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Abstract

In this thesis we have studied weakly compressible Newtonian and generalized Newtonian

flows using numerical and perturbation solutions, which have become very important in the

field of computational rheology. In the past two decades laminar Poiseuille flows of weakly

compressible materials have gained interest due to the importance of compressibility in many

processes involving liquid flows in relatively long tubes, such as waxy crude oil transport,

injection molding and polymer extrusion. Several numerical solutions of weakly compressible

Poiseuille flows have already been reported for Newtonian fluids, generalized Newtonian fluids,

such as the Carreau fluid and the Bingham plastic, as well as for viscoelastic fluids.

First we have numerically studied the time-dependent compressible extrusion of a Carreau

fluid in the full reservoir-capillary-extrudate geometry using finite elements. The objective

was to investigate the validity of the compressibility/slip mechanism proposed for the stick-

slip polymer extrusion instability. We assumed that slip occurs along the die wall following

a nonmonotonic slip law that is based on experimental measurements on polyethylene melts.

Our results demonstrate that the combination of compressibility and nonlinear slip leads

to self-sustained oscillations of the pressure drop and of the mass flow rate in the unstable

regime of the flow curve. The effects of the reservoir volume, the imposed flow rate, and the

capillary length on the amplitude and the frequency of the pressure and free surface oscil-
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lations have been studied and our findings were consistent with experimental observations.

The period of the pressure and flow rate oscillations was found to increase linearly with the

reservoir length, while their amplitudes and waveforms are fairly constant. The period of the

pressure oscillations, when plotted versus the reservoir volume, appears to pass through the

origin which is not the case with extrapolated experimental data. In agreement with certain

experiments, the period of the pressure oscillations passes through a minimum, when this is

plotted versus the imposed volumetric flow rate.

We have also solved numerically the axisymmetric and plane extrudate swell flows of a

strongly compressible Newtonian fluid and studied the effects of the compressibility and

the equation of state, slip, geometry, and inertia on the expansion of the jet. Compressibility

effects were investigated using both a linear and an exponential equation of state. The nu-

merical results confirm previous reports that the swelling of the extrudate decreases initially

as the compressibility of the fluid is increased and then increases considerably together with

the angle of separation of the jet. Our simulations revealed for the first time that in the case

of non-zero inertia, high compressibility was found to lead to a contraction of the extrudate

after the initial expansion and then to decaying free surface oscillations. The time-dependent

calculations showed that these oscillatory steady-state solutions are stable and insensitive to

the length of the extrudate region and the boundary condition along the capillary wall.

The perturbation solutions for the planar and axisymmetric Poiseuille flows of weakly com-

pressible Newtonian fluids with constant shear and bulk viscosities have also been solved up

to the second-order. A linear equation of state has been employed and a perturbation analysis

of the primary variables is performed using compressibility as the perturbation parameter.

The effects of compressibility, the bulk viscosity, the aspect ratio, and the Reynolds number

on the velocity and pressure fields were studied and comparisons were made with available
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analytical results.

Finally we have derived approximate semi-analytical solutions of the steady, creeping, weakly

compressible two-dimensional plane and axisymmetric Poiseuille flows of a Herschel-Bulkley

fluid. The effects of compressibility have been taken into account by means of a linear and an

exponential equation of state. Both equations of state gave similar predictions for sufficiently

low compressibility numbers and/or for short tube. Under the assumption of zero transverse

velocity, the pressure distribution along the flow direction was first calculated by means of

numerical integration and the two-dimensional axial velocity was then be constructed. The

effects of compressibility, equation of state, the Bingham number and the power-law exponent

on the solutions were investigated. In particular it has been demonstrated that the pressure

required to drive the flow for a given tube length is reduced with compressibility and the

two-dimensional axial velocity is characterized by plug-like regions the size of which increases

upstream, in agreement with more sophisticated two-dimensional numerical simulations .
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ΠΕΡΙΛΗΨΗ 

 

Στη παρούσα διατριβή µελετήσαµε µε αριθµητικές µεθόδους και µεθόδους διαταραχών ασθενώς 

συµπιεστές Νευτώνειες και γενικευµένες Νευτώνειες ροές, οι οποίες έχουν καταστεί σηµαντικές 

στην περιοχή της υπολογιστικής ρεολογίας. Τις τελευταίες δύο δεκαετίες, οι στρωτές ροές Poiseuille 

ασθενώς συµπιεστών υλικών βρέθηκαν στο επίκεντρο του ενδιαφέροντος πολλών ερευνητών, λόγω 

της σηµασίας της συµπιεστότητας σε πολλές διεργασίες, οι οποίες περιλαµβάνουν ροές σε σχετικά 

µεγάλου µήκους αγωγούς, όπως η µεταφορά αργού πετρελαίου, η τυποποίηση πολυµερών µέσω 

έγχυσης, και η εκβολή πολυµερών. Αρκετές αριθµητικές λύσεις για ασθενώς συµπιεστές ροές 

Poiseuille έχουν ήδη αναφερθεί στη βιβλιογραφία για Νευτώνεια, γενικευµένα Νευτώνεια, για 

παράδειγµα τα ρευστά Carreau και τα πλαστικά Bingham, καθώς και για ιξωδοελαστικά ρευστά. 

 

Αρχικά, µελετήσαµε αριθµητικά την χρονοµεταβαλλόµενη συµπιεστή εκβολή ρευστού Carreau σε 

όλο το πεδίο ροής που περιλαµβάνει τη δεξαµενή τροφοδοσίας, τον τριχοειδή αγωγό και το έκβολο, 

χρησιµοποιώντας την µέθοδο των πεπερασµένων στοιχείων. Ο στόχος ήταν η διερεύνηση της ισχύος 

του µηχανισµού συµπιεστότητας/ολίσθησης στη λεγόµενη αστάθεια µη-ολίσθησης/ολίσθησης (stick-

slip instability) που παρατηρείται κατά την εκβολή πολυµερών. Υποθέσαµε ότι υπάρχει ολίσθηση 

του ρευστού στα τοιχώµατα του τριχοειδούς η οποία υπακούει µια µη µονότονη εξίσωση ολίσθησης, 

που είναι βασισµένη σε πειραµατικές µετρήσεις µε τήγµατα πολυαιθυλενίου. Τα αποτελέσµατά µας 

δείχνουν ότι ο συνδυασµός συµπιεστότητας και µη γραµµικής ολίσθησης οδηγεί σε 

αυτοσυντηρούµενες ταλαντώσεις της βαθµίδας πίεσης και της ογκοµετρικής παροχής στην ασταθή 

περιοχή της καµπύλης ροής. Μελετήσαµε συστηµατικά τις επιδράσεις του όγκου της δεξαµενής, της 

επιβαλλόµενης ογκοµετρικής παροχής, και του µήκους του αγωγού στο πλάτος και τη συχνότητα 

των ταλαντώσεων της πίεσης και της ελεύθερης επιφάνειας και τα ευρήµατά µας συµφωνούν γενικά 

µε τις πειραµατικές παρατηρήσεις. Με βάση τις αριθµητικές µας προσοµοιώσεις. η περίοδος των 

ταλαντώσεων της πίεσης και της ογκοµετρικής παροχής αυξάνεται γραµµικά µε το µήκος της 

δεξαµενής, ενώ τα πλάτη και οι κυµατοµορφές παραµένουν σχεδόν αµετάβλητες. Η περίοδος των 

ταλαντώσεων της πίεσης συναρτήσει του όγκου της δεξαµενής διέρχεται από την αρχή των αξόνων 

σε αντίθεση µε πειραµατικές µετρήσεις. Σε συµφωνία µε ορισµένες  πειραµατικές εργασίες, η 

περίοδος των ταλαντώσεων της πίεσης συναρτήσει της επιβαλλόµενης ογκοµετρικής παροχής, 

διέρχεται από ελάχιστο. 

 

Επιλύσαµε επίσης αριθµητικά την αξονοσυµµετρική και την επίπεδη ροή διαστολής εκβόλου 

(extrudate swell) ισχυρά συµπιεστών Νευτώνειων ρευστών και µελετήσαµε το ρόλο που παίζουν στη 
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διαστολή του εκβαλλόµενου πίδακα η συµπιεστότητα, η καταστατική εξίσωση, η ολίσθηση, η 

γεωµετρία, και η αδράνεια. Οι επιδράσεις της συµπιεστότητας διερευνήθηκαν χρησιµοποιώντας µια 

γραµµική και µια εκθετική καταστατική εξίσωση. Τα αριθµητικά αποτελέσµατα επιβεβαιώνουν 

προηγούµενες αναφορές για την αρχική µείωση της διαστολής του εκβόλου µε τη συµπιεστότητα και 

την εν συνεχεία αύξησή της µαζί µε τη γωνία διαχωρισµού του πίδακα. Οι προσοµοιώσεις έδειξαν 

για πρώτη φορά ότι στην περίπτωση µη-µηδενικών αδρανειακών όρων, η υψηλή συµπιεστότητα 

οδηγεί σε σηµαντική συστολή του εκβόλου και σε φθίνουσες ταλαντώσεις της επιφάνειας του 

εκβόλου, µετά από την αρχική διαστολή του. Οι χρονοµεταβαλλόµενοι υπολογισµοί έδειξαν ότι 

αυτές οι ταλαντούµενες βασικές λύσεις είναι ευσταθείς και δεν επηρεάζονται ούτε από το µήκος της 

περιοχής του εκβόλου ούτε από τις συνοριακές συνθήκες στο τοίχωµα του τριχοειδούς αγωγού. 

 

Έχουµε, επίσης επιλύσει µε την µέθοδο διαταραχών µέχρι και τους όρους δεύτερης τάξης την 

επίπεδη και την αξονοσυµµετρική ροή Poiseuille ασθενώς συµπιεστών Νευτώνειων ρευστών. 

Χρησιµοποιήσαµε µια γραµµική καταστατική εξίσωση και εφαρµόσαµε τη µέθοδο διαταραχών στις 

πρωταρχικές µεταβλητές µε παράµετρο διαταραχής τη συµπιεστότητα. Μελετήσαµε την επίδραση 

της συµπιεστότητας, του ιξώδους, του λόγου µορφής, και του αριθµού Reynolds στην ταχύτητα και 

την πίεση, και κάναµε συγκρίσεις µε άλλες διαθέσιµες αναλυτικές λύσεις.  

 

Τέλος, βρήκαµε προσεγγιστικές ηµι-αναλυτικές λύσεις για την στάσιµη, έρπουσα, ασθενώς 

συµπιεστή διδιάστατη επίπεδη και αξονοσυµµετρικη ροή Poiseuille ρευστού που υπακούει στην 

καταστατική εξίσωση των  Herschel-Bulkley. Η επίδραση της συµπιεστότητας λήφθηκε υπόψη µε τη 

χρήση µιας γραµµικής και µιας εκθετικής καταστατικής εξίσωσης. Οι δύο αυτές εξισώσεις δίνουν 

παρόµοια, αποτελέσµατα σε χαµηλού αριθµούς συµπιεστότητας ή/και για µικρό µήκος αγωγού. Με 

την παραδοχή µηδενικής εγκάρσιας ταχύτητας, η κατανοµή της πίεσης κατά µήκος της ροής µπορεί 

να υπολογιστεί σ’ ένα πρώτο στάδιο µε αριθµητική ολοκλήρωση επιτρέποντας στη συνέχεια την 

κατασκευή της κατανοµής της διδιάστατης αξονικής ταχύτητας. Μελετήσαµε τις επιπτώσεις της 

συµπιεστότητας, του αριθµού Bingham και του εκθέτη στις λύσεις. Τα αποτελέσµατά µας έδειξαν 

ότι η απαιτούµενη πίεση για την δηµιουργία και συντήρηση της ροής σε αγωγό δοσµένου µήκους 

µειώνεται µε τη συµπιεστότητα και η διδιάστατη αξονική ταχύτητα χαρακτηρίζεται από εµβολικές 

περιοχές, το µέγεθος των οποίων αυξάνεται στα ανάντη, σε συµφωνία µε πιο εξεζητηµένες 

διδιάστατες αριθµητικές προσοµοιώσεις. 
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Chapter 1

Introduction

Laminar Poiseuille flows of weakly compressible materials have gained interest in the past

two decades due to their applications in many processes involving liquid flows in relatively

long tubes, such as waxy crude oil transport [15, 90], injection molding [50] and polymer

extrusion [29, 32, 86]. Numerical solutions of weakly compressible Poiseuille flows have been

reported for Newtonian fluids [32], generalized Newtonian fluids [14, 35, 47, 55, 76, 86], such

as the Carreau fluid [29] and the Bingham plastic [90], as well as for viscoelastic fluids [6].

The compressibility-slip mechanism has been the most popular explanation for the stick-slip

polymer extrusion instability and is the only one consistent with experimental observations.

Georgiou and Crochet [32, 33] have tested the compressibility-slip mechanism in the Newto-

nian case for the Poiseuille and extrudate-swell flows with slip at the wall. By using com-

pressibility and a non-monotonic slip equation, they were able to model the self-sustained

pressure and flow rate oscillations observed in the experiments. The same mechanism has

been employed in various one-dimensional phenomenological models describing the pressure

and flow rate oscillations [30]. More recently, Georgiou [29] solved the time-dependent, com-

pressible, axisymmetric Poiseuille and extrudate-swell flows of a Carreau fluid with slip at the
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wall, using finite elements in space and finite differences in time. Vinay et al. [90] examined

the numerical simulation of isothermal transient flows for a weakly compressible viscoplastic

fluid in an axisymmetric pipe geometry using the Bingham model.

As noted by Kwon [50] the effect of material compressibility plays a significant role quite often

in polymer processing. In modeling modern processing operations, such as injection molding

and high speed extrusion where pressure and flow rate are extremely high, the compressibility

of a viscoelastic liquid may have to be taken into account in order to accommodate various

flow phenomena. In formulating the Hadamard stability criteria for incompressible viscoelas-

tic liquids, he employed two classes of quasilinear differential and time-strain separable single

integral constitutive equations and demonstrated that the difference between stability prob-

lems of incompressible and compressible systems lies in the possibility of longitudinal wave

propagation.

Keshtiban et al. [47] also pointed out that low Mach number flows play an important role

both in nature and in industrial processing. In many technical applications, liquid flows may

exhibit significant compressibility effects. These authors introduced a hybrid element/finite

volume algorithm for Newtonian and viscoelastic weakly-compressible liquid flows at low

Mach number and Reynolds number under isothermal conditions. They pointed out that the

compressibility of viscoelastic liquids should be taken into account, in order to accommodate

flow phenomena, such as cavitation or flow instabilities. Also, in capillary rheometry, com-

pressibility effects may have a major impact upon the time-dependent pressure changes in

the system.

More recently, Tang and Kalyon [86] demonstrated the important role played by the com-

pressibility and wall slip in the simple shear flow by developing a mathematical model for the

time-dependent circular tube flow of compressible liquids subject to pressure-dependent slip
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at the wall and applied to polydimethylsiloxane (PDMS) for which experimental data were

available.

Mitsoulis et al. [55] studied the transient capillary rheometry of compressible LLDPE melt,

experimentally and theoretically. They used different die designs to demonstrate the effect

of compressibility on the transient pressure distributions for wide range of shear rates. They

also reported that compressibility effects are important in understanding the pressure builds-

up in start-up capillary experiments of polymer melts.

Other contributions in the literature concerning weakly compressible flows of non-Newtonian

fluids are those of Cawkwell and Charles [14] for 1D compressible thixotropic viscoplastic

flows, Golay and Helluy [35] for viscous compressible flows and Silva and Coupez [76], and

Keshtiban et al. [47] for compressible viscoelastic flows. Finally, Davidson et al. [15] have

proposed a semi-analytical 1D approach to restart a pipeline filled with a compressible gelled

waxy crude oil.

To study the effects of compressibility, two alternative equations of state, a linear and an

exponential one, are most frequently used. At constant temperature and low pressures, the

density can be represented by the linear approximation

ρ = ρ0 [1 + β (p − p0) ] ,

where β ≡ −(∂V/∂p)p0,T /V0 is the isothermal compressibility assumed to be constant, V

is the specific volume, ρ0 and V0 are, respectively, the density and the specific volume at a

reference pressure p0, and T is the temperature. The following exponential equation is also

used:

ρ = ρ0 eβ (p − p0) .

This is equivalent to the linear equation of state for sufficiently small values of β and low

pressures. A disadvantage of this equation is the fast growth of the density (for high values of
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β). On the other hand, the linear model may lead to negative values of the density. Obviously

more sophisticated equations of state should be used for highly compressible flows.

A linear equation of state has been employed in previous numerical studies of the compress-

ible extrudate swell flow [10, 28], by Hatzikiriakos and Dealy [39] for a HDPE, and in previous

studies concerning the simulation of the stickslip extrusion instability [29, 32]. Exponential

equations of state have been employed, for example, by Ranganathan et al. [70] for a HDPE

and, more recently, by Vinay et al. [90], in simulations of weakly compressible Bingham flows.

Our objective in Chapter 2, is to simulate numerically the stick-slip extrusion instability. We

study the time-dependent, compressible extrusion of a Carreau fluid over the reservoir-die-

extrudate region, assuming that slip occurs along the die wall following a nonmonotonic slip

law that is based on the experimental measurements of Hatzikiriakos and Dealy [39, 40]. to

solve the governing equations, the finite element method is used in space and an implicit

Euler scheme is used in time. The effects of the reservoir volume and the imposed flow rate

on the pressure and flow rate oscillations are investigated and the numerical simulations are

compared with experimental observations.

In Chapter 3, the time-dependent extrusion of strongly compressible Newtonian liquids (such

as foams) is simulated using finite elements. To study the effects of compressibility, two al-

ternative equations of state, a linear and exponential one, are used. It is demonstrated that

compressibility affects significantly the swelling of the jet and leads to oscillatory steady-state

free surfaces.

In Chapter 4, the perturbation solutions of both the planar and axisymmetric Poiseuille flows

of weakly compressible Newtonian liquids are derived. Explicit analytical solutions for the

pressure, the density and the velocity are obtained up to the second order. A linear equa-

tion of state is assumed and a perturbation analysis of the primary flow is performed with
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the compressibility number serving as the perturbation parameter. Results concerning the

effects of compressibility, the Reynolds number, the aspect ratio, and the bulk viscosity on

the velocity and pressure fields are presented and compared with available solutions in the

literature.

In Chapter 5, we approximately solve the plane and axisymmetric weakly compressible

Poiseuille flows of a Herschel-Bulkley fluid and investigate the effects of compressibility by

means of two different equations of state, i.e. a linear and exponential one. Analytical and

semi-analytical results are presented for both the incompressible and compressible flows of a

Herschel-Bulkley fluid, and the effects of yield stress on the yield point and the velocity are

discussed.

Finally in Chapter 6, the conclusions of this thesis are summarized and suggestions for future

work are provided.
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Chapter 2

A two-dimensional numerical study

of the stick-slip extrusion instability

2.1 Introduction

Among the various types of polymer extrusion instabilities, the stick-slip instability is the

only one that is associated with pressure oscillations at constant throughput, i.e. at constant

piston speed in the reservoir region1[30]. The instantaneous flow rate at the capillary exit is

also oscillatory and the extrudate emerges from the capillary in bursts, and is characterized

by alternating rough and relatively smooth zones. It is well known that the pressure and

flow rate oscillations follow the stable branches of the apparent flow curve, i.e. the plot of

the wall shear stress, σw, versus the apparent shear rate, γA, as shown in Fig. 2.1.

The apparent wall shear rate is calculated from the volumetric flow rate Q as follows:

γ̇A ≡ 32 Q

π D3
, (2.1)

1Some of the results presented in this chapter appear also in References [78, 79, 80, 82].
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Figure 2.1: Schematic of an apparent flow curve and the stick-slip regime.

where D is the diameter of the capillary. The wall shear stress is calculated by

σw =
(Pd − Pend)

4L/D
(2.2)

where Pd is the driving pressure determined for the force on the piston, Pend is the Bagley

end correction for the pressure drop, and L is the length of the capillary.

Due to the oscillations of the wall shear stress, the flow curve is discontinuous and consists

of two stable positive-slope branches separated by the unstable stick-slip instability regime

[20, 40, 65, 74], as illustrated in Fig. 2.1. Experiments with fluids exhibiting the stick-slip

instability revealed that the flow curve depends on the capillary diameter. This dependence,

which becomes stronger as the apparent shear rate increases, is due to the occurrence of slip

at the capillary wall. The lower part of the low-flow-rate branch is insensitive to the capillary

diameter, which implies the absence of wall slip. The upper part may be weakly dependent on

D, which indicates that weak slip is possible [39, 46, 69]. The high-flow-rate branch is strongly

dependent on D, which is an indication of strong slip [1, 39, 46, 22, 21, 69]. Based on slip
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velocity estimates, Hatzikiriakos and Dealy [40] proposed a power-law slip equation for the

right branch of their flow curve. El Kissi and Piau [21] also derived a single nonmonotonic

slip equation for both the branches of the flow curve. These indirect observations for the

occurrence of stick and slip phenomena during the extrusion of certain polymer melts have

also been confirmed by recent direct slip velocity measurements with optical methods [57, 72].

The role of wall slip in extrusion instabilities is discussed in detail in [18, 41].

When the imposed shear rate is in the unstable regime, the wall shear stress and the apparent

shear rate oscillate (with the same period and phase) following closely, in the clockwise

sense, the hysteresis cycle ABCD [20, 40, 74]. The critical wall shear stresses for the nearly

instantaneous jumps from point A to point B and from C to D are denoted here by σc2 and σc3,

respectively. These two critical stresses correspond to the transition from weak to strong slip

and vice versa, and define the limiting values between which the wall shear stress oscillates.

Hence, the amplitude of the wall shear stress oscillation is equal to (σc2 − σc3). Similarly,

the amplitudes of the sudden apparent shear rate increase and decrease are determined by

the shear rate differences between points A and B and points C and D, respectively [20, 40].

Hence, for a given capillary (i.e. given D and L/D), the onset of the stick-slip instability (i.e.

the critical shear stress σc2) and the amplitudes of the oscillations are determined solely by

the steady-state flow curve [20, 40, 53, 96].

The oscillations of the pressure and the extrudate flow rate are obviously analogous to those

of the wall shear stress and apparent flow rate, respectively. The variation of the extrudate

flow rate, in spite of the constant piston speed, arises from the compressibility of the melt

in the reservoir, and causes the characteristic appearance of the extrudate which consists of

alternating rough and relatively smooth regions [20, 40, 65].
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The generation of self-sustained pressure and flow rate oscillations when compressibility is

combined with nonlinear slip has been confirmed by the two-dimensional simulations of Geor-

giou and Crochet [33, 32]. These authors employed an arbitrary nonmonotonic slip equation

relating the wall shear stress to the slip velocity and numerically solved the time-dependent

compressible Newtonian Poiseuille and extrudate-swell flows. Their simulations showed that

steady-state solutions in the negative-slope regime of the flow curve are unstable, and that

oscillatory solutions are obtained at constant volumetric flow rate. In a recent work, Georgiou

[29] carried out numerical simulations for a shear-thinning Carreau fluid using an empirical

slip equation that is based on the experimental measurements of Hatzikiriakos and Dealy

with a HDPE melt [39, 40]. His time-dependent calculations at fixed volumetric flow rates in

the unstable negative-slope regime of the flow curve showed that the pressure and flow rate

oscillations do not follow the stable branches of the flow curve, in contrast to the experiments.

As stated in Ref. [29], including the reservoir region in the simulations is necessary in order

not only to account for the compression and decompression of most part of the fluid but

also for obtaining limit cycles following the steady-state branches of the flow curve, i.e. for

getting pressure and extrudate flow rate oscillations characterized by abrupt changes, as is

the experiments.

The objective of the present work is to extend the simulations in [29] to the full reservoir-

capillary-extrudate geometry, in order (a) to study the effects of the reservoir length, the

imposed flow rate, and the capillary length on the pressure and free surface oscillations and

(b) to make comparisons with experimental observations on extrusion under constant piston

speed. As discussed below, experimental results from different studies are not always in agree-

ment. The present simulations may be helpful in understanding some of the experimental

observations.
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Experiments with different materials showed that as the reservoir is emptying, the period

of the pressure and flow rate oscillations is reduced while the hysteresis loop of the flow

curve remains unchanged, which implies that the amplitudes of the pressure and flow-rate

oscillations remain the same [20, 40, 46, 53, 58, 96]. The period of the oscillations has been

found to vary linearly with the volume of the melt in the reservoir, and that the extrapolations

of the experimental period data do not pass through the origin [13, 20, 40, 73, 74]. On the

other hand, the waveform of the pressure oscillations appears to be insensitive to the reservoir

length, meaning that the relative durations of the compression and relaxation phases do not

change as the extrusion experiment proceeds [20, 40, 96].

According to experimental observations, as the imposed flow rate is increased in the unstable

regime, the waveform of the pressure oscillations changes so that the relative duration of

the compression part is reduced, while their amplitude is not affected [20, 40, 58, 92, 96].

The reports concerning the effect on the period of the pressure and flow rate oscillations are

somehow conflicting. In experiments with HDPEs, Hatzikiriakos and Dealy [40], Durand et

al. [20] and Den Doelder et al. [16] observed that the period is decreased as the flow rate is

increased. A period reduction has also been reported in experiments on a LLDPE [46] and a

PB [52]. On the other hand, the earlier experiments of Myerholtz [58], Weill [96] and Okubo

and Hori [61] on HDPEs and those of Vinogradov et al. [92] on PBs showed that the period

passes through a minimum in the unstable regime.

Experiments with HDPEs have shown that as the capillary length increases, the stick-slip

regime is shifted to lower volumetric flow rates and its size increases, the hysteresis loop of the

flow curve becomes larger, and both the amplitude and the period of the pressure oscillations

increase [20, 40, 74]. The experiments of Durand et al. [20] and Vergnes et al. [89] showed

that reducing the capillary length eventually leads to a continuous (monotonic) flow curve.
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According to Den Doelder et al. [16], HDPEs do not exhibit pressure oscillations for short

dies (L/D < 5), since these are overruled by the entry and exit pressure losses.

The critical wall shear stress, σc2, at which the stick-slip instability is observed may increase

or decrease or remain constant as the capillary length to the capillary diameter ratio, L/D,

increases. Experiments with HDPE melts [20, 40, 58, 74] and EPDM compounds [89] showed

that σc2 and the stress difference (σc2 −σc3) increase with the capillary length. Hatzikiriakos

and Dealy [40] attribute this effect to the pressure dependence of wall slip. Experiments with

other materials, however, show that σc2 is not always an increasing function of the L/D ratio.

This was found to slightly decrease with L/D in the experiments of Vinogradov et al. with

PBs [92], El Kissi and Piau with PDMS [22], and Kalika and Denn with a LLDPE [46], and

to be independent of L/D in the experiments of Ramamurthy with a LLDPE [69] and Wang

and Drda with entangled linear PEs [94, 95].

In Section 2.2, the governing equations, the slip equation, and the boundary and initial

conditions are presented and their dimensionless forms are provided. In Section 2.3, after a

brief description of the numerical method, the numerical results are presented and discussed

and comparisons are made with experimental observations. Finally, Section 2.4 summarizes

the conclusions.

2.2 Governing Equations

The geometry of the flow corresponds to the actual setup used in the experiments of Hatzikiri-

akos and Dealy [40]. There is a contraction region at 45 degrees between the barrel and the

capillary as shown in Fig.2.2.
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Figure 2.2: Geometry and boundary conditions for the time-dependent, compressible,

axisymmetric extrusion of a Carreau fluid with slip along the capillary wall, including

the reservoir region.

The actual values of the radii of the barrel and the capillary, denoted respectively by Rb and

R, and the length of the capillary, L, are tabulated in Table 2.1.

The continuity and the momentum equations for time-dependent, compressible, isothermal

viscous flow in the absence of body forces are as follows :

∂ρ

∂t
+ ∇ · ρ v = 0 , (2.3)

ρ

(

∂v

∂t
+ v · ∇v

)

= ∇ · σ , (2.4)

where ρ is the density, v is the velocity vector, p is the pressure, and σ is the stress tensor.

For the density, the following linear equation is employed:

ρ = ρ0 [1 + β (p − p0) ] , (2.5)

where β is the isothermal compressibility, and ρ0 is the density at the reference pressure p0.
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Table 2.1: Symbols and values of various lengths concerning the flow geometry.

Symbol Parameter Value

Rb Radius of the barrel 0.9525 cm

Lb Length of the barrel

Contraction angle 45 degrees

R Capillary radius 3.81 10−2 cm

Lc Capillary length 0.762 cm

Le Length of the extrudate 3.81 cm

Table 2.2: Values of the slip model parameters.

Parameter Value

a1, (MPa)−m1 cm/s 125.09

m1 3.23

a2, (MPa)−m2 cm/s 1000

m2 2.86

a3, (MPa)−m3 cm/s 5.484 10−3

m3 -4.434

σc2, MPa 0.27

σmin, MPa 0.19

vc2, cm/s 1.82

vmin, cm/s 8.65
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Even though the fluid studied by Hatzikiriakos and Dealy [40] is considered to behave as a

power-law one, we employ the Carreau model in order to avoid the well-known numerical

difficulties caused by the former model, which predicts infinite zero-shear-rate viscosity. For

compressible flow of a Carreau fluid with zero infinite-shear-rate viscosity, the stress tensor

is written as

σ = −p I + η0

[

1 + λ2 (2IId)2
](n−1)/2

(

2d − 2

3
I ∇ · v

)

, (2.6)

where I is the unit tensor, d is the rate-of-deformation tensor, defined as

d =
1

2

[

(∇v) + (∇v)T
]

, (2.7)

the superscript T denotes the transpose, IId is the second invariant of d, η0 is the zero-shear-

rate viscosity, λ is a time constant, and n is the power-law exponent.

2.2.1 The slip equation

We use the same three-branch multi-valued slip model as in [29]:

vw =



































a1 σm1

w , 0 ≤ vw ≤ vc2

a3 σm3

w , vc2 ≤ vw ≤ vmin

a2 σm2

w , vw ≥ vmin

(2.8)

where vw is the relative velocity of the fluid with respect to the wall, σw is the shear stress

on the wall, vc2 is the maximum slip velocity at σc2, and vmin is the minimum slip velocity at

σmin. The values of all slip parameters are given in Table 2.2. The plot of the slip equation

is given in Fig. 2.3.

This is based on the experimental data of Hatzikiriakos and Dealy [39]. The low-flow-rate

(low velocity) branch is a simplification of the corresponding slip equation proposed by the
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Figure 2.3: The nonmonotonic slip law based on the experimental data of Hatzikiriakos

and Dealy [39, 40].

latter authors, under the assumption of infinite normal stress. The high-flow-rate branch is

exactly the power-law slip equation proposed by the same authors for the right branch of

their experimental flow curve. The intermediate branch, which corresponds to the unstable

region of the flow curve, is just an arnitrary line connecting the other two branches. It should

be noted that for a finite normal stress the first branch of the slip equation moves closer to

the third one; for zero normal stress, the two branches almost overlap. It should be noted

that in reality, the wall shear stress is expressed as a function of the slip velocity and not vice

versa, i.e. σw=σw(vw). In other words, the inverse of Eq. (2.8) is used.
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2.2.2 Dedimensionalization

To dedimensionalize the governing equations, we scale the lengths by the capillary radius R,

the velocity by a reference velocity, V , in the capillary, the pressure and the stress components

by η0λ
n−1V n/Rn, the density by ρ0, and the time by R/V . With these scalings, one gets:

∂ρ

∂t
+ ∇ · ρ v = 0 , (2.9)

Re (1 + B p)

(

∂v

∂t
+ v · ∇v

)

= ∇ · σ , (2.10)

and

σ = −p I + Λ1−n
[

1 + Λ2 (2IId)2
](n−1)/2

(

2d − 2

3
I ∇ · v

)

, (2.11)

where all variables are now dimensionless. (For simplicity the same symbols are used for the

dimensionless variables.) The dedimensionalization results in three dimensionless numbers,

the Reynolds number, Re, the compressibility number, B, and Λ in the constitutive equation,

which are defined as follows:

Re ≡ ρ0 RnV 2−n λ1−n

η0
, B ≡ β η0 V n

λ1−nRn
, Λ ≡ λV

R
. (2.12)

For resin A at 180 oC, Hatzikiriakos and Dealy [40] provide the following values: β=9.923 10−4

(MPa)−1, n=0.44 and, for the consistency index, K=0.0178 MPasn. Assuming that η0=0.03

MPa s, we calculate λ from η0λ
n−1=K. For the reference velocity, we get V =Rγ̇/4=5.24

cm/s, assuming that γ̇=500 s−1 and R=3.81 10−2cm2. Under these assumptions, the values

of the three dimensionless numbers are: Re=1.43 10−5, B=1.54 10−4, and Λ=349.2.

The dimensionless form of the slip equation is

vw =



































A1 σm1

w , 0 ≤ vw ≤ vc2

A3 σm3

w , vc2 ≤ vw ≤ vmin

A2 σm2

w , vw ≥ vmin

(2.13)
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where

Ai ≡ ai ηmi

0 V min−1

λmi(1−n)Rmin
, i = 1, 2, 3 , (2.14)

and the dimensionless values of vc2 and vmin correspond to

σ∗

c2 ≡ σc2R
nλ1−n

η0 V n
and σ∗

min ≡ σminRnλ1−n

η0 V n
, (2.15)

respectively. The values of the above dimensionless numbers are given in [29].

2.2.3 Boundary and initial conditions

The dimensionless boundary conditions for the full extrusion flow are shown in Fig.2.2.

The usual symmetry conditions apply along the axis of symmetry. Along the barrel and the

contraction walls both velocity components are zero (no slip). Along the capillary wall, only

the radial velocity is zero, whereas the axial velocity satisfies the slip equation (2.13). At the

inlet plane, it is assumed that the radial velocity component is zero while the axial velocity

is uniform (corresponding to the motion of the piston at constant speed):

uz =
Q

R2
b

where Q is the imposed volumetric flow rate (scaled by πR2V ). It should be noted that the

simulations are carried out on a fixed domain, i.e. the motion of the piston is not taken into

account. This is a reasonable assumption provided that the piston speed is low.

When the extrudate region is excluded, we assume that the radial velocity component vanishes

at the capillary exit. In the case of the extrudate-swell flow, the weaker condition σrz=0 is

used at the outflow plane. In both cases, the total normal stress is assumed to be zero,

σzz=0. Finally, on the free surface, we assume that surface tension is zero and impose
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vanishing normal and tangential stresses. Additionally, the unknown position h(z, t) of the

free surface satisfies the kinematic condition:

∂h

∂t
+ vz

∂h

∂z
− vr = 0 . (2.16)

When the extrudate region is excluded, we use as initial condition the steady-state solution

corresponding to a given volumetric flow rate Qold at the inlet that we perturb to Q at t=0.

In the case of the extrudate-swell flow, we start with the steady-state solution of the stick-slip

flow (i.e., with flat free surface) for a given volumetric flow rate Q and release the free surface

at t=0.

2.3 Numerical results

The finite element formulation is used for solving the free-surface flow problem under study.

The unknown position of the free surface is calculated simultaneously with the velocity

and pressure fields (full-Newton method). The standard biquadratic-velocity (P2-C0) and

bilinear-pressure (P1-C0) elements with a quadratic representation for the position h of the

free surface are employed. For the spatial discretization, the standard Galerkin forms of the

continuity, momentum and kinematic equations are used, while for the time discretization,

the standard fully-implicit (Euler backward-difference) scheme has been chosen.

As already mentioned, the dimensionless capillary length is L=20. In order to study the effect

of the capillary length on the stick-slip instability, additional capillary lengths are considered

in the last part of this section. The extrudate length Le has been taken to be 100, while

the reservoir length Lb ranged from 20 to 200. Figure 2.4 shows some of the meshes used in

the simulations (excluding the extrudate region) with L=20. The finite element meshes were
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refined near the walls, and around the entrance and exit of the capillary. The longest mesh

(Lb=200) consisted of 4511 elements in the reservoir-capillary region and of 18386 elements

when the extrudate region was included. The corresponding total numbers of unknowns were

42403 and 169504, respectively. With the exception of the Reynolds number, Re, the values

of the dimensionless parameters are those given in Section 2, i.e. B=1.54 10−4 and Λ=349.2.

For comparison purposes, in addition to the Carreau flow ones (n=0.44), results are also

presented for the Newtonian flow (n=1).

We first constructed the steady-state flow curves for the reservoir-capillary region (excluding

the extrudate region). In Fig. 2.5, we show both the regular (Fig. 2.5a) and log-log (Fig.

2.5b) plots of the pressure drop versus the volumetric flow rate obtained with Re=0.01 and

Lb=80 in the case of Newtonian flow. Four different possibilities for the pressure drop are

shown: (a) ∆Ptot,w is the pressure difference along the wall from the piston to the capillary

exit; (b) ∆Ptot,c is the pressure difference along the centerline from the piston to the capillary

exit; (c) ∆Pcap,w is the pressure difference along the wall from the capillary entrance to the

capillary exit; and (d) ∆Pcap,c is the pressure difference along the centerline from the capillary

entrance to the capillary exit. The pressures ∆Ptot,w and ∆Ptot,c are essentially the same

for all volumetric flow rates and correspond to the piston driving pressure, Pd, in Eq. (2.2).

∆Pcap,w and ∆Pcap,c are slightly different from ∆Ptot,w and ∆Ptot,c along the left positive-

slope branch of the flow curve. Much bigger differences are observed in the negative-slope

and the right positive-slope branches of the flow curves. In these regimes, ∆Pcap,w is much

lower than ∆Pcap,c due to the effect of the singularity at the capillary entrance. It should be

noted that differences between ∆Ptot,w and ∆Ptot,c at high volumetric flow rates are much

bigger in the case of the Carreau fluid. A careful examination of the solution near the piston

region shows that these differences are solely due to the region near the piston and the barrel
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Figure 2.4: (a) Various meshes for different barrel lengths and L=20 used in the simula-

tions (the extrudate region is excluded); (b) Detail of the meshes near the die entrance.
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wall. Moreover, unlike their Newtonian counterparts, ∆Pcap,w and ∆Pcap,c almost coincide,

which implies that the effect of the singularity at the capillary entrance is much weaker than

in the Newtonian case. In what follows, the pressure drop ∆P corresponds to the piston

pressure ∆Ptot,c=Pd, unless otherwise indicated.

The flow curves obtained in the case of Carreau flow (n=0.44) are quite similar. In Fig. 2.6,

the Newtonian and Carreau flow curves (∆P=∆Ptot,c) are compared. We observe that as

n is reduced, the negative slope regime is slightly shifted to the right and reduces in size.

Moreover, the resulting hysteresis loop, which is also shifted to the right, is much bigger. This

implies that one would expect slightly bigger pressure oscillations and much bigger jumps of

the volumetric flow rate. From Fig. 2.6, it can be deduced that the biggest volumetric flow

rate will be about 8 times its lowest value. This agrees well with the report of Hatzikiriakos

and Dealy [40] that with resin A at 160oC the mass flow rate suddenly increases by a factor

of about 8.

Figure 2.7 shows the (steady-state) contours of the two velocity components, the pressure

and the streamfunction, ψ, obtained for the Carreau flow with Re=0.01, Lb=80, and Q=1.5,

i.e. near the middle of the negative-slope regime of the flow curve. We see the rearrangement

of the flow near the capillary entrance, and observe that the differences between ∆Ptot and

∆Pcap are basically due to the entrance region. Far from the capillary entrance, the pressure

in the reservoir is practically constant, which verifies that one of the basic assumptions made

in one-dimensional phenomenological models proposed in the literature (see, e.g., Ref. [19])

is valid.

When the extrudate region is excluded, the steady-state solutions are perturbed by changing

the volumetric flow rate from an old value to the desired one, Q. Given that the flow is
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Figure 2.5: Newtonian flow curves with Re=0.01 and Lb=80: (a) regular plot; (b)

log-log plot.
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Figure 2.6: Effect of the power-law exponent on the flow curve; Re=0.01 and Lb=80.

compressible, the behavior of the time-dependent solution depends on whether the new value

of Q corresponds to the stable positive-slope branches or to the unstable negative-slope one.

In the former case, the new steady-state is obtained without any oscillations, whereas, in the

latter one, the solution is oscillatory and becomes periodic after a transition period. Self-

sustained oscillations of the pressure drop and the mass flow rate are obtained which are

similar to those observed experimentally in the stick-slip extrusion instability regime. All the

results presented below have been obtained in the unstable regime.

In Fig. 2.8, we show the oscillations of the pressure drop and the volumetric flow rate obtained

by perturbing the Newtonian steady-state solution for Re=0.01, Lb=80 and Q=1.35. We

note in Fig. 2.8a that sudden jumps of the pressure drop are observed when this is measured

across the capillary. No jumps are observed when ∆P is measured between the piston and the
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Figure 2.7: Contours of the steady-state Carreau solution (n=0.44) inside the barrel

and the die (the extrudate-region has been excluded) for Re=0.01, Lb=80 and Q=1.5.
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capillary exit. The volumetric flow rate at the capillary exit (Fig. 2.8b) is also characterized

by sudden jumps which is consistent with experimental observations [20, 40].

The results in the case of Carreau flow are similar but the amplitude and the period of the

oscillations are higher (Fig. 2.9), as expected.

Plotting the trajectory of the solution on the flow curve plane (Fig. 2.10) shows that, after a

transition period, a limit cycle is reached which follows exactly the positive-slope branches of

the steady-state flow curve. The volumetric flow rate increases together with the pressure fol-

lowing exactly the left positive-slope branch of the flow curve and, when the pressure reaches

its maximum value, Q jumps to the right positive slope branch. The volumetric flow rate then

starts decreasing together with the pressure following this branch till the pressure reaches

its minimum and then jumps to the left positive-slope branch and starts the next oscillation

cycle. This behavior agrees well with experimental observations [20, 40]. Note also that in

our previous study [29], the limit cycles did not follow the steady-state flow curve due to the

omission of the reservoir region. This drawback was also exhibited by the one-dimensional

model of Greenberg and Demay [36], which does not include the barrel region. Note that

most one-dimensional phenomenological relaxation/oscillation models require as input the

experimental (steady-state) flow curve. These models are based on the compressibility/slip

mechanism and describe oscillations of the pressure and the volumetric flow rate in the stick-

slip instability regime (see [1, 17, 19] and references therein) under the assumption that these

follow the experimental flow curve. The present simulations are the first to predict that the

limit cycle indeed follows the steady-state flow curve.

In an attempt to approach the experimental value Re=1.43 10−5, we reduced the value of the

Reynolds number from 0.01 to 0.001. Figure 2.11 shows a comparison of the pressure and flow

rate oscillations during a cycle, obtained with Re=0.01 and 0.001 for both the Newtonian
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Figure 2.8: Pressure and flow rate oscillations for Newtonian flow (n=1), Re=0.01,

Lb=80 and Q=1.35.
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Figure 2.10: Trajectory of the solution on the flow curve plane for Carreau flow

(n=0.44), Re=0.01, Lb=80 and Q=1.35: (a) regular plot; (b) log-log plot.
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and the Carreau flows (with Lb=80 and Q=1.35). It is clear that decreasing the Reynolds

number has no practical effect on the oscillations with the exception of the artificial flow

rate overshoots obtained with the lower Re. Instead of trying to eliminate the overshoots

by reducing the time step (which would have resulted into much longer runs), we decided

to continue the runs with Re=0.01. Note that when the reservoir region is excluded, the

results are sensitive to the Reynolds number: the amplitude of the pressure-drop oscillations

is reduced, the amplitude of the mass-flow-rate oscillations is increased and the frequency of

the oscillations is considerably increased, as the Reynolds number is reduced [29]. This shows

once again the importance of including the reservoir region.

In order to study the effect of the reservoir length on the pressure oscillations, we obtained

results for various values of Lb. The pressure oscillations for different values of Lb, Re=0.01

and Q=1.35 are given in Figs. 2.12 and 2.13 for the Newtonian and the Carreau flow,

respectively. In both cases, the period of the pressure oscillations increases with Lb while

their amplitude seems to be less sensitive.

This is more clearly shown in Fig. 2.14, where the corresponding periods and the amplitudes

of the pressure oscillations are plotted versus the reservoir volume. As already mentioned,

the period and the amplitude of the pressure oscillations are higher in the case of the Carreau

fluid. In agreement with experiments [20, 40, 73, 74], the period T increases linearly with the

reservoir volume, while the amplitude is essentially constant. However, the period appears

to pass through the origin, which is not the case with the experiments [20, 40, 74, 73].

To show the effect of the reservoir length on the waveform of the pressure oscillations, we

compare in Fig. 2.15 the normalized pressure oscillations during one cycle for both fluids,

Lb=20 and 200. The waveform is independent of the reservoir length, i.e. the durations of

both the compression and the relaxation increase linearly with the reservoir length, which
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Figure 2.11: Comparison of the pressure (a) and flow rate (b) oscillations for Re=0.01

and 0.001; Lb=80 and Q=1.35.
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Figure 2.12: Effect of the reservoir length on the pressure oscillations; Newtonian flow

(n=1), Re=0.01 and Q=1.35.
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Figure 2.13: Effect of the reservoir length on the pressure oscillations; Carreau flow

(n=0.44), Re=0.01 and Q=1.35.
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agrees well with the experiments of Hatzikiriakos and Dealy [40] and Durand et al. [20].

Results for various values of Q in the unstable regime, Re=0.01 and Lb=80, have been

obtained in order to investigate the effect of the imposed volumetric flow rate on the pressure

oscillations. Figure 2.16 shows the periods of the resulting pressure oscillations versus Q for

both the Newtonian and Carreau flows. The period decreases initially reaching a minimum

in the middle of the unstable regime and then starts increasing slowly. This was also the

case in the experiments of Myerholtz [58], Okubo and Hori [61] and Weill [96] on HDPEs and

those of Vinogradov et al. [92] on a polybutadiene. In other experiments, Hatzikiriakos and

Dealy [40], Durand et al. [20] and Robert et al. [73] reported that the period decreases with

Q. However, the latter authors carried out experiments only for a few values of Q, which

were not sufficient for capturing the minimum and the slight increase of the period in the

rightmost part of the unstable regime.

The effect of Q on the pressure oscillations is illustrated in Figs. 2.17 and 2.18 for the New-

tonian and Carreau flows, respectively, where pressure oscillations obtained with Re=0.01,

Lb=80 and various values of Q are shown. It is again clear that the period of the oscillations

passes though a minimum. The ascending part (compression) of the oscillations is relatively

reduced in agreement with experimental observations [20, 40, 61, 73]. The descending part

of the oscillation does not remain constant but increases significantly at high values of Q, in

disagreement with the experiments of Hatzikiriakos and Dealy [40], Durand et al. [20] and

Robert et al. [73], in which, however, the period was found to be a decreasing value of Q. In

the present simulations, the period is decreasing only in the first half of the unstable regime,

where the growth of the descending part of the oscillation is not as pronounced.

The time-dependent simulations of the full extrusion flow have been obtained by starting
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Figure 2.15: Effect of the reservoir length on the waveform of the pressure oscillations;

(a) Newtonian flow (n=1); (b) Carreau flow (n=0.44); Re=0.01 and Q=1.35.
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Figure 2.17: Effect of the imposed volumetric flow rate on the pressure oscillations;

Carreau flow (n=0.44), Re=0.01 and Lb=80.
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Figure 2.18: Effect of the imposed volumetric flow rate on the pressure oscillations;

Carreau flow (n=0.44), Re=0.01 and Lb=80.
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Figure 2.19: Free surface oscillations during one cycle; Newtonian flow (n=1),

Re=0.01, Lb=20 and Q=1.5.
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with the steady-state solution corresponding to a flat free surface (stick-slip flow) and letting

the free surface move at t=0. In Fig. 2.19, we present free surface profiles obtained for the

Newtonian flow with Re=0.01, Q=1.5 and a small reservoir length, Lb=20, during one cycle of

the pressure oscillations (from a pressure-drop maximum to the next one) after the periodic

solution is established. The free surface oscillations resemble to the ’bamboo’ instability

pattern with a long ’smooth’ part and a shorter ’distorted’ part. As in Ref. [29], in addition

to the motion of the free surface waves in the flow direction, the free surface also oscillates

in the radial direction; swelling is minimized at pressure-drop maxima. This result agrees

with the experiments of Pérez-González et al. [64], who worked with polyethylene melts and

observed that severe contractions in the extrudate diameter occur at pressure maxima. From

Fig. 2.19, it can easily be deduced that the motion of the extrudate is accelerated just after

the pressure drop maximum, which is, of course, due to the sudden jump of the volumetric

flow rate from the left to the right stable branch of the flow curve. Similarly, the extrudate

motion is decelerated just after the pressure drop minimum, since the flow rate jumps from

the right to the left stable branch.

A comparison with Fig. 2.20, where Newtonian free surface profiles obtained with Lb=80 are

shown, reveals that with a longer reservoir (i.e. for a bigger period of pressure oscillations),

the wavelength of the resulting free surface waves is much bigger. The amplitude and the

relative length of the distortions also appear to increase. Similar results have been obtained

for the case of Carreau flow, as illustrated in Figs. 2.21 and 2.22, which show free surface

profiles obtained with Lb=20 and 80, respectively.

In addition to L=20, we have also considered the values L=0.1, 1, 5, 10 and 40, in order

to study the effect of the capillary length. In Fig. 2.3a, we plotted the flow curves of the

Carreau fluid obtained for all capillary lengths. As expected, the pressure drop as well as
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Figure 2.20: Free surface oscillations during one cycle; Newtonian flow (n=1),

Re=0.01, Lb=80 and Q=1.5.
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Figure 2.21: Free surface oscillations during one cycle; Carreau flow (n=0.44),

Re=0.01, Lb=20 and Q=1.5.
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Figure 2.22: Free surface oscillations during one cycle; Carreau flow (n=0.44),

Re=0.01, Lb=80 and Q=1.5.

43

Elen
i G

. T
ali

ad
oro

u



0

40

80

120

160

0 1 2 3 4 5

0

40

80

120

160

0 50 100 150 200

∆P

Q

∆P

t

(a)

(b)

L=40

20

10

5
1

0.1

L=40

20

10

5

1

Figure 2.23: Flow curves (a) and pressure oscillations (b) for different capillary lengths;

Carreau flow (n=0.44), Re=0.01, Q=1.35 and Lb=80.
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the difference between its maximum and minimum values are reduced as the capillary length

is decreased. Moreover, for very small capillary lengths the flow curve becomes monotonic,

which implies that the flow is stable for all values of the volumetric flow rate. In other

words, the hysteresis loop decreases in size and eventually vanishes as the capillary length is

decreased. As a consequence, the amplitude and the period of the pressure drop oscillations

decrease, as illustrated in Fig. 2.3b; for L=1, no oscillations are observed, since the flow is

everywhere stable.

Figure 2.24 shows that the period and the amplitude of the pressure drop oscillations vary

linearly with the capillary length, above the critical value at which the flow curve ceases to be

monotonic. These results agree well with experiments on HDPEs [20, 39, 58, 74], regarding

the size of the hysteresis loop and the amplitude and the period of the pressure oscillations.

Unlike the experiments, however, our simulations do not predict the shift of the stick-slip

regime to lower flow rates. This may be due to the fact that the pressure dependence of wall

slip is not taken into account in the slip model [40]. The numerical simulations also showed

that the capillary length has a slight effect on the waveform of the pressure oscillations.

As illustrated in Fig. 2.25, where the normalized pressure oscillations for L=5, 10 and 40 are

compared, the increasing part of the oscillation increases slightly with the capillary length.

Assuming that the pressure drop corresponding to the very short capillary length L=0.1 (see

Fig. 2.23a) is equal to the Bagley end correction, Pend, in Eq. (2.2), we calculated the wall

shear stresses versus the apparent wall shear rate. Interestingly, the curves of the calculated

wall shear stresses for all capillary lengths (L=1, 5, 10, 20 and 40) coincide, as shown in

Fig. 2.26. The critical values of the wall shear stress are σc2=0.34 MPa and σc3=0.24 MPa,

which give (σc2 −σc3)= 0.1 MPa. The values of σc2 reported by Hatzikiriakos and Dealy [40]

are in the range 0.22 - 0.50 MPa, while those of (σc2 − σc3) are in the range 0.03-0.11 MPa.
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Figure 2.24: Period (a) and amplitude (b) of the pressure oscillations as functions of

the capillary length; Carreau flow (n=0.44), Re=0.01, Q=1.35 and Lb=80.
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lengths; Carreau flow (n=0.44), Re=0.01 and Lb=80.
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Given the assumptions made in the present work, the agreement between simulations and

experiments is rather good. As already mentioned, experimental observations on the effect

of the capillary length on the value of σc2 cover all possibilities. In some cases, σc2 has been

found to increase [20, 40, 74, 89] and in others to decrease [46, 22, 92], as L is increased. Our

simulations agree with the experiments of Ramamurthy [69] and Wang and Drda [94, 95] in

which σc2 was found to be independent of L. Finally, the effect of the capillary length on the

free-surface oscillations is illustrated in Fig. 2.27. Both the amplitude and the wavelength

increase, and the waveform appears to change dramatically with the capillary length.

2.4 Conclusions

We used finite elements to simulate the time-dependent, compressible extrusion of a Carreau

fluid in the full reservoir-capillary-extrudate geometry, assuming that slip occurs along the

die wall following a nonmonotone slip law that is based on the experimental measurements

of Hatzikiriakos and Dealy [39, 40].

The numerical simulations agree well with the following experimental observations: (a) the

pressure and flow rate oscillations follow the hysteresis loop defined by the two branches of the

flow curve, and the volumetric flow rate is characterized by instantaneous jumps between the

two branches; (b) the amplitude and the period of the pressure oscillations increase linearly

with the capillary length, since the hysteresis loop becomes larger; (c) for small capillary

lengths, the pressure is a continuous monotonic function of Q, and no oscillations are observed;

and (d) the period of the pressure and flow rate oscillations increases linearly with the reservoir

length, while their amplitudes and waveforms are fairly constant. Nevertheless, the period of

the pressure oscillations, when plotted versus the reservoir volume, appears to pass through
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the origin, which is not the case with extrapolated experimental data [20, 40, 73, 74].

In agreement with certain experiments [58, 61, 96, 92], the period of the pressure oscillations

passes through a minimum, when this is plotted versus the imposed volumetric flow rate.

The compression part of the pressure oscillations is relatively reduced, as Q is increased.

The calculated value of the critical wall shear stress for the onset of the stick-slip instability,

σc2=0.34 MPa, is in the range reported by Hatzikiriakos and Dealy [40]. This value was found

to be independent of the capillary length, which is in agreement only with certain experiments

[69, 94, 95]. Unlike experimental observations [20, 40], the stick-slip regime is not shifted to

lower volumetric flow rates but remains constant as the capillary length is increased. This

may be due to the fact that the slip equation we employed does not take into account the

pressure dependence of wall slip and holds uniformly across the capillary.
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Chapter 3

Numerical simulation of the

extrusion of strongly compressible

Newtonian liquids

3.1 Introduction

Foams are structured dispersions of gas bubbles in a small volume fraction of a liquid with

the liquid as the continuous phase and the gas as the dispersed one1. Foamed products

are useful in many different industrial applications. In the plastics industry, polyethylene,

polystyrene and polypropylene foams are produced for thermal insulation, packaging applica-

tions, protecting and sporting equipment, and aircraft or automotive parts with high strength

to weight ratio [59, 62]. Foamed polymer solutions are used widely in the petroleum industry

as drilling fluids and in the hydraulic fracturing of hydrocarbon wells [27]. Metal foams also

1Some of the results presented in this chapter appear also in References [81, 83]
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find applications in the automotive industry [7]. Aqueous polymer solutions foamed with

nitrogen and/or carbon dioxide are used in fire-fighting technology for polar solvent and oil

fires [27, 43]. Other applications can be found in the food and biopolymer industry, with

products ranging from starch-based foams [97], cereal foods [56, 93] and aerated chocolates

[27] to cosmetics and medical drugs [43].

In foam extrusion, a chemical foaming agent is mixed with the polymer to be extruded. The

heat generated to melt the polymer decomposes the chemical foaming agent producing gas

which is dispersed in the polymer melt. An alternative is to blow the polymer melt with

an inert gas, such as carbon dioxide or nitrogen [59, 62, 98]. Upon exiting the die, the gas

expands considerably. Expansion of extrudates is one of the most important phenomena of

foam extrusion processing, resulting in products with a cellular foam structure [59, 60, 93].

This is a complex phenomenon caused by different mechanisms, such as phase transitions,

nucleation and bubble growth and collapse [56, 59, 60] in addition to extrudate-swell. Im-

portant parameters that affect the final dimensions and quality of the extrudate are the die

geometry, material properties, and processing environment [93].

In the polymer foam production industry, the expansion of the extrudate is usually described

by the volume expansion ratio, which is also known as overall expansion ratio or foaming

ratio. This is the ratio of the extrudate solid density to the bulk density. In the food

industry, the radial expansion ratio is used instead. This is the ratio of the cross-sectional

area of the extrudate to that of the die [77, 99]. In other words, the radial expansion ratio is

the square of the well-known extrudate-swell ratio, which is defined as the ratio of the final

extrudate diameter to that of the die. The axial expansion ratio, calculated by dividing the

volume expansion by the radial expansion ratio, is also used [77]. The expansion ratios and

the density are important properties of extruded foams. High expansion ratios and low unit
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density are ideal for foams because of the reduced cost of the final product [99].

In general, polymer foams produced by conventional extrusion process exhibit high expansion

ratios up to 100. Park and co-workers reported volume expansion ratios as high as 23 for

microcellular high impact polystyrene (HIPS) foams [62], in the range of 1.5 - 20 for fine-cell

HDPE foams [4], and up to 45 for biodegradable polyester foams [63]. For the extrusion of

polypropylene foams blown with butane, Naguib et al. [59, 60] reported volume expansion

ratios ranged from about 1 to 90, depending on the gas fraction, the temperature, and the

talc content. Very recently, Lee et al. [51] reported volume expansion ratios ranging from 2.3

to 8.5 in the case of open-cell LDPE/PS sheet foams produced with an annular die. Xu et

al. [98] reported volume expansion ratios up to 6 in direct extrusion foaming of a low density

polypropylene. Large expansion ratios are also observed in the case of extruded biodegradable

starch and cereal foams. Radial expansion ratios up to 62.4 have been reported [56, 97, 99].

Of particular interest to the present work is the phenomenon of the contraction of the ex-

trudate after the initial expansion near the die exit, which is known to be detrimental to

large expansion [60]. This contraction is attributed to the escape of gas through the exterior

skin of the extruded foam [4, 59, 62]. Therefore, in order to produce low-density foams, gas

diffusion must be prevented. In extrusion experiments with microcellular HIPS foams blown

with carbon dioxide, Park et al. [62] observed that the diameter of the initially expanded

foam at a relatively high temperature was about 2.2 times of the diameter of the finally

contracted foam. By decreasing both the melt and nozzle temperatures, Park et al. [62]

were able to achieve full expansion eliminating the contraction, which was attributed to the

reduced gas diffusion through the frozen skin layer of the extrudate and the suppression of

cell coalescence.
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Naguib et al. [59, 60] studied the fundamental mechanisms governing the volume expansion

behavior of extruded polypropylene foams blown with butane. Based on their experimental

data, they reached the conclusion that either gas loss or polymer crystallization govern the

final volume expansion ratio of the polypropylene foams and that the maximum expansion

ratio was achieved when the governing mechanism changed from one to the other. They also

noted that at higher temperatures, initial expansion is followed by an undesirable contraction

and that as temperature is increased, initial expansion becomes larger but final expansion

is reduced beyond an optimum temperature. The angle of initial expansion was found to

increase with temperature, i.e. initial expansion becomes faster [59].

Extrudate contraction following the initial expansion has also been observed with extruded

starch-based foams [24, 93, 97, 99] and cereal foods [56], resulting in increased densities and

reduced expansions. Willett and Shogren [97] and Moraru and Kokini [56] attribute this

phenomenon to the cooling rate, which is not rapid enough to prevent bubble collapse.

The objective of the present work is to study numerically the expansion of extruded foams in

the so-called extrudate-swell flow and investigate whether the aforementioned phenomenon

of extrudate contraction can be attributed to the compressibility of the foam. The latter is

treated as a homogeneous fluid. In other words, the extrudate expansion of foamed liquids is

studied at a macroscopic level. Bubble growth phenomena are taken into account implicitly

by assuming that the foam is highly compressible. For other analyses, in which bubble growth

is characterized at a microscopic level, the reader is referred to the paper by Wang et al. [93]

and the references therein.

The knowledge of the rheological behavior of foamed fluids is essential in engineering appli-

cations. As stated by Reinelt and Kraynik [71], a complete theory of foam rheology does not
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exist, since foam behavior involves a broad range of physical mechanisms acting over multiple

length and time scales. Additional information concerning these physical mechanisms can

also be found in the recent review article of Höhler and Cohen-Addad [43]. Rheological stud-

ies have shown that foam viscosity depends on properties, such as the foam expansion ratio,

defined as the ratio of the volume of the foam to the volume of the foam liquid at atmospheric

conditions, the bubble size distribution, and other properties of individual phases, i.e. the

surface tension [23, 27]. In general, a foam behaves like a non-Newtonian fluid exhibiting

shear thinning, yield stress and elastic behavior typical of emulsions [49]. The origin of the

elastic behavior comes from the minimization of surface area, due to the surface tension that

exists in the thin liquid films. The yield stress arises due to the internal structure of foam,

which consists of bubbles separated by a matrix of thin films [49]. Yield stress was found to

increase monotonically with the gas fraction (volume of contained gas/volume of foam), the

surface tension, and decreasing bubble size [25, 48]. Typically, a Herschel-Bulkley model is

fitted to the experimental data [27, 42].

In the present work, we concentrate our attention on the effects of compressibility assuming

that the foam behaves as a homogeneous compressible Newtonian fluid with a viscosity inde-

pendent of the pressure. The latter assumption is also a strong one; a correct simulation of

foam flow has to include pressure-dependent viscosity [44]. Beverly and Tanner [10] were the

first to solve numerically the compressible, axisymmetric Newtonian extrudate-swell prob-

lem. Their simulations showed that weak compressibility reduces the swelling of Newtonian

fluids. The finite-element calculations of Georgiou [28] confirmed this result and showed that

as compressibility increases, the extrudate-swell ratio passes through a minimum and then

starts increasing rapidly, in agreement with experiments [4, 62, 63]. A second objective of the

present work is to investigate this phenomenon further, given that liquid foams are highly
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compressible.

First, the governing equations and boundary conditions for the compressible Newtonian

extrudate-swell flow are presented and discussed. In order to study the effects of compress-

ibility, two alternative equations of state, a linear and an exponential one, are used. A

linear equation of state has been employed in previous numerical studies of the compressible

extrudate-swell flow [10, 28], by Hatzikiriakos and Dealy [40] for a HDPE, and in our previous

studies concerning the simulation of the stick-slip extrusion instability [29, 32]. Exponential

equations of state have been employed, for example, by Ranganathan et al. [70] for a HDPE

and, more recently, by Vinay et al. [90] in simulations of weakly compressible Bingham flows.

It should be pointed out that taking into account only the pressure dependence of the density

(and even that of viscosity) is not sufficient for modeling foam expansion with chemical or

physical blowing agents, since these mechanisms involve chemical reaction or gas diffusion,

respectively. Since foams are known to slip along the walls [5, 9, 23, 26, 27, 42, 48], in addition

to the no-slip boundary condition at the wall, the possibility of slip by means of a linear slip

equation is also considered. Then, the numerical method is briefly described and the numer-

ical results are presented and discussed. Emphasis is given on the effects of compressibility

on the expansion of the jet. The numerical results confirm previous reports that the swelling

of the extrudate decreases initially as the compressibility of the fluid is increased and then

increases considerably, in agreement with experimental observations. The numerical simula-

tions also reveal that high compressibility may lead to a contraction of the extrudate after the

initial expansion, similar to that observed experimentally with liquid foams or to decaying

oscillations of the extrudate surface, provided that inertia is taken into account. Lastly, the

conclusions are summarized and some possibilities for future work are given.
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3.2 Governing equations

Since the equations and boundary conditions for the plane problem are similar, only the ax-

isymmetric extrudate-swell flow is discussed. The flow is assumed to be laminar, compressible

and isothermal, and gravity is neglected. Letting p, v, and τ denote the pressure, the ve-

locity vector, and the viscous stress tensor, respectively, the continuity and the momentum

equations are written as:

∂ρ

∂t
+ ∇ · ρ v = 0 , (3.1)

ρ

(

∂v

∂t
+ v · ∇v

)

= −∇p + ∇ · τ , (3.2)

where ρ is the density. For compressible Newtonian flow with the bulk viscosity neglected,

the viscous stress tensor is given by

τ = µ
[

(∇v) + (∇v)T
]

− 2

3
µ I ∇ · v , (3.3)

where I is the unit tensor, µ is the viscosity, and the superscript T denotes the transpose.

The viscosity is assumed to be constant and independent of the pressure.

The above equations are completed by a thermodynamic equation of state relating the density

to the pressure. At constant temperature and low pressures, the density can be represented

by the linear approximation

ρ = ρ0 [1 + β (p − p0) ] , (3.4)

where

β ≡ − 1

V0

(

∂V

∂p

)

p0,T

(3.5)

is the isothermal compressibility assumed to be constant, V is the specific volume, ρ0 and V0

are, respectively, the density and the specific volume at a reference pressure p0, and T is the
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temperature. For comparison purposes, the following exponential equation is also used:

ρ = ρ0 eβ (p − p0) . (3.6)

This is equivalent to the linear equation of state for low pressures depending on the value of

β. A disadvantage of this equation is the fast growth of the density (for high values of β).

On the other hand, the linear model may lead to negative values of the density. Obviously

more sophisticated equations of state should be used for highly compressible flows.

To non-dimensionalize the governing equations, we scale the lengths by the radius R, the

velocity by the mean velocity U at the inlet of the capillary, the pressure and the stress com-

ponents by µU/R, and the density by ρ0. With these scalings, the continuity and momentum

equations become

∂ρ

∂t
+ ∇ · ρ v = 0 , (3.7)

and

Re

(

∂v

∂t
+ v · ∇v

)

= −∇p + ∇ · τ , (3.8)

where all variables are now dimensionless, and Re is the Reynolds number defined as

Re ≡ ρ0 U R

µ
. (3.9)

The linear and the exponential equations of state respectively become

ρ = 1 + B p (3.10)

and

ρ = eBp , (3.11)

where B is the compressibility number,

B ≡ β µ U

R
, (3.12)
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and the reference pressure has been set to zero. The behavior of the two dimensionless

equations of state is illustrated in Fig. 3.1. The two models are equivalent only if the

pressure, p, and the compressibility number, B, are sufficiently low.

-2

0

2

4

6

8

10

-25 0 25 50

ρ

p

B=0.1

0.1

B=0.01
1

Figure 3.1: Behavior of the linear (dashed) and exponential (solid) equations of state

for B=0.01 and 0.1.

The dimensionless boundary conditions of the flow are shown in Fig. 3.2. To include slip

effects, a linear slip equation is employed, the dimensionless form of which is

τw =
1

A
vw , (3.13)

where vw is the dimensionless slip velocity, τw is the dimensionless shear stress at the wall,

and A is a dimensionless slip number defined by

A ≡ α µ

R
, (3.14)
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α being a slip parameter depending on the material properties for a given wall. Hence, along

the capillary wall, the axial velocity, vz, satisfies the slip equation (3.13), whereas the radial

velocity, vr, is zero.

'

¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡

6r
-
z

6

hvz =
2(1 − r2 + 2A)

1 + 4A

vr = 0

−p + τzz = 0

τrz = 0

τw = 1
A vw, vr = 0

∂h
∂t + vz

∂h
∂z − vr = 0

n · (−p I + τ ) = 0

τrz = 0, vr = 0
L1 L2

Figure 3.2: Geometry and dimensionless boundary conditions for the axisymmetric

extrudate-swell flow of a Newtonian fluid with slip at the wall.

At the inlet plane, assumed to be taken far upstream the exit so that the flow can be taken

as fully developed, vr is zero and vz is given by

vz =
2

1 + 4A
(1 − r2 + 2A) . (3.15)

The above velocity profile satisfies the slip equation (3.13). The dimensionless slip velocity

at the inlet plane is vw=4A/(1 + 4A). Setting A=0 leads to the well-known dimensionless

Newtonian velocity profile corresponding to no slip.

The outflow plane is assumed to be far downstream from the die exit so that total normal

stress and the shear stress vanish, −p + τzz=0 and τrz=0. Along the axis of symmetry, the

usual symmetry boundary conditions are used. Finally, on the free surface, it is assumed that
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surface tension is zero and vanishing normal and tangential stresses are imposed. Addition-

ally, the unknown position h(z, t) of the free surface satisfies the kinematic condition:

∂h

∂t
+ vz

∂h

∂z
− vr = 0 . (3.16)

In the case of the time-dependent calculations, the solution corresponding to a volumetric

flow rate Q0 at the inlet is used as the initial condition and at t=0 the volumetric flow rate

is perturbed to Q=1.

3.3 Numerical simulations

The finite element formulation is used for solving the free-surface flow problem under study.

The unknown position of the free surface is calculated simultaneously with the velocity

and pressure fields (full-Newton method). The mesh is updated accordingly, using a spine

scheme. The standard biquadratic-velocity (P2-C0) and bilinear-pressure (P1-C0) elements

with a quadratic representation for the position h of the free surface are employed. For the

spatial discretization, the standard Galerkin forms of the continuity, momentum and kine-

matic equations are used, while for the time discretization, the standard fully-implicit (Euler

backward-difference) scheme has been chosen.

In order to check the convergence of the numerical results, we have constructed four meshes

of different refinement near the singularity at the die exit. We have also considered three

capillary lengths: L1=5, 10 and 20. Unless otherwise indicated, the length of the extrudate

region has been taken to be L2=20. Table 3.1 shows the sizes of the elements adjacent to the

singular point and the characteristics of all meshes used in the present work. In the beginning

of this section, we will consider the steady-state creeping flow case. The dramatic effect of

inertia will be discussed afterwards.
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Table 3.1: Mesh characteristics.

Mesh L1 L2 Size of Number Number

smaller of of

element elements unknowns

Mesh 1 5 20 0.04 3971 37208

Mesh 2 5 20 0.02 4641 43320

Mesh 3 5 20 0.01 5359 49864

Mesh 4 5 20 0.0045 6526 60490

Mesh 3 5 20 0.01 5359 49864

10 20 0.01 6026 56012

20 20 0.01 7268 67460

Mesh 3 5 10 0.01 3887 36168

5 20 0.01 5359 49864

5 40 0.01 6509 60564
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3.4 Creeping flow

We first carried out simulations of the creeping, steady-state axisymmetric extrusion flow

with no-slip along the capillary wall using the linear equation of state. The effects of mesh

refinement on the centerline pressure and the position of the free surface, are illustrated in

Figs. 3.3 and 3.4, respectively, where the results obtained with Meshes 1 and 3 for different

compressibility numbers are compared. While the calculated centerline pressures practically

coincide, the elevation of the free surface is overestimated with the coarser meshes for B < 0.1.

This is more clearly shown in Fig. 3.5, where the extrudate-swell ratios, hf , calculated with

Meshes 1, 2 and 3 are compared. For B > 0.1, hf is underestimated with the coarse meshes.

Going back to Fig. 3.3, we note that the pressure increases with compressibility, which is

expected, since the mass flow rate is increased. Test runs for the Poiseuille flow (i.e. with

the extrudate region excluded) have shown that the method diverges at high values of B

(B ≃ 0.5). This observation is useful, since it shows that the divergence of the method in

the case of strongly compressible extrusion flow is not due to the sudden elevation of the free

surface.

It is clear in Fig. 3.5 that weak compressibility leads to a small reduction of the extrudate-

swell ratio, in agreement with earlier numerical studies [10, 28]. This reduction has been

attributed to the compression of the extrudate downstream, given that the fluid is decom-

pressed near the singularity at the die exit where the pressure is negative [28]. However, as

compressibility increases, hf passes through a minimum between B=0.02 and 0.03 and then

increases steadily due to the increase of the mass flow rate. At high values of B, the angle of

expansion increases and the elevation of the free surface is rapid (see Fig. 3.4). As already

mentioned, the numerical method cannot converge for B ≃ 0.12. From Fig. 3.5, we conclude

that the results for B > 0.08 should be ignored. In any case, the numerical results show
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Figure 3.3: Effect of mesh refinement on the centerline pressure in creeping axisymmet-

ric flow with no-slip at the wall; results obtained with Meshes 1 (dashed) and 3 (solid)

and L1=5.

that swelling increases considerably with compressibility, in agreement with foam extrusion

experiments [4, 62, 63].

The expansion of the jet is further enhanced by increasing the capillary length, while it is

reduced when slip occurs along the capillary wall. As illustrated in Fig. 3.6, the minimum of

the extrudate-swell ratio is shifted to the left and higher extrudate-swell ratios are obtained

when the length of the capillary, L1, is increased, as more material is compressed. It should be

noted that increasing the capillary length leads to a higher mass flow rate (since the velocity

scale is the same), and therefore the mean velocity at the exit is higher. Figure 3.7 shows the

effect of slip on the free surface profile for B=0.06. Swelling is reduced as slip is increased,

which is consistent with experiments and theoretical studies.

Let us now look more closely at the numerical solution of strongly compressible flow. In
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Figure 3.4: Effect of mesh refinement on the position of the free surface in creeping

axisymmetric flow with no-slip at the wall; results obtained with Meshes 1 (dashed) and

3 (solid) and L1=5.

Fig. 3.8, we see the finite element mesh, the velocity and pressure contours, and the stream-

lines obtained with Mesh 3 (L1=10) for B=0.08. Two interesting observations are: (a) the

free surface is almost vertical near the exit, and (b) there is a big region in the extrudate

region where the pressure is negative, i.e. the density is less than the reference density. The

negative pressures are swept out because of the convective nature of the flow.

The results with the exponential equation of state showed the importance of using a proper

equation of state in the simulations. In Fig. 3.9, the centerline pressures from B=0 (incom-

pressible flow) up to B=0.025, calculated with L1=5, are plotted. The results for B < 0.01

are essentially the same as those obtained with the linear equation of state and shown in

Fig. 3.3. For higher values of B, however, the pressure increases rapidly and the numerical

method fails to converge for B > 0.025. In Fig. 3.10, the extrudate-swell ratios calculated

65

Elen
i G

. T
ali

ad
oro

u



1.1

1.2

1.3

1.4

0 0.02 0.04 0.06 0.08 0.1 0.12

hf

B

Mesh 1

Mesh 3

Figure 3.5: Effect of mesh refinement on the extrudate-swell ratio in creeping axisym-

metric flow with no-slip at the wall; results obtained with Meshes 1, 2 (dashed) and 3

and L1=5.
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Figure 3.6: Effect of the capillary length on the extrudate-swell ratio in creeping ax-

isymmetric flow with no-slip at the wall.
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Figure 3.7: Free surface profiles for B=0.06 and different slip numbers in creeping

axisymmetric flow; Mesh 3 with L1=5 and L2=20.

with the two equations of state are compared. Again, for B < 0.01, both equations yield

essentially the same results. With the exponential equation of state, the minimum is again

observed, but at a lower compressibility number. Just after the minimum, the extrudate-swell

ratio increases considerably due to the dramatic increase of the pressure and, hence, the mass

flow rate.

The numerical results for the planar compressible extrudate-swell flow are similar. In Fig. 3.11,

we compare to their axisymmetric counterparts the extrudate swell ratios obtained with Mesh

3 and L1=5. With the same mesh, simulations of the planar flow can be carried out for higher

values of the compressibility number. Again, the extrudate swell ratio passes through a min-

imum, but at a higher compressibility number around B=0.05. It should be noted that for

B > 0.06 the planar jet swells less than the axisymmetric one.
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Figure 3.8: Mesh and contours in creeping compressible axisymmetric extrudate-swell

flow with no-slip at the wall; B=0.08, L1=10 (only part of the domain is shown).

68

Elen
i G

. T
ali

ad
oro

u



0

50

100

150

-5 -4 -3 -2 -1 0 1 2 3

p

z

B=0

0.01

0.02

0.025

Figure 3.9: Centerline pressures calculated with the exponential equation of state for

different compressibility numbers; creeping axisymmetric flow with no slip at the wall,

Mesh 3 with L1=5.
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Figure 3.10: Calculated extrudate-swell ratios with the two equations of state; creeping

axisymmetric flow with no slip at the wall, Mesh 3 with L1=5.
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Figure 3.11: Calculated extrudate-swell ratios for both the axisymmetric and planar

extrudate-swell flows; creeping flow with no-slip at the wall, Mesh 3 with L1=5.

We have also studied the effect of compressibility on the pressure exit correction factor which

gives the relative excess pressure loss above the Poiseuille fully-developed pressure loss. This

is defined as follows [87]:

nex =
∆P − ∆P0

2 σw
(3.17)

where ∆P is the pressure drop between the inlet plane and the exit in the case of the extrudate

swell flow, ∆P0 is the pressure drop between the inlet plane and the exit of the capillary in

the case of fully-developed Poiseuille flow, and σw is the wall shear stress corresponding to

incompressible Poiseuille flow. In the present work, the pressure differences are taken along

the centerline. The exit correction factors for both the planar and the axisymmetric flows are

found to increase with compressibility, as shown in Fig. 3.12. The increase is more dramatic

in the case of the axisymmetric flow. The convergence of these results has been checked
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Table 3.2: Convergence of the exit correction factor and the extrudate-swell ratio with

mesh refinement.

Mesh Size of Axisymmetric Planar

smaller nex hf nex hf

element

Mesh 1 0.04 0.23603 1.1344 0.15139 1.1953

Mesh 2 0.02 0.23191 1.1303 0.14909 1.1908

Mesh 3 0.01 0.23021 1.1290 0.14816 1.1893

Mesh 4 0.0045 0.22855 1.1278 0.14725 1.1878

by using Meshes 1 to 4. In Table 3.2, the calculated exit correction factors for both the

axisymmetric and planar incompressible flows are tabulated together with the corresponding

extrudate-swell ratios. The convergence of nex with mesh refinement is illustrated in Fig.

3.13. It appears that the converged values of nex are about 0.227 for the axisymmetric jet

and 0.147 for the planar one. These values, which are insensitive to the capillary length L1

(for L1 > 3), are much lower than those reported in the literature [54, 87]. However, as

pointed out by Mitsoulis [54], who reported the value nex=0.235 for the axisymmetric jet,

coarse meshes tend to overestimate nex, which is consistent with the present calculations. We

believe that the meshes used in previous studies were rather coarse. Finally, as the meshsize is

decreased the computed values of the extrudate-swell ratio (tabulated in Table 3.2) appear to

approach nicely the converged values 1.1265 and 1.1863 reported by Georgiou and Boudouvis

[31] for the axisymmetric and planar flows, respectively.
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Figure 3.12: Exit correction factors for both the axisymmetric and extrudate-swell flows

versus the compressibility number; creeping flow with no-slip at the wall, Mesh 3 with

L1=5.

3.5 Effect of inertia

It is well known that in the incompressible case (B=0), swelling is reduced as the Reynolds

number is increased [34]. Our simulations showed that this is also the case with weakly

compressible flows. At high compressibility numbers, however, the final extrudate-swell ratio

increases sharply with the Reynolds number, as illustrated in Fig. 3.14, which shows results

obtained with the no-slip boundary condition. In some intermediate range of compressibility

numbers, the final extrudate-swell ratio appears to pass through a minimum.

The free surface profiles for nonzero Reynolds number look more exciting than the values of

the final extrudate-swell ratio. In Figs. 3.15 and 3.16, the free-surface profiles for B=0.06

and B=0.08, respectively, and various Reynolds numbers are shown. We observe that the

angle of expansion and the swelling increase with the Reynolds number and that the expan-
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Figure 3.13: Convergence of the exit pressure correction factor with mesh refinement:

(a) Axisymmetric jet; (b) Planar jet; creeping flow with no-slip at the wall, Mesh 3

with L1=5.

73

Elen
i G

. T
ali

ad
oro

u



1

1.1

1.2

1.3

1.4

1.5

0 0.2 0.4 0.6 0.8 1

hf

Re

¡
¡µ

B=0

0.01

0.05

0.06

0.07

0.08

Figure 3.14: Final extrudate-swell ratio vs Re for different compressibility numbers;

axisymmetric flow with no-slip at the wall, Mesh 3 with L1=5 and L2=20.

sion is followed by a weaker contraction. This behavior of the free surface agrees with the

experimental observations on extruded polymer [4, 59, 60, 62], starch-based [24, 93, 97, 99]

and cereal [56] foams. Therefore, the phenomenon of foam extrudate contraction can, at least

partially, be attributed to the combined effect of the compressibility of the foam and inertia.

As the Reynolds number is further increased, more decaying oscillations of the free surface

are observed downstream. The same phenomenon is observed when the fluid is allowed to slip

along the capillary wall. In Fig. 3.17, we plot the free surface profiles obtained for B=0.06,

A=0.1 and various Reynolds numbers. A comparison with Fig. 15 shows again that slip

reduces swelling and the amplitude of the free surface oscillations.

The effect of compressibility for a nonzero Reynolds number (Re=1) is illustrated in Fig. 3.18,

where steady free surface profiles obtained with different values of B are shown. The free sur-

face is monotonic in the incompressible case. As in the creeping flow, the angle of expansion
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Figure 3.15: Free surface profiles for B=0.06 and different Reynolds numbers; axisym-

metric flow with no-slip at the wall, Mesh 3 with L1=5 and L2=20.
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Figure 3.16: Free surface profiles for B=0.08 and different Reynolds numbers; axisym-

metric flow with no-slip at the wall, Mesh 3 with L1=5 and L2=20.
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Figure 3.17: Free surface profiles for B=0.06, A=0.1 and various Reynolds numbers;

axisymmetric flow, Mesh 3 with L1=5 and L2=20.

and swelling increase with B. A kink appears which grows with B. At higher compressibili-

ties, there appear smaller decaying oscillations following the initial kink. Figure 3.19 shows

the mesh and the axial velocity contours when B=0.06 and Re=2.5 (i.e. a rather extreme

case). The sharp angle of expansion as well as the dense refinement of the mesh in the axial

direction are clear.

Some checks have been considered in order to confirm that the calculated oscillating steady

free surface profiles are not numerical artifacts. First, we verified that the solution does not

depend on the length L2 of the extrudate. Figure 3.20 shows comparisons of the free surface

profiles obtained for B=0.06, various Reynolds numbers and L2=10, 20 and 40. It is clear

that the results coincide in all cases. In other words, the oscillatory nature of the steady-state

solutions is not affected by the length of the extrudate.
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Figure 3.18: Free surface profiles for Re=1 and different compressibility numbers; ax-

isymmetric flow with no-slip at the wall, Mesh 3 with L1=5 and L2=20.

Figure 3.19: Mesh and axial velocity contours for B=0.06 and Re=2.5; axisymmetric

flow with no-slip at the wall, Mesh 3 with L1=5 and L2=20.
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Figure 3.20: Effect of the extrudate length on the steady free-surface profiles for B=0.06

and various Reynolds numbers: (a) Results for L2=10 (solid) and 20 (dashed); (b)

Results for L2=20 (solid) and 40 (dashed); axisymmetric flow with no-slip at the wall,

Mesh 3 with L1=5.
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We have also checked the stability of the oscillatory steady-state solutions by means of time-

dependent calculations. The steady-state solution at the volumetric flow rate Q0=0.5 has

been taken as the initial condition, and at t=0 the volumetric flow rate was set to Q=1. In all

cases examined, the oscillatory steady-states have been found to be stable. A rather extreme

example for B=0.06 and Re=2.5 is presented here. The free surface profiles for Q0=0.5 and

Q=1 are shown in Fig. 3.21. In Fig. 3.22, the evolution of the free surface to the new

oscillatory steady state is shown. The large free surface profile overshoot, which is due to

the sudden increase of the volumetric flow rate, propagates downstream and the new stable

steady-state is finally reached.

1

1.2

1.4

1.6

1.8

0 5 10 15 20

h

z

Q0=0.5

Q=1

Figure 3.21: Steady free surface profiles for B=0.06, Re=1 and Q0=0.5 (initial condi-

tion) and Q=1 (new steady-state); axisymmetric flow with no-slip at the wall, Mesh 3

with L1=5 and L2=20.
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Figure 3.22: Evolution of the free surface when perturbing the steady-state solution for

B=0.06 and Re=2.5 from Q0=0.5 to Q=1: (a) t=1, 3, 5, 7 and 9; (b) t=10, 15, 20,

25; the dashed lines show the initial and the final steady-state; axisymmetric flow with

no-slip at the wall, Mesh 3 with L1=5 and L2=20.
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3.6 Conclusions

We have solved numerically the axisymmetric and plane extrudate-swell flows of a strongly

compressible Newtonian fluid, and studied the effects of the compressibility and the equation

of state, slip, geometry, and inertia on the expansion of the jet. In agreement with experi-

mental observations [4, 62, 63], strong compressibility was found to enhance the expansion

and the angle of separation of the jet. However, swelling initially decreases as compressibility

is increased, which agrees with previous numerical studies [10, 28]. The expansion of the jet

is further enhanced when the length of the capillary is increased, i.e. when more material

is compressed. On the other hand, slip at the wall reduces swelling. The planar jet has

been found to swell more than its axisymmetric counterpart only below a certain value of

the compressibility number. The simulations with a linear and an exponential equation of

state showed that swelling is accelerated in the latter case, which indicates the importance

of using a more physically based equation of state. We are currently investigating this issue

in conjuction with the use of a more realistic constitutive equation for liquid foams, such

as the Herschel-Bulkley model with density-dependent parameters. Another consideration is

the construction of the finite element mesh which needs to be improved in order to capture

the high expansion ratios observed in foam extrusion experiments.

The numerical simulations for non-zero Reynolds number revealed that compressibility leads

to a contraction of the jet after the initial expansion, a phenomenon that has been observed in

extrusion experiments with polymer [4, 59, 60, 62], starch-based [24, 93, 97, 99] and cereal [56]

foams. At higher Reynolds numbers, the steady-state free surface profiles become oscillatory,

with the oscillations decaying downstream. These steady-state oscillatory solutions are not

affected by the length of the extrudate region nor by the boundary condition along the
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capillary wall (slip or no-slip). Their stability has been confirmed by means of time-dependent

calculations.
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Chapter 4

Perturbation solutions of Poiseuille

flows of weakly compressible

Newtonian liquids

4.1 Introduction

Laminar Poiseuille flows of weakly compressible fluids (i.e. flows corresponding to low Mach

numbers) have been studied extensively in the past few decades due to their applications in

many processes involving gas flows in long capillaries or at high speeds [88], such as gas flows

in micro-electro-mechanical systems (MEMS) devices [2, 3, 12, 37], liquid flows in relatively

long tubes, such as waxy crude oil transport [90] and polymer extrusion [29]. Numerical

solutions of weakly compressible Poiseuille flows have been presented not only for Newtonian

fluids [29, 33, 37, 38] but also for generalized Newtonian fluids, such as the Carreau fluid [29]

83

Elen
i G

. T
ali

ad
oro

u



and the Bingham plastic [90], and viscoelastic fluids [6]1.

Perturbation and other approximate solutions have also been presented in the literature for

Poiseuille flows of compressible Newtonian fluids, mostly under the assumption of ideal gas

flow. Prud’homme et al. [67] employed a double perturbation expansion in terms of the radius

to length ratio and the relative pressure drop to approximately solve the flow of an ideal gas in

a long tube under the assumptions of purely axial flow (i.e. zero radial velocity component),

no radial pressure gradient, and negligible gravity. Van den Berg et al. [8] investigated the

compressible laminar Newtonian flow in a capillary using a one-dimensional perturbation

analysis of radially symmetric flow and two lumped perturbation parameters which could

not allow the isolation of the effects of compressibility, inertia, and bulk viscosity. The same

approach has been adopted by Zohar et al. [101] to obtain a solution for subsonic gas flow

through microtubes and channels with wall slip. As noted by Venerus [88], in the above studies

the lubrication approximation is implicitly invoked due to the assumption of zero radial

pressure gradient and the corresponding solutions are expected to be sufficiently accurate for

slow flow or flow in long capillaries. Venerus [88] also pointed out that in the analyses of

Prud’homme et al. [67] and van den Berg et al. [8], terms of different orders of the aspect ratio

have been retained in the two components of the momentum equation, which leads to the

violation of the compatibility condition for the equations of motion. Venerus [88] analyzed up

to the second order the axisymmetric Poiseuille flow relaxing the lubrication approximation

assumption using the streamfunction/vorticity formulation with a linear equation of state

(relating the density to the pressure), and employing compressibility as the single perturbation

parameter. In contrast with previous analyses, he found both a non-zero radial velocity and

non-zero radial pressure gradient. Much earlier, Schwartz [75] studied the plane Poiseuille

1Some of the results presented in this chapter appear also in Reference [85]
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flow using a fourth-order perturbation expansion in the parameter (Mach number)2/Reynolds

number. His perturbation scheme was based on the principle of slow variation, which implies

that the flow properties vary slowly with distance along the channel for sufficiently small

viscosity and/or mass flow rate. He also assumed that the fluid is a thermally perfect gas

(i.e. the density is proportional to the pressure) and that the bulk viscosity is zero.

In the present work we derive second order perturbation solutions for both the planar and

axisymmetric isothermal Poiseuille flows of weakly compressible Newtonian liquids. Following

Venerus [88], a linear equation of state is employed and the isothermal compressibility is taken

as the perturbation parameter. Moreover, both the shear and bulk viscosities are assumed

to be constant (independent of the pressure) and the no-slip boundary condition is assumed

along the wall. However, instead of using a vorticity/streamfunction formulation, only the

primary unknown fields are perturbed in the present work.

The governing equations and the nondimensionalization are presented in section 4.2. The

perturbation expansion method for the plane Poiseuille flow of a compressible Newtonian

fluid is presented in section 4.3, where explicit analytical solutions for pressure, density, and

velocity are obtained up to the second order. These agree (up to the second order) with

the solution of Schwartz [75] at the exit of the channel. The derivation of the solution of

the axisymmetric flow is provided in the Appendix. The results concerning the effects of

compressibility, the Reynolds number, the aspect ratio, and the bulk viscosity on the velocity

and pressure fields are presented and discussed in section 4.4. Finally some conclusions are

drawn in section 4.5.
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4.2 Governing equations

The constitutive equation of a compressible Newtonian fluid is

τ = η
[

∇u + (∇u)T
]

+

(

κ − 2

3
η

)

∇·u I (4.1)

where τ is the viscous stress tensor, u is the velocity vector, ∇u is the velocity gradient tensor,

I is the unit tensor, η denotes the viscosity, and κ is the bulk (or dilatational) viscosity. In

the present work, both η and κ are assumed to be constant, i.e. independent of pressure.

Note that the bulk viscosity κ, which is very often neglected, is identically zero only for

monoatomic gases at low density. This becomes important in polyatomic gases, in liquids

containing gas bubbles [11], and in liquids in general [88].

We consider the steady, two-dimensional, planar isothermal Poiseuille flow of a weakly com-

pressible Newtonian fluid under zero gravity and no slip at the walls, as illustrated in Fig. 4.1.

Under these assumptions the continuity and the x- and y-components of the Navier-Stokes

equation become:

∂

∂x
( ρ ux) +

∂

∂y
(ρ uy) = 0 , (4.2)

ρ

(

ux
∂ ux

∂ x
+ uy

∂ ux

∂ y

)

= −∂ P

∂ x
+ η

(

∂2ux

∂x2
+

∂2ux

∂y2

)

+

(

κ +
η

3

)

(

∂2uy

∂x∂y
+

∂2ux

∂x2

)

, (4.3)

and

ρ

(

ux
∂ uy

∂ x
+ uy

∂ uy

∂ y

)

= −∂ P

∂ y
+ η

(

∂2uy

∂x2
+

∂2uy

∂y2

)

+

(

κ +
η

3

)

(

∂2ux

∂x∂y
+

∂2uy

∂y2

)

(4.4)

where ρ is the fluid density, ux and uy are respectively the horizontal and transverse velocity

components, and P is the pressure. The fluid density is assumed to obey a linear equation

of state:

ρ = ρ0[ 1 + β (P − P0)], (4.5)
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where β is the isothermal compressibility,

β ≡ − 1

V0

(

∂ V

∂ P

)

P0,T
(4.6)

assumed to be constant, V is the specific volume, ρ0 and V0 are, respectively, the density and

the specific volume at a reference pressure P0, and T is the temperature. Taking the velocity,

U =
Ṁ

ρ0 H W

where Ṁ is the mass flow rate, H is the channel width, and W is the unit length in the

x-direction, as the characteristic velocity of the flow, we define the Mach number by

Ma ≡ U

σ
(4.7)

where

σ =

[

γ

(

∂P

∂ρ

)

T

]1/2

=

(

γ

β ρ0

)1/2

(4.8)

is the speed of sound in the fluid, γ being the heat capacity ratio (or adiabatic index). In

this work we consider subsonic flows so that Ma ≪ 1.

To nondimensionalize the governing equations, we scale x by L, y by H, ρ by the reference

density ρ0, ux by U , the transverse velocity uy by UH/L, and the pressure by 3ηLU/H2. The

latter pressure scale is used so that the dimensionless pressure gradient along the domain, in

the incompressible flow is equal to 1. For the sake of simplicity, in what follows we will use the

same symbols (i.e. without stars) for all dimensionless variables. Using the above scalings,

the dimensionless forms of the equation of state, the continuity equation and momentum

equations become:

ρ = 1 + ε P , (4.9)

∂

∂x
( ρ ux) +

∂

∂y
(ρ uy) = 0 , (4.10)
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α Reρ

(

ux
∂ ux

∂ x
+ uy

∂ ux

∂ y

)

= −3
∂ P

∂ x
+ α2 ∂2ux

∂x2
+

∂2ux

∂y2
+ α2

(

χ +
1

3

)

(

∂2uy

∂x∂y
+

∂2ux

∂x2

)

,

(4.11)

α3 Re ρ

(

ux
∂ uy

∂ x
+ uy

∂ uy

∂ y

)

= −3
∂ P

∂ y
+ α4 ∂2uy

∂x2
+ α2 ∂2uy

∂y2
+ α2

(

χ +
1

3

)

(

∂2ux

∂x∂y
+

∂2uy

∂y2

)

, (4.12)

where χ ≡ κ/η is the bulk-to-shear viscosity ratio, α ≡ H/L is the aspect ratio of the channel,

and Re and ε are, respectively, the Reynolds and compressibility numbers, which are defined

by

Re ≡ ρ0UH

η
(4.13)

and

ε ≡ 3η β LU

H2
. (4.14)

The Mach number takes the form

Ma ≡
√

ε α Re

3 γ

The system of partial differential equations (4.10)-(4.12)is supplemented by appropriate

boundary conditions, which are shown in Fig. 4.1. Along the wall, it is assumed that

no slip occurs and the transverse velocity component vanishes (impermeable wall):

ux(x, 1) = uy(x, 1) = 0, 0 ≤ x ≤ 1. (4.15)

Along the midplane, the usual symmetry conditions are employed:

∂ux

∂y
(x, 0) = uy(x, 0) = 0, 0 ≤ x ≤ 1. (4.16)

At the exit plane, the dimensionless mass flow rate is set at a value of 1.

∫ 1

0
ρ ux dy = 1. (4.17)
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Finally, the pressure is set to zero at x = y = 1:

P (1, 1) = 0. (4.18)

As in Venerus [88], no boundary conditions are specified at the inlet plane. For an interesting

discussion on the inlet and outlet boundary conditions, the reader is referred to the articles

of Poinsot and Lele [66] and Venerus [88].

ux = uy = 0 (no slip and no penetration)

xx = 0 x = 1

∂ux

∂y = 0, uy = 0 (plane of symmetry)

y = 0

y

y = 1 P (1, 1) = 0

∫ 1
0 ρ uxdy = 1

Figure 4.1: Geometry and boundary conditions for the compressible plane Poiseuille

flow (all variables are dimensionless).

4.3 Perturbation solution

Equations (4.9)-(4.12) constitute a nonlinear system of PDEs that cannot be solved analyti-

cally. By using perturbation methods, approximate solutions of the flow can be obtained. As
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already discussed, different perturbation parameters have been used in the literature. The

compressibility number, ε, is chosen here as the perturbation parameter. This choice has also

been made by Venerus [88] and Schwartz [75]. The latter author used the parameter (Mach

number)2/Reynolds number at x=1, which is equivalent to the compressibility number used

here. Prud’homme et al. [67] employed a double perturbation expansion in terms of the

aspect ratio and the relative pressure drop.

As already mentioned, perturbation is performed on all primary variables, ρ, P , ux and uy,

using the compressibility number, ε, as the perturbation parameter:

ρ = ρ(0) + ερ(1) + ε2ρ(2) + O(ε3 )

uy = u
(0)
y + ε u

(1)
y + ε2 u

(2)
y + O(ε3 )

ux = u
(0)
x + ε u

(1)
x + ε2 u

(2)
x + O(ε3 )

P = P (0) + ε P (1) + ε2 P (2) + O(ε3 )























































(4.19)

Substituting the above expressions into the governing equations (4.9)-(4.12) and collecting

terms of the same order in the perturbation parameter ε, we get a regular perturbation

scheme. The solutions up to the second order are provided below. For the zero- and the first-

order equations it is assumed that the transverse velocity uy is zero throughout the domain.

For the second-order equations it is assumed that uy = uy(y) and that its second derivatives

at the wall and the plane of symmetry are equal to zero.

Zero-order solution

The zero-order equations are:

ρ(0) = 1,

∂

∂x

[

ρ(0)u(0)
x

]

+
∂

∂y

[

ρ(0)u(0)
y

]

= 0,

αReρ(0)

[

u(0)
x

∂u
(0)
x

∂x
+ u(0)

y

∂u
(0)
x

∂y

]
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= −3
∂P (0)

∂x
+

∂2u
(0)
x

∂y2
+ α2 ∂2u

(0)
x

∂x2
+ α2

(

χ +
1

3

)

[

∂2u
(0)
y

∂x∂y
+

∂2u
(0)
x

∂x2

]

,

and

α3Reρ(0)

[

u(0)
x

∂u
(0)
y

∂x
+ u(0)

y

∂u
(0)
y

∂y

]

= −3
∂P (0)

∂y
+ α4 ∂2u

(0)
y

∂x2
+ α2 ∂2u

(0)
y

∂y2
+ α2

(

χ +
1

3

)

[

∂2u
(0)
x

∂x∂y
+

∂2u
(0)
y

∂y2

]

.

With the assumptions u
(0)
y (x, y)=0 and P (0)(x=0)=1, the zero-order solution is easily ob-

tained:

ρ(0) = 1 (4.20)

u(0)
y = 0 (4.21)

u(0)
x =

3

2
(1 − y2) (4.22)

P (0) = 1 − x (4.23)

Obviously, the above solution is the solution of the incompressible Newtonian planar Poiseuille

flow.

First-order solution

The first-order equations are:

ρ(1) = P (0)(x),

∂

∂x

[

ρ(0) u(1)
x + ρ(1) u(0)

x

]

+
∂

∂y

[

ρ(0) u(1)
y + ρ(1) u(0)

y

]

= 0,

αReρ(1)

[

u(0)
x

∂u
(0)
x

∂x
+ u(0)

y

∂u
(0)
x

∂y

]

+αReρ(0)

[

u(0)
x

∂u
(1)
x

∂x
+ u(1)

x

∂u
(0)
x

∂x
+ u(0)

y

∂u
(1)
x

∂y
+ u(1)

y

∂u
(0)
x

∂y

]

= −3
∂P (1)

∂x
+

∂2u
(1)
x

∂y2
+ α2 ∂2u

(1)
x

∂x2
+ α2

(

χ +
1

3

)

[

∂2u
(1)
y

∂x∂y
+

∂2u
(1)
x

∂x2

]

,
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and

α3Reρ(1)

[

u(0)
x

∂u
(0)
y

∂x
+ u(0)

y

∂u
(0)
y

∂y

]

+ α3 Re ρ(0)

[

u(0)
x

∂u
(1)
y

∂x
+ u(1)

x

∂u
(0)
y

∂x
+ u(0)

y

∂u
(1)
y

∂y
+ u(1)

y

∂u
(0)
y

∂y

]

= −3
∂P (1)

∂y
+ α4 ∂2u

(1)
y

∂x2
+ α2 ∂2u

(1)
y

∂y2
+ α2

(

χ +
1

3

)

[

∂2u
(1)
x

∂x∂y
+

∂2u
(1)
y

∂y2

]

.

Obviously, ρ(1)=P (0)(x)=1−x. Assuming that u
(1)
y (x, y)=0, we find from the continuity and

the y-momentum equations that

u(1)
x = −3

2
(1 − x) (1 − y2) + f(y)

and

P (1) =
1

2
α2

(

χ +
1

3

)

(1 − y2) + g(x),

where f(y) and g(x) are unknown functions. Substituting into the x-momentum equation

and separating variables we get

9

4
α Re (1 − y2)2 − f ′′(y) = −3

∂ P (1)

∂ x
+ 3(1 − x) = c

where c is a constant to be determined. Integrating the resulting ODEs and applying

the boundary conditions f ′(0)=f(1)=0 and
∫ 1
0 f(y)dy=0 for u

(1)
x (x, y) and P (1)(1, 1)=0 for

P (x, y) we find that c=54/35αRe and the functions g(x) and f(y). The first-order solution

reads:

ρ(1) = 1 − x (4.24)

u(1)
y = 0 (4.25)

u(1)
x = −3

2
(1 − x)(1 − y2) +

3

280
α Re(1 − y2)(−5 + 28y2 − 7y4) (4.26)

P (1) =
1

2
α2

(

χ +
1

3

)

(1 − y2) − 1

2
(1 − x)2 +

18

35
α Re (1 − x). (4.27)
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We observe that the first-order pressure is a function of both x and y. It should also be noted

that the assumption of zero, first-order transverse velocity is made implicitly in the analysis

of Venerus [88] for the axisymmetric flow, since simple functional forms for the first-order

vorticity and streamfunction are assumed instead.

Second-order solution

The equations governing the second-order solution are:

ρ(2) = P (1)(x, y),

∂

∂x

[

ρ(0)u(2)
x + ρ(1)u(1)

x + ρ(2)u(0)
x

]

+
∂

∂y

[

ρ(0)u(2)
y + ρ(1)u(1)

y + ρ(2)u(0)
y

]

= 0,

αReρ(2)

[

u(0)
x

∂u
(0)
x

∂x
+ u(0)

y

∂u
(0)
x

∂y

]

+αReρ(1)

[

u(0)
x

∂u
(1)
x

∂x
+ u(1)

x

∂u
(0)
x

∂x
+ u(0)

y

∂u
(1)
x

∂y
+ u(1)

y

∂u
(0)
x

∂y

]

+ α Re ρ(0)

[

u(0)
x

∂u
(2)
x

∂x
+ u(1)

x

∂u
(1)
x

∂x
+ u(2)

x

∂u
(0)
x

∂x
+ u(0)

y

∂u
(2)
x

∂y
+ u(1)

y

∂u
(1)
x

∂y
+ u(2)

y

∂u
(0)
x

∂y

]

= −3
∂P (2)

∂x
+

∂2u
(2)
x

∂y2
+ α2 ∂2u

(2)
x

∂x2
+ α2

(

χ +
1

3

)

[

∂2u
(2)
y

∂x∂y
+

∂2u
(2)
x

∂x2

]

,

and

α3Reρ(2)

[

u(0)
x

∂u
(0)
y

∂x
+ u(0)

y

∂u
(0)
y

∂y

]

+ α3 Re ρ(1)

[

u(0)
x

∂u
(1)
y

∂x
+ u(1)

x

∂u
(0)
y

∂x
+ u(0)

y

∂u
(1)
y

∂y
+ u(1)

y

∂u
(0)
y

∂y

]

+α3 Reρ(0)

[

u(0)
x

∂u
(2)
y

∂x
+ u(1)

x

∂u
(1)
y

∂x
+ u(2)

x

∂u
(0)
y

∂x
+ u(0)

y

∂u
(2)
y

∂y
+ u(1)

y

∂u
(1)
y

∂y
+ u(2)

y

∂u
(0)
y

∂y

]

= −3
∂P (2)

∂y
+ α2 ∂2u

(2)
y

∂y2
+ α4 ∂2u

(2)
y

∂x2
+ α2

(

χ +
1

3

)

[

∂2u
(2)
x

∂x∂y
+

∂2u
(2)
y

∂y2

]

.

For ρ(2) we simply have:

ρ(2) = P (1)(x, y) =
1

2
α2

(

χ +
1

3

)

(1 − y2) − 1

2
(1 − x)2 +

18

35
α Re (1 − x). (4.28)
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At this point the assumption of zero transverse velocity is relaxed, letting uy to be a function

of y, u
(2)
y =u

(2)
y (y). Note again that in the analysis of Venerus [88] for the axisymmetric flow,

the simplest expressions for the second-order vorticity and streamfunction are postulated

instead. From the continuity and y-momentum equations we respectively get:

u(2)
x =

9

4
(1 − x)2(1 − y2) − 3

4
α2

(

χ +
1

3

)

(1 − y2)2

− 3

280
α Re(1 − x)(1 − y2)(67 + 28y2 − 7y4) +

∂u
(2)
y

∂y
(1 − x) + F (y) (4.29)

and

P (2) =
1

3
α2 ∂u

(2)
y

∂y
− 3

2
α2

(

χ +
1

3

)

(1 − x)(1 − y2)

+
1

280
α3Re

(

χ +
1

3

)

(1 − y2)(67 + 28y2 − 7y4) + G(x), (4.30)

where F (y) and G(x) are functions to be determined. Combining Eqs. (4.28)-(4.30) and the

x-momentum equation leads to:

α Re

[

−3yu(2)
y − 3

2
(1 − y2)

∂u
(2)
y

∂y
− 27

4
(1 − x)(1 − y2)2

+
9

560
α Re(1 − y2)2(62 + 56y2 − 14y4)

]

= −3G′(x)−9

2
(1−x)2+

∂3u
(2)
y

∂y3
(1−x)+F ′′(y)− 3

280
αRe(1−x)(−78−420y2+210y4)

+
9

2
α2(1 − y2) + 3α2

(

χ +
1

3

)

(1 − 3y2). (4.31)

Here, it is assumed that the terms involving both (1 − x) and y must be equal to a (scalar)

multiple of (1 − x). Thus we can assume that

27

4
α Re(1 − y2)2 +

∂3u
(2)
y

∂y3
− 3

280
α Re(−78 − 420y2 + 210y4) = α Reγ. (4.32)

where γ is new constant to be determined. Solving the above equation with the conditions

u
(2)
y (0)=u

(2)
y (1)=0 and ∂u

(2)
y /∂y(1)=∂2u

(2)
y /∂y2(0)=0 yields γ=216/35 and the second-order
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transverse velocity:

u(2)
y =

3

140
α Re y (1 − y2)2(5 − y2). (4.33)

Separating variables in Eq. (4.31) gives the following ODEs for F (y) and G(x):

αRe

[

−3yu(2)
y − 3

2
(1 − y2)

∂u
(2)
y

∂y
+

9

560
α Re(1 − y2)2(62 + 56y2 − 14y4)

]

−F ′′(y) − 9

2
α2 (1 − y2) − 3α2

(

χ +
1

3

)

(1 − 3y2) = A (4.34)

and

−3G′(x) − 9

2
(1 − x)2 + α Re γ (1 − x) = A. (4.35)

where A is another constant to be determined. Integrating Eq. (4.34) and applying the

conditions F ′(0)=F (1)=0 and
∫ 1
0 F (y)dy=0 we find that

F (y) = α2
(

χ +
1

3

) (

3

20
− 9

10
y2 +

3

4
y4

)

+ α2
(

3

40
− 9

20
y2 +

9

24
y4

)

− 3

431200
α2Re2(2193 − 11356y2 + 2310y4 + 12012y6 − 5775y8 + 616y10) (4.36)

and

A = −18α2

5
− 6

5
α2

(

χ +
1

3

)

+
9132

13475
α2 Re2. (4.37)

Integrating now Eq. (4.35) and substituting A under the condition P (2)(1, 1)=0 we obtain

G(x) =
1

2
(1−x)3− 6

5
α2(1−x)− 36

35
αRe(1−x)2 +

3044

13475
α2Re2(1−x)− 2

5
α2

(

χ +
1

3

)

(1−x)

(4.38)

Thus, the second order solution reads:

ρ(2) =
1

2
α2

(

χ +
1

3

)

(1 − y2) − 1

2
(1 − x)2 +

18

35
α Re (1 − x) (4.39)

u(2)
y =

3

140
α Re y (1 − y2)2(5 − y2) (4.40)

u(2)
x = (1 − y2)

[

9

4
(1 − x)2 − 3

280
α Re (57 + 84y2 − 21y4)(1 − x)

+
3

40
α2(1 − 5y2) − 3

5
α2

(

χ +
1

3

)
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− 3

431200
α2 Re2(2193 − 9163y2 − 6853y4 + 5159y6 − 616y8)

]

(4.41)

P (2) =
1

2
(1 − x)3 − 6

5
α2(1 − x) − 36

35
α Re(1 − x)2 +

3044

13475
α2Re2(1 − x)

− 1

10
α2

(

χ +
1

3

)

(19 − 15y2)(1 − x)

+
1

280
α3Re(1 − y2)

[

2(5 − 28y2 + 7y4) +

(

χ +
1

3

)

(67 + 28y2 − 7y4)

]

.(4.42)

Summarizing the results, the solution of the flow problem up to the second order is as follows:

ρ = 1 + ε(1 − x) + ε2
[

1

2
α2

(

χ +
1

3

)

(1 − y2) − 1

2
(1 − x)2 +

18

35
α Re (1 − x)

]

+ O(ε3 ) (4.43)

uy =
3

140
ε2α Re y (1 − y2)2(5 − y2) + O(ε3 ) (4.44)

ux =
3

2
(1 − y2)

[

1 − ε(1 − x) +
1

140
εα Re(−5 + 28y2 − 7y4) +

3

2
ε2(1 − x)2

− 1

140
ε2α Re(57 + 84y2 − 21y4)(1 − x) +

1

20
ε2α2(1 − 5y2) − 2

5
ε2α2

(

χ +
1

3

)

− 1

215600
ε2α2 Re2(2193 − 9163y2 − 6853y4 + 5159y6 − 616y8)

]

+ O(ε3 ) (4.45)

P = 1 − x +
1

2
εα2

(

χ +
1

3

)

(1 − y2) − 1

2
ε(1 − x)2 +

18

35
εα Re (1 − x) +

1

2
ε2(1 − x)3

−6

5
ε2α2(1 − x) − 36

35
ε2α Re(1 − x)2 +

3044

13475
ε2α2Re2(1 − x)

− 1

10
ε2α2

(

χ +
1

3

)

(19 − 15y2)(1 − x)

+
1

280
ε2 α3Re(1 − y2)

[

2(5 − 28y2 + 7y4) +

(

χ +
1

3

)

(67 + 28y2 − 7y4)

]

+ O(ε3 ). (4.46)

The perturbation solution for the axisymmetric flow has been also derived and is provided

in the Appendix B. This is the same as the solution reported by Venerus [88] who used a

vorticity/streamfunction formulation instead of working with the primary flow variables.

The basic features of the velocity and pressure fields given in Eqs. (4.43)-(4.46) are the

following:
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(a) The transverse velocity, uy, which depends only on the y coordinate, is zero at first order

in ε (by assumption). At second order in ε, uy is always positive, varies linearly with the

aspect ratio and the Reynolds number, and is independent of the bulk viscosity.

(b) The horizontal velocity, ux, deviates from the parabolic incompressible solution at first

order in ε due to fluid inertia. At second order in ε, there is a reduction of the horizontal

velocity that is independent of inertia and enhanced by the bulk viscosity, which does not

alter its parabolicity.

(c) The pressure is a function of both x and y. The y-dependence at first order in ε becomes

stronger as α2 is increased (i.e. in short channels). It also increases with the bulk viscosity.

(It should be noted that there is y-dependence even when the bulk viscosity vanishes). At

second order in ε, the y-dependence of P is due not only to α and the bulk viscosity but also

to inertia.

(d) The density is a decreasing function of both x and y. This is expected since the fluid is

decompressed as it moves downstream and the density takes is lowest value at x=y=1. At

the exit of the channel (x=1), for example,

ρ = 1 +
1

2
ε2 α2

(

χ +
1

3

)

(1 − y2).

Since at the exit of the channel only very small variations of ρ can be acceptable, it must be

εα ≪ 1.

In the compressible flow under study, the volumetric flow rate is an increasing function of x:

Q(x) =

∫ 1

0
ux(x, y) dy =⇒

Q(x) = 1 − ε(1 − x) +
1

70
ε2

[

−28α2
(

χ +
1

3

)

− 36 α Re (1 − x) + 105 (1 − x)2
]

+ O(ε3 ).

(4.47)
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In the special case α≪ 1, one gets Q(0) = 1− ε+3 ε2/2 which is a parabola with a minimum

at ε∗ = 1/3. Since increasing ε leads to more compression, i.e. to a lower value at Q(0),

the perturbation solution is valid for ε < 1/3. The same conclusion is reached for the

axisymmetric flow (see Appendix B) for which Venerus [88] reported that the compressibility

parameter is limited to values ε ≤ 0.25.

The present results agree up to the second order with the third-order results of Schwartz [75]

at x=1 when x=1, χ=0 and α=3. It is interesting to note that employing the lubrication

approximation would have led to the following simplified solution [33]

ρ = 1 + ε P

uy = 0

ux = 3
2

(1−y2)√
1+2 ε (1−x)

P =
−1 +

√
1+2 ε (1−x)

ε























































(4.48)

Expanding the expressions of ux and P as power series to second order in ε leads to the

approximate solution

ρ = 1 + ε (1 − x) − 1
2 ε2 (1 − x)2 + O(ε3 )

uy = 0

ux = 3
2(1 − y2)

[

1 − ε (1 − x) + 3
2 ε2 (1 − x)2

]

+ O(ε3 )

P = 1 − x − 1
2 ε (1 − x)2 + 1

2 ε2 (1 − x)3 + O(ε3 )























































(4.49)

which involves only the compressibility parameter ε and agrees with the perturbation solution

for α ≪ 1 and Re ≪ 1.

The streamfunction, ψ(x, y), defined by

∂ψ

∂x
≡ ρuy and

∂ψ

∂y
≡ −ρux (4.50)
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is found to be

ψ(x, y) =
1

2
y

(

3 − y2
)

− 3

280
ε α Re y(1 − y2)2(5 − y2)

+ ε2
[

3

40
α2 y (1 − y2)2 +

3

20
α2( χ +

1

3
) y (1 − y2)2

+
3

140
α Re y (1 − y2)2(5 − y2)(1 − x)

+
9

431200
α2Re2y(1 − y2)2(−6579 − 1802y2 + 1589y4 − 168y6)

]

+ O(ε3 ). (4.51)

4.4 Results and discussion

The effects of all parameters involved in the solution, i.e. the compressibility number, ε,

the aspect ratio, α, the Reynolds number, Re and the bulk viscosity, χ, have been studied.

Mostly results for the planar compressible Poiseuille flow will be presented in this section,

since the perturbation solution for the axisymmetric flow (Appendix) is that obtained by

Venerus [88].

The effects of the Reynolds number and compressibility on the two velocity components

are illustrated in Figs. 4.2 and 4.3, respectively. The deviation of the horizontal velocity

profile from the incompressible solution relatively close to the exit at x=0.9 is shown in

Fig. 4.2a for different Reynolds numbers (Re=0, 10, 100), α=0.01, and for the relatively high

compressibility number ε=0.25. While for low Reynolds numbers it is parabolic, the deviation

from the incompressible solution becomes sigmoidal at higher Reynolds numbers. The effect

of the Reynolds number on the transverse velocity, uy, is illustrated in Fig. 4.2b. It is clear

from Eq. (4.44), that uy is always positive, does not depend on the x coordinate and the
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bulk viscosity χ, and increases linearly with the Reynolds number. Figure 4.3a shows the

deviation of the horizontal velocity from the incompressible flow near the exit (x = 0.9) for

different values of ε, Re=10 and α=0.01. It can be observed that the profile of ux flattens as

compressibility is increased. The effect of ε on the transverse velocity is shown in Fig. 4.3b.

As expected, uy increases quadratically with the compressibility number.

Figure 4.4 shows the transverse velocity profile in both the axisymmetric and planar cases for

ε=0.25, α=0.1, α Re=1 and α2(χ + 1/3)=0. The axisymmetric result is of course identical

to that of Venerus [88]. A more flattened profile is obtained in the planar case.

Figure 4.5 shows the deviation of the horizontal velocity from the incompressible solution at

the entrance and the exit of the channel for Re=1, ε=0.1, χ=0, and two values of α (0.1 and

0.01). It is clear that the velocity is reduced and its profile flattens upstream. For α = 0.1

(short channel) some small differences from the incompressible solution are observed at the

exit of the channel. These vanish when the length of the channel is increased (α=0.01).

In Fig. 4.6, we show the pressure contours obtained with ε=0.25 and α=0.1 for the two cases

considered by Venerus [88]: (a) αRe=1 and α2(χ + 1/3)=0; (b) αRe=0 and α2(χ + 1/3)=1.

These are similar to their axisymmetric counterparts ([88]). When the channel is relatively

short (α Re=1, Fig. 4.6a) the flow is essentially incompressible and the pressure contours

are practically vertical and equidistant. For longer channels (αRe=0), however, the pressure

contours are slightly parabolic as illustrated in Fig. 4.6b. Moreover the distance between

the contours increases upstream, due to compressibility. As pointed out by Venerus [88] this

effect is due to the bulk viscosity. Note that Venerus [88] does not specify the value of α

which is taken here to be equal to 0.1. In Figure 4.7 we provide the pressure contours for the

two complementary cases: (a) αRe=0 and α2(χ + 1/3)=0; (b) αRe=1 and α2(χ + 1/3)=1.

Comparing Figs. 4.6 and 4.7, we deduce that the parameter α2(χ+1/3) has a stronger effect
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Figure 4.2: Effect of the Reynolds number on the velocity components: (a) deviation

of the horizontal velocity ux from the incompressible profile; (b) transverse velocity uy;

ε = 0.25, α = 0.01, χ = 0, and x = 0.9.
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Figure 4.3: Effect of compressibility on the velocity components: (a) deviation of the

horizontal velocity ux from the incompressible profile; (b) transverse velocity uy; Re =

10, α = 0.01, χ = 0, and x = 0.9.
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Figure 4.4: Transverse velocity profiles for ε = 0.25, α = 0.1 and α Re = 1.
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Figure 4.5: Horizontal velocity field deviation from incompressible flow at x = 0, and

1 for α = 0.1 (solid) and α = 0.01 (dash-dot), Re = 1, ε = 0.1, and χ = 0.
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on the pressure contours than αRe. The velocity contours for all cases considered in Figs.

4.6 and 4.7, are given in Figs. 4.8 and 4.9, respectively.

0 0.25 0.5 0.75 1
0

0.25

0.5

0.75

1

(a)

0 0.25 0.5 0.75 1
0

0.25

0.5

0.75

1

(b)

Figure 4.6: Pressure field contours for plane Poiseuille flow (0.1, 0.2, ..., 0.9) with

ε = 0.25 and α = 0.1: (a) α Re = 1, α2(χ + 1/3) = 0; (b) α Re = 0, α2(χ + 1/3) = 1.

Figure 4.10 shows the horizontal velocity field deviation from the incompressible solution at

various distances from the inlet plane, as given by Eq. (4.45) with ε=0.25 and α=0.1 for two

cases: (a) α Re=1, α2(χ + 1/3)=0 and (b) α Re=0, α2(χ + 1/3)=1. In Fig. 4.10a, where
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Figure 4.7: Pressure field contours for plane Poiseuille flow (0.1, 0.2, ..., 0.9) with

ε = 0.25 and α = 0.1: (a) α Re = 0, α2(χ + 1/3) = 0; (b) α Re = 1, α2(χ + 1/3) = 1.
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Figure 4.8: Velocity field contours for plane Poiseuille flow (0.1, 0.2, ..., 1.4) with

ε = 0.25 and α = 0.1: (a) α Re = 1, α2(χ + 1/3) = 0; (b) α Re = 0, α2(χ + 1/3) = 1.
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Figure 4.9: Velocity field contours for plane Poiseuille flow (0.1, 0.2, ..., 1.4) with

ε = 0.25 and α = 0.1: (a) α Re = 0, α2(χ + 1/3) = 0; (b) α Re = 1, α2(χ + 1/3) = 1.
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the channel is relatively short the velocity profile flattens as the fluid moves downstream.

For longer channels (Fig. 4.10b) the effect of the bulk viscosity is small and the horizontal

velocity profile remains parabolic. These results which are similar to those of Venerus [88] for

the axisymmetric case, are also consistent with the numerical results of Guo and Wu [37, 38].

Finally, Fig. 4.11 shows the two transverse velocity profiles obtained with (a) Re=100,

ε=0.006 and (b) Re=0.01, ε=0.2 when α=3. The latter value of α was chosen in order to

make comparisons with the results reported by Schwartz [75] at the exit x=1. The present

results agree with those of Schwartz [75] up to the second order. According to Eq. (4.44),

uy is always positive which is not the case with the third-order solution of Schwartz [75];

this is valid only at the exit and yields negative values of uy for small Reynolds numbers

(Re=0.001).

4.5 Appendix: Compressible axisymmetric Poiseuille

Flow

The two-dimensional perturbation solution of the compressible axisymmetric Poiseuille flow

is derived in this Appendix. To nondimensionalize the equations, we scale z by L, r by

R, the density by the reference density ρ0, the axial velocity uz by U = Ṁ/ρ0πR2, the

radial velocity ur by UR/L, and the pressure by 8ηLU/R2. The dimensionless forms of the

governing equations are:

ρ = 1 + ε P , (4.52)

1

r

∂

∂r
(r ρ ur) +

∂

∂z
(ρ uz) = 0 , (4.53)

α Re ρ

(

ur
∂ uz

∂ r
+ uz

∂ uz

∂ z

)

= −8
∂ P

∂ z
+

1

r

∂

∂ r

(

r
∂ uz

∂ r

)

+ α2 ∂2uz

∂ z2
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Figure 4.10: Horizontal velocity field deviation from incompressible flow at various

distances from the inlet plane for ε = 0.25 and α = 0.1: (a) αRe = 1, α2(χ+1/3) = 0;

(b) α Re = 0, α2(χ + 1/3) = 1.
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Figure 4.11: Transverse velocity profiles of plane Poseuille flow with α = 3 and the

Reynolds and compressibility numbers used by Schwartz [75].

+ α2
(

χ +
1

3

)

[

∂

∂ z

(

1

r

∂

∂ r
(r ur)

)

+
∂2uz

∂ z2

]

, (4.54)

α3 Re ρ

(

ur
∂ ur

∂ r
+ uz

∂ ur

∂ z

)

= −8
∂ P

∂ r
+ α2 ∂

∂ r

(

1

r

∂

∂ r
(r ur)

)

+ α4 ∂2ur

∂ z2

+ α2
(

χ +
1

3

)

[

∂

∂ r

(

1

r

∂

∂ r
(r ur)

)

+
∂2uz

∂ r∂ z

]

(4.55)

where:

χ ≡ κ

η
, α ≡ R

L
, Re ≡ ρ0UR

η
, and ε ≡ 8ηβLU

R2
.

The boundary conditions are similar to those used for the planar problem.

Writing the primary fields as expansions in the perturbation parameter ε,

ρ = ρ(0) + ερ(1) + ε2ρ(2) + O(ε3 )

ur = u
(0)
r + ε u

(1)
r + ε2 u

(2)
r + O(ε3 )

uz = u
(0)
z + ε u

(1)
z + ε2 u

(2)
z + O(ε3 )

P = P (0) + ε P (1) + ε2 P (2) + O(ε3 )























































, (4.56)

substituting in the governing equations, and following similar steps as for the planar problem,

we obtain the solution of the flow up to the second order.
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Zero-order solution

The zero-order equations are:

ρ(0) = 1,

1

r

∂

∂r

[

r ρ(0)u(0)
r

]

+
∂

∂z

[

ρ(0)u(0)
z

]

= 0,

α Re ρ(0)

[

u(0)
r

∂u
(0)
z

∂r
+ u(0)

z

∂u
(0)
z

∂z

]

= −8
∂P (0)

∂z
+

1

r

∂

∂r

(

r
∂u

(0)
z

∂r

)

+ α2 ∂2u
(0)
z

∂z2
+ α2

(

χ +
1

3

)

[

∂

∂z

(

1

r

∂

∂r

(

r u(0)
r

)

)

+
∂2u

(0)
z

∂z2

]

,

and

α3 Re ρ(0)

[

u(0)
r

∂u
(0)
r

∂r
+ u(0)

z

∂u
(0)
r

∂z

]

= −8
∂P (0)

∂r
+ α2 ∂

∂r

[

1

r

∂

∂r

(

ru(0)
r

)

]

+ α4 ∂2u
(0)
r

∂z2

+ α2
(

χ +
1

3

)

[

∂

∂r

(

1

r

∂

∂r

(

r u(0)
r

)

)

+
∂2u

(0)
z

∂r∂z

]

.

With the assumptions ∂u
(0)
z /∂r(0)=u

(0)
z (1)=0, P (0)(z=1)=0 and P (0)(z=0)=1, we find the

zero-order solution:

ρ(0) = 1 (4.57)

u(0)
r = 0 (4.58)

u(0)
z = 2(1 − r2) (4.59)

P (0) = 1 − z (4.60)

First-order solution

The first-order equations are:

ρ(1) = P (0)(z) = 1 − z,

1

r

∂

∂r

[

r
(

ρ(0)u(1)
r + ρ(1)u(0)

r

)]

+
∂

∂z

[

ρ(0)u(1)
z + ρ(1)u(0)

z

]

= 0,

α Re ρ(1)

[

u(0)
r

∂u
(0)
z

∂r
+ u(0)

z

∂u
(0)
z

∂z

]
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+αReρ(0)

[

u(0)
r

∂u
(1)
z

∂r
+ u(1)

r

∂u
(0)
z

∂r
+ u(0)

z

∂u
(1)
z

∂z
+ u(1)

z

∂u
(0)
z

∂z

]

= −8
∂P (1)

∂z
+

1

r

∂

∂r

(

r
∂u

(1)
z

∂r

)

+ α2 ∂2u
(1)
z

∂z2
+ α2

(

χ +
1

3

)

[

∂

∂z

(

1

r

∂

∂r

(

r u(1)
r

)

)

+
∂2u

(1)
z

∂z2

]

,

and

α3 Re ρ(1)

[

u(0)
r

∂u
(0)
r

∂r
+ u(0)

z

∂u
(0)
r

∂z

]

+α3 Re ρ(0)

[

u(0)
r

∂u
(1)
r

∂r
+ u(1)

r

∂u
(0)
r

∂r
+ u(0)

z

∂u
(1)
r

∂z
+ u(1)

z

∂u
(0)
r

∂z

]

= −8
∂P (1)

∂r
+ α2 ∂

∂r

[

1

r

∂

∂r

(

ru(1)
r

)

]

+ α4 ∂2u
(1)
r

∂z2

+ α2
(

χ +
1

3

)

[

∂

∂r

(

1

r

∂

∂r

(

r u(1)
r

)

)

+
∂2u

(1)
z

∂r∂z

]

.

Assuming that u
(1)
r (z, r)=0, we find from the continuity and the r-momentum equations that

u(1)
z = −2 (1 − z) (1 − r2) + f(r)

and

P (1) =
1

4
α2

(

χ +
1

3

)

(1 − r2) + g(z)

where f(r) and g(z) are unknown functions. Substituting into the z-momentum equation

and separating variables we get

4α Re (1 − r2)2 − 1

r

∂

∂ r

(

r f ′(r)
)

= −8
∂ P (1)

∂ z
+

1

r

∂

∂ r

(

4r2(1 − z)
)

= c

where c is a constant to be determined. Integrating the resulting ODEs and applying

the boundary conditions f ′(0)=f(1)=0 and
∫ 1
0 rf(r)dr=0 for u

(1)
z (z, r) and P (1)(1, 1)=0 for

P (z, r), we find that c=2αRe and obtain the first-order solution:

ρ(1) = 1 − z (4.61)

u(1)
r = 0 (4.62)

u(1)
z = 2(1 − r2)

[

−(1 − z) − 1

36
α Re (2 − 7r2 + 2r4)

]

(4.63)

P (1) = −1

2
(1 − z)2 +

1

4
α Re (1 − z) +

1

4
α2

(

χ +
1

3

)

(1 − r2). (4.64)
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Second-order solution

The second-order equations are:

ρ(2) = P (1)(z, r) = −1

2
(1 − z)2 +

1

4
α Re(1 − z) +

1

4
α2

(

χ +
1

3

)

(1 − r2), (4.65)

1

r

∂

∂r

[

r
(

ρ(0)u(2)
r + ρ(1)u(1)

r + ρ(2)u(0)
r

)]

+
∂

∂z

[

ρ(0)u(2)
z + ρ(1)u(1)

z + ρ(2)u(0)
z

]

= 0,

α Re ρ(2)

[

u(0)
r

∂u
(0)
z

∂r
+ u(0)

z

∂u
(0)
z

∂z

]

+αReρ(1)

[

u(0)
r

∂u
(1)
z

∂r
+ u(1)

r

∂u
(0)
z

∂r
+ u(0)

z

∂u
(1)
z

∂z
+ u(1)

z

∂u
(0)
z

∂z

]

+αReρ(0)

[

u(0)
r

∂u
(2)
z

∂r
+ u(1)

r

∂u
(1)
z

∂r
+ u(2)

r

∂u
(0)
z

∂r
+ u(0)

z

∂u
(2)
z

∂z
+ u(1)

z

∂u
(1)
z

∂z
+ u(2)

z

∂u
(0)
z

∂z

]

= −8
∂P (2)

∂z
+

1

r

∂

∂r

(

r
∂u

(2)
z

∂r

)

+ α2 ∂2u
(2)
z

∂z2
+ α2

(

χ +
1

3

)

[

∂

∂z

(

1

r

∂

∂r

(

r u(2)
r

)

)

+
∂2u

(2)
z

∂z2

]

,

and

α3 Re ρ(2)

[

u(0)
r

∂u
(0)
r

∂r
+ u(0)

z

∂u
(0)
r

∂z

]

+α3Reρ(1)

[

u(0)
r

∂u
(1)
r

∂r
+ u(1)

r

∂u
(0)
r

∂r
+ u(0)

z

∂u
(1)
r

∂z
+ u(1)

z

∂u
(0)
r

∂z

]

+α3 Reρ(0)

[

u(0)
r

∂u
(2)
r

∂r
+ u(1)

r

∂u
(1)
r

∂r
+ u(2)

r

∂u
(0)
r

∂r
+ u(0)

z

∂u
(2)
r

∂z
+ u(1)

z

∂u
(1)
r

∂z
+ u(2)

z

∂u
(0)
r

∂z

]

= −8
∂P (2)

∂r
+α2 ∂

∂r

[

1

r

∂

∂r

(

ru(2)
r

)

]

+α4 ∂2u
(2)
r

∂z2
+α2

(

χ +
1

3

)

[

∂

∂r

(

1

r

∂

∂r

(

r u(2)
r

)

)

+
∂2u

(2)
z

∂r∂z

]

.

Now under the assumption that u
(2)
r =u

(2)
r (r), from the continuity and r-momentum equations

we get, respectively:

u(2)
z = 3(1 − r2)(1 − z)2 − 1

2
α2

(

χ +
1

3

)

(1 − r2)2 +
1

r

∂ (ru
(2)
r )

∂ r
(1 − z)

+
α Re

18
(1 − r2)(−7 − 7r2 + 2r4)(1 − z) + F (r) (4.66)
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and

P (2) =
1

8
α2

(

1

r

∂ (ru
(2)
r )

∂ r

)

− 3

4
α2

(

χ +
1

3

)

(1 − r2)(1 − z)

− 1

144
α3Re

(

χ +
1

3

)

(1 − r2)(−7 − 7r2 + 2r4) + G(z), (4.67)

where F (r) and G(z) are functions to be determined. Combining Eqs. (4.65)-(4.67) with the

z-momentum equation leads to:

α Re

{

−4ru(2)
r − 12(1 − r2)2(1 − z) − 2(1 − r2)

[

1

r

∂ (ru
(2)
r )

∂ r

]

+
1

9
α Re(1 − r2)2(−4r4 + 14r2 + 5)

}

= 6α2(1 − r2) − 1

2
α2

(

χ +
1

3

)

(−8 + 16r2) − 8G′(z) − 12(1 − z)2

+
1

r

∂

∂ r

[

r
∂

∂r

(

1

r

∂ (ru
(2)
r )

∂ r

)]

(1 − z) +
1

r

∂

∂ r
(rF ′(r)) + 4α Re r2(2 − r2)(1 − z). (4.68)

In order to separate variables, we demand that the terms involving both (1 − z) and r must

be equal to a (scalar) multiple of (1 − z). Thus, we assume that

4α Re r2(2 − r2) +
1

r

∂

∂ r

[

r
∂

∂r

(

1

r

∂ (ru
(2)
r )

∂ r

)]

+ 12α Re(1 − r2)2 = 4α Reγ. (4.69)

where γ is new constant to be determined. Solving the above equation under the conditions

u
(2)
r (0)=∂u

(2)
r /∂r(0)=0 and u

(2)
r (1)=∂u

(2)
r /∂r(1)=0 yields γ=2 and the second-order radial

velocity:

u(2)
r =

1

36
α Re r (1 − r2)2(4 − r2). (4.70)

Separating variables in Eq. (4.68) gives the following ODEs for F (r) and G(z):

αRe

[

−4ru(2)
r − 2(1 − r2)

(

1

r

∂ (ru
(2)
r )

∂ r

)

− 1

9
α Re(−5 − 4r2 + 27r4 − 22r6 + 4r8)

]

−6α2(1 − r2) +
α2

2

(

χ +
1

3

)

(−8 + 16r2) − 1

r

∂

∂ r
(rF ′(r)) = A (4.71)
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and

−8G′(z) − 12(1 − z)2 + 4α Re γ(1 − z) = A. (4.72)

where A is another constant to be determined. Integrating Eq. (4.71) and applying the

conditions F (1)=0 and
∫ 1
0 rF (r)dr=0 we find that

F (r) =
α2 Re2

9

(

43

2400
− 5

12
r2 +

11

8
r4 − 3

2
r6 +

19

32
r8 − 7

100
r10

)

+ α2
(

1

8
− 1

2
r2 +

3

8
r4

)

+ α2
(

χ +
1

3

) (

−2

3
r2 +

1

2
r4 +

1

6

)

(4.73)

and

A = 4

[

−α2 − 1

3
α2

(

χ +
1

3

)

+
2

27
α2 Re2

]

. (4.74)

Integrating now Eq. (4.72) and substituting A under the condition P (2)(1, 1)=0 we obtain

G(z) =
1

2
(1−z)3− 1

2
α2(1−z)− 1

2
αRe(1−z)2+

1

27
α2Re2(1−z)− 1

6
α2

(

χ +
1

3

)

(1−z) (4.75)

Hence, the second order solution reads:

ρ(2) = −1

2
(1 − z)2 +

1

4
α Re(1 − z) +

1

4
α2

(

χ +
1

3

)

(1 − r2) (4.76)

u(2)
r =

1

36
α Re r (1 − r2)2(4 − r2) (4.77)

u(2)
z = 2(1 − r2)

[

3

2
(1 − z)2 − 1

6
α2

(

χ +
1

3

)

− 1

12
α Re(1 + 7r2 − 2r4)(1 − z) +

1

16
α2(1 − 3r2)

+
1

43200
α2 Re2(43 − 957r2 + 2343r4 − 1257r6 + 168r8)

]

(4.78)

P (2) =
1

2
(1 − z)3 − 1

12
α2

(

χ +
1

3

)

(11 − 9r2)(1 − z) − 1

2
α Re(1 − z)2

− 1

2
α2(1 − z) +

1

27
α2Re2(1 − z)

+
1

144
α3 Re(1 − r2)

[

(4 − 14r2 + 4r4) +

(

χ +
1

3

)

(7 + 7r2 − 2r4)

]

. (4.79)
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Thus, the solution of the flow up to the second order is as follows:

ρ = 1 + ε(1 − z)

+ε2
[

−1

2
(1 − z)2 +

1

4
α Re(1 − z) +

1

4
α2

(

χ +
1

3

)

(1 − r2)

]

+ O(ε3 ) (4.80)

ur =
1

36
ε2α Re r (1 − r2)2(4 − r2) + O(ε3 ) (4.81)

uz = 2(1 − r2)

[

1 − ε(1 − z) − 1

36
εα Re(2 − 7r2 + 2r4) +

3

2
ε2(1 − z)2

− 1

12
ε2α Re(1 + 7r2 − 2r4)(1 − z) +

1

16
ε2α2(1 − 3r2) − 1

6
ε2α2

(

χ +
1

3

)

+
1

43200
ε2α2 Re2(43 − 957r2 + 2343r4 − 1257r6 + 168r8)

]

+ O(ε3 ) (4.82)

P = (1 − z) − 1

2
ε (1 − z)2 +

1

4
ε α Re (1 − z)

+
1

4
ε α2

(

χ +
1

3

)

(1 − r2) +
1

2
ε2(1 − z)3

− 1

12
ε2α2

(

χ +
1

3

)

(11 − 9r2)(1 − z)

−1

2
ε2α Re(1 − z)2 − 1

2
α2(1 − z) +

1

27
ε2α2Re2(1 − z)

+
1

144
ε2α3 Re(1 − r2)

[

(4 − 14r2 + 4r4) +

(

χ +
1

3

)

(7 + 7r2 − 2r4)

]

+ O(ε3 ). (4.83)

The streamfunction, defined by

∂ψ

∂r
≡ ρruz and

∂ψ

∂z
≡ −ρrur (4.84)

is given by

ψ(r, z) =
1

2
r2

(

2 − r2
)

− 1

72
ε α Re r2(1 − r2)2(4 − r2) + ε2

[

1

16
α2 r2 (1 − r2)2

+
1

12
α2

(

χ +
1

3

)

r2 (1 − r2)2 +
1

36
α Re r2 (1 − r2)2(4 − r2)(1 − z)

+
1

43200
α2 Re2 r2 (1 − r2)2(43 − 414r2 + 229r4 − 28r6)

]

+ O(ε3 ). (4.85)
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Finally, the volumetric flow rate across the tube,

Q(z) = 2

∫ 1

0
uz(r, z)rdr,

is

Q(z) = 1 − ε(1 − z) +
1

48
ε2

[

−8α2
(

χ +
1

3

)

− 6αRe(1 − z) + 72(1 − z)2
]

+ O(ε3 ). (4.86)
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Chapter 5

Weakly compressible Poiseuille

flows of a Herschel-Bulkley fluid

5.1 Introduction

Laminar Poiseuille flows of weakly compressible materials have gained interest in the past two

decades due to their applications in many processes involving liquid flows in relatively long

tubes, such as waxy crude oil transport [15, 90] and polymer extrusion [29, 32]. Numerical

solutions of weakly compressible Poiseuille flows have been reported for Newtonian fluids [32],

generalized Newtonian fluids, such as the Carreau fluid [29] and the Bingham plastic [90], as

well as for viscoelastic fluids [6]1.

The objective of the present work is to solve approximately the plane and axisymmetric

Poiseuille flows of weakly compressible fluids with yield stress, i.e. fluids obeying the Herschel-

Bulkley constitutive equation, and investigate the effects of compressibility by means of two

1Some of the results presented in this chapter appear also in Reference [84]
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different equations of state, i.e. a linear and an exponential one. A linear equation of state

has been employed in previous numerical studies of the extrudate swell flow [10, 28] by

Hatzikiriakos anf Dealy [40] for HDPE, also for laminar capillary flow by Venerus [88] for

compressible Newtonian fluids, and in our previous studies concerning the simulation of the

stick-slip extrusion instability [29, 32]. Exponential equations of state have been employed,

for example, by Ranganathan et al. [70] for a HDPE and, more recently, by Vinay et al. [90]

in simulations of weakly compressible Bingham flows.

The paper is organized as follows. In section 5.2, the governing equations for the axisymmetric

Poiseuille flow are presented and the assumptions under which these are simplified are dis-

cussed. Analytical and semi-analytical results are presented for both the incompressible and

compressible flows of a Herschel-Bulkley fluid and the numerical method is briefly discussed.

In section 5.3, the numerical results for the compressible flows of Newtonian, power-law,

Bingham, and Herschel-Bulkley fluids with both linear and exponential equations of state

are compared and the effects of the compressibility and the yield stress are investigated.

Finally, section 5.4 contains the conclusions.

5.2 Governing equations

Let us consider the steady, compressible axisymmetric Poiseuille flow of a generalized Newto-

nian fluid. The geometry of the flow is given in Fig. 5.1. Assuming that the flow is creeping

and neglecting gravity, the momentum equation is reduced to

−∇p + ∇ · τ = 0 (5.1)

119

Elen
i G

. T
ali

ad
oro

u



where p is the pressure and τ is the stress tensor. Let us also denote the velocity vector by

u and the rate-of-strain tensor by γ̇, i.e.

γ̇ ≡ ∇u + (∇u)T , (5.2)

where ∇u is the velocity-gradient tensor, and the superscript T denotes its transpose. Under

the assumption of zero bulk viscosity, which implies that the viscosity forces are only due to

shear and not to volume variations [90], the viscous stress tensor for a generalized Newtonian

fluid is defined by a constitutive equation of the following general form:

τ = η(γ̇)

(

γ̇ − 2

3
∇ · u I

)

, (5.3)

where I is the identity tensor, and η is the viscosity which depends on the magnitude γ̇ of

the rate-of-strain tensor:

γ̇ =

√

1

2
IIγ̇ =

√

1

2
γ̇ : γ̇ (5.4)

II being the second invariant of a tensor.

Wall − No slip

0

exit
R

z

r

Capillary

Symmetry axis

r (z)

Figure 5.1: Geometry of compressible axisymmetric Poiseuille flow of a Herschel-

Bulkley fluid.
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The tensorial form of the Herschel-Bulkley constitutive equation is:



















γ̇ = 0 , τ ≤ τ0

τ =

(

τ0
γ̇ + k γ̇n−1

)

γ̇ , τ ≥ τ0

(5.5)

where τ0 is the yield stress, k is the consistency index, n is the power law exponent, and τ

is the magnitude of the stress tensor. The power-law fluid and the Bingham plastic are the

special cases of the Herschel-Bulkley model for τ0=0 and n=1, respectively.

For a weakly compressible flow, we can assume that the radial velocity component is zero.

This assumption is consistent up to first order with Newtonian perturbation solutions in

terms of compressibility [75, 88]. When ur=0 the expression for γ̇ is simplified as follows:

γ̇ =

√

2

(

∂uz

∂z

)2

+

(

∂uz

∂r

)2

(5.6)

We further assume that ∂uz/∂z ≪ 1 so that the second term in the RHS of Eq. (5.3) is

negligible and

γ̇ ≃
∣

∣

∣

∣

∂uz

∂r

∣

∣

∣

∣

. (5.7)

Then from the r-momentum equation it is deduced that p=p(z) and the z-momentum equa-

tion is reduced to

−dp

dz
+

1

r

∂

∂r
(rτrz) = 0 (5.8)

where the pressure gradient is also a function of z. It should be noted that the above

assumptions are valid when the radius of the tube is much smaller than its length [91].

Equation (5.5) is simplified as follows



















∂uz
∂r = 0 , |τrz| ≤ τ0

τrz = −τ0 + k
(

−∂uz
∂r

)n
, |τrz| ≥ τ0

(5.9)
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Being a function of the pressure, the density also varies across the tube, i.e. ρ=ρ(z). For the

mass to be conserved, it must be

2πρ(z)

∫ R

0
uz(r, z) rdr = const.

or

ρ(z) Q(z) = Q0 (5.10)

where Q(z) is the volumetric flow rate and Q0=Q(0).

In the following subsections we will first discuss the one-dimensional incompressible and then

the two-dimensional compressible axisymmetric Poiseuille flow of a Herschel-Bulkley fluid.

The equations for the planar compressible Poiseuille flow are given in the Appendix.

5.2.1 Incompressible axisymmetric Poiseuille flow

The solution of the incompressible Poiseuille flow of a Herschel-Bulkley fluid is straightfor-

ward and well known. However, it is presented here in order to show the analogy with the

weakly compressible solution and to introduce the non-dimensionalization of the problem. In

incompressible flow, the pressure gradient and the density are constant and the axial velocity

component depends only on the radial coordinate [45]:

uz(r) =
n

21/n (n + 1) k1/n

(

−dp

dz

)1/n



















(R − r0)
1/n+1 , 0 ≤ r ≤ r0

[

(R − r0)
1/n+1 − (r − r0)

1/n+1
]

, r0 ≤ r ≤ R

(5.11)

where R is the capillary radius, (−dp/dz) is the constant pressure gradient, and

r0 =
2τ0

(−dp/dz)
< R (5.12)
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denotes the yield point, i.e. the point at which the material yields. Note that flow occurs

only if (−dp/dz) > 2τ0/R. The volumetric flow rate is given by

Q =
π n

21/n (3n + 1) k1/n

(

−dp

dz

)1/n

R1/n+3
(

1 − r0

R

)1/n+1

{

1 +
2n

2n + 1

r0

R

[

1 +
n

n + 1

r0

R

]}

. (5.13)

In the cases of a Bingham plastic (n=1) and a power-law fluid (τ0=0, r0=0), Eq. (5.13) is

reduced to

Q =
π

8 κ

(

−dp

dz

)

R4

[

1 − 4

3

r0

R
+

1

3

(

r0

R

)4
]

(5.14)

and

Q =
π n

21/n (3n + 1) k1/n

(

−dp

dz

)1/n

R1/n+3 (5.15)

respectively.

In what follows, it is preferable to work with dimensionless equations. Lengths are scaled by

the tube radius, R, the velocity by the mean velocity, V0, in the capillary, and the pressure

by kV n
0 /Rn. With these scalings, the dimensionless velocity profile is written as follows

uz(r) =
n

21/n(n + 1)

(

−dp

dz

)1/n



















(1 − r0)
1/n+1 , 0 ≤ r ≤ r0

[

(1 − r0)
1/n+1 − (r − r0)

1/n+1
]

, r0 ≤ r ≤ 1

(5.16)

where all quantities are now dimensionless,

r0 =
2 Bn

(−dp/dz)
< 1 (5.17)

and

Bn =
τ0R

n

kV n
0

(5.18)

is the Bingham number. The dimensionless version of the constitutive equation, i.e. of Eq.

(5.9), is:


















∂uz
∂r = 0 , |τrz| ≤ Bn

τrz = −Bn +
(

−∂uz
∂r

)n
, |τrz| ≥ Bn

(5.19)
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Moreover, the dimensionless pressure-gradient is a solution of the following equation:

21/n 3n + 1

n

(

−dp

dz

)3

=

[(

−dp

dz

)

− 2 Bn

]1/n+1

[

(

−dp

dz

)2

+
4n Bn

2n + 1

(

−dp

dz

)

+
8 n2 Bn2

(n + 1)(2n + 1)

]

. (5.20)

In the case of a power-law fluid (Bn=0), the solution of Eq. (5.20) is simply

(

−dp

dz

)

= 2

(

3n + 1

n

)n

. (5.21)

In the case of a Bingham-plastic (n=1), Eq. (5.20) is reduced to

3

(

−dp

dz

)4

− 8 (Bn + 3)

(

−dp

dz

)3

+ 16 Bn4 = 0 (5.22)

It should be noted that flow occurs only if (−dp/dz) > 2Bn. For given values of Bn and

n, Eq. (5.20) is easily solved for the pressure gradient using the Newton-Raphson method,

and then the velocity profile can be constructed using Eq. (5.16). In Fig. 5.2, the velocity

profiles calculated for n=0.5 and various Bingham numbers are shown. In Fig. 5.3, the

velocity profiles obtained with Bn = 10 and n = 0.5, 1 and 1.5 are compared. With fixed

volumetric flow rate, the size of the yielded region is reduced as the power-law exponent is

increased. This is also shown in Fig. 5.4, where the yield point r0 is plotted as a function of

the Bingham number for various values of n.

5.2.2 Compressible axisymmetric Poiseuille flow

In the case of compressible flow, the pressure gradient and the density are functions of z and

so are r0 and the volumetric flow rate. It is easily deduced then that the dimensionless axial

velocity (scaled by the mean velocity, V0, at the exit of the capillary) is given by

uz(r, z) =
n

21/n(n + 1)

(

−dp

dz

)1/n

(z)



















[1 − r0(z)]1/n+1 , 0 ≤ r ≤ r0

{

[1 − r0(z)]1/n+1 − [r − r0(z)])1/n+1
}

, r0 ≤ r ≤ 1

(5.23)
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Figure 5.2: Velocity profiles for the axisymmetric incompressible Poiseuille flow of a

Herschel-Bulkley fluid with n=0.5 and various Bingham numbers.
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Figure 5.3: Velocity profiles for the axisymmetric incompressible Poiseuille flow of a

Herschel-Bulkley fluid with Bn=10 and various values of the power-law exponent.
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Figure 5.4: Position of the yield point in axisymmetric incompressible Poiseuille flow

of Herschel-Bulkley fluids.

where

r0(z) =
2 Bn

(−dp/dz)(z)
. (5.24)

It is clear that at the capillary exit (z=0), Eqs. (5.23) and (5.24) give the incompressible

flow solution.

It should be pointed out that in steady compressible Poiseuille flow r0(z) is just a convenient

idealization and not a real yield point. Since the axial velocity varies along the tube, ∂uz/∂z >

0 and thus γ̇ is nonzero, which implies that unyielded regions cannot exist. Hence, r0(z) will

be referred to as the pseudo-yield point. The fact that the classical plug region flow cannot

be obtained in a compressible case was first emphasized by Vinay et al. [90]. However, these

authors also calculated steady-state velocity profiles at the inlet and the outlet of the tube

with the plug region at the center corresponding to half the pipe radius.

The pressure gradient (−dp/dz)(z) across the capillary, i.e. for z ≤ 0, can be calculated using
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the conservation of mass, i.e. Eq. (5.10). It turns out that the pressure gradient is a solution

of the following equation

21/n 3n + 1

n ρ(p)

(

−dp

dz

)3

=

[(

−dp

dz

)

− 2 Bn

]1/n+1

[

(

−dp

dz

)2

+
4n Bn

2n + 1

(

−dp

dz

)

+
8 n2 Bn2

(n + 1)(2n + 1)

]

(5.25)

which involves the pressure-dependent density of the fluid. The pressure gradient is obviously

a function of p and is expected to decrease upstream.

The pressure dependence of the density is taken into account by means of a thermodynamic

equation of state. At constant temperature and low pressures, the density can be represented

by the linear approximation

ρ = ρ0 [1 + β (p − p0) ] , (5.26)

where β ≡ −(∂υ/∂p)p0,T /υ0 is the isothermal compressibility assumed to be constant, υ is the

specific volume, ρ0 and υ0 are, respectively, the density and the specific volume at a reference

pressure p0, and T is the temperature. For comparison purposes, the following exponential

equation is also used:

ρ = ρ0 eβ (p − p0) . (5.27)

This is equivalent to the linear equation of state for sufficiently small values of β and low

pressures. A disadvantage of this equation is the fast growth of the density (for high values

of β). On the other hand, the linear model may lead to negative values of the density.

Obviously more sophisticated equations of state should be used for highly compressible flows.

The equations of state are nondimensionalized scaling the density ρ by ρ0 and the pressure

as above. We thus get

ρ = 1 + B p (5.28)
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and

ρ = eBp , (5.29)

where the reference pressure, p0, has been set to zero, and B is the compressibility number,

B ≡ β k V n
0

Rn
. (5.30)

The Mach number is defined by Ma=V0/c, where c is the speed of sound in the fluid. In the

present work, we consider subsonic flows such that Ma ≪ 1.

Equation (5.25) can be integrated analytically in the case of a power-law fluid (Bn=0). With

the linear equation of state one finds

p(z) =
1

B

{

[1 − 2 (n + 1) (1/n + 3)n Bz]1/(n+1) − 1
}

(5.31)

and

uz(r, z) =
(3n + 1)

(

1 − r1/n+1
)

(n + 1) [1 − 2 (n + 1) (1/n + 3)n Bz]1/(n+1)
(5.32)

Similarly, with the exponential equation of state one gets:

p(z) =
1

nB
ln [1 − 2 n (1/n + 3)n Bz] (5.33)

and

uz(r, z) =
(3n + 1)

(

1 − r1/n+1
)

(n + 1) [1 − 2 n (1/n + 3)n Bz]1/n
(5.34)

Nevertheless, in the general case the pressure gradient and the pressure are calculated nu-

merically.

Once the pressure p(z) is known at a point (e.g. p(0)=0), the pressure gradient (−dp/dz)(z)

can be calculated from Eq. (5.25), using the Newton-Raphson method, as before. Hence, we

can write

−dp

dz
= f(p) , (5.35)
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where the function f is implicitly known. If the pressure pi at a point zi is given, then the

point zi+1 at which the pressure becomes pi+1=pi+∆p can be found by integrating the above

equation:

zi+1 = zi −
∫ pi+∆p

pi

dp

f(p)
. (5.36)

The integral in the RHS of the above equation was calculated using the composite Simpson’s

rule with 101 points and ∆p=0.1. At each integration point, the pressure is known and the

corresponding pressure gradient is calculated solving Eq. (5.25). It is also clear that we start

at the channel exit (z0=0) and march to the left, up to any desired distance upstream. The

numerical code has been tested against the analytical expressions for the pressure distribution

in the case of a power-law fluid.

5.3 Numerical results

Numerical results have been obtained using both the linear and exponential equations of

state in order to investigate the effects of compressibility in Poiseuille flow of fluids with a

yield stress. The effects of the three dimensionless parameters controlling the flow, i.e. the

Bingham number, the compressibility number, and the power-law exponent have also been

studied.

The pressure distributions for a Newtonian, a power-law, a Bingham and a Herschel-Bulkley

fluid obtained using both the equations of state for B = 0, 0.01 and 0.1 are shown in Fig. 5.5.

Note that the latter value of B is very high and corresponds to a highly compressible flow;

it is used here only for illustration purposes. It is clear that the pressure gradient and the

pressure required to drive the flow are reduced as compressibility is increased and increase

with the Bingham number and the power-law exponent. The two equations of state give
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essentially the same results only for sufficiently low compressibility numbers and/or near the

die exit. Therefore, a careful selection of the equation of state is necessary when one studies

compressible Poiseuille flow in very long channels.
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Figure 5.5: Pressure distributions for four different fluids obtained with the linear

(solid) and the exponential (dashed) equations of state in axisymmetric Poiseuille flow

with B=0 (incompressible flow), 0.01 and 0.1.

Once the pressure gradient is known as a function of z, the two-dimensional axial velocity

can be constructed by means of Eq. (5.23). The velocity contours corresponding to the flows

of Fig. 5.5 are shown in Fig. 5.6. Since the density becomes higher, the flow decelerates
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upstream and forces the higher contours to bend towards the symmetry axis. In the case of

fluids with a yield stress, this phenomenon is more abrupt, since just before the disappearance

of a contour line, this is vertical to the symmetry plane and extends up to the corresponding

pseudo-yield point. The results for the Bingham plastic (n=1) and the Herschel-Bulkley

fluid (n=0.5) are quite similar. We can clearly observe that the pseudo-yield point moves

towards the wall as we move upstream. The velocity profiles for the four fluids at z=0, -10

and -20 obtained using the linear equation of state with B=0.1 are given in Fig. 5.7. As

already mentioned, the presence of unyielded regions in steady compressible viscoplastic flow

is only an idealization. However, regions of plug-like flow may still exist as indicated by the

steady-state numerical results of Vinay et al. [90].

The effect of the equation of state in the case of a Bingham fluid (Bn=10) is illustrated

in Fig. 5.8a, where the pressure distributions calculated with B=0 and 0.01 using both

equations are plotted. The velocity profile at the capillary exit is shown in Fig. 5.8b. In

Fig. 5.9, the positions of the pseudo-yield point calculated using both equations of state

for three compressibility numbers are shown. In the incompressible flow, the yield point is,

of course, independent of the axial distance. In the compressible flow, r0 moves towards

the wall as we move upstream, which implies that the size of the plug-like region increases.

This phenomenon is better observed in the exponential case due to the faster increase of the

density. In Fig. 5.10, we plot the velocity contours of a Bingham fluid with Bn = 10 and

B = 0, 0.01 and 0.02 using both equations of state. Upstream, the velocity reduces rapidly in

the case of the exponential equation of state, which is expected because of the faster increase

of the density. As a result, the velocity contours are crowded towards the exit plane. In Fig.

5.11, we plot the velocity profiles at different distances from the capillary exit of a Bingham

fluid with Bn=10 and B=0.01 using again both equations of state.
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Figure 5.6: Velocity contours for four different fluids obtained for the axisymmetric

Poiseuille flow with the linear equation of state with B=0 (incompressible flow), 0.01

and 0.1.
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Figure 5.7: Velocity profiles at z=0, -10 and -20 for four different fluids obtained with

the linear equation of state in axisymmetric Poiseuille flow with B=0.1.
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Figure 5.8: (a) Pressure distributions in axisymmetric Poiseuille flow of a Bingham

fluid with Bn=10, and B=0 and 0.01, and the linear (solid) and the exponential

(dashed) equations of state; (b) Velocity profile at the capillary exit.
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Figure 5.9: Position of the pseudo-yield point in axisymmetric Poiseuille flow of a Bing-

ham fluid for Bn=10 and various compressibility numbers. The solid lines correspond

to the linear equation of state and the dashed ones to the exponential one.

Figure 5.12 shows the effects of the Bingham number on the pressure distribution and the

position of the pseudo-yield point in the case of Bingham flow (n=1) using the linear equation

of state with B=0.01. We observe that the pressure increases upstream and the pseudo-yield

point moves faster towards the wall as the Bingham number increases. This is more clearly

shown in Fig. 5.13, where the velocity contours for different Bingham numbers are shown.

As the Bn is increased the unyielded region moves towards the exit of the die.

5.4 Conclusions

We have derived approximate semi-analytical solutions of the axisymmetric and plane Poiseui-

lle flows of weakly compressible Herschel-bulkley fluid. The two-dimensional axial velocity is

given by an expression similar to that for the incompressible flow, with the pressure-gradient

135

Elen
i G

. T
ali

ad
oro

u



ρ=1+Bp

ρ=eBp

B=0

0.01

0.02

B=0

0.01

0.02

Figure 5.10: Velocity contours in axisymmetric Poiseuille flow of a Bingham fluid

with Bn=10 and different compressibility numbers using the linear and the exponential

equations of state.
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Figure 5.11: Velocity profiles at different distances from the capillary exit in axisymmet-

ric Poiseuille flow of a Bingham fluid with Bn=10 and B=0.01: (a) Linear equation

of state; (b) Exponential equation of state.
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Figure 5.12: Effect of the Bingham number in axisymmetric Poiseuille flow of a Bing-

ham fluid with the linear equation of state and B=0.01: (a) Pressure distribution; (b)

Position of the yield point.
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Figure 5.13: Effect of the Bingham number on the velocity contours in axisymmetric

compressible Poiseuille flow of a Bingham fluid; linear equation of state, B=0.01.

and the yield stress point assumed to be functions of the axial coordinate. The pressure

gradient is calculated by means of numerical integration starting at the exit of the tube and

marching upstream. The effects of compressibility have been studied by using a linear and

an exponential equation of state. The effects of the yield stress and the power-law exponent

on the pressure gradient and the velocity have also been investigated. Our calculations lead

to the following conclusions:

(a) The pressure required to drive the flow for a given tube length is reduced with com-

pressibility.

(b) The linear and the exponential equations of state give similar predictions only for

sufficiently low compressibility numbers and/or for short tubes. Hence, the equation of state

should be chosen very carefully in numerical simulations of compressible flow in long tubes.

(c) The two-dimensional axial velocity is characterized by plug-like regions the size of which

increases upstream, in agreement with the more sophisticated numerical simulations of Vinay

et al. [90].
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(d) With the exponential equation of state, the upstream growth of the pseudo-unyielded

region is much faster than with the linear equation of state.

5.5 Appendix: Compressible plane Poiseuille flow

In plane Poiseuille flow, lengths are scaled by the channel-halfwidth, H, the velocity by the

mean velocity, V0, at the exit of the channel, and the pressure by kV n
0 /Hn. Under the same

assumptions used for the axisymmetric flow, the dimensionless velocity profile in the case of

compressible plane flow is written as follows

ux(x, y) =
n

n + 1

(

−dp

dx

)1/n

(x)



















[1 − y0(x)]1/n+1 , 0 ≤ y ≤ y0

{

[1 − y0(x)]1/n+1 − [y − y0(x)])1/n+1
}

, y0 ≤ y ≤ 1

(5.37)

where

y0(x) =
Bn

(−dp/dx)(x)
(5.38)

and

Bn =
τ0H

n

kV n
0

(5.39)

is the Bingham number. The dimensionless pressure-gradient is a solution of the following

equation:

2n + 1

n ρ(p)

(

−dp

dx

)2

=

[(

−dp

dx

)

− Bn

]1/n+1 [

n

n + 1
Bn +

(

−dp

dx

)]

. (5.40)

It is clear that at the channel exit (x=0), Eqs. (5.37) and (5.38) yield the solution for

incompressible flow.

In the case of a power-law fluid, the solution of Eq. (5.40) is simply

(

−dp

dx

)

=

(

2n + 1

n ρ(p)

)n

. (5.41)
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In the case of a Bingham-plastic, Eq. (5.40) is reduced to

2

(

−dp

dx

)3

− 3 (Bn +
2

ρ(p)
)

(

−dp

dx

)2

+ Bn3 = 0 , (5.42)

which has the following solution:

(

−dp

dx

)

=

(

Bn

2
+

1

ρ(p)

)






1 + 2 cos







1

3
cos−1











1 − 2Bn3

(

Bn + 2
ρ(p)

)3






















. (5.43)

In Figs. 5.14-5.23 some representative results for the compressible plane Poiseuille flow are

provided.

Wall − No slip

Symmetry plane

y

x

y0

H

(x)

Channel

exit

Figure 5.14: Geometry of compressible plane Poiseuille flow of a Herschel-Bulkley fluid.
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Figure 5.15: Velocity profiles for the plane incompressible Poiseuille flow of a Herschel-

Bulkley fluid with n=0.5 and various Bingham numbers.
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Figure 5.16: Velocity profiles for the plane incompressible Poiseuille flow of a Herschel-

Bulkley fluid with Bn=10 and various values of the power-law exponent.
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Figure 5.17: Position of the yield point in plane incompressible Poiseuille flow of

Herschel-Bulkley fluids.
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Figure 5.18: Pressure distributions for four different fluids obtained with the linear

(solid) and the exponential (dashed) equations of state with B=0 (incompressible flow),

0.01 and 0.1.
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Figure 5.19: Velocity contours for four different fluids obtained with the linear equation

of state with B=0 (incompressible flow), 0.01 and 0.1.
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Figure 5.20: (a) Pressure distributions in plane Poiseuille flow of a Bingham fluid

with Bn=10 and B=0 and 0.01, using the linear (solid) and the exponential (dashed)

equations of state; (b) Velocity profile at the channel exit.
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Figure 5.21: Position of the pseudo-yield point in plane Poiseuille flow of a Bingham

fluid for Bn=10 and various compressibility numbers. The solid lines correspond to

the linear equation of state and the dashed ones to the exponential one.
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Figure 5.22: Velocity contours in plane Poiseuille flow of a Bingham fluid with Bn=10

and different compressibility numbers using the linear and the exponential equation of

state.
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Figure 5.23: Velocity profiles at different distances from the channel exit in plane

Poiseuille flow of a Bingham fluid with Bn=10 and B=0.01: (a) Linear equation

of state; (b) Exponential equation of state.
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Chapter 6

Summary and Future work

In this thesis, we have solved some weakly compressible Newtonian and generalized Newto-

nian flows using numerical (finite-element) and perturbation solution methods. In Chapter

2, we considered the time-dependent, compressible extrusion of a Carreau fluid over the

reservoir-die-extrudate region using finite elements in space and a fully-implicit scheme in

time. The objective was to simulate and investigate numerically the so-called stick-slip in-

stability observed during the extrusion of polymer melts. A nonmonotonic slip law based

on experimental data on polyethylene melts was assumed to hold along the die wall and

the velocity at the entrance of the reservoir was taken to be fixed and uniform. As in the

case of the extrudate-swell flow, the combination of compressibility and nonlinear slip leads

to self-sustained oscillations of the pressure drop and of the mass flow rate in the unstable

regime. The effects of the reservoir volume, the imposed flow rate, and the capillary length

on the amplitude and the frequency of the pressure and free surface oscillations have been

studied and comparisons were made with experimental observations. The numerical simula-

tions agree well with the following experimental observations: (a) the pressure and flow rate

oscillations follow the hysteresis loop defined by the two branches of the flow curve, and the
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volumetric flow rate is characterized by instantaneous jumps between the two branches; (b)

the amplitude and the period of the pressure oscillations increase linearly with the capillary

length, since the hysteresis loop becomes larger; (c) for small capillary lengths, the pressure

is a continuous monotonic function of Q, and no oscillations are observed; and (d) the period

of the pressure and flow rate oscillations increases linearly with the reservoir length, while

their amplitudes and waveforms are fairly constant. Nevertheless, the period of the pressure

oscillations, when plotted versus the reservoir volume, appears to pass through the origin,

which is not the case with extrapolated experimental data [20, 40, 73, 74]. In agreement with

certain experiments [58, 61, 96, 92], the period of the pressure oscillations passes through a

minimum, when this is plotted versus the imposed volumetric flow rate. The compression

part of the pressure oscillations is relatively reduced, as Q is increased.

In Chapter 3, the axisymmetric and plane extrusion flows of a liquid foam were simulated

assuming that the foam is a homogeneous compressible Newtonian fluid that slips along the

walls. Compressibility effects were investigated using both a linear and an exponential equa-

tion of state. The numerical results confirm previous reports that the swelling of the extrudate

decreases initially as the compressibility of the fluid is increased and then increases consider-

ably. The latter increase was sharper in the case of the exponential equation of state, which

indicates the importance of using an appropriate equation of state in foam flow simulations.

In the case of non-zero inertia, high compressibility was found to lead to a contraction of

the extrudate after the initial expansion, similar to that observed experimentally with liquid

foams, and to subsequent decaying oscillations of the extrudate surface. The time-dependent

calculations show that the latter oscillatory steady-state solutions are stable. These steady-

state latter oscillatory solutions were not affected by the length of the extrudate region nor

by the boundary condition along the wall.

151

Elen
i G

. T
ali

ad
oro

u



In Chapter 4, we have solved both the planar and axisymmetric isothermal Poiseuille flows

of weakly compressible Newtonian liquids with constant shear and bulk viscosities up to the

second-order using the perturbation method. A linear equation of state was assumed and a

perturbation analysis of the primary flow variables was performed using compressibility as the

perturbation parameter. The effects of compressibility, the bulk viscosity, the aspect ratio,

and the Reynolds number on the velocity and pressure fields were studied and comparisons

were made with available analytical results [33, 75, 88].

Finally in Chapter 5, we have derived approximate semi-analytical solutions of the steady,

creeping, weakly compressible plane and axisymmetric Poiseuille flows of a Herschel-Bulkley

fluid. Since the flow is weakly compressible, the radial velocity component is assumed to be

zero and the derivatives of the axial velocity with respect to the axial direction are assumed

to be much smaller than those with respect to the radial direction. The axial velocity is

then given by an expression similar to that holding for the incompressible flow, the only

difference being that the pressure gradient was a function of the axial coordinate and satisfies

a non-linear equation involving the density of the fluid. A linear as well as an exponential

equation of state, relating the density of the fluid to the pressure, were considered to study

the effects of compressibility. Both equations of state gave similar predictions for sufficiently

low compressibility numbers and/or for short tube. The pressure distribution along the

flow direction was calculated by means of numerical integration and the two-dimensional

axial velocity can then be constructed. The effects of compressibility, equation of state, the

Bingham number and the power-law exponent on the solutions were investigated.

As is always the case, many questions regarding the above problems are still open. Here are

some suggestions for future work.

1. In the two-dimensional numerical study of the stick-slip extrusion instability (Chapter
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2), it has been assumed that the inlet boundary is fixed which is not true since the

piston is moving. It will be interesting to solve the problem taking the motion of the

piston into account, i.e. employing a moving mesh that is updated at every time step.

2. In the case of the numerical simulation of the extrusion of strongly compressible New-

tonian liquids (Chapter 3), another direction for research is the study of effects of

compressibility and equation of state with a different constitutive equation, such as

Bingham plastic. Assuming that slip occurs along the wall will also make the simula-

tion of foam flow more realistic.

3. In the perturbation solutions of Poiseuille flows of weakly compressible Newtonian

liquids (Chapter 4), other interesting directions are: (a) the solution of the annular

Poiseuille flow; and (b) the perturbation solution for fluids with yield stress, such as

Bingham plastics and Herschel-Bulkley fluids.

4. Finally, the work on weakly compressible Poiseuille flows of a Herschel-Bulkley fluid

(Chapter 5) can be naturally extended to time-dependent two dimensional finite-

element simulations.

153

Elen
i G

. T
ali

ad
oro

u



Appendix A

Compressible planar Poiseuille flow

In this appendix the perturbation solution of the planar compressible Poiseuille flow is pre-

sented. To nondimensionalize the governing equations, we scale x by L, y by H, ρ by the

reference density ρ0, ux by U , the transverse velocity uy by UH/L, and the pressure by

3ηLU/H2. The latter pressure scale is used so that the dimensionless pressure gradient along

the domain, in the incompressible flow is equal to 1. For the sake of simplicity, in what follows

we will use the same symbols (i.e. without stars) for all dimensionless variables. Using the

above scalings, the dimensionless forms of the equation of state, the continuity equation and

momentum equations become:

ρ = 1 + ε P , (A.1)

∂

∂x
( ρ ux) +

∂

∂y
(ρ uy) = 0 , (A.2)

α Reρ

(

ux
∂ ux

∂ x
+ uy

∂ ux

∂ y

)

= −3
∂ P

∂ x
+ α2 ∂2ux

∂x2
+

∂2ux

∂y2
+ α2

(

χ +
1

3

)

(

∂2uy

∂x∂y
+

∂2ux

∂x2

)

,

(A.3)

α3 Re ρ

(

ux
∂ uy

∂ x
+ uy

∂ uy

∂ y

)

= −3
∂ P

∂ y
+ α4 ∂2uy

∂x2
+ α2 ∂2uy

∂y2
+ α2

(

χ +
1

3

)

(

∂2ux

∂x∂y
+

∂2uy

∂y2

)

, (A.4)
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where χ ≡ κ/η is the bulk-to-shear viscosity ratio, α ≡ H/L is the aspect ratio of the channel,

and Re and ε are, respectively, the Reynolds and compressibility numbers, which are defined

by

Re ≡ ρ0UH

η
(A.5)

and

ε ≡ 3η β LU

H2
. (A.6)

Perturbation Method

Perturbation is performed on all primary variables, ρ, P , ux and uy, using the compressibility

number, ε, as the perturbation parameter:

ρ = ρ(0) + ερ(1) + ε2ρ(2) + O(ε3 )

uy = u
(0)
y + ε u

(1)
y + ε2 u

(2)
y + O(ε3 )

ux = u
(0)
x + ε u

(1)
x + ε2 u

(2)
x + O(ε3 )

P = P (0) + ε P (1) + ε2 P (2) + O(ε3 )























































(A.7)

Substituting these equations in the governing equations and collecting the terms of the same

order in ε we obtain the equations of the flow up to the second order.

Equation of state

By substituting in

ρ = 1 + εP

and collecting the terms of the same order of the perurbation parameter we get:

ρ(0) + ερ(1) + ε2ρ(2) = 1 + εP (0) + ε2P (1) + ε3P (2)

Thus,

ρ(0) = 1, ρ(1) = P (0) and ρ(2) = P (1)
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Continuity Equation

Substituting into

∂

∂x
(ρux) +

∂

∂y
(ρuy) = 0

we get

∂

∂x

[

(ρ(0) + ερ(1) + ε2ρ(2) + ...)(u(0)
x + εu(1)

x + ε2u(2)
x + ...)

]

+
∂

∂y

[

(ρ(0) + ερ(1) + ε2ρ(2) + ...)(u(0)
y + εu(1)

y + ε2u(2)
y + ...)

]

= 0

=⇒
∂

∂x

[

ρ(0)u(0)
x + ε

(

ρ(0)u(1)
x + ρ(1)u(1)

x

)

+ ε2
(

ρ(0)u(2)
x + ρ(1)u(1)

x + ρ(2)u(0)
x

)]

+
∂

∂y

[

ρ(0)u(0)
y + ε

(

ρ(0)u(1)
y + ρ(1)u(0)

y

)

+ ε2
(

ρ(0)u(2)
y + ρ(1)u(1)

y + ρ(2)u(0)
y

)]

+ O(ε3 ) = 0

Thus we have

Zero - order

∂

∂x

(

ρ(0)u(0)
x

)

+
∂

∂y

(

ρ(0)u(0)
y

)

= 0

First - order

∂

∂x

(

ρ(0)u(1)
x + ρ(1)u(0)

x

)

+
∂

∂y

(

ρ(0)u(1)
y + ρ(1)u(0)

y

)

= 0

Second - order

∂

∂x

(

ρ(0)u(2)
x + ρ(1)u(1)

x + ρ(2)u(0)
x

)

+
∂

∂y

(

ρ(0)u(2)
y + ρ(1)u(1)

y + ρ(2)u(0)
y

)

= 0

x-component of the momentum equation

Substituting into

αReρ

(

ux
∂ux

∂x
+ uy

∂ux

∂y

)

= −3
∂P

∂x
+ α2 ∂2ux

∂x2
+

∂2ux

∂y2
+ α2

(

χ +
1

3

)

[

∂2uy

∂x∂y
+

∂2ux

∂x2

]

we get

αRe
(

ρ(0) + ερ(1) + ε2ρ(2) + ...
)

[

(

u(0)
x + εu(1)

x + ε2u(2)
x + ...

) ∂

∂x

(

u(0)
x + εu(1)

x + ε2u(2)
x + ...

)
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+
(

u(0)
y + εu(1)

y + ε2u(2)
y + ...

) ∂

∂y

(

u(0)
x + εu(1)

x + ε2u(2)
x + ...

)

]

= −3
∂

∂x

(

P (0) + εP (1) + ε2P (2) + ...
)

+ α2 ∂2

∂x2

(

u(0)
x + εu(1)

x + ε2u(2)
x + ...

)

+
∂2

∂y2

(

u(0)
x + εu(1)

x + ε2u(2)
x + ...

)

+α2
(

χ +
1

3

)

[

∂2

∂x∂y

(

u(0)
y + εu(1)

y + ε2u(2)
y + ...

)

+
∂2

∂x2

(

u(0)
x + εu(1)

x + ε2u(2)
x + ...

)

]

=⇒

αRe
(

ρ(0) + ερ(1) + ε2ρ(2)
)

[(

u(0)
x

∂u
(0)
x

∂x
+ u(0)

y

∂u
(0)
x

∂y

)

+ε

(

u(0)
x

∂u
(1)
x

∂x
+ u(1)

x

∂u
(0)
x

∂x
+ u(0)

y

∂u
(1)
x

∂y
+ u(1)

y

∂u
(0)
x

∂y

)

+ε2

(

u(0)
x

∂u
(2)
x

∂x
+ u(1)

x

∂u
(1)
x

∂x
+ u(2)

x

∂u
(0)
x

∂x
+ u(0)

y

∂u
(2)
x

∂y
+ u(1)

y

∂u
(1)
x

∂y
+ u(2)

y

∂u
(0)
x

∂y

)]

= −3
∂

∂x

(

P (0) + εP (1) + ε2P (2)
)

+α2 ∂2

∂x2

(

u(0)
x + εu(1)

x + ε2u(2)
x

)

+
∂2

∂y2

(

u(0)
x + εu(1)

x + ε2u(2)
x

)

+α2
(

χ +
1

3

)

[(

∂2u
(0)
y

∂x∂y
+

∂2u
(0)
x

∂x2

)

+ ε

(

∂2u
(1)
y

∂x∂y
+

∂2u
(1)
x

∂x2

)

+ ε2

(

∂2u
(2)
y

∂x∂y
+

∂2u
(2)
x

∂x2

)]

+ O(ε3 )

Thus we get:

Zero - order

αReρ(0)

[

u(0)
x

∂u
(0)
x

∂x
+ u(0)

y

∂u
(0)
x

∂y

]

= −3
∂P (0)

∂x
+α2 ∂2u

(0)
x

∂x2
+

∂2u
(0)
x

∂y2
+α2

(

χ +
1

3

)

[

∂2u
(0)
y

∂x∂y
+

∂2u
(0)
x

∂x2

]

First - order

αReρ(1)

[

u(0)
x

∂u
(0)
x

∂x
+ u(0)

y

∂u
(0)
x

∂y

]

+ αReρ(0)

[

u(0)
x

∂u
(1)
x

∂x
+ u(1)

x

∂u
(0)
x

∂x
+ u(0)

y

∂u
(1)
x

∂y
+ u(1)

y

∂u
(0)
x

∂y

]

= −3
∂P (1)

∂x
+ α2 ∂2u

(1)
x

∂x2
+

∂2u
(1)
x

∂y2
+ α2

(

χ +
1

3

)

[

∂2u
(1)
y

∂x∂y
+

∂2u
(1)
x

∂x2

]

Second - order

αReρ(2)

[

u(0)
x

∂u
(0)
x

∂x
+ u(0)

y

∂u
(0)
x

∂y

]

+ αReρ(1)

[

u(0)
x

∂u
(1)
x

∂x
+ u(1)

x

∂u
(0)
x

∂x
+ u(0)

y

∂u
(1)
x

∂y
+ u(1)

y

∂u
(0)
x

∂y

]

+αReρ(0)

[

u(0)
x

∂u
(2)
x

∂x
+ u(1)

x

∂u
(1)
x

∂x
+ u(2)

x

∂u
(0)
x

∂x
+ u(0)

y

∂u
(2)
x

∂y
+ u(1)

y

∂u
(1)
x

∂y
+ u(2)

y

∂u
(0)
x

∂y

]
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= −3
∂P (2)

∂x
+ α2 ∂2u

(2)
x

∂x2
+

∂2u
(2)
x

∂y2
+ α2

(

χ +
1

3

)

[

∂2u
(2)
y

∂x∂y
+

∂2u
(2)
x

∂x2

]

y-component of the momentum equation

As above, substituting into

α3Reρ

(

ux
∂uy

∂x
+ uy

∂uy

∂y

)

= −3
∂P

∂y
+ α4 ∂2uy

∂x2
+ α

∂2uy

∂y2
+ α2

(

χ +
1

3

)

[

∂2ux

∂x∂y
+

∂2uy

∂y2

]

we get

α3Re
(

ρ(0) + ερ(1) + ε2ρ(2) + ...
)

[

(

u(0)
x + εu(1)

x + ε2u(2)
x + ...

) ∂

∂x

(

u(0)
y + εu(1)

y + ε2u(2)
y + ...

)

+
(

u(0)
y + εu(1)

y + ε2u(2)
y + ...

) ∂

∂y

(

u(0)
y + εu(1)

y + ε2u(2)
y + ...

)

]

= −3
∂

∂y

(

P (0) + εP (1) + ε2P (2) + ...
)

+ α4 ∂2

∂x2

(

u(0)
y + εu(1)

y + ε2u(2)
y + ...

)

+α
∂

∂y2

(

u(0)
y + εu(1)

y + ε2u(2)
y + ...

)

+α2
(

χ +
1

3

)

[

∂2

∂x∂y

(

u(0)
x + εu(1)

x + ε2u(2)
x + ...

)

+
∂2

∂y2

(

u(0)
y + εu(1)

y + ε2u(2)
y + ...

)

]

=⇒

α3Re
(

ρ(0) + ερ(1) + ε2ρ(2)
)

[(

u(0)
x

∂u
(0)
y

∂x
+ u(0)

y

∂u
(0)
y

∂y

)

+ε

(

u(0)
x

∂u
(1)
y

∂x
+ u(1)

x

∂u
(0)
y

∂x
+ u(0)

y

∂u
(1)
y

∂y
+ u(1)

y

∂u
(0)
y

∂y

)

+ε2

(

u(0)
x

∂u
(2)
y

∂x
+ u(1)

x

∂u
(1)
y

∂x
+ u(2)

x

∂u
(0)
y

∂x
+ u(0)

y

∂u
(2)
y

∂y
+ u(1)

y

∂u
(1)
y

∂y
+ u(2)

y

∂u
(0)
y

∂y

)]

= −3
∂

∂y

(

P (0) + εP (1) + ε2P (2)
)

+α4 ∂2

∂x2

(

u(0)
y + εu(1)

y + ε2u(2)
y

)

+α
∂2

∂y2

(

u(0)
y + εu(1)

y + ε2u(2)
y

)

+α2
(

χ +
1

3

)

[(

∂2u
(0)
x

∂x∂y
+

∂2u
(0)
y

∂y2

)

+ ε

(

∂2u
(1)
x

∂x∂y
+

∂2u
(1)
y

∂y2

)

+ ε2

(

∂2u
(2)
x

∂x∂y
+

∂2u
(2)
y

∂y2

)]

+ O(ε3 )

Thus we have:

Zero - order

α3Reρ(0)

[

u(0)
x

∂u
(0)
y

∂x
+ u(0)

y

∂u
(0)
y

∂y

]

= −3
∂P (0)

∂y
+α4 ∂2u

(0)
y

∂x2
+α

∂2u
(0)
y

∂y2
+α2

(

χ +
1

3

)

[

∂2u
(0)
x

∂x∂y
+

∂2u
(0)
y

∂y2

]
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First - order

α3Reρ(1)

[

u(0)
x

∂u
(0)
y

∂x
+ u(0)

y

∂u
(0)
y

∂y

]

+α3Reρ(0)

[

u(0)
x

∂u
(1)
y

∂x
+ u(1)

x

∂u
(0)
y

∂x
+ u(0)

y

∂u
(1)
y

∂y
+ u(1)

y

∂u
(0)
y

∂y

]

= −3
∂P (1)

∂y
+ α4 ∂2u

(1)
y

∂x2
+ α

∂2u
(1)
y

∂y2
+ α2

(

χ +
1

3

)

[

∂2u
(1)
x

∂x∂y
+

∂2u
(1)
y

∂y2

]

Second - order

α3Reρ(2)

[

u(0)
x

∂u
(0)
y

∂x
+ u(0)

y

∂u
(0)
y

∂y

]

+α3Reρ(1)

[

u(0)
x

∂u
(1)
y

∂x
+ u(1)

x

∂u
(0)
y

∂x
+ u(0)

y

∂u
(1)
y

∂y
+ u(1)

y

∂u
(0)
y

∂y

]

+α3Reρ(0)

[

u(0)
x

∂u
(2)
y

∂x
+ u(1)

x

∂u
(1)
y

∂x
+ u(0)

x

∂u
(1)
y

∂x
+ u(2)

y

∂u
(0)
y

∂y
+ u(1)

y

∂u
(1)
y

∂y
+ u(2)

y

∂u
(0)
y

∂y

]

= −3
∂P (2)

∂y
+ α4 ∂2u

(2)
y

∂x2
+ α

∂2u
(2)
y

∂y2
+ α2

(

χ +
1

3

)

[

∂2u
(2)
x

∂x∂y
+

∂2u
(2)
y

∂y2

]

Zero-order solution

Using the zero-order equation of state,

ρ(0) = 1 (A.8)

the continuity equation

∂

∂x

[

ρ(0)u(0)
x

]

+
∂

∂y

[

ρ(0)u(0)
y

]

= 0 (A.9)

and the assumption

u(0)
y (x, y) = 0 (A.10)

we get

u(0)
x = u(0)

x (y) (A.11)

Now, from the y-component of the momentum equation

α3 Re ρ(0)

[

u(0)
x

∂u
(0)
y

∂x
+ u(0)

y

∂u
(0)
y

∂y

]

= −3
∂P (0)

∂y
+α4 ∂2u

(0)
y

∂x2
+α2 ∂2u

(0)
y

∂y2
+ α2

(

χ +
1

3

)

[

∂2u
(0)
x

∂x∂y
+

∂2u
(0)
y

∂y2

]
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and Eqs. (A.8)-(A.11) we find that

P (0) = P (0)(x) (A.12)

Substituting into the x-momentum equation

α Re ρ(0)

[

u(0)
x

∂u
(0)
x

∂x
+ u(0)

y

∂u
(0)
x

∂y

]

= −3
∂P (0)

∂x
+

∂2u
(0)
x

∂y2
+ α2 ∂2u

(0)
x

∂x2
+ α2

(

χ +
1

3

)

[

∂2u
(0)
y

∂x∂y
+

∂2u
(0)
x

∂x2

]

we get

3
∂P (0)

∂x
=

∂2u
(0)
x

∂y2
= c (A.13)

where c is a constant to be determined. Integrating the resulting ODEs and applying the

boundary conditions P (0)(0)=1 and P (0)(1)=0 for P (x) we obtain the zero-order solution for

the pressure, which reads:

P (0) = 1 − x (A.14)

From equations (A.13) and (A.14) we have

−3 =
∂2u

(0)
x

∂y2

and by integrating twice and applying the conditions ∂u
(0)
x /∂y(0)=0 and u

(0)
x (1)=0 we obtain

the zero-order solution for the velocity

u(0)
x =

3

2
(1 − y2) (A.15)

Thus the zero-order solution is:

ρ(0) = 1 (A.16)

u(0)
y = 0 (A.17)

u(0)
x =

3

2
(1 − y2) (A.18)

P (0) = 1 − x (A.19)
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The assumptions we have used are:

∂u(0)
x /∂y(0) = u(0)

x (1) = 0

u(0)
y (x, y) = 0

P (0)(0) = 1, P (0)(1) = 0

First-order solution

From the equation of state we obtain,

ρ(1) = P (0)(x) =⇒ ρ(1) = 1 − x. (A.20)

Now, from the continuity equation

∂

∂x

[

ρ(0) u(1)
x + ρ(1) u(0)

x

]

+
∂

∂y

[

ρ(0) u(1)
y + ρ(1) u(0)

y

]

= 0,

using ρ(0)=1, u
(0)
y =0, u

(0)
x =3/2(1 − y2), u

(1)
y =0 and integrating we get

u(1)
x = −3

2
(1 − x)(1 − y2) + f(y) (A.21)

where f(y) is unknown function. From the y-momentum

α Re ρ(1)

[

u(0)
x

∂u
(0)
x

∂x
+ u(0)

y

∂u
(0)
x

∂y

]

+α Re ρ(0)

[

u(0)
x

∂u
(1)
x

∂x
+ u(1)

x

∂u
(0)
x

∂x
+ u(0)

y

∂u
(1)
x

∂y
+ u(1)

y

∂u
(0)
x

∂y

]

= −3
∂P (1)

∂x
+

∂2u
(1)
x

∂y2
+ α2 ∂2u

(1)
x

∂x2
+ α2

(

χ +
1

3

)

[

∂2u
(1)
y

∂x∂y
+

∂2u
(1)
x

∂x2

]

(A.22)

and using all the above and integrating with respect to y, we get:

P (1) =
1

2
α2(χ +

1

3
)(1 − y2) + g(x) (A.23)

where g(x) is an unknown function. By substituting in the x-momentum equation,

α3 Re ρ(1)

[

u(0)
x

∂u
(0)
y

∂x
+ u(0)

y

∂u
(0)
y

∂y

]
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+α3 Re ρ(0)

[

u(0)
x

∂u
(1)
y

∂x
+ u(1)

x

∂u
(0)
y

∂x
+ u(0)

y

∂u
(1)
y

∂y
+ u(1)

y

∂u
(0)
y

∂y

]

= −3
∂P (1)

∂y
+ α4 ∂2u

(1)
y

∂x2
+ α2 ∂2u

(1)
y

∂y2
+ α2

(

χ +
1

3

)

[

∂2u
(1)
x

∂x∂y
+

∂2u
(1)
y

∂y2

]

,

we have

9

4
αRe(1 − y2)2 =

∂P (1)

∂x
+ 3(1 − x) + f ′′(y)

By separating variables we obtain the follow expressions

9

4
α Re (1 − y2)2 − f ′′(y) = −3

∂ P (1)

∂ x
+ 3(1 − x) = c

where c is a constant to be determined. Integrating the first ODE twice leads to

f(y) =
9

4
αRe

(

1

2
y2 − 1

6
y4 +

1

30
y6

)

− 1

2
c1y

2 + c2 (A.24)

Applying f ′(0)=f(1)=0 we obtain

0 =
33

40
αRe − 1

2
c1 + c2 (A.25)

where c1 and c2 are contstants to be determined. Also, by applying
∫ 1
0 f(y)dy=0 we get

87

280
αRe − 1

6
c1 + c2 = 0 (A.26)

Now, from Eqs. (A.25) and (A.26)

c1 =
54

35
αRe and c2 = − 3

56
αRe

and by substituting in Eq. (A.24), we find:

f(y) =
3

280
αRe(1 − y2)(−5 + 28y2 − 7y4) (A.27)

Substituting now f(y) into Eq. (A.21) we obtain the first-order velocity component

u(1)
x = −3

2
(1 − x)(1 − y2) +

3

280
αRe(1 − y2)(−5 + 28y2 − 7y4). (A.28)
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From the x−momentum we find that

g(x) =
3

2
x(2 − x) − 54

35
αRex + κ

where κ is to be determined. By substituting in Eq. (A.23) and using P (1)(1, 1)=0,

κ =
18

35
αRe − 1

2

and the solution for the pressure is

P (1) =
1

2
α2

(

χ +
1

3

)

(1 − y2) − 1

2
(1 − x)2 +

18

35
αRe(1 − x). (A.29)

The first-order solution, reads:

ρ(1) = 1 − x (A.30)

u(1)
y = 0 (A.31)

u(1)
x = −3

2
(1 − x)(1 − y2) +

3

280
α Re(1 − y2)(−5 + 28y2 − 7y4) (A.32)

P (1) =
1

2
α2

(

χ +
1

3

)

(1 − y2) − 1

2
(1 − x)2 +

18

35
α Re (1 − x). (A.33)

The assumptions we have used are:

f ′(0) = f(1) =

∫ 1

0
f(y)dy = 0

u(1)
y (x, y) = 0

P (1)(1, 1) = 0

Second-order solution

For ρ(2) we simply have:

ρ(2) = P (1)(x, y) =⇒ ρ(2) =
1

2
α2

(

χ +
1

3

)

(1− y2)− 1

2
(1−x)2 +

18

35
αRe (1−x) (A.34)

Now, from the continuity equation

∂

∂x

[

ρ(0)u(2)
x + ρ(1)u(1)

x + ρ(2)u(0)
x

]

+
∂

∂y

[

ρ(0)u(2)
y + ρ(1)u(1)

y + ρ(2)u(0)
y

]

= 0,
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we have

u(2)
x =

9

4
(1 − x)2(1 − y2) − 3

4
α2

(

χ +
1

3

)

(1 − y2)2

− 3

280
αRe(1−x)(1−y2)(67+28y2−7y4)+

∂u
(2)
y

∂y
(1−x)+F (y) (A.35)

where F (y) is a function to be determined. At this point the assumption of zero transverse

velocity is relaxed, letting uy to be a function of y, u
(2)
y =u

(2)
y (y). From the y-momentum

equation

α3 Re ρ(2)

[

u(0)
x

∂u
(0)
y

∂x
+ u(0)

y

∂u
(0)
y

∂y

]

+α3 Re ρ(1)

[

u(0)
x

∂u
(1)
y

∂x
+ u(1)

x

∂u
(0)
y

∂x
+ u(0)

y

∂u
(1)
y

∂y
+ u(1)

y

∂u
(0)
y

∂y

]

+α3 Re ρ(0)

[

u(0)
x

∂u
(2)
y

∂x
+ u(1)

x

∂u
(1)
y

∂x
+ u(2)

x

∂u
(0)
y

∂x
+ u(0)

y

∂u
(2)
y

∂y
+ u(1)

y

∂u
(1)
y

∂y
+ u(2)

y

∂u
(0)
y

∂y

]

= −3
∂P (2)

∂y
+α2 ∂2u

(2)
y

∂y2
+α4 ∂2u

(2)
y

∂x2
+α2

(

χ +
1

3

)

[

∂2u
(2)
x

∂x∂y
+

∂2u
(2)
y

∂y2

]

we have

3
∂P (2)

∂y
= α2

(

χ +
4

3

)

∂2u
(2)
y

∂y2
+ α2

(

χ +
1

3

)

∂

∂y

(

∂u
(2)
x

∂x

)

By integrating with respect to y we find that

P (2) =
1

3
α2

(

χ +
4

3

)

∂u
(2)
y

∂y
+

1

3
α2

(

χ +
1

3

)

∂u
(2)
x

∂x
+ G(x)

or

P (2) =
1

3
α2 ∂u

(2)
y

∂y
− 3

2
α2

(

χ +
1

3

)

(1 − x)(1 − y2)

+
1

280
α3Re

(

χ +
1

3

)

(1 − y2)(67 + 28y2 − 7y4) + G(x), (A.36)

where G(x) is a function to be determined. Combining the x−momentum equation

α Re ρ(2)

[

u(0)
x

∂u
(0)
x

∂x
+ u(0)

y

∂u
(0)
x

∂y

]

+α Re ρ(1)

[

u(0)
x

∂u
(1)
x

∂x
+ u(1)

x

∂u
(0)
x

∂x
+ u(0)

y

∂u
(1)
x

∂y
+ u(1)

y

∂u
(0)
x

∂y

]
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+α Re ρ(0)

[

u(0)
x

∂u
(2)
x

∂x
+ u(1)

x

∂u
(1)
x

∂x
+ u(2)

x

∂u
(0)
x

∂x
+ u(0)

y

∂u
(2)
x

∂y
+ u(1)

y

∂u
(1)
x

∂y
+ u(2)

y

∂u
(0)
x

∂y

]

= −3
∂P (2)

∂x
+

∂2u
(2)
x

∂y2
+α2 ∂2u

(2)
x

∂x2
+α2

(

χ +
1

3

)

[

∂2u
(2)
y

∂x∂y
+

∂2u
(2)
x

∂x2

]

,

with

ρ(1)u(0)
x

∂u
(1)
x

∂x
=

9

4
(1 − x)(1 − y2)2

u(0)
x

∂u
(2)
x

∂x
= −27

4
(1 − x)(1 − y2)2 +

9

560
αRe(1 − y2)2(67 + 28y2 − 7y4) − 3

2
(1 − y2)

∂u
(2)
y

∂y

u(1)
x

∂u
(1)
x

∂x
= −9

4
(1 − x)(1 − y2)2 +

9

560
αRe(1 − y2)2(−5 + 28y2 − 7y4)

u(2)
y

∂u
(0)
x

∂y
= −3yu(2)

y

leads to:

αRe

[

−3yu(2)
y − 3

2
(1 − y2)

∂u
(2)
y

∂y
− 27

4
(1 − x)(1 − y2)2 +

9

560
α Re(1 − y2)2(62 + 56y2 − 14y4)

]

= −3G′(x)−9

2
(1−x)2+

∂3u
(2)
y

∂y3
(1−x)+F ′′(y)− 3

280
αRe(1−x)(−78−420y2+210y4)

+
9

2
α2(1 − y2) + 3α2

(

χ +
1

3

)

(1 − 3y2). (A.37)

Here, it is assumed that the terms involving both (1 − x) and y must be equal to a (scalar)

multiple of (1 − x) in order to be able to seperate variables. Thus we can assume that

27

4
α Re(1 − y2)2 +

∂3u
(2)
y

∂y3
− 3

280
α Re(−78 − 420y2 + 210y4) = α Reγ. (A.38)

where γ is new constant to be determined. From Eq. (A.38) we have

∂3u
(2)
y

∂y3
= α Reγ +

3

280
α Re(−78 − 420y2 + 210y4) − 27

4
α Re(1 − y2)2

Integrating with respect to y gives

∂2u
(2)
y

∂y2
= α Reγy +

3

280
α Re(−78y − 140y3 + 42y5) − 27

4
α Re

(

y − 2

3
y3 +

1

5
y5

)

+ γ1
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where γ1=0 when the boundary condition ∂u
(2)
y /∂y(0)=0 is applied. By integrating once

more and using ∂2u
(2)
y /∂y2(1)=0, we obtain

0 = αRe

(

1

2
γ − 447

140

)

+ γ2 (A.39)

and finally after another integration

u(2)
y =

1

6
αReγy3 +

3

280
αRe(−13y3 − 7y5 + y7) − 27

4
αRe

(

1

6
y3 − 1

30
y5 +

1

210
y7

)

+ γ2y + γ3

u(2)
y (0) = 0 =⇒ γ3 = 0

Applying u
(2)
y (1) = 0 leads to

αRe

(

1

6
γ − 159

140

)

+ γ2 = 0 (A.40)

From Eqs. (A.39)-(A.40) we find that

γ =
216

35
and γ2 =

3

28
αRe

Thus, the transverse velocity reads

u(2)
y =

3

140
α Re y (1 − y2)2(5 − y2). (A.41)

Now, we substitute the transverse velocity in Eq. (A.35)

u(2)
x =

9

4
(1 − x)2(1 − y2) − 3

4
α2

(

χ +
1

3

)

(1 − y2)2

− 3

280
αRe(1 − y2)(57 + 84y2 − 21y4)(1 − x) + F (y). (A.42)

Separating variables in Eq. (A.37) gives the following ODEs for F (y) and G(x):

αRe

[

−3yu(2)
y − 3

2
(1 − y2)

∂u
(2)
y

∂y
+

9

560
α Re(1 − y2)2(62 + 56y2 − 14y4)

]

−F ′′(y) − 9

2
α2(1 − y2) − 3α2

(

χ +
1

3

)

(1 − 3y2) = A (A.43)
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and

−3G′(x) − 9

2
(1 − x)2 + α Re γ (1 − x) = A. (A.44)

where A is another constant to be determined. Integrating Eq. (A.43) once and applying the

condition F ′(0)=0, we obtain

F ′(y) = −Ay − 9

2
α2

(

y − 1

3
y3

)

− 3α2
(

χ +
1

3

)

(y − y3)+

3

140
α2Re2

(

39y − 3y3 − 117

5
y5 + 15y7 − 2y9

)

We integrate once more to get

F (y) = −1

2
Ay2 − 9

2
α2

(

1

2
y2 − 1

12
y4

)

− 3α2
(

χ +
1

3

)

(
1

2
y2 − 1

4
y4)+

3

140
α2Re2

(

39

2
y2 − 3

4
y4 − 117

30
y6 +

15

8
y8 − 1

5
y10

)

+ c1 (A.45)

where c1 is a constant to be determined. By applying the condition F (1)=0, we get:

0 = −1

2
A − 15

8
α2 − 3

4
α2

(

χ +
1

3

)

+
1983

5600
α2Re2 + c1 (A.46)

We apply the condition
∫ 1
0 F (y)dy=0 and find that

−1

6
A − 27

40
α2 − 7

20
α2

(

χ +
1

3

)

+
276415

2156000
α2Re2 + c1 = 0 (A.47)

Solving the system of Eqs. (A.46) and (A.47) we find

A = −18

5
α2 − 6

5
α2

(

χ +
1

3

)

+
9132

13475
α2Re2 (A.48)

and

c1 =
3

40
α2 +

3

20
α2

(

χ +
1

3

)

− 6579

431200
α2Re2 (A.49)

By substituting Eqs. (A.48) and (A.49) in Eq. (A.45) we obtain

F (y) = α2
(

χ +
1

3

) (

3

20
− 9

10
y2 +

3

4
y4

)

+ α2
(

3

40
− 9

20
y2 +

9

24
y4

)
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− 3

431200
α2Re2(2193 − 11356y2 + 2310y4 + 12012y6 − 5775y8 + 616y10) (A.50)

The horizontal velocity becomes

u(2)
x = (1−y2)

[

9

4
(1 − x)2 − 3

280
α Re(57 + 84y2 − 21y4)(1 − x) +

3

40
α2(1 − 5y2)

−3

5
α2

(

χ +
1

3

)

− 3

431200
α2 Re2(2193 − 9163y2 − 6853y4 + 5159y6 − 616y8)

]

(A.51)

Integrating now Eq. (A.44) and substituting A under the condition P (2)(1, 1)=0 we obtain

G(x) =
1

2
(1 − x)3 − 6

5
α2(1 − x) − 36

35
α Re(1 − x)2

+
3044

13475
α2Re2(1 − x) − 2

5
α2

(

χ +
1

3

)

(1 − x) (A.52)

Therefore, pressure is given by

P (2) =
1

2
(1−x)3−6

5
α2(1−x)+

3044

13475
α2Re2(1−x)− 1

10
α2

(

χ +
1

3

)

(19−15y2)(1−x)

−36

35
α Re(1 − x)2 +

1

280
α3Re(1 − y2)

[

2(5 − 28y2 + 7y4) +

(

χ +
1

3

)

(67 + 28y2 − 7y4)

]

.

(A.53)

Thus, the second order solution reads:

ρ(2) =
1

2
α2

(

χ +
1

3

)

(1 − y2) − 1

2
(1 − x)2 +

18

35
α Re (1 − x) (A.54)

u(2)
y =

3

140
α Re y (1 − y2)2(5 − y2) (A.55)

u(2)
x = (1 − y2)

[

9

4
(1 − x)2 − 3

280
α Re(57 + 84y2 − 21y4)(1 − x) +

3

40
α2(1 − 5y2)

−3

5
α2

(

χ +
1

3

)

− 3

431200
α2 Re2(2193 − 9163y2 − 6853y4 + 5159y6 − 616y8)

]

(A.56)

P (2) =
1

2
(1 − x)3 − 6

5
α2(1 − x) − 36

35
α Re(1 − x)2 +

3044

13475
α2Re2(1 − x)

− 1

10
α2

(

χ +
1

3

)

(19 − 15y2)(1 − x)

+
1

280
α3Re(1 − y2)

[

2(5 − 28y2 + 7y4) +

(

χ +
1

3

)

(67 + 28y2 − 7y4)

]

. (A.57)
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The assumptions we have used are:

F ′(0) = F (1) =

∫ 1

0
F (y)dy = 0

u(2)
y (x, y) = u(2)

y (y) and u(2)
y (0) = u(2)

y (1) = 0

P (2)(1, 1) = 0

Summarizing the results, the solution of the flow problem up to the second order is as follows:

ρ = 1+ε(1−x)+ε2
[

1

2
α2

(

χ +
1

3

)

(1 − y2) − 1

2
(1 − x)2 +

18

35
α Re (1 − x)

]

+O(ε3 ) (A.58)

uy =
3

140
ε2α Re y (1 − y2)2(5 − y2) + O(ε3 ) (A.59)

ux =
3

2
(1−y2)

[

1 − ε(1 − x) +
1

140
εα Re(−5 + 28y2 − 7y4) +

3

2
ε2(1 − x)2

− 1

140
ε2αRe(57+84y2−21y4)(1−x)+

1

20
ε2α2(1−5y2)−2

5
ε2α2

(

χ +
1

3

)

− 1

215600
α2ε2 Re2(2193 − 9163y2 − 6853y4 + 5159y6 − 616y8)

]

+ O(ε3 ) (A.60)

P = 1 − x +
1

2
εα2

(

χ +
1

3

)

(1 − y2) − 1

2
ε(1 − x)2 +

18

35
εα Re (1 − x) +

1

2
ε2(1 − x)3

−6

5
ε2α2(1−x)−36

35
ε2αRe(1−x)2+

3044

13475
ε2α2Re2(1−x)− 1

10
ε2α2

(

χ +
1

3

)

(19−15y2)(1−x)

+
1

280
ε2 α3Re(1 − y2)

[

2(5 − 28y2 + 7y4) +

(

χ +
1

3

)

(67 + 28y2 − 7y4)

]

+ O(ε3 ). (A.61)
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Appendix B

Compressible axisymmetric

Poiseuille flow

In this Appendix, the two-dimensional perturbation solution of the compressible axisymmet-

ric Poiseuille flow is derived. To nondimensionalize the equations, we scale z by L, r by R,

the density by the reference density ρ0, the axial velocity uz by U = Ṁ/ρ0πR2, the radial ve-

locity ur by UR/L, and the pressure by 8ηLU/R2. The dimensionless forms of the governing

equations are:

ρ = 1 + ε P , (B.1)

1

r

∂

∂r
(r ρ ur) +

∂

∂z
(ρ uz) = 0 , (B.2)

α Re ρ

(

ur
∂ uz

∂ r
+ uz

∂ uz

∂ z

)

= −8
∂ P

∂ z
+

1

r

∂

∂ r

(

r
∂ uz

∂ r

)

+ α2 ∂2uz

∂ z2

+ α2
(

χ +
1

3

)

[

∂

∂ z

(

1

r

∂

∂ r
(r ur)

)

+
∂2uz

∂ z2

]

, (B.3)

α3 Re ρ

(

ur
∂ ur

∂ r
+ uz

∂ ur

∂ z

)

= −8
∂ P

∂ r
+ α2 ∂

∂ r

(

1

r

∂

∂ r
(r ur)

)

+ α4 ∂2ur

∂ z2

+ α2
(

χ +
1

3

)

[

∂

∂ r

(

1

r

∂

∂ r
(r ur)

)

+
∂2uz

∂ r∂ z

]

(B.4)
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where:

χ ≡ κ

η
, α ≡ R

L
, Re ≡ ρ0UR

η
, and ε ≡ 8ηβLU

R2
.

The boundary conditions are similar to those used for the planar problem. Writing the

primary fields as expansions in the perturbation parameter ε,

ρ = ρ(0) + ερ(1) + ε2ρ(2) + O(ε3 )

ur = u
(0)
r + ε u

(1)
r + ε2 u

(2)
r + O(ε3 )

uz = u
(0)
z + ε u

(1)
z + ε2 u

(2)
z + O(ε3 )

P = P (0) + ε P (1) + ε2 P (2) + O(ε3 )























































, (B.5)

substituting in the governing equations, and following similar steps as for the planar problem,

we obtain the solution of the flow up to the second order.

Equation of state

ρ = 1 + εP =⇒

ρ(0) + ερ(1) + ε2ρ(2) = 1 + εP (0) + ε2P (1) + ε3P (2)

Therefore,

ρ(0) = 1, ρ(1) = P (0) and ρ(2) = P (1)

Continuity Equation

Substituting into

1

r

∂

∂r
(rρur) +

∂

∂z
(ρuz) = 0

we get

1

r

∂

∂r

[

r(ρ(0) + ερ(1) + ε2ρ(2) + ...)(u(0)
r + εu(1)

r + ε2u(2)
r + ...)

]

+
∂

∂z

[

(ρ(0) + ερ(1) + ε2ρ(2) + ...)(u(0)
z + εu(1)

z + ε2u(2)
z + ...)

]

= 0

=⇒
1

r

∂

∂r

[

r
(

ρ(0)u(0)
r + ερ(0)u(1)

r + ε2ρ(0)u(2)
r + ερ(1)u(0)

r + ε2ρ(1)u(1)
r + ε2ρ(2)u(0)

r

)]
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+
∂

∂z

[(

ρ(0)u(0)
z + ερ(0)u(1)

z + ε2ρ(0)u(2)
z + ερ(1)u(0)

z + ε2ρ(1)u(1)
z + ε2ρ(2)u(0)

z

)]

+ O(ε3 ) = 0

=⇒
1

r

∂

∂r

[

rρ(0)u(0)
r + εr

(

ρ(0)u(1)
r + ρ(1)u(1)

r

)

+ ε2r
(

ρ(0)u(2)
r + ρ(1)u(1)

r + ρ(2)u(0)
r

)]

+
∂

∂z

[

ρ(0)u(0)
z + ε

(

ρ(0)u(1)
z + ρ(1)u(0)

z

)

+ ε2
(

ρ(0)u(2)
z + ρ(1)u(1)

z + ρ(2)u(0)
z

)]

+ O(ε3 ) = 0

Thus we get:

Zero - order

1

r

∂

∂r

(

rρ(0)u(0)
r

)

+
∂

∂z

(

ρ(0)u(0)
z

)

= 0

First - order

1

r

∂

∂r

[

r
(

ρ(0)u(1)
r + ρ(1)u(0)

r

)

+
∂

∂z

(

ρ(0)u(1)
z + ρ(1)u(0)

z

)

]

= 0

Second - order

1

r

∂

∂r

[

r
(

ρ(0)u(2)
r + ρ(1)u(1)

r + ρ(2)u(0)
r

)]

+
∂

∂z

[

ρ(0)u(2)
z + ρ(1)u(1)

z + ρ(2)u(0)
z

]

= 0

z-component of the momentum equation

Substituting into

αReρ

(

ur
∂uz

∂r
+ uz

∂uz

∂z

)

= −8
∂P

∂z
+ α2 ∂2uz

∂z2
+

1

r

∂

∂r

(

r
∂uz

∂r

)

+α2
(

χ +
1

3

)

[

∂

∂z

(

1

r

∂

∂r

(

r
∂uz

∂r

))

+
∂2uz

∂z2

]

we get

αRe
(

ρ(0) + ερ(1) + ε2ρ(2) + ...
)

[

(

u(0)
r + εu(1)

r + ε2u(2)
r + ...

) ∂

∂r

(

u(0)
z + εu(1)

z + ε2u(2)
z + ...

)

+
(

u(0)
z + εu(1)

z + ε2u(2)
z + ...

) ∂

∂z

(

u(0)
z + εu(1)

z + ε2u(2)
z + ...

)

]

= −8
∂

∂z

(

P (0) + εP (1) + ε2P (2) + ...
)

+
1

r

∂

∂r

(

r
∂

∂r

(

u(0)
z + εu(1)

z + ε2u(2)
z + ...

)

)

+α2 ∂2

∂z2

(

u(0)
z + εu(1)

z + ε2u(2)
z + ...

)
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+α2
(

χ +
1

3

)

{

∂

∂z

[

1

r

∂

∂r

(

r
(

u(0)
r + εu(1)

r + ε2u(2)
r + ...

))

]

+
∂2

∂z2

(

u(0)
z + εu(1)

z + ε2u(2)
z + ...

)

}

=⇒

αRe
(

ρ(0) + ερ(1) + ε2ρ(2)
)

[(

u(0)
r

∂u
(0)
z

∂r
+ u(0)

z

∂u
(0)
z

∂z

)

+ε

(

u(0)
r

∂u
(1)
z

∂r
+ u(1)

r

∂u
(0)
z

∂r
+ u(0)

z

∂u
(1)
z

∂z
+ u(1)

z

∂u
(0)
z

∂z

)

+ ε2

(

u(0)
r

∂u
(2)
z

∂r
+ u(1)

r

∂u
(1)
z

∂r
+ u(2)

r

∂u
(0)
z

∂r
+ u(0)

z

∂u
(2)
z

∂z
+ u(1)

z

∂u
(1)
z

∂z
+ u(2)

z

∂u
(0)
z

∂z

)]

= −8
∂

∂z

(

P (0) + εP (1) + ε2P (2)
)

+ α2 ∂2

∂z2

(

u(0)
z + εu(1)

z + ε2u(2)
z

)

+
1

r

∂

∂r

[

r
∂

∂r

(

u(0)
z + εu(1)

z + ε2u(2)
z

)

]

+α2
(

χ +
1

3

)

{[

∂

∂z

(

1

r

∂

∂r

(

ru(0)
r

)

+
∂2u

(0)
z

∂z2

)]

+ ε

[

∂

∂z

(

1

r

∂

∂r

(

ru(1)
r

)

+
∂2u

(1)
z

∂z2

)]

+ε2

[

∂

∂z

(

1

r

∂

∂r

(

ru(2)
r

)

+
∂2u

(2)
z

∂z2

)]}

+ O(ε3 )

By collecting terms of equal order we get:

Zero - order

αReρ(0)

[

u(0)
r

∂u
(0)
z

∂r
+ u(0)

z

∂u
(0)
z

∂z

]

= −8
∂P (0)

∂z
+ α2 ∂2u

(0)
z

∂z2
+

1

r

∂

∂r

(

r
∂u

(0)
z

∂r

)

+α2
(

χ +
1

3

)

[

∂

∂z

(

1

r

∂

∂r

(

ru(0)
z

)

)

+
∂2u

(0)
z

∂r

]

First - order

αReρ(1)

[

u(0)
r

∂u
(0)
z

∂r
+ u(0)

z

∂u
(0)
z

∂z

]

+ αReρ(0)

[

u(0)
r

∂u
(1)
z

∂r
+ u(1)

r

∂u
(0)
z

∂r
+ u(0)

z

∂u
(1)
z

∂z
+ u(1)

z

∂u
(0)
z

∂z

]

= −8
∂P (1)

∂z
+ α2 ∂2u

(1)
z

∂z2
+

1

r

∂

∂r

(

r
∂u

(1)
z

∂r

)

+ α2
(

χ +
1

3

)

[

∂

∂z

(

1

r

∂

∂r

(

ru(1)
z

)

)

+
∂2u

(1)
z

∂z2

]

Second - order

αReρ(2)

[

u(0)
r

∂u
(0)
z

∂r
+ u(0)

r

∂u
(0)
z

∂z

]

+ αReρ(1)

[

u(0)
r

∂u
(1)
z

∂r
+ u(1)

r

∂u
(0)
z

∂r
+ u(0)

z

∂u
(1)
z

∂z
+ u(1)

z

∂u
(0)
z

∂z

]

+αReρ(0)

[

u(0)
r

∂u
(2)
z

∂r
+ u(1)

r

∂u
(1)
z

∂r
+ u(0)

r

∂u
(1)
z

∂r
+ u(0)

z

∂u
(2)
z

∂z
+ u(1)

z

∂u
(1)
r

∂z
+ u(2)

z

∂u
(0)
z

∂z

]
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= −8
∂P (2)

∂z
+ α2 ∂2u

(2)
z

∂z2
+

1

r

∂

∂r

(

r
∂u

(2)
z

∂r

)

+ α2
(

χ +
1

3

)

[

∂

∂z

(

1

r

∂

∂r

(

ru(2)
z

)

)

+
∂2u

(2)
z

∂z2

]

r-component of the momentum equation

By substituting into

α3Reρ

(

ur
∂ur

∂r
+ uz

∂ur

∂z

)

= −8
∂P

∂r
+ α4 ∂2ur

∂z2
+ α2 ∂

∂r

(

1

r

∂

∂r
(rur)

)

+α2
(

χ +
1

3

)

[

∂

∂r

(

1

r

∂

∂r
(rur)

)

+
∂2uz

∂r∂z

]

we get

α3Re
(

ρ(0) + ερ(1) + ε2ρ(2) + ...
)

[

(

u(0)
r + εu(1)

r + ε2u(2)
r + ...

) ∂

∂r

(

u(0)
r + εu(1)

r + ε2u(2)
r + ...

)

+
(

u(0)
z + εu(1)

z + ε2u(2)
z + ...

) ∂

∂z

(

u(0)
r + εu(1)

r + ε2u(2)
r + ...

)

]

= −8
∂

∂r

(

P (0) + εP (1) + ε2P (2) + ...
)

+ α4 ∂2

∂z2

(

u(0)
r + εu(1)

r + ε2u(2)
r + ...

)

+α2 ∂

∂r

(

1

r

∂

∂r
r

(

u(0)
r + εu(1)

r + ε2u(2)
r + ...

)

)

+α2
(

χ +
1

3

)

[

∂

∂r

(

1

r

∂

∂r
r

(

u(0)
r + εu(1)

r + ε2u(2)
r + ...

)

)

+
∂2

∂r∂z

(

u(0)
z + εu(1)

z + ε2u(2)
z + ...

)

]

=⇒

α3Re
(

ρ(0) + ερ(1) + ε2ρ(2)
)

[(

u(0)
r

∂u
(0)
r

∂r
+ u(0)

z

∂u
(0)
r

∂z

)

+ε

(

u(0)
r

∂u
(1)
r

∂r
+ u(1)

r

∂u
(0)
r

∂r
+ u(0)

z

∂u
(1)
r

∂z
+ u(1)

z

∂u
(0)
r

∂z

)

+ε2

(

u(0)
r

∂u
(2)
r

∂r
+ u(1)

r

∂u
(1)
r

∂r
+ u(2)

r

∂u
(0)
r

∂r
+ u(0)

z

∂u
(2)
r

∂z
+ u(1)

z

∂u
(1)
r

∂z
+ u(2)

z

∂u
(0)
r

∂z

)]

= −8
∂

∂r

(

P (0) + εP (1) + ε2P (2)
)

+ α4 ∂2

∂z2

(

u(0)
r + εu(1)

r + ε2u(2)
r

)

+α2 ∂

∂r

(

1

r

∂

∂r
r

(

u(0)
r + εu(1)

r + ε2u(2)
r

)

)

+α2
(

χ +
1

3

)

{[

∂

∂r

(

1

r

∂

∂r

(

ru(0)
r

)

)

+
∂2u

(0)
z

∂r∂z

]

+ ε

[

∂

∂r

(

1

r

∂

∂r

(

ru(1)
r

)

)

+
∂2u

(1)
z

∂r∂z

]

+ε2

[

∂

∂r

(

1

r

∂

∂r

(

ru(2)
r

)

)

+
∂2u

(2)
z

∂r∂z

]}

+ O(ε3 )
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Thus we have:

Zero - order

α3Reρ(0)

[

u(0)
r

∂u
(0)
r

∂r
+ u(0)

z

∂u
(0)
r

∂z

]

= −8
∂P (0)

∂r
+ α4 ∂2u

(0)
r

∂z2
+ α2 ∂

∂r

(

1

r

∂

∂r
(rur)

)

+α2
(

χ +
1

3

)

[

α2 ∂

∂r

(

1

r

∂

∂r
(ru(0)

r )

)

∂2u
(0)
z

∂r∂z

]

First - order

α3Reρ(1)

[

u(0)
r

∂u
(0)
r

∂r
+ u(0)

z

∂u
(0)
r

∂z

]

+α3Reρ(0)

[

u(0)
r

∂u
(1)
r

∂r
+ u(1)

r

∂u
(0)
r

∂r
+ u(0)

z

∂u
(1)
r

∂z
+ u(1)

z

∂u
(0)
r

∂z

]

= −8
∂P (1)

∂r
+α4 ∂2u

(1)
r

∂z2
+α2 ∂

∂r

(

1

r

∂

∂r
(ru(1)

r )

)

+α2
(

χ +
1

3

)

(

α2 ∂

∂r

(

1

r

∂

∂r
(ru(1)

r )

)

+
∂2u

(1)
z

∂r∂z

)

Second - order

α3Reρ(2)

[

u(0)
r

∂u
(0)
r

∂r
+ u(0)

z

∂u
(0)
r

∂z

]

+α3Reρ(1)

[

u(0)
r

∂u
(1)
r

∂r
+ u(1)

r

∂u
(0)
r

∂r
+ u(0)

z

∂u
(1)
r

∂z
+ u(1)

z

∂u
(0)
r

∂z

]

+α3Reρ(0)

[

u(0)
r

∂u
(2)
r

∂r
+ u(1)

z

∂u
(1)
r

∂r
+ u(0)

r

∂u
(1)
r

∂r
+ u(0)

r

∂u
(2)
r

∂r
+ u(0)

z

∂u
(2)
r

∂z
+ u(1)

z

∂u
(1)
r

∂z
+ u(2)

z

∂u
(0)
r

∂z

]

= −8
∂P (2)

∂r
+α4 ∂2u

(2)
r

∂z2
+α2α2 ∂

∂r

(

1

r

∂

∂r
(ru(2)

r )

)

+α2
(

χ +
1

3

)

[

α2 ∂

∂r

(

1

r

∂

∂r
(ru(2)

r )

)

+
∂2u

(2)
z

∂r∂z

]

Zero-order solution

Using the zero-order equation of state,

ρ(0) = 1, (B.6)

and the continuity equation,

1

r

∂

∂r

[

rρ(0)u(0)
r

]

+
∂

∂z

[

ρ(0)u(0)
z

]

= 0, (B.7)

and assuming that

u(0)
r (z, r) = 0 (B.8)
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we find that

u(0)
z = u(0)

z (r) (B.9)

Now, from the r-component of the momentum equation

α3Reρ(0)

[

u(0)
r

∂u
(0)
r

∂r
+ u(0)

z

∂u
(0)
r

∂z

]

= −8
∂P (0)

∂r
+ α4 ∂2u

(0)
r

∂z2
+ α2 ∂

∂r

(

1

r

∂

∂r
(rur)

)

+α2
(

χ +
1

3

)

[

α2 ∂

∂r

(

1

r

∂

∂r
(ru(0)

r )

)

∂2u
(0)
z

∂r∂z

]

and Eqs. (B.6)-(B.9) we find that the pressure is a function of z only

P (0) = P (0)(z) (B.10)

Substituting into the z-momentum equation

αReρ(0)

[

u(0)
r

∂u
(0)
z

∂r
+ u(0)

z

∂u
(0)
z

∂z

]

= −8
∂P (0)

∂z
+ α2 ∂2u

(0)
z

∂z2
+

1

r

∂

∂r

(

r
∂u

(0)
z

∂r

)

+α2
(

χ +
1

3

)

[

∂

∂z

(

1

r

∂

∂r

(

ru(0)
z

)

)

+
∂2u

(0)
z

∂r

]

we get

8
∂P (0)

∂z
=

1

r

∂

∂r

(

r
∂u

(0)
z

∂r

)

= c (B.11)

where c is a constant to be determined. Integrating the resulting ODEs and applying the

boundary conditions P (0)(0)=1 and P (0)(1)=0 for P (z) we obtain the zero-order solution for

the pressure, which reads:

P (0) = 1 − z (B.12)

From equations (B.11) and (B.12) we have

−8 =
1

r

∂

∂r

(

r
∂u

(0)
z

∂r

)

.

By integrating twice and applying the conditions ∂u
(0)
z /∂r(0)=0 and u

(0)
z (1)=0 we obtain the

zero-order solution for the velocity

u(0)
z = 2(1 − r2) (B.13)
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Summarizing, the zero-order solution is as follows:

ρ(0) = 1 (B.14)

u(0)
r = 0 (B.15)

u(0)
z = 2(1 − r2) (B.16)

P (0) = 1 − z (B.17)

The assumptions we have used are:

∂u(0)
z /∂r(0) = u(0)

z (1) = 0

u(0)
r (z, r) = 0

P (0)(0) = 1, P (0)(1) = 0

First-order solution

From the equation of state we obtain,

ρ(1) = P (0)(z) =⇒ ρ(1) = 1 − z. (B.18)

Now, from the continuity equation

1

r

∂

∂r

(

rρ(0)u(0)
r

)

+
∂

∂z

(

ρ(0)u(0)
z

)

= 0

Substituting the zero-order variables, ρ(0)=1, u
(0)
r =0, u

(0)
z =2(1 − r2), assuming that

u
(1)
r =0 and integrating we get

u(1)
z = −2(1 − z)(1 − r2) + f(r) (B.19)

where the function f(r) is unknown. From the r-momentum equation

α3Reρ(1)

[

u(0)
r

∂u
(0)
r

∂r
+ u(0)

z

∂u
(0)
r

∂z

]
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+α3Reρ(0)

[

u(0)
r

∂u
(1)
r

∂r
+ u(1)

r

∂u
(0)
r

∂r
+ u(0)

z

∂u
(1)
r

∂z
+ u(1)

z

∂u
(0)
r

∂z

]

= −8
∂P (1)

∂r
+ α4 ∂2u

(1)
r

∂z2
+ α2 ∂

∂r

(

1

r

∂

∂r
(ru(1)

r )

)

+α2
(

χ +
1

3

)

(

α2 ∂

∂r

(

1

r

∂

∂r
(ru(1)

r )

)

+
∂2u

(1)
z

∂r∂z

)

(B.20)

using all the above results and integrating with respect to r, we get

P (1) =
1

4
α2(χ +

1

3
)(1 − r2) + g(z) (B.21)

where g(z) is an unknown function. Substituting in the r-momentum equation

αReρ(1)

[

u(0)
r

∂u
(0)
z

∂r
+ u(0)

z

∂u
(0)
z

∂z

]

+ αReρ(0)

[

u(0)
r

∂u
(1)
z

∂r
+ u(1)

r

∂u
(0)
z

∂r
+ u(0)

z

∂u
(1)
z

∂z
+ u(1)

z

∂u
(0)
z

∂z

]

= −8
∂P (1)

∂z
+ α2 ∂2u

(1)
z

∂z2
+

1

r

∂

∂r

(

r
∂u

(1)
z

∂r

)

+ α2
(

χ +
1

3

)

[

∂

∂z

(

1

r

∂

∂r

(

ru(1)
z

)

)

+
∂2u

(1)
z

∂z2

]

,

and separating variables we obtain the following two ODEs:

4α Re (1 − r2)2 − 1

r

∂

∂ r

(

r f ′(r)
)

= −8
∂ P (1)

∂ z
+

1

r

∂

∂ r

(

4r2(1 − z)
)

= c

where c is a constant to be determined. Integrating the first ODE twice gives

f(r) = αRe

(

r2 − 1

2
r4 +

1

9
r6

)

− 1

4
c1r

2 + c2 (B.22)

Applying f ′(0)=f(1)=0, we obtain

0 =
11

18
αRe − 1

4
c1 + c2 (B.23)

where c1 and c2 are contstants to be determined. By applying the condition
∫ 1
0 rf(r)dr=0

we also get

13

72
αRe − 1

16
c1 +

1

2
c2 = 0 (B.24)
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The constants c1 and c2 are determined by solving the linear system (B.23) and (B.24)

c1 = 2αRe and c2 = −1

9
αRe

Substituting now in Eq. (B.22) we find the function f(r)

f(r) = − 1

18
αRe(1 − r2)(2 − 7r2 + 24) (B.25)

and from Eq. (B.19) we obtain the first-order velocity component

u(1)
z = 2(1 − r2)

[

−(1 − z) − 1

36
α Re (2 − 7r2 + 2r4)

]

. (B.26)

From the z−momentum equation we find that

g(z) = −
(

1

4
αRe + 1

)

z +
1

2
z2 + κ

where κ is to be determined. By substituting in Eq. (B.21) and using P (1)(1, 1)=0, we get:

κ =
1

4
αRe +

1

2

Thus the solution for the pressure is

P (1) = −1

2
(1 − z)2 +

1

4
α Re (1 − z) +

1

4
α2

(

χ +
1

3

)

(1 − r2). (B.27)

Summarizing, again the first-order solution, reads:

ρ(1) = 1 − z (B.28)

u(1)
r = 0 (B.29)

u(1)
z = 2(1 − r2)

[

−(1 − z) − 1

36
α Re (2 − 7r2 + 2r4)

]

(B.30)

P (1) = −1

2
(1 − z)2 +

1

4
α Re (1 − z) +

1

4
α2

(

χ +
1

3

)

(1 − r2). (B.31)

The assumptions we have used are:

f ′(0) = f(1) =

∫ 1

0
rf(r)dr = 0
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u(1)
r (z, r) = 0

P (1)(1, 1) = 0

Second-order solution

For ρ(2) we simply have:

ρ(2) = P (1)(z, r) =⇒

ρ(2) = −1

2
(1 − z)2 +

1

4
α Re(1 − z) +

1

4
α2

(

χ +
1

3

)

(1 − r2). (B.32)

Now, from the continuity equation

1

r

∂

∂r

[

r
(

ρ(0)u(2)
r + ρ(1)u(1)

r + ρ(2)u(0)
r

)]

+
∂

∂z

[

ρ(0)u(2)
z + ρ(1)u(1)

z + ρ(2)u(0)
z

]

= 0,

we get:

u(2)
z = 3(1 − r2)(1 − z)2 − 1

2
α2

(

χ +
1

3

)

(1 − r2)2 +
1

r

∂

∂ r

(

ru(2)
r

)

(1 − z)

+
α Re

18
(1 − r2)(−7 − 7r2 + 2r4)(1 − z) + F (r) (B.33)

where F (r) is a function to be determined. At this point the assumption of zero transverse

velocity is relaxed. Letting ur to be a function of r, u
(2)
r =u

(2)
r (r), from the r-momentum

equation

α3Reρ(2)

[

u(0)
r

∂u
(0)
r

∂r
+ u(0)

z

∂u
(0)
r

∂z

]

+α3Reρ(1)

[

u(0)
r

∂u
(1)
r

∂r
+ u(1)

r

∂u
(0)
r

∂r
+ u(0)

z

∂u
(1)
r

∂z
+ u(1)

z

∂u
(0)
r

∂z

]

+α3Reρ(0)

[

u(0)
r

∂u
(2)
r

∂r
+ u(1)

z

∂u
(1)
r

∂r
+ u(0)

r

∂u
(1)
r

∂r
+ u(0)

r

∂u
(2)
r

∂r
+ u(0)

z

∂u
(2)
r

∂z
+ u(1)

z

∂u
(1)
r

∂z
+ u(2)

z

∂u
(0)
r

∂z

]

= −8
∂P (2)

∂r
+α4 ∂2u

(2)
r

∂z2
+α2α2 ∂

∂r

(

1

r

∂

∂r
(ru(2)

r )

)

+α2
(

χ +
1

3

)

[

α2 ∂

∂r

(

1

r

∂

∂r
(ru(2)

r )

)

+
∂2u

(2)
z

∂r∂z

]

we get

8
∂P (2)

∂r
= α2

(

χ +
4

3

)

∂

∂r

(

1

r

∂

∂r

(

ru(2)
r

)

)

+ α2
(

χ +
1

3

)

∂

∂r

(

∂u
(2)
z

∂r

)
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Integrating with respect to r we get the following expression for the pressure

P (2) =
1

8
α2

(

1

r

∂ (ru
(2)
r )

∂ r

)

− 3

4
α2

(

χ +
1

3

)

(1 − r2)(1 − z)

− 1

144
α3Re

(

χ +
1

3

)

(1 − r2)(−7 − 7r2 + 2r4) + G(z) (B.34)

where G(z) is a function to be determined. Combining the z−momentum equation

αReρ(2)

[

u(0)
r

∂u
(0)
z

∂r
+ u(0)

r

∂u
(0)
z

∂z

]

+ αReρ(1)

[

u(0)
r

∂u
(1)
z

∂r
+ u(1)

r

∂u
(0)
z

∂r
+ u(0)

z

∂u
(1)
z

∂z
+ u(1)

z

∂u
(0)
z

∂z

]

+αReρ(0)

[

u(0)
r

∂u
(2)
z

∂r
+ u(1)

r

∂u
(1)
z

∂r
+ u(0)

r

∂u
(1)
z

∂r
+ u(0)

z

∂u
(2)
z

∂z
+ u(1)

z

∂u
(1)
r

∂z
+ u(2)

z

∂u
(0)
z

∂z

]

= −8
∂P (2)

∂z
+ α2 ∂2u

(2)
z

∂z2
+

1

r

∂

∂r

(

r
∂u

(2)
z

∂r

)

+ α2
(

χ +
1

3

)

[

∂

∂z

(

1

r

∂

∂r

(

ru(2)
z

)

)

+
∂2u

(2)
z

∂z2

]

,

with the following results

ρ(1)u(0)
z

∂u
(1)
z

∂z
= 4(1 − z)(1 − r2)2

u(0)
z

∂u
(2)
z

∂z
= −12(1− z)(1− r2)2 − 1

9
αRe(−7+7r2 +9r4 − 11r6 +2r8)− 2(1− r2)

1

r

∂

∂r

(

ru(2)
r

)

u(1)
z

∂u
(1)
z

∂z
= −4(1 − z)(1 − r2)2 − 1

9
αRe(2 − 11r2 + 18r4 − 11r6 + 2r8)

leads to:

α Re

[

−4ru(2)
r − 12(1 − r2)2(1 − z) − 2(1 − r2)

(

1

r

∂ (ru
(2)
r )

∂ r

)

+
1

9
α Re(1 − r2)2(−4r4 + 14r2 + 5)

]

= 6α2(1−r2)−1

2
α2

(

χ +
1

3

)

(−8+16r2)−8G′(z)−12(1−z)2+
1

r

∂

∂r

(

r
∂

∂r

(

ru(2)
r

)

)

(1−z)

+
1

r

∂

∂ r
(rF ′(r)) + 4α Re r2(2 − r2)(1 − z). (B.35)

In order to have separable variables, it is assumed that the terms involving both z and r must

be equal to a constant:

4αRer2(2 − r2) +
1

r

∂

∂r

(

r
∂

∂r

(

ru(2)
r

)

)

+ 12αRe(1 − r2)2 = 4α Reγ. (B.36)
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where γ is new constant to be determined. Integrating the above expression with respect to

r and assuming that ∂
(

ru
(2)
r

)

/∂r(0) = 0 lead to

1

r

∂

∂r

(

ru(2)
r

)

=
1

9
αRe

(

9(γ − 3)r2 + 9r4 − 2r6 + γ1

)

(B.37)

Integrating once more and using the boundary condition u
(2)
r (0, z)=0, we get

u(2)
r =

1

36
αRe

(

9(γ − 3)r3 + 6r5 − r7 + 2γ1r
)

(B.38)

Finally using the following boundary conditions ∂u
(2)
r /∂r(1)=u

(2)
r (1)=0 we get the system

27γ + 2γ1 = 58

9γ + 2γ1 = 22



















(B.39)

which is easily solved yielding

γ = γ1 = 2

Thus, the transverse velocity component reads

u(2)
r =

1

36
α Re r (1 − r2)2(4 − r2). (B.40)

and from Eq. (B.37) becomes:

1

r

∂

∂r

(

ru(2)
r

)

=
1

9
αRe

(

−9r2 + 9r4 − 2r6 + 2
)

(B.41)

Now, from Eqs. (B.33) and (B.41) we get:

u(2)
z = 2(1 − r2)

[

3

2
(1 − z)2 − 1

12
αRe(1 + 7r2 − 2r4)(1 − z)

]

−1

2
α

(

χ +
1

3

)

(1 − r2)2 + F (r) (B.42)

Separating variables in Eq. (B.35) gives the following ODEs for F (r) and G(x):

αRe

[

−4ru(2)
r − 2(1 − r2)

(

1

r

∂ (ru
(2)
r )

∂ r

)

− 1

9
α Re(−5 − 4r2 + 27r4 − 22r6 + 4r8)

]
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−6α2(1 − r2) +
α2

2

(

χ +
1

3

)

(−8 + 16r2) − 1

r

∂

∂ r
(rF ′(r)) = A (B.43)

and

−8G′(z) − 12(1 − z)2 + 4α Re γ(1 − z) = A. (B.44)

where A is another constant to be determined. Integrating Eq. (B.37) once and applying the

condition F ′(0)=0, we obtain

F ′(r) = −1

2
Ar − 3

2
α2r(2 − r2) + 2α2

(

χ +
1

3

)

(−1 + r2)

+
1

9
α2Re2

(

1

2
r − 11

2
r3 − 9r5 +

19

4
r7 − 7

10
r9

)

Integrating once more we get

F (r) = −1

4
Ar2 − 3

8
α2r2

(

4 − r2
)

+
1

2
α2

(

χ +
1

3

)

(−2r2 + r4)

+
1

9
α2Re2

(

1

4
r2 +

11

8
r4 − 3

2
r6 +

19

32
r8 − 7

100
r10

)

+ c1 (B.45)

where c1 is a constant to be determined. By applying the condition F (1)=0 we have

0 = −1

4
A − 9

8
α2 − 1

2
α2

(

χ +
1

3

)

+
519

7200
α2Re2 + c1 (B.46)

Apply the condition
∫ 1
0 rF (r)dr=0 gives

−1

4
A − 5

4
α2 − 2

3
α2

(

χ +
1

3

)

+
757

10800
α2Re2 + 2c1 = 0 (B.47)

Solving the system of Eqs. (B.46) and (B.47) we find the constants

A = −4α2 − 4

3
α2

(

χ +
1

3

)

+
2

27
α2Re2 (B.48)

and

c1 =
1

8
α2 +

1

6
α2

(

χ +
1

3

)

− 43

21600
α2Re2 (B.49)

By substituting Eqs. (B.48) and (B.49) in Eq. (B.45) we obtain

F (r) =
α2 Re2

9

(

43

2400
− 5

12
r2 +

11

8
r4 − 3

2
r6 +

19

32
r8 − 7

100
r10

)
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+α2
(

1

8
− 1

2
r2 +

3

8
r4

)

+ α2
(

χ +
1

3

) (

−2

3
r2 +

1

2
r4 +

1

6

)

(B.50)

Thus axial velocity component becomes

u(2)
z = 2(1 − r2)

[

3

2
(1 − z)2 − 1

6
α2

(

χ +
1

3

)

− 1

12
α Re(1 + 7r2 − 2r4)(1 − z)

+
1

16
α2(1 − 3r2) +

1

43200
α2 Re2(43 − 957r2 + 2343r4 − 1257r6 + 168r8)

]

(B.51)

Integrating now Eq. (B.44) and substituting A under the condition P (2)(1, 1)=0 we obtain

G(z) =
1

2
(1−z)3− 1

2
α2(1−z)− 1

2
αRe(1−z)2− 1

27
α2Re2(1−z)− 1

6
α2

(

χ +
1

3

)

(1−z) (B.52)

Thus, the pressure is given by

P (2) =
1

2
(1−z)3− 1

12
α2

(

χ +
1

3

)

(11−9r2)(1−z)−1

2
αRe(1−z)2−1

2
α2(1−z)

+
1

27
α2Re2(1−z)+

1

144
α3 Re(1− r2)

[

(4 − 14r2 + 4r4) +

(

χ +
1

3

)

(7 + 7r2 − 2r4)

]

. (B.53)

Thus, the second order solution reads:

ρ(2) = −1

2
(1 − z)2 +

1

4
α Re(1 − z) +

1

4
α2

(

χ +
1

3

)

(1 − r2) (B.54)

u(2)
r =

1

36
α Re r (1 − r2)2(4 − r2) (B.55)

u(2)
z = 2(1 − r2)

[

3

2
(1 − z)2 − 1

6
α2

(

χ +
1

3

)

− 1

12
α Re(1 + 7r2 − 2r4)(1 − z) +

1

16
α2(1 − 3r2)

+
1

43200
α2 Re2(43 − 957r2 + 2343r4 − 1257r6 + 168r8)

]

(B.56)

P (2) =
1

2
(1 − z)3 − 1

12
α2

(

χ +
1

3

)

(11 − 9r2)(1 − z) − 1

2
α Re(1 − z)2

− 1

2
α2(1 − z) +

1

27
α2Re2(1 − z)

+
1

144
α3 Re(1 − r2)

[

(4 − 14r2 + 4r4) +

(

χ +
1

3

)

(7 + 7r2 − 2r4)

]

. (B.57)

The assumptions we have used are:

F (1) =

∫ 1

0
rF (r)dr = 0
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u(2)
r = u(2)

r (r), ∂
(

ru(2)
r

)

/∂r(0) = u(2)
r (0, z) = ∂u(2)

r /∂r(1) = u(2)
r (1) = 0

P (2)(1, 1) = 0

The solution of the flow up to the second order is as follows:

ρ = 1 + ε(1 − z)

+ε2
[

−1

2
(1 − z)2 +

1

4
α Re(1 − z) +

1

4
α2

(

χ +
1

3

)

(1 − r2)

]

+ O(ε3 ) (B.58)

ur =
1

36
ε2α Re r (1 − r2)2(4 − r2) + O(ε3 ) (B.59)

uz = 2(1 − r2)

[

1 − ε(1 − z) − 1

36
εα Re(2 − 7r2 + 2r4) +

3

2
ε2(1 − z)2

− 1

12
ε2α Re(1 + 7r2 − 2r4)(1 − z) +

1

16
ε2α2(1 − 3r2) − 1

6
ε2α2

(

χ +
1

3

)

+
1

43200
ε2α2 Re2(43 − 957r2 + 2343r4 − 1257r6 + 168r8)

]

+ O(ε3 ) (B.60)

P = (1 − z) − 1

2
ε (1 − z)2 +

1

4
ε α Re (1 − z)

+
1

4
ε α2

(

χ +
1

3

)

(1 − r2) +
1

2
ε2(1 − z)3

− 1

12
ε2α2

(

χ +
1

3

)

(11 − 9r2)(1 − z)

−1

2
ε2α Re(1 − z)2 − 1

2
α2(1 − z) +

1

27
ε2α2Re2(1 − z)

+
1

144
ε2α3 Re(1 − r2)

[

(4 − 14r2 + 4r4) +

(

χ +
1

3

)

(7 + 7r2 − 2r4)

]

+ O(ε3 ). (B.61)
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Modélisation du glissement macroscopique à la paroi, C.R. Acad. Sci. Paris Série II 309

(1989) 7-9.

[22] N. El Kissi, J.M. Piau, The different capillary flow regimes of entangled polydimethyl-

siloxane polymers: Macroscopic slip at the wall, hysteresis and cork flow, J. Non-Newtonian

Fluid Mech. 37 (1990) 55-94.
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