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Abstract

We first consider the problem of estimating the integral of the square of a probability density
function f on the basis of a random sample from a weighted distribution. Specifically, using
model selection via a penalized criterion, an adaptive estimator for [ f? based on weighted
data is proposed, for probability density functions which are uniformly bounded and belong
to certain Besov bodies. We show that the proposed estimator attains the minimax rate of
convergence that is optimal in the case of direct data. Additionally, we obtain the information
bound for the problem of estimating [ f? when weighted data are available and compare it
with the information bound for the case of direct data. A small simulation study is conducted

to illustrate the usefulness of the proposed estimator in practical situations.

We then consider the problem of estimating the unknown response function in the
standard Gaussian white noise model. We first utilize the recently developed maximum
a posteriori (MAP) testimation procedure for recovering an unknown high-dimensional
Gaussian mean vector. The existing results for its upper error bounds over various sparse
l,-balls are extended to more general settings and compared with other well-known threshold
estimators. The MAP testimation procedure is then applied in a wavelet context to derive
adaptively optimal global and level-wise MAP wavelet testimators of the unknown response
function in the standard Gaussian white noise model over a wide range of Besov balls.
These results are also extended to the estimation of derivatives of the response function.
Simulated examples are conducted to illustrate the performance of the proposed adaptive
level-wise MAP wavelet testimator, and to compare it with three proposed adaptive empirical
Bayes estimation procedures that attain the optimal convergence rate, and one block wavelet
thresholding estimator that is near optimal (up to a logarithmic factor). An application to

real data is also considered.

Finally, we extend the minimax results obtained in the functional deconvolution model

by Pensky & Sapatinas (2009a) under the L2-risk to the case of LP-risk, 1 < p < oo. Lower

X



bounds are given for an arbitrary estimator of the unknown response function when the
latter is assumed to belong to a Besov ball and under appropriate smoothness assumptions
on the blurring function, including both regular-smooth and super-smooth convolutions.
Furthermore, we investigate the asymptotic minimax properties of an adaptive wavelet
estimator over a wide range of Besov balls. Box-car convolutions in the multichannel
deconvolution model are also considered and the results of Pensky & Sapatinas (2009b)
under the L?-risk are extended to the case of LP-risk, 1 < p < oo. A simulation study
is conducted to show that the proposed adaptive wavelet estimator performs well in finite

sample situations.
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Introduction

Chapter 1 is devoted to an overview of the mathematical tools that will be used in the main
Chapters 2-4 of the Thesis.

We first consider the problem of estimation of the integral of the square of a probability
density function (p.d.f) f, i.e., [ f?, given a sample of weighted data. Laurent (2005) recently
proposed an adaptive and optimal (in the minimax sense) estimator of f f? for direct data.
In Chapter 2, we construct an adaptive estimator of [ f?, for p.d.f.’s which are uniformly
bounded and belong to certain Besov bodies. We show that the proposed estimator attains
the minimax rate of convergece that is optimal in the case of direct data. A small simulation
study is conducted in order to assess the performance of the proposed estimator in practice.
Using the theory of Ibramigov & Khasminski (1991), we also derive the information bound
for the problem of estimating [ f? when weighted data are available. A comparison with the
information bound given for the case of direct data (see, e.g., Pfanzagl, 1982) is presented.

Abramovich, Grinshtein & Pensky (2007) have recently proposed a Bayesian testimation
procedure in order to recover a high-dimensional Gaussian mean g = (uq,...,H,) with
independent terms and common variance, under the assumption that u is sparse. Optimality
of the proposed MAP (maximum a posteriori) testimator i* for 1 belonging to strong l,—balls
and weak m,—balls, 0 < p < 2, was established in Abramovich, Grinshtein & Pensky (2007).
In Chapter 3, we first consider the Gaussian sequence model and generalize the results of
Abramovich, Grinshtein & Pensky (2007) for the MAP testimator in several directions. We
then consider the problem of estimating the unknown function f on the basis of observations
from the standard Gaussian white noise model and show that, under mild conditions on the
prior distribution, the global wavelet MAP testimator is asymptotically nearly-minimax over

the entire range of Besov balls B;yq((]), s > %, 0<p,g<ooandC > 0. Then, we show that



an adaptive level-wise MAP testimator f is asymptotically optimal (in the minimax sense),
as the sample size increases, for the same class of functions. These results are extended to the
estimation of derivatives of f. Moreover, we demonstrate that the discretization of the data
does not affect the order of magnitude of the accuracy of the MAP wavelet testimator, under
the sample data model. A simulation study is conducted in order to assess the performance
of the proposed level-wise wavelet testimator in finite sample situations. Additionally, a real
data set is analyzed using five different methods.

Finally, we consider the estimation problem of an unknown function f based on
observations from the functional deconvolution model proposed by Pensky & Sapatinas
(2009a). In Chapter 4, we extend the results of Pensky & Sapatinas (2009a) to the case of
L,-risk, 1 < p < oo. In particular, lower bounds are derived for the L,-risk, 1 < p < oo, of an
estimator of f for both the functional deconvolution model and its discrete counterpart, under
appropriate regularity assumptions on both f and the blurring function g(-,-). Additionally,
an adaptive thresholding estimator of f, which is a generalized version of the estimator
proposed by Pensky & Sapatinas (2009a), is shown to be asymptotically optimal (in the
minimax sense), or near-optimal within a logarithmic factor, as n — oo, in a wide range of
Besov balls. Minimax lower and upper bounds are also given under the LP-risk, 1 < p < o0
for the multichannel deconvolution problem with box-car convolutions under appropriate
assumptions on the number of channels M and the selection points u;, [ = 1,2,..., M.

This work is concluded with a Future Research plan.



ITepiindm

Y10 TpOTO XEQAo YIVETAL Uil AVAOXOTNOT TwV Bacx@v podnuatixwy epyahelwy mou
YENoWoTol0VTHL oTa XURlwe e 2-4 TN didaxToptxc SlaTEBhC.

To mpwto Yéua tne ddaxTophc wou datpBhc elvon 1 extiunon tng tocdTN TG f f? 6tay
0 otaTioTxdg €yel ot dddeor Tou dedopéva ue Bdpog. To avtiotolyo mpdBinua yio dedouéva
Ywelc Bdpog elye ueretniel aro tnv Laurent (2005). M exTiunom auThc TS TOCOTNTAS YTOEEL
va yenowonotniel 6tay oTaToT™HES BLadacieg Tou Eyouv pueAetniel yia dedopéva ywpic Bdpog
YEVIXEVOVTL OTNY TERINTWOT DEdOUEVWY UE Bdpog. 110 BeUTEPO xe@dAoLo TNG DLOUXTOPLXAS LOU
SatpiBric, Teononowdvtas T uédodo nou eiye eooyVel and tn Laurent (2005) yua Sedopéva
Ywelc Bdpog, xataoxevdlouye €va exTinTr ToU omolou 1) ToydTNTA oUYXAONG elvar BEATIOTY
Yoo 0edouEva yweic Bdoog, Yo TNV xAJOT) TWV CUVIRTHOEWY TUXVOTNTASC TOU EIVOL OUOLOUOR(U
peayuévee xou aviixouv oe Besov ywpouc. Eriong €youv yivel xdmolec mpocouot®oelc ol
omoleg BelyVOUV TN TEaXTIXY oNUacia TS EXTUNTEIAS TOU TPOTEIVOUUE OTAV UTARYOUY OT1
owddeon pag dedouéva ye Bdpoc. Xenotwonowwvtag tn Yewpio twv Ibragimov and Khasmiinski
(1991), Sivouue 1o mAnpogoplaxd @EdyUo Yo T TEOBANUL TNS ExTUNoNS TNg TocHTNTOC ff2
oTay dedopéva Ye Bdpog etvan Sladéotua xo T0 GOYXPWOUUE UE TO TANPOYORLIXO PEAYUA OTNV
Tep{nTwoT dedouévwy yweic Bdpoc.

Ov Abramovich, Grinshtein & Pensky (2007) mpdtewvay tn uédodo g ex twv LOTEPWY
ueytotonoinong yio v extiunon evéc Kavovixol (Gaussian) moludidotatou péoou p =
(p1, s -+ o s ) UE aveZdeTNTOUS GPOUC XAl XOWVT] BlHoTopd, XaL OmEDELCAY OTL ETUTUYYAVEL T1)
Béhtiotn TaylTNTA CUYXAMONG OTAV TO OLAVUCUOL [ AVAXEL OF LoYURES X aoVEVELS [-undiec,
0 <p < 2. E10 1tpl10 x€@dhato yevixeboupe o anoteréouata Twv Abramovich, Grinshtein &
Pensky (2007). Axololdoc, Yewpolpe To TEOBANUA TNg exTiUNoNG TNg dYVWoTNG cUVALTNOTNS

[ ue Bdorn tic moapatnerioeic and to Kavovixd povtého heuxol VoplBou. Meletolue 1



ouuneppopd wag extuntetac e f 1 onola Boacileton oty MAP uédodo xa dev e€optdrton and
TIC AYVWOTEC TOUPUUETEOUS TNG xAdomS. AelyVouue OTL 1) TROTEWOUEVY) EXTIUATELN ETLTUY Y AVEL
aoLUNTOTXA TN BEATIoTN TayUTnTa ouyxhiong yio cuvoapThoelc f Twv omoiwv ol wavelet
OUVTEAEGTEC avixouv o€ Wwa Besov undda By (C) ue s > i, 0 <pqg<oo C>0 Ta
AMOTEAEGUATO AUTY EMEXTEIVOVTAL XAl OTNY EXTIUNCT TwV Tapaywywy e f. Eniong delyvouue
OTL 1) YEHON OLoXEITWY DEBOPEVODY OEV eMNEEdlel TNV TayUTNTA GUYXAIONG TNG TPOTEWVOUEVTS
EXTWNTEIOG XATW and To Yoviého autd. Mia aprdunties) ueAéTn yenoloroteitar yior va Bellet
NV an6d00T TNG TEOTEWOUEVNG exTiuTEG oty edln. Enlong, nepihopfdveton 1 avdiuon
€VOC GLUVOAOU TPAYHATIXWY OEDOUEVWY UE TN YPNOT TNG TEOTEWVOUEVNS EXTIUNTELAS XU GAAWY
EXTIUNTELOV.

Téhog, Vewpolye to mpofAnua Tng extiunone tng dyvewotne ouvdptnone f o6tav oL
TORUTNENOELS TROEPYOVTAL O TO UOVTEAO cuvapTnotoxic oLVEAMENC mou elye ewoayVel and
toug Pensky & Sapatinas (2009a). Yto tétapto xEQEAMO ETEXTEVOUYE TO ATOTEAEOUOTO TV
Pensky & Sapatinas (2009a) oty nepintwon tou LP ogdhuatog, 1 < p < 00. Luyxexpiupéva,
olvouue To xdTe @edyuata yiot 1o LP ogdiya, 1 < p < oo, wioag extiurtelog e f oTo uoviélo
OLYORTNOLXHS GUVENENS XL OTO avTIOTOLYO BLoXEITO LOVTEND, XATw amtd XATIANAES GUVITiXES
Téve oty f xon T ouvdptnor cUVENENS g(-, ). LT cUVEYELX TPOTEVOUPE Uia eEXTIUATEL TNS
f, 1 omola ebvon wa yevixeupévn éxdoon e extyftelac tov Pensky & Sapatinas (2009a),
xou Oetyvouue OTL elvor aoLUTTWTIXG BEATIOTY, 1) OYedOV-BEATIOTY), exTOC and Eva hoyoprluixd
ToEdyovTa, Yl Uit Eupela xhdon and Besov umdieg.

Téhog, yivovtor xdmoteg elonyroelg yiow VEUATA CUVOQT| UE T1) OLOAUXTOELXT oL DLoTeldr| To

ornola Yo uropovoay vo uehetnloly oto UEALOV.



Chapter 1

Overview on Wavelets and other
statistical techniques

This chapter is an overview on wavelets and other statistical techniques which are going to be
used in the following three chapters of the Thesis. For a detailed review of wavelets in various
statistical applications and appropriate software see, e.g., Antoniadis (1999), Abramovich,

Bailey & Sapatinas (2000) and Antoniadis, Bigot & Sapatinas (2001).

1.1 Wavelets

Wavelets consist an orthonormal basis with local properties in both frequency and time. For
this reason they are called a local basis. In this section we will briefly discuss multiresolution
analysis (MRA), Haar and Meyer wavelets, the discrete wavelet transformation, the sample

data model and boundary wavelets.

1.1.1 Multiresolution Analysis

A multiresolution analysis (MRA) of L?(R) can be used to define wavelets. A MRA of L*(R)

is a sequence of closed subspaces V; of L*(R), j € Z with the following properties.

1. Nesting property: V; C Vji;.

2. Density property: ;e Vi = L3(R).

3. Separation property: ﬂjeZ V= {0}.



4. Scaling relation: f(t) € V; <= f(2t) € Vj1.

5. There is a scaling function ¢ € V{ such that {¢(t — k) }rez is an orthonormal basis for

Vo.

Using the nesting property, we can obtain W;, the orthogonal complement of V; in V;;. The

density property leads to

L*(R) = @ezW; = Vo 0 W

Using properties (4) and (5), it is easy to see that {¢;x(x) = 2% (2 — k), k € Z} forms an
orthonormal basis for V;. Since the scaling function ¢(z) € Vy C Vi, ¢ can be written as a
linear combination of bases of V}
Z a(k)p(2z —
k
where a(k) = 2 [ ¢(2)p(2r — k)dr and 3, |a(k)]> = 2. The wavelet space Wy is the
orthogonal complement of Vj in Vi and Wy C V4. Therefore, the mother wavelet ¢(z) satisfies

the following relation

Zb o2z — k

where b(k) = (—1)*a(1 — k), so that 1 (z) is orthogonal to ¢(x). It is easy to see that
{Yjp(z) = 254)(x — k),k € Z} is an orthonormal basis for W; and {¢;(x),j, k € Z} is an

orthonormal basis, namely ‘wavelets’, of L?(R). L?(R) can then be expressed as follows

L*(R) = ®ezW; = Vo 20 W = Vi, @jzjp Wi,

where jo is some integer. Therefore, any function f € L*(R) can be written in the following

ways

©) =D dptin(e) = D condor() + Y Y dipthix()

§kEL kez >0 keZ
= D cinbion() + > ditju()
keZ J>jo kEZ

where ¢j, = [ f(2)pjr(z)dzx and dj, = [ f(x)(x)dx



1.1.2 Different wavelet bases

There are several examples of wavelets. The Haar basis is known since 1910. Strang (1993)
and Vidakovi¢ & Miiller (1994) start to explain wavelets by the Haar wavelet which is simple.

The Haar wavelet function is defined by

1, if0<z<l,
¢(z) =

0, otherwise,

and is called Haar father wavelet. The Haar mother wavelet is defined by

1, ifo<z<i,
() =49 -1, ifI<z<1,
0, otherwise.
Haar wavelets have good properties such as simplicity, orthogonality and compact support.
However, they are discontinuous and cannot be used to approximate smooth functions. Meyer
(1985) developed orthonormal wavelet bases with infinite support and exponential decay. A
key development was the work of Daubechies (1988, 1992, Chapters 6 and 7) who derived
two families of orthonormal wavelet bases (the so-called extremal phase and least asymmetric
families) which combine compact support with various degrees of smoothness and numbers
of vanishing moments. Coiflets (Daubechies, 1993) and spline wavelets (Chui, 1992) are
other examples of wavelet bases that are used in practice and several additional wavelet
families (orthogonal, biorthogonal and semiorthogonal) have also been developed during the

last decade.

1.1.3 Meyer Wavelets

Let
fo) = [ e
0
for f € L?[0,1]. We define the ‘mother’ Meyer wavelet ¢, in the frequency domain as
e sin(Fr3lE - 1)), if 3 <[¢] <

%
D(§) = e cos(Fr(3lEl - 1)), if § < ¢ <

0, otherwise,

W wWIN



where v(+) is a smooth function such that

0, if z <0,
v(z) =
1, ife>1

and v(z) +v(l —z) = 1.
We define
bin(z) = 250(2x — k), zeR.

We can write

~

P(§) = ur(§) — ivx(§),

where 2 = —1. Let f be a periodic function in L?[0, 1] and let

0ue) = 3 (e +1)

leZ

for j € ZT and k = 0,1,...,27 — 1 be the periodized Meyer wavelet on [0, 1]. Tt is easy to see

that

02.(1) = (D), 1€,
Hence,

5 (1) = wji (1) — ivyu(l)
and

0%, = / F@)0s@)de = S REOu®) — 3 SFOu(0),

lEZ l€Z

where R(z) and (x) are the real and imaginary parts of = respectively.

The ‘father’” Meyer wavelet ¢ is written in the frequency domain as

L if [¢] < 3,
$(€) =4 cos (gu(3|§| - 1)), if 3 <€ <2,
0, otherwise.
Let
bie(r) = 259(Px — k), zER
and

D2 (1) =Y dila+1)

leZ



for j € ZT and k =0, ...,27 — 1 be the ‘father’ Meyer wavelet on [0, 1]. It is easy to see that

0%.(1) = o), L€

1.1.4 Discrete Wavelet Transformation

The discrete wavelet transform (DWT) (see, e.g., Nason & Silverman (1994) and Edwards
(1992)) is an orthogonal transform applied on discrete data. DWT requires input data
with the sample size of a power of 2, a high-pass filter and a low-pass filter. At each
stage, a sequence of smoothed ¢ and detailed coefficients d is produced. Low-pass filter
returns smoothed data, while high-pass filter returns detailed data. The low-pass filter h is

a convolution followed by dyadic decimation, as in Mallat (1989):

Nj,—1

Ci;_l = Z h(n — 27{7)5}71 = Z h(m)cfn—&—Qk = Z h(m)cjrﬁwk'

neZ meZ
The high-pass filter g acts in the following way in order to return detailed coefficients

di_l = Zg(n - 2k)CZL7

nez

where c)f, e}, ... cN | is aset of N = 2M data. The superscript M means that we have the
original data. Wavelet coefficients are obtained by applying two filters and a downsampling
filter. By applying two filters and an upsampling filter on the wavelet coefficients, we obtain
the original data. Computation of the forward and inverse DWT would be expected to
require O(n?) operations. However, due to its construction, it only requires O(n) operations
and it is faster than the fast Fourier transform (FFT) which requires O(n log (n)) operations.
Let N = 2M be the sample size. Donoho & Jonhstone (1995) used the matrix form

of DWT, i.e., w = Wy, where the vector w contains the wavelet coefficients of a vector y
of size N. Due to the orthogonality of the transform matrix W, the input data y can be
reconstructed as follows y = W7w, or equivalently y; = > wjxWik(i). Since VNW; k(i)

approximates Q%w(?% — k), the data y;, i=0,1,..., N — 1, can be expressed as

Yi = Zdjkﬁ/}jk(%)? (1.1)
gk
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where djj, ~ w;,/VN (see, e.g., Vidakovic (1999)).
In Chapter 4, we consider the fast O(n logs(n)) forward and inverse discrete, periodized Meyer
wavelet transforms due to Kolaczyk (1994). These algorithms take place in the frequency

domain and associate each level of coefficients with a projection of the signal onto a frequency

band.

1.1.5 Minimax Risk

The minimax risk associated with a statistical model { Py, € O} and with a semi-distance
d is defined by

R; = infsup Ee[dg(én, 0)],
0, 6O

where the infimum is taken over all estimators (see, e.g., Tsybakov (2009), p. 78). Consider

the following inequalities.

limsup ¥, *RE < C, (1.2)
liminf ¢ ?R* > c, (1.3)

where ¢, C' are positive constants, independent of n. A positive, decreasing sequence {1, }5°
is called an optimal rate of convergence of estimators on (©,d) if (1.2) and (1.3) hold. An
estimator 0 satisfying

sup Eo[d*(6;;,0)] < C'y2,
0cO

where {1/, 15, is the optimal rate of convergence and C" < 0o is a constant, independent of

n, is called a rate optimal estimator on (0, d).

1.1.6 Sampled data model and boundary wavelets

The theory of nonparametric function estimation is usually based on the standard Gaussian

white noise model, i.e.,

dY (1) = f(t)dt + \/LN dw(t), teo,1], (1.4)
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where W is the standard Wiener process. Carrying out a wavelet decomposition of the
function f(¢)+N~2dW (t), we obtain independent observations Yji, ~ N(0ji, ). In practice,
however, instrumentally acquired data that is digitally processed is typically discrete. Such

settings can be represented by the sampled data model, that is,

?

Y= S+

)‘{'Ei, (15)

where ¢; are independent N (0, 1) random variables. The discrete wavelet transform of N 2y

yields Y/]k ~ N0, %) In much of the existing literature the difference between Y}, and Yﬂk
is ignored. Estimators are usually motivated, derived and analyzed in the standard Gaussian
white noise model (1.4) and are applied to discrete wavelet transform data, in practice. An
interesting problem is to investigate the risk bounds of an estimator based on observation
Yji, from model (1.5). Jonhstone & Silverman (2004) used boundary-modified coiflets to
show that the discrete wavelet transform of finite data from (1.5) asymptotically provides a
close approximation to the wavelet transform of the standard Gaussian white noise model
(1.4). These results were used in Johnstone & Silverman (2005) to prove that discretization
of the data does not affect the asymptotic convergence rates of the upper risk bounds of the
proposed empirical Bayes estimators.

Consider a scaling function ¢ with vanishing moments of order 1,2...,R — 1, and R
continuous derivatives, for some integer R and a mother wavelet ¢/ which is orthogonal to all
polynomials of degree R — 1 or less. Additionally, both ¢ and ¢ should be supported on the
interval [—S + 1, 5] for some S > R. Coiflets satisfy these properties (see, e.g. Daubechies,

1992, Section 8.2). Let
¢, k=-R-R+1,...,R—2,R—1

and

VP, k=-S+1,-S+2,...,5-2,5—-1

be the boundary scaling functions and boundary wavelets, respectively. The support of these

functions is contained in [0,2S — 2] for k¥ > 0 and in [—(2S — 2),0] for k& < 0. The coarse



resolution level L should satisfy 65 — 6 < 2%, Let
2%¢kB(2jI), for ke0:(R—-1),
bjr(z) = 2%@5(23@ — k), for ke (S—1): (2 - 25),
258 | (2(x— 1)), for ke (2 —R): (2 —1),

and

234pB(2x), for k€ 0:(S—2),
Yir(r) = 2%w(2jx — k), for ke (S—1): (29 - 9),
258 L (20(x — 1)), forke (2 —S+1): (2 —1),

be the scaling functions and wavelets, respectively.

1.1.7 Constructing wavelet coefficients from discrete data

Let W be a R x R matrix and U be a S x R matrix defined by

0

and

12

Since U is of full rank, A can be constructed to be an R x S matrix satisfying ALU = W.

Similarly, the matrix A® satisfies AU = W, where

0
W,d:/ '¢P (v)dx, k=1,2,...,R;l=0,1,...,R—1,

— 00

Ujl:(_l)ljl, J:1’2,’S7l:071’,R_1

For a given sequence Yy, Y3, ..., Yy_1, we define the preconditioned sequence P;Y by
S ALY, for ke 0:(R—1),
(BY)r =4 Y, forke (S—1): (N —29),

SOAR L Yaog, forke (N —R): (N -1).

Let Y be the boundary corrected discrete wavelet transform of N _%PJY and ¢4 be the

maximum of the eigenvalues of AZ(AX)T and AR(AR)T. Due to the orthogonality of the
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boundary-corrected discrete wavelet transform, the variance of the elements of Y is bounded
by CWA Let Y (f@k L<j<JS—-1<k<2— S) be the array of interior coefficients.
It is an uncorrelated array of variables with variance % For a detailed review of sampled
data model and boundary coiflets, see, e.g., Antoniadis (1994) and Johnstone & Silverman

(2004a).

1.1.8 Wavelet Series Estimator

Suppose that we have the data
yi=f(x)+e, i=1,....n (1.6)

where f is a function on [0,1] and €;s are i.i.d. random variables with mean zero and common
variance 2. Unlike parametic models, when a nonparametric regression model is considered,
we assume that f belongs to some infinite dimensional collection of functions.

Assume that we have data from model (1.6). By using (1.1) and thresholding small
wavelet coefficients, a smooth curve is obtained. Hence, we can construct a wavelet series

estimator as follows

f(x) = Z S(djp)n(2),

~

where §(d,i) is a hard or soft thresholding rule given respectively by

. 0 if |du| <A
CZJ' if ‘djk’>)\7
0 if |du] <A
0(djp) = ¢ djp— X if  |d] > X
di + X if |dg] < =),

where czjk = %2?21 vtk (z;) and A > 0. Such a wavelet series estimator was proposed by

Donoho & Johnstone (1994a)

1. By applying DWT on the data y = (y1,...,y,) with n = 2M (w=Wy), obtain wavelet

coefficients w.
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2. Remove wavelet coefficients smaller than a chosen threshold (A) and ‘keep’ or ‘shrink’

the other wavelet coefficients in order to construct new wavelet coefficients w* from w.

3. Obtain fW, by reconstructing f from w*, using the inverse discrete wavelet

transformation (IDWT) (f% = WTw*).

For a smooth function, wavelet coefficients at the coarsest resolution level should not be
removed. Hence, we have
Z CiokPjor(T) + Z Z O(dj )
Jjzjo k

LS ¥idjor(x;). Under this scheme we obtain thresholded wavelet coefficients

where ¢, = =

using either the hard or soft thresholding rule. Thresholding allows the data itself to decide
which wavelet coefficients are significant. Hard thresholding (a discontinuous function) is
a ‘keep’ or ‘kill’ rule, while soft thresholding (a continuous function) is a ‘shrink’ or ‘kill’
rule. Donoho & Jonhstone (1996) showed that this simple nonlinear method using hard
thresholding achieves a risk within the logarithmic factor of the optimal minimax risk for
either global or pointwise estimation. For more details on soft, hard or other types of

thresholding in wavelet estimation see, e.g., Antoniadis, Bigot & Sapatinas (2001).

1.2 Penalized Model Selection

The basic idea of model selection is to assume that the unknown parameter may be well
approximated by some family of models and estimate it under this assumption, although we
know that this might not be the case. Suppose that we have at hand a family of models.
The risk (or risk bound) corresponding to a given model is the sum of two components: a
variance component which is proportional to the dimension of the model and a bias term
that it is equal to the square of the distance between the true parameter and the model and
results from the fact that we use an approximate model. If we knew the parameters, the
optimal model would be the one that minimizes the risk or risk bound. However, in practice,

A

we should develop a statistical procedure m(Y) or D(Y;);>1 in order to choose the model
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from the data that has a risk which is close to the optimal risk. Model selection actually

consists of two steps:

1. Choose a family of models S,,, with m € M, where M is an appropriate set of indices,

and a collection of estimators §,, with values in S,,.

2. Choose a value m and set S; as the proposed estimator. The goal of model selection
is to choose an estimator with a risk that is as close as possible to the minimal risk of

the estimators §,,, m € M.

Model selection has various statistical applications in a wide range of models, see, e.g.,

Barron, Birgé & Massart (1999), Birgé & Massart (2001) and Massart (2007).

1.3 [,-balls and Besov spaces

1.3.1 Minimaxity over weak and strong [,-balls

Suppose that u = (p1,...,pn). Let ||pllo = 8{¢ : s # 0,i = 1,...,n}. An ly-ball is defined
by

lo(n) = {n € R" : ||pullo < nn}.

An [p-ball can be described as the set of vectors where the proportion of non-zero entries is

bounded by n. A weak [,-ball, m,(n), 0 < p < oo, with radius 7 is given by

n n
my(n) = {nw € R" : |u|u) < n(;)

B =

yi=1,...,n},
where |p|(;) is the i—th largest absolute value of the components of x. Finally, a strong [,,-ball
l,(n), 0 < p < oo, with radius 7 is given by

{NER"3%Z?:1’M1|IJ§"7P}7 0<p<oo

lp(n) = )
{peR™: |u| <nn Vi=1,2,....,n}, p=occ.

The above sets represent different ways to measure sparsity. An important relationship

between weak and strong [,-balls is as follows

L(n) Smy(n) L 1;(n), p >p,
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(see, e.g., Abramovich, Grinshtein & Pensky, 2007).
Let
Yi = pi + €, (1.7)

where €; «~ N (0, 0?). Define

R, (l,(n)) = inf sup E|a— pl3,
B pelp(n)

where the infimum is taken over all estimators (i.e. measurable functions) i of p based on
observations from (1.7). Donoho, Johnstone, Hoch & Stern (1992), Donoho & Johnstone

(1994b, 1996) and Johnstone (1994) gave rates of convergence R, (F(n)), where

l07
Fn)=4 1, 0<p<oo, or

my, 0 <p<oo.

These rates will be used in the main chapters 2-4 of the Thesis.

1.3.2 Besov spaces and Besov balls

We define A f(z) = f(x+¢) — f(x), A%2f(x) = A(A.f)(z) and similarly AF(zx) for positive

pfi(t, f,m) —sup{/ |ARf | du} .
le|<t
Then, for R > s, we define

B; [0,1] = {f periodic : [/01 <M>r%] ' < oo},

with the integral replaced by the sum when r = oo and/or m = oo. In particular, for

integer R. Let

f e (0,1,
f= Zﬂjk\l’jk € B; ,[0,1] <= Zgj(s+1/2—1/7r "( Z Bl )r/ﬂ .
r 320 0<k<2i
The parameter s measures the degree of smoothness of the function, while the integration

parameters 7w and r indicate the type of norms used to measure smoothness.



Chapter 2

Adaptive Quadratic Functional
Estimation of a weighted density by
model selection

This chapter of the thesis consists of two main theorems and their proofs. Theorem 2.3.1
shows that the minimax rate of convergence, that is optimal in the case of direct data, can be
also attained by the proposed estimator for # = [ f? in the case of weighted data. Theorem
2.5.1 derives the information bound for the problem of estimating § = [ f?, when weighted

data are available.

2.1 Introduction

Let X3, X, ..., X, be independent and identically distributed (i.i.d.) random variables with
cumulative distribution function (c.d.f.) F' and probability density function (p.d.f) f with
respect to the Lebesgue measure on the real line R = (—o00,00). In practice, it sometimes
happens that such direct data are not available. There are several settings that lead to
weighted data sets. Weighted distributions are used in statistics to model sampling in the
presence of selection bias. Observations which do not have an equal chance of being selected
lead to this sampling scheme which can be described in the following way: let Y;,Y5,...,Y,

be i.i.d. random variables from a weighted distribution with p.d.f. g, given by

gu(y) = ————, (2.1)

17
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where the weight function w is known, satisfies w(y) > 0 for all y and u,, = E(w(X)) < oo
(see, e.g., Patil, Rao & Zelen, 1988). The restriction w(y) > 0 for all y is necessary for
identifiability reasons. This constraint guarantees that g, is indeed a p.d.f. (see, e.g., Vardi,
1982, 1985).

When the probability that an observation is selected is proportional to its size, i.e.,
when w(y) = y, length-biased data arise. Meta-analysis, the visibility bias in aerial survey
techniques, line transect sampling, and sampling from queues or telephone networks are some
examples of settings where weighted data arise (see, e.g., Cox, 1969; Vardi, 1982).

Cox (1969) proposed an estimator of F' given by
F(y) = n_lﬂw Z w_l(}/;)]l(foo,y}(Y;))
i=1

where i, = n( ?:iw_l(}/;))_l and I,(y) = 1 if y € A and 0 otherwise. Hence, this
estimator can be interpreted as the empirical distribution function for weighted data. Vardi
(1982, 1985) showed that F' is the nonparametric maximum likelihood estimator of F' for
this case, and that fi,, is a y/n-consistent estimator of .

Kernel estimators of f for weighted data from model (2.1) were proposed by
Bhattacharyya, Franklin and Richardson (1988) and Jones (1991), while their multivariate
extensions were considered in Ahmad (1995). Asymptotic properties of these estimators
were considered in Wu (1995) and Wu & Mao (1996), for a Holder class of p.d.f’s. A
Fourier series estimator of f for weighted data from model (2.1) was proposed by Jones &
Karunamuni (1997), while a transformation-based estimator was suggested by El Barmi &
Simonoff (2000). Efromovich (2004a) suggested a blockwise shrinkage estimator of f for
weighted data from model (2.1) and showed that this estimator is sharp minimax, that is,
the proposed estimator attains the optimal constant and rate of convergence, for a Sobolev
class of p.d.f.’s. Additionally a second-order sharp minimax estimator for F', via a projection
on trigonometric bases, and of f by differentiaton, for an analytic class of c.d.f.’s, was derived
in Efromovich (2004b).

Let X be a random variable with c.d.f. F' and p.d.f f with respect to Lebesgue measure
on the real line R, and let f € L?(R) (the space of squared-integrable functions on R). We

consider the problem of estimation of [ f?, assuming f belongs to some smooth class of
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p.d.f.’s. This functional appears, e.g., in the Pitman efficacy of the Wilcoxon signed-rank
statistic, in rank tests based on residuals in the linear model and in the asymptotic variance
of the Hodges-Lehmann estimator (see, e.g., Aubuchon & Hettmansperger, 1984; Draper,
1988; Ritov & Bickel, 1990). Additionally, an estimate of this quantity can be used in test
statistics based on the L2-distance (see, e.g., Fromont & Laurent, 2006; Butucea 2007).

If direct data are available, then optimal solutions to this problem are well known. Bickel
& Ritov (1988) proposed an estimator of [ ( f(k))2, where f*) is the k-th derivative of f,
for p.d.f.’s satisfying the Holder condition on f™ with smoothness parameter a. Although
their estimator is asymptotically efficient when m + a > 2k + 1/4 and rate optimal for
k< m+ a < 2k-+1/4, it is non-adaptive since it depends on unknown parameters. Birgé
& Massart (1995) proposed non-adaptive, \/n-consistent estimators for functionals of the
form [ o(f, f',..., f®,), for f belonging to some smooth class of p.d.f.’s with smoothness
parameter s satisfying s > 2k + }1, and proved that [ ¢(f, f',..., f®)..) cannot be estimated
at a rate faster than n= 71 if 5 < 2k + +. Laurent (1996, 1997) extended these results and
built non-adaptive and asymptotically efficient estimators of more general functionals.

Finally, Laurent (2005) constructed an adaptive and asymptotically optimal (in the
minimax sense) estimator of [ f?, for p.d.f’s belonging to some smooth class of densities. We
construct an adaptive estimator of [ f?, when weighted data are available. An estimate of
this functional could be used when statistical procedures developed for direct data (e.g., tests
based on L2-distance) are adapted to weighted data. The proposed estimator is shown to
attain the minimax rate of convergence that is optimal in the case of direct data for the same
class of p.d.f.’s, under the assumption that the biasing function w(y) is bounded away from
0 and oo. The information bound for the problem of estimating [ f? when weighted data are
available is also derived and compared with the information bound for the case of direct data
(see, e.g., Pfanzagl, 1982; Bickel & Ritov, 1988; Laurent, 1996). A small simulation study
is conducted in order to illustrate the usefulness of the proposed estimator in finite sample

situations.
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2.2 Estimation of [ f? using weighted data by model
selection

We consider below the problem of estimating § = [ f? based on a weighted sample from
model (2.1), for p.d.f.’s which are uniformly bounded and belong to a certain Besov body.
The approach adapted, modifies the method used by Laurent (2005) for the case of direct
data, borrowing also ideas from Jones (1991), Jones & Karunamuni(1997) and Brunel, Comte
& Guilloux (2007) in order to take into account the selection bias. We project f onto the
space generated by the constant piecewise functions on the intervals (%, %], where k € Z

and D is a natural number. The projection of f onto this space is given by

fD = Z QK. D Pk.D,

kEZ

where py, p = \/E]I( m} and oy p = [ fprp-. It is easy to see that
D

3

iy = n_l Zzzpkp kaj;) (2.2)

1<i,j<n k€Z
Tij

is an unbiased estimator for Op = [ f3. Assumption 1. Let w be a real-valued function
satisfying 0 < wy < w(y) < wy < oo for all y € R. Under Assumption 1, and for uniformly
bounded densities f, i.e., || f|lcc = sup,eg|f(y)] < M for some finite constant M > 0, it is

easy to check that

B0~ 0 < { (00 - 07+ L) (13 + 1) |

n> n
where C'(M,w) is an absolute constant depending on M, w; and wy. Under Assumption 1

and for uniformly bounded densities, it is easy to check that
71 2 2 D 1
Bl — 0)* < {0 — 07 + COLw)( 5+ )},

where C'(M,w) is a positive constant depending on M, w; and we only with M > 0 and
[flloo < M.

According to the ideas presented in Laurent & Massart (2000), the optimal choice of D

should minimize the quantity 6 — 6p + \/TB or, equivalently, maximize the quantity 6p — \/TE.
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Therefore, we consider the following estimator

6 = sup (éD — pen(D)) , (2.3)
DeDy
where pen(D) is given by
K ~
pen(D) = ﬁ\/(eD + 1) Dlog(D +1), (2.4)

for some constant x > 0. However, pu,, is unknown in practice and therefore 6p should be

replaced by

é n_l Zzzpkp ka},;)’ (2.5)
1<:7éj]<n keZ J

where fi,, is a y/n-consistent estimator of y,, (see Section 4.32). Therefore, a natural adaptive

estimator for § = [ f? is given by

0 = sup (éD - penu(D)> ) (2.6)
DeD,,
where pen, (D) is given by
K ~
pen, (D) = E\/<9D + 1) Dlog(D + 1). (2.7)

In the sequel, the notation C' is used for absolute constants whose values may vary from
one line to another. The dependency of a constant on some parameter or the bounds of the
weight function is implied in the following way: For example C'(«, R, M) denotes an absolute

constant depending on «, R and M, while C(w) denotes a constant depending on w; and ws.

2.3 Upper risk bounds

Let ¢(x) = Lo1)(z) and (x) = I[[O’%](x) - ]I(%J](:c), and for any j € N, k € Z, let

Ojp(x) = 2001 (P2 — k) and  gu(e) = 22T (P2 — k) =Ty (P2 - k)],

NM—‘

Then, the functions {¢x, ¥ : j > J, k € Z} forms an orthonormal basis for L*(R), which
is the well-known Haar basis of L?*(R). Therefore, any f can be represented (in the L*-sense)

by a Haar series as

F=Yam(Dbm+ D) Bin(Fs,

kEZ j=J kez
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where aji(f) = [ fou and B,(f) = [ fir. Let now F(a, R, M) be the class of p.d.f.’s f
which are uniformly bounded by some finite constant M > 0 and the sequence of coefficients
onto the Haar basis belongs to the following Besov body
Bapoo(R) = {f | B(f) = (Bir)jzapezs Y B < RP279°,Wj > T},
keZ

for some finite constants a, R > 0, that is, we consider the class of p.d.f.’s

Fla, B, M) = {f | B(f) € Baa.oo(R), [ flloc < M} (2.8)

Theorem 2.3.1 below shows that the proposed adaptive estimator of 8 = [ f? based on
weighted data converges at the rate which is optimal in the direct data case, uniformly over

the class of p.d.f.’s F(a, R, M) given by (2.8) for all o, R, M > 0.

Theorem 2.3.1. Let Y1,Ys, ..., Y, be i.i.d. random variables from a weighted distribution
with p.d.f. g, given by (2.1), with weight function w being continuous and satisfying
Assumption 1. Consider the class of p.d.f.’s F(a, R, M) defined by (2.8) with o > 0, and let

D,={D|DeN,D<n?/log’(n)}. (2.9)

There exists some constant ko > 0 such that if pen, (D) is given by (2.7) for all D € D,, with
K > Ko, then, there exists some ng := ng(c, R, M, w) such that 0, given by (2.6), satisfies the
following inequalities

o Fora>1/4,
- Cla, R, M
sup  E(0— )2 < My
fEF(a,R,M) n
o for0<a< %
R l R2 8a/(1+4a)
sup  E(0—0)*<C(a, R, M,w) (M) :
feF(a,R,M) n

Remark 2.3.1 Theorem 2.3.1 gives a uniform bound of the mean squared error of é,
leading to the conclusion that 6 is an adaptive and /n-consistent estimator of § = [ f2,

uniformly over F(a, R, M) with a > }1, and it also achieves the minimax rate of convergence

( Viogn >4a/(1+4a

> ) which is optimal (in the minimax sense) in the case of direct data when

0<a< %1. The fact that the minimax rate of convergence that is optimal in the case of

direct data can be also attained in the presence of selection bias is consistent with analogous
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results for density estimation (see, e.g., Wu, 1995; Wu & Mao, 1996; Efromovich, 2004a) and
distribution estimation (see, e.g., Efromovich, 2004b).

Remark 2.3.2 The estimator 6 can be used in tests of the null hypothesis Hy : f = fo,
based on the L?-distance in order to estimate [ (f — fo)?, in the case of weighted data.
More precisely, under the assumptions of Theorem 2.3.1, the L?-distance of f and f; can be
estimated by 0 — 13— 20w >0, % at the minimax rate of convergence that is optimal

in the case of direct data.

Remark 2.3.3 If §(f) € Ba2.0o(R) with a > 1/2, then f is uniformly bounded and the
restriction ||f|loc < M is not needed in the definition of F(«, R, M) (see, e.g., inequality
(8.15) of Proposition 8.3 in Hérdle, Kerkyacharian, Picard & Tsybakov, 1998).

Remark 2.3.4 The simple projection estimator 6, (i.e, Op given in (2.5) with D = n) can
be shown to be uniformly \/n-consistent for all f € F(«, R, M) with o > i. On the other
hand, in addition, the penalized estimator given by (2.6) also attains the minimax rate of
convergence, that is optimal in the case of direct data, for all f € F(a, R, M) with 0 < o < i.
Furthermore, it performs better in finite sample situations, as it will be illustrated in Section
2.4.

Remark 2.3.5 The assumption 0 < w; < w(y) < wy < o0, y € [0,1], is very common
in density estimation for weighted data (see, e.g., Efromovich, 2004a; Brunel, Comte &
Guilloux, 2005; Wu & Mao, 1996). The only difference with Assumption 1 considered above
is that we require 0 < w; < w(y) < wy < oo for all y, in order to cover the case of densities
with non-compact support. Below, we report some examples that arise in practical settings

leading to weighted data with weight function satisfying Assumption 1.

(i) Let 1 —w(y) be a proportion of the frequency of the variable X that is missing (see,
e.g., Efromovich, 2004a). Then, weighted data from model (2.1) arise. Let w(y) = 0.1
for y < 0, w(y) = 09y +0.1 for 0 <y <1 and w(y) = 1 for y > 1. The missing
proportion is constant for y < 0, decreases in the interval [0, 1] and remains 0 for
y > 1. A generalization of this weight function is w(y) = b for y < 0, w(y) = cy + b,
for 0 <y < 17_1’ and w(y) =1 for y > 17_1’, 0 < ¢,b < 1, where the missing proportion

is constant for y < 0, decreases in the interval [0, 17_17] and remains 0 for y > 17_17
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(iii)
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Line transect sampling is another example where weighted data arise (see, e.g.,
Efromovich, 2004a). If we are interested to estimate the abundance of plants or
animals of a particular species in a given region, we can use line transects. This
essentially means that an observer moves along fixed paths and includes the sighted
clusters of objects of interest in the sample. It is obvious that larger clusters have a
larger probability to be included in the sample. An appropriate weight function would

bew(y):cy+b,for0<y<%andw(y):lfory>%’,0<c,b<1.

The purpose of a photographic survey described by Patil (2002) was to estimate
the abundance of the deep-sea red crab. The data can be analyzed using the
composite weight function of the form w(y) = (a + by)v(y,d) for 0 < y < ¢ and
w(y) = (a + bc)v(y,0), for y > ¢, where a,b > 0, ¢ is a large positive constant and the
sighting function v(y, 0) represents the sighting-distance bias that is usually bounded

away from zero.

Meta-analysis studies the publication-selection bias and the heterogeneity that might
exist among different studies. Appropriate weight functions that have been found
include, (a) half-normal model w(y) = exp[—Bp*(y)] and (b) negative exponential
model w(y) = exp[—pFp(y)], where 5 > 0 and p(y) is the P-value when the resulting

test statistic takes the value y (see, e.g., Patil & Taillie, 1989).

2.4 Simulations

We present a small simulation study to illustrate the usefulness of the proposed estimator in

finite sample situations. We use the weight function

1.107% if y < 1.1079,
w(y) =4 vy if 1.107% < y < 40,
40 if y > 40,

and five different distributions, i.e., (I) xy?—distribution with 3 degrees of freedom, (II) Beta

distribution with parameters a« = 3 and § = 1, (III) Beta distribution with parameters

a=>5and § =4, (IV) Beta distribution with parameters & = 5 and f = 2, and (V) Gamma
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Figure 2.1: MSE over 50 replications of a weighted sample of size n = 50 generated as in
Cases I and II.

distribution with parameters « = 3 and A = 1. In each case, M=50 samples of size n = 50
and 100 were used in order to construct the boxplots of the mean squared error in Figures
2.1-2.3. We just present the boxplots of MSE for n = 50. For the proposed estimator we
set k = 2. In Figures 2.1-2.2, we compare the proposed estimator with a simple projection
estimator 6, described in Remark 2.3.4. The boxplot on the right represents the MSE of
the projection estimator, while the boxplot on the left represents the MSE of the proposed
estimator. Obviously, the proposed estimator outperforms the projection estimator in all
cases. Although not reported here, the proposed estimator is still better than the projection
estimator for larger sample sizes. In Figure 2.3, we compare the MSE of pseudoestimator
(2.3) with the MSE of estimator (2.6), in cases (II) and (IV). The boxplot on the right
represents the MSE of the pseudoestimator, while the boxplot on the left represents the
MSE of the proposed estimator. It is evident that the estimation of pu, deteriorates the

quality of the estimator.



Figure 2.2: MSE over 50 replications of a weighted

Cases III and V.
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sample of size n = 50 generated as in

Figure 2.3: MSE over 50 replications of a weighted sample of size n = 50 generated as in

Cases II and IV.
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2.5 The information bound for estimating [ f* using
weighted data

Theorem 2.5.1 below provides the information bound for the problem of estimating 6 = [ f2,
when weighted data are available. For some finite M > 0 let H be a class of p.d.f’s defined
by

H={fIf € L*(R), [|fllc < M}.

Theorem 2.5.1. Let f be a member of H. Then, the information bound, L,(f), for
the estimation of 6 = [ f?, using a weighted sample with weight function w satisfying

Assumption 1, is given by
2
- (1)’

Remark 2.5.1 The information bound, I,(f), for the estimation of # = [ f? based on a

direct sample (see, e.g., Pfanzagl, 1982; Bickel & Ritov, 1988; Laurent, 1996), equals

an-sfrs(f )’

It is easy to see that for any uniform distribution U(a,b), with a < b, I,,(f) is no smaller

o [ L= sty =atgw) [ 12 [

where d(f,w) = py [ % > 1, by Jensen’s inequality, with equality if and only if w = 1

than I,(f) since

(see, e.g., Efromovich, 2004b). However, there are cases where I,,(f) is (strictly) smaller
than I,(f). For example, let w(z) = 1 — 0.9z for all x € (0,1). Let f be the p.d.f of a
Beta distribution with parameters &« = 1 and § = 3. Then, using numerical integration

(performed in R, version 2.4.0), or by direct calculations, we can compute

3
Lo / I = 3.4209404 and / =
w

thus concluding that I,(f) is smaller than [;(f). The above observations lead to the
conclusion that model sampling in the presence of selection bias can either improve or
worsen the information bound in the problem of estimating § = [ f2. Analogous conclusions

regarding density estimation based on weighted data can be found in Cox (1969) and
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Efromovich (2004b).
Remark 2.5.2 Theorem 2.5.1 has the following implication. If an estimator, say 7,,, of
based on a weighted sample given by (2.1), with w satisfying Assumption 1 and f belonging

to H, satisfies
Vvn(T, —0) — N(0,1,(f)), in distribution,
and

n—-—aoo

then T,, is asymptotically efficient (see, e.g., Laurent, 1996).

2.6 Appendix: Proofs

2.6.1 Proof of Theorem 2.3.1

The proof of Theorem 2.3.1 is broken into several parts. We first prove a lemma and three

propositions which are used in the proof of Theorem 2.3.1.

Let
2
Hw HD(}/;J }/3)
Un(Hp) = —— — (2.10)
A1) 2 2 wv)uy)
i)
and
. ay,pw(z) g, pw(y)
Hp(z,y) = Y | pe.o(r) = —"——=) { pro(y) — —=—== ). (2.11)
keZ Hw Hw
Lemma 2.6.1. Let Y7,Y5, ..., Y, be i.i.d. random variables from a weighted distribution with

p.d.f. gw given by (2.1), where f belongs to L*(R) and the weight function w is continuous
and satisfies Assumption 1. There exist some positive constants k1, kg and k3 for which the
following inequality holds

n—1 n

1 Dt?
P{‘Un(HDH > rk1v DOpt + Kol f oot + s ]} < 5.6exp (—t).

Proof of Lemma 2.6.1. Let

_ HD(‘I7 y)ljj%v

T

?
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and

B Y ol Yias(h () :ZEm?m»s1,iE<b?m>>s1},
A = n sup [E{s*(Y,2)}],
Ay = Sup l9(z,y)|-

Consider now the quantities B,C and A, defined in Theorem 3.4 of Houdré & Reynaud

(2003). It is easy to see that the following inequalities hold

ZE (z,Y1))

n

> E(¢’(V1,x))

i=j+1

, sup

T, Z,J

B? = max {sup

} < nsgp[E(gz(Ya x))] = A3,

C? < n(n — DE(¢2(¥:,Y2)) = A2,

n i—1 n—1
A < sup{ Zg 5 Y;) ZE(bJQ(YJ))<1}
=2 j=1 7=1
== AQ.
Evaluation of A;
Note that
; Y1) \° e pw(Ya)\”
2V, Y) = M yo) — ko) vy eow(Ya)
g°(Y1,Y3) W2 (Y1) w?(Ya) kezz Pr,o(Y1) oy Pr,p(Y2) ™
o pw(Y] o pw(Y:
+ Z Z (ka Yl mD ( 1>> (pk,D(Yz) - L<2))
keZ Pw Haw
K £k

< (et = 22 () vy - 220
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Hence, it is easy to see that

E {#(V,Ys)} =

= LEZZE <#2Y) (ka(Yl) %w(lﬁ)y)

x E (ﬁij@) (pk,p(Yz) — ozk,pu—ti(YQ)) 2)

b 5 S (i) - 22200 () - M)

kEZ Hw Hw
K £k
2
Moy Oéka(Yz)) ( ay Dw(Y2>))
x El —%— Y,) - ———~~~ o (Yy) — ——— -~
(g (o) = B2 (gl - 2257
2
U, DW 5 f [l
- Z {/ (Pr,p — &)27}
keZ P
2
Qg pWw Q' pW\ f
- | (o2 ) (o= 2 ) e }
K £k
fuwp
kEZ keZ
K £k

Additionally, one can see that

{ fﬂwpk[)_aiﬂ} §2z{/fﬂwka} 19
k€EZ

keZ

keZ

z]

Using the above inequality and >, ., i p® < D, one arrives at

E(4°(V1,Y2)) < QZ(/fuwka) —|—2<Zak1)>

k€EZ keZ

IN

2D¢9D + 2—D (Z 07°%)) ) = Cl<’LU)D9D

1 keZ

Therefore, we get

Ay < Ci(w)y/n(n —1)D0p, (2.12)

where



Evaluation of A,

It is easy to check that the following inequality holds

Ay < ZZZ{ [Mw |041Y;)Z)U|(|l;}() )|pk,D(Y>ka(Y)]+OékD (lai (Y3) 165 (Y5)])

=2 j=1 keZ

frw, 0Pk, D (Y3) i (Y3)[|0;(Y5)| frwr, pPx,D(Y5)] i (V) |[b; (Y5)]
- Bl w(t) | +2| w(;) | }

Evaluation of the first term of A,

Using repeatedly the Cauchy-Schwartz inequality, one arrives at

g (st m|bj<19>\pw<mpw<yj>) <

> utiue)
S R (MkaDu(JXZg% i > %ZZEQ <MkaD (Y)’)b (Y)|>

k€EZ ¢

N|=

IN

7t 15 (12(;)) 2 B (02(v7))]

(A
w1

IN

Since

N|=

one obtains

1

1o (Y010 ()l (V) 1,(15)
2 ZZE( w(Vu(Y)) )<

3
g

b2(Y))]% < Hf”oo”wz

= wl

=2 j:1

Evaluation of the second term of A,

The following inequalities hold

ZZZ%DE (Vb)) < ZZ%D VEEY)]

IN
S
>

>



32

Evaluation of the third term of A,

Using the Cauchy-Schwartz inequality, we get

n_ - 1 . ( fhao e, 0P, 0 (V) i ( z’)Hbj(Yjﬂ)

M |

ke w(Yy)
A
S w2||fD||ooi§E E} (02(Y;))
< o) fll

Similarly, we can see that

"L wOk, DPk,D o\ X ij} nwa || f |l
ZZZE(M p (w(>3‘g)( )[10;( )!)S LH .

i=2 j=1 k€Z

Hence, we get

Ay < Co(w) | floom, (2.13)

where
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Evaluation of the term A;

It is easy to check that

w2 9 D Oék,DIUQ D
< w_i))zpk,D<x> (ﬁ Df) +Z " ([ﬁ Df)
keZ b keZ 5]
wg 2 w2||f”oo 2
< ﬁ”fuoo ZPk,D(ﬂU) L Zak,D :
1 keZ 1 kEZ

Hence, we get

Az < Cs(w)v/n]| fllee D, (2.14)

where

3

wi o owy
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Evaluation of the term A,

For all x and y

Pk D(ff)pk D(y)/'bgu 2 Q. DPk D(JC),uw
< 9 bl bl b
keZ keZ keZ

. Zak,Dpk,D(y),uw < 2w§D+D+4w2D/f
ez w(y) Towf wy '

Hence, we can give an upper bound for Ay

Ay < Cy(w)D, (2.15)
where
U)g (105
Cy(w) =14 —5 +2—

Using inequalities (2.12)-(2.15), we can deduce from Theorem 3.4 of Houdré & Reynaud-
Bouret (2003) that

1 Dt
P{|Un(HD)‘ > 7 k1 DOpt + Ka|| f oot + K?’n } } < 5.6exp(—t), (2.16)

where k1 = Ci(eg, w), kg = Cs(eg, w)+Ca€g, w), k3 = Cs(€g, w)+Cy(€p, w), C1(€9, w) = 4(1+
6(])%01(11)), Cs (€0, w) = 2n(eg)Ca(w), C3(€g, w) = 26(€9)Cs(w) and Cy(ey, w) = 279(éy) Ca(w),
where ¢ is a fixed positive number. This completes the proof Lemma 2.6.1. 0

Proposition 2.6.1 gives a non-asymptotic risk bound for the pseudo-estimator 6.

Proposition 2.6.1. Let Y}, Ys, ... Y, be i.i.d. random variables from a weighted distribution
with p.d.f. g, giwen by (2.1), with weight function w being continuous and satisfying
Assumption 1. Consider the class of functions satisfying || fllee < M with M known, and let
0 = [ f*. For all D € D, where D is a subset of N, let Op be defined by (2.2). There exists
some k > 0 such that if we set for all D € D

Dlog?(D + 1
N og™( )

- ! (2.17)

pen(D) = g[\/MD log(D + 1) + Mlog(D + 1)

then 0, given by (2.3), satisfies the following inequality for all n > 2

n

E {é —o- 23 (L0 9>} < Ow) ot (o~ FIii+ pen(D)].

n <
=1
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Proof Proposition 2.6.1
Let

L& ho (V)i oY) — £V,
)= 13- Pl [ =1 Z p PPEBIED [z~ s

and Hp(x,y) and U,(Hp) be defined by (2.10) and (2.11) respectively.

The following decomposition holds

Un(Hp) + Po(hp) = / (f = fo)? =0p—0— %Z(_“;UU{;W

5= 0)

Let

Vi = Un(Hp) + Pa(h) — / (f — fo)? — pen(D).

Hence, it is easy to check that

n 2 . /wa(Yz)
P Periaak A

D is a subset of N and pen(D) is given by (2.17). The following inequalities hold

[sup (V)| < [sup (Vo) ] \/ in (V).

DeD DeD

E (sup Vi ) > E((Vp)2 ([i)ggj(vpf) .

DeD DeD

Control of U, (Hp)

Let
k3 Dt?
UD(t) = 1 |:/<01\/ D‘9D + I€2||f||oot + 5 :|
Using Lemma 2.6.1 and the following inequality
t1 + 1o
U <up(ty) +upl(ts),
D(ﬁ)— p(t1) + up(tz)

one obtains that

P{|U(Hp)| > up(v2yp) + un(v2t) } < 5.6exp (—t = yn). (2.18)
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Control of P,(hp) — ||f — fpll?

According to Lemma 8 of Birgé and Massart (1998), if Uy, Us,...,U, are n independent
random variables such that |U;| < b and E(U?) < 62 for i = 1,...,n, then the following

inequality holds

1 2t bt
P<— ; — E(U; M —+—7 < —t). 2.1
{n;w () > n+3n} exp (1) (219)
If
o mlip(Y) — F(V0)
(2 w(}/;) )
then it is easy to check that
w1y
and
2
E(U?) < 4wz fo = flll1Flle
wy
Therefore, using (2.19), one gets that
V/8tws || fll 4wy || floot
P< P, (h - — ——— >3 < —1), 2.20
{ () > Y=o = S+ =5 < exp( ) (220)

and using the elementary inequality

2tws || f o twsl| floo
o[22 ey e gy, < gy — g 222 e (2.21)
win win

one obtains

, 10, wslfl
P{Putho) = If = ol > 0" = < exp- (2:22)

and
B{Ratho) < 17 = ol > e+ 0= o (o) (29)

Let zp = log (D + 1) and k = max(Cy, Cy, C3), where Cy = 4/ V251, Cy = 8V/2kg + L0w2

3w

and C3 = 64k3. The following inequalities hold

3 nuy

10 M 1 C3Dx?
UD(\/in)‘i‘_M S E(Cl\/Dl’DeD‘i‘CQM‘TD"— 3an>

< pen(D). (2.24)
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Using (2.18), (2.23) and (2.24), one arrives at

P {VD > up(v2t) + 10]51211’”2} <P {Un(HD) > up(v2t) + uD(\/in)} +
P {Pn<hp> 1 - ol > TS yD)} < 6.6exp(~t — ). (2.25)

The following identity
E[(Vp)i] = 2/ tP(Vp > t)dt,
0

(2.25) and
10Mt0w2 <t

wp(V2ty) +

3nw;

b ing t?n? tn t
= 1n n
0 36D0pK?’ 3M (2my + 222) "\ 615D [

lead to the following inequality

where

(Vo) < 600w { 25 + 25 4 2 bewp (-um).

Hence, using the inequality
9 1
YDLTIEMEE s
DeD D>1
we obtain
M M? 1
2
> E(Vp): < C(w) {F +—+ ﬁ} :
DeD

Now, we give an upper bound for E [(VD)g)} . The following inequality holds

E [(Vp)?)] < AE(U(Hp)) + 4E(P}(hp)) + 4| f — follz + 4(pen(D))?. (2.26)

Using inequality (2.16) and up(fo) < ¢, where fy = inf {3659";2, Gt M/ 6,{’;D} , We arrive,
1

using similar steps as before, at

B(U2(Hp)) < Clu) (Dt + 20 20y, (2.27)

n n

It is also easy to check that

DM M? D?
—+— +—
n

pen?(D) > prERE
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Hence, the following inequality holds
E(UZ(Hp)) < C(w)pen*(D) VD € D.

Now, we obtain an upper bound for E(PZ(hp)). Using (2.20), the inequality u(yy) < y, where

32Muws||f — fpll3’ 8waM

and
2 dyw
uly) =20/ L2 g = fl+ M2,
win
one obtains
M2
B(P2 o) < Ol { 1o~ 3+ 5 }- (2:28)

Using (2.26)-(2.28) we have

E[(V3)-] < Cw)[llfo — fll3 + pen*(D)].

Collecting the above inequalities together we arrive at

n <
=1

2
) 2 O S (Y3 . 4 2
' — < _
E@ 0= Dot =0 < Cw) jnt (1o~ £ +pen(D)]
thus concluding the proof of Proposition 2.6.1.

In order to prove Propositon 2.6.1, we used an exponential inequality of order 2 obtained

by Houdré-Bouret & Reynaud (2003).

Proposition 2.6.2. Let Y7,Y5, ..., Y, be defined as in Proposition 2.6.1. Consider the class
of functions satisfying || fllco < M with M unknown. Let0 = [ f? and D,, be defined by (2.9).
There exists some constant kg > 0 such that if pen(D) is given by (2.4) for all D € D,,
then there exists some n* := n*(c, R, M, w) such that 0, given by (2.3), satisfies the following
inequality for all n > n* and for all Kk > kg

fror S () -

D(M + 1) log(D + 1)1 N C(M,w).

n2

SC()mfhh—f%

DeD,, n?
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Proof of Proposition 2.6.2

Let A={wew: Op + % > 0pV¥D € D,}. We obtain an upper bound for
- 2 o, (Y3t ’
E|I[6—-0—-— —0) )14 .
[( 2 2oy )l

The following inequality holds

E [y sup VD|2]IA] < Y E[(Vp)ila] + DigignE[(vD)Q_].

DeDr DeD,

Let

=i > M?).
Co(M) =inf{D € N g (D1 1) > M=}

It

10Mypws

pen(D) > UD(\/ZUD) + 3w,

(2.29)

holds on A, then the following inequality holds

P { <VD > up(V2t) + ?M”@) ﬂA} < 6.6exp (—yp —1).

nwy

Using the previous inequality and the identity

E[(Vp)214] = 2/0o tIP{(VD > 1) ﬂA}dt,

0

one obtains
D2
n2’

E[(VD)%F]IA} < C(M,w)exp(—yp)

Additionally, it is easy to check that the following inequality holds on A

K 1 K \/QDDxp kv Dxp
D) > Z./(0 —)Dlog(D +1) > — 5
pen(D) > n\/(D+2) og (D + )—\/5 n +2 n
VOpD M vD
> M~ VYD "ED_i_’{ ‘rD_|_f£ VD € D,, such that D > Cy(M).
V2 n 4dn 4 n

/

/ /. o). . . 2
Now, if kg = max (v/2C}, 4Cs, 4C,Cs), where C| is a positive constant satisfying nf/j% <,

then
VOpD M Dax? 10M
pen(D) > C4 Dn D + (Y nxD + Ch nxQD > UD(\/§?/D) + #
1

VD € D,, and VK > ko. Therefore, (2.29) holds on A VD € D,, such that D > Cy(M). On
the other hand, if D < Cy(M), then

E[(Vp)ila] < 2E(U;(Hp)) + 2E((Pu(hp) — IIf = fol))3)-
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Using (2.22) and the well-known identity E(X?) = [ tP(|X| > t)dt we arrive at

C(M,w)

5 .

E((Pa(hp) = IIf = fol)%) <

n
The previous inequality and (2.27) imply that

C(M,w)

E((Vp)i1a) < — VD € D, such that D < Co(M).

Since |Dy| = {D|D € D,,, D < Cy(M)}| < Co(M), the following inequality holds

C(M,w)

n2

DOE(WIL)S Y E(iL)+ ) E(Vp)il) <

DeD,, DED,,,D<Co(M) DED,,,D>Co(M)

Now, we obtain an upper bound for E [(Vp)2] . Note that
E(Vp)2) < 4E(P;(hp)) + 4E(U; (Hp)) + 4E(pen®(D)) + 4 f — foll2.

For all D € D,, it is easy to see that

0p +1)Dzp < C(w)(M +1)Dzp

2
2 _ K

E(pel’l (D)) - ng ng

Using (2.27) and (2.28) to control E(P?(hp)) and E(U?(Hp)), we arrive at

B(V)?) < Cw) 1o — s+ 2+ HLEDEER

n2

2
Now, it remains to find an upper bound for E [(é —0—2 2?:1(% - 6)) ]IAcl . We now

obtain an upper bound for P(A¢). We can easily check that the following inequality holds

BA) = 3 By + 5 <bp)< Y Bl — 6] > 1),

2
DeD, DeD,

Moreover, the following decomposition holds
Op — 0p = Un(Hp) + Pa(2fp).
Hence, we arrive at
. 1 1
p(49) < F (Unttto) > 1) + B (1Pa2f)] > 7).

We now obtain an upper bound for P (|U,(Hp)| > 1) . Using the inequality
Dﬁg}

1
<_7
n — 4

up(Bo) < % {/ﬁ VDM By + ke M By + k3
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where

Bo(n, M, w) = inf { (log n)” n  (logn)? }

(24%1)2]\47 24R2M7 \/24/'{3

one obtains

P (Int)] > 1 ) <560 (o).

CM,w)
n8

Since exp (—F) <

Vn > ng1, one arrives at

1) < CO0w)

Now, we will give an upper bound for P(|P,(2fp)| > 3). Let U; = % satisfying
|U;| < 2]\5% and E(U?) < %. Using Lemma 8 of Birgé & Massart (1998), we obtain

2w 2Mw
P(|P,(2fp)| > 4M 4| 220 | 240

<9 L 2.31
e S ) < 2exp (=), (2.31)

where yo(n, M, w) = inf {%, 127](}[”;2} . It is easy to see that

2wayo N 2Mwsyo <1

AM TR SR < (2.32)
The following inequality holds Vn > ng
exp (o, M, w)) < SO 239
Inequalities (2.31)-(2.33) lead to
B(P2fo)| > 1) < T v >y, 234

By using (2.30), (2.34) and the fact that |D,,| < lngL_in’ one obtains that

M, w)
8

C(M,w)

<
= 6

B(A°) < D]

,VTL > n/ = max(n01, ngg).

It is easy to see that the following inequalities hold

2Dw3

?
wi

0<0p<

pen(D) < C(w)n,Vn > 3,

8] < Clwpn®,Vn >3, 6= / £ < 1 f e / f< M.

|3 Xn:(f(yi)“w — ) <2M(1+ 2, (é _g_2 Z(f(m“w — 0)) < C(M,w)n*.

n ‘< w(Y;) wy n ‘= w(Y;)
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Therefore, we arrive at

E[(é _g_2 i(w - 0))2]IAC:| < O(M, w)n*P(A) < C(M,w)

n =" w(y;) n?
Vn > n* = max (n',3), thus concluding the proof of 2.6.2.

Proposition 2.6.3. Let Y1,Y5,....Y, be defined as in Proposition 2.6.1. Consider the
smooth class of p.d.f’s F(a,R, M) defined by (2.8). Let 6 be defined as in Proposition
2.6.2. For any a« > 0, R > 0 and M > 0, there exists some kg > 0 and some integer
n** = n"*(a, R, M) such that the following inequality holds for all n > n** and all kK > K

) — _zn f(Yi):uw_ i 0w o e M THia
sup )E{H 0 nZ(—wm 9)} < C(a, w)(RM®) ( : ) |

Furthermore, for all a >0, R > 0 and M > 0, there exists some integer ny := ny(«, R, M)
such that the following inequality holds for all n > n,

_8a

~ 1 R2)\ '™ M2

sup  E(0 — 0)? < O, w)(RM®) ¥ <&> + C(w)—,

feF(a,R,M) n n
where C(w) is some constant depending on w; and ws.

Proof of Proposition 2.6.3

Let .

n?R* THa
J, =11 1
[log, ((M~|— 1) log (nRQ)) I+

and

n2
Dn:{DeN:Dg 3 }
log”® n
We will show that

In, eN:27"eD, foraln>n.

Since, obviously,

EInHGN:Z‘]"zl forallnznn,

it only remains to show that

2

InpeN: 2 < for all n > nqs.

log®n

The following inequality holds

C(a, R, M)ni+ia

27 < .
(logn)1+ae

for all n > nys.
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It is easy to check that for all & > 0

C(a, R, M)nﬂr%a - n?

(log n)ﬁ ~ log®n

for all n > nys.

From Proposition 2.6.2, one obtains that

E(é—@— %i[f(yi)ﬂw _9])2 <

w(Y;) -
C(M,w ) M+ 1)Dzx
S—%Tl+ﬂw&%ﬁMr%%+i—7%—£} (2.35)
Vn >n* and Vf @ || flle < M.
Additionally,
IF = farl2 =33 842 < RP%e = O(a) R2272°, (2.36)

§i>J keZ i>J
Vf:B(f) € Bazoo(R).

Using (2.35), one arrives at

n

wp wli-o- 2 e 0] < S el -

f:f€F(a,RM)
C(w)(M +1)271og (27 + 1)
n2

_l_

Y

Vn > n**, where n** = max{n*, ni2}.
Combining the above inequality and (2.36), it is easy to see that the following inequality
holds

S L

f:feF(a,R,M) n-
1 R
< Ofa, w){R(M + 1)*} 5 {M}wa Vo > n™ (2.37)
Now, we will give an upper bound for E(é —0)%
5 5 2 (Vo) 2 ¢ f(Yz)M
E(# —0)* <2E(0 -0 — = 2E(= )? 2.38
007 <20 -0~ 3 (e oy 2w SRk (2.38)

and

E 2 Z [f(K)Mw . 9])2 < C(UJ)MQ

¥ < (2.39)
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Inequalities (2.37)-(2.39) lead to

log(nR?)

n2

3 2
sup  E(§—0)*< Clw)M*

S8a
< } T+ia |
f:fEF (o, R,M) n

+ Co, w){R(M + 1)} 17a {

VYn > n; = max{nii, n12}, which completes the proof of proposition 2.6.3.

Proposition 2.6.4 shows that E(supDepn(éD - 20D))4 is uniformly bounded for all
f € F(a,R,M).
Proposition 2.6.4. Let }/1, Ys, ..., Y, and the smooth class of p.d.f.’s F(a, R, M) be defined
as in Proposition 2.6.3. Op is given by (2.2). Then, the following inequality holds

4
E( sup (6p — 29D)) < C(M,w, R, ).

DeD,,
Proof of Proposition 2.6.4

It is easy to see that the following inequality holds

E (| sup (0p —29D)|4> = E{| sup (fp —zeD)\‘*HF} +E{| sup (Ap —29D)|4]1FC}

DeDy, DeD,, DeD,,
< ¢ B((Vo)}) +e inf E((Voo)!) + inf E((Vor)!)
DeD, ! "

+ c{ sup [uD(\/ﬁyD)+M]}4

DeD, 3win

where

F ={0p—20,b>0 forsome DeD,}, Vp =0p—20p,

8Mypws

VD2 = éD—QQD—uD(\/ﬁyD)— and yD=4log(D+1)

3win
Additionally, using Lemma 8 of Birgé & Massart (1998) we have

8M’(U2 (t + yD)
3win

P(Pn@fD) TR ) < exp(—t — yp),

which together with inequality (2.18) leads to

8M’LU2t
win

P(VDQ > up(V2t) + > < 6.6exp(—t — yp). (2.40)

Combining the identity

E(X*) = /OOO P X| > t)dt (2.41)



and (2.40), we get

E((Voe)t} < COM.wyexp(—yp) 5 + 25 + L1

. 2 .
Since |D,| < ToeTr We arrive at

> E{(Vpe)i} < C(M,w).

Now,
E((Vp1)L) < cE(Uy(Hp)) + cE (P;(2fp)) + cll foll5,
E((Vp2)t) < cE(U,(Hp)) + cE (P (2fp)) + ¢l foll5
b clup(VEyp) + g 22!

Using inequalities (2.16) and (2.31) and the identity (2.41), we get

p> D' 1 C(M,w
E (Uy(Hp)) < C(M,w)[F + ﬁ—{—ﬁ]’ E (PX(2fp)) < (n2 )’
SMypw 4
Ifplly < M7, and {sup [up(V2yp) + — 222 2]} < C(M,w),
DeD,, 3win

which lead to

inf E((Vp1)?!) +c inf E((Vp2)t) < O(M,w).

DeDy,

Finally, inequalities (2.42)-(2.43) complete the proof of Proposition 2.6.4.
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(2.42)

(2.43)
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We now are in the position to prove Theorem 2.3.1. It is easy to check that

(60— pen, (D) }

7)),
o] }
o] }

(pen (D) ~ pen(D)) }
(pen(D) = pen, (D) }

E@ —0)* = ]E{ [ sup (éD — pen(D)) — sup

DeD, DeD,

= ]E{ [ sup (éD — pen(D)) — sup (9D — pen,,(
DeD,, DeD,,

— [ sup (9~D — pen(D)) — sup (éD — pen,,(

DeD, DeD,
< QE{[ sup (9~D — pen(D)) — sup (6’D — pen,,(
DeD, DeD,
+ { { sup ( QD — pen(D)) — sup (éD - penu(D))} }
DeD, DeD, _

- 2

< QE{ sup (49D — pen(D) — 0p + penu(D))} ]I(B)}
| DeD,,
- 2

+ QE{ sup (OD —pen, (D) —0p + pen(D))} ]I(Bc)}
| DeD,,
- 2

< 4E{ sup («9D — QD)} } +4E{[ sup
L DEDy DeDy,
- 2

+ 4E{ sup («9D — QD)} } +4E{[ sup
| DeD, DeD,,

where

B = {w | sup (ép —pen(D)) > sup (éD — penu(D))}.

DeD, DeD,

Using the Cauchy-Schwartz inequality, it is easy to see that the following inequalities hold

E{M { sup (Gp

. DeD,

2
E[ sup (0p — éD)} =
DeD,, Ho

Cw (- )|

I}

(6p — 29[))] 2}

- ,Uw)2

DeDn

4
sup ( HD — 2(9]3)}

(2.44)

< sup
DGDn

+ C(w) sup (200)]2E (ju,

DGDTL
< W)/ E(fly — fl) \/
+ C(’LU, M)E (,uw - ,uw) :
Similarly, we can show that
) 72
E[ sup (HD — QD)] < w)+/E — fhw) \/
DGDn
+ C(U}, M>E (,uw - ,uw) '

4
sup ( HD — 291))}

DGDn
(2.45)
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Moreover, one can easily see that

E [5'25” (pen(D) — penu(D))} 2 < OK’E [53& (éD - éD)} 2 (2.46)
and
E {gg};ﬂ(penu(l)) — pen(D))] 2 < CK’E [Dsé%)n(éD - éD)] 2 . (2.47)

It is also easy to check that

Q

- (w) -
E(fi — p)® < n and  E(f1, — )" < 2

, (2.48)

(see, e.g., Efromovich, 2004b; Brunel, Comte & Guilloux, 2005). Inequalities (2.44)-(2.48),

together with Proposition 2.6.4, lead to

PO C
E( —0)* < (w) for all n > ng := max(n*, 3)
n
which, together with Proposition 2.6.3, completes the proof of Theorem 2.3.1. O

2.6.2 Proof of Theorem 2.5.1

Let g, be a sequence of p.d.f’s such that ||g, — gol]2 — 0 as n — oo, where gy = Q‘I’L—J;O

and po = [ fow. Let p,, = [ fw. We are going to determine the Fréchet derivative of the
functional § = [ % at a point gg, where gy = i—f’ with fy belonging to the class of p.d.f’s

H. It is easy to see that the following equalities hold

2 2 2 2 2 2 2
1ody 1090 15(9v — 9o) 1o90(9v — 9o)
and
2 2 2
1590(9v — 90) 15909y 190
/ : w2 = / Owg —6(g0) = /gy{ 2}2 - H(QO)]. (2.50)
Additionally, one observes that the following inequality holds
2 2 2
Holgy — g w
/—0( 2 oL < —lgv = goll3 = o(llgv — goll2). (2.51)
w w?

Using (2.49)-(2.51), one obtains that

6(9) = 0(an) +2 [ 9" — (00| + (g ~ ol

= 0l +2 [ (6~ 90)| B2 — 06| + ol ~ sl
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Therefore, the Fréchet derivative is given by 6 (go) = 2 [% — 6(go)]. In the sequel, < -, >
denotes the scalar product in L*(R). Following Ibragimov & Khasminskii (1991), we consider

the space orthogonal to the square root of the likelihood sy = /9o, i.e.,

— {k: € L*(R) : /kso = 0},

and the projection operator onto this space, i.e.,

Pult) =t — (/ts())so.

Since Y1,Ys,...,Y, are i.i.d. random variables, the family {P} } is locally asymptotically
Gaussian at all points gg = 7“2—{)0 with fo belonging to H, in the direction H(gy) with

normalizing factor A, (go), where A, (t) = (\/Lﬁ)(\/g_o)t (see, e.g., Example 2.2 of Ibragimov

& Khasminskii, 1991). Let K,, = v/n#' (go) An Prr(ge), Where 6 (go) = 2[”3‘30 —0(go)]. Then

a0 - [ ] o[
_ / k{QSO{“S}‘ZO (go)} s / go{“ogf) (g )H
Therefore, K, (k) — K (k) weakly, where K (k) =< h,k > and

h= 250{’“‘520 (go)} —230/90{%90 —0(g )1

According to Theorem 4.1 of Ibragimov & Khasminskii (1991), for any estimator of 6(go),

say T, and for any family of vicinities of gg, say {V (go)}, we have

inf liminf sup nE(T, —0(g))* > ||h|5.

{Vigo)} m7=0 gev(go)

Hence, the information bound is given by

i) = 100 = 4 [ f 82— o(g0) — [ g0l 82 — () }

3 2,2
- 4/ Fobo 17 ) — 8(g0) / e
w w

][4

thus completing the proof of Theorem 2.5.1. U




Chapter 3

Estimation of a signal using the
maximum a posteriori method

In this chapter, the optimality results presented in Abramovich, Grinshtein & Pensky (2007),
for estimating a high dimensional Gaussian mean vector, are generalized, providing adaptive
conditions and a wider range of strong and weak [,(n) balls under which optimality of the
maximum a posteriori (MAP) testimator is proved. The standard Gaussian white noise
model is then considered and MAP testimation procedure is applied in a wavelet context,
in order to construct an adaptive estimator of f which attains the optimal rate under this
model. Using the boundary-modified coiflets of Johnstone & Silverman (2004a), it is also
shown that discretization of the data does not affect the rate of convergence of the proposed
MAP testimator. The optimality results are extended to the estimation of derivatives of f.
Finally, a simulation study is conducted in order to illustrate the performance of the proposed

estimator in practice.

3.1 Introduction

We consider the problem of estimating the unknown response function in the Gaussian white

noise model, where one observes Gaussian processes Y, (t) as follows

dY,(t) = f(1)dt + %dW(t), teo,1]. (3.1)

The noise parameter ¢ > 0 is assumed to be known, W is a standard Wiener process, and

f € L?[0,1] is the unknown response function. Under some smoothness constraints on f,

49
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such a model is asymptotically equivalent (in Le Cam sense) to the standard nonparametric
regression setting (see, e.g., Brown & Low, 1996).

If f possesses some smoothness properties, we can deal with a consistent estimation
theory. We assume that f belongs to a Besov ball By (M) of a radius M > 0, where
0 < p,q <ooand s > max(0, 113 — %) The latter restriction ensures that the corresponding
Besov spaces are embedded in L?[0, 1]. The parameter s measures degree of smoothness while
p and q specify the type of norm used to measure the smoothness. Besov classes contain
various traditional smoothness spaces such as Holder and Sobolev spaces as special cases.
However, they also include different types of spatially inhomogeneous functions (see, e.g.,
Meyer, 1992, Chapter 6).

Wavelet series constitute unconditional bases for Besov spaces that has made various
wavelet-based estimation procedures to be widely used for estimating the unknown response
f € B; (M) in the model (3.1). The standard wavelet approach to the estimation of f
is based on finding the empirical wavelet coefficients of the data and to further denoising
them, usually by some type of a thresholding rule. Transforming back to the function space
yields then the resulting estimate. The main statistical challenge in such an approach is a
proper choice of a thresholding rule. A series of various wavelet thresholds originated by
different ideas has been proposed in the literature during the last decade, e.g., the universal
threshold (see Donoho & Johnstone, 1994a), SURE threshold (see Donoho & Johnstone,
1995), FDR threshold (see Abramovich & Benjamini, 1996), cross-validation threshold (see
Nason, 1996), Bayesian threshold (see Abramovich, Sapatinas & Silverman, 1998), empirical
Bayes threshold (see Johnstone & Silverman, 2005).

Abramovich & Benjamini (1996) demonstrated that thresholding can be viewed as a
multiple hypothesis testing procedure, where one first simultaneously tests the wavelet
coefficients of the unknown response function for significance. The coefficients concluded
to be significant are then estimated by the corresponding empirical wavelet coefficients of
the data, while others are discarded. Such a testimation procedure evidently mimics a
hard thresholding rule. Various choices for adjustment to multiplicity on the testing step

lead to different thresholds. In particular, the universal threshold of Donoho & Johnstone
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(1994a) and the FDR threshold of Abramovich & Benjamini (1996) fall within a testimation
framework corresponding to Bonferroni and FDR multiplicity corrections, respectively.

We continue to go along the lines of testimation approach, where we utilize the recently
developed maximum a posteriori (MAP) Bayesian multiple testing procedure of Abramovich
& Angelini (2006). A hierarchical prior model used in their approach is based on imposing a
prior distribution on the number of false null hypotheses. Abramovich, Grinshtein & Pensky
(2007) applied it to estimating a high-dimensional Gaussian mean vector and showed the
optimality (in the minimax sense) of such MAP testimation approach, where the unknown
mean vector was assumed to be sparse.

We first extend the results of Abramovich, Grinshtein & Pensky (2007) to more general
settings. Consider the problem of estimating an unknown high-dimensional Gaussian mean

vector, where one observes Gaussian data y; governed by
Yi=pi +onz, 1=12 ... n. (3.2)

The variance o2 > 0, that may depend on n, is assumed to be known, z; are independent
N(0,1) random variables, and the unknown mean vector = (1, .., p,) is assumed to lie
in a strong [,-ball [,[n,], 0 < p < oo, of a standardized radius n,, that is, ||u||, < C,, where
C, =n'/ Pg,n,. Abramovich, Grinshtein & Pensky (2007) considered the Gaussian sequence
model (3.2) with 02 = 02, and obtained upper error bounds of an adaptive MAP testimator
of y in the sparse case, where 0 < p < 2 and 1, — 0 as n — oo. We extend their results
for all combinations of p and 7,, and for variance in the Gaussian sequence model (3.2)
that may depend on n. We show, in particular, that for a properly chosen prior distribution
on the number of non-zero entries of u, the corresponding adaptive MAP testimator of u
is asymptotically minimax (up to a constant factor) for almost all strong [,-balls including
both sparse and dense cases.

We then apply the MAP testimation framework to the wavelet thresholding estimation
in the standard Gaussian white noise model (3.1). We show that, under mild conditions
on the prior distribution on the number of non-zero wavelet coefficients, a global MAP
wavelet testimator of f, where the MAP testimation procedure is applied to the entire set

of wavelet coefficients at all resolution levels, is adaptive and asymptotically nearly-minimax
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(up to an additional logarithmic factor) over the entire range of Besov balls. Furthermore,
we demonstrate that performing the MAP testimation procedure at each resolution level
separately allows one to remove the extra logarithmic factor. Moreover, these results can
be also extended to the estimation of derivatives of f. In a way, these results complement
recent adaptively optimal estimators obtained in an empirical Bayes context (see Johnstone
& Silverman, 2005).

In what follows, we review the MAP testimation methodology proposed by Abramovich,
Grinshtein & Pensky (2007) for estimating the unknown high-dimensional mean vector p in
the Gaussian sequence model (3.1). Their upper error bounds are generalized to a wider,
not necessarily sparse, range of strong /,-balls, 0 < p < oo, while for a properly chosen prior,
the resulting MAP testimator is asymptotically minimax (up to a constant factor) over a
wide range of sparse and dense strong [,-balls. Analogous results can be obtained for /y-balls
and weak [,-balls, 0 < p < 2. Adaptive global and level-wise MAP wavelet testimators of
the unknown response function f in the Gaussian white noise model (3.1) are proposed,
and their asymptotic optimality (in the minimax sense) under the L2-risk is established
in a wide range of Besov balls. These results can also be extended to the estimation of
derivatives of f. Additionally, using the boundary-modified coiflets of Johnstone & Silverman
(2004a), it is shown that the order of magnitude of the accuracy of the proposed level-wise
MAP wavelet testimator is not affected when the sampled data model is used. Finally, we
illustrate the performance of the proposed adaptive level-wise MAP wavelet testimator on
several simulated examples, and compare it with three adaptive empirical Bayes estimation
procedures and one block wavelet thresholding estimator that have recently been shown
to attain the optimal (or near-optimal) convergence rates and to perform well in finite
sample situations. An application to a dataset collected in an anaesthesiological study is

also presented.
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3.2 MAP testimation in the Gaussian sequence model

3.2.1 MAP testimation procedure

We start with reviewing the MAP testimation procedure for the Gaussian sequence model
(3.2) developed by Abramovich, Grinshtein & Pensky (2007).
For this model, consider the multiple hypothesis testing problem, where we wish to

simultaneously test
Hy :pi =0 wversus Hy:p; #0, 1=1,2,....n.

A configuration of true and false null hypotheses is uniquely defined by the indicator vector
x = (21,...,2,), where 2; = I(u; #0), i = 1,2,...,n. (Here, I(A) denotes the indicator
function of the set A.) Let k = xy + ... + x, = ||p|lo be the number of non-zero p;
(false nulls), i.e., ||ullo = #{i : i # 0}. Assume some prior distribution m, on x with
(k) >0, Kk =0,1,...,n. For a given k, there are (2) different vectors x. Assume all of

them to be equally likely a priori, that is, conditionally on &,

]P’(x| Z:;x - /@) ~ (:)_1.

Naturally, (u; | z; = 0) ~ g, where dy is a probability atom at zero. To complete the prior
specification, we assume that (y; | z; = 1) ~ N(0,72).
For the proposed hierarchical prior, the posterior probability of a given vector z with &

non-zero entries is

n

oz, K | ) (:)_1wn(m)n(ilxi - ﬁ> [T, (3.3)

=1

where the Bayes factor B; of Hy; is

2
B; =/1+7, exp {——202( Y } (3.4)

1+ 1/v,)

and vy, = 72/02 is the variance ratio (see Abramovich & Angelini, 2006).
Given the posterior distribution 7,(z, | y), we apply a MAP rule to choose the most
likely indicator vector. Generally, to find the posterior mode of 7, (z, k | y), one should look

through all 2" possible sequences of zeroes and ones. However, for the proposed model, the
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number of candidates for a mode is, in fact, reduced to n + 1 only. Indeed, let Z(k) be a
maximizer of (3.3) for a fixed x that indicates the most plausible vector x with x non-zero
entries. From (3.3), it follows immediately that #;(x) = 1 at the x entries corresponding to
the smallest Bayes factors B; and zeroes otherwise. Due to the monotonicity of B; in |y|; (see
(3.4)), it is equivalent to #;(x) = 1 corresponding to the x largest |y|; and zeroes for others.

The Bayesian MAP multiple testing procedure then leads to finding # that maximizes

" -1
log Ta(#(), | ) = const + 3 ,ufy + 207(1+1/7) log { (1) moaa +%>§} ,

i=1
3

where |y|q) > ... > |y|m). The & null hypotheses corresponding to |y|a),...,|y|x) are

or, equivalently, minimizes

> oy 27+ 1o { () )1+

i=k+1

(SIE

rejected. The resulting Bayesian testimation yields a hard thresholding with a threshold

5\MAP = ’y|(g)7 Le.,
) Y w2 Avap,
0, otherwise.

(If K =0, then all y;, i = 1,2,...,n, are thresholded and g = 0.)

Various thresholding rules can be considered as penalized likelihood estimators
minimizing

ly — w3 + P(n) (3.5)

for the corresponding penalties P(u). Complexity type penalties are placed on the number
of nonzero ;. Let ||uol| = {7 : u; # 0}. For a general complexity type penalty P, (]| oll), the
corresponding penalized estimator j* is a hard thresholding rule with the data-dependent
threshold A = Y| (z), where & is the minimizer of

> Uiy + Pals).

i=k+1

From a frequentist viewpoint, the above MAP testimator fi = (fi1, ..., [i,)" can be thought
as a penalized likelihood estimator with the complexity penalty (see, e.g., Birgé & Massart,
2001)

Pu(k) = 202(1 + 1/4,) log { (Z) 7 (k) (1 + %)S} . (3.6)
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3.2.2 Upper error bounds for MAP testimation

Abramovich, Grinshtein & Pensky (2007, Theorem 6) obtained upper error bounds for the
[?-risk of the resulting MAP testimator in the Gaussian sequence model (3.2) (with 02 = ¢?)
for sparse strong [,[n,]-balls, where 0 < p < 2 and 7, — 0 as n — co. We extend now these
results to more general settings.

Fix a prior distribution m,(k) > 0, kK = 0,1,...,n, on the number of non-zero entries of

w, and let 7, = 72/02 be the variance ratio.

Proposition 3.2.1. Let ji be the MAP testimator of i in the Gaussian sequence model
(3.2), let p € Ln,), 0 < p < co. Assume that there exist positive constants 7 and 7y such

that v < v, < 7. Define c(v,) = 8(7n + 3/4)* > 9/2.

1. Let 0 < p < 0o. Assume e~ Omn < mn(n) < e=c0mn ahere c(y,) < é(m) < ¢o, and
co > 0. Then,
2

sup E||g — pll5 =0(c?n) as n — oo.

KElp[nn]
2. Let 2 < p < oo. Assume that there exists 3 > 0 such that m,(0) > ncn”’ for some
c1 > 0. Then,

sup E||g — ull3 = O(onnn?) + O(o;n~"logn) as n — oo.
p€lpnn]

3. Let 0 < p < 2. Assume m,(k) > (k/n)®" for all k = 1,2,...,a,n, where
n~'(2logn)?? < a, < e ) and cy > 0. Then,
sup Bl = Ofokm(2log,?)!7%) o3 n— o
HELp|Mn

for all n='(2logn)P/? < P < au,.

4. Let 0 < p < 2. Assume that there exists f > 0 such that 7,(0) > p-en”’ for some
c1 > 0. Then,
sup Bl — pll3 = O(opn®?n}) + O(opn"logn) as n — oo
HELp[nn]

for all n? < n~'(2logn)P/?.
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Note first that since the prior assumptions in Proposition 3.2.1 do not depend on the
parameters p and 7, of the strong [,-ball, the resulting MAP testimator is inherently adaptive.
The condition on 7,(n) guarantees that the risk of the MAP testimator is always bounded by
an order of no?, corresponding to the risk of the maximum likelihood estimator, g% = y;,
in the Gaussian sequence model (3.2).

The following corollary of Proposition 3.2.1 essentially defines two zones (dense and
sparse) for p > 2 and three zones (dense, sparse and super-sparse), for 0 < p < 2, of
different behavior for the quadratic risk of the MAP testimator. To evaluate the accuracy of
the MAP testimator, we also compare the resulting risks with the corresponding minimax
risks R(ly[nn]) = infzsup,ep . Bl — u||3 that can be found, e.g., in Donoho & Johnstone
(1994b). (Here, g1(n) < go(n) denotes 0 < liminf(gi(n)/g2(n)) < limsup(gi(n)/ga(n)) < oo

as n — 00.)

Collorary 3.2.1. Let i be the MAP testimator of i in the Gaussian sequence model (3.2),
where pu € ly[n,], 0 < p < co. Assume that there exist positive constants v and 7 such that
Y < Y < 7. Define c(v,) = 8(7n + 3/4)* > 9/2 and let the prior m, satisfy the following

conditions
1. m,(0) > ncn”’ for some 3> 0 and ¢; > 0;

2. ma(k) > (/)2 for all k = 1,2,...,an, where o = e (or, a = =) if 5 is

known) and c3 > 0;
3. there exists c(v,) < &(vn) < co, where co > 0, such that e=¢0m)" < . (n) < ecmn,
Then, as n — oo, depending on p and n,, one has:

Casel, 0 <p <oo, P> a.

S }Ellﬂ — ull3 = O(noy), while R(ly[n.]) < no,.
HELp[Mn

Case 2, p>2, nt <a.

sup Bl|ji — 2 = O(c2ni2) + O logn), while R(l,[n]) = o2nr.
KELp[1n]



o7

Case3, 0 <p <2, n ' (2logn)?? <n? < a.

sup E||ji — pll3 = O(o2nmt(2logn,?)#/%)

KElp[Nn]
while R(l,[n,]) < ainnﬁ(Qlog n;p)l_p/Q.

?

Case 4, 0 <p <2, n2 <n ' (2logn)"/>.

sup Bl = pll; = Oloyn®"m) + Olown™logn), - while Rllylm]) < oun®"n.
HELp[Mn

The impact of Corollary 3.2.1 is that, up to a constant factor, the MAP testimator is
adaptively minimax for almost all strong [,-balls, except those with very small standardized
radiuses, where n? = o(n~(8+2/min(r.2)) Jog ). Hence, while the optimality of the most existing
threshold estimators (e.g., universal, SURE, FDR) has been established over various sparse
settings, the MAP testimator is appropriate for both sparse and dense cases. To the best
of our knowledge, such a wide adaptivity range can be compared only with the penalized
likelihood estimators of Birgé & Massart (2001) and the empirical Bayes threshold estimators
of Johnstone & Silverman (2004b, 2005). Additionally, the penalized likelihood estimators of
Birgé & Massart (2001) have not been studied in practice, while the range of optimality of the
empirical Bayes threshold estimators of Johnstone & Silverman (2004b, 2005) is somewhat
smaller than the range of optimality of the MAP testimator.

In fact, as we have mentioned, there are interesting asymptotic relations between the
MAP testimator and the penalized likelihood estimator of Birgé & Massart (2001) that may
explain their similar behavior. For estimating the normal mean vector in (3.2) within strong
l,-balls Birgé & Massart (2001) considered a penalized likelihood estimator with a specific
complexity penalty

Po(k) = Co2k(1 + \/2L,)?, (3.7)
where L, = log(n/k) + (1 + 0)(1 + log(n)/k) for fixed C' > 1 and 0 > 0 (see their Section

6.3). Note that, for large n and x < n/e, this penalty is approximately of the following form:

P, (k) ~ 202¢kL, ~ 2026 <log (Z) + 62/-@> (3.8)

for some positive constants ¢, ¢;, ¢ > 1 (see also Lemma 3.5.1 in Section 3.4). Thus, within

this range, P, in (3.7)-(3.8) behaves similar to a particular case of the MAP penalty P,
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in (3.6) corresponding to the geometric type prior m,(k) o (1/é)". Note that this prior
satisfies the second condition on 7, of Corollary 3.2.1. Such a Bayesian interpretation can be
also helpful in providing some intuition behind the penalty P, motivated in Birgé & Massart
(2001) mostly by technical reasons. In addition, under the conditions of Corollary 3.2.1,
P,(n) ~ P,(n) ~ cn.

Furthermore, for k < n (sparse cases), under the conditions on the prior 7, of Corollary
3.2.1, both the MAP penalty P, and the penalty P, of Birgé & Massart (2001) are of the
same so-called 2k log(n/k)-type penalties of the form 202(xk(log(n/k) + ¢xn), where ¢ > 1
and ¢, ,, is negligible relative to log(n/x). Within different frameworks, such type of penalties
arose in a series of recent works on estimation and model selection (e.g., Foster & Stine, 1999;
George & Foster, 2000; Birgé & Massart, 2001; Johnstone, 2002, Chapter 13; Abramovich,
Benjamini, Donoho & Johnstone, 2006; Abramovich, Grinshtein & Pensky, 2007).

The following proposition extends the results of Abramovich, Grinshtein & Pensky (2007)

showing that the MAP testimator attains the rate which is optimal as 7, — 0 under [y-balls

e—c()

5—- Recall that R(lo(n,)) ~ oznn,(2log(n, ")) (see Donoho, Jonhstone,

for any % <n, <
Hoch & Stern (1992)). (Below and in the remaining of the thesis, || denotes the floor

function. Also, g1(n) ~ g2(n) denotes gi(n)/ge(n) — 1 as n — o0.)

Proposition 3.2.2. Define k¥ = |nn,|. Letn, € [* e

n’ 2

such that m,(k?) > (k* /n)kn then MAP testimator fi* satisfies

|. If there exists a constant co > 0

sup E||i* — p||> = O(nm,(2logn, ).
p€lo[nn]

Remark 3.2.1 The proof of Proposition 3.2.1 which is given in Section 3.4 shows that the
proposed estimator is also adaptively minimax over weak [,-balls, 0 < p < 2, for sparse and
partially dense cases. Note that neither of the estimators mentioned after Collorary 3.2.1

has been shown to be adaptively minimax over weak /,-balls, 0 < p < 2.
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3.3 MAP wavelet testimation in the Gaussian white
noise and sampled data models

In this section, we apply the results of Section 3.2 on MAP testimation in the Gaussian
sequence model (3.2) to wavelet estimation of the unknown response function f in the
standard Gaussian white noise model (3.1).

Given a compactly supported scaling function ¢ of regularity » > s and the corresponding
mother wavelet ¢, one can generate an orthonormal wavelet basis on the unit interval from
a finite number C}, of scaling functions ¢;,; at a primary resolution level j, and wavelets
¥jr at resolution levels j > jo and scales k = 0,1,...,27 — 1 (see, e.g., Cohen, Daubechies
& Vial, 1993; Johnstone & Silverman, 2004a). For clarity of exposition, we use the same
notation for interior and edge wavelets, and in what follows denote @1 by ¥j,—1x-

Then, f is expanded in the orthonormal wavelet series on [0, 1] as

oo  29-1
FO = > (),
Jj=jo—1 k=0

where 0, = fol f(t),i(t)dt. In the wavelet domain, the Gaussian white noise model (3.1)
becomes

Yik =0+ ek, j=jo—1, k=01,...,2 -1,

where the empirical wavelet coefficients Yj;, are given by Yj, = fol Yr(t)dY (t) and €, are
independent N (0,02/N) random variables.
Define J = log, N. Estimate wavelet coefficients 6;; at different resolution levels j by the

following scheme:
L. set Ojy—16 = Yio—1.4;

2. apply the MAP testimation procedure of Abramovich, Grinshtein & Pensky (2007)
described in Section 3.2 to estimate 6j; at resolution levels j, < j < J by the

corresponding 0, x;

3. set O =0, j>J.
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The resulting MAP wavelet testimator fN of f is then defined as

Cjp—1 J—12i-1
In() =D Yirstio-rw(D) + Y ) Owtbn(t).
k=0 j=jo k=0

In what follows, we show that, under mild conditions on the prior 7y, the resulting
global MAP wavelet testimator of f, where the MAP testimation procedure is applied to the
entire set of wavelet coefficients at all resolution levels jo < j < J, is asymptotically nearly-
minimax (up to an additional logarithmic factor) over the entire range of Besov classes
(see Theorem 3.3.1). Furthermore, we demonstrate that performing the MAP testimation
procedure at each resolution level separately allows one to remove the extra logarithmic factor
(see Theorem 3.3.2). Moreover, a level-wise version of the MAP testimation procedure allows

one to estimate the derivatives of f at optimal convergence rates as well (see Theorem 3.3.3).

3.3.1 Global MAP wavelet testimator

The number of wavelet coefficients at all resolution levels up to J is N = 27 — 2/ ~ N for
large N. Let my(k) >0, kK =0,1,..., N, be a prior distribution on the number of non-zero
wavelet coefficients of f at all resolution levels jo < j < J, and let the prior variance of
non-zero coefficients be 72/N. The corresponding variance ratio is v = 72/02.

It is well-known (see Donoho & Johnstone, 1998) that the minimax convergence rate for
the L2-risk of estimating the unknown response function f in the Gaussian white noise model
(3.1) over Besov balls B, (M), where s > max(0,1/p —1/2), 0 < p,q < oo and M > 0, is
given by

inf sup E|fy — flI5 < N2/ as N — oo,
IN feBg (M)

where the infimum is taken over all estimators (i.e., measurable functions) fy of f based on

observations from (3.1).

Theorem 3.3.1. Let ¢ be a mother wavelet of reqularity r and let fN be the corresponding
global MAP wavelet testimator of f in the Gaussian white noise model (3.1), where f €
By (M), 0 < p,q < oo, Il) <s<rand M > 0. Assume that there exist positive constants

7 and 7y such that v < v; < 7 for all j = jo,jo+1,...,J — 1. Let the prior Ty satisfy
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n(k) > (k/N)* for all k =1,2,...,|e”"2N|. Then,

sup EHfN—fH%:O((lOgN) ) as N — oo. (3.9)

feBs. (M) N

The proof of Theorem 3.3.1 is based on the well-known relation between the smoothness
conditions on functions within Besov spaces and the conditions on their wavelet coefficients.
Namely, if f € B;’q(M), then the sequence of its wavelet coefficients {6;x, £ =0,1,...,27 —
1, 5 = jo,jo+1,...,J — 1} belongs to a weak ly/2,41)-ball of a radius aM, where the
constant a depends only on a chosen wavelet basis (see Lemma 2 in Donoho, 1993). One can
then apply the corresponding results of Abramovich, Grinshtein & Pensky (2007) for MAP
testimation over weak [,-balls, 0 < p < co. Details of the proof of Theorem 3.3.1 are given
in Section 3.4.

The resulting global MAP wavelet testimator does not rely on the knowledge of the
parameters s, p, ¢ and M of a specific Besov ball and it is, therefore, inherently adaptive.
Theorem 3.3.1 establishes the upper bound for its L2-risk and shows that the resulting
adaptive global MAP wavelet testimator is asymptotically nearly-minimax within the entire
range of Besov balls. In fact, the additional logarithmic factor in (3.9) is the unavoidable
minimal price for adaptivity for any global wavelet threshold estimator (see, e.g., Donoho,
Johnstone, Kerkyacharian & Picard, 1995; Cai, 1999), and in this sense, the upper bound
for the convergence rates in (3.9) is sharp. To remove this logarithmic factor one should

consider level-wise thresholding (see Section 3.3.2).

3.3.2 Level-wise MAP wavelet testimator

Consider now the MAP wavelet testimation applied separately at each resolution level
j.  The number of wavelet coefficients at the j-th resolution level is n; = 27. Let
mi(k) > 0, Kk = 0,1,...,27, be the prior distribution on the number of non-zero wavelet
coefficients, and let Tf /N be their prior variance, jo < j < J. The corresponding level-wise

variance ratios are y; = 7'].2 / o2

Theorem 3.3.2. Let 1) be a mother wavelet of reqularity v and let fN() be the corresponding

level-wise MAP wavelet testimator of f in the Gaussian white noise model (3.1), where
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fe B, (M),0<pq< oo, 1—1) < s <rand M > 0. Assume that there exist positive

constants v and 7y such that v < v; <7 for all j = jo,j0 +1,...,J — 1. Let the priors m,

satisfy the following conditions for all j = jo,jo+1,...,J — 1:
1. m;(0) > 279 for some ¢; > 0;

2. mi(k) > (k279)2% for all k = 1,2,...,0;27, where cg > 0 and 0 < ¢, < aj < e~ for

some constant co > 0 and c(7y;) = 8(v; + 3/4)%;
3. there exists c(v;) < é(vy;) < co, where ¢g > 0 such that e ¢? < m;i(27) < e

Then,

sup  E|/fy — fl|? = O(N_%il> as N — oo.
feB; q(M)

For f € Bs (M), the sequence of its wavelet coefficients at the j-th resolution level
belongs to [,[n;], where n; = CoN/22736+1/2) for some Cy > 0 (see, e.g., Meyer, 1992, Section
6.10). The conditions on the prior in Theorem 3.3.2 ensure that all the four statements of
the Proposition 3.2.1 simultaneously hold at all resolution levels jo < j < J with 8 = 0,
and one can exploit any of them at each resolution level. It is necessary for adaptivity of the
resulting level-wise MAP wavelet testimator.

The assumptions of Theorem 3.3.2 are, in fact, not too restrictive. For example,
one can easily verify that all three conditions of Theorem 3.3.2 hold for the truncated
geometric prior TrGeom(1 — ¢;) with the probability of success p; = 1 — ¢; given by
mi(k) = (1 — q;)qf/(1 — q?j+1), k= 0,1,...,27, and q; ~ e°%). On the other hand,
no binomial prior, Bin(27/,p;) can “kill three birds with one stone”. The requirement
m;(0) = (1 — pj)Qj > 27U, necessarily implies p; — 0 as j — oo. However, to satisfy
m;(27) = p?j ~ e=09? one needs p; ~ e~“0%) | which is bounded away from zero.

It turns out that requiring a slightly more stringent condition on 7;(0), allows one also
to estimate derivatives of f by the corresponding derivatives of its level-wise MAP wavelet
testimator fN at the optimal convergence rates. Such a plug-in estimation of f™ by f](\,m)
is, in fact, along the lines of the vaguelette-wavelet decomposition approach of Abramovich

& Silverman (1998).
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Recall that the minimax convergence rate for the L?-risk of estimating an m-th derivative
(m > 0) of the unknown response function f in the model (3.1) over Besov balls B; (M),
where m < min(s, (s +1/2—1/p)p/2), 0 < p,q < oo and M > 0, is given by

inf sup  EJ[fg — fOU]3 = N o N o,
FU feBy (M)

where the infimum is taken over all estimators (i.e., measurable functions) f’ ](Vm) of f™ based
on observations from (3.1), (see, e.g., Donoho, Johnstone, Kerkyacharian & Picard, 1997;

Johnstone & Silverman, 2005).

The following Theorem 3.3.3 is a generalization of Theorem 3.3.2 for simultaneous level-

wise MAP wavelet testimation of f and its derivatives.

Theorem 3.3.3. Let 1 be a mother wavelet of reqularity r and let fN be the level-wise
MAP wavelet testimator of f in the Gaussian white noise model (3.1), where f € By (M),
0<pg<oo, 1/p<s<rand M > 0. Assume that there exist positive constants 7 and 5
such that v < ; <7 for all j = jo,jo+1,...,J — 1. Let the priors m; satisfy the following

conditions for all j = jo,jo+1,...,J —1:
1. ;(0) > 9-c1j2” % for some B3>0 and ¢; > 0;

2. mi(k) > (k279)2% for all k = 1,2,...,0;27, where cg > 0 and 0 < ¢, < aj < €79 for

some constant ¢, > 0, and c(v;) = 8(y; + 3/4)?;
3. there exists c(7;) < é(vy;) < co, where ¢g > 0 such that e ¢? < m;(27) < e

Then, for all m-th derivatives f™ of f, where 0 < m < (/2 and m < min(s, (s + 1/2 —
1/p)p/2),

/\(m) (m) 9 . _2(s—m)
sup E||fx — f"]]3 =O( N 21 as N — oc.
fEB} (M)

Theorem 3.3.2 is evidently a particular case of Theorem 3.3.3 corresponding to the case
m = 0, for § = 0 in the condition on 7;(0). The range of derivatives is the same as that for
the empirical Bayes shrinkage and threshold estimators appearing in Theorem 1 of Johnstone

& Silverman (2005). The proof of Theorem 3.3.3 is given in the Section 3.5
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3.3.3 MAP testimation procedure under the sampled data model

The following theorem considers the sample data model introduced by Johnstone & Silverman
(2004a). The sampled data model is given by

l

Yi= i

)+€i ?::17...,N,

where ¢; are independent and identically distributed random variables from N (0, 1). Assume
that for N = 27, we have sufficient observations to evaluate the preconditioned sequence
P;Y defined in Chapter 1. Let R be the number of continuous derivatives of the scaling
function ¢. Suppose that the wavelets and scaling functions are modified by the boundary
construction described in Chapter 1. Let Y be the boundary corrected discrete wavelet

transform of N~2 P ;Y. Define the estimated coefficient array f as follows
1. Set éj0,1 = {/jofl.

2. Estimate the interior coefficients 87 by applying the MAP procedure on Y7 for each

Jo < j < J under the following assumptions on the prior

(a) m;(0) > (27 — 25 +2)~“ for some ¢; > 0, where S > R.

(b) 7j(k) > (57=bg75)?" forall K = 1, ..., (2 — 25 + 2),

where c; > 0and 0 <c, <o < e—°0%) for some constant ¢, > 0.

(c) there exists c(vy;) < é(v;) < cp, where ¢o > 0 such that

e~ (P =2542) < (27 — 25 4 2) < e~ 2542

3. Threshold the boundary coefficients separately. At level j, use a hard threshold of

T(%)%, where 7 > 0, so that for each k € KP, 0,0 = Yirl(|Yir| > T(%)%)

4. For unobserved levels j > J set 49;k =0.

Theorem 3.3.4. Assume that the scaling function ¢ and the mother wavelet 1) have R
continuous derivatives and support [-S+1,S] for some integer S and that [z™¢(x)dz = 0
form=1,2,..., R — 1. Assume that the wavelets and scaling functions are modified by the

boundary construction described in Chapter 1. Then, the construction of the estimator is set
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out as above. Suppose that 0 < s < R, 0 < p < oo and either i) s > % orii) s=p=1. Let
F(C) be the set of functions f whose wavelet coefficients fall in By (C). Then, there is a
constant ¢ independent of C' and N such that

CQS/(28+1) 1

fSEFC) Ry(f) = Ay T o G )

where

Ry(f) = E(10-1 — 0j-1113) + D _E(16; — 6;113).

3.4 Numerical Study

In this section, we present a simulation study to illustrate the performance of the developed
level-wise MAP wavelet testimator and compare it with three empirical Bayes wavelet
estimation procedures and one block wavelet thresholding estimation method, namely, the
posterior mean (PostMean) and posterior median (PostMed) wavelet estimators proposed in
Johnstone & Silverman (2005), the Bayes Factor (BF) wavelet estimator proposed in Pensky
& Sapatinas (2007) and the NeighBlock (Block) wavelet thresholding estimator proposed in
Cai & Silverman (2001). We note that all estimators are adaptive to the unknown smoothness
and attain the optimal convergence rate, except for the Block estimator that is near optimal
(up to a logarithmic factor).

The computational algorithms related to wavelet analysis were performed using the
WaveLab software (http://www-stat.stanford.edu/software/software.html) and the
EbayesThresh software
(http://www-1lmc.imag.fr/Ilmc-sms/Anestis.Antoniadis/EBayesThresh). The entire

study was carried out using the Matlab programming environment.

3.4.1 Estimation of parameters

To apply the level-wise MAP wavelet testimator one should specify the priors 7;, the noise

variance o and the prior variances 77 or, equivalently, the variance ratios v; = 77/0%. We

used the truncated geometric priors TrGeom(1 — ¢;) discussed in Section 3.3.2. Since the
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parameters o>

, g; and ; are rarely known a priori in practice, they should be estimated
from the data in the spirit of empirical Bayes.

The unknown o was robustly estimated by the median of the absolute deviation of the
empirical wavelet coefficients at the finest resolution level J—1, divided by 0.6745 as suggested
by Donoho & Johnstone (1994), and usually applied in practice. For a given o, we then
estimate ¢; and ~; by the conditional likelihood approach of Clyde & George (1999).

Consider the prior model described in Section 3.2.1. The corresponding marginal

likelihood of the observed empirical wavelet coefficients, say Yj;, at the j-th resolution level

is then given by

Wl

2j 2] -1 7 Z .:C'k;Y2

- ke Vik ! ji;

o) x Ym@(2) et T eof Pkt
k=0 R {zi:>° ), zin=r} g ( +,yj)

where (k) = (1 — ¢;)qf/(1 — qu-j“) and z; are indicator vectors. Instead of direct

maximization of L(g;,~,;Y;) with respect to ¢; and ~;, regard the indicator vector z as

a latent variable and consider the corresponding log-likelihood for the “augmented” data

(Y;, x), ie.,

Vi 2ok Tk Y

T (3.10)

2J
l(qj,v;j;Yj, x) = const + log mj(k) — log <,@> — glog(l + ;) +

The EM-algorithm iteratively alternates between computation of the expectation of
[(g;,7;;Y;, ) in (3.10) with respect to the distribution of x given Y; evaluated using the
current estimates for current values of parameters (E-step), and updating the parameters by
maximizing it with respect to ¢; and 7; (M-step). However, for a general prior distribution
7, (and for the truncated geometric prior, in particular), the EM-algorithm does not allow
one to get analytic expressions on the F-step. Instead, we apply the conditional likelihood
estimation approach originated by George & Foster (2000) and adapted to the wavelet
estimation context by Clyde & George (1999). The approach is based on evaluating the
augmented log-likelihood (3.10) at the mode for the indicator vector x at the E-step rather
than using the mean as in the original EM-algorithm (see, e.g., Abramovich & Angelini,
2006).

For a fixed number & of its non-zero entries, it is evidently from (3.10) that the most likely

vector (k) is Z;(k) = 1 for the k largest |Yjx| and zero otherwise. For the given x, maximizing
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(3.10) with respect to ; after some algebra one has 4;(x) = max (O, P Y(i)/(/mQ) —1) . To
simplify maximization with respect to ¢;, approximate the truncated geometric distribution
7; in (3.10) by a non-truncated one. This approximation does not strongly affect the results,
especially at sufficiently high resolution levels, and allows one to get analytic solutions for
g;, i-e., ¢j(k) = k/(k + 1). It is now straightforward to find # that maximizes (3.10) and
the corresponding 4;(k) and ¢;(%). The above conditional likelihood approach results thus

in rapidly computable estimates for «; and ¢; in closed forms.

3.4.2 Simulation study

We now present and discuss the results of the simulation study. For PostMean, PostMed and
BF wavelet estimators we used the Double-exponential prior, where the corresponding prior
parameters were estimated level-by-level by marginal likelihood maximization, as described
in Johnstone & Silverman (2005). The prior parameters for the level-wise MAP wavelet
testimator were estimated by conditional likelihood maximization described in Section 3.4.1
above. For the Block wavelet estimator, the lengths of the overlapping and non-overlapping
blocks and the value of the thresholding coefficient, associated with the method, were
selected as suggested by Cai & Silverman (2001). Finally, for all competing methods, o
was estimated by the median of the absolute value of the empirical wavelet coefficients at
the finest resolution level divided by 0.6745 as we have discussed in Section 3.4.1.

In the simulation study, we evaluated the above five estimators for a series of test
functions. We present the results for the Wawve, Peak, Bumps and HeaviSine test functions
defined on [0, 1].

For each test function, M = 100 samples were generated by adding independent Gaussian
noise € ~ N(0,0?) to n = 1024 equally spaced points on [0,1]. The value of the (root) signal-
to-noise ratio (SNR) was taken to be 3 (high noise level), 5 (moderate noise level) and 7 (low

noise level), where

n 1/2 n
SNR(f,0) =c~" (% Z(f(ti) - f)2> and f= %Zf(ti)'

The goodness-of-fit for an estimator f of f in a single replication was measured by its mean
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Figure 3.1: Wave, Peak, Bumps and HeaviSine test functions sampled at n = 1024 points.

squared error (MSE), defined as
MSE(f, f) = - S (F(t) ~ (1))
i=1

We report the results for n = 1024 using the compactly supported mother wavelet Coiflet
3 (see Daubechies, 1992, p.258) and the primary resolution level j, = 4 (different choices
of wavelet functions and resolution levels yielded basically similar results in magnitude).
The sample distributions of MSE over replications for all estimators in simulation studies
were typically highly asymmetrical and affected by outliers. Therefore, we preferred the
sampled medians of MSEs rather than means to gauge the estimators’ goodness-of-fit. For
each estimator, test function and noise level, we calculated the median MSE over all 100
replications. To quantify the comparison between estimators over various test functions and
noise levels, for each considered model we found the best estimator among the five ones, i.e.,
the one achieving the minimum median MSE, and evaluated the relative median MSE of
the i-th estimator defined as min;<;<s{Median(MSE;)}/Median(MSE;), i = 1,2,...,5 (see
Table 3.1). As expected, Table 3.1 shows that there is no the “uniformly best” estimator.

The relative performance of each estimator depends on a specific test function and the noise
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level. Thus, the Block estimator, for example, is clearly the best for the Peak function but
the worst for the Wave. PostMed and MAP are overall favorites among Bayesian estimators.
However, the MAP testimator results in the highest minimal relative median MSE over
all cases among the considered five estimators (see the bold numbers in Table 3.1). The
minimal relative median MSE of an estimator reflects its inefficiency at the most challenging
combination of a test function and SNR level and is a natural measure of its robustness.
Additionally, we compared the competing estimators in terms of sparsity, measured by the
total number of non-zero wavelet coefficients (averaged over 100 replications) surviving after
thresholding. These results are given in Table 3.2 below. The proposed method is sparser
than the empirical Bayes estimators (note that PostMean is not included in this comparison
since is a non-linear shrinkage, hence all wavelet coefficients survive). The sparsity of the

Neighblock thresholding estimator depends on the signal.

n signal SNR | MAP BF Postmed | Postmean | Block
1024 Wave 3 1 0.4701 | 0.9729 0.9041 | 0.4948
5 1 0.4194 | 0.9819 0.9002 0.5773
7 1 0.5525 | 0.9908 0.9017 0.7827
1024 Peak 3 0.7981 | 0.1403 | 0.7464 0.5997 1
5 0.8013 | 0.1681 | 0.7835 0.6427 1
7 0.7988 | 0.1824 0.881 0.7039 1
1024 | Bumps 3 10.7833 | 0.8252 | 0.9084 1 0.6222
5 0.7892 | 0.8543 | 0.8867 1 0.6985
7 0.8037 | 0.8635 | 0.8885 1 0.7973
1024 | HeaviSine | 3 0.8488 | 0.3486 1 0.942 0.7348
5 0.9113 | 0.3092 1 0.9698 0.6677
7 0.8121 | 0.4806 1 0.987 0.69

Table 3.1: Relative median MSE for the Wave, Peak, Bumps and HeaviSine test functions
sampled at n = 1024 data points and using three values of SNR (3, 5 and 7), for the various
wavelet estimators. The minimal relative median MSE for each estimator is bold.

3.4.3 Inductance plethysmography data

We now consider a dataset from anaesthesiology collected by inductance plethysmography
to illustrate the performance of the level-wise MAP wavelet testimator, and compare it with

the PostMean, PostMed, BF and Block wavelet estimators. The recordings were made by
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’n \ signal \ SNR\ MAP \ BF \Postmed\ Block ‘
1024 Wave 3 116.64 | 217.61 | 131.24 52.97
5 | 104.38 | 206.73 | 134.62 64.4
7 | 11594 | 195.79 | 127.61 64.9
1024 Peak 3 61.21 | 152.26 89.08 16.45
5 80.97 | 188.43 | 105.88 16.6
7 50.13 | 149.55 | 87.32 16.78
1024 | Bumps 3 [103.29 | 114.55 | 109.67 | 170.4
5) 114.12 | 129.02 | 127.49 | 216.41
7 129.9 | 141.96 | 141.13 | 240.17
1024 | HeaviSine | 3 58.65 | 164.05 | 85.13 20.41
5 79.31 | 200.16 | 120.86 | 32.02
7 64.21 | 152.21 97.38 41.17

Table 3.2: Sparsity, averaged over 100 simulations, of the various wavelet methods for the
Wave, Peak, Bumps and HeaviSine functions, sampled at n = 1024 data points and using
three values of SNR (3, 5 and 7).

the Department of Anaesthesia at the Bristol Royal Infirmary and measure the flow of air
during breathing (see, e.g., Nason, 1996).

Figure 3.2 shows a section of the inductance plethysmography recording lasting
approximately 80 seconds (n = 4096 signal points). The two main sets of regular oscillations
correspond to normal breathing. The disturbed behavior in the center of the plot, where
the normal breathing pattern disappears, corresponds to the patient vomiting. Figure 3.3
contains various reconstructions of the inductance plethysmography recording displayed in
Figure 3.3, obtained by the competing wavelet estimators. The PostMean, PostMed and
BF wavelet estimators were used with double-exponential prior and normal error models,
as suggested by Johnstone and Silverman (2005, p. 1718) and Pensky & Sapatinas (2007,
p. 618). All the prior parameters for these latter methods were estimated level-by-level by
marginal maximum likelihood from the data. The level-wise MAP wavelet testimator was
used with truncated geometric prior distributions, and the prior parameters were estimated
separately at each level by conditional likelihood maximization, as described in Section 3.4.1.
The various wavelet estimators were evaluated using Daubechies’s compactly supported
wavelets Symmlet 8 (see Daubechies, 1992, p. 198) and Coiflet 3 (see Daubechies, 1992,

p. 258). For all methods, the primary resolution level was set equal to j, = 4.
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Inductance Plethysmography Data

1.2

I I I I I I I I I
0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Figure 3.2: Section of the inductance plethysmograph recording lasting approximately 80
seconds (n = 4096 points).

As in Johnstone & Silverman (2005) and Pensky & Sapatinas (2007), we judged the
efficacy of the various estimation methods in preserving peak heights simply by looking
at the maximum of the various estimates, the height of the first peak in the inductance
plethysmography curve. The numerical findings are displayed in Table 4.1. Similarly to
Johnstone & Silverman (2005) and Pensky & Sapatinas (2007), we further quantified the
efficacy of the various estimation methods in dealing with the rapid variation near the point
0.85 (on the z-axis) by the range of the estimated curves over a small interval at this point.
The numerical findings are displayed in Table 4.2. Although we do not reproduce them here,
similar results in magnitude are also true by increasing or decreasing the value of the primary
resolution level j.

As observed in Tables 4.1 and 4.2, the level-wise MAP wavelet testimator and Bayes
factor estimator are essentially the best among the competitors in preserving the peak height

without any substantial cost of inferior treatment of presumably spurious variation elsewhere.
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Plethysmography Data Posterior Mean Estimate Posterior Median Estimate

1 1 1
0.5 0.5 0.5
0 0 0
-0.5 -0.5 -0.5
0 0.5 1 0 0.5 1 0 0.5 1
Bayes Factor Estimate Map Testimate Block Estimate
1 1 1
0.5 0.5 0.5
0 0 0
-0.5 -0.5 -0.5
0.5 1 0.5 1 0 0.5 1

Figure 3.3: The various reconstructions of the inductance plethysmography recording
displayed in Figure 3.2 Analysis of the inductance plethysmography recording using, from
left to right, (top) PostMean and PostMed (bottom) BF, Level-wise MAP and Block.



Estimate Data | PostMean | PostMed BF MAP | Block
Peak (Symmlet 8) | 0.8472 0.8422 0.8424 | 0.8456 | 0.8458 | 0.8248
Peak (Coifiet 3) 0.8472 0.8311 0.8315 | 0.8351 | 0.8322 | 0.8231
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Table 3.3: Height of the first peak of the inductance plethysmography data using PostMean,
PostMed, BF, Level-wise MAP and Block estimators.

Estimate Data | PostMean | PostMed BF MAP | Block
Range (Symmlet 8) | 0.0879 0.0766 0.0768 | 0.0795 | 0.0796 | 0.0084
Range (Coiflet 3) 0.0879 0.0742 0.0741 | 0.0771 | 0.0766 | 0.0093

Table 3.4: Range of Spurious Variation at point 0.85 (on the z-axis) of the inductance
plethysmography data using PostMean, PostMed, BF, Level-wise MAP and Block estimators.



3.5 Appendix: Proofs

3.5.1 Proof of Proposition 3.2.1

For the proof of Proposition 3.2.1 we need the following Lemma

Lemma 3.5.1.

log < clnlog(z)
K

Jork=0,1,...,2 and some ¢ > 2.

Proof of Lemma 3.5.1

For k = 0 the above inequality holds trivially. Using Stirling’s formula, one gets

=0 G-0F)

forn>2and k=1,2,...,n— 1.

(1) < () o)
S ROREHNES)

Lett==2—1andc>1 For k<%, t2>e—1 Now, define

Hence,

F(#) = clog(t +1) — tlog(¥).

In order to prove Lemma 3.5.1, we need to show that

(2 — 1) log ( 5 1) < clog (E) or equivalently f(t) >0 forall t>e—1.
K K

n_
K
Since

log(l14+2z) <z for x>0,

€
—1Dlog(——) <1 <e.
(e~ Dlog(—) < 1<¢
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Hence,
fle—1) = clog(e) — (e — 1) 1og(6_L1) > 0. (3.11)
Now,
’ C+1 ]_ Ct—l
t) = —log(l+4+-) > f t>e—1 d > 1. 12
I () T Og<+t>_t(t+1)>0’ or t>e and ¢ > (3.12)

Using (3.11) and (3.12), we get

f(t)>0 for t>e—1.

n n n n
Hence, log <kllog|—)+clog|—||, for ¢>1 and kK=1,2,...,—.
K K K e

This completes the proof of Lemma 3.5.1.
We now are in the position to prove Proposition 3.2.1.
Case 1.
Under the condition 7,(n) > e %" where &) < ¢y and ¢y > 0, Definition 3.5

immediately implies ||y — |3 < |ly — iil|3 + Pu(#) < Pu(n) < cno?. Thus,
Elljn— pll3 < 2Bl — yll3 + 2Elly — ull; = O(ogn).

Case 2. We consider 2 < p < oo. We need to maximize Y ., u;? subject to
ullp = 220y il” < ofnnh, i 0 < p < oo and [[ufle = maxi<i<a{|pul} < ownp. Using
Lagrange multipliers, it is easy to see that the solution of the maximization problem is
= Ho = ... = [l = Opl)y, for 0 < p < oo, yielding > 7" | w;® < o2nn?. The case p = 0o

gives trivially the result. Under the assumption of Case 2 in Proposition 3.2.1 we have

log( (0)) < 50,

Since 7, is bounded, we apply Collorary 1 of Abramovich, Grinshtein & Pensky (2007) for
k = 0. The last term ¢;(7,)(1 — 7,(0))o? in the upper error bound for the [?-risk can be

n

shown to be of order O(%). Thus, we get

Ella—plly < co(va) (onmn +2(1+1/ya)op log 7, (0) + c1(72) (1 = ma(0))oy,

logn
— 2 2 2
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Case 3. Let

ki = |nnf[log(na) ") P2) + 1.

It is easy to see that nnE [log(n2)] /% > [W] /2> 1.
2log(n
Additionally, under the conditions of the proposition, 72 < a, < e™*m) < % and,
therefore, 1 <k < ne=cm)

Using Lemma 3.5.1, we have

n
log(i;) < (c+ 1)k7 log (1), (3.13)
where ¢ > 1. Under assumption m, (k) > (£)2F for k = 1,2,..., a,n, we have
n
log( (k2)) < cok; log(12). (3.14)
It is easy to see that
* n —-p\11-&
ek log(1-) < enflog ()] ¥ (3.15)
Additionally,
ki P -p\|1-%
~ log(1+7) < enmpflog(n,”)] 2, (3.16)
since log(n, ?) > 1. Now, we need to maximize ), , .| pu> subject to
Z \pil” < nnPo? for 0<p<2.
Define the least favorable sequence y1; = 0,1, (n/i)'/?,i = 1,...,n that maximizes > ;.
over p € my(n,) for any k =0,...,n — 1. For K > 1,
21
i=k+1
while for Kk =0
> o < amin®P((2/p), (3.17)
i=1
where ((-) < oo is the Riemann Zeta-function. Therefore,
2w <cotnin(ky)' 5 < colnntflog(n, ) E. (3.18)

i=kx+1
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Thus, using Corollary 1 of Abramovich, Grinshtein & Pensky (2007) for k = £, (3.13)-(3.18)

and the boundeness of v, we arrive at

~ - n
Bl < atu) | X sy 2041/t os ()
i=k+1 n

k*
+ 2¢0(m)(1+ 1/ )0 <log (k) + ?” log(1 + %))

+ ai()o? = O(ornmk(log(n, 7)) /).

Case 4.
We now consider the super-sparse case for 0 < p < 2 and 7, < Qlof(n). Under

nb

assumptions of Proposition 3.2.1 we have

log(=1(0)) < clloi#. (3.19)

Hence, using Collorary 1 of Abramovich, Grinshtein & Pensky (2007) for k = 0, (3.17), (3.19)

and the assumption of boundeness of v,,, we get

Elli—plls < colym) (ommn®” +2(1+ 1/yn)on log m, ' (0)) + €1 (1) (1 = ma(0)) o

This completes the proof of Proposition 3.2.1.

3.5.2 Proof of Proposition 3.2.2

Evidently, for any p € lo[n,], pe = 0, @ > k* = [nn,] + 1. Since 1 < k* < ne=¢®), from
the general upper bound for the risk established in Corollary 1 of Abramovich, Grinshtein
& Pensky (2007) it follows that

ot n\ 1,4 k*
Bl — P < o221+ 1) (1o { () b+ S om0 et
From the first part of Lemma 2 of Abramovich, Grinshtein & Pensky (2007)

n\ n ot
log o ) ™ (k™) ¢ > log o >k log% > k" log(1 + %)

e—c(v)
2

when 7, < . On the other hand, under the conditions of Proposition 3.2.2, Lemma 3.5.1

implies

log { ( " )Wnl(nnn)} < énm, logn,*
M
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for sufficiently large n. Summarizing, one has

E|li* — pl|* < &(v)o2nn, logn; .

This completes the proof of Proposition 3.2.2.

3.5.3 Proof of Theorem 3.3.1

Let R; = i:)l E(é] — 0;1)%, j > jo — 1 be a quadratic risk of a global wavelet MAP

estimator on a j-th level. Due to the Parseval relation,

Ellfx = fIP= ) Ry
Jj>jo—1
Scaling coefficients are not thresholded and therefore

Rijl _ Cjoaszl _ O<N72s/(28+1)).

On very high resolution levels, where 7 > J, all coefficients éjk; are set to zero and, therefore

00 oo 29-1
DR =030 05 = O(NTE) = o( N2/ ),
j=J j=J k=0

where s’ = s+ 1/2 — 1/ min(p, 2) (e.g., Johnstone, 2002, Proposition 15.4).

Consider now Zj;;o R;. The set of wavelet coefficients {65, j = jo, ..., J—1} of a function
f € By (M) lies within a weak [,-ball of a radius aM with ¢ = 2/(2s+1), where the constant
a depends only on a chosen wavelet basis: my[nn] = {0 : |04 < (aM)i~'/7} (e.g., Donoho
& Johnstone, 1996). The corresponding standardized radius ny = (o/vN)"'N~Y4aM =
O(N—*), where N = N — 2% ~ N for large N.

Under the conditions of the theorem, one can apply Theorem 6 of Abramovich, Grinshtein

& Pensky (2007) for my[nn] to get

. 2s/(25+1)
A log N
> Ry < sup E||0-0|l3 =0 (ni(2logny")'"*) =0 (( Ong ) ) '

j=7jo 0emqg[nn]

This completes the proof of Theorem 3.3.1.
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3.5.4 Proof of Theorem 3.3.2

Let
J1 J—1 0o
Ry(0) = > E(I0; =611+ > E(l6; — 611" + > E(ll; - 6,1%)
j=jo—1 j=i+l j=J
= Rio + Rmia + Rpi.
Let R; = ij:_ol E(éjk —0;1)%, j > jo— 1 be now a quadratic risk of a level-wise wavelet

MAP estimator on a j-th level. For f € By (M), the sequence of its wavelet coefficients
on a j-th level belongs to an [,-ball of a standardized radius n; = CN'/22796+1/2) for some
C' > 0. Define j; as the largest integer satisfying 7 > c, and note that 7} > ¢, for j < ji
and 7} < ¢, for j > ji.

0.2

Applying the first statement of Proposition 3.2.1 for each level with n; = 27 and o}, = %

we have

Risk of scaling coefficients and Risk at low levels

2
Rjo—l = ]Euejo—l Jo 1||2 < 2]0

N
‘1 . .
c2! 1 cC? (25t
Ry, E E(]|6; — 6;113) WSCWSW'

Jj=Jjo J=jo

Risk at medium levels

If j > J—1,R,4 = 0. Otherwise,
Ria < C{S1 + Sa},

where Sy = Z;.];jllﬂ{% + +} and S; will be defined separately for 0 < p < 2 and p > 2.

Case 1. 0 < p < 2. Define j; as the largest integer for which 7] > 277(2log 20YP/2, Let
S1 = S11+ S12. We first consider the case j; < jo < J—1. Using the monotonicity arguments,
n > 277(21og 27)P/? for all j; < j < jo. For 0 < p < 2
J2

Sy = Z CPQ—jP(5+1/2_1/p)€?_p7

Jj=ji+1

where €, = N~Y/2, /log(C—» N-r/22ip(s+1/2)),
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It is easy to see that

25— (s+1/2—1/p)p _
2s +1 B
For j > j1, 277 < ¢(C?N)~V @+ = 275Q2s=(s+1/2=1/P)p) < ¢(C2N)~1+P/2 which leads to
J2
S < ¢ Z CI"N*H%Q*P(Hl/?*l/p)j{10g(2(2s+1)j]\/710—2)}1—p/2
J=j1+1

1—p/2.

_p(s+1/2—1/p)

< cCPNTHPR(CANY TR = O ) N

Additionally, applying the fourth statement of Proposition 3.2.1

— - — Jj log2(N) 2
— 2 p—
SIQSAZ EHQJ'_@J'H%SCA - NSCJQN ISCTSCN25“-
J=j2+1 J=j2+1
NOW, 1f]1<J—1§j2, Slgannd
J-1
Sy < ¢ Z CPN—H%2—p(8+1/2—1/p)j{10g(2(25+1)jN—1C—2)}1—p/2
J=Jj1+1
< cC2/2s+1) N5
Hence,
Sl S SH + 512 S CNiﬁ. (320)
Case 2. For 2 < p < o0
J-1
S, =c Z (291(1=2/p)9—2j(s+1/2-1/p)
Jj=Jj1+1

Since 1 —2/p—2(s+1/2 —1/p) = —2s,
1— 2—2$(J—j1—1)>

J—1
Sl —c Z 022—25j — 0022—28(j1+1)(

~ 1—272%
Jj=n+1
< CCQ/(23+1)N_25/(2S+1). (321)
Additionally, for 0 < p < 0o
J—1 . J—1 . 2
log(27) 1 j 1 J J? clog®(N)

Sy = 1< e O e T B = 3.22
D I o B A B T CE)

J=j1+1 J=n+1

Hence, using (3.20)-(3.22),

2
Cz=+1 log?(N)
Rmi S s +

d C{ N252+1 N
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Risk at very high levels

Let A = (1/2—1/p), 7" =s5—(1/p—1/2)4. Hence, v’ = s —1/p+1/2 for 0 < p < 2
and " = s for 2 < p < co. Therefore, we can write 7’ = s+ 1/2 — 1/p — A. The following

inequality holds as a consequence of the equivalence of norms in finite dimensional spaces.
16112 < 227[16,]l, for any  p.
Since " =sfor2<p<ooandr =s+1/2—1/p>1/2for 0 < p < 2, we obtain

R = ) E(6;15) =Y 272(|6;]; < cC? ) 272(+1/271/righ
=J—

J 1 J=J Jj=J

1

_ 26—2J(s+1/2—1/p—A) 2a7—2r"
= cC”2 P=2) < cC*N = 0(—N28/(2s+1)>'

Therefore, we arrive at the desired result. This completes the proof of Theorem 3.3.2.

3.5.5 Proof of Theorem 3.3.3

~

Let R; = ij;OI E(0;1 — 01)%, j > jo — 1 be now a quadratic risk of a level-wise wavelet
MAP estimator on a j-th level. Johnstone & Silverman (2005, Section 5.6) showed that
BN = FONP = s 00 22 Ry

For f € B, (M), the sequence of its wavelet coefficients on a j-th level belongs to an
l,-ball of a standardized radius 7; = CoN'/?22736+1/2) for some Cy > 0 (e.g, Meyer, 1992,
Section 6.10). Define j; as the largest integer satisfying 77 > ¢, and note that ¥ > ¢, for
J < j1 and nf < ¢, for j > j; (with obvious modifications for p = oc). Consider the following

cases.

1. Scaling coefficients, j = jo — 1. Similarly to the global wavelet estimator, for a fixed jo,

22—V R, | = O(N™!) = o( N726s=m)/2s+1)) a5 n — oo.

2. Coarse levels, jo < 7 < ji1. Applying the first statement of Proposition 3.2.1 for each level

one has

J1 Ji Ji
DPMR; < CY 2Nty SONTHY 20mH = O(NTHm/E) as o 0o

J=Jjo J=jo Jj=Jo
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3. Mid+high levels, j; < j < J. Consider separately a) 2 < p < oo and b) 0 < p < 2.

a) 2 < p < oo. Under the conditions of the theorem, the second statement of Proposition

3.2.1 on a j-th level yields
Ry < CN " (i} +n; logn;) < C(27%° + N7'27%j)
and, hence,

J—-1
Z 22ijj < C(zfle(sfm) + N71J2) < C(NfQ(sfm)/@erl) + N*l logg N)
J=n+1
_ O(N*Q(S*m)/(%“)) as n — oo.

b) 0 < p < 2. Let j, be the largest integer for which 7}

> n; ' (2logn;)P/?. One can easily
verify that 71 < jo < J.

Using the monotonicity arguments, 77 > nj_l(2log n;)P/? for all j; < j < jp (mid-levels).
One can then apply the third statement of Proposition 3.2.1 and after some algebra to get
for 0 <m < (s+1/2—1/p)p/2

J2 J2
Z 22ijj < CON! Z 9(@m+1)j nrp/29—jp(s+1/2) <1Og(N—p/22jp(s+1/2)))1_”/2
J=j1+1 J=n+1
< ON-(-p/2)g=ip(s+1/2=(2m+1)/p) log(N—p/22j1p(S+1/2))

_4 O(NfQ(sfm)/(2s+1)> as 7 — 00

On high levels j5 < 7 < J, 77§7 < nj’l(Zlog n;)P/? and the fourth statement of Proposition

3.2.1 implies
R; < 0(2*2j(8+1/2*1/27) + N*12*jﬁj)'

Hence, for 0 < m < /2 and m < min(s, (s + 1/2 — 1/p)p/2), one has
J-1
Z 22ijj < 0(2—2(j2+1)(s+1/2—1/p—m) + N_IJQ) =5+ Ss,

Jj=j2+1

where, evidently, Sy = O(N~'logs N) = o( N~25=™)/(2s+1)) a5 n — o0o. From the definition

of jg, 202HDEHY2-1p) .\ /NC/(jo +1) > /NC/log, N that after some algebra yields

S; = o( N=2s=m)/(2s+1)) a5 1 — o0.
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4. Very high levels, 7 > J. Using the results of Johnstone & Silverman (2005), the tailed
sum

Z 22ij O( (s’ m)) 0<N72(sfm)/(2s+1))’

Jj=J

where s = s+ 1/2 — 1/ min(p, 2).

Summarizing, Y 22miR; = O(N~2s=m)/(2s+1)) a5 n — oo0.

JjZjo—1
This completes the proof of Theorem 3.3.3.

3.5.6 Proof of Theorem 3.3.4

Set a =s— (% — 1) > 1. Using Proposition 5 of Johnstone & Silverman (2004a) we obtain
2+279)||0; — G, < 027D,

for all j such that jo —1 < j < J and for all p > 0.

Hence,
1611, < 1165 — 6]l + 1165 < cC2-3I=0)73+373) 4 0o=ils+373) — (0 7I0+273) (3.23)
Using the above inequality, it is easy to see that
161]], < cC2776+3)(20 — 25 — 2)3., (3.24)

Therefore, the interior ‘discretized’ coefficients obey (up to a constant) the same Besov
sequence bounds as the true interior coefficients. ffjk each has expected value éjk and the
interior coefficients are independent normals with variance "—; Because of the bound (3.24),
using the same arguments as in Theorem 3.3.2, we arrive at
02/ (25+1) 1
I (I
S B0 - 1) + Z 16518 < el + o sy ) (3.25)

J=Jo

Coarse scale error

Consider first the coarse level scaling coefficient 6;,_;. éjo_l = Yj,—1 has variance bounded
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Therefore,

E(]|6jp—1 — 6p-113) < (3.26)

Boundary coefficients

The elements of the array Y2 are normally distributed with expected values 68 and variances

bounded by ”;‘;A. We obtain éﬁ by individually thresholding 37]% with threshold T(%)%. So,

by standard properties of 2-norm and thresholding we get

E(|0;c — 0ul*) < cE(0j6 — Yiul?) + cE( Ve — 05]*) <

. 2
i g“ca ¥
< . < o= 2
S Ayt ISy (3:27)
J—1 B J-1 ]
Riothigh = E E(HQJB—&}B”%) < E :KJBCN
Ji=jo J=Jjo
cJ? (log N)?
< <o) 2
= N =N (3:28)

since | K| = 2(S — 1) for any level j.

Discretization bias

LetA:(%—%)Jrandr":s—(%—%)Jr.ForQSpgoo,%—%<0,:>7’”:5.F0r

O<p<2,r”:s—i+%.Hence,forany0<p§oo,

Using the equivalence of norms in finite-dimensional spaces, i.e
16; — 65112 = 272116, — 61,

and inequality (3.23), we have

J—1 J—1 J—1
Rp = > 6;—06;3=Y_ 22M[6; - 0,12 < > 0292899289~ 2i(o+5—3)
j=jo—1 j=jo—1 j=jo—1

J—1
— (292 Z 22]'(@7#’)_

Jj=jo—1
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o Ifa=r", Rp < cC?2727 ]

o Ifa<r,
J—1 . ,
5 o ~ . R/ - 22(0’77" )(J—jo+1)
< 02272aJ 22](a7r ) — 2272aJ2(.70*1)(a7r )
RD -~ C Z CC [ 1 . 22(&—7“”)
Jj=Jjo—1
< (2%
Therefore,
Rp < CCQJ)‘/Q_%J for a < 7"",
with A" = 1 if and only if @ = 7" and X" = 0 otherwise.
o Ifa>r",
J_l " " "
Rp = cC29—2at Z 22j(&—r ) 0022—2aJ22(&—r )(jo—l)[22(&—r )(J—jo+1) _ 1] <
Jj=jo—1
" " 2
< 0292 2a—r" )] < o292 _ cC
_— _ N27’” M

Let " = min{r", a}. Hence,

J_l pr " /

D 116, = 6,113 < cC*N"* (log N)* (3.29)

Jj=jo—1

with A" = 1 if and only if @ = 7" and A" = 0 otherwise. Using inequalities (3.25)-(3.29), we

have
" / l N 2
RS(f) < CC2N~2 (log N)’\ i c( OgN ) i 0{02/(2s+1)N—23/(2s+1)
1
+ 0(N2s/(28+1))}' (3.30)

oFor0<p<2,7"”:s—z—1)+%:>r”7éd,:>)\/:O.
oFor2§p§oo,d:sandr":s:>r//:dandd:3<s+%—%:>X:1.
1st Case

For 0 < p < 2, the first term of (3.30) takes the form cC2N-2"

"

"
o Ifr" =a=s,cC?N™ = cC?N* = o(5z71)-
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i

o Ifr = r”, CCQN*%W = cC’2N*2TW < cC2N~Hs+373) < %
2nd Case

For 2 < p < oo, the first term of (3.30) takes the form cC?(log N)N*%m.

"

" /
o~ 2 AT—2r A cC?log N __ 1
o Ifr" =a=1scC?’N (logN)* < 525~ = o(5m77m)-

"

" ’ 2 2
o If 7" =71" cC?N~% (log N)* < CC]\;ISS’SN) = B = otz
Hence, we arrive at
025/(2s+1) 1

Ry(f) <cf N25/(25+1) + 0(N2s/(2s+1))}'

This completes the proof of Theorem 3.3.4.



Chapter 4

Minimax convergence rates under the
Ly-risk in the functional deconvolution
model

We derive minimax results in the functional deconvolution model under the LP-risk, 1 <
p < oo. Lower bounds are given when the unknown response function is assumed to
belong to a Besov ball and under appropriate smoothness assumptions on the blurring
function, including both regular-smooth and super-smooth convolutions. Furthermore, we
investigate the asymptotic minimax properties of an adaptive wavelet estimator over a wide
range of Besov balls. The new findings extend recently obtained results under the L?*-
risk. As an illustration, we discuss particular examples for both continuous and discrete
settings. Additionally, we show that when the number of channels tends to infinity, functional
deconvolution with a box-car type blurring function in the discrete model can provide
estimators with the same asymptotical minimax rates of convergence for LP-risk as in the
continuous model. A small simulation study shows that the proposed estimator performs

well in finite sample situations.

4.1 Introduction

In the past decades, the standard deconvolution model was studied by many researchers who
tried to find optimal solutions to this problem. Amongst them, Donoho (1995), Abramovich
& Silverman (1998), Jonhstone, Kerkyacharian, Picard & Raimondo (2004) and Chenseau

(2008) proposed various wavelet thresholding estimators of the unknown response function

87
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in this model that achieve optimal (in the minimax or the maxiset sense), or near-optimal
within a logarithmic factor, convergence rates over a wide range of Besov balls and for a
range of LP-loss functions defining the risk.

On the one hand, there are several cases when one needs to recover initial or boundary
conditions on the basis of observations of a noisy solution of a partial differential equation.
The estimation problem of the initial condition in the heat conductivity equation was
initiated by Lattes & Lions (1967). This problem and the problem of recovering the boundary
condition for elliptic equations based on observations in an internal domain were considered
in a minimax setting by Golubev & Khasminskii (1999), and sharp asymptotics for the L2-
risk over a range of Sobolev balls were obtained. On the other hand, Casey & Walnut (1994)
and De Canditiis & Pensky (2004, 2006) considered the multichannel deconvolution model
which arises in signal and image processing, e.g., in LIDAR (Light Detection and Ranging)
remote sensing and reconstructions of blurred images (see, e.g., Park, Dho & Kong (1997)).
Using the maxiset approach, De Canditiis & Pensky (2006) derived upper bounds for the LP-
risk, 1 < p < oo, over a wide range of Besov balls, of an adaptive term-by-term thresholding
wavelet estimator for a fized target function f(-). However, the minimax properties of their
estimator and the case when the number of channels increases with the number of points at
which f(-) is observed were not considered by De Canditiis & Pensky (2006).

Recently, Pensky & Sapatinas (2009a) showed that all the above described problems are

special cases of the functional deconvolution model given by

y(u,t) = /Tf(x)g(u,t —z)dx + %z(u,t}, teT=1[0,1], weU=]la,bl] (4.1)

with —00 < a < b < oo. Here, the kernel or blurring function g(+, ) is assumed to be known,
and z(u,t) is assumed to be a two-dimensional Gaussian white noise, i.e., a generalized

two-dimensional Gaussian field with covariance function
E(Z(Ul, tl)Z(UQ, t2)) = 6(U1 — l@)é(tl — t2)7

where §(-) denotes the Dirac d-function. The analogous discrete model, when y(u,t) is

observed at n = NM points (u;,t;), L =1,2,...,M and i = 1,2,..., N, is given by

y(ug, t;) = / f(@)g(uy, t; — x)de + ey, t; = % eT=1[0,1], weU=]la,bl, (4.2)
T
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where ¢;; are standard Gaussian random variables, independent for different [ and .

Pensky & Sapatinas (2009a) obtained minimax lower bounds and proposed an adaptive
(linear or block thresholding) wavelet estimator, for both the functional deconvolution model
(4.1) and its discrete version (4.2), that is asymptotically optimal (in the minimax sense), or
near-optimal within a logarithmic factor, under the L?-risk over a wide range of Besov balls.

The aim of this chapter is to provide the analogous statements of the above mentioned
minimax results obtained by Pensky & Sapatinas (2009a) under the L?-risk for the case of LP-
risk, 1 < p < 0o. More specifically, we first obtain lower bounds for the LP-risk, 1 < p < oo,
when the unknown response function f(-) in functional deconvolution model (4.1) and its
discrete version (4.2) are assumed to belong to a Besov ball and the blurring function g(-, )
is assumed to possess some smoothness properties, including both regular-smooth and super-
smooth convolutions. Furthermore, we investigate the asymptotic optimal (in the minimax
sense) properties of an adaptive (linear or block thresholding) wavelet estimator under the
LP-risk, 1 < p < 00, over a wide range of Besov balls. As an illustration, we discuss particular
examples for both continuous and discrete settings.

The results under the LP-risk are also extended to the multichannel deconvolution
model with box-car convolutions. Moreover, we verify the practical importance of block
thresholding wavelet estimators in the functional deconvolution model by conducting a
simulation study.

In what follows, as in Pensky & Sapatinas (2009a), we assume that both f(-) and, for a
fixed u € [a,b], g(u,-) are periodic functions with period on the unit interval 7" = [0, 1]; this
assumption appears naturally in the above mentioned special models which (4.1) and (4.2)

generalize.

4.2 Meyer wavelets and Besov balls

Let ¢*(-) and ¢*(-) be the Meyer scaling and mother wavelet functions, respectively (see,

e.g., Meyer (1992), Chapter 3). As usual,

o) = 229" (Px — k), Y (x) =2 (e —k), 4 kEZ,

J J
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are, respectively, the dilated and translated Meyer scaling and wavelet functions at resolution
level j and scale position k/27. (Here, and in what follows, Z refers to the set of integers.)
Similarly to Section 2.3 in Johnstone, Kerkyacharian, Picard & Raimondo (2004), we obtain
a periodized version of Meyer wavelet basis by periodizing the basis functions {¢*(-), v*(+)},
ie.,

Gie(r) =Y 22D (@ +i) — k), () = 2PN (D (w + 1) — k).

€L €L

Note that, for any jo > 0 and any j > jo, any f € L?(T) can be written as

270 —1 oo 29-1
Z a]0k¢J0k + Z Z 6jkwjk
Jj=jo k=0

where ajor, = [ f(£)@jor(t) and B, = [ f(£);x(t). Tt is well known that the Meyer wavelet
basis satisfies the following three properties (see, e.g., Johnstone, Kerkyacharian, Picard &

Raimondo, 2004):

1. Property of concentration Let p € [l,00) and h € {¢,v}. For any integer

j € {7,...,00} and any sequence u = (u;);k, there exists a constant ¢ > 0 such
that
271 27 -1
I Z wikhirllh < eGP (4.3)
k=0

2. Property of unconditionality. Let p € (1,00). Let us set 1,15 = ¢, . For any

sequence u = (u;x);x, We have

oo 291 oo 29-1
1
D> wpwlB =< 10D D gl )2 |12
j=r—1 k=0 J=1—1 k=0

(Here, and in what follows, the notation a < b means there exist two positive constants

¢ and ¢g such that ¢;b < a < ¢3b.)

3. Temlyakov property. Let o € [0,00). Let ¢, 15 = ¢, For any subset A C

{r —1,...,00} and for any subset Q C {0,...,2/ — 1}, we have

IO 1272 =< 373 272

JEA keQ JEA keQ
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Remark 4.2.1. The property of concentration is used in the proof of Theorem 4.4.2, in
the case of super-smooth convolutions. The property of unconditionality and Temlyakov
property are indirectly used in the proof of Theorem 4.4.2, since they are used in the proofs

of some auxiliary results (i.e., Theorems 5.4.1 and 5.4.2 in Chesneau, 2006).

Now, let us give the definition of Besov balls, the main function spaces used in our study.
Let M € (0,00), s € (0,R), p € [1,00] and r € [1,00]. (Here, R refers to the number of
vanishing moments and continuous derivatives of the mother wavelet function ¢*(+); note
that, for the Meyer wavelet basis, R = co.) Let 8,1, = a,x. We say that a function f
belongs to the Besov ball B; (M) if and only if the associated wavelet coefficients 3;1., when

p € [1,00) and r € [1,00), satisfy

00 271 1
(> P2 18] <M
j=7—1 k=0

with the usual convention when p = oo and/or r = co.

4.3 Construction of the wavelet estimator

Let e,(t) = €™ m € Z, and for any j, > 0 and any j > jo, let
Pmiok = (€ms Djok)s  Ymik = (€m> k), fn = (em, f)
be the Fourier coefficients of ¢, x(-), ¥;x(-) and f(-), respectively. Moreover, let
h(u,t) = /f(x)g(u,t —z)dz, teT=10,1, weU=]la,bl, (4.4)

and let the functional Fourier coefficients of h(u,-), y(u,-), g(u,-) and z(u,-) be given,

respectively, by

hm(u) = <em7 h’(“? ))7 ym(u) = <em>y(u7 )>7

gm () = (em, 9(u, ), zm(w) = {em, 2(u, ).

Using the properties of the Fourier transform, then for each uw € U, for the continuous

model (4.1), we have

%MZ%MM+%%M,
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where g, (u) = hy(u)/fr and z,(u) are generalized one-dimensional Gaussian processes

satisfying
E(zml (u1>zm2 (UQ)) = 5m1,m26(u1 - u2),

where d,,; is the Kronecker’s delta. For the discrete version (4.2), using properties of the

discrete Fourier transform, for each [ = 1,2,..., M, we have

Ym () ==gm(UOf%z%-;?%?zmh

where z,,; are standard Gaussian random variables, independent for different m and [, i.e.,

E(thh ZmQJz) - 5m1,m2 (511712 .

A natural estimator of f,, is given by

2 g (W ym (w)du

;oo T gm @2 in the continuous case,
=

le\il gm (w)yYm (ur)

S o () in the discrete case.
=1 19m

(Here, and in what follows, h denotes the conjugate of a complex number or a complex
function h; h is real if and only if h = h.) Consider also the following assumptions on the

blurring function g(+,-). Define

(m) ff |G ()| dut, in the continuous case,

T\m) =
= Zl]‘il |gm (u7)]?, in the discrete case,

and suppose that, for some constants v € R, a > 0, § > 0 and some constants K; and

K5, independent of m, the choice of M and the selection of points u;, [ = 1,2,..., M, with

0 < K; < Ky,
mi(m) < Kylm| ™ exp(—alm|?), v>0 if a=0 (4.5)
and
mi(m) > Kilm| ™ exp(—alm|®), v >0 if a=0. (4.6)
Define also
o= J = llogal& (52 1), a >0,

20 =< log(n)zV', 27 =n’,  a=0,
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where 6 € (0, (2v + 1)7']. Here, and in what follows [z] denotes the integer part of z and
aVb=max(a,b).
By Plancherel’s formula, the scaling coefficients, o, and the wavelet coefficients, 3,
can be represented as
Qjoke = Z fm¢m—jok7 Bk = Z fmT/ijk,
meCs meC;
where C = {m : ¢mjor # 0} and, for all j > jo, Cj = {m : ¥y # 0}, both subsets of
2m /3[—2712, =271 U [27,27%2] ) due to the fact that Meyer wavelets are band limited (see, e.g.,
Johnstone, Kerkyacharian, Picard & Raimondo, 2004, Section 3.1). Hence, a;j,x and (i, are
naturally estimated by
Gjok = > gk Bk = D Fntomse (4.8)
meCs meC;
We now construct a block thresholding wavelet estimator of f(-). For this purpose,
we divide the wavelet coefficients at each resolution level into blocks of length [;. More

specifically, let the following set of indices
Aj={1,2,...,27/;}, Up={k=0,1,...,2 = 1| (t-1); <k <tl;—1}

and let

L= (og(m) B, Bi= (3 1Bul/1;)"

keUjq
For any jo > 0, we finally reconstruct f(-) as

270 -1

Z Aok Dion(t) + Z SN BuI(1B] = d2nE ) (), (4.9)

J=jo tEA kEUJt

where [(A) is the indicator function of the set A.

Remark 4.3.1. The estimator of f(-) given by (4.9) is similar to the estimator introduced by
Chesneau (2008) for the regular-smooth case (i.e., « = 0 in (4.5) and (4.6)) in the standard
deconvolution model (i.e., when a = b in the functional deconvolution model (4.1)). Here, we
consider the estimator (4.9), with @;,; and 3, given by (4.8), and prove its optimality (in the
minimax sense) under both the functional deconvolution model (4.1) and its discrete version

(4.2), for both regular-smooth and super-smooth (i.e., & > 0 in (4.5) and (4.6)) convolutions.
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Remark 4.3.2. Note that the proposed estimator (4.9) of f(-) is adaptive with respect to s,
p, 7 and M, i.e., with respect to the parameters of the Besov ball B (M), that are usually

unknown in practical situations.

4.4 Minimax study under the L”—risk

We construct below minimax lower bounds for the LP-risk, 1 < p < oo, both for the
continuous model (4.1) and the discrete model (4.2). For this purpose, we define the minimax
LP-risk, 1 < p < oo, over the set €2 as

R,() = inf supE| f, — |,
S9)

where ||g||, is the LP-norm, 1 < p < oo, of a function g(-) and the infimum is taken over all
possible estimators f,(-) (measurable functions) of f(-), based on observations either from
the continuous model (4.1) or the discrete model (4.2).

The following theorem provides the minimax lower bounds for the LP—risk, 1 < p < o0,

under assumption (4.5).

Theorem 4.4.1. Let {¢;,i(-),¥;i(-)} be the periodic Meyer wavelet basis discussed in Section
4.2. Let s > 1/p, 1 < p<oo,1<r<ooand M > 0. Then, under the assumption (4.5),
as n — 00, there exists some constant C' > 0 such that,

ps™

C(logn)” %, if a>0,
Rn(B;,r<M)) >4 CnPor if a=0,¢€>0,
C(lemyer if a=0, e <0,

n

where
e T s s—+,
€ = s -p)y, =" Qo= ,
PRI TG+ T L) 11
. 1
s = s+ - — —
p  min(p, p)

Remark 4.4.1. The two different lower bounds for « = 0 in Theorem 4.4.1 refer to the

dense case (e > 0) when the worst functions f(-) (i.e., the hardest functions to estimate)
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are spread uniformly over the unit interval T, and the sparse case (¢ < 0) when the worst
functions f(-) have only one non-vanishing wavelet coefficient. Also, the restriction s > %,
1 <p<oo, 1 <r < oo, that appears in the statement of Theorem 4.4.1, ensures that the
corresponding Besov spaces are embedded in the space of continuous functions defined on T,

(and, hence, belong to L?(T), for 1 < p < 00).

The next theorem provides the upper bounds for the block thresholding wavelet estimator

given by (4.9), under the assumption (4.6).

Theorem 4.4.2. Let fn() be the wavelet estimator defined by (4.9), with jo, J and § given
by (4.7). Lets>%—%+%—y when o« = 0 ands>71) whena=0,1<p<o0,1<r<oo
and M > 0. Then, under assumption (4.6), as n — oo, there exists some constant C' > 0
such that,

C(logn)_%, a >0,

fEJS;Tp(M)E(Hf —flF) £ Cn=P(logn)* P>, a=0, >0

C(lo%)o‘?p(log n)(p_g)ﬂ{e:(]}, a=0, €<0,
where oy, as, € and s* are defined as in Theorem 4.4.1
Remark 4.4.2. Theorems 4.4.1 and 4.4.2 imply that, for the LP-risk, 1 < p < o0, the
estimator fn() defined by (4.9) is asymptotically optimal (in the minimax sense), or near-
optimal within a logarithmic factor, over a wide range of Besov balls B (M) of radius
M > 0 with s > %—%+%—l/,whena:0ands>%whena>0,1§p§ooand
1 < r < oo. In particular, the estimator (4.9) is asymptotically optimal, except for e = 0,
p>2ande >0, p>p,inwhich cases the estimator fn() defined by (4.9) is asymptotically

near-optimal within a logarithmic factor, i.e.,

)
n—PeL, if a=0,e>0,p>p,

s (10%>a2p7 1f o = 0, €< 0,
Rn(Bp,r(M)) =
or a=0,e=0,p<E,

| (logn)™ 7, if a>0,

and

. Cn~*P(logn)P™, if a=0,e>0,p>p,
sup  Ellfu — fIf} < .
feB; (M) C(nyer(logn)P=r), if a=0, e=0, p> L.

n
n



96

Remark 4.4.3. For the LP-risk, 1 < p < oo, the upper bounds obtained in Theorem 4.4.2
are the same as those obtained by Chesneau (2008) for the regular-smooth case (i.e., a = 0
in (4.5) and (4.6)) in the standard deconvolution model (i.e., when a = b in the functional

deconvolution model (4.1)).

Remark 4.4.4. Following the steps of the proof of Theorem 4.4.2, it is easy to see that if

the threshold in (4.9) takes the form a ”jﬁl(j), where A4(j) = @ Zmecj 7, *(m), Theorem

4.4.2 still holds.

4.5 Examples

In this section, we briefly present inverse problems discussed in Section 4.1 which can be
seen as applications of the functional deconvolution model (4.1) or its discrete version (4.2).
The optimality (in the minimax sense), or near-optimality within a logarithmic factor, for
the L2-risk over a wide range of Besov balls in the Examples 1-5 below have been discussed
in Pensky & Sapatinas (2009a) (see their Examples 4, 1, 2, 3 and 5, respectively); here,
we use the methodology presented in Sections 4.3 and 4.4 to check that the corresponding

estimators are also optimal or near optimal under the LP-risk (1 < p < o0).

Example 1. Estimation of the speed of a wave on a finite interval. Let h(t,z) be

a solution of the initial-boundary value problem for the wave equation

O*h(t, ) O*n(t,z) |
T = W with h(O,x)—O,

ahgt, & =0 f(x),  h(t,0) = h(t,1) = 0. (4.10)

Here, f(-) is a function defined on the unit interval [0, 1] and ¢ € [a,b], a > 0, b < 1.

We assume that a noisy solution y(t, x) = h(t, z)+n~2z(t, r) is observed, where z(t, z) is
a generalized two-dimensional Gaussian field with covariance function E[z(t1, z1)2(ta, x2)] =
d(ty —t2)0(xq — o), and the goal is to recover the unknown speed of a wave f(-) on the basis
of observations y(t, x).

Extending f(-) periodically over the real line, it is well-known (see, e.g., Strauss (1992),
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p. 61) that the solution h(t,z) can then be recovered as

h(t,x):% /0 Iz — 2| < £)f(2)d=, (4.11)

so that (4.11) takes the form (4.4) with g(u,z) = 0.51(]z| < u), where u in (4.4) is replaced
by ¢ in (4.11). It is easily seen that the functional Fourier coefficients g,,(-) satisfy (4.5) and
(4.6) with v =1 and a = 0.

Hence, according to Theorem 4.4.1 and Theorem 4.4.2 , the adaptive block thresholding
wavelet estimator given by (4.9) achieves the following minimax upper bounds (in the LP-risk,

1<p< o)

e < n" =5 (Inn)es if s>2(1—-p/p),
n( p,r( )) = lnn %fiém max(0,p—p/7)I(e=0) . 3
(ln) "= (Inn) , i s <5(1-p/p),

over Besov balls B; (M) of radius M > 0 with s > 1/p—1/2—1/(26) + v, 1 < p < 0o and
1 <r < oo. (The minimax lower bounds (in the LP-risk, 1 < p < oo) have the same form

without the extra logarithmic factor.)

Example 2. FEstimation of the wnitial condition in the heat conductivity

equation. Let h(t,x) be a solution of the heat conductivity equation

Oh(t,x)  0%h(t,x)
¥ 1
ot EYCI z € |0,1], t€[a,b], a>0,b< o0,

with initial condition h(0,z) = f(x) and periodic boundary conditions

Oh(t, )
ox

_ Oh(t,x)
0 - O

h(t,0) = h(t, 1),

x= =1
It is well-known (see, e.g., Strauss, 1992, p. 48) that, under the assumption of periodicity,
the solution h(t, z) is given by

h(t,z) = (4mt)~'/? / 1 Zexp{ - M} f(2)dz,

0 ez 4t

which coincides with (4.4) when t and z are replaced by u and ¢, respectively. It is easily
seen that the functional Fourier coefficients g,,(-) satisfy (4.5) and (4.6) with v = 1, a = 87%a
and § = 2.
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Hence, according to Theorem 4.4.1 and Theorem 4.4.2, the adaptive wavelet estimator

given by (4.9) achieves the following minimax convergence rate (in the LP-risk, 1 < p < 00)

1__ 1
p(s+5 min(p,ﬂ))
2

Ry (B, ,(M)) = (Inn)~

over Besov balls Bj (M) of radius M > 0 with s > 1/p, 1 <p <ocand 1 <r < o0,

Example 3. Estimation of the boundary condition for the Dirichlet problem
of the Laplacian on the unit circle. Let h(x,w) be a solution of the Dirichlet problem

of the Laplacian on a region D on the plane

O?h(z,w) N O?h(z,w)

= D 4.12
ax2 8'11]2 07 (x7 w) E Y ( )

with a boundary dD and boundary condition
h(z,w)| = F(z,w). (4.13)

oD

Consider the situation when D is the unit circle. It is well-known (see, e.g., Strauss

(1992), p. 161) that the solution h(u,t) is given by

i, 1) = 1= /027r /() d.

27 1 —2ucos(t — x) + u?

h(z,w) = h(u,t), where u € [0,1] is the polar radius and ¢ € [0,27] is the polar angle.
Observations are available only on the interior of the unit circle with u € [0, 7¢], 79 < 1, i.e.,
a=0, b=ry< 1. It is easily seen that the functional Fourier coefficients satisfy (4.5) and
(4.6) with v =0, @ = 2In(1/r) and g = 1.

Hence, according to Theorem 4.4.1 and Theorem 4.4.2, the adaptive wavelet estimator

given by (4.9) achieves the following minimax convergence rate (in the LP-risk, 1 < p < 00)

1 1

Ru(BS,(M)) = (tnn) (=} ~mtr)

over Besov balls B (M) of radius M > 0 with s > 1/p, 1 <p <ocand 1 <r < o0,

Example 4. Estimation of the boundary condition for the Dirichlet problem

of the Laplacian on a rectangle. Consider the problem 4.12-4.13 in the Example 3
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above, with the region D being now a rectangle, i.e., (z,w) € [0,1] x [a,b], a > 0, b < oo,

and periodic boundary conditions
h(z,0) = f(x), h(0,w)=h(1,w).

It is well-known (see, e.g., Strauss (1992), p. 188, p. 407) that, in a periodic setting, the

solution h(z,w) can be written as

h(z,w)=na"" /0 Z Ry f(2)dz.

keZ
It is easily seen that the functional Fourier coefficients g,,(-) satisfy (4.5) and (4.6), with
v=1/2, a =4ra and § = 1.
Hence, according to Theorem 4.4.1 and Theorem 4.4.2, the adaptive wavelet estimator

given by (4.9) achieves the following minimax convergence rate (in the LP-risk, 1 < p < 00)

1

Ro( B2, (M) = (Inp) (55wt

over Besov balls B; (M) of radius M > 0 with s > 1/p, 1 <p < oo and 1 <r < c0.

Example 5. Estimation in the multichannel deconvolution problem. Consider

the problem of estimating f(-) € LP(T") on the basis of the following model

Yl(dt):f*gl(t)dtJr%Wl(dt), teT =001, 1=1,2... M, (4.14)
n

where g;(-) are known blurring functions, o; are known positive constants and W;(t) are
independent standard Wiener processes. Note that a discretization of (4.14) (with o; = 1 for
[=1,...,M) leads to the discrete setup (4.2).

Adaptive term-by-term wavelet thresholding estimators for the model (4.14) were
constructed in De Canditiis & Pensky (2006) for regular-smooth convolutions (i.e., « = 0
in (4.5) and (4.6)). However, minimax lower and upper bounds were not obtained by these
authors who concentrate instead on upper bounds (in the LP-risk, 1 < p < oo) for the error,
for a fixed target function. Moreover, the case of super-smooth convolutions (i.e., « > 0 in
(4.5) and (4.6)) and the case when M can increase together with N have not been treated
in De Canditiis & Pensky (2006).
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Consider now the adaptive block thresholding wavelet estimator f,(-) defined by (4.9)
for the continuous model (4.1) or the discrete model (4.2). Then, under the assumption
(4.6), the corresponding minimax lower bounds are given by Theorem 4.4.1, while, under
the assumption (4.5), the corresponding minimax upper bounds are given by Theorem
4.4.2. Thus, the proposed functional deconvolution methodology significantly expands on
the theoretical findings in De Canditiis & Pensky (2006), and extends the results obtained
by Pensky & Sapatinas (2009a) under the L?-risk to the case of LP-risk, 1 < p < oo.

However, the theoretical results obtained in Theorems 4.4.1 and 4.4.2 cannot be blindly
applied to the case of boxcar-like convolutions g(u;,t) = 2Lul]l(|t| < ), (i.e. boxcar
k

convolution for each fixed u;), since g, (u) = sin(2rmu)/(2rmu) and |gm,(u.)|* = 0, where

u* = argmaxy, gm(u), us,u* € [a,b]. This is an example where a careful choice of w,
[ =1,2,..., M, can make a difference. For example, if one takes M = 1 and u = u; as
a rational number, then 73 (m) will vanish for some m large enough and the algorithm will

fail to deliver the answer. For this case, we need to use Lemma 1 of Pensky & Sapatinas

(2009b) in order establish Theorem 4.5.1.

Lemma 4.5.1. (Pensky & Sapatinas (2009b), Lemma 1.) Consider g(u,t) =
@H(M < u),u € Uit € T, with v(-) satisfying 0 < v1 < v(u) < 75 < oo,u € U and
0<a<b< oo Letm € A;, where |A;| = 27, for some ¢ > 0, with (Inn)’ < 27 < pl/3,
Jj > jo, for some 6 > 0 and jo > 0. Take w, = a+ (b —a)l/M, | = 1,2,....M. If

M > My, = (327/3)(b — a)n'/?, then, for n and |m| large enough,
d -2
71 (m7Q7M) ZKBm )

for some constant Kg > 0 independent of m, the choice of M and the selection points uy,

1=1,2,.... M.

Lemma 1 of Pensky & Sapatinas (2009b) can be applied if M = M, > con% for some

constant ¢y > 0, independent of n, and v, = a + IA/M, where A = min(3¢/(327),b — a).

Theorem 4.5.1. Let {¢;(-),¥jx} be the periodic Meyer wavelet basis. Consider the

functional deconvolution model (4.2) with g(u,t) = @H(M <u),u € Ut € T, where ()



101

is some positive function, satisfying 0 < v1 < y(u) < v <oo,u € U and 0 < a < b < 0.

Suppose that s > 1/p, 1 <p<oo, 1 <r <oo and M > 0. Then, as n — oo,

Cn=—P, if € >0,
R(B, () =] "
C(=52)™r if e <0,
s—1i41

where oaq = 525, ap = 2(5:%)13 and € = sp + %(p - D).

(Upperbounds)LetsE(%—%—F%—V,R)1§p§oo,1§7’§oocmdM>0. Set

v =1 and assume that M = M, > con'/® for some constant cy > 0, independent of n. Let

~

fu(u, M, ) be the wavelet estimator defined by (4.9), evaluated at the points u; = a + IA/M,

l=1,2,..., M, where A = min(3cy/(327),b — a) and jo and J are given by (4.7).

. Cn=P(logn)* P> a=0, € >0
sup  E(|[fn — fI[}) <
fEBS (M) C(lo%)aﬂ’(log n)(pf$)+ﬂ{€:0}’ a=0, <0,

s—-+

1,1
2Tyt and e = sp+5(p —p).

where o = y =

_S
2s+37

4.6 Simulation study

Here, we present a small simulation study in the multichannel box-car deconvolution model.
We assess the performance of the suggested block thresholding wavelet estimator (BT) given
by (4.9), with equispaced selected points u;, [ = 1,2,..., M, and compare it to the term-
by-term thresholding wavelet estimator (TT) proposed by De Canditiis & Pensky (2006),
where the points u;, [ = 1,2, ..., M, were selected such that one of the u;’s is a BA irrational
number, and wuq, ug, . .., up is a BA irrational tuple.

Specifically, we assume that we observe

y(u,t) = / f(@)g(uy, t — z)de + Mz(ul,t), welU" 1=1,....M teT=10,1],
T v
(4.15)
where
1
g(ulat) = 2_ul]1<|t‘ < ul)? U € U*7
U* is a compact subset of U = [0,1] (bounded away from zero), o(-) is a known

function, and z(uy, t) is a generalized two-dimensional Gaussian field with covariance function
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E[z(uq,t1)z(us, t2)] = 0(t1 — t2)0(uy — uz). However, in reality, we usually observe a
discretization of the functional deconvolution model (4.15) when y(u,t) is observed at

n = NM points (u;,t;), l=1,2,....M,i=1,2,...,N, ie.,
ul, /f ul, .T)dl’—l—O’léli, u € U, ti:i/N, (416)

where ¢;; are standard Gaussian random variables, independent for different [ and <. For
simplicity, we assume that oy = o forall | =1,2,..., M.

The proposed methodology consists of the following steps:

1. Generate M different equispaced sequences, y; (= y(w,i/N)), | = 1,2,..., M,
i=1,2,..., N, following model (4.16).

2. Generate functions g(w,-), y(w, ) @jk(-) and ¥j(-), 7 = Jo,jo + 1,...,J — 1,

k=0,1,...,27 — 1, at the same equispaced points, t; =i/N,i=1,2,..., N.

3. Apply the discrete Fourier transform (FFT) on g;, yi, ¢jor and ¥, 7 = jo, jo+1,...,J—
1k=01,...,2 —1.

4. Estimate «a;,, and B;; by, respectively, &, and lem given by (4.8)
5. Compute Bjt = (Zkert |Bjk|2/ll)%'

6. Compute the threshold (see Remark 4.4.4)

where

M N-1 5
o= ; Z (yl,i—l _ 2y I yl,i—l—l)
M(N - 2) : V6 V6 V6

=1 =2

(see, e.g., Miiller & Stadmidiller, 1987),
1
= — Z ' (m) and d* =1.
Cj| meCj

7. Threshold the wavelet coefficients belonging to blocks with |Bj,| < ;.

8. Apply the inverse wavelet transform to obtain fn() given by (4.9).
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Figure 4.1: AMSE for the Bumps, Blip, Heavisine and Step functions sampled at a fixed
number of N = 128 points, based on rsnr=1, as the number of channels M (and hence the
sample size n) increases. Solid line: BT wavelet estimator; Dash line: T'T wavelet estimator.
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In our numerical analysis, we used the test functions “Bumps”, “Blip”, “Heavisine” and
“Step”, and j, was set equal to 3. For a fixed value of the (root) signal-to-noise ratio (rsnr=1),
we generated S = 100 samples of size n = NM from model (4.16) in order to calculate the

average mean-squared error (AMSE) given by

%Z 3~ Unlt) = J0F iy

In Figure 4.1, for a fixed number of data points N = 27, we evaluate the AMSE as the
number of channels M, and hence the sample size n, increases for the four signals mentioned
above. Obviously, both BT and TT wavelet estimators improve their performances, as n
increases, and the BT wavelet estimator appears to be better than the T'T wavelet estimator
in all cases.

Although not reported here, we also evaluated the performance of the suggested BT
wavelet estimator for a wide variety of other test functions (see the list of test functions in
Appendix I of Antoniadis, Bigot & Sapatinas, 2001), with very good performances. This
numerical study confirms that under the multichannel box-car deconvolution model, block
thresholding wavelet estimators with equispaced selected points u;, [ = 1,2, ..., M, are quite

useful in order to produce accurate estimates of f(-), in finite sample situations.

4.7 Appendix: Proofs

4.7.1 Proof of Theorem 4.4.1

For the proof of Theorem 4.4.1 we are going to use the following lemma.

Lemma 4.7.1. (Hdrdle, Kerkyacharian, Picard & Tsybakov (1998), Lemma

10.1). LetV be a functional space and d(-,-) a distance on V. For f, g on V denote by
f

A (f,g) the likelihood ratio A, (f,g) = 4Py, (1)

dPy, (g)° where dPy, (h) is the probability distribution

of the process Y,, if h is the true function.

If V' contains the functions fo, f1,..., [k such that

1. d(fu, fy) >0>0fork=0,1,... K, k#k,
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2. K> e for \, >0,

3. No(fo, fr) = e+ ~Vnkwhere v, are constants and z,x are random variables such that

P(zu > 0) > mg for some mp > 0 independent of n and k,
4' SUpPy, Unk < )\n

Then sup ey Py, (d(fo, ) > §) > 2.

Sparse case. Consider the continuous model (4.1). Let the functions f;; be of the form
fit = v;¥;, and let fo = 0. Note that it is sufficient to set v; = cQ_j(SJr%_%), where c is
a positive constant such that ¢ < A, in order fj, € Bj . (M). We then apply Lemma 4.7.1
We consider the class of functions V' = {fj, : 0 < k <2/ — 1} so that K = 2/. We choose
d(f,g9) = ||f —gllp, where || - ||, is the LP-norm on the unit interval 7. Using the properties of
the functions vy, it is easy to see that d( fjx, fir) < %23'(%—%) =04.Set K =2/, \, = jplog2,

Upie = Ay and 2z, = log(Ay(fo, fjk)) + An. In order to apply Lemma 4.7.1, we need to show
Py (20 > 0) = P(log(An(fo, fjr) > —jlog2) > m >0

uniformly for all f;z. Using the Markov inequality, it is easy to see that we need to find a
uniform upper bound for Ey, [log(A,(fo, fix)|- Set U = [a,b] and T' = [0, 1]. Let W (u,t) and
W (u,t) be Wiener sheets on U x T. Let

AW (u,8) = A fie * glu,t) + AW (u, ),

where W (u,t) and W (u,t) are the primitives of dW (u,t) and dW (u,t), respectively. Let
@ and P be the probability measures associated with W and W, respectively. Using
multiparameter Girsanov formula (see, e.g., Dozzi, 1989, p.89), under the assumption,

fT fU(Q * fjk)2<u,t)dudt < 0o we arrive at

% = eXp{—/T/U\/ﬁ(fjk*g)(u,t)dW(u,t)+%n/T/U(fjk*9>2(“>t)d“dt}

Ay (fis fo)-

Therefore, it is easy to see that



where
Av = Vi | [ [ n avi)
B, = 0.571%2 //(wjk*g)z(u,t) dudt.
TJu
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Jensen’s inequality leads to A, < +/2B,. Therefore, we only need to construct an upper

bound for B,. Let 1, =< en(-),9(-) > . Using the fact that |i,,] < 279/2 (see, e.g.,

Johnstone, Kerkyacharian, Picard & Raimondo, 2004, p.565) and the properties of the

Fourier transform we arrive at
1 b bl
D = [ [wurgutdu= [ [ hu)Pltww)dods
0 a a 0
bl P
< / 277 / 1§(u, w)Pdwdu =277 / > [gm(w)ldu,
a 0

a mGC]'

where lzjk(uJ) =< Yjr(+), eu(-) > and g(u,w) =< g(u,.), e,(-) >, where e, (t) = e*™".

This leads to

2
B, < 204 (gon () [2d.
n S 5 . 9m

mGCj
We need to choose j, satisfying

B, + 2B, <

1
jnlog2 — 27

For the case a > 0, using assumption (4.5) we have

2787

(4.17)

b 3 a(ﬂ%)ﬁ ,
() du < m|™ exp{—a|m|’} < z_%e’zz%_ldz
) gm(uw)Pdu < > Clm[ ™ exp{—alm|’} <C [
Ja ) a(&)ﬁ
anCy |ﬂ1L_2TfJ 3
< CQjﬁ(l25B)exp(—a(2§)ﬁ2m).

For the case a = 0, under assumption (4.5)

2787

b 3
Z/ |9m(u)|2du§ Z C|m|—2V§02j(—2y+1)'

meC; 2m2J
3

Im|=

Hence,
C2-iv=1), if a=0,

0271+~ exp (—a(27/3)7297) , if a > 0.



The smallest j, satisfying (4.17) satisfies 2» =< (n/ logn)l/(25+2”+1_%)

27n < (logn)'/? if a > 0. Then, Lemma 4.7.1 and Markov inequality lead to

plst5—3)
C(logn/n)**>+=5 | if o =0,
inf sup E||f — f|* >
f

J€B}, i

p(st3—3)
B

C(logn)~ , if a>0.

For the discrete model (4.2) the likelihood ratio is given by

if «

—log An(fo, fix) = 0. 522{ (s ti) = (g * 9)* (wis ti) — v (i, ) }

i=1 [=1
= Uik — Ujk;

where

N M
wip = v > ) (W *g)(w,ti)en,

i=1 [=1
N M
vie = 057 > ) (Wi + 9)*(w, 1),
i=1 [=1

Using Jensen’s inequality, it is easy to see that

E(|ujk|) < E(Z Z(%’k x9)2(ti, w)el) = Vv

=1 I=1
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0 and

(4.18)

Therefore, we only need to find an upper bound for v;;. Using the properties of Fourier

transform, we arrive at

N
o] < 0-5%2 Z (Wi * g) (ti )

< 0.57§NZ > Wi Plgm ()
=1 meCj
< C’YJ |C | Z Z|gm )|
meC;

Working along the same lines as in the continuous case, with the integral replaced by the

sum, we obtain (4.18).

Dense case Consider the continuous model (4.1). Let n = (1o, m1,. ..

) 7721',1) be the

vector with components 7, = &1, k = 0,1,...,2/ — 1, set Z the set of all possible vectors 7
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and let fj, =; Ezjz_ol Nkt Let also n™ be the vector with components nj* = (—1)1m=kp,
for m,k = 0,1,...,2/ — 1. It is sufficient to set 7; < A2796+/2) in order f;, € B (M).
Additionally we set v; = ¢,277¢+1/2) where ¢, is a positive constant such that ¢, < A, and

apply the following lemma on lower bounds.

Lemma 4.7.2. (Willer (2005), Lemma 2). Let A, (f,g) be defined as in Lemma 4.7.1,
and let n and fj, be as described above. Suppose that, for some positive constants A and m,

we have
IP)fjn(_ 1Og An(fj’r]m)fjn) S )\) Z 7o,

uniformly for all f;, and allm =0, ...,29 — 1. Then, for any arbitrary estimator fn and for

some positive constant C',
Inngszmefn — finll > Cmoe™> 272,
We now need to establish
Py, (Mn(fins figm) =€) > 7 > 0.
Using the same arguments as in the sparse case, it is enough to show

Ey, 1108 An(finm, fin)] < At

for sufficiently small positive A;. Using the multiparameter Girsanov formula (see, e.g., Dozzi,
1989, p. 89), under the assumption [, [, n(g# fix)*(u, t)dudt < oo, and | fiym— fin| = 27;|0jm]

we arrive at
log Al ) = Vit | / (e — F30) * 9) (0, AW (1, )
_ g/T/U((fjnm—fm)*g)2(u,t)dudt
= QVjﬁ,L/L[(¢jm*g)(u,t)dW(u,t)
- 2ny;? /T /U (Vjm * 9)* (u, t)dudt.

Therefore, we get

Efjn| ]'Og An(f]’l]m’ fj’l?>| S An + Bn;
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where

A =2v/nn; E)// (Yjm * 9)(u,t) dW (u,t)|, B, =2n~ // Vjm * 9)*(u, t) dudt.

Due to Jensen’s inequality, we have A4, < v/2v/B,,. Similarly to the sparse case, it is easy to

see that
O(n2-7Gr+2s+1)) if a=0,

B, =
O<n2_j(2l’+ﬁ+28+1) exp(—a (%)BQW)), if a>0.
The smallest j, satisfying B,, < ¢ is given by
nm, if a=0,
20 =<
1
(logn)?s, if a >0,

yielding
C’n72s+p2$v+1, if a=0,
inf sup E(|f, — /]) > (1.19)
fn fGBf,’r —ps
C(logn)™ , if a>0.

In the discrete model the log-likelihood ratio is given by

log A (fjmms fim) =

2

N M 2 N M
+ 0'522 (yzl Vi f]n *g)(ti, w) ) - 05 Z (yzl i fmm *g)(t“ul>>

i=1 =1
N M N M
= ZZ Yil fmm*g f]n*g](twul +O57]222 fﬂl*g t“ul)
i=1 I=1 i=1 [=1

— 057

N M
* *
§ : f]”]m * g t“ ul) Unjm + Znjm>

where Un]m ’ij sz\il Zi\il[(fjﬂ N g)(-fjﬁm * g) - 05(fj7l * 9)2 - 0'5(fj77m * 9)2] (t“ ul)’

N M
and anm =7 Z Z Ezl g * f]’l (g * fjn)](tiu ul)-

i=1 1=1
It is easy to see that

N M
‘Z:L]m’ < 2v; Z Z €t (Vjm * ) (ti; wr)]

i=1 [=1
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and

N M

Vi =77 D D _[9% g (£, w).

i=1 =1
Now, we can replace B,, by v, in the proof of the continuous case. Following the same
steps, we obtain (4.19). Obviously, if we have two lower bounds in the same space, the larger
one is the true one. We say that we have a dense case if the lower bound obtained with
fjn holds. Otherwise, we have a sparse case. Hence, it remains to see, for what value of
parameters we have sparse and dense case. Using elementary calculus, it is easy to see that

we have a dense case for ¢ > 0 and a sparse case for ¢ < 0. This completes the proof of

Theorem 4.4.1.

4.7.2 Proof of Theorem 4.4.2

For the proof of Theorem 4.4.2, we are going to use two theorems of Chesneau (2006). We

first consider the following assumptions

(F1) Let us set Bjo—l,k = Qj,k. There exists some constant C' > 0 such that, for all

je€{jo—1,...,J}, ke€{0,...,2 — 1} and n sufficiently large:
EF(|0j — ) < C2P'n ",

(F2) There exist two constants d > 0 and C' > 0 such that, for j € {jo,...,J}, t € A; and
n sufficiently large

1 - , 1 iy 1 _
P({f ) |5jk—5jk|p} >271d2"n72) < Cn7".

J kEUJ‘,t

Theorem 4.7.1. (Chesneau (2006), Theorem 5.4.1). Let p € [1,00). We assume
to have a sequence of models '), in which we are able to produce estimates of the wavelet
coefficients o, and Bj, of f on the basis (. The corresponding estimators are denoted by &y,
and Bjk. We suppose that assumptions (F'1) and (F2) are satisfied. Let f,, be defined by

200 —1

J
Jalt) = 3 Gaondni) + DD D Butin O o3y
k=0

7=jo tEAj keUje
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with l;, jo, J, Bjt, A; and Uj, defined as in Section 4.3 for a = 0. Then, there exists some
constant C' > 0 such that for all p € [p,0], s € (% -3 -%=+ V),R), r € [1,00] and n

sufficiently large, we have
sup  E(||fu — fII2) < Cn—, (4.20)
feB; (M)

_ S
where o = )T

Theorem 4.7.2. (Chesneau (2006), Theorem 5.4.2). Let p € (1,00). We assume
to have a sequence of models Ty, in which we are able to produce estimates of the wavelet
coefficients o, and B, of f on the basis . The corresponding estimators are denoted by
G, and Bjk. We suppose that assumptions (F1) and (F2) are satisfied. Let fo be defined
as in Theorem 4.7.1. Then, there ezists some constant C' > 0 such that for all p € [1,p),

s € (l — (- L4, R), r € [1,00] and n sufficiently large, we have

P 2 5
sup  E}([[fo — fIB) < Con, (4.21)
feB; (M)
where
(b%)alpv €> 0’
¢n =
(fenyazr (log ) (P~ P+lie=0) | € < 0,
(s—2+3)

o and € = sp+ (v + ) (p — p).

a1 = 5 I L A
1 2(s+v)+17 2(5—%—1—1/)4-1

We will show that Assumptions (F1) and (F2) hold in order to apply Theorems 4.7.1 and

4.7.2 for the case a = 0.

Assumption F1

mECjO

. bl
Qjok — Ujok = Z Gmjok(fn — fm) = / /0 h(u,t)e(u,t)dtdu,

where h(u,t) = Zmecjo PumjorPm (W)X ™™ and py,(u) = %' Using the theory of

generalized random fields, it is easy to see that &;,r — ajyr is a centered Gaussian random



112

variable. Under the continuous model
1 b 1
Var(Gjr — k) = —/ / |h(u, t)|*dudt
= LS ol [t [

meC’
_ b 1 -,
* n Z/(ﬁmjok‘(ﬁm’jok/a pm(u)pm/(u)duA e2imim p=2im tm 1y
m#m
= LS ol [t
mEC’*

Under the discrete model, if we replace the integral by the sum and use similar arguments,

it is easy to see that

. 1 P\
Var(&jor — Qjor) = Vi Z |¢m]0k|2<21 1 |G (ur) )

Therefore, &, — o,k is a centered Gaussian random variable with

(

-1
Bk |? < f; \gm(u)Pdu) , for the continuous model,

1
n ZmEC;O

Var(djok - O‘jok> =

1
M
¢mj0k|2 (%’W) , for the discrete model.

1
NM ZmEC’;‘
\ 0

Using (4.6), it is easy to see that

~ T, m
Var(ozjok—ajok) < Z |¢mjok|2 1 Z ’¢mj0k’ |m’21/ 2 J09Jjo92vjo
mEC’* mEC*
CQQjOV
<
n

under both the discrete and continuous model. Similar arguments lead to the conclusion
that Bjk — Bji for j > jo are also centered Gaussian with variance

622ju

Var (ng — ﬁjk) <
If a random variable Z ~ N (0, 0?), then
E(|Z*7) < Cyp0™, p>0,
where Cy, = E(|U|*), U ~ N(0,1). Therefore, the following inequalities hold

. . £ c2Jovp
E(|&jor — oor|”) < ¢ {Var(ocjok — ozjok)] < —, (4.22)

mn-2



c22pvi

E(|8j — Bixl™) < cp[Var(Bjx — Bjx)]? <

npkP
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Note that in case d;y, or Bjk are complex numbers, we just take the real part of the

above quantities. In this case R{d,r — ajor} and R{G;, — B} are centered Gaussian with

Var (?R{djok - Oéjok}) < Var(&;or — ajor) and Var <3‘E{B]k — ﬁjk}) < Var(B;x — B;x). Using

the same arguments as before, we can show that (F1) holds.

Assumption F2

We will first show that F2 holds for p > 2. It is sufficient to show that
1 v dYni
~ P n-2 N
P({E > 18 —ﬁjk|p} > T) <cn”.
k‘GUj,t
Consider the centered Gaussian process

Zin = welBix = Bjr),

keUjq

1
P

where v, € 2, = {Uk :keUj; and Zkert log |7 < 1},
any sequence v, of [, the Holder inequality yields
A A l A
D oibie < X Jillfikl <D ol Fa{ D 10 P3.
kEU]’t kEth kEU]’t kEU]’t
Therefore, by definition of {2, we have

sup > vl < sup{ D ol Y LY 10 < {3 10,7}

v ey, Ve per, keU;, keU;,

1

~ ~ R T q
Now, let us consider v* = (v});x with v¥ = [0[P07, (ZkeUﬁ |9jk|p> .
Hence, v* satisfies
A 1 A _q
il = a3 100
kGU]’t
and

-1
sl = |ejk|p( 3 w) .

kGU]'t

(4.23)

—|—$ = 1. Let éjk = Bjk —ﬁjk- For

(4.24)



Therefore, 32, o7, [v};|? =1 and

> > vl =Y 1005 (D 10l") 90 = (D 10")!

sup Z vjkéjk

vEQ keUs,

If we combine (4.24)

Additionally, Jensen

B(sup Z,(0) = E|

vEf)

keUjy keUjy keUjt

= (Y 10ul)r.

kGU]‘t

and (4.25), we obtain the desired equality, i.e.,

1
sup Z Z |(9]k]p v,

vEQy kel

’s inequality, (4.26) and (F1) lead to

Z |ﬁ]k - ﬁ]k’ :| S |: Z (’ﬁ]k - ﬁ]klp):| < Clpn 22VJ = N.

keUj keUj

Under assumption (4.6) we have

E ((Bjk — Bir) By — ﬁjk')) =

- / / ( 2 Ukt 2th”)< > Gt P (U)W) dtdu

mGC /ECJ‘

kEth

- Z / / wmjkwmjk ‘pm( )’ |€21mt7r’ dtdu+ Z wmjk’d]m ]klx

meC;

/ / pm pm 21mt7‘r —22mt7rdtdu _ Z wmjkwm]k

meC;

Hence, using (4.27) we get

sup Var
vEQ,

(th@)) = sup > Y oty E(Bi —@k)(ﬁjk

vELly keUje 1/ eUjt

= sup Z Z Ukvk Z Q,ijkwm]k

veEQ

quUtkeUt meC;
K12 Jv
< KB S S
vEQ, keUjt k' e,
C22v K, 2%V
< sup Z o |* = =V.

n n

vEQ, keU;q

Now, we are going to use the following lemma.

n

Bi))

T (m)

n
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(4.25)

(4.26)

(4.27)

(4.28)

(4.29)

(4.30)
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Lemma 4.7.3. (Cirelson, Ibragimov €& Sudakov (1976)). Let D be a subset
of R=(—00,00), and let (§)iep be a centered Gaussian process. If E(sup,ep &) < N and

sup,ep Var(&) <V, then, for all x > 0, we have

P(félgft >z + N) <exp(—2°/(2V)). (4.31)

S |

-1 vy . 1 .
M, V= Klﬁ%, N = Cl;-’n’%Q”] and d sufficiently

Applying Lemma 4.7.3 with z = 7]

large we have

1
1 N > . ) s | 1
P({f > 18— 61"“'1)} = 212wd”2> = IP’( sup Z(v) > lj?’2121”dn2> <

JkEUﬁ vEQ),

2
< ]P’( sup Z(v)) > =+ N) < exp(—ér—v) < exp(—cd®logn) < Cn™P.
vEQ),

We will show that assumption (F2) holds for 1 < p < 2. It is easy to see that the following

inequalities hold

1

1 . 7 o
P({Z_ Z |ﬂjk_ﬁjk|p} > 0.5d2"n 2) <

J keUj¢

1 A 2 < 1
<P ({z‘ > 1B~ ﬁjkﬁ} > o.5d2ﬂ”nz) <Cn?<Cn?. (4.32)

I keU;,
Hence, we have shown that (F1) and (F2) are satisfied for all 1 < p < co. Applying Theorems
4.7.1 and 4.7.2, we obtain the upper bounds in (4.20) and (4.21) for a = 0.
For the case o > 0, the estimator is given by f,(t) = Zijzoo_l QjokPiok(t). Minkowski’s

inequality leads to

290 co 29-1
E(|fo = FIB) < 227 E(1 D (Gor — cjor) Biokl2) + 27 1Y D Bty (4.33)
k=0 Jj=jo k=1

Additionally, using the property of concentration (4.3), inequality (4.22) and the definition

of jo, we have

2701 2701
E(| D (for — ajor)ionln) < €206 "R (|Qpk — ajorl”) < (4.34)
5=0 5—0

*

= (log n)p(”+%)/ﬁn_§ = o(log nf%), (4.35)
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and
co 27-1 oo 27-1 271
I35 dblly < (1S Al }P<{ZC2J (Dw) }
Jj=jo k=0 Jj=jo k=0 Jj=jo

< 202 p mm{p ¥ }p = C(logn) ﬁ( +p mm{pp}) (436)

Jj=Jo
Inequalities (4.33)-(4.36) lead to the optimal rate of convergence for a > 0. This completes

the proof of Theorem 4.4.2.

4.7.3 Proof of Theorem 4.5.1

Since 11 < y(u) < 79, u € [a, b], for some 0 < v; < 5 < 00, it is easily seen that

M
d 72 (w) sin®(2mmay) 1 9
(m,u, M) M E Tt Sy 1221 sin®(2mmauy). (4.37)

It follows from (4.37) that for any choice of M and any selection of points u, we have
7 (m,u, M) < Kgm™>. (4.38)

Using Lemma 4.5.1 and (4.38), it is easy to see that assumptions (4.5) and (4.6) hold. Hence,

we can apply Theorems 4.4.1 and 4.4.2, leading to the proof of Theorem 4.5.1.



Future Work

In Chapter 2, we considered the problem of estimation of [ f* given a sample of weighted data
and we constructed an adaptive estimator of [ f?, attaining the minimax rate of convergence
that is optimal in the case of direct data for a smooth class of p.d.f.’s. Moreover, using the
theory of Ibragimov & Khasminski (1991), we derived the information bound for the problem
of estimating [ f? when weighted data are available.

We now discuss some related questions which remain open. As we mentioned in Chapter
2, the estimation of i, (which is obviously unknown in practice) by /i, prevents us from
proving that g is also asymptotically efficient. We conjecture that this is a general problem
for any estimator of # = [ f? based on a weighted sample for the considered class of p.d.f.’s.
However, one may be able to propose an asymptotically efficient estimator of | f? based on
weighted data for a smoother class of p.d.f’s, (e.g. Sobolev or Hélder classes).

Moreover, one can investigate whether Assumption 1 (p. 19) can be relaxed. This
assumption is very common in estimation for weighted samples but it is interesting to see
whether milder assumptions, covering also the case of length biased data, w(y) = y, can lead
to optimal theoretical results.

As we mentioned in Chapter 2, the estimator 6 can be used in order to estimate the
L2-distance of f and fy, appearing in hypothesis testing for weighted data. Optimality in
hypothesis testing is evaluated by other criteria but such a procedure was beyond the scope of
Chapter 2. Hence, our work can be used as the intermediate step for hypothesis testing when
weighted data are available. Additionally, several statistical procedures using the unknown
quantity [ f? have not been generalized to the case of weighted data, yet. However, there are

several settings that lead to weighted data sets and our work can be used when procedures
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which have been developed for direct data (see, e.g., estimation of the Pitman efficacy of
the Wilcoxon signed-rank statistic, rank tests based on residuals in the linear model and
estimation of the asymptotic variance of the Hodges-Lehmann estimator) are adapted to
weighted data.

In Chapter 3 we considered the problem of estimating the unknown response function in
the standard Gaussian white noise model. To deal with this problem, we first utilized the
recently developed maximum a posteriori (MAP) testimation procedure for recovering an
unknown high-dimensional Gaussian mean vector. The existing results for its upper error
bounds over various sparse [,-balls were extended to more general settings and compared
with other well-known threshold estimators. These results are of independent interest.

We then applied the MAP testimation procedure in a wavelet context to derive adaptively
optimal global and level-wise MAP wavelet testimators of the unknown response function
in the standard Gaussian white noise model over a wide range of Besov balls. These results
were also extended to the estimation of derivatives of the response function. The efficacy of
the proposed level-wise MAP wavelet testimator in finite sample situations was illustrated
with a simulation study.

Although we considered only quadratic losses in our exposition, we believe that the
obtained results can be extended to more general global losses similar to those in Donoho
& Johnstone (1994b) and Johnstone & Silverman (2004b, 2005). Furthermore, the proposed
methodology can be adapted to derive pointwise optimal level-wise MAP wavelet testimators
of the unknown response function and its derivatives in the standard Gaussian white noise
model, as in Cai (2003). Moreover, in Chapter 3, we have shown that the assumptions
of Theorem 3.3.2 are satisfied by the truncated geometric prior. One can investigate
whether there are other simple parametric priors satisfying all the assumptions of Theorem
3.3.2. Additionally, more explanations on the construction of an appropriate prior m, for
B > 0 are required, since 7, for 3 > 0 does not belong to the class of “standard known”
distributions. FExtensions of these results to more general inverse problems can also be
considered. Moreover, a problem that has not been addressed in Chapter 3 is how the

estimation of the standard deviation of the error affects the asymptotic convergence rates.
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Appropriate adjustments are needed for each specific problem at hand, and we hope to

address these issues elsewhere.

In Chapter 4, we considered the problem of estimation of f under the functional
deconvolution model and presented a minimax study under the LP-risk, 1 < p < oo. We
now present some possible extensions of our work.

A plaussible question is whether the developed theory can be extended to the case of
L -risk.

We studied deconvolution with a box-car type blurring function. This important model
occurs, e.g., in the problem of estimation of the speed of a wave on a finite interval. It turned
out that if M = M, > con'/? for some constant ¢, > 0, independent of n, and the points
u, L =1,2,..., M, were selected to be equispaced, then the asymptotical minimax rates of
convergence in the discrete model with a box-car type blurring function coincide with the
asymptotical minimax rates of convergence in the continuous model.

However, the question remains: if M = M, — oo as n — oo, but at a rate slower than
O(n'/?), can one select points u;, [ = 1,2,..., M, such that the asymptotical minimax rates
of convergence, in the discrete model coincide with the corresponding asymptotical minimax
rates of convergence obtained in the continuous model? And, if for some such M = M,,, the
asymptotical minimax rates of convrgence in the discrete and the continuous models are not
the same, what are the best asymptotical minimax rates of convergence that can be attained
and the best selection of points u;, [ = 1,2,..., M? Recent work of Pensky & Sapatinas
(2009¢) has given answers to some of these questions under the L2-risk and it will be worth

to investigate extending these results under the LP-risks, 1 < p < oo.
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