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Iepiinyn

Mo ocuviOng mapadoyn oy avdivon NevtdveElwv podv &ival OTL 1] TUKVOTNTO Kol TO
1Emoeg eivan otabepéc. H mapadoyn avty Opwe, eivoal 6ot Pévo 6 GUVONKEG YOUNANG
mieong kot 0ev gvotabel oe poég Katd TIG OMOieg aVONTTUGGOVTOL PEYAAEG TEGELS OTWG
elvar v mapddetypa 1 eKPoAn Kat 1 £yyLoN TOAVUEPDV, 1 UETOPOPE KNPDOIOLG apyoD
neTpehaion, N MIAVTIKY] poN] AETTOV VUEVIOV, 1] MKPOPEVCTOVIKY, KOl KATOLES YEMPVOIKEG
poés. EmmAéov, n vmodBeon Ot n pon eivor cuumiestn, evd mpokael KpES oaAAaYES OTNG
Aoon ™G pévVUNG pong Umopel vo EMNPEACEL CNUOVTIKE Tr SUVOLIKY TG PONG AOY®

EUOAVIOTG TNG TOPAYDYOL TNG TLKVOTNTAG MG TPOS TO YPOVO 6TV €€icmoN GUVEXELNG.

¥t dwtpipny avtr Bewpodue Nevtdveleg poég Poiseuille otic omoieg  mukvoTnTaL Kot To
1EDOES elval cuVaPTNOELS TG TiEoTG Kol £TG1 0gV elvan otabepéc. Le autn TV Tepintwon,
ol €£l6MOELG KIVIOEMS €lval EVTOva UN-YPOUUIKEG LE OMOTEAECUO 1 €VPECT AKPLPBOVC
Aong va etvar duokoAn N akopa kot advvarr. To yeyovdg avtd emPBdidel cuyva tn xpnon
TPOCEYYIOTIKOV HeBddmV Omwg eivor n mpocséyyion G AVoNG HECH OCLUTTOTIKOV

avonTuyUdTeV To omoia voAoyilovtor pe ™ pnéEBodo TV datapoydVv.

[Tpw 1t emilvon g cvumiestg porig Poiseuille evog Nevtdvelov pevotod pe 1EDdEG Tov
e€aptdTon amd Vv mieoT, EMAVCAUE TIG OVO OPLUKES TEPTTMOELG: TNV OCVUTIESTN POT| LE
LETAPANTO 1EDOEC Kt TN GLUTESTY| o1 e 6TafePO 1EDOEC. TNV TPAOTN TEPIMTOOT NTOV
duvatov va Bpodpe akpiPn Avom evd ot 0e0TEPN TEPITTOOT EPAPUOCAUE TNV KOVOVIKY|
puéBodo tav datapaydv mpoceyyiloviag T TPpOTEHOVOES EEUPTNUEVEG UETAPANTES TNG
pong, onAadn Tig 0V0 CLVICTMOGCEG TNG TAXVTNTOS KO TNV TESN UE AVUTTOYUOTA OC TPOG
Vv 1660epur] cLUTIESTOTNTO. XTO TEAELTAO HEPOG TNG JWTPPNG M TLKVOTNTA KOl TO
EDOeg petafdArovtal Pe TV TIECT Kol XPNCUYLOTOMGAUE OUTAG OVATTUYHO HEC® NG

pueBod0L TV datapay®V Yo va. BPodE TPOCEYYIGTIKN AVGN.

2V TEPINTOON TG ACVLUTIESTNG PONG EMAVCAUE TNV EMIMEDT, TNV AEOVOCVUUETPIKT] Kot
™ daktvAlogldn pon Poiseuille. YroBétovtag 6t 1 pon eivan povokotevbuvtikn kot 61t to
1EDOEC e£0PTATOL YPOUUIKA OO TNV TEST, KOTEGTEL dSuvaTh 1| €DPEST OKPPOVE AVGEWMGS Y10l
TV TN TO, 1 0Tolo £Vl GLVAPTNGT LOVO TNG KOTAKOPVONG GLVIETAYUEVNG KOl YLl TNV
mieon, M omoio e&opTdtal Ko omd TG OVO ovvieTayuéveg. Meletdvtag TN Avom
TapoTNpNoape 6Tt KaBmg 1 €€APTNoT ToL 1EMO0VS 0md NG mieom av&dvetat, To TPOPik TG
TayvTNTOG amd mopaforikd teivel va yivel ypopupkd. H kiion tng mieong kovtd otnv £€£000



gtvonr M 10100 Om®G otV KAOGIKN, TAP®G aventuyuévn pon. H mieon avdveron exbetikd
KaODS Kivovpaote ovtifeta e T @opd g pomng, Kot £I61 1) mieorn mov ypeldleTol yio va

KIWVAGEL TN PO aVEAVETAL OPOUOTIKGL.

Ymv wmepintowon G pong pe otabepd 1EDOeg emADGOUE TNV EMIMES Kol TNV
aovoovppetpikn pon Poiseuille vrobétovtag o1t 1 TokvoTnTO £)XEL Ypapukn eEGpTnon
amd TNV TiEon Kot 0Tl TO peVoTO oMcbaivel 610 Toly®UO HE TaXDTNTO TOV VITOKOVEL GTN|
ouvOnkn tov Navier. Eeapudoape kovovikr pébodo tmv dwotapaydv tpoceyyilovtag Tig
000 GLVIGTMGEG TNG TOYVTNTOG KOL TNV TECN UE ACVLUTTOTIKA OVOTTOYUOTO MG TPOS TNV
10600epun cvumiestoOHTTO EEAYOVTOS £TGL TPOCEYYIOTIKES AVGELG LEXPL KOt TN deVTEPN TAEN.
Ta aroteAéoparta £de1&av 6T M avENGN TG OAloONnoNg peltdvel g e€dptnon g Avon and
mv  Katakopuen ovvtetayuévn. Emiong, PAémovpe o6t1 M oAicoOnon pewdver v
KatakOpuen tayvTTa Kot av&dver v opiloviia. Kabmg kivovpaote avtifeta pe ) gopd
g ponG, M mieon av&avetor Kabdg n pon yiverol To GuUMESTN, AALE avEdveTat o apyd
otav m oAioOnon oto Toiywpa yivetor peyaAdtepm. Emiong, peAetnoope ompovtikég
mocOTNTES OMMC €ivol 0 pLOUOG OYKOUETPIKY TAPOYNS, N LECN TTMOT TNG TECNS KOl O

pécog mapdayovrag tping Darcy.

210 tehevtaio péPog TG dTpiPrg vwobécape 0Tl TOGO 1 TLKVOTNTO OGO KOl TO 1EMOEG
eEAPTOVTOL YPOUUIKE 0O TNV TEST KO LEAETOAUE TNV EMIOPAOT] TOV £XOVV TAV® GTN
pon. Eoapudcape wxoavovikn péBodo dwatapaydv mAVEO OTIC KOPlEG EEAPTNUEVES
peTaPANTEG TG poNGg Tpooeyyilovtag TIg HE OCLURTOTIKG OVOTTOYHOTO MG TPOG TNV
1000ep GLUMIECTOTNTO KOl TO GUVIEAESTN €EAPTNOMNG TOL 1EMOOVG amd TNV miEoT).
E&dyape €101 mpoceyylotikég AGELS de0TEPNS TAENG Y10l TIC TEPUTTAGELS TNG EMIMEONG KO
™G aEOVOSLUUETPIKNG porg. H Avon avt amotekel yevikevon twv AVcewv mov Pprikope
oT1g 000 mponyovEVEG TeEpMTOGEIS. BAEmovpe OtL N KatakOpven tayvTNTa £lvon TavTa
Beticn ko e€aptdTon povo amd TV KoTakOpLEN cuVTETAYUEVT. OTOV 1) CUUTIEGTOTNTO Kot
0 oLVTEAESTY| €£APTNONG TOL 1EMAOVG amd TNV Tieomn lvan ¢ 010G TdéNg, TOTE N Op1LoVTIO
tayvtnto ennpedletal and 1 petafoAn tov 1Emdovg ot 0gvTEPN TAEN GAAL Ol otV
TpOT TAEN. Avtifeta, 1 mieon emmpedletor amd T UETAPOAN TNG TLKVOTNTOS KOl TOV
1E®O0VG 1060 01N devTEPN OGO Kol GTNV TTPMTN TAEN Kot M €mdpacn TV dV0 VTV
TocoTNTOV givanl ovtayoviotikr. H katakdpoen toydtmro oev emmpealeton amd v
eEdptnomn tov 1EMOovg amd Vv wieomn oe kapia 1aén. Emiong, peAetnoope v emidopaon
TOL AOYOL TOVL VYOLG TOL Ay®YOD MG TPOG TO UNKOG kat Tov aptfuov Reynolds tave ot

por.



Abstract

A common assumption in the analysis of Newtonian flows is that both the density and the
viscosity are constants. Such an assumption, however, is valid only at low processing
pressures and cannot be used in important flows involving high pressures, such as polymer
extrusion and injection model, waxy crude oil transport, fluid film lubrication,
microfluidics, and in certain geophysical flows. Moreover, relaxing the incompressibility
assumption may lead only to minor changes in the calculated steady-state solutions but
may affect greatly the flow dynamics, given the density time derivative that appears in the

continuity equation.

This thesis is concerned with Newtonian Poiseuille flows in which the density and the
viscosity of the fluid are not constants but functions of the pressure. In this case, the non-
linearity of the equations of motion is increased and the derivation of analytical solutions
becomes more difficult if not ruled out opening the way to the use of approximate
methods, such as the approximation of the solution by asymptotic expansions via the

perturbation method.

Before tackling the compressible Poiseuille flows of a Newtonian fluid with a pressure-
dependent viscosity, we solved the two limiting cases, i.e. incompressible flows with
pressure-dependent viscosity and then, compressible flows with constant viscosity. In the
former case it was possible to derive semi-analytical solutions whereas in the latter case a
regular perturbation scheme was employed in which the primary fields, i.e. the two
velocity components and the pressure where expanded in terms of the isothermal
compressibility. In the last part of the thesis both the density and the viscosity of the fluid
vary with pressure and we employed a double perturbation scheme in order to derive an

approximate analytical solution.

In the case of incompressible flow, we considered the plane, the axisymmetric, and the
annular Poiseuille flows. Assuming that the flow is unidirectional and the viscosity varies
linearly with pressure, we obtained closed-form solutions for the velocity, which is a
function of the transverse coordinate, and for the pressure, which is two-dimensional. It is

demonstrated that as the pressure-dependence of the viscosity becomes



stronger, the velocity tends from a parabolic profile to a triangular one. The pressure
gradient near the exit is the same as that of the classical fully developed flow. This
increases exponentially upstream and thus the pressure required to drive the flow increases

dramatically.

In the case of flow with constant viscosity, we considered the plane and axisymmetric
compressible Poiseuille flows with Navier slip at the wall. A linear equation of state was
employed to describe the variation of the density with pressure. We applied a regular
perturbation method, perturbing the two non-zero velocity components and the pressure,
using the isothermal compressibility number as the small perturbation parameter.
Approximate solutions up to the second order where obtained and analysed. The results
show that slip weakens the dependence of the solution on the vertical coordinate. The
transverse velocity decreases and the horizontal velocity increases with slip. The pressure
required to drive the flow increases slower upstream with slip but increases when the flow
becomes more compressible. Important quantities such as the he volumetric flow rate, the

average pressure drop and the Darcy friction factor were also studied.

In the last part of the thesis the combined effects of compressibility and viscosity pressure
dependence where investigated, assuming that both the density and the viscosity vary
linearly with pressure. We applied a regular perturbation method using the isothermal
compressibility number and the viscosity-to-pressure coefficient as the small perturbation
parameters. All the primary variables were represented by a double asymptotic expansion,
and via perturbation analysis second-order approximations were obtained for both the
plane and axisymmetric Poiseuille flows. The solution was then analysed in terms of the
two perturbation parameters. We noted that this generalizes the solutions corresponding to
the aforementioned special cases. It is demonstrated that the transverse velocity is always
positive and depends only on the transverse coordinate. When the compressibility number
and the viscosity-pressure coefficient are of the same order, the horizontal velocity at first-
order is not affected by the viscosity but does at second order. The pressure is affected by
the compressibility and the viscosity pressure-dependence at first and second-order and
these effects compete each other. The transverse velocity is not affected by the viscosity’s
pressure dependence at any order. The effects of the aspect ratio and the Reynolds number
have also been studied.
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Chapter 1

Introduction

The equations of motion, i.e. the continuity and momentum equation, for any fluid can be

written as follows
a—'0+V-(pu) =0 (1.2)
ot
and
ou
p(E+u-Vuj:—Vp+V-‘r+pg. (1.2)

where u is the velocity vector, p is the pressure, T is the viscous stress tensor, p is the
density, and g is the gravitational acceleration. If the density is constant, then the
continuity equation is simplified to V-u=0. Otherwise, Egs. (1.1)-(1.2) need to be
supplemented by an equation of state, relating the density to the pressure.

In the case of a compressible Newtonian fluid with zero bulk viscosity® the viscous stress

tensor is given by
2
Tzn(ZD—EIV-uj, (1.3)

where 7 is the viscosity, | is the unit second-order tensor, and D is the rate of deformation

tensor defined by
1 T
==| Vu+(Vu) |. 1.4
AAGON (1.4)

In incompressible flow, Eqg. (1.3) is reduced to the standard Newtonian constitutive

equation:

17=277D=77[Vu+(Vu)T]. (1.5)

! In the more general case,
2
T=2nD+ ;(—577 IV-u

where y is the bulk viscosity, which is neglected in most studies.

1



Substituting Eqg. (1.5) into the momentum equation and assuming that the viscosity is

constant, one gets the Navier-Stokes equation:
ou 2
p(E+U-Vuj:—Vp+nV u+0g-. (1.6)

In the present thesis, we consider compressible Newtonian flows with pressure-dependent
viscosity. In other words, both the density and the viscosity of the fluid are functions of

pressure. Hence, the continuity equation (1.1) may be written as

op(p)
ot

+V-[p(p)u]=0 L.7)
and the viscous stress tensor is given by
2
rzn(p)(ZD—EIV-uj, (1.8)

where 7 is now a known function of the pressure p. Substituting the above constitutive
equation into the momentum equation (1.2) leads to the following generalization of the

Navier-Stokes equation:

ou , 1 2,
p[EJrU-VUJ:—VDM(p)VzMZU(p)Vp-D+§n(p)V(V-U)—§77(IO)VIOV-U+/J9-
(L9)

To our knowledge, studies taking into account both the compressibility and the viscosity
pressure-dependence are very scarce in the literature. The objective of this thesis is to
obtain analytical solutions of the system (1.7)-(1.9) for steady two-dimensional Poiseuille
flow problems. In addition to the standard incompressibility and constant-viscosity

assumptions, we also relax the well-known no-slip boundary condition.

The components of Egs. (1.7) and (1.9) in Cartesian and cylindrical coordinates are
tabulated in Tables 1.1 and 1.2, respectively. This system of equations is closed by means
of an equation of state and an equation describing the pressure-dependence of the viscosity.
These are discussed in Sections 1.1 and 1.2, respectively. In Section 1.3, we discuss the
issue of wall slip. The two-dimensionality of the Poiseuille flows of interest is a
consequence of the compressibility and excludes the possibility of an exact analytical
solution. Approximate analytical solutions, however, can be obtained by perturbation
methods, as discussed in Section 1.4. Finally, in Section 1.5 we present the objectives, and

outline the chapters of the thesis.



Table 1.1: Components of the equations of motion in Cartesian coordinates when both the

density and the viscosity are pressure dependent.

Continuity equation

o(pu,) , 2(eu,) | o(pu,)
OX oy oz

=0

X-momentum eq uation

ou, |, Gy ou 0 dp o, o, &y,
P U +Uy +U, =__+77(p) 2 Y2 T
ot OX oy 0z 15)4 OX oy oz
ou ou
U'(p) 2@5uX+@ 5Ux+ y +@ %_I_% _20p GUX+ y+6uz
ox ox oyloy ox ) az\lar ox) 3ax\lox oy @
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Table 1.2: Components of the equations of motion in cylindrical coordinates when both the

density and the viscosity are pressure dependent.
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1.1 Weak compressibility

This thesis is concerned with flows of liquids, which are usually considered as
incompressible. Such an assumption is valid if the applied pressures are not high and/or the
flow is steady. At high processing pressures the effects of non-zero compressibility may be
magnified and the presence of the density time-derivative in the continuity equation may
affect dramatically the flow dynamics even for small values of the compressibility

parameter (Georgiou and Crochet, 1994a).

Laminar Poiseuille flows of weakly compressible gases have been of special interest in the
past few decades and have been studied extensively as a result to their importance in many
processes which involve gas flows in long capillaries or at high speeds (Venerus, 2006).
Gas flows in long capillaries at high speeds are observed in micro-electro- mechanical
systems (MEMS) where the gas is forced to flow in microchannels or microtubes, thus
causing the appearance of compressibility effects (Arkillic and Schmidt 1997, Guo and
Wu, 1997, Ansumal and Karlin, 2005, Cai et al., 2007).

Compressibility effects in liquid flows become important at high processing pressures, i.e.
in flows in relatively long tubes. Waxy crude oil transport (Vinay et al, 2006), polymer
extrusion (Georgiou, 2003, Georgiou and Crochet, 1994a, Tang and Kalyon, 2008a,
Hadjikyriakos et al, 1992, Piau and Kissi, 1994) and polymer injection molding (Kwon,
1996) are important cases of liquid flows in long tubes were the effects of compressibility

cannot be neglected.

In flows of weakly compressible materials, two equations of state are usually employed at

low pressures:

(@) the linear equation of state:
p=p[1+B(P-1o)]. (1.10)

where ﬂz—(@V /ap)p . 1V, is the isothermal compressibility which is assumed to be

constant, V is the specific volume, po and po are respectively the density and the specific
volume at the reference pressure po and T is the temperature which is assumed to be

constant too; and

(b) the exponential equation of state:

p=pe’Ph) (1.11)



For small g and low pressures the linear equation is a very good approximation of the

exponential equation.

The Mach number, Ma, is defined as the ratio of a characteristic velocity, Vo, of the flow to

the speed, o, of sound in the fluid:

=
[e)]
i

Q |<

(1.12)

where

@

y being the heat capacity ratio or adiabatic index. For weakly compressible flows, Ma «1,

usually Ma<0.3.

In the literature, one can find various numerical solutions for weakly compressible
Poiseuille flows for Newtonian fluids (Guo, 1997, Georgiou and Crochet, 1994a, Georgiou
and Crochet, 1994b, Guo and Wu, 1998) which is the case that we focus on in the thesis,
for generalised Newtonian fluids (Cawkwell and Charles, 1989, Golay and Helluy, 1998,
Keshtiban et al, 2005, Mitsoulis et al., 2007, Silva and Coupez, 2002, Tang and Kalyon,
2008a) such as the Carreau fluid (Georgiou, 2003), for the Bingham plastic (Vinay et al.,
2006) and for viscoelastic fluids (Belblidia et al., 2006).

In flows of liquids such as polymer melts, the combination of compressibility with
nonmonotonic slip laws relating the wall shear stress to the slip velocity (Hadjikyriakos
and Dealy, 1992) is reported to be the cause of the stick-slip polymer extrusion instability.
The stick-slip polymer extrusion instability refers to the sustained pressure and flow rate
oscillations observed under constant throughput. The compressibility-slip combination
effect is confirmed by experimental observations and numerical simulations. Dubbeldam
and Molenaar (2003) used one-dimensional phenomenological models to describe the
pressure and flow rate oscillations and thus verifying the compressibility-slip effect while
Taliadorou et al. (2007) developed numerical simulations for the stick-slip extrusion
instability in the case of the time-dependent, compressible extrusion of a Carreau fluid,
assuming that nonmonotonic slip occurs along the wall and employing the nonmonotonic
slip law that was observed in the experiment of Hadjikyriakos and Dealy (1992a, 1992b).
Tang and Kalyon (2008a, 2008b) developed a mathematical model describing the time-

dependent pressure-driven flow of compressible polymeric liquids subject to pressure-
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dependent slip in the simple shear flow. They reported that undamped periodic pressure
oscillations in pressure and mean velocity are observed when the boundary condition

changes from weak to strong slip.

Taliadorou et al. (2008) reported extrusion simulations showing that the combination of
strong compressibility with inertia may lead to stabled steady-state free surface
oscillations, similar to those observed experimentally with liquid foams. Mitsoulis and
Hadjikiriakos (2009) carried out steady flow simulations of polytetrafluoroethylene
(PTFE) paste extrusion under severe slip taking into account the significant compressibility

of the pastes.

Perturbation and other approximate solutions have been reported for the weakly
compressible Poiseuille flow of a Newtonian fluid, mainly under the assumption of ideal
gas flow. In Prud’homme et al. (1986) the flow of an ideal gas in a long tube under the
assumptions of zero radial velocity component, zero pressure gradient and no gravity, is
approximated using a double perturbation expansion and taking the radius to length ratio
and the relative pressure drop as the perturbation parameters. Van den Berg et al. (1993)
and Zohar (2002) used a one-dimensional perturbation method for radial symmetric flow
and two lumped perturbation parameters to approach the compressible laminar flow in a

capillary and the subsonic gas flow in microtubes and channels with wall slip.

Venerus (2006) and Venerus and Bugajsky (2010) derived perturbation solutions in terms
of the compressibility for the axisymmetric and the plane isothermal Poiseuille flow of a
weakly, compressible Newtonian liquid respectively, using the steamfunction/vorticity
formulation and a linear relation of the density to pressure. Recently, Taliadorou et al.
(2009) obtained perturbation solutions of the plane and axisymmetric Poiseuille flows of a
weakly compressible Newtonian fluid. In their methodology, the perturbation is performed
on the primary flow variables, i.e. on the velocity components and the pressure. Housiadas
and collaborators (2011, 2012) extended the primary-variable perturbation method to
derive solutions of the plane and axisymmetric Poiseuille flows of a weakly compressible
Oldroyd-B fluid.



1.2 Pressure-dependence of viscosity

The viscosity of typical liquids begins to increase substantially with pressure when
pressures of the order of 1000 atm are reached (Renardy, 2003). Fluids with pressure-
dependent viscosity are also referred to as piezoviscous fluids (Suslov and Tran, 2008). In
such fluids, the dependence of the viscosity on pressure may be several orders of
magnitude stronger than that of density (Dowson and Higginson, 1966; Renardy, 2003;
Rajagopal, 2006; Roux, 2008). This is the case, for example, in fluid film lubrication, in
polymer extrusion, and in injection molding where the pressure can be very high leading in
large variations in the viscosity while the variation in density is insignificant (Szeri, 1998;
Denn, 2008).

The idea of a fluid with pressure-dependent viscosity was introduced by Stokes in his
seminal 1845 paper on the constitutive response in fluids (Stokes, 1845). Barus (1893) was
the first to propose an exponential isothermal equation of state for the viscosity of the form

n(p)=m,e", (1.14)

where 7 is the viscosity, p is the pressure, 7o is the viscosity at atmospheric pressure, and S
is the pressure-viscosity coefficient (which is temperature dependent)®. Even though Eq.
(1.14) is extensively used, it is valid as a reasonable approximation only at moderate

pressures. Barus (1893) himself used a more general equation of state of the form

n(p)=ne’™ (1.15)

which describes a stronger pressure-dependency at low pressures (Goubert et al., 2001).
Denn (2008) notes that, to a first approximation, the viscosity of polymer melts can be

written as follows
n=ne e, (1.16)

where 7, being the viscosity at atmospheric pressure (p=0) and the reference temperature

To, may depend on shear rate.

Bair et al. (2001) noted that the experimental data show that at high pressures, Eq. (1.14) is
not valid and that the use of more accurate models or experimental data is necessary. The
experiments of Kottke (2004) showed that the accuracy of Eq. (1.14) at negative pressure

2 The pressure coefficient of the viscosity should not be confused with the isothermal compressibility
introduced in section 1.1.



(i.e. cavitation) is unknown. Rajagopal (2006) pointed out that Eq. (1.14) works well up to
500 MPa, that is up to moderate pressures, and needs to be modified. Other equations
proposed in the literature in order to describe experimental observations on the pressure-
dependence of the viscosity have been reviewed by Malek and Rajagopal (2007). Other
useful reviews of experimental studies on the viscosity pressure dependence and the values
of the pressure-dependence coefficient® are those of Binding et al. (1998), Goubert et al.
(2001), and Carreras et al. (2006).

The pressure-dependence of the viscosity becomes important in processes involving high
pressures, such as polymer processing, fluid film lubrication, microfluidics, and in
geophysics. Due to these applications, fluids with pressure-dependent viscosity have
received an increasing attention recently. Relevant references are provided and discussed

in Chapter 2.

The pressure-dependence of the viscosity has been analyzed mathematically by Renardy
(1986, 2003), Gazzola (1997), Malek et al. (2002a, 2002b), Hron et al. (2003), Huilgol and
You (2006), Buli¢ek et al. (2007), Malek and Rajagopal (2007) and others. In these
analyses, some other convenient expressions were used for the viscosity pressure

dependence, such as
n(p)=Ap (1.17)
used by Hron et al. (2003), and
n(p)=1(1+5p) (1.18)

employed by Renardy (2003). Suslov and Tran (2008) pointed out that the linear
constitutive equation (1.17) does not guarantee positive definiteness of the viscosity which
requires the pressure to remain positive. This problem is not encountered when using the

exponential constitutive equation (1.14) or in flows where the pressure remains positive.

1.3 Wall slip

The idea of wall slip dates back to 1761 when Euler (1761) assumed that common liquids
slip over solid surfaces exhibiting Coulomb friction. Slip at the wall occurs in many flows
of complex fluids, such as suspensions, emulsions, polymer melts and solutions, miscellar

solutions, and foams, leading to very interesting phenomena and instabilities. These

¥ The values of the pressure-dependence coefficient £ are in the range between 7 and 45 10°/MPa (Carreras
et al., 2006).



important implications of slip have been reviewed by various researchers (Denn, 2001,
Hatzikiriakos and Migler, 2004). In order to better understand and simulate slip effects, it
Is necessary to have realistic slip velocity models. In a recent review, Hatzikiriakos (2012)
classified slip models into static (weak slip) and dynamic ones and pointed out that the
former are not valid in transient flows, since slip relaxation effects might become

important, leading to delayed slip and other phenomena.

The experimental data show that the slip velocity is in general a function of the wall shear
stress, the wall normal stress (which includes pressure), the temperature, the molecular
weight and its distribution, and the fluid/wall interface, e.g. the interaction between the
fluid and the solid surface and surface roughness [see Denn (2001) and references therein].
Neto et al. (2005) reviewed experimental studies of wall slip of Newtonian liquids and
discussed the effects of surface roughness, wettability, and the presence of gaseous layers.
More recently, Sochi (2011) reviewed slip at fluid-solid interfaces from different
perspectives, such as slip factors, mechanisms, and measurement, and discussed, in
particular, slip with non-Newtonian behavior, i.e. yield stress, viscoelasticity, and time
dependency. In this thesis we focus on the effects of wall shear stress on the steady-state
slip velocity. Therefore, we discuss only static slip models and refer the reader to the

review of Hatzikiriakos (2012) for dynamic slip models.

Let u, denote the velocity of a solid wall and u denote the velocity of a fluid. The slip
velocity u,, is defined as the difference between the tangential velocity of the fluid and the

tangential velocity of the solid wall, i.e.
u,=(u-u,)-[(u-u,)-nn, (1.19)

where the subscript w denotes a tangential component and n is the unit outward vector.
An alternative way to define the slip velocity is the following (Silliman and Scriven, 1980)
u, =L -(u-u,), (1.20)

where
I, =I-nn (1.21)
is the second-order surface identity tensor (i.e., the geometric tensor that projects vectors

onto the tangent plane to the wall surface), I is the conventional identity tensor, and nn

the surface normal dyadic. In the case of a fixed wall, u,=0. In the case of no-slip,

u, =0, or equivalently, u=u..
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If T is the stress tensor in the fluid, then the tangential stress at the wall <, is
1, =T-n-[(T-n)-n]n=I-(T-n). (1.22)

Following Fortin et al. (1991) we consider the vector form of a slip law relating the slip

velocity to the wall tangential stress:

u, =0, |1'W|Sz'c

TW:_(£+ Lo Juw, |‘rW|ZrC, (1.23)
a |u

where 7, is the slip yield stress, i.e. the stress below which no slip occurs, and « is the

slip coefficient. According to slip equation (1.23), the tangential stress acts parallel to the
slip velocity, but in the opposite direction. The factor 1/« can be viewed as the friction
coefficient (Fortin et al., 1991) or the momentum transfer coefficient (Silliman and
Scriven, 1980). According to Lawal et al. (1993) « is in general a function of the
invariants of the stress tensor. Huilgol (1998) notes that 1/« is not constant, but depends
on the magnitude of the slip velocity. Huilgol and Nguyen (2001) also assumed that Eq.

(1.23) can be inverted so that there is a unique solution for u,, in terms of 7.

The one-dimensional version of Eq. (1.23) can be written as follows:

w

_ 0, 7, <7,
o = a(r,—7,), T,27, (1.24)

w
When 7, =0, the classical slip law is recovered:

u, =ar,

w w*

(1.25)

The above equation was proposed by Navier (1827). The slip coefficient « varies in
general with temperature, normal stress and pressure, molecular parameters, and the
characteristics of the fluid/wall interface. The inverse of a can be viewed as the friction
dissipation coefficient. Obviously, for & =0, we have no slip, while for o — we get

perfect slip. The slip coefficient is also defined by

(1.26)

N
Il
I | T

where 7 is the viscosity and b is the extrapolation length, i.e. the characteristic length equal
to the distance that the velocity profile at the wall must be extrapolated to reach zero. In

another classic paper, Stefan (1874) also employed a linear slip equation in order to
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describe his experimental data on a Newtonian glycerol solution. The linear slip equation
(1.25) has been used widely for many other fluid systems, including very concentrated
suspensions (Yilmazer and Kalyon, 1989; Kalyon et al., 1993) and pastes (Adams et al.,
1997).

FLUID

XX ¥V

b WALL

Figure 1.1: Slip velocity and extrapolation length.

More complex, non-linear slip equations have also been proposed. Pearson and Petrie

(1965) postulated the following relationship

u, = f(z,)z,- (1.27)
A power-law expression,
u, =ary (1.28)

where m is the power-law exponent, has been widely employed by several investigators,
e.g. by Cohen and Metzner (1985), who studied experimentally the occurrence of slip in
agueous and organic polymer solutions, and by Jiang et al. (1986) to describe the slip

exhibited by gels used in hydraulic fracturing.

Experimental data on several fluid systems, such as linear polymers (mainly polyethylenes)
(Ramamurthy, 1986; Kalika and Denn, 1987; Hatzikiriakos and Dealy, 1991), highly
entangled polymers (Piau and El Kissi, 1994), pastes (Adams et al., 1997), and colloidal
suspensions (Ballesta, 2008; 2011), indicate that slip occurs only when the stress exceeds a
critical value 7., which is similar to a Coulomb friction term and can be viewed as a “wall
shear”, or “interfacial”, or, simply, “slip” yield stress. Roquet and Saramito (2008) also
used the term “yield-force” for this critical value. Hatzikiriakos and Dealy (1991) pointed
out that slip model (1.29) fails to describe the slip velocity in the neighborhood of 7, which
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is critical in understanding polymer slip phenomena. They thus used the following

Bingham-type equation:

0, r,<t,
U, =9 o (1.29)

0, T, ST,
u,, :{ (1.30)

has been used by various researchers in the analysis of squeeze flow of generalized
Newtonian fluids with apparent wall slip (Yilmazer and Kalyon, 1989; Ji and Gotsis, 1992;
Estellé and Lanos, 2007). A discussion on the validity of Eq. (1.30) as well as values of a
and m for certain systems are provided by Yilmazer and Kalyon (1989). The non-
monotonic slip equations proposed by Piau and El Kissi (1994) for highly entangled
polymers and by Leonov (1990) for elastomers also include a critical stress threshold

below which no slip occurs. These slip equations exhibit one or two stress minima.

1.4 Perturbation methods in fluid mechanics

Solving fluid mechanics problems involves the solution of a nonlinear system of partial
differential equations. Due to the presence of nonlinearity for most flow problems, it is rare
to find exact analytical solutions. Therefore, one can seek approximate analytical solutions
to the equations of fluid flow at hand. In order to seek an approximation, one or more
parameters of variables in the problem should be either small or large. These perturbation
guantities, most often than not, are dimensionless parameters of the problem. The
approximate solution becomes more accurate as the small perturbation quantity tends to
zero (or the large perturbation quantity tends to infinity). It is therefore called an

asymptotic solution.

For the sake of simplicity, let us assume we have only one perturbation parameter, denoted
by &. From a physical point of view & can only take positive real values. Also, it is never
uniquely defined; sometimes choosing the perturbation parameter ingenuously can greatly
simplify the problem. As ¢ tends to zero, the flow approaches a limit. We can call this limit
the basic solution. The basic solution can also be called the zero-order solution and

henceforth the first perturbation term is called the first-order solution, and so on. The basic
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solution and the subsequent perturbation terms added to it form an asymptotic expansion
(Holmes, 1995).

Let us now define an asymptotic expansion precisely: Firstly, we need to define an

asymptotic sequence. A sequence {fn} is called asymptotic sequence at & — 0 if for every

integer n

fua(e)=0(1,(¢), & £ >0 (131)

where the symbol o (“little oh”) means that

lim n2(8) g (1.32)

Now, let {fn} be an asymptotic sequence as ¢ —>0. We say that the function f is

expanded in an asymptotic series
f()~Ya,f, (), as &0 (1.33)
n=0

where a, are constants, if

Mz

VN>0 Ry(g)="f(¢g)- anfn(g)zo(f,\,(g)),g—>0. (1.34)

n=0
The series {f,} is called the asymptotic expansion of the function f with respect to the

asymptotic sequence f, . Ry (&) is called the remainder term of the asymptotic series. The

asymptotic expansion of a function with respect to an asymptotic sequence is unique and
may not converge. In a physical problem, the coefficients in an asymptotic expansion

depend on space and/or time other than ¢.

The usefulness of an asymptotic expansion arises from the fact that the error is, by
definition, of the order of the first neglected term, and therefore tends rapidly to zero as ¢ is
reduced. Retaining only a few terms, when ¢ is reasonably small, may provide a highly-
accurate approximation. If the asymptotic expansion is uniformly valid (in all regions of
the flow) we have a regular perturbation problem (in contrast to a singular perturbation
problem, where the asymptotic expansion fails to give a good approximation in certain
regions and another form of the solution must be sought). In this thesis, in Chapters 3 and

4, we solve regular perturbation problems.
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Note that the above asymptotic expansion refers to a problem with a single perturbation
parameter. However, it is often the case that two (or more) perturbation quantities
simultaneously approach zero (or other critical value-such as infinity). In those cases we
speak of a double (or multiple) asymptotic expansion. Indeed, in Chapter 4, for the
problem of weakly compressible flow with viscosity that is weakly pressure-dependent, we
identify two perturbation quantities, the isothermal compressibility and viscosity-pressure
coefficient, and we derive approximate solutions for the flow equations as double

asymptotic expansions.

1.5 Objectives and chapter content description

The objective of this thesis is to derive analytical solutions for different cases of laminar
Poiseuille flows of weakly compressible Newtonian fluids with pressure-dependent
viscosity with or without slip at the wall. More specifically, we consider the plane,

axisymmetric, and annular Poiseuille flows (illustrated in Fig. 1.2).

H yT)

(a)

(b)

Figure 1.2: Geometry and boundary conditions of (a) plane; (b) axisymmetric; and (c)

annular Poiseuille flows.

15



In Chapter 2, we derive analytical solutions for the plane, axisymmetric and annular
steady, laminar Poiseuille flows of a Newtonian fluid assuming that the flow is
incompressible, the velocity is one-dimensional, the viscosity increases linearly with
pressure, and no-slip occurs along the wall. The solution for the velocity and the pressure
is given in terms of a constant A, which is calculated numerically. The effects of the
viscosity pressure-dependence on the pressure and the velocity are discussed. (The solution
corresponding to Navier slip along the wall is provided in Appendix A.)

In Chapter 3, we consider both the plane, steady, laminar Poiseuille flows of a weakly
compressible Newtonian fluid assuming that Navier slip occurs along the wall and that the
density varies linearly with pressure. A perturbation analysis is performed in terms of the
primary flow variables using the dimensionless isothermal compressibility as the
perturbation parameter. Solutions up to the second-order are derived, and the combined
effects of slip, compressibility, and inertia on the solutions are discussed. (The solution for

the axisymmetric flow is provided in Appendix B.)

In Chapter 4, we consider the plane, steady, laminar, Poiseuille flow of a weakly
compressible Newtonian fluid with a viscosity that is weakly dependent on the pressure,
assuming that both the density and the viscosity vary linearly with pressure. A perturbation
analysis is performed on all primary variables using the dimensionless isothermal
compressibility and the dimensionless viscosity-pressure coefficient as the perturbation
parameters. Perturbation solutions up to the second order in terms of the two perturbation
parameters are derived and the combined effects of the compressibility and the viscosity

are discussed. (The solution for the axisymmetric flow is provided in Appendix C.)

In Chapter 5, the results of this thesis are summarised and suggestions for future work are

provided.
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Chapter 2

Poiseuille flows with pressure-

dependent viscosity

The pressure-dependence of the viscosity becomes important in flows where high
pressures are encountered. Applications include many polymer processing applications,
microfluidics, fluid film lubrication, as well as simulations of geophysical flows. Under the
assumption of unidirectional flow, we derive analytical solutions for steady, laminar plane,
round, and annular Poiseuille flow of a Newtonian liquid, the viscosity of which increases
linearly with pressure. These flows may serve as prototypes in applications involving tubes
with small radius-to-length ratios. It is demonstrated that, the velocity tends from a
parabolic to a triangular profile as the viscosity coefficient is increased. The pressure
gradient near the exit is the same as that of the classical fully-developed flow. This
increases exponentially upstream and thus the pressure required to drive the flow increases
dramatically®.

2.1. Introduction

The viscosity of fluids, such as polymer melts and lubricants, depends strongly on
temperature and to a less extent on pressure (Rajagopal, 2009). In such fluids, the
dependence of the viscosity on pressure may be several orders of magnitude stronger than
that of density (Rajagopal, 2009, Renardy, 2003). Denn (2008) emphasized that at a
pressure of about 5 MPa, which can be reached in extrusion and in injection molding, the
pressure dependence of the viscosity is expected to become important while the flow is still
incompressible. Therefore, it is reasonable to study isothermal, incompressible flow of
fluids with a pressure-dependent viscosity. The idea of a fluid with pressure-dependent
viscosity was introduced by Stokes (1845). Barus (1893) proposed an exponential

isothermal equation of state for the viscosity of the form

n(p) =mn,e*", (2.1)

* The material of this chapter appears in Kalogirou et al. (2011).
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where 7 is the viscosity, p is the pressure, 7 is the viscosity at atmospheric pressure, and A
IS the pressure-viscosity coefficient (which is temperature dependent). In polymer melts, 4
is typically 1-5 10® Pa™ (Denn, 2008). For lubricants, / varies from 10 to 70 MPa™
(Kottke, 2004). Venner and Lubrecht (2000) reported that for mineral oils A is generally in
the range between 10® and 2 x 10® Pa™. Carreras et al. (2006) compiled experimental
values of the shear pressure coefficient 1. Even though Eq. (2.1) is extensively used, it is
valid as a reasonable approximation only at moderate pressures. A compilation of other
equations proposed for the pressure dependence of the viscosity and useful references on

the subject has been provided by Méalek and Rajagopal (2007).

There are numerous experimental studies concerning the determination of the pressure
dependence of the viscosity of common polymer grades, such as polyethylenes (LDPE,
LLDPE, HDPE), polypropylene, polystyrene, etc. Comprehensive reviews are provided by
Binding et al. (1998) and Goubert et al. (2001) who compared measurement techniques in

the literature for evaluating the pressure dependence of viscosity.

As already mentioned, high pressures sufficient to cause significant change in the viscosity
appear in many polymer processing operations. Driving pressures of 50 and 100 MPa are
routinely required in extrusion and injection molding (Tadmor et al., 1999). The strong
effect of pressure and its potential importance in plastics processing led to the development
of high-pressure rheometers based on pressure driven or drag flow (Koran, 1999).
Cardinaels et al. (2007) discussed different methods to obtain pressure coefficients for
different polymers, such as PMMA and LDPE, from high-pressure capillary rheometer
data. More recently, Park et al. (2008) also compared different experimental methods for
the determination of the pressure coefficient of a styrenic polymer.

The pressure-dependence of the viscosity becomes important in other applications, such as
fluid film lubrication, microfluidics, and geophysics. In fluid film lubrication studies it is
essential to include the variation of the viscosity with pressure (Hamrock et al., 2004). For
technological applications in elastohydrodynamic lubrication and in thrust bearing or
journal bearing applications, where the lubricant is forced to flow through a very narrow
region which leads to very high pressures, the reader is referred to the work of Gwynllyw
et al. (1996). In the design of Micro Electro-Mechanical Systems (MEMS), the pressure-
dependence of the viscosity needs to be taken into account. Experimental data for liquid
flows in microtubes driven by high pressures (1-30 MPa) show that the pressure gradient is
not constant, an effect attributed to the pressure-dependence of the viscosity (Cui et al.,
2004, Silber-Li et al., 2006). In geophysical flows, the viscosity changes with the depth of
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the fluid. Convection in planetary mantles is most likely dominated by the strong
variability of the mantle viscosity depending on temperature and pressure (Binding et al.,
1998). In her mantle flow simulations, Georgen (2008) allowed the viscosity to vary over

three orders of magnitude from 10° to 10% Pas.

Mathematical issues arising in the case of incompressible Newtonian or non-Newtonian
flows with a pressure-dependent viscosity have been addressed by Renardy (1986),
Gazzola (1997), and Malek et al. (2002a, 2002b). The existence of flows of fluids with
pressure-dependent viscosity and the associated assumptions have been discussed by
Bulicek et al. (2007). The properties of such solutions are also discussed by Malek and
Rajagopal (2007).

In addition to Eq. (2.1), Hron et al. (2001) also assumed the following expression for the

viscosity pressure dependence:
n(p)=2p. (2.2)

They showed that unidirectional flows are not possible between parallel plates in the case
of the former model, since a secondary flow is necessary to that end. However,

unidirectional flows are possible in the latter case.

Renardy (2003) considered parallel shear flows of an incompressible Newtonian fluid
allowing a general pressure dependence for the viscosity and proved that a sufficient
condition for the existence of parallel pressure-driven flow in a pipe, regardless of its

cross-section, is the linear dependence of the viscosity on the pressure:
n(p)=m(1+1p). (2.3)

This condition is not necessary; Denn (1981) showed that the quadratic velocity profile in a
circular pipe remains a solution if the viscosity is an exponential function of the pressure.
As indicated by Renardy (2003) and also shown in the present work, the velocity profile is
not parabolic in the case of linear dependence of the viscosity; it may be almost parabolic
when this dependence is weak. According to Suslov and Tran (2008), the major concern of
the linear constitutive equation (2.3) is that it does not guarantee positive definiteness of
the viscosity which requires the pressure to remain positive. This problem is not
encountered when using the exponential constitutive equation (2.1) or in flows where the

pressure remains positive, such as Poiseuille flows.

It seems that Eq. (2.2) has been the most popular one in the various theoretical analyses

presented in the literature. Analytical solutions have been reported by Renardy (2003) and
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Vasudevaiah and Rajagopal (2005) for the round Poiseuille flow of a Newtonian fluid and
by Hron et al. (2001) and Huilgol and You (2006) for the plane Poiseuille flow of a
generalized Newtonian fluid. The reason for avoiding Eqg. (2.1) is obvious, since this
equation rules out the possibility of having analytical solutions, but Eq. (2.3) should be
more preferable than Eq. (2.2), since the latter predicts a vanishing viscosity at zero
pressure. Another advantage of Eq. (2.3) over Eq. (2.2) is that it involves a reference
viscosity constant. However, as shown below, both equations result in the same solution
for the velocity in the case of unidirectional Poiseuille flow. What is different is the

pressure distribution.

In the present work, we derive and discuss analytical solutions of axisymmetric, annular,
and plane Poiseuille flows of Newtonian fluids with pressure-dependent viscosity obeying
Eq. (2.3).

The rest of the chapter is organized as follows: in Section 2.2 the governing equations of
the flow are presented. In Section 2.3 the derivation of the analytical solution is described
in the case of the round Poiseuille flow. The solutions for the other two Poiseuille flows of
interest are also provided in Sections 2.4 and 2.5. In Section 2.6, the theoretical results and
the effects of the viscosity pressure-dependence are discussed and finally, in Section 2.7

we provide the conclusions.

2.2 Governing equations

For an incompressible Newtonian fluid, the viscosity of which is a function of pressure, the

Viscous stress tensor is given by
where

D:%[Vu +(Vu)T} (2.5)

is the rate-of-deformation tensor and u is the velocity vector. It can be shown in this case
that the Navier-Stokes equation in the absence of gravity and under the assumption of a

steady flow becomes:
pu-Vu=-Vp+n(p)Vu+2n'(p)Vvp-D. (2.6)

It should also be noted that the continuity equation for incompressible flow is
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V-u=0. 2.7)

In this Chapter, we consider incompressible Poiseuille flows of Newtonian fluids with

pressure-dependent viscosity obeying Eg. (2.3).

2.3 Axisymmetric Poiseuille flow

We consider the nondimensionalized governing equations of axisymmetric Poiseuille flow
in cylindrical coordinates with the origin located at the exit of the tube. The radial
coordinate, r, is scaled by the radius R and the axial coordinate, z, by the length L of the

tube and the viscosity # by the reference viscosity 7,. Moreover the axial velocity u, is

scaled by the mean velocity U at the exit, defined by

where M is the mass flow rate and W is the unit length in the z-direction and finally the
pressure p by 87,LU / R* (chosen so that the pressure at the inlet plane is equal to 1).
Hence the dimensionless form of the viscosity equation is

n*=1+ep™, (2.8)
where stars denote dimensionless quantities and

oo 8/17;)2LU

(2.9)

is the dimensionless isothermal compressibility number. For notational convenience, stars

will be dropped hereafter.
Under the assumption that the radial velocity component is zero, the continuity equation
dictates that U, =U, (r); hence, only the pressure is a function of both rand z, p=p(r,z).

As pointed out by Huilgol and You (2006), it is clear that as long as 67 /0dp is nonzero, a

pressure gradient in the flow direction induces one in the direction of the velocity gradient,

unless inertia is present. The z- and r-components of the momentum equation, defined over

the domain [0,1]x[~1,0], are simplified as follows:

—8@+(1+<9|0)11(rduzj+g@duZ =0 (2.10)
oz rdr\ dr or dr
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and

—8@+80(2@ au, =0,
or oz dr

(2.11)
where
R
a=— 2.12
C (2.12)

is the tube aspect ratio. By eliminating op/ or from Egs. (2.10) and (2.11) and separating

variables we find that

ldu, d?u,
rdr_drr __8 P__, (2.13)
gzaz duz 1+€p 0z
64 \ dr

where A is in general a function of r, taken here as a constant to be determined. We have

thus, two differential equations to be solved for u, and p. By solving the first equation of
Eqg. (2.13) for u, and applying the symmetry boundary condition (du, / or =0) at the axis

of symmetry and the no-slip condition (u, =0) at r =1, one finds that

I(Agaj

64 °\ 8

uz(r)_ Agz C{Z In (Aga j 1 (214)
I 3 r

where o is the zero-order modified Bessel function of the first kind (Watson, 1996). The
above expression has been previously derived by Renardy (2003) and Vasudevaiah and
Rajagopal (2005) who employed Eq. (2.2) instead of Eq. (2.3). By integrating the other
differential equation of Eq. (2.13), assuming that p(0,0)=0, and taking into account the

velocity profile, we find that

p(rlz)zl{lo[AgarjeAgz/s _1] (2.15)
g 8

The constant A is determined by demanding that the volumetric flow rate is 2z. This leads

to the following equation
2 2
2[n| 1, Acar )| g in| 1 [ A2 )| Asa o (2.16)
0 8 8 64
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which is easily solved for A by means of Newton’s method combined with numerical

integration.

If instead of Eq. (2.3), the following equation is used, as was done by Hron et al. (2001),
n(p)=¢cp (2.17)

the above procedure leads to Eq. (2.14) for the velocity and to the expression

p(r,z):élo('a‘g;“’jeA‘”’8 (2.18)

for the pressure. In both cases, the pressure increases exponentially upstream, which means
that an enormous pressure drop may be achieved with a tube of finite length.

2.4 Annular Poiseuille flow

Let us now consider the Poiseuille flow in an annulus of radii xR and R, where 0<x <1.
Using the same scaling and assumptions as in the axisymmetric case, we end up with the
same separated differential equations to be solved for U, (r) and p(r,z). An additional

dimensionless number is introduced, i.e. the radii ratio x. With the assumption of no slip

along the two walls, the following expression is obtained for the slip velocity

u(r)= 64 In [KO(B)_KO(BK)]Io(B)_[Io(B)_Io(BK)]Ko(B) (219
As’a? [KO(B)—KO(BK)]|0(BI’)—[|O(B)—|0(BK)]KO(BI’)
where
_ A
B= 3 (2.20)

and Kq is the first order modified Bessel function of the second kind. Assuming that

p(k,0)=0, the pressure is found to be given by

p(r,z) = lln {[KO(B) _ KO(BK)] l,(Br) _[IO(B) - Io(BK)] Ko (Br) a8 _

1. (2.21
[Ko(B)— Ky (B)] 1o(B)—[1,(B) — 1, (B K, (B) } (221)

Assuming that the (dimensionless) volumetric flow is equal to 2z, we find that the constant

A is the root of the following equation:

23



ZIlIn[(KO(B)—KO(BK))IO(Br)—(IO(B)—IO(BK))KO(Br)]rdr
) g (222)
—(1-%2)In[ (K, (B) = Ky (Bx)) 15(B) = (1,(B) — 1,(Bx)) K, (B) | + TR

2.5 Plane Poiseuille flow

We consider the pressure-driven flow in a channel of half-width H and length L and work
in Cartesian coordinates with the origin at the intersection of the midplane and the exit

plane of the channel and the x-axis in the flow direction. We nondimensionalize the

governing equations scaling x by L, y by H, u, by the mean velocity U, and the pressure

by 37,LU / H?. The resulting dimensionless numbers are

3An,LU

and ¢= g

(04

H
T (2.23)

One finds that the velocity and pressure are given by

Aca
cosh[ 5 j

U (y)=—7—1In (2.24)
As’ a COSh(Azayj

and

p(X,y) = 1{cosh (m)em“ —1} . (2.25)
£ 3

The constant A is determined by demanding that the volumetric flow rate is equal to unity.

It turns out that A is the root of

2 2
J.:In{cosh(Agsayﬂdy—In{cosh(Aga)}L Agga =0. (2.26)

The solution (2.24) for the velocity has also been derived by Hron et al. (2001) and Huilgol

and You (2006), who employed Eqg. (2.2) for the pressure-dependence of the viscosity.

2.6 Results and discussion

In this section we discuss only results for the axisymmetric and annular Poiseuille flows
(the results for the plane flow are similar to their axisymmetric counterparts). In order to

construct solutions for the velocity and pressure for the axisymmetric Poiseuille flow, the
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constant A must be determined from Eq. (2.16). It turns out that the latter equation has a

unique nonzero root only when the parameter

as = M%U (2.27)

is below the critical value
(ag) =813, (2.28)

As illustrated in Fig. 2.1, at low values of ae, A is insensitive to ae; this is not the case at

higher values and, as ae approaches the critical value, A grows rapidly to infinity.

Round Poiseuille flow
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Figure 2.1: The constant A as a function of the parameter ae¢ in axisymmetric Poiseuille

flow.

In Fig. 2.2, the calculated velocity profiles for various values of the parameter ae are
shown. For a¢<0.1 the velocity has the parabolic profile for incompressible flow and

then gradually tends to a linear profile:
U, o =3(1-T). (2.29)

Let us point out that (ag)_.

crit

denominator of the left-hand side of Eq. (2.13).

can be calculated analytically as the value zeroing the

The velocity profiles of Fig. 2.2 suggest that in the two-dimensional flow the axial velocity

Is expected to change from a parabolic to a more triangular profile as we move upstream.
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The velocity profiles of Fig. 2.2 are essentially the same as those obtained by Renardy
(2003) and Vasudevaiah and Rajagopal (2005) for a Newtonian fluid obeying Eq. (2.2)

instead.

Round Poiseuille flow
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Figure 2.2: Velocity profiles in axisymmetric Poiseuille flow for various values of the

parameter ae.

The pressure distributions obtained with « =0.01 and different values of ae along the wall
and the axis of symmetry are shown in Fig. 2.3. We observe that the pressure distribution
remains linear only near the exit and that as the parameter aec increases, the pressure
upstream as well as the pressure gradient increase exponentially with the length of the
tube. Clearly, the pressure required to drive the flow increases rapidly with the length of
the tube.
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Round Poiseuille flow
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Figure 2.3: Pressure distribution along (a) the axis of symmetry and (b) the wall for

0=0.01 and various values of ae; axisymmetric Poiseuille flow.
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Assuming that this is given by AP=p(0,-1) and that A=8 is a reasonable

approximation for sufficiently small values of ae, e.g. for very long tubes, one gets

1 &
AP ~ ;(e -1). (2.30)

Now, if it is also assumed that ¢ is small, Eq. (2.30) gives

2

E E
AP ~1+Z+Z-+0(&°%). 2.31
>t (°) (2.31)

The above expression can be viewed as a correction factor for the Hagen-Poiseuille
formula and can be used in measuring the viscosity from viscometric data obtained using

capillaries of different length.

In Fig. 2.4, we show the pressure distributions along the inlet and outlet planes of the tube.
We observe that the pressure starts deviating from the linear profile at sufficiently high
values of ae. At the inlet plane the pressure seems to be insensitive to r, i.e. the relative
deviations are negligible. This is not the case at the outlet plane where larger deviations are
observed when moving from the axis of symmetry to the wall. However, the absolute value

of pressure is essentially zero. These results are also illustrated in Fig. 2.5 where the
pressure contours for a short (2 =0.1) and a long (& =0.01) tube are plotted. For small

values of «, the contours appear to be vertical; the bending of the contours is more clearly

shown for bigger values of «, i.e. in shorter tubes.

In the case of annular Poiseuille flow, we have chosen to show results for x =0.1. In this
case, the parameter A is a unique nonzero root of Eq. (2.26) when oe¢ is below the critical
value 1.782, as illustrated in Fig. 2.6. It is easily shown that in general

(a€), ., =2(1+x)(1-&) (2.32)
and
%, K<r<(x+1)/2
z,crit = 4(1_r) (233)

———, (k+1)/2<r<1

1+ x)1—x)

In Fig. 2.7, the velocity profiles for various values of the parameter ae are shown. We
notice that for e <0.1 the velocity has the parabolic profile for incompressible flow
which steadily tends to the triangular profile described by Eq. (2.30) as ae approaches the

critical value.
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Figure 2.4: Pressure distribution along (a) the inlet and (b) the outlet planes for «=0.01

and various values of ag; axisymmetric Poiseuille flow.
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Round Poiseuille flow
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Figure 2.5: Pressure contours for various values of ae when (a) «=0.01 and (b) «=0.1;

axisymmetric Poiseuille flow.



Annular Poiseuille flow, k= 0.10
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Figure 2.6: The constant A as a function of ae in annular Poiseuille flow for x = 0.1.
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As in round Poiseuille flow, the pressure gradient is roughly constant only for low values
of ae. As the latter parameter increases, the pressure increases faster with the distance from

the exit plane. Figure 2.8 shows the pressure contours for a short (a:O.l) and a long

(a =0.01) annulus and various values of ae. The vertical contours for small values of o

begin to bend for bigger values of a, i.e. in shorter tubes.
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Figure 2.7: Velocity profiles in annular Poiseuille flow for x = 0.1 and various values of

the parameter oe.
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Annular Poiseuille flow, k= 0.10
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Figure 2.8: Pressure contours for various values of ae when (a) «=0.01 and (b) «=0.1;

annular Poiseuille flow for x=0.1.
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2.7 Conclusions

Analytical solutions for the steady axisymmetric, annular, and plane Poiseuille flows of an
incompressible Newtonian fluid with pressure-dependent viscosity, obeying Eq. (2.3), have
been derived, under the assumption of unidirectional flow. These solutions show that as the
pressure-dependence of the viscosity becomes stronger, the velocity profile, which is
independent of the axial coordinate, tends from a parabolic-type to a triangular profile and
the pressure, which is a function of both the axial and the radial coordinate, increases
exponentially upstream. The latter result implies that the pressure required to drive the

flow increases rapidly with the length of the tube.

In addition to the solution of the incompressible flow of a Newtonian fluid with pressure-
dependent viscosity, the solution under the combined effect of slip at the wall with

viscosity pressure dependence is presented in Appendix A, for the case of the plane flow.
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Chapter 3

Weakly compressible Poiseuille flows

with Navier slip

We consider both the plane and axisymmetric steady, laminar, Poiseuille flows of a weakly
compressible Newtonian fluid assuming that slip occurs along the wall following Navier’s
slip equation and that the density obeys a linear equation of state. A perturbation analysis is
performed in terms of the primary flow variables using the dimensionless isothermal
compressibility as the perturbation parameter. Solutions up to the second order are derived
and compared with available analytical results. The combined effects of slip,
compressibility, and inertia are discussed with emphasis on the required pressure drop and

the average Darcy friction factor®.

3.1 Introduction

In a recent paper (Taliadorou et al., 2009), second-order perturbation solutions of both the
planar and axisymmetric Poiseuille flows of weakly compressible Newtonian fluids have
been derived using a methodology in which the primary flow variables, i.e. the velocity
components and pressure, are perturbed, a linear equation of state is employed, and
compressibility serves as the perturbation parameter. The same solutions were derived by
Venerus (2006) and Venerus and Bugajsky (2010) respectively, for the axisymmetric and
planar flow problems using a streamfunction/vorticity formulation. Housiadas and
Georgiou (2011) have recently extended the primary-variable methodology to derive
perturbation solutions of the planar Poiseuille flow of a weakly compressible Oldroyd-B
fluid. The aforementioned references provide useful reviews of previous perturbation and

other approximate solutions of the flow problems under consideration.

The objective of the present chapter is to extend previous work for a Newtonian liquid
allowing linear slip at the wall in order to study the combined effects of weak
compressibility, slip and inertia. The importance of slip in a variety of macroscopic flows

® The material of this chapter appears in Poyiadji et al. (2012).
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and processes has been emphasized in numerous studies in the past few decades (Denn,
2001; Hatzikiriakos and Migler, 2005 and references therein). Strong interest has also been
recently generated due to the effects of slip in microfluidic applications (Stone et al.,
2004).

In flows of liquids, such as polymer melts and waxy crude oils, compressibility may
become important when the liquids are processed at high pressures, which is the case with
polymer extrusion (Hatzikiriakos and Dealy, 1992; Piau and El Kissi, 1994) or with flow
through long tubes (Vinay et al., 2006). The stick-slip polymer extrusion instability,
referring to the sustained pressure and flow rate oscillations observed under constant
throughput, is attributed to the combination of compressibility with nonmonotonic slip
laws relating the wall shear stress to the slip velocity (Hatzikiriakos and Dealy, 1992), as
confirmed by one-dimensional phenomenological models (Dubbeldam and Molenaar,
2003) as well numerical simulations (Taliadorou et al., 2007). Tang and Kalyon (2008a;
2008b) also developed a mathematical model describing the time-dependent pressure-
driven flow of compressible polymeric liquids subject to pressure-dependent slip and
reported that undamped periodic pressure oscillations in pressure and mean velocity are
observed when the boundary condition changes from weak to strong slip. Taliadorou et al.
(2008) reported extrusion simulations showing that severe compressibility combined with
inertia may lead to stable steady-state free surface oscillations, similar to those observed
experimentally with liquid foams. Mitsoulis and Hatzikiriakos (2009) carried out steady
flow simulations of polytetrafluoroethylene (PTFE) paste extrusion under severe slip

taking into account the significant compressibility of these pastes.

The above material flows are weakly compressible, which means that the Mach number,
Ma, is low, i.e. Ma<<1. The latter number is defined as the ratio of the characteristic speed
of the flow to the speed of sound in the fluid. Georgiou and Crochet (1994) pointed out that
taking into account the weak compressibility of the fluid may not have an effect on the
steady flow solution but changes dramatically the flow dynamics. Similarly, Felderhof and
Ooms (2011) studied the flow of a viscous compressible fluid in a circular tube generated
by an impulsive point source and reported that compressibility has a significant effect on

the flow dynamics in confined geometries.

The combination of slip with compressibility is also very important in rarefied gas flows
through microchannels and need to be taken into account in the micro-electro-mechanical
systems (MEMS) technology (Beskok and Karniadakis, 1999; Zhang et al., 2009). There

are of course some important differences from the liquid flow problem under
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consideration: (a) the continuum assumption may not be valid and slip velocity is
expressed in terms of the Knudsen number Kn (the ratio of the mean free path of the gas to
the characteristic dimension of the tube); (b) the ideal gas law is used instead of the linear
equation of state; and c) the flow is non-isothermal. Arkilic et al. (1997) and, more
recently, Qin et al. (2007) derived perturbation approximations for compressible gas flow
in microchannels with slip at the wall using the aspect ratio as the perturbation parameter.
According to conventional theory, continuum based models for channels apply as long as
the Knudsen number is lower than 0.01 (Kohl et al., 2005). On the other hand, according to
Venerus and Bugajsky (2010), effects of slip in microchannels can be neglected for
Knudsen numbers less than 0.001 Therefore, the present analysis concerns not only flows
of compressible liquids with slip at the wall but also gas flows for 0.001<Kn<0.01.

The chapter is organized as follows: In Section 3.2, the solution of the steady,
compressible plane Poiseuille flow with slip at the wall is presented; the results for the
axisymmetric flow are provided in Appendix B. Both the state and slip equations are
assumed to be linear. In subsection 3.2.1 the governing equations and boundary conditions
for the plane flow are presented. In subsection 3.2.2, the perturbation method in terms of
the primary variables with the isothermal compressibility as the perturbation parameter is
outlined and a solution is derived up to the second order. Explicit analytical solutions for
the two non-zero velocity components, the pressure, and the density are obtained. In
subsection 3.2.3 the volumetric flow rate and the stream function are given. In Section 3.3,
the results are analyzed and discussed with the emphasis given on the combined effects of
slip and compressibility on the pressure drop and the Darcy friction factor and finally in
Section 3.4 the conclusions are outlined.

3.2 Plane Poiseuille flow

3.2.1 Governing equations

We consider the steady, laminar plane Poiseuille flow of a Newtonian fluid in a slit of

length L and width 2H in Cartesian coordinates (X, Y), as shown in Fig. 3.1.

l{“_ Tw = ﬁz{w

=<0
—>
>
L

Figure 3.1: Geometry and symbols for plane Poiseuille flow with slip along the wall.
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It is assumed that slip occurs along the wall according to a linear slip equation,
7,=pu, (3.1)

where 7, is the wall shear stress, S is the constant slip coefficient, and u,, is the slip
velocity. The limiting case 8 — oo corresponds to the no-slip boundary condition (u, —0),
whereas £ =0 corresponds to the theoretical case of full slip in which the velocity profile
is plug.

Let us consider first the incompressible, one-dimensional flow under constant pressure

gradient, (—ap/éx) . The velocity U, () is given by

H( op 1( op 2 2
u(y)=—|-—|+—|-——1|(H"-Yy"), 3.2
) ﬁ( 2] 277( axj( ) 32
where 7 is the constant viscosity. Obviously, the slip velocity is given by
u, = UX(H)=5(—@) (3.3)
P ox

If the fluid is compressible, the flow becomes bidirectional and the two velocity
components, ux and uy, are in general functions of both x and y. The isothermal
compressibility is a measure of the ability of the material to change its volume under

applied pressure at constant temperature. This is defined by

Kz—i(ﬁj , (3.4)
Vo ap Po.To

where V is the specific volume, po and V, are respectively the density and the specific
volume at the reference pressure, po, and temperature, To. Assuming that « is constant, the
above equation can be integrated yielding an exponential equation of state. In the present

work however, we employ a linear equation of state,

p=po[L+x(p—py)] (3.5)

which approximates well the exponential equation for small values of x and for small
pressures. The value of « is of the order of 0.001 MPa™ for molten polymers (Hatzikiriakos
and Dealy, 1994) and increases by an order of magnitude (0.0178-0.0247 0.001 MPa™) in
the case of PTFE pastes (Mitsoulis and Hatzikiriakos, 2009). Mitsoulis and Hatzikiriakos
(2009) suggest that for weakly compressible flows, the values of x range between 0

(incompressible fluids) and 0.02 MPa™ (slightly to moderately compressible materials).
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The linear equation of state can also be viewed as a special case of the well-established

Tait equation and its variants for liquids and polymer melts (Guailly et al., 2011).
In order to nondimensionalize the governing equations and the boundary conditions of the

flow, we scale x by the length of the channel L, y by the channel half-width H, the density

p by the reference density po, the horizontal velocity, u,, by the mean velocity at the
channel exit U,
M

U= ,
PoHW

where M is the mass flow rate and W is the unit length in the z-direction, and the
transversal velocity, u, , by UH/L. The Mach number is defined by

Ma = E, (3.6)
o}

SR

is the speed of sound in the fluid, y being the heat capacity ratio or adiabatic index

where

(»=c, /¢,).With the above scalings, the dimensionless slip equation becomes

z =Bu,, (3.8)

w w

where all variables are now dimensionless and B is the slip number defined by

_AH (3.9)
7

The dimensionless velocity profile in the case of incompressible flow becomes

3 3B
u(y)= 1-y? 3.10
) B+3+2(B+3)( y) (3.10)
or
B B,
ux(y)=§+7(l—y ). (3.11)
where
g =B (3.12)
B+3



is an auxiliary slip number. In the no-slip limit, B — o andB" — 3. Therefore

ul” (y) =g(1— y?) (3.13)

which is the standard velocity profile for incompressible flow with no slip at the wall.

By demanding that the dimensionless pressure gradient in the case of incompressible flow
with no slip at the wall be equal to 1, the pressure scale should be 37LU/H?. The

dimensionless form of the equation of state (3.5) is then

p=1+ep, (3.14)
where
= 3KZ';U (3.15)

is the dimensionless compressibility number. The Mach number takes the form

Ma= [22Re g=(3—7j|\/|a2. (3.16)
3y aRe

The present work deals with weakly compressible flows, e.g. Ma<0.3. Assuming that y is

of the order of unity, there must hold caRe<0.27.

The dimensionless forms of the continuity and the x- and y-momentum equations in the
case of compressible Poiseuille flow under the assumptions of zero bulk velocity and zero

gravity (Taliadorou et al., 2009) are

o(pu,) O(pu
(pu)  2low) (317)
X oy
2 2 2 52u 2
aRep UX%wLU o, :—3@+a28u;+8u;+a— y+au2X (3.18)
ox Yoy OX oxt  oy? 3| oxoy  ox
ou ou o%u o%u 2( 52y 0%
a’Rep|lu —L+u,—L |=— @+a4—2"+a2 2y+a_ Oy | > |, (3.19)
OX Yoy oy OX oy 3 (oxoy oy
where
Re=2HY (3.20)
n
is the Reynolds number, and
az% (3.21)

w

9



is the aspect ratio of the channel.

As for the boundary conditions, the usual symmetry conditions are applied along the
symmetry plane; along the wall ux obeys the slip equation (3.8) while uy vanishes.
Moreover, the pressure at the upper right corner of the flow domain is set to zero and the
mass flow rate at the exit plane should be equal to 1. Therefore, the conditions that close

the system of the governing equations are the following:

ou,

(x,0)=u, (x,0)=0 (3.22)

“M 1y =Bu,(x1) and u(x1)=0 (3.23)
p(L1) =0 (3.24)

j: pu dy =1 (3.25)

As in Venerus (2006) and Taliadorou et al. (2009), no boundary conditions for the velocity
are imposed at the entrance and exit planes (X=0 and 1). The flow problem defined by
Egs. (3.14), (3.17)-(3.19) and (3.22)-(3.25) involves four dependent variables, uy, uy, p, and
p, and four dimensionless numbers: ¢, B, Re and «. Even though the density p can be
eliminated by means of Eq. (3.14), it is kept in order to facilitate the derivation of the

perturbation solution.

3.2.2 Perturbation solution

The present work deals with weakly compressible flows, that is the Mach number is small,
typically Ma<0.3. From (3.16), it is deduced that as long as Ma is small and y/(aRe) is of
the order of unity or smaller, the compressibility number ¢, is also small number that can
be used as the perturbation parameter. We thus perturb all primary variables, uy, uy, p, and

p, as follows:

u =u® +eul’ + 2P +0 (e
_y©
u, =uj +gu§“+gzu§z)+0(
(0) @, 240 (3.26)
p=p"+ep?+e2p?+0(e

p= p(o) + gp(l) + 6‘2,0(2) +0(&°
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By substituting expansions (3.26) into the governing equations (3.14),(3.17)-(3.19) and
also in the boundary conditions (3.22)-(3.24) and in the condition (3.25) and by collecting
the terms of a given order in ¢ the corresponding perturbation equations and the boundary
conditions are obtained. These can be found in Taliadorou et al. (2009) who present the
more general case with non-zero bulk viscosity. As for the slip equation, it can easily be

shown that

oul ’
- ay (x,)=Bu¥(x,), k=0,12,... (3.27)

where k is the order of the perturbation. In what follows, emphasis will be given only to the
derivation of the second-order solution; the derivation of the leading-order solutions, which
is based on the assumption that the transverse velocity uy is zero, is straightforward and the
methodology is the same as that described by Taliadorou et al. (2009). The zero-order
solution is obviously the standard incompressible Poiseuille flow solution:

u§°>(y)=§—B(B+2—By2), ul® =0, p(o)(x)=%(l— x), p%=1.  (3.28)
The first-order solution is as follows:

*2

u® =—§—B(B+2—By2)(1—x)

*4
—;‘SF;%BBZ [582+458+98—3(1182+77B+140) y?+35(B” +5B+6)y‘ ~7B(B+1) ye]
(3.29)
Uy’ =0 (3.30)
0B 8RB (5pe 1487 4 358 4+35)(1-x)+ L0 (1-y?) (331
PV == g (1-x) + 5 g (287 +14B° +36B+35) (1-x)+ ——(1-¥*) (33D)
0 (yy_ B
P (%)= 5 (1-x) (3.32)

At second order, the assumption for zero transverse velocity is relaxed. Based on

symmetry arguments, it is assumed that u{? is an odd function of the form

u? = Ay+AY +AY +AY', (3.33)

where A, A, As, and A, are unknown constants. By following the procedure outlined

below it can be shown that all higher-order terms in (3.33) must be zero. For simplicity, we
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employ here only the non-zero terms. Also, from the boundary condition u, (x,1) =0, we

get
A+A+A+A=0. (3.34)

(2)

From the state equation we have p'’ = p(l) and hence

*2 * 2p*2
@B xy+AR8B (5B 14m7 43581 35)(1-x)+ Lo (1-y?).(3.35
P =2 (1x) + a2+ (1-y°) 339
Integrating the second-order continuity equation with respect to x gives
2 1 0 au(Z)
u( ) — -p ) () p( ( ) (1 X) y (y), (336)

with F(y) being an unknown function. Substituting all the known quantities into the above

equation, we get
*3

u =2 (B+2-By?)(1-X)"+ (A +3AY* +5AY + TAY")(1-X)

B aReB™
22680B*
~(39B* +273B° +840B” +1260B) y*

[67 B* +603B% + 2170B2 + 3780B + 2520

—(3554 +175B° +210B% ) y* +(7B° + 218 yﬁ](l— X)

108 -2(B+1)y? +y]+F
(3.37)

Applying now the second-order slip condition (3.27) we get the following equation

*

a283

=0
27B?

(1—x)[(A1+3A2 +5A3+7A4)+%(6A2+20A3+42A4):|+ F(1)+%F'(1)+

which is satisfied for any x in [0,1] only if

aZBS

F'W)+BF () =-

(3.38)
or
BA +3(B+2)A,+5(B+4)A +7(B+6)A, =0. (3.39)

Integrating now the y-component of the second-order momentum equation with respect to

y and substituting all known quantities gives
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p(z) _ aZ B*S
54B

a’ReB™
+—
204120B*

(B+2- Byz)(l—x)+%2(Al+3A2y2 +5A" +7AY°)

[ 67B* +603B° + 2170B” +3780B + 2520 (3.40)
—~(39B* +273B° +840B° +1260B) y
—(35B* +1758° +210B% ) y* +(7B* + 21B°) y° |+ G(x),
where G(X) is a second unknown function to be determined.
Substituting all the known quantities in the second-order x-momentum equation and after

some rearrangement we get

aReB” N
— (B+ 2— Byz)(Al +3A,y? +5Ay* +7A4y6)—aReB (Aiy2 +AY +HAY+ A4y8)
«’Re’B™®
+—
22680B°
—(34B° +306B* +1288B° + 2940B + 2520B ) y* —(32B° + 224B* + 350B° - 2108 ) y*

[3185 +341B* +1594B® + 3962B? + 5040B + 2520

+(42B° +210B* +252B° ) y°* - (7B° + 21B*) ys]— O‘SZB;

(11B+20-15By* )~ F"(y)

- _B;a_x)z ~3G'(X)+(6A, +60Ay* +210A,y*)(1-X)
aReB™

189087 [5983 +413B° +980B +840—-70(B* + 5B + 6B) y* + 35(B°® +3Bz)y4}(1— X).

(3.41)

+

In order to be able to separate variables, we demand that the terms involving both (1—x)

and y are scalar multiples of (1— x). This is equivalent to setting

aReB™

_ aReB® (B+3)
11340B '

 1620B2

(B*+5B+6) and A, =- (3.42)

A

Solving the system of Egs. (3.34) and (3.39) for A and A, we find:

aReB™ aReB™
=— " (5B*+45B+98) and A, =————(11B®>+77B+140). (3.43
A 1134082( ) % 1134052( ) (343)
Therefore, ugz) is given by

ReB™
u®

V= 1132087 [(582 +45B+98)y—(11B”+77B+140) y* +7(B” +5B +6) y° —(B’ +3B)y7]

(3.44)

or
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ReB™
O

=T T3a0s? Y(17V")[ 587 +45B +98-2(3B° +16B+21)y" +(B* +3B)y' |  (3.45)

In order to complete the derivation of the second-order solution we now need to determine
(2)

the unknown functions F(y) and G(x). Substituting u,

into Eq. (3.41) and separating

variables we get the following two ODEs:

_a’Re’B”
11340B°
+(3B° +27B" + 252B° +1050B” +1260B ) y* +(39B° + 273B" + 525B° +105B° ) y*

a’B® ,
e (11B+20-15By*)—F"(y)

[—(1355 +143B* + 703B°% +1883B? + 2520B +1260)

—(35B° +175B* + 210B°) y° + 6(B® +3B") ng

B*3

4aReB™
-2 (1-x) 4+
5 (1-x)"+

2155 (2B°+14B” +35B+35)(1-x)—3G'(X) = A,

(3.46)

where A is an unknown constant. Solving the first ODE of Eq. (3.46) for F (y) we get:

2 2n*6
F(y)= —&85[40(1385 +143B* +703B° +1883B” + 2520B +1260) y*
1512008
+30(B® +9B* +84B° +350B° +420B)y* +12(13B° + 91B* +175B°+35B° ) y°*  (3.47)
a’B™
216B

[2(11B+20)y* —SBy“]—%AyZ +Cy+C,,

where ¢, and c, are unknown constants.

Condition ou,(x,0)/dy=0 in Eq. (3.22), gives F'(0)=0 and thus ¢, =0. Applying

conditions (3.25) and (3.38) and solving the resulting system for A and c, we find that
B*a? o’Re’B”’

~ 81B2 0823275B°
+951720B° +1964655B7 + 21829508 +1091475)

A=

(4B2 +19B + 27)+ (3044|36 +42616B° + 267036B*

(3.48)

and

o - aB" __a’Re’B”
2 648B2 314344800B°
+731346B2 +1409100B +1358280).

(52 +7B+ 4) (219355 +35088B* +221641B°

(3.49)

Hence,
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a’B™

Fly)= 648B
a’Re’B”

~ 314344800B°
—4(2839 B® +39746B* + 239316B° + 803880B’ +1576575B +1455300) y* (3.50)

+2310(B° +12B" +111B° + 602B” +1470B+1260) y* + 924(13B° +130B" + 448B°

[BZ+7B+4-6(BZ+5B+2)y2+5(82+35)y4]

[219385 +35088B* +221641B° + 731346B° +1409100B +1358280

+560B° +105B) y° ~5775(B® +8B* +218° +18B° ) y° + 616(B° + 6B* +9B°)y" |.
Integrating for G(x) the second ODE in Eq. (3.46) we get:

*3
G(x)= §—4(1— x)’ —%(283 14B”+35B +35)(1-x)° +§A(1— X)+¢;,(3.51)

where the unknown constant c; is determined from condition (3.24):

3 *5
c,=—2RB _(_2p7 15687 +3158+315), (3.52)
255158

with which the derivation of the second-order solution is completed.

In summary, the perturbation solution of the flow problem up to second order is:

*

*2

u, (X, y):E—B(B+2—By2)+g{—§—B(B+2—By2)(l—x)

~ aReB™
7560B°

| 5B” +45B+98-3(L18° + 77B+140) y* +35(B* +5B+6) y* ~7(B’ +3B)y6ﬂ

+& (B+2-By*)(1-x)" - [193 +171B° + 658B* +1260B + 840
128 756

+3(3B" +21B° ~140B) y* —35(84 +5B° +6B°)y* +7(B* +3B°) y6](1— X)

a’B™

© 648B?
___a’Re’B”

314344800B°

~4(2839B° +39746B* + 239316B° + 803880B” +1576575B +1455300) y’

+2310(B° +12B* +111B° + 602B +1470B +1260) y* + 924(13B° +130B" + 448B°

[Bz+3B+8+2(BZ+7B)y2 —3(BZ+SB)y4]

[219385 +35088B* +221641B° + 731346B* +1409100B + 1358280

+560B” +105B) y° —5775(B° +8B" + 21B° +18B° ) y° + 616( B® + 6B* + 9B° yl°}+o(g3)
(3.53)

2 aReB™

U, (¥) =" T gpom7 Y- y?)[5B” +45B +98—2(3B° +16B + 21)y* +(B” +3B)y* |+O(<*)

(3.54)
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*

*2 *4
R O

o’B”
5 S1EET (2B°+14B° +35B +35)(1-x)+ = (1- yz)}
B™ s «aReB™ 2
+g2[a(1_x) BT (4B°+28B° +70B+70)(1- x)
a’B"

2 2p*7
T [11B7 +53B + 72-3(B? +3B)y? | (1 X) + —— Re’B

——— (3044B° + 42616B°
294698258

+267036B* +951720B° +1964655B2 + 2182950B + 1091475) (1— X)
a’ReB™

+—3[97B3 +889B” +2310B +1260—3(7983 +553B% +1120B + 420) y’
204120B

+175(B° +5B% +6B) y* - 35(B° +382)y6ﬂ+0(83)

*

(3.55)
B B 2> aReB™
p:1+g?(l—x)+g2 {—E(l—x) RTEre (283+14Bz+358+35)(1—x)
- (3.56)
o
(B (1—y2)}+0(33)

Letting B — o« we get the solution obtained by Taliadorou et al. (2009) and Venerus and

Bugajsky (2010) for flow with no-slip at the wall. The perturbation solution for the
axisymmetric flow is given in Appendix B.

3.2.3 Volumetric flow rate and stream function

The volumetric flow rate,

Q(x)=[ u, (x,y)dy (3.57)
IS given by

*

*2 *4
Q(x):l—g%(l— X)+&° [%(1— X)" - %ngs (2B°+14B* +35B +35)(1-X)
a’B”®

(3.58)
~055 (2B +5)}+O(53).

The streamfunction y(x,y), defined by

oy oy
— = pUu d —=—=-—pu
puUy an PU,

is found to be as follows:
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*

w(XY) :—5—8[3(B+2)y— By3]

aReB™
7560B2
»| _aReB”
11340B?
+7(B*+5B+6)y° —(B*+38B)y’ |(1-x)

sy afsseey sy

N a’Re’B”
943034400B°
- 4(2839 B® +39746B* + 239316B° +803880B* +1576575B + 1455300) y®

+1386(B° +12B +111B° +602B* +1470B +1260) y*
+396(13B° +130B* +448B° +560B° +105B ) y’

~1925(B° +8B* +21B° +1887) y* +168(B" +6B* +9B°)y* | |+ O(+).

+&

[(532 +45B +98)y —(11B% + 77B +140)y° +7(B? +5B +6) y* - (B? +3B)y7]

[(582 +45B+98)y —(11B* + 77B +140)y’

| 3(21938° +35088B" + 221641B° + 731346B” +1409100B +1358280) y

3.3 Results and discussion

Let us first discuss the effect of the slip number on the two velocity components. In
creeping flow (Re=0), the transverse velocity component, uy, is zero at second order. The
effect of the slip number B on the transverse velocity is shown in Fig. 3.2. The transverse
velocity is reduced as the slip number is reduced from infinity (no slip) to zero (full-slip).
As slip becomes stronger the velocity in the flow direction tends to become more uniform
and thus the flow tends to become one-dimensional. Given that the transverse velocity
component is always positive (Eq. (3.54)), the streamlines of the flow under study are
either horizontal or have a slight positive slope which reaches its maximum value roughly
in the middle of the y-interval [0,1]. The effect of slip on the transverse velocity
component is more clearly illustrated in Fig. 3, where the reduced mean value,

u, 1 ,[l B*

aReg® aReg® o  (v)dy 1120(B +3)°

(19B% +209B+504)+O(£*)  (3.59)
is plotted versus the slip number B. Appreciable slip occurs in the range 1<B<100 and slip

may be considered as strong for B<1. In conclusion, the unidirectionality assumption is

valid when the flow is creeping and/or slip is strong.
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Figure 3.2: Effect of the slip number on the transverse velocity component.
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Figure 3.3: The mean transverse velocity as a function of the slip number.

In Fig. 3.4, the contours of the velocity in the flow direction for B=wo (no slip) and 1

(strong slip) with Re=0, ¢=0.1, and ¢=0.01 are compared. Even though the contour patterns

are similar, the main difference is that the range of the velocity values, which in the case of

no-slip is the interval [0, 1.5], shrinks with slip (Fig. 3.5); in the extreme case of full slip,

Uy is uniform and equal to 1 at the channel exit.
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Figure 3.4: Contours of uy for B=cw (no slip) and 1 (strong slip); Re=0, ¢=0.1, and a=0.01

B=w
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0'60 0.2 0.4 0.6 0.8 1

y
Figure 3.5: Profiles of the velocity in the flow direction at x=0, 0.5 and 1 for B=x (no

slip) and 1; e=0.1, Re=0, and a=0.01.
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The effect of the compressibility number & on the contours of uy for Re=0, «=0.01 and B=1
(strong slip) is illustrated in Fig. 3.6. In Fig. 3.7, the velocity contours obtained with Re=0
and 100 and B=1, &=0.1, and a=0.01 are shown. The results are essentially the same, since
higher-order contributions contain the product aRe which is small. To magnify the effect
of aRe, the velocity contours for a shorter channel with aspect ratio o=0.1 are plotted in
Fig. 3.8. It is observed that the effect of Reynolds number becomes significant. Note that,
the Mach number corresponding to Re=100, ¢=0.1, and =0.1 is equal to 0.6 (y is of unity
order) and the flow can no longer be considered weakly compressible. However, the
asymptotic expansions are still valid since the compressibility number is still small. Note
that, since Re=3(y/as)Ma’, when the compressibility number ¢ and the Mach number
are small (<0.3), solutions are admissible only below a critical value of the Reynolds
number. (For example, the critical value for Re is 270 for the data in Fig. 3.7 and is
reduced to 27 in Fig. 3.8 where « is increased from 0.01 to 0.1.) Generally, as the channel
becomes shorter (o increasing) the admissible Reynolds numbers get smaller-the flow

tends to creeping flow.

Figure 3.6: Contours of uy for e=0 (incompressible flow) and 0.1, Re=0, B=1 and a=0.01.



Re= 0

1.1

0.9

0.8

Re= 100

0.9

0.8

:
iﬂ

Figure 3.7: Contours of uy for Re=0 and 100, a=0.01 (long channel), B=1, and ¢=0.1.
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Figure 3.8: Contours of uy for Re=0 and 100; a=0.1 (shorter channel), B=1, and ¢=0.1.
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Figure 3.9: The volumetric flow rate at the inlet plane for different Reynolds numbers with

0=0.01 and no slip at the wall (B=x).

Another way to investigate the validity of our solution arises from looking into the
volumetric flow rate given by Eq. (3.58). Since the solution is up to second order, Q is a

parabolic function of ¢ for any value of x. At the exit plane,

2Rp?

Q(l):l—%g“rqgs). (3.60)
Obviously, Q(1) is slightly below unity, given that ac is small. Since the flow is
compressible, the volumetric flow rate is reduced as we move upstream. A solution is
assumed to be admissible if the volumetric flow rate Q(0) at the inlet is a decreasing
function of ¢ and positive. In Fig. 3.9, Q(0) is plotted versus ¢ for various Reynolds
numbers, with B=co (no slip) and «=0.01. In creeping flow (Re=0), solutions are admissible
for e<1/3. As the Reynolds number is increased, Q(0) decreases faster with ¢ and may
become negative for even smaller compressibility numbers. In other words, given the
compressibility number, the aspect ratio, and the Mach number, solutions are admissible

only below a critical value of the Reynolds number, which has also be noted above.

As shown in Fig. 3.10, slip weakens the compressibility effects and reduces the reduction
of the volumetric flow rate upstream. As a result, slip extends the range of admissible
solutions by shifting the minimum of Q(0) to the right (Fig. 3.11).
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Figure 3.10: Variations of the slip velocity and the volumetric flow in the channel for
different slip numbers, e=0.1, Re=0, and a=0.01.
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Figure 3.11: Effect of slip number on the volumetric flow rate at the entrance plane; Re=0,
0=0.01.
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From Eq. (3.56), we see that the density p at the exit plane is 1 at leading order. At the inlet

plane, where the density obviously is maximized, we have

B 2
p(X=0):1+B+38+O(8 ) (3.61)

The maximum value for p, obtained in the case of no slip (B=wx), is given by
Pro =1+£+0(%), (3.62)

and is independent of Re and a. In creeping flow, £<1/3 and thus the maximum admissible
value of the density for any a is pmax=4/3, which restricts the range of validity of the
solution. However, more compression, which is expected for very small values of « (for
very long channels), can be obtained only if higher values of the compressibility number
are admissible, i.e. for lower values of the Reynolds number. In other words, moderately
compressible flow is associated with finite, moderate Reynolds numbers. Recalling that for
weakly compressible flow we have aeRe<0.27, such a combination of ¢ and Re is allowed

only for smaller values of the aspect ratio «.

Generally, slip reduces the pressure in the channel and the required pressure drop. In Fig.
3.12, we show the distribution of the pressure along the centreline for different slip
numbers, ¢=0.1, Re=0 and a=0.01. As the slip number tends to zero (full slip) the pressure
tends to become zero everywhere.

€=0.1, Re=0, a=0.01
1 T T T T

0 0.2 0.4 0.6 0.8 1
X

Figure 3.12: Variation of the pressure along the centreline for various slip numbers;
e=0.1, Re=0, 0=0.01

54



Following Venerus and Bugajsky (2010) we calculate the mean pressure drop as follows

4p=p(0)- B =, p(0.y)- p(Ly)]dy, (3.63)

which gives

- * *2 *4
Ap= %—5{8—— aReB (2B° +14B7 + 358 +35)}

18  315B°
*3 *5 2p*4
+6° B——M—ei(233+1482+353+3s)— @B (5B +25B+36)
54 945B 243B (3.64)
2 2n*7
+LBG(3044BG +42616B° +267036B* +951720B°
294698258

+1964655B2 + 21829508 +1091475)}+o(g3).

Equation (3.62) gives the pressure drop for channel flow of a compressible Newtonian
fluid with slip at the wall. This is a generalization of the result provided by Venerus and

Bugajsky (2010) for the no-slip case (B — ):

%Zl—Ké—EaRejg+[l—§az —ﬁaRe+ go44

azRe2j52+O(53). (3.65)
35 2 3 35 13475

(It should be noted that the Reynolds number in Venerus and Bugajsky (2010) is twice the
present Reynolds number.) It is clear that the required pressure drop decreases with
compressibility and increases with inertia, as illustrated in Fig. 3.13. The effect of slip is
illustrated in Fig. 3.14 where the pressure drops for various slip numbers are plotted. Slip
leads to the reduction of the pressure difference required to drive the flow and
consequently alleviates compressibility effects. This is, of course, expected and also noted
in previous works. For example, Zhang et al. (2009), in their analysis of slip flow
characteristics of compressible gases in microchannels, reported that “slip effect makes the
flow less compressible”. For the set of values used to construct Figs. 3.13 and 3.14, the
wall and centerline pressures are essentially constant, i.e. the pressure is essentially a
function of x. Hence, the pressure contours are practically straight lines, parallel to the inlet
and exit planes (Fig. 3.15). This is not the case for short channels, e.g. when a=1, since the
contributions of the higher-order terms become more important; this effect is illustrated in
Fig. 3.16.
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Figure 3.13: Effect of the Reynolds number on the mean pressure drop, no slip, a=0.01

Re=0, a=0.01
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Figure 3.14: Effect of the slip number on the mean pressure drop; Re=0, a=0.01.
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Figure 3.15: Pressure contours for different compressibility numbers, £=0.2 Re=0, and
B
M
B= 10
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Figure 3.16: Pressure contours for different compressibility numbers, €=0.2, Re=0, and

a=0.01 (long channel).

=

a=1 (short channel).
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The mean pressure drop for axisymmetric Poiseuille flow of a compressible Newtonian

fluid with slip at the wall, defined by

N 1
4p=p(0)-p(1)=2 [ p(0.2)-p(L.2)]rdr (3.66)
Is:
L * *2 *3
Asz——{B——&BZ(BZ+4B+8)}g
8 |128 2048B

+|: B™ aReB*A(Bz+4B+8) a’B” (4982+3008+576)

1024 8192B2 © 294912B?
a’Re’B™

+———— (2B +24B" +171B° + 648B° +1080B +864) | s* + O (°).
14155776B

(3.67)

The above equation generalizes the result in Venerus (2006) for the no-slip case:

. 2 2pa2
Ap=1-|1_@Re), [1_aRe 249a" a'Re £2+0(s%). (3.68)
2 2 12 21

We have derived a solution for equations (3.17)-(3.19) and (3.22)-(3.25) which is valid for
all values of the channel aspect ratio a. It is, moreover, obvious from equation (3.19) that
we recover the lubrication approximation (a°<<1) with the transverse pressure gradient
being zero when aRe<<1 if all terms of order & or higher are neglected. (The aspect ratio
cannot be identically zero, since, in this limiting case, the pressure scale, i.e. the pressure
required to drive the flow in a channel of infinite length with no slip at the wall, is infinite.)
Therefore our solution gives the lubrication-theory solution in the presence of slip if we
neglect the terms of order a? or higher and assume that aRe<<1. The transverse velocity
component vanishes, the pressure and the density are functions of x only, and the pressure
drop is given by

B B? B®, s
Ap:?—ﬁg'i'ag +O(€ ) (369)

The velocity in the flow direction is simplified to:
B* 2 B* B*2 2 9 3
u, :E(B+2—By ){1—?(1—x)g+?(1— X) & }o(g ). (3.70)

As already discussed, such a solution is admissible if Q(0) is a decreasing function of the

compressibility number ¢. This condition is satisfied when

58



LA (3.71)
3B B

If a more refined solution is desired, one could construct perturbation expansions using «
as the perturbation parameter (for any compressible flow) or double asymptotic expansions
where both ¢ and a are perturbation parameters.

In the case of the axisymmetric Poiseuille flow, the average Darcy friction factor, defined

by

f

8 riou,
s jo - 1,2)dz, (3.72)

is of interest. Integrating the above equation yields

Re f B B |1 B B |1 13B+12 ,
= 1-— —— aRe |+ 7| = — a
32 B+4| B+4|2 12(B+4) (B+4) |2 72(B+4)
2 3 2
B +28+4a e+17B +78B +360E;+1440a2Re2 22 +O(83).
4B(B+4) 2160(B +4)

(3.73)

In the no-slip limit (B — o), one finds that

Rg—zle—(%—éaRejg+(%—;—2a2 —%aRe+%20a2Re2jgz +O(83). (3.74)
Venerus (2006) compared the pressure drop and the friction factor for the no-slip case,
defined respectively by Egs. (3.66) and (3.72), and noted that the effect of inertia on
pressure drop is significantly larger than on drag force. He also pointed out that the one-
dimensional models for the no-slip case overpredict the friction factor by roughly 10%.
Similarly to the pressure drop, the average Darcy friction factor is reduced dramatically
with slip, as shown in Fig. 3.17. For a given slip number, it is essentially constant for a
wide range of the parameter aRe corresponding to the weak compressibility regime and
then increases rapidly. In Fig. 3.18, the average Darcy friction factor for Re=0 and 50,
€=0.2 and a=0.1 is plotted versus the slip number B. It can be seen that the friction factor is
reduced with slip following a sigmoidal curve and also that the Reynolds number effect

becomes weaker by slip.
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Figure 3.17: The average Darcy friction factor for the axisymmetric Poiseuille flow versus

aRe for various slip numbers; ¢=0.2 and o=0.01.

€=0.2 a=0.1

Re /32

B

Figure 3.18: Average Darcy friction factor for the axisymmetric Poiseuille flow versus the
slip number for Re=0 and 50, ¢=0.2 and a=0.1.

60



3.4 Conclusions

We have derived perturbation solutions of the weakly compressible plane and
axisymmetric Poiseuille flows with Navier’s slip at the wall thus generalizing previous
results by Taliadorou et al. (2009) and Venerus and Bugasjsky (2010). The density is
assumed to be a linear function of pressure and the associated isothermal compressibility
number is used as the perturbation parameter. In the proposed derivation, the primary flow
variables, i.e. the two velocity components, the pressure, and the density, are perturbed.
Solutions have been obtained up to second order. The corresponding expressions of the
volumetric flow rate and the pressure drop are also provided and discussed. As expected,
slip weakens the y-dependence of the solution. The unidirectionality assumption is valid if

the Reynolds number is very small and/or slip along the wall is strong.
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Chapter 4

Weakly compressible Poiseuille flows

with pressure-dependent viscosity

4.1 Introduction

We consider the steady, laminar, plane, Poiseuille flow of a weakly compressible
Newtonian fluid with a viscosity that is weakly dependent on the pressure, assuming that
both the density and the viscosity vary linearly with pressure. A perturbation analysis is
performed on all primary variables using the dimensionless isothermal compressibility and
the dimensionless viscosity-pressure coefficient as the perturbation parameters. This
double asymptotic expansion allows us to derive analytical perturbation solutions up to the
second order. These generalise the solutions obtained in Taliadorou et al. (2009) for the
constant-viscosity case and those in Chapter 2 for the incompressible case, which
correspond to the two limiting cases, and allow the study of the combined effects of

compressibility and the viscosity pressure-dependence.

The chapter is organized as follows: In Section 4.2 the governing equations of the plane
Poiseuille flow are presented along with the appropriate boundary conditions, and then
they are dedimensionalized. In Section 4.3 (subsections 4.3.1-4.3.6) the perturbation
method is applied on the primary variables of the flow in terms of two perturbation
parameters and approximate, analytical, perturbation solutions are obtained. In Section 4.4
the solutions are discussed in terms of the various parameters that appear in the solutions.

The conclusions of the chapter are summarized in Section 4.5.

4.2 Governing equations

We consider the steady, laminar, plane Poiseuille flow of a Newtonian fluid in a slit of

length L and width 2H in Cartesian coordinates (x, y) as in Fig. 4.1
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L

Figure 4.1: Geometry of steady, laminar, plane Poiseuille flow.

The fluid is assumed to be compressible with zero bulk viscosity, therefore the viscous

stress tensor is given by
2
rzn(ZD—EIV-u], (4.1)

where 7 is the pressure-dependent viscosity,
n=n(p), (4.2)

I is the unit second-order tensor, and D is the rate of deformation tensor defined by
D= 1[Vu +(Vu)’ ] (4.3
5 : .

is the rate-of-deformation tensor and u is the velocity vector.

Under the further assumption of zero gravity, the momentum equation becomes
! 1 2 !
pu-Vu=-Vp+n(p)Viu+2n (p)Vp-D+§n( p)V(V-u)—gry (P)VpV-u. (4.4)

Since we assume bidirectional flow, u, =0, we consider only the x- and y momentum

equations:

X-momentum

au au op (o, o\ nfd%u, O,
plu —+u, —* |=——+7n t— |t >t
OX oy OX OX oy 3| ox° oOxoy

ou ou
+28_77%+8_77 %_’__y _ga_n %4__)/
ox ox oyloy ox ) 3ox\ox oy

(4.5)
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y-momentum

ou ou o’u, 0% u, 2%
plu —+u,— =—6—p+77 —+— +1 %+—2y
OX oy oy ox*oy" ) 3(oxoy oy

o o 0 (49)
u u u
+a_77 %_'__y +26_77_y_ga_77 %_F_y .
ox{ oy ox oy oy 30oy\ ox oy
The continuity equation for a steady compressible flow is given by
V-(pu)=0 (4.7)
or
ol pu
a(pux)+ ('0 y)=0 (4.8)

OX oy
for the two dimensional flow.
As for the boundary conditions, we apply again the symmetry conditions along the
symmetry plane (y=0) while u, and u, vanish along the wall (no slip and no

penetration). The pressure at the upper right corner of the flow domain is taken to be equal

to zero. Therefore the boundary conditions are:

(Zyux (x,0)=u,(x,0)=0, xe[0,L] (4.9)

u (x,H)=u,(x,H)=0, xe[0,L] (4.10)
p(L,H)=0. (4.11)

We employ a linear equation of state for the density,
P =po[1+x(p—p,)], (4.12)

where x is the constant isothermal compressibility. The constant x is a measure of the
ability of the material to change its volume under applied pressure at constant temperature,

and it is defined by

Kz_i(ﬂj , (4.13)
VO ap Po.To

where V is the specific volume, po and V, are respectively the density and the specific

volume at the reference pressure, po, and temperature, To.

We also employ a linear equation for the viscosity
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n=n,[1+A(p-p,) ] (4.14)

where 7, is the viscosity at atmospheric pressure and A is the viscosity-pressure
coefficient (which depends on the temperature).

To nondimensionalize the governing equations and the boundary conditions, we scale x by
the length of the channel L, y by the channel half-width H, the density p by the reference
density po and the viscosity n by the reference viscosity 7o Furthermore, we

nondimensionalize the horizontal velocity, u,, by the mean velocity at the channel exit U
which is defined by
M

U= ,
P HW

with M being the mass flow rate and W the unit length in the z-direction. The transverse

velocity u, is nondimensionalized by UH /L and the pressure by 37;,LU / H 2

The dimensionless forms of the equation of state (4.12) and of the viscosity equation (4.14)

are
p=l+ep (4.15)
and
n=1+5p, (4.16)
where
3xn,LU
55% (4.17)
and
34in,LU
55% (4.18)

are the dimensionless compressibility number and viscosity-pressure coefficient,

respectively.

The dimensionless forms of the continuity and of the x-momentum and the y-momentum
equations in the case of compressible Poiseuille flow under the assumptions of zero bulk

velocity and zero gravity are as follows:

o(pu,)  oewy) (4.19)
OX oy
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2 A2 2 2 aZU
aRep(uX (Zux auxj:_3@+n[4a 0 u, +a U, +O(_ YJ
X

’ OX 3 ox? 23 ox
K ¥ v (4.20)
ou ou
Za an Zau ouy, +a_77 %+a2—y
3 OX ox oy oy \ oy OX
au ou 82 62
aRep u—+u _y :_38_p+a277 a? 2 4 18u
ox oy oy OX 3 ay 3 oxoy
(4.21)
6“ au
+a28_77 az y +aux +2a 877 2 aux
OX oxX oy 3 oy ay ox
where
Re= 2110 (4.22)
o
is the Reynolds number, and
H
=7 4.23
Y=L (4.23)

is the aspect ratio of the channel.

The dimensionless conditions that complete the system of the governing equations are:

aauyx (x,0)=u,(x,0)=0, xe[0,1] (4.24)
u, (x,1)=u,(x,1) =0, x<[0,1] (4.25)
p@1)=0. (4.26)

Even though the density p and the viscosity # can be eliminated using Egs.(4.15) and

(4.16), they are kept in order to facilitate the derivation of the perturbation solution.

4.3 Perturbation solution

In Chapter 3, we had considered problems whose approximate analytical solution was
presented as an asymptotic expansion in a single perturbation parameter which was the
small compressibility number ¢. In Chapter 2, the dimensionless viscosity-pressure
coefficient ¢ appears in the exact analytical solution (in Chapter 2, ¢ is denoted by ¢). In
the current problem we assume that both the density and the viscosity depend weakly on
the pressure, so we have two small numbers in the governing equations (4.19)-(4.21); the

compressibility number & and the dimensionless viscosity-pressure coefficient 6. Provided
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that both ¢ and o are small, & <<1, & <<1, we assume that the solution, in terms of the
primary variables uy, uy, p, p and #, is represented as a double asymptotic expansion in &
and ¢, as shown below:

u, =u'™ 4+ 2ul + 5ul™ + £ 4 52U 4 esu™ + hot.
u, =ul® +eul® + 5ul + £2ul + 52 + esul™ + hot.
p=p" +5p™ +5p ™ +£2p® 1+ 52p 1+ £5p™ +hot. (4.27)

(00)

0=+ 0" + 5™ 4+ £2p® 4 525 1 c5p™ +hot.

n :77(00) +877(1o) +577(01) +8277(2o) +5277(02) +8577(11) +hot.,

where h.o.t. stands for higher order terms, which in this case are terms of

O(&%,6% 6°5,65%) and higher. We substitute the expansions of Eq (4.27) into the

governing equations (4.15), (4.16), (4.19)-(4.21) and into the boundary conditions (4.24)-
(4.26) and collect the terms of the same order in ¢ and J. Thus, we derive perturbation
equations and boundary conditions for the zero-order as well as for the orders ¢, 6, &,
d%and ¢0. The systems are solved analytically for all primary variables uy, Uy, p, p and 5. By
retaining all orders above, we allow enough generality in our solution to be able to

investigate the three possible cases: € ~d, e <<d and € >>0 .

The systems of orders 1, ¢, J, &%, 6° and &, that are formed from the above equations and

boundary conditions are presented in Tables (4.1)-(4.6).
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Table 4.1: Zero-order equations and boundary conditions

Continuity equation

%(p(oo)uioo))+%<p(oo)u§oo))=0

x-component of the momentum equation

00
o Re p(oo)[u(w) ouy” (o) O

o Y gy ox

00 00 2, (00 2, (00
(00) au )J:_Bap( )+77(00)[40!2 0 Uf( LT )+a28

3 oX OX oy

. 20 877(00) {2 6u§°°) ) au(yoo) J+ an(OO) [au(xoo) 2 5”§OO)J

y-component of the momentum equation

3 (00) | (00
a’ Re u +
p ( X 8X y ay

(00) (00) 2, (00) 2, (00)
) Uy 4 ou, J _ 3 o™ ) (az o'u,” 40°U, 1 azuioo)
2

+

OX OX oy

State and viscosity equations
P =1and 5 =1
Boundary conditions
(00)
%(X,O):ugoo)(x,o):o, x<[0.1]
ul™ (x,1)=u'®(x,1)=0, xe[0,1]

p®@(1,1)=0

J'Ol p(oo)u )((00) dy =1

(00) ou'® (00) 2 ~.(00)
01 [az ) 207 an™ |,
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Table 4.2: Equations and boundary conditions of order ¢

Continuity equation

0 ( (00),00)  (10) (00)), O ( (00) (10) (10 (00)) _
&(p u, ' +p° U, )+5(,0 uy, '+ )—0

x-component of the momentum equation

10 00 10 00 00 00
o Re p® [uf’) 5;§ D o U )J uRe p<1o>£u(00) ouy? (oo 0

x ox Y ey !
(10) 2 A2, (10) 2, (10) 2 62u(1°) 2 A2 (00) 2, (00)
:_36p_+77(00)[4a ou, " Ou o Oy | 43 dfu o

3 X o 3 oy

2 . (00) 1) gy 2 A (10) (00) oy
L 20° On [28“X ) 2a® op™) (el )

3 oX OX oy 3 oX OX oy
(00) (10) oy (10) (00) ou'®
+877 au, e +877 ou, P et
oy oy OX oy oy OX

y-component of the momentum equation

(10) (00) (10) (00) (OO) (OO)
o Re p™ Uioo) au, -I-USO) ou, +u(yoo) ou, N u(ym) ou, +a*Re p u>(<00) ou, +u(yoo) ou,
OX OX oy OX oy
10 2, (10 2,(10) (10) 2.,(00) 2.,(00) (00
_ ap( ) +a277(00) 2 0 uy2 +ﬂ 0 Uy2 +152Ux +a277(10) 2 0 Uyz ﬂ 0 uyz laZUX )
OX 3 oy 3 oxoy OX 3 oy 3 oxoy
(00) oy (10) (10) oyl (00)
. on ol Y +aux e an ol Y +8UX
OX OX oy OX OX oy
N 202 677(00) ) GUSO) 4 au)((lo) N 202 67](10) ) au(yoo) . au)((oo)
3 oy a X 3 0y y X

State and viscosity equations
p(lO) _ p(01) and 77(10) -0
Boundary conditions
(20)
aliTX(x,O) =u” (x,0)=0, x<[0,1]

' (x,2)=ul”(x,1)=0, xe[0,1]
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Table 4.3: Equations and boundary conditions of order

Continuity equation

O ( (00) (01) , (01),.(00)), O ( (00) (01) (1), (oo)
ax(pu+pu)ay(pu+p )0

x-component of the momentum equation

oo oo oo

aRe (00) U(OO)
Pon T T T T Ty Y Ty

op™ [4052 o™ ™ g2 azugﬂ)} (01)[4052 o™ N o4 +a_262u§00)}
3

-3——

ox 3 ox° oy

2 A (00) ) gyl 2 A (00) () 5y(©@)
L 20° 0y {zaux M) 20t op® [, ol _ou

N
w
X

2

3 oX

(00) (01) ou'® (00) ou'®
+ on" | du, I R 877 au, ot
v oy Ty |y

y-component of the momentum equation

(Ol) (00) (01) (00) (00) (00)
4 Re p(oo{uioo)auy R T e R T J + o Re p<01>[ui00)a“y +u<yoo>9“y J

ox ox ooy ) ox oy

2,,(01) 2,,(01) 0 2,.(00) 2, .(00) 00
4 ap“”) vt @ o ,0 uy2 40°,” 100 vatn®| o2 0 uy2 40 uy2 Lot
OX 3 6y 3 OX 6y 3 oy 3 oxoy

2 877 au;”) au M, oo™ o

OX oy

2a on (00) $ au (01) au (01) . 20’ 877( ) au(yoo) (3U (00)

3 oy oy OX 3 oy oy

State and viscosity equations
=0and 7™ = p*
Boundary conditions

axy (x, O): (x 0)=0, xe[0,1]

u™(x,1)=u(x,1)=0, x[0,1]

y

p™(11)=0

r(p<oo> 01 500y )dy 0

0
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Table 4.4: Equations and boundary conditions of order &

Continuity equation

O ( (00) (20, (10),(0) (10} (00)), O ( (00) (20)  _(10) (10) _(20) (00))_
&(p u-"+po U+ o Uy )+5(p u "+ Uy + o Uy )—O

X-component of the momentum equation

au® oy au(® au® ouo oul®

a Re p(OO) (UE(OO) ax n uilo) ax n uizo) ax n u§/00) Xy ui/lo) ay n u(yZO) axy

X X X

(10) (00) (20) (00)
+aRe p* (U(OO) My g0 Mo M o) Oy ]
X X y y
OX OX oy oy
au(00) au(oo) (20) 4 82u(20) 82u(20) 2 azu(ZO)

+a Re p(zo) uioo) x u(yoo) N -3 op (00) | 4 Xz Xz a y

OX oy OX 3 ox 3 oxoy

207 o™, au™ _ou® ) 2a% oy [Lau® e | 207 op™ [ ou® o)
— _l_ —
3 ox OX oy 3 0OX OX oy 3 ox OX oy
677(00) 6U£20) ) ou'® 87](10) auilo) ) ou (377(20) au£oo) v ou'®@
a | o ox a | oy ox a | o ox
y-component of the momentum equation
(20) (10) (00) (20) (10) (00)
o* Re p'®) [U(OO) M oM e M e X e Oy
o oX *0X o oX Yooy Yooy Y
(10) (00) (10) (00)
+a° Re p*) (u(oo) - ut® i T ul®) L o o,
*0X o Yooy Yooy
(00) (00) (20
+a* Re p [U(OO) My g My } _ o™

2 (00) , 62u§20) 4 82u§20) 1 azu)((zo) 2 (1) , 62u§/10) 4 azuglo) 1 azu)((lo)
+a’n'™ | a R a ot —2— =
OX 3 oy 3 oOxoy OX 3 oy 3 oxoy
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Table 4.4: (continued)

02 52u'®) 2, ,(00) (00) ou'®) (20)
+a2n® | g2 y2 +ﬂ y2 +18 u, e on oM au,
OX 3 oy 3 oxoy OX OX oy
(10) oy (10) (20) ou'®@ (00)
pe on Pt B ouy e on Pt Y ou,
OX OX oy OX OX oy
L2t o™ (L ou® ) 20 oy [, ou” auf®
3 oy oy OX 3 oy oy OX
202 877(20) ) augoo) B 6u£°°)
3 oy oy OX

State and viscosity equations
p(zo) _ p(lo) and 77(20) _0
Boundary conditions

(20)
%(x,o)zufo)(x,o)zo, xe[0.1]

u® (x,1)=u®(x,1)=0, xe[0,1]
p®(11)=0

J-l(p(oo)u(zo) n p(lo)u)((lo) n p(zo)u)((oo) ) dy -0

0 X
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Table 4.5: Equations and boundary conditions of order &

Continuity equation

9
OX

y

(p(oo)uioz) +p(°l)u£01) +p(02)ui00)) N a

ay (p(oo)u(oz) i p(01)u(01) 4 p(oz)u(oo)) -0

X-component of the momentum equation

(02) (01) (00) (02) (01) (©0)
(00) | . (00) OUy (o1) OU, (02) OU, (00) OU, (01) OU, (02) OU
aRep| T o T T T Ty
X X X
(02) (00) (01) (00)
+aRe p™ uioo) ou, o o, n u§00) ou, + u§°l) ou,
OX OX oy oy
(00) (00) 02
+aRe p'™ | u® A, (00 M " |_ 4 op'™”
OX 6y OX
.\ () 40{2 azu)((OZ) 82u£02) 2 52u(yOZ) (o) 4052 azu)((m) quim) 2 62u§01)
" 3 ox 23 xoy 3 o oy> 3 oxoy
o 4at U ot UM aat o™ (o™ ouy?
7 3 ox? 2 3 oxoy 3 ox oX oy
202 on® [ ou®™ ™) 202 5@ ([ _au® ou™
3  oX 194 oy 3  OX OX oy
(00) au(oz) au(oz) (01) au(01) au(Ol) (02) au(oo) au(oo)
+877 X +0(2 y +a77 X +0(2 y +677 M —|—a2
o (% OX o | oy ox oy | oy P

y-component of the momentum equation

(@) (o (00) (@) (o (00)
a*Re p® | u® N, ul®™ N, ul® N, ul™ N, ul™ N, u!™ Ay
OX oX OX oy oy
(01) (00) (01) (00)
+a Re p®@ | y® ou, ™ au, +u§°°) o, +u(y01) au,
ox ox oy oy
ou'® ou'® 8p(°2)
+a®Re p® | ul® Lyl L | =3
OX oy oy
52u'® 52u'® 2,,(02)
+a277(°°) o> y2 +ﬂ y2 +1 o°u,
¢ 3 oyf 3 oxoy
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Table 4.5: (continued)

2, (01) 2,,(02) 0
+a277(01) az 5 Uyz 4 8 +1 azui l)

x 3 ay 3 oxdy
(@) az 52u§,00) 4 82 (00) Ea2u£00)

773 ay 3 oXoy

(00) ou® (02) (01) ou'™ (01)
+a? on a’ + N, +a’ on a’ + u,
OX OX oy OX oX oy
(02) ou'® (00)
+a’ on o’ ——+ u,
OX OX oy
2 A (00) [ 5yl®) (02) 2 40 ay@ (01
2a° 0n o Uy ouy N 2a° 0n oMy ou
3 oy oy X 3 oy oy oX
22 op™ [, 00" _ou®
3 oy oy X

State and viscosity equations

p(oz) ~0and 77(02) 3 p(01)

Boundary conditions
—X—(x,0)=u,"(x,0)=0, xe|0,1
T (x0)=u"(x0)=0, x<[o]
ul™ (x,1)=u?(x,1)=0, xe[0,1]
P (11)=0

.[l(p(oo)u)((oz)+p(0) (0 )+p )dy 0

0
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Table 4.6: Equations and boundary conditions of order &0

Continuity equation

% (p(oo)uf(n) +,0(10)U£01) +p(01)u)((10) +p(u)u)((oo)) n E (p(oo)ugn) +p(lo)u(m) +p(01)u(10) +p(ll)u(00)):0

X-component of the momentum equation

(11) (01) (10) (00) 11)
o Re p(oo) u)((oo) ou, +u§1°) ou, N uim) ou, + u)((ll) ou, + 500) ou,
OX OX OX OX oy
(01) 10) (00) (01) (01)
g ou, (o1) OU, 1) OU, +aRe o] 4 ou, +y© ou,
oy o oy ox Ty
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Table 4.6: (continued)

y-component of the momentum equation

(ll) (Ol) (10) (OO)
o Re p® | u®) ouy e ou, e ouy e au,
oX oX OX OX
(ll) (Ol) (10) (OO)
+u!%) oy +ul oy +ul™ oy +ult o,
oy oy oy oy
(01) (OO) (01) (00)
+a* Re p™| ul® N u® My My o 2
OX OX oy oy
(10) (00) (10) (00)
+a* Re p™ | ul™ N, u® L ul™ N ull® A,
OX OX oy oy
(00) (00) 11
raRep)| @ M u” o, | _goe
OX oy oy
aZu(ll) 4 azu(ll) 2 (11) azu(ol) 4 azu(ol) 1 62 (0]_)
+a277(00) a2 y 2T 10Uy +a277(10) a? y B Al U
ox* 3 oy* 3 oxoy ox*> 3 oy* 3 oxoy
+a277(01) 2 6zu§10) +ﬂ62U(ylo) lazu)((lo) +a277(11) 2 62u§°°) +ﬂazu§oo) +1 azu)((oo)
ox* 3 oy> 3 oxoy ox> 3 oy* 3 oxoy
(00) oyt 11) (10) ou'™ (01)
e on ol +aux g on o2 2 +aux
OX OX oy OX OX oy
(01) au(lO) (10) (1) 8u(°°) (00)
g on P S Y ou, e on o2 n ou,
OX OX oy OX OX oy
2 on'® zau‘yll) outy L2 onY Zau<y°1> ou™
3 oy oy OX 3 oy oy OX
2a2 877(01) 8U§10) au)((lo) N 2a2 677(11) , 5U§OO) ) 5U£OO)
3 oy oy OX 3 oy oy OX
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Table 4.6: (continued)

Boundary conditions

——(x, 0): (x 0)=0, xe[0,1]

u™ (x,1)=ul¥ (x,1) =0, x[0,1]
p*(12)=0

r( PO 4 10O 4 5000 4 )dy 0

0

In the following subsections, we outline the methodology that was followed to obtain

analytical solutions for the zero-order and the orders ¢, 6, %, 6°and &d.

4.3.1 Zero-order solution

. . ; (00) _ (00) _
Assuming that u!™ is equal to zero and using o™ =1and 7 =1 we have from the

continuity equation that

(©
a‘gxx =0 = u™ =u®(y). (4.28)

From the y-momentum equation we get

ap(OO)

5 0 p@ = p*®(x). (4.29)

The x-momentum equation gives us the differential equations

3ap(00) B azuioo)

o —A, (4.30)

where A is an unknown constant. Solving the two differential equations in (4.30) we find
that

u(oo)—éy +cy+c, and p

X

(0 = §x+c3, (4.31)
where ¢;, €2, and ¢z are unknown constants. Applying the boundary conditions
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ou (00)

we calculate that

A=-3, ¢, =0, szg, c, =1.

Therefore, the zero-order solution is:

(x,0)=0, u™(x,1)=0 and p°(11)=0

U = g(l_ yz)

ul™ =0

p™ =1-x (4.32)
o0 1

,7(00) -1

As expected, the solution at zero order is that of a steady, laminar incompressible plane,

flow with constant viscosity.

4.3.2 Solution of order ¢

The equation of state p™ = p'® and the viscosity equation 7 =0 lead to

p(lo) = p(oo) =1-X and 77(10) =0.
Assuming that u(ym) =0, the continuity equation becomes

(10) (10)
u(oo) 8p + aUX

N =0.
154 OX

By integrating Eq. (4.34) with respect to x we get
ul® = —§(1— y?)(1-x)+F(y),
g 2

where F(y) is an unknown function to be determined.

The y-momentum equation is simplified to

(10) 2 ~2,,(10)
_38p s o°uy _
oy 3 oxoy

Integrating the above with respect to y we get
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(4.33)

(4.34)

(4.35)



(10)_a2 2
p —E(l y*)+G(x),

where G (x) is an unknown function to be determined.
The x-momentum equation becomes

(0 (10) 2,,(10)
(00) OU :_36p N o°u

X X

X x oy

a Reu

which if we substitute uf’o) from Eq. (4.32) and use Egs. (4.35) and (4.36) leads to

A,

PR 1y - (y) =36/ (1) +3(1- 1)

where A is an unknown constant.

The solutions of the above ODEs for F and G respectively, are:

9a Re( y? N ° Ay?
F(y):T[y?—y?+%]+ ;’ +Cy+C,

and

where ¢, C,, and ¢, are unknown constants.
Applying the conditions

ouy” (10 (10
WX(X’O)ZUX (x,0)=0 and p"”’(11)=0,

we find that
F(1)=F'(0)=0 and G(1)=0.
Using now the order ¢ mass-flow condition

Il(p(OO)u(lo) " p(m)uﬁoo) ) dy=0,

0 X
we easily see that

_3aRe
56

A= , ¢,=¢C;=0, and c, =

Therefore the solution of order ¢ is:
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(4.36)

(4.37)

(4.38)

(4.39)

(4.40)

(4.41)



1) _ 3 3aRe
u'® __E(l_ y?)(1-x)+ 280 (-5-+33y*-35y" +7y°)
ul® =0
2

(10) _ (1—X) 18aRe o’

pt = — TR (1-x)+=—(1-¥?) (4.42)
p(lo) =1-x
7](10)=O

The solution represents the order ¢ effect of the compressibility of the fluid and as
expected, the solution agrees with that in Chapter 3 for the limiting case B — oo (no slip
limit) and in Taliadorou et al. (2009) for order ¢ that there is no effect on the flow due to

the pressure-dependence of viscosity at this order since 7" =0.

4.3.3 Solution of order o

Once more we assume that u(yo” =0 and from the state equation p(m) =0 and the viscosity

(02)

equation 7™ = p"”, we have that

P =0 and ™ =p® =1-x.
The order ¢ continuity equation leads to
u =u (y)=F(y),

where F(y) is an unknown function. Substituting all the known quantities into the y-

momentum equation anf integrating with respect to y we find

2,,2

p _2 2y +G(x), (4.43)

where G(x) is an unknown function. Substituting all the known quantities into the x-

momentum equation and separating variables we find

F"(y)=3G"(x)+3(1-x)=A, (4.44)
where A is an unknown constant. We can easily solve the two ODEs of Eq. (4.44) for F
and G:

2

A
F(y)="-+ay+e, (4.45)

and
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e(x)=@_§(1_x)+c3, (4.46)

where ¢, c,, and c, are unknown constants. Applying the boundary conditions

the condition for the mass flow rate and the condition p(1,1)=0, the constants ¢, c,, and
c, are easily calculated:

A=C=C, =0, ¢ == (4.47)
Therefore the solution of order J is:

u® =0

(01) _
uy = 0

2 2

(01)_(1_)() ATy
pl* =2 s (1-v?) (4.48)
p(m) -0
77(01) —1-x

The solution represents the order ¢ effect due to the dependence of the viscosity on the
pressure (there are no compressibility effects as indicated by o® =0). Furthermore, we
note that it agrees with O(5) term in the expansion of the exact solution in Chapter 2, upon

fixing some constants appropriately.

4.3.4 Solution of order &
To obtain the solution of order &* we assume again that u’® =u'*(y), and from the

equations of state p® = p™ and the viscosity equation 7'* =0 we obtain

18aRe 2

1 2
o (1—x)+%(1—y) (4.49)

p(zo) _ p(10) _ _E(l_ X)z n

and

n® =0, (4.50)

Substituting all the known quantities into the order &* continuity equation and integrating

with respect to x gives
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(zo):g 1— 2 1— 2_36¥Re
u =) =g

(67-39y* —35y" +7y°)(1-X)

g 4
+au(yZO) (1- x)—a_z(l— y2)2+ F(y) o0
oy 4
where F(y) is an unknown function.
Substituting all the known quantities into the y-component of the order ¢ momentum
equation and integrating with respect to y gives
p®) = —%2(1— y?)(1-x)+ 0;1%6 (67-39y” -35y" + 7y5)+%2 al:;i") +G(x), (452

where G(x) is an unknown function.

Substituting all the known quantities in the second-order x-momentum equation and after
some calculations, we get:

(20)
3a Re 21\ OUy
(1Y)

902 Re?

2
~3aRe yul®) —%(11—15y2)

(31-34y* -32y" +42y° - 7y*)-F"(y) = (4.53)

3, (20)
—36'(x)—%(1—x)2+ S (1)

3

9a Re

(59—70y2 +35y4)(1— X).

The equations and the boundary conditions we need for this problem are the same as those
used in Taliadorou et al. (2009). Hence, we skip all further calculations and the solution of

order &% is immediately given by:

U = 3(1my) 1) 2R (1) 57+ 84y —21y4)(1—x)—%2(1— v?)(1+3y°)
g jg‘;sg; (1-y?)(2193-9163y” - 6853y +5159y° — 6161y°

2R sy

0®) = %(1_ x)’ - 36;‘5Re (1-x)" - %2(11—3y2)(1— X)+ —30411;12‘;562 (1-x) (4.54)
" ";1%6 (1-y?)(97-140y? + 35y*)

PP = —%(1— x)* + 18?0’55Re (1-x) +%2(1— yZ)

2™ ~0

The pressure-dependence of the viscosity, as expected, does not have an effect at order &,

as indicated by. * =0.
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4.3.5 Solution of order ¢°

Once more we assume that u{™ =u™ (). From the equation of state and the equation of

viscosity we have that
P =0 (4.55)

and

(02)

1-x)* 2
0 o :%_%(1_ ). (4.56)

Substituting all the known quantities into the continuity equation at order ¢* and integrating

with respect to x we find that

@) au502)
u, = o (1-x)+F(y), (4.57)

where F(y) is an unknown function. From the y-momentum we get

2 gy'® 2
(°z)=% l;i/ —%(1—y2)(1—x)+G(x), (4.58)

where G (x) is also an unknown function. From the x-momentum we have

2 ou'®
—3%(1—y2) l:%/ —3aReyu(y°2)+3a2y2—F”(y):—3G’(x)—g(1—x)2+ L —(1-x).

(4.59)

In order to be able to separate variables we demand that the last term of Eq. (4.59) is a

scalar multiple of (1—x); therefore, we set

L=y, (4.60)

with y being a constant to be determined. Integrating (4.60) we get

G

Ey2+c2y+c3,

y

(02 V.3
u, =Sy +
6y

where ¢, C,, and ¢, are unknown constants.

au(OZ)
Conditions u!® (x,1)=0and —

(x,0)=0 lead to
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-0 (4.61)

and
F(1)=F'(0)=0. (4.62)

Applying the conditions u!™ (x,0)=u" (x,1) =0 and the conditions in Eq. (4.61) we find

that y, ¢, c,, and c, are equal to zero. Hence,
ul®® =0. (4.63)

By means of Eg. (4.63) the x-momentum equation (4.59) takes the simpler form
3a2y2—F”(y):—3G'(x)—g(1—x)2:A, (4.64)

where A is an unknown constant. The two ODEs of separate variables are easily solved

under the conditions
F(1)=F'(0)=0 and p”(11)=0
to get
u® =F(y) =a—(1— yz)(l—Syz) (4.65)
and
G(x) =%(1—x)3 % (1-x%). (4.66)

Finally, we find that the solution of order & is:

u>(<02) :0!_2(1_ yz)(1—5y2)

20
u™ =0
@ L% (3-5v2)(1- 4.67
S sy )ax) @
p(02)=0

2
(02)_(1_2)() _0572(1_y2)

This solution represents the order ¢° perturbation due to the dependence of the viscosity on

the pressure. We notice that there is no contribution from the compressibility at order §°as
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indicated by p® =0). Furthermore, we note that it is essentially the same as the O(5?)

term in the expansion of the exact solution in Chapter 2 (assuming that 6 is small enough
in order to assure the validity of the expansion), upon fixing some constants appropriately.

4.3.6 Solution of order &o

To obtain the solution at order &6 we assume that u{"” =u{™ (y). From the equation of

state of the density and from the viscosity equation

I = p® and 50 = )|

we get
2
aw_(1-x) o’
P = 2 —7(1—)/2) (4.68)
and
2
(1) _ (1_ X) 18aRe az
N = (1—x)+?(l—y2), (4.69)

respectively.
The continuity equation is simplified to

(11)
ul® op - + Guill) + ouy

X OX oy

0. (4.70)

Substituting all the known quantities into Eq. (4.70) and integrating with respect to x we

get

(11)

11 3 2 2 3o’ 2\? y
ul )=_Z(1_y )(1—x) —%(1—y ) +(1-x) 5 +F(y), (4.71)

where F(y) is an unknown function.

The y-momentum equation is simplified to
11 2,,(19) 1 10

op™ +a277(00)(4 0"uy +lazu>(< )}L%Z (01) o°uy”

_3 aZ 677

+

Q
2|

oy 3 a2 3 ooy Xy
(4.72)
Substituting all the known quantities into Eq. (4.72) and integrating with respect to y, we

find that the pressure is given by
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1) _ o’ augll) N 4a? a’Re

"3 oy 3 (=)0~ 280

(67-39y* —35y* +7y°)+G(x), (4.73)

where G(x) is an unknown function.

Substituting all the known quantities in the x-momentum we end up with

3 ou™ w70 ”
SerRe(i-y*) G -aaRe s T (1-3y") () -

(4.74)

_3G’(x)+6(1—x)2+( Y =

oult
,_108aRe |,
In order to separate variables we demand that the last term of Eq. (4.74) is a scalar multiple

of (1— x), therefore we set

ouy”  108a Re
& 35

=aRey, (4.75)

with y being a constant to be determined.

Integrating Eq. (4.75) three times we find that

e

aRe
y _(

5 108+35y)y3+c—21y2+c2y+(:3,

where ¢, C,, and ¢, are unknown constants.

(1)
The boundary conditions u{* (x,1) = 0and a; (x,0) =0 give respectively

a (ll) 62 (11)
(1-x) gyy FF@)=0 and (1-x) 2| +F'(0)=0
y=1 y=0

and in order for these to apply for every x in our domain we must have

8u§,11)| :62u§11)|
|, ¥

y=1 y=0

=0and F(1)=F'(0)=0.

Applying the conditions

ou (11)

=0 and ul(x,0)=ul(x,1)=0

y=0

we find that
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35
and therefore u( is zero.
Equation (4.74) is simplified to
Ta’ 108 Re

5 (1-3Y%)=F"(y) ==3G"(x) +6(1-x)" -

The first ODE in Eq. (4.76) gives

70t (1, 1.,) A
F(y)== (§y2—2y4j—5y2+c4y+05,

where ¢4 and cs are unknown constants.

Applying the conditions

J-l (p(oo)u)((n) + p(lO)US(Ol) " p(01)u)((10) i p(ll)u)((OO) ) dy="0

0

and

Therefore,

The second ODE in Eq. (4.76) gives

G(x):—g(l—x)3+

18a Re
35

(1-x)’ +§(1_ X)+Cy.

(1-x)=A=const.

(4.76)

4.77)

(4.78)

(4.79)

(4.80)

where c; is an unknown constant and from the condition for the pressure p®(1,1)=0 we

find that G(1) =0 which leads to ¢; =0.

Finally, the solution of order &4 is:
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3 2
u)((ll) _ _Z(l_ yz)(l_ X)Z +Z_O(1_ y2)(23+ 5y2)

ul =0

@y _ 2 3 18aRe 2 o’

p* __5(1_)() T (1-x) +E(27—20y2)(1—x)
a’Re
—E(l—yz)(67+28y2—7y4)

P T
2 2

w _ 1 2 18aRe o
n=-=(1-x) + " (1—x)+?(1—y2)

(4.81)

At this order the solution represents the combined effect of the compressibility and of the
pressure-dependence of the viscosity as both ,® and »™ are not zero. To understand
this solution better, we consider the limiting case where the aspect ratio of the channel a, is
equal to zero (lubrication approximation). We see then that for any fixed y, p* decreases
monotonically and »™ increases monotonically with x as we move from the left-end of

the channel, x=0, to the right-end of the channel, x=1.
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4.3.7 The solution up to order &

Combining the solutions of zero-order and of orders ¢, J, &%, d°and &d, we find that the

approximate perturbation, analytical solution is given by:

3 3 3aR
ux:5(1—y2)+e{—§(l—y2)(1—x)+ 3806

oy B(l— y?)(1-x)" - 3;‘826 (1-y?)(57 +84y* - 21y* ) (1-x) -

(-5+33y*-35y" + 7y6)}
0./2
8

_3a’Re” (1-y*)(2193-9163y* - 6853y* +5159y° —6161y° )
431200
+52“_2(1_y2)(1—5y2)+g5 —E(l—yz)(l—x)z+a—2(l—y2)(23+5y2) +hot.
20 4 40
(4.82)
3aRe 2
u, :gzmy(l— y’) (5-y*)+hot. (4.83)
(1—x)2 18aRe a’ (1—X)2 o’
p=1—x+g[— R (1—x)+?(1_y2) +0 5 —?(1_),2)
1 s 36aRe 2 o’ 3044a°Re’
+&° {E(l—x) - (1-x) —?(11—3y2)(1—x)+w(1—x)
+aBRe(l—yz)(97—l40y2+35y4) +8° 1(1—x)3—05—2(3—53/2)(1—X) (4.84)
840 6 10
2
+g§{—§(1—x)3+1835Re(1—x)2+f—5(27—20y2)(1—x)
_asRe(l—yz)(67+28y2—7y4) +hot
280
1 2 18aRe a’
p=1+8(1—X)+5{—§(1—X)+ o~ (1—x)+F(1—y2)}
(4.85)
(=% o
+g§{ > —7(1—y2) +hot.
:I.—X)2 a’
=1+5(1- 52( ——(1-y?
77+(X)+{2 Z(V)}
(4.86)

(1-x)* 18aRe %
+g§{— BT (1—x)+?(1—y2) +hot.
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4.4 Results and discussion
The basic features of the velocity and the pressure fields are as follows:

e The zero-order solution is just the solution of incompressible flow with constant
viscosity.

e The terms of orders ¢ and &* are the terms obtained in Taliadorou et al. (2009) and
Venerus and Bugajsky (2010), for the compressible flow with constant viscosity

e The terms of orders & and &* represent the effects of the pressure dependence of the

viscosity.

These terms agree with the expansion of the exact solution derived in Chapter 2 (upon
fixing some constants appropriately). (As already mentioned, in Chapter 2 the
viscosity-pressure coefficient is denoted by ¢.) Assuming that ¢ is small enough in
order to ensure the validity of an infinite expansion in terns of J, we find that the

expansion of the solution of the plane flow in Section 2.5 is given by

u _A( _ 2) ASCXZ

(1-y*)s*+0(5")

L2 108
u,=0

4.87
p:—§x+lA—;(x2+a2y2)5—§(xs+3azxyz)52+O(53) “en

n =1—§x5+%:(x2 +a’y*)s%+0(5°)

Giving an appropriate value to the constant A and fixing the Reynolds number to zero in
the solution we obtained here, (4.87) is essentially the same as solution (4.82)-(4.84), but
shifted to the right as the origin of the coordinates is located at the exit of the plane in

Section 2.5.

Let us examine now the expressions (4.80)-(4.84) for the primary variables in more detail.

Transverse velocity

The transverse velocity u, is zero at first order in ¢ (by assumption). It is also zero for all
other orders of ¢ and J except at the second order in e. u, is always positive, it only

depends on the y coordinate and it varies linearly with the aspect ratio and the Reynolds

number.

90



Velocity in the flow direction

The horizontal velocity u, deviates from the parabolic incompressible solution at first
order in ¢ due to fluid inertia and due to geometric effects (exhibited by the terms involving

the aspect ratio « .

The deviation of first order in ¢ depends on both the x and y and it may be positive or

(10
X

negative depending on the value of o and Re. Since u®™ is linear in x we can easily find

that

(10) - aRe 2 4
u’>0if x>1-——(-5+28y“ -7
| i vy 7y

where —5+28y? —7y* <0 for 0<y<y" where y" > "%(14—«/161) =0.43. Therefore

for O<y<y’, u<0 for all 0<x<1l. For y <y<1 then u'>0 for

aRe
X>1-——(-5+28y*—7y*).
140( y y)

When o — 0 we have u'™® <0 for the whole interval 0 < x <1 and therefore we have a

decrease of order ¢ in the horizontal velocity. The same holds as Re — 0. At second order
in ¢ there is a reduction of the horizontal velocity that is independent of inertia and which

does not alter its parabolicity.

At first order in ¢, uio” is zero so the pressure-dependence of the viscosity does not affect
the flow at this order. At second order in ¢, ui"z) depends only on the y coordinate, and it
is always positive for 0 <y <1. It also increases with the square of the aspect ratio a. For
long channels where o <<1, uioz) is therefore very small.

The order o is a coupling term representing the interaction of the compressibility and the

pressure dependence of viscosity. This term can be either positive or negative depending

on the value of the aspect ratio a. Specifically, since uill) is a quadratic in x we can easily

u' >0 for x>1-«a 2 1+£y2j.
30 23

show that
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Therefore, since 0.87 < %[H% yzj <0.97 when « is approximately 1 (short channel)

u™ is positive for almost all values of x and y. When the channel is long (a <<1), since

0.87< 3—(1+% yzj <0.97, we find that u™ is negative for almost all values of x and

y and the pressure-dependence of the viscosity decreases the horizontal velocity at this

order.

Contour plots of the horizontal velocity field are presented in Figs. 4.2-4.6. In Fig. 4.2, we
have the case of incompressible flow with constant viscosity (& =0 =0). The contours are
horizontal lines. In Fig. 4.3 we fix the pressure dependence of viscosity at ¢ =0.01 and we
vary the compressibility effect with £=0.01, 0.1, and 0.2. In Fig. 4.3a (¢ =0 =0.01) the

contours are almost horizontal lines (as in the case of the incompressible flow with
constant viscosity), since there is almost no x-dependence. In Fig. 4.3b we have £=0.1

and the x-dependence kicks in, making the contours bend. The larger deviation here is the
term of O(e), uil") which increases linearly with x as mentioned above. This explains the

strong bend of the contours close to the symmetry plane y=0. Furthermore, the overall

value of u, decreases. In Fig. 4.4 we fix the pressure dependence of viscosity at 6 =0.1
and we vary the compressibility effect with £=0.01, 0.1, and 0.2. In Fig. 4.4a, even though
6 =0.1, since u* =0 the contours are still almost horizontal lines. Again as ¢ increases
the x -dependence becomes stronger andu,, decreases (note the x-y region of high values of
u, atthe bottom right corner of the contour plot decreasing as ¢ increases). In Fig. 4.5 we

fix the pressure dependence of viscosity at & =0.2 and we vary ¢=0.01, 0.1, and 0.2. In
Fig. 4.6 we fix £ =0.1 and we vary ¢=0.01, 0.1, and 0.2.

1.4

1.2

06 =i

0.8

0.4 06

0.4

0.2

0.2

O0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 . . 0

Figure 4.2: Contours of uy for =0, 6 =0; Re=0, a=0.1.
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£=0.01, 6=0.01
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€=0.1, 6=0.01

(b)

0 0.1 0.2 03 0.4 05 0.6 0.7 0.8 0.9 1

(c)
Figure 4.3: Contours of uy for =0.01 and ¢=0.01, 0.1 and 0.2; Re=0, a=0.1.
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Figure 4.4: Contours of uy for 6=0.1 and £=0.01, 0.1 and 0.2; Re=0, a=0.1.
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£=0.01, 6=0.2

(b)

(c)
Figure 4.5: Contours of uy for 6=0.2 and ¢=0.01, 0.1 and 0.2; Re=0, a=0.1.
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€=0.1, 3=0.01

()

¢=0.1, 8=0.1

(b)

(c)
Figure 4.6: Contours of uy for £=0.1 and 6=0.01, 0.1 and, 0.2; Re=0, a=0.1.
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Profiles of the deviation of u, from u® =(3/2)(1-y?) at y=0 are presented in Figs.
4.7. In Fig. 4.7a we fix 6 =0.1 and we vary the compressibility number £=0.01, 0.1 and
0.2, (Re=0, 0=0.1). As expected, the deviation is negative along the whole axis of the
channel. In Fig. 4.7b we fix £=0.1 and we vary ¢=0.01, 0.1 and 0.2, (Re=0, a=0.1). As
expected, the deviation is negative along the axis of the channel.

3 2
0.3y

-0.05

-0.1

-0.15

-0.2

-0.25
0

-0.05

-0.1

015 r r r r r r r r r
0 0.1 0.2 0.3 04 0.5 0.6 0.7 0.8 0.9 1

Figure 4.7: Deviation of uy from the incompressible flow along y=0 for: (a) 6=0.1 and
e=0.01, 0.1, and 0.2. (b) e=0.1 and 0=0.01, 0.1, and 0.2; Re=0, a=0.1.
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Pressure

The pressure for planar, steady, incompressible, laminar flow with constant viscosity is

linearly decreasing with x along the channel and is independent of y . The compressibility

and the pressure-dependent viscosity both introduce dependence on the y coordinate. The

deviation at first order in ¢ is positive for 0 < X < X~ where

X :1—182‘5Re [1+ \/1+(%)(%)2 (1- yz)}

For long channels (a<<1), x"is 1-O(ca)and the deviation at first order in ¢ is negative

for almost all values of x and y. (Note that the Reynolds number is assumed to be O(2) -

bounds on the values of the Reynolds number Re which ensure that the assumptions of the
asymptotic expansions are respected are provided in Section 4.4.4.) Therefore,

compressibility causes a reduction to the horizontal velocity at this order.

At first order in 5, p® is parabolic in bothx and yand the y-dependence becomes

stronger as « increases. p'® decreases proportionally to the square of «; it is positive for
0<x<x where X" =1-a,1-y?. For long channels (a<<1), x is approximately

equal to 1 and the deviation at first order in ¢ is therefore positive for almost all values of

x and y.

Comparing the perturbations £ p™ and sp'® when a<<1 (and &~ &) we conclude that
the effects of the pressure-dependence of viscosity and of compressibility compete with
each other in that case. At second order in ¢, the dependence of p® on vy is not only due
to geometric effects but also due to the fluid’s inertia (as exhibited by terms involving the

(11

Reynolds number). At the order &5, p* depends on x and y. It is a cubic in x and a

cubic iny® and in the aspect ratio a. For long channels (a <<1) we neglect the terms that

involve « and we find
2
@~ _“1—x 3’
p 3( )

which is independent of y and negative throughout the channel.

Contour plots of the pressure field are presented in Figs. 4.8-4.11 for various values of ¢
and ¢. We choose Re=0 but now we choose a =1 since in the expression (4.86), for

a <<1, the y-dependence is negligible and thus no bending in the contours would be
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observed. For ¢<<1 and §=0 the pressure contours are almost vertical since p'*

depends only on x. The contours bend for larger values of ¢and ¢ . The competing effects
of compressibility and the pressure-dependence of viscosity discussed above are clearly
visible in Fig. 4.11 where we havee =0.2, 6=0.01, 0.1, 0.2 (Re=0, a=1). In Fig. 4.11a

2

(£ =0.2 6=0.01) the contours bend to the left since the positive term 2 (1-y?) in
5 y

2
£p"” is larger than the term —5%(1— y?)in 5p'™. In Fig. 4.11b (¢ =0.2, 5 =0.1) the

2 2
positive term g%(l— y?) in £p"” is somewhat smaller than the term —5%(1— y?)in

5p"® and the contours are almost vertical. In Fig. 4.11c (£ =0.2 § =0.2) the positive

2

2
term g%(l— y?) in p"” is smaller than the term —5%(1— y?)in 5p® and the

contours bend to the right.

Density
The density is constant at zero-order. The deviations of order & and & are both decreasing
functions of x and y which is expected since the fluid is decompressed as it moves

downstream (for constant viscosity). The deviations of order & and order 5° are zero. The
deviation of order & is, thus, the first order where the effect of the pressure-dependence of

the viscosity appear and it is an increasing function of x and y. This means that the fluid

is compressed due to the pressure-dependence of the viscosity. We therefore conclude that,
as the fluid moves downstream, the compression due to the pressure-dependence of the

viscosity slightly reduces the decompression caused by compressibility.

As an interesting remark, when 6 ~ ¢, at the exit of the channel (x =1)

1 &
=1+Ap where Ap==¢g’a?(1-y? (——5)
p p p=3 (1-v?) 3

and since (%—5]<0 we have Ap <Owhich is different from the case with constant

viscosity where the corresponding value at the exit was Ap = %gzaz (1— yz) >0.

99



08

0.6

04

02

08

0.6

04

0.2

£=0.01, 5=0.01

04 0.6

()

£=0.1, 5=0.01
=

(b)

£=0.2, 5=0.01

(c)
Figure 4.8: Contours of pressure for 6=0.01 and £=0.01, 0.1 and 0.2; Re=0, a=1.
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Figure 4.9: Contours of pressure for 6=0.1 and £=0.01, 0.1 and 0.2; Re=0, a=1.
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Figure 4.10: Contours of pressure for 6=0.2 and £=0.01, 0.1 and 0.2; Re=0, a=1.
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Figure 4.11: Contours of pressure for ¢=0.2 and ¢=0.01, 0.1 and 0.2; Re=0, a=1.
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4.4.1 Volumetric flow rate and streamfunction

The volumetric flow rate,

Q(X) =, u, (xy)dy (4.88)
IS given by
Q(X)=1—€(1—X)+82B(1— ) - P (1 x)- 2 }55{—%(1— X+ 2 } (4.89)

The streamfunction y(x,y), defined by

is found to be as follows:

v By(ay )R (5eyt) ot [ 2Ry -y

280 140
2 2 ReZ 2
+% y(1-y?) - :‘31200 y(1-y?) (6579+1802y ~1580y* +168Y° )}_ 5 % y(1-y?)

2
JaRe (3-y*)(1- x)+10;—0 y(9- yz)(ll—SyZ)}F h.ot.

—55[—% y(3-y?)(1-x)" +

(4.90)
4.4.2 Mean Pressure Drop
The mean pressure drop is a very useful quantity defined by
—_— _ _ 1
Ap=p(0)-p@)=[[p(0,y)-p(Ly)]dy (4.91)
which gives
Ap :1+g(—1+EaRej+é+gz (1_§az 30 ey 2044 Rez]
2 35 2 2 3 35 13475 (4.92)

+6° 1—30{2 +&0 —g+ga2+§aRe
6 15 3 45 35

When ¢ << 5';

A_p:1+é+52(l—£a2j+g(—l+§a Rej
2 6 15 2 35
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When 6 << ¢

15, 36 3044 aZRe2j+§

A_p=1+g[—1+EaRe)+82[ a’—"_aRe+
2 35 2 3 35 13475

Therefore, compared to the case of weakly compressible flow (see Taliadorou et al.

(2009)) with constant viscosity the mean pressure drop increases by /2. In Fig. 4.12(a) we
plot Ap as a function of & for fixed £=0.1 (Re=0, o=1). We see that Ap increases
monotonically as the dependence of viscosity on pressure increases, while the
compressibility has a constant value. (The discontinuity at 6 = 0.045 is due to the fact that

as the relative size of s¢ando changes we have to use different asymptotic expansions for

Ap as explained above.) In Fig. 4.12(b) we plot Ap as a function of ¢ for fixed § =0.1

(Re=0, a=1). We see that Ap decreases monotonically as the compressibility increases,

while the dependence of viscosity on the pressure has a constant value. (The discontinuity
of the curve at & =0.045 is due to the fact that as the relative size of ¢and 6 changes we

have to use different asymptotic expansions as explained above.)

By examining expression (4.92) we can again conclude that the effect of compressibility —
&/2 acts opposite to the effect due to the pressure-dependence of viscosity, 6/2. When e~d
the effects are two effects are almost cancelled out, when &>>¢ the mean pressure drop
decreases and when e<<¢ the mean pressure drop increases as compared to the mean

pressure drop for an incompressible, constant-viscosity flow.

4.4.3. Validity of the asymptotic expansion

We always need to ensure that the parameter values we use in our plots do not violate the
assumptions of the asymptotic expansions of the solution. We therefore need to ensure that
the coefficients of all powers of ¢ and ¢ are of order 1. The values of a we consider are at
most 1 since we are primarily interested in long channels. Therefore, we examine only the
terms that involve the Reynolds number Re and obtain constraints on the value of Re so

that the asymptotic expansions are valid.

Considering expression (4.92) we need to ensure that:

¢ % Re = O(1)so, approximately % Re <5 so approximately Re <10.
6 _ _ 36 | i
i E“Re =0(1)so, approximately gaRe <5 and therefore, approximately Re<=.
(04
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. 3044 oRe? - O(1)so, approximately 3044 2Re? <5 and therefore,
13475 13475

approximately Re < 2 .
(04

Therefore the second constraint on the Reynolds number is less stringent than the third

constraint, and, thus, not needed. Combining the first and the third constraint we conclude

1 2 1
that when @ = 3 we need to ensure Re<— and when a < 3 we need to ensure that
(24

Re <10. (These constraints are respected in all the plots in Section 4.4.5.)

Ap
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Figure 4.12: The average pressure drop Ap for: (a) e=0.1 and varying 6 and (b) 6=0.1
and varying ¢; Re=0, a=1
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4.5 Conclusions

In the present work we derive second-order perturbation solutions for the planar isothermal
Poiseuille flows of weakly compressible Newtonian liquids where the viscosity also
weakly depends on the pressure. A linear equation of state is employed and the isothermal
compressibility and the viscosity pressure coefficient are taken as the perturbation
parameters. The no slip boundary condition is assumed along the wall. (The shear and bulk
viscosities are assumed to be zero.) The primary unknown variables are perturbed in the
present work and explicit analytical solutions for pressure, density and velocity are
obtained up to the second order. The derivation of the solution of the axisymmetric flow is
provided in the Appendix. Our results extend previous work on the weakly compressible
flow with constant viscosity and also on the incompressible flow with pressure-dependent
viscosity. The effects of compressibility and the pressure dependence of viscosity, aspect
ratio and Reynolds number on the velocity and pressure fields are analysed and discussed.
When the compressibility number and the viscosity-pressure coefficient are of the same
order, the viscosity-pressure coefficient perturbs the velocity component in the flow
direction at the second-order only. The transverse velocity is not affected by the viscosity’s
pressure dependence at any order; it is only affected by compressibility. The pressure field
is affected by compressibility and the viscosity’s pressure-dependence at both the first

order and the second order, and these two effects compete with each other.
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Chapter 5

Summary and recommendations for

future work

In this thesis, we have solved three different steady, laminar Poiseuille flows of Newtonian
fluids: (a) the incompressible flow with viscosity varying with pressure; (b) the weakly
compressible flow with Navier slip at the wall assuming a linear equation of state; and, (c)

the weakly compressible flow with viscosity with pressure dependent viscosity.

In Chapter 2, we considered the unidirectional Poiseuille flow of an incompressible
Newtonian fluid with viscosity that increases linearly with pressure. Under these
assumptions we obtained semi-analytical solutions for the velocity and the pressure for the
plane, the axisymmetric and the annular flows. The velocity and the pressure vary with ae
where o is the aspect ratio of the channel and ¢ is the dimensionless pressure-dependence
coefficient. We observe that as ae increases and approaches a critical value, the velocity
which is independent of the axial coordinate, tends from a parabolic profile to a symmetric
triangular one. The pressure, which depends on both the axial and the radial coordinate,
increases exponentially as we move upstream. Thus, the pressure required to drive the flow
increases rapidly with the length of the channel. At the inlet plane the pressure depends
weakly on the radial coordinate for all values of ae but the dependence becomes stronger
towards the outlet plane. This effect is more noticeable for higher values of ae.

In Chapter 3, we obtained perturbation solutions for the plane and axisymmetric Poiseuille
flows of a weakly compressible Newtonian fluid with wall slip. We assumed that slip
obeys the linear Navier’s slip equation and the density obeys a linear equation of state and
used a regular perturbation method with the dimensionless isothermal compressibility
number ¢ as the perturbation parameter and the primary flow fields as the dependent
variables. Solutions have been obtained up to second order. Our results reveal that slip
weakens the y-dependence of the solution. The transverse velocity decreases with slip and
takes it maximum value near the middle-plane of the wall and the axis of symmetry. The
horizontal velocity in a compressible flow increases faster when slip appears, in a smaller
range of values. In addition, we noted that when the flow becomes compressible, a
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dependence on the horizontal coordinate appears which comes in contrast with the
incompressible flow. Examining the effects of inertia we saw that when the Reynolds
number obtains larger values for a flow in a short channel, the velocity increases slower
compared to a small Reynolds number. This was not the case in a long channel. As for the
pressure, we saw that it increases slower upstream when slip appears. As the flow becomes
more compressible the required pressure drop decreases but this effect is weakened by the
appearance of slip and by large values of the Reynolds number. Finally, we observed that
the volumetric flow rate decreases faster with compressibility and larger values of the

Reynolds number and this is more intense with slip.

In Chapter 4, we obtained perturbation solutions for the plane and axisymmetric steady,
laminar Poiseuille flows of a weakly compressible Newtonian fluid with viscosity that is
also weakly dependent on the pressure. As before, the density and the viscosity vary
linearly with the pressure. Due to the nature of the flow it was reasonable to perform a
perturbation analysis in terms of two small numbers: the isothermal compressibility
number ¢ and the viscosity-pressure coefficient ¢. This choice gave a double expansion for
the solution which allowed ¢ and ¢ to be decoupled. We analytically derived the terms of
the expansion up to the second order in terms of the two parameters. We then studied the
combined effects of the compressibility and the viscosity. Our results extend previous
work on the weakly compressible flow with constant viscosity and also on the
incompressible flow with pressure-dependent viscosity. The effects of compressibility and
the pressure dependence of viscosity, aspect ratio and Reynolds number on the velocity
and pressure fields are analysed and discussed. When the compressibility number and the
viscosity-pressure coefficient are of the same order, they perturb the velocity component in
the flow direction at first- and second-order, respectively. The transverse velocity is not
affected by the viscosity’s pressure dependence at any order; it is only affected by
compressibility. The pressure field is affected by compressibility and the viscosity’s
pressure-dependence at both the first order and the second order, and these two effects

compete each other.

The results of this thesis, gave rise to questions and ideas for future work: Possible

directions are the following:

(@) it would be interesting to study the flows of generalized Newtonian fluids with
pressure-dependent material parameters, such as power law fluid with pressure-dependent
consistency index and/or a Bingham fluid with pressure-dependent plastic viscosity and

yield stress.
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(b) It would be nice if the regular perturbation method developed in Chapter 3 be extended
to Bingham fluids with or without slip at the wall. This flow is of great importance to waxy
crude oil transport.

(c) In addition to the density and the viscosity, the slip coefficient may also be taken as a

function of pressure.
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Appendix A
Poiseuille flows with pressure-

dependent viscosity and wall slip

In this Appendix we provide the solutions for the steady, two-dimensional, plane
isothermal Poiseuille flow of an incompressible Newtonian fluid with pressure-dependent
viscosity under zero gravity and zero bulk viscosity presented in chapter 2, replacing the

no-slip boundary condition with by a linear slip condition:
TW :ﬁuw , (Al)

where z,, is the wall shear stress, S is the constant slip coefficient, and u,, is the slip

velocity. The limiting case S — oo corresponds to the no-slip boundary.

The governing equations are:

Continuity equation

ou
My g (A2)
ox oy
X-momentum
ou ou op o’u, ou ., \opou,_ . .opféu,  ou,
X — X | = — X4 - X 2 X L) Iy SO TS &
p(u* ax 6yj ax+'7[ax2 HEY: j+ TP o TP o o
(A3)
y-momentum
ou ou ou, ou ou ou
plu —~+u,—~ :—@Hy L+t +2n'(p)@—y+n’(p)@ TN
X oy oy ox* oy oy oy ox\ ox oy
(A4)

We assume that the viscosity dependence obeys the linear equation of state

n=1,(1+1p).
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In order to nondimensionalize all the above equations, we scale x by the length of the

channel L, y by the channel half-width H, » by the reference viscosity 7, and the

horizontal velocity u, by the mean velocity U at the exit, defined by

_M_

~ pHW'’
where M is the mass flow rate and W is the unit length in the x-direction. The transversal
velocity u, is scaled by UH /L and finally the pressure p by 37,LU / H?2. The last scale
Is taken so that the dimensionless pressure gradient of the incompressible flow is equal to 1

Using the above scales the dimensionless equations turn out to be:

Continuity equation

ou, ou
—+—2=0 (A.5)
ox oy
X-momentum
2 2
aRelu, Ny, L :—3@+n(p) a2 sz 42 UZX
ox oy OX ox* oy
5 (A.6)
u
oX ox oy\ oy OX
y-momentum
ou ou o%u, d%
a’Re| u,—~+u,—~ 3a—p+a2n(p) ol —rL+—r
oy oy ox® oy
(A7)
ou ou
+C¥2 '(p) @ 2_y+% 2@_3/
OX ox oy oy oy
Viscosity equation
n=1+ep, (A.8)
where the dimensionless numbers
a=H Re= 1Y o= 21B LU
L o H?2

are the aspect ratio of the channel, the Reynolds number and the isothermal

compressibility, respectively.
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The boundary conditions that complete the above equations are in their dimensionless form

Ny (x,0)=0, xe[0,1] (A9)
ou
*(x,1)=-Bu,(x,1), xe[0,1] (A.10)
p(0,0)=0 (A.11)
I:uxdy 1, (A.12)
where we use for simplicity
At
T

Under the assumption of one-dimensional flow, u, =0, the continuity equation is

simplified to

Ny g, (A.13)
OX

The x-component of the momentum equation becomes

ou op ,0u, 2% , ,0pou, opau
Re X =-3— —= z 2000 ——2+——21| (Al4
aReu ~ +n(p)[a v + Y +7'(p)| 2a X ox +6y By (A.14)

and the y-component

—3%+n'(p)a

2@%_0

o ~° (A.15)

From the continuity equation (A.13) we get thatu, =u, (y). Considering this, as well as

the state equation (A.8), the x-momentum and the y-momentum are simplified to

2
3P 1rep) Lt P W g (A.16)
OX dy oy dy
and
g 000U (A.17)
dy ox dy

respectively.
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From Eq. (A.17) we get that

op _ o op du,
oy 3 oxdy

When we substitute the above equation into Eqg. (A.16) we obtain

d?u,
2
S P__ W A—comst, (A.18)
1+¢&p OX . ga’ ( du,
9 dy

where A is a constant that we need to determine.To solve the above equations we set for
simplicity ou,/dy=f(y) and E=ea/3, and by using these, the second differential

equation becomes

f'(y)

E) “A. (A.19)

The solution of the above equation is

1 _
Etanh H(Ef(y))=—Ay+c,

which gives

F(y)= étanh(—AEy+ ). (A.20)
Using the symmetry condition ou, /y(x,0)=0, we get f(0)=0 which gives that ¢, =0.
Therefore, Eq. (A.20) becomes

%“yx ——Ztanh (AEY). (A.21)

Integrating the above equation we get

1

U, ===z In [ cosh(AEy)]+c,.

X

By applying the slip condition (A.10) we get that

1

¢ =g |n[cosh(AE)]+B—1Etanh(AE)

and the horizontal velocity component turns out to be
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Aca
=— | h . .
u(y) i n (A“"“J +Bgatan ( 3 j (A.22)

To find the pressure we solve the first differential equation of (A.18) and we obtain

p(%y) =£{C(y)e_2§x _1] (A23)

&

Differentiating p with respect to x and y we get that

0 A oo

a_s:_EC(y)e 3 (A.24)
and

a 1 , —Agx

ap:; (y)e ® | (A.25)

respectively. When we substitute the above derivatives into Eq. (A.17) and using (A.21)
we get the following ODE:

M = AE tanh( AEy).

C(y)

The solution of this is
C(y)=c,cosh(AEy).

Condition (A.11) gives C(0)=0which leads to ¢, =1 and the pressure turns out to be

—Asx
p(x,y)= %{cosh (% yje 3 —1} :

The constant A is determined by demanding that the volumetric flow rate is equal to unity.

It turns out that A is the root of

2 2
jlln cosh(ﬂyj dy—In cosh(Aga) —A‘gatanh(AijrAg ? o
0 3 3 3B 3 9

Therefore the analytical solution is given by:
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—Asx
p(xy) :%{cosh [% yje 3 —1} :

where A is the solution of

2 2
Illn cosh(ﬂyj dy—In cosh(Agaj —Agatanh(Amj+Ag 2 -o.
0 3 3 3B 3 9
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Appendix B
Perturbation solutions
of axisymmetric Poiseuille flow with

wall slip

In this Appendix, we obtain the perturbation solutions up to the second order for the
axisymmetric, steady, laminar, two-dimensional, isothermal Poiseuille flow of a weakly
compressible Newtonian fluid with constant (pressure-independent) viscosity. We employ
the isothermal compressibility as the perturbation parameter and derive analytically the

perturbation solutions up to the second order.

B.1 Governing Equations and Boundary conditions

In this section, we derive the second order perturbation solution for the steady, two-
dimensional, axisymmetric isothermal Poiseuille flow of a compressible Newtonian fluid
with constant viscosity. The governing equations under zero bulk viscosity and zero

gravity are:

the continuity equation,

o(pu,)  L1o(reu) (B.1)
oz r or
r-momentum
2 o(ru
plu, au" +u2% =—@+77 g(lﬁ(rur)j+a_l'2’ +Q£ EM_F% (BZ)
or 0z or or\ror 0z 3or|r or 15/4
Z-momentum
2 o(r
Yol ur%_'-uz auz :_@4_77 li rauz +auzz +Q£ l(—ur)+% (B3)
or 0z oz ror or oz 3o0z|r or oz
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where p is the pressure, U, is the axial velocity component, u,is the radial velocity
component, o is the density and 7 is the constant viscosity. We assume that the fluid

obeys a linear equation of state

p=p,(1+xp), (B.4)

where « is the constant isothermal compressibility,. We also assume that it follows a liner

slip equation along the wall
z-W = _TI'Z r=R = lBuW 1

where R is the channel radius, g is the slip parameter which is a constant and U, is the

slip velocity.

We solve the problem under the following boundary conditions

u,(z,0)=0 and rrz(z,o)zn%‘f(z,o)zo = ‘ZurZ(z,o):o, ze[0,L] (B.5)
u,(z,R)=0and 7, =-7,| =4, z2€[0,L] (B.6)
p(L,R)=0 (B.7)

R M
2.[0 puzrdrzﬁ. (B.8)

For the nondimensionalisation of Egs. (B.1)-(B.4), we scale z by the length L of the
channel r by R, p by the reference density o, and the axial velocity U, by the mean
velocity at the exit U, defined as:

M

U=—-—,
PR

where M is the mass flow rate. The radial velocity u, is scaled by UR/L and finally the

pressure P by877LU/R2 so that the dimensionless pressure gradient of the

incompressible flow with no-slip at the wall is equal to 1.

Imposing the scales on the governing equations (B.1)-(B.4) and on the boundary conditions
(B.5)-(B.8) we find that the flow is governed by the following dimensionless equations

and boundary conditions:
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Continuity equation

10 0
——(rpu. )+—(pu,)=0 B.9
" (rpu, )+ =(pu,) (B9)
r-momentum
2 2 2 A2
a’Rep|u, aur+uZ A, :—8@+4a ol 12(ru,))+oe“au;+05—auZ (B.10)
or oz or 3 or\ror oz 3 oroz
Z-momentum
2 ~2 2
aRep ur%+uZ u, =—8@+13 rauz +4iau;+a—g 1i(rur) (B.11)
or oz oz ror\ or 3 oz 3 oz\ror
Equation of state
p=1+ep (B.12)

Boundary conditions
au,

u,(z,0)=0 and 2 (z,0)=0 (B.13)
ou

u,(21)=0 and — arz (z,1)=Bu,(z,1) (B.14)
p(11)=0 (B.15)

1
2.[0 pu,rdr =1 (B.16)

Dimensionless numbers
azE, Rez—pORU , 858K77|2_U , BE@ (B.17)
L n R n

B.2 Perturbation method

We consider the compressibility number € as the perturbation parameter so the expansions

for all primary variables are:

(B.18)
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As in the plane flow, we substitute equations (B.18) into the governing equations (B.9)-
(B.12) and also into the boundary conditions (B.13)-(B.16) and we collect the terms of the
same order in ¢ up to the second order.

The equations up to the second order along with the respective boundary conditions are
tabulated in Tables B.1-B3.

Table B.1: Zero-order equations and boundary conditions

Continuity equation

L2 o)« 2 (o) <0 ©19

I -component of the momentum equation

©) ©) O 240 442 2 524
a3Rep(o)[u(o)aur Ly 2 j:_Sap L U 4a a{lg(ru(o))}a oul

"o b & or oz 3 orlror\ T 3 orez
(B.20)

Z _component of the momentum equation

(0) (0) (0) (0) 2 ~2,.(0) 2
aRep“’{uﬁO) Ny 0 J=_saf’ +lﬁ(r5“z ]J‘“ oy, +“_£[1 5(@0))}

o ' o oz rorl or 3 a’ 3alror\ "
(B.21)
Equation of state
o =1 (B.22)
Boundary conditions
. u©
u®(z,0)=0 and ~(2.0)=0, z<[01] (B.23)
r
0 u'® 0
u'”(z,1)=0 and - - (2,1)=Bu?(z,1), ze[0,1] (B.24)
p©@(11)=0 (B.25)
2[ puPrdr =1 (B.26)
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Table B.2: First-order equations and boundary conditions

Continuity equation

10 (0 p<1>u§0>ﬂ+£( POl + pu®) =0 (B.27)
ror

I'-component of the momentum equation

0 0 1 0
a*Re p | u® ou,” +ul = ou;” +a’Re p?” y oup +u© ou;” Ly ouy”
"oor Loz or P P
_88p(1) iy 62u§1> 4o’ 0 [1 0 (ru(l))}r a?
or 822 3 or|ror 3 oroz
(B.28)

Z -component of the momentum equation

0 (0 @ 0 1 0
aRep(l)(uﬁ‘” a”§)+u§°> a“z)}raRep(O) (ugm auz)+u(1) 5U§)+u£o) 5U§)+u<1) 5“5)]

or oz or " or oz ' oz
op? 1o o) 4?0 @t (1o g
=— +=—|r + Lt —— ——(rur )
oz ror{ or 3 oz 3 oz\ror
(B.29)
Equation of state
P =p® (B.30)

Boundary conditions

1)

u¥(z,0)=0 and a”; (2,0)=0, z€[0,1] (B.31)
o)
u’(2,1)=0 and —a;; (21)=Bul (z,1), z€[0,1] (B.32)
p*(11)=0 (B.33)
ZIO(p(O) u® 4+ p® )rdr:0 (B.34)
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Table B.3: Second-order equations and boundary conditions

Continuity equation

e
+
S

I
-
N o~~~

L

~

Il
o
—~
W
w
U1
N

z

1
_ﬁ[r( PO 4 P 4 IO )},2( PORCIpRCY
rdr oz

r-component of the momentum equation

0 0 1 0 1 0
a*Re p?u” ou;” +ul® G Re p”| ul” ou;” +u ou? | u® ou |, o U
or oz or or oz oz
2 1 0 0 1 0
+ OO ou? wow  @ou oo’ wou’  eou
“or " or " o o otz
:_85p(2) o 62u£2) +4a2£ li(ru(z)) +a_2 82u§2)
or o 3 orlror 3 oroz

z-component of the momentum equation

(2) (2) 2 ~2(2) 42
_ g +gg(rauz J+4a o4 +a_g{1 a(ru(z))}

oz ror| or 3 o2 3azlror
(B.37)
Equation of state
Boundary conditions
2
u(z,0)=0 and ~—(2,0)=0, z¢[01] (B.39)
r
2 au(z) 2
u'?(z,1)=0 and - ~—(21)= Bul” (z,1), ze[0,1] (B.40)
r
p®(11)=0 (B.41)
ZE( AU+ pPu® 4 oY) ) rdr =0 (B.42)
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B.3 The solution up to the second order

The solution of the axisymmetric flow up to the second order is:

uz(r,z):%(8+2—Br2)+<{—%(8+2—Brz)(l—z)

*4
+&BZ[—2(BZ+1OB+24)+9(32+85+16)r2—9(52+6B+8)r4+2(52+43)r6]
737288
*3 *5
ve?| 3B (B+2—Br2)(1—z)2—&[B4+1083+7282+24OB+192
5128 1966088
+6(B*+8B° +12B* ~16B)r’ -9(B* + 6B° +8B*)r* + 2(B* + 4B°)r° |(1-2)
a’B™ 2 2 2 4 3\ .4
+—— = [B’+32B-48-4(7B” +48B)r’+27(B* +48°)r |
2949128
a’Re’B” 5 4 3 2
+———— [ 438" + 774B" +1328B° — 42720B’ — 2688008 — 460800
45298483008

—200(5B5 +80B* +360B° —96B° —4032E3—6912)r2
+1oo(3355 +462B* +2112B° + 2736B% — 34568 —6912) rt
—1200(385 +36B* +148B°% + 224B +64B)r6

+1425(85 +10B* +32B° +3252)r8 —168(85 +8B* +16B3)r1°ﬂ+0(g3)

5, aReB®

u (r)=e mr(l—rz)[4(82+1OB+24)—(5BZ+328+48)r2+(82+4B)r4J

. *2 *4
5 { 5 1 aRB (g2, 887+ 24B+32)(1-2)

== (1- A ¢ DA e
p(rz)="g(1-2)+e| -0 (1-2) + o

22 *3 *5
L8 (1—r2)}+g{ B (1) - 2% (1 gB? 1248 +32)(1- 2)°

768 1024 ~ 65536B°
a’B™ 2 2 2
——— | 29B°+168B+288—-9(B“ +4B)r- |(1-z
14745682[ ( ) ]( )
a’Re’B” 6 5 4 3 2
—6(25 +32B° +267B* +1332B° + 36728 + 5184B + 3456 (1- 7)
113246208B
a’ReB™ 3 2 3 2 2
+—3[193 +202B +576B+288—18(3B +24B +528+16)r
14155776B

+45(B°+6B” +8B)r* —10(B3+452)r6ﬂ+o(g3)

1‘;?;5; (B*+8B7 +24B+32)(1-2)+ “72;2 (L- rz)}o(ﬁ)

,o(r,z):lJrgB—*(1—z)+g2 —B—*z(l—z)2+
8 128

Taking into consideration the limiting case B — oo (no-slip case) we see that the solution

agrees with the one found in Taliadorou et al. (2009) and Venerus and Bugajsky (2010).
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The volumetric flow rate,

Q(2)=2[,u,(r,z)rdr (B.43)
is given by
B’ 3B™ 2 aReB® a’B®
=l-e—(1-2)+&"| —(1-2) - B> +4B+8)(1-2)- B+3)|+0(&°).
Q(e) 12§ -+ ot T -2 ~ e (8- 4B+8)1-1)- 2 (B+3)+0 ()
(B.44)
The mean pressure drop is obtained by
— _ 1
p=p(0)-p(1)=2[ [ P(0.r)=p(Lr)]rdr, (B.45)
which gives
o * *2 *3
Ap=2 ¢ B——&Bz(32+48+8)
8 128 2048B
*3 *4 2p*4
| 2 —aReB2(Bz+4B+8)—L2(49BZ+SOOB+576)
1024 8192B 294912B

a’Re’B™ 5 4 3 2 3
+—————(2B°+24B" +171B° + 648B” +1080B +864) |+ O(&°).
14155776B
(B.46)
The stream function (X, y) is defined by
oy oy
= _ pru d —Z—=-rpu. . B.47

Solving Eqgs. (B.47) , we find that the stream function is given by

v y):%rz[z(BJr 2)- Br2]+g§£;i; r*(1-r®)[-4(B+6)+(5B+12)r* - Br* |
+5{%f2(1—r2)[4(8+6)—(58 +12)r’ + Br* |
+5£;%r2[1352 +104B +48—2(13B° +78B + 24)r* +13(B* +3B)r* |
1133;?5;2;6054 r2[43B* + 602B° ~1080B" — 384008 ~115200

~100(5B* +60B° +120B* ~576B —1728)r”
+100(11B* +110B° + 264B* —144B —576)r* —300(3B* + 24B° +52B” +16B )r°

+285(B* + 6B +8B7)r° - 28(B* +4B°)r* | |+0(#*)

(B.48)
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Appendix C
Weakly compressible axisymmetric

Poiseuille flow with pressure-

dependent viscosity

In this appendix, we consider the axisymmetric, steady, laminar, Poiseuille flow of a
weakly compressible Newtonian fluid with a pressure-dependent viscosity employing
linear equations of state for the density and for the viscosity. We perturb all primary
variables using the dimensionless isothermal compressibility ¢ and the dimensionless
viscosity-pressure coefficient ¢ as the perturbation parameters and thus obtaining a double

expansion of the solution in terms of ¢ and 6.

C.1 Governing equations and boundary conditions

We assume as in chapter 4 that the flow is bidirectional with u, =0 with no bulk viscosity

and with zero gravity. The governing equations and boundary conditions that describe this

problem are listed below:

Density state equation
p=py[1+x(p-py)]. (C.1)

where « is the constant isothermal compressibility which is a measure of the ability of the

material to change its volume under applied pressure at constant temperature. This is

defined by
1 (avj
K=——| — ,
VO ap Po.To

where V is the specific volume, po and V, are respectively the density and the specific

volume at the reference pressure, po, and temperature, To.
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Viscosity equation
77:770[1+}“(p_p0):|’ (C.2)

where 7, is the viscosity at atmospheric pressure and A is the temperature dependent

pressure-viscosity coefficient.

Continuity equation

10(rpu,) d(pu,)

= =0 C.3
r or i 0z (€3)
r-momentum
ou, - au, op 40(10 10%u, o,
plu —+u,— |=——+n| -—| ==(ru,) |[+= +-—
or 0z or 3or\ror 30roz oz
(C.4)
Lp0n|ou, 110(ru) 1ou, +6_n(%+%j
or| or 3r or 3 0z oz\ oz or
Z-momentum
ou,  au, op 10( ou ) 40y, 10(10
pluU —2+u —L |=——+n|=—|r +——t+=—| =—(ru,)
or oz oz ror\ or 3 o0z 3oz\ror (C5)
+28_n|:3%_ig(rur):|+a_n(%+%)
oz| 30z 3ror or\ or oz
Boundary conditions
ou
az(z,O)zu,(z,O):O, ze[0,L] (C.6)
p
u,(z,R)=u,(z,R)=0, ze[0,L] (C.7)
p(L,R)=0 (C.8)
ZJOR pu,rdr = 7|;/|_R . (C.9)

For the nondimensionalisation of Egs. (C.1)-(C.9), we scale z by the length L of the

channel, r by the radius of the channel R, p by the reference density p,, the axial velocity

u, by the mean velocity at the exit U,

- PR’

126



where M is the mass flow rate and the radial velocity u, is scaled byUR/ L. The pressure

p by8#,LU / R?which again is taken so that the dimensionless pressure gradient of the

incompressible flow is equal to 1.
As before the asterisks in the following equations denote the dimensionless quantities.

Applying the scales mentioned above on the state equations (C.1) and (C.2) we find that

p=p,(1+xp) = p*pozpo(l+,(8’7|;|;u p*j = p =l+ep
and
n=1,(1+2p) = n*no=no(1+18"§tu p*j = 7 =1+5p,
where
EBKZ?ZLU and 55%

are the dimensionless compressibility number and the dimensionless viscosity-pressure

coefficient respectively. The continuity equation (C.3) nondimensionalizes as follows

1 0 Rr*% ‘Uu® +_8 *Eu* =0=
R or L PP 5 )T \ PP

1 a * * * a * *
——=(rpu )+—=(pu,)=0.
r or ( r ) oz ('0 )
The r-momentum equation (C.4) becomes

. quzu*a_u;*+u2Ru*a_u;* B
PPITPR Y or T2 o
8n,LU 1 op” | 4UR* 0 (1 0 ;..\ ) 1U &°%u, URO?U
- ot | T ——(r ur) to— =t = =
R R or 3RLor oz L° oz

3RLor \r or
* * 2 * * * *
570 91 {URaur 1UR* 1 a(**) 1U auz}+@ai(%au,+u auzj

LRor" 3R%Lr or

3L o

r

R or Lo\ 2o Ror

. . . .. .
e (1 2 20 By 4 2 2 ()| s 2
or 0z or 3o0r \r or 30roz 0z

“lau” o(r'u; - - - -
Wai{%_i ( r>_1auz}azav (2. 25),

or'lor 3 or 307 o0z oz or

where
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azE and Rez@
L o

are the aspect ratio of the channel and the Reynolds number respectively.

Similarly from the z-momentum Eq. (C.5) we have that

T Or + z * *
IR "or L ‘oz RIL oz
Lo c[4RU L 0 ( .au) 4U Qo 1RU a(ia(”)j
TS R Yol o ) 30 a2 3URar\rar\ o

. N ) . . .
+2@877* ggaui_lRZUi* a*(r*u:) +@677* gauiJrUR aui |
Loz |3Loz 3R°Lr or Ror | Ror L oz

*(UZR Lou, U? *augj 817,LU op”
A u —u =—

so we find the nondimensionalised z-momentum equation:

NS T T 6p* 41 0 wou) da*oou a? O(1 O .
aRep | Ul —L+u; L =8 +n | -S| 1L v ————t—— | S —(ru))
or 0z 0z 3r or or 3 oz 30z \r or

zazai* ga_ui_i*i*(r*u:) +677* 6uf+a2 aui :
0z |30z 3r or or \or 01

Nondimensionalising the boundary conditions we get:

e at the centreline

UR * * * *

Tur(z ,0)=0 = ur(z ,0):0
and

Uadu [ . ou /.

R at(2.0)=0 = Z(2,0)=0

e at the boundary
uy (2,1)=u;(z",1)=0

o the pressure condition

8”°FL‘2U p'(L1)=0 = p’(11)=0
e the mass flow rate

Zj:pop*Uu:err* = % = ZI:p*qudr* =1.
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In summary, the flow is governed by the following dimensionless equations and boundary

conditions where the stars have been dropped:

Continuity equation

10 0
- il =0 C.10
rar(rpur)+62(puz) ( )

r-momentum

2 2
of’Rep(ur o +u ausz—S@mzn[[‘ 4 (1é(rur)] Lo, +a’ 0 uf}

[ J— +_
or oz or 3or\ror 3 oroz 0z°

+2aza_n{%_i£(mr)_1%}az8_77(&2%+%)
or|or 3ror 3 oz oz oz or
(C.11)
Z-momentum
au, ou, op 410 ( ou ) 4a*d’0u, o’ 010
aRep| u, —=+u, =8 +p|==—|r +———t+——| =—(ru,)
or oz oz 3ror\ or 3 oz 3 oz\ror
+2a28_77 E%_ig(rur) +8_77(%+a2%
oz 30z 3ror or \ or 0z
(C.12)
Equation of state and viscosity equation
p=1+ep and n=1+5p (C.13)
Boundary conditions
%UZ(Z,O):U,(Z,O):O, 2€[0,1] (C.14)
p
u,(z,1)=u,(21)=0, z€[0,1] (C.15)
p(11)=0 (C.16)
1
2 jo purdr =1 (C.17)
Dimensionless numbers
gE.?ﬂcnOZLU, 5o 3/17702LU’ g=R  Re=PRY (C.18)
R R L o
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C.2 Perturbation method

We consider the dimensionless numbers ¢ and ¢ as the perturbation parameters and we

perform perturbation on all primary variablesu,, u,, p, o and 7:

20) 02)

u, =u'® + 0™ + 5u™ + 2™ + 52 + g5ul™ + hot
u, =u® +eu™ + 5u™ + £2u® + 52u® +g§u§” +hot.
p=p‘°°)+gpl° +5p™ +g2p® +52p )+ e5p™ +hot. (C.19)

p=p " + 0"+ 5™ 4 £2p® 1 52 4 c5p™ + hot.

(02)

7=0""+en® + 57 + &2 1+ 527 + e5n™ + hot.,

where h.o.t. stands for higher order terms which in this case are terms of

0(53, 5°, 8%, 852) and higher.

We substitute the above expansions into the governing equations and the boundary
conditions (C.10)-(C.17) and collect the terms of the same order in & and ¢, thus obtaining
differential systems for which analytical solutions have been of derived for all primary

variables u,, ur, p, p and #, for the zero-order and for the orders ¢, J, &%, 5°and &d.

The systems of orders 1, ¢, J, &%, 6° and &, that are formed from the above equations and

boundary conditions are presented in Tables (C.1)-(C.6).
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Table C.1 Zero-order equations and boundary conditions

Continuity equation

10 (. oo, 00\, 9 ( (©00),00)_

Fa(rp U, )+—(p u )—O (C.20)
r-component of the momentum equation

00 00
a*Rep® (uioo) _6u£ ) +ul® ou, )]:

or ooz
or 3or\ror 3 oroz oz’
220 877(00) 8U£00) _ia(rUEOO))_laugoo) o o? 877(00) . GUEOO) . 8ugoo)
or or 3r or 3 oz oz oz or
(C.21)
z-component of the momentum equation
aRep@ | o0 22 oo U7 )
ooor Loz
op® 1410 ™) 4a? o™ o o (1 & ( (o0 j
-8 +n|=———| r—=— |+ f—+——| ——(ru, C.22
sl e e T ara ) (c.22)
(00) (00) (00) (00) (00)
w202 91| 290, —ig(ru(oo)) L/ e VYo
oz |3 oz 3ror or or 0z
State and viscosity equations
(00) _ (00) _
p=1land " =1 (C.23)
Boundary conditions
(00)
022 (2,0)=u(z,0)=0, ze[0,1] (C.24)
r
u™(2,1)=u®(2,1)=0, ze[0,]] (C.25)
p™(11)=0 (C.26)
ZI: p(oo)ugoo)rdr =1 (C.27)
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Table C.2 Equations and boundary conditions of order &

Continuity equation

10 [r(p(oo)uglo) +p(lO)U£OO) ):|+_

= (p(oo)uglo) " p(lo)uioo)) -0 (C.28)

r-component of the momentum equation

oRep® [y 20 a0 2 o0 U o U
o " or Y oz ' oz

o) aul(roo) _ ap(10)
0z or

i 2, (10) 2, (10)
00 ﬂﬁ lg(ruﬁm)) +£0 u; +a28ur2
_3 or\ror 3 oroz oz

10 _ﬂ 0 l 0 (ru(oo)) +E azuioo) +a2 82u£00)
| 3or\ror ' 3 oroz 0z°

00 10 (10) 10 00 (00)
, onl {auE) 1 a(u(lo)) 10 }Mzan( {auﬁ) 1 ) 10 }

+a Rep [ 82 +u§
r

—

+an!

—

+o’nt

+2a - -—
or or 3ror 3 oz or or 3r 3 oz
, on(©) , au£1°> 8uglo) , on(1 ) GUEOO) 6u§00)
+a a + +a a +
0z 0z or 0z 0z or
(C.29)
z-component of the momentum equation
0 00 0 00
aRep™ | u® —8u£1)+u£1°) o, )+u§°°) auil)+u£1°) ou;”
or or 0z 0z
00 00 10
+aRep™ | u® 5U§ Ly ou” | gop®
‘ooz 0z
lO 10
| 12 20, g’ 017 (10 ()
T or or 0z 3 oz\ror
) - (C.30)
2 2
) lg au 4a 0 uZ2 Lo 0 (lg(ruiw))j
T or or oz 3 oz\ror
(00) (10 2 An(10) (00)
+2a on' 28uZ ii(ruﬁ”’) +2a on Zauz _lﬁ(ruf"’))
3 oz oz ror 3 oz oz ror
on® (au™® L au™) an®(au®  , au®
+ —Z—ta’—— |+ o
or or 0z or or 0z
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Table C.2 (continued)

State and viscosity equations
21— p® and 51 =0
Boundary conditions

(10)
al:;r (2,0)=u""(2,0)=0, z€[0,1]

u(z,1)=u(2,1)=0, ze[0,]]

z

p*(11)=0

J‘j(p(oo)u(lo) N p(lo)uioo))r dr=0

z

(C.31)

(C.32)

(C.33)

(C.34)

(C.35)
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Table C.3 Equations and boundary conditions of order ¢

Continuity equation

10 OO 1 )}Lﬁ

- = (P + o) =0 (C.36)

r-component of the momentum equation

00 01 00
a’Rep®) 0 U +u£°1) ou” +ul® ou;” +ul® ou”
or or oz 0z

+a°Rep™ u(oo)—au500)+u(°°) ou,” :_86p(°1)
oo Yooz or

i 2,,(01) 2,,(01)
+a’n® 49 (1 0 (rufm))j+18 U L2 0 U’Z

_3 or\ror 3 oroz 0z
+a2n(01 ﬂ 0 (1 0 (ru(oo))j_i_l azugoo) +a2 82u£00)

| 3or\ror ' 3 oroz 07°

(00) (01) (01) (01) (00) (00)
oy N {aur L0y L }mzan {aur L (o)L }

—

=

or or 3ror\ " 3 oz or or 3r\ ' 3 oz

(00) (01) (01) (01) (00) (00)
e on (az ou, +8uZ J+a2 on (0(2 ou, +6uz )

0z 0z or 0z 0z or

(C.37)
z-component of the momentum equation

01 00 01 00
aRep(oo) u'(’oo) 6U£ ) + UEOl) GUE ) +U£00) 6U£ ) +U§01) au_g)
or or 0z 0z

Z 0z Fori

o lﬁ 6u (01) 62u§201) +a_2£ li(rugm))
r or or oz 3 oz\ror
o 12 6u (00) 821_1{)0) +a_2£ Eg(rugoo))
T or or 0z 3 dz\ror
2 ~-(00) (01) 2 AA(01) (00)
+2a on' zauZ _li(rugon) +2a on ZauZ —li(ruioo))
3 oz 0z ror 3 oz 0z ror

an(OO) au (01) aU(Ol) an(Ol) au (00) au (00)
+ AL S S R LAYV
or or 0z or or 0z

(00) (00) (Ol)

(C.38)
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Table C.3 (continued)

State and viscosity equations

10)

p(01) — O and 77(01) — p(
Boundary conditions

(01)
8; (2,0)=u{(2,0)=0, z€[0,1]

u™(z,1)=u"(2,2)=0, ze[0,]]
p®(11)=0

(P + 9l ) rar =0

0 z

(C.39)

(C.40)

(C.41)

(C.42)

(C.43)
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Table C.4 Equations and boundary conditions of order &

Continuity equation

10 [r(p(oo)u(zo) +p(1°)u§lo) +p(2°)u£°°))} N a

F = ( > (p(oo)ugzo) n p(lo)ul(rlo) n p(zo)uioo) ) -0 (C.44)

r-component of the momentum equation

(20) (10) (00) (20) (10) (00)
asRep(oo) uioo) ou, + uslo) ou, N UEZO) ou, +u§oo) ou, +u§10) ou, + UEZO) ou,
or or or 0z 0z 0z

10 00 10 00
a3Rep(1°>[u§°°> ou” o0 o™ e ou” o our

or "oor ooz ooz ’ az]

(00 (00) 20
u

Cooor 0z

B 2, (20) 2, ,(20)
+a2n(°°) ﬂg li(rugzo)) +16 2 2 0 Ur2

| 3or\ror 3 oroz 0z

B 2, (10) 2, ,(10)
+a2n(1o) ﬂﬁ(lg(rugo)))_’_}a u, 2 0 Ur2

_3 or\ror 3 oroz 0z

i 2, ,(00) 2,,(00)
cotn@ |29 lg(rusoo)) Lo, 2 0 ur2

| 3ar\ror 3 oroz 0z

;on®@au® 19 (rul®) 1 0u®
or or 3ror

Py an® | au'®™ _iﬁ(ru(oo))_l ou'®™
r| o 3ror ' 3 oz
, on(®@ , augzo) auizo) , on(© , aur10) auglo)
+a +a
0z 01 or 0z 0z or
,on®( augoo) 6u£0°)
+a
0z 0z or

(C.45)
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Table C.4 (continued)

z-component of the momentum equation

r

aRep(Oo) (u

+aRep™ (u,

r

+aRep(zo) (u

+n®)

+n

(00) au

(00)

ou'®
r 4

ou (10)
r Z

r

(20)

or

(10)

or

(00) OU”

—Z—+u

- au EOO) - au £20)

+u! +ul

or 0z

00) 5U£10)
0z

(10) 8U£00)

(00)
o0 2 1)U, —

z az z

+u

|

(00) QU

+u

or

(20)
z ] =-8 ap
0z

10

4a? o2u®

|

or

0z
+ £ +O{—Zﬁ
3 o7t 3 oz\ror
4o 02Ut
_+_ 7

|

or

ou (00)

a? 6(
+__
3 oz\ror

3 ozt

L4’ ™ o? (10

|

or

ou (20)

2

0z

Z

, 6U(O°)

0z

[

] 2% onto)
+
3 oz

ror

{2

3 o2 3oz

(ruﬁzo))
(ruﬁoo) )

aU (10)
0z

10

ror

10

r or

or

|

ou® s ou®

an(lo)
+

0z or

|

State and viscosity equations

Boundary condit

ions

ou (20)
or

(2,0)=u™(2,0)=0, z€[0,]]

u™(z,1)=u®(z,1)=0, z€[0,1]
p™(11)=0

(OO)M(ZO) +

z

p(lo)uglo) n p(zo)ugoo) )r dr =0

NG

(C.46)

(C.47)

(C.48)

(C.49)

(C.50)

(C.51)
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Table C.5 Equations and boundary conditions of order &2

Continuity equation

lg[r(p(oo)ufoz)+p(Ol)U£Ol)+p(02)U£OO) )}_i_ag(p(oo)ugoz) +p(01)u£01)+p(02)u£00)):0 (C.52)
ror Z

r-component of the momentum equation

02 01 00 02 01 00
*Rep™® | u®) ou e ou” e ou™ e u o ou™ oy 00
Coor Tooor Tooor Yooz Yooz 7
01 00 01 00 00
o*Rep® | y®) ou™ oo e ou™ oy ou™ e U
Cooor Yoor /A Yoz Yooz
00 00 02
+a3Rep(02) USOO) 6u£ ) 500) 6U£ ) __ ap( )
or 0z or
vgtn@ |29 lﬁ(r (OZ))j+E o™, o™
Bor\rort " 3 oroz 07°
+a?n® 40 lg(r (01)) 162u£01) 22,y
3orlror' ' 3 oroz 01°
g2 40 12( (oo))}r} @, %™
3or\rort 3 oroz oz7?

or or 3ror

01) [ A (01 01
,on® [ au®™ 1 6(ru<°1>) 10U )}

or or 3ror

;on® | au® 1 8(ru<°°>) 18u(°°)}

) an(oo)( , augoz) augoz)J , an(m)( , ausm) augm)J
a + +a a +

+a
0z 0z or 0z 0z or
, an(oz) , 8u§°°) auEoo)
+a a +
0z 0z or

(C.53)
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Table C.5 (continued)

z-component of the momentum equation

State and viscosity equations

p(OZ) — O and 77(02) — p(01)

Boundary conditions

(02)
a‘*a—zr(z,o):ugf’Z)(z,o):o, 2¢[0,]
u®(z,1)=u'"(2,1)=0, z€[0,]]

p'™(11)=0

k

(00), (02)

u,  + p(OI)ugm) + p(oz)ugoo) )rdr =0

(v

02 01 00 02 01 00
aRep® | ul®) ) )+u(°l) ou; )+u(°2) ou; )+u(°°) ou; )+u(°l) ou; )+u(°2) )
“oor oo "or Loz Yooz ooz
01 00 00 01
+aRep™ | ul™ el )+u(°1) ou; )+u(°1) ou; )+u(°°) ouy”
tooor Yoo oo ooz
+aRep™ {U(OO) | jon 067 J _g®”
Yooor Yoo o1
i (02) 2 A2, .(02) 2
+n(® 10 r@uz +40{ 0 u22 +a_£(12( UEOZ))]
or or 3 oz 3 oz\ror
01 01
|10 raug ) +40{2 azu§2> a_zﬁ(lﬁ( Uim))j
ror or 3 oz 3 oz\ror
(00) 2 A2, (00) 2
e[ L0 2 40 U ot 0 (10 )
ror or 3 oz 3 oz\ror
, 202 o™ 25®W>_1510um0_ 2% on® Zagmf_ggzoumw
3 oz | a rorv "] 3 & oz ror' "
2 A (02) (00) §
2a° on 26uz _lﬁ(rugoo))
3 oz i 0z ror |
an®@ (o™ Lau®™ ) an®™(au™  ,au™) an™(aul® ,eul®
ta e a + ta
or or 0z or or 0z or or 0z

(C.54)

(C.55)

(C.56)

(C.57)

(C.58)

(C.59)
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Table C.6 Equations and boundary conditions of order &

Continuity equation

lﬁ[r(p< ) 4 O 0) 4 o), 0 p(11>u§°°>)}

+£( p(oo) + p + p(w)u 01) 4 p 00)) ~0
oz

(C.60)

r-component of the momentum equation

ll 10 01 00
a*Rep® [ o U oy U, )+u(m) au™ au< )

+U! r +u!
or or or
+u® 5U£11) +u©@ auﬁlo) N U (10) aU y aU )
o o
(10) (00)
‘o Rep(m) ugoo) o, + UElO) o, N ugoo)
or or

01 00
+a°Rep™ | u® o )+u£°1) , )+u§°0)
or or

(00) (00) (11) 2 (11) 2 (11)
+o’Rep™ | u™ Uyl M| g a0 ( (ru§11))j+ N g
3orlror 3 oroz oz

o™ 40 [} el ( (10))J+ 1 ol Sy
| 3ar\ror 3 oroz oz
[ 2, (01) 2,.(01) ]
+a2n( ) fi(lﬁ(rusm)))_l_l@ u, 28u2
3or\ror 3 oroz 15/ |
()

0
©0) [ gy () 09 [ gy (o)
,on [aur 1 a(ru(n)) 16ut }20526” {8u, 1 a(ru@“))—lauz }

+2a - -= -——(ru,
or or 3ror 3 oz or 3ror 3 oz
2™ 10 (i) 10 an ) au£°° () 10ul®
or | or 3ror\ " 3 oz or 3 a
, 8[’1(00) , auﬁll) augll) , an(ol) au(w 5U£10
+a a + +a o
07 oz or 0z 01 or
) an(lo) ) 6u§°” augm) ) an(n) ) GUSOO) GUEOO)
+a a + +a a +
0z 01 or 0z 01 or

(C.61)
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Table C.6 (continued)

z-component of the momentum equation

11 10) 01)
aRep™ (uﬁ"o) ou;™” Ly ou, +yto ou, ul

or Yooor Cooor Coor

+ul® oz, ul® o T | ug? o™
0z 0z (674 (674
varRep @ 0 24 oo U o) QU7 o) O
o " o Y ozt a2
varRep |y 2 o U o0 U o) U
o T oo Y ezt oz
(00 00 (11
+aRep™ |y X Ly ) g™
or 574 oz

==y

12 11
o|10( aul® +4052 ou! )+a2 (10 (ruim)

™| ==|r

i 10 10
oy| L8[ aul | 4’ %! )+a2 o(10 (ruilo))

202 on™ [ _ou™ 16 wy| 222 n® [ o™ 14
+ 2 ———(rur ) +
3 ad | o ror

2 An(10) [ (01)
+20{ on 28uz 10 (ru(()l)) +

T AL r

3 o | oa ror | i
on'®) ( 8u§11) , 8U£11)] on(@ ( 8U£10) , auglo)]
+a + +a

+
or or 0z or or 0z
an(lo) 8ugm) , 8U£01) 8n(11) augoo) , augoo)
+ +a + +a
or or 0z or or 0z

State and viscosity equations

10)

p(ll) — p(01) and 77(11) — p(

(C.62)

(C.63)
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Table C.6 (continued)

Boundary conditions

5U(11) 11
= (2,0)=u"(2,0)=0, z€[0,1] (C.64)
r
uill)(z,l):ugll)(z,]_):Q Z e[O,l] (C.65)
p*(11)=0 (C.66)
J‘Ol(p(oo)ugn) +p(01)u£10) +p(10)u§01) +p(1l)u£00))rdr ~0 (C.67)
C.2.1 Zero-order solution
From Egs. (C.23) we have that
A =1 and '™ =1. (C.68)

Assuming that uﬁoo) =0, the continuity equation and the r- momentum equations, when

integrated with respect to z and r, give respectively:

00
8[]8%() 0= UEOO) :UEOO)(I’),
(00)
_88%r -0 = p(00) _ p(oo)(Z).

The z- momentum equation simplifies to

(00) (00)
8 op _ 1 g . ou, _A,
0z r or or

(C.69)

where A is an unknown constant. Integrating the first ODE of Eq. (C.69) twice, we get

ugOO)

A
=Zr +c logr+c,,
and integrating the first ODE of Eqg. (C.69) we have that
0@ = A1-7)1c,
8
where A,c,,C,,C, are constants to be determined.
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Conditions au{® (z,0)/ér=0 and p®(L1)=0 give ¢, =c,=0. The no-slip condition

and the mass flow rate condition give respectively
%+02:0 and §+c2:1. (C.72)

The solution of the system of equations (C.72) is A=-8 and C,=2. We substitute

constants A,c,C, and and c, into Egs.(C.70) and (C.71) and we find that the zero-order
solution is:

ul™ =2(1-r?)
u® =0
©) —1-7
p(oo) -1
77(00) -1
(C.73)
C.2.2 Solution of order ¢
From equations (C.31) we get that
o0 =p®=1-7 and »" =0, (C.74)

and when we substitute all the known quantities into the continuity equation we find that

O (,@0) , (10) (00)) _
E(uZ +pU, )_0.

We assume that the radial velocity component is equal to zero: uflo) =0 and integrating the

above with respect to z and using p(lo) =1-17 we find that the horizontal velocity is

uf? ==2(1-r*)(1-2)+F(r), (C.75)

z

where F(r) is an unknown function.

Using all the necessary quantities from Eqg. (C.73) and Egs. (C.74) the r momentum
equation in Eq. (C.29) becomes

_8 ap(lO) +a_282u£10) B
or 3 oror

and by integration with respect to r it gives
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(10) =a_zau£m) +G(Z)
12 oz ’

where G(z) is an unknown function to be determined. Substituting Eq. (C.75) we find

(10)_az 2
D _E(l r’)+G(z).

Substituting all the known quantities in the z-momentum equation from Eq. (C.30) we

obtain

(10) (10) (10)
aReUEOO) ou, =_86p +n(oo)12 rauz a
0z 0z ror or

4ot Re(l—r2)2—%%(rF’(r)):—BG’(Z)+8(1—Z)

A, (C.76)

with A being a constant that we will determine. From the first ODE of (C.76)

taRe(1-r) =L (1) = A
we have
10 , 2
Fa(rF (r))=4aRe(1-r?) - A. (C.77)
Integrating Eq. (C.77) we find
5
F'(r)=2a Re(r—r%%j—gwc—:, (C.78)

where c; is an unknown constant. From the boundary condition 8u§1°)(z,0)/8r =0 we

get F'(0)=0,and so ¢, =0. Integrating Eq. (C.78) we find
F(r):—allze (18r2—9r4+2r6)—§r2+c2, (C.79)

with ¢, being an unknown constant. The condition u§1°> (z,l) =0 gives F (1) =050 we get

A 1laRe

C.80
4 % 18 (C-80)

From Eq. (C.35) we get j:F(r)rdr and this leads to
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A 13aRe
¢ = . C.81
8 * 36 (C81)

The solution of the system of Egs. (C.80) and (C.81) is

A=2cRe and c, :—OCTRE. (C.82)

Integrating the second ODE of (C.76) gives

Gu)=_%a_a?%§a_n+%,

where c; is an unknown constant The condition for the pressure p“® (1,1)=0 leads to

G(1)=0 and we find that ¢;=0.

Therefore the solution of order ¢ is:

1) _ 2 aRe 2 2 4
uf® =-2(1-r )(1—2)—F(1—r )(2-7r* +2r")
u(ylo) ~0
2
0 L R L (1
p(lO) —1_7
77(10) -0
(C.83)
C.2.3 Solution of order ¢
Egs. (C.39) gives
P =0and % =p®=1-z. (C.84)

The continuity equation in Eq. (C.36) becomes au§°1)/az =0 and under the assumption

that u(® =0 we integrate the continuity equation to find
u™ =uf® (r)=F(r),
where F (r) is an unknown function to be determined.

The r-momentum in Eq. (C.37)becomes
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(01) (01) (00)
@7 oM
or oz or

and by integrating the above equation with respect to r we find

2

p® :—%(l—r2)+G(Z),

with G(z) being an unknown function.

The z-momentum simplifies to

(01) (01) (00)
3P el 0 M) eyl O T (C.85)
oz ror or r or or

and from this we get the two following ODEs
12(rlz'(r)):8@’(z)+8(1—z):A, (C.86)
ror

where A is an unknown constant. Integrating twice we find that the solution of the first
ODE of Eq. (C.86) is

F(r)=%r2+cllogr+c2, (C.87)
where c, and c, are unknown constants. Integrating the second ODE we find
G(z)=%(1—z)2—§(1—2)+c3. (C.88)

Applying the boundary condition au§°l)(z,0)/ar =0 we get F'(0)=0 and imposing this
condition on Eg. (C.87) we find that ¢, =0. The boundary condition u{® (z,1)=0 when

applied to Eq. (C.87) gives F(1)=0. Applying the mass flow rate condition gives
"F(r)rdr=0
IO (r)rdr=0.
These two conditions give respectively

%+c2 =0 and §+c2 =0.

The solution of the above system is A=C, =0, so we conclude from Eq. (C.87) that F(r)

and therefore the horizontal velocity component is equal to zero.
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The condition for the pressure gives G(1)=0and from this we find that ¢, =0.

Therefore, the solution of order J is

(C.89)
C.2.4 Solution of order &

As we can see from equation (C.47) the viscosity in this order is equal to zero and

2 is the same as the

therefore does affect the flow. As expected the solution of order &
solution of order &% in Taliadorou et al. (2009), so only the basic steps of the solution are
presented. Here we assume that the radial velocity component in a function of r instead of

being equal to zero so we have

u® =ul®(r). (C.90)
From Eqgs. (C.47) we obtain
2
() _ a0 _ L1y 2 eReqn y ot o .01
p® =pY =2 (1-2) += = (1-2)+ S (1-r) (C.9)
and
77(20):0

The continuity equation (C.44) becomes

10 (. (0020, O (00) (20, (1) 10)_ (20 (o0)
——|r u +— w + u-’+ u =0.
S (P ) (P p ) p )
Integrating with respect to x we get

u® =3(1-r?)(1-z)’ +0[1—F;e(—7+9r4 —2r‘5)(1—z)+%§(ru§2°))(1—z)—%z(1—r2)2 +F(r).,(C.92)

where F (r) is an unknown function. Conditions

(20
u® (2,1)=0 and a“azr (2,0)=0

give respectively
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(1- z)%%(ru( ))

o(10
+F(1)=0 and (1—z)§(Fa(ru§m))j

+F'(0)=0 (C.93)

r=1 r=0

and in order for these to apply for every z in our domain we must have that

o(lo
ar[ ar( USZO))j

The r-momentum equation (C.45) becomes

20 20
3 ap( ) +0{27](OO) ﬂg(li(rugzm )j 1 62 0
or 3or\ror 3 6raz

and integrating the above with respect to r we find

:li(rugzm
ror

=0 and F'(0)=F()=0.  (C.94)

r=1

r=0

2 3
(200 __ & (1_2\(1_,\_% Re _ 4 5.6 a_li (20) C.95
p 2 (1-r*)(1-2) 5 (-7+9r*—2r°)+ A rar(rur )+G(z),( .95)

with G(z) being an unknown function. The x-momentum in Eq. (C.46) becomes

or 0z 0z 0z

_88p(2°) @12 rauf") L4’ o2l
0z ror|  or 3 oz

(00) (20) (10) (10)
a Rep( )[ 8U +U£OO) au, +u£10) ou, j_'_a Rep(w)ugo") ou, _

(C.96)

Egs. (C.91)-(C.96) are the same as those found in Taliadorou et al. (2009) so we

immediately have the solution of order &*:

U =2(1- rZ)B@_ z)’ _al—ze(l 70’ -2rt)(1- z)+%(1—27r2)

2 2

LoRe (43-957r% +2343r* ~1257r° +168r8)}

43200
U = BR824 )
" 36
@) 1 s oaRe a’ a’Re? a’Re
p = (1-2) - (1 z)’ {—%(29—9r2)+ - |1-2)+ e (1-r?)(19-35r* +10r")
(20)__3 L\ aRe al 2
P _2(1 z) + 4(1 Z)+ 12(1 r’)
77(20)=0

(C.97)
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C.2.5 Solution of order ¢
From the equations of state in Eq. (C.55) we find that
P =0 (C.98)

and
(02) _ . (01) 1 2 o 2
n'® =p®=2(1-2)" -=(1-r?). (C.99)
2 4
From the continuity equation (C.52) is simplified to

8 (00), ,(02) a (00), ,(02)
——(rpu +—(p"u =0. C.100
r or ( ' ) oz ( ‘ ) ( )

We assume that the radial velocity is a function of r so we have

ul® =ul®(r) (C.101)
and when we integrate Eqg. (C.100) with respect to r the solution of Eq. (C.100) for the
horizontal velocity component is

02 _ 10 ( 02\
u _rar(rur )(1 z)+F(r), (C.102)

where F(r) is an unknown function. Conditions u(®(z,1)=0and aul® (z,0)/or=0
give respectively

o(lo
+F(1)=0 and (1—2)E(Fa(ruﬁoz))1

(1—z)%§(ru£°2))

r=1

and in order for these to apply for every z in our domain we must have that

o(1¢o
Slrate)

The r-component of the momentum equation in Eq. (C.53) is simplified to

%ﬁ(ru@) =0 and F'(0)=F(1)=0.  (C.104)

r=0 r=1

(02) 2,,(02) (02) A, ,(00)
gP |40 (1 a (rugoz))}r 1| o™ au? o
or 3or\ror 3 oroz o0z or

We solve the above equation for p® by integrating with respect to r to find

2 2 ~,(02) 2 ~(02)
p<°2>=“_1ir(ru<oz))+%5‘;zz +%agz U™ +G(2), (C.105)
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with G(z) being an unknown function. By replacing all the known quantities into Eq.

(C.105) we get

2 2
( )_CZ 10 (02) o
P = o () (1)) +6 (). (€106

By replacing all the known quantities, the z-component of the momentum equation is

simplified to
00 02 02 02
aRep™ | ul® ou, )+u(°°) ou,” =—88p( )+n(°°)1g r—aug |
ooor ‘ooz oz ror{ or
(C.107)
@lao( ou®) an® ou®
+n == r +
ror or or or
By substituting all the known quantities into Eq. (C.107) results in
~4a Rerul™ — 20 Re(1- r2)li(ruﬁoz))—li(rF’(r)ﬁ2a2r2 =
ror ror
A (C.108)
—8G'(z)-4(1-z)* +=—| r—| =—(ru®) | |(1-z
(2)-4(1-2) rar( ar(rar( ' ) (1-2)

In order to be able to separate variables we demand that the last term of Eq. (C.108) is a

scalar multiple of (1-z) therefore we set

1 6 8 1 8 (02)
——|r—| ——(ru =7, C.109
rar( 8r(rar( ' )D 4 ( )
with y being an unknown constant. By integrating Eq. (C.109) once, we get
0(10¢o (02) YV 9
r—| =—{ru ==r°+c, C.110
or [ ror ( ' )j 2 “ ( )

where ¢, is an unknown constant. Applying the condition

o(1o
Sl

we find ¢, =0. By integrating Eq. (C.110) twice, we get

=0,

r=0

1 6 (02) YV o2
~—(ru =Lr°4cC C.11
rar( " ) 4 2 ( )

and
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16

wherec, and c, are unknown constants. Applying the boundary condition u® (z,0)=0

on Eq. (C.112) we get ¢, =0and applying the conditions

u'™(z,1)=0 and Eg(ruﬁoz) =0,
ror -
we get
§+c2:o and %+c2=o, (C.113)

respectively. Solving the system in Eq. (C.113) we obtain y =c, =0, thus the radial

velocity component is equal to zero:

u® —o.

r

Since the radial velocity component is equal to zero, Eq. (C.108) is simplified to

202 10 , e\ A1 N2 _
2a°r —Fa(rF (r))=-8G'(z)-4(1-z) =A, (C.114)

where A is an unknown constant. Integrating the first ODE of Eq. (C.114) twice with

respect to r we find

and
F(r)=%r4—§r2+c5, (C.115)

where c,, and ¢, are unknown constants. Imposing the condition F’(O):O we get that

¢, =0 and imposing the condition F(1)=0 we get
—C=—. (C.116)

The mass flow rate condition (C.59) yields the condition j:F(r)rdr=0 which, when

imposed to Eq. (C.115) leads to
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Ao (C.117)

2a° a’

The solution of the system of Egs. (C.116) and (C.117) is A= and c, =4 So, we

find that
2
ul® = F(r) =%(1— rz)(l—Brz) .

The solution of the second ODE of Eq. (C.114) is

6(2)=<(1-2) -2 (1-2)+c,, (C.118)

where ¢, is an unknown constant. Applying the condition p® (11)=0 on Eq. (C.115)
we get G(1)=0. Applying this on Eq. (C.118) we find that ¢, =0. Finally, from Egs.
(C.118)and (C.106) we find that

()_1 3 0(2
p'®? _g(l—z) —E(Z—Srz)(l—z).

Hence the solution of order &° is given by

2
ul® :%(1—r2)(1—3r2)
u® =0
p'* =1(1_z)3 —a—2(2—3r2)(1—z)
6 12
p(02) -0
(©2) _%(1— z)’ —a—z(l— r*)

(3.119)

C.2.6 Solution of order &0

We assume that uf™ =u{™ (r). From the equation of state and the equation of viscosity in

Eqg. (C.63) we find that

2

(1) _ 1 4
o _E(l_z) _T(l_rz) (C.120)

and
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2

p =Ygy +“_Re(1_z)+“_(1_r2), (C.121)

2 4 12
From the continuity equation we get
10/ ay\, O( @, (00
——(ru 7+ —(u + u =0. C.122

Integrating equation (C.122) with respect to z we obtain

@y _ a0 10 ay)\,
ul™ = — My +rar(rur )(1-2)+F(r). (C.123).

Substituting u'® and p™ from Eg. (C.73) and Eq. (C.120) we find

1) _ 2 2 10 () a? 22
u =—(1-r*)(1-2) +F5(rur )(1—z)+?(1—r ) +F(r). (C.124)

(1)
Conditions u{™ (z,1) =0and I(J;r (z,0)=0 give respectively

o(lo
F(1)=0 and (1-2)—| =— “”j
r:l+ (1)=0 and ( Z)ar(rar(rur )

(1—z)%§(ru£“))

and in order for these to apply for every z in our domain we must have that

o(l0
A )

The r-component of the momentum equation in Eq. (C.61) is simplified to

117 11 2,.(10)
_85p( ) +a2n(00)[42[1 i(ru(n))j_i_l azug )}4_ a? (0 o°u,

=0 and F'(0)=F(1)=0.  (C.126)

r=1

r=0

or 3orlrory 3oroz | 3 oroz
an® au , on™ aul®
+aZ z_ 4 aZ z =0
0z or oz or

We solve the above equation for p™¥ by integrating with respect to r to find

2 2 A (11) 2 A (10 2 2
p(ll) =a—1g(rU£ll))+a— aUZ +0!_ aUZ _a_u(10)+a_ (l—Z)—a—Re:|U(OO)+G(Z)_
6 ror 24 oz 24 oz 8 4

(C.127)

By replacing all the known quantities in Eq. (C.127) we get
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()_2&2 azla (12) asRe
= () 2) T g (e T (T vert-2r) 6 (2) (C129)

The z-component of the momentum equation it is simplified to

11 11 11 12 11
aRep(OO){u(OO) aul )+u(00) aul )}:_85p( )+n(°°) Fg(rﬁug )J+4az 22U )}

o T & oz ror or 3 o
oyl 0 [ au§1°>J wlo ( au§°°>J ao? on® au™®  an™ oyl
+n r +n = —|r + +

or rorl  or 3 & oz or  or

which by substituting all the known quantities results in

~4a Rerul — 2o Re(1- r2)lﬁ(ru(“))——g(rF'(r))Jr%lz(?—Brz) =

10

16(1—2)2—86'(2)+Fa£ra(—a(ru£”))D(l—z)—4a Re(1-2)
(C.129)

In order to be able to separate variables we demand that the terms involving both r and z

are scalar multiples of (1-z) therefore we set

10 rﬁ(lﬁ(rugw)j _4qRe=aRey, (C.130)
ror{ or\ror

with y being an unknown constant.

By integrating Eg. (C.130) once we get

o(1lo (11) _aRe 2
e L) (130

where ¢, is an unknown constant. Applying the condition

ﬁ(lﬁ(rum))] o
oriror\ " /)
we find ¢, =0. By integrating Eq. (C.131) twice we get
10 (1) o Re 2
——(ru7 |J=——(4+y)r°+c C.132
C—(ru) === (44 ) r e, (C.132)
and
ru® :al—lze(4+;/) r“+%2r2 +C,, (C.133)
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where c,, and c, are unknown constants.

Applying the boundary condition u* (z,0)=0 on Eg. (C.133) we get c, =0and applying

the conditions

u™(z,1)=0 and 1ﬁ(ruﬁﬂ) =0,
ror 1
we get
aRe aRe
?(4+7/)+cz =0 and T(4+7/)+C2 =0, (C.134)

respectively. Solving the system in Eq. (C.113) we obtain y=—4 and c, =0, thus the

radial velocity component is equal to zero:

Since the radial velocity component is equal to zero, Eq.(C.108) is simplified to

20 (7-13%) 22 (481 (1)) =16(1- ) 86/(2)-darRe(1-2)= A, (C139)

where A is an unknown constant.

Integrating the first ODE of Eq. (C.114) twice with respect to r we find

2 2 4
rF'(r)= 14 [r——r—j—érz +cC,

3 2 2 2
and
7o’ A
F(r)= 5 (2r2—r4)—zr2+65, (C.136)

where c,, and ¢, are unknown constants.

Imposing the condition F'(0)=0 we get that ¢, =0 and imposing the condition F(1)=0

we get

(C.137)

The mass flow rate condition yields the condition I:F (r)rdr =0 which, when imposed to

Eq. (C.136) leads to
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EANEP , C.138
8 ° 18 ( )
. . 14a° 7a?
The solution of the system of Egs. (C.137) and (C.138) is A= and ¢, =— 6
So, we find that
2
1y _ 2 2 @ 2 2
u =—(1-r*)(1-2) +E(1—r )(23+3r%).

The solution of the second ODE of Eq. (C.135) is

G(z)=—§(1—z)3+aTRe(1—z)2 +2(1-2) e, (C.139)

where ¢, is an unknown constant.

Applying the condition p*”(1,1)=0 on Eg. (C.128) we get G(1)=0 and from Eq.
(C.139) we find that ¢, =0.

Finally combining Egs. (C.128) and (C.139) we find that

2a° «°Re

3 (4—3r2)(1— z)- v

o) = —%(l— 2)° +—“§e (1-2)+

(1-r?)(7+6y° —2y*).

Finally summarizing we have that the solution of order &4 is

u™ =0
) _ 2 3 aRe 2 20(2
p™ _—5(1—2) T(1—z) +5 (4-3r*)(1-2)

a’Re 2 2 4

& TR (1-r?)(7 —2

g (Lr)(7+6y*-2y")
2

P(ll)zé(l—z)z—a—( —r2)

(C.140)
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C.3 The solution up to the second order

Combining the solutions of zero-order and of orders ¢, 6, €%, 6% and &, we find that the

perturbation solution that includes these orders is given by:

the perturbation solution is as follows:

:2(1—r2)+g(1—r2)[—2(1— )—“1—28(2 7r? 4 2r )}

+522(1—r2)E(1—z)2—0‘1—F;e(1 +7r-2r' )(1—z)+%(1—27r2)

a2 Re®
43200

(43-957r° +2343r" —1257r° +168r° )}
152 “—(1—r2)(1—3r2)+g5(1—rz){—(l—z)2+“—2(23+3r2)}r hot.
24 72

u =g aB—F\: r(1- r2)2 (4-r®)+hot.

pot-res] 310 s SR 2) 5 1) o] Sa a4 1)

2 2 2
i E(l_z)t“TRe(l_ P -2 (29-0r7)(1-2)+ L2 (1-2)

3

R 1 2
oG

a’Re

n (1-r*)(7+6y? —2y4)}r hot.

+g§{—§(1—z)3+a§e(l z)2+zg (4 3r? )(1—2)_

2

12 (1_r2)} +‘95B(1—2)2 —%2(1—r2)}+h.o.t.

1

p=lre(l-2)+&’| —(1-2) + “Ee(l 2)+

2

77:1+5(1—z)+52_%(1—2)2—%2(142)}35{—%(1—2)2 “fe(l z)+ 12(1—r2)}+h.o.t.

The volumetric flow rate,

2{ (r,z)rdr (C.141)

IS given by
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2 2
Q(z)=1-¢(1-z)+&’ B(l—z)2 + SZEF:e (l—z)—zzi?}gé{—g(l— z)’ + 317206 } hot..

(C.142)

The mean pressure drop for axisymmetric Poiseuille flow of a compressible Newtonian
fluid, defined by

Apzﬁ(o)—ﬁ(l)zzj’;[p(o,z)—p(l,z)]rdr (C.143)

. 2 P2
Ap=1l-¢ 1—locRej+é+gz 1_4_9a2_a_Re+a Re
2 4 2 72 2 27

(C.144)

For the axisymmetric Poiseuille flow, the average Darcy friction factor, defined by

8 rLou,

Re Y0 or

f

1,z)dz, (C.145)

gives

i 2
E=1—5 1—iaRe +&° 1—Eaz—laRe-l-iozzRe2 —52a—+55 —1+la2 +hot.
32 2 12 2 12 4 2160 24 8 20

(C.146)
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