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[IEPIAHVH

H Awaxtopury Awatei3r) ywelleton og 800 evotnTee.

ENOTHTA I
Y10 TpMTO Pépoc PEAETAPE TNY TANEOTNTA EXVETIXWY GUTTUSTWY 6ToV YOpo L% (—a, a).

Eotww it = {tn, kn}o2y plo oxohovdio uryadixd>y oprduddv, dSnhodnh, to w, eivar dtoxprtol wi-
yaduxol aprduol xar to Ky, 1 tolamhotnta Touc. Me tny axxohoudio 1 cucyetiCouye To exVeTind
cloTNUA

E,={t"tet: 1 <k<k,}

Na 1 < p < oo, Mue 6nt 10 E, elvar mhfpec otov LP(—a,a) €dv SpankE, = LP(—a,a).
Anhadt, yio onowdhinote ouvdptnon f € LP(—a, a) xou tuyoio € > 0, undpyet exVeTind TOAUOVUYO
S Pa(t)e ! bmou o ouvteheothc P, (t) elvar moludvupo Boduol 1o Tokl k, — 1, étot dote

k

1) = 5" Put)eni]| < .

n=1

Edv éva cbotnua elvar mAifpec otov LP(—a,a) okl model v efvon TAHPES PE TNV agpolpeoT)
evOC xaL HOVou 6pou, TOTE ovoudleTon axpyBéc. Uy vd YENOWOTOLUUOL Xal TOV 600 TAEOVAOUA
E(u;p,a). Me autév evvoolyua 1o TAfYoc v oTtotyeinv mou teénet vo tpootedoly (agapedoiv)
€T0L WOTE T0 GUOTNUA VoL xaTaoTel axpLBéc.

[ va €yet éva ooty tenepaopévo Thedvaoua, avayxala cuviixn elvar 6Twe 1 axoloudia
pova avrxer oty xhdon B. Ta otoryeio g B etvar dheg ot axohovdieg j = {ptn, kn}>°, 6TOUL
R, > 0 yiaon > 0 xou Ry, < 0 vy n < 0, oL onoleg €youv TETEPUCUEVT dVw TUXVOTNTA, O

, , 7 7 o0 |gﬂn|kn
ex¥€Tng oUYxAloTG Toug toolTaL e To 1, xou 1 oepd > S

ouyxhiver. Opiloupe v
vroxhdon B’ g B, 6nou ot bpot 1, tne i € B ixavonotohy v emniéov ouvinxn
(*) |pn — fng1| < €y xdmoto ¢ > 0, —00 < n < 0.

O otdyoc yag ebvan, yio éva Soopévo obotnua £, ye p € B', va ddoouye éva yevixd tpomo
xataoxeunc evog dhhou cuothuatog B, ue to dto mhedvaoua otov L2(—a,a). H xataoxeun
e axolovdiog v Booiletar oty drapépton e p o€ Tpio utoshvola (Sopépton Pys). Anhadr
Yedpouue

= {m} U{A} U{pa}

Tote v pio gpaypévn oaxoloudio pryadixay ooy {a,} opilouue Ty véa axolouvdia v we
v="{v+a,} U{\, —a,} U{p.}. (0.1)
To xdpio pog anotéleoua etvar To axéiuvlo:

OEQPHMA

Eotw p € B xou vy xdnowo 6 > 0 éotw P,y pio dopépton. Eotww {a,} pia pporyuévn
axohovdia TpayuaTx@y aprduwy xou v 6nwe otny (0.1). Toéte wyler 6t E(v;2,a) = E(1; 2, a).
Edv inf Sy, > u € R unopolye va dahéZoupe ta {ay, } oc axohouvdio uryodixdv aprdudy avti yio
TEOLY LU TIXOV.

[TOPIXMA
Mo xdde Yetind axépao g, mparypatxd aprdud a € (0,1/27) xou uryodixole apriuoic

vo =0, vy, =ng+ialog ’nQ‘> |n| > 1,



toTe 1) axohoudia {vy, ¢}, pog diver To axdhoudo axpBéc clotnua otov L*(—m, )

{theitn . |k =0,1,...,q— 1}

n=—oo"

ENOTHTA 1I

Y10 delTeEpO UEPOC YeEViXELOLNE To Ocwpnua Xdouatog twv Fabry-Pélya. O Pdlya anddeile
6t edy A = {A, }02, etvon pior axorouvdia Jetixdv aptdumdy €tol Wote Ay — Ay > ¢ yia ¢ > 0 xou
n/Ay = D >0, t161€ 1 oeipd Dirichlet

o= S

€YEL TOLAGYLOTOV EVOL avWUAA0 oTue{o o xde BLdoTnua Uhxoug UEYAALTEROU Tou 21D oty euleia
¢ o0YANOTS.

Y1oy0¢ elvar va amodeiloule mapdpolou TiTou Vewpnua 6mou avti yio agrduole ¢, € C va
€Y OUUE TOANUGVUUAL.

OpiCouue v xhdon L(c, D) tne onofuc ta otowyeio eivor ot axohoudiec A={a,}, |an| < |ani1]
UE TO @y VO XOVOTIOLO0V TG axdhoudeg cuVITxeg:
(1) n/la,| — D > 0.
(2) |a, — ax| > cjn — k| yia n # k émou ¢ > 0.
(3) sup|arga,| < /2.

Me doouévn tny axohoudia A € L(c, D), xataoxeudlovye axorovdia B we e&hc:

OPIXMOX KAAYHY A, p

‘Eow A € L(c,D) xa o, 8 detixol aprdyol étor dote o + < 1. Aéue 6t 1 axohoudia
B={b,};2, avixet oty xhdomn Aa g €8v Yo Gho o 1 oY UEL TS

by € {2z |z — ay| < lan|®}

xou yroe xdde m # n woyder éva and ta e€hc:
() by, = by
(i1) by — bn| > max{eloml” e~lanl”1

YNy ouvéyelo avadLatdooupe To 6TolyEld by YwpllovTag To TEMTA GE OUADES OPWY TOU €Y 0LV
10 {810 Y€Tpo, X0 UETE we Tpog To uéyedog tou oplopatoc touc. ‘Etol ypdgouue {b,} = { A, itn }
6mou A, Staxprtol pryadixol aprdyol xau t, 1 tokhamhétnta toug. H popgn auth ovoudleton 1 (A, 1)
avaddtoly. Xe authy TV xAdom, ot 6pol TAEoV DEV elvar daxpltol xar umopolv va TAncLalouy
TOND %OVTd.

To x0plo anotéhecya etvon o axdrouvdo.

OEQPHMA

‘Eotw axohoudia A € L(c,D) pe detxolc 6pouc xau D > 0. 'Eotw axohoudia B € A, 3
étor Hote B={b,}22, ue Yetxoic dpouc xau éotw (A, 1) 1 avadidtaln touc. Tote xdle oelpd
Taylor-Dirichlet

1 omola txavomolel Ty cuvdrxn

lim su —log |Cn“ il = li log A
p = lim sup ,
n—oo )\n n—oo n

OTOL

An =max{|cy,|: 7 =0,1,..., pu, — 1},
)€l TOLUALYLOTOV Eva avwuaho onueio ot xdle dtdotnua uixoug ueyahitepou tou 2m D otny eudeia
¢ o0YANOTS.



Abstract

This thesis is divided into two parts. In the first part, we give new criteria for two
complex sequences to have the same excess in the sense of Paley and Wiener in L?(—a, a).
. e . 1
As a result, we prove that given any positive integer ¢, a real number o € (O, g) and
complex numbers
W =0, vy=ng+ialoglngl, |n|>1,

the exponential system {tFe!n : k =0,1,...,¢ — 1} __ has excess 0 in L?(—7, ).

In the second part of the thesis, we give an extension of a theorem of N. Levinson
(see Theorems 3.1 and 3.2). As an application, we get a variation of the Fabry Gap
Theorem for frequencies with finite upper density (see Theorems 3.3 and 3.4), concerning
the location of singularities of Taylor-Dirichlet series, on the boundary of convergence.
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1 Introduction.

The theory of Nonharmonic Fourier Series in L*(—m,7) is concerned with the completeness
properties of sets of complex exponentials {e#n*}°2 . The study of these series was initiated
by Paley and Wiener who showed that the system {e#~t}>> _ is a Riesz basis for L*(—m,)
whenever each p,, is real and |p, —n| < L < 1/7? for —oo < n < co. A system {e#}>° s
a Riesz basis in L*(—m, ) if it is isomorphic to the basis {e™}>° . If this is the case, then
each function f € L?(—m, ) has a unique nonharmonic Fourier expansion

(o9}

f(t) = Z cne™t (in the mean)

—0o0
with {c,} in (2. In general, the sets of complex exponentials {e**'} which are appropriate, are
those which are complete in L*(—7, 7). In other words, the span{e’~'} = L?(—m, ), that is,
for each f € L*(—m,m) and each € > 0, there is a finite linear combination Y%_, ¢,e¢ such

that i
' f(t) — Z cpetint
n=1

The first part of this thesis is concerned with complete sets of complex exponentials in
L*(—a,a). In fact, we allow for the terms u, to have multiplicity greater than 1. Thus we
consider the following: let u={j,, k,}°>,; be a multiplicity sequence, that is, a sequence where
{pn} are distinct complex numbers satisfying |p,| < |tni1| — 00 as n +— oo, and each p,
appears k, — times. We associate with this sequence the exponential system

E, = {tFtet 1 <k <k,} (1.1)

For 1 < p < oo, we say that the system E), is complete in LP(—a, a) if span E,, = LP(—a, a). By
the Hahn-Banach theorem, incompleteness is equivalent to the existence of a non-trivial entire
function F'(z) which vanishes on p and which has the integral representation

F(z) = /a e f(t)dt, f € Li(—a,a), % + é = 1. (1.2)

Our goal is to study the stability of a system F, under bounded perturbations of the terms of
p. We give conditions under which we obtain equivalent systems in L?(—a,a), in other words,
systems which are simultaneously complete or incomplete in L?(—a,a). For this, we need to
introduce the concept of ezcess in §2 where we state our first main result (Th. 2.10). We
remark that the proof of Theorem 2.10 shall occupy most of §4. In addition, some other results
will be stated and proved in that section.

< €.

The second part of this thesis is concerned with the location of singularities on the boundary
of convergence of Taylor-Dirichlet series f(z). Given a multiplicity sequence B = {( A, pn) 122,
we let .
F(2) =) pun (), (1.3)
n=1
where p,, (2) = ;.Zal Cn; 27 is a polynomial with ¢,,, 1 # 0. Such a series occurs in nature as
the solution of an infinite order homogeneous differential equation with constant coefficients.
In §3 we state our result (Th. 3.3 and 3.4) which is a strong version of the Fabry Gap Theorem,
for frequencies with finite upper density. The result depends on extending a Levinson theorem
(Th. 3.1 Th. 3.2) concerning various estiamates of an entire even function. The proof of these
results shall occupy §5.

We remark, that our results for both parts of this thesis, depend on the comparison of two
entire functions of exponential type, where the zeros of one of the functions are obtained by
perturbating the zeros of the other. An entire function f(z) is said to be of exponential type if
|f(2)| < AePl¥l for some positive constants A and B. In the following subsection we shall recall
various properties of such functions.



1.1 Entire functions of exponential type

An entire function f(z) of exponential type is a function of order 1 and finite type, or a function
of order less than 1. The order p is defined as
p=inf{u: r‘n|ax 1f(2)] < e, r>ro(p)}.
From this we get that
, log log maxy.|—, | f(2)|
p = limsup .
r—00 log r

A function of finite order p is said to be of type o if

o =inf{K : rlnéx|f(z)| < ef r > re(K)}.

Then one has that

L log maxy.|—, | f(2)]
o = limsup .
r—00 rP

An entire function f(z) of exponential type which vanishes an infinite number of times, has
the following expansion by the Hadamard Factorization Theorem. Let A = {a,,}22; be the set
of its zeros so that |a,| < |ap41| — co. Then

f(2) = kzmeb H <1 — ai) ean
n=1 G

where k and b are constants, and m denotes the multiplicity at 0. If the order of f(z) is less
than 1, then the exponential factors are missing.

The factorization is valid due to the following result of Lindelof.

Theorem 1.1. Let A = {a,} be the zeros of f(2), an entire function of exponential type. Then
the lim sup,_, nalt) o 00, where na(t) is the counting function of A, that is,

nA(t) = Z 1,

lan|<t

and the sums Zlanlﬁr i are uniformly bounded with respect to r.

nA(t)
t

We note that if for a sequence A the relation limsup,_, < oo holds, we say that it

has a finite upper density. We say that A has density D if the lim; ”At(t) exists and is equal

to D. In both cases the exponent of convergence of A, k, satisfies k < 1, where

=1
m:inf{azg ] <oo}.
Ay |
n=1

_n
logn’

The converse is not true. The sequence a,, = n > 2, is an example where x = 1 but the

na(t)

lim sup,_, = 0.

Let f(z) be an entire function of exponential type o. The growth of f(z) in various directions
is characterized in terms of its indicator function hs(#). This is defined as

log | f(re®
hy(0) = limsup M
r—00 r

The indicator function hy(#) is the supporting function of some convex compact set I¢. In other
words, there is a compact set I¢, called the indicator diagram of f(z), such that

ht(0) = sup{z cos§ + ysin 0} = sup{R(ze )}, 0 €[0,2n]. (1.4)

ZEIf Zeff



We note that since f(z) is of type o, then

- an . 1
flz) = Z; g 0= lim sup |a,|=. (1.5)
To this function there corresponds a function
JOEDY sy (1.6)
n=1

called the Borel transform of f(z). The Borel transform is a holomorphic function in the do-
main |z| > o. It is possible that ¢(z) can be analytically continued into the disk |z| < o. We call
the smallest convex compact set containing all the singularities of ¢(z) the conjugate diagram
of f(2).

We end this section by a beautiful result obtained by George Polya. He established the
following remarkable connection between the conjugate diagram and the indicator diagram of
an entire function of exponential type.

Theorem 1.2. The conjugate diagram of an entire function of exponential type is the reflection
in the real axis of its indicator diagram.



2 On the excess of complex exponential systems in L?(—a, a).

We note that the main sources for this topic are the survey papers of R. Redheffer [34] and of
A. Sedletskii [41], as well as the excellent expository account [44] of R. Young.

Let p={pin, kn}52; be a multiplicity sequence. The completeness in LP(—a, a) of the system
E,, has lead to the notion of the completeness radius R(y,p). This is defined as

R(u,p) =sup{a > 0: E, is complete in LF(—a,a)}.

oo |Sunlkn

The radius R(u,p) is the same for all p € [1,00). It is infinite when the series >, T

diverges and zero when the exponent of convergence is less than 1 (see [34] Theorems 7 and
41). Thus, we are interested for the non-trivial case, that is, when the series converges and the
exponent of convergence is equal to 1. We remark, that for some time it was conjectured that
R(p,p) = 0 if the sequence p is real, with zero density. This was disproved first by Kahane
[19].

Theorem 2.1. There exists a sequence j with real terms, of zero density, such that R(u,p) =
00.

Furthermore Koosis [25] proved the following.

Theorem 2.2. There exists a sequence p with distinct positive integers, of zero density, such
that R(p,p) = 2.

A very interesting result which compares the radii of two systems, was obtained by Redheffer
[37].

Theorem 2.3. Let A = {\,} and I' = {y,} be complex sequences converging to infinity, so
1 1

that
Z An T

Then their completeness radii are equal, that is, R(A,p) = R(T', p).

< Q.

One observes, that the result might hold even if |, — A\,| — oo. This is the case if, for
example, we let p, =n and \, = n + /n.

The situation is quite different as far as the excess of two systems is concerned. A. Sedletskii
([39] Th. 4) proved that

Theorem 2.4. There exist sequences p and X with real terms satisfying |, — M| — 0 and yet
their excesses are not the same, that is, E(u;p,a) # E(\;p,a).

By the term ezcess E(u;p,a), we mean the number of terms that have to be removed from
(added to) the system E, in order for it to become ezact in LP(—a, a). The system E,, is called
exact if it is complete but becomes incomplete on the removal of a single term. The most
classical example is the trigonometric system {e™}°° _ which is eract in LP(—m,7) for all
p € [1,00) and whose ezcess in C[—m, 7| is equal to -1.

It is well known, that replacing a finite number of terms from a system E, by an equivalent

number of other terms s,, ¢ i, does not change the excess. The result is due to N. Levinson
([30] Th. VI).

Theorem 2.5. The completeness of the exponential system E, in LP(—a,a), 1 < p < oo, or
in C|—a,a] is unaffected if some element of E, is replaced by €', where s & pu.

Thus, the interesting case is, whether the excess of a system is preserved if an infinite
number of its terms is replaced. Perhaps, the most celebrated theorem towards this direction
is the Alexander-Redheffer theorem [34] (Th. 14).

10



Theorem 2.6. For all p € [1,00) the excesses E(v;p,a) and E(u;p,a) of two exponential
systems I, and E, are equal, assuming that

[e.9]

|t — Vi
< 00. 2.1
2 T ol + o 2

n=1

This theorem is interesting on its own because it does not assume any regularity in the
distribution of either of the individual sequences. However, the necessary condition |v, —p,,| — 0
for the convergence of the series in (2.1), does not provide a large class of examples.

Remark 2.1. We note that the Alexander-Redheffer theorem has been generalized for spaces
of functions on arcs, other than the interval, and on domains, by Bulat Khabibullin ([21], [22],

[23]).

A positive result in L*(—a,a), without the condition |A\, — 7,| — 0, but under bounded
pure imaginary perturbations instead, was proved by D. Peterson ([34] Th. 17).

Theorem 2.7. Let A = {\,} and T' = {7, } be complex sequences converging to infinity, so
that
R\, = Ry, |SA, — S| = O(1).

Then E(A,2,a) = (I',2,a).

We remark that the problem remains open for p # 2. We note however, that the theorem
fails for L'(—a, a) and C[—a,a] ([40] Th. 1).

Another result without the condition |\, —v,| — 0, is the following theorem of A. Sedletskii
([38] Th. 2) which covers a case of nonabsolute closeness of the sequences A and I, preserving
the excess.

Theorem 2.8. Let A = {\,} andT' = {v,} be sequences of real numbers converging to infinity,

so that
N

Z(An — Yn)

—N

Z()‘n — Yn)

-1

sup < 00.

N2>1

+ sup
N>1

Then E(A,2,a) = E(I',2,a).

At this point we should note that in order for a system F, to have a finite excess, a
necessary condition is for p to belong to (what we shall refer to) the class B. The elements of
B are all the two — sided sequences p, that is, u = {n, kn}>, where Ry, > 0 for n > 0 and
Ry, < 0 for n < 0, that have a finite upper density, their exponent of convergence is equal to

1 and the series > >° % converges.
- n

We shall denote by B’ the subclass of B, where in addition the terms pu,, of some sequence
i € B satisty
(*) |pn — tng1| < ¢ for some ¢ > 0, —oo < n < 0.

Our goal is, given some system FE,, with u € B’, to give a general way to generate another
system E, with the same ezcess in L?(—a, a). This new sequence v may have radically different
geometric properties. Such an example is provided in Corollary 3.16, where we start with all
the terms of p having multiplicity 1 and construct v whose terms have multiplicity ¢ € N. The
constuction of v is based on partitioning ; into at most three sets (see below the P, s partition)
and then subjecting two of them to a bounded perturbation.

Our method is particularly useful for systems £, having a finite excess, even if sup |Su,| =
oo. In [40] (Th. 3), A. Sedletskii constructed ezact systems with unbounded imaginary parts.
We state a special form of his result as a theorem.

11



Theorem 2.9. If i = {1, 1}, with po = 0 and pu,, = n+iclog |n| for |n| > 1 and a € (0, 5=),
then the system E, is exact in L*(—m, ).

When A. Sedletskii searches for equivalent systems, he usually imposes the condition that
i is a non-concentrated sequence where the sup |Su,| < oo. A sequence p is called non-
concentrated if n,(t+1) —n,(t) = O(1) where n,(t) is the counting function. But the condition
sup | Sy, < oo is obviously a limitation when one wants to derive other eract systems from
the one in Theorem 2.9.

Thus, this latter condition and the Alexander-Redheffer theorem with the necessary con-
dition |, — v,| — 0, are inadequate for what we want to prove. As mentioned before, our
method yields equivalent systems E, and FE,, with their sequences ;1 and v having different
geometric properties, even when their imaginary parts are unbounded.

From now on, when we write a sequence {p, }, a series ', or a product []’, we mean that
the index-n is running through all n € Z\{0}.

The P,; partition of some ;€ B’ and the construction of v.

Let u € B'. We will partition p into at most three sets, not necessarily disjoined,

p={m} U{A} U{pn},

where {p,} might be infinite, finite or empty. This is done as follows: Fix 6 > 0 so that
§ > cand write g as t = {ptap 1 k= 1,2,...,k,}> . Consider the closed disks B, =
B(ing, 6) = {2 : |ftng — 2| < 6}. Since § > ¢, then in each B, there are at least two elements
of . Thus, we pair p, ; with at most one other element of y which is in Emk, and once paired
together, they cannot be paired with other ones. Thus, two subsets of p are constructed, not
necessarily disjoined and each containing one of the two elements. We call them {v,} and
{A}, v is paired with A, and satisfy |y, — A,| < 0. It is not necessary to have |, | < [Vjnt1]
or [Ap| < [Apt1)| (see Example 2.1). The remaining (if any) terms of p we call them {p,} and
are totally independent, that is, they do not participate in the pairing. We shall refer to such
a partition by P, ;.

Then for some two-sided, bounded sequence of complex numbers {a,} we define the new
sequence v as

v="{v+a,} U{\, —a,} U{pn} (2.2)

The following example illustrates the above construction.

Example 2.1. We present a P, s partition when p =7 and 6 = 4. From this we construct a
new sequence v. Let {p,} = {—2,—1,1,2} U{bn}>_, that is {p,} = {0, £1,+2,£5 +10,...}
and let

71:37 72:47 73:87 /74:97 75:137 76:147 )
M=T A =6 As =12, \y=11, \s =17, A¢ =16, .... (2.3)

that is, forn > 1 (similarly for n < —1) we put

B 5"2—+1, nodd N - 5”2—+9, nodd (2.4)
T 2 neven " |22 neven ‘
Forn > 1 take asp,_1 = 2, as, = 1 and for n < —1 take as,1 = —2, as, = —1. Then from

(2.2) the new sequence v is {0, +1, £2,+5,+10,+15, ... } with all the terms having multiplicity
5, except {0, £1,+2} whose multiplicity is 1.

We now state our main result which is the following:

12



Theorem 2.10. Let u € B’ and for some § > 0 fized let P, s be a corresponding partition. Let
{a,} be a two-sided bounded sequence of real numbers and v as in (2.2). Then the relation
E(v;2,a) = E(u;2,a) holds. If inf S, > u € R we may choose the {a,}' to be a sequence of
complex numbers instead of real.

Remark 2.2. We note that for real p and v, our result follows from Theorem 2.8.

1

Corollary 2.1. Given any positive integer q, a real number o € (0, %) and complex numbers

=20, v,=nqg+ialog|ng|, |n|>1,
then the sequence v = {v,, q}> yields the following exact system in L*(—m, )

{then : k=0,1,...,q—1}°>__. (2.5)

Moreover, we may construct a sequence v = {v,, k,} with different multiplicities k, so
that for o € (O, %)

Corollary 2.2. The exponential system
{tkeit(8n+ialog8n) gy - 07 1, 2} U {tkeit[Sn—4+ia log(8n—4)] k= 07 1’ 27 37 4} (26)
is exact in L*(—m, 7).

We end this section by two standard arguments.

Theorem 2.11. Let two systems E,, and E, be given. If incompleteness of anyone of the two
systems implies incompleteness of the other, then they have the same excess.

Proof

Assume that this is not true, say F(v;p,a) < E(u;p,a). We consider two cases, one with
|E(v;p,a) — E(p;p,a)] < oo and the other with |E(v;p,a) — E(u; p,a)| = oc.

Case 1, |E, — E,| < oo: Then —oo < E, < oo and —oo < E,, < oo. If necessary, we may
add or subtract the same finite number of terms from both systems, in order to get F,, and
E,; respectively, so that —1 = £, < E,, thus E,, > 0. Since E,/ is incomplete, by assumption
the same holds for F,/, thus £, < —1. Therefore we reach a contradiction.

Case 2, |E(v;p,a) — E(u; p,a)| = oo: Either E(v;p,a) = —oco and/or
E(v;p,a) = 4o0.

First, assume that E(v;p,a) = —oo. Then E, is incomplete and by assumption so is E,,.
Thus —oo < E(p;p,a) < 0. Add a finite number of terms to both systems in order to get E,/
and E,, respectively, so that E(y/;p,a) > 0. Obviously we have E(v';p,a) = —oo, in other
words FE,, is incomplete. Again by assumption, this implies that E, is incomplete also, thus
E(1';p,a) < 0. Therefore we reach a contradiction.

Second, assume that F(u;p,a) = +oo and —oo < E(v;p,a) < co. Once more, add a finite
number of terms to both systems in order to get E,, and E,, respectively, so that E(v';p,a) <0
and E(u';p,a) = +o0o. Then, E,/ is incomplete, and by assumption so is E,,, thus E(y/;p,a) <
0. Therefore, once more we reach a contradiction. <

Theorem 2.12. Consider a multiplicity sequence p = {pn, ky}. Shift all the terms by some
amount d to get a multiplicity sequence p' = {pn + d, ky,}. Then their associate systems have
the same excess.

13



Proof

Assume that £, is incomplete in LP(—a, a). Then there is some f € L(—a,a) so that

F(z) :/ e f(t)dt (2.7)
vanishes on p. But F(z) can also be written as

F(z) = /a el dte=idt £ (1)t (2.8)

—a

with g(t) = e7" f(t) € L(—a, a). Define now G(z) = F(z — d). Then

G(z) = /a e#g(t)dt, (2.9)

vanishes on p/, thus E,, is incomplete in LP(—a, a). Similarly, if one first assumes incompleteness
of E, in LP(—a,a), this yields the same for E,. Applying the previous theorem completes the
proof. &
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3 On a theorem of Norman Levinson and a variation of
The Fabry Gap Theorem.

The Fabry Gap Theorem (see [30] Th. XXIX) states that if A={\,}°, is a real positive
sequence such that A\, 1 — A\, > cfor ¢ > 0 and n/\, — D > 0 as n — oo, then the Dirichlet
series f(z) = Y o c,e % has at least one singularity in every interval of length exceeding
27D on the abscissa of convergence.

Poélya proved the theorem relying on certain properties of an entire function which vanishes
exactly on A (see [30] Th. XXX). Levinson extended the latter result to cover the complex
case as well (see [30] Th. XXXI). For a sequence A={a, }>°, satisfying for n # k the spacing
condition |a, — ag| > ¢|n — k| for some ¢ > 0, and the limit relations, n/a, — D > 0 and

arg a, — 0, he proved that the entire function F(z) = []°2 (1 — ;—i) satisfies for every € > 0

n=1

as r — oo the following properties:
(1%) |F(re)| = O(exp{nr(D|sinf| +¢)}).
(2%) 1/|F(re?)| = O(exp{nr(—D|sin 0| + €)}) whenever |re? & a,| > ¢/8 for all n > 1.
Furthermore for every € > 0 as n — oo one has:
(3%) 1/|F'(an)| = O(exp{elan}).

We remark that for D = 0, Vidras [43] dropped the condition arga, — 0 and constructed
an entire function of infraexponential type satisfying (2%) and (3x).

Our primary goal is to give an extension of Levinsons result. Based on a sequence A as
above, we construct a multiplicity sequence B = {(\,, pt,)}22,;. For this sequence B we prove
that the infinite product G(z) which vanishes exactly on £B, satisfies IG“LA;—T(IM)I = O(exp{e|An]})

for every € > 0 (see Theorem 3.1). That is, we have a sharp estimate for the pi* derivative
function of G(z) evaluated on A,. Similarly we extend Vidras result (see Theorem 3.2).

These results allow us to get a variation of the Fabry Gap Theorem. For the pre-mentioned
constructed multiplicity sequence B, having real positive \,, and density D counting multiplic-
ities, we prove that the Taylor-Dirichlet series in (1.3) that satisfies the relation

log |c, log A,
lim sup g|C—”"4| = lim sup &, (3.1)
n—o00 )\n n—00 )\n
where
An =max{|cy,|:j=0,1,2,..., pu, — 1}, (3.2)

has at least one singularity in every interval of length exceeding 27D on the abscissa of conver-
gence (see Theorem 3.3). We note that our result holds even if we allow the distinct A, terms
satisfy the relation liminf(\,+; — A,) = 0 (see Example 3.15). Recall, that even in the simple
case when the multiplicity p, is equal to 1 for all the \,, authors such as Levinson [30] and
Mandelbrojt [31] impose the condition liminf(\,;; — A,) > 0.

When D = 0 the assumption that the A, are real can be dropped. We prove that if the
An are complex numbers such that the sup |arg \,,| < 7/2, and if for every € > 0 there exists

some ng € N such that p
I <l > g, (3.3)

|Cn,un71| N
then the boundary of convergence of the Taylor-Dirichlet series in (1.3) is a natural boundary
(see Theorem 3.4). We remark that the set of arguments of the A\, need not have a finite

number of cluster points in the interval (=7, 7).

For D > 0, the desired multiplicity sequence B shall be constructed from a sequence A

satisfying those properties as stated in Levinsons theorem. For D = 0, we rely on Vidras result
where for A we replace the limit relation arg a,, — 0 by the weaker condition sup | arg a, | < 7/2.
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Since the condition arga, +— 0 is crucial for D > 0 but not for D = 0, in order to
work with anyone of these two cases we denote by L(c, D) the class of all sequences A={a,},
la,| < |ani1| satisfying the following properties: (1) n/|a,| — D > 0, (2) for n # k one has
that |a, — ag| > ¢|n — k| for some ¢ > 0, and (3) the sup |arg a,| < 7/2.

Given some sequence A € L(c,D), the construction of the multiplicity sequence B is as
follows:

Definition 3.1. Let A € L(c,D) and a, [ real positive numbers so that o+ 5 < 1 . We say
that a sequence B={b,}>>, belongs to the class A, s if for all n we have

by, € {z 1|z — a,| < |a,|*} (3.4)

and for all m # n one of the following holds:
(1) by = by
(i1) by — by| > max{elaml” e~lanl”y.

One observes that (i) allows for the set {£B} to have coinciding terms, thus the entire
even function vanishing exactly on {£B} has multiple zeros. Also note that (ii) allows for
non-coinciding terms to come wvery close to each other, thus, it is possible for the relation
liminf |[\,41 — Ay| = 0 to hold. We may now rewrite B in the form of a multiplicity sequence,
and this is done as follows: first we split {£b, } into groups of terms having the same modulus,
and then within each group we order them by the size of their argument, beginning from smaller
to larger. The arguments are taken with respect to the principal one, that is, 0 < argb,, < 2.
Thus, we can rewrite the sequence B as {A\, 1, }52,. We shall call this form of B the (A, u)
reordering.

Remark 3.1. We point out that the spacing condition (2) of a sequence A € L(c,D) plays a
very important role.

We note that the notation B={\,, u,,}>>, is not always useful when carrying out various
calculations. In such cases we keep the notation B={b,}°° ;. This is more practical since the
terms b, and a, are related by (3.4). From the latter one also deduces that n/|b,| — D as
n +— 0o. At this point we introduce the following two systems of unions of open disks given
some A € L(c,D) and B € A, g

where as usual
B(zg,7) ={z: |z — 20| <r}.

Observe that the disks in S are non-overlapping, whereas in general this is not necessarily true
for Sy since for fixed n we might have b, = b,, for m # n. Nevertheless, note that if for fixed
n, I', is the set of all integers j so that b, = b;, that is,

Ty = {j:b; = by}, (3.7)

then

—lam|? ~lag, |?
U B (bm, €T> =B (bn, QT) , lpy=min{m :me,}. (3.8)

mEFn

Relation (3.8) implies that Sy can be rewritten as an infinite union of non-overlapping disks.
Now we are ready to state the extension of Levinsons result.
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Theorem 3.1. Let A={a,}?>, be a complex sequence satisfying A€ L(c,D) and arga, — 0
asn — oco. Let B € A, 3 and let (\, ) be its reordering. Then the entire function

Glz) = ﬁ (1 - j—Z)M (3.9)

n=1

satisfies for every e > 0 as r — oo the following:

|G (re)| = O(exp{mr(D|sinf| +€)}) (3.10)
and whenever re® & S,
1 .
Gle®] = O(exp{rr(—D|sinf| +¢€)}). (3.11)
Furthermore for every e >0 as n — oo one has:
fon!
Gl ()] O(exp{e[Anl}). (3.12)

If D = 0 the previous result holds without the condition arg a,, — 0.

Theorem 3.2. Let A={a,};2, be a complex sequence so that A€ L(c,0). Let B € A, 3 and
let (\,p) be its reordering. Then G(z) as in (3.9) satisfies (3.10), (3.11) and (3.12) with
D =0.

We now recall some basic facts about Taylor-Dirichlet series. Let B={\,, ,,} be a multi-
plicity sequence with complex \,. Assume the following two properties are satisfied:

1 =1
im —8% — 9 lim £

n—0o00 An n— 00

— 0. (3.13)

Then according to Valiron [42], the regions of convergence of the Taylor-Dirichlet series f(z) in
(1.3) and its two associate series

Fr2) =) A ™ f(2) =) AuztnTle, (3.14)
n=1 n=1

are the same. For any point z inside the open convex region, the three series converge absolutely.

If A € L(c,D) is a real positive sequence and B € A,, g is such that B={b,,} is real positive
too, then for the (A, u) reordering of B the three series f, f*, f** as defined in (1.3) and
(3.14) have the pre-mentioned properties. Similarly, if instead of a real sequence A € L(c, D)
we have a complex sequence A € L(c,0). The claim is proved in Lemma 5.5. We are now
ready to present the following strong version of the Fabry Gap Theorem.

Theorem 3.3. Let A € L(c,D) be a real positive sequence for D> 0. Let B € A, p so that
B={b,} is real positive too and let (\, u) be its reordering. Then any Taylor-Dirichlet series
f(2) as in (1.3), satisfying (3.1), has at least one singularity in every interval of length exceeding
2w D on the abscissa of convergence.

The beauty of this result is evident from the following example

Example 3.1. Let

L= ) 2 3.15
{98—1—%2”—%%, neven ( )

08 4 WHnt3 - podq 28 nodd
Hn = 5 neven.

Then any Taylor-Dirichlet series f(z) as in (1.3), satisfying (3.1), has at least one singularity
in every interval of length exceeding 2w on the abscissa of convergence.
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Proof : Consider the real positive sequence A={a, }>2, where a,, = 98 + n, and note that
A € L(1,1). Rewrite it as ;" {an21x} g U {@nzin fitpin

For any fixed n € NT and all & = 0,1,2,...,n, define by2,x = ap24y, and for all j =
n+1,n+2,...,2n, define by24; = ay24, + 1/n. Then let B={b,}{° and note that these terms
are not distinct. Furthermore, the non-coinciding terms come very close to each other. We
claim that B is an A, g sequence. Indeed, for £ = 0,1,2,...,n one gets

N

|bp2sk — Gnoqr] = |k —n| < (98 +n* + k:)% = (p241)2- (3.16)

Similarly for j = n+ 1,n+2,...,2n. Thus (3.4) is satisfied for &« = 1/2. Also note that for
any k=0,1,2,...,nand any j =n+1,n+2,...,2n, one has

1 1 1
|brzyk — bn2yj| = ~> max{e M2l eIty (3.17)

In other words these non-coinciding terms of B satisfy condition (i7) of Definition (3.4) for
= 1/4. From these two relations it follows that B € A, g for a« =1/2 and g = 1/4.

By simple calculations we find that the (A, u) reordering of B in (3.15) is valid. Theorem
3.3 completes the proof.

When D = 0 the assumption that the A, are real can be dropped. In fact, the set of
arguments of the \, need not have a finite number of cluster points in the interval (=%, Z).

T 202
We prove the following result:

Theorem 3.4. Let A € L(c,0) be a complex sequence so that sup |arga,| <7 < m/2. Let B €
A, 5 and (A, p) its reordering. Then any Taylor-Dirichlet series f(z) as in (1.3), satisfying
(3.3), has its boundary of convergence as a natural boundary.

We note that other results concerning the location of singularities of Taylor-Dirichlet series

have been derived by Blambert, Parvatham, and Berland (see [9], [10], [11]). A key role in their
work is played by the set of zeros of the polynomials p,, (). In our case this has been avoided.
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4 On the excess of complex exponential systems in L*(—a, a).
Proof of the results.

This section is mainly devoted to the proof of Theorem 2.10. But first, we prove its Corollary
2.1 and then present some further results.

Proof of Corollary 2.1 : We consider the case when ¢ = 5. For other values of ¢ the proof is
similar.

Change the five terms p,, for —2 < n < 2 into five zeros. By Theorem (2.5) the ezcess is not
altered. Next, for every n so that [n| > 1, keep the terms ps, fixed and shift vertically the terms
wsnip for € {—2,—1,1,2}, so that their new imaginary part is equal to Sus, = alog|5n.
Observe that this vertical shifting is bounded, thus from [34] (Th. 17) the excess does not
change. Write these new terms as {5n + 3 +ialog|dn| : B € {=2,—-1,0,1,2}},>1. We then
proceed with a partition as in relations (2.3) and (2.4), that is, for |n| > 1 keep 5n + ia log |57/
fixed and pair 5n — 2 + ialog |5n| with 5n + 2 + ialog [5n| and 5n — 1 + ialog |5n| with
5n+ 1+ ialog|5n|. Then carry out the same shifting as in Example 2.1 to get 5n + i log |5n|
with multiplicity 5. By Theorem 2.10 the result is valid.

Similarly one proves Corollary 2.2.

4.1 Some additional results.

When p = Z the set of integers, a more general result holds, when compared to Theorem 2.10.
Although this result might be known to some people, nevertheless, since we could not trace it
in the literature we state it here.

Theorem 4.1. Let Pz be a partition for some 6 > 0 fized. Let {a,} be a bounded two-sided
sequence of complex numbers and define v as in (2.2). Then E(Z;p,7) = E(v;p,m) for all
p € (1,00).

Remark 4.1. The theorem fails for L'(—m,m) and C|—m,7].

Two further results will be proved where the condition sup [Su,| < oo is once more not
essential. The first one generalizes the following recent result from [36]:

Theorem 4.2. Let {1,}>, be a sequence satisfying |y, —n| < ¢ for some ¢ > 0. Let \g = po,
A =fn+a, A p=p_n—0 n>0, (4.1)

where a > 0 and 5> 0. Then E(X\;2,7) < E(u;2,m).

The authors of [36] asked whether their result remains true, assuming that |Su,| < ¢ and
|t + pi—n| < 2¢, instead of |, —n| < c. The answer is affirmative, and in fact the assumption
that the imaginary parts are bounded is not required. Our result is as follows:

Theorem 4.3. Let p € B and assume that for some ¢ > 0 the condition |, + p_n| < c is
satisfied for every m > 1. Assume also the condition |Ru,| > (Su,)? holds for |n| > 1, and
suppose that E(u;2,a) is finite for some a > 0. Let Ay = 1o,

An = fn + O, A :,u,n—ﬂ, n>0 (42>

where a« > 0 and § > 0. Then E(X;2,a) < E(p;2,a).
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We note that another generalization of Theorem 4.2 with unbounded imaginary parts, is
due to A. Boivin and H. Zhong [14].

If we now combine Theorems 2.10 and 4.3, another more interesting result is obtained. The
constants o and  may be replaced by a bounded two-sided real sequence {¢,}’ subject to the
condition

€op—1 + €2y = 51 Z 0, n Z 1, €on+1 + €9, = 52 Z O, n S —1. (43)

Theorem 4.4. Let ;v as in Theorem 4.3, and assume that ;o € B’ as well. Let P, s be a partition
with the set {p,} finite, and let {e,}' be a bounded two-sided real sequence satisfying (4.3). Then
construct the sequence

V= {'Vn + 6271—1}(1)0 U {)‘n + 6271}(1)0 U {%L - 62n+1}:(1>o U {)‘n - 6271}:<1>O U {pn}'

Assuming that E(u;2,a) is finite for some a > 0, the relation E(v;2,a) < E(u;2,a) holds.

Proof: Asusual write u = {7, }'U{\,}'U{pn}. Then construct a new sequence 7 = {7, }'U{p, }

so that
€2n—1 — €2 —\ €2n—1 — €2
Ton = Ap —

e S N |
2 5 "=

Ton—-1 = Tn +

Y

€on4+1 — €2n

€on+1 — €2n

5 ; <
Since {e,}’ is bounded, the fractions are uniformly bounded also. It follows from Theorem 2.10
that E(7;2,a) = E(u;2,a).

Next, observe that one obtains v by shifting to the right (left) all the terms of {7,}’ with
positive (negative) index-n, by the same amount ¢; (d2). This holds since v, + €2,-1 = Top_1 +
01/2 and A\, + €2, = T, + 1/2 for n > 1. Similarly 7, — €ap41 = Tonp1 — 92/2 and A, — €9, =
Ton — 09/2 for n < —1. Then from Theorem 4.3 one has that E(v;2,a) < FE(7;2,a). The
relation E(v;2,a) < E(p;2,a) is now obvious. <

As a special case of Theorem 4.4, let €5,_1 = d; and €5, = 0. Then only half of the terms
are shifted and the inequality still holds. We also note that similar results with inequalities,
but with real sequences, are found in [39] (Th. 1).

The rest of this section is divided into three subsections. Our main result, Theorem 2.10,
is proved in subsection 4.3. For its proof a crucial role is played by a meromomorphic function
whose properties are discussed in subsection 4.2. In subsection 4.3 we also prove Theorem 4.1,
and Theorem 4.3 is proved in subsection 4.4.

4.2 Constructing a meromorphic function, that replaces frequen-
cies.

Throughout this subsection, we assume that p € B' with Su,, > 0 for all n € Z. For 6 > 0
fixed, P, s is the partition of p, p = {7} U{A\,} U{pn}. For the two-sided bounded sequence
of complex numbers {a,}" we construct the sequence v as in (2.2).

A well known theorem of Plancherel-Polya [44] (Theorem 16, p. 79) states that if a function
F(z) of exponential type belongs to LF(—00,00), then F(z —it) € LP(—o0,00) for any ¢t € R.
Motivated by this, we define for every t € (0, 00) the function

'(1_wia > (1_)\ia )em+ﬁ
n n n n ‘ ‘ ) 4.4
H 1 — z=it 1 — z=it ez;;tJrz;;t ( )
Tn An
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Standard calculations show that (4.4) defines a meromorphic function of z in the complex plane
with poles at {7, + it} U{\, + it}. Note also that since the exponent of convergence for y is 1
and {a,} is bounded, then the series

Y (et

Tn Tn + ap >\n /\n — QGp
converges to some w € C. Thus, multiplication of e** with the function in (4.4) for fixed
t € (0,00) yields the meromorphic function of z

(1 o a ) (1 o ia, ) it it
H 7n+ n An—an ew"' ol (4'5>
z—1t z—1t
(1-=2) (1-=)

We denote this function by M(z,t) and remark that for some ¢t = ty, M(z,%) has a certain
upper bound on the real line (see Prop. 4.1) which is very crucial for proving Theorem 2.10.
The key to all these is the following:

Lemma 4.1. There exists a positive to so that for anyn € Z '\ {0} and all x € R one has

(Yo + an — 2)(An — an — @)

<1. (4.6)

Proof: When the {a/,} are imaginary numbers, the proof is rather easy. Thus, we will prove
it for the real case, and as a result the complex case follows as well. Let

() = |(yn —x+it) My — 2z +it)|?,  (II) = |(n + an — 2) (A — an — 2)|°

Denote the quantity (I) — (I1) by gn(x,t). Observe that relation (4.6) is proved as soon as
we show that there is some ¢ = ¢y > 0, independent of n and z, so that g,(x,ty) > 0 for any
n € Z\ {0} and all z € R.

One has
(1) = [(Ryn—2)* + (S + 7[R — 2)" + (SXn +1)7]
= Ry, — )R\ — 2)* + (S + )2 (S, + 1)
+ (S + )’ RA — 2)° + (S + 1) (R, — 2)°
= (R —2)? (RN — ) + wi(t) + 7 (8) (R — 2)?
+ onlt )(Wn — )%, (4.7)
where
wWn(t) = (S +1)2(SA + )2, Tu(t) = (SA, +1)2, 00(t) = (Syn +1)% (4.8)
Similarly
(I1) = [(Ryn — 2 +an)” + (31)7 (RN — 2 — an)® + (SA)?]
= (R, — 2)* + 20,(RY, — 2) + po][(RN, — 2)? — 20, (RN, — 7) + ¢,)]
where

n = ai + (g)‘n)Qa Pn = a'i + (g')/n)? (49)

If we expand the terms we get:

(I1) = Ry, — x)Z(%An - x)g —2a,(RA\, — 2) (R, — x)z + @n(Ryn — f)g

+ 2a,(RY, — ) (RN, — )% — 4a (R, — 2) (RN, — )

+ 200q0(Ryn — ) + pu(RA, — 2)? — 20,0 (RN, — 2) + D

= Ry, — ﬂ5)2(%)‘71 - $)2 + @ (R — w)Q + P (RN, — :E)2

+ SRy — ) (RN — @) + 2000, (R — ) — 20,00 (RN, — )

+ Dot (4.10)
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where
En = 20, (RN, — Ry,) — 4a’.

Since a, = O(1) and |\, —7,| = O(1) then the sup |¢,| < co. From now on we let ¢ > sup |&,]|.
Since g, (z,t) = (I) — (II) then from (4.7) and (4.10) one gets
gn(@,t) = [1a(t) = gu] Ry — 2)° + [00(t) — pul (RA, — 2)* + wi(t) + Tu(@), (4.11)
where
Y.(z) = =& Ry — 2) (RN, — ) — 20400, (R — @) + 20,00 (RN, — T) — DG (4.12)
Observe now that since {a,}’ is bounded, then for large ¢ fixed we have
Ta(t) = @ = 12+ 2SN, 0p(t) — pp = 12 + 2ty (4.13)

Since t > sup |, |, both quantities above are bigger than the sup |,|, and this implies that the
coefficient of z? in (4.11) is positive. Thus for ¢ fixed, large enough, g,(z,t) has a minimum.
Our goal is to prove that for ¢ fixed g,(z,t) is non-negative there, thus everywhere else as well.
This suffices to complete the proof.

We differentiate g,,(x,t) with respect to x to get

g, t) = 2(x — Ry,) (£ + 2tSN,) + 2(z — RN\, (£ + 2t3,,)
- §n<x - 8:E%z) - §n<x - %)‘n) + 2an,qn — 20,y
= 2(x — Ry)[t? + 2SN, — &) + 2(x — RN (12 + 263y, — &)
+ 20, — 20,Dp. (4.14)

It follows that ¢/,(x,t) = 0 when

an(Pn — Gn) L R 2 — & + 26N\,
xXr
12 — 2&, + 2t3y, + 2t 2 — &+t + SN,
A 2 — 2t
A Sn #2657 (4.15)
2 2 &+, + SN,

Consider now the first fraction. From (4.9) one has

an (P — ) (S — SA) (S + SN)

12 — 26, + 213y, + 2t3N, 262 — 28, + 2t(SYn + SA,)

Since a, = O(1), |7 — A\u| = O(1) and &, = O(1), it follows that for large ¢ the fraction is
very small. Call this fixed ¢ > 0, to. Since ty > sup ||, then &, has no effect in the other two
fractions of (4.15). All these imply that ¢/ (x,ty) takes its minimum value at = xy where

Cx Cx

This implies that

Ry, — x ~ 4.17
o0 ( )(m+%%+%M (4.17)
and R, m 2%
- n t n
R, — 29 ~ i 0+ 29 . (4.18)
to + S + SAn
If &y, < tp and S\, < tp, then one gets
Cx Cx
1 < to + 25, 7 1 < to + 28N, <3
37 to+ Sy + SN, T 37 to+ S+ SN, T
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If 37, > to then the relation % < S\, < 287, holds since {7, — A}’ is bounded and ¢y is
large. Similarly if S\, > ty. Then one gets

- < <3, -< < 5.

Either way, substitution in (4.17) and (4.18) yields that |Rv, — zo| < 36 and |R\, — zo| < 36
since |y, — Ap| < 0. Then from (4.9) and the boundedness of {a,}’ we deduce that there is
some positive constant x so that T, (x) in (4.12) satisfies

1T (w0)| < &+ K(SYn)? + £(SAL)? + (S70)* (S (4.19)
We now go back to relation (4.11). Observe that
gn (T, to) = wn(to) + Tn(o), (4.20)
and from (4.8) one has
wn(to) > (I7)%(SAn)? + g + t5(Sm)? + (SN2 (4.21)

Since t is large, it follows from (4.19) and (4.21) that w,,(to) + Lpn(xe) > 0. Thus g, (xq,to) > 0
and this completes the proof.

Proposition 4.1. There exist constants A > 0, C' > 0 so that Vx € R the meromorphic
function M(z,to) in (4.5) where to is as in Lemma 4.1, satisfies

|M (z,t)] < AeC0. (4.22)
Proof: Let us write |M(z,1)| as
/
YnAn g itg (Y + ap — ) (A — ap — T)
Mz, to)| = et , 28 4.23
| <m 0)| H (’771 + an)()‘n 4 an)e’y (’Yn — T+ ZtO)(An — T+ ”0) ( )

Since {a,}’ is bounded, |y, — A\,| < 4, and the exponent of convergence for {v,}’ and {\,}
is less than or equal to 1, then one deduces that the series

' aZ + an(Yn — An)
2 (

Yn + an)()‘n - an)

converges absolutely. It follows that the infinite product

!/

11

converges and is bounded above by some positive A. Also

! it it
I1 ‘4%%)
for some C' > 0 since by definition the series converges. Applying Lemma 4.1 gives the upper
bound Ae“® for the product in (4.23).

TnAn
('YH + an)(An — an)

SAn

/
itg | itg ! Syn,
= | | 6§R<’7n+>\n) = etoz \’Yn‘2+‘)\n\2 = eCtO
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4.3 Proof of Theorems 2.10 and 4.1.

Proof of Theorem 2.10: By Theorem 2.11, in order to derive equivalent systems it suffices to
prove that incompleteness of anyone of the two systems implies incompleteness of the other. To
achieve this, we need to have symmetric conditions with respect to their associated sequences,
and in our case this holds since the terms a, of the sequence causing the perturbations have
no pre — assigned argument. We compare this with Theorem 4.3 where due to the lack of such
conditions (o and § are positive), we cannot deduce equivalence.

We assume that £, is incomplete. This implies the existence of a non-trivial entire function
F' of exponential type o < a, which vanishes on some sequence 7 D p with the properties:
(i) F € L*(—o0,00) and so does F'(z —it) for all ¢t € R.

= [ f(t)edt for some f € L*(—a,a).

(iii) The conjugate diagram of F' is a vertical line segment of length 20, thus its indicator
function satisfies hp(7w/2) + hp(—7/2) = 20.
(iv) |°T ] < 0.
ny(rg) _

(v) hmrﬁoo = lim, o = (r 9 = ¢ /7 where n, (r, ¢) and n_(r, ¢) are the numbers of zeros
of F in the sectors {z : |z| < r, \arg z| < ¢} and {z:|z| <7, |7 —argz| < ¢} respectively, for
¢ € (0,m).

Our goal is to show that there is some function G vanishing on v with similar properties as
F. This will prove incompleteness of E,,.

For some d € C we can write F' as

[e.9]

F(z) = e [ (1 - win) e I (1 X i>kn e (4.24)

n=-—00 Fn

where k,, is the multiplicity of u, and {w,} = 7\ pu. Note that the set {w,} might be infinite,
finite or the empty set. We can also assume that 7, > 0 for all n € Z. For if {w,} C 7 and
Sw, < 0, then multiplication of F' by a Blaschke product which vanishes on {@, } and has poles
on {w,} yields a function in L?*(—o0o,c0) whose zeros are all in the upper half-plane.

Then proceed with the P, s partition and construct v as in (2.2). Let M(z,0) be the
meromorphic function as in (4.5) for ¢ = 0. Consider then ¢; > 0 as in Lemma 4.1 and denote
by G(z) the function e~ F(2)M(z,0). Then based on the partition of ;1 one expresses G(z)

as
!/
d(z~ito) | | 12 ) e | | 1~ 1-_~ L4z
‘ ( wn)e ( /yn_l'an )\n_an “ ’

where the {p,} terms have been included in {w,}.

Note that p is replaced by v and this due to the bounded sequence {a,}’. It follows that G
is of exponential type as well. For the same reason properties (iv) and (v) do not change which
implies the same for (iii). Then we can assume, without loss of generality, that hg(+7/2) = 0.
To complete the proof, we have to show that G € L*(—o0, 00).

From (4.24) and the partition of y, we may write d((ﬁ—ﬁg)) as

. it / _ 9 — 9 T—1 T —it
H(l—x_lto)em;;o H (1_£E zt()) <1_x Zto)@wntoexno,

Then one gets

— - n wn m o An |,
‘F(I‘ _ Zt(]) H (1 . % € H (1 B r—ito) (1 . x;ito) e
Tn n

24



But the J]" function is the meromorphic function M (z, ;). Thus, from Proposition 4.1 there
are positive constants A and C' so that

G(x) to
e = T

for every z € R. Since Sw,, > 0 and ¢y > 0, we also have |w,, — x| < |w,, — = + ity|. Combining

this with the convergence of the series > lc‘z}wﬁ, we deduce that

|G(z)] < o(to)|F(x —ity)] VzeR, (4.25)

where ¢ depends only on ty. This relation implies that G' € L?(—o0,00). Then by the Paley-
Wiener theorem, G admits the integral representation

G(z) = /_a g(t)e™dt, g€ L*(—a,a). (4.26)

a

Wy, — T ity

e wn

)

w, — T + 1ty

Since G vanishes on v, this implies that F, in incomplete in L?(—a,a). $

Proof of Theorem 4.1: Let y = Z and Pz its partition with the term 0 € {p,}. Let v be
the new sequence and v/ = v\ {0}. Since {e™}>_ is eract in L*(—n, ), then from Theorem
2.10 one has E(v;2,7) = 0 as well. But the ezcess is a decreasing function of p and changes at
most by 1 (see [44] p. 98 problems 1, 2). Thus
(A) E(v;p,m) is either 0 or 1 for any p € (1,2).
(B) E(v;p, ) is either 0 or -1 for any p € (2,00).
We will show that in both cases FE, is exact.

Case 1 < p < 2: Consider the function F(z) = %272 Then
F(z) € LP(—00,00) for all p > 1 and vanishes exactly on Z \ {0}. Let M(z,0) be the usual
meromorphic function and define G(z) as before. Then G(z) is an entire function of exponential
type not exceeding 7, and vanishes exactly on /. As in (4.25) one has that G(z) € LP(—00, )
for all p > 1. Consider now any 1 < py < 2. Then, from [13] (Th. 6.4) G admits the integral
representation

G(z) = / g(t)edt, ge L®(—a,a), py +q5" =1 (4.27)

This implies that E,, is incomplete in LP°(—m,m), thus E(v;po,m) < —1. It follows that
E(v;po,m) < 0. Combining this with (A), shows that E(v;pg, ) = 0.

Case 2 <p<oo: Assume F(v;py,m) = —1 for some py € (2,00). Thus, there exists a
non-trivial f € L®(—m,7), py* + ¢, = 1, so that

H(z) = /_7r f(t)edt

is an entire function which vanishes exactly on v. The latter holds since if H(u) = 0 for
some u ¢ v, then F, U {e"} is incomplete contradicting the fact that F(v;py, 7) = —1. Since
¢ € (1,2), from [13] (Th. 6.5) one has that H is of exponential type m and H € LP°(—00, 00).
Thus H(z) = ke*2]],, ¢, (1— z/vy)evn for some constants k, ¢ € C.

We then consider the usual meromorphic function M (z,0) but this time with {v, + it} as
its poles and Z as its zeros. Define analogously G(z) = H(z)M(z,0). Then G is an entire
function of exponential type, vanishes exactly on Z, and as in (4.25) G(z) € LP°(—o00, 00). But
this implies that sinmx € LP°(—o0, 00) as well, which is false. Therefore E(v;py, ) # —1, thus
E, is exact. $

The theorem fails for L'(—m, ) and C[—m,7]: Consider the system
E, = {eint}(ioo U {eit(n-&—ih(—l)”)}clx;’ h> 07

and compare it with the system {e”}> _ which is ezact for all 1 < p < oo and whose excess
equals -1 in C[—7, 7]. From what we have already proved, it follows that the excess is unaltered
for 1 < p < oco. However, in [40] A. Sedletskii proved that the excess of F, in L'(—m,7) is 1,
and in the space C|—m, 7] it is 0.

25



4.4 Proof of Theorem 4.3.

We will follow very closely the steps of the proof of Theorem 4.2, as given by its authors.
First, we need to make the following simplifications to enable us prove the result:

(a) By Theorem 2.12 replacing the sequence pu = {u,} with {u, + d} for any d € R, does not
change the completeness properties of the new system. Thus we replace 8 with 0 and o with
ag = a + . However, in what follows we treat o as a variable where 0 < a < «y.

(b) Since Ry, — 0o as n — oo we assume that Ry, > 1 for all n > 1. Then the condition
(Rpen) > (Spp)? yields (Run)? > (Spp)? for all n > 1 as well.

(¢) Since F(u;2,a) is finite, we can assume that £, is an ezact system in L?*(—a,a) by adding
or removing a finite number of terms. By Theorem (2.5), we can also assume that pu, # 0 for
all n € N. We then claim that for a = 0 the entire function

F(za) =ﬁ (1— unia) (1‘ u:)

belongs to L?*(—o0, c0). This would not have been true if we had retained the factor correspond-
ing to po. We remark that the convergence of the product is justified since |p, + p_,| = O(1).

Let us justify the claim. Since F, is ezact, then

Jim T (1 - M—Zn) (4.28)

lpn|<r

converges uniformly on compact sets of C and % € L*(—o00,00) for any pu, (see [29]). Tt

is also known that the lim,_, ., Z‘ | < ui exists and is finite, say 7. We also note that due

to the condition |, + pt_,| = O(1), one deduces that the limy o S, (t + u+n> exists.

Furthermore, by simple calculations one deduces that the relation 7 = lim, Z| i L —

<7 bn
ﬁ +> 7, (;%n + ;ﬁ) is valid. Thus, the product in (4.28) is equal to

2R _i Min
e rlglolo H (1 ) : (4.29)

lin|<r fin

and also equal to

z - z . z z
e ™1 ——|ero 1——)ewn | 1— er—n 4.30
(-5) o (=)o (-5 (130

Finally, the relation 7 = i +> (;%n + f) shows that our claim holds.

Theorem 4.3 follows as soon as we show that F'(z, ) € L?(—00,00) as well. In other words,
the integral f_RR |F(x, ) |*dx denoted by S(R, ap) must converge to a real number as R — oo.
Thus we decompose S(R, ap) into the form

0 ag+tce+1 R
S(R, ap) = / |F(z, ozo)|2dx + / |F(z, ozo)|2dx + / |F(z, ozo)|2dw,
0 o

—R o+c+1

and observe that the middle integral is finite and independent of R. In order to complete the
proof we have to show that the first and third integrals denoted by I(R, ) and 111(R, cy)
respectively, converge to a real number as R +— oo. Comparison is made with respect to (R, 0)
and IT1(R,0) which converge since F(z,0) € L?*(—o00,00). As already mentioned we treat a
as a variable, with « € [0, a).
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We give the proof for I11(R, ag). After the substitution u = x — «, we have

R—aq © 2

2
[II(R,a) = o tre ‘1—“+O‘ du
el |t fin
Roa 2 —ul? —u—al?
_ / 1™ ‘“‘” du. (4.31)
e+l o1 Hen Hn +

Observe that )
(Rp—p — u — @)* + (Sp_p)?

T (Ru )+ (Sp)?
Denote the whole fraction by L,(u,«) and the denominator by U, («). For fixed u > ¢ + 1,
differentiating L, (u, ) with respect to a gives

Py — U — @
ftn + 00

Un(@) Ly, (u, @) = =2(Rp—yy — u = @) [(Rptn + @) + (Sh—n)?]
— (R — 1 — @) + (Sp—n)’ | (Rptn + @) = =2(Rpp— — u — @)[(Rpt + @)
+ (Spn)’ + R — 1 — @) Rppn + )] = 2(Sp)* (Rt + @)
< 2Ry — u— )[Rt + @) (Rptn + Ry — 1) + (Span)?). (4.32)

We show now that (4.32) is negative. Since |[Ru,+Ru—n| < cand u > c¢+1 then (Ru,+a)(Rpn+
Rp—n — u) < —Rpp. Therefore (R, + ) (Rivn + Rp—y, — ) + (Spn)? < =Ry + (Sun)? <0,
since Ry, > (Spn)?. But Rp_y,, — u — a < 0 as well since v > 0. Thus (4.32) is negative and
the same is true for L/ (u,«). This implies that for fixed u > ¢+ 1, L,(u,a) is a decreasing
function of a. Thus L, (u,ap) < L,(u,0) for all u > ¢+ 1. It then follows that ITI(R, ap)

converges to a real number as R — oo.

Similarly we prove it for I(R, ap) using the conditions z < 0 and (Ru,,)* > (Su,)?
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5 On a theorem of Norman Levinson and a variation of
The Fabry Gap Theorem. Proof of the results.

This section is devoted to the proofs of Theorems 3.1, 3.2, 3.3 and 3.4. The first two are given
in subsection 5.3, and the others follow in subsection 5.4. But first, we state and prove some
auxiliary results. One of them, Lemma 5.4, is very crucial and its proof is given separately in
subsection 5.2.

5.1 Some auxiliary results

Lemma 5.1. Let A € L(c,D) and B € A, 3. Then

lim ns(r)

r—00 r

=D (5.1)
where np(r) =3, <, 1 is the counting function of B.

Proof : Assume that this is not true. Then there exists some ¢ > 0 and a sequence of
positive numbers {7 }22, so that |ng(ry) — Dry| > ery. Assume np(ry) > (D + €)ry (similarly
for np(ry) < (D — €)ry), that is, Z|bj|§7"k 1 > (D + €)ry. On the other hand, j < (D + ¢€)|b;|
for j > jo since n/|b,| — D. Thus, if |b;| < 1y then j < (D + €)1y, in other words, one has
Z‘bﬂ <r L < (D + €)rg. Therefore we reach a contradiction. <

Let I, be as in (3.7). One deduces that if j € ', then I'; = I',,. We also define m(n) to be
the number of terms of I';, and we shall refer to m(n) as the pseudo-multiplicity of b,. In the
lemma that follows, we get an upper bound for m(n) with respect to b,,. This bound is used in
the proof of Theorem 3.1.

Lemma 5.2. There exist positive constants 1 and x so that for any n one has m(n) < la,|* <
Xbn |

Proof : First note that the relation |a,|/2 < |b,| < 2|a,| holds for all n > ng since |a, —b,| <
|a,|*. Consider now any j € I';,. Then

laj| = [(a; = b;) + (bj = bn) + bn| < |a;|* 4 [bn]
< @ + 2|an|.
It follows that |a;| < 4|a,|. Then one also gets
|an —a;| = |(an = bn) 4 (bn — b)) 4 (bj — a;)[ < |an|™ + |a;|*
< 5la,|®.
Finally, the spacing condition |a,, — ay| > ¢|n — k| yields that for any j € T, one has

clj —n| < 5la,|®. (5.2)

2max{|j —n|:j € I',}. From (5.2) it

Since m(n) is the number of terms of T',,, then m(n) <
< 9la,|*. Finally, the relation |a,| < 2|b,|

follows that there exists a positive ¢ so that m(n)
yields a positive x so that m(n) < x|b,|*. &

Similarly, we get an upper bound for the multiplicity u, of the point A, in the (A, )
reordering of B. This bound is used in the proof of the variation of the Fabry Gap Theorem.

Lemma 5.3. For any n one has p, < x|An|®.
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Proof : Let \, = b for some k € N*. From the previous lemma we know that m(k) <
X|bx|* for some y > 0. But the pseudo-multiplicity m(k) of by is the multiplicity pu, of A,.
Thus, one obtains the relation p, < x|A\,|*. ¢

We introduce now the meromorphic function M (z) through which we replace an L(c, D)
sequence by a multiplicity sequence.

Given sequences A={a,} and B={b,}, where A € L(c,D) and B € A, 3, we denote by

M (z) the infinite product
o (12
b3
M(Z)ZH<1_i). (5.3)

Standard calculations show that M(z) converges absolutely and uniformly on compact subsets
of C\{+a,}. Thus it defines a meromorphic function in the complex plane. The possibility of
several terms of {£B} to coincide with a particular a; is not excluded. Thus, this a; is not a
pole. However, it makes no harm to keep M (z) in the form as in (5.3).

Our goal is to find upper and lower bounds of |M(z)| outside disks whose centers are the
elements of {£A} and {£B} respectively. This is done in the following lemma which is very
crucial for proving Theorems 3.1 and 3.2. The proof of this lemma will occupy subsection 5.2.

Lemma 5.4. Let M(z) be the meromorphic function as in (5.3) and let Sy, Sa be the two
systems defined in (3.5) and (3.6), respectively. Then for every e > 0 as r — oo one has

|M(re®)| = O(e") whenever re® ¢ Sy, (5.4)
1 er 0
e O(e") whenever re & Ss. (5.5)

Another important lemma, cited already in §3, is the following

Lemma 5.5. Let A € L(c,D) be a real positive sequence and let B € A, 5 so that B={b,} is
real positive too, with (X, ) its reordering. Then the regions of convergence of the three series
f, 5, [ as defined in (1.3) and (3.14) are the same. For any point z inside the open convex
region, the three series converge absolutely. Similarly, if instead of a real sequence A € L(c, D)
we have a complex sequence A € L(c,0).

Proof : We have to show that (3.13) is satisfied. First, note that from Lemma 5.3 one
deduces that the right limit of (3.13) is valid. Thus, it remains to verify the left limit.
We claim that
An| > |an|/2, n>1. (5.6)
This implies that

logn logn n |a,| _logn n 1
= < - —0, n— oo, (5.7)
| Anl n o fan| Al nla,|2

since n/|a,| — D, and we are done.

Let us justify our claim. It is obvious that |\;| > |a;|/2. Assume that |[A\z| > |ax|/2 for
some k. We will prove that [Agi1| > |agy1]/2 as well.

Note that there is at least one b, so that A\gyq1 = b,. If [Apy1] < |ags1]/2 then |a,|/2 <
b = |Akt1] < |aks1]|/2. Since |a,|/2 < |agi1|, this implies that n < k since |a,| < |a,41| for
all n € N, therefore A\gy1 € {bn}¥,_;. This means that {(An, i) }o—; # {bm}*,_;, thus there
is some b; € {(Am, ) }F,_; with j >k + 1. It follows that

m=1

a a; a
Bl el 2 el 2 1y 2 105 2]

that is, |ags1| > |ags1| which is false. Thus [Agt1| > |ags1]/2 and this completes the proof.

(5.8)

The last lemma in this section is needed for Theorem 3.4.
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Lemma 5.6. Let A € L(c,0) be a complex sequence and let B € A, g with (A, p) its reordering.
If the series f*(z) in (1.3) converges absolutely at zy, then it converges absolutely for any point
z which lies inside the region

S(z — 1
0= {z: 3G =20l R(z — 2) > 0}, (5.9)
where T = sup | arg \,,|.

Proof : If z € Q then one has — 220 < (2 — z) < w, and this implies that

tanT t

_Tt(:m_;fl) <S(z—2) < Tt(:n_;:‘), 0, = arg A, since |tan6,| < tan7 for all n € N. Thus, we have
—W <S(z—2) < W and this implies that =R\, R(z — z0) + SN, (2 — 20) <0

for all n € N. Therefore, if 2 € Q then |A,e **| < |A,e **| for all n € N and the result
follows. <

5.2 On the lower and upper bounds of the infinite product M(z)

First, we need to factorize the meromorphic function M(z) into a product of six factors. This
factorization is based on an involved partitioning and counting of the terms {a,, b,} in subdo-
mains of C.

Let € > 0 fixed. Since |a, — b,| < |an|®, n/|a,| — D and |a,|*' — 0, then there exists a
positive integer n(e) so that for all n > n(e) we have
|an]

1—e§m§1+e, D—e<

(5.10)

Define the function
E(rye) =inf{n : |a,| > (1 +€)r}, (5.11)

in variable r. For € > 0 fixed, £(r, €) is an increasing function of r. Fix ry large enough so that
&(ro,€) > n(e). Then if p > 1o one has £(p,€) > &(rg,€) > n(e). Recall also that n/|a,| — D

implies that n4(r)/r — D where n(r) denotes as usual the counting function of the sequence
T

A. Then for any r > 71(¢) = {2 one has

(D —€e)r <na(r) < (D +e)r, (5.12)
(D—e)(1+e)r<na((l+er)<(D+e)(l+e)r, (5.13)
(D—e)1—e)r<na((L—¢)r) < (D+e)(1l—e)r (5.14)

For sufficiently large z, |z| > r(€), break up sequences A and B into five disjoint sets which
depend simultaneously on € and z. This partition is as follows:

La(e, z) = {(an, bn) : n < n(e)},
Ly(e, z) = {(an, bn) : |an] < (1 = €)[2[} \ Ln,
Ly(e, z) = {(an, bn) : |an — 2| < 2|an|*} U{(an, bp) : |an + 2| < 2|an|"},
Ly(e, z) = {(an, bn) - (1 = €)|2| < an| < (1+€)[z]}\ L,
Ls(e, z) = {(an, bn) : |an| = (1 4 €)|[}.
We note that for |z| sufficiently large, L3 is a proper subset of the annulus A.(z) = {w : (1 —

€)|z] < |w| < (14¢€)|z|}. The reason is as follows: let a,, € Lz and assume that |a, — 2| < 2|a,|*
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(similarly if |a,, + z| < 2|a,|*). This implies that |a,| < 2|z| thus |a, — 2| < 2|z|* < €|z]| for |z]
sufficiently large. Therefore a,, € A.(z) and thus Ly is well defined.

We shall also denote by Lg(€, z) the set
Ly(e,2) U Ls(€, 2) U Ly(e, 2).

One should note that the set which makes the crucial difference is the set L. It allows to make
more precise counting for the terms of the factor P3(z), defined in (5.17).

Define pointwise, the six product factors

M) = ] (1:5)_) i=1,5, (5.15)

Ui = ] (Z—%) , (5.16)

b2 — 2* ,
P(z)= ] — i=2,3,4, (5.17)
1— 22 1— 2
b2 b2
M(z) = . 5
o= I (=) 0 (=)
(an, bn)ELl ap (an7 bn)GLEv an (

2
1_ 2
b2
anybn)eLG CL%
2 — 2z

= MM ] (Z—;) 11 (22_;)

(anvbn)ELﬁ " (anybn)eLG

= Mi(2)M5(2)U(2)Py(z)P3(2) Ps(2). (5.18)

and note that

We remark that (5.18) is the desired factorization of M (z) into a product of six factors.

In order to prove Lemma 5.4, we will obtain upper and lower bounds for each one of these
six functions, outside the systems S; and S, respectively as defined in (3.5) and (3.6). First we
prove the following result:

Lemma 5.7. Let A € L(c,D) and B € A, 3. Let € > 0 fized and consider the function &(r, €)
as in (5.11). Then for all 0 € [0, 27| we have
,,,eiﬁ
=5
(E) o

1 =
i 1o 11
Proof : Since |a,|*! + 0 and |b, — a,| < |a,|®, then for some 7’ fixed we have

n=&(r,e)

The limit is uniform with respect to 0.

|b,,| > @ and |an|0‘_1 < i,

for every n > £(r’,€). Observe that for any r we get

for every n > &(r,€). Then for any r > r’ the previous inequalities yield
Yy y

6 6
e by — an 2r(1+€)|an|*2 _ 2la >t 1
TR R | < < <, 5.20
'<1_%f)‘ Blla,—re? = ¢ = ¢ ~2 00
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for every n > £(r,¢). Applying the inequality |log(1 + w)| < %, which holds when |w| <3,

together with (3.11) yields for any r > 7’ the

following :

60
_re’ 3r(1 . a—2
log ( b ) ‘ < 3+ Ola" (5.21)
1 re? ¢
1_7’67;9 1_7’67;9
for every n > £(r,€). Then, since log (1:’"9) ' < |log (171"9) , one deduces
0 0
00 1 —re 1 00 1 — re?
bn bn
;logH <1_ﬂ) S;Z log 1_r6w>‘
n=¢§(r) an n=¢§(r) an
L& 3t o™ 3040 &,
< = - a2, 5.2
< Lyl 25 (52

r
n=¢(r) n=¢(r)

Since n/|a,| — D asn — 0o, one gets Y > | |a,|*? < oo, thus the last term in (5.22) converges
to 0 as r — oo. This implies that the limit in equation (5.19) is valid and one can also see that
it is independent of 6. <

Proof of Lemma 5.4. Let 0 < € < 1/2 fixed. Recall that the factorization of M(z) into the
product of six factors holds for all z : |z| > r(¢) for some . We will get upper and lower
bounds for each one of them outside the systems S; and S, respectively. However, we remark
that these systems are crucial only for the factor P3(z), not for the other ones.

Estimates for M;(2)

Since the number of terms in L; is independend of z it follows that
=0.
a%

lim
|z]—o0 |Z|

Thus there exists an 79 > r; such that

e~ < My (2)] < el Yz 2] > (5.23)
Estimates for M5(2)
From Lemma (5.7) we deduce that there exists an r3 > r; such that

e~ < |M5(2)| < el Yz |z > 7. (5.24)

Estimates for U(z)

Relation (5.13) gives the upper bound na ((1 + €)|z]) <
of terms of the set Lg in the open disk B(0, (1 + €)|z|).
z:lzl >

(D + €)(1 + €)|z| for the number
This and relation (5.10) give for all

(1 . 6)2(D-i—e)(l-i—e)|z| < H
(an,bn)GLG

(5.25)

a, 2(D+e)(1
<b_§)' < (1+e¢) (D+e)(1+e)|z]

n

Application of the inequalities 1 + ¢ < e and 1 — € > e~
forall z:|z| >

2¢ which hold if € € (0,1/2), implies
6—6|Z\4(D+6)(1+5) < ‘U(Z)‘ < €€‘Z|2(D+€)(1+6)' (526)

Estimates for Ps(2)
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Relation (5.14) gives the upper bound n4 ((1 — €)|z]) < (D + €)(1 — €)|z| for the number of
terms of the set Ly in the open disk B(0, (1 — €)|z|). Notice also that if (a,,b,) € Lo then the
inequality |a,| < (1 — €)|z| implies that |a, + z| > €|z| > €|a,|/(1 — €). Then one has

bn_an

a, * z

with relation (5.10) yielding the last inequality, and this gives

b, £z
1—e< <1 .
€ < el [ +e€
Then for all z : |z| > r; we have the estimate
2(D+e€)(1 by — 2 2(D+e€)(1
(1—ePraot=adl < 7 (a;‘ — 22)‘ < (14 e)?Pral=9l, (5.27)
(an,bn)€EL2 n
and as before we deduce that
€7€‘Z|4(D+€)(176) < ’Pg(Z)’ < €€|Z‘2(D+E)(176)' (528)

Estimates for Py(z)

Relations (5.13) and (5.14) yield the upper bound (2eD+-2¢)|z| for the number of terms in L.
Notice also that if (a,, b,) € L4 then by definition (a,, b,) ¢ Ls. Thus we have |a, £z| > 2|a,|*.
Then

b, — ay lan|* 1
a, £ 2 an|e 2’
and this gives
1 b, £z 3
- < 2
2 |la, £z 2
Then for all z : |z| > r we have the estimate
1 |z|(2e D+-2¢) bi 2 9 |z|(2e D+2¢)
O R = 6 (520
(an,bn)EL4 n
in other words
e—e|z\(log4)(2D+2) < |P4| < ee\z|(10g%)(2D+2)' (530>

Estimates for Ps(z)

This time the systems of disks are crucial. We find an upper bound outside S; and a lower
bound outside S,.

Without loss of generality, we assume that for any z outside the two systems of disks, if
(@n,by) € Ls(e, z) then it is relation |a, — z| < 2|a,|* which holds and not |a, + 2| < 2|a,|*.
This implies that |a, + 2| > |a,|. The relation |a, — z| < 2|a,|* also implies that |a,| < 2|z|.
Then we have the following:

For z outside | J°°, B(%ay,,e™1*!” /3) and for (a,,b,) € Ls(e, z) we get

b, — a,

n ~— Yn 3 na
=1+ <1+ ¢ §1+|a—‘5<e3iz'ﬁ

p — 2 p — 2 ay — 2 e~lan|

and ) b ) N
R I Y [ L) L

a, + z y, an + 2 ||




For z outside | J~ , B(=bn, e~le” /3) and for (ay, b,) € Ls(e, z) we get

lan |8 o418
b, — 2 e |/3>62H T
an —z| — 2lay|® 12]z]
and b b b “ 1]
n+z :1 n — Qn > . n — Qp 2]__|a'n| -
ay, + 2 ay, + 2 ay, + 2 || 2

One also needs to obtain an upper bound for the number of terms in Lj(e, z). Notice that if
(@n, by) € Ls(€, 2) then |a, — z| < |a,|* < 2]z]*. In fact, we obtain an upper bound for the
number of terms of {a,} in the disk B(z, 2|z|*). We claim that this is |z|7 for some v € (a, 1).
Indeed, suppose that for some integer k£ > 0 we have a; € B(z, 2|2|*) and a,, ¢ B(z, 2|z|%) for
every n < k. Assume there are integers k,, > 0 so that agik,, € B(z, 2|z|%). Recalling that
lax — an| > c|k — n|, the following estimates hold

42| > |ag — agar,,| > ckp > cm.

Thus, m < 4|z|*/c < |z|" for some v € («a, 1). We can take « close to a so that v+ f <
1 as well. This last result and the above inequalities show that |Ps(z)| < (2¢3%”)" and
|P3(z)| > (%e‘3|z|ﬁ)“’|7 whenever z ¢ Sy and z ¢ S5 respectively. Then observe that the relation

(2e31217) 12" = 2l=I" 31" < elzl holds as |z] — oo since v + 8 < 1. Thus as |z| — oo we get
|P3(2)| < el and |Ps(2)] > e/ (5.31)

whenever z ¢ Sy or z € S, respectively.

By a suitable renormalisation of all the estimates we have obtained from the various steps,
we conclude the proof of Lemma 5.4.

5.3 Proof of Theorems 3.1 and 3.2

Proof of Theorem 3.1 : Let F(z) be the entire even function vanishing exactly at {+A} and
let M(z) be the meromorphic function as in relation (5.3). Define G(z) = F'(z)M(z). Thus

G(z) = ﬁ (1 - %) = ﬁ (1 - i—;)u : (5.32)

n=1 n=1

with the second equality valid using the (\, p) reordering of B.

From the properties (1x), (2%) of F'(z) and Lemma 5.4, we deduce the following:
If re®® & | J)7 |, B(+an,, e~lonl” /3) one has for every € > 0 as r — oo

G(re") = O(exp{nr(D|sinf| + ¢)}). (5.33)

If 7e ¢ \ 2>, B(%b,, e71*1°/3) and |re & a,| > ¢/8 ¥n € N then one has for every ¢ > 0 as
T 00 .

From (5.33), (5.34), we will deduce (3.10) and (3.11) respectively. Then we also get (3.12).
Proof of (3.10):
Since G(z) is an entire function, its maximum value over any closed disk
Blay, e”*!” /3) is taken on the boundary. But for all z € dB(an,e 1*!”/3), relation (5.33) is
satisfied, implying the same for the interior.
Proof of (3.11):

Notice that from (5.34) we have to remove the condition |re? +a,| > ¢/8 ¥n € N*. Therefore,
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suppose that {2z, = rre%} is a sequence of complex numbers so that for any & € N* we have
|ze — ax| < ¢/8 and |z, & b,| > e~1*01” /3 for all n € N*. Our goal is to show that (5.34) holds
for 1/|G(rre®*)|. This makes the condition |re? +a,| > ¢/8 Vn € N* redundant, thus proving
(3.11).

Take any k € N*. Observe that for an arbitrary z € dB(ax,c/8) the relation |z — b,| >
1o’ /3 might not hold for all n € N*. Thus, we consider the larger closed disk B(ay, ¢/6)
and claim that there is a constant 7 € (¢/8, ¢/6) so that for all z € B(ay, 7), one has |z —b,| >
e~lanl? /3 for allm € NT. In other words, every point of this circle satisfies this spacing condition.
Needless to say that the condition |z — a,| > ¢/8 for all n € N* is also well satisfied for any
z € 0B(ag, 7).

Let us justify our claim. Note that it suffices to prove it for the set {b, : b, € B(ay,c/6)}.

First, we get an upper bound for the number of zeros of G(z) inside this closed disk. For
any such zero there is an integer k,,, not necessarily positive, so that |ax — bryx,,| < ¢/6.

This relation and the usual conditions |a, — ax| > c|n — k|, |bprk,, — Gkik,,| < |aksr,,|* and
la,| < 2[b,], yield
clm| < clkm| < fax = arir, | = [(ar = Oksny) + Okt — Gkt )|
< ¢/6 + |apsk,|”
< 2|bk+km‘a =~ 2’(1]4‘&. (535)

Thus, there are at most 4|ag|®/c zeros inside B(ay;c/6).
Next, consider all the annuli C,(az) C B(ag,c/6) for v =0,1,2,...,l(ay),

: Jaxl 2 ¢ “lar]
Cylag) = z:é—i—(u—l)e k <|z—ak|§§+(y+1)e RIS
In fact, C),(ax) C C(ax) where C'(ay) is the annulus
g
Clay) = {z cef8—elul? < g < 0/6} .

Assume that every annulus C,(ax) C Cf(ax) contains at least one b,. Since the width of

8 ols
each C,(ay) is 2e71%!% | then the number of such annuli in C(ay,) is of magnitude 06‘4’;‘7 . B

assumption, there should be at least as many b, terms in the disk B(ay;c/6). This contradicts

8
(5.35) since |ax|® < el*!” when k is sufficiently large. Thus, there exists some 1y so that
the intersection of the annulus C,,(ax) and the sequence B is the empty set. Then, taking

] g
7 = ¢/8 + vye %7 shows that any » € OB (ay, 7) satisfies |z — b,| > e71%I7 for all n € N*.

s
Finally note, that for every b, € B(ay,T) one gets |a,| > |ax|/2 from (5.35). Thus e~lo* >
)
e~2anl2 > e~lanl” /3 This yields for all z € dB(ay,7) the relation |z — b,| > e~1o°l” /3 for all
n € N*. Our claim is now fully justified.

_ Assume now that G(z) has zeros in the closed disk B(ag,7), and define Y, = {n : b, €

Blag, 7)}. Then write 2 2
aiz) =] (1 - ;—2) I1 (1 - 5—2> (5.36)

neYy n n¢Yy n
For all n € Y} since |z —ay| < 7 and |b,—ax| < 7, then one has that |zx| = |ax| =~ |b,|. Also from
(5.35) one has that |a,| < 2|ag| for all n € Y;. Combining all these with |z, + b,| > e~lo” /3,
yields for all n € Y}

(1

n

> e_2|an|ﬁ S 6_8‘[1’“'[3 6_8|Zk|ﬁ
T2 T 9ba2 T 9l T

n
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The last inequality holds since 0 < 8 < 1. Combination with (5.35), yields

1 40 a+8

<P = o). (5.37)
Moo, (1= 3)]

Next, note that for all n € Y}, and all 2z € 9B(ay, 7) one gets |1 — 22/b%| < 1. This implies that
for all z € 0B(ay, T) one has:

22)
1— =

Observe that the right product in (5.36) has no zeros in the closed disk B(ay, 7). Thus it takes
its minimum value on the boundary. This and the previous relation yield

2,2
II{1- > min |[J](1-%)|> mi . .
< 62) = 2e0B(ans) ( bg) > _in | |G(2)] (5.39)

But for all z € 0B(ay, 7) relation (5.34) holds. Thus, for every € > 0 as k — oo we get
1

2
Mo, (1)
This relation and (5.37) yield that 1/|G (rre®*)| satisfies (5.34).

Proof of (3.12):
G(z) = (1 - i—z) | II (1 - i—;yk : (5.41)

Write

G[un]()\n) (_Q)un H ( )\2)

= ~ 1-— - . (5.42)
L o i A

G(=)| = 1 (1_6_) <11 (1_b_) . (5.38)

= O(exp{mri(—D|sin | +€)}). (5.40)

Then one deduces that

Let us now obtain an upper bound for |A,|#". From Lemma (5.2) we get
| M| < |)\n|><\)\n|‘x < el (5.43)

since x| An|* log | An| < €[\,
Next we get a lower bound for the infinite product in (5.42). We note that for any A\,
there is some b; so that A, = b;. Thus, consider the closed disk B(b;, el l” /3) where [; is

as in (3.8). We claim that for all z on the boundary one has z ¢ Sy, in other words we have
|2 4 by,| > e1o+l” /3 for all k € N*.

Indeed, if b, € I'; the relation is trivial. Assume the opposite and consider the case when
lax| < |ag;|. Then from (4i) in Definition 3.4 one has [b; — by| > eloxl” thus |z — by =

[(z = by;) + (b, — be)| > 2e~l91” /3. Similarly we treat the case |ay| > laz,|, and our claim is
justified.

Then observe that for all z on the boundary we get that |(1 — 2%/6%)™)| < 1. Therefore for
any such z one has

1 1
M (=52)"] 11 - 5%)

The first equality is valid since every z on the boundary satisfies z ¢ Sy, thus we apply (3.11).
The second holds since |\, | & |z| for all z on the boundary.

= O(e*hy = O (e ). (5.44)
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Next, observe that the right product in (5.41) has no zeros in the closed disk B(b;, el 1” /3).
Thus it takes its minimum value on the boundary. Combining this with (5.44) gives

1
M (1= 34)

Substitution of (5.45) and (5.43) into (5.42), gives (3.12).
This concludes the proof of Theorem 3.1. {

= O(ef). (5.45)

Proof of Theorem 3.2 : Similar to the previous one.

5.4 Proof of Theorems 3.3 and 3.4

Proof of Theorem 3.3: We follow the lines of the proof of Theorem XXIX in [30].

Let f(z), f*(2), f*(2) and A, as defined in (1.3), (3.14) and (3.2). From Lemma 5.5, the
regions of convergence of the three series are the same. Since the ), are real positive numbers,
we consider the non-trivial case, that is when the three series converge in identical half-planes
of the form Rz > zy, xrg € R. With no loss of generality we assume that the abscissa of
convergence (ordinary and absolute) is the line x = 0. In other words the relation

log A,

0 (5.46)

lim sup
n—oo An

holds. Thus, all three series converge absolutely and uniformly in any half-plane z > 7 > 0.
One also notes that from (3.1) we have

log |c,,
limsup—g| “”*1' =

n—o0 )\TL

0. (5.47)

Suppose now that there exists an interval of length greater than 27D on the line x = 0 on
which f(z) has no singularity. Then with no loss of generality we can also assume that this
interval is —B < y < B where B > wD. This implies the existence of some a > 0 such that
f(z) is analytic for z > —a, |y| < B. We put

v = arctan 4716'LD' (5.48)
so that 0 < vy < 7/2 and let
B—mD)t
b ”2 Jtany (5.49)

The rest of the proof is broken into three steps. The first two steps are rather straightforward
generalizations of parts of the proof of the original Fabry Gap theorem to be found in [30]
and are given here for the sake of completeness. Only the third step requires considerable new
effort. To facilitate the reader we give an outline for each one of the steps of the proof.

Step 1

Since f(z) is regular in the semi-strip (x > —a, |y| < B), then for all w € C so that fw < 0,
we define

H(R,w) = /GHB f(z)e*?dz + /bHB f(z)e"dz + /RHB f(z)e" dz

a —a+iB b+iB

R
+ / f(z)e"dz (5.50)

R+iB
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where R > b and the paths of the integrals are the segments joining the various points. Then
we prove that H(R,w) converges as R — oo, and if we denote this limit by H(w), one has

—a+iB b+iB
H(w) = /_ i f(z)ewzdz%—/Jr f(z)e" dz

a —a+1iB
/’Ln_l ] l+1 b+ B '
(b+iB) (w—"An) iBy~t !
Z I Z ) (j —r (5.51)
7=0

But now H(w) is well defined for all w € C\{\,}. In fact it is analytic in C\{\,}.

Next, we define J(w) = H(w)G(w) where G(w) is the entire even function defined in
Theorem 3.1. Then J(w) is an entire function in the complex plane.

Step 2

We prove that for some § > 0 the relation |J(pe7)| = O (e79<7) holds, thus [’ J(w)| =
O(1) for argw = +7.
Step 3

We show that e?.J(w) is a function of exponential type bounded in the angle |argw| < 7.
In particular, for real w this implies that J( ) = O(e™®), thus J(\,) = O(e™*n). This
eventually yields the relation |c,,, | = O(e” 2>‘m) which contradicts relation (5.47). This will
complete the proof of our theorem.

All three steps make use of the convergence of

ZA b+ iB|#n e A OHiB)| (5.52)

n=1

due to f**(b+iB). We also need the following result:

Lemma 5.8. Let {L,}:2, be anyone of the following sequences: {\,}, {32}, {Mnsiny} or
{\e*1} where n > 0 so that o+ 4+ n < 1. Then

pn—1 I+1
. i—1
JZOCTL]Z J—l ( > (b"‘ZB)J

Proof. Observe that it is enough to prove it for {L,} = {\2*"}. For j =0,1,..., 1, — 1,
one gets

< Aplb+ Bl (5.53)

J . 1 I+1 1 J j l 1 J " l
Z j—l ()\gw) < )\gHIZ(AgM) < )\ngnZ(/\gﬂv)

=0 =0 =0

1 Aot e\ 2
- A%*’?) (Aff*”—um) 1_(A%+") = (A?ﬁ")’

since p, < xA% from Lemma 5.3. Then (5.53) follows easily.

We proceed now with the proof of the various steps.

Proof of Step 1: Observe that the first two integrals in (5.50) are independent of R, thus we
deal with the other two. We will prove that (5.51) holds as R — 0.
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The absolute convergence of f(z) in the interval [b+iB, R+iB], justifies integrating it term
by term to get the following:

R+iB
/ f(z)e"*dz =

b+iB

0o fn—1 7 . -_ .
Z@<R+7‘B)(w7)‘") c Z <—1)l+1<R +l/l_?)] l ]‘
nj _ + AN
n=1 j=0 1=0 (w—=An) =0
Ze(bJrzB)(w An) . Z (=) (b+iB) Tt !
: ’ (w =)t (=0
n=1 7=0 =0

Denote by I(R,w) the infinite series which depends on R. We will show that I(R,w) — 0
as &+ oo.

Since Rw < 0 then |w — \,| > A,,. It follows from Lemma (5.8) that

pn—1 J l+1 R+ZB) ]' ‘ .
Z Z l+1 (j—l)' SA”|R+ZB|MR :
Jj= =

Hence

II(R,w)] < ZAn|R_|_Z’B’un*1|€(R+iB)(wf)\n)|

n=1

< 6—B%w Z An(QR),un—le—Rkn‘

n=1
On the other hand, since j,,/\, — 0 one has (2R)*»~1 < et and therefore

3R)\

[I(R,w)| < e B3 " 2Ane™ 3 < e P wZA e Ry (5.54)

n=1

From relation (5.46) one gets that limsup,,_, . (log A,)/(A\./2) = 0, and this implies that the
Dirichlet series f**(z) = > 7, Ane= 3= converges absolutely for any z if ®z > 0. Thus, the

series

is defined for all R > 0 and is a positive decreasmg function. Therefore there exists some
M > 0 so that for all R > 1 one has f**(R) < M. Combining this with (5.54), shows that
I(R,w) — 0 as R — 0.

Similarly one deduces that

R
lim f(z)e"*dz = 0. (5.55)
R—oo JpiiB

Therefore for all w with Rw < 0 one has that the limpg_,o, H(R,w) exists. If we denote this by
H(w) then H(w) has the form as in (5.51).

Next we prove that H(w) is well defined for all w € C\{\,}. In fact, we prove that H(w)
is analytic in C\{\,}.

Note that the two integrals in (5.51) define analytic functions of w in the whole complex
plane. Thus, it remains to prove that the infinite series converges uniformly on any compact
subset K € C such that K N{\,}>°, =0
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Consider such a compact K. Then there exists an ng € N so that for all w € K one has
lw — A\, > \,/2 for all n > ng. Let ¢ = max{|e®+P)*| . w € K}. For all w € K define

Mn_l ] l+1 b+ B ‘
_ (b+iB)(w—An) ? ) J:
Lng(w) = Z e Z ) (j —
7=0

n=ng

Then for all w € K, it follows from Lemma 5.8 and (5.52) that

|1, (w |<qZA|b+zB|“” He 4B 0, ng = 0.

n=ng

This implies uniform convergence on K.

Proof of Step 2: Let 7 as in (5.48). Then

. —a+iB ) b+iB )
H(pe") = / f(z)ezﬁemdz—i—/ f(2)e™ dz

a —a+1B
> e (1) b+zB)J -l
(b+iB)(pe' —An) J:
T Ze " Z Cn; Z pe“/ — ) (GG =D
7j=1

Denote the infinite series by T'(pe??) and note that [pe?” — \,| > A, sinvy. Then from Lemma
5.8 and (5.52), it follows that

[ T(pe)| = O(weosa=Besin), (5.56)

7a+1B b+iB

‘/ —a—HB

Then by choosing the path of integration as the reflection in the real axis of that used in (5.50),
we get that (5.56) and (5.57) hold for pe=" as well. Thus

One also notes that

—0 (e—apcos’y + ebpcos’nypSin’Y) ) (557)

H(peiw) =0 (e—apc057 + ebpcosv—BpsinA/) ' (558)

From the definition of J(w) above, one deduces that

J(w) = G(w) /_ T b )en s + Gluw) / T H)ev dz + Quw), (5.59)

a —a+iB

where Q(w) is the entire function defined as

pn—1 J 1)+ b—i—zB) il
(b+iB)(w—An J:
G(w )E: +iB)( )E E 3 (j—l)!' (5.60)
1=0

n=1

Note that Q(w) is also written as

Hn—1 J N'n+l+1 b B j—=l;
(b+iB)(w—An) Cn. (b+iB)""J! (A — )“n_l_lGn(w) (5.61)
Z Z g lz; =0

n=1

where

Gn(w) = (A";—Mww 11 (1 — w—2)uk . (5.62)



One observes that combining (3.10) and (5.58), gives for every € > 0

|J(p€:ti’y)| =0 (e—apCOS'y—Hrstin’y—&—ep + ebpcosv—l—(ﬂ'D—B)psin*y—‘rep) )
From (5.49) one also deduces that B —mD = 2bcot vy, and since € is arbitrarily small this yields
Fiyy| — —gpcosy+mpDsiny —%pcosv
|J(pe=)| O(e +e )
Relation (5.48) implies that mDsin~y = facos~, thus for 6 = { min(a,b) we have
|J(p6:|:i'y)| =0 (e—épcosv) )

Therefore
|2 J(w)] = O(1), argw = 7. (5.63)

Proof of Step 3: We will show that (5.63) holds in the angle |Sw| < 7. In order to do this,
first we prove that J(w) is an entire function of exponential type. From (5.59) observe that it
suffices to work with the function Q(w).

Consider some 1 > 0 so that o + 8 +n < 1. For every w € C so that w ¢ Sy where Sy is
the system defined in (3.6), we partition the sequence {\,} into two sets as follows:

Alw) = { )\, |w — N\,| > Ao}
and
B(w) = {\, : [w— \,| <A
Then we write
Q(w) = Qa(w) + Qp(w)
where Q4(w) is defined as
) Bn—1 J l—l—l b B g
Qa(w) = G(w) Z e (OFiB) (w=2n) Cn,) Z + jﬂ) J:

An€A(w) Jrr —— (j =10

(5.64)

Similarly one defines Qg (w).

Consider now @ 4(w). We remark that in this case the condition w ¢ S, plays no role. Note
that from Lemma 5.8, we deduce for any A, € A(w) that

pn—1

J 1) b—HB) 4!
: . 1
c”JZ l+1 (j—l)' S14n|b+ZB|M :
§=0 1=0

Thus , ,
Qa(w)] < [Gw)|[e®T ]y Aufb 4 iBJn ! e B,
An€A(w)

and observe that the series is bounded above by the one in (5.52). This implies that |Q4(w)| =
O(er!vl) for some k > 0.

Next, we consider @ p(w). We can also write it as

(b+iB)(w—A = b+1B i 1
2 ¢ DY e, Z e Gl (50)
7=0

Y
An€B(w) -1
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where G),(w) is defined in (5.62). Note that for any A, there is a b; so that A\, = b;, thus
fn, = m(j) the pseudo-multiplicity of b;. Since w ¢ S,, then one gets

Gy (w)] = G _ |G<w)|.g]G(w)\<3e|“j|B)m(j). (5.66)

o=l = Ty = w0

Fix some € > 0. Then from Lemma 5.2 we get
(36|aj5>m(j) < <3e|aj|3>waj|a = 3e¥lul"™? < eelasl

with the last inequality valid since a + 3 < 1. One also observes that |a;| < 2|b;| = 2),, < 4|w|
since )\, € B(w). Thus for all \, € B(w) one has |G, (w)| < |G(w)|e*™!. This implies that
there are constants A’ > 0 and A” > 0, so that for any w € C\S; and all \,, € B(w) one has

|G (w)] < Ale?1vl (5.67)

Next, observe that for any A, € B(w), we have |\, — w|#=~=1 < (Ae+t7)*~'"! " Combining this
with (5.67) shows that |Qp(w)| is bounded above by

Hn—1
" |w i1B)(w—An) «a n ’b+ZB’j l]'
Al A vl Z | (b+iB)(w—A )\+nu Z|n]|z )\a+n)l+1'

An€B(w) = (J—=1)!

Then from Lemma 5.8 we get that

|QB(w)| < A/eA”\w\ ‘6(b+iB)w‘ Z (>\a+17)HnA |b+2B|‘u” 1 ‘6 b+zB)‘ (568)
An€B(w)

Note also that from Lemma 5.3 one gets
()\g-i-n)#n < ()\g+n)x)\ﬁ _ )\g(a—i—n))\%’ < 66)\n < eZe\w\’
and combining this with (5.68) gives

Qp(w)| < A'e Ml |eltrBr| 2wl N 7 A b iBle e O

An€B(w)

with the series bounded above by the one in (5.52). This implies that |Qp(w)| = O(e?!!) for
some ¢ > 0, provided w ¢ Ss.

Since Q(w) = Qa(w) + Qp(w) it follows that |Q(w)| = O(e’*!) for some v > 0, provided
w ¢ Sy. But according to (3.8), S is the union of non-overlapping disks whose radius tends to
zero. Since Q(w) is an entire function, its maximum value over any such closed disk is obtained
on the boundary. All these imply that |Q(w)| = O(e¥!"!) for all w. It then follows that .J(w)
is an entire function of exponential type. Combining this result with relation (5.63) and a
Phragmen-Lindelof theorem [30] (Th. C, p. 243), it yields

2 J(w)| = O(1), |argw| < 7. (5.69)
In particular, for real w this implies that J(w) = O(e™°"), thus
J(Am) = O(e™%m). (5.70)

Note also that from (5.59) and (5.60), one deduces that

T(Am) = Cm“mlzi;i“m — V! I1 ( - &)uk. (5.71)
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Then from (5.42) we can write

s =100 s [t o7

If we now apply (3.12) and (5.70) to (5.72), it yields for every ¢ > 0

[ 2| = O(T0FPm), (5.73)

Since € is arbitrary we get that
)
(s | = O(e727). (5.74)

But this contradicts relation (5.47), and this completes the proof of our theorem. <

Proof of Theorem 3.4: Let us assume that the boundary of convergence is not a natural
boundary. That is, for some point zy on the boundary the series can be continued analytically
in a disk B(zg,r) for some r > 0. For convenience, we replace f(z) by g(z) where

9(2) =D pu()e Mnoe
n=1

thus z = 0 replaces zq. Similarly we replace f*(z) by g*(z) such that g*(z) = > °7 | A,e e 0=,
Since z = 0 is a boundary point, then for every " < r the disk B(0,r’) contains points z so
that g(z) converges absolutely. From Lemma 5.6 this implies that g(z) converges absolutely on
every point of the arc S = {z : |z| = r,|argz| < —==}. The same holds for any point z in the
region W = {z : |z| > r,|argz| < —=}. Then, choose some point s € S so that Ss = A > 0
and fix positive constants a and b so that a < r < b. We remark that the rest of the proof is
similar to the previous proof of Theorem 3.3. To facilitate the reader we have kept the same

notation.

We break the proof into three steps as done previously.
For Step 1, let R > b and Rw < 0. Then define

—a+iA bHiA R+iA
H(R,w) = / g(z)e“’zdz—i-/ Ag(z)e“’"’dz—i—/b N g(z)e"*dz
—a —a+1i +1

R

+ / g(2)e"*dz (5.75)
R+iA

where the paths of the integrals are the segments joining the various points.

The absolute convergence of g(z) in the intervals [b+ ¢A, R +iA] and [R +iA, R], justifies
integration term by term. Letting R — oo and using the relation |w — A,| > |\,| cos 7 which
holds since Rw < 0, we apply Lemma 5.8 which is valid for L, = |A,| cos7. This yields that

—a+iA b+iA
H(w) = / g(z)ewzdz—k/ g(z)e"*dz

a —a+iA

[e’¢) pn—1 i 141 . j—1 4
(b+iA) (w—An) s (=) (b +1iA) 4!
n=1 j=0 1=0

is an analytic function in C\{\,}. If we compare this relation with (5.51) we note that this
time we have the term cnje’A”ZO instead of just c,;.

For Step 2, since sup |arg \,,| < 7 < 7/2 we can choose a constant v so that 7 < v < 7/2
and ~y > arctan %b. Then we get the following estimates on the ray argw = :

—a+iA ) b+iA )
‘/ g(2)er” #dz + / g(z)er dz
—a —a+iA
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=0 (e—apcosy + ebpcosy—Apsinw) (576)




and

T (pe")| = O(ebreosr—arsing), (5.77)
where T'(w) is the infinite series in the expression of H(w). The estimate for (5.77) holds since
lpe”™ — A\p| > |\u| sin(y — 7) and Lemma 5.8 is valid for L,, = |A,|sin(y — 7). Then by choosing
the path of integration as the reflection in the real axis of that used in (5.75), we get that (5.76)
and (5.77) hold for pe=" as well. Thus

H(pe:l:i'y) =0 (e—apcosv + ebpcosv—Apsin'y) ) (578)

Next, define J(w) = G(w)H (w) where G(w) is the entire function of infraexponential type as
in Theorem 3.2. Then for every € > 0 one has

|J(7,eii'y‘ =0 (efapcosv+ep 4 ebpcoswapsin'w#ep) ) (579>
Since v > arctan 2 andf ¢ is arbitrarily small, one has that
A
| J(re=| = O (e™%%7) (5.80)

for some § > 0, that is, [e®*.J(w)| = O(1) for argw = +7.

For Step 3, we get again that J(w) is a function of exponential type, thus by the Phragmen-
Lindelof theorem [30] (Th. C, p. 243) one has |¢°*J(w)| = O(1) for | argw| < ~. This implies
that J(\,) = O(e™%%) and since R\, > |A,| cosT then J(A,) = O (e=9<7*l). Then, since
the term ¢,, _ e " is equal to the right-hand side of (5.72), an application of Theorem 3.2
yields

|cn., e =0 (e_m%‘)‘“) : (5.81)

Then from (3.3) we get
|Ape™| =0 <e’6ci%|’\”‘> . (5.82)

This relation implies that for some x < 0 the series g*(z) converges absolutely. By Lemma 5.6
the same holds for all z in the region Q = {z : BE=2l < _L_"R(; — 1) > 0}. But then the

R(z—z) — tanTt’
point z = 0 is an interior point of €2, a contradiction, since z = 0 is a boundary point of the

region of convergence of g(z) and ¢g*(z). <
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6 Future projects.

In this last section we discuss some possible future projects. The first one deals once more with
complete exponential systems in LP(—a, a).

6.1 Complete exponential systems in L’(—a,a)

In this subsection we discuss briefly two open problems for complete exponential systems in
LP(—a,a). The first one was already mentioned in §2. We know that if the terms of a sequence
i are subjected to bounded pure imaginary perturbations, then the excess is preserved in
L?*(—a,a) and that the theorem fails for L'(—m,7) and C[—x,7]. The problem is still open

for p ¢ {1,2}.

The next problem deals with non-concentrated sequences u = {fn, ky}. As we know, A.
Sedlestkii usually imposses this condition. The question that we pose is the following: Does
p have to be a non-concentrated sequence in order for its system E, to have a finite excess
in LP(—a,a)? An affirmitive answer to the question, would imply that the multiplicities k,
are necessarily uniformly bounded, a result which is valid at least in the case of Riesz bases, a
particular example of exact systems.

In the following subsection we discuss the Carleman formulas in complex analysis, whose
aim is to restore a function holomorphic in a domain D by its values on a part M of the
boundary 9D, provided that M is of positive Lebesgue measure.

6.2 Carleman formulas in complex analysis

In the theory of boundary values of holomorphic functions of one complex variable a question
was raised about the description of the class of holomorphic in a domain D functions which
are represented using their boundary values by the Cauchy integral formula. The answer was
very clear and was obtained for the case of the disk by F. and M. Riesz (1916) and for other
domains by V. Smirnov (1932). Their result states that this class of functions coincides with
the Hardy class H!'(D), for the disk, and with the class E'(D) for other domains.

Definition 6.1. A function f(z) holomorphic in a domain D is said to belong to the class
EP(D), p > 0, if there exists a sequence of curves v, in D converging to 0D such that

/ FEPde < C,

TYm

whereCy is independent of m.

During the last years there was a number of research papers devoted to the Carleman
formulas for holomorphic functions of one and several variables (their survey can be found in
[1]). These formulas solve the problem of the reconstruction of holomorphic functions in the
interior points of a domain D from their values on a subset M C 0D of positive measure. In
order to do this, one needs to construct a quenching function ¢, that is a function which is
holomorphic and bounded in D, satisfying two conditions:

(1) |¢(z)| = 1 almost everywhere on 9D \ M,
(2) |¢(2)| > 1in D.

The idea of this function was first introduced by T. Carleman and then developed by
Goluzin-Krylov. They proved the following:
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Theorem 6.1. If f € EY(D) and the set M C OD has positive Lebesque measure, then for any
point z € D the Carleman formula

f(2) = lim —— f(C){

o) -z (6.1)

is valid. The convergence in (6.1) is uniform on compact subsets in D.

m—o0 271 s

¢(C)1m d¢

Therefore, naturally arises the following problem:
Can we describe the class of holomorphic functions that are represented by Carleman formulas
as in (6.1)7

L. Aizenberg, A. Tumanov and A. Vidras (see [2]) conjectured that a necessary and sufficient
condition for a holomorphic function f to be representable by Carleman formulas over the set

M is that f must belong to the class H! near the set M. In other ‘words, we must have
f € EX(W,), where {W,} is an Ahflors-regular exhaustion of D, that is, M, = OW,, N M C M.

We note that positive results were obtained in [2] for the bisected disk, that is a simply
connected domain Q C D, 0 # ), whose boundary consists of an arc of the unit circle and of
an Ahflors-regular curve M in the unit disk joining two points on |z| = 1. Similar results were
obtained in [3] for a simply connected domain in the right-half plane whose boundary consisted
of a vertical segment on the imaginary axis and an Ahflors-regular curve joining the endpoints
of the segment and the corresponding Fok-Kuni integral representation formula. We also note
that other results were derived in [4] and [15].

At this point we remark that the Carleman integral representation formulas are not pre-
served under conformal mappings. Thus, for different domains we are obliged to attack the
problem with a different quenching function. This will be the case for the following problem
that we shall study: For a special class of bounded, simply connected domains V' C C' with
piecewise smooth boundary, for example regular polygons, we shall derive a Carleman formula
representing all those holomorphic functions f € H(V) from their boundary values (if they
exist) on the arc M C 0V, whose length satisfies I(m) < [(OV') which belong to the Hardy class
H! near the arc M.
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