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Abstract

In this thesis we have studied weakly compressible Newtonian and generalized Newtonian
flows using numerical and perturbation solutions, which have become very important in the
field of computational rheology. In the past two decades laminar Poiseuille flows of weakly
compressible materials have gained interest due to the importance of compressibility in many
processes involving liquid flows in relatively long tubes, such as waxy crude oil transport,
injection molding and polymer extrusion. Several numerical solutions of weakly compressible
Poiseuille flows have already been reported for Newtonian fluids, generalized Newtonian fluids,

such as the Carreau fluid and the Bingham plastic, as well as for viscoelastic fluids.

First we have numerically studied the time-dependent compressible extrusion of a Carreau
fluid in the full reservoir-capillary-extrudate geometry using finite elements. The objective
was to investigate the validity of the compressibility/slip mechanism proposed for the stick-
slip polymer extrusion instability. We assumed that slip occurs along the die wall following
a nonmonotonic slip law that is based on experimental measurements on polyethylene melts.
Our results demonstrate that the combination of compressibility and nonlinear slip leads
to self-sustained oscillations of the pressure drop and of the mass flow rate in the unstable
regime of the flow curve. The effects of the reservoir volume, the imposed flow rate, and the

capillary length on the amplitude and the frequency of the pressure and free surface oscil-



lations have been studied and our findings were consistent with experimental observations.
The period of the pressure and flow rate oscillations was found to increase linearly with the
reservoir length, while their amplitudes and waveforms are fairly constant. The period of the
pressure oscillations, when plotted versus the reservoir volume, appears to pass through the
origin which is not the case with extrapolated experimental data. In agreement with certain
experiments, the period of the pressure oscillations passes through a minimum, when this is

plotted versus the imposed volumetric flow rate.

We have also solved numerically the axisymmetric and plane extrudate swell flows of a
strongly compressible Newtonian fluid and studied the effects of the compressibility and
the equation of state, slip, geometry, and inertia on the expansion of the jet. Compressibility
effects were investigated using both a linear and an exponential equation of state. The nu-
merical results confirm previous reports that the swelling of the extrudate decreases initially
as the compressibility of the fluid is increased and then increases considerably together with
the angle of separation of the jet. Our simulations revealed for the first time that in the case
of non-zero inertia, high compressibility was found to lead to a contraction of the extrudate
after the initial expansion and then to decaying free surface oscillations. The time-dependent
calculations showed that these oscillatory steady-state solutions are stable and insensitive to

the length of the extrudate region and the boundary condition along the capillary wall.

The perturbation solutions for the planar and axisymmetric Poiseuille flows of weakly com-
pressible Newtonian fluids with constant shear and bulk viscosities have also been solved up
to the second-order. A linear equation of state has been employed and a perturbation analysis
of the primary variables is performed using compressibility as the perturbation parameter.
The effects of compressibility, the bulk viscosity, the aspect ratio, and the Reynolds number
on the velocity and pressure fields were studied and comparisons were made with available

vi



analytical results.

Finally we have derived approximate semi-analytical solutions of the steady, creeping, weakly
compressible two-dimensional plane and axisymmetric Poiseuille flows of a Herschel-Bulkley
fluid. The effects of compressibility have been taken into account by means of a linear and an
exponential equation of state. Both equations of state gave similar predictions for sufficiently
low compressibility numbers and/or for short tube. Under the assumption of zero transverse
velocity, the pressure distribution along the flow direction was first calculated by means of
numerical integration and the two-dimensional axial velocity was then be constructed. The
effects of compressibility, equation of state, the Bingham number and the power-law exponent
on the solutions were investigated. In particular it has been demonstrated that the pressure
required to drive the flow for a given tube length is reduced with compressibility and the
two-dimensional axial velocity is characterized by plug-like regions the size of which increases

upstream, in agreement with more sophisticated two-dimensional numerical simulations .
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IHEPIAHYH

Xt mopovoa daTpiPn peretnoape pe opOuntikég nebddovg Ko pebBoddovg datapoymdv achevmg
ovumeotég NevTdOVELEG Kl YEVIKELUEVEG NEVTMVELEG POEC, Ol OMOIEC EXOVV KATOOTEL OMUAVTIKEG
TNV TEPLOYN TNS LIOAOYIOTIKNG peoroyioc. Tig tedevtaieg 6v0 dekaeties, ol oTpwTEG poéc Poiseuille
000EVMDG CLUTIEGTMOV VAMKMOV BpéOnKav 6TO EMIKEVTPO TOV EVOLAPEPOVTOG TOAADV EPEVLVITAOV, AOY®
NG ONUOGIOG TNG CUUTIEGTOTNTOS GE TOAAEG OlEPYOTIES, Ol OTOlEg TEPIAAUPAVOLY POEC GE GYETIKA
HEYAAOL PNMKOVS Oy®YoDs, OTMG 1 UETOPOPA OPYOL TETPEAAIOV, 1 TLTOMOINGT TOAVUEPDV HECH
gyyoong, Kot M eKPoir TOALUEPDV. APKETEG aplOUNTIKEG AVOELS Yo 0GOEVADC GUUMIESTES POEC
Poiseuille éyovv o avaeepbel ot Piproypagio yioo Nevtovela, yevikevpévo Nevtmvela, yio

noapddetypa ta pevotd Carreau kot to Aotk Bingham, kaOdg kot yio 1E@doelactikd pevoTd.

Apyikd, peretnoope aplOuntikd v ypovoueTafairopevn coumiesty ekPoAn pevotov Carreau oe
OM0 10 TEdio pong mov TEPAAUPAVEL TN deEAUEVT TPOPOOOGING, TOV TPLYOELDN Ay®mYS Kot TO £KPolo,
YPNOLOTOIDVTAG TV HEB0SO TV Temepacuévey ototyeimv. O oTtdY0c fTav 1 depehvnon TG 1oxH0g
TOV PUNYOVIGHOD GUUTESTOTNTAC/0AIGONONG 6T Aeyduevn aotdbeia pun-oAicOnong/oricOnong (stick-
slip instability) mov mapatnpeitar katd v ekfoAn moAvpepmv. Yrobécaue 6t vidpyel olMcOnon
TOV PEVGTOV GTA TOUYMLOTO TOV TPLYOELO0VE 1) 0TToia LITOKOVEL o U povotovn e€lowon ohMoOnong,
nov gival Paciopévn og TEPARATIKES LETPAOELS Le THYHOTA ToAvatfvAieviov. Ta amoteAéopoTd pag
delyvouv 6Tl 0 OULVOLOOUOG OCULUTIEGTOTNTOS KOl U1 YPOUMKNG OAioOnong oonysl oe
OLTOGLVTPOVUEVEG TAAAVIDGELS TNG Pobpidag mieons Kot TG OYKOUETPIKNG TAPOYNS GTNV ooTadn
TEPLOYN TNG KOUTOANG pONG. MEAETAOAE CLGTNUOTIKA TIC EMOPACELS TOV OYKOV TNG OEEAUEVNC, TNG
EMPAALOUEVNG OYKOUETPIKNG TOPOYNG, KOL TOV UNKOLG TOV 0y@yoh GTO TAATOG KOl Tr cuyvOTNnTo
TOV TOAOVTOCE®V TNG TECTG Kot TNG EAEVOEPNC EMPAVELNG KOl TOL EVPNUATA OIS CLHPOVOVY YEVIKA
HE TIG TEWPOUATIKEG Tapatnpnoels. Me Baon Tig aplOuntikés Lo TPOCOUOLDCELS. 1 TEPIOSOS TV
TOAOVTIOGE®V TNG TEONG KOl TNG OYKOUETPIKNG TOPOYNG GLEAVETAL YPOUMKA UE TO UNKOG TNG
de€apevig, eved Tor TAATN KOl Ol KUUATOROPPES TapapUévouy oxeddv auetdfintes. H mepiodog tmv
TOAOVTOGE®V TNG TEGNG GLVAPTNGEL TOV OYKOL NG de&apevig dEpeTaLl amd TV apy T®V aEOVOV
oe avtifeon LE TEWPAUOTIKEG UETPNOEIS. X€ CLUEMOVIOL UE OPIOUEVEG  TEIPUUATIKEG EPYOUCIES, M
ePlodoc TOV TAAOVTIDOGE®Y TNG TECNG CLVOPTNCEL NG EMPAALOUEVNG OYKOUETPIKNG TOPOYNG,

dépyeTon amd eAdy1oTO.

Enm\oape emiong apOuntikd v 0EOVOGLUUETPIKY KOU TNV EMIMESN pon OOTOANG ekPOAOL
(extrudate swell) woyvpd cvopmestdV NELTOVEIOV PELGTOV KOl LEAETHGOUE TO POLO TTOV TailovV GTN
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OlloTOA TOL ekParddpevoy midako 1 CLUTIESTOTNTA, | Katootatikn €&liowon, m oAicOnon, n
veopetpia, Kot 1 adpdvera. Ot emOPAGES TG GLUTIECTOTNTOS OLEPELVHONKAV XPNCLOTOLDOVTOS Lol
YpopK) kot po exfetikny kotaotatiky e€iocwon. To apOuntkd amotedéopata emiPefordvovy
TPOTYOVLEVEG OVAPOPES YLOL TNV OPYIKT Lelmon TNG SoTOANG TOV KBOAOV LE TN GUUTIEGTOTNTO KOl
™V &v ovveyela avénon g pall pe ) yovio dtoaympiopod Tov midaka. Ot TpocoUoIdGELS £d0e1&av
YL TPAOT POPA OTL GTNV TEPIMTOON UN-UNOEVIKOV QOPUVEINKDOV OPp®V, 1| VYNAY CUUTIEGTOTITO
odnyel g ONUAVTIKY] GLGTOAN TOL €kPOAOL Kol 6€ EBIVOLGEG TOAUVTIADGEL TNG EMPAVELNS TOV
exPforov, petd amd ™V apykn dtaoToAn tov. Ot ypovopetafailopevor vroloyiopol €deiéav OTL
VTG Ol TOAXVTOVUEVEG Pacikéc Aoelg eivat evotabelg kot oev emnpedloviot oVTe amd TO0 UNKOG TNG

TEPLOYNG TOV EKPOLOL OVTE AMO TIG CLVOPLIKES CLVONKES GTO TOTYWLLO TOV TPLYOELB0VS ay®YOV.

‘Eyxovpe, emiong emivoel pe v pébodo datapaymdv pExpt Kot Tovg Opovg devtepns TaENG TV
emimedn kor v aovoovuuetpikn pon Poiseuille acBevdg ocvumiectdv NeLTOVEIWV PELOTOV.
XPNOUOTOCOLE L0 YPOUUIKY] KOTOOTATIKY ££IGMOTN Kol EQAPUOCOUE TN HEOOOO dOTOPUYDV GTIC
TPOTUPYIKEG UETAPANTEG HE TAPAUETPO SATOPOYNG TN SvUTESTOTNTA. MeAeToaue TV Emidpaon
NG GLUTLEGTOTNTAS, TOV 1EMOOVG, TOV AGYOL HOPPNG, Kot Tov aplBuod Reynolds oty toyvtnto kot

NV TEDT, Ko KAVOUE GLYKPIoELS PE AALES O1BECILES AVOALTIKEG AVCELG.

Téhog, PprKape TPOCEYYIOTIKEG MUI-OVOALTIKEG ADGCELG Yo TNV OTACIUY, £PTOVcd, 00HEVDS
ocuumiectn dwdwdotatn eminedn kot aovoovpupetpikn por Poiseuille pgvotod mov vmakovel oty
kataotatikn eElowon twv Herschel-Bulkley. H enidpaon ¢ cvumieototrog Aeonke vroyn e m
XPNOT UG YPOUMKNG Kot piag ekBetikng kataotatikng eicoonc. Ot 600 avtég elomoelg divouv
TOPOUOL0, OTOTEAEGHLOTO GE YOUNAOD aplOIOVg GLUTIESTOTNTOG 1)/KOL Y10 KPO UNKOG oyawyol. Me
TNV TOPAd0YN UNOEVIKNG £YKAPOLOG TaYOTNTAG, 1] KOTOVOUY TNG TEONS KATE UAKOG TG pONG Umopel
VO VTOAOYIOTEL G° €vol TPMTO GTAO0 UE OPOUNTIK OAOKAPMOY| EMTPEMOVTAG GTY] GLVEXELN TNV
KOTOOKELN TNG KOTAVOUNG TNG O01d0TATNG aEoVIKNG TaxOTNTOC. MEAETNOAUE TIC EMNTMOOELS TNG
CLUTIESTOTNTOS, TOV 0p1Bpov Bingham kot tov ekBétn otig Aboeig. Ta amoteléopatd pog £dei&av
OTL 1 amOTOLUEVY TTiEaN Yo TNV dNUOLPYIL KOL GLVTHPNCT NG PONG G AY®YO SOCUEVOL UNKOLG
UELDOVETOL LE TN CLUMIESTOTNTA KO 1] O1dtdoTatn a&ovikn tayvTnTa Yopokmpiletor and epPforikég
neployés, 10 puEyebog tv omoimv avEdvetow oto avdvin, o€ cvoppovia pe mo eelntnuéveg

Ao TOTEG APIOUNTIKEG TPOCOUOIDGELG.
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Chapter 1

Introduction

Laminar Poiseuille flows of weakly compressible materials have gained interest in the past
two decades due to their applications in many processes involving liquid flows in relatively
long tubes, such as waxy crude oil transport [15, 90], injection molding [50] and polymer
extrusion [29, 32, 86]. Numerical solutions of weakly compressible Poiseuille flows have been
reported for Newtonian fluids [32], generalized Newtonian fluids [14, 35, 47, 55, 76, 86], such
as the Carreau fluid [29] and the Bingham plastic [90], as well as for viscoelastic fluids [6].

The compressibility-slip mechanism has been the most popular explanation for the stick-slip
polymer extrusion instability and is the only one consistent with experimental observations.
Georgiou and Crochet [32, 33] have tested the compressibility-slip mechanism in the Newto-
nian case for the Poiseuille and extrudate-swell flows with slip at the wall. By using com-
pressibility and a non-monotonic slip equation, they were able to model the self-sustained
pressure and flow rate oscillations observed in the experiments. The same mechanism has
been employed in various one-dimensional phenomenological models describing the pressure
and flow rate oscillations [30]. More recently, Georgiou [29] solved the time-dependent, com-

pressible, axisymmetric Poiseuille and extrudate-swell flows of a Carreau fluid with slip at the



wall, using finite elements in space and finite differences in time. Vinay et al. [90] examined
the numerical simulation of isothermal transient flows for a weakly compressible viscoplastic
fluid in an axisymmetric pipe geometry using the Bingham model.

As noted by Kwon [50] the effect of material compressibility plays a significant role quite often
in polymer processing. In modeling modern processing operations, such as injection molding
and high speed extrusion where pressure and flow rate are extremely high, the compressibility
of a viscoelastic liquid may have to be taken into account in order to accommodate various
flow phenomena. In formulating the Hadamard stability criteria for incompressible viscoelas-
tic liquids, he employed two classes of quasilinear differential and time-strain separable single
integral constitutive equations and demonstrated that the difference between stability prob-
lems of incompressible and compressible systems lies in the possibility of longitudinal wave
propagation.

Keshtiban et al. [47] also pointed out that low Mach number flows play an important role
both in nature and in industrial processing. In many technical applications, liquid flows may
exhibit significant compressibility effects. These authors introduced a hybrid element/finite
volume algorithm for Newtonian and viscoelastic weakly-compressible liquid flows at low
Mach number and Reynolds number under isothermal conditions. They pointed out that the
compressibility of viscoelastic liquids should be taken into account, in order to accommodate
flow phenomena, such as cavitation or flow instabilities. Also, in capillary rheometry, com-
pressibility effects may have a major impact upon the time-dependent pressure changes in
the system.

More recently, Tang and Kalyon [86] demonstrated the important role played by the com-
pressibility and wall slip in the simple shear flow by developing a mathematical model for the

time-dependent circular tube flow of compressible liquids subject to pressure-dependent slip



at the wall and applied to polydimethylsiloxane (PDMS) for which experimental data were
available.

Mitsoulis et al. [55] studied the transient capillary rheometry of compressible LLDPE melt,
experimentally and theoretically. They used different die designs to demonstrate the effect
of compressibility on the transient pressure distributions for wide range of shear rates. They
also reported that compressibility effects are important in understanding the pressure builds-
up in start-up capillary experiments of polymer melts.

Other contributions in the literature concerning weakly compressible flows of non-Newtonian
fluids are those of Cawkwell and Charles [14] for 1D compressible thixotropic viscoplastic
flows, Golay and Helluy [35] for viscous compressible flows and Silva and Coupez [76], and
Keshtiban et al. [47] for compressible viscoelastic flows. Finally, Davidson et al. [15] have
proposed a semi-analytical 1D approach to restart a pipeline filled with a compressible gelled
waxy crude oil.

To study the effects of compressibility, two alternative equations of state, a linear and an
exponential one, are most frequently used. At constant temperature and low pressures, the

density can be represented by the linear approximation

p=p [l +B(@—-p)l,

where = —(0V/0p)p,v/Vo is the isothermal compressibility assumed to be constant, V'
is the specific volume, pg and V| are, respectively, the density and the specific volume at a
reference pressure pg, and T is the temperature. The following exponential equation is also

used:

p = pyel@—po)
This is equivalent to the linear equation of state for sufficiently small values of § and low

pressures. A disadvantage of this equation is the fast growth of the density (for high values of
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B3). On the other hand, the linear model may lead to negative values of the density. Obviously
more sophisticated equations of state should be used for highly compressible flows.

A linear equation of state has been employed in previous numerical studies of the compress-
ible extrudate swell flow [10, 28], by Hatzikiriakos and Dealy [39] for a HDPE, and in previous
studies concerning the simulation of the stickslip extrusion instability [29, 32]. Exponential
equations of state have been employed, for example, by Ranganathan et al. [70] for a HDPE
and, more recently, by Vinay et al. [90], in simulations of weakly compressible Bingham flows.
Our objective in Chapter 2, is to simulate numerically the stick-slip extrusion instability. We
study the time-dependent, compressible extrusion of a Carreau fluid over the reservoir-die-
extrudate region, assuming that slip occurs along the die wall following a nonmonotonic slip
law that is based on the experimental measurements of Hatzikiriakos and Dealy [39, 40]. to
solve the governing equations, the finite element method is used in space and an implicit
Euler scheme is used in time. The effects of the reservoir volume and the imposed flow rate
on the pressure and flow rate oscillations are investigated and the numerical simulations are
compared with experimental observations.

In Chapter 3, the time-dependent extrusion of strongly compressible Newtonian liquids (such
as foams) is simulated using finite elements. To study the effects of compressibility, two al-
ternative equations of state, a linear and exponential one, are used. It is demonstrated that
compressibility affects significantly the swelling of the jet and leads to oscillatory steady-state
free surfaces.

In Chapter 4, the perturbation solutions of both the planar and axisymmetric Poiseuille flows
of weakly compressible Newtonian liquids are derived. Explicit analytical solutions for the
pressure, the density and the velocity are obtained up to the second order. A linear equa-

tion of state is assumed and a perturbation analysis of the primary flow is performed with



the compressibility number serving as the perturbation parameter. Results concerning the
effects of compressibility, the Reynolds number, the aspect ratio, and the bulk viscosity on
the velocity and pressure fields are presented and compared with available solutions in the
literature.

In Chapter 5, we approximately solve the plane and axisymmetric weakly compressible
Poiseuille flows of a Herschel-Bulkley fluid and investigate the effects of compressibility by
means of two different equations of state, i.e. a linear and exponential one. Analytical and
semi-analytical results are presented for both the incompressible and compressible flows of a
Herschel-Bulkley fluid, and the effects of yield stress on the yield point and the velocity are
discussed.

Finally in Chapter 6, the conclusions of this thesis are summarized and suggestions for future

work are provided.



Chapter 2

A two-dimensional numerical study

of the stick-slip extrusion instability

2.1 Introduction

Among the various types of polymer extrusion instabilities, the stick-slip instability is the
only one that is associated with pressure oscillations at constant throughput, i.e. at constant
piston speed in the reservoir region![30]. The instantaneous flow rate at the capillary exit is
also oscillatory and the extrudate emerges from the capillary in bursts, and is characterized
by alternating rough and relatively smooth zones. It is well known that the pressure and
flow rate oscillations follow the stable branches of the apparent flow curve, i.e. the plot of
the wall shear stress, oy, versus the apparent shear rate, v4, as shown in Fig. 2.1.

The apparent wall shear rate is calculated from the volumetric flow rate () as follows:

32
™ D3’

O

YA =

!Some of the results presented in this chapter appear also in References [78, 79, 80, 82].
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Figure 2.1: Schematic of an apparent flow curve and the stick-slip regime.

where D is the diameter of the capillary. The wall shear stress is calculated by

Ow = % (22)

where P; is the driving pressure determined for the force on the piston, P,.,q is the Bagley

end correction for the pressure drop, and L is the length of the capillary.

Due to the oscillations of the wall shear stress, the flow curve is discontinuous and consists
of two stable positive-slope branches separated by the unstable stick-slip instability regime
[20, 40, 65, 74], as illustrated in Fig. 2.1. Experiments with fluids exhibiting the stick-slip
instability revealed that the flow curve depends on the capillary diameter. This dependence,
which becomes stronger as the apparent shear rate increases, is due to the occurrence of slip
at the capillary wall. The lower part of the low-flow-rate branch is insensitive to the capillary
diameter, which implies the absence of wall slip. The upper part may be weakly dependent on
D, which indicates that weak slip is possible [39, 46, 69]. The high-flow-rate branch is strongly
dependent on D, which is an indication of strong slip [1, 39, 46, 22, 21, 69]. Based on slip
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velocity estimates, Hatzikiriakos and Dealy [40] proposed a power-law slip equation for the
right branch of their flow curve. El Kissi and Piau [21] also derived a single nonmonotonic
slip equation for both the branches of the flow curve. These indirect observations for the
occurrence of stick and slip phenomena during the extrusion of certain polymer melts have
also been confirmed by recent direct slip velocity measurements with optical methods [57, 72].

The role of wall slip in extrusion instabilities is discussed in detail in [18, 41].

When the imposed shear rate is in the unstable regime, the wall shear stress and the apparent
shear rate oscillate (with the same period and phase) following closely, in the clockwise
sense, the hysteresis cycle ABCD [20, 40, 74]. The critical wall shear stresses for the nearly
instantaneous jumps from point A to point B and from C to D are denoted here by 0.2 and o3,
respectively. These two critical stresses correspond to the transition from weak to strong slip
and vice versa, and define the limiting values between which the wall shear stress oscillates.
Hence, the amplitude of the wall shear stress oscillation is equal to (oe2 — 0c3). Similarly,
the amplitudes of the sudden apparent shear rate increase and decrease are determined by
the shear rate differences between points A and B and points C and D, respectively [20, 40].
Hence, for a given capillary (i.e. given D and L/D), the onset of the stick-slip instability (i.e.
the critical shear stress o.o) and the amplitudes of the oscillations are determined solely by

the steady-state flow curve [20, 40, 53, 96].

The oscillations of the pressure and the extrudate flow rate are obviously analogous to those
of the wall shear stress and apparent flow rate, respectively. The variation of the extrudate
flow rate, in spite of the constant piston speed, arises from the compressibility of the melt
in the reservoir, and causes the characteristic appearance of the extrudate which consists of

alternating rough and relatively smooth regions [20, 40, 65].



The generation of self-sustained pressure and flow rate oscillations when compressibility is
combined with nonlinear slip has been confirmed by the two-dimensional simulations of Geor-
giou and Crochet [33, 32]. These authors employed an arbitrary nonmonotonic slip equation
relating the wall shear stress to the slip velocity and numerically solved the time-dependent
compressible Newtonian Poiseuille and extrudate-swell flows. Their simulations showed that
steady-state solutions in the negative-slope regime of the flow curve are unstable, and that
oscillatory solutions are obtained at constant volumetric flow rate. In a recent work, Georgiou
[29] carried out numerical simulations for a shear-thinning Carreau fluid using an empirical
slip equation that is based on the experimental measurements of Hatzikiriakos and Dealy
with a HDPE melt [39, 40]. His time-dependent calculations at fixed volumetric flow rates in
the unstable negative-slope regime of the flow curve showed that the pressure and flow rate
oscillations do not follow the stable branches of the flow curve, in contrast to the experiments.
As stated in Ref. [29], including the reservoir region in the simulations is necessary in order
not only to account for the compression and decompression of most part of the fluid but
also for obtaining limit cycles following the steady-state branches of the flow curve, i.e. for
getting pressure and extrudate flow rate oscillations characterized by abrupt changes, as is

the experiments.

The objective of the present work is to extend the simulations in [29] to the full reservoir-
capillary-extrudate geometry, in order (a) to study the effects of the reservoir length, the
imposed flow rate, and the capillary length on the pressure and free surface oscillations and
(b) to make comparisons with experimental observations on extrusion under constant piston
speed. As discussed below, experimental results from different studies are not always in agree-
ment. The present simulations may be helpful in understanding some of the experimental

observations.



Experiments with different materials showed that as the reservoir is emptying, the period
of the pressure and flow rate oscillations is reduced while the hysteresis loop of the flow
curve remains unchanged, which implies that the amplitudes of the pressure and flow-rate
oscillations remain the same [20, 40, 46, 53, 58, 96]. The period of the oscillations has been
found to vary linearly with the volume of the melt in the reservoir, and that the extrapolations
of the experimental period data do not pass through the origin [13, 20, 40, 73, 74]. On the
other hand, the waveform of the pressure oscillations appears to be insensitive to the reservoir
length, meaning that the relative durations of the compression and relaxation phases do not

change as the extrusion experiment proceeds [20, 40, 96].

According to experimental observations, as the imposed flow rate is increased in the unstable
regime, the waveform of the pressure oscillations changes so that the relative duration of
the compression part is reduced, while their amplitude is not affected [20, 40, 58, 92, 96].
The reports concerning the effect on the period of the pressure and flow rate oscillations are
somehow conflicting. In experiments with HDPEs, Hatzikiriakos and Dealy [40], Durand et
al. [20] and Den Doelder et al. [16] observed that the period is decreased as the flow rate is
increased. A period reduction has also been reported in experiments on a LLDPE [46] and a
PB [52]. On the other hand, the earlier experiments of Myerholtz [58], Weill [96] and Okubo
and Hori [61] on HDPEs and those of Vinogradov et al. [92] on PBs showed that the period

passes through a minimum in the unstable regime.

Experiments with HDPEs have shown that as the capillary length increases, the stick-slip
regime is shifted to lower volumetric flow rates and its size increases, the hysteresis loop of the
flow curve becomes larger, and both the amplitude and the period of the pressure oscillations
increase [20, 40, 74]. The experiments of Durand et al. [20] and Vergnes et al. [89] showed
that reducing the capillary length eventually leads to a continuous (monotonic) flow curve.
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According to Den Doelder et al. [16], HDPEs do not exhibit pressure oscillations for short

dies (L/D < 5), since these are overruled by the entry and exit pressure losses.

The critical wall shear stress, o.2, at which the stick-slip instability is observed may increase
or decrease or remain constant as the capillary length to the capillary diameter ratio, L/D,
increases. Experiments with HDPE melts [20, 40, 58, 74] and EPDM compounds [89] showed
that o.o and the stress difference (0.2 — 0.3) increase with the capillary length. Hatzikiriakos
and Dealy [40] attribute this effect to the pressure dependence of wall slip. Experiments with
other materials, however, show that o9 is not always an increasing function of the L/D ratio.
This was found to slightly decrease with L/D in the experiments of Vinogradov et al. with
PBs [92], El Kissi and Piau with PDMS [22], and Kalika and Denn with a LLDPE [46], and
to be independent of L/D in the experiments of Ramamurthy with a LLDPE [69] and Wang

and Drda with entangled linear PEs [94, 95].

In Section 2.2, the governing equations, the slip equation, and the boundary and initial
conditions are presented and their dimensionless forms are provided. In Section 2.3, after a
brief description of the numerical method, the numerical results are presented and discussed
and comparisons are made with experimental observations. Finally, Section 2.4 summarizes

the conclusions.

2.2 Governing Equations

The geometry of the flow corresponds to the actual setup used in the experiments of Hatzikiri-
akos and Dealy [40]. There is a contraction region at 45 degrees between the barrel and the

capillary as shown in Fig.2.2.
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Figure 2.2: Geometry and boundary conditions for the time-dependent, compressible,
axisymmetric extrusion of a Carreau fluid with slip along the capillary wall, including

the reservoir region.

The actual values of the radii of the barrel and the capillary, denoted respectively by R; and
R, and the length of the capillary, L, are tabulated in Table 2.1.
The continuity and the momentum equations for time-dependent, compressible, isothermal

viscous flow in the absence of body forces are as follows :

)
8—§+V~pV:O, (2.3)
p(%—kv-Vv):V-a, (2.4)

where p is the density, v is the velocity vector, p is the pressure, and o is the stress tensor.

For the density, the following linear equation is employed:

p=p [l +B@-p)], (2.5)

where [ is the isothermal compressibility, and pg is the density at the reference pressure pg.
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Table 2.1: Symbols and values of various lengths concerning the flow geometry.

Symbol | Parameter Value
Ry Radius of the barrel 0.9525 cm
Ly Length of the barrel

Contraction angle 45 degrees
R Capillary radius 3.81 1072 cm
L. Capillary length 0.762 cm
Le Length of the extrudate | 3.81 cm

Table 2.2: Values of the slip model parameters.

Parameter Value

ay, (MPa)~™ cm/s | 125.09
mi 3.23
az, (MPa)™™2 cm/s | 1000
mo 2.86

az, (MPa)~™s cm/s | 5.484 1073

ms -4.434
.9, MPa 0.27
Oomims MPa 0.19
Ve, cmM/s 1.82
Umin, CI/S 8.65
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Even though the fluid studied by Hatzikiriakos and Dealy [40] is considered to behave as a
power-law one, we employ the Carreau model in order to avoid the well-known numerical
difficulties caused by the former model, which predicts infinite zero-shear-rate viscosity. For
compressible flow of a Carreau fluid with zero infinite-shear-rate viscosity, the stress tensor

is written as
—-1)/2 2
o= —pl+m |1+ N (20a)] S <2d - 3 IV-v> , (2.6)
where I is the unit tensor, d is the rate-of-deformation tensor, defined as

d =2 [(vv) + (W), (2.7)

N =

the superscript 1" denotes the transpose, Il4 is the second invariant of d, 7y is the zero-shear-

rate viscosity, A is a time constant, and n is the power-law exponent.

2.2.1 The slip equation

We use the same three-branch multi-valued slip model as in [29]:

alafunl, 0 < vy < ve2
Vw = az 0{33 s Ve < Uy < Ui (28)
a 0'$2 , Uy = VUmin,

where v,, is the relative velocity of the fluid with respect to the wall, o, is the shear stress
on the wall, v.9 is the maximum slip velocity at o2, and v,,;, is the minimum slip velocity at
omin- The values of all slip parameters are given in Table 2.2. The plot of the slip equation
is given in Fig. 2.3.

This is based on the experimental data of Hatzikiriakos and Dealy [39]. The low-flow-rate

(low velocity) branch is a simplification of the corresponding slip equation proposed by the
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Figure 2.3: The nonmonotonic slip law based on the experimental data of Hatzikiriakos

and Dealy [39, 40].

latter authors, under the assumption of infinite normal stress. The high-flow-rate branch is
exactly the power-law slip equation proposed by the same authors for the right branch of
their experimental flow curve. The intermediate branch, which corresponds to the unstable
region of the flow curve, is just an arnitrary line connecting the other two branches. It should
be noted that for a finite normal stress the first branch of the slip equation moves closer to
the third one; for zero normal stress, the two branches almost overlap. It should be noted
that in reality, the wall shear stress is expressed as a function of the slip velocity and not vice

versa, i.e. 04y =0y,(Vy). In other words, the inverse of Eq. (2.8) is used.
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2.2.2 Dedimensionalization

To dedimensionalize the governing equations, we scale the lengths by the capillary radius R,
the velocity by a reference velocity, V', in the capillary, the pressure and the stress components
by o A"~ 1V"/R™, the density by po, and the time by R/V. With these scalings, one gets:

dp

- . = 2.
N + V.pv =0, (2.9)
ov
Re (1 + Bp) (E—I-V-Vv)zv-a, (2.10)
and
n—1)/2
o= —pT+ A" 1+ A% ] " <2d _ §IV-v) , (2.11)

where all variables are now dimensionless. (For simplicity the same symbols are used for the
dimensionless variables.) The dedimensionalization results in three dimensionless numbers,
the Reynolds number, Re, the compressibility number, B, and A in the constitutive equation,

which are defined as follows:

ny 2—n y1-n n
Re = P f0 Vno AT g o fﬁon‘}én, A= %. (2.12)
For resin A at 180 °C, Hatzikiriakos and Dealy [40] provide the following values: 3=9.923 10~4
(MPa)~!, n=0.44 and, for the consistency index, K=0.0178 M Pas". Assuming that 17p=0.03
M Pa s, we calculate A from ngA\" " '=K. For the reference velocity, we get V=RY/4=>5.24

em/s, assuming that =500 s~! and R=3.81 10~2em?2. Under these assumptions, the values

of the three dimensionless numbers are: Re=1.43 107°, B=1.54 10, and A=349.2.

The dimensionless form of the slip equation is

Ay oyt 0 < vy < ve2
Vw = A3 0'172}3 y V2 < Uy < Upin (213)
AQ 0'2}2 y Vw = Umin
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where

a; ngli mefl

Ai = Ami(1=n) pmin

1=1,2,3, (2.14)
and the dimensionless values of ve.o and v,,;, correspond to

O.CQRn)\l—n . O'mian)\l_n
= and g, =

Oc2 o vn min — W ’ (215)

respectively. The values of the above dimensionless numbers are given in [29].

2.2.3 Boundary and initial conditions

The dimensionless boundary conditions for the full extrusion flow are shown in Fig.2.2.

The usual symmetry conditions apply along the axis of symmetry. Along the barrel and the
contraction walls both velocity components are zero (no slip). Along the capillary wall, only
the radial velocity is zero, whereas the axial velocity satisfies the slip equation (2.13). At the
inlet plane, it is assumed that the radial velocity component is zero while the axial velocity

is uniform (corresponding to the motion of the piston at constant speed):

u :Q

where @ is the imposed volumetric flow rate (scaled by mR?V). It should be noted that the

simulations are carried out on a fixed domain, i.e. the motion of the piston is not taken into

account. This is a reasonable assumption provided that the piston speed is low.

When the extrudate region is excluded, we assume that the radial velocity component vanishes
at the capillary exit. In the case of the extrudate-swell flow, the weaker condition o,,=0 is
used at the outflow plane. In both cases, the total normal stress is assumed to be zero,

0,,=0. Finally, on the free surface, we assume that surface tension is zero and impose
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vanishing normal and tangential stresses. Additionally, the unknown position h(z,t) of the
free surface satisfies the kinematic condition:

on . on
ot vz 0z

— v =0. (2.16)
When the extrudate region is excluded, we use as initial condition the steady-state solution
corresponding to a given volumetric flow rate Qo4 at the inlet that we perturb to @ at t=0.
In the case of the extrudate-swell flow, we start with the steady-state solution of the stick-slip

flow (i.e., with flat free surface) for a given volumetric flow rate @ and release the free surface

at t=0.

2.3 Numerical results

The finite element formulation is used for solving the free-surface flow problem under study.
The unknown position of the free surface is calculated simultaneously with the velocity
and pressure fields (full-Newton method). The standard biquadratic-velocity (P2-C°) and
bilinear-pressure (P!-C?) elements with a quadratic representation for the position h of the
free surface are employed. For the spatial discretization, the standard Galerkin forms of the
continuity, momentum and kinematic equations are used, while for the time discretization,

the standard fully-implicit (Euler backward-difference) scheme has been chosen.

As already mentioned, the dimensionless capillary length is L=20. In order to study the effect
of the capillary length on the stick-slip instability, additional capillary lengths are considered
in the last part of this section. The extrudate length L. has been taken to be 100, while
the reservoir length L; ranged from 20 to 200. Figure 2.4 shows some of the meshes used in
the simulations (excluding the extrudate region) with L=20. The finite element meshes were
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refined near the walls, and around the entrance and exit of the capillary. The longest mesh
(Lp=200) consisted of 4511 elements in the reservoir-capillary region and of 18386 elements
when the extrudate region was included. The corresponding total numbers of unknowns were
42403 and 169504, respectively. With the exception of the Reynolds number, Re, the values
of the dimensionless parameters are those given in Section 2, i.e. B=1.54 10~% and A=349.2.
For comparison purposes, in addition to the Carreau flow ones (n=0.44), results are also

presented for the Newtonian flow (n=1).

We first constructed the steady-state flow curves for the reservoir-capillary region (excluding
the extrudate region). In Fig. 2.5, we show both the regular (Fig. 2.5a) and log-log (Fig.
2.5b) plots of the pressure drop versus the volumetric flow rate obtained with Re=0.01 and
Ly=80 in the case of Newtonian flow. Four different possibilities for the pressure drop are
shown: (a) APiotw is the pressure difference along the wall from the piston to the capillary
exit; (b) AP, is the pressure difference along the centerline from the piston to the capillary
exit; (¢) APeapw is the pressure difference along the wall from the capillary entrance to the
capillary exit; and (d) APeap,c is the pressure difference along the centerline from the capillary
entrance to the capillary exit. The pressures AP and AP are essentially the same
for all volumetric flow rates and correspond to the piston driving pressure, Py, in Eq. (2.2).
APeapw and AP, . are slightly different from APy and AP along the left positive-
slope branch of the flow curve. Much bigger differences are observed in the negative-slope
and the right positive-slope branches of the flow curves. In these regimes, AF.ap w is much
lower than AP, . due to the effect of the singularity at the capillary entrance. It should be
noted that differences between APy and AP at high volumetric flow rates are much
bigger in the case of the Carreau fluid. A careful examination of the solution near the piston

region shows that these differences are solely due to the region near the piston and the barrel
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Figure 2.4: (a) Various meshes for different barrel lengths and L=20 used in the simula-

tions (the extrudate region is excluded); (b) Detail of the meshes near the die entrance.
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wall. Moreover, unlike their Newtonian counterparts, APc.pw and AP, . almost coincide,
which implies that the effect of the singularity at the capillary entrance is much weaker than
in the Newtonian case. In what follows, the pressure drop AP corresponds to the piston

pressure AP, =F,, unless otherwise indicated.

The flow curves obtained in the case of Carreau flow (n=0.44) are quite similar. In Fig. 2.6,
the Newtonian and Carreau flow curves (AP=AP;y ) are compared. We observe that as
n is reduced, the negative slope regime is slightly shifted to the right and reduces in size.
Moreover, the resulting hysteresis loop, which is also shifted to the right, is much bigger. This
implies that one would expect slightly bigger pressure oscillations and much bigger jumps of
the volumetric flow rate. From Fig. 2.6, it can be deduced that the biggest volumetric flow
rate will be about 8 times its lowest value. This agrees well with the report of Hatzikiriakos
and Dealy [40] that with resin A at 160°C the mass flow rate suddenly increases by a factor

of about 8.

Figure 2.7 shows the (steady-state) contours of the two velocity components, the pressure
and the streamfunction, 1, obtained for the Carreau flow with Re=0.01, L;=80, and Q=1.5,
i.e. near the middle of the negative-slope regime of the flow curve. We see the rearrangement
of the flow near the capillary entrance, and observe that the differences between AP;, and
AP, are basically due to the entrance region. Far from the capillary entrance, the pressure
in the reservoir is practically constant, which verifies that one of the basic assumptions made
in one-dimensional phenomenological models proposed in the literature (see, e.g., Ref. [19])

is valid.

When the extrudate region is excluded, the steady-state solutions are perturbed by changing

the volumetric flow rate from an old value to the desired one, ). Given that the flow is
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Figure 2.5: Newtonian flow curves with Re=0.01 and L,=80: (a) regular plot; (b)

log-log plot.
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Figure 2.6: Effect of the power-law exponent on the flow curve; Re=0.01 and L,=80.

compressible, the behavior of the time-dependent solution depends on whether the new value
of @) corresponds to the stable positive-slope branches or to the unstable negative-slope one.
In the former case, the new steady-state is obtained without any oscillations, whereas, in the
latter one, the solution is oscillatory and becomes periodic after a transition period. Self-
sustained oscillations of the pressure drop and the mass flow rate are obtained which are
similar to those observed experimentally in the stick-slip extrusion instability regime. All the

results presented below have been obtained in the unstable regime.

In Fig. 2.8, we show the oscillations of the pressure drop and the volumetric flow rate obtained
by perturbing the Newtonian steady-state solution for Re=0.01, L;=80 and @=1.35. We
note in Fig. 2.8a that sudden jumps of the pressure drop are observed when this is measured

across the capillary. No jumps are observed when AP is measured between the piston and the
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Figure 2.7: Contours of the steady-state Carreau solution (n=0.44) inside the barrel

and the die (the extrudate-region has been excluded) for Re=0.01, L,=80 and Q=1.5.
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capillary exit. The volumetric flow rate at the capillary exit (Fig. 2.8b) is also characterized
by sudden jumps which is consistent with experimental observations [20, 40].

The results in the case of Carreau flow are similar but the amplitude and the period of the
oscillations are higher (Fig. 2.9), as expected.

Plotting the trajectory of the solution on the flow curve plane (Fig. 2.10) shows that, after a
transition period, a limit cycle is reached which follows exactly the positive-slope branches of
the steady-state flow curve. The volumetric flow rate increases together with the pressure fol-
lowing exactly the left positive-slope branch of the flow curve and, when the pressure reaches
its maximum value, ) jumps to the right positive slope branch. The volumetric flow rate then
starts decreasing together with the pressure following this branch till the pressure reaches
its minimum and then jumps to the left positive-slope branch and starts the next oscillation
cycle. This behavior agrees well with experimental observations [20, 40]. Note also that in
our previous study [29], the limit cycles did not follow the steady-state flow curve due to the
omission of the reservoir region. This drawback was also exhibited by the one-dimensional
model of Greenberg and Demay [36], which does not include the barrel region. Note that
most one-dimensional phenomenological relaxation/oscillation models require as input the
experimental (steady-state) flow curve. These models are based on the compressibility /slip
mechanism and describe oscillations of the pressure and the volumetric flow rate in the stick-
slip instability regime (see [1, 17, 19] and references therein) under the assumption that these
follow the experimental flow curve. The present simulations are the first to predict that the

limit cycle indeed follows the steady-state flow curve.

In an attempt to approach the experimental value Re=1.43 10~°, we reduced the value of the
Reynolds number from 0.01 to 0.001. Figure 2.11 shows a comparison of the pressure and flow

rate oscillations during a cycle, obtained with Re=0.01 and 0.001 for both the Newtonian
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Figure 2.8: Pressure and flow rate oscillations for Newtonian flow (n=1), Re=0.01,

Ly=80 and QQ=1.35.
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Ly=80 and QQ=1.35.
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Figure 2.10: Trajectory of the solution on the flow curve plane for Carreau flow

(n=0.44), Re=0.01, Ly,=80 and Q=1.35: (a) regular plot; (b) log-log plot.
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and the Carreau flows (with L,=80 and @=1.35). It is clear that decreasing the Reynolds
number has no practical effect on the oscillations with the exception of the artificial flow
rate overshoots obtained with the lower Re. Instead of trying to eliminate the overshoots
by reducing the time step (which would have resulted into much longer runs), we decided
to continue the runs with Re=0.01. Note that when the reservoir region is excluded, the
results are sensitive to the Reynolds number: the amplitude of the pressure-drop oscillations
is reduced, the amplitude of the mass-flow-rate oscillations is increased and the frequency of
the oscillations is considerably increased, as the Reynolds number is reduced [29]. This shows

once again the importance of including the reservoir region.

In order to study the effect of the reservoir length on the pressure oscillations, we obtained
results for various values of L;. The pressure oscillations for different values of L;, Re=0.01
and ()=1.35 are given in Figs. 2.12 and 2.13 for the Newtonian and the Carreau flow,
respectively. In both cases, the period of the pressure oscillations increases with L; while
their amplitude seems to be less sensitive.

This is more clearly shown in Fig. 2.14, where the corresponding periods and the amplitudes
of the pressure oscillations are plotted versus the reservoir volume. As already mentioned,
the period and the amplitude of the pressure oscillations are higher in the case of the Carreau
fluid. In agreement with experiments [20, 40, 73, 74], the period T increases linearly with the
reservoir volume, while the amplitude is essentially constant. However, the period appears

to pass through the origin, which is not the case with the experiments [20, 40, 74, 73].

To show the effect of the reservoir length on the waveform of the pressure oscillations, we
compare in Fig. 2.15 the normalized pressure oscillations during one cycle for both fluids,
Lp=20 and 200. The waveform is independent of the reservoir length, i.e. the durations of
both the compression and the relaxation increase linearly with the reservoir length, which
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agrees well with the experiments of Hatzikiriakos and Dealy [40] and Durand et al. [20].

Results for various values of ) in the unstable regime, Re=0.01 and L;,=80, have been
obtained in order to investigate the effect of the imposed volumetric flow rate on the pressure
oscillations. Figure 2.16 shows the periods of the resulting pressure oscillations versus @ for
both the Newtonian and Carreau flows. The period decreases initially reaching a minimum
in the middle of the unstable regime and then starts increasing slowly. This was also the
case in the experiments of Myerholtz [58], Okubo and Hori [61] and Weill [96] on HDPEs and
those of Vinogradov et al. [92] on a polybutadiene. In other experiments, Hatzikiriakos and
Dealy [40], Durand et al. [20] and Robert et al. [73] reported that the period decreases with
(). However, the latter authors carried out experiments only for a few values of @), which
were not sufficient for capturing the minimum and the slight increase of the period in the

rightmost part of the unstable regime.

The effect of () on the pressure oscillations is illustrated in Figs. 2.17 and 2.18 for the New-
tonian and Carreau flows, respectively, where pressure oscillations obtained with Re=0.01,
Ly=80 and various values of () are shown. It is again clear that the period of the oscillations
passes though a minimum. The ascending part (compression) of the oscillations is relatively
reduced in agreement with experimental observations [20, 40, 61, 73]. The descending part
of the oscillation does not remain constant but increases significantly at high values of @), in
disagreement with the experiments of Hatzikiriakos and Dealy [40], Durand et al. [20] and
Robert et al. [73], in which, however, the period was found to be a decreasing value of (). In
the present simulations, the period is decreasing only in the first half of the unstable regime,

where the growth of the descending part of the oscillation is not as pronounced.

The time-dependent simulations of the full extrusion flow have been obtained by starting
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Figure 2.18: Effect of the imposed volumetric flow rate on the pressure oscillations;

Carreau flow (n=0.44), Re=0.01 and L,=80.
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with the steady-state solution corresponding to a flat free surface (stick-slip flow) and letting
the free surface move at t=0. In Fig. 2.19, we present free surface profiles obtained for the
Newtonian flow with Re=0.01, @=1.5 and a small reservoir length, L;=20, during one cycle of
the pressure oscillations (from a pressure-drop maximum to the next one) after the periodic
solution is established. The free surface oscillations resemble to the ’bamboo’ instability
pattern with a long ’smooth’ part and a shorter ’distorted’ part. As in Ref. [29], in addition
to the motion of the free surface waves in the flow direction, the free surface also oscillates
in the radial direction; swelling is minimized at pressure-drop maxima. This result agrees
with the experiments of Pérez-Gonzélez et al. [64], who worked with polyethylene melts and
observed that severe contractions in the extrudate diameter occur at pressure maxima. From
Fig. 2.19, it can easily be deduced that the motion of the extrudate is accelerated just after
the pressure drop maximum, which is, of course, due to the sudden jump of the volumetric
flow rate from the left to the right stable branch of the flow curve. Similarly, the extrudate
motion is decelerated just after the pressure drop minimum, since the flow rate jumps from
the right to the left stable branch.

A comparison with Fig. 2.20, where Newtonian free surface profiles obtained with L,=80 are
shown, reveals that with a longer reservoir (i.e. for a bigger period of pressure oscillations),
the wavelength of the resulting free surface waves is much bigger. The amplitude and the
relative length of the distortions also appear to increase. Similar results have been obtained
for the case of Carreau flow, as illustrated in Figs. 2.21 and 2.22, which show free surface

profiles obtained with L;=20 and 80, respectively.

In addition to L=20, we have also considered the values L=0.1, 1, 5, 10 and 40, in order
to study the effect of the capillary length. In Fig. 2.3a, we plotted the flow curves of the

Carreau fluid obtained for all capillary lengths. As expected, the pressure drop as well as
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Figure 2.22: Free surface oscillations during one cycle; Carreau flow (n=0.44),
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Figure 2.23: Flow curves (a) and pressure oscillations (b) for different capillary lengths;

Carreau flow (n=0.44), Re=0.01, Q=1.85 and L,=80.
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the difference between its maximum and minimum values are reduced as the capillary length
is decreased. Moreover, for very small capillary lengths the flow curve becomes monotonic,
which implies that the flow is stable for all values of the volumetric flow rate. In other
words, the hysteresis loop decreases in size and eventually vanishes as the capillary length is
decreased. As a consequence, the amplitude and the period of the pressure drop oscillations
decrease, as illustrated in Fig. 2.3b; for L=1, no oscillations are observed, since the flow is
everywhere stable.

Figure 2.24 shows that the period and the amplitude of the pressure drop oscillations vary
linearly with the capillary length, above the critical value at which the flow curve ceases to be
monotonic. These results agree well with experiments on HDPEs [20, 39, 58, 74], regarding
the size of the hysteresis loop and the amplitude and the period of the pressure oscillations.
Unlike the experiments, however, our simulations do not predict the shift of the stick-slip
regime to lower flow rates. This may be due to the fact that the pressure dependence of wall
slip is not taken into account in the slip model [40]. The numerical simulations also showed
that the capillary length has a slight effect on the waveform of the pressure oscillations.

As illustrated in Fig. 2.25, where the normalized pressure oscillations for L=>5, 10 and 40 are

compared, the increasing part of the oscillation increases slightly with the capillary length.

Assuming that the pressure drop corresponding to the very short capillary length L=0.1 (see
Fig. 2.23a) is equal to the Bagley end correction, P4, in Eq. (2.2), we calculated the wall
shear stresses versus the apparent wall shear rate. Interestingly, the curves of the calculated
wall shear stresses for all capillary lengths (L=1, 5, 10, 20 and 40) coincide, as shown in
Fig. 2.26. The critical values of the wall shear stress are 0.0=0.34 MPa and 0.3=0.24 MPa,
which give (0.2 — 0c3)= 0.1 MPa. The values of 0.2 reported by Hatzikiriakos and Dealy [40]

are in the range 0.22 - 0.50 MPa, while those of (.2 — 0¢3) are in the range 0.03-0.11 MPa.

45



160 T | T

120 -

80 -

40

40 T T T
P, max ~ P man

20

0 1 1 1
0 10 20 30

(b)

L

Figure 2.24: Period (a) and amplitude (b) of the pressure oscillations as functions of

the capillary length; Carreau flow (n=0.44), Re=0.01, Q=1.35 and L,=80.

46



1.2
P_p. T T T T

Pmaa: - szz]z 10

0.6 .
04 .

0.2 .

0 | | | |
0 0.2 04 0.6 0.8 1
t/T

Figure 2.25: Normalized pressure oscillations for different capillary lengths; Carreau

flow (n=0.44), Re=0.01, Q=1.35 and L,=380.

0.6 ————rrr

(M Pa)

10 100

vl L L
1000 . 10000
Yw (3_1)
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Given the assumptions made in the present work, the agreement between simulations and
experiments is rather good. As already mentioned, experimental observations on the effect
of the capillary length on the value of o.o cover all possibilities. In some cases, 0.2 has been
found to increase [20, 40, 74, 89] and in others to decrease [46, 22, 92|, as L is increased. Our
simulations agree with the experiments of Ramamurthy [69] and Wang and Drda [94, 95] in
which o was found to be independent of L. Finally, the effect of the capillary length on the
free-surface oscillations is illustrated in Fig. 2.27. Both the amplitude and the wavelength

increase, and the waveform appears to change dramatically with the capillary length.

2.4 Conclusions

We used finite elements to simulate the time-dependent, compressible extrusion of a Carreau
fluid in the full reservoir-capillary-extrudate geometry, assuming that slip occurs along the
die wall following a nonmonotone slip law that is based on the experimental measurements

of Hatzikiriakos and Dealy [39, 40].

The numerical simulations agree well with the following experimental observations: (a) the
pressure and flow rate oscillations follow the hysteresis loop defined by the two branches of the
flow curve, and the volumetric flow rate is characterized by instantaneous jumps between the
two branches; (b) the amplitude and the period of the pressure oscillations increase linearly
with the capillary length, since the hysteresis loop becomes larger; (c) for small capillary
lengths, the pressure is a continuous monotonic function of (), and no oscillations are observed;
and (d) the period of the pressure and flow rate oscillations increases linearly with the reservoir
length, while their amplitudes and waveforms are fairly constant. Nevertheless, the period of

the pressure oscillations, when plotted versus the reservoir volume, appears to pass through
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the origin, which is not the case with extrapolated experimental data [20, 40, 73, 74].

In agreement with certain experiments [58, 61, 96, 92], the period of the pressure oscillations
passes through a minimum, when this is plotted versus the imposed volumetric flow rate.

The compression part of the pressure oscillations is relatively reduced, as @ is increased.

The calculated value of the critical wall shear stress for the onset of the stick-slip instability,
0.2=0.34 MPa, is in the range reported by Hatzikiriakos and Dealy [40]. This value was found
to be independent of the capillary length, which is in agreement only with certain experiments
[69, 94, 95]. Unlike experimental observations [20, 40], the stick-slip regime is not shifted to
lower volumetric flow rates but remains constant as the capillary length is increased. This
may be due to the fact that the slip equation we employed does not take into account the

pressure dependence of wall slip and holds uniformly across the capillary.
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Chapter 3

Numerical simulation of the
extrusion of strongly compressible

Newtonian liquids

3.1 Introduction

Foams are structured dispersions of gas bubbles in a small volume fraction of a liquid with
the liquid as the continuous phase and the gas as the dispersed one!. Foamed products
are useful in many different industrial applications. In the plastics industry, polyethylene,
polystyrene and polypropylene foams are produced for thermal insulation, packaging applica-
tions, protecting and sporting equipment, and aircraft or automotive parts with high strength

to weight ratio [59, 62]. Foamed polymer solutions are used widely in the petroleum industry

as drilling fluids and in the hydraulic fracturing of hydrocarbon wells [27]. Metal foams also

!Some of the results presented in this chapter appear also in References [81, 83]
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find applications in the automotive industry [7]. Aqueous polymer solutions foamed with
nitrogen and/or carbon dioxide are used in fire-fighting technology for polar solvent and oil
fires [27, 43]. Other applications can be found in the food and biopolymer industry, with
products ranging from starch-based foams [97], cereal foods [56, 93] and aerated chocolates

[27] to cosmetics and medical drugs [43].

In foam extrusion, a chemical foaming agent is mixed with the polymer to be extruded. The
heat generated to melt the polymer decomposes the chemical foaming agent producing gas
which is dispersed in the polymer melt. An alternative is to blow the polymer melt with
an inert gas, such as carbon dioxide or nitrogen [59, 62, 98]. Upon exiting the die, the gas
expands considerably. Expansion of extrudates is one of the most important phenomena of
foam extrusion processing, resulting in products with a cellular foam structure [59, 60, 93].
This is a complex phenomenon caused by different mechanisms, such as phase transitions,
nucleation and bubble growth and collapse [56, 59, 60] in addition to extrudate-swell. Im-
portant parameters that affect the final dimensions and quality of the extrudate are the die

geometry, material properties, and processing environment [93].

In the polymer foam production industry, the expansion of the extrudate is usually described
by the volume expansion ratio, which is also known as overall expansion ratio or foaming
ratio. This is the ratio of the extrudate solid density to the bulk density. In the food
industry, the radial expansion ratio is used instead. This is the ratio of the cross-sectional
area of the extrudate to that of the die [77, 99]. In other words, the radial expansion ratio is
the square of the well-known extrudate-swell ratio, which is defined as the ratio of the final
extrudate diameter to that of the die. The axial expansion ratio, calculated by dividing the
volume expansion by the radial expansion ratio, is also used [77]. The expansion ratios and
the density are important properties of extruded foams. High expansion ratios and low unit
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density are ideal for foams because of the reduced cost of the final product [99].

In general, polymer foams produced by conventional extrusion process exhibit high expansion
ratios up to 100. Park and co-workers reported volume expansion ratios as high as 23 for
microcellular high impact polystyrene (HIPS) foams [62], in the range of 1.5 - 20 for fine-cell
HDPE foams [4], and up to 45 for biodegradable polyester foams [63]. For the extrusion of
polypropylene foams blown with butane, Naguib et al. [59, 60] reported volume expansion
ratios ranged from about 1 to 90, depending on the gas fraction, the temperature, and the
talc content. Very recently, Lee et al. [51] reported volume expansion ratios ranging from 2.3
to 8.5 in the case of open-cell LDPE/PS sheet foams produced with an annular die. Xu et
al. [98] reported volume expansion ratios up to 6 in direct extrusion foaming of a low density
polypropylene. Large expansion ratios are also observed in the case of extruded biodegradable

starch and cereal foams. Radial expansion ratios up to 62.4 have been reported [56, 97, 99].

Of particular interest to the present work is the phenomenon of the contraction of the ex-
trudate after the initial expansion near the die exit, which is known to be detrimental to
large expansion [60]. This contraction is attributed to the escape of gas through the exterior
skin of the extruded foam [4, 59, 62]. Therefore, in order to produce low-density foams, gas
diffusion must be prevented. In extrusion experiments with microcellular HIPS foams blown
with carbon dioxide, Park et al. [62] observed that the diameter of the initially expanded
foam at a relatively high temperature was about 2.2 times of the diameter of the finally
contracted foam. By decreasing both the melt and nozzle temperatures, Park et al. [62]
were able to achieve full expansion eliminating the contraction, which was attributed to the
reduced gas diffusion through the frozen skin layer of the extrudate and the suppression of

cell coalescence.
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Naguib et al. [59, 60] studied the fundamental mechanisms governing the volume expansion
behavior of extruded polypropylene foams blown with butane. Based on their experimental
data, they reached the conclusion that either gas loss or polymer crystallization govern the
final volume expansion ratio of the polypropylene foams and that the maximum expansion
ratio was achieved when the governing mechanism changed from one to the other. They also
noted that at higher temperatures, initial expansion is followed by an undesirable contraction
and that as temperature is increased, initial expansion becomes larger but final expansion
is reduced beyond an optimum temperature. The angle of initial expansion was found to

increase with temperature, i.e. initial expansion becomes faster [59].

Extrudate contraction following the initial expansion has also been observed with extruded
starch-based foams [24, 93, 97, 99] and cereal foods [56], resulting in increased densities and
reduced expansions. Willett and Shogren [97] and Moraru and Kokini [56] attribute this

phenomenon to the cooling rate, which is not rapid enough to prevent bubble collapse.

The objective of the present work is to study numerically the expansion of extruded foams in
the so-called extrudate-swell flow and investigate whether the aforementioned phenomenon
of extrudate contraction can be attributed to the compressibility of the foam. The latter is
treated as a homogeneous fluid. In other words, the extrudate expansion of foamed liquids is
studied at a macroscopic level. Bubble growth phenomena are taken into account implicitly
by assuming that the foam is highly compressible. For other analyses, in which bubble growth
is characterized at a microscopic level, the reader is referred to the paper by Wang et al. [93]

and the references therein.

The knowledge of the rheological behavior of foamed fluids is essential in engineering appli-

cations. As stated by Reinelt and Kraynik [71], a complete theory of foam rheology does not
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exist, since foam behavior involves a broad range of physical mechanisms acting over multiple
length and time scales. Additional information concerning these physical mechanisms can
also be found in the recent review article of Hohler and Cohen-Addad [43]. Rheological stud-
ies have shown that foam viscosity depends on properties, such as the foam expansion ratio,
defined as the ratio of the volume of the foam to the volume of the foam liquid at atmospheric
conditions, the bubble size distribution, and other properties of individual phases, i.e. the
surface tension [23, 27]. In general, a foam behaves like a non-Newtonian fluid exhibiting
shear thinning, yield stress and elastic behavior typical of emulsions [49]. The origin of the
elastic behavior comes from the minimization of surface area, due to the surface tension that
exists in the thin liquid films. The yield stress arises due to the internal structure of foam,
which consists of bubbles separated by a matrix of thin films [49]. Yield stress was found to
increase monotonically with the gas fraction (volume of contained gas/volume of foam), the
surface tension, and decreasing bubble size [25, 48]. Typically, a Herschel-Bulkley model is

fitted to the experimental data [27, 42].

In the present work, we concentrate our attention on the effects of compressibility assuming
that the foam behaves as a homogeneous compressible Newtonian fluid with a viscosity inde-
pendent of the pressure. The latter assumption is also a strong one; a correct simulation of
foam flow has to include pressure-dependent viscosity [44]. Beverly and Tanner [10] were the
first to solve numerically the compressible, axisymmetric Newtonian extrudate-swell prob-
lem. Their simulations showed that weak compressibility reduces the swelling of Newtonian
fluids. The finite-element calculations of Georgiou [28] confirmed this result and showed that
as compressibility increases, the extrudate-swell ratio passes through a minimum and then
starts increasing rapidly, in agreement with experiments [4, 62, 63]. A second objective of the

present work is to investigate this phenomenon further, given that liquid foams are highly

95



compressible.

First, the governing equations and boundary conditions for the compressible Newtonian
extrudate-swell flow are presented and discussed. In order to study the effects of compress-
ibility, two alternative equations of state, a linear and an exponential one, are used. A
linear equation of state has been employed in previous numerical studies of the compressible
extrudate-swell flow [10, 28], by Hatzikiriakos and Dealy [40] for a HDPE, and in our previous
studies concerning the simulation of the stick-slip extrusion instability [29, 32]. Exponential
equations of state have been employed, for example, by Ranganathan et al. [70] for a HDPE
and, more recently, by Vinay et al. [90] in simulations of weakly compressible Bingham flows.
It should be pointed out that taking into account only the pressure dependence of the density
(and even that of viscosity) is not sufficient for modeling foam expansion with chemical or
physical blowing agents, since these mechanisms involve chemical reaction or gas diffusion,
respectively. Since foams are known to slip along the walls [5, 9, 23, 26, 27, 42, 48], in addition
to the no-slip boundary condition at the wall, the possibility of slip by means of a linear slip
equation is also considered. Then, the numerical method is briefly described and the numer-
ical results are presented and discussed. Emphasis is given on the effects of compressibility
on the expansion of the jet. The numerical results confirm previous reports that the swelling
of the extrudate decreases initially as the compressibility of the fluid is increased and then
increases considerably, in agreement with experimental observations. The numerical simula-
tions also reveal that high compressibility may lead to a contraction of the extrudate after the
initial expansion, similar to that observed experimentally with liquid foams or to decaying
oscillations of the extrudate surface, provided that inertia is taken into account. Lastly, the

conclusions are summarized and some possibilities for future work are given.
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3.2 Governing equations

Since the equations and boundary conditions for the plane problem are similar, only the ax-
isymmetric extrudate-swell flow is discussed. The flow is assumed to be laminar, compressible
and isothermal, and gravity is neglected. Letting p, v, and 7 denote the pressure, the ve-
locity vector, and the viscous stress tensor, respectively, the continuity and the momentum

equations are written as:

op B
E—f‘V'pV—O, (3.1)
ov
p(a—i—v-Vv):—Vp—i-V-T, (3.2)

where p is the density. For compressible Newtonian flow with the bulk viscosity neglected,

the viscous stress tensor is given by

T =L {(Vv) + (VV)T] - ;MIV~V, (3.3)

where I is the unit tensor, u is the viscosity, and the superscript T denotes the transpose.

The viscosity is assumed to be constant and independent of the pressure.

The above equations are completed by a thermodynamic equation of state relating the density
to the pressure. At constant temperature and low pressures, the density can be represented

by the linear approximation

p=po[l+pB{®~-0p)], (3.4)
where
_ 1 jov
= Vo (ap>p0,T (38:5)

is the isothermal compressibility assumed to be constant, V' is the specific volume, po and Vy

are, respectively, the density and the specific volume at a reference pressure pg, and 1" is the

57



temperature. For comparison purposes, the following exponential equation is also used:
p = poel®—po) (3.6)

This is equivalent to the linear equation of state for low pressures depending on the value of
B. A disadvantage of this equation is the fast growth of the density (for high values of 3).
On the other hand, the linear model may lead to negative values of the density. Obviously

more sophisticated equations of state should be used for highly compressible flows.

To non-dimensionalize the governing equations, we scale the lengths by the radius R, the
velocity by the mean velocity U at the inlet of the capillary, the pressure and the stress com-
ponents by uU/R, and the density by pg. With these scalings, the continuity and momentum

equations become

op A
and
ov
Re (E—FV-VV):—V]?—I-V-T, (3.8)

where all variables are now dimensionless, and Re is the Reynolds number defined as

Re = ”OSR. (3.9)

The linear and the exponential equations of state respectively become
p=1+Bp (3.10)

and

p = PP, (3.11)

where B is the compressibility number,

(3.12)



and the reference pressure has been set to zero. The behavior of the two dimensionless
equations of state is illustrated in Fig. 3.1. The two models are equivalent only if the

pressure, p, and the compressibility number, B, are sufficiently low.

p

Figure 3.1: Behavior of the linear (dashed) and exponential (solid) equations of state

for B=0.01 and 0.1.

The dimensionless boundary conditions of the flow are shown in Fig. 3.2. To include slip

effects, a linear slip equation is employed, the dimensionless form of which is
(3.13)

where v,, is the dimensionless slip velocity, 7, is the dimensionless shear stress at the wall,

and A is a dimensionless slip number defined by
ap
A= — 3.14
R ? ( )
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« being a slip parameter depending on the material properties for a given wall. Hence, along
the capillary wall, the axial velocity, v,, satisfies the slip equation (3.13), whereas the radial

velocity, v,., is zero.

oh oh _
W‘i"l}z%—vr—o

n-(—pI4+71) =0

Tw:%{’uw, UT_O/ .

~2(1—=r%+24) —P+T72=0
R RV h .
T, =
'UT.:O rz

Figure 3.2: Geometry and dimensionless boundary conditions for the axisymmetric

extrudate-swell flow of a Newtonian fluid with slip at the wall.

At the inlet plane, assumed to be taken far upstream the exit so that the flow can be taken

as fully developed, v, is zero and v, is given by

2 2

The above velocity profile satisfies the slip equation (3.13). The dimensionless slip velocity

at the inlet plane is v,=4A/(1 + 4A). Setting A=0 leads to the well-known dimensionless

Newtonian velocity profile corresponding to no slip.

The outflow plane is assumed to be far downstream from the die exit so that total normal
stress and the shear stress vanish, —p + 7,,=0 and 7,,=0. Along the axis of symmetry, the
usual symmetry boundary conditions are used. Finally, on the free surface, it is assumed that
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surface tension is zero and vanishing normal and tangential stresses are imposed. Addition-

ally, the unknown position h(z,t) of the free surface satisfies the kinematic condition:

oh oh
— — = =0. 3.16
ot "o (3.16)
In the case of the time-dependent calculations, the solution corresponding to a volumetric

flow rate Qg at the inlet is used as the initial condition and at t=0 the volumetric flow rate

is perturbed to Q=1.

3.3 Numerical simulations

The finite element formulation is used for solving the free-surface flow problem under study.
The unknown position of the free surface is calculated simultaneously with the velocity
and pressure fields (full-Newton method). The mesh is updated accordingly, using a spine
scheme. The standard biquadratic-velocity (P2-C?) and bilinear-pressure (P!-C%) elements
with a quadratic representation for the position h of the free surface are employed. For the
spatial discretization, the standard Galerkin forms of the continuity, momentum and kine-
matic equations are used, while for the time discretization, the standard fully-implicit (Euler

backward-difference) scheme has been chosen.

In order to check the convergence of the numerical results, we have constructed four meshes
of different refinement near the singularity at the die exit. We have also considered three
capillary lengths: L1=>5, 10 and 20. Unless otherwise indicated, the length of the extrudate
region has been taken to be Lo=20. Table 3.1 shows the sizes of the elements adjacent to the
singular point and the characteristics of all meshes used in the present work. In the beginning
of this section, we will consider the steady-state creeping flow case. The dramatic effect of

inertia will be discussed afterwards.
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Table 3.1:

Mesh characteristics.

Mesh | Ly | Lo | Size of | Number | Number
smaller of of
element | elements | unknowns

Mesh 1 | 5 | 20 0.04 3971 37208
Mesh 2 | 5 | 20 0.02 4641 43320
Mesh 3 | 5 | 20 0.01 5359 49864
Mesh 4 | 5 | 20 | 0.0045 6526 60490
Mesh 3 | 5 | 20 0.01 5359 49864
10 | 20 0.01 6026 56012
20 | 20 0.01 7268 67460
Mesh 3 | 5 | 10 0.01 3887 36168
5 |20 0.01 5359 49864
5 | 40 0.01 6509 60564
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3.4 Creeping flow

We first carried out simulations of the creeping, steady-state axisymmetric extrusion flow
with no-slip along the capillary wall using the linear equation of state. The effects of mesh
refinement on the centerline pressure and the position of the free surface, are illustrated in
Figs. 3.3 and 3.4, respectively, where the results obtained with Meshes 1 and 3 for different
compressibility numbers are compared. While the calculated centerline pressures practically
coincide, the elevation of the free surface is overestimated with the coarser meshes for B < 0.1.
This is more clearly shown in Fig. 3.5, where the extrudate-swell ratios, hy, calculated with
Meshes 1, 2 and 3 are compared. For B > 0.1, hy is underestimated with the coarse meshes.
Going back to Fig. 3.3, we note that the pressure increases with compressibility, which is
expected, since the mass flow rate is increased. Test runs for the Poiseuille flow (i.e. with
the extrudate region excluded) have shown that the method diverges at high values of B
(B ~ 0.5). This observation is useful, since it shows that the divergence of the method in
the case of strongly compressible extrusion flow is not due to the sudden elevation of the free
surface.

It is clear in Fig. 3.5 that weak compressibility leads to a small reduction of the extrudate-
swell ratio, in agreement with earlier numerical studies [10, 28]. This reduction has been
attributed to the compression of the extrudate downstream, given that the fluid is decom-
pressed near the singularity at the die exit where the pressure is negative [28]. However, as
compressibility increases, hy passes through a minimum between B=0.02 and 0.03 and then
increases steadily due to the increase of the mass flow rate. At high values of B, the angle of
expansion increases and the elevation of the free surface is rapid (see Fig. 3.4). As already
mentioned, the numerical method cannot converge for B ~ 0.12. From Fig. 3.5, we conclude

that the results for B > 0.08 should be ignored. In any case, the numerical results show
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Figure 3.3: Effect of mesh refinement on the centerline pressure in creeping azisymmet-
ric flow with no-slip at the wall; results obtained with Meshes 1 (dashed) and 8 (solid)

and L;=5.

that swelling increases considerably with compressibility, in agreement with foam extrusion

experiments [4, 62, 63].

The expansion of the jet is further enhanced by increasing the capillary length, while it is
reduced when slip occurs along the capillary wall. As illustrated in Fig. 3.6, the minimum of
the extrudate-swell ratio is shifted to the left and higher extrudate-swell ratios are obtained
when the length of the capillary, L, is increased, as more material is compressed. It should be
noted that increasing the capillary length leads to a higher mass flow rate (since the velocity
scale is the same), and therefore the mean velocity at the exit is higher. Figure 3.7 shows the
effect of slip on the free surface profile for B=0.06. Swelling is reduced as slip is increased,

which is consistent with experiments and theoretical studies.

Let us now look more closely at the numerical solution of strongly compressible flow. In
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z

Figure 3.4: Effect of mesh refinement on the position of the free surface in creeping

azisymmetric flow with no-slip at the wall; results obtained with Meshes 1 (dashed) and

3 (solid) and Ly=5.

Fig. 3.8, we see the finite element mesh, the velocity and pressure contours, and the stream-
lines obtained with Mesh 3 (L;=10) for B=0.08. Two interesting observations are: (a) the
free surface is almost vertical near the exit, and (b) there is a big region in the extrudate
region where the pressure is negative, i.e. the density is less than the reference density. The

negative pressures are swept out because of the convective nature of the flow.

The results with the exponential equation of state showed the importance of using a proper
equation of state in the simulations. In Fig. 3.9, the centerline pressures from B=0 (incom-
pressible flow) up to B=0.025, calculated with L;=5, are plotted. The results for B < 0.01
are essentially the same as those obtained with the linear equation of state and shown in
Fig. 3.3. For higher values of B, however, the pressure increases rapidly and the numerical

method fails to converge for B > 0.025. In Fig. 3.10, the extrudate-swell ratios calculated
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Figure 3.5: Effect of mesh refinement on the extrudate-swell ratio in creeping axisym-
metric flow with no-slip at the wall; results obtained with Meshes 1, 2 (dashed) and 3

and L;=5.
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B

Figure 3.6: Effect of the capillary length on the extrudate-swell ratio in creeping ax-

isymmetric flow with no-slip at the wall.
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Figure 3.7: Free surface profiles for B=0.06 and different slip numbers in creeping

axisymmetric flow; Mesh 3 with Ly=5 and Ly=20.

with the two equations of state are compared. Again, for B < 0.01, both equations yield
essentially the same results. With the exponential equation of state, the minimum is again
observed, but at a lower compressibility number. Just after the minimum, the extrudate-swell
ratio increases considerably due to the dramatic increase of the pressure and, hence, the mass
flow rate.

The numerical results for the planar compressible extrudate-swell flow are similar. In Fig. 3.11,
we compare to their axisymmetric counterparts the extrudate swell ratios obtained with Mesh
3 and L1=5. With the same mesh, simulations of the planar flow can be carried out for higher
values of the compressibility number. Again, the extrudate swell ratio passes through a min-
imum, but at a higher compressibility number around B=0.05. It should be noted that for

B > 0.06 the planar jet swells less than the axisymmetric one.
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Figure 3.8: Mesh and contours in creeping compressible azisymmetric extrudate-swell

flow with no-slip at the wall; B=0.08, L1=10 (only part of the domain is shown).
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Figure 3.9: Centerline pressures calculated with the exponential equation of state for
different compressibility numbers; creeping axisymmetric flow with no slip at the wall,

Mesh 3 with L{=45.
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Figure 3.10: Calculated extrudate-swell ratios with the two equations of state; creeping

axisymmetric flow with no slip at the wall, Mesh 3 with L,=5.
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Figure 3.11: Clalculated extrudate-swell ratios for both the azisymmetric and planar

extrudate-swell flows; creeping flow with no-slip at the wall, Mesh 3 with L,=5.

We have also studied the effect of compressibility on the pressure exit correction factor which
gives the relative excess pressure loss above the Poiseuille fully-developed pressure loss. This
is defined as follows [87]:

AP - AP

— I 3.17
Nex 2 0w ( )

where AP is the pressure drop between the inlet plane and the exit in the case of the extrudate
swell flow, AP, is the pressure drop between the inlet plane and the exit of the capillary in
the case of fully-developed Poiseuille flow, and o,, is the wall shear stress corresponding to
incompressible Poiseuille flow. In the present work, the pressure differences are taken along
the centerline. The exit correction factors for both the planar and the axisymmetric flows are
found to increase with compressibility, as shown in Fig. 3.12. The increase is more dramatic

in the case of the axisymmetric flow. The convergence of these results has been checked
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Table 3.2: Convergence of the exit correction factor and the extrudate-swell ratio with

mesh refinement.

Mesh | Size of | Axisymmetric Planar
smaller Nex hy Nex hy
element

Mesh 1 0.04 0.23603 | 1.1344 | 0.15139 | 1.1953

Mesh 2 0.02 0.23191 | 1.1303 | 0.14909 | 1.1908

Mesh 3 0.01 0.23021 | 1.1290 | 0.14816 | 1.1893

Mesh 4 | 0.0045 | 0.22855 | 1.1278 | 0.14725 | 1.1878

by using Meshes 1 to 4. In Table 3.2, the calculated exit correction factors for both the
axisymmetric and planar incompressible flows are tabulated together with the corresponding
extrudate-swell ratios. The convergence of n., with mesh refinement is illustrated in Fig.
3.13. It appears that the converged values of n., are about 0.227 for the axisymmetric jet
and 0.147 for the planar one. These values, which are insensitive to the capillary length L;
(for Ly > 3), are much lower than those reported in the literature [54, 87]. However, as
pointed out by Mitsoulis [54], who reported the value n.,=0.235 for the axisymmetric jet,
coarse meshes tend to overestimate n.,, which is consistent with the present calculations. We
believe that the meshes used in previous studies were rather coarse. Finally, as the meshsize is
decreased the computed values of the extrudate-swell ratio (tabulated in Table 3.2) appear to
approach nicely the converged values 1.1265 and 1.1863 reported by Georgiou and Boudouvis

[31] for the axisymmetric and planar flows, respectively.
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Figure 3.12: Exit correction factors for both the azisymmetric and extrudate-swell flows
versus the compressibility number; creeping flow with no-slip at the wall, Mesh 3 with

Ly=5.

3.5 Effect of inertia

It is well known that in the incompressible case (B=0), swelling is reduced as the Reynolds
number is increased [34]. Our simulations showed that this is also the case with weakly
compressible flows. At high compressibility numbers, however, the final extrudate-swell ratio
increases sharply with the Reynolds number, as illustrated in Fig. 3.14, which shows results
obtained with the no-slip boundary condition. In some intermediate range of compressibility

numbers, the final extrudate-swell ratio appears to pass through a minimum.

The free surface profiles for nonzero Reynolds number look more exciting than the values of
the final extrudate-swell ratio. In Figs. 3.15 and 3.16, the free-surface profiles for B=0.06
and B=0.08, respectively, and various Reynolds numbers are shown. We observe that the

angle of expansion and the swelling increase with the Reynolds number and that the expan-
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Figure 3.13: Conwvergence of the exit pressure correction factor with mesh refinement:
(a) Azisymmetric jet; (b) Planar jet; creeping flow with no-slip at the wall, Mesh 3
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Figure 3.14: Final extrudate-swell ratio vs Re for different compressibility numbers;

axisymmetric flow with no-slip at the wall, Mesh 3 with Li=5 and Ly=20.

sion is followed by a weaker contraction. This behavior of the free surface agrees with the
experimental observations on extruded polymer [4, 59, 60, 62], starch-based [24, 93, 97, 99]
and cereal [56] foams. Therefore, the phenomenon of foam extrudate contraction can, at least
partially, be attributed to the combined effect of the compressibility of the foam and inertia.
As the Reynolds number is further increased, more decaying oscillations of the free surface
are observed downstream. The same phenomenon is observed when the fluid is allowed to slip
along the capillary wall. In Fig. 3.17, we plot the free surface profiles obtained for B=0.06,
A=0.1 and various Reynolds numbers. A comparison with Fig. 15 shows again that slip

reduces swelling and the amplitude of the free surface oscillations.

The effect of compressibility for a nonzero Reynolds number (Re=1) is illustrated in Fig. 3.18,
where steady free surface profiles obtained with different values of B are shown. The free sur-

face is monotonic in the incompressible case. As in the creeping flow, the angle of expansion
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Figure 3.15: Free surface profiles for B=0.06 and different Reynolds numbers; axisym-

metric flow with no-slip at the wall, Mesh 3 with L1=5 and Ly=20.
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Figure 3.16: Free surface profiles for B=0.08 and different Reynolds numbers; axisym-

metric flow with no-slip at the wall, Mesh 3 with L1=5 and Ly=20.
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Figure 3.17: Free surface profiles for B=0.06, A=0.1 and various Reynolds numbers;

axisymmetric flow, Mesh 3 with L1=5 and Ly=20.

and swelling increase with B. A kink appears which grows with B. At higher compressibili-
ties, there appear smaller decaying oscillations following the initial kink. Figure 3.19 shows
the mesh and the axial velocity contours when B=0.06 and Re=2.5 (i.e. a rather extreme
case). The sharp angle of expansion as well as the dense refinement of the mesh in the axial

direction are clear.

Some checks have been considered in order to confirm that the calculated oscillating steady
free surface profiles are not numerical artifacts. First, we verified that the solution does not
depend on the length Lo of the extrudate. Figure 3.20 shows comparisons of the free surface
profiles obtained for B=0.06, various Reynolds numbers and Lo=10, 20 and 40. It is clear
that the results coincide in all cases. In other words, the oscillatory nature of the steady-state

solutions is not affected by the length of the extrudate.
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Figure 3.18: Free surface profiles for Re=1 and different compressibility numbers; az-

wsymmetric flow with no-slip at the wall, Mesh 3 with L1=5 and Ly=20.

Figure 3.19: Mesh and axial velocity contours for B=0.06 and Re=2.5; azisymmetric

flow with no-slip at the wall, Mesh 3 with L1=5 and L,=20.
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Figure 3.20: Effect of the extrudate length on the steady free-surface profiles for B=0.06
and various Reynolds numbers: (a) Results for Lo=10 (solid) and 20 (dashed); (b)
Results for Lo=20 (solid) and 40 (dashed); azisymmetric flow with no-slip at the wall,

Mesh 3 with L{=5.
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We have also checked the stability of the oscillatory steady-state solutions by means of time-
dependent calculations. The steady-state solution at the volumetric flow rate QQo=0.5 has
been taken as the initial condition, and at t=0 the volumetric flow rate was set to @=1. In all
cases examined, the oscillatory steady-states have been found to be stable. A rather extreme
example for B=0.06 and Re=2.5 is presented here. The free surface profiles for Qp=0.5 and
@Q=1 are shown in Fig. 3.21. In Fig. 3.22, the evolution of the free surface to the new
oscillatory steady state is shown. The large free surface profile overshoot, which is due to
the sudden increase of the volumetric flow rate, propagates downstream and the new stable

steady-state is finally reached.

1.8 T T T

1.6

1.4

1.2

0 5 10 15 20
Figure 3.21: Steady free surface profiles for B=0.06, Re=1 and Qy=0.5 (initial condi-

tion) and Q=1 (new steady-state); axisymmetric flow with no-slip at the wall, Mesh 3

with L1=5 and Ly=20.
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Figure 3.22: FEvolution of the free surface when perturbing the steady-state solution for
B=0.06 and Re=2.5 from Qy=0.5 to Q=1: (a) t=1, 3, 5, 7 and 9; (b) t=10, 15, 20,
25; the dashed lines show the initial and the final steady-state; axisymmetric flow with

no-slip at the wall, Mesh 3 with Ly=5 and Lo=20.
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3.6 Conclusions

We have solved numerically the axisymmetric and plane extrudate-swell flows of a strongly
compressible Newtonian fluid, and studied the effects of the compressibility and the equation
of state, slip, geometry, and inertia on the expansion of the jet. In agreement with experi-
mental observations [4, 62, 63|, strong compressibility was found to enhance the expansion
and the angle of separation of the jet. However, swelling initially decreases as compressibility
is increased, which agrees with previous numerical studies [10, 28]. The expansion of the jet
is further enhanced when the length of the capillary is increased, i.e. when more material
is compressed. On the other hand, slip at the wall reduces swelling. The planar jet has
been found to swell more than its axisymmetric counterpart only below a certain value of
the compressibility number. The simulations with a linear and an exponential equation of
state showed that swelling is accelerated in the latter case, which indicates the importance
of using a more physically based equation of state. We are currently investigating this issue
in conjuction with the use of a more realistic constitutive equation for liquid foams, such
as the Herschel-Bulkley model with density-dependent parameters. Another consideration is
the construction of the finite element mesh which needs to be improved in order to capture

the high expansion ratios observed in foam extrusion experiments.

The numerical simulations for non-zero Reynolds number revealed that compressibility leads
to a contraction of the jet after the initial expansion, a phenomenon that has been observed in
extrusion experiments with polymer [4, 59, 60, 62|, starch-based [24, 93, 97, 99] and cereal [56]
foams. At higher Reynolds numbers, the steady-state free surface profiles become oscillatory,
with the oscillations decaying downstream. These steady-state oscillatory solutions are not

affected by the length of the extrudate region nor by the boundary condition along the
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capillary wall (slip or no-slip). Their stability has been confirmed by means of time-dependent

calculations.
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Chapter 4

Perturbation solutions of Poiseuille
flows of weakly compressible

Newtonian liquids

4.1 Introduction

Laminar Poiseuille flows of weakly compressible fluids (i.e. flows corresponding to low Mach
numbers) have been studied extensively in the past few decades due to their applications in
many processes involving gas flows in long capillaries or at high speeds [88], such as gas flows
in micro-electro-mechanical systems (MEMS) devices [2, 3, 12, 37], liquid flows in relatively
long tubes, such as waxy crude oil transport [90] and polymer extrusion [29]. Numerical
solutions of weakly compressible Poiseuille flows have been presented not only for Newtonian

fluids [29, 33, 37, 38] but also for generalized Newtonian fluids, such as the Carreau fluid [29]
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and the Bingham plastic [90], and viscoelastic fluids [6]'.

Perturbation and other approximate solutions have also been presented in the literature for
Poiseuille flows of compressible Newtonian fluids, mostly under the assumption of ideal gas
flow. Prud’homme et al. [67] employed a double perturbation expansion in terms of the radius
to length ratio and the relative pressure drop to approximately solve the flow of an ideal gas in
a long tube under the assumptions of purely axial flow (i.e. zero radial velocity component),
no radial pressure gradient, and negligible gravity. Van den Berg et al. [8] investigated the
compressible laminar Newtonian flow in a capillary using a one-dimensional perturbation
analysis of radially symmetric flow and two lumped perturbation parameters which could
not allow the isolation of the effects of compressibility, inertia, and bulk viscosity. The same
approach has been adopted by Zohar et al. [101] to obtain a solution for subsonic gas flow
through microtubes and channels with wall slip. As noted by Venerus [88], in the above studies
the lubrication approximation is implicitly invoked due to the assumption of zero radial
pressure gradient and the corresponding solutions are expected to be sufficiently accurate for
slow flow or flow in long capillaries. Venerus [88] also pointed out that in the analyses of
Prud’homme et al. [67] and van den Berg et al. [8], terms of different orders of the aspect ratio
have been retained in the two components of the momentum equation, which leads to the
violation of the compatibility condition for the equations of motion. Venerus [88] analyzed up
to the second order the axisymmetric Poiseuille flow relaxing the lubrication approximation
assumption using the streamfunction/vorticity formulation with a linear equation of state
(relating the density to the pressure), and employing compressibility as the single perturbation
parameter. In contrast with previous analyses, he found both a non-zero radial velocity and

non-zero radial pressure gradient. Much earlier, Schwartz [75] studied the plane Poiseuille

!Some of the results presented in this chapter appear also in Reference [85]
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flow using a fourth-order perturbation expansion in the parameter (Mach number)?/Reynolds
number. His perturbation scheme was based on the principle of slow variation, which implies
that the flow properties vary slowly with distance along the channel for sufficiently small
viscosity and/or mass flow rate. He also assumed that the fluid is a thermally perfect gas

(i.e. the density is proportional to the pressure) and that the bulk viscosity is zero.

In the present work we derive second order perturbation solutions for both the planar and
axisymmetric isothermal Poiseuille flows of weakly compressible Newtonian liquids. Following
Venerus [88], a linear equation of state is employed and the isothermal compressibility is taken
as the perturbation parameter. Moreover, both the shear and bulk viscosities are assumed
to be constant (independent of the pressure) and the no-slip boundary condition is assumed
along the wall. However, instead of using a vorticity /streamfunction formulation, only the

primary unknown fields are perturbed in the present work.

The governing equations and the nondimensionalization are presented in section 4.2. The
perturbation expansion method for the plane Poiseuille flow of a compressible Newtonian
fluid is presented in section 4.3, where explicit analytical solutions for pressure, density, and
velocity are obtained up to the second order. These agree (up to the second order) with
the solution of Schwartz [75] at the exit of the channel. The derivation of the solution of
the axisymmetric flow is provided in the Appendix. The results concerning the effects of
compressibility, the Reynolds number, the aspect ratio, and the bulk viscosity on the velocity
and pressure fields are presented and discussed in section 4.4. Finally some conclusions are

drawn in section 4.5.
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4.2 (Governing equations
The constitutive equation of a compressible Newtonian fluid is

r=n[Vut (V] + (5= 20) Var (4.1)

where 7 is the viscous stress tensor, u is the velocity vector, Vu is the velocity gradient tensor,
I is the unit tensor, n denotes the viscosity, and « is the bulk (or dilatational) viscosity. In
the present work, both 1 and x are assumed to be constant, i.e. independent of pressure.
Note that the bulk viscosity k, which is very often neglected, is identically zero only for
monoatomic gases at low density. This becomes important in polyatomic gases, in liquids

containing gas bubbles [11], and in liquids in general [88].

We consider the steady, two-dimensional, planar isothermal Poiseuille flow of a weakly com-
pressible Newtonian fluid under zero gravity and no slip at the walls, as illustrated in Fig. 4.1.
Under these assumptions the continuity and the z- and y-components of the Navier-Stokes

equation become:

s (p) + 5 (o) = 0, (12

<u 0 uy +u M) __oP + Ouy + Oy 4 (/@—k 77) Ouy + Oy (4.3)
PA\" 9% Yoy ) O T\ 2 oy? 3)\0x0y 022 )"

Ouy M) __oP O*uy  Ouy ( ﬁ) O*u, 0%y,
P (Ux Ep + Uy gy )" oy +1n <8x2 + 12 + Ii+3 8x8y+ 2 (4.4)

where p is the fluid density, u, and u, are respectively the horizontal and transverse velocity
components, and P is the pressure. The fluid density is assumed to obey a linear equation

of state:

p =p[l+ B(P —P), (4.5)
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where [ is the isothermal compressibility,

assumed to be constant, V' is the specific volume, pg and Vj are, respectively, the density and

the specific volume at a reference pressure Py, and 7' is the temperature. Taking the velocity,

M
po HW

where M is the mass flow rate, H is the channel width, and W is the unit length in the

x-direction, as the characteristic velocity of the flow, we define the Mach number by

Ma =

o g

(4.7)

where

b ) =)

is the speed of sound in the fluid, v being the heat capacity ratio (or adiabatic index). In

this work we consider subsonic flows so that Ma < 1.

To nondimensionalize the governing equations, we scale x by L, y by H, p by the reference
density po, u, by U, the transverse velocity u, by UH /L, and the pressure by 3nLU/H?. The
latter pressure scale is used so that the dimensionless pressure gradient along the domain, in
the incompressible flow is equal to 1. For the sake of simplicity, in what follows we will use the
same symbols (i.e. without stars) for all dimensionless variables. Using the above scalings,
the dimensionless forms of the equation of state, the continuity equation and momentum
equations become:

p=1+¢P, (4.9)

0 0
%(Iouz) + %(puy) =0, (4'10)



o Re <u 0 Uy n (911@) - _36_P +a282u$ n 0%, Y < n 1) 82uy n 0%,
P\" 9% - Tz Ox? Oy? XT3 Oxdy  0x2 |’

(4.11)

0P 10%uy 5 0%uy 9 1 *uy 0%y
_ . 412
35y ta Ox? ta Oy o (X+3) 8x8y+ oy? |’ (4.12)

where y = r/n is the bulk-to-shear viscosity ratio, « = H/L is the aspect ratio of the channel,

and Re and € are, respectively, the Reynolds and compressibility numbers, which are defined

by
H
Re= 1Y (4.13)
n
and
3n B LU
The Mach number takes the form
Ma = ca Re
3

The system of partial differential equations (4.10)-(4.12)is supplemented by appropriate
boundary conditions, which are shown in Fig. 4.1. Along the wall, it is assumed that

no slip occurs and the transverse velocity component vanishes (impermeable wall):

uz(x,1) = uy(x,1) =0, 0<z <L (4.15)
Along the midplane, the usual symmetry conditions are employed:

Ouy

8—y(m,0) = uy(z,0) =0, 0<z < 1. (4.16)

At the exit plane, the dimensionless mass flow rate is set at a value of 1.
1
/ pugdy = 1. (4.17)
0
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Finally, the pressure is set to zero at x =y = 1:
P(1,1) =0. (4.18)

As in Venerus [88], no boundary conditions are specified at the inlet plane. For an interesting
discussion on the inlet and outlet boundary conditions, the reader is referred to the articles

of Poinsot and Lele [66] and Venerus [88].

uz = uy = 0 (no slip and no penetration)

y=1 P(1,1)=0

iy pusdy =1

Oug _

a0 =0, uy =0 (plane of symmetry)

Figure 4.1: Geometry and boundary conditions for the compressible plane Poiseuille

flow (all variables are dimensionless).

4.3 Perturbation solution

Equations (4.9)-(4.12) constitute a nonlinear system of PDEs that cannot be solved analyti-
cally. By using perturbation methods, approximate solutions of the flow can be obtained. As
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already discussed, different perturbation parameters have been used in the literature. The
compressibility number, ¢, is chosen here as the perturbation parameter. This choice has also
been made by Venerus [88] and Schwartz [75]. The latter author used the parameter (Mach
number)? /Reynolds number at =1, which is equivalent to the compressibility number used
here. Prud’homme et al. [67] employed a double perturbation expansion in terms of the

aspect ratio and the relative pressure drop.

As already mentioned, perturbation is performed on all primary variables, p, P, u, and u,,
using the compressibility number, €, as the perturbation parameter:
p = pO + ep) 4+ 2o 1 0(e?)
Uy = uéo) + suz(,l) + &2 ul(,2) + 0(e?)
(4.19)

up = ut? + eul + 2uf? + 0(e?)

P = PO 4+ ¢ PO 4 2 P2 4 0(?)

Substituting the above expressions into the governing equations (4.9)-(4.12) and collecting
terms of the same order in the perturbation parameter €, we get a regular perturbation
scheme. The solutions up to the second order are provided below. For the zero- and the first-
order equations it is assumed that the transverse velocity u, is zero throughout the domain.
For the second-order equations it is assumed that u, = u,(y) and that its second derivatives

at the wall and the plane of symmetry are equal to zero.

Zero-order solution

The zero-order equations are:

P9 =1,
0 0
= | ,0),,0) 1 0),,0)
ax{p ux} —i—ay[p Uy } = 0,
(0)
OéRep(O) ug:o) auw y) 6;; ‘|
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oY ou
3Ren® [4,0) Z2Y (0) =7
o Rep'™ |u, o + uy By

oPO o0, ) 1\ [02l %)
=y T g T g T <X+3) azdy oy |

With the assumptions ug(,o) (z,7)=0 and P©)(x=0)=1, the zero-order solution is easily ob-

tained:

PO =1 (4.20)
) = 0 (4.21)
W = 20—y (4.22)
PO = 1 g (4.23)

Obviously, the above solution is the solution of the incompressible Newtonian planar Poiseuille

flow.

First-order solution

The first-order equations are:

0 0
= ,0,0) (1) ,,(0) =150 ,,(1) 1,0 =
am{p uy’ +p ux}—i—ay{p Uy’ +p uy}—o,
(0) (0)
OzRep(l) [u(o) Oug y) 6;; ‘|
(1) (0) (1) (0)
taRep© |0 2 Qv o) Oua (1) Ot
ro0 G Yooy Yo oy
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81,%(/0) (0) au?(f])
Ox Yooy

o ouy) ) ouy

1 0
T Oz

(0) 27y
+ Uy ay + Uy dy

oPW o), o), 1 [0 02l
oy + « 22 + « 9,2 + o (X + §> [Bx(?y + 0,2 ] .
Obviously, pM=PO)(z)=1 — 2. Assuming that ul(/l)(x, y)=0, we find from the continuity and

the y-momentum equations that

and

1 1
PO = §a2 (x+ 3) (1—9°) + g(a),

where f(y) and g(z) are unknown functions. Substituting into the z-momentum equation

and separating variables we get

9 _a2N\2 et __8P(1) - _
4aRe(1 y) —f"y)=-3 52 +3(1—2)=c

where ¢ is a constant to be determined. Integrating the resulting ODEs and applying
the boundary conditions f/(0)=f(1)=0 and fol f(y)dy=0 for uggl)(:v,y) and P(M(1,1)=0 for
P(z,y) we find that ¢=54/35aRe and the functions g(x) and f(y). The first-order solution

reads:

oM o= 1-2 (4.24)
u) =0 (4.25)
ull) = —2(1 —z)(1—y?) + %a Re(1 —y?) (=5 + 28y — Tyh) (4.26)
1 1 1 18
(1) _ = 2 - AN . 2 -° .
P 5% (X+ 3) (1—1vy%) 2(1 x)° + 35 Re (1 —z). (4.27)

92



We observe that the first-order pressure is a function of both x and y. It should also be noted
that the assumption of zero, first-order transverse velocity is made implicitly in the analysis
of Venerus [88] for the axisymmetric flow, since simple functional forms for the first-order

vorticity and streamfunction are assumed instead.

Second-order solution

The equations governing the second-order solution are:

p® = PW(x,y),

0 0
1,0, (1), (1) (2),,(0) 7 0),,(2) (1), (1) (2,0 —
8m{p uy’ + puy +op ux}—i—ay{p u + puy +op uy}—o,
(0)
aRep(2) [uéo) 82/@: yo 5;2 ‘|

u2

Ox T Ox o Ox oty Oy Yy Oy Yooy

2 1 0 2 1 0
00 o) ol g ol g o o) ol )]

0P 82u?) w2 024 o < 1> 82u?) . 824
Ox Oy? Ox? Oxdy ox? |’

and

(0) (0)
o’ Rep® [u:(co) Ouy_ + ul¥ Iuy ]
x

+a® Re p(l) [ugj’)

1 0
b o Rep® [ 2% w9 O R A (Y duy 4@ oy
o Ox o Ox T Ox Yo oy Yo oy Yooy

oP@ ) oY, 1\ [02f) | 9%l
= -3 3y + « B + « 922 + <X+ > 8m8y+ o |

For p(2) we simply have:

p? = PW(z, y) = %oﬂ (X+ %) (1—19?%) — %(1—:6)2 + %a Re (1 —z). (4.28)
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At this point the assumption of zero transverse velocity is relaxed, letting u, to be a function
of y, uz(f):ug(f) (y). Note again that in the analysis of Venerus [88] for the axisymmetric flow,

the simplest expressions for the second-order vorticity and streamfunction are postulated

instead. From the continuity and y-momentum equations we respectively get:

9 3 1
@ — Zq_ 21_2__2( _)1_22
Uy =2 —y) - ot (x+5)(1-y)
_ 3 Re(1 —z)(1 — 2)(67+282—74)+8u§’2)(1—$)+F() (4.29)
280a e X y Yy y 8y Yy 9
and
1 ,0u? 3 1
j 210 a— _2_y__2< _> 1 — 2)(1 — o2
3% g, 2% (XT3 (1-2)(1-y)
+%a3Re (x + %) (1 —y?)(67 + 28¢y% — Ty*) + G(), (4.30)

where F'(y) and G(z) are functions to be determined. Combining Eqs. (4.28)-(4.30) and the

r-momentum equation leads to:

3 oul? 27
2.2 21 a2\ 2ty N2
o Re | —3yu, 2(1 y) By 1 (1—2)(1 -y
9 22 2 _ gt ]
+560a Re(1 — y*)“(62 + 56y~ — 14y")
= —3G/( )—9(1— )2+83“§’2)(1— )+F"( )——3 Re(1—x)(—78—420y2+210y%)
= )51~z ay3 x Y)—5ggilte y Y

9 1
+ 5042(1 —y?) + 3a? (x - 3) (1—3y2). (4.31)
Here, it is assumed that the terms involving both (1 — ) and y must be equal to a (scalar)

multiple of (1 — x). Thus we can assume that

27 2\2 83’&?52) 3 2 4 439
7 Re(1—y*)* + o 330% Re(—78 — 420y~ + 210y”) = « Rer. (4.32)

where v is new constant to be determined. Solving the above equation with the conditions

uz(f) (0):u§2)(1):0 and 8u7(f)/8y(1):82u3(,2)/0y2(0)20 yields y=216/35 and the second-order
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transverse velocity:

3
(2) — N2 2
Uy Ta0% Rey (1 —y*)“(5 —y*). (4.33)

Separating variables in Eq. (4.31) gives the following ODEs for F(y) and G(z):

aRe | —3yul?) — §(1 - y2)8u§2) + ia Re(1 — 32)%(62 + 562 — 14y)
v T dy 560
" 9 2 2 2 1 2
-F (y)—ga (1—y°) — 3« X+3 (1-3y")=A (4.34)
and
-3G'(z) — g(l —z) 4+ aRey(1—2z) = A. (4.35)

where A is another constant to be determined. Integrating Eq. (4.34) and applying the
conditions F’(0)=F(1)=0 and [, F(y)dy=0 we find that

1N/3 9 3 3 9 9
F 2 N2 9 9 _4) 2(___2 _4)
) @ (X+3> (20 w0/ T3V )T\ 20 TV

a?Re?(2193 — 11356y% + 2310y + 12012y° — 5775¢° + 616y'Y) (4.36)

431200

and

1802 6 , 1 9132 , o
A= — — - (X‘i‘g) +ma Re*. (437)

Integrating now Eq. (4.35) and substituting A under the condition P(Q)(l, 1)=0 we obtain

1 44 2 1
G(w) = 5(L-2)° = Za*(1-) = aRe(l-2)* + {pa®Re (1 —a) - Za? (x+ 5 ) (1= )
(4.38)
Thus, the second order solution reads:
1 1 1 1
p = ga* (x4 ) A-9D) - 51-af + gaRe(i-a) (4.39)
3
ugf) = T0° Rey (1 —y»?2(5 — 4% (4.40)
ul? = (1—4?) F(l —z)? - 5 a Re (57 + 84y* — 21y*)(1 — z)
I 4 280
3 9 3 5 ( 1)
2021 — _ 2 -
+40a (1 —5y%) £ X + 3
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3 2 2 2 4 6 8 ]
— 2193 — 91 — 1 — 61 4.41
151200% Re”(2193 — 9163y~ — 6853y~ + 5159y” — 616y°)| (4.41)
1 44
P2 = 5(1 —z)3 - gaZ(l —z)— %a Re(1 —2)* + %oﬂRez(l — )

—1—10042 (X + :15) (19 — 155*)(1 — 2)

1 1
+ %oﬁRe(l —y%) {2(5 —28y* + Ty*) + <x + 3> (67 + 28y* — 7y4)} (4.42)

Summarizing the results, the solution of the flow problem up to the second order is as follows:

p = l—i—e(l—m)—l-s?[lag (X—i—l)(l—gﬁ)_%(l—x)Q—i—gaRe(l—x)]

2 3 35

+ 0(e) (4.43)
Uy = %405204 Rey (1 _ y2)2<5 _ y2) + 0(83) (4.44)
Uy = §(1 ) [1 —e(l—m)+ Laoa Re(—5 + 28y* — Ty*) + §€2(1 ~g)?

2 140 2

% Re(57 + 84y” — 21y")(1 — ) + -%0%(1 = 5y?) — %0’ (x + 1)

140 20 E 3
1
~ 57560 0€2a2 Re?(2193 — 9163y2 — 6853y + 5159y° — 616y8)] + 0(%)  (4.45)

1 1 1 18 1
P = 1—x+§£a2 <x+§> (1—y2)—§£(1—x)2 + gaaRe(l—x)—Faez(l—x)g

6 36 3044
——e%?(1 — ) — —e®a Re(1 —x)? + ————c*a®Re*(1 — x)

5 35 13475
1 1
—1—Os2a2 <x + 3> (19 — 15y*)(1 — )

1 1
+%52 o@>Re(1 — y?) [2(5 —28y% + Tyt + (x R 3) (67 +28y% — Ty

+ 0(e?). (4.46)

The perturbation solution for the axisymmetric flow has been also derived and is provided
in the Appendix B. This is the same as the solution reported by Venerus [88] who used a

vorticity /streamfunction formulation instead of working with the primary flow variables.

The basic features of the velocity and pressure fields given in Eqs. (4.43)-(4.46) are the

following:
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(a) The transverse velocity, u,,, which depends only on the y coordinate, is zero at first order
in e (by assumption). At second order in €, u, is always positive, varies linearly with the
aspect ratio and the Reynolds number, and is independent of the bulk viscosity.

(b) The horizontal velocity, u,, deviates from the parabolic incompressible solution at first
order in ¢ due to fluid inertia. At second order in e, there is a reduction of the horizontal
velocity that is independent of inertia and enhanced by the bulk viscosity, which does not
alter its parabolicity.

(c) The pressure is a function of both z and y. The y-dependence at first order in ¢ becomes

2 is increased (i.e. in short channels). It also increases with the bulk viscosity.

stronger as o
(It should be noted that there is y-dependence even when the bulk viscosity vanishes). At
second order in ¢, the y-dependence of P is due not only to o and the bulk viscosity but also
to inertia.

(d) The density is a decreasing function of both x and y. This is expected since the fluid is

decompressed as it moves downstream and the density takes is lowest value at z=y=1. At

the exit of the channel (z=1), for example,

1 1
p:1+§€2a2 (X-Fg) (1—y2).

Since at the exit of the channel only very small variations of p can be acceptable, it must be

ca < 1.
In the compressible flow under study, the volumetric flow rate is an increasing function of x:
1
Qz) = /0 ug(z,y) dy =

Q<x>=1_s<1_x>+7%62 [‘280‘2 (X+:1),> ~36a Re (1) + 105(1—2)?| + 0().

(4.47)
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In the special case a<< 1, one gets Q(0) = 1 — &+ 32 /2 which is a parabola with a minimum
at ¢* = 1/3. Since increasing ¢ leads to more compression, i.e. to a lower value at Q(0),
the perturbation solution is valid for ¢ < 1/3. The same conclusion is reached for the
axisymmetric flow (see Appendix B) for which Venerus [88] reported that the compressibility

parameter is limited to values € < 0.25.

The present results agree up to the second order with the third-order results of Schwartz [75]
at =1 when z=1, x=0 and a=3. It is interesting to note that employing the lubrication

approximation would have led to the following simplified solution [33]

p=1+¢€P
uy = 0
(4.48)
_ 3 (1%
Yz = 3 1+2¢ (1—-x)
p — -1+ 11—25(1—96)

Expanding the expressions of u, and P as power series to second order in € leads to the

approximate solution

p=1+e(l—z)—3e2(1—2)% + O(?)

Uy =0
! (4.49)

wp =3(1—y?) [1-c(1—2)+ 32 (12| + O(?)

P=1l-z—3ec(l-2)?+3e2(1—-2)+ 0(?)
which involves only the compressibility parameter € and agrees with the perturbation solution
for « < 1 and Re < 1.

The streamfunction, ¢ (z,y), defined by

o _ o _
5 = Pl and oy = Py (4.50)
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is found to be

U(z,y) = %y(3—y2)—%eaRey(l—y2)2(5—yz)

3 3 1
2|9 9 22, 9 9 1 2\2
+€ {40(1 y(1—y°) +20a(x+3)y(1 y”)

i _2)\2 .2 o
+14OaRey(1 y ) (5 -y )1 —x)

+ o?Re?y(1 — 3?)2(—6579 — 18022 + 1589y* — 168y5)

431200

+ 0(£%). (4.51)

4.4 Results and discussion

The effects of all parameters involved in the solution, i.e. the compressibility number, &,
the aspect ratio, o, the Reynolds number, Re and the bulk viscosity, x, have been studied.
Mostly results for the planar compressible Poiseuille flow will be presented in this section,
since the perturbation solution for the axisymmetric flow (Appendix) is that obtained by

Venerus [88].

The effects of the Reynolds number and compressibility on the two velocity components
are illustrated in Figs. 4.2 and 4.3, respectively. The deviation of the horizontal velocity
profile from the incompressible solution relatively close to the exit at £=0.9 is shown in
Fig. 4.2a for different Reynolds numbers (Re=0, 10, 100), «=0.01, and for the relatively high
compressibility number e=0.25. While for low Reynolds numbers it is parabolic, the deviation
from the incompressible solution becomes sigmoidal at higher Reynolds numbers. The effect
of the Reynolds number on the transverse velocity, u,, is illustrated in Fig. 4.2b. It is clear

from Eq. (4.44), that u, is always positive, does not depend on the x coordinate and the
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bulk viscosity x, and increases linearly with the Reynolds number. Figure 4.3a shows the
deviation of the horizontal velocity from the incompressible flow near the exit (z = 0.9) for
different values of €, Re=10 and a=0.01. It can be observed that the profile of u, flattens as
compressibility is increased. The effect of € on the transverse velocity is shown in Fig. 4.3b.
As expected, u, increases quadratically with the compressibility number.

Figure 4.4 shows the transverse velocity profile in both the axisymmetric and planar cases for
£=0.25, a=0.1, @ Re=1 and o?(x + 1/3)=0. The axisymmetric result is of course identical

to that of Venerus [88]. A more flattened profile is obtained in the planar case.

Figure 4.5 shows the deviation of the horizontal velocity from the incompressible solution at
the entrance and the exit of the channel for Re=1, e=0.1, x=0, and two values of « (0.1 and
0.01). It is clear that the velocity is reduced and its profile flattens upstream. For a = 0.1
(short channel) some small differences from the incompressible solution are observed at the

exit of the channel. These vanish when the length of the channel is increased (a=0.01).

In Fig. 4.6, we show the pressure contours obtained with e=0.25 and a=0.1 for the two cases
considered by Venerus [88]: (a) aRe=1 and a?(x + 1/3)=0; (b) aRe=0 and o?(x + 1/3)=1.
These are similar to their axisymmetric counterparts ([88]). When the channel is relatively
short (o Re=1, Fig. 4.6a) the flow is essentially incompressible and the pressure contours
are practically vertical and equidistant. For longer channels (o Re=0), however, the pressure
contours are slightly parabolic as illustrated in Fig. 4.6b. Moreover the distance between
the contours increases upstream, due to compressibility. As pointed out by Venerus [88] this
effect is due to the bulk viscosity. Note that Venerus [88] does not specify the value of «
which is taken here to be equal to 0.1. In Figure 4.7 we provide the pressure contours for the
two complementary cases: (a) aRe=0 and a?(x + 1/3)=0; (b) aRe=1 and o?(x + 1/3)=1.
Comparing Figs. 4.6 and 4.7, we deduce that the parameter o (y +1/3) has a stronger effect
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Figure 4.2: Effect of the Reynolds number on the velocity components: (a) deviation

of the horizontal velocity u, from the incompressible profile; (b) transverse velocity u,;

e=0.25 a=0.01, x=0, and z = 0.9.

101



0 =0
— 0.05
T
S -0.02f
e 0.15
Il
=
0.25
-0.04f
-0.06 : : :
0 0.25 05 0.75 1
y
(a)
x107°
2
€=0.25
1.5}
=~ 1
0.15
0.5}
0.05
 ——— T
o : :
0 0.25 0.5 0.75 y 1

Figure 4.3: Effect of compressibility on the velocity components: (a) deviation of the

horizontal velocity w, from the incompressible profile; (b) transverse velocity u,; Re =

10, « =0.01, x =0, and z = 0.9.
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Figure 4.4: Transverse velocity profiles for ¢ = 0.25, @« = 0.1 and o Re = 1.
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Figure 4.5: Horizontal velocity field deviation from incompressible flow at x = 0, and

1 for a = 0.1 (solid) and o = 0.01 (dash-dot), Re =1, € = 0.1, and x = 0.
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on the pressure contours than aRe. The velocity contours for all cases considered in Figs.

4.6 and 4.7, are given in Figs. 4.8 and 4.9, respectively.

1
0.75f
0.5f
0.25f
0 A A
0 0.25 0.5 0.75 1
(@)
1
0.75f
0.5f
0.25
0 A
0 0.25 0.5 0.75 1
(b)

Figure 4.6: Pressure field contours for plane Poiseuille flow (0.1, 0.2, ..., 0.9) with

£=025and a=0.1: (a) aRe=1, a*(x +1/3) =0; (b) a Re =0, a*(x + 1/3) = 1.

Figure 4.10 shows the horizontal velocity field deviation from the incompressible solution at
various distances from the inlet plane, as given by Eq. (4.45) with £=0.25 and a=0.1 for two
cases: (a) a Re=1, a®(x + 1/3)=0 and (b) a Re=0, a?(x + 1/3)=1. In Fig. 4.10a, where
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Figure 4.7: Pressure field contours for plane Poiseuille flow (0.1, 0.2, ..., 0.9) with

e=0.25and a=0.1: (a) a Re=0, a*(x +1/3) =0; (b)) a Re=1, a*(x +1/3) = 1.
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()
Figure 4.8: Velocity field contours for plane Poiseuille flow (0.1, 0.2, ..., 1.4) with

e=0.25and a=0.1: (a)aRe=1, a*(x +1/3) =0; (b)) a Re =0, o*(x +1/3) = 1.
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Figure 4.9: Velocity field contours for plane Poiseuille flow (0.1, 0.2, ..., 1.4) with

e=0.25and a=0.1: (a) a Re=0, a*(x +1/3) =0; (b)) a Re=1, a*(x +1/3) = 1.
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the channel is relatively short the velocity profile flattens as the fluid moves downstream.
For longer channels (Fig. 4.10b) the effect of the bulk viscosity is small and the horizontal
velocity profile remains parabolic. These results which are similar to those of Venerus [88] for

the axisymmetric case, are also consistent with the numerical results of Guo and Wu [37, 38].

Finally, Fig. 4.11 shows the two transverse velocity profiles obtained with (a) Re=100,
£=0.006 and (b) Re=0.01, e=0.2 when a=3. The latter value of o was chosen in order to
make comparisons with the results reported by Schwartz [75] at the exit x=1. The present
results agree with those of Schwartz [75] up to the second order. According to Eq. (4.44),
uy is always positive which is not the case with the third-order solution of Schwartz [75];
this is valid only at the exit and yields negative values of u, for small Reynolds numbers

(Re=0.001).

4.5 Appendix: Compressible axisymmetric Poiseuille

Flow

The two-dimensional perturbation solution of the compressible axisymmetric Poiseuille flow
is derived in this Appendix. To nondimensionalize the equations, we scale z by L, r by
R, the density by the reference density po, the axial velocity u, by U = M /pomR?, the
radial velocity u, by UR/L, and the pressure by 87LU/R?. The dimensionless forms of the

governing equations are:

p=1+¢eP, (4.52)
10 0
;E(Tpur) + &(Puz) =0, (4.53)
. 0u, oP 1 0 0 uy 5 0%u,
O‘R@f’(“fa zw) ‘BWHW(%T) R



0.1

u ~(3/2)(1-y)

u ~(3/2)(1-y")

0.8 1

(b)

Figure 4.10: Horizontal velocity field deviation from incompressible flow at various

distances from the inlet plane for e = 0.25 and o = 0.1: (a) a Re = 1, a*(x+1/3) = 0,

(b)) a« Re =0, o*(x +1/3) = 1.
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y
Figure 4.11: Transverse velocity profiles of plane Poseuille flow with o« = 3 and the

Reynolds and compressibility numbers used by Schwartz [75].

(s D2 (22 ) + 2
+ « <x+ 3152 Tar(rur) + 5.2 (4.54)

P 1 2u,
a® Rep <ur%+u28ur>:—88 +a2i(—i(rur))+oz4a:

or 0z or or \r or 0 22
N[O /1 0 0%u
2 - _ y- z
+a (X + 3> lar (r ar(rur)) + 87“82] (4.55)
where:
_k _R _pUR _ 8npLU
)(:;7 azf, Re: 17 s and E = R2

The boundary conditions are similar to those used for the planar problem.

Writing the primary fields as expansions in the perturbation parameter ¢,

p = pO 4 epM) + 2@ 4 0(?)

up = u® + eV 4 24P 4 0(e%)

, (4.56)
w, = u” + eu) + 20 + 0(g%)

P = PO 4+ PO 4 2pP@ 4 09
substituting in the governing equations, and following similar steps as for the planar problem,

we obtain the solution of the flow up to the second order.

110



Zero-order solution
The zero-order equations are:

p0 =1,

% [rp 0] + 2

D) gO) P g(])
o Re pl¥ [u&o) gr + ugo) SZ

_ _88P(0) _{_lg 8“'2'0) + 282u,(30)+ 2 ( +1> g <1 g( (0))) 8 02“’(20)
a 0z r or " or @ 022 @ X 3) |0z \r Or " 022 |’

and

oul? oul? opr©) a1 d 824 ¥
3 o) |, (0 Ur (0 9Ur | _ 2 0 |1 O (0) 4 r
o” Rep [ur o + uy s 8 + o [r (ruT )] + 5.2

(0)
2 1) 9 <lﬁ 0 ) Oz
ta <X+3 or r@r(rur ) * orodz |~

With the assumptions 8u20)/6r(0):u,(20)(1):0, PO (z=1)=0 and P©)(z=0)=1, we find the

zero-order solution:

PO =1 (4.57)
ul® = 0 (4.58)
u® = 21 — r?) (4.59)
pO _ 1 _ . (4.60)

First-order solution

The first-order equations are:

oM = p(O)(Z) =1-z,

10 0
il (0),,(1) (1),,(0) = | ,00),,1) 1,0 —
ror [r (p P )} + 0z ['0 u” + o) =0,

D) gO) P gO)
o Re ptV) [u,(ﬂo) gr + ugo) gz
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_ 0P 10 [ ouD 262u£1>+a2< P[22 () Lo
N 0z r Or " or @ 022 X 3) |0z \r Or " 022 |’

(0) (0)
o3 Re pV [u(m Ouy (0) Our ]

" Or T 0z

out! oul” ou oul”
3 ©) |, (0 1) Our (0) Our 1
+a” Rep [UT 3 S Uz’ 5 e
oPV L 910 o2utM
- _ i i (1) 4 r
8 or o or [r or (T‘UT )} e 022

1 [o /10 0%l
2 o T R (1) z
ta (X+ 3) l(‘?r (r or (T Ur )> g ordz |-
Assuming that ugl) (z,7)=0, we find from the continuity and the r-momentum equations that

ul = —2(1-2)(1-r%) + f(r)

and

PO = iaQ (X—i— %) (1—7%) + g(2)

where f(r) and g(z) are unknown functions. Substituting into the z-momentum equation

and separating variables we get

L 20y - 2PY L0 sy
da Re (1 —1r7) rar(rf(r))— 8 P +r8r(4r(1 z))—c

where ¢ is a constant to be determined. Integrating the resulting ODEs and applying
the boundary conditions f’(0)=f(1)=0 and fol rf(r)dr=0 for ugl)(z,r) and PM(1,1)=0 for

P(z,7), we find that c=2aRe and obtain the first-order solution:

ORI (4.61)

u) = 0 (4.62)

ul) = 201 — ) |—(1—-2) - % o Re (2 —Tr* + 27“4)] (4.63)
2 4 4 3
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Second-order solution

The second-order equations are:

p? = PW(eyr) = —1 (1-2)° + ;aRe(1—2) + o (X + %) (1—13),  (4.65)
19 0,2 o (0,0 o 2,0 10, o 0,0 o 2,0
;E{T (p w,” + puy + puy, )} —i—g[p uy” + puy’ +op uz] = 0,

(0) (0)
o Re p? [u&o) 3% + ul® Ous 1

1) © (1) (0
= 0 % ) O
"ooor "ooor = 0z 2 0z

o2 (2) ¥%=
T Or Ur or + U or + U 0z tou 0z Uz 0z

2 1 0 2 1 0

__g0P® 10 ou” + 262u22)+ 2( +1) 8<18( (2))> + Pu?)
- 0z r or " or @ 022 @ X 3) |0z \r Or " 022 |’

© ©
o3 Re p® [um) Our (0) Our ]

T Or + U 0z

oP® L0 [1 0 82l N\[o /10 2ul?
- i e (2) 4 r 2 il T O (el (2) kd
8 or to or [7“ or (ru,, )}+a 022 ta <X+ 3) or <r or (T Ur )) + ordz |

Now under the assumption that uq(?):u?(?) (r), from the continuity and r-momentum equations

we get, respectively:

(2)
W = 3= - g0 (xrg) a-rp 4 20 gy
0‘1];6(1 — ) (=T =T +2r")(1 = 2) + F(r) (4.66)
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and

1 18(7‘u$~2)) 3 1
2 — 22T ) 2,2 - — (1 -
P ¢ (r 5, 1° (X+ 3) (1—=r)(1-2)

_ 1 s Ny 2y 2 0
Taa” Re<x+3> (I=r)(=7T—=Tr"4+2r") + G(2), (4.67)

where F'(r) and G(z) are functions to be determined. Combining Eqgs. (4.65)-(4.67) with the
z-momentum equation leads to:

2)
o Re {—4m9> —12(1 —r)%(1 - 2) —2(1 — %) Fa(gilif)

1
+ §a Re(1 — r2)2(—4r4 +14r% + 5)}

= 60%(1 —1?) — %az (x + %) (=8 + 16r%) — 8G'(2) — 12(1 — 2)?

Lo [0 (10 6u?)
ror T@r r or

In order to separate variables, we demand that the terms involving both (1 — z) and r must

(1-2) + %%(TF'(T)) Fda Rer(2— 2)(1—2). (4.68)

be equal to a (scalar) multiple of (1 — z). Thus, we assume that

@)
da Rer2(2—r?)+ 19 l £ Ga(mr )>

g\rdr ) 22
iyl il B e + 12a Re(1 — r*)* = 4o Rery. (4.69)

where 7 is new constant to be determined. Solving the above equation under the conditions

2 y—a,,2) , (2)1y—n,,(2) —0 i _ _ :
ur’(0)=0u,"" /Or(0)=0 and u,”’ (1)=0u,"’ /Or(1)=0 yields y=2 and the second-order radial
velocity:

1
ul? = 362 Rer (1 —7r3)2(4 —r?). (4.70)

Separating variables in Eq. (4.68) gives the following ODEs for F(r) and G(z):

@) 2 (10 (rut?) 1 2 4 6 8
aRe | —4ru,” —2(1 —r?) s §ozRe(—5—47‘ +27r% — 22r° 4 4r°)
T T

o2
—60%(1 —1?) + 5 (X + %) (=8 + 16r%) — %%(TF,(T)) =A (4.71)
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and

—8G’(2) —12(1 — 2)®> + 4a Rey(1 — 2) = A. (4.72)

where A is another constant to be determined. Integrating Eq. (4.71) and applying the

conditions F'(1)=0 and fol rF(r)dr=0 we find that

F(r) = 02562 (% _ %72 + %r‘* _ ;7"6 £T8 _ %rw)
+ o? <é - %TQ + %“4) + a? (X + %) <—§r2 + %7‘ + %) (4.73)
and
A:4|:—042—%042<X+%>+%Q2R62:|. (4.74)

Integrating now Eq. (4.72) and substituting A under the condition P(?)(1,1)=0 we obtain

Glz) = %(1—,2)3—%oﬂ(l—z)—%aRe(l—z)2+%a2Re2(1—z)—éa2 <X + ;) (1—2) (4.75)

Hence, the second order solution reads:

1 1 1 1
2 — _Z(1-2 1= 1— - 2( _)1_2 4.76
p 2( z) +4aRe( z)+4a X+3 ( %) (4.76)

u® = 3_1(3aRer(1_r2)2(4—r2) (4.77)

3 1 1
(2 _ a2 [P 212 2
uy’ = 2(1—1r7) [2(1 z) 6a (X—i— 3)

1 2 4 L ooy a2
1204Re(1—i—77" 2rH)(1 z)+16a (1—3r7)

+ 13900 o? Re (43 — 95712 + 23431 — 1257r° + 1687"8)} (4.78)
1 1 1 1
P2 = 51 z)3 — ﬁoﬁ <X + §> (11— 9r3)(1 — 2) — 50 Re(1— z)?

L ap o
— - (1fz)+§oz Re*(1 — 2)

1 1
+ ma?’ Re(1 —1?) [(4 — 1472 + 4r") + (X + 3) (7+ 7% — 27“4)} . (4.79)
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Thus, the solution of the flow up to the second order is as follows:

p = 1+e(l—2)

+e2 {_% (1-2)? + % a Re(l—2)+ + a? (x + 1) (1- rz)] + 0(e7) (4.80)

4 3
1
Up = %52(1 Rer (1 =724 —r*) 4+ 0(e%) (4.81)
2 1 2 4, 32 2
u, = 2(1—1r°) 1—6(1—2)—%€QR6(2—77‘ +2r )+§€ (1-=2)

1 1 1 1
—55204 Re(14 7% —2r"Y(1 — 2) + 1—652042(1 —3r?) — 662012 <X ’ 3>

1

+ 43200

e2a?® Re*(43 — 9572 + 2343r* — 125775 + 1687“8)} + 0(%)  (4.82)
1 , 1

P = (1—2)—55(1—2) +Zz—:ozRe(1—z)

2 1 2 1 2 3

+ -t X+§ (1—r)+§s(1—z)

_ Ll <x + 1) (11 — 9r%)(1 — 2)

12 3
—lsza Re(1 — 2)% — 1042(1 —z)+ i52&2}262(1 —2)
2 2 27

1 1
+m52a3 Re(1 —1?) [(4 — 1472 + 4r*) + <X + §) (7+ 7% —2rh)

+ 0(£%). (4.83)

The streamfunction, defined by

oy _ o _
5, = Prus and 5, = P (4.84)
is given by
P(r,z) = 1 7 (2 — 7"2) - is aRer?(1—r?)%(4 —r?) + &2 [i a?r? (1 —r?)?
’ 2 72 16

I I\ 5 92 | 1 2 22 2
- - 1— - 1—12)2(4 — r2)(1 —
+12a (X+3> e (1—1r°) +360¢Rer (I —=7r)°(4 —r°)( 2)

+

43200a2 Re?r? (1 —r?)2(43 — 41472 + 22971 — 28r6)] + 0(7).  (4.85)
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Finally, the volumetric flow rate across the tube,

Q(z) = 2/1 uy(r, z)rdr,
0
is

Q) =1—e(l—2)+ %52 {—8042 (X + %) —6aRe(l— 2)+72(1 — 2)%| + 0(%). (4.86)
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Chapter 5

Weakly compressible Poiseuille

flows of a Herschel-Bulkley fluid

5.1 Introduction

Laminar Poiseuille flows of weakly compressible materials have gained interest in the past two
decades due to their applications in many processes involving liquid flows in relatively long
tubes, such as waxy crude oil transport [15, 90] and polymer extrusion [29, 32]. Numerical
solutions of weakly compressible Poiseuille flows have been reported for Newtonian fluids [32],
generalized Newtonian fluids, such as the Carreau fluid [29] and the Bingham plastic [90], as
well as for viscoelastic fluids [6]*.

The objective of the present work is to solve approximately the plane and axisymmetric
Poiseuille flows of weakly compressible fluids with yield stress, i.e. fluids obeying the Herschel-

Bulkley constitutive equation, and investigate the effects of compressibility by means of two

!Some of the results presented in this chapter appear also in Reference [84]
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different equations of state, i.e. a linear and an exponential one. A linear equation of state
has been employed in previous numerical studies of the extrudate swell flow [10, 28] by
Hatzikiriakos anf Dealy [40] for HDPE, also for laminar capillary flow by Venerus [88] for
compressible Newtonian fluids, and in our previous studies concerning the simulation of the
stick-slip extrusion instability [29, 32]. Exponential equations of state have been employed,
for example, by Ranganathan et al. [70] for a HDPE and, more recently, by Vinay et al. [90]

in simulations of weakly compressible Bingham flows.

The paper is organized as follows. In section 5.2, the governing equations for the axisymmetric
Poiseuille flow are presented and the assumptions under which these are simplified are dis-
cussed. Analytical and semi-analytical results are presented for both the incompressible and
compressible flows of a Herschel-Bulkley fluid and the numerical method is briefly discussed.
In section 5.3, the numerical results for the compressible flows of Newtonian, power-law,
Bingham, and Herschel-Bulkley fluids with both linear and exponential equations of state
are compared and the effects of the compressibility and the yield stress are investigated.

Finally, section 5.4 contains the conclusions.

5.2 Governing equations

Let us consider the steady, compressible axisymmetric Poiseuille flow of a generalized Newto-
nian fluid. The geometry of the flow is given in Fig. 5.1. Assuming that the flow is creeping

and neglecting gravity, the momentum equation is reduced to

-Vp+ V.1 =0 (5.1)
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where p is the pressure and 7 is the stress tensor. Let us also denote the velocity vector by

u and the rate-of-strain tensor by 7, i.e.
4 = Vu + (Vu)T, (5.2)

where Vu is the velocity-gradient tensor, and the superscript 7' denotes its transpose. Under
the assumption of zero bulk viscosity, which implies that the viscosity forces are only due to
shear and not to volume variations [90], the viscous stress tensor for a generalized Newtonian

fluid is defined by a constitutive equation of the following general form:

r =03 (3 - 3v-ur) (5:3)

where I is the identity tensor, and 7 is the viscosity which depends on the magnitude ¥ of

the rate-of-strain tensor:

1 1
o= /I :\/':' 4
¥ \/2 4 57 (5.4)

II being the second invariant of a tensor.

Wall — No slip
Capillary

—_— exit

Symmetry axis z

Figure 5.1: Geometry of compressible axisymmetric Poiseuille flow of a Herschel-

Bulkley fluid.
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The tensorial form of the Herschel-Bulkley constitutive equation is:

;Y =0 ) T S 70
(5.5)
T = (% + k"y”1> Y, T>To
where 73 is the yield stress, k is the consistency index, n is the power law exponent, and T

is the magnitude of the stress tensor. The power-law fluid and the Bingham plastic are the

special cases of the Herschel-Bulkley model for 7o=0 and n=1, respectively.

For a weakly compressible flow, we can assume that the radial velocity component is zero.
This assumption is consistent up to first order with Newtonian perturbation solutions in

terms of compressibility [75, 88]. When u,=0 the expression for 4 is simplified as follows:

- ) G

We further assume that du,/0z < 1 so that the second term in the RHS of Eq. (5.3) is

negligible and

Ou,
or

Ao . (5.7)

Then from the r-momentum equation it is deduced that p=p(z) and the z-momentum equa-

tion is reduced to

dp 10
_E + ; E (TTTz> =0 (58)

where the pressure gradient is also a function of z. It should be noted that the above
assumptions are valid when the radius of the tube is much smaller than its length [91].

Equation (5.5) is simplified as follows

% =0, |Trz|§7_0

(5.9)

n
Try = —T0 + k (_%l;.z> s |7—7"z‘ > 70
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Being a function of the pressure, the density also varies across the tube, i.e. p=p(z). For the

mass to be conserved, it must be
R
27rp(z)/ uy(r,z) rdr = const.
0

p(z) Q(z) = Qo (5.10)

where Q(z) is the volumetric flow rate and Qo=Q(0).

In the following subsections we will first discuss the one-dimensional incompressible and then
the two-dimensional compressible axisymmetric Poiseuille flow of a Herschel-Bulkley fluid.

The equations for the planar compressible Poiseuille flow are given in the Appendix.

5.2.1 Incompressible axisymmetric Poiseuille flow

The solution of the incompressible Poiseuille flow of a Herschel-Bulkley fluid is straightfor-
ward and well known. However, it is presented here in order to show the analogy with the
weakly compressible solution and to introduce the non-dimensionalization of the problem. In
incompressible flow, the pressure gradient and the density are constant and the axial velocity

component depends only on the radial coordinate [45]:

(r) n dp\ | (R — o)t/ 0<r<mg
uAT) = 1/n 1/n <__)
Btk * [(R — )/t — (r — 7“0)””“} , o <r<R
(5.11)
where R is the capillary radius, (—dp/dz) is the constant pressure gradient, and
270
=  — <R 5.12
"= Cdplda) (512
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denotes the yield point, i.e. the point at which the material yields. Note that flow occurs

only if (—dp/dz) > 279/R. The volumetric flow rate is given by

Q _ Tn <_dp)1/’n Rl/n+3 <1 B ,r,0>1/n+1
21/n (3n 4+ 1) k/n \  dz R

2n 1o n 70
1 — |1 — . 1
{+2n+1R[+n+1R]} (5.13)

In the cases of a Bingham plastic (n=1) and a power-law fluid (79=0, ro=0), Eq. (5.13) is

reduced to
T dp 4 4 rq 1 (7“0)4
= — (—— 1 - - —= | = 14
@ 8E(dZ>R[ 3R+3R (5-14)
and
N dp\'" |
= —— RY/m+3 5.15
@ 211 (3n 4+ 1) kM/n ( dZ) ( )
respectively.

In what follows, it is preferable to work with dimensionless equations. Lengths are scaled by
the tube radius, R, the velocity by the mean velocity, Vj, in the capillary, and the pressure

by kVy'/R™. With these scalings, the dimensionless velocity profile is written as follows

n dp\ /| (1 — ro)l/mH, 0<r<m
{(1 . TO)I/nJrl —(r — ro)l/n+1} o <r<i1
where all quantities are now dimensionless,
2 Bn
= " <1 A
0 (—dp/dz) < (5 7)
and
ToR"™
Bn = —— 5.18
"= (519)

is the Bingham number. The dimensionless version of the constitutive equation, i.e. of Eq.

(5.9), is:

ou

z =0, |7r2] < Bn
or (5.19)
Trz = —Bn + (_%) y |T7’z| > Bn
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Moreover, the dimensionless pressure-gradient is a solution of the following equation:

3 1/n+1
ym3n+1(_@v _ K_@v__QBﬂ

n dz
<_@){pm3n<_@>+ 8 n? Bn? (5.20)
dz 2n+1 dz (m+1)2n+1) | ’

In the case of a power-law fluid (Bn=0), the solution of Eq. (5.20) is simply

() <o (B0 o

In the case of a Bingham-plastic (n=1), Eq. (5.20) is reduced to

dp 4 dp 3 4
—— — 8 (Bn + - + 16 Bn® = .22
3 ( dz> 8 (Bn + 3) < dz) 6 Bn 0 (5.22)

It should be noted that flow occurs only if (—dp/dz) > 2Bn. For given values of Bn and
n, Eq. (5.20) is easily solved for the pressure gradient using the Newton-Raphson method,
and then the velocity profile can be constructed using Eq. (5.16). In Fig. 5.2, the velocity
profiles calculated for n=0.5 and various Bingham numbers are shown. In Fig. 5.3, the
velocity profiles obtained with Bn = 10 and n = 0.5, 1 and 1.5 are compared. With fixed
volumetric flow rate, the size of the yielded region is reduced as the power-law exponent is
increased. This is also shown in Fig. 5.4, where the yield point r( is plotted as a function of

the Bingham number for various values of n.

5.2.2 Compressible axisymmetric Poiseuille flow

In the case of compressible flow, the pressure gradient and the density are functions of z and
so are rg and the volumetric flow rate. It is easily deduced then that the dimensionless axial

velocity (scaled by the mean velocity, Vj, at the exit of the capillary) is given by

n 1n [1 = ro(=)]"/" 0<r<r
uy(r, 2) ( @> (2) ’ ’

= m dz {[1 B ro(z)]l/”H — - ro(z)])l/”“} , To<r<l1
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Figure 5.2: Velocity profiles for the azxisymmetric incompressible Poiseuille flow of a

Herschel-Bulkley fluid with n=0.5 and various Bingham numbers.
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Figure 5.3: Velocity profiles for the axisymmetric incompressible Poiseuille flow of a

Herschel-Bulkley fluid with Bn=10 and various values of the power-law exponent.

125



r'o

0.8 |

0.6

04

02

0 L el I ' P | ' P | ' P | ' P | ' PR
0.001 0.01 0.1 1 10 100 1000 10000
Bn

Figure 5.4: Position of the yield point in axisymmetric incompressible Poiseuille flow

of Herschel-Bulkley fluids.

where

2 Bn
ro(2) = —————— - 5.24
® = Capjaa 20
It is clear that at the capillary exit (2=0), Eqs. (5.23) and (5.24) give the incompressible

flow solution.

It should be pointed out that in steady compressible Poiseuille flow r((z) is just a convenient
idealization and not a real yield point. Since the axial velocity varies along the tube, du,/0z >
0 and thus * is nonzero, which implies that unyielded regions cannot exist. Hence, r(z) will
be referred to as the pseudo-yield point. The fact that the classical plug region flow cannot
be obtained in a compressible case was first emphasized by Vinay et al. [90]. However, these
authors also calculated steady-state velocity profiles at the inlet and the outlet of the tube

with the plug region at the center corresponding to half the pipe radius.

The pressure gradient (—dp/dz)(z) across the capillary, i.e. for z < 0, can be calculated using
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the conservation of mass, i.e. Eq. (5.10). It turns out that the pressure gradient is a solution

of the following equation

3n+1 dp\* dp
et (4 - [(4)
n p(p) dz dz "

dp\? 4n Bn dp 8 n? Bn?
—— —— 2
[( dz) * 2n+1 ( dz) * (n+1)(2n+1) (5:25)

which involves the pressure-dependent density of the fluid. The pressure gradient is obviously

1/n+1

a function of p and is expected to decrease upstream.

The pressure dependence of the density is taken into account by means of a thermodynamic
equation of state. At constant temperature and low pressures, the density can be represented

by the linear approximation

p=po[l+pB{®-—mp)], (5.26)

where 8 = —(0v/0p)p,.1/v0 is the isothermal compressibility assumed to be constant, v is the
specific volume, pg and vg are, respectively, the density and the specific volume at a reference
pressure pg, and 7' is the temperature. For comparison purposes, the following exponential
equation is also used:

p = pyel@—p) (5.27)

This is equivalent to the linear equation of state for sufficiently small values of § and low
pressures. A disadvantage of this equation is the fast growth of the density (for high values
of #). On the other hand, the linear model may lead to negative values of the density.
Obviously more sophisticated equations of state should be used for highly compressible flows.
The equations of state are nondimensionalized scaling the density p by po and the pressure
as above. We thus get

p=1+Bp (5.28)

127



and

p = PP, (5.29)

where the reference pressure, pg, has been set to zero, and B is the compressibility number,

BEVY

B =
R’I’L

(5.30)

The Mach number is defined by Ma=V}y/c, where c is the speed of sound in the fluid. In the

present work, we consider subsonic flows such that Ma < 1.

Equation (5.25) can be integrated analytically in the case of a power-law fluid (Bn=0). With

the linear equation of state one finds

p(2) = %{[1 2 (n+1) (1/n+3)" BV — 1) (5.31)

and
(Bn+1) (1 = ri/m+t)

w ) = I Z 20t 1) (n s 3)n B VD (5.32)

Similarly, with the exponential equation of state one gets:
1 n
p(z) = = In[l — 2n(1/n+3)" Bz| (5.33)
n

and
(Bn+1) (1 — rl/mtt)

us(r,z) = (i D) L 2n(1/nt30B" (5.34)

Nevertheless, in the general case the pressure gradient and the pressure are calculated nu-

merically.

Once the pressure p(z) is known at a point (e.g. p(0)=0), the pressure gradient (—dp/dz)(z)
can be calculated from Eq. (5.25), using the Newton-Raphson method, as before. Hence, we

can write

dp

-2 = i), (5.35)



where the function f is implicitly known. If the pressure p; at a point z; is given, then the
point z;41 at which the pressure becomes p;+1=p;+Ap can be found by integrating the above

equation:

pitAD  dp
Zi+1 = % — / - . 5.36)
" pi f(p> (

The integral in the RHS of the above equation was calculated using the composite Simpson’s
rule with 101 points and Ap=0.1. At each integration point, the pressure is known and the
corresponding pressure gradient is calculated solving Eq. (5.25). It is also clear that we start
at the channel exit (2p=0) and march to the left, up to any desired distance upstream. The
numerical code has been tested against the analytical expressions for the pressure distribution

in the case of a power-law fluid.

5.3 Numerical results

Numerical results have been obtained using both the linear and exponential equations of
state in order to investigate the effects of compressibility in Poiseuille flow of fluids with a
yield stress. The effects of the three dimensionless parameters controlling the flow, i.e. the
Bingham number, the compressibility number, and the power-law exponent have also been

studied.

The pressure distributions for a Newtonian, a power-law, a Bingham and a Herschel-Bulkley
fluid obtained using both the equations of state for B = 0, 0.01 and 0.1 are shown in Fig. 5.5.
Note that the latter value of B is very high and corresponds to a highly compressible flow;
it is used here only for illustration purposes. It is clear that the pressure gradient and the
pressure required to drive the flow are reduced as compressibility is increased and increase

with the Bingham number and the power-law exponent. The two equations of state give
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essentially the same results only for sufficiently low compressibility numbers and/or near the
die exit. Therefore, a careful selection of the equation of state is necessary when one studies

compressible Poiseuille flow in very long channels.

Newtonian Bingham (Bn=1)
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P B=0 p O
| B 0.01) |
80F 001 80 \
60 [ g 60 g
\ 0.1
40 b 1 40 b 1
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-20 -15 -10 -5 0 -20 -15 -10 -5 0
Z Z
Power-law (n=0.5) Herschel-Bulkley (Bn=1, n=0.5)
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Figure 5.5: Pressure distributions for four different fluids obtained with the linear
(solid) and the exponential (dashed) equations of state in azisymmetric Poiseuille flow

with B=0 (incompressible flow), 0.01 and 0.1.

Once the pressure gradient is known as a function of z, the two-dimensional axial velocity
can be constructed by means of Eq. (5.23). The velocity contours corresponding to the flows
of Fig. 5.5 are shown in Fig. 5.6. Since the density becomes higher, the flow decelerates
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upstream and forces the higher contours to bend towards the symmetry axis. In the case of
fluids with a yield stress, this phenomenon is more abrupt, since just before the disappearance
of a contour line, this is vertical to the symmetry plane and extends up to the corresponding
pseudo-yield point. The results for the Bingham plastic (n=1) and the Herschel-Bulkley
fluid (n=0.5) are quite similar. We can clearly observe that the pseudo-yield point moves
towards the wall as we move upstream. The velocity profiles for the four fluids at z=0, -10
and -20 obtained using the linear equation of state with B=0.1 are given in Fig. 5.7. As
already mentioned, the presence of unyielded regions in steady compressible viscoplastic flow
is only an idealization. However, regions of plug-like flow may still exist as indicated by the

steady-state numerical results of Vinay et al. [90].

The effect of the equation of state in the case of a Bingham fluid (Bn=10) is illustrated
in Fig. 5.8a, where the pressure distributions calculated with B=0 and 0.01 using both
equations are plotted. The velocity profile at the capillary exit is shown in Fig. 5.8b. In
Fig. 5.9, the positions of the pseudo-yield point calculated using both equations of state
for three compressibility numbers are shown. In the incompressible flow, the yield point is,
of course, independent of the axial distance. In the compressible flow, ro moves towards
the wall as we move upstream, which implies that the size of the plug-like region increases.
This phenomenon is better observed in the exponential case due to the faster increase of the
density. In Fig. 5.10, we plot the velocity contours of a Bingham fluid with Bn = 10 and
B =0, 0.01 and 0.02 using both equations of state. Upstream, the velocity reduces rapidly in
the case of the exponential equation of state, which is expected because of the faster increase
of the density. As a result, the velocity contours are crowded towards the exit plane. In Fig.
5.11, we plot the velocity profiles at different distances from the capillary exit of a Bingham

fluid with Bn=10 and B=0.01 using again both equations of state.
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Figure 5.6: Velocity contours for four different fluids obtained for the azisymmetric
Poiseuille flow with the linear equation of state with B=0 (incompressible flow), 0.01

and 0.1.
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Figure 5.7: Velocity profiles at z=0, -10 and -20 for four different fluids obtained with

the linear equation of state in axisymmetric Poiseuille flow with B=0.1.
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Figure 5.8: (a) Pressure distributions in axisymmetric Poiseuille flow of a Bingham
fluid with Bn=10, and B=0 and 0.01, and the linear (solid) and the exponential

(dashed) equations of state; (b) Velocity profile at the capillary exit.

134



04 .

0
-100 -80 -60 -40 -20 0

Figure 5.9: Position of the pseudo-yield point in axisymmetric Poiseuille flow of a Bing-
ham flurd for Bn=10 and various compressibility numbers. The solid lines correspond

to the linear equation of state and the dashed ones to the exponential one.

Figure 5.12 shows the effects of the Bingham number on the pressure distribution and the
position of the pseudo-yield point in the case of Bingham flow (n=1) using the linear equation
of state with B=0.01. We observe that the pressure increases upstream and the pseudo-yield
point moves faster towards the wall as the Bingham number increases. This is more clearly
shown in Fig. 5.13, where the velocity contours for different Bingham numbers are shown.

As the Bn is increased the unyielded region moves towards the exit of the die.

5.4 Conclusions

We have derived approximate semi-analytical solutions of the axisymmetric and plane Poiseui-
lle flows of weakly compressible Herschel-bulkley fluid. The two-dimensional axial velocity is
given by an expression similar to that for the incompressible flow, with the pressure-gradient
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Figure 5.10: Velocity contours in axisymmetric Poiseuille flow of a Bingham fluid
with Bn=10 and different compressibility numbers using the linear and the exponential

equations of state.
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Figure 5.11: Velocity profiles at different distances from the capillary exit in axisymmet-
ric Poiseuille flow of a Bingham fluid with Bn=10 and B=0.01: (a) Linear equation

of state; (b) Ezxponential equation of state.
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Figure 5.12: Effect of the Bingham number in axisymmetric Poiseuille flow of a Bing-
ham fluid with the linear equation of state and B=0.01: (a) Pressure distribution; (b)

Position of the yield point.
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Figure 5.13: Effect of the Bingham number on the velocity contours in azxisymmetric

compressible Poisewille flow of a Bingham fluid; linear equation of state, B=0.01.

and the yield stress point assumed to be functions of the axial coordinate. The pressure
gradient is calculated by means of numerical integration starting at the exit of the tube and
marching upstream. The effects of compressibility have been studied by using a linear and
an exponential equation of state. The effects of the yield stress and the power-law exponent
on the pressure gradient and the velocity have also been investigated. Our calculations lead
to the following conclusions:

(a) The pressure required to drive the flow for a given tube length is reduced with com-
pressibility.

(b)  The linear and the exponential equations of state give similar predictions only for
sufficiently low compressibility numbers and/or for short tubes. Hence, the equation of state
should be chosen very carefully in numerical simulations of compressible flow in long tubes.
(¢) The two-dimensional axial velocity is characterized by plug-like regions the size of which
increases upstream, in agreement with the more sophisticated numerical simulations of Vinay

et al. [90].
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(d) With the exponential equation of state, the upstream growth of the pseudo-unyielded

region is much faster than with the linear equation of state.

5.5 Appendix: Compressible plane Poiseuille flow

In plane Poiseuille flow, lengths are scaled by the channel-halfwidth, H, the velocity by the
mean velocity, Vo, at the exit of the channel, and the pressure by kVj'/H". Under the same
assumptions used for the axisymmetric flow, the dimensionless velocity profile in the case of

compressible plane flow is written as follows

n 1/n [1 = yo(x)V/mHT, 0<y<
ux(x,y) _ o (_%) (x Yo Y =Yo
{1 = w@/™ = [y = go@)/"1}, w<y<
(5.37)
where
Bn
Yo(z) = (Zdp/dz) @) (5.38)
and
ToHn
Bn = o (5.39)

is the Bingham number. The dimensionless pressure-gradient is a solution of the following

equation:

1/n+1

i (- ()

It is clear that at the channel exit (z=0), Eqgs. (5.37) and (5.38) yield the solution for

nj—l Bn + (—3—5)} : (5.40)

incompressible flow.

In the case of a power-law fluid, the solution of Eq. (5.40) is simply

- C)
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In the case of a Bingham-plastic, Eq. (5.40) is reduced to

2 (—Z—i)S — 3(Bn+£) (—3—2)2 + Bn® =0, (5.42)

which has the following solution:

B 1 1 2Bn3

(—;l—p) = <7n + —( >> 1 + 2cos 3 cos 1{1 — L 3 . (5.43)
T pp _2
(Bn + %)

In Figs. 5.14-5.23 some representative results for the compressible plane Poiseuille flow are

provided.

Wall — No slip
Channel

—_— exit

Symmetry plane X

Figure 5.14: Geometry of compressible plane Poiseuille flow of a Herschel-Bulkley fluid.
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Figure 5.15: Velocity profiles for the plane incompressible Poiseuille flow of a Herschel-

Bulkley fluid with n=0.5 and various Bingham numbers.
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Figure 5.16: Velocity profiles for the plane incompressible Poiseuille flow of a Herschel-

Bulkley fluid with Bn=10 and various values of the power-law exponent.
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Figure 5.18: Pressure distributions for four different fluids obtained with the linear
(solid) and the exponential (dashed) equations of state with B=0 (incompressible flow),

0.01 and 0.1.
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Figure 5.19: Velocity contours for four different fluids obtained with the linear equation

of state with B=0 (incompressible flow), 0.01 and 0.1.
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Figure 5.20: (a) Pressure distributions in plane Poiseuille flow of a Bingham fluid
with Bn=10 and B=0 and 0.01, using the linear (solid) and the exponential (dashed)

equations of state; (b) Velocity profile at the channel exit.
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Figure 5.21: Position of the pseudo-yield point in plane Poiseuille flow of a Bingham
fluid for Bn=10 and various compressibility numbers. The solid lines correspond to

the linear equation of state and the dashed ones to the exponential one.
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Figure 5.22: Velocity contours in plane Poiseuwille flow of a Bingham fluid with Bn=10
and different compressibility numbers using the linear and the exponential equation of

state.
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Figure 5.23: Velocity profiles at different distances from the channel exit in plane
Poiseuille flow of a Bingham fluid with Bn=10 and B=0.01: (a) Linear equation

of state; (b) Ezponential equation of state.
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Chapter 6

Summary and Future work

In this thesis, we have solved some weakly compressible Newtonian and generalized Newto-
nian flows using numerical (finite-element) and perturbation solution methods. In Chapter
2, we considered the time-dependent, compressible extrusion of a Carreau fluid over the
reservoir-die-extrudate region using finite elements in space and a fully-implicit scheme in
time. The objective was to simulate and investigate numerically the so-called stick-slip in-
stability observed during the extrusion of polymer melts. A nonmonotonic slip law based
on experimental data on polyethylene melts was assumed to hold along the die wall and
the velocity at the entrance of the reservoir was taken to be fixed and uniform. As in the
case of the extrudate-swell flow, the combination of compressibility and nonlinear slip leads
to self-sustained oscillations of the pressure drop and of the mass flow rate in the unstable
regime. The effects of the reservoir volume, the imposed flow rate, and the capillary length
on the amplitude and the frequency of the pressure and free surface oscillations have been
studied and comparisons were made with experimental observations. The numerical simula-
tions agree well with the following experimental observations: (a) the pressure and flow rate

oscillations follow the hysteresis loop defined by the two branches of the flow curve, and the
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volumetric flow rate is characterized by instantaneous jumps between the two branches; (b)
the amplitude and the period of the pressure oscillations increase linearly with the capillary
length, since the hysteresis loop becomes larger; (c) for small capillary lengths, the pressure
is a continuous monotonic function of @), and no oscillations are observed; and (d) the period
of the pressure and flow rate oscillations increases linearly with the reservoir length, while
their amplitudes and waveforms are fairly constant. Nevertheless, the period of the pressure
oscillations, when plotted versus the reservoir volume, appears to pass through the origin,
which is not the case with extrapolated experimental data [20, 40, 73, 74]. In agreement with
certain experiments [58, 61, 96, 92], the period of the pressure oscillations passes through a
minimum, when this is plotted versus the imposed volumetric flow rate. The compression

part of the pressure oscillations is relatively reduced, as @) is increased.

In Chapter 3, the axisymmetric and plane extrusion flows of a liquid foam were simulated
assuming that the foam is a homogeneous compressible Newtonian fluid that slips along the
walls. Compressibility effects were investigated using both a linear and an exponential equa-
tion of state. The numerical results confirm previous reports that the swelling of the extrudate
decreases initially as the compressibility of the fluid is increased and then increases consider-
ably. The latter increase was sharper in the case of the exponential equation of state, which
indicates the importance of using an appropriate equation of state in foam flow simulations.
In the case of non-zero inertia, high compressibility was found to lead to a contraction of
the extrudate after the initial expansion, similar to that observed experimentally with liquid
foams, and to subsequent decaying oscillations of the extrudate surface. The time-dependent
calculations show that the latter oscillatory steady-state solutions are stable. These steady-
state latter oscillatory solutions were not affected by the length of the extrudate region nor

by the boundary condition along the wall.
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In Chapter 4, we have solved both the planar and axisymmetric isothermal Poiseuille flows
of weakly compressible Newtonian liquids with constant shear and bulk viscosities up to the
second-order using the perturbation method. A linear equation of state was assumed and a
perturbation analysis of the primary flow variables was performed using compressibility as the
perturbation parameter. The effects of compressibility, the bulk viscosity, the aspect ratio,
and the Reynolds number on the velocity and pressure fields were studied and comparisons

were made with available analytical results [33, 75, 88].

Finally in Chapter 5, we have derived approximate semi-analytical solutions of the steady,
creeping, weakly compressible plane and axisymmetric Poiseuille flows of a Herschel-Bulkley
fluid. Since the flow is weakly compressible, the radial velocity component is assumed to be
zero and the derivatives of the axial velocity with respect to the axial direction are assumed
to be much smaller than those with respect to the radial direction. The axial velocity is
then given by an expression similar to that holding for the incompressible flow, the only
difference being that the pressure gradient was a function of the axial coordinate and satisfies
a non-linear equation involving the density of the fluid. A linear as well as an exponential
equation of state, relating the density of the fluid to the pressure, were considered to study
the effects of compressibility. Both equations of state gave similar predictions for sufficiently
low compressibility numbers and/or for short tube. The pressure distribution along the
flow direction was calculated by means of numerical integration and the two-dimensional
axial velocity can then be constructed. The effects of compressibility, equation of state, the
Bingham number and the power-law exponent on the solutions were investigated.

As is always the case, many questions regarding the above problems are still open. Here are

some suggestions for future work.

1. In the two-dimensional numerical study of the stick-slip extrusion instability (Chapter
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2), it has been assumed that the inlet boundary is fixed which is not true since the
piston is moving. It will be interesting to solve the problem taking the motion of the

piston into account, i.e. employing a moving mesh that is updated at every time step.

. In the case of the numerical simulation of the extrusion of strongly compressible New-
tonian liquids (Chapter 3), another direction for research is the study of effects of
compressibility and equation of state with a different constitutive equation, such as
Bingham plastic. Assuming that slip occurs along the wall will also make the simula-

tion of foam flow more realistic.

. In the perturbation solutions of Poiseuille flows of weakly compressible Newtonian
liquids (Chapter 4), other interesting directions are: (a) the solution of the annular
Poiseuille flow; and (b) the perturbation solution for fluids with yield stress, such as

Bingham plastics and Herschel-Bulkley fluids.

. Finally, the work on weakly compressible Poiseuille flows of a Herschel-Bulkley fluid
(Chapter 5) can be naturally extended to time-dependent two dimensional finite-

element simulations.
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Appendix A

Compressible planar Poiseuille low

In this appendix the perturbation solution of the planar compressible Poiseuille flow is pre-

sented. To nondimensionalize the governing equations, we scale x by L, y by H, p by the

reference density pg, u, by U, the transverse velocity u, by UH/L, and the pressure by

3nLU/H?. The latter pressure scale is used so that the dimensionless pressure gradient along

the domain, in the incompressible flow is equal to 1. For the sake of simplicity, in what follows

we will use the same symbols (i.e. without stars) for all dimensionless variables. Using the

above scalings, the dimensionless forms of the equation of state, the continuity equation and

momentum equations become:

p=1+¢eP,
0 0
Uy 0 Uy B oP 2821@ 0%u, 9 1 82uy
o fep <“”” or Ty ) oz T2 T e T <X+§> D20y
Ju ou
a3Rep (uwW +uya—yy>
0P 107Uy 5 0%y 2( 1) Puy  Puy
9y T o T g2 T \XT3) \ Gray T a2 )




where x = r/n is the bulk-to-shear viscosity ratio, « = H/L is the aspect ratio of the channel,

and Re and ¢ are, respectively, the Reynolds and compressibility numbers, which are defined

by
H
Re= 20U (A.5)
n
and
3n B LU
5 E T. (A.G)

Perturbation Method

Perturbation is performed on all primary variables, p, P, u, and u,, using the compressibility

number, €, as the perturbation parameter:

p = pO + ep® + 2p) + 0(e%)
uy = Wl 4 oeul + 2uP 4+ 0@

up = ul + eut + 24P 4+ 0(e%)

P = PO 4 ¢ p) 4 2 p@ 4 0
Substituting these equations in the governing equations and collecting the terms of the same
order in € we obtain the equations of the flow up to the second order.
Equation of state
By substituting in

p=1+4+¢P

and collecting the terms of the same order of the perurbation parameter we get:
0O 4 epM 4252 =14 PO 4 2p(1) 4 S3pQ)

Thus,



Continuity Equation

Substituting into

0 0
5 (P + (o) =0

we get
i [(p(o) + 5P(1) + 52P(2) + )(USEO) + su(l) +¢ ’U,(2) + .. )]

ox

0
_1_873/ {(,0(0) + 6,0(1) + 520(2) + )(uéo) + Euél) + e ’LL(Q) + .. )} 0

Q[p(mug:mﬂ(p(m D 4 p0uD) + 2 (pOu® 4+ fDuD 4 pDy0)]
X
)
+ 2 [00uD 4 & (pOuD + fDu0) + €2 (5O + pVud) + fOu®)] + 0(e”) = 0

Thus we have

Zero - order
9 (POu®) + a% (POu®) =0

First - order

0
POl 4 pVu®) + o (POufd + o) = 0

Second - order

0 0

r-component of the momentum equation

Substituting into

aRe <u8 +u aux)——3a—P+a282u$+82ux+a2< +1)
P\" gz T 22 | oyl XT3

O%uy  uy
Oxdy  Ox?

we get
aRe (p(o) + z—:p(l) + 52p(2) + ) [(ug)) + sug) +e u(2) + .. ) % (u:(CO) + sug) +e u(2) + .. )
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+(u§0)+5u()+62 (2)+...> 0 ( (0)+5u()+5 u()+ )}

dy
=3 L (PO P 4 2p@ 1 ) 2 (0 ) ) 1)
ox Dz
2
+§yz( ()+€u()+5 u()+ )
2 2
+a? (X + 1) l@i@y ( Z(JO) + 5u?31) + 52u§2) + ) + % (ug‘]) + 5ugﬂl) + 52ug(n2) + )

=

8u§;0) 8u§;0)
aRRe (p(o) + 6/)(1) + 62[)(2)) [(u&o) o + u?so) By )

ol 9l oult ) 8u( )
(0) = (1HZr= O L, m=ZTE
+e (ugc p + uy, p + Uy By Uy oy

IS
@~

8y+y 8@/

(2) (1) (0) (2
+&2 (u(o) Ous ull) Oua ul? Oua + uz(f)) Ous +
oz oy

1 0

2 2
__39 (PO + PO + 2P®)1a? 3_( O 4 culd) + 2ud) + 32 (4 + eufd + 2u)
ox

Ox? oy
o ( n 1) 82u§0) n 82u(xo) L ('“)Qué) n BQUS) 42 62u§2) n 82u§52)
X 9rdy | 922 918y | 912 9rdy | 0z2
Thus we get:

+ 0(e?)

Zero - order

aRep(O) U Uy, By +a

Ox 0x? * Oy?

v 0x0y Ox2

32u?(,0) 52 uéo) ‘|

First - order

(0) (0)
0) 871,;5 4 u(o) 811;3;
ox Yoy

(1) (0) (1) (0)
+ aRep© lu(wo)[“)um S OLL SO S 1)auz]

(1) [, ( (
altep [ ar % o Yooy Uy Oy

=3 Ox o Ox? Oy?

T T T (X

Oxdy * Ox?

Second - order

8u(0) 8u(0) au(l) 6u(0) au(l) au(o)
2 0) Uz 0) YUz 1 0) YUz 1 0) Oz 1) YUz
aRep? u;>w+ug>87 + aRep™ [u® 5+ u) o +ul® 3 +ulD 3
8u(2) 8u(1) au(o) au( ) au( ) au( )

(0) |,,0) 22 (1T (2) 70 )%z @070 (2)2%=

+aRep [ux B + uy B + uy o Uy, ay Uy, By +uy oy
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8P(2) 82u(2) aQu(Q) 1
= -3 +taP—— + — +a2(x+3)

o2 u§2) a2u§:2) ]
Ox Ox? 0y?

Oxdy + Ox?

y-component of the momentum equation

As above, substituting into

2 2
o’ Rep (uma + yauy> ——3("))—P+oz48 uy+a8 4o (X—i-l)
oz y 3

we get

o’ Re (p(o) + sp(l) + 52,0(2) + ) {( o 4 su( )+ ey (2 + .

i (PO +ePh 4+2P3 4 ) fat (u“’) +eul + %l + ..
o . @4

0
+aa—y2 (u:,go) + euél) + z-:zu?(f) + )

+a? X—i—l <(0)+Eu()+€u()+ )+a—2(u(0)+€u(1)+52u(2)+ )
3 xdy oy \Y Y v
e
9ul® 9ul®
3 (0) (1) (2 (07 (0) 77
aRe(p +epM) +£%p )[(m I + uy By

au(l) au(o) au(l) 8u(0)
072y (1) =%y (0) 7%y =2y
+e (um P + u, pye + Uy 2y + Uy By
au@) 8u(1) 8u(0) 8u(2) 811,(1) o (0)
2(,0)7%Y (1H)=Z%y (2)Z%y (0) 2y (1H=Z%y (
+e <ux py + uy oz + uy pe +uy ay + Uy ay + Uy By

0 H? 9?2
— 3~ (pO (1) 2p(2) i G (0)) (1) (2) I (V) (1) 2,(2)
= 38y( +ePV/ +¢e°P )-1—04 92 (y +eu, —l—Eu )+a8y (y +euy -l—Euy)

y 2( N > 92u ()+ ang(IO) . ({9271,3(51) N 82u3(/1) 2 angQ) N 82’&;2)
G Oxdy Oy? Oxdy Oy Oxdy Oy?

Thus we have:

+ 0(e%)

Zero - order

82u§co) n 62u§0)
Oxdy Oy?

(0) (0) 0 2. (0) 2, (0)
o’ Rep”) [u(o)auy BOLL 1——382) 488?; +aa(;;§ +a? <x+1)



First - order

0 0
Ox Yooy

o3 Rep™ [ug))

_oP0 ot ot ( ! ) Pul) | 0%l
N Oy 0x? 0y? XT3 Oxdy Oy?
Second - order
8u(0) 8u(0) Gu(l) ou'? 6u(1) au(o)
3 2 0) YUy 0) YUy 3 1 0) YUy 1)Uy 0) YUy 1) Oy
ozRep()[u(w) oz +ué) Jy FaRep! |ug?) 0 o) oz +u?(’) dy +u7(’) 0y
au@) au( ) au(l) au(o) o (1) au(o)
3 0) |, 0%y 1y (0)Zy (2) 2y 1)y (2)
rarHep [uw or TV oy T oy T dy Ty dy Ty dy

L or® 621@(,2) +a82u§,2) e ( ) l) 62u§3) 82u§2)
oy 02 0y XT3) | oz0y T 02
Zero-order solution
Using the zero-order equation of state,
P =1 (A.8)
the continuity equation
0 0
= | ,(0),,00) = 10,0 —
&C{p ux} +ay[,o uy}—O (A.9)
and the assumption
ul? (z,y) =0 (A.10)
we get
ul?) = uf? (y) (A.11)

Now, from the y-component of the momentum equation

0 0
o0 oy 40 Ouyy”

3 0
o3 Re pl ) Ur 5 v oy

op©) 4 82u§0) 9 Gguéo) 9 1 62’[1;0) 82u§0)
=-3 By +a 92 +a 9,2 +a ( +§>
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and Eqgs. (A.8)-(A.11) we find that
PO = pO)(g) (A.12)

Substituting into the x-momentum equation

(0) (0)
o Re p® |© QU 0) O

Ox Yooy
_ P s + o? us’ +oa? < + 1) Oy + s
N ox Oy? Ox? XT3 Oxdy Ox?
we get
opW) OQU;O)

where ¢ is a constant to be determined. Integrating the resulting ODEs and applying the
boundary conditions P(?)(0)=1 and P()(1)=0 for P(z) we obtain the zero-order solution for

the pressure, which reads:
PO =1 g (A.14)
From equations (A.13) and (A.14) we have

Ly o
Oy?

and by integrating twice and applying the conditions 6u§60) /0y(0)=0 and uéo)(l):() we obtain

the zero-order solution for the velocity

w0 — 2(1 — ) (A.15)
Thus the zero-order solution is:
PO =1 (A.16)
ul?) =0 (A.17)
ul?) = g(l — %) (A.18)
PO =1 -« (A.19)



The assumptions we have used are:

First-order solution

From the equation of state we obtain,

9 [P0 uld) 4+ 50 0] + 9 (PO ) + 0 0] = o,

using p(0=1, ul(,o):O, u(xo):3/2(1 —y?), ug(,l):O and integrating we get

oul” out”
1 0 x 0 T
aRep()[u;)+u§) .
AtV out) A’ !
(0) [,,(0) 22 (1) 27> (0) 27 1) 27
+a Re p [um . + uy, . + uy ” Uy, »

3 oprW n 32u§51) 4 o2 OQUS) 4 o2 < 1> [82@9) OQUS)]

X+§ Ozdy + 0x?

and using all the above and integrating with respect to y, we get:

P ==a’(x + 7)1 - ¢*) + g(@)
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1 0 1 0
00w 0w’ g 0w g 3“1(/)]

~orw ) o ) ( . 1) ui) | Puy)
N oy Ox? Oy? XT3 Oxdy oy? |’

we have

2 _ opr®)

X

%aRe(l —?) +301—2) + ()

By separating variables we obtain the follow expressions

o pM
o

%O‘ Re (1-y*)? = f"(y) = -3 +3(l-z)=c

where c¢ is a constant to be determined. Integrating the first ODE twice leads to

9 1 1 1 1
— ZaR 2_4+6>_ 24 A.24
f(y) = 4a €<2y Gy 30y 2013/ C2 ( )

Applying f/(0)=f(1)=0 we obtain

33 1
A2
0= 4004R€ 201 C2 ( 5)

where ¢; and ¢y are contstants to be determined. Also, by applying fol f(y)dy=0 we get

1
= A.
28004Re 661 +c=0 (A.26)

Now, from Eqgs. (A.25) and (A.26)

4
c = %aRe and ¢y = f%ozRe
and by substituting in Eq. (A.24), we find:
fly) = iozRe(l — y?) (=5 + 28y% — Tyt) (A.27)

280

Substituting now f(y) into Eq. (A.21) we obtain the first-order velocity component

W = 20— n) -y + z%oaReu ) (=5 + 28y — Ty (A.28)
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From the x—momentum we find that

3 54
g(z) = 51:(2 —x) — ﬁaRe:v + K

where  is to be determined. By substituting in Eq. (A.23) and using P(V(1,1)=0,

18

K= %aRe —-3
and the solution for the pressure is
1 1 1 1
PO = §a2 (x + 5) (1—y?) — (1= r)? + S—EaRe(l — ). (A.29)
The first-order solution, reads:
)Mo= 1-2 (A.30)
u) =0 (A.31)
(1) 3 2 3 2 2 4
uy’) = —5(1—x)(1—y ) + ﬁaRe(l—y )(—5 4+ 28y° — Ty") (A.32)
1 1 1 18
n _ L2 < 2y L N2 19 _
P 5¢ <X+ 3) (1—vy%) 2(1 xz)* + 35 Re (1 —z). (A.33)

The assumptions we have used are:

PO == [ iy =0
ul(z,y) =
PU(1,1) =0

Second-order solution

For p(® we simply have:

1 1 1 18
p? = PV(,y) = o= 5(12 <X+ 3> (1-y*) - 5(1—1:)2+ sz Re(1-2) (A34)

Now, from the continuity equation

0 0
= p0)4,(2) (1), (1) (2),,(0) = 1p(0)4,(2) (1), (1) (2),0] —
Py + puy + p ux}—l— y{p uy” 4+ pHuy + pu } 0,
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>~ o

(1-2P(1- ) - fa? (x4 5 ) (=)
(2)

3 _ a2 o o4y, Oy
280aRe(1 x)(1—y~)(674+28y" =Ty~ )+ By (1—2)+F(y) (A.35)

where F'(y) is a function to be determined. At this point the assumption of zero transverse

velocity is relaxed, letting u, to be a function of y, ulP =P (y)

g =Uy . From the y-momentum

equation

ul? Aul?
3 (2) |, (0) 9uy (0) 2y
a” Rep luz p + uy By

1 0 1 0
+a? Re p(l) w(©) 3“2(4) 1) 8“5/) 0) 8“5/) 1) 9 ?(J)
v Ox v Ox Yooy vy
2 1 0 2 1 0
+a3Rep(0) Q) 6“1(1) (1 9 é) 2 8“1(/) 0) 9 1(/) e 8“1(/) 1+ ou® 8“1(1)
o Ox o0 o0 vy Yooy Yooy

oP@ 9% 0%, 1
=y T T Y e T < >

we have

3000 o () 2T (44 1) 2 (2
8y_ax38y2 aX38y Ox

By integrating with respect to y we find that

or

2
po - a2l 3o

1 1 )
3075 — 50 (x+3) =00 -42)
+2%Oa3Re (x + %) (1 — )67+ 28y — Ty") + G(z),  (A.36)

where G(x) is a function to be determined. Combining the x—momentum equation

P Q(CO) 9 :(EO)
a Re p(z) ugco) ;az + ug(jo) gy

i o) (0)
ta Re pV @ QM2 ) Ota”

() Qua
v g Tl gy T

(1) (0)
I i oy dy
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o outl ol out?) oulV o
(0) |,(0) 222 (1) 22 (2) 22 (0) 27z (1) 77 (2) 77
+a Re p* |uy B . Us o Uy’ 5 Uy’ 5 Uy 5
L 0P? %Y 282u§52)+ ) (x 1) 2uP o2
Ox Oy? Ox? 3) | 0x0y ox? |’
with

ou? 21 9 3 ou
%Yz A0 N )2 1 — 22 2802 — 7o) — 2(1 — o2 2
Uz 7 (L= 2) (L= y7)" + paRe(l —y7)°(67 +28y" = Ty") — 5 (1 —y7) By
S us 1= 2) (1= 1)+ —aRe(1 — y?)(=5 + 28y% — Ty)
" or 4 YT 560 Y you
O
2) OUz 2
u(y ) oy —3yu§)
leads to:
3 ouly) 27 9
2 2\ JUy 212 212 2 4
aRe 73yu§)f§(1fy ) By fz(lfx)(lfy ) +%0zRe(lfy )°(62 + 56y~ — 14y*)
! 9 2 83“2(/2) " 3 2 4
=-3G ($)—§(1—x) + 3y (1—x)+F (y)—fwaRe(l—az)(—78—420y +210y%)

HSa— g 430 (x5 =37 (A0

Here, it is assumed that the terms involving both (1 — z) and y must be equal to a (scalar)

multiple of (1 — z) in order to be able to seperate variables. Thus we can assume that

93 (2)
aZg ~ 5@ Re(=78 = 4205 + 210y") =  Rey, (A.38)

2
%a Re(1 —y*)? +

where 7y is new constant to be determined. From Eq. (A.38) we have

ouy 3 ) o 2T .
9 = a Rey + 280° Re(—78 — 420y~ 4 210y") — Vs Re(1 — y*)

Integrating with respect to y gives

o2u? 3 27 2., 1
=aR —R—78—1403425——R<——3—5>
42 a efyy+280a e(—78y y° + 42y7) o fely—3y +5y +m
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where 7;=0 when the boundary condition 8u§/2) /0y(0)=0 is applied. By integrating once

more and using 82u§2)/8y2(1):0, we obtain

1 447
_ 1 A.39
0 aRe(Qv 140)+v2 (A.30)

and finally after another integration

1 3 27 1 1 1
(2 _ 3, 9 1308 — TP 4Ty — 2L t3 L5, L o7
Uy GaRefyy +280aRe( 3y° — Ty’ +y') 4aRe <6y 35Y +210y>+72y+73

uP0)=0 = 43=0

Applying ug(,z)(l) = 0 leads to

1 159
- b = A4
aRe (67 140> +72 =0 (A.40)

From Egs. (A.39)-(A.40) we find that

216 3
v = 35 and vy = 2—8aRe
Thus, the transverse velocity reads
3
ugf) = 110 Rey (1 —9*)2(5 — ). (A.41)

Now, we substitute the transverse velocity in Eq. (A.35)

9 3 1
(2):_ . 2 a2\ 22 - _2)\2
Uy 4(1 r)*(1—y7) 1 (X+3) (1=

—2%0041%6(1 —y*) (57 + 84y® — 21y")(1 — z) + F(y). (A.42)

Separating variables in Eq. (A.37) gives the following ODEs for F(y) and G(x):

2 3 2 8“1(12) 9 2,2 2 4
aRe | =3yu,” — 5(1 - y%) By + %aRe(l —y”)*(62 + 56y~ — 14y~)
1
—F"(y) - gaQ(l — %) —3a? (x + §> (1-3y%)=A (A.43)
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and

36 (2) %(1—1‘)2—{—04}367(1—@ A (A.44)

where A is another constant to be determined. Integrating Eq. (A.43) once and applying the

condition F’(0)=0, we obtain

F'ly) = —Ay — 50? (y - —y3> - 3a? (x + %) (v —v*)+

3 9509 3 U7 5 7 9)
140a Re (39y 3y 5 y® + 1by' — 2y

We integrate once more to get

1 9 ,/1 1 1N 1 1
F :__AQ__Q _2__4)_ 2( _)_2__4
(y) S Ay — 5o <2y Y 3a” (x + 3 (2y 1Y )+

3 2(39 , 3, 117, 154 1 10)
o R B D R B Ad
o By — ¥ T TRy Ty ) ta (AdD)

where ¢ is a constant to be determined. By applying the condition F'(1)=0, we get:

1 15 3 1 1983
— 22 2,2 - T 02 Re? A4
0 5 g~ ¢ (x—|—3>+5600a Re” + ¢ (A.46)

We apply the condition fol F(y)dy=0 and find that

3

1, 2 1\ 27641
) _7a2_7a2<x > 76415

L 2p.2 _
5156000 % Re*4+¢1 =0 (A.47)

6" 40 20

Solving the system of Eqgs. (A.46) and (A.47) we find

18 6 1\ 9132
4 _ 82 6 2( ) 32 2R A4
P e x+3 —1—13475a Re (A.48)
and
3 , 3 2( 1) 6579 o
_ 22,0 S) o 20 ep A.49
= 0% T2 \XT3) T 131200 (A-49)

By substituting Eqs. (A.48) and (A.49) in Eq. (A.45) we obtain

1IN/3 9 3 3 9 9
F(y) = a2 AN [ I 9 _4) 2(___2 _4>
W) =a (X+3) (20 w0 TV )T\ T 20Y TV
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~ 131200 a?Re?(2193 — 11356y% 4 2310y + 12012y° — 57754° + 616y'%) (A.50)

The horizontal velocity becomes

3
u® = (1—42) [2(1 2o %a Re(57 + 84" — 21")(1 — ) + —02(1 — 597)

3 2 1 3 2 2 2 4 6 8
2 ~) - Re?(2193 — 916332 — 6853 51594° — 616 A51
Q <x+ 3> B100® fe ( Yy Y+ Y y°) (A.51)

Integrating now Eq. (A.44) and substituting A under the condition P(?)(1,1)=0 we obtain

1 6 36
G(z) = 5(1 —x)® — goz2(1 —x) — 35 Re(1 — z)?
3044 5, 2 5 ( 1)
— 1—x)— = — (1= A.52
tgppd el—2)—zo® (x+3)(1-2) (A.52)
Therefore, pressure is given by
3044

1 6
@ — 2123 202(1—
P 2(1 x) 5a ( x)+13475a

1 1
235, Re(1 —z)? + —a®Re(1 —9?) |2(5 — 28y + Ty*) + <x + > (67 4 28y — Ty | .
35 280 3
(A.53)
Thus, the second order solution reads:
1 1 1 18
(2 _ * 2 V1) 21— )2 2 1— A.54
o = 0% (x+5) (=99~ 5= + FaRe(l-2) (A54)
3
uf) = SoaRey (1— )’ - y?) (A.55)

3
ul?) = (1—4?) {—(1 —z)? - Ti()a Re(57 + 8432 — 21y (1 — z) + 4—0a2(1 — 59°)

3 2 1 3 2 2 2 4 6 8

p— - 2193 — 9163y2 — 6853y + 5159y° — 616 A.56
~a <x+3> Bio0g” e (2193 — 9163y” — 6853y + 5159y ) (A.56)
1 6 36 3044

2 — 2 _ .3 _ 2 21+ N 9 1— )24 22 2R02(] —
P 2(1 x) £ (1—ux) e Re(1 —z)” + 13075 % Re*(1 —x)

1 2 1 2

- ~) (19 — 159%)(1 —
0% <x+ 3>( 9 —15y7)(1 — =)
1. 1

—i-@ozsRe(l — %) {2(5 — 28y% + Ty*) + (x - 5) (67 +28y% — Ty*)| . (A.57)
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The assumptions we have used are:

PO =F) = [ Py =0

2 2 2 2
Pay) =uP(y) and uf?(0) =uf? (1) =0

ul {
PA(1,1) =0

Summarizing the results, the solution of the flow problem up to the second order is as follows:

p = 1+e(l—z)+e2 [loﬂ (X + 1) (1—y%) — %(1 —o? + B Re(1-2)|+0E*) (As58)

2 3 35
3
Uy = me%z Rey (1 —9*)2%(5—v*) + 0(%) (A.59)
Uy = §(1—;,2) [1 —e(1—x)+ o Re(—5 + 28y — Tyt) + §52(1 — )2
2 140 2

1 1 2 1
—E6204Re(57—|—84y2—21y4)(1—:3)—1—%52042(1—59;2)—552052 (x + §>

1
215600

a?e? Re?*(2193 — 9163y* — 6853y" + 5159y — 616y8)] + 0(¢?) (A.60)

1 1 1 18 1
P=1-2+-ca® ) - ) - ze(1—a)? 4 — 1—2)+ =e2(1 — 2)?
z+ jea <x+3)( y°) 25( ) +355aRe( :c)+26( )

6, 5 36 , 3044
—2e20%(1-1)— 22c®aRe(1—2) 2+ ——
e“a®(1—x) 355 aRe(1—x) +13475

1 1
= 82012R€2(1*£E)*E82042 <X + —> (19—-15y%)(1—x)

3

1 1
+%52 @ Re(1 — y?) [2(5 — 28y% + Ty*) + (x + 5) (67 4 28y* — 7y4)] + 0(%). (A.61)
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Appendix B

Compressible axisymmetric

Poiseuille flow

In this Appendix, the two-dimensional perturbation solution of the compressible axisymmet-
ric Poiseuille flow is derived. To nondimensionalize the equations, we scale z by L, r by R,
the density by the reference density pg, the axial velocity u, by U = M /pomR2, the radial ve-
locity u, by UR/L, and the pressure by 8nLU/R?. The dimensionless forms of the governing

equations are:

p=1+¢P, (B.1)
o) A (pu) = 0, (B:2)
o Re (u Z+u8uz>_8_P+li(r8uz>+28uz
P\ g ) o2 " ror\' ar 92
2 1) ﬁ(li ) 0%u,
o (X+ 3)10z T@r(rur) + 0z2 " (B-3)
ou oP o /1 0 0“u
3 T T _ v 2_ - 4 T
a” Rep (“Ta Uz )‘ ar T © 87“(7“87“(TUT)>+Q 3 22
> 1) (9<18 ) 0%u,
ta (X + 3/ 10r \r BT(TUT) + oroz (B.4)



where:

L
ReEpoUR, and 658nﬁ U.

n R?

I | =

X @

L
L’

The boundary conditions are similar to those used for the planar problem. Writing the

primary fields as expansions in the perturbation parameter ¢,

p = p0 + ep) 4+ £2p 1 0(e%)
uY (1)

Uy = +oed) 4 20?4 0(e%)
w, = u? 4+ eul + 24P 4+ 0(g%)

P = PO 4 ¢ p) 4 2 p@ 4 O(?)

substituting in the governing equations, and following similar steps as for the planar problem,
we obtain the solution of the flow up to the second order.
Equation of state

p=1+eP =
PO 4+ ep® 4629 =14 PO 4 2P 4 3pO)

Therefore,

Continuity Equation

Substituting into

1 0

—_—— —_— = 0
) + 5 (pus)

we get
10

7o, {r(p(o) +epM +2p@ 4 )l 4+ eulV) + 2P + . )}

+% (0 +2p® + 2@ 4 )@ +euld + 2u + )] = 0

190 [r (PO + ep@ul® + 25O 4 pMu® + 2pDull) 4+ e2Du)]



+% [<p(0)u20) +epOull) + &2pOul? 4 epMu 4 &2 pMull) 4 2@y (0))] +0(?) =0

—

%% [rp@u® 4 er (pOu® + pIuD) + & (pOu + gl 1 pPu®)]

0
= | ,(0),,00 (0),(1) (1)4,(0) (0) (2) (1) (1) 2 ()
+Z[p Uy, +E(p uy’ +p uz)+s( +p +p )}—1—0( )=0

Thus we get:

Zero - order

First - order

10 0
= (0),(1) (1),,(0) = (@M MW, 0| =
r@r[r(’o U+ p u,,)+8 (p Uy’ + prug )]—0

Second - order

| —
| »
s
N
b/—\
S

)
@) 4+ ) 4 pPu)] + = [POu® 4 pu) 4 puO] =0

z-component of the momentum equation

Substituting into

R < ou, n %) - —88—P+ o 0%, +1g (r8u2>
P\ " or T2 ) T %9 T a2 T rar or
() [ () + 5
“\X"3) oz \rar Uar 022
we get
ale (p(o) + Ep(l) + €2p(2) + ) [(ufao) + eu( ) te u(Q) + .. ) 2 (u§0> + augl) + 52u22) + )
or
0
(0) (1) 2) = (4© (1) 2)
—|—(uz + euy + €2 uy’ + .. ) oz (uz + cuy + &2 uy” 4 .. )]

0 10 0
—_8— (pO (1) 4 2p(2) 2 (== (4O (1) 4 £2,,(2)
= -8 (P +ePW) 4 2P —1—) + 3 (ra (uz +euy”’ +euy —i—))
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+Oz2<x+l>{%{lg( ((0)+5u(1)+6 u()+ ))]+8—22(u(20)+6u()+5 u(2)—|— )}

3) |0z [ror 0z
=
(0) (0)
aRe (p(o) + sp(l) + szp(z)) u,(no) Ous + ugo) Ous
or 0z

8u(1) 3u(0) 8u(1) 8u(0)
(0) Y™z (1) Y%=z (0) Y™z (1)
te (ur or +ur or tuz 0z tu 0z

out”) ou!) oul” oul”
2 (, (0742 (1) 4= (2) Y12 2
te (ur or Ty or Ty or Uz 0z Uz 0z Tz 0z

—i—lg r2 (ugo) + Eugl) + £2u£2))]
r
(0) 2, (1)
2 1) 9 (10 ), Pus’ 9 (10 (), Pu’
<X * 3 Oz \ rOr (Tur ) * 072 te Oz \ rOr (TUT ) + 072

0 (10 /1 a2<2> 5

By collecting terms of equal order we get:

+
Q

—1—52

Zero - order

oul? oul? P #2u® 106 [ oul¥
OF MOLCESSN L B 2 O us ¢
altep [ur or tu 0z 8 0z to 022 r or "

(0)
2 1) 2(%2 ©) ) Oz
i (X+3 0z \r Or (ruz ) * or

First - order

oul” oul” otV oul” out! oul”
(1) [, (0022 (0)Z== (0) |,,0)Z2 (1) Z7= (0) == (===
aRep [ b Uy " + aRep'’ |u, . + U, . + uy " + uy "

0P ), ,0%ut! 10 out! . 2( . 1)
— = - r _
0z ¢ o2 r or or @ XT3

Second - order

o (10 &2utt
(1) Z
0z (r or ( e )> + 072

oul” oul” out! oul” out! oul”
(2) [, (00222 (0) M) |02 (1) 27z (0)Z== (1)
aRep [ur o + u,. 9% + aRep or + u,. or + uy 9% + uy 9,

+aRep® [uﬁo)

8u(2) 8u(1) 8u(1) 8u<2) au(l) 8u(0)
z (1) %= (0) 7%= (0) 7%= (nger (2)72%=
or T+ or Uy or Tt 0z Uz 0z Tz 0z
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L al Y T 2( +1>
N 0z @ 022 r or " or “ X 3

o /10 ?u?
(2) z
0z <7" or ( e )) + 022

r-component of the momentum equation

By substituting into

ou, ou 8P 0% 0
3 ry _ Yl 4 r 2
Rep (u'r’ or +u, EP ) — 87" + « 822 + 87' < (TUT))

9

or
+a? ( + 1) 9 <12(ru )) + O u.
X 3) or \ror" " oroz

we get

0
3 (0) (1) 4 £2,2) (0) (1) = (1) (2)
aRe(p +ep +¢e%p +>[(u7. + cu, +5u )8( + eu,. +5u + .. )
0
(0) (1) 2) = () (1) 4 £2,,(2)
+ (w0 + eul + 2u® + . >a (w0 + eu® + 2 +)]
0 (pO) 4 .p) 4 2p@ | P (10 4 ey 4 2,0
= 8 (PO +ePO + 2P 1) + ot 5 (ul” +eul 42 )
0 (10
27 (224 (4O (1) 4 £2,,2)
+a or (Tarr(ur +eu,”’ + €u, +))
1N|o (10 0?
2 V22 (22 (4O (1) 4 £2,,2) (0) (D) 4 £2,,2)
+a (X+3> ar (rarr( Uy +euy’ + U, +"'))+8r€)z (uz +euy’ +etuy —i—)
e
(0) (0)
o®Re <p(0)+€p(1)+82p(2)) u(o)aur +u(0)3ur
"oor 0z

oul (1) au(o) au(l) 8u(0)
(0)Z%r (1) 2= (0) &% ()&%
te (u or tun or U 0z Tz 0z

0z he 0z Tz 0z

2 1 0 9 . .
12 <u$,0) ngn ) +U5«1)8g7€ ) o oul? ©) ou? . (1)3U( ) o o' ))]
r r

5] 0?2
— _R_~ (0) (1) 2 p(2) 4 w0 (1) 2 (2)
= 887“(13 +eP\V +e°P >+a622( +euy’ +eu )

or \ror
(0) 2, (1)
2 l) 2(1‘9 (0>) 0%uz” 2(12 <1>> 0us
o (X+3 or r@r(u ) + ordz te Or \r Or (rur ) * Ordz
o (10 82u?
2| (2= (2) 2 3
te lf)r (r or (Tur )> + oroz +0(e7)
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Thus we have:

Zero - order

3Rep®
a” Rep [ur or + uy 92

First - order

or 7 0z

(1) 2, (1) 2, (1)
= _88§T +a4861; -I-OéQ% (%g(ru,@))) +a? <X+ é) <a22 (lg(ruf}))) + 0 u: )

(0) (0)
o3 RepV) [ugn% RORL; ] + 0 Rep® luw)a%

Second - order

(0) (0) (1) (0) (1) (0)
o’ Repl? ufno) Our + ugo) Our +a’Rep™) uﬁo) " + uﬁl) “ + u§0> Gur + ugl) Our_
or 0z 0 or 0z 0z

@) (1) (1) 2)
aUT + ) aUT + (0) 8U7~ (0) 8U7~

8u(2) 8u(1) 8u(0)
3 0) 1,,00) ¢ (0) (1= (2) 7
ot Bep Ty ar T Tar T o i or Tz 0z s 0z Tz 0z
oP@ P, , 9 (10 1 o (10 9%
_ r o (L0 (2 2 4 20 (L O 2) 2
8 or tao 022 tota or <T8T(Tur ))—i—a <X+ 3) o or <r8r(rur )) + oroz
Zero-order solution
Using the zero-order equation of state,
P =1 (B.6)
and the continuity equation,
10 0
27 100,00 Z 150,01 —
(97“ [Tp ’U,,,. ] + 62 {p uz ] - 05 (B 7)
and assuming that
u®(z, 1) =0 (B.8)
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we find that
u® = u® () (B.9)

Now, from the r-component of the momentum equation

o? Rep(o) u,(ﬁo)

oul? oul? P 2u¥ o /10
o P | =8ttty <_a_(”‘r)>

(0)
2 l) 20 <1§ ©) ) O
to (X+ 3 @ or \r Or (ru™) oroz

and Egs. (B.6)-(B.9) we find that the pressure is a function of z only

PO = pO)(3) (B.10)

Substituting into the z-momentum equation

ou” (O)aug@] oP® Lo 19 (Tau§0)>

or T 0z

aRep® ufno) = - +« + - or

0z 022 ror

N[o /10 82
2 R (0) z
o (X+3) 0z (7’87" (ruz )) + or
we get
aP©® 19 ( oul”

where ¢ is a constant to be determined. Integrating the resulting ODEs and applying the
boundary conditions P(?)(0)=1 and P(?)(1)=0 for P(z) we obtain the zero-order solution for

the pressure, which reads:
PO =12 (B.12)
From equations (B.11) and (B.12) we have
10 (Tauéo))'
ror or

By integrating twice and applying the conditions out” /0r(0)=0 and ugo)(l)zo we obtain the

zero-order solution for the velocity

u® =201 — ?) (B.13)



Summarizing, the zero-order solution is as follows:

PO =1 (B.14)
u® = 0 (B.15)
ul® = 201 — ?) (B.16)
pO _— 1 _ . (B.17)

The assumptions we have used are:
oul? /or(0) = u® (1) = 0

u(o)(z,r) =0

PO =1, PO1)=0
First-order solution

From the equation of state we obtain,

P = P0G = pM=1-2 (B.18)

Substituting the zero-order variables, p(®=1, u&o)zo, u,(zo):2(1 — 72), assuming that

u,(ﬂl):0 and integrating we get

ul) = —2(1 = 2)(1 — ) + f(r) (B.19)

z

where the function f(r) is unknown. From the r-momentum equation

(0) (0)
o’ Rep™) u£0)8ur —i—u(o)am

or 7 0z
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out! out” out! out”
3Rep© |4,0) 2 (1)=2=r o= L, M2
+a” Rep lur or + u,. or + uy 9z + uy ER

oPp®  ontY L9 /10
=_ r =2 (D
8 or T o T (r or (ruy ))

1 0 (10 82
2 2 2 - (1) z
o (X+ 3) (a or (r or (ruy )> T ooz (B-20)

using all the above results and integrating with respect to r, we get

PO = 2a?(x+ )1~ 1) + (2) (B21)

where g(z) is an unknown function. Substituting in the r-momentum equation

(0) (0) M (0) M (0)
aRep® [u® " 4 @08 L p o |08 L | 09U 0Ot
or 0z or or 0z 0z

__gory +a282u9) 1o (T&&)) 2 ( h 1)
N ror >

0z 0z2 or 3) |0z \ror # 0z2 |’

and separating variables we obtain the following two ODEs:

aPL 19
22 (4921 = =
0z +7"67"<r( Z)> ¢

10
4a Re (1 —1%)% — —— (r f'(r)) = -8
aRe(1=r2 — = (r (1))
where c¢ is a constant to be determined. Integrating the first ODE twice gives

1 1 1
f(r)=akRe (r2 - 57"4 + §r6) - 1617“2 +Cc2 (B.22)

Applying f/(0)=f(1)=0, we obtain

11 1
0= EaRe k. + e (B.23)

where ¢; and cs are contstants to be determined. By applying the condition fol rf(r)dr=0

we also get

13 1 1
Zn — B.24
72aRe 1601 + 202 0 ( )
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The constants ¢; and ¢ are determined by solving the linear system (B.23) and (B.24)

1
c1 =2aRe and ¢y = —§aRe

Substituting now in Eq. (B.22) we find the function f(r)

f(r) =~ gaRe(l ~ )2~ 7% + 20

and from Eq. (B.19) we obtain the first-order velocity component

1
ul) = 2(1 — r?) [—(1 —z)— 36 a Re (2 - +2rh)|.

From the z—momentum equation we find that

1 1
g(z) = — (ZOJRe-i- 1) z+ §z2 +K

(B.25)

(B.26)

where £ is to be determined. By substituting in Eq. (B.21) and using P(V)(1,1)=0, we get:

1 1
n:ZaRe+§

Thus the solution for the pressure is

1 1 1
p) =3 il — % ZozRe(l—z) + ZaQ <x+

Summarizing, again the first-order solution, reads:

p(l) = 1-=z
ugl) =0
ul) = 201 — %) |—(1—2) — % o Re (2 —Tr* + 21"4)]
1 1 1 1
W _ L o2t _ 12 L _ 2
P 2(1 z) +4aRe(1 z)+4a <x+3)(1 ).

The assumptions we have used are:

1) (1 — 12),

(B.27)

(B.28)
(B.29)
(B.30)

(B.31)



) (2, 7’) =

Uy

PO(1,1)=0

Second-order solution

For p(® we simply have:
oD = PO(zr) —
(B.32)

1 1 1 1
@ _ 112 _ 1 2 L 2
p 2(1 z) +4aRe(1 z)+4a <X—|—3>(1 7).

Now, from the continuity equation

10 0
- 0),,(2) (1), (@) (2),,(0) 1,00 (1)
. T[T‘(p w,” 4+ puy + p )}—F Z[p uy” +ptu

1 1 10
2 _ o212 Lo 1 N
uy 3(1—7r%)(1-2) 2a (X+3> (1—17r2) +r8r

ozll:e (1 —2)(=7 — 72 + 278 (1 — 2) + F(r) (B.33)

+

where F'(r) is a function to be determined. At this point the assumption of zero transverse

velocity is relaxed. Letting w, to be a function of r, ugz):u?) (r), from the r-momentum

equation

(0) oul oul?
3RepV r (0) ZUr (1) ZUr
+a” Rep [ur or + u, or + uy 92 + uy 5%

ou® o) gD gu® gu® gy 50
0) ¥ ™r (1) &% (0)“%r 0)~%r (0)“%r (1) &% (2) ¥
T or T or T or Ur or Tz z Tz 0z Tz 0z

8P(2) 482u(2) 2 92 8 1 8 1
— 9 r e B )} 2 -
8 5 +a 9.2 +a’a e (rar(mr ))—i—a (x—i— 3>

we get
oP@ 4\ 9 (10 1\ o (o0u?
— N (22 (@ 2 il W z

i “ (X+ ) or (r or (ruT )> ta <X+ 3) or \ or

180



Integrating with respect to r we get the following expression for the pressure

1 18(ru$2)) 3 1
2 — Z,2(2 _ 2.2 - 21
P @ ( 3, 1 (X—i— 3> (1—r)(1—-=2)

r

_ﬁame (x + %) (1= (=T=7?+2") + G(2) (B.34)

where G(z) is a function to be determined. Combining the z—momentum equation

oul” oul” out! oul” out! oul”
(2) [, (00222 (0) == (1) |0 222 (1)Z== (0) == (1H)zZ==
aRep [ur 9 + u, 92 + aRep'” |u, o + u, o + uy 9% + uy 5%
out? ou) ou) out? out) oul”
(0) [,,(0) == (1)Z=7= (0) == (0)Z== (hHzZ=r (2)Z==
rakep [ur or i or i or s 0z s 0z s 0z

_ 2%, 282u22)+13 o’ + 2( +1)
a 0z @ 022 r Or r@r @ X 3

o (10 82u?
(22 (2) e
0z <r or (ruz >> + 022 |’

with the following results

1)
(1), (0) Ouz

— A1 — _2\2
PO P~ a1 21 - ?)
ou’ 1 10
(00uz" _ _ 221 4 2 4 _ 11,6 8y _ o1 _.2y2 9 (.2
Uy = 12(1=2)(1—r7) gaRe( T4+7r+9r" —11r° +2r°) — 2(1 T)rar (ruT )
out! 1
uF;)TZ = —4(1—2)1—r?% - GorRe(2 - 1172 4+ 187 — 1175 4+ 28)
2
leads to:
(2) 22 2 13(7'%("2))
a Re |—4ru,® —12(1 —r*)*(1 —2z) = 2(1 —r*) [ =
r  Or
1
+ g Re(1 - r?)? (—4rt + 14r° + 5)]
1 1 19 [ 0
Can2(1 2y 2 AT 28 ()—12(1—2242 2 (2 (@) (1—
6a?(1-r*)~ (x+3>( 84+16r%) =8 (=) ~12(1-2)*+ = (rar (ruf ))( 2)

+%%(TF’(T‘)) +4a Rer?(2 —r%)(1—z). (B.35)

In order to have separable variables, it is assumed that the terms involving both z and r must

be equal to a constant:

4aRer?(2 — %) + %% (r% (rug))) + 12aRe(1 — 72)? = 4a Rer. (B.36)
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where v is new constant to be determined. Integrating the above expression with respect to

r and assuming that 0 (ru&z))/ar(O) =0 lead to

10 1
. (rug)) = §aRe (9(7 —3)r? 4+ 9rt — 270 4 Vl) (B.37)

Integrating once more and using the boundary condition ug) (0, 2)=0, we get

1
u? = %aRe (9(7 =33 4+ 6r° —r" + 2717“) (B.38)

Finally using the following boundary conditions out? / 8r(1):u£«2)(1):0 we get the system

27y 4 27 = 58 (B.39)
9y + 2y =22
which is easily solved yielding
y=m =2
Thus, the transverse velocity component reads
1
ul? = 362 Rer (1 —r%)2(4—1r?). (B.40)
and from Eq. (B.37) becomes:
10 1
10 @) _ + 0.2 4 o6
a (rul®) = gouRe (~9r? +9rt — 2%+ 2) (B.41)
Now, from Egs. (B.33) and (B.41) we get:
u® = 2(1 — 12 [2(1 _ )P %aRe(l + 7 = (1 — z)]
1 1
2o (X + 5) (1—12)2 4 F(r) (B.42)

Separating variables in Eq. (B.35) gives the following ODEs for F(r) and G(x):

2) 2y (10 (7"“9)) 1 2 4 6 8
aRe | —4ru,” —2(1 —r?) T or —§aRe(—5—4r +27r% — 2217 + 4r°)
T T
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o2
—602(1 —7?) + > <X + %) (—8 4 1672) — %%(TF’(T)) =A (B.43)

and

—8G(2) —12(1 — 2)* + 4a Rey(1 — 2) = A. (B.44)

where A is another constant to be determined. Integrating Eq. (B.37) once and applying the
condition F’(0)=0, we obtain

F'(r) = —%Ar = ;oﬂ (2—1?) +2a° <X + %) (—1+77)

1 5 5/1 11 4 5 19 - 79>
+9aRe <2r 2r 9r+47" IOT

Integrating once more we get

1 3 1 1
F(r)= —ZAT*2 — §a27’2 (4 — 7“2) + 5042 (x + §) (—2r% + %)
1 9 of/1 o5 11 4, 3 4 19 4 7 10)
- - s S - — B4
+9a Re <4r + s 5" +32r 00" +c  (B.45)

where ¢ is a constant to be determined. By applying the condition F'(1)=0 we have

1 9 1 1 519
:——A——Z——2< —) —a’Ré? B.4
0 1 g ~ 30 X+3 +7200a Re” + 1 (B.46)
Apply the condition fol rF(r)dr=0 gives
1 5 2 1 757
——A——Q——Q( —) 0 2Re? 4261 =0 B.47
14T T3 (M) Taggee™ e TR (B-47)

Solving the system of Eqgs. (B.46) and (B.47) we find the constants

4 1 2
A= —4a2 - = 2( _) — a?Re? B4
o’ —za X+ 3 + T Re (B.48)
and
1, 1 2( 1> 3, .,
_ 1o 1 1y _ 43 B.4
= ga + 5 X+ 3 51600 Re (B.49)

By substituting Eqgs. (B.48) and (B.49) in Eq. (B.45) we obtain

2 Re? / 43 5 11 3 19 7
F(r) = 25 6( i e e

2 T2, _T10>
9 2400 12 8 2 32 100

183



1 1 3 1 2 1 1

Thus axial velocity component becomes

3 1 1 1
© 21— ) [ -9 - L (v 1) - L metr4m - arta -
uy (1—1r7) 2( z) 6a x+3 12aRe( + Tr r) (1 —z)
1
+1—6a2(1 —3r?) + 43200a2 Re?(43 — 95712 + 2343r* — 125775 + 1681"8)] (B.51)

Integrating now Eq. (B.44) and substituting A under the condition P(®)(1,1)=0 we obtain

G(z) = %(l—z)?’—%aQ(l—z)—%aRe(l—z)Q—%QZRez(l—z)—%042 (X + %) (1-2) (B.52)

Thus, the pressure is given by

1 1 1 1 1
@ _Ltq_ 3+ 2 L 02\ (1) & N2t 20
P 2(1 z) 3¢ <X+ 3) (11-9r%)(1—=2) 2aRe(1 z) 5% (1—2)

1 1 1
—|—2—7a2R62(1 —2)+ ma?’ Re(1—1%) [(4 — 1472 + 40"y + (X + 3) (7+ 7% —2rY)| . (B.53)

Thus, the second order solution reads:

1 1 1 1
@ _ L2t A ) 1 2 A
p 5 (1=2% +aRe(l-2)+ 0 (x+3>(1 ) (B.54)
u? = —316a Rer (1 —1r?)%(4 —r?) (B.55)
3 1 1
2 _ o (21 N2 -2 -
W = 2= S 9P pa? (x+ )

1 2 4 L 5 2
—12aRe(1+7r —2rH)(1 z)+16a (1—3r7)

2 p 2 2 4 6 8
43 — 234 —12 168 B.56
+ @ R (43 — 9572 + 234374 — 1257 + 7«)} (B.56)
1 1 1 1
P2 = 5(1 —2)3 = EaQ <X + §> (11 — 9r%)(1 — 2) — e Re(1 — 2)?
— 1052(1 —z)+ i05211262(1 —z)
2 27

1
+ ﬁa‘g Re(1 —r?) [(4 — 14r% + 4r*) + <X + §> (T+71r* - 27”4)} - (B.57)

The assumptions we have used are:

F(1) = /01 rF(r)dr =0
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u? = u®(r),0 (ru(2))/8r(0) = u?(0,2) = u? Jor(1) = uP (1) =0

T T r r
PA(1,1) =0
The solution of the flow up to the second order is as follows:
p = l1+e(l—2)

s [-2 (-2 +aRe— 2+ o (x5 0 -r)] + 06 B39)

Up = 3—1652a Rer (1 —1r%)2(4—r%) + 0(7) (B.59)

§52(1 — 9K

1
u, = 2(1-1r?) {1 —e(1 —2) — —ea Re(2 — Tr® + 2r1) + 5

36

1 1 1 1
—55204 Re(1+7r% —2rY(1 — 2) + 1—6£2a2(1 —3r?) — 652042 (X + §)

+

13200 e2a® Re* (43 — 95712 + 2343r* — 1257r° + 1687"8)} + 0(g%)  (B.60)

1 1
P = (1—2)—55(1 - 2)? + ZsaRe(l—z)

+ ie o? <x + %) (1 — 7%+ 252(1 —z)3
_loeg <>< + 1) (11 = 9r%)(1 — 2)

12 3

1

1 1
—5520z Re(1 — 2)? — 5042(1 —z)+ 2—752a2R62(1 —z)

1 1
—i—mz—:Qa?’ Re(1 —1?) [(4 — 1472 + 40" + (X + g) (7 + 7% —2rh)

+ 0(e?). (B.61)
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