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ITepiindn

H mepthndn v exelvo 1o pépog evog BiBiou mou yedgetan teheutolo, ToTo-

Yetelton mpwTo xou Sofdletan Arydtepo. — Alfred Lotka.

e auty| TN OtTEBY) HEAETOUUE TEQLOYES TV PadNuATIXGDY Tou UTopel Vo pafvovtal aou-
OYETLOTEC ARG €youV xoWT| TEoéheuaT) T Vewpio Twv cuotnudtwy Eilov. Ta cuctAuaTa
otV ypnoylomololvTon yio Ty TavouncT twv ahyeBpyv Lie ohhd eppoavilovton xar o dhkeg
TOEVOUROELS, Yol TURADELYUa GTNV TovOUNOT] T0V TENEPACUEVKDY opddwy Coxeter. Emlong
YENOYLOTOLO0VTAL XAl OTA OAOXATEWOUIN CUOTAUNTY GTNY XAUCLXY) Xl XBavTixy| pmyovix.
No avagépoupe ta ovotiuata Toda, to cuctAuata Calogero-Moser xou to Yevixeupéva cu-
othAuata Volterra tou Bogoyavlensky. ' euxolla owty| 1 datel3y) ywelleton og 600 pépn.

210 TPWTO UEPOG aoyololuaoTE Ye To Tohuwvupa Coxeter Twv apuvixov ahyefenv Lie
xou emiong ue to mohuwvupa Coxeter plog ouxoyévelog ouddwy Coxeter ol omolec opilovtan
u€ow yeapnudtwy. TrohoylCouue ta mohuwvupa Coxeter, Toug apripoic Coxeter xan Toug
ex¥éteg Yo xde pla amd Tic aguvixeg dhyePBpeg Lie yenoylonoidvTog GTOLYELMOELS WLOTNTES
Twv ToAuwvouey Chebyshev. T'evixelouue 6Vo uedddoug twv Steinberg xou Berman, Lee
xow Moody yio Tov unoloyloud twv agixwy aptiuny Coxeter xal TV a@IxOY exdet®dy
otny mepintwon g apvixhc dAyePpag Lie tomou AD. Xpnowonoolue autég Tig Yetddoug
YL TOV UTOAOYLOUS TV apvixwy aptduny Coxeter xou twv exdetov yia xdie pio amd Tig
agpvixég dhyePpec Lie. Enione unoloyilouye to toAudvupa Coxeter plag otxoyEvelog ouddmy
Coxeter Tic omoleg opilouue Y€ow ypuPnudTwy. e auTd T YeaphAuata TERLAoUBvovTIL
TOMAEL YVWOTd Ypaphuata, Yo Toedderypa tor dtorypduuata Dynkin tonou D, To agpvixd
otaryeduuota Dynkin tonou DS), T Ororypdupotar B, xon TOAAS dhAaL YVWOT YRUPHUOTAL.
TroloyiCoupe T0 6plo TNC PUOUAUTIXNC oxTivog TwY peTaoyNuatiopwy Coxeter aut®V Twv
ouddwy Coxeter 6tav 0 apriudg TWV XOPUPHY TOUG TEVEL GTO GTELRO.

210 0elTEPO UEPOG QUTHC TNG OLTEPBrC oo OMOVUUGTE UE OMOXATPOOLUN GUC TAUATY
Toe omolor ebvon Tou tUmou Lotka-Volterra. Xpnowonowolue ula xouvolpta yédodo yio va
Topdyouus XoATOVIOVE GUG THOTA Xxataoxeudlovtag To avtioTowyo Levyn Lax. Autéd to
ETUTUYYAVOUUE YENOWOTOWWVTOS UTOGUVOAN TV VeTixwy pilmV, CUCTNUATWY EWLMOY ATADY
ahyePenv Lie, to omolo meptéyouy Tic amhéc pllec. Ye apxeTtéc TepInTOoel 1 Yédodog auth)
oivel yvwotd Xopthtoviovd ous Thuota o omola etvar toou Lotka-Volterra. Ovopdloupe ta
cuoTHuaTa To ontota akpvoupe and auth TN pEYodo yevixeuuEva cuoTuata ToTou Lotka-
Volterra. Tagvouolue dha o0 UTOGUVOAYL TwV VeTIX®Y pl®YV, Tou TERIEYoLY TIC anhéc plleg
ToU cuoTHUNTOS WY TUToL A, To omtola YeTd amd pio oA ahharyr) METOBANTOY Blvouy
ocvotuata Tumou Lotka-Volterra. Enlong amodewvioupe 6t 1 uédodog yag BoukeVet xat yio

OEXETE. AL UTOGUVOAD TwV YETXDY EILOV.

il



Abstract

The abstract is that part of a book which is written last, placed first and read
least. — Alfred Lotka.

In this thesis we investigate some areas of mathematics which may be unrelated but
nevertheless they have as common theme the theory of abstract root systems. Root
systems of course are used in the classification of simple Lie algebras. They also appear in
other classifications, for example the classification of finite Coxeter groups. They are also
used in the theory of integrable systems in classical and quantum Mechanics. A number of
mechanical systems are defined to correspond to simple or affine Lie algebras. We mention
the various Toda lattices, Calogero-Moser systems and the generalized Volterra lattices of
Bogoyavlensky. For convenience we divide this thesis in two parts.

The first part is concerned with the Coxeter polynomials of finite and affine Lie algebras
and also with the Coxeter polynomials of a family of Coxeter groups arising from graphs.
We define the Coxeter number and exponents with respect to each conjugacy class of
the Coxeter elements of the simple and affine Lie algebras. In the case of the affine Lie
algebra of type AV we have \_”T“J different conjugacy classes of Coxeter elements while
for all the other cases we have only one. We compute the Coxeter polynomial, the Coxeter
number and exponents of each one of the simple and affine Lie algebras using properties
of Chebyshev polynomials. We generalize two methods of Steinberg and Berman, Lee and
Moody for the computation of affine Coxeter number and affine exponents in the case
of the affine Lie algebra of type A, We use these methods for the computation of the
affine Coxeter number and affine exponents of each one of the affine Lie algebras. We also
compute the Coxeter polynomials of a family of Coxeter groups defined by their Coxeter
graphs. This family of graphs includes several well known graphs, e.g. the D,, Dynkin
diagrams, the DY affine Dynkin diagrams, the F,, diagrams and many other diagrams.
We find the limit of the spectral radius of the Coxeter elements of these graphs as the
number of the vertices of their arms tends to infinity.

The second part of this thesis is concerned with the theory of integrable systems and
more specifically with Lotka-Volterra systems. We device a new method for producing
integrable systems by constructing the corresponding Lax pairs. This is achieved by con-
sidering a larger subset of the positive roots than the simple roots of a simple complex Lie
algebra. In several cases these subsets of the positive roots recover well known Hamilto-
nian systems which are of Lotka-Volterra type. Therefore we call the systems produced by
this method generalized Lotka-Volterra systems. We find all subsets of the positive roots
of the simple Lie algebra of type A, which produce after a suitable change of variables
Lotka-Volterra systems. Furthermore we show that our method works for several other

cases.
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Chapter 1
Introduction

The greatest challenge to any thinker is stating the problem in a way that will

allow a solution — Bertrand Russell

This thesis is divided in two parts. In the first part we investigate the connection
between Chebyshev polynomials and root systems of affine Lie algebras. We generate the
Coxeter polynomials and the characteristic polynomials of Cartan and adjacency matrices
of the affine Lie algebras using properties of Chebyshev polynomials. We also generalize
two results of Steinberg and Berman, Lie and Moody to the case of the affine Lie algebra
of type AV We calculate the Coxeter polynomials of a family of Coxeter groups and we
also find a family of Pisot numbers as limits of sequences of Salem numbers.

In his seminal paper [?], Coxeter gave the definition of Coxeter groups and classified
the finite Coxeter groups. He also defined the Coxeter element of the Coxeter groups and
observed that the eigenvalues of these elements have remarkable properties. These and
several other properties were later developed by various mathematicians (see [?, 7, 7, 7]).
The order h, of a Coxeter element is the Coxeter number of the Coxeter group W and
the eigenvalues of the Coxeter element are of the form eﬁ, for some integers m; €
{1,2,...,h—1}. The integers m; are called the exponents of the Coxeter group. Some of

the properties of the exponents and the Coxeter number are

e The cardinality of W is [[(m; + 1).

e The rank r of the corresponding Lie algebra is %, where |R| is the cardinality of

the root system.

A word for the longest element is o2 (0 is a Coxeter element).

The length of the longest element in W is > m; = %

The height of the highest root is h — 1.



e When the Coxeter group is the Weyl group of a Lie algebra, the dimension of the
Lie algebra is r(h + 1).

e Assume that m; < my < ... < m, and that n; < ... < ny,_; is the partition of

> m,; conjugate to that of m;’s. Then n; is the number of reflections with trace 1.

e The spectrum of the Coxeter graph is {2 cos (m}iﬂ) }

e The spectrum of the Cartan matrix is {4 cos? (52~) }.

e Let k,, denotes the number of roots of height m. Then k,, — k,,,1 is the number of

times m occurs as an exponent of W.
e The Poincare polynomial of the Coxeter group W is defined as W (z) = >, ztw)

where £(w)is the length of w. It factors as [[(1 +z + ... + ™).

e The Poincare polynomial of a compact Lie group with W its Weyl group factors as
H(1+x2mj+1>‘

e The determinant of the Cartan matrix is

m;T

2h

det(C) = 2% H sin?
i=1

After the work of Coxeter, several authors (see e.g. [?, ?]) started investigating the
Coxeter element of the affine Coxeter groups. The eigenvalues of these elements, satisfy
similar properties, as the eigenvalues of the Coxeter elemens of the finite Coxeter groups.
If o is a Coxeter element of an affine Coxeter group then it satisfies a relation of the form
(0 —1)(¢" —1) = 0. The number h is the affine Coxeter number and the eigenvalues

h

of o are, again, of the form e j, for some integers m; € {0,1,...,h}. The integers m;
are the affine exponents. In the first part of this thesis we are mainly concerned with
the Coxeter polynomials associated with the affine Lie algebras. For completeness we
include the corresponding results for the complex simple finite dimensional Lie algebras
(section [3.2| and part of section which are taken from [?] and [?].

For a Dynkin diagram I" of a root system of type X, in addition to the Cartan matrix
C'x, we associate the Coxeter adjacency matrix which is the matrix Ax = 21 — Cx. The

characteristic polynomial of I' is that of Ay and the spectral radius of I is
p (') =max {|A| : A\ is an eigenvalue of Ax}.

We use the following notation. The subscript n in all cases is equal to the degree of the

polynomial except that Q,(x) is of degree 2n.



- pn(z) will denote the characteristic polynomial of the Cartan matrix,

- qn(x) = det (221 + Ax),

- ap(x) = qn (%) will denote the characteristic polynomial of —Ayx and finally,
- Qn(z) = 2"a, (z+1).

Note the relation between the polynomials a,,, ¢, and p,

pn(T) = an(r —2) = qn (g - 1> .

We prove the following result

Theorem 1. Let C be the n x n affine Cartan matrix of an affine Lie algebra of type X .

Then q, is a polynomial related to Chebyshev polynomials as follows

2
fOT X = wal—)la Qn<x) = 83:2 (Tan(l.) - Tn74<x)) )

where Ty, (x) is the n™ Chebyshev polynomial of first kind.

Using the fact that for bipartite Dynkin diagrams the spectrum of the Coxeter adja-
cency matrix A is the same as the spectrum of —A it follows that the eigenvalues of the
Cartan matrix occur in pairs, A and 4— X (see e.g. [?, 7, ?]). In our case this happens in all
cases except for Ail_)l, n odd. In the bipartite cases, a,(x) is the characteristic polynomial
of the Coxeter adjacency matrix.

Let L be a complex finite dimensional simple Lie algebra with Cartan matrix C' of rank
n and simple roots IT = {ay, ..., a,}. The Killing form on L induces an inner product on
the real vector space V' with basis II. The Weyl group W of L is a subgroup of Aut V' which
is generated by reflections on V. Namely, for each fixed root «; consider the reflection o;

through the hyperplane perpendicular to «;

(o, o)

o, V—V, a—a—2
(aiaai>

7.

Then the Weyl group of L is W = (01,09, ...,0,). The Cartan matrix C' satisfies

) —

(o, ;)



and therefore o;(o;) = a; — Cj ;. The Weyl group of an affine Lie algebra of rank n and

Cartan matrix C'is W = (04,09, ..., 0,), where
oi(a;) = o — Cja

is a “reflection” in the real vector space with basis {aq,...,a,}. If z = (21,...,2,) is a
left zero eigenvector of C' (z can be taken to be in Z", see [?]) and o = Y, _, zpay, then
oi(a) =a, Yi=1,...,n. Thus the Weyl group W, acts on {ka : k € Z} as the identity.
A Coxeter polynomial f,, is the characteristic polynomial of o(1)0r(2) ... Oxm) € gl(V)
for some 7 € S,. When the Dynkin diagram does not contain cycles the Coxeter poly-
nomial is uniquely defined and for bipartite Dynkin diagrams is closely related to the
polynomial Q,(x); the polynomial @Q,(z) turns out to be Q,(z) = f.(2?). For the case
of AW

n—1

Coleman showed in [?] that, there are |2 | different Coxeter polynomials. For
n even, @, (1/r) is one of the Coxeter polynomials, the one corresponding to the largest
conjugacy class of the Coxeter transformations. According to [?] the largest conjugacy

class contains the Coxeter transformations with the property that the set
{i:n (@) >7(i+1 (modn)),i=1,2,...,n}

has the largest cardinality, i.e. contains § elements. For example one may choose the
Coxeter transformation o103 . ..0, 10904 . ..0,, which is the one considered in [?].

The roots of @), are in the unit disk and therefore by a theorem of Kronecker (the-
orem , Q. () is a product of cyclotomic polynomials. We determine the factorization
of @, as a product of cyclotomic polynomials. This factorization in turn determines the
factorization of f,,. The irreducible factors of (), are in one-to-one correspondence with
the irreducible factors of a,(x).

The roots of a Coxeter polynomial f,, of a Lie algebra of affine type, are of the form
ew for some integers m; € {0,1,..., h}, where the numbers m; are the affine exponents
and h the affine Coxeter number associated with the Coxeter transformation o. These
numbers are normally defined only for the bipartite case. For A,(ll), n odd one defines
them with respect to the Coxeter polynomial corresponding to the largest conjugacy class
of the Coxeter element. We examine in detail the case of A for n both even and odd
and we calculate the affine exponents and affine Coxeter number for each conjugacy class.

These numbers are related to the Cartan matrix and give a universal formula for the
spectrum of the Dynkin diagram I' and the eigenvalues of the Cartan matrix. For the

bipartite case the spectrum is

mj7r

{2(:08 :jzl,...n}



and the eigenvalues of the Cartan matrix are {4cos® 52~ : j =1,...n}.

The affine exponents, affine Coxeter number of X and the roots of the corresponding
simple Lie algebra X, are related in an inquisitive way (see [?, ?]). Let Il = {ay, aq, ..., an}
be the simple roots of X,,, V' = R-span(ay, as,...,a,) and 8 the branch root of X,,. Let
wgv € V* be the weight corresponding to the co-root 5Y. Then for some ¢ € N and a

proper enumeration of m; we have

c-wgv :ijozjv , (1.1)
j=1

where ¢ is the smallest integer such that c - wgv belongs to the co-root lattice. The
coefficient of 3¥ is the affine Coxeter number. Here we have identified V' with V* using
the inner product induced by the Killing form. We generalize that result and show that
the relation (|1.1f) is valid for all conjugacy classes in ALY,

Steinberg [?], in his explanation of the MacKay correspondence, shows a mysterious
relation between affine Coxeter polynomials (for the simply laced Dynkin diagrams and
later Stekolshchik in [?] for the multiple laced) and Coxeter polynomials of type A,,. Each
affine Coxeter polynomial is a product of Coxeter polynomials of type A,. From X,
remove the branch root. If g(z) is the Coxeter polynomial of the reduced system then
the Coxeter polynomial of X" is (x — 1)%g(x). The affine exponents and affine Coxeter
number of an affine Lie algebra are easily computed using Steinberg’s theorem. We include
the table listing the affine exponents and affine Coxeter number for affine Lie algebras.
Furthermore, we demonstrate that the method of Steinberg works also in the case of AY.

In [?], Lakatos proves a result about the spectral radius of Coxeter transformations of
noncyclotomic starlike trees, which she called wild stars. Let S,g??_.,7pk denote the wild star
consisting of k paths of length py, ..., pr and one branching point. Lakatos proved that the
limit of the spectral radius of the Coxeter transformations of SI(,??,,.,pk as pPi,...,Pk — 00
is k — 1. We define Sé?w,,pk to be the join of + Dynkin diagrams of type D,,,...,D,, and

k — ¢ Dynkin diagrams of type A ., A, We generalize the sesult of Lakatos and

piits -
show that the limit of the spectral radius of the Coxeter transformations of SI(,?,,,,,pk as
P1y-- ., — 00 is k— 1. We also calculate the Coxeter polynomials of the Coxeter graphs
S,S?,pm and find the limit of the spectral radius of the Coxeter transformations of Sl()?,mm
as p; — oo and pj, p; — oo. These limits are Pisot numbers.

The second part of this thesis is concerned with the theory of integrable Hamiltonian
systems. Some parts of chapter [0 and chapter [7] were done in collaboration with the
postdoctoral fellow Stelios Charalambides.

Jurgen K. Moser made important contributions to the theory of completely integrable

Hamiltonian systems. To quote Moser from [?]



In the last twenty years one of the most fascinating developments in the theory
of Hamiltonian systems is connected with the discovery of the new integrable
systems, like the Toda lattice and various other systems. This subject grew
very rapidly. Although it originated from applied problems, it has in the

meantime spread to a variety of other more abstract fields such as Lie algebras.

In this part we investigate a new class of Hamiltonian systems which are connected with
subsets of the positive roots of a root system of a complex simple Lie algebra.
The Volterra system (also known as the KM system) is a well-known integrable system

defined by

T = Ti(Tig1 — Ti1) i=12....n, (1.2)

where zy = 2,41 = 0. It was studied by Lotka in [?] to model oscillating chemical
reactions and by Volterra in [?] to describe population evolution in a hierarchical system
of competing species. It was first solved by Kac and van-Moerbeke in [?], using a discrete
version of inverse scattering due to Flaschka [?]. In [?] Moser gave a solution of the system
using the method of continued fractions and in the process he constructed action-angle
coordinates. Equations can be considered as a finite-dimensional approximation
of the Korteweg-de Vries (KdV) equation. The Poisson bracket for this system can be
thought as a lattice generalization of the Virasoro algebra [?]. The Volterra system is
associated with a simple Lie algebra of type A,, in the sense that it can be written in Lax
pair form L = [B, L], where

n

L= a(Xe+X_0)
i=1

and

n—1
B = E :a’iaiJrl (Xai+az‘+1 - X*Oéi*aiﬂ) )
=1

with {aq,...,a,} being the simple roots of the root system of the Lie algebra of type
A, and X,, the corresponding root vectors. This Lax pair is due to Moser [?]; it gives
a polynomial (in fact cubic) system of differential equations. The change of variables
x; = 2a?, produces equations . We generalize this Lax pair and produce a larger class
of Hamiltonian systems which we call generalized Volterra systems.

We devise a new method for producing Hamiltonian systems by constructing the cor-
responding Lax pairs. This is achieved by considering a larger subset of the positive roots,
than the simple roots, of a simple Lie algebra. In several cases these subsets of the posi-
tive roots recover well known Hamiltonian systems which are of Lotka-Volterra type. For
example using the simple roots of the root system of type A, we recover the KM system
while using the simple roots and the highest root we recover the periodic KM system. We

find and classify all subsets of the positive roots of the Lie algebra of type A, which give

6



rise to Lotka-Volterra systems and we also show that in several other cases our algorithm
works. In higher dimensions we are able, using our method, to derive new completely
integrable Hamiltonian systems.

Bogoyavlensky in [?, ?] and [?] produces Lotka-Volterra systems which are generaliza-
tions of the periodic KM system. Our method produces Lotka-Volterra systems which are
different from these of Bogoyavlensky. The systems produce in [?] and [?] are described
explicitly in [?] and they are different from the Lotka-Volterra systems produced by our
algorithm (see section . Also the construction of Bogoyavlensky in [?] covers a wide
variety of generalizations. However as it can be seen by the diagrams of interactions of the
systems in [?], by restricting these systems one cannot obtain our systems in an obvious
way.

This thesis is structured as follows.

In chapter [2| we give the basic definitions needed for the remaining chapters. We review
the basic results about root systems, Lie algebras, Coxeter groups and the Mahler measure
of integer polynomials. The rest of this thesis is divided in two parts.

The first part (made up of the chaptersto is about is about the Coxeter polynomials
of simple and affine Lie algebras and also about the Coxeter transformations of a family of
Coxeter groups, defined by their Coxeter graphs. In chapter 3| we calculate the spectrum
of Cartan matrices and the Coxeter polynomials of simple and affine Lie algebras, using
properties of Chebyshev polynomials. We also compute the associated polynomials a,,, ¢,
and @, of the simple and affine Lie algebras and we use them for the explicit calculation
of their Coxeter polynomials, Coxeter number and exponents. The Coxeter graphs of the
simple and affine Lie algebras are all trees, except the one of the affine Lie algebra with
root system of type A, For this Lie algebra the Coxeter polynomial is not uniquely
defined. We calculate all of their Coxeter polynomials in section In that section we
generalize the methods of Steinberg and Berman, Lee and Moody, for the case of the affine
Lie algebra with root system of type AV, We show that these methods can be modified
and applied to the case of the affine Lie algebra with root system of type AS), and give
all of their Coxeter polynomials. In chapter 4] we generalize a result of Piroska Lakatos

-----

The new results of the first part can be summarized as follows.

1. Let a,(x) be the characteristic polynomial of the Coxeter adjacency matrix. The
spectrum of this polynomial is called the spectrum of the Dynkin graph. Using the
knowledge of the roots of U, (z), the Chebyshev polynomial of the second kind, we
are able to compute the roots of a,(z) and in the bipartite case they turn out to be

mjﬂ'

2 cos —— .
cos b



Let C' be the generalized Cartan matrix associated with the affine Lie algebra. The
eigenvalues of C' in the bipartite case are
m;m
4cos® —2— .
cos” —
Let f(x) be the affine Coxeter polynomial (in the case of AP with n odd we use the
Coxeter polynomial corresponding to the largest conjugacy class). Then the roots

of f in terms of the exponents and Coxeter number are

2'm,j7ri

[ h

2. Let TT = {1, a9, ..., a,} be the simple roots of the associated simple Lie algebra,
V = R-span(ay, a9, ...,q,) and § the branch root. Let wgv € V* be the weight
corresponding to the co-root 3Y. Then for some ¢ € N and a proper enumeration of

m; we have
n
C-wgy = Zm'a\/
7173 0
j=1

where ¢ € N is the smallest integer such that c - wgv belongs to the co-root lattice.
The coefficient of 3 is the affine Coxeter number. This method is extended for each

conjugacy class in the Coxeter group of Ale).

3. One may use a procedure of Steinberg which relates affine Coxeter polynomials with
the corresponding Coxeter polynomial of the reduced system obtained by removing
a branch root. Each affine Coxeter polynomial is a product of Coxeter polynomials
of type A,. This method is also extended to the case of AV,

4. We generalize a result of Piroska Lakatos about the Coxeter polynomials of the
Coxeter graphs, S,S?,__M We show that for £ = 3 the limits

lim p (S(i) )

pj—00 P1,p2,P3

and
lim p (S @) )

DjPm—00 P1,p2,P3

are Pisot numbers for all ¢ € {0,1,2,3} and j,m = 1,2,3. We also show that for all
keNand 0 <<k
: (4) — L _
dim p (S ) =k L
The second part is about Lotka-Volterra systems and is made up of the chapters

to[7 In chapter [5] we give the basic definitions about Hamiltonian systems and Poisson
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brackets. In chapter [6] we explain the new algorithm for constructing Hamiltonian systems
by producing the corresponding Lax pairs (section [6.2)). In section we present all
systems produced by our algorithm for the cases of root systems of type A3 and A, and
we classify, in section |6.4, all subsets of the positive roots of the root system of type
A,, which give, under the transformation z; = 2a?, systems of Lotka-Volterra type. We
describe the corresponding systems and discuss their integrability. In section|6.5|we present
two interesting methods for finding first integrals for Hamiltonian system emerging from
Lax pairs and we use these methods in section [6.6] to find additional first integrals for
systems corresponding to certain subsets of the positive roots of the root system of type
A,. Finally in chapter |[7| we present a variation of our algorithm where we use complex
coefficients.

The new results of the second part can be summarized as follows.

1. We device an algorithm for constructing Hamiltonian systems corresponding to sub-
sets of the positive roots of root systems of simple Lie algebras. This algorithm

produces the corresponding Lax pairs.

2. We explicitly present all the Lotka-Volterra systems produced by this algorithm from
subsets of the positive roots of the root systems of type A3 and A4. In several cases
we recover well known integrable systems but we also produce some new systems of

Lotka-Volterra type which we show that they are integrable.

3. We classify all subsets of the positive roots of the root system of type A, which
produce, under the change of variables z; = 2a?, Lotka-Volterra systems. We ex-
plicitly describe the corresponding Lotka-Volterra systems. We also show that our
algorithm produces consistent Lax pairs for certain families of subsets of the positive
roots of the root system of type A,,, and we describe the corresponding Hamiltonian

systems.

4. We present a variation of the algorithm which uses complex coefficients. We show
that this method produces different Hamiltonian systems and more Lotka-Volterra

systems, than the previous one.



Chapter 2
Background

He turned the handle and the door opened. Beyond it was another door. He
turned the handle and the other door stood wide. He opened doors, a hundred
and twenty-four. Then he grew tired, and he collapsed. Beyond the hundred
and twenty-fifth door, there is a garden where the roses have just opened, he

though, drowsily dying. Beyond that door was another door.—Antanas Skema

2.1 Root systems

In the following V' will be a finite dimensional real Euclidean space (with inner product

written (,)). We write (z,y) := 2((;7;))'

Given a nonzero vector o orthogonal to the hyperplane H, the reflection in the hyper-

plane H, denoted s,, is given by
So(2) =2 — (x,0)a, Vo € V.

It is characterized by the properties, s,(a) = —a and s,(z) = 0 for all x orthogonal to .
We easily verify that (s,(z), sa(y)) = (z,y) for all z,y € V. Also, if w is an automorphism

of V' which preserves the inner product, then

wsaw_l(ﬁ) = Suwa-

Indeed,

wsaw ™ H(wa) = wsy(a) = —wa

and if (wa, B) = 0, it follows that (a, w™S) = 0. Therefore

wsow H(B) = wse(wB) = 0.

10



Definition 1.
e A root system of V' is a finite subset R of V' which satisfies

1. The set R spans V,
2. If « € R then ka € R if and only if k = +£1,
3. If a € R then s,(R) =R

e A root system R of V is called crystallographic root system if (z,y) € Z for all
x,y € R.

Remark 1. Crystallographic root systems are the root systems corresponding to the semi-
simple complex finite dimensional Lie algebras (see section .

The elements of R are called roots and the group generated by {s, : a € R} will be
denoted by W.
Lemma 1. The group W is finite.

Proof. If @« € R then s, is a permutation of R. The restriction of W to R is faithfull
because if w; = wy on R, then since span(R) = V, it follows that w; = ws on V.

Therefore W is a subgroup of the symmetric group on the elements of R and hence is
finite. O

Definition 2.

e A subset II of a root system R is called a base for the root system if it is a basis
for the vector space V' and each element of R is written as a linear combination of

elements of II where all coefficients are either non negative or non positive.

e The elements of R which are written as a non negative linear combination of the
elements of II are called positive roots of R with respect to the base II. An element
a of R is called negative with respect to the base II if —« is positive with respect to
the base II.

e The subset of R containing the positive roots will be denoted by R™ and the the

subset containing the negative roots by R~.
Theorem 2. Fvery root system has a base.

The proof of the previous theorem can be found in standard textbooks of Lie algebras

(see for instance [?, ?]).

Lemma 2. IfII is a base for a root system R then

11



1. (a,B) <0 for all a, B € 11 with o # 5.
2. If p € RY then there exists an o € 11 such that (p,«) > 0.

Proof. 1. If a,f € II and (o, ) > 0 then s,(8) = f — (B,a)ac € R. This is a

contradiction since (3, a) < 0.

2. Let p =3 koo where all k, are non negative. Then

0< (p,p) =D kalpa)

a€ll

and therefore (p, a)) > 0 for some a € II.
O]

Lemma 3. IfII is a base of the root system R and o € II then s, (R \ {a}) = RT\ {a}.

Proof. Let p € R\ {a} and

p=> ksf

Bell
with kg > 0. Then
sa(p) = Z kgsa(B) = Z ksl + Kkl a.

Bell Bell\{a}
But there is a fy € R\ {a} such that kg, > 0. Therefore the coefficient of §, when we

write s, (p) as a linear combination of the elements of B is positive. Hence s, (p) is positive

and of course different from «. O

Definition 3. If R is a root system with a base Il and p € R with p = >_
the number Y _ k, is the height of p and is denoted ht(p).

et Ko then

acll
For example ht(a) = 1 for all a € II.

Example 1. In the vector space R? with the usual euclidean inner product, let R be the
subset of R? with
R ={£a,£8,£(a+B)},

where o = (1,0), 8 = (—1,¥3) as shown in fig. .

2072
It is straightforward to verify that R is a crystallographic root system and that the

following subsets are bases for R.

{Oé,ﬁ}p{Oé, —Q = ﬁ}? {Oé +67 _B}7 {Oé + 67 _a}7 {67 —Q — 6}7 {—Oé, _B}

This root system is said to be of type As. With respect to the base Il = {a, f} we have
ht(a + B) = 2, while with respect to the base IT = {3, —a — 8} we have ht(a + 5) = —1.

12



by

—a-8 | -8

Figure 2.1: Root system of type A,

The group W is generated by the reflections s,, sg, So+3. Note that

Sa+8 = SasSs,

and therefore W is generated by s,, s, i.e. W = (4, s3). The homomorphism ¢ : W — Ss
generated by ¢(s,) = (12) and ¢(sg) = (23) is an isomorphism of the group W and the

symmetric group on 3 elements. There is another way to describe this root system as

shown in §2.1]

Lemma 4. Let R be a root system with base 11 and Wy the group generated by {c : o € 11}.
Ifwe Wy, pe R and p=w(p') € RT then ht(p) > 1.

Proof. Let p € Wo(RT)N R be such that ht(p) is minimum. We will show that ht(p) = 1.
Assume, for contradiction that ht(p) < 1. Then p ¢ I and therefore there exists an o € 11
such that (p,a) > 0. Hence ht(s,(p)) = ht(p — (p,a)a) = ht(p) — (p,a) < ht(p) and
Sa(p) € Wo(RT) N RT, contradiction. Therefore ht(p) = 1. O

We see, from the proof of the previous lemma, that if ht(p) = 1 then p is a simple root.

Therefore we have the following corollary.
Corollary 1. If p € RT \ II then ht(p) > 1.

Proof. Let a € II be such that (p,a) > 0. Then ht(s,(p)) = ht(p) — (p,a) < ht(p) and
therefore ht(p) > 1 (from the previous lemma it couldn’t be ht(p) = 1). O

If R is a root system with base I and «, 5 € II we denote the order of s,sg by n(a, ().
For example for all a € I, n(a,a) =1 and n(«, 5) > 1 for all a, § € 11 with a # S.
The next theorem shows, how the group W can be described through generators and

relations. A proof of this theorem can be found in [?, ?] or [?].
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Theorem 3. The group W' generated by the elements {o, : a € 11} and the relations
{(0a,08)"P) =1, € I} is isomorphic to the group W.

The groups with presentation as the one described in the previous theorem are known
as Coxeter groups. This is the subject of section [2.5

Next we present the root systems associated with the four classical simple Lie algebras
(see section , as subsets of the euclidean spaces R™ with the usual inner product. These
are the root systems of type A,, B,, C, and D,,.

Root system of type A,

Let V be the hyperplane of R"™! for which the coordinates sum to 0 (i.e. vectors orthogonal
to (1,1,...,1)). Let R be the set of vectors in V of length /2 with integer coordinates.

There are (72‘) such vectors in all. We use the standard inner product in R"*! and the

standard orthonormal basis {ej, e, ..., e,}. Then, it is easy to see that
R={e;—e;|1,7€{1,2,....,n+1}, i #j}.
The set R is a root system known as root system of type A,. The set
H={a; =€ —e€;1 |i=1,2,...,n}

is a base of this root system in the sense that each vector in R is a linear combination
of these n vectors with integer coefficients, either all nonnegative or all nonpositive. For
example, the positive roots are written as e;,—e; = o+ 1+. . .+aj_g for1 <@ < j < n+l.

Therefore IT = {1, ag, ..., a,}, and the set of positive roots R* is given by
Rt={e;—ei=ai+ai+...+a;|1 <i<j<n}.
The highest root for the root system A, is the root
€1 — €, = Q1+ 0+ ...+ Qy,
of height n. Note that the homomorphism ¢ : W — 5,1 generated by
O(Sa;) =0 i+1),i=1,2,...,n

is an isomorphism between the group W and the symmetric group S,.1.
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Root system of type B,

Let V be the the Fuclidean space R™ with the usual inner product and let R be the subset
of V which consist of the vectors with integer coefficient whose length is 1 or v/2. The

subset R consist of the vectors
R={%e;,te; tex|i=1,2,...,n,1<j<k<n},

where as usual {ej, ey, ..., e,} is the orthonormal basis of R". In total there are 2n? such
vectors. The set R is a root system known as root system of type B,. A base for the root
system B,, is

II={,qn,...,0n},

where o; = ¢; —e;41,1=1,2,...,n—1 and «,, = e,.

The set of positive roots of B, is given by
R*Y = Ry U Ry U R,
where

R1:{62‘:(Xi+0[i+1+...+04n|2':1,2,...,”},
Rgz{ei—ejﬂ:ai—l—ai+1+...+aj|1Sigjgn—l}and
Rgz{€i+€j:Oéi—FOéH_l+...+Oéj_1—|—2@j+...—|—2(ln|1§i<j§n}.

The highest root for the root system of type B, is the root
e1+ e, = a1 + 205 + 203 + ... + 20,

of height 2n — 1

Root system of type C,
Let V be the the Euclidean space R™ with the usual inner product and let R be the subset
of V' which consist of the vectors

R ={+£2¢;,xe; ter|i=1,2,...,n,1 <j<k<n},

where as usual {ey, es, ..., e,} is the orthonormal basis of R". In total there are 2n? such
vectors. The set R is a root system known as root system of type C,. A base for the root
system C), is

II={o,qn,...,0n},
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where a; = e; —e;41,1=1,2,...,n—1 and «,, = 2e,,.

The set of positive roots of (), is given by
R+:R1UR2UR3,
where

Ry ={2¢; = 20;; + 20vi 11 + ... + 201+ |1 =1,2,... n},
Ry={ei—ejpi=a;+ai1+...+0;|1<i<j<n-—1} and

Ry={ei+tej=oa; +aipr+...Foj1+205+... + 20,1 + o, [1 <0 < j <n}.
The highest root for the root system of type C, is
2e1 =201 + 200 + ... + 20,1 +
of height 2n — 1.

Root system of type D,

Let V be the the Euclidean space R"™ with the usual inner product and let R be the subset
of V' which consist of all vectors with integer coefficients and length /2. The set R is
given by

R={xe;te;|1<i<j<n},

where as usual {ej, e, ..., e,} is the canonical orthonormal basis of R”. In total there are
2n? — 2n such vectors. The set R is a root system known as root system of type D,. A

base for the root system D, is
II={o,qn,...,00},

where a; = e; —e;41, 1 =1,2,...,n—1 and o, = €,_1 + €.

The set of positive roots of D,, is given by
R+:R1UR2UR37
where

Rl:{ei—€j+1:C(i+Oéi+1+...+Oéj’1§’i§jS?’L—l},
Ry={ei+ej=a;+... 401 4+20;+...+ 20 2+ 0y 1+ 0, |1 <i<j<n-—1},
Ry={e;+e,=a;+aim+...+a,2t+a,|1<i<n—-2}U{e, 1+e,=a,}
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The highest root for the root system of type D,, is

61—1-62:ozl+2a2+...+2an_2—|—an_1+an,

of height 2n — 3.

2.2 Lie algebras

Definition 4. A Lie algebra L over the field F is an F-vector space with a bilinear map
[,], called the Lie bracket, which satisfies

e (skew-symmetry) [z,x] =0 for all x € L,

(Jacobi identity) [[z,y], 2] + [[y, ], 2] + [[z,2],y] = 0 for all z,y, z € L.

We give some basic examples of Lie algebras.

Ezxample 2.

1.

2.

3.

Write gl,,(C) for the C-vector space of all n x n matrices. The vector space gl,,(C)
becomes a Lie algebra, known as the general linear algebra, if we define the Lie
bracket

[z,y] = 2y — yx, for x,y € gl,(C).

It is straightforward to verify that [,] is indeed a Lie bracket.
The vector space R?® becomes a Lie algebra with Lie bracket the cross product.

Write sl,,(C) for the special linear algebra, the C-vector subspace of gl,,(C) of all
n X n traceless matrices. Note that from the property tr(zy) = tr(yx) it follows that
if z,y, € sl,(C) then [z,y] € s[,(C). Therefore the vector space sl,(C) becomes a
Lie algebra with Lie bracket

[z,y] = xy — yzx, for x,y € gl,(C).
For n = 2 the Lie algebra sl,,(C), as a vector space, has a basis consisting of the

S U R U K S

More generally, if we denote by e; ; the n X n matrix which has 1 in the 4, j position

matrices

and all other entries zero, then the Lie algebra sl,,(C), as a vector space, has a basis

consisting of the matrices e; ; for i # j and €;; — €;11,41 fori =1,2,...,n —1.
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Definition 5. Let L, Ly, L, be Lie algebras with Lie brackets [,], [,];, [,]; respectively.

e A Lie subalgebra L’ of L is a vector subspace of L which is a Lie algebra with Lie
bracket the Lie bracket of L.

e An ideal L' of L is a Lie subalgebra of L with the property [z,y] € L’ for all
xelLyel.

e A linear map ¢ : Ly — Lo is an homomorphism of Lie algebras if

¢ [z, yly) = [o(x), oY)l -

The map ¢ is called monomorphism or epimorphism of Lie algebras if ¢ is injective
or surjective respectively. The map ¢ is called isomorphism of Lie algebras if it
is both monomorphism and epimorphism. In that case the Lie algebras L, Lo are

called isomorphic Lie algebras.

If L is an algebra, that is a vector space with a bilinear form (x,y) — xy, then a

derivation on L is a linear map f : L — L with the property

flzy) =xf(y) + f(x)y, for all z,y € L.

For example, any Lie algebra is an algebra with bilinear form the Lie bracket. If L is a
Lie algebra, then for x € L, the adjoint map ad, : L — L defined by ad,(y) = [z,y] is a

derivation with respect to the Lie bracket, i.e. for all x,y,z € L

ad,([y, 2]) = [ad.(y), 2] + [y, ads(2)] -

The last equality is exactly the Jacobi identity.

All Lie algebras considered from now on are over the field of complex numbers C.

Ezample 3. If L is an algebra of dimension n, then the subspace Der(L) of gl,(C), con-
taining the n x n matrices corresponding to the derivations of L is a Lie subalgebra of
gl,,(C). Indeed if f, g € Der(L) then for all z,y € L,

[f, 9] (zy) =
f9(zy) — gf(zy) = f(9(x)y +29(y)) — g(f(x)y + 2f(y)) =
fg(@)y + g(2) f(y) + f(x)g(y)) + 2 f(9(y))—
9(f(@))y = f(x)g(y) — 9(x) f(y) — zg(f(y)) =

[f, 9] (x)y + = [f, g] (y).

Therefore [f, g] € Der(L) and Der(L) is a Lie subalgebra of gl,,(C)
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If S C L, then the Lie subalgebra spanned by S is the minimal Lie subalgebra of L
containing the set {x : x € S}. For S1, S5 C L we denote by [S], Sa] the Lie subalgebra of
L spanned by {[z,y] : © € Sy,x € Sy}. Therefore if L' is a vector subspace of L then L’ is
a Lie subalgebra of L if [L/, '] C L', while it is an ideal of L if [L,L'] C L'. If Ly, Ly are
ideals of L then, from the Jacobi identity, it follows that [L;, L] is also an ideal of L. The
ideal [L, L] of L is called the derived algebra of L and the Lie algebra L is called abelian

if its derived algebra vanishes. The derived series of L is the decreasing series of ideals
LO =L, LY = [LO LO] § > 0.

The Lie algebra L is called solvable if L*) = 0 for some k& € N while it is called simple
if it is not abelian and has no non trivial ideals (i.e. no ideals other than 0 and L). The
radical, rad(L), of L is the maximal solvable ideal of L.

The next lemma is an immediate consequence of the definitions.
Lemma 5. Let L be a Lie algebra. Then the following are equivalent
i) The radical of L is trivial, rad(L) = 0.
ii) The Lie algebra L has no nontrivial abelian ideals.

Proof. Tf I is an abelian ideal of L then I is solvable and hence rad(L) D I. Therefore
i) = i). Conversely if I = rad(L) # 0 and I® = 0 with & minimum then I*~Y is a

nontrivial abelian ideal of L. O

Ezample 4. Let L be the Lie algebra sly(C) with basis e, f, h as in example 2, Then we
have the relations le, f] = h, [e,h] = —2e, [f,h] = 2f. If [ is an ideal of L and e € I
then [e, f] = h € I and [3f,h] = f € I. Similarly if f € I or h € I we deduce that
e, f,h € I and therefore I = L. If x = Ae + \of + A3h € I then [[e,x] , %e} = )\9e and
[1f. [z, f]] = Xaof. Therefore I = L and we conclude that L is simple, rad(L) = 0 and

2
that L*®) = [ for all k € N.

Definition 6. The Killing form k£ : L x L — C of the Lie algebra L is the bilinear map
defined by
k(x,y) = tr(ad, ady).

Proposition 1. For a Lie algebra L the following are equivalent.
1. The radical of L is trivial, rad(L) = 0.
2. The Lie algebra L is the direct sum of finitely many simple Lie algebras.

3. The Killing form on L is nondegenerate.

19



The equivalence of 1. and 2. is a theorem of Weyl while the equivalence of 1. and 3. is
a theorem of Cartan known as Cartan’s second criterion. For a proof of this proposition

see [?7, 7, 7].

Definition 7. A Lie algebra satisfying one of the properties of proposition (1} is called

semisimple .

From now on all Lie algebras are assumed semisimple. An element x € L is called

semisimple if the linear map ad, is diagonalizable.

Definition 8. A Lie subalgebra H of a Lie algebra L is said to be a Cartan subalgebra if

it is abelian, every element x € H is semisimple and it is maximal with these properties.

In the following we give some basic properties of semisimple Lie subalgebras

All Cartan subalgebras of L have the same dimension known as the rank of L. Let H
be a Cartan subalgebra of L. A root of the Lie algebra L is a nonzero function o € H* such
that for all h € H, a(h) is an eigenvalue of ad;, corresponding to a common eigenvector
x € L. We denote by L, the weight space L, = {x € L: [h,z] = a(h)z for all h € H}.
For all roots a € H*, dim(L,) = 1.

The Cartan subalgebra is a maximal abelian subalgebra, therefore if « =0, L, = H.
The set of the roots of L is denoted by R. The Lie algebra L is decomposed as

L=H& & L. (2.1)

acER

The above decomposition is known as the root space decomposition.
Let X, € L, be nonzero. Then L, = span(X,) and [h, X,| = a(h)X, for all h € H
and a € R. If a, € R are such that a + 8 € R then

[h’ [XOM Xﬂ“ = [Xa’ [h> Xﬁ]] + Hh> Xa] >XB] =
(a(h) + B(h)) [Xa, Xp] € Lasg,

and therefore [Lq, Lg] C Loyp.

The roots R generate H* as a vector space over C. The Killing form on H is nonde-
generate and defines an inner product, denoted (,), on the vector space H* as follows.
For a € H* define h,, to be the element of H defined by the relation

k(h, ha) = a(h), Vh € H.

If a, 5 € H* we define («, ) = k(ha, hg).
The set R, of the roots of L satisfies the following properties.

1. It spans H* as a vector space over R.
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2. If « € R then ka € R if and only if k = +£1.

3. Forall o, 8 € H, (o, 8) = 2(%) A

4. If o« € H and s, is the reflection defined by the relation
So(7) = — (x,0)a,

then s,(R) = R.

Therefore R is a root system in the sense of section 2.1} It can be proved that if R is a
crystallographic root system then it is the root system of some finite dimensional complex
semisimple Lie algebra (see [?, 7, 7, ?]).

The root space decomposition can be rewritten as

L=H® @Ly,=H® & (La®L )=L" ®HSL", (2.2)

a€R acRt

where L = @ L_j,and LT = & L,.
aERt aERT

The decomposition is known as triangular decomposition of the Lie algebra L
because LT can be represented by upper triangular matrices and Lt by lower triangular
matrices.

Let IT = {ay, s, ..., a,} be a set of simple roots of the Lie algebra L (i.e. a set of
simple roots of the root system R of the Lie algebra L, see section and let W be the
group generated by II. The group W is called Weyl group of the Lie algebra L.

Definition 9.

1. If a, 8 € R and a + 8 € R define N, g by the relation
[Xa, X5] = NosgXais-

If a+ 3 ¢ R we define N, g =0

2. The a-string of roots through £ is the sequence of roots
g—ra,f—(r—1Da,....0,...,0+ qu

where 8 +ia € Rforalli = —r,—r+1,...,qand 8 — (r + 1), B+ (¢ + 1)a € R.
For a proof of the following two propositions see [?, 7, ?]
Proposition 2. The elements X, can be chosen so that

) (X, X_o] = ha.

21



ii) If a, B are roots with 5 # ta and B —ra, ..., 3 + qa is the a-string through 5 then

o+ B

NZg=q(r+1)—s—
o = D g

Proposition 3. If o, 3,a + 8 € R then
gla+ Bl = (r+ )8

Therefore we have the following theorem.

Theorem 4 (C. Chevalley). Let X, be chosen as in proposition . Then the basis
{ho; 1 =1,2,...,n}U{X, : a € R}

satisfies
1. [hay hay] =0 fori# j.
2. [ha;, Xo) = (o, i) X,
3. [ Xa, X 0] = ha.
4. Ifa+BeR, [Xo Xg] ==%(r+1)Xays.
5. Ifa+ S &R and a+ f #0 then [X,, Xg| = 0.

Definition 10. A basis satisfying the properties of theorem [4] is said to be a Chevalley

basis.

There is a matrix and a diagram associated to each complex semisimple Lie algebra
known as the Cartan matrix and the Dynkin diagram respectively. These are of particular
interest since they are used for the classification of the simple Lie algerbas. We can define
the notion of isomorphic root systems and then one shows that two root systems are
isomorphic if and only if they have the same Dynkin diagram (or equivalently the same
Cartan matrix). Also if two Lie algebras have isomorphic root systems then they are
isomorphic. Therefore for the classification of simple Lie algebras is sufficient to classify
the connected Dynkin diagrams (it can be shown that a Lie algebra is simple if and only
if its Dynkin diagram is connected), or equivalently the indecomposable Cartan matrices.
It turns out that the Dynkin diagrams associated with the simple Lie algebras are four
infinite families (where the associated Lie algebras are known as the classical simple Lie
algebras) A, B,, C,, and D,, and five exceptional cases (where the associated Lie algebras

are known as the exceptional simple Lie algebras) Fg, Er, Es, F)y and G.
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Definition 11. Let II = {ay, ag,...,a,} be a set of simple roots for the root system of a

semisimple complex Lie algebra L.

e The integers C; ; = (a;,aj) = 225:99) 416 the Cartan integers of the Lie algebra L.

(0vj,045)

e The matrix C' = (C;;) is the Cartan matrix of the Lie algebra L.

e The graph I' with n vertices V = {vy,...,v,} and C; ;C;,; edges between the vertices
1,7 is the Coxeter-Dynkin diagram of the Lie algebra L.

e The Dynkin diagram of the Lie algebra L is the Coxeter-Dynkin diagram of L where
whenever we have multiple edges between two vertices v;, v;, we put an arrow point-
ing to the vertex v; if the root ¢ is shorter than the root «;, or we put an arrow

pointing to the vertex v; if the root o is longer than the root «;.

Now we give a linear representation of the four classical Lie algebras whose root systems
are of type A, B,,C, and D,, (see [?, ?], see also section . We also present the
Cartan matrices and the Dynkin diagrams associated with these Lie algebras. By a linear
representation we mean that we view our Lie algebra as a Lie subalgebra of the general
linear algebra gl,,(C') of n x n complex matrices with the usual Lie bracket [z, y| = vy —yz.
All Lie algebras will be subalgebras of the special linear Lie algebra (the one with root
system of type A,). There will be of the form glg(n,C) for a suitable matrix S, where

glg(n, C) is described in the next lemma.

Lemma 6. Let S be an invertible n X n complexr matrix. We define
glg(n,C) = {M € gl,(C): M + S*M*S = 0}.

Then the vector space glg(n,C) is a Lie subalgebra of the special linear Lie algebra sl,(C)

of the traceless n X n complexr matrices.

Proof. First, if M € glg(n,C) it follows that
tr(—M) = tr(ST'MTS) = tr(M) = tr(M) =0
and therefore M € sl,(C). Since for all M, N € glg(n,C), we have

STHM,N"S = STYNTMT — MTNT)S =
STINTSS'tMTS — ST*MTSSTINTS = — [M, N]

it follows that glg(n,C) is indeed a Lie subalgebra of sl,,(C). O
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In the next lemma we show that if the matrices Sy, Sy are congruent (i.e. P'S1P =S,
for some invertible matrix P) then the Lie algebras glg (n,C) and glg, (n, C) are isomor-

phic.

Lemma 7. Let S1, S5 be two invertible congruent n xn complex matrices; i.e. P'S;P = Sy

for some invertible matriz P. Then the homomorphism
¢ : glg, (n,C) — glg,(n,C), M — P"'MP

is an isomorphism of Lie algebras.

We denote by E;; the n x n matrix with zeros everywhere except in the position 4, j
where it has 1. We denote by A,, the n x n matrix A, = > " | E; ,4+1-; with ones on the
antidiagonal and zeros elsewhere. Let A = (a; ;) be an n x n matrix. The per transpose of
the matrix A is the matrix A,ATA,, and is denoted by AP, The i, j entry of the matrix
APT S @y i1 jpp1-i- We say that the matrix A is per symmetric if AP7 = A and we say
that the matrix A is per skew-symmetric if AP = —A. Equivalently the matrix A is per
symmetric if it is symmetric with respect to its anti diagonal (i.e. a;; = apt+1—jnt+1-; for
all 1 <i,7 < n) and it is per skew-symmetric if it is skew-symmetric with respect to its

anti diagonal (i.e. a;; = —@p+1—jn+1—i for all 1 <i.j <n).

Simple Lie algebra of type A,

The simple Lie algebra with root system A, is the special linear Lie algebra s, 1(C),
the vector space of the traceless n 4+ 1 x n 4+ 1 matrices. The root system A, with base
IT = {a1,09,...,0,} contains the roots £(a; + a1 + ... + ;) forall 1 < i < j < n.
The Lie algebra sl,,1(C), as a vector space has a basis containing the matrices E; ; for
1 <14 # j <nand also the matrices E;; — Fjy1,41, ¢ = 1,2,...,n. A Cartan subalgebra H
of the Lie algebra sl,,1(C) is the subalgebra spanned by the diagonal matrices in sl,, 1 (C),

Ez',z' — Ei—l—l,i—l—lu 1= 17 2, e, i.e.

n+1 n+1
H= {Z)\E D> A= 0} :
=1 =1

The rank of the Lie algebra sl,, 1 (C) (i.c. the dimension of H)isn. It h =S NE; € H

then [h, E; j| = (A — Aj)E;; and therefore E; ; is a root vector corresponding to the root
a€ H*, h— )\ — ). The root system R of type A,, contains the roots

n+1
R = {Oél"j € H* &i7j<z )\,LEZ;L) = )\z — )\]} .

i=1
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A base of the root system A, consist of the roots
I={a;:=a;11:1=1,2,...,n}.

From it follows that the Cartan integers for the root system A, are

2, ifi =7,
2(ay, o)
Cij=—7——% = (a,a;) = —1, if |i — j| = 1,
T (ayq5) ’ i
0, if |i — 7] > 1.
Therefore its Cartan matrix is
2 -1
-1 2 -1
Ca, = (2.3)
-1 2 -1
-1 2
and its Dynkin diagram is
O O o - O0—=0
Simple Lie algebra of type B,
Let S be the 2n + 1 x 2n + 1 matrix of the form
0 0 A,
S=10 -2 0
A, 0 0

The simple Lie algebra with root system of type B, is the orthogonal Lie algebra 0g,,.1(C)
of the square 2n + 1 x 2n + 1 matrices M which satisfy M + S™'MTS = 0 or equivalently
02,4+1(C) = glg(n,C). The Lie algebra L = 04,,+1(C) contains the matrices M of the form

A 2A,w B
M= |7 0 wl |,
C 2A,v D
where D = —APT | the matrices B and C are per skew-symmetric matrices and v, w are

column vectors of size n. The dimension of L is n(2n + 1) and a basis of L contains the
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matrices

Hy, =FEi; — Eopto_ionto—1,1=1,2,....n,
Xaitotan = 2Fi i1 + Enpiongo-i, 0 =1,2,....n,
X gimman = —2E5n 19 iny1 — Epg1s, 1 =1,2,...,m,
KXaitoa; = Bij — Eanyojonio—i, 1 <1< j <,
X vimica; = —Eji+ Eopgaignio—j, 1 <1< j <,
Xeitota;_1+20+..42an = Fignio—j — Bjonia—i, 1 <1< j <n,

X timomaj1—205——20n = —Fongoji+ Fopra iy, 1 <1< j <n.

A Cartan subalgebra H of the Lie algebra 0s,,1(C) is the subalgebra spanned by the
diagonal matrices in 09,.1(C), H,,, i = 1,2,...,n. The rank of the Lie algebra 0g,1(C)
is n.

If h =" \iH,, € H then [h, X,] = (a(h))X, where a € H* is the corresponding
root and «(h) is determined by the relations (J; ; is the Kronecker delta)

Oéi(Haj) = (SiJ’ — 5i+1,j7 1= 1,2, e, — 1 and Oén(Haj) = 5j,n'

Therefore X, is a root vector corresponding to the root & € H*. A base of the root system
B,, consist of the roots
O={a;:i=1,2,...,n}.

From it follows that the Cartan integers for the root system B, are
2, if i = 7,
= (agaj) =4 —1, if|i—j|=1, foralll<i,j<n-—1

0,ifli—j]>1
and

Ci7n:Cn,i:0, for 1 S’LS’H,—Q,
Cn,n = 27
Cnfl,n = 2Cn,n71 = —2.
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Its Cartan matrix is

2 -1
-1 2 -1
Cp, = (2.4)
-1 2 -1
-1 2 =2
-1 2
and its Dynkin diagram is

O O o - OO0

Simple Lie algebra of type C),

The simple Lie algebra with root system C,, is the Lie algebra sp,,,(C) = glg(2n, C) where

S_( 0 An>‘
A, 0

We call it the symplectic Lie algebra. Note that sp,,(C) contains the 2n x 2n matrices of

S is the matrix

the form
A B
C D)’
where D = —AFT and the matrices B and C are per symmetric. The dimension of this
Lie algebra is W and a basis contains the matrices
Hy, =Ei; — Eony1ioni1-1, 1 =1,2,...,n,
X2ai+...+2an71+o¢n - Ei,2n+1—i7 1= 1a 27 sy Ny
X—Qai—...—Qan_l—an = _E2n+1—i7i7 1= L 27 -y

KXaitota; = Bijr1 — Eonjonr1-i, 1 <1< j <,
X vimvca; = —Ejpi+ Eonp1ionj, 1 <0< j <,
Xeitotaj 14204 A 2an—14+an = Bignr1—j + Fjon1-i, 1 <1< j <n,

X vimomaj1-205——2an_1—an = —Fony1-i5 — Bong1-ji, 1 <1< g <n.

A Cartan subalgebra H of the Lie algebra sp,,(C) is the subalgebra spanned by the
diagonal matrices in sp,,, (C), H,,, i = 1,2,...,n. The rank of the Lie algebra sp,,(C) is

n.
If h =" \iH,, € H then [h, X,] = (a(h))X, where a € H* is the corresponding
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root and «(h) is determined by the relations (6; ; is the Kronecker delta)
Oéi(Ha].) = 51',1' — (51'4_173', 1= 1, 27 e, — 1 and Oén(Haj) = 25j,n‘

Therefore X, is a root vector corresponding to the root &« € H*. A base of the root system

C,, consist of the roots
O={a;:i=1,2,...,n}.

From it follows that the Cartan integers for the root system C,, are
2, if i = j,

= (agaj) =4 —1, if|i—j|=1, forall1<i,j<n-—1
0, if |i — j| > 1

and

Ol,n:Cn71:O,v1§Z§Tl—2,
Cn—l,n—l = Cn,n = 27 Cn,n—l = 2Cn—1,n = —2.

Therefore its Cartan matrix is the transpose of the Cartan matrix of the root system of
type B,
Ce, = an

and its Dynkin diagram is

O O o - OO0

Simple Lie algebra of type D,

The simple Lie algebra with root system D,, is the orthogonal Lie algebra o0s,(C) =

(0
A, 0

The Lie algebra 02,(C) consists the 2n x 2n matrices of the form

¢ 5)

glg(2n,C) where S is the matrix
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where D = —APT and the matrices B and C are per skew-symmetric. Its dimension is

2n—1 . ) i
% and a basis contains the matrices

Hai = Ezz - E2n+27i,2n+271: 1=1,2,...,n,
oni+...+an,2+an = Ei,nJrl - En,2n+17i7 1= 17 27 e, 27
X—ai—...—anfg—an = _En+1,i + E2n+1—i,n; 1= ]-7 27 s = 27
onn - En—l,n—H - En,n+2a
X—ocn = _En+1,n—1 + En+2,na
KXaita; = Bijr1 — Eonjons1-i, 1 << j <,

X vimoma; = —Ejpi+ Eonpiion-—j, 1 <1< j <,
Keitotaj 14205+ A2an—stan_1+an = Biony1—j — Ejonr1-, 1 <1< j <,

Xfaif...fozjflf2a]~7...72an,27an,1fan = _E2n+17j,i + E2n+1fi,j7 1 < { <J <n.

A Cartan subalgebra H of the Lie algebra 0s,41(C) is the subalgebra spanned by the
diagonal matrices in 09,.1(C), H,,, i = 1,2,...,n. The rank of the Lie algebra 0g,1(C)
is n.

If h =" \iH,, € H then [h, X,] = (a(h))X, where a € H* is the corresponding
root and «(h) is determined by the relations (J; ; is the Kronecker delta)

CY,L'(HQJ.) = 51‘73' - 5i+1,j> 1= 1, 2, o — 1 and Otn(Haj> = 5]"”,1 + 5j,n-

Therefore X, is a root vector corresponding to the root & € H*. A base of the root system
D,, consist of the roots
O={a;:i=1,2,...,n}.

From it follows that the Cartan integers for the root system D,, are
2, if i = j,

——'):(ozi,ozj): —1,if i —j| =1, forall1<i,j<n-1
0,ifli—j]>1

and

)

Cnfl,nfl = Cn,n = 2, Can,n = 2011,7172 = _17 Cn,nfl = Cnfl,n =0.
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Therefore its Cartan matrix is

2 -1
-1 2 -1
Cp, = (2.5)
-1 2 -1 -1
-1 2 0
-1 0 2
and its Dynkin diagram is
O O O

The Cartan matrices and Dynkin diagrams for the exceptional Lie algebras are

Simple Lie algebra of type Fjs

Its Cartan matrix is

2 0 -1 0 0 O
o 2 0 -1 0 0
-1 0 2 -1 0 0
(2.6)
o -1 -1 2 -1 0
o o0 0 -1 2 -1
o 0 o0 0 -1 2
and its Dynkin diagram is
O O O O O
Simple Lie algebra of type E;
Its Cartan matrix is
2 0 -1 0 0 0
o 2 0 -1 0 0
-1 0 2 -1 0 0
o -1 -1 2 -1 0 0 (2.7)
o o0 0 -1 2 -1 0
o o0 0 o0 -1 2 -1
0
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and its Dynkin diagram is

O O

D)
O
O
O

Simple Lie algebra of type FEs

Its Cartan matrix is

2 0 -1 0 0 0 O
0o 2 0 -1 0 0 O
-1 0 2 -1 0 0 O
O -1 -1 2 -1 0 0 O
(2.8)
o o o0 -1 2 -1 0 0
o o o o0 -1 2 -1 0
0O 0 O -1 2 -1
0O 0 O 0o -1 2
and its Dynkin diagram is
O O O O O O O
Simple Lie algebra of type F}
Its Cartan matrix is
2 -1 0
-1 2 =2
2.9
0o -1 2 -1 (29)
0o -1 2
and its Dynkin diagram is
O—OCO——"5050—=0

Simple Lie algebra of type G,

Its Cartan matrix is
2 (2.10)
-3 2 '
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and its Dynkin diagram is

(}$@
Many authors prefer to choose different matrices S than the ones we give here and
get isomorphic representations of the classical Lie algebras (see lemma . We prefer the

representations given in [?, ?]. However the most common representations are given (see
for instance [?, ?]), for the case of the Lie algebra of type B,,, by the matrix

1 0 0 0 0 A,
00 I,|=P"[ 0o -2 o0]|P
0 I, 0 A, 0

where P is the invertible matrix

0 A, 0
P=|d o0 o0
0 0 I

n

For the Lie algebra of type C), by the matrix

where P is the invertible matrix

A
P = n 0 .
0 I,
For the Lie algebra of type D,, by the matrix
0 I, 0 A,
= pT P,
I, O A, 0

where P is the invertible matrix
A, 0
0 I,/

The finite dimensional simple Lie algebras are classified via their root system. All data
of the root system is encoded in the Cartan matrix, or in the Dynkin diagram.
Cartan matrices can be defined abstractly.

Definition 12. A Cartan matrix is an n X n-integer matrix C' which obeys
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Ci,i = 27

CL]' =0= Cj,i = O, VZ,j

Cij <0, Vi#j,

detC' >0 .

Given a semisimple Lie algebra L with Cartan matrix C', then there is a set of generators
of L,
{xF b1 <i<n},

where z; € L,,,x; € L_,,, which are subjected to the Chevalley-Serre relations
o [hiv hj] =0,
[ [h“ I'j:] = i0i7j$;t,

o [z, 27] = dihi,

o (ad,)'"%(a5)) = 0.
The converse of the previous statement, is also true and is a theorem of Serre (see [?, ?7]).

Theorem 5 (J.-P. Serre). Let C' be a Cartan matriz and L the Lie algebra generated
by the generators {xf,hi : 1 < i < n}, which are subjected to the Chevalley-Serre rela-
tions. Then L is a finite dimensional semisimple Lie algebra and its Cartan subalgebra is

generated by h;, i =1,2,...,n.

Relaxing the last condition on Cartan matrices we obtain the so called generalized
Cartan matrices. Generalized Cartan matrices are classified into three disjoint categories,
finite, affine and indefinite (see [?] Chapter 4). Finite are the usual Cartan matrices associ-
ated with complex semi-simple finite dimensional Lie algebras, while affine and indefinite,
give rise to infinite dimensional Lie algebras.

An affine Cartan matrix is one for which det C' = 0 and each proper principal minor of
C is positive. Thus each (n— 1) x (n— 1) submatrix of C' obtained by removing an i*® row
and 7" column is a Cartan matrix. Chevalley-Serre relations on affine Cartan matrices give
rise to affine Lie algebras. This important subclass of generalized Cartan matrices is char-
acterized by the property that they are symmetrizable and the corresponding symmetric
matrices DC' are positive semidefinite.

With each affine Cartan matrix C' we associate a graph, which we also call the Dynkin
diagram. It is a connected graph with n vertices {vy,...,v,}, and C; ;C;; edges between

the vertices v;,v; for i # j. In case C; ; < C;; we put an arrow in edge (v;, v;) pointing to

33



v;. For an affine Cartan matrix it is customary to enumerate the vertices as {vg, v1, ..., v,}
so that the corresponding Dynkin diagram has n + 1 vertices.

Similar to root systems there are the so called affine root systems. We will not give
the general definitions but instead we will describe how from an irreducible root system of
type X we obtain an affine root system of type X™). From this root system we define an
affine Cartan matrix C' and an affine Dynkin diagram and therefore we obtain an affine
Lie algebra. These are the untwisted affine Lie algebras.

Let R be an irreducible root system on the Euclidean space V' of type X. Let II =
{a1,as,...,a,} be a base of R and « its highest root. In the Euclidean space V' x R

(with inner product ((vy,r1), (ve,r2)) = (v1,v2) + 71172) consider the set

R ={(a,i):i€Z,(a,i) # (0,0)}.

This set is called the affine root system of type X™). As in the case of root systems we

can show that the set
I = {dy = (—ap, 1), d; = (1,0),ds = (a2,0),. .., = (0, 0)},

is a base of R, in the sense that every element of R is a linear combination of elements of
II where all coefficients are either non negative or non positive. This follows from the fact
that for every root « € R, a9 — a € R™.

The affine Cartan matrix associated to the root system R (of type X (1)) is the n +
1 x n + 1 matrix C' defined by C;; = 2((040;(3;)), 1,7 = 0,1,...,n. We can easily verify

that this matrix is indeed an affine Cartan matrix in the sense of definition 12 The

affine Dynkin diagram of type X is the graph with n 4 1 vertices {vg,vy,...,v,} and
C;,;C;; edges between the vertices v;,v;. If C; ;C;; > 1 we put an arrow pointing to v; if
(@;,q;) < (aj;,q;) and to v; if (@, a;) > (a;, ;). The Lie algebra defined by the affine
Cartan matrix C is called untwisted affine Lie algebra of type X (1.

Next we display all the affine Dynkin diagrams. The corresponding affine Cartan
matrices are presented in chapter [3 The black nodes correspond to the root aj.

Dynkin Diagrams for affine Lie algebras
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2.3 Chebyshev Polynomials

There are several kinds of Chebyshev polynomials which all play important role in modern
developments (polynomial approximation, orthogonal polynomials, numerical approxima-
tion). We will show that these polynomials can also be used in the theory of Lie algebras
for the explicit calculation of the Coxeter polynomials of the simple Lie algebras over C.

The Chebyshev polynomials of first and second kind (denoted respectively 7,, and U,,) are
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defined by

2¢ 1 0 0
1 2x 1 0
0 1 22 0
T, (z) = % - det :
0 2¢ 1 0
o 0 -+ 1 22 2
o 0 --- 0 1 22
and
2 1 0 --- 0
1 22 1 --- 0
0O 1 22 --- 0
Up (z) = det :
0 2¢ 1 0
0o 0 --- 1 22 1
o o0 --- 0 1 22
The first few polynomials are
To(z) = 1 Up(x) = 1
Ti(z) = =x Uy (x) 2z
Ty(r) = 222 —1 Us(z) = 4a*—1
T3(x) = 4a®—3x Us(z) = 8z° —4x
Ty(r) = 8x*—8z*+1 Uyz) = 162 — 1222 + 1
Ts(x) = 162° — 2023 + 5z Us(z) = 322° — 3223 + 6x
Ts(zr) = 3225 — 4821 + 1822 — 1 Us(x) = 6425 — 80zt + 242% — 1.

Expanding the determinants with respect to the first row we obtain the recurrence
Fn+1 = QLUFn — Fn—1~

For the initial values Fy = 1, F; = x and Fy = 1, F; = 2z we get the Chebyshev
polynomials of first and second kind respectively.

For x = cos#, the trigonometric identities
2z cosnb = cos (n+ 1)0 + cos (n — 1)

and
2z sin (n + 1)8 = sin (n + 2)6 + cos nb,
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give
sin (n + 1)0
T = 0 = —. 2.11
w(x) = cosnb, U,(x) e (2.11)

Proposition 4. The Chebyshev polynomials of first kind T, (z), satisfy

T(=z) = (=1)"Tu(x)
T.(1) 1

Ton(0) = (=1)"
Tgn_l(O) - O,

while the Chebyshev polynomials of second kind U, (x), satisfy

Un(—2) = (=1)"Un(2)
Un(1) = n+1
U2n(0) = (_1)n

U 1(0) = 0.

Proof. All properties are easily verified for n = 0,1. So let n € N with n > 2.
If Ti.(—z) = (=1)*Ty(z) for k =n —2,n — 1 then
T.(—z) = =22T, 1(—x) — T,,_o(—2x) =
(—1)" (22T 1(2) — To5(@)) = (~1)"To(a).
If T,(1) = Ty—1(1) =1 for k =n — 1 then T,,(1) = 2T (1) — Tj—1(1) = 1.
If Tgk(O) = (—1)k and Tgk_1(0) = 0 then T2k+1(0) =0- TQk(l) - Tgk_l(l) = O, while if

Tgk(O) = (—1)k and T2k+1(0) = 0 then T2k+2(0) =0- T2k+1<1) — Tgk(l) = (—1)k+1.
The proof of the properties for the U,, polynomials is similar. m

In addition, (see [?]), using the formulas (2.11)) we can easily find the roots of the

Chebyshev polynomials.

T,(z) = 2"—1j]i[1 (:p — cos (W))

and

U, (z) = znﬁ (:1:' ~ cos (nj—:—Tl)) |

j=1

In several cases it is useful and convenient to express the Chebyshev polynomials in
terms of the monomials z™. In our cases it is more convenient to express them in terms
of the polynomials (1 — z)™ (see propositions (12| to . In the next proposition we write
the Chebyshev polynomials explicitly in terms of powers of (1 — x).
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Proposition 5. The Chebyshev polynomials of first and second kind are expressed in terms

of powers of (1 —z) as

n

To(z)=n) (-2)

2 )

(Ai=D i s 0), (2.12)

and

2j +1

Un(z) =Y (~2) (" A 1) (1— ). (2.13)

§=0
Proof. The proof of these formulas is by induction using the three term recurrence relation
of the Chebyshev polynomials. We prove only the formula for the 7}, polynomials since
the proof for the U, polynomials is similar.

The polynomials 7;, satisfy the recurrence relation
T,(1—2)=2(1—-2)T,-1(1 —2) = T,—2(1 — 2).

Therefore we only need to prove that

(n+k—2) (n+k—3)! (n+k—3)!

2(n—1 — —(n—2 =
oy s 177 B Gl ey 117 Rl e prpy g ST DY 1
(n+k—1)!
=Rk
which is a straightforward verification. O]

2.4 Minimal polynomials of 2008%7”
A complex number w of order n is called a primitive n'" root of unity, e.g. e is a

k h

primitive n'" root of unity. If w is a primitive n'® root of unity then w* is a primitive n'

root of unity if and only if ged(n,k) = 1. Since the root e produces all n' roots of

unity (i.e. e%nm, k=0,1,2,...,n — 1 are all the n'" roots of unity) it follows that there

are exactly ¢(n) primitive n'" roots of unity where ¢ is Euler’s totient function. Primitive
n™ roots of unity are conjugate algebraic integers (i.e. their minimal polynomial over Z
is the same). This polynomial is what we call n*® cyclotomic polynomial.

Let w be a primitive n'" root of unity and ®, () its minimal polynomial. Then
D, (z) = (z — M) (@ — W) (2 — whom),

where 1 < ki, ka, ..., kyn) < n are the integers relatively prime to n. The polynomial

P, (z) € Z[z] is the n'™ cyclotomic polynomial. From w*™ — 1 = 0 we conclude that the
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polynomial ®,,(z) divides the polynomial 2*™ — 1, Vk € N. In fact

2" — 1 =[] ®alx). (2.14)

dln

Following Lehmer [?], using cyclotomic polynomials we can derive the minimal poly-

nomials W, of the algebraic integers 2cos 27 where ged (k,n) =1 (for n > 2). The

n ?

polynomial ®,,, being reciprocal (i.e. ®,(z) = 2*™d, (%)), it can be written in the form

n 1
O, (x) =250, (m + —) , (2.15)
xr

for some monic irreducible polynomial ¥, with integer coefficients and degree half of that

of ®,,. The irreducibility of ¥, is equivalent to the irreducibility of ®,,.
2km

2k e e th : 1 ]
For x = e », a primitive n™" root of unity, we have x + - = 2cos =*. From equation

(2.15)) we conclude that 2 cos %TW is a root of the irreducible polynomial ¥, and therefore

the polynomial U, is the minimal polynomial of 2cos 2%. Equation 1) can also be

n

used for the calculation of the polynomials W,,. The first fifteen polynomials ¥,, are

Uy(z) = z—2

Uy(z) = z+2

Us(z) = z+1

Uy(z) = =

Vs () > +r—1

Us(x) z—1

D w+ a2t —22 -1

g () 2 —2

Uo(z) = 2>—3x+1

Up(r) = 2> —z2—1

Uy(r) = a5+ a2t —42° - 322+ 32+ 1
Upp(r) = 22-3

Ui3(z) = 2%+ 2% — 5o —42% + 622 + 32 — 1
Uy(r) = a3 —22 -2z +1

Uis(r) = at—2% —42% +42 + 1.

Proposition 6. The roots of the polynomials ¥,, are

2k
2 cos —W, where ged(k,n) = 1.
n
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2.5 Coxeter groups

Weyl groups of Lie algebras belong to a larger class of groups known as Coxeter groups.
Definition 13.

e A Coxeter matrix with n vertices is an n x n symmetric matrix M = (m;;)1<i j<n

which satisfies m; ; € NU {+o0} and m, ; = 1 if and only if i = j.

e A Coxeter graph I', is a simple graph (i.e. a graph without multiple edges or loops)
with n vertices V = {vy,vs,...,v,} such that each edge (v;,v;) is labeled with an

integer m; ; > 3. If m; ; = 3 we usually don’t label the edge (v;,v;).

There is a one to one correspondence between Coxeter matrices and Coxeter graphs. If
M = (m; j)1<i j<n is a Coxeter matrix, the corresponding Coxeter graph is the graph with
n vertices V = {vy,v,...,v,} such that there is an edge (v;,v;) between the vertices v

and v; if and only if m; ; > 3. The edge (v;,v;) is labeled with m, ; if and only if m; ; > 4.

Definition 14. The Coxeter group of a Coxeter matrix M (or of the corresponding Coxeter

graph) is the group W with presentation
W = <817 827 LIRS STL ) (stj)mld = 1>

Weyl groups of Lie algebras are important examples of Coxeter groups. If W is the
Weyl group of a Lie algebra with Cartan matrix C' = (¢;;)1<ij<n then W is a Coxeter
group with Coxeter matrix M = (m; j)1<; j<n Where m;; = 1foralli=1,2,...,n and the

integers m; ; for ¢ # j are defined by

My | CijCi
2 0
3 1
4 2
6 3

Let W be a Coxeter group with Coxeter matrix M. We define a bilinear form B on

the real vector space V' with basis {e;,es...,¢,}, as

77
Blej,e;) = — .
(€i,€5) cos (mi7j>

Let 0; : V — V be the involution defined by

oi(v) =v—2B(v,e;)e;, v EV. (2.16)
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The group generated by the involutions o;,7 = 1,2,...,n is isomorphic to the Coxeter
group W.

It is known that the Coxeter group W is finite if and only if the bilinear form B is
positive definite (see [?, ?]). The affine Coxeter groups are the infinite Coxeter groups for
which the bilinear form B is positive semidefinite.

The finite Coxeter groups are classified as follows (the subscripts denote the number
of the elements of the set S)

An, BCna Dna E67 E7’ ES: F4, G2a H?)a H4a Iém)

The corresponding Coxeter graphs are the following.

Coxeter graphs of finite Coxeter groups

Ay

O O o - O———=20
BC,,

4

O O O O——O
D,

O O O
Eg

O O I O O
E~r

O O I O O O
Es

O O O O O O O
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Fy

4
O O O O
G:
6
O——O
Hs
5
O O O
H,
5
O O O O
L™
m
O——=0O

The Coxeter groups A,,, BC,,, D,,, Fs, E7, Eg, Fy, G5 are the Weyl groups of the finite
dimensional complex simple Lie algebras (see section .

The affine Coxeter groups are

An7 B~n7 ény ﬁn: Eﬁa E?a ES: F47 éQ-

The corresponding Coxeter graphs are the following.

Coxeter graphs of affine Coxeter groups

A,
O ®
B,
4
0 5 O o
Cn 4 4
O O o - O0—O0
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Er
O—O0—0—0—0—0—0
Eq
ooooofioo
F, ,
O—-O0—-O0—-0—0
G>
6
O—-O0——0
A,
©¢
0—>—0

All these, except A; are the affine Weyl groups of the affine Lie algebras.

Let W be a Coxeter group, V a vector space over R and o; : V' — V|, the involutions

defined by ([2.16).

Definition 15. An element s € W of the form

0O =0x0n...0n

n

where m € S, is a permutation of n elements is known as a Coxeter element (or Coxeter
transformation) of the Coxeter group. The characteristic polynomial of the element o is

called Coxeter polynomial of the Coxeter group.

The next proposition shows that when the Coxeter graph of the Coxeter group is a

tree then any two of the Coxeter elements are conjugate in W (see[?])

Proposition 7 (H. S. M. Coxeter). Assume that W is a Cozxeter group with Cozxeter
graph U'. If " is a tree then any two Cozeter elements of the Coxeter system are conjugate
mn W.
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For the proof we need the following lemma.

Lemma 8. Suppose that T is a simple graph with n vertices V = {vy,vy...,v,} and edges
E = {(v;,v;) : there is an edge between the vertices v; and v;}. Suppose also that we have

an alphabet {s1, S2,...,8,}. In the set
A= {87'((1)871'(2) o Spn) T € Sn}

we define the equivalence relation generated by
1. Sp(1)Sn(2) " * Sn(n) ~ Sx(2)Sx(3) " Sx(1)

2. Sp(1) " Sn(@)Sa(itl) " Sm(n) ~ Sn(1) " Sn(i+1)Sa(i) " Sa(n) Jor all T € S, such that
(Uﬂ'(i)a U7T7;+1) ¢ €.
Then s ~ t for all s,t € A.

Proof. We assume without loss of generality that the vertices of I' are enumerated so that
v; is a leaf in the subgraph of I with vertex set {vy,vq,...,v;} (i.e. there is one and only
one vertex v; which is connected with v; with an edge). Let s = Sz(1)Sx(2) - Sx(n) € A.
We may assume that 7(n) = n and therefore s = s;(1)57(2) - * * Sr(n—1)5n-
If (Vz1y,vn) € &€ then (vr,v,) € € for alli =1,2,...,n and therefore

S ~ 371'(2) e Sw(n—l)snsw(l) ~ 871-(2) e SnSTl'(n—l)STr(]_) AU e AU

SnSn(2) « + - Su(n—1)Sx(1) ™~ Sn(2) - - - Sw(n—1)S7(1)Sn

It follows that if B = {s1,$2,...,8,-1} and ~ is the equivalence relation defined by the
subgraph I of I" with vertex set vy, vs,...,v,_1, then if §',¢ are words with the letters

S1,89,...,8,-1 and s ~' ¢, then s's, ~ t's,,. Using induction on n the lemma is proved. [J
As a corollary we obtain proposition [7]

Definition 16. Let W be a finite Coxeter group. The Coxeter transformation of W has

finite order h. The integer h is known as the Coxeter number of the Coxeter group.

Lemma 9. The Coxeter polynomial of the finite Cozeter group W is of the form

flx) = (@ =¢™) (@ =" - (2 =),

where 0 < m; < h and ¢ is an h'" root of unity.

Proof. Since the Coxeter transformation o of the Coxeter group W has finite order h
it follows that ¢" = 1 and therefore " — 1 = 0. We conclude that the characteristic

polynomial of ¢ divides the polynomial " — 1 and the result follows. O]
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Definition 17. The integers m; in lemma [J] are known as the exponents of the Coxeter

group.

Coxeter was the first one (see [?]) who studied the Coxeter transformations of the
finite Coxeter groups and observed that their eigenvalues have remarkable properties. For
example hn = |R| where R is the root system associated with the Coxeter group W. In

the case of the Weyl groups the order of W is equal to
(my+1)(ma+1)--- (m, +1).

If B =kiay + - + kya, is the highest root in R, then h =k + ko +--- + k, + 1.
All these and many other relations were proved later by B.Kostant in [?], by C. Chevalley
in [?], by R. Steinberg in [?] and other authors (see also [?]).

For an affine Lie algebra with affine Cartan matrix C' of rank n, the roots of the Coxeter
polynomial f(z) are in the unit disk. Thus, from Kronecker’s theorem (theorem [§)), the
polynomial f(x) is a product of cyclotomic polynomials.

Let V =R — span {ag, a1, ...,a,} and D a diagonal matrix with positive entries such
that CD is symmetric. The matrix C'D defines a semi-positive bilinear form (,) on V.
For o = Y7 zicy, (,.) = 01if and only if (29, 21, ...,2,) C = 0. Thus if (29, 21, ..., 2,) 18
a left zero eigenvector of C' and o = 31" | z;;, the induced bilinear form on V = V/(a) is
positive definite and corresponds to an n x n submatrix of C'. Therefore if ¢ : V. — V' is
a Coxeter transformation of the affine Lie algebra, the induced transformation on V has
finite order h. It follows that (¢ —1)(¢" — 1) = 0 and therefore the roots of f are h™ roots

of unity and we have the following proposition.

Proposition 8. The roots of f(x) are of the form
Qmjrri
{eT :m; € {0,1,.. .,h}}. (2.17)

Definition 18. The integers m; of the previous proposition are the affine exponents and

h is the affine Coxeter number associated with the Coxeter transformation o.

These numbers are uniquely defined for each affine Lie algebra except in the case of
A where we define them for each conjugacy class. Using the fact that the corank of the
Cartan matrix C'xa) is 1 and the relation between the polynomials p(z) and f(x) (for the
bipartite case) it follows that (x — 1)? | f(x) and (z — 1)*{ f(x). For the factor (z — 1)?

we define the associated affine exponents to be 0 and h.

Definition 19. For a Dynkin diagram I" with corresponding Cartan matrix C' we define
a weight function b : V(I') — N on the vertices of I'. If the vertex r; has only one
neighbor we define b(r;) =1—)_ ;2 Cij while if it has more than one neighbors we define
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b(ri) =—>_ i C; ;. For a Dynkin diagram I' not of type A,,, we define the branch vertex
r; to be the one which maximize b. For the case of A,,, n odd, we define the branch vertex
to be the middle one.

FExample 5. For the case of the Dynkin diagrams D,,, Fg, 7, Es the branch vertex is the
one which is the common endpoint of three edges. For the Dynkin diagram of type C,, the

branch vertex is the one which corresponds to the highest root.

Steinberg’s theorem [?, p.591 |, provides a relation between the affine exponents and
affine Coxeter number of an affine Lie algebra of type xWM #* AV and the exponents and

Coxeter number of the root system A,,.

Theorem 6 (R. Steinberg). Let II = {ay,as,...,a,} be the set of the simple roots of
the Lie algebra of type X,,. Define the branch root [ to be that root which corresponds
to the branch vertex of the corresponding Dynkin diagram. If we delete the branch root
the reduced system is a product of root systems A,. The Coxeter polynomial of XY s

f(x) = (z — 1)%g(z) where g(x) is the Cozeter polynomial of the reduced system.

Therefore from Steinberg’s theorem we conclude that the affine Coxeter number A is
the Coxeter number of the reduced system and the affine exponents are obtained using
the following procedure:

From the factor (z — 1)? | f(z) it follows that 0 and h are affine exponents. If Y appears

in the reduced system and m; is an exponent, i the Coxeter number of Y then %m; is
an affine exponent of X (.
Root system Affine Exponents Affine Coxeter number
AD 0,kj, 2k;, ..., jk;, jk;
nj,2n;, ..., (n—j)n,
B 0,1,2,3,...,2n,n 2n
B 0,2,4,...,22n —1),2n— 1 2(2n — 1)
oM 0,1,2,...,n n
Dy, | 0,2,4,...,22n—1),2n—1,2n — 1 2(2n — 1)
DY 0,1,2,3,....2n—2,n—1,n—1 on — 2
EY 0,2,2,3,4,4,6 6
EW 0,3,4,6,6,8,9,12 12
EM 0,6, 10,12, 15, 18, 20, 24, 30 30
FY 0,2,3,4,6 6
GV 0,1,2 2

Table 2.1: Affine Exponents and affine Coxeter number for affine root systems
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Example 6. For the root system Eél) the reduced system is A; x Ay x A4. The exponents of
Ay are 1,2,...,n and the Coxeter number n+1 (see [?]). We conclude that the affine Cox-
eter number is lem(2,3,5) = 30 and the affine exponents are 0,6, 10, 12, 15, 18, 20, 24, 30.

In table we list the affine exponents and the affine Coxeter number for the affine

Lie algebras. In the case of Ag), forj=1,2,..., VTHJ we have denoted k; = % and
J

n; = dij, where d; = ged(n+1, j). The affine exponents and affine Coxeter number of A
given in table[2.1] are those associated with the Coxeter polynomial (z/ — 1)(z"*1~7 —1).
nt1

For n odd and j = "3~ we have n; = k; = 1,d; = j and we obtain the case considered in

[?]. Note the duality in the set of affine exponents:
m; +m,_;=h, i=0,1,...,n, (2.18)

where h is the affine Coxeter number. This is a consequence of proposition [§]
The affine exponents, affine Coxeter number of X" and the roots of X, are related in

a mysterious way given by a theorem of Berman, Lee and Moody (see [?, 7, ?]).

Theorem 7 (S. Berman, Y. S. Lee, R. V. Moody). Let IT = {ay, as, ..., a,} be the
simple roots of the Lie algebra of type X,, # A,, V = R-span(ay,as,...,a,) and B be

the branch root of X,,. Denote o) = 2(%0‘;,_) the coroots and way € V* the corresponding

weights. Write wgv = (v,-), v € V and let ¢ € N be the smallest integer such that

c-v € Z-span(ay,ay,...,q.). Then
n
_ LV
c-v= g mjo;
J=1

where m; are the nonzero affine exponents of X and the coefficient of 8V is the affine

Cozxeter number.

FExample 7. Removing the branch vertex of By we obtain the root system As x A; with

Coxeter polynomial g(z) = (22 + x + 1)(z + 1); the Coxeter polynomial of B is
fl@)=(z-1°@+z+1)(z+1).

The Coxeter number of A x A; is the affine Coxeter number of Bf), that is 3-2 = 6.
The roots of the Coxeter polynomial are 1,1, —1,w,w?, where w is a primitive third
root of unity. If ( = e’ then 1 = COw=2_-1=¢w? =¢"1= (% The numbers
0,2,3,4,6 are the affine exponents of Bfll) .
From the representation of the root system B, given given in section [2.1| we conclude
that the corresponding co-roots are af = e; — ;41 € R*, i = 1,2,3 and « = 2e4 (which

is the root system of type Cy). The branch root is the root as and the corresponding

47



co-weight is v = way = (1,1,1,0) € (R*)*. Now v does not belong to the co-root lattice
but 2v = 20y + 4oy + 6ay + 3ay does. Therefore for Bfll), ¢ = 2, the non zero affine
exponents are 2,3,4,6 and the affine Coxeter number is 6.

Ezxample 8. For the case of Dg with root system {aq, s, ..., ag} and branch root ay, it
can be easily verified that v = w,, = (1,1,1,1,0,0) = a3 + 2ay + 3as + day + 2as5 + 2a.
Therefore for Dél), ¢ = 1, the nonzero affine exponents are 1,2,2,2,3,4 and the affine

Coxeter number is 4.

The following proposition can be found in [?] and shows that the Coxeter polynomial

of a Coxeter tree is reciprocal.

Proposition 9 (S. Berman, Y. S. Lee, R. V. Moody). Let ' be a Cozxeter tree. The
characteristic polynomial xr(z) of the graph I' and the Coxeter polynomial I'(x) are related

in the following way
1
['(2?) = 2™xr (x - —) ,
x

where n is the degree of xr(x).

Proof. Let V(I') = {vy,vq,..., 0k, Ukt1,---,Vkrm} be the vertices of I' enumerated such
that if ¢, j < k or 7,7 > k then (v;,v;) € E(I'). Let o; be the Coxeter reflections associated
to v;, ie. if € = {e1,ea,...,€em} is a basis of the vector space V then o;(e;) = ¢; —

(20, ; — Aji)e;. Then with respect to the basis € the Coxeter reflection o; is given by the
matrix where its i*® row is the i*" row of the matrix A — I and its j** row is the j* row
of the identity matrix I. We see at once that o? = I for all i and that for 4,5 < k or

i, >k = 0;0; = 0, + 0; — I. Therefore we obtain the following relations

0109...0y =01 +03+ ...+ 0, — (k—1)1,

Ok4+10k42 -+ - Ok = Ok41 T Opq2 + ... + Ok — (m — 1)]

Let’s denote by C; the transformation oy05...0, and by Cs the transformation defined
bY Op10k42 - - - Oprm. 1t follows that C2 =1, C3 =TI and C} + Cy = A. We thus get

21 + C1Cy + G0y = (O + Cy)? = A2

If e*1,e*2, ... are the roots of the Coxeter polynomial of the graph I' then 2+e*' +e7%1, 2+
e*? + e *2 ... are the roots of y42(z). Since I' is bipartite the polynomial yr(z) is of the

form

xo(@) = (x—r)(@+r)(x—r)(x+ry)...= (2> —r2)(z* —7r3)...
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where r? = 2 + e + e %. It follows that

n 1
2 Xr (\/E‘f‘ 7z

(x2 — (ezl + e_zl) x+ 1) (x2 — (ez2 + e_‘”) x+ 1) c.=
(z—e)(z—e ™) (z—e?)(z—e)...=D(a).

>_(x2+(2_r§)x+1) (24 (2= D) +1)... =

We immediately get the following corollary.
Corollary 2. The Coxeter polynomial of a tree I is reciprocal.

The next two propositions shows how the Coxeter polynomial of two trees I'y, 'y and

the Coxeter polynomial of the tree I'” which is the join of I'y, 'y are related.

Proposition 10 (A. Boldt). Suppose that T is a tree which is the Coxeter graph of a
Cozeter group W. Assume that vy is a vertex on I', I'y is the tree obtained from T' by
adding an edge (vo,v1) and 'y the tree obtained by adding an edge (vi,ve) on I's. Then
the Cozeter polynomials I'(z),I'1(z),I's(z) of the Coxeter graphs T',I'1,T'y are related in
the following way

Fa(x) = (x 4+ 1) (x) — ().

The previous proposition (due to [?]) is a special case of the next one which is due to

to Subbotin-Sumin (see [?]).

Proposition 11 (V. F. Subbotin, M. V. Sumin). Lete = (vy,v2) € E(T') be a splitting
edge of the tree T that splits it to the simple graphs T'y and T'y. Assume that vy € V(I'y)
and vy € V(I'y). Then

[(x) = T1(2)Fa(x) — 2l (2)Fs ()

where Ty denotes the subgraph of Ty with vertex set V() \ {v;}.

Proof. We enumerate the vertices of I as V(I'1) = {uq, ug, ..., ux} the vertices of I'; and
V([y) = {ugs1, Ugta, ..., Uksm } the vertices of 'y, where vy = uy and vy = ugyq. Let
€ = €3 Uéy be a basis for the vector space V', where €; = {ey,es,...,ex} is a basis of
Vi and €3 = {ex11,€kr2,---,€rim} is a basis of V5. Also let o; be the Coxeter reflections
corresponding to u;. Therefore Ry = 0105 ...0% is a Coxeter transformation of I'y, Ry =
Ok+10k+2 - - - Okim 18 @ Coxeter transformation of I's; and Ry R is a Coxeter transformation

of I'. If we represent R, Ry and R as matrices with respect to the basis € we have

E I Ok
R— R1R2 _ Ql k,1 k k, :
Om,k [m El,k QQ
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where (); are the transformations R; restricted to V;, £; ; is the matrix with all entries zero
except the ¢, 7 entry which is 1 and 0;; is the ¢ X j zero matrix. The Coxeter polynomial

of T" is then given by

Evy—xly, F
[(x) = det(R — xlyp) = det <Q1 + Lrp — Tk k1 Q2 > ‘

El,k QQ - xIm
Subtracting the k + 1*® row from the & row we obtain

['(x) = det (Ql — ol ohka ) :

El,k Q2 — 1y,

Expanding the determinant with respect to the " row we deduce that

I(z) = [y (2)Dy(z) — 2Ty (2)To(x).

2.6 Mahler measure

This subsection is about the Mahler measure of integer monic polynomials and Lehmer’s
problem. For an excellent survey on this subject see [7].
Lehmer in [?], in order to construct large prime numbers, considers irreducible integer

monic polynomials. Let
f@)=a'+aq 10" + . tartag= (v —a)(r—ay)... (v — )

be an irreducible monic polynomial with integer coefficients. Lehmer defines the numbers

d
A(f) =[] (af = 1)
i=1
and
d
Qe(f) =[] (eF +1).
i=1
Since Ag(f) and Qy(f) are symmetric polynomials on the roots oy, as, ..., ag4, it follows
that they are polynomials on the coefficients ag, aq, ..., aq of f. Therefore the numbers

Ax(f) and Qi(f) are integers. These integers were introduced and studied by Pierce in
1916 (see [?]).

Lehmer was able to describe the prime factors of these integers and therefore to produce
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large prime numbers. Note that for f(x) = x — 2 the integers Ag(f) are the Mersenne
numbers which give rise to the Mersenne primes. In order to handle easily the integers
Ag(f), Lehmer was looking for polynomials such that Ag(f) increase as slow as possible.

For polynomials whose roots are not on the unit circle, the limit

AnJrl
A

lim ‘

n—oo

is a measure of the rate of growth of the sequence (A,), .. It can be easily seen that this

limit equals

An—&—l
A

lim
n—oo

d
= [ [ max{1, |as]}.
=1

For lack of something better, Lehmer used the quantity H?Zl max{1, |o;|} to measure the
rate of growth of the sequence (A,), .y, even when some of the roots of the polynomial f

were on the unit circle.

Definition 20. Given an integer polynomial
f(z) = agz? + ag_1z + . Faw Fag= (z— o)z — ) ... (2 — ),

its Mahler measure is )
M(f) = |ag| | [ max{1, |as]}.
i=1

Mahler in [?] generalized the definition of the “Mahler measure” to polynomials f of
several variables and called it the measure of f. Later Waldschmidt, Boyd and Durand
coined the term Mahler measure for this quantity.

It can be easily seen that the functions A, (f), Q,(f) and the Mahler measure M (f),
are multiplicative, ie. Au(fg) = Au(£)Au(g), Qulfg) = Qu(f)Qulg) and M(fg) =
M(f)M(g). Therefore it is reasonable to consider only irreducible polynomials. From
now on, unless otherwise said, all polynomials considered will be monic, irreducible with
integer coefficients.

Plainly, for every polynomial f we have M(f) > 1 while if f is cyclotomic M (f) = 1.

A classical theorem of Kronecker says that the converse is true (see [?, ?]).

Theorem 8 (L. Kronecker). If f is a monic irreducible integer polynomial with integer

coefficients then its Mahler measure equals 1 if and only if f is cyclotomic.

For a cyclotomic polynomial f, the sequences (A,(f)),cy and (Qn(f)),cy are fi-
nite. In that particular case, Lehmer, explicitly describes the sequences (A,(f)), ey and
(@Qn(f))nens and shows that they are of no importance for his purposes. Therefore he con-

centrates on the non-cyclotomic polynomials, or in other words, on the polynomials with
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Mahler measure greater than one. The following question, known as Lehmer’s problem,

arises.

Question. If € is a positive number, can we find a monic integer polynomial such that its

Mahler measure lies between 1 and 1 + €7

In other words Lehmer’s problem asks if Kronecker’s theorem can be strengthened.

The smallest known Mahler measure greater than 1 is
M(L)=1.17628....
This number is the Mahler measure of Lehmer’s polynomial
Lx)=a"+ 2%+ 2"+ 2+ 2%+t + 23 o 41

and is known as Lehmer’s number. Lehmer conjectured in [?] that Lehmer’s number is
the smallest Mahler measure of the non-cyclotomic polynomials. Both Lehmer’s problem

and conjecture are still unanswered.

Definition 21. Let f(z) € R[z] be a polynomial with real coefficients.
e The reciprocal of the polynomial f is the polynomial f*(z) = " f (%)
e The polynomial f is called reciprocal if f = f*.

An equivalent definition is that the polynomial f(x) = agr? +ag_ 12+ ax+a
is reciprocal if a; = a4_; for all i = 0,1,...,d. If « is a nonzero root of the polynomial f
then i is a root of the polynomial f*. Therefore the Mahler measure of the polynomials
f and f* is the same.

Definition 22. Let
f@) =2+ a0 + . Fartag= (v —a) ... (z— ag)

be a polynomial and suppose that only one of its roots, let us say ay, lies outside the unit

circle.

e The algebraic integer ay is called a Salem number if |o;| < 1foralli =1,2,...,d—1

and at least one |o;| = 1. In that case the polynomial f is called Salem polynomial.

e The algebraic integer oy is called a Pisot number if |o;| < 1 foralli =1,2,...,d—1.

In that case the polynomial f is called Pisot polynomial.
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Remark 2. If « is a root of f then the complex conjugate & of « is also a root of the

polynomial f and therefore both Salem and Pisot numbers are real.

Lemma 10. Let f be a polynomial of degree greater than 2 and suppose that only one of
its roots, let us say ag, lies outside the unit circle. Then f is a Salem polynomial if and

only if f is reciprocal.

Proof. If f is a Salem polynomial then there is a root a of f with |a| = 1. Since & = <

is also a root of f and f is irreducible it follows that f is the minimal polynomial of
the algebraic integer é It can be easily seen that the minimal polynomial of % is the
polynomial f* and therefore f = f*.

Conversely suppose that f = f*. Then if « is a root of f, é is also a root of f and
therefore only one root of f can lie inside the unit circle (since there is only one outside).

Hence, f is a Salem polynomial. O]
There are polynomials which are neither Salem nor Pisot. For example the polynomial

10

x —$8+x7

—®+ 2=z +1
is not a Salem polynomial. The polynomial
ot — x4+ 1

is not a Pisot polynomial. Both these polynomials have 2 roots outside the unit circle.

Siegel in [?] proved that the smallest Pisot number (that is the smallest Mahler measure
among the Pisot polynomials) is 6y = 1.3247 ..., root of the Pisot polynomial 23 — z —
1. Later Smith in [?] proves that 6, is the smallest Mahler measure among the non
reciprocal polynomials and therefore solves Lehmer’s problem and Lehmer’s conjecture
for this particular class of polynomials. Thus, to solve Lehmer’s problem it suffices to look
at reciprocal polynomials.

Salem in 1945 shows that every Pisot number is a Limit point of a sequence of Salem
numbers (see [?]). Therefore, from Siegel’s theorem, we conclude that for any M > 6,
there are infinite Salem numbers in the interval (1, M). In chapter {4 we define new Pisot

numbers and find sequences of Salem polynomials converging to them.
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Chapter 3

Cartan matrices and Coxeter

polynomials of Lie algebras

He (Wilhelm Killing) exhibited the characteristic equation of the Weyl group
when Weyl was 3 years old and listed the orders of the Coxeter transformation

19 years before Coxeter was born.—A.J.Coleman

3.1 Introduction

In this chapter we compute the characteristic and Coxeter polynomials of affine Lie alge-
bras. This allows us to compute the affine Coxeter number and the affine exponents of the
affine Lie algebras. For completeness we include the analog results for simple Lie algebras
following [?, ?]. We generalize the definition of the branch vertex of Dynkin diagrams
(definition to the case of the Dynkin diagram of type A,. With the generalization,
the two theorems, of Steinberg (theorem @ and of Berman, Lee and Moody (theorem
are applicable, to the case of the affine Lie algebra of type AlY.

3.2 Cartan matrices of the classical finite Lie algebras

3.2.1 Cartan matrix of type A,

Toeplitz matrices have constant entries on each diagonal parallel to the main diagonal.

Tridiagonal Toeplitz matrices are commonly the result of discretizing differential equations.
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The eigenvalues of the Toeplitz matrix

b «a
c b a
c b a
c b
are given by
)\j:b+2a\/gcosnjjl i=1,2....n, (3.1)

see e.g. [?, p. 59].
The Cartan matrix, Cy,, of type A, is a tri-diagonal matrix of the form (2.3). It
appears in the classification theory of simple Lie algebras over C.

Taking a = ¢ = —1, b =2 in (3.1) we deduce that the eigenvalues of A, are given by

: Jm
= 4sin® —F——
n+1 C 2(n+1)

Aj =2 —2cos 1=12...,n.

Let d,, be the determinant of C'y,. One can compute it using expansion on the first
row and induction. We obtain d,, = 2d,,_1 — d,,_s, di = 2, do = 3. This is a simple linear
recurrence with solution d,, = n + 1.

We conclude that

n . ]ﬂ'
4sin® ——— =n+ 1,
],1;[1 2(n+1)
or equivalently that
92 [Tsin? —2" = pn+1.
jl;[l sin 2n+ 1) n —+

Lemma 11. The characteristic polynomial p,(x) of Ca, satisfies

x
n = Un\5 — 1) ’
Pu(z) = U (2
where U, is the Chebyshev polynomial of the second kind.

Proof. We write the eigenvalue equation in the form det(z1l, — C4,) = 0 where [, is the
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n X n identity matrix. Explicitly,

x — 2 1
1 z—-2 1
det (x1, — Ca,) = det o —
1 -2 1
1 xr — 2
2(:7%8) 1
1 2 (452) 1
det :Un<§—1>.
1 2(%2) 1

Remark 3. Note that
pn(0) = Up(=1) = (=1)"Un(1) = (-1)"(n+ 1) ,

which agrees (up to a sign) with the formula for the determinant of A,,.

We list the formula for the characteristic polynomial of the matrix C's, for small values

of n.

pr) = z—2

p(r) = 22 —4dr+3=(z—1)(z —3)

p3(z) = 2% —62° 4+ 10z —4 = (z —2)(a® — 4z + 2)

pa(z) = 2t =823 +212? — 202 +5= (2> — 5x +5)(2? — 3z + 1)

ps(z) = 2°—102* + 362% — 5622 + 352 — 6 = (v — 1)(z — 2)(z — 3)(a? — 4z + 1)
pe(r) = 28 —122° + 552" — 12023 + 1262% — 562 + 7

pr(z) = 27— 142°% + 782° — 2202* + 33023 — 25222 + 84x — 8 .

Using the formula (2.13]) we prove the following.

Proposition 12. Let p,(x) be the characteristic polynomial of the Cartan matriz Cy, .

Then
“ n+g+1\
= E —1)tI J

Jj=0
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Proof. From the properties of Chebyshev polynomials (see section it follows that
U, (% — 1) = (-1)"U, (1 — %) Therefore from the formula 1’ we deduce that

e = 00 (1) = (7 )

J=0

3.2.2 Cartan matrix of type B, and C,

The Cartan matrix Cp,, of type B, is a tri-diagonal matrix of the form (2.4). Since the
Cartan matrix of type C,, is the transpose of this matrix we consider only the Cartan
matrix of type B,. Using expansion on the first row it is easy to prove that det(Cp,) = 2.

We list the formula for the characteristic polynomial of the matrix B,, for small values

of n.
p(z) = 2?2 —4dx+2
p3(r) = 23 =622 +92 —2= (v —2)(2* — 4z +1)
pa(z) = x*—8z% +20x? — 162 + 2
ps(x) = 2°—10z* + 352° — 502% + 252 — 2

= (z—2)(2* — 823 + 1922 — 122 + 1)

pe(r) = 28 —122° + 532" — 10423 + 8522 — 20z + 1
= (22 —4x +1)(z* — 823 + 202% — 16z + 1)

pr(z) = 27— 142% + 772° — 2102* + 29423 — 19622 + 492 — 2
= (z—2)(2% — 122° + 532" — 1042 + 8622 — 247 + 1) .

By expanding the determinant of the matrix 2z + Ag, with respect to the first row, we

obtain the recurrence

a(x) =22, @) =42" =2, ¢u1(2) = 22¢4(7) — a1 (@).

One may define go(x) = 2. The recurrence implies that ¢,(z) = 27, (z) where T), is the
b Chebyshev polynomial of the first kind.
Using the formula (2.12)) we obtain the following result.

Proposition 13. Let p,(x) be the characteristic polynomial of the Cartan matriz .
Then

n—1
)(29)

J=0
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3.2.3 Cartan matrix of type D,

The Cartan matrix Cp

n?

of type D, is a matrix of the form . Note that the matrix is
no longer tri-diagonal. Using expansion on the first row and induction it is easy to prove
that det (Cp,,) =

We list some formulas for the characteristic polynomial of the matrix Cp, for small

values of n.

pa(r) = 2P —dr+2=(x—2)?

p3(z) = 2% —622+ 100 —4 = (z — 2)(2* — 4o + 2)

pa(z) = 2 =8z +212? =20z +4 = (v —2)*(2* — 4o + 1)
ps(x) = a® —102* + 3623 — 5622 + 34z — 4

(z — 2)(2* — 823 + 2022 — 16z + 2)
pe(r) = 28— 1225 4 5521 — 1202 + 12522 — 522 + 4
= (x—2)*z* — 823+ 1922 — 122 + 1) .

By expanding the determinant of the matrix 221 + Ap,_ with respect to the first row,

we deduce the recurrence

@(r) =42%,  g3(2) =82 — 4w, guia(r) = 204, (2) — goor -

We may define ¢;(x) = 4x. It is clear that ¢,(z) = 42T, i(x) where T, is the n'®
Chebyshev polynomial of the first kind.

Proposition 14. Let p,(x) be the characteristic polynomial of the Cartan matriz .
Then

n—1 .
-2 - 2)
pn 2_1. E n+] )(TL—FJ )iL'j )
j=0

(n =7 —=DN(2j)!

Proof. From the formula p,(z) = ¢, (£ — 1) and (2.12) it follows that
n—1 z
pa(x) = 2(x = 2)(=1)"' T, (1 - 5) —

n—1
e
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3.3 Cartan matrices of the classical affine Lie algebras

3.3.1 Cartan matrix of type AS)

The Cartan matrix of type A is the matrix

CA%l) =

2

-1

-1
2

0

-1

(3.2)

We list some formulas for the characteristic polynomial of the matrix for small values

of n.

z(x® — 7% + 14z — 7)?

ps(z) = 28— 1627 + 1042°% — 35225 + 6602* — 6722° + 33622 — 642 =
(r —4)(r — 2)*(2? — 4o +2)? .

We define the sequence of polynomials ¢, (z) in the following way

qn(x) = det

By expanding the determinant we obtain the following formula for ¢,

Gn(z) = 22U, _1(7) — 2U, o(z) + 2(=1)""' = U, (2) — Up_o(x) + 2(=1)""!
2T, (z) + 2(—1)""*,

2
1
0

() = 2% —62%+ 92 = z(z — 3)?
(r) = 2% —8x%+202? — 162 = z(z — 4)(z — 2)?
ps(z) = 25— 102" + 3523 — 5022 + 267 = z(2? — 5x + 5)?
()
()

1
2x
1

0
1
2x

0
0
0

1
0

1
2
1

0
1
2z

= 28 —122° + 542 — 11223 + 10522 — 362 = z(z — 4)(z — 1)?*(z — 3)?
= 27— 142°% + 772° — 2102* + 29423 — 19622 + 492 =
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It is easy then to compute the first few polynomials.

() = 83 —6x+2=2(x+1)(2z—1)?
() = 162 — 1622 = 1622(x — 1)(z + 1)
gs(z) = 322° — 4023 + 10z + 2 = 2(z + 1)(42? — 22 — 1)?
() = 642° — 9621 + 3622 —4 =4(z + 1)(z — 1)(2z — 1)?(22 + 1)?
(r) = 12827 —2242° + 11223 — 142 + 2 = 2(z + 1)(82% — 42® — 4z + 1)2.

For n even the polynomial ¢, is divisible by x — 1. Indeed
(1) =U, (1) = Up o) +2(-1)" ' =(n+1)—(n—1)—=2=0.
Remark 4. Note that

pn(O) = qn<_1) = Un(—l) — Un72(_1) + 2(_1)7171 _
(—1)"Un(1) = (=1)"2Una(1) +2(-1)" " = 0.

Therefore the determinant of A is zero and pn is divisible by z.

Proposition 15. Let p, be the characteristic polynomial of the Cartan matriz . Then

n

pn(.ilj) 4 Z(_l)n+j

Jj=1

2n(n+j — 1)!$j
(n =52

Proof. Using the properties of Chebyshev polynomials it follows that

@)+ (1" = g (1) =T (5 1) = corm (1= 8)).

Using the formula (2.12)) we have

2 p= (n —3)'(25) 2
- (n+j—1)
n _1)) / J
2V =)
Therefore
- 2n(n+j — 1)! ~1
pu(z) = —1)" )+ 2(—1)"
)= L g A
and the result follows. O
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3.3.2 Cartan matrix of type Bfl1>

The Cartan matrix of type BY is the matrix

2 0 -1 0 0 0
0 2 -1 0 0 0
-1 -1 2 -1 0 0 0
0 o -1 2 --- 0 0 0
CBT(LI) - : : : T : : i (3:3)
2 =1 0
-1 2 =2
0o -1 2

Using expansion on the first row it is easy to show that det (CB(l)> =0.
We list some formulas for the characteristic polynomial of the matrix for small values

of n.

pa(r) = ' —8x3 4 202% — 162 = x(x — 4)(z — 2)?
ps(z) = 2% — 102" + 3523 — 5022 + 242 = z(xz — 1)(z — 2)(z — 3)(x — 4)
pe(r) = a8 —122° + Bda* — 11223 + 10422 — 322 =
z(r —4)(z — 2)*(z* — 4z + 2)
pr(z) = 27— 142% + 772° — 2102* + 29323 — 19022 + 40x =
z(z —2)(x —4)(2® — 5z +5)(2? — 3z + 1) .

Define ¢,(z) = det <2x1 + AB<1>). By expanding the determinant we obtain the fol-

lowing formula for ¢,

Equivalently

The first few polynomials are:

qu(z) = 16z* — 1622 = 162%(x — 1)(x + 1)

gs(z) = 322° — 4023 + 8z = 8x(x — 1)(2x + 1)(2z — 1)(x + 1)
gs(x) = 642% — 962" + 3222 = 322%(x — 1)(z + 1)(22? — 1)
qr(z) = 12827 — 22425 4+ 1042® — 8z =

8z(z — 1)(z + 1)(42* — 2x — 1)(42? + 22 — 1).
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As in the case of the Cartan matrix C', ), we can easily compute the explicit form of the

Pn polynomial.

Proposition 16. Let p,(x) be the characteristic polynomial of the Cartan matriz .

Then ,
= . +5 -2\ .
—2)( 1)ttt n i
=l z: <2j+1 !
Proof. From p,(z) = ¢, (£ — 1) and g,(z) =

that ,
x - L (n4g =2\
ah(——0= —1)mE J
3\ 2_(=1) 2j+1 )°

J=0

which is formula (2.13]) combined with U, (—

pn<x>

k)

8z (22 — 1) U,,_3(z) we only need to show

x) = (=1)"U,(x). O

3.3.3 Cartan matrix of type C’T(Ll)

The Cartan matrix of type OV is the tri-diagonal matrix

2 -2 0 0
-1 2 -1 0
0 -1 2 0
Com = : (3.4)
0 2 —1 0
0 -1 2 -1
0 0 -2 2

=0.

We list the formula for the characteristic polynomial of the matrix (3.4]) for small values

Using expansion on the first row it is easy to show that det (CC(1)>

of n.

p3(z) = 2% — 622 +8z =z(x—2)(z—4)
pi(zr) = 2t =823+ 1922 — 12z = x(x — 1)(z — 3)(x — 4)
ps(z) = 2°— 102" + 342% — 442% + 162 = z(v — 2)(x — 4)(2? — 4o + 2)
pe(z) = % —122° + 53x* — 10423 + 852 — 20z =
z(x —4)(2* = bx +5)(2? — 3z + 1)
pr(z) = 27— 142°% + 762° — 200" + 25923 — 14622 + 242 =

z(r —1)(x —2)(z — 3)(z — 4)(2* — 4z + 1).

Define g, (x) = det (221 + A). By expanding the determinant with respect to the first row
we obtain
=4 (2T,_1(x)

n () — Tha(x)),
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where T),(z) is the n'® Chebyshev polynomial of the first kind. Equivalently,
@n(2) = 2(T(2) — Tha(2)) = 4 (27 — 1) Up_a(x).

Proposition 17. Let p,(x) be the characteristic polynomial of the Cartan matriz .
Then

n—

pol@) = z(x — 4) Z:(_l)n+j <n +j— 1) "

; 2j + 1
3.3.4 Cartan matrix of type Dy(ll)

The Cartan matrix of type DY is the matrix

2 0 -1 0 0 0 0 0
0 2 -1 0 0 0 0 0
-1 -1 2 -1 0 0 0 0
0 0 -1 2 0 0 0 0
Cpm =1 & = i oon b (3.5)
0 0 0 0 2 -1 0 0
0 0 0 0 -1 2 -1 -1
0 0 0 0 -1 2 0
0 0 0 0 -1 0 2

We list the formula for the characteristic polynomial of the matrix OD(I) for small

values of n.
ps(x) = wz(x—4)(xz—2)°
pe(r) = z(x—1)(z—2)*(xz —3)(x —4)
pr(r) = z(x—2)3(z—4)(z* — 4z + 2)
ps(z) = z(x—2)*(x —4)(z* — 3z + 1)(2® — 5z +5)
po(z) = z(x—2)3x—4)(x—1)(x—3)(z* — 4z + 1).

By expanding the determinant ¢, (z) = det (221 + A), with respect to the first row we get

Q’n(x) = Qx(jn—l(x) - 2x(jn—3(x)a
where ¢, is the ¢, polynomial of the matrix Cp,_. Therefore

qn(7) = 823 (T, _o(x) — Th_s(z)) = 162%(2* — 1)Up_s(2).
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Proposition 18. Let p,(x) be the characteristic polynomial of the Cartan matriz .
Then

n—

o) = oo (a3 (1) (5%0)”

po 2j +1

3.4 Coxeter polynomials

3.4.1 Coxeter polynomials for the classical finite Lie algebras
Associated polynomials for A,

We present the factorization of the polynomial @, () for small values of n, as a product of

cyclotomic polynomials. The polynomial @, (z) is an even polynomial. For, if n is even,

then U, (x) is an even polynomial and a,(x) = U, (5

and a,(z) are both odd functions. This implies that @, (x) is even. The factorization of

) is also even. If n is odd then U, (z)

Q). for small values of n, as product of cyclotomic polynomials is given in table [3.1]

Root system | Cyclotomic Factors
Ay P3P
Az P, P
Ay 510
As P3Py PPy
As D7Dy
A7 QP3P
As P3P Py Py
Ag Py P5P19P20
Aig P11 Poy
Ap P3Py PP P12Poy

Table 3.1: Factorization of the polynomials @, (z) for the root system A,

It is not difficult to guess the factorization of Q,(z). The characteristic polynomial of
the Coxeter transformation has roots (¥ where ( is a primitive h root of unity and & runs

over the exponents of a root system of type A,,. Therefore

fal@) = (@ = Q)@= () ... (= ¢") .

:L,n+1 -1
= (r=Dfale) =2"" = 1= fule) = ——
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Using the formula (2.14]) we obtain

falz) = T @a-
jln+1
J#1

The next proposition is from [?].

Proposition 19. The factorization of the polynomial QQ,, for the root system A, is given
by
Qux)= [ ). (3.6)

jl2n+2
£1,2

Proof. Since
Qn(x) = fu(2?) = H (I)j(x2)
jln+1
J#1
we should know what is ®;(z?).

It is well-known, see [?], that

Dyj(x), if j is even

q)j(xz):{ Qi (x)Pyi(x), if j is odd

To complete the proof we must show that each divisor of 2n + 2 bigger than 2 appears
in the product . Let d be a divisor of 2n + 2 bigger than 2. We consider two cases:
i) If d is odd then since d|2(n+ 1) we have that d|n+ 1. Since ®, is a factor of f,(x), then
fa(2?) = ®4(2)Pog(x), and therefore &, appears.

ii) If d is even, then d = 2s for some integer s bigger than 1. Since 2s|2(n + 1) we have
that s|n+ 1. Therefore ®, appears in the factorization of f,(z). If s is odd then ®4(z?) =
O, (x)Pos(z) and if s is even D4 (%) = Po,(x). In either case Py, = Oy appears. O

An alternative way to derive the formula for f,, is the following. Note that the Coxeter
adjacency matrix A, is related to the Cartan matrix with A, = 21 — Cy,, and a,(z) =
pa(x +2) = ¢,(32 — 1) = gu(£). Therefore we have

=01 (3)

=i (1 (54 1))

Qn(z) = e™U, (% (e” + eie)) =™V, (cos ) =

and

Set = = e to obtain
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mesSin(n +1)6
e —

) eez‘(nﬂ)e + e—i(nt1)0
wm

22041

sin 6 el — g~

Setting u = x? we deduce that

Therefore Q,,(z) = 22" + 22~V + ... + 22 + 1 for all z € C.

un+1 -1

falu) =

u—1

2 —1

=u"+u" T e du

We present the characteristic polynomial of the adjacency matrix and the Coxeter

polynomial for small values of n.

Root system | The polynomial a,(x) Coxeter polynomial
A2 a2:x2—1 fgzq)g
A, as = 23 — 2x fs = ®y®y
A4 a4—$4—3x2+1 f4:CI)5
As as = x° — 423 + 3z fs = Py®3Dg
Ag ag = 2% — 5t + 622 — 1 fo = @7
Aq a; = 2" — 62° + 102 — 4x 7= Oy P, Py
Ag ag = 8 71‘6 + 15%4 - 10%2 +1 fg = @3@9
Ag g — .Tg — 81’7 + 21.T5 — 20$3 + 5z fg = @2@5@10
Ay arg = 1% — 92° + 262° — 352* + 1522 — 1 fio = P11

Table 3.2: Characteristic and Coxeter polynomials for the root system A,

Note that a,(x) is explicitly given by the formula

(3]

due to formula ([2.13)).

Associated Polynomials for B, and C,

In the case of B,, we have

and therefore

Set = = e to obtain
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Qn(z) = 2T, (5 (e" + 6—19)) = 2¢"T, (cos ) =
262719 cosnf = 2€m92 ( inf + eme) 21n0 + 1 = x2n + 1.

Therefore Q,,(z) = z** + 1 for all x € C. As a result the Coxeter polynomial is f,(z) =

™ + 1. We present the factorization of f,(x) for small values of n.

Root system | The polynomial an(x) Coxeter polynomial
BQ a9 = ZL‘ —2 f2 =®
B3 az = 3 —3x fg = (I)Qq)ﬁ
B4 ay = 4 4.]] + 2 f4 =
Bs as = x° — 5% + b fs = Py®
B()’ g = 6 — 6!23' + 91‘ -2 f6 = @4@12
B7 ar = 7 71‘ + 14ZE —Tx f7 = @2@14
Bg as = 8 - 81‘ + 2OZE - 16ZE + 2 fg = (1)16
Bg g — 9 9.13 + 27.7} 30%’ + 9z fg = (I)Qq)ﬁq)lg
Bio arg = '% — 102° + 352° — 502* + 2522 — 2 f10 = 4Dy

Table 3.3: Characteristic and Coxeter polynomials for the root system B,,

Write n = 2*N where N is odd. As we already mentioned

falz)=2"+1= H@gmd(x) )

dIN

where m = 2%. Therefore

i (Z‘) =a2"+1= H (I)ga+1d H(I)Qa+1d

dn d|N
d odd

Proposition 20. Let r = 2°t2. Then

= H (I)rd(l')

dn
d odd

Proof. Tt follows from the formula ®;(z?) = @1 (z) when k is even. O

Note that the a,(z) polynomial is explicitly given in this case by the formula

x jn(n— ‘—1)! n—2j
an(z) = 2T, <§> = jo(—l) j!(n——]zj)!(x) ;
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due to formula 1' Since a,(x) = 2T, (%) these polynomials satisfy the recursion
Upi1 = Ty (T) — a1 ()

with ag(z) = 2 and a;(x) = z.
We mention a useful application of these polynomials. One can use them to express
2" 4+ x~™ as a function of ( = x + % For = ¢ it is just the expression of 2cosnf as a

polynomial in 2 cos@. This polynomial is clearly a,(z), the adjacency polynomial of B,,.

FExample 9. Since

it follows that
Similarly

and )
x4+E:C4—4§2+2:a4(().

Associated Polynomials for D,

In the case of D,, we have
qn(x) = 42T, ().

Therefore,

an(x) = 22T, 4 <§> ,

Qulz) = 22" (az ; i) T, (% (x i i)) |

Using the methods of the previous section we obtain @Q,(z) = 22" 4+ 22"~ 4+ 22 + 1.
We conclude that f,(z) = 2" + 2" ~' + 2 + 1. We present the formula for a,(z) and the

factorization of f,(z) for small values of n.

and

Proposition 21. Write n — 1 = 2N where N is odd. Then

falz) = (x4 1)@ " + 1) = Op(2) [ [ P2orralz) -

d|N
and
Qn(x) = By(x) [ Paov2alz) . (3.7)
@ oad
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Root system | The polynomial a,(x) Coxeter polynomial
D4 ay = ZE4 — 3[L‘2 f4(l’) = @%@6
D5 as = ZE5 — 41’3 + 2z f5 = CI)QCI)g
D6 g — .TG — 51’4 + 51’2 f6 = (I)%CIDIO
D, a; =x" —62° + 92° — 2z fr = ®y®,D1y
Dq as = x5 — Tab + 14z* — T2 fs = P30y,
Dy ag = 2 — 8z + 20x° — 162° + 2x fo = PPy
Dqo ayo = x'0 — 92% + 2725 — 302* + 922 fi0 = PiDD 5

Table 3.4: Characteristic and Coxeter polynomials for the root system D,,

3.4.2 Coxeter polynomials for the exceptional finite Lie algebras
Lie algebra of type G,

The Cartan matrix for Gy is (2.10]), with characteristic polynomial
po(z) =2 —4x 4+ 1,

since
(1) = 2Ty (x) — Up(w) = 42° — 3

T

and pa(z) = ¢o (5 — 1). The roots of ay(z) = x* — 3 are

m;T

h

2 cos

where m; = 1 and my = 5 are the exponents of the root system of type GG5. The Coxeter
number A is 6. Finally,
QQ(I‘) = .]74 — CCQ +1= (I)lg(l') s

and
fo(z) =2 —2+ 1= &4(x) .

Lie algebra of type F}

The Cartan matrix for Fy is (2.9) with characteristic polynomial
pa(r) = 2* — 82 +202° — 160 + 1,

and
as(z) = 2t — 42® + 1 = hgy(x) .
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The roots of a4(x) are

ie.
m; ™

12

where m; € {1,5,7,11}. These are the exponents for F; and being the numbers less than

2 cos

12 and prime to 12 imply
f4(ZL’) = 5(74 — I'2 +1= @12(%‘) .

Lie algebras of type FE,

e n—2=0

The Cartan matrix for Eg is (2.6). The associated polynomials are
gs(7) = 642° — 802" + 202> — 1 = (22 + 1)(27 — 1)(162* — 162> + 1),

ps(z) = (v — 1) (2 — 3)(z* — 82° + 202% — 162 + 1),
ag(r) = 2% — 52 + 522 — 1 = (2 4+ 1)(z — 1)(z* — 42% + 1) = ¥3(2)10s(2)1os(2)

and
Qs(x) = (* + o+ 1)(2? —2+1)(2® — 2 + 1) = O3(2)Pg (1) Poy(x).

The exponents of Eg are {1,4,5,7,8, 11} and the Coxeter number is 12. The subset
{1,5,7,11} produces ®,5 and {4, 8} produces ®3. Therefore

fﬁ(ZL‘) = Cbg(x)®12(x) .

The roots of ag(x) are

+1, %(i\/éi V2)

ie.
m;
2
cos —
where m; € {1,4,5,7,8,11}. These are the exponents for Eg and the Coxeter number
is 12.
en=17
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The Cartan matrix for E7 is (2.7) The associated polynomials are
gr(w) = 12827 — 1922° + 722° — 61 = 22(642° — 962 + 362% — 3),

pr(x) = (z — 2) (2% — 122° + 542* — 1122 4+ 1052 + 1),
a7(z) = 2" — 62° + 92° — 32 = x(2® — 62" + 92 — 3) = Yy (2)Ys6()
and

Qr(x) = (22 + 1)(z"? — 2% + 1) = Oy () Psg().

The exponents of E; are {1,5,7,9,11,13,17} and the Coxeter number is 18. The
subset {1,5,7,11,13,17} produces ®15 and {9} produces ®5. Therefore the Coxeter

polynomial factors out as

fr(z) = Oy(x)Dyg(x).

n ==~y

The Cartan matrix for Eg is (2.8) The associated polynomials are
gs(x) = 25625 — 44825 + 2242 — 3222 + 1,

ps(x) = 2® — 1627 4+ 1052° 4 364a” + 7142* — 7842 + 44022 — 96z + 1,
ag(z) = 2% — 72° + 142" — 82% + 1 = g0 ()

and
Qs(x) =20 + 2 — 2 — 2% — 20 + 2% + 1 = Bgo(a).

The exponents of Fg are {1,7,11,13,17,19,23,29} which are the positive integers
less than 30 and prime to 30. Therefore the Coxeter polynomial of Ey is

f8($) = @30(&7).

3.4.3 Coxeter polynomials for the classical affine Lie Algebras

The Coxeter polynomials for the affine Lie algebras are well-known, see e.g. [?]. We

display their formulas in table and then we derive the same formulas using Chebyshev

polynomials.

Associated Polynomials for AP

In the case of Af}ll we have
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Dynkin Diagram | Coxeter polynomial Cyclotomic Factors
1 i n+1—i
ASL) (x —1)-(z +1+1_ 1), Hd|i Dy Hd\nﬂ—i ®q,
1 i=1,2,..., |2 i=1,2,..., |
By (@ =D —1) | 212 ]y, P
ctV (z" — 1)(z — 1) @1 [Ty, Pa
DY ("2 = (@ = D(z + | &,93 [Tijn—2 Pa
1)?
EY o7+ 2b — 20t — 227 + | B2, P2
r+1
EW 28+ 27 — 25 — 22t — | D220, P2
P +ar+1
EY 2 pad—af—p — 2t — | O2DyD4 D
B +z+1
FY 2 — a3 — a2+ 1 2D, P4
G -t —r+1 GELO

Table 3.5: Coxeter polynomials for Affine Graphs

G (2) =2 (T (x) + (=1)"1), 50 an (v) = 2 (T, (2) + (=1)" )
and Q, () = 22" (T,, (3 (v + 1)) + (=1)"71).
If we set x = e we have

1 1
22" T, (— <x + —)) = 22"T,, (cos ) = 22" cos (nh)

2 T

. . 1
— o ind —ind) _ .n n — 20 1.
T3 (e +e ) x (x + _x”) "+

Therefore

@ () = 22" (C1P 2041 = (2 (1),

and the factorization of @), is given by

go N even

)
% n odd

Qn (x) =

where ¢g; = H P2 gy = H@i.
d|2n d|n
In the case of AV (since the graph AV is not a tree) the Coxeter polynomial is not
ntl
2

uniquely defined. There are L J non conjugate Coxeter elements each one producing a
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different Coxeter polynomial. These polynomials are given by the formula (see [?])

| | |
(29 — 1) (2" — 1), j:172,...,v+ J

2

The factorization of these polynomials is given by

[T T o 5=120 "5

d|j dln41—3

and for the first values of n we obtain table [3.6]

n | fosi(z)
3lj=1l:2'—2—x+1=(x—1)(2° - 1) = 1D,
j=2: 2" =222 +1= (2> - 1)(2* — 1) = P93
4{j=1:2°—2" —x+1—(x—1)(m4—1) PP, D,

j=2: -2 -2 +1=(22=1)(23 - 1) = PID,P;
5lj=1:20-2"—z+1=(x—1)(z°—1) = Pids
j=2: 28— —2?+1= (22— 1)(374—1) P2P2D,
j=3:2° -2 +1= (2 - 1)(2% - 1) = 9?92
6|j=1:2"—2° —x+1—(x—1)(m —1) PP, P3P
j=2: 2" -2’22+ 1= (22— 1)(a° — 1) = PP, D5
j=3: 2" —2'—23+1 = (*-1)(a?—1) = DID, D3P,
Tlj=1:2%—2a" —x+1—(:c—1)(7 1) = ¢70;
j=2: 28—2%—22+1 = (22—-1)(a%—1) = PIP3D;P;
j=3: xs—x‘r’—x +1=(22—1)(z° —1) = ®ID;3P;
j=4: 28 -2 +1= (2" - 1)(2z* — 1) = P?P2P3
8 ]:1 $9—$8—$+1:(ZE— )( - ):@%@2@4@8
j=2: 292" -2’ +1=(22=1)(2" — 1) = PP, P,
j=3: 22—2—23+1 = (2*—1)(2°—1) = DD, P2
j=4: 22 —z'+1 = (2*-1)(a°—1) = DD, D, P;

Table 3.6: Coxeter polynomials for Al

Note that when n is even the polynomial @, (x) can be written in the form Q,(z) =
fn(2?) with f,,(x) the Coxeter polynomial corresponding to the largest conjugacy class of

Coxeter elements. In fact, for n even,

Using the formula we have found for the polynomial @, (z) we can calculate the roots
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of the polynomial a,(z). Since Q,(z) = (z" + (—1)"1)?, the roots of Q,, are given by

2kmi
en, k=0,1,...,n—1, forn even

(2k+1)7i
n

e , k=0,1,...,n—1, forn odd

each one being a double root. Now if r is a root of a,,, it follows that x—r is a factor of a,, so
1

x (x +— —r ) =2*—rz+1is afactor of Q,(z), meaning that 2> —rx+1 = (z—c)(z—¢c),
x

with ¢ being one of the roots of @,, and r = 2Re(c). We conclude that the roots of a, are

given by
2k
QCOS—W, k=0,1,...,n—1 for n even,
n
2k +1
QCOSM, k=0,1,...,n—1 for n odd.
n

From the identity cos(—z) = cosx it follows that the roots of as, () are given by

k
2cos — % k=0,1,1,2,2,...,n,n,n+ 1,
n—+1

where £ = 0,1,1,2,2,...,n,n,n + 1 are the affine exponents and h = n + 1 is the affine

Coxeter number associated with the Coxeter polynomial (z" — 1)2.

Ezample 10. In the case of Aél) we have
a(z) = (2 — 1) (% — 4).
Therefore the roots of ag(x) are
1,1,-1,-1,2, -2,

and they have the form
m;T

h )

where m; are the affine exponents and A is the affine Coxeter number associated with the

2 cos

Coxeter polynomial (23 — 1)2.

Associated Polynomials for BY

In the case of Bflljl we have

qn () = 8x (332 — 1) Ups (7).
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Therefore,

and

Set = = e to obtain

Qn ($) - :L,n—3 (l’6 - 1'4 — IL'2 + 1) Un_g (COS 9)

 ons4 o .\ sin(n—2)¢
= (x 1) (93 1) g

i(n—2)0 _ _—i(n—2)0
= 2" (x4 - 1) (x2 - 1) (6 il _ z—ie )

T $2(n—2) -1

a2 g2 -1

=" (x4 — 1) (952 — 1) =22 — 22 gt 4

Therefore

Qn (z) = 2*" — 222 gt = (x4 — 1) (x2("_2) — 1) =0, P,D, H Dy,
d|2(n—2)

for all z € C. The Coxeter polynomial for BY is then

fop1 (@) =" — 2" — 2?41 = (:L’"’l — 1) (;1:2 — 1) = 9,0, H D,
din—1

and the factorization of a,, is given by

an(z) = Uy H U, (z).

J2(n=2)

We present the factorization of f,(x), in table for small values of n.

In general we have two cases:

1) For the case of Béi)ﬂ

T

agni2(x) = (3:2 — 4) Usp_1 <§> .

Since the roots of U, (x) are
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Root system | The polynomial a,(x) Coxeter polynomial
BV ay =zt — 42 fi(z) = P12
BV a5 = x° — 5ad + 4z fs = O2D, 4
BV ag = x° — 62 + 822 fo = D200,
BV ar =27 — Ta® + 1323 — 4z fr = D2D, D
B ag = 8 — 825 + 1924 — 1222 fs = P2D2D ;D
BV ag = 2° — 927 + 2625 — 2523 + 4 fo = D20,
BV a1 = 210 — 1028 + 342 — 4424 + 1622 | f19 = P2D2D, Dy

Table 3.7: Characteristic and Coxeter polynomials for the root system B{

the roots of as, 9 are 0,£2 and

km

)

2 cos —, k=1,2,...,2n—1.
2n
Therefore the affine exponents are 0,1,2,... ., n—1,n,n,n+1,...,2n—1,2n and the affine
Coxeter number is h = 2n.
2) For the case of Bé}l)
5 x

a2n+1(x) =T (I’ - 4) Ugn_g <§> .

Since the roots of U, (x) are
k
cos( T ), =1,2,...,n,
n+1

the roots of ag,,1 are 0, £2 and

2k

_ =T k=1,2,...,2n—2.
22n — 1)’ s

COS

It follows that the affine exponents are 0,2,...,2n — 2,2n — 1, 2n,

affine Coxeter number is h = 2(2n — 1).

Associated Polynomials for 07(11)

For C’T(ll_)1 we have

Therefore,

...,2(2n — 1) and the
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and

Qn(z) = 2" <a:2 -2+ %) Up—o (% (x + .

Using the same method as in the previous case we obtain

)

Qn(x) = 2™ — 227D _ g2 41 = (xQ(”_l) —1) (2" = 1) = 01D, H Dy,
)

for all x € C. The Coxeter polynomial for OV is then

d|2(n—1

fonr(@) =2 =" x4 1= (" - 1) (x—1) =& [[ u

We present the factorization of f,(z) for small values of n.

dln

Root system | The polynomial a,(x) Coxeter polynomial
iV ay = x* — 522 4+ 4 fi(z) = 020,
ctV as = 2° — 61° + 8z fs = DD, D,
ct) ag = 28 — T2t + 1322 — 4 fo = D2D;
ctV a; = 27 — 825 + 1923 — 122 fr = B0, D3 Dy
ctV as = 2 — 925 + 263% — 2522 + 4 fs = D2D,

) ag = 2° — 1027 + 342° — 4423 + 16 fo = D20,
iV ayo = 210 — 112° + 4325 — 702 + 4122 — 4 fro = D303 Dy

Table 3.8: Characteristic and Coxeter polynomials for the root system oW

The factorization of a,, is given by

In general we have

an(z) = ] @)

and therefore the roots of a,,, are £2 and

The affine exponents are 0,1, ...

Jl2(n—1)
T
an+1($) = (12 - 4) Un—l <§>
k
2COS—7T k=1,2,....,n—1
n

,n — 1,n and the affine Coxeter number is h = n.
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Associated Polynomials for DY

In the case of Df}jl we have

Therefore,

and

It follows that
Qu(z) = (z* = 1) (222 + 22079 — 22 — 1) = (2* — 1) (2 + 1) (229 - 1)
and the Coxeter polynomial for DY is
fori(z) = (2" =1) (2* = 1) (z + 1).

We present the factorization of f,(x) for small values of n.

Root system | The polynomial a,(x) Coxeter polynomial
DV a5 = 2° — 42 fs = D23
DV ag = 2% — 5zt + 422 fo = D2D2D,
DV a7 = x7 — 625 + 84 fr = 203D,
DV ag = % — 75 4+ 132% — 422 fs = D202,
DV ag = 29 — 827 + 192° — 1243 fo = D2D3D ;D
DV a1 = 20— 928+ 2625 — 2504 +4a? | fip = P2D2D,

Table 3.9: Characteristic and Coxeter polynomials for the root system DY

Note that the factorization of @, (z) is

Qn(z) = ©10,®] H ®;(z),

J12(n—=3)

and the factorization of f,(z) is

fale) =105 [] @),

Jl(n=3)
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The corresponding factorization of a,(z) is
an(x) =05 [ @)
Jl2(n—3)

In general we have two cases:

1) For the case of DSL) 1 we have

onio(x) = 22 (2% — 4)Usyp_o (g) )

The roots of asg, o are 0,0, £2 and

2%
2 o8 — k=1,2.....2n—2.
2(2n — 1)

The affine exponents are 0,2,...,2n —2,2n — 1,2n — 1,2n,...,2(2n — 1) and the affine
Coxeter number h = 2(2n — 1).
2) For the case of Dél)

n

azn+1(x) = 552@2 —4)Uzp3 (%)

and the roots of ag, 1 are 0,0, £2 and

km
2008 ——— k=1,2,...,2n — 3.
0082(n_1) ,2,...,2n—3

Therefore the affine exponents are 0,1,...,n —2,n —1,n—1,n,2n — 3,2n — 2 and the

affine Coxeter number is h = 2n — 2.

3.4.4 Coxeter polynomials for the exceptional affine Lie algebras
Affine Lie algebra of type Eél)

The Cartan matrix of Eél) is

2 0 0 -1
0 -1 0
0 -1 2 -1 0
Coo=(0 0 -1 2 -1 0 -1
6
0 0 -1 2 -1 0
0 0 0 0 -1 2
-1 0 -1 0 2
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The polynomial p;(z) is
pr(x) = 27 — 142° + 782° — 2202 + 3292° — 246> + T2

and the polynomial az(x)

ar(z) = 2" — 62° + 92° — 4.

The roots of a;(x) are
0,1,—1,1,—1,2,—2

i.e.
m;
6 )
where m; € {0,2,2,3,4,4,6}. These are the affine exponents for Eél) and the affine

Coxeter number is h = 6.

2 cos

The Coxeter polynomial is

2my;m

f7(x):x7+x6—2x4—2x3+x+1:H<x—e ; ):cbf%cbg.

Affine Lie algebra of type Eél)
The Cartan matrix of E§1) is
2 -1 0 0 0 O
-1 2 -1 0 0 O
0o -1 2 -1 0O 0 O
o 0 -1 2 -1 0 0 -1
Coo =
7 o o0 0 -1 2 -1 0 0
0o 0 O -1 2 -1 0
0 0 O -1 0
o 0 0 -1 0 2

The polynomial pg(z) is
ps(7) = 2® — 1627 4+ 1052° — 3642° + 7142* — 7842° + 4402* — 96z
and the polynomial ag(x)

ag(z) = 2% — 72° + 142 — 822
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The roots of ag(x) are

07 07 ]-7 _]-7 \/57 _\/57 27 —2

1.e.

m; T
1 )
where m; € {0,3,4,6,6,8,9,12}. These are the affine exponents for Eél) and h = 12 is

the affine Coxeter number.

2 cos

The Coxeter polynomial is

fs(@)=a+a"—2° -2 — 2P+ 2+ 1= H (x - e%{%w) = PIP2D, P

mg

Affine Lie algebra of type Eél)

The Cartan matrix for Eél) is

2 0 O 0 0 -1
0 -1 0 0O 0 O
o -1.2 -1 0 0 0 O
o 0 -1 2 -1 0 0 0 -1
o o0 o0 -1 2 -1 0 0 0
o o0 o o0 -1 2 -1 0 0
0O 0 0 0o -1 2 -1 0
-1 0 0 0 0 -1 0
o 0 0 -1 0 0 0 2

and
po(7) = 27 — 182% + 1362" — 5602° + 13642° — 19922* + 16792 — 7302* + 120x.
The polynomial ag(x) is given by

ag(z) = 2% — 8" + 202° — 172° + 4u,

with roots
0717_1727_27 \/5_ 17 _\/3+17 \/§+1> _\/5_1
2 2 2 2
i.e.
m;
2
COS 30
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where m; = 0,6, 10,12, 15, 18, 20, 24, 30 are the affine exponents and h = 30 is the affine
Coxeter number.

The Coxeter polynomial is

fg(x):x9+x8—m6—x5—x4—x3+x+1:H<x—e2r‘;‘+§ﬂ> = P2D, D3P

m;

Affine Lie algebra of type F4(1)

The Cartan matrix for F| 4(1) is

with
ps(x) = 2° — 102" + 332° — 382% + 22 + 12

and

as(z) = 2° — 52° 4 4a.

The roots of the polynomial as(z) are

0,1,—-1,2,—2
i.e.
m;
2
cos 5

where m; = 0,2, 3,4, 6 are the affine exponents and h = 6 is the affine Coxeter number.

The Coxeter polynomial is

fs(z) =2 —2® —2* +1= H (x - 627%“) = PP, D3,
Affine Lie algebra of type Ggl)
The Cartan matrix for Ggl) is
2 -1 0
-1 2 =3
0o -1 2
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and the polynomial ps(z) is given by
p3(z) = 2 — 62 + 8.

The polynomial ag(z) is
as(r) = 2* — 4z,

with roots
0,2,—2

i.e.
m;

2 cos ,
2

where m; € {0, 1,2}. These are the affine exponents for Gél) and the affine Coxeter number
is h = 2.

The Coxeter polynomial is

fa(z) =22 —24+1= H(m—em”) = P10,

m;

3.5 The A%U case

The aim of this section is to show that the formulas of Berman, Lee, Moody (see [?]) and
Steinberg (see [?, ?]), for the Coxeter polynomials can be modified and applied to the case
of AV, In particular we show in propositions [22| and |23| that these formulas can be used
for the explicit calculation of all the Coxeter polynomials for any affine Lie algebra. We
compute and list in table the affine exponents and affine Coxeter number associated
with each Coxeter polynomial of AL,

First we fix some notation. Let X" be an affine Lie algebra with Cartan matrix C,
{a1,as,...,a,} a set of simple roots of the root system of type X,, and oy minus the
highest root of X,,. Let V = R — span{ap, a1, 9, ...,an}, 2 = (20,21,---,2,) € Z"!
the left zero eigenvector of C, a = Y. za; and V = V/(a) as in section 2.5, Let
0 = 0x(0)0x(1)0r(2) --- Orn) € 9l(V) and m € Sy, 41 be a Coxeter transformation of Xq(ll).
From the definition of the simple reflections as o;(o;) = o; — C; ja; it follows that o leaves
o invariant. Therefore o is defined on V and it has finite order. Its order is the affine

Coxeter number h, associated with o.

3.5.1 Berman, Lee, Moody’s method

The defect map of the Coxeter transformation ¢ is the map 0 : V — Ra, defined by
0 =1Idy —o":V — V. In [?] Berman, Lee and Moody consider all cases of affine Lie
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algebras where the Dynkin diagram is bipartite and they show that for all i, d(«;) € cZa
for some ¢ € N (for the case A,(ll),n odd, they consider the defect map of the Coxeter
transformation corresponding to the largest conjugacy class). Further, they prove that if
3 is the branch root of X, then c is the least positive integer such that cwgv belongs to the
co-root lattice and cwgv =Y, m;e, where m; are the affine exponents. We generalize
this result to include all Coxeter transformations corresponding to A,(zl), for n both even
and odd.

First we generalize the notion of a branch vertex of the Dynkin diagram of a simple

Lie algebra to the case of A,,.

Definition 23. Let I be a finite Dynkin diagram of type X,, and b : V(I') — N the weight
function of definition [19, A vertex r; is said to be a branch vertex of ' if b attains its

maximum value on r;.

Therefore, for the case of the Dynkin diagram of type A,,, all vertices are branch vertices
with b(r;) =2 for all i = 1,2,...,n. Now we can extent Berman, Lee and Moody’s result
to the case of AL,

Proposition 22. Let I" be the Dynkin diagram of the simple finite dimensional Lie algebra
of type X,, and let 5 = «;, be a root corresponding to a branch vertex of I'. If ¢ is the least

positive integer such that cwgv belongs to the co-root lattice of X,,, then

n

_ Vv

Cwpgv = E m;o;
=0

where m; are the affine exponents and m;, is the affine Cozeter number of X associated

with a Coxeter polynomial of X,

Proof. We consider only the case X,, = A, since the other cases follow from theorem [7]
We realize (see section [2.2)) the root system A,, as the set of vectors in R"™! with length
v/2 and whose coordinates are integers and sum to zero. The inner product is the usual

inner product in R"*1. One choice of a base of the root system of type A, is

a; = (0,0,...,0,1,-1,0,...,0,0).
———

i terms

20,
(a,4)

The co-roots are o) = = «; and the corresponding weights are

—_

w; = m+1—in+1—d,....,n+1—4d,—i,—i,...,—17).
n 41N ~~ g

i terms
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Let d; = ged(n + 1 —4,i) = ged(n + 1,). If we choose as branch root the root f = «,

(or 8= ai1-4), o € {1, 2,..., VTHJ } then the smallest positive integer ¢ for which cwg

(in the case where n is odd and i = "T“

belongs to the co-root lattice is ¢ = we

10
have ¢ = 2; for the other cases ¢ > 2). For that ¢ we have

n—f—l—Zo n+1—20 n+1—20 ’L.() io ’io
CWp — e, T T e, T
B dio ; dio ) ; dio ) dio ; dio P ) dio
TL—Fl—io +2n—|—1—20 i +7’L+1—20 +
= R ——0 B\ e ——
dio ' dio ’ ’ dio y
7 Q; ] Q; R — Oy,
0 dio o+1 0 dio 0+2 dio

The coefficients

ceel 2 1
d ) d ) » L0 d » L0 d » L0 d ) ’dio

10 10 10 10 10

0,

n+1—ig

%0

are precisely the affine exponents and 7 is the affine Coxeter number corresponding

to the Coxeter polynomial
(z'o —1)(z" T —1).

We illustrate with two examples for the cases Afll) and Aél).

FExample 11. In the case of the root system of type Ay

1 2 3 4
O O O O

the simple roots are
a; = (1,-1,0,0,0),a2 = (0,1,—-1,0,0), 3 = (0,0,1,—1,0), 4 = (0,0,0,1, —1).
If we choose a; (or ay) as the branch root then
1
wy = —(4,~-1,-1,-1,-1)
5
and bwy, = 4aq + 3an + 2a3 + ay. The affine Coxeter number is 4 and the affine exponents

0,1,2,3,4 which give rise to the Coxeter polynomial (z — 1)(z? — 1).

If we choose ay (or as) as the branch root then

1
Wy = g(ga 3a _27 _27 _2)
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and bw; = 31 + 6y +4as+ 2a4. The affine Coxeter number is 6 and the affine exponents

0,2,3,4,6 which give rise to the Coxeter polynomial (z* —1)(z* — 1).

FExample 12. Dynkin diagram of As:
1 2

3 4
O O O O O

In this case the simple roots for As are

ay = (1,-1,0,0,0,0), a5 = (0,1, —1,0,0,0), a5 = (0,0,1,—1,0,0),
as = (0,0,0,1,—1,0), a5 = (0,0,0,0,1, —1).

The affine Coxeter number corresponding to the Coxeter polynomial (z — 1)(z% — 1) is 5
and the affine exponents are 0,1,2,3,4,5. They correspond to the branch root a; (or as)

for which the co-weight is
1
w = (5, -1,~1,~1,~1,-1)

and 6w1 = 5041 + 40(2 + 3063 + 20&4 + Q.
The branch root s (or ay) corresponds to the Coxeter polynomial (2 — 1)(z* — 1)
which give rise to the affine Coxeter number 4 and the affine exponents 0,1, 2,2, 3, 4.

If we choose the middle root a3, as the branch root then
1
w3 = 5(1, 1,1,-1,-1,-1)

and 2w; = ay + 29 + 3a3 + 2a4 + a5. The affine Coxeter number is 3 and the affine

exponents are 0,1,2,3,2, 1 which give rise to the Coxeter polynomial (2% — 1)2.

3.5.2 Steinberg’s method

Steinberg in [?] (see also [?]) shows that for the affine root systems considered in def-
inition [19] their Coxeter polynomial is a product of Coxeter polynomials of type A;.
Removing the branch root, if g(x) is the Coxeter polynomial of the resulting root system
then (2 — 1)2g(x) is the Coxeter polynomial of X"

We generalize Steinberg result to the case of root systems of type AlY.

Proposition 23. Let S be a branch root, as defined in definition of an affine root
system of type xW. If g(x) is the Cozeter polynomial of the root system obtained by

removing 3 from the root system of type X,,, then (x — 1)?g(x) is a Cozeter polynomial of
X,
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Proof. For X,, # A, we have Steinberg’s theorem. For X, = A, if we take as branch
root = a;,, 19 € {1,2, cee VTHJ }, then the root system obtained by removing [ is

Aj—1 X Ay, with Coxeter polynomial
glz) = (2" "+ 2" P+ + 1) (2" b+ ).

Then (z — 1)%g(z) = (2% — 1) (z" % — 1) is one of the Coxeter polynomials of A O

Ezample 13. In the case of the root system of type Agl), if we choose oy (or ay) as the
branch root then the root system obtained by removing «; is Az with Coxeter polynomial
3 +2%+2+1. We obtain the Coxeter polynomial (x—1)*(2®+2?+x+1) = (x—1)(z*—1).

If we choose s (or az) as the branch root then the root system obtained by removing
the branch root is A; x Ay with Coxeter polynomial (z+1)(2?+2+1). The corresponding
Coxeter polynomial is (x — 1)*(x + 1)(2®> + x4+ 1) = (2* — 1)(2® — 1).

FExample 14. In the case of the root system of type Aél) if we choose «a; (or as) as the
branch root then the root system obtained by removing the branch root is A4 with Coxeter
polynomial x4 + 2° + 22 + x + 1. We obtain the Coxeter polynomial (z — 1)?(2* + 23 +
P +zr+1)=(z—1)(z° - 1).

If we choose s (or ay) as the branch root then the root system obtained by removing
the branch root is A; x Az with Coxeter polynomial (x + 1)(2® + 2? + x + 1). We obtain
the Coxeter polynomial (z — 1)?(z + 1)(23 + 22 + z + 1) = (z* — 1)(z* — 1).

If we choose a3 as the branch root then the root system obtained by removing as
is Ay x Ay with Coxeter polynomial (22 + x + 1)
(x—1)2(2*+2+1)2 = (23 -1)>2

We obtain the Coxeter polynomial
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Chapter 4
Coxeter polynomials of Salem trees

If only I had the theorems! Then I should find the proofs easily enough. —

Bernhard Riemann

4.1 Introduction

In this chapter we will be concerned only with simple graphs that are trees. This class of
graphs I" has the property that all their Coxeter elements are conjugate in the correspond-
ing Coxeter group Wr (see proposition [7] and also [?, ?, ?]) and therefore we can speak
about the Coxeter polynomial of I' which is the characteristic polynomial of a Coxeter
element. We denote this polynomial by I'(z). Another important property of trees is that
they are bipartite, i.e. the set of their vertices, V(I'), can be partitioned into two sets
Vi, Vs, with the property vy, vy € Vi or vy, vy € Vs implies (vy,vy) € E(T). The adjacency
matrix of I' is the n x n symmetric matrix A € M,,(Z), with A;; = 1 if (v;,v;) € E(V)
and A;; = 0 if (v;,v;) &€ (V). The characteristic polynomial of I' is the polynomial
xr(z) = det (z1, — A).

For a monic polynomial p(x) € Z[z] the set of its zeros {z € C : p(z) = 0} will be
denoted by Z(p) and the maximum value of the set {|z| : z € Z(p)} by p(p). With the
polynomial p(x) we associate the polynomial f(z) = z"p (x + %), where n = deg(p), which
is reciprocal (see section [2.6)). The sets Z(p) and Z(f) are related in the following way.
If r € Z(p) is real and z = @ then z € Z(f). Furthermore, if |r| < 2 then |z| =1
while if || > 2 then z € R and |z| > 1.

A Coxeter graph I is called cyclotomic graph if all the roots of its Coxeter polynomial
are on the unit disk or equivalently if its Coxeter polynomial is a product of cyclotomic
polynomials. It is called a Salem graph if its Coxeter polynomial has only one root outside
the unit circle or equivalently its Coxeter polynomial is a product of a Salem and cyclotomic

polynomials.
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Vipj—1  Vipj—2 Vi,pj

Hj for j =1,2,...,1.

Vk,1

Vi,pj—2  Vipj-—1 Vi,pj

Hjforj=i+1,i+2,..., k.

Figure 4.1: The graphs S,E?,...,pk

The join of the Coxeter graphs I';, Ty, ..., T’y on the vertices v; € V(I';) is the graph
obtained by adding a new vertex and joining that to v; for all i = 1,2,... k. In [?] it
was shown that if a noncyclotomic tree is the join of cyclotomic trees then it is a Salem
tree. For k € N, p1,...,pr € Nand i € {0,1,2,...,k} consider the graph SI(,?,_,,pk which
., Ap,, as shown in fig. 4.1]

For particular values of ¢ and p; the graphs Sjg?,...,pk give rise to well known graphs. For

is the join of the Dynkin diagrams D, ,...,D,, and A

Pit19

k = 2,9 = 0 we obtain the Dynkin diagrams A, 4,11, for & = 3,7 = 0,p; = 2,ps =1
we obtain the graphs FE,, 4, for k = 3,7 = 0,p; = 2 the affine Dynkin diagram Eél),
for k = 3,7 = 1,ps = p3 = 1 the affine Dynkin diagrams Dﬁ)ﬁ and many others. The
polynomial Sg?z)ﬁ(a:) is Lehmer’s polynomial which is conjectured to have the smallest
Mahler measure among the monic integer polynomials (see section [2.6/and [?]). We prove
three theorems about the Coxeter polynomials SI(,?”(x) for i =0,1,2,3. In theorem |§| we
explicitly calculate the Coxeter polynomials S%,r(x) fori =0,1,2,3 and in theorem |10 we

show that the limits lim, ., p (S](f,)LT) Jimg oo p (SZSZ,T> and lim, ., p (S}jg,r> are Pisot
numbers. We also prove that lim, ;, o p (S;(ft)],r> =2 for all i =0,1,2,3. In [?] Lakatos
showed that limy, . 00 p (Sz(,??u_,pk> =k — 1. In theorem (11| we generalize that result by
showing that lim,, _, ccp (Sé?,,‘,,pg =k—1forallie{0,1,... k}.

Remark 5. James McKee and Chris Smyth in [?] gave a characterization of all Salem trees.
It follows from their characterization that the cyclotomic cases of Sz(,i),,,,,pk are those for
k=i=20rk=31i=0,pp =ps=p3=2o0rk=31=0,p =1,p, =p3 =2o0r
k=3,1=0,p1 =1,py = 2,p3 =5 and subgraphs of these. For all the other cases, S,g? ,,,,, .

are Salem trees.
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4.2 Coxeter polynomials of the S]()?Mpk graphs

Theorem 9. For ¢ < 2 the Coxeter polynomial Sj(,g,r(a:), of the Coxeter graph SI(,QM 15

given by the formula

where the polynomials FISZ are

FO (@) = a1 — Ay (@) Ay (2),

p.q
Fp(,lq) (2) = a2 (x = 1) — (2”72 + 1) A1 (2) and
FO(z) = a4z — 1)2 — (272 +1) (292 + 1)

The Coxeter polynomial Szg?’q),r(x) s given by the formula

with qu( ) = F152q)(x)

Proof. For simplicity of notation, we will write u;,v;, w; instead of vy j,vs;,vs; respec-
tively. Applying proposition to the splitting edge (t,u;) of the graph S,(,?q)m we see
that

S(O), (z) = Ap(x)Aq—I—rH(l‘) - xAp—l(x)Aq($)Ar(I>-

The Coxeter polynomial A,,(z) can be easily calculated using proposition (see also
section . It satisfies the recurrence

Am(r) = A1 (z) + 2 (A1 (7) — Appa(7))

and is given by the formula A,,(z) = 2™ + 2™ ! + ...+ x + 1. Therefore

(.CL' . 1)351(70(1)T(1') — :L,p+q+r+4 . 2$p+q+r+3 + xp+r+2 + xq+r+2 . xr+2

+xp+q+2 o xp+2 - xq+2 T 2.’17 . 1 =
(= 1259, () = 77420 = 1) = 2*2(a% — 1) 4,1 (x)
+2%(z! - DA, (z) —z+ 1=
(5= )8, (2) = 27742 224 (2) Ay () + 22 Ay 1 () Aga(2) — 1
x’"+2Fp(7q) () — (F(O))* ().

p.q
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The cases i = 1,2 are proved similarly by applying proposition [11| to the splitting edges
(up—2,u,) and using the formula for Slgf;%)(x).

For the Coxeter polynomial S,(;?’q),r we apply proposition [L1|to the splitting edge (w,_o, w;)

to obtain
2
SO (z) = (x+1)SE) | —ax(z+1)SY) .
Therefore
r—1 r—1 r—1
—5(3) _ (2) AT w(®) 4
(x+1) pqr<x> (a7—|—1)2 p,q,r—1 x( +1)2 p,q,r—3
N (2) — (F?) () — 2" F&(2) + 2 (F2) (z) =
1 3 r (2 2)\ *
(z + 1)351&,1),7“@) =7 Fliq)(x) + (Fp(,q)) (z)

]

Remark 6. For the case i = 1 we could have applied proposition [11] to the splitting edge

(up—2,u,) to obtain

1 1 0 0)\*
o 1)51()7(1)774(3:) = 2PFO) () + (F( )) (x).
Similarly by noting that ¢,r are interchangeable in S,(,}q)m and p, q are interchangeable in

SIS,%),T, then applying proposition |11f to the splitting edge (v,—2,v,) We obtain

1 2 1 1))*
(.’L‘ + ]-)QSZ(”(;’T(:U) = a?qu(,T) (CC) + (Fq(ﬂ“)) ('r>

For the next theorem we need two lemmas first. The first lemma is due to Hoffman

and Smith (see [?]).

Lemma 12 (A. J. Hoffman, J. H. Smith). If k,p1,...,pr €N, 0 <0 < k and p} > p; for
some 1 < j < k then

1. p(S() ,,,,, —_— pk>§p<SI§? _____ ” pk) if 7 > and

-----

2 (W) Z 0 (S, )ifjgi.

FEquality can happen if and only if the graph S oy 18 cyclotomic.

...........

We also need the following lemma.

Lemma 13. Suppose that f,(x) = x"g(x) + h(x) is a sequence of functions such that
g, h are continuous, for allm € N f,(z,) = 0 and that lim, . 2z, = 29. If |20] > 1 then
9(z0) = 0 while if |z| < 1 then h(zy) = 0.
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Proof. Suppose that |z| > 1. Since & is continuous and |g(z,)| = 2&2) it follows that

e
lim, o0 [g(2n)] = 0. Using |g(20)| — |9(zn)] < |9(20) — 9(2n)] —— 0 we conclude that
n—oo
g(z0) = 0. The proof for the case |zp| < 1 is similar. O

Theorem 10. The spectral radius, p <S,()[)1T> of the Coxeter transformation of S;(,f()]ﬂ« sat-
1sfies

i) lim p (Sg{ ) p (F(Z ) and p <F fq> is a Pisot number fori=20,1,2,

r—00
i) lim p(S§),) =p (FS) fori=1,2,3,

iii) lim p (S5 ) =p (2" — 22" +1) fori=0,1,2,

p,q—00

iv) lim p (Sﬂ ,,) =p (:Up — 2P — 1) fori=1,2,3 and

q,r—00

v) lim p(SY) ) =2 foralli=0,1,2,3.

P,q,T—+00 9
Proof. From theorem [0 and lemma [13] we conclude that in order to prove (i) is enough
to show that the sequence (p(SZ(,fZ,,T)> is convergent. It follows from lemma |12f that
reN
for i = 0,1,2 the sequence <p(SZ(;2,T)> is increasing. Since the polynomials Séf()l,r(x)
] reN
are of the form S5y, (z) = 2"+2F(z) + G(z) where F(z), G(z) are monic polynomials, the
sequence (P(Sz()f«)w)> is also bounded. For, if M is large enough such that F'(z), G(x) > 0
reN
for all z > M, then z < M for all z € Z (Sﬂ T) We now prove that p <FI§2> is a Pisot
number (cf. lemma 4.3 in [?]). Let € > 0 be small enough and r be large enough such that
p (SI(,Z,O >1+ecand |272E) (2)] > ‘<Fp(2> (x)‘ for every |z| = 1 + €. From Rouche’s

theorem it follows that the polynomial Fq(lr) () has only one root, let’s say zo, outside

the unit circle. If zy was a Salem number then we would have F*(zp) = 0 and therefore
SI(,?LT(ZO) = 0 for all large r, contrary to lemma Therefore zy = p (F,%(m)) and it is a
Pisot number.

The proof of (ii) is similar to that of (i) and it follows from lemma [13| using the
alternative form of S,(,fl)l,r,i = 1,2,3 given in remark @ If we set £, = lim, SZ(,,O%,«
then it follows from lemma that /,, is increasing on ¢. Since {,, = p <Fq(9)> >
1 and (z — 1)2F9 = 27 (2" — 22" + 1) 4+ 2" — 1 we deduce from lemma [13 that
lim,, 400 p <S,g?q)7r(x)) = p(x"™? — 22" 4+ 1). The other cases of (iii) and (iv) are done
similarly.

It remains to prove (v). Let ¢, = limg, .o p (Squ)r(x)) The polynomial F(z) =
aPT2 — 2P +1 is decreasing in <1, %) increasing in (2”;2, 2) F(1)=0and F(2) = 1.
Therefore the only root of H outside the unit circle is ¢, and satisfies 2p +2 </, < 2. We

conclude that lim, ;00 p (S,S?J,Ax)) = 2. The cases i = 1,2,3 are snmlar. O
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Theorem 11. For k,p1,...,pr € N and alli € {0,1,... k}

77777

2P G(z) — G*(x) where

G(z) = S (#) = Dy, (2) ... Dy, (2) Ap, ., (2) Ap,_, (),

P1,5Pk—1

-----

..........

Pt — (k= 1D)aP =t — k42, ifi # 0,

H(z) =
gt = (k= DaP + k—2, ifi = 0.

Ezample 15. For the case of the Dynkin diagrams D,,, theorem [9] gives

1

r—1

Do(x) = 8, _4(x) =

(2" M=) 4+2*—1)=a"+2" +z+ 1

For the affine Dynkin diagrams D,(zl), theorem @ gives

1 T+ 1
D(l)(l‘) = 5222,1,1(@ N

1S ([E3<l’n_2 o xn—i’) o In—4 o 1) +xn—2 —|—I2 - 1) _

r—1
(z"?=1)(z—1) (x4 1)°.

For the E,, diagrams it gives

1
E.(x) = S;?z)’n_zl(x) = (2" ?(2® —z—1)+2°+27—1).

All these agree with the known formulas of Coxeter polynomials of the Dynkin and FE,,
diagrams (see section 3.4 and also [?] and [?]).

We also prove the following theorem concerning joins of Coxeter graphs.
Theorem 12. Let I' be the join of the simple graphs I';, i = 1,2,...,n. Suppose that z
is a zero of T';(x) with multiplicity m;. Then z is a zero of the Coxeter polynomial T'(x)

with multiplicity at least

min{m —m; :i=1,2,...,n}
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where m =my +mo + ...+ my,.

Proof. Let us denote by I'(y) the join of the graphs I'; at the vertices v; € V(I;), ¢ =

1,2,...,k. The graph I, looks like the one in fig. f.2]
t

Figure 4.2: The join of the graphs I';

Applying proposition |11] to the splitting edge (¢, v,) we obtain
Doy (#) = oy (@)Tn(@) = o0 (@)1 (@)Ta(e) ... Toa (2,

where T, is the subgraph of I',, on the vertices V (I'n) \ {vn}. Since the polynomial I'(y

satisfies the relation

Loy(z) = (x — 2)™ ™ f(x) — (z — 2)™g(x) — (x — 2)™h(x)

for some polynomials f, g, h we can now proceed by induction and see that the theorem

is true. O

Theorem [12] generalize a theorem of V.F.Kolmykov (see [?]) which says that if I" is
the join of the Coxeter graphs I';,T's and z is a root of the Coxeter polynomials I'y(z)
and T'y(z) then I'(z) = 0. According to [?] if z # +1 then m; € {0,1} and therefore in
that case, theorem (12| can be found in [?] where the authors have proved that z is a zero
of I'(xz) with multiplicity at least m — 1. For z = £1 however z can be a zero of I'(x)

with multiplicity less than m — 1. For example consider the join I' of the affine Dynkin
diagrams Dz(ll) as shown in fig. . The polynomials I'(z) and D{"(z) both have 1 as a

Vo NN
O NZN

Figure 4.3: The join of two Di )
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Chapter 5
Hamiltonian systems

Integrable systems, what are they? It’s not easy to answer precisely. The
question can occupy a whole book, or be dismissed as Louis Armstrong is
reputed to have done once when asked what jazz was—'If you gotta ask, you’ll

never know!’—Nigel Hitchin

5.1 Hamiltonian systems

One of the most interesting type of nonlinear systems of differential equations are the
Hamiltonian systems. They arise in many physical problems. The Hamiltonian equations

for such a system are obtained by a single function, the Hamiltonian.

Definition 24. Let H € C°(R?*") where H = H(q1,q2,- .. ,Gn, P1,---,Pn) = H(q,p). A

dynamical system of the form

OH
q.i: P >i:1727"'7n7
Di
. (5.1)
Bi= g i=12.m

is called Hamiltonian system. Equations ({5.1)) are known as Hamilton’s equations. The
coordinates ¢, p denote respectively, the positions and the momenta and the Hamiltonian

as the total energy of the system.

A more compact form of Hamilton’s equations is

. 0H
q a_pu

. 0H
p _a_q’
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: - N : - oH oH  9H\ OH OH  9H
where ¢ = (q1,-.-,Gn),p = (P1,---,Dn) and 57 = (%"'E)?B_p: (6—101...(9}771). Intro-

ducing z = (¢, p) and the symplectic matrix J defined by

0 I,
J = ,

where I, is the n x n identity matrix, then Hamilton’s equations (5.1)) can be written as

z=JVH,
: OH OH o \©
where V H is the column vector (0_7 == .., )
r1) Oxg Oz2n

FExample 16. Consider the Hamiltonian
H = Z epi‘i‘%(qﬂ»l_qifl) e O™ (RQn) :
i=1

where gy = ¢,11 = 0. Then H gives rise to the system

. T o .
qi:€p1+2(qH—1 q:—1)7 i=1,2,...,n

P = 1€P2+%(QS—Q1)

2 Y

(epi+1+%(qz'+2*qz') N epi71+%(Qi*Qi72)> i=2...,n—1,

DO | —

pi =
. 1 Leg _
Dp = _éepnfl‘f'Q(Qn Qn72)’
The transformation u; = epi+%(qi+1_qi*1), t = 1,2,...,n transforms the system to the

system

Uy = UUz,
ui:ui(uiﬂ—ui,l), ’i:2,3,...,77,—1,

Uy, = —UpUp—_1-

This system is the well known KM system. It was studied first by Volterra in [?] and it

was first solved by Kac and van-Moerbecke in [?].

Lemma 14. For a Hamiltonian system the total energy (i.e. its Hamiltonian) re-
mains constant along the solutions of .

Proof. If x = (¢, p) is a solution of (5.1)) then

. " (OH OH " (OHOH OHOH
H= i+ = | = _ —
ZZ:; (a%’ et Op; pl) Z (a%’ Opi  Op; aQi) 0

=1
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and therefore H is constant. O

Example 17. The Newtonian system

&= f(x)

is a Hamiltonian system. It can be written as

A special type of Hamiltonian that often occurs in physical systems is

1
H = §y2 + U(‘T)u

where 132 is the kinetic energy and U(z) = — f;) f(t)dt is the potential energy.

5.2 Poisson brackets

The symplectic matrix J can be used to define an operation, called the canonical Poisson
bracket, between two smooth functions on R?". Let f, g be two smooth functions on R??,

on the variables ¢, p. The (canonical) Poisson bracket of f and ¢ is defined by

af Og _ af Og
dq; Op; Op; g .

{f,9y=V1"Ivg=>" (

=1

With respect to the Poisson bracket, Hamilton’s equations can be written as
g ={x;, H}, i=1,2,...,2n.
In general for any smooth function f € C* (R?"), if x is a solution of then
f=VfIJVH ={f H}.

The canonical Poisson bracket satisfies the following properties.

1. (skew-symmetry) {f, g} = —{g, [},
2. (Bilinearity) {\f + g, h} = XA {f,h} + {9, h},

3. (Jacobi identity) {{f,g},h} +{{g,h}, f} + {{h,f},9} =0,
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4. (Leibniz rule) {fg,h} = f{g,h} +g{f, h}.

A smooth function f is called a first integral (or a constant of motion) of the system ,
if f(z) =0 for any solution x of . Equivalently, if {f, H} = 0.

For example, due to property 1 of Poisson brackets we derive lemma [14] i.e. that the
Hamiltonian of the system is constant of motion (in Hamiltonian systems the total

energy is conserved).

Ezample 18. (The Holt Hamiltonian, (see [?, ?]))
A straightforward computation shows that the Hamiltonian system defined by the
Hamiltonian

= (Iﬁ +p§) 4 e(qz—\/gcn) + o(a2+V3a1) 42

N | —

has the function

I = p — 3pip2 + 3 <e<QQ—\/§Q1> + platV3a) _ 2672(]2) pi—
3\/§ <€(Q2+\/§Q1) _ e(lIQ—\/g(h)) Do

as a constant of motion.
The Hamiltonian system defined by the Hamiltonian function
HQ —

3 4 _2
(3 +93) + Sai + (3 +)a)

DN | —

where ) is a constant, has the following function as a constant of motion

3 9 4 _2 _2 1
I, = pg + §p2pf - (—§qf’ + i’)ng1 P+ 3\ 3) P2 + Ip1G245 .

Ezxample 19 (The Toda lattice). The Hamiltonian system defined by the Hamiltonian

function
n

-1
1 s
H(QlaQ?a"'7qn7p17p27"'apn):Z§p%+ et qH_la

=1 =1

n

is the well known classical, non-periodic Toda lattice. It was first studied by Morikazu

Toda in [?]. Hamilton’s equations become

(]"Z = Di; 1= 1727"'an7
P = eli-1Th i =12 . n,
where we set g = gn+1 = 0. Flaschka’s transformation (see [?, 7, ?])

1 1
. — —p3z(@i—aqit1) b, = ——np;
a; 26 , 05 2]717
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transforms the system to

di:ai(bi+1—bi>, i:1,2,...,n—1

bi=2(a—d2,), i=12,...,n

Flaschka’s transformation can be used to find plenty constants of motion for this sys-

tem. In fact, if L is the Jacobi matrix

bl aq 0 Cen ce 0
aq b2 a9
0 b:
I — asz 3
Ap—1
0 Ap—1 bn

then it can be proved that the functions

1 i
Hz—ztl'(L),

are all constants of motion for the Toda lattice (see proposition [26]). Note that

& 1
H,y :Zbi: —5(]91 +po+ ...+ Dn)
=1

corresponds to the total momentum and

Hy = %Xn:b? + Xn:a?
i=1 i=1

is the Hamiltonian of the system.

Poisson who introduced, together with his teacher Joseph-Louis Lagrange, the Poisson

bracket, proved the following proposition.

Proposition 24 (S. D. Poisson). If I,J are first integrals of a Hamiltonian system,
then the function {I,J} is also a first integral of the system.

Jacobi gave a simple proof of Poisson’s proposition, which rely on the Jacobi identity

of the Poisson bracket.

Proof. (Jacobi) If I,J are first integrals of the Hamiltonian system with Hamiltonian
function H, then {I, H} = {J, H} = 0. From the Jacobi identity of the Poisson bracket it
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follows that
{{]’J}aH}:{]7{‘]7H}}+{{17H}7‘]}:0

and therefore {I, J} is indeed a first integral. O
Definition 25. A first integral I is polynomial if I € R[z]| while it is rational if I € R(x).

There is a more general definition of Poisson brackets, than the canonical Poisson
bracket, defined on associative algebras; the canonical Poisson bracket is defined on the

algebra of smooth function on R?",

Definition 26. e If A is a commutative associative algebra with unity (with respect
to an operation “-”), then a Poisson bracket, {, }, is a Lie bracket which further, it

satisfies the Leibniz rule

{fg.h} = f{g,h} +g{f.h}, Y, g,h € A,

i.e. the linear map ads(g) = {f, g} is a derivation with respect to the operation “-”.

e A smooth Poisson structure (or simply a Poisson structure) on a smooth finite di-
mensional manifold M is a Poisson bracket defined on the algebra C*°(M) of smooth

functions on M.

Hamiltonian systems can be defined in a more general framework, in the sense that
the corresponding Poisson structure is not canonical.

Let {, }, be a Poisson bracket on the manifold M, (x1,xs,...,2,) local coordinates on
M and H € C>*°(M). A dynamical system of the form

x’i:{xi,H},izl,Z,...,n, (52)

is called a Hamiltonian system.
For simplicity we give the definitions in the case M = R" with coordinates (x1, ..., x,).
The Poisson structure can be encoded in a matrix known as the Poisson matrix of the
Poisson structure. This matrix is defined by the functions {x;, x;}; i.e. is the n x n matrix
T = (2 ;)1<ij<n With z; ; = {x;, 2;}.

FExample 20. The Poisson matrix of the canonical Poisson structure is the matrix

0o I,
~I, 0]

The Poisson bracket of two functions f, g on R” can be written in terms of the Poisson

matrix m, as

{f.9} =V f'nVy.
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In terms of the Poisson matrix, the Hamiltonian system [5.2} can be written as
t=mnVH.

Note that due to the skew-symmetry of the Poisson bracket it follows that the Poisson
matrix is skew-symmetric. However, given a skew-symmetric matrix 7, then, the bracket
{f, g} = VfTnVg satisfies all but the Jacobi identity, the properties of the Poisson bracket.
The Leibniz rule rests upon the Leibniz rule for the derivation of the product of two
functions. From the Leibniz rule and the fact that the second order partial derivatives of
a smooth function commute, we obtain the following formula.

If f,g,h are smooth functions on R”, then

{590+ g h}, [+ b f1, 9} =

Sy, P (01 90 Oh L 0F D9 Oh | 0F g Oh) _
Lk Ox; \Ox; 0xjO0xy, Oz, Oy Ox;  Oxy Ox; O N

1<i,j,k,1<n

- 8xi,j 8xj,k al'k,i 8f 89 8/1
Z Z <xl’k ox; + T ox; g ox; ) Ox; Oxj Oy

1<4,j,k<n 1=1

Therefore we have the following proposition

Proposition 25. If 7 = (z;) is a skew-symmetric n X n matriz of smooth functions on
R™ = (21,2, ...,,), then the bracket, {,}, defined by the formula

{f, gy =V f'nVyg, f,geR"

s a Poisson bracket if and only if for all 1 <i < j <k <n,

{{zi it ot + {{ag, 2} 2} + {{oe v}, 25} = 0.

Definition 27. The rank of the Poisson matrix of the Poisson structure, {,}, on R" at
the point xy € R" is the rank of the Poisson matrix evaluated at the point xy, and is
denoted Rank,, (7). The maximum max,,cg» Rank,, (7) is the rank of the Poisson matrix
and is denoted Rank (7).

Remark 7. Note that since the Poisson matrix is skew-symmetric, its rank is always even.

Definition 28. A Casimir function is a smooth function C' € C*°(R") such that
{C, f} =0, VfeCR").
If the rank of the Poisson structure is k, then there are n — k Casimirs.
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FExample 21. For the Toda lattice the function Hy = by + by + ... + b, is a Casimir.

5.3 Liouville integrability
Definition 29. The set of elementary functions f(z) in R™ is the set £ O R(z) with the
property

L If fi, fo € E then fi + fo, f1 — fo, [1 - fo, % €&

2. If fo, fis..., fn € E, f asmooth function in R™ and fo + fif + fof? + ...+ frf”
then f € &.

3. If f € £ then L € &.
4. If f € E then e/ and log f € £.

For example the function F(z) = z v ey — v 108°(VE+2) §5 elementary. The function
fox tet*dt is elementary. There are functions which are not elementary, but to prove that
a function is not elementary is far from being obvious. For example it was proved by

Liouville himself (see [?]) that the function f; e~ dt is not elementary.

Definition 30. e The set A containing the elementary functions and also the functions

satisfying the property
5. If f € A then for fdz; € A

is called the set of Liouvillian functions. If f € A then we say that f can be

represented by quadratures.

e A set of functions {fi, fa,..., fn} is said to be involutive (or that the functions
fi, fa, ..., fn are in involution) if {f;, f;} =0 foralli,j =1,2,...,n.

e The Hamiltonian system ({5.1)) is said to be (Liouville) integrable if it admits n

independent first integrals in involution.

e In general the Hamiltonian system (/5.2)) on R™ defined by a Poisson bracket of rank
2r is said to be (Liouville) integrable if it admits n — r independent first integrals in

involution.

Remark 8. The terminology integrable system is in the sense that if a Hamiltonian sys-
tem is integrable then it can be solved by quadratures; the solutions of the system are

Liouvillian functions (see [?]).

102



5.4 Lax pairs

Peter Lax in [?] noted that for L = —6% —uand B = —4(2‘;—33 —u-k — Lu,, the equation
dL
_t = [B, L] 5

is equivalent to the KdV equation
U + Uy + Ugyy = 0.

Definition 31. e A Lax pair is a pair of matrices L, B € M(C>(R")) such that

L =[B, L]

e A Lax pair L, B for which the equation L = [B, L] is equivalent to the Hamiltonian

system ((5.2)) is called a Lax pair for ([5.2).

The definition will be better understood with the following examples

FExample 22. The system

Ty = x1<x2 - $3)7
.fg = ZE2<I3 — 131),

Ty = w3(T] — T2)

is equivalent to the Lax pair L, B with

0 1 x xr1 + 9 0 1
L=]2y 0 1], B= 1 T2+ T3 0
1 z3 O 0 1 x|+ x3

It is straightforward to verify that

0 0 x'l 0 0 .%‘1(.%‘2 — 1’3)
L= .1:2 0 0 = 1‘2(.@3 — xl) 0 0 = [L, B] .
0 23 0 0 z3(7r1 — 72)

In the next example we see that a system can admit several Lax pairs.

FExample 23. The KM system is defined by the equations

L1 = 122,
€T; = l’l’<£€i+1 — .1'1;1), 17— 2,3, N 1,
Tp = —TpTp—1.
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It admits several Lax pairs. The pair L, B with

and

is a Lax pair of the KM system. So is the Lax pair

and

0O 1 O 0
I 0 1
I — 0 ) 0
0
0 0 =z, O
1 0 0
0 0 1
0 0
B— 12
Tol3 0
0 Tp-1Z, 0 O

I 0 A/ L1T2 0 O
0 1+ T2 0 \/Toxs3
A/ T1T2 0 To + T3

0 A/ T2X3

; VIn—1Tn
Tp—1+ Tp 0

0 VI iEm 0 Tn

0 0 tVTizz 0 0

0 0 0 5ya2rs

—%\/3?13}2 0 0
0 —%,/:L'Q.Tg
%\/ LIn—1Tn
0 0
0 — 3/ Tn1%n 0 0
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Finally, there is a symmetric version due to Moser (see [?]) where

0 21 0 e e 0
VI 0 E '
0 v/ 0
L= V"
VIn
0 0 &, 0
and
0 0 A/ L1T2 0
0 0 0
B —\/xT1x2 0 0 \/Tox3
; —/ 1273 \VTn—1Tn
: 0
0 . —/Tni%n 0 0
FExample 24. The Lax pair
0 \/E 0 v . “es _\/m
VT 0 a2 ;
0 0
L= VT2 :
. 0
f JZn
—Tnt1 - 0 a, 0
0 0 \/T1T2 V/TnTnt1 0
0 0 0 VX1Tn+1
B— —\/L1T2 0 0 A/ L2T3
; —\/T2T3 V1%
0 —/T1Tp11 e —/Tn—1Tn 0 0
defines the periodic KM system,
ji:xi(xi+1_$i—l)7 i—2,3,...,n—1,

where o = x,,.
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Ezxample 25. The Lax pair (see [?])

0 - - a,
1
bs

0

1

0 ap_1 b,

0O 0 O
aq 0 0
0 a9 0
0 0 Qp—1

gives rise to the periodic Toda lattice which is defined by the equations

where ag = a,,.

by = a; — a;—1,1 =

1,2,...,n,

;= ai(bi —b;), i=1,2,3,....n—1,

Qn,

0
0
0

Lax pairs are useful for finding first integrals for the system of differential equations

they define. The next proposition shows that for the system defined by the Lax pair L, B,

the traces of L* are all constants of motion.

Proposition 26. If L, B is a Lax pair for the system then the functions tr(L¥) are
constants of motion for the system .

Proof. We compute the derivative of the functions tr(LF).

1 )
Ztr (L*) = tr(L*'L) = tx(L*B — L* 'BL) =

tr(L*B) — tr(L¥B) = 0.

We have used the property of the trace

tr(AB) = tr(BA).

Therefore tr L* is indeed a constant of motion.

We immediately get the following result.

Corollary 3. If L, B is a Lax pair and

xL(A) ="+ foi AP A S

15 the characteristic polynomial of L, then the functions f; are constants of motion.
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FExample 26. For the case of the KM system it can be proved that the traces of L give

enough independed constants of motion, in involution, so that the KM system is integrable.

5.5 Lotka-Volterra systems

The Lotka-Volterra equations were discovered independently by Alfred Lotka and Vito
Volterra around 1925. Volterra was trying to make sense of the fact that the predator
fish increased in numbers after WWI. This question was posed to him by his son-in-law
Umberto D’Ancona a marine biologist who collected data of fish catches in the Adriatic
for the years during and after the war. Volterra proposed the following simple system to

model the interaction between predator and prey fish.

t = xz(a—by)

gy = y(—c+dx)
where a, b, ¢, d > 0. This system and its generalizations to n dimensions is one of the
most basic models in population dynamics. The variable x denotes the density of prey fish
while y is the density of predator fish. Note that if there are no predators (y = 0) then
x grows at a constant rate © = ax, the so called Malthusian law of population. Volterra
made the assumption that the interaction between predator and prey fish depends on both
x and y, hence the Malthusian law is modified by subtracting a term bxy. Note that he
did not take into account a possible death of prey fish due to other causes. Similarly, the
density of the predator fish increases at a rate proportional to both x and y, i.e. a factor
dry. Assuming that they die at the rate y = —cy we get the second equation. The same
model was also derived by Lotka [?] in the context of chemical reaction theory.

Note that the vector field vanishes at the origin (0,0) and at the point (§,%). The
origin is saddle point while the second point is a center, i.e. it corresponds to a periodic
solution. It is not difficult to produce a constant of motion. We multiply the first equation
by % and the second by % and then we add the result. We obtain

T Y
Te—de)+La—by)=0.
x(c x)—i—y(a y) =0

This equation is equivalent to

%(clnx—d:ﬁ—kalny—by) =0.

Therefore the function

H(z,y) =clnz+alny — dx — by
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is a constant of motion. The function H is actually a Hamiltonian. By defining the Poisson

bracket on R? by {z,y} = xy we produce the following Hamiltonian formulation

t = {z,H} = x(a—by)
vy = {y.H}=y(—c+dz).
The Lotka-Volterra equations generalize from two to n species. The most general form
of the equations is .
j:i:@-:vi—i—Zaijxi:cj, i=1,2,...,n, (5.3)
j=1
where z; denotes the density of the ith species, ¢; is its intrinsic growth (or decay) rate and
the matrix A = (a;;) is called the interaction matrix. We consider Lotka-Volterra equations
without linear terms (g; = 0), i.e., the population of the ith species stays constant if there
is no interraction with other species. We also assume that the matrix of interaction
coefficients A = (a;;) is skew-symmetric. This assumption places the problem in the
context of the so called conservative Lotka-Volterra systems.

These systems can be written in Hamiltonian form using the Hamiltonian function
H=z14+224+ -+,
Hamilton’s equations take the form i; = {z;, H} = 37, m; with quadratic functions
mi; = {xi, x5} = axiwy, 1,5 =1,2,...,n. (5.4)

From the skew symmetry of the matrix A = (a;;) it follows that the Schouten-Nijenhuis

bracket [m, 7| vanishes identically:
[, 7 lin = 2 (ay{zizy, v} + age{zjoe, 2} + ap{wpz, 25})
= 2 (aij(ajk + aik) + ajk(a;m- + ajl-) + aki(aij + akj)) TiTjTp = 0.

The bivector field 7 is an example of a diagonal Poisson structure.
The Poisson tensor ((5.4)) is Poisson isomorphic to the constant Poisson structure defined

by the constant matrix A (see [?]).

Proposition 27. Ifk = (ki,ky--- , k,) is a vector in the kernel of A then the function

k1 ko k.
f_xl x2 ...xn"

1s a Casimir.
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Proof. For an arbitrary function g the Poisson bracket {f, g} is

I U/ M, ol o S B/
{f,g9} = Z.]Zl{x“xj}axi o ]Zl (lzl az]kh) xjfaxj =0.

]

If the matrix A has rank r then there are n — r functionally independent Casimirs.

This type of integral can be traced back to Volterra [?]; see also [?, 7, ?].
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Chapter 6

Generalized Lotka-Volterra systems

If you would be a real seeker after truth, it is necessary that at least once in

your life you doubt, as far as possible, all things. — René Descartes

6.1 Introduction

Recall the system (|1.2)), also known as the Volterra system. It is associated with a simple
Lie algebra of type A, in the sense that it can be written in Lax pair form L = (B, L]

where
0 a O 0
ar 0 as
0 0
L= 2 , (6.1)
0
an
0 0O a, O
and
0 0 a1Qa9 0
0 0 0
_ 0 0
B— a1Qa9 Q203
—agas - B Un—10y
: . 0
0 . ceo —a,_1a, O 0

This Lax pair is due to Moser [?]; it gives a polynomial (in fact cubic) system of differential

equations. The change of variables x; = 2a? gives equations ((1.2). It is evident from the
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form of L in the Lax pair, that the position of the variables a; corresponds to the simple
root vectors of a root system of type A,,. On the other hand a non-zero entry of the matrix
B occurs at a position corresponding to the sum of two simple roots o; and «;.

There is a similar Lax pair which gives rise to the periodic KM system (see section.
Bogoyavlensky generalized this system for each simple Lie algebra and showed that the
corresponding systems are also integrable. In [?], Bogoyavlensky studies the systems

defined by the equations

p p
= Q; E Qjyj — E Ai—j ,i:1,2,...,n
j=1 =1

where a,,; = a; for all .. These systems are generalizations of the periodic KM system;
for p = 1 we obtain the periodic KM system. Bogoyavlensky finds Lax pairs for these
systems and proves that for n = 4 and n = 5 they are integrable. In [?, 7], Bogoyavlensky
constructed integrable systems connected with simple Lie algebras which generalize the
periodic KM system. He constructs the systems by defining the corresponding Lax pairs

as follows. He considers the matrices

L= beaﬁx_mgr > [Xa X

1<i<j<n
and
7
B = Z FX*‘” + X,
i=1 "
where oy, 9, ..., q, are the simple roots, o is the highest positive root and X, the

corresponding root vectors of a root system of a simple Lie algebra. Also ag = >, _, k;a;.
The systems produce by these Lax pairs are integrable and are called Bogoyavlensky-
Volterra systems. There is a complete description of these systems in [?]. See [?] and [?]
for more details.

In this chapter we generalize the Lax pair of Moser and produce a larger class of
Hamiltonian systems which we call generalized Volterra systems since in some cases by a
simple change of variables we produce Lotka-Volterra systems. It is clear that the systems
we obtain are not subsystems of the ones defined by Bogoyavlensky. The systems defined
in [?7, ?] (by a completely different approach) are of a different nature. For example the
defining matrix is not even skew-symmetric. The systems obtained in [?] are also different
as one easily notices by comparing the resulting equations. By restricting the systems
in [?] it is impossible to obtain our type of systems. This can be seen by examining the
associated graph of the Lotka-Volterra systems.

We generalize the Lax pair of Moser as follows. Instead of considering the set of
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simple roots II, we begin with a subset ® of the positive roots R™ of a root system of a
complex simple Lie algebra, which contains II, i.e. II € ® € R*. For each such choice
of a set ® we produce a Lax pair and thus a new Hamiltonian system. We restrict our
attention to some examples in the A,, case, however this algorithm applies more generally,
for each complex simple Lie algebra. In dimension 3, this procedure produces only two
systems, the KM system and the periodic KM system. In dimensions 4 and 5 (i.e. the
cases of Az and A,) and by allowing the use of complex coefficients (see chapter [7]) this
method works in all possible cases and in fact we have verified using Maple that all the

resulting systems are Liouville integrable.

6.2 The procedure

We recall the following procedure from [?]. Let L be any simple Lie algebra equipped with
its Killing form (- |-). One chooses a Cartan subalgebra H of L, and a base II of simple
roots for the root system R of H in L. To each positive root a one can associate a triple
(X, X_a, Hy) of vectors in L which generate a Lie subalgebra isomorphic to sly(C). The
set (Xo, X_a)acr+ U(Ha)aen is a basis of L, called a root basis. Let I = {ay, ..., a,} and

let X,,,...,X,, be the corresponding root vectors in L. Define

L=> (X, +X_).

a; €IT

To find the matrix B we use the following procedure. For each 7,7 form the vectors
[Xai,Xaj]. If o + o is a root then include a term of the form a;aq; [Xai,Xaj] in
B. We make B skew-symmetric by including the corresponding negative root vectors

a;ia;[X _o;, X_q,]. Finally, we define the system using the Lax pair equation

L=I[L,B].

For a root system of type A, we obtain the KM system.

We generalize this algorithm as follows. Consider a subset ® of Rt such that
I[Ic®cCR".
The Lax matrix is easy to construct

L= (X, +X_,).

a; €D

Here we use the following enumeration of ® which we assume to have m elements. The
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variables a; correspond to the simple roots «; for j = 1,2,...,¢. We assign the variables
a; for j =0+ 1,04 2,...,m to the remaining roots in ®. To construct the matrix B we
use the following algorithm. Consider the set ® U ®~ which consists of all the roots in ®

together with their negatives. Let
V={a+pf|a,fedUud, a+BeR"},

and define
B = Zcijaiaj (Xai-i—ozj - X—ai—ozj) P (62>

where ¢;; = £1 if a; + a; € ¥ with oy, 5 € @ U P~ and 0 otherwise. In all eight cases in
As we are able to make the proper choices of the sign of the ¢;; so that we can produce a
Lax pair. This method produces a Lax pair in all but five out of sixty four cases in Aj.
However, when we allow the ¢;; to take the complex values ¢ we are able to produce a
Lax pair in all 64 cases. By using Maple we were able to check that all these examples in
Az and A4 are in fact Liouville integrable. We will not attempt to prove the integrability
of these systems in general due to the complexity of their definition. We restrict our
attention to some examples in the A, case and we prove that for several subsets ® of
special form the algorithm works; i.e., there is a choice of the signs of ¢; ; which produce
a consistent Lax pair.

This algorithm for certain subsets ® recovers well known integrable systems. For

example for & = II, the simple roots of the root system A,, and ¢;;4; = 1 for ¢ =
1,2,...,n—1 we obtain the KM system while for & = I[TU{,1}, the simple roots and the
highest root, the choice of the signs ¢; ;11 = 1fort =1,2,...,n—1and ¢ 41 = Chpt1 = —1

produces the periodic KM system.

We have to point out that in [?] there is a similar construction for the case of the Toda
lattice where Hamiltonian systems were defined which interpolate between the classical
Kostant-Toda lattice and the full Kostant-Toda lattice. In that case there is a simple
criterion on the set ® which ensures the construction of the Lax pair. In our case there
is no such simple criterion. However, in the next proposition we present a sufficient (but

not necessary) condition on the subset ® which gives a consistent Lax pair.

Proposition 28. Let II C ® C R* be a subset of the positive roots with the property that
whenever a, 3,7 € ®UD™ thena+S+v#0 and ifa+ B+~ € R thena+ [+~ € ®.
Also let B be the matrix constructed using the algorithm described in . Then for any

choice of the signs c;; the pair L, B is a Lax pair.
Proof. Let K be the following subset of the positive roots
K={a+B+7y:0,8,7€®Ud", a+f+y€ R}
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It is evident, from the construction of the matrix B, that for all possible choices of the
signs ¢; j, the nonzero entries of the bracket [L, B] appear in the positions corresponding
to the root vectors X,, a € K. The condition o, 8,7 € PUP™ = a + 5+ v # 0 implies
that there are no variables in the diagonal of [L, B] while the condition «, 3,7 € ® U &~
and a+ 8 +~v € Rt = a+ [+~ € P implies that K C ®. Since we also have ® C K we
deduce that ® = K and therefore the pair L, B is a Lax pair. O

This condition is of course not necessary. For example the KM and the periodic KM
systems do not fall in this class. In theorem [13| and proposition [30| we find several other
families of subsets ® which give consistent Lax pairs.

A corollary of proposition [28]is the following.

Corollary 4. Let ® be the subset of the positive roots of the root system of any simple Lie
algebra containing all the roots of odd height. If L and B are the matrices constructed as
described in then for all all possible choices of the signs ¢; ;, L, B is a consistent Lax

pair.

We illustrate the previous corollary with examples from the roots systems of the clas-

sical simple Lie algebras.

FExample 27. For the root system of type Az the subset of the positive roots of odd height

is ® = {ay, a9, a3, a4 = vy + g + ag}. This choice gives rise to the matrix

0 aq 0 ay
I — aq 0 a9 0
0 (05} 0 as

ay 0 as 0
The corresponding subset ¥ is
U= {o + ag, 0 + a3}

and the roots in ¥ are formed as a; + a9 = ay = a3 and ay + o3 = a4 — «;. Therefore
the skew-symmetric matrix B constructed using (6.2)) is

0 0 C1,2a1G2 + C3,40304 0

0 0 0 C1,4Q104 + C2.30203
—C1,20102 — C3.4A304 0 0 0

0 —C1,40104 — C2.30A203 0 0

We can easily verify that all 16 possible choices of the signs ¢; ; give a consistent Lax pair.
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The equation L = [L, B] is equivalent to the system

. 2 2
a1 = —C120109 — C1 4010, — C23020304 — C3 4020304,
. 2 2
Qg = C1,2020] — C230203 + 34010304 — C1 4010304,
. 2 2
a3 = C2,30305 + C3.4030y + C1 2010204 + C1 4010204,

. 2 2
g4 = C1,40704 — C3 40304 + C2,301G2a3 — C12010203.

Of course only half of the choices of the signs give possibly non-isomorphic systems and
only one of them gives a Lotka-Volterra system (see theorem (13| below), the well known
periodic KM system.

FExample 28. For the root system of type Bj the subset of the positive roots of odd height
is

CI) = {Oél, Q9, 3,04 — (X1 + (0] + 3, 05 = (kg + 2043, Qg = Q1 + 2(12 + 20(3}.
This choice of the positive roots gives rise to the matrix
0 aj 0 2ay 0 20,6 0

aq 0 as 0 2@5 0 —2CL6
0 as 0 2663 0 —2a5 0

L= Qg 0 as 0 as 0 ay
0 2@5 0 2&3 0 —a9 0
2&6 0 2 2&5 0 —Qa2 0 —ay

0 —2a¢ 0 20y 0 —aq 0

or equivalently
6

L= a(Xe +X_a,).

i=1
The subset ¥ is
U = {al + Q9, (g + ag, 0 + Qg + 20./3}

where the roots in ¥ are formed as oy +as = ay— a3z = ag—as, o +a3 = au— ] = ag— 0y
and a; + g + 203 = az + aq = v + a5 = g — Qg
Therefore the matrix B constructed using (6.2)) is given by

(c12a109 + ca3a3a4 + C56a506) (Xaytas — X—ar—as) +
(ca,3a2a3 + 140104 + 160406 + C350305) (Xagtas — X—as—as) +

(c34a3a4 + 150105 + C260206) (Xay+astast2as — X —a1—as—2a3) -
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In matrix form (see section is the 7 x 7 matrix of the form

A1 2Aw A2
0T 0wt
A3 2Av A4
where A, Ay, Az, Ay are 3 x 3 matrices, A, is per skew-symmetric, A3 = —AL and Ay is

minus the per transpose matrix of A;. The matrices A; and A4 are skew-symmetric and

v and w are 3 x 1 vectors. The matrix A; is

0 0 C1,20102 + C4,30304 + C5,6506
Al - O 0 0 ’
—C1,20102 — C430304 — C560505 O 0
the matrix A, is given by
C3,40304 + C1,50105 + 0276(126L6 0 0
Ay = 0 0 0
0 0 —c34a3a4 — C1501a5 — C2,60206
The vectors v, w are w = —v = (0, ¢ 3a2a3 + 140104 + 2¢4 0406 + 2¢3 5a305,0,0). Now it

is straightforward to verify that the pair L, B is indeed a Lax pair. The equation L = [L, B]

is equivalent to the equations

dl = —262736L26L3(l4 — 20174a1ai — 4045&2&6 — 4015(11&% — 40375a3a4a5—
2
403,4a3a4a5 N 402,6@2%@6 — C1,20109 — 264,3@26!?,@4 - 405,6612&5@6,
. 2 2
(g = C120702 + 2c4 3010304 + 4C5 ga1a5a6 — 4¢1 5010506 — 403 50505 —
2 2
des gazagae — 4cg panag — 2¢o 30205 — 201 4010304 — 4C4 6030406,
13 = 2 244 2 2 242
a3 = C1,2010204 -+ C4,3030, + C5,6A4050¢ -+ C1,5Q10405 —+ C3,4030, -+ 02,6a2a4a6+
2
2023@2@3@5 + 201,4a1a4a5 + 40476a4a5a6 + C2’3CL26L3 + cl,4a1a2a4 + 204,6a2a4a6—|—
2
2035@2@3@5 + 40&5(13@5,
. 2 2
g = —C12010203 — 20473CL36L4 — 4655&3@5(16 — 2015@1(13&5 — 20374a3a4 — 2023&2@3@6—
2 —2 —4 5+ + craajay + 2 +
C2,302030¢ C1,401040¢ C4,6040g T C2301A203 T C1 404104 C4,601040¢
2¢3 5a1a3a5 — 4¢3 sazasag,
. 2 2
a5 = C1,5Q7105 + C3,4010304 -+ Co,6A10206 — C1 2010206 — 2035&3&5
2 —4 2 _ = -2
C4,3030406 C5,6a505 — C230203 — C1,4010304 C4,603040¢,

. 2 2
Qg = C2.3020A304 + C1,4010G, + 204766L4CL6 + 0175a1a2a5+

116



2 2
C3,4020a304 + C2,6906 + C1,2Q1Q205 + 264’30,3@4(15 + 40576(Z5CL6 + 20375a3a4a5.

FExample 29. For the root system of type C3 the subset of the positive roots of odd height
is

O = {ay,az,a3,a4 = a3 + as + az, a5 = 2as + a3, ag = 2a5 + 205 + az}.

This choice of the positive roots gives rise to the matrix

0 a 0 ay 0 2a¢
aq 0O a O 2as 0
I 0 a 0 ag 0 Q4
agz 0 a3 0 —ay O
0 2a 0 —ay 0 —a
20¢ 0 a4y 0 —a; O

The matrix B constructed using (6.2]) is the skew-symmetric 6 x 6 matrix of the form

A A
A3 A4

where Aq, Ay, A3, Ay are 3 X 3 matrices, Ay is per symmetric and A, is minus the per

transpose matrix of A;. The matrix A, is

0 0 cia1a2 + c34a3a4 + 2¢4 60406
Al - O 0 0
—C1,20102 — C34A3Q4 — 20476(1,4&6 0 0

and the per symmetric part of the matrix A, is

0 20175611@5 + C2.40204 + 201’6G1G6 0
A2 = C1,40104 + C2,30203 + 202,5a2a5 0 0
0 0 0

It is straightforward to verify that the pair L, B is indeed a Lax pair. The equation

L = [L, B] is equivalent to the system
. 2 2 4 2
a1 = —C1,441G04 — 4C2 5020405 — C2 3020304 — *C1 6A105—
2
401,5a1a5a6 - 202,4a2a4a6 — C1,20109 — C3.4020304—
2
2¢4 6020406 — 4Cy 50105 — 4C1 6010506 — 2C2 4020405,

. 2
(y = C120702 + C3401A304 + 24 6010406 — 2C1 401405~
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4025@2(1% — 202}3@2@3@5 — 20175CL16L46L5 — 2C1’66L16L4CL6—
2 2
C2.4020, — C1.4010304 — C2 30203 — 20275a2a3a5,
. 2 2
a3 = 2¢1 4010204 + 2¢3 30503 + 4co sa5a5+
2 2
2012&1@2&4 + 263740,3@4 + 4047(;&4&6,
. 2
ay = 261,5(110@@5 + 20176(116@&5 + C2,40904—
2
C1,2010203 — C3 44304 — 2C4 6030406 + 2C1 2010206+
2 4 2 2 2
€3.403040¢6 + 4C4 60405 + C1 40704 + C2 3010203 + 2C2 5010205,
. 2 2
as — 20175(11@5 + 2017(3@10/6 + 0274CL16L26L4+
2 9 2
C1,4010204 + C330503 + 2C2 50505,
. 2 2
ag = 2c1 50705 + 2¢1 60706 + C2401A204—

2 2
C1,2010204 — C3 4030, — 264,6a4a6.

Fxample 30. The root system Dj is exactly the root system As and therefore the corre-
sponding systems are the same as in the case of A3. For the root system of type Dy the

subset of the positive roots of odd height is
o = {Oél, Q9, 3, 0y, (1 + g + a3, 0 + g + Qy, Qg + (0% + Qy, 0 + 2&2 + (6% -+ 044}.

This choice of the positive roots gives rise to the matrix

0 a 0 as ag 0 as 0
ap 0 as 0 0 ar 0 —ag
0 a 0 a3 ays 0 —a; O
I as 0 as 0 0 —as 0 —ag
ag 0 ay 0 0 —a3 0 —as
0 ay 0 —ay —a3 0 —ay O
a; 0 —a; O 0 —ay 0 —ag
0O —a; 0 —ag —as 0 —a; O

The matrix B constructed using (6.2)) is the skew-symmetric 8 x 8 matrix of the form

A Ay
As Ay

where Ay, Ay, A3, A4 are 4 X 4 matrices, A, is per skew-symmetric and A4 is minus the per
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transponse matrix of A;. The matrix A; is

Ay

0 0 cipaia2 + c3sa3as + ca6a4a6 + C7 80708 0
0 0 0 C1,50105 + C2,30203 + C4,70407 + Cp 80608
0 0 0 0
0 0 0 0

and the per skew-symmetric part of the matrix A, is

Ay =

0 c1,7a1a7 + c2.8a2a8 + 3 6a3a6 + c45a4a5 0O
C1,6a106 + C2,40204 + €3 70307 + C5 8508 0 0
0 0 0
0 0 0

It is straightforward to verify that the pair L, B is indeed a Lax pair.

The equation L = [L, B] is equivalent to the system

a; = —61,5a1a§ — A50203C2 3 — A50407C4 7 — A6Ce 848045 — Cl,6a§a1 — ApQ2C2 4G4 —
AgA7a3C37 — A5C5 80806 — 01,76L$a1 — AgA702C2 8 — Ap7A3C3 6 — A7(4Cy 505—
C1,2a§a1 — A50302C3 5 — A204C4 606 — AgATA2CT 8,
ay = 01,26l20l% + a1a3¢3 505 + AA401C46 + AgA7A1C7 8 — AgA7A1CY 7 — 62,80l§a2—
agdea3C3 6 — A4Cq 5508 — AeA4A1C1 6 — 02,4&421602 — A70403C3 7 — A405C5 8Ag—
a5a341C1,5 — Cz,3a§a2 — A7Q4G3C4 7 — A8AEA3CE 8,
a3 = G2a5a1C1 5 + 0273(13@3 + ara4a2Cy7 4 A3A6A2C6 8 — AeA7A1C1 6 — A7A4A02C2 4—
03,76L§G3 — A5C58G807 — AgA7A1C1 7 — AgAeA2C2 8 — G3C3,66L§ — A6A4Cy 505+
a205a1C1 2 + a§a3€3,5 + a4cy 60605 + asa7C7 gas,

(4 = A20601C1 6 + 02,4614@3 + ara3zasC3 7 + agls5aG2Cs5 8 — G5A701C1 5 — A7A302C 3—
C4,70504 — AGC680807 — A50701C17 — Q350208 — Ae5A3C3,6 — A4C4 50+
A2060G1C1 2 + A6A3C3 505 + @404,6652; + agarcrgas,
as = c175a5af + a2a3a1C2 3 + A70401C47 + AgAeA1C6 8 + A8AcA1C1 6 + AgA4A2C 4+
agarazcs 7 + a5c5,8a§ + aragaici7 + aga402C2 8 + A6A403C3 6 + aic4,5a5—
G20301C1 2 — G§C3,5a5 — (40A3C4 606 — AgA7G3CT 8,
ag = 01,6616@% + a1a2C2 4G4 + a703G1C3 7 + AgA5A1C5 8 + AgA501C1 5 + AgA3A2C2 3+
agQra4Ca7 + a60678a§ + arazaicy7 + agazasCa g + agc;z,,ﬁag + a50403C4 5—
a4Q2a71C1 2 — A403C3 505 — ai¢4,6aﬁ — Aga7G4C7 g,
ay = 01,7@7&3 + agaza1C2 8 + A6A301C36 + A50401C4 5 — AgA2A1C1 2 — AgA5A3C3 5—
agaesCye — a7c778a§ + agaza1C16 + A4G302C2 4 + 6377a7a§ + agasazcs g+

2
a50401C1 5 1+ @4QA302C2 3 + C47A70y + AgAeA4Co g,

o O o O
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. 2
ag = —0A5a1C1,6 — A50402C2 4 — A5A7A3C3 7 — A5C5808 — AeU5A1C1 5 — AeA30A2C2 3—
2 2
AgarG4Cs7 — QGCe808 T A2A7A1C1 7 + C2 80805 + AgA3A2C3 6 T A5A402Cy 5+

2
A20701C1 2 + A5G703C3 5 + A6A7G4C4 6 + A7C7 8AS.

6.3 Examples in A3 and A,

Ezample 31. For the root system Aj if we take ® = {ay, a9, a3, 1 + a2} then
@ U ¢_ - {ala Qg, a3, (1 + Qg, —Q1, —Qig, —Qv3, —Q1 — 042}

and ¥ = {ag, a9, 01 + o, 0 + a3, a1 + a3 + az}. In this example the variables a; for
t = 1,2, 3 correspond to the three simple roots ay, as, az. We associate the variable a4 to

the root oy + as. We obtain the following Lax pair:

0 a; Qg 0 0 —a4,a9 a1a9 —ayas

air 0 ay O a4Qo 0 —ai1a4 Q903
L= , and B =

aq4 QAo 0 as —a1a9 ai1a4 0 0

0 0 as 0 asas —Qo0s 0 0

Using the substitution x; = a? followed by scaling, the Lax pair is equivalent to the

following Lotka-Volterra system.

T1 = X1T2 — T1T4,
SL"Q = —XT2X1 + T3 + Xoly,
T3 = —T3T + T3y,

1:4 = Tg4T1 — T4l — Ty4T3 .

This system is integrable. There exist two functionally independent Casimir functions
Fy, = zyx3 = det L and Fy = x1x924. The additional integral is the Hamiltonian H =
T1 + Tg + T3 + 14 = tr L2

The standard quadratic Poisson bracket is given by

0 19 0 —I1T4
| —xam 0 ToX3 ToXa
= O —X3x2 0 T34
T4y  —T4Ty —T4T3 0
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One can find the Casimirs by computing the kernel of the matrix

-1 0 1 1
A=

0O -1 0 1

1 -1 -1 0

The two eigenvectors with eigenvalue 0 are (1,0,1,0) and (1,1,0,1). We obtain the two

Casimirs Fy = xi29zizl = z123 and Fy = rixdzlz) = z12024.

There is a similar Lax pair defined by the subset ® = {ay, as, a3, as + as}, where the

L matrix is
0O ag 0 O
0
I — ay Q2 Q4
0 a9 0 as

0 ays as 0
The resulting system is isomorphic to the one of example 31}

Ezample 32. A Lax pair L, B corresponding to ® = {a1, ag, as, a; + as + as} is

0 a 0 au

aq 0 a9 0

L =
0 as 0 as
as 0 asz O
0 0 a10y — Aaa3 0
B 0 0 0 —aya4 + asas
—a1a9 + asas 0 0 0
0 a104 — Q203 0 0

Using the substitution z; = 2a? we obtain the periodic KM-system

T1 = 1Ty — X124,
Tog = —To1 + ToT3,
(6.3)

XT3 = T3Ty — T3T2,

ZL:4 = T4T1 — T4T3 .
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The Poisson matrix (which can be read from the right hand side of (6.3))) is

0 T1T2 0 —X17T4
| T 0 Tols3 0
= 0 — XT3 0 T3T 4
T1T4 0 — T3y 0

of rank 2. In addition to the Hamiltonian
HISL’1+.T2+ZL’3+.T4

it possesses two Casimirs C] = x1x3 and Cy = xo14.

Ezample 33. The Lax equation L = [B, L], corresponding to the subset of the positive

roots of the root system As,

q) - {ala Qg, O3, (1 + g, (g + 063}

with

0 a ag O

aq 0 a9 Qj

L =

aqs Qg 0 as

0 as as 0
and

0 —a409 a1a9 —a1a5 — 403
B Q409 0 —aja4 — asas Q003
—a1a9 a1ay4 + asas 0 —a20x5
a1as + a403 —a9a3 Qoas 0

is equivalent to the following equations of motion

a, = alag — alag — alai — 2azaqas,
. 2 2 2 2

Qg = 20y + G203 — A20] — A205,
- 2 2 2

a3 = a3l + asa, — a3y + 2@1@4@5,
. 2 2 2

Qg4 = QqQ7 — Q4G9 — A40Q3,

. 2 2 2
as = a5a] — 503 + as5a;.

Note that the system is not Lotka-Volterra. It is Hamiltonian with Hamiltonian function
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H = 1(a?+d3+ a3+ a}+a?). The system has Poisson matrix
0 a1as —2a405 —a104 —a71ds5
—ai1a9 0 ao0s Qo4  —Q20s5
™ = 2 asas —aoas 0 asay asas
a1y —QagQy —aszay 0 0
a1as (05X0 1 —AQaszas 0 0

of rank 4 . The determinant C' = (ajaz — aqas)? of L is the Casimir of the system. The

trace of L? gives the additional constant of motion
1 3
F = 6 tr (L ) = @1G204 + a2a30s5 .

Since the three constants of motion are evidently independent, the system is Liouville
integrable.
Example 34. Let

0 aq 0 as

ay 0 Ao Ay

L =
0 a 0 as
as as az O
and
0 a,as ajas + asas —Q1Qy4
B — Q405 0 — Q403 a1a5 + Qo203
—a1a9 — asds a,as 0 —a409
a10ay4 —a1a5 — Q203 a,a9 0

This Lax pair arises when we choose ® = {ay, a9, a3, a0 + a3, a3 + as + as}. The
corresponding Poisson matrix has rank 4. In addition to the Hamiltonian H it possesses

a Casimir C' = det(L) = (aja3 — a2a5)2 and the integral F' = %tr (L3) = ajaqas + asasay.

The Lax pair corresponding to the subset of the positive roots ® = {ay, as, a3, ag +
ag, a1 + ag + a3} gives rise to a system which is isomorphic to the one of the previous

example.

FExample 35. For the case of
o = {Oq, g, O3, (X1 + Qg, Qg + Qasg, + o + Cvg}

there are three different choices of the signs of ¢; ; which give consistent Lax pairs.
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The Lax matrix is given by

0 a; a4 Qg
ay 0 a9 Qj
as Qo 0 as

0 a5 as O

In order to have a consistent Lax pair the upper triangular part of the skew-symmetric

matrix B should be

0 C5,60506 — A204 a1a9 — Aazag —C5,60105 + asay
0 0 —C350305 — A144 C560106 + C3 50203
0 0 0 —C3,50205 — A4G¢
0 0 0 0

For ¢35 = c56 = 1 we obtain the system

a1 —ala% + alai + alag — alag
Qo atay — 2a1a3a6 — 203 — aza + asa? + 2a4asag
as 2a1a0a¢ — 2a1a4a5 + CL%CL:), + agai — agag — agag
Qg —alay + aday — alay + asa? ’
as —alas + 2a1a3a4 — adas — 2asa4a6 + alas + azal
Qg a%aG + a%ag — aiaﬁ — a%aG

for c35 = —c56 = 1 the system
dl —alag + alai — alag + alag
Qo a%ag — a2a§ — agai + CLQ(I%
Qs asas + azal — aza? — aza?
Qg —alay — 2a1a3as + a3ay + 2a0a5a6 — aday + asal
as a%ag, + 2aq1a3a4 — a%a5 — 2asa406 + a§a5 — a;,a%
ag —alag + alag — alag + atag

for c35 = —c5 6 = —1 the system
C.L1 —alag + alaﬁ + Cbl(lg — alag + 2@2@3(16 — 2@3(14&5
(o atay — 2a1a3a6 + azas — a2a2 — 202 + 2a4a5a¢
a3 2a1a0a6 — 2a1a4a5 — asaz + azai + azai — azal
Qy —a%a4 + 2aqasa5 + a§a4 — 2asa5a6 — a§a4 + a4a§
d5 —(1,%05 + 2&1@3@4 + CL%CL5 — 2@2@4@6 — (]J%CL5 + Cl50%
g atag — 2a1a2a3 + 2asa4a5 + atag — aiag — atag
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and for c35 = c56 = —1 the system

a
Qs
as
(4
as

ag

FExample 36. For the root system of type A4 the Lax pair corresponding to

= —a1d3 + a1a3 — a1a? + ajak + 2asaza6 — 2azaqa;

2 2 2 2
ajas + azas — A2y — G203

= —a3az + azaj + aza? — aza’

= —alay + a3as — adaq + aga’

= alas + 2aza4a; + ajas — 2a4a6a9 — a3as — asa;

= —ajag — 2a0a3a1 + 2a4a5as + a3ag — ajag + aiag

is given by the matrices

and

B —

O = {o, a9, a3, aq, 0 + a3}

0
0
—Qa1a9
aias

0

a1

o O©O O

0
0
asas
—a2as

a5Qy

ag 0 0 O
0 a2 0as 0
(05} 0 as 0
as as 0 ay
0 0 as O
a1Qa9 —a10as5
—asaz 4203
0 —a205
[05Y0% 0
— a3y 0

0

—Qa5Qy4

a30a4

0
0

Using the change of variables z; = 2a? the corresponding Lotka-Volterra system becomes

To = —ToTs + ToT3 — Loy,

1:3 = X3T5 + T3T4 — T3T2,

T5 = —T5Ty — T5x3 + T52T1 + T2

T1 = X1T2 — T1Ts5,

Ty = Tyl5 — T43,
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The associated Poisson matrix is of rank 4. The constants of motion are

H =z + x9 + 3 + x4 + x5 (Hamiltonian),
F = T1T3 + T1T4 + ToXy,

C = zyz3x; (Casimir) .

FExample 37. The Lax pair corresponding to the subset
O = {ay,as, a3, a4, 01 + as + a3z + ag}

of the positive roots of the root system of type A, is given by the matrices

0 ag 0 0 a5
ap 0 ay 0 O
L=10 a 0 a3 0
0 0 a3 0 ay
as 0 0 a4 O

and
0 0 a1a9 —ay0as 0
0 0 0 asas  —a10s
B = —a1a9 0 0 0 asay
asas  —G2a3 0 0 0
0 a1 —asay 0 0

Using the change of variables z; = 2a? we obtain the periodic KM system

Ty =TTy — T1Ts,
To = ToZ3 — T1T2,
T3 = T3T4 — T3,
Ty = T4T5 — T30y,

Ts = T1X5 — TaXs .

The associated Poisson matrix is of rank 4. The traces of L? and L* together with the

Casimir, C' = zyxox3x475 ensure the integrability of the system.

FExample 38. For the root system of type A, we obtain two isomorphic Lotka-Volterra

systems corresponding to the subsets

@ == {alv Qg, (3, Oy, Q1 + 6%} + 053} a’nd @ - {ah Qg, (3, Oy, Qg + ag + 044}.
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The corresponding matrices are

0 ap 0 as

ai 0 ay O
L=]10 a 0 a3 0],

as 0 a3 0 ay

0 0 0 a4 O

0 0 a1ag — azas 0 —@405
0 0 0 —aas +azaz 0

B =] —ajay + asas 0 0 0 azay
0 a10s — A203 0 0 0
405 0 —asay 0 0

and

0 agz 0 0 O
ap 0 ay 0 as
L=]10 a 0 a3 0],
0 0 a3 0 a4
0 as 0 a4 O

0 0 a1 as 0 —a1as
0 0 0 Ao03 — AyQs 0
B =] —-aay 0 0 0 —aoas5 + asay
0 —aqag + aqas 0 0 0
a1as 0 Qo005 — A304 0 0

We describe the corresponding systems and the isomorphism between them in the next

section.

6.4 Subsets ¢ corresponding to Lotka-Volterra sys-

tems

In the previous section we have presented several examples of cubic systems which (after
a simple change of variables) are equivalent to Lotka-Volterra systems. In this section we
classify all subsets ® of the positive roots of A,, which produce, after a suitable change of

variables, Lotka-Volterra systems. We prove the following theorem.

Theorem 13. The only choices for the subset ® of R* so that the corresponding gen-
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eralized Volterra system transforms into a Lotka-Volterra system, using the substitution

x; = 2a2, are the following five.
1. & =1I,
2. o =TTU{as+az+ -+ a1},
3. ¢=TU{as+as+- - +ap1},
4. b= U{ao+as+ -+ ay,},
5. o=TTU{as+as+ -+ a,}.

Case (1) gives rise to the KM system while case (5) gives rise to the periodic KM
system.
Case (2) corresponds to the Lax equation L = [L, B] with L matrix

0 m o --- 0 0 0 0
o 0 a; 0 0 an O
0 as 0 as . 0 0
0 0 ap—o O

0 0 Ap—2 0 Ap—1 0
0 Api1 O O Qp—1 O Ay,
0 0 o o0 .- 0 a, 0

The skew-symmetric matrix B is defined using the method described in section (6.2)) (see

also the proof of proposition . Its upper triangular part is given by the formula

n—1

E a’iai+1XOci+ai+1 - an—lan+1Xan+1—an_1 - a'2an+1Xan+1—o¢2_
i=1

alan+1Xa1+an+1 - anan+1Xan+1+an .

After substituting z; = 2a? for i = 1,...,n + 1, the Lax pair L, B becomes equivalent

to the following equations of motion:

i1 = 21(T2 — Tnsr),

Ty = mo(T3— T — Tpi1),

T = (T — xi1), 1=3,4,...,n—2,n
Tpo1 = Tp1(Tn — Tp—2 + Tnt1),
Tpi1 = Tpp1(T1+ 20 — Tpq — Ty).
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It is easily verified that for n even, the rank of the Poisson matrix is n and the function
f=mx0z3- - 2,172,471 is the Casimir of the system, while for n odd, the rank of the Poisson
matrix is n — 1 and the functions f; = xyx3---x, = Vdet L and fo = xoxs- - Ty 12,41
are the Casimirs.

Case (3) corresponds to the Lax pair whose Lax matrix L is given by

0 aq 0 0 An+1 0

a0 ay O 0 0

0 (05} 0 as 0
0 Ap—2 0

O Ap—2 0 Ap—1 0

apy1 0 0 a1 0 ay

0 0 0 0 a, O

The upper triangular part of the skew-symmetric matrix B is

n—1

E aiai+1Xai+ai+1 - anflanJrlXan_Hfan_l = alanJrlXan_Hfal - anan+1onn+1+an-
i=1

After substituting x; = 2a? fori = 1,...,n+1, we obtain the following equivalent equations
of motion:
T = $1($2 - $n+1)
T = wi(xip—wiq), 1=2,3,4,...,n—2n
Tno1 = Tpo1(Ty — Tpo + Tpy1)
Tpr1 = Tpo1(xy — Ty — Tpoq).

For n even, the rank of the Poisson matrix is n and the function f = x1z9 - 2, 12,41 is
the Casimir, while for n odd, the rank of the Poisson matrix is n — 1 and the functions
fi=x12325 -, =Vdet L and fo = x129- - ©,_12,41 are Casimirs.

The system obtained in case (4) turns out to be isomorphic to the one in case (3). In
fact, the change of variables u,.1_; = —z; for : = 1,2,...,n and u,,; = —x,.1 in case
(3) gives the corresponding system of case (4).

Since subsystems of Lotka-Volterra systems are also Lotka- Volterra, in order to prove
theorem [13]it is enough to consider the case where the subset ® contains the simple roots
and only one extra root. The following proposition shows that we have only four possible

choices for the extra root in ® which give rise to a Lotka-Volterra system. Therefore the
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proof of theorem [13|is a case by case verification of the 16 possible subsets ® containing

the simple roots and roots given in the following proposition.

Proposition 29. Let & = {ay,...,a,41} be the subset of the positive roots of the root
system A, containing the simple roots and the additional extra root cu, 1. Suppose that
Qi1 = Qp +Qpa1 + ...+ for some 1 < k <m <n. Then the only possible choices of

k,m that lead to a Lotka-Volterra system are
(ku m) = (1,71), (1,71, - 1)7 (27 n) and (27n - 1)

Proof. The matrix L is given by

L= ai(Xe, +X_0)+ tns1 (X, + X0, -
i=1
The matrix B is the skew-symmetric matrix constructed using the algorithm described in

section 6.2, and its upper triangular part is

g Ci i+1Ai At 1 [Xa“ Xai_,_l} +

1<i<n—1
Ck—l,n+1ak—1an+1 [Xak_17Xo¢n+1] N Ck,n+1akan+1 [X—oak>Xan+1] +

Cm,nJrlamanJrl [XfamaXan_H} + Cm+1,n+1am+1an+1 [Xam+1>Xo¢n+1] .

Note that this is the generic form of the matrix B. In some special cases B will be different;
X

an+1j|

term Cpm41 n41am410n+1 [XaernonnH] will be missing from B.

i.e. for k =1 the term cp_1 p41ak—10n11 [X

ap—19 will be missing and for m = n the

In order to determine the signs ¢; ; in a way such that the corresponding system, after
the substitution z; = 2a?, is transformed into a Lotka-Volterra system we calculate the

bracket [L, B]. Its upper triangular part is given by

Z Cii410i-10:0i41 [ Xy, [Xag Xapy, || +

2<i<n—1
Z Ciit1Q;Q 41542 [XaiJrg, |:XOAZ‘7XOLi+1:|:| +
1<i<n—2
Z Cijit1 (a?aiﬂ [X*aw [XanaiHH + aia?ﬂ [X*Oéwl? [Xai?XaH—lﬂ) +

1<i<n—1
Ck_1,n+1ai_lan+1 [X_ak_l, [Xak_l,XanHH +

Ck—1,n+10k—20k—10n+1 [X%_Q [Xak_mXanHH +
Ch—1,n+1Wk—10m 01 [X,am, [Xakfl,XanHH +

Ckfl,n+1ak71am+1an+l [Xam_H ) [Xak—l 5 Xan_H}} +
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Crtn 185101 [Xoapirs [Xap 1 Ko ]| +
ckmﬂaianﬂ [Xak, [X—amXan+1H +
Chon+1 Ak Akt 1 A1 [X_ak+1, [X_ak,XanH] +
Cheyn41 0k Gy G 11 [ s [X_ak,XanHH +
Cln+10kAm4+10n 41 [onm+17 [X—akaXanHH +
Ck,n+1aka721+1 [Xan+1’ [XQMX*MHH T
Crnnt1 0k—1 o G 41 [Xakfl, [X,am,XanHH +
Crmn+1 QO Q41 [X_ak, [X_am,XanHH -+
cm7n+1a31an+1 [Xam, [X—ananHH +
Crnn1Qm—1 G G 11 [X_amfl, [X_am, onn+1H +
Cm,n+1ama721+1 [Xanﬂ? [Xam>X—an+1” +
Crt L4101 10011 [ Xy s [Xapars Xann ]| +
Cr+1,n4+10m+10m+20n 41 [Xam+27 [XamﬂaXanHH +
Cm+1,n4+10kAm10n+1 [X*alﬂ [XamHvXanHH +
Cm+1,n+1a3n+1an+1 [X—am+17 [XamH?XanHH +
Cont 11 Gm 101 [ X a1 [ X Xawa]] +
Che2, 1 Wk—2Qk—10n41 | Xansrs [Xag o Xag 1] +
Ch 1 O Q41 Q1 [Xan+1, [X_ak, X—Oék+1:|:| +
Crn—1,m0m—10mn+1 [Xan+1, [X,am_l,X,amH +

Cm+1,m+2am+lam+2an+1 [XanJrl ) [Xaerl ) Xaerg:H .

Note that as in the case of the matrix B, for some special cases of k£ and m, some extra
terms in the bracket [L, B] will be missing; e.g. for kK = 2 the terms corresponding to
[X onn+1” and [onn+1a [Xak727Xak71:|] will be missing. In the

the positions [X, h1
general case the system will be transformed to a Lotka-Volterra system if the signs satisfy

Op—2

Cisit1 = Ciplit2 = C 1=1,2,...,n—=2,
Cm+1n+1 = —Ck—1n+1, Cem+1 = —Ckik+1 = —C,  Ck—1n+1 = —Cmn+1,
Cm+1n+1 = —Cm4+1,m+2 = —C, Ckn+1 = —Cmn+1, Cmn+l = Cp—1,m = C
Cm+1,n+1 = —Ckn+1, Ck—1n+1 = Ck—2k—-1 = C.
This linear system is solvable if and only if the equations ¢;41041 = —Cmt1,m+2 and

Ck—1n+1 = Cr—2k—1 are missing. Therefore the system is solvable if and only if m > n —1
and k£ < 2, and the result follows. O]
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6.5 Two Lax pair techniques

In this section we present two techniques that we use to prove the integrability of the
generalized Lotka-Volterra systems presented in the next section. The first one is due to
Deift, Li, Nanda and Tomei (see [?]). It was used to establish the complete integrability
of the full Kostant Toda lattice. The traces of powers of L were not enough to prove
integrability, therefore the method of chopping was used to obtain additional integrals.
First we describe the method: For k =0, ..., L"T’IJ, denote by (L — A1d) ) the result of

removing the first £ rows and last k£ columns from L — A1d, and let

det(L — )\Id)(k) = E’ok)\n_mC +o By ok -

Set
det(L — A\1d
( )(k) — )\n—Zk + Ilk)\n—Qk—l 4ot In—Qk,k .
Eox,
The functions I, r = 1,....n — 2k, are constants of motion for the full Kostant Toda
lattice.

Ezample 39. We consider in detail the gl(3,C) case of the full Toda. Let

fi 1 0
L= g1 f2 1 )
hi go f3

and take B to be the strictly lower part of L. The function Hy = % tr L? is the Hamiltonian,

and using the standard Lie-Poisson bracket the equations

© = {Hy,x}
are equivalent to
fl = —4
fz = 01— 92
f3 = 92
g = glfi—f)—M
G = gfo—fi)+Mh

2
hi = hi(fi—fs) -
Note that Hy = f1 + fo + f3 while Hy = %(ff + f2 4 f2) + g1 + g2- The chopped matrix is

given by
g fa—A
hy 92
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The determinant of this matrix is h1 A + g19o — h1 fo and one obtains the rational integral

9192 — hi fs

I —
11 hl

Note that the phase space is six dimensional, we have two Casimirs Hy, [1; and the

functions Hs, H3 are enough to ensure integrability.

In the next example we use this technique to obtain the Casimir of a generalized

Lotka-Volterra system.

FExample 40. Consider the generalized Lotka-Volterra system defined by the Lax matrix

0 ai 0 a5 O
ap 0 ay 0 O
L=10 a 0 a3 0
as 0 a3 0 ay
0 0 0 a4 O

which corresponds to the subset ® = {a, as, az, ay, @ + ag + az}. According to proposi-
tion 29| a suitable choice of signs for the entries of B gives rise to a Lotka-Volterra system.
However, there is a second choice of sings which results in a different system. Define the

matrix B to be

0 0 a1as + asas 0 a0
0 0 0 asas + aras 0
—aq1a9 — asas 0 0 0 agay
0 —asa3 — A10s5 0 0 0
—Q405 0 —asay 0 0

In this case the Lax equation L= [B, L] corresponds to the following system

. 2 2
a1 = 4109 + 10y + 2@2@3(15

Cig = _CLQCI/% + (lgag

as = —agag + ag,a?l — agag — 2aqa5as5
ay = —a4a§ — a4a§

Ci5 = —a5a% + Cl5@§ + G/5CZZ .

The Hamiltonian of the system is H = = (a? + a2+ a3 + a3 + a?) and the Poisson

1
2
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matrix (of rank 4) is

0 ajay  2asa; 0 a1as
—a102 0 asas 0 0
—2a0a5 —asas 0 asay —asas
0 0 —asay O —ayas
—aq0as 0 aszQs G405 0
. . . 1
The system is integrable with constants of motion H = 3 (a? + a3 + a3 + a3 + a2) and

1 1 1 1 1
F = 5@‘1* + a%ag + Eaé + a%ag + 2a;a5a2a3 + a§a§ + aia? + iaé + a§a§ + §a§ + aiag + 5@3.

a1a2a3

In fact F'is equal to tr (%) The Casimir of the system is C' = a3 — and may be
as

obtained by the method of chopping as follows. We have

r —a; 0 —as O

—a1 x —ay O 0

x-Ils— L= 0 —a = —az O
—as; 0 —a3 x —ay

and the one-chopped matrix is

—a1 x —ay O
0 —ay x —agz
—as; 0 —a3 «x

with determinant ayasz*+a, a2a3a4—a§a4a5. Dividing the constant term of this polynomial

by the leading term aya; we obtain the Casimir C'.

The second method that we use is an old recipe of Moser. Moser in [?] describes a
relation between the KM system and the non—periodic Toda lattice. The procedure is the
following.

Form L? which is not anymore a tridiagonal matrix but is similar to one. Let é =
{e1,€3,...,€e,} be the standard basis of R". Also let E, = span{ey_1,1 = 1,2,...}
and E, = span{es, i = 1,2,...}. Then L? leaves F, and E, invariant and reduces in
each of these spaces to a tridiagonal symmetric Jacobi matrix. For example, if we omit all
even columns and all even rows we obtain a tridiagonal Jacobi matrix and the entries of

this new matrix define the transformation from the KM system to the Toda lattice. We

134



illustrate with a simple example where n = 5.

We use the symmetric version of the KM system Lax pair given by

0 aga 0 0 O
ap 0 ay 0 O
L=10 a 0 a3 0
0 0 a3 0 a4
0 0 0 a4 O

It is simple to calculate that L? is the matrix

a? 0 a1as 0 0
0 a2+ a’ 0 asas 0
ayas 0 as + a3 0 a3ay
0 asas 0 a3+ai 0
0 0 asay 0 a?

Omitting even columns and even rows of L? we obtain the matrix

a% a1as 0
2 2
a1y a3 + a3 G304

2
0 a3y a;

This is a tridiagonal Jacobi matrix. It is natural to define new variables A; = ajas,
Ay = azay, By = a2, By = a3 + a3, B3 = a3. The new variables A;, Ay, By, By, Bs satisfy
the Toda lattice equations.

This procedure shows that the KM-system and the Toda lattice are closely related.
The explicit transformation which is due to Hénon maps one system to the other. The

mapping in the general case is given by

1 1
A= —5\/6121'&21‘—1 ; B; = 5 (agi—1 + agi—2) .

The equations satisfied by the new variables A;, B; are given by:

A = A (Biy1 — By)
B, = 2(A2-A2)).
These are precisely the Toda equations in Flaschka’s form.
This idea of Moser was applied with success to establish transformations from the
generalized Volterra lattices of Bogoyavlensky [?, ?] to generalized Toda systems. The

relation between the Volterra systems of type B, and C, and the corresponding Toda
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systems is in [?]. The similar construction of the Volterra lattice of type D, and the
generalized Toda lattice of type D, is in [?]. We use this method in the next section to

obtain a missing integral for some generalized Lotka-Volterra systems.

6.6 2-diagonal systems

In this section we define an infinite family of systems with a cubic Hamiltonian vector
field. We present each such system in Lax pair form L = [B, L] which allows us to obtain
a large family of first integrals, H; = tr(L?). Additional integrals are obtained by the
method of Moser described in the previous section. In the examples we present, these
integrals are enough to ensure the Liouville integrability of the systems. We believe that
all these systems are Liouville integrable.

We begin with the definition of the matrices L and B. For convenience we let d;
denote the i"* diagonal starting from the upper right corner and moving towards the main
diagonal. We take L to be an n X n symmetric matrix with the only non-zero entries on
two diagonals d,, and d,,_; where n > 2m and m > 2. Note that for m = 1 we obtain the
periodic KM system.

The matrix L is given by

0 a 0 cee 0 a, 0 cee 0

ar 0 ay 0 0 anpn

0 ay O as . R 0

0 as B 0 Gnpm—1

L=10o 0

an, 0 (2 0

0 Gpyr - p—o 0  an_o 0

0 0O a,o O Qp—1
0O - 0 aprm-a 0 - 0 anp_q 0

That is, L is a symmetric n X n matrix whose non-zero upper diagonals are:

dn—l - (ala Ao, . .. 7an—1)

A = (QnyGpsty -y Gpim—1)

To put it in the terminology of section (/6.2 this matrix has variables in the positions
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corresponding to the simple roots and also at the positive roots of height n — m, i.e.

L= a(Xa, +X_q)

a; €P

where
O ={aj,an,...,an 1,00 +as+ ...+ Umye ooy O+ Qg1 + ..o+ @1 )

By considering the set ¥ = {a+ 5| o, € PUDP ,a+ 5 € RT} we define B to be the

matrix

B = Zcijaia’j (Xoci—&-aj + X—Oci—ocj> 5 (64)

where the non-zero terms are taken over all a; + a; € ¥ with a;,0; € ® U @~ and
¢i;j = £1. The following proposition shows that there is a choice of the signs ¢; ; that leads

to a consistent Lax pair.

Proposition 30. Let ® be the subset of the positive roots of a root system of type A, _1
containing the simple roots and the roots of height n — m where n > 2m and m > 2.
The skew-symmetric matriz B constructed using the algorithm of section[6.3 has nonzero
variables in the positions corresponding to the root vectors X, where o runs through the
positive roots of height 2, n —m —1 and n —m + 1. The following choice of the signs c;

gives a consistent Lax pair.

Cii+1 = 1, 1= 1,2,...,7’1,— 1,
Cn—m+in+i = Cinti—1 = —1, 1= 1, 2, e,y
Cn—m+in+i—1 = Cinti = 1, 1= ]_, 2, e, — 1.

Proof. We form the subset K of the positive roots as in the proof of proposition
K={a+B8+vy:a,B,ye®Ud, a++v€ R}

In order to have a consistent Lax pair we must choose the signs ¢; ; in a way such that the
variables in [L, B] corresponding to the roots in K \ ® vanish. The set K \ ® contains the
roots of height 3, n —m — 2 and n —m+ 2. Each corresponding root vector is formed only
in two ways as [X,, (X, X,]] and [X,, X4, Xs]]. From the Jacobi identity we conclude
that, in order for the corresponding variables to vanish, the coefficients of these two root
vectors must be the same. For example the root vectors corresponding to roots of height
3 are formed as [Xo,, [Xa,1 Xoin]] and [Xo,y, [Xa Xain]] for i = 1,2,...,n — 3
and we obtain the conditions ¢;;4+1 = 1 for all 7 = 1,2,...,n — 2. The root vectors

corresponding to roots of height n — m — 2 are formed as [X_,,,,, [X_a;, Xa,,, ,]] and
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[XQHH, [X_ai, X_am]] forv=1,2,...,m. Note that here the root a,,1;_1 = a; + 1+
...+ ap_m+i—1. We obtain the conditions —¢; ;11 = ¢;p4i—1 for all 2 = 1,2, ..., m. Similar
formulas for the roots of height n — m — 2 and n — m + 2 give our result. m

Therefore the matrix B is the n x n skew-symmetric matrix with non-zero upper

diagonals:
dno = (&1002, a20s, . . . 7%—2%—1),
dm+1 - (_an—many —Ap—m+10n+1 — A1Qpy - o oy —Qp—10ptm—1 — Ap—1An+m—2, _aman—f—m—l))
dm—l = (an—m—l—lan + A10n+1, An—m+4+2an+1 + A2An+2, -+ ., An—10nt+m—2 + am—lan+m—1)-

(6.5)
The Poisson bracket {, } is determined by the N x N Poisson matrix 7 = g — ¢*, where

N =n+m — 1, and the non-zero entries of ¢ are given by:

Qi,i+n = Q;Q44n for 1 <t <m 1,

Qijitn—1 = —Qi0itn_1 for 1 <v < m,

Qitn—m—1itn—1 = Qiyn_1Gign—m—1 for 1 <i <m, (6.6)
Gi+n—m,i+n—1 = —Qi4n—14i4+n—m for 1 < 7 < m — ]_, ‘
Qiit1 = AiQi41 for 1 <i<n—2,

Gitn—1,i+n = 20;Qi4n—m forl1<i<m-—-1.

6.6.1 Special case with two diagonals, m = 2

In this subsection we consider the case where m = 2. The matrix L is defined by

0 m O --- 0 an, 0
aq 0 ao . 0 Ap41
0 ao 0o . 0
L =
0
0 Ap—2 0
an O 0 an—2 O an—l
0 Guyr 0 <+ 0 apy 0

and corresponds to the subset ® of the positive roots containing the simple roots and the
roots of length n — 2. The matrix B is defined by equation (6.4) and its upper triangular
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part is

0 0
0 0
0

a109

0
0

0

asag3

0

0 —ap—20n 0 a10n+1 + ap—10n

0 —a1Qp — Ap—1Qp+1 0

0 —Q20n41
0

0

Ap—30pn—2 0

0 Ap—2Gn—1
0 0
0 0

The Lax equation L = [B, L] is equivalent to the following system:

dlz

an, =

Qp+1 =

2 2 2
a1 a3 + ara, 1 — a1a

n’

2 2 2

2 2
@iy — A

i—1is

2 2 2
Ap—2Q, — Oy _30p_2 + Gp_20a, 1,

2 2 2
an—lan+1 — Qp_o0p_1 — Ap_1G,,

2 2
ajln + a,_10n,

2
— 590 + 2a1Qn—1Gp+1,

2 2 2
A50n+1 — A1 Ant1 — Opi1Q, 1 — 2010p_10y, .

The Poisson matrix 7 is defined by equations and its upper triangular part is

0 a1a9

0

0

203

0

0 —aiay, 10541
0 0 —Q2Gn41
asay 0
0
0 0
0 Ap—20n—1 Ap—20n 0
0 —Qp—1an  Gp—1Gp41
0 2&1 Qp—1
0
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For n even, the system has n+ 1 variables and the Poisson matrix has rank n and thus

n

2
first integrals in involution. Hence the system is integrable in the sense of Liouville. The

the Poisson structure has one Casimir. The traces of L give % functionally independent
Casimir is
C =det L = (asas...an_50n_30n0ne1 — Q103 . . . Qp_30,_1)°.
For n odd, the system has n + 1 variables and the Poisson matrix has rank n + 1.

Therefore the Poisson structure is non-degenerate with no Casimirs. The traces tr(L*) give
n+tl
2
the system we need one more constant of motion which we obtain using the procedure of

only — 1 functionally independent first integrals in involution. For the integrability of
Moser described in section (|6.5]).

We give two examples for n = 7,n = 9.

Example 41. Consider the following matrices

0O aq@ 0 O O a; O
a 0 ay 0 0 0 ag
0 ao 0 agz 0 0 O
L=10 0 a3 0 a4 0 O
0 0 0 a4 0 a5 O
a; 0 0 as 0 ag
0 ag 0 0 0O ag O

=}

and
2 2 2
aj +a3; +ag  asaz aiar + agag
2y _ 2 2
A (L) = 903 a3 + aj a4as ,

a1a7 + agasg a40as5 a% + a% + a%

where A,(L?) denotes the matrix obtained from L? by omitting all odd rows and columns.
We define a new set of variables A; = asas, Ay = agas, Az = ajar + agag, By = a3 + a3 +
a2, By = a3+a3 and Bs = a?+a2+a?. These variables satisfy the periodic Toda equations
which are equivalent to the Lax equation A,(L?) = [C, A,(L?)] with

Bl Al A3 0 Al _A3
AO(LQ) = Al BQ AQ and C = —Al 0 AQ
Ag A2 Bg Ag _A2 0

This system has two Casimirs By + By + B3 and A;A3A3. The Casimir By + By + Bs

expressed as a function of the original variables gives the Hamiltonian while the Casimir
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A1 A5 Az gives the extra integral
A1A2A3 — Q2030405 (a1a7 + CLGCLS) .

We could also obtain this integral from the system A.(L?) = [C, A.(L?)] where A, (L?)

denotes the matrix obtained from L? by omitting all even rows and columns.

CL% + (l? a1a9 asary ajag + agay B1 A1 A4 A@

Ae(LQ) _ a10a9 CL% + CL% asay aoag _ Al B2 A2 A5
asay asay (Zi + ag as5Qg A4 A2 Bg Ag

aiag + arag Q208 as50ag (1(25 -+ ag AG A5 A3 B4

and

0 A —A, Ag
A0 Ay —As
Ay —Ay 0 Ay

“As As —As 0

This system is not the full symmetric Toda lattice of Deift, Li, Nanda and Tomei
[?7]. Although the L matrix is the same, the C' matrix is different. This system has two
polynomial Casimirs, By + By + B3 + By and A1 As Ay + Ay A3 As, with

A1A2A4 + A2A3A5 = A203040as5 (0,1617 + CLGCI,g) .

FExample 42. We take L to be

0 a O 0 0 a9 O
ar 0 a9 0 0 0 ag
0 ax 0 ag 0O 0 0 O
0 0 a3 0 a O O O O
0 0 0 a 0 a5 O 0O O
0O 0 0 0 a5 0 ag O O
0 0O 0 O ag 0 a7y O
ag O 0 0 0 0 a; 0 9ag
0 ag 0 0 0 O O ag O
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The matrix

a% + a% + a%o asas 0 aijag + agaig
A (L2) B aoas a% + a?l aqas 0 B
? B 0 aqas a% + a% agay B
aiag + agaip 0 asar CL% + a% + (Ig
B A1 0 Ay
Ay By Ay 0

0 A2 Bg A3
Ay 0 Az By

produces the periodic-Toda lattice which can be written in Lax pair form AO(L2) =
[C, A, (L?)] with

This system also has two polynomial Casimirs By + By + By + B4 and A1 A3 AsAs. By

writing the latter one in the original variables we obtain the extra integral, namely
A1A2A3A4 = Q20304050607 (CL16L9 + al()ag) .
The intermediate Toda system A.(L?) = [C, A.(L?)] with

B A 0 A5 A;
A By Ay 0 Ag
Ad(L*)=| 0 Ay By A; 0
As 0 A By Ay
A7 Ag 0 A4 Bs

and

As 0 —A; 0 Ay
—Ar Ag 0 —-Ay O

has two Casimirs By + By + Bs+ B,y + Bs and A1 Ay Az As+ Ay As Ay Ag. The second Casimir

gives the extra constant of motion.

A1A2A3A5 + A2A3A4A6 = 20304050607 (a1a9 + Clgalo) .
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Note that this intermediate Toda system is not of the type considered in [?].

6.6.2 Special case with two diagonals, m = 3

In this subsection we consider the case where m = 3.

The matrix L is given by

0 a 0 0 an, 0 0

aq 0 as . 0 An41 0

0 a 0 0 ango
0

L =

0

an, 0 B R Ap—2 0

0 An+1 0 € Ap—2 0 an—1

0 0 Ap42 0 tee 0 Qp—1 0

That is L is a symmetric n X n matrix whose non-zero upper diagonals are:

dp1 = (ah A2, 0a3, A4, . .. 7an—1)7

d3 = (an7 Ap+1, an+2)-

It corresponds to the subset ® of the positive roots of the root system of type A, 1
containing the simple roots and the roots of length n — 3. The matrix B constructed using
the procedure described in section [6.2]is the n x n skew-symmetric matrix whose non-zero

upper diagonals are:

dpo = (a1a2, a2a3, aszlyq, . . . 7an—2an—1)7
dy = (=@n—30n, —Qp—205y41 — A1y, —Qp_1Anto — Q2lnt1, —A30n42),
d2 - (an—Qa'n + A10p+1, An—10n+1 + a/2an+2)-

These systems are Hamiltonian systems with a Poisson matrix determined by equations
(6.6). For n even, the Poisson structure has two Casimirs and the traces of L' together
with an extra constant of motion obtained by Moser’s technique give the integrability of
the system. For n odd the system has one Casimir and the traces of the L give enough first
integrals to ensure the integrability of the system. We illustrate this with two examples

forn="7and n=2_8.
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FExample 43. For n = 7 the matrix L is given by

0
ai
0
0

0
0

a; O
0 aq
as 0
0 a3
0 0
ag 0
0 a9

0 a7
0 O
az 0O
0 ayg
agy O
0 as
0 O

0 0
ag 0
0 ag
0 0
as; 0O
0 ag
ag O

The Casimir for the corresponding Poisson bracket is given by

det L = —2ayaza4a6(arasag + asagar — azagag).

Note that the constants of motion H; = tr L’ for i = 4,5, 6, together with the Hamiltonian

Hy =1 (a?+ a2+ -+ a?) are functionally independent and in involution. Therefore the

2

system is integrable.

Ezxample 44. For n=8 the matrix L is given by

0

ay

ag
0
0

0

a; O
0 ao
as 0
a3
0
0
ag O
a1o

0 0
0 0
ag 0
0 a4
ag O
0 as
0 0
0 0

ag O
0 ag
0
0
as
0 ag
ag 0O
0 a7

aio

az
0

and the matrix B is determined by the relations (6.5]). It defines a Hamiltonian system
with Poisson structure determined by the Poisson matrix

0
—a1a2

0

o O O O

aiasg
—aiag
0

a1a2
0
—aoas
0
0
0
0
0
azayg

—a2a10

0
aza3

0

a3aio

0

a4a5
0
—a506
0
—a5as
0
0

o O O

0
a50a6
0
—agar
agas
—QagAa9
0

o o O O O

agQy
0
0

arag

—araio

—aias

asag

—aeas

-—2a1a6

alag 0
—azag a2a10
0 —asaig
0 0
0 0
agadg 0 ’
—aray araio
2&1&6 0
0 2a2a7
—2a2a7 0
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which has rank 8. The Hamiltonian of the system is Hy = 1(af+ a3+ ---+af). A
constant of motion is obtained using Moser’s technique.
If we delete the odd numbered rows and columns of L? we obtain the matrix

a?+a3+ad asaz  aras+asay arag + asaip By Ay Ay Ag
2 2
A (L2) _ a20a3 az + ay asas asaig _ A1 By Ay Aj
° - 2 2 2 -
aiag + agag a4as ag + ag + ag agar Ay Ay By Aj
2 2
arag + a2a10 asalo agay az + aio A(; A5 A3 B4
We have
A = (a2a3)
. . 2 2 2 2 2 2 2
= d9a3 + agds = (aga3 + agajy, — ajas — asag)as + as(asa; — asas — azai,y)
2 2 2 2 2
= agas(az + ay — ay — a; — ag)

= Ay(By— By)
and similarly the new variables B;, A; satisfy the system

By = 2(A7+ A3 - A}), By = 2(A3 — A7 — A2),

By = 2(A3+ A3 — A}),By=2(A2 - A3 - AD),

Ay = Ay(B2 — By), Ay = Ay(Bs — Bs), (6.7)
As = As(By— Bs), Ay = Ay(By — Bs) + 2434,

A; = As(By— By) —2414¢, Ag = Ag(By — By) — 2A3A4 + 24, A5 .

This system can be written in Lax pair form A,(L2) = [C, A,(L?)] with

0 A —Ay  Ag
A0 Ay —Aj
Ay —Ay 0 As

“As A5 —As 0

It is Hamiltonian with Hamiltonian function

Ao (LM 1
H=tr (—0(2 ) ):§(B%+B§+B§+B§)+A§+A§+A§+AZ+A§+A§
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and Poisson matrix

0 0 0 0 Ay 0 0 —-As O Ag
0 0 0 0 -4 A 0 0 -4 0
0 0 0 0 0 —Ay A3 Ay 0 0
0 0 0 0 0 0 —-Az ©0 As —A4g
A1 A 0 0 0 0 0 0 0 0
0 -4y A 0 0 0 0 0 0 0
0 0 —-Az Az 0 0 0 0 0 0
Ay 0 —-Ay 0 0 0 0 0 0 Az
0 As 0 -4 0 0 0 0 0 -4
-4 0 0 Ag 0 0 0 —-A; A 0

It has 2 Casimir functions B; + By + Bs + By and A Ay Ay + A3 A3 As. The function

F = A1A2A4 + A2A3A5 = 2030405 (alag + Clﬁag) + asaqasa6a7a19 =
a1aoa3a40508 + 20304050609 + as3a,a50ea7A10

is a constant of motion for the original system. The integrals Hs, Hy, Hg, F' together with

the two Casimirs given by

Ci = wazasay,
CQ = VvV det L — 01 = 104060710 + A204A708 — 40809010
ensure the integrability of the original system.

In general for n even Moser’s technique gives the following additional constant of

motion.

n F =asas...an_3(a10, + ap_2Gp41) + a3ay . .. Gp_10542

1090306 + Q2030407 + A3040508
8 A10G2a3040508 + A20304050609 + A3040506A701(

10 | ajagazasasasaraig + a203040506a708a11 + A3040506070309012

Table 6.1: Additional constant of motion obtained using Moser’s technique

The following two tables contain the Casimirs of the Poisson structure for m = 3.
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n C= —% det L

7 a1a3a4a6(a1a5a9 + Ao2aeA7 — a7a8a9)

9 (10304050608(a107011 + A2a8a9 — Aga10011)

11 a1a3a4a5a607a8a10(G109a13 + aza10011 — a11a12a13)

13 a1a3a4a5a6a7a8a9a10a12(a1a11a15 + a2a12a13 — a13a14a15)

N | 14304 -+ Qp—30n-1(010p—20n 12 + A20n_10n — QpQni1Gni2)

Table 6.2: Casimirs for m = 3 and n odd

n | Ch Cy = +/|det L] - Cy

6 a1a3as —(a1a4a8 + G050 — a6a7a8)

8 aijazasay CL4<CL16LGCL10 -+ asa7ag — agagalo)

10 | ayazasarag —a4a6(a1a8a12 + a2a9a19 — A10G11012)

12 | arazasaragar; a40608(01010014 + A2011012 — G12013014)

14 | ayazasaragayass —G4a6asa1o(a1a12a16 + a2a13a14 — CL14CL15CL16)

N | 103 Ap_30n_1 | G406 - - Un—60n—4(010n20n 12 + A20n 10y — GGy 10ny2)

Table 6.3: Casimirs for m = 3 and n even
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Chapter 7
Using complex coefficients

Now I will have less distraction.— Leonhard Euler, upon losing his eyesight.

As we noted in the introduction of the previous chapter, we may produce more Lotka-
Volterra systems by changing the matrix L from symmetric to Hermitian. The aim of this
chapter is to describe this idea of using complex coefficients and give some examples of

new Lotka-Volterra systems produced by this new method. Let us begin with an example

FExample 45. Consider the case of a root system of type A4 and the subset of positive roots

® = {ay,as, a3, a4, a5 = ag + ag}. It turns out that if

4
L= Za’i (Xai + X*&i) + as (Xa.% + X*%)

=1

then the corresponding linear system of signs (described in the proof of proposition

does not have a solution, while if

4

L= Z @; (Xai + X*%‘) +ias (Xa5 - X*as)

i=1

then the corresponding system of signs does have a solution and gives rise to the system

dl = ala% + alag

iy = —aiay+ azai — asa?

az = —a3as+ azai — aza? (7.1)
d4 = —a§a4

as = —ajas + adas + aias.

This system can be easily transformed to a Lotka-Volterra system which is integrable with

aiaz

one rational Casimir “-#2, and an extra constant of motion, tr(L*Y).
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In general, the idea is to make the matrix L Hermitian by replacing some terms of the
form a; (X, + X_q,) with ia; (X, — X_,,) where i is the imaginary unit. The construction
of the matrix B is the same as in section [6.2] with the only difference of B being skew-
Hermitian. Example (45| suggest that we may replace with ia; (X,, — X_,,) all variables
in L corresponding to the roots of height 2. But doing so we see that the only possible
way to have a consistent Lax pair is to replace with ia; (X,, — X_,,) all variables in L
corresponding to roots of even height. Therefore we end up with the following alternative
method of constructing Lax pairs.

We begin with a subset ® of the positive roots containing the simple roots. We write
® = ¢, U ®, where &, are the roots in ® of odd height and ®, are the roots in ¢ of even

height. The Lax matrix is constructed as

L= ai(Xe,+X o)+ Y ia;(Xe, = X_0) =D bi(Xo, £X_4,) | (7.2)
a; €D a; €Dy a; €D
where the variables b; are defined as b; = a; if a; € ®; and b; = iq; if a; € $y. Consider

the set ® U &~ which consists of all the roots in ® together with their negatives. Let
UV={a+pB|a,fe@®Ud ,a+B€R"} .

We define the upper triangular part of the skew-Hermitian matrix B as

> cijbib Xota, (7.3)

where ¢;; = £1 if o + a; € ¥ with a;,a; € ® U P~ and 0 otherwise.
An easy consequence of the construction of the matrices L and B is the following

lemma.

Lemma 15. Let ® be a subset of the positive roots containing the simple roots and L, B
the matrices constructed in and . Also let K be the subset of the positive roots
defined by

K={a+B8+v:a,B,ye®Ud, a+pB+y€ R}

Let’s write K = K1 U Ky where K1 are the roots in K of odd height and Ko are the roots
in K of even height. Then the bracket [L, B] is decomposed into [L, B] = A; + iAy for
a symmetric matriz Ay and a skew-symmetric matriz Ay where the nonzero entries of
Ay and Ay appear in the “correct” positions; i.e. those of Ay in positions corresponding

to root vectors X,, a € Ky while those of Ay in positions corresponding to root vectors
Xa, o € KQ.

Next we show that this method in general produces more Lax pairs than the one
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described in section[6.2] Since for this method we don’t have to worry about the diagonal
entries of the bracket [L, B] (see lemma we end up with the following proposition.

Proposition 31. Let II C ® C Rt be a subset of the positive roots containing the simple
roots with the property that whenever o, 8,y € ®UDP™ and a+L+~y € Rt then a+p+7y € .
Also let L, B be the matrices constructed using the algorithms described in and

respectively. Then for any choice of the signs c; j the pair L, B is a Lax pair.

FExample 46. Let k,n € N with 1 < k < n. If ® is the subset of the positive roots of the
root system A, containing the simple roots and all the roots of height larger than k& then

for all possible choices of the signs ¢; ; we have a consistent Lax pair.

FExample 47. For the root system of type Az all Lax pairs corresponding to
@ - {Oél, Qg, O3, (g + a3, (1 + (0% + 063}

are given by the matrices

0 aq 0 as

a 0 a ia

| ™ 2 lay4
0 Q9 0 as

as —iay a3 O

and B, whose upper triangular part is

0 icy5a4a5 C12a102 — C350305 —iczaa10q

0 0 —1C3,40304 C1,50105 + C2,302a3
0 0 0 104,50/20/4

0 0 0 0

We can verify that for all 32 choices of the signs ¢; ; no one of the corresponding systems
is the same as the one produced by the method of section [6.2] Therefore this procedure

produces systems which in general are different from the ones of section [6.2

FExample 48. Define the matrix L to be

0 al 0 0 0 a9

ai 0 as iag 0 iag
aa 0 a3 0 O

—iag ag 0 aq lay

0 0 0 a4 0 oap

ag —iag 0 —ia7 as 0
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and the upper triangular part of the skew-Hermitian matrix B to be

0 iagag —a1an —ia1a6 - ia7a9 asag ia1a8

0 0 —lagag —asgas + arag —lagag + lasag  aiag + agar
0 0 0 —iasag —asay iagag — iazar
0 0 0 0 —iasar —aqas + agas
0 0 0 0 0 —iagqaz

0 0 0 0 0 0

This Lax pair gives rise to a Lotka-Volterra system. The associated Poisson matrix is

given by

0 —ai1a2 0 0 0 —Qa10g 0 aiag alag
aypag 0 —a2as3 0 0 —a2a¢ 0 as0as8 0

0 asas 0 —aszay 0 asag —azay 0 0

0 0 asza4 0 —a4as Q406 ~—a407 0 0

™ = 0 0 0 a4as5 0 0 asay —asag  —asag |

a1a6 as20ae6 —azag —a406 0 0 —Qagay agag 0

0 0 aszary aqay —asary agary 0 —arag —arag
—ajag —asas 0 0 asag —aesas a7as 0 agag
—ajag 0 0 0 asag 0 arag —agag 0

which has the following Casimirs.

ao2a408 Q1307 Qg
2G40y, ) ) , @10305.
aq ayq Qo3

The additional integral is H, = tr (L?).

We prove the following proposition which is the equivalent of proposition [29|and shows

that this method gives more Lotka-Volterra systems than the one described in section [6.2]

Proposition 32. Let ® = {ay,...,a,11} be the subset of the positive roots of the root
system A, containing the simple roots and the additional extra root o, 1. Suppose that
Qi1 = O + Qa1 + ...+ for some 1 < k <m <n. Then the only possible choices of

k,m that lead to a Lotka-Volterra system are
(k,m)=(1,n),(1,n—1),(2,n),(2,n—1) and (i,i+1) fori=1,2,....,n— 1.

Proof. The proof for the case m —k > 1 is the same as the proof of proposition When
m—k = 1, since the matrix [L, B] is Hermitian, from lemma[15]it follows that its diagonal
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entries are zero. The corresponding linear system of signs becomes

Cii+l1 = Cit14i42 = C 1= 1,2,...,’/1—2,
Cm+1n+1 = —Ck—1,n+1, Ck—1n+1 = —Cmn+1 Cm+1n+1 = —Cm+1m+2 = —C,
Cm+1in+1 = —Ckn+1, Ck—1n+1 = Ck—2k—-1 = C.

which has a solution and therefore the Lax equation L = [L, B] is transformed to a Lotka-

Volterra system. O
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