z

µ2
w

w2(x)

(
pk,D(x)− αk,Dw(x)

µw

)2 (∫
p2

k,Dfµw

w

)

−
(∑

k∈Z

µw

w(x)
αk,D

(
pk,D(x)− αk,Dw(x)

µw

))2

≤ w3
2

w3
1

∑

k∈Z
p2

k,D(x)

(∫ k+1
D

k
D

Df

)
+

∑

k∈Z

α2
k,Dw2

w1

(∫ k+1
D

k
D

Df

)

≤ w3
2

w3
1

‖f‖∞
(∑

k∈Z
p2

k,D(x)

)
+

w2‖f‖∞
w1

(∑

k∈Z
α2

k,D

)
.

Hence, we get

A3 ≤ C3(w)
√

n‖f‖∞D, (2.14)

where

C3(w) =

√
w3

2

w3
1

+
w2

w1

.
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Evaluation of the term A4

For all x and y

|g(x, y)| ≤
∑

k∈Z

pk,D(x)pk,D(y)µ2
w

w(x)w(y)
+

∑

k∈Z
α2

k,D +
∑

k∈Z

αk,Dpk,D(x)µw

w(x)

+
∑

k∈Z

αk,Dpk,D(y)µw

w(y)
≤ 2w2

2D

w2
1

+ D +
4w2D

w1

∫
f.

Hence, we can give an upper bound for A4

A4 ≤ C4(w)D, (2.15)

where

C4(w) = 1 +
w2

2

w2
1

+ 2
w2

w1

.

Using inequalities (2.12)-(2.15), we can deduce from Theorem 3.4 of Houdré & Reynaud-

Bouret (2003) that

P
{∣∣Un(HD)

∣∣ >
1

n− 1

[
κ1

√
DθDt + κ2‖f‖∞t +

κ3Dt2

n

]}
≤ 5.6 exp(−t), (2.16)

where κ1 = C1(ε0, w), κ2 = C3(ε0, w)+C2(ε0, w), κ3 = C3(ε0, w)+C4(ε0, w), C1(ε0, w) = 4(1+

ε0)
3
2 C1(w), C2(ε0, w) = 2n(ε0)C2(w), C3(ε0, w) = 2β(ε0)C3(w) and C4(ε0, w) = 2γ(ε0)C4(w),

where ε0 is a fixed positive number. This completes the proof Lemma 2.6.1. ¤

Proposition 2.6.1 gives a non-asymptotic risk bound for the pseudo-estimator θ̃.

Proposition 2.6.1. Let Y1, Y2, . . . , Yn be i.i.d. random variables from a weighted distribution

with p.d.f. gw given by (2.1), with weight function w being continuous and satisfying

Assumption 1. Consider the class of functions satisfying ‖f‖∞ ≤ M with M known, and let

θ =
∫

f 2. For all D ∈ D, where D is a subset of N, let θ̃D be defined by (2.2). There exists

some κ > 0 such that if we set for all D ∈ D

pen(D) =
κ

n
[
√

MD log(D + 1) + M log(D + 1) +
D log2(D + 1)

n
], (2.17)

then θ̃, given by (2.3), satisfies the following inequality for all n ≥ 2

E

{
θ̃ − θ − 2

n

n∑
i=1

(
f(Yi)µw

w(Yi)
− θ

)}2

≤ C(w) inf
D∈Dn

[‖fD − f‖4
2 + pen2(D)

]
.

Atha
na

sia
 Pets

a



35

Proof Proposition 2.6.1

Let

Pn(hD) =
1

n

n∑
i=1

hD(Yi)µw

w(Yi)
−

∫
hDf =

1

n

n∑
i=1

µw
2(fD(Yi)− f(Yi))

w(Yi)
−

∫
2(fD − f)f

and HD(x, y) and Un(HD) be defined by (2.10) and (2.11) respectively.

The following decomposition holds

Un(HD) + Pn(hD)−
∫

(f − fD)2 = θ̃D − θ − 2

n

n∑
i=1

(
µwf(Yi)

w(Yi)
− θ).

Let

VD = Un(HD) + Pn(hD)−
∫

(f − fD)2 − pen(D).

Hence, it is easy to check that

θ̃ − θ − 2

n

n∑
i=1

(
µwf(Yi)

w(Yi)
− θ) = sup

D∈D
(VD).

D is a subset of N and pen(D) is given by (2.17). The following inequalities hold

| sup
D∈D

(VD)| ≤ [sup
D∈D

(VD)+]
∨

inf
D∈D

(VD)−,

E
(

sup
D∈D

(VD)

)2

≤
∑
D∈D

E
(
(VD)2

+

)
+ E

(
inf

D∈D
(VD)2

−

)
.

Control of Un(HD)

Let

uD(t) =
1

n− 1

[
κ1

√
DθDt + κ2‖f‖∞t +

κ3Dt2

n

]
.

Using Lemma 2.6.1 and the following inequality

uD(
t1 + t2√

2
) ≤ uD(t1) + uD(t2),

one obtains that

P
{
|Un(HD)| > uD(

√
2yD) + uD(

√
2t)

}
≤ 5.6 exp (−t− yD). (2.18)
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Control of Pn(hD)− ‖f − fD‖2
2

According to Lemma 8 of Birgé and Massart (1998), if U1, U2, . . . , Un are n independent

random variables such that |Ui| ≤ b and E(U2
i ) ≤ δ2 for i = 1, . . . , n, then the following

inequality holds

P

{
1

n

n∑
i=1

(Ui − E(Ui)) > δ

√
2t

n
+

bt

3n

}
≤ exp (−t). (2.19)

If

Ui =
2µw[fD(Yi)− f(Yi)]

w(Yi)
,

then it is easy to check that

|Ui| ≤ 4w2‖f‖∞
w1

and

E(U2
i ) ≤ 4w2‖fD − f‖2

2‖f‖∞
w1

.

Therefore, using (2.19), one gets that

P

{
Pn(hD) >

√
8tw2‖f‖∞√

nw1

‖fD − f‖2 +
4w2‖f‖∞t

3w1n

}
≤ exp(−t), (2.20)

and using the elementary inequality

2

√
2tw2‖f‖∞

w1n
‖fD − f‖2 ≤ ‖fD − f‖2

2 + 2
tw2‖f‖∞

w1n
, (2.21)

one obtains

P
{

Pn(hD)− ‖f − fD‖2
2 >

10

3
(t)

w2‖f‖∞
w1n

}
≤ exp(−t) (2.22)

and

P
{

Pn(hD)− ‖f − fD‖2
2 >

10

3
(t + yD)

w2‖f‖∞
w1n

}
≤ exp (−t− yD). (2.23)

Let xD = log (D + 1) and κ = max(C1, C2, C3), where C1 = 4
√√

2κ1, C2 = 8
√

2κ2 + 10w2

3w1

and C3 = 64κ3. The following inequalities hold

uD(
√

2yD) +
10

3

MyDw2

nw1

≤ 1

n

(
C1

√
DxDθD + C2MxD +

C3Dx2
D

n

)

≤ pen(D). (2.24)
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Using (2.18), (2.23) and (2.24), one arrives at

P
{

VD > uD(
√

2t) +
10Mtw2

3nw1

}
≤ P

{
Un(HD) > uD(

√
2t) + uD(

√
2yD)

}
+

+P
{

Pn(hD)− ‖f − fD‖2
2 >

10Mw2(t + yD)

3nw1

}
≤ 6.6 exp(−t− yD). (2.25)

The following identity

E
[
(VD)2

+

]
= 2

∫ ∞

0

tP(VD > t)dt,

(2.25) and

uD(
√

2t0) +
10Mt0w2

3nw1

≤ t,

where

t0 = inf

{
t2n2

36DθDκ2
1

,
tn

3M(2κ2 + 10w2

3w1
)
, n

√
t

6κ3D

}
,

lead to the following inequality

E
[
(VD)2

+)
] ≤ 6.6C(w)

{
DM

n2
+

M2

n2
+

D2

n4

}
exp (−yD).

Hence, using the inequality

∑
D∈D

D2 exp (−yD) ≤
∑
D≥1

1

D2
,

we obtain
∑
D∈D

E(VD)2
+ ≤ C(w)

{
M

n2
+

M2

n2
+

1

n4

}
.

Now, we give an upper bound for E
[
(VD)2

−)
]
. The following inequality holds

E
[
(VD)2

−)
] ≤ 4E(U2

n(HD)) + 4E(P 2
n(hD)) + 4‖f − fD‖4

2 + 4(pen(D))2. (2.26)

Using inequality (2.16) and uD(f0) ≤ t, where f0 = inf
{

t2n2

36DθDκ2
1
, tn

6Mκ2
, n

√
t

6κ3D

}
, we arrive,

using similar steps as before, at

E(U2
n(HD)) ≤ C(w){DM

n2
+

M2

n2
+

D2

n4
}. (2.27)

It is also easy to check that

pen2(D) ≥ DM

n2
+

M2

n2
+

D2

n4
.
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Hence, the following inequality holds

E(U2
n(HD)) ≤ C(w)pen2(D) ∀D ∈ D.

Now, we obtain an upper bound for E(P 2
n(hD)). Using (2.20), the inequality u(y0) ≤ y, where

y0 = inf

{
y2w1n

32Mw2‖f − fD‖2
2

,
w1yn

8w2M

}

and

u(y) = 2

√
2yMw2

nw1

‖fD − f‖2 + M
4yw2

3w1n
,

one obtains

E(P 2
n(hD)) ≤ C(w)

{
‖fD − f‖4

2 +
M2

n2

}
. (2.28)

Using (2.26)-(2.28) we have

E
[
(V 2

D)−
] ≤ C(w)[‖fD − f‖4

2 + pen2(D)].

Collecting the above inequalities together we arrive at

E

(
θ̃ − θ − 2

n

n∑
i=1

(
f(Yi)µw

w(Yi)
− θ)

)2

≤ C(w) inf
D∈D

[‖fD − f‖4
2 + pen2(D)

]
,

thus concluding the proof of Proposition 2.6.1.

In order to prove Propositon 2.6.1, we used an exponential inequality of order 2 obtained

by Houdré-Bouret & Reynaud (2003).

Proposition 2.6.2. Let Y1, Y2, . . . , Yn be defined as in Proposition 2.6.1. Consider the class

of functions satisfying ‖f‖∞ ≤ M with M unknown. Let θ =
∫

f 2 and Dn be defined by (2.9).

There exists some constant κ0 > 0 such that if pen(D) is given by (2.4) for all D ∈ Dn,

then there exists some n∗ := n∗(α, R, M,w) such that θ̃, given by (2.3), satisfies the following

inequality for all n ≥ n∗ and for all κ ≥ κ0

E

{
θ̃ − θ − 2

n

n∑
i=1

(
f(Yi)µw

w(Yi)
− θ

)}2

≤

≤ C(w) inf
D∈Dn

[
‖fD − f‖4

2 +
D(M + 1) log(D + 1)

n2

]
+

C(M, w)

n2
.
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Proof of Proposition 2.6.2

Let A = {ω ∈ ω : θ̃D + 1
2
≥ θD∀D ∈ Dn}. We obtain an upper bound for

E
[(

θ̃ − θ − 2

n

n∑
i=1

(
f(Yi)µw

w(Yi)
− θ)

)
IA

]2

.

The following inequality holds

E
[
| sup

D∈Dn

VD|2IA
]
≤

∑
D∈Dn

E
[
(VD)2

+IA
]
+ inf

D∈Dn

E
[
(VD)2

−
]
.

Let

C0(M) = inf {D ∈ N :
D

log (D + 1)
≥ M2}.

If

pen(D) ≥ uD(
√

2yD) +
10MyDw2

3nw1

(2.29)

holds on A, then the following inequality holds

P
{(

VD > uD(
√

2t) +
10

3

Mtw2

nw1

) ⋂
A

}
≤ 6.6 exp (−yD − t).

Using the previous inequality and the identity

E
[
(VD)2

+IA
]

= 2

∫ ∞

0

tP
{

(VD > t)
⋂

A
}

dt,

one obtains

E
[
(VD)2

+IA
] ≤ C(M,w) exp (−yD)

D2

n2
.

Additionally, it is easy to check that the following inequality holds on A

pen(D) ≥ κ

n

√
(θD +

1

2
)D log (D + 1) ≥ κ√

2

√
θDDxD

n
+

κ

2

√
DxD

n

≥ κ√
2

√
θDDxD

n
+

κMxD

4n
+

κ

4

√
DxD

n
∀D ∈ Dn such that D ≥ C0(M).

Now, if κ0 = max (
√

2C1, 4C2, 4C
′
1C3), where C

′
1 is a positive constant satisfying

Dx2
D

n
√

DxD
≤ C

′
1,

then

pen(D) ≥ C1

√
θDDxD

n
+ C2

MxD

n
+ C3

Dx2
D

n2
≥ uD(

√
2yD) +

10MyDw2

3nw1

∀D ∈ Dn and ∀κ ≥ κ0. Therefore, (2.29) holds on A ∀D ∈ Dn such that D ≥ C0(M). On

the other hand, if D ≤ C0(M), then

E
[
(VD)2

+IA
] ≤ 2E(U2

n(HD)) + 2E((Pn(hD)− ‖f − fD‖)2
+).
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Using (2.22) and the well-known identity E(X2) =
∫∞

0
tP(|X| > t)dt we arrive at

E
(
(Pn(hD)− ‖f − fD‖)2

+

) ≤ C(M, w)

n2
.

The previous inequality and (2.27) imply that

E((VD)2
+IA) ≤ C(M, w)

n2
∀D ∈ Dn such that D ≤ C0(M).

Since |D1| = |{D|D ∈ Dn, D ≤ C0(M)}| ≤ C0(M), the following inequality holds

∑
D∈Dn

E((VD)2
+IA) ≤

∑

D∈Dn,D≤C0(M)

E((VD)2
+IA) +

∑

D∈Dn,D≥C0(M)

E((VD)2
+IA) ≤ C(M,w)

n2
.

Now, we obtain an upper bound for E
[
(VD)2

−
]
. Note that

E(VD)2
−) ≤ 4E(P 2

n(hD)) + 4E(U2
n(HD)) + 4E(pen2(D)) + 4‖f − fD‖4

2.

For all D ∈ Dn, it is easy to see that

E(pen2(D)) =
κ2(θD + 1)DxD

n2
≤ C(w)(M + 1)DxD

n2
.

Using (2.27) and (2.28) to control E(P 2
n(hD)) and E(U2

n(HD)), we arrive at

E((VD)2
−) ≤ C(w)

[
‖fD − f‖4

2 +
M2

n2
+

(M + 1)DxD

n2

]
.

Now, it remains to find an upper bound for E
[(

θ̃− θ− 2
n

∑n
i=1(

f(Yi)µw

w(Yi)
− θ)

)2

IAc

]
. We now

obtain an upper bound for P (Ac). We can easily check that the following inequality holds

P(Ac) =
∑

D∈Dn

P(θ̃D +
1

2
≤ θD) ≤

∑
D∈Dn

P(|θ̃D − θD| > 1

2
).

Moreover, the following decomposition holds

θ̃D − θD = Un(HD) + Pn(2fD).

Hence, we arrive at

P(Ac) ≤ P
(
|Un(HD)| > 1

4

)
+ P

(
|Pn(2fD)| > 1

4

)
.

We now obtain an upper bound for P
(|Un(HD)| > 1

4

)
. Using the inequality

uD(β0) ≤ 2

n

[
κ1

√
DMβ0 + κ2Mβ0 + κ3

Dβ2
0

n

]
≤ 1

4
,
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where

β0(n, M, w) = inf

{
(log n)3

(24κ1)2M
,

n

24κ2M
,
(log n)

3
2√

24κ3

}
,

one obtains

P
(
|Un(HD)| > 1

4

)
≤ 5.6 exp (−β0).

Since exp (−β0) ≤ C(M,w)
n8 ∀n ≥ n01, one arrives at

P
(
|Un(HD)| > 1

4

)
≤ C(M, w)

n8
∀n ≥ n01. (2.30)

Now, we will give an upper bound for P
(|Pn(2fD)| > 1

4

)
. Let Ui = 2fD(Yi)µw

w(Yi)
satisfying

|Ui| ≤ 2Mw2

w1
and E(U2

i ) ≤ 16M2w2

w1
. Using Lemma 8 of Birgé & Massart (1998), we obtain

P(|Pn(2fD)| > 4M

√
2w1y0

nw1

+
2Mw2y0

3nw1

) ≤ 2 exp (−y0), (2.31)

where y0(n,M, w) = inf
{

nw1

211M2w2
, 3nw1

16Mw2

}
. It is easy to see that

4M

√
2w2y0

nw1

+
2Mw2y0

3nw1

≤ 1

4
. (2.32)

The following inequality holds ∀n ≥ n02

exp (−y0(n,M,w)) ≤ C(M, w)

n8
. (2.33)

Inequalities (2.31)-(2.33) lead to

P(|Pn(2fD)| > 1

4
) ≤ C(M,w)

n8
,∀n ≥ n02. (2.34)

By using (2.30), (2.34) and the fact that |Dn| ≤ n2

log3 n
, one obtains that

P(Ac) ≤ |Dn|C(M,w)

n8
≤ C(M, w)

n6
, ∀n ≥ n

′
= max(n01, n02).

It is easy to see that the following inequalities hold

0 ≤ θ̃D ≤ 2Dw2
2

w2
1

, pen(D) ≤ C(w)n, ∀n ≥ 3,

|θ̃| ≤ C(w)n2, ∀n ≥ 3, θ =

∫
f 2 ≤ ‖f‖∞

∫
f ≤ M,

| 2
n

n∑
i=1

(
f(Yi)µw

w(Yi)
− θ)| ≤ 2M(1 +

w2

w1

),

(
θ̃ − θ − 2

n

n∑
i=1

(
f(Yi)µw

w(Yi)
− θ)

)2

≤ C(M,w)n4.
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Therefore, we arrive at

E
[(

θ̃ − θ − 2

n

n∑
i=1

(
f(Yi)µw

w(Yi)
− θ)

)2

IAc

]
≤ C(M, w)n4P(Ac) ≤ C(M,w)

n2

∀n ≥ n∗ = max (n
′
, 3), thus concluding the proof of 2.6.2.

Proposition 2.6.3. Let Y1, Y2, . . . , Yn be defined as in Proposition 2.6.1. Consider the

smooth class of p.d.f ’s F(α,R, M) defined by (2.8). Let θ̃ be defined as in Proposition

2.6.2. For any α > 0, R > 0 and M > 0, there exists some κ0 > 0 and some integer

n∗∗ := n∗∗(α, R, M) such that the following inequality holds for all n ≥ n∗∗ and all κ ≥ κ0

sup
f∈F(α,R,M)

E

{
θ̃ − θ − 2

n

n∑
i=1

(
f(Yi)µw

w(Yi)
− θ

)}2

≤ C(α,w)(RMα)
4

1+4α

(√
log (nR2)

n

) 8α
1+4α

.

Furthermore, for all α > 0, R > 0 and M > 0, there exists some integer n1 := n1(α,R,M)

such that the following inequality holds for all n ≥ n1

sup
f∈F(α,R,M)

E(θ̃ − θ)2 ≤ C(α,w)(RMα)
4

1+4α

(√
log (nR2)

n

) 8α
1+4α

+ C(w)
M2

n
,

where C(w) is some constant depending on w1 and w2.

Proof of Proposition 2.6.3

Let

Jn = blog2

(
n2R4

(M + 1) log (nR2)

) 1
1+4α

c+ 1

and

Dn =

{
D ∈ N : D ≤ n2

log3 n

}
.

We will show that

∃ n1 ∈ N : 2Jn ∈ Dn for all n ≥ n1.

Since, obviously,

∃ n11 ∈ N : 2Jn ≥ 1 for all n ≥ n11,

it only remains to show that

∃ n12 ∈ N : 2Jn ≤ n2

log3 n
for all n ≥ n12.

The following inequality holds

2Jn ≤ C(α, R, M)n
2

1+4α

(log n)
1

1+4α

for all n ≥ n12.
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It is easy to check that for all α > 0

C(α, R, M)n
2

1+4α

(log n)
1

1+4α

≤ n2

log3 n
for all n ≥ n12.

From Proposition 2.6.2, one obtains that

E(θ̃ − θ − 2

n

n∑
i=1

[
f(Yi)µw

w(Yi)
− θ])2 ≤

≤ C(M, w)

n2
+ C(w) inf

D∈Dn

{‖fD − f‖4
2 +

(M + 1)DxD

n2
} (2.35)

∀n ≥ n∗ and ∀f : ‖f‖∞ ≤ M.

Additionally,

‖f − f2J‖2
2 =

∑
j≥J

∑

k∈Z
βj,k

2 ≤
∑
j≥J

R22−2jα = C(α)R22−2Jα, (2.36)

∀f : β(f) ∈ Bα,2,∞(R).

Using (2.35), one arrives at

sup
f :f∈F(α,R,M)

E
[
θ̃ − θ − 2

n

n∑
i=1

(
f(Yi)µw

w(Yi)
− θ)

]2

≤ C(M, w)

n2
+ C(w)‖f2Jn − f‖4

2

+
C(w)(M + 1)2Jn log (2Jn + 1)

n2
,

∀n ≥ n∗∗, where n∗∗ = max{n∗, n12}.
Combining the above inequality and (2.36), it is easy to see that the following inequality

holds

sup
f :f∈F(α,R,M)

E
[
θ̃ − θ − 2

n

n∑
i=1

(
f(Yi)µw

w(Yi)
− θ)

]2

≤

≤ C(α, w){R(M + 1)α} 4
1+4α{

√
log (nR2)

n2
} 8α

1+4α ,∀n ≥ n∗∗. (2.37)

Now, we will give an upper bound for E(θ̃ − θ)2.

E(θ̃ − θ)2 ≤ 2E(θ̃ − θ − 2

n

n∑
i=1

[
f(Yi)µw

w(Yi)
− θ])2 + 2E(

2

n

n∑
i=1

[
f(Yi)µw

w(Yi)
− θ])2 (2.38)

and

E(
2

n

n∑
i=1

[
f(Yi)µw

w(Yi)
− θ])2 ≤ C(w)M2

n
. (2.39)
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Inequalities (2.37)-(2.39) lead to

sup
f :f∈F(α,R,M)

E(θ̃ − θ)2 ≤ C(w)M2

n
+ C(α, w){R(M + 1)α} 4

1+4α{
√

log(nR2)

n2
} 8α

1+4α ,

∀n ≥ n1 = max{n11, n12}, which completes the proof of proposition 2.6.3.

Proposition 2.6.4 shows that E
(

supD∈Dn
(θ̂D − 2θD)

)4

is uniformly bounded for all

f ∈ F(α, R,M).

Proposition 2.6.4. Let Y1, Y2, . . . , Yn and the smooth class of p.d.f.’s F(α, R, M) be defined

as in Proposition 2.6.3. θ̃D is given by (2.2). Then, the following inequality holds

E
(

sup
D∈Dn

(θ̃D − 2θD)

)4

≤ C(M,w, R, α).

Proof of Proposition 2.6.4

It is easy to see that the following inequality holds

E
(∣∣ sup

D∈Dn

(θ̃D − 2θD)
∣∣4

)
= E

{
| sup

D∈Dn

(θ̃D − 2θD)
∣∣4IF

}
+ E

{
| sup

D∈Dn

(θ̃D − 2θD)
∣∣4IF c

}

≤ c
∑

D∈Dn

E
(
(VD2)

4
+

)
+ c inf

D∈Dn

E
(
(VD2)

4
−
)

+ inf
D∈Dn

E
(
(VD1)

4
−
)

+ c

{
sup

D∈Dn

[uD(
√

2yD) +
8MyDw2

3w1n
]

}4

,

where

F = {θ̃D − 2θD ≥ 0 for some D ∈ Dn}, VD1 = θ̃D − 2θD,

VD2 = θ̃D − 2θD − uD(
√

2yD)− 8MyDw2

3w1n
and yD = 4 log(D + 1).

Additionally, using Lemma 8 of Birgé & Massart (1998) we have

P
(

Pn(2fD)− ‖fD‖2 >
8Mw2(t + yD)

3w1n

)
≤ exp(−t− yD),

which together with inequality (2.18) leads to

P
(

VD2 > uD(
√

2t) +
8Mw2t

3w1n

)
≤ 6.6 exp(−t− yD). (2.40)

Combining the identity

E(X4) =

∫ ∞

0

t3P(|X| > t)dt (2.41)
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and (2.40), we get

E{(VD2)
4
+

} ≤ C(M,w) exp(−yD)[
D4

n8
+

D2

n4
+

1

n4
].

Since |Dn| ≤ n2

log3 n
, we arrive at

∑
D∈Dn

E{(VD2)
4
+

} ≤ C(M,w). (2.42)

Now,

E
(
(VD1)

4
−
) ≤ cE

(
U4

n(HD)
)

+ cE
(
P 4

n(2fD)
)

+ c‖fD‖8
2,

E
(
(VD2)

4
−
) ≤ cE

(
U4

n(HD)
)

+ cE
(
P 4

n(2fD)
)

+ c‖fD‖8
2

+ c(uD(
√

2yD) +
8MyDw2

3nw1

)4.

Using inequalities (2.16) and (2.31) and the identity (2.41), we get

E
(
U4

n(HD)
) ≤ C(M,w)[

D2

n4
+

D4

n8
+

1

n4
], E

(
P 4

n(2fD)
) ≤ C(M,w)

n2
,

‖fD‖8
2 ≤ M8, and

{
sup

D∈Dn

[uD(
√

2yD) +
8MyDw2

3w1n
]

}4

≤ C(M, w),

which lead to

inf
D∈Dn

E
(
(VD1)

4
−
)

+ c inf
D∈Dn

E
(
(VD2)

4
−
) ≤ C(M,w). (2.43)

Finally, inequalities (2.42)-(2.43) complete the proof of Proposition 2.6.4.
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We now are in the position to prove Theorem 2.3.1. It is easy to check that

E(θ̃ − θ̂)2 = E
{[

sup
D∈Dn

(
θ̃D − pen(D)

)− sup
D∈Dn

(
θ̂D − penu(D)

)]2}

= E
{[

sup
D∈Dn

(
θ̃D − pen(D)

)− sup
D∈Dn

(
θ̂D − penu(D)

)]

+

−
[

sup
D∈Dn

(
θ̃D − pen(D)

)− sup
D∈Dn

(
θ̂D − penu(D)

)]

−

}2

≤ 2E
{[

sup
D∈Dn

(
θ̃D − pen(D)

)− sup
D∈Dn

(
θ̂D − penu(D)

)]2

+

}

+ 2E
{[

sup
D∈Dn

(
θ̃D − pen(D)

)− sup
D∈Dn

(
θ̂D − penu(D)

)]2

−

}

≤ 2E
{[

sup
D∈Dn

(
θ̃D − pen(D)− θ̂D + penu(D)

)]2

I(B)

}

+ 2E
{[

sup
D∈Dn

(
θ̂D − penu(D)− θ̃D + pen(D)

)]2

I(Bc)

}

≤ 4E
{[

sup
D∈Dn

(
θ̃D − θ̂D

)]2}
+ 4E

{[
sup

D∈Dn

(
penu(D)− pen(D)

)]2}

+ 4E
{[

sup
D∈Dn

(
θ̂D − θ̃D

)]2}
+ 4E

{[
sup

D∈Dn

(
pen(D)− penu(D)

)]2}
,

where

B =

{
ω | sup

D∈Dn

(
θ̃D − pen(D)

) ≥ sup
D∈Dn

(
θ̂D − penu(D)

)}
.

Using the Cauchy-Schwartz inequality, it is easy to see that the following inequalities hold

E
[

sup
D∈Dn

(θ̂D − θ̃D)

]2

= E
{

(µ̂2
w − µ2

w)2

µ4
w

[
sup

D∈Dn

(θ̃D)

]2}

≤ C(w)E
{(

µ̂w − µw

)2
[

sup
D∈Dn

(θ̃D − 2θD)

]2}

+ C(w)[ sup
D∈Dn

(2θD)]2E (µ̂w − µw)2

≤ C(w)
√
E(µ̂w − µw)4

√
E

{
sup

D∈Dn

(θ̃D − 2θD)

}4

+ C(w,M)E (µ̂w − µw)2 . (2.44)

Similarly, we can show that

E
[

sup
D∈Dn

(
θ̃D − θ̂D

)]2

≤ C(w)
√
E(µ̂w − µw)4

√
E

{
sup

D∈Dn

(θ̃D − 2θD)

}4

+ C(w, M)E (µ̂w − µw)2 . (2.45)
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Moreover, one can easily see that

E
[

sup
D∈Dn

(pen(D)− penu(D))

]2

≤ Cκ2E
[

sup
D∈Dn

(
θ̃D − θ̂D

)]2

(2.46)

and

E
[

sup
D∈Dn

(penu(D)− pen(D))

]2

≤ Cκ2E
[

sup
D∈Dn

(θ̂D − θ̃D)

]2

. (2.47)

It is also easy to check that

E(µ̂w − µw)2 ≤ C(w)

n
and E(µ̂w − µw)4 ≤ C(w)

n2
, (2.48)

(see, e.g., Efromovich, 2004b; Brunel, Comte & Guilloux, 2005). Inequalities (2.44)-(2.48),

together with Proposition 2.6.4, lead to

E(θ̂ − θ̃)2 ≤ C(w)

n
for all n ≥ n0 := max(n∗, 3)

which, together with Proposition 2.6.3, completes the proof of Theorem 2.3.1. ¤

2.6.2 Proof of Theorem 2.5.1

Let gν be a sequence of p.d.f’s such that ‖gν − g0‖2 −→ 0 as n −→ ∞, where g0 = wf0

µ0

and µ0 =
∫

f0w. Let µw =
∫

fw. We are going to determine the Fréchet derivative of the

functional θ =
∫ g2µ2

w

w2 at a point g0, where g0 = wf0

µ0
with f0 belonging to the class of p.d.f’s

H. It is easy to see that the following equalities hold

θ(gν) =

∫
µ2

0g
2
ν

w2
=

∫
µ2

0g
2
0

w2
+

∫
µ2

0(gν − g0)
2

w2
+ 2

∫
µ2

0g0(gν − g0)

w2
(2.49)

and

∫
µ2

0g0(gν − g0)

w2
=

∫
µ2

0g0gν

w2
− θ(g0) =

∫
gν

[
µ2

0g0

w2
− θ(g0)

]
. (2.50)

Additionally, one observes that the following inequality holds

∫
µ2

0(gν − g0)
2

w2
≤ w2

2

w2
1

‖gν − g0‖2
2 = o(‖gν − g0‖2). (2.51)

Using (2.49)-(2.51), one obtains that

θ(gν) = θ(g0) + 2

∫
gν

[
µ2

0g0

w2
− θ(g0)

]
+ o(‖gν − g0‖2)

= θ(g0) + 2

∫
(gν − g0)

[
µ2

0g0

w2
− θ(g0)

]
+ o(‖gν − g0‖2).
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Therefore, the Fréchet derivative is given by θ
′
(g0) = 2

[µ2
0g0

w2 − θ(g0)
]
. In the sequel, < ·, · >

denotes the scalar product in L2(R). Following Ibragimov & Khasminskii (1991), we consider

the space orthogonal to the square root of the likelihood s0 =
√

g0, i.e.,

H =

{
k ∈ L2(R) :

∫
ks0 = 0

}
,

and the projection operator onto this space, i.e.,

PH(t) = t−
( ∫

ts0

)
s0.

Since Y1, Y2, . . . , Yn are i.i.d. random variables, the family {P n
g0
} is locally asymptotically

Gaussian at all points g0 = wf0

µ0
with f0 belonging to H, in the direction H(g0) with

normalizing factor An(g0), where An(t) =
(

1√
n

)
(
√

g0)t (see, e.g., Example 2.2 of Ibragimov

& Khasminskii, 1991). Let Kn =
√

nθ
′
(g0)AnPH(g0), where θ

′
(g0) = 2

[µ2
0g0

w2 − θ(g0)
]
. Then

Kn(k) = K(k) =

∫
2s0k

[
µ2

0g0

w2
− θ(g0)

]
− 2

∫
ks0

∫
g0

[
µ2

0g0

w2
− θ(g0)

]

=

∫
k

{
2s0

[
µ2

0g0

w2
− θ(g0)

]
− 2s0

∫
g0

[
µ2

0g0

w2
− θ(g0)

]}
.

Therefore, Kn(k) −→ K(k) weakly, where K(k) =< h, k > and

h = 2s0

[
µ2

0g0

w2
− θ(g0)

]
− 2s0

∫
g0

[
µ2

0g0

w2
− θ(g0)

]
.

According to Theorem 4.1 of Ibragimov & Khasminskii (1991), for any estimator of θ(g0),

say Tn, and for any family of vicinities of g0, say {V (g0)}, we have

inf
{V (g0)}

lim inf
n−→∞

sup
g∈V (g0)

nE(Tn − θ(g))2 ≥ ‖h‖2
2.

Hence, the information bound is given by

Iw(f0) := ‖h‖2
2 = 4

∫
g0

{
µ2

0g0

w2
− θ(g0)−

∫
g0

[
µ2

0g0

w2
− θ(g0)

]}2

= 4

∫
f 3

0 µ0

w
+ 4θ2(g0)− 8θ(g0)

∫
g2
0µ

2
0

w2

= 4 µ0

∫
f 3

0

w
− 4

(∫
f 2

0

)2

,

thus completing the proof of Theorem 2.5.1. ¤
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Chapter 3

Estimation of a signal using the
maximum a posteriori method

In this chapter, the optimality results presented in Abramovich, Grinshtein & Pensky (2007),

for estimating a high dimensional Gaussian mean vector, are generalized, providing adaptive

conditions and a wider range of strong and weak lp(η) balls under which optimality of the

maximum a posteriori (MAP) testimator is proved. The standard Gaussian white noise

model is then considered and MAP testimation procedure is applied in a wavelet context,

in order to construct an adaptive estimator of f which attains the optimal rate under this

model. Using the boundary-modified coiflets of Johnstone & Silverman (2004a), it is also

shown that discretization of the data does not affect the rate of convergence of the proposed

MAP testimator. The optimality results are extended to the estimation of derivatives of f.

Finally, a simulation study is conducted in order to illustrate the performance of the proposed

estimator in practice.

3.1 Introduction

We consider the problem of estimating the unknown response function in the Gaussian white

noise model, where one observes Gaussian processes Yn(t) as follows

dYn(t) = f(t)dt +
σ√
n

dW (t), t ∈ [0, 1]. (3.1)

The noise parameter σ > 0 is assumed to be known, W is a standard Wiener process, and

f ∈ L2[0, 1] is the unknown response function. Under some smoothness constraints on f ,
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such a model is asymptotically equivalent (in Le Cam sense) to the standard nonparametric

regression setting (see, e.g., Brown & Low, 1996).

If f possesses some smoothness properties, we can deal with a consistent estimation

theory. We assume that f belongs to a Besov ball Bs
p,q(M) of a radius M > 0, where

0 < p, q ≤ ∞ and s > max(0, 1
p
− 1

2
). The latter restriction ensures that the corresponding

Besov spaces are embedded in L2[0, 1]. The parameter s measures degree of smoothness while

p and q specify the type of norm used to measure the smoothness. Besov classes contain

various traditional smoothness spaces such as Hölder and Sobolev spaces as special cases.

However, they also include different types of spatially inhomogeneous functions (see, e.g.,

Meyer, 1992, Chapter 6).

Wavelet series constitute unconditional bases for Besov spaces that has made various

wavelet-based estimation procedures to be widely used for estimating the unknown response

f ∈ Bs
p,q(M) in the model (3.1). The standard wavelet approach to the estimation of f

is based on finding the empirical wavelet coefficients of the data and to further denoising

them, usually by some type of a thresholding rule. Transforming back to the function space

yields then the resulting estimate. The main statistical challenge in such an approach is a

proper choice of a thresholding rule. A series of various wavelet thresholds originated by

different ideas has been proposed in the literature during the last decade, e.g., the universal

threshold (see Donoho & Johnstone, 1994a), SURE threshold (see Donoho & Johnstone,

1995), FDR threshold (see Abramovich & Benjamini, 1996), cross-validation threshold (see

Nason, 1996), Bayesian threshold (see Abramovich, Sapatinas & Silverman, 1998), empirical

Bayes threshold (see Johnstone & Silverman, 2005).

Abramovich & Benjamini (1996) demonstrated that thresholding can be viewed as a

multiple hypothesis testing procedure, where one first simultaneously tests the wavelet

coefficients of the unknown response function for significance. The coefficients concluded

to be significant are then estimated by the corresponding empirical wavelet coefficients of

the data, while others are discarded. Such a testimation procedure evidently mimics a

hard thresholding rule. Various choices for adjustment to multiplicity on the testing step

lead to different thresholds. In particular, the universal threshold of Donoho & Johnstone
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(1994a) and the FDR threshold of Abramovich & Benjamini (1996) fall within a testimation

framework corresponding to Bonferroni and FDR multiplicity corrections, respectively.

We continue to go along the lines of testimation approach, where we utilize the recently

developed maximum a posteriori (MAP) Bayesian multiple testing procedure of Abramovich

& Angelini (2006). A hierarchical prior model used in their approach is based on imposing a

prior distribution on the number of false null hypotheses. Abramovich, Grinshtein & Pensky

(2007) applied it to estimating a high-dimensional Gaussian mean vector and showed the

optimality (in the minimax sense) of such MAP testimation approach, where the unknown

mean vector was assumed to be sparse.

We first extend the results of Abramovich, Grinshtein & Pensky (2007) to more general

settings. Consider the problem of estimating an unknown high-dimensional Gaussian mean

vector, where one observes Gaussian data yi governed by

yi = µi + σn zi, i = 1, 2, . . . , n. (3.2)

The variance σ2
n > 0, that may depend on n, is assumed to be known, zi are independent

N(0, 1) random variables, and the unknown mean vector µ = (µ1, . . . , µn)′ is assumed to lie

in a strong lp-ball lp[ηn], 0 < p ≤ ∞, of a standardized radius ηn, that is, ||µ||p ≤ Cn, where

Cn = n1/pσnηn. Abramovich, Grinshtein & Pensky (2007) considered the Gaussian sequence

model (3.2) with σ2
n = σ2, and obtained upper error bounds of an adaptive MAP testimator

of µ in the sparse case, where 0 < p < 2 and ηn → 0 as n → ∞. We extend their results

for all combinations of p and ηn, and for variance in the Gaussian sequence model (3.2)

that may depend on n. We show, in particular, that for a properly chosen prior distribution

on the number of non-zero entries of µ, the corresponding adaptive MAP testimator of µ

is asymptotically minimax (up to a constant factor) for almost all strong lp-balls including

both sparse and dense cases.

We then apply the MAP testimation framework to the wavelet thresholding estimation

in the standard Gaussian white noise model (3.1). We show that, under mild conditions

on the prior distribution on the number of non-zero wavelet coefficients, a global MAP

wavelet testimator of f , where the MAP testimation procedure is applied to the entire set

of wavelet coefficients at all resolution levels, is adaptive and asymptotically nearly-minimax
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(up to an additional logarithmic factor) over the entire range of Besov balls. Furthermore,

we demonstrate that performing the MAP testimation procedure at each resolution level

separately allows one to remove the extra logarithmic factor. Moreover, these results can

be also extended to the estimation of derivatives of f . In a way, these results complement

recent adaptively optimal estimators obtained in an empirical Bayes context (see Johnstone

& Silverman, 2005).

In what follows, we review the MAP testimation methodology proposed by Abramovich,

Grinshtein & Pensky (2007) for estimating the unknown high-dimensional mean vector µ in

the Gaussian sequence model (3.1). Their upper error bounds are generalized to a wider,

not necessarily sparse, range of strong lp-balls, 0 < p ≤ ∞, while for a properly chosen prior,

the resulting MAP testimator is asymptotically minimax (up to a constant factor) over a

wide range of sparse and dense strong lp-balls. Analogous results can be obtained for l0-balls

and weak lp-balls, 0 < p < 2. Adaptive global and level-wise MAP wavelet testimators of

the unknown response function f in the Gaussian white noise model (3.1) are proposed,

and their asymptotic optimality (in the minimax sense) under the L2-risk is established

in a wide range of Besov balls. These results can also be extended to the estimation of

derivatives of f . Additionally, using the boundary-modified coiflets of Johnstone & Silverman

(2004a), it is shown that the order of magnitude of the accuracy of the proposed level-wise

MAP wavelet testimator is not affected when the sampled data model is used. Finally, we

illustrate the performance of the proposed adaptive level-wise MAP wavelet testimator on

several simulated examples, and compare it with three adaptive empirical Bayes estimation

procedures and one block wavelet thresholding estimator that have recently been shown

to attain the optimal (or near-optimal) convergence rates and to perform well in finite

sample situations. An application to a dataset collected in an anaesthesiological study is

also presented.
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3.2 MAP testimation in the Gaussian sequence model

3.2.1 MAP testimation procedure

We start with reviewing the MAP testimation procedure for the Gaussian sequence model

(3.2) developed by Abramovich, Grinshtein & Pensky (2007).

For this model, consider the multiple hypothesis testing problem, where we wish to

simultaneously test

H0i : µi = 0 versus H1i : µi 6= 0, i = 1, 2, . . . , n.

A configuration of true and false null hypotheses is uniquely defined by the indicator vector

x = (x1, . . . , xn)
′
, where xi = I(µi 6= 0), i = 1, 2, . . . , n. (Here, I(A) denotes the indicator

function of the set A.) Let κ = x1 + ... + xn = ||µ||0 be the number of non-zero µi

(false nulls), i.e., ||µ||0 = #{i : µi 6= 0}. Assume some prior distribution πn on κ with

πn(κ) > 0, κ = 0, 1, . . . , n. For a given κ, there are
(

n
κ

)
different vectors x. Assume all of

them to be equally likely a priori, that is, conditionally on κ,

P
(

x
∣∣

n∑
i=1

xi = κ

)
=

(
n

κ

)−1

.

Naturally, (µi |xi = 0) ∼ δ0, where δ0 is a probability atom at zero. To complete the prior

specification, we assume that (µi |xi = 1) ∼ N(0, τ 2
n).

For the proposed hierarchical prior, the posterior probability of a given vector x with κ

non-zero entries is

πn(x, κ | y) ∝
(

n

κ

)−1

πn(κ) I
( n∑

i=1

xi = κ

) n∏
i=1

(B−1
i )xi , (3.3)

where the Bayes factor Bi of H0i is

Bi =
√

1 + γn exp

{
− y2

i

2σ2
n(1 + 1/γn)

}
(3.4)

and γn = τ 2
n/σ2

n is the variance ratio (see Abramovich & Angelini, 2006).

Given the posterior distribution πn(x, κ | y), we apply a MAP rule to choose the most

likely indicator vector. Generally, to find the posterior mode of πn(x, κ | y), one should look

through all 2n possible sequences of zeroes and ones. However, for the proposed model, the
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number of candidates for a mode is, in fact, reduced to n + 1 only. Indeed, let x̂(κ) be a

maximizer of (3.3) for a fixed κ that indicates the most plausible vector x with κ non-zero

entries. From (3.3), it follows immediately that x̂i(κ) = 1 at the κ entries corresponding to

the smallest Bayes factors Bi and zeroes otherwise. Due to the monotonicity of Bi in |y|i (see

(3.4)), it is equivalent to x̂i(κ) = 1 corresponding to the κ largest |y|i and zeroes for others.

The Bayesian MAP multiple testing procedure then leads to finding κ̂ that maximizes

log πn(x̂(κ), κ | y) = const +
κ∑

i=1

y2
(i) + 2σ2

n(1 + 1/γn) log

{(
n

κ

)−1

πn(κ)(1 + γn)−
κ
2

}
,

or, equivalently, minimizes

n∑
i=κ+1

y2
(i) + 2σ2

n(1 + 1/γn) log

{(
n

κ

)
π−1

n (κ)(1 + γn)
κ
2

}
,

where |y|(1) ≥ . . . ≥ |y|(n). The κ̂ null hypotheses corresponding to |y|(1), . . . , |y|(κ̂) are

rejected. The resulting Bayesian testimation yields a hard thresholding with a threshold

λ̂MAP = |y|(κ̂), i.e.,

µ̂i =





yi, |yi| ≥ λ̂MAP ,

0, otherwise.

(If κ̂ = 0, then all yi, i = 1, 2, . . . , n, are thresholded and µ̂ ≡ 0.)

Various thresholding rules can be considered as penalized likelihood estimators

minimizing

‖y − µ‖2
2 + P (µ) (3.5)

for the corresponding penalties P (µ). Complexity type penalties are placed on the number

of nonzero µi. Let ‖µ0‖ = ]{i : µi 6= 0}. For a general complexity type penalty Pn(‖µ0‖), the

corresponding penalized estimator µ̂∗ is a hard thresholding rule with the data-dependent

threshold λ̂ = |y|(κ̂), where κ̂ is the minimizer of

n∑
i=κ+1

y2
(i) + Pn(κ).

From a frequentist viewpoint, the above MAP testimator µ̂ = (µ̂1, . . . , µ̂n)′ can be thought

as a penalized likelihood estimator with the complexity penalty (see, e.g., Birgé & Massart,

2001)

Pn(κ) = 2σ2
n(1 + 1/γn) log

{(
n

κ

)
π−1

n (κ)(1 + γn)
κ
2

}
. (3.6)
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3.2.2 Upper error bounds for MAP testimation

Abramovich, Grinshtein & Pensky (2007, Theorem 6) obtained upper error bounds for the

l2-risk of the resulting MAP testimator in the Gaussian sequence model (3.2) (with σ2
n = σ2)

for sparse strong lp[ηn]-balls, where 0 < p < 2 and ηn → 0 as n →∞. We extend now these

results to more general settings.

Fix a prior distribution πn(κ) > 0, κ = 0, 1, . . . , n, on the number of non-zero entries of

µ, and let γn = τ 2
n/σ2

n be the variance ratio.

Proposition 3.2.1. Let µ̂ be the MAP testimator of µ in the Gaussian sequence model

(3.2), let µ ∈ lp[ηn], 0 < p ≤ ∞. Assume that there exist positive constants γ and γ̄ such

that γ ≤ γn ≤ γ̄. Define c(γn) = 8(γn + 3/4)2 > 9/2.

1. Let 0 < p ≤ ∞. Assume e−c̃(γn)n ≤ πn(n) ≤ e−c(γn)n, where c(γn) ≤ c̃(γn) ≤ c0, and

c0 > 0. Then,

sup
µ∈lp[ηn]

E||µ̂− µ||22 = O(σ2
nn) as n →∞.

2. Let 2 ≤ p ≤ ∞. Assume that there exists β ≥ 0 such that πn(0) ≥ n−c1n−β
for some

c1 > 0. Then,

sup
µ∈lp[ηn]

E||µ̂− µ||22 = O(σ2
nnη2

n) + O(σ2
nn−β log n) as n →∞.

3. Let 0 < p < 2. Assume πn(κ) ≥ (κ/n)c2κ for all κ = 1, 2, . . . , αnn, where

n−1(2 log n)p/2 ≤ αn ≤ e−c(γn) and c2 > 0. Then,

sup
µ∈lp[ηn]

E||µ̂− µ||22 = O
(
σ2

nnηp
n(2 log η−p

n )1−p/2
)

as n →∞

for all n−1(2 log n)p/2 ≤ ηp
n ≤ αn.

4. Let 0 < p < 2. Assume that there exists β ≥ 0 such that πn(0) ≥ n−c1n−β
for some

c1 > 0. Then,

sup
µ∈lp[ηn]

E||µ̂− µ||22 = O(σ2
nn2/pη2

n) + O(σ2
nn−β log n) as n →∞

for all ηp
n < n−1(2 log n)p/2.
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Note first that since the prior assumptions in Proposition 3.2.1 do not depend on the

parameters p and ηn of the strong lp-ball, the resulting MAP testimator is inherently adaptive.

The condition on πn(n) guarantees that the risk of the MAP testimator is always bounded by

an order of nσ2
n, corresponding to the risk of the maximum likelihood estimator, µ̂MLE

i = yi,

in the Gaussian sequence model (3.2).

The following corollary of Proposition 3.2.1 essentially defines two zones (dense and

sparse) for p ≥ 2 and three zones (dense, sparse and super-sparse), for 0 < p < 2, of

different behavior for the quadratic risk of the MAP testimator. To evaluate the accuracy of

the MAP testimator, we also compare the resulting risks with the corresponding minimax

risks R(lp[ηn]) = inf µ̃ supµ∈lp[ηn] E||µ̃ − µ||22 that can be found, e.g., in Donoho & Johnstone

(1994b). (Here, g1(n) ³ g2(n) denotes 0 < lim inf(g1(n)/g2(n)) ≤ lim sup(g1(n)/g2(n)) < ∞
as n →∞.)

Collorary 3.2.1. Let µ̂ be the MAP testimator of µ in the Gaussian sequence model (3.2),

where µ ∈ lp[ηn], 0 < p ≤ ∞. Assume that there exist positive constants γ and γ̄ such that

γ ≤ γn ≤ γ̄. Define c(γn) = 8(γn + 3/4)2 > 9/2 and let the prior πn satisfy the following

conditions

1. πn(0) ≥ n−c1n−β
for some β ≥ 0 and c1 > 0;

2. πn(κ) ≥ (κ/n)c2κ for all κ = 1, 2, . . . , αn, where α = e−9/2 (or, α = e−c(γn) if γ is

known) and c2 > 0;

3. there exists c(γn) ≤ c̃(γn) ≤ c0, where c0 > 0, such that e−c̃(γn)n ≤ πn(n) ≤ e−c(γn)n.

Then, as n →∞, depending on p and ηn, one has:

Case 1, 0 < p ≤ ∞, ηp
n > α.

sup
µ∈lp[ηn]

E||µ̂− µ||22 = O(nσ2
n), while R(lp[ηn]) ³ nσ2

n.

Case 2, p ≥ 2, ηp
n ≤ α.

sup
µ∈lp[ηn]

E||µ̂− µ||22 = O(σ2
nnη2

n) + O(σ2
nn−β log n), while R(lp[ηn]) ³ σ2

nnη2
n.
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Case 3, 0 < p < 2, n−1(2 log n)p/2 ≤ ηp
n ≤ α.

sup
µ∈lp[ηn]

E||µ̂− µ||22 = O
(
σ2

nnηp
n(2 log η−p

n )1−p/2
)
,

while R(lp[ηn]) ³ σ2
nnηp

n(2 log η−p
n )1−p/2.

Case 4, 0 < p < 2, ηp
n < n−1(2 log n)p/2.

sup
µ∈lp[ηn]

E||µ̂− µ||22 = O(σ2
nn2/pη2

n) + O(σ2
nn−β log n), while R(lp[ηn]) ³ σ2

nn2/pη2
n.

The impact of Corollary 3.2.1 is that, up to a constant factor, the MAP testimator is

adaptively minimax for almost all strong lp-balls, except those with very small standardized

radiuses, where η2
n = o(n−(β+2/ min(p,2)) log n). Hence, while the optimality of the most existing

threshold estimators (e.g., universal, SURE, FDR) has been established over various sparse

settings, the MAP testimator is appropriate for both sparse and dense cases. To the best

of our knowledge, such a wide adaptivity range can be compared only with the penalized

likelihood estimators of Birgé & Massart (2001) and the empirical Bayes threshold estimators

of Johnstone & Silverman (2004b, 2005). Additionally, the penalized likelihood estimators of

Birgé & Massart (2001) have not been studied in practice, while the range of optimality of the

empirical Bayes threshold estimators of Johnstone & Silverman (2004b, 2005) is somewhat

smaller than the range of optimality of the MAP testimator.

In fact, as we have mentioned, there are interesting asymptotic relations between the

MAP testimator and the penalized likelihood estimator of Birgé & Massart (2001) that may

explain their similar behavior. For estimating the normal mean vector in (3.2) within strong

lp-balls Birgé & Massart (2001) considered a penalized likelihood estimator with a specific

complexity penalty

P̃n(κ) = Cσ2
nκ(1 +

√
2Lκ)

2, (3.7)

where Lκ = log(n/κ) + (1 + θ)(1 + log(n)/κ) for fixed C > 1 and θ > 0 (see their Section

6.3). Note that, for large n and κ < n/e, this penalty is approximately of the following form:

P̃n(κ) ∼ 2σ2
ncκLκ ∼ 2σ2

nc̃1

(
log

(
n

κ

)
+ c̃2κ

)
(3.8)

for some positive constants c, c̃1, c̃2 > 1 (see also Lemma 3.5.1 in Section 3.4). Thus, within

this range, P̃n in (3.7)-(3.8) behaves similar to a particular case of the MAP penalty Pn
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in (3.6) corresponding to the geometric type prior πn(κ) ∝ (1/c̃2)
κ. Note that this prior

satisfies the second condition on πn of Corollary 3.2.1. Such a Bayesian interpretation can be

also helpful in providing some intuition behind the penalty P̃n motivated in Birgé & Massart

(2001) mostly by technical reasons. In addition, under the conditions of Corollary 3.2.1,

Pn(n) ∼ P̃n(n) ∼ cn.

Furthermore, for κ ¿ n (sparse cases), under the conditions on the prior πn of Corollary

3.2.1, both the MAP penalty Pn and the penalty P̃n of Birgé & Massart (2001) are of the

same so-called 2κ log(n/κ)-type penalties of the form 2σ2
nζκ(log(n/κ) + cκ,n), where ζ > 1

and cκ,n is negligible relative to log(n/κ). Within different frameworks, such type of penalties

arose in a series of recent works on estimation and model selection (e.g., Foster & Stine, 1999;

George & Foster, 2000; Birgé & Massart, 2001; Johnstone, 2002, Chapter 13; Abramovich,

Benjamini, Donoho & Johnstone, 2006; Abramovich, Grinshtein & Pensky, 2007).

The following proposition extends the results of Abramovich, Grinshtein & Pensky (2007)

showing that the MAP testimator attains the rate which is optimal as ηn → 0 under l0-balls

for any 1
n
≤ ηn ≤ e−c(γ)

2
. Recall that R(l0(ηn)) ∼ σ2

nnηn(2 log(η−1
n )) (see Donoho, Jonhstone,

Hoch & Stern (1992)). (Below and in the remaining of the thesis, b·c denotes the floor

function. Also, g1(n) ∼ g2(n) denotes g1(n)/g2(n) → 1 as n →∞.)

Proposition 3.2.2. Define k∗n = bnηnc. Let ηn ∈ [ 1
n
, e−c(γ)

2
]. If there exists a constant c0 > 0

such that πn(k∗n) ≥ (k∗n/n)c0k∗n, then MAP testimator µ̂∗ satisfies

sup
µ∈l0[ηn]

E||µ̂∗ − µ||2 = O(nηn(2 log η−1
n )).

Remark 3.2.1 The proof of Proposition 3.2.1 which is given in Section 3.4 shows that the

proposed estimator is also adaptively minimax over weak lp-balls, 0 < p < 2, for sparse and

partially dense cases. Note that neither of the estimators mentioned after Collorary 3.2.1

has been shown to be adaptively minimax over weak lp-balls, 0 < p < 2.
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3.3 MAP wavelet testimation in the Gaussian white

noise and sampled data models

In this section, we apply the results of Section 3.2 on MAP testimation in the Gaussian

sequence model (3.2) to wavelet estimation of the unknown response function f in the

standard Gaussian white noise model (3.1).

Given a compactly supported scaling function φ of regularity r > s and the corresponding

mother wavelet ψ, one can generate an orthonormal wavelet basis on the unit interval from

a finite number Cj0 of scaling functions φj0k at a primary resolution level j0 and wavelets

ψjk at resolution levels j ≥ j0 and scales k = 0, 1, . . . , 2j − 1 (see, e.g., Cohen, Daubechies

& Vial, 1993; Johnstone & Silverman, 2004a). For clarity of exposition, we use the same

notation for interior and edge wavelets, and in what follows denote φj0k by ψj0−1,k.

Then, f is expanded in the orthonormal wavelet series on [0, 1] as

f(t) =
∞∑

j=j0−1

2j−1∑

k=0

θjkψjk(t),

where θjk =
∫ 1

0
f(t)ψjk(t)dt. In the wavelet domain, the Gaussian white noise model (3.1)

becomes

Yjk = θjk + εjk, j ≥ j0 − 1, k = 0, 1, . . . , 2j − 1,

where the empirical wavelet coefficients Yjk are given by Yjk =
∫ 1

0
ψjk(t)dY (t) and εjk are

independent N(0, σ2/N) random variables.

Define J = log2 N . Estimate wavelet coefficients θjk at different resolution levels j by the

following scheme:

1. set θ̂j0−1,k = Yj0−1,k;

2. apply the MAP testimation procedure of Abramovich, Grinshtein & Pensky (2007)

described in Section 3.2 to estimate θjk at resolution levels j0 ≤ j < J by the

corresponding θ̂j,k;

3. set θ̂jk = 0, j ≥ J .
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The resulting MAP wavelet testimator f̂N of f is then defined as

f̂N(t) =

Cj0
−1∑

k=0

Yj0−1,kψj0−1,k(t) +
J−1∑
j=j0

2j−1∑

k=0

θ̂jkψjk(t).

In what follows, we show that, under mild conditions on the prior πN , the resulting

global MAP wavelet testimator of f , where the MAP testimation procedure is applied to the

entire set of wavelet coefficients at all resolution levels j0 ≤ j < J , is asymptotically nearly-

minimax (up to an additional logarithmic factor) over the entire range of Besov classes

(see Theorem 3.3.1). Furthermore, we demonstrate that performing the MAP testimation

procedure at each resolution level separately allows one to remove the extra logarithmic factor

(see Theorem 3.3.2). Moreover, a level-wise version of the MAP testimation procedure allows

one to estimate the derivatives of f at optimal convergence rates as well (see Theorem 3.3.3).

3.3.1 Global MAP wavelet testimator

The number of wavelet coefficients at all resolution levels up to J is Ñ = 2J − 2j0 ∼ N for

large N . Let πN(κ) > 0, κ = 0, 1, . . . , Ñ , be a prior distribution on the number of non-zero

wavelet coefficients of f at all resolution levels j0 ≤ j < J , and let the prior variance of

non-zero coefficients be τ 2/N . The corresponding variance ratio is γ = τ 2/σ2.

It is well-known (see Donoho & Johnstone, 1998) that the minimax convergence rate for

the L2-risk of estimating the unknown response function f in the Gaussian white noise model

(3.1) over Besov balls Bs
p,q(M), where s > max(0, 1/p − 1/2), 0 < p, q ≤ ∞ and M > 0, is

given by

inf
f̃N

sup
f∈Bs

p,q(M)

E||f̃N − f ||22 ³ N−2s/(2s+1) as N →∞,

where the infimum is taken over all estimators (i.e., measurable functions) f̃N of f based on

observations from (3.1).

Theorem 3.3.1. Let ψ be a mother wavelet of regularity r and let f̂N be the corresponding

global MAP wavelet testimator of f in the Gaussian white noise model (3.1), where f ∈
Bs

p,q(M), 0 < p, q ≤ ∞, 1
p

< s < r and M > 0. Assume that there exist positive constants

γ and γ̄ such that γ ≤ γj ≤ γ̄ for all j = j0, j0 + 1, . . . , J − 1. Let the prior πN satisfy
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πN(κ) ≥ (κ/N)cκ for all κ = 1, 2, . . . , be−9/2Nc. Then,

sup
f∈Bs

p,q(M)

E||f̂N − f ||22 = O

((
log N

N

) 2s
2s+1

)
as N →∞. (3.9)

The proof of Theorem 3.3.1 is based on the well-known relation between the smoothness

conditions on functions within Besov spaces and the conditions on their wavelet coefficients.

Namely, if f ∈ Bs
p,q(M), then the sequence of its wavelet coefficients {θjk, k = 0, 1, . . . , 2j −

1, j = j0, j0 + 1, . . . , J − 1} belongs to a weak l2/(2s+1)-ball of a radius aM , where the

constant a depends only on a chosen wavelet basis (see Lemma 2 in Donoho, 1993). One can

then apply the corresponding results of Abramovich, Grinshtein & Pensky (2007) for MAP

testimation over weak lp-balls, 0 < p < ∞. Details of the proof of Theorem 3.3.1 are given

in Section 3.4.

The resulting global MAP wavelet testimator does not rely on the knowledge of the

parameters s, p, q and M of a specific Besov ball and it is, therefore, inherently adaptive.

Theorem 3.3.1 establishes the upper bound for its L2-risk and shows that the resulting

adaptive global MAP wavelet testimator is asymptotically nearly-minimax within the entire

range of Besov balls. In fact, the additional logarithmic factor in (3.9) is the unavoidable

minimal price for adaptivity for any global wavelet threshold estimator (see, e.g., Donoho,

Johnstone, Kerkyacharian & Picard, 1995; Cai, 1999), and in this sense, the upper bound

for the convergence rates in (3.9) is sharp. To remove this logarithmic factor one should

consider level-wise thresholding (see Section 3.3.2).

3.3.2 Level-wise MAP wavelet testimator

Consider now the MAP wavelet testimation applied separately at each resolution level

j. The number of wavelet coefficients at the j-th resolution level is nj = 2j. Let

πj(κ) > 0, κ = 0, 1, . . . , 2j, be the prior distribution on the number of non-zero wavelet

coefficients, and let τ 2
j /N be their prior variance, j0 ≤ j < J . The corresponding level-wise

variance ratios are γj = τ 2
j /σ2.

Theorem 3.3.2. Let ψ be a mother wavelet of regularity r and let f̂N(·) be the corresponding

level-wise MAP wavelet testimator of f in the Gaussian white noise model (3.1), where
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f ∈ Bs
p,q(M), 0 < p, q ≤ ∞, 1

p
< s < r and M > 0. Assume that there exist positive

constants γ and γ̄ such that γ ≤ γj ≤ γ̄ for all j = j0, j0 + 1, . . . , J − 1. Let the priors πj

satisfy the following conditions for all j = j0, j0 + 1, . . . , J − 1:

1. πj(0) ≥ 2−c1j for some c1 > 0;

2. πj(κ) ≥ (κ2−j)c2κ for all κ = 1, 2, . . . , αj2
j, where c2 > 0 and 0 < cα ≤ αj ≤ e−c(γj) for

some constant cα > 0 and c(γj) = 8(γj + 3/4)2;

3. there exists c(γj) ≤ c̃(γj) ≤ c0, where c0 > 0 such that e−c̃(γj)2
j ≤ πj(2

j) ≤ e−c(γj)2
j
.

Then,

sup
f∈Bs

p,q(M)

E||f̂N − f ||22 = O
(
N− 2s

2s+1

)
as N →∞.

For f ∈ Bs
p,q(M), the sequence of its wavelet coefficients at the j-th resolution level

belongs to lp[ηj], where ηj = C0N
1/22−j(s+1/2) for some C0 > 0 (see, e.g., Meyer, 1992, Section

6.10). The conditions on the prior in Theorem 3.3.2 ensure that all the four statements of

the Proposition 3.2.1 simultaneously hold at all resolution levels j0 ≤ j < J with β = 0,

and one can exploit any of them at each resolution level. It is necessary for adaptivity of the

resulting level-wise MAP wavelet testimator.

The assumptions of Theorem 3.3.2 are, in fact, not too restrictive. For example,

one can easily verify that all three conditions of Theorem 3.3.2 hold for the truncated

geometric prior TrGeom(1 − qj) with the probability of success pj = 1 − qj given by

πj(κ) = (1 − qj)q
κ
j /(1 − q2j+1

j ), κ = 0, 1, . . . , 2j, and qj ∼ e−c(γj). On the other hand,

no binomial prior, Bin(2j, pj) can “kill three birds with one stone”. The requirement

πj(0) = (1 − pj)
2j ≥ 2−c1j, necessarily implies pj → 0 as j → ∞. However, to satisfy

πj(2
j) = p2j

j ∼ e−c(γj)2
j
, one needs pj ∼ e−c(γj), which is bounded away from zero.

It turns out that requiring a slightly more stringent condition on πj(0), allows one also

to estimate derivatives of f by the corresponding derivatives of its level-wise MAP wavelet

testimator f̂N at the optimal convergence rates. Such a plug-in estimation of f (m) by f̂
(m)
N

is, in fact, along the lines of the vaguelette-wavelet decomposition approach of Abramovich

& Silverman (1998).
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Recall that the minimax convergence rate for the L2-risk of estimating an m-th derivative

(m ≥ 0) of the unknown response function f in the model (3.1) over Besov balls Bs
p,q(M),

where m < min(s, (s + 1/2− 1/p)p/2), 0 < p, q ≤ ∞ and M > 0, is given by

inf
f̃
(m)
N

sup
f∈Bs

p,q(M)

E||f̃ (m)
N − f (m)||22 ³ N−2(s−m)/(2s+1) as N →∞,

where the infimum is taken over all estimators (i.e., measurable functions) f̃
(m)
N of f (m) based

on observations from (3.1), (see, e.g., Donoho, Johnstone, Kerkyacharian & Picard, 1997;

Johnstone & Silverman, 2005).

The following Theorem 3.3.3 is a generalization of Theorem 3.3.2 for simultaneous level-

wise MAP wavelet testimation of f and its derivatives.

Theorem 3.3.3. Let ψ be a mother wavelet of regularity r and let f̂N be the level-wise

MAP wavelet testimator of f in the Gaussian white noise model (3.1), where f ∈ Bs
p,q(M),

0 < p, q ≤ ∞, 1/p < s < r and M > 0. Assume that there exist positive constants γ and γ̄

such that γ ≤ γj ≤ γ̄ for all j = j0, j0 + 1, . . . , J − 1. Let the priors πj satisfy the following

conditions for all j = j0, j0 + 1, . . . , J − 1:

1. πj(0) ≥ 2−c1j2−βj
for some β ≥ 0 and c1 > 0;

2. πj(κ) ≥ (κ2−j)c2κ for all κ = 1, 2, . . . , αj2
j, where c2 > 0 and 0 < cα ≤ αj ≤ e−c(γj) for

some constant cα > 0, and c(γj) = 8(γj + 3/4)2;

3. there exists c(γj) ≤ c̃(γj) ≤ c0, where c0 > 0 such that e−c̃(γj)2
j ≤ πj(2

j) ≤ e−c(γj)2
j
.

Then, for all m-th derivatives f (m) of f , where 0 ≤ m ≤ β/2 and m < min(s, (s + 1/2 −
1/p)p/2),

sup
f∈Bs

p,q(M)

E||f̂ (m)
N − f (m)||22 = O

(
N− 2(s−m)

2s+1

)
as N →∞.

Theorem 3.3.2 is evidently a particular case of Theorem 3.3.3 corresponding to the case

m = 0, for β = 0 in the condition on πj(0). The range of derivatives is the same as that for

the empirical Bayes shrinkage and threshold estimators appearing in Theorem 1 of Johnstone

& Silverman (2005). The proof of Theorem 3.3.3 is given in the Section 3.5
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3.3.3 MAP testimation procedure under the sampled data model

The following theorem considers the sample data model introduced by Johnstone & Silverman

(2004a). The sampled data model is given by

Yi = f(
i

N
) + εi i = 1, . . . , N,

where εi are independent and identically distributed random variables from N(0, 1). Assume

that for N = 2J , we have sufficient observations to evaluate the preconditioned sequence

PJY defined in Chapter 1. Let R be the number of continuous derivatives of the scaling

function φ. Suppose that the wavelets and scaling functions are modified by the boundary

construction described in Chapter 1. Let Ỹ be the boundary corrected discrete wavelet

transform of N− 1
2 PJY. Define the estimated coefficient array θ̂ as follows

1. Set θ̂j0−1 = Ỹj0−1.

2. Estimate the interior coefficients θ̂I by applying the MAP procedure on Ỹ I for each

j0 ≤ j < J under the following assumptions on the prior

(a) πj(0) ≥ (2j − 2S + 2)−c1 for some c1 > 0, where S > R.

(b) πj(κ) ≥ ( κ
2j−2S+2

)c2κ for all κ = 1, ..., αj(2
j − 2S + 2),

where c2 > 0 and 0 < cα ≤ αj ≤ e−c(γj) for some constant cα > 0.

(c) there exists c(γj) ≤ c̃(γj) ≤ c0, where c0 > 0 such that

e−c̃(γj)(2
j−2S+2) ≤ πj(2

j − 2S + 2) ≤ e−c(γj)(2
j−2S+2).

3. Threshold the boundary coefficients separately. At level j, use a hard threshold of

τ( j
N

)
1
2 , where τ > 0, so that for each k ∈ KB

j , θ̂jk = ỸjkI(|Ỹjk| > τ( j
N

)
1
2 ).

4. For unobserved levels j ≥ J set θ̂jk = 0.

Theorem 3.3.4. Assume that the scaling function φ and the mother wavelet ψ have R

continuous derivatives and support [-S+1,S] for some integer S and that
∫

xmφ(x)dx = 0

for m = 1, 2, . . . , R − 1. Assume that the wavelets and scaling functions are modified by the

boundary construction described in Chapter 1. Then, the construction of the estimator is set
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out as above. Suppose that 0 < s < R, 0 < p ≤ ∞ and either i) s > 1
p

or ii) s = p = 1. Let

F(C) be the set of functions f whose wavelet coefficients fall in Bs
p,∞(C). Then, there is a

constant c independent of C and N such that

sup
f∈F(C)

R∗
N(f) ≤ c{C2s/(2s+1)

N2s/(2s+1)
+ o(

1

N2s/(2s+1)
)},

where

R∗
N(f) = E(‖θ̂j0−1 − θj0−1‖2

2) +
∞∑

j=j0

E(‖θ̂j − θj‖2
2).

3.4 Numerical Study

In this section, we present a simulation study to illustrate the performance of the developed

level-wise MAP wavelet testimator and compare it with three empirical Bayes wavelet

estimation procedures and one block wavelet thresholding estimation method, namely, the

posterior mean (PostMean) and posterior median (PostMed) wavelet estimators proposed in

Johnstone & Silverman (2005), the Bayes Factor (BF) wavelet estimator proposed in Pensky

& Sapatinas (2007) and the NeighBlock (Block) wavelet thresholding estimator proposed in

Cai & Silverman (2001). We note that all estimators are adaptive to the unknown smoothness

and attain the optimal convergence rate, except for the Block estimator that is near optimal

(up to a logarithmic factor).

The computational algorithms related to wavelet analysis were performed using the

WaveLab software (http://www-stat.stanford.edu/software/software.html) and the

EbayesThresh software

(http://www-lmc.imag.fr/lmc-sms/Anestis.Antoniadis/EBayesThresh). The entire

study was carried out using the Matlab programming environment.

3.4.1 Estimation of parameters

To apply the level-wise MAP wavelet testimator one should specify the priors πj, the noise

variance σ2 and the prior variances τ 2
j or, equivalently, the variance ratios γj = τ 2

j /σ2. We

used the truncated geometric priors TrGeom(1 − qj) discussed in Section 3.3.2. Since the
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parameters σ2, qj and γj are rarely known a priori in practice, they should be estimated

from the data in the spirit of empirical Bayes.

The unknown σ was robustly estimated by the median of the absolute deviation of the

empirical wavelet coefficients at the finest resolution level J−1, divided by 0.6745 as suggested

by Donoho & Johnstone (1994), and usually applied in practice. For a given σ, we then

estimate qj and γj by the conditional likelihood approach of Clyde & George (1999).

Consider the prior model described in Section 3.2.1. The corresponding marginal

likelihood of the observed empirical wavelet coefficients, say Yjk, at the j-th resolution level

is then given by

L(qj, γj; Yj) ∝
2j∑

κ=0

πj(κ)

(
2j

κ

)−1

(1 + γj)
−κ

2

∑

{xi:
∑

k xik=κ}
exp

{
γj

∑
k xikY

2
jk

2σ2(1 + γj)

}
,

where πj(κ) = (1 − qj)q
κ
j /(1 − q2j+1

j ) and xi are indicator vectors. Instead of direct

maximization of L(qj, γj; Yj) with respect to qj and γj, regard the indicator vector x as

a latent variable and consider the corresponding log-likelihood for the “augmented” data

(Yj, x), i.e.,

l(qj, γj; Yj, x) = const + log πj(κ)− log

(
2j

κ

)
− κ

2
log(1 + γj) +

γj

∑
k xikY

2
jk

2σ2(1 + γj)
. (3.10)

The EM-algorithm iteratively alternates between computation of the expectation of

l(qj, γj; Yj, x) in (3.10) with respect to the distribution of x given Yj evaluated using the

current estimates for current values of parameters (E-step), and updating the parameters by

maximizing it with respect to qj and γj (M -step). However, for a general prior distribution

πn (and for the truncated geometric prior, in particular), the EM-algorithm does not allow

one to get analytic expressions on the E-step. Instead, we apply the conditional likelihood

estimation approach originated by George & Foster (2000) and adapted to the wavelet

estimation context by Clyde & George (1999). The approach is based on evaluating the

augmented log-likelihood (3.10) at the mode for the indicator vector x at the E-step rather

than using the mean as in the original EM-algorithm (see, e.g., Abramovich & Angelini,

2006).

For a fixed number κ of its non-zero entries, it is evidently from (3.10) that the most likely

vector x̂(κ) is x̂i(κ) = 1 for the κ largest |Yjk| and zero otherwise. For the given κ, maximizing
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(3.10) with respect to γj after some algebra one has γ̂j(κ) = max
(
0,

∑κ
k=1 Y 2

(k)/(κσ2)−1
)
. To

simplify maximization with respect to qj, approximate the truncated geometric distribution

πj in (3.10) by a non-truncated one. This approximation does not strongly affect the results,

especially at sufficiently high resolution levels, and allows one to get analytic solutions for

q̂j, i.e., q̂j(κ) = κ/(κ + 1). It is now straightforward to find κ̂ that maximizes (3.10) and

the corresponding γ̂j(κ̂) and q̂j(κ̂). The above conditional likelihood approach results thus

in rapidly computable estimates for γj and qj in closed forms.

3.4.2 Simulation study

We now present and discuss the results of the simulation study. For PostMean, PostMed and

BF wavelet estimators we used the Double-exponential prior, where the corresponding prior

parameters were estimated level-by-level by marginal likelihood maximization, as described

in Johnstone & Silverman (2005). The prior parameters for the level-wise MAP wavelet

testimator were estimated by conditional likelihood maximization described in Section 3.4.1

above. For the Block wavelet estimator, the lengths of the overlapping and non-overlapping

blocks and the value of the thresholding coefficient, associated with the method, were

selected as suggested by Cai & Silverman (2001). Finally, for all competing methods, σ

was estimated by the median of the absolute value of the empirical wavelet coefficients at

the finest resolution level divided by 0.6745 as we have discussed in Section 3.4.1.

In the simulation study, we evaluated the above five estimators for a series of test

functions. We present the results for the Wave, Peak, Bumps and HeaviSine test functions

defined on [0, 1].

For each test function, M = 100 samples were generated by adding independent Gaussian

noise ε ∼ N(0, σ2) to n = 1024 equally spaced points on [0,1]. The value of the (root) signal-

to-noise ratio (SNR) was taken to be 3 (high noise level), 5 (moderate noise level) and 7 (low

noise level), where

SNR(f, σ) = σ−1

(
1

n

n∑
i=1

(f(ti)− f̄)2

)1/2

and f̄ =
1

n

n∑
i=1

f(ti).

The goodness-of-fit for an estimator f̂ of f in a single replication was measured by its mean
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Figure 3.1: Wave, Peak, Bumps and HeaviSine test functions sampled at n = 1024 points.

squared error (MSE), defined as

MSE(f, f̂) =
1

n

n∑
i=1

(f̂(ti)− f(ti))
2.

We report the results for n = 1024 using the compactly supported mother wavelet Coiflet

3 (see Daubechies, 1992, p.258) and the primary resolution level j0 = 4 (different choices

of wavelet functions and resolution levels yielded basically similar results in magnitude).

The sample distributions of MSE over replications for all estimators in simulation studies

were typically highly asymmetrical and affected by outliers. Therefore, we preferred the

sampled medians of MSEs rather than means to gauge the estimators’ goodness-of-fit. For

each estimator, test function and noise level, we calculated the median MSE over all 100

replications. To quantify the comparison between estimators over various test functions and

noise levels, for each considered model we found the best estimator among the five ones, i.e.,

the one achieving the minimum median MSE, and evaluated the relative median MSE of

the i-th estimator defined as min1≤j≤5{Median(MSEj)}/Median(MSEi), i = 1, 2, . . . , 5 (see

Table 3.1). As expected, Table 3.1 shows that there is no the “uniformly best” estimator.

The relative performance of each estimator depends on a specific test function and the noise
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level. Thus, the Block estimator, for example, is clearly the best for the Peak function but

the worst for the Wave. PostMed and MAP are overall favorites among Bayesian estimators.

However, the MAP testimator results in the highest minimal relative median MSE over

all cases among the considered five estimators (see the bold numbers in Table 3.1). The

minimal relative median MSE of an estimator reflects its inefficiency at the most challenging

combination of a test function and SNR level and is a natural measure of its robustness.

Additionally, we compared the competing estimators in terms of sparsity, measured by the

total number of non-zero wavelet coefficients (averaged over 100 replications) surviving after

thresholding. These results are given in Table 3.2 below. The proposed method is sparser

than the empirical Bayes estimators (note that PostMean is not included in this comparison

since is a non-linear shrinkage, hence all wavelet coefficients survive). The sparsity of the

Neighblock thresholding estimator depends on the signal.

n signal SNR MAP BF Postmed Postmean Block
1024 Wave 3 1 0.4701 0.9729 0.9041 0.4948

5 1 0.4194 0.9819 0.9002 0.5773
7 1 0.5525 0.9908 0.9017 0.7827

1024 Peak 3 0.7981 0.1403 0.7464 0.5997 1
5 0.8013 0.1681 0.7835 0.6427 1
7 0.7988 0.1824 0.881 0.7039 1

1024 Bumps 3 0.7833 0.8252 0.9084 1 0.6222
5 0.7892 0.8543 0.8867 1 0.6985
7 0.8037 0.8635 0.8885 1 0.7973

1024 HeaviSine 3 0.8488 0.3486 1 0.942 0.7348
5 0.9113 0.3092 1 0.9698 0.6677
7 0.8121 0.4806 1 0.987 0.69

Table 3.1: Relative median MSE for the Wave, Peak, Bumps and HeaviSine test functions
sampled at n = 1024 data points and using three values of SNR (3, 5 and 7), for the various
wavelet estimators. The minimal relative median MSE for each estimator is bold.

3.4.3 Inductance plethysmography data

We now consider a dataset from anaesthesiology collected by inductance plethysmography

to illustrate the performance of the level-wise MAP wavelet testimator, and compare it with

the PostMean, PostMed, BF and Block wavelet estimators. The recordings were made by
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n signal SNR MAP BF Postmed Block

1024 Wave 3 116.64 217.61 131.24 52.97
5 104.38 206.73 134.62 64.4
7 115.94 195.79 127.61 64.9

1024 Peak 3 61.21 152.26 89.08 16.45
5 80.97 188.43 105.88 16.6
7 50.13 149.55 87.32 16.78

1024 Bumps 3 103.29 114.55 109.67 170.4
5 114.12 129.02 127.49 216.41
7 129.9 141.96 141.13 240.17

1024 HeaviSine 3 58.65 164.05 85.13 20.41
5 79.31 200.16 120.86 32.02
7 64.21 152.21 97.38 41.17

Table 3.2: Sparsity, averaged over 100 simulations, of the various wavelet methods for the
Wave, Peak, Bumps and HeaviSine functions, sampled at n = 1024 data points and using
three values of SNR (3, 5 and 7).

the Department of Anaesthesia at the Bristol Royal Infirmary and measure the flow of air

during breathing (see, e.g., Nason, 1996).

Figure 3.2 shows a section of the inductance plethysmography recording lasting

approximately 80 seconds (n = 4096 signal points). The two main sets of regular oscillations

correspond to normal breathing. The disturbed behavior in the center of the plot, where

the normal breathing pattern disappears, corresponds to the patient vomiting. Figure 3.3

contains various reconstructions of the inductance plethysmography recording displayed in

Figure 3.3, obtained by the competing wavelet estimators. The PostMean, PostMed and

BF wavelet estimators were used with double-exponential prior and normal error models,

as suggested by Johnstone and Silverman (2005, p. 1718) and Pensky & Sapatinas (2007,

p. 618). All the prior parameters for these latter methods were estimated level-by-level by

marginal maximum likelihood from the data. The level-wise MAP wavelet testimator was

used with truncated geometric prior distributions, and the prior parameters were estimated

separately at each level by conditional likelihood maximization, as described in Section 3.4.1.

The various wavelet estimators were evaluated using Daubechies’s compactly supported

wavelets Symmlet 8 (see Daubechies, 1992, p. 198) and Coiflet 3 (see Daubechies, 1992,

p. 258). For all methods, the primary resolution level was set equal to j0 = 4.
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Figure 3.2: Section of the inductance plethysmograph recording lasting approximately 80
seconds (n = 4096 points).

As in Johnstone & Silverman (2005) and Pensky & Sapatinas (2007), we judged the

efficacy of the various estimation methods in preserving peak heights simply by looking

at the maximum of the various estimates, the height of the first peak in the inductance

plethysmography curve. The numerical findings are displayed in Table 4.1. Similarly to

Johnstone & Silverman (2005) and Pensky & Sapatinas (2007), we further quantified the

efficacy of the various estimation methods in dealing with the rapid variation near the point

0.85 (on the x-axis) by the range of the estimated curves over a small interval at this point.

The numerical findings are displayed in Table 4.2. Although we do not reproduce them here,

similar results in magnitude are also true by increasing or decreasing the value of the primary

resolution level j0.

As observed in Tables 4.1 and 4.2, the level-wise MAP wavelet testimator and Bayes

factor estimator are essentially the best among the competitors in preserving the peak height

without any substantial cost of inferior treatment of presumably spurious variation elsewhere.
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Figure 3.3: The various reconstructions of the inductance plethysmography recording
displayed in Figure 3.2 Analysis of the inductance plethysmography recording using, from
left to right, (top) PostMean and PostMed (bottom) BF, Level-wise MAP and Block.
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Estimate Data PostMean PostMed BF MAP Block
Peak (Symmlet 8) 0.8472 0.8422 0.8424 0.8456 0.8458 0.8248
Peak (Coiflet 3) 0.8472 0.8311 0.8315 0.8351 0.8322 0.8231

Table 3.3: Height of the first peak of the inductance plethysmography data using PostMean,
PostMed, BF, Level-wise MAP and Block estimators.

Estimate Data PostMean PostMed BF MAP Block
Range (Symmlet 8) 0.0879 0.0766 0.0768 0.0795 0.0796 0.0084
Range (Coiflet 3) 0.0879 0.0742 0.0741 0.0771 0.0766 0.0093

Table 3.4: Range of Spurious Variation at point 0.85 (on the x-axis) of the inductance
plethysmography data using PostMean, PostMed, BF, Level-wise MAP and Block estimators.Atha
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3.5 Appendix: Proofs

3.5.1 Proof of Proposition 3.2.1

For the proof of Proposition 3.2.1 we need the following Lemma

Lemma 3.5.1.

log




n

κ


 ≤ c

′
κ log(

n

κ
)

for κ = 0, 1, . . . , n
e

and some c
′ ≥ 2.

Proof of Lemma 3.5.1

For κ = 0 the above inequality holds trivially. Using Stirling’s formula, one gets


 n

κ


 ≤

(
n

e

)n(
e

n− κ

)n−κ(
e

κ

)κ

=

(
n

κ

)κ(
n

n− κ

)n−κ

for n ≥ 2 and κ = 1, 2, . . . , n− 1.

Hence,

log


 n

κ


 ≤ κ log

(
n

κ

)
+

(
n− κ

)
log

(
n

n− κ

)

= κ

[
log

(
n

κ

)
+

(
n

κ
− 1

)
log

( n
κ

n
κ
− 1

)]
.

Let t = n
κ
− 1 and c ≥ 1. For κ ≤ n

e
, t ≥ e− 1. Now, define

f(t) = c log(t + 1)− t log(
t + 1

t
).

In order to prove Lemma 3.5.1, we need to show that

(
n

κ
− 1

)
log

( n
κ

n
κ
− 1

)
≤ c log

(
n

κ

)
or equivalently f(t) ≥ 0 for all t ≥ e− 1.

Since

log(1 + x) ≤ x for x ≥ 0,

(e− 1) log(
e

e− 1
) ≤ 1 ≤ c.
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Hence,

f(e− 1) = c log(e)− (e− 1) log(
e

e− 1
) ≥ 0. (3.11)

Now,

f
′
(t) =

c + 1

t + 1
− log(1 +

1

t
) ≥ ct− 1

t(t + 1)
> 0, for t ≥ e− 1 and c ≥ 1. (3.12)

Using (3.11) and (3.12), we get

f(t) ≥ 0 for t ≥ e− 1.

Hence, log


 n

κ


 ≤ κ

[
log

(
n

κ

)
+ c log

(
n

κ

)]
, for c ≥ 1 and κ = 1, 2, . . . ,

n

e
.

This completes the proof of Lemma 3.5.1.

We now are in the position to prove Proposition 3.2.1.

Case 1.

Under the condition πn(n) ≥ e−c̃(γ)n, where c̃(γ) ≤ c0 and c0 > 0, Definition 3.5

immediately implies ‖y − µ̂‖2
2 ≤ ‖y − µ̂‖2

2 + Pn(κ̂) ≤ Pn(n) ≤ cnσ2
n. Thus,

E‖µ̂− µ‖2
2 ≤ 2E‖µ̂− y‖2

2 + 2E‖y − µ‖2
2 = O(σ2

nn).

Case 2. We consider 2 ≤ p ≤ ∞. We need to maximize
∑n

i=1 µi
2 subject to

‖µ‖p =
∑n

i=1 |µi|p ≤ σp
nnηp

n, if 0 < p < ∞ and ‖µ‖∞ = max1≤i≤n{|µi|} ≤ σnηn. Using

Lagrange multipliers, it is easy to see that the solution of the maximization problem is

µ1 = µ2 = . . . = µn = σnηn, for 0 < p < ∞, yielding
∑n

i=1 µi
2 ≤ σ2

nnη2
n. The case p = ∞

gives trivially the result. Under the assumption of Case 2 in Proposition 3.2.1 we have

log(π−1
n (0)) ≤ c1

log(n)

nβ
.

Since γn is bounded, we apply Collorary 1 of Abramovich, Grinshtein & Pensky (2007) for

κ = 0. The last term c1(γn)(1 − πn(0))σ2
n in the upper error bound for the l2-risk can be

shown to be of order O(σ2
n log n
nβ ). Thus, we get

E||µ̂− µ||22 ≤ c0(γn)
(
σ2

nη2
nn + 2(1 + 1/γn)σ2

n log π−1
n (0)

)
+ c1(γn)(1− πn(0))σ2

n

= O(σ2
nnη2

n) + O(σ2
n

log n

nβ
).
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Case 3. Let

k∗n = bnηp
n[log(ηn)−p]−p/2c+ 1.

It is easy to see that nηp
n[log(ηp

n)]−p/2 > [ 1

1− p log(log(n))
2 log(n)

]p/2 ≥ 1.

Additionally, under the conditions of the proposition, ηp
n ≤ αn ≤ e−c(γn) < 1

e
and,

therefore, 1 ≤ k∗n < ne−c(γn).

Using Lemma 3.5.1, we have

log(n
k∗n) ≤ (c + 1)k∗n log(

n

k∗n
), (3.13)

where c ≥ 1. Under assumption πn(κ) ≥ (κ
n
)c2k for κ = 1, 2, . . . , αnn, we have

log(π−1
n (k∗n)) ≤ c2k

∗
n log(

n

k∗n
). (3.14)

It is easy to see that

ck∗n log(
n

k∗n
) ≤ cnηp

n[log(η−p
n )]1−

p
2 . (3.15)

Additionally,

k∗n
2

log(1 + γ) ≤ cnηp
n[log(η−p

n )]1−
p
2 , (3.16)

since log(ηn
−p) ≥ 1. Now, we need to maximize

∑n
i=k+1 µ(i)

2 subject to

n∑
i=1

|µi|p ≤ nηp
nσ

p
n for 0 < p < 2.

Define the least favorable sequence µi = σnηn(n/i)1/p, i = 1, . . . , n that maximizes
∑n

i=κ+1 µ2
i

over µ ∈ mp(ηn) for any κ = 0, . . . , n− 1. For κ ≥ 1,

n∑
i=κ+1

µ2
i ≤ σ2

nη2
nn2/p

∫ ∞

κ

x−2/pdx =
p

2− p
σ2

nη
2
nn

2/pκ1−2/p,

while for κ = 0

n∑
i=1

µ2
i ≤ σ2

nη
2
nn

2/pζ(2/p), (3.17)

where ζ(·) < ∞ is the Riemann Zeta-function. Therefore,

n∑

i=k∗n+1

µ2
i ≤ cσ2

nn
2
p η2

n(k∗n)1− 2
p ≤ cσ2

nnηp
n[log(ηn

−p)]1−
p
2 . (3.18)
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Thus, using Corollary 1 of Abramovich, Grinshtein & Pensky (2007) for κ = k∗n, (3.13)-(3.18)

and the boundeness of γn we arrive at

E||µ̂− µ||22 ≤ c0(γn)




n∑

i=k∗n+1

µ2
(i) + 2(1 + 1/γn)σ2

n log

(
n

k∗n

)


+ 2c0(γn)(1 + 1/γn)σ2
n

(
log π−1

n (k∗n) +
k∗n
2

log(1 + γn)

)

+ c1(γn)σ2
n = O(σ2

nnηp
n(log(ηn

−p))1−p/2).

Case 4.

We now consider the super-sparse case for 0 < p < 2 and ηn ≤
√

2 log(n)

n
1
p

. Under

assumptions of Proposition 3.2.1 we have

log(π−1
n (0)) ≤ c1

log(n)

nβ
. (3.19)

Hence, using Collorary 1 of Abramovich, Grinshtein & Pensky (2007) for κ = 0, (3.17), (3.19)

and the assumption of boundeness of γn, we get

E||µ̂− µ||22 ≤ c0(γn)
(
σ2

nη2
nn

2/p + 2(1 + 1/γn)σ2
n log π−1

n (0)
)

+ c1(γn)(1− πn(0))σ2
n

= O(σ2
n

log n

nβ
) + O(σ2

nn
2
p η2

n).

This completes the proof of Proposition 3.2.1.

3.5.2 Proof of Proposition 3.2.2

Evidently, for any µ ∈ l0[ηn], µ(i) = 0, i > k∗ = bnηnc + 1. Since 1 ≤ k∗ ≤ ne−c(γ), from

the general upper bound for the risk established in Corollary 1 of Abramovich, Grinshtein

& Pensky (2007) it follows that

E||µ̂∗ − µ||2 ≤ c0(γ)2σ2
n(1 + 1/γ)

(
log

{(
n

k∗

)
π−1

n (k∗)
}

+
k∗

2
log(1 + γ)

)
+ c1(γ)σ2

n.

From the first part of Lemma 2 of Abramovich, Grinshtein & Pensky (2007)

log

{(
n

k∗

)
π−1

n (k∗)
}
≥ log

(
n

k∗

)
≥ k∗ log

η−1
n

2
À k∗ log(1 + γ)

when ηn ≤ e−c(γ)

2
. On the other hand, under the conditions of Proposition 3.2.2, Lemma 3.5.1

implies

log

{(
n

nηn

)
π−1

n (nηn)

}
≤ c̃nηn log η−1

n
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for sufficiently large n. Summarizing, one has

E‖µ̂∗ − µ‖2 ≤ c̃2(γ)σ2
nnηn log η−1

n .

This completes the proof of Proposition 3.2.2.

3.5.3 Proof of Theorem 3.3.1

Let Rj =
∑2j−1

k=0 E(θ̂jk − θjk)
2, j ≥ j0 − 1 be a quadratic risk of a global wavelet MAP

estimator on a j-th level. Due to the Parseval relation,

E||f̂N − f ||2 =
∑

j≥j0−1

Rj.

Scaling coefficients are not thresholded and therefore

Rj0−1 = Cj0σ
2N−1 = o(N−2s/(2s+1)).

On very high resolution levels, where j ≥ J , all coefficients θ̂jk are set to zero and, therefore

∞∑
j=J

Rj =
∞∑

j=J

2j−1∑

k=0

θ2
jk = O(N−2s′) = o(N−2s/(2s+1)),

where s′ = s + 1/2− 1/ min(p, 2) (e.g., Johnstone, 2002, Proposition 15.4).

Consider now
∑J−1

j=j0
Rj. The set of wavelet coefficients {θjk, j = j0, ..., J−1} of a function

f ∈ Bs
p,q(M) lies within a weak lq-ball of a radius aM with q = 2/(2s+1), where the constant

a depends only on a chosen wavelet basis: mq[ηN ] = {θ : |θ|(i) ≤ (aM)i−1/q} (e.g., Donoho

& Johnstone, 1996). The corresponding standardized radius ηN = (σ/
√

N)−1Ñ−1/qaM =

O(N−s), where Ñ = N − 2j0 ∼ N for large N .

Under the conditions of the theorem, one can apply Theorem 6 of Abramovich, Grinshtein

& Pensky (2007) for mq[ηN ] to get

J−1∑
j=j0

Rj ≤ sup
θ∈mq [ηN ]

E||θ̂ − θ||22 = O
(
ηq

N(2 log η−q
N )1−q/2

)
= O

((
log N

N

)2s/(2s+1)
)

.

This completes the proof of Theorem 3.3.1.
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3.5.4 Proof of Theorem 3.3.2

Let

RN(θ) =

j1∑
j=j0−1

E(‖θ̂j − θj‖2) +
J−1∑

j=j1+1

E(‖θ̂j − θj‖2) +
∞∑

j=J

E(‖θ̂j − θj‖2)

= Rlo + Rmid + Rhi.

Let Rj =
∑2j−1

k=0 E(θ̂jk − θjk)
2, j ≥ j0 − 1 be now a quadratic risk of a level-wise wavelet

MAP estimator on a j-th level. For f ∈ Bs
p,q(M), the sequence of its wavelet coefficients

on a j-th level belongs to an lp-ball of a standardized radius ηj = CN1/22−j(s+1/2) for some

C > 0. Define j1 as the largest integer satisfying ηp
j ≥ cα and note that ηp

j ≥ cα for j ≤ j1

and ηp
j < cα for j > j1.

Applying the first statement of Proposition 3.2.1 for each level with nj = 2j and σ2
N = σ2

N

we have

Risk of scaling coefficients and Risk at low levels

Rj0−1 = E‖θ̂j0−1 − θj0−1‖2
2 ≤ 2j0

σ2

N

Rlo =

j1∑
j=j0

E(‖θ̂j − θj‖2
2) =

j1∑
j=j0

c2j

N
≤ c

2j1

N
≤ cC2/(2s+1)

N2s/(2s+1)
.

Risk at medium levels

If j1 ≥ J − 1 , Rmid = 0. Otherwise,

Rmid ≤ C{S1 + S2},

where S2 =
∑J−1

j=j1+1{ log(2j)
N

+ 1
N
} and S1 will be defined separately for 0 < p < 2 and p ≥ 2.

Case 1. 0 < p < 2. Define j2 as the largest integer for which ηp
j ≥ 2−j(2 log 2j)p/2. Let

S1 = S11+S12. We first consider the case j1 < j2 < J−1. Using the monotonicity arguments,

ηp
j ≥ 2−j(2 log 2j)p/2 for all j1 < j ≤ j2. For 0 < p < 2

S11 =

j2∑
j=j1+1

Cp2−jp(s+1/2−1/p)ε2−p
1 ,

where ε1 = N−1/2
√

log(C−pN−p/22jp(s+1/2)).
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It is easy to see that

2s− (s + 1/2− 1/p)p

2s + 1
= 1− p/2.

For j > j1, 2−j < c(C2N)−1/(2s+1) ⇒ 2−j(2s−(s+1/2−1/p)p) < c(C2N)−1+p/2 which leads to

S11 ≤ c

j2∑
j=j1+1

CpN−1+ p
2 2−p(s+1/2−1/p)j{log(2(2s+1)jN−1C−2)}1−p/2

≤ cCpN−1+p/2(C2N)−
p(s+1/2−1/p)

2s+1 = cC2/(2s+1)N− 2s
2s+1 .

Additionally, applying the fourth statement of Proposition 3.2.1

S12 ≤
J−1∑

j=j2+1

E‖θ̂j − θj‖2
2 ≤ c

J−1∑
j=j2+1

j

N
≤ cJ2N−1 ≤ c

log2
2(N)

N
≤ cN

−2s
2s+1 .

Now, if j1 < J − 1 ≤ j2, S12 = 0 and

S11 ≤ c

J−1∑
j=j1+1

CpN−1+ p
2 2−p(s+1/2−1/p)j{log(2(2s+1)jN−1C−2)}1−p/2

≤ cC2/(2s+1)N− 2s
2s+1 .

Hence,

S1 ≤ S11 + S12 ≤ cN− 2s
2s+1 . (3.20)

Case 2. For 2 ≤ p ≤ ∞

S1 = c

J−1∑
j=j1+1

C22j(1−2/p)2−2j(s+1/2−1/p).

Since 1− 2/p− 2(s + 1/2− 1/p) = −2s,

S1 = c

J−1∑
j=j1+1

C22−2sj = cC22−2s(j1+1) (1− 2−2s(J−j1−1))

1− 2−2s

≤ cC2/(2s+1)N−2s/(2s+1). (3.21)

Additionally, for 0 < p ≤ ∞

S2 = c

J−1∑
j=j1+1

{ log(2j)

N
+

1

N
} ≤

J−1∑
j=j1+1

c{ j

N
+

1

N
} ≤ c{ J

N
+

J2

N
} ≤ c log2(N)

N
. (3.22)

Hence, using (3.20)-(3.22),

Rmid ≤ c{C
2

2s+1

N
2s

2s+1

+
log2(N)

N
}.
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Risk at very high levels

Let ∆ = (1/2 − 1/p)+, r
′′

= s − (1/p − 1/2)+. Hence, r
′′

= s − 1/p + 1/2 for 0 < p < 2

and r
′′

= s for 2 ≤ p ≤ ∞. Therefore, we can write r
′′

= s + 1/2 − 1/p −∆. The following

inequality holds as a consequence of the equivalence of norms in finite dimensional spaces.

‖θj‖2 ≤ 2∆j‖θj‖p for any p.

Since r
′′

= s for 2 ≤ p ≤ ∞ and r
′′

= s + 1/2− 1/p ≥ 1/2 for 0 < p < 2, we obtain

Rhi =
∞∑

j=J−1

E(‖θj‖2
2) =

∞∑
j=J

22j∆‖θj‖2
p ≤ cC2

∞∑
j=J

2−2j(s+1/2−1/p)22j∆

= cC22−2J(s+1/2−1/p−∆) ≤ cC2N−2r
′′

= o(
1

N2s/(2s+1)
).

Therefore, we arrive at the desired result. This completes the proof of Theorem 3.3.2.

3.5.5 Proof of Theorem 3.3.3

Let Rj =
∑2j−1

k=0 E(θ̂jk − θjk)
2, j ≥ j0 − 1 be now a quadratic risk of a level-wise wavelet

MAP estimator on a j-th level. Johnstone & Silverman (2005, Section 5.6) showed that

E||f̂ (m)
N − f (m)||2 ³ ∑

j≥j0−1 22mjRj.

For f ∈ Bs
p,q(M), the sequence of its wavelet coefficients on a j-th level belongs to an

lp-ball of a standardized radius ηj = C0N
1/22−j(s+1/2) for some C0 > 0 (e.g, Meyer, 1992,

Section 6.10). Define j1 as the largest integer satisfying ηp
j ≥ cα and note that ηp

j ≥ cα for

j ≤ j1 and ηp
j < cα for j > j1 (with obvious modifications for p = ∞). Consider the following

cases.

1. Scaling coefficients, j = j0 − 1. Similarly to the global wavelet estimator, for a fixed j0,

22m(j0−1)Rj0−1 = O(N−1) = o(N−2(s−m)/(2s+1)) as n →∞.

2. Coarse levels, j0 ≤ j ≤ j1. Applying the first statement of Proposition 3.2.1 for each level

one has

j1∑
j=j0

22mjRj ≤ C

j1∑
j=j0

22mjN−1σ2nj ≤ CN−1

j1∑
j=j0

2(2m+1)j = O(N−2(s−m)/(2s+1)) as n →∞
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3. Mid+high levels, j1 < j < J . Consider separately a) 2 ≤ p ≤ ∞ and b) 0 < p < 2.

a) 2 ≤ p ≤ ∞. Under the conditions of the theorem, the second statement of Proposition

3.2.1 on a j-th level yields

Rj ≤ CN−1(njη
2
j + n−β

j log nj) ≤ C(2−2js + N−12−βjj)

and, hence,

J−1∑
j=j1+1

22mjRj ≤ C(2−2j1(s−m) + N−1J2) ≤ C(N−2(s−m)/(2s+1) + N−1 log2
2 N)

= O(N−2(s−m)/(2s+1)) as n →∞.

b) 0 < p < 2. Let j2 be the largest integer for which ηp
j ≥ n−1

j (2 log nj)
p/2. One can easily

verify that j1 < j2 < J .

Using the monotonicity arguments, ηp
j ≥ n−1

j (2 log nj)
p/2 for all j1 < j ≤ j2 (mid-levels).

One can then apply the third statement of Proposition 3.2.1 and after some algebra to get

for 0 ≤ m < (s + 1/2− 1/p)p/2

j2∑
j=j1+1

22mjRj ≤ CN−1

j2∑
j=j1+1

2(2m+1)jNp/22−jp(s+1/2)
(
log(N−p/22jp(s+1/2))

)1−p/2

≤ CN−(1−p/2)2−j1p(s+1/2−(2m+1)/p) log(N−p/22j1p(s+1/2))

= O(N−2(s−m)/(2s+1)) as n →∞

On high levels j2 < j < J , ηp
j < n−1

j (2 log nj)
p/2 and the fourth statement of Proposition

3.2.1 implies

Rj ≤ C(2−2j(s+1/2−1/p) + N−12−jβj).

Hence, for 0 ≤ m ≤ β/2 and m < min(s, (s + 1/2− 1/p)p/2), one has

J−1∑
j=j2+1

22mjRj ≤ C(2−2(j2+1)(s+1/2−1/p−m) + N−1J2) = S1 + S2,

where, evidently, S2 = O(N−1 log2
2 N) = o(N−2(s−m)/(2s+1)) as n → ∞. From the definition

of j2, 2(j2+1)(s+1/2−1/p) >
√

NC/(j2 + 1) >
√

NC/ log2 N that after some algebra yields

S1 = o(N−2(s−m)/(2s+1)) as n →∞.
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4. Very high levels, j ≥ J . Using the results of Johnstone & Silverman (2005), the tailed

sum
∑
j≥J

22mjRj = O(N−2(s′−m)) = o(N−2(s−m)/(2s+1)),

where s′ = s + 1/2− 1/ min(p, 2).

Summarizing,
∑

j≥j0−1 22mjRj = O(N−2(s−m)/(2s+1)) as n →∞.

This completes the proof of Theorem 3.3.3.

3.5.6 Proof of Theorem 3.3.4

Set ã = s− (1
p
− 1)+ > 1

2
. Using Proposition 5 of Johnstone & Silverman (2004a) we obtain

2j(s+ 1
2
− 1

p
)‖θj − θ̃j‖p ≤ cC2−ã(J−j),

for all j such that j0 − 1 ≤ j < J and for all p > 0.

Hence,

‖θ̃j‖p ≤ ‖θ̃j − θj‖p + ‖θj‖p ≤ cC2−ã(J−j)2−j(s+ 1
2
− 1

p
) + C2−j(s+ 1

2
− 1

p
) = cC2−j(s+ 1

2
− 1

p
) (3.23)

Using the above inequality, it is easy to see that

‖θ̃I
j‖p ≤ cC2−j(s+ 1

2
)(2j − 2S − 2)

1
p . (3.24)

Therefore, the interior ‘discretized’ coefficients obey (up to a constant) the same Besov

sequence bounds as the true interior coefficients. Ỹjk each has expected value θ̃jk and the

interior coefficients are independent normals with variance σ2

N
. Because of the bound (3.24),

using the same arguments as in Theorem 3.3.2, we arrive at

J−1∑
j=j0

E(‖θ̂I
j − θ̃I

j‖2) +
∞∑

j=J

‖θj‖2
2 ≤ c{ C2/(2s+1)

N2s/(2s+1)
+ o(

1

N2s/(2s+1)
)}. (3.25)

Coarse scale error

Consider first the coarse level scaling coefficient θj0−1. θ̂j0−1 = Ỹj0−1 has variance bounded

by σ2cA

N
.
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Therefore,

E(‖θ̂j0−1 − θ̃j0−1‖2
2) ≤

2j0cAσ2

N
≤ c

N
. (3.26)

Boundary coefficients

The elements of the array Ỹ B are normally distributed with expected values θ̃B and variances

bounded by σ2cA

N
. We obtain θ̂B

jk by individually thresholding Ỹ B
jk with threshold τ( j

N
)

1
2 . So,

by standard properties of 2-norm and thresholding we get

E(|θ̂jk − θ̃jk|2) ≤ cE(|θ̂jk − Ỹjk|2) + cE(|Ỹjk − θ̃jk|2) ≤

≤ c{ j

N
+

σ2cA

N
} ≤ c

j

N
. (3.27)

Rlo+high =
J−1∑
j=j0

E(‖θ̂B
j − θ̃B

j ‖2
2) ≤

J−1∑
j=j0

KB
j c

j

N

≤ cJ2

N
≤ c

(log N)2

N
, (3.28)

since |KB
j | = 2(S − 1) for any level j.

Discretization bias

Let ∆ = (1
2
− 1

p
)+ and r

′′
= s − (1

p
− 1

2
)+. For 2 ≤ p ≤ ∞, 1

p
− 1

2
< 0, =⇒ r

′′
= s. For

0 < p < 2, r
′′

= s− 1
p

+ 1
2
. Hence, for any 0 < p ≤ ∞,

r
′′

= s− 1

p
+

1

2
−∆.

Using the equivalence of norms in finite-dimensional spaces, i.e

‖θ̃j − θj‖2 = 2j∆‖θ̃j − θj‖p,

and inequality (3.23), we have

RD =
J−1∑

j=j0−1

‖θ̃j − θj‖2
2 =

J−1∑
j=j0−1

22∆j‖θ̃j − θj‖2
p ≤

J−1∑
j=j0−1

C222∆j2−2ã(J−j)2−2j(s+ 1
2
− 1

p
)

= cC22−2α̃J

J−1∑
j=j0−1

22j(α̃−r
′′
).
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• If ã = r
′′
, RD ≤ cC22−2ãJJ.

• If ã < r
′′
,

RD ≤ cC22−2ãJ

J−1∑
j=j0−1

22j(ã−r
′′
) = cC22−2ãJ2(j0−1)(ã−r

′′
)[

1− 22(ã−r
′′
)(J−j0+1)

1− 22(ã−r′′ )
]

≤ cC22−2ãJ .

Therefore,

RD ≤ cC2Jλ
′
2−2ãJ for a

′ ≤ r
′′
,

with λ
′
= 1 if and only if ã = r

′′
and λ

′
= 0 otherwise.

• If ã > r
′′
,

RD = cC22−2ãJ

J−1∑
j=j0−1

22j(ã−r
′′
) = cC22−2ãJ22(ã−r

′′
)(j0−1)[22(ã−r

′′
)(J−j0+1) − 1] ≤

≤ cC22−2ãJ22(ã−r
′′
)J ≤ cC22−2Jr

′′
=

cC2

N2r′′
.

Let r
′′′

= min{r′′ , ã}. Hence,

J−1∑
j=j0−1

‖θ̃j − θj‖2
2 ≤ cC2N−2r

′′′
(log N)λ

′
, (3.29)

with λ
′
= 1 if and only if ã = r

′′
and λ

′
= 0 otherwise. Using inequalities (3.25)-(3.29), we

have

R∗
N(f) ≤ cC2N−2r

′′′
(log N)λ

′
+ c

(log N)2

N
+ c{C2/(2s+1)N−2s/(2s+1)

+ o(
1

N2s/(2s+1)
)}. (3.30)

• For 0 < p < 2, r
′′

= s− 1
p

+ 1
2

=⇒ r
′′ 6= ã, =⇒ λ

′
= 0.

• For 2 ≤ p ≤ ∞, ã = s and r
′′

= s =⇒ r
′′

= ã and ã = s < s + 1
2
− 1

p
=⇒ λ

′
= 1.

1st Case

For 0 < p < 2, the first term of (3.30) takes the form cC2N−2r
′′′

.

• If r
′′′

= ã = s, cC2N−2r
′′′

= cC2N−2s = o( 1
N2s/(2s+1) ).
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• If r
′′′

= r
′′
, cC2N−2r

′′′
= cC2N−2r

′′′ ≤ cC2N−2(s+ 1
2
− 1

p
) ≤ cC2

N
.

2nd Case

For 2 ≤ p ≤ ∞, the first term of (3.30) takes the form cC2(log N)N−2r
′′′

.

• If r
′′′

= ã = s, cC2N−2r
′′′

(log N)λ
′ ≤ cC2 log N

N2s = o( 1
N2s/(2s+1) ).

• If r
′′′

= r
′′
, cC2N−2r

′′′
(log N)λ

′ ≤ cC2 log(N)

N2r
′′ = cC2 log(N)

N2s = o( 1
N2s/(2s+1) ).

Hence, we arrive at

R∗
N(f) ≤ c{C2s/(2s+1)

N2s/(2s+1)
+ o(

1

N2s/(2s+1)
)}.

This completes the proof of Theorem 3.3.4.
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Chapter 4

Minimax convergence rates under the
Lp-risk in the functional deconvolution
model

We derive minimax results in the functional deconvolution model under the Lp-risk, 1 ≤
p < ∞. Lower bounds are given when the unknown response function is assumed to

belong to a Besov ball and under appropriate smoothness assumptions on the blurring

function, including both regular-smooth and super-smooth convolutions. Furthermore, we

investigate the asymptotic minimax properties of an adaptive wavelet estimator over a wide

range of Besov balls. The new findings extend recently obtained results under the L2-

risk. As an illustration, we discuss particular examples for both continuous and discrete

settings. Additionally, we show that when the number of channels tends to infinity, functional

deconvolution with a box-car type blurring function in the discrete model can provide

estimators with the same asymptotical minimax rates of convergence for Lp-risk as in the

continuous model. A small simulation study shows that the proposed estimator performs

well in finite sample situations.

4.1 Introduction

In the past decades, the standard deconvolution model was studied by many researchers who

tried to find optimal solutions to this problem. Amongst them, Donoho (1995), Abramovich

& Silverman (1998), Jonhstone, Kerkyacharian, Picard & Raimondo (2004) and Chenseau

(2008) proposed various wavelet thresholding estimators of the unknown response function
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in this model that achieve optimal (in the minimax or the maxiset sense), or near-optimal

within a logarithmic factor, convergence rates over a wide range of Besov balls and for a

range of Lp-loss functions defining the risk.

On the one hand, there are several cases when one needs to recover initial or boundary

conditions on the basis of observations of a noisy solution of a partial differential equation.

The estimation problem of the initial condition in the heat conductivity equation was

initiated by Lattes & Lions (1967). This problem and the problem of recovering the boundary

condition for elliptic equations based on observations in an internal domain were considered

in a minimax setting by Golubev & Khasminskii (1999), and sharp asymptotics for the L2-

risk over a range of Sobolev balls were obtained. On the other hand, Casey & Walnut (1994)

and De Canditiis & Pensky (2004, 2006) considered the multichannel deconvolution model

which arises in signal and image processing, e.g., in LIDAR (Light Detection and Ranging)

remote sensing and reconstructions of blurred images (see, e.g., Park, Dho & Kong (1997)).

Using the maxiset approach, De Canditiis & Pensky (2006) derived upper bounds for the Lp-

risk, 1 < p < ∞, over a wide range of Besov balls, of an adaptive term-by-term thresholding

wavelet estimator for a fixed target function f(·). However, the minimax properties of their

estimator and the case when the number of channels increases with the number of points at

which f(·) is observed were not considered by De Canditiis & Pensky (2006).

Recently, Pensky & Sapatinas (2009a) showed that all the above described problems are

special cases of the functional deconvolution model given by

y(u, t) =

∫

T

f(x)g(u, t− x)dx +
1√
n

z(u, t), t ∈ T = [0, 1], u ∈ U = [a, b], (4.1)

with −∞ < a ≤ b < ∞. Here, the kernel or blurring function g(·, ·) is assumed to be known,

and z(u, t) is assumed to be a two-dimensional Gaussian white noise, i.e., a generalized

two-dimensional Gaussian field with covariance function

E(z(u1, t1)z(u2, t2)) = δ(u1 − u2)δ(t1 − t2),

where δ(·) denotes the Dirac δ-function. The analogous discrete model, when y(u, t) is

observed at n = NM points (ul, ti), l = 1, 2, . . . , M and i = 1, 2, . . . , N , is given by

y(ul, ti) =

∫

T

f(x)g(ul, ti − x)dx + εli, ti =
i

N
∈ T = [0, 1], ul ∈ U = [a, b], (4.2)
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where εli are standard Gaussian random variables, independent for different l and i.

Pensky & Sapatinas (2009a) obtained minimax lower bounds and proposed an adaptive

(linear or block thresholding) wavelet estimator, for both the functional deconvolution model

(4.1) and its discrete version (4.2), that is asymptotically optimal (in the minimax sense), or

near-optimal within a logarithmic factor, under the L2-risk over a wide range of Besov balls.

The aim of this chapter is to provide the analogous statements of the above mentioned

minimax results obtained by Pensky & Sapatinas (2009a) under the L2-risk for the case of Lp-

risk, 1 ≤ p < ∞. More specifically, we first obtain lower bounds for the Lp-risk, 1 ≤ p < ∞,

when the unknown response function f(·) in functional deconvolution model (4.1) and its

discrete version (4.2) are assumed to belong to a Besov ball and the blurring function g(·, ·)
is assumed to possess some smoothness properties, including both regular-smooth and super-

smooth convolutions. Furthermore, we investigate the asymptotic optimal (in the minimax

sense) properties of an adaptive (linear or block thresholding) wavelet estimator under the

Lp-risk, 1 ≤ p < ∞, over a wide range of Besov balls. As an illustration, we discuss particular

examples for both continuous and discrete settings.

The results under the Lp-risk are also extended to the multichannel deconvolution

model with box-car convolutions. Moreover, we verify the practical importance of block

thresholding wavelet estimators in the functional deconvolution model by conducting a

simulation study.

In what follows, as in Pensky & Sapatinas (2009a), we assume that both f(·) and, for a

fixed u ∈ [a, b], g(u, ·) are periodic functions with period on the unit interval T = [0, 1]; this

assumption appears naturally in the above mentioned special models which (4.1) and (4.2)

generalize.

4.2 Meyer wavelets and Besov balls

Let φ∗(·) and ψ∗(·) be the Meyer scaling and mother wavelet functions, respectively (see,

e.g., Meyer (1992), Chapter 3). As usual,

φ∗jk(x) = 2j/2φ∗(2jx− k), ψ∗jk(x) = 2j/2ψ∗(2jx− k), j, k ∈ Z,
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are, respectively, the dilated and translated Meyer scaling and wavelet functions at resolution

level j and scale position k/2j. (Here, and in what follows, Z refers to the set of integers.)

Similarly to Section 2.3 in Johnstone, Kerkyacharian, Picard & Raimondo (2004), we obtain

a periodized version of Meyer wavelet basis by periodizing the basis functions {φ∗(·), ψ∗(·)},
i.e.,

φjk(x) =
∑

i∈Z
2j/2φ∗(2j(x + i)− k), ψjk(x) =

∑

i∈Z
2j/2ψ∗(2j(x + i)− k).

Note that, for any j0 ≥ 0 and any j ≥ j0, any f ∈ L2(T ) can be written as

f(t) =
2j0−1∑

k=0

αj0kφj0k(t) +
∞∑

j=j0

2j−1∑

k=0

βjkψjk(t),

where αj0k =
∫

T
f(t)φj0k(t) and βjk =

∫
T

f(t)ψjk(t). It is well known that the Meyer wavelet

basis satisfies the following three properties (see, e.g., Johnstone, Kerkyacharian, Picard &

Raimondo, 2004):

1. Property of concentration Let p ∈ [1,∞) and h ∈ {φ, ψ}. For any integer

j ∈ {τ, . . . ,∞} and any sequence u = (uj,k)j,k, there exists a constant c > 0 such

that

‖
2j−1∑

k=0

uj,khj,k‖p
p ≤ c2j( p

2
−1)

2j−1∑

k=0

|uj,k|p. (4.3)

2. Property of unconditionality. Let p ∈ (1,∞). Let us set ψτ−1,k = φτ,k. For any

sequence u = (ujk)j,k, we have

‖
∞∑

j=τ−1

2j−1∑

k=0

ujkψjk‖p
p ³ ‖(

∞∑
j=τ−1

2j−1∑

k=0

|ujkψjk|2) 1
2‖p

p.

(Here, and in what follows, the notation a ³ b means there exist two positive constants

c1 and c2 such that c1b ≤ a ≤ c2b.)

3. Temlyakov property. Let σ ∈ [0,∞). Let ψτ−1,k = φτ,k. For any subset A ⊆
{τ − 1, . . . ,∞} and for any subset Ω ⊆ {0, . . . , 2j − 1}, we have

‖(
∑
j∈A

∑

k∈Ω

|2σjψjk|2) 1
2‖p

p ³
∑
j∈A

∑

k∈Ω

2jpσ‖ψjk‖p
p.

Atha
na

sia
 Pets

a



91

Remark 4.2.1. The property of concentration is used in the proof of Theorem 4.4.2, in

the case of super-smooth convolutions. The property of unconditionality and Temlyakov

property are indirectly used in the proof of Theorem 4.4.2, since they are used in the proofs

of some auxiliary results (i.e., Theorems 5.4.1 and 5.4.2 in Chesneau, 2006).

Now, let us give the definition of Besov balls, the main function spaces used in our study.

Let M ∈ (0,∞), s ∈ (0, R), ρ ∈ [1,∞] and r ∈ [1,∞]. (Here, R refers to the number of

vanishing moments and continuous derivatives of the mother wavelet function ψ∗(·); note

that, for the Meyer wavelet basis, R = ∞.) Let βτ−1,k = ατ,k. We say that a function f

belongs to the Besov ball Bs
ρ,r(M) if and only if the associated wavelet coefficients βjk, when

ρ ∈ [1,∞) and r ∈ [1,∞), satisfy

( ∞∑
j=τ−1

[
2j(s+ 1

2
− 1

ρ
)
( 2j−1∑

k=0

|βjk|ρ
) 1

ρ )
]r

) 1
r ≤ M,

with the usual convention when ρ = ∞ and/or r = ∞.

4.3 Construction of the wavelet estimator

Let em(t) = ei2πmt, m ∈ Z, and for any j0 ≥ 0 and any j ≥ j0, let

φmj0k = 〈em, φj0k〉, ψmjk = 〈em, ψjk〉, fm = 〈em, f〉

be the Fourier coefficients of φj0k(·), ψjk(·) and f(·), respectively. Moreover, let

h(u, t) =

∫
f(x)g(u, t− x)dx, t ∈ T = [0, 1], u ∈ U = [a, b], (4.4)

and let the functional Fourier coefficients of h(u, ·), y(u, ·), g(u, ·) and z(u, ·) be given,

respectively, by

hm(u) = 〈em, h(u, ·)〉, ym(u) = 〈em, y(u, ·)〉,

gm(u) = 〈em, g(u, ·)〉, zm(u) = 〈em, z(u, ·)〉.

Using the properties of the Fourier transform, then for each u ∈ U , for the continuous

model (4.1), we have

ym(u) = gm(u)fm +
1√
n

zm(u),
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where gm(u) = hm(u)/fm and zm(u) are generalized one-dimensional Gaussian processes

satisfying

E(zm1(u1)zm2(u2)) = δm1,m2δ(u1 − u2),

where δml is the Kronecker’s delta. For the discrete version (4.2), using properties of the

discrete Fourier transform, for each l = 1, 2, . . . ,M , we have

ym(ul) = gm(ul)fm +
1√
N

zml,

where zml are standard Gaussian random variables, independent for different m and l, i.e.,

E(zm1,l1zm2,l2) = δm1,m2δl1,l2 .

A natural estimator of fm is given by

f̂m =





∫ b
a gm(u)ym(u)du∫ b

a |gm(u)|2du
, in the continuous case,

∑M
l=1 gm(ul)ym(ul)∑m

l=1 |gm(ul)|2 , in the discrete case.

(Here, and in what follows, h denotes the conjugate of a complex number or a complex

function h; h is real if and only if h = h.) Consider also the following assumptions on the

blurring function g(·, ·). Define

τ1(m) =





∫ b

a
|gm(u)|2du, in the continuous case,

1
M

∑M
l=1 |gm(ul)|2, in the discrete case,

and suppose that, for some constants ν ∈ R, α ≥ 0, β > 0 and some constants K1 and

K2, independent of m, the choice of M and the selection of points ul, l = 1, 2, . . . , M , with

0 < K1 ≤ K2,

τ1(m) ≤ K2|m|−2ν exp(−α|m|β), ν > 0 if α = 0 (4.5)

and

τ1(m) ≥ K1|m|−2ν exp(−α|m|β), ν > 0 if α = 0. (4.6)

Define also

j0 = J = blog2(
3
8π

( log(n)
2α

) 1
β )c, α > 0,

2j0 ³ log(n)
p
2
∨1, 2J ³ nδ, α = 0,

(4.7)
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where δ ∈ (0, (2ν + 1)−1]. Here, and in what follows [x] denotes the integer part of x and

a ∨ b = max(a, b).

By Plancherel’s formula, the scaling coefficients, αj0k, and the wavelet coefficients, βjk,

can be represented as

αj0k =
∑

m∈C∗j0

fmφmj0k, βjk =
∑

m∈Cj

fmψmjk,

where C∗
j0

= {m : φmj0k 6= 0} and, for all j ≥ j0, Cj = {m : ψmjk 6= 0}, both subsets of

2π/3[−2j+2,−2j]∪ [2j, 2j+2], due to the fact that Meyer wavelets are band limited (see, e.g.,

Johnstone, Kerkyacharian, Picard & Raimondo, 2004, Section 3.1). Hence, αj0k and βjk, are

naturally estimated by

α̂j0k =
∑

m∈C∗j0

f̂mφmj0k β̂jk =
∑

m∈Cj

f̂mψmjk. (4.8)

We now construct a block thresholding wavelet estimator of f(·). For this purpose,

we divide the wavelet coefficients at each resolution level into blocks of length lj. More

specifically, let the following set of indices

Aj = {1, 2, . . . , 2j/lj}, Ujt = {k = 0, 1, . . . , 2j − 1 | (t− 1)lj ≤ k ≤ tlj − 1}

and let

lj ³ (log(n))( p
2
∨1), B̂jt =

( ∑

k∈Ujt

|β̂jk|p/lj
) 1

p
.

For any j0 ≥ 0, we finally reconstruct f(·) as

f̂n(t) =
2j0−1∑

k=0

α̂j0kφj0k(t) +
J∑

j=j0

∑
t∈Aj

∑

k∈Ujt

β̂jkI
(|B̂jt| ≥ d2jνn−

1
2

)
ψjk(t), (4.9)

where I(A) is the indicator function of the set A.

Remark 4.3.1. The estimator of f(·) given by (4.9) is similar to the estimator introduced by

Chesneau (2008) for the regular-smooth case (i.e., α = 0 in (4.5) and (4.6)) in the standard

deconvolution model (i.e., when a = b in the functional deconvolution model (4.1)). Here, we

consider the estimator (4.9), with α̂j0k and β̂jk given by (4.8), and prove its optimality (in the

minimax sense) under both the functional deconvolution model (4.1) and its discrete version

(4.2), for both regular-smooth and super-smooth (i.e., α > 0 in (4.5) and (4.6)) convolutions.
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Remark 4.3.2. Note that the proposed estimator (4.9) of f(·) is adaptive with respect to s,

ρ, r and M , i.e., with respect to the parameters of the Besov ball Bs
ρ,r(M), that are usually

unknown in practical situations.

4.4 Minimax study under the Lp−risk

We construct below minimax lower bounds for the Lp-risk, 1 ≤ p < ∞, both for the

continuous model (4.1) and the discrete model (4.2). For this purpose, we define the minimax

Lp-risk, 1 ≤ p < ∞, over the set Ω as

Rn(Ω) = inf
f̃n

sup
f∈Ω

E‖f̃n − f‖p
p,

where ‖g‖p is the Lp-norm, 1 ≤ p < ∞, of a function g(·) and the infimum is taken over all

possible estimators f̃n(·) (measurable functions) of f(·), based on observations either from

the continuous model (4.1) or the discrete model (4.2).

The following theorem provides the minimax lower bounds for the Lp−risk, 1 ≤ p < ∞,

under assumption (4.5).

Theorem 4.4.1. Let {φj0k(·), ψjk(·)} be the periodic Meyer wavelet basis discussed in Section

4.2. Let s > 1/ρ, 1 ≤ ρ ≤ ∞, 1 ≤ r ≤ ∞ and M > 0. Then, under the assumption (4.5),

as n →∞, there exists some constant C > 0 such that,

Rn(Bs
ρ,r(M)) ≥





C(log n)−
ps∗
β , if α > 0,

Cn−pα1 , if α = 0, ε > 0,

C( log n
n

)α2p, if α = 0, ε ≤ 0,

where

ε = sρ +
2ν + 1

2
(ρ− p), α1 =

s

2(s + ν) + 1
α2 =

s− 1
ρ

+ 1
p

2(s− 1
ρ

+ ν) + 1
,

s∗ = s +
1

p
− 1

min(p, ρ)
.

Remark 4.4.1. The two different lower bounds for α = 0 in Theorem 4.4.1 refer to the

dense case (ε > 0) when the worst functions f(·) (i.e., the hardest functions to estimate)
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are spread uniformly over the unit interval T , and the sparse case (ε ≤ 0) when the worst

functions f(·) have only one non-vanishing wavelet coefficient. Also, the restriction s > 1
ρ
,

1 ≤ ρ ≤ ∞, 1 ≤ r ≤ ∞, that appears in the statement of Theorem 4.4.1, ensures that the

corresponding Besov spaces are embedded in the space of continuous functions defined on T,

(and, hence, belong to Lp(T ), for 1 ≤ p < ∞).

The next theorem provides the upper bounds for the block thresholding wavelet estimator

given by (4.9), under the assumption (4.6).

Theorem 4.4.2. Let f̂n(·) be the wavelet estimator defined by (4.9), with j0, J and δ given

by (4.7). Let s > 1
ρ
− 1

2
+ 1

2δ
− ν when α = 0 and s > 1

ρ
when α = 0, 1 ≤ ρ ≤ ∞, 1 ≤ r ≤ ∞

and M > 0. Then, under assumption (4.6), as n → ∞, there exists some constant C > 0

such that,

sup
f∈Bs

ρ,r(M)

E(‖f̂ − f‖p
p) ≤





C(log n)−
ps∗
β , α > 0,

Cn−α1p(log n)α1pI{p>ρ} , α = 0, ε > 0

C( log n
n

)α2p(log n)(p− ρ
r
)+I{ε=0} , α = 0, ε ≤ 0,

where α1, α2, ε and s∗ are defined as in Theorem 4.4.1

Remark 4.4.2. Theorems 4.4.1 and 4.4.2 imply that, for the Lp-risk, 1 ≤ p < ∞, the

estimator f̂n(·) defined by (4.9) is asymptotically optimal (in the minimax sense), or near-

optimal within a logarithmic factor, over a wide range of Besov balls Bs
ρ,r(M) of radius

M > 0 with s > 1
ρ
− 1

2
+ 1

2δ
− ν, when α = 0 and s > 1

ρ
when α > 0, 1 ≤ ρ ≤ ∞ and

1 ≤ r ≤ ∞. In particular, the estimator (4.9) is asymptotically optimal, except for ε = 0,

p > ρ
r

and ε > 0, p > ρ, in which cases the estimator f̂n(·) defined by (4.9) is asymptotically

near-optimal within a logarithmic factor, i.e.,

Rn(Bs
ρ,r(M)) ³





n−pα1 , if α = 0, ε > 0, ρ ≥ p,

( log n
n

)α2p, if α = 0, ε < 0,

or α = 0, ε = 0, p ≤ ρ
r
,

(log n)−
ps∗
β , if α > 0,

and

sup
f∈Bs

ρ,r(M)

E‖f̂n − f‖p
p ≤

Cn−α1p(log n)pα1 , if α = 0, ε > 0, p > ρ,

C( ln n
n

)α2p(log n)(p− ρ
r
), if α = 0, ε = 0, p > ρ

r
.
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Remark 4.4.3. For the Lp-risk, 1 ≤ p < ∞, the upper bounds obtained in Theorem 4.4.2

are the same as those obtained by Chesneau (2008) for the regular-smooth case (i.e., α = 0

in (4.5) and (4.6)) in the standard deconvolution model (i.e., when a = b in the functional

deconvolution model (4.1)).

Remark 4.4.4. Following the steps of the proof of Theorem 4.4.2, it is easy to see that if

the threshold in (4.9) takes the form
d
√

∆1(j)√
n

, where ∆1(j) = 1
|Cj |

∑
m∈Cj

τ−1
1 (m), Theorem

4.4.2 still holds.

4.5 Examples

In this section, we briefly present inverse problems discussed in Section 4.1 which can be

seen as applications of the functional deconvolution model (4.1) or its discrete version (4.2).

The optimality (in the minimax sense), or near-optimality within a logarithmic factor, for

the L2-risk over a wide range of Besov balls in the Examples 1-5 below have been discussed

in Pensky & Sapatinas (2009a) (see their Examples 4, 1, 2, 3 and 5, respectively); here,

we use the methodology presented in Sections 4.3 and 4.4 to check that the corresponding

estimators are also optimal or near optimal under the Lp-risk (1 ≤ p < ∞).

Example 1. Estimation of the speed of a wave on a finite interval. Let h(t, x) be

a solution of the initial–boundary value problem for the wave equation

∂2h(t, x)

∂t2
=

∂2h(t, x)

∂x2
with h(0, x) = 0,

∂h(t, x)

∂t

∣∣∣
t=0

= f(x), h(t, 0) = h(t, 1) = 0. (4.10)

Here, f(·) is a function defined on the unit interval [0, 1] and t ∈ [a, b], a > 0, b < 1.

We assume that a noisy solution y(t, x) = h(t, x)+n−1/2z(t, x) is observed, where z(t, x) is

a generalized two-dimensional Gaussian field with covariance function E[z(t1, x1)z(t2, x2)] =

δ(t1− t2)δ(x1−x2), and the goal is to recover the unknown speed of a wave f(·) on the basis

of observations y(t, x).

Extending f(·) periodically over the real line, it is well-known (see, e.g., Strauss (1992),
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p. 61) that the solution h(t, x) can then be recovered as

h(t, x) =
1

2

∫ 1

0

I(|x− z| < t)f(z)dz, (4.11)

so that (4.11) takes the form (4.4) with g(u, x) = 0.5 I(|x| < u), where u in (4.4) is replaced

by t in (4.11). It is easily seen that the functional Fourier coefficients gm(·) satisfy (4.5) and

(4.6) with ν = 1 and α = 0.

Hence, according to Theorem 4.4.1 and Theorem 4.4.2 , the adaptive block thresholding

wavelet estimator given by (4.9) achieves the following minimax upper bounds (in the Lp-risk,

1 ≤ p < ∞)

Rn(Bs
ρ,r(M)) ≤





n−
sp

2s+3 (ln n)
sp

2s+3 , if s > 3
2
(1− p/ρ),

(
ln n
n

) p(s−1/ρ+1/p)
2s−2/ρ+3 (ln n)max(0,p−ρ/r)I(ε=0) , if s ≤ 3

2
(1− p/ρ),

over Besov balls Bs
ρ,r(M) of radius M > 0 with s > 1/ρ− 1/2− 1/(2δ) + ν, 1 ≤ ρ ≤ ∞ and

1 ≤ r ≤ ∞. (The minimax lower bounds (in the Lp-risk, 1 ≤ p < ∞) have the same form

without the extra logarithmic factor.)

Example 2. Estimation of the initial condition in the heat conductivity

equation. Let h(t, x) be a solution of the heat conductivity equation

∂h(t, x)

∂t
=

∂2h(t, x)

∂x2
, x ∈ [0, 1], t ∈ [a, b], a > 0, b < ∞,

with initial condition h(0, x) = f(x) and periodic boundary conditions

h(t, 0) = h(t, 1),
∂h(t, x)

∂x

∣∣∣∣
x=0

=
∂h(t, x)

∂x

∣∣∣∣
x=1

.

It is well-known (see, e.g., Strauss, 1992, p. 48) that, under the assumption of periodicity,

the solution h(t, x) is given by

h(t, x) = (4πt)−1/2

∫ 1

0

∑

k∈Z
exp

{
− (x + k − z)2

4t

}
f(z)dz,

which coincides with (4.4) when t and x are replaced by u and t, respectively. It is easily

seen that the functional Fourier coefficients gm(·) satisfy (4.5) and (4.6) with ν = 1, α = 8π2a

and β = 2.
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Hence, according to Theorem 4.4.1 and Theorem 4.4.2, the adaptive wavelet estimator

given by (4.9) achieves the following minimax convergence rate (in the Lp-risk, 1 ≤ p < ∞)

Rn(Bs
ρ,r(M)) ³ (ln n)−

p

(
s+ 1

p− 1
min(p,ρ)

)
2

over Besov balls Bs
ρ,r(M) of radius M > 0 with s > 1/ρ, 1 ≤ ρ ≤ ∞ and 1 ≤ r ≤ ∞.

Example 3. Estimation of the boundary condition for the Dirichlet problem

of the Laplacian on the unit circle. Let h(x,w) be a solution of the Dirichlet problem

of the Laplacian on a region D on the plane

∂2h(x,w)

∂x2
+

∂2h(x,w)

∂w2
= 0, (x,w) ∈ D, (4.12)

with a boundary ∂D and boundary condition

h(x, w)
∣∣∣
∂D

= F (x,w). (4.13)

Consider the situation when D is the unit circle. It is well-known (see, e.g., Strauss

(1992), p. 161) that the solution h(u, t) is given by

h(u, t) =
(1− u2)

2π

∫ 2π

0

f(x)

1− 2u cos(t− x) + u2
dx.

h(x,w) = h(u, t), where u ∈ [0, 1] is the polar radius and t ∈ [0, 2π] is the polar angle.

Observations are available only on the interior of the unit circle with u ∈ [0, r0], r0 < 1, i.e.,

a = 0, b = r0 < 1. It is easily seen that the functional Fourier coefficients satisfy (4.5) and

(4.6) with ν = 0, α = 2 ln(1/r0) and β = 1.

Hence, according to Theorem 4.4.1 and Theorem 4.4.2, the adaptive wavelet estimator

given by (4.9) achieves the following minimax convergence rate (in the Lp-risk, 1 ≤ p < ∞)

Rn(Bs
ρ,r(M)) ³ (ln n)−p

(
s+ 1

p
− 1

min(p,ρ)

)

over Besov balls Bs
ρ,r(M) of radius M > 0 with s > 1/ρ, 1 ≤ ρ ≤ ∞ and 1 ≤ r ≤ ∞.

Example 4. Estimation of the boundary condition for the Dirichlet problem

of the Laplacian on a rectangle. Consider the problem 4.12-4.13 in the Example 3
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above, with the region D being now a rectangle, i.e., (x,w) ∈ [0, 1] × [a, b], a > 0, b < ∞,

and periodic boundary conditions

h(x, 0) = f(x), h(0, w) = h(1, w).

It is well-known (see, e.g., Strauss (1992), p. 188, p. 407) that, in a periodic setting, the

solution h(x,w) can be written as

h(x,w) = π−1

∫ 1

0

∑

k∈Z

w

w2 + (x + k − z)2
f(z)dz.

It is easily seen that the functional Fourier coefficients gm(·) satisfy (4.5) and (4.6), with

ν = 1/2, α = 4πa and β = 1.

Hence, according to Theorem 4.4.1 and Theorem 4.4.2, the adaptive wavelet estimator

given by (4.9) achieves the following minimax convergence rate (in the Lp-risk, 1 ≤ p < ∞)

Rn(Bs
ρ,r(M)) ³ (ln n)−p

(
s+ 1

p
− 1

min(p,ρ)

)

over Besov balls Bs
ρ,r(M) of radius M > 0 with s > 1/ρ, 1 ≤ ρ ≤ ∞ and 1 ≤ r ≤ ∞.

Example 5. Estimation in the multichannel deconvolution problem. Consider

the problem of estimating f(·) ∈ Lp(T ) on the basis of the following model

Yl(dt) = f ∗ gl(t)dt +
σl√
n

Wl(dt), t ∈ T = [0, 1], l = 1, 2, . . . , M, (4.14)

where gl(·) are known blurring functions, σl are known positive constants and Wl(t) are

independent standard Wiener processes. Note that a discretization of (4.14) (with σl = 1 for

l = 1, . . . , M) leads to the discrete setup (4.2).

Adaptive term-by-term wavelet thresholding estimators for the model (4.14) were

constructed in De Canditiis & Pensky (2006) for regular-smooth convolutions (i.e., α = 0

in (4.5) and (4.6)). However, minimax lower and upper bounds were not obtained by these

authors who concentrate instead on upper bounds (in the Lp-risk, 1 < p < ∞) for the error,

for a fixed target function. Moreover, the case of super-smooth convolutions (i.e., α > 0 in

(4.5) and (4.6)) and the case when M can increase together with N have not been treated

in De Canditiis & Pensky (2006).
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Consider now the adaptive block thresholding wavelet estimator f̂n(·) defined by (4.9)

for the continuous model (4.1) or the discrete model (4.2). Then, under the assumption

(4.6), the corresponding minimax lower bounds are given by Theorem 4.4.1, while, under

the assumption (4.5), the corresponding minimax upper bounds are given by Theorem

4.4.2. Thus, the proposed functional deconvolution methodology significantly expands on

the theoretical findings in De Canditiis & Pensky (2006), and extends the results obtained

by Pensky & Sapatinas (2009a) under the L2-risk to the case of Lp-risk, 1 ≤ p < ∞.

However, the theoretical results obtained in Theorems 4.4.1 and 4.4.2 cannot be blindly

applied to the case of boxcar-like convolutions g(ul, t) = 1
2ul
I(|t| ≤ ul), (i.e. boxcar

convolution for each fixed ul), since gm(u) = sin(2πmu)/(2πmu) and |gm(u∗)|2 = 0, where

u∗ = arg maxu gm(u), u∗, u∗ ∈ [a, b]. This is an example where a careful choice of ul,

l = 1, 2, . . . , M , can make a difference. For example, if one takes M = 1 and u = u1 as

a rational number, then τ1(m) will vanish for some m large enough and the algorithm will

fail to deliver the answer. For this case, we need to use Lemma 1 of Pensky & Sapatinas

(2009b) in order establish Theorem 4.5.1.

Lemma 4.5.1. (Pensky & Sapatinas (2009b), Lemma 1.) Consider g(u, t) =

γ(u)
2
I(|t| < u), u ∈ U, t ∈ T, with γ(·) satisfying 0 < γ1 ≤ γ(u) ≤ γ2 < ∞, u ∈ U and

0 < a < b < ∞. Let m ∈ Aj, where |Aj| = c2j, for some c > 0, with (ln n)δ ≤ 2j ≤ n1/3,

j ≥ j0, for some δ > 0 and j0 ≥ 0. Take ul = a + (b − a)l/M , l = 1, 2, . . . , M . If

M ≥ M0n = (32π/3)(b− a)n1/3, then, for n and |m| large enough,

τ d
1 (m,u,M) ≥ K8m

−2,

for some constant K8 > 0 independent of m, the choice of M and the selection points ul,

l = 1, 2, . . . , M .

Lemma 1 of Pensky & Sapatinas (2009b) can be applied if M = Mn ≥ c0n
1
3 for some

constant c0 > 0, independent of n, and ul = a + l∆/M, where ∆ = min(3c0/(32π), b− a).

Theorem 4.5.1. Let {φj0k(·), ψjk} be the periodic Meyer wavelet basis. Consider the

functional deconvolution model (4.2) with g(u, t) = γ(u)
2
I(|t| < u), u ∈ U, t ∈ T, where γ(·)
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is some positive function, satisfying 0 < γ1 ≤ γ(u) ≤ γ2 < ∞, u ∈ U and 0 < a < b < ∞.

Suppose that s > 1/ρ, 1 ≤ ρ ≤ ∞, 1 ≤ r ≤ ∞ and M > 0. Then, as n →∞,

Rn(Bs
ρ,r(M)) ≥





Cn−α1p, if ε > 0,

C( log n
n

)α2p if ε ≤ 0,

where α1 = s
2s+3

, α2 =
s− 1

ρ
+ 1

p

2(s− 1
ρ
)+3

and ε = sρ + 3
2
(ρ− p).

(Upper bounds) Let s ∈ (1
ρ
− 1

2
+ 1

2δ
− ν, R) 1 ≤ ρ ≤ ∞, 1 ≤ r ≤ ∞ and M > 0. Set

ν = 1 and assume that M = Mn ≥ c0n
1/3 for some constant c0 > 0, independent of n. Let

f̂n(u, M, ·) be the wavelet estimator defined by (4.9), evaluated at the points ul = a + l∆/M ,

l = 1, 2, . . . , M , where ∆ = min(3c0/(32π), b− a) and j0 and J are given by (4.7).

sup
f∈Bs

ρ,r(M)

E(‖f̂n − f‖p
p) ≤





Cn−α1p(log n)α1pI{p>ρ} , α = 0, ε > 0

C( log n
n

)α2p(log n)(p− ρ
r
)+I{ε=0} , α = 0, ε ≤ 0,

where α1 = s
2s+3

, α2 =
s− 1

ρ
+ 1

p

2(s− 1
ρ
)+3

and ε = sρ + 3
2
(ρ− p).

4.6 Simulation study

Here, we present a small simulation study in the multichannel box-car deconvolution model.

We assess the performance of the suggested block thresholding wavelet estimator (BT) given

by (4.9), with equispaced selected points ul, l = 1, 2, . . . , M , and compare it to the term-

by-term thresholding wavelet estimator (TT) proposed by De Canditiis & Pensky (2006),

where the points ul, l = 1, 2, . . . , M , were selected such that one of the ul’s is a BA irrational

number, and u1, u2, . . . , uM is a BA irrational tuple.

Specifically, we assume that we observe

y(ul, t) =

∫

T

f(x)g(ul, t− x)dx +
σ(ul)√

n
z(ul, t), ul ∈ U∗ l = 1, . . . , M t ∈ T = [0, 1],

(4.15)

where

g(ul, t) =
1

2ul

I(|t| < ul), ul ∈ U∗,

U∗ is a compact subset of U = [0, 1] (bounded away from zero), σ(·) is a known

function, and z(ul, t) is a generalized two-dimensional Gaussian field with covariance function
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E[z(u1, t1)z(u2, t2)] = δ(t1 − t2)δ(u1 − u2). However, in reality, we usually observe a

discretization of the functional deconvolution model (4.15) when y(u, t) is observed at

n = NM points (ul, ti), l = 1, 2, . . . , M , i = 1, 2, . . . , N , i.e.,

y(ul, ti) =

∫

T

f(x)g(ul, ti − x)dx + σl εli, ul ∈ U∗, ti = i/N, (4.16)

where εli are standard Gaussian random variables, independent for different l and i. For

simplicity, we assume that σl = σ for all l = 1, 2, . . . , M .

The proposed methodology consists of the following steps:

1. Generate M different equispaced sequences, yli (= y(ul, i/N)), l = 1, 2, . . . , M ,

i = 1, 2, . . . , N , following model (4.16).

2. Generate functions g(ul, ·), y(ul, ·) φj0k(·) and ψjk(·), j = j0, j0 + 1, . . . , J − 1,

k = 0, 1, . . . , 2j − 1, at the same equispaced points, ti = i/N , i = 1, 2, . . . , N .

3. Apply the discrete Fourier transform (FFT) on gl, yl, φj0k and ψjk, j = j0, j0+1, . . . , J−
1 k = 0, 1, . . . , 2j − 1.

4. Estimate αj0k and βjk by, respectively, α̂j0k and β̂jk, given by (4.8)

5. Compute B̂jt = (
∑

k∈Ujt
|β̂jk|2/ll) 1

2 .

6. Compute the threshold (see Remark 4.4.4)

λj = σ̂d∗
√

∆1(j)√
n

, j ≥ j0,

where

σ̂ =

√√√√ 1

M(N − 2)

M∑

l=1

N−1∑
i=2

(
yl,i−1√

6
− 2yli√

6
+

yl,i+1√
6

)2

(see, e.g., Müller & Stadmüller, 1987),

∆1(j) =
1

|Cj|
∑

m∈Cj

τ−1
1 (m) and d∗ = 1.

7. Threshold the wavelet coefficients belonging to blocks with |B̂jt| < λj.

8. Apply the inverse wavelet transform to obtain f̂n(·) given by (4.9).

Atha
na

sia
 Pets

a



103

0 5 10 15 20
0

2

4

6
x 10

−3

number of channels

A
M

S
E

Bumps

0 5 10 15 20
0

0.5

1

1.5
x 10

−4

number of channels

A
M

S
E

Blip

0 5 10 15 20
0

2

4

6
x 10

−5

number of channels

A
M

S
E

Heavisine

0 5 10 15 20
0

2

4

6
x 10

−4

number of channels

A
M

S
E

Step

Figure 4.1: AMSE for the Bumps, Blip, Heavisine and Step functions sampled at a fixed
number of N = 128 points, based on rsnr=1, as the number of channels M (and hence the
sample size n) increases. Solid line: BT wavelet estimator; Dash line: TT wavelet estimator.Atha
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In our numerical analysis, we used the test functions “Bumps”, “Blip”, “Heavisine” and

“Step”, and j0 was set equal to 3. For a fixed value of the (root) signal-to-noise ratio (rsnr=1),

we generated S = 100 samples of size n = NM from model (4.16) in order to calculate the

average mean-squared error (AMSE) given by

1

S

S∑
m=1

N∑
i=1

(f̂m(ti)− f(ti))
2

∑N
i=1 f 2(ti)

, ti = i/N.

In Figure 4.1, for a fixed number of data points N = 27, we evaluate the AMSE as the

number of channels M , and hence the sample size n, increases for the four signals mentioned

above. Obviously, both BT and TT wavelet estimators improve their performances, as n

increases, and the BT wavelet estimator appears to be better than the TT wavelet estimator

in all cases.

Although not reported here, we also evaluated the performance of the suggested BT

wavelet estimator for a wide variety of other test functions (see the list of test functions in

Appendix I of Antoniadis, Bigot & Sapatinas, 2001), with very good performances. This

numerical study confirms that under the multichannel box-car deconvolution model, block

thresholding wavelet estimators with equispaced selected points ul, l = 1, 2, . . . , M , are quite

useful in order to produce accurate estimates of f(·), in finite sample situations.

4.7 Appendix: Proofs

4.7.1 Proof of Theorem 4.4.1

For the proof of Theorem 4.4.1 we are going to use the following lemma.

Lemma 4.7.1. (Härdle, Kerkyacharian, Picard & Tsybakov (1998), Lemma

10.1). Let V be a functional space and d(·, ·) a distance on V. For f, g on V denote by

Λn(f, g) the likelihood ratio Λn(f, g) =
dPYn (f)

dPYn(g)
, where dPYn(h) is the probability distribution

of the process Yn if h is the true function.

If V contains the functions f0, f1, . . . , fK such that

1. d(fk, fk
′ ) ≥ δ > 0 for k = 0, 1, . . . K, k 6= k

′
,
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2. K ≥ eλn for λn > 0,

3. Λn(f0, fk) = eznk−vnk , where vnk are constants and znk are random variables such that

P(znk > 0) ≥ π0 for some π0 > 0 independent of n and k,

4. supk vnk ≤ λn.

Then supf∈V PYn(f)(d(f̂n, f) ≥ δ
2
) ≥ π0

2
.

Sparse case. Consider the continuous model (4.1). Let the functions fjk be of the form

fjk = γjψjk and let f0 ≡ 0. Note that it is sufficient to set γj = c2−j(s+ 1
2
− 1

ρ
), where c is

a positive constant such that c < A, in order fjk ∈ Bs
ρ,r(M). We then apply Lemma 4.7.1

We consider the class of functions V = {fjk : 0 ≤ k ≤ 2j − 1} so that K = 2j. We choose

d(f, g) = ‖f − g‖p, where ‖ · ‖p is the Lp-norm on the unit interval T. Using the properties of

the functions ψjk, it is easy to see that d(fjk, fjk′) ³ γj2
j( 1

2
− 1

p
) = δ. Set K = 2j, λn = jn log 2,

vnk ≡ λn and znk = log(Λn(f0, fjk)) + λn. In order to apply Lemma 4.7.1, we need to show

Pfjk
(znk > 0) = P(log(Λn(f0, fjk) > −j log 2) ≥ π0 > 0

uniformly for all fjk. Using the Markov inequality, it is easy to see that we need to find a

uniform upper bound for Efjk
| log(Λn(f0, fjk)|. Set U = [a, b] and T = [0, 1]. Let W (u, t) and

W̃ (u, t) be Wiener sheets on U × T. Let

dW̃ (u, t) =
√

nfjk ∗ g(u, t) + dW (u, t),

where W (u, t) and W̃ (u, t) are the primitives of dW (u, t) and dW̃ (u, t), respectively. Let

Q and P be the probability measures associated with W̃ and W, respectively. Using

multiparameter Girsanov formula (see, e.g., Dozzi, 1989, p.89), under the assumption,
∫

T

∫
U
(g ∗ fjk)

2(u, t)dudt < ∞ we arrive at

dQ

dP
= exp{−

∫

T

∫

U

√
n(fjk ∗ g)(u, t)dW (u, t) +

1

2
n

∫

T

∫

U

(fjk ∗ g)2(u, t)dudt}

= Λn(fjk, f0).

Therefore, it is easy to see that

Efjk
| log(Λn(f0, fjk)| ≤ An + Bn,
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where

An =
√

n γj E
∣∣∣∣
∫

T

∫

U

(ψjk ∗ g)(u, t) dW (u, t)

∣∣∣∣,

Bn = 0.5 n γ2
j

∫

T

∫

U

(ψjk ∗ g)2(u, t) dudt.

Jensen’s inequality leads to An ≤
√

2Bn. Therefore, we only need to construct an upper

bound for Bn. Let ψm =< em(·), ψ(·) > . Using the fact that |ψmjk| ≤ 2−j/2 (see, e.g.,

Johnstone, Kerkyacharian, Picard & Raimondo, 2004, p.565) and the properties of the

Fourier transform we arrive at

Dj =

∫ 1

0

∫ b

a

(ψjk ∗ g)(u, t)dudt =

∫ b

a

∫ 1

0

|ψ̂jk(ω)|2|ĝ(u, ω)|2dωdu

≤
∫ b

a

2−j

∫ 1

0

|ĝ(u, ω)|2dωdu = 2−j

∫ b

a

∑
m∈Cj

|ĝm(u)|2du,

where ψ̂jk(ω) =< ψjk(·), eω(·) > and ĝ(u, ω) =< g(u, .), eω(·) >, where eω(t) = e2πiωt.

This leads to

Bn ≤ 2−j
nγ2

j

2

∑
m∈Cj

∫

U

|gm(u)|2du.

We need to choose jn satisfying

Bn +
√

2Bn

jn log 2
≤ 1

2
. (4.17)

For the case α > 0, using assumption (4.5) we have

∑
m∈Cj

∫ b

a

|gm(u)|2du ≤
2j8π

3∑

|m|= 2π2j

3

C|m|−2ν exp{−α|m|β} ≤ C

∫ α( 2j8π
3

)β

α( 2j2π
3

)β

z−
2ν
β e−zz

1
β
−1dz

≤ C2jβ( 1−2ν−β
β

) exp(−α(
2π

3
)β2jβ).

For the case α = 0, under assumption (4.5)

∑
m∈Cj

∫ b

a

|gm(u)|2du ≤
2j8π

3∑

|m|= 2π2j

3

C|m|−2ν ≤ C2j(−2ν+1).

Hence,

∑
m∈Cj

∫

U

|gm(u)|2 ≤





C2−j(2ν−1), if α = 0,

C2−j(2ν+β−1) exp
(−α(2π/3)β2jβ

)
, if α > 0.
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The smallest jn satisfying (4.17) satisfies 2jn ³ (n/ log n)1/(2s+2ν+1− 2
ρ
) if α = 0 and

2jn ³ (log n)1/β if α > 0. Then, Lemma 4.7.1 and Markov inequality lead to

inf
f̃

sup
f∈Bs

p,q

E‖f̃ − f‖2 ≥





C(log n/n)

p(s+ 1
p− 1

ρ )

2s+2ν+1− 2
ρ , if α = 0,

C(log n)−
p(s+ 1

p− 1
ρ )

β , if α > 0.

(4.18)

For the discrete model (4.2) the likelihood ratio is given by

− log Λn(f0, fjk) = 0.5
N∑

i=1

M∑

l=1

{
[y(ul, ti)− γj(ψjk ∗ g)]2(ul, ti)− y2(ul, ti)

}

= −vjk − ujk,

where

ujk = γj

N∑
i=1

M∑

l=1

(ψjk ∗ g)(ul, ti)εli,

vjk = 0.5 γ2
j

N∑
i=1

M∑

l=1

(ψjk ∗ g)2(ul, ti).

Using Jensen’s inequality, it is easy to see that

E(|ujk|) ≤ γj

√√√√E(
N∑

i=1

M∑

l=1

(ψjk ∗ g)2(ti, ul)ε2
il) = c

√
vjk.

Therefore, we only need to find an upper bound for vjk. Using the properties of Fourier

transform, we arrive at

|vjk| ≤ 0.5γ2
j

M∑

l=1

N
1

N

N∑
i=1

|(ψjk ∗ g)(ti, ul)|2

≤ 0.5γ2
j N

M∑

l=1

∑
m∈Cj

|ψmjk|2|gm(ul)|2

≤ cγ2
j NM

1

|Cj|
∑

m∈Cj

1

M

M∑

l=1

|gm(ul)|2.

Working along the same lines as in the continuous case, with the integral replaced by the

sum, we obtain (4.18).

Dense case Consider the continuous model (4.1). Let η = (η0, η1, . . . , η2j−1) be the

vector with components ηk = ±1, k = 0, 1, . . . , 2j − 1, set Ξ the set of all possible vectors η
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and let fjη = γj

∑2j−1
k=0 ηkψjk. Let also ηm be the vector with components ηm

k = (−1)I(m=k)ηk

for m, k = 0, 1, . . . , 2j − 1. It is sufficient to set γj ≤ A2−j(s+1/2), in order fjη ∈ Bs
ρ,r(M).

Additionally we set γj = c?2
−j(s+1/2), where c? is a positive constant such that c? < A, and

apply the following lemma on lower bounds.

Lemma 4.7.2. (Willer (2005), Lemma 2). Let Λn(f, g) be defined as in Lemma 4.7.1,

and let η and fjη be as described above. Suppose that, for some positive constants λ and π0,

we have

Pfjη
(− log Λn(fjηm , fjη) ≤ λ) ≥ π0,

uniformly for all fjη and all m = 0, . . . , 2j − 1. Then, for any arbitrary estimator f̃n and for

some positive constant C,

max
η∈Ξ

Efjη
‖f̃n − fjη‖ ≥ Cπ0e

−λ 2j/2γj.

We now need to establish

Pfj,η
(Λn(fjη, fjηm) ≥ e−λ) ≥ π∗ > 0.

Using the same arguments as in the sparse case, it is enough to show

Efjη
| log Λn(fjηm , fjη)| ≤ λ1,

for sufficiently small positive λ1. Using the multiparameter Girsanov formula (see, e.g., Dozzi,

1989, p. 89), under the assumption
∫

T

∫
U

n(g∗fjk)
2(u, t)dudt < ∞, and |fjηm−fjη| = 2γj|ψjm|

we arrive at

log Λn(fjηm , fjη) =
√

n

∫

T

∫

U

((fjηm − fjη) ∗ g)(u, t)dW (u, t)

− n

2

∫

T

∫

U

(
(fjηm − fjη) ∗ g

)2

(u, t)dudt

= 2γj

√
n,

∫

T

∫

U

(ψjm ∗ g)(u, t)dW (u, t)

− 2nγj
2

∫

T

∫

U

(ψjm ∗ g)2(u, t)dudt.

Therefore, we get

Efjη
| log Λn(fjηm , fjη)| ≤ An + Bn,
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where

An = 2
√

n γj E
∣∣∣
∫

T

∫

U

(ψjm ∗ g)(u, t) dW (u, t)
∣∣∣, Bn = 2 n γ2

j

∫

T

∫

U

(ψjm ∗ g)2(u, t) dudt.

Due to Jensen’s inequality, we have An ≤
√

2
√

Bn. Similarly to the sparse case, it is easy to

see that

Bn =





O(n2−j(2ν+2s+1)), if α = 0,

O

(
n2−j(2ν+β+2s+1) exp(−α(2π

3
)β2jβ)

)
, if α > 0.

The smallest jn satisfying Bn ≤ c is given by

2jn ³





n
1

2s+2ν+1 , if α = 0,

(log n)
1
β , if α > 0,

yielding

inf
f̃n

sup
f∈Bs

ρ,r

E(‖f̃n − f‖p
p) ≥





Cn−
ps

2s+2ν+1 , if α = 0,

C(log n)
−ps

β , if α > 0.

(4.19)

In the discrete model the log-likelihood ratio is given by

log Λn(fj,ηm , fj,η) =

+ 0.5
N∑

i=1

M∑

l=1

(
yil − γj(fjη ∗ g)(ti, ul)

)2

− 0.5
N∑

i=1

M∑

l=1

(
yil − γj(fjηm ∗ g)(ti, ul)

)2

= γj

N∑
i=1

M∑

l=1

yil[fjηm ∗ g − fjη ∗ g](ti, ul) + 0.5γ2
j

N∑
i=1

M∑

l=1

(fjη ∗ g)2(ti, ul)

− 0.5γ2
j

N∑
i=1

M∑

l=1

(fjηm ∗ g)2(ti, ul) = v∗njm + z∗njm,

where v∗njm = γ2
j

∑N
i=1

∑M
l=1[(fjη ∗ g)(fjηm ∗ g)− 0.5(fjη ∗ g)2 − 0.5(fjηm ∗ g)2](ti, ul),

and z∗njm = γj

N∑
i=1

M∑

l=1

εil[(g ∗ fjηm)− (g ∗ fjη)](ti, ul).

It is easy to see that

|z∗njm| ≤ 2γj

N∑
i=1

M∑

l=1

|εil(ψjm ∗ g)(ti, ul)|
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and

v∗njm = γ2
j

N∑
i=1

M∑

l=1

[g ∗ ψjm]2(ti, ul).

Now, we can replace Bn by vnjm in the proof of the continuous case. Following the same

steps, we obtain (4.19). Obviously, if we have two lower bounds in the same space, the larger

one is the true one. We say that we have a dense case if the lower bound obtained with

fjη holds. Otherwise, we have a sparse case. Hence, it remains to see, for what value of

parameters we have sparse and dense case. Using elementary calculus, it is easy to see that

we have a dense case for ε > 0 and a sparse case for ε ≤ 0. This completes the proof of

Theorem 4.4.1.

4.7.2 Proof of Theorem 4.4.2

For the proof of Theorem 4.4.2, we are going to use two theorems of Chesneau (2006). We

first consider the following assumptions

(F1) Let us set β̂j0−1,k = α̂j0k. There exists some constant C > 0 such that, for all

j ∈ {j0 − 1, . . . , J}, k ∈ {0, . . . , 2j − 1} and n sufficiently large:

En
f (|β̂jk − βjk|2p) ≤ C22jpνn−p,

(F2) There exist two constants d > 0 and C > 0 such that, for j ∈ {j0, . . . , J}, t ∈ Aj and

n sufficiently large

P
({

1

lj

∑

k∈Uj,t

|β̂jk − βjk|p
} 1

p

≥ 2−1d2jνn−
1
2 ) ≤ Cn−p.

Theorem 4.7.1. (Chesneau (2006), Theorem 5.4.1). Let p ∈ [1,∞). We assume

to have a sequence of models Γn in which we are able to produce estimates of the wavelet

coefficients αjk and βjk of f on the basis ζ. The corresponding estimators are denoted by α̂jk

and β̂jk. We suppose that assumptions (F1) and (F2) are satisfied. Let f̂n be defined by

f̂n(t) =
2j0−1∑

k=0

α̂j0kφj0k(t) +
J∑

j=j0

∑
t∈Aj

∑

k∈Ujt

β̂jkψjk(t)I{|B̂j,t|≥d2jνn−
1
2

},
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with lj, j0, J, B̂jt, Aj and Ujt defined as in Section 4.3 for α = 0. Then, there exists some

constant C > 0 such that for all ρ ∈ [p,∞], s ∈
(

1
ρ
− (1

2
− 1

2δ
+ ν), R

)
, r ∈ [1,∞] and n

sufficiently large, we have

sup
f∈Bs

ρ,r(M)

E(‖f̂n − f‖p
p) ≤ Cn−α1p, (4.20)

where α1 = s
2(s+ν)+1

.

Theorem 4.7.2. (Chesneau (2006), Theorem 5.4.2). Let p ∈ (1,∞). We assume

to have a sequence of models Γn in which we are able to produce estimates of the wavelet

coefficients αjk and βjk of f on the basis ζ. The corresponding estimators are denoted by

α̂jk and β̂jk. We suppose that assumptions (F1) and (F2) are satisfied. Let f̂n be defined

as in Theorem 4.7.1. Then, there exists some constant C > 0 such that for all ρ ∈ [1, p),

s ∈
(

1
ρ
− (1

2
− 1

2δ
+ ν), R

)
, r ∈ [1,∞] and n sufficiently large, we have

sup
f∈Bs

ρ,r(M)

En
f (‖f̂n − f‖p

p) ≤ Cφn, (4.21)

where

φn =





( log n
n

)α1p, ε > 0,

( log n
n

)α2p(log n)(p− ρ
r
)+I{ε=0} , ε ≤ 0,

α1 = s
2(s+ν)+1

, α2 =
(s− 1

ρ
+ 1

p
)

2(s− 1
ρ
+ν)+1

and ε = sρ + (ν + 1
2
)(ρ− p).

We will show that Assumptions (F1) and (F2) hold in order to apply Theorems 4.7.1 and

4.7.2 for the case a = 0.

Assumption F1

α̂j0k − αj0k =
∑

m∈Cj0

φmj0k(f̂m − fm) =

∫ b

a

∫ 1

0

h(u, t)ε(u, t)dtdu,

where h(u, t) =
∑

m∈Cj0
φmj0kρm(u)e2imtπ and ρm(u) = gm(u)∫ b

a |gm(u)|2 . Using the theory of

generalized random fields, it is easy to see that α̂j0k − αj0k is a centered Gaussian random
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variable. Under the continuous model

Var(α̂j0k − αj0k) =
1

n

∫ b

a

∫ 1

0

|h(u, t)|2dudt

=
1

n

∑
m∈Cj0

|φmj0k|2
∫ b

a

|ρm(u)|2du

∫ 1

0

|e2imtπ|2dt

+
1

n

∑

m6=m
′
φmj0kφm′j0k

∫ b

a

ρm(u)ρm′ (u)du

∫ 1

0

e2imtπe−2im
′
tπdt

=
1

n

∑

m∈C∗j0

|φmj0k|2
∫ b

a

|ρm(u)|2du.

Under the discrete model, if we replace the integral by the sum and use similar arguments,

it is easy to see that

Var(α̂j0k − αj0k) =
1

NM

∑

m∈C∗j0

|φmj0k|2
(∑M

l=1 |gm(ul)|2
M

)−1

.

Therefore, α̂j0k − αj0k is a centered Gaussian random variable with

Var(α̂j0k − αj0k) =





1
n

∑
m∈C∗j0

|φmj0k|2
( ∫ b

a
|gm(u)|2du

)−1

, for the continuous model,

1
NM

∑
m∈C∗j0

|φmj0k|2
(∑M

l=1 |gm(ul)|2
M

)−1

, for the discrete model.

Using (4.6), it is easy to see that

Var(α̂j0k − αj0k) ≤
∑

m∈C∗j0

|φmj0k|2 τ−1
1 (m)

n
≤ K1

n

∑

m∈C∗j0

|φmj0k|2|m|2ν ≤ c

n
2−j02j022νj0

≤ c22j0ν

n

under both the discrete and continuous model. Similar arguments lead to the conclusion

that β̂jk − βjk for j ≥ j0 are also centered Gaussian with variance

Var

(
β̂jk − βjk

)
≤ c22jν

n
.

If a random variable Z ∼ N(0, σ2), then

E(|Z|2p) ≤ C2pσ
2p, p > 0,

where C2p = E(|U |2p), U ∼ N(0, 1). Therefore, the following inequalities hold

E(|α̂j0k − αj0k|p) ≤ cp

[
Var(α̂j0k − αj0k)

] p
2

≤ c2j0νp

n
p
2

, (4.22)
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E(|β̂jk − βjk|2p) ≤ cp[Var(β̂jk − βjk)]
p ≤ c22pνj

np
.

Note that in case α̂j0k or β̂jk are complex numbers, we just take the real part of the

above quantities. In this case <{α̂j0k − αj0k} and <{β̂jk − βjk} are centered Gaussian with

Var

(
<{α̂j0k − αj0k}

)
≤ Var(α̂j0k − αj0k) and Var

(
<{β̂jk

− βjk}
)
≤ Var(β̂jk − βjk). Using

the same arguments as before, we can show that (F1) holds.

Assumption F2

We will first show that F2 holds for p ≥ 2. It is sufficient to show that

P
({

1

lj

∑

k∈Uj,t

|β̂jk − βjk|p
} 1

p

≥ d2jνn−
1
2

2

)
≤ cn−p. (4.23)

Consider the centered Gaussian process

Zjt =
∑

k∈Ujt

vk(β̂jk − βjk),

where vk ∈ Ωq =

{
vk : k ∈ Ujt and

∑
k∈Ujt

|vk|q ≤ 1

}
, 1

p
+ 1

q
= 1. Let θ̂jk = β̂jk−βjk. For

any sequence vjk of lp the Hölder inequality yields

∑

k∈Ujt

vjkθ̂jk ≤
∑

k∈Ujt

|vjk||θ̂jk| ≤ {
∑

k∈Ujt

|vjk|q}
1
q {

∑

k∈Ujt

|θ̂jk|p}1/p.

Therefore, by definition of Ωq we have

sup
v∈Ωq

∑

k∈Ujt

vjkθ̂jk ≤ sup
v∈Ωq

{
∑

k∈Ujt

|vjk|q}
1
q {

∑

k∈Ujt

|θ̂jk|p}1/p ≤ {
∑

k∈Ujt

|θ̂jk|p}
1
p . (4.24)

Now, let us consider v∗ = (v∗jk)j,k with v∗jk = |θ̂jk|pθ̂−1
jk

( ∑
k∈Ujt

|θ̂jk|p
)− 1

q

.

Hence, v∗ satisfies

|v∗jk| = |θ̂jk|p−1

( ∑

k∈Ujt

|θ̂jk|p
)−q

and

|v∗jk|q = |θ̂jk|p
( ∑

k∈Ujt

|θ̂jk|p
)−1

.
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Therefore,
∑

k∈Ujt
|v∗jk|q = 1 and

sup
v∈Ωq

∑

k∈Ujt

vjkθ̂jk ≥
∑

k∈Ujt

v∗jkθ̂jk =
∑

k∈Ujt

|θ̂jk|pθ̂−1
jk (

∑

k∈Ujt

|θ̂jk|p)−
1
q θ̂jk = (

∑

k∈Ujt

|θ̂jk|p)1− 1
q

= (
∑

k∈Ujt

|θ̂jk|p)
1
p . (4.25)

If we combine (4.24) and (4.25), we obtain the desired equality, i.e.,

sup
v∈Ωq

Zjt(v) = (
∑

k∈Ujt

|θ̂jk|p)
1
p . (4.26)

Additionally, Jensen’s inequality, (4.26) and (F1) lead to

E(sup
v∈Ωq

Zjt(v)) = E
[ ∑

k∈Ujt

|β̂jk − βjk|p
] 1

p

≤
[ ∑

k∈Ujt

E
(
|β̂jk − βjk|p

)] 1
p

≤ Cl
1
p

j n−
1
2 2νj = N.

Under assumption (4.6) we have

E
(

(β̂jk − βjk)(β̂jk
′ − βjk

′ )

)
=

=

∫ b

a

∫ 1

0

( ∑
m∈Cj

ψmjkρm(u)e2imtπ

)( ∑

m′∈Cj

ψm′jk′ρm′ (u)e2imtπ

)
dtdu

=
∑

m∈Cj

∫ b

a

∫ 1

0

ψmjkψmjk
′ |ρm(u)|2|e2imtπ|2dtdu +

∑

m6=m
′
ψmjkψm

′
jk
′×

×
∫ b

a

∫ 1

0

ρm(u)ρm
′ (u)e2imtπe−2imtπdtdu =

∑
m∈Cj

ψmjkψmjk
′
τ−1
1 (m)

n
. (4.27)

Hence, using (4.27) we get

sup
v∈Ωq

Var

(
Zjt(v)

)
= sup

v∈Ωq

∑

k∈Ujt

∑

k
′∈Ujt

vkvk
′E(β̂jk − βjk)(β̂jk

′ − βjk
′ )) (4.28)

= sup
v∈Ωq

∑

k∈Ujt

∑

k′∈Ujt

vkvk
′

∑
m∈Cj

ψmjkψmjk
′
τ−1
1 (m)

n

≤ K12
2jν

n
sup
v∈Ωq

∑

k∈Ujt

∑

k
′∈Ujt

vkvk′ I{k=k′} (4.29)

≤ C22jν

n
sup
v∈Ωq

∑

k∈Ujt

|vk|2 =
K12

2jν

n
= V. (4.30)

Now, we are going to use the following lemma.
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Lemma 4.7.3. (Cirelson, Ibragimov & Sudakov (1976)). Let D be a subset

of R = (−∞,∞), and let (ξt)t∈D be a centered Gaussian process. If E(supt∈D ξt) ≤ N and

supt∈D Var(ξt) ≤ V , then, for all x > 0, we have

P
(
sup
t∈D

ξt ≥ x + N
) ≤ exp

(− x2/(2V )
)
. (4.31)

Applying Lemma 4.7.3 with x =
dn−

1
2 l

1
p
j 2νj

4
, V = K1

22νj

n
, N = Cl

1
p

j n−
1
2 2νj and d sufficiently

large we have

P
({

1

lj

∑

k∈Ujt

|β̂jk − βjk|p
} 1

p

≥ 2−12νjdn−
1
2

)
= P

(
sup
v∈Ωq

Z(v) ≥ l
1
p

j 2−12jνdn−
1
2

)
≤

≤ P
(

sup
v∈Ωq

Z(v)) ≥ x + N

)
≤ exp(− x2

2V
) ≤ exp(−cd2 log n) ≤ Cn−p.

We will show that assumption (F2) holds for 1 ≤ p < 2. It is easy to see that the following

inequalities hold

P
({

1

lj

∑

k∈Ujt

|β̂jk − βjk|p
} 1

p

≥ 0.5d2jνn−
1
2

)
≤

≤ P
({

1

lj

∑

k∈Ujt

|β̂jk − βjk|2
} 1

2

≥ 0.5d2jνn−
1
2

)
≤ Cn−2 ≤ Cn−p. (4.32)

Hence, we have shown that (F1) and (F2) are satisfied for all 1 ≤ p < ∞. Applying Theorems

4.7.1 and 4.7.2, we obtain the upper bounds in (4.20) and (4.21) for α = 0.

For the case α > 0, the estimator is given by f̂n(t) =
∑2j0−1

k=0 α̂j0kφj0k(t). Minkowski’s

inequality leads to

E(‖f̂n − f‖p
p) ≤ 2p−1E(‖

2j0∑

k=0

(α̂j0k − αj0k)φj0k‖p
p) + 2p−1‖

∞∑
j=j0

2j−1∑

k=1

βjkψjk‖p
p. (4.33)

Additionally, using the property of concentration (4.3), inequality (4.22) and the definition

of j0, we have

E(‖
2j0−1∑

k=0

(α̂j0k − αj0k)φj0k‖p
p) ≤ C2j0( p

2
−1)

2j0−1∑

k=0

E(|α̂j0k − αj0k|p) ≤ (4.34)

= (log n)p(ν+ 1
2
)/βn−

p
4 = o(log n−

ps∗
β ), (4.35)
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and

‖
∞∑

j=j0

2j−1∑

k=0

βjkψjk‖p
p ≤ {

∞∑
j=j0

‖
2j−1∑

k=0

βjkψjk‖p}p ≤
{ ∞∑

j=j0

C2j( 1
2
− 1

p
)

( 2j−1∑

k=0

|βjk|p
) 1

p
}p

≤ {
∞∑

j=j0

C2−j(s+ 1
p
− 1

min{p,ρ} )}p = C(log n)−
p
β

(s+ 1
p
− 1

min{ρ,p} ). (4.36)

Inequalities (4.33)-(4.36) lead to the optimal rate of convergence for α > 0. This completes

the proof of Theorem 4.4.2.

4.7.3 Proof of Theorem 4.5.1

Since γ1 ≤ γ(u) ≤ γ2, u ∈ [a, b], for some 0 < γ1 ≤ γ2 < ∞, it is easily seen that

τ d
1 (m,u,M) =

1

M

M∑

l=1

γ2(ul) sin2(2πmul)

4π2m2
³ 1

m2M

M∑

l=1

sin2(2πmul). (4.37)

It follows from (4.37) that for any choice of M and any selection of points u, we have

τ d
1 (m,u,M) ≤ K9m

−2. (4.38)

Using Lemma 4.5.1 and (4.38), it is easy to see that assumptions (4.5) and (4.6) hold. Hence,

we can apply Theorems 4.4.1 and 4.4.2, leading to the proof of Theorem 4.5.1.
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Future Work

In Chapter 2, we considered the problem of estimation of
∫

f 2 given a sample of weighted data

and we constructed an adaptive estimator of
∫

f 2, attaining the minimax rate of convergence

that is optimal in the case of direct data for a smooth class of p.d.f.’s. Moreover, using the

theory of Ibragimov & Khasminski (1991), we derived the information bound for the problem

of estimating
∫

f 2 when weighted data are available.

We now discuss some related questions which remain open. As we mentioned in Chapter

2, the estimation of µw (which is obviously unknown in practice) by µ̂w prevents us from

proving that θ̂ is also asymptotically efficient. We conjecture that this is a general problem

for any estimator of θ =
∫

f 2 based on a weighted sample for the considered class of p.d.f.’s.

However, one may be able to propose an asymptotically efficient estimator of
∫

f 2 based on

weighted data for a smoother class of p.d.f’s, (e.g. Sobolev or Hölder classes).

Moreover, one can investigate whether Assumption 1 (p. 19) can be relaxed. This

assumption is very common in estimation for weighted samples but it is interesting to see

whether milder assumptions, covering also the case of length biased data, w(y) = y, can lead

to optimal theoretical results.

As we mentioned in Chapter 2, the estimator θ̂ can be used in order to estimate the

L2-distance of f and f0, appearing in hypothesis testing for weighted data. Optimality in

hypothesis testing is evaluated by other criteria but such a procedure was beyond the scope of

Chapter 2. Hence, our work can be used as the intermediate step for hypothesis testing when

weighted data are available. Additionally, several statistical procedures using the unknown

quantity
∫

f 2 have not been generalized to the case of weighted data, yet. However, there are

several settings that lead to weighted data sets and our work can be used when procedures
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which have been developed for direct data (see, e.g., estimation of the Pitman efficacy of

the Wilcoxon signed-rank statistic, rank tests based on residuals in the linear model and

estimation of the asymptotic variance of the Hodges-Lehmann estimator) are adapted to

weighted data.

In Chapter 3 we considered the problem of estimating the unknown response function in

the standard Gaussian white noise model. To deal with this problem, we first utilized the

recently developed maximum a posteriori (MAP) testimation procedure for recovering an

unknown high-dimensional Gaussian mean vector. The existing results for its upper error

bounds over various sparse lp-balls were extended to more general settings and compared

with other well-known threshold estimators. These results are of independent interest.

We then applied the MAP testimation procedure in a wavelet context to derive adaptively

optimal global and level-wise MAP wavelet testimators of the unknown response function

in the standard Gaussian white noise model over a wide range of Besov balls. These results

were also extended to the estimation of derivatives of the response function. The efficacy of

the proposed level-wise MAP wavelet testimator in finite sample situations was illustrated

with a simulation study.

Although we considered only quadratic losses in our exposition, we believe that the

obtained results can be extended to more general global losses similar to those in Donoho

& Johnstone (1994b) and Johnstone & Silverman (2004b, 2005). Furthermore, the proposed

methodology can be adapted to derive pointwise optimal level-wise MAP wavelet testimators

of the unknown response function and its derivatives in the standard Gaussian white noise

model, as in Cai (2003). Moreover, in Chapter 3, we have shown that the assumptions

of Theorem 3.3.2 are satisfied by the truncated geometric prior. One can investigate

whether there are other simple parametric priors satisfying all the assumptions of Theorem

3.3.2. Additionally, more explanations on the construction of an appropriate prior πn for

β > 0 are required, since πn for β > 0 does not belong to the class of “standard known”

distributions. Extensions of these results to more general inverse problems can also be

considered. Moreover, a problem that has not been addressed in Chapter 3 is how the

estimation of the standard deviation of the error affects the asymptotic convergence rates.
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Appropriate adjustments are needed for each specific problem at hand, and we hope to

address these issues elsewhere.

In Chapter 4, we considered the problem of estimation of f under the functional

deconvolution model and presented a minimax study under the Lp-risk, 1 ≤ p < ∞. We

now present some possible extensions of our work.

A plaussible question is whether the developed theory can be extended to the case of

L∞-risk.

We studied deconvolution with a box-car type blurring function. This important model

occurs, e.g., in the problem of estimation of the speed of a wave on a finite interval. It turned

out that if M = Mn ≥ c0n
1/3 for some constant c0 > 0, independent of n, and the points

ul, l = 1, 2, . . . , M, were selected to be equispaced, then the asymptotical minimax rates of

convergence in the discrete model with a box-car type blurring function coincide with the

asymptotical minimax rates of convergence in the continuous model.

However, the question remains: if M = Mn → ∞ as n → ∞, but at a rate slower than

O(n1/3), can one select points ul, l = 1, 2, . . . , M, such that the asymptotical minimax rates

of convergence, in the discrete model coincide with the corresponding asymptotical minimax

rates of convergence obtained in the continuous model? And, if for some such M = Mn, the

asymptotical minimax rates of convrgence in the discrete and the continuous models are not

the same, what are the best asymptotical minimax rates of convergence that can be attained

and the best selection of points ul, l = 1, 2, . . . , M? Recent work of Pensky & Sapatinas

(2009c) has given answers to some of these questions under the L2-risk and it will be worth

to investigate extending these results under the Lp-risks, 1 ≤ p < ∞.Atha
na

sia
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59. Härdle, W., Kerkyacharian, G., Picard, D. & Tsybakov A. (1998). Wavelets,

Approximations and Statistical Applications. Lecture Notes in Statistics, 129, New

York: Springer-Verlag.

60. Harsdorf, S. & Reuter, R. (2000). Stable deconvolution of noisy lidar signals. In

Proceedings of EARSeL-SIG-Workshop LIDAR, Dresden/FRG, June 16–17.
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