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Abstract

The goal of this thesis is the statistical analysis of mixed Poisson count time series mod-
els. The necessity for such an investigation arises from the fact that count dependent
sequences, which appear in several scientific fields like medical, environmental or financial
applications, they often face the phenomenon of overdispersion, that is the sample variance
of the data collection is larger than the corresponding mean.

In particular, we study inference for count time series regression models which include
a feedback mechanism. We study probabilistic properties and quasi-likelihood estimation
for this class of processes. We show that the resulting estimators are consistent and
asymptotically normally distributed. The key observation in developing the theory is a
mean parameterized form of the mixed Poisson process.

In addition, we employ different criteria to study the prediction problem. In particular,
we provide probabilistic forecasts based on the assumption of Poisson or negative bino-
mial distribution, which they fall within the framework of mixed Poisson processes and we
propose the use of Probability Integral Transformation (PIT) histogram, marginal calibra-
tion plot and scoring rules to assess the predictive performance and rank the competing
forecast models.

In the last part of this thesis we discuss the testing problem for linearity in the con-
text of such models. We employ the score test, suitably adjusted, as it is based on a
quasi-likelihood function. Our methodology covers both cases where parameters can be

identifiable or non identifiable under the null.



ITepiAndn

Yxomog authic Tng epyaoiug efvar 1 otatioTnd| avdiuoT wxtwy Poisson povtéhwy ypovooet-
ewv, o omolo AauPdvouy axépareg Tyeg. H avayxoudtnta o té€Totag MEAETNG TROXUTTEL
amd 1o YEYOVOS OTL o axépaneg eCapTnuéveg axoloulieg, ol omoleg eugavilovton o€ TOAAA
ETOTNUOVIXY TED(X OTWE 1) toTEWXr, 1 UEAETY TOU TEQBAAAOVTOC 1| Ol OXOVOUXES EQUPUO-
Yéc, TOAD ouyVa avTWETWTILOUY TO QUVOUEVO TNS UTEEOLOXOUAVOTS, ONAUDY| 1 OELYUATIXN
OLoT0pd TNG GUALOYTG DEDOUEVLY elvon PEYaAUTERN amd TNV avTioTolyn UEoT) T

Ewdwdtepa, UEAETOUUE GUUTERAGUATOROYIOL YIo LOVTEND TOUAVOPOUNOTG UXEQUUMY Y POVO-
oeElpWY, Ta omolo TEPLAAUBAVOLY €val unyavioud avddeaons. Meletolue mdavoewpntinég
WBOTNTES Ao EXTUNOT PEow TNS NUITWIAVOQAVELNS YL QUTH TNV XAACT) Bladxact®y. Amodel-
A«VOOUUE OTL Ol TPOXUTTOUGEG EXTIUATELEG EIVOL GUVETELC XL ACUUTTWTLIXS XAVOVIXE XUTAUVE-
unuéves. H ooy napatrienorn otny avdntuln tne Yewplag etvon 1 xatdhhnhn nopaUetpomol-
NUEVY Yot Tne wéong Tipng tne wxtric Poisson dadixaoctog.

Emniéoyv, yenouomowolue dudgpopa xplthpla Yiot Vo HEAETHOOVUE TO TROBANUA NG Tpo-
Bredne. Ewwodtepa, mapg€youue mavodewentinéc mpofrédec Baciloueveg otny undieot
tn¢ Poisson # tng apvnuixfc dtwvuuixic xatavouns, ot omoleg eunintouv 6To TAXCO TWV
Ty Poisson dtaduaciwy xan TeoTEVOUUE TN YP1oN TOU IGTOYRIUUATOS UETATY NUATIOLOD
miavotnTag, TNg xaumiAng meprimploxrc Baduovouncng xot Twv xavovemy scoring yia vo
a&loAOYHOOUUE TNV AmOB00T TEOBAEYNS ot VoL XATUATACOVUE TA AVTUYWVIOTIXY UOVTEN TTPO-
Bhegne.

Y10 teleutaio Yépog autig TNg gpyaciog culnTolue To TEOBANUN EAEYYOU YRUUULXOTNTOS
670 TAUGLO AUTOY TWY HOVTEAWY. XENOWOTOWOUE TNV EAEYYOCUVAQTYOTY score, XATIAANAA
TEOGUPUOCUEVTY), agol Pactleton oty numdavogdvela. H pedodohoyla uag xakimter xou
TIC 000 TEQPLTTWOEIC OTOL OL TUPAUETEOL Elvar TEOOOWRIGIES 1 U1, X4Tw omd TN UNOEVIXT|

unoveo,.
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Chapter 1

Introduction

During recent years there has been considerable interest in models for time series of counts.
The necessity for such an investigation arises from the fact that count dependent sequences
appear in several diverse scientific fields, including medical, environmental or financial
applications. The main goal of this thesis is the development of statistical methodology
for count time series modeling, estimation, inference, prediction and testing.

The study and the analysis of count time series poses several problems and questions.
For instance, a common distribution that is used in practice to model the response time
series, is the Poisson distribution. Such an assumption is sensible because the Poisson
distribution is the simplest discrete distribution, yet its properties are satisfactory to cover
a large class of problems. However, to the best of our knowledge, the appropriateness
of the Poisson assumption has not been discussed properly in the literature. One of
our contributions, is to examine whether the Poisson assumption can be verified by real
data. Towards this goal, Figure 1.1 shows the Probability Integral Transformation (PIT)
histograms, see Czado et al. [13], for transactions data of a certain stock. The PIT
will be discussed in detail in Chapter 4, but the main message of Figure 1.1 is that the
Poisson assumption fails to model these data and a better approach is provided by the
negative binomial distribution suitably parameterized. In fact, Figure 1.1 motivates our
contribution, in the sense that the PIT plot based on negative binomial distribution shows
better fit of the data than the corresponding PIT based on Poisson. To understand why
is this so, note that the negative binomial process belongs to the class of mixed Poisson

processes; see Mikosch [64]. These processes can be used for modeling transactions data



(and more generally count time series) where the total number of transactions can be

thought as a collection of individual transactions which correspond to different trading

strategiles.
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Figure 1.1: PIT histograms applied to the number of transactions per minute for the stock
Ericsson B for the time period between July 2nd and July 22nd, 2002. From top to bottom: PIT
histograms for model (3.6) and model (3.11) for v = 0.5. Left Plots: The conditional distribution
is the Poisson. Right Plots: The conditional distribution is the negative binomial.

More specifically, we will be studying models that include a feedback mechanism,
similar to Fokianos et al. [34]. It has been proved that this class of models successfully ac-
commodates count time series whose autocorrelation function decays slowly towards zero.
The inclusion of the feedback mechanism makes parsimonious modeling possible. This is
in line with GARCH modeling of financial returns, whereby past values of volatility are fed
back into the system; see Bollerslev [5]. The context of this thesis is quite different from
the previous contribution, in many aspects. First, we extend Fokianos et al. [34], to mixed
Poisson count time series by suitably parameterizing its mean. Using the observation that
a mixed Poisson process has stationary increments, we can discover ergodicity conditions

that do not depend upon any additional parameters regarding the variance of the mix-



ing variable. The main instrument on deriving such conditions, is the notion of weak
dependence (Dedecker et al. [21]) in connection to the recent contribution by Doukhan
and Wintenberger [27]. These works give verifiable conditions for studying ergodicity of a
general class of processes. Based on these theoretical results and inspired by the success of
Gaussian likelihood in modeling and estimation of GARCH models, we propose estimation
of the regression parameters based on quasi-likelihood function obtained from the Poisson
distribution. It turns out, that the correct mean specification yields consistent estimates
whose asymptotic covariance matrix is given by a sandwich type matrix; a basic result in
GARCH literature for the Gaussian quasi-likelihood function. The variance of the mixing
variable which appears in the expression of the sandwich type matrix is estimated con-
sistently by two standard estimation methods. In this approach, we avoid complicated
likelihood functions and at the same time, it is still possible to obtain consistent estima-
tors whose standard error can be robustly estimated; White [73]. Moreover, the results of
estimation enable construction of PIT plots based on the negative binomial distribution,
which falls within the framework of mixed Poisson processes, instead of Poisson. The PIT
plots provides a graphical diagnostic tool to assess any distributional assumptions.
Models that are similar to the ones we consider in this contribution, but for Poisson
data, have been studied recently by Neumann [66], Fokianos and Tjgstheim [37] and
Doukhan et al. [23]. Related literature regarding log-linear models for time series of
counts include the works by Zeger and Qaqish [76], Brumback et al. [9], Fahrmeir and
Tutz [29], Kedem and Fokianos [56], Davis et al. [16], Jung et al. [55] and more recently
Fokianos and Tjgstheim [36], Woodard et al. [74] and Douc et al. [22]. Negative binomial
distributed models have been studied by Davis and Wu [15], Zhu [77] and Davis and Liu
[17]. The mean parametrization that is used in these articles is quite different from our
approach. In particular, we study observation driven models, as opposed to Davis and
Wu [15] who study parameter driven models (for a classification between observation and
parameter driven models, see Cox [12]). The articles by Zhu [77] and Davis and Liu [17]
study observation driven models for count time series in the context of negative binomial
distribution. However, their parametrization is quite different from the one we use, as
we will discuss below. Questions regarding ergodicity and stationarity of mixed Poisson

processes, as well as asymptotic maximum likelihood theory have not been addressed in



the literature, except in Davis and Liu [17] for the case of negative binomial but with a
different parametrization.

In the second part of this contribution we study the prediction problem in the context of
count time series, one of the most crucial aspects in time series analysis. More specifically,
we follow the recent methodology of Czado et al. [13], where various tools for predictive
model assessment are developed for independent but not identically distributed data. We
show that these methods can also be applied for count dependent data. We will take a
similar point of view; that is predictors are probabilistic in the sense that a probability
distribution can adequately describe their basic properties; see Dawid [19].

To predict future values of the response, the most natural way (in terms of mean square
error) is to employ the conditional mean after estimating any unknown parameters by using
maximum likelihood. However, the performance of such forecast is largely unknown in the
literature; for an exception see Jung and Tremayne [54]. This contribution fills this gap
by studying the behavior of such predictor using a variety of scoring rules. In addition,
we study the same problem for negative binomial time series. At the end, we can in fact
assess which distribution is more suitable for the data at hand.

We focus on Poisson and negative binomial distributions since these are occurred in
applications more frequently; however the methods can be applied to other discrete distri-
butions, like mixtures of Poisson, provided that they are suitably parameterized. We also
show that models which include a feedback mechanism considerably reduce the number
of parameters for fitting and predicting models with strong autocorrelation, regardless of
the chosen response distribution.

In the last part of this thesis we are particularly interested in testing linearity against
two special classes of nonlinear alternatives for count time series data. Evaluating the sig-
nificance of added variables in a regression equation can be carried out using the likelihood
ratio test, Wald test or score (Lagrange Multiplier) test under quasi-likelihood theory. The
score test is often a very convenient tool because it does not require estimation of the non-
linear model and only requires the estimation of the constrained model under the null
hypothesis. However, careful application of the methodology requires suitable adjustment
of the score test, since it is based on quasi-likelihood methodology. Note that, all afore-

mentioned types of test statistics are asymptotically equivalent (cf. Francq and Zakoian



[40, Ch. 8]).

Two major classes of nonlinear models are considered, which both of them nest the
linear model. The first class consists of models which do not face the problem of non iden-
tifiability, that is all the parameters of the model are identified under the null hypothesis.
For this class of models and under the null hypothesis of linearity, the score test statistic
possesses an asymptotic X2 distribution. The second class of nonlinear models consists of
models in which a nonnegative nuisance parameter exists under the alternative hypothesis
but not when the null holds. In this particular case, the testing problem is nonstandard

and the classical asymptotic theory for the score test does not apply.



Chapter 2

Basic Tools and Definitions

2.1 Introduction

In this chapter we define important tools and definitions for the sequel.

Definition 2.1.1 (Probability mass function of the Poisson distribution)
Suppose that Y is a Poisson distributed random variable with mean equal to A, A > 0.

Then the probability mass function (pmf) of Y, for y =0,1,2,..., is given by

_,\>\y
fY(y) =° Y| .

Definition 2.1.2 (Probability density function of the gamma distribution)
Suppose that 7 is a gamma distributed random variable with parameters A > 0 and v > 0.

Then the probability density function of Z, for z > 0, is given by

Fale) = = (5) = teso.

Definition 2.1.3 (Probability mass function of the negative binomial distribution)
Suppose that Y is a negative binomial distributed random variable with parameters v > 0

and p € (0,1). Then the pmf of Y, for y =0,1,2,..., is given by

['(v+vy)

mpy(l —p)Y. (2.1)

fr(y) =

The mean and the variance of Y are given by E(Y) = v(1—p)/p and Var(Y) = v(1—p)/p?,

6



respectively.

The negative binomial distribution arises as a mixture of a Poisson distribution where

the mixing distribution of the Poisson rate is a gamma distribution. That is, we can view

the negative binomial as a conditional Poisson(z) distribution, given Z = z, where Z is

itself a random variable, distributed according to gamma with parameters A and v. To

calculate the pmf of Y for y = 0,1,2,..., we follow the steps below:

Ty (y)

/fY|z(y|Z)-fZ(Z)dZ

e*zY 1 v ,q _v,
/TF(V)(X) 2V e XPdz
0

)

F(V)(F(y +)1) <V/V)\/j\L 1>V<1///\1+ 1>y
(
)

(v +vy) vV o\Y/ A \Y
(v F(Zil)(u—i—)\) (V—|—)\>

Comparing the previous display with the pmf of the negative binomial distribution

given by (2.1), we realize that Y has the negative binomial distribution with p = v/(v+ ).

Hence, the mean and the variance of Y are given by E(Y) = X and Var(Y) = XA + A\?/v.

Definition 2.1.4 (Poisson process), Brockwell and Davis [8, Def. 1.7.3]

A Poisson process with mean rate A > 0 is a process { N(t),t > 0} satisfying the conditions

e N(t3) — N(t1), N(t3) — N(t2), ...
{3,4,...} and every t = (4, . ..

,N(t,) — N(t,_1), are independent for every n €

,tn) such that 0 <t <ty < ...<t,,

e N(t) — N(s) has the Poisson distribution with mean A(t — s) for ¢ > s.



Definition 2.1.5 (Autocovariance function), Brockwell and Davis [8, Def. 1.3.1]
Let {Y;,t € T} be a process such that Var(Y;) < oo for each ¢t € T. Then the autocovari-

ance function 7y (-, ) of {Y;} is defined by
W (r,s) = Cov(¥,, Ye) = E[(Y, = E(Y;))(Ys —E(Y)))l, nseT.

Definition 2.1.6 (White noise process), Brockwell and Davis [8, Def. 3.1.1]

The process {¢;} is said to be white noise with mean 0 and variance o2, written
{e} ~ WN(0,07),
if and only if {¢;} has zero mean and covariance function

o? it h =0,
v(h) =
0 ifh#0.

Definition 2.1.7 (Stationarity), Brockwell and Davis [8, Def. 1.3.2]
The time series {Y;,t € Z}, with index set Z = {0,+1,£2,...}, is said to be stationary if

e ElY)? <0, ViteZ,
e E(Y,)=p, VteLZ,
® yy(r,s)=w(r+t s+1), Vrstel.

Definition 2.1.8 (Strict Stationarity), Brockwell and Davis [8, Def. 1.3.3]
The time series {Y;, t € Z}, is said to be strictly stationary if the joint distributions of
vectors (Yi,,...,Y;, ) and (Y, in,..., Y, 4n) are the same for all positive integers k and

for all t1,...,t,, h € Z.

Definition 2.1.9 (Ergodic stationary process), Francq and Zakoian [40, Def. A.1]
A strictly stationary process {Y;, t € Z}, is said to be ergodic if and only if, for any Borel
set B and any integer k,

1 n
ﬁle(naK-‘rl)"w}/}ﬁ-k) — P((Yi77}/i+k) S B)
t=1



with probability 1.

Definition 2.1.10 (Contraction)
A contraction mapping or contraction on a metric space (M,d) is a function f : M — M,
with the property that there is some nonnegative real number k£ < 1 such for all x and y
in M,

d(f (@), f () < kd(x,y).

Definition 2.1.11 (ARMA(p,q) process), Brockwell and Davis [8, Def. 3.1.2]
The process {Y;, t € Z} is said to be an AutoRegressive Moving Average ARMA(p, q)

process if {Y;} is stationary and if for every ¢,

p q
Y, =D oYer=ea+) by, (2:2)
r=1 r=1

where {¢} ~ WN(0,06%). We say that {Y;} is an ARMA(p,q) process with mean p if
{Y; — u} is an ARMA(p, q) process.

Example 2.1.1 (Autocovariance function of ARMA(1,1) process),
Consider Definition 2.1.11 for p = ¢ = 1. The autocovariance function of an ARMA(1,1)

process is given by

1+ 2010, + 607
0-7
1— ¢}

(14 60101) (01 + 1) jh—1 o
-6 T

h =0,
v(|h|) = Cov [V, Vi ] =

In| > 1.

Definition 2.1.12 (GARCH(p,q) process), Francq and Zakolan [40, Def. 2.1]
A process {€:} is said to be a Generalized AutoRegressive Conditional Heteroscedastic

process - GARCH(p, q) if its first two conditional moments exist and satisfy:
e E(ele,,u<t)=0, teZ,

e There exist constants w,a;,7 =1,...,¢ and 3;,7 = 1,...,p such that

q p
o7 = Var(ele,,u < t) =w + Zai‘ftz—i + Zﬁjaf—j’ tez.

=1 j=1



Definition 2.1.13 (Mized Poisson process), Mikosch [64, Def. 2.3.1]
Let N be a standard homogeneous Poisson process, that is a Poisson process with rate
equal to 1. Let p(u) be the mean value function of a Poisson process on [0, 00). Suppose

further that Z is a positive random variable independent of N. Then, the process

N(u) = N(Zu(u)) = N (0, Zu(w)], u >0,

is called a mixed Poisson process. The variable Z is called the mixing variable.

Theorem 2.1.1 (Mean value theorem)
Let f : U C R* — R be differentiable, and a, b € U, such that [a,b] C U. Then
3 ¢ € (a,b) such that

f(b) = fla) =V [f(c)-(b—a).

It holds that
|f(b) = f(a)] < sup [V f(z)|-[b—al

z<(a,b)
Lemma 2.1.1 (Cesard's lemma)
Let b, be a monotonic increasing sequence of positive real numbers such that b, — oc.

Let x,, be a sequence such that x,, — . Then

n

1
5 Z(bt —bi_1)ry > x as n — oo.
=1

Definition 2.1.14 (Probability Integral Transformation)

Suppose that X is a nonnegative integer-valued random variable, that is X =1,2,... Let
vi=PX =d)and p, = P(X <i) =9 +v%+...+v fori =1,2,... It holds that
pi—pi-1 = P(X <i)—P(X <i—1)=P(X =1) = . Denote by U(a,b) the uniform
distribution in (a, b).

Let Y be a random variable as follows:

10



;

U(0,p1) when X =1,
U<p17p2) when X = 27

U(ps,ps) when X =3,

We will show that Y has the standard uniform distribution. Consider the cumulative

distribution function of Y,

Y<y ZP pz lvpl <y‘X_Z>P<X:Z)

Z’YiP(U(PFl,pi) <yl X =1), (2.4)

where P(U(p;—1,p:) < y|X = 1) is equal to

0 lf Yy < Pi—1,
PU(pi1,pi) Syl X =i) = (y —pic1)/(pi —pic1) it pi <y < pi, (2.5)
1 if p;<y<l.
\

Therefore, from (2.4) and (2.5) we have that

/

0 if y <O,
PY<y)=qy if 0<y<1,

1 if y>1,

and thus, Y is a standard uniform random variable.

11



Chapter 3

Inference for Count Time Series

Models

3.1 Introduction

This chapter introduces the general framework for count time series analysis. We consider
mixed Poisson autoregressions for the statistical analysis of this class of time series. This
approach enlarges considerably the framework of the most common used distributional
assumption, the Poisson-based analysis of count time series, as discussed by Kedem and
Fokianos [56], Davis et al. [16] and Fokianos et al. [34] among others.

We study inference for count time series regression models which include a feedback
mechanism. We study probabilistic properties and quasi-likelihood estimation for these
models and we show that the resulting estimators are consistent and asymptotically nor-
mally distributed. In addition, we discuss some ergodicity and stationarity conditions for
such models by employing the notion of weak dependence (see Dedecker et al. [21]). The
key observation in developing the theory is a mean parameterized form of the models that

fall under the framework of mixed Poisson processes.

3.2 Autoregressive Modeling

In what follows, we denote by ||h||« = sup |h(x)| for the Euclidean space R? and h :
zEeRd

R? — R.

12



Assume that {Y;,t € Z} is a count time series and let {\,t € Z} be a sequence of
mean processes. Denote by .EY”\ the past of the process up to and including time ¢, that
is F) = o(Ys,s <t,Ai_g,..., o), for some ¢ > 0. In this chapter, we will study general

theory for estimation for the following class of count time series models defined by

Y = Ny(0, Z, A = Ny(0, \], tEZ. (3.1)

In the above, N, is a standard homogeneous Poisson process (that is a Poisson pro-
cess with rate equal to 1) and {Z;} denotes a sequence of independent and identically
distributed (iid) positive random variables with mean 1, which are independent of N,. In
addition, we assume that \; is measurable with respect to {Y;, s < t} and Z; is indepen-
dent of {Y;,s < t}. The family of processes belonging to (3.1) is called mixed Poisson
process; see Definition 2.1.13, and it counts the number of events on the time interval
(0, A¢.

We will now calculate the mean and the variance of the above process.

e Mean of the mixed Poisson process:

E(VIFY) = B{EMV|Z, A} = BEWNO. 20|12 FI)
= E<Zt)\t|-7:t}i>{), since Nt is a Poisson process with rate 1
= )\tE<Zt)

= )\, since E(Z;) is equal to 1.

e Variance of the mixed Poisson process:

Var(Y,|FY) = E{Var(Yy|Z, F,)} + Var{E(Y,| Z, F))}
= E{Var(Ny(0, Z:\)| Z, FY)} + Var{E(N,(0, Z, A Ze, Fi21)}
= E(ZM|F) + Var(Z,M\|F)
= ME(Z)) + Var(Z,)\;

= )\t + 0'%)\?

Note that if 0% > 0 then the variance of the mixed Poisson process is greater than

13



the corresponding mean, so it takes into account overdispersion, a common phenomenon
occurred repeatedly in the analysis of such data; see Dean et al. [20] and Lawless [60] for
instance.

Two important distributions fall within the framework of (3.1) and they are routinely

employed for the analysis of count time series. Namely, the Poisson distribution given by

exp(—Ay) A

PlY, =y | Fy] = o v=0L2. (3.2)
and the negative binomial distribution given by
I'(v+vy) VoY, A Y
PlY, = y | F = ( ) ( ) —0,1,2,..., (3.3
[ t Y ’ t—l] F(y+ 1>F(V) V"—)\t U+ )\t Y ( )

where v > 0. It is obvious that (3.2) is a special case of (3.1) when {Z;} is a sequence
of degenerate random variables with mean 1. Furthermore (3.3) is a special case of (3.1)
when {Z;} are iid gamma with mean 1 and variance 1/v.

It can be shown that (3.3) tends to (3.2), when v — oco. Indeed, using Sterling’s

formula we have that

(y+1) )(V:)\t>y(y—)|\—t)\t>y

A

ﬁ( >> (1+At/y)y(y+)\t)y

)G (1+?>”ﬁ

Q

+y<
v+y v v+ M v y'
—Ae )Y
v—oo € t)\t .
— ] = (3.2)

Regardless of the choice of Z's, the conditional mean of {Y;}, as given by (3.1), is
always equal to \;, the mean of the Poisson distribution. This is a key observation which
allows for consistent estimation when using quasi-likelihood inference based on the Pois-

son assumption, as we advance in Section 3.3. However, the conditional variance of the
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Poisson distribution is equal to );, whereas the conditional variance of (3.1) is equal to
At + 0Z)\2. Hence, the mixed Poisson takes into account overdispersion more properly.
Although, simple Poisson models, as those studied by Fokianos et al. [34], can take into
account overdispersion, it is anticipated that modeling based on mixed Poisson will im-
prove considerably the fit in several cases.

The proposed modeling approach that we take is along the lines of Fokianos et al. [34].
We assume that the mean process depends upon its past values and the past values of the

response. In other words, we assume that
)\t = f(Y;f—lv"'a}/;f—pa)\t—lw"v)\t—q)? (34>

where f(-,) is a parametric function defined on Njj x R% and taking values on (0, 00), with
No = {0,1,2,...}. As we shall see below, there are several examples falling in this class
of models; the linear model (see Example 3.2.1) being the most prominent. We consider
models that include a feedback mechanism for the mean process {\;} because this class of
models successfully accommodates count time series whose autocorrelation function decays
slowly. The inclusion of the feedback mechanism makes parsimonious modeling possible.
In fact, we will see in Chapter 4, by a simulated example, that models which include
a feedback mechanism outperform models without the feedback mechanism in terms of
prediction, even in cases where the true data generating process depends exclusively on a
large number of lagged variables of the response. Here, it should be mentioned that both
(3.2) and (3.3) can be employed as conditional response distributions in connection with
model (3.4).

In particular, we focus on the specific case of p = ¢ = 1. Then the proposed model is

rephrased as
Yi = Ni(0, ZA = N0, A, Ao = (Y, ), tEZ, (3.5)

with Nt and Z; as discussed before. The last display shows that the hidden process {\;} is
determined by past functions of lagged responses and the initial value \g; this fact can be
easily seen after repeated substitution in (3.5). Therefore model (3.5) belongs to the class

of observation driven models in the sense of Cox [12]. In addition, (3.5) is quite analogous
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to GARCH where the observation equation links the data with the unobserved process.
Our first result offers verifiable conditions for proving existence and stationarity of
model (3.5). Furthermore, it is proved, under mild conditions, that the processes under
consideration have finite moments. This task is carried out by employing the concept
of weak dependence, see Doukhan and Louhichi [26], Dedecker et al. [21] and Doukhan
and Wintenberger [27]. The main assumption of the following theorem is a contraction
property of the function f(-) in (3.5), see also Fokianos et al. [34], Fokianos and Tjgstheim
[37] and Neumann [66]. The proof of the following theorem is postponed to the Appendix.

Theorem 3.2.1 Consider model (3.5). Assume that there exist constants oy, as of non-

negative real numbers such that

1f, A) = f(, M) < aad = N[+ asly =3/

Suppose that & = oy +ay < 1. Then there exists a unique causal solution {(Y;, \¢),t € Z}
to model (3.5) which is weakly dependent, stationary, ergodic and satisfies E[(Yo, Ao)||" <

oo, for any r € N.
Some concrete examples that fall in the above framework are discussed below.

Example 3.2.1 Consider the following simple linear model with

)\t =d -+ al)\t,1 —+ blyv{g,l. (36)

By a slight abuse of language, this is an example of an integer GARCH model of
order (1,1), see Ferland et al. [31]. Fokianos et al. [34] proved that a perturbed version
of this model is geometrically ergodic with moments of any order when 0 < a; + b; < 1.
The unperturbed version has been studied by Neumann [66] and Doukhan et al. [23] who
showed weak dependence and existence of moments under the same conditions.

All the above contributions are under the assumption of Poisson distribution. Theorem
3.2.1 shows that under the same conditions, model (3.6) is ergodic and stationary which
possesses moments of any order, but under the mized Poisson assumption. It is important
to mention that the stationary region avoids dependence on the variance of the mixing

variable; this is a crucial fact for applications since we only need to be concerned with the
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appropriate choice of the regression parameters (compare with the approach by Zhu [77] for
the particular case of the negative binomial). In addition, when developing optimization
algorithms for fitting such models, we do not need to take into account any additional
nuisance parameters.

It is illuminating to consider the simple linear model (3.6), which is our benchmark,
in more detail. First of all, if we consider the particular case where ¢ > 1, by repeated

substitution we have that

A = d+a o +01Y
= d+ ay (d + CL1>\t72 + b1n72> + bl}Q,l

= d+ ald + G%)\tfg + CllblY't72 i bl}/tfl

1— (It t—1 ‘
= dl al + ai/\(] + b1 Z CLZIY;_i_l. (37)
- i=0

The last display shows that the hidden process {\;} is determined by past functions
of lagged responses and the initial value \g. Therefore model (3.6) belongs to the class of
observation driven models in the sense of Cox [12]. Representation (3.7) explains further
the reason that model (3.6) offers a parsimonious way of modeling count time series data
whose autocorrelation function decays slowly. The process {\;} depends on a large number
of lagged response values so it is expected to provide a more parsimonious model than a
model of the form (3.10), which will be discussed later.

Consider now the following decomposition,

i = M+ (Yi—A)
= M+te
= d+amh+b0Y 1 +e
= d+a(Yie1 — 1) +01Yq + &

= d + (CLl + bl)Y;g_l — A1€4_1 + E.
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Therefore,

d

d
Y, - ———
(t 1—(a1—|—bl)

) = (a1 +b1)<Yt—1 T tb)

) + & — a164-1,

which indicates that {Y;} is an ARMA(1,1) model and when 0 < a; +b; < 1, is stationary
with mean E(Y;) = E(\) = p=d/(1 — (a1 + b1)).
Assuming that {Y;} is stationary and its conditional distribution is either the Poisson or

the negative binomial, we will calculate the mean and the variance of the residuals ;.

e Mean:

E(e) = E(Y; — M) = E[E(Y; — M| F21)] = 0

e Variance for the Poisson assumption:

Var(er) = Var[B(e,|F )] + E[Var(e] 7))
— E[Var(g,|F))], since Var[E(g,|F) )] = 0
= E[E(|F)]
— BIE((Yi - MF)
= E[Var(Y|F)]

= E(\) =p

These results state that the sequence {e;} is a white noise sequence. Using the

ARMA(1,1) representation, we finally calculate the autocovariance function of {Y;}. For

h=0,

1+ 20,¢1 + 62

~v(0) = e L Var(g,), with ¢, =a; +0b; and 6, = —a,
1
1-— 2&1(@1 + bl) -+ CL%
1— (CLl + b1)2
1 —(ag + b))+ 07
1— (a1 +b1)?
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and for |h| > 1,

7(IAl)

(1+0101)(01 + ¢1)

|h|—1
= =& 1 Var(e)
bi(1 —ai(a + b)) hl—
= b)P=L .
1 — (al + b1)2 (a'l + 1) %

Hence, if the conditional distribution of the process is the Poisson, then the autoco-

variance function is given by

Cov [)/757 }/t-th =

1— (a1 + b1)2 + b%
1— (a1 + b2 1"

h=0,

bi(1 —ai(a; + b))
1-— (a1 + b1)2

plar +0)"= Jhl > 1

e Variance for the negative binomial assumption:

Var(g;)

Var[E(e,| F,27)] + E[Var(e,| F27)]

E[Var(e,|F,2})], since Var[E(e;|F,})] = 0

E[E(e7 | F2)]

E[E((Y; = M)’ F2D)]

E[Var(Y;| F,))]

E(\ 4+ A2 /v)

E(\) +EW\) /v

w4+ BN /v (3.8)

19



Therefore, we need to calculate E(A?) which is denoted by p(®.

p? = B
= E(d+aih_1 +bYi1)?
= E(d+a 1 +b(Yieg — A1) + i )?
= &+ (a1 +01)’EONL) + BIE(Yioy — A1) + 2d(a1 + b)) E(A-1)
= d®+ (a1 + b)?u® + b2Var(e,) + 2d(ay + b1)p, assuming stationarity of {\;}

= >+ (a1 + 0@ + 02 (4 1@ /v) + 2d(ay + by)p

Hence, u® = (d? + b2 + 2d(ay + b1)p)/(1 — (a1 + by)? — b?/v). Substituting x® and
d=p(l—ay —0b)in (3.8), we have that,

Var(er) = p+p® /v
- 1 [M2(1 — a1 —b01)* + i+ 2u(1 — a1 —bi)(a1 + by
v 1—(a; +b1)2-0b/v
1 [yu(l — (a1 +01)2 =02 /v) + p?(1 —ay — b1)2 + b2+ 2u(1 —ay — by)(ag + bl)u]
1-— ((11 + b1)2 — b%/V
1 [W(l — (a1 +b1)%) + 4 — pP (a1 + 51)2}

14

v 1— (a1 +b1)2 =03 /v
1— (ay +b1)? u?

- b)),
1—(a1+b1) —bl/lj v

Therefore, if the distributional assumption is the negative binomial, then the autoco-

variance function is given by

(1= (a1 +b1)* +0}) ( Mz),

= h=0,
1— ((11 +b1)2 —b%/V

14
Cov [Y;7 K+|h|] =

bi(1 —ay(ay + b)) < 0 hl-1
+—)a+b RI=1 0 p| > 1.
T (a b =2y T Jln el 2
Comparing the above expressions of the autocovariance function for the two distribu-
tional assumptions, we conclude that both models allow for overdispersion for count data,
but the negative binomial based model should fit better larger values of the autocovariance

function.
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Consider the following model
q p
M=FViet Y dets o hmg) = d+ Y aihsi+ > bV, (3.9)
i=1 j=1

where d, a;,b; > 0 for all 4, j so that the mean process is positive. With some slight abuse

of terminology, we can refer to (3.9) as an integer GARCH model of order (p, q) at least for

the case of the Poisson distribution where the conditional mean equals to the conditional

variance.

Proposition 3.2.1 For model (3.9), a necessary condition on the parameters a;, i =
q

1,...,qand b;, j = 1,...,p to yield a second-order stationary process, is 0 < Y a; +
i=1

p
Z bj < 1.
=1

The proof is analogous to Proposition 1 of Ferland et al. [31] and it is postponed to the
Appendix. Moreover, Doukhan et al. [24] have shown that for Poisson models the mean
relationship of (3.5) can be replaced by the infinite memory model \; = f(Y;_1,Y;_o,...) by
assuming a contraction property on f(-) similar to the condition stated in Theorem 3.2.1;
see also Doukhan and Kengne [25]. The proof of Theorem 3.2.1 in the Appendix shows that
the contraction property yields weak dependence under the mixed Poisson assumption for
models of infinite memory; see Doukhan et al. [24]. Regardless the assumed distribution
form, the model still enjoys weak dependence and the asymptotic theory for maximum
likelihood estimation can be developed along the lines of Bardet and Wintenberger [3].
For models like (3.9), and more generally models of infinite memory which include the
feedback from the mean process, weak dependence is quite challenging to be proved; see
Doukhan et al. [24] for more.

Another particular case of (3.9) is given by setting p = 5 and ¢ = 0; that is
5
M=d+ ) bY, (3.10)
i=1

This is an example of an integer AutoRegressive model of order 5 (integer AR(5) model).

It follows that the required condition for model (3.10) to be stationary with moments of
5

any order, is given by 0 < > b; < 1. We include this model for the sake of comparison
i=1
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with models that contain a feedback mechanism like (3.6). We shall see in Chapter 4 that
even though the data generating process follows (3.10), it is still more efficient to work

with model (3.6) in terms of prediction.
Example 3.2.2 Now, consider the following nonlinear specification for (3.5) (cf. Gao
et al. [42])

t:

d
m + a1 + 01, (3.11)
t—1

provided that all the parameters d, a, b1,y are positive. The inclusion of the parameter ~
introduces a nonlinear perturbation, in the sense that small values of the parameter v cause
(3.11) to approach model (3.6). Moderate values of v introduce a stronger perturbation.

To apply Theorem 3.2.1, consider the multivariate form of the mean value theorem and

note that
) = £ 01 < o] a= X1+ |5 -
= A= M+l = v
of(y, N _ dry
B v

Since all the parameters are assumed to be positive and A > 0, choosing o« = max{ay, dy —
a1} + by in Theorem 3.2.1, yields the asserted conclusions under the mixed Poisson as-

sumption. Once again, we observe that the final conclusions do not depend upon o%.

Example 3.2.3 Another interesting example of a nonlinear model which yields an expo-

nential autoregressive model for time series of counts (Haggan and Ozaki [47]) is given

by

M=d+ (a1 + ¢ exp(—y)\f_l))/\t_l + b1Y;_q, (3.12)

and assuming that d, ay, ¢1, b1,y > 0; see Fokianos and Tjgstheim [37] and Doukhan et al.
[23] who study in detail the above model by either employing an approximation lemma or

the notion of weak dependence. Several other examples are provided by the class of Smooth
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Transition AutoRegressive (STAR) models of which the exponential autoregressive model
is a special case (cf. Terdsvirta et al. [71]). It turns out that, when the mixed Poisson
assumption is imposed to the conditional distribution of the responses, then Theorem
3.2.1 is true with 0 < ay + by + ¢; < 1; this fact can be proved along the lines of Doukhan
et al. [23]. Note again that the parameter 0% does not affect the region of ergodicity and

stationarity of the joint process {(Y;, \¢), t € Z}.

Note that all conditions required for ergodicity of models (3.11) and (3.12) and more
generally (3.5), do not depend upon the variance of Z’s. This is an important point
because modeling of the regression parameters does not depend on the parameter o%;
hence software implementation can be more easily carried out.

These examples show the wide applicability of the results to the analysis of integer-

valued time series.

3.3 Inference

Maximum likelihood inference for the Poisson model (3.2) and negative binomial model
(3.3) has been developed by Fokianos et al. [34] and Christou and Fokianos [11], respec-
tively. Both the above studies develop estimation based on the Poisson likelihood function
which for Poisson model (3.2) it is obviously the true likelihood. However, for the neg-
ative binomial model this method resembles similarities with quasi-likelihood inference
developed for the estimation of GARCH models. For instance Berkes et al. [4], Francq
and Zakoian [39], Mikosch and Straumann [65] and Bardet and Wintenberger [3] among
others, study the Gaussian likelihood function irrespectively of the assumed distribution
for the error sequence. Such an approach yields consistent estimators of regression param-
eters under a correct mean specification and it bypasses complicated likelihood functions;
see Zeger and Liang [75], Godambe and Heyde [44], Heyde [51].

For the case of mixed Poisson models (3.1), it is impossible, in general, to have readily
available a likelihood function. Hence, we resort to a quasi maximum likelihood (QMLE)

methodology and we propose to use the Poisson-based score estimating function.
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3.3.1 Estimation of Regression Parameters

Suppose that {Y;,t = 1,2,...,n} denotes the observed count time series. For defining
properly the quasi-conditional maximum likelihood estimator (QMLE), consider the Pois-
son conditional likelihood function and log-likelihood function, respectively, as in Fokianos

et al. [34], where 8 denotes the unknown parameter vector,

L.(0) =] eXp(—/\t}(/g))Atf(e)’

12(8) =) 1(8) =) (YilogA(6) — \i(8)). (3.13)
t=1 t=1
Remark 3.3.1 Consider model (3.5) and the associated negative binomial pmf given by
(3.3). Then the true log-likelihood function is given by

t=1

Direct maximization of the above quantity with respect to both @ and v can be imple-
mented but this might be challenging for some cases. Because our aim is to extend the
theory in the general class of mixed Poisson processes we opt for an alternative which
avoids complicated likelihood calculations. Hence, it is sensible to approach the problem
of estimation by using a quasi-likelihood function, the Poisson-based likelihood function
in our case. Inference becomes more challenging under the general setup of mixed Poisson

models.

The quasi-score function is defined by

S,.(0) = 0(8) _ mt ( )ag(g ). (3.14)

For the linear model (3.6), OA:(0)/00 is a three-dimensional vector with components

given by

oA, Ay O\ SO O -
N _ gy g QN1 — Gy Oy ON1
Y I Y L PR P R e B T
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For the nonlinear model (3.11), and for v known, 0A;(6)/06 is a three-dimensional

vector with components given by

3/\t 1 d’}/ 8/\t_1 8)\t d’7 aAt_l
o _ - _ =\ _
od (14 N—1)? " <a1 (1+ >\t1)7+1> od ’ da; i <a1 (1+ At1)7+1) day ’
(9)\t d’}/ 3)\,5,1
— =Y, — .
and b, t—1+ <CL1 1+ )\tl)'y+1> Ob,

For the exponential model (3.12), and for v known, 0A\(0)/00 is a four-dimensional

vector with components given by

% . al@gtd_l (1= 2922 ey exp(—VAtQ—D%’

g_z B (1 e h exp(—AZ )8(;‘; 1))\t 1+ (a1 + cpexp(—yAL 1))82;;1,

g_z\f N (1 — 27c1)\t185))\(t::1> exp(—y A )1 + (e + ¢ eXp(_’V)‘?—l»aggl’ nd
g_l): _ v alag\;;l + (1 =292 ey exp(—V)\?—ﬁa;—l:l

Note that

E(S,(0)| 7)) = E(i ( - 1) u(6)

= > g Ry - n (O

72

0, since E(Y; — \(8)|F)}) = 0.

The solution of the system of nonlinear equations S,,(0) = 0, if it exists, yields the
QMLE of 8 which we denote by 6. By further differentiation of the score equations (3.14)

we obtain the Hessian matrix

H,(0) = O°L(6
n(6) = Zaeae

- ixf?e (mt 0)) (agée))/_i(%”) ooy 1

An important quantity involved in asymptotic theory is the conditional information
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matrix defined by

o) = 3T ) = o vrl (g 1) g
- S () (%) oot
= S (") (Fa) 0o

- i(Ai@) +) (824(90)) <8Aatée))/‘

t=1

In particular, as mentioned before, the conditional variance of the Poisson process is
given by A, whereas for the case of the negative binomial is equal to A\; + A\Z/v. Therefore
the conditional information matrices for these two particular distributional assumptions

are given by

Gu(0) = i Atze) (agée)) (agée))’

and

Gin(0) — i(@ﬁ%) (aAatée)) <a§ée>>/,

respectively.

To study the asymptotic properties of the QMLE we take advantage of the fact that
the log-likelihood function is three times differentiable; this methodology is similar in
spirit of Fokianos et al. [34] but with an essential difference. In Fokianos et al. [34], the
authors are using a perturbed model to derive the asymptotic properties of the maximum
likelihood estimator of @ for the Poisson model, which makes the approach complicated.
In the following theorem we use the contraction principle for f(-) that was employed in the
proof of Theorem 3.2.1. In addition, some additional standard assumptions shown in the
Appendix make possible the approximation of the derivatives of f(-) by linear functions

of its arguments. These assumptions are commonly used in estimation of nonlinear time
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series models and they are relatively mild. The proof employs again the notion of weak
dependence. The final result asserts that the QMLE is asymptotically normal with a
sandwich type variance matrix; a standard result also in GARCH literature. The theorem
covers the case of model (3.5). For a proof regarding model (3.9), methods like those
employed by Berkes et al. [4] and Francq and Zakoian [39] can be employed to study

asymptotic inference.

Theorem 3.3.1 Given model (3.5) and under the assumptions of Theorem 3.2.1 and A-
1-A-3 listed in the Appendix, there exists an open neighborhood O = O(8g) of the true

value @¢ such that the QMLE 6 is consistent and asymptotically normal. In other words
V(0 — 00) B N(0, G (66)G1(80)G(6)),

where the matrices G and G; are given by

co-s(is (B) (@) e

co (i ) () () on

Given the Poisson model, Gy = G since 0% = 0 and therefore

and

~

V(0 — 8) B N(0,G7(80)).

In the above, expectation is taken with respect to the stationary distribution. All the
above quantities can be computed, and they are employed for constructing predictions,
confidence interval and so on. To show the validity of Theorem 3.3.1 it is enough to show

the following Lemma.

Lemma 3.3.1 Under the assumptions of Theorem 3.2.1 we have the following results, as

n — o0
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(i) The score function defined by (3.14) satisfies

%Sn(eo) 2} N(07 Gl (00))7

where 2 stands for convergence in distribution.
(ii) The Hessian matrix defined by (3.15) satisfies

1
EHn(eo) % G(6y),

where % stands for convergence in probability.

(iii) Within the neighborhood O(8p) of the true value

1 &L(0)
n <= 9,00,;00

max  sup

- < M,,
i,7,k=1,2,3 0c0(80)

such that M, —= M, with M a constant.

Remark 3.3.2 In practise, maximization of (3.13) is implemented by assuming some fixed
or random value of A, say Ag = 0 or A\g = Y. Then, technically speaking, if we denote by

Ao the starting value of process (3.5) we observe the log-likelihood function

L0) =Y 00) =Y <Yt log A(8) — Xt(e)) : (3.18)
t=1 t=1

with A (0) = f(Yi—1, \—1(0)). We would like to approximate (3.18) by (3.13) with
{(Yi, \t),t € Z} the stationary and ergodic process obtained by Theorem 3.2.1. Lemma
A-2 in the Appendix shows that indeed this is the case. Similar results hold for GARCH
models, see Berkes et al. [4], Francq and Zakoian [39], Mikosch and Straumann [65] and
Meitz and Saikkonen [63]. Although (3.18) is the observed likelihood function, we will use
(3.13) in the proofs of Theorem 3.3.1 and Lemma 3.3.1.
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3.3.2 Estimation of %

The previous subsection shows how to obtain the QMLE of the regression parameters.
If 02 > 0, it remains to estimate this additional parameter. One of several possible

estimators of 0%, proposed by Gourieroux et al. [45, 46], is given by

b L= [(Yi=A)2— A
aﬁz—z[(t 32) t], (3.19)
ntl )\t

where \, = )\t(é). This is simply a moment-based estimator. The motivation to consider

this particular estimator for 0% is given by the fact that

e

The above display is proved by using properties of iterated expectation and substituting

the mean and variance of the mixed Poisson process, i.e.

Yy — M) = X T (Y= A)? = M|y
Bl | = Blg( ¥ F5)|
_ [ Var(vlA) - At}
i A2
_ E -)\t + U%)\? — )\ti|
i A2
— o2,

Another approach for obtaining an estimator of 0% is by solving the equation

(Y, = \)?
Z% —n—m, (3.20)
=1 )\t(]. + O-ZAt)

where m denotes the dimension of @ and \, = )\t(é). Such an estimator can be calculating
by existing software and it is consistent because it is obtained by equating the Pearson
chi-square statistic to its degrees of freedom (cf. Dean et al. [20] and Breslow [7]).

Note that the first estimator is a moment based estimator and can be used regardless

the response distribution. The second estimator is based on the Pearson chi-square test
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statistic and therefore carries more information about the data generating process.
In particular, we recognize that for the case of negative binomial, 02 = 1/v and the
above estimator is standard in applications, see Cameron and Trivedi [10, Ch. 3] and

Lawless [60] for instance.

3.4 Simulations

In this section, the proposed approach of quasi maximum likelihood estimation is illus-
trated empirically by means of a simulated study. We consider fitting the linear model
(3.6) and the nonlinear model (3.11) to data generated from the mixed Poisson process
with mixing variable Z from gamma, chi-square, uniform, binomial or geometric distribu-
tion. All results are based on 1000 runs. Calculation of the maximum likelihood estimators
is carried out by optimizing the log-likelihood function (3.13) by a quasi-Newton method
using the constrOptim() function of R; see R Development Core Team [68] for instance.
We consider sample sizes of n = 200,n = 500 and n = 1000 throughout the simulations.
Estimation is implemented by discarding the first 500 observations so that the process is

within its stationary region.

3.4.1 Mixing Variable 7 from Gamma Distribution

Recall again that the mixed Poisson process with mixing variable Z from a gamma dis-
tribution with mean 1 and variance 0% = 1/v, sets up a negative binomial distribution.
Therefore, we generate data from the linear model (3.6) and the nonlinear model (3.11)
according to the pmf of the negative binomial given by (3.3). The linear model (3.6) is
generated with true values (d, aq,b1) = (0.5,0.4,0.5) and for different values of the param-
eter v. Note that the parameter values where chosen to satisfy a; +b; = 0.9 which is close
to the sum a1 + by obtained from the estimates of the real data examples given in the next
section. In addition, this selection of the set of parameter values satisfies the condition
0 < a1 + by < 1, which is necessary for the ergodicity and stationarity of the process.
Table 3.1 shows the results from estimation of the linear model (3.6). In all cases, we note
that the maximum likelihood estimators are consistent and as the sample size increases

the approximation improves. Some deviations are observed for the estimator d but this

30



issue, which also occurs for the ordinary GARCH models, has been observed before by
Fokianos et al. [35]; see their Figure 1(a).

Besides estimation results, we also report the standard errors of the estimators obtained
by simulation (first row in parentheses) and the true standard errors of the estimators
obtained by calculating the matrices G and G-recall Theorem 3.3.1-at the true values
(second row in parentheses). In all cases, we do not observe any gross discrepancies between
theory and simulation for the linear model, especially for large sample sizes. Note that
all standard errors decrease as the sample size increases. To investigate further the finite
sample performance of the Hessian matrix—see the second assertion of Lemma 3.3.1-we
evaluate both matrices at the true value of 8, for the linear model. Table 3.2 shows the
comparison between the Hessian matrix and G for 1000 simulations. We conclude that
the convergence is quite satisfactory.

As far as the estimator of the parameter v is concerned, we note that for all cases
considered, the estimator 7, based on (3.20) is superior to the estimator 2y from (3.19)
because it gives estimates closer to the true parameter v. Furthermore, Figure 3.1 shows
histograms and qqg-plots for the sampling distribution of the standardized maximum like-
lihood estimators of the linear model (3.6). The plots indicate the adequacy of the normal
approximation. In addition, Kolmogorov-Smirnov test for the sampling distribution of
the standardized QMLE, gives large p-values, 0.213,0.824 and 0.783 for testing against
the standard normal distribution. This is consistent with the findings from Figure 3.1.
Similar results were obtained for the nonlinear model (3.11). Using the same set of pa-
rameters, and setting v = 0.5, we see from Tables 3.3, 3.4 and from Figure 3.2 the asserted
asymptotic normality and the convergence of the Hessian matrix to G.

Note that, when v — oo, the pmf given by (3.3) tends to a standard Poisson pmf.
Hence, it is instructive to compare the two matrices G and G given by (3.16) and (3.17)
respectively. To do so, we calculate the ratio of the standard errors of the estimators
aAl, ar, b, obtained by inversion of the matrix G to the standard errors of the estimators
cf, dl,él obtained from the sandwich matrix G 'G1G™!, for both linear and nonlinear
model, using the same set of parameter values. For this comparison, we generate data by
varying v € {1,...,15}. Figure 3.3 shows the results of this exercise; when v increases all

the ratios tend to unity because of the fact that the sandwich matrix G 'G1G ™' tends
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QMLE Estimators of v Sample Size True v
d a1 by 1 9 n v
0.666 0.368 0.480 2.177 2.074 200 2
(0.267) (0.111) (0.087) (0.531) (0.443)
(0.219) (0.108) (0.104)
0.567 0.387 0.492 2.067 2.018 500
(0.142) (0.072) (0.064) (0.299) (0.266)
(0.140) (0.071) (0.070)
0.537 0.394 0.493 2.033 2.007 1000
(0.097) (0.049) (0.044) (0.221) (0.199)
(0.102) (0.052) (0.051)

0.666  0.367 0.486 3.372  3.155 200 3
(0.262) (0.105) (0.083) (0.924) (0.727)

(0.210)  (0.099)  (0.090)

0561 0392 0.490 3.118  3.037 500

(0.141)  (0.064) (0.057) (0.503) (0.418)

(0.132)  (0.064) (0.059)

0531 0396  0.495 3.061  3.026 1000

(0.095) (0.046) (0.040) (0.332) (0.284)

(0.094) (0.046) (0.043)

0656 0.366 0.494 5668 5.192 200 5
(0.260) (0.097) (0.077) (1.967) (1.417)

(0.205) (0.092) (0.080)

0566  0.385  0.498 5319  5.127 500

(0.130)  (0.058) (0.049) (1.110) (0.856)

(0.126) (0.058) (0.051)

0531  0.394 0499 5166  5.071 1000

(0.088) (0.041) (0.034) (0.729) (0.574)

(0.089) (0.042) (0.036)

Table 3.1: Quasi maximum likelihood estimators and their standards errors (in parentheses)
for the linear model (3.6) when (d,a1,b1) = (0.5,0.4,0.5), v € {2,3,5} and for different sample
sizes. The first row in parentheses reports the standard errors of the estimators obtained by
simulation and the second row in parentheses gives the standard errors of the estimators obtained
by calculating the matrices G and G; at the true values. Results are based on 1000 simulations.
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Figure 3.1: From top to bottom: Histograms and qqg-plots of the sampling distribution of the
standardized estimators of @ = (d,ay,b;) for the linear model (3.6) when the true values are
(d,a1,b1) = (0.5,0.4,0.5) and v = 5. Superimposed is the standard normal density function.
The results are based on 1000 data points and 1000 simulations.
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Figure 3.2: From top to bottom: Histograms and qqg-plots of the sampling distribution of the
standardized estimators of @ = (d,a1,b;) for the nonlinear model (3.11) when the true values
are (d,a1,b1) = (0.5,0.4,0.5), v = 0.5 and v = 5. Superimposed is the standard normal density
function. The results are based on 1000 data points and 1000 simulations.
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v =2 v=3 v =25
n=200

0.001 0.003 0.003 0.001 0.003 0.003 0.001 0.003 0.003
0.003 0.016 0.014 0.003 0.017 0.015 0.003 0.017 0.015
0.003 0.014 0.015 0.003 0.015 0.016 0.003 0.015 0.017
n=1000 /591 0.003 0.002 0.001 0.003 0.003 0.001 0.003 0.002
0.003 0.017 0.014 0.003 0.017 0.016 0.003 0.015 0.013
0.002 0.014 0.015 0.003 0.016 0.017 0.002 0.013 0.013
n=200
0.001 0.003 0.002 0.001 0.003 0.003 0.001 0.003 0.003
0.003 0.018 0.014 0.003 0.018 0.015 0.003 0.017 0.016
0.002 0.014 0.015 0.003 0.015 0.016 0.003 0.016 0.016
n=1000 /4591 0.003 0.002 0.001 0.003 0.002 0.001 0.003 0.002
0.003 0.017 0.014 0.003 0.018 0.016 0.003 0.015 0.013
0.002 0.014 0.015 0.002 0.016 0.017 0.002 0.013 0.013

Table 3.2: Empirical illustration of the second assertion of Lemma 3.3.1 for the linear model
(3.6) with true values (d,a1,b1) = (0.5,0.4,0.5), v e {2,3,5} and for different sample sizes. The
upper panel reports the Hessian matrix. The lower panel reports the entries of matrix G. Results
are based on 1000 simulations.

to the G~! matrix. However, the convergence for the nonlinear model is faster than that

of the linear model.

3.4.2 Mixing Variable Z from Chi-Square, Uniform, Binomial or

Geometric Distribution

We consider now a mixing variable from the X2, U(0,2), Binomial(10,1/10) or

Geometric(5/10). Note that the mean of the mixing variable is always equal to 1. We
fit the linear model (3.6) and the nonlinear model (3.11) with true values (d,a;,by) =
(0.5,0.3,0.4) and v = 0.5 for the nonlinear model. This selection of the parameters
satisfies the conditions 0 < a; +b; < 1 and o = max{ay, dy —ay } + by, which are necessary
in order to have ergodic and stationary model in each case. Tables 3.5 and 3.6 show the
results for the estimators of the regression parameters. For both models, the estimators
are consistent and their standard errors decrease as the sample size increases. In addition,
the variance of the mixing variable Z is estimated consistently. Furthermore, Figure 3.4
shows histograms and qqg-plots for the sampling distribution of the standardized maximum

likelihood estimators of the linear model (3.6), when the mixing variable follows the U (0, 2)
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QMLE Estimators of v Sample Size True v
d a1 31 iz 2 n v
0.612 0.382 0.478 2.316 2.096 200 2
(0.236) (0.107) (0.093) (0.965) (0.615)
(0.201) (0.104) (0.104)
0.551 0.393 0.489 2.112 2.024 500
(0.139) (0.067) (0.061) (0.434) (0.337)
(0.128) (0.068) (0.069)
0.526 0.397 0.493 2.060 2.015 1000
(0.092) (0.051) (0.047) (0.281) (0.225)
(0.092) (0.049) (0.050)
0.618 0.377 0.484 3.601 3.177 200 3
(0.246) (0.103) (0.088) (1.731) (1.045)
(0.196) (0.096) (0.091)
0.544 0.393 0.492 3.207 3.055 500
(0.129) (0.061) (0.055) (0.776) (0.575)
(0.122) (0.061) (0.059)
0.514 0.400 0.494 3.102 3.027 1000
(0.084) (0.045) (0.042) (0.506) (0.391)
(0.087) (0.044) (0.042)
0.619 0.380 0.492 6.211 5.198 200 5
(0.233) (0.090) (0.079) (2.987) (1.877)
(0.190) (0.091) (0.082)
0.543 0.393 0.495 5.671 5.164 500
(0.129) (0.060) (0.053) (2.321) (1.357)
(0.118) (0.057) (0.052)
0.520 0.396 0.497 5.276 5.064 1000
(0.085) (0.040) (0.035) (1.211) (0.805)
(0.083) (0.040) (0.037)

Table 3.3: Quasi maximum likelihood estimators and their standards errors (in parentheses) for
the nonlinear model (3.11) when (d, a1, b1) = (0.5,0.4,0.5), v e{2,3,5}, v = 0.5 and for different
sample sizes. The first row in parentheses reports the standard errors of the estimators obtained
by simulation and the second row in parentheses gives the standard errors of the estimators
obtained by calculating the matrices G and G; at the true values. Results are based on 1000

simulations.

distribution. The plots indicate the adequacy of the normal approximation.

3.5 Case Studies

In this section, we apply the above theory to real data examples. For all the collections,
the mean is always less than the corresponding variance. In other words, the data exhibits

overdispersion. Motivated by this fact, we fit the linear model (3.6) and the nonlinear
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v =2 v=3 v =25
n=200

0.001 0.002 0.001 0.001 0.002 0.001 0.000 0.001 0.001
0.002 0.009 0.007 0.002 0.008 0.007 0.001 0.011 0.010
0.001 0.007 0.007 0.001 0.007 0.007 0.001 0.010 0.012
n=1000 401 0.001 0.001 0.001 0.002 0.001 0.001 0.002 0.001
0.001 0.009 0.007 0.002 0.009 0.008 0.002 0.007 0.006
0.001 0.007 0.008 0.001 0.008 0.009 0.001 0.006 0.006
n=200
0.001 0.002 0.001 0.001 0.001 0.001 0.000 0.001 0.001
0.002 0.008 0.007 0.001 0.008 0.007 0.001 0.011 0.010
0.001 0.007 0.007 0.001 0.007 0.007 0.001 0.010 0.011
n=1000 /01 0.002 0.001 0.001 0.001 0.001 0.001 0.002 0.001
0.002 0.009 0.007 0.001 0.009 0.008 0.002 0.007 0.006
0.001 0.007 0.008 0.001 0.008 0.009 0.001 0.006 0.007

Table 3.4: Empirical illustration of the second assertion of Lemma 3.3.1 for the nonlinear model
(3.11) with true values (d,a1,b1) = (0.5,0.4,0.5), v=0.5, v e {2,3,5} and for different sample
sizes. The upper panel reports the Hessian matrix. The lower panel reports the entries of matrix
G. Results are based on 1000 simulations.

model (3.11) to the data using the negative binomial distribution as discussed before. To
initialize the recursions, we set Ay = 0 and 9\g/00 = 0 for the linear model and A\g = 1
and 0X\y/00 = 1 for the nonlinear model. In addition, for the nonlinear model we choose
the value of the parameter v to be 0.5. Using the quasi-likelihood methodology out-
lined in Section 3.3 we obtain the quasi maximum likelihood estimators for the regression

parameters.

3.5.1 Transactions Data

The left plot of Figure 3.5 shows the total number of transactions per minute for the stock
Ericsson B for the time period between July 2nd and July 22nd, 2002. We consider the
first ten days of reported data, that is 460 observations. The right plot of Figure 3.5 shows
the autocorrelation function (acf) for these data. The mean of the series is 9.909 while
the sample variance is 32.836, that is the data are overdispersed. The results of the quasi
maximum likelihood estimators for the regression parameters are summarized in Table
3.7. Together with the estimators of d,a; and by, we give standard errors where the first

row of standard errors are under the negative binomial distribution and are obtained by
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Mixing Variable Z QMLE &% Sample Size True O'%
CZ @1 (;1 ET% n U%
X2 0.591 0.260 0.356 1.983 200 2
(0.213) (0.181) (0.130) (0.735)
0.546 0.280 0.377 2.008 500
(0.148) (0.129) (0.088) (0.476)
0.527 0.289 0.388 2.014 1000
(0.105) (0.094) (0.067) (0.316)
U(0,2) 0.579 0.253 0.394 0.340 200 0.333
(0.184) (0.139) (0.082) (0.104)
0.527 0.286 0.396 0.334 500
(0.118) (0.093) (0.052) (0.066)
0.511 0.293 0.399 0.334 1000
(0.077)  (0.062) (0.036) (0.045)
Binomial(10,1/10)  0.583 0.256 0.379 0.920 200 0.9
(0.198)  (0.156) (0.098) (0.280)
0.534 0.282 0.392 0.909 500
(0.119) (0.098) (0.065) (0.133)
0.513 0.294 0.393 0.899 1000
(0.084) (0.068) (0.045) (0.091)
Geometric(5/10) 0.586  0.264  0.359  2.026 200 2
(0.225) (0.183) (0.128) (0.784)
0.540 0.283 0.379 2.023 500
(0.137) (0.121) (0.086) (0.379)
0.523 0.291 0.387 2.007 1000
(0.099) (0.085) (0.066) (0.259)

Table 3.5: Quasi maximum likelihood estimators and their standards errors (in parentheses) for
the linear model (3.6) when (d, a1, b1) = (0.5,0.3,0.4) and for different sample sizes. The mixing
variable Z becomes from the X2, U(0,2), Binomial(10,1/10) or Geometric(5/10) distribution.
Results are based on 1000 simulations.
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Mixing Variable Z QMLE &% Sample Size True O'%
CZ @1 (;1 ET% n U%
X2 0.563 0.276 0.357 1.993 200 2
(0.234) (0.188) (0.135) (0.631)
0.535 0.288 0.377 1.997 500
(0.151) (0.124) (0.095) (0.349)
0.514 0.296 0.388 2.012 1000
(0.101) (0.086) (0.071) (0.247)
U(0,2) 0.542 0.282 0.383 0.337 200 0.333
(0.185) (0.142) (0.088) (0.139)
0.522 0.291 0.393 0.336 500
(0.113) (0.089) (0.056) (0.085)
0.508 0.296 0.398 0.335 1000
(0.077)  (0.059) (0.040) (0.058)
Binomial(10,1/10)  0.557 0.275 0.379 0.914 200 0.9
(0.192) (0.150) (0.102) (0.238)
0.525 0.291 0.391 0.909 500
(0.118) (0.093) (0.068) (0.149)
0.514 0.295 0.394 0.909 1000
(0.085) (0.066) (0.050) (0.149)
Geometric(5/10) 0.560  0.281  0.348  2.066 200 2
(0.233) (0.189) (0.132) (0.539)
0.535 0.287 0.378 2.048 500
(0.145) (0.120) (0.096) (0.386)
0.519 0.293 0.386 2.015 1000
(0.097) (0.082) (0.068) (0.221)

Table 3.6: Quasi maximum likelihood estimators and their standards errors (in parentheses) for
the nonlinear model (3.11) when (d, a1, b1) = (0.5,0.3,0.4), v = 0.5 and for different sample sizes.
The mixing variable Z becomes from the X2, U(0,2), Binomial(10,1/10) or Geometric(5/10)
distribution. Results are based on 1000 simulations.
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Figure 3.3: Left plot: Comparison of the standard errors of quasi maximum likelihood estimators
for the linear model (3.6). Right plot: Comparison of the standard errors of quasi maximum like-
lihood estimators for the nonlinear model (3.11). The true values are (d,a1,b;) = (0.5,0.4,0.5)
and v = 0.5. Data are generated employing the negative binomial distribution (3.3) for different
values of v. The results are based on 1000 data points and 1000 simulations.

the sandwich matrix G~*(0)G4(8)G (), where the second line corresponds to the case
of Poisson distribution. Standard errors for 7;, ¢ = 1, 2 have been computed by employing
parametric bootstrap. Given 6 and U;, © = 1,2, generate a large number of count time
series models by means of (3.6) or (3.11) and using (3.3). For each of the simulated count
time series, carry out the QMLE and get an estimator of v; using either (3.19) or (3.20).
The standard error of these replications is reported in Table 3.7, underneath 7;, i = 1, 2.

Compared with the results obtained by Fokianos et al. [34], we note that the regression
coefficients are the same; this is an immediate consequence of the model specification (3.6)
and the Poisson log-likelihood function. However, the standard errors of the estimators
are inflated due to estimation of the parameter v. In addition, note that the sum a; + by
is close to unity. This observation indicates some evidence of non stationarity when we fit
these types of models to the transactions data.

In order to examine the adequacy of the fit, we consider the Pearson residuals defined
by e; = (Yi— ) /v/(\ + A?/1p). Under the correct model, the sequence e; is a white noise
sequence with constant variance, see Kedem and Fokianos [56, Sec. 1.6.3]. We estimate the
Pearson residuals by substituting A\; by )\(é) and vy by n. Figure 3.6 demonstrates that
the predicted values defined by Y, = )\(9) approximate the observed process reasonably
well. The right plots of the same figure depict the cumulative periodogram plots (cf.

Brockwell and Davis [8, Sec. 10.2]) and illustrate the whiteness of the Pearson residuals
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in both the linear and nonlinear model.

\ QMLE Estimators of v
‘ CZ &1 31 ﬁl ’92
Linear Model (3.6) 0581  0.745  0.199  7.022  7.158

(0.236) (0.047) (0.035) (0.985) (0.940)
(0.149)  (0.030) (0.022)
Nonlinear Model (3.11) | 1.327  0.774  0.186  7.127  7.229
(0.508) (0.041) (0.034) (0.929) (0.915)
(0.324)  (0.026) (0.021)

Table 3.7: Quasi maximum likelihood estimators and their standards errors (in parentheses)
for the linear model (3.6) and the nonlinear model (3.11) with v = 0.5, for the total number of
transactions per minute for the stock Ericsson B for the time period between July 2nd and July
22nd, 2002. The total number of observations is 460.

3.5.2 Measles Data

The left plot of Figure 3.7 shows the monthly number of measles at Sheffield for the period
between September 8th, 1978 and April 17th, 1987. The total number of observations is
450. The right plot of Figure 3.7 shows the autocorrelation function of those data. Appar-
ently, the autocorrelation plot shows the high degree of correlation among observations and
hence we anticipate that either linear or a nonlinear model would accommodate suitably
those data. The sample mean and variance of this particular data collection are 17.151
and 265.781 respectively, and this fact shows that the data are overdispersed. The results
of the estimation are summarized in Table 3.8. Together with the estimators of d,a; and
b1, we report standard errors where the first row of standard errors are under the negative
binomial distribution and the second line corresponds to the case of Poisson distribution.
Standard errors for 7;, 1 = 1,2 have been computed by employing parametric bootstrap.
In addition, Figure 3.8 shows the adequacy of the fit and the whiteness of the Pearson

residuals.

3.5.3 Breech Births Data

The third example to be considered is a count time series reported by Zucchini and Mac-
Donald [78]. These data correspond to the number of monthly breech births in Edendale

hospital of Pietermaritzburg in South Africa from February 1977 to January 1986. The size
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Figure 3.4: From top to bottom: Histograms and qg-plots of the sampling distribution of
the standardized estimators of @ = (d,ay,b;) for the linear model (3.6) when the true values
are (d,ay,b;) = (0.5,0.3,0.4) and Z ~ U(0,2). Superimposed is the standard normal density
function. The results are based on 1000 data points and 1000 simulations.

‘ QMLE Estimators of v
| d a1 bi i Do
Linear Model (3.6) 0.720 0490  0.469  4.853  5.309
(0.235)  (0.057) (0.055) (0.617) (0.650)
(0.122)  (0.024) (0.023)
Nonlinear Model (3.11) | 1.549  0.506  0.469  4.816  5.239
(0.522)  (0.054) (0.055) (0.631) (0.650)
(0.292)  (0.023) (0.022)

Table 3.8: Quasi maximum likelihood estimators and their standards errors (in parentheses) for
the linear model (3.6) and the nonlinear model (3.11) with v = 0.5, for the monthly number of
measles at Sheffield for the period between September 8th, 1978 and April 17th, 1987. The total

number of observations is 450.
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Figure 3.5: Left Plot: Number of transactions per minute for the stock Ericsson B for the time
period between July 2nd and July 22nd, 2002. Right Plot: The autocorrelation function for the
transactions data.
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Figure 3.6: Left Plots: Observed and predicted (grey) number of transactions per minute for the
stock Ericsson B for the time period between July 2nd and July 22nd, 2002, if we fit the linear
model (3.6) and the nonlinear model (3.11), respectively. Right Plots: Cumulative periodogram
plots of the Pearson residuals if we fit the linear model (3.6) and the nonlinear model (3.11),
respectively, to the transactions data.

of this particular time series is n = 108. Figure 3.9 shows the data and the corresponding
autocorrelation function. Here, we note that there is a reduced degree of autocorrelation
among successive observations. Nevertheless, we can operate as in the previous examples
and following the same methodology, we obtain Table 3.9. Note that the overdispersion
phenomenon is occurred also in this collection, since the sample mean is 18.176 and the
sample variance is equal to 62.240.

Furthermore, the adequacy of the fit and the whiteness of the Pearson residuals are

demonstrated by Figure 3.10.
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Figure 3.7: Left Plot: Number of measles in Sheffield for the time period between September
8th, 1978 and April 17th, 1987. Right Plot: The autocorrelation function for the measles data.
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Figure 3.8: Left Plots: Observed and predicted (grey) number of measles in Sheffield for the
time period between September 8th, 1978 and April 17th, 1987, if we fit the linear model (3.6)
and the nonlinear model (3.11), respectively. Right Plots: Cumulative periodogram plots of the
Pearson residuals if we fit the linear model (3.6) and the nonlinear model (3.11), respectively, to
the measles data.

3.5.4 Homicides Data

Another data example that we consider, corresponds to the numbers of deaths recorded
at the Salt River state mortuary at Cape Town, for the period time 1986 - 1991 (reported
by Zucchini and MacDonald [78]). The length of the time series is 312. The left plot of
Figure 3.11 shows the time series, while the right plot shows the autocorrelation function
of the data. Operating as in the previous examples and following the same methodology,
we obtain Table 3.10. Note that the overdispersion phenomenon is occurred also in this

collection, since the sample mean is 2.628 and the sample variance is equal to 6.588.
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Figure 3.9: Left Plot: Number of monthly breech births in Edendale hospital of Pietermaritzburg
in South Africa from February 1977 to January 1986. Right Plot: The autocorrelation function

for the births data.

‘ QMLE Estimators of v
| d a1 b1 i Do
Linear Model (3.6) 11.753  0.099  0.261  7.885  7.686
(4.209) (0.254) (0.103) (1.963) (1.869)
(2.406) (0.144) (0.055)
Nonlinear Model (3.11) | 12.703  0.662  0.181 8.031 7.797
(5.131) (0.119) (0.084) (2.027) (1.801)
(3.138) (0.069) (0.046)

Table 3.9: Quasi maximum likelihood estimators and their standards errors (in parentheses)
for the linear model (3.6) and the nonlinear model (3.11) if v = 0.5, for the number of monthly
breech births in Edendale hospital of Pietermaritzburg in South Africa from February 1977 to

January 1986. The total number of observations is 108.

In addition, Figure 3.12 shows the adequacy of the fit and the whiteness of the Pearson

residuals.
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Figure 3.10: Left Plots: Observed and predicted (grey) number of monthly breech births in
Edendale hospital of Pietermaritzburg in South Africa from February 1977 to January 1986, if we
fit the linear model (3.6) and the nonlinear model (3.11), respectively. Right Plots: Cumulative
periodogram plots of the Pearson residuals if we fit the linear model (3.6) and the nonlinear
model (3.11), respectively, to the births data.
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Figure 3.11: Left Plot: Number of deaths recorded at the Salt River state mortuary at Cape
Town, for the period time 1986 - 1991. Right Plot: The autocorrelation function for the deaths
data.
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QMLE

Estimators of v

| d a1 bi i Do
Linear Model (3.6) 0.120  0.795  0.168  3.463  3.825
(0.089) (0.064) (0.043) (0.933) (0.772)
(0.065) (0.048) (0.032)
Nonlinear Model (3.11) | 0.090  0.853  0.137  3.499  3.853
(0.091) (0.046) (0.036) (0.908) (0.762)
(0.068) (0.035) (0.027)

Table 3.10: Quasi maximum likelihood estimators and their standards errors (in parentheses)
for the linear model (3.6) and the nonlinear model (3.11) if v = 0.5, for the number of deaths
recorded at the Salt River state mortuary at Cape Town, for the period time 1986 - 1991. The
total number of observations is 312.
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Figure 3.12: Left Plots: Observed and predicted (grey) number of deaths recorded at the Salt
River state mortuary at Cape Town, for the period time 1986 - 1991, if we fit the linear model
(3.6) and the nonlinear model (3.11), respectively. Right Plots: Cumulative periodogram plots of
the Pearson residuals if we fit the linear model (3.6) and the nonlinear model (3.11), respectively,
to the deaths data.
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Appendix A — Proofs

Lemma A-1 Let ¥ be a negative binomial random variable with pmf given by (3.3) such

that its mean is equal to A\. Let k£ € N. Then, the moments of order k of ¥ are given by

k
E(UF) =Y ()N, with ¢(v) =1. (A-1)

=1

Proof of Lemma A-1
Following Jain and Consul [53], the kth moment of a negative binomial random variable,

is given by the following recurrence relation:

Mk(l/) =

v

Vj\)\ ; (k ; 1) [Mj(’/) + %Mj—kl(’/)], with My(v) =1, (A-2)

where M (v) = E(U*). By induction, we will show that Lemma A-1 holds true.
For k = 1, obviously E(¥) = A. Suppose that it holds for k. We will show that it holds

for K+ 1, i.e.
k41

B(TF) = ¢ (n) V.

Using (A-2) we have that

B(UH) = M () = 203
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Hence,

Min(v) = Ajg(’;)%(m%;(l b))
_ 1+j§; (’;)Mj<y)+%; (jfl)Mj(y)]
_ 1+j§: [(’;) +§<j r 1)]Mj<y>]
— [+ X0 o]
e

Proof of Theorem 3.2.1

First we show that if & < 1, then there exists a weakly dependent strictly stationary process
{(Y;, A\r)} which belongs to L'. We verify condition 3.1 of Doukhan and Wintenberger [27].
The other two conditions of the same paper hold trivially.

Define X; = (Y3, A;) and note that model (3.5) is expressed as
Xi = (N0, Zu f (Y1, )] F(Yien, M) = F(Xia, )

where g, = (N, Z;) is an iid sequence. Then, for a vector & = (y,\) € Ny x (0, 00), define
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llz|le = |y| + €|A], for every € > 0. With &’ defined analogously, we have that

BlIF(z,2) - F@', &)l = EIN(O, Zf (@)] - N(0, Zof(@)]| + el f (@) — f(a)]
— B{EIN(0, Z:f(@)] - Ni(0, Zf (@)]||Z } + el f(@) — f()]
= E(ZIf(@) - f@)]) +elf (@) - (@)
= (1+9lf(z) - f()

(6]
(1+e) max(?l, )|z — 2.

IN

The second equality follows from conditioning, the third equality holds because of the
Poisson process properties and the fourth equality is true because the random variable Z;
is positive with mean 1. Choosing € = ay /aw, yields that (14+¢€) max(a; /e, an) = a;+ag =
a < 1. Hence, we have shown that if a; + as < 1, then there exists a weakly dependent
strictly stationary process {(Y;, A¢)} with finite first order moments.

Now, we will show that if " < 1, then {(Y;, \;) } has moments of order r, r € N. Obviously
if @ < 1, then o” < 1. Set |||, = (Jy|" + |A\|")"/". Observe that

[f(@)] = |f(x) = f(0) + f(O)] < |f(z)— f(O)|+|f(O)
< oAl 4 azly| + [ £(0)]

— gl@) + f(0).
Therefore,
@ <g@+Y (j) §(@)["9(0) = ¢'(z) + R(x)
7=0
Fori=1,...,r we obtain

) = A+« i:ai(—)\+— l
(@) = (]| + aslyl)' = o (S + 2y
Therefore, by Jensen’s inequality we have that

B(g'(@)) = 'B( 2+ 22Jyl) < 0 @BIN] + asBY]) < o'B X
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Hence,

BIXi[[" = E(Y, + X)) = E{E{Yr + A FC

= E{Z (V)N + A1}

[y

= (BN +EOD) + 3 ¢ (BN

J=1

[y

r—

= (e;(v) FDEN) + Y ¢ (v)EWN).

1

J
Using induction and the proof of Proposition 6 of Ferland et al. [31], we have that E(\]) <
oo. Therefore, E||X;||" < oo for r € N.
Finally, by Doukhan and Wintenberger [27], there exists a measurable function ¢ such
that Xy = ¢(ey,4-1,...) for all £ € Z. The ergodicity follows from the Proposition 4.3 in
Krengel [59], which states that if (E, ) and (E, &) are measurable spaces, {v,t € Z} is
a stationary ergodic sequence of F—valued random elements and ¢ : (EN,EN) — (E, €)
is a measurable function, then the sequence {v;,t € Z} defined by 0, = ¢(vy, v4_1,...) is a

stationary, ergodic process. O

Proof of Proposition 3.2.1

Let the two polynomials A(B) = 1—a;B—...—q,B and B(B) = byB+...+0b,B, where B is

the backshift operator. Suppose that the roots of A(z) = 0 lie outside the unit circle. Then
q q

> a; < 1. Indeed, suppose that > a; > 1. Then A(0) =1and A(1) =1—a;—...—a, <0.

i=1 =

=
Hence, there exists a root between (0, 1], which contradicts the hypothesis.

q
Under the assumption of )  a; < 1, the operator A(B) has an inverse, denoted by
i=1

q P
A~1(B), and then we have that A, — > a; \—; = d+ > b;Y;_; is equivalent to A(B)\; =
i=1 j=1
d + B(B)Y;. Therefore,
N = AYB)(d+ B(B)Y;)
= dA7Y(1)+ A Y(B)B(B)Y,
= dA_l(l) + H(B)Y,,
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where H(z) = A7'(2)B(2) = io: UR
=1
Then, we have that ’
o= E(Y) = E[E(Y|F)]
= E(dAT'(1)+ ) _4Yiy)
j=1

d B(1)
A raay

q P

Hence, p = d/(A(1) — B(1)) = d/(1 — > a; — > b;) and therefore, the parameters
i=1 j=1

a;, 1=1,...,q and b;, j =1,...,p of the nonnegative integer-valued process {Y;} must

satisfy necessarily the condition

q p
ZaiJerj < 1.
j=1

=1

]

Assumptions for Theorem 3.3.1 The following list of assumptions are used in proving

Theorem 3.3.1 and Lemma 3.3.1:

Assumption A-1 The parameter @ belongs to a compact set © and 0y belongs to the

interior of ©. In addition, the function f(-) satisfies the condition
f(y7)\70) Z CVl > Oa

for some constant C and for all A > 0 and y € Nj.
Assumption A-2 The components of Jf/00 are linearly independent.

Assumption A-3 The function f(-) is four times differentiable with respect to 8 and A.
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In addition if 2* = (6,\) = (01,...,0,, \), then

’8f(y,/\,0) _ Oy, 2. 0)) ayA =N +agly—y|, i=1,....m+1.
*f(y,\.0) *f(y,\,0) / T
)7\ . L < z)‘_)‘ iily — , 1,7 =1,..., 1.
‘ O} 0 Ox;dxs | = Qi |+ aily =yl 0, m+
Pf(y,\0) Py, \,0) / ’
) _ R < k| A — A ij -yl 4,5k=1,..., L.

Furthermore E[0f(0,0,8)/0x}| < oo, E|0*f(0,0,0)/0x;0x}| < co and
E[0°f(0,0,0)/0x;0x;0x;| < oo for all 4, j, k in {1,2,...,m + 1} and Y (o, + ag),

Y (aij + aij), D (0mije + coir) < 0o.

1] i,5,k

Before proceeding to the proof of Lemma (3.3.1) we first show the validity of Remark
3.3.2.

Lemma A-2 Under the conditions of Theorem 3.2.1 and assumptions A-1 and A-2

1 1 T a.s.
sup |—1,(0) — =1,(0)] — 0 asn — oo
fco ' n

following the notation of Remark 3.3.2.

Proof of Lemma A-2
Let Ay = f(Yi—1, 1) denote the stationary and ergodic solution of (3.5). Let A =
f(Yi_q, S\t,l) be the process obtained with some starting value Ag. Then,

A(0) = \(O)] = [F(Yir, M1(8)) = F(Yio1, Mi1(6))]
a1 A-1(8) — A1 (8))]

IN

IN

04%|/\t—2(9) - :\t—2(9)|

IN

IN

ai[Ae(8) — Ao(8)].

by using the contraction assumption of Theorem 3.2.1.
Therefore,

sup |\ (0) — /N\t(9)| <Ko, Vt,
6cO
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almost surely from the compactness of O, for some positive constant K.

Now, for any x,y > 0 it holds that |log(z/y)| < |* — y|/ min(x,y). We obtain that

IN

10) = 1(O)] < ~ {3 Villog \(6) ~ o A (O)] + " 1A(6) ~ A.(6)]}

Lr S Vi) - 2(0)] & :
AL minOn@ ) 2 MO = MO

IN

IN

%Cil DYl (0) = M(0) [+~ D [i(6) — A(6)]

by using Assumption A-1.

Hence,

IN

sup [1,(0) — 1,(0)] < Z (Z+1) () - 3(0)
6co
t t
— — + 1>a
n ; (Cl 1
But using Markov’s inequality for every € > 0 we have that

00 aftE(Y;/Cl + 1)8

Yp(ai(fe) >y T

t=1 t=1

If we take b, = n and x; = o4 (Y;/C1 + 1) in Cesaro’s lemma (see Lemma 2.1.1), then we

have that o (Y;/C; + 1) 2% 0, as t — oo and therefore the proof is concluded. O

Proof of Lemma 3.3.1
Assume that model (3.5) holds true with \(0) = f(Y;_1,\;_1,0) and denote by m =
dim(@).

(i) Recall that the score function is given by (3.14). Denote by W;(6) = (Y;/A\(0) — 1).
Then 00,(0)/00 = W(0)0A(0)/00. At the true value 8 = 6y, we obtain that
E(W,|F™}) = 0 and Var(W;|F")) = 1/A + 0% < oo, by assumption A-1.

Now, we need to show that E|0\;(6)/00| < co. But

OA(6) _ 0f (Y1, i-1(0),0) OXi1(6) | Of(Yi1, Ai1(6).6)
00; OAe_1(0) 90, 90; ’

1=1,...,m.
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Therefore, we can write with obvious notation
Ay =B Ar i +Cy, 121

and by repeated substitutions, we obtain that

t—1 t—1

Ay = { H Bi_(iy1) }AO + { ﬁ Bt—j}th(k+1) +Ci_1.

i=0 k=1 j=1

Using the fact that |f(y,A) — f(y,A\)| < ai|A — X'| (by Theorem 3.2.1) we obtain
that

’a)\t<0> ‘ <at

6D\o ‘ i af >\t (k+1) <3)7Y;€—(k+1)70)
00;

00,

+C,

with C being a constant. Hence, by assumption A-3, we obtain that

o\ (0 a)\
’ 59(z)‘ < o 0 ‘+Za’f{a12)\t (k+1) T @2 Y1)} + C
k=0
0o (0
o 809< )‘ 112041)% (k+1) —1—04212041}/; (ke + C.

k=0

Theorem 3.2.1 guarantees that E|0A(0)/00| < oo. Therefore, an application of
central limit theorem for martingales (Hall and Heyde [48, Cor. 3.1]) shows that

1

D
%Sn — N(O, Gl),

as n — 00. The matrix G is the limit of
! Z {w mt oY
00

which is equal to (3.17). The conditional Lindeberg’s condition holds by noting

7

1 n
=S e (lon/o0] 1 (j0n/06] > vVid) 1F) < 2522E(||azt/ae|| ) =0,
t=1
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(iii)

since E ||0l,/00||" < oo, because of Theorem 3.2.1 which guarantees existence of

moments.

We consider the following matrices:

1Y, (oM (oMY
A =-S5 L2 (2
! nz)\?(80)(89>

t=1

and

1l Y oy
A= 2 (5~ V) 300

For the first matrix, we obtain that

mel (%) (5) 1=
after taking iterated expectations (the matrix G has been defined by (3.16)). The
matrix G is positive definite because of assumption A-2. It is enough to show that A,
converges in probability to zero. But this is true, provided that E|0?\,(0)/06;00;| <
0.
However,

PN O\ 0N Pf 0Ny P Of Pha  Pf O O
00:00; 00, 00; 0N,  00; ON_100; 01 00,00, ON_100; 00; 00,00,

Assumption A-3 guarantees that all these terms are bounded by linear function of

both {\;} and {Y;} and therefore we obtain the required result.

The verification of these results is based upon observing that is enough to show that

E|0°X(0)/00,00;00x| < oo. Tedious algebra shows that

9P\, (0)

=T+ II+IIT+1 A-
d600,5, L TIT +IV YV, (A-3)

where
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PN O\ 0P . N1 PNy 0P " N1 O\ 0N O

L= 26,00, 08, 032, " 06, 96,00,002, T 06, 00, 06, oN,
N OM_1 0Ny O°f

90, 00; ON? 00,
7 = N1 82f +a)\t—1a>\t—1 asf _|_a>\t—1 agf

00,00, O\ 100, | 00, 00, N2 ,00;  96; ON_,00,00,
I - >’f 82)\t716)\t71+ O’ f (92>\H+ of PN\

OX2 00,00, 00r | ON_100; 00,00, 0Nt 00,0000,
Vo OM_1 0Ny O°f +8/\t—1 O f n Pf PN

90, 00, ON2,00; 00, OM\_100:00,  ON_100; 00;00;,
oo PF o O

ON—100;,00; 00, 00,00;00,,

Consider the first summand of I in (A-3). Then, from Assumption A-3 we have that

aQAtfl(y A 0) 62)\t71(0 0 0)
. < |2 AP \ A Ad
‘ 00,00y, = 06,00, ‘ + ik Al + iyl (A-4)
-1y, A, ) d\1(0,0,0)
‘ta—ej < ta—ej‘ + g Al + azlyl, (A-5)
’fy, A6 92£(0,0,0
‘ f(y.2 _) S f( . ) ’ + al(m+1)(m+1)‘)\’ + O{2(m+1)(m+1)’y“ (A_6)
0Ny ON_,

From (A-4), (A-5) and (A-6), we obtain that

PAo1 0Ny 0P f
0000, 90; ON!_,

IN

CT + G5\ + G5y
CiIAy| + C5 AP = Cgly*

_l’_
+ CIIAPlyl + CEIMy [ + G5 AP + Cholyl,

where C},C5,C5,Cy,C:,Cg, CF,CF, Cf, C7y are nonnegative real numbers.

Therefore, from Theorem 3.2.1 we have that

PA1 ON—1 0P f -
90:00, 90; ON!_,

Similarly, it can be shown that all the remaining summands of all the terms in (A-3),
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have finite moments.
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Appendix B — R codes

R code regarding the linear model (3.6) for the construction of Tables 3.1, 3.2, top panels
of Tables 3.7, 3.8, 3.9, 3.10, Figure 3.1, left plot of Figure 3.3, Figures 3.5, 3.7, 3.9, 3.11
and top plots of Figures 3.6, 3.8, 3.10 and 3.12.

HEHBH B HAH B HHAHBHHEHAH B G HAH RS HEHBHREHAH RS H AR BHHEHAH R HAH RS H AR RS RS HAH RS HAE
## Simulate the linear model using the negative binomial distribution ##
i b st e s s e s s e e e s i e e e s e e T e e e 2 T
linearnegbin.ts=function(d,a,b,size,nu)

{

y=rep(NA,size)

mu=rep(NA,size)

mu[1]=1 #initial value

y[1]=rnbinom(1,size=nu,mu=mul1])

for (t in 2:size)

{

mu [t]=d+a*mu[t-1]+b*y[t-1]

y[t]=rnbinom(1,size=nu,mu=mult])

}

return(cbind(y,mu))

3

iR B S R R B S R B S e e e R e B s e
## (Poisson) Quasi-likelihood for the linear model #i#
B i s s e S s T e S s e e e g e e T T
liklinear.poisson=function(theta,data)

{

lambda=rep(NA,length(data))
loglik=rep(NA,length(data))

lambda[1]=0

loglik[1]=0

for (t in 2:length(data))
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{

lambda[t]=theta[1]+theta[2]*lambda[t-1]+theta[3]*data[t-1]

if (lambda[t]==0) loglik[t]= 0 else

if (lambda[t] >0) loglik[t]= -data[t]*log(lambdalt])+lambdal[t]
}

final=sum(loglik)

}

HAEHBH B HAH B HAHBHBEHAH RS HAH R R HAH RS HAHBHHEHBH RS HEH
## (Poisson) Score function for the linear model ##
HESHHAHHASH RS H SRS H R R R
scorelinear.poisson=function(theta,data)

{

lambda=rep(NA,length(data))

lambda[1]=0

first=rep(NA,length(data))

first[1]=0

second=rep(NA,length(data))

second[1]=0

third=rep(NA,length(data))

third[1]=0

sl=rep(NA,length(data))

s2=rep (NA,length(data))

s3=rep(NA,length(data))

for (t in 2:length(data))

{
lambda[t]=theta[1]+theta[2]*lambda[t-1]+theta[3]*data[t-1]
first[t]=(1+theta[2]*first[t-1])
second[t]=(lambda[t-1]+theta[2] *second[t-1])
third[t]=(data[t-1]+theta[2]*third[t-1])

s1[t]=-((datal[t]/lambdal[t])-1)*first[t]
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s2[t]=-((data[t]/lambda[t])-1)*second[t]
s3[t]=-((data[t]/lambda[t])-1)*third[t]
}

ssi=sum(s1[-1])

ss2=sum(s2[-1])

ss3=sum(s3[-1])

score=c(ssl,ss2,ss3)

3

HEHHHHEHAH B S HAH R HEHBHHEHAH B S HAHBHHEHBHHEHAHHSHEH RS HEHRH RS HAH RS HAHH
## Information matrix based on the Poisson distribution-G matrix ##
B s s e e s e e s e e e S e e e s e e e e T R e 2
information.poisson=function(theta,data)

{

lambda=rep(NA,length(data))

lambda[1]=1

first=rep(NA,length(data))

first[1]=1

second=rep(NA,length(data))

second[1]=1

third=rep(NA,length(data))

third[1]=1

Information=matrix(0,nrow=3,ncol=3)

sl=rep(NA,length(data))

s2=rep(NA,length(data))

s3=rep(NA,length(data))

for (t in 2:length(data))

{

lambda[t]=theta[1]+theta[2] *lambda[t-1]+theta[3]*datal[t-1]
first[t]=(1+theta[2]*first[t-1])

second[t]=(lambda[t-1]+theta[2] *second[t-1])
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third[t]=(data[t-1]+theta[2]*third [t-1])
si[t]=first[t]

s2[t]=second[t]

s3[t]=third[t]
var.comp=(1/sqrt(lambdal[t]))*c(s1[t],s2[t],s3[t])
Information=Information+var.comp’*/t (var.comp)

}

return(Information)

3

HESHHAHH A H RS H SRS H R R R R S R R R R
## Information matrix based on the negative binomial distribution ##
## G_{1} matrix ##
HEFHHAHHBFHHAFHERHHAFHBHHHAFHBRHHAFH B AR H R H AR AHH B H RS H AR AR H
information.negbin=function(theta,data,nu)

{

lambda=rep(NA,length(data))

lambda[1]=1

first=rep(NA,length(data))

first[1]=1

second=rep(NA,length(data))

second[1]=1

third=rep(NA, length(data))

third[1]=1

Information=matrix(0,nrow=3,ncol=3)

sl=rep(NA,length(data))

s2=rep(NA,length(data))

s3=rep(NA,length(data))

for (t in 2:length(data))

{

lambda[t]=theta[l]+theta[2]*lambda[t-1]+theta[3]*data[t-1]
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first[t]=(1+theta[2]*first[t-1])

second [t]=(lambda[t-1]+theta[2] *second[t-1])
third[t]=(datal[t-1]+theta[2]*third[t-1])
sil[tl=first[t]

s2[t]=second[t]

s3[t]=third[t]
var.comp=(sqrt(1/lambda[t]+1/nu))*c(s1[t],s2[t],s3[t])
Information=Information+var.comp’*’%t (var.comp)

}

return(Information)

3

HHHH

## Constrains to obtain the QMLE ##

## d>0, a>0, b>0, O<a+b<1l #it

HHHS
uilinear=matrix(0,nrow=4,ncol=3) #matrix for the linear constraints
uilinear[1,1]=1

uilinear[2,2]=1

uilinear[3,3]=1

uilinear[4,2]=-1

uilinear[4,3]=-1

cilinear=rep(0,4) #constant vector for the linear constraints

cilinear[4]=-1

g S
## QMLE of d, a and b ##
## Calculation of \hat{\lambda} ##
## Estimation of parameter \nu ##
g
library(MASS)
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calculate.parlinear=function(d,a,b,size,nu,sim,epsilon=0.001)

{

resultsl=matrix(NA,nrow=sim,ncol=3)

est.nul=rep(NA,sim)

est.nu2=rep(NA,sim)

ratio=matrix(NA,nrow=sim,ncol=3)

for (i in 1:sim)

{

# Estimation

data.test=linearnegbin.ts(d,a,b,size,nu) [601:size,1]

arma_fit=arima(data.test,order=c(1,0,1) ,method="CSS")

ma_l=min(max (arma_fit$coef["mal"],-1+epsilon),0-epsilon)

ar_l=min(max(arma_fit$coef["arl"],0+epsilon-ma_1),1-epsilon)

sigma_sqg=max(arma_fit$sigma2,epsilon)

theta_init=c(sigma_sq*(l-ar_1),-ma_1,ar_1+ma_1)

resultsl[i,]=constrOptim(theta=theta_init,f=1iklinear.poisson,
grad=scorelinear.poisson,data=data.test,ui=uilinear,
ci=cilinear,outer.iterations=100,outer.eps=1e-05,
method="BFGS") $par

hat.d=resultsi[i,1]

hat.a=resultsi[i,2]

hat.b=resultsi[i,3]

# Calculation of \hat{\lambda}

lambda=rep(NA,length(data.test))

lambda[1]=mean(data.test)

for (t in 2:length(data.test))

{

lambda[t]=hat.d+hat.a*lambda[t-1]+hat.b*data.test[t-1]

}

# Estimation of \nu

est.nul[i]l=(mean(((data.test-lambda) "{2}-1lambda)/(lambda~{2}))) " {-1}
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est.nu2[i]=theta.mm(data.test,lambda,length(data.test)-3)

# Calculation of the ratio of standard errors of the estimators

sdl=sqrt(diag(ginv(information.poisson(c(hat.d,hat.a,hat.b),data.test))))

sd2=sqrt(diag(ginv(information.poisson(c(hat.d,hat.a,hat.b),data.test))
Jx%information.negbin(c(hat.d,hat.a,hat.b),data.test,est.nu2[i])
Jx%ginv(information.poisson(c(hat.d,hat.a,hat.b),data.test))))

ratio[i,]=sd1/sd2

}

return(list(resultsl,est.nul,est.nu2,ratio))

3

mle.negbin=calculate.parlinear(0.5,0.4,0.5,1500,5,1000)

mean.est=apply(mle.negbin[[1]],2,mean)

mean.est

sd.est=apply(mle.negbin[[1]],2,sd)

sd.est

mean (mle.negbin[[2]])
sd(mle.negbin[[2]])

mean(mle.negbin[[3]])
sd(mle.negbin[[3]])

mean.ratio=apply(mle.negbin[[4]],2,mean)

mean.ratio
Construction of Figure 3.1.

HEFHHAHH AR R AR R

## Histograms and qq-plots ##
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#iHHHH RS RS R AR RS RS RS H Y

d.data=(mle.negbin[[1]][,1]-mean.est[1])/sd.est[1]
a.data=(mle.negbin[[1]][,2] -mean.est[2])/sd.est[2]
b.data=(mle.negbin[[1]]1[,3]-mean.est[3])/sd.est [3]

par (mfrow=c(3,2))

hist(d.data,prob=T,ylab="",xlab="",main="")
lines(seq(-3.5,3.5,1length=100) ,dnorm(seq(-3.5,3.5,1length=100)))
qqnorm(d.data)

qqline(d.data)

hist(a.data,prob=T,ylab="",xlab="",main="")
lines(seq(-3.5,3.5,1ength=100) ,dnorm(seq(-3.5,3.5,1length=100)))
qqnorm(a.data)

qqline(a.data)

hist(b.data,prob=T,ylab="",xlab="",main="")
lines(seq(-3.5,3.5,1ength=100) ,dnorm(seq(-3.5,3.5,1length=100)))
qgnorm(b.data)

qqline(b.data)

i
## Kolmogorov-Smirnov test for the ##
## normality of the standardized data ##
s
ks.test(d.data, "pnorm")
ks.test(a.data, "pnorm")

ks.test(b.data,"pnorm")

Construction of left plot of Figure 3.3.
mat=matrix (NA,nrow=15,ncol=3)
for(j in 1:15)

{
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mle.negbin=calculate.parlinear(0.5,0.4,0.5,1500, j,1000)
mean.ratio=apply(mle.negbin[[4]],2,mean)
mat[j,]=mean.ratio

3

mat

x=seq(1,15)
yl=mat[,1]
plot(x,yl,xlim=c(1,15),ylim=c(0.2,1) ,xlab=expression(nu),ylab="Ratio")

lines(lowess(x,y1,f=0.2))

y2=mat [, 2]
points(x,y2)
lines(lowess(x,y2,f=0.2),1ty=2)

y3=mat [, 3]
points(x,y3)
lines(lowess(x,y3,f=0.2),1ty=3)

leg.names=c("Ratio of d","Ratio of a", "Ratio of b")

legend (locator(l),leg.names,lty=1:3)

Construction of the second rows in parentheses of Table 3.1 and Table 3.2.
f=function(d,a,b,size,nu,sim)

{

final=matrix(0,nrow=3,ncol=3)
hessian.matrix=matrix(0,nrow=3,ncol=3)
G.matrix=matrix(0,nrow=3,ncol=3)

for (i in 1:sim)

{

data=linearnegbin.ts(d,a,b,size,nu) [601:size,1]
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theta=c(d,a,b)

G=information.poisson(theta,data)/length(data)

Gl=information.negbin(theta,data,nu)/length(data)

sandwich=ginv (G)%*%G1%*%ginv(G) /length(data)

hess=constrOptim(theta=theta,f=1iklinear.poisson,grad=scorelinear.poisson,
data=data,ui=uilinear,ci=cilinear,control=1ist(maxit=0) ,method="BFGS",
hessian=TRUE)$hessian/length(data)

final=final+sandwich

hessian.matrix=hessian.matrix+hess

G.matrix=G.matrix+G

final=final

hessian.matrix=hessian.matrix/sim

G.matrix=G.matrix/sim

}

return(list(final ,hessian.matrix,G.matrix))

3

result=f(0.5,0.4,0.5,1500,5,1000)
sd=sqrt(diag(result[[1]]/1000))
round(sd,4)

result[[2]]

result[[3]]

Construction of top panels of Tables 3.7, 3.8, 3.9, 3.10, Figures 3.5, 3.7, 3.9, 3.11 and top
plots of Figures 3.6, 3.8, 3.10 and 3.12.

i S

## Transactions data ##

HHHHRHHH AR R R

ericsson=read.table("ericssonfirstday.txt" ,header=T,dec=",",as.is=F)

names (ericsson)

transactions=ericsson$trans
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ydata=transactions

HE#BH RS HAEHBH RS HAHH

## Measles data ##

HiHH RS HS RS R S

data=read.table("ewcitmeas.txt" ,header=T,dec=",",as.is=F)
names (data)

ydata=data$Sheffield[1601:2050]

HEH#H RS HAEH RS HEHEH

## Births data ##

HiHH R RS HS RS R RS

data=read.table("births.txt" ,header=T,dec=",",as.is=F)
names (data)

ydata=data$bb

HEHSH B HAEHBHHEHAHRAH

## Homicides data ##

HiHH SRS RS0

data=read.table("homicides.txt" ,header=T,dec=",",as.is=F)
names (data)

ydata=data$X0

# Time series and acf function

par (mfrow=c(1,2))
plot(ydata,type="1",xlab="Time",ylab="Response")
acf (ydata,main="",xlab="Lag",ylab="ACF")

# Estimation of d, a, b

epsilon=0.001

arma_fit=arima(ydata,order=c(1,0,1) ,method="CSS")
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ma_l=min(max(arma_fit$coef["mal"],-1+epsilon),0-epsilon)

ar_1=min(max(arma_fit$coef["arl"],O+epsilon-ma_1),1-epsilon)

sigma_sqg=max(arma_fit$sigma2,epsilon)

theta_init=c(sigma_sq*(l-ar_1),-ma_1,ar_1+ma_1)

results=constrOptim(theta=theta_init,f=1iklinear.poisson,

grad=scorelinear.poisson,data=ydata,ui=uilinear,
ci=cilinear,outer.iterations=100,outer.eps=1e-05,method="BFGS")

resultsl=results$par

hat.d=resultsi[1]

hat.a=results1[2]

hat.b=results1[3]

# Calculation of \hat{\lambda}

lambda=rep(NA,length(ydata))

lambda[1]=mean(ydata)

for (t in 2:length(ydata))

{

lambda[t]=hat.d+hat.a*lambda[t-1]+hat.b*ydata[t-1]

}

# Estimation of \nu

est.nul=(mean(((ydata-lambda) “{2}-lambda)/(lambda~{2}))) ~{-1}

est.nu2=theta.mm(ydata,lambda,length(ydata)-length(resultsl))

# Standard errors of the estimators

sdl=sqrt(diag(ginv(information.poisson(c(hat.d,hat.a,hat.b),ydata))))

sd2=sqrt(diag(ginv(information.poisson(c(hat.d,hat.a,hat.b),ydata))
Jx%information.negbin(c(hat.d,hat.a,hat.b),ydata,est.nu2)

J*x%ginv(information.poisson(c(hat.d,hat.a,hat.b),ydata))))

S
## Cumulative periodogram plot ##
S 2

cpgramnew=function(ts,taper=0.1,main=paste("Series: ",
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deparse(substitute(ts))),ci.col="blue")
{
main
if (NCOL(ts)>1)
stop("only implemented for univariate time series")
x=as.vector(ts)
x=x[!is.na(x)]
x=spec.taper(scale(x,TRUE,FALSE) ,p=taper)
y=Mod (££t(x)) "2/length (x)
y[1]1=0
n=length(x)
x=(0:(n/2))*frequency(ts)/n
if (length(x)%%2==0)
{
n=length(x)-1
y=y[1:n]
x=x[1:n]
}
else
y=y [seq(along=x)]
xm=frequency(ts)/2
mp=length (x)-1
crit=1.358/(sqrt(mp)+0.12+0.11/sqrt (mp))
plot(x,cumsum(y)/sum(y) ,type="s",xlim=c(0,xm) ,ylim=c(0,1) ,xaxs="1i",
yaxs="i",xlab="frequency",ylab="")
lines(c(0,xm*(1-crit)),c(crit,1),col=ci.col,lty=2)
lines(c(xm*crit,xm),c(0,1-crit),col=ci.col,lty=2)
title(main=main)
invisible()

3
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HAHHHHAHAH B HAH B HAHBHH
## Pearson residuals ##
HERSHHAHH AR HHAFHBRHHARHH
resnb=(ydata-lambda) /sqrt(lambda+lambda”2/est.nu2)

plot(ydata,type="1",col=1,xlab="Time",ylab="Transactions per minute")
lines(lambda,type="1",col="grey")

cpgramnew (resnb,main="Pearson Residuals")

R code regarding the nonlinear model (3.11) for the construction of Tables 3.3, 3.4, bottom
panels of Tables 3.7, 3.8, 3.9, 3.10, Figure 3.2, right plot of Figure 3.3 and bottom plots
of Figures 3.6, 3.8, 3.10 and 3.12.

HEHBH B HAH B HEHBH RS HAH RS H AR BH RS HAEH RS H AR RS HEHBH

## Simulate the nonlinear model #it

## using the negative binomial distribution ##

HAEHBH B HAHBHH AR BH B HAH RS HAHBH RS HAH B HAH RS HAHEH
nonlinnegbin.gamma.ts=function(d,a,gamma,b,size,nu)

{

y=rep(NA,size)

mu=rep(NA,size)

mu[1]=1 #initial value

y[1]=rnbinom(1,size=nu,mu=mul1])

for (t in 2:size)

{

mu[t]=d/((1+mu[t-1]) " (gamma) ) +a*mu[t-1]+b*y [t-1]
y[t]=rnbinom(1,size=nu,mu=mult])

}

return(cbind(y,mu))

3

S S S R S S S S s S
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## (Poisson) Quasi-likelihood for the nonlinear ##

## model for gamma known Hit

B S R S S S S s S S S S

liknonlin.gamma.poisson=function(theta,gamma,data)

{

lambda=rep(NA,length(data))

loglik=rep(NA,length(data))

lambda[1]=1

loglik[1]=0

for (t in 2:length(data))

{

lambda[t]=thetal[1]/((1+lambda[t-1]) "~ (gamma))+theta[2]*lambda[t-1]
+thetal[3]*data[t-1]

if (lambda[t]==0) loglik[t]= 0 else

if (lambda[t] >0) loglik[t]= -data[t]*log(lambdal[t])+lambdal[t]

}

final=sum(loglik)

}

HEHBH B HAH B HAHBHHEHAH RS HAH SRR BH RS HAH RS H AR RS HE
## (Poisson) Score function for the nonlinear ##
## model for gamma known #i#
HEHBH B HAH B HAHBHHEHAH B HAH RS HAHBH R HAH RS HAH RS HHE
scorenonlin.gamma.poisson=function(theta,gamma,data)
{

lambda=rep(NA,length(data))

lambda[1]=1

first=rep(NA,length(data))

first[1]=1

second=rep(NA,length(data))

second[1]=1
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third=rep(NA,length(data))

third[1]=1

sl=rep(NA,length(data))

s2=rep(NA,length(data))

s3=rep(NA,length(data))

for (t in 2:length(data))

{

lambda[t]=theta[1]/((1+lambda[t-1]) "~ (gamma))+theta[2]*lambda [t-1]
+thetal[3]*data[t-1]

first[t]=1/((1+lambdalt-1]) " (gamma))+(theta[2] -theta[1] *gamma
*((1+lambda[t-1]) " (-gamma-1)))*first[t-1]

second[t]=lambda[t-1]+(theta[2]-theta[1]*gamma* ((1+lambda[t-1])~ (-gamma-1)))
xsecond [t-1]

third[t]=(theta[2]-theta[1]*gamma* ((1+lambda[t-1]) " (-gamma-1)))*third[t-1]
+data[t-1]

s1[t]=-((data[t]/lambdalt])-1)*first[t]

s2[t]=-((data[t]/lambda[t])-1)*second[t]

s3[t]1=-((data[t]/lambdalt])-1)*third[t]

}

ssi=sum(s1[-1])

ss2=sum(s2[-1])

ss3=sum(s3[-1])

score=c(ssl,ss2,ss3)

3

ittt A A At A A A A A A A A S A A A A
## Information matrix based on the Poisson distribution-G matrix ##
it S S S S

information.poisson=function(theta,gamma,data)

{
lambda=rep(NA,length(data))
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lambda[1]=1

first=rep(NA,length(data))

first[1]=1

second=rep(NA,length(data))

second[1]=1

third=rep(NA,length(data))

third[1]=1

Information=matrix(0,nrow=3,ncol=3)

sl=rep(NA,length(data))

s2=rep(NA,length(data))

s3=rep(NA,length(data))

for (t in 2:length(data))

{

lambda[t]=theta[1]/((1+lambdal[t-1]) "~ (gamma))+theta[2]*lambda [t-1]
+theta[3]*datal[t-1]

first[t]=1/((1+lambda[t-1]) "~ (gamma))+(theta[2] -theta[1l] *gamma
*((1+lambda[t-1]) " (-gamma-1)))*first[t-1]

second[t]=lambda[t-1]+(theta[2]-theta[1l]*gammax((1+lambdal[t-1]) " (-gamma-1)))
*second [t-1]

third[t]=(theta[2]-theta[1]*gamma* ((1+lambdal[t-1]) " (-gamma-1)))*third[t-1]
+datalt-1]

s1[t]=first[t]

s2[t]=second[t]

s3[t]=third[t]

var.comp=(1/sqrt(lambdalt]))*c(s1[t],s2[t],s3[t])

Information=Information+var.comp’%*’t (var.comp)

}

return(Information)

3

HHBHHHH B R R R R R R
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## Information matrix based on the negative binomial distribution ##

## G_{1} matrix #i#

HESHHAHHBRHHAFHERHHAFHBRHHAFHERHHBFHBHA RS H BB AR R R AR BRHRAFH B RAHH

information.negbin=function(theta,gamma,data,nu)

{

lambda=rep(NA,length(data))

lambda[1]=1

first=rep(NA,length(data))

first[1]=1

second=rep(NA,length(data))

second[1]=1

third=rep(NA,length(data))

third[1]=1

Information=matrix(0,nrow=3,ncol=3)

sl=rep(NA,length(data))

s2=rep (NA,length(data))

s3=rep(NA,length(data))

for (t in 2:length(data))

{

lambda[t]=theta[1]/((1+lambda[t-1]) " (gamma))+theta[2]*lambda[t-1]
+thetal[3]*data[t-1]

first[t]=1/((1+lambdal[t-1]) " (gamma))+(theta[2]-theta[1l] *gamma
*((1+lambda[t-1]) " (-gamma-1)))*first[t-1]

second[t]=lambda[t-1]+(theta[2]-theta[1l]*gammax*((1+lambda[t-1]) " (-gamma-1)))
xsecond [t-1]

third[t]=(theta[2]-theta[1]*gammax* ((1+lambda[t-1]) " (-gamma-1)))*third[t-1]

+datalt-1]

sil[tl=first[t]

s2[t]=second[t]

s3[t]=third[t]

var.comp=(sqrt(1/lambda[t]+1/nu))*c(s1[t],s2[t],s3[t])
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Information=Information+var.comp’*’%t (var.comp)

3

return(Information)

3

HHHHHHEHEHSHS AR RS R R

## QMLE of d, a and b ##

## Calculation of \hat{\lambdal} ##

## Estimation of parameter \nu ##

HEHHH RS HAH RS HEHBH RS HAH RS H AR B R HEH

library (MASS)

calculate.parnonlinear=function(d,a,gamma,b,size,nu,sim,epsilon=0.001)

{

resultsl=matrix(NA,nrow=sim,ncol=3)

est.nul=rep(NA,sim)

est.nu2=rep(NA,sim)

ratio=matrix(NA,nrow=sim,ncol=3)

for (i in 1:sim)

{

# Estimation

data.test=nonlinnegbin.gamma.ts(d,a,gamma,b,size,nu) [601:size,1]

arma_fit=arima(data.test,order=c(1,0,1) ,method="CSS")

ma_1=min(max(arma_fit$coef["mal"],-1+epsilon),0-epsilon)

ar_l1=min(max(arma_fit$coef["arl"],0+epsilon-ma_1),1-epsilon)

sigma_sqg=max(arma_fit$sigma2,epsilon)

theta_init=c(sigma_sq*(l-ar_1),-ma_1,ar_1+ma_1)

results=constrOptim(theta=theta_init,f=liklinear.poisson,
grad=scorelinear.poisson,data=data.test,ui=uilinear,
ci=cilinear,outer.iterations=100,
outer.eps=1e-05,method="BFGS") $par

theta_initl=c(results[1],results[2] ,results([3])

76



resultsl[i,]=constrOptim(theta=theta_initl,f=1liknonlin.gamma.poisson,
grad=scorenonlin.gamma.poisson,data=data.test,gamma=gamma,
ui=uilinear,ci=cilinear,outer.iterations=100,
outer.eps=1e-05,method="BFGS") $par

hat.d=resultsi[i,1]

hat.a=resultsi[i,?2]

hat.b=resultsi[i,3]

# Calculation of \hat{\lambda}

lambda=rep(NA, length(data.test))

lambda[1]=mean(data.test)

for (t in 2:length(data.test))

{

gamma=gamma

lambda[t]=hat.d*((1+lambda[t-1]) "~ (-gamma))

+hat.a*lambda[t-1]+hat.b*data.test[t-1]

}

# Estimation of \nu

est.nul[i]=(mean(((data.test-lambda) "{2}-lambda)/(lambda~{2}))) "{-1}

est.nu2[i]=theta.mm(data.test,lambda,length(data.test)-3)

# Calculation of the ratio of standard errors of the estimators

sdl=sqrt(diag(ginv(information.poisson(c(hat.d,hat.a,hat.b),gamma,

data.test))))
sd2=sqrt(diag(ginv(information.poisson(c(hat.d,hat.a,hat.b),gamma,data.test))
Jx%information.negbin(c(hat.d,hat.a,hat.b),gamma,data.test,est.nu2[i])
Jx%ginv(information.poisson(c(hat.d,hat.a,hat.b),gamma,data.test))))

ratio[i,]=sd1/sd2

}

return(list(resultsl,est.nul,est.nu2,ratio))

3

mle.negbin=calculate.parnonlinear(0.5,0.4,0.5,0.5,1500,5,1000)

7



mean.est=apply(mle.negbin[[1]],2,mean)

mean.est

sd.est=apply(mle.negbin[[1]],2,sd)

sd.est

mean(mle.negbin[[2]])
sd(mle.negbin[[2]])

mean(mle.negbin[[3]])
sd(mle.negbin[[3]])

mean.ratio=apply(mle.negbin[[4]],2,mean)

mean.ratio

Construction of Figure 3.2.
HESHHAFH A HH A SRR R SRS

## Histograms and qq-plots ##

HEHBH B HAH RS HEHBH R H AR RS HEHBH
d.data=(mle.negbin[[1]][,1]-mean.est[1])/sd.est[1]
a.data=(mle.negbin[[1]][,2] -mean.est[2])/sd.est[2]

b.data=(mle.negbin[[1]][,3]-mean.est[3])/sd.est[3]

par (mfrow=c(3,2))

hist(d.data,prob=T,ylab="",xlab="",main="")
lines(seq(-3.5,3.5,1ength=100) ,dnorm(seq(-3.5,3.5,1length=100)))
qgnorm(d.data)

gqqline(d.data)

hist(a.data,prob=T,ylab="",xlab="",main="")
lines(seq(-3.5,3.5,1length=100) ,dnorm(seq(-3.5,3.5,1length=100)))
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qgnorm(a.data)

qqline(a.data)

hist(b.data,prob=T,ylab="",xlab="",main="")
lines(seq(-3.5,3.5,1length=100) ,dnorm(seq(-3.5,3.5,1length=100)))
qgnorm(b.data)

qqline(b.data)

Construction of right plot of Figure 3.3.
mat=matrix(NA,nrow=15,ncol=3)

for(j in 1:15)

{
mle.negbin=calculate.parnonlinear(0.5,0.4,0.5,0.5,1500,j,1000)
mean.ratio=apply(mle.negbin[[4]],2,mean)

mat[j,]=mean.ratio

}

mat

x=seq(1,15)

yl=mat[,1]

plot(x,yl,xlim=c(1,15),ylim=c(0.2,1) ,xlab=expression(nu),ylab="Ratio")
lines(lowess(x,y1,£f=0.2))

y2=mat [, 2]

points(x,y2)
lines(lowess(x,y2,f=0.2),1ty=2)
y3=mat [, 3]

points(x,y3)

lines(lowess(x,y3,f=0.2),1ty=3)

leg.names=c("Ratio of d","Ratio of a","Ratio of b")
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legend(locator(1l),leg.names,lty=1:3)

Construction of the second rows in parentheses of Table 3.3 and Table 3.4.

f=function(d,a,gamma,b,size,nu,sim)

{

final=matrix(0,nrow=3,ncol=3)

hessian.matrix=matrix(0,nrow=3,ncol=3)

G.matrix=matrix(0,nrow=3,ncol=3)

for (i in 1:sim)

{

data=nonlinnegbin.gamma.ts(d,a,gamma,b,size,nu) [501:size,1]

theta=c(d,a,b)

G=information.poisson(theta,gamma,data)/length(data)

Gl=information.negbin(theta,gamma,data,nu)/length(data)

sandwich=ginv(G) %*%G1%*%ginv (G) /length(data)

hess=constrOptim(theta=theta,gamma=gamma,f=1iknonlin.gamma.poisson,
grad=scorenonlin.gamma.poisson,data=data,ui=uilinear,ci=cilinear,
control=list(maxit=0) ,method="BFGS" ,hessian=TRUE)$hessian/length(data)

final=final+sandwich

hessian.matrix=hessian.matrix+hess

G.matrix=G.matrix+G

final=final

hessian.matrix=hessian.matrix/sim

G.matrix=G.matrix/sim

}

return(list(final ,hessian.matrix,G.matrix))

+
result=£(0.5,0.4,0.5,0.5,1500,5,1000)

sd=sqrt(diag(result[[1]]/1000))
round(sd,4)
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result[[2]]
result[[3]]

Construction of bottom panels of Tables 3.7, 3.8, 3.9, 3.10 and bottom plots of Figures
3.6, 3.8, 3.10 and 3.12.

HAHHHH AR RS HH R AR RS RS

## Transactions data ##

#HiHHHH RS RS HS R AR RS RS
ericsson=read.table("ericssonfirstday.txt" ,header=T, dec=",", as.is=F)
names (ericsson)

transactions=ericsson$trans

ydata=transactions

HEHSH RS HEHBHHEHEHH

## Measles data ##

HHHHHHRHH R

data=read.table("ewcitmeas.txt" ,header=T,dec=",",as.is=F)
names (data)

ydata=data$Sheffield[1601:2050]

HEHSH RS HAH RS HEHEH

## Births data ##

HHHHHHHHARHF R
data=read.table("births.txt" , header=T,dec=",",as.is=F)
names (data)

ydata=data$bb

#H#HH#H A HHH SR HH S HH
## Homicides data ##
#it#tH S TS ST

data=read.table("homicides.txt" ,header=T,dec=",",as.is=F)
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names (data)

ydata=data$X0

# Estimation of d, a, b

epsilon=0.001

arma_fit=arima(ydata,order=c(1,0,1) ,method="CSS")

ma_1=min(max(arma_fit$coef["mal"],-1+epsilon),0-epsilon)

ar_l=min(max (arma_fit$coef ["ar1"],O0+epsilon-ma_1),1-epsilon)

sigma_sqg=max(arma_fit$sigma2,epsilon)

theta_init=c(sigma_sq*(l-ar_1),-ma_1,ar_1+ma_1)

results=constrOptim(theta=theta_init,f=liklinear.poisson,
grad=scorelinear.poisson,data=ydata,ui=uilinear,ci=cilinear,
outer.iterations=100,outer.eps=1e-05,method="BFGS") $par

resultsl=constrOptim(theta=c(results[1],results[2],results[3]),
f=liknonlin.gamma.poisson,grad=scorenonlin.gamma.poisson,
data=ydata,gamma=0.5,outer.iterations=100,ui=uilinear,ci=cilinear,

outer.eps=1e-05,method="BFGS")

hat.d=resultsi$par[1]

hat.a=resultsi$par[2]

hat.b=resultsi$par[3]

# Calculation of \hat{\lambda}

lambda=rep(NA,length(ydata))

lambda[1]=mean(ydata)

for (t in 2:length(ydata))

{

gamma=0.5

lambda[t]=hat.d/((1+lambda[t-1]) "~ (gamma))+hat.a*lambda[t-1]+hat.b*ydata[t-1]

}

# Estimation of \nu

est.nul=(mean(((ydata-lambda) "{2}-lambda)/(lambda~{2}) ))~{-1}

est.nu2=theta.mm(ydata,lambda,length(ydata)-3)
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# Standard errors of the estimators

sdl=sqrt(diag(ginv(information.poisson(c(hat.d,hat.a,hat.b),0.5,ydata))))

sd2=sqrt(diag(ginv(information.poisson(c(hat.d,hat.a,hat.b),gamma=0.5,ydata))
Jx%information.negbin(c(hat.d,hat.a,hat.b),gamma=0.5,ydata,est.nu2)

Jx%ginv(information.poisson(c(hat.d,hat.a,hat.b),gamma=0.5,ydata))))

HH#HHH A HHHH SR HHH SR 7S
## Pearson residuals ##
#itHH S S S TS

resnb=(ydata-lambda) /sqrt(lambda+lambda”2/est.nu2)

plot(ydata,type="1",col=1,xlab="Time",ylab="Transactions per minute")
lines(lambda,type="1",col="grey")

cpgramnew (resnb,main="Pearson Residuals")

If we want to simulate data from a mixed Poisson process, whose mixing variable Z is not
necessarily negative binomial distributed, we work analogously as before. The differences
in the R code are shown below. This is how we construct Tables 3.5, 3.6 and Figure 3.4.
B R e s s e e e s e e s e e e e T e e

## Simulate a mixed Poisson - linear model ##
HERSHHAHHBFHBAHHBFHHAHHBHHRAHHEFHRRAHH ISR R RIS
linear.mixed.poisson.ts=function(d,al,bl,size)

{

y=rep(NA,size)

mu=rep(NA,size)

z=rep(NA,size)

#z=rchisq(n=size,df=1) #chisquare

#z=rbinom(n=size,size=10,prob=1/10) #binomial

z=runif (size,0,2) #uniform
#z=rgeom(size,5/10) #geometric
mul[l]=1
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y[1]=rpois(1,z[1]*mu[1])
for (t in 2:size)

{
mu[t]=d+al*mu[t-1]+blxy[t-1]
y[t]=rpois(1,z[t]*mult])

}

return(cbind(y,mu,z))

3

HEHHHHEHAH S HAEH R RS HAH RS HAH RS H AR RS HS

## Constrains to obtain the QMLE ##

## d>0, a_1>0, b_1>0, O<a_1+b_1<1 ##

HHHHHH AR RS RS AR RS R R R
constrainslinear.poisson=function(z)

{

uilinear=matrix(0,nrow=4,ncol=3) #matrix for the linear constraints
uilinear[1,1]=1

uilinear[2,2]=1

uilinear[3,3]=1

uilinear[4,2]=-1

uilinear[4,3]=-1

cilinear=rep(0,4) #constant vector for the linear constraints
cilinear[4]=-1/mean(z)

return(list(uilinear,cilinear))

3

HHHHHHEHEHSRS AR R R R R
## QMLE of d, a and b ##
## Calculation of \hat{\lambda} ##
HHHHHHRHH R HH RS RS HHHHRH
library(MASS)
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mixedpoisson.linear=function(d,al,bl,size,sim,epsilon=0.001)

{

resultsl=matrix(NA,nrow=sim,ncol=3)

var_z=rep(NA,sim)

for (i in 1:sim)

{

# Estimation

datal=linear.mixed.poisson.ts(d,al,bl,size)

data.test=datal[501:size,1]

z=datal[501:size, 3]

arma_fit=arima(data.test,order=c(1,0,1) ,method="CSS")

ma_l=min(max(arma_fit$coef["mal"],-1+epsilon),0-epsilon)

ar_l=min(max(arma_fit$coef["arl"],0+epsilon-ma_1),1-epsilon)

sigma_sqg=max(arma_fit$sigma2,epsilon)

theta_init=c(sigma_sq*(l-ar_1),-ma_1,ar_1+ma_1)

uilinear=constrainslinear.poisson(z) [[1]]

cilinear=constrainslinear.poisson(z) [[2]]

resultsi[i,]=constrOptim(theta=theta_init,f=1iklinear.poisson,
grad=scorelinear.poisson,data=data.test,ui=uilinear,
ci=cilinear,z=z,outer.iterations=100,outer.eps=1e-05,
method="BFGS") $par

hat.d=results1[i,1]

hat.a=resultsi[i,?2]

hat.b=resultsi[i,3]

# Calculation of \hat{\lambda}

lambda=rep(NA, length(data.test))

lambda[1]=mean(data.test)

for (t in 2:length(data.test))

{

lambda[t]=hat.d+hat.a*lambda[t-1]+hat.b*data.test[t-1]

}
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# Estimation of \sigma_Z72
var_z[i]=1/theta.mm(data.test,lambda,length(data.test)-3)
}

return(list(resultsl,var_z))

}

HHHS R AR R R R R

## Simulate a mixed Poisson - nonlinear model ##

HHHH R
nonlinear.mixed.poisson.ts=function(d,al,gamma,bl,size)
{

y=rep(NA,size)

mu=rep(NA,size)

z=rep(NA,size)

#z=rchisq(n=size,df=1) #chisquare

#z=rbinom(n=size,size=10,prob=1/10) #binomial

z=runif (size,0,2) #uniform
#z=rgeom(size,5/10) #geometric
mul[1]=1

y[1]l=rpois(1,z[1]*mu[1])

for (t in 2:size)

{
mu[t]=d/((1+mu[t-1]) " (gamma))+al*mu[t-1]+bl*y [t-1]
y[t]=rpois(1,z[t]*mult])

}

return(cbind(y,mu,z))

3

mixedpoisson.nonlinear=function(d,al,gamma,bl,size,sim,epsilon=0.001)

{
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resultsl=matrix(NA,nrow=sim,ncol=3)

var_z=rep(NA,sim)

for (i in 1:sim)

{

# Estimation

datal=nonlinear.mixed.poisson.ts(d,al,gamma,bl,size)

data.test=datal[501:size,1]

z=datal[501:size, 3]

arma_fit=arima(data.test,order=c(1,0,1) ,method="CSS")

ma_1=min(max (arma_fit$coef["mal"],-1+epsilon),0-epsilon)

ar_l=min(max (arma_fit$coef["ar1"],O0+epsilon-ma_1),1-epsilon)

sigma_sqg=max(arma_fit$sigma2,epsilon)

theta_init=c(sigma_sq*(l-ar_1),-ma_1,ar_1+ma_1)

uilinear=constrainslinear.poisson(z) [[1]]

cilinear=constrainslinear.poisson(z) [[2]]

results=constrOptim(theta=theta_init,f=1iklinear.poisson,

grad=scorelinear.poisson,data=data.test,ui=uilinear,ci=cilinear,
outer.iterations=100,outer.eps=1e-05,method="BFGS") $par

theta_initl=c(results[1],results[2] ,results[3])

resultsl[i,]=constrOptim(theta=theta_initl,f=1iknonlin.gamma.poisson,
grad=scorenonlin.gamma.poisson,data=data.test,gamma=gamma,
ui=uilinear,ci=cilinear,outer.iterations=100,
outer.eps=1e-05,method="BFGS") $par

hat.d=results1[i,1]

hat.a=resultsi[i,2]

hat.b=resultsi[i,3]

# Calculation of \hat{\lambda}

lambda=rep(NA,length(data.test))

lambda[1]=mean(data.test)

for (t in 2:length(data.test))

{
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gamma=gamma

lambda[t]=hat.d*((1+lambda[t-1]) "~ (-gamma))+hat.a*lambda[t-1]
+hat.b*data.test [t-1]

}

# Estimation of \sigma_Z"2

var_z[i]=1/theta.mm(data.test,lambda,length(data.test)-3)

}

return(list(resultsl,var_z))

3

88



Chapter 4

On Count Time Series Prediction

4.1 Introduction

This chapter studies the prediction problem in the context of count time series. More
specifically, we follow the recent methodology of Czado et al. [13], where various tools for
predictive model assessment are developed for independent but not identically distributed
data. We show that these methods can also be applied for count dependent data. We focus
on Poisson and negative binomial distributions since these are occurred in applications
more frequently (and they are special cases of the mixed Poisson class of models); however
the methods can be applied to other discrete distributions provided that they are suitably
parameterized, as discussed in Chapter 3, and the distribution of the mixing variable
is known. We assess the predictive performance of the proposed models by extending
the tools developed by Czado et al. [13]. More specifically, we address the problem of
examining probabilistic calibration, marginal calibration and sharpness of the proposed

models.

4.2 Autoregressive Modeling and Inference

As outlined in Section 3.2 of Chapter 3, we consider count time series models that are
defined by (3.1) with mean specified by (3.4). In particular, in this chapter we focus on
count data whose distribution given the past is either the Poisson defined by (3.2) or the

negative binomial given by (3.3). As stated before, the negative binomial distribution is
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suitably parameterized to have equal mean as the Poisson distribution, that is \;. However,
its conditional variance is equal to A\; + A\? /v and it is greater than \;, which corresponds
to the conditional variance of the Poisson. This shows that the negative binomial will
tend to fit overdispersed data better.

Models (3.6), (3.10) and (3.11) defined in Section 3.2 of Chapter 3 are used to fit the
data in this chapter. Quasi maximum likelihood methodology outlined in the previous
chapter is used to obtain the consistent estimators of the regression parameters for each

model.

4.3 Assessment of the Predictive Performance

A major issue of time series analysis is to provide forecasts for future quantities. In our
study, since E(Y; | }?:)1‘) = )\, the optimal predictor of Y; given its past, is given by the
conditional expectation \;, in terms of mean square error. Obviously, in applications we
employ A = )\t(é). We focus exclusively on this predictor and the associated probability
models as introduced by (3.2) and (3.3). Regardless the chosen response distribution, it
is clear that ), is identical for both cases provided that we employ the QMLE obtained
by (3.14).

Following Gneiting et al. [43], we take the point of view that predictions should be
probabilistic in nature. In addition, they should strive to maximize the sharpness of
the predictive distribution subject to calibration. Calibration, refers to the statistical
consistency between the predictive distribution and the observations, and it is a joint
property of the forecasts and the values that utilize. The notion of sharpness refers to
the concentration of the predictive distribution and is a property of the forecasts only. It
follows that if the predictive distribution is more concentrated, then the forecasts obtained
are sharper. Therefore, this will yield better predictions subject to calibration. In this

section we provide diagnostic tools to evaluate the predictive performance.

4.3.1 Assessment of Probabilistic Calibration

The key tool in assessing probabilistic calibration is the nonrandomized Probability Inte-

gral Transformation (PIT) histogram as discussed by Czado et al. [13]. This tool is used
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for checking the statistical consistency between the predictive distribution and the distri-
bution of the observations. If the observation is drawn from the predictive distribution,
then the PIT has a standard uniform distribution.

In the case of count data, the predictive distribution is discrete and therefore the PIT is
no longer uniform. To remedy this, several authors (see for instance Handcock and Morris
[49]) have suggested a randomized PIT. Specifically, if P is the predictive distribution,

x ~ P is the observed count and v is standard uniform and independent of x, then
U:PZ_l—f—U(Px—PI_l), (41)

is standard uniform, where we define P_; = 0. Czado et al. [13] recently proposed a non
randomized uniform version of the PIT (see Definition 2.1.14) replacing the randomized

PIT value in (4.1) by

0 u< P,_q,
Fulz) = (u— P,_1)/(Py — Poy) Poy <u< Py,

1 u > P,.

\

Aggregating over a relevant set of n predictions we obtain the mean PIT,
_ 1 e . ,
Flu)==Y FOulz®), 0<u<1
(W)= L Ok, 0sust,

where F@ is based on the predictive distribution P® and the observed count z(.

Then the mean PIT is compared to the cumulative distribution function (cdf) of the
standard uniform distribution. The comparison is performed by plotting a non randomized
PIT histogram, which can be used as a diagnostic tool. After selecting the number of bins,
J, compute

N |
fj:F(j>—F(T)

for equally spaced bins j = 1,...,J, plot the histogram with height f; for bin j and check
for uniformity. Deviations from uniformity hint at reasons for forecasting failures and
model deficiencies. U-shaped histograms point at underdispersed predictive distributions,

hump or inverse U-shaped histograms indicate overdispersion and uniformity of histograms
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hints well-calibrated predictive distributions.

To construct the plots of the PIT histograms shown in Section 4.5 we operate as
follows. We fit model (3.5) to the data by using the quasi-likelihood function (3.13).
After obtaining consistent estimators for the regression parameters, we estimate the mean
process \; by 5\t = )\t(é) and the parameter v by either 7, or 5. Based on the simulation
results of the previous chapter, we suggest to use the estimator 2,. Then, the PIT is based

on the conditional cumulative distribution

¢

0 U<Py717

FulYi=y)=1S (u—P,_1)/(P,— P,_}) P,_,<u<P,

1 u > Py,

\

where P, is equal to the conditional cdf either of the Poisson distribution evaluated at A,
or of the negative binomial evaluated at N and . Subsequently, the mean PIT to be

used for plotting the histogram is given by

n

_ 1
F(u) = —ZF(t)(u|yt), 0<u<l

n
t=1

4.3.2 Assessment of Marginal Calibration

We now turn to the question of assessing marginal calibration. Suppose that the observed
time series {Y;, ¢ = 1,...n} is stationary which follows marginally the cdf G(-). In
addition, we assume that a candidate forecaster picks a probabilistic forecast in the form
of a predictive cdf P,(z) = P(Y; < z | F,}). In the case that we study, we have P,(-) to be
either the cdf of a Poisson with mean ), or of a negative binomial distribution evaluated
at \, and 0. We follow Gueiting et al. [43] to assess marginal calibration by comparing

the average predictive cdf

1 n
P(z) =~ Y P(z), z€R,
t=1
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to the empirical cdf of the observations given by

Go)= 1S 1m<a). acm

t=1

To display the marginal calibration plot, we plot the difference of the two cdf

P(z) - G(z), =zeR, (4.2)

for each of the various forecasters. If the marginal calibration hypothesis is true, then we
expect minor fluctuations about 0. Major excursions from zero hint that the forecaster

lacks marginal calibration. To see this, note that for x fixed and P,(x) as before, we obtain
_ 1 <&
Px)=—3 Plz) = E(P(Y,<x|F) =P, <)
t=1

because of ergodicity of {Y;}. In addition,

Glz)==-) 1Y, <z) 5 E(L(Y;<z)) =P, <)
=1
Therefore, P(x) and G () converge in probability to the marginal cdf of {Y;}. Hence,
plot (4.2) would indicate agreement (or disagreement) between the predictive distribution

and the marginal empirical distribution of the observed counts.

4.3.3 Assessment of Sharpness

Addressing sharpness is accomplished via scoring rules. These rules provide numerical
scores and form summary measures for the assessment of the predictive performance. In
addition, scoring rules help us to rank the competing forecast models. They are negatively
oriented penalties that the forecaster wishes to minimize, see also Czado et al. [13].
Assume that P(-) denotes the predictive cdf as before. The score will be denoted, in
general, by s(F;,Y;). Put p, =P, =y | .7-?1)1‘), for y =0,1,2,...; recall (3.2) and (3.3).
We consider seven different examples of scoring rules, as in Czado et al. [13], for the case

of count time series.
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e Logarithmic score

logs(P,,Y;) = —logp,. (4.3)
e Quadratic or Brier score
qs(P,Y,) = =2p, + [Ipl*, (4.4)
where [[pl|? = 3 p?.
y=0
e Spherical score
sphs(P,, Y;) = — 2. (4.5)
I
e Ranked probability score
ps(PuY) = S (Pua) — 1% < ) (16)
=0
e Dawid-Sebastiani score
Y, — 2
dss(P,Yy) = () 4 2log o, (4.7)
UPt

where pp, and op, are the mean and the standard deviation of the predictive distri-

bution P;, respectively.

e Normalized squared error score

Y, — 2
nses(P;,Y;) = <t—'upt) : (4.8)
O'pt
e Squared error score
ses(P, i) = (Vi — )% (4.9)

It is clear, from the above formulation, that the squared error score is identical for both
the Poisson and the negative binomial distribution since the conditional means are equal.
Note that the normalized square error score is formed by the so called Pearson residuals

obtained after fitting a model. We will compare all those scores in the next sections.
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4.4 Simulations

In the following, we present a limited simulation study where we examine the predictive
properties of models (3.6), (3.10) and (3.11). All simulations are based on 1000 runs
and the data have been generated according to the negative binomial model (3.3) with
mean specified by (3.4) and v = 2. We consider sample sizes of n = 200 and n = 1000,

throughout the simulations.

4.4.1 Models With and Without Feedback Mechanism

To show that in fact models with a feedback mechanism are more parsimonious than
models without a feedback mechanism, in terms of prediction, consider models (3.6) and
(3.10), for instance. We will use the scoring rules, as outlined in Section 4.3.3, to measure
their predictive power.

Suppose that we sample data from the negative binomial distribution (3.3) with v = 2
and the mean process ); is modeled by means of (3.10) with d = 1, b; = 0.01, by =
0.05, by = 0.01, by = 0.2, b5 = 0.3. For this example, we fit models (3.6) and (3.10)
following the methodology outlined in Section 3.3 of Chapter 3. After obtaining the
QMLE, we calculate all scoring rules based on negative binomial probabilistic prediction.
Table 4.1 shows the results of the scoring rules for the two models. All rules point out to
the adequacy of parsimonious model (3.6); the difference between the normalized squared
error scores of models (3.6) and (3.10) is not significant. This simple exercise shows that
the inclusion of the feedback mechanism in (3.6) takes into account dependence more
properly, even though the data have been generated by (3.10). Hence, model (3.6) seems
more suitable to fit data that show slowly decaying sample autocorrelation function and

additionally offers a parsimonious parametrization.
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‘ ‘ Scoring Rules

\ n \ logs qs sphs rPSs dss nses ses
Model (3.6) | 200 | 1.871 -0.188 -0.434 1.056 2.521 1.002 4.620
Model (3.10) 2.060 -0.165 -0.420 1.120 2.648 0.998 5.115
Model (3.6) | 1000 | 1.999 -0.178 -0.423 1.291 2.714 1.004 6.246
Model (3.10) 2.352  -0.087 -0.365 1.412 2.979 0.999 7.492

Table 4.1: Mean scores for models (3.6) and (3.10). The data have been generated by model
(3.10) with true values d = 1, by = 0.01, by = 0.05, b3 = 0.01, by = 0.2, b5 = 0.3 and v = 2.
Models are compared by the mean logarithmic, quadratic, spherical, ranked probability, Dawid-
Sebastiani, normalized squared error and squared error scores. Bold face numbers in each column
indicate the minimum value obtained between the two models.

4.4.2 Linear and Nonlinear Models

We generate now data according to the linear model (3.6) and the nonlinear model (3.11).
For the linear model (3.6), data are generated with true values (d, as,b;) = (0.5,0.4,0.5)
from (3.3) with v = 2. For each simulation we divide the data into two sets; a training
data set and a test data set. The training data set is used to fit the model and to estimate
the unknown parameters, while the test data set is employed for prediction. The training
data set consists of the first 65%, 75% or 85% of the observations of the full data collection
and the remaining data points form the test data set for each split. We also use the whole
observed time series to study the in-sample performance of the predictor. Calculation of
the maximum likelihood estimators, regardless wether we split the data or not, is carried
out by applying the quasi-likelihood methodology as outlined in Section 3.3 of Chapter
3. After obtaining the QMLE @ = (d, a1, b,), and using the fact that E(Y; | F,"}) = A,
we predict Y; from 5\t = )\t(é). We consider two different probabilistic forecasters whose
predictive distribution is either the Poisson or the negative binomial. For each split of the
data, both forecasters predict the response of the corresponding test data set. Thereafter,
we calculate the mean score of six scoring rules given by (4.3) — (4.8). Then, we compute
the pairwise difference between mean scores for negative binomial and Poisson for each
of the numerical measures; in other words we compute the mean score obtained from the
Poisson minus the mean score obtained from the negative binomial.

Since the true data generating process follows the negative binomial distribution, we

expect that the forecaster whose predictive distribution is assumed to be the negative
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binomial, will obtain smaller values for each mean score than those obtained from the
forecast whose predictive distribution is Poisson. To verify this assertion, using the results
from all simulations, we produce a table of proportions of positive differences for each split
of the data. For purposes of comparison, we construct all the above results for the full

data collection as well. The left tables of Table 4.2 show the results.
n=200

\ Split Percentage \ Split Percentage
Score \ 65% 75%  85%  Full data Score \ 65%  75%  85%  Full data
logs | 0.954 0.907 0.844 1.000 logs | 0.892 0.841 0.773 0.999
qs 0.687 0.689 0.704 0.686 qs 0.637 0.656 0.647 0.611
sphs | 0.671 0.660 0.700 0.680 sphs | 0.618 0.629 0.603 0.607
rps | 0.762 0.750 0.719 0.803 rps | 0.680 0.645 0.650 0.656
dss | 0.828 0.759 0.686 1.000 dss | 0.734 0.699 0.609 0.998
nses | 0.999 1.000 1.000 1.000 nses | 0.997 0.998 0.999 1.000
n=1000
‘ Split Percentage ‘ Split Percentage
Score | 65%  75%  85% Full data Score | 65%  75%  85% Full data
logs | 1.000 1.000 1.000 1.000 logs | 1.000 0.999 1.000 1.000
qs 0.813 0.792 0.779 0.836 qs 0.732  0.729 0.746 0.766
sphs | 0.815 0.786 0.771 0.847 sphs | 0.732  0.733 0.749 0.748
rps | 0.938 0.936 0.928 0.961 rps | 0.894 0.857 0.860 0.936
dss 1.000 0.999 0.998 1.000 dss 0.999 0.994 0.980 1.000
nses | 1.000 1.000 1.000 1.000 nses | 1.000 1.000 1.000 1.000

Table 4.2: Proportions of the positive differences between the scoring rules obtained from the Poisson
distribution and the scoring rules obtained from the negative binomial distribution. For the left tables,
data are generated from the linear model (3.6) for (d, a1,b1) = (0.5,0.4,0.5), v =2 and for sample sizes
n = 200 and n = 1000. For the right tables, data are generated from the nonlinear model (3.11) for the
same set of parameters and setting v = 0.5. Results are based on 1000 simulations.

Most of the proportions of these tables are approaching unity. This fact implies that for
most of the simulation runs, the negative binomial forecast outperforms the corresponding
Poisson prediction.

Note that both the quadratic and spherical scores (see (4.4) and (4.5), respectively)
yield, in most of the cases, the smaller values for the obtained proportions. In addition, the
logarithmic score (4.3), the Dawid-Sebastiani score (4.7) and the normalized squared error
score (4.8) yield proportions which approximate unity, regardless of the splitting of the
data. We conclude that these scores seem to be more appropriate for correctly identifying
the true data generating process. Figure 4.1 shows the boxplots of all scores (4.3) — (4.8)

for the two forecasters and for each split of the data for the case of linear model (3.6).
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White boxplots correspond to the Poisson prediction; grey boxplots correspond to the
negative binomial forecast. It is obvious that the negative binomial forecast is superior to
the Poisson forecast for each case. In addition, Figure 4.1 indicates that the performance
of all scoring rules does not depend upon the particular partition of the data set.

Logarithmic Score (logs) Quadratic Score (gs) Spherical Score (sphs)
65% 75% 85% full data. 65% 75% 85% full data 65% 75% 85% full data
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Ranked Probability Score (rps) Dawid-Sebastiani Score (dss) Normalized Squared Error Score (nses)

65 % 75 % 85 % full data 65 % 5% 85 % full data 65 % 75% 85 % full data
I I I I I I I I I I

© 4 -

T T T T T T T
1 2 3 4 5 6 7 8 1 2 3 4 5 6 7 8 1 2 3 4 5 6 7 8

Figure 4.1: Boxplots for the mean scores given by (4.3) — (4.8). White plots are for the Poisson
forecast, while grey plots are for the negative binomial prediction. Data are generated from the
linear model (3.6) when the true values are (d, a1, b1) = (0.5,0.4,0.5) and v = 2. The results are
based on 1000 data points and 1000 simulations.

Table 4.3 reports the scoring rules calculated from the full data collection in this
simulation experiment, where the two forecasters are compared by the mean scores given
by (4.3) — (4.9). Scores from this table show clear preference towards the negative binomial
over the Poisson prediction. Note that the predictive mean is equal (by model (3.5)) for
both distributions and therefore the mean squared error score is the same for the two
forecasts. Table 4.4 reports results when the true data generating process follows the
Poisson distribution. As we note, all scoring rules are similar and therefore we suggest

that it is preferable to employ the Poisson forecast when such phenomenon is observed.
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‘ ‘ ‘ Scoring Rules

‘ Forecaster ‘ n ‘ logs qs sphs rps dss nses ses
Linear Model (3.6) Poisson 200 | 1.714 -0.267 -0.566 1.276 2.077 1.786  3.919
NegBin 1.599 -0.283 -0.571 1.183 1.819 0.985 3.919
Nonlinear Model (3.11) | Poisson 1.425 -0.334 -0.624 0938 1.488 1554 2.303
NegBin 1.359 -0.345 -0.629 0.885 1.338 0.984 2.303
Linear Model (3.6) Poisson 1000 | 2989 -0.139 -0.423 4.625 4.722 3480 44.951
NegBin 2.354 -0.170 -0.469 3.958 3.307 0.997 44.951
Nonlinear Model (3.11) | Poisson 2234 -0.226 -0.529 2.676 3.167 2.466 19.181
NegBin 1.921 -0.250 -0.564 2.360 2.466 0.997 19.181

Table 4.3: Scoring rules calculated for the linear model (3.6) and the nonlinear model (3.11) when data
are generated from the negative binomial distribution with true values (d,a1,b1) = (0.5,0.4,0.5), v =
0.5, v =2 and n = 200 or n = 1000. Results are based on 1000 simulations. For both models, the
two forecasters are compared by the mean logarithmic, quadratic, spherical, ranked probability, Dawid-
Sebastiani, normalized squared error and squared error scores. Bold face numbers in each column indicate
the minimum value obtained between the two forecasters.

‘ ‘ ‘ Scoring Rules

‘ Forecaster ‘ n ‘ logs qs sphs rps dss nses  ses

Linear Model (3.6) Poisson 200 | 2123 -0.152 -0.414 2302 2.463 0.991 4.954
NegBin 2.122 -0.152 -0.415 2.290 2.462 0.947 4.954

Nonlinear Model (3.11) | Poisson 1.775 -0.224 -0.503 1.494 1.824 0.989 2.713
NegBin 1.774 -0.224 -0.504 1.485 1.823 0.945 2.713

Linear Model (3.6) Poisson 1000 | 2.128 -0.152 -0.420 2.441 2476 0.998 4.991
NegBin 2.128 -0.152 -0.420 2.436 2.475 0.980 4.991

Nonlinear Model (3.11) | Poisson 1.780 -0.228 -0.507 1.580 1.838 0.999 2.750
NegBin 1.780 -0.228 -0.507 1.575 1.837 0.980 2.750

Table 4.4: Scoring rules calculated for the linear model (3.6) and the nonlinear model (3.11) when data
are generated from the Poisson distribution with true values (d,a1,b1) = (0.5,0.4,0.5), v = 0.5 and
n = 200 or n = 1000. Results are based on 1000 simulations. For both models, the two forecasters are
compared by the mean logarithmic, quadratic, spherical, ranked probability, Dawid-Sebastiani, normalized
squared error and squared error scores.

Furthermore, Figure 4.2 depicts the marginal calibration plot for both forecast dis-
tributions; recall (4.2). It is clear that the negative binomial is superior to the Poisson
distribution. The solid line of the graph (which corresponds to the negative binomial fore-
cast) illustrates small deviations from zero, as it should be expected. Similar conclusions
hold for the nonlinear model (3.11). Using the same set of parameters as for the linear
model and setting v = 0.5, we verified empirically from the right tables of Table 4.2, Table

4.3, and Figure 4.3 the superiority of the negative binomial prediction.
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Figure 4.2: Left Plot: Marginal calibration plot for the linear model (3.6). Data are generated
with true values (d,aq,b1) = (0.5,0.4,0.5) and v = 2. Right Plot: Marginal calibration plot for
the nonlinear model (3.11). Data are generated with true values (d, a1,~,b1) = (0.5,0.4,0.5,0.5)
and v = 2. The results are based on 1000 data points and 1000 simulations. Solid line corresponds
to the negative binomial prediction, while dashed line is for the Poisson forecast.
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Figure 4.3: Boxplots for the mean scores given by (4.3) — (4.8). White plots correspond to the
Poisson forecasts, while grey plots are for the negative binomial prediction. Data are generated
from the nonlinear model (3.11) when the true values are (d,a1,v,b1) = (0.5,0.4,0.5,0.5) and
v = 2. The results are based on 1000 data points and 1000 simulations.
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4.5 Case Studies

In order to examine whether or not negative binomial is a better forecaster than the Poisson
predictor for some real data applications, we use the machinery developed in Section 4.3,
namely the nonrandomized PIT histogram, the marginal calibration plot and the various
scoring rules. We fit the linear model (3.6) and the nonlinear model (3.11) to the four
different data collections introduced in Section 3.5 of Chapter 3.

4.5.1 Transactions Data

We fit the linear model (3.6) and the nonlinear model (3.11) to the data by using the quasi-
likelihood methodology outlined in Section 3.3 of Chapter 3 and we obtain the QMLE for
the regression parameters. The results are summarized in Table 3.7. Substituting these
estimators to the expression of \;, we estimate the mean process. After obtaining S\t, we
construct the PIT histograms, the marginal calibration plots and mean scores for the two
models. The left plots of Figure 4.4 show the PIT histograms when the fit is based on
Poisson distribution, for both linear and nonlinear models. Apparently, the plots show
deviations from the Poisson distribution indicating underdispersed predictive distribution.
The right plots indicate no apparent deviations from the uniformity; these plots are based
on the negative binomial distribution.

Furthermore, to assess marginal calibration and sharpness of the prediction, we com-
pute the scoring rules (4.3) — (4.9) and we construct the marginal calibration plot for these
data. Table 4.5 shows the mean scores for the linear and nonlinear model. In addition,
Figure 4.5 depicts the marginal calibration plots for the transactions data. The results
in all cases indicate that the negative binomial distribution fits the data better than the

Poisson distribution.

101



Linear Poisson Prediction Linear Negative Binomial Prediction

> ] > ]
(8] o
s 9 s <o
g « g «w
o o
o — o —
TR [T
RS g 9
< ©
[7} [
e - | | @ -
o o |
7 T T T T T e . T T T T T
0.0 0.2 0.4 0.6 0.8 1.0 0.0 0.2 0.4 0.6 0.8 1.0
Probability Integral Transform Probability Integral Transform
Non Linear Poisson Prediction Non Linear Negative Binomial Prediction
for gamma known (gamma=0.5) for gamma known (gamma=0.5)
5 | 5
s <o s o
g « g «
o o
o — o —
w w
st ©
7] . [} -
14 o
o o |
© 7 T T T T T © T T T T T T
0.0 0.2 0.4 0.6 0.8 1.0 0.0 0.2 0.4 0.6 0.8 1.0
Probability Integral Transform Probability Integral Transform

Figure 4.4: PIT histograms applied to the number of transactions per minute for the stock
Ericsson B for the time period between July 2nd and July 22nd, 2002. From top to bottom: PIT
histograms for model (3.6) and model (3.11) for v = 0.5. Left Plots: The conditional distribution
is the Poisson. Right Plots: The conditional distribution is the negative binomial.

| | Scoring Rules

\ Forecaster \ logs qs sphs rps dss nses ses

Linear Model (3.6) Poisson 3.126  -0.076 -0.276 3.633 4.585 2.326 23.477
NegBin 2.902 -0.080 -0.292 3.284 4.112 0.993 23.477
Nonlinear Model (3.11) | Poisson 3.123  -0.075 -0.274 3.605 4.579 2.318 23.435
NegBin 2.901 -0.080 -0.289 3.267 4.107 0.985 23.435

Table 4.5: Scoring rules calculated for the transactions data after fitting the linear model (3.6) and the
nonlinear model (3.11) for v = 0.5. The two forecasters are compared by the mean logarithmic, quadratic,
spherical, ranked probability, Dawid-Sebastiani, normalized squared error and squared error scores. Bold
face numbers in each column indicate the minimum value obtained between the two forecasters.
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Figure 4.5: Left Plot: Marginal calibration plot for the transactions data if we fit the linear
model (3.6). Right Plot: Marginal calibration plot for the transactions data if we fit the nonlinear
model (3.11). Solid line corresponds to the negative binomial prediction, while dashed line is for
the Poisson forecast.

4.5.2 Measles Data

Recall the measles data introduced in the previous chapter. We operate as in the previous
example and following the same methodology, we obtain Figures 4.6 and 4.7 and Table
4.6. The data analysis in this case shows again that the negative binomial prediction is

superior to the Poisson forecaster.

‘ ‘ Scoring Rules

‘ Forecaster ‘ logs qs sphs S dss nses ses

Linear Model (3.6) Poisson 3.920 -0.015 -0.189 11435 6.242 3.677 78.844
NegBin 3.254 -0.033 -0.197 11.160 4.853 0.993 78.844
Nonlinear Model (3.11) | Poisson 3.925 -0.014 -0.189 11482 6.257 3.697 79.349
NegBin 3.255 -0.032 -0.196 11.213 4.854 0.993 79.349

Table 4.6: Scoring rules calculated for the measles data after fitting the linear model (3.6) and the
nonlinear model (3.11) for v = 0.5. The two forecasters are compared by the mean logarithmic,
quadratic, spherical, ranked probability, Dawid-Sebastiani, normalized squared error and squared
error scores. Bold face numbers in each column indicate the minimum value obtained between
the two forecasters.
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Figure 4.6: PIT histograms applied to the total number of measles in Sheffield for the time
period between September 8th, 1978 and April 17th, 1987. From top to bottom: PIT histograms
for the linear model (3.6) and the nonlinear model (3.11) for v = 0.5. Left Plots: The conditional
distribution is the Poisson. Right Plots: The conditional distribution is the negative binomial.
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Figure 4.7: Left Plot: Marginal calibration plot for the measles data if we fit the linear model
(3.6). Right Plot: Marginal calibration plot for the measles data if we fit the nonlinear model
(3.11) for v = 0.5. Solid line corresponds to the negative binomial prediction, while dashed line
is for the Poisson forecast.
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4.5.3 Breech Births Data

Consider now the third real data collection introduced in the previous chapter which corre-
sponds to the number of monthly breech births in a hospital of South Africa. Following the
same methodology as before, we obtain Figures 4.8 and 4.9 and Table 4.7. Once again,
the results shows the superiority of the negative binomial forecast against the Poisson

prediction.
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Figure 4.8: PIT histograms applied to the number of breech births in Edendale hospital from
February 1977 to January 1986. From top to bottom: PIT histograms for the linear model
(3.6) and the nonlinear model (3.11) for v = 0.5. Left Plots: The conditional distribution is the
Poisson. Right Plots: The conditional distribution is the negative binomial.

‘ ‘ Scoring Rules

‘ Forecaster ‘ logs qs sphs rps dss nses ses

Linear Model (3.6) Poisson 3.970 -0.001 -0.151 4.754 6.109 3.208 57.232
NegBin 3.447 -0.030 -0.178 4.621 5.088 0.972 57.232
Nonlinear Model (3.11) | Poisson 3.984 -0.001 -0.151 4.674 6.102 3.199 57.647
NegBin 3.452 -0.030 -0.177 4.579 5.080 0.972 57.647

Table 4.7: Scoring rules calculated for the breech births data after fitting the linear model
(3.6) and the nonlinear model (3.11) for v = 0.5. The two forecasters are compared by the mean
logarithmic, quadratic, spherical, ranked probability, Dawid-Sebastiani, normalized squared error
and squared error scores. Bold face numbers in each column indicate the minimum value obtained
between the two forecasters.
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Figure 4.9: Left Plot: Marginal calibration plot for the breech births data if we fit the linear
model (3.6). Right Plot: Marginal calibration plot for the births data if we fit the nonlinear
model (3.11) for v = 0.5. Solid line corresponds to the negative binomial prediction, while

dashed line is for the Poisson forecast.

4.5.4 Homicides Data

Consider now the fourth real data collection introduced in Section 3.5 of Chapter 3 which

corresponds to the number of deaths recorded at the Salt River state mortuary at Cape

Town, for the period time 1986 - 1991. Following the same methodology as before, we

obtain Figures 4.10 and 4.11 and Table 4.8. Once again, the results show the superiority

of the negative binomial forecast against the Poisson prediction.

Scoring Rules

‘ Forecaster ‘ logs qs sphs rps dss nses ses

Linear Model (3.6) Poisson 2.026 -0.178 -0.422 1.297 2.547 1.649 4.671
NegBin 1.956 -0.188 -0.436 1.272 2.401 0.990 4.671

Nonlinear Model (3.11) | Poisson 2.023 -0.180 -0.424 1.297 2539 1.644 4.636
NegBin 1.955 -0.189 -0.438 1.271 2.395 0.990 4.636

Table 4.8: Scoring rules calculated for the deaths data after fitting the linear model (3.6) and the
nonlinear model (3.11) for v = 0.5. The two forecasters are compared by the mean logarithmic,
quadratic, spherical, ranked probability, Dawid-Sebastiani, normalized squared error and squared
error scores. Bold face numbers in each column indicate the minimum value obtained between

the two forecasters.
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Figure 4.10: PIT histograms applied to the number of deaths recorded at the Salt River state
mortuary at Cape Town, for the period time 1986 - 1991. From top to bottom: PIT histograms
for the linear model (3.6) and the nonlinear model (3.11) for v = 0.5. Left Plots: The conditional
distribution is the Poisson. Right Plots: The conditional distribution is the negative binomial.
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Figure 4.11: Left Plot: Marginal calibration plot for the deaths data if we fit the linear model
(3.6). Right Plot: Marginal calibration plot for the births data if we fit the nonlinear model
(3.11) for v = 0.5. Solid line corresponds to the negative binomial prediction, while dashed line
is for the Poisson forecast.
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Appendix — R codes

R code for the construction of tables and figures of Chapter 4. Some basic functions are
already reported in the Appendix of Chapter 3 and thus they are omitted.

HiHH SRS RS0

## Split the data ##

HESHHAHH A H R HHASH IS

q=c(0.65,0.75,0.85,1)

scoring.rules=function(d,a,b,size,sim,nu)

{

out=array(NA,dim=c(7,2*length(q) ,sim))
outl=array(NA,dim=c(7,length(q),sim))
out.datal=matrix(NA,sim,2*length(q))
out.data2=matrix(NA,sim,2*length(q))
out.data3=matrix(NA,sim,2*length(q))
out.datad4=matrix(NA,sim,2*length(q))
out.datab=matrix(NA,sim,2*length(q))
out.data6=matrix(NA,sim,2*length(q))
out.data7=matrix(NA,sim,2*length(q))
x=seq(0,30,length=50)

G=rep(NA,length(x))

Fl=rep(NA,length(x))

F2=rep(NA,length(x))
difl=array(NA,dim=c(length(x),length(q),sim))
dif2=array(NA,dim=c(length(x),length(q),sim))
for (i in 1:sim)

{
ydata=linearnegbin.ts(d,a,b,size,nu) [601:size,1]
for(j in 1:length(q))

{

if (qljl'=1)
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{

# Training and test set

ydata.training=ydata[l:floor(length(ydata)*q[j])]

ydata.test=ydatal[(length(ydata.training)+1) :length(ydata)]

}

else

{

ydata.training=ydata

ydata.test=ydata

}

# Fit the linear model

# Estimation of d, a, b

epsilon=0.001

arma_fit=arima(ydata.training,order=c(1,0,1) ,method="CSS")

ma_l=min(max(arma_fit$coef["mal"],-1+epsilon),0-epsilon)

ar_1=min(max(arma_fit$coef["arl"],O+epsilon-ma_1),1-epsilon)

sigma_sq =max(arma_fit$sigma2,epsilon)

theta_init=c(sigma_sq*(l-ar_1),-ma_1,ar_1+ma_1)

results=constrOptim(theta=theta_init,f=1iklinear.poisson,
grad=scorelinear.poisson,data=ydata.training,ui=uilinear,
ci=cilinear,outer.iterations=100,outer.eps=1e-05,method="BFGS")

resultsl=results$par

hat.d=resultsi[1]

hat.a=results1[2]

hat.b=results1[3]

# Calculation of \hat{\lambda}

lambda=rep(NA, length(ydata))

lambda[1]=mean(ydata)

for (t in 2:length(ydata))

{

lambda[t]=hat.d+hat.a*lambda[t-1]+hat.b*ydata[t-1]
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}

if (q[jl'=1)

{

lambda.training=lambda[l:length(ydata.training)]

lambda.test=lambda[(length(ydata.training)+1) :length(ydata)l

}

else

{

lambda.training=lambda

lambda.test=lambda

}

# Estimation of \nu

library(MASS)

est.nul=(mean(((ydata.training-lambda.training) “{2}-lambda.training)/
(lambda.training~{2}))) ~{-1}

est.nu2=theta.mm(ydata.training,lambda.training,length(ydata.training)

-length(resultsl))

# Calculate scoring rules

# Parameter settings for computing scores

kk =100000 #cut-off for summations

my.k=(0:kk)-1 #to handle ranked probability score

n=length(ydata.test)

# Poisson prediction

pois.Px=ppois(ydata.test,lambda.test)

pois.Pxl=ppois(ydata.test-1,lambda.test)

pois.px=dpois(ydata.test,lambda.test)

# NB prediction

nb.Px=pnbinom(ydata.test,size=est.nu2,mu=lambda.test)

nb.Pxl=pnbinom(ydata.test-1,size=est.nu2,mu=lambda.test)

nb.px=dnbinom(ydata.test,size=est.nu2,mu=lambda.test)

# Compute scores
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pois.logs= -log(pois.px)

pois.norm=sum(dpois(my.k,lambda.test) "2)

pois.qs= —-2*pois.pxt+pois.norm

pois.sphs= -pois.px/sqrt(pois.norm)
i.cumsum=cumsum(ppois(my.k,lambda.test) ~2)
ii.sum=sum((ppois(my.k,lambda.test)-1)"2)
ii.cumsum=cumsum((ppois(my.k,lambda.test)-1)"2)

pois.rps=(i.cumsum[ydata.test+1]+ii.sum-ii.cumsum[ydata.test+1])

pois.dss=(ydata.test-lambda.test)"2/lambda.test+log(lambda.test)

pois.nses=(ydata.test-lambda.test) “2/lambda.test

pois.ses=(ydata.test-lambda.test) "2

nb.logs= -log(nb.px)
nb.norm=sum(dnbinom(my.k,mu=lambda.test,size=est.nu2)"2)

nb.gs= -2*nb.px+nb.norm

nb.sphs= -nb.px/sqrt(nb.norm)
i.cumsum=cumsum(pnbinom(my.k,mu=lambda.test,size=est.nu2) "2)
ii.sum=sum((pnbinom(my.k,mu=lambda.test,size=est.nu2)-1)"2)
ii.cumsum=cumsum((pnbinom(my.k,mu=lambda.test,size=est.nu2)-1)"2)

nb.rps=(i.cumsum[ydata.test+1]+ii.sum-ii.cumsum[ydata.test+1])

nb.dss=(ydata.test-lambda.test) "2/ (lambda.test*(1+lambda.test/est.nu2))

+log(lambda.test*(1+lambda.test/est.nu2))

nb.nses=(ydata.test-lambda.test) "2/ (lambda.test*(1+lambda.test/est.nu2))

nb.ses=(ydata.test-lambda.test) "2

# Scoring rules

out[1, (2%j-1):(2*j),i]=round(c(mean(pois.logs) ,mean(nb.logs)),3)

out [2, (2%j-1) : (2%j) ,il=round(c(mean(pois.qgs) ,mean(nb.qs)),3)

out [3, (2%j-1): (2%j) ,il=round(c(mean(pois.sphs) ,mean(nb.sphs)),3)

out [4, (2%j-1): (2%j) ,i]=round(c(mean(pois.rps) ,mean(nb.rps)),3)

out [5, (2%j-1) : (2%j) ,il=round(c (mean(pois.dss) ,mean(nb.dss)),3)

out [6, (2%j-1) : (2%j) ,i]=round(c(mean(pois.nses) ,mean(nb.nses)),3)

out [7, (2%¥j-1) : (2%j) ,i]l=round(c (mean(pois.ses) ,mean(nb.ses)),3)
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outl[1,j,il=ifelse(out[1, (2xj-1),il-out[1, (2%j),i]>0,1,0)
outl[2,j,i]l=ifelse(out[2, (2%xj-1),i]-out[2, (2%j),i]>0,1,0)
outl[3,j,il=ifelse(out[3, (2xj-1),il-out[3, (2%j),i]>0,1,0)
outl[4,j,il=ifelse(out[4, (2xj-1),i]l-out[4, (2%j),i]>0,1,0)
outl[5,j,il=ifelse(out[5, (2%xj-1),il-out[5, (2%j),i]>0,1,0)
outl[6,j,i]l=ifelse(out[6, (2xj-1),i]-out[6, (2%j),i]>0,1,0)
out1[7,j,il=out [7, (2xj-1),i]l-out [7, (2*]) ,i]

for(k in 1:(2xlength(q)))

{

out.datall,k]=out[1,k,]

out.data2[,k]=out[2,k,]

out.data3[,k]=out[3,k,]

out.data4[,k]=out([4,k,]

out.data5[,k]=out[5,k,]

out.data6[,k]=out[6,k,]

out.data7[,k]=out([7,k,]

}

indic=rep(NA,length(ydata.test))

# Obtain the marginal calibration plot

for(l in 1:length(x))

{

indic=as.numeric(ydata.test<=x[1])

G[1]=mean(indic)

pois.px.new=ppois(x[1l],lambda.test) #Poisson prediction
nb.px.new=pnbinom(x[1],size=est.nu2,mu=lambda.test) #NegBin prediction
F1[1l]=mean(pois.px.new)

F2[1]=mean(nb.px.new)

}

dif1[,j,i]=F1-G

dif2[,j,i]=F2-G

}
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}

mean.scoring.rules=round(apply(outl,1:2,mean),2)
mean.difl=apply(difl,1:2,mean)

mean.dif2=apply(dif2,1:2,mean)

return(list (out,outl,mean.scoring.rules,out.datal,out.data2,out.data3,

out.data4,out.datab,out.data6,out.data7,mean.difl ,mean.dif2))

test=scoring.rules(0.5,0.4,0.5,1500,1000,2)

Construction of the left panel of Table 4.2, first and third panels of Table 4.3, Figure 4.1
and left plot of Figure 4.2.
test [[3]]

S s
## Compare the scoring rules for Poisson and the negative binomial ##
## prediction using the full data #t
g S s
mat=matrix(NA,2,7)

for(1l in 1:7)

{

mat [,1]=apply(test [[(1+3)]1]1[,7:8],2,mean)

b

mat

HAHBHHAHAHBHHHE

## Boxplots ##
HHBHFHHH BRI H

par (mfrow=c(2,3))
library(fields)
at=c(1.5,4.5,7.5,10.5)
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pos=c(1:2,4:5,7:8,10:11)
labels=c("65 %","75 %","85 %","full data")

bplot(test[[4]],pos=pos,width=c(0.45,0.5,0.5,0.5,0.5,0.

col=c("white","grey") ,outline=FALSE)
axis(3,at=at,labels=labels)
title(main="Logarithmic Score (logs)",line=3)
bplot (test[[5]],pos=pos,width=c(0.45,0.5,0.5,0.5,0.5,0
col=c("white","grey") ,outline=FALSE)
axis(3,at=at,labels=labels)

title(main="Quadratic Score (gs)",line=3)

bplot (test[[6]],pos=pos,width=c(0.45,0.5,0.5,0.5,0.5,0.

col=c("white","grey") ,outline=FALSE)
axis(3,at=at,labels=labels)

title(main="Spherical Score (sphs)",line=3)

bplot(test[[7]],pos=pos,width=c(0.45,0.5,0.5,0.5,0.5,0.

col=c("white","grey") ,outline=FALSE)
axis(3,at=at,labels=1labels)

title(main="Ranked Probability Score (rps)",line=3)

bplot (test[[8]],pos=pos,width=c(0.45,0.5,0.5,0.5,0.5,0.

col=c("white","grey") ,outline=FALSE)
axis(3,at=at,labels=1labels)

title(main="Dawid-Sebastiani Score (dss)",line=3)

bplot (test[[9]],pos=pos,width=c(0.45,0.5,0.5,0.5,0.5,0.

col=c("white","grey") ,outline=FALSE)

axis(3,at=at,labels=labels)

5,0.

.5,0.

5,0.

5,0.

5,0.

5,0.

title(main="Normalized Squared Error Score (nses)",line=3)

s s
## Marginal calibration plot for the full data ##
g
x=seq(0,30,length=50)
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plot(x,test[[11]1]1[,4],ylim=c(-0.015,0.015),type="n",
main="Marginal Calibration Plot",ylab="")

lines(lowess(x,test[[11]][,4],£=0.2),1ty=2)

lines(lowess(x,test[[12]]1[,4],f=0.2))

abline (h=0,1ty=3)

For the construction of Table 4.4 we use the function linearpoisson.ts shown below,
in order to generate data from the linear model (3.6) using the Poisson distribution.
We calculate the scoring rules using the function scoring.rules shown above, but now
we delete the argument nu, since we do not generate data from the negative binomial
distribution.

HAEHBH B HAHBHHAHBH RS HAH RS HAHBH R HBH RS H AR RS R HBEH RS HAH RS HAHBH

## Simulate the linear model using Poisson distribution ##

HERSHHAHH AR HRAFHEFHHAFHBRHHAFHBRHHBFH B RS HBAHH AR RS H AR H
linearpoisson.ts=function(d,a,b,size)

{

y=rep(NA,size)

mu=rep(NA,size)

mu[1]=1

y[1]=rpois(1,mu[1])

for (t in 2:size)

{

mu [t]=d+a*mu[t-1]+b*y[t-1]

y[t]=rpois(1l,mult])

}

return(cbind(y,mu))

}
For the construction of Table 4.1 we generate data from the linear model (3.10) using the

negative binomial distribution. The following functions are used in order to calculate the

scoring rules.
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B s i e e e e T e e e e T e 2

## Simulate the linear model (3.10) it

## using the negative binomial distribution ##
e T e e e e e T
linearnegbinl.ts =function(d,bl,b2,b3,b4,b5,nu,size)
{

y=rep(NA,size)

mu=rep(NA,size)

theta=rep(NA,size)

mu[1:5]=1 #initial value
y[1:5]=rnbinom(1,size=nu,mu=mu[1:5])

for (t in 6:size)

{

mu [t]=d+bl*y [t-1]+b2*y [t-2] +b3*y [t-3] +bd*y [t-4] +b5*y [t-5]
y[t]=rnbinom(1,size=nu,mu=mult])

}

return(cbind(y,mu))

3

HEHBH B HAHBHHEHBEH RS H AR BEHEHBH RS H AR RS HEHBH RS H AR RS H AR RS HEHBHH
## (Poisson) Quasi-likelihood for the linear model (3.10) ##
HAHBH B HAHBHHBHBH RS HAHBHHBHBH RS HAHBHHAHEH RS HAH RS HAHBH RS HAHH
liklinear.poissonl=function(theta, data)

{

lambda=rep(NA,length(data))

loglik=rep(NA,length(data))

lambda[1:5]=0

loglik[1:5]=0

for (t in 6:length(data))

{

lambda[t]=theta[1]+theta[2]*data[t-1]+theta[3]*datal[t-2]
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+theta[4]*data[t-3]+theta[5]*data[t-4]+theta[6]*data[t-5]
if (lambdal[t] <=0) loglik[t]= O else
if (lambdal[t] >0) loglik[t]= -datal[t]*log(lambda[t])+lambda[t]
}
final=sum(loglik)
}

HAHBH B HAH B HAHBHHAHBH RS HAHBSHAHBHHAHBHHGHAHBSHAHBHHAH RS
## (Poisson) Score function for the linear model (3.10) ##
HESHHAHH AR HRAHHERHHAFHBRHHAFHERHRAFHBRH RS H R R RIS H B H AR S
scorelinear.poissonl=function(theta,data)

{

lambda=rep(NA,length(data))

lambda[1]=0

first=rep(NA,length(data))

first[1]=0

second=rep(NA,length(data))

second [1]=0

third=rep(NA, length(data))

third[1]=0

fourth=rep(NA,length(data))

fourth[1]=0

fifth=rep(NA,length(data))

fifth[1]=0

sixth=rep(NA,length(data))

sixth[1]=0

sl=rep(NA,length(data))

s2=rep(NA,length(data))

s3=rep(NA,length(data))

s4=rep (NA,length(data))

sb=rep(NA,length(data))
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s6=rep (NA,length(data))

for (t in 6:length(data))

{

lambda[t]=theta[1]+theta[2]*data[t-1]+theta[3]*data[t-2]
+theta[4]*data[t-3]+theta[b]*datal[t-4]+theta[6]*data[t-5]

first[t]l= 1

second[t]=data[t-1]

third[t]=data[t-2]

fourth[t]=data[t-3]

fifth[t]=data[t-4]

sixth[t]=data[t-5]

s1[t]=-((datal[t]/lambdal[t])-1)*first[t]

s2[t]=-((data[t]/lambdalt])-1)*second[t]

s3[t]=-((data[t]/lambdalt])-1)*third[t]

s4[t]=-((data[t]/lambda[t])-1)*fourth[t]

sb[t]=-((datalt]/lambdalt])-1)*fifth[t]

s6[t]=-((datalt]/lambdalt])-1)*sixth[t]

}

ssl=sum(s1[-1])

ss2=sum(s2[-1])

ss3=sum(s3[-1])

ss4=sum(s4[-1])

ssb=sum(s5[-1])

ss6=sum(s6[-1])

score=c(ssl,ss2,ss3,ss4,ss85,886)

}

s s
## Constrains to obtain the QMLE ##
## for model (3.10) i
## d,b_1,b_2,b_3,b_4,b_5>0, ##
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## 0<b_1+b_2+b_3+b_4+b_5<1 #it

HHHH
uilinearl=matrix(0,nrow=7,ncol=6) #matrix for the linear constraints
uilineari[1,1]=1

uilinear1[2,2]=1

uilinear1[3,3]=1

uilinear1[4,4]=1

uilinear1[5,5]=1

uilinear1[6,6]=1

uilinear1[7,2]=-1

uilinear1[7,3]=-1

uilinear1[7,4]=-1

uilinear1[7,5]=-1

uilinear1[7,6]=-1

cilinearl=rep(0,7) #constant vector for the linear constraints

cilinear1[7]=-1

HESHHAHHASH RS H SRS H RS R R R R R R
## (Poisson) Quasi-likelihood for the linear model (3.6) ##
HEHBH B HAHBHHAEHBH B HAH RS HAHBHHEHAEH RS H AR RS HEHBEH RS H AR RS HAHBH
liklinear.poisson2=function(theta,data)

{

lambda=rep(NA, length(data))

loglik=rep(NA,length(data))

lambda[1]=0

loglik[1]=0

for (t in 2:length(data))

{
lambda[t]=theta[l]+theta[2]*lambda[t-1]+theta[3]*data[t-1]
if (lambda[t]<=0) loglik[t]= 0 else

if (lambda[t]>0) 1loglik[t]= -datal[t]*log(lambdalt])+lambdalt]
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}
final=sum(loglik)
b

HAEHBH B HAH B HAHBH B HAH RS HAHBH R HBEH RS HAH RS R HBEH RS H AR B HAH
## (Poisson) Score function for the linear model (3.6) ##
HESHHAHHBFHRAHHBFHHAHHBRHHAFHERHRAHH B RIS H R HHAFH BRI
scorelinear.poisson2=function(theta,data)

{

lambda=rep(NA,length(data))

lambda[1]=0

first=rep(NA,length(data))

first[1]=0

second=rep(NA,length(data))

second [1]=0

third=rep(NA,length(data))

third[1]=0

sl=rep(NA,length(data))

s2=rep (NA,length(data))

s3=rep(NA,length(data))

for (t in 2:length(data))

{
lambda[t]=theta[l]+theta[2]*lambda[t-1]+theta[3]*data[t-1]
first[t]=(1+theta[2]*first[t-1])
second[t]=(lambda[t-1]+theta[2] *second[t-1])
third[t]=(data[t-1]+theta[2]*third[t-1])
s1[t]=-((data[t]/lambdalt])-1)*first[t]
s2[t]=-((data[t]/lambda[t])-1)*second[t]
s3[t]=-((data[t]/lambdalt])-1)*third[t]

}

ssi=sum(s1[-1])
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ss2=sum(s2[-1])
ss3=sum(s3[-1])

score=c(ssl,ss2,ss3)

3

HHHH

## Constrains to obtain the QMLE ##

## for model (3.6) #i#

## d>0, a>0, b>0, O<a+b<1 #it

HH#HHHHH AR R R R R
uilinear2=matrix(0,nrow=4,ncol=3) #matrix for the linear constraints
uilinear2[1,1]=1

uilinear2[2,2]=1

uilinear2[3,3]=1

uilinear2[4,2]=-1

uilinear2[4,3]=-1

cilinear2=rep(0,4) #constant vector for the linear constraints

cilinear2[4]=-1

parsimonious.model=function(d,bl,b2,b3,b4,b5,nu,size,sim,epsilon=0.001)
{

resultsl=matrix(NA,nrow=sim,ncol=6)
results2=matrix(NA,nrow=sim,ncol=3)

out=array(NA, dim=c(7,2,sim))

for (i in 1:sim)

{
ydatal=linearnegbinl.ts(d,bl,b2,b3,b4,b5,nu,size) [601:size,1]
# Fit the linear model (3.10)

# Estimation of d, bl, b2, b3, b4, bb
arma_fitl=arima(ydatal,order=c(0,0,5) ,method="CSS")

b.coefl=arma_fit1$coef[1:5]
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mean=arma_fitl$coef [6]

d.coef=mean*(1-sum(b.coefl))

theta_in=c(max(epsilon,d.coef) ,max(epsilon,b.coefl1[1]),
max (epsilon,b.coef1[2]) ,max(epsilon,b.coef1[3]),
max (epsilon,b.coef1[4]) ,max(epsilon,b.coefl1[5]))

results=constrOptim(theta=theta_in,f=1iklinear.poissonl,
grad=scorelinear.poissonl,data=ydatal,ui=uilinearl,
ci=cilinearl,outer.iterations=100,outer.eps=1e-05,method="BFGS")

resultsl[i,]=results$par

hat.dl=results1[i, 1]

hat.bl=resultsi[i,?2]

hat.b2=results1[i,3]

hat.b3=resultsl[i,4]

hat.bd=resultsi[i,5]

hat.bS5=resultsi[i,6]

# Calculation of \hat{\lambda}

lambdal=rep(NA, length(ydatal))

lambdal[1:5]=mean(ydatal)

for (t in 6:length(ydatal))

{

lambdal[t]=hat.dl+hat.bl*ydatal[t-1]+hat.b2*ydatal[t-2]
+hat.b3*ydatal [t-3]+hat.bd*ydatal[t-4]+hat.b5*ydatal [t-5]

}

# Estimation of \nu

estl.nul=(mean(((ydatal-lambdal) "{2}-lambdal)/(lambdal~{2}))) ~{-1}

estl.nu2=theta.mm(ydatal,lambdal,length(ydatal)-ncol(resultsl))

# NB prediction

nbl.Px=pnbinom(ydatal,size=estl.nul,mu=lambdal)

nbl.Pxl=pnbinom(ydatal-1,size=estl.nul,mu=lambdal)

nbl.px=dnbinom(ydatal,size=estl.nul,mu=lambdal)
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# Calculate scoring rules

# Parameter settings for computing scores

kk=100000

my.k=(0:kk)-1

n=length(ydatal)

# Compute scores

nbl.logs= -log(nbl.px)
nbl.norm=sum(dnbinom(my.k,mu=lambdal,size=estl.nul) "2)

nbl.gs= -2*nbl.px+nbl.norm

nbl.sphs= -nbl.px/sqrt(nbl.norm)
i.cumsuml=cumsum(pnbinom(my.k,mu=lambdal,size=estl.nul) "2)
ii.suml=sum((pnbinom(my.k,mu=lambdal,size=estl.nul)-1)"2)
ii.cumsuml=cumsum((pnbinom(my.k,mu=lambdal,size=estl.nul)-1)"2)

nbl.rps=(i.cumsuml [ydatal+1]+ii.suml-ii.cumsuml[ydatal+1])

nbl.dss=(ydatal-lambdal) "2/ (lambdal*(1+lambdal/estl.nul))

+log(lambdal*(1+lambdal/estl.nul))

nbl.nses=(ydatal-lambdal) "2/ (lambdal*(1+lambdal/estl.nul))

nbl.ses=(ydatal-lambdal) "2

# Fit the linear model (3.6)

# using the data we generated from the linear model (3.10)

# Estimation of d, a, b

arma_fit2=arima(ydatal,order=c(1,0,1) ,method="CSS")

ma_1=min(max(arma_fit2$coef["mal"],-1+epsilon),0-epsilon)
ar_l=min(max(arma_fit2$coef["ar1"],O0+epsilon-ma_1),1-epsilon)
sigma_sqg=max (arma_fit2$sigma2,epsilon)
theta_init=c(sigma_sq*(l-ar_1),-ma_1,ar_1+ma_1)
results=constrOptim(theta=theta_init,f=liklinear.poisson2,

grad=scorelinear.poisson2,data=ydatal,ui=uilinear?2,
ci=cilinear2,outer.iterations=100,outer.eps=1e-05,method="BFGS")

results2[i,]=results$par

hat.d2=results2[i, 1]
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hat.a=results2[i,2]

hat.b=results2[i, 3]

# Calculation of \hat{\lambda}

lambda2=rep(NA, length(ydatal))

lambda2[1]=mean(ydatal)

for (t in 2:length(ydatal))

{

lambda2[t]=hat.d2+hat.a*lambda2[t-1]+hat.b*ydatal[t-1]

}

# Estimation of \nu

library (MASS)

est2.nul=(mean(((ydatal-lambda2) “{2}-1lambda2)/(lambda2~{2}))) "{-1}
est2.nu2=theta.mm(ydatal,lambda2,length(ydatal)-ncol(results2))
# NB prediction
nb2.Px=pnbinom(ydatal,size=est2.nul,mu=lambda?2)

nb2.Px1=pnbinom(ydatal-1,size=est2.nul,mu=lambda2)

nb2.px=dnbinom(ydatal,size=est2.nul,mu=lambda?2)

# Calculate scoring rules

# Parameter settings for computing scores

kk=100000

my.k=(0:kk) -1

n=length(ydatal)

# Compute scores

nb2.logs= -log(nb2.px)
nb2.norm=sum(dnbinom(my.k,mu=lambda2,size=est2.nul) "2)

nb2.qs= -2*nb2.px+nb2.norm

nb2.sphs= -nb2.px/sqrt(nb2.norm)
i.cumsum2=cumsum(pnbinom(my.k,mu=lambda2,size=est2.nul) "2)
ii.sum2=sum((pnbinom(my.k,mu=lambda2,size=est2.nul)-1)"2)
ii.cumsum2=cumsum((pnbinom(my.k,mu=lambda2,size=est2.nul)-1)"2)

nb2.rps=(i.cumsum2[ydatal+1]+ii.sum2-ii.cumsum2[ydatal+1])
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nb2.dss=(ydatal-lambda2) "2/ (lambda2* (1+lambda2/est2.nul))
+log(lambda2+ (1+lambda2/est2.nul))
nb2.nses=(ydatal-lambda2) "2/ (lambda2*(1+lambda2/est2.nul))
nb2.ses=(ydatal-lambda2) "2
out[1,1:2,i]=round(c(mean(nbl.logs) ,mean(nb2.logs)),3)
out[2,1:2,i]=round(c(mean(nbl.qgs) ,mean(nb2.q9s)),3)
out[3,1:2,i]=round(c(mean(nbl.sphs) ,mean(nb2.sphs)),3)
out[4,1:2,i]=round(c(mean(nbl.rps) ,mean(nb2.rps)),3)
out[5,1:2,i]=round(c(mean(nbl.dss) ,mean(nb2.dss)),3)
out[6,1:2,i]l=round(c(mean(nbl.nses) ,mean(nb2.nses)),3)
out[7,1:2,i]=round(c(mean(nbl.ses) ,mean(nb2.ses)),3)
}
mean.scoring.rules=round(apply(out,1:2,mean),2)

return(list (out,mean.scoring.rules))

3

test=parsimonious.model(1,0.01,0.05,0.01,0.2,0.3,2,1500,1000)
test [[2]]

Construction of the PIT histogram.

g s S
## Probability Integral Plot function-Czado,Gneiting,Held ##
g

## function for nonrandomized PIT histogram

##
## input:
## X observed data

## Px CDF at x

## Px1 CDF at x-1

pit=function(x,Px,Px1,n.bins=10,y.max=2.75,my.title="PIT Histogram")
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{

a.mat=matrix(0,n.bins,length(x))
k.vec=pmax(ceiling(n.bins*Px1),1)
m.vec=ceiling(n.bins*Px)

d.vec=Px-Px1

for (i in 1:length(x))

{

if (k.vec[il==m.vec[i]) {a.mat[k.vec[i],i]l=1}

else

{

a.mat[k.vec[i] ,i]1=((k.vec[i]l/n.bins)-Px1[i])/d.vec[i]

if ((k.vec[i]+1)<=(m.vec[i]-1))

{for (j in ((k.vec[i]+1):(m.vec[i]-1))) {a.mat[j,i]=(1/(n.bins*d.vec[i]))}}
a.mat[m.vec[i] ,i]1=(Px[i]-((m.vec[i]-1)/n.bins))/d.vec[i]
}

}

a=apply(a.mat,1,sum)

a=(n.bins*a)/(length(x))

p=(0:n.bins)/n.bins

PIT="Probability Integral Transform"

RF="Relative Frequency"

plot(p,p,ylim=c(0,y.max) ,type="n",x1lab=PIT,ylab=RF,main=my.title)
templ=((1:n.bins)-1)/n.bins

temp2=((1:n.bins)/n.bins)

o.vec=rep(0,n.bins)

segments (templ,o0.vec,templ,a)

segments (templ,a,temp2,a)

segments (temp2,0.vec,temp2,a)

segments(0,0,1,0)

}

126



Considering that ydata denotes the vector of observations of the real data collections
and after obtaining A and Dy using the appropriate functions shown in the Appendix of
Chapter 3, we plot the PIT histograms using the R code given below.

HESHHAFH AR HHAFH B HHHAFH B RS H B AR AR AHH RS H R AR Y

## PIT Histogram using the negative binomial ##

HEHBH RS HAH B HAHBHHEHAH B HAH B SRR B H RS HAH RS H AR RS HE
negbin.Px=pnbinom(ydata,size=est.nu2,mu=lambda)
negbin.Px1=pnbinom(ydata-1,size=est.nu2,mu=lambda)
pit(ydata,negbin.Px,negbin.Px1,n.bins=10,y.max=2.75,

my.title="Linear Negative Binomial Prediction")

HHHHH R R R R R

## PIT Histogram using the Poisson ##

HHHHH R R R R
pois.Px=ppois(ydata,lambda)
pois.Pxl=ppois(ydata-1,lambda)
pit(ydata,pois.Px,pois.Px1l,n.bins=10,y.max=2.75,

my.title="Linear Poisson Prediction")

For the results of the simulation experiments based on the nonlinear model, we use the
functions which are properly defined according to model 3.11.

In addition, the functions which are used for the case studies in order to construct
Tables 4.5, 4.6, 4.7, 4.8 and Figures 4.5, 4.7, 4.9, 4.11, are properly defined as in the

simulation study.
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Chapter 5

Testing Linearity for Nonlinear

Count Time Series Models

5.1 Introduction

In this chapter we discuss the problem of testing for linearity against two special classes
of nonlinear alternatives for count time series data. Evaluating the significance of added
variables in a regression equation can be carried out using the likelihood ratio test, Wald
test or score (Lagrange Multiplier) test under quasi-likelihood theory. The score test is
often a very convenient tool because it does not require the estimation of the nonlinear
model and only requires the estimation of the constrained model under the hypothesis.
However, careful application of the methodology requires suitable adjustment of the score
test, since it is based on quasi-likelihood methodology. Note that, the aforementioned
types of test are asymptotically equivalent (cf. Francq and Zakoian [40, Ch. 8)).

Two major classes of nonlinear models are considered, which both of them nest the
linear model. The first class consists of models which do not face the problem of non iden-
tifiability, that is all the parameters of the model are identified under the null hypothesis.
For this class of models and under the null hypothesis of linearity, the score test statistic
possesses an asymptotic X? distribution, even if the parameters lie at the boundary of
the parameter space; see Francq and Zakoian [40]. The second class of nonlinear models
consists of models in which a nonnegative nuisance parameter exists under the alternative

hypothesis but not when linearity holds. In this particular case the testing problem is
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nonstandard and the classical asymptotic theory for the score test does not apply. Thus,
to resolve this problem, we employ a supremum (sup) type test; see for instance Davies

[14].

5.2 Autoregressive Modeling
The proposed modeling approach that we take, has been already introduced in (3.5) of
Chapter 3, that is

Yi = N0, ZM] = N0, A, A= f(Yien, Aee),  tEZ,

where Ny, Z; and f have been described in the aforementioned chapter. The nonlinear
specifications of f that we take in this chapter, are slightly different from those used in

terms of estimation in Chapter 3. In particular, they are given by

d
M= ————Fa Moy + 0 Y, 5.1
t (1_‘_%71)7 A1AL—1 1X¢—1 ( )
and
)\t =d + al)\t—l + (bl + exp(—'yYf_l))Yt_l. (52)

Models (5.1) and (5.2) are modifications of analogous models studied in Chapters 3
and 4. Model (5.1) is a nonlinear model deviation of (3.6) in the sense that small values of
~ make (5.1) to approach (3.6). Following the approach taken in Chapter 3, Section 3.2,
when max{b;,dy—b;}+a; < 1, model (5.1) is ergodic and stationary whose moments are
finite. Similarly, model (5.2) can be viewed as a smooth transition autoregressive (STAR)
model (see Terdsvirta [70]). It turns out that when 0 < a; + b; + ¢; < 1, model (5.2) is
ergodic, stationary and it has moments of all orders.

Note that both of them nest the linear model (3.6).

5.3 Testing Linearity

Among many important issues in practical model building of a nonlinear regression model,

is to test for linearity before actually employ a more elaborate nonlinear model. Testing
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can be carried out using the likelihood ratio test, Wald test or score (Lagrange Multiplier)
test under likelihood theory. Both likelihood ratio and Wald test require estimation for
the full model, which in some cases can be very challenging to be implemented. The main
advantage of the score test is that it requires estimation only for the constrained model.
In other words, testing for linearity requires estimation of the simple linear model, which
is the model under the null. In addition, the asymptotic distribution of the score statistic
is not affected when parameters lie at the boundary of the hypothesis, (see Francq and
Zakoian [40, Ch. 8]). Score test statistic seems to be the most prominent for testing
linearity and the above arguments show that it is an appropriate approach to our testing
problem.

Generally speaking, let us denote by 8 = (0(1), 0(2)) the unknown parameter, where
0" and 8 are vectors of dimension m; and mo, respectively, such that m; +my = m.

The hypotheses of interest are
H,:0® = 0[()2) vs. Hy:0% > 0[()2), componentwise.

Let 6, = (é,(ll), éf)) be the constrained quasi-likelihood estimator of 8 = (8%,0?),
that is the consistent estimator for the parameters of the linear model. Let S, =
(S Sf)) be the corresponding partition for the score function. The general form of

n

the score statistic is given by (see Rao [69])

LM, = S.(0,)I"(0,)8.(6,),

where I(-) denotes the information matrix. However, it can be shown that this can be

reduced to the following formula (see Breslow [7] and Harvey [50, Ch. 5] for instance),
LM, = S?'(6,)% (6,)8%(8,). (5.3)

In the above, 3 is an appropriate estimator for the covariance matrix 3 = Var(\/iﬁs 2)(8,,)).
Because our approach is based on quasi-score instead of the true score, certain ad-

justments should be made for obtaining its asymptotic distribution. Recall (3.16). Then
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consider the following partition

G- G Gy |
G Gy
and similarly for G; defined by means of (3.17). Here G11, G12, G21, Ga2 are partitions

of dimension m; X my, m; X Mo, Mo X my and mgy X me respectively. Partitions of the G,

matrix are defined analogously. Then it can be shown that
Y =3yp =G — GnGGiis — G121G Gz + Go1 G G111G 1 Ghs. (5.4)

In the particular case of the Poisson distribution, the matrices G and G; coincide and
therefore

Y = EP = G22 — G21G1_11G127

which is the usual form of the covariance matrix for applying the score test under the

correct model.

Remark 5.3.1 Consider the nonlinear model (5.1) and let 8 = (d, a1, b;) and 8% = ~.
We will test the hypothesis Hy : v = 0. Then the vector 0\;(6)/06, which appears
in the calculation of the score function and ¥ matrix, is a four-dimensional vector with

components given by

N L e

ad — (1+Y,_) ' ad
O\ 0N

— = A

ay t—1 + aq D,

oA O

a—bf = Y, 1+a 3211 and

oN _ dlog(l+Yi ) aa/\t—l
o (1+Yia) oy

Similarly, for the exponential model (5.2) we want to test Hy : ¢; = 0. Then for v known,

0A(0)/00 is a four-dimensional vector with components given by
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O OAi—1

oa ~ ttmTag

g—:j = )\t—1+ala§;117

g—;\f = Y}_l—kalaggl and

g—i\f = 3@16Xp(—73ﬁ2—1)+a182;1-

L,

In both models, d\(0)/0 is evaluated at @ = (8 ,0) = (d,ay,by,0), that is at the

estimator under the null.

5.3.1 Standard Implementation

If all the parameters are identified under the null hypothesis, then the standard asymptotic

theory holds. In particular, we have the following result.

Proposition 5.3.1 Suppose that {Y;,t = 1,...,n} is an observed count time series spec-
ified by (3.1) with mean process {\;} defined by (3.4). Suppose that the function f(-)
depends upon a vector (0(1),0(2)), where 8% is of dimension m;,i = 1,2. Consider the
problem

H,y:0® = 0[(]2) vs. Hy:0% > 0[()2), componentwise. (5.5)

Then the score test converges to a chi-square random variable, i.e.

LM, = 8?'(8,)S ' (0,)8?(0,) 2 x2

mo)

as n — 0o, when Hj is true.

In addition, consider testing



~_1 ~

with A = 33, 3 p.

The proof is postponed to the appendix. In particular, note that if the data are
generated by the usual Poisson model, then the non centrality parameter A equals to Sp.
For example, recall the nonlinear model (5.1) and let 8% = (d,ay,b;) and 8@ = .
Testing the hypothesis Hy : v = 0, we face the problem that under the null the parameter
v is at the boundary of the parameter space. According to Francq and Zakoian [40, pp.
196], the score statistic is not affected by this fact and the asymptotic distribution is the

chi-square with one degree of freedom.

5.3.2 Non-Standard Implementation

In many cases we have to test linearity assumption for nonlinear models that contain
nuisance parameters that are not identified under the null. As a consequence of this, the
quasi maximum likelihood estimators have nonstandard behavior. The lack of identifi-
cation affects also the score test and the classical asymptotic theory does not apply. A
comprehensive discussion of this identification problem can be found in the work of Davies
[14], Andrews and Ploberger [2], Terésvirta [70], Andrews [1] and Luukkonen et al. [62]
for the case of smooth transition autoregressive (STAR) modeling.

An illustrative example of this case is given by model (5.2). When ¢; = 0, the parameter

~ is not identified under the null. Consequently, the test of
HO . C = 0 VS. H1 1cp > 0, (56)

is not standard and the traditional large sample theory is not applicable.

To deal with this problem a reasonable strategy is to consider a fixed arbitrary value
of 7. Then the model is still linear in the parameters and the score statistic LM, is
asymptotically distributed as X2 under Hy. Despite the fact that this test is in general
consistent, even for alternatives where vy # v, it may lacks of power for alternatives where
Yo is far from ~.

To avoid low values of power regarding the above approach, we turned to a supremum
test proposed by Davies [14]. Consider I' is a grid of values for the parameter -, which

is a meaningless parameter under the null hypothesis. Then the sup-score test statistic is
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given by

LM, = sup LM, (v),
~yel’

where LM, () is given by (5.3). We reject hypothesis (5.6) for large values of LM,, which
can be calculated by bootstrapping the test statistic.
In the following, we examine the finite sample behavior of the score test under both

cases of identifiable and non identifiable parameters.

5.4 Simulation Study

The main goal of the test procedure is to obtain test statistics which have correct size and
high power. However, in the vast majority of interesting cases, the distributions of the
test statistic we use are known only asymptotically. A reasonable approach is to simulate
the finite sample behavior by employing parametric bootstrap. To obtain the size of the
test, the basic idea is to bootstrap the test statistic drawing a large number of bootstrap
samples, which obey the null hypothesis and resemble the real sample, and then compare
the observed test statistic to the ones calculated from the bootstrap samples (see Hill [52]
for instance). More specifically, testing hypotheses (5.5) when the parameter of interest is
identifiable can be implemented by the following steps, for the case of Poisson or negative

binomial process.

1. Generate data (Y7,Ys,...,Y,) from the linear model.

2. Estimate the unknown parameters under the null hypothesis Hy. The estimator is

denoted by 6.

3. Compute the observed score statistic value LM given by (5.3), using the correct

estimator for the covariance matrix 3 according to the distributional assumption.
4. Generate B time series of length n using the estimated model under H,.

5. For each time series, b = 1,..., B, estimate the model under Hy. The estimator is

denoted by éz

6. For each time series, b = 1, ..., B, compute the value of the score statistic denoted

by LM;.

134



7. Compute the p-value by the following ratio

#{b: LMy > LM} +1
B+1 '

p-value =

In the case of a non identifiable parameter, modify the algorithm by generating a grid
for the values of the non identifiable parameter and consider the supremum of the score

test over this grid.

5.4.1 Results for Testing Linearity for Model (5.1)

To obtain the size of the test we generate data Yi,...,Y,, using either the Poisson dis-
tribution or the negative binomial where the mean values are given by model (3.6). We
choose (d, ay,b1) = (0.5,0.4,0.5) or (1.5,0.05,0.6). We consider two different sample sizes,
n = 500 and n = 1000. For all of the cases, we use B = 499 bootstrap replicates
and the simulations run 200 times. For the case of the negative binomial assumption
we use ¥ = 2 and v = 4. Calculation of the maximum likelihood estimators is carried
out by optimizing the log-likelihood function (3.13) by a quasi-Newton method using the
constrOptim() function of R. Estimation is implemented by discarding the first 500 obser-
vations so that the process is within its stationary region. For selected nominal significance
level o = 1%, a = 5% or a = 10% we obtain the results shown in Tables 5.1 and 5.2. Note
that for purposes of comparison, the last three lines of the tables list the size of the test
derived from the X7 distribution. We note that in all cases the bootstrap approximation
works reasonably well.

For the power simulations we work in an analogous way but now the mean process is

given by
1.5

N =2
A+ Y)

+0.05M\-1 + 0.6Y;_q,

for values of v = 0.3,0.5 and 1. Table 5.3 reports the results and it shows that as v assumes

larger values, the power of the test statistic (5.3) approaches unity; see also Figure 5.1.

Remark 5.4.1 We have also tried to examine the sensitivity of the power of the score test
for model (5.1) when 7 assumes negative values but close to zero. Table 5.4 reports power

results for v = —0.5, —0.3, —0.1. For values of v < —0.5, we do not obtain a stationary
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Bootstrap test for n = 500 Bootstrap test for n = 1000

Nominal Poisson NegBin NegBin Poisson NegBin NegBin
significance level (v=2) (v=4) (v=2) (v=4)
a=1% 0.005 0.005 0.000 0.000 0.016 0.015
a=5% 0.050 0.048 0.025 0.055 0.069 0.060
a=10% 0.130 0.134 0.080 0.100 0.139 0.095
Approximation test for n = 500  Approximation test for n = 1000
a=1% 0.020 0.010 0.005 0.015 0.015 0.005
a=5% 0.075 0.035 0.030 0.070 0.030 0.035
a=10% 0.165 0.090 0.080 0.145 0.055 0.085

Table 5.1: Empirical size for sample sizes n = 500 and n = 1000. Data are generated from
the linear model (3.6) with true values (d,a1,b1) = (0.5,0.4,0.5). Results are based on B = 499
bootstrap replicates and 200 simulations.

Bootstrap test for n = 500 Bootstrap test for n = 1000
Nominal Poisson NegBin NegBin Poisson NegBin NegBin
significance level (v=2) (v=14) (v=2) (v=4)
a=1% 0.010 0.005 0.005 0.010 0.010 0.026
a=5% 0.041 0.068 0.037 0.057 0.037 0.051
a=10% 0.096 0.094 0.084 0.114 0.115 0.097

Approximation test for n = 500 Approximation test for n = 1000

a=1% 0.020 0.010 0.015 0.010 0.005 0.010
a=5% 0.075 0.030 0.055 0.060 0.020 0.035
a=10% 0.150 0.075 0.110 0.115 0.055 0.090

Table 5.2: Empirical size for sample sizes n = 500 and n = 1000. Data are generated from the
linear model (3.6) with true values (d,a,b1) = (1.5,0.05,0.6). Results are based on B = 499
bootstrap replicates and 200 simulations.

sequence. We note from Table 5.4 that in the case of Poisson the power of the test is
close to its nominal significance level when n = 500. For larger sample sizes and under the
Poisson, the power is rather poor. For the negative binomial case, we note that the power
behaves better than the Poisson case, specifically when v = —0.5, that is v far from 0.
This simple exercise shows that it might be worthwhile to investigate power of the test

statistic for parameter values which do not belong to the stationary region.
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Nonlinear model (5.1) Bootstrap test for n = 500 Bootstrap test for n = 1000

ot Poisson NegBin NegBin Poisson NegBin NegBin
(v=2 (v=4) v=2 (=4
~v=0.3 0.207 0.061 0.157 0.271 0.144 0.212
v=0.5 0.450 0.251 0.424 0.740 0.548 0.688
vy=1 0.924 0.756 0.837 1.000 0.974 0.995
Approximation test for n=500  Approximation test for n=1000
v=0.3 0.210 0.045 0.130 0.360 0.185 0.250
v=0.5 0.485 0.240 0.300 0.745 0.455 0.635
vy=1 0.920 0.710 0.870 0.995 0.955 0.990

Table 5.3: Empirical power for sample sizes n = 500 and n = 1000. Data are generated from the
nonlinear model (5.1) with true values (d,a1,b1) = (1.5,0.05,0.6) and v € {0.3,0.5,1}. Results
are based on B = 499 bootstrap replicates and 200 simulations. The nominal significance level
is a = 5%.

Nonlinear model (5.1) Bootstrap test for n = 500 Bootstrap test for n = 1000
ot Poisson NegBin NegBin Poisson NegBin NegBin
v=2 (v=4) v=2 (v=4)
v=-0.5 0.040 0.587 0.361 0.105 0.650 0.661
v=-0.3 0.070 0.269 0.194 0.165 0.305 0.297
v=-0.1 0.055 0.071 0.093 0.055 0.115 0.062

Table 5.4: Empirical power for sample sizes n = 500 and n = 1000. Data are generated from the
nonlinear model (5.1) with true values (d,a;,b1) = (1.5,0.05,0.6) and v € {—0.5,—0.3,—0.1}.
Results are based on B = 499 bootstrap replicates and 200 simulations. The nominal significance
level is a = 5%.

5.4.2 Results for Testing Linearity for Model (5.2)

To obtain the size of the test we work exactly in the same way as for the linearity test
of nonlinear model (5.1), using the true values (d,as,b;) = (0.5,0.4,0.5) or (d,a;,b1) =

(0.5,0.3,0.2). As far as the power of the test is concerned, the mean process is given by
At = 0.5+ 0.3\ 1 + (0.2 + ¢y exp(—7Y2 )Yy,

where ¢; € {0.2,0.4} and v € {0.05,0.2,0.5,1}.
Note that the grid for v to obtain the sup-score statistic, is a sequence of 30 equidistant
values in the interval [0.01,2]. Results are given in Tables 5.5, 5.6 and 5.7. Tables 5.5

and 5.6 show that for small samples the nominal level of the test statistic is usually
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Figure 5.1: Plot for the power of the test based on X? distribution, when the data are generated
from the nonlinear model (5.1) with true values (d, a1, b1) = (1.5,0.05,0.6), v = 4 and for different
values of . The results are based on 1000 data points and 200 simulations.

underestimated. However, larger sample sizes yield to more accurate approximation. The
power of the supremum test statistic is relatively large for larger sample sizes and for values

of 7y close to zero provided that the parameter ¢; is also of large magnitude in model (5.2).

Bootstrap test for n = 500 Bootstrap test for n = 1000
Nominal Poisson NegBin NegBin Poisson NegBin NegBin
significance level v=2) (v=4) v=2) (v=4)
a=1% 0.015 0.005 0.005 0.005 0.010 0.015
a=5% 0.070 0.054 0.035 0.030 0.068 0.065
a=10% 0.105 0.097 0.080 0.075 0.099 0.140

Table 5.5: Empirical size for sample sizes n = 500 and n = 1000. Data are generated from
the linear model (3.6) with true values (d, a1, b;) = (0.5,0.4,0.5). Results are based on B = 499
bootstrap replicates and 200 simulations.

5.5 Examples

In order to examine whether or not the linear model (3.6) is adequate to fit a real data
collection, we employ testing for linearity against two different nonlinear specifications;
the nonlinear model (5.1) and the exponential model (5.2), following the Poisson or the

negative binomial distributional assumption as discussed above.
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Bootstrap test for n = 500 Bootstrap test for n = 1000

Nominal Poisson = NegBin  NegBin Poisson NegBin  NegBin
significance level (v=2) (v=14) (v=2) (v=14)
a=1% 0.000 0.000 0.010 0.000 0.000 0.005
a=5% 0.048 0.043 0.037 0.020 0.045 0.060
a=10% 0.122 0.102 0.099 0.046 0.075 0.105

Table 5.6: Empirical size for sample sizes n = 500 and n = 1000. Data are generated from
the linear model (3.6) with true values (d, a1, b1) = (0.5,0.3,0.2). Results are based on B = 499
bootstrap replicates and 200 simulations.

Nonlinear model (5.2) Bootstrap test for n = 500 Bootstrap test for n = 1000
c1 ¥ Poisson =~ NegBin  NegBin Poisson =~ NegBin  NegBin
(v =2) (v=4) (v =2) (v =14)
c1 =02 ~v=0.05 0.140 0.178 0.220 0.315 0.390 0.355
c1=02 ~v=02 0.199 0.175 0.231 0.485 0.335 0.372
c1 =02 ~=0.5 0.111 0.156 0.122 0.312 0.190 0.265
c1=02 ~v=1 0.077 0.070 0.084 0.105 0.122 0.135
c1 =04 ~v=0.05 0.755 0.690 0.739 0.985 0.950 0.985
c1=04 ~=0.2 0.746 0.609 0.628 0.985 0.905 0.925
c1=04 ~=0.5 0.420 0.358 0.469 0.855 0.650 0.775
c0=04 ~v=1 0.174 0.154 0.235 0.465 0.255 0.340

Table 5.7: Empirical power for sample sizes n = 500 and n = 1000. Data are generated
from the exponential model (5.2) with true values (d, a1, b1) = (0.5,0.3,0.2), ¢; € {0.2,0.4} and
~v € {0.05,0.2,0.5,1}. Results are based on B = 499 bootstrap replicates and 200 simulations.
The nominal significance level is o = 5%.

Firstly, we consider the data collection of transactions reported in Section 3.5 of Chap-
ter 3. Following the steps proposed by the bootstrap procedure, for B = 499 bootstrap
replications, we calculate the p-values for each model and for each distributional assump-
tion. Table 5.8 summarizes the results, which in most of the cases, indicate that the
linear model (3.6) is accepted. If we consider testing linearity for the exponential model
(5.2) regarding the negative binomial distributional assumption, then the linear model is
rejected.

The second data example that we consider, corresponds to the monthly number of
measles at Sheffield, studied in Section 3.5 of Chapter 3. The results of the p-values
calculated by the proposed bootstrap procedure for B = 499 bootstrap replications, are
shown in Table 5.9, which indicate that the linear model (3.6) is always rejected.

Another data example that we consider, corresponds to the numbers of deaths recorded

139



Distributional assumption
Poisson Negative binomial
Nonlinear Model (5.1) 100% 99%
Exponential Model (5.2) | 100% 0%

Table 5.8: p-values of the linearity test for the total number of transactions per minute for the
stock Ericsson B for the time period between July 2nd and July 22nd, 2002. The total number
of observations is 460.

Distributional assumption
Poisson Negative binomial
Nonlinear Model (5.1) 0% 0%
Exponential Model (5.2) 0% 0%

Table 5.9: p-values of the linearity test for the monthly number of measles at Sheffield for the
period between September 8th, 1978 and April 17th, 1987. The total number of observations is
450.

at the Salt River state mortuary at Cape Town, for the period time 1986 - 1991. The results
of the p-values calculated by the proposed bootstrap procedure for B = 499 bootstrap
replications, are shown in Table 5.10. The results indicate that when the exponential model
(5.2) and the Poisson distribution is assumed, then the linear model (3.6) is adequate to

fit the homicides data, while in all the other cases the linear model (3.6) is rejected.

Distributional assumption

Poisson Negative binomial
Nonlinear Model (5.1) 0% 0%
Exponential Model (5.2) | 46% 0%

Table 5.10: p-values of the linearity test for the numbers of deaths recorded at the Salt River
state mortuary at Cape Town, for the period time 1986 - 1991. The total number of observations
is 312.
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Appendix A — Proofs

Proof of Proposition 5.3.1
Recall that 67 is defined by the solution of (3.20) and is consistent. Consider first the

case where the data are generated from the Poisson distribution and recall again that

én _ (é(l) é(2)

n n

) is the consistent estimator of @ = (8, 8®) under the null hypothesis.
Since és) is a consistent estimator of 81 and 8 > 0, then for n large enough we have

that éfj) > 0 and Sm(én) = 8ln(én)/89i =0, Vi=1,...,mq. That is, és) > 0 and

s,) =o0.

n

If we define the matrices K = (Opmyxm, Imy) and K = (I, Oy xms ), we have that

sW@,)=KS,0,) =0 and 8,0, =K'S?®,). (5.7)
Since
1 1 < 9%,(00)
JHn(00) == ) aag — GlO0),

a Taylor expansion shows that
$u(8:) ) S.(80) ~ G(B, — 0y).
Therefore, the last ms components of the above relation give
$2(8,) " S (60) - KG(6, - 6y), (5:8)
and the first m; components yield
0=5(8,) "= S0(6)) — KG(B, - 0y).

In addition,

@, —6,) =K 6" — o). (5.9)

n

Thus, we have that
0 2 sWig)) - KGK (8" — o),

n
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or

1

@Y — oy M (KGK)1SM(8y). (5.10)

Substituting (5.7), (5.8) and (5.9) in the general expression of the score test, we have that
LM, = 8 (6,)I46,)8,(0,)
= S;(én)Gil(én)Sn(én)
= S, KG'K'S?(,)
" (S2(80) - KG(B, - B KGK(S2(60) ~ KG(6, = 0)

—  (8?(60) - KGK (0 - 6)"))KG'K'(S?(6,) - KGK (8. — 6}")).

n

Let
w 1 /SW( G, G
W:( 1):—( ?2)( 0))1>N(0,G)EN<0, D).
W, n \.S,”(6o) Gy Gy
It holds that

KGK =G, KGK' =G, KGK =G1, KG'K' = (G — G21G11G12) !,

where the last equality comes from the inversion of the block matrix G' and denotes the
matrix i;

Thus, the score statistic is

~(1
LM, = (Ws — Ga1 (8" — 8°))(Gas — G GTGra) Wy — Gor (8 — 8)),
and using (5.10) we finally have that
LM, = (W3 — G GLIW ), (Ws — Go1 GLIWY). (5.11)
D

Then LM, 2 LM b X2, because of the fact that

W2 G21G W1 N N(O Ep)
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Indeed, we have that

%%
Wy — GG W, = <—G21G1_11 I) (W;) =G'W

and therefore,
E(W, -GG W) = G'E(W)=0 and
Var(Wy — G GIW,) = G*Var(W)G*

G G -GG
= (—G21G1_11 I) H 2 < 1 12)

Ga Ga -
-GG

= (0 —G21Gf11G12 + G22> ( 111 12)

= Gy — G21Gf11G12 = ENJP-

Consider now the misspecified model where the data are generated from the mixed Poisson
model. Following Francq and Zakoian [40] and Gallant [41, pp. 126], (see also Boos [6],
Kent [57] and Engle [28]), the score statistic is given by

LM, = 8.0, G 'K'(KG'G,G'K')'KG'S,(0,)
- $9(0,)KG'K'(KG'G,G'K') ' KG'K'S?(6,).

n

Some calculations yield that KG 'K’ = G* = (G — G51G{ G12) ™! and
(KG'G,G'K')' = (G22)_1§X41P(G22)_1, where 2, p is given by (5.4), that is

iMP =G99 — G21G1_11G1,12 - G1,21G1_11G12 + G21G1_11G1,11G1_11G12
and thus, the score test statistic is given by
LM, = S?'(8,)%,,,8?(8,). (5.12)
It can be shown that

~ op 1 _ 0 ~
S$2@,) " Wy — GouGrIW L 2 N0, Sup).
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and therefore, LM, -2 LM " X2

Assume now that the data are generated again from a Poisson model under the local
Pitman-type alternatives H; : 0@ = 062) +n~Y/2§. In order to obtain the limiting distri-
bution of the score test statistic (5.3) under the alternative, we only need the asymptotic
distribution of the score function under H;. By a Taylor expansion of S, (8y) about
0, = 0, +n"1/26*, where now 8* is a fixed vector in R of the form 6* = (81, 6), we have
that

n=128,(80) "X n128,,(0,) — n~ L H,,(8,)8*.

Since n=1/28,(6,) -2 N(0,G(6y)) and n~ H,(6,)6* -5 G(8y)8* under the alter-

native, then W = n=1/285,(8,) 2 N(—G(6,)6*, G(8,)). Therefore,

Sg)<én) Ozél) W2 - G21G1_11W1 }i’l N(—ip(s, ip)

and considering again the expression of the score statistic given by (5.11), we have that

LM, 2 LM X2 (6'Ad), where for the case of the Poisson assumption A = Sp =

Goyo — G21Gf11G12 evaluated at én

If the data are generated from the mixed Poisson model, then following the same steps
D

as for the Poisson and since now it holds that n='/2S,(6,) —— N(0,G1(6)) and
n'H,(0,)6* 5 G(6)0* under the alternative, we have that

W =n"128,(0,) -5 N(—G(6,)8%, G1(6y)).

Thus,
ngz)@n) L) Wy — GG W, 4 N(—ip(s, fJMp)

and considering again the expression of the score statistic given by (5.12), we have that

LM, 2 LM% X?2_(6'Ad), where for this case A = ilpi;PEP evaluated at 6,,. [
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Appendix B — R codes

Below we give the R code for the construction of Tables 5.1 and 5.2. Note that for reasons
of brevity, we do not report again the functions which where defined in the previous
chapters.

Construction of the top panel of Tables 5.1 and 5.2 for the results which are based on the
Poisson distribution.

Er s i e e T e e T T e e

## Simulate the nonlinear model — ##

## using the Poisson distribution ##

G i s e S T e e T T e
nonlinpoisson.gamma.ts=function(d,a,b,gamma,size)

{

y=rep(NA,size)

mu=rep (NA,size)

mu[1]=1 #initial value

y[1]=rpois(1,mu[1])

for (t in 2:size)

{

mu[t]=d/((1+y[t-1]) " (gamma) ) +a*mu[t-1]+b*xy [t-1]

y[t]l=rpois(1l,mult])

}

return(cbind(y,mu))

3

s e e s e e s e e s s e e e T e e e 2
## (Poisson) Quasi-likelihood for the nonlinear ##
## model for gamma unknown #i#
B s s e e e e T e e e T e e T
liknonlin.poisson=function(theta,data)

{

lambda=rep(NA,length(data))
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loglik=rep(NA,length(data))

lambda[1]=1

loglik[1]=0

for (t in 2:length(data))

{

lambda[t]=theta[1]/((1+datalt-1])~(theta[4]))+theta[2]*1lambda[t-1]
+theta[3]*datal[t-1]

if (lambdal[t]==0) loglik[t]= 0 else

if (lambdalt] >0) loglik[t]= -datal[t]*log(lambda[t])+lambdalt]

}

final=sum(loglik)

}

HESHHAFH AR HHAFHBRHHBFHRAHH ARG HRAFH BRI HRRHH
## Score function for the nonlinear model ##
## for gamma unknown #it
HERHHAFHBRHHAFHBRHHBFHRAHH AR HRAFH B AR A H R H
scorenonlin.poisson=function(theta,data)

{

lambda=rep(NA,length(data))

lambda[1]=1

first=rep(NA,length(data))

first[1]=1

second=rep(NA,length(data))

second[1]=1

third=rep(NA, length(data))

third[1]=1

fourth=rep(NA,length(data))

fourth[1]=1

sl=rep(NA,length(data))
s2=rep(NA,length(data))
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s3=rep (NA,length(data))

s4=rep (NA,length(data))

for (t in 2:length(data))

{

lambda[t]=theta[1]/((1+data[t-1]) " (theta[4]))+theta[2]*lambda[t-1]
+theta[3]*data[t-1]

first[t]=1/((1+data[t-1]) " (theta[4]))+theta[2]*xfirst [t-1]

second[t]=lambda[t-1]+theta[2]*second [t-1]

third[t]=theta[2]*third[t-1]+data[t-1]

fourth[t]=theta[2]*fourth[t-1]-theta[1]*log(1l+data[t-1])
*((1+datalt-1]) " (-thetal4]))

s1[t]=-((datal[t]/lambdal[t])-1)*first[t]

s2[t]=-((data[t]/lambdalt])-1)*second[t]

s3[t]=-((data[t]/lambdalt])-1)*third[t]

s4[t]=-((data[t]/lambda[t])-1)*fourth[t]

}

ssi=sum(s1[-1])

ss2=sum(s2[-1])

ss3=sum(s3[-1])

ss4=sum(s4[-1])

score=c(ssl,ss2,ss3,ss84)

3

HEHHHHHH AR R R R R R R R R
## Information matrix based on the Poisson distribution-G matrix ##
RS S R
information.nonlinear.poisson=function(theta,data)

{

lambda=rep(NA,length(data))

lambda[1]=1

first=rep(NA,length(data))
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first[1]=1

second=rep(NA,length(data))

second[1]=1

third=rep(NA,length(data))

third[1]=1

fourth=rep(NA,length(data))

fourth[1]=1

Information=matrix(0,nrow=4,ncol=4)

sl=rep(NA,length(data))

s2=rep(NA,length(data))

s3=rep(NA,length(data))

s4=rep(NA,length(data))

for (t in 2:length(data))

{

lambda[t]=theta[1]/((1+datal[t-1]) "~ (theta[4]))+theta[2]*1lambda[t-1]
+theta[3]*datal[t-1]

first[t]=1/((1+datalt-1]) "~ (theta[4]))+theta[2]*first[t-1]

second[t]=lambda[t-1]+theta[2]*second[t-1]

third[t]=theta[2]*third[t-1]+data[t-1]

fourth[t]=theta[2]*fourth[t-1]-theta[l]*log(l+datal[t-1])
*((1+datalt-1]) " (-thetal4]))

s1[t]=first[t]

s2[t]=second[t]

s3[t]=third[t]

s4[t]=fourth[t]

var.comp=(1/sqrt(lambdalt]))*c(s1[t],s2[t],s3[t],s4[t])

Information=Information+var.comp’*/t (var.comp)

}

return(Information)

3
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HiHH R H SRS SRR AR RS RG]

## QMLE of d, a and b ##

HEHBH RS HAEHBHHEHAEH RS HEH RS H

library (MASS)

calculate.par=function(d,a,b,size,epsilon=0.001)

{

# Estimation

data.test=linearpoisson.ts(d,a,b,size) [601:size,1]

arma_fit=arima(data.test,order=c(1,0,1) ,method="CSS")

ma_1=min(max (arma_fit$coef["mal"],-1+epsilon),0-epsilon)

ar_l=min(max (arma_fit$coef["ar1"],O0+epsilon-ma_1),1-epsilon)

sigma_sqg=max(arma_fit$sigma2,epsilon)

theta_init=c(sigma_sq*(l-ar_1),-ma_1,ar_1+ma_1)

# Estimation in H_O

results.linear=constrOptim(theta=theta_init,f=liklinear.poisson,
grad=scorelinear.poisson,data=data.test,ui=uilinear,
ci=cilinear,outer.iterations=100,outer.eps=1e-05,
method="BFGS") $par

linear.hat.d=results.linear[1]

linear.hat.a=results.linear[2]

linear.hat.b=results.linear[3]

linear.est=c(linear.hat.d,linear.hat.a,linear.hat.b)

linear.hat.theta=c(linear.est,0)

# Score statistic

inf=information.nonlinear.poisson(theta=linear.hat.theta,data=data.test)

sco=scorenonlin.poisson(theta=linear.hat.theta,data=data.test)

score.statistic=sco[4] {2}/ (inf[4,4]-t(inf[4,1:3])%x*%

solve(inf[1:3,1:3])%*%inf[1:3,4])
return(list(linear.est,score.statistic))

3
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B s i s i e e i e e e S e e T S e e
## Now, we bootstrap the value of the test statistic. ##
## We need the previous function to get the QMLE and ##
## the value of the test statistic. ##
## B is the number of bootstrap replications. it
HAHHHHEHEHS RS AR H RS R R R R R R R
boot.calculate.test=function(d,a,b,size,B)

{

stepl=calculate.par(d,a,b,size)

param=step1[[1]]

LM.observed=stepl[[2]]

LM.boot=rep(NA,B)

pval=rep(NA,B)

for (bl in 1:B)

{

outl=calculate.par(param[1],param[2],param[3],size)
LM.boot [bl]l=out1[[2]]

pval[bl]=ifelse(LM.boot [bl]>=LM.observed,1,0)

}

pvaluel=sum(pval)/(1+B)

pvalue2=(1+sum(pval))/(1+B)

resultl=(pvaluel<c(0.10, 0.05, 0.01))
result2=(pvalue2<c(0.10, 0.05, 0.01))
return(list(resultl,result2))

}

library(foreach)

library(doMC)
registerDoMC(cores=12)
sim.test=function(d,a,b,size,B,sim)

{
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simulation.test=foreach(i=1:sim, .inorder=FALSE, .errorhandling="pass")’dopar
{

cat ("\n\n**x*xxx*x*x*x* Now doing iteration",i,"of",sim,"sk*xk*x*x*x\n\n")
pvalue.sim=boot.calculate.test(d,a,b,size,B)
write(pvalue.sim[[1]],file="testl.txt",ncolumns=3, append=TRUE)
write(pvalue.sim[[2]],file="test2.txt",ncolumns=3, append=TRUE)
return(pvalue.sim)

3

return(simulation.test)

3

outputl=sim.test(1.5,0.05,0.6,1500,499,200)

rejectoutl=matrix (NA,nrow=200,ncol=3)
rejectout2=matrix (NA,nrow=200,ncol=3)
for(i in 1:200)

{

rejectoutl[i,]=output1[[i]1] [[1]]
rejectout2[i,]=output1[[i]] [[2]]

}

round (100*apply(rejectoutl,2,mean),3)

round (100*apply(rejectout2,2,mean) ,3)

Construction of the bottom panel of Tables 5.1 and 5.2 for the results which are based on
the Poisson distribution.

calculate.par=function(d,a,b,size,sim,epsilon=0.001)

{

score.statistic=rep(NA,sim)

for (i in 1:sim)

{

# Estimation

151



data.test=linearpoisson.ts(d,a,b,size) [601:size,1]

arma_fit=arima(data.test,order=c(1,0,1) ,method="CSS")

ma_1=min(max (arma_fit$coef["mal"],-1+epsilon),0-epsilon)

ar_l=min(max(arma_fit$coef["arl"],0+epsilon-ma_1),1-epsilon)

sigma_sg=max(arma_fit$sigma2,epsilon)

theta_init=c(sigma_sq*(l-ar_1),-ma_1,ar_1+ma_1)

# Estimation in H_O

results.linear=constrOptim(theta=theta_init,f=1liklinear.poisson,
grad=scorelinear.poisson,data=data.test,ui=uilinear,
ci=cilinear,outer.iterations=100,outer.eps=1e-05,
method="BFGS") $par

linear.hat.d=results.linear[1]

linear.hat.a=results.linear[2]

linear.hat.b=results.linear[3]

linear.est=c(linear.hat.d,linear.hat.a,linear.hat.b)

linear.hat.theta=c(linear.est,0)

# Score statistic

inf=information.nonlinear.poisson(theta=linear.hat.theta,data=data.test)

sco=scorenonlin.poisson(theta=linear.hat.theta,data=data.test)

score.statistic[il=sco[4] {2}/ (inf[4,4]-t(inf[4,1:3])%*%

solve(inf[1:3,1:3])%*%inf[1:3,4])
}
return(score.statistic)

3

testnewl=calculate.par(1.5,0.05,0.6,1500,200)

mean (testnewl>qchisq(0.95,1))
Construction of the top panel of Tables 5.1 and 5.2 for the results which are based on the

negative binomial distribution.

HHBHHHH B R R R R
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## Information matrix based on the negative binomial distribution ##

## G_{1} matrix #i#

HESHHAHHBRHHAFHERHHAFHBRHHAFHERHHBFHBHA RS H BB AR R R AR BRHRAFH B RAHH

information.nonlinear.negbin=function(theta,data,nu)

{

lambda=rep(NA,length(data))

lambda[1]=1

first=rep(NA,length(data))

first[1]=1

second=rep(NA,length(data))

second[1]=1

third=rep(NA,length(data))

third[1]=1

fourth=rep(NA,length(data))

fourth[1]=1

Information=matrix(0,nrow=4,ncol=4)

sl=rep(NA,length(data))

s2=rep(NA,length(data))

s3=rep(NA,length(data))

s4=rep(NA,length(data))

for (t in 2:length(data))

{

lambda[t]=theta[1]/((1+datal[t-1]) ~(theta[4]))+theta[2]*lambda[t-1]
+theta[3]*data[t-1]

first[t]=1/((1+datal[t-1]) " (theta[4]))+theta[2]*first[t-1]

second[t]=lambda[t-1]+theta[2]*second[t-1]

third[t]=theta[2]*third[t-1]+data[t-1]

fourth[t]=theta[2]*fourth[t-1]-theta[l]*log(l+datal[t-1])
*((1+datalt-1]) " (-thetal4]))

si[t]= first[t]

s2[t]= second[t]
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s3[t]= third[t]

s4[t]= fourth[t]
var.comp=(sqrt(1/lambda[t]+1/nu))*c(s1[t],s2[t],s3[t],s4[t])
Information=Information+var.comp’*’%t (var.comp)

}

return(Information)

3

iR B e R R B B S T L

## (QMLE of d, a and b ##

HEHHHHEHAH R R

library (MASS)

calculate.par=function(d,a,b,size,nu,epsilon=0.001)

{

# Estimation

data.test=linearnegbin.ts(d,a,b,size,nu) [601:size,1]

arma_fit=arima(data.test,order=c(1,0,1) ,method="CSS")

ma_l=min(max(arma_fit$coef["mal"],-1+epsilon),0-epsilon)

ar_1=min(max(arma_fit$coef["arl"],O+epsilon-ma_1),1-epsilon)

sigma_sqg=max(arma_fit$sigma2,epsilon)

theta_init=c(sigma_sq*(l-ar_1),-ma_1,ar_1+ma_1)

# Estimation in H_O

results.linear=constrOptim(theta=theta_init,f=liklinear.poisson,
grad=scorelinear.poisson,data=data.test,ui=uilinear,
ci=cilinear,outer.iterations=100,outer.eps=1e-05,
method="BFGS") $par

linear.hat.d=results.linear[1]

linear.hat.a=results.linear[2]

linear.hat.b=results.linear[3]

linear.est=c(linear.hat.d,linear.hat.a,linear.hat.b)

linear.hat.theta=c(linear.est,0)
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# Calculation of \hat{\lambda}

lambda=rep(NA, length(data.test))

lambda[1]=mean(data.test)

for (t in 2:length(data.test))

{

lambda[t]=1linear.hat.d+linear.hat.a*lambda[t-1]

+linear.hat.b*xdata.test[t-1]

}

# Estimation of \nu

est.nu2=theta.mm(data.test,lambda,length(data.test)-3)

# Score statistic-Breslow

A=information.nonlinear.poisson(theta=linear.hat.theta,data=data.test)

B=information.nonlinear.negbin(theta=linear.hat.theta,data=data.test,
nu=est.nu2)

S=(B[4,4]1-A[4,1:3]%*%solve(A[1:3,1:31)%*%B[1:3,4]1-B[4,1:31%*%

solve(A[1:3,1:3]1)%*%A[1:3,4]1+A[4,1:3]%*%solve(A[1:3,1:3])%*%

B[1:3,1:3]%*%solve(A[1:3,1:3])%*%A[1:3,4])

U=scorenonlin.poisson(theta=linear.hat.theta,data=data.test)

score.statistic=((U[4])"2)/S

return(list(linear.est,score.statistic,est.nu2))

3

boot.calculate.test=function(d,a,b,size,nu,B)
{

stepl=calculate.par(d,a,b,size,nu)
param=stepl[[1]]

LM.observed=stepl[[2]]

LM.boot=rep(NA,B)

pval=rep(NA,B)

for (bl in 1:B)

{
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outl=calculate.par(param[1],param[2] ,param[3],size,step1[[3]])
LM.boot [bl]=out1[[2]]

pval[bl]=ifelse(LM.boot [bl]>=LM.observed,1,0)

}

pvaluel=sum(pval)/(1+B)

pvalue2=(1+sum(pval))/(1+B)

resultl=(pvaluel<c(0.10, 0.05, 0.01))

result2=(pvalue2<c(0.10, 0.05, 0.01))
return(list(resultl,result2))

}

library(foreach)

library(doMC)

registerDoMC(cores=12)

sim.test=function(d,a,b,size,nu,B,sim)

{
simulation.test=foreach(i=1:sim, .inorder=FALSE, .errorhandling="pass")‘%dopar’
{

cat ("\n\n**x**k**x**x** Now doing iteration",i,"of",sim,"skx*x*x*x*x\n\n")
pvalue.sim=boot.calculate.test(d,a,b,size,nu,B)
write(pvalue.sim[[1]],file="testl.txt",ncolumns=3, append=TRUE)
write(pvalue.sim[[2]],file="test2.txt",ncolumns=3, append=TRUE)
return(pvalue.sim)

}

return(simulation.test)
}

outputl=sim.test(1.5,0.05,0.6,1500,2,499,200)

rejectoutl=matrix (NA,nrow=200,ncol=3)

rejectout2=matrix (NA,nrow=200,ncol=3)
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for(i in 1:200)

{

rejectoutl[i,]=outputl[[i]] [[1]]
rejectout2[i,]=outputi1[[i]] [[2]]

}

round (100*apply(rejectoutl,2,mean),3)

round (100*apply(rejectout2,2,mean) ,3)

Construction of the bottom panel of Tables 5.1 and 5.2 for the results which are based on

the negative binomial distribution.

calculate.par=function(d,a,b,size,nu,sim,epsilon=0.001)

{

score.statistic=rep(NA,sim)

for (i in 1:sim)

{

# Estimation

data.test=linearnegbin.ts(d,a,b,size,nu) [501:size,1]

arma_fit=arima(data.test,order=c(1,0,1) ,method="CSS")

ma_1l=min(max (arma_fit$coef["mal"],-1+epsilon),0-epsilon)

ar_l=min(max(arma_fit$coef["arl"],0+epsilon-ma_1),1-epsilon)

sigma_sqg=max(arma_fit$sigma2,epsilon)

theta_init=c(sigma_sq*(l-ar_1),-ma_1,ar_1+ma_1)

# Estimation in H_O

results.linear=constrOptim(theta=theta_init,f=liklinear.poisson,
grad=scorelinear.poisson,data=data.test,ui=uilinear,
ci=cilinear,outer.iterations=100,
outer.eps=1e-05,method="BFGS") $par

linear.hat.d=results.linear[1]

linear.hat.a=results.linear[2]

linear.hat.b=results.linear[3]
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linear.est=c(linear.hat.d,linear.hat.a,linear.hat.b)
linear.hat.theta=c(linear.est,0)
# Calculation of \hat{\lambda}
lambda=rep(NA,length(data.test))
lambda[1]=mean(data.test)
for (t in 2:length(data.test))
{
lambda[t]=linear.hat.d+linear.hat.a*xlambda[t-1]
+linear.hat.b*data.test[t-1]
}
# Estimation of \nu
est.nu2=theta.mm(data.test,lambda,length(data.test)-3)
# Score statistic-Breslow
A=information.nonlinear.poisson(theta=linear.hat.theta,data=data.test)
B=information.nonlinear.negbin(theta=linear.hat.theta,data=data.test,
nu=est.nu2)
S=(B[4,4]-A[4,1:3]%*%solve(A[1:3,1:3]1)%*%B[1:3,4]1-B[4,1:3]1%x*%
solve(A[1:3,1:31)%*%A[1:3,4]1+A[4,1:3]%*%solve(A[1:3,1:3]1)%%Y%
B[1:3,1:3]%*%solve(A[1:3,1:3])%*%A[1:3,4])
U=scorenonlin.poisson(theta=linear.hat.theta,data=data.test)
score.statistic[i]l=t (U[4])%*%solve(S)%*%U[4]
}
return(score.statistic)

3

testnewl=calculate.par(1.5,0.05,0.6,1500,2,200)

mean (testnewl>qchisq(0.95,1))
For the construction of Table 5.3 we follow the same methodology as above, but now we

generate data from the nonlinear model (5.1), that is

data.test=nonlinpoisson.gamma.ts(d,a,b,gamma,size) [601:size,1]
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for the Poisson distributional assumption and
data.test=nonlinnegbin.gamma.ts(d,a,b,gamma,size,nu) [601:size,1]

for the negative binomial assumption.

Construction of Tables 5.5 and 5.6 for the results which are based on the Poisson distri-
bution.

LT s s S e e e e T e e e e e e T e T
## Simulate the exponential autoregressive model ##
## using the Poisson distribution #it
HEHHH RS HAHBHHEHHHHEHAH RS H AR BHHEHAH RS H AR RS HEHBH RS HEH
exparpoisson.ts=function(d,a,b,c,gamma,size)

{

y=rep(NA,size)

mu=rep(NA,size)

mu[1]=1 #initial value

y[1]=rpois(1,mu[1])

for (t in 2:size)

{

mu [t]=d+a*mu[t-1]+(b+c*exp(-gammax (y[t-1]) ~2))*y[t-1]
y[t]=rpois(1,mult])

}

return(cbind(y,mu))

3

g s T
## (Poisson) Quasi-likelihood for the exponential model ##
## for gamma known #it
g s
liknonlin.gamma.poisson=function(theta,gamma,data)

{

lambda=rep(NA,length(data))
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loglik=rep(NA,length(data))
lambda[1]=1

loglik[1]=0

for (t in 2:length(data))

{
lambda[t]=thetal[l]+theta[2]*1lambda[t-1]+(theta[3]+theta[4]*
exp (-gammax (data[t-1]) "{2}))*data[t-1]

if (lambdal[t]==0) loglik[t]= 0 else

if (lambda[t] >0) loglik[t]= -datal[t]*log(lambda[t])+lambdalt]
}

final=sum(loglik)

}

HHBHFHHHBR A H R R R R
## Score function for the exponential model ##
## for gamma known Hit
HHBHHH B R R R
scorenonlin.gamma.poisson=function(theta,gamma,data)
{

lambda=rep(NA,length(data))

lambda[1]=1

first=rep(NA,length(data))

first[1]=1

second=rep(NA,length(data))

second[1]=1

third=rep(NA,length(data))

third[1]=1

fourth=rep(NA,length(data))

fourth[1]=1

sl=rep(NA,length(data))
s2=rep(NA,length(data))
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s3=rep (NA,length(data))
s4=rep (NA,length(data))
for (t in 2:length(data))

{
lambda[t]=theta[1]+theta[2]*lambda[t-1]+(theta[3]+theta[4]*
exp(-gammax (data[t-1]) "{2}))*data[t-1]

first[t]=1+theta[2]*first [t-1]
second[t]=lambda[t-1]+theta[2]*second [t-1]
third[t]=theta[2]*third[t-1]+data[t-1]
fourth[t]=theta[2]*fourth[t-1]+data[t-1] *exp (-gamma* (data[t-1])"2)
s1[t]=-((datalt]/lambdalt])-1)*first[t]
s2[t]=-((data[t]/lambda[t])-1)*second[t]
s3[t]=-((data[t]/lambdalt])-1)*third[t]
s4[t]=-((data[t]/lambda[t])-1)*fourth[t]

}

ssi=sum(s1[-1])

ss2=sum(s2[-1])

ss3=sum(s3[-1])

ss4=sum(s4[-1])

score=c(ssl,ss2,ss3,ss84)

3

HUHHHH R
## Information matrix based on the Poisson distribution-G matrix ##
HERS A S R S S S R
information.gamma.poisson=function(theta,gamma,data)

{

lambda=rep(NA,length(data))

lambda[1]=1

first=rep(NA,length(data))

first[1]=1
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second=rep(NA,length(data))

second[1]=1

third=rep(NA,length(data))

third[1]=1

fourth=rep(NA,length(data))

fourth[1]=1

Information=matrix(0,nrow=4,ncol=4)

sl=rep(NA,length(data))

s2=rep (NA,length(data))

s3=rep(NA,length(data))

s4=rep(NA,length(data))

for (t in 2:length(data))

{

lambda[t]=theta[l]+theta[2]*lambda[t-1]+(theta[3]+theta[4]*
exp (-gamma* (data[t-1]) "{2}))*data[t-1]

first[t]=1+theta[2]*first[t-1]

second[t]=1lambda[t-1]+theta[2]*second[t-1]

third[t]=theta[2]*third[t-1]+data[t-1]

fourth[t]=theta[2]*fourth[t-1]+data[t-1]*exp(-gamma*(data[t-1])"2)

s1[t]=first[t]

s2[t]=second[t]

s3[t]=third[t]

s4[t]=fourth[t]

var.comp=(1/sqrt(lambdal[t]))*c(s1[t],s2[t],s3[t],s4[t])

Information=Information+var.comp’*’%t (var.comp)

}

return(Information)

3

library (MASS)

calculate.par=function(d,a,b,size,epsilon=0.001)
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{

# Estimation

data.test=linearpoisson.ts(d,a,b,size) [601:size,1]

arma_fit=arima(data.test,order=c(1,0,1) ,method="CSS")

ma_l=min(max(arma_fit$coef["mal"],-1+epsilon),0-epsilon)

ar_l=min(max(arma_fit$coef["arl"],0+epsilon-ma_1),1-epsilon)

sigma_sqg=max(arma_fit$sigma2,epsilon)

theta_init=c(sigma_sq*(l-ar_1),-ma_1,ar_1+ma_1)

# Estimation in H_O

results.linear=constrOptim(theta=theta_init,f=liklinear.poisson,
grad=scorelinear.poisson,data=data.test,ui=uilinear,
ci=cilinear,outer.iterations=100,
outer.eps=1e-05,method="BFGS") $par

linear.hat.d=results.linear[1]

linear.hat.a=results.linear[2]

linear.hat.b=results.linear[3]

linear.est=c(linear.hat.d,linear.hat.a,linear.hat.b)

linear.hat.theta=c(linear.est,0)

# Grid for gamma

gam=seq(0.01,2,length=30)

score.stat=rep(NA,length(gam))

for(j in 1:length(gam))

{

# Score statistic

inf=information.gamma.poisson(theta=linear.hat.theta,gamma=gam[j],

data=data.test)
sco=scorenonlin.gamma.poisson(theta=linear.hat.theta,gamma=gam[j],
data=data.test)

score.stat[jl=sco[4] {2}/ (inf[4,4]-t(inf[4,1:3])%*%solve(inf [1:3,1:3])%*%

inf[1:3,4])
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score.statistic=max(score.stat)

return(list(linear.est,score.statistic))

3

boot.calculate.test=function(d,a,b,size,B)

{

stepl=calculate.par(d,a,b,size)
param=step1[[1]]

LM.observed=stepl[[2]]

LM.boot=rep(NA,B)

pval=rep(NA,B)

for (b1l in 1:B)

{
outl=calculate.par(param[1],param[2],param[3],size)
LM.boot [b1]=out1[[2]]

pval[bl]=ifelse(LM.boot [b1l]>=LM.observed,1,0)
}

pvaluel=sum(pval)/(1+B)
pvalue2=(1+sum(pval))/(1+B)
resultl=(pvaluel<c(0.10, 0.05, 0.01))
result2=(pvalue2<c(0.10, 0.05, 0.01))
return(list(resultl,result2))

}

library(foreach)

library(doMC)
registerDoMC(cores=12)
sim.test=function(d,a,b,size,B,sim)
{

simulation.test=foreach(i=1:sim, .inorder=FALSE, .errorhandling="pass")‘%dopar’

{
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cat ("\n\n**x*x*x*x*x*x*x Now doing iteration",i,"of",sim,"sk*xk*x**xx\n\n")
pvalue.sim=boot.calculate.test(d,a,b,size,B)
write(pvalue.sim[[1]],file="testl.txt",ncolumns=3, append=TRUE)
write(pvalue.sim[[2]],file="test2.txt",ncolumns=3, append=TRUE)
return(pvalue.sim)

3

return(simulation.test)

3

resultl=sim.test(0.5,0.3,0.2,1500,499,200)

rejectoutl=matrix (NA,nrow=200,ncol=3)
rejectout2=matrix (NA,nrow=200,ncol=3)
for(i in 1:200)

{

rejectoutl[i,]=result1[[i]] [[1]]
rejectout2[i,]=result1[[i]] [[2]]

}

round (100*apply(rejectoutl,2,mean),3)

round (100*apply(rejectout2,2,mean) ,3)

Construction of Tables 5.5 and 5.6 for the results which are based on the negative binomial
distribution.

HEFHHAHHBFHRAHHERHHAHHBRHRAFH AR HRAHHERHRAFH B HRAHHH

## Simulate the exponential autoregressive model ##

## using the negative binomial distribution Hit

HEHBH B HAH B HEHBH RS H AR RS HAHBHHEHAEH RS H AR RS HEHBH RS HEH
exparnegbin.ts=function(d,a,b,c,gamma,size,nu)

{

y=rep(NA,size)

mu=rep(NA,size)
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mu[1]=1 #initial value
y[1]=rnbinom(1,size=nu,mu=mul1])

for (t in 2:size)

{

mu [t]=d+axmu[t-1]+(b+c*exp (-gamma* (y [t-1]) "2) ) *y [t-1]
y[t]=rnbinom(1,size=nu,mu=mult])

}

return(cbind(y,mu))

3

HESHHAHH A H RS H SRS R R R R R R R R RS
## Information matrix based on the negative binomial distribution ##
## G_{1} matrix ##
HESHHAHHBFHRAFHBRHHAFHBHHHAFHERHHBFHBHA RS HRAHH AR H B H R RS HERH R AR
information.gamma.negbin=function(theta,gamma,data,nu)

{

lambda=rep(NA,length(data))

lambda[1]=1

first=rep(NA,length(data))

first[1]=1

second=rep(NA,length(data))

second[1]=1

third=rep(NA, length(data))

third[1]=1

fourth=rep(NA,length(data))

fourth[1]=1

Information=matrix(0,nrow=4,ncol=4)

sl=rep(NA,length(data))

s2=rep(NA,length(data))

s3=rep(NA,length(data))

s4=rep(NA,length(data))
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for (t in 2:length(data))

{

lambda[t]=theta[l]+theta[2]*1lambda[t-1]+(theta[3]+theta[4]*
exp (-gammax (data[t-1]) "{2}))*data[t-1]

first[t]l=1+theta[2]*first[t-1]

second [t]=lambda[t-1]+theta[2]*second[t-1]

third[t]=theta[2]*third[t-1]+data[t-1]

fourth[t]=theta[2] *fourth[t-1]+data[t-1]*exp(-gamma*(data[t-1])"2)

si[t]=first[t]

s2[t]=second[t]

s3[t]=third[t]

s4[t]=fourth[t]

var.comp=(sqrt(1/lambda[t]+1/nu))*c(s1[t],s2[t],s3[t],s4[t])

Information=Information+var.comp’*/%t (var.comp)

}

return(Information)

3

library (MASS)
calculate.par=function(d,a,b,size,nu,epsilon=0.001)

{

# Estimation
data.test=linearnegbin.ts(d,a,b,size,nu) [601:size,1]
arma_fit=arima(data.test,order=c(1,0,1) ,method="CSS")
ma_l=min(max(arma_fit$coef["mal"],-1+epsilon),0-epsilon)
ar_l=min(max(arma_fit$coef["arl"],O+epsilon-ma_1),1-epsilon)
sigma_sqg=max(arma_fit$sigma2,epsilon)
theta_init=c(sigma_sq*(l-ar_1),-ma_1,ar_1+ma_1)

# Estimation in H_O
results.linear=constrOptim(theta=theta_init,f=liklinear.poisson,

grad=scorelinear.poisson,data=data.test,ui=uilinear,
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ci=cilinear,outer.iterations=100,
outer.eps=1e-05,method="BFGS") $par
linear.hat.d=results.linear[1]
linear.hat.a=results.linear[2]
linear.hat.b=results.linear[3]
linear.est=c(linear.hat.d,linear.hat.a,linear.hat.b)
linear.hat.theta=c(linear.est,0)
# Calculation of \hat{\lambda}
lambda=rep(NA, length(data.test))
lambda[1]=mean(data.test)
for (t in 2:length(data.test))
{
lambda[t]=linear.hat.d+linear.hat.a*lambda[t-1]+linear.hat.b*data.test[t-1]
}
# Estimation of \nu
est.nu2=theta.mm(data.test,lambda,length(data.test)-3)
# Grid for gamma
gam=seq(0.01,2,length=30)
score.stat=rep(NA,length(gam))
for(j in 1:length(gam))
{
# Score statistic-Breslow
A=information.gamma.poisson(theta=linear.hat.theta,gamma=gam[j],
data=data.test)
B=information.gamma.negbin(theta=linear.hat.theta,gamma=gam[j],
data=data.test,nu=est.nu2)
S=(B[4,4]-A[4,1:3]%*%solve(A[1:3,1:3]1)%*%B[1:3,4]1-B[4,1:3]1%x*%
solve(A[1:3,1:3]1)%*%A[1:3,4]1+A[4,1:3]%*%solve(A[1:3,1:3]1)%*%
B[1:3,1:3]%x%solve(A[1:3,1:3])%*%A[1:3,4])
U=scorenonlin.gamma.poisson(theta=linear.hat.theta,gamma=gam[j],

data=data.test)
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score.stat[j]1=((U[4])"2)/S
}
score.statistic=max(score.stat)

return(list(linear.est,score.statistic,est.nu2))

}

boot.calculate.test=function(d,a,b,size,nu,B)
{

stepl=calculate.par(d,a,b,size,nu)
param=stepl[[1]]

LM.observed=stepl[[2]]

LM.boot=rep(NA,B)

pval=rep(NA,B)

for (bl in 1:B)

{
outl=calculate.par(param[1],param[2],param[3],size,stepl1[[3]])
LM.boot [b1]l=out1[[2]]

pval[bl]=ifelse(LM.boot [bl]>=LM.observed,1,0)
}

pvaluel=sum(pval)/(1+B)
pvalue2=(1+sum(pval))/(1+B)
resultl=(pvaluel<c(0.10, 0.05, 0.01))
result2=(pvalue2<c(0.10, 0.05, 0.01))
return(list(resultl,result2))

}

library(foreach)

library(doMC)

registerDoMC(cores=12)
sim.test=function(d,a,b,size,nu,B,sim)

{
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simulation.test=foreach(i=1:sim, .inorder=FALSE, .errorhandling="pass")’dopar
{

cat ("\n\n**x*xxx*x*x*x* Now doing iteration",i,"of",sim,"sk*xk*x*x*x\n\n")
pvalue.sim=boot.calculate.test(d,a,b,size,nu,B)
write(pvalue.sim[[1]],file="testl.txt",ncolumns=3, append=TRUE)
write(pvalue.sim[[2]],file="test2.txt",ncolumns=3, append=TRUE)
return(pvalue.sim)

3

return(simulation.test)

3

resultl=sim.test(0.5,0.3,0.2,1500,2,499,200)

rejectoutl=matrix (NA,nrow=200,ncol=3)
rejectout2=matrix (NA,nrow=200,ncol=3)
for(i in 1:200)

{

rejectoutl[i,]=result1[[i]][[1]]
rejectout2[i,]=result1[[i]] [[2]]

}

round (100*apply(rejectoutl,2,mean),3)

round (100*apply(rejectout2,2,mean) ,3)

For the construction of Table 5.7 we follow the same methodology as above, but now we
generate data from the exponential model (5.2), that is
data.test=exparpoisson.ts(d,a,b,c,gamma,size) [601:size,1]

for the Poisson distributional assumption and
data.test=exparnegbin.ts(d,a,b,c,gamma,size,nu) [501:size,1]

for the negative binomial assumption.

In addition, the linear constrains that we take into account are shown below.

HHBHHHHH B R R
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## Constrains to obtain the QMLE (gamma known) ##

## d>0, a>0, b>0, c>0, O<a+b+c<1 #it
S s
uiexpar.gamma=matrix(0,nrow=5,ncol=4) #matrix for the linear constraints
uiexpar.gammal[1l,1]=1

uiexpar.gammal[2,2]=1

uiexpar.gammal[3,3]=1

uiexpar.gamma[4,4]=1

uiexpar.gammal[5,2]=-1

uiexpar.gammal[5,3]=-1

uiexpar.gamma[5,4]=-1

ciexpar.gamma=rep(0,5) #constant vector for the linear constraints

ciexpar.gammal[5]=-1

Construction of the top panel of Tables 5.8, 5.9 and 5.10 regarding the Poisson distribu-
tional assumption.

HEHBHHEHAH RS HAH B HAH RS H

## Transactions data ##

iz B e Ee g R B e 2 T Ee 2

ericsson=read.table("ericssonfirstday.txt" ,header=T,dec=",",as.is=F)

names (ericsson)

transactions=ericsson$trans

ydata=transactions

HEHHH RS HEH AR H A H

## Measles data ##

HHHHHH AR RS RS R

data=read.table("ewcitmeas.txt" ,header=T,dec=",",as.is=F)
names (data)

ydata=data$Sheffield[1601:2050]
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HHHHHHHHH R RS RHH R

## Homicides data ##

HEHBH RS HAEHBH RS HAHRAH

data=read.table("homicides.txt" ,header=T,dec=",",as.is=F)
names (data)

ydata=data$X0

Bz fi e e gt e e T T

## QMLE of d, a and b ##

HEHHH RS HAH B HAEHBHHEH A HS

library (MASS)

epsilon=0.001

# Estimation

data.test=ydata

arma_fit=arima(data.test,order=c(1,0,1) ,method="CSS")

ma_1=min(max(arma_fit$coef["mal"],-1+epsilon),0-epsilon)

ar_l=min(max(arma_fit$coef["arl"],0+epsilon-ma_1),1-epsilon)

sigma_sqg=max(arma_fit$sigma2,epsilon)

theta_init=c(sigma_sq*(l-ar_1),-ma_1,ar_1+ma_1)

# Estimation in H_O

results.linear=constrOptim(theta=theta_init,f=liklinear.poisson,
grad=scorelinear.poisson,data=data.test,ui=uilinear,
ci=cilinear,outer.iterations=100,
outer.eps=1e-05,method="BFGS") $par

linear.hat.d=results.linear[1]

linear.hat.a=results.linear[2]

linear.hat.b=results.linear[3]

linear.est=c(linear.hat.d,linear.hat.a,linear.hat.b)

linear.hat.theta=c(linear.est,0)

# Score statistic

inf=information.nonlinear.poisson(theta=linear.hat.theta,data=data.test)
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sco=scorenonlin.poisson(theta=linear.hat.theta,data=data.test)
score.statistic=sco[4] {2}/ (inf[4,4]-t(inf[4,1:3])%*%solve(inf[1:3,1:3])
%x%inf[1:3,4])

score.statistic

calculate.par=function(d,a,b,size,epsilon=0.001)

{

# Estimation

data.test=linearpoisson.ts(d,a,b,size) [501:size,1]

arma_fit=arima(data.test,order=c(1,0,1) ,method="CSS")

ma_l=min(max(arma_fit$coef["mal"],-1+epsilon),0-epsilon)

ar_l=min(max(arma_fit$coef["arl"],0+epsilon-ma_1),1-epsilon)

sigma_sqg=max(arma_fit$sigma2,epsilon)

theta_init=c(sigma_sq*(l-ar_1),-ma_1,ar_1+ma_1)

# Estimation in H_O

results.linear=constrOptim(theta=theta_init,f=liklinear.poisson,
grad=scorelinear.poisson,data=data.test,ui=uilinear,
ci=cilinear,outer.iterations=100,
outer.eps=1e-05,method="BFGS") $par

linear.hat.d=results.linear[1]

linear.hat.a=results.linear[2]

linear.hat.b=results.linear[3]

linear.est=c(linear.hat.d,linear.hat.a,linear.hat.b)

linear.hat.theta=c(linear.est,0)

# Score statistic

inf=information.nonlinear.poisson(theta=linear.hat.theta,data=data.test)

sco=scorenonlin.poisson(theta=linear.hat.theta,data=data.test)

score.statistic=sco[4] {2}/ (inf[4,4]-t(inf[4,1:3])%*%solve(inf[1:3,1:3])%x*Y%

inf[1:3,4])
return(list(linear.est,score.statistic))

3
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boot.calculate.test=function(size,B)

{

param=linear.est

LM.observed=score.statistic

LM.boot=rep(NA,B)

pval=rep(NA,B)

for (bl in 1:B)

{
outl=calculate.par(param[1],param[2],param[3],size)
LM.boot [bl]l=out1[[2]]

pval[bl]=ifelse(LM.boot [b1l]>=LM.observed,1,0)
}

pvaluel=sum(pval)/(1+B)
pvalue2=(1+sum(pval))/(1+B)
resultl=(pvaluel<c(0.10, 0.05, 0.01))
result2=(pvalue2<c(0.10, 0.05, 0.01))
return(list(resultl,result2))

}

library(foreach)

library(doMC)

registerDoMC(cores=12)

sim.test=function(size,B,sim)

{
simulation.test=foreach(i=1:sim, .inorder=FALSE, .errorhandling="pass")‘%dopar’
{

cat ("\n\n**x*x*x*x*xx*x* Now doing iteration",i,"of",sim,"sk*xk*x**x\n\n")
pvalue.sim=boot.calculate.test(size,B)
write(pvalue.sim[[1]],file="testl.txt",ncolumns=3,append=TRUE)

write(pvalue.sim[[2]],file="test2.txt",ncolumns=3, append=TRUE)
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return(pvalue.sim)

3

return(simulation.test)

3

out=sim.test(960,499,200)

rejectoutl=matrix (NA,nrow=200,ncol=3)
rejectout2=matrix (NA,nrow=200,ncol=3)
for(i in 1:200)

{

rejectoutl[i,]=out [[i]] [[1]]
rejectout2[i,]=out [[i]] [[2]]

}

round (100*apply(rejectoutl,2,mean),3)

round (100*apply(rejectout2,2,mean) ,3)

Construction of the top panel of Tables 5.8, 5.9 and 5.10 regarding the negative binomial
distributional assumption.

HEHBH R HAH B HAEHBHHEHBH RS

## QMLE of d, a and b ##

HAHHH B HAH B HAHBHHAHBH RS

library(MASS)

epsilon=0.001

# Estimation

data.test=ydata
arma_fit=arima(data.test,order=c(1,0,1) ,method="CSS")
ma_l1=min(max(arma_fit$coef["mal"],-1+epsilon),0-epsilon)
ar_l=min(max (arma_fit$coef ["ar1"],0+epsilon-ma_1),1-epsilon)
sigma_sqg=max(arma_fit$sigma2,epsilon)

theta_init=c(sigma_sq*(l-ar_1),-ma_1,ar_1+ma_1)
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# Estimation in H_O

results.linear=constrOptim(theta=theta_init,f=liklinear.poisson,
grad=scorelinear.poisson,data=data.test,ui=uilinear,
ci=cilinear,outer.iterations=100,
outer.eps=1e-05,method="BFGS") $par

linear.hat.d=results.linear[1]

linear.hat.a=results.linear[2]

linear.hat.b=results.linear[3]

linear.est=c(linear.hat.d,linear.hat.a,linear.hat.b)

linear.hat.theta=c(linear.est,0)

# Calculation of \hat{\lambda}

lambda=rep(NA, length(data.test))

lambda[1]=mean(data.test)

for (t in 2:length(data.test))

{

lambda[t]=1linear.hat.d+linear.hat.a*lambda[t-1]+linear.hat.b*data.test[t-1]

}

# Estimation of \nu

est.nu2=theta.mm(data.test,lambda,length(data.test)-3)

# Score statistic-Breslow

A=information.nonlinear.poisson(theta=linear.hat.theta,data=data.test)

B=information.nonlinear.negbin(theta=linear.hat.theta,data=data.test,

nu=est.nu2)
S=(B[4,4]-A[4,1:3]%*%solve(A[1:3,1:3]1)%*%B[1:3,4]1-B[4,1:3]1%x*%
solve(A[1:3,1:31)%*%A[1:3,4]1+A[4,1:3]1%*%solve(A[1:3,1:3]1)%xY%
B[1:3,1:3]%*%solve(A[1:3,1:3])%*%A[1:3,4])
U=scorenonlin.poisson(theta=linear.hat.theta,data=data.test)
score.statistic=((U[4])"2)/S

score.statistic

calculate.par=function(d,a,b,size,nu,epsilon=0.001)
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{

# Estimation

data.test=linearnegbin.ts(d,a,b,size,nu) [601:size,1]

arma_fit=arima(data.test,order=c(1,0,1) ,method="CSS")

ma_l=min(max(arma_fit$coef["mal"],-1+epsilon),0-epsilon)

ar_l=min(max(arma_fit$coef["arl"],0+epsilon-ma_1),1-epsilon)

sigma_sqg=max(arma_fit$sigma2,epsilon)

theta_init=c(sigma_sq*(l-ar_1),-ma_1,ar_1+ma_1)

# Estimation in H_O

results.linear=constrOptim(theta=theta_init,f=liklinear.poisson,
grad=scorelinear.poisson,data=data.test,ui=uilinear,
ci=cilinear,outer.iterations=100,
outer.eps=1e-05,method="BFGS") $par

linear.hat.d=results.linear[1]

linear.hat.a=results.linear[2]

linear.hat.b=results.linear[3]

linear.est=c(linear.hat.d,linear.hat.a,linear.hat.b)

linear.hat.theta=c(linear.est,0)

# Calculation of \hat{\lambda}

lambda=rep(NA, length(data.test))

lambda[1]=mean(data.test)

for (t in 2:length(data.test))

{

lambda[t]=1linear.hat.d+linear.hat.a*lambda[t-1]+linear.hat.b*data.test[t-1]

}

# Estimation of \nu

est.nu2=theta.mm(data.test,lambda,length(data.test)-3)

# Score statistic-Breslow

A=information.nonlinear.poisson(theta=linear.hat.theta,data=data.test)

B=information.nonlinear.negbin(theta=linear.hat.theta,data=data.test,

nu=est.nu2)
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S=(B[4,4]1-A[4,1:3]1%*%solve(A[1:3,1:3]1)%*%B[1:3,4]1-B[4,1:31%x),
solve(A[1:3,1:3])%*%A[1:3,4]+A[4,1:3]%*%solve(A[1:3,1:3])%*%
B[1:3,1:3]1%*%solve(A[1:3,1:3])%*%A[1:3,4])

U=scorenonlin.poisson(theta=linear.hat.theta,data=data.test)

score.statistic=t(U[4])%x*%solve(S)%*%U[4]

return(list(linear.est,score.statistic,est.nu2))

3

boot.calculate.test=function(size,B)

{

param=linear.est

LM.observed=score.statistic

LM.boot=rep(NA,B)

pval=rep(NA,B)

for (b1l in 1:B)

{
outl=calculate.par(param[1],param[2],param[3],size,est.nu2)
LM.boot [b1]l=out1[[2]]

pval[bl]=ifelse(LM.boot [b1]>=LM.observed,1,0)
}

pvaluel=sum(pval)/(1+B)
pvalue2=(1+sum(pval))/(1+B)
resultl=(pvaluel<c(0.10, 0.05, 0.01))
result2=(pvalue2<c(0.10, 0.05, 0.01))
return(list(resultl,result2))

}

library(foreach)
library(doMC)
registerDoMC(cores=12)

sim.test=function(size,B,sim)

178



{
simulation.test=foreach(i=1:sim, .inorder=FALSE, .errorhandling="pass")%dopar’
{

cat ("\n\nx*x*x*x*x*x*x*x Now doing iteration",i,"of",sim,"sk*xkkx**xx\n\n")
pvalue.sim=boot.calculate.test(size,B)
write(pvalue.sim[[1]],file="testl.txt",ncolumns=3, append=TRUE)
write(pvalue.sim[[2]],file="test2.txt",ncolumns=3, append=TRUE)
return(pvalue.sim)

}

return(simulation.test)

3

out=sim.test(960,499,200)

For the construction of the bottom panel of Tables 5.8, 5.9 and 5.10 we work analogously
using all the appropriate functions regarding the exponential model (5.2).
For the construction of Figure 5.1 we use the following R code.

library (MASS)
calculate.par=function(d,a,b,gamma,size,nu,sim,epsilon=0.001)

{

score.statistic=rep(NA,sim)

for (i in 1:sim)

{

# Estimation
data.test=nonlinnegbin.gamma.ts(d,a,b,gamma,size,nu) [601:size,1]
arma_fit=arima(data.test,order=c(1,0,1) ,method="CSS")
ma_1=min(max (arma_fit$coef["mal"],-1+epsilon),0-epsilon)
ar_l=min(max(arma_fit$coef["arl"],0+epsilon-ma_1),1-epsilon)
sigma_sqg=max(arma_fit$sigma2,epsilon)
theta_init=c(sigma_sq*(l-ar_1),-ma_1,ar_1+ma_1)

# Estimation in H_O
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results.linear=constrOptim(theta=theta_init,f=1liklinear.poisson,
grad=scorelinear.poisson,data=data.test,ui=uilinear,
ci=cilinear,outer.iterations=100,
outer.eps=1e-05,method="BFGS") $par

linear.hat.d=results.linear[1]

linear.hat.a=results.linear[2]

linear.hat.b=results.linear[3]

linear.est=c(linear.hat.d,linear.hat.a,linear.hat.b)

linear.hat.theta=c(linear.est,0)

# Calculation of \hat{\lambda}

lambda=rep(NA,length(data.test))

lambda[1]=mean(data.test)

for (t in 2:length(data.test))

{

lambda[t]=linear.hat.d+linear.hat.a*lambda[t-1]+linear.hat.b*data.test[t-1]

}

# Estimation of \nu

est.nu2=theta.mm(data.test,lambda,length(data.test)-3)

# Score statistic-Breslow

A=information.nonlinear.poisson(theta=linear.hat.theta,data=data.test)

B=information.nonlinear.negbin(theta=linear.hat.theta,data=data.test,

nu=est.nu?2)
S=(B[4,4]-A[4,1:3]%*%solve(A[1:3,1:3]1)%*%B[1:3,4]1-B[4,1:3]1%*%
solve(A[1:3,1:3]1)%*%A[1:3,4]1+A[4,1:3]%*%solve(A[1:3,1:3])%*%
B[1:3,1:3]%%*%solve(A[1:3,1:3])%*%A[1:3,4])

U=scorenonlin.poisson(theta=linear.hat.theta,data=data.test)

score.statistic[i]=((U[4])"2)/S

}

return(score.statistic)

3
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gamma=c (0.05,0.1,0.2,0.3,0.4,0.5,0.6,0.7,0.8,0.9,1)

f=function(d,a,b,size,nu,sim)

{

gam=gamma
results=rep(NA,length(gam))
res=rep(NA,sim)

for(i in 1:length(gam))

{
testl=calculate.par(d,a,b,gam[i],size,nu,sim)
res=ifelse(test1>qchisq(0.95,1),1,0)
results[i]=mean(res)

}

return(results)

}

power2=f(1.5,0.05,0.6,1500,4,200)
plot(gamma,power2,type="n",x1lim=c(0,1.1),ylim=c(0,1.04),

xlab=expression(gamma) ,ylab="Power" ,main="Power of the test")

lines(lowess (gamma,power2,f=0.5))

181



Chapter 6

Conclusions and Further Research

6.1 Conclusions

The first part of this thesis suggests a quite general approach for modeling and inference
about count time series models. We have introduced mixed Poisson processes for modeling
count time series. The main observation is that, if the mean of the process is correctly
specified, then existing results about Poisson count time series can be transferred to this
case without any major obstacles. In particular, concerning mixed Poisson count time
series, we have given ways for data modeling and we have proved ergodicity and existence
of moments. These results are instrumental in studying large sample behavior of maximum
likelihood based estimators. In principle, existence of moments guarantees application of
a central limit theorem for martingales and assures stability of the Hessian matrix. We
have chosen to work with the Poisson log-likelihood as a quasi-likelihood for the mixed
Poisson process, provided that the expectation of the mixing variable Z is equal to 1
(recall (3.1)). This is so because the main ingredient of asymptotic theory is the correct
mean specification form. If the mean process has been correctly specified and moments of
the joint process {(Y;, A\;)} exist, then we can advance the theory further by considering
GARCH type models for compound or mixed Poisson processes. Regardless of the chosen
distribution, we have shown that this class of models and maximum likelihood theory
provide a systematic framework for the analysis of integer-valued time series data. This
theory can be extended to the class of exponential dispersion model by employing a suitable

variance function; see Kokonendji et al. [58]. Estimation, diagnostics, model assessment,
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and forecasting are implemented in a straightforward manner, where the computation is
carried out by standard software. These issues are addressed in the list of desiderata
suggested by Zeger and Qaqish [76] and Davis et al. [18].

The second part of this work studies the prediction problem in the context of count
time series. More specifically, we follow the recent methodology of Czado et al. [13],
where various tools for predictive model assessment are developed for independent but
not identically distributed data. We show that these methods can also be applied for
count dependent data. We focus on Poisson and negative binomial distributions since
these are occurred in applications more frequently (and they fall under the mixed Poisson
class); however the methods can be applied to other discrete distributions provided that
they are suitably parameterized, as discussed in Chapter 3. We assess the predictive
performance of the proposed models by extending the tools developed by Czado et al. [13].
More specifically, we address the problem of examining probabilistic calibration, marginal
calibration and sharpness of the proposed models. We propose the use of probability
integral transformation histogram (PIT), marginal calibration plot and scoring rules to
assess the predictive performance and rank the competing forecast models.

The third part of this thesis investigates testing for the class of the mixed Poisson
autoregressions. Our main focus is the development of testing procedures for testing
linearity of the assumed model. Towards this goal, we study the behavior of the score test,
suitably adjusted to take into account the misspecification of the log-likelihood function.
Other techniques (Wald test, likelihood ratio test) might be developed and compared
with our approach. However, the score test provides a convenient framework for testing
hypotheses for this type of models.

In particular, we consider testing linearity against two special classes of nonlinear
alternatives for count time series data. The first class contains of models which do not face
the problem of non identifiability, that is all the parameters of the model are identified
under the null hypothesis. For this class of models and under the null hypothesis of
linearity, the score test statistic possesses an asymptotic X? distribution. The second
class of nonlinear models consists of models in which a nonnegative nuisance parameter
exists under the alternative hypothesis but not when linearity holds. In this particular

case the testing problem is nonstandard and the classical asymptotic theory for the score
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test does not apply.

6.2 Further Research

Several extensions of this work can be discussed.

In this thesis, we focus exclusively on models of order p = ¢ = 1, recall again (3.5). An
obvious generalization of the mean specification in (3.5) is given by (3.4), where now the
f(+,+) function is such that f : Nj x RY — (0,00). It is clear that models (3.11), (3.12),
(5.1) and (5.2) can be extended according to (3.4). Such examples are provided by the
class of smooth transition autoregressive models of which the exponential autoregressive
model is a special case (cf. Terdsvirta [70] and Terdsvirta et al. [71]). Further examples
of nonlinear time series models can be found in Tong [72] and Fan and Yao [30]. These
models have not been considered earlier in the literature in the context of generalized
linear models for count time series, and they provide a flexible framework for studying
dependent count data.

Some alternative nonlinear specifications for model (3.5) that can be potentially con-

sidered are given below,

A = dtah+0Yi a1,
1

1+ exp(—/\t_1)>

A = d+ahe 1+ (b +er(1 — exp(—Y2,)) Y,

1 1
AN = d+ah (b ( ——>)Y,.
t +aiA 1+ 01+ [+ ep(—Y ) 2 t—1

N o= d+ (a1 + Aot + biYi1,

As empirical experience has shown, models like those we discuss in this work, can
successfully accommodate count dependent data, especially when there exists positive
autocorrelation and there are no covariates. However, in applications we observe time
series data that might be negatively correlated, and occasionally, with possibly additional
covariates. In this case, the choice of the logarithmic function is the most popular among
the link functions for modeling count data. In fact, this choice corresponds to the canonical
link model according to the terminology of generalized linear models.

Recall that {Y;} denotes a count time series and let v, = log \; following the notation
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introduced in (3.1). A log-linear model of order (1,1) with feedback for the analysis of

count time series is defined as

Vy = d + a1V + bl 10g<)/t71 + 1)

In general, the parameters d, a1, b; can be positive or negative but they need to satisfy
certain conditions so that we obtain a stationary time series. For more details, see Fokianos
and Tjgstheim [36] and Fokianos [32].

Another interesting topic of research is the analysis of multivariate count time series
models; see Liu [61], Pedeli and Karlis [67] and the fourth part of this volume which
contains many interesting results. The main issue for attacking the problem of multivariate
count time series is that multivariate count distributions are quite complex to be analyzed
by maximum likelihood methods.

Assume that {Y; = (Y;;),t = 1,2,...,n} denotes a p—dimensional count time series
and suppose further that {A\; = (\;4),t = 1,2,...,n} is a corresponding p—dimensional
intensity process. Here the notation p denotes dimension but not order as in (3.4). Then,

a natural generalization of (3.6) is given by

}/:i,t —_= Ni,t(()? Ai,t]) 7, = 1, cte ,p, At - d + AAtfl + Bl/-tfl7 (61)

where d is a p—dimensional vector and A, B are p X p matrices, all of them unknowns to
be estimated. Model (6.1) is a direct extension of the linear autoregressive model (3.6) and
assumes that marginally the count process is Poisson distributed. However the statistical
problem is dealing with the joint distribution of the vector process {Y;} and this requires
further research; some preliminary results about ergodicity and stationarity of (6.1) have
been obtained by Liu [61]. This work can be extended to the mixed Poisson framework.
Furthermore, we note that the problem of obtaining the asymptotic distribution of
the supremum test is worth further investigation, like in Francq et al. [38, Theorem 4.1].
In addition, the parametric bootstrap procedure which was suggested to approximate its
large sample behavior need to be studied thoroughly. Towards this goal, we note the recent
work by Fokianos and Neumann [33] who proved the validity of parametric bootstrap for

testing goodness of fit under the standard Poisson model.
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Last but not least, further research in the field of constrained optimization problem
can be discussed. Optimization algorithms should be improved in order to give us more
accurate results for the estimators of the unknown parameters, specifically for complicated

nonlinear formulas.
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