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ITepiindn

Ye auTh) T7) SLoax ToPLX T SLaTEYSY UEAETOUUE TPOBAAUATA UTd TNV TEPLOY T} TV OUVUULXWY
ovotnudtwy. ITo cuyxexpuévo HEAETOUUE BuVOUIXS GUOTNUAT UPNAOTERWY XAt YouT-
MOTepwY dtaotdoewy. o vor To xdvouue auto ywelCouue T ddaxTopxr dateldr ot
ovo pépn. Ievixd, o10 mpHOTO U€pog, uehetolue TpofBifuata ta omolo elvon avTixelpevo
TWY UEPXMY OLIPORIXDY EEICMOEWY, Xl Td OTOIL AVAXOUY GTNV TEQLOY T TV DUVOUXGOY
oLUOTNUATWY LYNAOTEPWY DCTACEWY. LTNY TERITTWOT UAS, TETOW TEOPAAUAT TEQLAO-
Bdvouv WIS TEQIMTWOELS ATELRODLIGTATWY DUVOUIXGY GUGTNUATOY PE OdyucT. Y10
OEUTERO UEQOC, YEVIXE, UEAETOUUE €val TpoBAYua To ontofo elvan avTixelpevo Twv cuviiwy
OLLPOPIXAY EELOMOEWY, XAl TO OO0 AVAXEL GTNY TEQLOYT TWY DUVUULXGY CUCTNUITWY
YAUNAOTEQWY DlaoTdoEWY. AUt 11 Qopd TEPLoPlONAOTE OF EIOWES TEPINTWOELS TOU
deUTEPOL UEpoug Tou 160u TpoPifuatog tou Hilbert.

Mo o TpdTo Pépog TN BdaxTopX T BlaTEBNC oUYXEXELWEVOL EgEUVNTLIXOL oXoTOf Elvor

1 avohuTIXY| ECETAOT] TNG AVUALTIXOTNTOS TWV AICEWY YIdL:
® GUOTAUATA Oty UOTG-OLUCTORAC,

o uio ouxoYEvewd U YRopMX®Y EEEMXTIXWY DEUDODLUPOPIXWY ECIOWOEWY OTT| Pd YWEIXT

dLdoTooT), Hal

o ulo OLXOYEVELDL UT) YROUULXWY ECEAXTIXGY (PEUBOBLAPORIXGY ECLOWOEWY GTIC BUO YWEIXES

OLdoTaoELC.

o 10 mpwto TROBANUA OTWE TUPATAVW Y eNoTUoTotolue uio uédodo Tuouddwy, ot
avtileon pe ta 600 teheutala TEOBAAUAUTH OTA OTold YENOUOTOWUUE Ul QacHaTIXY
pédodo. Avantiooouue dho autd to tpofifuata ota Kegpdiata 3, 4 xou 5.

Y10 Kegdhowo 3 yehetolue Tic avahuTixég WOIOTNTEG TwV AUCEWY eEIOWOENY TUTOU
Kuramoto—Sivashinsky xat A0V GYETIXWY CUGTNUATOLY, UE TEQLODIXES apYtxéc cuVIT-
xeg. T va to xdvouue autod, eéetdlouue xatd mHco 1 YEdodog nuouddwy, 1 onola
avortlyOnxar and toug Collet et al. [11] ynogel va egapuooTel xon o cuoTAUTO SLdyu-
oTc-0L00T0pdc. ALamoT)VoUUE OTL 1) u€Y0d0¢ auTY| BOVAEUEL X0t Yio TETOLL GUGTAUATA,
2oL AmOOEYVOUPNL OTL 0L M)GELS TOUG EfVal AVOAUTIXES WG TIPOG TN Y WEWxT) UETHBANTA ot
plar hwptda Yipw amd tnv eudela Twv Tpayuatxy aptiuwy. Emnhéov, diveta éva xdtw
pedrypa Yot T0 TAGTOC NG Awpldag avoluTixOTnTag Yo xaeva and o CUGTAUATI TOU
MEAETOUUE.

Y10 Kegdharo 4 pehetolye Ti¢ avoluTixéG WLOTNTES TwV AIGEMY Yiol plol otxoYEVELD U
YEUUUXOY EEEMXTIXGDY PEUBOBIAPORIXWY ECIOWCEWY TN Pla YWt SIAOTACT), TOU €YUV
olx00¢ elxuoTté. T var To xAVOUUE auTO, YETCWHOTOOVUE EVOL XEITAOLO AVOALTIXOTNTOG
YL TEQLOOKES OUVAPTACELS WS TEOS TN Ywewx? PETOBANTY, To onolo meplopfdvel Tov
eLiud alEnone xATIAANATS VOpUAS TwV N TACEWS TapaYWYoUS TNg AUOTS, WS TEOG TN
Yweh) UETABANTH, xodw¢ T0 n TelVEl 6T0 dmelpo. XENGILOTOWMVTAUS AUTO TO XQELTTPLo
xou TN gaopatixh wévodo mou avartiydnxon and toug Akrivis et al. [3] Behtewdvoupe

anoteréopota mou eugavilovia oo [3].
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Y10 Kegdhowo 5 yehetolue Ti¢ avoAuTinég WOTNTEG TwV ADoEWY Yo ula otxoyEvela
U Yeoppxmy eEEEMXTIXOY Peudodiapopxmy eEl6OoEWY OTIC U0 ywetxég didotacel. [
VoL T0 x8voupe outd, e€etdloupe xatd 1600 1) pacuatixr uédodog, 1 omolo avomThy Inxan
o710 [3] umopel va egopuooTel xal oe ouoTAUNTA YE BU0 ywetxéc uetoBintéc. Eiodyoupe
Eva xpLthpto, To omolo mopEyel ubo vy GUVITX Yol TNV AVOAUTIXOTNTA TERLODLXWY
ouvapThoewy u € C™, 10 onolo mepthapfdver Tov pulud alinong xatdAAning vopUog
ou V"u, xad®g 10 n tefvel 0to drelpo. Autd To XPITHPLO YOG ETITEEREL VoL amodEl oulE
AVIAUTIXOTNTA TV AUGEWMY WS TPOS TIC YWEIXES UETABANTES Yia OL8popa GUGTAUATA, TOU
TepthauBdvouv Tig edlonoelg Topper-Kawahara, Frenkel-Indireshkumar xow Coward-
Hall o xon Ti¢ TpoTOTOINUEVES EXBOYES TOUS UE DLooToRd, UTOVETWYTAS OTL UTd To
CUCTAUATA €Y OUV ONXOUS EAXUCTEC.

210 0e0TEPO UEPOC TNG DA TORIXAG DLaTEIBNG cuYXEXEIUEVOL EpEuvnTXol GxoTol elvar
0 TEOGOLOPIGUOE TOU AV PEAYUATOS TOU dELIUOU TWV OPLIX®Y XUXAWY GE TOAUGYLULXS. Ot
avuouatixd tedla oo entnedo, hauBdvovtag uddn uovo Twv Baduwy TRV TOAUWYOUKY X
1 e€étaon g oyéong Ty VEcEwY Toug GE 600 GUOTHUATI Ta OTol ATOTEAOUY YEVIXEUGELS
¢ e&lowone Van der Pol. H pedddoc nou ypnowomoolue xat yiol Tic 800 YEVIXEUOELS
¢ e&lowong Van der Pol elvor va dnuioupyolue optaxols x0xAoug BlatopdocovTtag Eval
obotnua (6TNY TERIMTWON HoC, TOV YPoUUXG apUovixd TahavTtwTy)) T0 0noio €yel x€vtpo,
®€td TETOl0 TPOTO WOTE 0PLAXOL XUXAOL VO BLAXAADWVOTAL GTO DLATALAUYUEVO GUCTAHA U0
TIC TEPLOOLXEC AUOELS TOU 1) DATUQAYUEVOU GLUOTAUNTOS.  AvanTticooudE Ohol oUTd To
TeoPBiAuata ota Kegdhona 8 xar 9.

Y10 Kegdhoo 8 peretolye 1 SLohddmon TwY 0plaxmy XUXAWY ond TOV YRUUUXO

JPUOVIXG TUAAVTIWTA & = Y, Y = —T 0T0 CUCTIUY
.j?:y) y:—$+€yp+1<1_x2q),

omou 7o € ebvan ulo wixpr) Vetiny| Togdpeteog mou Telvel oto 0, o p € Ny efvon dptiog xou
10 ¢ € N. Arnodetxvioupe 6Tt T0 Topandvew chotnua, 6Tou To p € Ny elvan dptiog xon To
q € N éyet povadixd oploxd xUxho oto eninedo. Eriong eletdloupe xou pepinés dAheg
OOTNTES AUTOY TOU YOVODIXOU 0tax00) XOXAOU YLl HEPIXES EWBLXEC TEQITTWOEL AUTOY TOU
CUCTHUATOC.

Y10 Kegdhoo 9 peretolye 1 SLoxAddmon TwY 0plaxmy xUXAwY ond TOV YRUUUIXO

APUOVIXO TO()\O(VTO)TY] r=Y,Yy= —x 010 GUGTT]HO(

i=y, §=-a+ef(y)(l-2?),

6mov 1o € elvon ulo pxpy) Yetint| mapduetpog mou Telvel 6to 0 xou o f elvan €va meTTO
rohueyuuo Badpod 2n + 1, ye o n éva avdaipeto ahAd @luplouévo Quotxd apriud.
Amodetxvioupe 6Tl To TARATAVG GUGTNUA, Yol XATIAANAL ETAEYUEVA TEQITTE TOAUGDVLUA
f Boduol 2n + 1 €yel axpBng n + 1 optaxoie x0xhoug xon 6Tt autdg 0 aptdpog tvon dvw

pedryua Tou optluol TV optaxwy xUxXhwy ot xdie tepintwon evog audoafpeTou TEQLTTON



rohuwviuou f Baduol 2n + 1. Enlong eetdlouye tn oyéon twy VECEWY TV 0pLIXWY
®xOXAWY QUTOY TOU GUOTAUATOS. MUYAEXPLUEVA, XATAOXEUALOUUE GUOTHUATO OLUPOPLXGOY
e€looEwY UE N oploxols xixhoug o xadoplouéveg Véoeic xan Evay oplaxd xOxho TOU
onofou 1 Véon eloptdtan and TN Véor TV TEONYOUUEVLY N oplax®Y xUxhwy. Telxd,
oivouye pepixd mopadelypata Yo vor eENyROOUUE TN YeVxT| Vewpla Tou Tapouctdloupe ot

aUTO TO XEPIAALO.
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Abstract

In this doctoral thesis, we study some problems from the area of dynamical systems;
more precisely, on higher and lower dimensional dynamical systems. In order to do this
we separate the current thesis in two parts. In general, in Part I, we study problems
which are a subject of partial differential equations (PDEs), and which belong to the
area of higher dimensional dynamical systems. In our case, such problems include spe-
cial cases of infinite-dimensional dissipative dynamical systems. In Part II, in general,
we study a problem which is a subject of ordinary differential equations (ODEs), and
which belongs to the area of lower dimensional dynamical systems. At this time we
restrict ourselves to special cases of the second part of Hilbert’s 16th problem.
Specific research goals for the Part I of the doctoral thesis is the analytical investi-

gation of the analyticity of the solutions for:

e dissipative-dispersive systems, such as the dispersively modified Kuramoto—Sivashin-
sky equation, a nonlocal Kuramoto—Sivashinsky equation and the dispersively mod-
ified Otto’s model,

e a class of non-linear evolutionary pseudo-differential equations in one spatial dimen-

sion, and

e a class of non-linear evolutionary pseudo-differential equations in two spatial dimen-

sions.

For the first problem as above we use semigroup methods, instead of the rest two
problems in which the methods is spectral. We cover all these problems in Chapters
3, 4 and 5.

In Chapter 3 we study the analyticity properties of solutions of dissipative-dispersive
systems, with periodic initial data. In order to do this, we explore the applicability of
the semigroup method, which was developed in Collet et al. [11], and which was intro-
duced in order to establish the analyticity of the Kuramoto—Sivashinsky equation. So,
we prove that the solutions of a variety of dissipative-dispersive systems, which possess
a global attractor, are analytic with respect to the spatial variable in a strip around
the real axis. Furthermore, a lower bound for the width of the strip of analyticity is
obtained in each case.

In Chapter 4 we study the analyticity properties of solutions for a class of non-linear
evolutionary pseudo-differential equations possessing global attractors. In order to do
this, we utilize an analyticity criterion for spatially periodic functions, which involves
the rate of growth of a suitable norm of the n'" derivative of the solution, with respect
to the spatial variable, as n tends to infinity. This criterion is applied to a general
class of non-linear evolutionary pseudo-differential equations, under certain conditions,
provided they possess global attractors. Using this criterion and the spectral method

developed in Akrivis et al. [3] we have improved previous results which appear in [3].

vii



In Chapter 5 we study the analyticity properties of solutions of Kuramoto—Sivashin-
sky type equations in two spatial dimensions, with periodic initial data. In order to
do this we explore the applicability of the spectral method developed in [3], in three-
dimensional models. We introduce a criterion, which provides a sufficient condition
for analyticity of a periodic function v € C'*°, involving the rate of growth of V"u,
in suitable norms, as n tends to infinity. This criterion allows us to establish spa-
tial analyticity for the solutions of a variety of systems, including Topper—Kawahara,
Frenkel-Indireshkumar and Coward-Hall equations and their dispersively modified ver-
sions, once we assume that these systems possess global attractors.

In Part IT of the doctoral thesis specific research goals is the determination of the
upper bound for the number of limit cycles in polynomial vector fields, depending only
on the degree and an investigation of their relative positions inside two classes which
constitute generalizations of the Van der Pol equation. The method used on both of
the generalized Van der Pol equations is to produce limit cycles by perturbing a system
(in our case, the linear harmonic oscillator) which has a center, in such a way that limit
cycles bifurcate in the perturbed system from the periodic orbits of the period annulus
of the center of the unperturbed system. We cover all these problems in Chapters 8
and 9.

In Chapter 8 we study the bifurcation of limit cycles from the linear harmonic

oscillator & = y, y = —x in the class
jf:y, y:—$+6yp+1<1_$2q),

where ¢ is a small positive parameter tending to 0, p € Ny is even and ¢ € N. We prove
that the above differential system in the global plane, where p € Ny is even and ¢ € N
has a unique limit cycle. We also investigate and some other properties of this unique
limit cycle for some special cases of this differential system.

In Chapter 9 we study the bifurcation of limit cycles from the linear harmonic

oscillator & = y, y = —x in the class

j:.:ya y:—$+€f(y)(1—x2),

where ¢ is a small positive parameter tending to 0 and f is an odd polynomial of
degree 2n + 1, with n a fixed but arbitrary natural number. We prove that, the above
differential system, in the global plane, for particularly chosen odd polynomials f of
degree 2n + 1 has exactly n + 1 limit cycles and that this number is an upper bound
for the number of limit cycles for every case of an arbitrary odd polynomial f of degree
2n + 1. We also investigate the possible relative positions of the limit cycles for this
differential system. In particular, we construct differential systems with n given limit
cycles and one limit cycle whose position depends on the position of the previous n

limit cycles. Finally, we give some examples in order to illustrate the general theory

viil



presented in this chapter.

1X



Acknowledgements

I would like to express my sincere gratitude to my supervisor, Professor Yiorgos-
Sokratis Smyrlis, for his guidance, advice and support in all the time of research and

writing of this thesis.

I would also like to thank the other members of my committee, Assistant Professor
Cleopatra Christoforou, who was the chairman of the committee, Senior Lecturer Paul
Christodoulides, Assistant Professor Emmanouil Milakis and Professor Demetrios Pa-

pageorgiou for their advice.

Many thanks to my colleague and friend Charalambos Evripidou for his kind support
and help.

Last, but not least, I would like to express my gratitude and love to my parents and

my brothers for their support, encouragement, understanding, help and love.

Xenakis loakim



Contents

Ilepiindn

Abstract

Acknowledgements

Part I: Infinite-dimensional dissipative dynamical systems

1 Higher dimensional dynamical systems
1.1 The Kuramoto—Sivashinsky equation . . . . . ... ... .. ... ...
1.2 The dispersively modified Kuramoto—-Sivashinsky equation . . . . . . .
1.3 A nonlocal Kuramoto—Sivashinsky equation . . . .. ... ... . ...
1.4 The Burgers—Sivashinsky equation . . . . . . . .. ... ... ... ...
1.5 The a,f—model . . . . . . . .. ...
1.6 Kuramoto-Sivashinsky type equationsin 1D . . . . . .. .. ... ...
1.7  Kuramoto—Sivashinsky type equationsin 2D . . . . . .. ... .. ...

2 Analyticity of the Kuramoto—Sivashinsky equation
2.1 Imtroduction . . . . . . . ..

2.2 Analyticity of solutions . . . . . . . .. ..o

3 Analyticity of dissipative-dispersive systems
3.1 Introduction . . . . . . .. ...
3.2 Analyticity of solutions . . . . . . . .. ..o
3.2.1 The dispersively modified Kuramoto—Sivashinsky equation
3.2.2 A nonlocal Kuramoto—Sivashinsky equation . . . . .. ... ..
3.2.3 The dispersively Otto’s model . . . . . . .. ... ... ... ..

4 Analyticity for pseudo-differential equations in 1D
4.1 Introduction . . . . . . . ...
4.2 An analyticity criterion . . . . . .. ..o

4.3 Analyticity of solutions . . . . . .. ... L Lo

v

vii

© 00 0 N O Ot NN

11
11
12

22
22
23
23
28
33

X1



5 Analyticity for pseudo-differential equations in 2D
5.1 Imtroduction . . . . . . . . .
5.2 An analytic extensibility criterion . . . . . ... .. o000

5.3 Analyticity of solutions . . . . . . ... ...
Bibliography for Part I
Part II: Qualitative theory of polynomial vector fields

6 Lower dimensional dynamical systems
6.1 Historical references on Hilbert’s 16th problem . . . . . . . .. ... ..

6.2 Generalized Van der Pol and Liénard equations . . . . .. .. ... ..

7 Small perturbation of a Hamiltonian system

7.1 Anintroduction . . . . . . . ..

8 A generalized Van der Pol equation

8.1 Existence, uniqueness and other properties of a limit cycle . . . . . ..

9 Another generalized Van der Pol equation
9.1 Existence and other properties of limit cycles . . . . . . . . .. ... ..
9.2 Definitions . . . . . ..
9.3 Proofs of existential theorems for limit cycles . . . . . . . . .. ... ..

9.4 Examples . . . . . . ..

Bibliography for Part II

50
20
52
25

71

76

77
7
79

83
83

85
85

xii



Part I: Infinite-dimensional dissipative dynamical
systems



Chapter 1

Higher dimensional dynamical

systems

1.1 The Kuramoto—Sivashinsky equation

The Kuramoto—Sivashinsky (KS) equation
Up + Uy + Uzy + Upgae = 0, (1.1)

is one of the simplest nonlinear PDEs exhibiting complex spatio-temporal dynamics.
For example, it has been derived in the context of plasma ion mode instabilities by
LaQuey et al. [34] (see also Cohen et al. [9]), reaction-diffusion systems by Kuramoto
and Tsuzuki [33] (see also Kuramoto [32]), laminar flame fronts by Sivashinsky [46],
viscous liquid flows on an inclined plane by Sivashinsky and Michelson [47], viscous
film flow by Shlang and Sivashinsky [45] and delay-diffusion population models by Lin
and Kahn [36].

The L-periodic in space solutions of (1.1) have received considerable attention both
analytically and computationally. If u is L-periodic in space and satisfies (1.1), then

its spatial average, i.e.,

1 b
Z/o u(x,t)dx,

is independent of t. Also, (1.1) is invariant under the Galilean transformation
t=1t x==3%+st, u=a+s,

and thus we may restrict our attention to zero average solutions of (1.1). If we express

a solution u of (1.1) as a Fourier series

u(z,t) = Z a(p, t)e™,

MEQZL

where ¢ = 27 /L, then its Fourier coefficients satisfy the infinite dimensional dynamical



d . . i . .
S t) = (=) alut) — = Y alw alp— 1), ne gz (1.2)
weqz

Equations (1.2) reveal that high frequencies (|| > 1) are linearly stable, while the low
frequencies (0 < |p| < 1) are linearly unstable. The nonlinear term in (1.2) causes
transfer of energy from low to high frequencies and keeps the solution of (1.1) bounded
in the L?-norm.

A considerable corpus of analytical results exist for the KS equation and we review
some of the most salient ones needed for our purposes here. It is shown by Constantin et
al. [12] that the long-time dynamics of KS equation is governed by a finite dimensional
dynamical system of size at least as large as the number of linearly unstable modes
which are equal to [L/(27)] (the largest integer less than or equal to L/(27)) for odd L-

o0

-1 Gn(t) sin(gnx), where

periodic solutions (i.e., for solutions of the form u(z,t)= )"
q=2n/L). For general L-periodic initial data we have boundedness of solutions as
shown independently by II'yashenko [23], Goodman [22] and Collet et al. [10]. The

result was given by Collet et al. in [10] is the following theorem:

Let the initial data uy = u(-,0) of the KS equation be L-periodic, and of zero mean.

Then, there is a positive constant ¢y, independent of L and ug, such that

L 1/2
lim sup (/ lu(x,t)? dx) < Ry = ¢y L¥°. (1.3)
0

t—o00

Typically, the boundedness of the solution u of (1.1) is obtained by proving that
lu — ¢||? is a Lyapunov function, where || - || is the L2-norm of L-periodic functions,
for a suitable background flow ¢ = ¢(x), a smooth L-periodic function, when |[|ull
is sufficiently large; this (background flow) argument was first used in [12]. With this

auxiliary function ¢ we derive the following energy estimate:

1d

1 L L L
__HU_SOH2 = _/QOIUQ d$+/(u—<ﬁ)$uz dw—/(u—g@)mum dz

1 L L L 1 L L
S——</Ui$d$—3/uidl’+/<pxu2dl’>‘f‘_(/spa?cwdx‘f‘/@idI)
2\ Jo 0 0 2\ Jp 0

In order to obtain boundedness of the solution u we need to construct a function ¢ for

which the term fOLuix dr—3 fOLui dx + fOLgquZ dz above controls the L2-norm of u, i.e.,

L L L
Jol]* < C(/ vixdx—?)/ V2 dx +/ g0$02dx>,
0 0 0

2

~er(0, L), with zero average. Exploring this argument

for some ¢ > 0 and every v € H



further one may derive a bound, for the solution of the KS equation, of the form

limsup |[u(-, t)|| = O(LY). (1.4)

t—o0

This exponent « is the one for which

L
/ (¢* + ¢+ ¢2,) dz = O(L®).
0

Nicolaenko et al. [39] obtained the first such bound, for odd solutions of the KS
equation, with o = 5/2. Bronski and Gambill [7] constructed a background flow ¢
which allowed them to obtain such a bound, for general (of zero average) solutions of
the KS equation, with o = 1. Using an alternative approach, Giacomelli and Otto [20]

have provided the following improvement

limsup |lu(-,t)|| = o(L). (1.5)

t—o00

A further improvement of (1.5) can be found in Otto [40] who finds

limsup |lu(-, )| = O(L1/2(log L)5/3).
t—o0

In [12] it is also shown that bounds in the L2-norm of the solution of KS equation imply
that these solutions are attracted by a set of finite dimension, the global attractor, and
bounds in the dimension of the global attractor are provided. (See also Foias et al.
[16].) Note that (1.4-1.5) can be used in turn to prove boundedness of the solution in
any Sobolev norm.

In a companion paper Collet et al. [11] establish the analyticity of solutions of KS

equation. In particular, they proved the following theorem:

For sufficiently large times, the solution of KS equation extends as a holomorphic func-
tion of x in a strip (in C) of width

B > dy L7/,

around the real axis, where dy is a positive constant independent of L.

This provides the following estimate for the spectral density at high wavenumbers,

lim sup [a(j, )] = O(e™**" ),
t—o0
where (j,t) is the jth Fourier coefficient of u(-,t) and g = 27/L.
In this thesis we investigate physically relevant extensions of the KS equation which
arise in two- and three-dimensional hydrodynamics. These extensions are derived by

including additional physical effects in the models (such as dispersive effects, more spa-



tial dimensions and variations in the surface tension due to surfactants). Besides their
physical relevance such models provide richer dynamics and pose significant mathe-
matical challenges. The proposed directions of investigation are at the forefront of
research in nonlinear dissipative dynamical systems and are original in at least two

ways including:
e Three-dimensional interfacial flows

e Inclusion of dispersive effects yielding active-dissipative-dispersive systems.

1.2 The dispersively modified

Kuramoto—Sivashinsky equation

The dispersively modified KS equation
Up + Uy + Uyy + Vlgges + Du = 0, (1.6)

defined on 27-periodic domains, with v a positive constant and D a linear antisym-

metric pseudo-differential operator defined by its symbol in Fourier space, that is,
('Z/)E)k = idpwy, d_p = —di € R, (17)

i.e., D is dispersive, has been derived in the context of interfacial hydrodynamics. In

(1.7), wy, are the Fourier coefficients of w, whenever
w(z) = Zwk etk

Papageorgiou et al. [42] and Kas-Danouche et al. [28] derived an equation of the
form of (1.6) to describe the stability of core-annular flows with applications to oil
transport (lubricated pipe-lining). In particular, in this case the Fourier transform of
the operator D can be expressed in terms of modified Bessel functions:

ik*I, (k)

(Dl = LB kR0 + 2o () (18)

where [,,(k), with v = 0 and 1 denotes the modified Bessel function of the first kind of
order v. The well-posedness of (1.6) for periodic initial data can be derived from the
work of Tadmor [48] since it constitutes a special case of the central theorem proved
there. In particular, it can be shown that the corresponding initial value problem
possesses a global (space periodic) solution which grows at most exponentially in time.
(See also the relevant work of Biagioni et al. [5].)

For (one-dimensional) falling film flows a particular case of (1.6) where Du = duyy,

and ¢ is a constant was originally derived by Topper and Kawahara [49] (see also

5



Kawahara and Toh [31], and Frenkel and Indireshkumar [19]). The resulting equation

is the following KS/KdV equation (also known as Kawahara equation)

and note that the dispersive term is of lower order than the stabilizing term ., ...
Kawahara and Toh [31] were among the first to establish numerically the regularizing
effect of dispersion on the dynamics with traveling wave pulses emerging at large times.

It is noteworthy that equation (1.9) with the inclusion of a fifth order dispersion

term takes the form
Up + Uy + Ugg + OMggy + Vlgzzs + EUzzzze = 0, (1.10)

known as the Benney—Lin equation, which has been derived in the context of the one-
dimensional evolution of sufficiently small amplitude long waves in various problems
in fluid dynamics. (See, for example, Benney [4] and Lin [35].) Global well-posedness
of the periodic initial value problem for (1.10) with initial data in H? . (R), s > 0,

has been established by Biagioni and Linares [6]. (See also Chen and Li [8].) Here,

Hy..(R) denotes the Sobolev space consisting of the 2r-periodic functions with finite

norm ||w||gs, where

1/2
\WMp=(§]1+WYMﬁ> .

keZ
Specific research goals for this part of the thesis is the rigorous analytical investi-

gation of the analyticity of the solutions for the above equations.

1.3 A nonlocal Kuramoto—Sivashinsky equation

The nonlocal KS equation
Ut + Uy T Ugy + VUggry + UWH[U] g2z = 0, (1.11)

on a 2m-periodic interval, where v a positive constant, u a non negative constant and

‘H the Hilbert transform operator defined by

f

X

1 oo
Hirl) = 2ov [~ e (1.12)
™ —00 - 5
where the integral is understood in the sense of a Cauchy principal value, exhibits a
complex behavior including chaotic oscillations as in the case of the usual KS equation.

Here, the operator H is defined by its symbol in Fourier space, that is,

(H[w])r = —isgn(Rek)uwy,



k= This equation was first derived by Gonzales and

whenever w(z) = >, ., W€
Castellanos [21] and also by Tseluiko and Papageorgiou [51], using formal asymptotics.
A plus sign in front of the u,, term corresponds to the linearly unstable hydrodynamic
regime (the modified Kuramoto—Sivashinsky (MKS) equation) and a minus sign to
the stable one (the modified damped Kuramoto—Sivashinsky (MDKS) equation). A
weakly nonlinear analysis of the Navier—Stokes equations, the electrostatics equations
and associated free surface conditions, leads to a MKS, or a MDKS equation which
have an additional nonlocal term due to the effect of the electric field. Analytical
results of global existence, uniqueness and uniform boundedness of solutions of the
MKS equation were obtained by Duan and Ervin [15], who also obtain a bound for the
radius of the absorbing ball in L2. In general, global existence and uniqueness results
for (1.11), as and an estimation of the radius of the absorbing ball in L? can be derived
from the work of Tseluiko and Papageorgiou [50], who studied a generalized class of
nonlocal evolution equations which includes as special case the equation (1.11). This

generalized class, defined on 27-periodic intervals, has the form
Up + Uy T+ Uy + VUggyy — p(H 0 0,)P[u] = 0, (1.13)

where v a positive constant and ;2 a non negative constant. Here p € [3,4) (for p = 3
equations (1.11) and (1.13) are identical), and the operator (#H o 0,)? is defined by its
symbol in Fourier space. Now, specifically, for the radius R, , of the absorbing ball of

the equation (1.11) Tseluiko and Papageorgiou [50] established the following estimate:

,—31/10

R,,=c 10 (1.14)

where ¢; is a positive constant.
Specific research goals for this part of the thesis is the rigorous analytical investi-

gation of the analyticity of the solutions for the above equations.

1.4 The Burgers—Sivashinsky equation

The Burgers—Sivashinsky (BS) equation ([22])
Up + Uy — U — Uy = 0,

superficially seems to have much in common with the KS equation (1.1). It too has
low wave number instability, high wave number damping, and nonlinear stabilization
via energy transfer. Despite the similarity between KS and BS, when L is large, where
L is the period of the system, their solutions have different qualitative behavior. KS
solutions are observed to have high dimensional chaos (see [37]) while BS solutions just

approach time independent steady states as t — oc.



1.5 The o, /—model

Of interest is the model
wp + uug — |0 |%u + |3m|ﬁu =0,

with L-periodic initial data, where 8 > a > 0 and the operator |0,|” defined by

~ igkx o o, N igkx 2m
keZ keZ
which is due to Otto [41]. We call this equation as the «, f—model (or Otto’s model).
Note that the «, f—model reduces to the KS equation for o = 2 and g = 4. Its

dispersively modified version, which is the most general case, has the form
Uy + uty — |0y|*u + |0, /°u + Du = 0. (1.15)

It is noteworthy that (1.15) with periodic initial data possesses a global attractor for
a > 2 (see [17, 18]).
Specific research goals for this part of the thesis is the rigorous analytical investi-

gation of the analyticity of the solutions for the above equations.

1.6 Kuramoto—Sivashinsky type equations in 1D

The PDE
w + uuy + Pu = 0, (1.16)

defined on 27-periodic domains, extends the dispersively modified KS equation (1.6).
Here, P is a linear pseudo-differential operator defined by its symbol in Fourier space,
that is,

(Pw), = Apiby, k€ Z,

whenever w(z) = Y, ., W €', and with ), satisfying
ReAp > a1]k|”  for all |k| > ko,

for some positive constants c;, v and kg a sufficiently large positive integer. Global
existence of solutions of (1.16) has been established for v> 3/2 (see [48]); when 7> 2,
it can be deduced from [18] that equation (1.16) possesses a global attractor compact
in every Sobolev norm. Analyticity of solutions of (1.16) is established when v > 5/2,
in [3].

Specific research goals for this part of the thesis is the rigorous analytical investi-

gation of the analyticity of the solutions for the equation (1.16) when ~ > 2.



1.7 Kuramoto—Sivashinsky type equations in 2D

All the equations discussed in the previous sections represent one-dimensional waves
with the dependent variable u(x, t) representing the scaled interfacial shape. In the case
of falling films and core annular flows, x is in the direction of the flow (the former flows
are driven by gravity due to the inclination of the substrate whereas the latter ones are
typically driven by axial pressure gradients). When the flow becomes three-dimensional
the interfacial shape is a function of two spatial variables and time — a surface embedded
in three-dimensional space. The form of the model evolution equations depend on the
application as we describe next.

In the case of falling film flows Topper and Kawahara [49] derived a rather general

evolution equation for the liquid interface which takes the form:

Uy 4 Wiy + atigy + BAU 4+ YA?u + §Au, = 0,

0? 0?
where v > 0, A = 922 + 902 x is in the direction of the flow while y is the transverse
Z Y
coordinate. A particular case of this (and also a certain limit of a film flowing on
the outside surface of a vertical circular cylinder) has been rederived by Frenkel and

Indireshkumar [19] and takes the form
Up + Uty + Ugy + A2+ AU, = 0. (1.17)

There are three parameters in the problem, the length of the two spatial periods (pe-
riodic boundary conditions are considered) and the dispersion parameter 6. This evo-
lution equation extends the KS/KdV equation (1.9) to three-dimensional fluctuations
and is particularly important since it can naturally capture transverse flow instabilities.

In the case of interfacial instability of rotating core-annular flow a model also re-

taining dispersive effects has been derived by Coward and Hall [13] and takes the form
uy 4wy + aAu+ A*u+ §Du = 0, (1.18)

where A is as above, while = and y denote the axial and azimuthal coordinates in a
cylindrical polar coordinate system. (Note that for core annular flows y is restricted
in the interval [0,27] due to the geometry of the problem as opposed to the falling
film case in (1.17).) Due to this fact, there are three parameters in the problem, the
spatial period in the axial direction, the parameter o and the dispersion parameter §.
The constant « is positive if the density of the annular fluid is smaller than that of
the core fluid, and negative in the converse arrangement — linearly the former density
ratio provides a destabilising mechanism; the dispersion parameter ¢ can be positive
or negative if the viscosity ratio of annular to core fluid is smaller or larger than unity,

respectively. The two-dimensional pseudo-differential operator D is best represented



in terms of its symbol in Fourier space given by
(Dw>§777 - '/\/'5777@5,777

where

— 2in*1y(§15 = 2nIyaly — E1y1041)
26T Iy — EI2Dy g — 2L + 2(2 4 ) LDy Dy
18211 (§dyLy—1 — 2(n — 2)Ly—1 Ly — Edylys)
2812, Iy — EI21,y — E12L 00 + 22+ ) [y Ly Iy

A/%7n

+1€n,

where &, 77 denote the wave numbers in the Fourier transforms in the x and y directions,
respectively, and [, = I,,({) denotes the modified Bessel function of the first kind of
order n with n € Z. The axisymmetric case discussed above in equations (1.6) along
with (1.8), derives by setting the wave number 7 = 0, as expected.

The systems (1.17) and (1.18) constitute model equations of fundamental interest
since they are higher dimensional PDEs which exhibit complex dynamics of physical
relevance. So far these problems have received very little attention (with the exception
of limited computations by Indireshkumar and Frenkel [24] and Coward and Hall [13])
and thus a complete picture of their inevitably rich dynamics remains to be explored
mathematically.

In the current thesis we intent to study these systems as initial value problems
with initial data periodic in both x and y which is a natural setting for studying such
problems. Specific research goals for this part of the thesis is the rigorous analytical

investigation of the analyticity of the solutions for the above equations.
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Chapter 2

Analyticity of the

Kuramoto—Sivashinsky equation

In this chapter we present the details of the main result of [11] because this result
can be directly extended to the dispersively modified KS equation. The approach in
Section 2.2 belongs to Akrivis et al. [2].

2.1 Introduction

Let m € Ny and HJ;,

vanishing mean value, fOL v(z)dx = 0.

[0, L] denotes the Sobolev space of the L-periodic functions with

We consider the Fourier series expansion of functions v € L2, [0, L] := HJ [0, L],
v(x) = Zf) et g = 2n (2.1)
neZ n 7 L )

with the Fourier coefficients v0,, given by

1 [* ,
Uy = —/ v(x)e " dx, n € Z.
L Jy
Obviously, 19 = 0, since the mean value of v vanishes.

We denote by (-, ) the inner product in L2 [0, L],

per

[0, L.

per

L
(v, w) :—/ v(x)w(z)dr, v,w € L2
0
Also, ||lu||= (u,u)?. We next consider the differential operator

—02 H2_[0,L] — L2[0,L], —0%v:=—0"(= —vu).

per per

11



This operator is obviously self-adjoint, since, by periodicity,

(=020, w) = (00, 0pw) = (v, —0?w) Yv,w € H2[0, L]. (2.2)

per

Also, —9? is non-negative definite, since, in view of (2.2),

(—02v,v) = ||0v])* Vv e H?

per

0, L]. (2.3)
The right-hand side of (2.3) is positive for all nonvanishing v € H2_[0, L] (since the
2

2|0, L] is the zero function, due to the property of vanishing

only constant element of H
mean value of the elements of H? [0, L]).

Therefore, the square root A of —9? is well defined. To give a representation of A,
we first notice that the eigenvalues \, and corresponding eigenfunctions ¢, of —9? are
well known,

qnT

An = ¢°12, on(x) =€ n € Z;

notice that
—9%e' 1 = *pPel™t . p e 7. (2.4)

From (2.1) and (2.4) we obtain the desired representation of A, namely

(Av)(z) =Y qln|o,e ™ Vo e HL[0,L]. (2.5)

per
neZ

(Notice that ((qgn)?)'/? = q|n|.)
Similarly, the operator e**4, with «,t € R, is defined by

(eatAU) (l’) _ Z eatq\n\@neiqnx'

ne”l

2.2 Analyticity of solutions

Let now u : R x [0,00) — R be a smooth, L-periodic in the spatial variable, function,

such that u(-,t) has vanishing mean value, for all ¢ > 0, and satisfies the KS equation
Up + Uy + Ugy + Ugper = 0, x €R, t>0. (2.6)

For a positive constant o and the operator A introduced in (2.5), we define the

function v by
v(z,t) = () (x,t).

Then, (2.6) takes the form

(eiatAv)t + (eiatA)(Umc + UIIII) + U, = 07

12



ie.,

(e—atA)Ut _ ae—atAAU + e_atA(Uzw + wam) + uu, = 0. (27)

Taking in (2.7) the L? inner product with e*4v, we obtain
—— vl = a(Av,v) — [|va||® + |[vae® + (vtty, e*v) = 0. (2.8)

Next, we focus on the last term on the left-hand side of (2.8) that is due to the
nonlinearity of the KS equation. With the trilinear form b,

b(vy, va,v3) ::/0 v1(2)(0v2)(x)vs(x) dx,

we obviously have

b(u, u, e ) = (un,, e o).

Lemma 2.2.1. There exists a constant C such that
|b(u, u, e )| < CVat |jv]| || Av|)?. (2.9)
Proof. First, notice that
1
b(v,v,w) = —éb(v,w,v). (2.10)

Indeed,

L 1 (L 1 (L 1 L
b(v,v,w) = / vuw dr = —/ (v*)w dz = ——/ vw, dr = ——/ vw,v dx
0 2 Jo 2 Jo 2 Jo

and (2.10) follows. In particular, (2.10) yields
b(v,v,v) = 0. (2.11)

Now, using (2.10) and (2.11), we have

1
b(u, u, e ) = —§b(u, ey, u) = —Eb(e_o‘tAv, ey, e Ay)

1

=3 [b(e= v, e, e 0) — b(v, v, )],

ie.,
10 [L L
b(u, u, ) = -5 [/ e~ Ay () ey do — / VUL d:z:]. (2.12)

0 0

13



Now,
L
/ e—atA,U(eatAv)xe—atA,U dx
0

L
— / < E e—atq\m\@mezqml‘)iq< E eatq|n|n@nezqnx> < E e—atq\k\,ﬁkezqu> dx
0

meZ nez kEZ

L
:Z'q/ E Ny, 0y, Ot ImI=Ik) gia(ntmtk)e g,
0 m,n,kEL

=1qL E § n@n@m@keatq(\n|—|m|—|k|)

n€Z m+k=—n

=iqL Y Y (=n)b_p by Dy eIzl

nEZ meZ
= gL S S B b etaellml= i,
neEZ meZ
Similarly,
L
/ vuvdr = —iqL Z Z NO—_ 1, Opy— Oy -
0 neEZ meZ
Therefore, (2.12) takes the form
b(u, u, e o) = %qLZ Z NO_ O —mOm (eo‘tq“”"lm"'"’m') —1). (2.13)
nEZ meZ
Now, note that
0, if n>m>0 or n<m <0,
In| —|m|—|n—m| = —2|m, if n>0>m or n<0<m,
—2ln—m|, if m>n>0 or m<n<O0,
ie.,
0, if mn >0, |n| > |m|,
ol = fml =l —m| = —2m|, ifmn <0, (2.14)

—2in —m|, if mn >0, |m|> |n|

Using (2.14), we easily obtain from (2.13)

b(u’ U, eatAU) = %qL[w;o n@_n,&n—mﬁm (6—2atq|m| o 1)

D DTN el E

mn>0, |m|>|n|

(2.15)

We have that

20D Y ni st b€ = 1) = SgL 37 b b (e~ 1)

mn<0 n>0>m
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+%qL > by (72— 1)

m>0>n

Setting m’ = —m and n’ = —n, the second sum becomes

%qL > iy by (e 1) :éqL D (=0 Yo Dy b (72— 1)

m>0>n n/>0>m/
i = = = _ /
=—qL E (=)0 Oyt O (€ 2adgm| 1)
n/>0>m/’
? = = _
=—qL E (—n)0_pUp_m® (e 2atg|m| 1)
n>0>m

which shows that this second sum is minus the complex conjugate of the first sum.
Thus,

%qL D by (72— 1) = %qL o A s ()

mn<0 n>0>m
= —qLIm Y nb_ply_pmipm (e — 1)
n>0>m
= —qLIm g NO_p Up sk U_p (e_Qatqk — 1).
k,n>0

(2.16)

Considering the second sum on the right-hand side of (2.15), we have

1
~ ~ ~ —2atqln—m
§qL E N0 —_ OO, (e d | 1)
mn>0, |m|>|n|
1 7
AN ~ ( —2atqn— PN ~( —2atqn—
= —qL E nv_nvn_mvm(e atgln—m| _ 1)+ éqL g NV Up—mUm (e atqin—m| _ 1).

2
m>n>0 m<n<0
Setting m’ = —m and n’ = —n, the second sum becomes

7

Sl > by (72— 1)

m<n<0
— %QL Z (_n,)ﬁnlﬁm’—n’f)_m/ (e—gatqm/_m,' B 1)
m’'>n/>0
— %CZL Z (=)0 OO (6—2atq|n_m| _ 1)’
m>n>0

which shows that this second sum is minus the complex conjugate of the first sum.
Thus,

%qL > ni by (eI 1)

mn>0, |m|>|n|
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= —qLIm Y ni_ Dy (e — 1),

m>n>0

A further change of indices k = m — n yields

—qLTm Y 0yl (e — 1) = —qLTIm Y~ ni_pd_gOpn (e 2% — 1).

m>n>0 k,n>0
(2.17)
Combining (2.16) and (2.17) we finally obtain that
b(u,u,eo‘tAv) = —2¢LIm Z NO_p,0_ Ok 1n (e_Qo‘tqk — 1). (2.18)
k,n>0
Note that (2.18) is identical to the formula
b(u, u, e*v) = 2gLTm Y (k — m)i_pmOiD_(g—m) (1 — e~>m)), (2.19)

k>m>0

which appears in [11]. To see this set n = k — m in (2.19). Cauchy-Schwarz now

provides
A . . A ih— 672atqm
b, w, e 0)| <21 3" g qn fin fim | [omnl (———— )
m,n>0 qm
1/2 1 — e—2atqm 2\ /2
szL( > <qn>2|@n|2|@m|2) ( > (qm>2|@m+n|2(—)) .
m,n>0 m,n>0 qm
(2.20)
Clearly,
1/2 1/2 1/2
( > (an)’ bl |@m|2) — (Zlf»mF) (Z<qn>2 |@n|2) , (2.21)
m,n>0 m>0 n>0
while
1— —2atgm \ 2 1/2 1— —2atgm \ 2 1/2
m,n>0 qm m,n>0 qm
. 1_6—2atqm 2 1/2
(S ()
qam
k>m>0
. 1_672atqm 2 1/2
<( Swspiar(=oy)
qm
k,m>0
1/2 —2atqgm 1/2
1—e~2atamy2
(Swrne) (3 ()
<k>0 m>0 am
(2.22)
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1— 6—2atq:r;
Since the function f(z) = <—

2
) is monotonically decreasing, we have that
x

2(1 e 2atqm / i _ 2at 0 <1—xe-x>2dx. (2.23)

m>0

Combining (2.20-2.23) we obtain that

b ) <200 et (2 (5 ) S

m>0 n>0
1/2
:23/20L3/2(at)1/2<z |@m|2) Z(qn>2 |?}n|2
m>0 n>0
=252 L3 (at)"?||v][|| Av]|?,
where 12
1 1 —eT\2
c = (—/ ( ¢ ) d:z;)
2m Jo x
and so Lemma 2.2.1 follows with C' = 23/2¢13/2. 0

From now on we assume (2.9). Combining (2.8) with (2.9), we get

1d
s lvl” < of| Azv|® + || Av||? — [|A%]|* + CVat |Jo]| | Av]|?, (2.24)
Now,
| Av]* = (Av, Av) = (v, A%),
whence
[ Av]* < [lo]l | A%0]. (2.25)
Furthermore,

|420]]” = (A20, A2v) = (v, Av) < |[o]| | Av],

whence, in view of (2.25),

|Az0]|? < JJo]|Z || A%z, (2.26)
Combination of (2.24), (2.25) and (2.26) provides that

1d

s lvl” < allo]| |4%0]12 + o] [|A%] = [A%]” + CVat |[o]* | A%].

Using here Young’s inequality, we obtain

3\ 4 1\4
2\ 3 AQ,UH§) 1
— - 2<(OZHUH2) (H 2 - A2 2 A2 2
il < T ol + Azl - %)
C? 1
+ rat[ol* + S 1A%,

17



ie.,

1d 3 C?
S l0l? < Zad |l + oll? + S-at o],
whence
d 2 3 4 2 2 4
ol < (24 50t )lloll? + C2at o] (2.27)

Setting @(t) := ||v(-,t)[|?, we write (2.27) in the form

&' (t) < (Cy + Coas)B(t) + Cyat (B(1)). (2.28)

L
Assume now that ¢(0) < R%, with R} > lim sup/ lu(z,t)|? dz. As long as &(t) <
t—o00 0
4R? holds, relation (2.28) implies

@' (t) < (Cy + Coars + 4C5R2at)b(t),
whence
P(t) < @(0) exp [(01 + C’ga%)t + 2C3R%ozt2}.

As long as
(Cy + Coad )t + 203 R2at? < log 4,

we obviously have @(t) < 4R%.
This holds for ¢ < t; which is the positive root of the quadratic

205 R2at? + (C) + Chad )t — logd = 0,

which is
4
3

PR —<Cl e 0206%) + ((01 + CQ@
% 4C'3R%a

)2 + 8log4 C’SR%oz)l/2

Note that t; depends on o and L. The objective is to maximize the product aty,
for large L (equivalently, large Ry), in order to optimize the width of the band of
analyticity. Writing o = ap R}, it is easy to show that ayty is optimal when v = 6/5,
which leads to

arty > kR;?®, (2.29)

for large Ry, where k is a suitable positive constant. [l

Therefore, the following has been proved.

Theorem 2.2.1. For sufficiently large t, the solution of the KS equation extends as a
holomorphic function of x in a strip (in C) of width

BL > kR;*®,

around the real axis, where k is a positive constant independent of L.
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Remark 2.2.1. An alternative way to see how (2.29) arises, is to use Lagrange mul-

tipliers as we describe next. We want to maximize
H(a,t) = o,

subject to
F(a,t) = 2C3R: at* + Oyt + Coait —log4 < 0. (2.30)

Proof. First, note that, it suffices to maximize H, subject to F(«,t) = 0, instead of

(2.30). We consider the Lagrange function
G, t,\) = at + 205 R at® X + Cith + CaaitA — (log 4).
For the partial derivatives of G we have that

4
Gola,t,\) = t + 205 R242\ + gCZa%tA,

Gila,t,A) = o + AC5 REat\ + CL A + Chad A,
G,\(Oé, t, )\) = ZCgR%OétQ + Clt + Oga%t — log 4.

Now, we have to solve the system G, = G; = G, = 0. More precisely we have the

system
t+ 205 R2°) + %(Jga%u =0, (2.31)
o+ 403 REat ) + Co\ + Coai A = 0, (2.32)
205 R2 at? + Cit + Cohait — log4 = 0. (2.33)

Multiplying (2.31) with « and (2.32) with —¢, and then summing the two equations
we get
1
—203R%Qt2/\ — Clt)\ + gCQOZ%tA = O,

ie.,

1, 4
—203R3 at? — Cit + gCgoﬁt =0. (2.34)

Summing (2.33) and (2.34), we get
4
ngoz%t —log4 =0,

which gives us that

ie.,

t=Csa 3. (2.35)
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Combining (2.33) and (2.35), we obtain that

CoR2a™5 + Cra™ 5 4 CyCs — log 4 = 0. (2.36)
Now, note that
3log4 log 4
—log4 = —log4d = — :
C205 0og CQ 402 0og 1 0
Let € = a3 and (2.36) becomes
C C
5 8 ~4 9
S )
TR R

Counsider now the function

Cs Cy
9(8) :£5+_R% 4_R_%’ where § € [0, 00).
We have that c
= _ : y
g(0) = I <0 and £hﬁrgog(g) 0.

For the derivative of g we have that

4Cy
g'(€) =5+ ﬁfi

L
hence ¢’ > 0 in (0,00) and so the function g is strictly increasing in (0,00). Since g
is a continuous function we finally have that intersects the axis of Ox at exactly one

point, say at (£.,0). So
Co

1 2
?, 1.e., f* S C;RL5.
L

€<

Furthermore, since the function g is strictly increasing, we get

Cg, Lt -24 Cy
g+ Seinty - s
m ) g
ie.,
55 Co _ GaCy
* — R% R158 )
which gives that (notice that £ > 2),
1C
5> ——g, for sufficiently large Ry.
2R3

So we have that
_2
& > CoR,°, for sufficiently large Ry,
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which implies that
1 _2
a,® > CyR;°, for sufficiently large Ry,

le.,
6
a, > C1 R}, for sufficiently large Ry. (2.37)

_4
3

From (2.35), t. = Csa, *, whence, in view of (2.37),
PR
t. > CsC* R, ?, for sufficiently large Ry. (2.38)
Finally, combining (2.37) and (2.38) we have that
6 4 s _2
at, > CnR}CsC R, ° = C1oR, °, for sufficiently large Ry,

where (15 is a suitable positive constant. O
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Chapter 3

Analyticity of dissipative-dispersive

systems

In this chapter, we study the analyticity properties of solutions of dissipative-dispersive
systems, with periodic initial data, by exploring the applicability of the semigroup
method, which was developed in Collet et al. [11]. We establish the analyticity, with
respect to the spatial variable in a strip around the real axis, for a variety of such sys-
tems, including the dispersively modified KS equation (1.6), the nonlocal KS equation
(1.11) with the plus sign in front of the wu,, term and the dispersively modified Otto’s
model (1.15), and which possess global attractors. We also provide lower bounds for

the width of the strip of analyticity. This chapter follows the paper [25].

3.1 Introduction

It is noteworthy that in the case of vanishing dispersion, i.e., D = 0, equation (1.6)
reduces to the well-known KS equation (1.1) defined on L-periodic intervals. Now,
note that equation

Up + Uty + Ugy + Vligage = 0, (3.1)

defined on 27-periodic intervals, is obtained, from equation (1.1) given on L-periodic

intervals by the following rescaling (dropping the bars):
t=ut, z=1v"2, u=v"%, (3.2)

where v = (27/L)?. Let us explain how this rescaling works. First, by setting 7 =
(2m/L)x we see that the interval [0, L] transformed to [0, 27]. Also by using

0 = 21 0
ox L 0%’
in (1.1), we get
2 272 2m\4



and then by using

0 0
- — ith R
ot — Cat, with ¢ € R,
in (3.3), we get
2 2?2 2m\*
o o (o (=0

Finally, if we set u = nu, with n € R, we write (3.4) in the form

2 2m\2_ 2m\4 _
Cug + 7 il + (f) Uzz + (f) Uzzzz = 0, (3.5)

and by choosing in (3.5), ¢ = (2r/L)? and n = 27/L we take

2 2
U + Utz + Uzz + (%) Uzzzz = 0. (3.6)

So, in (3.6) if we drop the bars and set v = (27/L)? we get equation (3.1).

Equation (1.6) is obtained, from the following equation given on L-periodic interval
Up + Uy + Ugy + Ugzgr + Du = 07

by the rescaling given in (3.2) (dropping the bars) where v = (27/L)?, in such a way
as we have seen before for equations (1.1) and (3.1).
Equation (1.11) with the plus sign in front of the wu,, term is obtained, from the

following equation given on L-periodic interval
where v > 0, by the rescaling given in (3.2) (dropping the bars) where v = (2r/L)?

and 1 = (27/L)7y, in such a way as we have seen before for equations (1.1) and (3.1).

3.2 Analyticity of solutions

3.2.1 The dispersively modified Kuramoto—Sivashinsky

equation

Let u : R x [0,00) — R be a smooth, 27-periodic in the spatial variable, function,
such that u(-,¢) has vanishing mean value, for all £ > 0, and satisfies the dispersively

modified KS equation
Uy + Uy + Ugy + VUggee +Du=0, xz€R, t>0, (3.7)

where v is a positive constant and D is a linear antisymmetric pseudo-differential
operator.

For a positive constant o and the operator A introduced in (2.5), we define the
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function v by
v(z,t) = (™) (x,t). (3.8)

Then, (3.7) takes the form
(™), + (67" (Vo + VVsaaa) + Uty + Du = 0,

ie.,
(e—atA)vt . ae—atAAU + e—cutA(Uxm + szzmx) —+ uu, + Du = 0. (39)

Taking in (3.9) the L? inner product with e*4v, we obtain

1d

5 dtHUH2 — a(Av,v) = ||va||? + v|Jvee||? + (Du, ) 4 (uu,, e*v) = 0. (3.10)

For (Du, e*4v), we have

(Du, e*v) = /:W(Du)( MDY d = /2 <D2uke ><Zeat|£|5g6_m>dm

k€EZ e
27
:/ ( E idyte™ )( E 5,6~ m)dx
0 =
27 _ ) _
:Z/ E dkﬂk’f}geatwlez(k_@xdl’ = 2m E dkﬂk’f}geat'k'
0 kricz =k
and kEZ
:2m§ di i ope®Fl = 0, (3.11)
kEZ

using in the last equality from (1.7) that d_, = —d) € R, and so (3.10), in view of
(3.11), becomes

——|Jv|]* = a(Av,v) = ||vg]|* + V||vee||? + (utty, e*v) = 0. (3.12)
Now, combining (3.12) with (2.9), we get
2dt||v||2 < af A20|]” + ||Av|* = v|| A%|* + CVat [lv]| || Av]* (3.13)

Combination of (3.13), (2.25) and (2.26) provides that
2dtllvllg < alfol|? [[A%]]2 + [[ol| | A%0]| — v[|A%] + CVat [[o]|? || A%v].
Using here Young’s inequality, we obtain

(101 DS (] 420]3)"
_l’_

ol <
th 1 1

1
+eafv]]* + EHA%H2 — ]| A%
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02 g2
atlol+ Szl

2
ie.,
Dhop < H I+ 1HA%|P+52HU|\2+iuA%H?—uuAmmQatuvu‘*
th 484 452 26%
1
2
55 A2y|2,

whence, choosing e; = v'/4, gy = 1/v, e5 = v'/? we get

d 2 3a3 C?
o < (24 2 o+ Sarpol 3.14)

In the next, all C,, where n = 1,2,...,13 are positive constants. Setting &(t) =
|lv(-,t)]|?, we write (3.14) in the form

P'(t) < (Cl + @oﬁ)@(zﬁ) + & at(o(t))”. (3.15)

v U3 v

Assume now that ¢(0) < R2. As long as @(t) < 4R2 holds, relation (3.15) implies

, L Oy oo
d(t) < 4—R at |D(t
()< (5 + gait )e(w).
whence
Ci  Ca 1y, oCopa
B(t) < B(0) exp (7+w )t+2 at
As long as
<ﬁ+0f 4)t+2O3R2at2<log4
1% V3

we obviously have @(t) < 4R2. This holds for ¢ < ¢, which is the positive root of the

quadratic

C c; C
3R2 2+ (—1 —2043)t—10g4 = 0. (3.16)
1% V3
Now, note that
R, = cou 2V, (3.17)

where ¢y is a positive constant. To see this, notice that from (1.3) we have

L 1/2
lim sup (/ lu(z, t)]? dac)
t—o00 0
2m B 1/2
lim sup (VI/Q/ lu(z,t)]? di’)
0

t—o00

IN

Co L8/57 i.e.,

IN

—4/5
)

CcoV ie.,

2 _ 1/2
lim sup </ |a(j,t)|2df> < QT = R
0

t—o00
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using in the second inequality (3.2) and the fact that v = (27/L)?.
Substituting (3.17) into (3.16), we obtain that

204u’%04t2 + Ot + CQV’%a%t —log4 =0.

The objective is to maximize the product at, for small v, in order to optimize the
width of the strip of analyticity.
We want to maximize
H(a,t) = at,

subject to
F(a,t) = 20w Bat® + Civ 't + Cor 3aist — log4 < 0. (3.18)

First, note that, it suffices to maximize H subject to F'(«,t) = 0, instead of (3.18).

We consider the Lagrange function
G(a,t,\) = at + 20, Dot A+ Cyv A + Cov 5aitA — (log4)\.
For the partial derivatives of G' we have that

4 )
Gola, t,\) = t + 20,0 102\ + gcw—%am,

Gila,t,\) = a+ 46’41/_%005)\ +Cv I N+ CQV_%Oé%)\,
Gila,t, ) = 2C4V’%04t2 +Cwv it + ng/’%agt —log 4.

Now, we have to solve the system G, = Gy = G, = 0. More precisely we have the

system
t+ 20, 02\ + %Ozu—éaém =0, (3.19)
o+ 4O4V_%Ozt)\ +Ciwv N+ CQI/_%O!%A =0, (3.20)
2041/_%@152 +Cv M+ CQV_%a%t —log4 =0. (3.21)

Multiplying (3.19) with « and (3.20) with —¢, and then summing the two equations
we get
_31 2 1 1 1 4
204w 0at’\ — Civ~tA + 5021/ sastA =0,

ie.,
1
—204V_%(It2 —Cywlt+ 5021/_%04%75 = 0. (3.22)

Summing (3.21) and (3.22), we get

1
C’guféagt + gCQV’%a%t —logd =0,
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which gives us that

ie.,
t=Csria s, (3.23)

Combining (3.21) and (3.23), we obtain that

Cov B3 + Cov i3 + CyCs — log4 = 0. (3.24)
Now, note that
3log4 log 4
CyCs —logd = C. —log4 = — 0.
»C5 — log 270, 8 4

Let &€ = a3 and (3.24) becomes
£+ ng%£4 — Cyv® = 0.
Consider now the function
9(6) = € + Csving* — Couin,  where & € [0, 00).

We have that
g(0) = —Corio <0 and 5lim g(&) = oc.
— 00

For the derivative of g we have that
g(€) = 56" + 4Cavg?,

hence ¢’ > 0 in (0,00) and so the function g is strictly increasing in (0,00). Since g
is a continuous function we finally have that intersects the axis of Ox at exactly one

point, say at (£.,0). So
& < OB, e, & < Civis,
Furthermore, since the function g is strictly increasing, we get
&+ C’gl/%(C’gél/%)4 — Coui >0,

ie.,
557

4
5 73 5,220
5* > C’gyso — 0809 V150,
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which gives that (notice that {2

&> C’gu%, for sufficiently small v.

1
2
So we have that

& > Clol/%, for sufficiently small v,
which implies that

> Cl[)l/%, for sufficiently small v,

W=

Qs
ie.,
o > 0111/_%, for sufficiently small v. (3.25)

L 4
From (3.23), t. = Csv3a. *, whence, in view of (3.25),
te > C’lgy%, for sufficiently small v. (3.26)

Finally, combining (3.25) and (3.26) we have that

73 57 41
aut, > Civ 50 (o2 = (v, for sufficiently small v,
where (13 is a suitable positive constant. 0]

Therefore, the following has been proved.

Theorem 3.2.1. For sufficiently large t, the solution u(z,t) of the equation (1.6)

extends as a holomorphic function of x in a strip (in C) of width
By > bV41/50,

around the real axis, where b is a positive constant.

3.2.2 A nonlocal Kuramoto—Sivashinsky equation

Let u : R x [0,00) — R be a smooth, 27-periodic in the spatial variable, function,
such that u(-,¢) has vanishing mean value, for all ¢ > 0, and satisfies the nonlocal KS
equation

Up + Uy + Ugy + VUggpe + pH[U] e = 0, zE€R, >0, (3.27)

where v is a positive constant, p is a non negative constant and H is the Hilbert
transform operator defined in (1.12).
Using the definition of the function v, which given by (3.8), equation (3.27) takes
the form
(€ 40), + (€7 ) (v + Vagag + HH[V]aza) + ttty = 0,
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ie.,
(e‘am)vt — e M Av + e_o‘tA(vm + Vspar + PH[V]1az) + uu, = 0. (3.28)

Taking in (3.28) the L2 inner product with e®*4v, we obtain

1d

2 dt”U“2 - Oz(AU,U) - ”v:vH2 + V||vzz||2 + M(H[U]mxa v) + (Utly, eatAv) = 0. (3-29)

Now, combining (3.29) with (2.9), we get

1d

szl < al A2v|* + | Av|* — v]| A%|” + ul|A20]” + CVat o] [ Av].  (3.30)

In arriving at the result above, we have used the fact
(H[o)ars, v) = [[AZ0]
Combining (2.25), (2.26) and
JAz0ll? < Jjofl* | A%,
(3.30) yields

1d 1 3
o7 []l? < allvll? [A%0])2 + |Jv]l |A%0]] — v]|A%0]* + plv]|Z || A%]2
+ CVat |[v]* | A%0]].

Using here Young’s inequality, we obtain

()’ | (4o’

1
2 2 2,112 2,112
—||A —v||A
= ol < 3 T telvl 1A% — v 4%
4
(£]0]12)" (e5]| A% 3)F 2 22
€3 t 4 4 AQ 2
+ 1 + : +_2€?1a vl t5 | Av]|%,

ie.,

!
1

2 2, Sy 42,12 2 2 112 2 12
A + —||A —v||A

= ol < 45 ol + LA + salloll® + 4% — v]| A%

4
4 3 2 2
K o, 385 22, € 4, €4y 4212
+ il + A 4 gt ol + A%

whence, choosing e, = vY/*/\/2, g9 = 2/v, e3 = 1V3/%, e, = 12 /\/8 we get

d 4 3a3 14 C?
P <G+ Y ol 5 o (3.31)
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In the next, all D, where n = 1,2,...,16 are positive constants. Setting ®(t) =
|lv(-,t)]|?, we write (3.31) in the form

D, D Dy D
P (1) < (71+—fa%+ ;’f )@(t)+74at(@(t))2. (3.32)
V3

Assume now that (0) < R} ,. As long as ¢(t) < 4R, holds, relation (3.32) implies

D D Dyt D
P (t) < (—1 + Zai + 2L L 4R Oét>¢(t),
v U V3 v Uk
whence D D Dt D
B(t) < B(0) exp {<_1 + —12@% + 35 )t + 2_4R3uat2] \
14 V3 v v 7
As long as
D D Dspt D
(—1+—12a§ L R )t—|—2—4R3 at? < log4,
v U3 v3 2

we obviously have @(t) < 4R ,. This holds for ¢ < t,, which is the positive root of
the quadratic

D D, D Dyt
2R bt + (S Slat + 2 Yt~ logd = 0. (3.33)
v v voous v

Substituting (1.14) into (3.33), we obtain that
_36 41 o —1 -1 4 -3, 4, _
Dsv= 5 pusat™+ Diwv t+ Doy 3a3t+ Dyv "pt —logd = 0.

The objective is to maximize the product at, for small v and large u, in order to
optimize the width of the strip of analyticity.

We want to maximize

Qa,t) = at,

subject to
Y(a,t) = D5V’%,u%at2 + Dy M+ Dyféagt + Dyv 3t —log4 < 0. (3.34)

First, note that, it suffices to maximize @ subject to Y (a,t) = 0, instead of (3.34).

We consider the Lagrange function
V(o t, A) = at + Dsv™ 5 s at®A + Dy A + Dov 3a3tA + Dy 3 p*tA — (log 4) .
For the partial derivatives of V' we have that
TR N SN R
Vala,t,\) =t + Dsv™ 5 s t° X + §D2V 33N,

Vi(a, t,\) = a+ 2D5y’%,u4?104t)\ + DA+ DQV’éa%)\ + D3\,
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3 41

Wi(a,t, ) = D5V*?6,u?ozt2 + Dyt + Dy 3ast + Dsv =3 't — log 4.

Now, we have to solve the system V, = V, = V), = 0. More precisely we have the

system
t+ Dsv= 5 52X + %Dzy-éaéu — 0, (3.35)
o+ 2D5u’%u%at)\ + Dy I+ DQV’%a%A + Dy 3\ =0, (3.36)
Dsv™5 5 at® + Dyt + Doy~ 303t + Dav 31t — log 4 = 0. (3.37)

Multiplying (3.35) with o and (3.36) with —¢, and then summing the two equations
we get
36 1 1
—Dsv™ 5 15 at?X — Dyv A + ngz/*Ea%t)\ — Dy 3 pttA = 0,

ie.,
1
—D5u_%u%at2 — Dyt + gDzl/_%a%t — Dy 3t = 0. (3.38)

Summing (3.37) and (3.38), we get
1 4 1 1 4
Dov 33t + §D21/ sast —logd =0,

which gives us that

. 310g4 % _%
=D, e
ie.,
t = Dgvia 3. (3.39)
Combining (3.37) and (3.39), we obtain that
_98 a1 5 2 L8 o4\ 4
D s a3 + (Dsy™ 3 + Dov™3u™)a™ 3 + Dy Dg — log4 = 0. (3.40)

Now, note that

310g4_

D2D6—10g4:D2 4 < 0.

log 4
logd = —
D, ® 4

Let ¢ = a5 and (3.40) becomes
v+ (DloV%Mf% + DllV%/f%l)i/fl — DB~ s = 0.

Counsider now the function

p(v) =¢° + (D1ol/%/f% + Dnv%u*%)lﬁl — Dyt 5, where 1 € [0, 00).
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We have that
p0) = ~Di it <0 and Tim pl0) = o

P—00

For the derivative of p we have that
P/(¥) = 5% + 4(Daov =% + Dyvi )y,

hence p’ > 0 in (0,00) and so the function p is strictly increasing in (0,00). Since p
is a continuous function we finally have that intersects the axis of Ox at exactly one

point, say at (¢, 0). So

41 41

U2 < DBt fe., < Dy,

Furthermore, since the function p is strictly increasing, we get

41 41

U2+ (Digv B + Dyl %)(Df’zww %) — Dypritsp™s >0,

ie.,
832 369 682 269

77@ > D121/15,u 5 — D10D12V TS L 25 — D11D12V TS L 25
oo - 832 _ 682 98 369 - 269 - 41
which gives that (notice that %2 > %= > 1= and 52 > 52 > %),

V) > %Dlgl/?g ,u_%, for sufficiently small v and sufficiently large p.
So we have that

Ve > Dlgl/% ,u_%, for sufficiently small v and sufficiently large u,
which implies that

Dlgl/ % 1 % for sufficiently small v and sufficiently large p,

wh—t

ie.,

98 123

a, > Dy~ 225 ) for sufficiently small v and sufficiently large p. (3.41)

4

From (3.39), t, = Dgv3a. *, whence, in view of (3.41),

417 164

t, > Disvs 25, for sufficiently small v and sufficiently large p. (3.42)

Finally, combining (3.41) and (3.42) we have that

41
123 417 164 v\ 25
Oty > Dygv™ 25Iu 25 Dy TS 25 = D16<_> ,
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for sufficiently small v and sufficiently large 11, where D¢ is a suitable positive constant.
O

Therefore, the following has been proved.

Theorem 3.2.2. For sufficiently large t, the solution u(x,t) of the equation (1.11)

with the plus sign in front of the u,, term extends as a holomorphic function of x in a

strip (in C) of width
UA\A1/25
b i
0

around the real axis, where d is a positive constant.

3.2.3 The dispersively Otto’s model

Let u: R x [0,00) — R be a smooth, L-periodic in the spatial variable, function, such
that u(-,t) has vanishing mean value, for all ¢ > 0, and satisfies the dispersively Otto’s
model

w4 uty — |0p|“u +0,/°u +Du=0, xR, t>0, (3.43)

where > a > 0, 8 > 2 and D is a linear antisymmetric pseudo-differential operator.
For a positive constant 9 and the operator A introduced in (2.5), we define the

function v by
v(x,t) = (") (z,t).

Then, (3.43) takes the form
(e "), + (e7 ) (=10, |%v + |0 |Pv) 4+ uuy + Du = 0,
ie.,
(e V"), — de M Ay + e A~ |0, + 0,]%v) + uug + Du = 0. (3.44)
Taking in (3.44) the L? inner product with e?*4v, we obtain

——|lv||? = 9(Av,v) — |||02]20]|* + |||895|§v||2 + (Du, ") + (uuy, e"v) = 0. (3.45)

S0l = 9(Av, ) = (118 F vl + 111022 0]]* + (ware, ”4v) = 0. (3.46)

Combining (3.46) with (2.9), we get

1d 1 o B8
5@!\’0112 <O Azo|* + [|AZ 0> — [|A>0]* + CVIt ||v]| || Av]]®. (3.47)
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Lemma 3.2.1. For every f > «a > 0 and v sufficiently smooth L-periodic function
JAZ ] < [lof*F A% 7. (3.48)

Proof. Using Hélder’s inequality, we obtain
> > 2 28-2
[e ~ P 1e STt 122
[AZ 0> = " k[*[0x]* = D [K[*06] 7 |0x] 7
k=1 k=1

< (i (r@k|2(‘?“)ﬂi>ﬁﬁa(i (\k|a!@k|2§)§>g

k=1 k=1
o0 B_J o0 o
) B . B _2a B 22
= (k) T (k) = ol o).
k=1 k=1
whenever 0 < a < § < o0. U

Combining, (3.47) and (3.48), we obtain that

1d

sl < l*5 [AS0])5 + o~ F A2 5 — [A20]]? + OVt [lo]*5 [ A v])5.

Using here Young’s inequality, we obtain

T 5 2\B £ 5 208
1d, oo (Z]o]>~5)7 | (@l Azelm)” (Lol %) L (e] A7)
- B B B
2dt 51 15} 7 a £
L 4.8
C\/_||U||3" T (eg)| A0 F) 2
ﬁ 2
ie.,
B B s 8
1d A1 Pl Azv||? -« aes ||Az vl
e 1 (e Ry P
5516 Bey °
(8 — 2072 (91) 75 267 | A%
_ = - 38—4 g 20
+ 5 o] 572 4+ —=———,
pef ’

whence, choosing e; = (8 — 2)Y?, gy = (1/a)¥?, g5 = (1/2)*/# we get

B

iHUHQ < (Q(ﬁ = 1)19i1 N 2(51— Sz)) Ioll2 + 2(p — 2)Ca—22(19t)m 3/37—4‘ (3.49)
B(B —2)5T 5(5) -

In the next, all F, where n = 1,2,...,12 are positive constants. Setting ®(t) =
|lv(-,t)]|?, we write (3.49) in the form

38—4

B(t) < (Ey07T + ) D(t) + Bs(0) 755 (B(t)) 25, (3.50)
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Assume now that ¢(0) < R%. As long as @(t) < 4R2 holds, relation (3.50) implies
B (t) < (Ey0FT + By + B3(2Rp) 72 (01) 759 ) d(t),

whence

B

2(8 = 2) By(2RL)7 9T sy
33 —4 '

D(t) < P(0) exp (Elz?% + E5)t +

As long as

B

2(5 _‘Q)Eb(QJ%L)ngﬁzw—z
38 —4

38—4

)
(Ex0T + By)t + t259 < log4,

we obviously have @(t) < 4R%. This holds for ¢ < t;, which is the positive root of the

equation

5 ]
_ B—29)2(B—2) -
2(8 2>E§(ﬁ2RL4) ti?g:zl) + (Elf}ﬂél + Ez)t —log4 = 0.

Let us explain why

8 8
2(8 — 2)E5(2R;)F21926-2)  3p-4
(6-2) ;(ﬁ RL4) £33 4 (By077 + By)t — log4 < 0, for t € [0,4,]. (3.51)

First, note that
30— 4 € (3/2,00) when g > 2
K=——" , .
2(8 —2)

Also we have that both

2(B — 2)E3(2R,)5 2077

30 —4

8
E,= and pu = Ey9%-1 4+ FEy are positive.

Consider now the function
f(t) = Egt" + ut —log4, where t € [0, 00),
with k € (3/2,00), Fy > 0 and p > 0. We have that
f(0) = —logd <0 and tliglof(t) = 0.
For the derivative of f we have that
f'(t) = kB 4 p,

hence f" > 0 in (0,00) and so the function f is strictly increasing in (0, 00). Since f
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is a continuous function we finally have that intersects the axis of Ox at exactly one
point, say at (t1,0); and (3.51) is clear. The objective is to maximize the product ¢,
for large Ry, in order to optimize the width of the strip of analyticity.

We want to maximize

H(9,t) = 0t,
subject to

_B_ —4
F(0,t) = BsR} 2970 5¢30-3 + E95-1t + Byt — log4 < 0. (3.52)

First, note that, it suffices to maximize H, subject to F(¢,t) = 0, instead of (3.52).

We consider the Lagrange function
Lo 8 34 B
G(9,t,\) = 0t + EsR; 2922126\ + B9 1L\ + EotA — (log4)\.
For the partial derivatives of G we have that

6 B a-p  3p-4
———— Es R 2922 ¢25-2) \
2B —2) " 51

L BE-RPFIYITGDtIEDN 4+ B9\ 4+ Eo\
2(5 — 2) SR + I + Lo )

B 8 36-4 B8
GA(0,t,\) = EsR]2092G-2{26-2 + E197-1t + Fyt — log 4.

Go(9,t,\) =t + Ey9Ft),

G0, t,\) = 9 +

Now, we have to solve the system Gy = G; = G, = 0. More precisely we have the

system
b+ — PRI gan i\ + B9 TtA =0 (3.53)
28-2) " " g—1" o '
_4 B
9+ %&szﬁwﬂm TF N\ 4 By TN + Eyh = 0, (3.54)
B B 354 8
EsR;2926-2{26-2 + F195-1t + Eot — log4 = 0. (3.55)

Multiplying (3.53) with ¥ and (3.54) with —¢, and then summing the two equations
we get
B B 3p-a
—EsR; 02G-9 {2629\ +

1
1Eﬂ9%tx — Eyth =0,

ie.,

5 8 364 1 B
—E5RL 192(672)?52@72) + 1E1195_1t - Egt = 0. (356)

Summing (3.55) and (3.56), we get

BTt +

1
1Elz9%t “log4 =0,
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which gives us that

t Y :
BE
ie.,
t = Eg) 7. (3.57)
Combining (3.55) and (3.57), we obtain that
S o BCB=3) __B8
E;R; 79 23062 + EyEg)” 71 + Ey Eg — log4 = 0. (3.58)
Now, note that
(8—1)log4 log 4
E\Fg —logd = F1——F———— —logd = — < 0.
126 — 10g 1 BE, 0g 3
Let & = 92D and (3.58) becomes
sy B pea B
R} R}

Consider now the function

E E
g(&) = €283 4 —852(6_2) - —z, where £ € [0, 00).

R;™? R;™®
We have that 5
g(0) = — Z <0 and lim g(§) = oc.

For the derivative of g we have that

919 = (25 -yt 4 L= Drgs

B—2
RL

hence ¢’ > 0 in (0,00) and so the function g is strictly increasing in (0,00). Since g
is a continuous function we finally have that intersects the axis of Ox at exactly one
point, say at (&,,0). So

Eqy

B

B—2
RL

1 B
26—3 : 28-3 P (B-2)(28-3)
£28-3 < e, &< EPR, .

Furthermore, since the function g is strictly increasing, we get

€203 Es (EgzzalsR;w—mfzﬁ—a)Z(B_Q)_ Ly
* B8

B—2 B—2
RL RL
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ie.,
2(8-2)
28—3
Ey EsE,
25 T _B@s-m
=2 (B—2)(28-3)

which gives that (notice that (48 —7)/(28 —3) > 1 for 5 > 2),

£w=3 >

1 E

26—-3 9

g*ﬁ > = ﬁ[iQ 9
RL

Z 5 for sufficiently large Ry,.

So we have that
s
&> EyoR, PPV for sufficiently large Ry,
which implies that

Y Y I
9, 2PV > Bl R, U for sufficiently large Ry,

ie.,
2(5-1)

. > En R, for sufficiently large Ry. (3.59)
8

From (3.57), t. = Egd. °~', whence, in view of (3.59),

__B8  __28
t. > EgE," 'R, **°,  for sufficiently large Ry, (3.60)

Finally, combining (3.59) and (3.60) we have that

2(8—1) __B_ 28 2
Vit > EnR77° EgE\ " 'R, *° = EpR; %%, for sufficiently large Ry,

where F1, is a suitable positive constant. OJ

Therefore, the following has been proved.

Theorem 3.2.3. For sufficiently large t, the solution u(x,t) of the equation (1.15)

extends as a holomorphic function of x in a strip (in C) of width
L 2 CRE/(3726)7

around the real axis, where ¢ is a positive constant.

Remark 3.2.1. In the special case of KS equation without dispersion, the solution
extends as a holomorphic function of z, for sufficiently large ¢, in a strip (in C) of
width

YL Z c 322/57

around the real axis (see statement in Subsection 1.1 and [11]). This is also a conse-

quence of Theorem 3.2.3 with § = 4, since the case where [ = 4 corresponds to the
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KS equation.
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Chapter 4

Analyticity for pseudo-differential

equations in 1D

In this chapter, we study the analyticity properties of solutions for a class of non-linear
evolutionary pseudo-differential equations possessing global attractors. In order to do
this, we utilize an analyticity criterion for spatially periodic functions, which involves
the rate of growth of a suitable norm of the n'" derivative of the solution, with respect
to the spatial variable, as n tends to infinity. This criterion is applied to a general
class of non-linear evolutionary pseudo-differential equations, under certain conditions,
provided they possess global attractors. Using this criterion and the spectral method
developed in Akrivis et al. [3] we have improved previous results which appear in [3].

This chapter follows the paper [26].

4.1 Introduction

We present analyticity properties of zero mean, spatially 27-periodic solutions of PDEs
of the form
u + uty + Pu = 0, (4.1)

possessing a global attractor. Here, P is a linear pseudo-differential operator defined

by its symbol in Fourier space, that is,
(7/5;)19 = >‘k wka ke Z’7 (42)

whenever w(z) = Z wy, €, and with )\ satisfying

Re Ay > ¢1]k|”  for all |k| > ko, (4.3)

for some positive constants c;, v and ko a sufficiently large positive integer. Global
existence of solutions of (4.1) has been established for v > 3/2 (see [48]); when v > 2,

it can be deduced from [18] that equation (4.1) possesses a global attractor compact in
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every Sobolev norm. Analyticity of solutions of (4.1) is established when v > 5/2, in
[3]. Here, we shall establish that the solutions of (4.1) are analytic even when v > 2.
A special case of equation (4.1) is the dispersively modified KS equation

U + Uy + Upy + VUgper + Du = 0, (4.4)

with v a positive constant and D a linear antisymmetric pseudo-differential operator;
in Fourier space
(Z/Dﬁ)k = idpwy, d_p = —di € R,

that is, D is dispersive. When d = —k*, we obtain the Kawahara equation [29, 30];
another application that emerges from the dynamics of two-phase core-annular flows
yields dj, in terms of modified Bessel functions of the first kind [42]. Note that such
spatially extended systems are typically defined on L-periodic domains and equations
(4.1) and (4.4) have been scaled to have 2w periodicity. This rescaling provides a
canonical equation with a “viscosity” parameter v = (27/L)? in front of the highest
derivative. (On this rescaling see Subsection 3.1.) It can be deduced from [18] that
the 2m-periodic solutions of (4.1) possess a global attractor, bounded in every Sobolev
norm; in fact, such proofs are possible for v > 2 in (4.3). This Sobolev norm bound-
edness is used in our analyticity estimates to obtain a lower bound on the band of
analyticity.

The approach in this chapter is distinct from that in [11] which uses semigroup

methods on the L-periodic KS equation (a special case of (4.4) with D = 0),

Given the bound (see, for example, [10, 22, 20, 40])

L
limsup/ lu(z,t)Pdz < R3,
0

t—o00

the idea is to obtain a lower bound for at so that the L?-norm of v := e*4u stays
bounded. Here, A is the pseudo-differential operator, which is defined in the Fourier

space as
(Au)y, = | K|y,

and thus if v =), _, (e, where ¢ = 27/L, then

v = 6a,tA _ § ﬂkequ””“t‘k‘.

keZ
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4.2 An analyticity criterion

A real analytic and periodic function f : R — C extends holomorphically in a neigh-
borhood
25 = {z+iy:z,y€R and |y < B}

for some > 0. The maximum such (€ (0,00 is called the band of analyticity of f.
For completeness, we say that the band of analyticity of f is zero if and only if f is
not real analytic. Next, we state an analyticity criterion for periodic functions which

involves the rate of growth of suitable norms of f.

Theorem 4.2.1 (Analyticity criterion). Let uw : R — C be an L-periodic C*

function, p € [1,00] and
1/s

p,s
7

s
i = limsup

5—00 S

where

1/p
Iy = (i)

kEZ

with 1y, = lfL u(x)e *dx and q = 27 /L. Then the band of analyticity 8 of u is

L Jo
given by
o if pu=0,
r .
B =93 — i ne(0,00),
ep
0 if p=o0.

Proof. Clearly, if 1 < p < oo, then there exist positive constants C; and Cy, such
that
Cillullpn < [[u™]lo < Colltflpmsir, (4.5)

for every n > 1 and u € C*(R), which is L-periodic. It is readily seen that (4.5)

implies
1/n (n))|1/n
limsupm = limsup lu oo
n—00 n n—s00 n

(4.6)

Formula (4.6) implies that it suffices to show the theorem for the |||, --norm, instead

of the [|u||,s-norm. Due to Stirling’s formula we have that

lim ——— =
nBee (n)Un O

which in combination with (4.6), yields that

. [tflpoc\1/m |l
o=t (1) = timewp g+ = o

Therefore, in order to prove our analyticity criterion it suffices to establish the following

two claims.

42



oo if p=0,
Coamm 1. If i < o0 and v := 1 then u extends holomorphically
il
in {2,
Cramm II. If v€(0,00) and u extends holomorphically in (2., then i <1/v.
Proof of Claim 1. It can be readily seen that the function

n

)
,( )(iy)”

n:

Ulx +1iy) = Z

n=0

is well defined (cf. n™-root test for series) and differentiable (in fact C*), with respect
to both x and y, for every (z,y) € R x (—v,7), and satisfies the Cauchy-Riemann
equations, i.e., U, = iU,. Therefore, U is holomorphic in {2,, and since U(z) = u(x),
for z €R, then u extends holomorphically in (2.

Proof of Claim I1. Let U be holomorphic in (2, and agrees with u in R, and €€ (0, 7).
Set

M. = max {|U(z + iy)| : € [0, L] and |y| < v — €}.

We have
Ms = sup |U(Z>|7

2€04_¢

since U is also L-periodic. Also, for every x€R and n € N, we have

W™ (z) = UM(z) = n! &dz

B 2_71'Z |z—x|=v—¢ (Z - x)nJrl ’

whence M
W™ (z)] < 2
(y—e)n
and thus :
L (HU(”)HOO) m 1
i = limsup <
n—00 n! v—¢
for every e€(0,7). Consequently, i < 1/7. O

4.3 Analyticity of solutions

We shall apply our analyticity criterion to 2m-periodic solutions (with zero spatial
mean) of (4.1), where P is a linear pseudo-differential operator with a symbol in Fourier
space given by (4.2). Well-posedness and global existence (in time) of solutions of (4.1)
is established in [48]. Existence of a global attractor X can be derived from the results
in [18]. In fact, when ¢ > 0, every solution of (4.1) becomes C* with respect to z. In

particular, for every n € N, there exists an R,,, depending on P, but independent of
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up, such that
limsup ||0Fu(-, )| < R,.

t—00
We follow now the approach of Akrivis et al. from [3]. Expressing u(z,t) =

Z G, () €™, equation (4.1) is transformed into the following infinite dimensional dy-

kEZ
namical system

d
Eak = =\t — tkor, k€ Z, (47)

bl =5 [ gty = Zu] (0 + 3 sy 1), (48)

Clearly, (4.7) implies that

t
() = e 'q,,(0) —zk/ Aelt=9) 3, (s) ds, (4.9)
0

and consequently

. R k| .. .
lim sup |ug(t)| < lim su t)l, 4.10
msup [ia(1)] < o limsup () (4.10)

whenever Re A, > 0.

Remark 4.3.1. Let us explain how (4.10) arises from (4.9).
Proof. Let M := limsup,_,, |#k(t)]. Also, let ¢ > 0. Then from the definition of M
there exists a 7' := T'(¢) such that |Qx(t)] < M +¢e V¢ >T. Now, we can write (4.9)

as follows

T t
() = e M',(0) — ik / e M=, (s)ds — ik / e M=), (s)ds. (4.11)
0 T

Taking absolute values in both sides of (4.11) we take that

T
O] < O]+ el [ e s 4 1] [T (s,
0
(4.12)
Now, from (4.12), we have for ¢t > T
o e_Re)\k(t_T)

Re )\k

—Re )\}J( Re AT

) 1
Re/\k ’k’( 8)

[ (t)] < €= F i (0)] + [l 2l

and consequently
. |k|(M + ¢)
t -~ 7
()] — Sy

||
‘ — Re)\kM O

for every € > 0.

Thus, limsup,_, . |x(t)
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We next define for p > 2

e 1/p
hy(s) = limsup (kamk(mp) . seR.

t—o0 =1

Note that, if n€N and n < s, then

1/p 1/p
201, (9) = timmsup (3 lao ) = timsop (3 k(o)

t—o00 t—o00

keZ kEZ
= limsup |[u(-, )| pn-
t—ro0
Also,
: - hy(s)
lim sup |G, (¢)] < - forall meZ ~\ {0}. (4.13)

t—00 - ’m|
Our target is to show the following claim.

CrAaM 1. There exist positive constants M and a, such that, for every s > 0,
hy(s) < M(as)®. (4.14)

This result in turn implies that

1 21/(ps)p 1/ 21/ (ps) \f1/s
lim sup (— lim sup ||u(-, t)||11){ss> = lim sup —p(s) < lim sup i
500 S t—oo 5—00 S 5300 S

By using our analyticity criterion, we shall consequently obtain a lower bound for the
band of analyticity 3 of solutions w in the attractor, namely 5 > 1/(ea).

The claim will be proved by the following inductive method.

First, we pick M, a > 0, so that

hy(s) < M(as)®, for every s € [0,2].
Suitable values are, for example,

M > 2Y2Ry > 22 limsup ||uge (-, t)|| and a > 1.

t—o0

Indeed, noting that
1
(as)® > e 1/(ea) 5 2 for all a > 1 and s > 0,

we obtain

M1 1 1/2
M(as)® > — > — limsup [|uz(+,1)]| = —=limsu k4 (t 2)
(@) > % = = timsup s, (0]l = s timsup (3 K ()

t—o00 t—o00 LeZ

45



1 1/2 00 1/2
= lim sup (5 > /&yak(t)\?) = lim sup (Z k4\ak(t)]2)
e k=1

t—o0 LeZ
0o 1/2 00 1/p
= lim sup (Z (k:2|ﬁk(t)|)2) > lim sup <Z (k2|ak<t>|)p) = hy(2) > hy(s)
t—o00 1 t—o0 1

for all s€[0,2], since p > 2. Next we shall prove (by selecting a possibly larger a) that
(4.14) holds for every s € [o,0 + 1], provided that the same inequality holds for every
s € [0,0] and ¢ > 2. This in turn establishes that (4.14) holds for every s > 0. It

suffices to show the following claim.

Cramv II. If (4.14) holds for every s € [0,0| and o > 1, then it also holds and

for s =0+ o1, where o1 € (0, 7—M).

Proof of Claim 1. For every j=1,... k—1, we have, by virtue of (4.13),
limsup |4;(t)] <

m(3) _ M@a)®
%

P
.9 .
t—o00 ] k J

)

and thus, the first sum on the right-hand side of (4.8) is estimated as follows:

k—1 k—1 b h M)
h, (%L p ( k
thUPZWv ) ae—;(0)] < p.(of) ' INEICET))
t—00 = JF (k—j) &
, | 2md)
k—1 M(a%j)% M (a—"(kk_])>
S =i ' L o(k—j)
j=1 J*E (k_]> k
. 2 o 2 o
_ (& 1)25 (a0)” Mkfff) (4.15)

For the second sum in the right-hand side of (4.8), using inequality (4.13) and the fact
that |a_;(t)| = |u;(t)|, we obtain that

1/p 1/q
hmsupz |0, (8)| [t (2)] < hmsup <Z |, (%) ) hmsup (Z | g (t) )
t— —
- o)\ * dx 1/q
0 A < Mh D T —
>(;<k+y’>w> < uno)( [ o w)

1 1 \Va M?*(ao)°
2 o L —
<M (o o) = e
M?(ac)®
AR o
. o1 .
assuming that p,q € (1,00) with — + — = 1. In arriving at the result above, we have

p g
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used the fact

lim Supz [t ()]7 < th sup |g5(2) Z G —I—j

t—o00

along with (4.13). Also, we note that

=lim [ ———=1lim [ (z+ k) dx = lim

/OO dx . bode : ‘ - N € ) M
0 (x —+ k;)‘lf’ t—oo Jg (q; —+ k)qa t—oo J t—o0 —qo + 1 =0

1 1 1
P [(—qa +1)(t+ k)t (—qo + 1)/{‘1"1] (qo — 1)kao—1’

since qo > ¢ > 1. Finally, notice that
go—1>q—1+= (go—-1)"Y"> (¢—1)"7 and 0—3 >0 — 1= kW) > ot
Now, from (4.3), we have
Re A, > ¢ k7 for k > k. (4.17)
Combination of (4.10), (4.15), (4.16) and (4.17) provides that

. (2+ (¢ = DY) M(ac)
1 u(t)] <
IItH_iE-p |Uk( )| = QCl(q A 1)1/q Lo+v—2

for k> k.

Thus,

lim sup Z KPoEPoL |4 ()P

t—o00 =1
< jpotrar (2 4 (g — 1)Y9)P M (a0 )P°

<
- ol (2¢1)P(q — 1)p/q kpo+py—2p

ko—1

+ lim sup Z KPoHPoL |y (¢) [P

t—o0 1
2+ (g = 1)) M? (a0 &1
- (2¢1)P(q — 1)p/q Jep(y—2—01)

ko—1

+ (kg — 1)P7TP71 =22 lim sup Z E2P |, (t) P

t—o00 k=1
_ (24 (¢ — DY)’ M*P(ac)P” & 1
o _ —2—0
(2@1)17((] 1)p/q h Lp(y 1)

0
ko—1

+ (ko — 1)PotPor= 2phmsupz (K ax(t)] )p/2

t—o00 =1
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(24 (¢ — DY)’ M*(ac)P” & 1
ST Gyl AT

=k

ko—1 p/2
+ (ko — 1)P7HP71=20 Jim sup ( > k4]ﬁk(t)\2)
k=1

t—o00

(24 (¢ — 1)) M?(ac)P /oo dx
- (2¢1)P(q — 1)p/q ko1 p(v—2-01)
+ (k?o _ 1)p0+p0172pR§
_ (24 (¢ — V)Y M*P(ac)P® 1
(2e1)r(q — 1)/ (p(y =2 = 01) = 1) (ko — P00
+ (ko _ 1)p0+pa172pR127’

because of the fact that

2 1
p(y—2—01) > 1 <= 0 < v— p;— .
Since .
M (o +01) = limsup Y kP77 iy (£)]7,
t—o00 k=1
we have
hp(O' + 0'1) < CM2<CLO')U + (/{?0 - 1)U+0172M,
where

2+ (g —1)Ya '
2e1(g = )Y ((ply =2 = 1) = 1) (ko — 1)P(v201)1>1/p

In arriving at the result above, we have used the fact

C:

(0 + )P < 9P L P forall 9,0 >0 and p > 1.
This inductive step is complete if we can find positive constants M and a satisfying
CM?(ao)” + (ko — 1)7***M < M(a(o + 1))UJrl for every o > 1. (4.18)

Clearly, for every M > 0, there exists an ag > 0, such that (4.18) holds for every
a > ag. O

Therefore, the following has been proved.

Theorem 4.3.1. Let X be the global attractor of the equation
Uy + uu, + Pu =0,

with 2m-periodic initial data in L?, where P is a linear pseudo-differential operator
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defined by its symbol in Fourier space, that is,
(Pw), = My, keZ,
whenever w(x) = Z Wy, €% and with the eigenvalues Ny, satisfying the condition
Re Xy > ci|k|”  for all |k| > ko,

for some positive constants ¢y, v > 2 and ko a sufficiently large positive integer. Then,

every w € X extends to a holomorphic function in 25, for a suitable 5 > 0.
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Chapter 5

Analyticity for pseudo-differential

equations in 2D

In this chapter, we investigate the analyticity properties of solutions of KS type equa-
tions in two spatial dimensions, with periodic initial data. In order to do this we
explore the applicability of the spectral method developed in [3], in three-dimensional
models. We introduce a criterion, which provides a sufficient condition for analyticity
of a periodic function u € C*°, involving the rate of growth of V"u, in suitable norms,
as n tends to infinity. This criterion allows us to establish spatial analyticity for the
solutions of a variety of systems, including Topper-Kawahara, Frenkel-Indireshkumar
and Coward-Hall equations and their dispersively modified versions, once we assume

that these systems possess global attractors. This chapter follows the paper [27].

5.1 Introduction

We present analyticity properties of spatially 2m-periodic solutions in both x and y of
equations of the form
u + uty + Pu =0, (5.1)

assuming that possess a global attractor. The conservative nature of (5.1) allows us to
assume that u is of zero mean. Here, P is a linear pseudo-differential operator in the

spatial variables defined by its symbol in Fourier space, that is,

(Pw)k:,f - )\k,é wk7€7 (k7 6) < Z27 (52)
whenever w(zx,y) = Z U €'KW The operator P is assumed to contain a
(k,0)ez?

dissipative component of sufficiently high order, i.e., with eigenvalues Ay, satisfying
the condition
ReApe > ai([k] +1€])7  for all |k|+ |¢] > no, (5.3)
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for some positive constants c;, 7 and ng a sufficiently large positive integer. Here, we
shall establish analyticity of solutions to (5.1) when v > 3.

We now continue with analytical results in variations of the KS equation in space
dimension two. Such equations are very challenging and many questions about these
are still open. We mention several interesting works here. In [44] the existence of a
bounded local absorbing set and an attractor is shown in thin 2D domain with restricted

initial data, for the equation
1 2
ut+§V(u~u)+Au+A u =0, Vxu =0,
where u = (u1,u2). In [38] this result is improved by showing that

limsup [|uy (-, -, )l|lee < CLY°Ly/?,
t—o0
tIH&HUQ("Wt)”LQ = 0,

on the bounded domain (0, L,) x (0, L,) with the assumption L, < O, L%

In [43] the following variation of the KS equation in 2D is studied:

Up + Uty + Ugy + A% = 0,
u(+,+,0) = uo, (5.4)
w(z,y;t) = u(zx+ Lyy;t) = u(x,y+ L;t) V(x,y) € R% ¢ >0,

and under some assumptions it is shown that the solutions of this equation are bounded
for all positive time in L? and in other spaces H™. Then it is proved that the equation
(5.4) possesses a global attractor and that the attractor has finite dimension.

In [14] the following variation of the KS equation in 2D is studied:

up + utt, + uny, + Au + A%u— g(z) = 0,

U(', 70) = Uy,

u(z,y;t) = u(z+2L,y;t) = u(z,y+2L;t) V(x,y) € R* ¢ >0,
and under some assumptions the globally well-posed and the existence of a global
attractor in the periodic case is proved.

Sharp numerical estimates for the size of the attractor of (5.4) are presented in [1].

In particular, these numerical estimates suggest that

limsup ||u(-,-,t)|| = O(L?), where L, =L, = L.

t—o00
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5.2 An analytic extensibility criterion

A C>®-function v :  — C, where 2 C R¥ open, is said to be real analytic at " € (Q,
if there exists 8 > 0 such that

1
u(@® +h)=>" aD“u(wo)h“, (5.5)
aeNk

for every h = (hy,...,h;) € R¥, with ||h|| = (h? +--- + h?)Y/? < 3. (Note that, with
N we mean the set of all the non negative integers, i.e., N = {0,1,2,3,...}.) In such
case the function u extends holomorphically in an open ball in C* of radius 3, centered
at °. In particular, if u : R* — C is C*, 27-periodic in every argument and analytic
for all £° € R¥, then there exists 3 > 0 such that (5.5) converges for all ° € R* and
|h|| < 8, and thus u extends holomorphically in the open domain

25 = {(xl—i-iyl,...,xk—i-iyk):xl,...,xk,yl,...,yk e R and |11],- .-, |yxl <6} c C*.

Next we provide a condition which is sufficient for a C* and periodic function v : R¥ —

C to extends holomorphically in {23.

Lemma 5.2.1 (Analytic extensibility criterion). Let u : R¥ — C be a C-

function which is 2m-periodic in every argument, i.e.,
w(zy + 2w, . x4 2upm) = u(xy, .., xg)  forall xy,... xp €ER, py, ... €7,
and hence u is expressed as

u(a:) _ Z eim-z,&m _ Z ei(m1z1+-..+mk1k)am_ (5.6)

meZk (m1,...,my)EZF
If
—F
po:= limsup ——— < o0, (5.7)
s—00 S
where

1/2 1/2
HuHHs—(ZHmHZS!ﬁmP) —( S () rumm\)

mezk

= [[(=2)"%ulle,
then u extends holomorphically in 25, where

o if p=0,

F = L if 1e(0,00).
ep
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Analyticity for u can be obtained even in the case where ||ul

by

1/p
(I +--- + \mk|)”|aml,...,mk\p) . seR,

lullys = ( 3

(m1,...,my)EZE
forp> 2.

Proof. We set the function U : CF — C as

: ; 1'a a na
Uz, - z) = Uz + iy, - o g +iyr) = Zaﬂ ly Du(z).

a€Nk
We can write (5.9) in the form
. . - 1 |a\ aMa
U($1+Zy1,-~-a$k+lyk):Zm yD ) )
n=0 la]=n
and hence, for |y;| < g with i =1,...,k we get
Uit < 302 (30 Do) ).
= nl e !
Our target is to show that
n! Z ]D“ x)| < positive constant,

|al=n

us s replaced in (5.7)

(5.8)

(5.9)

and in such a case (5.9) converges for all (z,y) € R¥ x (=3, 3)*. From (5.6) we take

a a 1m-x
D% = 5 ilme! U,

mezk

and so we have that

> %\D“u(a})\ = > (Z ”m” ) iign| = — Z 77| ” |

la|=n mezk " la|l= mezk

where m = (my,...,my,) and |[m|| = (m? + --- +m?)/2. Now, we have that

> ||m||"|am\)2=( > (m?+~-+mz)"/2|am\)2

meZ+~{(0,...,0)} meZk~{(0,...,0)}
<ca Y. (mEaerm) g,
meZk~{(0,...,0)}

< Ckd Z (mi+---+m}

meZ*~{(0,...,0)}

)n+d| m|2’

(5.10)

(5.11)

23



where ¢y, 4 is a constant depending on k£ but not on n. For the first inequality in (5.11),

we have used the corresponding result of
0 2 00
( Z mam) <A Z mia?,,
m=1 m=1

for suitable constant A, in k-variables.
Now, the definition of u given in (5.7) implies that, for every € > 0, there exists an

So, such that

Jullgs < (s(p+¢))°, forall s> s. (5.12)

Combining (5.10), (5.11) and (5.12) we get

! “ ! 1/2 v n+d)/2
> D) < a(c;g,d\luHHM) < n—? ((n+d)(u+2)) ™",

la]=n

where ¥y = (c.q)*/?, and so
L Yy (ntd)/2\ /™
Z a]D u(x)| < (m ((n+d)(p+e)) ) — e (u+e) for every e > 0.
jal=n '
Therefore,
1 1/n
lim sup ( Z —'|D“u(a:)|) <e(u+e) foreverye>0
n—oo a:
la|=n
and thus

1 1/n
limsup( E —'|Dau(m)|) < ep.
al

n—00
|a[=n

It can be readily seen that the function (5.9) is differentiable (in fact C*), with
respect to both & and y, for every (z,y) € R* x (—f, 3)*, and satisfies the Cauchy-
Riemann equations with respect to z1,..., 2, ie., U, = iU, where j = 1,... k or
equivalently 5ZjU =0 for j =1,..., k. Therefore, U is holomorphic in {23, and since
U(x) = u(z), for z € R, then u extends holomorphically in {25.

Now, in order to show that in (5.7) the ||u|

suffices to show

g= can be replaced by the norm (5.8) it

el (=2)ull < [fullps, (5.13)

with u : R¥ — C a C®-function which is 27-periodic in every argument, and for a
suitable positive constants ¥ and ¢, not depending on u, to be defined later. Using

Holder’s inequality, we obtain

S AmlP i = > (|72 | |

mezk mezk

o4



( 5 (Hm|2ﬁ>zz/<p—2))<p—2>/p( > (|\m!!25\ﬁm!2)p/2)2/p

<
meZk mezk
(r—2)/p 2/p
= (X gy (CE i)
mEZk meZk
The series
1
Z |||~ 300/ (=2) = Z 5 5
e (9p)/(p—2)
meZF~{(0,...,0)} meZ+~{(0,...,0)} (mi + +mig)Un
converges if and only if
2Up
—— >k
p—2" "
and in particular for
E+1)(p—2
g 1D -2) e,
2p
So,
1/2 1/p
[(—A)e 2|z = ( 2 Hm||2<”>\am|2) < C( 2 Hm””'ﬂm'p)
mGZk meZk
< Crpllullp,s,
(r—2)/(2p)
where Cj,, = (Zmezk HmH_(wp)/(p_Q)) , and the inequality in (5.13) holds for
C = 1/Ck7p' ]

5.3 Analyticity of solutions

We shall apply our analytic extensibility criterion to 27-periodic solutions in both z
and y, with zero spatial mean, of (5.1), where P is a linear pseudo-differential operator
with a symbol in Fourier space given by (5.2) and satisfying (5.3) with v > 3. In
our analysis it is necessary to assume that (5.1) possesses a global attractor V. In
particular, we assume that there exist real numbers R, independent of the initial data
ug, such that

s = R, forall s <4.

limsup [|u(-, -, ?)]
t—o0

We follow now the approach of Akrivis et al. from [3]. We define for p > 2

1/p
hp(s):limsup< 3 (yk|+w>psyak,£(t)v>) . s€ER

o0 N\ (hoyeze

Note that
hp(s) > liin sup(|¢| + [0])°|ac o (t)],
— 00
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and consequently

liiriilp ¢ o(t)] < ﬁ for all (¢,0) € Z x Z ~ {(0,0)}. (5.14)

Our target is to show the following claim.

CrLAIM 1. There exist positive constants M and a, such that, for every s > 0

hy(s) < M(as)’. (5.15)

Expressing

e,y t) = Y dge(t) T,

(k,0)€Z2

equation (5.1) is transformed into the following infinite dimensional dynamical system

d
%um = —)\k gukg — Zk’gOk 05 (l{, E) € ZZ, (516)
with

SOM

2w 27r

—u (z,y,t) e " * W) dady
T i(ma-+ny) (Gatry) | p-ilkatty)
~ i(mx+n ~ i(ocx+T —i(kxz+
2 )2/ / [ Z Umn(t) e Y H Z Uy (t) € y] e Y dxdy
(m,n)€Z? (o,7)€Z?
2T 27 ) )
/ / um,n<t)7fl/o,7—<t> 61(m+cr—k)3: 61(n+r—€)y dl‘dy
27T
(m,n,o,T) €Z4
1 9 4 R
mun () Uo7 (t
2(27) Z Zu7()u7()
m+o=k n+7=~{
1 .
5 Z Ut ()l (), (K, 0) € Z2. (5.17)
m)EL

Now, without loss of generality assuming in (5.17) that (k,¢) € N2, we get

onf E uk ml— n umn E uk mEJrn U, n(t>

1<m<k 1<m<k
1<n<t n>1
+ Z ak—l—m,@—n(t)ﬁ—m,n(t) + Z ak+m,€+n(t)a—m,—n<t>
m>1 m>1
1<n<Y n>1
+ Z ak—m,é—i—n(t)am, n Z Uk— mE t)
m>k+1 m>1
n>1
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1 . .
+ - Z uk—i—m Z t u—m 0 Z U — n 0,n t) + 5 Z uk,é—i—n(t)uo,—n (t)

m>1 n>1 n>1

In order to see how we take (5.18) from (5.17), first notice that

E uk ml— n mn E uk ml— n umn E uk ml— n mn(t)

(m,n)€z? 1<m<k 1<m<k
1<7L<€ n< 1
+ § uk m,l— n umn E uk m,l— n mn(t)
1<m<k
1<n<£ n>0+1
+ E , U o (1) U (1) + § U —m o () U (1)
m>k+1 m<—1
1<n<é n<—1
+ > () (8) Y Ao (8l o (£)
m>k+1 m<—1
n<—1 n>0+1
+ § uk—m,ﬁ—n(t)um,n(t) 4 E uk—mf(t)ﬁ’m,o(t)
m>k+1 meZ
n>0+1
+ D e n(t)iton(t),
ne”
and then
E uk ml— n mn E uk ml— n mn § uk mZ—‘rn m n(t)
1<m<k 1<m<k 1<m<k
n< 1 n>€+1 n>1
E uk m,l— n mn E uk m,l— n mn E uk+m€ n mn(t)
m<—1 m>k+1 m2>1
1§n§€ 1<n<¢ 1<n<é
Z ak—m,é—n(t)ﬂmn Z uk ml— n Um,n Zuk+m€+n u—m n(t)
m<-—1 m>k+1 m>1
n<—1 n>0+1 n>1
§ uk ml— n mn E uk ml— n mn E uk m€+n m n(t)
m>k+1 m<—1 m>k+1
n<—1 n>0+1 n>1

Clearly, (5.16) implies that
t
Qg e(t) = e ey ,(0) —z'k;/ “Aeelt=9) g, 0(s) ds,
0

and consequently

k
lim sup |t e(t)] < %] lim sup | o(t)], (5.19)
t—s00 ReMe  to00

whenever Re A, > 0.
The claim will be proved by the following inductive method. First, we pick M, a >
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0, so that
hy(s) < M(as)®, for every s€l0,4].

Suitable values are, for example,
M > 32R, > 32limsup ||Ju(-,-,t)||gs and a > 1.
t—o00
Indeed, noting that

1
(as)® > e~ Vlea) - 3 for all a > 1 and s> 0,

we obtain
M .
M(CLS)S > — Z 16hmsup||U(-,-,t)||H4
2 t—o0
1/2
= 16limsup< Z (k2+£2)4|ﬁk,£<t)’2)
t—o0 (k,0)ez2
) A 1/2
> 161imsup( Z (—(Uﬂ\ + \5’)2> !ﬂk,z(t)|2)
t—o0 2
(k0)ez?
1/2
= limsup ( Z (‘k| + |€D8|ﬁk,e(t)’2)
=00 N (ho)ez?
A\ 12
=hmsup< > ((\k\+|€|)4lﬂk,e<t>!))
=00 N (ko)ez?
) 1/p
> tisp (30 (41D 00))") = Bylt) = (5,
—00

(k,0)ez?

for all s€[0,4], since p > 2. Next we shall prove (by selecting a possibly larger a) that
(5.15) holds for every s € [0, 0 + 1], provided that the same inequality holds for every
s € [0,0] and o > 4. This in turn establishes that (5.15) holds for every s > 0. It
suffices to show the following claim.

Cram II. If (5.15) holds for every s € [0,0] and o > 3, then it also holds for

— M)'

s =0+ oy, where oy € (0,7 -

Before we prove this, we first need the following estimate:
Lemma 5.3.1. For every (k, () € N? it holds that

lim su ’A (Zf)] < w
P [Pk,e = 2(k+£)0—2'

t—o00

(5.20)
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Proof. For every m=1,...,k and n=1,...,¢, we have, by virtue of (5.14),

o(m+n)
(m+4n) (m+n) kte
. ) hp(a Z:_fn ) M(CLJ Z’L—Mn )
lim sup |, ()] < oy S omin)
t—o0 (m + n) k+¢ (m + n) k+4

and thus, the first sum on the right-hand side of (5.18) is estimated as follows:

koot
lim sup Z Z’ﬁk—m,éfn(t)“am,n@)’

k y h, <a(k+€k—(2n+n))> h, <a(;n;n)>
+ +
< .
I DL Ko

(k+£_( . )) a(k+€k—_‘$n+n)) ( 1 ) a(z:_—;n)
b M (a kel ) M (a kel )
< Z Z o(ktl—(m+tn) o (mtn)
(k4= (m+n) (m +n) "

k M2(ao)®  (kl — DYM?(a0)® _ kOM?(ao)®
Y (ao)” )M?(a0)” _ (ao)

= = (k)7 (k+ ()7 = (k+0)e
(m,n) # (k,0)
2 2 o 2 o
< (k+0)°M*(ao) _ M (ao) . (5.21)
(k+10)° (k+ )2

For the second sum in the right-hand side of (5.18), using inequality (5.14), we
obtain that

) [e%o)
lim sup Z Z |t ()] T —n ()]

=00 m=1 n=1
koo hp(a(k;rfz(rgfn))> hy <Z(nz+;1)>
+£+2n +4+2n
= Z Z o(hti—(m=n) o (m+n)
m=1n=1 (k+{— (m —mn)) *2n (m + n) iz
(k+£,( _ )) W ( + ) sz—t;rz
P M (a Frit2n > M (ak+€+2n>
= Z Z o(ktl—(m-m)) o (mtn)
m=1 n=1 (kf +0— (m - TL)) k+0+2n (m —+ n) E+0+2n
k o0 )
M?(ao)° 1
= = kM?*(a0)” y ———
— ; (k+ €+ 2n)° (a0) Zl (k+ 0+ 2n)°
> dx (k+ 0)M?(ac)® M?(ac)°®
< kEM? 7 < = . 5.22
> (a0> /0 (2:c—|—k+€)" = <k+€>0—1 (k_i_g)g_g ( )
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In arriving at the result of (5.22), we have used the fact

> da ¢ 1 1
W %+ k+0)Odr = <
|, w0 = o < g
(5.23)
since o > 3.
For the third sum in the right-hand side of (5.18), using inequality (5.14), we obtain

that

llmSUpZZ|uk+m£ D) ()] <

=00 m=1 n=1

h, <a(k+€+(m—n))> n ( o(m+n) )

k+04-2m k—+04-2m

oo
P
< Z Z o(kttt(m—n)) o (mtn)

m=1 n=1 (k + g + (m — n)) k+0+2m (m + n) k+i+2m

o(k+L+(m—n)) o(m+n)

M (aa(k+é+(m—n)) ) Y (a o(m+n) ) E+eiom

Z k4+-£+2m k+£+2m
L (k4 (m— ) () B

*, & M?*(ao)® 9 o 1
=22 Graramp < M X Gy

Y dx (k+0)M?*(ac)”  M?*(ao)”
(a0) /0 Qe ke = G0t Gt ? (5:24)

In arriving at the result of (5.24), we have used (5.23).
For the fourth sum in the right-hand side of (5.18), using inequality (5.14), we
obtain that

lim sup Z Z |, (8) ] | U, —n (1)

=00 m=1 n=1
P h (U(k-i—é—i—m—i—n)) h ( o(m+n) )
P m-+2n P m—+2n
= Z Z ik t2(k+4+m+n) ) k+é+2a(::-2+n)
m=1n=1 (k+ €+ m+ n)rer2mim  (m + n)Frer2mim
(k+¢ ) ﬁ?f?mf;) ( ) k+U£(-§-n;+Z-)2
0o 0 M(ad +é4+m+n ) m+2n M(@ o(m+n ) m+2n
S Z k+44+2m+2n B k+€+2m+27:(m+n)
me1n=1 (k+ €+ m+ n)*rifmim (m + n)*rermiam
i i M?*(ao)°® / / dydz < M?(ac)°®
= (ao) .
(k+£0+2m—+2n)° — 2x+2y+k+0)° = (k+ )72

(5.25)

In arriving at the result of (5.25), we have used the fact

o[ dydx ) i & v dydx
= lim lim ,
0 0 (237 + 2y + k+ g)g §—oop—oo Jo fg (237 + 2y + k+ E)U
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from which it is easy to see that

Y . 1 (2y+2z+k+0) o]
¢h—I>I;o i Qu+2c+k+0)dy = 51}1_1;{)10 ] }
1
200 —1) 2z +k+ )1

y=0

and finally, notice that

[ Rrt k40! et ko))
lim dr = lim
E-00 Jo 2(c — 1) ¢vood(oc—1)(—0+2)],_,
B 1 < 1
Ao -1 (o =2)(k+ )72 = (k+ )7
since o > 3.

For the fifth sum in the right-hand side of (5.18), using inequality (5.14), we obtain
that

lim sup Z Z|Uk mytgn (E)] |, —n (2)]

=00 k1 n=1
h <a(—k+é+m+n)) h ( o(m+n) )
P\ —k+€+2m+2n P\ —k+€+2m+2n
S Z Z o(—k+l+m+4n) : o(m+n)
kil nel (—k + L0 +m+ n) —FFFzmem (M + n) =R
(—ktl ) ) (mtn) AU aO T
0o 00 o(—k+l+m+n - m+2n o(m+n - m+2n
M (a —ktl+2m+2n > M (a —k+£+2m+2n)
S Z Z o(—k+€+m+n) . o(m+n)
m=k+1 n=1 ( k+{0+m+ n) —k+e+2m+2n m —+ n) —k+i+2m+2n
M%( dyd
=Y S e <ty [
o = (—k+ £+ 2m +2n)° (2x 42y —k+0)
M?(ao)
T (5.26)

In arriving at the result of (5.26), we have used the fact

/°° /°° dydx o /5 /¢ dydz
= 11m l11m )
v Jo Qe +2y—k+0)°  coooumoo fi Sy 2 +2y—k+ L)

from which it is easy to see that

¢ 1 (2y + 2 — k 4 £)~oH1 VY
li 2 2 — k Tdy = = 1
Jm f Ry 2=k 40 7dy = 5 lim ] }

1
T 20— 1)z —k+ )7

y=0
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and finally, notice that

€ (2n —k+ ()t (22 — k + £)~ot2 "=

li dr = i
e fy  200—1) " mdlo—1)(-0+2)],,
B 1 1
T 4o Do -2kt 072 = (kb2
since o > 3.

For the sixth sum in the right-hand side of (5.18) we have that

| —

) k 9]
5 Zﬂk—m,e(t) Um,o(t) = % [Z Ut e (t) Um0 (t) + Z Up—m,e(t) ﬂm,o(t)] (5.27)

m=k+1

For the first sum in the right-hand side of (5.27), using inequality (5.14), we obtain
that

k L (””“Zfzm) > hy (15_-@)
hﬁﬁfﬁpz |, (£)] [ im0 () Z (k+0—m) plo L =
o (k+0—m) e om | 1 k
- zk: (a2t7) .M< W) ZW _ kM ao)
] (k+¢— m)m;:ifzm) mi+e —1 (k + (k+8)7
o U+ OMa0)” _ (k+0*MP(a0)” MQ(M)” (5.28)
(k+ 0 (k+0) (k+ )2

For the second sum in the right-hand side of (5.27), using inequality (5.14), we obtain
that

00 h o(—k+L+m) h om
. P\ —k+e+2m P\ “ktet2m
lim sup E |uk mf( )| |um,0(t)| < E : o (—htitm) o
tmoo T metit1 (—k + € 4+ m) —Freram m =F++em
o(—k+0+m) om
o(—k+b+m)\ —Frerzm om “k+i+2m
= M(“ —k++2m ) M(a 7k+£+2m> = M?*(ao)”
< oChitim) o - Z (—k + (+ 2m)°
mk+1 (=K + €+ m) —Ferezm m m=k+1

dx M?*(ac)?

< M2<ag)0/k ST < i (5.29)

In arriving at the result of (5.29), we have used the fact

/°° dx , /f dz (2w — k4 0ot

— — lim — = lim

k (QZE —k+ f)a =00 J (2£E —k+ 6)‘7 £—o0 2(—0’ + 1) ok
B 1 __k+e 1

2o =Dkt T (kO (R0
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since o > 3. Combination of (5.27), (5.28) and (5.29) provides that

. M?(ao)®
thU.pZ|Uk mt ()] [tmo(t)] < (o)

m S W (5.30)

For the seventh sum in the right-hand side of (5.18), using inequality (5.14), we
obtain that

A P\ k+0+2m P\ k+l+2m
lim sup Z [kt e ()] [0 (2)] < Z st iim) T
720 =1 m=1 (k + €+ m) k+e2m mk+ttam
( ) o'lgszbgm) . e 2
o(k+l+m +e+2m om ++2m o
< i M(a ktl+2m > M< k+£+2m> M?3(a
oD (k+l+m) e mFTeiam = (k+ 0+ 2m)
> dx M?*(ao)°®
< M?*(ao)° / < : 5.31
< M{ao) o (k+04+2z)7 = (k+1€)°2 (5.31)

In arriving at the result of (5.31), we have used (5.23).
For the eighth sum in the right-hand side of (5.18) we have that

00 4 00
1. ) 1 . \ ) A
5Zu,ﬁ,g_n(ze)q,t(),n(zs) =3 [Zuk’g_n(t)uoyn(t) + Y uk,g_n(t)uo,n(t)] (5.32)
n=1 n=1 n=~¢+1

For the first sum in the right-hand side of (5.32), using inequality (5.14), we obtain
that

: m(22) ()
lim su WUk p—n, U p < — - o
Hoop;‘ k,0— )H 0 ()| ;(k+£—n)a(k;fzn) e
) o(k+4—n) U(kgfé_n) on ’%:e ¢
M{ o= M{ a7 M?(ac)? (M?(ao)®
< o(ktt—n) an - Z -
S (k4 ) niie el G M G
_ (k+OM(a0)” _ (k+0?M*(a0)” _ M?*(a0) (5.33)
- (k+0)° - (k+0)° (k + £)o—2" '

For the second sum in the right-hand side of (5.32), using inequality (5.14), we obtain
that

0 hp<ok(,k;€+n)> hp(k czn >
—{+2n —L(+2n
lim sup Z |tk e—n ()] [ 0,0 (2)] < Z o(k—ttn)

t—o0 n=~0+1 n=0+1 (k’ — 0+ n) k—it2n nk—t+2n

o(k—L+n)

o(k—t+n)\ *—C+2n on E—i+2n
> M(“ k—0+2n ) M\ =7, . M?*ao)°

< . = - 7
- n_%;l (k — 0+ n) e nF=t+7n n_;l (k— €+ 2n)°
> dx M?*(ao)°®
< M*(ac)’ < . 5.34
< M(ao) /Z k—0+22)° = (k)2 (5-34)
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In arriving at the result of (5.34), we have used the fact

o dz [ dx Qe+ k—0)ot
—— = lim — = lim
r 2e4+k—0)7 o), 2e+k—0)0° oo 2(—0+1) ot
1 okt _ 1
20— 1)(k+ 07 = (k+0)o 1t (k402

since o > 3. Combination of (5.32), (5.33) and (5.34) provides that

timsup S i en(®)] i0n(8)] < % (5.35)

t—o00 =1

For the ninth sum in the right-hand side of (5.18), using inequality (5.14), we obtain
that

o(k+0+n) on
hp( k++2n ) hy (m)

llmSUPZWHJrn )] |to,—n(

|M8

mee o1 = (k4 £+ n) e ==
( ) o "
00 o(k+4+n +0+2n - Ti+2n -
Z M<a k+{+2n > M( k+€+2n> B Z M?(ac)®
TS (k404 )T nFTeio — (k+(+2n)
> dz M?(ac)?
< M(ao)® < : 5.36

In arriving at the result of (5.36), we have used (5.23).
Finally, combination of (5.18), (5.21), (5.22), (5.24), (5.25), (5.26), (5.30), (5.31),
(5.35) and (5.36) provides (5.20). O

We now continue the proof of Claim II.

Proof of Claim 11. For the hb(o 4 01) we have that

Wi(o+o1) = limsup S (k] + 0P fag ()] (5.37)

=0 hoyez?
Now, we split (5.37) in the following eight sums and we get
hg(a + 0'1) =

= lmsup | Y (k4 0P P g O + Y (k0P (1)

t—o00

(k,£)EN2 ke-N,teN

DD RO (OP + D (B = 0" ()
(k,0)e—N2 keNLe—N

+ Z KPR |y, o (1) P + Z (= k)72 g o () [P
keN ke—N
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+ 3T o (O + D (=0 i ()

£eN le—N
= limsup | Y (k40P P ()P + Y (k+ OPP iy (t)]?
200 | (h0)en? (k,0)eN?

+ Y B+ OPP i (O + > (kA OPT g (1))
(k,£)eN? (k,0)eN?

+ Z kpa+p01 |ak’0(t)|P + Z kpo+}7cr1 ‘a_k70(t>|l>
keN keN

+ Z (P74 g o ()P + Z PP G _o(2) [P
LeN £eN

= limsup [2 3 (k40P i (OF +2 3 (k+ 0P iy ()]

t—o00

(k,£)eN? (k,£)eN2?
+ 2 RPTI (1) 4+ 2 TP dig () \P] : (5.38)
keN LeN
since |tge(t)] = [tk —e(t)]; |[dpe(t)] = |ar—e(t)], [lro(t)] = [d-ko(t)| and |do,(t)| =

|0, (t)]-
For the first sum in (5.38) we have that

hmsupzz K+ 0P |y, 0 (t)|P
t=00 41 =1
[ oo nog—1
= lim sup Z Z (k + 0)PTHPo Gy o (8) [P + Z Z (k + O)P7Po gy o(8) [P ]
t=oo | k=1 =1 k=1 t=nq
[mo—1ng—1 oo nog—1
= limsup Z (k + P77y o (1) [P + Z Z (k + O)PTP7 Gy o (2) P
t=e0 | k=1 ¢=1 k=ng (=1
no—1 oo
S S T O+ 303 (k0 >|p]. (5.30)
k=1 €:n0 k= noﬂ no

For the first sum in (5.39) we have that

no—1ng—1

lim sup Z Z (k + 0)P7P0 qy, (1) [P

t=o0 421 =

nog—1ng—1

= limsup Y Y (k+ PP (k4 £)* iy (t)|”

t—o0

k=1 (=1
no—1np—1

< @ng— 2P lmsup 3 3 (k4 0 iy (1)
t=00 o1 =1

no—1ng—1

(2n0 - 2)P0+p01 2p lim sup Z Z ( k’ —{—5) |Uk; g( )| >p/2

t=00 o1 =1
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—_
—_

no—

no— p/2
< (2ng — 2772 Jim sup ( Sk + €>4lak,e<t>l2)

t—o00 —1 =1

B

S
—_
S
—_

0— 0—

< (2ng — 2)P7 TP lim sup (

t—o00

p/2
(k* + f2)4|ﬁk,e(t)|2>
k=

< (2ng — 2)P7 P2 RE (5.40)

—_

(=1

For the second sum in (5.39) we have that

oo no—1
lim sup Z Z (k + 0PI Gy o (8) [P
t—o0
k=ng ¢=1

oo 2npg—2

= lim sup Z Z (/{: + 40 —ng+ 1)P0+po1|ﬁk,g(t)|p

t=o0 k=ng f=ng

< limsup Y Y (kL —ng + 1PN i o (£)]7

t=o0 k=ng f=ng

< limsup > Y (k0P iy (8] (5.41)

t=o0 k=ng f=ng

For the third sum in (5.39) we have that

no—1 oo

timsup > S (k + 0P [y (1)
t=o0 k=1 ¢=ng

2np—2 oo

= lim sup Z Z(k‘ + 0 —ng + 1)P7PN dy, o (8) [P

=R k=ng {=ng

<limsup Y Y (kL —ng + 1P iy (1)

t—o0 k=ng f=ng

< limsup Y ) (k0PI iy (8P (5.42)

t=o0 k=ng f=ng

Now, from (5.3), we have
ReXpy > c1(k+£0)" for k+ € > ny,
which in particular implies that
ReXpy > cr(k+0)  for k, 0 > ny. (5.43)

Combination of (5.19), (5.20) and (5.43) provides that

k+0 13M?(a0)°
li o ()] < li Dre(t)] <
11;ri>iljp|uk7g( )| < ReAry liriiljp\s%,ﬁ( )| < 21 (k + £)7 3

for k, ¢ > ny.
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Thus, for the fourth sum in (5.39) we have that

limsup > Y (k4 0P iy (1))
t—o00
k=ng f=ng

201 (k+ e)po+m—3p

k=ng f=no
13M?
— )Pe
—(261) w3 N
k=ng {=ng
< 13M? / / dydx
(ac)?
- 2Cl no—1 nolx_'_y p(y=3-01)
2ngy — 2) P30+ 13M2\”
- (2n (ac)?. (5.44)
((7—3—0’1)-1)( (’}/—3—0'1)—2) 201

In arriving at the result of (5.44), we have used the fact

dydx dydx
T = = lim lim —
no—1 Jng—1 :L' + y P(’Y 0'1 £—00 P—00 no—1 Jno—1 a’; + y p(v 0'1)

from which it is easy to see that

P —p(y—3—01)+1 1Y=¥
lim (x4 y)P0=3=dy = lim (z+y) }
Yoo no—1 Yoo _p(’y -3 - 01) + 1 y=ng—1
(z +ny — 1) PO=3-o0)+1
T p-3-o) -1
and finally, notice that
3 — 1)~p(y=3-01)+1
lim (z + 1o ) dx
¢~ Jpoo1  Ply—=3—01)—1
1 (z + ng — 1)~POr=3-o0)+2 z=¢
— im
p(y—=3—-01) —lése  —p(y—=3—01)+2 z=ng—1

(2ng — 2)~PO—3-o1)+2
(p(y=3-0) = 1) (p(y =3 —01) —2)’

because of the fact that

3 2
p(y—3—01)—1>1<=0 <v— P+ )

Notice that the sums in (5.41) and (5.42) are estimated as the fourth sum as above

and so for these two sums (5.44) holds. Finally, combination of (5.39), (5.40), (5.41),
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(5.42) and (5.44) provides that

limsup » Y " (k + 0P iy o (t)|?
t=00 31 =1
3(2ng — 2)P(y—3-01)+2 13M2\?
< (ZTL() . 2)pa+pa1—2pRZ + ( T ) < ) (aa)p".
(P —3—0) —)(p(r—3-01) —2) \ 201

(5.45)

For the second sum in (5.38) we have by splitting it in such a way like the first
sum in (5.38), and by following the same steps as above for the first sum in (5.38) that
(5.45) again holds, namely,

oo o0

limsup Y > (k + 0777 iy, (t)]”
t=00 0 =1
3(2ny — 2)~P(y—3-01)+2 13M2\"*
S (2710 o 2)po+pa1—2pRZ + ( no ) < ) (ag)pa.
(p(y=3—=01) =1)(p(y =3 —01) =2) \ 2cy

(5.46)

The only noteworthy modification for the estimation of the second sum in (5.38) is
that (5.20) will be replaced by:

Remark 5.3.1. For every (k, /) € N? it holds that

13M2(ao)”
i 5 ()] < /)
im sup [¢_x¢(t)] < 20k 1 )72

t—o00

(5.47)

It is easy to see that the proof of (5.47) is along the lines of the proof of Lemma 5.3.1.

Also, for the estimation of the second sum in (5.38), we once again need (5.3), to
get that

Red ke > e1(|— k| +0)7 = ci(k+£)7 for |— k| + € > ng, ie., for k+ ¢ > ng,
which in particular implies that
ReA s > ci(k+ ) for k, 0> ny. (5.48)

Finally, for the estimation of the second sum in (5.38), combination of (5.19), (5.47)
and (5.48) provides that

. . |— k| . . kE+1¢ .
] L) < ] L] < ] (t
1£riigp|u ke(t)| < Red s lgriigplso ke(t)] < Red s lfiilplso ke (t)]
13M2(ac)®
3M(ac) for k,0 > nyg.

= 2cl(k+€)a+’773
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Now, from (5.3) with ¢ = 0, we have
Re >\k,0 > Cll{iﬁf for k > ng. (549)

Combination of (5.19) and (5.20) with ¢ = 0 and (5.49) provides that

13M?*(ac)®
I ()] < li oro(t)] < S for k > ny.
11;Ii>ilolp|uk,o( )| < Re Mo 11;Ii>ilolp|80k,0( )| < 2e ko3 or kK = No
Thus, for the third sum in (5.38) we have that
limsup 3 K740 o (1)
t—o00
k=1
oo fPotpo1 13pM2p(aO_)pa’ no—1
1 po+pot |5 D
- (2c, )P kpotrr=3p + hfiigp >k [t 0(t)]
k=ng k=1
13M2 p (o) 1 no—1
po _ 1)po+po1—2p; 2p|5 p
< < e ) (ao) kz fp(y—3—01) + (no — 1) hﬂilp;k |ig.0(t)]
=no =

no—1

13M%\" *o_d

2Cl o—1 xp('y—3—01 t—o00 1
(ng — 1)~P0—3-o0+1 1302\ 7 (o)
a
~ p(y=3—-01)—1 2¢4 P

no—1 P/2
+ (ng — 1)P7 77172 Jim sup ( Z k:4|11;€,0(t)|2)

t—o00 1

< L3N (ac)P? + (ng — 1)P7 TP =2P RY
- (p('y —3—01)— 1)(n0 — 1)ply=8=o)=1 ' 2¢ >
(5.50)
because of the fact that
3 1
p(y—3—01)> 1< 0 <7vy— Pt )
p
Now, from (5.3) with k£ = 0, we have
ReXoe > 107 for £ > ny. (5.51)

Combination of (5.19) and (5.20) with k£ = 0 and (5.51) provides that

13k M2(ac)®
lim sup |dio.¢(t)] < lim sup |@o.¢(t)| < 13kM (o)

for £ > ny.
t—00 ReMlos t-00 2c 0072 o
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Thus, for the fourth sum in (5.38) we have that

o0

limsup S 7 i (1)
t—o00
=1
e gpff—i-pallgpkpMQp(aa)pa no—1
1 po+poi | p
= ZZ (2¢, )P Lrotev—2p + hftriizlp ; ¢ |t0,0(1)]
=ng =
13kM2\* s 1 no—1
po __ 1\po+po1—2p; 2p| 4 p
= ( 21 ) (a0) EZ sy T (0= 1) hggigpgﬂ |G0,0()]
=ng =

13k M2\ P o0 =
< (B28) o [ et o 0 s 3 (a0

2c pp(y—2—01)
1 0—1 t—00 —1

- (nO _ 1)fp('yf2701)+1 13k M2\? ( )pg
ao
T p(y—2—-0y)—1 2¢4

no—1 p/2
+ (ng — 1)P7 P71~ lim sup ( Z €4m0,g(t)|2>

t—o00 —1

1 (13kM2

p
o o+po1—2 P
S (p(7 -2 - 0’1) — 1) (no — 1)17(“/—2—01)—1 ) (CLO')p + (TLO - 1)p o pRZ’

201

(5.52)

because of the fact that

2 1
p(y—2—0)) > 1< o0 <7v-— pt .
p

Combination of (5.38), (5.45), (5.46), (5.50) and (5.52) provides that

hp(O' —+ 0'1) S (Cl -+ CQ + Cg)Mz(CLO')U + 41/p ((2720 - 2>U+0172R4 + (no - 1)U+0172R2) y

where
13- 3/p
G1= 1/p’
21-(2/P) ¢y [(p(’y —3—01) = 1)(p(y =3 —01) —2)(2ne — 2)?(7*3701)*2]
13
¢ = 1/p
21-(1/p)¢y [(P(V —3—01) = 1)(no — 1)1’(7_3_”1)_1]

and m

Cs =

1/p”
21-(1/p)¢; [(p(fv —2—01) = 1)(no - 1)1’”—2“”)‘1] '

This inductive step is complete if we can find positive constants M and a satisfying

CiM?(a0)” + 47 ((2ng — 2)7T 2Ry + (ng — 1)7' 2 Ry) < M (a(o + 3))U+3
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for every o > 3, (5.53)

where Cy = C + Cy + (5. Clearly, for every M > 0, there exists an ag > 0, such that
(5.53) holds for every a > ay. O

Therefore, the following has been proved.

Theorem 5.3.1. Assuming the existence of a global attractor V for the equation
Uy + vy, + Pu = 0,

where u = u(x,y,t), with 2n-periodic initial data in L*, where P is a linear pseudo-

differential operator defined by its symbol in Fourier space, that is,
(7/)@)1{@ = N Wrye, (k,0) € 2%

whenever w(x,y) = Z W0 e FTH) - and with the eigenvalues ke satisfying the
(k,0)ez?
condition

ReMpe > (k| +10))Y  for all |k|+ |¢| > n,

for some positive constants c1, v > 3 and ng a sufficiently large positive integer, we
get that, every w € V extends to a holomorphic function with respect to the spatial

variables.
As a consequence of the Theorem 5.3.1 we have the following result.

Corollary 5.3.1. Let M be the global attractor of the equation (5.4). Then, every
solution of (5.4) which is in M extends to a holomorphic function with respect to the

spatial variables.
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Part 1I: Qualitative theory of polynomial vector
fields
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Chapter 6

Lower dimensional dynamical

systems

6.1 Historical references on Hilbert’s 16th problem

In the qualitative theory of differential equations, research on limit cycles is an interest-
ing and difficult topic. Limit cycles of planar vector fields were defined in the famous
paper “Mémoire sur les courbes définies par une équation différentielle” (see [23], [24]).
At the end of the 1920s Van der Pol [29], Liénard [16] and Andronov [1] proved that a
periodic orbit of a self-sustained oscillation occurring in a vacuum tube circuit was a
limit cycle as considered by Poincaré. After this observation, the existence and nonex-
istence, uniqueness, and other properties of limit cycles have been studied extensively
by mathematicians and physicists, and more recently also by chemists, biologists, and
economists. However, one of the main problems in the qualitative theory of planar dif-
ferential equations in the 20th century was the second part of Hilbert’s 16th problem
[9].

Hilbert’s 16th problem was posed by David Hilbert at the Paris conference of the
International Congress of Mathematicians in 1900, together with the other 22 problems.
The original problem was posed as the Problem of the topology of algebraic curves and
surfaces. Actually the problem consists of two similar problems in different branches

of mathematics:

e An investigation of the relative positions of the branches of real algebraic curves of

degree n (and similarly for algebraic surfaces).

e The determination of the upper bound for the number of limit cycles in polynomial

vector fields of degree n and an investigation of their relative positions.

The first part of Hilbert’s 16th problem.
In 1876 Harnack investigated algebraic curves and found that curves of degree n
could have no more than (n* — 3n + 4)/2 separate components in the real plane.

Furthermore, he showed how to construct curves that attained that upper bound and
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thus that it was the best possible bound. Curves with that number of components
are called M-curves. Hilbert had investigated the M-curves of degree 6 and found
that the 11 components always were grouped in a certain way. His challenge to the
mathematical community now was to completely investigate the possible configurations
of the components of the M-curves. Furthermore, he requested a generalization of
Harnack’s theorem to algebraic surfaces and a similar investigation of the surfaces

with the maximum number of components.

The second part of Hilbert’s 16th problem.

Here we are going to consider polynomial vector fields on the real plane, that is a
system of differential equations of the form:

dx dy
= = p(r,y) and i q(z,y),

where both p and ¢ are real polynomials of degree n. The second part of Hilbert’s 16th
problem is to decide an upper bound for the number of limit cycles in polynomial vector

fields of degree n and, similar to the first part, investigate their relative positions.

The original formulation of the problems.

In his speech, Hilbert presented the problems as:

“The upper bound of closed and separate branches of an algebraic curve of degree n
was decided by Harnack; from this arises the further question as of the relative positions
of the branches on the plane. As of the curves of degree 6, I have - admittedly in a
rather elaborate way - convinced myself that the 11 branches, that they can have
according to Harnack, never all can be separate, rather there must exist one branch,
which have another branch running in its interior and nine branches running in its
exterior, or opposite. It seems to me that a thorough investigation of the relative
positions of the upper bound for separate branches is of great interest, and similarly
the corresponding investigation of the number, shape and position of the sheets of an
algebraic surface in space - it is not yet even known, how many sheets a surface of
degree 4 in three-dimensional space can maximally have.”

Hilbert continues:

“Following this purely algebraic problem I would like to raise a question that, it
seems to me, can be attacked by the same method of continuous coefficient changing,
and whose answer is of similar importance to the topology of the families of curves
defined by differential equations - that is the question of the upper bound and position
of the Poincaré boundary cycles (cycles limites) for a differential equation of first order

in the form:
dy Y

dr ~ X’
where X, Y are integer, rational functions of n-th degree in resp. z, y.”

Since the statement of the second part of Hilbert’s 16th problem, this remains open

even for quadratic polynomial vector fields. The contributions of Bamon [3], Golitsina
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[8] and Kotova [15] for the particular case of quadratic vector fields, and mainly of
Ecalle [6] and I'yashenko [11] in proving that any polynomial vector field has but
finitely many limit cycles have been the best results in this area. But until now it
has not been proved that there exists an uniform upper bound depending only on the

degree.

6.2 Generalized Van der Pol and Liénard equations

The Van der Pol equation
:'t—sx'(l—xQ) +x =0,

could perhaps be regarded as the fundamental example of a nonlinear ordinary differ-
ential equation. It plays an important role in the theory of nonlinear electrical circuits
and in fact was first considered by Van der Pol when he studying vacuum tube oscil-
lators. Van der Pol equation possesses a limit cycle; no linear equation can have this
property. This limit cycle is one of the most frequently studied limit cycles. However,
note that, it was unknown until 1995 that the limit cycle of the Van der Pol equation
is not algebraic [22].

In this thesis, we study the second part of Hilbert’s 16th problem for two generalized

Van der Pol equations. More specifically, we consider the system

T =y, 6.1
y:—m+8yp+1(1—x2q), (6.1)

where p € Ny is even, ¢ € N and 0 < ¢ < 1, and the system

{:t:y’ (6.2)
j=—x+ef(y)(1—2?),

where f is an odd polynomial of degree 2n + 1, with n a fixed but arbitrary natural
number and 0 < ¢ < 1. Systems (6.1) and (6.2) reduce to the Van der Pol equation
for p = 0,q = 1, and f(y) = y, respectively. Our purpose here is to find an upper
bound for the number of limit cycles for systems (6.1) and (6.2), depending only on
the degree of their polynomials and investigate their relative positions.

System (6.1) is the generalized Van der Pol equation of the form
i—e(@)Pt(1—2*) +2 =0, (6.3)

where p € Ny is even, ¢ € N and 0 < ¢ < 1. We search to find an upper bound for the
number of limit cycles for equation (6.3), depending only on p and gq. We prove that
the generalized Van der Pol equation (6.3) has a unique limit cycle, and it is simple

and stable. We also examine the manner in which the position and size of the limit
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cycle depend on p and gq.

Several other generalizations of the Van der Pol equation have been considered in
the literature. Minorsky [19] has considered a generalized Van der Pol equation of the
form

i—ei(l—a*)+2=0, (6.4)

where ¢ € N and 0 < ¢ < 1. For ¢ = 1, equation (6.4) reduces to the Van der Pol
equation. For p = 0 equations (6.3) and (6.4) are identical. By applying a perturbation
method, he showed for (6.4) that the stationary amplitude Ay, to first order in ¢, is

o ( 2T sin t dt ) e (6.5)
' fo27r sin® t cos24 t dt ' '

For ¢ = 1, 2 and 3, Minorsky found from (6.5) that Ay = 2, 1.68 and 1.53, respectively.
The solution of the generalized Rayleigh equation

1
j—eyll— '2q> =0 6.6
i 6y< g 1) Ty =0 (6.6)
where ¢ € N, is closely related to the solution of (6.4). For, if we differentiate (6.6)
with respect to ¢ and let y = x, then x satisfies (6.4). Hence, results for (6.6) can be
derived from the corresponding results for (6.4).

Holmes and Rand [10] have examined the qualitative behaviour of the non-linear

oscillations governed by a differential equation of the form
i+ @(a+y2?) + B+ d2° = 0,

where «, 3, v and ¢ are constants; a = —1, =1, v =1 and § = 0 corresponds to the
Van der Pol equation. They investigated the presence of local and global bifurcations
and considered their physical significance.

A more general class of equations, containing (6.3) as a special case, has the form
T+ ao(x,t)+x =0, (6.7)

and was studied in [26] and [27]. They obtained conditions about the existence and
uniqueness of limit cycles of (6.7). In general, we observe that the existence and

uniqueness theorem for limit cycles of (6.7) proved there does not apply for equation
(6.3).
System (6.2) is the generalized Van der Pol equation of the form

i—ef(i)(1—2a%) +2=0, (6.8)

where f is an odd polynomial of degree 2n + 1, with n a fixed but arbitrary natural

number and 0 < £ < 1. The problem is again to find an upper bound for the number of
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limit cycles for equation (6.8), depending only on the degree 2n + 1 of the odd polyno-
mial f and investigate their relative positions. We prove that the generalized Van der
Pol equation (6.8) has exactly n+1 limit cycles for particularly chosen odd polynomials
f of degree 2n + 1 and that this number is an upper bound for the number of limit
cycles for every case of an arbitrary odd polynomial f of degree 2n + 1. Furthermore,
we show how to construct these polynomials of equation (6.8) which attain that upper
bound. On the possible relative positions of the n 4+ 1 limit cycles we show that there
exists a limit cycle whose position depends on the position of the rest n limit cycles
(actually, this limit cycle is close to the circle with the dependent radius (see Definition
9.2.4)).
The Liénard equation
Z+g(x)i+x=0, (6.9)

where g is a polynomial, is another generalization of the Van der Pol equation. Equation

(6.9) can be studied in a phase plane as a system

{i_y’ (6.10)

or in the so-called Liénard plane as

{¢:y—0@% (6.11)

y:_xa

where G(z) = [ g(s)ds. The systems (6.10) and (6.11) are analytically conjugate.
We observe that system (6.2) is not of the form of Liénard’s equation (6.10), except
when f(y) = y. Obviously, for f(y) # vy, (6.10) can not reduce to (6.2). So, in general,
(6.2) is not a special case of (6.10) and (6.10) is not a special case of (6.2).

Liénard [16] proved that, if G is a continuous odd function, which has a unique
positive root at © = a and is monotone increasing for x > a, then (6.11) has a unique
limit cycle. Rychkov [25] proved that, if G is an odd polynomial of degree 5, then
(6.11) has at most two limit cycles.

Lins, de Melo and Pugh [17] have studied the Liénard equation (6.11), where G
is a polynomial of degree d. They proved that, if G(z) = azx® + as2z? + ayr, then
(6.11) has at most one limit cycle. In fact, they gave a complete classification of
the phase space of the cubic Liénard’s equation, in terms of some explicit algebraic
conditions on the coefficients of GG. Also, using a method due to Poincaré they proved
that, if d = 2n 4+ 1 or 2n + 2, then for any k£ € Ny with 0 < k& < n there exists a
polynomial G(z) = agz? + - -+ + a;z such that the system (6.11) has exactly k closed
orbits. Motivated by this, they conjectured that the maximum number of limit cycles

n—1

for system (6.11), where G is a polynomial of degree n would be equal to [T} (the

largest integer less than or equal to ”T_l)
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However, in [5] it has been proven by Dumortier, Panazzolo and Roussarie the
existence of classical Liénard equations (6.11) of degree 7 with at least 4 limit cycles.
This easily implied the existence of classical Liénard equations of degree n, n > 7, with

["T_l] + 1 limit cycles. The counterexamples were proven to occur in systems

6

T=y— <x7+ZCixi),
i=2

Y= €(b—l’)7

for small € > 0. Recently, in [18] it has been proven by De Maesschalck and Dumortier
the existence of classical Liénard equations (6.11) of degree 6 having 4 limit cycles. It
implies the existence of classical Liénard equations of degree n, n > 6, having at least
(2] + 2 limit cycles.

[I’yashenko and Panov [12] proved that, if

n—1
G(r)=2"+Y az', |o|<C, C>4, n>35,

i=1

and suppose that n is odd, then the number L(n,C) of limit cycles of (6.11) admits
the upper estimate
L(n,C) < exp(exp C*™).

Caubergh and Dumortier [4] proved that the maximal number of limit cycles for (6.11)
of even degree is finite when restricting the coefficients to a compact, thus proving the
existential part of Hilbert’s 16th problem for Liénard equations when restricting the

coefficients to a compact set.
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Chapter 7

Small perturbation of a

Hamiltonian system

In this chapter, we make some elementary remarks about small perturbation of a

Hamiltonian system. This chapter follows partly the book of Arnol’d (see [2]).

7.1 An introduction

We consider the system

(7.1)

{56 =y +efi(z,y),
y=—x+efaz,y),

where 0 < ¢ < 1 and fi, fy are C! functions of z and y, which is a perturbation of the

T =y,
y:_xa

which has all the solutions periodic with:

linear harmonic oscillator

2°(t) = Acos(t —ty) and y°(t) = —Asin(t — ty).

In general, the phase curves of (7.1) are not closed and it is possible to have the
form of a spiral with a small distance of order € between neighboring turns. In order
to decide if the phase curve approaches the origin or recedes from it, we consider the

function (mechanic energy)
1

E(z,y) = §(x2 + 7).

It is easy to compute the derivative of the energy and it is proportional to e:

d

EE(QJ,ZJ) =xT + yy = 5(xf1(x,y) + yf2<x>y)> = €E<I,y) (72)
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We want information for the sign of the quantity

/T(E) eE(xE(t),yE(t))dt = AF, (7.3)

which corresponds to the change of energy of (z°(t),y°(t)) in one complete turn:

Using the theorem of continuous dependence on parameters in ODEs, one can prove

the following lemma:

Lemma 7.1.1. For (7.3) we have
2
AE = 5/ E(Acos(t — ty), —Asin(t — ty))dt + o(e). (7.4)
0

Let

and we write (7.4) as

AE = e[F(A) + @]

Using the implicit function theorem, one can prove the following theorem, which is

the Poincaré’s method:

Theorem 7.1.1. If the function F' given by (7.5), has a positive simple root Ay, namely
F(Ay) =0 and F'(Ag) #0,

then (7.1) has a periodic solution with amplitude Ay + O(g) for 0 < e < 1.

Proof. Let
Q(e,A) = F(A) + @.

3

Using the smooth dependence on ¢ in ODEs, we have that ) is a C* function such that

Q(O, AO) =0 and 2—3(0, Ao) 7é 0.

Then, by the implicit function theorem, there exists a unique function A(e), such that
A(0) = Ay and Q(e, A(e)) = 0.

Therefore (7.1) has a solution which is a closed curve, so it is periodic. O
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Chapter 8
A generalized Van der Pol equation

In this chapter, we study the bifurcation of limit cycles from the linear oscillator & = y,
y = —x in the class
jf:y, y:—$+6yp+1<1_$2q),

where ¢ is a small positive parameter tending to 0, p € Ny is even and ¢ € N. We
prove that the above differential system, in the global plane where p € Ny is even
and ¢ € N, has a unique limit cycle. More specifically, the existence of a limit cycle,
which is the main result in this work, is obtained by using the Poincaré’s method, and
the uniqueness can be derived from the work of Sabatini and Villari [28]. We also
investigate and some other properties of this unique limit cycle for some special cases
of this differential system. Such special cases have been studied by Minorsky [19] and
Moremedi et al. [20]. This chapter follows the paper [13].

8.1 Existence, uniqueness and other properties

of a limit cycle

Our main result is given in the following theorem:

Theorem 8.1.1. System (6.1), where p € Ny is even, ¢ € N and 0 < ¢ < 1 has the

unique limit cycle

(P+20+2)(p+2)...(2¢+2) 2¢(2¢—2)...4-2

2 2
_ @)
ety (p+2)p...4-2 Gi—1D)@g—3)..3.1] T
and 1t 1s simple and stable.
Proof. From (7.2) we have
E(z,y) = y"** (1 —a™), (8.1)
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where p € Ny is even and ¢ € N. Substituting (8.1) into (7.5), we obtain that

mejéqfwf“@—@ﬂm%wt (8.2)

where p € Ny is even and ¢ € N. Substituting x°(t) = Acos(t — t5) and y°(t) =
—Asin(t — ty) into (8.2), and using the assumption that p € Ny is even we get

27 21
F(A) = Ap”{ / sin?*2 (¢ — to)dt — A* / SinP2(t — to) cos®(t — to)dt|.  (8.3)
0 0

Let )
[ / Sil’lp+2(t - to)dt
0

and 9
crim [ st~ to)cos(t — toi,
0

where p € Nj is even and ¢ € N. Using the fact that
w/2
0 = 4/ sin? 2 (t — tg)dt,
0

we get
(p+1)(p-1)...3-1

c1 =2 .
' (p+2)p...4-2

In arriving at the result above, we have used the fact that for each n € N

/2 1-3...2n—1)m
-

tdt = T

/0 St 2.4...2n 2

Using the fact that
w/2
cy = 4/ sin? (¢ — tq) cos®(t — to)dt,
0

we get

g +D(p-=1)...5-3:1  (2g—-1)(2¢—3)...3-1_
2T p+20+2)(p+29)...(20+2) 29(2¢—2)...4-2

In arriving at the result above, we have used the fact that for each m, n € N and even

e . (m=1)(m-3)...5-3-1 (n—1)(n—3)...3-1x
/0 o = v n =)+ nn-2).. 42 3 oY
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Substituting ¢; and ¢y given as above into (8.3) it follows that

(p+1)(p—1)...3-1
(p+2)p...4-2
. (+DHpE-1)...5-3-1 (2q—1)...3-1A2q]
(p+2¢+2)(p+2¢)...(2¢+2) 2¢...4-2 ‘

F(A) = 27 AP+ [

Now, for A > 0 the polynomial F' has the root

4 {(p+2q4'2)(p+2q)...(2q+2) 24(2¢ —2)...4-2 }1/<2q)
- (p+2)p...4-2 20-D(2¢-3)..3-1]

Let

(P+2¢+2)(p+2¢)...(2¢+2) 2¢(2¢—2)...4-2 T/@q)

A():AO(]?7Q)5:[ (p+2)p...4-2 (2¢g—1)(2¢—3)...3-1

(8.5)
where p € N is even and ¢ € N.

For the derivative of F' we have that

(p+1(p-1)...3-1
plp—2)...4-2

(p+1)(p—1)...3-1 (2¢—1)...3-1
(p+2¢)(p+2¢—2)...(2¢+2) 2q...4-2

F'(A) = 27 AP [

A%

We compute the derivative of F' at Ay and we get

(p+1(p—1)...3-1

! e p+1
Fldo) = —m o a2

using the assumptions that p € Ny is even, ¢ € N and Ay > 0. So, from Theorem 7.1.1,
it follows that (6.1) has a limit cycle close to the circle 2% + y* = AZ. Moreover, since
F'(Ap) < 0, this limit cycle is simple and stable.

Let now prove that the number of limit cycles for system (6.1), with ¢ small is
exactly one. The proof of this can be derived from the work of Sabatini and Villari

[28] using Corollary 1 proved there. We first note that the system (6.1) can be written

{at :y—axpﬂ(yzq— 1),

y:—l'7

and in the form

where p € Ny is even, ¢ € N and 0 < ¢ < 1. As we already saw, Poincaré’s method
(see Theorem 7.1.1) ensures the existence of a limit cycle for (6.1). Since a = —1,b =
1,G(z) = %, one has G(a) = G(b), so the hypotheses of Corollary 1 hold (see [28]),
and the system (6.1) has exactly one limit cycle. This completes the proof that (6.1)
has exactly one limit cycle.

So, we prove that (6.1) has a unique limit cycle, and it is simple and stable. 0
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Remark 8.1.1. The expression (6.5) obtained by Minorsky, is a special case of the
expression (8.5) which we found. Indeed, for p = 0 it can be verified that (8.5) equals
(6.5). This may be done by evaluating the integral in the denominator of (6.5), using
(8.4).

Proposition 8.1.1. System (6.1), with p € Ny is even, ¢ € N satisfying p + 2 = 2q,
and 0 < ¢ < 1 has the unique limit cycle x* + y?> = 4 + O(e), and it is simple and
stable.

Proof. From Theorem 8.1.1 it follows that system (6.1), with p € Ny is even, ¢ € N
and 0 < € < 1 has a unique limit cycle, and it is simple and stable. It remains to

prove that

[(p+2Q+2)(p+2Q)...(2q+2) 2¢(2g —2)...4-2

1/q
(p+2)p...4-2 (2(]_1)(2(1_3)._.3_1} =4, (8.6)

when p + 2 = 2q.
By the assumption that p + 2 = 2¢ the left-hand side of (8.6) gives

{W@w@q—D@q—®-~@+2Xm+UT”: [%QQ—U-~@+2Mm+UTM
(2¢ —1)(2¢ —3)(2¢ —5)...5-3-1 (2¢ —1)(2¢—3)...5-3-1 '

Hence it suffices to show that

m@q—w@q—mn.@+2xm+nr“:2
(2¢ —1)(2¢ —3)(2¢ —5)...5-3-1 '

CLAIM. It is valid that

2q(2¢—1)(2g—2)...(¢+2)(¢g+1) _ o
(20— 1)(2¢—3)(2¢—5)...5-3-1

VqeN.

Proof of Claim. The claim will be proved by induction on ¢. For ¢ = 1, we have
% = 2! therefore the claim is valid for ¢ = 1. Supposing that the claim is valid for ¢,

we will prove that it is true and for ¢ + 1, namely

2+ D] g+ 1)) 2g 1) (a+3)(a+2) _
(2¢+1)(2¢ —1)(2¢ —3)(2¢ —5)...5-3-1 =

(8.7)

The left-hand side of (8.7) is equal to

2q(2¢ —1)(2¢—2)... (¢ +2)

—92.9271 — 9itl
(2¢g—1)(2¢—3)...5-3-1 ’

2(¢g+1)

which is the right-hand side of (8.7). Therefore, the claim is valid for every ¢ € N.
This completes the proof of the proposition. O

Remark 8.1.2. It is well known that the Van der Pol equation with 0 < ¢ < 1 has
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the unique limit cycle 22 + y? = 4 4+ O(e), and it is simple and stable. This arises and
from Proposition 8.1.1 with p =0 and ¢ = 1.

In the next proposition, we give a different proof, much more elementary than the
proof has been given by Moremedi et al. [20], concerning the decreases of the amplitude

of the limit cycle of system (6.1) with p =0 and 0 < ¢ < 1, as ¢ increases.

Proposition 8.1.2. System (6.1), with p = 0,q € N and 0 < ¢ < 1 has a unique
limit cycle which is simple, stable and its amplitude decreases monotonically from 2 to
1 as q increases from q = 1. Therefore, the unique limit cycle of the system (6.1), with

p =0 has the equation z* + y* =1+ O(g) as ¢ — co.

Proof. From Theorem 8.1.1 it follows that system (6.1), with p = 0, ¢ € N and
0 < € < 1 has a unique limit cycle, and it is simple and stable. From (8.5) when p =0
it follows that

4o [2at2 29(2-2)...4-2 1/(20)
71 2 (2q-1)(2¢-3)...3-1 '
Let

Ao(q) == [QCH 2 29(29—2)...4-2 ]1/(2”
2 (2g—1)(2¢—3)...3-1
Clearly, Ag(1) = 2. In order to prove that the sequence Agy(q), ¢ € N given by (8.8) is
strictly decreasing we must show that Ag(q+ 1) < Ay(g) for all ¢ € N.
We have that

., ¢geN (8.8)

Aplg+1) = {2q2+4(2(2q4r2)(2q) 42 ]2””
¢+1)(2¢—1)...3-1
2q+4 2D 2¢+2 2¢(2¢g—2)...4-2 2 2T
[2(]—1—1} l (2q—1)(2q—3)...3-1]
— 2(‘1{”)/40

where

@0 =577 |35 2020 —2)...4-2
Now, in order to show that Ag(q + 1) < Ay(q), it suffices to show that

2+41 1 (20—1)(29—3)...3-17"¢
q+{ (2¢ —1)(2¢ — 3) } PN

s(q) <1, VgeN

We have that
2q+4 1

2 +1(qg+1)/e

s(q) <

CLAIM 1. It is valid that

2q 1+ 4

< 1)/ : :
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Proof of Claim 1. The inequality (8.9) is valid for ¢ = 1,...,5, as it can easily be
checked. In order to prove (8.9) for ¢ € N, ¢ > 6 we will show that

2 2\ ¢
1—|—§<q1/q<:><1+5> <q, VqeN, qg>6. (8.10)

One can easily check that the inequality (8.10) is valid for ¢ = 6 and 7. Since

lim (1 + g)q —

q— o0 q

in order to prove (8.10) for ¢ € N, ¢ > 8, it suffices to show that the sequence (1 +
%)q, q € N, is strictly increasing. Notice that

(0 <+ 0)" = < [etbars)

1 2 ] 2 q
=Gl

Now, using Bernoulli’s inequality, we have for ¢ € N that
2 q 2q
[1 - —] >1- 4
(¢+1)(g+2) (¢+1)(g+2)
Since is valid that

1 - q
g+3" (¢+1)(¢g+2)

2
q

So, we have proved the inequality (8.9) for every ¢ € N. Therefore,

the proof that the sequence (1 + )q, q € N is strictly increasing is complete.

s(q) <1, VqeN,

which proves that the sequence Ay(q), ¢ € N is strictly decreasing.

Now, note that (8.8) gives

~ Lo 271/
Aolg) = [(q +1)"0)"*[(2q +1) /2] {2q1+ I <(2q23(i)q(2q22'?;)' ) ] |
(8.11)

CLAIM II. It is valid that

_ _ 271/(40)
lim | 29(2q = 2)...4-2 = 1. (8.12)
= [2¢+ 1\ (2¢—1)(2¢—3)...3-1

Proof of Claim 1I. From the inequality 0 < sint < 1, ¢ € (0,7/2) (with induction)
we have that sin??™' ¢ < sin®’¢ < sin??"'¢, for every t € (0,7/2) and ¢ € N. So, we
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have that
w/2 w/2 w/2
/ sin® !t dt < / sin® t dt < / sin®~1 ¢ dt. (8.13)
0 0 0

Using that, for each n € N

(8.13) leads to

1-3...(2¢—1 2-4...(2q—2)2 2 1-3...(2 1
(2¢-1) _ (2¢-2)2¢ 2 _ (2¢+1) (8.14)
2-4...(2¢—2) 1-3...(2¢—-3)2¢—1)n 2-4...2
Multiplying (8.14) by
2:4...(2¢—2)2q
1-3...2¢—1)(2¢+1)2’
we get
2 1 2-4...(2¢-2)2¢ |°
7T - (24 — 2)29 <z, (8.15)
2¢+12 " 2¢+1|1-3...2¢-3)(2¢—1)] 2

and then the inequality

( 2q >1/(4q)(7r>1/(4q)< 1 < 2-4...(2¢—2)2q >2
2+ 1 2 2¢+1\1-3...(2¢—3)(2¢ — 1)
implies (8.12).

Using (8.12), from (8.11), we easily obtain that lim Ay(q) = 1.

q—0o0

The proof of the proposition is complete. 0J

1/(4q)

< (W)l/(4q)
2 )

Remark 8.1.3. The uniqueness of the limit cycle for the system (6.1), with p =
0, ¢ € N studied in Proposition 8.1.2 follows and from the fact that the function
o(z,y) = —e(1 — 2%) is strictly star-shaped (see [26],[27]).

Remark 8.1.4. From (8.15) it follows that

, 1 2-4...(2¢—2)2¢ 1°
lim
g~ 20+ 1|1-3...(2¢—3)(2¢— 1)

_71'
2

)

which is the Wallis’s product. It is exciting and unexpected how this limit of Wallis
appears in the proof of Proposition 8.1.2.

Proposition 8.1.3. System (6.1), with p € Ny is even, ¢ = 1 and 0 < ¢ < 1 has
a unique limit cycle which is simple, stable and its amplitude increases monotonically

from 2 to infinity as p increases from p = 0.

Proof. From Theorem 8.1.1 it follows that system (6.1), with p € Ny is even, ¢ = 1
and 0 < ¢ < 1 has a unique limit cycle, and it is simple and stable. From (8.5) when
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q = 1 it follows that

1/2

_ [+ +2)p...6-4 2 — (p+4)2.

A —
’ (p+2)p...4-2 1

Let Ag(p) := (p+4)"/2, p € Nyis even. Clearly, A(0) = 2. Obviously Ay(p) < Ag(p+1)
for all p € Ny is even and Ag(p) — 0o as p — oo and so the proof is complete. O

Remark 8.1.5. We make now an observation on the type of the bifurcation phe-
nomenon of limit cycles encountered in Proposition 8.1.3. Not the “large amplitude
limit cycle” is encountered in Proposition 8.1.3 but the “medium amplitude limit cy-
cle”. For given p the limit cycle of (6.1), with ¢ = 1, has a finite limiting radius and
therefore is called “medium amplitude limit cycle”. When increasing p also the radius
of the limiting circle increases; in particular when p — oo then the limiting radius
also tends to co. The “large amplitude limit cycle” would disappear at oo when the

bifurcation parameter € tends to 0.
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Chapter 9

Another generalized Van der Pol

equation

In this chapter, we study the bifurcation of limit cycles from the harmonic oscillator

T =1y, y = —x in the class

jf):y> y:_$+€f(y)(1_x2)a

where ¢ is a small positive parameter tending to 0 and f is an odd polynomial of
degree 2n + 1, with n an arbitrary but fixed natural number. We prove that, the above
differential system, in the global plane, for particularly chosen odd polynomials f of
degree 2n + 1 has exactly n + 1 limit cycles and that this number is an upper bound
for the number of limit cycles for every case of an arbitrary odd polynomial f of degree
2n + 1. More specifically, the existence of the limit cycles, which is the first of the
main results in this work, is obtained by using the Poincaré’s method, and the upper
bound for the number of limit cycles can be derived from the work of Iliev [11]. We also
investigate the possible relative positions of the limit cycles for this differential system,
which is the second main problem studying in this work. In particular, we construct
differential systems with n given limit cycles and one limit cycle whose position depends
on the position of the previous n limit cycles. Finally, we give some examples in order
to illustrate the general theory presented in this work. This chapter follows the paper
[14].

9.1 Existence and other properties of limit cycles

Now, we state the main results of this chapter, which are the following theorems. The
proofs of these theorems will be given in Section 9.3. For the definitions appear in
these theorems, like the sets V", V., n € N, n > 2, V! and the dependent radius, see
the next section. The first and second of our results, consider the system (6.2), with f

an odd polynomial of degree 2n + 1, where n € N, n > 2.
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Theorem 9.1.1. Let (A1, Aa, ..., Ay) € V™ be such that (A, Aa, ..., Ap, Ang1) € Vg,
where A\,y1 18 the dependent radius given by (9.4), if n € N, n > 2. Then the system
(6.2), with 0 < e < 1 and

f) =7/ (20— 2k +3) ... (2n+ 1)

1 n+1 1 n+1
X |1l——- A Aiy A
2<n+2>2 D+ 2) Zl 1A
1= ,12
! %1<12
n+1
! D SIPVNEN PR
2k(n—k+3)...(n+2 " *
..... =1
11< -<ip
1-3. (2n+1 s
B 2”+1(n—1—2 H)\“}y,

11=1

where T € R\ {0} and 1 < k <n —1, has exactly the following n + 1 limit cycles:
P4yt = M+0(), ?+y"=X+0(),..., 22+y* = 1 +0(e).

Furthermore, (assuming from now on an ordering such that Ay < Ay < -+ < Ay < A1,
where now \,11 18 not necessary the dependent radius) we have for the stability of the

limit cycles that, if T > 0 (respectively T < 0),

Py =M+006), 2+yi=X+0(),..., 2*+y* =Ny +0(e)
are stable (respectively unstable) and

Py =0+006), 2+ =M+0(@),..., 2+ =X +0()
are unstable (respectively stable) for n even; and

P4y =M +0(E), ®+yP=X+0(),..., 2>+y*=X\+0(e)

are unstable (respectively stable) and

Py =X+0@E), Py =M+0(),..., P+y’=dp+0(e)

are stable (respectively unstable) for n odd.

Theorem 9.1.2. For system (6.2), where ¢ is small and f is an arbitrary odd polyno-
maial of degree 2n + 1 we have that the number of n + 1 limit cycles is an upper bound
for the number of limit cycles. Moreover, from the set of all the odd polynomials, the
polynomials f given by (9.1), are the only that attain that upper bound.

Our third and fourth results, concern the system (6.2), with f an odd polynomial
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of degree 3.

Theorem 9.1.3. Let Ay € V1. Then the system (6.2), with 0 < e < 1 and

1
fly)=1y° — Tg)\l)\zy’ (9.2)

where T € R\ {0} and Xy is the dependent radius given by (9.5), has ezxactly the

following 2 limit cycles:
Py =M +0(), 22+y =X +0(e).

Furthermore, (assuming from now on an ordering such that A\; < Ay, where now A is
not necessary the dependent radius) we have for the stability of the limit cycles that,
if 7> 0 (respectively T < 0) 22 + y? = A\ + O(e) is unstable (respectively stable) and
2 4+ y* = Ay + O(e) is stable (respectively unstable).

Theorem 9.1.4. For system (6.2), where € is small and f is an arbitrary odd poly-
nomial of degree 3 we have that the number of 2 limit cycles is an upper bound for
the number of limit cycles. Moreover, from the set of all the odd polynomials, the

polynomials f given by (9.2), are the only that attain that upper bound.

Remark 9.1.1. It is important to note that the above theorems don’t inform us which
limit cycles we have for a differential equation of the form (6.2). That we succeed
through these theorems is to construct differential equations of the form (6.2) with n
given limit cycles and one limit cycle which is close to the circle with the dependent
radius, for particularly chosen odd polynomials f of degree 2n+ 1. So, we show how to
construct differential equations of the form (6.2) that attain the upper bound of n 4 1
limit cycles, when the odd polynomial f is of degree 2n 4+ 1. Evenly important it is
still and one negative result which can be obtained by these theorems, that we know
a priori which limit cycles we can’t have for system (6.2) with odd polynomials f of
degree 2n + 1. Substantially, we construct the set of all the possible limiting radii of
limit cycles for the system (6.2) with odd polynomials f of degree 2n + 1. This is the
set V", which contains the A-points (see Definition 9.2.7).

Remark 9.1.2. It is surprising the connection between the dependent radius for a
circle (see Definition 9.2.4) and the existence of one branch which can not separate
from the rest branches for an algebraic curve. More specifically, relatively to the
existence of such branch we refer the following of Hilbert’s speech about the first part
of Hilbert’s 16th problem “As of the curves of degree 6, I have -admittedly in a rather
elaborate way- convinced myself that the 11 branches, that they can have according
to Harnack, never all can be separate, rather there must exist one branch, which have
another branch running in its interior and nine branches running in its exterior, or

opposite”. Here, we have for the relative positions of limit cycles that the limit cycle
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which is close to the circle with the dependent radius can not lie wherever, contrary
the position of this limit cycle depends on the position of the rest limit cycles. In this

sense, we can say that the first and second part of Hilbert’s 16th problem come closer.

Remark 9.1.3. T would mention for system (6.2) that by forcing the coefficients of
an arbitrary odd polynomial to be those given in the Theorem 9.1.1 when n € N,
n > 2 (respectively in the Theorem 9.1.3 when n = 1), do not allow us to put n + 1
(respectively 2) limit cycles in arbitrary placements. The reason for this is the Theorem
9.1.2 (respectively the Theorem 9.1.4); in the statement of these theorems we see that
the proposing polynomials f (given in Theorems 9.1.1 and 9.1.3) are the only that
attain the upper bound of the n + 1 limit cycles. Now it is easy to see that in the
coefficients of these polynomials (unless in the first monomial in each case) appears the
dependent radius, and this observation in turn implies that one limit cycle do not lie
in arbitrary placements.

In order to see this more clearly consider for the system (6.2) the case where n = 1.
Once we chose \; from V1, the dependent radius Ay follows from (9.5) will be positive
(see Proposition 9.2.1) and different from the associated \; (see Remark 9.2.3), and
then for the system (6.2) with n = 1, the polynomial f given by (9.2) is the only
that realizing the maximal number of 2 limit cycles, and are asymptotic to the circles
2?2 +y* = \; and 22 + y* = Xy (note that for this circle the placement is not arbitrary,
it depends on A;) as € — 0 (see Theorems 9.1.3 and 9.1.4). (See and Example 9.4.6.)

9.2 Definitions

In this section, we introduce some new definitions. These definitions are obtained by
using technical integral expressions (see Remark 9.2.1) and properties of symmetric
functions of the roots of polynomials (Vieta’s formulas). The first of these defini-
tions has an important role in the construction of the sinusoidal-type sets and also
the advantage played by this definition along with the Definition 9.2.2 is going to be
understandable in the proof of Proposition 9.2.1.

Remark 9.2.1. I adopt the sinusoidal terminology for the next two definitions, due

to the formula

m 1-3...2n=3)(2n—1
/sin2”tdt: 3. Cn=3)@n-1) L enN (9.3)
0

2n—1n!
(see [21]) which gives the coefficients of the sums and products.

Definition 9.2.1 (sinusoidal-type numbers). Let A, Ao, ..., A\p_1, A, be distinct posi-
tive real numbers, where n € N, n > 2. We define for n € N, n > 3, the sinusoidal-type
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numbers of order n, associated to the A, Ao, ..., A1, \p

_ (=1)* -
Si=2Ant+2) 4+ +2’“—1(n—k+3)...(n+1)i12i:_11 e
<y
—1)" n
% s
Tii=1
2"‘5—1(71—l<:—i—2)(n—k—i—3)...n,l ~_ g
U] gyeney 1=
i< <

)"
* 2n=1p) 1_[1 Ay
i1=

1 n
§" = ——— Aig iy - -
° dn(n +1) Z i

i1,49=1
11 <tg

(1) (k — 1) n
2kn—k+2)(n—k+3)...(n+1) DA+

MEIESE W

2n(n+1)!

where 2 < k < n —1 for the §*,5" and 3 < k < n — 1 for §”. In the special case where

n = 2, we define the sinusoidal-type numbers of second order, associated to the A;, Ao

1
§2 =8 + —)\1>\2,
6
1
a2
=6+ -\ A
S + 4 112,
N 1
82 = 2—4)\1)\2.

For n = 1, we define the sinusoidal-type numbers of first order

For the sinusoidal-type numbers we have the following result.

Lemma 9.2.1. Forn € N, n > 2, we have that

§'=§"<—= 35" =1,
"> 5= 5" < 1,

"< 8= 35" > 1,

where 5", §" and 5" are the sinusoidal-type numbers of order n, withn € N, n > 2, of
the Definition 9.2.1.
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Proof. Clearly, for n € N, n > 3,

2(n +2) A dip = Aiy Aig A
(n+2) n+1 Z ' n—|—1 Z s

i1,92=1 11,l2,23 1
11 <12 11 <t2<13

+ (1" i /\~1---Aik+"'+&ﬁ&1

2 n—k+3)...(n+1) ~—~_ 2n2(n+ 1)1 12
1117<7 k<zk !
=2(n+1)+ - Z Ay Aiy — o Tn Z Aiy Xig iy A+ -
11,22 1 i1,12,13=1
11 <12 11<12<13
(=D*
Nig oo N, - Y
+2k—1(n—k+2)(n—k+3)...n Zl ! i +2”—1n!1—[1 '
7’17 sk 11=
i< <ig

if and only if

n

1
—_— )\1)\1— )\2)\1)\2
R 2 M S, O et

i1,i2=1 21722,%3 1
11 <12 11 <i9<i3

(—1*(k—1)
W(n—k+2)(n—k+3)...(n+1) Z Ay A

i, T
U1tk =1
11 <o <ip

—D"(n—1)

i1=1

and the first equivalence has been proved. Similarly, one can prove and the rest two
equivalences. For n = 2, (i.e. for the sinusoidal-type numbers of second order), it is

easy to see that the above equivalences hold. The proof of the lemma is complete. [

We continue with another definition. The role played by this definition is that
the square roots of the coordinates Ay, Ao, ..., A, of the points (A1, Ao, ..., \,), where
n € N, n > 2, are going to be the limiting radii of the limit cycles which are asymptotic
to circles of radii v/\; for i = 1,2,...,n centered at the origin when the small positive
parameter of our system tending to 0. This will be done by forcing v/ A1, Vs, ..., VA,
to be simple roots of the polynomial F' defined in (7.5) (see Theorem 7.1.1). For this
reason, we assume that the given Aj, \y,..., A, are all positive and with \; # A; for
all © # j where 7,7 = 1,2,...,n. In this way, we are going to construct n limit cycles
for system (6.2). But Iliev in [11] proved that the maximal number of limit cycles
due to polynomial perturbations of degree n of the harmonic oscillator is equal to
[2=1] (the largest integer less than or equal to “31). Since in our case the polynomial
perturbations are of degree 2n + 3 we can achieve n 4 1 limit cycles. Now, we see that
we can have an additional limit cycle. About the position of this limit cycle we later
give the definition of the dependent radius.

The same observation of all the above is valid and in the case where n = 1.
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Definition 9.2.2 (sinusoidal-type sets). For n € N, n > 2, we define the sinusoidal-

type sets of order n as
S = {()\1,)\2,...,)\”) ‘N # N\ Vi# g whered,j =1,2,...,n with A; > 0

Vi=1,2,...,n and Z/\i < §" when §" > 1},

=1

Sp= {()\1,)\2,...,)\”):)\ﬁé)\jw#jWherei,j:1,2,...,nwith A >0

Vi=1,2,...,n and Z)\i < §" when §" < 1},

i=1

Sn = {()\1,)\2,...,)\”):)\i#)\jw;«éjwherez’,j:1,2,...,nwith A >0

Vi=1,2,...,n and Z)\i < §" = §" when 5”:1},

=1
S = {(Al,Az,...,An):)\i#)\jw;«éjWherei,jzl,Q,...,nwith A >0
Vi=1,2,...,n and zn:)\i > §" when §" < 1},
i=1
So = {(Al,Az,...,An):)\i#)\jW%jwherez’,j:1,2,...,nwith A >0
Vi=1,2,... nand iAi > §" when & > 1},
=1

S = {()\1,)\2,...,>\n):)xi#)\jwséjWherei,j:1,2,...,nwith A >0

Vi=1,2,...,n and Z)\i > §" = §" when §”:1},

=1

where 5", §" and §" are the sinusoidal-type numbers of order n, with n € N, n > 2, of

the Definition 9.2.1. For n = 1, we define the sinusoidal-type sets of first order

Sll = {)\1 : /\1 S (0,4)},
Sy = {)\1 t A € (6,+oo)}.

Definition 9.2.3. We define for n € N, n > 2, the set V" as the set
V=0 S

For n = 1, we define the set V! as the set
yl— Stu sk

Now, we continue with the last statement of the observation that we made before
the Definition 9.2.2. The positions of the n limit cycles have to satisfy an algebraic

relation in order that there is an odd polynomial f, realizing the maximal number of
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limit cycles, and the position of the (n + 1)-th limit cycle is estimated in terms of the

positions of these n limit cycles. On this we have the following definition.

Definition 9.2.4 (dependent radius). Let (A, Ay,..., \,) € R", n € N, n > 2. We
call dependent radius representing with A,; the quantity (when is defined) given by

the formula

Mt = At O Ao - A1, An) 1= % (9.4)
where
=242 4 4 (1) (0 — k4 2)! Zn: iy - iy,
st
+o a0 ] M
i1=1
and

where 1 < k <n — 1. So, the dependent radius is the (n 4 1)-th radius associated to
the radii A\, Ao, ..., An_1, A
For n = 1, let \; € R, then we call dependent radius representing with Ay the
quantity (when is defined) given by the formula
24 — 4\

Yo = Mo(h) = Sy (9.5)

So, in this case the dependent radius is the second radius associated to the radius ;.
For the dependent radius we have the following result.

Proposition 9.2.1. If (A, Ao, ..., A1, An) € V™, n € N, n > 2, then the dependent
radius Apy1 = Apr1(A1, Ao,y A1, ), m € N, n > 2, is positive. If n = 1 and
suppose that \y € V1, then the dependent radius Ay = \a(N\1) is positive.

On the other hand if X\, Aoy. .., A1, A\, n € N, m > 2 are distinct positive real
numbers so that the dependent radius A\,+1, n € N, n > 2, associated with the radu
A1y A2y ooy Adnl1, Ay @8 positive, then (A, Aa, .. s An1, M) €V, ne N, n>2. If\
18 a positive real number so that the dependent radius Ay associated to the radius Ay is

positive, then \; € V1.

Proof. To prove that the dependent radius A1, n € N, n > 2, associated to the
radii A1, Mg, ..., A, is positive when (A, Ao, ..., A\,) € V™, n € N, n > 2, it suffices to
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show that both numerator and denominator of (9.4) are of the same sign.

We will check the case where (A, Ao, ..., A1, \,) € ST, n € N, n > 2. Similarly,
one can prove and the other cases.

In the set S7', n € N, n > 2, we have "' | \;; < 5". Now, for n € N, n > 3, using
the definition of §” and multiplying the last inequality by —2"(n + 1)! we have

2 4+ 2)l = 2"+ DY N, 27l Y AN, — -+ A=) [T A >0,

i1=1 i1,i2=1 i1=1
11<12
which shows that the numerator of (9.4) is positive.
Since > 7', A, < 5" in the set S}, we have that —» " | A;; > —5". Using this

observation we obtain the first inequality for the denominator of (9.4)

n

2"+ 1)1 =2" ) A 2" 2= 1) > N, — o+ (D) [ M

i1=1 i1,i2=1 =1
11 <i9

> 2%+ DI =2""nls" 42" (n— 1)1 > A, — -+ (=D [ M

11,92=1 11=1

11 <12
I 2(—1)" 1~
=" 1) —2"n! 2) — "2 i Niy 4 — i
i <io

+ 22— Y Ay, — o+ (D" [T M

il,i2‘:1 11=1
11 <12

= 2"l +2"nls" > —2™"n! 4+ 2"n! = 0.

Here, we have used in the first equality the definition of " for n € N, n > 3 and in the
last inequality that s™ > 1 in the set ST.

So, we proved that both numerator and denominator of (9.4) when n € N, n > 3,
are positive, which show that the dependent radius A, ;1 is positive if (Ay,..., A,) € ST,
neN n>3.

In the case where n = 2, it is easy to show that the dependent radius A3 associated
to the radii Aj, A is positive if (A1, Ay) € S%, since in that case both numerator and
denominator of (9.4) with n = 2, are positive.

If n =1, it is easy to show that the dependent radius Ay associated to the radius
A1 is positive if \; € V!, since in that case both numerator and denominator of (9.5)
are of the same sign.

Let us now show the inverse. Let A, Ao, ..., A\p_1, An, n € N, n > 2, be distinct
positive real numbers so that the dependent radius \,.1, n € N, n > 2, associated to
the radii \1, Ao, ..., A\, is positive.

First, we examine the case where both numerator and denominator of A, ,; are
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positive.

Since we suppose that the numerator of A, is positive, we have that

2 4+ 2) = 2"+ DY A, 27l Y A A, — -+ 4= [ A >0,

i1=1 i1,i2=1 i1=1
11 <12
and dividing this inequality by —2"(n + 1)! we have that > 7 _; A;, < 3"

Since we suppose that the denominator of A\, is positive, we have that

2'(n+ I =2"""nl Y N, 272 = DY A h, — o+ (D" [ A >0,
i1=1 il,z'i;l i1=1
11 <12

and dividing this inequality by —2"~'n! we have that 7" | \;, < §".

" =35"or 8" > §" or " < §", where

Now, we have the following possibilities: §
neN, n>2.

In the case where 5" = §" we know from Lemma 9.2.1 that s" = 1 and hence
(A, A, \) €88, neN, n>2.

In the case where 5" > §" we know from Lemma 9.2.1 that s < 1 and hence
(A, A2, \) €58, neN n>2.

In the case where 5" < §" we know from Lemma 9.2.1 that s > 1 and hence
(A, Ao, A\) €87, neN, n>2.

Let us now examine the case where both numerator and denominator of A, ; are
negative.

Since we suppose that the numerator of A\, is negative, we have that

27 4+ 2) = 2"+ DY N, 27l Y AN, — -+ A=) [T A <0,
11=1 il,iQ.Zl i1=1
11<12
and dividing this inequality by —2"(n + 1)! we have that > ;' _, A;, > 5"

Since we suppose that the denominator of A, is negative, we have that

2+ 11 =2y N 27— D) Y A, — -+ (=D [ A <0,

=1 i1,i2=1 i1=1
i1 <19

n
i1=1

and dividing this inequality by —2"~'n! we have that > " _ A\, > §".

" = 35" or §" > §" or 5" < §", where

Now, we have the following possibilities: §
neN, n>2

In the case where 5" = §" we know from Lemma 9.2.1 that s" = 1 and hence
(A, gy A) €88, neN, n>2.

In the case where 5" > §" we know from Lemma 9.2.1 that

()\1,)\2,...,)\n)ESZ,”GN,TLZQ.

" < 1 and hence

[V
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In the case where 5" < §" we know from Lemma 9.2.1 that s > 1 and hence
(A, Agy o A,) €88, neN, n>2.

We have thus proved the inverse of Proposition 9.2.1 for n € N, n > 2. In fact we
proved a stronger result. Let A;, Ao,..., A\,, n € N, n > 2, be distinct positive real
numbers. Supposing that both numerator and denominator of the positive dependent
radius \,11, n € N, n > 2, associated to the radii A\, A\a,..., \, are positive, then
A, A2, .3 A,) € UE 8" n € N, n > 2. If we suppose that both numerator and
denominator of the positive dependent radius A1, n € N, n > 2, associated to the
radii A1, Aa, ..., A, are negative, then (A, Xo,..., \,) € U, S?. neN, n>2.

If n =1, let A\; be a positive real number so that the dependent radius Ay associated
to the radius \; is positive.

First, we examine the case where both numerator and denominator of Ay are pos-
itive. In that case we have for the numerator that 24 — 4\; > 0 which implies that
A1 < 6 and for the denominator that 4 — A; > 0 which implies that A; < 4. Combining
the last two results about \;, we have that 0 < A\; < 4 and hence \; € 5.

Let now examine the case where both numerator and denominator of A\, are neg-
ative. In that case we have for the numerator that 24 — 4\, < 0 which implies that
A1 > 6 and for the denominator that 4 — \; < 0 which implies that A\; > 4. Combining
the last two results about A;, we have that 6 < A\; < +oo and hence \; € Si.

So, we proved that, if \; is a positive real number so that the dependent radius A,
associated to the radius \; is positive, then A\; € V!. The proof of the proposition is

complete. O

Remark 9.2.2. According to Proposition 9.2.1, the set V" is the biggest set from
which we can choose the points (A1, Ag,..., \,;) so that the corresponding dependent
radius A, given by (9.4), is positive if n € N, n > 2 and the set V! is the biggest set
from which we can choose the numbers \; so that the corresponding dependent radius

Ao given by (9.5), is positive.

Now, is following the definition which has the central role. The advantage played
by this definition is that the square roots of the coordinates A\, Aa, ..., Ay, Ays1 (where
An+1 is the dependent radius associated to the radii Ay, Ag, ..., A1, A,) of the points
(A, Aoy ooy A, Apy1), where n € N)n > 2, are going to be the limiting radii of the limit
cycles which are asymptotic to circles of radii v/)\; for i = 1,2,...,n,n 4+ 1 centered at
the origin when the small positive parameter of our system tending to 0. This will be
done by forcing v/ A1, v A2, - - -, VA, \/m to be all the simple roots of the polynomial
F defined in (7.5) (see Theorem 7.1.1). For this reason, we assume that the given
points (Aq, A2, ..., A,) belong to V™ and we want for the corresponding dependent
radius A1 = Apr1(A1, A2, ..., Ay) (which from Proposition 9.2.1 is positive) to satisfy
that A\,41 # Aj forall 7 =1,2,...,n. In this way, we construct n 4 1 limit cycles for
system (6.2), and so we achieve the maximal number of limit cycles due to polynomial

perturbations of degree 2n + 3 of the harmonic oscillator (see [11]).
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The same observation of all the above is valid and in the case where n = 1.

Definition 9.2.5. We define now for n € N, n > 2, the sets

Stmar = { (AL A2, A A1) - (AL Ao, ) € ST, Mgt = At (A, o, ),
A1 £\ Vi=1,2,...,n},

St = L Azs e A Angt) T (A, Az e M) €58, At = At (Moo A,
A1 2N Vi=1,2,...,n},

S = {0, Agy o A Anst) t (A, A2y An) € 55, Mgt = At (Ads oo, A,
A1 X Vi=1,2,...,n},

Stner = { (AL A2, A An1) - (AL A, ) € S, Angr = At (A, o, M),
A1 N Vi =1,2,...,n},

St mir = { (AL A2y o A A1) (AL Aoy ) € S, Mgt = At (A, o, M),
A1 # N Vi=1,2,...,n},

St ir = {0 A A Anrn) £ (A Agy e, ) € S8 At = At (A, -, ),
A1 2N Vi =1,2,...,n},

where ST, 5%, 5%, Sy, S and S are the sinusoidal-type sets of order n, with n € N,
n > 2, of the Definition 9.2.2 and \,; is the dependent radius given by (9.4). For

n = 1, we define the sets

51172 = {()\1,)\2) o /\1 € Sll, )\2 = )\2()\1), /\2 7é )\1},
52172 = {()\1,)\2) A E S%, Ay = )\2()\1), Ao 7’é )\1},

where S| and S} are the sinusoidal-type sets of first order of the Definition 9.2.2 and
Az is the dependent radius given by (9.5).

Remark 9.2.3. Notice that, if A\; € (0,4), then the dependent radius Ay given by
(9.5), belongs to (6,+00) and so we have that (A, X2) € Si,. If Ay € (6,+00),
then the dependent radius Ay given by (9.5), belongs to (0,4) and so we have that
(A1, X2) € S5,

Remark 9.2.4. According to Remark 9.2.3, the sets Sj, and Sj,, which defined as

above, take the more simple form

Sto={(A, X))t AL €51, Ao = Aa(M) ],
S3o={(A,X2) : A1 € 53, A2 = Xo(A1) },

where S} and S} are the sinusoidal-type sets of first order of the Definition 9.2.2 and
Az is the dependent radius given by (9.5).
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Definition 9.2.6. We define for n € N, n > 2, the set V!, ;| as the set
Vi = UleS{an.
For n = 1, we define the set V! as the set
V= 51,US8;,.
Remark 9.2.5. In the set V' ;, n € N, the positive dependent radius A,,1, n € N, is

obviously different from Ay, Ao, ..., A1, A\p, n € N.

Remark 9.2.6. It is possible, for n € N, n > 2, the point (A1, Aa,...,\,) € V™ but
the point (A1, Ag,..., An, Any1) € V7, where A,y is the dependent radius given by
(9.4), associated to the radii Aj, Ag, ..., \,. (For example, it is easy to see that the
point (4,6) € V?; in particular belongs to S3. We calculate the dependent radius As,
associated to the 4,6, which from Proposition 9.2.1 is positive and we have that A3 = 6.
Now, the point (4,6,6) ¢ V2.)

For n = 1, according to Remark 9.2.3, if A\; € V!, then (A, \y) € V3!, where ), is
the dependent radius given by (9.5), associated to the radius A;.

Definition 9.2.7 (A-points (lambda points)). We will call the points
()\17)‘27"'7>\H7An+1> €V+17 nEN:

the A-points.

9.3 Proofs of existential theorems for limit cycles

Proof of Theorem 9.1.1. From (7.2) we have

B(z,y) = yf(y)(1 — 2?), (9.6)

where f is the polynomial introduced in (9.1). Substituting (9.6) into (7.5), we obtain
that

F(A) = /0 OI6) (1= (@°()%)dt, (9.7)

where f is the polynomial introduced in (9.1). We insert the definition of f given by
(9.1) in (9.7) to obtain

F(A) = 7/02“ [(yO(t))Z(n+l) + (2n + 1)( ) HZH )\“> o
(st D) e - wor

105



Substituting z%(t) = Acos(t — t) and y°(t) = —Asin(t — ty) into (9.8) we get

2T
F(A) = 747 / (A7 1 — 1)
0
n+1

R o U T e
+(2n—|—1)<1 2(n+2)z:1/\“>14 sin”"(t — o)

n+1

+...+<1 3 (2n—|—1 H)\“)sm t—to)]

2n+1 (Tl + 2

x [1— A% + A?sin’(t — to)]dt,
whence, after multiplying the terms in the two brackets we get

27
F(A) = 74 / (A2 S0 (1 — 1) — A2 sin4 ) 1 — 1)
0

+ (2n + 1)< Z )\“>A2 ) sin®(t — t0)

+1
11=1
n+1

1 2n
_(2n+1><1—m11 1/\11>A SlIl (t—to)

1 +1
4 (2n+1) <1 @ _\ )\h)AQ” sin2 D (¢ — )
2(n + 2) =
1-3...2n+1 s
—i—( 2”+1(n—|—2 H)\“)sm (t —to)
11=1
1-3...(2n + 1) s )
A < 2%1(” ol H )\11>A sin?(t — t)
i1=1
1-3...2n+1), T ,
+ ( o T3] 0" 1 Ah)A2 sin (t —to)] dt.
) 11=1
Using now (9.3), we finally obtain
1-3...(2n+1) S - )
_ 2 2(n+1 2n 2(n—1
F(A) = mr At SO [ A S A A 3 A
i1=1 i1,ia=1
11<12
n+1
+- EOD T N A AR
Zl ..... Zk 1
11 <<l
n+1 n+1
— (D" Y e A+ (-1 T
014yt =1 i1=1
11 <<l
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We show now that v/ A1, v/ A2, ..., VA, v/ Ans1 are roots of the polynomial F'. Let

n+1 n+1
W(A) = A2 N "0 A% ™\, A2
i1=1 i1,i2=1
11 <12
n+1 n+1
(=0T Y Ay A AT = (D) T M
o) n
namely, we write
1-3...(2n+1)
F(A) = —m7A? W (A).
(4) = =7 2+ (1 4 2)! W)

Now, it suffices to show that /A1, Vg, ..., vV An, /Ans1 are roots of the polynomial
W. Without loss of generality we consider the quantity /A;. For W(\/)\l) we have

n+1 n+1 n+1

W(\/)‘_l) = )‘?Jrl - )‘? Z)‘ll + )‘71171 Z )‘il)‘lé wy (_1>n H )‘1'1

i1=1 i1,49=1 i1=1
11 <t9

n+1 n+1 n+1
_ \n+l1 n+1 nE ) n§ ) n—1 E Y
— Al - Al - Al )\Zl + )\1 )\7/1 + Al >\Zl AZQ
11=2 11=2 i1,i2=2
11 <ig
n+1 n+1
n—1 n—2
D DIPTSR VP VO T
11,i2=2 11,02,i3=2
11 <12 11 <12<13
n+1 n+1 n+1
n—2 n n
FNTTO T N A+ (GO N - 0 T
11,i2,83=2 i1=1 i1=1
11 <12<i3

=0.

So, VA1, VA2, ...V Ans v/ Ans1 are roots of the polynomial W and therefore and for

the polynomial F'.
Now, using Theorem 7.1.1, it suffices to show that v/ A1, v A, ..., vV, \/Anp1 are

not roots of the polynomial W’; therefore they are not roots and for polynomial F”.

For the derivative of W we have that

n+tl n+1
W'(4) =24 [(n + DA =Y AT (= 1) YA A,,A%0 )
11=1 i1.,i2‘:1
11 <12
n+1
W

Now, we have that one root of W’ is A = 0 and we also have another 2n roots. From

those 2n roots, n are positive and the other n are negative (these roots are opposite
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numbers). Let

ntl n+1
G(A) = (n+1)A>" —n Z A, A207D 4 (g — 1) Z iy Ay, A22)
=l i1,io=1
11 <12
n+1
— e (=1)" Z DYDY VI
B1yeeeytn=1
iy <<

namely, we write

W'(A) = 24 - G(A).

Now, we check if the roots /A1, v A2, - . ., vVAn, \/Ang1 of the polynomial W are possible
to be roots and for the polynomial W/, therefore and for the polynomial G. Without

loss of generality we consider the root v/A; of W. For G(\/)\_l ) we have

n+1 n+1
G(VA) =+ DA —=nXA 7D X + (= DA > A,
i1=1 i1,92=1
11<12
n+1
- +(_1)n Z )‘11 )\Zn
i1, in=1
1< <y
n+1 n+1 n+1
ST XA D N, AT DT N,
i1=2 i1,i2=2 i1,i2,i3=2
11 <12 11 <i2<i3
n+1
DA > A A+ (D)™ Aos s A A
Tl yeeey in=2
zl1<~<in

=M =)A= A3) ... (A = X)) (A — M)

Obviously, W’ (\/)\1) is not zero since in the set V' | we have that A\, # \; for j =
2,3,...,n,n + 1. Similarly, none of the v/Ao,v/A3,..., VA, \/Ani1 is a root of W',
Therefore, we have that the roots v A1, v A2, ..., VAn, / Ans1 of W are not roots of

W', Finally, none of the roots /A1, vz, ..., VA, v/ Ansi1 of F is a root of F'. That
is essential so that the n + 1 simple roots of F' create n + 1 limit cycles. Hence, from

Poincaré’s method (see Theorem 7.1.1) it follows that (6.2), with f be the polynomial
introduced in (9.1), has at least n 4+ 1 limit cycles, and are asymptotic to circles of
radius /\; for i =1,2,...,n + 1 centered at the origin as ¢ — 0.

Let now prove that the number of limit cycles for system (6.2), with £ small and f
be the polynomial introduced in (9.1), is exactly n+ 1. The proof of this can be derived
from the work of Iliev [11] since it constitutes a special case of the Theorem 1 proved
there. Actually, applying this theorem from [11] for the special case k = 1, since the
degree of (6.2) is 2n + 3 we can obtain at most n + 1 limit cycles. Finally, combining
this result with the result that (6.2), with f be the polynomial introduced in (9.1), has
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at least n + 1 limit cycles we get the desired result, namely that the number of limit
cycles for system (6.2), with ¢ small and f be the polynomial introduced in (9.1) is
exactly n + 1.

Now, concerning the stability of the limit cycles we have the following.

From now on we will suppose for the coordinates Ai, Ao, ..., \,, Ayy1 of the points
(A, A2, A, A1) € Vg, m € Ny n > 2, an ordering such that Ay < Ay < -+ < A, <
Ant1. We can always achieve this since the positive real numbers Aj, Ao, ..., A\, Ait
are distinct. Note that in this order with \,,; we do not necessary mean the dependent

radius. Since

G(VA) = (A= A) (A = Ag) oo (A1 = A (A1 = Ans),

we have that W’(\/)\_l) < 0 if n is odd and that W’(\/)\_l) > 0 if n is even.

So using the fact that, if F/(v/A;) < 0 the limit cycle % + y? = X; + O(e) is stable
and if F’ (\/)\_l) > 0 the limit cycle is unstable we have for the stability of the n + 1
limit cycles that, if 7 > 0 (respectively 7 < 0)

Py =M+006), 2+ y =X +0(),..., 2+y = 1 +0(e)
are stable (respectively unstable) and

Py =0+006), 22+ = \+0(),..., +y =N\ +0(e)
are unstable (respectively stable) for n even; and

Ay =M+006), 22+y =X +0(),..., *+y =N\, +0(e)
are unstable (respectively stable) and

Pyt =0+00E), P+ = M+0(),..., 2+y = 1 +0(e)

are stable (respectively unstable) for n odd. The proof is complete. 0

Proof of Theorem 9.1.2. As we already saw, according to Theorem 1 from [11] the
number of n+1 limit cycles is an upper bound for the number of limit cycles for system
(6.2), where € is small and f is an arbitrary odd polynomial of degree 2n + 1.

Now, it is easy to see that for system (6.2), where f is an arbitrary odd polynomial
of degree 2n+ 1, the associated F' given by (7.5) is an even polynomial of degree 2n+4,
with 0 as a double root. Therefore, in general the polynomial F' has at most n+1 simple
positive roots. Furthermore, since V", n € N, n > 2 is the biggest set from which we
can choose the points (Ay, Ag, ..., A,) so that the dependent radius A, given by (9.4),
is positive if n € N, n > 2 (see Remark 9.2.2) and F' as we showed has at most n + 1

simple positive roots, we must choose the points (A1, Aa, ..., A\pi1) € V4, in order the
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polynomial F' has exactly n + 1 simple positive roots, and thus, from the set of all the
odd polynomials, the polynomials f given by (9.1) are the only such that the system
(6.2) attains the upper bound of the n + 1 limit cycles. The proof is complete. O

Proof of Theorem 9.1.3. The proof is identical as in Theorem 9.1.1; the only mod-
ification is that the polynomial f given by (9.1) will be replaced by the polynomial f
introduced in (9.2). O

Proof of Theorem 9.1.4. The proof is identical as in Theorem 9.1.2; the only mod-
ification is that the case where n € N, n > 2 will be replaced by n = 1. O

9.4 Examples

In this section we illustrate the general theory of this work by some examples.

Example 9.4.1. We consider A\; = 4, Ay = 5. These Ay, Ay are distinct and positive.
We have according to Definition 9.2.1 that the sinusoidal-type numbers of second order,

associated to the 4,5 are

1 1 34
2
=84 MMy =84 =-4.5="2
S +612 +6 3
1 1
~2
=64 -MA =6+ --4-5=11
S +412 +4 )
1 1 5
2= A= — 4-5=2.
Sim g = g0 =g

Since A\; + Ay = 4+ 5 = 9, we have that (4,5) € S? and therefore (4,5) € V2. We
calculate the dependent radius A3, associated to the 4,5, which from Proposition 9.2.1

is positive and we have that

o 1922400+ d0) + ANy 192216480
T2 — A+ A) + M 24-36+20

So, we have the A-point (4,5, 7) which belongs to the set V2.

Now, using Theorem 9.1.1, for 7 = 16, we have that the system

{ =Y, (9.9)

y=—z+e(16y° — 80y" + 175y) (1 — 2?),

with 0 < € < 1 has exactly, the limit cycles 22 + y?> = 4 + O(¢), 2 + 3?> = 5+ O(¢)
and z° +y?> =7+ O(e).

Since 4 < 5 < 7, the limit cycles 2% + y?> = 4+ O(e), 22 + y*> = 7+ O(e) are stable
and the limit cycle 2% + y* = 5 + O(e) is unstable.

From Theorem 9.1.1 we have for the system (9.9) that, if we change 7 from 16 to
—16 the unstable limit cycle 2% + y* = 5 + O(e) becomes stable and the stable limit
cycles 22 + y* =4+ O(e), 2* + y* = 7+ O(e) become unstable.
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Example 9.4.2. We consider \; = 4, Ay = 16. These A\{, Ay are distinct and positive.
We have according to Definition 9.2.1 that the sinusoidal-type numbers of second order,

associated to the 4,16 are

1 1 56
=2
=84+ - Ml =8+--4-16="—
S +612 +6 37
1 1
2 =64+ -MA=6+--4-16=22,
4 4
1 1 8
2= — =—.4-16 = —.
Simgphihe =g dr16=4

Since A\; + Ay = 4+ 16 = 20, we have that (4,16) ¢ S?, (4,16) ¢ S2 and therefore
(4,16) ¢ V2. Therefore from Proposition 9.2.1 the dependent radius A3, associated to
the 4,16 is not positive.

So, according to the Theorem 9.1.1 it does not exist a system of the form

T =y,
{ y=—z+e(ay’ +ary® + agy) (1 — 2°),

where 0 < ¢ < 1 and ag, ay,as € R, which has exactly three limit cycles whereof the
two of them have the equations 22 + y? = 4+ O(e), 2? + y* = 16 + O(e).

Example 9.4.3. We consider \; = 1, Ay = 2, A3 = 3. These A, Ay, A3 satisfy our
assertions, since \; # \; for all ¢ # j where 7,5 = 1,2,3 and are positive. We have
according to Definition 9.2.1 that the sinusoidal-type numbers of third order, associated
to the 1,2, 3 are

1 1 11 1 45
=10 + - - =10+ ——-=—
S 0+ 8()\1)\2 g )\1)\3 + )\2)\3) 48)\1)\2)\3 0+ g 3 4 X
R 1 1 11 1 115
83 = 8 1 6()\1)\2 —|— /\1/\3 + /\2)\3) — ﬂ/\1>\2)\3 = 8+ g — 4—1 = E,

1 1 11 1 1

3= —(MA2 4+ M3+ dadsg) — — A dody = — — — = —.
S 48(12+ 123 + A2As3) 061N T e T 16 6

Since A+ A+ A3 = 14243 = 6, we have that (1,2, 3) € Si and therefore (1,2,3) € V3.
We calculate the dependent radius A4, associated to the 1,2, 3, which from Proposition

9.2.1 is positive and we have that

\ e 1920 — 192(A1 + Az + A3) +24(A1Ae + MAs + Aods) — 4Mdohs 504
TTU102 = 24(M 4 Ag + A3) +4(Ads + M Ag + Aodg) — AAsds 43

So, we have the A-point (1,2, 3,504/43) which belongs to the set V.
Now, using Theorem 9.1.1, for 7 = 43/8, we have that the system

T =y,

. 43 . 581 . 5887 , 1323 ) , (9.10)
— — J— - _ 1_

y x+€<8y Y T s Y e v) (- )
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with 0 < ¢ < 1 has exactly, the limit cycles 2 +y? = 1 + O(¢), 2% + y?> = 2 + O(e),
2?4+ y* =3+ 0(e) and 2% + y* = (504/43) + O(e).

Since 1 < 2 < 3 < 504/43, the limit cycles 22 + y> = 1+ O(e), 2% + y* = 3+ O(e)
are unstable and the limit cycles 22 + y* = 24+ O(e), 2* + y* = (504/43) + O(e) are
stable.

From Theorem 9.1.1 we have for the system (9.10) that, if we change 7 from 43/8
to —43/8 the unstable limit cycles 22 + y* = 1 + O(¢e), z* + y? = 3 + O(e) become
stable and the stable limit cycles 2% +3* = 2+ O(e), z* +y* = (504/43) + O(g) become

unstable.

Example 9.4.4. We consider \; = i for ¢« = 1,2,...,6. These A1, Aa, A3, A\g, A5, Ag
satisfy our assertions, since A\; # A; for all 7 # j where 4,7 = 1,2,3,4,5,6 and are
positive. It is easy to show, after some calculations, that (1,2,3,4,5,6) € V5. We
calculate the dependent radius A7, associated to the 1,2,3,4,5,6, which from Propo-
sition 9.2.1 is positive and we have that A\; = 13337/690. So, we have the A-point
(1,2,3,4,5,6,13337/690) which belongs to the set V..

Therefore, from Theorem 9.1.1 exists a system of the form (6.2), where 0 < ¢ < 1
and f is an odd polynomial of degree 13, which has exactly the limit cycles: z? + y? =
14+0(e), 22 +y?> =2+0(¢e), 2+ 9> =3+ 0(e), 22 +9y* = 4+ 0(e), 22 +y*> = 5+ 0(e),
22 +y? =6+ 0(e), 2* + y* = (13337/690) + O(e).

Example 9.4.5. We consider \; = 7, Ay = 701/100. It is easy to show, after some

calculations, that (7,701/100) € V2. We calculate the dependent radius A3, associated

to the 7,701/100, which from Proposition 9.2.1 is positive and we have that A3 =

5204/1703. So, we have the A-point (7,701/100,5204/1703) which belongs to the set
Now, using Theorem 9.1.1, for 7 = —2179840, we have that the system

T =y,
(9.11)
{ § = —x—+¢e( —2179840y° + 12351224y° — 25536028y ) (1 — =°),

with 0 < € < 1 has exactly, the limit cycles 22 + y* = 7+ O(¢), 22 + y* = (701/100) +
O(e) and 2% + y* = (5204/1703) + O(e).

Since 5204/1703 < 7 < 701/100, the limit cycles 2% + y? = (5204/1703) + O(e),
r?+y* = (701/100) + O(e) are unstable and the limit cycle 2% +y? = 7+ O(e) is stable.

Since v/A; and /A, have very small difference (|v/ A1 —v/Az| = |%7071| ~ (0.0019),
the qualitative and quantitative image that one gets using a program, may give the
misimpression that system (9.11) has a semistable limit cycle. This happens because
the stable limit cycle 22 + y? = 7 + O(¢) lies close enough to the unstable limit cycle
22 +y* = (701/100) + O(e). This of course is prospective since a priori we have chosen
the A1 and A\s so as to be close enough the one to the other. So, the two limit cycles
22 +y* = 7+ O(e) and 22 + y* = (701/100) + O(e), create “one system with one

112



pseudosemistable limit cycle” as we can say, since the two limit cycles together behave

like a semistable limit cycle.

Remark 9.4.1. It is easy to see, according to Remark 9.2.3, that system (6.2) with
n = 1 can’t have “a system with a pseudosemistable limit cycle” as we mean above

“the system with a pseudosemistable limit cycle”.

Example 9.4.6. We consider \; = 7. This \; belongs to Si. We know from Remark
9.2.3 that the point (7, ;) € S;,, where )y is the dependent radius associated to the
7.
We calculate the dependent radius Ag, associated to the 7, (which from Proposition
9.2.1 is positive) and we have that
244\ 24-28 4

Ag 1= = = -.
2 4— )\ 4—7 3

So, we have the A-point (7,4/3) which belongs to the set V..

Now, using Theorem 9.1.3, for 7 = 6, we have that the system

{i:y’ (9.12)

y=—x+e(6y® —Ty)(1— 2%,

with 0 < € < 1 has exactly, the limit cycles z°+y* = 7+0(¢) and 2*+y? = (4/3)+0(¢).
Since 4/3 < 7, the limit cycle 2* +y* = (4/3) + O(e) is unstable and the limit cycle
22 +y? =7+ O(e) is stable.
From Theorem 9.1.3 we have for the system (9.12) that, if we change 7 from 6 to
—6 the unstable limit cycle 22 +y* = (4/3) + O(e) becomes stable and the stable limit
cycle 22 + y* = 7+ O(g) becomes unstable.
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